xref: /openbmc/linux/drivers/md/md.c (revision 6774def6)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 
76 /*
77  * Default number of read corrections we'll attempt on an rdev
78  * before ejecting it from the array. We divide the read error
79  * count by 2 for every hour elapsed between read errors.
80  */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84  * is 1000 KB/sec, so the extra system load does not show up that much.
85  * Increase it if you want to have more _guaranteed_ speed. Note that
86  * the RAID driver will use the maximum available bandwidth if the IO
87  * subsystem is idle. There is also an 'absolute maximum' reconstruction
88  * speed limit - in case reconstruction slows down your system despite
89  * idle IO detection.
90  *
91  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92  * or /sys/block/mdX/md/sync_speed_{min,max}
93  */
94 
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99 	return mddev->sync_speed_min ?
100 		mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102 
103 static inline int speed_max(struct mddev *mddev)
104 {
105 	return mddev->sync_speed_max ?
106 		mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108 
109 static struct ctl_table_header *raid_table_header;
110 
111 static struct ctl_table raid_table[] = {
112 	{
113 		.procname	= "speed_limit_min",
114 		.data		= &sysctl_speed_limit_min,
115 		.maxlen		= sizeof(int),
116 		.mode		= S_IRUGO|S_IWUSR,
117 		.proc_handler	= proc_dointvec,
118 	},
119 	{
120 		.procname	= "speed_limit_max",
121 		.data		= &sysctl_speed_limit_max,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{ }
127 };
128 
129 static struct ctl_table raid_dir_table[] = {
130 	{
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ }
137 };
138 
139 static struct ctl_table raid_root_table[] = {
140 	{
141 		.procname	= "dev",
142 		.maxlen		= 0,
143 		.mode		= 0555,
144 		.child		= raid_dir_table,
145 	},
146 	{  }
147 };
148 
149 static const struct block_device_operations md_fops;
150 
151 static int start_readonly;
152 
153 /* bio_clone_mddev
154  * like bio_clone, but with a local bio set
155  */
156 
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 			    struct mddev *mddev)
159 {
160 	struct bio *b;
161 
162 	if (!mddev || !mddev->bio_set)
163 		return bio_alloc(gfp_mask, nr_iovecs);
164 
165 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 	if (!b)
167 		return NULL;
168 	return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171 
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 			    struct mddev *mddev)
174 {
175 	if (!mddev || !mddev->bio_set)
176 		return bio_clone(bio, gfp_mask);
177 
178 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181 
182 /*
183  * We have a system wide 'event count' that is incremented
184  * on any 'interesting' event, and readers of /proc/mdstat
185  * can use 'poll' or 'select' to find out when the event
186  * count increases.
187  *
188  * Events are:
189  *  start array, stop array, error, add device, remove device,
190  *  start build, activate spare
191  */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196 	atomic_inc(&md_event_count);
197 	wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200 
201 /* Alternate version that can be called from interrupts
202  * when calling sysfs_notify isn't needed.
203  */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 	atomic_inc(&md_event_count);
207 	wake_up(&md_event_waiters);
208 }
209 
210 /*
211  * Enables to iterate over all existing md arrays
212  * all_mddevs_lock protects this list.
213  */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216 
217 /*
218  * iterates through all used mddevs in the system.
219  * We take care to grab the all_mddevs_lock whenever navigating
220  * the list, and to always hold a refcount when unlocked.
221  * Any code which breaks out of this loop while own
222  * a reference to the current mddev and must mddev_put it.
223  */
224 #define for_each_mddev(_mddev,_tmp)					\
225 									\
226 	for (({ spin_lock(&all_mddevs_lock);				\
227 		_tmp = all_mddevs.next;					\
228 		_mddev = NULL;});					\
229 	     ({ if (_tmp != &all_mddevs)				\
230 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 		spin_unlock(&all_mddevs_lock);				\
232 		if (_mddev) mddev_put(_mddev);				\
233 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
234 		_tmp != &all_mddevs;});					\
235 	     ({ spin_lock(&all_mddevs_lock);				\
236 		_tmp = _tmp->next;})					\
237 		)
238 
239 /* Rather than calling directly into the personality make_request function,
240  * IO requests come here first so that we can check if the device is
241  * being suspended pending a reconfiguration.
242  * We hold a refcount over the call to ->make_request.  By the time that
243  * call has finished, the bio has been linked into some internal structure
244  * and so is visible to ->quiesce(), so we don't need the refcount any more.
245  */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 	const int rw = bio_data_dir(bio);
249 	struct mddev *mddev = q->queuedata;
250 	int cpu;
251 	unsigned int sectors;
252 
253 	if (mddev == NULL || mddev->pers == NULL
254 	    || !mddev->ready) {
255 		bio_io_error(bio);
256 		return;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 		return;
261 	}
262 	smp_rmb(); /* Ensure implications of  'active' are visible */
263 	rcu_read_lock();
264 	if (mddev->suspended) {
265 		DEFINE_WAIT(__wait);
266 		for (;;) {
267 			prepare_to_wait(&mddev->sb_wait, &__wait,
268 					TASK_UNINTERRUPTIBLE);
269 			if (!mddev->suspended)
270 				break;
271 			rcu_read_unlock();
272 			schedule();
273 			rcu_read_lock();
274 		}
275 		finish_wait(&mddev->sb_wait, &__wait);
276 	}
277 	atomic_inc(&mddev->active_io);
278 	rcu_read_unlock();
279 
280 	/*
281 	 * save the sectors now since our bio can
282 	 * go away inside make_request
283 	 */
284 	sectors = bio_sectors(bio);
285 	mddev->pers->make_request(mddev, bio);
286 
287 	cpu = part_stat_lock();
288 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
289 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
290 	part_stat_unlock();
291 
292 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
293 		wake_up(&mddev->sb_wait);
294 }
295 
296 /* mddev_suspend makes sure no new requests are submitted
297  * to the device, and that any requests that have been submitted
298  * are completely handled.
299  * Once ->stop is called and completes, the module will be completely
300  * unused.
301  */
302 void mddev_suspend(struct mddev *mddev)
303 {
304 	BUG_ON(mddev->suspended);
305 	mddev->suspended = 1;
306 	synchronize_rcu();
307 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
308 	mddev->pers->quiesce(mddev, 1);
309 
310 	del_timer_sync(&mddev->safemode_timer);
311 }
312 EXPORT_SYMBOL_GPL(mddev_suspend);
313 
314 void mddev_resume(struct mddev *mddev)
315 {
316 	mddev->suspended = 0;
317 	wake_up(&mddev->sb_wait);
318 	mddev->pers->quiesce(mddev, 0);
319 
320 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
321 	md_wakeup_thread(mddev->thread);
322 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
323 }
324 EXPORT_SYMBOL_GPL(mddev_resume);
325 
326 int mddev_congested(struct mddev *mddev, int bits)
327 {
328 	return mddev->suspended;
329 }
330 EXPORT_SYMBOL(mddev_congested);
331 
332 /*
333  * Generic flush handling for md
334  */
335 
336 static void md_end_flush(struct bio *bio, int err)
337 {
338 	struct md_rdev *rdev = bio->bi_private;
339 	struct mddev *mddev = rdev->mddev;
340 
341 	rdev_dec_pending(rdev, mddev);
342 
343 	if (atomic_dec_and_test(&mddev->flush_pending)) {
344 		/* The pre-request flush has finished */
345 		queue_work(md_wq, &mddev->flush_work);
346 	}
347 	bio_put(bio);
348 }
349 
350 static void md_submit_flush_data(struct work_struct *ws);
351 
352 static void submit_flushes(struct work_struct *ws)
353 {
354 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
355 	struct md_rdev *rdev;
356 
357 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
358 	atomic_set(&mddev->flush_pending, 1);
359 	rcu_read_lock();
360 	rdev_for_each_rcu(rdev, mddev)
361 		if (rdev->raid_disk >= 0 &&
362 		    !test_bit(Faulty, &rdev->flags)) {
363 			/* Take two references, one is dropped
364 			 * when request finishes, one after
365 			 * we reclaim rcu_read_lock
366 			 */
367 			struct bio *bi;
368 			atomic_inc(&rdev->nr_pending);
369 			atomic_inc(&rdev->nr_pending);
370 			rcu_read_unlock();
371 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
372 			bi->bi_end_io = md_end_flush;
373 			bi->bi_private = rdev;
374 			bi->bi_bdev = rdev->bdev;
375 			atomic_inc(&mddev->flush_pending);
376 			submit_bio(WRITE_FLUSH, bi);
377 			rcu_read_lock();
378 			rdev_dec_pending(rdev, mddev);
379 		}
380 	rcu_read_unlock();
381 	if (atomic_dec_and_test(&mddev->flush_pending))
382 		queue_work(md_wq, &mddev->flush_work);
383 }
384 
385 static void md_submit_flush_data(struct work_struct *ws)
386 {
387 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
388 	struct bio *bio = mddev->flush_bio;
389 
390 	if (bio->bi_iter.bi_size == 0)
391 		/* an empty barrier - all done */
392 		bio_endio(bio, 0);
393 	else {
394 		bio->bi_rw &= ~REQ_FLUSH;
395 		mddev->pers->make_request(mddev, bio);
396 	}
397 
398 	mddev->flush_bio = NULL;
399 	wake_up(&mddev->sb_wait);
400 }
401 
402 void md_flush_request(struct mddev *mddev, struct bio *bio)
403 {
404 	spin_lock_irq(&mddev->write_lock);
405 	wait_event_lock_irq(mddev->sb_wait,
406 			    !mddev->flush_bio,
407 			    mddev->write_lock);
408 	mddev->flush_bio = bio;
409 	spin_unlock_irq(&mddev->write_lock);
410 
411 	INIT_WORK(&mddev->flush_work, submit_flushes);
412 	queue_work(md_wq, &mddev->flush_work);
413 }
414 EXPORT_SYMBOL(md_flush_request);
415 
416 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
417 {
418 	struct mddev *mddev = cb->data;
419 	md_wakeup_thread(mddev->thread);
420 	kfree(cb);
421 }
422 EXPORT_SYMBOL(md_unplug);
423 
424 static inline struct mddev *mddev_get(struct mddev *mddev)
425 {
426 	atomic_inc(&mddev->active);
427 	return mddev;
428 }
429 
430 static void mddev_delayed_delete(struct work_struct *ws);
431 
432 static void mddev_put(struct mddev *mddev)
433 {
434 	struct bio_set *bs = NULL;
435 
436 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
437 		return;
438 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
439 	    mddev->ctime == 0 && !mddev->hold_active) {
440 		/* Array is not configured at all, and not held active,
441 		 * so destroy it */
442 		list_del_init(&mddev->all_mddevs);
443 		bs = mddev->bio_set;
444 		mddev->bio_set = NULL;
445 		if (mddev->gendisk) {
446 			/* We did a probe so need to clean up.  Call
447 			 * queue_work inside the spinlock so that
448 			 * flush_workqueue() after mddev_find will
449 			 * succeed in waiting for the work to be done.
450 			 */
451 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
452 			queue_work(md_misc_wq, &mddev->del_work);
453 		} else
454 			kfree(mddev);
455 	}
456 	spin_unlock(&all_mddevs_lock);
457 	if (bs)
458 		bioset_free(bs);
459 }
460 
461 void mddev_init(struct mddev *mddev)
462 {
463 	mutex_init(&mddev->open_mutex);
464 	mutex_init(&mddev->reconfig_mutex);
465 	mutex_init(&mddev->bitmap_info.mutex);
466 	INIT_LIST_HEAD(&mddev->disks);
467 	INIT_LIST_HEAD(&mddev->all_mddevs);
468 	init_timer(&mddev->safemode_timer);
469 	atomic_set(&mddev->active, 1);
470 	atomic_set(&mddev->openers, 0);
471 	atomic_set(&mddev->active_io, 0);
472 	spin_lock_init(&mddev->write_lock);
473 	atomic_set(&mddev->flush_pending, 0);
474 	init_waitqueue_head(&mddev->sb_wait);
475 	init_waitqueue_head(&mddev->recovery_wait);
476 	mddev->reshape_position = MaxSector;
477 	mddev->reshape_backwards = 0;
478 	mddev->last_sync_action = "none";
479 	mddev->resync_min = 0;
480 	mddev->resync_max = MaxSector;
481 	mddev->level = LEVEL_NONE;
482 }
483 EXPORT_SYMBOL_GPL(mddev_init);
484 
485 static struct mddev *mddev_find(dev_t unit)
486 {
487 	struct mddev *mddev, *new = NULL;
488 
489 	if (unit && MAJOR(unit) != MD_MAJOR)
490 		unit &= ~((1<<MdpMinorShift)-1);
491 
492  retry:
493 	spin_lock(&all_mddevs_lock);
494 
495 	if (unit) {
496 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
497 			if (mddev->unit == unit) {
498 				mddev_get(mddev);
499 				spin_unlock(&all_mddevs_lock);
500 				kfree(new);
501 				return mddev;
502 			}
503 
504 		if (new) {
505 			list_add(&new->all_mddevs, &all_mddevs);
506 			spin_unlock(&all_mddevs_lock);
507 			new->hold_active = UNTIL_IOCTL;
508 			return new;
509 		}
510 	} else if (new) {
511 		/* find an unused unit number */
512 		static int next_minor = 512;
513 		int start = next_minor;
514 		int is_free = 0;
515 		int dev = 0;
516 		while (!is_free) {
517 			dev = MKDEV(MD_MAJOR, next_minor);
518 			next_minor++;
519 			if (next_minor > MINORMASK)
520 				next_minor = 0;
521 			if (next_minor == start) {
522 				/* Oh dear, all in use. */
523 				spin_unlock(&all_mddevs_lock);
524 				kfree(new);
525 				return NULL;
526 			}
527 
528 			is_free = 1;
529 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
530 				if (mddev->unit == dev) {
531 					is_free = 0;
532 					break;
533 				}
534 		}
535 		new->unit = dev;
536 		new->md_minor = MINOR(dev);
537 		new->hold_active = UNTIL_STOP;
538 		list_add(&new->all_mddevs, &all_mddevs);
539 		spin_unlock(&all_mddevs_lock);
540 		return new;
541 	}
542 	spin_unlock(&all_mddevs_lock);
543 
544 	new = kzalloc(sizeof(*new), GFP_KERNEL);
545 	if (!new)
546 		return NULL;
547 
548 	new->unit = unit;
549 	if (MAJOR(unit) == MD_MAJOR)
550 		new->md_minor = MINOR(unit);
551 	else
552 		new->md_minor = MINOR(unit) >> MdpMinorShift;
553 
554 	mddev_init(new);
555 
556 	goto retry;
557 }
558 
559 static inline int __must_check mddev_lock(struct mddev *mddev)
560 {
561 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
562 }
563 
564 /* Sometimes we need to take the lock in a situation where
565  * failure due to interrupts is not acceptable.
566  */
567 static inline void mddev_lock_nointr(struct mddev *mddev)
568 {
569 	mutex_lock(&mddev->reconfig_mutex);
570 }
571 
572 static inline int mddev_is_locked(struct mddev *mddev)
573 {
574 	return mutex_is_locked(&mddev->reconfig_mutex);
575 }
576 
577 static inline int mddev_trylock(struct mddev *mddev)
578 {
579 	return mutex_trylock(&mddev->reconfig_mutex);
580 }
581 
582 static struct attribute_group md_redundancy_group;
583 
584 static void mddev_unlock(struct mddev *mddev)
585 {
586 	if (mddev->to_remove) {
587 		/* These cannot be removed under reconfig_mutex as
588 		 * an access to the files will try to take reconfig_mutex
589 		 * while holding the file unremovable, which leads to
590 		 * a deadlock.
591 		 * So hold set sysfs_active while the remove in happeing,
592 		 * and anything else which might set ->to_remove or my
593 		 * otherwise change the sysfs namespace will fail with
594 		 * -EBUSY if sysfs_active is still set.
595 		 * We set sysfs_active under reconfig_mutex and elsewhere
596 		 * test it under the same mutex to ensure its correct value
597 		 * is seen.
598 		 */
599 		struct attribute_group *to_remove = mddev->to_remove;
600 		mddev->to_remove = NULL;
601 		mddev->sysfs_active = 1;
602 		mutex_unlock(&mddev->reconfig_mutex);
603 
604 		if (mddev->kobj.sd) {
605 			if (to_remove != &md_redundancy_group)
606 				sysfs_remove_group(&mddev->kobj, to_remove);
607 			if (mddev->pers == NULL ||
608 			    mddev->pers->sync_request == NULL) {
609 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
610 				if (mddev->sysfs_action)
611 					sysfs_put(mddev->sysfs_action);
612 				mddev->sysfs_action = NULL;
613 			}
614 		}
615 		mddev->sysfs_active = 0;
616 	} else
617 		mutex_unlock(&mddev->reconfig_mutex);
618 
619 	/* As we've dropped the mutex we need a spinlock to
620 	 * make sure the thread doesn't disappear
621 	 */
622 	spin_lock(&pers_lock);
623 	md_wakeup_thread(mddev->thread);
624 	spin_unlock(&pers_lock);
625 }
626 
627 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
628 {
629 	struct md_rdev *rdev;
630 
631 	rdev_for_each_rcu(rdev, mddev)
632 		if (rdev->desc_nr == nr)
633 			return rdev;
634 
635 	return NULL;
636 }
637 
638 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
639 {
640 	struct md_rdev *rdev;
641 
642 	rdev_for_each(rdev, mddev)
643 		if (rdev->bdev->bd_dev == dev)
644 			return rdev;
645 
646 	return NULL;
647 }
648 
649 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
650 {
651 	struct md_rdev *rdev;
652 
653 	rdev_for_each_rcu(rdev, mddev)
654 		if (rdev->bdev->bd_dev == dev)
655 			return rdev;
656 
657 	return NULL;
658 }
659 
660 static struct md_personality *find_pers(int level, char *clevel)
661 {
662 	struct md_personality *pers;
663 	list_for_each_entry(pers, &pers_list, list) {
664 		if (level != LEVEL_NONE && pers->level == level)
665 			return pers;
666 		if (strcmp(pers->name, clevel)==0)
667 			return pers;
668 	}
669 	return NULL;
670 }
671 
672 /* return the offset of the super block in 512byte sectors */
673 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
674 {
675 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
676 	return MD_NEW_SIZE_SECTORS(num_sectors);
677 }
678 
679 static int alloc_disk_sb(struct md_rdev *rdev)
680 {
681 	rdev->sb_page = alloc_page(GFP_KERNEL);
682 	if (!rdev->sb_page) {
683 		printk(KERN_ALERT "md: out of memory.\n");
684 		return -ENOMEM;
685 	}
686 
687 	return 0;
688 }
689 
690 void md_rdev_clear(struct md_rdev *rdev)
691 {
692 	if (rdev->sb_page) {
693 		put_page(rdev->sb_page);
694 		rdev->sb_loaded = 0;
695 		rdev->sb_page = NULL;
696 		rdev->sb_start = 0;
697 		rdev->sectors = 0;
698 	}
699 	if (rdev->bb_page) {
700 		put_page(rdev->bb_page);
701 		rdev->bb_page = NULL;
702 	}
703 	kfree(rdev->badblocks.page);
704 	rdev->badblocks.page = NULL;
705 }
706 EXPORT_SYMBOL_GPL(md_rdev_clear);
707 
708 static void super_written(struct bio *bio, int error)
709 {
710 	struct md_rdev *rdev = bio->bi_private;
711 	struct mddev *mddev = rdev->mddev;
712 
713 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
714 		printk("md: super_written gets error=%d, uptodate=%d\n",
715 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
716 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
717 		md_error(mddev, rdev);
718 	}
719 
720 	if (atomic_dec_and_test(&mddev->pending_writes))
721 		wake_up(&mddev->sb_wait);
722 	bio_put(bio);
723 }
724 
725 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
726 		   sector_t sector, int size, struct page *page)
727 {
728 	/* write first size bytes of page to sector of rdev
729 	 * Increment mddev->pending_writes before returning
730 	 * and decrement it on completion, waking up sb_wait
731 	 * if zero is reached.
732 	 * If an error occurred, call md_error
733 	 */
734 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
735 
736 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
737 	bio->bi_iter.bi_sector = sector;
738 	bio_add_page(bio, page, size, 0);
739 	bio->bi_private = rdev;
740 	bio->bi_end_io = super_written;
741 
742 	atomic_inc(&mddev->pending_writes);
743 	submit_bio(WRITE_FLUSH_FUA, bio);
744 }
745 
746 void md_super_wait(struct mddev *mddev)
747 {
748 	/* wait for all superblock writes that were scheduled to complete */
749 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
750 }
751 
752 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
753 		 struct page *page, int rw, bool metadata_op)
754 {
755 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
756 	int ret;
757 
758 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
759 		rdev->meta_bdev : rdev->bdev;
760 	if (metadata_op)
761 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
762 	else if (rdev->mddev->reshape_position != MaxSector &&
763 		 (rdev->mddev->reshape_backwards ==
764 		  (sector >= rdev->mddev->reshape_position)))
765 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
766 	else
767 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
768 	bio_add_page(bio, page, size, 0);
769 	submit_bio_wait(rw, bio);
770 
771 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
772 	bio_put(bio);
773 	return ret;
774 }
775 EXPORT_SYMBOL_GPL(sync_page_io);
776 
777 static int read_disk_sb(struct md_rdev *rdev, int size)
778 {
779 	char b[BDEVNAME_SIZE];
780 
781 	if (rdev->sb_loaded)
782 		return 0;
783 
784 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
785 		goto fail;
786 	rdev->sb_loaded = 1;
787 	return 0;
788 
789 fail:
790 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
791 		bdevname(rdev->bdev,b));
792 	return -EINVAL;
793 }
794 
795 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
796 {
797 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
798 		sb1->set_uuid1 == sb2->set_uuid1 &&
799 		sb1->set_uuid2 == sb2->set_uuid2 &&
800 		sb1->set_uuid3 == sb2->set_uuid3;
801 }
802 
803 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 	int ret;
806 	mdp_super_t *tmp1, *tmp2;
807 
808 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
809 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
810 
811 	if (!tmp1 || !tmp2) {
812 		ret = 0;
813 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
814 		goto abort;
815 	}
816 
817 	*tmp1 = *sb1;
818 	*tmp2 = *sb2;
819 
820 	/*
821 	 * nr_disks is not constant
822 	 */
823 	tmp1->nr_disks = 0;
824 	tmp2->nr_disks = 0;
825 
826 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
827 abort:
828 	kfree(tmp1);
829 	kfree(tmp2);
830 	return ret;
831 }
832 
833 static u32 md_csum_fold(u32 csum)
834 {
835 	csum = (csum & 0xffff) + (csum >> 16);
836 	return (csum & 0xffff) + (csum >> 16);
837 }
838 
839 static unsigned int calc_sb_csum(mdp_super_t *sb)
840 {
841 	u64 newcsum = 0;
842 	u32 *sb32 = (u32*)sb;
843 	int i;
844 	unsigned int disk_csum, csum;
845 
846 	disk_csum = sb->sb_csum;
847 	sb->sb_csum = 0;
848 
849 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
850 		newcsum += sb32[i];
851 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
852 
853 #ifdef CONFIG_ALPHA
854 	/* This used to use csum_partial, which was wrong for several
855 	 * reasons including that different results are returned on
856 	 * different architectures.  It isn't critical that we get exactly
857 	 * the same return value as before (we always csum_fold before
858 	 * testing, and that removes any differences).  However as we
859 	 * know that csum_partial always returned a 16bit value on
860 	 * alphas, do a fold to maximise conformity to previous behaviour.
861 	 */
862 	sb->sb_csum = md_csum_fold(disk_csum);
863 #else
864 	sb->sb_csum = disk_csum;
865 #endif
866 	return csum;
867 }
868 
869 /*
870  * Handle superblock details.
871  * We want to be able to handle multiple superblock formats
872  * so we have a common interface to them all, and an array of
873  * different handlers.
874  * We rely on user-space to write the initial superblock, and support
875  * reading and updating of superblocks.
876  * Interface methods are:
877  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
878  *      loads and validates a superblock on dev.
879  *      if refdev != NULL, compare superblocks on both devices
880  *    Return:
881  *      0 - dev has a superblock that is compatible with refdev
882  *      1 - dev has a superblock that is compatible and newer than refdev
883  *          so dev should be used as the refdev in future
884  *     -EINVAL superblock incompatible or invalid
885  *     -othererror e.g. -EIO
886  *
887  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
888  *      Verify that dev is acceptable into mddev.
889  *       The first time, mddev->raid_disks will be 0, and data from
890  *       dev should be merged in.  Subsequent calls check that dev
891  *       is new enough.  Return 0 or -EINVAL
892  *
893  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
894  *     Update the superblock for rdev with data in mddev
895  *     This does not write to disc.
896  *
897  */
898 
899 struct super_type  {
900 	char		    *name;
901 	struct module	    *owner;
902 	int		    (*load_super)(struct md_rdev *rdev,
903 					  struct md_rdev *refdev,
904 					  int minor_version);
905 	int		    (*validate_super)(struct mddev *mddev,
906 					      struct md_rdev *rdev);
907 	void		    (*sync_super)(struct mddev *mddev,
908 					  struct md_rdev *rdev);
909 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
910 						sector_t num_sectors);
911 	int		    (*allow_new_offset)(struct md_rdev *rdev,
912 						unsigned long long new_offset);
913 };
914 
915 /*
916  * Check that the given mddev has no bitmap.
917  *
918  * This function is called from the run method of all personalities that do not
919  * support bitmaps. It prints an error message and returns non-zero if mddev
920  * has a bitmap. Otherwise, it returns 0.
921  *
922  */
923 int md_check_no_bitmap(struct mddev *mddev)
924 {
925 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
926 		return 0;
927 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
928 		mdname(mddev), mddev->pers->name);
929 	return 1;
930 }
931 EXPORT_SYMBOL(md_check_no_bitmap);
932 
933 /*
934  * load_super for 0.90.0
935  */
936 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
937 {
938 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
939 	mdp_super_t *sb;
940 	int ret;
941 
942 	/*
943 	 * Calculate the position of the superblock (512byte sectors),
944 	 * it's at the end of the disk.
945 	 *
946 	 * It also happens to be a multiple of 4Kb.
947 	 */
948 	rdev->sb_start = calc_dev_sboffset(rdev);
949 
950 	ret = read_disk_sb(rdev, MD_SB_BYTES);
951 	if (ret) return ret;
952 
953 	ret = -EINVAL;
954 
955 	bdevname(rdev->bdev, b);
956 	sb = page_address(rdev->sb_page);
957 
958 	if (sb->md_magic != MD_SB_MAGIC) {
959 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
960 		       b);
961 		goto abort;
962 	}
963 
964 	if (sb->major_version != 0 ||
965 	    sb->minor_version < 90 ||
966 	    sb->minor_version > 91) {
967 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
968 			sb->major_version, sb->minor_version,
969 			b);
970 		goto abort;
971 	}
972 
973 	if (sb->raid_disks <= 0)
974 		goto abort;
975 
976 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
977 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
978 			b);
979 		goto abort;
980 	}
981 
982 	rdev->preferred_minor = sb->md_minor;
983 	rdev->data_offset = 0;
984 	rdev->new_data_offset = 0;
985 	rdev->sb_size = MD_SB_BYTES;
986 	rdev->badblocks.shift = -1;
987 
988 	if (sb->level == LEVEL_MULTIPATH)
989 		rdev->desc_nr = -1;
990 	else
991 		rdev->desc_nr = sb->this_disk.number;
992 
993 	if (!refdev) {
994 		ret = 1;
995 	} else {
996 		__u64 ev1, ev2;
997 		mdp_super_t *refsb = page_address(refdev->sb_page);
998 		if (!uuid_equal(refsb, sb)) {
999 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1000 				b, bdevname(refdev->bdev,b2));
1001 			goto abort;
1002 		}
1003 		if (!sb_equal(refsb, sb)) {
1004 			printk(KERN_WARNING "md: %s has same UUID"
1005 			       " but different superblock to %s\n",
1006 			       b, bdevname(refdev->bdev, b2));
1007 			goto abort;
1008 		}
1009 		ev1 = md_event(sb);
1010 		ev2 = md_event(refsb);
1011 		if (ev1 > ev2)
1012 			ret = 1;
1013 		else
1014 			ret = 0;
1015 	}
1016 	rdev->sectors = rdev->sb_start;
1017 	/* Limit to 4TB as metadata cannot record more than that.
1018 	 * (not needed for Linear and RAID0 as metadata doesn't
1019 	 * record this size)
1020 	 */
1021 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1022 		rdev->sectors = (2ULL << 32) - 2;
1023 
1024 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1025 		/* "this cannot possibly happen" ... */
1026 		ret = -EINVAL;
1027 
1028  abort:
1029 	return ret;
1030 }
1031 
1032 /*
1033  * validate_super for 0.90.0
1034  */
1035 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1036 {
1037 	mdp_disk_t *desc;
1038 	mdp_super_t *sb = page_address(rdev->sb_page);
1039 	__u64 ev1 = md_event(sb);
1040 
1041 	rdev->raid_disk = -1;
1042 	clear_bit(Faulty, &rdev->flags);
1043 	clear_bit(In_sync, &rdev->flags);
1044 	clear_bit(Bitmap_sync, &rdev->flags);
1045 	clear_bit(WriteMostly, &rdev->flags);
1046 
1047 	if (mddev->raid_disks == 0) {
1048 		mddev->major_version = 0;
1049 		mddev->minor_version = sb->minor_version;
1050 		mddev->patch_version = sb->patch_version;
1051 		mddev->external = 0;
1052 		mddev->chunk_sectors = sb->chunk_size >> 9;
1053 		mddev->ctime = sb->ctime;
1054 		mddev->utime = sb->utime;
1055 		mddev->level = sb->level;
1056 		mddev->clevel[0] = 0;
1057 		mddev->layout = sb->layout;
1058 		mddev->raid_disks = sb->raid_disks;
1059 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1060 		mddev->events = ev1;
1061 		mddev->bitmap_info.offset = 0;
1062 		mddev->bitmap_info.space = 0;
1063 		/* bitmap can use 60 K after the 4K superblocks */
1064 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1065 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1066 		mddev->reshape_backwards = 0;
1067 
1068 		if (mddev->minor_version >= 91) {
1069 			mddev->reshape_position = sb->reshape_position;
1070 			mddev->delta_disks = sb->delta_disks;
1071 			mddev->new_level = sb->new_level;
1072 			mddev->new_layout = sb->new_layout;
1073 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1074 			if (mddev->delta_disks < 0)
1075 				mddev->reshape_backwards = 1;
1076 		} else {
1077 			mddev->reshape_position = MaxSector;
1078 			mddev->delta_disks = 0;
1079 			mddev->new_level = mddev->level;
1080 			mddev->new_layout = mddev->layout;
1081 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1082 		}
1083 
1084 		if (sb->state & (1<<MD_SB_CLEAN))
1085 			mddev->recovery_cp = MaxSector;
1086 		else {
1087 			if (sb->events_hi == sb->cp_events_hi &&
1088 				sb->events_lo == sb->cp_events_lo) {
1089 				mddev->recovery_cp = sb->recovery_cp;
1090 			} else
1091 				mddev->recovery_cp = 0;
1092 		}
1093 
1094 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1095 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1096 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1097 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1098 
1099 		mddev->max_disks = MD_SB_DISKS;
1100 
1101 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1102 		    mddev->bitmap_info.file == NULL) {
1103 			mddev->bitmap_info.offset =
1104 				mddev->bitmap_info.default_offset;
1105 			mddev->bitmap_info.space =
1106 				mddev->bitmap_info.default_space;
1107 		}
1108 
1109 	} else if (mddev->pers == NULL) {
1110 		/* Insist on good event counter while assembling, except
1111 		 * for spares (which don't need an event count) */
1112 		++ev1;
1113 		if (sb->disks[rdev->desc_nr].state & (
1114 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1115 			if (ev1 < mddev->events)
1116 				return -EINVAL;
1117 	} else if (mddev->bitmap) {
1118 		/* if adding to array with a bitmap, then we can accept an
1119 		 * older device ... but not too old.
1120 		 */
1121 		if (ev1 < mddev->bitmap->events_cleared)
1122 			return 0;
1123 		if (ev1 < mddev->events)
1124 			set_bit(Bitmap_sync, &rdev->flags);
1125 	} else {
1126 		if (ev1 < mddev->events)
1127 			/* just a hot-add of a new device, leave raid_disk at -1 */
1128 			return 0;
1129 	}
1130 
1131 	if (mddev->level != LEVEL_MULTIPATH) {
1132 		desc = sb->disks + rdev->desc_nr;
1133 
1134 		if (desc->state & (1<<MD_DISK_FAULTY))
1135 			set_bit(Faulty, &rdev->flags);
1136 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1137 			    desc->raid_disk < mddev->raid_disks */) {
1138 			set_bit(In_sync, &rdev->flags);
1139 			rdev->raid_disk = desc->raid_disk;
1140 			rdev->saved_raid_disk = desc->raid_disk;
1141 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1142 			/* active but not in sync implies recovery up to
1143 			 * reshape position.  We don't know exactly where
1144 			 * that is, so set to zero for now */
1145 			if (mddev->minor_version >= 91) {
1146 				rdev->recovery_offset = 0;
1147 				rdev->raid_disk = desc->raid_disk;
1148 			}
1149 		}
1150 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1151 			set_bit(WriteMostly, &rdev->flags);
1152 	} else /* MULTIPATH are always insync */
1153 		set_bit(In_sync, &rdev->flags);
1154 	return 0;
1155 }
1156 
1157 /*
1158  * sync_super for 0.90.0
1159  */
1160 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 	mdp_super_t *sb;
1163 	struct md_rdev *rdev2;
1164 	int next_spare = mddev->raid_disks;
1165 
1166 	/* make rdev->sb match mddev data..
1167 	 *
1168 	 * 1/ zero out disks
1169 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1170 	 * 3/ any empty disks < next_spare become removed
1171 	 *
1172 	 * disks[0] gets initialised to REMOVED because
1173 	 * we cannot be sure from other fields if it has
1174 	 * been initialised or not.
