1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/kthread.h> 38 #include <linux/linkage.h> 39 #include <linux/raid/md.h> 40 #include <linux/raid/bitmap.h> 41 #include <linux/sysctl.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/poll.h> 44 #include <linux/mutex.h> 45 #include <linux/ctype.h> 46 #include <linux/freezer.h> 47 48 #include <linux/init.h> 49 50 #include <linux/file.h> 51 52 #ifdef CONFIG_KMOD 53 #include <linux/kmod.h> 54 #endif 55 56 #include <asm/unaligned.h> 57 58 #define MAJOR_NR MD_MAJOR 59 #define MD_DRIVER 60 61 /* 63 partitions with the alternate major number (mdp) */ 62 #define MdpMinorShift 6 63 64 #define DEBUG 0 65 #define dprintk(x...) ((void)(DEBUG && printk(x))) 66 67 68 #ifndef MODULE 69 static void autostart_arrays (int part); 70 #endif 71 72 static LIST_HEAD(pers_list); 73 static DEFINE_SPINLOCK(pers_lock); 74 75 static void md_print_devices(void); 76 77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 78 79 /* 80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 81 * is 1000 KB/sec, so the extra system load does not show up that much. 82 * Increase it if you want to have more _guaranteed_ speed. Note that 83 * the RAID driver will use the maximum available bandwidth if the IO 84 * subsystem is idle. There is also an 'absolute maximum' reconstruction 85 * speed limit - in case reconstruction slows down your system despite 86 * idle IO detection. 87 * 88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 89 * or /sys/block/mdX/md/sync_speed_{min,max} 90 */ 91 92 static int sysctl_speed_limit_min = 1000; 93 static int sysctl_speed_limit_max = 200000; 94 static inline int speed_min(mddev_t *mddev) 95 { 96 return mddev->sync_speed_min ? 97 mddev->sync_speed_min : sysctl_speed_limit_min; 98 } 99 100 static inline int speed_max(mddev_t *mddev) 101 { 102 return mddev->sync_speed_max ? 103 mddev->sync_speed_max : sysctl_speed_limit_max; 104 } 105 106 static struct ctl_table_header *raid_table_header; 107 108 static ctl_table raid_table[] = { 109 { 110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 111 .procname = "speed_limit_min", 112 .data = &sysctl_speed_limit_min, 113 .maxlen = sizeof(int), 114 .mode = S_IRUGO|S_IWUSR, 115 .proc_handler = &proc_dointvec, 116 }, 117 { 118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 119 .procname = "speed_limit_max", 120 .data = &sysctl_speed_limit_max, 121 .maxlen = sizeof(int), 122 .mode = S_IRUGO|S_IWUSR, 123 .proc_handler = &proc_dointvec, 124 }, 125 { .ctl_name = 0 } 126 }; 127 128 static ctl_table raid_dir_table[] = { 129 { 130 .ctl_name = DEV_RAID, 131 .procname = "raid", 132 .maxlen = 0, 133 .mode = S_IRUGO|S_IXUGO, 134 .child = raid_table, 135 }, 136 { .ctl_name = 0 } 137 }; 138 139 static ctl_table raid_root_table[] = { 140 { 141 .ctl_name = CTL_DEV, 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { .ctl_name = 0 } 148 }; 149 150 static struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* 155 * We have a system wide 'event count' that is incremented 156 * on any 'interesting' event, and readers of /proc/mdstat 157 * can use 'poll' or 'select' to find out when the event 158 * count increases. 159 * 160 * Events are: 161 * start array, stop array, error, add device, remove device, 162 * start build, activate spare 163 */ 164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 165 static atomic_t md_event_count; 166 void md_new_event(mddev_t *mddev) 167 { 168 atomic_inc(&md_event_count); 169 wake_up(&md_event_waiters); 170 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 171 } 172 EXPORT_SYMBOL_GPL(md_new_event); 173 174 /* Alternate version that can be called from interrupts 175 * when calling sysfs_notify isn't needed. 176 */ 177 static void md_new_event_inintr(mddev_t *mddev) 178 { 179 atomic_inc(&md_event_count); 180 wake_up(&md_event_waiters); 181 } 182 183 /* 184 * Enables to iterate over all existing md arrays 185 * all_mddevs_lock protects this list. 186 */ 187 static LIST_HEAD(all_mddevs); 188 static DEFINE_SPINLOCK(all_mddevs_lock); 189 190 191 /* 192 * iterates through all used mddevs in the system. 193 * We take care to grab the all_mddevs_lock whenever navigating 194 * the list, and to always hold a refcount when unlocked. 195 * Any code which breaks out of this loop while own 196 * a reference to the current mddev and must mddev_put it. 197 */ 198 #define ITERATE_MDDEV(mddev,tmp) \ 199 \ 200 for (({ spin_lock(&all_mddevs_lock); \ 201 tmp = all_mddevs.next; \ 202 mddev = NULL;}); \ 203 ({ if (tmp != &all_mddevs) \ 204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 205 spin_unlock(&all_mddevs_lock); \ 206 if (mddev) mddev_put(mddev); \ 207 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 208 tmp != &all_mddevs;}); \ 209 ({ spin_lock(&all_mddevs_lock); \ 210 tmp = tmp->next;}) \ 211 ) 212 213 214 static int md_fail_request (struct request_queue *q, struct bio *bio) 215 { 216 bio_io_error(bio); 217 return 0; 218 } 219 220 static inline mddev_t *mddev_get(mddev_t *mddev) 221 { 222 atomic_inc(&mddev->active); 223 return mddev; 224 } 225 226 static void mddev_put(mddev_t *mddev) 227 { 228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 229 return; 230 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 231 list_del(&mddev->all_mddevs); 232 spin_unlock(&all_mddevs_lock); 233 blk_cleanup_queue(mddev->queue); 234 kobject_put(&mddev->kobj); 235 } else 236 spin_unlock(&all_mddevs_lock); 237 } 238 239 static mddev_t * mddev_find(dev_t unit) 240 { 241 mddev_t *mddev, *new = NULL; 242 243 retry: 244 spin_lock(&all_mddevs_lock); 245 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 246 if (mddev->unit == unit) { 247 mddev_get(mddev); 248 spin_unlock(&all_mddevs_lock); 249 kfree(new); 250 return mddev; 251 } 252 253 if (new) { 254 list_add(&new->all_mddevs, &all_mddevs); 255 spin_unlock(&all_mddevs_lock); 256 return new; 257 } 258 spin_unlock(&all_mddevs_lock); 259 260 new = kzalloc(sizeof(*new), GFP_KERNEL); 261 if (!new) 262 return NULL; 263 264 new->unit = unit; 265 if (MAJOR(unit) == MD_MAJOR) 266 new->md_minor = MINOR(unit); 267 else 268 new->md_minor = MINOR(unit) >> MdpMinorShift; 269 270 mutex_init(&new->reconfig_mutex); 271 INIT_LIST_HEAD(&new->disks); 272 INIT_LIST_HEAD(&new->all_mddevs); 273 init_timer(&new->safemode_timer); 274 atomic_set(&new->active, 1); 275 spin_lock_init(&new->write_lock); 276 init_waitqueue_head(&new->sb_wait); 277 new->reshape_position = MaxSector; 278 279 new->queue = blk_alloc_queue(GFP_KERNEL); 280 if (!new->queue) { 281 kfree(new); 282 return NULL; 283 } 284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags); 285 286 blk_queue_make_request(new->queue, md_fail_request); 287 288 goto retry; 289 } 290 291 static inline int mddev_lock(mddev_t * mddev) 292 { 293 return mutex_lock_interruptible(&mddev->reconfig_mutex); 294 } 295 296 static inline int mddev_trylock(mddev_t * mddev) 297 { 298 return mutex_trylock(&mddev->reconfig_mutex); 299 } 300 301 static inline void mddev_unlock(mddev_t * mddev) 302 { 303 mutex_unlock(&mddev->reconfig_mutex); 304 305 md_wakeup_thread(mddev->thread); 306 } 307 308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 309 { 310 mdk_rdev_t * rdev; 311 struct list_head *tmp; 312 313 ITERATE_RDEV(mddev,rdev,tmp) { 314 if (rdev->desc_nr == nr) 315 return rdev; 316 } 317 return NULL; 318 } 319 320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 321 { 322 struct list_head *tmp; 323 mdk_rdev_t *rdev; 324 325 ITERATE_RDEV(mddev,rdev,tmp) { 326 if (rdev->bdev->bd_dev == dev) 327 return rdev; 328 } 329 return NULL; 330 } 331 332 static struct mdk_personality *find_pers(int level, char *clevel) 333 { 334 struct mdk_personality *pers; 335 list_for_each_entry(pers, &pers_list, list) { 336 if (level != LEVEL_NONE && pers->level == level) 337 return pers; 338 if (strcmp(pers->name, clevel)==0) 339 return pers; 340 } 341 return NULL; 342 } 343 344 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 345 { 346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 347 return MD_NEW_SIZE_BLOCKS(size); 348 } 349 350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size) 351 { 352 sector_t size; 353 354 size = rdev->sb_offset; 355 356 if (chunk_size) 357 size &= ~((sector_t)chunk_size/1024 - 1); 358 return size; 359 } 360 361 static int alloc_disk_sb(mdk_rdev_t * rdev) 362 { 363 if (rdev->sb_page) 364 MD_BUG(); 365 366 rdev->sb_page = alloc_page(GFP_KERNEL); 367 if (!rdev->sb_page) { 368 printk(KERN_ALERT "md: out of memory.\n"); 369 return -EINVAL; 370 } 371 372 return 0; 373 } 374 375 static void free_disk_sb(mdk_rdev_t * rdev) 376 { 377 if (rdev->sb_page) { 378 put_page(rdev->sb_page); 379 rdev->sb_loaded = 0; 380 rdev->sb_page = NULL; 381 rdev->sb_offset = 0; 382 rdev->size = 0; 383 } 384 } 385 386 387 static void super_written(struct bio *bio, int error) 388 { 389 mdk_rdev_t *rdev = bio->bi_private; 390 mddev_t *mddev = rdev->mddev; 391 392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 393 printk("md: super_written gets error=%d, uptodate=%d\n", 394 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 396 md_error(mddev, rdev); 397 } 398 399 if (atomic_dec_and_test(&mddev->pending_writes)) 400 wake_up(&mddev->sb_wait); 401 bio_put(bio); 402 } 403 404 static void super_written_barrier(struct bio *bio, int error) 405 { 406 struct bio *bio2 = bio->bi_private; 407 mdk_rdev_t *rdev = bio2->bi_private; 408 mddev_t *mddev = rdev->mddev; 409 410 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 411 error == -EOPNOTSUPP) { 412 unsigned long flags; 413 /* barriers don't appear to be supported :-( */ 414 set_bit(BarriersNotsupp, &rdev->flags); 415 mddev->barriers_work = 0; 416 spin_lock_irqsave(&mddev->write_lock, flags); 417 bio2->bi_next = mddev->biolist; 418 mddev->biolist = bio2; 419 spin_unlock_irqrestore(&mddev->write_lock, flags); 420 wake_up(&mddev->sb_wait); 421 bio_put(bio); 422 } else { 423 bio_put(bio2); 424 bio->bi_private = rdev; 425 super_written(bio, error); 426 } 427 } 428 429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 430 sector_t sector, int size, struct page *page) 431 { 432 /* write first size bytes of page to sector of rdev 433 * Increment mddev->pending_writes before returning 434 * and decrement it on completion, waking up sb_wait 435 * if zero is reached. 436 * If an error occurred, call md_error 437 * 438 * As we might need to resubmit the request if BIO_RW_BARRIER 439 * causes ENOTSUPP, we allocate a spare bio... 440 */ 441 struct bio *bio = bio_alloc(GFP_NOIO, 1); 442 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 443 444 bio->bi_bdev = rdev->bdev; 445 bio->bi_sector = sector; 446 bio_add_page(bio, page, size, 0); 447 bio->bi_private = rdev; 448 bio->bi_end_io = super_written; 449 bio->bi_rw = rw; 450 451 atomic_inc(&mddev->pending_writes); 452 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 453 struct bio *rbio; 454 rw |= (1<<BIO_RW_BARRIER); 455 rbio = bio_clone(bio, GFP_NOIO); 456 rbio->bi_private = bio; 457 rbio->bi_end_io = super_written_barrier; 458 submit_bio(rw, rbio); 459 } else 460 submit_bio(rw, bio); 461 } 462 463 void md_super_wait(mddev_t *mddev) 464 { 465 /* wait for all superblock writes that were scheduled to complete. 466 * if any had to be retried (due to BARRIER problems), retry them 467 */ 468 DEFINE_WAIT(wq); 469 for(;;) { 470 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 471 if (atomic_read(&mddev->pending_writes)==0) 472 break; 473 while (mddev->biolist) { 474 struct bio *bio; 475 spin_lock_irq(&mddev->write_lock); 476 bio = mddev->biolist; 477 mddev->biolist = bio->bi_next ; 478 bio->bi_next = NULL; 479 spin_unlock_irq(&mddev->write_lock); 480 submit_bio(bio->bi_rw, bio); 481 } 482 schedule(); 483 } 484 finish_wait(&mddev->sb_wait, &wq); 485 } 486 487 static void bi_complete(struct bio *bio, int error) 488 { 489 complete((struct completion*)bio->bi_private); 490 } 491 492 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 493 struct page *page, int rw) 494 { 495 struct bio *bio = bio_alloc(GFP_NOIO, 1); 496 struct completion event; 497 int ret; 498 499 rw |= (1 << BIO_RW_SYNC); 500 501 bio->bi_bdev = bdev; 502 bio->bi_sector = sector; 503 bio_add_page(bio, page, size, 0); 504 init_completion(&event); 505 bio->bi_private = &event; 506 bio->bi_end_io = bi_complete; 507 submit_bio(rw, bio); 508 wait_for_completion(&event); 509 510 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 511 bio_put(bio); 512 return ret; 513 } 514 EXPORT_SYMBOL_GPL(sync_page_io); 515 516 static int read_disk_sb(mdk_rdev_t * rdev, int size) 517 { 518 char b[BDEVNAME_SIZE]; 519 if (!rdev->sb_page) { 520 MD_BUG(); 521 return -EINVAL; 522 } 523 if (rdev->sb_loaded) 524 return 0; 525 526 527 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ)) 528 goto fail; 529 rdev->sb_loaded = 1; 530 return 0; 531 532 fail: 533 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 534 bdevname(rdev->bdev,b)); 535 return -EINVAL; 536 } 537 538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 539 { 540 if ( (sb1->set_uuid0 == sb2->set_uuid0) && 541 (sb1->set_uuid1 == sb2->set_uuid1) && 542 (sb1->set_uuid2 == sb2->set_uuid2) && 543 (sb1->set_uuid3 == sb2->set_uuid3)) 544 545 return 1; 546 547 return 0; 548 } 549 550 551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 552 { 553 int ret; 554 mdp_super_t *tmp1, *tmp2; 555 556 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 557 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 558 559 if (!tmp1 || !tmp2) { 560 ret = 0; 561 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n"); 562 goto abort; 563 } 564 565 *tmp1 = *sb1; 566 *tmp2 = *sb2; 567 568 /* 569 * nr_disks is not constant 570 */ 571 tmp1->nr_disks = 0; 572 tmp2->nr_disks = 0; 573 574 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4)) 575 ret = 0; 576 else 577 ret = 1; 578 579 abort: 580 kfree(tmp1); 581 kfree(tmp2); 582 return ret; 583 } 584 585 586 static u32 md_csum_fold(u32 csum) 587 { 588 csum = (csum & 0xffff) + (csum >> 16); 589 return (csum & 0xffff) + (csum >> 16); 590 } 591 592 static unsigned int calc_sb_csum(mdp_super_t * sb) 593 { 594 u64 newcsum = 0; 595 u32 *sb32 = (u32*)sb; 596 int i; 597 unsigned int disk_csum, csum; 598 599 disk_csum = sb->sb_csum; 600 sb->sb_csum = 0; 601 602 for (i = 0; i < MD_SB_BYTES/4 ; i++) 603 newcsum += sb32[i]; 604 csum = (newcsum & 0xffffffff) + (newcsum>>32); 605 606 607 #ifdef CONFIG_ALPHA 608 /* This used to use csum_partial, which was wrong for several 609 * reasons including that different results are returned on 610 * different architectures. It isn't critical that we get exactly 611 * the same return value as before (we always csum_fold before 612 * testing, and that removes any differences). However as we 613 * know that csum_partial always returned a 16bit value on 614 * alphas, do a fold to maximise conformity to previous behaviour. 615 */ 616 sb->sb_csum = md_csum_fold(disk_csum); 617 #else 618 sb->sb_csum = disk_csum; 619 #endif 620 return csum; 621 } 622 623 624 /* 625 * Handle superblock details. 626 * We want to be able to handle multiple superblock formats 627 * so we have a common interface to them all, and an array of 628 * different handlers. 629 * We rely on user-space to write the initial superblock, and support 630 * reading and updating of superblocks. 631 * Interface methods are: 632 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 633 * loads and validates a superblock on dev. 634 * if refdev != NULL, compare superblocks on both devices 635 * Return: 636 * 0 - dev has a superblock that is compatible with refdev 637 * 1 - dev has a superblock that is compatible and newer than refdev 638 * so dev should be used as the refdev in future 639 * -EINVAL superblock incompatible or invalid 640 * -othererror e.g. -EIO 641 * 642 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 643 * Verify that dev is acceptable into mddev. 644 * The first time, mddev->raid_disks will be 0, and data from 645 * dev should be merged in. Subsequent calls check that dev 646 * is new enough. Return 0 or -EINVAL 647 * 648 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 649 * Update the superblock for rdev with data in mddev 650 * This does not write to disc. 651 * 652 */ 653 654 struct super_type { 655 char *name; 656 struct module *owner; 657 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version); 658 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 659 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 660 }; 661 662 /* 663 * load_super for 0.90.0 664 */ 665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 666 { 667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 668 mdp_super_t *sb; 669 int ret; 670 sector_t sb_offset; 671 672 /* 673 * Calculate the position of the superblock, 674 * it's at the end of the disk. 675 * 676 * It also happens to be a multiple of 4Kb. 677 */ 678 sb_offset = calc_dev_sboffset(rdev->bdev); 679 rdev->sb_offset = sb_offset; 680 681 ret = read_disk_sb(rdev, MD_SB_BYTES); 682 if (ret) return ret; 683 684 ret = -EINVAL; 685 686 bdevname(rdev->bdev, b); 687 sb = (mdp_super_t*)page_address(rdev->sb_page); 688 689 if (sb->md_magic != MD_SB_MAGIC) { 690 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 691 b); 692 goto abort; 693 } 694 695 if (sb->major_version != 0 || 696 sb->minor_version < 90 || 697 sb->minor_version > 91) { 698 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 699 sb->major_version, sb->minor_version, 700 b); 701 goto abort; 702 } 703 704 if (sb->raid_disks <= 0) 705 goto abort; 706 707 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 708 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 709 b); 710 goto abort; 711 } 712 713 rdev->preferred_minor = sb->md_minor; 714 rdev->data_offset = 0; 715 rdev->sb_size = MD_SB_BYTES; 716 717 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 718 if (sb->level != 1 && sb->level != 4 719 && sb->level != 5 && sb->level != 6 720 && sb->level != 10) { 721 /* FIXME use a better test */ 722 printk(KERN_WARNING 723 "md: bitmaps not supported for this level.