xref: /openbmc/linux/drivers/md/md.c (revision 643d1f7f)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/poll.h>
44 #include <linux/mutex.h>
45 #include <linux/ctype.h>
46 #include <linux/freezer.h>
47 
48 #include <linux/init.h>
49 
50 #include <linux/file.h>
51 
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55 
56 #include <asm/unaligned.h>
57 
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60 
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63 
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66 
67 
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71 
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74 
75 static void md_print_devices(void);
76 
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78 
79 /*
80  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81  * is 1000 KB/sec, so the extra system load does not show up that much.
82  * Increase it if you want to have more _guaranteed_ speed. Note that
83  * the RAID driver will use the maximum available bandwidth if the IO
84  * subsystem is idle. There is also an 'absolute maximum' reconstruction
85  * speed limit - in case reconstruction slows down your system despite
86  * idle IO detection.
87  *
88  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89  * or /sys/block/mdX/md/sync_speed_{min,max}
90  */
91 
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 	return mddev->sync_speed_min ?
97 		mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99 
100 static inline int speed_max(mddev_t *mddev)
101 {
102 	return mddev->sync_speed_max ?
103 		mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105 
106 static struct ctl_table_header *raid_table_header;
107 
108 static ctl_table raid_table[] = {
109 	{
110 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
111 		.procname	= "speed_limit_min",
112 		.data		= &sysctl_speed_limit_min,
113 		.maxlen		= sizeof(int),
114 		.mode		= S_IRUGO|S_IWUSR,
115 		.proc_handler	= &proc_dointvec,
116 	},
117 	{
118 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= &proc_dointvec,
124 	},
125 	{ .ctl_name = 0 }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.ctl_name	= DEV_RAID,
131 		.procname	= "raid",
132 		.maxlen		= 0,
133 		.mode		= S_IRUGO|S_IXUGO,
134 		.child		= raid_table,
135 	},
136 	{ .ctl_name = 0 }
137 };
138 
139 static ctl_table raid_root_table[] = {
140 	{
141 		.ctl_name	= CTL_DEV,
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{ .ctl_name = 0 }
148 };
149 
150 static struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /*
155  * We have a system wide 'event count' that is incremented
156  * on any 'interesting' event, and readers of /proc/mdstat
157  * can use 'poll' or 'select' to find out when the event
158  * count increases.
159  *
160  * Events are:
161  *  start array, stop array, error, add device, remove device,
162  *  start build, activate spare
163  */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 	atomic_inc(&md_event_count);
169 	wake_up(&md_event_waiters);
170 	sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173 
174 /* Alternate version that can be called from interrupts
175  * when calling sysfs_notify isn't needed.
176  */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 	atomic_inc(&md_event_count);
180 	wake_up(&md_event_waiters);
181 }
182 
183 /*
184  * Enables to iterate over all existing md arrays
185  * all_mddevs_lock protects this list.
186  */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189 
190 
191 /*
192  * iterates through all used mddevs in the system.
193  * We take care to grab the all_mddevs_lock whenever navigating
194  * the list, and to always hold a refcount when unlocked.
195  * Any code which breaks out of this loop while own
196  * a reference to the current mddev and must mddev_put it.
197  */
198 #define ITERATE_MDDEV(mddev,tmp)					\
199 									\
200 	for (({ spin_lock(&all_mddevs_lock); 				\
201 		tmp = all_mddevs.next;					\
202 		mddev = NULL;});					\
203 	     ({ if (tmp != &all_mddevs)					\
204 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 		spin_unlock(&all_mddevs_lock);				\
206 		if (mddev) mddev_put(mddev);				\
207 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
208 		tmp != &all_mddevs;});					\
209 	     ({ spin_lock(&all_mddevs_lock);				\
210 		tmp = tmp->next;})					\
211 		)
212 
213 
214 static int md_fail_request (struct request_queue *q, struct bio *bio)
215 {
216 	bio_io_error(bio);
217 	return 0;
218 }
219 
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 	atomic_inc(&mddev->active);
223 	return mddev;
224 }
225 
226 static void mddev_put(mddev_t *mddev)
227 {
228 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 		return;
230 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 		list_del(&mddev->all_mddevs);
232 		spin_unlock(&all_mddevs_lock);
233 		blk_cleanup_queue(mddev->queue);
234 		kobject_put(&mddev->kobj);
235 	} else
236 		spin_unlock(&all_mddevs_lock);
237 }
238 
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 	mddev_t *mddev, *new = NULL;
242 
243  retry:
244 	spin_lock(&all_mddevs_lock);
245 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 		if (mddev->unit == unit) {
247 			mddev_get(mddev);
248 			spin_unlock(&all_mddevs_lock);
249 			kfree(new);
250 			return mddev;
251 		}
252 
253 	if (new) {
254 		list_add(&new->all_mddevs, &all_mddevs);
255 		spin_unlock(&all_mddevs_lock);
256 		return new;
257 	}
258 	spin_unlock(&all_mddevs_lock);
259 
260 	new = kzalloc(sizeof(*new), GFP_KERNEL);
261 	if (!new)
262 		return NULL;
263 
264 	new->unit = unit;
265 	if (MAJOR(unit) == MD_MAJOR)
266 		new->md_minor = MINOR(unit);
267 	else
268 		new->md_minor = MINOR(unit) >> MdpMinorShift;
269 
270 	mutex_init(&new->reconfig_mutex);
271 	INIT_LIST_HEAD(&new->disks);
272 	INIT_LIST_HEAD(&new->all_mddevs);
273 	init_timer(&new->safemode_timer);
274 	atomic_set(&new->active, 1);
275 	spin_lock_init(&new->write_lock);
276 	init_waitqueue_head(&new->sb_wait);
277 	new->reshape_position = MaxSector;
278 
279 	new->queue = blk_alloc_queue(GFP_KERNEL);
280 	if (!new->queue) {
281 		kfree(new);
282 		return NULL;
283 	}
284 	set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
285 
286 	blk_queue_make_request(new->queue, md_fail_request);
287 
288 	goto retry;
289 }
290 
291 static inline int mddev_lock(mddev_t * mddev)
292 {
293 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
294 }
295 
296 static inline int mddev_trylock(mddev_t * mddev)
297 {
298 	return mutex_trylock(&mddev->reconfig_mutex);
299 }
300 
301 static inline void mddev_unlock(mddev_t * mddev)
302 {
303 	mutex_unlock(&mddev->reconfig_mutex);
304 
305 	md_wakeup_thread(mddev->thread);
306 }
307 
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
309 {
310 	mdk_rdev_t * rdev;
311 	struct list_head *tmp;
312 
313 	ITERATE_RDEV(mddev,rdev,tmp) {
314 		if (rdev->desc_nr == nr)
315 			return rdev;
316 	}
317 	return NULL;
318 }
319 
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
321 {
322 	struct list_head *tmp;
323 	mdk_rdev_t *rdev;
324 
325 	ITERATE_RDEV(mddev,rdev,tmp) {
326 		if (rdev->bdev->bd_dev == dev)
327 			return rdev;
328 	}
329 	return NULL;
330 }
331 
332 static struct mdk_personality *find_pers(int level, char *clevel)
333 {
334 	struct mdk_personality *pers;
335 	list_for_each_entry(pers, &pers_list, list) {
336 		if (level != LEVEL_NONE && pers->level == level)
337 			return pers;
338 		if (strcmp(pers->name, clevel)==0)
339 			return pers;
340 	}
341 	return NULL;
342 }
343 
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
345 {
346 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 	return MD_NEW_SIZE_BLOCKS(size);
348 }
349 
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
351 {
352 	sector_t size;
353 
354 	size = rdev->sb_offset;
355 
356 	if (chunk_size)
357 		size &= ~((sector_t)chunk_size/1024 - 1);
358 	return size;
359 }
360 
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
362 {
363 	if (rdev->sb_page)
364 		MD_BUG();
365 
366 	rdev->sb_page = alloc_page(GFP_KERNEL);
367 	if (!rdev->sb_page) {
368 		printk(KERN_ALERT "md: out of memory.\n");
369 		return -EINVAL;
370 	}
371 
372 	return 0;
373 }
374 
375 static void free_disk_sb(mdk_rdev_t * rdev)
376 {
377 	if (rdev->sb_page) {
378 		put_page(rdev->sb_page);
379 		rdev->sb_loaded = 0;
380 		rdev->sb_page = NULL;
381 		rdev->sb_offset = 0;
382 		rdev->size = 0;
383 	}
384 }
385 
386 
387 static void super_written(struct bio *bio, int error)
388 {
389 	mdk_rdev_t *rdev = bio->bi_private;
390 	mddev_t *mddev = rdev->mddev;
391 
392 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 		printk("md: super_written gets error=%d, uptodate=%d\n",
394 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 		md_error(mddev, rdev);
397 	}
398 
399 	if (atomic_dec_and_test(&mddev->pending_writes))
400 		wake_up(&mddev->sb_wait);
401 	bio_put(bio);
402 }
403 
404 static void super_written_barrier(struct bio *bio, int error)
405 {
406 	struct bio *bio2 = bio->bi_private;
407 	mdk_rdev_t *rdev = bio2->bi_private;
408 	mddev_t *mddev = rdev->mddev;
409 
410 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 	    error == -EOPNOTSUPP) {
412 		unsigned long flags;
413 		/* barriers don't appear to be supported :-( */
414 		set_bit(BarriersNotsupp, &rdev->flags);
415 		mddev->barriers_work = 0;
416 		spin_lock_irqsave(&mddev->write_lock, flags);
417 		bio2->bi_next = mddev->biolist;
418 		mddev->biolist = bio2;
419 		spin_unlock_irqrestore(&mddev->write_lock, flags);
420 		wake_up(&mddev->sb_wait);
421 		bio_put(bio);
422 	} else {
423 		bio_put(bio2);
424 		bio->bi_private = rdev;
425 		super_written(bio, error);
426 	}
427 }
428 
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 		   sector_t sector, int size, struct page *page)
431 {
432 	/* write first size bytes of page to sector of rdev
433 	 * Increment mddev->pending_writes before returning
434 	 * and decrement it on completion, waking up sb_wait
435 	 * if zero is reached.
436 	 * If an error occurred, call md_error
437 	 *
438 	 * As we might need to resubmit the request if BIO_RW_BARRIER
439 	 * causes ENOTSUPP, we allocate a spare bio...
440 	 */
441 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443 
444 	bio->bi_bdev = rdev->bdev;
445 	bio->bi_sector = sector;
446 	bio_add_page(bio, page, size, 0);
447 	bio->bi_private = rdev;
448 	bio->bi_end_io = super_written;
449 	bio->bi_rw = rw;
450 
451 	atomic_inc(&mddev->pending_writes);
452 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 		struct bio *rbio;
454 		rw |= (1<<BIO_RW_BARRIER);
455 		rbio = bio_clone(bio, GFP_NOIO);
456 		rbio->bi_private = bio;
457 		rbio->bi_end_io = super_written_barrier;
458 		submit_bio(rw, rbio);
459 	} else
460 		submit_bio(rw, bio);
461 }
462 
463 void md_super_wait(mddev_t *mddev)
464 {
465 	/* wait for all superblock writes that were scheduled to complete.
466 	 * if any had to be retried (due to BARRIER problems), retry them
467 	 */
468 	DEFINE_WAIT(wq);
469 	for(;;) {
470 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 		if (atomic_read(&mddev->pending_writes)==0)
472 			break;
473 		while (mddev->biolist) {
474 			struct bio *bio;
475 			spin_lock_irq(&mddev->write_lock);
476 			bio = mddev->biolist;
477 			mddev->biolist = bio->bi_next ;
478 			bio->bi_next = NULL;
479 			spin_unlock_irq(&mddev->write_lock);
480 			submit_bio(bio->bi_rw, bio);
481 		}
482 		schedule();
483 	}
484 	finish_wait(&mddev->sb_wait, &wq);
485 }
486 
487 static void bi_complete(struct bio *bio, int error)
488 {
489 	complete((struct completion*)bio->bi_private);
490 }
491 
492 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
493 		   struct page *page, int rw)
494 {
495 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
496 	struct completion event;
497 	int ret;
498 
499 	rw |= (1 << BIO_RW_SYNC);
500 
501 	bio->bi_bdev = bdev;
502 	bio->bi_sector = sector;
503 	bio_add_page(bio, page, size, 0);
504 	init_completion(&event);
505 	bio->bi_private = &event;
506 	bio->bi_end_io = bi_complete;
507 	submit_bio(rw, bio);
508 	wait_for_completion(&event);
509 
510 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
511 	bio_put(bio);
512 	return ret;
513 }
514 EXPORT_SYMBOL_GPL(sync_page_io);
515 
516 static int read_disk_sb(mdk_rdev_t * rdev, int size)
517 {
518 	char b[BDEVNAME_SIZE];
519 	if (!rdev->sb_page) {
520 		MD_BUG();
521 		return -EINVAL;
522 	}
523 	if (rdev->sb_loaded)
524 		return 0;
525 
526 
527 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
528 		goto fail;
529 	rdev->sb_loaded = 1;
530 	return 0;
531 
532 fail:
533 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
534 		bdevname(rdev->bdev,b));
535 	return -EINVAL;
536 }
537 
538 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
539 {
540 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
541 		(sb1->set_uuid1 == sb2->set_uuid1) &&
542 		(sb1->set_uuid2 == sb2->set_uuid2) &&
543 		(sb1->set_uuid3 == sb2->set_uuid3))
544 
545 		return 1;
546 
547 	return 0;
548 }
549 
550 
551 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
552 {
553 	int ret;
554 	mdp_super_t *tmp1, *tmp2;
555 
556 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
557 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
558 
559 	if (!tmp1 || !tmp2) {
560 		ret = 0;
561 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
562 		goto abort;
563 	}
564 
565 	*tmp1 = *sb1;
566 	*tmp2 = *sb2;
567 
568 	/*
569 	 * nr_disks is not constant
570 	 */
571 	tmp1->nr_disks = 0;
572 	tmp2->nr_disks = 0;
573 
574 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
575 		ret = 0;
576 	else
577 		ret = 1;
578 
579 abort:
580 	kfree(tmp1);
581 	kfree(tmp2);
582 	return ret;
583 }
584 
585 
586 static u32 md_csum_fold(u32 csum)
587 {
588 	csum = (csum & 0xffff) + (csum >> 16);
589 	return (csum & 0xffff) + (csum >> 16);
590 }
591 
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 	u64 newcsum = 0;
595 	u32 *sb32 = (u32*)sb;
596 	int i;
597 	unsigned int disk_csum, csum;
598 
599 	disk_csum = sb->sb_csum;
600 	sb->sb_csum = 0;
601 
602 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
603 		newcsum += sb32[i];
604 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
605 
606 
607 #ifdef CONFIG_ALPHA
608 	/* This used to use csum_partial, which was wrong for several
609 	 * reasons including that different results are returned on
610 	 * different architectures.  It isn't critical that we get exactly
611 	 * the same return value as before (we always csum_fold before
612 	 * testing, and that removes any differences).  However as we
613 	 * know that csum_partial always returned a 16bit value on
614 	 * alphas, do a fold to maximise conformity to previous behaviour.
615 	 */
616 	sb->sb_csum = md_csum_fold(disk_csum);
617 #else
618 	sb->sb_csum = disk_csum;
619 #endif
620 	return csum;
621 }
622 
623 
624 /*
625  * Handle superblock details.
626  * We want to be able to handle multiple superblock formats
627  * so we have a common interface to them all, and an array of
628  * different handlers.
629  * We rely on user-space to write the initial superblock, and support
630  * reading and updating of superblocks.
631  * Interface methods are:
632  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
633  *      loads and validates a superblock on dev.
634  *      if refdev != NULL, compare superblocks on both devices
635  *    Return:
636  *      0 - dev has a superblock that is compatible with refdev
637  *      1 - dev has a superblock that is compatible and newer than refdev
638  *          so dev should be used as the refdev in future
639  *     -EINVAL superblock incompatible or invalid
640  *     -othererror e.g. -EIO
641  *
642  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
643  *      Verify that dev is acceptable into mddev.
644  *       The first time, mddev->raid_disks will be 0, and data from
645  *       dev should be merged in.  Subsequent calls check that dev
646  *       is new enough.  Return 0 or -EINVAL
647  *
648  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
649  *     Update the superblock for rdev with data in mddev
650  *     This does not write to disc.
651  *
652  */
653 
654 struct super_type  {
655 	char 		*name;
656 	struct module	*owner;
657 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
658 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
659 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
660 };
661 
662 /*
663  * load_super for 0.90.0
664  */
665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
666 {
667 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
668 	mdp_super_t *sb;
669 	int ret;
670 	sector_t sb_offset;
671 
672 	/*
673 	 * Calculate the position of the superblock,
674 	 * it's at the end of the disk.
675 	 *
676 	 * It also happens to be a multiple of 4Kb.
677 	 */
678 	sb_offset = calc_dev_sboffset(rdev->bdev);
679 	rdev->sb_offset = sb_offset;
680 
681 	ret = read_disk_sb(rdev, MD_SB_BYTES);
682 	if (ret) return ret;
683 
684 	ret = -EINVAL;
685 
686 	bdevname(rdev->bdev, b);
687 	sb = (mdp_super_t*)page_address(rdev->sb_page);
688 
689 	if (sb->md_magic != MD_SB_MAGIC) {
690 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
691 		       b);
692 		goto abort;
693 	}
694 
695 	if (sb->major_version != 0 ||
696 	    sb->minor_version < 90 ||
697 	    sb->minor_version > 91) {
698 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
699 			sb->major_version, sb->minor_version,
700 			b);
701 		goto abort;
702 	}
703 
704 	if (sb->raid_disks <= 0)
705 		goto abort;
706 
707 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
708 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
709 			b);
710 		goto abort;
711 	}
712 
713 	rdev->preferred_minor = sb->md_minor;
714 	rdev->data_offset = 0;
715 	rdev->sb_size = MD_SB_BYTES;
716 
717 	if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
718 		if (sb->level != 1 && sb->level != 4
719 		    && sb->level != 5 && sb->level != 6
720 		    && sb->level != 10) {
721 			/* FIXME use a better test */
722 			printk(KERN_WARNING
723 			       "md: bitmaps not supported for this level.\n");
724 			goto abort;
725 		}
726 	}
727 
728 	if (sb->level == LEVEL_MULTIPATH)
729 		rdev->desc_nr = -1;
730 	else
731 		rdev->desc_nr = sb->this_disk.number;
732 
733 	if (refdev == 0)
734 		ret = 1;
735 	else {
736 		__u64 ev1, ev2;
737 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
738 		if (!uuid_equal(refsb, sb)) {
739 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
740 				b, bdevname(refdev->bdev,b2));
741 			goto abort;
742 		}
743 		if (!sb_equal(refsb, sb)) {
744 			printk(KERN_WARNING "md: %s has same UUID"
745 			       " but different superblock to %s\n",
746 			       b, bdevname(refdev->bdev, b2));
747 			goto abort;
748 		}
749 		ev1 = md_event(sb);
750 		ev2 = md_event(refsb);
751 		if (ev1 > ev2)
752 			ret = 1;
753 		else
754 			ret = 0;
755 	}
756 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
757 
758 	if (rdev->size < sb->size && sb->level > 1)
759 		/* "this cannot possibly happen" ... */
760 		ret = -EINVAL;
761 
762  abort:
763 	return ret;
764 }
765 
766 /*
767  * validate_super for 0.90.0
768  */
769 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
770 {
771 	mdp_disk_t *desc;
772 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
773 	__u64 ev1 = md_event(sb);
774 
775 	rdev->raid_disk = -1;
776 	rdev->flags = 0;
777 	if (mddev->raid_disks == 0) {
778 		mddev->major_version = 0;
779 		mddev->minor_version = sb->minor_version;
780 		mddev->patch_version = sb->patch_version;
781 		mddev->persistent = ! sb->not_persistent;
782 		mddev->chunk_size = sb->chunk_size;
783 		mddev->ctime = sb->ctime;
784 		mddev->utime = sb->utime;
785 		mddev->level = sb->level;
786 		mddev->clevel[0] = 0;
787 		mddev->layout = sb->layout;
788 		mddev->raid_disks = sb->raid_disks;
789 		mddev->size = sb->size;
790 		mddev->events = ev1;
791 		mddev->bitmap_offset = 0;
792 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
793 
794 		if (mddev->minor_version >= 91) {
795 			mddev->reshape_position = sb->reshape_position;
796 			mddev->delta_disks = sb->delta_disks;
797 			mddev->new_level = sb->new_level;
798 			mddev->new_layout = sb->new_layout;
799 			mddev->new_chunk = sb->new_chunk;
800 		} else {
801 			mddev->reshape_position = MaxSector;
802 			mddev->delta_disks = 0;
803 			mddev->new_level = mddev->level;
804 			mddev->new_layout = mddev->layout;
805 			mddev->new_chunk = mddev->chunk_size;
806 		}
807 
808 		if (sb->state & (1<<MD_SB_CLEAN))
809 			mddev->recovery_cp = MaxSector;
810 		else {
811 			if (sb->events_hi == sb->cp_events_hi &&
812 				sb->events_lo == sb->cp_events_lo) {
813 				mddev->recovery_cp = sb->recovery_cp;
814 			} else
815 				mddev->recovery_cp = 0;
816 		}
817 
818 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
819 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
820 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
821 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
822 
823 		mddev->max_disks = MD_SB_DISKS;
824 
825 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
826 		    mddev->bitmap_file == NULL)
827 			mddev->bitmap_offset = mddev->default_bitmap_offset;
828 
829 	} else if (mddev->pers == NULL) {
830 		/* Insist on good event counter while assembling */
831 		++ev1;
832 		if (ev1 < mddev->events)
833 			return -EINVAL;
834 	} else if (mddev->bitmap) {
835 		/* if adding to array with a bitmap, then we can accept an
836 		 * older device ... but not too old.
837 		 */
838 		if (ev1 < mddev->bitmap->events_cleared)
839 			return 0;
840 	} else {
841 		if (ev1 < mddev->events)
842 			/* just a hot-add of a new device, leave raid_disk at -1 */
843 			return 0;
844 	}
845 
846 	if (mddev->level != LEVEL_MULTIPATH) {
847 		desc = sb->disks + rdev->desc_nr;
848 
849 		if (desc->state & (1<<MD_DISK_FAULTY))
850 			set_bit(Faulty, &rdev->flags);
851 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
852 			    desc->raid_disk < mddev->raid_disks */) {
853 			set_bit(In_sync, &rdev->flags);
854 			rdev->raid_disk = desc->raid_disk;
855 		}
856 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
857 			set_bit(WriteMostly, &rdev->flags);
858 	} else /* MULTIPATH are always insync */
859 		set_bit(In_sync, &rdev->flags);
860 	return 0;
861 }
862 
863 /*
864  * sync_super for 0.90.0
865  */
866 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
867 {
868 	mdp_super_t *sb;
869 	struct list_head *tmp;
870 	mdk_rdev_t *rdev2;
871 	int next_spare = mddev->raid_disks;
872 
873 
874 	/* make rdev->sb match mddev data..
875 	 *
876 	 * 1/ zero out disks
877 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
878 	 * 3/ any empty disks < next_spare become removed
879 	 *
880 	 * disks[0] gets initialised to REMOVED because
881 	 * we cannot be sure from other fields if it has
882 	 * been initialised or not.
