1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 static struct kobj_type md_ktype; 88 89 struct md_cluster_operations *md_cluster_ops; 90 EXPORT_SYMBOL(md_cluster_ops); 91 struct module *md_cluster_mod; 92 EXPORT_SYMBOL(md_cluster_mod); 93 94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 95 static struct workqueue_struct *md_wq; 96 static struct workqueue_struct *md_misc_wq; 97 98 static int remove_and_add_spares(struct mddev *mddev, 99 struct md_rdev *this); 100 static void mddev_detach(struct mddev *mddev); 101 102 /* 103 * Default number of read corrections we'll attempt on an rdev 104 * before ejecting it from the array. We divide the read error 105 * count by 2 for every hour elapsed between read errors. 106 */ 107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 108 /* 109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 110 * is 1000 KB/sec, so the extra system load does not show up that much. 111 * Increase it if you want to have more _guaranteed_ speed. Note that 112 * the RAID driver will use the maximum available bandwidth if the IO 113 * subsystem is idle. There is also an 'absolute maximum' reconstruction 114 * speed limit - in case reconstruction slows down your system despite 115 * idle IO detection. 116 * 117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 118 * or /sys/block/mdX/md/sync_speed_{min,max} 119 */ 120 121 static int sysctl_speed_limit_min = 1000; 122 static int sysctl_speed_limit_max = 200000; 123 static inline int speed_min(struct mddev *mddev) 124 { 125 return mddev->sync_speed_min ? 126 mddev->sync_speed_min : sysctl_speed_limit_min; 127 } 128 129 static inline int speed_max(struct mddev *mddev) 130 { 131 return mddev->sync_speed_max ? 132 mddev->sync_speed_max : sysctl_speed_limit_max; 133 } 134 135 static void * flush_info_alloc(gfp_t gfp_flags, void *data) 136 { 137 return kzalloc(sizeof(struct flush_info), gfp_flags); 138 } 139 static void flush_info_free(void *flush_info, void *data) 140 { 141 kfree(flush_info); 142 } 143 144 static void * flush_bio_alloc(gfp_t gfp_flags, void *data) 145 { 146 return kzalloc(sizeof(struct flush_bio), gfp_flags); 147 } 148 static void flush_bio_free(void *flush_bio, void *data) 149 { 150 kfree(flush_bio); 151 } 152 153 static struct ctl_table_header *raid_table_header; 154 155 static struct ctl_table raid_table[] = { 156 { 157 .procname = "speed_limit_min", 158 .data = &sysctl_speed_limit_min, 159 .maxlen = sizeof(int), 160 .mode = S_IRUGO|S_IWUSR, 161 .proc_handler = proc_dointvec, 162 }, 163 { 164 .procname = "speed_limit_max", 165 .data = &sysctl_speed_limit_max, 166 .maxlen = sizeof(int), 167 .mode = S_IRUGO|S_IWUSR, 168 .proc_handler = proc_dointvec, 169 }, 170 { } 171 }; 172 173 static struct ctl_table raid_dir_table[] = { 174 { 175 .procname = "raid", 176 .maxlen = 0, 177 .mode = S_IRUGO|S_IXUGO, 178 .child = raid_table, 179 }, 180 { } 181 }; 182 183 static struct ctl_table raid_root_table[] = { 184 { 185 .procname = "dev", 186 .maxlen = 0, 187 .mode = 0555, 188 .child = raid_dir_table, 189 }, 190 { } 191 }; 192 193 static const struct block_device_operations md_fops; 194 195 static int start_readonly; 196 197 /* 198 * The original mechanism for creating an md device is to create 199 * a device node in /dev and to open it. This causes races with device-close. 200 * The preferred method is to write to the "new_array" module parameter. 201 * This can avoid races. 202 * Setting create_on_open to false disables the original mechanism 203 * so all the races disappear. 