\n"); 724 goto abort; 725 } 726 } 727 728 if (sb->level == LEVEL_MULTIPATH) 729 rdev->desc_nr = -1; 730 else 731 rdev->desc_nr = sb->this_disk.number; 732 733 if (refdev == 0) 734 ret = 1; 735 else { 736 __u64 ev1, ev2; 737 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 738 if (!uuid_equal(refsb, sb)) { 739 printk(KERN_WARNING "md: %s has different UUID to %s\n", 740 b, bdevname(refdev->bdev,b2)); 741 goto abort; 742 } 743 if (!sb_equal(refsb, sb)) { 744 printk(KERN_WARNING "md: %s has same UUID" 745 " but different superblock to %s\n", 746 b, bdevname(refdev->bdev, b2)); 747 goto abort; 748 } 749 ev1 = md_event(sb); 750 ev2 = md_event(refsb); 751 if (ev1 > ev2) 752 ret = 1; 753 else 754 ret = 0; 755 } 756 rdev->size = calc_dev_size(rdev, sb->chunk_size); 757 758 if (rdev->size < sb->size && sb->level > 1) 759 /* "this cannot possibly happen" ... */ 760 ret = -EINVAL; 761 762 abort: 763 return ret; 764 } 765 766 /* 767 * validate_super for 0.90.0 768 */ 769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 770 { 771 mdp_disk_t *desc; 772 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 773 __u64 ev1 = md_event(sb); 774 775 rdev->raid_disk = -1; 776 rdev->flags = 0; 777 if (mddev->raid_disks == 0) { 778 mddev->major_version = 0; 779 mddev->minor_version = sb->minor_version; 780 mddev->patch_version = sb->patch_version; 781 mddev->persistent = ! sb->not_persistent; 782 mddev->chunk_size = sb->chunk_size; 783 mddev->ctime = sb->ctime; 784 mddev->utime = sb->utime; 785 mddev->level = sb->level; 786 mddev->clevel[0] = 0; 787 mddev->layout = sb->layout; 788 mddev->raid_disks = sb->raid_disks; 789 mddev->size = sb->size; 790 mddev->events = ev1; 791 mddev->bitmap_offset = 0; 792 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 793 794 if (mddev->minor_version >= 91) { 795 mddev->reshape_position = sb->reshape_position; 796 mddev->delta_disks = sb->delta_disks; 797 mddev->new_level = sb->new_level; 798 mddev->new_layout = sb->new_layout; 799 mddev->new_chunk = sb->new_chunk; 800 } else { 801 mddev->reshape_position = MaxSector; 802 mddev->delta_disks = 0; 803 mddev->new_level = mddev->level; 804 mddev->new_layout = mddev->layout; 805 mddev->new_chunk = mddev->chunk_size; 806 } 807 808 if (sb->state & (1<<MD_SB_CLEAN)) 809 mddev->recovery_cp = MaxSector; 810 else { 811 if (sb->events_hi == sb->cp_events_hi && 812 sb->events_lo == sb->cp_events_lo) { 813 mddev->recovery_cp = sb->recovery_cp; 814 } else 815 mddev->recovery_cp = 0; 816 } 817 818 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 819 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 820 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 821 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 822 823 mddev->max_disks = MD_SB_DISKS; 824 825 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 826 mddev->bitmap_file == NULL) 827 mddev->bitmap_offset = mddev->default_bitmap_offset; 828 829 } else if (mddev->pers == NULL) { 830 /* Insist on good event counter while assembling */ 831 ++ev1; 832 if (ev1 < mddev->events) 833 return -EINVAL; 834 } else if (mddev->bitmap) { 835 /* if adding to array with a bitmap, then we can accept an 836 * older device ... but not too old. 837 */ 838 if (ev1 < mddev->bitmap->events_cleared) 839 return 0; 840 } else { 841 if (ev1 < mddev->events) 842 /* just a hot-add of a new device, leave raid_disk at -1 */ 843 return 0; 844 } 845 846 if (mddev->level != LEVEL_MULTIPATH) { 847 desc = sb->disks + rdev->desc_nr; 848 849 if (desc->state & (1<<MD_DISK_FAULTY)) 850 set_bit(Faulty, &rdev->flags); 851 else if (desc->state & (1<<MD_DISK_SYNC) /* && 852 desc->raid_disk < mddev->raid_disks */) { 853 set_bit(In_sync, &rdev->flags); 854 rdev->raid_disk = desc->raid_disk; 855 } 856 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 857 set_bit(WriteMostly, &rdev->flags); 858 } else /* MULTIPATH are always insync */ 859 set_bit(In_sync, &rdev->flags); 860 return 0; 861 } 862 863 /* 864 * sync_super for 0.90.0 865 */ 866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 867 { 868 mdp_super_t *sb; 869 struct list_head *tmp; 870 mdk_rdev_t *rdev2; 871 int next_spare = mddev->raid_disks; 872 873 874 /* make rdev->sb match mddev data.. 875 * 876 * 1/ zero out disks 877 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 878 * 3/ any empty disks < next_spare become removed 879 * 880 * disks[0] gets initialised to REMOVED because 881 * we cannot be sure from other fields if it has 882 * been initialised or not. 883 */ 884 int i; 885 int active=0, working=0,failed=0,spare=0,nr_disks=0; 886 887 rdev->sb_size = MD_SB_BYTES; 888 889 sb = (mdp_super_t*)page_address(rdev->sb_page); 890 891 memset(sb, 0, sizeof(*sb)); 892 893 sb->md_magic = MD_SB_MAGIC; 894 sb->major_version = mddev->major_version; 895 sb->patch_version = mddev->patch_version; 896 sb->gvalid_words = 0; /* ignored */ 897 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 898 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 899 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 900 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 901 902 sb->ctime = mddev->ctime; 903 sb->level = mddev->level; 904 sb->size = mddev->size; 905 sb->raid_disks = mddev->raid_disks; 906 sb->md_minor = mddev->md_minor; 907 sb->not_persistent = !mddev->persistent; 908 sb->utime = mddev->utime; 909 sb->state = 0; 910 sb->events_hi = (mddev->events>>32); 911 sb->events_lo = (u32)mddev->events; 912 913 if (mddev->reshape_position == MaxSector) 914 sb->minor_version = 90; 915 else { 916 sb->minor_version = 91; 917 sb->reshape_position = mddev->reshape_position; 918 sb->new_level = mddev->new_level; 919 sb->delta_disks = mddev->delta_disks; 920 sb->new_layout = mddev->new_layout; 921 sb->new_chunk = mddev->new_chunk; 922 } 923 mddev->minor_version = sb->minor_version; 924 if (mddev->in_sync) 925 { 926 sb->recovery_cp = mddev->recovery_cp; 927 sb->cp_events_hi = (mddev->events>>32); 928 sb->cp_events_lo = (u32)mddev->events; 929 if (mddev->recovery_cp == MaxSector) 930 sb->state = (1<< MD_SB_CLEAN); 931 } else 932 sb->recovery_cp = 0; 933 934 sb->layout = mddev->layout; 935 sb->chunk_size = mddev->chunk_size; 936 937 if (mddev->bitmap && mddev->bitmap_file == NULL) 938 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 939 940 sb->disks[0].state = (1<<MD_DISK_REMOVED); 941 ITERATE_RDEV(mddev,rdev2,tmp) { 942 mdp_disk_t *d; 943 int desc_nr; 944 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 945 && !test_bit(Faulty, &rdev2->flags)) 946 desc_nr = rdev2->raid_disk; 947 else 948 desc_nr = next_spare++; 949 rdev2->desc_nr = desc_nr; 950 d = &sb->disks[rdev2->desc_nr]; 951 nr_disks++; 952 d->number = rdev2->desc_nr; 953 d->major = MAJOR(rdev2->bdev->bd_dev); 954 d->minor = MINOR(rdev2->bdev->bd_dev); 955 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 956 && !test_bit(Faulty, &rdev2->flags)) 957 d->raid_disk = rdev2->raid_disk; 958 else 959 d->raid_disk = rdev2->desc_nr; /* compatibility */ 960 if (test_bit(Faulty, &rdev2->flags)) 961 d->state = (1<<MD_DISK_FAULTY); 962 else if (test_bit(In_sync, &rdev2->flags)) { 963 d->state = (1<<MD_DISK_ACTIVE); 964 d->state |= (1<<MD_DISK_SYNC); 965 active++; 966 working++; 967 } else { 968 d->state = 0; 969 spare++; 970 working++; 971 } 972 if (test_bit(WriteMostly, &rdev2->flags)) 973 d->state |= (1<<MD_DISK_WRITEMOSTLY); 974 } 975 /* now set the "removed" and "faulty" bits on any missing devices */ 976 for (i=0 ; i < mddev->raid_disks ; i++) { 977 mdp_disk_t *d = &sb->disks[i]; 978 if (d->state == 0 && d->number == 0) { 979 d->number = i; 980 d->raid_disk = i; 981 d->state = (1<<MD_DISK_REMOVED); 982 d->state |= (1<<MD_DISK_FAULTY); 983 failed++; 984 } 985 } 986 sb->nr_disks = nr_disks; 987 sb->active_disks = active; 988 sb->working_disks = working; 989 sb->failed_disks = failed; 990 sb->spare_disks = spare; 991 992 sb->this_disk = sb->disks[rdev->desc_nr]; 993 sb->sb_csum = calc_sb_csum(sb); 994 } 995 996 /* 997 * version 1 superblock 998 */ 999 1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1001 { 1002 __le32 disk_csum; 1003 u32 csum; 1004 unsigned long long newcsum; 1005 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1006 __le32 *isuper = (__le32*)sb; 1007 int i; 1008 1009 disk_csum = sb->sb_csum; 1010 sb->sb_csum = 0; 1011 newcsum = 0; 1012 for (i=0; size>=4; size -= 4 ) 1013 newcsum += le32_to_cpu(*isuper++); 1014 1015 if (size == 2) 1016 newcsum += le16_to_cpu(*(__le16*) isuper); 1017 1018 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1019 sb->sb_csum = disk_csum; 1020 return cpu_to_le32(csum); 1021 } 1022 1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1024 { 1025 struct mdp_superblock_1 *sb; 1026 int ret; 1027 sector_t sb_offset; 1028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1029 int bmask; 1030 1031 /* 1032 * Calculate the position of the superblock. 1033 * It is always aligned to a 4K boundary and 1034 * depeding on minor_version, it can be: 1035 * 0: At least 8K, but less than 12K, from end of device 1036 * 1: At start of device 1037 * 2: 4K from start of device. 1038 */ 1039 switch(minor_version) { 1040 case 0: 1041 sb_offset = rdev->bdev->bd_inode->i_size >> 9; 1042 sb_offset -= 8*2; 1043 sb_offset &= ~(sector_t)(4*2-1); 1044 /* convert from sectors to K */ 1045 sb_offset /= 2; 1046 break; 1047 case 1: 1048 sb_offset = 0; 1049 break; 1050 case 2: 1051 sb_offset = 4; 1052 break; 1053 default: 1054 return -EINVAL; 1055 } 1056 rdev->sb_offset = sb_offset; 1057 1058 /* superblock is rarely larger than 1K, but it can be larger, 1059 * and it is safe to read 4k, so we do that 1060 */ 1061 ret = read_disk_sb(rdev, 4096); 1062 if (ret) return ret; 1063 1064 1065 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1066 1067 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1068 sb->major_version != cpu_to_le32(1) || 1069 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1070 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) || 1071 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1072 return -EINVAL; 1073 1074 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1075 printk("md: invalid superblock checksum on %s\n", 1076 bdevname(rdev->bdev,b)); 1077 return -EINVAL; 1078 } 1079 if (le64_to_cpu(sb->data_size) < 10) { 1080 printk("md: data_size too small on %s\n", 1081 bdevname(rdev->bdev,b)); 1082 return -EINVAL; 1083 } 1084 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1085 if (sb->level != cpu_to_le32(1) && 1086 sb->level != cpu_to_le32(4) && 1087 sb->level != cpu_to_le32(5) && 1088 sb->level != cpu_to_le32(6) && 1089 sb->level != cpu_to_le32(10)) { 1090 printk(KERN_WARNING 1091 "md: bitmaps not supported for this level.\n"); 1092 return -EINVAL; 1093 } 1094 } 1095 1096 rdev->preferred_minor = 0xffff; 1097 rdev->data_offset = le64_to_cpu(sb->data_offset); 1098 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1099 1100 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1101 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1102 if (rdev->sb_size & bmask) 1103 rdev-> sb_size = (rdev->sb_size | bmask)+1; 1104 1105 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1106 rdev->desc_nr = -1; 1107 else 1108 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1109 1110 if (refdev == 0) 1111 ret = 1; 1112 else { 1113 __u64 ev1, ev2; 1114 struct mdp_superblock_1 *refsb = 1115 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1116 1117 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1118 sb->level != refsb->level || 1119 sb->layout != refsb->layout || 1120 sb->chunksize != refsb->chunksize) { 1121 printk(KERN_WARNING "md: %s has strangely different" 1122 " superblock to %s\n", 1123 bdevname(rdev->bdev,b), 1124 bdevname(refdev->bdev,b2)); 1125 return -EINVAL; 1126 } 1127 ev1 = le64_to_cpu(sb->events); 1128 ev2 = le64_to_cpu(refsb->events); 1129 1130 if (ev1 > ev2) 1131 ret = 1; 1132 else 1133 ret = 0; 1134 } 1135 if (minor_version) 1136 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1137 else 1138 rdev->size = rdev->sb_offset; 1139 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1140 return -EINVAL; 1141 rdev->size = le64_to_cpu(sb->data_size)/2; 1142 if (le32_to_cpu(sb->chunksize)) 1143 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1144 1145 if (le64_to_cpu(sb->size) > rdev->size*2) 1146 return -EINVAL; 1147 return ret; 1148 } 1149 1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1151 { 1152 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1153 __u64 ev1 = le64_to_cpu(sb->events); 1154 1155 rdev->raid_disk = -1; 1156 rdev->flags = 0; 1157 if (mddev->raid_disks == 0) { 1158 mddev->major_version = 1; 1159 mddev->patch_version = 0; 1160 mddev->persistent = 1; 1161 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1162 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1163 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1164 mddev->level = le32_to_cpu(sb->level); 1165 mddev->clevel[0] = 0; 1166 mddev->layout = le32_to_cpu(sb->layout); 1167 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1168 mddev->size = le64_to_cpu(sb->size)/2; 1169 mddev->events = ev1; 1170 mddev->bitmap_offset = 0; 1171 mddev->default_bitmap_offset = 1024 >> 9; 1172 1173 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1174 memcpy(mddev->uuid, sb->set_uuid, 16); 1175 1176 mddev->max_disks = (4096-256)/2; 1177 1178 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1179 mddev->bitmap_file == NULL ) 1180 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1181 1182 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1183 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1184 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1185 mddev->new_level = le32_to_cpu(sb->new_level); 1186 mddev->new_layout = le32_to_cpu(sb->new_layout); 1187 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1188 } else { 1189 mddev->reshape_position = MaxSector; 1190 mddev->delta_disks = 0; 1191 mddev->new_level = mddev->level; 1192 mddev->new_layout = mddev->layout; 1193 mddev->new_chunk = mddev->chunk_size; 1194 } 1195 1196 } else if (mddev->pers == NULL) { 1197 /* Insist of good event counter while assembling */ 1198 ++ev1; 1199 if (ev1 < mddev->events) 1200 return -EINVAL; 1201 } else if (mddev->bitmap) { 1202 /* If adding to array with a bitmap, then we can accept an 1203 * older device, but not too old. 1204 */ 1205 if (ev1 < mddev->bitmap->events_cleared) 1206 return 0; 1207 } else { 1208 if (ev1 < mddev->events) 1209 /* just a hot-add of a new device, leave raid_disk at -1 */ 1210 return 0; 1211 } 1212 if (mddev->level != LEVEL_MULTIPATH) { 1213 int role; 1214 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1215 switch(role) { 1216 case 0xffff: /* spare */ 1217 break; 1218 case 0xfffe: /* faulty */ 1219 set_bit(Faulty, &rdev->flags); 1220 break; 1221 default: 1222 if ((le32_to_cpu(sb->feature_map) & 1223 MD_FEATURE_RECOVERY_OFFSET)) 1224 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1225 else 1226 set_bit(In_sync, &rdev->flags); 1227 rdev->raid_disk = role; 1228 break; 1229 } 1230 if (sb->devflags & WriteMostly1) 1231 set_bit(WriteMostly, &rdev->flags); 1232 } else /* MULTIPATH are always insync */ 1233 set_bit(In_sync, &rdev->flags); 1234 1235 return 0; 1236 } 1237 1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1239 { 1240 struct mdp_superblock_1 *sb; 1241 struct list_head *tmp; 1242 mdk_rdev_t *rdev2; 1243 int max_dev, i; 1244 /* make rdev->sb match mddev and rdev data. */ 1245 1246 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1247 1248 sb->feature_map = 0; 1249 sb->pad0 = 0; 1250 sb->recovery_offset = cpu_to_le64(0); 1251 memset(sb->pad1, 0, sizeof(sb->pad1)); 1252 memset(sb->pad2, 0, sizeof(sb->pad2)); 1253 memset(sb->pad3, 0, sizeof(sb->pad3)); 1254 1255 sb->utime = cpu_to_le64((__u64)mddev->utime); 1256 sb->events = cpu_to_le64(mddev->events); 1257 if (mddev->in_sync) 1258 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1259 else 1260 sb->resync_offset = cpu_to_le64(0); 1261 1262 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1263 1264 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1265 sb->size = cpu_to_le64(mddev->size<<1); 1266 1267 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1268 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1269 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1270 } 1271 1272 if (rdev->raid_disk >= 0 && 1273 !test_bit(In_sync, &rdev->flags) && 1274 rdev->recovery_offset > 0) { 1275 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1276 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1277 } 1278 1279 if (mddev->reshape_position != MaxSector) { 1280 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1281 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1282 sb->new_layout = cpu_to_le32(mddev->new_layout); 1283 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1284 sb->new_level = cpu_to_le32(mddev->new_level); 1285 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1286 } 1287 1288 max_dev = 0; 1289 ITERATE_RDEV(mddev,rdev2,tmp) 1290 if (rdev2->desc_nr+1 > max_dev) 1291 max_dev = rdev2->desc_nr+1; 1292 1293 if (max_dev > le32_to_cpu(sb->max_dev)) 1294 sb->max_dev = cpu_to_le32(max_dev); 1295 for (i=0; i<max_dev;i++) 1296 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1297 1298 ITERATE_RDEV(mddev,rdev2,tmp) { 1299 i = rdev2->desc_nr; 1300 if (test_bit(Faulty, &rdev2->flags)) 1301 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1302 else if (test_bit(In_sync, &rdev2->flags)) 1303 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1304 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1305 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1306 else 1307 sb->dev_roles[i] = cpu_to_le16(0xffff); 1308 } 1309 1310 sb->sb_csum = calc_sb_1_csum(sb); 1311 } 1312 1313 1314 static struct super_type super_types[] = { 1315 [0] = { 1316 .name = "0.90.0", 1317 .owner = THIS_MODULE, 1318 .load_super = super_90_load, 1319 .validate_super = super_90_validate, 1320 .sync_super = super_90_sync, 1321 }, 1322 [1] = { 1323 .name = "md-1", 1324 .owner = THIS_MODULE, 1325 .load_super = super_1_load, 1326 .validate_super = super_1_validate, 1327 .sync_super = super_1_sync, 1328 }, 1329 }; 1330 1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1332 { 1333 struct list_head *tmp, *tmp2; 1334 mdk_rdev_t *rdev, *rdev2; 1335 1336 ITERATE_RDEV(mddev1,rdev,tmp) 1337 ITERATE_RDEV(mddev2, rdev2, tmp2) 1338 if (rdev->bdev->bd_contains == 1339 rdev2->bdev->bd_contains) 1340 return 1; 1341 1342 return 0; 1343 } 1344 1345 static LIST_HEAD(pending_raid_disks); 1346 1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1348 { 1349 char b[BDEVNAME_SIZE]; 1350 struct kobject *ko; 1351 char *s; 1352 int err; 1353 1354 if (rdev->mddev) { 1355 MD_BUG(); 1356 return -EINVAL; 1357 } 1358 /* make sure rdev->size exceeds mddev->size */ 1359 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1360 if (mddev->pers) { 1361 /* Cannot change size, so fail 1362 * If mddev->level <= 0, then we don't care 1363 * about aligning sizes (e.g. linear) 1364 */ 1365 if (mddev->level > 0) 1366 return -ENOSPC; 1367 } else 1368 mddev->size = rdev->size; 1369 } 1370 1371 /* Verify rdev->desc_nr is unique. 1372 * If it is -1, assign a free number, else 1373 * check number is not in use 1374 */ 1375 if (rdev->desc_nr < 0) { 1376 int choice = 0; 1377 if (mddev->pers) choice = mddev->raid_disks; 1378 while (find_rdev_nr(mddev, choice)) 1379 choice++; 1380 rdev->desc_nr = choice; 1381 } else { 1382 if (find_rdev_nr(mddev, rdev->desc_nr)) 1383 return -EBUSY; 1384 } 1385 bdevname(rdev->bdev,b); 1386 while ( (s=strchr(b, '/')) != NULL) 1387 *s = '!'; 1388 1389 rdev->mddev = mddev; 1390 printk(KERN_INFO "md: bind<%s>\n", b); 1391 1392 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1393 goto fail; 1394 1395 if (rdev->bdev->bd_part) 1396 ko = &rdev->bdev->bd_part->dev.kobj; 1397 else 1398 ko = &rdev->bdev->bd_disk->dev.kobj; 1399 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1400 kobject_del(&rdev->kobj); 1401 goto fail; 1402 } 1403 list_add(&rdev->same_set, &mddev->disks); 1404 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk); 1405 return 0; 1406 1407 fail: 1408 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1409 b, mdname(mddev)); 1410 return err; 1411 } 1412 1413 static void delayed_delete(struct work_struct *ws) 1414 { 1415 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1416 kobject_del(&rdev->kobj); 1417 } 1418 1419 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1420 { 1421 char b[BDEVNAME_SIZE]; 1422 if (!rdev->mddev) { 1423 MD_BUG(); 1424 return; 1425 } 1426 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1427 list_del_init(&rdev->same_set); 1428 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1429 rdev->mddev = NULL; 1430 sysfs_remove_link(&rdev->kobj, "block"); 1431 1432 /* We need to delay this, otherwise we can deadlock when 1433 * writing to 'remove' to "dev/state" 1434 */ 1435 INIT_WORK(&rdev->del_work, delayed_delete); 1436 schedule_work(&rdev->del_work); 1437 } 1438 1439 /* 1440 * prevent the device from being mounted, repartitioned or 1441 * otherwise reused by a RAID array (or any other kernel 1442 * subsystem), by bd_claiming the device. 1443 */ 1444 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev) 1445 { 1446 int err = 0; 1447 struct block_device *bdev; 1448 char b[BDEVNAME_SIZE]; 1449 1450 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1451 if (IS_ERR(bdev)) { 1452 printk(KERN_ERR "md: could not open %s.\n", 1453 __bdevname(dev, b)); 1454 return PTR_ERR(bdev); 1455 } 1456 err = bd_claim(bdev, rdev); 1457 if (err) { 1458 printk(KERN_ERR "md: could not bd_claim %s.