1175 	 */
1176 	int i;
1177 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1178 
1179 	rdev->sb_size = MD_SB_BYTES;
1180 
1181 	sb = page_address(rdev->sb_page);
1182 
1183 	memset(sb, 0, sizeof(*sb));
1184 
1185 	sb->md_magic = MD_SB_MAGIC;
1186 	sb->major_version = mddev->major_version;
1187 	sb->patch_version = mddev->patch_version;
1188 	sb->gvalid_words  = 0; /* ignored */
1189 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1190 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1191 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1192 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1193 
1194 	sb->ctime = mddev->ctime;
1195 	sb->level = mddev->level;
1196 	sb->size = mddev->dev_sectors / 2;
1197 	sb->raid_disks = mddev->raid_disks;
1198 	sb->md_minor = mddev->md_minor;
1199 	sb->not_persistent = 0;
1200 	sb->utime = mddev->utime;
1201 	sb->state = 0;
1202 	sb->events_hi = (mddev->events>>32);
1203 	sb->events_lo = (u32)mddev->events;
1204 
1205 	if (mddev->reshape_position == MaxSector)
1206 		sb->minor_version = 90;
1207 	else {
1208 		sb->minor_version = 91;
1209 		sb->reshape_position = mddev->reshape_position;
1210 		sb->new_level = mddev->new_level;
1211 		sb->delta_disks = mddev->delta_disks;
1212 		sb->new_layout = mddev->new_layout;
1213 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1214 	}
1215 	mddev->minor_version = sb->minor_version;
1216 	if (mddev->in_sync)
1217 	{
1218 		sb->recovery_cp = mddev->recovery_cp;
1219 		sb->cp_events_hi = (mddev->events>>32);
1220 		sb->cp_events_lo = (u32)mddev->events;
1221 		if (mddev->recovery_cp == MaxSector)
1222 			sb->state = (1<< MD_SB_CLEAN);
1223 	} else
1224 		sb->recovery_cp = 0;
1225 
1226 	sb->layout = mddev->layout;
1227 	sb->chunk_size = mddev->chunk_sectors << 9;
1228 
1229 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1230 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1231 
1232 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1233 	rdev_for_each(rdev2, mddev) {
1234 		mdp_disk_t *d;
1235 		int desc_nr;
1236 		int is_active = test_bit(In_sync, &rdev2->flags);
1237 
1238 		if (rdev2->raid_disk >= 0 &&
1239 		    sb->minor_version >= 91)
1240 			/* we have nowhere to store the recovery_offset,
1241 			 * but if it is not below the reshape_position,
1242 			 * we can piggy-back on that.
1243 			 */
1244 			is_active = 1;
1245 		if (rdev2->raid_disk < 0 ||
1246 		    test_bit(Faulty, &rdev2->flags))
1247 			is_active = 0;
1248 		if (is_active)
1249 			desc_nr = rdev2->raid_disk;
1250 		else
1251 			desc_nr = next_spare++;
1252 		rdev2->desc_nr = desc_nr;
1253 		d = &sb->disks[rdev2->desc_nr];
1254 		nr_disks++;
1255 		d->number = rdev2->desc_nr;
1256 		d->major = MAJOR(rdev2->bdev->bd_dev);
1257 		d->minor = MINOR(rdev2->bdev->bd_dev);
1258 		if (is_active)
1259 			d->raid_disk = rdev2->raid_disk;
1260 		else
1261 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1262 		if (test_bit(Faulty, &rdev2->flags))
1263 			d->state = (1<<MD_DISK_FAULTY);
1264 		else if (is_active) {
1265 			d->state = (1<<MD_DISK_ACTIVE);
1266 			if (test_bit(In_sync, &rdev2->flags))
1267 				d->state |= (1<<MD_DISK_SYNC);
1268 			active++;
1269 			working++;
1270 		} else {
1271 			d->state = 0;
1272 			spare++;
1273 			working++;
1274 		}
1275 		if (test_bit(WriteMostly, &rdev2->flags))
1276 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1277 	}
1278 	/* now set the "removed" and "faulty" bits on any missing devices */
1279 	for (i=0 ; i < mddev->raid_disks ; i++) {
1280 		mdp_disk_t *d = &sb->disks[i];
1281 		if (d->state == 0 && d->number == 0) {
1282 			d->number = i;
1283 			d->raid_disk = i;
1284 			d->state = (1<<MD_DISK_REMOVED);
1285 			d->state |= (1<<MD_DISK_FAULTY);
1286 			failed++;
1287 		}
1288 	}
1289 	sb->nr_disks = nr_disks;
1290 	sb->active_disks = active;
1291 	sb->working_disks = working;
1292 	sb->failed_disks = failed;
1293 	sb->spare_disks = spare;
1294 
1295 	sb->this_disk = sb->disks[rdev->desc_nr];
1296 	sb->sb_csum = calc_sb_csum(sb);
1297 }
1298 
1299 /*
1300  * rdev_size_change for 0.90.0
1301  */
1302 static unsigned long long
1303 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1304 {
1305 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1306 		return 0; /* component must fit device */
1307 	if (rdev->mddev->bitmap_info.offset)
1308 		return 0; /* can't move bitmap */
1309 	rdev->sb_start = calc_dev_sboffset(rdev);
1310 	if (!num_sectors || num_sectors > rdev->sb_start)
1311 		num_sectors = rdev->sb_start;
1312 	/* Limit to 4TB as metadata cannot record more than that.
1313 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1314 	 */
1315 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1316 		num_sectors = (2ULL << 32) - 2;
1317 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1318 		       rdev->sb_page);
1319 	md_super_wait(rdev->mddev);
1320 	return num_sectors;
1321 }
1322 
1323 static int
1324 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1325 {
1326 	/* non-zero offset changes not possible with v0.90 */
1327 	return new_offset == 0;
1328 }
1329 
1330 /*
1331  * version 1 superblock
1332  */
1333 
1334 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1335 {
1336 	__le32 disk_csum;
1337 	u32 csum;
1338 	unsigned long long newcsum;
1339 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1340 	__le32 *isuper = (__le32*)sb;
1341 
1342 	disk_csum = sb->sb_csum;
1343 	sb->sb_csum = 0;
1344 	newcsum = 0;
1345 	for (; size >= 4; size -= 4)
1346 		newcsum += le32_to_cpu(*isuper++);
1347 
1348 	if (size == 2)
1349 		newcsum += le16_to_cpu(*(__le16*) isuper);
1350 
1351 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1352 	sb->sb_csum = disk_csum;
1353 	return cpu_to_le32(csum);
1354 }
1355 
1356 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1357 			    int acknowledged);
1358 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1359 {
1360 	struct mdp_superblock_1 *sb;
1361 	int ret;
1362 	sector_t sb_start;
1363 	sector_t sectors;
1364 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1365 	int bmask;
1366 
1367 	/*
1368 	 * Calculate the position of the superblock in 512byte sectors.
1369 	 * It is always aligned to a 4K boundary and
1370 	 * depeding on minor_version, it can be:
1371 	 * 0: At least 8K, but less than 12K, from end of device
1372 	 * 1: At start of device
1373 	 * 2: 4K from start of device.
1374 	 */
1375 	switch(minor_version) {
1376 	case 0:
1377 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1378 		sb_start -= 8*2;
1379 		sb_start &= ~(sector_t)(4*2-1);
1380 		break;
1381 	case 1:
1382 		sb_start = 0;
1383 		break;
1384 	case 2:
1385 		sb_start = 8;
1386 		break;
1387 	default:
1388 		return -EINVAL;
1389 	}
1390 	rdev->sb_start = sb_start;
1391 
1392 	/* superblock is rarely larger than 1K, but it can be larger,
1393 	 * and it is safe to read 4k, so we do that
1394 	 */
1395 	ret = read_disk_sb(rdev, 4096);
1396 	if (ret) return ret;
1397 
1398 	sb = page_address(rdev->sb_page);
1399 
1400 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1401 	    sb->major_version != cpu_to_le32(1) ||
1402 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1403 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1404 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1405 		return -EINVAL;
1406 
1407 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1408 		printk("md: invalid superblock checksum on %s\n",
1409 			bdevname(rdev->bdev,b));
1410 		return -EINVAL;
1411 	}
1412 	if (le64_to_cpu(sb->data_size) < 10) {
1413 		printk("md: data_size too small on %s\n",
1414 		       bdevname(rdev->bdev,b));
1415 		return -EINVAL;
1416 	}
1417 	if (sb->pad0 ||
1418 	    sb->pad3[0] ||
1419 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1420 		/* Some padding is non-zero, might be a new feature */
1421 		return -EINVAL;
1422 
1423 	rdev->preferred_minor = 0xffff;
1424 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 	rdev->new_data_offset = rdev->data_offset;
1426 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1427 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1428 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1429 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1430 
1431 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1432 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1433 	if (rdev->sb_size & bmask)
1434 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1435 
1436 	if (minor_version
1437 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1438 		return -EINVAL;
1439 	if (minor_version
1440 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1441 		return -EINVAL;
1442 
1443 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1444 		rdev->desc_nr = -1;
1445 	else
1446 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1447 
1448 	if (!rdev->bb_page) {
1449 		rdev->bb_page = alloc_page(GFP_KERNEL);
1450 		if (!rdev->bb_page)
1451 			return -ENOMEM;
1452 	}
1453 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1454 	    rdev->badblocks.count == 0) {
1455 		/* need to load the bad block list.
1456 		 * Currently we limit it to one page.
1457 		 */
1458 		s32 offset;
1459 		sector_t bb_sector;
1460 		u64 *bbp;
1461 		int i;
1462 		int sectors = le16_to_cpu(sb->bblog_size);
1463 		if (sectors > (PAGE_SIZE / 512))
1464 			return -EINVAL;
1465 		offset = le32_to_cpu(sb->bblog_offset);
1466 		if (offset == 0)
1467 			return -EINVAL;
1468 		bb_sector = (long long)offset;
1469 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1470 				  rdev->bb_page, READ, true))
1471 			return -EIO;
1472 		bbp = (u64 *)page_address(rdev->bb_page);
1473 		rdev->badblocks.shift = sb->bblog_shift;
1474 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1475 			u64 bb = le64_to_cpu(*bbp);
1476 			int count = bb & (0x3ff);
1477 			u64 sector = bb >> 10;
1478 			sector <<= sb->bblog_shift;
1479 			count <<= sb->bblog_shift;
1480 			if (bb + 1 == 0)
1481 				break;
1482 			if (md_set_badblocks(&rdev->badblocks,
1483 					     sector, count, 1) == 0)
1484 				return -EINVAL;
1485 		}
1486 	} else if (sb->bblog_offset != 0)
1487 		rdev->badblocks.shift = 0;
1488 
1489 	if (!refdev) {
1490 		ret = 1;
1491 	} else {
1492 		__u64 ev1, ev2;
1493 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1494 
1495 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1496 		    sb->level != refsb->level ||
1497 		    sb->layout != refsb->layout ||
1498 		    sb->chunksize != refsb->chunksize) {
1499 			printk(KERN_WARNING "md: %s has strangely different"
1500 				" superblock to %s\n",
1501 				bdevname(rdev->bdev,b),
1502 				bdevname(refdev->bdev,b2));
1503 			return -EINVAL;
1504 		}
1505 		ev1 = le64_to_cpu(sb->events);
1506 		ev2 = le64_to_cpu(refsb->events);
1507 
1508 		if (ev1 > ev2)
1509 			ret = 1;
1510 		else
1511 			ret = 0;
1512 	}
1513 	if (minor_version) {
1514 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1515 		sectors -= rdev->data_offset;
1516 	} else
1517 		sectors = rdev->sb_start;
1518 	if (sectors < le64_to_cpu(sb->data_size))
1519 		return -EINVAL;
1520 	rdev->sectors = le64_to_cpu(sb->data_size);
1521 	return ret;
1522 }
1523 
1524 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1525 {
1526 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1527 	__u64 ev1 = le64_to_cpu(sb->events);
1528 
1529 	rdev->raid_disk = -1;
1530 	clear_bit(Faulty, &rdev->flags);
1531 	clear_bit(In_sync, &rdev->flags);
1532 	clear_bit(Bitmap_sync, &rdev->flags);
1533 	clear_bit(WriteMostly, &rdev->flags);
1534 
1535 	if (mddev->raid_disks == 0) {
1536 		mddev->major_version = 1;
1537 		mddev->patch_version = 0;
1538 		mddev->external = 0;
1539 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1540 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1541 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1542 		mddev->level = le32_to_cpu(sb->level);
1543 		mddev->clevel[0] = 0;
1544 		mddev->layout = le32_to_cpu(sb->layout);
1545 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1546 		mddev->dev_sectors = le64_to_cpu(sb->size);
1547 		mddev->events = ev1;
1548 		mddev->bitmap_info.offset = 0;
1549 		mddev->bitmap_info.space = 0;
1550 		/* Default location for bitmap is 1K after superblock
1551 		 * using 3K - total of 4K
1552 		 */
1553 		mddev->bitmap_info.default_offset = 1024 >> 9;
1554 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1555 		mddev->reshape_backwards = 0;
1556 
1557 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1558 		memcpy(mddev->uuid, sb->set_uuid, 16);
1559 
1560 		mddev->max_disks =  (4096-256)/2;
1561 
1562 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1563 		    mddev->bitmap_info.file == NULL) {
1564 			mddev->bitmap_info.offset =
1565 				(__s32)le32_to_cpu(sb->bitmap_offset);
1566 			/* Metadata doesn't record how much space is available.
1567 			 * For 1.0, we assume we can use up to the superblock
1568 			 * if before, else to 4K beyond superblock.
1569 			 * For others, assume no change is possible.
1570 			 */
1571 			if (mddev->minor_version > 0)
1572 				mddev->bitmap_info.space = 0;
1573 			else if (mddev->bitmap_info.offset > 0)
1574 				mddev->bitmap_info.space =
1575 					8 - mddev->bitmap_info.offset;
1576 			else
1577 				mddev->bitmap_info.space =
1578 					-mddev->bitmap_info.offset;
1579 		}
1580 
1581 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1582 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1583 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1584 			mddev->new_level = le32_to_cpu(sb->new_level);
1585 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1586 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1587 			if (mddev->delta_disks < 0 ||
1588 			    (mddev->delta_disks == 0 &&
1589 			     (le32_to_cpu(sb->feature_map)
1590 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1591 				mddev->reshape_backwards = 1;
1592 		} else {
1593 			mddev->reshape_position = MaxSector;
1594 			mddev->delta_disks = 0;
1595 			mddev->new_level = mddev->level;
1596 			mddev->new_layout = mddev->layout;
1597 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1598 		}
1599 
1600 	} else if (mddev->pers == NULL) {
1601 		/* Insist of good event counter while assembling, except for
1602 		 * spares (which don't need an event count) */
1603 		++ev1;
1604 		if (rdev->desc_nr >= 0 &&
1605 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1606 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1607 			if (ev1 < mddev->events)
1608 				return -EINVAL;
1609 	} else if (mddev->bitmap) {
1610 		/* If adding to array with a bitmap, then we can accept an
1611 		 * older device, but not too old.
1612 		 */
1613 		if (ev1 < mddev->bitmap->events_cleared)
1614 			return 0;
1615 		if (ev1 < mddev->events)
1616 			set_bit(Bitmap_sync, &rdev->flags);
1617 	} else {
1618 		if (ev1 < mddev->events)
1619 			/* just a hot-add of a new device, leave raid_disk at -1 */
1620 			return 0;
1621 	}
1622 	if (mddev->level != LEVEL_MULTIPATH) {
1623 		int role;
1624 		if (rdev->desc_nr < 0 ||
1625 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1626 			role = 0xffff;
1627 			rdev->desc_nr = -1;
1628 		} else
1629 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1630 		switch(role) {
1631 		case 0xffff: /* spare */
1632 			break;
1633 		case 0xfffe: /* faulty */
1634 			set_bit(Faulty, &rdev->flags);
1635 			break;
1636 		default:
1637 			rdev->saved_raid_disk = role;
1638 			if ((le32_to_cpu(sb->feature_map) &
1639 			     MD_FEATURE_RECOVERY_OFFSET)) {
1640 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1641 				if (!(le32_to_cpu(sb->feature_map) &
1642 				      MD_FEATURE_RECOVERY_BITMAP))
1643 					rdev->saved_raid_disk = -1;
1644 			} else
1645 				set_bit(In_sync, &rdev->flags);
1646 			rdev->raid_disk = role;
1647 			break;
1648 		}
1649 		if (sb->devflags & WriteMostly1)
1650 			set_bit(WriteMostly, &rdev->flags);
1651 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1652 			set_bit(Replacement, &rdev->flags);
1653 	} else /* MULTIPATH are always insync */
1654 		set_bit(In_sync, &rdev->flags);
1655 
1656 	return 0;
1657 }
1658 
1659 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1660 {
1661 	struct mdp_superblock_1 *sb;
1662 	struct md_rdev *rdev2;
1663 	int max_dev, i;
1664 	/* make rdev->sb match mddev and rdev data. */
1665 
1666 	sb = page_address(rdev->sb_page);
1667 
1668 	sb->feature_map = 0;
1669 	sb->pad0 = 0;
1670 	sb->recovery_offset = cpu_to_le64(0);
1671 	memset(sb->pad3, 0, sizeof(sb->pad3));
1672 
1673 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1674 	sb->events = cpu_to_le64(mddev->events);
1675 	if (mddev->in_sync)
1676 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1677 	else
1678 		sb->resync_offset = cpu_to_le64(0);
1679 
1680 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1681 
1682 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1683 	sb->size = cpu_to_le64(mddev->dev_sectors);
1684 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1685 	sb->level = cpu_to_le32(mddev->level);
1686 	sb->layout = cpu_to_le32(mddev->layout);
1687 
1688 	if (test_bit(WriteMostly, &rdev->flags))
1689 		sb->devflags |= WriteMostly1;
1690 	else
1691 		sb->devflags &= ~WriteMostly1;
1692 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1693 	sb->data_size = cpu_to_le64(rdev->sectors);
1694 
1695 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1696 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1697 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1698 	}
1699 
1700 	if (rdev->raid_disk >= 0 &&
1701 	    !test_bit(In_sync, &rdev->flags)) {
1702 		sb->feature_map |=
1703 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1704 		sb->recovery_offset =
1705 			cpu_to_le64(rdev->recovery_offset);
1706 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1707 			sb->feature_map |=
1708 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1709 	}
1710 	if (test_bit(Replacement, &rdev->flags))
1711 		sb->feature_map |=
1712 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1713 
1714 	if (mddev->reshape_position != MaxSector) {
1715 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1716 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1717 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1718 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1719 		sb->new_level = cpu_to_le32(mddev->new_level);
1720 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1721 		if (mddev->delta_disks == 0 &&
1722 		    mddev->reshape_backwards)
1723 			sb->feature_map
1724 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1725 		if (rdev->new_data_offset != rdev->data_offset) {
1726 			sb->feature_map
1727 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1728 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1729 							     - rdev->data_offset));
1730 		}
1731 	}
1732 
1733 	if (rdev->badblocks.count == 0)
1734 		/* Nothing to do for bad blocks*/ ;
1735 	else if (sb->bblog_offset == 0)
1736 		/* Cannot record bad blocks on this device */
1737 		md_error(mddev, rdev);
1738 	else {
1739 		struct badblocks *bb = &rdev->badblocks;
1740 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1741 		u64 *p = bb->page;
1742 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1743 		if (bb->changed) {
1744 			unsigned seq;
1745 
1746 retry:
1747 			seq = read_seqbegin(&bb->lock);
1748 
1749 			memset(bbp, 0xff, PAGE_SIZE);
1750 
1751 			for (i = 0 ; i < bb->count ; i++) {
1752 				u64 internal_bb = p[i];
1753 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1754 						| BB_LEN(internal_bb));
1755 				bbp[i] = cpu_to_le64(store_bb);
1756 			}
1757 			bb->changed = 0;
1758 			if (read_seqretry(&bb->lock, seq))
1759 				goto retry;
1760 
1761 			bb->sector = (rdev->sb_start +
1762 				      (int)le32_to_cpu(sb->bblog_offset));
1763 			bb->size = le16_to_cpu(sb->bblog_size);
1764 		}
1765 	}
1766 
1767 	max_dev = 0;
1768 	rdev_for_each(rdev2, mddev)
1769 		if (rdev2->desc_nr+1 > max_dev)
1770 			max_dev = rdev2->desc_nr+1;
1771 
1772 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1773 		int bmask;
1774 		sb->max_dev = cpu_to_le32(max_dev);
1775 		rdev->sb_size = max_dev * 2 + 256;
1776 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1777 		if (rdev->sb_size & bmask)
1778 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1779 	} else
1780 		max_dev = le32_to_cpu(sb->max_dev);
1781 
1782 	for (i=0; i<max_dev;i++)
1783 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1784 
1785 	rdev_for_each(rdev2, mddev) {
1786 		i = rdev2->desc_nr;
1787 		if (test_bit(Faulty, &rdev2->flags))
1788 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1789 		else if (test_bit(In_sync, &rdev2->flags))
1790 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1791 		else if (rdev2->raid_disk >= 0)
1792 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1793 		else
1794 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1795 	}
1796 
1797 	sb->sb_csum = calc_sb_1_csum(sb);
1798 }
1799 
1800 static unsigned long long
1801 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1802 {
1803 	struct mdp_superblock_1 *sb;
1804 	sector_t max_sectors;
1805 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1806 		return 0; /* component must fit device */
1807 	if (rdev->data_offset != rdev->new_data_offset)
1808 		return 0; /* too confusing */
1809 	if (rdev->sb_start < rdev->data_offset) {
1810 		/* minor versions 1 and 2; superblock before data */
1811 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1812 		max_sectors -= rdev->data_offset;
1813 		if (!num_sectors || num_sectors > max_sectors)
1814 			num_sectors = max_sectors;
1815 	} else if (rdev->mddev->bitmap_info.offset) {
1816 		/* minor version 0 with bitmap we can't move */
1817 		return 0;
1818 	} else {
1819 		/* minor version 0; superblock after data */
1820 		sector_t sb_start;
1821 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1822 		sb_start &= ~(sector_t)(4*2 - 1);
1823 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1824 		if (!num_sectors || num_sectors > max_sectors)
1825 			num_sectors = max_sectors;
1826 		rdev->sb_start = sb_start;
1827 	}
1828 	sb = page_address(rdev->sb_page);
1829 	sb->data_size = cpu_to_le64(num_sectors);
1830 	sb->super_offset = rdev->sb_start;
1831 	sb->sb_csum = calc_sb_1_csum(sb);
1832 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1833 		       rdev->sb_page);
1834 	md_super_wait(rdev->mddev);
1835 	return num_sectors;
1836 
1837 }
1838 
1839 static int
1840 super_1_allow_new_offset(struct md_rdev *rdev,
1841 			 unsigned long long new_offset)
1842 {
1843 	/* All necessary checks on new >= old have been done */
1844 	struct bitmap *bitmap;
1845 	if (new_offset >= rdev->data_offset)
1846 		return 1;
1847 
1848 	/* with 1.0 metadata, there is no metadata to tread on
1849 	 * so we can always move back */
1850 	if (rdev->mddev->minor_version == 0)
1851 		return 1;
1852 
1853 	/* otherwise we must be sure not to step on
1854 	 * any metadata, so stay:
1855 	 * 36K beyond start of superblock
1856 	 * beyond end of badblocks
1857 	 * beyond write-intent bitmap
1858 	 */
1859 	if (rdev->sb_start + (32+4)*2 > new_offset)
1860 		return 0;
1861 	bitmap = rdev->mddev->bitmap;
1862 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1863 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1864 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1865 		return 0;
1866 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1867 		return 0;
1868 
1869 	return 1;
1870 }
1871 
1872 static struct super_type super_types[] = {
1873 	[0] = {
1874 		.name	= "0.90.0",
1875 		.owner	= THIS_MODULE,
1876 		.load_super	    = super_90_load,
1877 		.validate_super	    = super_90_validate,
1878 		.sync_super	    = super_90_sync,
1879 		.rdev_size_change   = super_90_rdev_size_change,
1880 		.allow_new_offset   = super_90_allow_new_offset,
1881 	},
1882 	[1] = {
1883 		.name	= "md-1",
1884 		.owner	= THIS_MODULE,
1885 		.load_super	    = super_1_load,
1886 		.validate_super	    = super_1_validate,
1887 		.sync_super	    = super_1_sync,
1888 		.rdev_size_change   = super_1_rdev_size_change,
1889 		.allow_new_offset   = super_1_allow_new_offset,
1890 	},
1891 };
1892 
1893 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1894 {
1895 	if (mddev->sync_super) {
1896 		mddev->sync_super(mddev, rdev);
1897 		return;
1898 	}
1899 
1900 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1901 
1902 	super_types[mddev->major_version].sync_super(mddev, rdev);
1903 }
1904 
1905 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1906 {
1907 	struct md_rdev *rdev, *rdev2;
1908 
1909 	rcu_read_lock();
1910 	rdev_for_each_rcu(rdev, mddev1)
1911 		rdev_for_each_rcu(rdev2, mddev2)
1912 			if (rdev->bdev->bd_contains ==
1913 			    rdev2->bdev->bd_contains) {
1914 				rcu_read_unlock();
1915 				return 1;
1916 			}
1917 	rcu_read_unlock();
1918 	return 0;
1919 }
1920 
1921 static LIST_HEAD(pending_raid_disks);
1922 
1923 /*
1924  * Try to register data integrity profile for an mddev
1925  *
1926  * This is called when an array is started and after a disk has been kicked
1927  * from the array. It only succeeds if all working and active component devices
1928  * are integrity capable with matching profiles.
1929  */
1930 int md_integrity_register(struct mddev *mddev)
1931 {
1932 	struct md_rdev *rdev, *reference = NULL;
1933 
1934 	if (list_empty(&mddev->disks))
1935 		return 0; /* nothing to do */
1936 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1937 		return 0; /* shouldn't register, or already is */
1938 	rdev_for_each(rdev, mddev) {
1939 		/* skip spares and non-functional disks */
1940 		if (test_bit(Faulty, &rdev->flags))
1941 			continue;
1942 		if (rdev->raid_disk < 0)
1943 			continue;
1944 		if (!reference) {
1945 			/* Use the first rdev as the reference */
1946 			reference = rdev;
1947 			continue;
1948 		}
1949 		/* does this rdev's profile match the reference profile? */
1950 		if (blk_integrity_compare(reference->bdev->bd_disk,
1951 				rdev->bdev->bd_disk) < 0)
1952 			return -EINVAL;
1953 	}
1954 	if (!reference || !bdev_get_integrity(reference->bdev))
1955 		return 0;
1956 	/*
1957 	 * All component devices are integrity capable and have matching
1958 	 * profiles, register the common profile for the md device.
1959 	 */
1960 	if (blk_integrity_register(mddev->gendisk,
1961 			bdev_get_integrity(reference->bdev)) != 0) {
1962 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1963 			mdname(mddev));
1964 		return -EINVAL;
1965 	}
1966 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1967 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1968 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1969 		       mdname(mddev));
1970 		return -EINVAL;
1971 	}
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL(md_integrity_register);
1975 
1976 /* Disable data integrity if non-capable/non-matching disk is being added */
1977 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1978 {
1979 	struct blk_integrity *bi_rdev;
1980 	struct blk_integrity *bi_mddev;
1981 
1982 	if (!mddev->gendisk)
1983 		return;
1984 
1985 	bi_rdev = bdev_get_integrity(rdev->bdev);
1986 	bi_mddev = blk_get_integrity(mddev->gendisk);
1987 
1988 	if (!bi_mddev) /* nothing to do */
1989 		return;
1990 	if (rdev->raid_disk < 0) /* skip spares */
1991 		return;
1992 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1993 					     rdev->bdev->bd_disk) >= 0)
1994 		return;
1995 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1996 	blk_integrity_unregister(mddev->gendisk);
1997 }
1998 EXPORT_SYMBOL(md_integrity_add_rdev);
1999 
2000 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 	char b[BDEVNAME_SIZE];
2003 	struct kobject *ko;
2004 	char *s;
2005 	int err;
2006 
2007 	/* prevent duplicates */
2008 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2009 		return -EEXIST;
2010 
2011 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2012 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2013 			rdev->sectors < mddev->dev_sectors)) {
2014 		if (mddev->pers) {
2015 			/* Cannot change size, so fail
2016 			 * If mddev->level <= 0, then we don't care
2017 			 * about aligning sizes (e.g. linear)
2018 			 */
2019 			if (mddev->level > 0)
2020 				return -ENOSPC;
2021 		} else
2022 			mddev->dev_sectors = rdev->sectors;
2023 	}
2024 
2025 	/* Verify rdev->desc_nr is unique.
2026 	 * If it is -1, assign a free number, else
2027 	 * check number is not in use
2028 	 */
2029 	rcu_read_lock();
2030 	if (rdev->desc_nr < 0) {
2031 		int choice = 0;
2032 		if (mddev->pers)
2033 			choice = mddev->raid_disks;
2034 		while (find_rdev_nr_rcu(mddev, choice))
2035 			choice++;
2036 		rdev->desc_nr = choice;
2037 	} else {
2038 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2039 			rcu_read_unlock();
2040 			return -EBUSY;
2041 		}
2042 	}
2043 	rcu_read_unlock();
2044 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2045 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2046 		       mdname(mddev), mddev->max_disks);
2047 		return -EBUSY;
2048 	}
2049 	bdevname(rdev->bdev,b);
2050 	while ( (s=strchr(b, '/')) != NULL)
2051 		*s = '!';
2052 
2053 	rdev->mddev = mddev;
2054 	printk(KERN_INFO "md: bind<%s>\n", b);
2055 
2056 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2057 		goto fail;
2058 
2059 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2060 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2061 		/* failure here is OK */;
2062 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2063 
2064 	list_add_rcu(&rdev->same_set, &mddev->disks);
2065 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2066 
2067 	/* May as well allow recovery to be retried once */
2068 	mddev->recovery_disabled++;
2069 
2070 	return 0;
2071 
2072  fail:
2073 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2074 	       b, mdname(mddev));
2075 	return err;
2076 }
2077 
2078 static void md_delayed_delete(struct work_struct *ws)
2079 {
2080 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2081 	kobject_del(&rdev->kobj);
2082 	kobject_put(&rdev->kobj);
2083 }
2084 
2085 static void unbind_rdev_from_array(struct md_rdev *rdev)
2086 {
2087 	char b[BDEVNAME_SIZE];
2088 
2089 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2090 	list_del_rcu(&rdev->same_set);
2091 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2092 	rdev->mddev = NULL;
2093 	sysfs_remove_link(&rdev->kobj, "block");
2094 	sysfs_put(rdev->sysfs_state);
2095 	rdev->sysfs_state = NULL;
2096 	rdev->badblocks.count = 0;
2097 	/* We need to delay this, otherwise we can deadlock when
2098 	 * writing to 'remove' to "dev/state".  We also need
2099 	 * to delay it due to rcu usage.
2100 	 */
2101 	synchronize_rcu();
2102 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2103 	kobject_get(&rdev->kobj);
2104 	queue_work(md_misc_wq, &rdev->del_work);
2105 }
2106 
2107 /*
2108  * prevent the device from being mounted, repartitioned or
2109  * otherwise reused by a RAID array (or any other kernel
2110  * subsystem), by bd_claiming the device.
2111  */
2112 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2113 {
2114 	int err = 0;
2115 	struct block_device *bdev;
2116 	char b[BDEVNAME_SIZE];
2117 
2118 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2119 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2120 	if (IS_ERR(bdev)) {
2121 		printk(KERN_ERR "md: could not open %s.\n",
2122 			__bdevname(dev, b));
2123 		return PTR_ERR(bdev);
2124 	}
2125 	rdev->bdev = bdev;
2126 	return err;
2127 }
2128 
2129 static void unlock_rdev(struct md_rdev *rdev)
2130 {
2131 	struct block_device *bdev = rdev->bdev;
2132 	rdev->bdev = NULL;
2133 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2134 }
2135 
2136 void md_autodetect_dev(dev_t dev);
2137 
2138 static void export_rdev(struct md_rdev *rdev)
2139 {
2140 	char b[BDEVNAME_SIZE];
2141 
2142 	printk(KERN_INFO "md: export_rdev(%s)\n",
2143 		bdevname(rdev->bdev,b));
2144 	md_rdev_clear(rdev);
2145 #ifndef MODULE
2146 	if (test_bit(AutoDetected, &rdev->flags))
2147 		md_autodetect_dev(rdev->bdev->bd_dev);
2148 #endif
2149 	unlock_rdev(rdev);
2150 	kobject_put(&rdev->kobj);
2151 }
2152 
2153 static void kick_rdev_from_array(struct md_rdev *rdev)
2154 {
2155 	unbind_rdev_from_array(rdev);
2156 	export_rdev(rdev);
2157 }
2158 
2159 static void export_array(struct mddev *mddev)
2160 {
2161 	struct md_rdev *rdev;
2162 
2163 	while (!list_empty(&mddev->disks)) {
2164 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2165 					same_set);
2166 		kick_rdev_from_array(rdev);
2167 	}
2168 	mddev->raid_disks = 0;
2169 	mddev->major_version = 0;
2170 }
2171 
2172 static void sync_sbs(struct mddev *mddev, int nospares)
2173 {
2174 	/* Update each superblock (in-memory image), but
2175 	 * if we are allowed to, skip spares which already
2176 	 * have the right event counter, or have one earlier
2177 	 * (which would mean they aren't being marked as dirty
2178 	 * with the rest of the array)
2179 	 */
2180 	struct md_rdev *rdev;
2181 	rdev_for_each(rdev, mddev) {
2182 		if (rdev->sb_events == mddev->events ||
2183 		    (nospares &&
2184 		     rdev->raid_disk < 0 &&
2185 		     rdev->sb_events+1 == mddev->events)) {
2186 			/* Don't update this superblock */
2187 			rdev->sb_loaded = 2;
2188 		} else {
2189 			sync_super(mddev, rdev);
2190 			rdev->sb_loaded = 1;
2191 		}
2192 	}
2193 }
2194 
2195 static void md_update_sb(struct mddev *mddev, int force_change)
2196 {
2197 	struct md_rdev *rdev;
2198 	int sync_req;
2199 	int nospares = 0;
2200 	int any_badblocks_changed = 0;
2201 
2202 	if (mddev->ro) {
2203 		if (force_change)
2204 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2205 		return;
2206 	}
2207 repeat:
2208 	/* First make sure individual recovery_offsets are correct */
2209 	rdev_for_each(rdev, mddev) {
2210 		if (rdev->raid_disk >= 0 &&
2211 		    mddev->delta_disks >= 0 &&
2212 		    !test_bit(In_sync, &rdev->flags) &&
2213 		    mddev->curr_resync_completed > rdev->recovery_offset)
2214 				rdev->recovery_offset = mddev->curr_resync_completed;
2215 
2216 	}
2217 	if (!mddev->persistent) {
2218 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2219 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2220 		if (!mddev->external) {
2221 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2222 			rdev_for_each(rdev, mddev) {
2223 				if (rdev->badblocks.changed) {
2224 					rdev->badblocks.changed = 0;
2225 					md_ack_all_badblocks(&rdev->badblocks);
2226 					md_error(mddev, rdev);
2227 				}
2228 				clear_bit(Blocked, &rdev->flags);
2229 				clear_bit(BlockedBadBlocks, &rdev->flags);
2230 				wake_up(&rdev->blocked_wait);
2231 			}
2232 		}
2233 		wake_up(&mddev->sb_wait);
2234 		return;
2235 	}
2236 
2237 	spin_lock_irq(&mddev->write_lock);
2238 
2239 	mddev->utime = get_seconds();
2240 
2241 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2242 		force_change = 1;
2243 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2244 		/* just a clean<-> dirty transition, possibly leave spares alone,
2245 		 * though if events isn't the right even/odd, we will have to do
2246 		 * spares after all
2247 		 */
2248 		nospares = 1;
2249 	if (force_change)
2250 		nospares = 0;
2251 	if (mddev->degraded)
2252 		/* If the array is degraded, then skipping spares is both
2253 		 * dangerous and fairly pointless.
