1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static const struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 enum md_ro_state { 97 MD_RDWR, 98 MD_RDONLY, 99 MD_AUTO_READ, 100 MD_MAX_STATE 101 }; 102 103 static bool md_is_rdwr(struct mddev *mddev) 104 { 105 return (mddev->ro == MD_RDWR); 106 } 107 108 /* 109 * Default number of read corrections we'll attempt on an rdev 110 * before ejecting it from the array. We divide the read error 111 * count by 2 for every hour elapsed between read errors. 112 */ 113 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 114 /* Default safemode delay: 200 msec */ 115 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 116 /* 117 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 118 * is 1000 KB/sec, so the extra system load does not show up that much. 119 * Increase it if you want to have more _guaranteed_ speed. Note that 120 * the RAID driver will use the maximum available bandwidth if the IO 121 * subsystem is idle. There is also an 'absolute maximum' reconstruction 122 * speed limit - in case reconstruction slows down your system despite 123 * idle IO detection. 124 * 125 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 126 * or /sys/block/mdX/md/sync_speed_{min,max} 127 */ 128 129 static int sysctl_speed_limit_min = 1000; 130 static int sysctl_speed_limit_max = 200000; 131 static inline int speed_min(struct mddev *mddev) 132 { 133 return mddev->sync_speed_min ? 134 mddev->sync_speed_min : sysctl_speed_limit_min; 135 } 136 137 static inline int speed_max(struct mddev *mddev) 138 { 139 return mddev->sync_speed_max ? 140 mddev->sync_speed_max : sysctl_speed_limit_max; 141 } 142 143 static void rdev_uninit_serial(struct md_rdev *rdev) 144 { 145 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 146 return; 147 148 kvfree(rdev->serial); 149 rdev->serial = NULL; 150 } 151 152 static void rdevs_uninit_serial(struct mddev *mddev) 153 { 154 struct md_rdev *rdev; 155 156 rdev_for_each(rdev, mddev) 157 rdev_uninit_serial(rdev); 158 } 159 160 static int rdev_init_serial(struct md_rdev *rdev) 161 { 162 /* serial_nums equals with BARRIER_BUCKETS_NR */ 163 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 164 struct serial_in_rdev *serial = NULL; 165 166 if (test_bit(CollisionCheck, &rdev->flags)) 167 return 0; 168 169 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 170 GFP_KERNEL); 171 if (!serial) 172 return -ENOMEM; 173 174 for (i = 0; i < serial_nums; i++) { 175 struct serial_in_rdev *serial_tmp = &serial[i]; 176 177 spin_lock_init(&serial_tmp->serial_lock); 178 serial_tmp->serial_rb = RB_ROOT_CACHED; 179 init_waitqueue_head(&serial_tmp->serial_io_wait); 180 } 181 182 rdev->serial = serial; 183 set_bit(CollisionCheck, &rdev->flags); 184 185 return 0; 186 } 187 188 static int rdevs_init_serial(struct mddev *mddev) 189 { 190 struct md_rdev *rdev; 191 int ret = 0; 192 193 rdev_for_each(rdev, mddev) { 194 ret = rdev_init_serial(rdev); 195 if (ret) 196 break; 197 } 198 199 /* Free all resources if pool is not existed */ 200 if (ret && !mddev->serial_info_pool) 201 rdevs_uninit_serial(mddev); 202 203 return ret; 204 } 205 206 /* 207 * rdev needs to enable serial stuffs if it meets the conditions: 208 * 1. it is multi-queue device flaged with writemostly. 209 * 2. the write-behind mode is enabled. 210 */ 211 static int rdev_need_serial(struct md_rdev *rdev) 212 { 213 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 214 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 215 test_bit(WriteMostly, &rdev->flags)); 216 } 217 218 /* 219 * Init resource for rdev(s), then create serial_info_pool if: 220 * 1. rdev is the first device which return true from rdev_enable_serial. 221 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 222 */ 223 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 224 bool is_suspend) 225 { 226 int ret = 0; 227 228 if (rdev && !rdev_need_serial(rdev) && 229 !test_bit(CollisionCheck, &rdev->flags)) 230 return; 231 232 if (!is_suspend) 233 mddev_suspend(mddev); 234 235 if (!rdev) 236 ret = rdevs_init_serial(mddev); 237 else 238 ret = rdev_init_serial(rdev); 239 if (ret) 240 goto abort; 241 242 if (mddev->serial_info_pool == NULL) { 243 /* 244 * already in memalloc noio context by 245 * mddev_suspend() 246 */ 247 mddev->serial_info_pool = 248 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 249 sizeof(struct serial_info)); 250 if (!mddev->serial_info_pool) { 251 rdevs_uninit_serial(mddev); 252 pr_err("can't alloc memory pool for serialization\n"); 253 } 254 } 255 256 abort: 257 if (!is_suspend) 258 mddev_resume(mddev); 259 } 260 261 /* 262 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 263 * 1. rdev is the last device flaged with CollisionCheck. 264 * 2. when bitmap is destroyed while policy is not enabled. 265 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 266 */ 267 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 268 bool is_suspend) 269 { 270 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 271 return; 272 273 if (mddev->serial_info_pool) { 274 struct md_rdev *temp; 275 int num = 0; /* used to track if other rdevs need the pool */ 276 277 if (!is_suspend) 278 mddev_suspend(mddev); 279 rdev_for_each(temp, mddev) { 280 if (!rdev) { 281 if (!mddev->serialize_policy || 282 !rdev_need_serial(temp)) 283 rdev_uninit_serial(temp); 284 else 285 num++; 286 } else if (temp != rdev && 287 test_bit(CollisionCheck, &temp->flags)) 288 num++; 289 } 290 291 if (rdev) 292 rdev_uninit_serial(rdev); 293 294 if (num) 295 pr_info("The mempool could be used by other devices\n"); 296 else { 297 mempool_destroy(mddev->serial_info_pool); 298 mddev->serial_info_pool = NULL; 299 } 300 if (!is_suspend) 301 mddev_resume(mddev); 302 } 303 } 304 305 static struct ctl_table_header *raid_table_header; 306 307 static struct ctl_table raid_table[] = { 308 { 309 .procname = "speed_limit_min", 310 .data = &sysctl_speed_limit_min, 311 .maxlen = sizeof(int), 312 .mode = S_IRUGO|S_IWUSR, 313 .proc_handler = proc_dointvec, 314 }, 315 { 316 .procname = "speed_limit_max", 317 .data = &sysctl_speed_limit_max, 318 .maxlen = sizeof(int), 319 .mode = S_IRUGO|S_IWUSR, 320 .proc_handler = proc_dointvec, 321 }, 322 { } 323 }; 324 325 static int start_readonly; 326 327 /* 328 * The original mechanism for creating an md device is to create 329 * a device node in /dev and to open it. This causes races with device-close. 330 * The preferred method is to write to the "new_array" module parameter. 331 * This can avoid races. 332 * Setting create_on_open to false disables the original mechanism 333 * so all the races disappear. 334 */ 335 static bool create_on_open = true; 336 337 /* 338 * We have a system wide 'event count' that is incremented 339 * on any 'interesting' event, and readers of /proc/mdstat 340 * can use 'poll' or 'select' to find out when the event 341 * count increases. 342 * 343 * Events are: 344 * start array, stop array, error, add device, remove device, 345 * start build, activate spare 346 */ 347 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 348 static atomic_t md_event_count; 349 void md_new_event(void) 350 { 351 atomic_inc(&md_event_count); 352 wake_up(&md_event_waiters); 353 } 354 EXPORT_SYMBOL_GPL(md_new_event); 355 356 /* 357 * Enables to iterate over all existing md arrays 358 * all_mddevs_lock protects this list. 359 */ 360 static LIST_HEAD(all_mddevs); 361 static DEFINE_SPINLOCK(all_mddevs_lock); 362 363 static bool is_md_suspended(struct mddev *mddev) 364 { 365 return percpu_ref_is_dying(&mddev->active_io); 366 } 367 /* Rather than calling directly into the personality make_request function, 368 * IO requests come here first so that we can check if the device is 369 * being suspended pending a reconfiguration. 370 * We hold a refcount over the call to ->make_request. By the time that 371 * call has finished, the bio has been linked into some internal structure 372 * and so is visible to ->quiesce(), so we don't need the refcount any more. 373 */ 374 static bool is_suspended(struct mddev *mddev, struct bio *bio) 375 { 376 if (is_md_suspended(mddev)) 377 return true; 378 if (bio_data_dir(bio) != WRITE) 379 return false; 380 if (mddev->suspend_lo >= mddev->suspend_hi) 381 return false; 382 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 383 return false; 384 if (bio_end_sector(bio) < mddev->suspend_lo) 385 return false; 386 return true; 387 } 388 389 void md_handle_request(struct mddev *mddev, struct bio *bio) 390 { 391 check_suspended: 392 if (is_suspended(mddev, bio)) { 393 DEFINE_WAIT(__wait); 394 /* Bail out if REQ_NOWAIT is set for the bio */ 395 if (bio->bi_opf & REQ_NOWAIT) { 396 bio_wouldblock_error(bio); 397 return; 398 } 399 for (;;) { 400 prepare_to_wait(&mddev->sb_wait, &__wait, 401 TASK_UNINTERRUPTIBLE); 402 if (!is_suspended(mddev, bio)) 403 break; 404 schedule(); 405 } 406 finish_wait(&mddev->sb_wait, &__wait); 407 } 408 if (!percpu_ref_tryget_live(&mddev->active_io)) 409 goto check_suspended; 410 411 if (!mddev->pers->make_request(mddev, bio)) { 412 percpu_ref_put(&mddev->active_io); 413 goto check_suspended; 414 } 415 416 percpu_ref_put(&mddev->active_io); 417 } 418 EXPORT_SYMBOL(md_handle_request); 419 420 static void md_submit_bio(struct bio *bio) 421 { 422 const int rw = bio_data_dir(bio); 423 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 424 425 if (mddev == NULL || mddev->pers == NULL) { 426 bio_io_error(bio); 427 return; 428 } 429 430 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 431 bio_io_error(bio); 432 return; 433 } 434 435 bio = bio_split_to_limits(bio); 436 if (!bio) 437 return; 438 439 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 440 if (bio_sectors(bio) != 0) 441 bio->bi_status = BLK_STS_IOERR; 442 bio_endio(bio); 443 return; 444 } 445 446 /* bio could be mergeable after passing to underlayer */ 447 bio->bi_opf &= ~REQ_NOMERGE; 448 449 md_handle_request(mddev, bio); 450 } 451 452 /* mddev_suspend makes sure no new requests are submitted 453 * to the device, and that any requests that have been submitted 454 * are completely handled. 455 * Once mddev_detach() is called and completes, the module will be 456 * completely unused. 457 */ 458 void mddev_suspend(struct mddev *mddev) 459 { 460 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 461 lockdep_assert_held(&mddev->reconfig_mutex); 462 if (mddev->suspended++) 463 return; 464 wake_up(&mddev->sb_wait); 465 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 466 percpu_ref_kill(&mddev->active_io); 467 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 468 mddev->pers->quiesce(mddev, 1); 469 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 470 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 471 472 del_timer_sync(&mddev->safemode_timer); 473 /* restrict memory reclaim I/O during raid array is suspend */ 474 mddev->noio_flag = memalloc_noio_save(); 475 } 476 EXPORT_SYMBOL_GPL(mddev_suspend); 477 478 void mddev_resume(struct mddev *mddev) 479 { 480 /* entred the memalloc scope from mddev_suspend() */ 481 memalloc_noio_restore(mddev->noio_flag); 482 lockdep_assert_held(&mddev->reconfig_mutex); 483 if (--mddev->suspended) 484 return; 485 percpu_ref_resurrect(&mddev->active_io); 486 wake_up(&mddev->sb_wait); 487 mddev->pers->quiesce(mddev, 0); 488 489 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 490 md_wakeup_thread(mddev->thread); 491 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 492 } 493 EXPORT_SYMBOL_GPL(mddev_resume); 494 495 /* 496 * Generic flush handling for md 497 */ 498 499 static void md_end_flush(struct bio *bio) 500 { 501 struct md_rdev *rdev = bio->bi_private; 502 struct mddev *mddev = rdev->mddev; 503 504 bio_put(bio); 505 506 rdev_dec_pending(rdev, mddev); 507 508 if (atomic_dec_and_test(&mddev->flush_pending)) { 509 /* The pre-request flush has finished */ 510 queue_work(md_wq, &mddev->flush_work); 511 } 512 } 513 514 static void md_submit_flush_data(struct work_struct *ws); 515 516 static void submit_flushes(struct work_struct *ws) 517 { 518 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 519 struct md_rdev *rdev; 520 521 mddev->start_flush = ktime_get_boottime(); 522 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 523 atomic_set(&mddev->flush_pending, 1); 524 rcu_read_lock(); 525 rdev_for_each_rcu(rdev, mddev) 526 if (rdev->raid_disk >= 0 && 527 !test_bit(Faulty, &rdev->flags)) { 528 /* Take two references, one is dropped 529 * when request finishes, one after 530 * we reclaim rcu_read_lock 531 */ 532 struct bio *bi; 533 atomic_inc(&rdev->nr_pending); 534 atomic_inc(&rdev->nr_pending); 535 rcu_read_unlock(); 536 bi = bio_alloc_bioset(rdev->bdev, 0, 537 REQ_OP_WRITE | REQ_PREFLUSH, 538 GFP_NOIO, &mddev->bio_set); 539 bi->bi_end_io = md_end_flush; 540 bi->bi_private = rdev; 541 atomic_inc(&mddev->flush_pending); 542 submit_bio(bi); 543 rcu_read_lock(); 544 rdev_dec_pending(rdev, mddev); 545 } 546 rcu_read_unlock(); 547 if (atomic_dec_and_test(&mddev->flush_pending)) 548 queue_work(md_wq, &mddev->flush_work); 549 } 550 551 static void md_submit_flush_data(struct work_struct *ws) 552 { 553 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 554 struct bio *bio = mddev->flush_bio; 555 556 /* 557 * must reset flush_bio before calling into md_handle_request to avoid a 558 * deadlock, because other bios passed md_handle_request suspend check 559 * could wait for this and below md_handle_request could wait for those 560 * bios because of suspend check 561 */ 562 spin_lock_irq(&mddev->lock); 563 mddev->prev_flush_start = mddev->start_flush; 564 mddev->flush_bio = NULL; 565 spin_unlock_irq(&mddev->lock); 566 wake_up(&mddev->sb_wait); 567 568 if (bio->bi_iter.bi_size == 0) { 569 /* an empty barrier - all done */ 570 bio_endio(bio); 571 } else { 572 bio->bi_opf &= ~REQ_PREFLUSH; 573 md_handle_request(mddev, bio); 574 } 575 } 576 577 /* 578 * Manages consolidation of flushes and submitting any flushes needed for 579 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 580 * being finished in another context. Returns false if the flushing is 581 * complete but still needs the I/O portion of the bio to be processed. 582 */ 583 bool md_flush_request(struct mddev *mddev, struct bio *bio) 584 { 585 ktime_t req_start = ktime_get_boottime(); 586 spin_lock_irq(&mddev->lock); 587 /* flush requests wait until ongoing flush completes, 588 * hence coalescing all the pending requests. 589 */ 590 wait_event_lock_irq(mddev->sb_wait, 591 !mddev->flush_bio || 592 ktime_before(req_start, mddev->prev_flush_start), 593 mddev->lock); 594 /* new request after previous flush is completed */ 595 if (ktime_after(req_start, mddev->prev_flush_start)) { 596 WARN_ON(mddev->flush_bio); 597 mddev->flush_bio = bio; 598 bio = NULL; 599 } 600 spin_unlock_irq(&mddev->lock); 601 602 if (!bio) { 603 INIT_WORK(&mddev->flush_work, submit_flushes); 604 queue_work(md_wq, &mddev->flush_work); 605 } else { 606 /* flush was performed for some other bio while we waited. */ 607 if (bio->bi_iter.bi_size == 0) 608 /* an empty barrier - all done */ 609 bio_endio(bio); 610 else { 611 bio->bi_opf &= ~REQ_PREFLUSH; 612 return false; 613 } 614 } 615 return true; 616 } 617 EXPORT_SYMBOL(md_flush_request); 618 619 static inline struct mddev *mddev_get(struct mddev *mddev) 620 { 621 lockdep_assert_held(&all_mddevs_lock); 622 623 if (test_bit(MD_DELETED, &mddev->flags)) 624 return NULL; 625 atomic_inc(&mddev->active); 626 return mddev; 627 } 628 629 static void mddev_delayed_delete(struct work_struct *ws); 630 631 void mddev_put(struct mddev *mddev) 632 { 633 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 634 return; 635 if (!mddev->raid_disks && list_empty(&mddev->disks) && 636 mddev->ctime == 0 && !mddev->hold_active) { 637 /* Array is not configured at all, and not held active, 638 * so destroy it */ 639 set_bit(MD_DELETED, &mddev->flags); 640 641 /* 642 * Call queue_work inside the spinlock so that 643 * flush_workqueue() after mddev_find will succeed in waiting 644 * for the work to be done. 645 */ 646 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 647 queue_work(md_misc_wq, &mddev->del_work); 648 } 649 spin_unlock(&all_mddevs_lock); 650 } 651 652 static void md_safemode_timeout(struct timer_list *t); 653 654 void mddev_init(struct mddev *mddev) 655 { 656 mutex_init(&mddev->open_mutex); 657 mutex_init(&mddev->reconfig_mutex); 658 mutex_init(&mddev->bitmap_info.mutex); 659 INIT_LIST_HEAD(&mddev->disks); 660 INIT_LIST_HEAD(&mddev->all_mddevs); 661 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 662 atomic_set(&mddev->active, 1); 663 atomic_set(&mddev->openers, 0); 664 spin_lock_init(&mddev->lock); 665 atomic_set(&mddev->flush_pending, 0); 666 init_waitqueue_head(&mddev->sb_wait); 667 init_waitqueue_head(&mddev->recovery_wait); 668 mddev->reshape_position = MaxSector; 669 mddev->reshape_backwards = 0; 670 mddev->last_sync_action = "none"; 671 mddev->resync_min = 0; 672 mddev->resync_max = MaxSector; 673 mddev->level = LEVEL_NONE; 674 } 675 EXPORT_SYMBOL_GPL(mddev_init); 676 677 static struct mddev *mddev_find_locked(dev_t unit) 678 { 679 struct mddev *mddev; 680 681 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 682 if (mddev->unit == unit) 683 return mddev; 684 685 return NULL; 686 } 687 688 /* find an unused unit number */ 689 static dev_t mddev_alloc_unit(void) 690 { 691 static int next_minor = 512; 692 int start = next_minor; 693 bool is_free = 0; 694 dev_t dev = 0; 695 696 while (!is_free) { 697 dev = MKDEV(MD_MAJOR, next_minor); 698 next_minor++; 699 if (next_minor > MINORMASK) 700 next_minor = 0; 701 if (next_minor == start) 702 return 0; /* Oh dear, all in use. */ 703 is_free = !mddev_find_locked(dev); 704 } 705 706 return dev; 707 } 708 709 static struct mddev *mddev_alloc(dev_t unit) 710 { 711 struct mddev *new; 712 int error; 713 714 if (unit && MAJOR(unit) != MD_MAJOR) 715 unit &= ~((1 << MdpMinorShift) - 1); 716 717 new = kzalloc(sizeof(*new), GFP_KERNEL); 718 if (!new) 719 return ERR_PTR(-ENOMEM); 720 mddev_init(new); 721 722 spin_lock(&all_mddevs_lock); 723 if (unit) { 724 error = -EEXIST; 725 if (mddev_find_locked(unit)) 726 goto out_free_new; 727 new->unit = unit; 728 if (MAJOR(unit) == MD_MAJOR) 729 new->md_minor = MINOR(unit); 730 else 731 new->md_minor = MINOR(unit) >> MdpMinorShift; 732 new->hold_active = UNTIL_IOCTL; 733 } else { 734 error = -ENODEV; 735 new->unit = mddev_alloc_unit(); 736 if (!new->unit) 737 goto out_free_new; 738 new->md_minor = MINOR(new->unit); 739 new->hold_active = UNTIL_STOP; 740 } 741 742 list_add(&new->all_mddevs, &all_mddevs); 743 spin_unlock(&all_mddevs_lock); 744 return new; 745 out_free_new: 746 spin_unlock(&all_mddevs_lock); 747 kfree(new); 748 return ERR_PTR(error); 749 } 750 751 static void mddev_free(struct mddev *mddev) 752 { 753 spin_lock(&all_mddevs_lock); 754 list_del(&mddev->all_mddevs); 755 spin_unlock(&all_mddevs_lock); 756 757 kfree(mddev); 758 } 759 760 static const struct attribute_group md_redundancy_group; 761 762 void mddev_unlock(struct mddev *mddev) 763 { 764 if (mddev->to_remove) { 765 /* These cannot be removed under reconfig_mutex as 766 * an access to the files will try to take reconfig_mutex 767 * while holding the file unremovable, which leads to 768 * a deadlock. 769 * So hold set sysfs_active while the remove in happeing, 770 * and anything else which might set ->to_remove or my 771 * otherwise change the sysfs namespace will fail with 772 * -EBUSY if sysfs_active is still set. 773 * We set sysfs_active under reconfig_mutex and elsewhere 774 * test it under the same mutex to ensure its correct value 775 * is seen. 776 */ 777 const struct attribute_group *to_remove = mddev->to_remove; 778 mddev->to_remove = NULL; 779 mddev->sysfs_active = 1; 780 mutex_unlock(&mddev->reconfig_mutex); 781 782 if (mddev->kobj.sd) { 783 if (to_remove != &md_redundancy_group) 784 sysfs_remove_group(&mddev->kobj, to_remove); 785 if (mddev->pers == NULL || 786 mddev->pers->sync_request == NULL) { 787 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 788 if (mddev->sysfs_action) 789 sysfs_put(mddev->sysfs_action); 790 if (mddev->sysfs_completed) 791 sysfs_put(mddev->sysfs_completed); 792 if (mddev->sysfs_degraded) 793 sysfs_put(mddev->sysfs_degraded); 794 mddev->sysfs_action = NULL; 795 mddev->sysfs_completed = NULL; 796 mddev->sysfs_degraded = NULL; 797 } 798 } 799 mddev->sysfs_active = 0; 800 } else 801 mutex_unlock(&mddev->reconfig_mutex); 802 803 /* As we've dropped the mutex we need a spinlock to 804 * make sure the thread doesn't disappear 805 */ 806 spin_lock(&pers_lock); 807 md_wakeup_thread(mddev->thread); 808 wake_up(&mddev->sb_wait); 809 spin_unlock(&pers_lock); 810 } 811 EXPORT_SYMBOL_GPL(mddev_unlock); 812 813 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 814 { 815 struct md_rdev *rdev; 816 817 rdev_for_each_rcu(rdev, mddev) 818 if (rdev->desc_nr == nr) 819 return rdev; 820 821 return NULL; 822 } 823 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 824 825 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 826 { 827 struct md_rdev *rdev; 828 829 rdev_for_each(rdev, mddev) 830 if (rdev->bdev->bd_dev == dev) 831 return rdev; 832 833 return NULL; 834 } 835 836 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 837 { 838 struct md_rdev *rdev; 839 840 rdev_for_each_rcu(rdev, mddev) 841 if (rdev->bdev->bd_dev == dev) 842 return rdev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 847 848 static struct md_personality *find_pers(int level, char *clevel) 849 { 850 struct md_personality *pers; 851 list_for_each_entry(pers, &pers_list, list) { 852 if (level != LEVEL_NONE && pers->level == level) 853 return pers; 854 if (strcmp(pers->name, clevel)==0) 855 return pers; 856 } 857 return NULL; 858 } 859 860 /* return the offset of the super block in 512byte sectors */ 861 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 862 { 863 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 864 } 865 866 static int alloc_disk_sb(struct md_rdev *rdev) 867 { 868 rdev->sb_page = alloc_page(GFP_KERNEL); 869 if (!rdev->sb_page) 870 return -ENOMEM; 871 return 0; 872 } 873 874 void md_rdev_clear(struct md_rdev *rdev) 875 { 876 if (rdev->sb_page) { 877 put_page(rdev->sb_page); 878 rdev->sb_loaded = 0; 879 rdev->sb_page = NULL; 880 rdev->sb_start = 0; 881 rdev->sectors = 0; 882 } 883 if (rdev->bb_page) { 884 put_page(rdev->bb_page); 885 rdev->bb_page = NULL; 886 } 887 badblocks_exit(&rdev->badblocks); 888 } 889 EXPORT_SYMBOL_GPL(md_rdev_clear); 890 891 static void super_written(struct bio *bio) 892 { 893 struct md_rdev *rdev = bio->bi_private; 894 struct mddev *mddev = rdev->mddev; 895 896 if (bio->bi_status) { 897 pr_err("md: %s gets error=%d\n", __func__, 898 blk_status_to_errno(bio->bi_status)); 899 md_error(mddev, rdev); 900 if (!test_bit(Faulty, &rdev->flags) 901 && (bio->bi_opf & MD_FAILFAST)) { 902 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 903 set_bit(LastDev, &rdev->flags); 904 } 905 } else 906 clear_bit(LastDev, &rdev->flags); 907 908 bio_put(bio); 909 910 rdev_dec_pending(rdev, mddev); 911 912 if (atomic_dec_and_test(&mddev->pending_writes)) 913 wake_up(&mddev->sb_wait); 914 } 915 916 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 917 sector_t sector, int size, struct page *page) 918 { 919 /* write first size bytes of page to sector of rdev 920 * Increment mddev->pending_writes before returning 921 * and decrement it on completion, waking up sb_wait 922 * if zero is reached. 923 * If an error occurred, call md_error 924 */ 925 struct bio *bio; 926 927 if (!page) 928 return; 929 930 if (test_bit(Faulty, &rdev->flags)) 931 return; 932 933 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 934 1, 935 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 936 GFP_NOIO, &mddev->sync_set); 937 938 atomic_inc(&rdev->nr_pending); 939 940 bio->bi_iter.bi_sector = sector; 941 __bio_add_page(bio, page, size, 0); 942 bio->bi_private = rdev; 943 bio->bi_end_io = super_written; 944 945 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 946 test_bit(FailFast, &rdev->flags) && 947 !test_bit(LastDev, &rdev->flags)) 948 bio->bi_opf |= MD_FAILFAST; 949 950 atomic_inc(&mddev->pending_writes); 951 submit_bio(bio); 952 } 953 954 int md_super_wait(struct mddev *mddev) 955 { 956 /* wait for all superblock writes that were scheduled to complete */ 957 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 958 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 959 return -EAGAIN; 960 return 0; 961 } 962 963 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 964 struct page *page, blk_opf_t opf, bool metadata_op) 965 { 966 struct bio bio; 967 struct bio_vec bvec; 968 969 if (metadata_op && rdev->meta_bdev) 970 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 971 else 972 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 973 974 if (metadata_op) 975 bio.bi_iter.bi_sector = sector + rdev->sb_start; 976 else if (rdev->mddev->reshape_position != MaxSector && 977 (rdev->mddev->reshape_backwards == 978 (sector >= rdev->mddev->reshape_position))) 979 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 980 else 981 bio.bi_iter.bi_sector = sector + rdev->data_offset; 982 __bio_add_page(&bio, page, size, 0); 983 984 submit_bio_wait(&bio); 985 986 return !bio.bi_status; 987 } 988 EXPORT_SYMBOL_GPL(sync_page_io); 989 990 static int read_disk_sb(struct md_rdev *rdev, int size) 991 { 992 if (rdev->sb_loaded) 993 return 0; 994 995 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 996 goto fail; 997 rdev->sb_loaded = 1; 998 return 0; 999 1000 fail: 1001 pr_err("md: disabled device %pg, could not read superblock.\n", 1002 rdev->bdev); 1003 return -EINVAL; 1004 } 1005 1006 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1007 { 1008 return sb1->set_uuid0 == sb2->set_uuid0 && 1009 sb1->set_uuid1 == sb2->set_uuid1 && 1010 sb1->set_uuid2 == sb2->set_uuid2 && 1011 sb1->set_uuid3 == sb2->set_uuid3; 1012 } 1013 1014 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1015 { 1016 int ret; 1017 mdp_super_t *tmp1, *tmp2; 1018 1019 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1020 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1021 1022 if (!tmp1 || !tmp2) { 1023 ret = 0; 1024 goto abort; 1025 } 1026 1027 *tmp1 = *sb1; 1028 *tmp2 = *sb2; 1029 1030 /* 1031 * nr_disks is not constant 1032 */ 1033 tmp1->nr_disks = 0; 1034 tmp2->nr_disks = 0; 1035 1036 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1037 abort: 1038 kfree(tmp1); 1039 kfree(tmp2); 1040 return ret; 1041 } 1042 1043 static u32 md_csum_fold(u32 csum) 1044 { 1045 csum = (csum & 0xffff) + (csum >> 16); 1046 return (csum & 0xffff) + (csum >> 16); 1047 } 1048 1049 static unsigned int calc_sb_csum(mdp_super_t *sb) 1050 { 1051 u64 newcsum = 0; 1052 u32 *sb32 = (u32*)sb; 1053 int i; 1054 unsigned int disk_csum, csum; 1055 1056 disk_csum = sb->sb_csum; 1057 sb->sb_csum = 0; 1058 1059 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1060 newcsum += sb32[i]; 1061 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1062 1063 #ifdef CONFIG_ALPHA 1064 /* This used to use csum_partial, which was wrong for several 1065 * reasons including that different results are returned on 1066 * different architectures. It isn't critical that we get exactly 1067 * the same return value as before (we always csum_fold before 1068 * testing, and that removes any differences). However as we 1069 * know that csum_partial always returned a 16bit value on 1070 * alphas, do a fold to maximise conformity to previous behaviour. 1071 */ 1072 sb->sb_csum = md_csum_fold(disk_csum); 1073 #else 1074 sb->sb_csum = disk_csum; 1075 #endif 1076 return csum; 1077 } 1078 1079 /* 1080 * Handle superblock details. 1081 * We want to be able to handle multiple superblock formats 1082 * so we have a common interface to them all, and an array of 1083 * different handlers. 1084 * We rely on user-space to write the initial superblock, and support 1085 * reading and updating of superblocks. 1086 * Interface methods are: 1087 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1088 * loads and validates a superblock on dev. 1089 * if refdev != NULL, compare superblocks on both devices 1090 * Return: 1091 * 0 - dev has a superblock that is compatible with refdev 1092 * 1 - dev has a superblock that is compatible and newer than refdev 1093 * so dev should be used as the refdev in future 1094 * -EINVAL superblock incompatible or invalid 1095 * -othererror e.g. -EIO 1096 * 1097 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1098 * Verify that dev is acceptable into mddev. 1099 * The first time, mddev->raid_disks will be 0, and data from 1100 * dev should be merged in. Subsequent calls check that dev 1101 * is new enough. Return 0 or -EINVAL 1102 * 1103 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1104 * Update the superblock for rdev with data in mddev 1105 * This does not write to disc. 1106 * 1107 */ 1108 1109 struct super_type { 1110 char *name; 1111 struct module *owner; 1112 int (*load_super)(struct md_rdev *rdev, 1113 struct md_rdev *refdev, 1114 int minor_version); 1115 int (*validate_super)(struct mddev *mddev, 1116 struct md_rdev *rdev); 1117 void (*sync_super)(struct mddev *mddev, 1118 struct md_rdev *rdev); 1119 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1120 sector_t num_sectors); 1121 int (*allow_new_offset)(struct md_rdev *rdev, 1122 unsigned long long new_offset); 1123 }; 1124 1125 /* 1126 * Check that the given mddev has no bitmap. 1127 * 1128 * This function is called from the run method of all personalities that do not 1129 * support bitmaps. It prints an error message and returns non-zero if mddev 1130 * has a bitmap. Otherwise, it returns 0. 1131 * 1132 */ 1133 int md_check_no_bitmap(struct mddev *mddev) 1134 { 1135 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1136 return 0; 1137 pr_warn("%s: bitmaps are not supported for %s\n", 1138 mdname(mddev), mddev->pers->name); 1139 return 1; 1140 } 1141 EXPORT_SYMBOL(md_check_no_bitmap); 1142 1143 /* 1144 * load_super for 0.90.0 1145 */ 1146 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1147 { 1148 mdp_super_t *sb; 1149 int ret; 1150 bool spare_disk = true; 1151 1152 /* 1153 * Calculate the position of the superblock (512byte sectors), 1154 * it's at the end of the disk. 1155 * 1156 * It also happens to be a multiple of 4Kb. 1157 */ 1158 rdev->sb_start = calc_dev_sboffset(rdev); 1159 1160 ret = read_disk_sb(rdev, MD_SB_BYTES); 1161 if (ret) 1162 return ret; 1163 1164 ret = -EINVAL; 1165 1166 sb = page_address(rdev->sb_page); 1167 1168 if (sb->md_magic != MD_SB_MAGIC) { 1169 pr_warn("md: invalid raid superblock magic on %pg\n", 1170 rdev->bdev); 1171 goto abort; 1172 } 1173 1174 if (sb->major_version != 0 || 1175 sb->minor_version < 90 || 1176 sb->minor_version > 91) { 1177 pr_warn("Bad version number %d.