204 */ 205 static bool create_on_open = true; 206 207 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 208 struct mddev *mddev) 209 { 210 struct bio *b; 211 212 if (!mddev || !bioset_initialized(&mddev->bio_set)) 213 return bio_alloc(gfp_mask, nr_iovecs); 214 215 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 216 if (!b) 217 return NULL; 218 return b; 219 } 220 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 221 222 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 223 { 224 if (!mddev || !bioset_initialized(&mddev->sync_set)) 225 return bio_alloc(GFP_NOIO, 1); 226 227 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 228 } 229 230 /* 231 * We have a system wide 'event count' that is incremented 232 * on any 'interesting' event, and readers of /proc/mdstat 233 * can use 'poll' or 'select' to find out when the event 234 * count increases. 235 * 236 * Events are: 237 * start array, stop array, error, add device, remove device, 238 * start build, activate spare 239 */ 240 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 241 static atomic_t md_event_count; 242 void md_new_event(struct mddev *mddev) 243 { 244 atomic_inc(&md_event_count); 245 wake_up(&md_event_waiters); 246 } 247 EXPORT_SYMBOL_GPL(md_new_event); 248 249 /* 250 * Enables to iterate over all existing md arrays 251 * all_mddevs_lock protects this list. 252 */ 253 static LIST_HEAD(all_mddevs); 254 static DEFINE_SPINLOCK(all_mddevs_lock); 255 256 /* 257 * iterates through all used mddevs in the system. 258 * We take care to grab the all_mddevs_lock whenever navigating 259 * the list, and to always hold a refcount when unlocked. 260 * Any code which breaks out of this loop while own 261 * a reference to the current mddev and must mddev_put it. 262 */ 263 #define for_each_mddev(_mddev,_tmp) \ 264 \ 265 for (({ spin_lock(&all_mddevs_lock); \ 266 _tmp = all_mddevs.next; \ 267 _mddev = NULL;}); \ 268 ({ if (_tmp != &all_mddevs) \ 269 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 270 spin_unlock(&all_mddevs_lock); \ 271 if (_mddev) mddev_put(_mddev); \ 272 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 273 _tmp != &all_mddevs;}); \ 274 ({ spin_lock(&all_mddevs_lock); \ 275 _tmp = _tmp->next;}) \ 276 ) 277 278 /* Rather than calling directly into the personality make_request function, 279 * IO requests come here first so that we can check if the device is 280 * being suspended pending a reconfiguration. 281 * We hold a refcount over the call to ->make_request. By the time that 282 * call has finished, the bio has been linked into some internal structure 283 * and so is visible to ->quiesce(), so we don't need the refcount any more. 284 */ 285 static bool is_suspended(struct mddev *mddev, struct bio *bio) 286 { 287 if (mddev->suspended) 288 return true; 289 if (bio_data_dir(bio) != WRITE) 290 return false; 291 if (mddev->suspend_lo >= mddev->suspend_hi) 292 return false; 293 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 294 return false; 295 if (bio_end_sector(bio) < mddev->suspend_lo) 296 return false; 297 return true; 298 } 299 300 void md_handle_request(struct mddev *mddev, struct bio *bio) 301 { 302 check_suspended: 303 rcu_read_lock(); 304 if (is_suspended(mddev, bio)) { 305 DEFINE_WAIT(__wait); 306 for (;;) { 307 prepare_to_wait(&mddev->sb_wait, &__wait, 308 TASK_UNINTERRUPTIBLE); 309 if (!is_suspended(mddev, bio)) 310 break; 311 rcu_read_unlock(); 312 schedule(); 313 rcu_read_lock(); 314 } 315 finish_wait(&mddev->sb_wait, &__wait); 316 } 317 atomic_inc(&mddev->active_io); 318 rcu_read_unlock(); 319 320 if (!mddev->pers->make_request(mddev, bio)) { 321 atomic_dec(&mddev->active_io); 