2254 		 * Dangerous because a device that was removed from the array
2255 		 * might have a event_count that still looks up-to-date,
2256 		 * so it can be re-added without a resync.
2257 		 * Pointless because if there are any spares to skip,
2258 		 * then a recovery will happen and soon that array won't
2259 		 * be degraded any more and the spare can go back to sleep then.
2260 		 */
2261 		nospares = 0;
2262 
2263 	sync_req = mddev->in_sync;
2264 
2265 	/* If this is just a dirty<->clean transition, and the array is clean
2266 	 * and 'events' is odd, we can roll back to the previous clean state */
2267 	if (nospares
2268 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2269 	    && mddev->can_decrease_events
2270 	    && mddev->events != 1) {
2271 		mddev->events--;
2272 		mddev->can_decrease_events = 0;
2273 	} else {
2274 		/* otherwise we have to go forward and ... */
2275 		mddev->events ++;
2276 		mddev->can_decrease_events = nospares;
2277 	}
2278 
2279 	/*
2280 	 * This 64-bit counter should never wrap.
2281 	 * Either we are in around ~1 trillion A.C., assuming
2282 	 * 1 reboot per second, or we have a bug...
2283 	 */
2284 	WARN_ON(mddev->events == 0);
2285 
2286 	rdev_for_each(rdev, mddev) {
2287 		if (rdev->badblocks.changed)
2288 			any_badblocks_changed++;
2289 		if (test_bit(Faulty, &rdev->flags))
2290 			set_bit(FaultRecorded, &rdev->flags);
2291 	}
2292 
2293 	sync_sbs(mddev, nospares);
2294 	spin_unlock_irq(&mddev->write_lock);
2295 
2296 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2297 		 mdname(mddev), mddev->in_sync);
2298 
2299 	bitmap_update_sb(mddev->bitmap);
2300 	rdev_for_each(rdev, mddev) {
2301 		char b[BDEVNAME_SIZE];
2302 
2303 		if (rdev->sb_loaded != 1)
2304 			continue; /* no noise on spare devices */
2305 
2306 		if (!test_bit(Faulty, &rdev->flags)) {
2307 			md_super_write(mddev,rdev,
2308 				       rdev->sb_start, rdev->sb_size,
2309 				       rdev->sb_page);
2310 			pr_debug("md: (write) %s's sb offset: %llu\n",
2311 				 bdevname(rdev->bdev, b),
2312 				 (unsigned long long)rdev->sb_start);
2313 			rdev->sb_events = mddev->events;
2314 			if (rdev->badblocks.size) {
2315 				md_super_write(mddev, rdev,
2316 					       rdev->badblocks.sector,
2317 					       rdev->badblocks.size << 9,
2318 					       rdev->bb_page);
2319 				rdev->badblocks.size = 0;
2320 			}
2321 
2322 		} else
2323 			pr_debug("md: %s (skipping faulty)\n",
2324 				 bdevname(rdev->bdev, b));
2325 
2326 		if (mddev->level == LEVEL_MULTIPATH)
2327 			/* only need to write one superblock... */
2328 			break;
2329 	}
2330 	md_super_wait(mddev);
2331 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2332 
2333 	spin_lock_irq(&mddev->write_lock);
2334 	if (mddev->in_sync != sync_req ||
2335 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2336 		/* have to write it out again */
2337 		spin_unlock_irq(&mddev->write_lock);
2338 		goto repeat;
2339 	}
2340 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2341 	spin_unlock_irq(&mddev->write_lock);
2342 	wake_up(&mddev->sb_wait);
2343 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2344 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2345 
2346 	rdev_for_each(rdev, mddev) {
2347 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2348 			clear_bit(Blocked, &rdev->flags);
2349 
2350 		if (any_badblocks_changed)
2351 			md_ack_all_badblocks(&rdev->badblocks);
2352 		clear_bit(BlockedBadBlocks, &rdev->flags);
2353 		wake_up(&rdev->blocked_wait);
2354 	}
2355 }
2356 
2357 /* words written to sysfs files may, or may not, be \n terminated.
2358  * We want to accept with case. For this we use cmd_match.
2359  */
2360 static int cmd_match(const char *cmd, const char *str)
2361 {
2362 	/* See if cmd, written into a sysfs file, matches
2363 	 * str.  They must either be the same, or cmd can
2364 	 * have a trailing newline
2365 	 */
2366 	while (*cmd && *str && *cmd == *str) {
2367 		cmd++;
2368 		str++;
2369 	}
2370 	if (*cmd == '\n')
2371 		cmd++;
2372 	if (*str || *cmd)
2373 		return 0;
2374 	return 1;
2375 }
2376 
2377 struct rdev_sysfs_entry {
2378 	struct attribute attr;
2379 	ssize_t (*show)(struct md_rdev *, char *);
2380 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2381 };
2382 
2383 static ssize_t
2384 state_show(struct md_rdev *rdev, char *page)
2385 {
2386 	char *sep = "";
2387 	size_t len = 0;
2388 
2389 	if (test_bit(Faulty, &rdev->flags) ||
2390 	    rdev->badblocks.unacked_exist) {
2391 		len+= sprintf(page+len, "%sfaulty",sep);
2392 		sep = ",";
2393 	}
2394 	if (test_bit(In_sync, &rdev->flags)) {
2395 		len += sprintf(page+len, "%sin_sync",sep);
2396 		sep = ",";
2397 	}
2398 	if (test_bit(WriteMostly, &rdev->flags)) {
2399 		len += sprintf(page+len, "%swrite_mostly",sep);
2400 		sep = ",";
2401 	}
2402 	if (test_bit(Blocked, &rdev->flags) ||
2403 	    (rdev->badblocks.unacked_exist
2404 	     && !test_bit(Faulty, &rdev->flags))) {
2405 		len += sprintf(page+len, "%sblocked", sep);
2406 		sep = ",";
2407 	}
2408 	if (!test_bit(Faulty, &rdev->flags) &&
2409 	    !test_bit(In_sync, &rdev->flags)) {
2410 		len += sprintf(page+len, "%sspare", sep);
2411 		sep = ",";
2412 	}
2413 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2414 		len += sprintf(page+len, "%swrite_error", sep);
2415 		sep = ",";
2416 	}
2417 	if (test_bit(WantReplacement, &rdev->flags)) {
2418 		len += sprintf(page+len, "%swant_replacement", sep);
2419 		sep = ",";
2420 	}
2421 	if (test_bit(Replacement, &rdev->flags)) {
2422 		len += sprintf(page+len, "%sreplacement", sep);
2423 		sep = ",";
2424 	}
2425 
2426 	return len+sprintf(page+len, "\n");
2427 }
2428 
2429 static ssize_t
2430 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2431 {
2432 	/* can write
2433 	 *  faulty  - simulates an error
2434 	 *  remove  - disconnects the device
2435 	 *  writemostly - sets write_mostly
2436 	 *  -writemostly - clears write_mostly
2437 	 *  blocked - sets the Blocked flags
2438 	 *  -blocked - clears the Blocked and possibly simulates an error
2439 	 *  insync - sets Insync providing device isn't active
2440 	 *  -insync - clear Insync for a device with a slot assigned,
2441 	 *            so that it gets rebuilt based on bitmap
2442 	 *  write_error - sets WriteErrorSeen
2443 	 *  -write_error - clears WriteErrorSeen
2444 	 */
2445 	int err = -EINVAL;
2446 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2447 		md_error(rdev->mddev, rdev);
2448 		if (test_bit(Faulty, &rdev->flags))
2449 			err = 0;
2450 		else
2451 			err = -EBUSY;
2452 	} else if (cmd_match(buf, "remove")) {
2453 		if (rdev->raid_disk >= 0)
2454 			err = -EBUSY;
2455 		else {
2456 			struct mddev *mddev = rdev->mddev;
2457 			kick_rdev_from_array(rdev);
2458 			if (mddev->pers)
2459 				md_update_sb(mddev, 1);
2460 			md_new_event(mddev);
2461 			err = 0;
2462 		}
2463 	} else if (cmd_match(buf, "writemostly")) {
2464 		set_bit(WriteMostly, &rdev->flags);
2465 		err = 0;
2466 	} else if (cmd_match(buf, "-writemostly")) {
2467 		clear_bit(WriteMostly, &rdev->flags);
2468 		err = 0;
2469 	} else if (cmd_match(buf, "blocked")) {
2470 		set_bit(Blocked, &rdev->flags);
2471 		err = 0;
2472 	} else if (cmd_match(buf, "-blocked")) {
2473 		if (!test_bit(Faulty, &rdev->flags) &&
2474 		    rdev->badblocks.unacked_exist) {
2475 			/* metadata handler doesn't understand badblocks,
2476 			 * so we need to fail the device
2477 			 */
2478 			md_error(rdev->mddev, rdev);
2479 		}
2480 		clear_bit(Blocked, &rdev->flags);
2481 		clear_bit(BlockedBadBlocks, &rdev->flags);
2482 		wake_up(&rdev->blocked_wait);
2483 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2484 		md_wakeup_thread(rdev->mddev->thread);
2485 
2486 		err = 0;
2487 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2488 		set_bit(In_sync, &rdev->flags);
2489 		err = 0;
2490 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2491 		if (rdev->mddev->pers == NULL) {
2492 			clear_bit(In_sync, &rdev->flags);
2493 			rdev->saved_raid_disk = rdev->raid_disk;
2494 			rdev->raid_disk = -1;
2495 			err = 0;
2496 		}
2497 	} else if (cmd_match(buf, "write_error")) {
2498 		set_bit(WriteErrorSeen, &rdev->flags);
2499 		err = 0;
2500 	} else if (cmd_match(buf, "-write_error")) {
2501 		clear_bit(WriteErrorSeen, &rdev->flags);
2502 		err = 0;
2503 	} else if (cmd_match(buf, "want_replacement")) {
2504 		/* Any non-spare device that is not a replacement can
2505 		 * become want_replacement at any time, but we then need to
2506 		 * check if recovery is needed.
2507 		 */
2508 		if (rdev->raid_disk >= 0 &&
2509 		    !test_bit(Replacement, &rdev->flags))
2510 			set_bit(WantReplacement, &rdev->flags);
2511 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2512 		md_wakeup_thread(rdev->mddev->thread);
2513 		err = 0;
2514 	} else if (cmd_match(buf, "-want_replacement")) {
2515 		/* Clearing 'want_replacement' is always allowed.
2516 		 * Once replacements starts it is too late though.
2517 		 */
2518 		err = 0;
2519 		clear_bit(WantReplacement, &rdev->flags);
2520 	} else if (cmd_match(buf, "replacement")) {
2521 		/* Can only set a device as a replacement when array has not
2522 		 * yet been started.  Once running, replacement is automatic
2523 		 * from spares, or by assigning 'slot'.
2524 		 */
2525 		if (rdev->mddev->pers)
2526 			err = -EBUSY;
2527 		else {
2528 			set_bit(Replacement, &rdev->flags);
2529 			err = 0;
2530 		}
2531 	} else if (cmd_match(buf, "-replacement")) {
2532 		/* Similarly, can only clear Replacement before start */
2533 		if (rdev->mddev->pers)
2534 			err = -EBUSY;
2535 		else {
2536 			clear_bit(Replacement, &rdev->flags);
2537 			err = 0;
2538 		}
2539 	}
2540 	if (!err)
2541 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2542 	return err ? err : len;
2543 }
2544 static struct rdev_sysfs_entry rdev_state =
2545 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2546 
2547 static ssize_t
2548 errors_show(struct md_rdev *rdev, char *page)
2549 {
2550 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2551 }
2552 
2553 static ssize_t
2554 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2555 {
2556 	char *e;
2557 	unsigned long n = simple_strtoul(buf, &e, 10);
2558 	if (*buf && (*e == 0 || *e == '\n')) {
2559 		atomic_set(&rdev->corrected_errors, n);
2560 		return len;
2561 	}
2562 	return -EINVAL;
2563 }
2564 static struct rdev_sysfs_entry rdev_errors =
2565 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2566 
2567 static ssize_t
2568 slot_show(struct md_rdev *rdev, char *page)
2569 {
2570 	if (rdev->raid_disk < 0)
2571 		return sprintf(page, "none\n");
2572 	else
2573 		return sprintf(page, "%d\n", rdev->raid_disk);
2574 }
2575 
2576 static ssize_t
2577 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2578 {
2579 	char *e;
2580 	int err;
2581 	int slot = simple_strtoul(buf, &e, 10);
2582 	if (strncmp(buf, "none", 4)==0)
2583 		slot = -1;
2584 	else if (e==buf || (*e && *e!= '\n'))
2585 		return -EINVAL;
2586 	if (rdev->mddev->pers && slot == -1) {
2587 		/* Setting 'slot' on an active array requires also
2588 		 * updating the 'rd%d' link, and communicating
2589 		 * with the personality with ->hot_*_disk.
2590 		 * For now we only support removing
2591 		 * failed/spare devices.  This normally happens automatically,
2592 		 * but not when the metadata is externally managed.
2593 		 */
2594 		if (rdev->raid_disk == -1)
2595 			return -EEXIST;
2596 		/* personality does all needed checks */
2597 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2598 			return -EINVAL;
2599 		clear_bit(Blocked, &rdev->flags);
2600 		remove_and_add_spares(rdev->mddev, rdev);
2601 		if (rdev->raid_disk >= 0)
2602 			return -EBUSY;
2603 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2604 		md_wakeup_thread(rdev->mddev->thread);
2605 	} else if (rdev->mddev->pers) {
2606 		/* Activating a spare .. or possibly reactivating
2607 		 * if we ever get bitmaps working here.
2608 		 */
2609 
2610 		if (rdev->raid_disk != -1)
2611 			return -EBUSY;
2612 
2613 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2614 			return -EBUSY;
2615 
2616 		if (rdev->mddev->pers->hot_add_disk == NULL)
2617 			return -EINVAL;
2618 
2619 		if (slot >= rdev->mddev->raid_disks &&
2620 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2621 			return -ENOSPC;
2622 
2623 		rdev->raid_disk = slot;
2624 		if (test_bit(In_sync, &rdev->flags))
2625 			rdev->saved_raid_disk = slot;
2626 		else
2627 			rdev->saved_raid_disk = -1;
2628 		clear_bit(In_sync, &rdev->flags);
2629 		clear_bit(Bitmap_sync, &rdev->flags);
2630 		err = rdev->mddev->pers->
2631 			hot_add_disk(rdev->mddev, rdev);
2632 		if (err) {
2633 			rdev->raid_disk = -1;
2634 			return err;
2635 		} else
2636 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2637 		if (sysfs_link_rdev(rdev->mddev, rdev))
2638 			/* failure here is OK */;
2639 		/* don't wakeup anyone, leave that to userspace. */
2640 	} else {
2641 		if (slot >= rdev->mddev->raid_disks &&
2642 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2643 			return -ENOSPC;
2644 		rdev->raid_disk = slot;
2645 		/* assume it is working */
2646 		clear_bit(Faulty, &rdev->flags);
2647 		clear_bit(WriteMostly, &rdev->flags);
2648 		set_bit(In_sync, &rdev->flags);
2649 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 	}
2651 	return len;
2652 }
2653 
2654 static struct rdev_sysfs_entry rdev_slot =
2655 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2656 
2657 static ssize_t
2658 offset_show(struct md_rdev *rdev, char *page)
2659 {
2660 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2661 }
2662 
2663 static ssize_t
2664 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2665 {
2666 	unsigned long long offset;
2667 	if (kstrtoull(buf, 10, &offset) < 0)
2668 		return -EINVAL;
2669 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2670 		return -EBUSY;
2671 	if (rdev->sectors && rdev->mddev->external)
2672 		/* Must set offset before size, so overlap checks
2673 		 * can be sane */
2674 		return -EBUSY;
2675 	rdev->data_offset = offset;
2676 	rdev->new_data_offset = offset;
2677 	return len;
2678 }
2679 
2680 static struct rdev_sysfs_entry rdev_offset =
2681 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2682 
2683 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2684 {
2685 	return sprintf(page, "%llu\n",
2686 		       (unsigned long long)rdev->new_data_offset);
2687 }
2688 
2689 static ssize_t new_offset_store(struct md_rdev *rdev,
2690 				const char *buf, size_t len)
2691 {
2692 	unsigned long long new_offset;
2693 	struct mddev *mddev = rdev->mddev;
2694 
2695 	if (kstrtoull(buf, 10, &new_offset) < 0)
2696 		return -EINVAL;
2697 
2698 	if (mddev->sync_thread)
2699 		return -EBUSY;
2700 	if (new_offset == rdev->data_offset)
2701 		/* reset is always permitted */
2702 		;
2703 	else if (new_offset > rdev->data_offset) {
2704 		/* must not push array size beyond rdev_sectors */
2705 		if (new_offset - rdev->data_offset
2706 		    + mddev->dev_sectors > rdev->sectors)
2707 				return -E2BIG;
2708 	}
2709 	/* Metadata worries about other space details. */
2710 
2711 	/* decreasing the offset is inconsistent with a backwards
2712 	 * reshape.
2713 	 */
2714 	if (new_offset < rdev->data_offset &&
2715 	    mddev->reshape_backwards)
2716 		return -EINVAL;
2717 	/* Increasing offset is inconsistent with forwards
2718 	 * reshape.  reshape_direction should be set to
2719 	 * 'backwards' first.
2720 	 */
2721 	if (new_offset > rdev->data_offset &&
2722 	    !mddev->reshape_backwards)
2723 		return -EINVAL;
2724 
2725 	if (mddev->pers && mddev->persistent &&
2726 	    !super_types[mddev->major_version]
2727 	    .allow_new_offset(rdev, new_offset))
2728 		return -E2BIG;
2729 	rdev->new_data_offset = new_offset;
2730 	if (new_offset > rdev->data_offset)
2731 		mddev->reshape_backwards = 1;
2732 	else if (new_offset < rdev->data_offset)
2733 		mddev->reshape_backwards = 0;
2734 
2735 	return len;
2736 }
2737 static struct rdev_sysfs_entry rdev_new_offset =
2738 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2739 
2740 static ssize_t
2741 rdev_size_show(struct md_rdev *rdev, char *page)
2742 {
2743 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2744 }
2745 
2746 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2747 {
2748 	/* check if two start/length pairs overlap */
2749 	if (s1+l1 <= s2)
2750 		return 0;
2751 	if (s2+l2 <= s1)
2752 		return 0;
2753 	return 1;
2754 }
2755 
2756 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2757 {
2758 	unsigned long long blocks;
2759 	sector_t new;
2760 
2761 	if (kstrtoull(buf, 10, &blocks) < 0)
2762 		return -EINVAL;
2763 
2764 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2765 		return -EINVAL; /* sector conversion overflow */
2766 
2767 	new = blocks * 2;
2768 	if (new != blocks * 2)
2769 		return -EINVAL; /* unsigned long long to sector_t overflow */
2770 
2771 	*sectors = new;
2772 	return 0;
2773 }
2774 
2775 static ssize_t
2776 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2777 {
2778 	struct mddev *my_mddev = rdev->mddev;
2779 	sector_t oldsectors = rdev->sectors;
2780 	sector_t sectors;
2781 
2782 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2783 		return -EINVAL;
2784 	if (rdev->data_offset != rdev->new_data_offset)
2785 		return -EINVAL; /* too confusing */
2786 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2787 		if (my_mddev->persistent) {
2788 			sectors = super_types[my_mddev->major_version].
2789 				rdev_size_change(rdev, sectors);
2790 			if (!sectors)
2791 				return -EBUSY;
2792 		} else if (!sectors)
2793 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2794 				rdev->data_offset;
2795 		if (!my_mddev->pers->resize)
2796 			/* Cannot change size for RAID0 or Linear etc */
2797 			return -EINVAL;
2798 	}
2799 	if (sectors < my_mddev->dev_sectors)
2800 		return -EINVAL; /* component must fit device */
2801 
2802 	rdev->sectors = sectors;
2803 	if (sectors > oldsectors && my_mddev->external) {
2804 		/* Need to check that all other rdevs with the same
2805 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2806 		 * the rdev lists safely.
2807 		 * This check does not provide a hard guarantee, it
2808 		 * just helps avoid dangerous mistakes.
2809 		 */
2810 		struct mddev *mddev;
2811 		int overlap = 0;
2812 		struct list_head *tmp;
2813 
2814 		rcu_read_lock();
2815 		for_each_mddev(mddev, tmp) {
2816 			struct md_rdev *rdev2;
2817 
2818 			rdev_for_each(rdev2, mddev)
2819 				if (rdev->bdev == rdev2->bdev &&
2820 				    rdev != rdev2 &&
2821 				    overlaps(rdev->data_offset, rdev->sectors,
2822 					     rdev2->data_offset,
2823 					     rdev2->sectors)) {
2824 					overlap = 1;
2825 					break;
2826 				}
2827 			if (overlap) {
2828 				mddev_put(mddev);
2829 				break;
2830 			}
2831 		}
2832 		rcu_read_unlock();
2833 		if (overlap) {
2834 			/* Someone else could have slipped in a size
2835 			 * change here, but doing so is just silly.
2836 			 * We put oldsectors back because we *know* it is
2837 			 * safe, and trust userspace not to race with
2838 			 * itself
2839 			 */
2840 			rdev->sectors = oldsectors;
2841 			return -EBUSY;
2842 		}
2843 	}
2844 	return len;
2845 }
2846 
2847 static struct rdev_sysfs_entry rdev_size =
2848 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2849 
2850 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2851 {
2852 	unsigned long long recovery_start = rdev->recovery_offset;
2853 
2854 	if (test_bit(In_sync, &rdev->flags) ||
2855 	    recovery_start == MaxSector)
2856 		return sprintf(page, "none\n");
2857 
2858 	return sprintf(page, "%llu\n", recovery_start);
2859 }
2860 
2861 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2862 {
2863 	unsigned long long recovery_start;
2864 
2865 	if (cmd_match(buf, "none"))
2866 		recovery_start = MaxSector;
2867 	else if (kstrtoull(buf, 10, &recovery_start))
2868 		return -EINVAL;
2869 
2870 	if (rdev->mddev->pers &&
2871 	    rdev->raid_disk >= 0)
2872 		return -EBUSY;
2873 
2874 	rdev->recovery_offset = recovery_start;
2875 	if (recovery_start == MaxSector)
2876 		set_bit(In_sync, &rdev->flags);
2877 	else
2878 		clear_bit(In_sync, &rdev->flags);
2879 	return len;
2880 }
2881 
2882 static struct rdev_sysfs_entry rdev_recovery_start =
2883 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2884 
2885 static ssize_t
2886 badblocks_show(struct badblocks *bb, char *page, int unack);
2887 static ssize_t
2888 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2889 
2890 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2891 {
2892 	return badblocks_show(&rdev->badblocks, page, 0);
2893 }
2894 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2895 {
2896 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2897 	/* Maybe that ack was all we needed */
2898 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2899 		wake_up(&rdev->blocked_wait);
2900 	return rv;
2901 }
2902 static struct rdev_sysfs_entry rdev_bad_blocks =
2903 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2904 
2905 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2906 {
2907 	return badblocks_show(&rdev->badblocks, page, 1);
2908 }
2909 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2910 {
2911 	return badblocks_store(&rdev->badblocks, page, len, 1);
2912 }
2913 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2914 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2915 
2916 static struct attribute *rdev_default_attrs[] = {
2917 	&rdev_state.attr,
2918 	&rdev_errors.attr,
2919 	&rdev_slot.attr,
2920 	&rdev_offset.attr,
2921 	&rdev_new_offset.attr,
2922 	&rdev_size.attr,
2923 	&rdev_recovery_start.attr,
2924 	&rdev_bad_blocks.attr,
2925 	&rdev_unack_bad_blocks.attr,
2926 	NULL,
2927 };
2928 static ssize_t
2929 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2930 {
2931 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2932 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2933 	struct mddev *mddev = rdev->mddev;
2934 	ssize_t rv;
2935 
2936 	if (!entry->show)
2937 		return -EIO;
2938 
2939 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2940 	if (!rv) {
2941 		if (rdev->mddev == NULL)
2942 			rv = -EBUSY;
2943 		else
2944 			rv = entry->show(rdev, page);
2945 		mddev_unlock(mddev);
2946 	}
2947 	return rv;
2948 }
2949 
2950 static ssize_t
2951 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2952 	      const char *page, size_t length)
2953 {
2954 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2955 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2956 	ssize_t rv;
2957 	struct mddev *mddev = rdev->mddev;
2958 
2959 	if (!entry->store)
2960 		return -EIO;
2961 	if (!capable(CAP_SYS_ADMIN))
2962 		return -EACCES;
2963 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2964 	if (!rv) {
2965 		if (rdev->mddev == NULL)
2966 			rv = -EBUSY;
2967 		else
2968 			rv = entry->store(rdev, page, length);
2969 		mddev_unlock(mddev);
2970 	}
2971 	return rv;
2972 }
2973 
2974 static void rdev_free(struct kobject *ko)
2975 {
2976 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2977 	kfree(rdev);
2978 }
2979 static const struct sysfs_ops rdev_sysfs_ops = {
2980 	.show		= rdev_attr_show,
2981 	.store		= rdev_attr_store,
2982 };
2983 static struct kobj_type rdev_ktype = {
2984 	.release	= rdev_free,
2985 	.sysfs_ops	= &rdev_sysfs_ops,
2986 	.default_attrs	= rdev_default_attrs,
2987 };
2988 
2989 int md_rdev_init(struct md_rdev *rdev)
2990 {
2991 	rdev->desc_nr = -1;
2992 	rdev->saved_raid_disk = -1;
2993 	rdev->raid_disk = -1;
2994 	rdev->flags = 0;
2995 	rdev->data_offset = 0;
2996 	rdev->new_data_offset = 0;
2997 	rdev->sb_events = 0;
2998 	rdev->last_read_error.tv_sec  = 0;
2999 	rdev->last_read_error.tv_nsec = 0;
3000 	rdev->sb_loaded = 0;
3001 	rdev->bb_page = NULL;
3002 	atomic_set(&rdev->nr_pending, 0);
3003 	atomic_set(&rdev->read_errors, 0);
3004 	atomic_set(&rdev->corrected_errors, 0);
3005 
3006 	INIT_LIST_HEAD(&rdev->same_set);
3007 	init_waitqueue_head(&rdev->blocked_wait);
3008 
3009 	/* Add space to store bad block list.
3010 	 * This reserves the space even on arrays where it cannot
3011 	 * be used - I wonder if that matters
3012 	 */
3013 	rdev->badblocks.count = 0;
3014 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3015 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3016 	seqlock_init(&rdev->badblocks.lock);
3017 	if (rdev->badblocks.page == NULL)
3018 		return -ENOMEM;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL_GPL(md_rdev_init);
3023 /*
3024  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3025  *
3026  * mark the device faulty if:
3027  *
3028  *   - the device is nonexistent (zero size)
3029  *   - the device has no valid superblock
3030  *
3031  * a faulty rdev _never_ has rdev->sb set.
3032  */
3033 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3034 {
3035 	char b[BDEVNAME_SIZE];
3036 	int err;
3037 	struct md_rdev *rdev;
3038 	sector_t size;
3039 
3040 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3041 	if (!rdev) {
3042 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3043 		return ERR_PTR(-ENOMEM);
3044 	}
3045 
3046 	err = md_rdev_init(rdev);
3047 	if (err)
3048 		goto abort_free;
3049 	err = alloc_disk_sb(rdev);
3050 	if (err)
3051 		goto abort_free;
3052 
3053 	err = lock_rdev(rdev, newdev, super_format == -2);
3054 	if (err)
3055 		goto abort_free;
3056 
3057 	kobject_init(&rdev->kobj, &rdev_ktype);
3058 
3059 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3060 	if (!size) {
3061 		printk(KERN_WARNING
3062 			"md: %s has zero or unknown size, marking faulty!\n",
3063 			bdevname(rdev->bdev,b));
3064 		err = -EINVAL;
3065 		goto abort_free;
3066 	}
3067 
3068 	if (super_format >= 0) {
3069 		err = super_types[super_format].
3070 			load_super(rdev, NULL, super_minor);
3071 		if (err == -EINVAL) {
3072 			printk(KERN_WARNING
3073 				"md: %s does not have a valid v%d.%d "
3074 			       "superblock, not importing!\n",
3075 				bdevname(rdev->bdev,b),
3076 			       super_format, super_minor);
3077 			goto abort_free;
3078 		}
3079 		if (err < 0) {
3080 			printk(KERN_WARNING
3081 				"md: could not read %s's sb, not importing!\n",
3082 				bdevname(rdev->bdev,b));
3083 			goto abort_free;
3084 		}
3085 	}
3086 
3087 	return rdev;
3088 
3089 abort_free:
3090 	if (rdev->bdev)
3091 		unlock_rdev(rdev);
3092 	md_rdev_clear(rdev);
3093 	kfree(rdev);
3094 	return ERR_PTR(err);
3095 }
3096 
3097 /*
3098  * Check a full RAID array for plausibility
3099  */
3100 
3101 static void analyze_sbs(struct mddev *mddev)
3102 {
3103 	int i;
3104 	struct md_rdev *rdev, *freshest, *tmp;
3105 	char b[BDEVNAME_SIZE];
3106 
3107 	freshest = NULL;
3108 	rdev_for_each_safe(rdev, tmp, mddev)
3109 		switch (super_types[mddev->major_version].
3110 			load_super(rdev, freshest, mddev->minor_version)) {
3111 		case 1:
3112 			freshest = rdev;
3113 			break;
3114 		case 0:
3115 			break;
3116 		default:
3117 			printk( KERN_ERR \
3118 				"md: fatal superblock inconsistency in %s"
3119 				" -- removing from array\n",
3120 				bdevname(rdev->bdev,b));
3121 			kick_rdev_from_array(rdev);
3122 		}
3123 
3124 	super_types[mddev->major_version].
3125 		validate_super(mddev, freshest);
3126 
3127 	i = 0;
3128 	rdev_for_each_safe(rdev, tmp, mddev) {
3129 		if (mddev->max_disks &&
3130 		    (rdev->desc_nr >= mddev->max_disks ||
3131 		     i > mddev->max_disks)) {
3132 			printk(KERN_WARNING
3133 			       "md: %s: %s: only %d devices permitted\n",
3134 			       mdname(mddev), bdevname(rdev->bdev, b),
3135 			       mddev->max_disks);
3136 			kick_rdev_from_array(rdev);
3137 			continue;
3138 		}
3139 		if (rdev != freshest)
3140 			if (super_types[mddev->major_version].
3141 			    validate_super(mddev, rdev)) {
3142 				printk(KERN_WARNING "md: kicking non-fresh %s"
3143 					" from array!\n",
3144 					bdevname(rdev->bdev,b));
3145 				kick_rdev_from_array(rdev);
3146 				continue;
3147 			}
3148 		if (mddev->level == LEVEL_MULTIPATH) {
3149 			rdev->desc_nr = i++;
3150 			rdev->raid_disk = rdev->desc_nr;
3151 			set_bit(In_sync, &rdev->flags);
3152 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3153 			rdev->raid_disk = -1;
3154 			clear_bit(In_sync, &rdev->flags);
3155 		}
3156 	}
3157 }
3158 
3159 /* Read a fixed-point number.
3160  * Numbers in sysfs attributes should be in "standard" units where
3161  * possible, so time should be in seconds.
3162  * However we internally use a a much smaller unit such as
3163  * milliseconds or jiffies.
3164  * This function takes a decimal number with a possible fractional
3165  * component, and produces an integer which is the result of
3166  * multiplying that number by 10^'scale'.
3167  * all without any floating-point arithmetic.
3168  */
3169 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3170 {
3171 	unsigned long result = 0;
3172 	long decimals = -1;
3173 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3174 		if (*cp == '.')
3175 			decimals = 0;
3176 		else if (decimals < scale) {
3177 			unsigned int value;
3178 			value = *cp - '0';
3179 			result = result * 10 + value;
3180 			if (decimals >= 0)
3181 				decimals++;
3182 		}
3183 		cp++;
3184 	}
3185 	if (*cp == '\n')
3186 		cp++;
3187 	if (*cp)
3188 		return -EINVAL;
3189 	if (decimals < 0)
3190 		decimals = 0;
3191 	while (decimals < scale) {
3192 		result *= 10;
3193 		decimals ++;
3194 	}
3195 	*res = result;
3196 	return 0;
3197 }
3198 
3199 static void md_safemode_timeout(unsigned long data);
3200 
3201 static ssize_t
3202 safe_delay_show(struct mddev *mddev, char *page)
3203 {
3204 	int msec = (mddev->safemode_delay*1000)/HZ;
3205 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3206 }
3207 static ssize_t
3208 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3209 {
3210 	unsigned long msec;
3211 
3212 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3213 		return -EINVAL;
3214 	if (msec == 0)
3215 		mddev->safemode_delay = 0;
3216 	else {
3217 		unsigned long old_delay = mddev->safemode_delay;
3218 		mddev->safemode_delay = (msec*HZ)/1000;
3219 		if (mddev->safemode_delay == 0)
3220 			mddev->safemode_delay = 1;
3221 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3222 			md_safemode_timeout((unsigned long)mddev);
3223 	}
3224 	return len;
3225 }
3226 static struct md_sysfs_entry md_safe_delay =
3227 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3228 
3229 static ssize_t
3230 level_show(struct mddev *mddev, char *page)
3231 {
3232 	struct md_personality *p = mddev->pers;
3233 	if (p)
3234 		return sprintf(page, "%s\n", p->name);
3235 	else if (mddev->clevel[0])
3236 		return sprintf(page, "%s\n", mddev->clevel);
3237 	else if (mddev->level != LEVEL_NONE)
3238 		return sprintf(page, "%d\n", mddev->level);
3239 	else
3240 		return 0;
3241 }
3242 
3243 static ssize_t
3244 level_store(struct mddev *mddev, const char *buf, size_t len)
3245 {
3246 	char clevel[16];
3247 	ssize_t rv = len;
3248 	struct md_personality *pers;
3249 	long level;
3250 	void *priv;
3251 	struct md_rdev *rdev;
3252 
3253 	if (mddev->pers == NULL) {
3254 		if (len == 0)
3255 			return 0;
3256 		if (len >= sizeof(mddev->clevel))
3257 			return -ENOSPC;
3258 		strncpy(mddev->clevel, buf, len);
3259 		if (mddev->clevel[len-1] == '\n')
3260 			len--;
3261 		mddev->clevel[len] = 0;
3262 		mddev->level = LEVEL_NONE;
3263 		return rv;
3264 	}
3265 	if (mddev->ro)
3266 		return  -EROFS;
3267 
3268 	/* request to change the personality.  Need to ensure:
3269 	 *  - array is not engaged in resync/recovery/reshape
3270 	 *  - old personality can be suspended
3271 	 *  - new personality will access other array.