%d on %pg\n", 1178 sb->major_version, sb->minor_version, rdev->bdev); 1179 goto abort; 1180 } 1181 1182 if (sb->raid_disks <= 0) 1183 goto abort; 1184 1185 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1186 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1187 goto abort; 1188 } 1189 1190 rdev->preferred_minor = sb->md_minor; 1191 rdev->data_offset = 0; 1192 rdev->new_data_offset = 0; 1193 rdev->sb_size = MD_SB_BYTES; 1194 rdev->badblocks.shift = -1; 1195 1196 if (sb->level == LEVEL_MULTIPATH) 1197 rdev->desc_nr = -1; 1198 else 1199 rdev->desc_nr = sb->this_disk.number; 1200 1201 /* not spare disk, or LEVEL_MULTIPATH */ 1202 if (sb->level == LEVEL_MULTIPATH || 1203 (rdev->desc_nr >= 0 && 1204 rdev->desc_nr < MD_SB_DISKS && 1205 sb->disks[rdev->desc_nr].state & 1206 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1207 spare_disk = false; 1208 1209 if (!refdev) { 1210 if (!spare_disk) 1211 ret = 1; 1212 else 1213 ret = 0; 1214 } else { 1215 __u64 ev1, ev2; 1216 mdp_super_t *refsb = page_address(refdev->sb_page); 1217 if (!md_uuid_equal(refsb, sb)) { 1218 pr_warn("md: %pg has different UUID to %pg\n", 1219 rdev->bdev, refdev->bdev); 1220 goto abort; 1221 } 1222 if (!md_sb_equal(refsb, sb)) { 1223 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1224 rdev->bdev, refdev->bdev); 1225 goto abort; 1226 } 1227 ev1 = md_event(sb); 1228 ev2 = md_event(refsb); 1229 1230 if (!spare_disk && ev1 > ev2) 1231 ret = 1; 1232 else 1233 ret = 0; 1234 } 1235 rdev->sectors = rdev->sb_start; 1236 /* Limit to 4TB as metadata cannot record more than that. 1237 * (not needed for Linear and RAID0 as metadata doesn't 1238 * record this size) 1239 */ 1240 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1241 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1242 1243 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1244 /* "this cannot possibly happen" ... */ 1245 ret = -EINVAL; 1246 1247 abort: 1248 return ret; 1249 } 1250 1251 /* 1252 * validate_super for 0.90.0 1253 */ 1254 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1255 { 1256 mdp_disk_t *desc; 1257 mdp_super_t *sb = page_address(rdev->sb_page); 1258 __u64 ev1 = md_event(sb); 1259 1260 rdev->raid_disk = -1; 1261 clear_bit(Faulty, &rdev->flags); 1262 clear_bit(In_sync, &rdev->flags); 1263 clear_bit(Bitmap_sync, &rdev->flags); 1264 clear_bit(WriteMostly, &rdev->flags); 1265 1266 if (mddev->raid_disks == 0) { 1267 mddev->major_version = 0; 1268 mddev->minor_version = sb->minor_version; 1269 mddev->patch_version = sb->patch_version; 1270 mddev->external = 0; 1271 mddev->chunk_sectors = sb->chunk_size >> 9; 1272 mddev->ctime = sb->ctime; 1273 mddev->utime = sb->utime; 1274 mddev->level = sb->level; 1275 mddev->clevel[0] = 0; 1276 mddev->layout = sb->layout; 1277 mddev->raid_disks = sb->raid_disks; 1278 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1279 mddev->events = ev1; 1280 mddev->bitmap_info.offset = 0; 1281 mddev->bitmap_info.space = 0; 1282 /* bitmap can use 60 K after the 4K superblocks */ 1283 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1284 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1285 mddev->reshape_backwards = 0; 1286 1287 if (mddev->minor_version >= 91) { 1288 mddev->reshape_position = sb->reshape_position; 1289 mddev->delta_disks = sb->delta_disks; 1290 mddev->new_level = sb->new_level; 1291 mddev->new_layout = sb->new_layout; 1292 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1293 if (mddev->delta_disks < 0) 1294 mddev->reshape_backwards = 1; 1295 } else { 1296 mddev->reshape_position = MaxSector; 1297 mddev->delta_disks = 0; 1298 mddev->new_level = mddev->level; 1299 mddev->new_layout = mddev->layout; 1300 mddev->new_chunk_sectors = mddev->chunk_sectors; 1301 } 1302 if (mddev->level == 0) 1303 mddev->layout = -1; 1304 1305 if (sb->state & (1<<MD_SB_CLEAN)) 1306 mddev->recovery_cp = MaxSector; 1307 else { 1308 if (sb->events_hi == sb->cp_events_hi && 1309 sb->events_lo == sb->cp_events_lo) { 1310 mddev->recovery_cp = sb->recovery_cp; 1311 } else 1312 mddev->recovery_cp = 0; 1313 } 1314 1315 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1316 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1317 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1318 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1319 1320 mddev->max_disks = MD_SB_DISKS; 1321 1322 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1323 mddev->bitmap_info.file == NULL) { 1324 mddev->bitmap_info.offset = 1325 mddev->bitmap_info.default_offset; 1326 mddev->bitmap_info.space = 1327 mddev->bitmap_info.default_space; 1328 } 1329 1330 } else if (mddev->pers == NULL) { 1331 /* Insist on good event counter while assembling, except 1332 * for spares (which don't need an event count) */ 1333 ++ev1; 1334 if (sb->disks[rdev->desc_nr].state & ( 1335 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1336 if (ev1 < mddev->events) 1337 return -EINVAL; 1338 } else if (mddev->bitmap) { 1339 /* if adding to array with a bitmap, then we can accept an 1340 * older device ... but not too old. 1341 */ 1342 if (ev1 < mddev->bitmap->events_cleared) 1343 return 0; 1344 if (ev1 < mddev->events) 1345 set_bit(Bitmap_sync, &rdev->flags); 1346 } else { 1347 if (ev1 < mddev->events) 1348 /* just a hot-add of a new device, leave raid_disk at -1 */ 1349 return 0; 1350 } 1351 1352 if (mddev->level != LEVEL_MULTIPATH) { 1353 desc = sb->disks + rdev->desc_nr; 1354 1355 if (desc->state & (1<<MD_DISK_FAULTY)) 1356 set_bit(Faulty, &rdev->flags); 1357 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1358 desc->raid_disk < mddev->raid_disks */) { 1359 set_bit(In_sync, &rdev->flags); 1360 rdev->raid_disk = desc->raid_disk; 1361 rdev->saved_raid_disk = desc->raid_disk; 1362 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1363 /* active but not in sync implies recovery up to 1364 * reshape position. We don't know exactly where 1365 * that is, so set to zero for now */ 1366 if (mddev->minor_version >= 91) { 1367 rdev->recovery_offset = 0; 1368 rdev->raid_disk = desc->raid_disk; 1369 } 1370 } 1371 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1372 set_bit(WriteMostly, &rdev->flags); 1373 if (desc->state & (1<<MD_DISK_FAILFAST)) 1374 set_bit(FailFast, &rdev->flags); 1375 } else /* MULTIPATH are always insync */ 1376 set_bit(In_sync, &rdev->flags); 1377 return 0; 1378 } 1379 1380 /* 1381 * sync_super for 0.90.0 1382 */ 1383 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1384 { 1385 mdp_super_t *sb; 1386 struct md_rdev *rdev2; 1387 int next_spare = mddev->raid_disks; 1388 1389 /* make rdev->sb match mddev data.. 1390 * 1391 * 1/ zero out disks 1392 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1393 * 3/ any empty disks < next_spare become removed 1394 * 1395 * disks[0] gets initialised to REMOVED because 1396 * we cannot be sure from other fields if it has 1397 * been initialised or not. 1398 */ 1399 int i; 1400 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1401 1402 rdev->sb_size = MD_SB_BYTES; 1403 1404 sb = page_address(rdev->sb_page); 1405 1406 memset(sb, 0, sizeof(*sb)); 1407 1408 sb->md_magic = MD_SB_MAGIC; 1409 sb->major_version = mddev->major_version; 1410 sb->patch_version = mddev->patch_version; 1411 sb->gvalid_words = 0; /* ignored */ 1412 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1413 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1414 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1415 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1416 1417 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1418 sb->level = mddev->level; 1419 sb->size = mddev->dev_sectors / 2; 1420 sb->raid_disks = mddev->raid_disks; 1421 sb->md_minor = mddev->md_minor; 1422 sb->not_persistent = 0; 1423 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1424 sb->state = 0; 1425 sb->events_hi = (mddev->events>>32); 1426 sb->events_lo = (u32)mddev->events; 1427 1428 if (mddev->reshape_position == MaxSector) 1429 sb->minor_version = 90; 1430 else { 1431 sb->minor_version = 91; 1432 sb->reshape_position = mddev->reshape_position; 1433 sb->new_level = mddev->new_level; 1434 sb->delta_disks = mddev->delta_disks; 1435 sb->new_layout = mddev->new_layout; 1436 sb->new_chunk = mddev->new_chunk_sectors << 9; 1437 } 1438 mddev->minor_version = sb->minor_version; 1439 if (mddev->in_sync) 1440 { 1441 sb->recovery_cp = mddev->recovery_cp; 1442 sb->cp_events_hi = (mddev->events>>32); 1443 sb->cp_events_lo = (u32)mddev->events; 1444 if (mddev->recovery_cp == MaxSector) 1445 sb->state = (1<< MD_SB_CLEAN); 1446 } else 1447 sb->recovery_cp = 0; 1448 1449 sb->layout = mddev->layout; 1450 sb->chunk_size = mddev->chunk_sectors << 9; 1451 1452 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1453 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1454 1455 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1456 rdev_for_each(rdev2, mddev) { 1457 mdp_disk_t *d; 1458 int desc_nr; 1459 int is_active = test_bit(In_sync, &rdev2->flags); 1460 1461 if (rdev2->raid_disk >= 0 && 1462 sb->minor_version >= 91) 1463 /* we have nowhere to store the recovery_offset, 1464 * but if it is not below the reshape_position, 1465 * we can piggy-back on that. 1466 */ 1467 is_active = 1; 1468 if (rdev2->raid_disk < 0 || 1469 test_bit(Faulty, &rdev2->flags)) 1470 is_active = 0; 1471 if (is_active) 1472 desc_nr = rdev2->raid_disk; 1473 else 1474 desc_nr = next_spare++; 1475 rdev2->desc_nr = desc_nr; 1476 d = &sb->disks[rdev2->desc_nr]; 1477 nr_disks++; 1478 d->number = rdev2->desc_nr; 1479 d->major = MAJOR(rdev2->bdev->bd_dev); 1480 d->minor = MINOR(rdev2->bdev->bd_dev); 1481 if (is_active) 1482 d->raid_disk = rdev2->raid_disk; 1483 else 1484 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1485 if (test_bit(Faulty, &rdev2->flags)) 1486 d->state = (1<<MD_DISK_FAULTY); 1487 else if (is_active) { 1488 d->state = (1<<MD_DISK_ACTIVE); 1489 if (test_bit(In_sync, &rdev2->flags)) 1490 d->state |= (1<<MD_DISK_SYNC); 1491 active++; 1492 working++; 1493 } else { 1494 d->state = 0; 1495 spare++; 1496 working++; 1497 } 1498 if (test_bit(WriteMostly, &rdev2->flags)) 1499 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1500 if (test_bit(FailFast, &rdev2->flags)) 1501 d->state |= (1<<MD_DISK_FAILFAST); 1502 } 1503 /* now set the "removed" and "faulty" bits on any missing devices */ 1504 for (i=0 ; i < mddev->raid_disks ; i++) { 1505 mdp_disk_t *d = &sb->disks[i]; 1506 if (d->state == 0 && d->number == 0) { 1507 d->number = i; 1508 d->raid_disk = i; 1509 d->state = (1<<MD_DISK_REMOVED); 1510 d->state |= (1<<MD_DISK_FAULTY); 1511 failed++; 1512 } 1513 } 1514 sb->nr_disks = nr_disks; 1515 sb->active_disks = active; 1516 sb->working_disks = working; 1517 sb->failed_disks = failed; 1518 sb->spare_disks = spare; 1519 1520 sb->this_disk = sb->disks[rdev->desc_nr]; 1521 sb->sb_csum = calc_sb_csum(sb); 1522 } 1523 1524 /* 1525 * rdev_size_change for 0.90.0 1526 */ 1527 static unsigned long long 1528 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1529 { 1530 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1531 return 0; /* component must fit device */ 1532 if (rdev->mddev->bitmap_info.offset) 1533 return 0; /* can't move bitmap */ 1534 rdev->sb_start = calc_dev_sboffset(rdev); 1535 if (!num_sectors || num_sectors > rdev->sb_start) 1536 num_sectors = rdev->sb_start; 1537 /* Limit to 4TB as metadata cannot record more than that. 1538 * 4TB == 2^32 KB, or 2*2^32 sectors. 1539 */ 1540 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1541 num_sectors = (sector_t)(2ULL << 32) - 2; 1542 do { 1543 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1544 rdev->sb_page); 1545 } while (md_super_wait(rdev->mddev) < 0); 1546 return num_sectors; 1547 } 1548 1549 static int 1550 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1551 { 1552 /* non-zero offset changes not possible with v0.90 */ 1553 return new_offset == 0; 1554 } 1555 1556 /* 1557 * version 1 superblock 1558 */ 1559 1560 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1561 { 1562 __le32 disk_csum; 1563 u32 csum; 1564 unsigned long long newcsum; 1565 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1566 __le32 *isuper = (__le32*)sb; 1567 1568 disk_csum = sb->sb_csum; 1569 sb->sb_csum = 0; 1570 newcsum = 0; 1571 for (; size >= 4; size -= 4) 1572 newcsum += le32_to_cpu(*isuper++); 1573 1574 if (size == 2) 1575 newcsum += le16_to_cpu(*(__le16*) isuper); 1576 1577 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1578 sb->sb_csum = disk_csum; 1579 return cpu_to_le32(csum); 1580 } 1581 1582 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1583 { 1584 struct mdp_superblock_1 *sb; 1585 int ret; 1586 sector_t sb_start; 1587 sector_t sectors; 1588 int bmask; 1589 bool spare_disk = true; 1590 1591 /* 1592 * Calculate the position of the superblock in 512byte sectors. 1593 * It is always aligned to a 4K boundary and 1594 * depeding on minor_version, it can be: 1595 * 0: At least 8K, but less than 12K, from end of device 1596 * 1: At start of device 1597 * 2: 4K from start of device. 1598 */ 1599 switch(minor_version) { 1600 case 0: 1601 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1602 sb_start &= ~(sector_t)(4*2-1); 1603 break; 1604 case 1: 1605 sb_start = 0; 1606 break; 1607 case 2: 1608 sb_start = 8; 1609 break; 1610 default: 1611 return -EINVAL; 1612 } 1613 rdev->sb_start = sb_start; 1614 1615 /* superblock is rarely larger than 1K, but it can be larger, 1616 * and it is safe to read 4k, so we do that 1617 */ 1618 ret = read_disk_sb(rdev, 4096); 1619 if (ret) return ret; 1620 1621 sb = page_address(rdev->sb_page); 1622 1623 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1624 sb->major_version != cpu_to_le32(1) || 1625 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1626 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1627 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1628 return -EINVAL; 1629 1630 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1631 pr_warn("md: invalid superblock checksum on %pg\n", 1632 rdev->bdev); 1633 return -EINVAL; 1634 } 1635 if (le64_to_cpu(sb->data_size) < 10) { 1636 pr_warn("md: data_size too small on %pg\n", 1637 rdev->bdev); 1638 return -EINVAL; 1639 } 1640 if (sb->pad0 || 1641 sb->pad3[0] || 1642 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1643 /* Some padding is non-zero, might be a new feature */ 1644 return -EINVAL; 1645 1646 rdev->preferred_minor = 0xffff; 1647 rdev->data_offset = le64_to_cpu(sb->data_offset); 1648 rdev->new_data_offset = rdev->data_offset; 1649 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1650 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1651 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1652 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1653 1654 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1655 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1656 if (rdev->sb_size & bmask) 1657 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1658 1659 if (minor_version 1660 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1661 return -EINVAL; 1662 if (minor_version 1663 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1664 return -EINVAL; 1665 1666 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1667 rdev->desc_nr = -1; 1668 else 1669 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1670 1671 if (!rdev->bb_page) { 1672 rdev->bb_page = alloc_page(GFP_KERNEL); 1673 if (!rdev->bb_page) 1674 return -ENOMEM; 1675 } 1676 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1677 rdev->badblocks.count == 0) { 1678 /* need to load the bad block list. 1679 * Currently we limit it to one page. 1680 */ 1681 s32 offset; 1682 sector_t bb_sector; 1683 __le64 *bbp; 1684 int i; 1685 int sectors = le16_to_cpu(sb->bblog_size); 1686 if (sectors > (PAGE_SIZE / 512)) 1687 return -EINVAL; 1688 offset = le32_to_cpu(sb->bblog_offset); 1689 if (offset == 0) 1690 return -EINVAL; 1691 bb_sector = (long long)offset; 1692 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1693 rdev->bb_page, REQ_OP_READ, true)) 1694 return -EIO; 1695 bbp = (__le64 *)page_address(rdev->bb_page); 1696 rdev->badblocks.shift = sb->bblog_shift; 1697 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1698 u64 bb = le64_to_cpu(*bbp); 1699 int count = bb & (0x3ff); 1700 u64 sector = bb >> 10; 1701 sector <<= sb->bblog_shift; 1702 count <<= sb->bblog_shift; 1703 if (bb + 1 == 0) 1704 break; 1705 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1706 return -EINVAL; 1707 } 1708 } else if (sb->bblog_offset != 0) 1709 rdev->badblocks.shift = 0; 1710 1711 if ((le32_to_cpu(sb->feature_map) & 1712 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1713 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1714 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1715 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1716 } 1717 1718 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1719 sb->level != 0) 1720 return -EINVAL; 1721 1722 /* not spare disk, or LEVEL_MULTIPATH */ 1723 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1724 (rdev->desc_nr >= 0 && 1725 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1726 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1727 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1728 spare_disk = false; 1729 1730 if (!refdev) { 1731 if (!spare_disk) 1732 ret = 1; 1733 else 1734 ret = 0; 1735 } else { 1736 __u64 ev1, ev2; 1737 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1738 1739 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1740 sb->level != refsb->level || 1741 sb->layout != refsb->layout || 1742 sb->chunksize != refsb->chunksize) { 1743 pr_warn("md: %pg has strangely different superblock to %pg\n", 1744 rdev->bdev, 1745 refdev->bdev); 1746 return -EINVAL; 1747 } 1748 ev1 = le64_to_cpu(sb->events); 1749 ev2 = le64_to_cpu(refsb->events); 1750 1751 if (!spare_disk && ev1 > ev2) 1752 ret = 1; 1753 else 1754 ret = 0; 1755 } 1756 if (minor_version) 1757 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1758 else 1759 sectors = rdev->sb_start; 1760 if (sectors < le64_to_cpu(sb->data_size)) 1761 return -EINVAL; 1762 rdev->sectors = le64_to_cpu(sb->data_size); 1763 return ret; 1764 } 1765 1766 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1767 { 1768 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1769 __u64 ev1 = le64_to_cpu(sb->events); 1770 1771 rdev->raid_disk = -1; 1772 clear_bit(Faulty, &rdev->flags); 1773 clear_bit(In_sync, &rdev->flags); 1774 clear_bit(Bitmap_sync, &rdev->flags); 1775 clear_bit(WriteMostly, &rdev->flags); 1776 1777 if (mddev->raid_disks == 0) { 1778 mddev->major_version = 1; 1779 mddev->patch_version = 0; 1780 mddev->external = 0; 1781 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1782 mddev->ctime = le64_to_cpu(sb->ctime); 1783 mddev->utime = le64_to_cpu(sb->utime); 1784 mddev->level = le32_to_cpu(sb->level); 1785 mddev->clevel[0] = 0; 1786 mddev->layout = le32_to_cpu(sb->layout); 1787 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1788 mddev->dev_sectors = le64_to_cpu(sb->size); 1789 mddev->events = ev1; 1790 mddev->bitmap_info.offset = 0; 1791 mddev->bitmap_info.space = 0; 1792 /* Default location for bitmap is 1K after superblock 1793 * using 3K - total of 4K 1794 */ 1795 mddev->bitmap_info.default_offset = 1024 >> 9; 1796 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1797 mddev->reshape_backwards = 0; 1798 1799 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1800 memcpy(mddev->uuid, sb->set_uuid, 16); 1801 1802 mddev->max_disks = (4096-256)/2; 1803 1804 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1805 mddev->bitmap_info.file == NULL) { 1806 mddev->bitmap_info.offset = 1807 (__s32)le32_to_cpu(sb->bitmap_offset); 1808 /* Metadata doesn't record how much space is available. 1809 * For 1.0, we assume we can use up to the superblock 1810 * if before, else to 4K beyond superblock. 1811 * For others, assume no change is possible. 1812 */ 1813 if (mddev->minor_version > 0) 1814 mddev->bitmap_info.space = 0; 1815 else if (mddev->bitmap_info.offset > 0) 1816 mddev->bitmap_info.space = 1817 8 - mddev->bitmap_info.offset; 1818 else 1819 mddev->bitmap_info.space = 1820 -mddev->bitmap_info.offset; 1821 } 1822 1823 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1824 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1825 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1826 mddev->new_level = le32_to_cpu(sb->new_level); 1827 mddev->new_layout = le32_to_cpu(sb->new_layout); 1828 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1829 if (mddev->delta_disks < 0 || 1830 (mddev->delta_disks == 0 && 1831 (le32_to_cpu(sb->feature_map) 1832 & MD_FEATURE_RESHAPE_BACKWARDS))) 1833 mddev->reshape_backwards = 1; 1834 } else { 1835 mddev->reshape_position = MaxSector; 1836 mddev->delta_disks = 0; 1837 mddev->new_level = mddev->level; 1838 mddev->new_layout = mddev->layout; 1839 mddev->new_chunk_sectors = mddev->chunk_sectors; 1840 } 1841 1842 if (mddev->level == 0 && 1843 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1844 mddev->layout = -1; 1845 1846 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1847 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1848 1849 if (le32_to_cpu(sb->feature_map) & 1850 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1851 if (le32_to_cpu(sb->feature_map) & 1852 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1853 return -EINVAL; 1854 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1855 (le32_to_cpu(sb->feature_map) & 1856 MD_FEATURE_MULTIPLE_PPLS)) 1857 return -EINVAL; 1858 set_bit(MD_HAS_PPL, &mddev->flags); 1859 } 1860 } else if (mddev->pers == NULL) { 1861 /* Insist of good event counter while assembling, except for 1862 * spares (which don't need an event count) */ 1863 ++ev1; 1864 if (rdev->desc_nr >= 0 && 1865 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1866 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1867 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1868 if (ev1 < mddev->events) 1869 return -EINVAL; 1870 } else if (mddev->bitmap) { 1871 /* If adding to array with a bitmap, then we can accept an 1872 * older device, but not too old. 1873 */ 1874 if (ev1 < mddev->bitmap->events_cleared) 1875 return 0; 1876 if (ev1 < mddev->events) 1877 set_bit(Bitmap_sync, &rdev->flags); 1878 } else { 1879 if (ev1 < mddev->events) 1880 /* just a hot-add of a new device, leave raid_disk at -1 */ 1881 return 0; 1882 } 1883 if (mddev->level != LEVEL_MULTIPATH) { 1884 int role; 1885 if (rdev->desc_nr < 0 || 1886 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1887 role = MD_DISK_ROLE_SPARE; 1888 rdev->desc_nr = -1; 1889 } else 1890 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1891 switch(role) { 1892 case MD_DISK_ROLE_SPARE: /* spare */ 1893 break; 1894 case MD_DISK_ROLE_FAULTY: /* faulty */ 1895 set_bit(Faulty, &rdev->flags); 1896 break; 1897 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1898 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1899 /* journal device without journal feature */ 1900 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1901 return -EINVAL; 1902 } 1903 set_bit(Journal, &rdev->flags); 1904 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1905 rdev->raid_disk = 0; 1906 break; 1907 default: 1908 rdev->saved_raid_disk = role; 1909 if ((le32_to_cpu(sb->feature_map) & 1910 MD_FEATURE_RECOVERY_OFFSET)) { 1911 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1912 if (!(le32_to_cpu(sb->feature_map) & 1913 MD_FEATURE_RECOVERY_BITMAP)) 1914 rdev->saved_raid_disk = -1; 1915 } else { 1916 /* 1917 * If the array is FROZEN, then the device can't 1918 * be in_sync with rest of array. 1919 */ 1920 if (!test_bit(MD_RECOVERY_FROZEN, 1921 &mddev->recovery)) 1922 set_bit(In_sync, &rdev->flags); 1923 } 1924 rdev->raid_disk = role; 1925 break; 1926 } 1927 if (sb->devflags & WriteMostly1) 1928 set_bit(WriteMostly, &rdev->flags); 1929 if (sb->devflags & FailFast1) 1930 set_bit(FailFast, &rdev->flags); 1931 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1932 set_bit(Replacement, &rdev->flags); 1933 } else /* MULTIPATH are always insync */ 1934 set_bit(In_sync, &rdev->flags); 1935 1936 return 0; 1937 } 1938 1939 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1940 { 1941 struct mdp_superblock_1 *sb; 1942 struct md_rdev *rdev2; 1943 int max_dev, i; 1944 /* make rdev->sb match mddev and rdev data. */ 1945 1946 sb = page_address(rdev->sb_page); 1947 1948 sb->feature_map = 0; 1949 sb->pad0 = 0; 1950 sb->recovery_offset = cpu_to_le64(0); 1951 memset(sb->pad3, 0, sizeof(sb->pad3)); 1952 1953 sb->utime = cpu_to_le64((__u64)mddev->utime); 1954 sb->events = cpu_to_le64(mddev->events); 1955 if (mddev->in_sync) 1956 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1957 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1958 sb->resync_offset = cpu_to_le64(MaxSector); 1959 else 1960 sb->resync_offset = cpu_to_le64(0); 1961 1962 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1963 1964 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1965 sb->size = cpu_to_le64(mddev->dev_sectors); 1966 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1967 sb->level = cpu_to_le32(mddev->level); 1968 sb->layout = cpu_to_le32(mddev->layout); 1969 if (test_bit(FailFast, &rdev->flags)) 1970 sb->devflags |= FailFast1; 1971 else 1972 sb->devflags &= ~FailFast1; 1973 1974 if (test_bit(WriteMostly, &rdev->flags)) 1975 sb->devflags |= WriteMostly1; 1976 else 1977 sb->devflags &= ~WriteMostly1; 1978 sb->data_offset = cpu_to_le64(rdev->data_offset); 1979 sb->data_size = cpu_to_le64(rdev->sectors); 1980 1981 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1982 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1983 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1984 } 1985 1986 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1987 !test_bit(In_sync, &rdev->flags)) { 1988 sb->feature_map |= 1989 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1990 sb->recovery_offset = 1991 cpu_to_le64(rdev->recovery_offset); 1992 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1993 sb->feature_map |= 1994 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1995 } 1996 /* Note: recovery_offset and journal_tail share space */ 1997 if (test_bit(Journal, &rdev->flags)) 1998 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1999 if (test_bit(Replacement, &rdev->flags)) 2000 sb->feature_map |= 2001 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2002 2003 if (mddev->reshape_position != MaxSector) { 2004 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2005 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2006 sb->new_layout = cpu_to_le32(mddev->new_layout); 2007 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2008 sb->new_level = cpu_to_le32(mddev->new_level); 2009 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2010 if (mddev->delta_disks == 0 && 2011 mddev->reshape_backwards) 2012 sb->feature_map 2013 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2014 if (rdev->new_data_offset != rdev->data_offset) { 2015 sb->feature_map 2016 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2017 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2018 - rdev->data_offset)); 2019 } 2020 } 2021 2022 if (mddev_is_clustered(mddev)) 2023 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2024 2025 if (rdev->badblocks.count == 0) 2026 /* Nothing to do for bad blocks*/ ; 2027 else if (sb->bblog_offset == 0) 2028 /* Cannot record bad blocks on this device */ 2029 md_error(mddev, rdev); 2030 else { 2031 struct badblocks *bb = &rdev->badblocks; 2032 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2033 u64 *p = bb->page; 2034 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2035 if (bb->changed) { 2036 unsigned seq; 2037 2038 retry: 2039 seq = read_seqbegin(&bb->lock); 2040 2041 memset(bbp, 0xff, PAGE_SIZE); 2042 2043 for (i = 0 ; i < bb->count ; i++) { 2044 u64 internal_bb = p[i]; 2045 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2046 | BB_LEN(internal_bb)); 2047 bbp[i] = cpu_to_le64(store_bb); 2048 } 2049 bb->changed = 0; 2050 if (read_seqretry(&bb->lock, seq)) 2051 goto retry; 2052 2053 bb->sector = (rdev->sb_start + 2054 (int)le32_to_cpu(sb->bblog_offset)); 2055 bb->size = le16_to_cpu(sb->bblog_size); 2056 } 2057 } 2058 2059 max_dev = 0; 2060 rdev_for_each(rdev2, mddev) 2061 if (rdev2->desc_nr+1 > max_dev) 2062 max_dev = rdev2->desc_nr+1; 2063 2064 if (max_dev > le32_to_cpu(sb->max_dev)) { 2065 int bmask; 2066 sb->max_dev = cpu_to_le32(max_dev); 2067 rdev->sb_size = max_dev * 2 + 256; 2068 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2069 if (rdev->sb_size & bmask) 2070 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2071 } else 2072 max_dev = le32_to_cpu(sb->max_dev); 2073 2074 for (i=0; i<max_dev;i++) 2075 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2076 2077 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2078 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2079 2080 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2081 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2082 sb->feature_map |= 2083 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2084 else 2085 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2086 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2087 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2088 } 2089 2090 rdev_for_each(rdev2, mddev) { 2091 i = rdev2->desc_nr; 2092 if (test_bit(Faulty, &rdev2->flags)) 2093 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2094 else if (test_bit(In_sync, &rdev2->flags)) 2095 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2096 else if (test_bit(Journal, &rdev2->flags)) 2097 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2098 else if (rdev2->raid_disk >= 0) 2099 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2100 else 2101 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2102 } 2103 2104 sb->sb_csum = calc_sb_1_csum(sb); 2105 } 2106 2107 static sector_t super_1_choose_bm_space(sector_t dev_size) 2108 { 2109 sector_t bm_space; 2110 2111 /* if the device is bigger than 8Gig, save 64k for bitmap 2112 * usage, if bigger than 200Gig, save 128k 2113 */ 2114 if (dev_size < 64*2) 2115 bm_space = 0; 2116 else if (dev_size - 64*2 >= 200*1024*1024*2) 2117 bm_space = 128*2; 2118 else if (dev_size - 4*2 > 8*1024*1024*2) 2119 bm_space = 64*2; 2120 else 2121 bm_space = 4*2; 2122 return bm_space; 2123 } 2124 2125 static unsigned long long 2126 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2127 { 2128 struct mdp_superblock_1 *sb; 2129 sector_t max_sectors; 2130 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2131 return 0; /* component must fit device */ 2132 if (rdev->data_offset != rdev->new_data_offset) 2133 return 0; /* too confusing */ 2134 if (rdev->sb_start < rdev->data_offset) { 2135 /* minor versions 1 and 2; superblock before data */ 2136 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2137 if (!num_sectors || num_sectors > max_sectors) 2138 num_sectors = max_sectors; 2139 } else if (rdev->mddev->bitmap_info.offset) { 2140 /* minor version 0 with bitmap we can't move */ 2141 return 0; 2142 } else { 2143 /* minor version 0; superblock after data */ 2144 sector_t sb_start, bm_space; 2145 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2146 2147 /* 8K is for superblock */ 2148 sb_start = dev_size - 8*2; 2149 sb_start &= ~(sector_t)(4*2 - 1); 2150 2151 bm_space = super_1_choose_bm_space(dev_size); 2152 2153 /* Space that can be used to store date needs to decrease 2154 * superblock bitmap space and bad block space(4K) 2155 */ 2156 max_sectors = sb_start - bm_space - 4*2; 2157 2158 if (!num_sectors || num_sectors > max_sectors) 2159 num_sectors = max_sectors; 2160 rdev->sb_start = sb_start; 2161 } 2162 sb = page_address(rdev->sb_page); 2163 sb->data_size = cpu_to_le64(num_sectors); 2164 sb->super_offset = cpu_to_le64(rdev->sb_start); 2165 sb->sb_csum = calc_sb_1_csum(sb); 2166 do { 2167 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2168 rdev->sb_page); 2169 } while (md_super_wait(rdev->mddev) < 0); 2170 return num_sectors; 2171 2172 } 2173 2174 static int 2175 super_1_allow_new_offset(struct md_rdev *rdev, 2176 unsigned long long new_offset) 2177 { 2178 /* All necessary checks on new >= old have been done */ 2179 struct bitmap *bitmap; 2180 if (new_offset >= rdev->data_offset) 2181 return 1; 2182 2183 /* with 1.0 metadata, there is no metadata to tread on 2184 * so we can always move back */ 2185 if (rdev->mddev->minor_version == 0) 2186 return 1; 2187 2188 /* otherwise we must be sure not to step on 2189 * any metadata, so stay: 2190 * 36K beyond start of superblock 2191 * beyond end of badblocks 2192 * beyond write-intent bitmap 2193 */ 2194 if (rdev->sb_start + (32+4)*2 > new_offset) 2195 return 0; 2196 bitmap = rdev->mddev->bitmap; 2197 if (bitmap && !rdev->mddev->bitmap_info.file && 2198 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2199 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2200 return 0; 2201 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2202 return 0; 2203 2204 return 1; 2205 } 2206 2207 static struct super_type super_types[] = { 2208 [0] = { 2209 .name = "0.90.0", 2210 .owner = THIS_MODULE, 2211 .load_super = super_90_load, 2212 .validate_super = super_90_validate, 2213 .sync_super = super_90_sync, 2214 .rdev_size_change = super_90_rdev_size_change, 2215 .allow_new_offset = super_90_allow_new_offset, 2216 }, 2217 [1] = { 2218 .name = "md-1", 2219 .owner = THIS_MODULE, 2220 .load_super = super_1_load, 2221 .validate_super = super_1_validate, 2222 .sync_super = super_1_sync, 2223 .rdev_size_change = super_1_rdev_size_change, 2224 .allow_new_offset = super_1_allow_new_offset, 2225 }, 2226 }; 2227 2228 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2229 { 2230 if (mddev->sync_super) { 2231 mddev->sync_super(mddev, rdev); 2232 return; 2233 } 2234 2235 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2236 2237 super_types[mddev->major_version].sync_super(mddev, rdev); 2238 } 2239 2240 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2241 { 2242 struct md_rdev *rdev, *rdev2; 2243 2244 rcu_read_lock(); 2245 rdev_for_each_rcu(rdev, mddev1) { 2246 if (test_bit(Faulty, &rdev->flags) || 2247 test_bit(Journal, &rdev->flags) || 2248 rdev->raid_disk == -1) 2249 continue; 2250 rdev_for_each_rcu(rdev2, mddev2) { 2251 if (test_bit(Faulty, &rdev2->flags) || 2252 test_bit(Journal, &rdev2->flags) || 2253 rdev2->raid_disk == -1) 2254 continue; 2255 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2256 rcu_read_unlock(); 2257 return 1; 2258 } 2259 } 2260 } 2261 rcu_read_unlock(); 2262 return 0; 2263 } 2264 2265 static LIST_HEAD(pending_raid_disks); 2266 2267 /* 2268 * Try to register data integrity profile for an mddev 2269 * 2270 * This is called when an array is started and after a disk has been kicked 2271 * from the array. It only succeeds if all working and active component devices 2272 * are integrity capable with matching profiles. 2273 */ 2274 int md_integrity_register(struct mddev *mddev) 2275 { 2276 struct md_rdev *rdev, *reference = NULL; 2277 2278 if (list_empty(&mddev->disks)) 2279 return 0; /* nothing to do */ 2280 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2281 return 0; /* shouldn't register, or already is */ 2282 rdev_for_each(rdev, mddev) { 2283 /* skip spares and non-functional disks */ 2284 if (test_bit(Faulty, &rdev->flags)) 2285 continue; 2286 if (rdev->raid_disk < 0) 2287 continue; 2288 if (!reference) { 2289 /* Use the first rdev as the reference */ 2290 reference = rdev; 2291 continue; 2292 } 2293 /* does this rdev's profile match the reference profile? */ 2294 if (blk_integrity_compare(reference->bdev->bd_disk, 2295 rdev->bdev->bd_disk) < 0) 2296 return -EINVAL; 2297 } 2298 if (!reference || !bdev_get_integrity(reference->bdev)) 2299 return 0; 2300 /* 2301 * All component devices are integrity capable and have matching 2302 * profiles, register the common profile for the md device. 2303 */ 2304 blk_integrity_register(mddev->gendisk, 2305 bdev_get_integrity(reference->bdev)); 2306 2307 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2308 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2309 (mddev->level != 1 && mddev->level != 10 && 2310 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2311 /* 2312 * No need to handle the failure of bioset_integrity_create, 2313 * because the function is called by md_run() -> pers->run(), 2314 * md_run calls bioset_exit -> bioset_integrity_free in case 2315 * of failure case. 2316 */ 2317 pr_err("md: failed to create integrity pool for %s\n", 2318 mdname(mddev)); 2319 return -EINVAL; 2320 } 2321 return 0; 2322 } 2323 EXPORT_SYMBOL(md_integrity_register); 2324 2325 /* 2326 * Attempt to add an rdev, but only if it is consistent with the current 2327 * integrity profile 2328 */ 2329 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2330 { 2331 struct blk_integrity *bi_mddev; 2332 2333 if (!mddev->gendisk) 2334 return 0; 2335 2336 bi_mddev = blk_get_integrity(mddev->gendisk); 2337 2338 if (!bi_mddev) /* nothing to do */ 2339 return 0; 2340 2341 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2342 pr_err("%s: incompatible integrity profile for %pg\n", 2343 mdname(mddev), rdev->bdev); 2344 return -ENXIO; 2345 } 2346 2347 return 0; 2348 } 2349 EXPORT_SYMBOL(md_integrity_add_rdev); 2350 2351 static bool rdev_read_only(struct md_rdev *rdev) 2352 { 2353 return bdev_read_only(rdev->bdev) || 2354 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2355 } 2356 2357 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2358 { 2359 char b[BDEVNAME_SIZE]; 2360 int err; 2361 2362 /* prevent duplicates */ 2363 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2364 return -EEXIST; 2365 2366 if (rdev_read_only(rdev) && mddev->pers) 2367 return -EROFS; 2368 2369 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2370 if (!test_bit(Journal, &rdev->flags) && 2371 rdev->sectors && 2372 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2373 if (mddev->pers) { 2374 /* Cannot change size, so fail 2375 * If mddev->level <= 0, then we don't care 2376 * about aligning sizes (e.g. linear) 2377 */ 2378 if (mddev->level > 0) 2379 return -ENOSPC; 2380 } else 2381 mddev->dev_sectors = rdev->sectors; 2382 } 2383 2384 /* Verify rdev->desc_nr is unique. 2385 * If it is -1, assign a free number, else 2386 * check number is not in use 2387 */ 2388 rcu_read_lock(); 2389 if (rdev->desc_nr < 0) { 2390 int choice = 0; 2391 if (mddev->pers) 2392 choice = mddev->raid_disks; 2393 while (md_find_rdev_nr_rcu(mddev, choice)) 2394 choice++; 2395 rdev->desc_nr = choice; 2396 } else { 2397 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2398 rcu_read_unlock(); 2399 return -EBUSY; 2400 } 2401 } 2402 rcu_read_unlock(); 2403 if (!test_bit(Journal, &rdev->flags) && 2404 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2405 pr_warn("md: %s: array is limited to %d devices\n", 2406 mdname(mddev), mddev->max_disks); 2407 return -EBUSY; 2408 } 2409 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2410 strreplace(b, '/', '!'); 2411 2412 rdev->mddev = mddev; 2413 pr_debug("md: bind<%s>\n", b); 2414 2415 if (mddev->raid_disks) 2416 mddev_create_serial_pool(mddev, rdev, false); 2417 2418 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2419 goto fail; 2420 2421 /* failure here is OK */ 2422 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2423 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2424 rdev->sysfs_unack_badblocks = 2425 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2426 rdev->sysfs_badblocks = 2427 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2428 2429 list_add_rcu(&rdev->same_set, &mddev->disks); 2430 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2431 2432 /* May as well allow recovery to be retried once */ 2433 mddev->recovery_disabled++; 2434 2435 return 0; 2436 2437 fail: 2438 pr_warn("md: failed to register dev-%s for %s\n", 2439 b, mdname(mddev)); 2440 return err; 2441 } 2442 2443 static void rdev_delayed_delete(struct work_struct *ws) 2444 { 2445 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2446 kobject_del(&rdev->kobj); 2447 kobject_put(&rdev->kobj); 2448 } 2449 2450 void md_autodetect_dev(dev_t dev); 2451 2452 static void export_rdev(struct md_rdev *rdev) 2453 { 2454 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2455 md_rdev_clear(rdev); 2456 #ifndef MODULE 2457 if (test_bit(AutoDetected, &rdev->flags)) 2458 md_autodetect_dev(rdev->bdev->bd_dev); 2459 #endif 2460 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2461 rdev->bdev = NULL; 2462 kobject_put(&rdev->kobj); 2463 } 2464 2465 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2466 { 2467 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2468 list_del_rcu(&rdev->same_set); 2469 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2470 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2471 rdev->mddev = NULL; 2472 sysfs_remove_link(&rdev->kobj, "block"); 2473 sysfs_put(rdev->sysfs_state); 2474 sysfs_put(rdev->sysfs_unack_badblocks); 2475 sysfs_put(rdev->sysfs_badblocks); 2476 rdev->sysfs_state = NULL; 2477 rdev->sysfs_unack_badblocks = NULL; 2478 rdev->sysfs_badblocks = NULL; 2479 rdev->badblocks.count = 0; 2480 /* We need to delay this, otherwise we can deadlock when 2481 * writing to 'remove' to "dev/state". We also need 2482 * to delay it due to rcu usage. 