883 	 */
884 	int i;
885 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
886 
887 	rdev->sb_size = MD_SB_BYTES;
888 
889 	sb = (mdp_super_t*)page_address(rdev->sb_page);
890 
891 	memset(sb, 0, sizeof(*sb));
892 
893 	sb->md_magic = MD_SB_MAGIC;
894 	sb->major_version = mddev->major_version;
895 	sb->patch_version = mddev->patch_version;
896 	sb->gvalid_words  = 0; /* ignored */
897 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
898 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
899 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
900 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
901 
902 	sb->ctime = mddev->ctime;
903 	sb->level = mddev->level;
904 	sb->size  = mddev->size;
905 	sb->raid_disks = mddev->raid_disks;
906 	sb->md_minor = mddev->md_minor;
907 	sb->not_persistent = !mddev->persistent;
908 	sb->utime = mddev->utime;
909 	sb->state = 0;
910 	sb->events_hi = (mddev->events>>32);
911 	sb->events_lo = (u32)mddev->events;
912 
913 	if (mddev->reshape_position == MaxSector)
914 		sb->minor_version = 90;
915 	else {
916 		sb->minor_version = 91;
917 		sb->reshape_position = mddev->reshape_position;
918 		sb->new_level = mddev->new_level;
919 		sb->delta_disks = mddev->delta_disks;
920 		sb->new_layout = mddev->new_layout;
921 		sb->new_chunk = mddev->new_chunk;
922 	}
923 	mddev->minor_version = sb->minor_version;
924 	if (mddev->in_sync)
925 	{
926 		sb->recovery_cp = mddev->recovery_cp;
927 		sb->cp_events_hi = (mddev->events>>32);
928 		sb->cp_events_lo = (u32)mddev->events;
929 		if (mddev->recovery_cp == MaxSector)
930 			sb->state = (1<< MD_SB_CLEAN);
931 	} else
932 		sb->recovery_cp = 0;
933 
934 	sb->layout = mddev->layout;
935 	sb->chunk_size = mddev->chunk_size;
936 
937 	if (mddev->bitmap && mddev->bitmap_file == NULL)
938 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
939 
940 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
941 	ITERATE_RDEV(mddev,rdev2,tmp) {
942 		mdp_disk_t *d;
943 		int desc_nr;
944 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
945 		    && !test_bit(Faulty, &rdev2->flags))
946 			desc_nr = rdev2->raid_disk;
947 		else
948 			desc_nr = next_spare++;
949 		rdev2->desc_nr = desc_nr;
950 		d = &sb->disks[rdev2->desc_nr];
951 		nr_disks++;
952 		d->number = rdev2->desc_nr;
953 		d->major = MAJOR(rdev2->bdev->bd_dev);
954 		d->minor = MINOR(rdev2->bdev->bd_dev);
955 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
956 		    && !test_bit(Faulty, &rdev2->flags))
957 			d->raid_disk = rdev2->raid_disk;
958 		else
959 			d->raid_disk = rdev2->desc_nr; /* compatibility */
960 		if (test_bit(Faulty, &rdev2->flags))
961 			d->state = (1<<MD_DISK_FAULTY);
962 		else if (test_bit(In_sync, &rdev2->flags)) {
963 			d->state = (1<<MD_DISK_ACTIVE);
964 			d->state |= (1<<MD_DISK_SYNC);
965 			active++;
966 			working++;
967 		} else {
968 			d->state = 0;
969 			spare++;
970 			working++;
971 		}
972 		if (test_bit(WriteMostly, &rdev2->flags))
973 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
974 	}
975 	/* now set the "removed" and "faulty" bits on any missing devices */
976 	for (i=0 ; i < mddev->raid_disks ; i++) {
977 		mdp_disk_t *d = &sb->disks[i];
978 		if (d->state == 0 && d->number == 0) {
979 			d->number = i;
980 			d->raid_disk = i;
981 			d->state = (1<<MD_DISK_REMOVED);
982 			d->state |= (1<<MD_DISK_FAULTY);
983 			failed++;
984 		}
985 	}
986 	sb->nr_disks = nr_disks;
987 	sb->active_disks = active;
988 	sb->working_disks = working;
989 	sb->failed_disks = failed;
990 	sb->spare_disks = spare;
991 
992 	sb->this_disk = sb->disks[rdev->desc_nr];
993 	sb->sb_csum = calc_sb_csum(sb);
994 }
995 
996 /*
997  * version 1 superblock
998  */
999 
1000 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1001 {
1002 	__le32 disk_csum;
1003 	u32 csum;
1004 	unsigned long long newcsum;
1005 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1006 	__le32 *isuper = (__le32*)sb;
1007 	int i;
1008 
1009 	disk_csum = sb->sb_csum;
1010 	sb->sb_csum = 0;
1011 	newcsum = 0;
1012 	for (i=0; size>=4; size -= 4 )
1013 		newcsum += le32_to_cpu(*isuper++);
1014 
1015 	if (size == 2)
1016 		newcsum += le16_to_cpu(*(__le16*) isuper);
1017 
1018 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1019 	sb->sb_csum = disk_csum;
1020 	return cpu_to_le32(csum);
1021 }
1022 
1023 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1024 {
1025 	struct mdp_superblock_1 *sb;
1026 	int ret;
1027 	sector_t sb_offset;
1028 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1029 	int bmask;
1030 
1031 	/*
1032 	 * Calculate the position of the superblock.
1033 	 * It is always aligned to a 4K boundary and
1034 	 * depeding on minor_version, it can be:
1035 	 * 0: At least 8K, but less than 12K, from end of device
1036 	 * 1: At start of device
1037 	 * 2: 4K from start of device.
1038 	 */
1039 	switch(minor_version) {
1040 	case 0:
1041 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1042 		sb_offset -= 8*2;
1043 		sb_offset &= ~(sector_t)(4*2-1);
1044 		/* convert from sectors to K */
1045 		sb_offset /= 2;
1046 		break;
1047 	case 1:
1048 		sb_offset = 0;
1049 		break;
1050 	case 2:
1051 		sb_offset = 4;
1052 		break;
1053 	default:
1054 		return -EINVAL;
1055 	}
1056 	rdev->sb_offset = sb_offset;
1057 
1058 	/* superblock is rarely larger than 1K, but it can be larger,
1059 	 * and it is safe to read 4k, so we do that
1060 	 */
1061 	ret = read_disk_sb(rdev, 4096);
1062 	if (ret) return ret;
1063 
1064 
1065 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1066 
1067 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1068 	    sb->major_version != cpu_to_le32(1) ||
1069 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1070 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1071 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1072 		return -EINVAL;
1073 
1074 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1075 		printk("md: invalid superblock checksum on %s\n",
1076 			bdevname(rdev->bdev,b));
1077 		return -EINVAL;
1078 	}
1079 	if (le64_to_cpu(sb->data_size) < 10) {
1080 		printk("md: data_size too small on %s\n",
1081 		       bdevname(rdev->bdev,b));
1082 		return -EINVAL;
1083 	}
1084 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1085 		if (sb->level != cpu_to_le32(1) &&
1086 		    sb->level != cpu_to_le32(4) &&
1087 		    sb->level != cpu_to_le32(5) &&
1088 		    sb->level != cpu_to_le32(6) &&
1089 		    sb->level != cpu_to_le32(10)) {
1090 			printk(KERN_WARNING
1091 			       "md: bitmaps not supported for this level.\n");
1092 			return -EINVAL;
1093 		}
1094 	}
1095 
1096 	rdev->preferred_minor = 0xffff;
1097 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1098 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1099 
1100 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1101 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1102 	if (rdev->sb_size & bmask)
1103 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1104 
1105 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1106 		rdev->desc_nr = -1;
1107 	else
1108 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1109 
1110 	if (refdev == 0)
1111 		ret = 1;
1112 	else {
1113 		__u64 ev1, ev2;
1114 		struct mdp_superblock_1 *refsb =
1115 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1116 
1117 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1118 		    sb->level != refsb->level ||
1119 		    sb->layout != refsb->layout ||
1120 		    sb->chunksize != refsb->chunksize) {
1121 			printk(KERN_WARNING "md: %s has strangely different"
1122 				" superblock to %s\n",
1123 				bdevname(rdev->bdev,b),
1124 				bdevname(refdev->bdev,b2));
1125 			return -EINVAL;
1126 		}
1127 		ev1 = le64_to_cpu(sb->events);
1128 		ev2 = le64_to_cpu(refsb->events);
1129 
1130 		if (ev1 > ev2)
1131 			ret = 1;
1132 		else
1133 			ret = 0;
1134 	}
1135 	if (minor_version)
1136 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1137 	else
1138 		rdev->size = rdev->sb_offset;
1139 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1140 		return -EINVAL;
1141 	rdev->size = le64_to_cpu(sb->data_size)/2;
1142 	if (le32_to_cpu(sb->chunksize))
1143 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1144 
1145 	if (le64_to_cpu(sb->size) > rdev->size*2)
1146 		return -EINVAL;
1147 	return ret;
1148 }
1149 
1150 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1151 {
1152 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1153 	__u64 ev1 = le64_to_cpu(sb->events);
1154 
1155 	rdev->raid_disk = -1;
1156 	rdev->flags = 0;
1157 	if (mddev->raid_disks == 0) {
1158 		mddev->major_version = 1;
1159 		mddev->patch_version = 0;
1160 		mddev->persistent = 1;
1161 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1162 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1163 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1164 		mddev->level = le32_to_cpu(sb->level);
1165 		mddev->clevel[0] = 0;
1166 		mddev->layout = le32_to_cpu(sb->layout);
1167 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1168 		mddev->size = le64_to_cpu(sb->size)/2;
1169 		mddev->events = ev1;
1170 		mddev->bitmap_offset = 0;
1171 		mddev->default_bitmap_offset = 1024 >> 9;
1172 
1173 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1174 		memcpy(mddev->uuid, sb->set_uuid, 16);
1175 
1176 		mddev->max_disks =  (4096-256)/2;
1177 
1178 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1179 		    mddev->bitmap_file == NULL )
1180 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1181 
1182 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1183 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1184 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1185 			mddev->new_level = le32_to_cpu(sb->new_level);
1186 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1187 			mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1188 		} else {
1189 			mddev->reshape_position = MaxSector;
1190 			mddev->delta_disks = 0;
1191 			mddev->new_level = mddev->level;
1192 			mddev->new_layout = mddev->layout;
1193 			mddev->new_chunk = mddev->chunk_size;
1194 		}
1195 
1196 	} else if (mddev->pers == NULL) {
1197 		/* Insist of good event counter while assembling */
1198 		++ev1;
1199 		if (ev1 < mddev->events)
1200 			return -EINVAL;
1201 	} else if (mddev->bitmap) {
1202 		/* If adding to array with a bitmap, then we can accept an
1203 		 * older device, but not too old.
1204 		 */
1205 		if (ev1 < mddev->bitmap->events_cleared)
1206 			return 0;
1207 	} else {
1208 		if (ev1 < mddev->events)
1209 			/* just a hot-add of a new device, leave raid_disk at -1 */
1210 			return 0;
1211 	}
1212 	if (mddev->level != LEVEL_MULTIPATH) {
1213 		int role;
1214 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1215 		switch(role) {
1216 		case 0xffff: /* spare */
1217 			break;
1218 		case 0xfffe: /* faulty */
1219 			set_bit(Faulty, &rdev->flags);
1220 			break;
1221 		default:
1222 			if ((le32_to_cpu(sb->feature_map) &
1223 			     MD_FEATURE_RECOVERY_OFFSET))
1224 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1225 			else
1226 				set_bit(In_sync, &rdev->flags);
1227 			rdev->raid_disk = role;
1228 			break;
1229 		}
1230 		if (sb->devflags & WriteMostly1)
1231 			set_bit(WriteMostly, &rdev->flags);
1232 	} else /* MULTIPATH are always insync */
1233 		set_bit(In_sync, &rdev->flags);
1234 
1235 	return 0;
1236 }
1237 
1238 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1239 {
1240 	struct mdp_superblock_1 *sb;
1241 	struct list_head *tmp;
1242 	mdk_rdev_t *rdev2;
1243 	int max_dev, i;
1244 	/* make rdev->sb match mddev and rdev data. */
1245 
1246 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1247 
1248 	sb->feature_map = 0;
1249 	sb->pad0 = 0;
1250 	sb->recovery_offset = cpu_to_le64(0);
1251 	memset(sb->pad1, 0, sizeof(sb->pad1));
1252 	memset(sb->pad2, 0, sizeof(sb->pad2));
1253 	memset(sb->pad3, 0, sizeof(sb->pad3));
1254 
1255 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1256 	sb->events = cpu_to_le64(mddev->events);
1257 	if (mddev->in_sync)
1258 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1259 	else
1260 		sb->resync_offset = cpu_to_le64(0);
1261 
1262 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1263 
1264 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1265 	sb->size = cpu_to_le64(mddev->size<<1);
1266 
1267 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1268 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1269 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1270 	}
1271 
1272 	if (rdev->raid_disk >= 0 &&
1273 	    !test_bit(In_sync, &rdev->flags) &&
1274 	    rdev->recovery_offset > 0) {
1275 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1276 		sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1277 	}
1278 
1279 	if (mddev->reshape_position != MaxSector) {
1280 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1281 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1282 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1283 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1284 		sb->new_level = cpu_to_le32(mddev->new_level);
1285 		sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1286 	}
1287 
1288 	max_dev = 0;
1289 	ITERATE_RDEV(mddev,rdev2,tmp)
1290 		if (rdev2->desc_nr+1 > max_dev)
1291 			max_dev = rdev2->desc_nr+1;
1292 
1293 	if (max_dev > le32_to_cpu(sb->max_dev))
1294 		sb->max_dev = cpu_to_le32(max_dev);
1295 	for (i=0; i<max_dev;i++)
1296 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1297 
1298 	ITERATE_RDEV(mddev,rdev2,tmp) {
1299 		i = rdev2->desc_nr;
1300 		if (test_bit(Faulty, &rdev2->flags))
1301 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1302 		else if (test_bit(In_sync, &rdev2->flags))
1303 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1304 		else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1305 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1306 		else
1307 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1308 	}
1309 
1310 	sb->sb_csum = calc_sb_1_csum(sb);
1311 }
1312 
1313 
1314 static struct super_type super_types[] = {
1315 	[0] = {
1316 		.name	= "0.90.0",
1317 		.owner	= THIS_MODULE,
1318 		.load_super	= super_90_load,
1319 		.validate_super	= super_90_validate,
1320 		.sync_super	= super_90_sync,
1321 	},
1322 	[1] = {
1323 		.name	= "md-1",
1324 		.owner	= THIS_MODULE,
1325 		.load_super	= super_1_load,
1326 		.validate_super	= super_1_validate,
1327 		.sync_super	= super_1_sync,
1328 	},
1329 };
1330 
1331 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1332 {
1333 	struct list_head *tmp, *tmp2;
1334 	mdk_rdev_t *rdev, *rdev2;
1335 
1336 	ITERATE_RDEV(mddev1,rdev,tmp)
1337 		ITERATE_RDEV(mddev2, rdev2, tmp2)
1338 			if (rdev->bdev->bd_contains ==
1339 			    rdev2->bdev->bd_contains)
1340 				return 1;
1341 
1342 	return 0;
1343 }
1344 
1345 static LIST_HEAD(pending_raid_disks);
1346 
1347 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1348 {
1349 	char b[BDEVNAME_SIZE];
1350 	struct kobject *ko;
1351 	char *s;
1352 	int err;
1353 
1354 	if (rdev->mddev) {
1355 		MD_BUG();
1356 		return -EINVAL;
1357 	}
1358 	/* make sure rdev->size exceeds mddev->size */
1359 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1360 		if (mddev->pers) {
1361 			/* Cannot change size, so fail
1362 			 * If mddev->level <= 0, then we don't care
1363 			 * about aligning sizes (e.g. linear)
1364 			 */
1365 			if (mddev->level > 0)
1366 				return -ENOSPC;
1367 		} else
1368 			mddev->size = rdev->size;
1369 	}
1370 
1371 	/* Verify rdev->desc_nr is unique.
1372 	 * If it is -1, assign a free number, else
1373 	 * check number is not in use
1374 	 */
1375 	if (rdev->desc_nr < 0) {
1376 		int choice = 0;
1377 		if (mddev->pers) choice = mddev->raid_disks;
1378 		while (find_rdev_nr(mddev, choice))
1379 			choice++;
1380 		rdev->desc_nr = choice;
1381 	} else {
1382 		if (find_rdev_nr(mddev, rdev->desc_nr))
1383 			return -EBUSY;
1384 	}
1385 	bdevname(rdev->bdev,b);
1386 	while ( (s=strchr(b, '/')) != NULL)
1387 		*s = '!';
1388 
1389 	rdev->mddev = mddev;
1390 	printk(KERN_INFO "md: bind<%s>\n", b);
1391 
1392 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1393 		goto fail;
1394 
1395 	if (rdev->bdev->bd_part)
1396 		ko = &rdev->bdev->bd_part->dev.kobj;
1397 	else
1398 		ko = &rdev->bdev->bd_disk->dev.kobj;
1399 	if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1400 		kobject_del(&rdev->kobj);
1401 		goto fail;
1402 	}
1403 	list_add(&rdev->same_set, &mddev->disks);
1404 	bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1405 	return 0;
1406 
1407  fail:
1408 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1409 	       b, mdname(mddev));
1410 	return err;
1411 }
1412 
1413 static void delayed_delete(struct work_struct *ws)
1414 {
1415 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1416 	kobject_del(&rdev->kobj);
1417 }
1418 
1419 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1420 {
1421 	char b[BDEVNAME_SIZE];
1422 	if (!rdev->mddev) {
1423 		MD_BUG();
1424 		return;
1425 	}
1426 	bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1427 	list_del_init(&rdev->same_set);
1428 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1429 	rdev->mddev = NULL;
1430 	sysfs_remove_link(&rdev->kobj, "block");
1431 
1432 	/* We need to delay this, otherwise we can deadlock when
1433 	 * writing to 'remove' to "dev/state"
1434 	 */
1435 	INIT_WORK(&rdev->del_work, delayed_delete);
1436 	schedule_work(&rdev->del_work);
1437 }
1438 
1439 /*
1440  * prevent the device from being mounted, repartitioned or
1441  * otherwise reused by a RAID array (or any other kernel
1442  * subsystem), by bd_claiming the device.
1443  */
1444 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1445 {
1446 	int err = 0;
1447 	struct block_device *bdev;
1448 	char b[BDEVNAME_SIZE];
1449 
1450 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1451 	if (IS_ERR(bdev)) {
1452 		printk(KERN_ERR "md: could not open %s.\n",
1453 			__bdevname(dev, b));
1454 		return PTR_ERR(bdev);
1455 	}
1456 	err = bd_claim(bdev, rdev);
1457 	if (err) {
1458 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1459 			bdevname(bdev, b));
1460 		blkdev_put(bdev);
1461 		return err;
1462 	}
1463 	rdev->bdev = bdev;
1464 	return err;
1465 }
1466 
1467 static void unlock_rdev(mdk_rdev_t *rdev)
1468 {
1469 	struct block_device *bdev = rdev->bdev;
1470 	rdev->bdev = NULL;
1471 	if (!bdev)
1472 		MD_BUG();
1473 	bd_release(bdev);
1474 	blkdev_put(bdev);
1475 }
1476 
1477 void md_autodetect_dev(dev_t dev);
1478 
1479 static void export_rdev(mdk_rdev_t * rdev)
1480 {
1481 	char b[BDEVNAME_SIZE];
1482 	printk(KERN_INFO "md: export_rdev(%s)\n",
1483 		bdevname(rdev->bdev,b));
1484 	if (rdev->mddev)
1485 		MD_BUG();
1486 	free_disk_sb(rdev);
1487 	list_del_init(&rdev->same_set);
1488 #ifndef MODULE
1489 	md_autodetect_dev(rdev->bdev->bd_dev);
1490 #endif
1491 	unlock_rdev(rdev);
1492 	kobject_put(&rdev->kobj);
1493 }
1494 
1495 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1496 {
1497 	unbind_rdev_from_array(rdev);
1498 	export_rdev(rdev);
1499 }
1500 
1501 static void export_array(mddev_t *mddev)
1502 {
1503 	struct list_head *tmp;
1504 	mdk_rdev_t *rdev;
1505 
1506 	ITERATE_RDEV(mddev,rdev,tmp) {
1507 		if (!rdev->mddev) {
1508 			MD_BUG();
1509 			continue;
1510 		}
1511 		kick_rdev_from_array(rdev);
1512 	}
1513 	if (!list_empty(&mddev->disks))
1514 		MD_BUG();
1515 	mddev->raid_disks = 0;
1516 	mddev->major_version = 0;
1517 }
1518 
1519 static void print_desc(mdp_disk_t *desc)
1520 {
1521 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1522 		desc->major,desc->minor,desc->raid_disk,desc->state);
1523 }
1524 
1525 static void print_sb(mdp_super_t *sb)
1526 {
1527 	int i;
1528 
1529 	printk(KERN_INFO
1530 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1531 		sb->major_version, sb->minor_version, sb->patch_version,
1532 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1533 		sb->ctime);
1534 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1535 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1536 		sb->md_minor, sb->layout, sb->chunk_size);
1537 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1538 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1539 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1540 		sb->failed_disks, sb->spare_disks,
1541 		sb->sb_csum, (unsigned long)sb->events_lo);
1542 
1543 	printk(KERN_INFO);
1544 	for (i = 0; i < MD_SB_DISKS; i++) {
1545 		mdp_disk_t *desc;
1546 
1547 		desc = sb->disks + i;
1548 		if (desc->number || desc->major || desc->minor ||
1549 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1550 			printk("     D %2d: ", i);
1551 			print_desc(desc);
1552 		}
1553 	}
1554 	printk(KERN_INFO "md:     THIS: ");
1555 	print_desc(&sb->this_disk);
1556 
1557 }
1558 
1559 static void print_rdev(mdk_rdev_t *rdev)
1560 {
1561 	char b[BDEVNAME_SIZE];
1562 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1563 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1564 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1565 	        rdev->desc_nr);
1566 	if (rdev->sb_loaded) {
1567 		printk(KERN_INFO "md: rdev superblock:\n");
1568 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1569 	} else
1570 		printk(KERN_INFO "md: no rdev superblock!\n");
1571 }
1572 
1573 static void md_print_devices(void)
1574 {
1575 	struct list_head *tmp, *tmp2;
1576 	mdk_rdev_t *rdev;
1577 	mddev_t *mddev;
1578 	char b[BDEVNAME_SIZE];
1579 
1580 	printk("\n");
1581 	printk("md:	**********************************\n");
1582 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1583 	printk("md:	**********************************\n");
1584 	ITERATE_MDDEV(mddev,tmp) {
1585 
1586 		if (mddev->bitmap)
1587 			bitmap_print_sb(mddev->bitmap);
1588 		else
1589 			printk("%s: ", mdname(mddev));
1590 		ITERATE_RDEV(mddev,rdev,tmp2)
1591 			printk("<%s>", bdevname(rdev->bdev,b));
1592 		printk("\n");
1593 
1594 		ITERATE_RDEV(mddev,rdev,tmp2)
1595 			print_rdev(rdev);
1596 	}
1597 	printk("md:	**********************************\n");
1598 	printk("\n");
1599 }
1600 
1601 
1602 static void sync_sbs(mddev_t * mddev, int nospares)
1603 {
1604 	/* Update each superblock (in-memory image), but
1605 	 * if we are allowed to, skip spares which already
1606 	 * have the right event counter, or have one earlier
1607 	 * (which would mean they aren't being marked as dirty
1608 	 * with the rest of the array)
1609 	 */
1610 	mdk_rdev_t *rdev;
1611 	struct list_head *tmp;
1612 
1613 	ITERATE_RDEV(mddev,rdev,tmp) {
1614 		if (rdev->sb_events == mddev->events ||
1615 		    (nospares &&
1616 		     rdev->raid_disk < 0 &&
1617 		     (rdev->sb_events&1)==0 &&
1618 		     rdev->sb_events+1 == mddev->events)) {
1619 			/* Don't update this superblock */
1620 			rdev->sb_loaded = 2;
1621 		} else {
1622 			super_types[mddev->major_version].