\n", 1459 bdevname(bdev, b)); 1460 blkdev_put(bdev); 1461 return err; 1462 } 1463 rdev->bdev = bdev; 1464 return err; 1465 } 1466 1467 static void unlock_rdev(mdk_rdev_t *rdev) 1468 { 1469 struct block_device *bdev = rdev->bdev; 1470 rdev->bdev = NULL; 1471 if (!bdev) 1472 MD_BUG(); 1473 bd_release(bdev); 1474 blkdev_put(bdev); 1475 } 1476 1477 void md_autodetect_dev(dev_t dev); 1478 1479 static void export_rdev(mdk_rdev_t * rdev) 1480 { 1481 char b[BDEVNAME_SIZE]; 1482 printk(KERN_INFO "md: export_rdev(%s)\n", 1483 bdevname(rdev->bdev,b)); 1484 if (rdev->mddev) 1485 MD_BUG(); 1486 free_disk_sb(rdev); 1487 list_del_init(&rdev->same_set); 1488 #ifndef MODULE 1489 md_autodetect_dev(rdev->bdev->bd_dev); 1490 #endif 1491 unlock_rdev(rdev); 1492 kobject_put(&rdev->kobj); 1493 } 1494 1495 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1496 { 1497 unbind_rdev_from_array(rdev); 1498 export_rdev(rdev); 1499 } 1500 1501 static void export_array(mddev_t *mddev) 1502 { 1503 struct list_head *tmp; 1504 mdk_rdev_t *rdev; 1505 1506 ITERATE_RDEV(mddev,rdev,tmp) { 1507 if (!rdev->mddev) { 1508 MD_BUG(); 1509 continue; 1510 } 1511 kick_rdev_from_array(rdev); 1512 } 1513 if (!list_empty(&mddev->disks)) 1514 MD_BUG(); 1515 mddev->raid_disks = 0; 1516 mddev->major_version = 0; 1517 } 1518 1519 static void print_desc(mdp_disk_t *desc) 1520 { 1521 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1522 desc->major,desc->minor,desc->raid_disk,desc->state); 1523 } 1524 1525 static void print_sb(mdp_super_t *sb) 1526 { 1527 int i; 1528 1529 printk(KERN_INFO 1530 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1531 sb->major_version, sb->minor_version, sb->patch_version, 1532 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1533 sb->ctime); 1534 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1535 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1536 sb->md_minor, sb->layout, sb->chunk_size); 1537 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1538 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1539 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1540 sb->failed_disks, sb->spare_disks, 1541 sb->sb_csum, (unsigned long)sb->events_lo); 1542 1543 printk(KERN_INFO); 1544 for (i = 0; i < MD_SB_DISKS; i++) { 1545 mdp_disk_t *desc; 1546 1547 desc = sb->disks + i; 1548 if (desc->number || desc->major || desc->minor || 1549 desc->raid_disk || (desc->state && (desc->state != 4))) { 1550 printk(" D %2d: ", i); 1551 print_desc(desc); 1552 } 1553 } 1554 printk(KERN_INFO "md: THIS: "); 1555 print_desc(&sb->this_disk); 1556 1557 } 1558 1559 static void print_rdev(mdk_rdev_t *rdev) 1560 { 1561 char b[BDEVNAME_SIZE]; 1562 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1563 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1564 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1565 rdev->desc_nr); 1566 if (rdev->sb_loaded) { 1567 printk(KERN_INFO "md: rdev superblock:\n"); 1568 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1569 } else 1570 printk(KERN_INFO "md: no rdev superblock!\n"); 1571 } 1572 1573 static void md_print_devices(void) 1574 { 1575 struct list_head *tmp, *tmp2; 1576 mdk_rdev_t *rdev; 1577 mddev_t *mddev; 1578 char b[BDEVNAME_SIZE]; 1579 1580 printk("\n"); 1581 printk("md: **********************************\n"); 1582 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1583 printk("md: **********************************\n"); 1584 ITERATE_MDDEV(mddev,tmp) { 1585 1586 if (mddev->bitmap) 1587 bitmap_print_sb(mddev->bitmap); 1588 else 1589 printk("%s: ", mdname(mddev)); 1590 ITERATE_RDEV(mddev,rdev,tmp2) 1591 printk("<%s>", bdevname(rdev->bdev,b)); 1592 printk("\n"); 1593 1594 ITERATE_RDEV(mddev,rdev,tmp2) 1595 print_rdev(rdev); 1596 } 1597 printk("md: **********************************\n"); 1598 printk("\n"); 1599 } 1600 1601 1602 static void sync_sbs(mddev_t * mddev, int nospares) 1603 { 1604 /* Update each superblock (in-memory image), but 1605 * if we are allowed to, skip spares which already 1606 * have the right event counter, or have one earlier 1607 * (which would mean they aren't being marked as dirty 1608 * with the rest of the array) 1609 */ 1610 mdk_rdev_t *rdev; 1611 struct list_head *tmp; 1612 1613 ITERATE_RDEV(mddev,rdev,tmp) { 1614 if (rdev->sb_events == mddev->events || 1615 (nospares && 1616 rdev->raid_disk < 0 && 1617 (rdev->sb_events&1)==0 && 1618 rdev->sb_events+1 == mddev->events)) { 1619 /* Don't update this superblock */ 1620 rdev->sb_loaded = 2; 1621 } else { 1622 super_types[mddev->major_version]. 1623 sync_super(mddev, rdev); 1624 rdev->sb_loaded = 1; 1625 } 1626 } 1627 } 1628 1629 static void md_update_sb(mddev_t * mddev, int force_change) 1630 { 1631 struct list_head *tmp; 1632 mdk_rdev_t *rdev; 1633 int sync_req; 1634 int nospares = 0; 1635 1636 repeat: 1637 spin_lock_irq(&mddev->write_lock); 1638 1639 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1640 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1641 force_change = 1; 1642 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1643 /* just a clean<-> dirty transition, possibly leave spares alone, 1644 * though if events isn't the right even/odd, we will have to do 1645 * spares after all 1646 */ 1647 nospares = 1; 1648 if (force_change) 1649 nospares = 0; 1650 if (mddev->degraded) 1651 /* If the array is degraded, then skipping spares is both 1652 * dangerous and fairly pointless. 1653 * Dangerous because a device that was removed from the array 1654 * might have a event_count that still looks up-to-date, 1655 * so it can be re-added without a resync. 1656 * Pointless because if there are any spares to skip, 1657 * then a recovery will happen and soon that array won't 1658 * be degraded any more and the spare can go back to sleep then. 1659 */ 1660 nospares = 0; 1661 1662 sync_req = mddev->in_sync; 1663 mddev->utime = get_seconds(); 1664 1665 /* If this is just a dirty<->clean transition, and the array is clean 1666 * and 'events' is odd, we can roll back to the previous clean state */ 1667 if (nospares 1668 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1669 && (mddev->events & 1) 1670 && mddev->events != 1) 1671 mddev->events--; 1672 else { 1673 /* otherwise we have to go forward and ... */ 1674 mddev->events ++; 1675 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1676 /* .. if the array isn't clean, insist on an odd 'events' */ 1677 if ((mddev->events&1)==0) { 1678 mddev->events++; 1679 nospares = 0; 1680 } 1681 } else { 1682 /* otherwise insist on an even 'events' (for clean states) */ 1683 if ((mddev->events&1)) { 1684 mddev->events++; 1685 nospares = 0; 1686 } 1687 } 1688 } 1689 1690 if (!mddev->events) { 1691 /* 1692 * oops, this 64-bit counter should never wrap. 1693 * Either we are in around ~1 trillion A.C., assuming 1694 * 1 reboot per second, or we have a bug: 1695 */ 1696 MD_BUG(); 1697 mddev->events --; 1698 } 1699 sync_sbs(mddev, nospares); 1700 1701 /* 1702 * do not write anything to disk if using 1703 * nonpersistent superblocks 1704 */ 1705 if (!mddev->persistent) { 1706 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1707 spin_unlock_irq(&mddev->write_lock); 1708 wake_up(&mddev->sb_wait); 1709 return; 1710 } 1711 spin_unlock_irq(&mddev->write_lock); 1712 1713 dprintk(KERN_INFO 1714 "md: updating %s RAID superblock on device (in sync %d)\n", 1715 mdname(mddev),mddev->in_sync); 1716 1717 bitmap_update_sb(mddev->bitmap); 1718 ITERATE_RDEV(mddev,rdev,tmp) { 1719 char b[BDEVNAME_SIZE]; 1720 dprintk(KERN_INFO "md: "); 1721 if (rdev->sb_loaded != 1) 1722 continue; /* no noise on spare devices */ 1723 if (test_bit(Faulty, &rdev->flags)) 1724 dprintk("(skipping faulty "); 1725 1726 dprintk("%s ", bdevname(rdev->bdev,b)); 1727 if (!test_bit(Faulty, &rdev->flags)) { 1728 md_super_write(mddev,rdev, 1729 rdev->sb_offset<<1, rdev->sb_size, 1730 rdev->sb_page); 1731 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1732 bdevname(rdev->bdev,b), 1733 (unsigned long long)rdev->sb_offset); 1734 rdev->sb_events = mddev->events; 1735 1736 } else 1737 dprintk(")\n"); 1738 if (mddev->level == LEVEL_MULTIPATH) 1739 /* only need to write one superblock... */ 1740 break; 1741 } 1742 md_super_wait(mddev); 1743 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1744 1745 spin_lock_irq(&mddev->write_lock); 1746 if (mddev->in_sync != sync_req || 1747 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1748 /* have to write it out again */ 1749 spin_unlock_irq(&mddev->write_lock); 1750 goto repeat; 1751 } 1752 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1753 spin_unlock_irq(&mddev->write_lock); 1754 wake_up(&mddev->sb_wait); 1755 1756 } 1757 1758 /* words written to sysfs files may, or my not, be \n terminated. 1759 * We want to accept with case. For this we use cmd_match. 1760 */ 1761 static int cmd_match(const char *cmd, const char *str) 1762 { 1763 /* See if cmd, written into a sysfs file, matches 1764 * str. They must either be the same, or cmd can 1765 * have a trailing newline 1766 */ 1767 while (*cmd && *str && *cmd == *str) { 1768 cmd++; 1769 str++; 1770 } 1771 if (*cmd == '\n') 1772 cmd++; 1773 if (*str || *cmd) 1774 return 0; 1775 return 1; 1776 } 1777 1778 struct rdev_sysfs_entry { 1779 struct attribute attr; 1780 ssize_t (*show)(mdk_rdev_t *, char *); 1781 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1782 }; 1783 1784 static ssize_t 1785 state_show(mdk_rdev_t *rdev, char *page) 1786 { 1787 char *sep = ""; 1788 int len=0; 1789 1790 if (test_bit(Faulty, &rdev->flags)) { 1791 len+= sprintf(page+len, "%sfaulty",sep); 1792 sep = ","; 1793 } 1794 if (test_bit(In_sync, &rdev->flags)) { 1795 len += sprintf(page+len, "%sin_sync",sep); 1796 sep = ","; 1797 } 1798 if (test_bit(WriteMostly, &rdev->flags)) { 1799 len += sprintf(page+len, "%swrite_mostly",sep); 1800 sep = ","; 1801 } 1802 if (!test_bit(Faulty, &rdev->flags) && 1803 !test_bit(In_sync, &rdev->flags)) { 1804 len += sprintf(page+len, "%sspare", sep); 1805 sep = ","; 1806 } 1807 return len+sprintf(page+len, "\n"); 1808 } 1809 1810 static ssize_t 1811 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1812 { 1813 /* can write 1814 * faulty - simulates and error 1815 * remove - disconnects the device 1816 * writemostly - sets write_mostly 1817 * -writemostly - clears write_mostly 1818 */ 1819 int err = -EINVAL; 1820 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1821 md_error(rdev->mddev, rdev); 1822 err = 0; 1823 } else if (cmd_match(buf, "remove")) { 1824 if (rdev->raid_disk >= 0) 1825 err = -EBUSY; 1826 else { 1827 mddev_t *mddev = rdev->mddev; 1828 kick_rdev_from_array(rdev); 1829 if (mddev->pers) 1830 md_update_sb(mddev, 1); 1831 md_new_event(mddev); 1832 err = 0; 1833 } 1834 } else if (cmd_match(buf, "writemostly")) { 1835 set_bit(WriteMostly, &rdev->flags); 1836 err = 0; 1837 } else if (cmd_match(buf, "-writemostly")) { 1838 clear_bit(WriteMostly, &rdev->flags); 1839 err = 0; 1840 } 1841 return err ? err : len; 1842 } 1843 static struct rdev_sysfs_entry rdev_state = 1844 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1845 1846 static ssize_t 1847 super_show(mdk_rdev_t *rdev, char *page) 1848 { 1849 if (rdev->sb_loaded && rdev->sb_size) { 1850 memcpy(page, page_address(rdev->sb_page), rdev->sb_size); 1851 return rdev->sb_size; 1852 } else 1853 return 0; 1854 } 1855 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super); 1856 1857 static ssize_t 1858 errors_show(mdk_rdev_t *rdev, char *page) 1859 { 1860 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1861 } 1862 1863 static ssize_t 1864 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1865 { 1866 char *e; 1867 unsigned long n = simple_strtoul(buf, &e, 10); 1868 if (*buf && (*e == 0 || *e == '\n')) { 1869 atomic_set(&rdev->corrected_errors, n); 1870 return len; 1871 } 1872 return -EINVAL; 1873 } 1874 static struct rdev_sysfs_entry rdev_errors = 1875 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1876 1877 static ssize_t 1878 slot_show(mdk_rdev_t *rdev, char *page) 1879 { 1880 if (rdev->raid_disk < 0) 1881 return sprintf(page, "none\n"); 1882 else 1883 return sprintf(page, "%d\n", rdev->raid_disk); 1884 } 1885 1886 static ssize_t 1887 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1888 { 1889 char *e; 1890 int slot = simple_strtoul(buf, &e, 10); 1891 if (strncmp(buf, "none", 4)==0) 1892 slot = -1; 1893 else if (e==buf || (*e && *e!= '\n')) 1894 return -EINVAL; 1895 if (rdev->mddev->pers) 1896 /* Cannot set slot in active array (yet) */ 1897 return -EBUSY; 1898 if (slot >= rdev->mddev->raid_disks) 1899 return -ENOSPC; 1900 rdev->raid_disk = slot; 1901 /* assume it is working */ 1902 rdev->flags = 0; 1903 set_bit(In_sync, &rdev->flags); 1904 return len; 1905 } 1906 1907 1908 static struct rdev_sysfs_entry rdev_slot = 1909 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 1910 1911 static ssize_t 1912 offset_show(mdk_rdev_t *rdev, char *page) 1913 { 1914 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 1915 } 1916 1917 static ssize_t 1918 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1919 { 1920 char *e; 1921 unsigned long long offset = simple_strtoull(buf, &e, 10); 1922 if (e==buf || (*e && *e != '\n')) 1923 return -EINVAL; 1924 if (rdev->mddev->pers) 1925 return -EBUSY; 1926 rdev->data_offset = offset; 1927 return len; 1928 } 1929 1930 static struct rdev_sysfs_entry rdev_offset = 1931 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 1932 1933 static ssize_t 1934 rdev_size_show(mdk_rdev_t *rdev, char *page) 1935 { 1936 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 1937 } 1938 1939 static ssize_t 1940 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1941 { 1942 char *e; 1943 unsigned long long size = simple_strtoull(buf, &e, 10); 1944 if (e==buf || (*e && *e != '\n')) 1945 return -EINVAL; 1946 if (rdev->mddev->pers) 1947 return -EBUSY; 1948 rdev->size = size; 1949 if (size < rdev->mddev->size || rdev->mddev->size == 0) 1950 rdev->mddev->size = size; 1951 return len; 1952 } 1953 1954 static struct rdev_sysfs_entry rdev_size = 1955 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 1956 1957 static struct attribute *rdev_default_attrs[] = { 1958 &rdev_state.attr, 1959 &rdev_super.attr, 1960 &rdev_errors.attr, 1961 &rdev_slot.attr, 1962 &rdev_offset.attr, 1963 &rdev_size.attr, 1964 NULL, 1965 }; 1966 static ssize_t 1967 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 1968 { 1969 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1970 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1971 1972 if (!entry->show) 1973 return -EIO; 1974 return entry->show(rdev, page); 1975 } 1976 1977 static ssize_t 1978 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 1979 const char *page, size_t length) 1980 { 1981 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 1982 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 1983 1984 if (!entry->store) 1985 return -EIO; 1986 if (!capable(CAP_SYS_ADMIN)) 1987 return -EACCES; 1988 return entry->store(rdev, page, length); 1989 } 1990 1991 static void rdev_free(struct kobject *ko) 1992 { 1993 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 1994 kfree(rdev); 1995 } 1996 static struct sysfs_ops rdev_sysfs_ops = { 1997 .show = rdev_attr_show, 1998 .store = rdev_attr_store, 1999 }; 2000 static struct kobj_type rdev_ktype = { 2001 .release = rdev_free, 2002 .sysfs_ops = &rdev_sysfs_ops, 2003 .default_attrs = rdev_default_attrs, 2004 }; 2005 2006 /* 2007 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2008 * 2009 * mark the device faulty if: 2010 * 2011 * - the device is nonexistent (zero size) 2012 * - the device has no valid superblock 2013 * 2014 * a faulty rdev _never_ has rdev->sb set. 2015 */ 2016 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2017 { 2018 char b[BDEVNAME_SIZE]; 2019 int err; 2020 mdk_rdev_t *rdev; 2021 sector_t size; 2022 2023 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2024 if (!rdev) { 2025 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2026 return ERR_PTR(-ENOMEM); 2027 } 2028 2029 if ((err = alloc_disk_sb(rdev))) 2030 goto abort_free; 2031 2032 err = lock_rdev(rdev, newdev); 2033 if (err) 2034 goto abort_free; 2035 2036 kobject_init(&rdev->kobj, &rdev_ktype); 2037 2038 rdev->desc_nr = -1; 2039 rdev->saved_raid_disk = -1; 2040 rdev->raid_disk = -1; 2041 rdev->flags = 0; 2042 rdev->data_offset = 0; 2043 rdev->sb_events = 0; 2044 atomic_set(&rdev->nr_pending, 0); 2045 atomic_set(&rdev->read_errors, 0); 2046 atomic_set(&rdev->corrected_errors, 0); 2047 2048 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2049 if (!size) { 2050 printk(KERN_WARNING 2051 "md: %s has zero or unknown size, marking faulty!\n", 2052 bdevname(rdev->bdev,b)); 2053 err = -EINVAL; 2054 goto abort_free; 2055 } 2056 2057 if (super_format >= 0) { 2058 err = super_types[super_format]. 2059 load_super(rdev, NULL, super_minor); 2060 if (err == -EINVAL) { 2061 printk(KERN_WARNING 2062 "md: %s does not have a valid v%d.%d " 2063 "superblock, not importing!\n", 2064 bdevname(rdev->bdev,b), 2065 super_format, super_minor); 2066 goto abort_free; 2067 } 2068 if (err < 0) { 2069 printk(KERN_WARNING 2070 "md: could not read %s's sb, not importing!\n", 2071 bdevname(rdev->bdev,b)); 2072 goto abort_free; 2073 } 2074 } 2075 INIT_LIST_HEAD(&rdev->same_set); 2076 2077 return rdev; 2078 2079 abort_free: 2080 if (rdev->sb_page) { 2081 if (rdev->bdev) 2082 unlock_rdev(rdev); 2083 free_disk_sb(rdev); 2084 } 2085 kfree(rdev); 2086 return ERR_PTR(err); 2087 } 2088 2089 /* 2090 * Check a full RAID array for plausibility 2091 */ 2092 2093 2094 static void analyze_sbs(mddev_t * mddev) 2095 { 2096 int i; 2097 struct list_head *tmp; 2098 mdk_rdev_t *rdev, *freshest; 2099 char b[BDEVNAME_SIZE]; 2100 2101 freshest = NULL; 2102 ITERATE_RDEV(mddev,rdev,tmp) 2103 switch (super_types[mddev->major_version]. 2104 load_super(rdev, freshest, mddev->minor_version)) { 2105 case 1: 2106 freshest = rdev; 2107 break; 2108 case 0: 2109 break; 2110 default: 2111 printk( KERN_ERR \ 2112 "md: fatal superblock inconsistency in %s" 2113 " -- removing from array\n", 2114 bdevname(rdev->bdev,b)); 2115 kick_rdev_from_array(rdev); 2116 } 2117 2118 2119 super_types[mddev->major_version]. 2120 validate_super(mddev, freshest); 2121 2122 i = 0; 2123 ITERATE_RDEV(mddev,rdev,tmp) { 2124 if (rdev != freshest) 2125 if (super_types[mddev->major_version]. 2126 validate_super(mddev, rdev)) { 2127 printk(KERN_WARNING "md: kicking non-fresh %s" 2128 " from array!\n", 2129 bdevname(rdev->bdev,b)); 2130 kick_rdev_from_array(rdev); 2131 continue; 2132 } 2133 if (mddev->level == LEVEL_MULTIPATH) { 2134 rdev->desc_nr = i++; 2135 rdev->raid_disk = rdev->desc_nr; 2136 set_bit(In_sync, &rdev->flags); 2137 } else if (rdev->raid_disk >= mddev->raid_disks) { 2138 rdev->raid_disk = -1; 2139 clear_bit(In_sync, &rdev->flags); 2140 } 2141 } 2142 2143 2144 2145 if (mddev->recovery_cp != MaxSector && 2146 mddev->level >= 1) 2147 printk(KERN_ERR "md: %s: raid array is not clean" 2148 " -- starting background reconstruction\n", 2149 mdname(mddev)); 2150 2151 } 2152 2153 static ssize_t 2154 safe_delay_show(mddev_t *mddev, char *page) 2155 { 2156 int msec = (mddev->safemode_delay*1000)/HZ; 2157 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2158 } 2159 static ssize_t 2160 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2161 { 2162 int scale=1; 2163 int dot=0; 2164 int i; 2165 unsigned long msec; 2166 char buf[30]; 2167 char *e; 2168 /* remove a period, and count digits after it */ 2169 if (len >= sizeof(buf)) 2170 return -EINVAL; 2171 strlcpy(buf, cbuf, len); 2172 buf[len] = 0; 2173 for (i=0; i<len; i++) { 2174 if (dot) { 2175 if (isdigit(buf[i])) { 2176 buf[i-1] = buf[i]; 2177 scale *= 10; 2178 } 2179 buf[i] = 0; 2180 } else if (buf[i] == '.') { 2181 dot=1; 2182 buf[i] = 0; 2183 } 2184 } 2185 msec = simple_strtoul(buf, &e, 10); 2186 if (e == buf || (*e && *e != '\n')) 2187 return -EINVAL; 2188 msec = (msec * 1000) / scale; 2189 if (msec == 0) 2190 mddev->safemode_delay = 0; 2191 else { 2192 mddev->safemode_delay = (msec*HZ)/1000; 2193 if (mddev->safemode_delay == 0) 2194 mddev->safemode_delay = 1; 2195 } 2196 return len; 2197 } 2198 static struct md_sysfs_entry md_safe_delay = 2199 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2200 2201 static ssize_t 2202 level_show(mddev_t *mddev, char *page) 2203 { 2204 struct mdk_personality *p = mddev->pers; 2205 if (p) 2206 return sprintf(page, "%s\n", p->name); 2207 else if (mddev->clevel[0]) 2208 return sprintf(page, "%s\n", mddev->clevel); 2209 else if (mddev->level != LEVEL_NONE) 2210 return sprintf(page, "%d\n", mddev->level); 2211 else 2212 return 0; 2213 } 2214 2215 static ssize_t 2216 level_store(mddev_t *mddev, const char *buf, size_t len) 2217 { 2218 int rv = len; 2219 if (mddev->pers) 2220 return -EBUSY; 2221 if (len == 0) 2222 return 0; 2223 if (len >= sizeof(mddev->clevel)) 2224 return -ENOSPC; 2225 strncpy(mddev->clevel, buf, len); 2226 if (mddev->clevel[len-1] == '\n') 2227 len--; 2228 mddev->clevel[len] = 0; 2229 mddev->level = LEVEL_NONE; 2230 return rv; 2231 } 2232 2233 static struct md_sysfs_entry md_level = 2234 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2235 2236 2237 static ssize_t 2238 layout_show(mddev_t *mddev, char *page) 2239 { 2240 /* just a number, not meaningful for all levels */ 2241 if (mddev->reshape_position != MaxSector && 2242 mddev->layout != mddev->new_layout) 2243 return sprintf(page, "%d (%d)\n", 2244 mddev->new_layout, mddev->layout); 2245 return sprintf(page, "%d\n", mddev->layout); 2246 } 2247 2248 static ssize_t 2249 layout_store(mddev_t *mddev, const char *buf, size_t len) 2250 { 2251 char *e; 2252 unsigned long n = simple_strtoul(buf, &e, 10); 2253 2254 if (!