2483 */ 2484 synchronize_rcu(); 2485 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2486 kobject_get(&rdev->kobj); 2487 queue_work(md_rdev_misc_wq, &rdev->del_work); 2488 export_rdev(rdev); 2489 } 2490 2491 static void export_array(struct mddev *mddev) 2492 { 2493 struct md_rdev *rdev; 2494 2495 while (!list_empty(&mddev->disks)) { 2496 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2497 same_set); 2498 md_kick_rdev_from_array(rdev); 2499 } 2500 mddev->raid_disks = 0; 2501 mddev->major_version = 0; 2502 } 2503 2504 static bool set_in_sync(struct mddev *mddev) 2505 { 2506 lockdep_assert_held(&mddev->lock); 2507 if (!mddev->in_sync) { 2508 mddev->sync_checkers++; 2509 spin_unlock(&mddev->lock); 2510 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2511 spin_lock(&mddev->lock); 2512 if (!mddev->in_sync && 2513 percpu_ref_is_zero(&mddev->writes_pending)) { 2514 mddev->in_sync = 1; 2515 /* 2516 * Ensure ->in_sync is visible before we clear 2517 * ->sync_checkers. 2518 */ 2519 smp_mb(); 2520 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2521 sysfs_notify_dirent_safe(mddev->sysfs_state); 2522 } 2523 if (--mddev->sync_checkers == 0) 2524 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2525 } 2526 if (mddev->safemode == 1) 2527 mddev->safemode = 0; 2528 return mddev->in_sync; 2529 } 2530 2531 static void sync_sbs(struct mddev *mddev, int nospares) 2532 { 2533 /* Update each superblock (in-memory image), but 2534 * if we are allowed to, skip spares which already 2535 * have the right event counter, or have one earlier 2536 * (which would mean they aren't being marked as dirty 2537 * with the rest of the array) 2538 */ 2539 struct md_rdev *rdev; 2540 rdev_for_each(rdev, mddev) { 2541 if (rdev->sb_events == mddev->events || 2542 (nospares && 2543 rdev->raid_disk < 0 && 2544 rdev->sb_events+1 == mddev->events)) { 2545 /* Don't update this superblock */ 2546 rdev->sb_loaded = 2; 2547 } else { 2548 sync_super(mddev, rdev); 2549 rdev->sb_loaded = 1; 2550 } 2551 } 2552 } 2553 2554 static bool does_sb_need_changing(struct mddev *mddev) 2555 { 2556 struct md_rdev *rdev = NULL, *iter; 2557 struct mdp_superblock_1 *sb; 2558 int role; 2559 2560 /* Find a good rdev */ 2561 rdev_for_each(iter, mddev) 2562 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2563 rdev = iter; 2564 break; 2565 } 2566 2567 /* No good device found. */ 2568 if (!rdev) 2569 return false; 2570 2571 sb = page_address(rdev->sb_page); 2572 /* Check if a device has become faulty or a spare become active */ 2573 rdev_for_each(rdev, mddev) { 2574 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2575 /* Device activated? */ 2576 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2577 !test_bit(Faulty, &rdev->flags)) 2578 return true; 2579 /* Device turned faulty? */ 2580 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2581 return true; 2582 } 2583 2584 /* Check if any mddev parameters have changed */ 2585 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2586 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2587 (mddev->layout != le32_to_cpu(sb->layout)) || 2588 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2589 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2590 return true; 2591 2592 return false; 2593 } 2594 2595 void md_update_sb(struct mddev *mddev, int force_change) 2596 { 2597 struct md_rdev *rdev; 2598 int sync_req; 2599 int nospares = 0; 2600 int any_badblocks_changed = 0; 2601 int ret = -1; 2602 2603 if (!md_is_rdwr(mddev)) { 2604 if (force_change) 2605 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2606 return; 2607 } 2608 2609 repeat: 2610 if (mddev_is_clustered(mddev)) { 2611 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2612 force_change = 1; 2613 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2614 nospares = 1; 2615 ret = md_cluster_ops->metadata_update_start(mddev); 2616 /* Has someone else has updated the sb */ 2617 if (!does_sb_need_changing(mddev)) { 2618 if (ret == 0) 2619 md_cluster_ops->metadata_update_cancel(mddev); 2620 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2621 BIT(MD_SB_CHANGE_DEVS) | 2622 BIT(MD_SB_CHANGE_CLEAN)); 2623 return; 2624 } 2625 } 2626 2627 /* 2628 * First make sure individual recovery_offsets are correct 2629 * curr_resync_completed can only be used during recovery. 2630 * During reshape/resync it might use array-addresses rather 2631 * that device addresses. 2632 */ 2633 rdev_for_each(rdev, mddev) { 2634 if (rdev->raid_disk >= 0 && 2635 mddev->delta_disks >= 0 && 2636 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2637 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2638 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2639 !test_bit(Journal, &rdev->flags) && 2640 !test_bit(In_sync, &rdev->flags) && 2641 mddev->curr_resync_completed > rdev->recovery_offset) 2642 rdev->recovery_offset = mddev->curr_resync_completed; 2643 2644 } 2645 if (!mddev->persistent) { 2646 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2647 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2648 if (!mddev->external) { 2649 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2650 rdev_for_each(rdev, mddev) { 2651 if (rdev->badblocks.changed) { 2652 rdev->badblocks.changed = 0; 2653 ack_all_badblocks(&rdev->badblocks); 2654 md_error(mddev, rdev); 2655 } 2656 clear_bit(Blocked, &rdev->flags); 2657 clear_bit(BlockedBadBlocks, &rdev->flags); 2658 wake_up(&rdev->blocked_wait); 2659 } 2660 } 2661 wake_up(&mddev->sb_wait); 2662 return; 2663 } 2664 2665 spin_lock(&mddev->lock); 2666 2667 mddev->utime = ktime_get_real_seconds(); 2668 2669 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2670 force_change = 1; 2671 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2672 /* just a clean<-> dirty transition, possibly leave spares alone, 2673 * though if events isn't the right even/odd, we will have to do 2674 * spares after all 2675 */ 2676 nospares = 1; 2677 if (force_change) 2678 nospares = 0; 2679 if (mddev->degraded) 2680 /* If the array is degraded, then skipping spares is both 2681 * dangerous and fairly pointless. 2682 * Dangerous because a device that was removed from the array 2683 * might have a event_count that still looks up-to-date, 2684 * so it can be re-added without a resync. 2685 * Pointless because if there are any spares to skip, 2686 * then a recovery will happen and soon that array won't 2687 * be degraded any more and the spare can go back to sleep then. 2688 */ 2689 nospares = 0; 2690 2691 sync_req = mddev->in_sync; 2692 2693 /* If this is just a dirty<->clean transition, and the array is clean 2694 * and 'events' is odd, we can roll back to the previous clean state */ 2695 if (nospares 2696 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2697 && mddev->can_decrease_events 2698 && mddev->events != 1) { 2699 mddev->events--; 2700 mddev->can_decrease_events = 0; 2701 } else { 2702 /* otherwise we have to go forward and ... */ 2703 mddev->events ++; 2704 mddev->can_decrease_events = nospares; 2705 } 2706 2707 /* 2708 * This 64-bit counter should never wrap. 2709 * Either we are in around ~1 trillion A.C., assuming 2710 * 1 reboot per second, or we have a bug... 2711 */ 2712 WARN_ON(mddev->events == 0); 2713 2714 rdev_for_each(rdev, mddev) { 2715 if (rdev->badblocks.changed) 2716 any_badblocks_changed++; 2717 if (test_bit(Faulty, &rdev->flags)) 2718 set_bit(FaultRecorded, &rdev->flags); 2719 } 2720 2721 sync_sbs(mddev, nospares); 2722 spin_unlock(&mddev->lock); 2723 2724 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2725 mdname(mddev), mddev->in_sync); 2726 2727 if (mddev->queue) 2728 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2729 rewrite: 2730 md_bitmap_update_sb(mddev->bitmap); 2731 rdev_for_each(rdev, mddev) { 2732 if (rdev->sb_loaded != 1) 2733 continue; /* no noise on spare devices */ 2734 2735 if (!test_bit(Faulty, &rdev->flags)) { 2736 md_super_write(mddev,rdev, 2737 rdev->sb_start, rdev->sb_size, 2738 rdev->sb_page); 2739 pr_debug("md: (write) %pg's sb offset: %llu\n", 2740 rdev->bdev, 2741 (unsigned long long)rdev->sb_start); 2742 rdev->sb_events = mddev->events; 2743 if (rdev->badblocks.size) { 2744 md_super_write(mddev, rdev, 2745 rdev->badblocks.sector, 2746 rdev->badblocks.size << 9, 2747 rdev->bb_page); 2748 rdev->badblocks.size = 0; 2749 } 2750 2751 } else 2752 pr_debug("md: %pg (skipping faulty)\n", 2753 rdev->bdev); 2754 2755 if (mddev->level == LEVEL_MULTIPATH) 2756 /* only need to write one superblock... */ 2757 break; 2758 } 2759 if (md_super_wait(mddev) < 0) 2760 goto rewrite; 2761 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2762 2763 if (mddev_is_clustered(mddev) && ret == 0) 2764 md_cluster_ops->metadata_update_finish(mddev); 2765 2766 if (mddev->in_sync != sync_req || 2767 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2768 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2769 /* have to write it out again */ 2770 goto repeat; 2771 wake_up(&mddev->sb_wait); 2772 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2773 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2774 2775 rdev_for_each(rdev, mddev) { 2776 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2777 clear_bit(Blocked, &rdev->flags); 2778 2779 if (any_badblocks_changed) 2780 ack_all_badblocks(&rdev->badblocks); 2781 clear_bit(BlockedBadBlocks, &rdev->flags); 2782 wake_up(&rdev->blocked_wait); 2783 } 2784 } 2785 EXPORT_SYMBOL(md_update_sb); 2786 2787 static int add_bound_rdev(struct md_rdev *rdev) 2788 { 2789 struct mddev *mddev = rdev->mddev; 2790 int err = 0; 2791 bool add_journal = test_bit(Journal, &rdev->flags); 2792 2793 if (!mddev->pers->hot_remove_disk || add_journal) { 2794 /* If there is hot_add_disk but no hot_remove_disk 2795 * then added disks for geometry changes, 2796 * and should be added immediately. 2797 */ 2798 super_types[mddev->major_version]. 2799 validate_super(mddev, rdev); 2800 if (add_journal) 2801 mddev_suspend(mddev); 2802 err = mddev->pers->hot_add_disk(mddev, rdev); 2803 if (add_journal) 2804 mddev_resume(mddev); 2805 if (err) { 2806 md_kick_rdev_from_array(rdev); 2807 return err; 2808 } 2809 } 2810 sysfs_notify_dirent_safe(rdev->sysfs_state); 2811 2812 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2813 if (mddev->degraded) 2814 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2815 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2816 md_new_event(); 2817 md_wakeup_thread(mddev->thread); 2818 return 0; 2819 } 2820 2821 /* words written to sysfs files may, or may not, be \n terminated. 2822 * We want to accept with case. For this we use cmd_match. 2823 */ 2824 static int cmd_match(const char *cmd, const char *str) 2825 { 2826 /* See if cmd, written into a sysfs file, matches 2827 * str. They must either be the same, or cmd can 2828 * have a trailing newline 2829 */ 2830 while (*cmd && *str && *cmd == *str) { 2831 cmd++; 2832 str++; 2833 } 2834 if (*cmd == '\n') 2835 cmd++; 2836 if (*str || *cmd) 2837 return 0; 2838 return 1; 2839 } 2840 2841 struct rdev_sysfs_entry { 2842 struct attribute attr; 2843 ssize_t (*show)(struct md_rdev *, char *); 2844 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2845 }; 2846 2847 static ssize_t 2848 state_show(struct md_rdev *rdev, char *page) 2849 { 2850 char *sep = ","; 2851 size_t len = 0; 2852 unsigned long flags = READ_ONCE(rdev->flags); 2853 2854 if (test_bit(Faulty, &flags) || 2855 (!test_bit(ExternalBbl, &flags) && 2856 rdev->badblocks.unacked_exist)) 2857 len += sprintf(page+len, "faulty%s", sep); 2858 if (test_bit(In_sync, &flags)) 2859 len += sprintf(page+len, "in_sync%s", sep); 2860 if (test_bit(Journal, &flags)) 2861 len += sprintf(page+len, "journal%s", sep); 2862 if (test_bit(WriteMostly, &flags)) 2863 len += sprintf(page+len, "write_mostly%s", sep); 2864 if (test_bit(Blocked, &flags) || 2865 (rdev->badblocks.unacked_exist 2866 && !test_bit(Faulty, &flags))) 2867 len += sprintf(page+len, "blocked%s", sep); 2868 if (!test_bit(Faulty, &flags) && 2869 !test_bit(Journal, &flags) && 2870 !test_bit(In_sync, &flags)) 2871 len += sprintf(page+len, "spare%s", sep); 2872 if (test_bit(WriteErrorSeen, &flags)) 2873 len += sprintf(page+len, "write_error%s", sep); 2874 if (test_bit(WantReplacement, &flags)) 2875 len += sprintf(page+len, "want_replacement%s", sep); 2876 if (test_bit(Replacement, &flags)) 2877 len += sprintf(page+len, "replacement%s", sep); 2878 if (test_bit(ExternalBbl, &flags)) 2879 len += sprintf(page+len, "external_bbl%s", sep); 2880 if (test_bit(FailFast, &flags)) 2881 len += sprintf(page+len, "failfast%s", sep); 2882 2883 if (len) 2884 len -= strlen(sep); 2885 2886 return len+sprintf(page+len, "\n"); 2887 } 2888 2889 static ssize_t 2890 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2891 { 2892 /* can write 2893 * faulty - simulates an error 2894 * remove - disconnects the device 2895 * writemostly - sets write_mostly 2896 * -writemostly - clears write_mostly 2897 * blocked - sets the Blocked flags 2898 * -blocked - clears the Blocked and possibly simulates an error 2899 * insync - sets Insync providing device isn't active 2900 * -insync - clear Insync for a device with a slot assigned, 2901 * so that it gets rebuilt based on bitmap 2902 * write_error - sets WriteErrorSeen 2903 * -write_error - clears WriteErrorSeen 2904 * {,-}failfast - set/clear FailFast 2905 */ 2906 2907 struct mddev *mddev = rdev->mddev; 2908 int err = -EINVAL; 2909 bool need_update_sb = false; 2910 2911 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2912 md_error(rdev->mddev, rdev); 2913 2914 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2915 err = -EBUSY; 2916 else 2917 err = 0; 2918 } else if (cmd_match(buf, "remove")) { 2919 if (rdev->mddev->pers) { 2920 clear_bit(Blocked, &rdev->flags); 2921 remove_and_add_spares(rdev->mddev, rdev); 2922 } 2923 if (rdev->raid_disk >= 0) 2924 err = -EBUSY; 2925 else { 2926 err = 0; 2927 if (mddev_is_clustered(mddev)) 2928 err = md_cluster_ops->remove_disk(mddev, rdev); 2929 2930 if (err == 0) { 2931 md_kick_rdev_from_array(rdev); 2932 if (mddev->pers) { 2933 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2934 md_wakeup_thread(mddev->thread); 2935 } 2936 md_new_event(); 2937 } 2938 } 2939 } else if (cmd_match(buf, "writemostly")) { 2940 set_bit(WriteMostly, &rdev->flags); 2941 mddev_create_serial_pool(rdev->mddev, rdev, false); 2942 need_update_sb = true; 2943 err = 0; 2944 } else if (cmd_match(buf, "-writemostly")) { 2945 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2946 clear_bit(WriteMostly, &rdev->flags); 2947 need_update_sb = true; 2948 err = 0; 2949 } else if (cmd_match(buf, "blocked")) { 2950 set_bit(Blocked, &rdev->flags); 2951 err = 0; 2952 } else if (cmd_match(buf, "-blocked")) { 2953 if (!test_bit(Faulty, &rdev->flags) && 2954 !test_bit(ExternalBbl, &rdev->flags) && 2955 rdev->badblocks.unacked_exist) { 2956 /* metadata handler doesn't understand badblocks, 2957 * so we need to fail the device 2958 */ 2959 md_error(rdev->mddev, rdev); 2960 } 2961 clear_bit(Blocked, &rdev->flags); 2962 clear_bit(BlockedBadBlocks, &rdev->flags); 2963 wake_up(&rdev->blocked_wait); 2964 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2965 md_wakeup_thread(rdev->mddev->thread); 2966 2967 err = 0; 2968 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2969 set_bit(In_sync, &rdev->flags); 2970 err = 0; 2971 } else if (cmd_match(buf, "failfast")) { 2972 set_bit(FailFast, &rdev->flags); 2973 need_update_sb = true; 2974 err = 0; 2975 } else if (cmd_match(buf, "-failfast")) { 2976 clear_bit(FailFast, &rdev->flags); 2977 need_update_sb = true; 2978 err = 0; 2979 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2980 !test_bit(Journal, &rdev->flags)) { 2981 if (rdev->mddev->pers == NULL) { 2982 clear_bit(In_sync, &rdev->flags); 2983 rdev->saved_raid_disk = rdev->raid_disk; 2984 rdev->raid_disk = -1; 2985 err = 0; 2986 } 2987 } else if (cmd_match(buf, "write_error")) { 2988 set_bit(WriteErrorSeen, &rdev->flags); 2989 err = 0; 2990 } else if (cmd_match(buf, "-write_error")) { 2991 clear_bit(WriteErrorSeen, &rdev->flags); 2992 err = 0; 2993 } else if (cmd_match(buf, "want_replacement")) { 2994 /* Any non-spare device that is not a replacement can 2995 * become want_replacement at any time, but we then need to 2996 * check if recovery is needed. 2997 */ 2998 if (rdev->raid_disk >= 0 && 2999 !test_bit(Journal, &rdev->flags) && 3000 !test_bit(Replacement, &rdev->flags)) 3001 set_bit(WantReplacement, &rdev->flags); 3002 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3003 md_wakeup_thread(rdev->mddev->thread); 3004 err = 0; 3005 } else if (cmd_match(buf, "-want_replacement")) { 3006 /* Clearing 'want_replacement' is always allowed. 3007 * Once replacements starts it is too late though. 3008 */ 3009 err = 0; 3010 clear_bit(WantReplacement, &rdev->flags); 3011 } else if (cmd_match(buf, "replacement")) { 3012 /* Can only set a device as a replacement when array has not 3013 * yet been started. Once running, replacement is automatic 3014 * from spares, or by assigning 'slot'. 3015 */ 3016 if (rdev->mddev->pers) 3017 err = -EBUSY; 3018 else { 3019 set_bit(Replacement, &rdev->flags); 3020 err = 0; 3021 } 3022 } else if (cmd_match(buf, "-replacement")) { 3023 /* Similarly, can only clear Replacement before start */ 3024 if (rdev->mddev->pers) 3025 err = -EBUSY; 3026 else { 3027 clear_bit(Replacement, &rdev->flags); 3028 err = 0; 3029 } 3030 } else if (cmd_match(buf, "re-add")) { 3031 if (!rdev->mddev->pers) 3032 err = -EINVAL; 3033 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3034 rdev->saved_raid_disk >= 0) { 3035 /* clear_bit is performed _after_ all the devices 3036 * have their local Faulty bit cleared. If any writes 3037 * happen in the meantime in the local node, they 3038 * will land in the local bitmap, which will be synced 3039 * by this node eventually 3040 */ 3041 if (!mddev_is_clustered(rdev->mddev) || 3042 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3043 clear_bit(Faulty, &rdev->flags); 3044 err = add_bound_rdev(rdev); 3045 } 3046 } else 3047 err = -EBUSY; 3048 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3049 set_bit(ExternalBbl, &rdev->flags); 3050 rdev->badblocks.shift = 0; 3051 err = 0; 3052 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3053 clear_bit(ExternalBbl, &rdev->flags); 3054 err = 0; 3055 } 3056 if (need_update_sb) 3057 md_update_sb(mddev, 1); 3058 if (!err) 3059 sysfs_notify_dirent_safe(rdev->sysfs_state); 3060 return err ? err : len; 3061 } 3062 static struct rdev_sysfs_entry rdev_state = 3063 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3064 3065 static ssize_t 3066 errors_show(struct md_rdev *rdev, char *page) 3067 { 3068 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3069 } 3070 3071 static ssize_t 3072 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3073 { 3074 unsigned int n; 3075 int rv; 3076 3077 rv = kstrtouint(buf, 10, &n); 3078 if (rv < 0) 3079 return rv; 3080 atomic_set(&rdev->corrected_errors, n); 3081 return len; 3082 } 3083 static struct rdev_sysfs_entry rdev_errors = 3084 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3085 3086 static ssize_t 3087 slot_show(struct md_rdev *rdev, char *page) 3088 { 3089 if (test_bit(Journal, &rdev->flags)) 3090 return sprintf(page, "journal\n"); 3091 else if (rdev->raid_disk < 0) 3092 return sprintf(page, "none\n"); 3093 else 3094 return sprintf(page, "%d\n", rdev->raid_disk); 3095 } 3096 3097 static ssize_t 3098 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3099 { 3100 int slot; 3101 int err; 3102 3103 if (test_bit(Journal, &rdev->flags)) 3104 return -EBUSY; 3105 if (strncmp(buf, "none", 4)==0) 3106 slot = -1; 3107 else { 3108 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3109 if (err < 0) 3110 return err; 3111 if (slot < 0) 3112 /* overflow */ 3113 return -ENOSPC; 3114 } 3115 if (rdev->mddev->pers && slot == -1) { 3116 /* Setting 'slot' on an active array requires also 3117 * updating the 'rd%d' link, and communicating 3118 * with the personality with ->hot_*_disk. 3119 * For now we only support removing 3120 * failed/spare devices. This normally happens automatically, 3121 * but not when the metadata is externally managed. 3122 */ 3123 if (rdev->raid_disk == -1) 3124 return -EEXIST; 3125 /* personality does all needed checks */ 3126 if (rdev->mddev->pers->hot_remove_disk == NULL) 3127 return -EINVAL; 3128 clear_bit(Blocked, &rdev->flags); 3129 remove_and_add_spares(rdev->mddev, rdev); 3130 if (rdev->raid_disk >= 0) 3131 return -EBUSY; 3132 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3133 md_wakeup_thread(rdev->mddev->thread); 3134 } else if (rdev->mddev->pers) { 3135 /* Activating a spare .. or possibly reactivating 3136 * if we ever get bitmaps working here. 3137 */ 3138 int err; 3139 3140 if (rdev->raid_disk != -1) 3141 return -EBUSY; 3142 3143 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3144 return -EBUSY; 3145 3146 if (rdev->mddev->pers->hot_add_disk == NULL) 3147 return -EINVAL; 3148 3149 if (slot >= rdev->mddev->raid_disks && 3150 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3151 return -ENOSPC; 3152 3153 rdev->raid_disk = slot; 3154 if (test_bit(In_sync, &rdev->flags)) 3155 rdev->saved_raid_disk = slot; 3156 else 3157 rdev->saved_raid_disk = -1; 3158 clear_bit(In_sync, &rdev->flags); 3159 clear_bit(Bitmap_sync, &rdev->flags); 3160 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3161 if (err) { 3162 rdev->raid_disk = -1; 3163 return err; 3164 } else 3165 sysfs_notify_dirent_safe(rdev->sysfs_state); 3166 /* failure here is OK */; 3167 sysfs_link_rdev(rdev->mddev, rdev); 3168 /* don't wakeup anyone, leave that to userspace. */ 3169 } else { 3170 if (slot >= rdev->mddev->raid_disks && 3171 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3172 return -ENOSPC; 3173 rdev->raid_disk = slot; 3174 /* assume it is working */ 3175 clear_bit(Faulty, &rdev->flags); 3176 clear_bit(WriteMostly, &rdev->flags); 3177 set_bit(In_sync, &rdev->flags); 3178 sysfs_notify_dirent_safe(rdev->sysfs_state); 3179 } 3180 return len; 3181 } 3182 3183 static struct rdev_sysfs_entry rdev_slot = 3184 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3185 3186 static ssize_t 3187 offset_show(struct md_rdev *rdev, char *page) 3188 { 3189 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3190 } 3191 3192 static ssize_t 3193 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3194 { 3195 unsigned long long offset; 3196 if (kstrtoull(buf, 10, &offset) < 0) 3197 return -EINVAL; 3198 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3199 return -EBUSY; 3200 if (rdev->sectors && rdev->mddev->external) 3201 /* Must set offset before size, so overlap checks 3202 * can be sane */ 3203 return -EBUSY; 3204 rdev->data_offset = offset; 3205 rdev->new_data_offset = offset; 3206 return len; 3207 } 3208 3209 static struct rdev_sysfs_entry rdev_offset = 3210 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3211 3212 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3213 { 3214 return sprintf(page, "%llu\n", 3215 (unsigned long long)rdev->new_data_offset); 3216 } 3217 3218 static ssize_t new_offset_store(struct md_rdev *rdev, 3219 const char *buf, size_t len) 3220 { 3221 unsigned long long new_offset; 3222 struct mddev *mddev = rdev->mddev; 3223 3224 if (kstrtoull(buf, 10, &new_offset) < 0) 3225 return -EINVAL; 3226 3227 if (mddev->sync_thread || 3228 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3229 return -EBUSY; 3230 if (new_offset == rdev->data_offset) 3231 /* reset is always permitted */ 3232 ; 3233 else if (new_offset > rdev->data_offset) { 3234 /* must not push array size beyond rdev_sectors */ 3235 if (new_offset - rdev->data_offset 3236 + mddev->dev_sectors > rdev->sectors) 3237 return -E2BIG; 3238 } 3239 /* Metadata worries about other space details. */ 3240 3241 /* decreasing the offset is inconsistent with a backwards 3242 * reshape. 3243 */ 3244 if (new_offset < rdev->data_offset && 3245 mddev->reshape_backwards) 3246 return -EINVAL; 3247 /* Increasing offset is inconsistent with forwards 3248 * reshape. reshape_direction should be set to 3249 * 'backwards' first. 3250 */ 3251 if (new_offset > rdev->data_offset && 3252 !mddev->reshape_backwards) 3253 return -EINVAL; 3254 3255 if (mddev->pers && mddev->persistent && 3256 !super_types[mddev->major_version] 3257 .allow_new_offset(rdev, new_offset)) 3258 return -E2BIG; 3259 rdev->new_data_offset = new_offset; 3260 if (new_offset > rdev->data_offset) 3261 mddev->reshape_backwards = 1; 3262 else if (new_offset < rdev->data_offset) 3263 mddev->reshape_backwards = 0; 3264 3265 return len; 3266 } 3267 static struct rdev_sysfs_entry rdev_new_offset = 3268 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3269 3270 static ssize_t 3271 rdev_size_show(struct md_rdev *rdev, char *page) 3272 { 3273 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3274 } 3275 3276 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3277 { 3278 /* check if two start/length pairs overlap */ 3279 if (a->data_offset + a->sectors <= b->data_offset) 3280 return false; 3281 if (b->data_offset + b->sectors <= a->data_offset) 3282 return false; 3283 return true; 3284 } 3285 3286 static bool md_rdev_overlaps(struct md_rdev *rdev) 3287 { 3288 struct mddev *mddev; 3289 struct md_rdev *rdev2; 3290 3291 spin_lock(&all_mddevs_lock); 3292 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3293 if (test_bit(MD_DELETED, &mddev->flags)) 3294 continue; 3295 rdev_for_each(rdev2, mddev) { 3296 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3297 md_rdevs_overlap(rdev, rdev2)) { 3298 spin_unlock(&all_mddevs_lock); 3299 return true; 3300 } 3301 } 3302 } 3303 spin_unlock(&all_mddevs_lock); 3304 return false; 3305 } 3306 3307 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3308 { 3309 unsigned long long blocks; 3310 sector_t new; 3311 3312 if (kstrtoull(buf, 10, &blocks) < 0) 3313 return -EINVAL; 3314 3315 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3316 return -EINVAL; /* sector conversion overflow */ 3317 3318 new = blocks * 2; 3319 if (new != blocks * 2) 3320 return -EINVAL; /* unsigned long long to sector_t overflow */ 3321 3322 *sectors = new; 3323 return 0; 3324 } 3325 3326 static ssize_t 3327 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3328 { 3329 struct mddev *my_mddev = rdev->mddev; 3330 sector_t oldsectors = rdev->sectors; 3331 sector_t sectors; 3332 3333 if (test_bit(Journal, &rdev->flags)) 3334 return -EBUSY; 3335 if (strict_blocks_to_sectors(buf, §ors) < 0) 3336 return -EINVAL; 3337 if (rdev->data_offset != rdev->new_data_offset) 3338 return -EINVAL; /* too confusing */ 3339 if (my_mddev->pers && rdev->raid_disk >= 0) { 3340 if (my_mddev->persistent) { 3341 sectors = super_types[my_mddev->major_version]. 3342 rdev_size_change(rdev, sectors); 3343 if (!sectors) 3344 return -EBUSY; 3345 } else if (!sectors) 3346 sectors = bdev_nr_sectors(rdev->bdev) - 3347 rdev->data_offset; 3348 if (!my_mddev->pers->resize) 3349 /* Cannot change size for RAID0 or Linear etc */ 3350 return -EINVAL; 3351 } 3352 if (sectors < my_mddev->dev_sectors) 3353 return -EINVAL; /* component must fit device */ 3354 3355 rdev->sectors = sectors; 3356 3357 /* 3358 * Check that all other rdevs with the same bdev do not overlap. This 3359 * check does not provide a hard guarantee, it just helps avoid 3360 * dangerous mistakes. 3361 */ 3362 if (sectors > oldsectors && my_mddev->external && 3363 md_rdev_overlaps(rdev)) { 3364 /* 3365 * Someone else could have slipped in a size change here, but 3366 * doing so is just silly. We put oldsectors back because we 3367 * know it is safe, and trust userspace not to race with itself. 3368 */ 3369 rdev->sectors = oldsectors; 3370 return -EBUSY; 3371 } 3372 return len; 3373 } 3374 3375 static struct rdev_sysfs_entry rdev_size = 3376 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3377 3378 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3379 { 3380 unsigned long long recovery_start = rdev->recovery_offset; 3381 3382 if (test_bit(In_sync, &rdev->flags) || 3383 recovery_start == MaxSector) 3384 return sprintf(page, "none\n"); 3385 3386 return sprintf(page, "%llu\n", recovery_start); 3387 } 3388 3389 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3390 { 3391 unsigned long long recovery_start; 3392 3393 if (cmd_match(buf, "none")) 3394 recovery_start = MaxSector; 3395 else if (kstrtoull(buf, 10, &recovery_start)) 3396 return -EINVAL; 3397 3398 if (rdev->mddev->pers && 3399 rdev->raid_disk >= 0) 3400 return -EBUSY; 3401 3402 rdev->recovery_offset = recovery_start; 3403 if (recovery_start == MaxSector) 3404 set_bit(In_sync, &rdev->flags); 3405 else 3406 clear_bit(In_sync, &rdev->flags); 3407 return len; 3408 } 3409 3410 static struct rdev_sysfs_entry rdev_recovery_start = 3411 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3412 3413 /* sysfs access to bad-blocks list. 3414 * We present two files. 3415 * 'bad-blocks' lists sector numbers and lengths of ranges that 3416 * are recorded as bad. The list is truncated to fit within 3417 * the one-page limit of sysfs. 3418 * Writing "sector length" to this file adds an acknowledged 3419 * bad block list. 3420 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3421 * been acknowledged. Writing to this file adds bad blocks 3422 * without acknowledging them. This is largely for testing. 3423 */ 3424 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3425 { 3426 return badblocks_show(&rdev->badblocks, page, 0); 3427 } 3428 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3429 { 3430 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3431 /* Maybe that ack was all we needed */ 3432 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3433 wake_up(&rdev->blocked_wait); 3434 return rv; 3435 } 3436 static struct rdev_sysfs_entry rdev_bad_blocks = 3437 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3438 3439 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3440 { 3441 return badblocks_show(&rdev->badblocks, page, 1); 3442 } 3443 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3444 { 3445 return badblocks_store(&rdev->badblocks, page, len, 1); 3446 } 3447 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3448 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3449 3450 static ssize_t 3451 ppl_sector_show(struct md_rdev *rdev, char *page) 3452 { 3453 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3454 } 3455 3456 static ssize_t 3457 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3458 { 3459 unsigned long long sector; 3460 3461 if (kstrtoull(buf, 10, §or) < 0) 3462 return -EINVAL; 3463 if (sector != (sector_t)sector) 3464 return -EINVAL; 3465 3466 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3467 rdev->raid_disk >= 0) 3468 return -EBUSY; 3469 3470 if (rdev->mddev->persistent) { 3471 if (rdev->mddev->major_version == 0) 3472 return -EINVAL; 3473 if ((sector > rdev->sb_start && 3474 sector - rdev->sb_start > S16_MAX) || 3475 (sector < rdev->sb_start && 3476 rdev->sb_start - sector > -S16_MIN)) 3477 return -EINVAL; 3478 rdev->ppl.offset = sector - rdev->sb_start; 3479 } else if (!rdev->mddev->external) { 3480 return -EBUSY; 3481 } 3482 rdev->ppl.sector = sector; 3483 return len; 3484 } 3485 3486 static struct rdev_sysfs_entry rdev_ppl_sector = 3487 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3488 3489 static ssize_t 3490 ppl_size_show(struct md_rdev *rdev, char *page) 3491 { 3492 return sprintf(page, "%u\n", rdev->ppl.size); 3493 } 3494 3495 static ssize_t 3496 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3497 { 3498 unsigned int size; 3499 3500 if (kstrtouint(buf, 10, &size) < 0) 3501 return -EINVAL; 3502 3503 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3504 rdev->raid_disk >= 0) 3505 return -EBUSY; 3506 3507 if (rdev->mddev->persistent) { 3508 if (rdev->mddev->major_version == 0) 3509 return -EINVAL; 3510 if (size > U16_MAX) 3511 return -EINVAL; 3512 } else if (!rdev->mddev->external) { 3513 return -EBUSY; 3514 } 3515 rdev->ppl.size = size; 3516 return len; 3517 } 3518 3519 static struct rdev_sysfs_entry rdev_ppl_size = 3520 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3521 3522 static struct attribute *rdev_default_attrs[] = { 3523 &rdev_state.attr, 3524 &rdev_errors.attr, 3525 &rdev_slot.attr, 3526 &rdev_offset.attr, 3527 &rdev_new_offset.attr, 3528 &rdev_size.attr, 3529 &rdev_recovery_start.attr, 3530 &rdev_bad_blocks.attr, 3531 &rdev_unack_bad_blocks.attr, 3532 &rdev_ppl_sector.attr, 3533 &rdev_ppl_size.attr, 3534 NULL, 3535 }; 3536 ATTRIBUTE_GROUPS(rdev_default); 3537 static ssize_t 3538 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3539 { 3540 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3541 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3542 3543 if (!entry->show) 3544 return -EIO; 3545 if (!rdev->mddev) 3546 return -ENODEV; 3547 return entry->show(rdev, page); 3548 } 3549 3550 static ssize_t 3551 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3552 const char *page, size_t length) 3553 { 3554 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3555 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3556 ssize_t rv; 3557 struct mddev *mddev = rdev->mddev; 3558 3559 if (!entry->store) 3560 return -EIO; 3561 if (!capable(CAP_SYS_ADMIN)) 3562 return -EACCES; 3563 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3564 if (!rv) { 3565 if (rdev->mddev == NULL) 3566 rv = -ENODEV; 3567 else 3568 rv = entry->store(rdev, page, length); 3569 mddev_unlock(mddev); 3570 } 3571 return rv; 3572 } 3573 3574 static void rdev_free(struct kobject *ko) 3575 { 3576 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3577 kfree(rdev); 3578 } 3579 static const struct sysfs_ops rdev_sysfs_ops = { 3580 .show = rdev_attr_show, 3581 .store = rdev_attr_store, 3582 }; 3583 static const struct kobj_type rdev_ktype = { 3584 .release = rdev_free, 3585 .sysfs_ops = &rdev_sysfs_ops, 3586 .default_groups = rdev_default_groups, 3587 }; 3588 3589 int md_rdev_init(struct md_rdev *rdev) 3590 { 3591 rdev->desc_nr = -1; 3592 rdev->saved_raid_disk = -1; 3593 rdev->raid_disk = -1; 3594 rdev->flags = 0; 3595 rdev->data_offset = 0; 3596 rdev->new_data_offset = 0; 3597 rdev->sb_events = 0; 3598 rdev->last_read_error = 0; 3599 rdev->sb_loaded = 0; 3600 rdev->bb_page = NULL; 3601 atomic_set(&rdev->nr_pending, 0); 3602 atomic_set(&rdev->read_errors, 0); 3603 atomic_set(&rdev->corrected_errors, 0); 3604 3605 INIT_LIST_HEAD(&rdev->same_set); 3606 init_waitqueue_head(&rdev->blocked_wait); 3607 3608 /* Add space to store bad block list. 3609 * This reserves the space even on arrays where it cannot 3610 * be used - I wonder if that matters 3611 */ 3612 return badblocks_init(&rdev->badblocks, 0); 3613 } 3614 EXPORT_SYMBOL_GPL(md_rdev_init); 3615 /* 3616 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3617 * 3618 * mark the device faulty if: 3619 * 3620 * - the device is nonexistent (zero size) 3621 * - the device has no valid superblock 3622 * 3623 * a faulty rdev _never_ has rdev->sb set. 3624 */ 3625 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3626 { 3627 static struct md_rdev claim_rdev; /* just for claiming the bdev */ 3628 struct md_rdev *rdev; 3629 sector_t size; 3630 int err; 3631 3632 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3633 if (!rdev) 3634 return ERR_PTR(-ENOMEM); 3635 3636 err = md_rdev_init(rdev); 3637 if (err) 3638 goto out_free_rdev; 3639 err = alloc_disk_sb(rdev); 3640 if (err) 3641 goto out_clear_rdev; 3642 3643 rdev->bdev = blkdev_get_by_dev(newdev, 3644 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 3645 super_format == -2 ? &claim_rdev : rdev); 3646 if (IS_ERR(rdev->bdev)) { 3647 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3648 MAJOR(newdev), MINOR(newdev)); 3649 err = PTR_ERR(rdev->bdev); 3650 goto out_clear_rdev; 3651 } 3652 3653 kobject_init(&rdev->kobj, &rdev_ktype); 3654 3655 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3656 if (!size) { 3657 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3658 rdev->bdev); 3659 err = -EINVAL; 3660 goto out_blkdev_put; 3661 } 3662 3663 if (super_format >= 0) { 3664 err = super_types[super_format]. 3665 load_super(rdev, NULL, super_minor); 3666 if (err == -EINVAL) { 3667 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3668 rdev->bdev, 3669 super_format, super_minor); 3670 goto out_blkdev_put; 3671 } 3672 if (err < 0) { 3673 pr_warn("md: could not read %pg's sb, not importing!