322 wake_up(&mddev->sb_wait); 323 goto check_suspended; 324 } 325 326 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 327 wake_up(&mddev->sb_wait); 328 } 329 EXPORT_SYMBOL(md_handle_request); 330 331 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 332 { 333 const int rw = bio_data_dir(bio); 334 const int sgrp = op_stat_group(bio_op(bio)); 335 struct mddev *mddev = q->queuedata; 336 unsigned int sectors; 337 int cpu; 338 339 blk_queue_split(q, &bio); 340 341 if (mddev == NULL || mddev->pers == NULL) { 342 bio_io_error(bio); 343 return BLK_QC_T_NONE; 344 } 345 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 346 if (bio_sectors(bio) != 0) 347 bio->bi_status = BLK_STS_IOERR; 348 bio_endio(bio); 349 return BLK_QC_T_NONE; 350 } 351 352 /* 353 * save the sectors now since our bio can 354 * go away inside make_request 355 */ 356 sectors = bio_sectors(bio); 357 /* bio could be mergeable after passing to underlayer */ 358 bio->bi_opf &= ~REQ_NOMERGE; 359 360 md_handle_request(mddev, bio); 361 362 cpu = part_stat_lock(); 363 part_stat_inc(cpu, &mddev->gendisk->part0, ios[sgrp]); 364 part_stat_add(cpu, &mddev->gendisk->part0, sectors[sgrp], sectors); 365 part_stat_unlock(); 366 367 return BLK_QC_T_NONE; 368 } 369 370 /* mddev_suspend makes sure no new requests are submitted 371 * to the device, and that any requests that have been submitted 372 * are completely handled. 373 * Once mddev_detach() is called and completes, the module will be 374 * completely unused. 375 */ 376 void mddev_suspend(struct mddev *mddev) 377 { 378 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 379 lockdep_assert_held(&mddev->reconfig_mutex); 380 if (mddev->suspended++) 381 return; 382 synchronize_rcu(); 383 wake_up(&mddev->sb_wait); 384 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 385 smp_mb__after_atomic(); 386 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 387 mddev->pers->quiesce(mddev, 1); 388 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 389 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 390 391 del_timer_sync(&mddev->safemode_timer); 392 } 393 EXPORT_SYMBOL_GPL(mddev_suspend); 394 395 void mddev_resume(struct mddev *mddev) 396 { 397 lockdep_assert_held(&mddev->reconfig_mutex); 398 if (--mddev->suspended) 399 return; 400 wake_up(&mddev->sb_wait); 401 mddev->pers->quiesce(mddev, 0); 402 403 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 404 md_wakeup_thread(mddev->thread); 405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 406 } 407 EXPORT_SYMBOL_GPL(mddev_resume); 408 409 int mddev_congested(struct mddev *mddev, int bits) 410 { 411 struct md_personality *pers = mddev->pers; 412 int ret = 0; 413 414 rcu_read_lock(); 415 if (mddev->suspended) 416 ret = 1; 417 else if (pers && pers->congested) 418 ret = pers->congested(mddev, bits); 419 rcu_read_unlock(); 420 return ret; 421 } 422 EXPORT_SYMBOL_GPL(mddev_congested); 423 static int md_congested(void *data, int bits) 424 { 425 struct mddev *mddev = data; 426 return mddev_congested(mddev, bits); 427 } 428 429 /* 430 * Generic flush handling for md 431 */ 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct flush_info *fi = container_of(ws, struct flush_info, flush_work); 435 struct mddev *mddev = fi->mddev; 436 struct bio *bio = fi->bio; 437 438 bio->bi_opf &= ~REQ_PREFLUSH; 439 md_handle_request(mddev, bio); 440 441 mempool_free(fi, mddev->flush_pool); 442 } 443 444 static void md_end_flush(struct bio *fbio) 445 { 446 struct flush_bio *fb = fbio->bi_private; 447 struct md_rdev *rdev = fb->rdev; 448 struct flush_info *fi = fb->fi; 449 struct