*buf || (*e && *e != '\n')) 2255 return -EINVAL; 2256 2257 if (mddev->pers) 2258 return -EBUSY; 2259 if (mddev->reshape_position != MaxSector) 2260 mddev->new_layout = n; 2261 else 2262 mddev->layout = n; 2263 return len; 2264 } 2265 static struct md_sysfs_entry md_layout = 2266 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2267 2268 2269 static ssize_t 2270 raid_disks_show(mddev_t *mddev, char *page) 2271 { 2272 if (mddev->raid_disks == 0) 2273 return 0; 2274 if (mddev->reshape_position != MaxSector && 2275 mddev->delta_disks != 0) 2276 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2277 mddev->raid_disks - mddev->delta_disks); 2278 return sprintf(page, "%d\n", mddev->raid_disks); 2279 } 2280 2281 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2282 2283 static ssize_t 2284 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2285 { 2286 char *e; 2287 int rv = 0; 2288 unsigned long n = simple_strtoul(buf, &e, 10); 2289 2290 if (!*buf || (*e && *e != '\n')) 2291 return -EINVAL; 2292 2293 if (mddev->pers) 2294 rv = update_raid_disks(mddev, n); 2295 else if (mddev->reshape_position != MaxSector) { 2296 int olddisks = mddev->raid_disks - mddev->delta_disks; 2297 mddev->delta_disks = n - olddisks; 2298 mddev->raid_disks = n; 2299 } else 2300 mddev->raid_disks = n; 2301 return rv ? rv : len; 2302 } 2303 static struct md_sysfs_entry md_raid_disks = 2304 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2305 2306 static ssize_t 2307 chunk_size_show(mddev_t *mddev, char *page) 2308 { 2309 if (mddev->reshape_position != MaxSector && 2310 mddev->chunk_size != mddev->new_chunk) 2311 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2312 mddev->chunk_size); 2313 return sprintf(page, "%d\n", mddev->chunk_size); 2314 } 2315 2316 static ssize_t 2317 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2318 { 2319 /* can only set chunk_size if array is not yet active */ 2320 char *e; 2321 unsigned long n = simple_strtoul(buf, &e, 10); 2322 2323 if (!*buf || (*e && *e != '\n')) 2324 return -EINVAL; 2325 2326 if (mddev->pers) 2327 return -EBUSY; 2328 else if (mddev->reshape_position != MaxSector) 2329 mddev->new_chunk = n; 2330 else 2331 mddev->chunk_size = n; 2332 return len; 2333 } 2334 static struct md_sysfs_entry md_chunk_size = 2335 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2336 2337 static ssize_t 2338 resync_start_show(mddev_t *mddev, char *page) 2339 { 2340 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2341 } 2342 2343 static ssize_t 2344 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2345 { 2346 /* can only set chunk_size if array is not yet active */ 2347 char *e; 2348 unsigned long long n = simple_strtoull(buf, &e, 10); 2349 2350 if (mddev->pers) 2351 return -EBUSY; 2352 if (!*buf || (*e && *e != '\n')) 2353 return -EINVAL; 2354 2355 mddev->recovery_cp = n; 2356 return len; 2357 } 2358 static struct md_sysfs_entry md_resync_start = 2359 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2360 2361 /* 2362 * The array state can be: 2363 * 2364 * clear 2365 * No devices, no size, no level 2366 * Equivalent to STOP_ARRAY ioctl 2367 * inactive 2368 * May have some settings, but array is not active 2369 * all IO results in error 2370 * When written, doesn't tear down array, but just stops it 2371 * suspended (not supported yet) 2372 * All IO requests will block. The array can be reconfigured. 2373 * Writing this, if accepted, will block until array is quiessent 2374 * readonly 2375 * no resync can happen. no superblocks get written. 2376 * write requests fail 2377 * read-auto 2378 * like readonly, but behaves like 'clean' on a write request. 2379 * 2380 * clean - no pending writes, but otherwise active. 2381 * When written to inactive array, starts without resync 2382 * If a write request arrives then 2383 * if metadata is known, mark 'dirty' and switch to 'active'. 2384 * if not known, block and switch to write-pending 2385 * If written to an active array that has pending writes, then fails. 2386 * active 2387 * fully active: IO and resync can be happening. 2388 * When written to inactive array, starts with resync 2389 * 2390 * write-pending 2391 * clean, but writes are blocked waiting for 'active' to be written. 2392 * 2393 * active-idle 2394 * like active, but no writes have been seen for a while (100msec). 2395 * 2396 */ 2397 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2398 write_pending, active_idle, bad_word}; 2399 static char *array_states[] = { 2400 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2401 "write-pending", "active-idle", NULL }; 2402 2403 static int match_word(const char *word, char **list) 2404 { 2405 int n; 2406 for (n=0; list[n]; n++) 2407 if (cmd_match(word, list[n])) 2408 break; 2409 return n; 2410 } 2411 2412 static ssize_t 2413 array_state_show(mddev_t *mddev, char *page) 2414 { 2415 enum array_state st = inactive; 2416 2417 if (mddev->pers) 2418 switch(mddev->ro) { 2419 case 1: 2420 st = readonly; 2421 break; 2422 case 2: 2423 st = read_auto; 2424 break; 2425 case 0: 2426 if (mddev->in_sync) 2427 st = clean; 2428 else if (mddev->safemode) 2429 st = active_idle; 2430 else 2431 st = active; 2432 } 2433 else { 2434 if (list_empty(&mddev->disks) && 2435 mddev->raid_disks == 0 && 2436 mddev->size == 0) 2437 st = clear; 2438 else 2439 st = inactive; 2440 } 2441 return sprintf(page, "%s\n", array_states[st]); 2442 } 2443 2444 static int do_md_stop(mddev_t * mddev, int ro); 2445 static int do_md_run(mddev_t * mddev); 2446 static int restart_array(mddev_t *mddev); 2447 2448 static ssize_t 2449 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2450 { 2451 int err = -EINVAL; 2452 enum array_state st = match_word(buf, array_states); 2453 switch(st) { 2454 case bad_word: 2455 break; 2456 case clear: 2457 /* stopping an active array */ 2458 if (mddev->pers) { 2459 if (atomic_read(&mddev->active) > 1) 2460 return -EBUSY; 2461 err = do_md_stop(mddev, 0); 2462 } 2463 break; 2464 case inactive: 2465 /* stopping an active array */ 2466 if (mddev->pers) { 2467 if (atomic_read(&mddev->active) > 1) 2468 return -EBUSY; 2469 err = do_md_stop(mddev, 2); 2470 } 2471 break; 2472 case suspended: 2473 break; /* not supported yet */ 2474 case readonly: 2475 if (mddev->pers) 2476 err = do_md_stop(mddev, 1); 2477 else { 2478 mddev->ro = 1; 2479 err = do_md_run(mddev); 2480 } 2481 break; 2482 case read_auto: 2483 /* stopping an active array */ 2484 if (mddev->pers) { 2485 err = do_md_stop(mddev, 1); 2486 if (err == 0) 2487 mddev->ro = 2; /* FIXME mark devices writable */ 2488 } else { 2489 mddev->ro = 2; 2490 err = do_md_run(mddev); 2491 } 2492 break; 2493 case clean: 2494 if (mddev->pers) { 2495 restart_array(mddev); 2496 spin_lock_irq(&mddev->write_lock); 2497 if (atomic_read(&mddev->writes_pending) == 0) { 2498 mddev->in_sync = 1; 2499 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 2500 } 2501 spin_unlock_irq(&mddev->write_lock); 2502 } else { 2503 mddev->ro = 0; 2504 mddev->recovery_cp = MaxSector; 2505 err = do_md_run(mddev); 2506 } 2507 break; 2508 case active: 2509 if (mddev->pers) { 2510 restart_array(mddev); 2511 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2512 wake_up(&mddev->sb_wait); 2513 err = 0; 2514 } else { 2515 mddev->ro = 0; 2516 err = do_md_run(mddev); 2517 } 2518 break; 2519 case write_pending: 2520 case active_idle: 2521 /* these cannot be set */ 2522 break; 2523 } 2524 if (err) 2525 return err; 2526 else 2527 return len; 2528 } 2529 static struct md_sysfs_entry md_array_state = 2530 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2531 2532 static ssize_t 2533 null_show(mddev_t *mddev, char *page) 2534 { 2535 return -EINVAL; 2536 } 2537 2538 static ssize_t 2539 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2540 { 2541 /* buf must be %d:%d\n? giving major and minor numbers */ 2542 /* The new device is added to the array. 2543 * If the array has a persistent superblock, we read the 2544 * superblock to initialise info and check validity. 2545 * Otherwise, only checking done is that in bind_rdev_to_array, 2546 * which mainly checks size. 2547 */ 2548 char *e; 2549 int major = simple_strtoul(buf, &e, 10); 2550 int minor; 2551 dev_t dev; 2552 mdk_rdev_t *rdev; 2553 int err; 2554 2555 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2556 return -EINVAL; 2557 minor = simple_strtoul(e+1, &e, 10); 2558 if (*e && *e != '\n') 2559 return -EINVAL; 2560 dev = MKDEV(major, minor); 2561 if (major != MAJOR(dev) || 2562 minor != MINOR(dev)) 2563 return -EOVERFLOW; 2564 2565 2566 if (mddev->persistent) { 2567 rdev = md_import_device(dev, mddev->major_version, 2568 mddev->minor_version); 2569 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2570 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2571 mdk_rdev_t, same_set); 2572 err = super_types[mddev->major_version] 2573 .load_super(rdev, rdev0, mddev->minor_version); 2574 if (err < 0) 2575 goto out; 2576 } 2577 } else 2578 rdev = md_import_device(dev, -1, -1); 2579 2580 if (IS_ERR(rdev)) 2581 return PTR_ERR(rdev); 2582 err = bind_rdev_to_array(rdev, mddev); 2583 out: 2584 if (err) 2585 export_rdev(rdev); 2586 return err ? err : len; 2587 } 2588 2589 static struct md_sysfs_entry md_new_device = 2590 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2591 2592 static ssize_t 2593 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2594 { 2595 char *end; 2596 unsigned long chunk, end_chunk; 2597 2598 if (!mddev->bitmap) 2599 goto out; 2600 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2601 while (*buf) { 2602 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2603 if (buf == end) break; 2604 if (*end == '-') { /* range */ 2605 buf = end + 1; 2606 end_chunk = simple_strtoul(buf, &end, 0); 2607 if (buf == end) break; 2608 } 2609 if (*end && !isspace(*end)) break; 2610 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2611 buf = end; 2612 while (isspace(*buf)) buf++; 2613 } 2614 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2615 out: 2616 return len; 2617 } 2618 2619 static struct md_sysfs_entry md_bitmap = 2620 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2621 2622 static ssize_t 2623 size_show(mddev_t *mddev, char *page) 2624 { 2625 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2626 } 2627 2628 static int update_size(mddev_t *mddev, unsigned long size); 2629 2630 static ssize_t 2631 size_store(mddev_t *mddev, const char *buf, size_t len) 2632 { 2633 /* If array is inactive, we can reduce the component size, but 2634 * not increase it (except from 0). 2635 * If array is active, we can try an on-line resize 2636 */ 2637 char *e; 2638 int err = 0; 2639 unsigned long long size = simple_strtoull(buf, &e, 10); 2640 if (!*buf || *buf == '\n' || 2641 (*e && *e != '\n')) 2642 return -EINVAL; 2643 2644 if (mddev->pers) { 2645 err = update_size(mddev, size); 2646 md_update_sb(mddev, 1); 2647 } else { 2648 if (mddev->size == 0 || 2649 mddev->size > size) 2650 mddev->size = size; 2651 else 2652 err = -ENOSPC; 2653 } 2654 return err ? err : len; 2655 } 2656 2657 static struct md_sysfs_entry md_size = 2658 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2659 2660 2661 /* Metdata version. 2662 * This is either 'none' for arrays with externally managed metadata, 2663 * or N.M for internally known formats 2664 */ 2665 static ssize_t 2666 metadata_show(mddev_t *mddev, char *page) 2667 { 2668 if (mddev->persistent) 2669 return sprintf(page, "%d.%d\n", 2670 mddev->major_version, mddev->minor_version); 2671 else 2672 return sprintf(page, "none\n"); 2673 } 2674 2675 static ssize_t 2676 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2677 { 2678 int major, minor; 2679 char *e; 2680 if (!list_empty(&mddev->disks)) 2681 return -EBUSY; 2682 2683 if (cmd_match(buf, "none")) { 2684 mddev->persistent = 0; 2685 mddev->major_version = 0; 2686 mddev->minor_version = 90; 2687 return len; 2688 } 2689 major = simple_strtoul(buf, &e, 10); 2690 if (e==buf || *e != '.') 2691 return -EINVAL; 2692 buf = e+1; 2693 minor = simple_strtoul(buf, &e, 10); 2694 if (e==buf || (*e && *e != '\n') ) 2695 return -EINVAL; 2696 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 2697 return -ENOENT; 2698 mddev->major_version = major; 2699 mddev->minor_version = minor; 2700 mddev->persistent = 1; 2701 return len; 2702 } 2703 2704 static struct md_sysfs_entry md_metadata = 2705 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2706 2707 static ssize_t 2708 action_show(mddev_t *mddev, char *page) 2709 { 2710 char *type = "idle"; 2711 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2712 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 2713 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2714 type = "reshape"; 2715 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2716 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2717 type = "resync"; 2718 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 2719 type = "check"; 2720 else 2721 type = "repair"; 2722 } else 2723 type = "recover"; 2724 } 2725 return sprintf(page, "%s\n", type); 2726 } 2727 2728 static ssize_t 2729 action_store(mddev_t *mddev, const char *page, size_t len) 2730 { 2731 if (!mddev->pers || !mddev->pers->sync_request) 2732 return -EINVAL; 2733 2734 if (cmd_match(page, "idle")) { 2735 if (mddev->sync_thread) { 2736 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 2737 md_unregister_thread(mddev->sync_thread); 2738 mddev->sync_thread = NULL; 2739 mddev->recovery = 0; 2740 } 2741 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2742 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 2743 return -EBUSY; 2744 else if (cmd_match(page, "resync") || cmd_match(page, "recover")) 2745 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2746 else if (cmd_match(page, "reshape")) { 2747 int err; 2748 if (mddev->pers->start_reshape == NULL) 2749 return -EINVAL; 2750 err = mddev->pers->start_reshape(mddev); 2751 if (err) 2752 return err; 2753 } else { 2754 if (cmd_match(page, "check")) 2755 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 2756 else if (!cmd_match(page, "repair")) 2757 return -EINVAL; 2758 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 2759 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 2760 } 2761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2762 md_wakeup_thread(mddev->thread); 2763 return len; 2764 } 2765 2766 static ssize_t 2767 mismatch_cnt_show(mddev_t *mddev, char *page) 2768 { 2769 return sprintf(page, "%llu\n", 2770 (unsigned long long) mddev->resync_mismatches); 2771 } 2772 2773 static struct md_sysfs_entry md_scan_mode = 2774 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 2775 2776 2777 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 2778 2779 static ssize_t 2780 sync_min_show(mddev_t *mddev, char *page) 2781 { 2782 return sprintf(page, "%d (%s)\n", speed_min(mddev), 2783 mddev->sync_speed_min ? "local": "system"); 2784 } 2785 2786 static ssize_t 2787 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 2788 { 2789 int min; 2790 char *e; 2791 if (strncmp(buf, "system", 6)==0) { 2792 mddev->sync_speed_min = 0; 2793 return len; 2794 } 2795 min = simple_strtoul(buf, &e, 10); 2796 if (buf == e || (*e && *e != '\n') || min <= 0) 2797 return -EINVAL; 2798 mddev->sync_speed_min = min; 2799 return len; 2800 } 2801 2802 static struct md_sysfs_entry md_sync_min = 2803 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 2804 2805 static ssize_t 2806 sync_max_show(mddev_t *mddev, char *page) 2807 { 2808 return sprintf(page, "%d (%s)\n", speed_max(mddev), 2809 mddev->sync_speed_max ? "local": "system"); 2810 } 2811 2812 static ssize_t 2813 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 2814 { 2815 int max; 2816 char *e; 2817 if (strncmp(buf, "system", 6)==0) { 2818 mddev->sync_speed_max = 0; 2819 return len; 2820 } 2821 max = simple_strtoul(buf, &e, 10); 2822 if (buf == e || (*e && *e != '\n') || max <= 0) 2823 return -EINVAL; 2824 mddev->sync_speed_max = max; 2825 return len; 2826 } 2827 2828 static struct md_sysfs_entry md_sync_max = 2829 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 2830 2831 static ssize_t 2832 degraded_show(mddev_t *mddev, char *page) 2833 { 2834 return sprintf(page, "%d\n", mddev->degraded); 2835 } 2836 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 2837 2838 static ssize_t 2839 sync_speed_show(mddev_t *mddev, char *page) 2840 { 2841 unsigned long resync, dt, db; 2842 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)); 2843 dt = ((jiffies - mddev->resync_mark) / HZ); 2844 if (!dt) dt++; 2845 db = resync - (mddev->resync_mark_cnt); 2846 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */ 2847 } 2848 2849 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 2850 2851 static ssize_t 2852 sync_completed_show(mddev_t *mddev, char *page) 2853 { 2854 unsigned long max_blocks, resync; 2855 2856 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 2857 max_blocks = mddev->resync_max_sectors; 2858 else 2859 max_blocks = mddev->size << 1; 2860 2861 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 2862 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 2863 } 2864 2865 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 2866 2867 static ssize_t 2868 suspend_lo_show(mddev_t *mddev, char *page) 2869 { 2870 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 2871 } 2872 2873 static ssize_t 2874 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 2875 { 2876 char *e; 2877 unsigned long long new = simple_strtoull(buf, &e, 10); 2878 2879 if (mddev->pers->quiesce == NULL) 2880 return -EINVAL; 2881 if (buf == e || (*e && *e != '\n')) 2882 return -EINVAL; 2883 if (new >= mddev->suspend_hi || 2884 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 2885 mddev->suspend_lo = new; 2886 mddev->pers->quiesce(mddev, 2); 2887 return len; 2888 } else 2889 return -EINVAL; 2890 } 2891 static struct md_sysfs_entry md_suspend_lo = 2892 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 2893 2894 2895 static ssize_t 2896 suspend_hi_show(mddev_t *mddev, char *page) 2897 { 2898 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 2899 } 2900 2901 static ssize_t 2902 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 2903 { 2904 char *e; 2905 unsigned long long new = simple_strtoull(buf, &e, 10); 2906 2907 if (mddev->pers->quiesce == NULL) 2908 return -EINVAL; 2909 if (buf == e || (*e && *e != '\n')) 2910 return -EINVAL; 2911 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 2912 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 2913 mddev->suspend_hi = new; 2914 mddev->pers->quiesce(mddev, 1); 2915 mddev->pers->quiesce(mddev, 0); 2916 return len; 2917 } else 2918 return -EINVAL; 2919 } 2920 static struct md_sysfs_entry md_suspend_hi = 2921 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 2922 2923 static ssize_t 2924 reshape_position_show(mddev_t *mddev, char *page) 2925 { 2926 if (mddev->reshape_position != MaxSector) 2927 return sprintf(page, "%llu\n", 2928 (unsigned long long)mddev->reshape_position); 2929 strcpy(page, "none\n"); 2930 return 5; 2931 } 2932 2933 static ssize_t 2934 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 2935 { 2936 char *e; 2937 unsigned long long new = simple_strtoull(buf, &e, 10); 2938 if (mddev->pers) 2939 return -EBUSY; 2940 if (buf == e || (*e && *e != '\n')) 2941 return -EINVAL; 2942 mddev->reshape_position = new; 2943 mddev->delta_disks = 0; 2944 mddev->new_level = mddev->level; 2945 mddev->new_layout = mddev->layout; 2946 mddev->new_chunk = mddev->chunk_size; 2947 return len; 2948 } 2949 2950 static struct md_sysfs_entry md_reshape_position = 2951 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 2952 reshape_position_store); 2953 2954 2955 static struct attribute *md_default_attrs[] = { 2956 &md_level.attr, 2957 &md_layout.attr, 2958 &md_raid_disks.attr, 2959 &md_chunk_size.attr, 2960 &md_size.attr, 2961 &md_resync_start.attr, 2962 &md_metadata.attr, 2963 &md_new_device.attr, 2964 &md_safe_delay.attr, 2965 &md_array_state.attr, 2966 &md_reshape_position.attr, 2967 NULL, 2968 }; 2969 2970 static struct attribute *md_redundancy_attrs[] = { 2971 &md_scan_mode.attr, 2972 &md_mismatches.attr, 2973 &md_sync_min.attr, 2974 &md_sync_max.attr, 2975 &md_sync_speed.attr, 2976 &md_sync_completed.attr, 2977 &md_suspend_lo.attr, 