\n", 3674 rdev->bdev); 3675 goto out_blkdev_put; 3676 } 3677 } 3678 3679 return rdev; 3680 3681 out_blkdev_put: 3682 blkdev_put(rdev->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3683 out_clear_rdev: 3684 md_rdev_clear(rdev); 3685 out_free_rdev: 3686 kfree(rdev); 3687 return ERR_PTR(err); 3688 } 3689 3690 /* 3691 * Check a full RAID array for plausibility 3692 */ 3693 3694 static int analyze_sbs(struct mddev *mddev) 3695 { 3696 int i; 3697 struct md_rdev *rdev, *freshest, *tmp; 3698 3699 freshest = NULL; 3700 rdev_for_each_safe(rdev, tmp, mddev) 3701 switch (super_types[mddev->major_version]. 3702 load_super(rdev, freshest, mddev->minor_version)) { 3703 case 1: 3704 freshest = rdev; 3705 break; 3706 case 0: 3707 break; 3708 default: 3709 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3710 rdev->bdev); 3711 md_kick_rdev_from_array(rdev); 3712 } 3713 3714 /* Cannot find a valid fresh disk */ 3715 if (!freshest) { 3716 pr_warn("md: cannot find a valid disk\n"); 3717 return -EINVAL; 3718 } 3719 3720 super_types[mddev->major_version]. 3721 validate_super(mddev, freshest); 3722 3723 i = 0; 3724 rdev_for_each_safe(rdev, tmp, mddev) { 3725 if (mddev->max_disks && 3726 (rdev->desc_nr >= mddev->max_disks || 3727 i > mddev->max_disks)) { 3728 pr_warn("md: %s: %pg: only %d devices permitted\n", 3729 mdname(mddev), rdev->bdev, 3730 mddev->max_disks); 3731 md_kick_rdev_from_array(rdev); 3732 continue; 3733 } 3734 if (rdev != freshest) { 3735 if (super_types[mddev->major_version]. 3736 validate_super(mddev, rdev)) { 3737 pr_warn("md: kicking non-fresh %pg from array!\n", 3738 rdev->bdev); 3739 md_kick_rdev_from_array(rdev); 3740 continue; 3741 } 3742 } 3743 if (mddev->level == LEVEL_MULTIPATH) { 3744 rdev->desc_nr = i++; 3745 rdev->raid_disk = rdev->desc_nr; 3746 set_bit(In_sync, &rdev->flags); 3747 } else if (rdev->raid_disk >= 3748 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3749 !test_bit(Journal, &rdev->flags)) { 3750 rdev->raid_disk = -1; 3751 clear_bit(In_sync, &rdev->flags); 3752 } 3753 } 3754 3755 return 0; 3756 } 3757 3758 /* Read a fixed-point number. 3759 * Numbers in sysfs attributes should be in "standard" units where 3760 * possible, so time should be in seconds. 3761 * However we internally use a a much smaller unit such as 3762 * milliseconds or jiffies. 3763 * This function takes a decimal number with a possible fractional 3764 * component, and produces an integer which is the result of 3765 * multiplying that number by 10^'scale'. 3766 * all without any floating-point arithmetic. 3767 */ 3768 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3769 { 3770 unsigned long result = 0; 3771 long decimals = -1; 3772 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3773 if (*cp == '.') 3774 decimals = 0; 3775 else if (decimals < scale) { 3776 unsigned int value; 3777 value = *cp - '0'; 3778 result = result * 10 + value; 3779 if (decimals >= 0) 3780 decimals++; 3781 } 3782 cp++; 3783 } 3784 if (*cp == '\n') 3785 cp++; 3786 if (*cp) 3787 return -EINVAL; 3788 if (decimals < 0) 3789 decimals = 0; 3790 *res = result * int_pow(10, scale - decimals); 3791 return 0; 3792 } 3793 3794 static ssize_t 3795 safe_delay_show(struct mddev *mddev, char *page) 3796 { 3797 int msec = (mddev->safemode_delay*1000)/HZ; 3798 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3799 } 3800 static ssize_t 3801 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3802 { 3803 unsigned long msec; 3804 3805 if (mddev_is_clustered(mddev)) { 3806 pr_warn("md: Safemode is disabled for clustered mode\n"); 3807 return -EINVAL; 3808 } 3809 3810 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3811 return -EINVAL; 3812 if (msec == 0) 3813 mddev->safemode_delay = 0; 3814 else { 3815 unsigned long old_delay = mddev->safemode_delay; 3816 unsigned long new_delay = (msec*HZ)/1000; 3817 3818 if (new_delay == 0) 3819 new_delay = 1; 3820 mddev->safemode_delay = new_delay; 3821 if (new_delay < old_delay || old_delay == 0) 3822 mod_timer(&mddev->safemode_timer, jiffies+1); 3823 } 3824 return len; 3825 } 3826 static struct md_sysfs_entry md_safe_delay = 3827 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3828 3829 static ssize_t 3830 level_show(struct mddev *mddev, char *page) 3831 { 3832 struct md_personality *p; 3833 int ret; 3834 spin_lock(&mddev->lock); 3835 p = mddev->pers; 3836 if (p) 3837 ret = sprintf(page, "%s\n", p->name); 3838 else if (mddev->clevel[0]) 3839 ret = sprintf(page, "%s\n", mddev->clevel); 3840 else if (mddev->level != LEVEL_NONE) 3841 ret = sprintf(page, "%d\n", mddev->level); 3842 else 3843 ret = 0; 3844 spin_unlock(&mddev->lock); 3845 return ret; 3846 } 3847 3848 static ssize_t 3849 level_store(struct mddev *mddev, const char *buf, size_t len) 3850 { 3851 char clevel[16]; 3852 ssize_t rv; 3853 size_t slen = len; 3854 struct md_personality *pers, *oldpers; 3855 long level; 3856 void *priv, *oldpriv; 3857 struct md_rdev *rdev; 3858 3859 if (slen == 0 || slen >= sizeof(clevel)) 3860 return -EINVAL; 3861 3862 rv = mddev_lock(mddev); 3863 if (rv) 3864 return rv; 3865 3866 if (mddev->pers == NULL) { 3867 strncpy(mddev->clevel, buf, slen); 3868 if (mddev->clevel[slen-1] == '\n') 3869 slen--; 3870 mddev->clevel[slen] = 0; 3871 mddev->level = LEVEL_NONE; 3872 rv = len; 3873 goto out_unlock; 3874 } 3875 rv = -EROFS; 3876 if (!md_is_rdwr(mddev)) 3877 goto out_unlock; 3878 3879 /* request to change the personality. Need to ensure: 3880 * - array is not engaged in resync/recovery/reshape 3881 * - old personality can be suspended 3882 * - new personality will access other array. 3883 */ 3884 3885 rv = -EBUSY; 3886 if (mddev->sync_thread || 3887 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3888 mddev->reshape_position != MaxSector || 3889 mddev->sysfs_active) 3890 goto out_unlock; 3891 3892 rv = -EINVAL; 3893 if (!mddev->pers->quiesce) { 3894 pr_warn("md: %s: %s does not support online personality change\n", 3895 mdname(mddev), mddev->pers->name); 3896 goto out_unlock; 3897 } 3898 3899 /* Now find the new personality */ 3900 strncpy(clevel, buf, slen); 3901 if (clevel[slen-1] == '\n') 3902 slen--; 3903 clevel[slen] = 0; 3904 if (kstrtol(clevel, 10, &level)) 3905 level = LEVEL_NONE; 3906 3907 if (request_module("md-%s", clevel) != 0) 3908 request_module("md-level-%s", clevel); 3909 spin_lock(&pers_lock); 3910 pers = find_pers(level, clevel); 3911 if (!pers || !try_module_get(pers->owner)) { 3912 spin_unlock(&pers_lock); 3913 pr_warn("md: personality %s not loaded\n", clevel); 3914 rv = -EINVAL; 3915 goto out_unlock; 3916 } 3917 spin_unlock(&pers_lock); 3918 3919 if (pers == mddev->pers) { 3920 /* Nothing to do! */ 3921 module_put(pers->owner); 3922 rv = len; 3923 goto out_unlock; 3924 } 3925 if (!pers->takeover) { 3926 module_put(pers->owner); 3927 pr_warn("md: %s: %s does not support personality takeover\n", 3928 mdname(mddev), clevel); 3929 rv = -EINVAL; 3930 goto out_unlock; 3931 } 3932 3933 rdev_for_each(rdev, mddev) 3934 rdev->new_raid_disk = rdev->raid_disk; 3935 3936 /* ->takeover must set new_* and/or delta_disks 3937 * if it succeeds, and may set them when it fails. 3938 */ 3939 priv = pers->takeover(mddev); 3940 if (IS_ERR(priv)) { 3941 mddev->new_level = mddev->level; 3942 mddev->new_layout = mddev->layout; 3943 mddev->new_chunk_sectors = mddev->chunk_sectors; 3944 mddev->raid_disks -= mddev->delta_disks; 3945 mddev->delta_disks = 0; 3946 mddev->reshape_backwards = 0; 3947 module_put(pers->owner); 3948 pr_warn("md: %s: %s would not accept array\n", 3949 mdname(mddev), clevel); 3950 rv = PTR_ERR(priv); 3951 goto out_unlock; 3952 } 3953 3954 /* Looks like we have a winner */ 3955 mddev_suspend(mddev); 3956 mddev_detach(mddev); 3957 3958 spin_lock(&mddev->lock); 3959 oldpers = mddev->pers; 3960 oldpriv = mddev->private; 3961 mddev->pers = pers; 3962 mddev->private = priv; 3963 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3964 mddev->level = mddev->new_level; 3965 mddev->layout = mddev->new_layout; 3966 mddev->chunk_sectors = mddev->new_chunk_sectors; 3967 mddev->delta_disks = 0; 3968 mddev->reshape_backwards = 0; 3969 mddev->degraded = 0; 3970 spin_unlock(&mddev->lock); 3971 3972 if (oldpers->sync_request == NULL && 3973 mddev->external) { 3974 /* We are converting from a no-redundancy array 3975 * to a redundancy array and metadata is managed 3976 * externally so we need to be sure that writes 3977 * won't block due to a need to transition 3978 * clean->dirty 3979 * until external management is started. 3980 */ 3981 mddev->in_sync = 0; 3982 mddev->safemode_delay = 0; 3983 mddev->safemode = 0; 3984 } 3985 3986 oldpers->free(mddev, oldpriv); 3987 3988 if (oldpers->sync_request == NULL && 3989 pers->sync_request != NULL) { 3990 /* need to add the md_redundancy_group */ 3991 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3992 pr_warn("md: cannot register extra attributes for %s\n", 3993 mdname(mddev)); 3994 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3995 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 3996 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 3997 } 3998 if (oldpers->sync_request != NULL && 3999 pers->sync_request == NULL) { 4000 /* need to remove the md_redundancy_group */ 4001 if (mddev->to_remove == NULL) 4002 mddev->to_remove = &md_redundancy_group; 4003 } 4004 4005 module_put(oldpers->owner); 4006 4007 rdev_for_each(rdev, mddev) { 4008 if (rdev->raid_disk < 0) 4009 continue; 4010 if (rdev->new_raid_disk >= mddev->raid_disks) 4011 rdev->new_raid_disk = -1; 4012 if (rdev->new_raid_disk == rdev->raid_disk) 4013 continue; 4014 sysfs_unlink_rdev(mddev, rdev); 4015 } 4016 rdev_for_each(rdev, mddev) { 4017 if (rdev->raid_disk < 0) 4018 continue; 4019 if (rdev->new_raid_disk == rdev->raid_disk) 4020 continue; 4021 rdev->raid_disk = rdev->new_raid_disk; 4022 if (rdev->raid_disk < 0) 4023 clear_bit(In_sync, &rdev->flags); 4024 else { 4025 if (sysfs_link_rdev(mddev, rdev)) 4026 pr_warn("md: cannot register rd%d for %s after level change\n", 4027 rdev->raid_disk, mdname(mddev)); 4028 } 4029 } 4030 4031 if (pers->sync_request == NULL) { 4032 /* this is now an array without redundancy, so 4033 * it must always be in_sync 4034 */ 4035 mddev->in_sync = 1; 4036 del_timer_sync(&mddev->safemode_timer); 4037 } 4038 blk_set_stacking_limits(&mddev->queue->limits); 4039 pers->run(mddev); 4040 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4041 mddev_resume(mddev); 4042 if (!mddev->thread) 4043 md_update_sb(mddev, 1); 4044 sysfs_notify_dirent_safe(mddev->sysfs_level); 4045 md_new_event(); 4046 rv = len; 4047 out_unlock: 4048 mddev_unlock(mddev); 4049 return rv; 4050 } 4051 4052 static struct md_sysfs_entry md_level = 4053 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4054 4055 static ssize_t 4056 layout_show(struct mddev *mddev, char *page) 4057 { 4058 /* just a number, not meaningful for all levels */ 4059 if (mddev->reshape_position != MaxSector && 4060 mddev->layout != mddev->new_layout) 4061 return sprintf(page, "%d (%d)\n", 4062 mddev->new_layout, mddev->layout); 4063 return sprintf(page, "%d\n", mddev->layout); 4064 } 4065 4066 static ssize_t 4067 layout_store(struct mddev *mddev, const char *buf, size_t len) 4068 { 4069 unsigned int n; 4070 int err; 4071 4072 err = kstrtouint(buf, 10, &n); 4073 if (err < 0) 4074 return err; 4075 err = mddev_lock(mddev); 4076 if (err) 4077 return err; 4078 4079 if (mddev->pers) { 4080 if (mddev->pers->check_reshape == NULL) 4081 err = -EBUSY; 4082 else if (!md_is_rdwr(mddev)) 4083 err = -EROFS; 4084 else { 4085 mddev->new_layout = n; 4086 err = mddev->pers->check_reshape(mddev); 4087 if (err) 4088 mddev->new_layout = mddev->layout; 4089 } 4090 } else { 4091 mddev->new_layout = n; 4092 if (mddev->reshape_position == MaxSector) 4093 mddev->layout = n; 4094 } 4095 mddev_unlock(mddev); 4096 return err ?: len; 4097 } 4098 static struct md_sysfs_entry md_layout = 4099 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4100 4101 static ssize_t 4102 raid_disks_show(struct mddev *mddev, char *page) 4103 { 4104 if (mddev->raid_disks == 0) 4105 return 0; 4106 if (mddev->reshape_position != MaxSector && 4107 mddev->delta_disks != 0) 4108 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4109 mddev->raid_disks - mddev->delta_disks); 4110 return sprintf(page, "%d\n", mddev->raid_disks); 4111 } 4112 4113 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4114 4115 static ssize_t 4116 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4117 { 4118 unsigned int n; 4119 int err; 4120 4121 err = kstrtouint(buf, 10, &n); 4122 if (err < 0) 4123 return err; 4124 4125 err = mddev_lock(mddev); 4126 if (err) 4127 return err; 4128 if (mddev->pers) 4129 err = update_raid_disks(mddev, n); 4130 else if (mddev->reshape_position != MaxSector) { 4131 struct md_rdev *rdev; 4132 int olddisks = mddev->raid_disks - mddev->delta_disks; 4133 4134 err = -EINVAL; 4135 rdev_for_each(rdev, mddev) { 4136 if (olddisks < n && 4137 rdev->data_offset < rdev->new_data_offset) 4138 goto out_unlock; 4139 if (olddisks > n && 4140 rdev->data_offset > rdev->new_data_offset) 4141 goto out_unlock; 4142 } 4143 err = 0; 4144 mddev->delta_disks = n - olddisks; 4145 mddev->raid_disks = n; 4146 mddev->reshape_backwards = (mddev->delta_disks < 0); 4147 } else 4148 mddev->raid_disks = n; 4149 out_unlock: 4150 mddev_unlock(mddev); 4151 return err ? err : len; 4152 } 4153 static struct md_sysfs_entry md_raid_disks = 4154 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4155 4156 static ssize_t 4157 uuid_show(struct mddev *mddev, char *page) 4158 { 4159 return sprintf(page, "%pU\n", mddev->uuid); 4160 } 4161 static struct md_sysfs_entry md_uuid = 4162 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4163 4164 static ssize_t 4165 chunk_size_show(struct mddev *mddev, char *page) 4166 { 4167 if (mddev->reshape_position != MaxSector && 4168 mddev->chunk_sectors != mddev->new_chunk_sectors) 4169 return sprintf(page, "%d (%d)\n", 4170 mddev->new_chunk_sectors << 9, 4171 mddev->chunk_sectors << 9); 4172 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4173 } 4174 4175 static ssize_t 4176 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4177 { 4178 unsigned long n; 4179 int err; 4180 4181 err = kstrtoul(buf, 10, &n); 4182 if (err < 0) 4183 return err; 4184 4185 err = mddev_lock(mddev); 4186 if (err) 4187 return err; 4188 if (mddev->pers) { 4189 if (mddev->pers->check_reshape == NULL) 4190 err = -EBUSY; 4191 else if (!md_is_rdwr(mddev)) 4192 err = -EROFS; 4193 else { 4194 mddev->new_chunk_sectors = n >> 9; 4195 err = mddev->pers->check_reshape(mddev); 4196 if (err) 4197 mddev->new_chunk_sectors = mddev->chunk_sectors; 4198 } 4199 } else { 4200 mddev->new_chunk_sectors = n >> 9; 4201 if (mddev->reshape_position == MaxSector) 4202 mddev->chunk_sectors = n >> 9; 4203 } 4204 mddev_unlock(mddev); 4205 return err ?: len; 4206 } 4207 static struct md_sysfs_entry md_chunk_size = 4208 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4209 4210 static ssize_t 4211 resync_start_show(struct mddev *mddev, char *page) 4212 { 4213 if (mddev->recovery_cp == MaxSector) 4214 return sprintf(page, "none\n"); 4215 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4216 } 4217 4218 static ssize_t 4219 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4220 { 4221 unsigned long long n; 4222 int err; 4223 4224 if (cmd_match(buf, "none")) 4225 n = MaxSector; 4226 else { 4227 err = kstrtoull(buf, 10, &n); 4228 if (err < 0) 4229 return err; 4230 if (n != (sector_t)n) 4231 return -EINVAL; 4232 } 4233 4234 err = mddev_lock(mddev); 4235 if (err) 4236 return err; 4237 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4238 err = -EBUSY; 4239 4240 if (!err) { 4241 mddev->recovery_cp = n; 4242 if (mddev->pers) 4243 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4244 } 4245 mddev_unlock(mddev); 4246 return err ?: len; 4247 } 4248 static struct md_sysfs_entry md_resync_start = 4249 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4250 resync_start_show, resync_start_store); 4251 4252 /* 4253 * The array state can be: 4254 * 4255 * clear 4256 * No devices, no size, no level 4257 * Equivalent to STOP_ARRAY ioctl 4258 * inactive 4259 * May have some settings, but array is not active 4260 * all IO results in error 4261 * When written, doesn't tear down array, but just stops it 4262 * suspended (not supported yet) 4263 * All IO requests will block. The array can be reconfigured. 4264 * Writing this, if accepted, will block until array is quiescent 4265 * readonly 4266 * no resync can happen. no superblocks get written. 4267 * write requests fail 4268 * read-auto 4269 * like readonly, but behaves like 'clean' on a write request. 4270 * 4271 * clean - no pending writes, but otherwise active. 4272 * When written to inactive array, starts without resync 4273 * If a write request arrives then 4274 * if metadata is known, mark 'dirty' and switch to 'active'. 4275 * if not known, block and switch to write-pending 4276 * If written to an active array that has pending writes, then fails. 4277 * active 4278 * fully active: IO and resync can be happening. 4279 * When written to inactive array, starts with resync 4280 * 4281 * write-pending 4282 * clean, but writes are blocked waiting for 'active' to be written. 4283 * 4284 * active-idle 4285 * like active, but no writes have been seen for a while (100msec). 4286 * 4287 * broken 4288 * Array is failed. It's useful because mounted-arrays aren't stopped 4289 * when array is failed, so this state will at least alert the user that 4290 * something is wrong. 4291 */ 4292 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4293 write_pending, active_idle, broken, bad_word}; 4294 static char *array_states[] = { 4295 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4296 "write-pending", "active-idle", "broken", NULL }; 4297 4298 static int match_word(const char *word, char **list) 4299 { 4300 int n; 4301 for (n=0; list[n]; n++) 4302 if (cmd_match(word, list[n])) 4303 break; 4304 return n; 4305 } 4306 4307 static ssize_t 4308 array_state_show(struct mddev *mddev, char *page) 4309 { 4310 enum array_state st = inactive; 4311 4312 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4313 switch(mddev->ro) { 4314 case MD_RDONLY: 4315 st = readonly; 4316 break; 4317 case MD_AUTO_READ: 4318 st = read_auto; 4319 break; 4320 case MD_RDWR: 4321 spin_lock(&mddev->lock); 4322 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4323 st = write_pending; 4324 else if (mddev->in_sync) 4325 st = clean; 4326 else if (mddev->safemode) 4327 st = active_idle; 4328 else 4329 st = active; 4330 spin_unlock(&mddev->lock); 4331 } 4332 4333 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4334 st = broken; 4335 } else { 4336 if (list_empty(&mddev->disks) && 4337 mddev->raid_disks == 0 && 4338 mddev->dev_sectors == 0) 4339 st = clear; 4340 else 4341 st = inactive; 4342 } 4343 return sprintf(page, "%s\n", array_states[st]); 4344 } 4345 4346 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4347 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4348 static int restart_array(struct mddev *mddev); 4349 4350 static ssize_t 4351 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4352 { 4353 int err = 0; 4354 enum array_state st = match_word(buf, array_states); 4355 4356 if (mddev->pers && (st == active || st == clean) && 4357 mddev->ro != MD_RDONLY) { 4358 /* don't take reconfig_mutex when toggling between 4359 * clean and active 4360 */ 4361 spin_lock(&mddev->lock); 4362 if (st == active) { 4363 restart_array(mddev); 4364 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4365 md_wakeup_thread(mddev->thread); 4366 wake_up(&mddev->sb_wait); 4367 } else /* st == clean */ { 4368 restart_array(mddev); 4369 if (!set_in_sync(mddev)) 4370 err = -EBUSY; 4371 } 4372 if (!err) 4373 sysfs_notify_dirent_safe(mddev->sysfs_state); 4374 spin_unlock(&mddev->lock); 4375 return err ?: len; 4376 } 4377 err = mddev_lock(mddev); 4378 if (err) 4379 return err; 4380 err = -EINVAL; 4381 switch(st) { 4382 case bad_word: 4383 break; 4384 case clear: 4385 /* stopping an active array */ 4386 err = do_md_stop(mddev, 0, NULL); 4387 break; 4388 case inactive: 4389 /* stopping an active array */ 4390 if (mddev->pers) 4391 err = do_md_stop(mddev, 2, NULL); 4392 else 4393 err = 0; /* already inactive */ 4394 break; 4395 case suspended: 4396 break; /* not supported yet */ 4397 case readonly: 4398 if (mddev->pers) 4399 err = md_set_readonly(mddev, NULL); 4400 else { 4401 mddev->ro = MD_RDONLY; 4402 set_disk_ro(mddev->gendisk, 1); 4403 err = do_md_run(mddev); 4404 } 4405 break; 4406 case read_auto: 4407 if (mddev->pers) { 4408 if (md_is_rdwr(mddev)) 4409 err = md_set_readonly(mddev, NULL); 4410 else if (mddev->ro == MD_RDONLY) 4411 err = restart_array(mddev); 4412 if (err == 0) { 4413 mddev->ro = MD_AUTO_READ; 4414 set_disk_ro(mddev->gendisk, 0); 4415 } 4416 } else { 4417 mddev->ro = MD_AUTO_READ; 4418 err = do_md_run(mddev); 4419 } 4420 break; 4421 case clean: 4422 if (mddev->pers) { 4423 err = restart_array(mddev); 4424 if (err) 4425 break; 4426 spin_lock(&mddev->lock); 4427 if (!set_in_sync(mddev)) 4428 err = -EBUSY; 4429 spin_unlock(&mddev->lock); 4430 } else 4431 err = -EINVAL; 4432 break; 4433 case active: 4434 if (mddev->pers) { 4435 err = restart_array(mddev); 4436 if (err) 4437 break; 4438 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4439 wake_up(&mddev->sb_wait); 4440 err = 0; 4441 } else { 4442 mddev->ro = MD_RDWR; 4443 set_disk_ro(mddev->gendisk, 0); 4444 err = do_md_run(mddev); 4445 } 4446 break; 4447 case write_pending: 4448 case active_idle: 4449 case broken: 4450 /* these cannot be set */ 4451 break; 4452 } 4453 4454 if (!err) { 4455 if (mddev->hold_active == UNTIL_IOCTL) 4456 mddev->hold_active = 0; 4457 sysfs_notify_dirent_safe(mddev->sysfs_state); 4458 } 4459 mddev_unlock(mddev); 4460 return err ?: len; 4461 } 4462 static struct md_sysfs_entry md_array_state = 4463 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4464 4465 static ssize_t 4466 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4467 return sprintf(page, "%d\n", 4468 atomic_read(&mddev->max_corr_read_errors)); 4469 } 4470 4471 static ssize_t 4472 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4473 { 4474 unsigned int n; 4475 int rv; 4476 4477 rv = kstrtouint(buf, 10, &n); 4478 if (rv < 0) 4479 return rv; 4480 atomic_set(&mddev->max_corr_read_errors, n); 4481 return len; 4482 } 4483 4484 static struct md_sysfs_entry max_corr_read_errors = 4485 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4486 max_corrected_read_errors_store); 4487 4488 static ssize_t 4489 null_show(struct mddev *mddev, char *page) 4490 { 4491 return -EINVAL; 4492 } 4493 4494 /* need to ensure rdev_delayed_delete() has completed */ 4495 static void flush_rdev_wq(struct mddev *mddev) 4496 { 4497 struct md_rdev *rdev; 4498 4499 rcu_read_lock(); 4500 rdev_for_each_rcu(rdev, mddev) 4501 if (work_pending(&rdev->del_work)) { 4502 flush_workqueue(md_rdev_misc_wq); 4503 break; 4504 } 4505 rcu_read_unlock(); 4506 } 4507 4508 static ssize_t 4509 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4510 { 4511 /* buf must be %d:%d\n? giving major and minor numbers */ 4512 /* The new device is added to the array. 4513 * If the array has a persistent superblock, we read the 4514 * superblock to initialise info and check validity. 4515 * Otherwise, only checking done is that in bind_rdev_to_array, 4516 * which mainly checks size. 4517 */ 4518 char *e; 4519 int major = simple_strtoul(buf, &e, 10); 4520 int minor; 4521 dev_t dev; 4522 struct md_rdev *rdev; 4523 int err; 4524 4525 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4526 return -EINVAL; 4527 minor = simple_strtoul(e+1, &e, 10); 4528 if (*e && *e != '\n') 4529 return -EINVAL; 4530 dev = MKDEV(major, minor); 4531 if (major != MAJOR(dev) || 4532 minor != MINOR(dev)) 4533 return -EOVERFLOW; 4534 4535 flush_rdev_wq(mddev); 4536 err = mddev_lock(mddev); 4537 if (err) 4538 return err; 4539 if (mddev->persistent) { 4540 rdev = md_import_device(dev, mddev->major_version, 4541 mddev->minor_version); 4542 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4543 struct md_rdev *rdev0 4544 = list_entry(mddev->disks.next, 4545 struct md_rdev, same_set); 4546 err = super_types[mddev->major_version] 4547 .load_super(rdev, rdev0, mddev->minor_version); 4548 if (err < 0) 4549 goto out; 4550 } 4551 } else if (mddev->external) 4552 rdev = md_import_device(dev, -2, -1); 4553 else 4554 rdev = md_import_device(dev, -1, -1); 4555 4556 if (IS_ERR(rdev)) { 4557 mddev_unlock(mddev); 4558 return PTR_ERR(rdev); 4559 } 4560 err = bind_rdev_to_array(rdev, mddev); 4561 out: 4562 if (err) 4563 export_rdev(rdev); 4564 mddev_unlock(mddev); 4565 if (!err) 4566 md_new_event(); 4567 return err ? err : len; 4568 } 4569 4570 static struct md_sysfs_entry md_new_device = 4571 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4572 4573 static ssize_t 4574 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4575 { 4576 char *end; 4577 unsigned long chunk, end_chunk; 4578 int err; 4579 4580 err = mddev_lock(mddev); 4581 if (err) 4582 return err; 4583 if (!mddev->bitmap) 4584 goto out; 4585 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4586 while (*buf) { 4587 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4588 if (buf == end) break; 4589 if (*end == '-') { /* range */ 4590 buf = end + 1; 4591 end_chunk = simple_strtoul(buf, &end, 0); 4592 if (buf == end) break; 4593 } 4594 if (*end && !isspace(*end)) break; 4595 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4596 buf = skip_spaces(end); 4597 } 4598 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4599 out: 4600 mddev_unlock(mddev); 4601 return len; 4602 } 4603 4604 static struct md_sysfs_entry md_bitmap = 4605 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4606 4607 static ssize_t 4608 size_show(struct mddev *mddev, char *page) 4609 { 4610 return sprintf(page, "%llu\n", 4611 (unsigned long long)mddev->dev_sectors / 2); 4612 } 4613 4614 static int update_size(struct mddev *mddev, sector_t num_sectors); 4615 4616 static ssize_t 4617 size_store(struct mddev *mddev, const char *buf, size_t len) 4618 { 4619 /* If array is inactive, we can reduce the component size, but 4620 * not increase it (except from 0). 4621 * If array is active, we can try an on-line resize 4622 */ 4623 sector_t sectors; 4624 int err = strict_blocks_to_sectors(buf, §ors); 4625 4626 if (err < 0) 4627 return err; 4628 err = mddev_lock(mddev); 4629 if (err) 4630 return err; 4631 if (mddev->pers) { 4632 err = update_size(mddev, sectors); 4633 if (err == 0) 4634 md_update_sb(mddev, 1); 4635 } else { 4636 if (mddev->dev_sectors == 0 || 4637 mddev->dev_sectors > sectors) 4638 mddev->dev_sectors = sectors; 4639 else 4640 err = -ENOSPC; 4641 } 4642 mddev_unlock(mddev); 4643 return err ? err : len; 4644 } 4645 4646 static struct md_sysfs_entry md_size = 4647 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4648 4649 /* Metadata version. 4650 * This is one of 4651 * 'none' for arrays with no metadata (good luck...) 4652 * 'external' for arrays with externally managed metadata, 4653 * or N.M for internally known formats 4654 */ 4655 static ssize_t 4656 metadata_show(struct mddev *mddev, char *page) 4657 { 4658 if (mddev->persistent) 4659 return sprintf(page, "%d.%d\n", 4660 mddev->major_version, mddev->minor_version); 4661 else if (mddev->external) 4662 return sprintf(page, "external:%s\n", mddev->metadata_type); 4663 else 4664 return sprintf(page, "none\n"); 4665 } 4666 4667 static ssize_t 4668 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4669 { 4670 int major, minor; 4671 char *e; 4672 int err; 4673 /* Changing the details of 'external' metadata is 4674 * always permitted. Otherwise there must be 4675 * no devices attached to the array. 4676 */ 4677 4678 err = mddev_lock(mddev); 4679 if (err) 4680 return err; 4681 err = -EBUSY; 4682 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4683 ; 4684 else if (!list_empty(&mddev->disks)) 4685 goto out_unlock; 4686 4687 err = 0; 4688 if (cmd_match(buf, "none")) { 4689 mddev->persistent = 0; 4690 mddev->external = 0; 4691 mddev->major_version = 0; 4692 mddev->minor_version = 90; 4693 goto out_unlock; 4694 } 4695 if (strncmp(buf, "external:", 9) == 0) { 4696 size_t namelen = len-9; 4697 if (namelen >= sizeof(mddev->metadata_type)) 4698 namelen = sizeof(mddev->metadata_type)-1; 4699 strncpy(mddev->metadata_type, buf+9, namelen); 4700 mddev->metadata_type[namelen] = 0; 4701 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4702 mddev->metadata_type[--namelen] = 0; 4703 mddev->persistent = 0; 4704 mddev->external = 1; 4705 mddev->major_version = 0; 4706 mddev->minor_version = 90; 4707 goto out_unlock; 4708 } 4709 major = simple_strtoul(buf, &e, 10); 4710 err = -EINVAL; 4711 if (e==buf || *e != '.') 4712 goto out_unlock; 4713 buf = e+1; 4714 minor = simple_strtoul(buf, &e, 10); 4715 if (e==buf || (*e && *e != '\n') ) 4716 goto out_unlock; 4717 err = -ENOENT; 4718 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4719 goto out_unlock; 4720 mddev->major_version = major; 4721 mddev->minor_version = minor; 4722 mddev->persistent = 1; 4723 mddev->external = 0; 4724 err = 0; 4725 out_unlock: 4726 mddev_unlock(mddev); 4727 return err ?: len; 4728 } 4729 4730 static struct md_sysfs_entry md_metadata = 4731 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4732 4733 static ssize_t 4734 action_show(struct mddev *mddev, char *page) 4735 { 4736 char *type = "idle"; 4737 unsigned long recovery = mddev->recovery; 4738 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4739 type = "frozen"; 4740 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4741 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4742 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4743 type = "reshape"; 4744 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4745 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4746 type = "resync"; 4747 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4748 type = "check"; 4749 else 4750 type = "repair"; 4751 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4752 type = "recover"; 4753 else if (mddev->reshape_position != MaxSector) 4754 type = "reshape"; 4755 } 4756 return sprintf(page, "%s\n", type); 4757 } 4758 4759 static ssize_t 4760 action_store(struct mddev *mddev, const char *page, size_t len) 4761 { 4762 if (!mddev->pers || !mddev->pers->sync_request) 4763 return -EINVAL; 4764 4765 4766 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4767 if (cmd_match(page, "frozen")) 4768 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4769 else 4770 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4771 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4772 mddev_lock(mddev) == 0) { 4773 if (work_pending(&mddev->del_work)) 4774 flush_workqueue(md_misc_wq); 4775 if (mddev->sync_thread) { 4776 sector_t save_rp = mddev->reshape_position; 4777 4778 mddev_unlock(mddev); 4779 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4780 md_unregister_thread(&mddev->sync_thread); 4781 mddev_lock_nointr(mddev); 4782 /* 4783 * set RECOVERY_INTR again and restore reshape 4784 * position in case others changed them after 4785 * got lock, eg, reshape_position_store and 4786 * md_check_recovery. 