1623 				sync_super(mddev, rdev);
1624 			rdev->sb_loaded = 1;
1625 		}
1626 	}
1627 }
1628 
1629 static void md_update_sb(mddev_t * mddev, int force_change)
1630 {
1631 	struct list_head *tmp;
1632 	mdk_rdev_t *rdev;
1633 	int sync_req;
1634 	int nospares = 0;
1635 
1636 repeat:
1637 	spin_lock_irq(&mddev->write_lock);
1638 
1639 	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1640 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1641 		force_change = 1;
1642 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1643 		/* just a clean<-> dirty transition, possibly leave spares alone,
1644 		 * though if events isn't the right even/odd, we will have to do
1645 		 * spares after all
1646 		 */
1647 		nospares = 1;
1648 	if (force_change)
1649 		nospares = 0;
1650 	if (mddev->degraded)
1651 		/* If the array is degraded, then skipping spares is both
1652 		 * dangerous and fairly pointless.
1653 		 * Dangerous because a device that was removed from the array
1654 		 * might have a event_count that still looks up-to-date,
1655 		 * so it can be re-added without a resync.
1656 		 * Pointless because if there are any spares to skip,
1657 		 * then a recovery will happen and soon that array won't
1658 		 * be degraded any more and the spare can go back to sleep then.
1659 		 */
1660 		nospares = 0;
1661 
1662 	sync_req = mddev->in_sync;
1663 	mddev->utime = get_seconds();
1664 
1665 	/* If this is just a dirty<->clean transition, and the array is clean
1666 	 * and 'events' is odd, we can roll back to the previous clean state */
1667 	if (nospares
1668 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1669 	    && (mddev->events & 1)
1670 	    && mddev->events != 1)
1671 		mddev->events--;
1672 	else {
1673 		/* otherwise we have to go forward and ... */
1674 		mddev->events ++;
1675 		if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1676 			/* .. if the array isn't clean, insist on an odd 'events' */
1677 			if ((mddev->events&1)==0) {
1678 				mddev->events++;
1679 				nospares = 0;
1680 			}
1681 		} else {
1682 			/* otherwise insist on an even 'events' (for clean states) */
1683 			if ((mddev->events&1)) {
1684 				mddev->events++;
1685 				nospares = 0;
1686 			}
1687 		}
1688 	}
1689 
1690 	if (!mddev->events) {
1691 		/*
1692 		 * oops, this 64-bit counter should never wrap.
1693 		 * Either we are in around ~1 trillion A.C., assuming
1694 		 * 1 reboot per second, or we have a bug:
1695 		 */
1696 		MD_BUG();
1697 		mddev->events --;
1698 	}
1699 	sync_sbs(mddev, nospares);
1700 
1701 	/*
1702 	 * do not write anything to disk if using
1703 	 * nonpersistent superblocks
1704 	 */
1705 	if (!mddev->persistent) {
1706 		clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1707 		spin_unlock_irq(&mddev->write_lock);
1708 		wake_up(&mddev->sb_wait);
1709 		return;
1710 	}
1711 	spin_unlock_irq(&mddev->write_lock);
1712 
1713 	dprintk(KERN_INFO
1714 		"md: updating %s RAID superblock on device (in sync %d)\n",
1715 		mdname(mddev),mddev->in_sync);
1716 
1717 	bitmap_update_sb(mddev->bitmap);
1718 	ITERATE_RDEV(mddev,rdev,tmp) {
1719 		char b[BDEVNAME_SIZE];
1720 		dprintk(KERN_INFO "md: ");
1721 		if (rdev->sb_loaded != 1)
1722 			continue; /* no noise on spare devices */
1723 		if (test_bit(Faulty, &rdev->flags))
1724 			dprintk("(skipping faulty ");
1725 
1726 		dprintk("%s ", bdevname(rdev->bdev,b));
1727 		if (!test_bit(Faulty, &rdev->flags)) {
1728 			md_super_write(mddev,rdev,
1729 				       rdev->sb_offset<<1, rdev->sb_size,
1730 				       rdev->sb_page);
1731 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1732 				bdevname(rdev->bdev,b),
1733 				(unsigned long long)rdev->sb_offset);
1734 			rdev->sb_events = mddev->events;
1735 
1736 		} else
1737 			dprintk(")\n");
1738 		if (mddev->level == LEVEL_MULTIPATH)
1739 			/* only need to write one superblock... */
1740 			break;
1741 	}
1742 	md_super_wait(mddev);
1743 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1744 
1745 	spin_lock_irq(&mddev->write_lock);
1746 	if (mddev->in_sync != sync_req ||
1747 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1748 		/* have to write it out again */
1749 		spin_unlock_irq(&mddev->write_lock);
1750 		goto repeat;
1751 	}
1752 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1753 	spin_unlock_irq(&mddev->write_lock);
1754 	wake_up(&mddev->sb_wait);
1755 
1756 }
1757 
1758 /* words written to sysfs files may, or my not, be \n terminated.
1759  * We want to accept with case. For this we use cmd_match.
1760  */
1761 static int cmd_match(const char *cmd, const char *str)
1762 {
1763 	/* See if cmd, written into a sysfs file, matches
1764 	 * str.  They must either be the same, or cmd can
1765 	 * have a trailing newline
1766 	 */
1767 	while (*cmd && *str && *cmd == *str) {
1768 		cmd++;
1769 		str++;
1770 	}
1771 	if (*cmd == '\n')
1772 		cmd++;
1773 	if (*str || *cmd)
1774 		return 0;
1775 	return 1;
1776 }
1777 
1778 struct rdev_sysfs_entry {
1779 	struct attribute attr;
1780 	ssize_t (*show)(mdk_rdev_t *, char *);
1781 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1782 };
1783 
1784 static ssize_t
1785 state_show(mdk_rdev_t *rdev, char *page)
1786 {
1787 	char *sep = "";
1788 	int len=0;
1789 
1790 	if (test_bit(Faulty, &rdev->flags)) {
1791 		len+= sprintf(page+len, "%sfaulty",sep);
1792 		sep = ",";
1793 	}
1794 	if (test_bit(In_sync, &rdev->flags)) {
1795 		len += sprintf(page+len, "%sin_sync",sep);
1796 		sep = ",";
1797 	}
1798 	if (test_bit(WriteMostly, &rdev->flags)) {
1799 		len += sprintf(page+len, "%swrite_mostly",sep);
1800 		sep = ",";
1801 	}
1802 	if (!test_bit(Faulty, &rdev->flags) &&
1803 	    !test_bit(In_sync, &rdev->flags)) {
1804 		len += sprintf(page+len, "%sspare", sep);
1805 		sep = ",";
1806 	}
1807 	return len+sprintf(page+len, "\n");
1808 }
1809 
1810 static ssize_t
1811 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1812 {
1813 	/* can write
1814 	 *  faulty  - simulates and error
1815 	 *  remove  - disconnects the device
1816 	 *  writemostly - sets write_mostly
1817 	 *  -writemostly - clears write_mostly
1818 	 */
1819 	int err = -EINVAL;
1820 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1821 		md_error(rdev->mddev, rdev);
1822 		err = 0;
1823 	} else if (cmd_match(buf, "remove")) {
1824 		if (rdev->raid_disk >= 0)
1825 			err = -EBUSY;
1826 		else {
1827 			mddev_t *mddev = rdev->mddev;
1828 			kick_rdev_from_array(rdev);
1829 			if (mddev->pers)
1830 				md_update_sb(mddev, 1);
1831 			md_new_event(mddev);
1832 			err = 0;
1833 		}
1834 	} else if (cmd_match(buf, "writemostly")) {
1835 		set_bit(WriteMostly, &rdev->flags);
1836 		err = 0;
1837 	} else if (cmd_match(buf, "-writemostly")) {
1838 		clear_bit(WriteMostly, &rdev->flags);
1839 		err = 0;
1840 	}
1841 	return err ? err : len;
1842 }
1843 static struct rdev_sysfs_entry rdev_state =
1844 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1845 
1846 static ssize_t
1847 super_show(mdk_rdev_t *rdev, char *page)
1848 {
1849 	if (rdev->sb_loaded && rdev->sb_size) {
1850 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1851 		return rdev->sb_size;
1852 	} else
1853 		return 0;
1854 }
1855 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1856 
1857 static ssize_t
1858 errors_show(mdk_rdev_t *rdev, char *page)
1859 {
1860 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1861 }
1862 
1863 static ssize_t
1864 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1865 {
1866 	char *e;
1867 	unsigned long n = simple_strtoul(buf, &e, 10);
1868 	if (*buf && (*e == 0 || *e == '\n')) {
1869 		atomic_set(&rdev->corrected_errors, n);
1870 		return len;
1871 	}
1872 	return -EINVAL;
1873 }
1874 static struct rdev_sysfs_entry rdev_errors =
1875 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1876 
1877 static ssize_t
1878 slot_show(mdk_rdev_t *rdev, char *page)
1879 {
1880 	if (rdev->raid_disk < 0)
1881 		return sprintf(page, "none\n");
1882 	else
1883 		return sprintf(page, "%d\n", rdev->raid_disk);
1884 }
1885 
1886 static ssize_t
1887 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1888 {
1889 	char *e;
1890 	int slot = simple_strtoul(buf, &e, 10);
1891 	if (strncmp(buf, "none", 4)==0)
1892 		slot = -1;
1893 	else if (e==buf || (*e && *e!= '\n'))
1894 		return -EINVAL;
1895 	if (rdev->mddev->pers)
1896 		/* Cannot set slot in active array (yet) */
1897 		return -EBUSY;
1898 	if (slot >= rdev->mddev->raid_disks)
1899 		return -ENOSPC;
1900 	rdev->raid_disk = slot;
1901 	/* assume it is working */
1902 	rdev->flags = 0;
1903 	set_bit(In_sync, &rdev->flags);
1904 	return len;
1905 }
1906 
1907 
1908 static struct rdev_sysfs_entry rdev_slot =
1909 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1910 
1911 static ssize_t
1912 offset_show(mdk_rdev_t *rdev, char *page)
1913 {
1914 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1915 }
1916 
1917 static ssize_t
1918 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1919 {
1920 	char *e;
1921 	unsigned long long offset = simple_strtoull(buf, &e, 10);
1922 	if (e==buf || (*e && *e != '\n'))
1923 		return -EINVAL;
1924 	if (rdev->mddev->pers)
1925 		return -EBUSY;
1926 	rdev->data_offset = offset;
1927 	return len;
1928 }
1929 
1930 static struct rdev_sysfs_entry rdev_offset =
1931 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1932 
1933 static ssize_t
1934 rdev_size_show(mdk_rdev_t *rdev, char *page)
1935 {
1936 	return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1937 }
1938 
1939 static ssize_t
1940 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1941 {
1942 	char *e;
1943 	unsigned long long size = simple_strtoull(buf, &e, 10);
1944 	if (e==buf || (*e && *e != '\n'))
1945 		return -EINVAL;
1946 	if (rdev->mddev->pers)
1947 		return -EBUSY;
1948 	rdev->size = size;
1949 	if (size < rdev->mddev->size || rdev->mddev->size == 0)
1950 		rdev->mddev->size = size;
1951 	return len;
1952 }
1953 
1954 static struct rdev_sysfs_entry rdev_size =
1955 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1956 
1957 static struct attribute *rdev_default_attrs[] = {
1958 	&rdev_state.attr,
1959 	&rdev_super.attr,
1960 	&rdev_errors.attr,
1961 	&rdev_slot.attr,
1962 	&rdev_offset.attr,
1963 	&rdev_size.attr,
1964 	NULL,
1965 };
1966 static ssize_t
1967 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1968 {
1969 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1970 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1971 
1972 	if (!entry->show)
1973 		return -EIO;
1974 	return entry->show(rdev, page);
1975 }
1976 
1977 static ssize_t
1978 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1979 	      const char *page, size_t length)
1980 {
1981 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1982 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1983 
1984 	if (!entry->store)
1985 		return -EIO;
1986 	if (!capable(CAP_SYS_ADMIN))
1987 		return -EACCES;
1988 	return entry->store(rdev, page, length);
1989 }
1990 
1991 static void rdev_free(struct kobject *ko)
1992 {
1993 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1994 	kfree(rdev);
1995 }
1996 static struct sysfs_ops rdev_sysfs_ops = {
1997 	.show		= rdev_attr_show,
1998 	.store		= rdev_attr_store,
1999 };
2000 static struct kobj_type rdev_ktype = {
2001 	.release	= rdev_free,
2002 	.sysfs_ops	= &rdev_sysfs_ops,
2003 	.default_attrs	= rdev_default_attrs,
2004 };
2005 
2006 /*
2007  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2008  *
2009  * mark the device faulty if:
2010  *
2011  *   - the device is nonexistent (zero size)
2012  *   - the device has no valid superblock
2013  *
2014  * a faulty rdev _never_ has rdev->sb set.
2015  */
2016 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2017 {
2018 	char b[BDEVNAME_SIZE];
2019 	int err;
2020 	mdk_rdev_t *rdev;
2021 	sector_t size;
2022 
2023 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2024 	if (!rdev) {
2025 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2026 		return ERR_PTR(-ENOMEM);
2027 	}
2028 
2029 	if ((err = alloc_disk_sb(rdev)))
2030 		goto abort_free;
2031 
2032 	err = lock_rdev(rdev, newdev);
2033 	if (err)
2034 		goto abort_free;
2035 
2036 	kobject_init(&rdev->kobj, &rdev_ktype);
2037 
2038 	rdev->desc_nr = -1;
2039 	rdev->saved_raid_disk = -1;
2040 	rdev->raid_disk = -1;
2041 	rdev->flags = 0;
2042 	rdev->data_offset = 0;
2043 	rdev->sb_events = 0;
2044 	atomic_set(&rdev->nr_pending, 0);
2045 	atomic_set(&rdev->read_errors, 0);
2046 	atomic_set(&rdev->corrected_errors, 0);
2047 
2048 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2049 	if (!size) {
2050 		printk(KERN_WARNING
2051 			"md: %s has zero or unknown size, marking faulty!\n",
2052 			bdevname(rdev->bdev,b));
2053 		err = -EINVAL;
2054 		goto abort_free;
2055 	}
2056 
2057 	if (super_format >= 0) {
2058 		err = super_types[super_format].
2059 			load_super(rdev, NULL, super_minor);
2060 		if (err == -EINVAL) {
2061 			printk(KERN_WARNING
2062 				"md: %s does not have a valid v%d.%d "
2063 			       "superblock, not importing!\n",
2064 				bdevname(rdev->bdev,b),
2065 			       super_format, super_minor);
2066 			goto abort_free;
2067 		}
2068 		if (err < 0) {
2069 			printk(KERN_WARNING
2070 				"md: could not read %s's sb, not importing!\n",
2071 				bdevname(rdev->bdev,b));
2072 			goto abort_free;
2073 		}
2074 	}
2075 	INIT_LIST_HEAD(&rdev->same_set);
2076 
2077 	return rdev;
2078 
2079 abort_free:
2080 	if (rdev->sb_page) {
2081 		if (rdev->bdev)
2082 			unlock_rdev(rdev);
2083 		free_disk_sb(rdev);
2084 	}
2085 	kfree(rdev);
2086 	return ERR_PTR(err);
2087 }
2088 
2089 /*
2090  * Check a full RAID array for plausibility
2091  */
2092 
2093 
2094 static void analyze_sbs(mddev_t * mddev)
2095 {
2096 	int i;
2097 	struct list_head *tmp;
2098 	mdk_rdev_t *rdev, *freshest;
2099 	char b[BDEVNAME_SIZE];
2100 
2101 	freshest = NULL;
2102 	ITERATE_RDEV(mddev,rdev,tmp)
2103 		switch (super_types[mddev->major_version].
2104 			load_super(rdev, freshest, mddev->minor_version)) {
2105 		case 1:
2106 			freshest = rdev;
2107 			break;
2108 		case 0:
2109 			break;
2110 		default:
2111 			printk( KERN_ERR \
2112 				"md: fatal superblock inconsistency in %s"
2113 				" -- removing from array\n",
2114 				bdevname(rdev->bdev,b));
2115 			kick_rdev_from_array(rdev);
2116 		}
2117 
2118 
2119 	super_types[mddev->major_version].
2120 		validate_super(mddev, freshest);
2121 
2122 	i = 0;
2123 	ITERATE_RDEV(mddev,rdev,tmp) {
2124 		if (rdev != freshest)
2125 			if (super_types[mddev->major_version].
2126 			    validate_super(mddev, rdev)) {
2127 				printk(KERN_WARNING "md: kicking non-fresh %s"
2128 					" from array!\n",
2129 					bdevname(rdev->bdev,b));
2130 				kick_rdev_from_array(rdev);
2131 				continue;
2132 			}
2133 		if (mddev->level == LEVEL_MULTIPATH) {
2134 			rdev->desc_nr = i++;
2135 			rdev->raid_disk = rdev->desc_nr;
2136 			set_bit(In_sync, &rdev->flags);
2137 		} else if (rdev->raid_disk >= mddev->raid_disks) {
2138 			rdev->raid_disk = -1;
2139 			clear_bit(In_sync, &rdev->flags);
2140 		}
2141 	}
2142 
2143 
2144 
2145 	if (mddev->recovery_cp != MaxSector &&
2146 	    mddev->level >= 1)
2147 		printk(KERN_ERR "md: %s: raid array is not clean"
2148 		       " -- starting background reconstruction\n",
2149 		       mdname(mddev));
2150 
2151 }
2152 
2153 static ssize_t
2154 safe_delay_show(mddev_t *mddev, char *page)
2155 {
2156 	int msec = (mddev->safemode_delay*1000)/HZ;
2157 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2158 }
2159 static ssize_t
2160 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2161 {
2162 	int scale=1;
2163 	int dot=0;
2164 	int i;
2165 	unsigned long msec;
2166 	char buf[30];
2167 	char *e;
2168 	/* remove a period, and count digits after it */
2169 	if (len >= sizeof(buf))
2170 		return -EINVAL;
2171 	strlcpy(buf, cbuf, len);
2172 	buf[len] = 0;
2173 	for (i=0; i<len; i++) {
2174 		if (dot) {
2175 			if (isdigit(buf[i])) {
2176 				buf[i-1] = buf[i];
2177 				scale *= 10;
2178 			}
2179 			buf[i] = 0;
2180 		} else if (buf[i] == '.') {
2181 			dot=1;
2182 			buf[i] = 0;
2183 		}
2184 	}
2185 	msec = simple_strtoul(buf, &e, 10);
2186 	if (e == buf || (*e && *e != '\n'))
2187 		return -EINVAL;
2188 	msec = (msec * 1000) / scale;
2189 	if (msec == 0)
2190 		mddev->safemode_delay = 0;
2191 	else {
2192 		mddev->safemode_delay = (msec*HZ)/1000;
2193 		if (mddev->safemode_delay == 0)
2194 			mddev->safemode_delay = 1;
2195 	}
2196 	return len;
2197 }
2198 static struct md_sysfs_entry md_safe_delay =
2199 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2200 
2201 static ssize_t
2202 level_show(mddev_t *mddev, char *page)
2203 {
2204 	struct mdk_personality *p = mddev->pers;
2205 	if (p)
2206 		return sprintf(page, "%s\n", p->name);
2207 	else if (mddev->clevel[0])
2208 		return sprintf(page, "%s\n", mddev->clevel);
2209 	else if (mddev->level != LEVEL_NONE)
2210 		return sprintf(page, "%d\n", mddev->level);
2211 	else
2212 		return 0;
2213 }
2214 
2215 static ssize_t
2216 level_store(mddev_t *mddev, const char *buf, size_t len)
2217 {
2218 	int rv = len;
2219 	if (mddev->pers)
2220 		return -EBUSY;
2221 	if (len == 0)
2222 		return 0;
2223 	if (len >= sizeof(mddev->clevel))
2224 		return -ENOSPC;
2225 	strncpy(mddev->clevel, buf, len);
2226 	if (mddev->clevel[len-1] == '\n')
2227 		len--;
2228 	mddev->clevel[len] = 0;
2229 	mddev->level = LEVEL_NONE;
2230 	return rv;
2231 }
2232 
2233 static struct md_sysfs_entry md_level =
2234 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2235 
2236 
2237 static ssize_t
2238 layout_show(mddev_t *mddev, char *page)
2239 {
2240 	/* just a number, not meaningful for all levels */
2241 	if (mddev->reshape_position != MaxSector &&
2242 	    mddev->layout != mddev->new_layout)
2243 		return sprintf(page, "%d (%d)\n",
2244 			       mddev->new_layout, mddev->layout);
2245 	return sprintf(page, "%d\n", mddev->layout);
2246 }
2247 
2248 static ssize_t
2249 layout_store(mddev_t *mddev, const char *buf, size_t len)
2250 {
2251 	char *e;
2252 	unsigned long n = simple_strtoul(buf, &e, 10);
2253 
2254 	if (!*buf || (*e && *e != '\n'))
2255 		return -EINVAL;
2256 
2257 	if (mddev->pers)
2258 		return -EBUSY;
2259 	if (mddev->reshape_position != MaxSector)
2260 		mddev->new_layout = n;
2261 	else
2262 		mddev->layout = n;
2263 	return len;
2264 }
2265 static struct md_sysfs_entry md_layout =
2266 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2267 
2268 
2269 static ssize_t
2270 raid_disks_show(mddev_t *mddev, char *page)
2271 {
2272 	if (mddev->raid_disks == 0)
2273 		return 0;
2274 	if (mddev->reshape_position != MaxSector &&
2275 	    mddev->delta_disks != 0)
2276 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2277 			       mddev->raid_disks - mddev->delta_disks);
2278 	return sprintf(page, "%d\n", mddev->raid_disks);
2279 }
2280 
2281 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2282 
2283 static ssize_t
2284 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2285 {
2286 	char *e;
2287 	int rv = 0;
2288 	unsigned long n = simple_strtoul(buf, &e, 10);
2289 
2290 	if (!*buf || (*e && *e != '\n'))
2291 		return -EINVAL;
2292 
2293 	if (mddev->pers)
2294 		rv = update_raid_disks(mddev, n);
2295 	else if (mddev->reshape_position != MaxSector) {
2296 		int olddisks = mddev->raid_disks - mddev->delta_disks;
2297 		mddev->delta_disks = n - olddisks;
2298 		mddev->raid_disks = n;
2299 	} else
2300 		mddev->raid_disks = n;
2301 	return rv ? rv : len;
2302 }
2303 static struct md_sysfs_entry md_raid_disks =
2304 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2305 
2306 static ssize_t
2307 chunk_size_show(mddev_t *mddev, char *page)
2308 {
2309 	if (mddev->reshape_position != MaxSector &&
2310 	    mddev->chunk_size != mddev->new_chunk)
2311 		return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2312 			       mddev->chunk_size);
2313 	return sprintf(page, "%d\n", mddev->chunk_size);
2314 }
2315 
2316 static ssize_t
2317 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2318 {
2319 	/* can only set chunk_size if array is not yet active */
2320 	char *e;
2321 	unsigned long n = simple_strtoul(buf, &e, 10);
2322 
2323 	if (!*buf || (*e && *e != '\n'))
2324 		return -EINVAL;
2325 
2326 	if (mddev->pers)
2327 		return -EBUSY;
2328 	else if (mddev->reshape_position != MaxSector)
2329 		mddev->new_chunk = n;
2330 	else
2331 		mddev->chunk_size = n;
2332 	return len;
2333 }
2334 static struct md_sysfs_entry md_chunk_size =
2335 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2336 
2337 static ssize_t
2338 resync_start_show(mddev_t *mddev, char *page)
2339 {
2340 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2341 }
2342 
2343 static ssize_t
2344 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2345 {
2346 	/* can only set chunk_size if array is not yet active */
2347 	char *e;
2348 	unsigned long long n = simple_strtoull(buf, &e, 10);
2349 
2350 	if (mddev->pers)
2351 		return -EBUSY;
2352 	if (!*buf || (*e && *e != '\n'))
2353 		return -EINVAL;
2354 
2355 	mddev->recovery_cp = n;
2356 	return len;
2357 }
2358 static struct md_sysfs_entry md_resync_start =
2359 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2360 
2361 /*
2362  * The array state can be:
2363  *
2364  * clear
2365  *     No devices, no size, no level
2366  *     Equivalent to STOP_ARRAY ioctl
2367  * inactive
2368  *     May have some settings, but array is not active
2369  *        all IO results in error
2370  *     When written, doesn't tear down array, but just stops it
2371  * suspended (not supported yet)
2372  *     All IO requests will block. The array can be reconfigured.
