xref: /openbmc/linux/drivers/md/md.c (revision 63dc02bd)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 	struct mddev *mddev, **mddevp;
161 
162 	mddevp = (void*)bio;
163 	mddev = mddevp[-1];
164 
165 	bio_free(bio, mddev->bio_set);
166 }
167 
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 			    struct mddev *mddev)
170 {
171 	struct bio *b;
172 	struct mddev **mddevp;
173 
174 	if (!mddev || !mddev->bio_set)
175 		return bio_alloc(gfp_mask, nr_iovecs);
176 
177 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 			     mddev->bio_set);
179 	if (!b)
180 		return NULL;
181 	mddevp = (void*)b;
182 	mddevp[-1] = mddev;
183 	b->bi_destructor = mddev_bio_destructor;
184 	return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 			    struct mddev *mddev)
190 {
191 	struct bio *b;
192 	struct mddev **mddevp;
193 
194 	if (!mddev || !mddev->bio_set)
195 		return bio_clone(bio, gfp_mask);
196 
197 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 			     mddev->bio_set);
199 	if (!b)
200 		return NULL;
201 	mddevp = (void*)b;
202 	mddevp[-1] = mddev;
203 	b->bi_destructor = mddev_bio_destructor;
204 	__bio_clone(b, bio);
205 	if (bio_integrity(bio)) {
206 		int ret;
207 
208 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 
210 		if (ret < 0) {
211 			bio_put(b);
212 			return NULL;
213 		}
214 	}
215 
216 	return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 	/* 'bio' is a cloned bio which we need to trim to match
223 	 * the given offset and size.
224 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 	 */
226 	int i;
227 	struct bio_vec *bvec;
228 	int sofar = 0;
229 
230 	size <<= 9;
231 	if (offset == 0 && size == bio->bi_size)
232 		return;
233 
234 	bio->bi_sector += offset;
235 	bio->bi_size = size;
236 	offset <<= 9;
237 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 
239 	while (bio->bi_idx < bio->bi_vcnt &&
240 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 		/* remove this whole bio_vec */
242 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 		bio->bi_idx++;
244 	}
245 	if (bio->bi_idx < bio->bi_vcnt) {
246 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 	}
249 	/* avoid any complications with bi_idx being non-zero*/
250 	if (bio->bi_idx) {
251 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 		bio->bi_vcnt -= bio->bi_idx;
254 		bio->bi_idx = 0;
255 	}
256 	/* Make sure vcnt and last bv are not too big */
257 	bio_for_each_segment(bvec, bio, i) {
258 		if (sofar + bvec->bv_len > size)
259 			bvec->bv_len = size - sofar;
260 		if (bvec->bv_len == 0) {
261 			bio->bi_vcnt = i;
262 			break;
263 		}
264 		sofar += bvec->bv_len;
265 	}
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268 
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 	atomic_inc(&md_event_count);
284 	wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287 
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 	atomic_inc(&md_event_count);
294 	wake_up(&md_event_waiters);
295 }
296 
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303 
304 
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)					\
313 									\
314 	for (({ spin_lock(&all_mddevs_lock); 				\
315 		_tmp = all_mddevs.next;					\
316 		_mddev = NULL;});					\
317 	     ({ if (_tmp != &all_mddevs)				\
318 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 		spin_unlock(&all_mddevs_lock);				\
320 		if (_mddev) mddev_put(_mddev);				\
321 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
322 		_tmp != &all_mddevs;});					\
323 	     ({ spin_lock(&all_mddevs_lock);				\
324 		_tmp = _tmp->next;})					\
325 		)
326 
327 
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 	const int rw = bio_data_dir(bio);
338 	struct mddev *mddev = q->queuedata;
339 	int cpu;
340 	unsigned int sectors;
341 
342 	if (mddev == NULL || mddev->pers == NULL
343 	    || !mddev->ready) {
344 		bio_io_error(bio);
345 		return;
346 	}
347 	smp_rmb(); /* Ensure implications of  'active' are visible */
348 	rcu_read_lock();
349 	if (mddev->suspended) {
350 		DEFINE_WAIT(__wait);
351 		for (;;) {
352 			prepare_to_wait(&mddev->sb_wait, &__wait,
353 					TASK_UNINTERRUPTIBLE);
354 			if (!mddev->suspended)
355 				break;
356 			rcu_read_unlock();
357 			schedule();
358 			rcu_read_lock();
359 		}
360 		finish_wait(&mddev->sb_wait, &__wait);
361 	}
362 	atomic_inc(&mddev->active_io);
363 	rcu_read_unlock();
364 
365 	/*
366 	 * save the sectors now since our bio can
367 	 * go away inside make_request
368 	 */
369 	sectors = bio_sectors(bio);
370 	mddev->pers->make_request(mddev, bio);
371 
372 	cpu = part_stat_lock();
373 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 	part_stat_unlock();
376 
377 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 		wake_up(&mddev->sb_wait);
379 }
380 
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 	BUG_ON(mddev->suspended);
390 	mddev->suspended = 1;
391 	synchronize_rcu();
392 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 	mddev->pers->quiesce(mddev, 1);
394 
395 	del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398 
399 void mddev_resume(struct mddev *mddev)
400 {
401 	mddev->suspended = 0;
402 	wake_up(&mddev->sb_wait);
403 	mddev->pers->quiesce(mddev, 0);
404 
405 	md_wakeup_thread(mddev->thread);
406 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 }
408 EXPORT_SYMBOL_GPL(mddev_resume);
409 
410 int mddev_congested(struct mddev *mddev, int bits)
411 {
412 	return mddev->suspended;
413 }
414 EXPORT_SYMBOL(mddev_congested);
415 
416 /*
417  * Generic flush handling for md
418  */
419 
420 static void md_end_flush(struct bio *bio, int err)
421 {
422 	struct md_rdev *rdev = bio->bi_private;
423 	struct mddev *mddev = rdev->mddev;
424 
425 	rdev_dec_pending(rdev, mddev);
426 
427 	if (atomic_dec_and_test(&mddev->flush_pending)) {
428 		/* The pre-request flush has finished */
429 		queue_work(md_wq, &mddev->flush_work);
430 	}
431 	bio_put(bio);
432 }
433 
434 static void md_submit_flush_data(struct work_struct *ws);
435 
436 static void submit_flushes(struct work_struct *ws)
437 {
438 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
439 	struct md_rdev *rdev;
440 
441 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
442 	atomic_set(&mddev->flush_pending, 1);
443 	rcu_read_lock();
444 	rdev_for_each_rcu(rdev, mddev)
445 		if (rdev->raid_disk >= 0 &&
446 		    !test_bit(Faulty, &rdev->flags)) {
447 			/* Take two references, one is dropped
448 			 * when request finishes, one after
449 			 * we reclaim rcu_read_lock
450 			 */
451 			struct bio *bi;
452 			atomic_inc(&rdev->nr_pending);
453 			atomic_inc(&rdev->nr_pending);
454 			rcu_read_unlock();
455 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
456 			bi->bi_end_io = md_end_flush;
457 			bi->bi_private = rdev;
458 			bi->bi_bdev = rdev->bdev;
459 			atomic_inc(&mddev->flush_pending);
460 			submit_bio(WRITE_FLUSH, bi);
461 			rcu_read_lock();
462 			rdev_dec_pending(rdev, mddev);
463 		}
464 	rcu_read_unlock();
465 	if (atomic_dec_and_test(&mddev->flush_pending))
466 		queue_work(md_wq, &mddev->flush_work);
467 }
468 
469 static void md_submit_flush_data(struct work_struct *ws)
470 {
471 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
472 	struct bio *bio = mddev->flush_bio;
473 
474 	if (bio->bi_size == 0)
475 		/* an empty barrier - all done */
476 		bio_endio(bio, 0);
477 	else {
478 		bio->bi_rw &= ~REQ_FLUSH;
479 		mddev->pers->make_request(mddev, bio);
480 	}
481 
482 	mddev->flush_bio = NULL;
483 	wake_up(&mddev->sb_wait);
484 }
485 
486 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 {
488 	spin_lock_irq(&mddev->write_lock);
489 	wait_event_lock_irq(mddev->sb_wait,
490 			    !mddev->flush_bio,
491 			    mddev->write_lock, /*nothing*/);
492 	mddev->flush_bio = bio;
493 	spin_unlock_irq(&mddev->write_lock);
494 
495 	INIT_WORK(&mddev->flush_work, submit_flushes);
496 	queue_work(md_wq, &mddev->flush_work);
497 }
498 EXPORT_SYMBOL(md_flush_request);
499 
500 /* Support for plugging.
501  * This mirrors the plugging support in request_queue, but does not
502  * require having a whole queue or request structures.
503  * We allocate an md_plug_cb for each md device and each thread it gets
504  * plugged on.  This links tot the private plug_handle structure in the
505  * personality data where we keep a count of the number of outstanding
506  * plugs so other code can see if a plug is active.
507  */
508 struct md_plug_cb {
509 	struct blk_plug_cb cb;
510 	struct mddev *mddev;
511 };
512 
513 static void plugger_unplug(struct blk_plug_cb *cb)
514 {
515 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
516 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
517 		md_wakeup_thread(mdcb->mddev->thread);
518 	kfree(mdcb);
519 }
520 
521 /* Check that an unplug wakeup will come shortly.
522  * If not, wakeup the md thread immediately
523  */
524 int mddev_check_plugged(struct mddev *mddev)
525 {
526 	struct blk_plug *plug = current->plug;
527 	struct md_plug_cb *mdcb;
528 
529 	if (!plug)
530 		return 0;
531 
532 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
533 		if (mdcb->cb.callback == plugger_unplug &&
534 		    mdcb->mddev == mddev) {
535 			/* Already on the list, move to top */
536 			if (mdcb != list_first_entry(&plug->cb_list,
537 						    struct md_plug_cb,
538 						    cb.list))
539 				list_move(&mdcb->cb.list, &plug->cb_list);
540 			return 1;
541 		}
542 	}
543 	/* Not currently on the callback list */
544 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
545 	if (!mdcb)
546 		return 0;
547 
548 	mdcb->mddev = mddev;
549 	mdcb->cb.callback = plugger_unplug;
550 	atomic_inc(&mddev->plug_cnt);
551 	list_add(&mdcb->cb.list, &plug->cb_list);
552 	return 1;
553 }
554 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555 
556 static inline struct mddev *mddev_get(struct mddev *mddev)
557 {
558 	atomic_inc(&mddev->active);
559 	return mddev;
560 }
561 
562 static void mddev_delayed_delete(struct work_struct *ws);
563 
564 static void mddev_put(struct mddev *mddev)
565 {
566 	struct bio_set *bs = NULL;
567 
568 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
569 		return;
570 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
571 	    mddev->ctime == 0 && !mddev->hold_active) {
572 		/* Array is not configured at all, and not held active,
573 		 * so destroy it */
574 		list_del_init(&mddev->all_mddevs);
575 		bs = mddev->bio_set;
576 		mddev->bio_set = NULL;
577 		if (mddev->gendisk) {
578 			/* We did a probe so need to clean up.  Call
579 			 * queue_work inside the spinlock so that
580 			 * flush_workqueue() after mddev_find will
581 			 * succeed in waiting for the work to be done.
582 			 */
583 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
584 			queue_work(md_misc_wq, &mddev->del_work);
585 		} else
586 			kfree(mddev);
587 	}
588 	spin_unlock(&all_mddevs_lock);
589 	if (bs)
590 		bioset_free(bs);
591 }
592 
593 void mddev_init(struct mddev *mddev)
594 {
595 	mutex_init(&mddev->open_mutex);
596 	mutex_init(&mddev->reconfig_mutex);
597 	mutex_init(&mddev->bitmap_info.mutex);
598 	INIT_LIST_HEAD(&mddev->disks);
599 	INIT_LIST_HEAD(&mddev->all_mddevs);
600 	init_timer(&mddev->safemode_timer);
601 	atomic_set(&mddev->active, 1);
602 	atomic_set(&mddev->openers, 0);
603 	atomic_set(&mddev->active_io, 0);
604 	atomic_set(&mddev->plug_cnt, 0);
605 	spin_lock_init(&mddev->write_lock);
606 	atomic_set(&mddev->flush_pending, 0);
607 	init_waitqueue_head(&mddev->sb_wait);
608 	init_waitqueue_head(&mddev->recovery_wait);
609 	mddev->reshape_position = MaxSector;
610 	mddev->resync_min = 0;
611 	mddev->resync_max = MaxSector;
612 	mddev->level = LEVEL_NONE;
613 }
614 EXPORT_SYMBOL_GPL(mddev_init);
615 
616 static struct mddev * mddev_find(dev_t unit)
617 {
618 	struct mddev *mddev, *new = NULL;
619 
620 	if (unit && MAJOR(unit) != MD_MAJOR)
621 		unit &= ~((1<<MdpMinorShift)-1);
622 
623  retry:
624 	spin_lock(&all_mddevs_lock);
625 
626 	if (unit) {
627 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
628 			if (mddev->unit == unit) {
629 				mddev_get(mddev);
630 				spin_unlock(&all_mddevs_lock);
631 				kfree(new);
632 				return mddev;
633 			}
634 
635 		if (new) {
636 			list_add(&new->all_mddevs, &all_mddevs);
637 			spin_unlock(&all_mddevs_lock);
638 			new->hold_active = UNTIL_IOCTL;
639 			return new;
640 		}
641 	} else if (new) {
642 		/* find an unused unit number */
643 		static int next_minor = 512;
644 		int start = next_minor;
645 		int is_free = 0;
646 		int dev = 0;
647 		while (!is_free) {
648 			dev = MKDEV(MD_MAJOR, next_minor);
649 			next_minor++;
650 			if (next_minor > MINORMASK)
651 				next_minor = 0;
652 			if (next_minor == start) {
653 				/* Oh dear, all in use. */
654 				spin_unlock(&all_mddevs_lock);
655 				kfree(new);
656 				return NULL;
657 			}
658 
659 			is_free = 1;
660 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
661 				if (mddev->unit == dev) {
662 					is_free = 0;
663 					break;
664 				}
665 		}
666 		new->unit = dev;
667 		new->md_minor = MINOR(dev);
668 		new->hold_active = UNTIL_STOP;
669 		list_add(&new->all_mddevs, &all_mddevs);
670 		spin_unlock(&all_mddevs_lock);
671 		return new;
672 	}
673 	spin_unlock(&all_mddevs_lock);
674 
675 	new = kzalloc(sizeof(*new), GFP_KERNEL);
676 	if (!new)
677 		return NULL;
678 
679 	new->unit = unit;
680 	if (MAJOR(unit) == MD_MAJOR)
681 		new->md_minor = MINOR(unit);
682 	else
683 		new->md_minor = MINOR(unit) >> MdpMinorShift;
684 
685 	mddev_init(new);
686 
687 	goto retry;
688 }
689 
690 static inline int mddev_lock(struct mddev * mddev)
691 {
692 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
693 }
694 
695 static inline int mddev_is_locked(struct mddev *mddev)
696 {
697 	return mutex_is_locked(&mddev->reconfig_mutex);
698 }
699 
700 static inline int mddev_trylock(struct mddev * mddev)
701 {
702 	return mutex_trylock(&mddev->reconfig_mutex);
703 }
704 
705 static struct attribute_group md_redundancy_group;
706 
707 static void mddev_unlock(struct mddev * mddev)
708 {
709 	if (mddev->to_remove) {
710 		/* These cannot be removed under reconfig_mutex as
711 		 * an access to the files will try to take reconfig_mutex
712 		 * while holding the file unremovable, which leads to
713 		 * a deadlock.
714 		 * So hold set sysfs_active while the remove in happeing,
715 		 * and anything else which might set ->to_remove or my
716 		 * otherwise change the sysfs namespace will fail with
717 		 * -EBUSY if sysfs_active is still set.
718 		 * We set sysfs_active under reconfig_mutex and elsewhere
719 		 * test it under the same mutex to ensure its correct value
720 		 * is seen.
721 		 */
722 		struct attribute_group *to_remove = mddev->to_remove;
723 		mddev->to_remove = NULL;
724 		mddev->sysfs_active = 1;
725 		mutex_unlock(&mddev->reconfig_mutex);
726 
727 		if (mddev->kobj.sd) {
728 			if (to_remove != &md_redundancy_group)
729 				sysfs_remove_group(&mddev->kobj, to_remove);
730 			if (mddev->pers == NULL ||
731 			    mddev->pers->sync_request == NULL) {
732 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
733 				if (mddev->sysfs_action)
734 					sysfs_put(mddev->sysfs_action);
735 				mddev->sysfs_action = NULL;
736 			}
737 		}
738 		mddev->sysfs_active = 0;
739 	} else
740 		mutex_unlock(&mddev->reconfig_mutex);
741 
742 	/* As we've dropped the mutex we need a spinlock to
743 	 * make sure the thread doesn't disappear
744 	 */
745 	spin_lock(&pers_lock);
746 	md_wakeup_thread(mddev->thread);
747 	spin_unlock(&pers_lock);
748 }
749 
750 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
751 {
752 	struct md_rdev *rdev;
753 
754 	rdev_for_each(rdev, mddev)
755 		if (rdev->desc_nr == nr)
756 			return rdev;
757 
758 	return NULL;
759 }
760 
761 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
762 {
763 	struct md_rdev *rdev;
764 
765 	rdev_for_each(rdev, mddev)
766 		if (rdev->bdev->bd_dev == dev)
767 			return rdev;
768 
769 	return NULL;
770 }
771 
772 static struct md_personality *find_pers(int level, char *clevel)
773 {
774 	struct md_personality *pers;
775 	list_for_each_entry(pers, &pers_list, list) {
776 		if (level != LEVEL_NONE && pers->level == level)
777 			return pers;
778 		if (strcmp(pers->name, clevel)==0)
779 			return pers;
780 	}
781 	return NULL;
782 }
783 
784 /* return the offset of the super block in 512byte sectors */
785 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
786 {
787 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
788 	return MD_NEW_SIZE_SECTORS(num_sectors);
789 }
790 
791 static int alloc_disk_sb(struct md_rdev * rdev)
792 {
793 	if (rdev->sb_page)
794 		MD_BUG();
795 
796 	rdev->sb_page = alloc_page(GFP_KERNEL);
797 	if (!rdev->sb_page) {
798 		printk(KERN_ALERT "md: out of memory.\n");
799 		return -ENOMEM;
800 	}
801 
802 	return 0;
803 }
804 
805 static void free_disk_sb(struct md_rdev * rdev)
806 {
807 	if (rdev->sb_page) {
808 		put_page(rdev->sb_page);
809 		rdev->sb_loaded = 0;
810 		rdev->sb_page = NULL;
811 		rdev->sb_start = 0;
812 		rdev->sectors = 0;
813 	}
814 	if (rdev->bb_page) {
815 		put_page(rdev->bb_page);
816 		rdev->bb_page = NULL;
817 	}
818 }
819 
820 
821 static void super_written(struct bio *bio, int error)
822 {
823 	struct md_rdev *rdev = bio->bi_private;
824 	struct mddev *mddev = rdev->mddev;
825 
826 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
827 		printk("md: super_written gets error=%d, uptodate=%d\n",
828 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
829 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
830 		md_error(mddev, rdev);
831 	}
832 
833 	if (atomic_dec_and_test(&mddev->pending_writes))
834 		wake_up(&mddev->sb_wait);
835 	bio_put(bio);
836 }
837 
838 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
839 		   sector_t sector, int size, struct page *page)
840 {
841 	/* write first size bytes of page to sector of rdev
842 	 * Increment mddev->pending_writes before returning
843 	 * and decrement it on completion, waking up sb_wait
844 	 * if zero is reached.
845 	 * If an error occurred, call md_error
846 	 */
847 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
848 
849 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
850 	bio->bi_sector = sector;
851 	bio_add_page(bio, page, size, 0);
852 	bio->bi_private = rdev;
853 	bio->bi_end_io = super_written;
854 
855 	atomic_inc(&mddev->pending_writes);
856 	submit_bio(WRITE_FLUSH_FUA, bio);
857 }
858 
859 void md_super_wait(struct mddev *mddev)
860 {
861 	/* wait for all superblock writes that were scheduled to complete */
862 	DEFINE_WAIT(wq);
863 	for(;;) {
864 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
865 		if (atomic_read(&mddev->pending_writes)==0)
866 			break;
867 		schedule();
868 	}
869 	finish_wait(&mddev->sb_wait, &wq);
870 }
871 
872 static void bi_complete(struct bio *bio, int error)
873 {
874 	complete((struct completion*)bio->bi_private);
875 }
876 
877 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
878 		 struct page *page, int rw, bool metadata_op)
879 {
880 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
881 	struct completion event;
882 	int ret;
883 
884 	rw |= REQ_SYNC;
885 
886 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
887 		rdev->meta_bdev : rdev->bdev;
888 	if (metadata_op)
889 		bio->bi_sector = sector + rdev->sb_start;
890 	else
891 		bio->bi_sector = sector + rdev->data_offset;
892 	bio_add_page(bio, page, size, 0);
893 	init_completion(&event);
894 	bio->bi_private = &event;
895 	bio->bi_end_io = bi_complete;
896 	submit_bio(rw, bio);
897 	wait_for_completion(&event);
898 
899 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
900 	bio_put(bio);
901 	return ret;
902 }
903 EXPORT_SYMBOL_GPL(sync_page_io);
904 
905 static int read_disk_sb(struct md_rdev * rdev, int size)
906 {
907 	char b[BDEVNAME_SIZE];
908 	if (!rdev->sb_page) {
909 		MD_BUG();
910 		return -EINVAL;
911 	}
912 	if (rdev->sb_loaded)
913 		return 0;
914 
915 
916 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
917 		goto fail;
918 	rdev->sb_loaded = 1;
919 	return 0;
920 
921 fail:
922 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
923 		bdevname(rdev->bdev,b));
924 	return -EINVAL;
925 }
926 
927 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
928 {
929 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
930 		sb1->set_uuid1 == sb2->set_uuid1 &&
931 		sb1->set_uuid2 == sb2->set_uuid2 &&
932 		sb1->set_uuid3 == sb2->set_uuid3;
933 }
934 
935 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 {
937 	int ret;
938 	mdp_super_t *tmp1, *tmp2;
939 
940 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
941 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
942 
943 	if (!tmp1 || !tmp2) {
944 		ret = 0;
945 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
946 		goto abort;
947 	}
948 
949 	*tmp1 = *sb1;
950 	*tmp2 = *sb2;
951 
952 	/*
953 	 * nr_disks is not constant
954 	 */
955 	tmp1->nr_disks = 0;
956 	tmp2->nr_disks = 0;
957 
958 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
959 abort:
960 	kfree(tmp1);
961 	kfree(tmp2);
962 	return ret;
963 }
964 
965 
966 static u32 md_csum_fold(u32 csum)
967 {
968 	csum = (csum & 0xffff) + (csum >> 16);
969 	return (csum & 0xffff) + (csum >> 16);
970 }
971 
972 static unsigned int calc_sb_csum(mdp_super_t * sb)
973 {
974 	u64 newcsum = 0;
975 	u32 *sb32 = (u32*)sb;
976 	int i;
977 	unsigned int disk_csum, csum;
978 
979 	disk_csum = sb->sb_csum;
980 	sb->sb_csum = 0;
981 
982 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
983 		newcsum += sb32[i];
984 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
985 
986 
987 #ifdef CONFIG_ALPHA
988 	/* This used to use csum_partial, which was wrong for several
989 	 * reasons including that different results are returned on
990 	 * different architectures.  It isn't critical that we get exactly
991 	 * the same return value as before (we always csum_fold before
992 	 * testing, and that removes any differences).  However as we
993 	 * know that csum_partial always returned a 16bit value on
994 	 * alphas, do a fold to maximise conformity to previous behaviour.
995 	 */
996 	sb->sb_csum = md_csum_fold(disk_csum);
997 #else
998 	sb->sb_csum = disk_csum;
999 #endif
1000 	return csum;
1001 }
1002 
1003 
1004 /*
1005  * Handle superblock details.
1006  * We want to be able to handle multiple superblock formats
1007  * so we have a common interface to them all, and an array of
1008  * different handlers.
1009  * We rely on user-space to write the initial superblock, and support
1010  * reading and updating of superblocks.
1011  * Interface methods are:
1012  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1013  *      loads and validates a superblock on dev.
1014  *      if refdev != NULL, compare superblocks on both devices
1015  *    Return:
1016  *      0 - dev has a superblock that is compatible with refdev
1017  *      1 - dev has a superblock that is compatible and newer than refdev
1018  *          so dev should be used as the refdev in future
1019  *     -EINVAL superblock incompatible or invalid
1020  *     -othererror e.g. -EIO
1021  *
1022  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1023  *      Verify that dev is acceptable into mddev.
1024  *       The first time, mddev->raid_disks will be 0, and data from
1025  *       dev should be merged in.  Subsequent calls check that dev
1026  *       is new enough.  Return 0 or -EINVAL
1027  *
1028  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1029  *     Update the superblock for rdev with data in mddev
1030  *     This does not write to disc.
1031  *
1032  */
1033 
1034 struct super_type  {
1035 	char		    *name;
1036 	struct module	    *owner;
1037 	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1038 					  int minor_version);
1039 	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1041 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1042 						sector_t num_sectors);
1043 };
1044 
1045 /*
1046  * Check that the given mddev has no bitmap.
1047  *
1048  * This function is called from the run method of all personalities that do not
1049  * support bitmaps. It prints an error message and returns non-zero if mddev
1050  * has a bitmap. Otherwise, it returns 0.
1051  *
1052  */
1053 int md_check_no_bitmap(struct mddev *mddev)
1054 {
1055 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1056 		return 0;
1057 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1058 		mdname(mddev), mddev->pers->name);
1059 	return 1;
1060 }
1061 EXPORT_SYMBOL(md_check_no_bitmap);
1062 
1063 /*
1064  * load_super for 0.90.0
1065  */
1066 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1067 {
1068 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1069 	mdp_super_t *sb;
1070 	int ret;
1071 
1072 	/*
1073 	 * Calculate the position of the superblock (512byte sectors),
1074 	 * it's at the end of the disk.
1075 	 *
1076 	 * It also happens to be a multiple of 4Kb.
1077 	 */
1078 	rdev->sb_start = calc_dev_sboffset(rdev);
1079 
1080 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1081 	if (ret) return ret;
1082 
1083 	ret = -EINVAL;
1084 
1085 	bdevname(rdev->bdev, b);
1086 	sb = page_address(rdev->sb_page);
1087 
1088 	if (sb->md_magic != MD_SB_MAGIC) {
1089 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1090 		       b);
1091 		goto abort;
1092 	}
1093 
1094 	if (sb->major_version != 0 ||
1095 	    sb->minor_version < 90 ||
1096 	    sb->minor_version > 91) {
1097 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1098 			sb->major_version, sb->minor_version,
1099 			b);
1100 		goto abort;
1101 	}
1102 
1103 	if (sb->raid_disks <= 0)
1104 		goto abort;
1105 
1106 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1107 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1108 			b);
1109 		goto abort;
1110 	}
1111 
1112 	rdev->preferred_minor = sb->md_minor;
1113 	rdev->data_offset = 0;
1114 	rdev->sb_size = MD_SB_BYTES;
1115 	rdev->badblocks.shift = -1;
1116 
1117 	if (sb->level == LEVEL_MULTIPATH)
1118 		rdev->desc_nr = -1;
1119 	else
1120 		rdev->desc_nr = sb->this_disk.number;
1121 
1122 	if (!refdev) {
1123 		ret = 1;
1124 	} else {
1125 		__u64 ev1, ev2;
1126 		mdp_super_t *refsb = page_address(refdev->sb_page);
1127 		if (!uuid_equal(refsb, sb)) {
1128 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1129 				b, bdevname(refdev->bdev,b2));
1130 			goto abort;
1131 		}
1132 		if (!sb_equal(refsb, sb)) {
1133 			printk(KERN_WARNING "md: %s has same UUID"
1134 			       " but different superblock to %s\n",
1135 			       b, bdevname(refdev->bdev, b2));
1136 			goto abort;
1137 		}
1138 		ev1 = md_event(sb);
1139 		ev2 = md_event(refsb);
1140 		if (ev1 > ev2)
1141 			ret = 1;
1142 		else
1143 			ret = 0;
1144 	}
1145 	rdev->sectors = rdev->sb_start;
1146 	/* Limit to 4TB as metadata cannot record more than that */
1147 	if (rdev->sectors >= (2ULL << 32))
1148 		rdev->sectors = (2ULL << 32) - 2;
1149 
1150 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1151 		/* "this cannot possibly happen" ... */
1152 		ret = -EINVAL;
1153 
1154  abort:
1155 	return ret;
1156 }
1157 
1158 /*
1159  * validate_super for 0.90.0
1160  */
1161 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1162 {
1163 	mdp_disk_t *desc;
1164 	mdp_super_t *sb = page_address(rdev->sb_page);
1165 	__u64 ev1 = md_event(sb);
1166 
1167 	rdev->raid_disk = -1;
1168 	clear_bit(Faulty, &rdev->flags);
1169 	clear_bit(In_sync, &rdev->flags);
1170 	clear_bit(WriteMostly, &rdev->flags);
1171 
1172 	if (mddev->raid_disks == 0) {
1173 		mddev->major_version = 0;
1174 		mddev->minor_version = sb->minor_version;
1175 		mddev->patch_version = sb->patch_version;
1176 		mddev->external = 0;
1177 		mddev->chunk_sectors = sb->chunk_size >> 9;
1178 		mddev->ctime = sb->ctime;
1179 		mddev->utime = sb->utime;
1180 		mddev->level = sb->level;
1181 		mddev->clevel[0] = 0;
1182 		mddev->layout = sb->layout;
1183 		mddev->raid_disks = sb->raid_disks;
1184 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1185 		mddev->events = ev1;
1186 		mddev->bitmap_info.offset = 0;
1187 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1188 
1189 		if (mddev->minor_version >= 91) {
1190 			mddev->reshape_position = sb->reshape_position;
1191 			mddev->delta_disks = sb->delta_disks;
1192 			mddev->new_level = sb->new_level;
1193 			mddev->new_layout = sb->new_layout;
1194 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1195 		} else {
1196 			mddev->reshape_position = MaxSector;
1197 			mddev->delta_disks = 0;
1198 			mddev->new_level = mddev->level;
1199 			mddev->new_layout = mddev->layout;
1200 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1201 		}
1202 
1203 		if (sb->state & (1<<MD_SB_CLEAN))
1204 			mddev->recovery_cp = MaxSector;
1205 		else {
1206 			if (sb->events_hi == sb->cp_events_hi &&
1207 				sb->events_lo == sb->cp_events_lo) {
1208 				mddev->recovery_cp = sb->recovery_cp;
1209 			} else
1210 				mddev->recovery_cp = 0;
1211 		}
1212 
1213 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1214 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1215 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1216 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1217 
1218 		mddev->max_disks = MD_SB_DISKS;
1219 
1220 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1221 		    mddev->bitmap_info.file == NULL)
1222 			mddev->bitmap_info.offset =
1223 				mddev->bitmap_info.default_offset;
1224 
1225 	} else if (mddev->pers == NULL) {
1226 		/* Insist on good event counter while assembling, except
1227 		 * for spares (which don't need an event count) */
1228 		++ev1;
1229 		if (sb->disks[rdev->desc_nr].state & (
1230 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1231 			if (ev1 < mddev->events)
1232 				return -EINVAL;
1233 	} else if (mddev->bitmap) {
1234 		/* if adding to array with a bitmap, then we can accept an
1235 		 * older device ... but not too old.
1236 		 */
1237 		if (ev1 < mddev->bitmap->events_cleared)
1238 			return 0;
1239 	} else {
1240 		if (ev1 < mddev->events)
1241 			/* just a hot-add of a new device, leave raid_disk at -1 */
1242 			return 0;
1243 	}
1244 
1245 	if (mddev->level != LEVEL_MULTIPATH) {
1246 		desc = sb->disks + rdev->desc_nr;
1247 
1248 		if (desc->state & (1<<MD_DISK_FAULTY))
1249 			set_bit(Faulty, &rdev->flags);
1250 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1251 			    desc->raid_disk < mddev->raid_disks */) {
1252 			set_bit(In_sync, &rdev->flags);
1253 			rdev->raid_disk = desc->raid_disk;
1254 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1255 			/* active but not in sync implies recovery up to
1256 			 * reshape position.  We don't know exactly where
1257 			 * that is, so set to zero for now */
1258 			if (mddev->minor_version >= 91) {
1259 				rdev->recovery_offset = 0;
1260 				rdev->raid_disk = desc->raid_disk;
1261 			}
1262 		}
1263 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1264 			set_bit(WriteMostly, &rdev->flags);
1265 	} else /* MULTIPATH are always insync */
1266 		set_bit(In_sync, &rdev->flags);
1267 	return 0;
1268 }
1269 
1270 /*
1271  * sync_super for 0.90.0
1272  */
1273 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1274 {
1275 	mdp_super_t *sb;
1276 	struct md_rdev *rdev2;
1277 	int next_spare = mddev->raid_disks;
1278 
1279 
1280 	/* make rdev->sb match mddev data..