4787 */ 4788 mddev->reshape_position = save_rp; 4789 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4790 md_reap_sync_thread(mddev); 4791 } 4792 mddev_unlock(mddev); 4793 } 4794 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4795 return -EBUSY; 4796 else if (cmd_match(page, "resync")) 4797 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4798 else if (cmd_match(page, "recover")) { 4799 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4800 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4801 } else if (cmd_match(page, "reshape")) { 4802 int err; 4803 if (mddev->pers->start_reshape == NULL) 4804 return -EINVAL; 4805 err = mddev_lock(mddev); 4806 if (!err) { 4807 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4808 err = -EBUSY; 4809 else { 4810 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4811 err = mddev->pers->start_reshape(mddev); 4812 } 4813 mddev_unlock(mddev); 4814 } 4815 if (err) 4816 return err; 4817 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4818 } else { 4819 if (cmd_match(page, "check")) 4820 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4821 else if (!cmd_match(page, "repair")) 4822 return -EINVAL; 4823 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4824 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4825 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4826 } 4827 if (mddev->ro == MD_AUTO_READ) { 4828 /* A write to sync_action is enough to justify 4829 * canceling read-auto mode 4830 */ 4831 mddev->ro = MD_RDWR; 4832 md_wakeup_thread(mddev->sync_thread); 4833 } 4834 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4835 md_wakeup_thread(mddev->thread); 4836 sysfs_notify_dirent_safe(mddev->sysfs_action); 4837 return len; 4838 } 4839 4840 static struct md_sysfs_entry md_scan_mode = 4841 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4842 4843 static ssize_t 4844 last_sync_action_show(struct mddev *mddev, char *page) 4845 { 4846 return sprintf(page, "%s\n", mddev->last_sync_action); 4847 } 4848 4849 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4850 4851 static ssize_t 4852 mismatch_cnt_show(struct mddev *mddev, char *page) 4853 { 4854 return sprintf(page, "%llu\n", 4855 (unsigned long long) 4856 atomic64_read(&mddev->resync_mismatches)); 4857 } 4858 4859 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4860 4861 static ssize_t 4862 sync_min_show(struct mddev *mddev, char *page) 4863 { 4864 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4865 mddev->sync_speed_min ? "local": "system"); 4866 } 4867 4868 static ssize_t 4869 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4870 { 4871 unsigned int min; 4872 int rv; 4873 4874 if (strncmp(buf, "system", 6)==0) { 4875 min = 0; 4876 } else { 4877 rv = kstrtouint(buf, 10, &min); 4878 if (rv < 0) 4879 return rv; 4880 if (min == 0) 4881 return -EINVAL; 4882 } 4883 mddev->sync_speed_min = min; 4884 return len; 4885 } 4886 4887 static struct md_sysfs_entry md_sync_min = 4888 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4889 4890 static ssize_t 4891 sync_max_show(struct mddev *mddev, char *page) 4892 { 4893 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4894 mddev->sync_speed_max ? "local": "system"); 4895 } 4896 4897 static ssize_t 4898 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4899 { 4900 unsigned int max; 4901 int rv; 4902 4903 if (strncmp(buf, "system", 6)==0) { 4904 max = 0; 4905 } else { 4906 rv = kstrtouint(buf, 10, &max); 4907 if (rv < 0) 4908 return rv; 4909 if (max == 0) 4910 return -EINVAL; 4911 } 4912 mddev->sync_speed_max = max; 4913 return len; 4914 } 4915 4916 static struct md_sysfs_entry md_sync_max = 4917 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4918 4919 static ssize_t 4920 degraded_show(struct mddev *mddev, char *page) 4921 { 4922 return sprintf(page, "%d\n", mddev->degraded); 4923 } 4924 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4925 4926 static ssize_t 4927 sync_force_parallel_show(struct mddev *mddev, char *page) 4928 { 4929 return sprintf(page, "%d\n", mddev->parallel_resync); 4930 } 4931 4932 static ssize_t 4933 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4934 { 4935 long n; 4936 4937 if (kstrtol(buf, 10, &n)) 4938 return -EINVAL; 4939 4940 if (n != 0 && n != 1) 4941 return -EINVAL; 4942 4943 mddev->parallel_resync = n; 4944 4945 if (mddev->sync_thread) 4946 wake_up(&resync_wait); 4947 4948 return len; 4949 } 4950 4951 /* force parallel resync, even with shared block devices */ 4952 static struct md_sysfs_entry md_sync_force_parallel = 4953 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4954 sync_force_parallel_show, sync_force_parallel_store); 4955 4956 static ssize_t 4957 sync_speed_show(struct mddev *mddev, char *page) 4958 { 4959 unsigned long resync, dt, db; 4960 if (mddev->curr_resync == MD_RESYNC_NONE) 4961 return sprintf(page, "none\n"); 4962 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4963 dt = (jiffies - mddev->resync_mark) / HZ; 4964 if (!dt) dt++; 4965 db = resync - mddev->resync_mark_cnt; 4966 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4967 } 4968 4969 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4970 4971 static ssize_t 4972 sync_completed_show(struct mddev *mddev, char *page) 4973 { 4974 unsigned long long max_sectors, resync; 4975 4976 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4977 return sprintf(page, "none\n"); 4978 4979 if (mddev->curr_resync == MD_RESYNC_YIELDED || 4980 mddev->curr_resync == MD_RESYNC_DELAYED) 4981 return sprintf(page, "delayed\n"); 4982 4983 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4984 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4985 max_sectors = mddev->resync_max_sectors; 4986 else 4987 max_sectors = mddev->dev_sectors; 4988 4989 resync = mddev->curr_resync_completed; 4990 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4991 } 4992 4993 static struct md_sysfs_entry md_sync_completed = 4994 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4995 4996 static ssize_t 4997 min_sync_show(struct mddev *mddev, char *page) 4998 { 4999 return sprintf(page, "%llu\n", 5000 (unsigned long long)mddev->resync_min); 5001 } 5002 static ssize_t 5003 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5004 { 5005 unsigned long long min; 5006 int err; 5007 5008 if (kstrtoull(buf, 10, &min)) 5009 return -EINVAL; 5010 5011 spin_lock(&mddev->lock); 5012 err = -EINVAL; 5013 if (min > mddev->resync_max) 5014 goto out_unlock; 5015 5016 err = -EBUSY; 5017 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5018 goto out_unlock; 5019 5020 /* Round down to multiple of 4K for safety */ 5021 mddev->resync_min = round_down(min, 8); 5022 err = 0; 5023 5024 out_unlock: 5025 spin_unlock(&mddev->lock); 5026 return err ?: len; 5027 } 5028 5029 static struct md_sysfs_entry md_min_sync = 5030 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5031 5032 static ssize_t 5033 max_sync_show(struct mddev *mddev, char *page) 5034 { 5035 if (mddev->resync_max == MaxSector) 5036 return sprintf(page, "max\n"); 5037 else 5038 return sprintf(page, "%llu\n", 5039 (unsigned long long)mddev->resync_max); 5040 } 5041 static ssize_t 5042 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5043 { 5044 int err; 5045 spin_lock(&mddev->lock); 5046 if (strncmp(buf, "max", 3) == 0) 5047 mddev->resync_max = MaxSector; 5048 else { 5049 unsigned long long max; 5050 int chunk; 5051 5052 err = -EINVAL; 5053 if (kstrtoull(buf, 10, &max)) 5054 goto out_unlock; 5055 if (max < mddev->resync_min) 5056 goto out_unlock; 5057 5058 err = -EBUSY; 5059 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5060 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5061 goto out_unlock; 5062 5063 /* Must be a multiple of chunk_size */ 5064 chunk = mddev->chunk_sectors; 5065 if (chunk) { 5066 sector_t temp = max; 5067 5068 err = -EINVAL; 5069 if (sector_div(temp, chunk)) 5070 goto out_unlock; 5071 } 5072 mddev->resync_max = max; 5073 } 5074 wake_up(&mddev->recovery_wait); 5075 err = 0; 5076 out_unlock: 5077 spin_unlock(&mddev->lock); 5078 return err ?: len; 5079 } 5080 5081 static struct md_sysfs_entry md_max_sync = 5082 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5083 5084 static ssize_t 5085 suspend_lo_show(struct mddev *mddev, char *page) 5086 { 5087 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5088 } 5089 5090 static ssize_t 5091 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5092 { 5093 unsigned long long new; 5094 int err; 5095 5096 err = kstrtoull(buf, 10, &new); 5097 if (err < 0) 5098 return err; 5099 if (new != (sector_t)new) 5100 return -EINVAL; 5101 5102 err = mddev_lock(mddev); 5103 if (err) 5104 return err; 5105 err = -EINVAL; 5106 if (mddev->pers == NULL || 5107 mddev->pers->quiesce == NULL) 5108 goto unlock; 5109 mddev_suspend(mddev); 5110 mddev->suspend_lo = new; 5111 mddev_resume(mddev); 5112 5113 err = 0; 5114 unlock: 5115 mddev_unlock(mddev); 5116 return err ?: len; 5117 } 5118 static struct md_sysfs_entry md_suspend_lo = 5119 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5120 5121 static ssize_t 5122 suspend_hi_show(struct mddev *mddev, char *page) 5123 { 5124 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5125 } 5126 5127 static ssize_t 5128 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5129 { 5130 unsigned long long new; 5131 int err; 5132 5133 err = kstrtoull(buf, 10, &new); 5134 if (err < 0) 5135 return err; 5136 if (new != (sector_t)new) 5137 return -EINVAL; 5138 5139 err = mddev_lock(mddev); 5140 if (err) 5141 return err; 5142 err = -EINVAL; 5143 if (mddev->pers == NULL) 5144 goto unlock; 5145 5146 mddev_suspend(mddev); 5147 mddev->suspend_hi = new; 5148 mddev_resume(mddev); 5149 5150 err = 0; 5151 unlock: 5152 mddev_unlock(mddev); 5153 return err ?: len; 5154 } 5155 static struct md_sysfs_entry md_suspend_hi = 5156 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5157 5158 static ssize_t 5159 reshape_position_show(struct mddev *mddev, char *page) 5160 { 5161 if (mddev->reshape_position != MaxSector) 5162 return sprintf(page, "%llu\n", 5163 (unsigned long long)mddev->reshape_position); 5164 strcpy(page, "none\n"); 5165 return 5; 5166 } 5167 5168 static ssize_t 5169 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5170 { 5171 struct md_rdev *rdev; 5172 unsigned long long new; 5173 int err; 5174 5175 err = kstrtoull(buf, 10, &new); 5176 if (err < 0) 5177 return err; 5178 if (new != (sector_t)new) 5179 return -EINVAL; 5180 err = mddev_lock(mddev); 5181 if (err) 5182 return err; 5183 err = -EBUSY; 5184 if (mddev->pers) 5185 goto unlock; 5186 mddev->reshape_position = new; 5187 mddev->delta_disks = 0; 5188 mddev->reshape_backwards = 0; 5189 mddev->new_level = mddev->level; 5190 mddev->new_layout = mddev->layout; 5191 mddev->new_chunk_sectors = mddev->chunk_sectors; 5192 rdev_for_each(rdev, mddev) 5193 rdev->new_data_offset = rdev->data_offset; 5194 err = 0; 5195 unlock: 5196 mddev_unlock(mddev); 5197 return err ?: len; 5198 } 5199 5200 static struct md_sysfs_entry md_reshape_position = 5201 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5202 reshape_position_store); 5203 5204 static ssize_t 5205 reshape_direction_show(struct mddev *mddev, char *page) 5206 { 5207 return sprintf(page, "%s\n", 5208 mddev->reshape_backwards ? "backwards" : "forwards"); 5209 } 5210 5211 static ssize_t 5212 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5213 { 5214 int backwards = 0; 5215 int err; 5216 5217 if (cmd_match(buf, "forwards")) 5218 backwards = 0; 5219 else if (cmd_match(buf, "backwards")) 5220 backwards = 1; 5221 else 5222 return -EINVAL; 5223 if (mddev->reshape_backwards == backwards) 5224 return len; 5225 5226 err = mddev_lock(mddev); 5227 if (err) 5228 return err; 5229 /* check if we are allowed to change */ 5230 if (mddev->delta_disks) 5231 err = -EBUSY; 5232 else if (mddev->persistent && 5233 mddev->major_version == 0) 5234 err = -EINVAL; 5235 else 5236 mddev->reshape_backwards = backwards; 5237 mddev_unlock(mddev); 5238 return err ?: len; 5239 } 5240 5241 static struct md_sysfs_entry md_reshape_direction = 5242 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5243 reshape_direction_store); 5244 5245 static ssize_t 5246 array_size_show(struct mddev *mddev, char *page) 5247 { 5248 if (mddev->external_size) 5249 return sprintf(page, "%llu\n", 5250 (unsigned long long)mddev->array_sectors/2); 5251 else 5252 return sprintf(page, "default\n"); 5253 } 5254 5255 static ssize_t 5256 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5257 { 5258 sector_t sectors; 5259 int err; 5260 5261 err = mddev_lock(mddev); 5262 if (err) 5263 return err; 5264 5265 /* cluster raid doesn't support change array_sectors */ 5266 if (mddev_is_clustered(mddev)) { 5267 mddev_unlock(mddev); 5268 return -EINVAL; 5269 } 5270 5271 if (strncmp(buf, "default", 7) == 0) { 5272 if (mddev->pers) 5273 sectors = mddev->pers->size(mddev, 0, 0); 5274 else 5275 sectors = mddev->array_sectors; 5276 5277 mddev->external_size = 0; 5278 } else { 5279 if (strict_blocks_to_sectors(buf, §ors) < 0) 5280 err = -EINVAL; 5281 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5282 err = -E2BIG; 5283 else 5284 mddev->external_size = 1; 5285 } 5286 5287 if (!err) { 5288 mddev->array_sectors = sectors; 5289 if (mddev->pers) 5290 set_capacity_and_notify(mddev->gendisk, 5291 mddev->array_sectors); 5292 } 5293 mddev_unlock(mddev); 5294 return err ?: len; 5295 } 5296 5297 static struct md_sysfs_entry md_array_size = 5298 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5299 array_size_store); 5300 5301 static ssize_t 5302 consistency_policy_show(struct mddev *mddev, char *page) 5303 { 5304 int ret; 5305 5306 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5307 ret = sprintf(page, "journal\n"); 5308 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5309 ret = sprintf(page, "ppl\n"); 5310 } else if (mddev->bitmap) { 5311 ret = sprintf(page, "bitmap\n"); 5312 } else if (mddev->pers) { 5313 if (mddev->pers->sync_request) 5314 ret = sprintf(page, "resync\n"); 5315 else 5316 ret = sprintf(page, "none\n"); 5317 } else { 5318 ret = sprintf(page, "unknown\n"); 5319 } 5320 5321 return ret; 5322 } 5323 5324 static ssize_t 5325 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5326 { 5327 int err = 0; 5328 5329 if (mddev->pers) { 5330 if (mddev->pers->change_consistency_policy) 5331 err = mddev->pers->change_consistency_policy(mddev, buf); 5332 else 5333 err = -EBUSY; 5334 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5335 set_bit(MD_HAS_PPL, &mddev->flags); 5336 } else { 5337 err = -EINVAL; 5338 } 5339 5340 return err ? err : len; 5341 } 5342 5343 static struct md_sysfs_entry md_consistency_policy = 5344 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5345 consistency_policy_store); 5346 5347 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5348 { 5349 return sprintf(page, "%d\n", mddev->fail_last_dev); 5350 } 5351 5352 /* 5353 * Setting fail_last_dev to true to allow last device to be forcibly removed 5354 * from RAID1/RAID10. 5355 */ 5356 static ssize_t 5357 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5358 { 5359 int ret; 5360 bool value; 5361 5362 ret = kstrtobool(buf, &value); 5363 if (ret) 5364 return ret; 5365 5366 if (value != mddev->fail_last_dev) 5367 mddev->fail_last_dev = value; 5368 5369 return len; 5370 } 5371 static struct md_sysfs_entry md_fail_last_dev = 5372 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5373 fail_last_dev_store); 5374 5375 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5376 { 5377 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5378 return sprintf(page, "n/a\n"); 5379 else 5380 return sprintf(page, "%d\n", mddev->serialize_policy); 5381 } 5382 5383 /* 5384 * Setting serialize_policy to true to enforce write IO is not reordered 5385 * for raid1. 5386 */ 5387 static ssize_t 5388 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5389 { 5390 int err; 5391 bool value; 5392 5393 err = kstrtobool(buf, &value); 5394 if (err) 5395 return err; 5396 5397 if (value == mddev->serialize_policy) 5398 return len; 5399 5400 err = mddev_lock(mddev); 5401 if (err) 5402 return err; 5403 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5404 pr_err("md: serialize_policy is only effective for raid1\n"); 5405 err = -EINVAL; 5406 goto unlock; 5407 } 5408 5409 mddev_suspend(mddev); 5410 if (value) 5411 mddev_create_serial_pool(mddev, NULL, true); 5412 else 5413 mddev_destroy_serial_pool(mddev, NULL, true); 5414 mddev->serialize_policy = value; 5415 mddev_resume(mddev); 5416 unlock: 5417 mddev_unlock(mddev); 5418 return err ?: len; 5419 } 5420 5421 static struct md_sysfs_entry md_serialize_policy = 5422 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5423 serialize_policy_store); 5424 5425 5426 static struct attribute *md_default_attrs[] = { 5427 &md_level.attr, 5428 &md_layout.attr, 5429 &md_raid_disks.attr, 5430 &md_uuid.attr, 5431 &md_chunk_size.attr, 5432 &md_size.attr, 5433 &md_resync_start.attr, 5434 &md_metadata.attr, 5435 &md_new_device.attr, 5436 &md_safe_delay.attr, 5437 &md_array_state.attr, 5438 &md_reshape_position.attr, 5439 &md_reshape_direction.attr, 5440 &md_array_size.attr, 5441 &max_corr_read_errors.attr, 5442 &md_consistency_policy.attr, 5443 &md_fail_last_dev.attr, 5444 &md_serialize_policy.attr, 5445 NULL, 5446 }; 5447 5448 static const struct attribute_group md_default_group = { 5449 .attrs = md_default_attrs, 5450 }; 5451 5452 static struct attribute *md_redundancy_attrs[] = { 5453 &md_scan_mode.attr, 5454 &md_last_scan_mode.attr, 5455 &md_mismatches.attr, 5456 &md_sync_min.attr, 5457 &md_sync_max.attr, 5458 &md_sync_speed.attr, 5459 &md_sync_force_parallel.attr, 5460 &md_sync_completed.attr, 5461 &md_min_sync.attr, 5462 &md_max_sync.attr, 5463 &md_suspend_lo.attr, 5464 &md_suspend_hi.attr, 5465 &md_bitmap.attr, 5466 &md_degraded.attr, 5467 NULL, 5468 }; 5469 static const struct attribute_group md_redundancy_group = { 5470 .name = NULL, 5471 .attrs = md_redundancy_attrs, 5472 }; 5473 5474 static const struct attribute_group *md_attr_groups[] = { 5475 &md_default_group, 5476 &md_bitmap_group, 5477 NULL, 5478 }; 5479 5480 static ssize_t 5481 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5482 { 5483 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5484 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5485 ssize_t rv; 5486 5487 if (!entry->show) 5488 return -EIO; 5489 spin_lock(&all_mddevs_lock); 5490 if (!mddev_get(mddev)) { 5491 spin_unlock(&all_mddevs_lock); 5492 return -EBUSY; 5493 } 5494 spin_unlock(&all_mddevs_lock); 5495 5496 rv = entry->show(mddev, page); 5497 mddev_put(mddev); 5498 return rv; 5499 } 5500 5501 static ssize_t 5502 md_attr_store(struct kobject *kobj, struct attribute *attr, 5503 const char *page, size_t length) 5504 { 5505 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5506 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5507 ssize_t rv; 5508 5509 if (!entry->store) 5510 return -EIO; 5511 if (!capable(CAP_SYS_ADMIN)) 5512 return -EACCES; 5513 spin_lock(&all_mddevs_lock); 5514 if (!mddev_get(mddev)) { 5515 spin_unlock(&all_mddevs_lock); 5516 return -EBUSY; 5517 } 5518 spin_unlock(&all_mddevs_lock); 5519 rv = entry->store(mddev, page, length); 5520 mddev_put(mddev); 5521 return rv; 5522 } 5523 5524 static void md_kobj_release(struct kobject *ko) 5525 { 5526 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5527 5528 if (mddev->sysfs_state) 5529 sysfs_put(mddev->sysfs_state); 5530 if (mddev->sysfs_level) 5531 sysfs_put(mddev->sysfs_level); 5532 5533 del_gendisk(mddev->gendisk); 5534 put_disk(mddev->gendisk); 5535 } 5536 5537 static const struct sysfs_ops md_sysfs_ops = { 5538 .show = md_attr_show, 5539 .store = md_attr_store, 5540 }; 5541 static const struct kobj_type md_ktype = { 5542 .release = md_kobj_release, 5543 .sysfs_ops = &md_sysfs_ops, 5544 .default_groups = md_attr_groups, 5545 }; 5546 5547 int mdp_major = 0; 5548 5549 static void mddev_delayed_delete(struct work_struct *ws) 5550 { 5551 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5552 5553 kobject_put(&mddev->kobj); 5554 } 5555 5556 static void no_op(struct percpu_ref *r) {} 5557 5558 int mddev_init_writes_pending(struct mddev *mddev) 5559 { 5560 if (mddev->writes_pending.percpu_count_ptr) 5561 return 0; 5562 if (percpu_ref_init(&mddev->writes_pending, no_op, 5563 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5564 return -ENOMEM; 5565 /* We want to start with the refcount at zero */ 5566 percpu_ref_put(&mddev->writes_pending); 5567 return 0; 5568 } 5569 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5570 5571 struct mddev *md_alloc(dev_t dev, char *name) 5572 { 5573 /* 5574 * If dev is zero, name is the name of a device to allocate with 5575 * an arbitrary minor number. It will be "md_???" 5576 * If dev is non-zero it must be a device number with a MAJOR of 5577 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5578 * the device is being created by opening a node in /dev. 5579 * If "name" is not NULL, the device is being created by 5580 * writing to /sys/module/md_mod/parameters/new_array. 5581 */ 5582 static DEFINE_MUTEX(disks_mutex); 5583 struct mddev *mddev; 5584 struct gendisk *disk; 5585 int partitioned; 5586 int shift; 5587 int unit; 5588 int error ; 5589 5590 /* 5591 * Wait for any previous instance of this device to be completely 5592 * removed (mddev_delayed_delete). 5593 */ 5594 flush_workqueue(md_misc_wq); 5595 flush_workqueue(md_rdev_misc_wq); 5596 5597 mutex_lock(&disks_mutex); 5598 mddev = mddev_alloc(dev); 5599 if (IS_ERR(mddev)) { 5600 error = PTR_ERR(mddev); 5601 goto out_unlock; 5602 } 5603 5604 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5605 shift = partitioned ? MdpMinorShift : 0; 5606 unit = MINOR(mddev->unit) >> shift; 5607 5608 if (name && !dev) { 5609 /* Need to ensure that 'name' is not a duplicate. 5610 */ 5611 struct mddev *mddev2; 5612 spin_lock(&all_mddevs_lock); 5613 5614 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5615 if (mddev2->gendisk && 5616 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5617 spin_unlock(&all_mddevs_lock); 5618 error = -EEXIST; 5619 goto out_free_mddev; 5620 } 5621 spin_unlock(&all_mddevs_lock); 5622 } 5623 if (name && dev) 5624 /* 5625 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5626 */ 5627 mddev->hold_active = UNTIL_STOP; 5628 5629 error = -ENOMEM; 5630 disk = blk_alloc_disk(NUMA_NO_NODE); 5631 if (!disk) 5632 goto out_free_mddev; 5633 5634 disk->major = MAJOR(mddev->unit); 5635 disk->first_minor = unit << shift; 5636 disk->minors = 1 << shift; 5637 if (name) 5638 strcpy(disk->disk_name, name); 5639 else if (partitioned) 5640 sprintf(disk->disk_name, "md_d%d", unit); 5641 else 5642 sprintf(disk->disk_name, "md%d", unit); 5643 disk->fops = &md_fops; 5644 disk->private_data = mddev; 5645 5646 mddev->queue = disk->queue; 5647 blk_set_stacking_limits(&mddev->queue->limits); 5648 blk_queue_write_cache(mddev->queue, true, true); 5649 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5650 mddev->gendisk = disk; 5651 error = add_disk(disk); 5652 if (error) 5653 goto out_put_disk; 5654 5655 kobject_init(&mddev->kobj, &md_ktype); 5656 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5657 if (error) { 5658 /* 5659 * The disk is already live at this point. Clear the hold flag 5660 * and let mddev_put take care of the deletion, as it isn't any 5661 * different from a normal close on last release now. 5662 */ 5663 mddev->hold_active = 0; 5664 mutex_unlock(&disks_mutex); 5665 mddev_put(mddev); 5666 return ERR_PTR(error); 5667 } 5668 5669 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5670 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5671 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5672 mutex_unlock(&disks_mutex); 5673 return mddev; 5674 5675 out_put_disk: 5676 put_disk(disk); 5677 out_free_mddev: 5678 mddev_free(mddev); 5679 out_unlock: 5680 mutex_unlock(&disks_mutex); 5681 return ERR_PTR(error); 5682 } 5683 5684 static int md_alloc_and_put(dev_t dev, char *name) 5685 { 5686 struct mddev *mddev = md_alloc(dev, name); 5687 5688 if (IS_ERR(mddev)) 5689 return PTR_ERR(mddev); 5690 mddev_put(mddev); 5691 return 0; 5692 } 5693 5694 static void md_probe(dev_t dev) 5695 { 5696 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5697 return; 5698 if (create_on_open) 5699 md_alloc_and_put(dev, NULL); 5700 } 5701 5702 static int add_named_array(const char *val, const struct kernel_param *kp) 5703 { 5704 /* 5705 * val must be "md_*" or "mdNNN". 5706 * For "md_*" we allocate an array with a large free minor number, and 5707 * set the name to val. val must not already be an active name. 5708 * For "mdNNN" we allocate an array with the minor number NNN 5709 * which must not already be in use. 5710 */ 5711 int len = strlen(val); 5712 char buf[DISK_NAME_LEN]; 5713 unsigned long devnum; 5714 5715 while (len && val[len-1] == '\n') 5716 len--; 5717 if (len >= DISK_NAME_LEN) 5718 return -E2BIG; 5719 strscpy(buf, val, len+1); 5720 if (strncmp(buf, "md_", 3) == 0) 5721 return md_alloc_and_put(0, buf); 5722 if (strncmp(buf, "md", 2) == 0 && 5723 isdigit(buf[2]) && 5724 kstrtoul(buf+2, 10, &devnum) == 0 && 5725 devnum <= MINORMASK) 5726 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5727 5728 return -EINVAL; 5729 } 5730 5731 static void md_safemode_timeout(struct timer_list *t) 5732 { 5733 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5734 5735 mddev->safemode = 1; 5736 if (mddev->external) 5737 sysfs_notify_dirent_safe(mddev->sysfs_state); 5738 5739 md_wakeup_thread(mddev->thread); 5740 } 5741 5742 static int start_dirty_degraded; 5743 static void active_io_release(struct percpu_ref *ref) 5744 { 5745 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5746 5747 wake_up(&mddev->sb_wait); 5748 } 5749 5750 int md_run(struct mddev *mddev) 5751 { 5752 int err; 5753 struct md_rdev *rdev; 5754 struct md_personality *pers; 5755 bool nowait = true; 5756 5757 if (list_empty(&mddev->disks)) 5758 /* cannot run an array with no devices.. */ 5759 return -EINVAL; 5760 5761 if (mddev->pers) 5762 return -EBUSY; 5763 /* Cannot run until previous stop completes properly */ 5764 if (mddev->sysfs_active) 5765 return -EBUSY; 5766 5767 /* 5768 * Analyze all RAID superblock(s) 5769 */ 5770 if (!mddev->raid_disks) { 5771 if (!mddev->persistent) 5772 return -EINVAL; 5773 err = analyze_sbs(mddev); 5774 if (err) 5775 return -EINVAL; 5776 } 5777 5778 if (mddev->level != LEVEL_NONE) 5779 request_module("md-level-%d", mddev->level); 5780 else if (mddev->clevel[0]) 5781 request_module("md-%s", mddev->clevel); 5782 5783 /* 5784 * Drop all container device buffers, from now on 5785 * the only valid external interface is through the md 5786 * device. 5787 */ 5788 mddev->has_superblocks = false; 5789 rdev_for_each(rdev, mddev) { 5790 if (test_bit(Faulty, &rdev->flags)) 5791 continue; 5792 sync_blockdev(rdev->bdev); 5793 invalidate_bdev(rdev->bdev); 5794 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5795 mddev->ro = MD_RDONLY; 5796 if (mddev->gendisk) 5797 set_disk_ro(mddev->gendisk, 1); 5798 } 5799 5800 if (rdev->sb_page) 5801 mddev->has_superblocks = true; 5802 5803 /* perform some consistency tests on the device. 5804 * We don't want the data to overlap the metadata, 5805 * Internal Bitmap issues have been handled elsewhere. 5806 */ 5807 if (rdev->meta_bdev) { 5808 /* Nothing to check */; 5809 } else if (rdev->data_offset < rdev->sb_start) { 5810 if (mddev->dev_sectors && 5811 rdev->data_offset + mddev->dev_sectors 5812 > rdev->sb_start) { 5813 pr_warn("md: %s: data overlaps metadata\n", 5814 mdname(mddev)); 5815 return -EINVAL; 5816 } 5817 } else { 5818 if (rdev->sb_start + rdev->sb_size/512 5819 > rdev->data_offset) { 5820 pr_warn("md: %s: metadata overlaps data\n", 5821 mdname(mddev)); 5822 return -EINVAL; 5823 } 5824 } 5825 sysfs_notify_dirent_safe(rdev->sysfs_state); 5826 nowait = nowait && bdev_nowait(rdev->bdev); 5827 } 5828 5829 err = percpu_ref_init(&mddev->active_io, active_io_release, 5830 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5831 if (err) 5832 return err; 5833 5834 if (!bioset_initialized(&mddev->bio_set)) { 5835 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5836 if (err) 5837 goto exit_active_io; 5838 } 5839 if (!bioset_initialized(&mddev->sync_set)) { 5840 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5841 if (err) 5842 goto exit_bio_set; 5843 } 5844 5845 spin_lock(&pers_lock); 5846 pers = find_pers(mddev->level, mddev->clevel); 5847 if (!pers || !try_module_get(pers->owner)) { 5848 spin_unlock(&pers_lock); 5849 if (mddev->level != LEVEL_NONE) 5850 pr_warn("md: personality for level %d is not loaded!\n", 5851 mddev->level); 5852 else 5853 pr_warn("md: personality for level %s is not loaded!\n", 5854 mddev->clevel); 5855 err = -EINVAL; 5856 goto abort; 5857 } 5858 spin_unlock(&pers_lock); 5859 if (mddev->level != pers->level) { 5860 mddev->level = pers->level; 5861 mddev->new_level = pers->level; 5862 } 5863 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5864 5865 if (mddev->reshape_position != MaxSector && 5866 pers->start_reshape == NULL) { 5867 /* This personality cannot handle reshaping... */ 5868 module_put(pers->owner); 5869 err = -EINVAL; 5870 goto abort; 5871 } 5872 5873 if (pers->sync_request) { 5874 /* Warn if this is a potentially silly 5875 * configuration. 5876 */ 5877 struct md_rdev *rdev2; 5878 int warned = 0; 5879 5880 rdev_for_each(rdev, mddev) 5881 rdev_for_each(rdev2, mddev) { 5882 if (rdev < rdev2 && 5883 rdev->bdev->bd_disk == 5884 rdev2->bdev->bd_disk) { 5885 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5886 mdname(mddev), 5887 rdev->bdev, 5888 rdev2->bdev); 5889 warned = 1; 5890 } 5891 } 5892 5893 if (warned) 5894 pr_warn("True protection against single-disk failure might be compromised.\n"); 5895 } 5896 5897 mddev->recovery = 0; 5898 /* may be over-ridden by personality */ 5899 mddev->resync_max_sectors = mddev->dev_sectors; 5900 5901 mddev->ok_start_degraded = start_dirty_degraded; 5902 5903 if (start_readonly && md_is_rdwr(mddev)) 5904 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5905 5906 err = pers->run(mddev); 5907 if (err) 5908 pr_warn("md: pers->run() failed ...\n"); 5909 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5910 WARN_ONCE(!mddev->external_size, 5911 "%s: default size too small, but 'external_size' not in effect?\n", 5912 __func__); 5913 pr_warn("md: invalid array_size %llu > default size %llu\n", 5914 (unsigned long long)mddev->array_sectors / 2, 5915 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5916 err = -EINVAL; 5917 } 5918 if (err == 0 && pers->sync_request && 5919 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5920 struct bitmap *bitmap; 5921 5922 bitmap = md_bitmap_create(mddev, -1); 5923 if (IS_ERR(bitmap)) { 5924 err = PTR_ERR(bitmap); 5925 pr_warn("%s: failed to create bitmap (%d)\n", 5926 mdname(mddev), err); 5927 } else 5928 mddev->bitmap = bitmap; 5929 5930 } 5931 if (err) 5932 goto bitmap_abort; 5933 5934 if (mddev->bitmap_info.max_write_behind > 0) { 5935 bool create_pool = false; 5936 5937 rdev_for_each(rdev, mddev) { 5938 if (test_bit(WriteMostly, &rdev->flags) && 5939 rdev_init_serial(rdev)) 5940 create_pool = true; 5941 } 5942 if (create_pool && mddev->serial_info_pool == NULL) { 5943 mddev->serial_info_pool = 5944 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5945 sizeof(struct serial_info)); 5946 if (!mddev->serial_info_pool) { 5947 err = -ENOMEM; 5948 goto bitmap_abort; 5949 } 5950 } 5951 } 5952 5953 if (mddev->queue) { 5954 bool nonrot = true; 5955 5956 rdev_for_each(rdev, mddev) { 5957 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5958 nonrot = false; 5959 break; 5960 } 5961 } 5962 if (mddev->degraded) 5963 nonrot = false; 5964 if (nonrot) 5965 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5966 else 5967 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5968 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5969 5970 /* Set the NOWAIT flags if all underlying devices support it */ 5971 if (nowait) 5972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5973 } 5974 if (pers->sync_request) { 5975 if (mddev->kobj.sd && 5976 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5977 pr_warn("md: cannot register extra attributes for %s\n", 5978 mdname(mddev)); 5979 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5980 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5981 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5982 } else if (mddev->ro == MD_AUTO_READ) 5983 mddev->ro = MD_RDWR; 5984 5985 atomic_set(&mddev->max_corr_read_errors, 5986 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5987 mddev->safemode = 0; 5988 if (mddev_is_clustered(mddev)) 5989 mddev->safemode_delay = 0; 5990 else 5991 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 5992 mddev->in_sync = 1; 5993 smp_wmb(); 5994 spin_lock(&mddev->lock); 5995 mddev->pers = pers; 5996 spin_unlock(&mddev->lock); 5997 rdev_for_each(rdev, mddev) 5998 if (rdev->raid_disk >= 0) 5999 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6000 6001 if (mddev->degraded && md_is_rdwr(mddev)) 6002 /* This ensures that recovering status is reported immediately 6003 * via sysfs - until a lack of spares is confirmed. 6004 */ 6005 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6007 6008 if (mddev->sb_flags) 6009 md_update_sb(mddev, 0); 6010 6011 md_new_event(); 6012 return 0; 6013 6014 bitmap_abort: 6015 mddev_detach(mddev); 6016 if (mddev->private) 6017 pers->free(mddev, mddev->private); 6018 mddev->private = NULL; 6019 module_put(pers->owner); 6020 md_bitmap_destroy(mddev); 6021 abort: 6022 bioset_exit(&mddev->sync_set); 6023 exit_bio_set: 6024 bioset_exit(&mddev->bio_set); 6025 exit_active_io: 6026 percpu_ref_exit(&mddev->active_io); 6027 return err; 6028 } 6029 EXPORT_SYMBOL_GPL(md_run); 6030 6031 int do_md_run(struct mddev *mddev) 6032 { 6033 int err; 6034 6035 set_bit(MD_NOT_READY, &mddev->flags); 6036 err = md_run(mddev); 6037 if (err) 6038 goto out; 6039 err = md_bitmap_load(mddev); 6040 if (err) { 6041 md_bitmap_destroy(mddev); 6042 goto out; 6043 } 6044 6045 if (mddev_is_clustered(mddev)) 6046 md_allow_write(mddev); 6047 6048 /* run start up tasks that require md_thread */ 6049 md_start(mddev); 6050 6051 md_wakeup_thread(mddev->thread); 6052 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6053 6054 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6055 clear_bit(MD_NOT_READY, &mddev->flags); 6056 mddev->changed = 1; 6057 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6058 sysfs_notify_dirent_safe(mddev->sysfs_state); 6059 sysfs_notify_dirent_safe(mddev->sysfs_action); 6060 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6061 out: 6062 clear_bit(MD_NOT_READY, &mddev->flags); 6063 return err; 6064 } 6065 6066 int md_start(struct mddev *mddev) 6067 { 6068 int ret = 0; 6069 6070 if (mddev->pers->start) { 6071 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6072 md_wakeup_thread(mddev->thread); 6073 ret = mddev->pers->start(mddev); 6074 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6075 md_wakeup_thread(mddev->sync_thread); 6076 } 6077 return ret; 6078 } 6079 EXPORT_SYMBOL_GPL(md_start); 6080 6081 static int restart_array(struct mddev *mddev) 6082 { 6083 struct gendisk *disk = mddev->gendisk; 6084 struct md_rdev *rdev; 6085 bool has_journal = false; 6086 bool has_readonly = false; 6087 6088 /* Complain if it has no devices */ 6089 if (list_empty(&mddev->disks)) 6090 return -ENXIO; 6091 if (!mddev->pers) 6092 return -EINVAL; 6093 if (md_is_rdwr(mddev)) 6094 return -EBUSY; 6095 6096 rcu_read_lock(); 6097 rdev_for_each_rcu(rdev, mddev) { 6098 if (test_bit(Journal, &rdev->flags) && 6099 !test_bit(Faulty, &rdev->flags)) 6100 has_journal = true; 6101 if (rdev_read_only(rdev)) 6102 has_readonly = true; 6103 } 6104 rcu_read_unlock(); 6105 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6106 /* Don't restart rw with journal missing/faulty */ 6107 return -EINVAL; 6108 if (has_readonly) 6109 return -EROFS; 6110 6111 mddev->safemode = 0; 6112 mddev->ro = MD_RDWR; 6113 set_disk_ro(disk, 0); 6114 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6115 /* Kick recovery or resync if necessary */ 6116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6117 md_wakeup_thread(mddev->thread); 6118 md_wakeup_thread(mddev->sync_thread); 6119 sysfs_notify_dirent_safe(mddev->sysfs_state); 6120 return 0; 6121 } 6122 6123 static void md_clean(struct mddev *mddev) 6124 { 6125 mddev->array_sectors = 0; 6126 mddev->external_size = 0; 6127 mddev->dev_sectors = 0; 6128 mddev->raid_disks = 0; 6129 mddev->recovery_cp = 0; 6130 mddev->resync_min = 0; 6131 mddev->resync_max = MaxSector; 6132 mddev->reshape_position = MaxSector; 6133 mddev->external = 0; 6134 mddev->persistent = 0; 6135 mddev->level = LEVEL_NONE; 6136 mddev->clevel[0] = 0; 6137 mddev->flags = 0; 6138 mddev->sb_flags = 0; 6139 mddev->ro = MD_RDWR; 6140 mddev->metadata_type[0] = 0; 6141 mddev->chunk_sectors = 0; 6142 mddev->ctime = mddev->utime = 0; 6143 mddev->layout = 0; 6144 mddev->max_disks = 0; 6145 mddev->events = 0; 6146 mddev->can_decrease_events = 0; 6147 mddev->delta_disks = 0; 6148 mddev->reshape_backwards = 0; 6149 mddev->new_level = LEVEL_NONE; 6150 mddev->new_layout = 0; 6151 mddev->new_chunk_sectors = 0; 6152 mddev->curr_resync = MD_RESYNC_NONE; 6153 atomic64_set(&mddev->resync_mismatches, 0); 6154 mddev->suspend_lo = mddev->suspend_hi = 0; 6155 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6156 mddev->recovery = 0; 6157 mddev->in_sync = 0; 6158 mddev->changed = 0; 6159 mddev->degraded = 0; 6160 mddev->safemode = 0; 6161 mddev->private = NULL; 6162 mddev->cluster_info = NULL; 6163 mddev->bitmap_info.offset = 0; 6164 mddev->bitmap_info.default_offset = 0; 6165 mddev->bitmap_info.default_space = 0; 6166 mddev->bitmap_info.chunksize = 0; 6167 mddev->bitmap_info.daemon_sleep = 0; 6168 mddev->bitmap_info.max_write_behind = 0; 6169 mddev->bitmap_info.nodes = 0; 6170 } 6171 6172 static void __md_stop_writes(struct mddev *mddev) 6173 { 6174 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6175 if (work_pending(&mddev->del_work)) 6176 flush_workqueue(md_misc_wq); 6177 if (mddev->sync_thread) { 6178 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6179 md_unregister_thread(&mddev->sync_thread); 6180 md_reap_sync_thread(mddev); 6181 } 6182 6183 del_timer_sync(&mddev->safemode_timer); 6184 6185 if (mddev->pers && mddev->pers->quiesce) { 6186 mddev->pers->quiesce(mddev, 1); 6187 mddev->pers->quiesce(mddev, 0); 6188 } 6189 md_bitmap_flush(mddev); 6190 6191 if (md_is_rdwr(mddev) && 6192 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6193 mddev->sb_flags)) { 6194 /* mark array as shutdown cleanly */ 6195 if (!mddev_is_clustered(mddev)) 6196 mddev->in_sync = 1; 6197 md_update_sb(mddev, 1); 6198 } 6199 /* disable policy to guarantee rdevs free resources for serialization */ 6200 mddev->serialize_policy = 0; 6201 mddev_destroy_serial_pool(mddev, NULL, true); 6202 } 6203 6204 void md_stop_writes(struct mddev *mddev) 6205 { 6206 mddev_lock_nointr(mddev); 6207 __md_stop_writes(mddev); 6208 mddev_unlock(mddev); 6209 } 6210 EXPORT_SYMBOL_GPL(md_stop_writes); 6211 6212 static void mddev_detach(struct mddev *mddev) 6213 { 6214 md_bitmap_wait_behind_writes(mddev); 6215 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6216 mddev->pers->quiesce(mddev, 1); 6217 mddev->pers->quiesce(mddev, 0); 6218 } 6219 md_unregister_thread(&mddev->thread); 6220 if (mddev->queue) 6221 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6222 } 6223 6224 static void __md_stop(struct mddev *mddev) 6225 { 6226 struct md_personality *pers = mddev->pers; 6227 md_bitmap_destroy(mddev); 6228 mddev_detach(mddev); 6229 /* Ensure ->event_work is done */ 6230 if (mddev->event_work.func) 6231 flush_workqueue(md_misc_wq); 6232 spin_lock(&mddev->lock); 6233 mddev->pers = NULL; 6234 spin_unlock(&mddev->lock); 6235 if (mddev->private) 6236 pers->free(mddev, mddev->private); 6237 mddev->private = NULL; 6238 if (pers->sync_request && mddev->to_remove == NULL) 6239 mddev->to_remove = &md_redundancy_group; 6240 module_put(pers->owner); 6241 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6242 6243 percpu_ref_exit(&mddev->active_io); 6244 bioset_exit(&mddev->bio_set); 6245 bioset_exit(&mddev->sync_set); 6246 } 6247 6248 void md_stop(struct mddev *mddev) 6249 { 6250 /* stop the array and free an attached data structures. 6251 * This is called from dm-raid 6252 */ 6253 __md_stop_writes(mddev); 6254 __md_stop(mddev); 6255 percpu_ref_exit(&mddev->writes_pending); 6256 } 6257 6258 EXPORT_SYMBOL_GPL(md_stop); 6259 6260 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6261 { 6262 int err = 0; 6263 int did_freeze = 0; 6264 6265 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6266 did_freeze = 1; 6267 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6268 md_wakeup_thread(mddev->thread); 6269 } 6270 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6271 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6272 if (mddev->sync_thread) 6273 /* Thread might be blocked waiting for metadata update 6274 * which will now never happen */ 6275 wake_up_process(mddev->sync_thread->tsk); 6276 6277 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6278 return -EBUSY; 6279 mddev_unlock(mddev); 6280 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6281 &mddev->recovery)); 6282 wait_event(mddev->sb_wait, 6283 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6284 mddev_lock_nointr(mddev); 6285 6286 mutex_lock(&mddev->open_mutex); 6287 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6288 mddev->sync_thread || 6289 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6290 pr_warn("md: %s still in use.