2978 &md_suspend_hi.attr, 2979 &md_bitmap.attr, 2980 &md_degraded.attr, 2981 NULL, 2982 }; 2983 static struct attribute_group md_redundancy_group = { 2984 .name = NULL, 2985 .attrs = md_redundancy_attrs, 2986 }; 2987 2988 2989 static ssize_t 2990 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2991 { 2992 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 2993 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 2994 ssize_t rv; 2995 2996 if (!entry->show) 2997 return -EIO; 2998 rv = mddev_lock(mddev); 2999 if (!rv) { 3000 rv = entry->show(mddev, page); 3001 mddev_unlock(mddev); 3002 } 3003 return rv; 3004 } 3005 3006 static ssize_t 3007 md_attr_store(struct kobject *kobj, struct attribute *attr, 3008 const char *page, size_t length) 3009 { 3010 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3011 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3012 ssize_t rv; 3013 3014 if (!entry->store) 3015 return -EIO; 3016 if (!capable(CAP_SYS_ADMIN)) 3017 return -EACCES; 3018 rv = mddev_lock(mddev); 3019 if (!rv) { 3020 rv = entry->store(mddev, page, length); 3021 mddev_unlock(mddev); 3022 } 3023 return rv; 3024 } 3025 3026 static void md_free(struct kobject *ko) 3027 { 3028 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3029 kfree(mddev); 3030 } 3031 3032 static struct sysfs_ops md_sysfs_ops = { 3033 .show = md_attr_show, 3034 .store = md_attr_store, 3035 }; 3036 static struct kobj_type md_ktype = { 3037 .release = md_free, 3038 .sysfs_ops = &md_sysfs_ops, 3039 .default_attrs = md_default_attrs, 3040 }; 3041 3042 int mdp_major = 0; 3043 3044 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3045 { 3046 static DEFINE_MUTEX(disks_mutex); 3047 mddev_t *mddev = mddev_find(dev); 3048 struct gendisk *disk; 3049 int partitioned = (MAJOR(dev) != MD_MAJOR); 3050 int shift = partitioned ? MdpMinorShift : 0; 3051 int unit = MINOR(dev) >> shift; 3052 int error; 3053 3054 if (!mddev) 3055 return NULL; 3056 3057 mutex_lock(&disks_mutex); 3058 if (mddev->gendisk) { 3059 mutex_unlock(&disks_mutex); 3060 mddev_put(mddev); 3061 return NULL; 3062 } 3063 disk = alloc_disk(1 << shift); 3064 if (!disk) { 3065 mutex_unlock(&disks_mutex); 3066 mddev_put(mddev); 3067 return NULL; 3068 } 3069 disk->major = MAJOR(dev); 3070 disk->first_minor = unit << shift; 3071 if (partitioned) 3072 sprintf(disk->disk_name, "md_d%d", unit); 3073 else 3074 sprintf(disk->disk_name, "md%d", unit); 3075 disk->fops = &md_fops; 3076 disk->private_data = mddev; 3077 disk->queue = mddev->queue; 3078 add_disk(disk); 3079 mddev->gendisk = disk; 3080 mutex_unlock(&disks_mutex); 3081 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj, 3082 "%s", "md"); 3083 if (error) 3084 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3085 disk->disk_name); 3086 else 3087 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3088 return NULL; 3089 } 3090 3091 static void md_safemode_timeout(unsigned long data) 3092 { 3093 mddev_t *mddev = (mddev_t *) data; 3094 3095 mddev->safemode = 1; 3096 md_wakeup_thread(mddev->thread); 3097 } 3098 3099 static int start_dirty_degraded; 3100 3101 static int do_md_run(mddev_t * mddev) 3102 { 3103 int err; 3104 int chunk_size; 3105 struct list_head *tmp; 3106 mdk_rdev_t *rdev; 3107 struct gendisk *disk; 3108 struct mdk_personality *pers; 3109 char b[BDEVNAME_SIZE]; 3110 3111 if (list_empty(&mddev->disks)) 3112 /* cannot run an array with no devices.. */ 3113 return -EINVAL; 3114 3115 if (mddev->pers) 3116 return -EBUSY; 3117 3118 /* 3119 * Analyze all RAID superblock(s) 3120 */ 3121 if (!mddev->raid_disks) 3122 analyze_sbs(mddev); 3123 3124 chunk_size = mddev->chunk_size; 3125 3126 if (chunk_size) { 3127 if (chunk_size > MAX_CHUNK_SIZE) { 3128 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3129 chunk_size, MAX_CHUNK_SIZE); 3130 return -EINVAL; 3131 } 3132 /* 3133 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3134 */ 3135 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3136 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3137 return -EINVAL; 3138 } 3139 if (chunk_size < PAGE_SIZE) { 3140 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3141 chunk_size, PAGE_SIZE); 3142 return -EINVAL; 3143 } 3144 3145 /* devices must have minimum size of one chunk */ 3146 ITERATE_RDEV(mddev,rdev,tmp) { 3147 if (test_bit(Faulty, &rdev->flags)) 3148 continue; 3149 if (rdev->size < chunk_size / 1024) { 3150 printk(KERN_WARNING 3151 "md: Dev %s smaller than chunk_size:" 3152 " %lluk < %dk\n", 3153 bdevname(rdev->bdev,b), 3154 (unsigned long long)rdev->size, 3155 chunk_size / 1024); 3156 return -EINVAL; 3157 } 3158 } 3159 } 3160 3161 #ifdef CONFIG_KMOD 3162 if (mddev->level != LEVEL_NONE) 3163 request_module("md-level-%d", mddev->level); 3164 else if (mddev->clevel[0]) 3165 request_module("md-%s", mddev->clevel); 3166 #endif 3167 3168 /* 3169 * Drop all container device buffers, from now on 3170 * the only valid external interface is through the md 3171 * device. 3172 */ 3173 ITERATE_RDEV(mddev,rdev,tmp) { 3174 if (test_bit(Faulty, &rdev->flags)) 3175 continue; 3176 sync_blockdev(rdev->bdev); 3177 invalidate_bdev(rdev->bdev); 3178 3179 /* perform some consistency tests on the device. 3180 * We don't want the data to overlap the metadata, 3181 * Internal Bitmap issues has handled elsewhere. 3182 */ 3183 if (rdev->data_offset < rdev->sb_offset) { 3184 if (mddev->size && 3185 rdev->data_offset + mddev->size*2 3186 > rdev->sb_offset*2) { 3187 printk("md: %s: data overlaps metadata\n", 3188 mdname(mddev)); 3189 return -EINVAL; 3190 } 3191 } else { 3192 if (rdev->sb_offset*2 + rdev->sb_size/512 3193 > rdev->data_offset) { 3194 printk("md: %s: metadata overlaps data\n", 3195 mdname(mddev)); 3196 return -EINVAL; 3197 } 3198 } 3199 } 3200 3201 md_probe(mddev->unit, NULL, NULL); 3202 disk = mddev->gendisk; 3203 if (!disk) 3204 return -ENOMEM; 3205 3206 spin_lock(&pers_lock); 3207 pers = find_pers(mddev->level, mddev->clevel); 3208 if (!pers || !try_module_get(pers->owner)) { 3209 spin_unlock(&pers_lock); 3210 if (mddev->level != LEVEL_NONE) 3211 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3212 mddev->level); 3213 else 3214 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3215 mddev->clevel); 3216 return -EINVAL; 3217 } 3218 mddev->pers = pers; 3219 spin_unlock(&pers_lock); 3220 mddev->level = pers->level; 3221 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3222 3223 if (mddev->reshape_position != MaxSector && 3224 pers->start_reshape == NULL) { 3225 /* This personality cannot handle reshaping... */ 3226 mddev->pers = NULL; 3227 module_put(pers->owner); 3228 return -EINVAL; 3229 } 3230 3231 if (pers->sync_request) { 3232 /* Warn if this is a potentially silly 3233 * configuration. 3234 */ 3235 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3236 mdk_rdev_t *rdev2; 3237 struct list_head *tmp2; 3238 int warned = 0; 3239 ITERATE_RDEV(mddev, rdev, tmp) { 3240 ITERATE_RDEV(mddev, rdev2, tmp2) { 3241 if (rdev < rdev2 && 3242 rdev->bdev->bd_contains == 3243 rdev2->bdev->bd_contains) { 3244 printk(KERN_WARNING 3245 "%s: WARNING: %s appears to be" 3246 " on the same physical disk as" 3247 " %s.\n", 3248 mdname(mddev), 3249 bdevname(rdev->bdev,b), 3250 bdevname(rdev2->bdev,b2)); 3251 warned = 1; 3252 } 3253 } 3254 } 3255 if (warned) 3256 printk(KERN_WARNING 3257 "True protection against single-disk" 3258 " failure might be compromised.\n"); 3259 } 3260 3261 mddev->recovery = 0; 3262 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3263 mddev->barriers_work = 1; 3264 mddev->ok_start_degraded = start_dirty_degraded; 3265 3266 if (start_readonly) 3267 mddev->ro = 2; /* read-only, but switch on first write */ 3268 3269 err = mddev->pers->run(mddev); 3270 if (!err && mddev->pers->sync_request) { 3271 err = bitmap_create(mddev); 3272 if (err) { 3273 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3274 mdname(mddev), err); 3275 mddev->pers->stop(mddev); 3276 } 3277 } 3278 if (err) { 3279 printk(KERN_ERR "md: pers->run() failed ...\n"); 3280 module_put(mddev->pers->owner); 3281 mddev->pers = NULL; 3282 bitmap_destroy(mddev); 3283 return err; 3284 } 3285 if (mddev->pers->sync_request) { 3286 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3287 printk(KERN_WARNING 3288 "md: cannot register extra attributes for %s\n", 3289 mdname(mddev)); 3290 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3291 mddev->ro = 0; 3292 3293 atomic_set(&mddev->writes_pending,0); 3294 mddev->safemode = 0; 3295 mddev->safemode_timer.function = md_safemode_timeout; 3296 mddev->safemode_timer.data = (unsigned long) mddev; 3297 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3298 mddev->in_sync = 1; 3299 3300 ITERATE_RDEV(mddev,rdev,tmp) 3301 if (rdev->raid_disk >= 0) { 3302 char nm[20]; 3303 sprintf(nm, "rd%d", rdev->raid_disk); 3304 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3305 printk("md: cannot register %s for %s\n", 3306 nm, mdname(mddev)); 3307 } 3308 3309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3310 3311 if (mddev->flags) 3312 md_update_sb(mddev, 0); 3313 3314 set_capacity(disk, mddev->array_size<<1); 3315 3316 /* If we call blk_queue_make_request here, it will 3317 * re-initialise max_sectors etc which may have been 3318 * refined inside -> run. So just set the bits we need to set. 3319 * Most initialisation happended when we called 3320 * blk_queue_make_request(..., md_fail_request) 3321 * earlier. 3322 */ 3323 mddev->queue->queuedata = mddev; 3324 mddev->queue->make_request_fn = mddev->pers->make_request; 3325 3326 /* If there is a partially-recovered drive we need to 3327 * start recovery here. If we leave it to md_check_recovery, 3328 * it will remove the drives and not do the right thing 3329 */ 3330 if (mddev->degraded && !mddev->sync_thread) { 3331 struct list_head *rtmp; 3332 int spares = 0; 3333 ITERATE_RDEV(mddev,rdev,rtmp) 3334 if (rdev->raid_disk >= 0 && 3335 !test_bit(In_sync, &rdev->flags) && 3336 !test_bit(Faulty, &rdev->flags)) 3337 /* complete an interrupted recovery */ 3338 spares++; 3339 if (spares && mddev->pers->sync_request) { 3340 mddev->recovery = 0; 3341 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3342 mddev->sync_thread = md_register_thread(md_do_sync, 3343 mddev, 3344 "%s_resync"); 3345 if (!mddev->sync_thread) { 3346 printk(KERN_ERR "%s: could not start resync" 3347 " thread...\n", 3348 mdname(mddev)); 3349 /* leave the spares where they are, it shouldn't hurt */ 3350 mddev->recovery = 0; 3351 } 3352 } 3353 } 3354 md_wakeup_thread(mddev->thread); 3355 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3356 3357 mddev->changed = 1; 3358 md_new_event(mddev); 3359 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE); 3360 return 0; 3361 } 3362 3363 static int restart_array(mddev_t *mddev) 3364 { 3365 struct gendisk *disk = mddev->gendisk; 3366 int err; 3367 3368 /* 3369 * Complain if it has no devices 3370 */ 3371 err = -ENXIO; 3372 if (list_empty(&mddev->disks)) 3373 goto out; 3374 3375 if (mddev->pers) { 3376 err = -EBUSY; 3377 if (!mddev->ro) 3378 goto out; 3379 3380 mddev->safemode = 0; 3381 mddev->ro = 0; 3382 set_disk_ro(disk, 0); 3383 3384 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3385 mdname(mddev)); 3386 /* 3387 * Kick recovery or resync if necessary 3388 */ 3389 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3390 md_wakeup_thread(mddev->thread); 3391 md_wakeup_thread(mddev->sync_thread); 3392 err = 0; 3393 } else 3394 err = -EINVAL; 3395 3396 out: 3397 return err; 3398 } 3399 3400 /* similar to deny_write_access, but accounts for our holding a reference 3401 * to the file ourselves */ 3402 static int deny_bitmap_write_access(struct file * file) 3403 { 3404 struct inode *inode = file->f_mapping->host; 3405 3406 spin_lock(&inode->i_lock); 3407 if (atomic_read(&inode->i_writecount) > 1) { 3408 spin_unlock(&inode->i_lock); 3409 return -ETXTBSY; 3410 } 3411 atomic_set(&inode->i_writecount, -1); 3412 spin_unlock(&inode->i_lock); 3413 3414 return 0; 3415 } 3416 3417 static void restore_bitmap_write_access(struct file *file) 3418 { 3419 struct inode *inode = file->f_mapping->host; 3420 3421 spin_lock(&inode->i_lock); 3422 atomic_set(&inode->i_writecount, 1); 3423 spin_unlock(&inode->i_lock); 3424 } 3425 3426 /* mode: 3427 * 0 - completely stop and dis-assemble array 3428 * 1 - switch to readonly 3429 * 2 - stop but do not disassemble array 3430 */ 3431 static int do_md_stop(mddev_t * mddev, int mode) 3432 { 3433 int err = 0; 3434 struct gendisk *disk = mddev->gendisk; 3435 3436 if (mddev->pers) { 3437 if (atomic_read(&mddev->active)>2) { 3438 printk("md: %s still in use.\n",mdname(mddev)); 3439 return -EBUSY; 3440 } 3441 3442 if (mddev->sync_thread) { 3443 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3444 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3445 md_unregister_thread(mddev->sync_thread); 3446 mddev->sync_thread = NULL; 3447 } 3448 3449 del_timer_sync(&mddev->safemode_timer); 3450 3451 invalidate_partition(disk, 0); 3452 3453 switch(mode) { 3454 case 1: /* readonly */ 3455 err = -ENXIO; 3456 if (mddev->ro==1) 3457 goto out; 3458 mddev->ro = 1; 3459 break; 3460 case 0: /* disassemble */ 3461 case 2: /* stop */ 3462 bitmap_flush(mddev); 3463 md_super_wait(mddev); 3464 if (mddev->ro) 3465 set_disk_ro(disk, 0); 3466 blk_queue_make_request(mddev->queue, md_fail_request); 3467 mddev->pers->stop(mddev); 3468 mddev->queue->merge_bvec_fn = NULL; 3469 mddev->queue->unplug_fn = NULL; 3470 mddev->queue->backing_dev_info.congested_fn = NULL; 3471 if (mddev->pers->sync_request) 3472 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3473 3474 module_put(mddev->pers->owner); 3475 mddev->pers = NULL; 3476 3477 set_capacity(disk, 0); 3478 mddev->changed = 1; 3479 3480 if (mddev->ro) 3481 mddev->ro = 0; 3482 } 3483 if (!mddev->in_sync || mddev->flags) { 3484 /* mark array as shutdown cleanly */ 3485 mddev->in_sync = 1; 3486 md_update_sb(mddev, 1); 3487 } 3488 if (mode == 1) 3489 set_disk_ro(disk, 1); 3490 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3491 } 3492 3493 /* 3494 * Free resources if final stop 3495 */ 3496 if (mode == 0) { 3497 mdk_rdev_t *rdev; 3498 struct list_head *tmp; 3499 3500 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3501 3502 bitmap_destroy(mddev); 3503 if (mddev->bitmap_file) { 3504 restore_bitmap_write_access(mddev->bitmap_file); 3505 fput(mddev->bitmap_file); 3506 mddev->bitmap_file = NULL; 3507 } 3508 mddev->bitmap_offset = 0; 3509 3510 ITERATE_RDEV(mddev,rdev,tmp) 3511 if (rdev->raid_disk >= 0) { 3512 char nm[20]; 3513 sprintf(nm, "rd%d", rdev->raid_disk); 3514 sysfs_remove_link(&mddev->kobj, nm); 3515 } 3516 3517 /* make sure all delayed_delete calls have finished */ 3518 flush_scheduled_work(); 3519 3520 export_array(mddev); 3521 3522 mddev->array_size = 0; 3523 mddev->size = 0; 3524 mddev->raid_disks = 0; 3525 mddev->recovery_cp = 0; 3526 mddev->reshape_position = MaxSector; 3527 3528 } else if (mddev->pers) 3529 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3530 mdname(mddev)); 3531 err = 0; 3532 md_new_event(mddev); 3533 out: 3534 return err; 3535 } 3536 3537 #ifndef MODULE 3538 static void autorun_array(mddev_t *mddev) 3539 { 3540 mdk_rdev_t *rdev; 3541 struct list_head *tmp; 3542 int err; 3543 3544 if (list_empty(&mddev->disks)) 3545 return; 3546 3547 printk(KERN_INFO "md: running: "); 3548 3549 ITERATE_RDEV(mddev,rdev,tmp) { 3550 char b[BDEVNAME_SIZE]; 3551 printk("<%s>", bdevname(rdev->bdev,b)); 3552 } 3553 printk("\n"); 3554 3555 err = do_md_run (mddev); 3556 if (err) { 3557 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3558 do_md_stop (mddev, 0); 3559 } 3560 } 3561 3562 /* 3563 * lets try to run arrays based on all disks that have arrived 3564 * until now. (those are in pending_raid_disks) 3565 * 3566 * the method: pick the first pending disk, collect all disks with 3567 * the same UUID, remove all from the pending list and put them into 3568 * the 'same_array' list. Then order this list based on superblock 3569 * update time (freshest comes first), kick out 'old' disks and 3570 * compare superblocks. If everything's fine then run it. 3571 * 3572 * If "unit" is allocated, then bump its reference count 3573 */ 3574 static void autorun_devices(int part) 3575 { 3576 struct list_head *tmp; 3577 mdk_rdev_t *rdev0, *rdev; 3578 mddev_t *mddev; 3579 char b[BDEVNAME_SIZE]; 3580 3581 printk(KERN_INFO "md: autorun ...\n"); 3582 while (!list_empty(&pending_raid_disks)) { 3583 int unit; 3584 dev_t dev; 3585 LIST_HEAD(candidates); 3586 rdev0 = list_entry(pending_raid_disks.next, 3587 mdk_rdev_t, same_set); 3588 3589 printk(KERN_INFO "md: considering %s ...\n", 3590 bdevname(rdev0->bdev,b)); 3591 INIT_LIST_HEAD(&candidates); 3592 ITERATE_RDEV_PENDING(rdev,tmp) 3593 if (super_90_load(rdev, rdev0, 0) >= 0) { 3594 printk(KERN_INFO "md: adding %s ...\n", 3595 bdevname(rdev->bdev,b)); 3596 list_move(&rdev->same_set, &candidates); 3597 } 3598 /* 3599 * now we have a set of devices, with all of them having 3600 * mostly sane superblocks. It's time to allocate the 3601 * mddev. 3602 */ 3603 if (part) { 3604 dev = MKDEV(mdp_major, 3605 rdev0->preferred_minor << MdpMinorShift); 3606 unit = MINOR(dev) >> MdpMinorShift; 3607 } else { 3608 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 3609 unit = MINOR(dev); 3610 } 3611 if (rdev0->preferred_minor != unit) { 3612 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 3613 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 3614 break; 3615 } 3616 3617 md_probe(dev, NULL, NULL); 3618 mddev = mddev_find(dev); 3619 if (!mddev) { 3620 printk(KERN_ERR 3621 "md: cannot allocate memory for md drive.\n"); 3622 break; 3623 } 3624 if (mddev_lock(mddev)) 3625 printk(KERN_WARNING "md: %s locked, cannot run\n", 3626 mdname(mddev)); 3627 else if (mddev->raid_disks || mddev->major_version 3628 || !list_empty(&mddev->disks)) { 3629 printk(KERN_WARNING 3630 "md: %s already running, cannot run %s\n", 3631 mdname(mddev), bdevname(rdev0->bdev,b)); 3632 mddev_unlock(mddev); 3633 } else { 3634 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 3635 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) { 3636 list_del_init(&rdev->same_set); 3637 if (bind_rdev_to_array(rdev, mddev)) 3638 export_rdev(rdev); 3639 } 3640 autorun_array(mddev); 3641 mddev_unlock(mddev); 3642 } 3643 /* on success, candidates will be empty, on error 3644 * it won't... 3645 */ 3646 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) 3647 export_rdev(rdev); 3648 mddev_put(mddev); 3649 } 3650 printk(KERN_INFO "md: ... autorun DONE.