1281 	 *
1282 	 * 1/ zero out disks
1283 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1284 	 * 3/ any empty disks < next_spare become removed
1285 	 *
1286 	 * disks[0] gets initialised to REMOVED because
1287 	 * we cannot be sure from other fields if it has
1288 	 * been initialised or not.
1289 	 */
1290 	int i;
1291 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1292 
1293 	rdev->sb_size = MD_SB_BYTES;
1294 
1295 	sb = page_address(rdev->sb_page);
1296 
1297 	memset(sb, 0, sizeof(*sb));
1298 
1299 	sb->md_magic = MD_SB_MAGIC;
1300 	sb->major_version = mddev->major_version;
1301 	sb->patch_version = mddev->patch_version;
1302 	sb->gvalid_words  = 0; /* ignored */
1303 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1304 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1305 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1306 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1307 
1308 	sb->ctime = mddev->ctime;
1309 	sb->level = mddev->level;
1310 	sb->size = mddev->dev_sectors / 2;
1311 	sb->raid_disks = mddev->raid_disks;
1312 	sb->md_minor = mddev->md_minor;
1313 	sb->not_persistent = 0;
1314 	sb->utime = mddev->utime;
1315 	sb->state = 0;
1316 	sb->events_hi = (mddev->events>>32);
1317 	sb->events_lo = (u32)mddev->events;
1318 
1319 	if (mddev->reshape_position == MaxSector)
1320 		sb->minor_version = 90;
1321 	else {
1322 		sb->minor_version = 91;
1323 		sb->reshape_position = mddev->reshape_position;
1324 		sb->new_level = mddev->new_level;
1325 		sb->delta_disks = mddev->delta_disks;
1326 		sb->new_layout = mddev->new_layout;
1327 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1328 	}
1329 	mddev->minor_version = sb->minor_version;
1330 	if (mddev->in_sync)
1331 	{
1332 		sb->recovery_cp = mddev->recovery_cp;
1333 		sb->cp_events_hi = (mddev->events>>32);
1334 		sb->cp_events_lo = (u32)mddev->events;
1335 		if (mddev->recovery_cp == MaxSector)
1336 			sb->state = (1<< MD_SB_CLEAN);
1337 	} else
1338 		sb->recovery_cp = 0;
1339 
1340 	sb->layout = mddev->layout;
1341 	sb->chunk_size = mddev->chunk_sectors << 9;
1342 
1343 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1344 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1345 
1346 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1347 	rdev_for_each(rdev2, mddev) {
1348 		mdp_disk_t *d;
1349 		int desc_nr;
1350 		int is_active = test_bit(In_sync, &rdev2->flags);
1351 
1352 		if (rdev2->raid_disk >= 0 &&
1353 		    sb->minor_version >= 91)
1354 			/* we have nowhere to store the recovery_offset,
1355 			 * but if it is not below the reshape_position,
1356 			 * we can piggy-back on that.
1357 			 */
1358 			is_active = 1;
1359 		if (rdev2->raid_disk < 0 ||
1360 		    test_bit(Faulty, &rdev2->flags))
1361 			is_active = 0;
1362 		if (is_active)
1363 			desc_nr = rdev2->raid_disk;
1364 		else
1365 			desc_nr = next_spare++;
1366 		rdev2->desc_nr = desc_nr;
1367 		d = &sb->disks[rdev2->desc_nr];
1368 		nr_disks++;
1369 		d->number = rdev2->desc_nr;
1370 		d->major = MAJOR(rdev2->bdev->bd_dev);
1371 		d->minor = MINOR(rdev2->bdev->bd_dev);
1372 		if (is_active)
1373 			d->raid_disk = rdev2->raid_disk;
1374 		else
1375 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1376 		if (test_bit(Faulty, &rdev2->flags))
1377 			d->state = (1<<MD_DISK_FAULTY);
1378 		else if (is_active) {
1379 			d->state = (1<<MD_DISK_ACTIVE);
1380 			if (test_bit(In_sync, &rdev2->flags))
1381 				d->state |= (1<<MD_DISK_SYNC);
1382 			active++;
1383 			working++;
1384 		} else {
1385 			d->state = 0;
1386 			spare++;
1387 			working++;
1388 		}
1389 		if (test_bit(WriteMostly, &rdev2->flags))
1390 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1391 	}
1392 	/* now set the "removed" and "faulty" bits on any missing devices */
1393 	for (i=0 ; i < mddev->raid_disks ; i++) {
1394 		mdp_disk_t *d = &sb->disks[i];
1395 		if (d->state == 0 && d->number == 0) {
1396 			d->number = i;
1397 			d->raid_disk = i;
1398 			d->state = (1<<MD_DISK_REMOVED);
1399 			d->state |= (1<<MD_DISK_FAULTY);
1400 			failed++;
1401 		}
1402 	}
1403 	sb->nr_disks = nr_disks;
1404 	sb->active_disks = active;
1405 	sb->working_disks = working;
1406 	sb->failed_disks = failed;
1407 	sb->spare_disks = spare;
1408 
1409 	sb->this_disk = sb->disks[rdev->desc_nr];
1410 	sb->sb_csum = calc_sb_csum(sb);
1411 }
1412 
1413 /*
1414  * rdev_size_change for 0.90.0
1415  */
1416 static unsigned long long
1417 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1418 {
1419 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1420 		return 0; /* component must fit device */
1421 	if (rdev->mddev->bitmap_info.offset)
1422 		return 0; /* can't move bitmap */
1423 	rdev->sb_start = calc_dev_sboffset(rdev);
1424 	if (!num_sectors || num_sectors > rdev->sb_start)
1425 		num_sectors = rdev->sb_start;
1426 	/* Limit to 4TB as metadata cannot record more than that.
1427 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1428 	 */
1429 	if (num_sectors >= (2ULL << 32))
1430 		num_sectors = (2ULL << 32) - 2;
1431 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1432 		       rdev->sb_page);
1433 	md_super_wait(rdev->mddev);
1434 	return num_sectors;
1435 }
1436 
1437 
1438 /*
1439  * version 1 superblock
1440  */
1441 
1442 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1443 {
1444 	__le32 disk_csum;
1445 	u32 csum;
1446 	unsigned long long newcsum;
1447 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1448 	__le32 *isuper = (__le32*)sb;
1449 	int i;
1450 
1451 	disk_csum = sb->sb_csum;
1452 	sb->sb_csum = 0;
1453 	newcsum = 0;
1454 	for (i=0; size>=4; size -= 4 )
1455 		newcsum += le32_to_cpu(*isuper++);
1456 
1457 	if (size == 2)
1458 		newcsum += le16_to_cpu(*(__le16*) isuper);
1459 
1460 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1461 	sb->sb_csum = disk_csum;
1462 	return cpu_to_le32(csum);
1463 }
1464 
1465 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1466 			    int acknowledged);
1467 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1468 {
1469 	struct mdp_superblock_1 *sb;
1470 	int ret;
1471 	sector_t sb_start;
1472 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1473 	int bmask;
1474 
1475 	/*
1476 	 * Calculate the position of the superblock in 512byte sectors.
1477 	 * It is always aligned to a 4K boundary and
1478 	 * depeding on minor_version, it can be:
1479 	 * 0: At least 8K, but less than 12K, from end of device
1480 	 * 1: At start of device
1481 	 * 2: 4K from start of device.
1482 	 */
1483 	switch(minor_version) {
1484 	case 0:
1485 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1486 		sb_start -= 8*2;
1487 		sb_start &= ~(sector_t)(4*2-1);
1488 		break;
1489 	case 1:
1490 		sb_start = 0;
1491 		break;
1492 	case 2:
1493 		sb_start = 8;
1494 		break;
1495 	default:
1496 		return -EINVAL;
1497 	}
1498 	rdev->sb_start = sb_start;
1499 
1500 	/* superblock is rarely larger than 1K, but it can be larger,
1501 	 * and it is safe to read 4k, so we do that
1502 	 */
1503 	ret = read_disk_sb(rdev, 4096);
1504 	if (ret) return ret;
1505 
1506 
1507 	sb = page_address(rdev->sb_page);
1508 
1509 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1510 	    sb->major_version != cpu_to_le32(1) ||
1511 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1512 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1513 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1514 		return -EINVAL;
1515 
1516 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1517 		printk("md: invalid superblock checksum on %s\n",
1518 			bdevname(rdev->bdev,b));
1519 		return -EINVAL;
1520 	}
1521 	if (le64_to_cpu(sb->data_size) < 10) {
1522 		printk("md: data_size too small on %s\n",
1523 		       bdevname(rdev->bdev,b));
1524 		return -EINVAL;
1525 	}
1526 
1527 	rdev->preferred_minor = 0xffff;
1528 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1529 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1530 
1531 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1532 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1533 	if (rdev->sb_size & bmask)
1534 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1535 
1536 	if (minor_version
1537 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1538 		return -EINVAL;
1539 
1540 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1541 		rdev->desc_nr = -1;
1542 	else
1543 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1544 
1545 	if (!rdev->bb_page) {
1546 		rdev->bb_page = alloc_page(GFP_KERNEL);
1547 		if (!rdev->bb_page)
1548 			return -ENOMEM;
1549 	}
1550 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1551 	    rdev->badblocks.count == 0) {
1552 		/* need to load the bad block list.
1553 		 * Currently we limit it to one page.
1554 		 */
1555 		s32 offset;
1556 		sector_t bb_sector;
1557 		u64 *bbp;
1558 		int i;
1559 		int sectors = le16_to_cpu(sb->bblog_size);
1560 		if (sectors > (PAGE_SIZE / 512))
1561 			return -EINVAL;
1562 		offset = le32_to_cpu(sb->bblog_offset);
1563 		if (offset == 0)
1564 			return -EINVAL;
1565 		bb_sector = (long long)offset;
1566 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1567 				  rdev->bb_page, READ, true))
1568 			return -EIO;
1569 		bbp = (u64 *)page_address(rdev->bb_page);
1570 		rdev->badblocks.shift = sb->bblog_shift;
1571 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1572 			u64 bb = le64_to_cpu(*bbp);
1573 			int count = bb & (0x3ff);
1574 			u64 sector = bb >> 10;
1575 			sector <<= sb->bblog_shift;
1576 			count <<= sb->bblog_shift;
1577 			if (bb + 1 == 0)
1578 				break;
1579 			if (md_set_badblocks(&rdev->badblocks,
1580 					     sector, count, 1) == 0)
1581 				return -EINVAL;
1582 		}
1583 	} else if (sb->bblog_offset == 0)
1584 		rdev->badblocks.shift = -1;
1585 
1586 	if (!refdev) {
1587 		ret = 1;
1588 	} else {
1589 		__u64 ev1, ev2;
1590 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591 
1592 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1593 		    sb->level != refsb->level ||
1594 		    sb->layout != refsb->layout ||
1595 		    sb->chunksize != refsb->chunksize) {
1596 			printk(KERN_WARNING "md: %s has strangely different"
1597 				" superblock to %s\n",
1598 				bdevname(rdev->bdev,b),
1599 				bdevname(refdev->bdev,b2));
1600 			return -EINVAL;
1601 		}
1602 		ev1 = le64_to_cpu(sb->events);
1603 		ev2 = le64_to_cpu(refsb->events);
1604 
1605 		if (ev1 > ev2)
1606 			ret = 1;
1607 		else
1608 			ret = 0;
1609 	}
1610 	if (minor_version)
1611 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1612 			le64_to_cpu(sb->data_offset);
1613 	else
1614 		rdev->sectors = rdev->sb_start;
1615 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1616 		return -EINVAL;
1617 	rdev->sectors = le64_to_cpu(sb->data_size);
1618 	if (le64_to_cpu(sb->size) > rdev->sectors)
1619 		return -EINVAL;
1620 	return ret;
1621 }
1622 
1623 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1624 {
1625 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1626 	__u64 ev1 = le64_to_cpu(sb->events);
1627 
1628 	rdev->raid_disk = -1;
1629 	clear_bit(Faulty, &rdev->flags);
1630 	clear_bit(In_sync, &rdev->flags);
1631 	clear_bit(WriteMostly, &rdev->flags);
1632 
1633 	if (mddev->raid_disks == 0) {
1634 		mddev->major_version = 1;
1635 		mddev->patch_version = 0;
1636 		mddev->external = 0;
1637 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1638 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1639 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1640 		mddev->level = le32_to_cpu(sb->level);
1641 		mddev->clevel[0] = 0;
1642 		mddev->layout = le32_to_cpu(sb->layout);
1643 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1644 		mddev->dev_sectors = le64_to_cpu(sb->size);
1645 		mddev->events = ev1;
1646 		mddev->bitmap_info.offset = 0;
1647 		mddev->bitmap_info.default_offset = 1024 >> 9;
1648 
1649 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1650 		memcpy(mddev->uuid, sb->set_uuid, 16);
1651 
1652 		mddev->max_disks =  (4096-256)/2;
1653 
1654 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1655 		    mddev->bitmap_info.file == NULL )
1656 			mddev->bitmap_info.offset =
1657 				(__s32)le32_to_cpu(sb->bitmap_offset);
1658 
1659 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1660 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1661 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1662 			mddev->new_level = le32_to_cpu(sb->new_level);
1663 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1664 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1665 		} else {
1666 			mddev->reshape_position = MaxSector;
1667 			mddev->delta_disks = 0;
1668 			mddev->new_level = mddev->level;
1669 			mddev->new_layout = mddev->layout;
1670 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1671 		}
1672 
1673 	} else if (mddev->pers == NULL) {
1674 		/* Insist of good event counter while assembling, except for
1675 		 * spares (which don't need an event count) */
1676 		++ev1;
1677 		if (rdev->desc_nr >= 0 &&
1678 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1679 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1680 			if (ev1 < mddev->events)
1681 				return -EINVAL;
1682 	} else if (mddev->bitmap) {
1683 		/* If adding to array with a bitmap, then we can accept an
1684 		 * older device, but not too old.
1685 		 */
1686 		if (ev1 < mddev->bitmap->events_cleared)
1687 			return 0;
1688 	} else {
1689 		if (ev1 < mddev->events)
1690 			/* just a hot-add of a new device, leave raid_disk at -1 */
1691 			return 0;
1692 	}
1693 	if (mddev->level != LEVEL_MULTIPATH) {
1694 		int role;
1695 		if (rdev->desc_nr < 0 ||
1696 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1697 			role = 0xffff;
1698 			rdev->desc_nr = -1;
1699 		} else
1700 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1701 		switch(role) {
1702 		case 0xffff: /* spare */
1703 			break;
1704 		case 0xfffe: /* faulty */
1705 			set_bit(Faulty, &rdev->flags);
1706 			break;
1707 		default:
1708 			if ((le32_to_cpu(sb->feature_map) &
1709 			     MD_FEATURE_RECOVERY_OFFSET))
1710 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1711 			else
1712 				set_bit(In_sync, &rdev->flags);
1713 			rdev->raid_disk = role;
1714 			break;
1715 		}
1716 		if (sb->devflags & WriteMostly1)
1717 			set_bit(WriteMostly, &rdev->flags);
1718 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1719 			set_bit(Replacement, &rdev->flags);
1720 	} else /* MULTIPATH are always insync */
1721 		set_bit(In_sync, &rdev->flags);
1722 
1723 	return 0;
1724 }
1725 
1726 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 	struct mdp_superblock_1 *sb;
1729 	struct md_rdev *rdev2;
1730 	int max_dev, i;
1731 	/* make rdev->sb match mddev and rdev data. */
1732 
1733 	sb = page_address(rdev->sb_page);
1734 
1735 	sb->feature_map = 0;
1736 	sb->pad0 = 0;
1737 	sb->recovery_offset = cpu_to_le64(0);
1738 	memset(sb->pad1, 0, sizeof(sb->pad1));
1739 	memset(sb->pad3, 0, sizeof(sb->pad3));
1740 
1741 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1742 	sb->events = cpu_to_le64(mddev->events);
1743 	if (mddev->in_sync)
1744 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1745 	else
1746 		sb->resync_offset = cpu_to_le64(0);
1747 
1748 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1749 
1750 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1751 	sb->size = cpu_to_le64(mddev->dev_sectors);
1752 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1753 	sb->level = cpu_to_le32(mddev->level);
1754 	sb->layout = cpu_to_le32(mddev->layout);
1755 
1756 	if (test_bit(WriteMostly, &rdev->flags))
1757 		sb->devflags |= WriteMostly1;
1758 	else
1759 		sb->devflags &= ~WriteMostly1;
1760 
1761 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1762 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1763 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1764 	}
1765 
1766 	if (rdev->raid_disk >= 0 &&
1767 	    !test_bit(In_sync, &rdev->flags)) {
1768 		sb->feature_map |=
1769 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1770 		sb->recovery_offset =
1771 			cpu_to_le64(rdev->recovery_offset);
1772 	}
1773 	if (test_bit(Replacement, &rdev->flags))
1774 		sb->feature_map |=
1775 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1776 
1777 	if (mddev->reshape_position != MaxSector) {
1778 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1779 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1780 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1781 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1782 		sb->new_level = cpu_to_le32(mddev->new_level);
1783 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1784 	}
1785 
1786 	if (rdev->badblocks.count == 0)
1787 		/* Nothing to do for bad blocks*/ ;
1788 	else if (sb->bblog_offset == 0)
1789 		/* Cannot record bad blocks on this device */
1790 		md_error(mddev, rdev);
1791 	else {
1792 		struct badblocks *bb = &rdev->badblocks;
1793 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1794 		u64 *p = bb->page;
1795 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1796 		if (bb->changed) {
1797 			unsigned seq;
1798 
1799 retry:
1800 			seq = read_seqbegin(&bb->lock);
1801 
1802 			memset(bbp, 0xff, PAGE_SIZE);
1803 
1804 			for (i = 0 ; i < bb->count ; i++) {
1805 				u64 internal_bb = *p++;
1806 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1807 						| BB_LEN(internal_bb));
1808 				*bbp++ = cpu_to_le64(store_bb);
1809 			}
1810 			bb->changed = 0;
1811 			if (read_seqretry(&bb->lock, seq))
1812 				goto retry;
1813 
1814 			bb->sector = (rdev->sb_start +
1815 				      (int)le32_to_cpu(sb->bblog_offset));
1816 			bb->size = le16_to_cpu(sb->bblog_size);
1817 		}
1818 	}
1819 
1820 	max_dev = 0;
1821 	rdev_for_each(rdev2, mddev)
1822 		if (rdev2->desc_nr+1 > max_dev)
1823 			max_dev = rdev2->desc_nr+1;
1824 
1825 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1826 		int bmask;
1827 		sb->max_dev = cpu_to_le32(max_dev);
1828 		rdev->sb_size = max_dev * 2 + 256;
1829 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1830 		if (rdev->sb_size & bmask)
1831 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1832 	} else
1833 		max_dev = le32_to_cpu(sb->max_dev);
1834 
1835 	for (i=0; i<max_dev;i++)
1836 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1837 
1838 	rdev_for_each(rdev2, mddev) {
1839 		i = rdev2->desc_nr;
1840 		if (test_bit(Faulty, &rdev2->flags))
1841 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1842 		else if (test_bit(In_sync, &rdev2->flags))
1843 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 		else if (rdev2->raid_disk >= 0)
1845 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1846 		else
1847 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1848 	}
1849 
1850 	sb->sb_csum = calc_sb_1_csum(sb);
1851 }
1852 
1853 static unsigned long long
1854 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1855 {
1856 	struct mdp_superblock_1 *sb;
1857 	sector_t max_sectors;
1858 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1859 		return 0; /* component must fit device */
1860 	if (rdev->sb_start < rdev->data_offset) {
1861 		/* minor versions 1 and 2; superblock before data */
1862 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1863 		max_sectors -= rdev->data_offset;
1864 		if (!num_sectors || num_sectors > max_sectors)
1865 			num_sectors = max_sectors;
1866 	} else if (rdev->mddev->bitmap_info.offset) {
1867 		/* minor version 0 with bitmap we can't move */
1868 		return 0;
1869 	} else {
1870 		/* minor version 0; superblock after data */
1871 		sector_t sb_start;
1872 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1873 		sb_start &= ~(sector_t)(4*2 - 1);
1874 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1875 		if (!num_sectors || num_sectors > max_sectors)
1876 			num_sectors = max_sectors;
1877 		rdev->sb_start = sb_start;
1878 	}
1879 	sb = page_address(rdev->sb_page);
1880 	sb->data_size = cpu_to_le64(num_sectors);
1881 	sb->super_offset = rdev->sb_start;
1882 	sb->sb_csum = calc_sb_1_csum(sb);
1883 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1884 		       rdev->sb_page);
1885 	md_super_wait(rdev->mddev);
1886 	return num_sectors;
1887 }
1888 
1889 static struct super_type super_types[] = {
1890 	[0] = {
1891 		.name	= "0.90.0",
1892 		.owner	= THIS_MODULE,
1893 		.load_super	    = super_90_load,
1894 		.validate_super	    = super_90_validate,
1895 		.sync_super	    = super_90_sync,
1896 		.rdev_size_change   = super_90_rdev_size_change,
1897 	},
1898 	[1] = {
1899 		.name	= "md-1",
1900 		.owner	= THIS_MODULE,
1901 		.load_super	    = super_1_load,
1902 		.validate_super	    = super_1_validate,
1903 		.sync_super	    = super_1_sync,
1904 		.rdev_size_change   = super_1_rdev_size_change,
1905 	},
1906 };
1907 
1908 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1909 {
1910 	if (mddev->sync_super) {
1911 		mddev->sync_super(mddev, rdev);
1912 		return;
1913 	}
1914 
1915 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1916 
1917 	super_types[mddev->major_version].sync_super(mddev, rdev);
1918 }
1919 
1920 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1921 {
1922 	struct md_rdev *rdev, *rdev2;
1923 
1924 	rcu_read_lock();
1925 	rdev_for_each_rcu(rdev, mddev1)
1926 		rdev_for_each_rcu(rdev2, mddev2)
1927 			if (rdev->bdev->bd_contains ==
1928 			    rdev2->bdev->bd_contains) {
1929 				rcu_read_unlock();
1930 				return 1;
1931 			}
1932 	rcu_read_unlock();
1933 	return 0;
1934 }
1935 
1936 static LIST_HEAD(pending_raid_disks);
1937 
1938 /*
1939  * Try to register data integrity profile for an mddev
1940  *
1941  * This is called when an array is started and after a disk has been kicked
1942  * from the array. It only succeeds if all working and active component devices
1943  * are integrity capable with matching profiles.
1944  */
1945 int md_integrity_register(struct mddev *mddev)
1946 {
1947 	struct md_rdev *rdev, *reference = NULL;
1948 
1949 	if (list_empty(&mddev->disks))
1950 		return 0; /* nothing to do */
1951 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1952 		return 0; /* shouldn't register, or already is */
1953 	rdev_for_each(rdev, mddev) {
1954 		/* skip spares and non-functional disks */
1955 		if (test_bit(Faulty, &rdev->flags))
1956 			continue;
1957 		if (rdev->raid_disk < 0)
1958 			continue;
1959 		if (!reference) {
1960 			/* Use the first rdev as the reference */
1961 			reference = rdev;
1962 			continue;
1963 		}
1964 		/* does this rdev's profile match the reference profile? */
1965 		if (blk_integrity_compare(reference->bdev->bd_disk,
1966 				rdev->bdev->bd_disk) < 0)
1967 			return -EINVAL;
1968 	}
1969 	if (!reference || !bdev_get_integrity(reference->bdev))
1970 		return 0;
1971 	/*
1972 	 * All component devices are integrity capable and have matching
1973 	 * profiles, register the common profile for the md device.
1974 	 */
1975 	if (blk_integrity_register(mddev->gendisk,
1976 			bdev_get_integrity(reference->bdev)) != 0) {
1977 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1978 			mdname(mddev));
1979 		return -EINVAL;
1980 	}
1981 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1982 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1983 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1984 		       mdname(mddev));
1985 		return -EINVAL;
1986 	}
1987 	return 0;
1988 }
1989 EXPORT_SYMBOL(md_integrity_register);
1990 
1991 /* Disable data integrity if non-capable/non-matching disk is being added */
1992 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1993 {
1994 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1995 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1996 
1997 	if (!bi_mddev) /* nothing to do */
1998 		return;
1999 	if (rdev->raid_disk < 0) /* skip spares */
2000 		return;
2001 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2002 					     rdev->bdev->bd_disk) >= 0)
2003 		return;
2004 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2005 	blk_integrity_unregister(mddev->gendisk);
2006 }
2007 EXPORT_SYMBOL(md_integrity_add_rdev);
2008 
2009 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2010 {
2011 	char b[BDEVNAME_SIZE];
2012 	struct kobject *ko;
2013 	char *s;
2014 	int err;
2015 
2016 	if (rdev->mddev) {
2017 		MD_BUG();
2018 		return -EINVAL;
2019 	}
2020 
2021 	/* prevent duplicates */
2022 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2023 		return -EEXIST;
2024 
2025 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2026 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2027 			rdev->sectors < mddev->dev_sectors)) {
2028 		if (mddev->pers) {
2029 			/* Cannot change size, so fail
2030 			 * If mddev->level <= 0, then we don't care
2031 			 * about aligning sizes (e.g. linear)
2032 			 */
2033 			if (mddev->level > 0)
2034 				return -ENOSPC;
2035 		} else
2036 			mddev->dev_sectors = rdev->sectors;
2037 	}
2038 
2039 	/* Verify rdev->desc_nr is unique.
2040 	 * If it is -1, assign a free number, else
2041 	 * check number is not in use
2042 	 */
2043 	if (rdev->desc_nr < 0) {
2044 		int choice = 0;
2045 		if (mddev->pers) choice = mddev->raid_disks;
2046 		while (find_rdev_nr(mddev, choice))
2047 			choice++;
2048 		rdev->desc_nr = choice;
2049 	} else {
2050 		if (find_rdev_nr(mddev, rdev->desc_nr))
2051 			return -EBUSY;
2052 	}
2053 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2054 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2055 		       mdname(mddev), mddev->max_disks);
2056 		return -EBUSY;
2057 	}
2058 	bdevname(rdev->bdev,b);
2059 	while ( (s=strchr(b, '/')) != NULL)
2060 		*s = '!';
2061 
2062 	rdev->mddev = mddev;
2063 	printk(KERN_INFO "md: bind<%s>\n", b);
2064 
2065 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2066 		goto fail;
2067 
2068 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2069 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2070 		/* failure here is OK */;
2071 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2072 
2073 	list_add_rcu(&rdev->same_set, &mddev->disks);
2074 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2075 
2076 	/* May as well allow recovery to be retried once */
2077 	mddev->recovery_disabled++;
2078 
2079 	return 0;
2080 
2081  fail:
2082 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2083 	       b, mdname(mddev));
2084 	return err;
2085 }
2086 
2087 static void md_delayed_delete(struct work_struct *ws)
2088 {
2089 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2090 	kobject_del(&rdev->kobj);
2091 	kobject_put(&rdev->kobj);
2092 }
2093 
2094 static void unbind_rdev_from_array(struct md_rdev * rdev)
2095 {
2096 	char b[BDEVNAME_SIZE];
2097 	if (!rdev->mddev) {
2098 		MD_BUG();
2099 		return;
2100 	}
2101 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 	list_del_rcu(&rdev->same_set);
2103 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 	rdev->mddev = NULL;
2105 	sysfs_remove_link(&rdev->kobj, "block");
2106 	sysfs_put(rdev->sysfs_state);
2107 	rdev->sysfs_state = NULL;
2108 	kfree(rdev->badblocks.page);
2109 	rdev->badblocks.count = 0;
2110 	rdev->badblocks.page = NULL;
2111 	/* We need to delay this, otherwise we can deadlock when
2112 	 * writing to 'remove' to "dev/state".  We also need
2113 	 * to delay it due to rcu usage.
2114 	 */
2115 	synchronize_rcu();
2116 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2117 	kobject_get(&rdev->kobj);
2118 	queue_work(md_misc_wq, &rdev->del_work);
2119 }
2120 
2121 /*
2122  * prevent the device from being mounted, repartitioned or
2123  * otherwise reused by a RAID array (or any other kernel
2124  * subsystem), by bd_claiming the device.
2125  */
2126 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2127 {
2128 	int err = 0;
2129 	struct block_device *bdev;
2130 	char b[BDEVNAME_SIZE];
2131 
2132 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2133 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2134 	if (IS_ERR(bdev)) {
2135 		printk(KERN_ERR "md: could not open %s.\n",
2136 			__bdevname(dev, b));
2137 		return PTR_ERR(bdev);
2138 	}
2139 	rdev->bdev = bdev;
2140 	return err;
2141 }
2142 
2143 static void unlock_rdev(struct md_rdev *rdev)
2144 {
2145 	struct block_device *bdev = rdev->bdev;
2146 	rdev->bdev = NULL;
2147 	if (!bdev)
2148 		MD_BUG();
2149 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 }
2151 
2152 void md_autodetect_dev(dev_t dev);
2153 
2154 static void export_rdev(struct md_rdev * rdev)
2155 {
2156 	char b[BDEVNAME_SIZE];
2157 	printk(KERN_INFO "md: export_rdev(%s)\n",
2158 		bdevname(rdev->bdev,b));
2159 	if (rdev->mddev)
2160 		MD_BUG();
2161 	free_disk_sb(rdev);
2162 #ifndef MODULE
2163 	if (test_bit(AutoDetected, &rdev->flags))
2164 		md_autodetect_dev(rdev->bdev->bd_dev);
2165 #endif
2166 	unlock_rdev(rdev);
2167 	kobject_put(&rdev->kobj);
2168 }
2169 
2170 static void kick_rdev_from_array(struct md_rdev * rdev)
2171 {
2172 	unbind_rdev_from_array(rdev);
2173 	export_rdev(rdev);
2174 }
2175 
2176 static void export_array(struct mddev *mddev)
2177 {
2178 	struct md_rdev *rdev, *tmp;
2179 
2180 	rdev_for_each_safe(rdev, tmp, mddev) {
2181 		if (!rdev->mddev) {
2182 			MD_BUG();
2183 			continue;
2184 		}
2185 		kick_rdev_from_array(rdev);
2186 	}
2187 	if (!list_empty(&mddev->disks))
2188 		MD_BUG();
2189 	mddev->raid_disks = 0;
2190 	mddev->major_version = 0;
2191 }
2192 
2193 static void print_desc(mdp_disk_t *desc)
2194 {
2195 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2196 		desc->major,desc->minor,desc->raid_disk,desc->state);
2197 }
2198 
2199 static void print_sb_90(mdp_super_t *sb)
2200 {
2201 	int i;
2202 
2203 	printk(KERN_INFO
2204 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2205 		sb->major_version, sb->minor_version, sb->patch_version,
2206 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2207 		sb->ctime);
2208 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2209 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2210 		sb->md_minor, sb->layout, sb->chunk_size);
2211 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2212 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2213 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2214 		sb->failed_disks, sb->spare_disks,
2215 		sb->sb_csum, (unsigned long)sb->events_lo);
2216 
2217 	printk(KERN_INFO);
2218 	for (i = 0; i < MD_SB_DISKS; i++) {
2219 		mdp_disk_t *desc;
2220 
2221 		desc = sb->disks + i;
2222 		if (desc->number || desc->major || desc->minor ||
2223 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2224 			printk("     D %2d: ", i);
2225 			print_desc(desc);
2226 		}
2227 	}
2228 	printk(KERN_INFO "md:     THIS: ");
2229 	print_desc(&sb->this_disk);
2230 }
2231 
2232 static void print_sb_1(struct mdp_superblock_1 *sb)
2233 {
2234 	__u8 *uuid;
2235 
2236 	uuid = sb->set_uuid;
2237 	printk(KERN_INFO
2238 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2239 	       "md:    Name: \"%s\" CT:%llu\n",
2240 		le32_to_cpu(sb->major_version),
2241 		le32_to_cpu(sb->feature_map),
2242 		uuid,
2243 		sb->set_name,
2244 		(unsigned long long)le64_to_cpu(sb->ctime)
2245 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2246 
2247 	uuid = sb->device_uuid;
2248 	printk(KERN_INFO
2249 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2250 			" RO:%llu\n"
2251 	       "md:     Dev:%08x UUID: %pU\n"
2252 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2253 	       "md:         (MaxDev:%u) \n",
2254 		le32_to_cpu(sb->level),
2255 		(unsigned long long)le64_to_cpu(sb->size),
2256 		le32_to_cpu(sb->raid_disks),
2257 		le32_to_cpu(sb->layout),
2258 		le32_to_cpu(sb->chunksize),
2259 		(unsigned long long)le64_to_cpu(sb->data_offset),
2260 		(unsigned long long)le64_to_cpu(sb->data_size),
2261 		(unsigned long long)le64_to_cpu(sb->super_offset),
2262 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2263 		le32_to_cpu(sb->dev_number),
2264 		uuid,
2265 		sb->devflags,
2266 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2267 		(unsigned long long)le64_to_cpu(sb->events),
2268 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2269 		le32_to_cpu(sb->sb_csum),
2270 		le32_to_cpu(sb->max_dev)
2271 		);
2272 }
2273 
2274 static void print_rdev(struct md_rdev *rdev, int major_version)
2275 {
2276 	char b[BDEVNAME_SIZE];
2277 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2278 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2279 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2280 	        rdev->desc_nr);
2281 	if (rdev->sb_loaded) {
2282 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2283 		switch (major_version) {
2284 		case 0:
2285 			print_sb_90(page_address(rdev->sb_page));
2286 			break;
2287 		case 1:
2288 			print_sb_1(page_address(rdev->sb_page));
2289 			break;
2290 		}
2291 	} else
2292 		printk(KERN_INFO "md: no rdev superblock!\n");
2293 }
2294 
2295 static void md_print_devices(void)
2296 {
2297 	struct list_head *tmp;
2298 	struct md_rdev *rdev;
2299 	struct mddev *mddev;
2300 	char b[BDEVNAME_SIZE];
2301 
2302 	printk("\n");
2303 	printk("md:	**********************************\n");
2304 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2305 	printk("md:	**********************************\n");
2306 	for_each_mddev(mddev, tmp) {
2307 
2308 		if (mddev->bitmap)
2309 			bitmap_print_sb(mddev->bitmap);
2310 		else
2311 			printk("%s: ", mdname(mddev));
2312 		rdev_for_each(rdev, mddev)
2313 			printk("<%s>", bdevname(rdev->bdev,b));
2314 		printk("\n");
2315 
2316 		rdev_for_each(rdev, mddev)
2317 			print_rdev(rdev, mddev->major_version);
2318 	}
2319 	printk("md:	**********************************\n");
2320 	printk("\n");
2321 }
2322 
2323 
2324 static void sync_sbs(struct mddev * mddev, int nospares)
2325 {
2326 	/* Update each superblock (in-memory image), but
2327 	 * if we are allowed to, skip spares which already
2328 	 * have the right event counter, or have one earlier
2329 	 * (which would mean they aren't being marked as dirty
2330 	 * with the rest of the array)
2331 	 */
2332 	struct md_rdev *rdev;
2333 	rdev_for_each(rdev, mddev) {
2334 		if (rdev->sb_events == mddev->events ||
2335 		    (nospares &&
2336 		     rdev->raid_disk < 0 &&
2337 		     rdev->sb_events+1 == mddev->events)) {
2338 			/* Don't update this superblock */
2339 			rdev->sb_loaded = 2;
2340 		} else {
2341 			sync_super(mddev, rdev);
2342 			rdev->sb_loaded = 1;
2343 		}
2344 	}
2345 }
2346 
2347 static void md_update_sb(struct mddev * mddev, int force_change)
2348 {
2349 	struct md_rdev *rdev;
2350 	int sync_req;
2351 	int nospares = 0;
2352 	int any_badblocks_changed = 0;
2353 
2354 repeat:
2355 	/* First make sure individual recovery_offsets are correct */
2356 	rdev_for_each(rdev, mddev) {
2357 		if (rdev->raid_disk >= 0 &&
2358 		    mddev->delta_disks >= 0 &&
2359 		    !test_bit(In_sync, &rdev->flags) &&
2360 		    mddev->curr_resync_completed > rdev->recovery_offset)
2361 				rdev->recovery_offset = mddev->curr_resync_completed;
2362 
2363 	}
2364 	if (!mddev->persistent) {
2365 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2366 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2367 		if (!mddev->external) {
2368 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2369 			rdev_for_each(rdev, mddev) {
2370 				if (rdev->badblocks.changed) {
2371 					rdev->badblocks.changed = 0;
2372 					md_ack_all_badblocks(&rdev->badblocks);
2373 					md_error(mddev, rdev);
2374 				}
2375 				clear_bit(Blocked, &rdev->flags);
2376 				clear_bit(BlockedBadBlocks, &rdev->flags);
2377 				wake_up(&rdev->blocked_wait);
2378 			}
2379 		}
2380 		wake_up(&mddev->sb_wait);
2381 		return;
2382 	}
2383 
2384 	spin_lock_irq(&mddev->write_lock);
2385 
2386 	mddev->utime = get_seconds();
2387 
2388 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2389 		force_change = 1;
2390 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2391 		/* just a clean<-> dirty transition, possibly leave spares alone,
2392 		 * though if events isn't the right even/odd, we will have to do
2393 		 * spares after all
2394 		 */
2395 		nospares = 1;
2396 	if (force_change)
2397 		nospares = 0;
2398 	if (mddev->degraded)
2399 		/* If the array is degraded, then skipping spares is both
2400 		 * dangerous and fairly pointless.