bio *bio = fi->bio; 450 struct mddev *mddev = fi->mddev; 451 452 rdev_dec_pending(rdev, mddev); 453 454 if (atomic_dec_and_test(&fi->flush_pending)) { 455 if (bio->bi_iter.bi_size == 0) { 456 /* an empty barrier - all done */ 457 bio_endio(bio); 458 mempool_free(fi, mddev->flush_pool); 459 } else { 460 INIT_WORK(&fi->flush_work, submit_flushes); 461 queue_work(md_wq, &fi->flush_work); 462 } 463 } 464 465 mempool_free(fb, mddev->flush_bio_pool); 466 bio_put(fbio); 467 } 468 469 void md_flush_request(struct mddev *mddev, struct bio *bio) 470 { 471 struct md_rdev *rdev; 472 struct flush_info *fi; 473 474 fi = mempool_alloc(mddev->flush_pool, GFP_NOIO); 475 476 fi->bio = bio; 477 fi->mddev = mddev; 478 atomic_set(&fi->flush_pending, 1); 479 480 rcu_read_lock(); 481 rdev_for_each_rcu(rdev, mddev) 482 if (rdev->raid_disk >= 0 && 483 !test_bit(Faulty, &rdev->flags)) { 484 /* Take two references, one is dropped 485 * when request finishes, one after 486 * we reclaim rcu_read_lock 487 */ 488 struct bio *bi; 489 struct flush_bio *fb; 490 atomic_inc(&rdev->nr_pending); 491 atomic_inc(&rdev->nr_pending); 492 rcu_read_unlock(); 493 494 fb = mempool_alloc(mddev->flush_bio_pool, GFP_NOIO); 495 fb->fi = fi; 496 fb->rdev = rdev; 497 498 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 499 bio_set_dev(bi, rdev->bdev); 500 bi->bi_end_io = md_end_flush; 501 bi->bi_private = fb; 502 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 503 504 atomic_inc(&fi->flush_pending); 505 submit_bio(bi); 506 507 rcu_read_lock(); 508 rdev_dec_pending(rdev, mddev); 509 } 510 rcu_read_unlock(); 511 512 if (atomic_dec_and_test(&fi->flush_pending)) { 513 if (bio->bi_iter.bi_size == 0) { 514 /* an empty barrier - all done */ 515 bio_endio(bio); 516 mempool_free(fi, mddev->flush_pool); 517 } else { 518 INIT_WORK(&fi->flush_work, submit_flushes); 519 queue_work(md_wq, &fi->flush_work); 520 } 521 } 522 } 523 EXPORT_SYMBOL(md_flush_request); 524 525 static inline struct mddev *mddev_get(struct mddev *mddev) 526 { 527 atomic_inc(&mddev->active); 528 return mddev; 529 } 530 531 static void mddev_delayed_delete(struct work_struct *ws); 532 533 static void mddev_put(struct mddev *mddev) 534 { 535 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 536 return; 537 if (!mddev->raid_disks && list_empty(&mddev->disks) && 538 mddev->ctime == 0 && !mddev->hold_active) { 539 /* Array is not configured at all, and not held active, 540 * so destroy it */ 541 list_del_init(&mddev->all_mddevs); 542 543 /* 544 * Call queue_work inside the spinlock so that 545 * flush_workqueue() after mddev_find will succeed in waiting 546 * for the work to be done. 547 */ 548 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 549 queue_work(md_misc_wq, &mddev->del_work); 550 } 551 spin_unlock(&all_mddevs_lock); 552 } 553 554 static void md_safemode_timeout(struct timer_list *t); 555 556 void mddev_init(struct mddev *mddev) 557 { 558 kobject_init(&mddev->kobj, &md_ktype); 559 mutex_init(&mddev->open_mutex); 560 mutex_init(&mddev->reconfig_mutex); 561 mutex_init(&mddev->bitmap_info.mutex); 562 INIT_LIST_HEAD(&mddev->disks); 563 INIT_LIST_HEAD(&mddev->all_mddevs); 564 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 565 atomic_set(&mddev->active, 1); 566 atomic_set(&mddev->openers, 0); 567 atomic_set(&mddev->active_io, 0); 568 spin_lock_init(&mddev->lock); 569 init_waitqueue_head(&mddev->sb_wait); 570 init_waitqueue_head(&mddev->recovery_wait); 571 mddev->reshape_position = MaxSector; 572 mddev->reshape_backwards = 0; 573 mddev->last_sync_action = "none"; 574 mddev->resync_min = 0; 