3272 	 */
3273 
3274 	if (mddev->sync_thread ||
3275 	    mddev->reshape_position != MaxSector ||
3276 	    mddev->sysfs_active)
3277 		return -EBUSY;
3278 
3279 	if (!mddev->pers->quiesce) {
3280 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3281 		       mdname(mddev), mddev->pers->name);
3282 		return -EINVAL;
3283 	}
3284 
3285 	/* Now find the new personality */
3286 	if (len == 0 || len >= sizeof(clevel))
3287 		return -EINVAL;
3288 	strncpy(clevel, buf, len);
3289 	if (clevel[len-1] == '\n')
3290 		len--;
3291 	clevel[len] = 0;
3292 	if (kstrtol(clevel, 10, &level))
3293 		level = LEVEL_NONE;
3294 
3295 	if (request_module("md-%s", clevel) != 0)
3296 		request_module("md-level-%s", clevel);
3297 	spin_lock(&pers_lock);
3298 	pers = find_pers(level, clevel);
3299 	if (!pers || !try_module_get(pers->owner)) {
3300 		spin_unlock(&pers_lock);
3301 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3302 		return -EINVAL;
3303 	}
3304 	spin_unlock(&pers_lock);
3305 
3306 	if (pers == mddev->pers) {
3307 		/* Nothing to do! */
3308 		module_put(pers->owner);
3309 		return rv;
3310 	}
3311 	if (!pers->takeover) {
3312 		module_put(pers->owner);
3313 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3314 		       mdname(mddev), clevel);
3315 		return -EINVAL;
3316 	}
3317 
3318 	rdev_for_each(rdev, mddev)
3319 		rdev->new_raid_disk = rdev->raid_disk;
3320 
3321 	/* ->takeover must set new_* and/or delta_disks
3322 	 * if it succeeds, and may set them when it fails.
3323 	 */
3324 	priv = pers->takeover(mddev);
3325 	if (IS_ERR(priv)) {
3326 		mddev->new_level = mddev->level;
3327 		mddev->new_layout = mddev->layout;
3328 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3329 		mddev->raid_disks -= mddev->delta_disks;
3330 		mddev->delta_disks = 0;
3331 		mddev->reshape_backwards = 0;
3332 		module_put(pers->owner);
3333 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3334 		       mdname(mddev), clevel);
3335 		return PTR_ERR(priv);
3336 	}
3337 
3338 	/* Looks like we have a winner */
3339 	mddev_suspend(mddev);
3340 	mddev->pers->stop(mddev);
3341 
3342 	if (mddev->pers->sync_request == NULL &&
3343 	    pers->sync_request != NULL) {
3344 		/* need to add the md_redundancy_group */
3345 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3346 			printk(KERN_WARNING
3347 			       "md: cannot register extra attributes for %s\n",
3348 			       mdname(mddev));
3349 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3350 	}
3351 	if (mddev->pers->sync_request != NULL &&
3352 	    pers->sync_request == NULL) {
3353 		/* need to remove the md_redundancy_group */
3354 		if (mddev->to_remove == NULL)
3355 			mddev->to_remove = &md_redundancy_group;
3356 	}
3357 
3358 	if (mddev->pers->sync_request == NULL &&
3359 	    mddev->external) {
3360 		/* We are converting from a no-redundancy array
3361 		 * to a redundancy array and metadata is managed
3362 		 * externally so we need to be sure that writes
3363 		 * won't block due to a need to transition
3364 		 *      clean->dirty
3365 		 * until external management is started.
3366 		 */
3367 		mddev->in_sync = 0;
3368 		mddev->safemode_delay = 0;
3369 		mddev->safemode = 0;
3370 	}
3371 
3372 	rdev_for_each(rdev, mddev) {
3373 		if (rdev->raid_disk < 0)
3374 			continue;
3375 		if (rdev->new_raid_disk >= mddev->raid_disks)
3376 			rdev->new_raid_disk = -1;
3377 		if (rdev->new_raid_disk == rdev->raid_disk)
3378 			continue;
3379 		sysfs_unlink_rdev(mddev, rdev);
3380 	}
3381 	rdev_for_each(rdev, mddev) {
3382 		if (rdev->raid_disk < 0)
3383 			continue;
3384 		if (rdev->new_raid_disk == rdev->raid_disk)
3385 			continue;
3386 		rdev->raid_disk = rdev->new_raid_disk;
3387 		if (rdev->raid_disk < 0)
3388 			clear_bit(In_sync, &rdev->flags);
3389 		else {
3390 			if (sysfs_link_rdev(mddev, rdev))
3391 				printk(KERN_WARNING "md: cannot register rd%d"
3392 				       " for %s after level change\n",
3393 				       rdev->raid_disk, mdname(mddev));
3394 		}
3395 	}
3396 
3397 	module_put(mddev->pers->owner);
3398 	mddev->pers = pers;
3399 	mddev->private = priv;
3400 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3401 	mddev->level = mddev->new_level;
3402 	mddev->layout = mddev->new_layout;
3403 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3404 	mddev->delta_disks = 0;
3405 	mddev->reshape_backwards = 0;
3406 	mddev->degraded = 0;
3407 	if (mddev->pers->sync_request == NULL) {
3408 		/* this is now an array without redundancy, so
3409 		 * it must always be in_sync
3410 		 */
3411 		mddev->in_sync = 1;
3412 		del_timer_sync(&mddev->safemode_timer);
3413 	}
3414 	blk_set_stacking_limits(&mddev->queue->limits);
3415 	pers->run(mddev);
3416 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3417 	mddev_resume(mddev);
3418 	if (!mddev->thread)
3419 		md_update_sb(mddev, 1);
3420 	sysfs_notify(&mddev->kobj, NULL, "level");
3421 	md_new_event(mddev);
3422 	return rv;
3423 }
3424 
3425 static struct md_sysfs_entry md_level =
3426 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3427 
3428 static ssize_t
3429 layout_show(struct mddev *mddev, char *page)
3430 {
3431 	/* just a number, not meaningful for all levels */
3432 	if (mddev->reshape_position != MaxSector &&
3433 	    mddev->layout != mddev->new_layout)
3434 		return sprintf(page, "%d (%d)\n",
3435 			       mddev->new_layout, mddev->layout);
3436 	return sprintf(page, "%d\n", mddev->layout);
3437 }
3438 
3439 static ssize_t
3440 layout_store(struct mddev *mddev, const char *buf, size_t len)
3441 {
3442 	char *e;
3443 	unsigned long n = simple_strtoul(buf, &e, 10);
3444 
3445 	if (!*buf || (*e && *e != '\n'))
3446 		return -EINVAL;
3447 
3448 	if (mddev->pers) {
3449 		int err;
3450 		if (mddev->pers->check_reshape == NULL)
3451 			return -EBUSY;
3452 		if (mddev->ro)
3453 			return -EROFS;
3454 		mddev->new_layout = n;
3455 		err = mddev->pers->check_reshape(mddev);
3456 		if (err) {
3457 			mddev->new_layout = mddev->layout;
3458 			return err;
3459 		}
3460 	} else {
3461 		mddev->new_layout = n;
3462 		if (mddev->reshape_position == MaxSector)
3463 			mddev->layout = n;
3464 	}
3465 	return len;
3466 }
3467 static struct md_sysfs_entry md_layout =
3468 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3469 
3470 static ssize_t
3471 raid_disks_show(struct mddev *mddev, char *page)
3472 {
3473 	if (mddev->raid_disks == 0)
3474 		return 0;
3475 	if (mddev->reshape_position != MaxSector &&
3476 	    mddev->delta_disks != 0)
3477 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3478 			       mddev->raid_disks - mddev->delta_disks);
3479 	return sprintf(page, "%d\n", mddev->raid_disks);
3480 }
3481 
3482 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3483 
3484 static ssize_t
3485 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3486 {
3487 	char *e;
3488 	int rv = 0;
3489 	unsigned long n = simple_strtoul(buf, &e, 10);
3490 
3491 	if (!*buf || (*e && *e != '\n'))
3492 		return -EINVAL;
3493 
3494 	if (mddev->pers)
3495 		rv = update_raid_disks(mddev, n);
3496 	else if (mddev->reshape_position != MaxSector) {
3497 		struct md_rdev *rdev;
3498 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3499 
3500 		rdev_for_each(rdev, mddev) {
3501 			if (olddisks < n &&
3502 			    rdev->data_offset < rdev->new_data_offset)
3503 				return -EINVAL;
3504 			if (olddisks > n &&
3505 			    rdev->data_offset > rdev->new_data_offset)
3506 				return -EINVAL;
3507 		}
3508 		mddev->delta_disks = n - olddisks;
3509 		mddev->raid_disks = n;
3510 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3511 	} else
3512 		mddev->raid_disks = n;
3513 	return rv ? rv : len;
3514 }
3515 static struct md_sysfs_entry md_raid_disks =
3516 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3517 
3518 static ssize_t
3519 chunk_size_show(struct mddev *mddev, char *page)
3520 {
3521 	if (mddev->reshape_position != MaxSector &&
3522 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3523 		return sprintf(page, "%d (%d)\n",
3524 			       mddev->new_chunk_sectors << 9,
3525 			       mddev->chunk_sectors << 9);
3526 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3527 }
3528 
3529 static ssize_t
3530 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3531 {
3532 	char *e;
3533 	unsigned long n = simple_strtoul(buf, &e, 10);
3534 
3535 	if (!*buf || (*e && *e != '\n'))
3536 		return -EINVAL;
3537 
3538 	if (mddev->pers) {
3539 		int err;
3540 		if (mddev->pers->check_reshape == NULL)
3541 			return -EBUSY;
3542 		if (mddev->ro)
3543 			return -EROFS;
3544 		mddev->new_chunk_sectors = n >> 9;
3545 		err = mddev->pers->check_reshape(mddev);
3546 		if (err) {
3547 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3548 			return err;
3549 		}
3550 	} else {
3551 		mddev->new_chunk_sectors = n >> 9;
3552 		if (mddev->reshape_position == MaxSector)
3553 			mddev->chunk_sectors = n >> 9;
3554 	}
3555 	return len;
3556 }
3557 static struct md_sysfs_entry md_chunk_size =
3558 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3559 
3560 static ssize_t
3561 resync_start_show(struct mddev *mddev, char *page)
3562 {
3563 	if (mddev->recovery_cp == MaxSector)
3564 		return sprintf(page, "none\n");
3565 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3566 }
3567 
3568 static ssize_t
3569 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3570 {
3571 	char *e;
3572 	unsigned long long n = simple_strtoull(buf, &e, 10);
3573 
3574 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3575 		return -EBUSY;
3576 	if (cmd_match(buf, "none"))
3577 		n = MaxSector;
3578 	else if (!*buf || (*e && *e != '\n'))
3579 		return -EINVAL;
3580 
3581 	mddev->recovery_cp = n;
3582 	if (mddev->pers)
3583 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3584 	return len;
3585 }
3586 static struct md_sysfs_entry md_resync_start =
3587 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3588 
3589 /*
3590  * The array state can be:
3591  *
3592  * clear
3593  *     No devices, no size, no level
3594  *     Equivalent to STOP_ARRAY ioctl
3595  * inactive
3596  *     May have some settings, but array is not active
3597  *        all IO results in error
3598  *     When written, doesn't tear down array, but just stops it
3599  * suspended (not supported yet)
3600  *     All IO requests will block. The array can be reconfigured.
3601  *     Writing this, if accepted, will block until array is quiescent
3602  * readonly
3603  *     no resync can happen.  no superblocks get written.
3604  *     write requests fail
3605  * read-auto
3606  *     like readonly, but behaves like 'clean' on a write request.
3607  *
3608  * clean - no pending writes, but otherwise active.
3609  *     When written to inactive array, starts without resync
3610  *     If a write request arrives then
3611  *       if metadata is known, mark 'dirty' and switch to 'active'.
3612  *       if not known, block and switch to write-pending
3613  *     If written to an active array that has pending writes, then fails.
3614  * active
3615  *     fully active: IO and resync can be happening.
3616  *     When written to inactive array, starts with resync
3617  *
3618  * write-pending
3619  *     clean, but writes are blocked waiting for 'active' to be written.
3620  *
3621  * active-idle
3622  *     like active, but no writes have been seen for a while (100msec).
3623  *
3624  */
3625 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3626 		   write_pending, active_idle, bad_word};
3627 static char *array_states[] = {
3628 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3629 	"write-pending", "active-idle", NULL };
3630 
3631 static int match_word(const char *word, char **list)
3632 {
3633 	int n;
3634 	for (n=0; list[n]; n++)
3635 		if (cmd_match(word, list[n]))
3636 			break;
3637 	return n;
3638 }
3639 
3640 static ssize_t
3641 array_state_show(struct mddev *mddev, char *page)
3642 {
3643 	enum array_state st = inactive;
3644 
3645 	if (mddev->pers)
3646 		switch(mddev->ro) {
3647 		case 1:
3648 			st = readonly;
3649 			break;
3650 		case 2:
3651 			st = read_auto;
3652 			break;
3653 		case 0:
3654 			if (mddev->in_sync)
3655 				st = clean;
3656 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3657 				st = write_pending;
3658 			else if (mddev->safemode)
3659 				st = active_idle;
3660 			else
3661 				st = active;
3662 		}
3663 	else {
3664 		if (list_empty(&mddev->disks) &&
3665 		    mddev->raid_disks == 0 &&
3666 		    mddev->dev_sectors == 0)
3667 			st = clear;
3668 		else
3669 			st = inactive;
3670 	}
3671 	return sprintf(page, "%s\n", array_states[st]);
3672 }
3673 
3674 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3675 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3676 static int do_md_run(struct mddev *mddev);
3677 static int restart_array(struct mddev *mddev);
3678 
3679 static ssize_t
3680 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3681 {
3682 	int err = -EINVAL;
3683 	enum array_state st = match_word(buf, array_states);
3684 	switch(st) {
3685 	case bad_word:
3686 		break;
3687 	case clear:
3688 		/* stopping an active array */
3689 		err = do_md_stop(mddev, 0, NULL);
3690 		break;
3691 	case inactive:
3692 		/* stopping an active array */
3693 		if (mddev->pers)
3694 			err = do_md_stop(mddev, 2, NULL);
3695 		else
3696 			err = 0; /* already inactive */
3697 		break;
3698 	case suspended:
3699 		break; /* not supported yet */
3700 	case readonly:
3701 		if (mddev->pers)
3702 			err = md_set_readonly(mddev, NULL);
3703 		else {
3704 			mddev->ro = 1;
3705 			set_disk_ro(mddev->gendisk, 1);
3706 			err = do_md_run(mddev);
3707 		}
3708 		break;
3709 	case read_auto:
3710 		if (mddev->pers) {
3711 			if (mddev->ro == 0)
3712 				err = md_set_readonly(mddev, NULL);
3713 			else if (mddev->ro == 1)
3714 				err = restart_array(mddev);
3715 			if (err == 0) {
3716 				mddev->ro = 2;
3717 				set_disk_ro(mddev->gendisk, 0);
3718 			}
3719 		} else {
3720 			mddev->ro = 2;
3721 			err = do_md_run(mddev);
3722 		}
3723 		break;
3724 	case clean:
3725 		if (mddev->pers) {
3726 			restart_array(mddev);
3727 			spin_lock_irq(&mddev->write_lock);
3728 			if (atomic_read(&mddev->writes_pending) == 0) {
3729 				if (mddev->in_sync == 0) {
3730 					mddev->in_sync = 1;
3731 					if (mddev->safemode == 1)
3732 						mddev->safemode = 0;
3733 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3734 				}
3735 				err = 0;
3736 			} else
3737 				err = -EBUSY;
3738 			spin_unlock_irq(&mddev->write_lock);
3739 		} else
3740 			err = -EINVAL;
3741 		break;
3742 	case active:
3743 		if (mddev->pers) {
3744 			restart_array(mddev);
3745 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3746 			wake_up(&mddev->sb_wait);
3747 			err = 0;
3748 		} else {
3749 			mddev->ro = 0;
3750 			set_disk_ro(mddev->gendisk, 0);
3751 			err = do_md_run(mddev);
3752 		}
3753 		break;
3754 	case write_pending:
3755 	case active_idle:
3756 		/* these cannot be set */
3757 		break;
3758 	}
3759 	if (err)
3760 		return err;
3761 	else {
3762 		if (mddev->hold_active == UNTIL_IOCTL)
3763 			mddev->hold_active = 0;
3764 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3765 		return len;
3766 	}
3767 }
3768 static struct md_sysfs_entry md_array_state =
3769 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3770 
3771 static ssize_t
3772 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3773 	return sprintf(page, "%d\n",
3774 		       atomic_read(&mddev->max_corr_read_errors));
3775 }
3776 
3777 static ssize_t
3778 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780 	char *e;
3781 	unsigned long n = simple_strtoul(buf, &e, 10);
3782 
3783 	if (*buf && (*e == 0 || *e == '\n')) {
3784 		atomic_set(&mddev->max_corr_read_errors, n);
3785 		return len;
3786 	}
3787 	return -EINVAL;
3788 }
3789 
3790 static struct md_sysfs_entry max_corr_read_errors =
3791 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3792 	max_corrected_read_errors_store);
3793 
3794 static ssize_t
3795 null_show(struct mddev *mddev, char *page)
3796 {
3797 	return -EINVAL;
3798 }
3799 
3800 static ssize_t
3801 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3802 {
3803 	/* buf must be %d:%d\n? giving major and minor numbers */
3804 	/* The new device is added to the array.
3805 	 * If the array has a persistent superblock, we read the
3806 	 * superblock to initialise info and check validity.
3807 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3808 	 * which mainly checks size.
3809 	 */
3810 	char *e;
3811 	int major = simple_strtoul(buf, &e, 10);
3812 	int minor;
3813 	dev_t dev;
3814 	struct md_rdev *rdev;
3815 	int err;
3816 
3817 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3818 		return -EINVAL;
3819 	minor = simple_strtoul(e+1, &e, 10);
3820 	if (*e && *e != '\n')
3821 		return -EINVAL;
3822 	dev = MKDEV(major, minor);
3823 	if (major != MAJOR(dev) ||
3824 	    minor != MINOR(dev))
3825 		return -EOVERFLOW;
3826 
3827 	if (mddev->persistent) {
3828 		rdev = md_import_device(dev, mddev->major_version,
3829 					mddev->minor_version);
3830 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3831 			struct md_rdev *rdev0
3832 				= list_entry(mddev->disks.next,
3833 					     struct md_rdev, same_set);
3834 			err = super_types[mddev->major_version]
3835 				.load_super(rdev, rdev0, mddev->minor_version);
3836 			if (err < 0)
3837 				goto out;
3838 		}
3839 	} else if (mddev->external)
3840 		rdev = md_import_device(dev, -2, -1);
3841 	else
3842 		rdev = md_import_device(dev, -1, -1);
3843 
3844 	if (IS_ERR(rdev))
3845 		return PTR_ERR(rdev);
3846 	err = bind_rdev_to_array(rdev, mddev);
3847  out:
3848 	if (err)
3849 		export_rdev(rdev);
3850 	return err ? err : len;
3851 }
3852 
3853 static struct md_sysfs_entry md_new_device =
3854 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3855 
3856 static ssize_t
3857 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3858 {
3859 	char *end;
3860 	unsigned long chunk, end_chunk;
3861 
3862 	if (!mddev->bitmap)
3863 		goto out;
3864 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3865 	while (*buf) {
3866 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3867 		if (buf == end) break;
3868 		if (*end == '-') { /* range */
3869 			buf = end + 1;
3870 			end_chunk = simple_strtoul(buf, &end, 0);
3871 			if (buf == end) break;
3872 		}
3873 		if (*end && !isspace(*end)) break;
3874 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3875 		buf = skip_spaces(end);
3876 	}
3877 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3878 out:
3879 	return len;
3880 }
3881 
3882 static struct md_sysfs_entry md_bitmap =
3883 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3884 
3885 static ssize_t
3886 size_show(struct mddev *mddev, char *page)
3887 {
3888 	return sprintf(page, "%llu\n",
3889 		(unsigned long long)mddev->dev_sectors / 2);
3890 }
3891 
3892 static int update_size(struct mddev *mddev, sector_t num_sectors);
3893 
3894 static ssize_t
3895 size_store(struct mddev *mddev, const char *buf, size_t len)
3896 {
3897 	/* If array is inactive, we can reduce the component size, but
3898 	 * not increase it (except from 0).
3899 	 * If array is active, we can try an on-line resize
3900 	 */
3901 	sector_t sectors;
3902 	int err = strict_blocks_to_sectors(buf, &sectors);
3903 
3904 	if (err < 0)
3905 		return err;
3906 	if (mddev->pers) {
3907 		err = update_size(mddev, sectors);
3908 		md_update_sb(mddev, 1);
3909 	} else {
3910 		if (mddev->dev_sectors == 0 ||
3911 		    mddev->dev_sectors > sectors)
3912 			mddev->dev_sectors = sectors;
3913 		else
3914 			err = -ENOSPC;
3915 	}
3916 	return err ? err : len;
3917 }
3918 
3919 static struct md_sysfs_entry md_size =
3920 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3921 
3922 /* Metadata version.
3923  * This is one of
3924  *   'none' for arrays with no metadata (good luck...)
3925  *   'external' for arrays with externally managed metadata,
3926  * or N.M for internally known formats
3927  */
3928 static ssize_t
3929 metadata_show(struct mddev *mddev, char *page)
3930 {
3931 	if (mddev->persistent)
3932 		return sprintf(page, "%d.%d\n",
3933 			       mddev->major_version, mddev->minor_version);
3934 	else if (mddev->external)
3935 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3936 	else
3937 		return sprintf(page, "none\n");
3938 }
3939 
3940 static ssize_t
3941 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3942 {
3943 	int major, minor;
3944 	char *e;
3945 	/* Changing the details of 'external' metadata is
3946 	 * always permitted.  Otherwise there must be
3947 	 * no devices attached to the array.
3948 	 */
3949 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3950 		;
3951 	else if (!list_empty(&mddev->disks))
3952 		return -EBUSY;
3953 
3954 	if (cmd_match(buf, "none")) {
3955 		mddev->persistent = 0;
3956 		mddev->external = 0;
3957 		mddev->major_version = 0;
3958 		mddev->minor_version = 90;
3959 		return len;
3960 	}
3961 	if (strncmp(buf, "external:", 9) == 0) {
3962 		size_t namelen = len-9;
3963 		if (namelen >= sizeof(mddev->metadata_type))
3964 			namelen = sizeof(mddev->metadata_type)-1;
3965 		strncpy(mddev->metadata_type, buf+9, namelen);
3966 		mddev->metadata_type[namelen] = 0;
3967 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3968 			mddev->metadata_type[--namelen] = 0;
3969 		mddev->persistent = 0;
3970 		mddev->external = 1;
3971 		mddev->major_version = 0;
3972 		mddev->minor_version = 90;
3973 		return len;
3974 	}
3975 	major = simple_strtoul(buf, &e, 10);
3976 	if (e==buf || *e != '.')
3977 		return -EINVAL;
3978 	buf = e+1;
3979 	minor = simple_strtoul(buf, &e, 10);
3980 	if (e==buf || (*e && *e != '\n') )
3981 		return -EINVAL;
3982 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3983 		return -ENOENT;
3984 	mddev->major_version = major;
3985 	mddev->minor_version = minor;
3986 	mddev->persistent = 1;
3987 	mddev->external = 0;
3988 	return len;
3989 }
3990 
3991 static struct md_sysfs_entry md_metadata =
3992 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3993 
3994 static ssize_t
3995 action_show(struct mddev *mddev, char *page)
3996 {
3997 	char *type = "idle";
3998 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3999 		type = "frozen";
4000 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4001 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4002 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4003 			type = "reshape";
4004 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4005 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4006 				type = "resync";
4007 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4008 				type = "check";
4009 			else
4010 				type = "repair";
4011 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4012 			type = "recover";
4013 	}
4014 	return sprintf(page, "%s\n", type);
4015 }
4016 
4017 static ssize_t
4018 action_store(struct mddev *mddev, const char *page, size_t len)
4019 {
4020 	if (!mddev->pers || !mddev->pers->sync_request)
4021 		return -EINVAL;
4022 
4023 	if (cmd_match(page, "frozen"))
4024 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4025 	else
4026 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4027 
4028 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4029 		if (mddev->sync_thread) {
4030 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4031 			md_reap_sync_thread(mddev);
4032 		}
4033 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4034 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4035 		return -EBUSY;
4036 	else if (cmd_match(page, "resync"))
4037 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4038 	else if (cmd_match(page, "recover")) {
4039 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4040 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4041 	} else if (cmd_match(page, "reshape")) {
4042 		int err;
4043 		if (mddev->pers->start_reshape == NULL)
4044 			return -EINVAL;
4045 		err = mddev->pers->start_reshape(mddev);
4046 		if (err)
4047 			return err;
4048 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4049 	} else {
4050 		if (cmd_match(page, "check"))
4051 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4052 		else if (!cmd_match(page, "repair"))
4053 			return -EINVAL;
4054 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4055 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4056 	}
4057 	if (mddev->ro == 2) {
4058 		/* A write to sync_action is enough to justify
4059 		 * canceling read-auto mode
4060 		 */
4061 		mddev->ro = 0;
4062 		md_wakeup_thread(mddev->sync_thread);
4063 	}
4064 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4065 	md_wakeup_thread(mddev->thread);
4066 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4067 	return len;
4068 }
4069 
4070 static struct md_sysfs_entry md_scan_mode =
4071 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4072 
4073 static ssize_t
4074 last_sync_action_show(struct mddev *mddev, char *page)
4075 {
4076 	return sprintf(page, "%s\n", mddev->last_sync_action);
4077 }
4078 
4079 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4080 
4081 static ssize_t
4082 mismatch_cnt_show(struct mddev *mddev, char *page)
4083 {
4084 	return sprintf(page, "%llu\n",
4085 		       (unsigned long long)
4086 		       atomic64_read(&mddev->resync_mismatches));
4087 }
4088 
4089 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4090 
4091 static ssize_t
4092 sync_min_show(struct mddev *mddev, char *page)
4093 {
4094 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4095 		       mddev->sync_speed_min ? "local": "system");
4096 }
4097 
4098 static ssize_t
4099 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 	int min;
4102 	char *e;
4103 	if (strncmp(buf, "system", 6)==0) {
4104 		mddev->sync_speed_min = 0;
4105 		return len;
4106 	}
4107 	min = simple_strtoul(buf, &e, 10);
4108 	if (buf == e || (*e && *e != '\n') || min <= 0)
4109 		return -EINVAL;
4110 	mddev->sync_speed_min = min;
4111 	return len;
4112 }
4113 
4114 static struct md_sysfs_entry md_sync_min =
4115 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4116 
4117 static ssize_t
4118 sync_max_show(struct mddev *mddev, char *page)
4119 {
4120 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4121 		       mddev->sync_speed_max ? "local": "system");
4122 }
4123 
4124 static ssize_t
4125 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 	int max;
4128 	char *e;
4129 	if (strncmp(buf, "system", 6)==0) {
4130 		mddev->sync_speed_max = 0;
4131 		return len;
4132 	}
4133 	max = simple_strtoul(buf, &e, 10);
4134 	if (buf == e || (*e && *e != '\n') || max <= 0)
4135 		return -EINVAL;
4136 	mddev->sync_speed_max = max;
4137 	return len;
4138 }
4139 
4140 static struct md_sysfs_entry md_sync_max =
4141 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4142 
4143 static ssize_t
4144 degraded_show(struct mddev *mddev, char *page)
4145 {
4146 	return sprintf(page, "%d\n", mddev->degraded);
4147 }
4148 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4149 
4150 static ssize_t
4151 sync_force_parallel_show(struct mddev *mddev, char *page)
4152 {
4153 	return sprintf(page, "%d\n", mddev->parallel_resync);
4154 }
4155 
4156 static ssize_t
4157 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4158 {
4159 	long n;
4160 
4161 	if (kstrtol(buf, 10, &n))
4162 		return -EINVAL;
4163 
4164 	if (n != 0 && n != 1)
4165 		return -EINVAL;
4166 
4167 	mddev->parallel_resync = n;
4168 
4169 	if (mddev->sync_thread)
4170 		wake_up(&resync_wait);
4171 
4172 	return len;
4173 }
4174 
4175 /* force parallel resync, even with shared block devices */
4176 static struct md_sysfs_entry md_sync_force_parallel =
4177 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4178        sync_force_parallel_show, sync_force_parallel_store);
4179 
4180 static ssize_t
4181 sync_speed_show(struct mddev *mddev, char *page)
4182 {
4183 	unsigned long resync, dt, db;
4184 	if (mddev->curr_resync == 0)
4185 		return sprintf(page, "none\n");
4186 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4187 	dt = (jiffies - mddev->resync_mark) / HZ;
4188 	if (!dt) dt++;
4189 	db = resync - mddev->resync_mark_cnt;
4190 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4191 }
4192 
4193 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4194 
4195 static ssize_t
4196 sync_completed_show(struct mddev *mddev, char *page)
4197 {
4198 	unsigned long long max_sectors, resync;
4199 
4200 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4201 		return sprintf(page, "none\n");
4202 
4203 	if (mddev->curr_resync == 1 ||
4204 	    mddev->curr_resync == 2)
4205 		return sprintf(page, "delayed\n");
4206 
4207 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4208 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4209 		max_sectors = mddev->resync_max_sectors;
4210 	else
4211 		max_sectors = mddev->dev_sectors;
4212 
4213 	resync = mddev->curr_resync_completed;
4214 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4215 }
4216 
4217 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4218 
4219 static ssize_t
4220 min_sync_show(struct mddev *mddev, char *page)
4221 {
4222 	return sprintf(page, "%llu\n",
4223 		       (unsigned long long)mddev->resync_min);
4224 }
4225 static ssize_t
4226 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4227 {
4228 	unsigned long long min;
4229 	if (kstrtoull(buf, 10, &min))
4230 		return -EINVAL;
4231 	if (min > mddev->resync_max)
4232 		return -EINVAL;
4233 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4234 		return -EBUSY;
4235 
4236 	/* Must be a multiple of chunk_size */
4237 	if (mddev->chunk_sectors) {
4238 		sector_t temp = min;
4239 		if (sector_div(temp, mddev->chunk_sectors))
4240 			return -EINVAL;
4241 	}
4242 	mddev->resync_min = min;
4243 
4244 	return len;
4245 }
4246 
4247 static struct md_sysfs_entry md_min_sync =
4248 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4249 
4250 static ssize_t
4251 max_sync_show(struct mddev *mddev, char *page)
4252 {
4253 	if (mddev->resync_max == MaxSector)
4254 		return sprintf(page, "max\n");
4255 	else
4256 		return sprintf(page, "%llu\n",
4257 			       (unsigned long long)mddev->resync_max);
4258 }
4259 static ssize_t
4260 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4261 {
4262 	if (strncmp(buf, "max", 3) == 0)
4263 		mddev->resync_max = MaxSector;
4264 	else {
4265 		unsigned long long max;
4266 		if (kstrtoull(buf, 10, &max))
4267 			return -EINVAL;
4268 		if (max < mddev->resync_min)
4269 			return -EINVAL;
4270 		if (max < mddev->resync_max &&
4271 		    mddev->ro == 0 &&
4272 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4273 			return -EBUSY;
4274 
4275 		/* Must be a multiple of chunk_size */
4276 		if (mddev->chunk_sectors) {
4277 			sector_t temp = max;
4278 			if (sector_div(temp, mddev->chunk_sectors))
4279 				return -EINVAL;
4280 		}
4281 		mddev->resync_max = max;
4282 	}
4283 	wake_up(&mddev->recovery_wait);
4284 	return len;
4285 }
4286 
4287 static struct md_sysfs_entry md_max_sync =
4288 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4289 
4290 static ssize_t
4291 suspend_lo_show(struct mddev *mddev, char *page)
4292 {
4293 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4294 }
4295 
4296 static ssize_t
4297 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299 	char *e;
4300 	unsigned long long new = simple_strtoull(buf, &e, 10);
4301 	unsigned long long old = mddev->suspend_lo;
4302 
4303 	if (mddev->pers == NULL ||
4304 	    mddev->pers->quiesce == NULL)
4305 		return -EINVAL;
4306 	if (buf == e || (*e && *e != '\n'))
4307 		return -EINVAL;
4308 
4309 	mddev->suspend_lo = new;
4310 	if (new >= old)
4311 		/* Shrinking suspended region */
4312 		mddev->pers->quiesce(mddev, 2);
4313 	else {
4314 		/* Expanding suspended region - need to wait */
4315 		mddev->pers->quiesce(mddev, 1);
4316 		mddev->pers->quiesce(mddev, 0);
4317 	}
4318 	return len;
4319 }
4320 static struct md_sysfs_entry md_suspend_lo =
4321 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4322 
4323 static ssize_t
4324 suspend_hi_show(struct mddev *mddev, char *page)
4325 {
4326 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4327 }
4328 
4329 static ssize_t
4330 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4331 {
4332 	char *e;
4333 	unsigned long long new = simple_strtoull(buf, &e, 10);
4334 	unsigned long long old = mddev->suspend_hi;
4335 
4336 	if (mddev->pers == NULL ||
4337 	    mddev->pers->quiesce == NULL)
4338 		return -EINVAL;
4339 	if (buf == e || (*e && *e != '\n'))
4340 		return -EINVAL;
4341 
4342 	mddev->suspend_hi = new;
4343 	if (new <= old)
4344 		/* Shrinking suspended region */
4345 		mddev->pers->quiesce(mddev, 2);
4346 	else {
4347 		/* Expanding suspended region - need to wait */
4348 		mddev->pers->quiesce(mddev, 1);
4349 		mddev->pers->quiesce(mddev, 0);
4350 	}
4351 	return len;
4352 }
4353 static struct md_sysfs_entry md_suspend_hi =
4354 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4355 
4356 static ssize_t
4357 reshape_position_show(struct mddev *mddev, char *page)
4358 {
4359 	if (mddev->reshape_position != MaxSector)
4360 		return sprintf(page, "%llu\n",
4361 			       (unsigned long long)mddev->reshape_position);
4362 	strcpy(page, "none\n");
4363 	return 5;
4364 }
4365 
4366 static ssize_t
4367 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4368 {
4369 	struct md_rdev *rdev;
4370 	char *e;
4371 	unsigned long long new = simple_strtoull(buf, &e, 10);
4372 	if (mddev->pers)
4373 		return -EBUSY;
4374 	if (buf == e || (*e && *e != '\n'))
4375 		return -EINVAL;
4376 	mddev->reshape_position = new;
4377 	mddev->delta_disks = 0;
4378 	mddev->reshape_backwards = 0;
4379 	mddev->new_level = mddev->level;
4380 	mddev->new_layout = mddev->layout;
4381 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4382 	rdev_for_each(rdev, mddev)
4383 		rdev->new_data_offset = rdev->data_offset;
4384 	return len;
4385 }
4386 
4387 static struct md_sysfs_entry md_reshape_position =
4388 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4389        reshape_position_store);
4390 
4391 static ssize_t
4392 reshape_direction_show(struct mddev *mddev, char *page)
4393 {
4394 	return sprintf(page, "%s\n",
4395 		       mddev->reshape_backwards ? "backwards" : "forwards");
4396 }
4397 
4398 static ssize_t
4399 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4400 {
4401 	int backwards = 0;
4402 	if (cmd_match(buf, "forwards"))
4403 		backwards = 0;
4404 	else if (cmd_match(buf, "backwards"))
4405 		backwards = 1;
4406 	else
4407 		return -EINVAL;
4408 	if (mddev->reshape_backwards == backwards)
4409 		return len;
4410 
4411 	/* check if we are allowed to change */
4412 	if (mddev->delta_disks)
4413 		return -EBUSY;
4414 
4415 	if (mddev->persistent &&
4416 	    mddev->major_version == 0)
4417 		return -EINVAL;
4418 
4419 	mddev->reshape_backwards = backwards;
4420 	return len;
4421 }
4422 
4423 static struct md_sysfs_entry md_reshape_direction =
4424 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4425        reshape_direction_store);
4426 
4427 static ssize_t
4428 array_size_show(struct mddev *mddev, char *page)
4429 {
4430 	if (mddev->external_size)
4431 		return sprintf(page, "%llu\n",
4432 			       (unsigned long long)mddev->array_sectors/2);
4433 	else
4434 		return sprintf(page, "default\n");
4435 }
4436 
4437 static ssize_t
4438 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4439 {
4440 	sector_t sectors;
4441 
4442 	if (strncmp(buf, "default", 7) == 0) {
4443 		if (mddev->pers)
4444 			sectors = mddev->pers->size(mddev, 0, 0);
4445 		else
4446 			sectors = mddev->array_sectors;
4447 
4448 		mddev->external_size = 0;
4449 	} else {
4450 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4451 			return -EINVAL;
4452 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4453 			return -E2BIG;
4454 
4455 		mddev->external_size = 1;
4456 	}
4457 
4458 	mddev->array_sectors = sectors;
4459 	if (mddev->pers) {
4460 		set_capacity(mddev->gendisk, mddev->array_sectors);
4461 		revalidate_disk(mddev->gendisk);
4462 	}
4463 	return len;
4464 }
4465 
4466 static struct md_sysfs_entry md_array_size =
4467 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4468        array_size_store);
4469 
4470 static struct attribute *md_default_attrs[] = {
4471 	&md_level.attr,
4472 	&md_layout.attr,
4473 	&md_raid_disks.attr,
4474 	&md_chunk_size.attr,
4475 	&md_size.attr,
4476 	&md_resync_start.attr,
4477 	&md_metadata.attr,
4478 	&md_new_device.attr,
4479 	&md_safe_delay.attr,
4480 	&md_array_state.attr,
4481 	&md_reshape_position.attr,
4482 	&md_reshape_direction.attr,
4483 	&md_array_size.attr,
4484 	&max_corr_read_errors.attr,
4485 	NULL,
4486 };
4487 
4488 static struct attribute *md_redundancy_attrs[] = {
4489 	&md_scan_mode.attr,
4490 	&md_last_scan_mode.attr,
4491 	&md_mismatches.attr,
4492 	&md_sync_min.attr,
4493 	&md_sync_max.attr,
4494 	&md_sync_speed.attr,
4495 	&md_sync_force_parallel.attr,
4496 	&md_sync_completed.attr,
4497 	&md_min_sync.attr,
4498 	&md_max_sync.attr,
4499 	&md_suspend_lo.attr,
4500 	&md_suspend_hi.attr,
4501 	&md_bitmap.attr,
4502 	&md_degraded.attr,
4503 	NULL,
4504 };
4505 static struct attribute_group md_redundancy_group = {
4506 	.name = NULL,
4507 	.attrs = md_redundancy_attrs,
4508 };
4509 
4510 static ssize_t
4511 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4512 {
4513 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4514 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4515 	ssize_t rv;
4516 
4517 	if (!entry->show)
4518 		return -EIO;
4519 	spin_lock(&all_mddevs_lock);
4520 	if (list_empty(&mddev->all_mddevs)) {
4521 		spin_unlock(&all_mddevs_lock);
4522 		return -EBUSY;
4523 	}
4524 	mddev_get(mddev);
4525 	spin_unlock(&all_mddevs_lock);
4526 
4527 	rv = mddev_lock(mddev);
4528 	if (!rv) {
4529 		rv = entry->show(mddev, page);
4530 		mddev_unlock(mddev);
4531 	}
4532 	mddev_put(mddev);
4533 	return rv;
4534 }
4535 
4536 static ssize_t
4537 md_attr_store(struct kobject *kobj, struct attribute *attr,
4538 	      const char *page, size_t length)
4539 {
4540 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4541 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4542 	ssize_t rv;
4543 
4544 	if (!entry->store)
4545 		return -EIO;
4546 	if (!capable(CAP_SYS_ADMIN))
4547 		return -EACCES;
4548 	spin_lock(&all_mddevs_lock);
4549 	if (list_empty(&mddev->all_mddevs)) {
4550 		spin_unlock(&all_mddevs_lock);
4551 		return -EBUSY;
4552 	}
4553 	mddev_get(mddev);
4554 	spin_unlock(&all_mddevs_lock);
4555 	if (entry->store == new_dev_store)
4556 		flush_workqueue(md_misc_wq);
4557 	rv = mddev_lock(mddev);
4558 	if (!rv) {
4559 		rv = entry->store(mddev, page, length);
4560 		mddev_unlock(mddev);
4561 	}
4562 	mddev_put(mddev);
4563 	return rv;
4564 }
4565 
4566 static void md_free(struct kobject *ko)
4567 {
4568 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4569 
4570 	if (mddev->sysfs_state)
4571 		sysfs_put(mddev->sysfs_state);
4572 
4573 	if (mddev->gendisk) {
4574 		del_gendisk(mddev->gendisk);
4575 		put_disk(mddev->gendisk);
4576 	}
4577 	if (mddev->queue)
4578 		blk_cleanup_queue(mddev->queue);
4579 
4580 	kfree(mddev);
4581 }
4582 
4583 static const struct sysfs_ops md_sysfs_ops = {
4584 	.show	= md_attr_show,
4585 	.store	= md_attr_store,
4586 };
4587 static struct kobj_type md_ktype = {
4588 	.release	= md_free,
4589 	.sysfs_ops	= &md_sysfs_ops,
4590 	.default_attrs	= md_default_attrs,
4591 };
4592 
4593 int mdp_major = 0;
4594 
4595 static void mddev_delayed_delete(struct work_struct *ws)
4596 {
4597 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4598 
4599 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4600 	kobject_del(&mddev->kobj);
4601 	kobject_put(&mddev->kobj);
4602 }
4603 
4604 static int md_alloc(dev_t dev, char *name)
4605 {
4606 	static DEFINE_MUTEX(disks_mutex);
4607 	struct mddev *mddev = mddev_find(dev);
4608 	struct gendisk *disk;
4609 	int partitioned;
4610 	int shift;
4611 	int unit;
4612 	int error;
4613 
4614 	if (!mddev)
4615 		return -ENODEV;
4616 
4617 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4618 	shift = partitioned ? MdpMinorShift : 0;
4619 	unit = MINOR(mddev->unit) >> shift;
4620 
4621 	/* wait for any previous instance of this device to be
4622 	 * completely removed (mddev_delayed_delete).