\n",mdname(mddev)); 6291 if (did_freeze) { 6292 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6293 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6294 md_wakeup_thread(mddev->thread); 6295 } 6296 err = -EBUSY; 6297 goto out; 6298 } 6299 if (mddev->pers) { 6300 __md_stop_writes(mddev); 6301 6302 err = -ENXIO; 6303 if (mddev->ro == MD_RDONLY) 6304 goto out; 6305 mddev->ro = MD_RDONLY; 6306 set_disk_ro(mddev->gendisk, 1); 6307 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6308 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6309 md_wakeup_thread(mddev->thread); 6310 sysfs_notify_dirent_safe(mddev->sysfs_state); 6311 err = 0; 6312 } 6313 out: 6314 mutex_unlock(&mddev->open_mutex); 6315 return err; 6316 } 6317 6318 /* mode: 6319 * 0 - completely stop and dis-assemble array 6320 * 2 - stop but do not disassemble array 6321 */ 6322 static int do_md_stop(struct mddev *mddev, int mode, 6323 struct block_device *bdev) 6324 { 6325 struct gendisk *disk = mddev->gendisk; 6326 struct md_rdev *rdev; 6327 int did_freeze = 0; 6328 6329 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6330 did_freeze = 1; 6331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6332 md_wakeup_thread(mddev->thread); 6333 } 6334 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6335 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6336 if (mddev->sync_thread) 6337 /* Thread might be blocked waiting for metadata update 6338 * which will now never happen */ 6339 wake_up_process(mddev->sync_thread->tsk); 6340 6341 mddev_unlock(mddev); 6342 wait_event(resync_wait, (mddev->sync_thread == NULL && 6343 !test_bit(MD_RECOVERY_RUNNING, 6344 &mddev->recovery))); 6345 mddev_lock_nointr(mddev); 6346 6347 mutex_lock(&mddev->open_mutex); 6348 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6349 mddev->sysfs_active || 6350 mddev->sync_thread || 6351 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6352 pr_warn("md: %s still in use.\n",mdname(mddev)); 6353 mutex_unlock(&mddev->open_mutex); 6354 if (did_freeze) { 6355 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6357 md_wakeup_thread(mddev->thread); 6358 } 6359 return -EBUSY; 6360 } 6361 if (mddev->pers) { 6362 if (!md_is_rdwr(mddev)) 6363 set_disk_ro(disk, 0); 6364 6365 __md_stop_writes(mddev); 6366 __md_stop(mddev); 6367 6368 /* tell userspace to handle 'inactive' */ 6369 sysfs_notify_dirent_safe(mddev->sysfs_state); 6370 6371 rdev_for_each(rdev, mddev) 6372 if (rdev->raid_disk >= 0) 6373 sysfs_unlink_rdev(mddev, rdev); 6374 6375 set_capacity_and_notify(disk, 0); 6376 mutex_unlock(&mddev->open_mutex); 6377 mddev->changed = 1; 6378 6379 if (!md_is_rdwr(mddev)) 6380 mddev->ro = MD_RDWR; 6381 } else 6382 mutex_unlock(&mddev->open_mutex); 6383 /* 6384 * Free resources if final stop 6385 */ 6386 if (mode == 0) { 6387 pr_info("md: %s stopped.\n", mdname(mddev)); 6388 6389 if (mddev->bitmap_info.file) { 6390 struct file *f = mddev->bitmap_info.file; 6391 spin_lock(&mddev->lock); 6392 mddev->bitmap_info.file = NULL; 6393 spin_unlock(&mddev->lock); 6394 fput(f); 6395 } 6396 mddev->bitmap_info.offset = 0; 6397 6398 export_array(mddev); 6399 6400 md_clean(mddev); 6401 if (mddev->hold_active == UNTIL_STOP) 6402 mddev->hold_active = 0; 6403 } 6404 md_new_event(); 6405 sysfs_notify_dirent_safe(mddev->sysfs_state); 6406 return 0; 6407 } 6408 6409 #ifndef MODULE 6410 static void autorun_array(struct mddev *mddev) 6411 { 6412 struct md_rdev *rdev; 6413 int err; 6414 6415 if (list_empty(&mddev->disks)) 6416 return; 6417 6418 pr_info("md: running: "); 6419 6420 rdev_for_each(rdev, mddev) { 6421 pr_cont("<%pg>", rdev->bdev); 6422 } 6423 pr_cont("\n"); 6424 6425 err = do_md_run(mddev); 6426 if (err) { 6427 pr_warn("md: do_md_run() returned %d\n", err); 6428 do_md_stop(mddev, 0, NULL); 6429 } 6430 } 6431 6432 /* 6433 * lets try to run arrays based on all disks that have arrived 6434 * until now. (those are in pending_raid_disks) 6435 * 6436 * the method: pick the first pending disk, collect all disks with 6437 * the same UUID, remove all from the pending list and put them into 6438 * the 'same_array' list. Then order this list based on superblock 6439 * update time (freshest comes first), kick out 'old' disks and 6440 * compare superblocks. If everything's fine then run it. 6441 * 6442 * If "unit" is allocated, then bump its reference count 6443 */ 6444 static void autorun_devices(int part) 6445 { 6446 struct md_rdev *rdev0, *rdev, *tmp; 6447 struct mddev *mddev; 6448 6449 pr_info("md: autorun ...\n"); 6450 while (!list_empty(&pending_raid_disks)) { 6451 int unit; 6452 dev_t dev; 6453 LIST_HEAD(candidates); 6454 rdev0 = list_entry(pending_raid_disks.next, 6455 struct md_rdev, same_set); 6456 6457 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6458 INIT_LIST_HEAD(&candidates); 6459 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6460 if (super_90_load(rdev, rdev0, 0) >= 0) { 6461 pr_debug("md: adding %pg ...\n", 6462 rdev->bdev); 6463 list_move(&rdev->same_set, &candidates); 6464 } 6465 /* 6466 * now we have a set of devices, with all of them having 6467 * mostly sane superblocks. It's time to allocate the 6468 * mddev. 6469 */ 6470 if (part) { 6471 dev = MKDEV(mdp_major, 6472 rdev0->preferred_minor << MdpMinorShift); 6473 unit = MINOR(dev) >> MdpMinorShift; 6474 } else { 6475 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6476 unit = MINOR(dev); 6477 } 6478 if (rdev0->preferred_minor != unit) { 6479 pr_warn("md: unit number in %pg is bad: %d\n", 6480 rdev0->bdev, rdev0->preferred_minor); 6481 break; 6482 } 6483 6484 mddev = md_alloc(dev, NULL); 6485 if (IS_ERR(mddev)) 6486 break; 6487 6488 if (mddev_lock(mddev)) 6489 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6490 else if (mddev->raid_disks || mddev->major_version 6491 || !list_empty(&mddev->disks)) { 6492 pr_warn("md: %s already running, cannot run %pg\n", 6493 mdname(mddev), rdev0->bdev); 6494 mddev_unlock(mddev); 6495 } else { 6496 pr_debug("md: created %s\n", mdname(mddev)); 6497 mddev->persistent = 1; 6498 rdev_for_each_list(rdev, tmp, &candidates) { 6499 list_del_init(&rdev->same_set); 6500 if (bind_rdev_to_array(rdev, mddev)) 6501 export_rdev(rdev); 6502 } 6503 autorun_array(mddev); 6504 mddev_unlock(mddev); 6505 } 6506 /* on success, candidates will be empty, on error 6507 * it won't... 6508 */ 6509 rdev_for_each_list(rdev, tmp, &candidates) { 6510 list_del_init(&rdev->same_set); 6511 export_rdev(rdev); 6512 } 6513 mddev_put(mddev); 6514 } 6515 pr_info("md: ... autorun DONE.\n"); 6516 } 6517 #endif /* !MODULE */ 6518 6519 static int get_version(void __user *arg) 6520 { 6521 mdu_version_t ver; 6522 6523 ver.major = MD_MAJOR_VERSION; 6524 ver.minor = MD_MINOR_VERSION; 6525 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6526 6527 if (copy_to_user(arg, &ver, sizeof(ver))) 6528 return -EFAULT; 6529 6530 return 0; 6531 } 6532 6533 static int get_array_info(struct mddev *mddev, void __user *arg) 6534 { 6535 mdu_array_info_t info; 6536 int nr,working,insync,failed,spare; 6537 struct md_rdev *rdev; 6538 6539 nr = working = insync = failed = spare = 0; 6540 rcu_read_lock(); 6541 rdev_for_each_rcu(rdev, mddev) { 6542 nr++; 6543 if (test_bit(Faulty, &rdev->flags)) 6544 failed++; 6545 else { 6546 working++; 6547 if (test_bit(In_sync, &rdev->flags)) 6548 insync++; 6549 else if (test_bit(Journal, &rdev->flags)) 6550 /* TODO: add journal count to md_u.h */ 6551 ; 6552 else 6553 spare++; 6554 } 6555 } 6556 rcu_read_unlock(); 6557 6558 info.major_version = mddev->major_version; 6559 info.minor_version = mddev->minor_version; 6560 info.patch_version = MD_PATCHLEVEL_VERSION; 6561 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6562 info.level = mddev->level; 6563 info.size = mddev->dev_sectors / 2; 6564 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6565 info.size = -1; 6566 info.nr_disks = nr; 6567 info.raid_disks = mddev->raid_disks; 6568 info.md_minor = mddev->md_minor; 6569 info.not_persistent= !mddev->persistent; 6570 6571 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6572 info.state = 0; 6573 if (mddev->in_sync) 6574 info.state = (1<<MD_SB_CLEAN); 6575 if (mddev->bitmap && mddev->bitmap_info.offset) 6576 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6577 if (mddev_is_clustered(mddev)) 6578 info.state |= (1<<MD_SB_CLUSTERED); 6579 info.active_disks = insync; 6580 info.working_disks = working; 6581 info.failed_disks = failed; 6582 info.spare_disks = spare; 6583 6584 info.layout = mddev->layout; 6585 info.chunk_size = mddev->chunk_sectors << 9; 6586 6587 if (copy_to_user(arg, &info, sizeof(info))) 6588 return -EFAULT; 6589 6590 return 0; 6591 } 6592 6593 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6594 { 6595 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6596 char *ptr; 6597 int err; 6598 6599 file = kzalloc(sizeof(*file), GFP_NOIO); 6600 if (!file) 6601 return -ENOMEM; 6602 6603 err = 0; 6604 spin_lock(&mddev->lock); 6605 /* bitmap enabled */ 6606 if (mddev->bitmap_info.file) { 6607 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6608 sizeof(file->pathname)); 6609 if (IS_ERR(ptr)) 6610 err = PTR_ERR(ptr); 6611 else 6612 memmove(file->pathname, ptr, 6613 sizeof(file->pathname)-(ptr-file->pathname)); 6614 } 6615 spin_unlock(&mddev->lock); 6616 6617 if (err == 0 && 6618 copy_to_user(arg, file, sizeof(*file))) 6619 err = -EFAULT; 6620 6621 kfree(file); 6622 return err; 6623 } 6624 6625 static int get_disk_info(struct mddev *mddev, void __user * arg) 6626 { 6627 mdu_disk_info_t info; 6628 struct md_rdev *rdev; 6629 6630 if (copy_from_user(&info, arg, sizeof(info))) 6631 return -EFAULT; 6632 6633 rcu_read_lock(); 6634 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6635 if (rdev) { 6636 info.major = MAJOR(rdev->bdev->bd_dev); 6637 info.minor = MINOR(rdev->bdev->bd_dev); 6638 info.raid_disk = rdev->raid_disk; 6639 info.state = 0; 6640 if (test_bit(Faulty, &rdev->flags)) 6641 info.state |= (1<<MD_DISK_FAULTY); 6642 else if (test_bit(In_sync, &rdev->flags)) { 6643 info.state |= (1<<MD_DISK_ACTIVE); 6644 info.state |= (1<<MD_DISK_SYNC); 6645 } 6646 if (test_bit(Journal, &rdev->flags)) 6647 info.state |= (1<<MD_DISK_JOURNAL); 6648 if (test_bit(WriteMostly, &rdev->flags)) 6649 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6650 if (test_bit(FailFast, &rdev->flags)) 6651 info.state |= (1<<MD_DISK_FAILFAST); 6652 } else { 6653 info.major = info.minor = 0; 6654 info.raid_disk = -1; 6655 info.state = (1<<MD_DISK_REMOVED); 6656 } 6657 rcu_read_unlock(); 6658 6659 if (copy_to_user(arg, &info, sizeof(info))) 6660 return -EFAULT; 6661 6662 return 0; 6663 } 6664 6665 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6666 { 6667 struct md_rdev *rdev; 6668 dev_t dev = MKDEV(info->major,info->minor); 6669 6670 if (mddev_is_clustered(mddev) && 6671 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6672 pr_warn("%s: Cannot add to clustered mddev.\n", 6673 mdname(mddev)); 6674 return -EINVAL; 6675 } 6676 6677 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6678 return -EOVERFLOW; 6679 6680 if (!mddev->raid_disks) { 6681 int err; 6682 /* expecting a device which has a superblock */ 6683 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6684 if (IS_ERR(rdev)) { 6685 pr_warn("md: md_import_device returned %ld\n", 6686 PTR_ERR(rdev)); 6687 return PTR_ERR(rdev); 6688 } 6689 if (!list_empty(&mddev->disks)) { 6690 struct md_rdev *rdev0 6691 = list_entry(mddev->disks.next, 6692 struct md_rdev, same_set); 6693 err = super_types[mddev->major_version] 6694 .load_super(rdev, rdev0, mddev->minor_version); 6695 if (err < 0) { 6696 pr_warn("md: %pg has different UUID to %pg\n", 6697 rdev->bdev, 6698 rdev0->bdev); 6699 export_rdev(rdev); 6700 return -EINVAL; 6701 } 6702 } 6703 err = bind_rdev_to_array(rdev, mddev); 6704 if (err) 6705 export_rdev(rdev); 6706 return err; 6707 } 6708 6709 /* 6710 * md_add_new_disk can be used once the array is assembled 6711 * to add "hot spares". They must already have a superblock 6712 * written 6713 */ 6714 if (mddev->pers) { 6715 int err; 6716 if (!mddev->pers->hot_add_disk) { 6717 pr_warn("%s: personality does not support diskops!\n", 6718 mdname(mddev)); 6719 return -EINVAL; 6720 } 6721 if (mddev->persistent) 6722 rdev = md_import_device(dev, mddev->major_version, 6723 mddev->minor_version); 6724 else 6725 rdev = md_import_device(dev, -1, -1); 6726 if (IS_ERR(rdev)) { 6727 pr_warn("md: md_import_device returned %ld\n", 6728 PTR_ERR(rdev)); 6729 return PTR_ERR(rdev); 6730 } 6731 /* set saved_raid_disk if appropriate */ 6732 if (!mddev->persistent) { 6733 if (info->state & (1<<MD_DISK_SYNC) && 6734 info->raid_disk < mddev->raid_disks) { 6735 rdev->raid_disk = info->raid_disk; 6736 set_bit(In_sync, &rdev->flags); 6737 clear_bit(Bitmap_sync, &rdev->flags); 6738 } else 6739 rdev->raid_disk = -1; 6740 rdev->saved_raid_disk = rdev->raid_disk; 6741 } else 6742 super_types[mddev->major_version]. 6743 validate_super(mddev, rdev); 6744 if ((info->state & (1<<MD_DISK_SYNC)) && 6745 rdev->raid_disk != info->raid_disk) { 6746 /* This was a hot-add request, but events doesn't 6747 * match, so reject it. 6748 */ 6749 export_rdev(rdev); 6750 return -EINVAL; 6751 } 6752 6753 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6754 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6755 set_bit(WriteMostly, &rdev->flags); 6756 else 6757 clear_bit(WriteMostly, &rdev->flags); 6758 if (info->state & (1<<MD_DISK_FAILFAST)) 6759 set_bit(FailFast, &rdev->flags); 6760 else 6761 clear_bit(FailFast, &rdev->flags); 6762 6763 if (info->state & (1<<MD_DISK_JOURNAL)) { 6764 struct md_rdev *rdev2; 6765 bool has_journal = false; 6766 6767 /* make sure no existing journal disk */ 6768 rdev_for_each(rdev2, mddev) { 6769 if (test_bit(Journal, &rdev2->flags)) { 6770 has_journal = true; 6771 break; 6772 } 6773 } 6774 if (has_journal || mddev->bitmap) { 6775 export_rdev(rdev); 6776 return -EBUSY; 6777 } 6778 set_bit(Journal, &rdev->flags); 6779 } 6780 /* 6781 * check whether the device shows up in other nodes 6782 */ 6783 if (mddev_is_clustered(mddev)) { 6784 if (info->state & (1 << MD_DISK_CANDIDATE)) 6785 set_bit(Candidate, &rdev->flags); 6786 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6787 /* --add initiated by this node */ 6788 err = md_cluster_ops->add_new_disk(mddev, rdev); 6789 if (err) { 6790 export_rdev(rdev); 6791 return err; 6792 } 6793 } 6794 } 6795 6796 rdev->raid_disk = -1; 6797 err = bind_rdev_to_array(rdev, mddev); 6798 6799 if (err) 6800 export_rdev(rdev); 6801 6802 if (mddev_is_clustered(mddev)) { 6803 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6804 if (!err) { 6805 err = md_cluster_ops->new_disk_ack(mddev, 6806 err == 0); 6807 if (err) 6808 md_kick_rdev_from_array(rdev); 6809 } 6810 } else { 6811 if (err) 6812 md_cluster_ops->add_new_disk_cancel(mddev); 6813 else 6814 err = add_bound_rdev(rdev); 6815 } 6816 6817 } else if (!err) 6818 err = add_bound_rdev(rdev); 6819 6820 return err; 6821 } 6822 6823 /* otherwise, md_add_new_disk is only allowed 6824 * for major_version==0 superblocks 6825 */ 6826 if (mddev->major_version != 0) { 6827 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6828 return -EINVAL; 6829 } 6830 6831 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6832 int err; 6833 rdev = md_import_device(dev, -1, 0); 6834 if (IS_ERR(rdev)) { 6835 pr_warn("md: error, md_import_device() returned %ld\n", 6836 PTR_ERR(rdev)); 6837 return PTR_ERR(rdev); 6838 } 6839 rdev->desc_nr = info->number; 6840 if (info->raid_disk < mddev->raid_disks) 6841 rdev->raid_disk = info->raid_disk; 6842 else 6843 rdev->raid_disk = -1; 6844 6845 if (rdev->raid_disk < mddev->raid_disks) 6846 if (info->state & (1<<MD_DISK_SYNC)) 6847 set_bit(In_sync, &rdev->flags); 6848 6849 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6850 set_bit(WriteMostly, &rdev->flags); 6851 if (info->state & (1<<MD_DISK_FAILFAST)) 6852 set_bit(FailFast, &rdev->flags); 6853 6854 if (!mddev->persistent) { 6855 pr_debug("md: nonpersistent superblock ...\n"); 6856 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6857 } else 6858 rdev->sb_start = calc_dev_sboffset(rdev); 6859 rdev->sectors = rdev->sb_start; 6860 6861 err = bind_rdev_to_array(rdev, mddev); 6862 if (err) { 6863 export_rdev(rdev); 6864 return err; 6865 } 6866 } 6867 6868 return 0; 6869 } 6870 6871 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6872 { 6873 struct md_rdev *rdev; 6874 6875 if (!mddev->pers) 6876 return -ENODEV; 6877 6878 rdev = find_rdev(mddev, dev); 6879 if (!rdev) 6880 return -ENXIO; 6881 6882 if (rdev->raid_disk < 0) 6883 goto kick_rdev; 6884 6885 clear_bit(Blocked, &rdev->flags); 6886 remove_and_add_spares(mddev, rdev); 6887 6888 if (rdev->raid_disk >= 0) 6889 goto busy; 6890 6891 kick_rdev: 6892 if (mddev_is_clustered(mddev)) { 6893 if (md_cluster_ops->remove_disk(mddev, rdev)) 6894 goto busy; 6895 } 6896 6897 md_kick_rdev_from_array(rdev); 6898 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6899 if (mddev->thread) 6900 md_wakeup_thread(mddev->thread); 6901 else 6902 md_update_sb(mddev, 1); 6903 md_new_event(); 6904 6905 return 0; 6906 busy: 6907 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6908 rdev->bdev, mdname(mddev)); 6909 return -EBUSY; 6910 } 6911 6912 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6913 { 6914 int err; 6915 struct md_rdev *rdev; 6916 6917 if (!mddev->pers) 6918 return -ENODEV; 6919 6920 if (mddev->major_version != 0) { 6921 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6922 mdname(mddev)); 6923 return -EINVAL; 6924 } 6925 if (!mddev->pers->hot_add_disk) { 6926 pr_warn("%s: personality does not support diskops!\n", 6927 mdname(mddev)); 6928 return -EINVAL; 6929 } 6930 6931 rdev = md_import_device(dev, -1, 0); 6932 if (IS_ERR(rdev)) { 6933 pr_warn("md: error, md_import_device() returned %ld\n", 6934 PTR_ERR(rdev)); 6935 return -EINVAL; 6936 } 6937 6938 if (mddev->persistent) 6939 rdev->sb_start = calc_dev_sboffset(rdev); 6940 else 6941 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6942 6943 rdev->sectors = rdev->sb_start; 6944 6945 if (test_bit(Faulty, &rdev->flags)) { 6946 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6947 rdev->bdev, mdname(mddev)); 6948 err = -EINVAL; 6949 goto abort_export; 6950 } 6951 6952 clear_bit(In_sync, &rdev->flags); 6953 rdev->desc_nr = -1; 6954 rdev->saved_raid_disk = -1; 6955 err = bind_rdev_to_array(rdev, mddev); 6956 if (err) 6957 goto abort_export; 6958 6959 /* 6960 * The rest should better be atomic, we can have disk failures 6961 * noticed in interrupt contexts ... 6962 */ 6963 6964 rdev->raid_disk = -1; 6965 6966 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6967 if (!mddev->thread) 6968 md_update_sb(mddev, 1); 6969 /* 6970 * If the new disk does not support REQ_NOWAIT, 6971 * disable on the whole MD. 6972 */ 6973 if (!bdev_nowait(rdev->bdev)) { 6974 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6975 mdname(mddev), rdev->bdev); 6976 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6977 } 6978 /* 6979 * Kick recovery, maybe this spare has to be added to the 6980 * array immediately. 6981 */ 6982 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6983 md_wakeup_thread(mddev->thread); 6984 md_new_event(); 6985 return 0; 6986 6987 abort_export: 6988 export_rdev(rdev); 6989 return err; 6990 } 6991 6992 static int set_bitmap_file(struct mddev *mddev, int fd) 6993 { 6994 int err = 0; 6995 6996 if (mddev->pers) { 6997 if (!mddev->pers->quiesce || !mddev->thread) 6998 return -EBUSY; 6999 if (mddev->recovery || mddev->sync_thread) 7000 return -EBUSY; 7001 /* we should be able to change the bitmap.. */ 7002 } 7003 7004 if (fd >= 0) { 7005 struct inode *inode; 7006 struct file *f; 7007 7008 if (mddev->bitmap || mddev->bitmap_info.file) 7009 return -EEXIST; /* cannot add when bitmap is present */ 7010 f = fget(fd); 7011 7012 if (f == NULL) { 7013 pr_warn("%s: error: failed to get bitmap file\n", 7014 mdname(mddev)); 7015 return -EBADF; 7016 } 7017 7018 inode = f->f_mapping->host; 7019 if (!S_ISREG(inode->i_mode)) { 7020 pr_warn("%s: error: bitmap file must be a regular file\n", 7021 mdname(mddev)); 7022 err = -EBADF; 7023 } else if (!(f->f_mode & FMODE_WRITE)) { 7024 pr_warn("%s: error: bitmap file must open for write\n", 7025 mdname(mddev)); 7026 err = -EBADF; 7027 } else if (atomic_read(&inode->i_writecount) != 1) { 7028 pr_warn("%s: error: bitmap file is already in use\n", 7029 mdname(mddev)); 7030 err = -EBUSY; 7031 } 7032 if (err) { 7033 fput(f); 7034 return err; 7035 } 7036 mddev->bitmap_info.file = f; 7037 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7038 } else if (mddev->bitmap == NULL) 7039 return -ENOENT; /* cannot remove what isn't there */ 7040 err = 0; 7041 if (mddev->pers) { 7042 if (fd >= 0) { 7043 struct bitmap *bitmap; 7044 7045 bitmap = md_bitmap_create(mddev, -1); 7046 mddev_suspend(mddev); 7047 if (!IS_ERR(bitmap)) { 7048 mddev->bitmap = bitmap; 7049 err = md_bitmap_load(mddev); 7050 } else 7051 err = PTR_ERR(bitmap); 7052 if (err) { 7053 md_bitmap_destroy(mddev); 7054 fd = -1; 7055 } 7056 mddev_resume(mddev); 7057 } else if (fd < 0) { 7058 mddev_suspend(mddev); 7059 md_bitmap_destroy(mddev); 7060 mddev_resume(mddev); 7061 } 7062 } 7063 if (fd < 0) { 7064 struct file *f = mddev->bitmap_info.file; 7065 if (f) { 7066 spin_lock(&mddev->lock); 7067 mddev->bitmap_info.file = NULL; 7068 spin_unlock(&mddev->lock); 7069 fput(f); 7070 } 7071 } 7072 7073 return err; 7074 } 7075 7076 /* 7077 * md_set_array_info is used two different ways 7078 * The original usage is when creating a new array. 7079 * In this usage, raid_disks is > 0 and it together with 7080 * level, size, not_persistent,layout,chunksize determine the 7081 * shape of the array. 7082 * This will always create an array with a type-0.90.0 superblock. 7083 * The newer usage is when assembling an array. 7084 * In this case raid_disks will be 0, and the major_version field is 7085 * use to determine which style super-blocks are to be found on the devices. 7086 * The minor and patch _version numbers are also kept incase the 7087 * super_block handler wishes to interpret them. 7088 */ 7089 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7090 { 7091 if (info->raid_disks == 0) { 7092 /* just setting version number for superblock loading */ 7093 if (info->major_version < 0 || 7094 info->major_version >= ARRAY_SIZE(super_types) || 7095 super_types[info->major_version].name == NULL) { 7096 /* maybe try to auto-load a module? */ 7097 pr_warn("md: superblock version %d not known\n", 7098 info->major_version); 7099 return -EINVAL; 7100 } 7101 mddev->major_version = info->major_version; 7102 mddev->minor_version = info->minor_version; 7103 mddev->patch_version = info->patch_version; 7104 mddev->persistent = !info->not_persistent; 7105 /* ensure mddev_put doesn't delete this now that there 7106 * is some minimal configuration. 7107 */ 7108 mddev->ctime = ktime_get_real_seconds(); 7109 return 0; 7110 } 7111 mddev->major_version = MD_MAJOR_VERSION; 7112 mddev->minor_version = MD_MINOR_VERSION; 7113 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7114 mddev->ctime = ktime_get_real_seconds(); 7115 7116 mddev->level = info->level; 7117 mddev->clevel[0] = 0; 7118 mddev->dev_sectors = 2 * (sector_t)info->size; 7119 mddev->raid_disks = info->raid_disks; 7120 /* don't set md_minor, it is determined by which /dev/md* was 7121 * openned 7122 */ 7123 if (info->state & (1<<MD_SB_CLEAN)) 7124 mddev->recovery_cp = MaxSector; 7125 else 7126 mddev->recovery_cp = 0; 7127 mddev->persistent = ! info->not_persistent; 7128 mddev->external = 0; 7129 7130 mddev->layout = info->layout; 7131 if (mddev->level == 0) 7132 /* Cannot trust RAID0 layout info here */ 7133 mddev->layout = -1; 7134 mddev->chunk_sectors = info->chunk_size >> 9; 7135 7136 if (mddev->persistent) { 7137 mddev->max_disks = MD_SB_DISKS; 7138 mddev->flags = 0; 7139 mddev->sb_flags = 0; 7140 } 7141 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7142 7143 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7144 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7145 mddev->bitmap_info.offset = 0; 7146 7147 mddev->reshape_position = MaxSector; 7148 7149 /* 7150 * Generate a 128 bit UUID 7151 */ 7152 get_random_bytes(mddev->uuid, 16); 7153 7154 mddev->new_level = mddev->level; 7155 mddev->new_chunk_sectors = mddev->chunk_sectors; 7156 mddev->new_layout = mddev->layout; 7157 mddev->delta_disks = 0; 7158 mddev->reshape_backwards = 0; 7159 7160 return 0; 7161 } 7162 7163 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7164 { 7165 lockdep_assert_held(&mddev->reconfig_mutex); 7166 7167 if (mddev->external_size) 7168 return; 7169 7170 mddev->array_sectors = array_sectors; 7171 } 7172 EXPORT_SYMBOL(md_set_array_sectors); 7173 7174 static int update_size(struct mddev *mddev, sector_t num_sectors) 7175 { 7176 struct md_rdev *rdev; 7177 int rv; 7178 int fit = (num_sectors == 0); 7179 sector_t old_dev_sectors = mddev->dev_sectors; 7180 7181 if (mddev->pers->resize == NULL) 7182 return -EINVAL; 7183 /* The "num_sectors" is the number of sectors of each device that 7184 * is used. This can only make sense for arrays with redundancy. 7185 * linear and raid0 always use whatever space is available. We can only 7186 * consider changing this number if no resync or reconstruction is 7187 * happening, and if the new size is acceptable. It must fit before the 7188 * sb_start or, if that is <data_offset, it must fit before the size 7189 * of each device. If num_sectors is zero, we find the largest size 7190 * that fits. 7191 */ 7192 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7193 mddev->sync_thread) 7194 return -EBUSY; 7195 if (!md_is_rdwr(mddev)) 7196 return -EROFS; 7197 7198 rdev_for_each(rdev, mddev) { 7199 sector_t avail = rdev->sectors; 7200 7201 if (fit && (num_sectors == 0 || num_sectors > avail)) 7202 num_sectors = avail; 7203 if (avail < num_sectors) 7204 return -ENOSPC; 7205 } 7206 rv = mddev->pers->resize(mddev, num_sectors); 7207 if (!rv) { 7208 if (mddev_is_clustered(mddev)) 7209 md_cluster_ops->update_size(mddev, old_dev_sectors); 7210 else if (mddev->queue) { 7211 set_capacity_and_notify(mddev->gendisk, 7212 mddev->array_sectors); 7213 } 7214 } 7215 return rv; 7216 } 7217 7218 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7219 { 7220 int rv; 7221 struct md_rdev *rdev; 7222 /* change the number of raid disks */ 7223 if (mddev->pers->check_reshape == NULL) 7224 return -EINVAL; 7225 if (!md_is_rdwr(mddev)) 7226 return -EROFS; 7227 if (raid_disks <= 0 || 7228 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7229 return -EINVAL; 7230 if (mddev->sync_thread || 7231 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7232 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7233 mddev->reshape_position != MaxSector) 7234 return -EBUSY; 7235 7236 rdev_for_each(rdev, mddev) { 7237 if (mddev->raid_disks < raid_disks && 7238 rdev->data_offset < rdev->new_data_offset) 7239 return -EINVAL; 7240 if (mddev->raid_disks > raid_disks && 7241 rdev->data_offset > rdev->new_data_offset) 7242 return -EINVAL; 7243 } 7244 7245 mddev->delta_disks = raid_disks - mddev->raid_disks; 7246 if (mddev->delta_disks < 0) 7247 mddev->reshape_backwards = 1; 7248 else if (mddev->delta_disks > 0) 7249 mddev->reshape_backwards = 0; 7250 7251 rv = mddev->pers->check_reshape(mddev); 7252 if (rv < 0) { 7253 mddev->delta_disks = 0; 7254 mddev->reshape_backwards = 0; 7255 } 7256 return rv; 7257 } 7258 7259 /* 7260 * update_array_info is used to change the configuration of an 7261 * on-line array. 7262 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7263 * fields in the info are checked against the array. 7264 * Any differences that cannot be handled will cause an error. 7265 * Normally, only one change can be managed at a time. 7266 */ 7267 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7268 { 7269 int rv = 0; 7270 int cnt = 0; 7271 int state = 0; 7272 7273 /* calculate expected state,ignoring low bits */ 7274 if (mddev->bitmap && mddev->bitmap_info.offset) 7275 state |= (1 << MD_SB_BITMAP_PRESENT); 7276 7277 if (mddev->major_version != info->major_version || 7278 mddev->minor_version != info->minor_version || 7279 /* mddev->patch_version != info->patch_version || */ 7280 mddev->ctime != info->ctime || 7281 mddev->level != info->level || 7282 /* mddev->layout != info->layout || */ 7283 mddev->persistent != !info->not_persistent || 7284 mddev->chunk_sectors != info->chunk_size >> 9 || 7285 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7286 ((state^info->state) & 0xfffffe00) 7287 ) 7288 return -EINVAL; 7289 /* Check there is only one change */ 7290 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7291 cnt++; 7292 if (mddev->raid_disks != info->raid_disks) 7293 cnt++; 7294 if (mddev->layout != info->layout) 7295 cnt++; 7296 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7297 cnt++; 7298 if (cnt == 0) 7299 return 0; 7300 if (cnt > 1) 7301 return -EINVAL; 7302 7303 if (mddev->layout != info->layout) { 7304 /* Change layout 7305 * we don't need to do anything at the md level, the 7306 * personality will take care of it all. 7307 */ 7308 if (mddev->pers->check_reshape == NULL) 7309 return -EINVAL; 7310 else { 7311 mddev->new_layout = info->layout; 7312 rv = mddev->pers->check_reshape(mddev); 7313 if (rv) 7314 mddev->new_layout = mddev->layout; 7315 return rv; 7316 } 7317 } 7318 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7319 rv = update_size(mddev, (sector_t)info->size * 2); 7320 7321 if (mddev->raid_disks != info->raid_disks) 7322 rv = update_raid_disks(mddev, info->raid_disks); 7323 7324 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7325 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7326 rv = -EINVAL; 7327 goto err; 7328 } 7329 if (mddev->recovery || mddev->sync_thread) { 7330 rv = -EBUSY; 7331 goto err; 7332 } 7333 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7334 struct bitmap *bitmap; 7335 /* add the bitmap */ 7336 if (mddev->bitmap) { 7337 rv = -EEXIST; 7338 goto err; 7339 } 7340 if (mddev->bitmap_info.default_offset == 0) { 7341 rv = -EINVAL; 7342 goto err; 7343 } 7344 mddev->bitmap_info.offset = 7345 mddev->bitmap_info.default_offset; 7346 mddev->bitmap_info.space = 7347 mddev->bitmap_info.default_space; 7348 bitmap = md_bitmap_create(mddev, -1); 7349 mddev_suspend(mddev); 7350 if (!IS_ERR(bitmap)) { 7351 mddev->bitmap = bitmap; 7352 rv = md_bitmap_load(mddev); 7353 } else 7354 rv = PTR_ERR(bitmap); 7355 if (rv) 7356 md_bitmap_destroy(mddev); 7357 mddev_resume(mddev); 7358 } else { 7359 /* remove the bitmap */ 7360 if (!mddev->bitmap) { 7361 rv = -ENOENT; 7362 goto err; 7363 } 7364 if (mddev->bitmap->storage.file) { 7365 rv = -EINVAL; 7366 goto err; 7367 } 7368 if (mddev->bitmap_info.nodes) { 7369 /* hold PW on all the bitmap lock */ 7370 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7371 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7372 rv = -EPERM; 7373 md_cluster_ops->unlock_all_bitmaps(mddev); 7374 goto err; 7375 } 7376 7377 mddev->bitmap_info.nodes = 0; 7378 md_cluster_ops->leave(mddev); 7379 module_put(md_cluster_mod); 7380 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7381 } 7382 mddev_suspend(mddev); 7383 md_bitmap_destroy(mddev); 7384 mddev_resume(mddev); 7385 mddev->bitmap_info.offset = 0; 7386 } 7387 } 7388 md_update_sb(mddev, 1); 7389 return rv; 7390 err: 7391 return rv; 7392 } 7393 7394 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7395 { 7396 struct md_rdev *rdev; 7397 int err = 0; 7398 7399 if (mddev->pers == NULL) 7400 return -ENODEV; 7401 7402 rcu_read_lock(); 7403 rdev = md_find_rdev_rcu(mddev, dev); 7404 if (!rdev) 7405 err = -ENODEV; 7406 else { 7407 md_error(mddev, rdev); 7408 if (test_bit(MD_BROKEN, &mddev->flags)) 7409 err = -EBUSY; 7410 } 7411 rcu_read_unlock(); 7412 return err; 7413 } 7414 7415 /* 7416 * We have a problem here : there is no easy way to give a CHS 7417 * virtual geometry. We currently pretend that we have a 2 heads 7418 * 4 sectors (with a BIG number of cylinders...). This drives 7419 * dosfs just mad... ;-) 7420 */ 7421 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7422 { 7423 struct mddev *mddev = bdev->bd_disk->private_data; 7424 7425 geo->heads = 2; 7426 geo->sectors = 4; 7427 geo->cylinders = mddev->array_sectors / 8; 7428 return 0; 7429 } 7430 7431 static inline bool md_ioctl_valid(unsigned int cmd) 7432 { 7433 switch (cmd) { 7434 case ADD_NEW_DISK: 7435 case GET_ARRAY_INFO: 7436 case GET_BITMAP_FILE: 7437 case GET_DISK_INFO: 7438 case HOT_ADD_DISK: 7439 case HOT_REMOVE_DISK: 7440 case RAID_VERSION: 7441 case RESTART_ARRAY_RW: 7442 case RUN_ARRAY: 7443 case SET_ARRAY_INFO: 7444 case SET_BITMAP_FILE: 7445 case SET_DISK_FAULTY: 7446 case STOP_ARRAY: 7447 case STOP_ARRAY_RO: 7448 case CLUSTERED_DISK_NACK: 7449 return true; 7450 default: 7451 return false; 7452 } 7453 } 7454 7455 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7456 { 7457 mdu_array_info_t info; 7458 int err; 7459 7460 if (!argp) 7461 memset(&info, 0, sizeof(info)); 7462 else if (copy_from_user(&info, argp, sizeof(info))) 7463 return -EFAULT; 7464 7465 if (mddev->pers) { 7466 err = update_array_info(mddev, &info); 7467 if (err) 7468 pr_warn("md: couldn't update array info. %d\n", err); 7469 return err; 7470 } 7471 7472 if (!list_empty(&mddev->disks)) { 7473 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7474 return -EBUSY; 7475 } 7476 7477 if (mddev->raid_disks) { 7478 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7479 return -EBUSY; 7480 } 7481 7482 err = md_set_array_info(mddev, &info); 7483 if (err) 7484 pr_warn("md: couldn't set array info. %d\n", err); 7485 7486 return err; 7487 } 7488 7489 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7490 unsigned int cmd, unsigned long arg) 7491 { 7492 int err = 0; 7493 void __user *argp = (void __user *)arg; 7494 struct mddev *mddev = NULL; 7495 bool did_set_md_closing = false; 7496 7497 if (!md_ioctl_valid(cmd)) 7498 return -ENOTTY; 7499 7500 switch (cmd) { 7501 case RAID_VERSION: 7502 case GET_ARRAY_INFO: 7503 case GET_DISK_INFO: 7504 break; 7505 default: 7506 if (!capable(CAP_SYS_ADMIN)) 7507 return -EACCES; 7508 } 7509 7510 /* 7511 * Commands dealing with the RAID driver but not any 7512 * particular array: 7513 */ 7514 switch (cmd) { 7515 case RAID_VERSION: 7516 err = get_version(argp); 7517 goto out; 7518 default:; 7519 } 7520 7521 /* 7522 * Commands creating/starting a new array: 7523 */ 7524 7525 mddev = bdev->bd_disk->private_data; 7526 7527 if (!mddev) { 7528 BUG(); 7529 goto out; 7530 } 7531 7532 /* Some actions do not requires the mutex */ 7533 switch (cmd) { 7534 case GET_ARRAY_INFO: 7535 if (!mddev->raid_disks && !mddev->external) 7536 err = -ENODEV; 7537 else 7538 err = get_array_info(mddev, argp); 7539 goto out; 7540 7541 case GET_DISK_INFO: 7542 if (!mddev->raid_disks && !mddev->external) 7543 err = -ENODEV; 7544 else 7545 err = get_disk_info(mddev, argp); 7546 goto out; 7547 7548 case SET_DISK_FAULTY: 7549 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7550 goto out; 7551 7552 case GET_BITMAP_FILE: 7553 err = get_bitmap_file(mddev, argp); 7554 goto out; 7555 7556 } 7557 7558 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7559 flush_rdev_wq(mddev); 7560 7561 if (cmd == HOT_REMOVE_DISK) 7562 /* need to ensure recovery thread has run */ 7563 wait_event_interruptible_timeout(mddev->sb_wait, 7564 !test_bit(MD_RECOVERY_NEEDED, 7565 &mddev->recovery), 7566 msecs_to_jiffies(5000)); 7567 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7568 /* Need to flush page cache, and ensure no-one else opens 7569 * and writes 7570 */ 7571 mutex_lock(&mddev->open_mutex); 7572 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7573 mutex_unlock(&mddev->open_mutex); 7574 err = -EBUSY; 7575 goto out; 7576 } 7577 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7578 mutex_unlock(&mddev->open_mutex); 7579 err = -EBUSY; 7580 goto out; 7581 } 7582 did_set_md_closing = true; 7583 mutex_unlock(&mddev->open_mutex); 7584 sync_blockdev(bdev); 7585 } 7586 err = mddev_lock(mddev); 7587 if (err) { 7588 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7589 err, cmd); 7590 goto out; 7591 } 7592 7593 if (cmd == SET_ARRAY_INFO) { 7594 err = __md_set_array_info(mddev, argp); 7595 goto unlock; 7596 } 7597 7598 /* 7599 * Commands querying/configuring an existing array: 7600 */ 7601 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7602 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7603 if ((!mddev->raid_disks && !mddev->external) 7604 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7605 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7606 && cmd != GET_BITMAP_FILE) { 7607 err = -ENODEV; 7608 goto unlock; 7609 } 7610 7611 /* 7612 * Commands even a read-only array can execute: 7613 */ 7614 switch (cmd) { 7615 case RESTART_ARRAY_RW: 7616 err = restart_array(mddev); 7617 goto unlock; 7618 7619 case STOP_ARRAY: 7620 err = do_md_stop(mddev, 0, bdev); 7621 goto unlock; 7622 7623 case STOP_ARRAY_RO: 7624 err = md_set_readonly(mddev, bdev); 7625 goto unlock; 7626 7627 case HOT_REMOVE_DISK: 7628 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7629 goto unlock; 7630 7631 case ADD_NEW_DISK: 7632 /* We can support ADD_NEW_DISK on read-only arrays 7633 * only if we are re-adding a preexisting device. 