2401 		 * Dangerous because a device that was removed from the array
2402 		 * might have a event_count that still looks up-to-date,
2403 		 * so it can be re-added without a resync.
2404 		 * Pointless because if there are any spares to skip,
2405 		 * then a recovery will happen and soon that array won't
2406 		 * be degraded any more and the spare can go back to sleep then.
2407 		 */
2408 		nospares = 0;
2409 
2410 	sync_req = mddev->in_sync;
2411 
2412 	/* If this is just a dirty<->clean transition, and the array is clean
2413 	 * and 'events' is odd, we can roll back to the previous clean state */
2414 	if (nospares
2415 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2416 	    && mddev->can_decrease_events
2417 	    && mddev->events != 1) {
2418 		mddev->events--;
2419 		mddev->can_decrease_events = 0;
2420 	} else {
2421 		/* otherwise we have to go forward and ... */
2422 		mddev->events ++;
2423 		mddev->can_decrease_events = nospares;
2424 	}
2425 
2426 	if (!mddev->events) {
2427 		/*
2428 		 * oops, this 64-bit counter should never wrap.
2429 		 * Either we are in around ~1 trillion A.C., assuming
2430 		 * 1 reboot per second, or we have a bug:
2431 		 */
2432 		MD_BUG();
2433 		mddev->events --;
2434 	}
2435 
2436 	rdev_for_each(rdev, mddev) {
2437 		if (rdev->badblocks.changed)
2438 			any_badblocks_changed++;
2439 		if (test_bit(Faulty, &rdev->flags))
2440 			set_bit(FaultRecorded, &rdev->flags);
2441 	}
2442 
2443 	sync_sbs(mddev, nospares);
2444 	spin_unlock_irq(&mddev->write_lock);
2445 
2446 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2447 		 mdname(mddev), mddev->in_sync);
2448 
2449 	bitmap_update_sb(mddev->bitmap);
2450 	rdev_for_each(rdev, mddev) {
2451 		char b[BDEVNAME_SIZE];
2452 
2453 		if (rdev->sb_loaded != 1)
2454 			continue; /* no noise on spare devices */
2455 
2456 		if (!test_bit(Faulty, &rdev->flags) &&
2457 		    rdev->saved_raid_disk == -1) {
2458 			md_super_write(mddev,rdev,
2459 				       rdev->sb_start, rdev->sb_size,
2460 				       rdev->sb_page);
2461 			pr_debug("md: (write) %s's sb offset: %llu\n",
2462 				 bdevname(rdev->bdev, b),
2463 				 (unsigned long long)rdev->sb_start);
2464 			rdev->sb_events = mddev->events;
2465 			if (rdev->badblocks.size) {
2466 				md_super_write(mddev, rdev,
2467 					       rdev->badblocks.sector,
2468 					       rdev->badblocks.size << 9,
2469 					       rdev->bb_page);
2470 				rdev->badblocks.size = 0;
2471 			}
2472 
2473 		} else if (test_bit(Faulty, &rdev->flags))
2474 			pr_debug("md: %s (skipping faulty)\n",
2475 				 bdevname(rdev->bdev, b));
2476 		else
2477 			pr_debug("(skipping incremental s/r ");
2478 
2479 		if (mddev->level == LEVEL_MULTIPATH)
2480 			/* only need to write one superblock... */
2481 			break;
2482 	}
2483 	md_super_wait(mddev);
2484 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2485 
2486 	spin_lock_irq(&mddev->write_lock);
2487 	if (mddev->in_sync != sync_req ||
2488 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2489 		/* have to write it out again */
2490 		spin_unlock_irq(&mddev->write_lock);
2491 		goto repeat;
2492 	}
2493 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2494 	spin_unlock_irq(&mddev->write_lock);
2495 	wake_up(&mddev->sb_wait);
2496 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2497 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2498 
2499 	rdev_for_each(rdev, mddev) {
2500 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2501 			clear_bit(Blocked, &rdev->flags);
2502 
2503 		if (any_badblocks_changed)
2504 			md_ack_all_badblocks(&rdev->badblocks);
2505 		clear_bit(BlockedBadBlocks, &rdev->flags);
2506 		wake_up(&rdev->blocked_wait);
2507 	}
2508 }
2509 
2510 /* words written to sysfs files may, or may not, be \n terminated.
2511  * We want to accept with case. For this we use cmd_match.
2512  */
2513 static int cmd_match(const char *cmd, const char *str)
2514 {
2515 	/* See if cmd, written into a sysfs file, matches
2516 	 * str.  They must either be the same, or cmd can
2517 	 * have a trailing newline
2518 	 */
2519 	while (*cmd && *str && *cmd == *str) {
2520 		cmd++;
2521 		str++;
2522 	}
2523 	if (*cmd == '\n')
2524 		cmd++;
2525 	if (*str || *cmd)
2526 		return 0;
2527 	return 1;
2528 }
2529 
2530 struct rdev_sysfs_entry {
2531 	struct attribute attr;
2532 	ssize_t (*show)(struct md_rdev *, char *);
2533 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2534 };
2535 
2536 static ssize_t
2537 state_show(struct md_rdev *rdev, char *page)
2538 {
2539 	char *sep = "";
2540 	size_t len = 0;
2541 
2542 	if (test_bit(Faulty, &rdev->flags) ||
2543 	    rdev->badblocks.unacked_exist) {
2544 		len+= sprintf(page+len, "%sfaulty",sep);
2545 		sep = ",";
2546 	}
2547 	if (test_bit(In_sync, &rdev->flags)) {
2548 		len += sprintf(page+len, "%sin_sync",sep);
2549 		sep = ",";
2550 	}
2551 	if (test_bit(WriteMostly, &rdev->flags)) {
2552 		len += sprintf(page+len, "%swrite_mostly",sep);
2553 		sep = ",";
2554 	}
2555 	if (test_bit(Blocked, &rdev->flags) ||
2556 	    (rdev->badblocks.unacked_exist
2557 	     && !test_bit(Faulty, &rdev->flags))) {
2558 		len += sprintf(page+len, "%sblocked", sep);
2559 		sep = ",";
2560 	}
2561 	if (!test_bit(Faulty, &rdev->flags) &&
2562 	    !test_bit(In_sync, &rdev->flags)) {
2563 		len += sprintf(page+len, "%sspare", sep);
2564 		sep = ",";
2565 	}
2566 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2567 		len += sprintf(page+len, "%swrite_error", sep);
2568 		sep = ",";
2569 	}
2570 	if (test_bit(WantReplacement, &rdev->flags)) {
2571 		len += sprintf(page+len, "%swant_replacement", sep);
2572 		sep = ",";
2573 	}
2574 	if (test_bit(Replacement, &rdev->flags)) {
2575 		len += sprintf(page+len, "%sreplacement", sep);
2576 		sep = ",";
2577 	}
2578 
2579 	return len+sprintf(page+len, "\n");
2580 }
2581 
2582 static ssize_t
2583 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2584 {
2585 	/* can write
2586 	 *  faulty  - simulates an error
2587 	 *  remove  - disconnects the device
2588 	 *  writemostly - sets write_mostly
2589 	 *  -writemostly - clears write_mostly
2590 	 *  blocked - sets the Blocked flags
2591 	 *  -blocked - clears the Blocked and possibly simulates an error
2592 	 *  insync - sets Insync providing device isn't active
2593 	 *  write_error - sets WriteErrorSeen
2594 	 *  -write_error - clears WriteErrorSeen
2595 	 */
2596 	int err = -EINVAL;
2597 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2598 		md_error(rdev->mddev, rdev);
2599 		if (test_bit(Faulty, &rdev->flags))
2600 			err = 0;
2601 		else
2602 			err = -EBUSY;
2603 	} else if (cmd_match(buf, "remove")) {
2604 		if (rdev->raid_disk >= 0)
2605 			err = -EBUSY;
2606 		else {
2607 			struct mddev *mddev = rdev->mddev;
2608 			kick_rdev_from_array(rdev);
2609 			if (mddev->pers)
2610 				md_update_sb(mddev, 1);
2611 			md_new_event(mddev);
2612 			err = 0;
2613 		}
2614 	} else if (cmd_match(buf, "writemostly")) {
2615 		set_bit(WriteMostly, &rdev->flags);
2616 		err = 0;
2617 	} else if (cmd_match(buf, "-writemostly")) {
2618 		clear_bit(WriteMostly, &rdev->flags);
2619 		err = 0;
2620 	} else if (cmd_match(buf, "blocked")) {
2621 		set_bit(Blocked, &rdev->flags);
2622 		err = 0;
2623 	} else if (cmd_match(buf, "-blocked")) {
2624 		if (!test_bit(Faulty, &rdev->flags) &&
2625 		    rdev->badblocks.unacked_exist) {
2626 			/* metadata handler doesn't understand badblocks,
2627 			 * so we need to fail the device
2628 			 */
2629 			md_error(rdev->mddev, rdev);
2630 		}
2631 		clear_bit(Blocked, &rdev->flags);
2632 		clear_bit(BlockedBadBlocks, &rdev->flags);
2633 		wake_up(&rdev->blocked_wait);
2634 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635 		md_wakeup_thread(rdev->mddev->thread);
2636 
2637 		err = 0;
2638 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2639 		set_bit(In_sync, &rdev->flags);
2640 		err = 0;
2641 	} else if (cmd_match(buf, "write_error")) {
2642 		set_bit(WriteErrorSeen, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "-write_error")) {
2645 		clear_bit(WriteErrorSeen, &rdev->flags);
2646 		err = 0;
2647 	} else if (cmd_match(buf, "want_replacement")) {
2648 		/* Any non-spare device that is not a replacement can
2649 		 * become want_replacement at any time, but we then need to
2650 		 * check if recovery is needed.
2651 		 */
2652 		if (rdev->raid_disk >= 0 &&
2653 		    !test_bit(Replacement, &rdev->flags))
2654 			set_bit(WantReplacement, &rdev->flags);
2655 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2656 		md_wakeup_thread(rdev->mddev->thread);
2657 		err = 0;
2658 	} else if (cmd_match(buf, "-want_replacement")) {
2659 		/* Clearing 'want_replacement' is always allowed.
2660 		 * Once replacements starts it is too late though.
2661 		 */
2662 		err = 0;
2663 		clear_bit(WantReplacement, &rdev->flags);
2664 	} else if (cmd_match(buf, "replacement")) {
2665 		/* Can only set a device as a replacement when array has not
2666 		 * yet been started.  Once running, replacement is automatic
2667 		 * from spares, or by assigning 'slot'.
2668 		 */
2669 		if (rdev->mddev->pers)
2670 			err = -EBUSY;
2671 		else {
2672 			set_bit(Replacement, &rdev->flags);
2673 			err = 0;
2674 		}
2675 	} else if (cmd_match(buf, "-replacement")) {
2676 		/* Similarly, can only clear Replacement before start */
2677 		if (rdev->mddev->pers)
2678 			err = -EBUSY;
2679 		else {
2680 			clear_bit(Replacement, &rdev->flags);
2681 			err = 0;
2682 		}
2683 	}
2684 	if (!err)
2685 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2686 	return err ? err : len;
2687 }
2688 static struct rdev_sysfs_entry rdev_state =
2689 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2690 
2691 static ssize_t
2692 errors_show(struct md_rdev *rdev, char *page)
2693 {
2694 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2695 }
2696 
2697 static ssize_t
2698 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2699 {
2700 	char *e;
2701 	unsigned long n = simple_strtoul(buf, &e, 10);
2702 	if (*buf && (*e == 0 || *e == '\n')) {
2703 		atomic_set(&rdev->corrected_errors, n);
2704 		return len;
2705 	}
2706 	return -EINVAL;
2707 }
2708 static struct rdev_sysfs_entry rdev_errors =
2709 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2710 
2711 static ssize_t
2712 slot_show(struct md_rdev *rdev, char *page)
2713 {
2714 	if (rdev->raid_disk < 0)
2715 		return sprintf(page, "none\n");
2716 	else
2717 		return sprintf(page, "%d\n", rdev->raid_disk);
2718 }
2719 
2720 static ssize_t
2721 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2722 {
2723 	char *e;
2724 	int err;
2725 	int slot = simple_strtoul(buf, &e, 10);
2726 	if (strncmp(buf, "none", 4)==0)
2727 		slot = -1;
2728 	else if (e==buf || (*e && *e!= '\n'))
2729 		return -EINVAL;
2730 	if (rdev->mddev->pers && slot == -1) {
2731 		/* Setting 'slot' on an active array requires also
2732 		 * updating the 'rd%d' link, and communicating
2733 		 * with the personality with ->hot_*_disk.
2734 		 * For now we only support removing
2735 		 * failed/spare devices.  This normally happens automatically,
2736 		 * but not when the metadata is externally managed.
2737 		 */
2738 		if (rdev->raid_disk == -1)
2739 			return -EEXIST;
2740 		/* personality does all needed checks */
2741 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2742 			return -EINVAL;
2743 		err = rdev->mddev->pers->
2744 			hot_remove_disk(rdev->mddev, rdev);
2745 		if (err)
2746 			return err;
2747 		sysfs_unlink_rdev(rdev->mddev, rdev);
2748 		rdev->raid_disk = -1;
2749 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2750 		md_wakeup_thread(rdev->mddev->thread);
2751 	} else if (rdev->mddev->pers) {
2752 		/* Activating a spare .. or possibly reactivating
2753 		 * if we ever get bitmaps working here.
2754 		 */
2755 
2756 		if (rdev->raid_disk != -1)
2757 			return -EBUSY;
2758 
2759 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2760 			return -EBUSY;
2761 
2762 		if (rdev->mddev->pers->hot_add_disk == NULL)
2763 			return -EINVAL;
2764 
2765 		if (slot >= rdev->mddev->raid_disks &&
2766 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2767 			return -ENOSPC;
2768 
2769 		rdev->raid_disk = slot;
2770 		if (test_bit(In_sync, &rdev->flags))
2771 			rdev->saved_raid_disk = slot;
2772 		else
2773 			rdev->saved_raid_disk = -1;
2774 		clear_bit(In_sync, &rdev->flags);
2775 		err = rdev->mddev->pers->
2776 			hot_add_disk(rdev->mddev, rdev);
2777 		if (err) {
2778 			rdev->raid_disk = -1;
2779 			return err;
2780 		} else
2781 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2782 		if (sysfs_link_rdev(rdev->mddev, rdev))
2783 			/* failure here is OK */;
2784 		/* don't wakeup anyone, leave that to userspace. */
2785 	} else {
2786 		if (slot >= rdev->mddev->raid_disks &&
2787 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2788 			return -ENOSPC;
2789 		rdev->raid_disk = slot;
2790 		/* assume it is working */
2791 		clear_bit(Faulty, &rdev->flags);
2792 		clear_bit(WriteMostly, &rdev->flags);
2793 		set_bit(In_sync, &rdev->flags);
2794 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2795 	}
2796 	return len;
2797 }
2798 
2799 
2800 static struct rdev_sysfs_entry rdev_slot =
2801 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2802 
2803 static ssize_t
2804 offset_show(struct md_rdev *rdev, char *page)
2805 {
2806 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2807 }
2808 
2809 static ssize_t
2810 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 {
2812 	char *e;
2813 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2814 	if (e==buf || (*e && *e != '\n'))
2815 		return -EINVAL;
2816 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2817 		return -EBUSY;
2818 	if (rdev->sectors && rdev->mddev->external)
2819 		/* Must set offset before size, so overlap checks
2820 		 * can be sane */
2821 		return -EBUSY;
2822 	rdev->data_offset = offset;
2823 	return len;
2824 }
2825 
2826 static struct rdev_sysfs_entry rdev_offset =
2827 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2828 
2829 static ssize_t
2830 rdev_size_show(struct md_rdev *rdev, char *page)
2831 {
2832 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2833 }
2834 
2835 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2836 {
2837 	/* check if two start/length pairs overlap */
2838 	if (s1+l1 <= s2)
2839 		return 0;
2840 	if (s2+l2 <= s1)
2841 		return 0;
2842 	return 1;
2843 }
2844 
2845 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2846 {
2847 	unsigned long long blocks;
2848 	sector_t new;
2849 
2850 	if (strict_strtoull(buf, 10, &blocks) < 0)
2851 		return -EINVAL;
2852 
2853 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2854 		return -EINVAL; /* sector conversion overflow */
2855 
2856 	new = blocks * 2;
2857 	if (new != blocks * 2)
2858 		return -EINVAL; /* unsigned long long to sector_t overflow */
2859 
2860 	*sectors = new;
2861 	return 0;
2862 }
2863 
2864 static ssize_t
2865 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2866 {
2867 	struct mddev *my_mddev = rdev->mddev;
2868 	sector_t oldsectors = rdev->sectors;
2869 	sector_t sectors;
2870 
2871 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2872 		return -EINVAL;
2873 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2874 		if (my_mddev->persistent) {
2875 			sectors = super_types[my_mddev->major_version].
2876 				rdev_size_change(rdev, sectors);
2877 			if (!sectors)
2878 				return -EBUSY;
2879 		} else if (!sectors)
2880 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2881 				rdev->data_offset;
2882 	}
2883 	if (sectors < my_mddev->dev_sectors)
2884 		return -EINVAL; /* component must fit device */
2885 
2886 	rdev->sectors = sectors;
2887 	if (sectors > oldsectors && my_mddev->external) {
2888 		/* need to check that all other rdevs with the same ->bdev
2889 		 * do not overlap.  We need to unlock the mddev to avoid
2890 		 * a deadlock.  We have already changed rdev->sectors, and if
2891 		 * we have to change it back, we will have the lock again.
2892 		 */
2893 		struct mddev *mddev;
2894 		int overlap = 0;
2895 		struct list_head *tmp;
2896 
2897 		mddev_unlock(my_mddev);
2898 		for_each_mddev(mddev, tmp) {
2899 			struct md_rdev *rdev2;
2900 
2901 			mddev_lock(mddev);
2902 			rdev_for_each(rdev2, mddev)
2903 				if (rdev->bdev == rdev2->bdev &&
2904 				    rdev != rdev2 &&
2905 				    overlaps(rdev->data_offset, rdev->sectors,
2906 					     rdev2->data_offset,
2907 					     rdev2->sectors)) {
2908 					overlap = 1;
2909 					break;
2910 				}
2911 			mddev_unlock(mddev);
2912 			if (overlap) {
2913 				mddev_put(mddev);
2914 				break;
2915 			}
2916 		}
2917 		mddev_lock(my_mddev);
2918 		if (overlap) {
2919 			/* Someone else could have slipped in a size
2920 			 * change here, but doing so is just silly.
2921 			 * We put oldsectors back because we *know* it is
2922 			 * safe, and trust userspace not to race with
2923 			 * itself
2924 			 */
2925 			rdev->sectors = oldsectors;
2926 			return -EBUSY;
2927 		}
2928 	}
2929 	return len;
2930 }
2931 
2932 static struct rdev_sysfs_entry rdev_size =
2933 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2934 
2935 
2936 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2937 {
2938 	unsigned long long recovery_start = rdev->recovery_offset;
2939 
2940 	if (test_bit(In_sync, &rdev->flags) ||
2941 	    recovery_start == MaxSector)
2942 		return sprintf(page, "none\n");
2943 
2944 	return sprintf(page, "%llu\n", recovery_start);
2945 }
2946 
2947 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2948 {
2949 	unsigned long long recovery_start;
2950 
2951 	if (cmd_match(buf, "none"))
2952 		recovery_start = MaxSector;
2953 	else if (strict_strtoull(buf, 10, &recovery_start))
2954 		return -EINVAL;
2955 
2956 	if (rdev->mddev->pers &&
2957 	    rdev->raid_disk >= 0)
2958 		return -EBUSY;
2959 
2960 	rdev->recovery_offset = recovery_start;
2961 	if (recovery_start == MaxSector)
2962 		set_bit(In_sync, &rdev->flags);
2963 	else
2964 		clear_bit(In_sync, &rdev->flags);
2965 	return len;
2966 }
2967 
2968 static struct rdev_sysfs_entry rdev_recovery_start =
2969 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2970 
2971 
2972 static ssize_t
2973 badblocks_show(struct badblocks *bb, char *page, int unack);
2974 static ssize_t
2975 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2976 
2977 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2978 {
2979 	return badblocks_show(&rdev->badblocks, page, 0);
2980 }
2981 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2982 {
2983 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2984 	/* Maybe that ack was all we needed */
2985 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2986 		wake_up(&rdev->blocked_wait);
2987 	return rv;
2988 }
2989 static struct rdev_sysfs_entry rdev_bad_blocks =
2990 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2991 
2992 
2993 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2994 {
2995 	return badblocks_show(&rdev->badblocks, page, 1);
2996 }
2997 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2998 {
2999 	return badblocks_store(&rdev->badblocks, page, len, 1);
3000 }
3001 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3002 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3003 
3004 static struct attribute *rdev_default_attrs[] = {
3005 	&rdev_state.attr,
3006 	&rdev_errors.attr,
3007 	&rdev_slot.attr,
3008 	&rdev_offset.attr,
3009 	&rdev_size.attr,
3010 	&rdev_recovery_start.attr,
3011 	&rdev_bad_blocks.attr,
3012 	&rdev_unack_bad_blocks.attr,
3013 	NULL,
3014 };
3015 static ssize_t
3016 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3017 {
3018 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3019 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3020 	struct mddev *mddev = rdev->mddev;
3021 	ssize_t rv;
3022 
3023 	if (!entry->show)
3024 		return -EIO;
3025 
3026 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3027 	if (!rv) {
3028 		if (rdev->mddev == NULL)
3029 			rv = -EBUSY;
3030 		else
3031 			rv = entry->show(rdev, page);
3032 		mddev_unlock(mddev);
3033 	}
3034 	return rv;
3035 }
3036 
3037 static ssize_t
3038 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3039 	      const char *page, size_t length)
3040 {
3041 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3042 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3043 	ssize_t rv;
3044 	struct mddev *mddev = rdev->mddev;
3045 
3046 	if (!entry->store)
3047 		return -EIO;
3048 	if (!capable(CAP_SYS_ADMIN))
3049 		return -EACCES;
3050 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3051 	if (!rv) {
3052 		if (rdev->mddev == NULL)
3053 			rv = -EBUSY;
3054 		else
3055 			rv = entry->store(rdev, page, length);
3056 		mddev_unlock(mddev);
3057 	}
3058 	return rv;
3059 }
3060 
3061 static void rdev_free(struct kobject *ko)
3062 {
3063 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3064 	kfree(rdev);
3065 }
3066 static const struct sysfs_ops rdev_sysfs_ops = {
3067 	.show		= rdev_attr_show,
3068 	.store		= rdev_attr_store,
3069 };
3070 static struct kobj_type rdev_ktype = {
3071 	.release	= rdev_free,
3072 	.sysfs_ops	= &rdev_sysfs_ops,
3073 	.default_attrs	= rdev_default_attrs,
3074 };
3075 
3076 int md_rdev_init(struct md_rdev *rdev)
3077 {
3078 	rdev->desc_nr = -1;
3079 	rdev->saved_raid_disk = -1;
3080 	rdev->raid_disk = -1;
3081 	rdev->flags = 0;
3082 	rdev->data_offset = 0;
3083 	rdev->sb_events = 0;
3084 	rdev->last_read_error.tv_sec  = 0;
3085 	rdev->last_read_error.tv_nsec = 0;
3086 	rdev->sb_loaded = 0;
3087 	rdev->bb_page = NULL;
3088 	atomic_set(&rdev->nr_pending, 0);
3089 	atomic_set(&rdev->read_errors, 0);
3090 	atomic_set(&rdev->corrected_errors, 0);
3091 
3092 	INIT_LIST_HEAD(&rdev->same_set);
3093 	init_waitqueue_head(&rdev->blocked_wait);
3094 
3095 	/* Add space to store bad block list.
3096 	 * This reserves the space even on arrays where it cannot
3097 	 * be used - I wonder if that matters
3098 	 */
3099 	rdev->badblocks.count = 0;
3100 	rdev->badblocks.shift = 0;
3101 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3102 	seqlock_init(&rdev->badblocks.lock);
3103 	if (rdev->badblocks.page == NULL)
3104 		return -ENOMEM;
3105 
3106 	return 0;
3107 }
3108 EXPORT_SYMBOL_GPL(md_rdev_init);
3109 /*
3110  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3111  *
3112  * mark the device faulty if:
3113  *
3114  *   - the device is nonexistent (zero size)
3115  *   - the device has no valid superblock
3116  *
3117  * a faulty rdev _never_ has rdev->sb set.
3118  */
3119 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3120 {
3121 	char b[BDEVNAME_SIZE];
3122 	int err;
3123 	struct md_rdev *rdev;
3124 	sector_t size;
3125 
3126 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3127 	if (!rdev) {
3128 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3129 		return ERR_PTR(-ENOMEM);
3130 	}
3131 
3132 	err = md_rdev_init(rdev);
3133 	if (err)
3134 		goto abort_free;
3135 	err = alloc_disk_sb(rdev);
3136 	if (err)
3137 		goto abort_free;
3138 
3139 	err = lock_rdev(rdev, newdev, super_format == -2);
3140 	if (err)
3141 		goto abort_free;
3142 
3143 	kobject_init(&rdev->kobj, &rdev_ktype);
3144 
3145 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3146 	if (!size) {
3147 		printk(KERN_WARNING
3148 			"md: %s has zero or unknown size, marking faulty!\n",
3149 			bdevname(rdev->bdev,b));
3150 		err = -EINVAL;
3151 		goto abort_free;
3152 	}
3153 
3154 	if (super_format >= 0) {
3155 		err = super_types[super_format].
3156 			load_super(rdev, NULL, super_minor);
3157 		if (err == -EINVAL) {
3158 			printk(KERN_WARNING
3159 				"md: %s does not have a valid v%d.%d "
3160 			       "superblock, not importing!\n",
3161 				bdevname(rdev->bdev,b),
3162 			       super_format, super_minor);
3163 			goto abort_free;
3164 		}
3165 		if (err < 0) {
3166 			printk(KERN_WARNING
3167 				"md: could not read %s's sb, not importing!\n",
3168 				bdevname(rdev->bdev,b));
3169 			goto abort_free;
3170 		}
3171 	}
3172 	if (super_format == -1)
3173 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3174 		rdev->badblocks.shift = -1;
3175 
3176 	return rdev;
3177 
3178 abort_free:
3179 	if (rdev->bdev)
3180 		unlock_rdev(rdev);
3181 	free_disk_sb(rdev);
3182 	kfree(rdev->badblocks.page);
3183 	kfree(rdev);
3184 	return ERR_PTR(err);
3185 }
3186 
3187 /*
3188  * Check a full RAID array for plausibility
3189  */
3190 
3191 
3192 static void analyze_sbs(struct mddev * mddev)
3193 {
3194 	int i;
3195 	struct md_rdev *rdev, *freshest, *tmp;
3196 	char b[BDEVNAME_SIZE];
3197 
3198 	freshest = NULL;
3199 	rdev_for_each_safe(rdev, tmp, mddev)
3200 		switch (super_types[mddev->major_version].
3201 			load_super(rdev, freshest, mddev->minor_version)) {
3202 		case 1:
3203 			freshest = rdev;
3204 			break;
3205 		case 0:
3206 			break;
3207 		default:
3208 			printk( KERN_ERR \
3209 				"md: fatal superblock inconsistency in %s"
3210 				" -- removing from array\n",
3211 				bdevname(rdev->bdev,b));
3212 			kick_rdev_from_array(rdev);
3213 		}
3214 
3215 
3216 	super_types[mddev->major_version].
3217 		validate_super(mddev, freshest);
3218 
3219 	i = 0;
3220 	rdev_for_each_safe(rdev, tmp, mddev) {
3221 		if (mddev->max_disks &&
3222 		    (rdev->desc_nr >= mddev->max_disks ||
3223 		     i > mddev->max_disks)) {
3224 			printk(KERN_WARNING
3225 			       "md: %s: %s: only %d devices permitted\n",
3226 			       mdname(mddev), bdevname(rdev->bdev, b),
3227 			       mddev->max_disks);
3228 			kick_rdev_from_array(rdev);
3229 			continue;
3230 		}
3231 		if (rdev != freshest)
3232 			if (super_types[mddev->major_version].