4623 	 */
4624 	flush_workqueue(md_misc_wq);
4625 
4626 	mutex_lock(&disks_mutex);
4627 	error = -EEXIST;
4628 	if (mddev->gendisk)
4629 		goto abort;
4630 
4631 	if (name) {
4632 		/* Need to ensure that 'name' is not a duplicate.
4633 		 */
4634 		struct mddev *mddev2;
4635 		spin_lock(&all_mddevs_lock);
4636 
4637 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4638 			if (mddev2->gendisk &&
4639 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4640 				spin_unlock(&all_mddevs_lock);
4641 				goto abort;
4642 			}
4643 		spin_unlock(&all_mddevs_lock);
4644 	}
4645 
4646 	error = -ENOMEM;
4647 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4648 	if (!mddev->queue)
4649 		goto abort;
4650 	mddev->queue->queuedata = mddev;
4651 
4652 	blk_queue_make_request(mddev->queue, md_make_request);
4653 	blk_set_stacking_limits(&mddev->queue->limits);
4654 
4655 	disk = alloc_disk(1 << shift);
4656 	if (!disk) {
4657 		blk_cleanup_queue(mddev->queue);
4658 		mddev->queue = NULL;
4659 		goto abort;
4660 	}
4661 	disk->major = MAJOR(mddev->unit);
4662 	disk->first_minor = unit << shift;
4663 	if (name)
4664 		strcpy(disk->disk_name, name);
4665 	else if (partitioned)
4666 		sprintf(disk->disk_name, "md_d%d", unit);
4667 	else
4668 		sprintf(disk->disk_name, "md%d", unit);
4669 	disk->fops = &md_fops;
4670 	disk->private_data = mddev;
4671 	disk->queue = mddev->queue;
4672 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4673 	/* Allow extended partitions.  This makes the
4674 	 * 'mdp' device redundant, but we can't really
4675 	 * remove it now.
4676 	 */
4677 	disk->flags |= GENHD_FL_EXT_DEVT;
4678 	mddev->gendisk = disk;
4679 	/* As soon as we call add_disk(), another thread could get
4680 	 * through to md_open, so make sure it doesn't get too far
4681 	 */
4682 	mutex_lock(&mddev->open_mutex);
4683 	add_disk(disk);
4684 
4685 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4686 				     &disk_to_dev(disk)->kobj, "%s", "md");
4687 	if (error) {
4688 		/* This isn't possible, but as kobject_init_and_add is marked
4689 		 * __must_check, we must do something with the result
4690 		 */
4691 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4692 		       disk->disk_name);
4693 		error = 0;
4694 	}
4695 	if (mddev->kobj.sd &&
4696 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4697 		printk(KERN_DEBUG "pointless warning\n");
4698 	mutex_unlock(&mddev->open_mutex);
4699  abort:
4700 	mutex_unlock(&disks_mutex);
4701 	if (!error && mddev->kobj.sd) {
4702 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4703 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4704 	}
4705 	mddev_put(mddev);
4706 	return error;
4707 }
4708 
4709 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4710 {
4711 	md_alloc(dev, NULL);
4712 	return NULL;
4713 }
4714 
4715 static int add_named_array(const char *val, struct kernel_param *kp)
4716 {
4717 	/* val must be "md_*" where * is not all digits.
4718 	 * We allocate an array with a large free minor number, and
4719 	 * set the name to val.  val must not already be an active name.
4720 	 */
4721 	int len = strlen(val);
4722 	char buf[DISK_NAME_LEN];
4723 
4724 	while (len && val[len-1] == '\n')
4725 		len--;
4726 	if (len >= DISK_NAME_LEN)
4727 		return -E2BIG;
4728 	strlcpy(buf, val, len+1);
4729 	if (strncmp(buf, "md_", 3) != 0)
4730 		return -EINVAL;
4731 	return md_alloc(0, buf);
4732 }
4733 
4734 static void md_safemode_timeout(unsigned long data)
4735 {
4736 	struct mddev *mddev = (struct mddev *) data;
4737 
4738 	if (!atomic_read(&mddev->writes_pending)) {
4739 		mddev->safemode = 1;
4740 		if (mddev->external)
4741 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4742 	}
4743 	md_wakeup_thread(mddev->thread);
4744 }
4745 
4746 static int start_dirty_degraded;
4747 
4748 int md_run(struct mddev *mddev)
4749 {
4750 	int err;
4751 	struct md_rdev *rdev;
4752 	struct md_personality *pers;
4753 
4754 	if (list_empty(&mddev->disks))
4755 		/* cannot run an array with no devices.. */
4756 		return -EINVAL;
4757 
4758 	if (mddev->pers)
4759 		return -EBUSY;
4760 	/* Cannot run until previous stop completes properly */
4761 	if (mddev->sysfs_active)
4762 		return -EBUSY;
4763 
4764 	/*
4765 	 * Analyze all RAID superblock(s)
4766 	 */
4767 	if (!mddev->raid_disks) {
4768 		if (!mddev->persistent)
4769 			return -EINVAL;
4770 		analyze_sbs(mddev);
4771 	}
4772 
4773 	if (mddev->level != LEVEL_NONE)
4774 		request_module("md-level-%d", mddev->level);
4775 	else if (mddev->clevel[0])
4776 		request_module("md-%s", mddev->clevel);
4777 
4778 	/*
4779 	 * Drop all container device buffers, from now on
4780 	 * the only valid external interface is through the md
4781 	 * device.
4782 	 */
4783 	rdev_for_each(rdev, mddev) {
4784 		if (test_bit(Faulty, &rdev->flags))
4785 			continue;
4786 		sync_blockdev(rdev->bdev);
4787 		invalidate_bdev(rdev->bdev);
4788 
4789 		/* perform some consistency tests on the device.
4790 		 * We don't want the data to overlap the metadata,
4791 		 * Internal Bitmap issues have been handled elsewhere.
4792 		 */
4793 		if (rdev->meta_bdev) {
4794 			/* Nothing to check */;
4795 		} else if (rdev->data_offset < rdev->sb_start) {
4796 			if (mddev->dev_sectors &&
4797 			    rdev->data_offset + mddev->dev_sectors
4798 			    > rdev->sb_start) {
4799 				printk("md: %s: data overlaps metadata\n",
4800 				       mdname(mddev));
4801 				return -EINVAL;
4802 			}
4803 		} else {
4804 			if (rdev->sb_start + rdev->sb_size/512
4805 			    > rdev->data_offset) {
4806 				printk("md: %s: metadata overlaps data\n",
4807 				       mdname(mddev));
4808 				return -EINVAL;
4809 			}
4810 		}
4811 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4812 	}
4813 
4814 	if (mddev->bio_set == NULL)
4815 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4816 
4817 	spin_lock(&pers_lock);
4818 	pers = find_pers(mddev->level, mddev->clevel);
4819 	if (!pers || !try_module_get(pers->owner)) {
4820 		spin_unlock(&pers_lock);
4821 		if (mddev->level != LEVEL_NONE)
4822 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4823 			       mddev->level);
4824 		else
4825 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4826 			       mddev->clevel);
4827 		return -EINVAL;
4828 	}
4829 	mddev->pers = pers;
4830 	spin_unlock(&pers_lock);
4831 	if (mddev->level != pers->level) {
4832 		mddev->level = pers->level;
4833 		mddev->new_level = pers->level;
4834 	}
4835 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4836 
4837 	if (mddev->reshape_position != MaxSector &&
4838 	    pers->start_reshape == NULL) {
4839 		/* This personality cannot handle reshaping... */
4840 		mddev->pers = NULL;
4841 		module_put(pers->owner);
4842 		return -EINVAL;
4843 	}
4844 
4845 	if (pers->sync_request) {
4846 		/* Warn if this is a potentially silly
4847 		 * configuration.
4848 		 */
4849 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4850 		struct md_rdev *rdev2;
4851 		int warned = 0;
4852 
4853 		rdev_for_each(rdev, mddev)
4854 			rdev_for_each(rdev2, mddev) {
4855 				if (rdev < rdev2 &&
4856 				    rdev->bdev->bd_contains ==
4857 				    rdev2->bdev->bd_contains) {
4858 					printk(KERN_WARNING
4859 					       "%s: WARNING: %s appears to be"
4860 					       " on the same physical disk as"
4861 					       " %s.\n",
4862 					       mdname(mddev),
4863 					       bdevname(rdev->bdev,b),
4864 					       bdevname(rdev2->bdev,b2));
4865 					warned = 1;
4866 				}
4867 			}
4868 
4869 		if (warned)
4870 			printk(KERN_WARNING
4871 			       "True protection against single-disk"
4872 			       " failure might be compromised.\n");
4873 	}
4874 
4875 	mddev->recovery = 0;
4876 	/* may be over-ridden by personality */
4877 	mddev->resync_max_sectors = mddev->dev_sectors;
4878 
4879 	mddev->ok_start_degraded = start_dirty_degraded;
4880 
4881 	if (start_readonly && mddev->ro == 0)
4882 		mddev->ro = 2; /* read-only, but switch on first write */
4883 
4884 	err = mddev->pers->run(mddev);
4885 	if (err)
4886 		printk(KERN_ERR "md: pers->run() failed ...\n");
4887 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4888 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4889 			  " but 'external_size' not in effect?\n", __func__);
4890 		printk(KERN_ERR
4891 		       "md: invalid array_size %llu > default size %llu\n",
4892 		       (unsigned long long)mddev->array_sectors / 2,
4893 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4894 		err = -EINVAL;
4895 		mddev->pers->stop(mddev);
4896 	}
4897 	if (err == 0 && mddev->pers->sync_request &&
4898 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4899 		err = bitmap_create(mddev);
4900 		if (err) {
4901 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4902 			       mdname(mddev), err);
4903 			mddev->pers->stop(mddev);
4904 		}
4905 	}
4906 	if (err) {
4907 		module_put(mddev->pers->owner);
4908 		mddev->pers = NULL;
4909 		bitmap_destroy(mddev);
4910 		return err;
4911 	}
4912 	if (mddev->pers->sync_request) {
4913 		if (mddev->kobj.sd &&
4914 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4915 			printk(KERN_WARNING
4916 			       "md: cannot register extra attributes for %s\n",
4917 			       mdname(mddev));
4918 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4919 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4920 		mddev->ro = 0;
4921 
4922 	atomic_set(&mddev->writes_pending,0);
4923 	atomic_set(&mddev->max_corr_read_errors,
4924 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4925 	mddev->safemode = 0;
4926 	mddev->safemode_timer.function = md_safemode_timeout;
4927 	mddev->safemode_timer.data = (unsigned long) mddev;
4928 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4929 	mddev->in_sync = 1;
4930 	smp_wmb();
4931 	mddev->ready = 1;
4932 	rdev_for_each(rdev, mddev)
4933 		if (rdev->raid_disk >= 0)
4934 			if (sysfs_link_rdev(mddev, rdev))
4935 				/* failure here is OK */;
4936 
4937 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4938 
4939 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
4940 		md_update_sb(mddev, 0);
4941 
4942 	md_new_event(mddev);
4943 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4944 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4945 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4946 	return 0;
4947 }
4948 EXPORT_SYMBOL_GPL(md_run);
4949 
4950 static int do_md_run(struct mddev *mddev)
4951 {
4952 	int err;
4953 
4954 	err = md_run(mddev);
4955 	if (err)
4956 		goto out;
4957 	err = bitmap_load(mddev);
4958 	if (err) {
4959 		bitmap_destroy(mddev);
4960 		goto out;
4961 	}
4962 
4963 	md_wakeup_thread(mddev->thread);
4964 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4965 
4966 	set_capacity(mddev->gendisk, mddev->array_sectors);
4967 	revalidate_disk(mddev->gendisk);
4968 	mddev->changed = 1;
4969 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4970 out:
4971 	return err;
4972 }
4973 
4974 static int restart_array(struct mddev *mddev)
4975 {
4976 	struct gendisk *disk = mddev->gendisk;
4977 
4978 	/* Complain if it has no devices */
4979 	if (list_empty(&mddev->disks))
4980 		return -ENXIO;
4981 	if (!mddev->pers)
4982 		return -EINVAL;
4983 	if (!mddev->ro)
4984 		return -EBUSY;
4985 	mddev->safemode = 0;
4986 	mddev->ro = 0;
4987 	set_disk_ro(disk, 0);
4988 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4989 		mdname(mddev));
4990 	/* Kick recovery or resync if necessary */
4991 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4992 	md_wakeup_thread(mddev->thread);
4993 	md_wakeup_thread(mddev->sync_thread);
4994 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4995 	return 0;
4996 }
4997 
4998 static void md_clean(struct mddev *mddev)
4999 {
5000 	mddev->array_sectors = 0;
5001 	mddev->external_size = 0;
5002 	mddev->dev_sectors = 0;
5003 	mddev->raid_disks = 0;
5004 	mddev->recovery_cp = 0;
5005 	mddev->resync_min = 0;
5006 	mddev->resync_max = MaxSector;
5007 	mddev->reshape_position = MaxSector;
5008 	mddev->external = 0;
5009 	mddev->persistent = 0;
5010 	mddev->level = LEVEL_NONE;
5011 	mddev->clevel[0] = 0;
5012 	mddev->flags = 0;
5013 	mddev->ro = 0;
5014 	mddev->metadata_type[0] = 0;
5015 	mddev->chunk_sectors = 0;
5016 	mddev->ctime = mddev->utime = 0;
5017 	mddev->layout = 0;
5018 	mddev->max_disks = 0;
5019 	mddev->events = 0;
5020 	mddev->can_decrease_events = 0;
5021 	mddev->delta_disks = 0;
5022 	mddev->reshape_backwards = 0;
5023 	mddev->new_level = LEVEL_NONE;
5024 	mddev->new_layout = 0;
5025 	mddev->new_chunk_sectors = 0;
5026 	mddev->curr_resync = 0;
5027 	atomic64_set(&mddev->resync_mismatches, 0);
5028 	mddev->suspend_lo = mddev->suspend_hi = 0;
5029 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5030 	mddev->recovery = 0;
5031 	mddev->in_sync = 0;
5032 	mddev->changed = 0;
5033 	mddev->degraded = 0;
5034 	mddev->safemode = 0;
5035 	mddev->merge_check_needed = 0;
5036 	mddev->bitmap_info.offset = 0;
5037 	mddev->bitmap_info.default_offset = 0;
5038 	mddev->bitmap_info.default_space = 0;
5039 	mddev->bitmap_info.chunksize = 0;
5040 	mddev->bitmap_info.daemon_sleep = 0;
5041 	mddev->bitmap_info.max_write_behind = 0;
5042 }
5043 
5044 static void __md_stop_writes(struct mddev *mddev)
5045 {
5046 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5047 	if (mddev->sync_thread) {
5048 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5049 		md_reap_sync_thread(mddev);
5050 	}
5051 
5052 	del_timer_sync(&mddev->safemode_timer);
5053 
5054 	bitmap_flush(mddev);
5055 	md_super_wait(mddev);
5056 
5057 	if (mddev->ro == 0 &&
5058 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5059 		/* mark array as shutdown cleanly */
5060 		mddev->in_sync = 1;
5061 		md_update_sb(mddev, 1);
5062 	}
5063 }
5064 
5065 void md_stop_writes(struct mddev *mddev)
5066 {
5067 	mddev_lock_nointr(mddev);
5068 	__md_stop_writes(mddev);
5069 	mddev_unlock(mddev);
5070 }
5071 EXPORT_SYMBOL_GPL(md_stop_writes);
5072 
5073 static void __md_stop(struct mddev *mddev)
5074 {
5075 	mddev->ready = 0;
5076 	mddev->pers->stop(mddev);
5077 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5078 		mddev->to_remove = &md_redundancy_group;
5079 	module_put(mddev->pers->owner);
5080 	mddev->pers = NULL;
5081 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082 }
5083 
5084 void md_stop(struct mddev *mddev)
5085 {
5086 	/* stop the array and free an attached data structures.
5087 	 * This is called from dm-raid
5088 	 */
5089 	__md_stop(mddev);
5090 	bitmap_destroy(mddev);
5091 	if (mddev->bio_set)
5092 		bioset_free(mddev->bio_set);
5093 }
5094 
5095 EXPORT_SYMBOL_GPL(md_stop);
5096 
5097 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5098 {
5099 	int err = 0;
5100 	int did_freeze = 0;
5101 
5102 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5103 		did_freeze = 1;
5104 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5105 		md_wakeup_thread(mddev->thread);
5106 	}
5107 	if (mddev->sync_thread) {
5108 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5109 		/* Thread might be blocked waiting for metadata update
5110 		 * which will now never happen */
5111 		wake_up_process(mddev->sync_thread->tsk);
5112 	}
5113 	mddev_unlock(mddev);
5114 	wait_event(resync_wait, mddev->sync_thread == NULL);
5115 	mddev_lock_nointr(mddev);
5116 
5117 	mutex_lock(&mddev->open_mutex);
5118 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5119 	    mddev->sync_thread ||
5120 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5121 		printk("md: %s still in use.\n",mdname(mddev));
5122 		if (did_freeze) {
5123 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5125 			md_wakeup_thread(mddev->thread);
5126 		}
5127 		err = -EBUSY;
5128 		goto out;
5129 	}
5130 	if (mddev->pers) {
5131 		__md_stop_writes(mddev);
5132 
5133 		err  = -ENXIO;
5134 		if (mddev->ro==1)
5135 			goto out;
5136 		mddev->ro = 1;
5137 		set_disk_ro(mddev->gendisk, 1);
5138 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5139 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5140 		md_wakeup_thread(mddev->thread);
5141 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5142 		err = 0;
5143 	}
5144 out:
5145 	mutex_unlock(&mddev->open_mutex);
5146 	return err;
5147 }
5148 
5149 /* mode:
5150  *   0 - completely stop and dis-assemble array
5151  *   2 - stop but do not disassemble array
5152  */
5153 static int do_md_stop(struct mddev *mddev, int mode,
5154 		      struct block_device *bdev)
5155 {
5156 	struct gendisk *disk = mddev->gendisk;
5157 	struct md_rdev *rdev;
5158 	int did_freeze = 0;
5159 
5160 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5161 		did_freeze = 1;
5162 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5163 		md_wakeup_thread(mddev->thread);
5164 	}
5165 	if (mddev->sync_thread) {
5166 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5167 		/* Thread might be blocked waiting for metadata update
5168 		 * which will now never happen */
5169 		wake_up_process(mddev->sync_thread->tsk);
5170 	}
5171 	mddev_unlock(mddev);
5172 	wait_event(resync_wait, mddev->sync_thread == NULL);
5173 	mddev_lock_nointr(mddev);
5174 
5175 	mutex_lock(&mddev->open_mutex);
5176 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5177 	    mddev->sysfs_active ||
5178 	    mddev->sync_thread ||
5179 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5180 		printk("md: %s still in use.\n",mdname(mddev));
5181 		mutex_unlock(&mddev->open_mutex);
5182 		if (did_freeze) {
5183 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5184 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5185 			md_wakeup_thread(mddev->thread);
5186 		}
5187 		return -EBUSY;
5188 	}
5189 	if (mddev->pers) {
5190 		if (mddev->ro)
5191 			set_disk_ro(disk, 0);
5192 
5193 		__md_stop_writes(mddev);
5194 		__md_stop(mddev);
5195 		mddev->queue->merge_bvec_fn = NULL;
5196 		mddev->queue->backing_dev_info.congested_fn = NULL;
5197 
5198 		/* tell userspace to handle 'inactive' */
5199 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5200 
5201 		rdev_for_each(rdev, mddev)
5202 			if (rdev->raid_disk >= 0)
5203 				sysfs_unlink_rdev(mddev, rdev);
5204 
5205 		set_capacity(disk, 0);
5206 		mutex_unlock(&mddev->open_mutex);
5207 		mddev->changed = 1;
5208 		revalidate_disk(disk);
5209 
5210 		if (mddev->ro)
5211 			mddev->ro = 0;
5212 	} else
5213 		mutex_unlock(&mddev->open_mutex);
5214 	/*
5215 	 * Free resources if final stop
5216 	 */
5217 	if (mode == 0) {
5218 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5219 
5220 		bitmap_destroy(mddev);
5221 		if (mddev->bitmap_info.file) {
5222 			fput(mddev->bitmap_info.file);
5223 			mddev->bitmap_info.file = NULL;
5224 		}
5225 		mddev->bitmap_info.offset = 0;
5226 
5227 		export_array(mddev);
5228 
5229 		md_clean(mddev);
5230 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5231 		if (mddev->hold_active == UNTIL_STOP)
5232 			mddev->hold_active = 0;
5233 	}
5234 	blk_integrity_unregister(disk);
5235 	md_new_event(mddev);
5236 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5237 	return 0;
5238 }
5239 
5240 #ifndef MODULE
5241 static void autorun_array(struct mddev *mddev)
5242 {
5243 	struct md_rdev *rdev;
5244 	int err;
5245 
5246 	if (list_empty(&mddev->disks))
5247 		return;
5248 
5249 	printk(KERN_INFO "md: running: ");
5250 
5251 	rdev_for_each(rdev, mddev) {
5252 		char b[BDEVNAME_SIZE];
5253 		printk("<%s>", bdevname(rdev->bdev,b));
5254 	}
5255 	printk("\n");
5256 
5257 	err = do_md_run(mddev);
5258 	if (err) {
5259 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5260 		do_md_stop(mddev, 0, NULL);
5261 	}
5262 }
5263 
5264 /*
5265  * lets try to run arrays based on all disks that have arrived
5266  * until now. (those are in pending_raid_disks)
5267  *
5268  * the method: pick the first pending disk, collect all disks with
5269  * the same UUID, remove all from the pending list and put them into
5270  * the 'same_array' list. Then order this list based on superblock
5271  * update time (freshest comes first), kick out 'old' disks and
5272  * compare superblocks. If everything's fine then run it.
5273  *
5274  * If "unit" is allocated, then bump its reference count
5275  */
5276 static void autorun_devices(int part)
5277 {
5278 	struct md_rdev *rdev0, *rdev, *tmp;
5279 	struct mddev *mddev;
5280 	char b[BDEVNAME_SIZE];
5281 
5282 	printk(KERN_INFO "md: autorun ...\n");
5283 	while (!list_empty(&pending_raid_disks)) {
5284 		int unit;
5285 		dev_t dev;
5286 		LIST_HEAD(candidates);
5287 		rdev0 = list_entry(pending_raid_disks.next,
5288 					 struct md_rdev, same_set);
5289 
5290 		printk(KERN_INFO "md: considering %s ...\n",
5291 			bdevname(rdev0->bdev,b));
5292 		INIT_LIST_HEAD(&candidates);
5293 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5294 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5295 				printk(KERN_INFO "md:  adding %s ...\n",
5296 					bdevname(rdev->bdev,b));
5297 				list_move(&rdev->same_set, &candidates);
5298 			}
5299 		/*
5300 		 * now we have a set of devices, with all of them having
5301 		 * mostly sane superblocks. It's time to allocate the
5302 		 * mddev.
5303 		 */
5304 		if (part) {
5305 			dev = MKDEV(mdp_major,
5306 				    rdev0->preferred_minor << MdpMinorShift);
5307 			unit = MINOR(dev) >> MdpMinorShift;
5308 		} else {
5309 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5310 			unit = MINOR(dev);
5311 		}
5312 		if (rdev0->preferred_minor != unit) {
5313 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5314 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5315 			break;
5316 		}
5317 
5318 		md_probe(dev, NULL, NULL);
5319 		mddev = mddev_find(dev);
5320 		if (!mddev || !mddev->gendisk) {
5321 			if (mddev)
5322 				mddev_put(mddev);
5323 			printk(KERN_ERR
5324 				"md: cannot allocate memory for md drive.\n");
5325 			break;
5326 		}
5327 		if (mddev_lock(mddev))
5328 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5329 			       mdname(mddev));
5330 		else if (mddev->raid_disks || mddev->major_version
5331 			 || !list_empty(&mddev->disks)) {
5332 			printk(KERN_WARNING
5333 				"md: %s already running, cannot run %s\n",
5334 				mdname(mddev), bdevname(rdev0->bdev,b));
5335 			mddev_unlock(mddev);
5336 		} else {
5337 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5338 			mddev->persistent = 1;
5339 			rdev_for_each_list(rdev, tmp, &candidates) {
5340 				list_del_init(&rdev->same_set);
5341 				if (bind_rdev_to_array(rdev, mddev))
5342 					export_rdev(rdev);
5343 			}
5344 			autorun_array(mddev);
5345 			mddev_unlock(mddev);
5346 		}
5347 		/* on success, candidates will be empty, on error
5348 		 * it won't...