2373  *     Writing this, if accepted, will block until array is quiessent
2374  * readonly
2375  *     no resync can happen.  no superblocks get written.
2376  *     write requests fail
2377  * read-auto
2378  *     like readonly, but behaves like 'clean' on a write request.
2379  *
2380  * clean - no pending writes, but otherwise active.
2381  *     When written to inactive array, starts without resync
2382  *     If a write request arrives then
2383  *       if metadata is known, mark 'dirty' and switch to 'active'.
2384  *       if not known, block and switch to write-pending
2385  *     If written to an active array that has pending writes, then fails.
2386  * active
2387  *     fully active: IO and resync can be happening.
2388  *     When written to inactive array, starts with resync
2389  *
2390  * write-pending
2391  *     clean, but writes are blocked waiting for 'active' to be written.
2392  *
2393  * active-idle
2394  *     like active, but no writes have been seen for a while (100msec).
2395  *
2396  */
2397 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2398 		   write_pending, active_idle, bad_word};
2399 static char *array_states[] = {
2400 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2401 	"write-pending", "active-idle", NULL };
2402 
2403 static int match_word(const char *word, char **list)
2404 {
2405 	int n;
2406 	for (n=0; list[n]; n++)
2407 		if (cmd_match(word, list[n]))
2408 			break;
2409 	return n;
2410 }
2411 
2412 static ssize_t
2413 array_state_show(mddev_t *mddev, char *page)
2414 {
2415 	enum array_state st = inactive;
2416 
2417 	if (mddev->pers)
2418 		switch(mddev->ro) {
2419 		case 1:
2420 			st = readonly;
2421 			break;
2422 		case 2:
2423 			st = read_auto;
2424 			break;
2425 		case 0:
2426 			if (mddev->in_sync)
2427 				st = clean;
2428 			else if (mddev->safemode)
2429 				st = active_idle;
2430 			else
2431 				st = active;
2432 		}
2433 	else {
2434 		if (list_empty(&mddev->disks) &&
2435 		    mddev->raid_disks == 0 &&
2436 		    mddev->size == 0)
2437 			st = clear;
2438 		else
2439 			st = inactive;
2440 	}
2441 	return sprintf(page, "%s\n", array_states[st]);
2442 }
2443 
2444 static int do_md_stop(mddev_t * mddev, int ro);
2445 static int do_md_run(mddev_t * mddev);
2446 static int restart_array(mddev_t *mddev);
2447 
2448 static ssize_t
2449 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2450 {
2451 	int err = -EINVAL;
2452 	enum array_state st = match_word(buf, array_states);
2453 	switch(st) {
2454 	case bad_word:
2455 		break;
2456 	case clear:
2457 		/* stopping an active array */
2458 		if (mddev->pers) {
2459 			if (atomic_read(&mddev->active) > 1)
2460 				return -EBUSY;
2461 			err = do_md_stop(mddev, 0);
2462 		}
2463 		break;
2464 	case inactive:
2465 		/* stopping an active array */
2466 		if (mddev->pers) {
2467 			if (atomic_read(&mddev->active) > 1)
2468 				return -EBUSY;
2469 			err = do_md_stop(mddev, 2);
2470 		}
2471 		break;
2472 	case suspended:
2473 		break; /* not supported yet */
2474 	case readonly:
2475 		if (mddev->pers)
2476 			err = do_md_stop(mddev, 1);
2477 		else {
2478 			mddev->ro = 1;
2479 			err = do_md_run(mddev);
2480 		}
2481 		break;
2482 	case read_auto:
2483 		/* stopping an active array */
2484 		if (mddev->pers) {
2485 			err = do_md_stop(mddev, 1);
2486 			if (err == 0)
2487 				mddev->ro = 2; /* FIXME mark devices writable */
2488 		} else {
2489 			mddev->ro = 2;
2490 			err = do_md_run(mddev);
2491 		}
2492 		break;
2493 	case clean:
2494 		if (mddev->pers) {
2495 			restart_array(mddev);
2496 			spin_lock_irq(&mddev->write_lock);
2497 			if (atomic_read(&mddev->writes_pending) == 0) {
2498 				mddev->in_sync = 1;
2499 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2500 			}
2501 			spin_unlock_irq(&mddev->write_lock);
2502 		} else {
2503 			mddev->ro = 0;
2504 			mddev->recovery_cp = MaxSector;
2505 			err = do_md_run(mddev);
2506 		}
2507 		break;
2508 	case active:
2509 		if (mddev->pers) {
2510 			restart_array(mddev);
2511 			clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2512 			wake_up(&mddev->sb_wait);
2513 			err = 0;
2514 		} else {
2515 			mddev->ro = 0;
2516 			err = do_md_run(mddev);
2517 		}
2518 		break;
2519 	case write_pending:
2520 	case active_idle:
2521 		/* these cannot be set */
2522 		break;
2523 	}
2524 	if (err)
2525 		return err;
2526 	else
2527 		return len;
2528 }
2529 static struct md_sysfs_entry md_array_state =
2530 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2531 
2532 static ssize_t
2533 null_show(mddev_t *mddev, char *page)
2534 {
2535 	return -EINVAL;
2536 }
2537 
2538 static ssize_t
2539 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2540 {
2541 	/* buf must be %d:%d\n? giving major and minor numbers */
2542 	/* The new device is added to the array.
2543 	 * If the array has a persistent superblock, we read the
2544 	 * superblock to initialise info and check validity.
2545 	 * Otherwise, only checking done is that in bind_rdev_to_array,
2546 	 * which mainly checks size.
2547 	 */
2548 	char *e;
2549 	int major = simple_strtoul(buf, &e, 10);
2550 	int minor;
2551 	dev_t dev;
2552 	mdk_rdev_t *rdev;
2553 	int err;
2554 
2555 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2556 		return -EINVAL;
2557 	minor = simple_strtoul(e+1, &e, 10);
2558 	if (*e && *e != '\n')
2559 		return -EINVAL;
2560 	dev = MKDEV(major, minor);
2561 	if (major != MAJOR(dev) ||
2562 	    minor != MINOR(dev))
2563 		return -EOVERFLOW;
2564 
2565 
2566 	if (mddev->persistent) {
2567 		rdev = md_import_device(dev, mddev->major_version,
2568 					mddev->minor_version);
2569 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2570 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2571 						       mdk_rdev_t, same_set);
2572 			err = super_types[mddev->major_version]
2573 				.load_super(rdev, rdev0, mddev->minor_version);
2574 			if (err < 0)
2575 				goto out;
2576 		}
2577 	} else
2578 		rdev = md_import_device(dev, -1, -1);
2579 
2580 	if (IS_ERR(rdev))
2581 		return PTR_ERR(rdev);
2582 	err = bind_rdev_to_array(rdev, mddev);
2583  out:
2584 	if (err)
2585 		export_rdev(rdev);
2586 	return err ? err : len;
2587 }
2588 
2589 static struct md_sysfs_entry md_new_device =
2590 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2591 
2592 static ssize_t
2593 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2594 {
2595 	char *end;
2596 	unsigned long chunk, end_chunk;
2597 
2598 	if (!mddev->bitmap)
2599 		goto out;
2600 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2601 	while (*buf) {
2602 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
2603 		if (buf == end) break;
2604 		if (*end == '-') { /* range */
2605 			buf = end + 1;
2606 			end_chunk = simple_strtoul(buf, &end, 0);
2607 			if (buf == end) break;
2608 		}
2609 		if (*end && !isspace(*end)) break;
2610 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2611 		buf = end;
2612 		while (isspace(*buf)) buf++;
2613 	}
2614 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2615 out:
2616 	return len;
2617 }
2618 
2619 static struct md_sysfs_entry md_bitmap =
2620 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2621 
2622 static ssize_t
2623 size_show(mddev_t *mddev, char *page)
2624 {
2625 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2626 }
2627 
2628 static int update_size(mddev_t *mddev, unsigned long size);
2629 
2630 static ssize_t
2631 size_store(mddev_t *mddev, const char *buf, size_t len)
2632 {
2633 	/* If array is inactive, we can reduce the component size, but
2634 	 * not increase it (except from 0).
2635 	 * If array is active, we can try an on-line resize
2636 	 */
2637 	char *e;
2638 	int err = 0;
2639 	unsigned long long size = simple_strtoull(buf, &e, 10);
2640 	if (!*buf || *buf == '\n' ||
2641 	    (*e && *e != '\n'))
2642 		return -EINVAL;
2643 
2644 	if (mddev->pers) {
2645 		err = update_size(mddev, size);
2646 		md_update_sb(mddev, 1);
2647 	} else {
2648 		if (mddev->size == 0 ||
2649 		    mddev->size > size)
2650 			mddev->size = size;
2651 		else
2652 			err = -ENOSPC;
2653 	}
2654 	return err ? err : len;
2655 }
2656 
2657 static struct md_sysfs_entry md_size =
2658 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2659 
2660 
2661 /* Metdata version.
2662  * This is either 'none' for arrays with externally managed metadata,
2663  * or N.M for internally known formats
2664  */
2665 static ssize_t
2666 metadata_show(mddev_t *mddev, char *page)
2667 {
2668 	if (mddev->persistent)
2669 		return sprintf(page, "%d.%d\n",
2670 			       mddev->major_version, mddev->minor_version);
2671 	else
2672 		return sprintf(page, "none\n");
2673 }
2674 
2675 static ssize_t
2676 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2677 {
2678 	int major, minor;
2679 	char *e;
2680 	if (!list_empty(&mddev->disks))
2681 		return -EBUSY;
2682 
2683 	if (cmd_match(buf, "none")) {
2684 		mddev->persistent = 0;
2685 		mddev->major_version = 0;
2686 		mddev->minor_version = 90;
2687 		return len;
2688 	}
2689 	major = simple_strtoul(buf, &e, 10);
2690 	if (e==buf || *e != '.')
2691 		return -EINVAL;
2692 	buf = e+1;
2693 	minor = simple_strtoul(buf, &e, 10);
2694 	if (e==buf || (*e && *e != '\n') )
2695 		return -EINVAL;
2696 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
2697 		return -ENOENT;
2698 	mddev->major_version = major;
2699 	mddev->minor_version = minor;
2700 	mddev->persistent = 1;
2701 	return len;
2702 }
2703 
2704 static struct md_sysfs_entry md_metadata =
2705 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2706 
2707 static ssize_t
2708 action_show(mddev_t *mddev, char *page)
2709 {
2710 	char *type = "idle";
2711 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2712 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
2713 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2714 			type = "reshape";
2715 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2716 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2717 				type = "resync";
2718 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2719 				type = "check";
2720 			else
2721 				type = "repair";
2722 		} else
2723 			type = "recover";
2724 	}
2725 	return sprintf(page, "%s\n", type);
2726 }
2727 
2728 static ssize_t
2729 action_store(mddev_t *mddev, const char *page, size_t len)
2730 {
2731 	if (!mddev->pers || !mddev->pers->sync_request)
2732 		return -EINVAL;
2733 
2734 	if (cmd_match(page, "idle")) {
2735 		if (mddev->sync_thread) {
2736 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2737 			md_unregister_thread(mddev->sync_thread);
2738 			mddev->sync_thread = NULL;
2739 			mddev->recovery = 0;
2740 		}
2741 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2742 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2743 		return -EBUSY;
2744 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2745 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2746 	else if (cmd_match(page, "reshape")) {
2747 		int err;
2748 		if (mddev->pers->start_reshape == NULL)
2749 			return -EINVAL;
2750 		err = mddev->pers->start_reshape(mddev);
2751 		if (err)
2752 			return err;
2753 	} else {
2754 		if (cmd_match(page, "check"))
2755 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2756 		else if (!cmd_match(page, "repair"))
2757 			return -EINVAL;
2758 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2759 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2760 	}
2761 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2762 	md_wakeup_thread(mddev->thread);
2763 	return len;
2764 }
2765 
2766 static ssize_t
2767 mismatch_cnt_show(mddev_t *mddev, char *page)
2768 {
2769 	return sprintf(page, "%llu\n",
2770 		       (unsigned long long) mddev->resync_mismatches);
2771 }
2772 
2773 static struct md_sysfs_entry md_scan_mode =
2774 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2775 
2776 
2777 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2778 
2779 static ssize_t
2780 sync_min_show(mddev_t *mddev, char *page)
2781 {
2782 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
2783 		       mddev->sync_speed_min ? "local": "system");
2784 }
2785 
2786 static ssize_t
2787 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2788 {
2789 	int min;
2790 	char *e;
2791 	if (strncmp(buf, "system", 6)==0) {
2792 		mddev->sync_speed_min = 0;
2793 		return len;
2794 	}
2795 	min = simple_strtoul(buf, &e, 10);
2796 	if (buf == e || (*e && *e != '\n') || min <= 0)
2797 		return -EINVAL;
2798 	mddev->sync_speed_min = min;
2799 	return len;
2800 }
2801 
2802 static struct md_sysfs_entry md_sync_min =
2803 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2804 
2805 static ssize_t
2806 sync_max_show(mddev_t *mddev, char *page)
2807 {
2808 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
2809 		       mddev->sync_speed_max ? "local": "system");
2810 }
2811 
2812 static ssize_t
2813 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2814 {
2815 	int max;
2816 	char *e;
2817 	if (strncmp(buf, "system", 6)==0) {
2818 		mddev->sync_speed_max = 0;
2819 		return len;
2820 	}
2821 	max = simple_strtoul(buf, &e, 10);
2822 	if (buf == e || (*e && *e != '\n') || max <= 0)
2823 		return -EINVAL;
2824 	mddev->sync_speed_max = max;
2825 	return len;
2826 }
2827 
2828 static struct md_sysfs_entry md_sync_max =
2829 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2830 
2831 static ssize_t
2832 degraded_show(mddev_t *mddev, char *page)
2833 {
2834 	return sprintf(page, "%d\n", mddev->degraded);
2835 }
2836 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
2837 
2838 static ssize_t
2839 sync_speed_show(mddev_t *mddev, char *page)
2840 {
2841 	unsigned long resync, dt, db;
2842 	resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2843 	dt = ((jiffies - mddev->resync_mark) / HZ);
2844 	if (!dt) dt++;
2845 	db = resync - (mddev->resync_mark_cnt);
2846 	return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2847 }
2848 
2849 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2850 
2851 static ssize_t
2852 sync_completed_show(mddev_t *mddev, char *page)
2853 {
2854 	unsigned long max_blocks, resync;
2855 
2856 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2857 		max_blocks = mddev->resync_max_sectors;
2858 	else
2859 		max_blocks = mddev->size << 1;
2860 
2861 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2862 	return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2863 }
2864 
2865 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2866 
2867 static ssize_t
2868 suspend_lo_show(mddev_t *mddev, char *page)
2869 {
2870 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2871 }
2872 
2873 static ssize_t
2874 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2875 {
2876 	char *e;
2877 	unsigned long long new = simple_strtoull(buf, &e, 10);
2878 
2879 	if (mddev->pers->quiesce == NULL)
2880 		return -EINVAL;
2881 	if (buf == e || (*e && *e != '\n'))
2882 		return -EINVAL;
2883 	if (new >= mddev->suspend_hi ||
2884 	    (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2885 		mddev->suspend_lo = new;
2886 		mddev->pers->quiesce(mddev, 2);
2887 		return len;
2888 	} else
2889 		return -EINVAL;
2890 }
2891 static struct md_sysfs_entry md_suspend_lo =
2892 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2893 
2894 
2895 static ssize_t
2896 suspend_hi_show(mddev_t *mddev, char *page)
2897 {
2898 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2899 }
2900 
2901 static ssize_t
2902 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2903 {
2904 	char *e;
2905 	unsigned long long new = simple_strtoull(buf, &e, 10);
2906 
2907 	if (mddev->pers->quiesce == NULL)
2908 		return -EINVAL;
2909 	if (buf == e || (*e && *e != '\n'))
2910 		return -EINVAL;
2911 	if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2912 	    (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2913 		mddev->suspend_hi = new;
2914 		mddev->pers->quiesce(mddev, 1);
2915 		mddev->pers->quiesce(mddev, 0);
2916 		return len;
2917 	} else
2918 		return -EINVAL;
2919 }
2920 static struct md_sysfs_entry md_suspend_hi =
2921 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2922 
2923 static ssize_t
2924 reshape_position_show(mddev_t *mddev, char *page)
2925 {
2926 	if (mddev->reshape_position != MaxSector)
2927 		return sprintf(page, "%llu\n",
2928 			       (unsigned long long)mddev->reshape_position);
2929 	strcpy(page, "none\n");
2930 	return 5;
2931 }
2932 
2933 static ssize_t
2934 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
2935 {
2936 	char *e;
2937 	unsigned long long new = simple_strtoull(buf, &e, 10);
2938 	if (mddev->pers)
2939 		return -EBUSY;
2940 	if (buf == e || (*e && *e != '\n'))
2941 		return -EINVAL;
2942 	mddev->reshape_position = new;
2943 	mddev->delta_disks = 0;
2944 	mddev->new_level = mddev->level;
2945 	mddev->new_layout = mddev->layout;
2946 	mddev->new_chunk = mddev->chunk_size;
2947 	return len;
2948 }
2949 
2950 static struct md_sysfs_entry md_reshape_position =
2951 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
2952        reshape_position_store);
2953 
2954 
2955 static struct attribute *md_default_attrs[] = {
2956 	&md_level.attr,
2957 	&md_layout.attr,
2958 	&md_raid_disks.attr,
2959 	&md_chunk_size.attr,
2960 	&md_size.attr,
2961 	&md_resync_start.attr,
2962 	&md_metadata.attr,
2963 	&md_new_device.attr,
2964 	&md_safe_delay.attr,
2965 	&md_array_state.attr,
2966 	&md_reshape_position.attr,
2967 	NULL,
2968 };
2969 
2970 static struct attribute *md_redundancy_attrs[] = {
2971 	&md_scan_mode.attr,
2972 	&md_mismatches.attr,
2973 	&md_sync_min.attr,
2974 	&md_sync_max.attr,
2975 	&md_sync_speed.attr,
2976 	&md_sync_completed.attr,
2977 	&md_suspend_lo.attr,
2978 	&md_suspend_hi.attr,
2979 	&md_bitmap.attr,
2980 	&md_degraded.attr,
2981 	NULL,
2982 };
2983 static struct attribute_group md_redundancy_group = {
2984 	.name = NULL,
2985 	.attrs = md_redundancy_attrs,
2986 };
2987 
2988 
2989 static ssize_t
2990 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2991 {
2992 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2993 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2994 	ssize_t rv;
2995 
2996 	if (!entry->show)
2997 		return -EIO;
2998 	rv = mddev_lock(mddev);
2999 	if (!rv) {
3000 		rv = entry->show(mddev, page);
3001 		mddev_unlock(mddev);
3002 	}
3003 	return rv;
3004 }
3005 
3006 static ssize_t
3007 md_attr_store(struct kobject *kobj, struct attribute *attr,
3008 	      const char *page, size_t length)
3009 {
3010 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3011 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3012 	ssize_t rv;
3013 
3014 	if (!entry->store)
3015 		return -EIO;
3016 	if (!capable(CAP_SYS_ADMIN))
3017 		return -EACCES;
3018 	rv = mddev_lock(mddev);
3019 	if (!rv) {
3020 		rv = entry->store(mddev, page, length);
3021 		mddev_unlock(mddev);
3022 	}
3023 	return rv;
3024 }
3025 
3026 static void md_free(struct kobject *ko)
3027 {
3028 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
3029 	kfree(mddev);
3030 }
3031 
3032 static struct sysfs_ops md_sysfs_ops = {
3033 	.show	= md_attr_show,
3034 	.store	= md_attr_store,
3035 };
3036 static struct kobj_type md_ktype = {
3037 	.release	= md_free,
3038 	.sysfs_ops	= &md_sysfs_ops,
3039 	.default_attrs	= md_default_attrs,
3040 };
3041 
3042 int mdp_major = 0;
3043 
3044 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3045 {
3046 	static DEFINE_MUTEX(disks_mutex);
3047 	mddev_t *mddev = mddev_find(dev);
3048 	struct gendisk *disk;
3049 	int partitioned = (MAJOR(dev) != MD_MAJOR);
3050 	int shift = partitioned ? MdpMinorShift : 0;
3051 	int unit = MINOR(dev) >> shift;
3052 	int error;
3053 
3054 	if (!mddev)
3055 		return NULL;
3056 
3057 	mutex_lock(&disks_mutex);
3058 	if (mddev->gendisk) {
3059 		mutex_unlock(&disks_mutex);
3060 		mddev_put(mddev);
3061 		return NULL;
3062 	}
3063 	disk = alloc_disk(1 << shift);
3064 	if (!disk) {
3065 		mutex_unlock(&disks_mutex);
3066 		mddev_put(mddev);
3067 		return NULL;
3068 	}
3069 	disk->major = MAJOR(dev);
3070 	disk->first_minor = unit << shift;
3071 	if (partitioned)
3072 		sprintf(disk->disk_name, "md_d%d", unit);
3073 	else
3074 		sprintf(disk->disk_name, "md%d", unit);
3075 	disk->fops = &md_fops;
3076 	disk->private_data = mddev;
3077 	disk->queue = mddev->queue;
3078 	add_disk(disk);
3079 	mddev->gendisk = disk;
3080 	mutex_unlock(&disks_mutex);
3081 	error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
3082 				     "%s", "md");
3083 	if (error)
3084 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3085 		       disk->disk_name);
3086 	else
3087 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
3088 	return NULL;
3089 }
3090 
3091 static void md_safemode_timeout(unsigned long data)
3092 {
3093 	mddev_t *mddev = (mddev_t *) data;
3094 
3095 	mddev->safemode = 1;
3096 	md_wakeup_thread(mddev->thread);
3097 }
3098 
3099 static int start_dirty_degraded;
3100 
3101 static int do_md_run(mddev_t * mddev)
3102 {
3103 	int err;
3104 	int chunk_size;
3105 	struct list_head *tmp;
3106 	mdk_rdev_t *rdev;
3107 	struct gendisk *disk;
3108 	struct mdk_personality *pers;
3109 	char b[BDEVNAME_SIZE];
3110 
3111 	if (list_empty(&mddev->disks))
3112 		/* cannot run an array with no devices.. */
3113 		return -EINVAL;
3114 
3115 	if (mddev->pers)
3116 		return -EBUSY;
3117 
3118 	/*
3119 	 * Analyze all RAID superblock(s)
3120 	 */
3121 	if (!mddev->raid_disks)
3122 		analyze_sbs(mddev);
3123 
3124 	chunk_size = mddev->chunk_size;
3125 
3126 	if (chunk_size) {
3127 		if (chunk_size > MAX_CHUNK_SIZE) {
3128 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
3129 				chunk_size, MAX_CHUNK_SIZE);
3130 			return -EINVAL;
3131 		}
3132 		/*
3133 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3134 		 */
3135 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
3136 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3137 			return -EINVAL;
3138 		}
3139 		if (chunk_size < PAGE_SIZE) {
3140 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3141 				chunk_size, PAGE_SIZE);
3142 			return -EINVAL;
3143 		}
3144 
3145 		/* devices must have minimum size of one chunk */
3146 		ITERATE_RDEV(mddev,rdev,tmp) {
3147 			if (test_bit(Faulty, &rdev->flags))
3148 				continue;
3149 			if (rdev->size < chunk_size / 1024) {
3150 				printk(KERN_WARNING
3151 					"md: Dev %s smaller than chunk_size:"
3152 					" %lluk < %dk\n",
3153 					bdevname(rdev->bdev,b),
3154 					(unsigned long long)rdev->size,
3155 					chunk_size / 1024);
3156 				return -EINVAL;
3157 			}
3158 		}
3159 	}
3160 
3161 #ifdef CONFIG_KMOD
3162 	if (mddev->level != LEVEL_NONE)
3163 		request_module("md-level-%d", mddev->level);
3164 	else if (mddev->clevel[0])
3165 		request_module("md-%s", mddev->clevel);
3166 #endif
3167 
3168 	/*
3169 	 * Drop all container device buffers, from now on
3170 	 * the only valid external interface is through the md
3171 	 * device.