3233 			    validate_super(mddev, rdev)) {
3234 				printk(KERN_WARNING "md: kicking non-fresh %s"
3235 					" from array!\n",
3236 					bdevname(rdev->bdev,b));
3237 				kick_rdev_from_array(rdev);
3238 				continue;
3239 			}
3240 		if (mddev->level == LEVEL_MULTIPATH) {
3241 			rdev->desc_nr = i++;
3242 			rdev->raid_disk = rdev->desc_nr;
3243 			set_bit(In_sync, &rdev->flags);
3244 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3245 			rdev->raid_disk = -1;
3246 			clear_bit(In_sync, &rdev->flags);
3247 		}
3248 	}
3249 }
3250 
3251 /* Read a fixed-point number.
3252  * Numbers in sysfs attributes should be in "standard" units where
3253  * possible, so time should be in seconds.
3254  * However we internally use a a much smaller unit such as
3255  * milliseconds or jiffies.
3256  * This function takes a decimal number with a possible fractional
3257  * component, and produces an integer which is the result of
3258  * multiplying that number by 10^'scale'.
3259  * all without any floating-point arithmetic.
3260  */
3261 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3262 {
3263 	unsigned long result = 0;
3264 	long decimals = -1;
3265 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3266 		if (*cp == '.')
3267 			decimals = 0;
3268 		else if (decimals < scale) {
3269 			unsigned int value;
3270 			value = *cp - '0';
3271 			result = result * 10 + value;
3272 			if (decimals >= 0)
3273 				decimals++;
3274 		}
3275 		cp++;
3276 	}
3277 	if (*cp == '\n')
3278 		cp++;
3279 	if (*cp)
3280 		return -EINVAL;
3281 	if (decimals < 0)
3282 		decimals = 0;
3283 	while (decimals < scale) {
3284 		result *= 10;
3285 		decimals ++;
3286 	}
3287 	*res = result;
3288 	return 0;
3289 }
3290 
3291 
3292 static void md_safemode_timeout(unsigned long data);
3293 
3294 static ssize_t
3295 safe_delay_show(struct mddev *mddev, char *page)
3296 {
3297 	int msec = (mddev->safemode_delay*1000)/HZ;
3298 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3299 }
3300 static ssize_t
3301 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3302 {
3303 	unsigned long msec;
3304 
3305 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3306 		return -EINVAL;
3307 	if (msec == 0)
3308 		mddev->safemode_delay = 0;
3309 	else {
3310 		unsigned long old_delay = mddev->safemode_delay;
3311 		mddev->safemode_delay = (msec*HZ)/1000;
3312 		if (mddev->safemode_delay == 0)
3313 			mddev->safemode_delay = 1;
3314 		if (mddev->safemode_delay < old_delay)
3315 			md_safemode_timeout((unsigned long)mddev);
3316 	}
3317 	return len;
3318 }
3319 static struct md_sysfs_entry md_safe_delay =
3320 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3321 
3322 static ssize_t
3323 level_show(struct mddev *mddev, char *page)
3324 {
3325 	struct md_personality *p = mddev->pers;
3326 	if (p)
3327 		return sprintf(page, "%s\n", p->name);
3328 	else if (mddev->clevel[0])
3329 		return sprintf(page, "%s\n", mddev->clevel);
3330 	else if (mddev->level != LEVEL_NONE)
3331 		return sprintf(page, "%d\n", mddev->level);
3332 	else
3333 		return 0;
3334 }
3335 
3336 static ssize_t
3337 level_store(struct mddev *mddev, const char *buf, size_t len)
3338 {
3339 	char clevel[16];
3340 	ssize_t rv = len;
3341 	struct md_personality *pers;
3342 	long level;
3343 	void *priv;
3344 	struct md_rdev *rdev;
3345 
3346 	if (mddev->pers == NULL) {
3347 		if (len == 0)
3348 			return 0;
3349 		if (len >= sizeof(mddev->clevel))
3350 			return -ENOSPC;
3351 		strncpy(mddev->clevel, buf, len);
3352 		if (mddev->clevel[len-1] == '\n')
3353 			len--;
3354 		mddev->clevel[len] = 0;
3355 		mddev->level = LEVEL_NONE;
3356 		return rv;
3357 	}
3358 
3359 	/* request to change the personality.  Need to ensure:
3360 	 *  - array is not engaged in resync/recovery/reshape
3361 	 *  - old personality can be suspended
3362 	 *  - new personality will access other array.
3363 	 */
3364 
3365 	if (mddev->sync_thread ||
3366 	    mddev->reshape_position != MaxSector ||
3367 	    mddev->sysfs_active)
3368 		return -EBUSY;
3369 
3370 	if (!mddev->pers->quiesce) {
3371 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3372 		       mdname(mddev), mddev->pers->name);
3373 		return -EINVAL;
3374 	}
3375 
3376 	/* Now find the new personality */
3377 	if (len == 0 || len >= sizeof(clevel))
3378 		return -EINVAL;
3379 	strncpy(clevel, buf, len);
3380 	if (clevel[len-1] == '\n')
3381 		len--;
3382 	clevel[len] = 0;
3383 	if (strict_strtol(clevel, 10, &level))
3384 		level = LEVEL_NONE;
3385 
3386 	if (request_module("md-%s", clevel) != 0)
3387 		request_module("md-level-%s", clevel);
3388 	spin_lock(&pers_lock);
3389 	pers = find_pers(level, clevel);
3390 	if (!pers || !try_module_get(pers->owner)) {
3391 		spin_unlock(&pers_lock);
3392 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3393 		return -EINVAL;
3394 	}
3395 	spin_unlock(&pers_lock);
3396 
3397 	if (pers == mddev->pers) {
3398 		/* Nothing to do! */
3399 		module_put(pers->owner);
3400 		return rv;
3401 	}
3402 	if (!pers->takeover) {
3403 		module_put(pers->owner);
3404 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3405 		       mdname(mddev), clevel);
3406 		return -EINVAL;
3407 	}
3408 
3409 	rdev_for_each(rdev, mddev)
3410 		rdev->new_raid_disk = rdev->raid_disk;
3411 
3412 	/* ->takeover must set new_* and/or delta_disks
3413 	 * if it succeeds, and may set them when it fails.
3414 	 */
3415 	priv = pers->takeover(mddev);
3416 	if (IS_ERR(priv)) {
3417 		mddev->new_level = mddev->level;
3418 		mddev->new_layout = mddev->layout;
3419 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3420 		mddev->raid_disks -= mddev->delta_disks;
3421 		mddev->delta_disks = 0;
3422 		module_put(pers->owner);
3423 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3424 		       mdname(mddev), clevel);
3425 		return PTR_ERR(priv);
3426 	}
3427 
3428 	/* Looks like we have a winner */
3429 	mddev_suspend(mddev);
3430 	mddev->pers->stop(mddev);
3431 
3432 	if (mddev->pers->sync_request == NULL &&
3433 	    pers->sync_request != NULL) {
3434 		/* need to add the md_redundancy_group */
3435 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3436 			printk(KERN_WARNING
3437 			       "md: cannot register extra attributes for %s\n",
3438 			       mdname(mddev));
3439 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3440 	}
3441 	if (mddev->pers->sync_request != NULL &&
3442 	    pers->sync_request == NULL) {
3443 		/* need to remove the md_redundancy_group */
3444 		if (mddev->to_remove == NULL)
3445 			mddev->to_remove = &md_redundancy_group;
3446 	}
3447 
3448 	if (mddev->pers->sync_request == NULL &&
3449 	    mddev->external) {
3450 		/* We are converting from a no-redundancy array
3451 		 * to a redundancy array and metadata is managed
3452 		 * externally so we need to be sure that writes
3453 		 * won't block due to a need to transition
3454 		 *      clean->dirty
3455 		 * until external management is started.
3456 		 */
3457 		mddev->in_sync = 0;
3458 		mddev->safemode_delay = 0;
3459 		mddev->safemode = 0;
3460 	}
3461 
3462 	rdev_for_each(rdev, mddev) {
3463 		if (rdev->raid_disk < 0)
3464 			continue;
3465 		if (rdev->new_raid_disk >= mddev->raid_disks)
3466 			rdev->new_raid_disk = -1;
3467 		if (rdev->new_raid_disk == rdev->raid_disk)
3468 			continue;
3469 		sysfs_unlink_rdev(mddev, rdev);
3470 	}
3471 	rdev_for_each(rdev, mddev) {
3472 		if (rdev->raid_disk < 0)
3473 			continue;
3474 		if (rdev->new_raid_disk == rdev->raid_disk)
3475 			continue;
3476 		rdev->raid_disk = rdev->new_raid_disk;
3477 		if (rdev->raid_disk < 0)
3478 			clear_bit(In_sync, &rdev->flags);
3479 		else {
3480 			if (sysfs_link_rdev(mddev, rdev))
3481 				printk(KERN_WARNING "md: cannot register rd%d"
3482 				       " for %s after level change\n",
3483 				       rdev->raid_disk, mdname(mddev));
3484 		}
3485 	}
3486 
3487 	module_put(mddev->pers->owner);
3488 	mddev->pers = pers;
3489 	mddev->private = priv;
3490 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3491 	mddev->level = mddev->new_level;
3492 	mddev->layout = mddev->new_layout;
3493 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3494 	mddev->delta_disks = 0;
3495 	mddev->degraded = 0;
3496 	if (mddev->pers->sync_request == NULL) {
3497 		/* this is now an array without redundancy, so
3498 		 * it must always be in_sync
3499 		 */
3500 		mddev->in_sync = 1;
3501 		del_timer_sync(&mddev->safemode_timer);
3502 	}
3503 	pers->run(mddev);
3504 	mddev_resume(mddev);
3505 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3506 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3507 	md_wakeup_thread(mddev->thread);
3508 	sysfs_notify(&mddev->kobj, NULL, "level");
3509 	md_new_event(mddev);
3510 	return rv;
3511 }
3512 
3513 static struct md_sysfs_entry md_level =
3514 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3515 
3516 
3517 static ssize_t
3518 layout_show(struct mddev *mddev, char *page)
3519 {
3520 	/* just a number, not meaningful for all levels */
3521 	if (mddev->reshape_position != MaxSector &&
3522 	    mddev->layout != mddev->new_layout)
3523 		return sprintf(page, "%d (%d)\n",
3524 			       mddev->new_layout, mddev->layout);
3525 	return sprintf(page, "%d\n", mddev->layout);
3526 }
3527 
3528 static ssize_t
3529 layout_store(struct mddev *mddev, const char *buf, size_t len)
3530 {
3531 	char *e;
3532 	unsigned long n = simple_strtoul(buf, &e, 10);
3533 
3534 	if (!*buf || (*e && *e != '\n'))
3535 		return -EINVAL;
3536 
3537 	if (mddev->pers) {
3538 		int err;
3539 		if (mddev->pers->check_reshape == NULL)
3540 			return -EBUSY;
3541 		mddev->new_layout = n;
3542 		err = mddev->pers->check_reshape(mddev);
3543 		if (err) {
3544 			mddev->new_layout = mddev->layout;
3545 			return err;
3546 		}
3547 	} else {
3548 		mddev->new_layout = n;
3549 		if (mddev->reshape_position == MaxSector)
3550 			mddev->layout = n;
3551 	}
3552 	return len;
3553 }
3554 static struct md_sysfs_entry md_layout =
3555 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3556 
3557 
3558 static ssize_t
3559 raid_disks_show(struct mddev *mddev, char *page)
3560 {
3561 	if (mddev->raid_disks == 0)
3562 		return 0;
3563 	if (mddev->reshape_position != MaxSector &&
3564 	    mddev->delta_disks != 0)
3565 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3566 			       mddev->raid_disks - mddev->delta_disks);
3567 	return sprintf(page, "%d\n", mddev->raid_disks);
3568 }
3569 
3570 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3571 
3572 static ssize_t
3573 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575 	char *e;
3576 	int rv = 0;
3577 	unsigned long n = simple_strtoul(buf, &e, 10);
3578 
3579 	if (!*buf || (*e && *e != '\n'))
3580 		return -EINVAL;
3581 
3582 	if (mddev->pers)
3583 		rv = update_raid_disks(mddev, n);
3584 	else if (mddev->reshape_position != MaxSector) {
3585 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3586 		mddev->delta_disks = n - olddisks;
3587 		mddev->raid_disks = n;
3588 	} else
3589 		mddev->raid_disks = n;
3590 	return rv ? rv : len;
3591 }
3592 static struct md_sysfs_entry md_raid_disks =
3593 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3594 
3595 static ssize_t
3596 chunk_size_show(struct mddev *mddev, char *page)
3597 {
3598 	if (mddev->reshape_position != MaxSector &&
3599 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3600 		return sprintf(page, "%d (%d)\n",
3601 			       mddev->new_chunk_sectors << 9,
3602 			       mddev->chunk_sectors << 9);
3603 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3604 }
3605 
3606 static ssize_t
3607 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3608 {
3609 	char *e;
3610 	unsigned long n = simple_strtoul(buf, &e, 10);
3611 
3612 	if (!*buf || (*e && *e != '\n'))
3613 		return -EINVAL;
3614 
3615 	if (mddev->pers) {
3616 		int err;
3617 		if (mddev->pers->check_reshape == NULL)
3618 			return -EBUSY;
3619 		mddev->new_chunk_sectors = n >> 9;
3620 		err = mddev->pers->check_reshape(mddev);
3621 		if (err) {
3622 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3623 			return err;
3624 		}
3625 	} else {
3626 		mddev->new_chunk_sectors = n >> 9;
3627 		if (mddev->reshape_position == MaxSector)
3628 			mddev->chunk_sectors = n >> 9;
3629 	}
3630 	return len;
3631 }
3632 static struct md_sysfs_entry md_chunk_size =
3633 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3634 
3635 static ssize_t
3636 resync_start_show(struct mddev *mddev, char *page)
3637 {
3638 	if (mddev->recovery_cp == MaxSector)
3639 		return sprintf(page, "none\n");
3640 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3641 }
3642 
3643 static ssize_t
3644 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3645 {
3646 	char *e;
3647 	unsigned long long n = simple_strtoull(buf, &e, 10);
3648 
3649 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3650 		return -EBUSY;
3651 	if (cmd_match(buf, "none"))
3652 		n = MaxSector;
3653 	else if (!*buf || (*e && *e != '\n'))
3654 		return -EINVAL;
3655 
3656 	mddev->recovery_cp = n;
3657 	return len;
3658 }
3659 static struct md_sysfs_entry md_resync_start =
3660 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3661 
3662 /*
3663  * The array state can be:
3664  *
3665  * clear
3666  *     No devices, no size, no level
3667  *     Equivalent to STOP_ARRAY ioctl
3668  * inactive
3669  *     May have some settings, but array is not active
3670  *        all IO results in error
3671  *     When written, doesn't tear down array, but just stops it
3672  * suspended (not supported yet)
3673  *     All IO requests will block. The array can be reconfigured.
3674  *     Writing this, if accepted, will block until array is quiescent
3675  * readonly
3676  *     no resync can happen.  no superblocks get written.
3677  *     write requests fail
3678  * read-auto
3679  *     like readonly, but behaves like 'clean' on a write request.
3680  *
3681  * clean - no pending writes, but otherwise active.
3682  *     When written to inactive array, starts without resync
3683  *     If a write request arrives then
3684  *       if metadata is known, mark 'dirty' and switch to 'active'.
3685  *       if not known, block and switch to write-pending
3686  *     If written to an active array that has pending writes, then fails.
3687  * active
3688  *     fully active: IO and resync can be happening.
3689  *     When written to inactive array, starts with resync
3690  *
3691  * write-pending
3692  *     clean, but writes are blocked waiting for 'active' to be written.
3693  *
3694  * active-idle
3695  *     like active, but no writes have been seen for a while (100msec).
3696  *
3697  */
3698 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3699 		   write_pending, active_idle, bad_word};
3700 static char *array_states[] = {
3701 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3702 	"write-pending", "active-idle", NULL };
3703 
3704 static int match_word(const char *word, char **list)
3705 {
3706 	int n;
3707 	for (n=0; list[n]; n++)
3708 		if (cmd_match(word, list[n]))
3709 			break;
3710 	return n;
3711 }
3712 
3713 static ssize_t
3714 array_state_show(struct mddev *mddev, char *page)
3715 {
3716 	enum array_state st = inactive;
3717 
3718 	if (mddev->pers)
3719 		switch(mddev->ro) {
3720 		case 1:
3721 			st = readonly;
3722 			break;
3723 		case 2:
3724 			st = read_auto;
3725 			break;
3726 		case 0:
3727 			if (mddev->in_sync)
3728 				st = clean;
3729 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3730 				st = write_pending;
3731 			else if (mddev->safemode)
3732 				st = active_idle;
3733 			else
3734 				st = active;
3735 		}
3736 	else {
3737 		if (list_empty(&mddev->disks) &&
3738 		    mddev->raid_disks == 0 &&
3739 		    mddev->dev_sectors == 0)
3740 			st = clear;
3741 		else
3742 			st = inactive;
3743 	}
3744 	return sprintf(page, "%s\n", array_states[st]);
3745 }
3746 
3747 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3748 static int md_set_readonly(struct mddev * mddev, int is_open);
3749 static int do_md_run(struct mddev * mddev);
3750 static int restart_array(struct mddev *mddev);
3751 
3752 static ssize_t
3753 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3754 {
3755 	int err = -EINVAL;
3756 	enum array_state st = match_word(buf, array_states);
3757 	switch(st) {
3758 	case bad_word:
3759 		break;
3760 	case clear:
3761 		/* stopping an active array */
3762 		if (atomic_read(&mddev->openers) > 0)
3763 			return -EBUSY;
3764 		err = do_md_stop(mddev, 0, 0);
3765 		break;
3766 	case inactive:
3767 		/* stopping an active array */
3768 		if (mddev->pers) {
3769 			if (atomic_read(&mddev->openers) > 0)
3770 				return -EBUSY;
3771 			err = do_md_stop(mddev, 2, 0);
3772 		} else
3773 			err = 0; /* already inactive */
3774 		break;
3775 	case suspended:
3776 		break; /* not supported yet */
3777 	case readonly:
3778 		if (mddev->pers)
3779 			err = md_set_readonly(mddev, 0);
3780 		else {
3781 			mddev->ro = 1;
3782 			set_disk_ro(mddev->gendisk, 1);
3783 			err = do_md_run(mddev);
3784 		}
3785 		break;
3786 	case read_auto:
3787 		if (mddev->pers) {
3788 			if (mddev->ro == 0)
3789 				err = md_set_readonly(mddev, 0);
3790 			else if (mddev->ro == 1)
3791 				err = restart_array(mddev);
3792 			if (err == 0) {
3793 				mddev->ro = 2;
3794 				set_disk_ro(mddev->gendisk, 0);
3795 			}
3796 		} else {
3797 			mddev->ro = 2;
3798 			err = do_md_run(mddev);
3799 		}
3800 		break;
3801 	case clean:
3802 		if (mddev->pers) {
3803 			restart_array(mddev);
3804 			spin_lock_irq(&mddev->write_lock);
3805 			if (atomic_read(&mddev->writes_pending) == 0) {
3806 				if (mddev->in_sync == 0) {
3807 					mddev->in_sync = 1;
3808 					if (mddev->safemode == 1)
3809 						mddev->safemode = 0;
3810 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3811 				}
3812 				err = 0;
3813 			} else
3814 				err = -EBUSY;
3815 			spin_unlock_irq(&mddev->write_lock);
3816 		} else
3817 			err = -EINVAL;
3818 		break;
3819 	case active:
3820 		if (mddev->pers) {
3821 			restart_array(mddev);
3822 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3823 			wake_up(&mddev->sb_wait);
3824 			err = 0;
3825 		} else {
3826 			mddev->ro = 0;
3827 			set_disk_ro(mddev->gendisk, 0);
3828 			err = do_md_run(mddev);
3829 		}
3830 		break;
3831 	case write_pending:
3832 	case active_idle:
3833 		/* these cannot be set */
3834 		break;
3835 	}
3836 	if (err)
3837 		return err;
3838 	else {
3839 		if (mddev->hold_active == UNTIL_IOCTL)
3840 			mddev->hold_active = 0;
3841 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3842 		return len;
3843 	}
3844 }
3845 static struct md_sysfs_entry md_array_state =
3846 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3847 
3848 static ssize_t
3849 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3850 	return sprintf(page, "%d\n",
3851 		       atomic_read(&mddev->max_corr_read_errors));
3852 }
3853 
3854 static ssize_t
3855 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3856 {
3857 	char *e;
3858 	unsigned long n = simple_strtoul(buf, &e, 10);
3859 
3860 	if (*buf && (*e == 0 || *e == '\n')) {
3861 		atomic_set(&mddev->max_corr_read_errors, n);
3862 		return len;
3863 	}
3864 	return -EINVAL;
3865 }
3866 
3867 static struct md_sysfs_entry max_corr_read_errors =
3868 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3869 	max_corrected_read_errors_store);
3870 
3871 static ssize_t
3872 null_show(struct mddev *mddev, char *page)
3873 {
3874 	return -EINVAL;
3875 }
3876 
3877 static ssize_t
3878 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3879 {
3880 	/* buf must be %d:%d\n? giving major and minor numbers */
3881 	/* The new device is added to the array.
3882 	 * If the array has a persistent superblock, we read the
3883 	 * superblock to initialise info and check validity.
3884 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3885 	 * which mainly checks size.
3886 	 */
3887 	char *e;
3888 	int major = simple_strtoul(buf, &e, 10);
3889 	int minor;
3890 	dev_t dev;
3891 	struct md_rdev *rdev;
3892 	int err;
3893 
3894 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3895 		return -EINVAL;
3896 	minor = simple_strtoul(e+1, &e, 10);
3897 	if (*e && *e != '\n')
3898 		return -EINVAL;
3899 	dev = MKDEV(major, minor);
3900 	if (major != MAJOR(dev) ||
3901 	    minor != MINOR(dev))
3902 		return -EOVERFLOW;
3903 
3904 
3905 	if (mddev->persistent) {
3906 		rdev = md_import_device(dev, mddev->major_version,
3907 					mddev->minor_version);
3908 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3909 			struct md_rdev *rdev0
3910 				= list_entry(mddev->disks.next,
3911 					     struct md_rdev, same_set);
3912 			err = super_types[mddev->major_version]
3913 				.load_super(rdev, rdev0, mddev->minor_version);
3914 			if (err < 0)
3915 				goto out;
3916 		}
3917 	} else if (mddev->external)
3918 		rdev = md_import_device(dev, -2, -1);
3919 	else
3920 		rdev = md_import_device(dev, -1, -1);
3921 
3922 	if (IS_ERR(rdev))
3923 		return PTR_ERR(rdev);
3924 	err = bind_rdev_to_array(rdev, mddev);
3925  out:
3926 	if (err)
3927 		export_rdev(rdev);
3928 	return err ? err : len;
3929 }
3930 
3931 static struct md_sysfs_entry md_new_device =
3932 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3933 
3934 static ssize_t
3935 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3936 {
3937 	char *end;
3938 	unsigned long chunk, end_chunk;
3939 
3940 	if (!mddev->bitmap)
3941 		goto out;
3942 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3943 	while (*buf) {
3944 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3945 		if (buf == end) break;
3946 		if (*end == '-') { /* range */
3947 			buf = end + 1;
3948 			end_chunk = simple_strtoul(buf, &end, 0);
3949 			if (buf == end) break;
3950 		}
3951 		if (*end && !isspace(*end)) break;
3952 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3953 		buf = skip_spaces(end);
3954 	}
3955 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3956 out:
3957 	return len;
3958 }
3959 
3960 static struct md_sysfs_entry md_bitmap =
3961 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3962 
3963 static ssize_t
3964 size_show(struct mddev *mddev, char *page)
3965 {
3966 	return sprintf(page, "%llu\n",
3967 		(unsigned long long)mddev->dev_sectors / 2);
3968 }
3969 
3970 static int update_size(struct mddev *mddev, sector_t num_sectors);
3971 
3972 static ssize_t
3973 size_store(struct mddev *mddev, const char *buf, size_t len)
3974 {
3975 	/* If array is inactive, we can reduce the component size, but
3976 	 * not increase it (except from 0).
3977 	 * If array is active, we can try an on-line resize
3978 	 */
3979 	sector_t sectors;
3980 	int err = strict_blocks_to_sectors(buf, &sectors);
3981 
3982 	if (err < 0)
3983 		return err;
3984 	if (mddev->pers) {
3985 		err = update_size(mddev, sectors);
3986 		md_update_sb(mddev, 1);
3987 	} else {
3988 		if (mddev->dev_sectors == 0 ||
3989 		    mddev->dev_sectors > sectors)
3990 			mddev->dev_sectors = sectors;
3991 		else
3992 			err = -ENOSPC;
3993 	}
3994 	return err ? err : len;
3995 }
3996 
3997 static struct md_sysfs_entry md_size =
3998 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3999 
4000 
4001 /* Metdata version.
4002  * This is one of
4003  *   'none' for arrays with no metadata (good luck...)
4004  *   'external' for arrays with externally managed metadata,
4005  * or N.M for internally known formats
4006  */
4007 static ssize_t
4008 metadata_show(struct mddev *mddev, char *page)
4009 {
4010 	if (mddev->persistent)
4011 		return sprintf(page, "%d.%d\n",
4012 			       mddev->major_version, mddev->minor_version);
4013 	else if (mddev->external)
4014 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4015 	else
4016 		return sprintf(page, "none\n");
4017 }
4018 
4019 static ssize_t
4020 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4021 {
4022 	int major, minor;
4023 	char *e;
4024 	/* Changing the details of 'external' metadata is
4025 	 * always permitted.  Otherwise there must be
4026 	 * no devices attached to the array.
4027 	 */
4028 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4029 		;
4030 	else if (!list_empty(&mddev->disks))
4031 		return -EBUSY;
4032 
4033 	if (cmd_match(buf, "none")) {
4034 		mddev->persistent = 0;
4035 		mddev->external = 0;
4036 		mddev->major_version = 0;
4037 		mddev->minor_version = 90;
4038 		return len;
4039 	}
4040 	if (strncmp(buf, "external:", 9) == 0) {
4041 		size_t namelen = len-9;
4042 		if (namelen >= sizeof(mddev->metadata_type))
4043 			namelen = sizeof(mddev->metadata_type)-1;
4044 		strncpy(mddev->metadata_type, buf+9, namelen);
4045 		mddev->metadata_type[namelen] = 0;
4046 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4047 			mddev->metadata_type[--namelen] = 0;
4048 		mddev->persistent = 0;
4049 		mddev->external = 1;
4050 		mddev->major_version = 0;
4051 		mddev->minor_version = 90;
4052 		return len;
4053 	}
4054 	major = simple_strtoul(buf, &e, 10);
4055 	if (e==buf || *e != '.')