575 mddev->resync_max = MaxSector; 576 mddev->level = LEVEL_NONE; 577 } 578 EXPORT_SYMBOL_GPL(mddev_init); 579 580 static struct mddev *mddev_find(dev_t unit) 581 { 582 struct mddev *mddev, *new = NULL; 583 584 if (unit && MAJOR(unit) != MD_MAJOR) 585 unit &= ~((1<<MdpMinorShift)-1); 586 587 retry: 588 spin_lock(&all_mddevs_lock); 589 590 if (unit) { 591 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 592 if (mddev->unit == unit) { 593 mddev_get(mddev); 594 spin_unlock(&all_mddevs_lock); 595 kfree(new); 596 return mddev; 597 } 598 599 if (new) { 600 list_add(&new->all_mddevs, &all_mddevs); 601 spin_unlock(&all_mddevs_lock); 602 new->hold_active = UNTIL_IOCTL; 603 return new; 604 } 605 } else if (new) { 606 /* find an unused unit number */ 607 static int next_minor = 512; 608 int start = next_minor; 609 int is_free = 0; 610 int dev = 0; 611 while (!is_free) { 612 dev = MKDEV(MD_MAJOR, next_minor); 613 next_minor++; 614 if (next_minor > MINORMASK) 615 next_minor = 0; 616 if (next_minor == start) { 617 /* Oh dear, all in use. */ 618 spin_unlock(&all_mddevs_lock); 619 kfree(new); 620 return NULL; 621 } 622 623 is_free = 1; 624 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 625 if (mddev->unit == dev) { 626 is_free = 0; 627 break; 628 } 629 } 630 new->unit = dev; 631 new->md_minor = MINOR(dev); 632 new->hold_active = UNTIL_STOP; 633 list_add(&new->all_mddevs, &all_mddevs); 634 spin_unlock(&all_mddevs_lock); 635 return new; 636 } 637 spin_unlock(&all_mddevs_lock); 638 639 new = kzalloc(sizeof(*new), GFP_KERNEL); 640 if (!new) 641 return NULL; 642 643 new->unit = unit; 644 if (MAJOR(unit) == MD_MAJOR) 645 new->md_minor = MINOR(unit); 646 else 647 new->md_minor = MINOR(unit) >> MdpMinorShift; 648 649 mddev_init(new); 650 651 goto retry; 652 } 653 654 static struct attribute_group md_redundancy_group; 655 656 void mddev_unlock(struct mddev *mddev) 657 { 658 if (mddev->to_remove) { 659 /* These cannot be removed under reconfig_mutex as 660 * an access to the files will try to take reconfig_mutex 661 * while holding the file unremovable, which leads to 662 * a deadlock. 663 * So hold set sysfs_active while the remove in happeing, 664 * and anything else which might set ->to_remove or my 665 * otherwise change the sysfs namespace will fail with 666 * -EBUSY if sysfs_active is still set. 667 * We set sysfs_active under reconfig_mutex and elsewhere 668 * test it under the same mutex to ensure its correct value 669 * is seen. 670 */ 671 struct attribute_group *to_remove = mddev->to_remove; 672 mddev->to_remove = NULL; 673 mddev->sysfs_active = 1; 674 mutex_unlock(&mddev->reconfig_mutex); 675 676 if (mddev->kobj.sd) { 677 if (to_remove != &md_redundancy_group) 678 sysfs_remove_group(&mddev->kobj, to_remove); 679 if (mddev->pers == NULL || 680 mddev->pers->sync_request == NULL) { 681 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 682 if (mddev->sysfs_action) 683 sysfs_put(mddev->sysfs_action); 684 mddev->sysfs_action = NULL; 685 } 686 } 687 mddev->sysfs_active = 0; 688 } else 689 mutex_unlock(&mddev->reconfig_mutex); 690 691 /* As we've dropped the mutex we need a spinlock to 692 * make sure the thread doesn't disappear 693 */ 694 spin_lock(&pers_lock); 695 md_wakeup_thread(mddev->thread); 696 wake_up(&mddev->sb_wait); 697 spin_unlock(&pers_lock); 698 } 699 EXPORT_SYMBOL_GPL(mddev_unlock); 700 701 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 702 { 703 struct md_rdev *rdev; 704 705 rdev_for_each_rcu(rdev, mddev) 706 if (rdev->desc_nr == nr) 707 return rdev; 708 709 return NULL; 710 } 711 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 