3172 	 */
3173 	ITERATE_RDEV(mddev,rdev,tmp) {
3174 		if (test_bit(Faulty, &rdev->flags))
3175 			continue;
3176 		sync_blockdev(rdev->bdev);
3177 		invalidate_bdev(rdev->bdev);
3178 
3179 		/* perform some consistency tests on the device.
3180 		 * We don't want the data to overlap the metadata,
3181 		 * Internal Bitmap issues has handled elsewhere.
3182 		 */
3183 		if (rdev->data_offset < rdev->sb_offset) {
3184 			if (mddev->size &&
3185 			    rdev->data_offset + mddev->size*2
3186 			    > rdev->sb_offset*2) {
3187 				printk("md: %s: data overlaps metadata\n",
3188 				       mdname(mddev));
3189 				return -EINVAL;
3190 			}
3191 		} else {
3192 			if (rdev->sb_offset*2 + rdev->sb_size/512
3193 			    > rdev->data_offset) {
3194 				printk("md: %s: metadata overlaps data\n",
3195 				       mdname(mddev));
3196 				return -EINVAL;
3197 			}
3198 		}
3199 	}
3200 
3201 	md_probe(mddev->unit, NULL, NULL);
3202 	disk = mddev->gendisk;
3203 	if (!disk)
3204 		return -ENOMEM;
3205 
3206 	spin_lock(&pers_lock);
3207 	pers = find_pers(mddev->level, mddev->clevel);
3208 	if (!pers || !try_module_get(pers->owner)) {
3209 		spin_unlock(&pers_lock);
3210 		if (mddev->level != LEVEL_NONE)
3211 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3212 			       mddev->level);
3213 		else
3214 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3215 			       mddev->clevel);
3216 		return -EINVAL;
3217 	}
3218 	mddev->pers = pers;
3219 	spin_unlock(&pers_lock);
3220 	mddev->level = pers->level;
3221 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3222 
3223 	if (mddev->reshape_position != MaxSector &&
3224 	    pers->start_reshape == NULL) {
3225 		/* This personality cannot handle reshaping... */
3226 		mddev->pers = NULL;
3227 		module_put(pers->owner);
3228 		return -EINVAL;
3229 	}
3230 
3231 	if (pers->sync_request) {
3232 		/* Warn if this is a potentially silly
3233 		 * configuration.
3234 		 */
3235 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3236 		mdk_rdev_t *rdev2;
3237 		struct list_head *tmp2;
3238 		int warned = 0;
3239 		ITERATE_RDEV(mddev, rdev, tmp) {
3240 			ITERATE_RDEV(mddev, rdev2, tmp2) {
3241 				if (rdev < rdev2 &&
3242 				    rdev->bdev->bd_contains ==
3243 				    rdev2->bdev->bd_contains) {
3244 					printk(KERN_WARNING
3245 					       "%s: WARNING: %s appears to be"
3246 					       " on the same physical disk as"
3247 					       " %s.\n",
3248 					       mdname(mddev),
3249 					       bdevname(rdev->bdev,b),
3250 					       bdevname(rdev2->bdev,b2));
3251 					warned = 1;
3252 				}
3253 			}
3254 		}
3255 		if (warned)
3256 			printk(KERN_WARNING
3257 			       "True protection against single-disk"
3258 			       " failure might be compromised.\n");
3259 	}
3260 
3261 	mddev->recovery = 0;
3262 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3263 	mddev->barriers_work = 1;
3264 	mddev->ok_start_degraded = start_dirty_degraded;
3265 
3266 	if (start_readonly)
3267 		mddev->ro = 2; /* read-only, but switch on first write */
3268 
3269 	err = mddev->pers->run(mddev);
3270 	if (!err && mddev->pers->sync_request) {
3271 		err = bitmap_create(mddev);
3272 		if (err) {
3273 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3274 			       mdname(mddev), err);
3275 			mddev->pers->stop(mddev);
3276 		}
3277 	}
3278 	if (err) {
3279 		printk(KERN_ERR "md: pers->run() failed ...\n");
3280 		module_put(mddev->pers->owner);
3281 		mddev->pers = NULL;
3282 		bitmap_destroy(mddev);
3283 		return err;
3284 	}
3285 	if (mddev->pers->sync_request) {
3286 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3287 			printk(KERN_WARNING
3288 			       "md: cannot register extra attributes for %s\n",
3289 			       mdname(mddev));
3290 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
3291 		mddev->ro = 0;
3292 
3293  	atomic_set(&mddev->writes_pending,0);
3294 	mddev->safemode = 0;
3295 	mddev->safemode_timer.function = md_safemode_timeout;
3296 	mddev->safemode_timer.data = (unsigned long) mddev;
3297 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3298 	mddev->in_sync = 1;
3299 
3300 	ITERATE_RDEV(mddev,rdev,tmp)
3301 		if (rdev->raid_disk >= 0) {
3302 			char nm[20];
3303 			sprintf(nm, "rd%d", rdev->raid_disk);
3304 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3305 				printk("md: cannot register %s for %s\n",
3306 				       nm, mdname(mddev));
3307 		}
3308 
3309 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3310 
3311 	if (mddev->flags)
3312 		md_update_sb(mddev, 0);
3313 
3314 	set_capacity(disk, mddev->array_size<<1);
3315 
3316 	/* If we call blk_queue_make_request here, it will
3317 	 * re-initialise max_sectors etc which may have been
3318 	 * refined inside -> run.  So just set the bits we need to set.
3319 	 * Most initialisation happended when we called
3320 	 * blk_queue_make_request(..., md_fail_request)
3321 	 * earlier.
3322 	 */
3323 	mddev->queue->queuedata = mddev;
3324 	mddev->queue->make_request_fn = mddev->pers->make_request;
3325 
3326 	/* If there is a partially-recovered drive we need to
3327 	 * start recovery here.  If we leave it to md_check_recovery,
3328 	 * it will remove the drives and not do the right thing
3329 	 */
3330 	if (mddev->degraded && !mddev->sync_thread) {
3331 		struct list_head *rtmp;
3332 		int spares = 0;
3333 		ITERATE_RDEV(mddev,rdev,rtmp)
3334 			if (rdev->raid_disk >= 0 &&
3335 			    !test_bit(In_sync, &rdev->flags) &&
3336 			    !test_bit(Faulty, &rdev->flags))
3337 				/* complete an interrupted recovery */
3338 				spares++;
3339 		if (spares && mddev->pers->sync_request) {
3340 			mddev->recovery = 0;
3341 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3342 			mddev->sync_thread = md_register_thread(md_do_sync,
3343 								mddev,
3344 								"%s_resync");
3345 			if (!mddev->sync_thread) {
3346 				printk(KERN_ERR "%s: could not start resync"
3347 				       " thread...\n",
3348 				       mdname(mddev));
3349 				/* leave the spares where they are, it shouldn't hurt */
3350 				mddev->recovery = 0;
3351 			}
3352 		}
3353 	}
3354 	md_wakeup_thread(mddev->thread);
3355 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3356 
3357 	mddev->changed = 1;
3358 	md_new_event(mddev);
3359 	kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
3360 	return 0;
3361 }
3362 
3363 static int restart_array(mddev_t *mddev)
3364 {
3365 	struct gendisk *disk = mddev->gendisk;
3366 	int err;
3367 
3368 	/*
3369 	 * Complain if it has no devices
3370 	 */
3371 	err = -ENXIO;
3372 	if (list_empty(&mddev->disks))
3373 		goto out;
3374 
3375 	if (mddev->pers) {
3376 		err = -EBUSY;
3377 		if (!mddev->ro)
3378 			goto out;
3379 
3380 		mddev->safemode = 0;
3381 		mddev->ro = 0;
3382 		set_disk_ro(disk, 0);
3383 
3384 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
3385 			mdname(mddev));
3386 		/*
3387 		 * Kick recovery or resync if necessary
3388 		 */
3389 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3390 		md_wakeup_thread(mddev->thread);
3391 		md_wakeup_thread(mddev->sync_thread);
3392 		err = 0;
3393 	} else
3394 		err = -EINVAL;
3395 
3396 out:
3397 	return err;
3398 }
3399 
3400 /* similar to deny_write_access, but accounts for our holding a reference
3401  * to the file ourselves */
3402 static int deny_bitmap_write_access(struct file * file)
3403 {
3404 	struct inode *inode = file->f_mapping->host;
3405 
3406 	spin_lock(&inode->i_lock);
3407 	if (atomic_read(&inode->i_writecount) > 1) {
3408 		spin_unlock(&inode->i_lock);
3409 		return -ETXTBSY;
3410 	}
3411 	atomic_set(&inode->i_writecount, -1);
3412 	spin_unlock(&inode->i_lock);
3413 
3414 	return 0;
3415 }
3416 
3417 static void restore_bitmap_write_access(struct file *file)
3418 {
3419 	struct inode *inode = file->f_mapping->host;
3420 
3421 	spin_lock(&inode->i_lock);
3422 	atomic_set(&inode->i_writecount, 1);
3423 	spin_unlock(&inode->i_lock);
3424 }
3425 
3426 /* mode:
3427  *   0 - completely stop and dis-assemble array
3428  *   1 - switch to readonly
3429  *   2 - stop but do not disassemble array
3430  */
3431 static int do_md_stop(mddev_t * mddev, int mode)
3432 {
3433 	int err = 0;
3434 	struct gendisk *disk = mddev->gendisk;
3435 
3436 	if (mddev->pers) {
3437 		if (atomic_read(&mddev->active)>2) {
3438 			printk("md: %s still in use.\n",mdname(mddev));
3439 			return -EBUSY;
3440 		}
3441 
3442 		if (mddev->sync_thread) {
3443 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3444 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3445 			md_unregister_thread(mddev->sync_thread);
3446 			mddev->sync_thread = NULL;
3447 		}
3448 
3449 		del_timer_sync(&mddev->safemode_timer);
3450 
3451 		invalidate_partition(disk, 0);
3452 
3453 		switch(mode) {
3454 		case 1: /* readonly */
3455 			err  = -ENXIO;
3456 			if (mddev->ro==1)
3457 				goto out;
3458 			mddev->ro = 1;
3459 			break;
3460 		case 0: /* disassemble */
3461 		case 2: /* stop */
3462 			bitmap_flush(mddev);
3463 			md_super_wait(mddev);
3464 			if (mddev->ro)
3465 				set_disk_ro(disk, 0);
3466 			blk_queue_make_request(mddev->queue, md_fail_request);
3467 			mddev->pers->stop(mddev);
3468 			mddev->queue->merge_bvec_fn = NULL;
3469 			mddev->queue->unplug_fn = NULL;
3470 			mddev->queue->backing_dev_info.congested_fn = NULL;
3471 			if (mddev->pers->sync_request)
3472 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3473 
3474 			module_put(mddev->pers->owner);
3475 			mddev->pers = NULL;
3476 
3477 			set_capacity(disk, 0);
3478 			mddev->changed = 1;
3479 
3480 			if (mddev->ro)
3481 				mddev->ro = 0;
3482 		}
3483 		if (!mddev->in_sync || mddev->flags) {
3484 			/* mark array as shutdown cleanly */
3485 			mddev->in_sync = 1;
3486 			md_update_sb(mddev, 1);
3487 		}
3488 		if (mode == 1)
3489 			set_disk_ro(disk, 1);
3490 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3491 	}
3492 
3493 	/*
3494 	 * Free resources if final stop
3495 	 */
3496 	if (mode == 0) {
3497 		mdk_rdev_t *rdev;
3498 		struct list_head *tmp;
3499 
3500 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3501 
3502 		bitmap_destroy(mddev);
3503 		if (mddev->bitmap_file) {
3504 			restore_bitmap_write_access(mddev->bitmap_file);
3505 			fput(mddev->bitmap_file);
3506 			mddev->bitmap_file = NULL;
3507 		}
3508 		mddev->bitmap_offset = 0;
3509 
3510 		ITERATE_RDEV(mddev,rdev,tmp)
3511 			if (rdev->raid_disk >= 0) {
3512 				char nm[20];
3513 				sprintf(nm, "rd%d", rdev->raid_disk);
3514 				sysfs_remove_link(&mddev->kobj, nm);
3515 			}
3516 
3517 		/* make sure all delayed_delete calls have finished */
3518 		flush_scheduled_work();
3519 
3520 		export_array(mddev);
3521 
3522 		mddev->array_size = 0;
3523 		mddev->size = 0;
3524 		mddev->raid_disks = 0;
3525 		mddev->recovery_cp = 0;
3526 		mddev->reshape_position = MaxSector;
3527 
3528 	} else if (mddev->pers)
3529 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
3530 			mdname(mddev));
3531 	err = 0;
3532 	md_new_event(mddev);
3533 out:
3534 	return err;
3535 }
3536 
3537 #ifndef MODULE
3538 static void autorun_array(mddev_t *mddev)
3539 {
3540 	mdk_rdev_t *rdev;
3541 	struct list_head *tmp;
3542 	int err;
3543 
3544 	if (list_empty(&mddev->disks))
3545 		return;
3546 
3547 	printk(KERN_INFO "md: running: ");
3548 
3549 	ITERATE_RDEV(mddev,rdev,tmp) {
3550 		char b[BDEVNAME_SIZE];
3551 		printk("<%s>", bdevname(rdev->bdev,b));
3552 	}
3553 	printk("\n");
3554 
3555 	err = do_md_run (mddev);
3556 	if (err) {
3557 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3558 		do_md_stop (mddev, 0);
3559 	}
3560 }
3561 
3562 /*
3563  * lets try to run arrays based on all disks that have arrived
3564  * until now. (those are in pending_raid_disks)
3565  *
3566  * the method: pick the first pending disk, collect all disks with
3567  * the same UUID, remove all from the pending list and put them into
3568  * the 'same_array' list. Then order this list based on superblock
3569  * update time (freshest comes first), kick out 'old' disks and
3570  * compare superblocks. If everything's fine then run it.
3571  *
3572  * If "unit" is allocated, then bump its reference count
3573  */
3574 static void autorun_devices(int part)
3575 {
3576 	struct list_head *tmp;
3577 	mdk_rdev_t *rdev0, *rdev;
3578 	mddev_t *mddev;
3579 	char b[BDEVNAME_SIZE];
3580 
3581 	printk(KERN_INFO "md: autorun ...\n");
3582 	while (!list_empty(&pending_raid_disks)) {
3583 		int unit;
3584 		dev_t dev;
3585 		LIST_HEAD(candidates);
3586 		rdev0 = list_entry(pending_raid_disks.next,
3587 					 mdk_rdev_t, same_set);
3588 
3589 		printk(KERN_INFO "md: considering %s ...\n",
3590 			bdevname(rdev0->bdev,b));
3591 		INIT_LIST_HEAD(&candidates);
3592 		ITERATE_RDEV_PENDING(rdev,tmp)
3593 			if (super_90_load(rdev, rdev0, 0) >= 0) {
3594 				printk(KERN_INFO "md:  adding %s ...\n",
3595 					bdevname(rdev->bdev,b));
3596 				list_move(&rdev->same_set, &candidates);
3597 			}
3598 		/*
3599 		 * now we have a set of devices, with all of them having
3600 		 * mostly sane superblocks. It's time to allocate the
3601 		 * mddev.
3602 		 */
3603 		if (part) {
3604 			dev = MKDEV(mdp_major,
3605 				    rdev0->preferred_minor << MdpMinorShift);
3606 			unit = MINOR(dev) >> MdpMinorShift;
3607 		} else {
3608 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3609 			unit = MINOR(dev);
3610 		}
3611 		if (rdev0->preferred_minor != unit) {
3612 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3613 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3614 			break;
3615 		}
3616 
3617 		md_probe(dev, NULL, NULL);
3618 		mddev = mddev_find(dev);
3619 		if (!mddev) {
3620 			printk(KERN_ERR
3621 				"md: cannot allocate memory for md drive.\n");
3622 			break;
3623 		}
3624 		if (mddev_lock(mddev))
3625 			printk(KERN_WARNING "md: %s locked, cannot run\n",
3626 			       mdname(mddev));
3627 		else if (mddev->raid_disks || mddev->major_version
3628 			 || !list_empty(&mddev->disks)) {
3629 			printk(KERN_WARNING
3630 				"md: %s already running, cannot run %s\n",
3631 				mdname(mddev), bdevname(rdev0->bdev,b));
3632 			mddev_unlock(mddev);
3633 		} else {
3634 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
3635 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3636 				list_del_init(&rdev->same_set);
3637 				if (bind_rdev_to_array(rdev, mddev))
3638 					export_rdev(rdev);
3639 			}
3640 			autorun_array(mddev);
3641 			mddev_unlock(mddev);
3642 		}
3643 		/* on success, candidates will be empty, on error
3644 		 * it won't...
3645 		 */
3646 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3647 			export_rdev(rdev);
3648 		mddev_put(mddev);
3649 	}
3650 	printk(KERN_INFO "md: ... autorun DONE.\n");
3651 }
3652 #endif /* !MODULE */
3653 
3654 static int get_version(void __user * arg)
3655 {
3656 	mdu_version_t ver;
3657 
3658 	ver.major = MD_MAJOR_VERSION;
3659 	ver.minor = MD_MINOR_VERSION;
3660 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
3661 
3662 	if (copy_to_user(arg, &ver, sizeof(ver)))
3663 		return -EFAULT;
3664 
3665 	return 0;
3666 }
3667 
3668 static int get_array_info(mddev_t * mddev, void __user * arg)
3669 {
3670 	mdu_array_info_t info;
3671 	int nr,working,active,failed,spare;
3672 	mdk_rdev_t *rdev;
3673 	struct list_head *tmp;
3674 
3675 	nr=working=active=failed=spare=0;
3676 	ITERATE_RDEV(mddev,rdev,tmp) {
3677 		nr++;
3678 		if (test_bit(Faulty, &rdev->flags))
3679 			failed++;
3680 		else {
3681 			working++;
3682 			if (test_bit(In_sync, &rdev->flags))
3683 				active++;
3684 			else
3685 				spare++;
3686 		}
3687 	}
3688 
3689 	info.major_version = mddev->major_version;
3690 	info.minor_version = mddev->minor_version;
3691 	info.patch_version = MD_PATCHLEVEL_VERSION;
3692 	info.ctime         = mddev->ctime;
3693 	info.level         = mddev->level;
3694 	info.size          = mddev->size;
3695 	if (info.size != mddev->size) /* overflow */
3696 		info.size = -1;
3697 	info.nr_disks      = nr;
3698 	info.raid_disks    = mddev->raid_disks;
3699 	info.md_minor      = mddev->md_minor;
3700 	info.not_persistent= !mddev->persistent;
3701 
3702 	info.utime         = mddev->utime;
3703 	info.state         = 0;
3704 	if (mddev->in_sync)
3705 		info.state = (1<<MD_SB_CLEAN);
3706 	if (mddev->bitmap && mddev->bitmap_offset)
3707 		info.state = (1<<MD_SB_BITMAP_PRESENT);
3708 	info.active_disks  = active;
3709 	info.working_disks = working;
3710 	info.failed_disks  = failed;
3711 	info.spare_disks   = spare;
3712 
3713 	info.layout        = mddev->layout;
3714 	info.chunk_size    = mddev->chunk_size;
3715 
3716 	if (copy_to_user(arg, &info, sizeof(info)))
3717 		return -EFAULT;
3718 
3719 	return 0;
3720 }
3721 
3722 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3723 {
3724 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3725 	char *ptr, *buf = NULL;
3726 	int err = -ENOMEM;
3727 
3728 	md_allow_write(mddev);
3729 
3730 	file = kmalloc(sizeof(*file), GFP_KERNEL);
3731 	if (!file)
3732 		goto out;
3733 
3734 	/* bitmap disabled, zero the first byte and copy out */
3735 	if (!mddev->bitmap || !mddev->bitmap->file) {
3736 		file->pathname[0] = '\0';
3737 		goto copy_out;
3738 	}
3739 
3740 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3741 	if (!buf)
3742 		goto out;
3743 
3744 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3745 	if (!ptr)
3746 		goto out;
3747 
3748 	strcpy(file->pathname, ptr);
3749 
3750 copy_out:
3751 	err = 0;
3752 	if (copy_to_user(arg, file, sizeof(*file)))
3753 		err = -EFAULT;
3754 out:
3755 	kfree(buf);
3756 	kfree(file);
3757 	return err;
3758 }
3759 
3760 static int get_disk_info(mddev_t * mddev, void __user * arg)
3761 {
3762 	mdu_disk_info_t info;
3763 	unsigned int nr;
3764 	mdk_rdev_t *rdev;
3765 
3766 	if (copy_from_user(&info, arg, sizeof(info)))
3767 		return -EFAULT;
3768 
3769 	nr = info.number;
3770 
3771 	rdev = find_rdev_nr(mddev, nr);
3772 	if (rdev) {
3773 		info.major = MAJOR(rdev->bdev->bd_dev);
3774 		info.minor = MINOR(rdev->bdev->bd_dev);
3775 		info.raid_disk = rdev->raid_disk;
3776 		info.state = 0;
3777 		if (test_bit(Faulty, &rdev->flags))
3778 			info.state |= (1<<MD_DISK_FAULTY);
3779 		else if (test_bit(In_sync, &rdev->flags)) {
3780 			info.state |= (1<<MD_DISK_ACTIVE);
3781 			info.state |= (1<<MD_DISK_SYNC);
3782 		}
3783 		if (test_bit(WriteMostly, &rdev->flags))
3784 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
3785 	} else {
3786 		info.major = info.minor = 0;
3787 		info.raid_disk = -1;
3788 		info.state = (1<<MD_DISK_REMOVED);
3789 	}
3790 
3791 	if (copy_to_user(arg, &info, sizeof(info)))
3792 		return -EFAULT;
3793 
3794 	return 0;
3795 }
3796 
3797 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3798 {
3799 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3800 	mdk_rdev_t *rdev;
3801 	dev_t dev = MKDEV(info->major,info->minor);
3802 
3803 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3804 		return -EOVERFLOW;
3805 
3806 	if (!mddev->raid_disks) {
3807 		int err;
3808 		/* expecting a device which has a superblock */
3809 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3810 		if (IS_ERR(rdev)) {
3811 			printk(KERN_WARNING
3812 				"md: md_import_device returned %ld\n",
3813 				PTR_ERR(rdev));
3814 			return PTR_ERR(rdev);
3815 		}
3816 		if (!list_empty(&mddev->disks)) {
3817 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3818 							mdk_rdev_t, same_set);
3819 			int err = super_types[mddev->major_version]
3820 				.load_super(rdev, rdev0, mddev->minor_version);
3821 			if (err < 0) {
3822 				printk(KERN_WARNING
3823 					"md: %s has different UUID to %s\n",
3824 					bdevname(rdev->bdev,b),
3825 					bdevname(rdev0->bdev,b2));
3826 				export_rdev(rdev);
3827 				return -EINVAL;
3828 			}
3829 		}
3830 		err = bind_rdev_to_array(rdev, mddev);
3831 		if (err)
3832 			export_rdev(rdev);
3833 		return err;
3834 	}
3835 
3836 	/*
3837 	 * add_new_disk can be used once the array is assembled
3838 	 * to add "hot spares".  They must already have a superblock
3839 	 * written
3840 	 */
3841 	if (mddev->pers) {
3842 		int err;
3843 		if (!mddev->pers->hot_add_disk) {
3844 			printk(KERN_WARNING
3845 				"%s: personality does not support diskops!\n",
3846 			       mdname(mddev));
3847 			return -EINVAL;
3848 		}
3849 		if (mddev->persistent)
3850 			rdev = md_import_device(dev, mddev->major_version,
3851 						mddev->minor_version);
3852 		else
3853 			rdev = md_import_device(dev, -1, -1);
3854 		if (IS_ERR(rdev)) {
3855 			printk(KERN_WARNING
3856 				"md: md_import_device returned %ld\n",
3857 				PTR_ERR(rdev));
3858 			return PTR_ERR(rdev);
3859 		}
3860 		/* set save_raid_disk if appropriate */
3861 		if (!mddev->persistent) {
3862 			if (info->state & (1<<MD_DISK_SYNC)  &&
3863 			    info->raid_disk < mddev->raid_disks)
3864 				rdev->raid_disk = info->raid_disk;
3865 			else
3866 				rdev->raid_disk = -1;
3867 		} else
3868 			super_types[mddev->major_version].