5349 		 */
5350 		rdev_for_each_list(rdev, tmp, &candidates) {
5351 			list_del_init(&rdev->same_set);
5352 			export_rdev(rdev);
5353 		}
5354 		mddev_put(mddev);
5355 	}
5356 	printk(KERN_INFO "md: ... autorun DONE.\n");
5357 }
5358 #endif /* !MODULE */
5359 
5360 static int get_version(void __user *arg)
5361 {
5362 	mdu_version_t ver;
5363 
5364 	ver.major = MD_MAJOR_VERSION;
5365 	ver.minor = MD_MINOR_VERSION;
5366 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5367 
5368 	if (copy_to_user(arg, &ver, sizeof(ver)))
5369 		return -EFAULT;
5370 
5371 	return 0;
5372 }
5373 
5374 static int get_array_info(struct mddev *mddev, void __user *arg)
5375 {
5376 	mdu_array_info_t info;
5377 	int nr,working,insync,failed,spare;
5378 	struct md_rdev *rdev;
5379 
5380 	nr = working = insync = failed = spare = 0;
5381 	rcu_read_lock();
5382 	rdev_for_each_rcu(rdev, mddev) {
5383 		nr++;
5384 		if (test_bit(Faulty, &rdev->flags))
5385 			failed++;
5386 		else {
5387 			working++;
5388 			if (test_bit(In_sync, &rdev->flags))
5389 				insync++;
5390 			else
5391 				spare++;
5392 		}
5393 	}
5394 	rcu_read_unlock();
5395 
5396 	info.major_version = mddev->major_version;
5397 	info.minor_version = mddev->minor_version;
5398 	info.patch_version = MD_PATCHLEVEL_VERSION;
5399 	info.ctime         = mddev->ctime;
5400 	info.level         = mddev->level;
5401 	info.size          = mddev->dev_sectors / 2;
5402 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5403 		info.size = -1;
5404 	info.nr_disks      = nr;
5405 	info.raid_disks    = mddev->raid_disks;
5406 	info.md_minor      = mddev->md_minor;
5407 	info.not_persistent= !mddev->persistent;
5408 
5409 	info.utime         = mddev->utime;
5410 	info.state         = 0;
5411 	if (mddev->in_sync)
5412 		info.state = (1<<MD_SB_CLEAN);
5413 	if (mddev->bitmap && mddev->bitmap_info.offset)
5414 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5415 	info.active_disks  = insync;
5416 	info.working_disks = working;
5417 	info.failed_disks  = failed;
5418 	info.spare_disks   = spare;
5419 
5420 	info.layout        = mddev->layout;
5421 	info.chunk_size    = mddev->chunk_sectors << 9;
5422 
5423 	if (copy_to_user(arg, &info, sizeof(info)))
5424 		return -EFAULT;
5425 
5426 	return 0;
5427 }
5428 
5429 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5430 {
5431 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5432 	char *ptr, *buf = NULL;
5433 	int err = -ENOMEM;
5434 
5435 	file = kmalloc(sizeof(*file), GFP_NOIO);
5436 
5437 	if (!file)
5438 		goto out;
5439 
5440 	/* bitmap disabled, zero the first byte and copy out */
5441 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5442 		file->pathname[0] = '\0';
5443 		goto copy_out;
5444 	}
5445 
5446 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5447 	if (!buf)
5448 		goto out;
5449 
5450 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5451 		     buf, sizeof(file->pathname));
5452 	if (IS_ERR(ptr))
5453 		goto out;
5454 
5455 	strcpy(file->pathname, ptr);
5456 
5457 copy_out:
5458 	err = 0;
5459 	if (copy_to_user(arg, file, sizeof(*file)))
5460 		err = -EFAULT;
5461 out:
5462 	kfree(buf);
5463 	kfree(file);
5464 	return err;
5465 }
5466 
5467 static int get_disk_info(struct mddev *mddev, void __user * arg)
5468 {
5469 	mdu_disk_info_t info;
5470 	struct md_rdev *rdev;
5471 
5472 	if (copy_from_user(&info, arg, sizeof(info)))
5473 		return -EFAULT;
5474 
5475 	rcu_read_lock();
5476 	rdev = find_rdev_nr_rcu(mddev, info.number);
5477 	if (rdev) {
5478 		info.major = MAJOR(rdev->bdev->bd_dev);
5479 		info.minor = MINOR(rdev->bdev->bd_dev);
5480 		info.raid_disk = rdev->raid_disk;
5481 		info.state = 0;
5482 		if (test_bit(Faulty, &rdev->flags))
5483 			info.state |= (1<<MD_DISK_FAULTY);
5484 		else if (test_bit(In_sync, &rdev->flags)) {
5485 			info.state |= (1<<MD_DISK_ACTIVE);
5486 			info.state |= (1<<MD_DISK_SYNC);
5487 		}
5488 		if (test_bit(WriteMostly, &rdev->flags))
5489 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5490 	} else {
5491 		info.major = info.minor = 0;
5492 		info.raid_disk = -1;
5493 		info.state = (1<<MD_DISK_REMOVED);
5494 	}
5495 	rcu_read_unlock();
5496 
5497 	if (copy_to_user(arg, &info, sizeof(info)))
5498 		return -EFAULT;
5499 
5500 	return 0;
5501 }
5502 
5503 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5504 {
5505 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5506 	struct md_rdev *rdev;
5507 	dev_t dev = MKDEV(info->major,info->minor);
5508 
5509 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5510 		return -EOVERFLOW;
5511 
5512 	if (!mddev->raid_disks) {
5513 		int err;
5514 		/* expecting a device which has a superblock */
5515 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5516 		if (IS_ERR(rdev)) {
5517 			printk(KERN_WARNING
5518 				"md: md_import_device returned %ld\n",
5519 				PTR_ERR(rdev));
5520 			return PTR_ERR(rdev);
5521 		}
5522 		if (!list_empty(&mddev->disks)) {
5523 			struct md_rdev *rdev0
5524 				= list_entry(mddev->disks.next,
5525 					     struct md_rdev, same_set);
5526 			err = super_types[mddev->major_version]
5527 				.load_super(rdev, rdev0, mddev->minor_version);
5528 			if (err < 0) {
5529 				printk(KERN_WARNING
5530 					"md: %s has different UUID to %s\n",
5531 					bdevname(rdev->bdev,b),
5532 					bdevname(rdev0->bdev,b2));
5533 				export_rdev(rdev);
5534 				return -EINVAL;
5535 			}
5536 		}
5537 		err = bind_rdev_to_array(rdev, mddev);
5538 		if (err)
5539 			export_rdev(rdev);
5540 		return err;
5541 	}
5542 
5543 	/*
5544 	 * add_new_disk can be used once the array is assembled
5545 	 * to add "hot spares".  They must already have a superblock
5546 	 * written
5547 	 */
5548 	if (mddev->pers) {
5549 		int err;
5550 		if (!mddev->pers->hot_add_disk) {
5551 			printk(KERN_WARNING
5552 				"%s: personality does not support diskops!\n",
5553 			       mdname(mddev));
5554 			return -EINVAL;
5555 		}
5556 		if (mddev->persistent)
5557 			rdev = md_import_device(dev, mddev->major_version,
5558 						mddev->minor_version);
5559 		else
5560 			rdev = md_import_device(dev, -1, -1);
5561 		if (IS_ERR(rdev)) {
5562 			printk(KERN_WARNING
5563 				"md: md_import_device returned %ld\n",
5564 				PTR_ERR(rdev));
5565 			return PTR_ERR(rdev);
5566 		}
5567 		/* set saved_raid_disk if appropriate */
5568 		if (!mddev->persistent) {
5569 			if (info->state & (1<<MD_DISK_SYNC)  &&
5570 			    info->raid_disk < mddev->raid_disks) {
5571 				rdev->raid_disk = info->raid_disk;
5572 				set_bit(In_sync, &rdev->flags);
5573 				clear_bit(Bitmap_sync, &rdev->flags);
5574 			} else
5575 				rdev->raid_disk = -1;
5576 			rdev->saved_raid_disk = rdev->raid_disk;
5577 		} else
5578 			super_types[mddev->major_version].
5579 				validate_super(mddev, rdev);
5580 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5581 		     rdev->raid_disk != info->raid_disk) {
5582 			/* This was a hot-add request, but events doesn't
5583 			 * match, so reject it.
5584 			 */
5585 			export_rdev(rdev);
5586 			return -EINVAL;
5587 		}
5588 
5589 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5590 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5591 			set_bit(WriteMostly, &rdev->flags);
5592 		else
5593 			clear_bit(WriteMostly, &rdev->flags);
5594 
5595 		rdev->raid_disk = -1;
5596 		err = bind_rdev_to_array(rdev, mddev);
5597 		if (!err && !mddev->pers->hot_remove_disk) {
5598 			/* If there is hot_add_disk but no hot_remove_disk
5599 			 * then added disks for geometry changes,
5600 			 * and should be added immediately.
5601 			 */
5602 			super_types[mddev->major_version].
5603 				validate_super(mddev, rdev);
5604 			err = mddev->pers->hot_add_disk(mddev, rdev);
5605 			if (err)
5606 				unbind_rdev_from_array(rdev);
5607 		}
5608 		if (err)
5609 			export_rdev(rdev);
5610 		else
5611 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5612 
5613 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5614 		if (mddev->degraded)
5615 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5616 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5617 		if (!err)
5618 			md_new_event(mddev);
5619 		md_wakeup_thread(mddev->thread);
5620 		return err;
5621 	}
5622 
5623 	/* otherwise, add_new_disk is only allowed
5624 	 * for major_version==0 superblocks
5625 	 */
5626 	if (mddev->major_version != 0) {
5627 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5628 		       mdname(mddev));
5629 		return -EINVAL;
5630 	}
5631 
5632 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5633 		int err;
5634 		rdev = md_import_device(dev, -1, 0);
5635 		if (IS_ERR(rdev)) {
5636 			printk(KERN_WARNING
5637 				"md: error, md_import_device() returned %ld\n",
5638 				PTR_ERR(rdev));
5639 			return PTR_ERR(rdev);
5640 		}
5641 		rdev->desc_nr = info->number;
5642 		if (info->raid_disk < mddev->raid_disks)
5643 			rdev->raid_disk = info->raid_disk;
5644 		else
5645 			rdev->raid_disk = -1;
5646 
5647 		if (rdev->raid_disk < mddev->raid_disks)
5648 			if (info->state & (1<<MD_DISK_SYNC))
5649 				set_bit(In_sync, &rdev->flags);
5650 
5651 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5652 			set_bit(WriteMostly, &rdev->flags);
5653 
5654 		if (!mddev->persistent) {
5655 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5656 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5657 		} else
5658 			rdev->sb_start = calc_dev_sboffset(rdev);
5659 		rdev->sectors = rdev->sb_start;
5660 
5661 		err = bind_rdev_to_array(rdev, mddev);
5662 		if (err) {
5663 			export_rdev(rdev);
5664 			return err;
5665 		}
5666 	}
5667 
5668 	return 0;
5669 }
5670 
5671 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5672 {
5673 	char b[BDEVNAME_SIZE];
5674 	struct md_rdev *rdev;
5675 
5676 	rdev = find_rdev(mddev, dev);
5677 	if (!rdev)
5678 		return -ENXIO;
5679 
5680 	clear_bit(Blocked, &rdev->flags);
5681 	remove_and_add_spares(mddev, rdev);
5682 
5683 	if (rdev->raid_disk >= 0)
5684 		goto busy;
5685 
5686 	kick_rdev_from_array(rdev);
5687 	md_update_sb(mddev, 1);
5688 	md_new_event(mddev);
5689 
5690 	return 0;
5691 busy:
5692 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5693 		bdevname(rdev->bdev,b), mdname(mddev));
5694 	return -EBUSY;
5695 }
5696 
5697 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5698 {
5699 	char b[BDEVNAME_SIZE];
5700 	int err;
5701 	struct md_rdev *rdev;
5702 
5703 	if (!mddev->pers)
5704 		return -ENODEV;
5705 
5706 	if (mddev->major_version != 0) {
5707 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5708 			" version-0 superblocks.\n",
5709 			mdname(mddev));
5710 		return -EINVAL;
5711 	}
5712 	if (!mddev->pers->hot_add_disk) {
5713 		printk(KERN_WARNING
5714 			"%s: personality does not support diskops!\n",
5715 			mdname(mddev));
5716 		return -EINVAL;
5717 	}
5718 
5719 	rdev = md_import_device(dev, -1, 0);
5720 	if (IS_ERR(rdev)) {
5721 		printk(KERN_WARNING
5722 			"md: error, md_import_device() returned %ld\n",
5723 			PTR_ERR(rdev));
5724 		return -EINVAL;
5725 	}
5726 
5727 	if (mddev->persistent)
5728 		rdev->sb_start = calc_dev_sboffset(rdev);
5729 	else
5730 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5731 
5732 	rdev->sectors = rdev->sb_start;
5733 
5734 	if (test_bit(Faulty, &rdev->flags)) {
5735 		printk(KERN_WARNING
5736 			"md: can not hot-add faulty %s disk to %s!\n",
5737 			bdevname(rdev->bdev,b), mdname(mddev));
5738 		err = -EINVAL;
5739 		goto abort_export;
5740 	}
5741 	clear_bit(In_sync, &rdev->flags);
5742 	rdev->desc_nr = -1;
5743 	rdev->saved_raid_disk = -1;
5744 	err = bind_rdev_to_array(rdev, mddev);
5745 	if (err)
5746 		goto abort_export;
5747 
5748 	/*
5749 	 * The rest should better be atomic, we can have disk failures
5750 	 * noticed in interrupt contexts ...
5751 	 */
5752 
5753 	rdev->raid_disk = -1;
5754 
5755 	md_update_sb(mddev, 1);
5756 
5757 	/*
5758 	 * Kick recovery, maybe this spare has to be added to the
5759 	 * array immediately.
5760 	 */
5761 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5762 	md_wakeup_thread(mddev->thread);
5763 	md_new_event(mddev);
5764 	return 0;
5765 
5766 abort_export:
5767 	export_rdev(rdev);
5768 	return err;
5769 }
5770 
5771 static int set_bitmap_file(struct mddev *mddev, int fd)
5772 {
5773 	int err = 0;
5774 
5775 	if (mddev->pers) {
5776 		if (!mddev->pers->quiesce || !mddev->thread)
5777 			return -EBUSY;
5778 		if (mddev->recovery || mddev->sync_thread)
5779 			return -EBUSY;
5780 		/* we should be able to change the bitmap.. */
5781 	}
5782 
5783 	if (fd >= 0) {
5784 		struct inode *inode;
5785 		if (mddev->bitmap)
5786 			return -EEXIST; /* cannot add when bitmap is present */
5787 		mddev->bitmap_info.file = fget(fd);
5788 
5789 		if (mddev->bitmap_info.file == NULL) {
5790 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5791 			       mdname(mddev));
5792 			return -EBADF;
5793 		}
5794 
5795 		inode = mddev->bitmap_info.file->f_mapping->host;
5796 		if (!S_ISREG(inode->i_mode)) {
5797 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5798 			       mdname(mddev));
5799 			err = -EBADF;
5800 		} else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5801 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5802 			       mdname(mddev));
5803 			err = -EBADF;
5804 		} else if (atomic_read(&inode->i_writecount) != 1) {
5805 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5806 			       mdname(mddev));
5807 			err = -EBUSY;
5808 		}
5809 		if (err) {
5810 			fput(mddev->bitmap_info.file);
5811 			mddev->bitmap_info.file = NULL;
5812 			return err;
5813 		}
5814 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5815 	} else if (mddev->bitmap == NULL)
5816 		return -ENOENT; /* cannot remove what isn't there */
5817 	err = 0;
5818 	if (mddev->pers) {
5819 		mddev->pers->quiesce(mddev, 1);
5820 		if (fd >= 0) {
5821 			err = bitmap_create(mddev);
5822 			if (!err)
5823 				err = bitmap_load(mddev);
5824 		}
5825 		if (fd < 0 || err) {
5826 			bitmap_destroy(mddev);
5827 			fd = -1; /* make sure to put the file */
5828 		}
5829 		mddev->pers->quiesce(mddev, 0);
5830 	}
5831 	if (fd < 0) {
5832 		if (mddev->bitmap_info.file)
5833 			fput(mddev->bitmap_info.file);
5834 		mddev->bitmap_info.file = NULL;
5835 	}
5836 
5837 	return err;
5838 }
5839 
5840 /*
5841  * set_array_info is used two different ways
5842  * The original usage is when creating a new array.
5843  * In this usage, raid_disks is > 0 and it together with
5844  *  level, size, not_persistent,layout,chunksize determine the
5845  *  shape of the array.
5846  *  This will always create an array with a type-0.90.0 superblock.
5847  * The newer usage is when assembling an array.
5848  *  In this case raid_disks will be 0, and the major_version field is
5849  *  use to determine which style super-blocks are to be found on the devices.
5850  *  The minor and patch _version numbers are also kept incase the
5851  *  super_block handler wishes to interpret them.
5852  */
5853 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5854 {
5855 
5856 	if (info->raid_disks == 0) {
5857 		/* just setting version number for superblock loading */
5858 		if (info->major_version < 0 ||
5859 		    info->major_version >= ARRAY_SIZE(super_types) ||
5860 		    super_types[info->major_version].name == NULL) {
5861 			/* maybe try to auto-load a module? */
5862 			printk(KERN_INFO
5863 				"md: superblock version %d not known\n",
5864 				info->major_version);
5865 			return -EINVAL;
5866 		}
5867 		mddev->major_version = info->major_version;
5868 		mddev->minor_version = info->minor_version;
5869 		mddev->patch_version = info->patch_version;
5870 		mddev->persistent = !info->not_persistent;
5871 		/* ensure mddev_put doesn't delete this now that there
5872 		 * is some minimal configuration.
5873 		 */
5874 		mddev->ctime         = get_seconds();
5875 		return 0;
5876 	}
5877 	mddev->major_version = MD_MAJOR_VERSION;
5878 	mddev->minor_version = MD_MINOR_VERSION;
5879 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5880 	mddev->ctime         = get_seconds();
5881 
5882 	mddev->level         = info->level;
5883 	mddev->clevel[0]     = 0;
5884 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5885 	mddev->raid_disks    = info->raid_disks;
5886 	/* don't set md_minor, it is determined by which /dev/md* was
5887 	 * openned
5888 	 */
5889 	if (info->state & (1<<MD_SB_CLEAN))
5890 		mddev->recovery_cp = MaxSector;
5891 	else
5892 		mddev->recovery_cp = 0;
5893 	mddev->persistent    = ! info->not_persistent;
5894 	mddev->external	     = 0;
5895 
5896 	mddev->layout        = info->layout;
5897 	mddev->chunk_sectors = info->chunk_size >> 9;
5898 
5899 	mddev->max_disks     = MD_SB_DISKS;
5900 
5901 	if (mddev->persistent)
5902 		mddev->flags         = 0;
5903 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5904 
5905 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5906 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5907 	mddev->bitmap_info.offset = 0;
5908 
5909 	mddev->reshape_position = MaxSector;
5910 
5911 	/*
5912 	 * Generate a 128 bit UUID
5913 	 */
5914 	get_random_bytes(mddev->uuid, 16);
5915 
5916 	mddev->new_level = mddev->level;
5917 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5918 	mddev->new_layout = mddev->layout;
5919 	mddev->delta_disks = 0;
5920 	mddev->reshape_backwards = 0;
5921 
5922 	return 0;
5923 }
5924 
5925 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5926 {
5927 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5928 
5929 	if (mddev->external_size)
5930 		return;
5931 
5932 	mddev->array_sectors = array_sectors;
5933 }
5934 EXPORT_SYMBOL(md_set_array_sectors);
5935 
5936 static int update_size(struct mddev *mddev, sector_t num_sectors)
5937 {
5938 	struct md_rdev *rdev;
5939 	int rv;
5940 	int fit = (num_sectors == 0);
5941 
5942 	if (mddev->pers->resize == NULL)
5943 		return -EINVAL;
5944 	/* The "num_sectors" is the number of sectors of each device that
5945 	 * is used.  This can only make sense for arrays with redundancy.
5946 	 * linear and raid0 always use whatever space is available. We can only
5947 	 * consider changing this number if no resync or reconstruction is
5948 	 * happening, and if the new size is acceptable. It must fit before the
5949 	 * sb_start or, if that is <data_offset, it must fit before the size
5950 	 * of each device.  If num_sectors is zero, we find the largest size
5951 	 * that fits.
5952 	 */
5953 	if (mddev->sync_thread)
5954 		return -EBUSY;
5955 	if (mddev->ro)
5956 		return -EROFS;
5957 
5958 	rdev_for_each(rdev, mddev) {
5959 		sector_t avail = rdev->sectors;
5960 
5961 		if (fit && (num_sectors == 0 || num_sectors > avail))
5962 			num_sectors = avail;
5963 		if (avail < num_sectors)
5964 			return -ENOSPC;
5965 	}
5966 	rv = mddev->pers->resize(mddev, num_sectors);
5967 	if (!rv)
5968 		revalidate_disk(mddev->gendisk);
5969 	return rv;
5970 }
5971 
5972 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5973 {
5974 	int rv;
5975 	struct md_rdev *rdev;
5976 	/* change the number of raid disks */
5977 	if (mddev->pers->check_reshape == NULL)
5978 		return -EINVAL;
5979 	if (mddev->ro)
5980 		return -EROFS;
5981 	if (raid_disks <= 0 ||
5982 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5983 		return -EINVAL;
5984 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5985 		return -EBUSY;
5986 
5987 	rdev_for_each(rdev, mddev) {
5988 		if (mddev->raid_disks < raid_disks &&
5989 		    rdev->data_offset < rdev->new_data_offset)
5990 			return -EINVAL;
5991 		if (mddev->raid_disks > raid_disks &&
5992 		    rdev->data_offset > rdev->new_data_offset)
5993 			return -EINVAL;
5994 	}
5995 
5996 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5997 	if (mddev->delta_disks < 0)
5998 		mddev->reshape_backwards = 1;
5999 	else if (mddev->delta_disks > 0)
6000 		mddev->reshape_backwards = 0;
6001 
6002 	rv = mddev->pers->check_reshape(mddev);
6003 	if (rv < 0) {
6004 		mddev->delta_disks = 0;
6005 		mddev->reshape_backwards = 0;
6006 	}
6007 	return rv;
6008 }
6009 
6010 /*
6011  * update_array_info is used to change the configuration of an
6012  * on-line array.
6013  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6014  * fields in the info are checked against the array.
6015  * Any differences that cannot be handled will cause an error.
6016  * Normally, only one change can be managed at a time.
6017  */
6018 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6019 {
6020 	int rv = 0;
6021 	int cnt = 0;
6022 	int state = 0;
6023 
6024 	/* calculate expected state,ignoring low bits */
6025 	if (mddev->bitmap && mddev->bitmap_info.offset)
6026 		state |= (1 << MD_SB_BITMAP_PRESENT);
6027 
6028 	if (mddev->major_version != info->major_version ||
6029 	    mddev->minor_version != info->minor_version ||
6030 /*	    mddev->patch_version != info->patch_version || */
6031 	    mddev->ctime         != info->ctime         ||
6032 	    mddev->level         != info->level         ||
6033 /*	    mddev->layout        != info->layout        || */
6034 	    !mddev->persistent	 != info->not_persistent||
6035 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6036 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6037 	    ((state^info->state) & 0xfffffe00)
6038 		)
6039 		return -EINVAL;
6040 	/* Check there is only one change */
6041 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6042 		cnt++;
6043 	if (mddev->raid_disks != info->raid_disks)
6044 		cnt++;
6045 	if (mddev->layout != info->layout)
6046 		cnt++;
6047 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6048 		cnt++;
6049 	if (cnt == 0)
6050 		return 0;
6051 	if (cnt > 1)
6052 		return -EINVAL;
6053 
6054 	if (mddev->layout != info->layout) {
6055 		/* Change layout
6056 		 * we don't need to do anything at the md level, the
6057 		 * personality will take care of it all.
6058 		 */
6059 		if (mddev->pers->check_reshape == NULL)
6060 			return -EINVAL;
6061 		else {
6062 			mddev->new_layout = info->layout;
6063 			rv = mddev->pers->check_reshape(mddev);
6064 			if (rv)
6065 				mddev->new_layout = mddev->layout;
6066 			return rv;
6067 		}
6068 	}
6069 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6070 		rv = update_size(mddev, (sector_t)info->size * 2);
6071 
6072 	if (mddev->raid_disks    != info->raid_disks)
6073 		rv = update_raid_disks(mddev, info->raid_disks);
6074 
6075 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6076 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6077 			return -EINVAL;
6078 		if (mddev->recovery || mddev->sync_thread)
6079 			return -EBUSY;
6080 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6081 			/* add the bitmap */
6082 			if (mddev->bitmap)
6083 				return -EEXIST;
6084 			if (mddev->bitmap_info.default_offset == 0)
6085 				return -EINVAL;
6086 			mddev->bitmap_info.offset =
6087 				mddev->bitmap_info.default_offset;
6088 			mddev->bitmap_info.space =
6089 				mddev->bitmap_info.default_space;
6090 			mddev->pers->quiesce(mddev, 1);
6091 			rv = bitmap_create(mddev);
6092 			if (!rv)
6093 				rv = bitmap_load(mddev);
6094 			if (rv)
6095 				bitmap_destroy(mddev);
6096 			mddev->pers->quiesce(mddev, 0);
6097 		} else {
6098 			/* remove the bitmap */
6099 			if (!mddev->bitmap)
6100 				return -ENOENT;
6101 			if (mddev->bitmap->storage.file)
6102 				return -EINVAL;
6103 			mddev->pers->quiesce(mddev, 1);
6104 			bitmap_destroy(mddev);
6105 			mddev->pers->quiesce(mddev, 0);
6106 			mddev->bitmap_info.offset = 0;
6107 		}
6108 	}
6109 	md_update_sb(mddev, 1);
6110 	return rv;
6111 }
6112 
6113 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6114 {
6115 	struct md_rdev *rdev;
6116 	int err = 0;
6117 
6118 	if (mddev->pers == NULL)
6119 		return -ENODEV;
6120 
6121 	rcu_read_lock();
6122 	rdev = find_rdev_rcu(mddev, dev);
6123 	if (!rdev)
6124 		err =  -ENODEV;
6125 	else {
6126 		md_error(mddev, rdev);
6127 		if (!test_bit(Faulty, &rdev->flags))
6128 			err = -EBUSY;
6129 	}
6130 	rcu_read_unlock();
6131 	return err;
6132 }
6133 
6134 /*
6135  * We have a problem here : there is no easy way to give a CHS
6136  * virtual geometry. We currently pretend that we have a 2 heads
6137  * 4 sectors (with a BIG number of cylinders...). This drives
6138  * dosfs just mad... ;-)
6139  */
6140 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6141 {
6142 	struct mddev *mddev = bdev->bd_disk->private_data;
6143 
6144 	geo->heads = 2;
6145 	geo->sectors = 4;
6146 	geo->cylinders = mddev->array_sectors / 8;
6147 	return 0;
6148 }
6149 
6150 static inline bool md_ioctl_valid(unsigned int cmd)
6151 {
6152 	switch (cmd) {
6153 	case ADD_NEW_DISK:
6154 	case BLKROSET:
6155 	case GET_ARRAY_INFO:
6156 	case GET_BITMAP_FILE:
6157 	case GET_DISK_INFO:
6158 	case HOT_ADD_DISK:
6159 	case HOT_REMOVE_DISK:
6160 	case RAID_AUTORUN:
6161 	case RAID_VERSION:
6162 	case RESTART_ARRAY_RW:
6163 	case RUN_ARRAY:
6164 	case SET_ARRAY_INFO:
6165 	case SET_BITMAP_FILE:
6166 	case SET_DISK_FAULTY:
6167 	case STOP_ARRAY:
6168 	case STOP_ARRAY_RO:
6169 		return true;
6170 	default:
6171 		return false;
6172 	}
6173 }
6174 
6175 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6176 			unsigned int cmd, unsigned long arg)
6177 {
6178 	int err = 0;
6179 	void __user *argp = (void __user *)arg;
6180 	struct mddev *mddev = NULL;
6181 	int ro;
6182 
6183 	if (!md_ioctl_valid(cmd))
6184 		return -ENOTTY;
6185 
6186 	switch (cmd) {
6187 	case RAID_VERSION:
6188 	case GET_ARRAY_INFO:
6189 	case GET_DISK_INFO:
6190 		break;
6191 	default:
6192 		if (!capable(CAP_SYS_ADMIN))
6193 			return -EACCES;
6194 	}
6195 
6196 	/*
6197 	 * Commands dealing with the RAID driver but not any
6198 	 * particular array:
6199 	 */
6200 	switch (cmd) {
6201 	case RAID_VERSION:
6202 		err = get_version(argp);
6203 		goto out;
6204 
6205 #ifndef MODULE
6206 	case RAID_AUTORUN:
6207 		err = 0;
6208 		autostart_arrays(arg);
6209 		goto out;
6210 #endif
6211 	default:;
6212 	}
6213 
6214 	/*
6215 	 * Commands creating/starting a new array:
6216 	 */
6217 
6218 	mddev = bdev->bd_disk->private_data;
6219 
6220 	if (!mddev) {
6221 		BUG();
6222 		goto out;
6223 	}
6224 
6225 	/* Some actions do not requires the mutex */
6226 	switch (cmd) {
6227 	case GET_ARRAY_INFO:
6228 		if (!mddev->raid_disks && !mddev->external)
6229 			err = -ENODEV;
6230 		else
6231 			err = get_array_info(mddev, argp);
6232 		goto out;
6233 
6234 	case GET_DISK_INFO:
6235 		if (!mddev->raid_disks && !mddev->external)
6236 			err = -ENODEV;
6237 		else
6238 			err = get_disk_info(mddev, argp);
6239 		goto out;
6240 
6241 	case SET_DISK_FAULTY:
6242 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6243 		goto out;
6244 	}
6245 
6246 	if (cmd == ADD_NEW_DISK)
6247 		/* need to ensure md_delayed_delete() has completed */
6248 		flush_workqueue(md_misc_wq);
6249 
6250 	if (cmd == HOT_REMOVE_DISK)
6251 		/* need to ensure recovery thread has run */
6252 		wait_event_interruptible_timeout(mddev->sb_wait,
6253 						 !test_bit(MD_RECOVERY_NEEDED,
6254 							   &mddev->flags),
6255 						 msecs_to_jiffies(5000));
6256 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6257 		/* Need to flush page cache, and ensure no-one else opens
6258 		 * and writes
6259 		 */
6260 		mutex_lock(&mddev->open_mutex);
6261 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6262 			mutex_unlock(&mddev->open_mutex);
6263 			err = -EBUSY;
6264 			goto out;
6265 		}
6266 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6267 		mutex_unlock(&mddev->open_mutex);
6268 		sync_blockdev(bdev);
6269 	}
6270 	err = mddev_lock(mddev);
6271 	if (err) {
6272 		printk(KERN_INFO
6273 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6274 			err, cmd);
6275 		goto out;
6276 	}
6277 
6278 	if (cmd == SET_ARRAY_INFO) {
6279 		mdu_array_info_t info;
6280 		if (!arg)
6281 			memset(&info, 0, sizeof(info));
6282 		else if (copy_from_user(&info, argp, sizeof(info))) {
6283 			err = -EFAULT;
6284 			goto unlock;
6285 		}
6286 		if (mddev->pers) {
6287 			err = update_array_info(mddev, &info);
6288 			if (err) {
6289 				printk(KERN_WARNING "md: couldn't update"
6290 				       " array info. %d\n", err);
6291 				goto unlock;
6292 			}
6293 			goto unlock;
6294 		}
6295 		if (!list_empty(&mddev->disks)) {
6296 			printk(KERN_WARNING
6297 			       "md: array %s already has disks!\n",
6298 			       mdname(mddev));
6299 			err = -EBUSY;
6300 			goto unlock;
6301 		}
6302 		if (mddev->raid_disks) {
6303 			printk(KERN_WARNING
6304 			       "md: array %s already initialised!\n",
6305 			       mdname(mddev));
6306 			err = -EBUSY;
6307 			goto unlock;
6308 		}
6309 		err = set_array_info(mddev, &info);
6310 		if (err) {
6311 			printk(KERN_WARNING "md: couldn't set"
6312 			       " array info. %d\n", err);
6313 			goto unlock;
6314 		}
6315 		goto unlock;
6316 	}
6317 
6318 	/*
6319 	 * Commands querying/configuring an existing array:
6320 	 */
6321 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6322 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6323 	if ((!mddev->raid_disks && !mddev->external)
6324 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6325 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6326 	    && cmd != GET_BITMAP_FILE) {
6327 		err = -ENODEV;
6328 		goto unlock;
6329 	}
6330 
6331 	/*
6332 	 * Commands even a read-only array can execute:
6333 	 */
6334 	switch (cmd) {
6335 	case GET_BITMAP_FILE:
6336 		err = get_bitmap_file(mddev, argp);
6337 		goto unlock;
6338 
6339 	case RESTART_ARRAY_RW:
6340 		err = restart_array(mddev);
6341 		goto unlock;
6342 
6343 	case STOP_ARRAY:
6344 		err = do_md_stop(mddev, 0, bdev);
6345 		goto unlock;
6346 
6347 	case STOP_ARRAY_RO:
6348 		err = md_set_readonly(mddev, bdev);
6349 		goto unlock;
6350 
6351 	case HOT_REMOVE_DISK:
6352 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6353 		goto unlock;
6354 
6355 	case ADD_NEW_DISK:
6356 		/* We can support ADD_NEW_DISK on read-only arrays
6357 		 * on if we are re-adding a preexisting device.
6358 		 * So require mddev->pers and MD_DISK_SYNC.
6359 		 */
6360 		if (mddev->pers) {
6361 			mdu_disk_info_t info;
6362 			if (copy_from_user(&info, argp, sizeof(info)))
6363 				err = -EFAULT;
6364 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6365 				/* Need to clear read-only for this */
6366 				break;
6367 			else
6368 				err = add_new_disk(mddev, &info);
6369 			goto unlock;
6370 		}
6371 		break;
6372 
6373 	case BLKROSET:
6374 		if (get_user(ro, (int __user *)(arg))) {
6375 			err = -EFAULT;
6376 			goto unlock;
6377 		}
6378 		err = -EINVAL;
6379 
6380 		/* if the bdev is going readonly the value of mddev->ro
6381 		 * does not matter, no writes are coming
6382 		 */
6383 		if (ro)
6384 			goto unlock;
6385 
6386 		/* are we are already prepared for writes? */
6387 		if (mddev->ro != 1)
6388 			goto unlock;
6389 
6390 		/* transitioning to readauto need only happen for
6391 		 * arrays that call md_write_start
6392 		 */
6393 		if (mddev->pers) {
6394 			err = restart_array(mddev);
6395 			if (err == 0) {
6396 				mddev->ro = 2;
6397 				set_disk_ro(mddev->gendisk, 0);
6398 			}
6399 		}
6400 		goto unlock;
6401 	}
6402 
6403 	/*
6404 	 * The remaining ioctls are changing the state of the
6405 	 * superblock, so we do not allow them on read-only arrays.
6406 	 */
6407 	if (mddev->ro && mddev->pers) {
6408 		if (mddev->ro == 2) {
6409 			mddev->ro = 0;
6410 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6411 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6412 			/* mddev_unlock will wake thread */
6413 			/* If a device failed while we were read-only, we
6414 			 * need to make sure the metadata is updated now.