\n"); 3651 } 3652 #endif /* !MODULE */ 3653 3654 static int get_version(void __user * arg) 3655 { 3656 mdu_version_t ver; 3657 3658 ver.major = MD_MAJOR_VERSION; 3659 ver.minor = MD_MINOR_VERSION; 3660 ver.patchlevel = MD_PATCHLEVEL_VERSION; 3661 3662 if (copy_to_user(arg, &ver, sizeof(ver))) 3663 return -EFAULT; 3664 3665 return 0; 3666 } 3667 3668 static int get_array_info(mddev_t * mddev, void __user * arg) 3669 { 3670 mdu_array_info_t info; 3671 int nr,working,active,failed,spare; 3672 mdk_rdev_t *rdev; 3673 struct list_head *tmp; 3674 3675 nr=working=active=failed=spare=0; 3676 ITERATE_RDEV(mddev,rdev,tmp) { 3677 nr++; 3678 if (test_bit(Faulty, &rdev->flags)) 3679 failed++; 3680 else { 3681 working++; 3682 if (test_bit(In_sync, &rdev->flags)) 3683 active++; 3684 else 3685 spare++; 3686 } 3687 } 3688 3689 info.major_version = mddev->major_version; 3690 info.minor_version = mddev->minor_version; 3691 info.patch_version = MD_PATCHLEVEL_VERSION; 3692 info.ctime = mddev->ctime; 3693 info.level = mddev->level; 3694 info.size = mddev->size; 3695 if (info.size != mddev->size) /* overflow */ 3696 info.size = -1; 3697 info.nr_disks = nr; 3698 info.raid_disks = mddev->raid_disks; 3699 info.md_minor = mddev->md_minor; 3700 info.not_persistent= !mddev->persistent; 3701 3702 info.utime = mddev->utime; 3703 info.state = 0; 3704 if (mddev->in_sync) 3705 info.state = (1<<MD_SB_CLEAN); 3706 if (mddev->bitmap && mddev->bitmap_offset) 3707 info.state = (1<<MD_SB_BITMAP_PRESENT); 3708 info.active_disks = active; 3709 info.working_disks = working; 3710 info.failed_disks = failed; 3711 info.spare_disks = spare; 3712 3713 info.layout = mddev->layout; 3714 info.chunk_size = mddev->chunk_size; 3715 3716 if (copy_to_user(arg, &info, sizeof(info))) 3717 return -EFAULT; 3718 3719 return 0; 3720 } 3721 3722 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 3723 { 3724 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 3725 char *ptr, *buf = NULL; 3726 int err = -ENOMEM; 3727 3728 md_allow_write(mddev); 3729 3730 file = kmalloc(sizeof(*file), GFP_KERNEL); 3731 if (!file) 3732 goto out; 3733 3734 /* bitmap disabled, zero the first byte and copy out */ 3735 if (!mddev->bitmap || !mddev->bitmap->file) { 3736 file->pathname[0] = '\0'; 3737 goto copy_out; 3738 } 3739 3740 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 3741 if (!buf) 3742 goto out; 3743 3744 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname)); 3745 if (!ptr) 3746 goto out; 3747 3748 strcpy(file->pathname, ptr); 3749 3750 copy_out: 3751 err = 0; 3752 if (copy_to_user(arg, file, sizeof(*file))) 3753 err = -EFAULT; 3754 out: 3755 kfree(buf); 3756 kfree(file); 3757 return err; 3758 } 3759 3760 static int get_disk_info(mddev_t * mddev, void __user * arg) 3761 { 3762 mdu_disk_info_t info; 3763 unsigned int nr; 3764 mdk_rdev_t *rdev; 3765 3766 if (copy_from_user(&info, arg, sizeof(info))) 3767 return -EFAULT; 3768 3769 nr = info.number; 3770 3771 rdev = find_rdev_nr(mddev, nr); 3772 if (rdev) { 3773 info.major = MAJOR(rdev->bdev->bd_dev); 3774 info.minor = MINOR(rdev->bdev->bd_dev); 3775 info.raid_disk = rdev->raid_disk; 3776 info.state = 0; 3777 if (test_bit(Faulty, &rdev->flags)) 3778 info.state |= (1<<MD_DISK_FAULTY); 3779 else if (test_bit(In_sync, &rdev->flags)) { 3780 info.state |= (1<<MD_DISK_ACTIVE); 3781 info.state |= (1<<MD_DISK_SYNC); 3782 } 3783 if (test_bit(WriteMostly, &rdev->flags)) 3784 info.state |= (1<<MD_DISK_WRITEMOSTLY); 3785 } else { 3786 info.major = info.minor = 0; 3787 info.raid_disk = -1; 3788 info.state = (1<<MD_DISK_REMOVED); 3789 } 3790 3791 if (copy_to_user(arg, &info, sizeof(info))) 3792 return -EFAULT; 3793 3794 return 0; 3795 } 3796 3797 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 3798 { 3799 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3800 mdk_rdev_t *rdev; 3801 dev_t dev = MKDEV(info->major,info->minor); 3802 3803 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 3804 return -EOVERFLOW; 3805 3806 if (!mddev->raid_disks) { 3807 int err; 3808 /* expecting a device which has a superblock */ 3809 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 3810 if (IS_ERR(rdev)) { 3811 printk(KERN_WARNING 3812 "md: md_import_device returned %ld\n", 3813 PTR_ERR(rdev)); 3814 return PTR_ERR(rdev); 3815 } 3816 if (!list_empty(&mddev->disks)) { 3817 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 3818 mdk_rdev_t, same_set); 3819 int err = super_types[mddev->major_version] 3820 .load_super(rdev, rdev0, mddev->minor_version); 3821 if (err < 0) { 3822 printk(KERN_WARNING 3823 "md: %s has different UUID to %s\n", 3824 bdevname(rdev->bdev,b), 3825 bdevname(rdev0->bdev,b2)); 3826 export_rdev(rdev); 3827 return -EINVAL; 3828 } 3829 } 3830 err = bind_rdev_to_array(rdev, mddev); 3831 if (err) 3832 export_rdev(rdev); 3833 return err; 3834 } 3835 3836 /* 3837 * add_new_disk can be used once the array is assembled 3838 * to add "hot spares". They must already have a superblock 3839 * written 3840 */ 3841 if (mddev->pers) { 3842 int err; 3843 if (!mddev->pers->hot_add_disk) { 3844 printk(KERN_WARNING 3845 "%s: personality does not support diskops!\n", 3846 mdname(mddev)); 3847 return -EINVAL; 3848 } 3849 if (mddev->persistent) 3850 rdev = md_import_device(dev, mddev->major_version, 3851 mddev->minor_version); 3852 else 3853 rdev = md_import_device(dev, -1, -1); 3854 if (IS_ERR(rdev)) { 3855 printk(KERN_WARNING 3856 "md: md_import_device returned %ld\n", 3857 PTR_ERR(rdev)); 3858 return PTR_ERR(rdev); 3859 } 3860 /* set save_raid_disk if appropriate */ 3861 if (!mddev->persistent) { 3862 if (info->state & (1<<MD_DISK_SYNC) && 3863 info->raid_disk < mddev->raid_disks) 3864 rdev->raid_disk = info->raid_disk; 3865 else 3866 rdev->raid_disk = -1; 3867 } else 3868 super_types[mddev->major_version]. 3869 validate_super(mddev, rdev); 3870 rdev->saved_raid_disk = rdev->raid_disk; 3871 3872 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 3873 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3874 set_bit(WriteMostly, &rdev->flags); 3875 3876 rdev->raid_disk = -1; 3877 err = bind_rdev_to_array(rdev, mddev); 3878 if (!err && !mddev->pers->hot_remove_disk) { 3879 /* If there is hot_add_disk but no hot_remove_disk 3880 * then added disks for geometry changes, 3881 * and should be added immediately. 3882 */ 3883 super_types[mddev->major_version]. 3884 validate_super(mddev, rdev); 3885 err = mddev->pers->hot_add_disk(mddev, rdev); 3886 if (err) 3887 unbind_rdev_from_array(rdev); 3888 } 3889 if (err) 3890 export_rdev(rdev); 3891 3892 md_update_sb(mddev, 1); 3893 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3894 md_wakeup_thread(mddev->thread); 3895 return err; 3896 } 3897 3898 /* otherwise, add_new_disk is only allowed 3899 * for major_version==0 superblocks 3900 */ 3901 if (mddev->major_version != 0) { 3902 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 3903 mdname(mddev)); 3904 return -EINVAL; 3905 } 3906 3907 if (!(info->state & (1<<MD_DISK_FAULTY))) { 3908 int err; 3909 rdev = md_import_device (dev, -1, 0); 3910 if (IS_ERR(rdev)) { 3911 printk(KERN_WARNING 3912 "md: error, md_import_device() returned %ld\n", 3913 PTR_ERR(rdev)); 3914 return PTR_ERR(rdev); 3915 } 3916 rdev->desc_nr = info->number; 3917 if (info->raid_disk < mddev->raid_disks) 3918 rdev->raid_disk = info->raid_disk; 3919 else 3920 rdev->raid_disk = -1; 3921 3922 rdev->flags = 0; 3923 3924 if (rdev->raid_disk < mddev->raid_disks) 3925 if (info->state & (1<<MD_DISK_SYNC)) 3926 set_bit(In_sync, &rdev->flags); 3927 3928 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 3929 set_bit(WriteMostly, &rdev->flags); 3930 3931 if (!mddev->persistent) { 3932 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 3933 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 3934 } else 3935 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 3936 rdev->size = calc_dev_size(rdev, mddev->chunk_size); 3937 3938 err = bind_rdev_to_array(rdev, mddev); 3939 if (err) { 3940 export_rdev(rdev); 3941 return err; 3942 } 3943 } 3944 3945 return 0; 3946 } 3947 3948 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 3949 { 3950 char b[BDEVNAME_SIZE]; 3951 mdk_rdev_t *rdev; 3952 3953 if (!mddev->pers) 3954 return -ENODEV; 3955 3956 rdev = find_rdev(mddev, dev); 3957 if (!rdev) 3958 return -ENXIO; 3959 3960 if (rdev->raid_disk >= 0) 3961 goto busy; 3962 3963 kick_rdev_from_array(rdev); 3964 md_update_sb(mddev, 1); 3965 md_new_event(mddev); 3966 3967 return 0; 3968 busy: 3969 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n", 3970 bdevname(rdev->bdev,b), mdname(mddev)); 3971 return -EBUSY; 3972 } 3973 3974 static int hot_add_disk(mddev_t * mddev, dev_t dev) 3975 { 3976 char b[BDEVNAME_SIZE]; 3977 int err; 3978 unsigned int size; 3979 mdk_rdev_t *rdev; 3980 3981 if (!mddev->pers) 3982 return -ENODEV; 3983 3984 if (mddev->major_version != 0) { 3985 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 3986 " version-0 superblocks.\n", 3987 mdname(mddev)); 3988 return -EINVAL; 3989 } 3990 if (!mddev->pers->hot_add_disk) { 3991 printk(KERN_WARNING 3992 "%s: personality does not support diskops!\n", 3993 mdname(mddev)); 3994 return -EINVAL; 3995 } 3996 3997 rdev = md_import_device (dev, -1, 0); 3998 if (IS_ERR(rdev)) { 3999 printk(KERN_WARNING 4000 "md: error, md_import_device() returned %ld\n", 4001 PTR_ERR(rdev)); 4002 return -EINVAL; 4003 } 4004 4005 if (mddev->persistent) 4006 rdev->sb_offset = calc_dev_sboffset(rdev->bdev); 4007 else 4008 rdev->sb_offset = 4009 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 4010 4011 size = calc_dev_size(rdev, mddev->chunk_size); 4012 rdev->size = size; 4013 4014 if (test_bit(Faulty, &rdev->flags)) { 4015 printk(KERN_WARNING 4016 "md: can not hot-add faulty %s disk to %s!\n", 4017 bdevname(rdev->bdev,b), mdname(mddev)); 4018 err = -EINVAL; 4019 goto abort_export; 4020 } 4021 clear_bit(In_sync, &rdev->flags); 4022 rdev->desc_nr = -1; 4023 rdev->saved_raid_disk = -1; 4024 err = bind_rdev_to_array(rdev, mddev); 4025 if (err) 4026 goto abort_export; 4027 4028 /* 4029 * The rest should better be atomic, we can have disk failures 4030 * noticed in interrupt contexts ... 4031 */ 4032 4033 if (rdev->desc_nr == mddev->max_disks) { 4034 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 4035 mdname(mddev)); 4036 err = -EBUSY; 4037 goto abort_unbind_export; 4038 } 4039 4040 rdev->raid_disk = -1; 4041 4042 md_update_sb(mddev, 1); 4043 4044 /* 4045 * Kick recovery, maybe this spare has to be added to the 4046 * array immediately. 4047 */ 4048 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4049 md_wakeup_thread(mddev->thread); 4050 md_new_event(mddev); 4051 return 0; 4052 4053 abort_unbind_export: 4054 unbind_rdev_from_array(rdev); 4055 4056 abort_export: 4057 export_rdev(rdev); 4058 return err; 4059 } 4060 4061 static int set_bitmap_file(mddev_t *mddev, int fd) 4062 { 4063 int err; 4064 4065 if (mddev->pers) { 4066 if (!mddev->pers->quiesce) 4067 return -EBUSY; 4068 if (mddev->recovery || mddev->sync_thread) 4069 return -EBUSY; 4070 /* we should be able to change the bitmap.. */ 4071 } 4072 4073 4074 if (fd >= 0) { 4075 if (mddev->bitmap) 4076 return -EEXIST; /* cannot add when bitmap is present */ 4077 mddev->bitmap_file = fget(fd); 4078 4079 if (mddev->bitmap_file == NULL) { 4080 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4081 mdname(mddev)); 4082 return -EBADF; 4083 } 4084 4085 err = deny_bitmap_write_access(mddev->bitmap_file); 4086 if (err) { 4087 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4088 mdname(mddev)); 4089 fput(mddev->bitmap_file); 4090 mddev->bitmap_file = NULL; 4091 return err; 4092 } 4093 mddev->bitmap_offset = 0; /* file overrides offset */ 4094 } else if (mddev->bitmap == NULL) 4095 return -ENOENT; /* cannot remove what isn't there */ 4096 err = 0; 4097 if (mddev->pers) { 4098 mddev->pers->quiesce(mddev, 1); 4099 if (fd >= 0) 4100 err = bitmap_create(mddev); 4101 if (fd < 0 || err) { 4102 bitmap_destroy(mddev); 4103 fd = -1; /* make sure to put the file */ 4104 } 4105 mddev->pers->quiesce(mddev, 0); 4106 } 4107 if (fd < 0) { 4108 if (mddev->bitmap_file) { 4109 restore_bitmap_write_access(mddev->bitmap_file); 4110 fput(mddev->bitmap_file); 4111 } 4112 mddev->bitmap_file = NULL; 4113 } 4114 4115 return err; 4116 } 4117 4118 /* 4119 * set_array_info is used two different ways 4120 * The original usage is when creating a new array. 4121 * In this usage, raid_disks is > 0 and it together with 4122 * level, size, not_persistent,layout,chunksize determine the 4123 * shape of the array. 4124 * This will always create an array with a type-0.90.0 superblock. 4125 * The newer usage is when assembling an array. 4126 * In this case raid_disks will be 0, and the major_version field is 4127 * use to determine which style super-blocks are to be found on the devices. 4128 * The minor and patch _version numbers are also kept incase the 4129 * super_block handler wishes to interpret them. 4130 */ 4131 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4132 { 4133 4134 if (info->raid_disks == 0) { 4135 /* just setting version number for superblock loading */ 4136 if (info->major_version < 0 || 4137 info->major_version >= ARRAY_SIZE(super_types) || 4138 super_types[info->major_version].name == NULL) { 4139 /* maybe try to auto-load a module? */ 4140 printk(KERN_INFO 4141 "md: superblock version %d not known\n", 4142 info->major_version); 4143 return -EINVAL; 4144 } 4145 mddev->major_version = info->major_version; 4146 mddev->minor_version = info->minor_version; 4147 mddev->patch_version = info->patch_version; 4148 mddev->persistent = !info->not_persistent; 4149 return 0; 4150 } 4151 mddev->major_version = MD_MAJOR_VERSION; 4152 mddev->minor_version = MD_MINOR_VERSION; 4153 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4154 mddev->ctime = get_seconds(); 4155 4156 mddev->level = info->level; 4157 mddev->clevel[0] = 0; 4158 mddev->size = info->size; 4159 mddev->raid_disks = info->raid_disks; 4160 /* don't set md_minor, it is determined by which /dev/md* was 4161 * openned 4162 */ 4163 if (info->state & (1<<MD_SB_CLEAN)) 4164 mddev->recovery_cp = MaxSector; 4165 else 4166 mddev->recovery_cp = 0; 4167 mddev->persistent = ! info->not_persistent; 4168 4169 mddev->layout = info->layout; 4170 mddev->chunk_size = info->chunk_size; 4171 4172 mddev->max_disks = MD_SB_DISKS; 4173 4174 mddev->flags = 0; 4175 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4176 4177 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4178 mddev->bitmap_offset = 0; 4179 4180 mddev->reshape_position = MaxSector; 4181 4182 /* 4183 * Generate a 128 bit UUID 4184 */ 4185 get_random_bytes(mddev->uuid, 16); 4186 4187 mddev->new_level = mddev->level; 4188 mddev->new_chunk = mddev->chunk_size; 4189 mddev->new_layout = mddev->layout; 4190 mddev->delta_disks = 0; 4191 4192 return 0; 4193 } 4194 4195 static int update_size(mddev_t *mddev, unsigned long size) 4196 { 4197 mdk_rdev_t * rdev; 4198 int rv; 4199 struct list_head *tmp; 4200 int fit = (size == 0); 4201 4202 if (mddev->pers->resize == NULL) 4203 return -EINVAL; 4204 /* The "size" is the amount of each device that is used. 4205 * This can only make sense for arrays with redundancy. 4206 * linear and raid0 always use whatever space is available 4207 * We can only consider changing the size if no resync 4208 * or reconstruction is happening, and if the new size 4209 * is acceptable. It must fit before the sb_offset or, 4210 * if that is <data_offset, it must fit before the 4211 * size of each device. 4212 * If size is zero, we find the largest size that fits. 4213 */ 4214 if (mddev->sync_thread) 4215 return -EBUSY; 4216 ITERATE_RDEV(mddev,rdev,tmp) { 4217 sector_t avail; 4218 avail = rdev->size * 2; 4219 4220 if (fit && (size == 0 || size > avail/2)) 4221 size = avail/2; 4222 if (avail < ((sector_t)size << 1)) 4223 return -ENOSPC; 4224 } 4225 rv = mddev->pers->resize(mddev, (sector_t)size *2); 4226 if (!rv) { 4227 struct block_device *bdev; 4228 4229 bdev = bdget_disk(mddev->gendisk, 0); 4230 if (bdev) { 4231 mutex_lock(&bdev->bd_inode->i_mutex); 4232 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10); 4233 mutex_unlock(&bdev->bd_inode->i_mutex); 4234 bdput(bdev); 4235 } 4236 } 4237 return rv; 4238 } 4239 4240 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4241 { 4242 int rv; 4243 /* change the number of raid disks */ 4244 if (mddev->pers->check_reshape == NULL) 4245 return -EINVAL; 4246 if (raid_disks <= 0 || 4247 raid_disks >= mddev->max_disks) 4248 return -EINVAL; 4249 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4250 return -EBUSY; 4251 mddev->delta_disks = raid_disks - mddev->raid_disks; 4252 4253 rv = mddev->pers->check_reshape(mddev); 4254 return rv; 4255 } 4256 4257 4258 /* 4259 * update_array_info is used to change the configuration of an 4260 * on-line array. 4261 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4262 * fields in the info are checked against the array. 4263 * Any differences that cannot be handled will cause an error. 4264 * Normally, only one change can be managed at a time. 4265 */ 4266 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4267 { 4268 int rv = 0; 4269 int cnt = 0; 4270 int state = 0; 4271 4272 /* calculate expected state,ignoring low bits */ 4273 if (mddev->bitmap && mddev->bitmap_offset) 4274 state |= (1 << MD_SB_BITMAP_PRESENT); 4275 4276 if (mddev->major_version != info->major_version || 4277 mddev->minor_version != info->minor_version || 4278 /* mddev->patch_version != info->patch_version || */ 4279 mddev->ctime != info->ctime || 4280 mddev->level != info->level || 4281 /* mddev->layout != info->layout || */ 4282 !mddev->persistent != info->not_persistent|| 4283 mddev->chunk_size != info->chunk_size || 4284 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4285 ((state^info->state) & 0xfffffe00) 4286 ) 4287 return -EINVAL; 4288 /* Check there is only one change */ 4289 if (info->size >= 0 && mddev->size != info->size) cnt++; 4290 if (mddev->raid_disks != info->raid_disks) cnt++; 4291 if (mddev->layout != info->layout) cnt++; 4292 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4293 if (cnt == 0) return 0; 4294 if (cnt > 1) return -EINVAL; 4295 4296 if (mddev->layout != info->layout) { 4297 /* Change layout 4298 * we don't need to do anything at the md level, the 4299 * personality will take care of it all. 4300 */ 4301 if (mddev->pers->reconfig == NULL) 4302 return -EINVAL; 4303 else 4304 return mddev->pers->reconfig(mddev, info->layout, -1); 4305 } 4306 if (info->size >= 0 && mddev->size != info->size) 4307 rv = update_size(mddev, info->size); 4308 4309 if (mddev->raid_disks != info->raid_disks) 4310 rv = update_raid_disks(mddev, info->raid_disks); 4311 4312 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4313 if (mddev->pers->quiesce == NULL) 4314 return -EINVAL; 4315 if (mddev->recovery || mddev->sync_thread) 4316 return -EBUSY; 4317 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4318 /* add the bitmap */ 4319 if (mddev->bitmap) 4320 return -EEXIST; 4321 if (mddev->default_bitmap_offset == 0) 4322 return -EINVAL; 4323 mddev->bitmap_offset = mddev->default_bitmap_offset; 4324 mddev->pers->quiesce(mddev, 1); 4325 rv = bitmap_create(mddev); 4326 if (rv) 4327 bitmap_destroy(mddev); 4328 mddev->pers->quiesce(mddev, 0); 4329 } else { 4330 /* remove the bitmap */ 4331 if (!mddev->bitmap) 4332 return -ENOENT; 4333 if (mddev->bitmap->file) 4334 return -EINVAL; 4335 mddev->pers->quiesce(mddev, 1); 4336 bitmap_destroy(mddev); 4337 mddev->pers->quiesce(mddev, 0); 4338 mddev->bitmap_offset = 0; 4339 } 4340 } 4341 md_update_sb(mddev, 1); 4342 return rv; 4343 } 4344 4345 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4346 { 4347 mdk_rdev_t *rdev; 4348 4349 if (mddev->pers == NULL) 4350 return -ENODEV; 4351 4352 rdev = find_rdev(mddev, dev); 4353 if (!rdev) 4354 return -ENODEV; 4355 4356 md_error(mddev, rdev); 4357 return 0; 4358 } 4359 4360 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4361 { 4362 mddev_t *mddev = bdev->bd_disk->private_data; 4363 4364 geo->heads = 2; 4365 geo->sectors = 4; 4366 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4367 return 0; 4368 } 4369 4370 static int md_ioctl(struct inode *inode, struct file *file, 4371 unsigned int cmd, unsigned long arg) 4372 { 4373 int err = 0; 4374 void __user *argp = (void __user *)arg; 4375 mddev_t *mddev = NULL; 4376 4377 if (!capable(CAP_SYS_ADMIN)) 4378 return -EACCES; 4379 4380 /* 4381 * Commands dealing with the RAID driver but not any 4382 * particular array: 4383 */ 4384 switch (cmd) 4385 { 4386 case RAID_VERSION: 4387 err = get_version(argp); 4388 goto done; 4389 4390 case PRINT_RAID_DEBUG: 4391 err = 0; 4392 md_print_devices(); 4393 goto done; 4394 4395 #ifndef MODULE 4396 case RAID_AUTORUN: 4397 err = 0; 4398 autostart_arrays(arg); 4399 goto done; 4400 #endif 4401 default:; 4402 } 4403 4404 /* 4405 * Commands creating/starting a new array: 4406 */ 4407 4408 mddev = inode->i_bdev->bd_disk->private_data; 4409 4410 if (!mddev) { 4411 BUG(); 4412 goto abort; 4413 } 4414 4415 err = mddev_lock(mddev); 4416 if (err) { 4417 printk(KERN_INFO 4418 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4419 err, cmd); 4420 goto abort; 4421 } 4422 4423 switch (cmd) 4424 { 4425 case SET_ARRAY_INFO: 4426 { 4427 mdu_array_info_t info; 4428 if (!arg) 4429 memset(&info, 0, sizeof(info)); 4430 else if (copy_from_user(&info, argp, sizeof(info))) { 4431 err = -EFAULT; 4432 goto abort_unlock; 4433 } 4434 if (mddev->pers) { 4435 err = update_array_info(mddev, &info); 4436 if (err) { 4437 printk(KERN_WARNING "md: couldn't update" 4438 " array info. %d\n", err); 4439 goto abort_unlock; 4440 } 4441 goto done_unlock; 4442 } 4443 if (!list_empty(&mddev->disks)) { 4444 printk(KERN_WARNING 4445 "md: array %s already has disks!\n", 4446 mdname(mddev)); 4447 err = -EBUSY; 4448 goto abort_unlock; 4449 } 4450 if (mddev->raid_disks) { 4451 printk(KERN_WARNING 4452 "md: array %s already initialised!