3869 				validate_super(mddev, rdev);
3870 		rdev->saved_raid_disk = rdev->raid_disk;
3871 
3872 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
3873 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3874 			set_bit(WriteMostly, &rdev->flags);
3875 
3876 		rdev->raid_disk = -1;
3877 		err = bind_rdev_to_array(rdev, mddev);
3878 		if (!err && !mddev->pers->hot_remove_disk) {
3879 			/* If there is hot_add_disk but no hot_remove_disk
3880 			 * then added disks for geometry changes,
3881 			 * and should be added immediately.
3882 			 */
3883 			super_types[mddev->major_version].
3884 				validate_super(mddev, rdev);
3885 			err = mddev->pers->hot_add_disk(mddev, rdev);
3886 			if (err)
3887 				unbind_rdev_from_array(rdev);
3888 		}
3889 		if (err)
3890 			export_rdev(rdev);
3891 
3892 		md_update_sb(mddev, 1);
3893 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3894 		md_wakeup_thread(mddev->thread);
3895 		return err;
3896 	}
3897 
3898 	/* otherwise, add_new_disk is only allowed
3899 	 * for major_version==0 superblocks
3900 	 */
3901 	if (mddev->major_version != 0) {
3902 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3903 		       mdname(mddev));
3904 		return -EINVAL;
3905 	}
3906 
3907 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
3908 		int err;
3909 		rdev = md_import_device (dev, -1, 0);
3910 		if (IS_ERR(rdev)) {
3911 			printk(KERN_WARNING
3912 				"md: error, md_import_device() returned %ld\n",
3913 				PTR_ERR(rdev));
3914 			return PTR_ERR(rdev);
3915 		}
3916 		rdev->desc_nr = info->number;
3917 		if (info->raid_disk < mddev->raid_disks)
3918 			rdev->raid_disk = info->raid_disk;
3919 		else
3920 			rdev->raid_disk = -1;
3921 
3922 		rdev->flags = 0;
3923 
3924 		if (rdev->raid_disk < mddev->raid_disks)
3925 			if (info->state & (1<<MD_DISK_SYNC))
3926 				set_bit(In_sync, &rdev->flags);
3927 
3928 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3929 			set_bit(WriteMostly, &rdev->flags);
3930 
3931 		if (!mddev->persistent) {
3932 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
3933 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3934 		} else
3935 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3936 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3937 
3938 		err = bind_rdev_to_array(rdev, mddev);
3939 		if (err) {
3940 			export_rdev(rdev);
3941 			return err;
3942 		}
3943 	}
3944 
3945 	return 0;
3946 }
3947 
3948 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3949 {
3950 	char b[BDEVNAME_SIZE];
3951 	mdk_rdev_t *rdev;
3952 
3953 	if (!mddev->pers)
3954 		return -ENODEV;
3955 
3956 	rdev = find_rdev(mddev, dev);
3957 	if (!rdev)
3958 		return -ENXIO;
3959 
3960 	if (rdev->raid_disk >= 0)
3961 		goto busy;
3962 
3963 	kick_rdev_from_array(rdev);
3964 	md_update_sb(mddev, 1);
3965 	md_new_event(mddev);
3966 
3967 	return 0;
3968 busy:
3969 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3970 		bdevname(rdev->bdev,b), mdname(mddev));
3971 	return -EBUSY;
3972 }
3973 
3974 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3975 {
3976 	char b[BDEVNAME_SIZE];
3977 	int err;
3978 	unsigned int size;
3979 	mdk_rdev_t *rdev;
3980 
3981 	if (!mddev->pers)
3982 		return -ENODEV;
3983 
3984 	if (mddev->major_version != 0) {
3985 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3986 			" version-0 superblocks.\n",
3987 			mdname(mddev));
3988 		return -EINVAL;
3989 	}
3990 	if (!mddev->pers->hot_add_disk) {
3991 		printk(KERN_WARNING
3992 			"%s: personality does not support diskops!\n",
3993 			mdname(mddev));
3994 		return -EINVAL;
3995 	}
3996 
3997 	rdev = md_import_device (dev, -1, 0);
3998 	if (IS_ERR(rdev)) {
3999 		printk(KERN_WARNING
4000 			"md: error, md_import_device() returned %ld\n",
4001 			PTR_ERR(rdev));
4002 		return -EINVAL;
4003 	}
4004 
4005 	if (mddev->persistent)
4006 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
4007 	else
4008 		rdev->sb_offset =
4009 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
4010 
4011 	size = calc_dev_size(rdev, mddev->chunk_size);
4012 	rdev->size = size;
4013 
4014 	if (test_bit(Faulty, &rdev->flags)) {
4015 		printk(KERN_WARNING
4016 			"md: can not hot-add faulty %s disk to %s!\n",
4017 			bdevname(rdev->bdev,b), mdname(mddev));
4018 		err = -EINVAL;
4019 		goto abort_export;
4020 	}
4021 	clear_bit(In_sync, &rdev->flags);
4022 	rdev->desc_nr = -1;
4023 	rdev->saved_raid_disk = -1;
4024 	err = bind_rdev_to_array(rdev, mddev);
4025 	if (err)
4026 		goto abort_export;
4027 
4028 	/*
4029 	 * The rest should better be atomic, we can have disk failures
4030 	 * noticed in interrupt contexts ...
4031 	 */
4032 
4033 	if (rdev->desc_nr == mddev->max_disks) {
4034 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
4035 			mdname(mddev));
4036 		err = -EBUSY;
4037 		goto abort_unbind_export;
4038 	}
4039 
4040 	rdev->raid_disk = -1;
4041 
4042 	md_update_sb(mddev, 1);
4043 
4044 	/*
4045 	 * Kick recovery, maybe this spare has to be added to the
4046 	 * array immediately.
4047 	 */
4048 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4049 	md_wakeup_thread(mddev->thread);
4050 	md_new_event(mddev);
4051 	return 0;
4052 
4053 abort_unbind_export:
4054 	unbind_rdev_from_array(rdev);
4055 
4056 abort_export:
4057 	export_rdev(rdev);
4058 	return err;
4059 }
4060 
4061 static int set_bitmap_file(mddev_t *mddev, int fd)
4062 {
4063 	int err;
4064 
4065 	if (mddev->pers) {
4066 		if (!mddev->pers->quiesce)
4067 			return -EBUSY;
4068 		if (mddev->recovery || mddev->sync_thread)
4069 			return -EBUSY;
4070 		/* we should be able to change the bitmap.. */
4071 	}
4072 
4073 
4074 	if (fd >= 0) {
4075 		if (mddev->bitmap)
4076 			return -EEXIST; /* cannot add when bitmap is present */
4077 		mddev->bitmap_file = fget(fd);
4078 
4079 		if (mddev->bitmap_file == NULL) {
4080 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4081 			       mdname(mddev));
4082 			return -EBADF;
4083 		}
4084 
4085 		err = deny_bitmap_write_access(mddev->bitmap_file);
4086 		if (err) {
4087 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4088 			       mdname(mddev));
4089 			fput(mddev->bitmap_file);
4090 			mddev->bitmap_file = NULL;
4091 			return err;
4092 		}
4093 		mddev->bitmap_offset = 0; /* file overrides offset */
4094 	} else if (mddev->bitmap == NULL)
4095 		return -ENOENT; /* cannot remove what isn't there */
4096 	err = 0;
4097 	if (mddev->pers) {
4098 		mddev->pers->quiesce(mddev, 1);
4099 		if (fd >= 0)
4100 			err = bitmap_create(mddev);
4101 		if (fd < 0 || err) {
4102 			bitmap_destroy(mddev);
4103 			fd = -1; /* make sure to put the file */
4104 		}
4105 		mddev->pers->quiesce(mddev, 0);
4106 	}
4107 	if (fd < 0) {
4108 		if (mddev->bitmap_file) {
4109 			restore_bitmap_write_access(mddev->bitmap_file);
4110 			fput(mddev->bitmap_file);
4111 		}
4112 		mddev->bitmap_file = NULL;
4113 	}
4114 
4115 	return err;
4116 }
4117 
4118 /*
4119  * set_array_info is used two different ways
4120  * The original usage is when creating a new array.
4121  * In this usage, raid_disks is > 0 and it together with
4122  *  level, size, not_persistent,layout,chunksize determine the
4123  *  shape of the array.
4124  *  This will always create an array with a type-0.90.0 superblock.
4125  * The newer usage is when assembling an array.
4126  *  In this case raid_disks will be 0, and the major_version field is
4127  *  use to determine which style super-blocks are to be found on the devices.
4128  *  The minor and patch _version numbers are also kept incase the
4129  *  super_block handler wishes to interpret them.
4130  */
4131 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4132 {
4133 
4134 	if (info->raid_disks == 0) {
4135 		/* just setting version number for superblock loading */
4136 		if (info->major_version < 0 ||
4137 		    info->major_version >= ARRAY_SIZE(super_types) ||
4138 		    super_types[info->major_version].name == NULL) {
4139 			/* maybe try to auto-load a module? */
4140 			printk(KERN_INFO
4141 				"md: superblock version %d not known\n",
4142 				info->major_version);
4143 			return -EINVAL;
4144 		}
4145 		mddev->major_version = info->major_version;
4146 		mddev->minor_version = info->minor_version;
4147 		mddev->patch_version = info->patch_version;
4148 		mddev->persistent = !info->not_persistent;
4149 		return 0;
4150 	}
4151 	mddev->major_version = MD_MAJOR_VERSION;
4152 	mddev->minor_version = MD_MINOR_VERSION;
4153 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
4154 	mddev->ctime         = get_seconds();
4155 
4156 	mddev->level         = info->level;
4157 	mddev->clevel[0]     = 0;
4158 	mddev->size          = info->size;
4159 	mddev->raid_disks    = info->raid_disks;
4160 	/* don't set md_minor, it is determined by which /dev/md* was
4161 	 * openned
4162 	 */
4163 	if (info->state & (1<<MD_SB_CLEAN))
4164 		mddev->recovery_cp = MaxSector;
4165 	else
4166 		mddev->recovery_cp = 0;
4167 	mddev->persistent    = ! info->not_persistent;
4168 
4169 	mddev->layout        = info->layout;
4170 	mddev->chunk_size    = info->chunk_size;
4171 
4172 	mddev->max_disks     = MD_SB_DISKS;
4173 
4174 	mddev->flags         = 0;
4175 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
4176 
4177 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4178 	mddev->bitmap_offset = 0;
4179 
4180 	mddev->reshape_position = MaxSector;
4181 
4182 	/*
4183 	 * Generate a 128 bit UUID
4184 	 */
4185 	get_random_bytes(mddev->uuid, 16);
4186 
4187 	mddev->new_level = mddev->level;
4188 	mddev->new_chunk = mddev->chunk_size;
4189 	mddev->new_layout = mddev->layout;
4190 	mddev->delta_disks = 0;
4191 
4192 	return 0;
4193 }
4194 
4195 static int update_size(mddev_t *mddev, unsigned long size)
4196 {
4197 	mdk_rdev_t * rdev;
4198 	int rv;
4199 	struct list_head *tmp;
4200 	int fit = (size == 0);
4201 
4202 	if (mddev->pers->resize == NULL)
4203 		return -EINVAL;
4204 	/* The "size" is the amount of each device that is used.
4205 	 * This can only make sense for arrays with redundancy.
4206 	 * linear and raid0 always use whatever space is available
4207 	 * We can only consider changing the size if no resync
4208 	 * or reconstruction is happening, and if the new size
4209 	 * is acceptable. It must fit before the sb_offset or,
4210 	 * if that is <data_offset, it must fit before the
4211 	 * size of each device.
4212 	 * If size is zero, we find the largest size that fits.
4213 	 */
4214 	if (mddev->sync_thread)
4215 		return -EBUSY;
4216 	ITERATE_RDEV(mddev,rdev,tmp) {
4217 		sector_t avail;
4218 		avail = rdev->size * 2;
4219 
4220 		if (fit && (size == 0 || size > avail/2))
4221 			size = avail/2;
4222 		if (avail < ((sector_t)size << 1))
4223 			return -ENOSPC;
4224 	}
4225 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
4226 	if (!rv) {
4227 		struct block_device *bdev;
4228 
4229 		bdev = bdget_disk(mddev->gendisk, 0);
4230 		if (bdev) {
4231 			mutex_lock(&bdev->bd_inode->i_mutex);
4232 			i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4233 			mutex_unlock(&bdev->bd_inode->i_mutex);
4234 			bdput(bdev);
4235 		}
4236 	}
4237 	return rv;
4238 }
4239 
4240 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4241 {
4242 	int rv;
4243 	/* change the number of raid disks */
4244 	if (mddev->pers->check_reshape == NULL)
4245 		return -EINVAL;
4246 	if (raid_disks <= 0 ||
4247 	    raid_disks >= mddev->max_disks)
4248 		return -EINVAL;
4249 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4250 		return -EBUSY;
4251 	mddev->delta_disks = raid_disks - mddev->raid_disks;
4252 
4253 	rv = mddev->pers->check_reshape(mddev);
4254 	return rv;
4255 }
4256 
4257 
4258 /*
4259  * update_array_info is used to change the configuration of an
4260  * on-line array.
4261  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4262  * fields in the info are checked against the array.
4263  * Any differences that cannot be handled will cause an error.
4264  * Normally, only one change can be managed at a time.
4265  */
4266 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4267 {
4268 	int rv = 0;
4269 	int cnt = 0;
4270 	int state = 0;
4271 
4272 	/* calculate expected state,ignoring low bits */
4273 	if (mddev->bitmap && mddev->bitmap_offset)
4274 		state |= (1 << MD_SB_BITMAP_PRESENT);
4275 
4276 	if (mddev->major_version != info->major_version ||
4277 	    mddev->minor_version != info->minor_version ||
4278 /*	    mddev->patch_version != info->patch_version || */
4279 	    mddev->ctime         != info->ctime         ||
4280 	    mddev->level         != info->level         ||
4281 /*	    mddev->layout        != info->layout        || */
4282 	    !mddev->persistent	 != info->not_persistent||
4283 	    mddev->chunk_size    != info->chunk_size    ||
4284 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4285 	    ((state^info->state) & 0xfffffe00)
4286 		)
4287 		return -EINVAL;
4288 	/* Check there is only one change */
4289 	if (info->size >= 0 && mddev->size != info->size) cnt++;
4290 	if (mddev->raid_disks != info->raid_disks) cnt++;
4291 	if (mddev->layout != info->layout) cnt++;
4292 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4293 	if (cnt == 0) return 0;
4294 	if (cnt > 1) return -EINVAL;
4295 
4296 	if (mddev->layout != info->layout) {
4297 		/* Change layout
4298 		 * we don't need to do anything at the md level, the
4299 		 * personality will take care of it all.
4300 		 */
4301 		if (mddev->pers->reconfig == NULL)
4302 			return -EINVAL;
4303 		else
4304 			return mddev->pers->reconfig(mddev, info->layout, -1);
4305 	}
4306 	if (info->size >= 0 && mddev->size != info->size)
4307 		rv = update_size(mddev, info->size);
4308 
4309 	if (mddev->raid_disks    != info->raid_disks)
4310 		rv = update_raid_disks(mddev, info->raid_disks);
4311 
4312 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4313 		if (mddev->pers->quiesce == NULL)
4314 			return -EINVAL;
4315 		if (mddev->recovery || mddev->sync_thread)
4316 			return -EBUSY;
4317 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4318 			/* add the bitmap */
4319 			if (mddev->bitmap)
4320 				return -EEXIST;
4321 			if (mddev->default_bitmap_offset == 0)
4322 				return -EINVAL;
4323 			mddev->bitmap_offset = mddev->default_bitmap_offset;
4324 			mddev->pers->quiesce(mddev, 1);
4325 			rv = bitmap_create(mddev);
4326 			if (rv)
4327 				bitmap_destroy(mddev);
4328 			mddev->pers->quiesce(mddev, 0);
4329 		} else {
4330 			/* remove the bitmap */
4331 			if (!mddev->bitmap)
4332 				return -ENOENT;
4333 			if (mddev->bitmap->file)
4334 				return -EINVAL;
4335 			mddev->pers->quiesce(mddev, 1);
4336 			bitmap_destroy(mddev);
4337 			mddev->pers->quiesce(mddev, 0);
4338 			mddev->bitmap_offset = 0;
4339 		}
4340 	}
4341 	md_update_sb(mddev, 1);
4342 	return rv;
4343 }
4344 
4345 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4346 {
4347 	mdk_rdev_t *rdev;
4348 
4349 	if (mddev->pers == NULL)
4350 		return -ENODEV;
4351 
4352 	rdev = find_rdev(mddev, dev);
4353 	if (!rdev)
4354 		return -ENODEV;
4355 
4356 	md_error(mddev, rdev);
4357 	return 0;
4358 }
4359 
4360 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4361 {
4362 	mddev_t *mddev = bdev->bd_disk->private_data;
4363 
4364 	geo->heads = 2;
4365 	geo->sectors = 4;
4366 	geo->cylinders = get_capacity(mddev->gendisk) / 8;
4367 	return 0;
4368 }
4369 
4370 static int md_ioctl(struct inode *inode, struct file *file,
4371 			unsigned int cmd, unsigned long arg)
4372 {
4373 	int err = 0;
4374 	void __user *argp = (void __user *)arg;
4375 	mddev_t *mddev = NULL;
4376 
4377 	if (!capable(CAP_SYS_ADMIN))
4378 		return -EACCES;
4379 
4380 	/*
4381 	 * Commands dealing with the RAID driver but not any
4382 	 * particular array:
4383 	 */
4384 	switch (cmd)
4385 	{
4386 		case RAID_VERSION:
4387 			err = get_version(argp);
4388 			goto done;
4389 
4390 		case PRINT_RAID_DEBUG:
4391 			err = 0;
4392 			md_print_devices();
4393 			goto done;
4394 
4395 #ifndef MODULE
4396 		case RAID_AUTORUN:
4397 			err = 0;
4398 			autostart_arrays(arg);
4399 			goto done;
4400 #endif
4401 		default:;
4402 	}
4403 
4404 	/*
4405 	 * Commands creating/starting a new array:
4406 	 */
4407 
4408 	mddev = inode->i_bdev->bd_disk->private_data;
4409 
4410 	if (!mddev) {
4411 		BUG();
4412 		goto abort;
4413 	}
4414 
4415 	err = mddev_lock(mddev);
4416 	if (err) {
4417 		printk(KERN_INFO
4418 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
4419 			err, cmd);
4420 		goto abort;
4421 	}
4422 
4423 	switch (cmd)
4424 	{
4425 		case SET_ARRAY_INFO:
4426 			{
4427 				mdu_array_info_t info;
4428 				if (!arg)
4429 					memset(&info, 0, sizeof(info));
4430 				else if (copy_from_user(&info, argp, sizeof(info))) {
4431 					err = -EFAULT;
4432 					goto abort_unlock;
4433 				}
4434 				if (mddev->pers) {
4435 					err = update_array_info(mddev, &info);
4436 					if (err) {
4437 						printk(KERN_WARNING "md: couldn't update"
4438 						       " array info. %d\n", err);
4439 						goto abort_unlock;
4440 					}
4441 					goto done_unlock;
4442 				}
4443 				if (!list_empty(&mddev->disks)) {
4444 					printk(KERN_WARNING
4445 					       "md: array %s already has disks!\n",
4446 					       mdname(mddev));
4447 					err = -EBUSY;
4448 					goto abort_unlock;
4449 				}
4450 				if (mddev->raid_disks) {
4451 					printk(KERN_WARNING
4452 					       "md: array %s already initialised!\n",
4453 					       mdname(mddev));
4454 					err = -EBUSY;
4455 					goto abort_unlock;
4456 				}
4457 				err = set_array_info(mddev, &info);
4458 				if (err) {
4459 					printk(KERN_WARNING "md: couldn't set"
4460 					       " array info. %d\n", err);
4461 					goto abort_unlock;
4462 				}
4463 			}
4464 			goto done_unlock;
4465 
4466 		default:;
4467 	}
4468 
4469 	/*
4470 	 * Commands querying/configuring an existing array:
4471 	 */
4472 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4473 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4474 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4475 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4476 	    		&& cmd != GET_BITMAP_FILE) {
4477 		err = -ENODEV;
4478 		goto abort_unlock;
4479 	}
4480 
4481 	/*
4482 	 * Commands even a read-only array can execute:
4483 	 */
4484 	switch (cmd)
4485 	{
4486 		case GET_ARRAY_INFO:
4487 			err = get_array_info(mddev, argp);
4488 			goto done_unlock;
4489 
4490 		case GET_BITMAP_FILE:
4491 			err = get_bitmap_file(mddev, argp);
4492 			goto done_unlock;
4493 
4494 		case GET_DISK_INFO:
4495 			err = get_disk_info(mddev, argp);
4496 			goto done_unlock;
4497 
4498 		case RESTART_ARRAY_RW:
4499 			err = restart_array(mddev);
4500 			goto done_unlock;
4501 
4502 		case STOP_ARRAY:
4503 			err = do_md_stop (mddev, 0);
4504 			goto done_unlock;
4505 
4506 		case STOP_ARRAY_RO:
4507 			err = do_md_stop (mddev, 1);
4508 			goto done_unlock;
4509 
4510 	/*
4511 	 * We have a problem here : there is no easy way to give a CHS
4512 	 * virtual geometry. We currently pretend that we have a 2 heads
4513 	 * 4 sectors (with a BIG number of cylinders...). This drives
4514 	 * dosfs just mad... ;-)
4515 	 */
4516 	}
4517 
4518 	/*
4519 	 * The remaining ioctls are changing the state of the
4520 	 * superblock, so we do not allow them on read-only arrays.