712 713 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 714 { 715 struct md_rdev *rdev; 716 717 rdev_for_each(rdev, mddev) 718 if (rdev->bdev->bd_dev == dev) 719 return rdev; 720 721 return NULL; 722 } 723 724 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 725 { 726 struct md_rdev *rdev; 727 728 rdev_for_each_rcu(rdev, mddev) 729 if (rdev->bdev->bd_dev == dev) 730 return rdev; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 735 736 static struct md_personality *find_pers(int level, char *clevel) 737 { 738 struct md_personality *pers; 739 list_for_each_entry(pers, &pers_list, list) { 740 if (level != LEVEL_NONE && pers->level == level) 741 return pers; 742 if (strcmp(pers->name, clevel)==0) 743 return pers; 744 } 745 return NULL; 746 } 747 748 /* return the offset of the super block in 512byte sectors */ 749 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 750 { 751 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 752 return MD_NEW_SIZE_SECTORS(num_sectors); 753 } 754 755 static int alloc_disk_sb(struct md_rdev *rdev) 756 { 757 rdev->sb_page = alloc_page(GFP_KERNEL); 758 if (!rdev->sb_page) 759 return -ENOMEM; 760 return 0; 761 } 762 763 void md_rdev_clear(struct md_rdev *rdev) 764 { 765 if (rdev->sb_page) { 766 put_page(rdev->sb_page); 767 rdev->sb_loaded = 0; 768 rdev->sb_page = NULL; 769 rdev->sb_start = 0; 770 rdev->sectors = 0; 771 } 772 if (rdev->bb_page) { 773 put_page(rdev->bb_page); 774 rdev->bb_page = NULL; 775 } 776 badblocks_exit(&rdev->badblocks); 777 } 778 EXPORT_SYMBOL_GPL(md_rdev_clear); 779 780 static void super_written(struct bio *bio) 781 { 782 struct md_rdev *rdev = bio->bi_private; 783 struct mddev *mddev = rdev->mddev; 784 785 if (bio->bi_status) { 786 pr_err("md: super_written gets error=%d\n", bio->bi_status); 787 md_error(mddev, rdev); 788 if (!test_bit(Faulty, &rdev->flags) 789 && (bio->bi_opf & MD_FAILFAST)) { 790 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 791 set_bit(LastDev, &rdev->flags); 792 } 793 } else 794 clear_bit(LastDev, &rdev->flags); 795 796 if (atomic_dec_and_test(&mddev->pending_writes)) 797 wake_up(&mddev->sb_wait); 798 rdev_dec_pending(rdev, mddev); 799 bio_put(bio); 800 } 801 802 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 803 sector_t sector, int size, struct page *page) 804 { 805 /* write first size bytes of page to sector of rdev 806 * Increment mddev->pending_writes before returning 807 * and decrement it on completion, waking up sb_wait 808 * if zero is reached. 809 * If an error occurred, call md_error 810 */ 811 struct bio *bio; 812 int ff = 0; 813 814 if (!page) 815 return; 816 817 if (test_bit(Faulty, &rdev->flags)) 818 return; 819 820 bio = md_bio_alloc_sync(mddev); 821 822 atomic_inc(&rdev->nr_pending); 823 824 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 825 bio->bi_iter.bi_sector = sector; 826 bio_add_page(bio, page, size, 0); 827 bio->bi_private = rdev; 828 bio->bi_end_io = super_written; 829 830 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 831 test_bit(FailFast, &rdev->flags) && 832 !test_bit(LastDev, &rdev->flags)) 833 ff = MD_FAILFAST; 834 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 835 836 atomic_inc(&mddev->pending_writes); 837 submit_bio(bio); 838 } 839 840 int md_super_wait(struct mddev *mddev) 841 { 842 /* wait for all superblock writes that were scheduled to complete */ 843 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 844 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 845 return -EAGAIN; 846 return 0; 847 } 848 849 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 