6415 			 */
6416 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6417 				mddev_unlock(mddev);
6418 				wait_event(mddev->sb_wait,
6419 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6420 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6421 				mddev_lock_nointr(mddev);
6422 			}
6423 		} else {
6424 			err = -EROFS;
6425 			goto unlock;
6426 		}
6427 	}
6428 
6429 	switch (cmd) {
6430 	case ADD_NEW_DISK:
6431 	{
6432 		mdu_disk_info_t info;
6433 		if (copy_from_user(&info, argp, sizeof(info)))
6434 			err = -EFAULT;
6435 		else
6436 			err = add_new_disk(mddev, &info);
6437 		goto unlock;
6438 	}
6439 
6440 	case HOT_ADD_DISK:
6441 		err = hot_add_disk(mddev, new_decode_dev(arg));
6442 		goto unlock;
6443 
6444 	case RUN_ARRAY:
6445 		err = do_md_run(mddev);
6446 		goto unlock;
6447 
6448 	case SET_BITMAP_FILE:
6449 		err = set_bitmap_file(mddev, (int)arg);
6450 		goto unlock;
6451 
6452 	default:
6453 		err = -EINVAL;
6454 		goto unlock;
6455 	}
6456 
6457 unlock:
6458 	if (mddev->hold_active == UNTIL_IOCTL &&
6459 	    err != -EINVAL)
6460 		mddev->hold_active = 0;
6461 	mddev_unlock(mddev);
6462 out:
6463 	return err;
6464 }
6465 #ifdef CONFIG_COMPAT
6466 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6467 		    unsigned int cmd, unsigned long arg)
6468 {
6469 	switch (cmd) {
6470 	case HOT_REMOVE_DISK:
6471 	case HOT_ADD_DISK:
6472 	case SET_DISK_FAULTY:
6473 	case SET_BITMAP_FILE:
6474 		/* These take in integer arg, do not convert */
6475 		break;
6476 	default:
6477 		arg = (unsigned long)compat_ptr(arg);
6478 		break;
6479 	}
6480 
6481 	return md_ioctl(bdev, mode, cmd, arg);
6482 }
6483 #endif /* CONFIG_COMPAT */
6484 
6485 static int md_open(struct block_device *bdev, fmode_t mode)
6486 {
6487 	/*
6488 	 * Succeed if we can lock the mddev, which confirms that
6489 	 * it isn't being stopped right now.
6490 	 */
6491 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6492 	int err;
6493 
6494 	if (!mddev)
6495 		return -ENODEV;
6496 
6497 	if (mddev->gendisk != bdev->bd_disk) {
6498 		/* we are racing with mddev_put which is discarding this
6499 		 * bd_disk.
6500 		 */
6501 		mddev_put(mddev);
6502 		/* Wait until bdev->bd_disk is definitely gone */
6503 		flush_workqueue(md_misc_wq);
6504 		/* Then retry the open from the top */
6505 		return -ERESTARTSYS;
6506 	}
6507 	BUG_ON(mddev != bdev->bd_disk->private_data);
6508 
6509 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6510 		goto out;
6511 
6512 	err = 0;
6513 	atomic_inc(&mddev->openers);
6514 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6515 	mutex_unlock(&mddev->open_mutex);
6516 
6517 	check_disk_change(bdev);
6518  out:
6519 	return err;
6520 }
6521 
6522 static void md_release(struct gendisk *disk, fmode_t mode)
6523 {
6524 	struct mddev *mddev = disk->private_data;
6525 
6526 	BUG_ON(!mddev);
6527 	atomic_dec(&mddev->openers);
6528 	mddev_put(mddev);
6529 }
6530 
6531 static int md_media_changed(struct gendisk *disk)
6532 {
6533 	struct mddev *mddev = disk->private_data;
6534 
6535 	return mddev->changed;
6536 }
6537 
6538 static int md_revalidate(struct gendisk *disk)
6539 {
6540 	struct mddev *mddev = disk->private_data;
6541 
6542 	mddev->changed = 0;
6543 	return 0;
6544 }
6545 static const struct block_device_operations md_fops =
6546 {
6547 	.owner		= THIS_MODULE,
6548 	.open		= md_open,
6549 	.release	= md_release,
6550 	.ioctl		= md_ioctl,
6551 #ifdef CONFIG_COMPAT
6552 	.compat_ioctl	= md_compat_ioctl,
6553 #endif
6554 	.getgeo		= md_getgeo,
6555 	.media_changed  = md_media_changed,
6556 	.revalidate_disk= md_revalidate,
6557 };
6558 
6559 static int md_thread(void *arg)
6560 {
6561 	struct md_thread *thread = arg;
6562 
6563 	/*
6564 	 * md_thread is a 'system-thread', it's priority should be very
6565 	 * high. We avoid resource deadlocks individually in each
6566 	 * raid personality. (RAID5 does preallocation) We also use RR and
6567 	 * the very same RT priority as kswapd, thus we will never get
6568 	 * into a priority inversion deadlock.
6569 	 *
6570 	 * we definitely have to have equal or higher priority than
6571 	 * bdflush, otherwise bdflush will deadlock if there are too
6572 	 * many dirty RAID5 blocks.
6573 	 */
6574 
6575 	allow_signal(SIGKILL);
6576 	while (!kthread_should_stop()) {
6577 
6578 		/* We need to wait INTERRUPTIBLE so that
6579 		 * we don't add to the load-average.
6580 		 * That means we need to be sure no signals are
6581 		 * pending
6582 		 */
6583 		if (signal_pending(current))
6584 			flush_signals(current);
6585 
6586 		wait_event_interruptible_timeout
6587 			(thread->wqueue,
6588 			 test_bit(THREAD_WAKEUP, &thread->flags)
6589 			 || kthread_should_stop(),
6590 			 thread->timeout);
6591 
6592 		clear_bit(THREAD_WAKEUP, &thread->flags);
6593 		if (!kthread_should_stop())
6594 			thread->run(thread);
6595 	}
6596 
6597 	return 0;
6598 }
6599 
6600 void md_wakeup_thread(struct md_thread *thread)
6601 {
6602 	if (thread) {
6603 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6604 		set_bit(THREAD_WAKEUP, &thread->flags);
6605 		wake_up(&thread->wqueue);
6606 	}
6607 }
6608 EXPORT_SYMBOL(md_wakeup_thread);
6609 
6610 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6611 		struct mddev *mddev, const char *name)
6612 {
6613 	struct md_thread *thread;
6614 
6615 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6616 	if (!thread)
6617 		return NULL;
6618 
6619 	init_waitqueue_head(&thread->wqueue);
6620 
6621 	thread->run = run;
6622 	thread->mddev = mddev;
6623 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6624 	thread->tsk = kthread_run(md_thread, thread,
6625 				  "%s_%s",
6626 				  mdname(thread->mddev),
6627 				  name);
6628 	if (IS_ERR(thread->tsk)) {
6629 		kfree(thread);
6630 		return NULL;
6631 	}
6632 	return thread;
6633 }
6634 EXPORT_SYMBOL(md_register_thread);
6635 
6636 void md_unregister_thread(struct md_thread **threadp)
6637 {
6638 	struct md_thread *thread = *threadp;
6639 	if (!thread)
6640 		return;
6641 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6642 	/* Locking ensures that mddev_unlock does not wake_up a
6643 	 * non-existent thread
6644 	 */
6645 	spin_lock(&pers_lock);
6646 	*threadp = NULL;
6647 	spin_unlock(&pers_lock);
6648 
6649 	kthread_stop(thread->tsk);
6650 	kfree(thread);
6651 }
6652 EXPORT_SYMBOL(md_unregister_thread);
6653 
6654 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6655 {
6656 	if (!rdev || test_bit(Faulty, &rdev->flags))
6657 		return;
6658 
6659 	if (!mddev->pers || !mddev->pers->error_handler)
6660 		return;
6661 	mddev->pers->error_handler(mddev,rdev);
6662 	if (mddev->degraded)
6663 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6664 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6665 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6666 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6667 	md_wakeup_thread(mddev->thread);
6668 	if (mddev->event_work.func)
6669 		queue_work(md_misc_wq, &mddev->event_work);
6670 	md_new_event_inintr(mddev);
6671 }
6672 EXPORT_SYMBOL(md_error);
6673 
6674 /* seq_file implementation /proc/mdstat */
6675 
6676 static void status_unused(struct seq_file *seq)
6677 {
6678 	int i = 0;
6679 	struct md_rdev *rdev;
6680 
6681 	seq_printf(seq, "unused devices: ");
6682 
6683 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6684 		char b[BDEVNAME_SIZE];
6685 		i++;
6686 		seq_printf(seq, "%s ",
6687 			      bdevname(rdev->bdev,b));
6688 	}
6689 	if (!i)
6690 		seq_printf(seq, "<none>");
6691 
6692 	seq_printf(seq, "\n");
6693 }
6694 
6695 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6696 {
6697 	sector_t max_sectors, resync, res;
6698 	unsigned long dt, db;
6699 	sector_t rt;
6700 	int scale;
6701 	unsigned int per_milli;
6702 
6703 	if (mddev->curr_resync <= 3)
6704 		resync = 0;
6705 	else
6706 		resync = mddev->curr_resync
6707 			- atomic_read(&mddev->recovery_active);
6708 
6709 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6710 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6711 		max_sectors = mddev->resync_max_sectors;
6712 	else
6713 		max_sectors = mddev->dev_sectors;
6714 
6715 	WARN_ON(max_sectors == 0);
6716 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6717 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6718 	 * u32, as those are the requirements for sector_div.
6719 	 * Thus 'scale' must be at least 10
6720 	 */
6721 	scale = 10;
6722 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6723 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6724 			scale++;
6725 	}
6726 	res = (resync>>scale)*1000;
6727 	sector_div(res, (u32)((max_sectors>>scale)+1));
6728 
6729 	per_milli = res;
6730 	{
6731 		int i, x = per_milli/50, y = 20-x;
6732 		seq_printf(seq, "[");
6733 		for (i = 0; i < x; i++)
6734 			seq_printf(seq, "=");
6735 		seq_printf(seq, ">");
6736 		for (i = 0; i < y; i++)
6737 			seq_printf(seq, ".");
6738 		seq_printf(seq, "] ");
6739 	}
6740 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6741 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6742 		    "reshape" :
6743 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6744 		     "check" :
6745 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6746 		      "resync" : "recovery"))),
6747 		   per_milli/10, per_milli % 10,
6748 		   (unsigned long long) resync/2,
6749 		   (unsigned long long) max_sectors/2);
6750 
6751 	/*
6752 	 * dt: time from mark until now
6753 	 * db: blocks written from mark until now
6754 	 * rt: remaining time
6755 	 *
6756 	 * rt is a sector_t, so could be 32bit or 64bit.
6757 	 * So we divide before multiply in case it is 32bit and close
6758 	 * to the limit.
6759 	 * We scale the divisor (db) by 32 to avoid losing precision
6760 	 * near the end of resync when the number of remaining sectors
6761 	 * is close to 'db'.
6762 	 * We then divide rt by 32 after multiplying by db to compensate.
6763 	 * The '+1' avoids division by zero if db is very small.
6764 	 */
6765 	dt = ((jiffies - mddev->resync_mark) / HZ);
6766 	if (!dt) dt++;
6767 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6768 		- mddev->resync_mark_cnt;
6769 
6770 	rt = max_sectors - resync;    /* number of remaining sectors */
6771 	sector_div(rt, db/32+1);
6772 	rt *= dt;
6773 	rt >>= 5;
6774 
6775 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6776 		   ((unsigned long)rt % 60)/6);
6777 
6778 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6779 }
6780 
6781 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6782 {
6783 	struct list_head *tmp;
6784 	loff_t l = *pos;
6785 	struct mddev *mddev;
6786 
6787 	if (l >= 0x10000)
6788 		return NULL;
6789 	if (!l--)
6790 		/* header */
6791 		return (void*)1;
6792 
6793 	spin_lock(&all_mddevs_lock);
6794 	list_for_each(tmp,&all_mddevs)
6795 		if (!l--) {
6796 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6797 			mddev_get(mddev);
6798 			spin_unlock(&all_mddevs_lock);
6799 			return mddev;
6800 		}
6801 	spin_unlock(&all_mddevs_lock);
6802 	if (!l--)
6803 		return (void*)2;/* tail */
6804 	return NULL;
6805 }
6806 
6807 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6808 {
6809 	struct list_head *tmp;
6810 	struct mddev *next_mddev, *mddev = v;
6811 
6812 	++*pos;
6813 	if (v == (void*)2)
6814 		return NULL;
6815 
6816 	spin_lock(&all_mddevs_lock);
6817 	if (v == (void*)1)
6818 		tmp = all_mddevs.next;
6819 	else
6820 		tmp = mddev->all_mddevs.next;
6821 	if (tmp != &all_mddevs)
6822 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6823 	else {
6824 		next_mddev = (void*)2;
6825 		*pos = 0x10000;
6826 	}
6827 	spin_unlock(&all_mddevs_lock);
6828 
6829 	if (v != (void*)1)
6830 		mddev_put(mddev);
6831 	return next_mddev;
6832 
6833 }
6834 
6835 static void md_seq_stop(struct seq_file *seq, void *v)
6836 {
6837 	struct mddev *mddev = v;
6838 
6839 	if (mddev && v != (void*)1 && v != (void*)2)
6840 		mddev_put(mddev);
6841 }
6842 
6843 static int md_seq_show(struct seq_file *seq, void *v)
6844 {
6845 	struct mddev *mddev = v;
6846 	sector_t sectors;
6847 	struct md_rdev *rdev;
6848 
6849 	if (v == (void*)1) {
6850 		struct md_personality *pers;
6851 		seq_printf(seq, "Personalities : ");
6852 		spin_lock(&pers_lock);
6853 		list_for_each_entry(pers, &pers_list, list)
6854 			seq_printf(seq, "[%s] ", pers->name);
6855 
6856 		spin_unlock(&pers_lock);
6857 		seq_printf(seq, "\n");
6858 		seq->poll_event = atomic_read(&md_event_count);
6859 		return 0;
6860 	}
6861 	if (v == (void*)2) {
6862 		status_unused(seq);
6863 		return 0;
6864 	}
6865 
6866 	if (mddev_lock(mddev) < 0)
6867 		return -EINTR;
6868 
6869 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6870 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6871 						mddev->pers ? "" : "in");
6872 		if (mddev->pers) {
6873 			if (mddev->ro==1)
6874 				seq_printf(seq, " (read-only)");
6875 			if (mddev->ro==2)
6876 				seq_printf(seq, " (auto-read-only)");
6877 			seq_printf(seq, " %s", mddev->pers->name);
6878 		}
6879 
6880 		sectors = 0;
6881 		rdev_for_each(rdev, mddev) {
6882 			char b[BDEVNAME_SIZE];
6883 			seq_printf(seq, " %s[%d]",
6884 				bdevname(rdev->bdev,b), rdev->desc_nr);
6885 			if (test_bit(WriteMostly, &rdev->flags))
6886 				seq_printf(seq, "(W)");
6887 			if (test_bit(Faulty, &rdev->flags)) {
6888 				seq_printf(seq, "(F)");
6889 				continue;
6890 			}
6891 			if (rdev->raid_disk < 0)
6892 				seq_printf(seq, "(S)"); /* spare */
6893 			if (test_bit(Replacement, &rdev->flags))
6894 				seq_printf(seq, "(R)");
6895 			sectors += rdev->sectors;
6896 		}
6897 
6898 		if (!list_empty(&mddev->disks)) {
6899 			if (mddev->pers)
6900 				seq_printf(seq, "\n      %llu blocks",
6901 					   (unsigned long long)
6902 					   mddev->array_sectors / 2);
6903 			else
6904 				seq_printf(seq, "\n      %llu blocks",
6905 					   (unsigned long long)sectors / 2);
6906 		}
6907 		if (mddev->persistent) {
6908 			if (mddev->major_version != 0 ||
6909 			    mddev->minor_version != 90) {
6910 				seq_printf(seq," super %d.%d",
6911 					   mddev->major_version,
6912 					   mddev->minor_version);
6913 			}
6914 		} else if (mddev->external)
6915 			seq_printf(seq, " super external:%s",
6916 				   mddev->metadata_type);
6917 		else
6918 			seq_printf(seq, " super non-persistent");
6919 
6920 		if (mddev->pers) {
6921 			mddev->pers->status(seq, mddev);
6922 			seq_printf(seq, "\n      ");
6923 			if (mddev->pers->sync_request) {
6924 				if (mddev->curr_resync > 2) {
6925 					status_resync(seq, mddev);
6926 					seq_printf(seq, "\n      ");
6927 				} else if (mddev->curr_resync >= 1)
6928 					seq_printf(seq, "\tresync=DELAYED\n      ");
6929 				else if (mddev->recovery_cp < MaxSector)
6930 					seq_printf(seq, "\tresync=PENDING\n      ");
6931 			}
6932 		} else
6933 			seq_printf(seq, "\n       ");
6934 
6935 		bitmap_status(seq, mddev->bitmap);
6936 
6937 		seq_printf(seq, "\n");
6938 	}
6939 	mddev_unlock(mddev);
6940 
6941 	return 0;
6942 }
6943 
6944 static const struct seq_operations md_seq_ops = {
6945 	.start  = md_seq_start,
6946 	.next   = md_seq_next,
6947 	.stop   = md_seq_stop,
6948 	.show   = md_seq_show,
6949 };
6950 
6951 static int md_seq_open(struct inode *inode, struct file *file)
6952 {
6953 	struct seq_file *seq;
6954 	int error;
6955 
6956 	error = seq_open(file, &md_seq_ops);
6957 	if (error)
6958 		return error;
6959 
6960 	seq = file->private_data;
6961 	seq->poll_event = atomic_read(&md_event_count);
6962 	return error;
6963 }
6964 
6965 static int md_unloading;
6966 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6967 {
6968 	struct seq_file *seq = filp->private_data;
6969 	int mask;
6970 
6971 	if (md_unloading)
6972 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
6973 	poll_wait(filp, &md_event_waiters, wait);
6974 
6975 	/* always allow read */
6976 	mask = POLLIN | POLLRDNORM;
6977 
6978 	if (seq->poll_event != atomic_read(&md_event_count))
6979 		mask |= POLLERR | POLLPRI;
6980 	return mask;
6981 }
6982 
6983 static const struct file_operations md_seq_fops = {
6984 	.owner		= THIS_MODULE,
6985 	.open           = md_seq_open,
6986 	.read           = seq_read,
6987 	.llseek         = seq_lseek,
6988 	.release	= seq_release_private,
6989 	.poll		= mdstat_poll,
6990 };
6991 
6992 int register_md_personality(struct md_personality *p)
6993 {
6994 	printk(KERN_INFO "md: %s personality registered for level %d\n",
6995 						p->name, p->level);
6996 	spin_lock(&pers_lock);
6997 	list_add_tail(&p->list, &pers_list);
6998 	spin_unlock(&pers_lock);
6999 	return 0;
7000 }
7001 EXPORT_SYMBOL(register_md_personality);
7002 
7003 int unregister_md_personality(struct md_personality *p)
7004 {
7005 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7006 	spin_lock(&pers_lock);
7007 	list_del_init(&p->list);
7008 	spin_unlock(&pers_lock);
7009 	return 0;
7010 }
7011 EXPORT_SYMBOL(unregister_md_personality);
7012 
7013 static int is_mddev_idle(struct mddev *mddev, int init)
7014 {
7015 	struct md_rdev *rdev;
7016 	int idle;
7017 	int curr_events;
7018 
7019 	idle = 1;
7020 	rcu_read_lock();
7021 	rdev_for_each_rcu(rdev, mddev) {
7022 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7023 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7024 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7025 			      atomic_read(&disk->sync_io);
7026 		/* sync IO will cause sync_io to increase before the disk_stats
7027 		 * as sync_io is counted when a request starts, and
7028 		 * disk_stats is counted when it completes.
7029 		 * So resync activity will cause curr_events to be smaller than
7030 		 * when there was no such activity.
7031 		 * non-sync IO will cause disk_stat to increase without
7032 		 * increasing sync_io so curr_events will (eventually)
7033 		 * be larger than it was before.  Once it becomes
7034 		 * substantially larger, the test below will cause
7035 		 * the array to appear non-idle, and resync will slow
7036 		 * down.
7037 		 * If there is a lot of outstanding resync activity when
7038 		 * we set last_event to curr_events, then all that activity
7039 		 * completing might cause the array to appear non-idle
7040 		 * and resync will be slowed down even though there might
7041 		 * not have been non-resync activity.  This will only
7042 		 * happen once though.  'last_events' will soon reflect
7043 		 * the state where there is little or no outstanding
7044 		 * resync requests, and further resync activity will
7045 		 * always make curr_events less than last_events.
7046 		 *
7047 		 */
7048 		if (init || curr_events - rdev->last_events > 64) {
7049 			rdev->last_events = curr_events;
7050 			idle = 0;
7051 		}
7052 	}
7053 	rcu_read_unlock();
7054 	return idle;
7055 }
7056 
7057 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7058 {
7059 	/* another "blocks" (512byte) blocks have been synced */
7060 	atomic_sub(blocks, &mddev->recovery_active);
7061 	wake_up(&mddev->recovery_wait);
7062 	if (!ok) {
7063 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7064 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7065 		md_wakeup_thread(mddev->thread);
7066 		// stop recovery, signal do_sync ....
7067 	}
7068 }
7069 EXPORT_SYMBOL(md_done_sync);
7070 
7071 /* md_write_start(mddev, bi)
7072  * If we need to update some array metadata (e.g. 'active' flag
7073  * in superblock) before writing, schedule a superblock update
7074  * and wait for it to complete.
7075  */
7076 void md_write_start(struct mddev *mddev, struct bio *bi)
7077 {
7078 	int did_change = 0;
7079 	if (bio_data_dir(bi) != WRITE)
7080 		return;
7081 
7082 	BUG_ON(mddev->ro == 1);
7083 	if (mddev->ro == 2) {
7084 		/* need to switch to read/write */
7085 		mddev->ro = 0;
7086 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7087 		md_wakeup_thread(mddev->thread);
7088 		md_wakeup_thread(mddev->sync_thread);
7089 		did_change = 1;
7090 	}
7091 	atomic_inc(&mddev->writes_pending);
7092 	if (mddev->safemode == 1)
7093 		mddev->safemode = 0;
7094 	if (mddev->in_sync) {
7095 		spin_lock_irq(&mddev->write_lock);
7096 		if (mddev->in_sync) {
7097 			mddev->in_sync = 0;
7098 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7099 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7100 			md_wakeup_thread(mddev->thread);
7101 			did_change = 1;
7102 		}
7103 		spin_unlock_irq(&mddev->write_lock);
7104 	}
7105 	if (did_change)
7106 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7107 	wait_event(mddev->sb_wait,
7108 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7109 }
7110 EXPORT_SYMBOL(md_write_start);
7111 
7112 void md_write_end(struct mddev *mddev)
7113 {
7114 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7115 		if (mddev->safemode == 2)
7116 			md_wakeup_thread(mddev->thread);
7117 		else if (mddev->safemode_delay)
7118 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7119 	}
7120 }
7121 EXPORT_SYMBOL(md_write_end);
7122 
7123 /* md_allow_write(mddev)
7124  * Calling this ensures that the array is marked 'active' so that writes
7125  * may proceed without blocking.  It is important to call this before
7126  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7127  * Must be called with mddev_lock held.
7128  *
7129  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7130  * is dropped, so return -EAGAIN after notifying userspace.
7131  */
7132 int md_allow_write(struct mddev *mddev)
7133 {
7134 	if (!mddev->pers)
7135 		return 0;
7136 	if (mddev->ro)
7137 		return 0;
7138 	if (!mddev->pers->sync_request)
7139 		return 0;
7140 
7141 	spin_lock_irq(&mddev->write_lock);
7142 	if (mddev->in_sync) {
7143 		mddev->in_sync = 0;
7144 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7145 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7146 		if (mddev->safemode_delay &&
7147 		    mddev->safemode == 0)
7148 			mddev->safemode = 1;
7149 		spin_unlock_irq(&mddev->write_lock);
7150 		md_update_sb(mddev, 0);
7151 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7152 	} else
7153 		spin_unlock_irq(&mddev->write_lock);
7154 
7155 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7156 		return -EAGAIN;
7157 	else
7158 		return 0;
7159 }
7160 EXPORT_SYMBOL_GPL(md_allow_write);
7161 
7162 #define SYNC_MARKS	10
7163 #define	SYNC_MARK_STEP	(3*HZ)
7164 #define UPDATE_FREQUENCY (5*60*HZ)
7165 void md_do_sync(struct md_thread *thread)
7166 {
7167 	struct mddev *mddev = thread->mddev;
7168 	struct mddev *mddev2;
7169 	unsigned int currspeed = 0,
7170 		 window;
7171 	sector_t max_sectors,j, io_sectors, recovery_done;
7172 	unsigned long mark[SYNC_MARKS];
7173 	unsigned long update_time;
7174 	sector_t mark_cnt[SYNC_MARKS];
7175 	int last_mark,m;
7176 	struct list_head *tmp;
7177 	sector_t last_check;
7178 	int skipped = 0;
7179 	struct md_rdev *rdev;
7180 	char *desc, *action = NULL;
7181 	struct blk_plug plug;
7182 
7183 	/* just incase thread restarts... */
7184 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7185 		return;
7186 	if (mddev->ro) {/* never try to sync a read-only array */
7187 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7188 		return;
7189 	}
7190 
7191 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7192 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7193 			desc = "data-check";
7194 			action = "check";
7195 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7196 			desc = "requested-resync";
7197 			action = "repair";
7198 		} else
7199 			desc = "resync";
7200 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7201 		desc = "reshape";
7202 	else
7203 		desc = "recovery";
7204 
7205 	mddev->last_sync_action = action ?: desc;
7206 
7207 	/* we overload curr_resync somewhat here.
7208 	 * 0 == not engaged in resync at all
7209 	 * 2 == checking that there is no conflict with another sync
7210 	 * 1 == like 2, but have yielded to allow conflicting resync to
7211 	 *		commense
7212 	 * other == active in resync - this many blocks
7213 	 *
7214 	 * Before starting a resync we must have set curr_resync to
7215 	 * 2, and then checked that every "conflicting" array has curr_resync
7216 	 * less than ours.  When we find one that is the same or higher
7217 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7218 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7219 	 * This will mean we have to start checking from the beginning again.
7220 	 *
7221 	 */
7222 
7223 	do {
7224 		mddev->curr_resync = 2;
7225 
7226 	try_again:
7227 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7228 			goto skip;
7229 		for_each_mddev(mddev2, tmp) {
7230 			if (mddev2 == mddev)
7231 				continue;
7232 			if (!mddev->parallel_resync
7233 			&&  mddev2->curr_resync
7234 			&&  match_mddev_units(mddev, mddev2)) {
7235 				DEFINE_WAIT(wq);
7236 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7237 					/* arbitrarily yield */
7238 					mddev->curr_resync = 1;
7239 					wake_up(&resync_wait);
7240 				}
7241 				if (mddev > mddev2 && mddev->curr_resync == 1)
7242 					/* no need to wait here, we can wait the next
7243 					 * time 'round when curr_resync == 2
7244 					 */
7245 					continue;
7246 				/* We need to wait 'interruptible' so as not to
7247 				 * contribute to the load average, and not to
7248 				 * be caught by 'softlockup'
7249 				 */
7250 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7251 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7252 				    mddev2->curr_resync >= mddev->curr_resync) {
7253 					printk(KERN_INFO "md: delaying %s of %s"
7254 					       " until %s has finished (they"
7255 					       " share one or more physical units)\n",
7256 					       desc, mdname(mddev), mdname(mddev2));
7257 					mddev_put(mddev2);
7258 					if (signal_pending(current))
7259 						flush_signals(current);
7260 					schedule();
7261 					finish_wait(&resync_wait, &wq);
7262 					goto try_again;
7263 				}
7264 				finish_wait(&resync_wait, &wq);
7265 			}
7266 		}
7267 	} while (mddev->curr_resync < 2);
7268 
7269 	j = 0;
7270 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7271 		/* resync follows the size requested by the personality,
7272 		 * which defaults to physical size, but can be virtual size
7273 		 */
7274 		max_sectors = mddev->resync_max_sectors;
7275 		atomic64_set(&mddev->resync_mismatches, 0);
7276 		/* we don't use the checkpoint if there's a bitmap */
7277 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7278 			j = mddev->resync_min;
7279 		else if (!mddev->bitmap)
7280 			j = mddev->recovery_cp;
7281 
7282 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7283 		max_sectors = mddev->resync_max_sectors;
7284 	else {
7285 		/* recovery follows the physical size of devices */
7286 		max_sectors = mddev->dev_sectors;
7287 		j = MaxSector;
7288 		rcu_read_lock();
7289 		rdev_for_each_rcu(rdev, mddev)
7290 			if (rdev->raid_disk >= 0 &&
7291 			    !test_bit(Faulty, &rdev->flags) &&
7292 			    !test_bit(In_sync, &rdev->flags) &&
7293 			    rdev->recovery_offset < j)
7294 				j = rdev->recovery_offset;
7295 		rcu_read_unlock();
7296 
7297 		/* If there is a bitmap, we need to make sure all
7298 		 * writes that started before we added a spare
7299 		 * complete before we start doing a recovery.
7300 		 * Otherwise the write might complete and (via
7301 		 * bitmap_endwrite) set a bit in the bitmap after the
7302 		 * recovery has checked that bit and skipped that
7303 		 * region.
7304 		 */
7305 		if (mddev->bitmap) {
7306 			mddev->pers->quiesce(mddev, 1);
7307 			mddev->pers->quiesce(mddev, 0);
7308 		}
7309 	}
7310 
7311 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7312 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7313 		" %d KB/sec/disk.\n", speed_min(mddev));
7314 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7315 	       "(but not more than %d KB/sec) for %s.\n",
7316 	       speed_max(mddev), desc);
7317 
7318 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7319 
7320 	io_sectors = 0;
7321 	for (m = 0; m < SYNC_MARKS; m++) {
7322 		mark[m] = jiffies;
7323 		mark_cnt[m] = io_sectors;
7324 	}
7325 	last_mark = 0;
7326 	mddev->resync_mark = mark[last_mark];
7327 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7328 
7329 	/*
7330 	 * Tune reconstruction:
7331 	 */
7332 	window = 32*(PAGE_SIZE/512);
7333 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7334 		window/2, (unsigned long long)max_sectors/2);
7335 
7336 	atomic_set(&mddev->recovery_active, 0);
7337 	last_check = 0;
7338 
7339 	if (j>2) {
7340 		printk(KERN_INFO
7341 		       "md: resuming %s of %s from checkpoint.\n",
7342 		       desc, mdname(mddev));
7343 		mddev->curr_resync = j;
7344 	} else
7345 		mddev->curr_resync = 3; /* no longer delayed */
7346 	mddev->curr_resync_completed = j;
7347 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7348 	md_new_event(mddev);
7349 	update_time = jiffies;
7350 
7351 	blk_start_plug(&plug);
7352 	while (j < max_sectors) {
7353 		sector_t sectors;
7354 
7355 		skipped = 0;
7356 
7357 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7358 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7359 		      (mddev->curr_resync - mddev->curr_resync_completed)
7360 		      > (max_sectors >> 4)) ||
7361 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7362 		     (j - mddev->curr_resync_completed)*2
7363 		     >= mddev->resync_max - mddev->curr_resync_completed
7364 			    )) {
7365 			/* time to update curr_resync_completed */
7366 			wait_event(mddev->recovery_wait,
7367 				   atomic_read(&mddev->recovery_active) == 0);
7368 			mddev->curr_resync_completed = j;
7369 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7370 			    j > mddev->recovery_cp)
7371 				mddev->recovery_cp = j;
7372 			update_time = jiffies;
7373 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7374 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7375 		}
7376 
7377 		while (j >= mddev->resync_max &&
7378 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7379 			/* As this condition is controlled by user-space,
7380 			 * we can block indefinitely, so use '_interruptible'
7381 			 * to avoid triggering warnings.
7382 			 */
7383 			flush_signals(current); /* just in case */
7384 			wait_event_interruptible(mddev->recovery_wait,
7385 						 mddev->resync_max > j
7386 						 || test_bit(MD_RECOVERY_INTR,
7387 							     &mddev->recovery));
7388 		}
7389 
7390 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7391 			break;
7392 
7393 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7394 						  currspeed < speed_min(mddev));
7395 		if (sectors == 0) {
7396 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7397 			break;
7398 		}
7399 
7400 		if (!skipped) { /* actual IO requested */
7401 			io_sectors += sectors;
7402 			atomic_add(sectors, &mddev->recovery_active);
7403 		}
7404 
7405 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7406 			break;
7407 
7408 		j += sectors;
7409 		if (j > 2)
7410 			mddev->curr_resync = j;
7411 		mddev->curr_mark_cnt = io_sectors;
7412 		if (last_check == 0)
7413 			/* this is the earliest that rebuild will be
7414 			 * visible in /proc/mdstat
7415 			 */
7416 			md_new_event(mddev);
7417 
7418 		if (last_check + window > io_sectors || j == max_sectors)
7419 			continue;
7420 
7421 		last_check = io_sectors;
7422 	repeat:
7423 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7424 			/* step marks */
7425 			int next = (last_mark+1) % SYNC_MARKS;
7426 
7427 			mddev->resync_mark = mark[next];
7428 			mddev->resync_mark_cnt = mark_cnt[next];
7429 			mark[next] = jiffies;
7430 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7431 			last_mark = next;
7432 		}
7433 
7434 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7435 			break;
7436 
7437 		/*
7438 		 * this loop exits only if either when we are slower than
7439 		 * the 'hard' speed limit, or the system was IO-idle for
7440 		 * a jiffy.