4521 	 * However non-MD ioctls (e.g. get-size) will still come through
4522 	 * here and hit the 'default' below, so only disallow
4523 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4524 	 */
4525 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
4526 	    mddev->ro && mddev->pers) {
4527 		if (mddev->ro == 2) {
4528 			mddev->ro = 0;
4529 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4530 		md_wakeup_thread(mddev->thread);
4531 
4532 		} else {
4533 			err = -EROFS;
4534 			goto abort_unlock;
4535 		}
4536 	}
4537 
4538 	switch (cmd)
4539 	{
4540 		case ADD_NEW_DISK:
4541 		{
4542 			mdu_disk_info_t info;
4543 			if (copy_from_user(&info, argp, sizeof(info)))
4544 				err = -EFAULT;
4545 			else
4546 				err = add_new_disk(mddev, &info);
4547 			goto done_unlock;
4548 		}
4549 
4550 		case HOT_REMOVE_DISK:
4551 			err = hot_remove_disk(mddev, new_decode_dev(arg));
4552 			goto done_unlock;
4553 
4554 		case HOT_ADD_DISK:
4555 			err = hot_add_disk(mddev, new_decode_dev(arg));
4556 			goto done_unlock;
4557 
4558 		case SET_DISK_FAULTY:
4559 			err = set_disk_faulty(mddev, new_decode_dev(arg));
4560 			goto done_unlock;
4561 
4562 		case RUN_ARRAY:
4563 			err = do_md_run (mddev);
4564 			goto done_unlock;
4565 
4566 		case SET_BITMAP_FILE:
4567 			err = set_bitmap_file(mddev, (int)arg);
4568 			goto done_unlock;
4569 
4570 		default:
4571 			err = -EINVAL;
4572 			goto abort_unlock;
4573 	}
4574 
4575 done_unlock:
4576 abort_unlock:
4577 	mddev_unlock(mddev);
4578 
4579 	return err;
4580 done:
4581 	if (err)
4582 		MD_BUG();
4583 abort:
4584 	return err;
4585 }
4586 
4587 static int md_open(struct inode *inode, struct file *file)
4588 {
4589 	/*
4590 	 * Succeed if we can lock the mddev, which confirms that
4591 	 * it isn't being stopped right now.
4592 	 */
4593 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4594 	int err;
4595 
4596 	if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4597 		goto out;
4598 
4599 	err = 0;
4600 	mddev_get(mddev);
4601 	mddev_unlock(mddev);
4602 
4603 	check_disk_change(inode->i_bdev);
4604  out:
4605 	return err;
4606 }
4607 
4608 static int md_release(struct inode *inode, struct file * file)
4609 {
4610  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4611 
4612 	BUG_ON(!mddev);
4613 	mddev_put(mddev);
4614 
4615 	return 0;
4616 }
4617 
4618 static int md_media_changed(struct gendisk *disk)
4619 {
4620 	mddev_t *mddev = disk->private_data;
4621 
4622 	return mddev->changed;
4623 }
4624 
4625 static int md_revalidate(struct gendisk *disk)
4626 {
4627 	mddev_t *mddev = disk->private_data;
4628 
4629 	mddev->changed = 0;
4630 	return 0;
4631 }
4632 static struct block_device_operations md_fops =
4633 {
4634 	.owner		= THIS_MODULE,
4635 	.open		= md_open,
4636 	.release	= md_release,
4637 	.ioctl		= md_ioctl,
4638 	.getgeo		= md_getgeo,
4639 	.media_changed	= md_media_changed,
4640 	.revalidate_disk= md_revalidate,
4641 };
4642 
4643 static int md_thread(void * arg)
4644 {
4645 	mdk_thread_t *thread = arg;
4646 
4647 	/*
4648 	 * md_thread is a 'system-thread', it's priority should be very
4649 	 * high. We avoid resource deadlocks individually in each
4650 	 * raid personality. (RAID5 does preallocation) We also use RR and
4651 	 * the very same RT priority as kswapd, thus we will never get
4652 	 * into a priority inversion deadlock.
4653 	 *
4654 	 * we definitely have to have equal or higher priority than
4655 	 * bdflush, otherwise bdflush will deadlock if there are too
4656 	 * many dirty RAID5 blocks.
4657 	 */
4658 
4659 	allow_signal(SIGKILL);
4660 	while (!kthread_should_stop()) {
4661 
4662 		/* We need to wait INTERRUPTIBLE so that
4663 		 * we don't add to the load-average.
4664 		 * That means we need to be sure no signals are
4665 		 * pending
4666 		 */
4667 		if (signal_pending(current))
4668 			flush_signals(current);
4669 
4670 		wait_event_interruptible_timeout
4671 			(thread->wqueue,
4672 			 test_bit(THREAD_WAKEUP, &thread->flags)
4673 			 || kthread_should_stop(),
4674 			 thread->timeout);
4675 
4676 		clear_bit(THREAD_WAKEUP, &thread->flags);
4677 
4678 		thread->run(thread->mddev);
4679 	}
4680 
4681 	return 0;
4682 }
4683 
4684 void md_wakeup_thread(mdk_thread_t *thread)
4685 {
4686 	if (thread) {
4687 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4688 		set_bit(THREAD_WAKEUP, &thread->flags);
4689 		wake_up(&thread->wqueue);
4690 	}
4691 }
4692 
4693 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4694 				 const char *name)
4695 {
4696 	mdk_thread_t *thread;
4697 
4698 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4699 	if (!thread)
4700 		return NULL;
4701 
4702 	init_waitqueue_head(&thread->wqueue);
4703 
4704 	thread->run = run;
4705 	thread->mddev = mddev;
4706 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
4707 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4708 	if (IS_ERR(thread->tsk)) {
4709 		kfree(thread);
4710 		return NULL;
4711 	}
4712 	return thread;
4713 }
4714 
4715 void md_unregister_thread(mdk_thread_t *thread)
4716 {
4717 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
4718 
4719 	kthread_stop(thread->tsk);
4720 	kfree(thread);
4721 }
4722 
4723 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4724 {
4725 	if (!mddev) {
4726 		MD_BUG();
4727 		return;
4728 	}
4729 
4730 	if (!rdev || test_bit(Faulty, &rdev->flags))
4731 		return;
4732 /*
4733 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4734 		mdname(mddev),
4735 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4736 		__builtin_return_address(0),__builtin_return_address(1),
4737 		__builtin_return_address(2),__builtin_return_address(3));
4738 */
4739 	if (!mddev->pers)
4740 		return;
4741 	if (!mddev->pers->error_handler)
4742 		return;
4743 	mddev->pers->error_handler(mddev,rdev);
4744 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4745 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4746 	md_wakeup_thread(mddev->thread);
4747 	md_new_event_inintr(mddev);
4748 }
4749 
4750 /* seq_file implementation /proc/mdstat */
4751 
4752 static void status_unused(struct seq_file *seq)
4753 {
4754 	int i = 0;
4755 	mdk_rdev_t *rdev;
4756 	struct list_head *tmp;
4757 
4758 	seq_printf(seq, "unused devices: ");
4759 
4760 	ITERATE_RDEV_PENDING(rdev,tmp) {
4761 		char b[BDEVNAME_SIZE];
4762 		i++;
4763 		seq_printf(seq, "%s ",
4764 			      bdevname(rdev->bdev,b));
4765 	}
4766 	if (!i)
4767 		seq_printf(seq, "<none>");
4768 
4769 	seq_printf(seq, "\n");
4770 }
4771 
4772 
4773 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4774 {
4775 	sector_t max_blocks, resync, res;
4776 	unsigned long dt, db, rt;
4777 	int scale;
4778 	unsigned int per_milli;
4779 
4780 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4781 
4782 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4783 		max_blocks = mddev->resync_max_sectors >> 1;
4784 	else
4785 		max_blocks = mddev->size;
4786 
4787 	/*
4788 	 * Should not happen.
4789 	 */
4790 	if (!max_blocks) {
4791 		MD_BUG();
4792 		return;
4793 	}
4794 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
4795 	 * in a sector_t, and (max_blocks>>scale) will fit in a
4796 	 * u32, as those are the requirements for sector_div.
4797 	 * Thus 'scale' must be at least 10
4798 	 */
4799 	scale = 10;
4800 	if (sizeof(sector_t) > sizeof(unsigned long)) {
4801 		while ( max_blocks/2 > (1ULL<<(scale+32)))
4802 			scale++;
4803 	}
4804 	res = (resync>>scale)*1000;
4805 	sector_div(res, (u32)((max_blocks>>scale)+1));
4806 
4807 	per_milli = res;
4808 	{
4809 		int i, x = per_milli/50, y = 20-x;
4810 		seq_printf(seq, "[");
4811 		for (i = 0; i < x; i++)
4812 			seq_printf(seq, "=");
4813 		seq_printf(seq, ">");
4814 		for (i = 0; i < y; i++)
4815 			seq_printf(seq, ".");
4816 		seq_printf(seq, "] ");
4817 	}
4818 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4819 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4820 		    "reshape" :
4821 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4822 		     "check" :
4823 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4824 		      "resync" : "recovery"))),
4825 		   per_milli/10, per_milli % 10,
4826 		   (unsigned long long) resync,
4827 		   (unsigned long long) max_blocks);
4828 
4829 	/*
4830 	 * We do not want to overflow, so the order of operands and
4831 	 * the * 100 / 100 trick are important. We do a +1 to be
4832 	 * safe against division by zero. We only estimate anyway.
4833 	 *
4834 	 * dt: time from mark until now
4835 	 * db: blocks written from mark until now
4836 	 * rt: remaining time
4837 	 */
4838 	dt = ((jiffies - mddev->resync_mark) / HZ);
4839 	if (!dt) dt++;
4840 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4841 		- mddev->resync_mark_cnt;
4842 	rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4843 
4844 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4845 
4846 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4847 }
4848 
4849 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4850 {
4851 	struct list_head *tmp;
4852 	loff_t l = *pos;
4853 	mddev_t *mddev;
4854 
4855 	if (l >= 0x10000)
4856 		return NULL;
4857 	if (!l--)
4858 		/* header */
4859 		return (void*)1;
4860 
4861 	spin_lock(&all_mddevs_lock);
4862 	list_for_each(tmp,&all_mddevs)
4863 		if (!l--) {
4864 			mddev = list_entry(tmp, mddev_t, all_mddevs);
4865 			mddev_get(mddev);
4866 			spin_unlock(&all_mddevs_lock);
4867 			return mddev;
4868 		}
4869 	spin_unlock(&all_mddevs_lock);
4870 	if (!l--)
4871 		return (void*)2;/* tail */
4872 	return NULL;
4873 }
4874 
4875 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4876 {
4877 	struct list_head *tmp;
4878 	mddev_t *next_mddev, *mddev = v;
4879 
4880 	++*pos;
4881 	if (v == (void*)2)
4882 		return NULL;
4883 
4884 	spin_lock(&all_mddevs_lock);
4885 	if (v == (void*)1)
4886 		tmp = all_mddevs.next;
4887 	else
4888 		tmp = mddev->all_mddevs.next;
4889 	if (tmp != &all_mddevs)
4890 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4891 	else {
4892 		next_mddev = (void*)2;
4893 		*pos = 0x10000;
4894 	}
4895 	spin_unlock(&all_mddevs_lock);
4896 
4897 	if (v != (void*)1)
4898 		mddev_put(mddev);
4899 	return next_mddev;
4900 
4901 }
4902 
4903 static void md_seq_stop(struct seq_file *seq, void *v)
4904 {
4905 	mddev_t *mddev = v;
4906 
4907 	if (mddev && v != (void*)1 && v != (void*)2)
4908 		mddev_put(mddev);
4909 }
4910 
4911 struct mdstat_info {
4912 	int event;
4913 };
4914 
4915 static int md_seq_show(struct seq_file *seq, void *v)
4916 {
4917 	mddev_t *mddev = v;
4918 	sector_t size;
4919 	struct list_head *tmp2;
4920 	mdk_rdev_t *rdev;
4921 	struct mdstat_info *mi = seq->private;
4922 	struct bitmap *bitmap;
4923 
4924 	if (v == (void*)1) {
4925 		struct mdk_personality *pers;
4926 		seq_printf(seq, "Personalities : ");
4927 		spin_lock(&pers_lock);
4928 		list_for_each_entry(pers, &pers_list, list)
4929 			seq_printf(seq, "[%s] ", pers->name);
4930 
4931 		spin_unlock(&pers_lock);
4932 		seq_printf(seq, "\n");
4933 		mi->event = atomic_read(&md_event_count);
4934 		return 0;
4935 	}
4936 	if (v == (void*)2) {
4937 		status_unused(seq);
4938 		return 0;
4939 	}
4940 
4941 	if (mddev_lock(mddev) < 0)
4942 		return -EINTR;
4943 
4944 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4945 		seq_printf(seq, "%s : %sactive", mdname(mddev),
4946 						mddev->pers ? "" : "in");
4947 		if (mddev->pers) {
4948 			if (mddev->ro==1)
4949 				seq_printf(seq, " (read-only)");
4950 			if (mddev->ro==2)
4951 				seq_printf(seq, "(auto-read-only)");
4952 			seq_printf(seq, " %s", mddev->pers->name);
4953 		}
4954 
4955 		size = 0;
4956 		ITERATE_RDEV(mddev,rdev,tmp2) {
4957 			char b[BDEVNAME_SIZE];
4958 			seq_printf(seq, " %s[%d]",
4959 				bdevname(rdev->bdev,b), rdev->desc_nr);
4960 			if (test_bit(WriteMostly, &rdev->flags))
4961 				seq_printf(seq, "(W)");
4962 			if (test_bit(Faulty, &rdev->flags)) {
4963 				seq_printf(seq, "(F)");
4964 				continue;
4965 			} else if (rdev->raid_disk < 0)
4966 				seq_printf(seq, "(S)"); /* spare */
4967 			size += rdev->size;
4968 		}
4969 
4970 		if (!list_empty(&mddev->disks)) {
4971 			if (mddev->pers)
4972 				seq_printf(seq, "\n      %llu blocks",
4973 					(unsigned long long)mddev->array_size);
4974 			else
4975 				seq_printf(seq, "\n      %llu blocks",
4976 					(unsigned long long)size);
4977 		}
4978 		if (mddev->persistent) {
4979 			if (mddev->major_version != 0 ||
4980 			    mddev->minor_version != 90) {
4981 				seq_printf(seq," super %d.%d",
4982 					   mddev->major_version,
4983 					   mddev->minor_version);
4984 			}
4985 		} else
4986 			seq_printf(seq, " super non-persistent");
4987 
4988 		if (mddev->pers) {
4989 			mddev->pers->status (seq, mddev);
4990 	 		seq_printf(seq, "\n      ");
4991 			if (mddev->pers->sync_request) {
4992 				if (mddev->curr_resync > 2) {
4993 					status_resync (seq, mddev);
4994 					seq_printf(seq, "\n      ");
4995 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4996 					seq_printf(seq, "\tresync=DELAYED\n      ");
4997 				else if (mddev->recovery_cp < MaxSector)
4998 					seq_printf(seq, "\tresync=PENDING\n      ");
4999 			}
5000 		} else
5001 			seq_printf(seq, "\n       ");
5002 
5003 		if ((bitmap = mddev->bitmap)) {
5004 			unsigned long chunk_kb;
5005 			unsigned long flags;
5006 			spin_lock_irqsave(&bitmap->lock, flags);
5007 			chunk_kb = bitmap->chunksize >> 10;
5008 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5009 				"%lu%s chunk",
5010 				bitmap->pages - bitmap->missing_pages,
5011 				bitmap->pages,
5012 				(bitmap->pages - bitmap->missing_pages)
5013 					<< (PAGE_SHIFT - 10),
5014 				chunk_kb ? chunk_kb : bitmap->chunksize,
5015 				chunk_kb ? "KB" : "B");
5016 			if (bitmap->file) {
5017 				seq_printf(seq, ", file: ");
5018 				seq_path(seq, bitmap->file->f_path.mnt,
5019 					 bitmap->file->f_path.dentry," \t\n");
5020 			}
5021 
5022 			seq_printf(seq, "\n");
5023 			spin_unlock_irqrestore(&bitmap->lock, flags);
5024 		}
5025 
5026 		seq_printf(seq, "\n");
5027 	}
5028 	mddev_unlock(mddev);
5029 
5030 	return 0;
5031 }
5032 
5033 static struct seq_operations md_seq_ops = {
5034 	.start  = md_seq_start,
5035 	.next   = md_seq_next,
5036 	.stop   = md_seq_stop,
5037 	.show   = md_seq_show,
5038 };
5039 
5040 static int md_seq_open(struct inode *inode, struct file *file)
5041 {
5042 	int error;
5043 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5044 	if (mi == NULL)
5045 		return -ENOMEM;
5046 
5047 	error = seq_open(file, &md_seq_ops);
5048 	if (error)
5049 		kfree(mi);
5050 	else {
5051 		struct seq_file *p = file->private_data;
5052 		p->private = mi;
5053 		mi->event = atomic_read(&md_event_count);
5054 	}
5055 	return error;
5056 }
5057 
5058 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5059 {
5060 	struct seq_file *m = filp->private_data;
5061 	struct mdstat_info *mi = m->private;
5062 	int mask;
5063 
5064 	poll_wait(filp, &md_event_waiters, wait);
5065 
5066 	/* always allow read */
5067 	mask = POLLIN | POLLRDNORM;
5068 
5069 	if (mi->event != atomic_read(&md_event_count))
5070 		mask |= POLLERR | POLLPRI;
5071 	return mask;
5072 }
5073 
5074 static const struct file_operations md_seq_fops = {
5075 	.owner		= THIS_MODULE,
5076 	.open           = md_seq_open,
5077 	.read           = seq_read,
5078 	.llseek         = seq_lseek,
5079 	.release	= seq_release_private,
5080 	.poll		= mdstat_poll,
5081 };
5082 
5083 int register_md_personality(struct mdk_personality *p)
5084 {
5085 	spin_lock(&pers_lock);
5086 	list_add_tail(&p->list, &pers_list);
5087 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5088 	spin_unlock(&pers_lock);
5089 	return 0;
5090 }
5091 
5092 int unregister_md_personality(struct mdk_personality *p)
5093 {
5094 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5095 	spin_lock(&pers_lock);
5096 	list_del_init(&p->list);
5097 	spin_unlock(&pers_lock);
5098 	return 0;
5099 }
5100 
5101 static int is_mddev_idle(mddev_t *mddev)
5102 {
5103 	mdk_rdev_t * rdev;
5104 	struct list_head *tmp;
5105 	int idle;
5106 	long curr_events;
5107 
5108 	idle = 1;
5109 	ITERATE_RDEV(mddev,rdev,tmp) {
5110 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5111 		curr_events = disk_stat_read(disk, sectors[0]) +
5112 				disk_stat_read(disk, sectors[1]) -
5113 				atomic_read(&disk->sync_io);
5114 		/* sync IO will cause sync_io to increase before the disk_stats
5115 		 * as sync_io is counted when a request starts, and
5116 		 * disk_stats is counted when it completes.
5117 		 * So resync activity will cause curr_events to be smaller than
5118 		 * when there was no such activity.
5119 		 * non-sync IO will cause disk_stat to increase without
5120 		 * increasing sync_io so curr_events will (eventually)
5121 		 * be larger than it was before.  Once it becomes
5122 		 * substantially larger, the test below will cause
5123 		 * the array to appear non-idle, and resync will slow
5124 		 * down.
5125 		 * If there is a lot of outstanding resync activity when
5126 		 * we set last_event to curr_events, then all that activity
5127 		 * completing might cause the array to appear non-idle
5128 		 * and resync will be slowed down even though there might
5129 		 * not have been non-resync activity.  This will only
5130 		 * happen once though.  'last_events' will soon reflect
5131 		 * the state where there is little or no outstanding
5132 		 * resync requests, and further resync activity will
5133 		 * always make curr_events less than last_events.
5134 		 *
5135 		 */
5136 		if (curr_events - rdev->last_events > 4096) {
5137 			rdev->last_events = curr_events;
5138 			idle = 0;
5139 		}
5140 	}
5141 	return idle;
5142 }
5143 
5144 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5145 {
5146 	/* another "blocks" (512byte) blocks have been synced */
5147 	atomic_sub(blocks, &mddev->recovery_active);
5148 	wake_up(&mddev->recovery_wait);
5149 	if (!ok) {
5150 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5151 		md_wakeup_thread(mddev->thread);
5152 		// stop recovery, signal do_sync ....
5153 	}
5154 }
5155 
5156 
5157 /* md_write_start(mddev, bi)
5158  * If we need to update some array metadata (e.g. 'active' flag
5159  * in superblock) before writing, schedule a superblock update
5160  * and wait for it to complete.
5161  */
5162 void md_write_start(mddev_t *mddev, struct bio *bi)
5163 {
5164 	if (bio_data_dir(bi) != WRITE)
5165 		return;
5166 
5167 	BUG_ON(mddev->ro == 1);
5168 	if (mddev->ro == 2) {
5169 		/* need to switch to read/write */
5170 		mddev->ro = 0;
5171 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5172 		md_wakeup_thread(mddev->thread);
5173 	}
5174 	atomic_inc(&mddev->writes_pending);
5175 	if (mddev->in_sync) {
5176 		spin_lock_irq(&mddev->write_lock);
5177 		if (mddev->in_sync) {
5178 			mddev->in_sync = 0;
5179 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5180 			md_wakeup_thread(mddev->thread);
5181 		}
5182 		spin_unlock_irq(&mddev->write_lock);
5183 	}
5184 	wait_event(mddev->sb_wait, mddev->flags==0);
5185 }
5186 
5187 void md_write_end(mddev_t *mddev)
5188 {
5189 	if (atomic_dec_and_test(&mddev->writes_pending)) {
5190 		if (mddev->safemode == 2)
5191 			md_wakeup_thread(mddev->thread);
5192 		else if (mddev->safemode_delay)
5193 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5194 	}
5195 }
5196 
5197 /* md_allow_write(mddev)
5198  * Calling this ensures that the array is marked 'active' so that writes
5199  * may proceed without blocking.  It is important to call this before
5200  * attempting a GFP_KERNEL allocation while holding the mddev lock.