7634 * So require mddev->pers and MD_DISK_SYNC. 7635 */ 7636 if (mddev->pers) { 7637 mdu_disk_info_t info; 7638 if (copy_from_user(&info, argp, sizeof(info))) 7639 err = -EFAULT; 7640 else if (!(info.state & (1<<MD_DISK_SYNC))) 7641 /* Need to clear read-only for this */ 7642 break; 7643 else 7644 err = md_add_new_disk(mddev, &info); 7645 goto unlock; 7646 } 7647 break; 7648 } 7649 7650 /* 7651 * The remaining ioctls are changing the state of the 7652 * superblock, so we do not allow them on read-only arrays. 7653 */ 7654 if (!md_is_rdwr(mddev) && mddev->pers) { 7655 if (mddev->ro != MD_AUTO_READ) { 7656 err = -EROFS; 7657 goto unlock; 7658 } 7659 mddev->ro = MD_RDWR; 7660 sysfs_notify_dirent_safe(mddev->sysfs_state); 7661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7662 /* mddev_unlock will wake thread */ 7663 /* If a device failed while we were read-only, we 7664 * need to make sure the metadata is updated now. 7665 */ 7666 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7667 mddev_unlock(mddev); 7668 wait_event(mddev->sb_wait, 7669 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7670 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7671 mddev_lock_nointr(mddev); 7672 } 7673 } 7674 7675 switch (cmd) { 7676 case ADD_NEW_DISK: 7677 { 7678 mdu_disk_info_t info; 7679 if (copy_from_user(&info, argp, sizeof(info))) 7680 err = -EFAULT; 7681 else 7682 err = md_add_new_disk(mddev, &info); 7683 goto unlock; 7684 } 7685 7686 case CLUSTERED_DISK_NACK: 7687 if (mddev_is_clustered(mddev)) 7688 md_cluster_ops->new_disk_ack(mddev, false); 7689 else 7690 err = -EINVAL; 7691 goto unlock; 7692 7693 case HOT_ADD_DISK: 7694 err = hot_add_disk(mddev, new_decode_dev(arg)); 7695 goto unlock; 7696 7697 case RUN_ARRAY: 7698 err = do_md_run(mddev); 7699 goto unlock; 7700 7701 case SET_BITMAP_FILE: 7702 err = set_bitmap_file(mddev, (int)arg); 7703 goto unlock; 7704 7705 default: 7706 err = -EINVAL; 7707 goto unlock; 7708 } 7709 7710 unlock: 7711 if (mddev->hold_active == UNTIL_IOCTL && 7712 err != -EINVAL) 7713 mddev->hold_active = 0; 7714 mddev_unlock(mddev); 7715 out: 7716 if(did_set_md_closing) 7717 clear_bit(MD_CLOSING, &mddev->flags); 7718 return err; 7719 } 7720 #ifdef CONFIG_COMPAT 7721 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7722 unsigned int cmd, unsigned long arg) 7723 { 7724 switch (cmd) { 7725 case HOT_REMOVE_DISK: 7726 case HOT_ADD_DISK: 7727 case SET_DISK_FAULTY: 7728 case SET_BITMAP_FILE: 7729 /* These take in integer arg, do not convert */ 7730 break; 7731 default: 7732 arg = (unsigned long)compat_ptr(arg); 7733 break; 7734 } 7735 7736 return md_ioctl(bdev, mode, cmd, arg); 7737 } 7738 #endif /* CONFIG_COMPAT */ 7739 7740 static int md_set_read_only(struct block_device *bdev, bool ro) 7741 { 7742 struct mddev *mddev = bdev->bd_disk->private_data; 7743 int err; 7744 7745 err = mddev_lock(mddev); 7746 if (err) 7747 return err; 7748 7749 if (!mddev->raid_disks && !mddev->external) { 7750 err = -ENODEV; 7751 goto out_unlock; 7752 } 7753 7754 /* 7755 * Transitioning to read-auto need only happen for arrays that call 7756 * md_write_start and which are not ready for writes yet. 7757 */ 7758 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7759 err = restart_array(mddev); 7760 if (err) 7761 goto out_unlock; 7762 mddev->ro = MD_AUTO_READ; 7763 } 7764 7765 out_unlock: 7766 mddev_unlock(mddev); 7767 return err; 7768 } 7769 7770 static int md_open(struct block_device *bdev, fmode_t mode) 7771 { 7772 struct mddev *mddev; 7773 int err; 7774 7775 spin_lock(&all_mddevs_lock); 7776 mddev = mddev_get(bdev->bd_disk->private_data); 7777 spin_unlock(&all_mddevs_lock); 7778 if (!mddev) 7779 return -ENODEV; 7780 7781 err = mutex_lock_interruptible(&mddev->open_mutex); 7782 if (err) 7783 goto out; 7784 7785 err = -ENODEV; 7786 if (test_bit(MD_CLOSING, &mddev->flags)) 7787 goto out_unlock; 7788 7789 atomic_inc(&mddev->openers); 7790 mutex_unlock(&mddev->open_mutex); 7791 7792 bdev_check_media_change(bdev); 7793 return 0; 7794 7795 out_unlock: 7796 mutex_unlock(&mddev->open_mutex); 7797 out: 7798 mddev_put(mddev); 7799 return err; 7800 } 7801 7802 static void md_release(struct gendisk *disk, fmode_t mode) 7803 { 7804 struct mddev *mddev = disk->private_data; 7805 7806 BUG_ON(!mddev); 7807 atomic_dec(&mddev->openers); 7808 mddev_put(mddev); 7809 } 7810 7811 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7812 { 7813 struct mddev *mddev = disk->private_data; 7814 unsigned int ret = 0; 7815 7816 if (mddev->changed) 7817 ret = DISK_EVENT_MEDIA_CHANGE; 7818 mddev->changed = 0; 7819 return ret; 7820 } 7821 7822 static void md_free_disk(struct gendisk *disk) 7823 { 7824 struct mddev *mddev = disk->private_data; 7825 7826 percpu_ref_exit(&mddev->writes_pending); 7827 mddev_free(mddev); 7828 } 7829 7830 const struct block_device_operations md_fops = 7831 { 7832 .owner = THIS_MODULE, 7833 .submit_bio = md_submit_bio, 7834 .open = md_open, 7835 .release = md_release, 7836 .ioctl = md_ioctl, 7837 #ifdef CONFIG_COMPAT 7838 .compat_ioctl = md_compat_ioctl, 7839 #endif 7840 .getgeo = md_getgeo, 7841 .check_events = md_check_events, 7842 .set_read_only = md_set_read_only, 7843 .free_disk = md_free_disk, 7844 }; 7845 7846 static int md_thread(void *arg) 7847 { 7848 struct md_thread *thread = arg; 7849 7850 /* 7851 * md_thread is a 'system-thread', it's priority should be very 7852 * high. We avoid resource deadlocks individually in each 7853 * raid personality. (RAID5 does preallocation) We also use RR and 7854 * the very same RT priority as kswapd, thus we will never get 7855 * into a priority inversion deadlock. 7856 * 7857 * we definitely have to have equal or higher priority than 7858 * bdflush, otherwise bdflush will deadlock if there are too 7859 * many dirty RAID5 blocks. 7860 */ 7861 7862 allow_signal(SIGKILL); 7863 while (!kthread_should_stop()) { 7864 7865 /* We need to wait INTERRUPTIBLE so that 7866 * we don't add to the load-average. 7867 * That means we need to be sure no signals are 7868 * pending 7869 */ 7870 if (signal_pending(current)) 7871 flush_signals(current); 7872 7873 wait_event_interruptible_timeout 7874 (thread->wqueue, 7875 test_bit(THREAD_WAKEUP, &thread->flags) 7876 || kthread_should_stop() || kthread_should_park(), 7877 thread->timeout); 7878 7879 clear_bit(THREAD_WAKEUP, &thread->flags); 7880 if (kthread_should_park()) 7881 kthread_parkme(); 7882 if (!kthread_should_stop()) 7883 thread->run(thread); 7884 } 7885 7886 return 0; 7887 } 7888 7889 void md_wakeup_thread(struct md_thread *thread) 7890 { 7891 if (thread) { 7892 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7893 set_bit(THREAD_WAKEUP, &thread->flags); 7894 wake_up(&thread->wqueue); 7895 } 7896 } 7897 EXPORT_SYMBOL(md_wakeup_thread); 7898 7899 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7900 struct mddev *mddev, const char *name) 7901 { 7902 struct md_thread *thread; 7903 7904 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7905 if (!thread) 7906 return NULL; 7907 7908 init_waitqueue_head(&thread->wqueue); 7909 7910 thread->run = run; 7911 thread->mddev = mddev; 7912 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7913 thread->tsk = kthread_run(md_thread, thread, 7914 "%s_%s", 7915 mdname(thread->mddev), 7916 name); 7917 if (IS_ERR(thread->tsk)) { 7918 kfree(thread); 7919 return NULL; 7920 } 7921 return thread; 7922 } 7923 EXPORT_SYMBOL(md_register_thread); 7924 7925 void md_unregister_thread(struct md_thread **threadp) 7926 { 7927 struct md_thread *thread; 7928 7929 /* 7930 * Locking ensures that mddev_unlock does not wake_up a 7931 * non-existent thread 7932 */ 7933 spin_lock(&pers_lock); 7934 thread = *threadp; 7935 if (!thread) { 7936 spin_unlock(&pers_lock); 7937 return; 7938 } 7939 *threadp = NULL; 7940 spin_unlock(&pers_lock); 7941 7942 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7943 kthread_stop(thread->tsk); 7944 kfree(thread); 7945 } 7946 EXPORT_SYMBOL(md_unregister_thread); 7947 7948 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7949 { 7950 if (!rdev || test_bit(Faulty, &rdev->flags)) 7951 return; 7952 7953 if (!mddev->pers || !mddev->pers->error_handler) 7954 return; 7955 mddev->pers->error_handler(mddev, rdev); 7956 7957 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 7958 return; 7959 7960 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7961 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7962 sysfs_notify_dirent_safe(rdev->sysfs_state); 7963 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7964 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7965 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7966 md_wakeup_thread(mddev->thread); 7967 } 7968 if (mddev->event_work.func) 7969 queue_work(md_misc_wq, &mddev->event_work); 7970 md_new_event(); 7971 } 7972 EXPORT_SYMBOL(md_error); 7973 7974 /* seq_file implementation /proc/mdstat */ 7975 7976 static void status_unused(struct seq_file *seq) 7977 { 7978 int i = 0; 7979 struct md_rdev *rdev; 7980 7981 seq_printf(seq, "unused devices: "); 7982 7983 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7984 i++; 7985 seq_printf(seq, "%pg ", rdev->bdev); 7986 } 7987 if (!i) 7988 seq_printf(seq, "<none>"); 7989 7990 seq_printf(seq, "\n"); 7991 } 7992 7993 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7994 { 7995 sector_t max_sectors, resync, res; 7996 unsigned long dt, db = 0; 7997 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7998 int scale, recovery_active; 7999 unsigned int per_milli; 8000 8001 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8002 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8003 max_sectors = mddev->resync_max_sectors; 8004 else 8005 max_sectors = mddev->dev_sectors; 8006 8007 resync = mddev->curr_resync; 8008 if (resync < MD_RESYNC_ACTIVE) { 8009 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8010 /* Still cleaning up */ 8011 resync = max_sectors; 8012 } else if (resync > max_sectors) { 8013 resync = max_sectors; 8014 } else { 8015 res = atomic_read(&mddev->recovery_active); 8016 /* 8017 * Resync has started, but the subtraction has overflowed or 8018 * yielded one of the special values. Force it to active to 8019 * ensure the status reports an active resync. 8020 */ 8021 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8022 resync = MD_RESYNC_ACTIVE; 8023 else 8024 resync -= res; 8025 } 8026 8027 if (resync == MD_RESYNC_NONE) { 8028 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8029 struct md_rdev *rdev; 8030 8031 rdev_for_each(rdev, mddev) 8032 if (rdev->raid_disk >= 0 && 8033 !test_bit(Faulty, &rdev->flags) && 8034 rdev->recovery_offset != MaxSector && 8035 rdev->recovery_offset) { 8036 seq_printf(seq, "\trecover=REMOTE"); 8037 return 1; 8038 } 8039 if (mddev->reshape_position != MaxSector) 8040 seq_printf(seq, "\treshape=REMOTE"); 8041 else 8042 seq_printf(seq, "\tresync=REMOTE"); 8043 return 1; 8044 } 8045 if (mddev->recovery_cp < MaxSector) { 8046 seq_printf(seq, "\tresync=PENDING"); 8047 return 1; 8048 } 8049 return 0; 8050 } 8051 if (resync < MD_RESYNC_ACTIVE) { 8052 seq_printf(seq, "\tresync=DELAYED"); 8053 return 1; 8054 } 8055 8056 WARN_ON(max_sectors == 0); 8057 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8058 * in a sector_t, and (max_sectors>>scale) will fit in a 8059 * u32, as those are the requirements for sector_div. 8060 * Thus 'scale' must be at least 10 8061 */ 8062 scale = 10; 8063 if (sizeof(sector_t) > sizeof(unsigned long)) { 8064 while ( max_sectors/2 > (1ULL<<(scale+32))) 8065 scale++; 8066 } 8067 res = (resync>>scale)*1000; 8068 sector_div(res, (u32)((max_sectors>>scale)+1)); 8069 8070 per_milli = res; 8071 { 8072 int i, x = per_milli/50, y = 20-x; 8073 seq_printf(seq, "["); 8074 for (i = 0; i < x; i++) 8075 seq_printf(seq, "="); 8076 seq_printf(seq, ">"); 8077 for (i = 0; i < y; i++) 8078 seq_printf(seq, "."); 8079 seq_printf(seq, "] "); 8080 } 8081 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8082 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8083 "reshape" : 8084 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8085 "check" : 8086 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8087 "resync" : "recovery"))), 8088 per_milli/10, per_milli % 10, 8089 (unsigned long long) resync/2, 8090 (unsigned long long) max_sectors/2); 8091 8092 /* 8093 * dt: time from mark until now 8094 * db: blocks written from mark until now 8095 * rt: remaining time 8096 * 8097 * rt is a sector_t, which is always 64bit now. We are keeping 8098 * the original algorithm, but it is not really necessary. 8099 * 8100 * Original algorithm: 8101 * So we divide before multiply in case it is 32bit and close 8102 * to the limit. 8103 * We scale the divisor (db) by 32 to avoid losing precision 8104 * near the end of resync when the number of remaining sectors 8105 * is close to 'db'. 8106 * We then divide rt by 32 after multiplying by db to compensate. 8107 * The '+1' avoids division by zero if db is very small. 8108 */ 8109 dt = ((jiffies - mddev->resync_mark) / HZ); 8110 if (!dt) dt++; 8111 8112 curr_mark_cnt = mddev->curr_mark_cnt; 8113 recovery_active = atomic_read(&mddev->recovery_active); 8114 resync_mark_cnt = mddev->resync_mark_cnt; 8115 8116 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8117 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8118 8119 rt = max_sectors - resync; /* number of remaining sectors */ 8120 rt = div64_u64(rt, db/32+1); 8121 rt *= dt; 8122 rt >>= 5; 8123 8124 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8125 ((unsigned long)rt % 60)/6); 8126 8127 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8128 return 1; 8129 } 8130 8131 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8132 { 8133 struct list_head *tmp; 8134 loff_t l = *pos; 8135 struct mddev *mddev; 8136 8137 if (l == 0x10000) { 8138 ++*pos; 8139 return (void *)2; 8140 } 8141 if (l > 0x10000) 8142 return NULL; 8143 if (!l--) 8144 /* header */ 8145 return (void*)1; 8146 8147 spin_lock(&all_mddevs_lock); 8148 list_for_each(tmp,&all_mddevs) 8149 if (!l--) { 8150 mddev = list_entry(tmp, struct mddev, all_mddevs); 8151 if (!mddev_get(mddev)) 8152 continue; 8153 spin_unlock(&all_mddevs_lock); 8154 return mddev; 8155 } 8156 spin_unlock(&all_mddevs_lock); 8157 if (!l--) 8158 return (void*)2;/* tail */ 8159 return NULL; 8160 } 8161 8162 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8163 { 8164 struct list_head *tmp; 8165 struct mddev *next_mddev, *mddev = v; 8166 struct mddev *to_put = NULL; 8167 8168 ++*pos; 8169 if (v == (void*)2) 8170 return NULL; 8171 8172 spin_lock(&all_mddevs_lock); 8173 if (v == (void*)1) { 8174 tmp = all_mddevs.next; 8175 } else { 8176 to_put = mddev; 8177 tmp = mddev->all_mddevs.next; 8178 } 8179 8180 for (;;) { 8181 if (tmp == &all_mddevs) { 8182 next_mddev = (void*)2; 8183 *pos = 0x10000; 8184 break; 8185 } 8186 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8187 if (mddev_get(next_mddev)) 8188 break; 8189 mddev = next_mddev; 8190 tmp = mddev->all_mddevs.next; 8191 } 8192 spin_unlock(&all_mddevs_lock); 8193 8194 if (to_put) 8195 mddev_put(mddev); 8196 return next_mddev; 8197 8198 } 8199 8200 static void md_seq_stop(struct seq_file *seq, void *v) 8201 { 8202 struct mddev *mddev = v; 8203 8204 if (mddev && v != (void*)1 && v != (void*)2) 8205 mddev_put(mddev); 8206 } 8207 8208 static int md_seq_show(struct seq_file *seq, void *v) 8209 { 8210 struct mddev *mddev = v; 8211 sector_t sectors; 8212 struct md_rdev *rdev; 8213 8214 if (v == (void*)1) { 8215 struct md_personality *pers; 8216 seq_printf(seq, "Personalities : "); 8217 spin_lock(&pers_lock); 8218 list_for_each_entry(pers, &pers_list, list) 8219 seq_printf(seq, "[%s] ", pers->name); 8220 8221 spin_unlock(&pers_lock); 8222 seq_printf(seq, "\n"); 8223 seq->poll_event = atomic_read(&md_event_count); 8224 return 0; 8225 } 8226 if (v == (void*)2) { 8227 status_unused(seq); 8228 return 0; 8229 } 8230 8231 spin_lock(&mddev->lock); 8232 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8233 seq_printf(seq, "%s : %sactive", mdname(mddev), 8234 mddev->pers ? "" : "in"); 8235 if (mddev->pers) { 8236 if (mddev->ro == MD_RDONLY) 8237 seq_printf(seq, " (read-only)"); 8238 if (mddev->ro == MD_AUTO_READ) 8239 seq_printf(seq, " (auto-read-only)"); 8240 seq_printf(seq, " %s", mddev->pers->name); 8241 } 8242 8243 sectors = 0; 8244 rcu_read_lock(); 8245 rdev_for_each_rcu(rdev, mddev) { 8246 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8247 8248 if (test_bit(WriteMostly, &rdev->flags)) 8249 seq_printf(seq, "(W)"); 8250 if (test_bit(Journal, &rdev->flags)) 8251 seq_printf(seq, "(J)"); 8252 if (test_bit(Faulty, &rdev->flags)) { 8253 seq_printf(seq, "(F)"); 8254 continue; 8255 } 8256 if (rdev->raid_disk < 0) 8257 seq_printf(seq, "(S)"); /* spare */ 8258 if (test_bit(Replacement, &rdev->flags)) 8259 seq_printf(seq, "(R)"); 8260 sectors += rdev->sectors; 8261 } 8262 rcu_read_unlock(); 8263 8264 if (!list_empty(&mddev->disks)) { 8265 if (mddev->pers) 8266 seq_printf(seq, "\n %llu blocks", 8267 (unsigned long long) 8268 mddev->array_sectors / 2); 8269 else 8270 seq_printf(seq, "\n %llu blocks", 8271 (unsigned long long)sectors / 2); 8272 } 8273 if (mddev->persistent) { 8274 if (mddev->major_version != 0 || 8275 mddev->minor_version != 90) { 8276 seq_printf(seq," super %d.%d", 8277 mddev->major_version, 8278 mddev->minor_version); 8279 } 8280 } else if (mddev->external) 8281 seq_printf(seq, " super external:%s", 8282 mddev->metadata_type); 8283 else 8284 seq_printf(seq, " super non-persistent"); 8285 8286 if (mddev->pers) { 8287 mddev->pers->status(seq, mddev); 8288 seq_printf(seq, "\n "); 8289 if (mddev->pers->sync_request) { 8290 if (status_resync(seq, mddev)) 8291 seq_printf(seq, "\n "); 8292 } 8293 } else 8294 seq_printf(seq, "\n "); 8295 8296 md_bitmap_status(seq, mddev->bitmap); 8297 8298 seq_printf(seq, "\n"); 8299 } 8300 spin_unlock(&mddev->lock); 8301 8302 return 0; 8303 } 8304 8305 static const struct seq_operations md_seq_ops = { 8306 .start = md_seq_start, 8307 .next = md_seq_next, 8308 .stop = md_seq_stop, 8309 .show = md_seq_show, 8310 }; 8311 8312 static int md_seq_open(struct inode *inode, struct file *file) 8313 { 8314 struct seq_file *seq; 8315 int error; 8316 8317 error = seq_open(file, &md_seq_ops); 8318 if (error) 8319 return error; 8320 8321 seq = file->private_data; 8322 seq->poll_event = atomic_read(&md_event_count); 8323 return error; 8324 } 8325 8326 static int md_unloading; 8327 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8328 { 8329 struct seq_file *seq = filp->private_data; 8330 __poll_t mask; 8331 8332 if (md_unloading) 8333 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8334 poll_wait(filp, &md_event_waiters, wait); 8335 8336 /* always allow read */ 8337 mask = EPOLLIN | EPOLLRDNORM; 8338 8339 if (seq->poll_event != atomic_read(&md_event_count)) 8340 mask |= EPOLLERR | EPOLLPRI; 8341 return mask; 8342 } 8343 8344 static const struct proc_ops mdstat_proc_ops = { 8345 .proc_open = md_seq_open, 8346 .proc_read = seq_read, 8347 .proc_lseek = seq_lseek, 8348 .proc_release = seq_release, 8349 .proc_poll = mdstat_poll, 8350 }; 8351 8352 int register_md_personality(struct md_personality *p) 8353 { 8354 pr_debug("md: %s personality registered for level %d\n", 8355 p->name, p->level); 8356 spin_lock(&pers_lock); 8357 list_add_tail(&p->list, &pers_list); 8358 spin_unlock(&pers_lock); 8359 return 0; 8360 } 8361 EXPORT_SYMBOL(register_md_personality); 8362 8363 int unregister_md_personality(struct md_personality *p) 8364 { 8365 pr_debug("md: %s personality unregistered\n", p->name); 8366 spin_lock(&pers_lock); 8367 list_del_init(&p->list); 8368 spin_unlock(&pers_lock); 8369 return 0; 8370 } 8371 EXPORT_SYMBOL(unregister_md_personality); 8372 8373 int register_md_cluster_operations(struct md_cluster_operations *ops, 8374 struct module *module) 8375 { 8376 int ret = 0; 8377 spin_lock(&pers_lock); 8378 if (md_cluster_ops != NULL) 8379 ret = -EALREADY; 8380 else { 8381 md_cluster_ops = ops; 8382 md_cluster_mod = module; 8383 } 8384 spin_unlock(&pers_lock); 8385 return ret; 8386 } 8387 EXPORT_SYMBOL(register_md_cluster_operations); 8388 8389 int unregister_md_cluster_operations(void) 8390 { 8391 spin_lock(&pers_lock); 8392 md_cluster_ops = NULL; 8393 spin_unlock(&pers_lock); 8394 return 0; 8395 } 8396 EXPORT_SYMBOL(unregister_md_cluster_operations); 8397 8398 int md_setup_cluster(struct mddev *mddev, int nodes) 8399 { 8400 int ret; 8401 if (!md_cluster_ops) 8402 request_module("md-cluster"); 8403 spin_lock(&pers_lock); 8404 /* ensure module won't be unloaded */ 8405 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8406 pr_warn("can't find md-cluster module or get its reference.\n"); 8407 spin_unlock(&pers_lock); 8408 return -ENOENT; 8409 } 8410 spin_unlock(&pers_lock); 8411 8412 ret = md_cluster_ops->join(mddev, nodes); 8413 if (!ret) 8414 mddev->safemode_delay = 0; 8415 return ret; 8416 } 8417 8418 void md_cluster_stop(struct mddev *mddev) 8419 { 8420 if (!md_cluster_ops) 8421 return; 8422 md_cluster_ops->leave(mddev); 8423 module_put(md_cluster_mod); 8424 } 8425 8426 static int is_mddev_idle(struct mddev *mddev, int init) 8427 { 8428 struct md_rdev *rdev; 8429 int idle; 8430 int curr_events; 8431 8432 idle = 1; 8433 rcu_read_lock(); 8434 rdev_for_each_rcu(rdev, mddev) { 8435 struct gendisk *disk = rdev->bdev->bd_disk; 8436 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8437 atomic_read(&disk->sync_io); 8438 /* sync IO will cause sync_io to increase before the disk_stats 8439 * as sync_io is counted when a request starts, and 8440 * disk_stats is counted when it completes. 8441 * So resync activity will cause curr_events to be smaller than 8442 * when there was no such activity. 8443 * non-sync IO will cause disk_stat to increase without 8444 * increasing sync_io so curr_events will (eventually) 8445 * be larger than it was before. Once it becomes 8446 * substantially larger, the test below will cause 8447 * the array to appear non-idle, and resync will slow 8448 * down. 8449 * If there is a lot of outstanding resync activity when 8450 * we set last_event to curr_events, then all that activity 8451 * completing might cause the array to appear non-idle 8452 * and resync will be slowed down even though there might 8453 * not have been non-resync activity. This will only 8454 * happen once though. 'last_events' will soon reflect 8455 * the state where there is little or no outstanding 8456 * resync requests, and further resync activity will 8457 * always make curr_events less than last_events. 8458 * 8459 */ 8460 if (init || curr_events - rdev->last_events > 64) { 8461 rdev->last_events = curr_events; 8462 idle = 0; 8463 } 8464 } 8465 rcu_read_unlock(); 8466 return idle; 8467 } 8468 8469 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8470 { 8471 /* another "blocks" (512byte) blocks have been synced */ 8472 atomic_sub(blocks, &mddev->recovery_active); 8473 wake_up(&mddev->recovery_wait); 8474 if (!ok) { 8475 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8476 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8477 md_wakeup_thread(mddev->thread); 8478 // stop recovery, signal do_sync .... 8479 } 8480 } 8481 EXPORT_SYMBOL(md_done_sync); 8482 8483 /* md_write_start(mddev, bi) 8484 * If we need to update some array metadata (e.g. 'active' flag 8485 * in superblock) before writing, schedule a superblock update 8486 * and wait for it to complete. 8487 * A return value of 'false' means that the write wasn't recorded 8488 * and cannot proceed as the array is being suspend. 8489 */ 8490 bool md_write_start(struct mddev *mddev, struct bio *bi) 8491 { 8492 int did_change = 0; 8493 8494 if (bio_data_dir(bi) != WRITE) 8495 return true; 8496 8497 BUG_ON(mddev->ro == MD_RDONLY); 8498 if (mddev->ro == MD_AUTO_READ) { 8499 /* need to switch to read/write */ 8500 mddev->ro = MD_RDWR; 8501 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8502 md_wakeup_thread(mddev->thread); 8503 md_wakeup_thread(mddev->sync_thread); 8504 did_change = 1; 8505 } 8506 rcu_read_lock(); 8507 percpu_ref_get(&mddev->writes_pending); 8508 smp_mb(); /* Match smp_mb in set_in_sync() */ 8509 if (mddev->safemode == 1) 8510 mddev->safemode = 0; 8511 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8512 if (mddev->in_sync || mddev->sync_checkers) { 8513 spin_lock(&mddev->lock); 8514 if (mddev->in_sync) { 8515 mddev->in_sync = 0; 8516 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8517 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8518 md_wakeup_thread(mddev->thread); 8519 did_change = 1; 8520 } 8521 spin_unlock(&mddev->lock); 8522 } 8523 rcu_read_unlock(); 8524 if (did_change) 8525 sysfs_notify_dirent_safe(mddev->sysfs_state); 8526 if (!mddev->has_superblocks) 8527 return true; 8528 wait_event(mddev->sb_wait, 8529 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8530 is_md_suspended(mddev)); 8531 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8532 percpu_ref_put(&mddev->writes_pending); 8533 return false; 8534 } 8535 return true; 8536 } 8537 EXPORT_SYMBOL(md_write_start); 8538 8539 /* md_write_inc can only be called when md_write_start() has 8540 * already been called at least once of the current request. 8541 * It increments the counter and is useful when a single request 8542 * is split into several parts. Each part causes an increment and 8543 * so needs a matching md_write_end(). 8544 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8545 * a spinlocked region. 8546 */ 8547 void md_write_inc(struct mddev *mddev, struct bio *bi) 8548 { 8549 if (bio_data_dir(bi) != WRITE) 8550 return; 8551 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8552 percpu_ref_get(&mddev->writes_pending); 8553 } 8554 EXPORT_SYMBOL(md_write_inc); 8555 8556 void md_write_end(struct mddev *mddev) 8557 { 8558 percpu_ref_put(&mddev->writes_pending); 8559 8560 if (mddev->safemode == 2) 8561 md_wakeup_thread(mddev->thread); 8562 else if (mddev->safemode_delay) 8563 /* The roundup() ensures this only performs locking once 8564 * every ->safemode_delay jiffies 8565 */ 8566 mod_timer(&mddev->safemode_timer, 8567 roundup(jiffies, mddev->safemode_delay) + 8568 mddev->safemode_delay); 8569 } 8570 8571 EXPORT_SYMBOL(md_write_end); 8572 8573 /* This is used by raid0 and raid10 */ 8574 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8575 struct bio *bio, sector_t start, sector_t size) 8576 { 8577 struct bio *discard_bio = NULL; 8578 8579 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8580 &discard_bio) || !discard_bio) 8581 return; 8582 8583 bio_chain(discard_bio, bio); 8584 bio_clone_blkg_association(discard_bio, bio); 8585 if (mddev->gendisk) 8586 trace_block_bio_remap(discard_bio, 8587 disk_devt(mddev->gendisk), 8588 bio->bi_iter.bi_sector); 8589 submit_bio_noacct(discard_bio); 8590 } 8591 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8592 8593 int acct_bioset_init(struct mddev *mddev) 8594 { 8595 int err = 0; 8596 8597 if (!bioset_initialized(&mddev->io_acct_set)) 8598 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8599 offsetof(struct md_io_acct, bio_clone), 0); 8600 return err; 8601 } 8602 EXPORT_SYMBOL_GPL(acct_bioset_init); 8603 8604 void acct_bioset_exit(struct mddev *mddev) 8605 { 8606 bioset_exit(&mddev->io_acct_set); 8607 } 8608 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8609 8610 static void md_end_io_acct(struct bio *bio) 8611 { 8612 struct md_io_acct *md_io_acct = bio->bi_private; 8613 struct bio *orig_bio = md_io_acct->orig_bio; 8614 struct mddev *mddev = md_io_acct->mddev; 8615 8616 orig_bio->bi_status = bio->bi_status; 8617 8618 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8619 bio_put(bio); 8620 bio_endio(orig_bio); 8621 8622 percpu_ref_put(&mddev->active_io); 8623 } 8624 8625 /* 8626 * Used by personalities that don't already clone the bio and thus can't 8627 * easily add the timestamp to their extended bio structure. 8628 */ 8629 void md_account_bio(struct mddev *mddev, struct bio **bio) 8630 { 8631 struct block_device *bdev = (*bio)->bi_bdev; 8632 struct md_io_acct *md_io_acct; 8633 struct bio *clone; 8634 8635 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8636 return; 8637 8638 percpu_ref_get(&mddev->active_io); 8639 8640 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8641 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8642 md_io_acct->orig_bio = *bio; 8643 md_io_acct->start_time = bio_start_io_acct(*bio); 8644 md_io_acct->mddev = mddev; 8645 8646 clone->bi_end_io = md_end_io_acct; 8647 clone->bi_private = md_io_acct; 8648 *bio = clone; 8649 } 8650 EXPORT_SYMBOL_GPL(md_account_bio); 8651 8652 /* md_allow_write(mddev) 8653 * Calling this ensures that the array is marked 'active' so that writes 8654 * may proceed without blocking. It is important to call this before 8655 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8656 * Must be called with mddev_lock held. 8657 */ 8658 void md_allow_write(struct mddev *mddev) 8659 { 8660 if (!mddev->pers) 8661 return; 8662 if (!md_is_rdwr(mddev)) 8663 return; 8664 if (!mddev->pers->sync_request) 8665 return; 8666 8667 spin_lock(&mddev->lock); 8668 if (mddev->in_sync) { 8669 mddev->in_sync = 0; 8670 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8671 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8672 if (mddev->safemode_delay && 8673 mddev->safemode == 0) 8674 mddev->safemode = 1; 8675 spin_unlock(&mddev->lock); 8676 md_update_sb(mddev, 0); 8677 sysfs_notify_dirent_safe(mddev->sysfs_state); 8678 /* wait for the dirty state to be recorded in the metadata */ 8679 wait_event(mddev->sb_wait, 8680 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8681 } else 8682 spin_unlock(&mddev->lock); 8683 } 8684 EXPORT_SYMBOL_GPL(md_allow_write); 8685 8686 #define SYNC_MARKS 10 8687 #define SYNC_MARK_STEP (3*HZ) 8688 #define UPDATE_FREQUENCY (5*60*HZ) 8689 void md_do_sync(struct md_thread *thread) 8690 { 8691 struct mddev *mddev = thread->mddev; 8692 struct mddev *mddev2; 8693 unsigned int currspeed = 0, window; 8694 sector_t max_sectors,j, io_sectors, recovery_done; 8695 unsigned long mark[SYNC_MARKS]; 8696 unsigned long update_time; 8697 sector_t mark_cnt[SYNC_MARKS]; 8698 int last_mark,m; 8699 sector_t last_check; 8700 int skipped = 0; 8701 struct md_rdev *rdev; 8702 char *desc, *action = NULL; 8703 struct blk_plug plug; 8704 int ret; 8705 8706 /* just incase thread restarts... */ 8707 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8708 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8709 return; 8710 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8711 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8712 return; 8713 } 8714 8715 if (mddev_is_clustered(mddev)) { 8716 ret = md_cluster_ops->resync_start(mddev); 8717 if (ret) 8718 goto skip; 8719 8720 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8721 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8722 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8723 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8724 && ((unsigned long long)mddev->curr_resync_completed 8725 < (unsigned long long)mddev->resync_max_sectors)) 8726 goto skip; 8727 } 8728 8729 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8730 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8731 desc = "data-check"; 8732 action = "check"; 8733 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8734 desc = "requested-resync"; 8735 action = "repair"; 8736 } else 8737 desc = "resync"; 8738 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8739 desc = "reshape"; 8740 else 8741 desc = "recovery"; 8742 8743 mddev->last_sync_action = action ?: desc; 8744 8745 /* 8746 * Before starting a resync we must have set curr_resync to 8747 * 2, and then checked that every "conflicting" array has curr_resync 8748 * less than ours. When we find one that is the same or higher 8749 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8750 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8751 * This will mean we have to start checking from the beginning again. 8752 * 8753 */ 8754 8755 do { 8756 int mddev2_minor = -1; 8757 mddev->curr_resync = MD_RESYNC_DELAYED; 8758 8759 try_again: 8760 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8761 goto skip; 8762 spin_lock(&all_mddevs_lock); 8763 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8764 if (test_bit(MD_DELETED, &mddev2->flags)) 8765 continue; 8766 if (mddev2 == mddev) 8767 continue; 8768 if (!mddev->parallel_resync 8769 && mddev2->curr_resync 8770 && match_mddev_units(mddev, mddev2)) { 8771 DEFINE_WAIT(wq); 8772 if (mddev < mddev2 && 8773 mddev->curr_resync == MD_RESYNC_DELAYED) { 8774 /* arbitrarily yield */ 8775 mddev->curr_resync = MD_RESYNC_YIELDED; 8776 wake_up(&resync_wait); 8777 } 8778 if (mddev > mddev2 && 8779 mddev->curr_resync == MD_RESYNC_YIELDED) 8780 /* no need to wait here, we can wait the next 8781 * time 'round when curr_resync == 2 8782 */ 8783 continue; 8784 /* We need to wait 'interruptible' so as not to 8785 * contribute to the load average, and not to 8786 * be caught by 'softlockup' 8787 */ 8788 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8789 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8790 mddev2->curr_resync >= mddev->curr_resync) { 8791 if (mddev2_minor != mddev2->md_minor) { 8792 mddev2_minor = mddev2->md_minor; 8793 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8794 desc, mdname(mddev), 8795 mdname(mddev2)); 8796 } 8797 spin_unlock(&all_mddevs_lock); 8798 8799 if (signal_pending(current)) 8800 flush_signals(current); 8801 schedule(); 8802 finish_wait(&resync_wait, &wq); 8803 goto try_again; 8804 } 8805 finish_wait(&resync_wait, &wq); 8806 } 8807 } 8808 spin_unlock(&all_mddevs_lock); 8809 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8810 8811 j = 0; 8812 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8813 /* resync follows the size requested by the personality, 8814 * which defaults to physical size, but can be virtual size 8815 */ 8816 max_sectors = mddev->resync_max_sectors; 8817 atomic64_set(&mddev->resync_mismatches, 0); 8818 /* we don't use the checkpoint if there's a bitmap */ 8819 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8820 j = mddev->resync_min; 8821 else if (!mddev->bitmap) 8822 j = mddev->recovery_cp; 8823 8824 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8825 max_sectors = mddev->resync_max_sectors; 8826 /* 8827 * If the original node aborts reshaping then we continue the 8828 * reshaping, so set j again to avoid restart reshape from the 8829 * first beginning 8830 */ 8831 if (mddev_is_clustered(mddev) && 8832 mddev->reshape_position != MaxSector) 8833 j = mddev->reshape_position; 8834 } else { 8835 /* recovery follows the physical size of devices */ 8836 max_sectors = mddev->dev_sectors; 8837 j = MaxSector; 8838 rcu_read_lock(); 8839 rdev_for_each_rcu(rdev, mddev) 8840 if (rdev->raid_disk >= 0 && 8841 !test_bit(Journal, &rdev->flags) && 8842 !test_bit(Faulty, &rdev->flags) && 8843 !test_bit(In_sync, &rdev->flags) && 8844 rdev->recovery_offset < j) 8845 j = rdev->recovery_offset; 8846 rcu_read_unlock(); 8847 8848 /* If there is a bitmap, we need to make sure all 8849 * writes that started before we added a spare 8850 * complete before we start doing a recovery. 