4056 		return -EINVAL;
4057 	buf = e+1;
4058 	minor = simple_strtoul(buf, &e, 10);
4059 	if (e==buf || (*e && *e != '\n') )
4060 		return -EINVAL;
4061 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4062 		return -ENOENT;
4063 	mddev->major_version = major;
4064 	mddev->minor_version = minor;
4065 	mddev->persistent = 1;
4066 	mddev->external = 0;
4067 	return len;
4068 }
4069 
4070 static struct md_sysfs_entry md_metadata =
4071 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4072 
4073 static ssize_t
4074 action_show(struct mddev *mddev, char *page)
4075 {
4076 	char *type = "idle";
4077 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4078 		type = "frozen";
4079 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4080 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4081 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4082 			type = "reshape";
4083 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4084 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4085 				type = "resync";
4086 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4087 				type = "check";
4088 			else
4089 				type = "repair";
4090 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4091 			type = "recover";
4092 	}
4093 	return sprintf(page, "%s\n", type);
4094 }
4095 
4096 static void reap_sync_thread(struct mddev *mddev);
4097 
4098 static ssize_t
4099 action_store(struct mddev *mddev, const char *page, size_t len)
4100 {
4101 	if (!mddev->pers || !mddev->pers->sync_request)
4102 		return -EINVAL;
4103 
4104 	if (cmd_match(page, "frozen"))
4105 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106 	else
4107 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4108 
4109 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4110 		if (mddev->sync_thread) {
4111 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4112 			reap_sync_thread(mddev);
4113 		}
4114 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4115 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4116 		return -EBUSY;
4117 	else if (cmd_match(page, "resync"))
4118 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4119 	else if (cmd_match(page, "recover")) {
4120 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4121 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4122 	} else if (cmd_match(page, "reshape")) {
4123 		int err;
4124 		if (mddev->pers->start_reshape == NULL)
4125 			return -EINVAL;
4126 		err = mddev->pers->start_reshape(mddev);
4127 		if (err)
4128 			return err;
4129 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4130 	} else {
4131 		if (cmd_match(page, "check"))
4132 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4133 		else if (!cmd_match(page, "repair"))
4134 			return -EINVAL;
4135 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4136 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4137 	}
4138 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4139 	md_wakeup_thread(mddev->thread);
4140 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4141 	return len;
4142 }
4143 
4144 static ssize_t
4145 mismatch_cnt_show(struct mddev *mddev, char *page)
4146 {
4147 	return sprintf(page, "%llu\n",
4148 		       (unsigned long long) mddev->resync_mismatches);
4149 }
4150 
4151 static struct md_sysfs_entry md_scan_mode =
4152 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4153 
4154 
4155 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4156 
4157 static ssize_t
4158 sync_min_show(struct mddev *mddev, char *page)
4159 {
4160 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4161 		       mddev->sync_speed_min ? "local": "system");
4162 }
4163 
4164 static ssize_t
4165 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4166 {
4167 	int min;
4168 	char *e;
4169 	if (strncmp(buf, "system", 6)==0) {
4170 		mddev->sync_speed_min = 0;
4171 		return len;
4172 	}
4173 	min = simple_strtoul(buf, &e, 10);
4174 	if (buf == e || (*e && *e != '\n') || min <= 0)
4175 		return -EINVAL;
4176 	mddev->sync_speed_min = min;
4177 	return len;
4178 }
4179 
4180 static struct md_sysfs_entry md_sync_min =
4181 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4182 
4183 static ssize_t
4184 sync_max_show(struct mddev *mddev, char *page)
4185 {
4186 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4187 		       mddev->sync_speed_max ? "local": "system");
4188 }
4189 
4190 static ssize_t
4191 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4192 {
4193 	int max;
4194 	char *e;
4195 	if (strncmp(buf, "system", 6)==0) {
4196 		mddev->sync_speed_max = 0;
4197 		return len;
4198 	}
4199 	max = simple_strtoul(buf, &e, 10);
4200 	if (buf == e || (*e && *e != '\n') || max <= 0)
4201 		return -EINVAL;
4202 	mddev->sync_speed_max = max;
4203 	return len;
4204 }
4205 
4206 static struct md_sysfs_entry md_sync_max =
4207 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4208 
4209 static ssize_t
4210 degraded_show(struct mddev *mddev, char *page)
4211 {
4212 	return sprintf(page, "%d\n", mddev->degraded);
4213 }
4214 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4215 
4216 static ssize_t
4217 sync_force_parallel_show(struct mddev *mddev, char *page)
4218 {
4219 	return sprintf(page, "%d\n", mddev->parallel_resync);
4220 }
4221 
4222 static ssize_t
4223 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4224 {
4225 	long n;
4226 
4227 	if (strict_strtol(buf, 10, &n))
4228 		return -EINVAL;
4229 
4230 	if (n != 0 && n != 1)
4231 		return -EINVAL;
4232 
4233 	mddev->parallel_resync = n;
4234 
4235 	if (mddev->sync_thread)
4236 		wake_up(&resync_wait);
4237 
4238 	return len;
4239 }
4240 
4241 /* force parallel resync, even with shared block devices */
4242 static struct md_sysfs_entry md_sync_force_parallel =
4243 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4244        sync_force_parallel_show, sync_force_parallel_store);
4245 
4246 static ssize_t
4247 sync_speed_show(struct mddev *mddev, char *page)
4248 {
4249 	unsigned long resync, dt, db;
4250 	if (mddev->curr_resync == 0)
4251 		return sprintf(page, "none\n");
4252 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4253 	dt = (jiffies - mddev->resync_mark) / HZ;
4254 	if (!dt) dt++;
4255 	db = resync - mddev->resync_mark_cnt;
4256 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4257 }
4258 
4259 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4260 
4261 static ssize_t
4262 sync_completed_show(struct mddev *mddev, char *page)
4263 {
4264 	unsigned long long max_sectors, resync;
4265 
4266 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4267 		return sprintf(page, "none\n");
4268 
4269 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4270 		max_sectors = mddev->resync_max_sectors;
4271 	else
4272 		max_sectors = mddev->dev_sectors;
4273 
4274 	resync = mddev->curr_resync_completed;
4275 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4276 }
4277 
4278 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4279 
4280 static ssize_t
4281 min_sync_show(struct mddev *mddev, char *page)
4282 {
4283 	return sprintf(page, "%llu\n",
4284 		       (unsigned long long)mddev->resync_min);
4285 }
4286 static ssize_t
4287 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4288 {
4289 	unsigned long long min;
4290 	if (strict_strtoull(buf, 10, &min))
4291 		return -EINVAL;
4292 	if (min > mddev->resync_max)
4293 		return -EINVAL;
4294 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4295 		return -EBUSY;
4296 
4297 	/* Must be a multiple of chunk_size */
4298 	if (mddev->chunk_sectors) {
4299 		sector_t temp = min;
4300 		if (sector_div(temp, mddev->chunk_sectors))
4301 			return -EINVAL;
4302 	}
4303 	mddev->resync_min = min;
4304 
4305 	return len;
4306 }
4307 
4308 static struct md_sysfs_entry md_min_sync =
4309 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4310 
4311 static ssize_t
4312 max_sync_show(struct mddev *mddev, char *page)
4313 {
4314 	if (mddev->resync_max == MaxSector)
4315 		return sprintf(page, "max\n");
4316 	else
4317 		return sprintf(page, "%llu\n",
4318 			       (unsigned long long)mddev->resync_max);
4319 }
4320 static ssize_t
4321 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323 	if (strncmp(buf, "max", 3) == 0)
4324 		mddev->resync_max = MaxSector;
4325 	else {
4326 		unsigned long long max;
4327 		if (strict_strtoull(buf, 10, &max))
4328 			return -EINVAL;
4329 		if (max < mddev->resync_min)
4330 			return -EINVAL;
4331 		if (max < mddev->resync_max &&
4332 		    mddev->ro == 0 &&
4333 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334 			return -EBUSY;
4335 
4336 		/* Must be a multiple of chunk_size */
4337 		if (mddev->chunk_sectors) {
4338 			sector_t temp = max;
4339 			if (sector_div(temp, mddev->chunk_sectors))
4340 				return -EINVAL;
4341 		}
4342 		mddev->resync_max = max;
4343 	}
4344 	wake_up(&mddev->recovery_wait);
4345 	return len;
4346 }
4347 
4348 static struct md_sysfs_entry md_max_sync =
4349 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4350 
4351 static ssize_t
4352 suspend_lo_show(struct mddev *mddev, char *page)
4353 {
4354 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4355 }
4356 
4357 static ssize_t
4358 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4359 {
4360 	char *e;
4361 	unsigned long long new = simple_strtoull(buf, &e, 10);
4362 	unsigned long long old = mddev->suspend_lo;
4363 
4364 	if (mddev->pers == NULL ||
4365 	    mddev->pers->quiesce == NULL)
4366 		return -EINVAL;
4367 	if (buf == e || (*e && *e != '\n'))
4368 		return -EINVAL;
4369 
4370 	mddev->suspend_lo = new;
4371 	if (new >= old)
4372 		/* Shrinking suspended region */
4373 		mddev->pers->quiesce(mddev, 2);
4374 	else {
4375 		/* Expanding suspended region - need to wait */
4376 		mddev->pers->quiesce(mddev, 1);
4377 		mddev->pers->quiesce(mddev, 0);
4378 	}
4379 	return len;
4380 }
4381 static struct md_sysfs_entry md_suspend_lo =
4382 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4383 
4384 
4385 static ssize_t
4386 suspend_hi_show(struct mddev *mddev, char *page)
4387 {
4388 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4389 }
4390 
4391 static ssize_t
4392 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4393 {
4394 	char *e;
4395 	unsigned long long new = simple_strtoull(buf, &e, 10);
4396 	unsigned long long old = mddev->suspend_hi;
4397 
4398 	if (mddev->pers == NULL ||
4399 	    mddev->pers->quiesce == NULL)
4400 		return -EINVAL;
4401 	if (buf == e || (*e && *e != '\n'))
4402 		return -EINVAL;
4403 
4404 	mddev->suspend_hi = new;
4405 	if (new <= old)
4406 		/* Shrinking suspended region */
4407 		mddev->pers->quiesce(mddev, 2);
4408 	else {
4409 		/* Expanding suspended region - need to wait */
4410 		mddev->pers->quiesce(mddev, 1);
4411 		mddev->pers->quiesce(mddev, 0);
4412 	}
4413 	return len;
4414 }
4415 static struct md_sysfs_entry md_suspend_hi =
4416 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4417 
4418 static ssize_t
4419 reshape_position_show(struct mddev *mddev, char *page)
4420 {
4421 	if (mddev->reshape_position != MaxSector)
4422 		return sprintf(page, "%llu\n",
4423 			       (unsigned long long)mddev->reshape_position);
4424 	strcpy(page, "none\n");
4425 	return 5;
4426 }
4427 
4428 static ssize_t
4429 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4430 {
4431 	char *e;
4432 	unsigned long long new = simple_strtoull(buf, &e, 10);
4433 	if (mddev->pers)
4434 		return -EBUSY;
4435 	if (buf == e || (*e && *e != '\n'))
4436 		return -EINVAL;
4437 	mddev->reshape_position = new;
4438 	mddev->delta_disks = 0;
4439 	mddev->new_level = mddev->level;
4440 	mddev->new_layout = mddev->layout;
4441 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4442 	return len;
4443 }
4444 
4445 static struct md_sysfs_entry md_reshape_position =
4446 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4447        reshape_position_store);
4448 
4449 static ssize_t
4450 array_size_show(struct mddev *mddev, char *page)
4451 {
4452 	if (mddev->external_size)
4453 		return sprintf(page, "%llu\n",
4454 			       (unsigned long long)mddev->array_sectors/2);
4455 	else
4456 		return sprintf(page, "default\n");
4457 }
4458 
4459 static ssize_t
4460 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4461 {
4462 	sector_t sectors;
4463 
4464 	if (strncmp(buf, "default", 7) == 0) {
4465 		if (mddev->pers)
4466 			sectors = mddev->pers->size(mddev, 0, 0);
4467 		else
4468 			sectors = mddev->array_sectors;
4469 
4470 		mddev->external_size = 0;
4471 	} else {
4472 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4473 			return -EINVAL;
4474 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4475 			return -E2BIG;
4476 
4477 		mddev->external_size = 1;
4478 	}
4479 
4480 	mddev->array_sectors = sectors;
4481 	if (mddev->pers) {
4482 		set_capacity(mddev->gendisk, mddev->array_sectors);
4483 		revalidate_disk(mddev->gendisk);
4484 	}
4485 	return len;
4486 }
4487 
4488 static struct md_sysfs_entry md_array_size =
4489 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4490        array_size_store);
4491 
4492 static struct attribute *md_default_attrs[] = {
4493 	&md_level.attr,
4494 	&md_layout.attr,
4495 	&md_raid_disks.attr,
4496 	&md_chunk_size.attr,
4497 	&md_size.attr,
4498 	&md_resync_start.attr,
4499 	&md_metadata.attr,
4500 	&md_new_device.attr,
4501 	&md_safe_delay.attr,
4502 	&md_array_state.attr,
4503 	&md_reshape_position.attr,
4504 	&md_array_size.attr,
4505 	&max_corr_read_errors.attr,
4506 	NULL,
4507 };
4508 
4509 static struct attribute *md_redundancy_attrs[] = {
4510 	&md_scan_mode.attr,
4511 	&md_mismatches.attr,
4512 	&md_sync_min.attr,
4513 	&md_sync_max.attr,
4514 	&md_sync_speed.attr,
4515 	&md_sync_force_parallel.attr,
4516 	&md_sync_completed.attr,
4517 	&md_min_sync.attr,
4518 	&md_max_sync.attr,
4519 	&md_suspend_lo.attr,
4520 	&md_suspend_hi.attr,
4521 	&md_bitmap.attr,
4522 	&md_degraded.attr,
4523 	NULL,
4524 };
4525 static struct attribute_group md_redundancy_group = {
4526 	.name = NULL,
4527 	.attrs = md_redundancy_attrs,
4528 };
4529 
4530 
4531 static ssize_t
4532 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4533 {
4534 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4535 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4536 	ssize_t rv;
4537 
4538 	if (!entry->show)
4539 		return -EIO;
4540 	spin_lock(&all_mddevs_lock);
4541 	if (list_empty(&mddev->all_mddevs)) {
4542 		spin_unlock(&all_mddevs_lock);
4543 		return -EBUSY;
4544 	}
4545 	mddev_get(mddev);
4546 	spin_unlock(&all_mddevs_lock);
4547 
4548 	rv = mddev_lock(mddev);
4549 	if (!rv) {
4550 		rv = entry->show(mddev, page);
4551 		mddev_unlock(mddev);
4552 	}
4553 	mddev_put(mddev);
4554 	return rv;
4555 }
4556 
4557 static ssize_t
4558 md_attr_store(struct kobject *kobj, struct attribute *attr,
4559 	      const char *page, size_t length)
4560 {
4561 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4562 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4563 	ssize_t rv;
4564 
4565 	if (!entry->store)
4566 		return -EIO;
4567 	if (!capable(CAP_SYS_ADMIN))
4568 		return -EACCES;
4569 	spin_lock(&all_mddevs_lock);
4570 	if (list_empty(&mddev->all_mddevs)) {
4571 		spin_unlock(&all_mddevs_lock);
4572 		return -EBUSY;
4573 	}
4574 	mddev_get(mddev);
4575 	spin_unlock(&all_mddevs_lock);
4576 	rv = mddev_lock(mddev);
4577 	if (!rv) {
4578 		rv = entry->store(mddev, page, length);
4579 		mddev_unlock(mddev);
4580 	}
4581 	mddev_put(mddev);
4582 	return rv;
4583 }
4584 
4585 static void md_free(struct kobject *ko)
4586 {
4587 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4588 
4589 	if (mddev->sysfs_state)
4590 		sysfs_put(mddev->sysfs_state);
4591 
4592 	if (mddev->gendisk) {
4593 		del_gendisk(mddev->gendisk);
4594 		put_disk(mddev->gendisk);
4595 	}
4596 	if (mddev->queue)
4597 		blk_cleanup_queue(mddev->queue);
4598 
4599 	kfree(mddev);
4600 }
4601 
4602 static const struct sysfs_ops md_sysfs_ops = {
4603 	.show	= md_attr_show,
4604 	.store	= md_attr_store,
4605 };
4606 static struct kobj_type md_ktype = {
4607 	.release	= md_free,
4608 	.sysfs_ops	= &md_sysfs_ops,
4609 	.default_attrs	= md_default_attrs,
4610 };
4611 
4612 int mdp_major = 0;
4613 
4614 static void mddev_delayed_delete(struct work_struct *ws)
4615 {
4616 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4617 
4618 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4619 	kobject_del(&mddev->kobj);
4620 	kobject_put(&mddev->kobj);
4621 }
4622 
4623 static int md_alloc(dev_t dev, char *name)
4624 {
4625 	static DEFINE_MUTEX(disks_mutex);
4626 	struct mddev *mddev = mddev_find(dev);
4627 	struct gendisk *disk;
4628 	int partitioned;
4629 	int shift;
4630 	int unit;
4631 	int error;
4632 
4633 	if (!mddev)
4634 		return -ENODEV;
4635 
4636 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4637 	shift = partitioned ? MdpMinorShift : 0;
4638 	unit = MINOR(mddev->unit) >> shift;
4639 
4640 	/* wait for any previous instance of this device to be
4641 	 * completely removed (mddev_delayed_delete).
4642 	 */
4643 	flush_workqueue(md_misc_wq);
4644 
4645 	mutex_lock(&disks_mutex);
4646 	error = -EEXIST;
4647 	if (mddev->gendisk)
4648 		goto abort;
4649 
4650 	if (name) {
4651 		/* Need to ensure that 'name' is not a duplicate.
4652 		 */
4653 		struct mddev *mddev2;
4654 		spin_lock(&all_mddevs_lock);
4655 
4656 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4657 			if (mddev2->gendisk &&
4658 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4659 				spin_unlock(&all_mddevs_lock);
4660 				goto abort;
4661 			}
4662 		spin_unlock(&all_mddevs_lock);
4663 	}
4664 
4665 	error = -ENOMEM;
4666 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4667 	if (!mddev->queue)
4668 		goto abort;
4669 	mddev->queue->queuedata = mddev;
4670 
4671 	blk_queue_make_request(mddev->queue, md_make_request);
4672 	blk_set_stacking_limits(&mddev->queue->limits);
4673 
4674 	disk = alloc_disk(1 << shift);
4675 	if (!disk) {
4676 		blk_cleanup_queue(mddev->queue);
4677 		mddev->queue = NULL;
4678 		goto abort;
4679 	}
4680 	disk->major = MAJOR(mddev->unit);
4681 	disk->first_minor = unit << shift;
4682 	if (name)
4683 		strcpy(disk->disk_name, name);
4684 	else if (partitioned)
4685 		sprintf(disk->disk_name, "md_d%d", unit);
4686 	else
4687 		sprintf(disk->disk_name, "md%d", unit);
4688 	disk->fops = &md_fops;
4689 	disk->private_data = mddev;
4690 	disk->queue = mddev->queue;
4691 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4692 	/* Allow extended partitions.  This makes the
4693 	 * 'mdp' device redundant, but we can't really
4694 	 * remove it now.
4695 	 */
4696 	disk->flags |= GENHD_FL_EXT_DEVT;
4697 	mddev->gendisk = disk;
4698 	/* As soon as we call add_disk(), another thread could get
4699 	 * through to md_open, so make sure it doesn't get too far
4700 	 */
4701 	mutex_lock(&mddev->open_mutex);
4702 	add_disk(disk);
4703 
4704 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4705 				     &disk_to_dev(disk)->kobj, "%s", "md");
4706 	if (error) {
4707 		/* This isn't possible, but as kobject_init_and_add is marked
4708 		 * __must_check, we must do something with the result
4709 		 */
4710 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4711 		       disk->disk_name);
4712 		error = 0;
4713 	}
4714 	if (mddev->kobj.sd &&
4715 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4716 		printk(KERN_DEBUG "pointless warning\n");
4717 	mutex_unlock(&mddev->open_mutex);
4718  abort:
4719 	mutex_unlock(&disks_mutex);
4720 	if (!error && mddev->kobj.sd) {
4721 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4722 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4723 	}
4724 	mddev_put(mddev);
4725 	return error;
4726 }
4727 
4728 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4729 {
4730 	md_alloc(dev, NULL);
4731 	return NULL;
4732 }
4733 
4734 static int add_named_array(const char *val, struct kernel_param *kp)
4735 {
4736 	/* val must be "md_*" where * is not all digits.
4737 	 * We allocate an array with a large free minor number, and
4738 	 * set the name to val.  val must not already be an active name.
4739 	 */
4740 	int len = strlen(val);
4741 	char buf[DISK_NAME_LEN];
4742 
4743 	while (len && val[len-1] == '\n')
4744 		len--;
4745 	if (len >= DISK_NAME_LEN)
4746 		return -E2BIG;
4747 	strlcpy(buf, val, len+1);
4748 	if (strncmp(buf, "md_", 3) != 0)
4749 		return -EINVAL;
4750 	return md_alloc(0, buf);
4751 }
4752 
4753 static void md_safemode_timeout(unsigned long data)
4754 {
4755 	struct mddev *mddev = (struct mddev *) data;
4756 
4757 	if (!atomic_read(&mddev->writes_pending)) {
4758 		mddev->safemode = 1;
4759 		if (mddev->external)
4760 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4761 	}
4762 	md_wakeup_thread(mddev->thread);
4763 }
4764 
4765 static int start_dirty_degraded;
4766 
4767 int md_run(struct mddev *mddev)
4768 {
4769 	int err;
4770 	struct md_rdev *rdev;
4771 	struct md_personality *pers;
4772 
4773 	if (list_empty(&mddev->disks))
4774 		/* cannot run an array with no devices.. */
4775 		return -EINVAL;
4776 
4777 	if (mddev->pers)
4778 		return -EBUSY;
4779 	/* Cannot run until previous stop completes properly */
4780 	if (mddev->sysfs_active)
4781 		return -EBUSY;
4782 
4783 	/*
4784 	 * Analyze all RAID superblock(s)
4785 	 */
4786 	if (!mddev->raid_disks) {
4787 		if (!mddev->persistent)
4788 			return -EINVAL;
4789 		analyze_sbs(mddev);
4790 	}
4791 
4792 	if (mddev->level != LEVEL_NONE)
4793 		request_module("md-level-%d", mddev->level);
4794 	else if (mddev->clevel[0])
4795 		request_module("md-%s", mddev->clevel);
4796 
4797 	/*
4798 	 * Drop all container device buffers, from now on
4799 	 * the only valid external interface is through the md
4800 	 * device.
4801 	 */
4802 	rdev_for_each(rdev, mddev) {
4803 		if (test_bit(Faulty, &rdev->flags))
4804 			continue;
4805 		sync_blockdev(rdev->bdev);
4806 		invalidate_bdev(rdev->bdev);
4807 
4808 		/* perform some consistency tests on the device.
4809 		 * We don't want the data to overlap the metadata,
4810 		 * Internal Bitmap issues have been handled elsewhere.
4811 		 */
4812 		if (rdev->meta_bdev) {
4813 			/* Nothing to check */;
4814 		} else if (rdev->data_offset < rdev->sb_start) {
4815 			if (mddev->dev_sectors &&
4816 			    rdev->data_offset + mddev->dev_sectors
4817 			    > rdev->sb_start) {
4818 				printk("md: %s: data overlaps metadata\n",
4819 				       mdname(mddev));
4820 				return -EINVAL;
4821 			}
4822 		} else {
4823 			if (rdev->sb_start + rdev->sb_size/512
4824 			    > rdev->data_offset) {
4825 				printk("md: %s: metadata overlaps data\n",
4826 				       mdname(mddev));
4827 				return -EINVAL;
4828 			}
4829 		}
4830 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4831 	}
4832 
4833 	if (mddev->bio_set == NULL)
4834 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4835 					       sizeof(struct mddev *));
4836 
4837 	spin_lock(&pers_lock);
4838 	pers = find_pers(mddev->level, mddev->clevel);
4839 	if (!pers || !try_module_get(pers->owner)) {
4840 		spin_unlock(&pers_lock);
4841 		if (mddev->level != LEVEL_NONE)
4842 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4843 			       mddev->level);
4844 		else
4845 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4846 			       mddev->clevel);
4847 		return -EINVAL;
4848 	}
4849 	mddev->pers = pers;
4850 	spin_unlock(&pers_lock);
4851 	if (mddev->level != pers->level) {
4852 		mddev->level = pers->level;
4853 		mddev->new_level = pers->level;
4854 	}
4855 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4856 
4857 	if (mddev->reshape_position != MaxSector &&
4858 	    pers->start_reshape == NULL) {
4859 		/* This personality cannot handle reshaping... */
4860 		mddev->pers = NULL;
4861 		module_put(pers->owner);
4862 		return -EINVAL;
4863 	}
4864 
4865 	if (pers->sync_request) {
4866 		/* Warn if this is a potentially silly
4867 		 * configuration.
4868 		 */
4869 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4870 		struct md_rdev *rdev2;
4871 		int warned = 0;
4872 
4873 		rdev_for_each(rdev, mddev)
4874 			rdev_for_each(rdev2, mddev) {
4875 				if (rdev < rdev2 &&
4876 				    rdev->bdev->bd_contains ==
4877 				    rdev2->bdev->bd_contains) {
4878 					printk(KERN_WARNING
4879 					       "%s: WARNING: %s appears to be"
4880 					       " on the same physical disk as"
4881 					       " %s.\n",
4882 					       mdname(mddev),
4883 					       bdevname(rdev->bdev,b),
4884 					       bdevname(rdev2->bdev,b2));
4885 					warned = 1;
4886 				}
4887 			}
4888 
4889 		if (warned)
4890 			printk(KERN_WARNING
4891 			       "True protection against single-disk"
4892 			       " failure might be compromised.\n");
4893 	}
4894 
4895 	mddev->recovery = 0;
4896 	/* may be over-ridden by personality */
4897 	mddev->resync_max_sectors = mddev->dev_sectors;
4898 
4899 	mddev->ok_start_degraded = start_dirty_degraded;
4900 
4901 	if (start_readonly && mddev->ro == 0)
4902 		mddev->ro = 2; /* read-only, but switch on first write */
4903 
4904 	err = mddev->pers->run(mddev);
4905 	if (err)
4906 		printk(KERN_ERR "md: pers->run() failed ...\n");
4907 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4908 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4909 			  " but 'external_size' not in effect?\n", __func__);
4910 		printk(KERN_ERR
4911 		       "md: invalid array_size %llu > default size %llu\n",
4912 		       (unsigned long long)mddev->array_sectors / 2,
4913 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4914 		err = -EINVAL;
4915 		mddev->pers->stop(mddev);
4916 	}
4917 	if (err == 0 && mddev->pers->sync_request) {
4918 		err = bitmap_create(mddev);
4919 		if (err) {
4920 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4921 			       mdname(mddev), err);
4922 			mddev->pers->stop(mddev);
4923 		}
4924 	}
4925 	if (err) {
4926 		module_put(mddev->pers->owner);
4927 		mddev->pers = NULL;
4928 		bitmap_destroy(mddev);
4929 		return err;
4930 	}
4931 	if (mddev->pers->sync_request) {
4932 		if (mddev->kobj.sd &&
4933 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4934 			printk(KERN_WARNING
4935 			       "md: cannot register extra attributes for %s\n",
4936 			       mdname(mddev));
4937 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4938 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4939 		mddev->ro = 0;
4940 
4941  	atomic_set(&mddev->writes_pending,0);
4942 	atomic_set(&mddev->max_corr_read_errors,
4943 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4944 	mddev->safemode = 0;
4945 	mddev->safemode_timer.function = md_safemode_timeout;
4946 	mddev->safemode_timer.data = (unsigned long) mddev;
4947 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4948 	mddev->in_sync = 1;
4949 	smp_wmb();
4950 	mddev->ready = 1;
4951 	rdev_for_each(rdev, mddev)
4952 		if (rdev->raid_disk >= 0)
4953 			if (sysfs_link_rdev(mddev, rdev))
4954 				/* failure here is OK */;
4955 
4956 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4957 
4958 	if (mddev->flags)
4959 		md_update_sb(mddev, 0);
4960 
4961 	md_new_event(mddev);
4962 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4963 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4964 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4965 	return 0;
4966 }
4967 EXPORT_SYMBOL_GPL(md_run);
4968 
4969 static int do_md_run(struct mddev *mddev)
4970 {
4971 	int err;
4972 
4973 	err = md_run(mddev);
4974 	if (err)
4975 		goto out;
4976 	err = bitmap_load(mddev);
4977 	if (err) {
4978 		bitmap_destroy(mddev);
4979 		goto out;
4980 	}
4981 
4982 	md_wakeup_thread(mddev->thread);
4983 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4984 
4985 	set_capacity(mddev->gendisk, mddev->array_sectors);
4986 	revalidate_disk(mddev->gendisk);
4987 	mddev->changed = 1;
4988 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4989 out:
4990 	return err;
4991 }
4992 
4993 static int restart_array(struct mddev *mddev)
4994 {
4995 	struct gendisk *disk = mddev->gendisk;
4996 
4997 	/* Complain if it has no devices */
4998 	if (list_empty(&mddev->disks))
4999 		return -ENXIO;
5000 	if (!mddev->pers)
5001 		return -EINVAL;
5002 	if (!mddev->ro)
5003 		return -EBUSY;
5004 	mddev->safemode = 0;
5005 	mddev->ro = 0;
5006 	set_disk_ro(disk, 0);
5007 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5008 		mdname(mddev));
5009 	/* Kick recovery or resync if necessary */
5010 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5011 	md_wakeup_thread(mddev->thread);
5012 	md_wakeup_thread(mddev->sync_thread);
5013 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5014 	return 0;
5015 }
5016 
5017 /* similar to deny_write_access, but accounts for our holding a reference
5018  * to the file ourselves */
5019 static int deny_bitmap_write_access(struct file * file)
5020 {
5021 	struct inode *inode = file->f_mapping->host;
5022 
5023 	spin_lock(&inode->i_lock);
5024 	if (atomic_read(&inode->i_writecount) > 1) {
5025 		spin_unlock(&inode->i_lock);
5026 		return -ETXTBSY;
5027 	}
5028 	atomic_set(&inode->i_writecount, -1);
5029 	spin_unlock(&inode->i_lock);
5030 
5031 	return 0;
5032 }
5033 
5034 void restore_bitmap_write_access(struct file *file)
5035 {
5036 	struct inode *inode = file->f_mapping->host;
5037 
5038 	spin_lock(&inode->i_lock);
5039 	atomic_set(&inode->i_writecount, 1);
5040 	spin_unlock(&inode->i_lock);
5041 }
5042 
5043 static void md_clean(struct mddev *mddev)
5044 {
5045 	mddev->array_sectors = 0;
5046 	mddev->external_size = 0;
5047 	mddev->dev_sectors = 0;
5048 	mddev->raid_disks = 0;
5049 	mddev->recovery_cp = 0;
5050 	mddev->resync_min = 0;
5051 	mddev->resync_max = MaxSector;
5052 	mddev->reshape_position = MaxSector;
5053 	mddev->external = 0;
5054 	mddev->persistent = 0;
5055 	mddev->level = LEVEL_NONE;
5056 	mddev->clevel[0] = 0;
5057 	mddev->flags = 0;
5058 	mddev->ro = 0;
5059 	mddev->metadata_type[0] = 0;
5060 	mddev->chunk_sectors = 0;
5061 	mddev->ctime = mddev->utime = 0;
5062 	mddev->layout = 0;
5063 	mddev->max_disks = 0;
5064 	mddev->events = 0;
5065 	mddev->can_decrease_events = 0;
5066 	mddev->delta_disks = 0;
5067 	mddev->new_level = LEVEL_NONE;
5068 	mddev->new_layout = 0;
5069 	mddev->new_chunk_sectors = 0;
5070 	mddev->curr_resync = 0;
5071 	mddev->resync_mismatches = 0;
5072 	mddev->suspend_lo = mddev->suspend_hi = 0;
5073 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5074 	mddev->recovery = 0;
5075 	mddev->in_sync = 0;
5076 	mddev->changed = 0;
5077 	mddev->degraded = 0;
5078 	mddev->safemode = 0;
5079 	mddev->merge_check_needed = 0;
5080 	mddev->bitmap_info.offset = 0;
5081 	mddev->bitmap_info.default_offset = 0;
5082 	mddev->bitmap_info.chunksize = 0;
5083 	mddev->bitmap_info.daemon_sleep = 0;
5084 	mddev->bitmap_info.max_write_behind = 0;
5085 }
5086 
5087 static void __md_stop_writes(struct mddev *mddev)
5088 {
5089 	if (mddev->sync_thread) {
5090 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5091 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5092 		reap_sync_thread(mddev);
5093 	}
5094 
5095 	del_timer_sync(&mddev->safemode_timer);
5096 
5097 	bitmap_flush(mddev);
5098 	md_super_wait(mddev);
5099 
5100 	if (!mddev->in_sync || mddev->flags) {
5101 		/* mark array as shutdown cleanly */
5102 		mddev->in_sync = 1;
5103 		md_update_sb(mddev, 1);
5104 	}
5105 }
5106 
5107 void md_stop_writes(struct mddev *mddev)
5108 {
5109 	mddev_lock(mddev);
5110 	__md_stop_writes(mddev);
5111 	mddev_unlock(mddev);
5112 }
5113 EXPORT_SYMBOL_GPL(md_stop_writes);
5114 
5115 void md_stop(struct mddev *mddev)
5116 {
5117 	mddev->ready = 0;
5118 	mddev->pers->stop(mddev);
5119 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5120 		mddev->to_remove = &md_redundancy_group;
5121 	module_put(mddev->pers->owner);
5122 	mddev->pers = NULL;
5123 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 }
5125 EXPORT_SYMBOL_GPL(md_stop);
5126 
5127 static int md_set_readonly(struct mddev *mddev, int is_open)
5128 {
5129 	int err = 0;
5130 	mutex_lock(&mddev->open_mutex);
5131 	if (atomic_read(&mddev->openers) > is_open) {
5132 		printk("md: %s still in use.\n",mdname(mddev));
5133 		err = -EBUSY;
5134 		goto out;
5135 	}
5136 	if (mddev->pers) {
5137 		__md_stop_writes(mddev);
5138 
5139 		err  = -ENXIO;
5140 		if (mddev->ro==1)
5141 			goto out;
5142 		mddev->ro = 1;
5143 		set_disk_ro(mddev->gendisk, 1);
5144 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5145 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5146 		err = 0;
5147 	}
5148 out:
5149 	mutex_unlock(&mddev->open_mutex);
5150 	return err;
5151 }
5152 
5153 /* mode:
5154  *   0 - completely stop and dis-assemble array
5155  *   2 - stop but do not disassemble array
5156  */
5157 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5158 {
5159 	struct gendisk *disk = mddev->gendisk;
5160 	struct md_rdev *rdev;
5161 
5162 	mutex_lock(&mddev->open_mutex);
5163 	if (atomic_read(&mddev->openers) > is_open ||
5164 	    mddev->sysfs_active) {
5165 		printk("md: %s still in use.\n",mdname(mddev));
5166 		mutex_unlock(&mddev->open_mutex);
5167 		return -EBUSY;
5168 	}
5169 
5170 	if (mddev->pers) {
5171 		if (mddev->ro)
5172 			set_disk_ro(disk, 0);
5173 
5174 		__md_stop_writes(mddev);
5175 		md_stop(mddev);
5176 		mddev->queue->merge_bvec_fn = NULL;
5177 		mddev->queue->backing_dev_info.congested_fn = NULL;
5178 
5179 		/* tell userspace to handle 'inactive' */
5180 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5181 
5182 		rdev_for_each(rdev, mddev)
5183 			if (rdev->raid_disk >= 0)
5184 				sysfs_unlink_rdev(mddev, rdev);
5185 
5186 		set_capacity(disk, 0);
5187 		mutex_unlock(&mddev->open_mutex);
5188 		mddev->changed = 1;
5189 		revalidate_disk(disk);
5190 
5191 		if (mddev->ro)
5192 			mddev->ro = 0;
5193 	} else
5194 		mutex_unlock(&mddev->open_mutex);
5195 	/*
5196 	 * Free resources if final stop
5197 	 */
5198 	if (mode == 0) {
5199 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5200 
5201 		bitmap_destroy(mddev);
5202 		if (mddev->bitmap_info.file) {
5203 			restore_bitmap_write_access(mddev->bitmap_info.file);
5204 			fput(mddev->bitmap_info.file);
5205 			mddev->bitmap_info.file = NULL;
5206 		}
5207 		mddev->bitmap_info.offset = 0;
5208 
5209 		export_array(mddev);
5210 
5211 		md_clean(mddev);
5212 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5213 		if (mddev->hold_active == UNTIL_STOP)
5214 			mddev->hold_active = 0;
5215 	}
5216 	blk_integrity_unregister(disk);
5217 	md_new_event(mddev);
5218 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5219 	return 0;
5220 }
5221 
5222 #ifndef MODULE
5223 static void autorun_array(struct mddev *mddev)
5224 {
5225 	struct md_rdev *rdev;
5226 	int err;
5227 
5228 	if (list_empty(&mddev->disks))
5229 		return;
5230 
5231 	printk(KERN_INFO "md: running: ");
5232 
5233 	rdev_for_each(rdev, mddev) {
5234 		char b[BDEVNAME_SIZE];
5235 		printk("<%s>", bdevname(rdev->bdev,b));
5236 	}
5237 	printk("\n");
5238 
5239 	err = do_md_run(mddev);
5240 	if (err) {
5241 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5242 		do_md_stop(mddev, 0, 0);
5243 	}
5244 }
5245 
5246 /*
5247  * lets try to run arrays based on all disks that have arrived
5248  * until now. (those are in pending_raid_disks)
5249  *
5250  * the method: pick the first pending disk, collect all disks with
5251  * the same UUID, remove all from the pending list and put them into
5252  * the 'same_array' list. Then order this list based on superblock
5253  * update time (freshest comes first), kick out 'old' disks and
5254  * compare superblocks. If everything's fine then run it.
5255  *
5256  * If "unit" is allocated, then bump its reference count
5257  */
5258 static void autorun_devices(int part)
5259 {
5260 	struct md_rdev *rdev0, *rdev, *tmp;
5261 	struct mddev *mddev;
5262 	char b[BDEVNAME_SIZE];
5263 
5264 	printk(KERN_INFO "md: autorun ...\n");
5265 	while (!list_empty(&pending_raid_disks)) {
5266 		int unit;
5267 		dev_t dev;
5268 		LIST_HEAD(candidates);
5269 		rdev0 = list_entry(pending_raid_disks.next,
5270 					 struct md_rdev, same_set);
5271 
5272 		printk(KERN_INFO "md: considering %s ...\n",
5273 			bdevname(rdev0->bdev,b));
5274 		INIT_LIST_HEAD(&candidates);
5275 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5276 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5277 				printk(KERN_INFO "md:  adding %s ...\n",
5278 					bdevname(rdev->bdev,b));
5279 				list_move(&rdev->same_set, &candidates);
5280 			}
5281 		/*
5282 		 * now we have a set of devices, with all of them having
5283 		 * mostly sane superblocks. It's time to allocate the
5284 		 * mddev.