7441 		 * the system might be non-idle CPU-wise, but we only care
7442 		 * about not overloading the IO subsystem. (things like an
7443 		 * e2fsck being done on the RAID array should execute fast)
7444 		 */
7445 		cond_resched();
7446 
7447 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7448 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7449 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7450 
7451 		if (currspeed > speed_min(mddev)) {
7452 			if ((currspeed > speed_max(mddev)) ||
7453 					!is_mddev_idle(mddev, 0)) {
7454 				msleep(500);
7455 				goto repeat;
7456 			}
7457 		}
7458 	}
7459 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7460 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7461 	       ? "interrupted" : "done");
7462 	/*
7463 	 * this also signals 'finished resyncing' to md_stop
7464 	 */
7465 	blk_finish_plug(&plug);
7466 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7467 
7468 	/* tell personality that we are finished */
7469 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7470 
7471 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7472 	    mddev->curr_resync > 2) {
7473 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7474 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7475 				if (mddev->curr_resync >= mddev->recovery_cp) {
7476 					printk(KERN_INFO
7477 					       "md: checkpointing %s of %s.\n",
7478 					       desc, mdname(mddev));
7479 					if (test_bit(MD_RECOVERY_ERROR,
7480 						&mddev->recovery))
7481 						mddev->recovery_cp =
7482 							mddev->curr_resync_completed;
7483 					else
7484 						mddev->recovery_cp =
7485 							mddev->curr_resync;
7486 				}
7487 			} else
7488 				mddev->recovery_cp = MaxSector;
7489 		} else {
7490 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7491 				mddev->curr_resync = MaxSector;
7492 			rcu_read_lock();
7493 			rdev_for_each_rcu(rdev, mddev)
7494 				if (rdev->raid_disk >= 0 &&
7495 				    mddev->delta_disks >= 0 &&
7496 				    !test_bit(Faulty, &rdev->flags) &&
7497 				    !test_bit(In_sync, &rdev->flags) &&
7498 				    rdev->recovery_offset < mddev->curr_resync)
7499 					rdev->recovery_offset = mddev->curr_resync;
7500 			rcu_read_unlock();
7501 		}
7502 	}
7503  skip:
7504 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7505 
7506 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7507 		/* We completed so min/max setting can be forgotten if used. */
7508 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7509 			mddev->resync_min = 0;
7510 		mddev->resync_max = MaxSector;
7511 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7512 		mddev->resync_min = mddev->curr_resync_completed;
7513 	mddev->curr_resync = 0;
7514 	wake_up(&resync_wait);
7515 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7516 	md_wakeup_thread(mddev->thread);
7517 	return;
7518 }
7519 EXPORT_SYMBOL_GPL(md_do_sync);
7520 
7521 static int remove_and_add_spares(struct mddev *mddev,
7522 				 struct md_rdev *this)
7523 {
7524 	struct md_rdev *rdev;
7525 	int spares = 0;
7526 	int removed = 0;
7527 
7528 	rdev_for_each(rdev, mddev)
7529 		if ((this == NULL || rdev == this) &&
7530 		    rdev->raid_disk >= 0 &&
7531 		    !test_bit(Blocked, &rdev->flags) &&
7532 		    (test_bit(Faulty, &rdev->flags) ||
7533 		     ! test_bit(In_sync, &rdev->flags)) &&
7534 		    atomic_read(&rdev->nr_pending)==0) {
7535 			if (mddev->pers->hot_remove_disk(
7536 				    mddev, rdev) == 0) {
7537 				sysfs_unlink_rdev(mddev, rdev);
7538 				rdev->raid_disk = -1;
7539 				removed++;
7540 			}
7541 		}
7542 	if (removed && mddev->kobj.sd)
7543 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7544 
7545 	if (this)
7546 		goto no_add;
7547 
7548 	rdev_for_each(rdev, mddev) {
7549 		if (rdev->raid_disk >= 0 &&
7550 		    !test_bit(In_sync, &rdev->flags) &&
7551 		    !test_bit(Faulty, &rdev->flags))
7552 			spares++;
7553 		if (rdev->raid_disk >= 0)
7554 			continue;
7555 		if (test_bit(Faulty, &rdev->flags))
7556 			continue;
7557 		if (mddev->ro &&
7558 		    ! (rdev->saved_raid_disk >= 0 &&
7559 		       !test_bit(Bitmap_sync, &rdev->flags)))
7560 			continue;
7561 
7562 		if (rdev->saved_raid_disk < 0)
7563 			rdev->recovery_offset = 0;
7564 		if (mddev->pers->
7565 		    hot_add_disk(mddev, rdev) == 0) {
7566 			if (sysfs_link_rdev(mddev, rdev))
7567 				/* failure here is OK */;
7568 			spares++;
7569 			md_new_event(mddev);
7570 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7571 		}
7572 	}
7573 no_add:
7574 	if (removed)
7575 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7576 	return spares;
7577 }
7578 
7579 static void md_start_sync(struct work_struct *ws)
7580 {
7581 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7582 
7583 	mddev->sync_thread = md_register_thread(md_do_sync,
7584 						mddev,
7585 						"resync");
7586 	if (!mddev->sync_thread) {
7587 		printk(KERN_ERR "%s: could not start resync"
7588 		       " thread...\n",
7589 		       mdname(mddev));
7590 		/* leave the spares where they are, it shouldn't hurt */
7591 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7592 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7593 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7594 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7595 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7596 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7597 				       &mddev->recovery))
7598 			if (mddev->sysfs_action)
7599 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7600 	} else
7601 		md_wakeup_thread(mddev->sync_thread);
7602 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7603 	md_new_event(mddev);
7604 }
7605 
7606 /*
7607  * This routine is regularly called by all per-raid-array threads to
7608  * deal with generic issues like resync and super-block update.
7609  * Raid personalities that don't have a thread (linear/raid0) do not
7610  * need this as they never do any recovery or update the superblock.
7611  *
7612  * It does not do any resync itself, but rather "forks" off other threads
7613  * to do that as needed.
7614  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7615  * "->recovery" and create a thread at ->sync_thread.
7616  * When the thread finishes it sets MD_RECOVERY_DONE
7617  * and wakeups up this thread which will reap the thread and finish up.
7618  * This thread also removes any faulty devices (with nr_pending == 0).
7619  *
7620  * The overall approach is:
7621  *  1/ if the superblock needs updating, update it.
7622  *  2/ If a recovery thread is running, don't do anything else.
7623  *  3/ If recovery has finished, clean up, possibly marking spares active.
7624  *  4/ If there are any faulty devices, remove them.
7625  *  5/ If array is degraded, try to add spares devices
7626  *  6/ If array has spares or is not in-sync, start a resync thread.
7627  */
7628 void md_check_recovery(struct mddev *mddev)
7629 {
7630 	if (mddev->suspended)
7631 		return;
7632 
7633 	if (mddev->bitmap)
7634 		bitmap_daemon_work(mddev);
7635 
7636 	if (signal_pending(current)) {
7637 		if (mddev->pers->sync_request && !mddev->external) {
7638 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7639 			       mdname(mddev));
7640 			mddev->safemode = 2;
7641 		}
7642 		flush_signals(current);
7643 	}
7644 
7645 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7646 		return;
7647 	if ( ! (
7648 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7649 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7650 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7651 		(mddev->external == 0 && mddev->safemode == 1) ||
7652 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7653 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7654 		))
7655 		return;
7656 
7657 	if (mddev_trylock(mddev)) {
7658 		int spares = 0;
7659 
7660 		if (mddev->ro) {
7661 			/* On a read-only array we can:
7662 			 * - remove failed devices
7663 			 * - add already-in_sync devices if the array itself
7664 			 *   is in-sync.
7665 			 * As we only add devices that are already in-sync,
7666 			 * we can activate the spares immediately.
7667 			 */
7668 			remove_and_add_spares(mddev, NULL);
7669 			/* There is no thread, but we need to call
7670 			 * ->spare_active and clear saved_raid_disk
7671 			 */
7672 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7673 			md_reap_sync_thread(mddev);
7674 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7675 			goto unlock;
7676 		}
7677 
7678 		if (!mddev->external) {
7679 			int did_change = 0;
7680 			spin_lock_irq(&mddev->write_lock);
7681 			if (mddev->safemode &&
7682 			    !atomic_read(&mddev->writes_pending) &&
7683 			    !mddev->in_sync &&
7684 			    mddev->recovery_cp == MaxSector) {
7685 				mddev->in_sync = 1;
7686 				did_change = 1;
7687 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7688 			}
7689 			if (mddev->safemode == 1)
7690 				mddev->safemode = 0;
7691 			spin_unlock_irq(&mddev->write_lock);
7692 			if (did_change)
7693 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7694 		}
7695 
7696 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7697 			md_update_sb(mddev, 0);
7698 
7699 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7700 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7701 			/* resync/recovery still happening */
7702 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7703 			goto unlock;
7704 		}
7705 		if (mddev->sync_thread) {
7706 			md_reap_sync_thread(mddev);
7707 			goto unlock;
7708 		}
7709 		/* Set RUNNING before clearing NEEDED to avoid
7710 		 * any transients in the value of "sync_action".
7711 		 */
7712 		mddev->curr_resync_completed = 0;
7713 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7714 		/* Clear some bits that don't mean anything, but
7715 		 * might be left set
7716 		 */
7717 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7718 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7719 
7720 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7721 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7722 			goto not_running;
7723 		/* no recovery is running.
7724 		 * remove any failed drives, then
7725 		 * add spares if possible.
7726 		 * Spares are also removed and re-added, to allow
7727 		 * the personality to fail the re-add.
7728 		 */
7729 
7730 		if (mddev->reshape_position != MaxSector) {
7731 			if (mddev->pers->check_reshape == NULL ||
7732 			    mddev->pers->check_reshape(mddev) != 0)
7733 				/* Cannot proceed */
7734 				goto not_running;
7735 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7736 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7737 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7738 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7739 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7740 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7741 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7742 		} else if (mddev->recovery_cp < MaxSector) {
7743 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7744 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7745 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7746 			/* nothing to be done ... */
7747 			goto not_running;
7748 
7749 		if (mddev->pers->sync_request) {
7750 			if (spares) {
7751 				/* We are adding a device or devices to an array
7752 				 * which has the bitmap stored on all devices.
7753 				 * So make sure all bitmap pages get written
7754 				 */
7755 				bitmap_write_all(mddev->bitmap);
7756 			}
7757 			INIT_WORK(&mddev->del_work, md_start_sync);
7758 			queue_work(md_misc_wq, &mddev->del_work);
7759 			goto unlock;
7760 		}
7761 	not_running:
7762 		if (!mddev->sync_thread) {
7763 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7764 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7765 					       &mddev->recovery))
7766 				if (mddev->sysfs_action)
7767 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7768 		}
7769 	unlock:
7770 		wake_up(&mddev->sb_wait);
7771 		mddev_unlock(mddev);
7772 	}
7773 }
7774 EXPORT_SYMBOL(md_check_recovery);
7775 
7776 void md_reap_sync_thread(struct mddev *mddev)
7777 {
7778 	struct md_rdev *rdev;
7779 
7780 	/* resync has finished, collect result */
7781 	md_unregister_thread(&mddev->sync_thread);
7782 	wake_up(&resync_wait);
7783 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7784 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7785 		/* success...*/
7786 		/* activate any spares */
7787 		if (mddev->pers->spare_active(mddev)) {
7788 			sysfs_notify(&mddev->kobj, NULL,
7789 				     "degraded");
7790 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7791 		}
7792 	}
7793 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7794 	    mddev->pers->finish_reshape)
7795 		mddev->pers->finish_reshape(mddev);
7796 
7797 	/* If array is no-longer degraded, then any saved_raid_disk
7798 	 * information must be scrapped.
7799 	 */
7800 	if (!mddev->degraded)
7801 		rdev_for_each(rdev, mddev)
7802 			rdev->saved_raid_disk = -1;
7803 
7804 	md_update_sb(mddev, 1);
7805 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7806 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7807 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7808 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7809 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7810 	/* flag recovery needed just to double check */
7811 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7812 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7813 	md_new_event(mddev);
7814 	if (mddev->event_work.func)
7815 		queue_work(md_misc_wq, &mddev->event_work);
7816 }
7817 EXPORT_SYMBOL(md_reap_sync_thread);
7818 
7819 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7820 {
7821 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7822 	wait_event_timeout(rdev->blocked_wait,
7823 			   !test_bit(Blocked, &rdev->flags) &&
7824 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7825 			   msecs_to_jiffies(5000));
7826 	rdev_dec_pending(rdev, mddev);
7827 }
7828 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7829 
7830 void md_finish_reshape(struct mddev *mddev)
7831 {
7832 	/* called be personality module when reshape completes. */
7833 	struct md_rdev *rdev;
7834 
7835 	rdev_for_each(rdev, mddev) {
7836 		if (rdev->data_offset > rdev->new_data_offset)
7837 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7838 		else
7839 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7840 		rdev->data_offset = rdev->new_data_offset;
7841 	}
7842 }
7843 EXPORT_SYMBOL(md_finish_reshape);
7844 
7845 /* Bad block management.
7846  * We can record which blocks on each device are 'bad' and so just
7847  * fail those blocks, or that stripe, rather than the whole device.
7848  * Entries in the bad-block table are 64bits wide.  This comprises:
7849  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7850  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7851  *  A 'shift' can be set so that larger blocks are tracked and
7852  *  consequently larger devices can be covered.
7853  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7854  *
7855  * Locking of the bad-block table uses a seqlock so md_is_badblock
7856  * might need to retry if it is very unlucky.
7857  * We will sometimes want to check for bad blocks in a bi_end_io function,
7858  * so we use the write_seqlock_irq variant.
7859  *
7860  * When looking for a bad block we specify a range and want to
7861  * know if any block in the range is bad.  So we binary-search
7862  * to the last range that starts at-or-before the given endpoint,
7863  * (or "before the sector after the target range")
7864  * then see if it ends after the given start.
7865  * We return
7866  *  0 if there are no known bad blocks in the range
7867  *  1 if there are known bad block which are all acknowledged
7868  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7869  * plus the start/length of the first bad section we overlap.
7870  */
7871 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7872 		   sector_t *first_bad, int *bad_sectors)
7873 {
7874 	int hi;
7875 	int lo;
7876 	u64 *p = bb->page;
7877 	int rv;
7878 	sector_t target = s + sectors;
7879 	unsigned seq;
7880 
7881 	if (bb->shift > 0) {
7882 		/* round the start down, and the end up */
7883 		s >>= bb->shift;
7884 		target += (1<<bb->shift) - 1;
7885 		target >>= bb->shift;
7886 		sectors = target - s;
7887 	}
7888 	/* 'target' is now the first block after the bad range */
7889 
7890 retry:
7891 	seq = read_seqbegin(&bb->lock);
7892 	lo = 0;
7893 	rv = 0;
7894 	hi = bb->count;
7895 
7896 	/* Binary search between lo and hi for 'target'
7897 	 * i.e. for the last range that starts before 'target'
7898 	 */
7899 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7900 	 * are known not to be the last range before target.
7901 	 * VARIANT: hi-lo is the number of possible
7902 	 * ranges, and decreases until it reaches 1
7903 	 */
7904 	while (hi - lo > 1) {
7905 		int mid = (lo + hi) / 2;
7906 		sector_t a = BB_OFFSET(p[mid]);
7907 		if (a < target)
7908 			/* This could still be the one, earlier ranges
7909 			 * could not. */
7910 			lo = mid;
7911 		else
7912 			/* This and later ranges are definitely out. */
7913 			hi = mid;
7914 	}
7915 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7916 	if (hi > lo) {
7917 		/* need to check all range that end after 's' to see if
7918 		 * any are unacknowledged.
7919 		 */
7920 		while (lo >= 0 &&
7921 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7922 			if (BB_OFFSET(p[lo]) < target) {
7923 				/* starts before the end, and finishes after
7924 				 * the start, so they must overlap
7925 				 */
7926 				if (rv != -1 && BB_ACK(p[lo]))
7927 					rv = 1;
7928 				else
7929 					rv = -1;
7930 				*first_bad = BB_OFFSET(p[lo]);
7931 				*bad_sectors = BB_LEN(p[lo]);
7932 			}
7933 			lo--;
7934 		}
7935 	}
7936 
7937 	if (read_seqretry(&bb->lock, seq))
7938 		goto retry;
7939 
7940 	return rv;
7941 }
7942 EXPORT_SYMBOL_GPL(md_is_badblock);
7943 
7944 /*
7945  * Add a range of bad blocks to the table.
7946  * This might extend the table, or might contract it
7947  * if two adjacent ranges can be merged.
7948  * We binary-search to find the 'insertion' point, then
7949  * decide how best to handle it.
7950  */
7951 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7952 			    int acknowledged)
7953 {
7954 	u64 *p;
7955 	int lo, hi;
7956 	int rv = 1;
7957 	unsigned long flags;
7958 
7959 	if (bb->shift < 0)
7960 		/* badblocks are disabled */
7961 		return 0;
7962 
7963 	if (bb->shift) {
7964 		/* round the start down, and the end up */
7965 		sector_t next = s + sectors;
7966 		s >>= bb->shift;
7967 		next += (1<<bb->shift) - 1;
7968 		next >>= bb->shift;
7969 		sectors = next - s;
7970 	}
7971 
7972 	write_seqlock_irqsave(&bb->lock, flags);
7973 
7974 	p = bb->page;
7975 	lo = 0;
7976 	hi = bb->count;
7977 	/* Find the last range that starts at-or-before 's' */
7978 	while (hi - lo > 1) {
7979 		int mid = (lo + hi) / 2;
7980 		sector_t a = BB_OFFSET(p[mid]);
7981 		if (a <= s)
7982 			lo = mid;
7983 		else
7984 			hi = mid;
7985 	}
7986 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7987 		hi = lo;
7988 
7989 	if (hi > lo) {
7990 		/* we found a range that might merge with the start
7991 		 * of our new range
7992 		 */
7993 		sector_t a = BB_OFFSET(p[lo]);
7994 		sector_t e = a + BB_LEN(p[lo]);
7995 		int ack = BB_ACK(p[lo]);
7996 		if (e >= s) {
7997 			/* Yes, we can merge with a previous range */
7998 			if (s == a && s + sectors >= e)
7999 				/* new range covers old */
8000 				ack = acknowledged;
8001 			else
8002 				ack = ack && acknowledged;
8003 
8004 			if (e < s + sectors)
8005 				e = s + sectors;
8006 			if (e - a <= BB_MAX_LEN) {
8007 				p[lo] = BB_MAKE(a, e-a, ack);
8008 				s = e;
8009 			} else {
8010 				/* does not all fit in one range,
8011 				 * make p[lo] maximal
8012 				 */
8013 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8014 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8015 				s = a + BB_MAX_LEN;
8016 			}
8017 			sectors = e - s;
8018 		}
8019 	}
8020 	if (sectors && hi < bb->count) {
8021 		/* 'hi' points to the first range that starts after 's'.
8022 		 * Maybe we can merge with the start of that range */
8023 		sector_t a = BB_OFFSET(p[hi]);
8024 		sector_t e = a + BB_LEN(p[hi]);
8025 		int ack = BB_ACK(p[hi]);
8026 		if (a <= s + sectors) {
8027 			/* merging is possible */
8028 			if (e <= s + sectors) {
8029 				/* full overlap */
8030 				e = s + sectors;
8031 				ack = acknowledged;
8032 			} else
8033 				ack = ack && acknowledged;
8034 
8035 			a = s;
8036 			if (e - a <= BB_MAX_LEN) {
8037 				p[hi] = BB_MAKE(a, e-a, ack);
8038 				s = e;
8039 			} else {
8040 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8041 				s = a + BB_MAX_LEN;
8042 			}
8043 			sectors = e - s;
8044 			lo = hi;
8045 			hi++;
8046 		}
8047 	}
8048 	if (sectors == 0 && hi < bb->count) {
8049 		/* we might be able to combine lo and hi */
8050 		/* Note: 's' is at the end of 'lo' */
8051 		sector_t a = BB_OFFSET(p[hi]);
8052 		int lolen = BB_LEN(p[lo]);
8053 		int hilen = BB_LEN(p[hi]);
8054 		int newlen = lolen + hilen - (s - a);
8055 		if (s >= a && newlen < BB_MAX_LEN) {
8056 			/* yes, we can combine them */
8057 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8058 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8059 			memmove(p + hi, p + hi + 1,
8060 				(bb->count - hi - 1) * 8);
8061 			bb->count--;
8062 		}
8063 	}
8064 	while (sectors) {
8065 		/* didn't merge (it all).
8066 		 * Need to add a range just before 'hi' */
8067 		if (bb->count >= MD_MAX_BADBLOCKS) {
8068 			/* No room for more */
8069 			rv = 0;
8070 			break;
8071 		} else {
8072 			int this_sectors = sectors;
8073 			memmove(p + hi + 1, p + hi,
8074 				(bb->count - hi) * 8);
8075 			bb->count++;
8076 
8077 			if (this_sectors > BB_MAX_LEN)
8078 				this_sectors = BB_MAX_LEN;
8079 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8080 			sectors -= this_sectors;
8081 			s += this_sectors;
8082 		}
8083 	}
8084 
8085 	bb->changed = 1;
8086 	if (!acknowledged)
8087 		bb->unacked_exist = 1;
8088 	write_sequnlock_irqrestore(&bb->lock, flags);
8089 
8090 	return rv;
8091 }
8092 
8093 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8094 		       int is_new)
8095 {
8096 	int rv;
8097 	if (is_new)
8098 		s += rdev->new_data_offset;
8099 	else
8100 		s += rdev->data_offset;
8101 	rv = md_set_badblocks(&rdev->badblocks,
8102 			      s, sectors, 0);
8103 	if (rv) {
8104 		/* Make sure they get written out promptly */
8105 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8106 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8107 		md_wakeup_thread(rdev->mddev->thread);
8108 	}
8109 	return rv;
8110 }
8111 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8112 
8113 /*
8114  * Remove a range of bad blocks from the table.
8115  * This may involve extending the table if we spilt a region,
8116  * but it must not fail.  So if the table becomes full, we just
8117  * drop the remove request.
8118  */
8119 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8120 {
8121 	u64 *p;
8122 	int lo, hi;
8123 	sector_t target = s + sectors;
8124 	int rv = 0;
8125 
8126 	if (bb->shift > 0) {
8127 		/* When clearing we round the start up and the end down.
8128 		 * This should not matter as the shift should align with
8129 		 * the block size and no rounding should ever be needed.
8130 		 * However it is better the think a block is bad when it
8131 		 * isn't than to think a block is not bad when it is.
8132 		 */
8133 		s += (1<<bb->shift) - 1;
8134 		s >>= bb->shift;
8135 		target >>= bb->shift;
8136 		sectors = target - s;
8137 	}
8138 
8139 	write_seqlock_irq(&bb->lock);
8140 
8141 	p = bb->page;
8142 	lo = 0;
8143 	hi = bb->count;
8144 	/* Find the last range that starts before 'target' */
8145 	while (hi - lo > 1) {
8146 		int mid = (lo + hi) / 2;
8147 		sector_t a = BB_OFFSET(p[mid]);
8148 		if (a < target)
8149 			lo = mid;
8150 		else
8151 			hi = mid;
8152 	}
8153 	if (hi > lo) {
8154 		/* p[lo] is the last range that could overlap the
8155 		 * current range.  Earlier ranges could also overlap,
8156 		 * but only this one can overlap the end of the range.
8157 		 */
8158 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8159 			/* Partial overlap, leave the tail of this range */
8160 			int ack = BB_ACK(p[lo]);
8161 			sector_t a = BB_OFFSET(p[lo]);
8162 			sector_t end = a + BB_LEN(p[lo]);
8163 
8164 			if (a < s) {
8165 				/* we need to split this range */
8166 				if (bb->count >= MD_MAX_BADBLOCKS) {
8167 					rv = -ENOSPC;
8168 					goto out;
8169 				}
8170 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8171 				bb->count++;
8172 				p[lo] = BB_MAKE(a, s-a, ack);
8173 				lo++;
8174 			}
8175 			p[lo] = BB_MAKE(target, end - target, ack);
8176 			/* there is no longer an overlap */
8177 			hi = lo;
8178 			lo--;
8179 		}
8180 		while (lo >= 0 &&
8181 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8182 			/* This range does overlap */
8183 			if (BB_OFFSET(p[lo]) < s) {
8184 				/* Keep the early parts of this range. */
8185 				int ack = BB_ACK(p[lo]);
8186 				sector_t start = BB_OFFSET(p[lo]);
8187 				p[lo] = BB_MAKE(start, s - start, ack);
8188 				/* now low doesn't overlap, so.. */
8189 				break;
8190 			}
8191 			lo--;
8192 		}
8193 		/* 'lo' is strictly before, 'hi' is strictly after,
8194 		 * anything between needs to be discarded
8195 		 */
8196 		if (hi - lo > 1) {
8197 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8198 			bb->count -= (hi - lo - 1);
8199 		}
8200 	}
8201 
8202 	bb->changed = 1;
8203 out:
8204 	write_sequnlock_irq(&bb->lock);
8205 	return rv;
8206 }
8207 
8208 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8209 			 int is_new)
8210 {
8211 	if (is_new)
8212 		s += rdev->new_data_offset;
8213 	else
8214 		s += rdev->data_offset;
8215 	return md_clear_badblocks(&rdev->badblocks,
8216 				  s, sectors);
8217 }
8218 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8219 
8220 /*
8221  * Acknowledge all bad blocks in a list.
8222  * This only succeeds if ->changed is clear.  It is used by
8223  * in-kernel metadata updates
8224  */
8225 void md_ack_all_badblocks(struct badblocks *bb)
8226 {
8227 	if (bb->page == NULL || bb->changed)
8228 		/* no point even trying */
8229 		return;
8230 	write_seqlock_irq(&bb->lock);
8231 
8232 	if (bb->changed == 0 && bb->unacked_exist) {
8233 		u64 *p = bb->page;
8234 		int i;
8235 		for (i = 0; i < bb->count ; i++) {
8236 			if (!BB_ACK(p[i])) {
8237 				sector_t start = BB_OFFSET(p[i]);
8238 				int len = BB_LEN(p[i]);
8239 				p[i] = BB_MAKE(start, len, 1);
8240 			}
8241 		}
8242 		bb->unacked_exist = 0;
8243 	}
8244 	write_sequnlock_irq(&bb->lock);
8245 }
8246 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8247 
8248 /* sysfs access to bad-blocks list.
8249  * We present two files.
8250  * 'bad-blocks' lists sector numbers and lengths of ranges that
8251  *    are recorded as bad.  The list is truncated to fit within
8252  *    the one-page limit of sysfs.
8253  *    Writing "sector length" to this file adds an acknowledged
8254  *    bad block list.
8255  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8256  *    been acknowledged.  Writing to this file adds bad blocks
8257  *    without acknowledging them.  This is largely for testing.
8258  */
8259 
8260 static ssize_t
8261 badblocks_show(struct badblocks *bb, char *page, int unack)
8262 {
8263 	size_t len;
8264 	int i;
8265 	u64 *p = bb->page;
8266 	unsigned seq;
8267 
8268 	if (bb->shift < 0)
8269 		return 0;
8270 
8271 retry:
8272 	seq = read_seqbegin(&bb->lock);
8273 
8274 	len = 0;
8275 	i = 0;
8276 
8277 	while (len < PAGE_SIZE && i < bb->count) {
8278 		sector_t s = BB_OFFSET(p[i]);
8279 		unsigned int length = BB_LEN(p[i]);
8280 		int ack = BB_ACK(p[i]);
8281 		i++;
8282 
8283 		if (unack && ack)
8284 			continue;
8285 
8286 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8287 				(unsigned long long)s << bb->shift,
8288 				length << bb->shift);
8289 	}
8290 	if (unack && len == 0)
8291 		bb->unacked_exist = 0;
8292 
8293 	if (read_seqretry(&bb->lock, seq))
8294 		goto retry;
8295 
8296 	return len;
8297 }
8298 
8299 #define DO_DEBUG 1
8300 
8301 static ssize_t
8302 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8303 {
8304 	unsigned long long sector;
8305 	int length;
8306 	char newline;
8307 #ifdef DO_DEBUG
8308 	/* Allow clearing via sysfs *only* for testing/debugging.
8309 	 * Normally only a successful write may clear a badblock
8310 	 */
8311 	int clear = 0;
8312 	if (page[0] == '-') {
8313 		clear = 1;
8314 		page++;
8315 	}
8316 #endif /* DO_DEBUG */
8317 
8318 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8319 	case 3:
8320 		if (newline != '\n')
8321 			return -EINVAL;
8322 	case 2:
8323 		if (length <= 0)
8324 			return -EINVAL;
8325 		break;
8326 	default:
8327 		return -EINVAL;
8328 	}
8329 
8330 #ifdef DO_DEBUG
8331 	if (clear) {
8332 		md_clear_badblocks(bb, sector, length);
8333 		return len;
8334 	}
8335 #endif /* DO_DEBUG */
8336 	if (md_set_badblocks(bb, sector, length, !unack))
8337 		return len;
8338 	else
8339 		return -ENOSPC;
8340 }
8341 
8342 static int md_notify_reboot(struct notifier_block *this,
8343 			    unsigned long code, void *x)
8344 {
8345 	struct list_head *tmp;
8346 	struct mddev *mddev;
8347 	int need_delay = 0;
8348 
8349 	for_each_mddev(mddev, tmp) {
8350 		if (mddev_trylock(mddev)) {
8351 			if (mddev->pers)
8352 				__md_stop_writes(mddev);
8353 			if (mddev->persistent)
8354 				mddev->safemode = 2;
8355 			mddev_unlock(mddev);
8356 		}
8357 		need_delay = 1;
8358 	}
8359 	/*
8360 	 * certain more exotic SCSI devices are known to be
8361 	 * volatile wrt too early system reboots. While the
8362 	 * right place to handle this issue is the given
8363 	 * driver, we do want to have a safe RAID driver ...
8364 	 */
8365 	if (need_delay)
8366 		mdelay(1000*1);
8367 
8368 	return NOTIFY_DONE;
8369 }
8370 
8371 static struct notifier_block md_notifier = {
8372 	.notifier_call	= md_notify_reboot,
8373 	.next		= NULL,
8374 	.priority	= INT_MAX, /* before any real devices */
8375 };
8376 
8377 static void md_geninit(void)
8378 {
8379 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8380 
8381 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8382 }
8383 
8384 static int __init md_init(void)
8385 {
8386 	int ret = -ENOMEM;
8387 
8388 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8389 	if (!md_wq)
8390 		goto err_wq;
8391 
8392 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8393 	if (!md_misc_wq)
8394 		goto err_misc_wq;
8395 
8396 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8397 		goto err_md;
8398 
8399 	if ((ret = register_blkdev(0, "mdp")) < 0)
8400 		goto err_mdp;
8401 	mdp_major = ret;
8402 
8403 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8404 			    md_probe, NULL, NULL);
8405 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8406 			    md_probe, NULL, NULL);
8407 
8408 	register_reboot_notifier(&md_notifier);
8409 	raid_table_header = register_sysctl_table(raid_root_table);
8410 
8411 	md_geninit();
8412 	return 0;
8413 
8414 err_mdp:
8415 	unregister_blkdev(MD_MAJOR, "md");
8416 err_md:
8417 	destroy_workqueue(md_misc_wq);
8418 err_misc_wq:
8419 	destroy_workqueue(md_wq);
8420 err_wq:
8421 	return ret;
8422 }
8423 
8424 #ifndef MODULE
8425 
8426 /*
8427  * Searches all registered partitions for autorun RAID arrays
8428  * at boot time.
8429  */
8430 
8431 static LIST_HEAD(all_detected_devices);
8432 struct detected_devices_node {
8433 	struct list_head list;
8434 	dev_t dev;
8435 };
8436 
8437 void md_autodetect_dev(dev_t dev)
8438 {
8439 	struct detected_devices_node *node_detected_dev;
8440 
8441 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8442 	if (node_detected_dev) {
8443 		node_detected_dev->dev = dev;
8444 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8445 	} else {
8446 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8447 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8448 	}
8449 }
8450 
8451 static void autostart_arrays(int part)
8452 {
8453 	struct md_rdev *rdev;
8454 	struct detected_devices_node *node_detected_dev;
8455 	dev_t dev;
8456 	int i_scanned, i_passed;
8457 
8458 	i_scanned = 0;
8459 	i_passed = 0;
8460 
8461 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8462 
8463 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8464 		i_scanned++;
8465 		node_detected_dev = list_entry(all_detected_devices.next,
8466 					struct detected_devices_node, list);
8467 		list_del(&node_detected_dev->list);
8468 		dev = node_detected_dev->dev;
8469 		kfree(node_detected_dev);
8470 		rdev = md_import_device(dev,0, 90);
8471 		if (IS_ERR(rdev))
8472 			continue;
8473 
8474 		if (test_bit(Faulty, &rdev->flags))
8475 			continue;
8476 
8477 		set_bit(AutoDetected, &rdev->flags);
8478 		list_add(&rdev->same_set, &pending_raid_disks);
8479 		i_passed++;
8480 	}
8481 
8482 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8483 						i_scanned, i_passed);
8484 
8485 	autorun_devices(part);
8486 }
8487 
8488 #endif /* !MODULE */
8489 
8490 static __exit void md_exit(void)
8491 {
8492 	struct mddev *mddev;
8493 	struct list_head *tmp;
8494 	int delay = 1;
8495 
8496 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8497 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8498 
8499 	unregister_blkdev(MD_MAJOR,"md");
8500 	unregister_blkdev(mdp_major, "mdp");
8501 	unregister_reboot_notifier(&md_notifier);
8502 	unregister_sysctl_table(raid_table_header);
8503 
8504 	/* We cannot unload the modules while some process is
8505 	 * waiting for us in select() or poll() - wake them up
8506 	 */
8507 	md_unloading = 1;
8508 	while (waitqueue_active(&md_event_waiters)) {
8509 		/* not safe to leave yet */
8510 		wake_up(&md_event_waiters);
8511 		msleep(delay);
8512 		delay += delay;
8513 	}
8514 	remove_proc_entry("mdstat", NULL);
8515 
8516 	for_each_mddev(mddev, tmp) {
8517 		export_array(mddev);
8518 		mddev->hold_active = 0;
8519 	}
8520 	destroy_workqueue(md_misc_wq);
8521 	destroy_workqueue(md_wq);
8522 }
8523 
8524 subsys_initcall(md_init);
8525 module_exit(md_exit)
8526 
8527 static int get_ro(char *buffer, struct kernel_param *kp)
8528 {
8529 	return sprintf(buffer, "%d", start_readonly);
8530 }
8531 static int set_ro(const char *val, struct kernel_param *kp)
8532 {
8533 	char *e;
8534 	int num = simple_strtoul(val, &e, 10);
8535 	if (*val && (*e == '\0' || *e == '\n')) {
8536 		start_readonly = num;
8537 		return 0;
8538 	}
8539 	return -EINVAL;
8540 }
8541 
8542 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8543 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8544 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8545 
8546 MODULE_LICENSE("GPL");
8547 MODULE_DESCRIPTION("MD RAID framework");
8548 MODULE_ALIAS("md");
8549 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8550