\n", 4453 mdname(mddev)); 4454 err = -EBUSY; 4455 goto abort_unlock; 4456 } 4457 err = set_array_info(mddev, &info); 4458 if (err) { 4459 printk(KERN_WARNING "md: couldn't set" 4460 " array info. %d\n", err); 4461 goto abort_unlock; 4462 } 4463 } 4464 goto done_unlock; 4465 4466 default:; 4467 } 4468 4469 /* 4470 * Commands querying/configuring an existing array: 4471 */ 4472 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4473 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4474 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4475 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4476 && cmd != GET_BITMAP_FILE) { 4477 err = -ENODEV; 4478 goto abort_unlock; 4479 } 4480 4481 /* 4482 * Commands even a read-only array can execute: 4483 */ 4484 switch (cmd) 4485 { 4486 case GET_ARRAY_INFO: 4487 err = get_array_info(mddev, argp); 4488 goto done_unlock; 4489 4490 case GET_BITMAP_FILE: 4491 err = get_bitmap_file(mddev, argp); 4492 goto done_unlock; 4493 4494 case GET_DISK_INFO: 4495 err = get_disk_info(mddev, argp); 4496 goto done_unlock; 4497 4498 case RESTART_ARRAY_RW: 4499 err = restart_array(mddev); 4500 goto done_unlock; 4501 4502 case STOP_ARRAY: 4503 err = do_md_stop (mddev, 0); 4504 goto done_unlock; 4505 4506 case STOP_ARRAY_RO: 4507 err = do_md_stop (mddev, 1); 4508 goto done_unlock; 4509 4510 /* 4511 * We have a problem here : there is no easy way to give a CHS 4512 * virtual geometry. We currently pretend that we have a 2 heads 4513 * 4 sectors (with a BIG number of cylinders...). This drives 4514 * dosfs just mad... ;-) 4515 */ 4516 } 4517 4518 /* 4519 * The remaining ioctls are changing the state of the 4520 * superblock, so we do not allow them on read-only arrays. 4521 * However non-MD ioctls (e.g. get-size) will still come through 4522 * here and hit the 'default' below, so only disallow 4523 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4524 */ 4525 if (_IOC_TYPE(cmd) == MD_MAJOR && 4526 mddev->ro && mddev->pers) { 4527 if (mddev->ro == 2) { 4528 mddev->ro = 0; 4529 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4530 md_wakeup_thread(mddev->thread); 4531 4532 } else { 4533 err = -EROFS; 4534 goto abort_unlock; 4535 } 4536 } 4537 4538 switch (cmd) 4539 { 4540 case ADD_NEW_DISK: 4541 { 4542 mdu_disk_info_t info; 4543 if (copy_from_user(&info, argp, sizeof(info))) 4544 err = -EFAULT; 4545 else 4546 err = add_new_disk(mddev, &info); 4547 goto done_unlock; 4548 } 4549 4550 case HOT_REMOVE_DISK: 4551 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4552 goto done_unlock; 4553 4554 case HOT_ADD_DISK: 4555 err = hot_add_disk(mddev, new_decode_dev(arg)); 4556 goto done_unlock; 4557 4558 case SET_DISK_FAULTY: 4559 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4560 goto done_unlock; 4561 4562 case RUN_ARRAY: 4563 err = do_md_run (mddev); 4564 goto done_unlock; 4565 4566 case SET_BITMAP_FILE: 4567 err = set_bitmap_file(mddev, (int)arg); 4568 goto done_unlock; 4569 4570 default: 4571 err = -EINVAL; 4572 goto abort_unlock; 4573 } 4574 4575 done_unlock: 4576 abort_unlock: 4577 mddev_unlock(mddev); 4578 4579 return err; 4580 done: 4581 if (err) 4582 MD_BUG(); 4583 abort: 4584 return err; 4585 } 4586 4587 static int md_open(struct inode *inode, struct file *file) 4588 { 4589 /* 4590 * Succeed if we can lock the mddev, which confirms that 4591 * it isn't being stopped right now. 4592 */ 4593 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4594 int err; 4595 4596 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 4597 goto out; 4598 4599 err = 0; 4600 mddev_get(mddev); 4601 mddev_unlock(mddev); 4602 4603 check_disk_change(inode->i_bdev); 4604 out: 4605 return err; 4606 } 4607 4608 static int md_release(struct inode *inode, struct file * file) 4609 { 4610 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 4611 4612 BUG_ON(!mddev); 4613 mddev_put(mddev); 4614 4615 return 0; 4616 } 4617 4618 static int md_media_changed(struct gendisk *disk) 4619 { 4620 mddev_t *mddev = disk->private_data; 4621 4622 return mddev->changed; 4623 } 4624 4625 static int md_revalidate(struct gendisk *disk) 4626 { 4627 mddev_t *mddev = disk->private_data; 4628 4629 mddev->changed = 0; 4630 return 0; 4631 } 4632 static struct block_device_operations md_fops = 4633 { 4634 .owner = THIS_MODULE, 4635 .open = md_open, 4636 .release = md_release, 4637 .ioctl = md_ioctl, 4638 .getgeo = md_getgeo, 4639 .media_changed = md_media_changed, 4640 .revalidate_disk= md_revalidate, 4641 }; 4642 4643 static int md_thread(void * arg) 4644 { 4645 mdk_thread_t *thread = arg; 4646 4647 /* 4648 * md_thread is a 'system-thread', it's priority should be very 4649 * high. We avoid resource deadlocks individually in each 4650 * raid personality. (RAID5 does preallocation) We also use RR and 4651 * the very same RT priority as kswapd, thus we will never get 4652 * into a priority inversion deadlock. 4653 * 4654 * we definitely have to have equal or higher priority than 4655 * bdflush, otherwise bdflush will deadlock if there are too 4656 * many dirty RAID5 blocks. 4657 */ 4658 4659 allow_signal(SIGKILL); 4660 while (!kthread_should_stop()) { 4661 4662 /* We need to wait INTERRUPTIBLE so that 4663 * we don't add to the load-average. 4664 * That means we need to be sure no signals are 4665 * pending 4666 */ 4667 if (signal_pending(current)) 4668 flush_signals(current); 4669 4670 wait_event_interruptible_timeout 4671 (thread->wqueue, 4672 test_bit(THREAD_WAKEUP, &thread->flags) 4673 || kthread_should_stop(), 4674 thread->timeout); 4675 4676 clear_bit(THREAD_WAKEUP, &thread->flags); 4677 4678 thread->run(thread->mddev); 4679 } 4680 4681 return 0; 4682 } 4683 4684 void md_wakeup_thread(mdk_thread_t *thread) 4685 { 4686 if (thread) { 4687 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 4688 set_bit(THREAD_WAKEUP, &thread->flags); 4689 wake_up(&thread->wqueue); 4690 } 4691 } 4692 4693 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 4694 const char *name) 4695 { 4696 mdk_thread_t *thread; 4697 4698 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 4699 if (!thread) 4700 return NULL; 4701 4702 init_waitqueue_head(&thread->wqueue); 4703 4704 thread->run = run; 4705 thread->mddev = mddev; 4706 thread->timeout = MAX_SCHEDULE_TIMEOUT; 4707 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 4708 if (IS_ERR(thread->tsk)) { 4709 kfree(thread); 4710 return NULL; 4711 } 4712 return thread; 4713 } 4714 4715 void md_unregister_thread(mdk_thread_t *thread) 4716 { 4717 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 4718 4719 kthread_stop(thread->tsk); 4720 kfree(thread); 4721 } 4722 4723 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 4724 { 4725 if (!mddev) { 4726 MD_BUG(); 4727 return; 4728 } 4729 4730 if (!rdev || test_bit(Faulty, &rdev->flags)) 4731 return; 4732 /* 4733 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 4734 mdname(mddev), 4735 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 4736 __builtin_return_address(0),__builtin_return_address(1), 4737 __builtin_return_address(2),__builtin_return_address(3)); 4738 */ 4739 if (!mddev->pers) 4740 return; 4741 if (!mddev->pers->error_handler) 4742 return; 4743 mddev->pers->error_handler(mddev,rdev); 4744 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4745 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4746 md_wakeup_thread(mddev->thread); 4747 md_new_event_inintr(mddev); 4748 } 4749 4750 /* seq_file implementation /proc/mdstat */ 4751 4752 static void status_unused(struct seq_file *seq) 4753 { 4754 int i = 0; 4755 mdk_rdev_t *rdev; 4756 struct list_head *tmp; 4757 4758 seq_printf(seq, "unused devices: "); 4759 4760 ITERATE_RDEV_PENDING(rdev,tmp) { 4761 char b[BDEVNAME_SIZE]; 4762 i++; 4763 seq_printf(seq, "%s ", 4764 bdevname(rdev->bdev,b)); 4765 } 4766 if (!i) 4767 seq_printf(seq, "<none>"); 4768 4769 seq_printf(seq, "\n"); 4770 } 4771 4772 4773 static void status_resync(struct seq_file *seq, mddev_t * mddev) 4774 { 4775 sector_t max_blocks, resync, res; 4776 unsigned long dt, db, rt; 4777 int scale; 4778 unsigned int per_milli; 4779 4780 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 4781 4782 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 4783 max_blocks = mddev->resync_max_sectors >> 1; 4784 else 4785 max_blocks = mddev->size; 4786 4787 /* 4788 * Should not happen. 4789 */ 4790 if (!max_blocks) { 4791 MD_BUG(); 4792 return; 4793 } 4794 /* Pick 'scale' such that (resync>>scale)*1000 will fit 4795 * in a sector_t, and (max_blocks>>scale) will fit in a 4796 * u32, as those are the requirements for sector_div. 4797 * Thus 'scale' must be at least 10 4798 */ 4799 scale = 10; 4800 if (sizeof(sector_t) > sizeof(unsigned long)) { 4801 while ( max_blocks/2 > (1ULL<<(scale+32))) 4802 scale++; 4803 } 4804 res = (resync>>scale)*1000; 4805 sector_div(res, (u32)((max_blocks>>scale)+1)); 4806 4807 per_milli = res; 4808 { 4809 int i, x = per_milli/50, y = 20-x; 4810 seq_printf(seq, "["); 4811 for (i = 0; i < x; i++) 4812 seq_printf(seq, "="); 4813 seq_printf(seq, ">"); 4814 for (i = 0; i < y; i++) 4815 seq_printf(seq, "."); 4816 seq_printf(seq, "] "); 4817 } 4818 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 4819 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 4820 "reshape" : 4821 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 4822 "check" : 4823 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 4824 "resync" : "recovery"))), 4825 per_milli/10, per_milli % 10, 4826 (unsigned long long) resync, 4827 (unsigned long long) max_blocks); 4828 4829 /* 4830 * We do not want to overflow, so the order of operands and 4831 * the * 100 / 100 trick are important. We do a +1 to be 4832 * safe against division by zero. We only estimate anyway. 4833 * 4834 * dt: time from mark until now 4835 * db: blocks written from mark until now 4836 * rt: remaining time 4837 */ 4838 dt = ((jiffies - mddev->resync_mark) / HZ); 4839 if (!dt) dt++; 4840 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 4841 - mddev->resync_mark_cnt; 4842 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 4843 4844 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 4845 4846 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 4847 } 4848 4849 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 4850 { 4851 struct list_head *tmp; 4852 loff_t l = *pos; 4853 mddev_t *mddev; 4854 4855 if (l >= 0x10000) 4856 return NULL; 4857 if (!l--) 4858 /* header */ 4859 return (void*)1; 4860 4861 spin_lock(&all_mddevs_lock); 4862 list_for_each(tmp,&all_mddevs) 4863 if (!l--) { 4864 mddev = list_entry(tmp, mddev_t, all_mddevs); 4865 mddev_get(mddev); 4866 spin_unlock(&all_mddevs_lock); 4867 return mddev; 4868 } 4869 spin_unlock(&all_mddevs_lock); 4870 if (!l--) 4871 return (void*)2;/* tail */ 4872 return NULL; 4873 } 4874 4875 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4876 { 4877 struct list_head *tmp; 4878 mddev_t *next_mddev, *mddev = v; 4879 4880 ++*pos; 4881 if (v == (void*)2) 4882 return NULL; 4883 4884 spin_lock(&all_mddevs_lock); 4885 if (v == (void*)1) 4886 tmp = all_mddevs.next; 4887 else 4888 tmp = mddev->all_mddevs.next; 4889 if (tmp != &all_mddevs) 4890 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 4891 else { 4892 next_mddev = (void*)2; 4893 *pos = 0x10000; 4894 } 4895 spin_unlock(&all_mddevs_lock); 4896 4897 if (v != (void*)1) 4898 mddev_put(mddev); 4899 return next_mddev; 4900 4901 } 4902 4903 static void md_seq_stop(struct seq_file *seq, void *v) 4904 { 4905 mddev_t *mddev = v; 4906 4907 if (mddev && v != (void*)1 && v != (void*)2) 4908 mddev_put(mddev); 4909 } 4910 4911 struct mdstat_info { 4912 int event; 4913 }; 4914 4915 static int md_seq_show(struct seq_file *seq, void *v) 4916 { 4917 mddev_t *mddev = v; 4918 sector_t size; 4919 struct list_head *tmp2; 4920 mdk_rdev_t *rdev; 4921 struct mdstat_info *mi = seq->private; 4922 struct bitmap *bitmap; 4923 4924 if (v == (void*)1) { 4925 struct mdk_personality *pers; 4926 seq_printf(seq, "Personalities : "); 4927 spin_lock(&pers_lock); 4928 list_for_each_entry(pers, &pers_list, list) 4929 seq_printf(seq, "[%s] ", pers->name); 4930 4931 spin_unlock(&pers_lock); 4932 seq_printf(seq, "\n"); 4933 mi->event = atomic_read(&md_event_count); 4934 return 0; 4935 } 4936 if (v == (void*)2) { 4937 status_unused(seq); 4938 return 0; 4939 } 4940 4941 if (mddev_lock(mddev) < 0) 4942 return -EINTR; 4943 4944 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 4945 seq_printf(seq, "%s : %sactive", mdname(mddev), 4946 mddev->pers ? "" : "in"); 4947 if (mddev->pers) { 4948 if (mddev->ro==1) 4949 seq_printf(seq, " (read-only)"); 4950 if (mddev->ro==2) 4951 seq_printf(seq, "(auto-read-only)"); 4952 seq_printf(seq, " %s", mddev->pers->name); 4953 } 4954 4955 size = 0; 4956 ITERATE_RDEV(mddev,rdev,tmp2) { 4957 char b[BDEVNAME_SIZE]; 4958 seq_printf(seq, " %s[%d]", 4959 bdevname(rdev->bdev,b), rdev->desc_nr); 4960 if (test_bit(WriteMostly, &rdev->flags)) 4961 seq_printf(seq, "(W)"); 4962 if (test_bit(Faulty, &rdev->flags)) { 4963 seq_printf(seq, "(F)"); 4964 continue; 4965 } else if (rdev->raid_disk < 0) 4966 seq_printf(seq, "(S)"); /* spare */ 4967 size += rdev->size; 4968 } 4969 4970 if (!list_empty(&mddev->disks)) { 4971 if (mddev->pers) 4972 seq_printf(seq, "\n %llu blocks", 4973 (unsigned long long)mddev->array_size); 4974 else 4975 seq_printf(seq, "\n %llu blocks", 4976 (unsigned long long)size); 4977 } 4978 if (mddev->persistent) { 4979 if (mddev->major_version != 0 || 4980 mddev->minor_version != 90) { 4981 seq_printf(seq," super %d.%d", 4982 mddev->major_version, 4983 mddev->minor_version); 4984 } 4985 } else 4986 seq_printf(seq, " super non-persistent"); 4987 4988 if (mddev->pers) { 4989 mddev->pers->status (seq, mddev); 4990 seq_printf(seq, "\n "); 4991 if (mddev->pers->sync_request) { 4992 if (mddev->curr_resync > 2) { 4993 status_resync (seq, mddev); 4994 seq_printf(seq, "\n "); 4995 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 4996 seq_printf(seq, "\tresync=DELAYED\n "); 4997 else if (mddev->recovery_cp < MaxSector) 4998 seq_printf(seq, "\tresync=PENDING\n "); 4999 } 5000 } else 5001 seq_printf(seq, "\n "); 5002 5003 if ((bitmap = mddev->bitmap)) { 5004 unsigned long chunk_kb; 5005 unsigned long flags; 5006 spin_lock_irqsave(&bitmap->lock, flags); 5007 chunk_kb = bitmap->chunksize >> 10; 5008 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5009 "%lu%s chunk", 5010 bitmap->pages - bitmap->missing_pages, 5011 bitmap->pages, 5012 (bitmap->pages - bitmap->missing_pages) 5013 << (PAGE_SHIFT - 10), 5014 chunk_kb ? chunk_kb : bitmap->chunksize, 5015 chunk_kb ? "KB" : "B"); 5016 if (bitmap->file) { 5017 seq_printf(seq, ", file: "); 5018 seq_path(seq, bitmap->file->f_path.mnt, 5019 bitmap->file->f_path.dentry," \t\n"); 5020 } 5021 5022 seq_printf(seq, "\n"); 5023 spin_unlock_irqrestore(&bitmap->lock, flags); 5024 } 5025 5026 seq_printf(seq, "\n"); 5027 } 5028 mddev_unlock(mddev); 5029 5030 return 0; 5031 } 5032 5033 static struct seq_operations md_seq_ops = { 5034 .start = md_seq_start, 5035 .next = md_seq_next, 5036 .stop = md_seq_stop, 5037 .show = md_seq_show, 5038 }; 5039 5040 static int md_seq_open(struct inode *inode, struct file *file) 5041 { 5042 int error; 5043 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5044 if (mi == NULL) 5045 return -ENOMEM; 5046 5047 error = seq_open(file, &md_seq_ops); 5048 if (error) 5049 kfree(mi); 5050 else { 5051 struct seq_file *p = file->private_data; 5052 p->private = mi; 5053 mi->event = atomic_read(&md_event_count); 5054 } 5055 return error; 5056 } 5057 5058 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5059 { 5060 struct seq_file *m = filp->private_data; 5061 struct mdstat_info *mi = m->private; 5062 int mask; 5063 5064 poll_wait(filp, &md_event_waiters, wait); 5065 5066 /* always allow read */ 5067 mask = POLLIN | POLLRDNORM; 5068 5069 if (mi->event != atomic_read(&md_event_count)) 5070 mask |= POLLERR | POLLPRI; 5071 return mask; 5072 } 5073 5074 static const struct file_operations md_seq_fops = { 5075 .owner = THIS_MODULE, 5076 .open = md_seq_open, 5077 .read = seq_read, 5078 .llseek = seq_lseek, 5079 .release = seq_release_private, 5080 .poll = mdstat_poll, 5081 }; 5082 5083 int register_md_personality(struct mdk_personality *p) 5084 { 5085 spin_lock(&pers_lock); 5086 list_add_tail(&p->list, &pers_list); 5087 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5088 spin_unlock(&pers_lock); 5089 return 0; 5090 } 5091 5092 int unregister_md_personality(struct mdk_personality *p) 5093 { 5094 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5095 spin_lock(&pers_lock); 5096 list_del_init(&p->list); 5097 spin_unlock(&pers_lock); 5098 return 0; 5099 } 5100 5101 static int is_mddev_idle(mddev_t *mddev) 5102 { 5103 mdk_rdev_t * rdev; 5104 struct list_head *tmp; 5105 int idle; 5106 long curr_events; 5107 5108 idle = 1; 5109 ITERATE_RDEV(mddev,rdev,tmp) { 5110 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5111 curr_events = disk_stat_read(disk, sectors[0]) + 5112 disk_stat_read(disk, sectors[1]) - 5113 atomic_read(&disk->sync_io); 5114 /* sync IO will cause sync_io to increase before the disk_stats 5115 * as sync_io is counted when a request starts, and 5116 * disk_stats is counted when it completes. 5117 * So resync activity will cause curr_events to be smaller than 5118 * when there was no such activity. 5119 * non-sync IO will cause disk_stat to increase without 5120 * increasing sync_io so curr_events will (eventually) 5121 * be larger than it was before. Once it becomes 5122 * substantially larger, the test below will cause 5123 * the array to appear non-idle, and resync will slow 5124 * down. 5125 * If there is a lot of outstanding resync activity when 5126 * we set last_event to curr_events, then all that activity 5127 * completing might cause the array to appear non-idle 5128 * and resync will be slowed down even though there might 5129 * not have been non-resync activity. This will only 5130 * happen once though. 'last_events' will soon reflect 5131 * the state where there is little or no outstanding 5132 * resync requests, and further resync activity will 5133 * always make curr_events less than last_events. 5134 * 5135 */ 5136 if (curr_events - rdev->last_events > 4096) { 5137 rdev->last_events = curr_events; 5138 idle = 0; 5139 } 5140 } 5141 return idle; 5142 } 5143 5144 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5145 { 5146 /* another "blocks" (512byte) blocks have been synced */ 5147 atomic_sub(blocks, &mddev->recovery_active); 5148 wake_up(&mddev->recovery_wait); 5149 if (!ok) { 5150 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5151 md_wakeup_thread(mddev->thread); 5152 // stop recovery, signal do_sync .... 5153 } 5154 } 5155 5156 5157 /* md_write_start(mddev, bi) 5158 * If we need to update some array metadata (e.g. 'active' flag 5159 * in superblock) before writing, schedule a superblock update 5160 * and wait for it to complete. 5161 */ 5162 void md_write_start(mddev_t *mddev, struct bio *bi) 5163 { 5164 if (bio_data_dir(bi) != WRITE) 5165 return; 5166 5167 BUG_ON(mddev->ro == 1); 5168 if (mddev->ro == 2) { 5169 /* need to switch to read/write */ 5170 mddev->ro = 0; 5171 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5172 md_wakeup_thread(mddev->thread); 5173 } 5174 atomic_inc(&mddev->writes_pending); 5175 if (mddev->in_sync) { 5176 spin_lock_irq(&mddev->write_lock); 5177 if (mddev->in_sync) { 5178 mddev->in_sync = 0; 5179 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5180 md_wakeup_thread(mddev->thread); 5181 } 5182 spin_unlock_irq(&mddev->write_lock); 5183 } 5184 wait_event(mddev->sb_wait, mddev->flags==0); 5185 } 5186 5187 void md_write_end(mddev_t *mddev) 5188 { 5189 if (atomic_dec_and_test(&mddev->writes_pending)) { 5190 if (mddev->safemode == 2) 5191 md_wakeup_thread(mddev->thread); 5192 else if (mddev->safemode_delay) 5193 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5194 } 5195 } 5196 5197 /* md_allow_write(mddev) 5198 * Calling this ensures that the array is marked 'active' so that writes 5199 * may proceed without blocking. It is important to call this before 5200 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5201 * Must be called with mddev_lock held. 5202 */ 5203 void md_allow_write(mddev_t *mddev) 5204 { 5205 if (!mddev->pers) 5206 return; 5207 if (mddev->ro) 5208 return; 5209 5210 spin_lock_irq(&mddev->write_lock); 5211 if (mddev->in_sync) { 5212 mddev->in_sync = 0; 5213 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5214 if (mddev->safemode_delay && 5215 mddev->safemode == 0) 5216 mddev->safemode = 1; 5217 spin_unlock_irq(&mddev->write_lock); 5218 md_update_sb(mddev, 0); 5219 } else 5220 spin_unlock_irq(&mddev->write_lock); 5221 } 5222 EXPORT_SYMBOL_GPL(md_allow_write); 5223 5224 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 5225 5226 #define SYNC_MARKS 10 5227 #define SYNC_MARK_STEP (3*HZ) 5228 void md_do_sync(mddev_t *mddev) 5229 { 5230 mddev_t *mddev2; 5231 unsigned int currspeed = 0, 5232 window; 5233 sector_t max_sectors,j, io_sectors; 5234 unsigned long mark[SYNC_MARKS]; 5235 sector_t mark_cnt[SYNC_MARKS]; 5236 int last_mark,m; 5237 struct list_head *tmp; 5238 sector_t last_check; 5239 int skipped = 0; 5240 struct list_head *rtmp; 5241 mdk_rdev_t *rdev; 5242 char *desc; 5243 5244 /* just incase thread restarts... */ 5245 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5246 return; 5247 if (mddev->ro) /* never try to sync a read-only array */ 5248 return; 5249 5250 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5251 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5252 desc = "data-check"; 5253 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5254 desc = "requested-resync"; 5255 else 5256 desc = "resync"; 5257 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5258 desc = "reshape"; 5259 else 5260 desc = "recovery"; 5261 5262 /* we overload curr_resync somewhat here. 5263 * 0 == not engaged in resync at all 5264 * 2 == checking that there is no conflict with another sync 5265 * 1 == like 2, but have yielded to allow conflicting resync to 5266 * commense 5267 * other == active in resync - this many blocks 5268 * 5269 * Before starting a resync we must have set curr_resync to 5270 * 2, and then checked that every "conflicting" array has curr_resync 5271 * less than ours. When we find one that is the same or higher 5272 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5273 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5274 * This will mean we have to start checking from the beginning again. 