5285 		 */
5286 		if (part) {
5287 			dev = MKDEV(mdp_major,
5288 				    rdev0->preferred_minor << MdpMinorShift);
5289 			unit = MINOR(dev) >> MdpMinorShift;
5290 		} else {
5291 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5292 			unit = MINOR(dev);
5293 		}
5294 		if (rdev0->preferred_minor != unit) {
5295 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5296 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5297 			break;
5298 		}
5299 
5300 		md_probe(dev, NULL, NULL);
5301 		mddev = mddev_find(dev);
5302 		if (!mddev || !mddev->gendisk) {
5303 			if (mddev)
5304 				mddev_put(mddev);
5305 			printk(KERN_ERR
5306 				"md: cannot allocate memory for md drive.\n");
5307 			break;
5308 		}
5309 		if (mddev_lock(mddev))
5310 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5311 			       mdname(mddev));
5312 		else if (mddev->raid_disks || mddev->major_version
5313 			 || !list_empty(&mddev->disks)) {
5314 			printk(KERN_WARNING
5315 				"md: %s already running, cannot run %s\n",
5316 				mdname(mddev), bdevname(rdev0->bdev,b));
5317 			mddev_unlock(mddev);
5318 		} else {
5319 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5320 			mddev->persistent = 1;
5321 			rdev_for_each_list(rdev, tmp, &candidates) {
5322 				list_del_init(&rdev->same_set);
5323 				if (bind_rdev_to_array(rdev, mddev))
5324 					export_rdev(rdev);
5325 			}
5326 			autorun_array(mddev);
5327 			mddev_unlock(mddev);
5328 		}
5329 		/* on success, candidates will be empty, on error
5330 		 * it won't...
5331 		 */
5332 		rdev_for_each_list(rdev, tmp, &candidates) {
5333 			list_del_init(&rdev->same_set);
5334 			export_rdev(rdev);
5335 		}
5336 		mddev_put(mddev);
5337 	}
5338 	printk(KERN_INFO "md: ... autorun DONE.\n");
5339 }
5340 #endif /* !MODULE */
5341 
5342 static int get_version(void __user * arg)
5343 {
5344 	mdu_version_t ver;
5345 
5346 	ver.major = MD_MAJOR_VERSION;
5347 	ver.minor = MD_MINOR_VERSION;
5348 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5349 
5350 	if (copy_to_user(arg, &ver, sizeof(ver)))
5351 		return -EFAULT;
5352 
5353 	return 0;
5354 }
5355 
5356 static int get_array_info(struct mddev * mddev, void __user * arg)
5357 {
5358 	mdu_array_info_t info;
5359 	int nr,working,insync,failed,spare;
5360 	struct md_rdev *rdev;
5361 
5362 	nr=working=insync=failed=spare=0;
5363 	rdev_for_each(rdev, mddev) {
5364 		nr++;
5365 		if (test_bit(Faulty, &rdev->flags))
5366 			failed++;
5367 		else {
5368 			working++;
5369 			if (test_bit(In_sync, &rdev->flags))
5370 				insync++;
5371 			else
5372 				spare++;
5373 		}
5374 	}
5375 
5376 	info.major_version = mddev->major_version;
5377 	info.minor_version = mddev->minor_version;
5378 	info.patch_version = MD_PATCHLEVEL_VERSION;
5379 	info.ctime         = mddev->ctime;
5380 	info.level         = mddev->level;
5381 	info.size          = mddev->dev_sectors / 2;
5382 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5383 		info.size = -1;
5384 	info.nr_disks      = nr;
5385 	info.raid_disks    = mddev->raid_disks;
5386 	info.md_minor      = mddev->md_minor;
5387 	info.not_persistent= !mddev->persistent;
5388 
5389 	info.utime         = mddev->utime;
5390 	info.state         = 0;
5391 	if (mddev->in_sync)
5392 		info.state = (1<<MD_SB_CLEAN);
5393 	if (mddev->bitmap && mddev->bitmap_info.offset)
5394 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5395 	info.active_disks  = insync;
5396 	info.working_disks = working;
5397 	info.failed_disks  = failed;
5398 	info.spare_disks   = spare;
5399 
5400 	info.layout        = mddev->layout;
5401 	info.chunk_size    = mddev->chunk_sectors << 9;
5402 
5403 	if (copy_to_user(arg, &info, sizeof(info)))
5404 		return -EFAULT;
5405 
5406 	return 0;
5407 }
5408 
5409 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5410 {
5411 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5412 	char *ptr, *buf = NULL;
5413 	int err = -ENOMEM;
5414 
5415 	if (md_allow_write(mddev))
5416 		file = kmalloc(sizeof(*file), GFP_NOIO);
5417 	else
5418 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5419 
5420 	if (!file)
5421 		goto out;
5422 
5423 	/* bitmap disabled, zero the first byte and copy out */
5424 	if (!mddev->bitmap || !mddev->bitmap->file) {
5425 		file->pathname[0] = '\0';
5426 		goto copy_out;
5427 	}
5428 
5429 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5430 	if (!buf)
5431 		goto out;
5432 
5433 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5434 	if (IS_ERR(ptr))
5435 		goto out;
5436 
5437 	strcpy(file->pathname, ptr);
5438 
5439 copy_out:
5440 	err = 0;
5441 	if (copy_to_user(arg, file, sizeof(*file)))
5442 		err = -EFAULT;
5443 out:
5444 	kfree(buf);
5445 	kfree(file);
5446 	return err;
5447 }
5448 
5449 static int get_disk_info(struct mddev * mddev, void __user * arg)
5450 {
5451 	mdu_disk_info_t info;
5452 	struct md_rdev *rdev;
5453 
5454 	if (copy_from_user(&info, arg, sizeof(info)))
5455 		return -EFAULT;
5456 
5457 	rdev = find_rdev_nr(mddev, info.number);
5458 	if (rdev) {
5459 		info.major = MAJOR(rdev->bdev->bd_dev);
5460 		info.minor = MINOR(rdev->bdev->bd_dev);
5461 		info.raid_disk = rdev->raid_disk;
5462 		info.state = 0;
5463 		if (test_bit(Faulty, &rdev->flags))
5464 			info.state |= (1<<MD_DISK_FAULTY);
5465 		else if (test_bit(In_sync, &rdev->flags)) {
5466 			info.state |= (1<<MD_DISK_ACTIVE);
5467 			info.state |= (1<<MD_DISK_SYNC);
5468 		}
5469 		if (test_bit(WriteMostly, &rdev->flags))
5470 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5471 	} else {
5472 		info.major = info.minor = 0;
5473 		info.raid_disk = -1;
5474 		info.state = (1<<MD_DISK_REMOVED);
5475 	}
5476 
5477 	if (copy_to_user(arg, &info, sizeof(info)))
5478 		return -EFAULT;
5479 
5480 	return 0;
5481 }
5482 
5483 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5484 {
5485 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5486 	struct md_rdev *rdev;
5487 	dev_t dev = MKDEV(info->major,info->minor);
5488 
5489 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5490 		return -EOVERFLOW;
5491 
5492 	if (!mddev->raid_disks) {
5493 		int err;
5494 		/* expecting a device which has a superblock */
5495 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5496 		if (IS_ERR(rdev)) {
5497 			printk(KERN_WARNING
5498 				"md: md_import_device returned %ld\n",
5499 				PTR_ERR(rdev));
5500 			return PTR_ERR(rdev);
5501 		}
5502 		if (!list_empty(&mddev->disks)) {
5503 			struct md_rdev *rdev0
5504 				= list_entry(mddev->disks.next,
5505 					     struct md_rdev, same_set);
5506 			err = super_types[mddev->major_version]
5507 				.load_super(rdev, rdev0, mddev->minor_version);
5508 			if (err < 0) {
5509 				printk(KERN_WARNING
5510 					"md: %s has different UUID to %s\n",
5511 					bdevname(rdev->bdev,b),
5512 					bdevname(rdev0->bdev,b2));
5513 				export_rdev(rdev);
5514 				return -EINVAL;
5515 			}
5516 		}
5517 		err = bind_rdev_to_array(rdev, mddev);
5518 		if (err)
5519 			export_rdev(rdev);
5520 		return err;
5521 	}
5522 
5523 	/*
5524 	 * add_new_disk can be used once the array is assembled
5525 	 * to add "hot spares".  They must already have a superblock
5526 	 * written
5527 	 */
5528 	if (mddev->pers) {
5529 		int err;
5530 		if (!mddev->pers->hot_add_disk) {
5531 			printk(KERN_WARNING
5532 				"%s: personality does not support diskops!\n",
5533 			       mdname(mddev));
5534 			return -EINVAL;
5535 		}
5536 		if (mddev->persistent)
5537 			rdev = md_import_device(dev, mddev->major_version,
5538 						mddev->minor_version);
5539 		else
5540 			rdev = md_import_device(dev, -1, -1);
5541 		if (IS_ERR(rdev)) {
5542 			printk(KERN_WARNING
5543 				"md: md_import_device returned %ld\n",
5544 				PTR_ERR(rdev));
5545 			return PTR_ERR(rdev);
5546 		}
5547 		/* set saved_raid_disk if appropriate */
5548 		if (!mddev->persistent) {
5549 			if (info->state & (1<<MD_DISK_SYNC)  &&
5550 			    info->raid_disk < mddev->raid_disks) {
5551 				rdev->raid_disk = info->raid_disk;
5552 				set_bit(In_sync, &rdev->flags);
5553 			} else
5554 				rdev->raid_disk = -1;
5555 		} else
5556 			super_types[mddev->major_version].
5557 				validate_super(mddev, rdev);
5558 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5559 		    (!test_bit(In_sync, &rdev->flags) ||
5560 		     rdev->raid_disk != info->raid_disk)) {
5561 			/* This was a hot-add request, but events doesn't
5562 			 * match, so reject it.
5563 			 */
5564 			export_rdev(rdev);
5565 			return -EINVAL;
5566 		}
5567 
5568 		if (test_bit(In_sync, &rdev->flags))
5569 			rdev->saved_raid_disk = rdev->raid_disk;
5570 		else
5571 			rdev->saved_raid_disk = -1;
5572 
5573 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5574 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5575 			set_bit(WriteMostly, &rdev->flags);
5576 		else
5577 			clear_bit(WriteMostly, &rdev->flags);
5578 
5579 		rdev->raid_disk = -1;
5580 		err = bind_rdev_to_array(rdev, mddev);
5581 		if (!err && !mddev->pers->hot_remove_disk) {
5582 			/* If there is hot_add_disk but no hot_remove_disk
5583 			 * then added disks for geometry changes,
5584 			 * and should be added immediately.
5585 			 */
5586 			super_types[mddev->major_version].
5587 				validate_super(mddev, rdev);
5588 			err = mddev->pers->hot_add_disk(mddev, rdev);
5589 			if (err)
5590 				unbind_rdev_from_array(rdev);
5591 		}
5592 		if (err)
5593 			export_rdev(rdev);
5594 		else
5595 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5596 
5597 		md_update_sb(mddev, 1);
5598 		if (mddev->degraded)
5599 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5600 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5601 		if (!err)
5602 			md_new_event(mddev);
5603 		md_wakeup_thread(mddev->thread);
5604 		return err;
5605 	}
5606 
5607 	/* otherwise, add_new_disk is only allowed
5608 	 * for major_version==0 superblocks
5609 	 */
5610 	if (mddev->major_version != 0) {
5611 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5612 		       mdname(mddev));
5613 		return -EINVAL;
5614 	}
5615 
5616 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5617 		int err;
5618 		rdev = md_import_device(dev, -1, 0);
5619 		if (IS_ERR(rdev)) {
5620 			printk(KERN_WARNING
5621 				"md: error, md_import_device() returned %ld\n",
5622 				PTR_ERR(rdev));
5623 			return PTR_ERR(rdev);
5624 		}
5625 		rdev->desc_nr = info->number;
5626 		if (info->raid_disk < mddev->raid_disks)
5627 			rdev->raid_disk = info->raid_disk;
5628 		else
5629 			rdev->raid_disk = -1;
5630 
5631 		if (rdev->raid_disk < mddev->raid_disks)
5632 			if (info->state & (1<<MD_DISK_SYNC))
5633 				set_bit(In_sync, &rdev->flags);
5634 
5635 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5636 			set_bit(WriteMostly, &rdev->flags);
5637 
5638 		if (!mddev->persistent) {
5639 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5640 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5641 		} else
5642 			rdev->sb_start = calc_dev_sboffset(rdev);
5643 		rdev->sectors = rdev->sb_start;
5644 
5645 		err = bind_rdev_to_array(rdev, mddev);
5646 		if (err) {
5647 			export_rdev(rdev);
5648 			return err;
5649 		}
5650 	}
5651 
5652 	return 0;
5653 }
5654 
5655 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5656 {
5657 	char b[BDEVNAME_SIZE];
5658 	struct md_rdev *rdev;
5659 
5660 	rdev = find_rdev(mddev, dev);
5661 	if (!rdev)
5662 		return -ENXIO;
5663 
5664 	if (rdev->raid_disk >= 0)
5665 		goto busy;
5666 
5667 	kick_rdev_from_array(rdev);
5668 	md_update_sb(mddev, 1);
5669 	md_new_event(mddev);
5670 
5671 	return 0;
5672 busy:
5673 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5674 		bdevname(rdev->bdev,b), mdname(mddev));
5675 	return -EBUSY;
5676 }
5677 
5678 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5679 {
5680 	char b[BDEVNAME_SIZE];
5681 	int err;
5682 	struct md_rdev *rdev;
5683 
5684 	if (!mddev->pers)
5685 		return -ENODEV;
5686 
5687 	if (mddev->major_version != 0) {
5688 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5689 			" version-0 superblocks.\n",
5690 			mdname(mddev));
5691 		return -EINVAL;
5692 	}
5693 	if (!mddev->pers->hot_add_disk) {
5694 		printk(KERN_WARNING
5695 			"%s: personality does not support diskops!\n",
5696 			mdname(mddev));
5697 		return -EINVAL;
5698 	}
5699 
5700 	rdev = md_import_device(dev, -1, 0);
5701 	if (IS_ERR(rdev)) {
5702 		printk(KERN_WARNING
5703 			"md: error, md_import_device() returned %ld\n",
5704 			PTR_ERR(rdev));
5705 		return -EINVAL;
5706 	}
5707 
5708 	if (mddev->persistent)
5709 		rdev->sb_start = calc_dev_sboffset(rdev);
5710 	else
5711 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5712 
5713 	rdev->sectors = rdev->sb_start;
5714 
5715 	if (test_bit(Faulty, &rdev->flags)) {
5716 		printk(KERN_WARNING
5717 			"md: can not hot-add faulty %s disk to %s!\n",
5718 			bdevname(rdev->bdev,b), mdname(mddev));
5719 		err = -EINVAL;
5720 		goto abort_export;
5721 	}
5722 	clear_bit(In_sync, &rdev->flags);
5723 	rdev->desc_nr = -1;
5724 	rdev->saved_raid_disk = -1;
5725 	err = bind_rdev_to_array(rdev, mddev);
5726 	if (err)
5727 		goto abort_export;
5728 
5729 	/*
5730 	 * The rest should better be atomic, we can have disk failures
5731 	 * noticed in interrupt contexts ...
5732 	 */
5733 
5734 	rdev->raid_disk = -1;
5735 
5736 	md_update_sb(mddev, 1);
5737 
5738 	/*
5739 	 * Kick recovery, maybe this spare has to be added to the
5740 	 * array immediately.
5741 	 */
5742 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5743 	md_wakeup_thread(mddev->thread);
5744 	md_new_event(mddev);
5745 	return 0;
5746 
5747 abort_export:
5748 	export_rdev(rdev);
5749 	return err;
5750 }
5751 
5752 static int set_bitmap_file(struct mddev *mddev, int fd)
5753 {
5754 	int err;
5755 
5756 	if (mddev->pers) {
5757 		if (!mddev->pers->quiesce)
5758 			return -EBUSY;
5759 		if (mddev->recovery || mddev->sync_thread)
5760 			return -EBUSY;
5761 		/* we should be able to change the bitmap.. */
5762 	}
5763 
5764 
5765 	if (fd >= 0) {
5766 		if (mddev->bitmap)
5767 			return -EEXIST; /* cannot add when bitmap is present */
5768 		mddev->bitmap_info.file = fget(fd);
5769 
5770 		if (mddev->bitmap_info.file == NULL) {
5771 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5772 			       mdname(mddev));
5773 			return -EBADF;
5774 		}
5775 
5776 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5777 		if (err) {
5778 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5779 			       mdname(mddev));
5780 			fput(mddev->bitmap_info.file);
5781 			mddev->bitmap_info.file = NULL;
5782 			return err;
5783 		}
5784 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5785 	} else if (mddev->bitmap == NULL)
5786 		return -ENOENT; /* cannot remove what isn't there */
5787 	err = 0;
5788 	if (mddev->pers) {
5789 		mddev->pers->quiesce(mddev, 1);
5790 		if (fd >= 0) {
5791 			err = bitmap_create(mddev);
5792 			if (!err)
5793 				err = bitmap_load(mddev);
5794 		}
5795 		if (fd < 0 || err) {
5796 			bitmap_destroy(mddev);
5797 			fd = -1; /* make sure to put the file */
5798 		}
5799 		mddev->pers->quiesce(mddev, 0);
5800 	}
5801 	if (fd < 0) {
5802 		if (mddev->bitmap_info.file) {
5803 			restore_bitmap_write_access(mddev->bitmap_info.file);
5804 			fput(mddev->bitmap_info.file);
5805 		}
5806 		mddev->bitmap_info.file = NULL;
5807 	}
5808 
5809 	return err;
5810 }
5811 
5812 /*
5813  * set_array_info is used two different ways
5814  * The original usage is when creating a new array.
5815  * In this usage, raid_disks is > 0 and it together with
5816  *  level, size, not_persistent,layout,chunksize determine the
5817  *  shape of the array.
5818  *  This will always create an array with a type-0.90.0 superblock.
5819  * The newer usage is when assembling an array.
5820  *  In this case raid_disks will be 0, and the major_version field is
5821  *  use to determine which style super-blocks are to be found on the devices.
5822  *  The minor and patch _version numbers are also kept incase the
5823  *  super_block handler wishes to interpret them.
5824  */
5825 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5826 {
5827 
5828 	if (info->raid_disks == 0) {
5829 		/* just setting version number for superblock loading */
5830 		if (info->major_version < 0 ||
5831 		    info->major_version >= ARRAY_SIZE(super_types) ||
5832 		    super_types[info->major_version].name == NULL) {
5833 			/* maybe try to auto-load a module? */
5834 			printk(KERN_INFO
5835 				"md: superblock version %d not known\n",
5836 				info->major_version);
5837 			return -EINVAL;
5838 		}
5839 		mddev->major_version = info->major_version;
5840 		mddev->minor_version = info->minor_version;
5841 		mddev->patch_version = info->patch_version;
5842 		mddev->persistent = !info->not_persistent;
5843 		/* ensure mddev_put doesn't delete this now that there
5844 		 * is some minimal configuration.
5845 		 */
5846 		mddev->ctime         = get_seconds();
5847 		return 0;
5848 	}
5849 	mddev->major_version = MD_MAJOR_VERSION;
5850 	mddev->minor_version = MD_MINOR_VERSION;
5851 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5852 	mddev->ctime         = get_seconds();
5853 
5854 	mddev->level         = info->level;
5855 	mddev->clevel[0]     = 0;
5856 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5857 	mddev->raid_disks    = info->raid_disks;
5858 	/* don't set md_minor, it is determined by which /dev/md* was
5859 	 * openned
5860 	 */
5861 	if (info->state & (1<<MD_SB_CLEAN))
5862 		mddev->recovery_cp = MaxSector;
5863 	else
5864 		mddev->recovery_cp = 0;
5865 	mddev->persistent    = ! info->not_persistent;
5866 	mddev->external	     = 0;
5867 
5868 	mddev->layout        = info->layout;
5869 	mddev->chunk_sectors = info->chunk_size >> 9;
5870 
5871 	mddev->max_disks     = MD_SB_DISKS;
5872 
5873 	if (mddev->persistent)
5874 		mddev->flags         = 0;
5875 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5876 
5877 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5878 	mddev->bitmap_info.offset = 0;
5879 
5880 	mddev->reshape_position = MaxSector;
5881 
5882 	/*
5883 	 * Generate a 128 bit UUID
5884 	 */
5885 	get_random_bytes(mddev->uuid, 16);
5886 
5887 	mddev->new_level = mddev->level;
5888 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5889 	mddev->new_layout = mddev->layout;
5890 	mddev->delta_disks = 0;
5891 
5892 	return 0;
5893 }
5894 
5895 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5896 {
5897 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5898 
5899 	if (mddev->external_size)
5900 		return;
5901 
5902 	mddev->array_sectors = array_sectors;
5903 }
5904 EXPORT_SYMBOL(md_set_array_sectors);
5905 
5906 static int update_size(struct mddev *mddev, sector_t num_sectors)
5907 {
5908 	struct md_rdev *rdev;
5909 	int rv;
5910 	int fit = (num_sectors == 0);
5911 
5912 	if (mddev->pers->resize == NULL)
5913 		return -EINVAL;
5914 	/* The "num_sectors" is the number of sectors of each device that
5915 	 * is used.  This can only make sense for arrays with redundancy.
5916 	 * linear and raid0 always use whatever space is available. We can only
5917 	 * consider changing this number if no resync or reconstruction is
5918 	 * happening, and if the new size is acceptable. It must fit before the
5919 	 * sb_start or, if that is <data_offset, it must fit before the size
5920 	 * of each device.  If num_sectors is zero, we find the largest size
5921 	 * that fits.
5922 	 */
5923 	if (mddev->sync_thread)
5924 		return -EBUSY;
5925 	if (mddev->bitmap)
5926 		/* Sorry, cannot grow a bitmap yet, just remove it,
5927 		 * grow, and re-add.
5928 		 */
5929 		return -EBUSY;
5930 	rdev_for_each(rdev, mddev) {
5931 		sector_t avail = rdev->sectors;
5932 
5933 		if (fit && (num_sectors == 0 || num_sectors > avail))
5934 			num_sectors = avail;
5935 		if (avail < num_sectors)
5936 			return -ENOSPC;
5937 	}
5938 	rv = mddev->pers->resize(mddev, num_sectors);
5939 	if (!rv)
5940 		revalidate_disk(mddev->gendisk);
5941 	return rv;
5942 }
5943 
5944 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5945 {
5946 	int rv;
5947 	/* change the number of raid disks */
5948 	if (mddev->pers->check_reshape == NULL)
5949 		return -EINVAL;
5950 	if (raid_disks <= 0 ||
5951 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5952 		return -EINVAL;
5953 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5954 		return -EBUSY;
5955 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5956 
5957 	rv = mddev->pers->check_reshape(mddev);
5958 	if (rv < 0)
5959 		mddev->delta_disks = 0;
5960 	return rv;
5961 }
5962 
5963 
5964 /*
5965  * update_array_info is used to change the configuration of an
5966  * on-line array.
5967  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5968  * fields in the info are checked against the array.
5969  * Any differences that cannot be handled will cause an error.
5970  * Normally, only one change can be managed at a time.
5971  */
5972 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5973 {
5974 	int rv = 0;
5975 	int cnt = 0;
5976 	int state = 0;
5977 
5978 	/* calculate expected state,ignoring low bits */
5979 	if (mddev->bitmap && mddev->bitmap_info.offset)
5980 		state |= (1 << MD_SB_BITMAP_PRESENT);
5981 
5982 	if (mddev->major_version != info->major_version ||
5983 	    mddev->minor_version != info->minor_version ||
5984 /*	    mddev->patch_version != info->patch_version || */
5985 	    mddev->ctime         != info->ctime         ||
5986 	    mddev->level         != info->level         ||
5987 /*	    mddev->layout        != info->layout        || */
5988 	    !mddev->persistent	 != info->not_persistent||
5989 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5990 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5991 	    ((state^info->state) & 0xfffffe00)
5992 		)
5993 		return -EINVAL;
5994 	/* Check there is only one change */
5995 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5996 		cnt++;
5997 	if (mddev->raid_disks != info->raid_disks)
5998 		cnt++;
5999 	if (mddev->layout != info->layout)
6000 		cnt++;
6001 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6002 		cnt++;
6003 	if (cnt == 0)
6004 		return 0;
6005 	if (cnt > 1)
6006 		return -EINVAL;
6007 
6008 	if (mddev->layout != info->layout) {
6009 		/* Change layout
6010 		 * we don't need to do anything at the md level, the
6011 		 * personality will take care of it all.
6012 		 */
6013 		if (mddev->pers->check_reshape == NULL)
6014 			return -EINVAL;
6015 		else {
6016 			mddev->new_layout = info->layout;
6017 			rv = mddev->pers->check_reshape(mddev);
6018 			if (rv)
6019 				mddev->new_layout = mddev->layout;
6020 			return rv;
6021 		}
6022 	}
6023 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6024 		rv = update_size(mddev, (sector_t)info->size * 2);
6025 
6026 	if (mddev->raid_disks    != info->raid_disks)
6027 		rv = update_raid_disks(mddev, info->raid_disks);
6028 
6029 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6030 		if (mddev->pers->quiesce == NULL)
6031 			return -EINVAL;
6032 		if (mddev->recovery || mddev->sync_thread)
6033 			return -EBUSY;
6034 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6035 			/* add the bitmap */
6036 			if (mddev->bitmap)
6037 				return -EEXIST;
6038 			if (mddev->bitmap_info.default_offset == 0)
6039 				return -EINVAL;
6040 			mddev->bitmap_info.offset =
6041 				mddev->bitmap_info.default_offset;
6042 			mddev->pers->quiesce(mddev, 1);
6043 			rv = bitmap_create(mddev);
6044 			if (!rv)
6045 				rv = bitmap_load(mddev);
6046 			if (rv)
6047 				bitmap_destroy(mddev);
6048 			mddev->pers->quiesce(mddev, 0);
6049 		} else {
6050 			/* remove the bitmap */
6051 			if (!mddev->bitmap)
6052 				return -ENOENT;
6053 			if (mddev->bitmap->file)
6054 				return -EINVAL;
6055 			mddev->pers->quiesce(mddev, 1);
6056 			bitmap_destroy(mddev);
6057 			mddev->pers->quiesce(mddev, 0);
6058 			mddev->bitmap_info.offset = 0;
6059 		}
6060 	}
6061 	md_update_sb(mddev, 1);
6062 	return rv;
6063 }
6064 
6065 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6066 {
6067 	struct md_rdev *rdev;
6068 
6069 	if (mddev->pers == NULL)
6070 		return -ENODEV;
6071 
6072 	rdev = find_rdev(mddev, dev);
6073 	if (!rdev)
6074 		return -ENODEV;
6075 
6076 	md_error(mddev, rdev);
6077 	if (!test_bit(Faulty, &rdev->flags))
6078 		return -EBUSY;
6079 	return 0;
6080 }
6081 
6082 /*
6083  * We have a problem here : there is no easy way to give a CHS
6084  * virtual geometry. We currently pretend that we have a 2 heads
6085  * 4 sectors (with a BIG number of cylinders...). This drives
6086  * dosfs just mad... ;-)
6087  */
6088 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6089 {
6090 	struct mddev *mddev = bdev->bd_disk->private_data;
6091 
6092 	geo->heads = 2;
6093 	geo->sectors = 4;
6094 	geo->cylinders = mddev->array_sectors / 8;
6095 	return 0;
6096 }
6097 
6098 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6099 			unsigned int cmd, unsigned long arg)
6100 {
6101 	int err = 0;
6102 	void __user *argp = (void __user *)arg;
6103 	struct mddev *mddev = NULL;
6104 	int ro;
6105 
6106 	switch (cmd) {
6107 	case RAID_VERSION:
6108 	case GET_ARRAY_INFO:
6109 	case GET_DISK_INFO:
6110 		break;
6111 	default:
6112 		if (!capable(CAP_SYS_ADMIN))
6113 			return -EACCES;
6114 	}
6115 
6116 	/*
6117 	 * Commands dealing with the RAID driver but not any
6118 	 * particular array:
6119 	 */
6120 	switch (cmd)
6121 	{
6122 		case RAID_VERSION:
6123 			err = get_version(argp);
6124 			goto done;
6125 
6126 		case PRINT_RAID_DEBUG:
6127 			err = 0;
6128 			md_print_devices();
6129 			goto done;
6130 
6131 #ifndef MODULE
6132 		case RAID_AUTORUN:
6133 			err = 0;
6134 			autostart_arrays(arg);
6135 			goto done;
6136 #endif
6137 		default:;
6138 	}
6139 
6140 	/*
6141 	 * Commands creating/starting a new array:
6142 	 */
6143 
6144 	mddev = bdev->bd_disk->private_data;
6145 
6146 	if (!mddev) {
6147 		BUG();
6148 		goto abort;
6149 	}
6150 
6151 	err = mddev_lock(mddev);
6152 	if (err) {
6153 		printk(KERN_INFO
6154 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6155 			err, cmd);
6156 		goto abort;
6157 	}
6158 
6159 	switch (cmd)
6160 	{
6161 		case SET_ARRAY_INFO:
6162 			{
6163 				mdu_array_info_t info;
6164 				if (!arg)
6165 					memset(&info, 0, sizeof(info));
6166 				else if (copy_from_user(&info, argp, sizeof(info))) {
6167 					err = -EFAULT;
6168 					goto abort_unlock;
6169 				}
6170 				if (mddev->pers) {
6171 					err = update_array_info(mddev, &info);
6172 					if (err) {
6173 						printk(KERN_WARNING "md: couldn't update"
6174 						       " array info. %d\n", err);
6175 						goto abort_unlock;
6176 					}
6177 					goto done_unlock;
6178 				}
6179 				if (!list_empty(&mddev->disks)) {
6180 					printk(KERN_WARNING
6181 					       "md: array %s already has disks!\n",
6182 					       mdname(mddev));
6183 					err = -EBUSY;
6184 					goto abort_unlock;
6185 				}
6186 				if (mddev->raid_disks) {
6187 					printk(KERN_WARNING
6188 					       "md: array %s already initialised!\n",
6189 					       mdname(mddev));
6190 					err = -EBUSY;
6191 					goto abort_unlock;
6192 				}
6193 				err = set_array_info(mddev, &info);
6194 				if (err) {
6195 					printk(KERN_WARNING "md: couldn't set"
6196 					       " array info. %d\n", err);
6197 					goto abort_unlock;
6198 				}
6199 			}
6200 			goto done_unlock;
6201 
6202 		default:;
6203 	}
6204 
6205 	/*
6206 	 * Commands querying/configuring an existing array:
6207 	 */
6208 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6209 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6210 	if ((!mddev->raid_disks && !mddev->external)
6211 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6212 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6213 	    && cmd != GET_BITMAP_FILE) {
6214 		err = -ENODEV;
6215 		goto abort_unlock;
6216 	}
6217 
6218 	/*
6219 	 * Commands even a read-only array can execute:
6220 	 */
6221 	switch (cmd)
6222 	{
6223 		case GET_ARRAY_INFO:
6224 			err = get_array_info(mddev, argp);
6225 			goto done_unlock;
6226 
6227 		case GET_BITMAP_FILE:
6228 			err = get_bitmap_file(mddev, argp);
6229 			goto done_unlock;
6230 
6231 		case GET_DISK_INFO:
6232 			err = get_disk_info(mddev, argp);
6233 			goto done_unlock;
6234 
6235 		case RESTART_ARRAY_RW:
6236 			err = restart_array(mddev);
6237 			goto done_unlock;
6238 
6239 		case STOP_ARRAY:
6240 			err = do_md_stop(mddev, 0, 1);
6241 			goto done_unlock;
6242 
6243 		case STOP_ARRAY_RO:
6244 			err = md_set_readonly(mddev, 1);
6245 			goto done_unlock;
6246 
6247 		case BLKROSET:
6248 			if (get_user(ro, (int __user *)(arg))) {
6249 				err = -EFAULT;
6250 				goto done_unlock;
6251 			}
6252 			err = -EINVAL;
6253 
6254 			/* if the bdev is going readonly the value of mddev->ro
6255 			 * does not matter, no writes are coming
6256 			 */
6257 			if (ro)
6258 				goto done_unlock;
6259 
6260 			/* are we are already prepared for writes? */
6261 			if (mddev->ro != 1)
6262 				goto done_unlock;
6263 
6264 			/* transitioning to readauto need only happen for
6265 			 * arrays that call md_write_start
6266 			 */
6267 			if (mddev->pers) {
6268 				err = restart_array(mddev);
6269 				if (err == 0) {
6270 					mddev->ro = 2;
6271 					set_disk_ro(mddev->gendisk, 0);
6272 				}
6273 			}
6274 			goto done_unlock;
6275 	}
6276 
6277 	/*
6278 	 * The remaining ioctls are changing the state of the
6279 	 * superblock, so we do not allow them on read-only arrays.