5201  * Must be called with mddev_lock held.
5202  */
5203 void md_allow_write(mddev_t *mddev)
5204 {
5205 	if (!mddev->pers)
5206 		return;
5207 	if (mddev->ro)
5208 		return;
5209 
5210 	spin_lock_irq(&mddev->write_lock);
5211 	if (mddev->in_sync) {
5212 		mddev->in_sync = 0;
5213 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5214 		if (mddev->safemode_delay &&
5215 		    mddev->safemode == 0)
5216 			mddev->safemode = 1;
5217 		spin_unlock_irq(&mddev->write_lock);
5218 		md_update_sb(mddev, 0);
5219 	} else
5220 		spin_unlock_irq(&mddev->write_lock);
5221 }
5222 EXPORT_SYMBOL_GPL(md_allow_write);
5223 
5224 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5225 
5226 #define SYNC_MARKS	10
5227 #define	SYNC_MARK_STEP	(3*HZ)
5228 void md_do_sync(mddev_t *mddev)
5229 {
5230 	mddev_t *mddev2;
5231 	unsigned int currspeed = 0,
5232 		 window;
5233 	sector_t max_sectors,j, io_sectors;
5234 	unsigned long mark[SYNC_MARKS];
5235 	sector_t mark_cnt[SYNC_MARKS];
5236 	int last_mark,m;
5237 	struct list_head *tmp;
5238 	sector_t last_check;
5239 	int skipped = 0;
5240 	struct list_head *rtmp;
5241 	mdk_rdev_t *rdev;
5242 	char *desc;
5243 
5244 	/* just incase thread restarts... */
5245 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5246 		return;
5247 	if (mddev->ro) /* never try to sync a read-only array */
5248 		return;
5249 
5250 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5251 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5252 			desc = "data-check";
5253 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5254 			desc = "requested-resync";
5255 		else
5256 			desc = "resync";
5257 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5258 		desc = "reshape";
5259 	else
5260 		desc = "recovery";
5261 
5262 	/* we overload curr_resync somewhat here.
5263 	 * 0 == not engaged in resync at all
5264 	 * 2 == checking that there is no conflict with another sync
5265 	 * 1 == like 2, but have yielded to allow conflicting resync to
5266 	 *		commense
5267 	 * other == active in resync - this many blocks
5268 	 *
5269 	 * Before starting a resync we must have set curr_resync to
5270 	 * 2, and then checked that every "conflicting" array has curr_resync
5271 	 * less than ours.  When we find one that is the same or higher
5272 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
5273 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5274 	 * This will mean we have to start checking from the beginning again.
5275 	 *
5276 	 */
5277 
5278 	do {
5279 		mddev->curr_resync = 2;
5280 
5281 	try_again:
5282 		if (kthread_should_stop()) {
5283 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5284 			goto skip;
5285 		}
5286 		ITERATE_MDDEV(mddev2,tmp) {
5287 			if (mddev2 == mddev)
5288 				continue;
5289 			if (mddev2->curr_resync &&
5290 			    match_mddev_units(mddev,mddev2)) {
5291 				DEFINE_WAIT(wq);
5292 				if (mddev < mddev2 && mddev->curr_resync == 2) {
5293 					/* arbitrarily yield */
5294 					mddev->curr_resync = 1;
5295 					wake_up(&resync_wait);
5296 				}
5297 				if (mddev > mddev2 && mddev->curr_resync == 1)
5298 					/* no need to wait here, we can wait the next
5299 					 * time 'round when curr_resync == 2
5300 					 */
5301 					continue;
5302 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5303 				if (!kthread_should_stop() &&
5304 				    mddev2->curr_resync >= mddev->curr_resync) {
5305 					printk(KERN_INFO "md: delaying %s of %s"
5306 					       " until %s has finished (they"
5307 					       " share one or more physical units)\n",
5308 					       desc, mdname(mddev), mdname(mddev2));
5309 					mddev_put(mddev2);
5310 					schedule();
5311 					finish_wait(&resync_wait, &wq);
5312 					goto try_again;
5313 				}
5314 				finish_wait(&resync_wait, &wq);
5315 			}
5316 		}
5317 	} while (mddev->curr_resync < 2);
5318 
5319 	j = 0;
5320 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5321 		/* resync follows the size requested by the personality,
5322 		 * which defaults to physical size, but can be virtual size
5323 		 */
5324 		max_sectors = mddev->resync_max_sectors;
5325 		mddev->resync_mismatches = 0;
5326 		/* we don't use the checkpoint if there's a bitmap */
5327 		if (!mddev->bitmap &&
5328 		    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5329 			j = mddev->recovery_cp;
5330 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5331 		max_sectors = mddev->size << 1;
5332 	else {
5333 		/* recovery follows the physical size of devices */
5334 		max_sectors = mddev->size << 1;
5335 		j = MaxSector;
5336 		ITERATE_RDEV(mddev,rdev,rtmp)
5337 			if (rdev->raid_disk >= 0 &&
5338 			    !test_bit(Faulty, &rdev->flags) &&
5339 			    !test_bit(In_sync, &rdev->flags) &&
5340 			    rdev->recovery_offset < j)
5341 				j = rdev->recovery_offset;
5342 	}
5343 
5344 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5345 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
5346 		" %d KB/sec/disk.\n", speed_min(mddev));
5347 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5348 	       "(but not more than %d KB/sec) for %s.\n",
5349 	       speed_max(mddev), desc);
5350 
5351 	is_mddev_idle(mddev); /* this also initializes IO event counters */
5352 
5353 	io_sectors = 0;
5354 	for (m = 0; m < SYNC_MARKS; m++) {
5355 		mark[m] = jiffies;
5356 		mark_cnt[m] = io_sectors;
5357 	}
5358 	last_mark = 0;
5359 	mddev->resync_mark = mark[last_mark];
5360 	mddev->resync_mark_cnt = mark_cnt[last_mark];
5361 
5362 	/*
5363 	 * Tune reconstruction:
5364 	 */
5365 	window = 32*(PAGE_SIZE/512);
5366 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5367 		window/2,(unsigned long long) max_sectors/2);
5368 
5369 	atomic_set(&mddev->recovery_active, 0);
5370 	init_waitqueue_head(&mddev->recovery_wait);
5371 	last_check = 0;
5372 
5373 	if (j>2) {
5374 		printk(KERN_INFO
5375 		       "md: resuming %s of %s from checkpoint.\n",
5376 		       desc, mdname(mddev));
5377 		mddev->curr_resync = j;
5378 	}
5379 
5380 	while (j < max_sectors) {
5381 		sector_t sectors;
5382 
5383 		skipped = 0;
5384 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
5385 					    currspeed < speed_min(mddev));
5386 		if (sectors == 0) {
5387 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5388 			goto out;
5389 		}
5390 
5391 		if (!skipped) { /* actual IO requested */
5392 			io_sectors += sectors;
5393 			atomic_add(sectors, &mddev->recovery_active);
5394 		}
5395 
5396 		j += sectors;
5397 		if (j>1) mddev->curr_resync = j;
5398 		mddev->curr_mark_cnt = io_sectors;
5399 		if (last_check == 0)
5400 			/* this is the earliers that rebuilt will be
5401 			 * visible in /proc/mdstat
5402 			 */
5403 			md_new_event(mddev);
5404 
5405 		if (last_check + window > io_sectors || j == max_sectors)
5406 			continue;
5407 
5408 		last_check = io_sectors;
5409 
5410 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5411 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5412 			break;
5413 
5414 	repeat:
5415 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5416 			/* step marks */
5417 			int next = (last_mark+1) % SYNC_MARKS;
5418 
5419 			mddev->resync_mark = mark[next];
5420 			mddev->resync_mark_cnt = mark_cnt[next];
5421 			mark[next] = jiffies;
5422 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5423 			last_mark = next;
5424 		}
5425 
5426 
5427 		if (kthread_should_stop()) {
5428 			/*
5429 			 * got a signal, exit.
5430 			 */
5431 			printk(KERN_INFO
5432 				"md: md_do_sync() got signal ... exiting\n");
5433 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5434 			goto out;
5435 		}
5436 
5437 		/*
5438 		 * this loop exits only if either when we are slower than
5439 		 * the 'hard' speed limit, or the system was IO-idle for
5440 		 * a jiffy.
5441 		 * the system might be non-idle CPU-wise, but we only care
5442 		 * about not overloading the IO subsystem. (things like an
5443 		 * e2fsck being done on the RAID array should execute fast)
5444 		 */
5445 		blk_unplug(mddev->queue);
5446 		cond_resched();
5447 
5448 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5449 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
5450 
5451 		if (currspeed > speed_min(mddev)) {
5452 			if ((currspeed > speed_max(mddev)) ||
5453 					!is_mddev_idle(mddev)) {
5454 				msleep(500);
5455 				goto repeat;
5456 			}
5457 		}
5458 	}
5459 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5460 	/*
5461 	 * this also signals 'finished resyncing' to md_stop
5462 	 */
5463  out:
5464 	blk_unplug(mddev->queue);
5465 
5466 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5467 
5468 	/* tell personality that we are finished */
5469 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5470 
5471 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5472 	    !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5473 	    mddev->curr_resync > 2) {
5474 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5475 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5476 				if (mddev->curr_resync >= mddev->recovery_cp) {
5477 					printk(KERN_INFO
5478 					       "md: checkpointing %s of %s.\n",
5479 					       desc, mdname(mddev));
5480 					mddev->recovery_cp = mddev->curr_resync;
5481 				}
5482 			} else
5483 				mddev->recovery_cp = MaxSector;
5484 		} else {
5485 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5486 				mddev->curr_resync = MaxSector;
5487 			ITERATE_RDEV(mddev,rdev,rtmp)
5488 				if (rdev->raid_disk >= 0 &&
5489 				    !test_bit(Faulty, &rdev->flags) &&
5490 				    !test_bit(In_sync, &rdev->flags) &&
5491 				    rdev->recovery_offset < mddev->curr_resync)
5492 					rdev->recovery_offset = mddev->curr_resync;
5493 		}
5494 	}
5495 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5496 
5497  skip:
5498 	mddev->curr_resync = 0;
5499 	wake_up(&resync_wait);
5500 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5501 	md_wakeup_thread(mddev->thread);
5502 }
5503 EXPORT_SYMBOL_GPL(md_do_sync);
5504 
5505 
5506 static int remove_and_add_spares(mddev_t *mddev)
5507 {
5508 	mdk_rdev_t *rdev;
5509 	struct list_head *rtmp;
5510 	int spares = 0;
5511 
5512 	ITERATE_RDEV(mddev,rdev,rtmp)
5513 		if (rdev->raid_disk >= 0 &&
5514 		    (test_bit(Faulty, &rdev->flags) ||
5515 		     ! test_bit(In_sync, &rdev->flags)) &&
5516 		    atomic_read(&rdev->nr_pending)==0) {
5517 			if (mddev->pers->hot_remove_disk(
5518 				    mddev, rdev->raid_disk)==0) {
5519 				char nm[20];
5520 				sprintf(nm,"rd%d", rdev->raid_disk);
5521 				sysfs_remove_link(&mddev->kobj, nm);
5522 				rdev->raid_disk = -1;
5523 			}
5524 		}
5525 
5526 	if (mddev->degraded) {
5527 		ITERATE_RDEV(mddev,rdev,rtmp)
5528 			if (rdev->raid_disk < 0
5529 			    && !test_bit(Faulty, &rdev->flags)) {
5530 				rdev->recovery_offset = 0;
5531 				if (mddev->pers->hot_add_disk(mddev,rdev)) {
5532 					char nm[20];
5533 					sprintf(nm, "rd%d", rdev->raid_disk);
5534 					if (sysfs_create_link(&mddev->kobj,
5535 							      &rdev->kobj, nm))
5536 						printk(KERN_WARNING
5537 						       "md: cannot register "
5538 						       "%s for %s\n",
5539 						       nm, mdname(mddev));
5540 					spares++;
5541 					md_new_event(mddev);
5542 				} else
5543 					break;
5544 			}
5545 	}
5546 	return spares;
5547 }
5548 /*
5549  * This routine is regularly called by all per-raid-array threads to
5550  * deal with generic issues like resync and super-block update.
5551  * Raid personalities that don't have a thread (linear/raid0) do not
5552  * need this as they never do any recovery or update the superblock.
5553  *
5554  * It does not do any resync itself, but rather "forks" off other threads
5555  * to do that as needed.
5556  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5557  * "->recovery" and create a thread at ->sync_thread.
5558  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5559  * and wakeups up this thread which will reap the thread and finish up.
5560  * This thread also removes any faulty devices (with nr_pending == 0).
5561  *
5562  * The overall approach is:
5563  *  1/ if the superblock needs updating, update it.
5564  *  2/ If a recovery thread is running, don't do anything else.
5565  *  3/ If recovery has finished, clean up, possibly marking spares active.
5566  *  4/ If there are any faulty devices, remove them.
5567  *  5/ If array is degraded, try to add spares devices
5568  *  6/ If array has spares or is not in-sync, start a resync thread.
5569  */
5570 void md_check_recovery(mddev_t *mddev)
5571 {
5572 	mdk_rdev_t *rdev;
5573 	struct list_head *rtmp;
5574 
5575 
5576 	if (mddev->bitmap)
5577 		bitmap_daemon_work(mddev->bitmap);
5578 
5579 	if (mddev->ro)
5580 		return;
5581 
5582 	if (signal_pending(current)) {
5583 		if (mddev->pers->sync_request) {
5584 			printk(KERN_INFO "md: %s in immediate safe mode\n",
5585 			       mdname(mddev));
5586 			mddev->safemode = 2;
5587 		}
5588 		flush_signals(current);
5589 	}
5590 
5591 	if ( ! (
5592 		mddev->flags ||
5593 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5594 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5595 		(mddev->safemode == 1) ||
5596 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5597 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5598 		))
5599 		return;
5600 
5601 	if (mddev_trylock(mddev)) {
5602 		int spares = 0;
5603 
5604 		spin_lock_irq(&mddev->write_lock);
5605 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5606 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5607 			mddev->in_sync = 1;
5608 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5609 		}
5610 		if (mddev->safemode == 1)
5611 			mddev->safemode = 0;
5612 		spin_unlock_irq(&mddev->write_lock);
5613 
5614 		if (mddev->flags)
5615 			md_update_sb(mddev, 0);
5616 
5617 
5618 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5619 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5620 			/* resync/recovery still happening */
5621 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5622 			goto unlock;
5623 		}
5624 		if (mddev->sync_thread) {
5625 			/* resync has finished, collect result */
5626 			md_unregister_thread(mddev->sync_thread);
5627 			mddev->sync_thread = NULL;
5628 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5629 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5630 				/* success...*/
5631 				/* activate any spares */
5632 				mddev->pers->spare_active(mddev);
5633 			}
5634 			md_update_sb(mddev, 1);
5635 
5636 			/* if array is no-longer degraded, then any saved_raid_disk
5637 			 * information must be scrapped
5638 			 */
5639 			if (!mddev->degraded)
5640 				ITERATE_RDEV(mddev,rdev,rtmp)
5641 					rdev->saved_raid_disk = -1;
5642 
5643 			mddev->recovery = 0;
5644 			/* flag recovery needed just to double check */
5645 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5646 			md_new_event(mddev);
5647 			goto unlock;
5648 		}
5649 		/* Clear some bits that don't mean anything, but
5650 		 * might be left set
5651 		 */
5652 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5653 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5654 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5655 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5656 
5657 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5658 			goto unlock;
5659 		/* no recovery is running.
5660 		 * remove any failed drives, then
5661 		 * add spares if possible.
5662 		 * Spare are also removed and re-added, to allow
5663 		 * the personality to fail the re-add.
5664 		 */
5665 
5666 		if (mddev->reshape_position != MaxSector) {
5667 			if (mddev->pers->check_reshape(mddev) != 0)
5668 				/* Cannot proceed */
5669 				goto unlock;
5670 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5671 		} else if ((spares = remove_and_add_spares(mddev))) {
5672 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5673 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5674 		} else if (mddev->recovery_cp < MaxSector) {
5675 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5676 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5677 			/* nothing to be done ... */
5678 			goto unlock;
5679 
5680 		if (mddev->pers->sync_request) {
5681 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5682 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5683 				/* We are adding a device or devices to an array
5684 				 * which has the bitmap stored on all devices.
5685 				 * So make sure all bitmap pages get written
5686 				 */
5687 				bitmap_write_all(mddev->bitmap);
5688 			}
5689 			mddev->sync_thread = md_register_thread(md_do_sync,
5690 								mddev,
5691 								"%s_resync");
5692 			if (!mddev->sync_thread) {
5693 				printk(KERN_ERR "%s: could not start resync"
5694 					" thread...\n",
5695 					mdname(mddev));
5696 				/* leave the spares where they are, it shouldn't hurt */
5697 				mddev->recovery = 0;
5698 			} else
5699 				md_wakeup_thread(mddev->sync_thread);
5700 			md_new_event(mddev);
5701 		}
5702 	unlock:
5703 		mddev_unlock(mddev);
5704 	}
5705 }
5706 
5707 static int md_notify_reboot(struct notifier_block *this,
5708 			    unsigned long code, void *x)
5709 {
5710 	struct list_head *tmp;
5711 	mddev_t *mddev;
5712 
5713 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5714 
5715 		printk(KERN_INFO "md: stopping all md devices.\n");
5716 
5717 		ITERATE_MDDEV(mddev,tmp)
5718 			if (mddev_trylock(mddev)) {
5719 				do_md_stop (mddev, 1);
5720 				mddev_unlock(mddev);
5721 			}
5722 		/*
5723 		 * certain more exotic SCSI devices are known to be
5724 		 * volatile wrt too early system reboots. While the
5725 		 * right place to handle this issue is the given
5726 		 * driver, we do want to have a safe RAID driver ...
5727 		 */
5728 		mdelay(1000*1);
5729 	}
5730 	return NOTIFY_DONE;
5731 }
5732 
5733 static struct notifier_block md_notifier = {
5734 	.notifier_call	= md_notify_reboot,
5735 	.next		= NULL,
5736 	.priority	= INT_MAX, /* before any real devices */
5737 };
5738 
5739 static void md_geninit(void)
5740 {
5741 	struct proc_dir_entry *p;
5742 
5743 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5744 
5745 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
5746 	if (p)
5747 		p->proc_fops = &md_seq_fops;
5748 }
5749 
5750 static int __init md_init(void)
5751 {
5752 	if (register_blkdev(MAJOR_NR, "md"))
5753 		return -1;
5754 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5755 		unregister_blkdev(MAJOR_NR, "md");
5756 		return -1;
5757 	}
5758 	blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5759 			    md_probe, NULL, NULL);
5760 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5761 			    md_probe, NULL, NULL);
5762 
5763 	register_reboot_notifier(&md_notifier);
5764 	raid_table_header = register_sysctl_table(raid_root_table);
5765 
5766 	md_geninit();
5767 	return (0);
5768 }
5769 
5770 
5771 #ifndef MODULE
5772 
5773 /*
5774  * Searches all registered partitions for autorun RAID arrays
5775  * at boot time.
5776  */
5777 
5778 static LIST_HEAD(all_detected_devices);
5779 struct detected_devices_node {
5780 	struct list_head list;
5781 	dev_t dev;
5782 };
5783 
5784 void md_autodetect_dev(dev_t dev)
5785 {
5786 	struct detected_devices_node *node_detected_dev;
5787 
5788 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
5789 	if (node_detected_dev) {
5790 		node_detected_dev->dev = dev;
5791 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
5792 	} else {
5793 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
5794 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
5795 	}
5796 }
5797 
5798 
5799 static void autostart_arrays(int part)
5800 {
5801 	mdk_rdev_t *rdev;
5802 	struct detected_devices_node *node_detected_dev;
5803 	dev_t dev;
5804 	int i_scanned, i_passed;
5805 
5806 	i_scanned = 0;
5807 	i_passed = 0;
5808 
5809 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5810 
5811 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
5812 		i_scanned++;
5813 		node_detected_dev = list_entry(all_detected_devices.next,
5814 					struct detected_devices_node, list);
5815 		list_del(&node_detected_dev->list);
5816 		dev = node_detected_dev->dev;
5817 		kfree(node_detected_dev);
5818 		rdev = md_import_device(dev,0, 90);
5819 		if (IS_ERR(rdev))
5820 			continue;
5821 
5822 		if (test_bit(Faulty, &rdev->flags)) {
5823 			MD_BUG();
5824 			continue;
5825 		}
5826 		list_add(&rdev->same_set, &pending_raid_disks);
5827 		i_passed++;
5828 	}
5829 
5830 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
5831 						i_scanned, i_passed);
5832 
5833 	autorun_devices(part);
5834 }
5835 
5836 #endif /* !MODULE */
5837 
5838 static __exit void md_exit(void)
5839 {
5840 	mddev_t *mddev;
5841 	struct list_head *tmp;
5842 
5843 	blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5844 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5845 
5846 	unregister_blkdev(MAJOR_NR,"md");
5847 	unregister_blkdev(mdp_major, "mdp");
5848 	unregister_reboot_notifier(&md_notifier);
5849 	unregister_sysctl_table(raid_table_header);
5850 	remove_proc_entry("mdstat", NULL);
5851 	ITERATE_MDDEV(mddev,tmp) {
5852 		struct gendisk *disk = mddev->gendisk;
5853 		if (!disk)
5854 			continue;
5855 		export_array(mddev);
5856 		del_gendisk(disk);
5857 		put_disk(disk);
5858 		mddev->gendisk = NULL;
5859 		mddev_put(mddev);
5860 	}
5861 }
5862 
5863 subsys_initcall(md_init);
5864 module_exit(md_exit)
5865 
5866 static int get_ro(char *buffer, struct kernel_param *kp)
5867 {
5868 	return sprintf(buffer, "%d", start_readonly);
5869 }
5870 static int set_ro(const char *val, struct kernel_param *kp)
5871 {
5872 	char *e;
5873 	int num = simple_strtoul(val, &e, 10);
5874 	if (*val && (*e == '\0' || *e == '\n')) {
5875 		start_readonly = num;
5876 		return 0;
5877 	}
5878 	return -EINVAL;
5879 }
5880 
5881 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5882 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5883 
5884 
5885 EXPORT_SYMBOL(register_md_personality);
5886 EXPORT_SYMBOL(unregister_md_personality);
5887 EXPORT_SYMBOL(md_error);
5888 EXPORT_SYMBOL(md_done_sync);
5889 EXPORT_SYMBOL(md_write_start);
5890 EXPORT_SYMBOL(md_write_end);
5891 EXPORT_SYMBOL(md_register_thread);
5892 EXPORT_SYMBOL(md_unregister_thread);
5893 EXPORT_SYMBOL(md_wakeup_thread);
5894 EXPORT_SYMBOL(md_check_recovery);
5895 MODULE_LICENSE("GPL");
5896 MODULE_ALIAS("md");
5897 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
5898