5275 * 5276 */ 5277 5278 do { 5279 mddev->curr_resync = 2; 5280 5281 try_again: 5282 if (kthread_should_stop()) { 5283 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5284 goto skip; 5285 } 5286 ITERATE_MDDEV(mddev2,tmp) { 5287 if (mddev2 == mddev) 5288 continue; 5289 if (mddev2->curr_resync && 5290 match_mddev_units(mddev,mddev2)) { 5291 DEFINE_WAIT(wq); 5292 if (mddev < mddev2 && mddev->curr_resync == 2) { 5293 /* arbitrarily yield */ 5294 mddev->curr_resync = 1; 5295 wake_up(&resync_wait); 5296 } 5297 if (mddev > mddev2 && mddev->curr_resync == 1) 5298 /* no need to wait here, we can wait the next 5299 * time 'round when curr_resync == 2 5300 */ 5301 continue; 5302 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5303 if (!kthread_should_stop() && 5304 mddev2->curr_resync >= mddev->curr_resync) { 5305 printk(KERN_INFO "md: delaying %s of %s" 5306 " until %s has finished (they" 5307 " share one or more physical units)\n", 5308 desc, mdname(mddev), mdname(mddev2)); 5309 mddev_put(mddev2); 5310 schedule(); 5311 finish_wait(&resync_wait, &wq); 5312 goto try_again; 5313 } 5314 finish_wait(&resync_wait, &wq); 5315 } 5316 } 5317 } while (mddev->curr_resync < 2); 5318 5319 j = 0; 5320 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5321 /* resync follows the size requested by the personality, 5322 * which defaults to physical size, but can be virtual size 5323 */ 5324 max_sectors = mddev->resync_max_sectors; 5325 mddev->resync_mismatches = 0; 5326 /* we don't use the checkpoint if there's a bitmap */ 5327 if (!mddev->bitmap && 5328 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5329 j = mddev->recovery_cp; 5330 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5331 max_sectors = mddev->size << 1; 5332 else { 5333 /* recovery follows the physical size of devices */ 5334 max_sectors = mddev->size << 1; 5335 j = MaxSector; 5336 ITERATE_RDEV(mddev,rdev,rtmp) 5337 if (rdev->raid_disk >= 0 && 5338 !test_bit(Faulty, &rdev->flags) && 5339 !test_bit(In_sync, &rdev->flags) && 5340 rdev->recovery_offset < j) 5341 j = rdev->recovery_offset; 5342 } 5343 5344 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5345 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5346 " %d KB/sec/disk.\n", speed_min(mddev)); 5347 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5348 "(but not more than %d KB/sec) for %s.\n", 5349 speed_max(mddev), desc); 5350 5351 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5352 5353 io_sectors = 0; 5354 for (m = 0; m < SYNC_MARKS; m++) { 5355 mark[m] = jiffies; 5356 mark_cnt[m] = io_sectors; 5357 } 5358 last_mark = 0; 5359 mddev->resync_mark = mark[last_mark]; 5360 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5361 5362 /* 5363 * Tune reconstruction: 5364 */ 5365 window = 32*(PAGE_SIZE/512); 5366 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5367 window/2,(unsigned long long) max_sectors/2); 5368 5369 atomic_set(&mddev->recovery_active, 0); 5370 init_waitqueue_head(&mddev->recovery_wait); 5371 last_check = 0; 5372 5373 if (j>2) { 5374 printk(KERN_INFO 5375 "md: resuming %s of %s from checkpoint.\n", 5376 desc, mdname(mddev)); 5377 mddev->curr_resync = j; 5378 } 5379 5380 while (j < max_sectors) { 5381 sector_t sectors; 5382 5383 skipped = 0; 5384 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5385 currspeed < speed_min(mddev)); 5386 if (sectors == 0) { 5387 set_bit(MD_RECOVERY_ERR, &mddev->recovery); 5388 goto out; 5389 } 5390 5391 if (!skipped) { /* actual IO requested */ 5392 io_sectors += sectors; 5393 atomic_add(sectors, &mddev->recovery_active); 5394 } 5395 5396 j += sectors; 5397 if (j>1) mddev->curr_resync = j; 5398 mddev->curr_mark_cnt = io_sectors; 5399 if (last_check == 0) 5400 /* this is the earliers that rebuilt will be 5401 * visible in /proc/mdstat 5402 */ 5403 md_new_event(mddev); 5404 5405 if (last_check + window > io_sectors || j == max_sectors) 5406 continue; 5407 5408 last_check = io_sectors; 5409 5410 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) || 5411 test_bit(MD_RECOVERY_ERR, &mddev->recovery)) 5412 break; 5413 5414 repeat: 5415 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5416 /* step marks */ 5417 int next = (last_mark+1) % SYNC_MARKS; 5418 5419 mddev->resync_mark = mark[next]; 5420 mddev->resync_mark_cnt = mark_cnt[next]; 5421 mark[next] = jiffies; 5422 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5423 last_mark = next; 5424 } 5425 5426 5427 if (kthread_should_stop()) { 5428 /* 5429 * got a signal, exit. 5430 */ 5431 printk(KERN_INFO 5432 "md: md_do_sync() got signal ... exiting\n"); 5433 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5434 goto out; 5435 } 5436 5437 /* 5438 * this loop exits only if either when we are slower than 5439 * the 'hard' speed limit, or the system was IO-idle for 5440 * a jiffy. 5441 * the system might be non-idle CPU-wise, but we only care 5442 * about not overloading the IO subsystem. (things like an 5443 * e2fsck being done on the RAID array should execute fast) 5444 */ 5445 blk_unplug(mddev->queue); 5446 cond_resched(); 5447 5448 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5449 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5450 5451 if (currspeed > speed_min(mddev)) { 5452 if ((currspeed > speed_max(mddev)) || 5453 !is_mddev_idle(mddev)) { 5454 msleep(500); 5455 goto repeat; 5456 } 5457 } 5458 } 5459 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5460 /* 5461 * this also signals 'finished resyncing' to md_stop 5462 */ 5463 out: 5464 blk_unplug(mddev->queue); 5465 5466 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5467 5468 /* tell personality that we are finished */ 5469 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5470 5471 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5472 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5473 mddev->curr_resync > 2) { 5474 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5475 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5476 if (mddev->curr_resync >= mddev->recovery_cp) { 5477 printk(KERN_INFO 5478 "md: checkpointing %s of %s.\n", 5479 desc, mdname(mddev)); 5480 mddev->recovery_cp = mddev->curr_resync; 5481 } 5482 } else 5483 mddev->recovery_cp = MaxSector; 5484 } else { 5485 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5486 mddev->curr_resync = MaxSector; 5487 ITERATE_RDEV(mddev,rdev,rtmp) 5488 if (rdev->raid_disk >= 0 && 5489 !test_bit(Faulty, &rdev->flags) && 5490 !test_bit(In_sync, &rdev->flags) && 5491 rdev->recovery_offset < mddev->curr_resync) 5492 rdev->recovery_offset = mddev->curr_resync; 5493 } 5494 } 5495 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5496 5497 skip: 5498 mddev->curr_resync = 0; 5499 wake_up(&resync_wait); 5500 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5501 md_wakeup_thread(mddev->thread); 5502 } 5503 EXPORT_SYMBOL_GPL(md_do_sync); 5504 5505 5506 static int remove_and_add_spares(mddev_t *mddev) 5507 { 5508 mdk_rdev_t *rdev; 5509 struct list_head *rtmp; 5510 int spares = 0; 5511 5512 ITERATE_RDEV(mddev,rdev,rtmp) 5513 if (rdev->raid_disk >= 0 && 5514 (test_bit(Faulty, &rdev->flags) || 5515 ! test_bit(In_sync, &rdev->flags)) && 5516 atomic_read(&rdev->nr_pending)==0) { 5517 if (mddev->pers->hot_remove_disk( 5518 mddev, rdev->raid_disk)==0) { 5519 char nm[20]; 5520 sprintf(nm,"rd%d", rdev->raid_disk); 5521 sysfs_remove_link(&mddev->kobj, nm); 5522 rdev->raid_disk = -1; 5523 } 5524 } 5525 5526 if (mddev->degraded) { 5527 ITERATE_RDEV(mddev,rdev,rtmp) 5528 if (rdev->raid_disk < 0 5529 && !test_bit(Faulty, &rdev->flags)) { 5530 rdev->recovery_offset = 0; 5531 if (mddev->pers->hot_add_disk(mddev,rdev)) { 5532 char nm[20]; 5533 sprintf(nm, "rd%d", rdev->raid_disk); 5534 if (sysfs_create_link(&mddev->kobj, 5535 &rdev->kobj, nm)) 5536 printk(KERN_WARNING 5537 "md: cannot register " 5538 "%s for %s\n", 5539 nm, mdname(mddev)); 5540 spares++; 5541 md_new_event(mddev); 5542 } else 5543 break; 5544 } 5545 } 5546 return spares; 5547 } 5548 /* 5549 * This routine is regularly called by all per-raid-array threads to 5550 * deal with generic issues like resync and super-block update. 5551 * Raid personalities that don't have a thread (linear/raid0) do not 5552 * need this as they never do any recovery or update the superblock. 5553 * 5554 * It does not do any resync itself, but rather "forks" off other threads 5555 * to do that as needed. 5556 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 5557 * "->recovery" and create a thread at ->sync_thread. 5558 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR) 5559 * and wakeups up this thread which will reap the thread and finish up. 5560 * This thread also removes any faulty devices (with nr_pending == 0). 5561 * 5562 * The overall approach is: 5563 * 1/ if the superblock needs updating, update it. 5564 * 2/ If a recovery thread is running, don't do anything else. 5565 * 3/ If recovery has finished, clean up, possibly marking spares active. 5566 * 4/ If there are any faulty devices, remove them. 5567 * 5/ If array is degraded, try to add spares devices 5568 * 6/ If array has spares or is not in-sync, start a resync thread. 5569 */ 5570 void md_check_recovery(mddev_t *mddev) 5571 { 5572 mdk_rdev_t *rdev; 5573 struct list_head *rtmp; 5574 5575 5576 if (mddev->bitmap) 5577 bitmap_daemon_work(mddev->bitmap); 5578 5579 if (mddev->ro) 5580 return; 5581 5582 if (signal_pending(current)) { 5583 if (mddev->pers->sync_request) { 5584 printk(KERN_INFO "md: %s in immediate safe mode\n", 5585 mdname(mddev)); 5586 mddev->safemode = 2; 5587 } 5588 flush_signals(current); 5589 } 5590 5591 if ( ! ( 5592 mddev->flags || 5593 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 5594 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 5595 (mddev->safemode == 1) || 5596 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 5597 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 5598 )) 5599 return; 5600 5601 if (mddev_trylock(mddev)) { 5602 int spares = 0; 5603 5604 spin_lock_irq(&mddev->write_lock); 5605 if (mddev->safemode && !atomic_read(&mddev->writes_pending) && 5606 !mddev->in_sync && mddev->recovery_cp == MaxSector) { 5607 mddev->in_sync = 1; 5608 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5609 } 5610 if (mddev->safemode == 1) 5611 mddev->safemode = 0; 5612 spin_unlock_irq(&mddev->write_lock); 5613 5614 if (mddev->flags) 5615 md_update_sb(mddev, 0); 5616 5617 5618 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 5619 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 5620 /* resync/recovery still happening */ 5621 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5622 goto unlock; 5623 } 5624 if (mddev->sync_thread) { 5625 /* resync has finished, collect result */ 5626 md_unregister_thread(mddev->sync_thread); 5627 mddev->sync_thread = NULL; 5628 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) && 5629 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5630 /* success...*/ 5631 /* activate any spares */ 5632 mddev->pers->spare_active(mddev); 5633 } 5634 md_update_sb(mddev, 1); 5635 5636 /* if array is no-longer degraded, then any saved_raid_disk 5637 * information must be scrapped 5638 */ 5639 if (!mddev->degraded) 5640 ITERATE_RDEV(mddev,rdev,rtmp) 5641 rdev->saved_raid_disk = -1; 5642 5643 mddev->recovery = 0; 5644 /* flag recovery needed just to double check */ 5645 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5646 md_new_event(mddev); 5647 goto unlock; 5648 } 5649 /* Clear some bits that don't mean anything, but 5650 * might be left set 5651 */ 5652 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5653 clear_bit(MD_RECOVERY_ERR, &mddev->recovery); 5654 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 5655 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 5656 5657 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 5658 goto unlock; 5659 /* no recovery is running. 5660 * remove any failed drives, then 5661 * add spares if possible. 5662 * Spare are also removed and re-added, to allow 5663 * the personality to fail the re-add. 5664 */ 5665 5666 if (mddev->reshape_position != MaxSector) { 5667 if (mddev->pers->check_reshape(mddev) != 0) 5668 /* Cannot proceed */ 5669 goto unlock; 5670 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 5671 } else if ((spares = remove_and_add_spares(mddev))) { 5672 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5673 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 5674 } else if (mddev->recovery_cp < MaxSector) { 5675 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 5676 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5677 /* nothing to be done ... */ 5678 goto unlock; 5679 5680 if (mddev->pers->sync_request) { 5681 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 5682 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 5683 /* We are adding a device or devices to an array 5684 * which has the bitmap stored on all devices. 5685 * So make sure all bitmap pages get written 5686 */ 5687 bitmap_write_all(mddev->bitmap); 5688 } 5689 mddev->sync_thread = md_register_thread(md_do_sync, 5690 mddev, 5691 "%s_resync"); 5692 if (!mddev->sync_thread) { 5693 printk(KERN_ERR "%s: could not start resync" 5694 " thread...\n", 5695 mdname(mddev)); 5696 /* leave the spares where they are, it shouldn't hurt */ 5697 mddev->recovery = 0; 5698 } else 5699 md_wakeup_thread(mddev->sync_thread); 5700 md_new_event(mddev); 5701 } 5702 unlock: 5703 mddev_unlock(mddev); 5704 } 5705 } 5706 5707 static int md_notify_reboot(struct notifier_block *this, 5708 unsigned long code, void *x) 5709 { 5710 struct list_head *tmp; 5711 mddev_t *mddev; 5712 5713 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 5714 5715 printk(KERN_INFO "md: stopping all md devices.\n"); 5716 5717 ITERATE_MDDEV(mddev,tmp) 5718 if (mddev_trylock(mddev)) { 5719 do_md_stop (mddev, 1); 5720 mddev_unlock(mddev); 5721 } 5722 /* 5723 * certain more exotic SCSI devices are known to be 5724 * volatile wrt too early system reboots. While the 5725 * right place to handle this issue is the given 5726 * driver, we do want to have a safe RAID driver ... 5727 */ 5728 mdelay(1000*1); 5729 } 5730 return NOTIFY_DONE; 5731 } 5732 5733 static struct notifier_block md_notifier = { 5734 .notifier_call = md_notify_reboot, 5735 .next = NULL, 5736 .priority = INT_MAX, /* before any real devices */ 5737 }; 5738 5739 static void md_geninit(void) 5740 { 5741 struct proc_dir_entry *p; 5742 5743 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 5744 5745 p = create_proc_entry("mdstat", S_IRUGO, NULL); 5746 if (p) 5747 p->proc_fops = &md_seq_fops; 5748 } 5749 5750 static int __init md_init(void) 5751 { 5752 if (register_blkdev(MAJOR_NR, "md")) 5753 return -1; 5754 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 5755 unregister_blkdev(MAJOR_NR, "md"); 5756 return -1; 5757 } 5758 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 5759 md_probe, NULL, NULL); 5760 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 5761 md_probe, NULL, NULL); 5762 5763 register_reboot_notifier(&md_notifier); 5764 raid_table_header = register_sysctl_table(raid_root_table); 5765 5766 md_geninit(); 5767 return (0); 5768 } 5769 5770 5771 #ifndef MODULE 5772 5773 /* 5774 * Searches all registered partitions for autorun RAID arrays 5775 * at boot time. 5776 */ 5777 5778 static LIST_HEAD(all_detected_devices); 5779 struct detected_devices_node { 5780 struct list_head list; 5781 dev_t dev; 5782 }; 5783 5784 void md_autodetect_dev(dev_t dev) 5785 { 5786 struct detected_devices_node *node_detected_dev; 5787 5788 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 5789 if (node_detected_dev) { 5790 node_detected_dev->dev = dev; 5791 list_add_tail(&node_detected_dev->list, &all_detected_devices); 5792 } else { 5793 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 5794 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 5795 } 5796 } 5797 5798 5799 static void autostart_arrays(int part) 5800 { 5801 mdk_rdev_t *rdev; 5802 struct detected_devices_node *node_detected_dev; 5803 dev_t dev; 5804 int i_scanned, i_passed; 5805 5806 i_scanned = 0; 5807 i_passed = 0; 5808 5809 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 5810 5811 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 5812 i_scanned++; 5813 node_detected_dev = list_entry(all_detected_devices.next, 5814 struct detected_devices_node, list); 5815 list_del(&node_detected_dev->list); 5816 dev = node_detected_dev->dev; 5817 kfree(node_detected_dev); 5818 rdev = md_import_device(dev,0, 90); 5819 if (IS_ERR(rdev)) 5820 continue; 5821 5822 if (test_bit(Faulty, &rdev->flags)) { 5823 MD_BUG(); 5824 continue; 5825 } 5826 list_add(&rdev->same_set, &pending_raid_disks); 5827 i_passed++; 5828 } 5829 5830 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 5831 i_scanned, i_passed); 5832 5833 autorun_devices(part); 5834 } 5835 5836 #endif /* !MODULE */ 5837 5838 static __exit void md_exit(void) 5839 { 5840 mddev_t *mddev; 5841 struct list_head *tmp; 5842 5843 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 5844 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 5845 5846 unregister_blkdev(MAJOR_NR,"md"); 5847 unregister_blkdev(mdp_major, "mdp"); 5848 unregister_reboot_notifier(&md_notifier); 5849 unregister_sysctl_table(raid_table_header); 5850 remove_proc_entry("mdstat", NULL); 5851 ITERATE_MDDEV(mddev,tmp) { 5852 struct gendisk *disk = mddev->gendisk; 5853 if (!disk) 5854 continue; 5855 export_array(mddev); 5856 del_gendisk(disk); 5857 put_disk(disk); 5858 mddev->gendisk = NULL; 5859 mddev_put(mddev); 5860 } 5861 } 5862 5863 subsys_initcall(md_init); 5864 module_exit(md_exit) 5865 5866 static int get_ro(char *buffer, struct kernel_param *kp) 5867 { 5868 return sprintf(buffer, "%d", start_readonly); 5869 } 5870 static int set_ro(const char *val, struct kernel_param *kp) 5871 { 5872 char *e; 5873 int num = simple_strtoul(val, &e, 10); 5874 if (*val && (*e == '\0' || *e == '\n')) { 5875 start_readonly = num; 5876 return 0; 5877 } 5878 return -EINVAL; 5879 } 5880 5881 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 5882 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 5883 5884 5885 EXPORT_SYMBOL(register_md_personality); 5886 EXPORT_SYMBOL(unregister_md_personality); 5887 EXPORT_SYMBOL(md_error); 5888 EXPORT_SYMBOL(md_done_sync); 5889 EXPORT_SYMBOL(md_write_start); 5890 EXPORT_SYMBOL(md_write_end); 5891 EXPORT_SYMBOL(md_register_thread); 5892 EXPORT_SYMBOL(md_unregister_thread); 5893 EXPORT_SYMBOL(md_wakeup_thread); 5894 EXPORT_SYMBOL(md_check_recovery); 5895 MODULE_LICENSE("GPL"); 5896 MODULE_ALIAS("md"); 5897 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 5898