6280 	 * However non-MD ioctls (e.g. get-size) will still come through
6281 	 * here and hit the 'default' below, so only disallow
6282 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6283 	 */
6284 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6285 		if (mddev->ro == 2) {
6286 			mddev->ro = 0;
6287 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6288 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6289 			md_wakeup_thread(mddev->thread);
6290 		} else {
6291 			err = -EROFS;
6292 			goto abort_unlock;
6293 		}
6294 	}
6295 
6296 	switch (cmd)
6297 	{
6298 		case ADD_NEW_DISK:
6299 		{
6300 			mdu_disk_info_t info;
6301 			if (copy_from_user(&info, argp, sizeof(info)))
6302 				err = -EFAULT;
6303 			else
6304 				err = add_new_disk(mddev, &info);
6305 			goto done_unlock;
6306 		}
6307 
6308 		case HOT_REMOVE_DISK:
6309 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6310 			goto done_unlock;
6311 
6312 		case HOT_ADD_DISK:
6313 			err = hot_add_disk(mddev, new_decode_dev(arg));
6314 			goto done_unlock;
6315 
6316 		case SET_DISK_FAULTY:
6317 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6318 			goto done_unlock;
6319 
6320 		case RUN_ARRAY:
6321 			err = do_md_run(mddev);
6322 			goto done_unlock;
6323 
6324 		case SET_BITMAP_FILE:
6325 			err = set_bitmap_file(mddev, (int)arg);
6326 			goto done_unlock;
6327 
6328 		default:
6329 			err = -EINVAL;
6330 			goto abort_unlock;
6331 	}
6332 
6333 done_unlock:
6334 abort_unlock:
6335 	if (mddev->hold_active == UNTIL_IOCTL &&
6336 	    err != -EINVAL)
6337 		mddev->hold_active = 0;
6338 	mddev_unlock(mddev);
6339 
6340 	return err;
6341 done:
6342 	if (err)
6343 		MD_BUG();
6344 abort:
6345 	return err;
6346 }
6347 #ifdef CONFIG_COMPAT
6348 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6349 		    unsigned int cmd, unsigned long arg)
6350 {
6351 	switch (cmd) {
6352 	case HOT_REMOVE_DISK:
6353 	case HOT_ADD_DISK:
6354 	case SET_DISK_FAULTY:
6355 	case SET_BITMAP_FILE:
6356 		/* These take in integer arg, do not convert */
6357 		break;
6358 	default:
6359 		arg = (unsigned long)compat_ptr(arg);
6360 		break;
6361 	}
6362 
6363 	return md_ioctl(bdev, mode, cmd, arg);
6364 }
6365 #endif /* CONFIG_COMPAT */
6366 
6367 static int md_open(struct block_device *bdev, fmode_t mode)
6368 {
6369 	/*
6370 	 * Succeed if we can lock the mddev, which confirms that
6371 	 * it isn't being stopped right now.
6372 	 */
6373 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6374 	int err;
6375 
6376 	if (mddev->gendisk != bdev->bd_disk) {
6377 		/* we are racing with mddev_put which is discarding this
6378 		 * bd_disk.
6379 		 */
6380 		mddev_put(mddev);
6381 		/* Wait until bdev->bd_disk is definitely gone */
6382 		flush_workqueue(md_misc_wq);
6383 		/* Then retry the open from the top */
6384 		return -ERESTARTSYS;
6385 	}
6386 	BUG_ON(mddev != bdev->bd_disk->private_data);
6387 
6388 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6389 		goto out;
6390 
6391 	err = 0;
6392 	atomic_inc(&mddev->openers);
6393 	mutex_unlock(&mddev->open_mutex);
6394 
6395 	check_disk_change(bdev);
6396  out:
6397 	return err;
6398 }
6399 
6400 static int md_release(struct gendisk *disk, fmode_t mode)
6401 {
6402  	struct mddev *mddev = disk->private_data;
6403 
6404 	BUG_ON(!mddev);
6405 	atomic_dec(&mddev->openers);
6406 	mddev_put(mddev);
6407 
6408 	return 0;
6409 }
6410 
6411 static int md_media_changed(struct gendisk *disk)
6412 {
6413 	struct mddev *mddev = disk->private_data;
6414 
6415 	return mddev->changed;
6416 }
6417 
6418 static int md_revalidate(struct gendisk *disk)
6419 {
6420 	struct mddev *mddev = disk->private_data;
6421 
6422 	mddev->changed = 0;
6423 	return 0;
6424 }
6425 static const struct block_device_operations md_fops =
6426 {
6427 	.owner		= THIS_MODULE,
6428 	.open		= md_open,
6429 	.release	= md_release,
6430 	.ioctl		= md_ioctl,
6431 #ifdef CONFIG_COMPAT
6432 	.compat_ioctl	= md_compat_ioctl,
6433 #endif
6434 	.getgeo		= md_getgeo,
6435 	.media_changed  = md_media_changed,
6436 	.revalidate_disk= md_revalidate,
6437 };
6438 
6439 static int md_thread(void * arg)
6440 {
6441 	struct md_thread *thread = arg;
6442 
6443 	/*
6444 	 * md_thread is a 'system-thread', it's priority should be very
6445 	 * high. We avoid resource deadlocks individually in each
6446 	 * raid personality. (RAID5 does preallocation) We also use RR and
6447 	 * the very same RT priority as kswapd, thus we will never get
6448 	 * into a priority inversion deadlock.
6449 	 *
6450 	 * we definitely have to have equal or higher priority than
6451 	 * bdflush, otherwise bdflush will deadlock if there are too
6452 	 * many dirty RAID5 blocks.
6453 	 */
6454 
6455 	allow_signal(SIGKILL);
6456 	while (!kthread_should_stop()) {
6457 
6458 		/* We need to wait INTERRUPTIBLE so that
6459 		 * we don't add to the load-average.
6460 		 * That means we need to be sure no signals are
6461 		 * pending
6462 		 */
6463 		if (signal_pending(current))
6464 			flush_signals(current);
6465 
6466 		wait_event_interruptible_timeout
6467 			(thread->wqueue,
6468 			 test_bit(THREAD_WAKEUP, &thread->flags)
6469 			 || kthread_should_stop(),
6470 			 thread->timeout);
6471 
6472 		clear_bit(THREAD_WAKEUP, &thread->flags);
6473 		if (!kthread_should_stop())
6474 			thread->run(thread->mddev);
6475 	}
6476 
6477 	return 0;
6478 }
6479 
6480 void md_wakeup_thread(struct md_thread *thread)
6481 {
6482 	if (thread) {
6483 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6484 		set_bit(THREAD_WAKEUP, &thread->flags);
6485 		wake_up(&thread->wqueue);
6486 	}
6487 }
6488 
6489 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6490 				 const char *name)
6491 {
6492 	struct md_thread *thread;
6493 
6494 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6495 	if (!thread)
6496 		return NULL;
6497 
6498 	init_waitqueue_head(&thread->wqueue);
6499 
6500 	thread->run = run;
6501 	thread->mddev = mddev;
6502 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6503 	thread->tsk = kthread_run(md_thread, thread,
6504 				  "%s_%s",
6505 				  mdname(thread->mddev),
6506 				  name ?: mddev->pers->name);
6507 	if (IS_ERR(thread->tsk)) {
6508 		kfree(thread);
6509 		return NULL;
6510 	}
6511 	return thread;
6512 }
6513 
6514 void md_unregister_thread(struct md_thread **threadp)
6515 {
6516 	struct md_thread *thread = *threadp;
6517 	if (!thread)
6518 		return;
6519 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6520 	/* Locking ensures that mddev_unlock does not wake_up a
6521 	 * non-existent thread
6522 	 */
6523 	spin_lock(&pers_lock);
6524 	*threadp = NULL;
6525 	spin_unlock(&pers_lock);
6526 
6527 	kthread_stop(thread->tsk);
6528 	kfree(thread);
6529 }
6530 
6531 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6532 {
6533 	if (!mddev) {
6534 		MD_BUG();
6535 		return;
6536 	}
6537 
6538 	if (!rdev || test_bit(Faulty, &rdev->flags))
6539 		return;
6540 
6541 	if (!mddev->pers || !mddev->pers->error_handler)
6542 		return;
6543 	mddev->pers->error_handler(mddev,rdev);
6544 	if (mddev->degraded)
6545 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6546 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6547 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6548 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6549 	md_wakeup_thread(mddev->thread);
6550 	if (mddev->event_work.func)
6551 		queue_work(md_misc_wq, &mddev->event_work);
6552 	md_new_event_inintr(mddev);
6553 }
6554 
6555 /* seq_file implementation /proc/mdstat */
6556 
6557 static void status_unused(struct seq_file *seq)
6558 {
6559 	int i = 0;
6560 	struct md_rdev *rdev;
6561 
6562 	seq_printf(seq, "unused devices: ");
6563 
6564 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6565 		char b[BDEVNAME_SIZE];
6566 		i++;
6567 		seq_printf(seq, "%s ",
6568 			      bdevname(rdev->bdev,b));
6569 	}
6570 	if (!i)
6571 		seq_printf(seq, "<none>");
6572 
6573 	seq_printf(seq, "\n");
6574 }
6575 
6576 
6577 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6578 {
6579 	sector_t max_sectors, resync, res;
6580 	unsigned long dt, db;
6581 	sector_t rt;
6582 	int scale;
6583 	unsigned int per_milli;
6584 
6585 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6586 
6587 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6588 		max_sectors = mddev->resync_max_sectors;
6589 	else
6590 		max_sectors = mddev->dev_sectors;
6591 
6592 	/*
6593 	 * Should not happen.
6594 	 */
6595 	if (!max_sectors) {
6596 		MD_BUG();
6597 		return;
6598 	}
6599 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6600 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6601 	 * u32, as those are the requirements for sector_div.
6602 	 * Thus 'scale' must be at least 10
6603 	 */
6604 	scale = 10;
6605 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6606 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6607 			scale++;
6608 	}
6609 	res = (resync>>scale)*1000;
6610 	sector_div(res, (u32)((max_sectors>>scale)+1));
6611 
6612 	per_milli = res;
6613 	{
6614 		int i, x = per_milli/50, y = 20-x;
6615 		seq_printf(seq, "[");
6616 		for (i = 0; i < x; i++)
6617 			seq_printf(seq, "=");
6618 		seq_printf(seq, ">");
6619 		for (i = 0; i < y; i++)
6620 			seq_printf(seq, ".");
6621 		seq_printf(seq, "] ");
6622 	}
6623 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6624 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6625 		    "reshape" :
6626 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6627 		     "check" :
6628 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6629 		      "resync" : "recovery"))),
6630 		   per_milli/10, per_milli % 10,
6631 		   (unsigned long long) resync/2,
6632 		   (unsigned long long) max_sectors/2);
6633 
6634 	/*
6635 	 * dt: time from mark until now
6636 	 * db: blocks written from mark until now
6637 	 * rt: remaining time
6638 	 *
6639 	 * rt is a sector_t, so could be 32bit or 64bit.
6640 	 * So we divide before multiply in case it is 32bit and close
6641 	 * to the limit.
6642 	 * We scale the divisor (db) by 32 to avoid losing precision
6643 	 * near the end of resync when the number of remaining sectors
6644 	 * is close to 'db'.
6645 	 * We then divide rt by 32 after multiplying by db to compensate.
6646 	 * The '+1' avoids division by zero if db is very small.
6647 	 */
6648 	dt = ((jiffies - mddev->resync_mark) / HZ);
6649 	if (!dt) dt++;
6650 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6651 		- mddev->resync_mark_cnt;
6652 
6653 	rt = max_sectors - resync;    /* number of remaining sectors */
6654 	sector_div(rt, db/32+1);
6655 	rt *= dt;
6656 	rt >>= 5;
6657 
6658 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6659 		   ((unsigned long)rt % 60)/6);
6660 
6661 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6662 }
6663 
6664 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6665 {
6666 	struct list_head *tmp;
6667 	loff_t l = *pos;
6668 	struct mddev *mddev;
6669 
6670 	if (l >= 0x10000)
6671 		return NULL;
6672 	if (!l--)
6673 		/* header */
6674 		return (void*)1;
6675 
6676 	spin_lock(&all_mddevs_lock);
6677 	list_for_each(tmp,&all_mddevs)
6678 		if (!l--) {
6679 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6680 			mddev_get(mddev);
6681 			spin_unlock(&all_mddevs_lock);
6682 			return mddev;
6683 		}
6684 	spin_unlock(&all_mddevs_lock);
6685 	if (!l--)
6686 		return (void*)2;/* tail */
6687 	return NULL;
6688 }
6689 
6690 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6691 {
6692 	struct list_head *tmp;
6693 	struct mddev *next_mddev, *mddev = v;
6694 
6695 	++*pos;
6696 	if (v == (void*)2)
6697 		return NULL;
6698 
6699 	spin_lock(&all_mddevs_lock);
6700 	if (v == (void*)1)
6701 		tmp = all_mddevs.next;
6702 	else
6703 		tmp = mddev->all_mddevs.next;
6704 	if (tmp != &all_mddevs)
6705 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6706 	else {
6707 		next_mddev = (void*)2;
6708 		*pos = 0x10000;
6709 	}
6710 	spin_unlock(&all_mddevs_lock);
6711 
6712 	if (v != (void*)1)
6713 		mddev_put(mddev);
6714 	return next_mddev;
6715 
6716 }
6717 
6718 static void md_seq_stop(struct seq_file *seq, void *v)
6719 {
6720 	struct mddev *mddev = v;
6721 
6722 	if (mddev && v != (void*)1 && v != (void*)2)
6723 		mddev_put(mddev);
6724 }
6725 
6726 static int md_seq_show(struct seq_file *seq, void *v)
6727 {
6728 	struct mddev *mddev = v;
6729 	sector_t sectors;
6730 	struct md_rdev *rdev;
6731 
6732 	if (v == (void*)1) {
6733 		struct md_personality *pers;
6734 		seq_printf(seq, "Personalities : ");
6735 		spin_lock(&pers_lock);
6736 		list_for_each_entry(pers, &pers_list, list)
6737 			seq_printf(seq, "[%s] ", pers->name);
6738 
6739 		spin_unlock(&pers_lock);
6740 		seq_printf(seq, "\n");
6741 		seq->poll_event = atomic_read(&md_event_count);
6742 		return 0;
6743 	}
6744 	if (v == (void*)2) {
6745 		status_unused(seq);
6746 		return 0;
6747 	}
6748 
6749 	if (mddev_lock(mddev) < 0)
6750 		return -EINTR;
6751 
6752 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6753 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6754 						mddev->pers ? "" : "in");
6755 		if (mddev->pers) {
6756 			if (mddev->ro==1)
6757 				seq_printf(seq, " (read-only)");
6758 			if (mddev->ro==2)
6759 				seq_printf(seq, " (auto-read-only)");
6760 			seq_printf(seq, " %s", mddev->pers->name);
6761 		}
6762 
6763 		sectors = 0;
6764 		rdev_for_each(rdev, mddev) {
6765 			char b[BDEVNAME_SIZE];
6766 			seq_printf(seq, " %s[%d]",
6767 				bdevname(rdev->bdev,b), rdev->desc_nr);
6768 			if (test_bit(WriteMostly, &rdev->flags))
6769 				seq_printf(seq, "(W)");
6770 			if (test_bit(Faulty, &rdev->flags)) {
6771 				seq_printf(seq, "(F)");
6772 				continue;
6773 			}
6774 			if (rdev->raid_disk < 0)
6775 				seq_printf(seq, "(S)"); /* spare */
6776 			if (test_bit(Replacement, &rdev->flags))
6777 				seq_printf(seq, "(R)");
6778 			sectors += rdev->sectors;
6779 		}
6780 
6781 		if (!list_empty(&mddev->disks)) {
6782 			if (mddev->pers)
6783 				seq_printf(seq, "\n      %llu blocks",
6784 					   (unsigned long long)
6785 					   mddev->array_sectors / 2);
6786 			else
6787 				seq_printf(seq, "\n      %llu blocks",
6788 					   (unsigned long long)sectors / 2);
6789 		}
6790 		if (mddev->persistent) {
6791 			if (mddev->major_version != 0 ||
6792 			    mddev->minor_version != 90) {
6793 				seq_printf(seq," super %d.%d",
6794 					   mddev->major_version,
6795 					   mddev->minor_version);
6796 			}
6797 		} else if (mddev->external)
6798 			seq_printf(seq, " super external:%s",
6799 				   mddev->metadata_type);
6800 		else
6801 			seq_printf(seq, " super non-persistent");
6802 
6803 		if (mddev->pers) {
6804 			mddev->pers->status(seq, mddev);
6805 	 		seq_printf(seq, "\n      ");
6806 			if (mddev->pers->sync_request) {
6807 				if (mddev->curr_resync > 2) {
6808 					status_resync(seq, mddev);
6809 					seq_printf(seq, "\n      ");
6810 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6811 					seq_printf(seq, "\tresync=DELAYED\n      ");
6812 				else if (mddev->recovery_cp < MaxSector)
6813 					seq_printf(seq, "\tresync=PENDING\n      ");
6814 			}
6815 		} else
6816 			seq_printf(seq, "\n       ");
6817 
6818 		bitmap_status(seq, mddev->bitmap);
6819 
6820 		seq_printf(seq, "\n");
6821 	}
6822 	mddev_unlock(mddev);
6823 
6824 	return 0;
6825 }
6826 
6827 static const struct seq_operations md_seq_ops = {
6828 	.start  = md_seq_start,
6829 	.next   = md_seq_next,
6830 	.stop   = md_seq_stop,
6831 	.show   = md_seq_show,
6832 };
6833 
6834 static int md_seq_open(struct inode *inode, struct file *file)
6835 {
6836 	struct seq_file *seq;
6837 	int error;
6838 
6839 	error = seq_open(file, &md_seq_ops);
6840 	if (error)
6841 		return error;
6842 
6843 	seq = file->private_data;
6844 	seq->poll_event = atomic_read(&md_event_count);
6845 	return error;
6846 }
6847 
6848 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6849 {
6850 	struct seq_file *seq = filp->private_data;
6851 	int mask;
6852 
6853 	poll_wait(filp, &md_event_waiters, wait);
6854 
6855 	/* always allow read */
6856 	mask = POLLIN | POLLRDNORM;
6857 
6858 	if (seq->poll_event != atomic_read(&md_event_count))
6859 		mask |= POLLERR | POLLPRI;
6860 	return mask;
6861 }
6862 
6863 static const struct file_operations md_seq_fops = {
6864 	.owner		= THIS_MODULE,
6865 	.open           = md_seq_open,
6866 	.read           = seq_read,
6867 	.llseek         = seq_lseek,
6868 	.release	= seq_release_private,
6869 	.poll		= mdstat_poll,
6870 };
6871 
6872 int register_md_personality(struct md_personality *p)
6873 {
6874 	spin_lock(&pers_lock);
6875 	list_add_tail(&p->list, &pers_list);
6876 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6877 	spin_unlock(&pers_lock);
6878 	return 0;
6879 }
6880 
6881 int unregister_md_personality(struct md_personality *p)
6882 {
6883 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6884 	spin_lock(&pers_lock);
6885 	list_del_init(&p->list);
6886 	spin_unlock(&pers_lock);
6887 	return 0;
6888 }
6889 
6890 static int is_mddev_idle(struct mddev *mddev, int init)
6891 {
6892 	struct md_rdev * rdev;
6893 	int idle;
6894 	int curr_events;
6895 
6896 	idle = 1;
6897 	rcu_read_lock();
6898 	rdev_for_each_rcu(rdev, mddev) {
6899 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6900 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6901 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6902 			      atomic_read(&disk->sync_io);
6903 		/* sync IO will cause sync_io to increase before the disk_stats
6904 		 * as sync_io is counted when a request starts, and
6905 		 * disk_stats is counted when it completes.
6906 		 * So resync activity will cause curr_events to be smaller than
6907 		 * when there was no such activity.
6908 		 * non-sync IO will cause disk_stat to increase without
6909 		 * increasing sync_io so curr_events will (eventually)
6910 		 * be larger than it was before.  Once it becomes
6911 		 * substantially larger, the test below will cause
6912 		 * the array to appear non-idle, and resync will slow
6913 		 * down.
6914 		 * If there is a lot of outstanding resync activity when
6915 		 * we set last_event to curr_events, then all that activity
6916 		 * completing might cause the array to appear non-idle
6917 		 * and resync will be slowed down even though there might
6918 		 * not have been non-resync activity.  This will only
6919 		 * happen once though.  'last_events' will soon reflect
6920 		 * the state where there is little or no outstanding
6921 		 * resync requests, and further resync activity will
6922 		 * always make curr_events less than last_events.
6923 		 *
6924 		 */
6925 		if (init || curr_events - rdev->last_events > 64) {
6926 			rdev->last_events = curr_events;
6927 			idle = 0;
6928 		}
6929 	}
6930 	rcu_read_unlock();
6931 	return idle;
6932 }
6933 
6934 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6935 {
6936 	/* another "blocks" (512byte) blocks have been synced */
6937 	atomic_sub(blocks, &mddev->recovery_active);
6938 	wake_up(&mddev->recovery_wait);
6939 	if (!ok) {
6940 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6941 		md_wakeup_thread(mddev->thread);
6942 		// stop recovery, signal do_sync ....
6943 	}
6944 }
6945 
6946 
6947 /* md_write_start(mddev, bi)
6948  * If we need to update some array metadata (e.g. 'active' flag
6949  * in superblock) before writing, schedule a superblock update
6950  * and wait for it to complete.
6951  */
6952 void md_write_start(struct mddev *mddev, struct bio *bi)
6953 {
6954 	int did_change = 0;
6955 	if (bio_data_dir(bi) != WRITE)
6956 		return;
6957 
6958 	BUG_ON(mddev->ro == 1);
6959 	if (mddev->ro == 2) {
6960 		/* need to switch to read/write */
6961 		mddev->ro = 0;
6962 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6963 		md_wakeup_thread(mddev->thread);
6964 		md_wakeup_thread(mddev->sync_thread);
6965 		did_change = 1;
6966 	}
6967 	atomic_inc(&mddev->writes_pending);
6968 	if (mddev->safemode == 1)
6969 		mddev->safemode = 0;
6970 	if (mddev->in_sync) {
6971 		spin_lock_irq(&mddev->write_lock);
6972 		if (mddev->in_sync) {
6973 			mddev->in_sync = 0;
6974 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6975 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6976 			md_wakeup_thread(mddev->thread);
6977 			did_change = 1;
6978 		}
6979 		spin_unlock_irq(&mddev->write_lock);
6980 	}
6981 	if (did_change)
6982 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6983 	wait_event(mddev->sb_wait,
6984 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6985 }
6986 
6987 void md_write_end(struct mddev *mddev)
6988 {
6989 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6990 		if (mddev->safemode == 2)
6991 			md_wakeup_thread(mddev->thread);
6992 		else if (mddev->safemode_delay)
6993 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6994 	}
6995 }
6996 
6997 /* md_allow_write(mddev)
6998  * Calling this ensures that the array is marked 'active' so that writes
6999  * may proceed without blocking.  It is important to call this before
7000  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7001  * Must be called with mddev_lock held.
7002  *
7003  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7004  * is dropped, so return -EAGAIN after notifying userspace.
7005  */
7006 int md_allow_write(struct mddev *mddev)
7007 {
7008 	if (!mddev->pers)
7009 		return 0;
7010 	if (mddev->ro)
7011 		return 0;
7012 	if (!mddev->pers->sync_request)
7013 		return 0;
7014 
7015 	spin_lock_irq(&mddev->write_lock);
7016 	if (mddev->in_sync) {
7017 		mddev->in_sync = 0;
7018 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7019 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7020 		if (mddev->safemode_delay &&
7021 		    mddev->safemode == 0)
7022 			mddev->safemode = 1;
7023 		spin_unlock_irq(&mddev->write_lock);
7024 		md_update_sb(mddev, 0);
7025 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7026 	} else
7027 		spin_unlock_irq(&mddev->write_lock);
7028 
7029 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7030 		return -EAGAIN;
7031 	else
7032 		return 0;
7033 }
7034 EXPORT_SYMBOL_GPL(md_allow_write);
7035 
7036 #define SYNC_MARKS	10
7037 #define	SYNC_MARK_STEP	(3*HZ)
7038 void md_do_sync(struct mddev *mddev)
7039 {
7040 	struct mddev *mddev2;
7041 	unsigned int currspeed = 0,
7042 		 window;
7043 	sector_t max_sectors,j, io_sectors;
7044 	unsigned long mark[SYNC_MARKS];
7045 	sector_t mark_cnt[SYNC_MARKS];
7046 	int last_mark,m;
7047 	struct list_head *tmp;
7048 	sector_t last_check;
7049 	int skipped = 0;
7050 	struct md_rdev *rdev;
7051 	char *desc;
7052 
7053 	/* just incase thread restarts... */
7054 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7055 		return;
7056 	if (mddev->ro) /* never try to sync a read-only array */
7057 		return;
7058 
7059 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7060 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7061 			desc = "data-check";
7062 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7063 			desc = "requested-resync";
7064 		else
7065 			desc = "resync";
7066 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7067 		desc = "reshape";
7068 	else
7069 		desc = "recovery";
7070 
7071 	/* we overload curr_resync somewhat here.
7072 	 * 0 == not engaged in resync at all
7073 	 * 2 == checking that there is no conflict with another sync
7074 	 * 1 == like 2, but have yielded to allow conflicting resync to
7075 	 *		commense
7076 	 * other == active in resync - this many blocks
7077 	 *
7078 	 * Before starting a resync we must have set curr_resync to
7079 	 * 2, and then checked that every "conflicting" array has curr_resync
7080 	 * less than ours.  When we find one that is the same or higher
7081 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7082 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7083 	 * This will mean we have to start checking from the beginning again.
7084 	 *
7085 	 */
7086 
7087 	do {
7088 		mddev->curr_resync = 2;
7089 
7090 	try_again:
7091 		if (kthread_should_stop())
7092 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7093 
7094 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7095 			goto skip;
7096 		for_each_mddev(mddev2, tmp) {
7097 			if (mddev2 == mddev)
7098 				continue;
7099 			if (!mddev->parallel_resync
7100 			&&  mddev2->curr_resync
7101 			&&  match_mddev_units(mddev, mddev2)) {
7102 				DEFINE_WAIT(wq);
7103 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7104 					/* arbitrarily yield */
7105 					mddev->curr_resync = 1;
7106 					wake_up(&resync_wait);
7107 				}
7108 				if (mddev > mddev2 && mddev->curr_resync == 1)
7109 					/* no need to wait here, we can wait the next
7110 					 * time 'round when curr_resync == 2
7111 					 */
7112 					continue;
7113 				/* We need to wait 'interruptible' so as not to
7114 				 * contribute to the load average, and not to
7115 				 * be caught by 'softlockup'
7116 				 */
7117 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7118 				if (!kthread_should_stop() &&
7119 				    mddev2->curr_resync >= mddev->curr_resync) {
7120 					printk(KERN_INFO "md: delaying %s of %s"
7121 					       " until %s has finished (they"
7122 					       " share one or more physical units)\n",
7123 					       desc, mdname(mddev), mdname(mddev2));
7124 					mddev_put(mddev2);
7125 					if (signal_pending(current))
7126 						flush_signals(current);
7127 					schedule();
7128 					finish_wait(&resync_wait, &wq);
7129 					goto try_again;
7130 				}
7131 				finish_wait(&resync_wait, &wq);
7132 			}
7133 		}
7134 	} while (mddev->curr_resync < 2);
7135 
7136 	j = 0;
7137 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7138 		/* resync follows the size requested by the personality,
7139 		 * which defaults to physical size, but can be virtual size
7140 		 */
7141 		max_sectors = mddev->resync_max_sectors;
7142 		mddev->resync_mismatches = 0;
7143 		/* we don't use the checkpoint if there's a bitmap */
7144 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7145 			j = mddev->resync_min;
7146 		else if (!mddev->bitmap)
7147 			j = mddev->recovery_cp;
7148 
7149 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7150 		max_sectors = mddev->dev_sectors;
7151 	else {
7152 		/* recovery follows the physical size of devices */
7153 		max_sectors = mddev->dev_sectors;
7154 		j = MaxSector;
7155 		rcu_read_lock();
7156 		rdev_for_each_rcu(rdev, mddev)
7157 			if (rdev->raid_disk >= 0 &&
7158 			    !test_bit(Faulty, &rdev->flags) &&
7159 			    !test_bit(In_sync, &rdev->flags) &&
7160 			    rdev->recovery_offset < j)
7161 				j = rdev->recovery_offset;
7162 		rcu_read_unlock();
7163 	}
7164 
7165 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7166 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7167 		" %d KB/sec/disk.\n", speed_min(mddev));
7168 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7169 	       "(but not more than %d KB/sec) for %s.\n",
7170 	       speed_max(mddev), desc);
7171 
7172 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7173 
7174 	io_sectors = 0;
7175 	for (m = 0; m < SYNC_MARKS; m++) {
7176 		mark[m] = jiffies;
7177 		mark_cnt[m] = io_sectors;
7178 	}
7179 	last_mark = 0;
7180 	mddev->resync_mark = mark[last_mark];
7181 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7182 
7183 	/*
7184 	 * Tune reconstruction:
7185 	 */
7186 	window = 32*(PAGE_SIZE/512);
7187 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7188 		window/2, (unsigned long long)max_sectors/2);
7189 
7190 	atomic_set(&mddev->recovery_active, 0);
7191 	last_check = 0;
7192 
7193 	if (j>2) {
7194 		printk(KERN_INFO
7195 		       "md: resuming %s of %s from checkpoint.\n",
7196 		       desc, mdname(mddev));
7197 		mddev->curr_resync = j;
7198 	}
7199 	mddev->curr_resync_completed = j;
7200 
7201 	while (j < max_sectors) {
7202 		sector_t sectors;
7203 
7204 		skipped = 0;
7205 
7206 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7207 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7208 		      (mddev->curr_resync - mddev->curr_resync_completed)
7209 		      > (max_sectors >> 4)) ||
7210 		     (j - mddev->curr_resync_completed)*2
7211 		     >= mddev->resync_max - mddev->curr_resync_completed
7212 			    )) {
7213 			/* time to update curr_resync_completed */
7214 			wait_event(mddev->recovery_wait,
7215 				   atomic_read(&mddev->recovery_active) == 0);
7216 			mddev->curr_resync_completed = j;
7217 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7218 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7219 		}
7220 
7221 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7222 			/* As this condition is controlled by user-space,
7223 			 * we can block indefinitely, so use '_interruptible'
7224 			 * to avoid triggering warnings.
7225 			 */
7226 			flush_signals(current); /* just in case */
7227 			wait_event_interruptible(mddev->recovery_wait,
7228 						 mddev->resync_max > j
7229 						 || kthread_should_stop());
7230 		}
7231 
7232 		if (kthread_should_stop())
7233 			goto interrupted;
7234 
7235 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7236 						  currspeed < speed_min(mddev));
7237 		if (sectors == 0) {
7238 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7239 			goto out;
7240 		}
7241 
7242 		if (!skipped) { /* actual IO requested */
7243 			io_sectors += sectors;
7244 			atomic_add(sectors, &mddev->recovery_active);
7245 		}
7246 
7247 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7248 			break;
7249 
7250 		j += sectors;
7251 		if (j>1) mddev->curr_resync = j;
7252 		mddev->curr_mark_cnt = io_sectors;
7253 		if (last_check == 0)
7254 			/* this is the earliest that rebuild will be
7255 			 * visible in /proc/mdstat
7256 			 */
7257 			md_new_event(mddev);
7258 
7259 		if (last_check + window > io_sectors || j == max_sectors)
7260 			continue;
7261 
7262 		last_check = io_sectors;
7263 	repeat:
7264 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7265 			/* step marks */
7266 			int next = (last_mark+1) % SYNC_MARKS;
7267 
7268 			mddev->resync_mark = mark[next];
7269 			mddev->resync_mark_cnt = mark_cnt[next];
7270 			mark[next] = jiffies;
7271 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7272 			last_mark = next;
7273 		}
7274 
7275 
7276 		if (kthread_should_stop())
7277 			goto interrupted;
7278 
7279 
7280 		/*
7281 		 * this loop exits only if either when we are slower than
7282 		 * the 'hard' speed limit, or the system was IO-idle for
7283 		 * a jiffy.