850 struct page *page, int op, int op_flags, bool metadata_op) 851 { 852 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 853 int ret; 854 855 if (metadata_op && rdev->meta_bdev) 856 bio_set_dev(bio, rdev->meta_bdev); 857 else 858 bio_set_dev(bio, rdev->bdev); 859 bio_set_op_attrs(bio, op, op_flags); 860 if (metadata_op) 861 bio->bi_iter.bi_sector = sector + rdev->sb_start; 862 else if (rdev->mddev->reshape_position != MaxSector && 863 (rdev->mddev->reshape_backwards == 864 (sector >= rdev->mddev->reshape_position))) 865 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 866 else 867 bio->bi_iter.bi_sector = sector + rdev->data_offset; 868 bio_add_page(bio, page, size, 0); 869 870 submit_bio_wait(bio); 871 872 ret = !bio->bi_status; 873 bio_put(bio); 874 return ret; 875 } 876 EXPORT_SYMBOL_GPL(sync_page_io); 877 878 static int read_disk_sb(struct md_rdev *rdev, int size) 879 { 880 char b[BDEVNAME_SIZE]; 881 882 if (rdev->sb_loaded) 883 return 0; 884 885 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 886 goto fail; 887 rdev->sb_loaded = 1; 888 return 0; 889 890 fail: 891 pr_err("md: disabled device %s, could not read superblock.\n", 892 bdevname(rdev->bdev,b)); 893 return -EINVAL; 894 } 895 896 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 897 { 898 return sb1->set_uuid0 == sb2->set_uuid0 && 899 sb1->set_uuid1 == sb2->set_uuid1 && 900 sb1->set_uuid2 == sb2->set_uuid2 && 901 sb1->set_uuid3 == sb2->set_uuid3; 902 } 903 904 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 905 { 906 int ret; 907 mdp_super_t *tmp1, *tmp2; 908 909 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 910 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 911 912 if (!tmp1 || !tmp2) { 913 ret = 0; 914 goto abort; 915 } 916 917 *tmp1 = *sb1; 918 *tmp2 = *sb2; 919 920 /* 921 * nr_disks is not constant 922 */ 923 tmp1->nr_disks = 0; 924 tmp2->nr_disks = 0; 925 926 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 927 abort: 928 kfree(tmp1); 929 kfree(tmp2); 930 return ret; 931 } 932 933 static u32 md_csum_fold(u32 csum) 934 { 935 csum = (csum & 0xffff) + (csum >> 16); 936 return (csum & 0xffff) + (csum >> 16); 937 } 938 939 static unsigned int calc_sb_csum(mdp_super_t *sb) 940 { 941 u64 newcsum = 0; 942 u32 *sb32 = (u32*)sb; 943 int i; 944 unsigned int disk_csum, csum; 945 946 disk_csum = sb->sb_csum; 947 sb->sb_csum = 0; 948 949 for (i = 0; i < MD_SB_BYTES/4 ; i++) 950 newcsum += sb32[i]; 951 csum = (newcsum & 0xffffffff) + (newcsum>>32); 952 953 #ifdef CONFIG_ALPHA 954 /* This used to use csum_partial, which was wrong for several 955 * reasons including that different results are returned on 956 * different architectures. It isn't critical that we get exactly 957 * the same return value as before (we always csum_fold before 958 * testing, and that removes any differences). However as we 959 * know that csum_partial always returned a 16bit value on 960 * alphas, do a fold to maximise conformity to previous behaviour. 961 */ 962 sb->sb_csum = md_csum_fold(disk_csum); 963 #else 964 sb->sb_csum = disk_csum; 965 #endif 966 return csum; 967 } 968 969 /* 970 * Handle superblock details. 971 * We want to be able to handle multiple superblock formats 972 * so we have a common interface to them all, and an array of 973 * different handlers. 974 * We rely on user-space to write the initial superblock, and support 975 * reading and updating of superblocks. 