8851 * Otherwise the write might complete and (via 8852 * bitmap_endwrite) set a bit in the bitmap after the 8853 * recovery has checked that bit and skipped that 8854 * region. 8855 */ 8856 if (mddev->bitmap) { 8857 mddev->pers->quiesce(mddev, 1); 8858 mddev->pers->quiesce(mddev, 0); 8859 } 8860 } 8861 8862 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8863 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8864 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8865 speed_max(mddev), desc); 8866 8867 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8868 8869 io_sectors = 0; 8870 for (m = 0; m < SYNC_MARKS; m++) { 8871 mark[m] = jiffies; 8872 mark_cnt[m] = io_sectors; 8873 } 8874 last_mark = 0; 8875 mddev->resync_mark = mark[last_mark]; 8876 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8877 8878 /* 8879 * Tune reconstruction: 8880 */ 8881 window = 32 * (PAGE_SIZE / 512); 8882 pr_debug("md: using %dk window, over a total of %lluk.\n", 8883 window/2, (unsigned long long)max_sectors/2); 8884 8885 atomic_set(&mddev->recovery_active, 0); 8886 last_check = 0; 8887 8888 if (j >= MD_RESYNC_ACTIVE) { 8889 pr_debug("md: resuming %s of %s from checkpoint.\n", 8890 desc, mdname(mddev)); 8891 mddev->curr_resync = j; 8892 } else 8893 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8894 mddev->curr_resync_completed = j; 8895 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8896 md_new_event(); 8897 update_time = jiffies; 8898 8899 blk_start_plug(&plug); 8900 while (j < max_sectors) { 8901 sector_t sectors; 8902 8903 skipped = 0; 8904 8905 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8906 ((mddev->curr_resync > mddev->curr_resync_completed && 8907 (mddev->curr_resync - mddev->curr_resync_completed) 8908 > (max_sectors >> 4)) || 8909 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8910 (j - mddev->curr_resync_completed)*2 8911 >= mddev->resync_max - mddev->curr_resync_completed || 8912 mddev->curr_resync_completed > mddev->resync_max 8913 )) { 8914 /* time to update curr_resync_completed */ 8915 wait_event(mddev->recovery_wait, 8916 atomic_read(&mddev->recovery_active) == 0); 8917 mddev->curr_resync_completed = j; 8918 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8919 j > mddev->recovery_cp) 8920 mddev->recovery_cp = j; 8921 update_time = jiffies; 8922 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8923 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8924 } 8925 8926 while (j >= mddev->resync_max && 8927 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8928 /* As this condition is controlled by user-space, 8929 * we can block indefinitely, so use '_interruptible' 8930 * to avoid triggering warnings. 8931 */ 8932 flush_signals(current); /* just in case */ 8933 wait_event_interruptible(mddev->recovery_wait, 8934 mddev->resync_max > j 8935 || test_bit(MD_RECOVERY_INTR, 8936 &mddev->recovery)); 8937 } 8938 8939 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8940 break; 8941 8942 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8943 if (sectors == 0) { 8944 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8945 break; 8946 } 8947 8948 if (!skipped) { /* actual IO requested */ 8949 io_sectors += sectors; 8950 atomic_add(sectors, &mddev->recovery_active); 8951 } 8952 8953 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8954 break; 8955 8956 j += sectors; 8957 if (j > max_sectors) 8958 /* when skipping, extra large numbers can be returned. */ 8959 j = max_sectors; 8960 if (j >= MD_RESYNC_ACTIVE) 8961 mddev->curr_resync = j; 8962 mddev->curr_mark_cnt = io_sectors; 8963 if (last_check == 0) 8964 /* this is the earliest that rebuild will be 8965 * visible in /proc/mdstat 8966 */ 8967 md_new_event(); 8968 8969 if (last_check + window > io_sectors || j == max_sectors) 8970 continue; 8971 8972 last_check = io_sectors; 8973 repeat: 8974 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8975 /* step marks */ 8976 int next = (last_mark+1) % SYNC_MARKS; 8977 8978 mddev->resync_mark = mark[next]; 8979 mddev->resync_mark_cnt = mark_cnt[next]; 8980 mark[next] = jiffies; 8981 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8982 last_mark = next; 8983 } 8984 8985 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8986 break; 8987 8988 /* 8989 * this loop exits only if either when we are slower than 8990 * the 'hard' speed limit, or the system was IO-idle for 8991 * a jiffy. 8992 * the system might be non-idle CPU-wise, but we only care 8993 * about not overloading the IO subsystem. (things like an 8994 * e2fsck being done on the RAID array should execute fast) 8995 */ 8996 cond_resched(); 8997 8998 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8999 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9000 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9001 9002 if (currspeed > speed_min(mddev)) { 9003 if (currspeed > speed_max(mddev)) { 9004 msleep(500); 9005 goto repeat; 9006 } 9007 if (!is_mddev_idle(mddev, 0)) { 9008 /* 9009 * Give other IO more of a chance. 9010 * The faster the devices, the less we wait. 9011 */ 9012 wait_event(mddev->recovery_wait, 9013 !atomic_read(&mddev->recovery_active)); 9014 } 9015 } 9016 } 9017 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9018 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9019 ? "interrupted" : "done"); 9020 /* 9021 * this also signals 'finished resyncing' to md_stop 9022 */ 9023 blk_finish_plug(&plug); 9024 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9025 9026 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9027 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9028 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9029 mddev->curr_resync_completed = mddev->curr_resync; 9030 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9031 } 9032 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9033 9034 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9035 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9036 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9037 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9038 if (mddev->curr_resync >= mddev->recovery_cp) { 9039 pr_debug("md: checkpointing %s of %s.\n", 9040 desc, mdname(mddev)); 9041 if (test_bit(MD_RECOVERY_ERROR, 9042 &mddev->recovery)) 9043 mddev->recovery_cp = 9044 mddev->curr_resync_completed; 9045 else 9046 mddev->recovery_cp = 9047 mddev->curr_resync; 9048 } 9049 } else 9050 mddev->recovery_cp = MaxSector; 9051 } else { 9052 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9053 mddev->curr_resync = MaxSector; 9054 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9055 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9056 rcu_read_lock(); 9057 rdev_for_each_rcu(rdev, mddev) 9058 if (rdev->raid_disk >= 0 && 9059 mddev->delta_disks >= 0 && 9060 !test_bit(Journal, &rdev->flags) && 9061 !test_bit(Faulty, &rdev->flags) && 9062 !test_bit(In_sync, &rdev->flags) && 9063 rdev->recovery_offset < mddev->curr_resync) 9064 rdev->recovery_offset = mddev->curr_resync; 9065 rcu_read_unlock(); 9066 } 9067 } 9068 } 9069 skip: 9070 /* set CHANGE_PENDING here since maybe another update is needed, 9071 * so other nodes are informed. It should be harmless for normal 9072 * raid */ 9073 set_mask_bits(&mddev->sb_flags, 0, 9074 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9075 9076 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9077 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9078 mddev->delta_disks > 0 && 9079 mddev->pers->finish_reshape && 9080 mddev->pers->size && 9081 mddev->queue) { 9082 mddev_lock_nointr(mddev); 9083 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9084 mddev_unlock(mddev); 9085 if (!mddev_is_clustered(mddev)) 9086 set_capacity_and_notify(mddev->gendisk, 9087 mddev->array_sectors); 9088 } 9089 9090 spin_lock(&mddev->lock); 9091 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9092 /* We completed so min/max setting can be forgotten if used. */ 9093 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9094 mddev->resync_min = 0; 9095 mddev->resync_max = MaxSector; 9096 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9097 mddev->resync_min = mddev->curr_resync_completed; 9098 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9099 mddev->curr_resync = MD_RESYNC_NONE; 9100 spin_unlock(&mddev->lock); 9101 9102 wake_up(&resync_wait); 9103 md_wakeup_thread(mddev->thread); 9104 return; 9105 } 9106 EXPORT_SYMBOL_GPL(md_do_sync); 9107 9108 static int remove_and_add_spares(struct mddev *mddev, 9109 struct md_rdev *this) 9110 { 9111 struct md_rdev *rdev; 9112 int spares = 0; 9113 int removed = 0; 9114 bool remove_some = false; 9115 9116 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9117 /* Mustn't remove devices when resync thread is running */ 9118 return 0; 9119 9120 rdev_for_each(rdev, mddev) { 9121 if ((this == NULL || rdev == this) && 9122 rdev->raid_disk >= 0 && 9123 !test_bit(Blocked, &rdev->flags) && 9124 test_bit(Faulty, &rdev->flags) && 9125 atomic_read(&rdev->nr_pending)==0) { 9126 /* Faulty non-Blocked devices with nr_pending == 0 9127 * never get nr_pending incremented, 9128 * never get Faulty cleared, and never get Blocked set. 9129 * So we can synchronize_rcu now rather than once per device 9130 */ 9131 remove_some = true; 9132 set_bit(RemoveSynchronized, &rdev->flags); 9133 } 9134 } 9135 9136 if (remove_some) 9137 synchronize_rcu(); 9138 rdev_for_each(rdev, mddev) { 9139 if ((this == NULL || rdev == this) && 9140 rdev->raid_disk >= 0 && 9141 !test_bit(Blocked, &rdev->flags) && 9142 ((test_bit(RemoveSynchronized, &rdev->flags) || 9143 (!test_bit(In_sync, &rdev->flags) && 9144 !test_bit(Journal, &rdev->flags))) && 9145 atomic_read(&rdev->nr_pending)==0)) { 9146 if (mddev->pers->hot_remove_disk( 9147 mddev, rdev) == 0) { 9148 sysfs_unlink_rdev(mddev, rdev); 9149 rdev->saved_raid_disk = rdev->raid_disk; 9150 rdev->raid_disk = -1; 9151 removed++; 9152 } 9153 } 9154 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9155 clear_bit(RemoveSynchronized, &rdev->flags); 9156 } 9157 9158 if (removed && mddev->kobj.sd) 9159 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9160 9161 if (this && removed) 9162 goto no_add; 9163 9164 rdev_for_each(rdev, mddev) { 9165 if (this && this != rdev) 9166 continue; 9167 if (test_bit(Candidate, &rdev->flags)) 9168 continue; 9169 if (rdev->raid_disk >= 0 && 9170 !test_bit(In_sync, &rdev->flags) && 9171 !test_bit(Journal, &rdev->flags) && 9172 !test_bit(Faulty, &rdev->flags)) 9173 spares++; 9174 if (rdev->raid_disk >= 0) 9175 continue; 9176 if (test_bit(Faulty, &rdev->flags)) 9177 continue; 9178 if (!test_bit(Journal, &rdev->flags)) { 9179 if (!md_is_rdwr(mddev) && 9180 !(rdev->saved_raid_disk >= 0 && 9181 !test_bit(Bitmap_sync, &rdev->flags))) 9182 continue; 9183 9184 rdev->recovery_offset = 0; 9185 } 9186 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9187 /* failure here is OK */ 9188 sysfs_link_rdev(mddev, rdev); 9189 if (!test_bit(Journal, &rdev->flags)) 9190 spares++; 9191 md_new_event(); 9192 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9193 } 9194 } 9195 no_add: 9196 if (removed) 9197 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9198 return spares; 9199 } 9200 9201 static void md_start_sync(struct work_struct *ws) 9202 { 9203 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9204 9205 mddev->sync_thread = md_register_thread(md_do_sync, 9206 mddev, 9207 "resync"); 9208 if (!mddev->sync_thread) { 9209 pr_warn("%s: could not start resync thread...\n", 9210 mdname(mddev)); 9211 /* leave the spares where they are, it shouldn't hurt */ 9212 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9213 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9214 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9215 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9216 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9217 wake_up(&resync_wait); 9218 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9219 &mddev->recovery)) 9220 if (mddev->sysfs_action) 9221 sysfs_notify_dirent_safe(mddev->sysfs_action); 9222 } else 9223 md_wakeup_thread(mddev->sync_thread); 9224 sysfs_notify_dirent_safe(mddev->sysfs_action); 9225 md_new_event(); 9226 } 9227 9228 /* 9229 * This routine is regularly called by all per-raid-array threads to 9230 * deal with generic issues like resync and super-block update. 9231 * Raid personalities that don't have a thread (linear/raid0) do not 9232 * need this as they never do any recovery or update the superblock. 9233 * 9234 * It does not do any resync itself, but rather "forks" off other threads 9235 * to do that as needed. 9236 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9237 * "->recovery" and create a thread at ->sync_thread. 9238 * When the thread finishes it sets MD_RECOVERY_DONE 9239 * and wakeups up this thread which will reap the thread and finish up. 9240 * This thread also removes any faulty devices (with nr_pending == 0). 9241 * 9242 * The overall approach is: 9243 * 1/ if the superblock needs updating, update it. 9244 * 2/ If a recovery thread is running, don't do anything else. 9245 * 3/ If recovery has finished, clean up, possibly marking spares active. 9246 * 4/ If there are any faulty devices, remove them. 9247 * 5/ If array is degraded, try to add spares devices 9248 * 6/ If array has spares or is not in-sync, start a resync thread. 9249 */ 9250 void md_check_recovery(struct mddev *mddev) 9251 { 9252 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9253 /* Write superblock - thread that called mddev_suspend() 9254 * holds reconfig_mutex for us. 9255 */ 9256 set_bit(MD_UPDATING_SB, &mddev->flags); 9257 smp_mb__after_atomic(); 9258 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9259 md_update_sb(mddev, 0); 9260 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9261 wake_up(&mddev->sb_wait); 9262 } 9263 9264 if (is_md_suspended(mddev)) 9265 return; 9266 9267 if (mddev->bitmap) 9268 md_bitmap_daemon_work(mddev); 9269 9270 if (signal_pending(current)) { 9271 if (mddev->pers->sync_request && !mddev->external) { 9272 pr_debug("md: %s in immediate safe mode\n", 9273 mdname(mddev)); 9274 mddev->safemode = 2; 9275 } 9276 flush_signals(current); 9277 } 9278 9279 if (!md_is_rdwr(mddev) && 9280 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9281 return; 9282 if ( ! ( 9283 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9284 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9285 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9286 (mddev->external == 0 && mddev->safemode == 1) || 9287 (mddev->safemode == 2 9288 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9289 )) 9290 return; 9291 9292 if (mddev_trylock(mddev)) { 9293 int spares = 0; 9294 bool try_set_sync = mddev->safemode != 0; 9295 9296 if (!mddev->external && mddev->safemode == 1) 9297 mddev->safemode = 0; 9298 9299 if (!md_is_rdwr(mddev)) { 9300 struct md_rdev *rdev; 9301 if (!mddev->external && mddev->in_sync) 9302 /* 'Blocked' flag not needed as failed devices 9303 * will be recorded if array switched to read/write. 9304 * Leaving it set will prevent the device 9305 * from being removed. 9306 */ 9307 rdev_for_each(rdev, mddev) 9308 clear_bit(Blocked, &rdev->flags); 9309 /* On a read-only array we can: 9310 * - remove failed devices 9311 * - add already-in_sync devices if the array itself 9312 * is in-sync. 9313 * As we only add devices that are already in-sync, 9314 * we can activate the spares immediately. 9315 */ 9316 remove_and_add_spares(mddev, NULL); 9317 /* There is no thread, but we need to call 9318 * ->spare_active and clear saved_raid_disk 9319 */ 9320 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9321 md_unregister_thread(&mddev->sync_thread); 9322 md_reap_sync_thread(mddev); 9323 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9324 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9325 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9326 goto unlock; 9327 } 9328 9329 if (mddev_is_clustered(mddev)) { 9330 struct md_rdev *rdev, *tmp; 9331 /* kick the device if another node issued a 9332 * remove disk. 9333 */ 9334 rdev_for_each_safe(rdev, tmp, mddev) { 9335 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9336 rdev->raid_disk < 0) 9337 md_kick_rdev_from_array(rdev); 9338 } 9339 } 9340 9341 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9342 spin_lock(&mddev->lock); 9343 set_in_sync(mddev); 9344 spin_unlock(&mddev->lock); 9345 } 9346 9347 if (mddev->sb_flags) 9348 md_update_sb(mddev, 0); 9349 9350 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9351 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9352 /* resync/recovery still happening */ 9353 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9354 goto unlock; 9355 } 9356 if (mddev->sync_thread) { 9357 md_unregister_thread(&mddev->sync_thread); 9358 md_reap_sync_thread(mddev); 9359 goto unlock; 9360 } 9361 /* Set RUNNING before clearing NEEDED to avoid 9362 * any transients in the value of "sync_action". 9363 */ 9364 mddev->curr_resync_completed = 0; 9365 spin_lock(&mddev->lock); 9366 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9367 spin_unlock(&mddev->lock); 9368 /* Clear some bits that don't mean anything, but 9369 * might be left set 9370 */ 9371 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9372 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9373 9374 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9375 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9376 goto not_running; 9377 /* no recovery is running. 9378 * remove any failed drives, then 9379 * add spares if possible. 9380 * Spares are also removed and re-added, to allow 9381 * the personality to fail the re-add. 9382 */ 9383 9384 if (mddev->reshape_position != MaxSector) { 9385 if (mddev->pers->check_reshape == NULL || 9386 mddev->pers->check_reshape(mddev) != 0) 9387 /* Cannot proceed */ 9388 goto not_running; 9389 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9390 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9391 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9392 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9393 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9394 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9395 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9396 } else if (mddev->recovery_cp < MaxSector) { 9397 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9398 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9399 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9400 /* nothing to be done ... */ 9401 goto not_running; 9402 9403 if (mddev->pers->sync_request) { 9404 if (spares) { 9405 /* We are adding a device or devices to an array 9406 * which has the bitmap stored on all devices. 9407 * So make sure all bitmap pages get written 9408 */ 9409 md_bitmap_write_all(mddev->bitmap); 9410 } 9411 INIT_WORK(&mddev->del_work, md_start_sync); 9412 queue_work(md_misc_wq, &mddev->del_work); 9413 goto unlock; 9414 } 9415 not_running: 9416 if (!mddev->sync_thread) { 9417 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9418 wake_up(&resync_wait); 9419 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9420 &mddev->recovery)) 9421 if (mddev->sysfs_action) 9422 sysfs_notify_dirent_safe(mddev->sysfs_action); 9423 } 9424 unlock: 9425 wake_up(&mddev->sb_wait); 9426 mddev_unlock(mddev); 9427 } 9428 } 9429 EXPORT_SYMBOL(md_check_recovery); 9430 9431 void md_reap_sync_thread(struct mddev *mddev) 9432 { 9433 struct md_rdev *rdev; 9434 sector_t old_dev_sectors = mddev->dev_sectors; 9435 bool is_reshaped = false; 9436 9437 /* sync_thread should be unregistered, collect result */ 9438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9439 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9440 mddev->degraded != mddev->raid_disks) { 9441 /* success...*/ 9442 /* activate any spares */ 9443 if (mddev->pers->spare_active(mddev)) { 9444 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9445 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9446 } 9447 } 9448 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9449 mddev->pers->finish_reshape) { 9450 mddev->pers->finish_reshape(mddev); 9451 if (mddev_is_clustered(mddev)) 9452 is_reshaped = true; 9453 } 9454 9455 /* If array is no-longer degraded, then any saved_raid_disk 9456 * information must be scrapped. 9457 */ 9458 if (!mddev->degraded) 9459 rdev_for_each(rdev, mddev) 9460 rdev->saved_raid_disk = -1; 9461 9462 md_update_sb(mddev, 1); 9463 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9464 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9465 * clustered raid */ 9466 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9467 md_cluster_ops->resync_finish(mddev); 9468 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9469 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9470 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9471 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9472 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9473 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9474 /* 9475 * We call md_cluster_ops->update_size here because sync_size could 9476 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9477 * so it is time to update size across cluster. 9478 */ 9479 if (mddev_is_clustered(mddev) && is_reshaped 9480 && !test_bit(MD_CLOSING, &mddev->flags)) 9481 md_cluster_ops->update_size(mddev, old_dev_sectors); 9482 wake_up(&resync_wait); 9483 /* flag recovery needed just to double check */ 9484 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9485 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9486 sysfs_notify_dirent_safe(mddev->sysfs_action); 9487 md_new_event(); 9488 if (mddev->event_work.func) 9489 queue_work(md_misc_wq, &mddev->event_work); 9490 } 9491 EXPORT_SYMBOL(md_reap_sync_thread); 9492 9493 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9494 { 9495 sysfs_notify_dirent_safe(rdev->sysfs_state); 9496 wait_event_timeout(rdev->blocked_wait, 9497 !test_bit(Blocked, &rdev->flags) && 9498 !test_bit(BlockedBadBlocks, &rdev->flags), 9499 msecs_to_jiffies(5000)); 9500 rdev_dec_pending(rdev, mddev); 9501 } 9502 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9503 9504 void md_finish_reshape(struct mddev *mddev) 9505 { 9506 /* called be personality module when reshape completes. */ 9507 struct md_rdev *rdev; 9508 9509 rdev_for_each(rdev, mddev) { 9510 if (rdev->data_offset > rdev->new_data_offset) 9511 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9512 else 9513 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9514 rdev->data_offset = rdev->new_data_offset; 9515 } 9516 } 9517 EXPORT_SYMBOL(md_finish_reshape); 9518 9519 /* Bad block management */ 9520 9521 /* Returns 1 on success, 0 on failure */ 9522 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9523 int is_new) 9524 { 9525 struct mddev *mddev = rdev->mddev; 9526 int rv; 9527 if (is_new) 9528 s += rdev->new_data_offset; 9529 else 9530 s += rdev->data_offset; 9531 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9532 if (rv == 0) { 9533 /* Make sure they get written out promptly */ 9534 if (test_bit(ExternalBbl, &rdev->flags)) 9535 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9536 sysfs_notify_dirent_safe(rdev->sysfs_state); 9537 set_mask_bits(&mddev->sb_flags, 0, 9538 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9539 md_wakeup_thread(rdev->mddev->thread); 9540 return 1; 9541 } else 9542 return 0; 9543 } 9544 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9545 9546 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9547 int is_new) 9548 { 9549 int rv; 9550 if (is_new) 9551 s += rdev->new_data_offset; 9552 else 9553 s += rdev->data_offset; 9554 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9555 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9556 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9557 return rv; 9558 } 9559 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9560 9561 static int md_notify_reboot(struct notifier_block *this, 9562 unsigned long code, void *x) 9563 { 9564 struct mddev *mddev, *n; 9565 int need_delay = 0; 9566 9567 spin_lock(&all_mddevs_lock); 9568 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9569 if (!mddev_get(mddev)) 9570 continue; 9571 spin_unlock(&all_mddevs_lock); 9572 if (mddev_trylock(mddev)) { 9573 if (mddev->pers) 9574 __md_stop_writes(mddev); 9575 if (mddev->persistent) 9576 mddev->safemode = 2; 9577 mddev_unlock(mddev); 9578 } 9579 need_delay = 1; 9580 mddev_put(mddev); 9581 spin_lock(&all_mddevs_lock); 9582 } 9583 spin_unlock(&all_mddevs_lock); 9584 9585 /* 9586 * certain more exotic SCSI devices are known to be 9587 * volatile wrt too early system reboots. While the 9588 * right place to handle this issue is the given 9589 * driver, we do want to have a safe RAID driver ... 9590 */ 9591 if (need_delay) 9592 msleep(1000); 9593 9594 return NOTIFY_DONE; 9595 } 9596 9597 static struct notifier_block md_notifier = { 9598 .notifier_call = md_notify_reboot, 9599 .next = NULL, 9600 .priority = INT_MAX, /* before any real devices */ 9601 }; 9602 9603 static void md_geninit(void) 9604 { 9605 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9606 9607 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9608 } 9609 9610 static int __init md_init(void) 9611 { 9612 int ret = -ENOMEM; 9613 9614 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9615 if (!md_wq) 9616 goto err_wq; 9617 9618 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9619 if (!md_misc_wq) 9620 goto err_misc_wq; 9621 9622 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9623 if (!md_rdev_misc_wq) 9624 goto err_rdev_misc_wq; 9625 9626 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9627 if (ret < 0) 9628 goto err_md; 9629 9630 ret = __register_blkdev(0, "mdp", md_probe); 9631 if (ret < 0) 9632 goto err_mdp; 9633 mdp_major = ret; 9634 9635 register_reboot_notifier(&md_notifier); 9636 raid_table_header = register_sysctl("dev/raid", raid_table); 9637 9638 md_geninit(); 9639 return 0; 9640 9641 err_mdp: 9642 unregister_blkdev(MD_MAJOR, "md"); 9643 err_md: 9644 destroy_workqueue(md_rdev_misc_wq); 9645 err_rdev_misc_wq: 9646 destroy_workqueue(md_misc_wq); 9647 err_misc_wq: 9648 destroy_workqueue(md_wq); 9649 err_wq: 9650 return ret; 9651 } 9652 9653 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9654 { 9655 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9656 struct md_rdev *rdev2, *tmp; 9657 int role, ret; 9658 9659 /* 9660 * If size is changed in another node then we need to 9661 * do resize as well. 9662 */ 9663 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9664 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9665 if (ret) 9666 pr_info("md-cluster: resize failed\n"); 9667 else 9668 md_bitmap_update_sb(mddev->bitmap); 9669 } 9670 9671 /* Check for change of roles in the active devices */ 9672 rdev_for_each_safe(rdev2, tmp, mddev) { 9673 if (test_bit(Faulty, &rdev2->flags)) 9674 continue; 9675 9676 /* Check if the roles changed */ 9677 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9678 9679 if (test_bit(Candidate, &rdev2->flags)) { 9680 if (role == MD_DISK_ROLE_FAULTY) { 9681 pr_info("md: Removing Candidate device %pg because add failed\n", 9682 rdev2->bdev); 9683 md_kick_rdev_from_array(rdev2); 9684 continue; 9685 } 9686 else 9687 clear_bit(Candidate, &rdev2->flags); 9688 } 9689 9690 if (role != rdev2->raid_disk) { 9691 /* 9692 * got activated except reshape is happening. 9693 */ 9694 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9695 !(le32_to_cpu(sb->feature_map) & 9696 MD_FEATURE_RESHAPE_ACTIVE)) { 9697 rdev2->saved_raid_disk = role; 9698 ret = remove_and_add_spares(mddev, rdev2); 9699 pr_info("Activated spare: %pg\n", 9700 rdev2->bdev); 9701 /* wakeup mddev->thread here, so array could 9702 * perform resync with the new activated disk */ 9703 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9704 md_wakeup_thread(mddev->thread); 9705 } 9706 /* device faulty 9707 * We just want to do the minimum to mark the disk 9708 * as faulty. The recovery is performed by the 9709 * one who initiated the error. 9710 */ 9711 if (role == MD_DISK_ROLE_FAULTY || 9712 role == MD_DISK_ROLE_JOURNAL) { 9713 md_error(mddev, rdev2); 9714 clear_bit(Blocked, &rdev2->flags); 9715 } 9716 } 9717 } 9718 9719 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9720 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9721 if (ret) 9722 pr_warn("md: updating array disks failed. %d\n", ret); 9723 } 9724 9725 /* 9726 * Since mddev->delta_disks has already updated in update_raid_disks, 9727 * so it is time to check reshape. 9728 */ 9729 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9730 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9731 /* 9732 * reshape is happening in the remote node, we need to 9733 * update reshape_position and call start_reshape. 9734 */ 9735 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9736 if (mddev->pers->update_reshape_pos) 9737 mddev->pers->update_reshape_pos(mddev); 9738 if (mddev->pers->start_reshape) 9739 mddev->pers->start_reshape(mddev); 9740 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9741 mddev->reshape_position != MaxSector && 9742 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9743 /* reshape is just done in another node. */ 9744 mddev->reshape_position = MaxSector; 9745 if (mddev->pers->update_reshape_pos) 9746 mddev->pers->update_reshape_pos(mddev); 9747 } 9748 9749 /* Finally set the event to be up to date */ 9750 mddev->events = le64_to_cpu(sb->events); 9751 } 9752 9753 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9754 { 9755 int err; 9756 struct page *swapout = rdev->sb_page; 9757 struct mdp_superblock_1 *sb; 9758 9759 /* Store the sb page of the rdev in the swapout temporary 9760 * variable in case we err in the future 9761 */ 9762 rdev->sb_page = NULL; 9763 err = alloc_disk_sb(rdev); 9764 if (err == 0) { 9765 ClearPageUptodate(rdev->sb_page); 9766 rdev->sb_loaded = 0; 9767 err = super_types[mddev->major_version]. 9768 load_super(rdev, NULL, mddev->minor_version); 9769 } 9770 if (err < 0) { 9771 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9772 __func__, __LINE__, rdev->desc_nr, err); 9773 if (rdev->sb_page) 9774 put_page(rdev->sb_page); 9775 rdev->sb_page = swapout; 9776 rdev->sb_loaded = 1; 9777 return err; 9778 } 9779 9780 sb = page_address(rdev->sb_page); 9781 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9782 * is not set 9783 */ 9784 9785 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9786 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9787 9788 /* The other node finished recovery, call spare_active to set 9789 * device In_sync and mddev->degraded 9790 */ 9791 if (rdev->recovery_offset == MaxSector && 9792 !test_bit(In_sync, &rdev->flags) && 9793 mddev->pers->spare_active(mddev)) 9794 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9795 9796 put_page(swapout); 9797 return 0; 9798 } 9799 9800 void md_reload_sb(struct mddev *mddev, int nr) 9801 { 9802 struct md_rdev *rdev = NULL, *iter; 9803 int err; 9804 9805 /* Find the rdev */ 9806 rdev_for_each_rcu(iter, mddev) { 9807 if (iter->desc_nr == nr) { 9808 rdev = iter; 9809 break; 9810 } 9811 } 9812 9813 if (!rdev) { 9814 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9815 return; 9816 } 9817 9818 err = read_rdev(mddev, rdev); 9819 if (err < 0) 9820 return; 9821 9822 check_sb_changes(mddev, rdev); 9823 9824 /* Read all rdev's to update recovery_offset */ 9825 rdev_for_each_rcu(rdev, mddev) { 9826 if (!test_bit(Faulty, &rdev->flags)) 9827 read_rdev(mddev, rdev); 9828 } 9829 } 9830 EXPORT_SYMBOL(md_reload_sb); 9831 9832 #ifndef MODULE 9833 9834 /* 9835 * Searches all registered partitions for autorun RAID arrays 9836 * at boot time. 9837 */ 9838 9839 static DEFINE_MUTEX(detected_devices_mutex); 9840 static LIST_HEAD(all_detected_devices); 9841 struct detected_devices_node { 9842 struct list_head list; 9843 dev_t dev; 9844 }; 9845 9846 void md_autodetect_dev(dev_t dev) 9847 { 9848 struct detected_devices_node *node_detected_dev; 9849 9850 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9851 if (node_detected_dev) { 9852 node_detected_dev->dev = dev; 9853 mutex_lock(&detected_devices_mutex); 9854 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9855 mutex_unlock(&detected_devices_mutex); 9856 } 9857 } 9858 9859 void md_autostart_arrays(int part) 9860 { 9861 struct md_rdev *rdev; 9862 struct detected_devices_node *node_detected_dev; 9863 dev_t dev; 9864 int i_scanned, i_passed; 9865 9866 i_scanned = 0; 9867 i_passed = 0; 9868 9869 pr_info("md: Autodetecting RAID arrays.\n"); 9870 9871 mutex_lock(&detected_devices_mutex); 9872 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9873 i_scanned++; 9874 node_detected_dev = list_entry(all_detected_devices.next, 9875 struct detected_devices_node, list); 9876 list_del(&node_detected_dev->list); 9877 dev = node_detected_dev->dev; 9878 kfree(node_detected_dev); 9879 mutex_unlock(&detected_devices_mutex); 9880 rdev = md_import_device(dev,0, 90); 9881 mutex_lock(&detected_devices_mutex); 9882 if (IS_ERR(rdev)) 9883 continue; 9884 9885 if (test_bit(Faulty, &rdev->flags)) 9886 continue; 9887 9888 set_bit(AutoDetected, &rdev->flags); 9889 list_add(&rdev->same_set, &pending_raid_disks); 9890 i_passed++; 9891 } 9892 mutex_unlock(&detected_devices_mutex); 9893 9894 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9895 9896 autorun_devices(part); 9897 } 9898 9899 #endif /* !MODULE */ 9900 9901 static __exit void md_exit(void) 9902 { 9903 struct mddev *mddev, *n; 9904 int delay = 1; 9905 9906 unregister_blkdev(MD_MAJOR,"md"); 9907 unregister_blkdev(mdp_major, "mdp"); 9908 unregister_reboot_notifier(&md_notifier); 9909 unregister_sysctl_table(raid_table_header); 9910 9911 /* We cannot unload the modules while some process is 9912 * waiting for us in select() or poll() - wake them up 9913 */ 9914 md_unloading = 1; 9915 while (waitqueue_active(&md_event_waiters)) { 9916 /* not safe to leave yet */ 9917 wake_up(&md_event_waiters); 9918 msleep(delay); 9919 delay += delay; 9920 } 9921 remove_proc_entry("mdstat", NULL); 9922 9923 spin_lock(&all_mddevs_lock); 9924 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9925 if (!mddev_get(mddev)) 9926 continue; 9927 spin_unlock(&all_mddevs_lock); 9928 export_array(mddev); 9929 mddev->ctime = 0; 9930 mddev->hold_active = 0; 9931 /* 9932 * As the mddev is now fully clear, mddev_put will schedule 9933 * the mddev for destruction by a workqueue, and the 9934 * destroy_workqueue() below will wait for that to complete. 9935 */ 9936 mddev_put(mddev); 9937 spin_lock(&all_mddevs_lock); 9938 } 9939 spin_unlock(&all_mddevs_lock); 9940 9941 destroy_workqueue(md_rdev_misc_wq); 9942 destroy_workqueue(md_misc_wq); 9943 destroy_workqueue(md_wq); 9944 } 9945 9946 subsys_initcall(md_init); 9947 module_exit(md_exit) 9948 9949 static int get_ro(char *buffer, const struct kernel_param *kp) 9950 { 9951 return sprintf(buffer, "%d\n", start_readonly); 9952 } 9953 static int set_ro(const char *val, const struct kernel_param *kp) 9954 { 9955 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9956 } 9957 9958 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9959 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9960 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9961 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9962 9963 MODULE_LICENSE("GPL"); 9964 MODULE_DESCRIPTION("MD RAID framework"); 9965 MODULE_ALIAS("md"); 9966 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9967