7284 		 * the system might be non-idle CPU-wise, but we only care
7285 		 * about not overloading the IO subsystem. (things like an
7286 		 * e2fsck being done on the RAID array should execute fast)
7287 		 */
7288 		cond_resched();
7289 
7290 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7291 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7292 
7293 		if (currspeed > speed_min(mddev)) {
7294 			if ((currspeed > speed_max(mddev)) ||
7295 					!is_mddev_idle(mddev, 0)) {
7296 				msleep(500);
7297 				goto repeat;
7298 			}
7299 		}
7300 	}
7301 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7302 	/*
7303 	 * this also signals 'finished resyncing' to md_stop
7304 	 */
7305  out:
7306 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7307 
7308 	/* tell personality that we are finished */
7309 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7310 
7311 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7312 	    mddev->curr_resync > 2) {
7313 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7314 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7315 				if (mddev->curr_resync >= mddev->recovery_cp) {
7316 					printk(KERN_INFO
7317 					       "md: checkpointing %s of %s.\n",
7318 					       desc, mdname(mddev));
7319 					mddev->recovery_cp =
7320 						mddev->curr_resync_completed;
7321 				}
7322 			} else
7323 				mddev->recovery_cp = MaxSector;
7324 		} else {
7325 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7326 				mddev->curr_resync = MaxSector;
7327 			rcu_read_lock();
7328 			rdev_for_each_rcu(rdev, mddev)
7329 				if (rdev->raid_disk >= 0 &&
7330 				    mddev->delta_disks >= 0 &&
7331 				    !test_bit(Faulty, &rdev->flags) &&
7332 				    !test_bit(In_sync, &rdev->flags) &&
7333 				    rdev->recovery_offset < mddev->curr_resync)
7334 					rdev->recovery_offset = mddev->curr_resync;
7335 			rcu_read_unlock();
7336 		}
7337 	}
7338  skip:
7339 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7340 
7341 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7342 		/* We completed so min/max setting can be forgotten if used. */
7343 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7344 			mddev->resync_min = 0;
7345 		mddev->resync_max = MaxSector;
7346 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7347 		mddev->resync_min = mddev->curr_resync_completed;
7348 	mddev->curr_resync = 0;
7349 	wake_up(&resync_wait);
7350 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7351 	md_wakeup_thread(mddev->thread);
7352 	return;
7353 
7354  interrupted:
7355 	/*
7356 	 * got a signal, exit.
7357 	 */
7358 	printk(KERN_INFO
7359 	       "md: md_do_sync() got signal ... exiting\n");
7360 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7361 	goto out;
7362 
7363 }
7364 EXPORT_SYMBOL_GPL(md_do_sync);
7365 
7366 static int remove_and_add_spares(struct mddev *mddev)
7367 {
7368 	struct md_rdev *rdev;
7369 	int spares = 0;
7370 	int removed = 0;
7371 
7372 	mddev->curr_resync_completed = 0;
7373 
7374 	rdev_for_each(rdev, mddev)
7375 		if (rdev->raid_disk >= 0 &&
7376 		    !test_bit(Blocked, &rdev->flags) &&
7377 		    (test_bit(Faulty, &rdev->flags) ||
7378 		     ! test_bit(In_sync, &rdev->flags)) &&
7379 		    atomic_read(&rdev->nr_pending)==0) {
7380 			if (mddev->pers->hot_remove_disk(
7381 				    mddev, rdev) == 0) {
7382 				sysfs_unlink_rdev(mddev, rdev);
7383 				rdev->raid_disk = -1;
7384 				removed++;
7385 			}
7386 		}
7387 	if (removed)
7388 		sysfs_notify(&mddev->kobj, NULL,
7389 			     "degraded");
7390 
7391 
7392 	rdev_for_each(rdev, mddev) {
7393 		if (rdev->raid_disk >= 0 &&
7394 		    !test_bit(In_sync, &rdev->flags) &&
7395 		    !test_bit(Faulty, &rdev->flags))
7396 			spares++;
7397 		if (rdev->raid_disk < 0
7398 		    && !test_bit(Faulty, &rdev->flags)) {
7399 			rdev->recovery_offset = 0;
7400 			if (mddev->pers->
7401 			    hot_add_disk(mddev, rdev) == 0) {
7402 				if (sysfs_link_rdev(mddev, rdev))
7403 					/* failure here is OK */;
7404 				spares++;
7405 				md_new_event(mddev);
7406 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7407 			}
7408 		}
7409 	}
7410 	return spares;
7411 }
7412 
7413 static void reap_sync_thread(struct mddev *mddev)
7414 {
7415 	struct md_rdev *rdev;
7416 
7417 	/* resync has finished, collect result */
7418 	md_unregister_thread(&mddev->sync_thread);
7419 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7420 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7421 		/* success...*/
7422 		/* activate any spares */
7423 		if (mddev->pers->spare_active(mddev))
7424 			sysfs_notify(&mddev->kobj, NULL,
7425 				     "degraded");
7426 	}
7427 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7428 	    mddev->pers->finish_reshape)
7429 		mddev->pers->finish_reshape(mddev);
7430 
7431 	/* If array is no-longer degraded, then any saved_raid_disk
7432 	 * information must be scrapped.  Also if any device is now
7433 	 * In_sync we must scrape the saved_raid_disk for that device
7434 	 * do the superblock for an incrementally recovered device
7435 	 * written out.
7436 	 */
7437 	rdev_for_each(rdev, mddev)
7438 		if (!mddev->degraded ||
7439 		    test_bit(In_sync, &rdev->flags))
7440 			rdev->saved_raid_disk = -1;
7441 
7442 	md_update_sb(mddev, 1);
7443 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7444 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7445 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7446 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7447 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7448 	/* flag recovery needed just to double check */
7449 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7450 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7451 	md_new_event(mddev);
7452 	if (mddev->event_work.func)
7453 		queue_work(md_misc_wq, &mddev->event_work);
7454 }
7455 
7456 /*
7457  * This routine is regularly called by all per-raid-array threads to
7458  * deal with generic issues like resync and super-block update.
7459  * Raid personalities that don't have a thread (linear/raid0) do not
7460  * need this as they never do any recovery or update the superblock.
7461  *
7462  * It does not do any resync itself, but rather "forks" off other threads
7463  * to do that as needed.
7464  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7465  * "->recovery" and create a thread at ->sync_thread.
7466  * When the thread finishes it sets MD_RECOVERY_DONE
7467  * and wakeups up this thread which will reap the thread and finish up.
7468  * This thread also removes any faulty devices (with nr_pending == 0).
7469  *
7470  * The overall approach is:
7471  *  1/ if the superblock needs updating, update it.
7472  *  2/ If a recovery thread is running, don't do anything else.
7473  *  3/ If recovery has finished, clean up, possibly marking spares active.
7474  *  4/ If there are any faulty devices, remove them.
7475  *  5/ If array is degraded, try to add spares devices
7476  *  6/ If array has spares or is not in-sync, start a resync thread.
7477  */
7478 void md_check_recovery(struct mddev *mddev)
7479 {
7480 	if (mddev->suspended)
7481 		return;
7482 
7483 	if (mddev->bitmap)
7484 		bitmap_daemon_work(mddev);
7485 
7486 	if (signal_pending(current)) {
7487 		if (mddev->pers->sync_request && !mddev->external) {
7488 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7489 			       mdname(mddev));
7490 			mddev->safemode = 2;
7491 		}
7492 		flush_signals(current);
7493 	}
7494 
7495 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7496 		return;
7497 	if ( ! (
7498 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7499 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7500 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7501 		(mddev->external == 0 && mddev->safemode == 1) ||
7502 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7503 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7504 		))
7505 		return;
7506 
7507 	if (mddev_trylock(mddev)) {
7508 		int spares = 0;
7509 
7510 		if (mddev->ro) {
7511 			/* Only thing we do on a ro array is remove
7512 			 * failed devices.
7513 			 */
7514 			struct md_rdev *rdev;
7515 			rdev_for_each(rdev, mddev)
7516 				if (rdev->raid_disk >= 0 &&
7517 				    !test_bit(Blocked, &rdev->flags) &&
7518 				    test_bit(Faulty, &rdev->flags) &&
7519 				    atomic_read(&rdev->nr_pending)==0) {
7520 					if (mddev->pers->hot_remove_disk(
7521 						    mddev, rdev) == 0) {
7522 						sysfs_unlink_rdev(mddev, rdev);
7523 						rdev->raid_disk = -1;
7524 					}
7525 				}
7526 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7527 			goto unlock;
7528 		}
7529 
7530 		if (!mddev->external) {
7531 			int did_change = 0;
7532 			spin_lock_irq(&mddev->write_lock);
7533 			if (mddev->safemode &&
7534 			    !atomic_read(&mddev->writes_pending) &&
7535 			    !mddev->in_sync &&
7536 			    mddev->recovery_cp == MaxSector) {
7537 				mddev->in_sync = 1;
7538 				did_change = 1;
7539 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7540 			}
7541 			if (mddev->safemode == 1)
7542 				mddev->safemode = 0;
7543 			spin_unlock_irq(&mddev->write_lock);
7544 			if (did_change)
7545 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7546 		}
7547 
7548 		if (mddev->flags)
7549 			md_update_sb(mddev, 0);
7550 
7551 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7552 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7553 			/* resync/recovery still happening */
7554 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7555 			goto unlock;
7556 		}
7557 		if (mddev->sync_thread) {
7558 			reap_sync_thread(mddev);
7559 			goto unlock;
7560 		}
7561 		/* Set RUNNING before clearing NEEDED to avoid
7562 		 * any transients in the value of "sync_action".
7563 		 */
7564 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7565 		/* Clear some bits that don't mean anything, but
7566 		 * might be left set
7567 		 */
7568 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7569 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7570 
7571 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7572 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7573 			goto unlock;
7574 		/* no recovery is running.
7575 		 * remove any failed drives, then
7576 		 * add spares if possible.
7577 		 * Spare are also removed and re-added, to allow
7578 		 * the personality to fail the re-add.
7579 		 */
7580 
7581 		if (mddev->reshape_position != MaxSector) {
7582 			if (mddev->pers->check_reshape == NULL ||
7583 			    mddev->pers->check_reshape(mddev) != 0)
7584 				/* Cannot proceed */
7585 				goto unlock;
7586 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7587 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7588 		} else if ((spares = remove_and_add_spares(mddev))) {
7589 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7590 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7591 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7592 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7593 		} else if (mddev->recovery_cp < MaxSector) {
7594 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7595 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7596 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7597 			/* nothing to be done ... */
7598 			goto unlock;
7599 
7600 		if (mddev->pers->sync_request) {
7601 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7602 				/* We are adding a device or devices to an array
7603 				 * which has the bitmap stored on all devices.
7604 				 * So make sure all bitmap pages get written
7605 				 */
7606 				bitmap_write_all(mddev->bitmap);
7607 			}
7608 			mddev->sync_thread = md_register_thread(md_do_sync,
7609 								mddev,
7610 								"resync");
7611 			if (!mddev->sync_thread) {
7612 				printk(KERN_ERR "%s: could not start resync"
7613 					" thread...\n",
7614 					mdname(mddev));
7615 				/* leave the spares where they are, it shouldn't hurt */
7616 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7617 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7618 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7619 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7620 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7621 			} else
7622 				md_wakeup_thread(mddev->sync_thread);
7623 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7624 			md_new_event(mddev);
7625 		}
7626 	unlock:
7627 		if (!mddev->sync_thread) {
7628 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7629 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7630 					       &mddev->recovery))
7631 				if (mddev->sysfs_action)
7632 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7633 		}
7634 		mddev_unlock(mddev);
7635 	}
7636 }
7637 
7638 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7639 {
7640 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7641 	wait_event_timeout(rdev->blocked_wait,
7642 			   !test_bit(Blocked, &rdev->flags) &&
7643 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7644 			   msecs_to_jiffies(5000));
7645 	rdev_dec_pending(rdev, mddev);
7646 }
7647 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7648 
7649 
7650 /* Bad block management.
7651  * We can record which blocks on each device are 'bad' and so just
7652  * fail those blocks, or that stripe, rather than the whole device.
7653  * Entries in the bad-block table are 64bits wide.  This comprises:
7654  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7655  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7656  *  A 'shift' can be set so that larger blocks are tracked and
7657  *  consequently larger devices can be covered.
7658  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7659  *
7660  * Locking of the bad-block table uses a seqlock so md_is_badblock
7661  * might need to retry if it is very unlucky.
7662  * We will sometimes want to check for bad blocks in a bi_end_io function,
7663  * so we use the write_seqlock_irq variant.
7664  *
7665  * When looking for a bad block we specify a range and want to
7666  * know if any block in the range is bad.  So we binary-search
7667  * to the last range that starts at-or-before the given endpoint,
7668  * (or "before the sector after the target range")
7669  * then see if it ends after the given start.
7670  * We return
7671  *  0 if there are no known bad blocks in the range
7672  *  1 if there are known bad block which are all acknowledged
7673  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7674  * plus the start/length of the first bad section we overlap.
7675  */
7676 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7677 		   sector_t *first_bad, int *bad_sectors)
7678 {
7679 	int hi;
7680 	int lo = 0;
7681 	u64 *p = bb->page;
7682 	int rv = 0;
7683 	sector_t target = s + sectors;
7684 	unsigned seq;
7685 
7686 	if (bb->shift > 0) {
7687 		/* round the start down, and the end up */
7688 		s >>= bb->shift;
7689 		target += (1<<bb->shift) - 1;
7690 		target >>= bb->shift;
7691 		sectors = target - s;
7692 	}
7693 	/* 'target' is now the first block after the bad range */
7694 
7695 retry:
7696 	seq = read_seqbegin(&bb->lock);
7697 
7698 	hi = bb->count;
7699 
7700 	/* Binary search between lo and hi for 'target'
7701 	 * i.e. for the last range that starts before 'target'
7702 	 */
7703 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7704 	 * are known not to be the last range before target.
7705 	 * VARIANT: hi-lo is the number of possible
7706 	 * ranges, and decreases until it reaches 1
7707 	 */
7708 	while (hi - lo > 1) {
7709 		int mid = (lo + hi) / 2;
7710 		sector_t a = BB_OFFSET(p[mid]);
7711 		if (a < target)
7712 			/* This could still be the one, earlier ranges
7713 			 * could not. */
7714 			lo = mid;
7715 		else
7716 			/* This and later ranges are definitely out. */
7717 			hi = mid;
7718 	}
7719 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7720 	if (hi > lo) {
7721 		/* need to check all range that end after 's' to see if
7722 		 * any are unacknowledged.
7723 		 */
7724 		while (lo >= 0 &&
7725 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7726 			if (BB_OFFSET(p[lo]) < target) {
7727 				/* starts before the end, and finishes after
7728 				 * the start, so they must overlap
7729 				 */
7730 				if (rv != -1 && BB_ACK(p[lo]))
7731 					rv = 1;
7732 				else
7733 					rv = -1;
7734 				*first_bad = BB_OFFSET(p[lo]);
7735 				*bad_sectors = BB_LEN(p[lo]);
7736 			}
7737 			lo--;
7738 		}
7739 	}
7740 
7741 	if (read_seqretry(&bb->lock, seq))
7742 		goto retry;
7743 
7744 	return rv;
7745 }
7746 EXPORT_SYMBOL_GPL(md_is_badblock);
7747 
7748 /*
7749  * Add a range of bad blocks to the table.
7750  * This might extend the table, or might contract it
7751  * if two adjacent ranges can be merged.
7752  * We binary-search to find the 'insertion' point, then
7753  * decide how best to handle it.
7754  */
7755 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7756 			    int acknowledged)
7757 {
7758 	u64 *p;
7759 	int lo, hi;
7760 	int rv = 1;
7761 
7762 	if (bb->shift < 0)
7763 		/* badblocks are disabled */
7764 		return 0;
7765 
7766 	if (bb->shift) {
7767 		/* round the start down, and the end up */
7768 		sector_t next = s + sectors;
7769 		s >>= bb->shift;
7770 		next += (1<<bb->shift) - 1;
7771 		next >>= bb->shift;
7772 		sectors = next - s;
7773 	}
7774 
7775 	write_seqlock_irq(&bb->lock);
7776 
7777 	p = bb->page;
7778 	lo = 0;
7779 	hi = bb->count;
7780 	/* Find the last range that starts at-or-before 's' */
7781 	while (hi - lo > 1) {
7782 		int mid = (lo + hi) / 2;
7783 		sector_t a = BB_OFFSET(p[mid]);
7784 		if (a <= s)
7785 			lo = mid;
7786 		else
7787 			hi = mid;
7788 	}
7789 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7790 		hi = lo;
7791 
7792 	if (hi > lo) {
7793 		/* we found a range that might merge with the start
7794 		 * of our new range
7795 		 */
7796 		sector_t a = BB_OFFSET(p[lo]);
7797 		sector_t e = a + BB_LEN(p[lo]);
7798 		int ack = BB_ACK(p[lo]);
7799 		if (e >= s) {
7800 			/* Yes, we can merge with a previous range */
7801 			if (s == a && s + sectors >= e)
7802 				/* new range covers old */
7803 				ack = acknowledged;
7804 			else
7805 				ack = ack && acknowledged;
7806 
7807 			if (e < s + sectors)
7808 				e = s + sectors;
7809 			if (e - a <= BB_MAX_LEN) {
7810 				p[lo] = BB_MAKE(a, e-a, ack);
7811 				s = e;
7812 			} else {
7813 				/* does not all fit in one range,
7814 				 * make p[lo] maximal
7815 				 */
7816 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
7817 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7818 				s = a + BB_MAX_LEN;
7819 			}
7820 			sectors = e - s;
7821 		}
7822 	}
7823 	if (sectors && hi < bb->count) {
7824 		/* 'hi' points to the first range that starts after 's'.
7825 		 * Maybe we can merge with the start of that range */
7826 		sector_t a = BB_OFFSET(p[hi]);
7827 		sector_t e = a + BB_LEN(p[hi]);
7828 		int ack = BB_ACK(p[hi]);
7829 		if (a <= s + sectors) {
7830 			/* merging is possible */
7831 			if (e <= s + sectors) {
7832 				/* full overlap */
7833 				e = s + sectors;
7834 				ack = acknowledged;
7835 			} else
7836 				ack = ack && acknowledged;
7837 
7838 			a = s;
7839 			if (e - a <= BB_MAX_LEN) {
7840 				p[hi] = BB_MAKE(a, e-a, ack);
7841 				s = e;
7842 			} else {
7843 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7844 				s = a + BB_MAX_LEN;
7845 			}
7846 			sectors = e - s;
7847 			lo = hi;
7848 			hi++;
7849 		}
7850 	}
7851 	if (sectors == 0 && hi < bb->count) {
7852 		/* we might be able to combine lo and hi */
7853 		/* Note: 's' is at the end of 'lo' */
7854 		sector_t a = BB_OFFSET(p[hi]);
7855 		int lolen = BB_LEN(p[lo]);
7856 		int hilen = BB_LEN(p[hi]);
7857 		int newlen = lolen + hilen - (s - a);
7858 		if (s >= a && newlen < BB_MAX_LEN) {
7859 			/* yes, we can combine them */
7860 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7861 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7862 			memmove(p + hi, p + hi + 1,
7863 				(bb->count - hi - 1) * 8);
7864 			bb->count--;
7865 		}
7866 	}
7867 	while (sectors) {
7868 		/* didn't merge (it all).
7869 		 * Need to add a range just before 'hi' */
7870 		if (bb->count >= MD_MAX_BADBLOCKS) {
7871 			/* No room for more */
7872 			rv = 0;
7873 			break;
7874 		} else {
7875 			int this_sectors = sectors;
7876 			memmove(p + hi + 1, p + hi,
7877 				(bb->count - hi) * 8);
7878 			bb->count++;
7879 
7880 			if (this_sectors > BB_MAX_LEN)
7881 				this_sectors = BB_MAX_LEN;
7882 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7883 			sectors -= this_sectors;
7884 			s += this_sectors;
7885 		}
7886 	}
7887 
7888 	bb->changed = 1;
7889 	if (!acknowledged)
7890 		bb->unacked_exist = 1;
7891 	write_sequnlock_irq(&bb->lock);
7892 
7893 	return rv;
7894 }
7895 
7896 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7897 		       int acknowledged)
7898 {
7899 	int rv = md_set_badblocks(&rdev->badblocks,
7900 				  s + rdev->data_offset, sectors, acknowledged);
7901 	if (rv) {
7902 		/* Make sure they get written out promptly */
7903 		sysfs_notify_dirent_safe(rdev->sysfs_state);
7904 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7905 		md_wakeup_thread(rdev->mddev->thread);
7906 	}
7907 	return rv;
7908 }
7909 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7910 
7911 /*
7912  * Remove a range of bad blocks from the table.
7913  * This may involve extending the table if we spilt a region,
7914  * but it must not fail.  So if the table becomes full, we just
7915  * drop the remove request.
7916  */
7917 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7918 {
7919 	u64 *p;
7920 	int lo, hi;
7921 	sector_t target = s + sectors;
7922 	int rv = 0;
7923 
7924 	if (bb->shift > 0) {
7925 		/* When clearing we round the start up and the end down.
7926 		 * This should not matter as the shift should align with
7927 		 * the block size and no rounding should ever be needed.
7928 		 * However it is better the think a block is bad when it
7929 		 * isn't than to think a block is not bad when it is.
7930 		 */
7931 		s += (1<<bb->shift) - 1;
7932 		s >>= bb->shift;
7933 		target >>= bb->shift;
7934 		sectors = target - s;
7935 	}
7936 
7937 	write_seqlock_irq(&bb->lock);
7938 
7939 	p = bb->page;
7940 	lo = 0;
7941 	hi = bb->count;
7942 	/* Find the last range that starts before 'target' */
7943 	while (hi - lo > 1) {
7944 		int mid = (lo + hi) / 2;
7945 		sector_t a = BB_OFFSET(p[mid]);
7946 		if (a < target)
7947 			lo = mid;
7948 		else
7949 			hi = mid;
7950 	}
7951 	if (hi > lo) {
7952 		/* p[lo] is the last range that could overlap the
7953 		 * current range.  Earlier ranges could also overlap,
7954 		 * but only this one can overlap the end of the range.
7955 		 */
7956 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7957 			/* Partial overlap, leave the tail of this range */
7958 			int ack = BB_ACK(p[lo]);
7959 			sector_t a = BB_OFFSET(p[lo]);
7960 			sector_t end = a + BB_LEN(p[lo]);
7961 
7962 			if (a < s) {
7963 				/* we need to split this range */
7964 				if (bb->count >= MD_MAX_BADBLOCKS) {
7965 					rv = 0;
7966 					goto out;
7967 				}
7968 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7969 				bb->count++;
7970 				p[lo] = BB_MAKE(a, s-a, ack);
7971 				lo++;
7972 			}
7973 			p[lo] = BB_MAKE(target, end - target, ack);
7974 			/* there is no longer an overlap */
7975 			hi = lo;
7976 			lo--;
7977 		}
7978 		while (lo >= 0 &&
7979 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7980 			/* This range does overlap */
7981 			if (BB_OFFSET(p[lo]) < s) {
7982 				/* Keep the early parts of this range. */
7983 				int ack = BB_ACK(p[lo]);
7984 				sector_t start = BB_OFFSET(p[lo]);
7985 				p[lo] = BB_MAKE(start, s - start, ack);
7986 				/* now low doesn't overlap, so.. */
7987 				break;
7988 			}
7989 			lo--;
7990 		}
7991 		/* 'lo' is strictly before, 'hi' is strictly after,
7992 		 * anything between needs to be discarded
7993 		 */
7994 		if (hi - lo > 1) {
7995 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7996 			bb->count -= (hi - lo - 1);
7997 		}
7998 	}
7999 
8000 	bb->changed = 1;
8001 out:
8002 	write_sequnlock_irq(&bb->lock);
8003 	return rv;
8004 }
8005 
8006 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8007 {
8008 	return md_clear_badblocks(&rdev->badblocks,
8009 				  s + rdev->data_offset,
8010 				  sectors);
8011 }
8012 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8013 
8014 /*
8015  * Acknowledge all bad blocks in a list.
8016  * This only succeeds if ->changed is clear.  It is used by
8017  * in-kernel metadata updates
8018  */
8019 void md_ack_all_badblocks(struct badblocks *bb)
8020 {
8021 	if (bb->page == NULL || bb->changed)
8022 		/* no point even trying */
8023 		return;
8024 	write_seqlock_irq(&bb->lock);
8025 
8026 	if (bb->changed == 0 && bb->unacked_exist) {
8027 		u64 *p = bb->page;
8028 		int i;
8029 		for (i = 0; i < bb->count ; i++) {
8030 			if (!BB_ACK(p[i])) {
8031 				sector_t start = BB_OFFSET(p[i]);
8032 				int len = BB_LEN(p[i]);
8033 				p[i] = BB_MAKE(start, len, 1);
8034 			}
8035 		}
8036 		bb->unacked_exist = 0;
8037 	}
8038 	write_sequnlock_irq(&bb->lock);
8039 }
8040 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8041 
8042 /* sysfs access to bad-blocks list.
8043  * We present two files.
8044  * 'bad-blocks' lists sector numbers and lengths of ranges that
8045  *    are recorded as bad.  The list is truncated to fit within
8046  *    the one-page limit of sysfs.
8047  *    Writing "sector length" to this file adds an acknowledged
8048  *    bad block list.
8049  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8050  *    been acknowledged.  Writing to this file adds bad blocks
8051  *    without acknowledging them.  This is largely for testing.
8052  */
8053 
8054 static ssize_t
8055 badblocks_show(struct badblocks *bb, char *page, int unack)
8056 {
8057 	size_t len;
8058 	int i;
8059 	u64 *p = bb->page;
8060 	unsigned seq;
8061 
8062 	if (bb->shift < 0)
8063 		return 0;
8064 
8065 retry:
8066 	seq = read_seqbegin(&bb->lock);
8067 
8068 	len = 0;
8069 	i = 0;
8070 
8071 	while (len < PAGE_SIZE && i < bb->count) {
8072 		sector_t s = BB_OFFSET(p[i]);
8073 		unsigned int length = BB_LEN(p[i]);
8074 		int ack = BB_ACK(p[i]);
8075 		i++;
8076 
8077 		if (unack && ack)
8078 			continue;
8079 
8080 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8081 				(unsigned long long)s << bb->shift,
8082 				length << bb->shift);
8083 	}
8084 	if (unack && len == 0)
8085 		bb->unacked_exist = 0;
8086 
8087 	if (read_seqretry(&bb->lock, seq))
8088 		goto retry;
8089 
8090 	return len;
8091 }
8092 
8093 #define DO_DEBUG 1
8094 
8095 static ssize_t
8096 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8097 {
8098 	unsigned long long sector;
8099 	int length;
8100 	char newline;
8101 #ifdef DO_DEBUG
8102 	/* Allow clearing via sysfs *only* for testing/debugging.
8103 	 * Normally only a successful write may clear a badblock
8104 	 */
8105 	int clear = 0;
8106 	if (page[0] == '-') {
8107 		clear = 1;
8108 		page++;
8109 	}
8110 #endif /* DO_DEBUG */
8111 
8112 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8113 	case 3:
8114 		if (newline != '\n')
8115 			return -EINVAL;
8116 	case 2:
8117 		if (length <= 0)
8118 			return -EINVAL;
8119 		break;
8120 	default:
8121 		return -EINVAL;
8122 	}
8123 
8124 #ifdef DO_DEBUG
8125 	if (clear) {
8126 		md_clear_badblocks(bb, sector, length);
8127 		return len;
8128 	}
8129 #endif /* DO_DEBUG */
8130 	if (md_set_badblocks(bb, sector, length, !unack))
8131 		return len;
8132 	else
8133 		return -ENOSPC;
8134 }
8135 
8136 static int md_notify_reboot(struct notifier_block *this,
8137 			    unsigned long code, void *x)
8138 {
8139 	struct list_head *tmp;
8140 	struct mddev *mddev;
8141 	int need_delay = 0;
8142 
8143 	for_each_mddev(mddev, tmp) {
8144 		if (mddev_trylock(mddev)) {
8145 			if (mddev->pers)
8146 				__md_stop_writes(mddev);
8147 			mddev->safemode = 2;
8148 			mddev_unlock(mddev);
8149 		}
8150 		need_delay = 1;
8151 	}
8152 	/*
8153 	 * certain more exotic SCSI devices are known to be
8154 	 * volatile wrt too early system reboots. While the
8155 	 * right place to handle this issue is the given
8156 	 * driver, we do want to have a safe RAID driver ...
8157 	 */
8158 	if (need_delay)
8159 		mdelay(1000*1);
8160 
8161 	return NOTIFY_DONE;
8162 }
8163 
8164 static struct notifier_block md_notifier = {
8165 	.notifier_call	= md_notify_reboot,
8166 	.next		= NULL,
8167 	.priority	= INT_MAX, /* before any real devices */
8168 };
8169 
8170 static void md_geninit(void)
8171 {
8172 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8173 
8174 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8175 }
8176 
8177 static int __init md_init(void)
8178 {
8179 	int ret = -ENOMEM;
8180 
8181 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8182 	if (!md_wq)
8183 		goto err_wq;
8184 
8185 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8186 	if (!md_misc_wq)
8187 		goto err_misc_wq;
8188 
8189 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8190 		goto err_md;
8191 
8192 	if ((ret = register_blkdev(0, "mdp")) < 0)
8193 		goto err_mdp;
8194 	mdp_major = ret;
8195 
8196 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8197 			    md_probe, NULL, NULL);
8198 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8199 			    md_probe, NULL, NULL);
8200 
8201 	register_reboot_notifier(&md_notifier);
8202 	raid_table_header = register_sysctl_table(raid_root_table);
8203 
8204 	md_geninit();
8205 	return 0;
8206 
8207 err_mdp:
8208 	unregister_blkdev(MD_MAJOR, "md");
8209 err_md:
8210 	destroy_workqueue(md_misc_wq);
8211 err_misc_wq:
8212 	destroy_workqueue(md_wq);
8213 err_wq:
8214 	return ret;
8215 }
8216 
8217 #ifndef MODULE
8218 
8219 /*
8220  * Searches all registered partitions for autorun RAID arrays
8221  * at boot time.
8222  */
8223 
8224 static LIST_HEAD(all_detected_devices);
8225 struct detected_devices_node {
8226 	struct list_head list;
8227 	dev_t dev;
8228 };
8229 
8230 void md_autodetect_dev(dev_t dev)
8231 {
8232 	struct detected_devices_node *node_detected_dev;
8233 
8234 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8235 	if (node_detected_dev) {
8236 		node_detected_dev->dev = dev;
8237 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8238 	} else {
8239 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8240 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8241 	}
8242 }
8243 
8244 
8245 static void autostart_arrays(int part)
8246 {
8247 	struct md_rdev *rdev;
8248 	struct detected_devices_node *node_detected_dev;
8249 	dev_t dev;
8250 	int i_scanned, i_passed;
8251 
8252 	i_scanned = 0;
8253 	i_passed = 0;
8254 
8255 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8256 
8257 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8258 		i_scanned++;
8259 		node_detected_dev = list_entry(all_detected_devices.next,
8260 					struct detected_devices_node, list);
8261 		list_del(&node_detected_dev->list);
8262 		dev = node_detected_dev->dev;
8263 		kfree(node_detected_dev);
8264 		rdev = md_import_device(dev,0, 90);
8265 		if (IS_ERR(rdev))
8266 			continue;
8267 
8268 		if (test_bit(Faulty, &rdev->flags)) {
8269 			MD_BUG();
8270 			continue;
8271 		}
8272 		set_bit(AutoDetected, &rdev->flags);
8273 		list_add(&rdev->same_set, &pending_raid_disks);
8274 		i_passed++;
8275 	}
8276 
8277 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8278 						i_scanned, i_passed);
8279 
8280 	autorun_devices(part);
8281 }
8282 
8283 #endif /* !MODULE */
8284 
8285 static __exit void md_exit(void)
8286 {
8287 	struct mddev *mddev;
8288 	struct list_head *tmp;
8289 
8290 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8291 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8292 
8293 	unregister_blkdev(MD_MAJOR,"md");
8294 	unregister_blkdev(mdp_major, "mdp");
8295 	unregister_reboot_notifier(&md_notifier);
8296 	unregister_sysctl_table(raid_table_header);
8297 	remove_proc_entry("mdstat", NULL);
8298 	for_each_mddev(mddev, tmp) {
8299 		export_array(mddev);
8300 		mddev->hold_active = 0;
8301 	}
8302 	destroy_workqueue(md_misc_wq);
8303 	destroy_workqueue(md_wq);
8304 }
8305 
8306 subsys_initcall(md_init);
8307 module_exit(md_exit)
8308 
8309 static int get_ro(char *buffer, struct kernel_param *kp)
8310 {
8311 	return sprintf(buffer, "%d", start_readonly);
8312 }
8313 static int set_ro(const char *val, struct kernel_param *kp)
8314 {
8315 	char *e;
8316 	int num = simple_strtoul(val, &e, 10);
8317 	if (*val && (*e == '\0' || *e == '\n')) {
8318 		start_readonly = num;
8319 		return 0;
8320 	}
8321 	return -EINVAL;
8322 }
8323 
8324 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8325 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8326 
8327 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8328 
8329 EXPORT_SYMBOL(register_md_personality);
8330 EXPORT_SYMBOL(unregister_md_personality);
8331 EXPORT_SYMBOL(md_error);
8332 EXPORT_SYMBOL(md_done_sync);
8333 EXPORT_SYMBOL(md_write_start);
8334 EXPORT_SYMBOL(md_write_end);
8335 EXPORT_SYMBOL(md_register_thread);
8336 EXPORT_SYMBOL(md_unregister_thread);
8337 EXPORT_SYMBOL(md_wakeup_thread);
8338 EXPORT_SYMBOL(md_check_recovery);
8339 MODULE_LICENSE("GPL");
8340 MODULE_DESCRIPTION("MD RAID framework");
8341 MODULE_ALIAS("md");
8342 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8343