976 * Interface methods are: 977 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 978 * loads and validates a superblock on dev. 979 * if refdev != NULL, compare superblocks on both devices 980 * Return: 981 * 0 - dev has a superblock that is compatible with refdev 982 * 1 - dev has a superblock that is compatible and newer than refdev 983 * so dev should be used as the refdev in future 984 * -EINVAL superblock incompatible or invalid 985 * -othererror e.g. -EIO 986 * 987 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 988 * Verify that dev is acceptable into mddev. 989 * The first time, mddev->raid_disks will be 0, and data from 990 * dev should be merged in. Subsequent calls check that dev 991 * is new enough. Return 0 or -EINVAL 992 * 993 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 994 * Update the superblock for rdev with data in mddev 995 * This does not write to disc. 996 * 997 */ 998 999 struct super_type { 1000 char *name; 1001 struct module *owner; 1002 int (*load_super)(struct md_rdev *rdev, 1003 struct md_rdev *refdev, 1004 int minor_version); 1005 int (*validate_super)(struct mddev *mddev, 1006 struct md_rdev *rdev); 1007 void (*sync_super)(struct mddev *mddev, 1008 struct md_rdev *rdev); 1009 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1010 sector_t num_sectors); 1011 int (*allow_new_offset)(struct md_rdev *rdev, 1012 unsigned long long new_offset); 1013 }; 1014 1015 /* 1016 * Check that the given mddev has no bitmap. 1017 * 1018 * This function is called from the run method of all personalities that do not 1019 * support bitmaps. It prints an error message and returns non-zero if mddev 1020 * has a bitmap. Otherwise, it returns 0. 1021 * 1022 */ 1023 int md_check_no_bitmap(struct mddev *mddev) 1024 { 1025 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1026 return 0; 1027 pr_warn("%s: bitmaps are not supported for %s\n", 1028 mdname(mddev), mddev->pers->name); 1029 return 1; 1030 } 1031 EXPORT_SYMBOL(md_check_no_bitmap); 1032 1033 /* 1034 * load_super for 0.90.0 1035 */ 1036 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1037 { 1038 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1039 mdp_super_t *sb; 1040 int ret; 1041 1042 /* 1043 * Calculate the position of the superblock (512byte sectors), 1044 * it's at the end of the disk. 1045 * 1046 * It also happens to be a multiple of 4Kb. 1047 */ 1048 rdev->sb_start = calc_dev_sboffset(rdev); 1049 1050 ret = read_disk_sb(rdev, MD_SB_BYTES); 1051 if (ret) 1052 return ret; 1053 1054 ret = -EINVAL; 1055 1056 bdevname(rdev->bdev, b); 1057 sb = page_address(rdev->sb_page); 1058 1059 if (sb->md_magic != MD_SB_MAGIC) { 1060 pr_warn("md: invalid raid superblock magic on %s\n", b); 1061 goto abort; 1062 } 1063 1064 if (sb->major_version != 0 || 1065 sb->minor_version < 90 || 1066 sb->minor_version > 91) { 1067 pr_warn("Bad version number %d.%d on %s\n", 1068 sb->major_version, sb->minor_version, b); 1069 goto abort; 1070 } 1071 1072 if (sb->raid_disks <= 0) 1073 goto abort; 1074 1075 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1076 pr_warn("md: invalid superblock checksum on %s\n", b); 1077 goto abort; 1078 } 1079 1080 rdev->preferred_minor = sb->md_minor; 1081 rdev->data_offset = 0; 1082 rdev->new_data_offset = 0; 1083 rdev->sb_size = MD_SB_BYTES; 1084 rdev->badblocks.shift = -1; 1085 1086 if (sb->level == LEVEL_MULTIPATH) 1087 rdev->desc_nr = -1; 1088 else 1089 rdev->desc_nr = sb->this_disk.number; 1090 1091 if (!refdev) { 1092 ret = 1; 1093 } else { 1094 __u64 ev1, ev2; 1095 mdp_super_t *refsb = page_address(refdev->sb_page); 1096 if (!md_uuid_equal(refsb, sb)) { 1097 pr_warn("md: %s has different UUID to %s\n", 1098 b, bdevname(refdev->bdev,b2)); 1099 goto abort; 1100 } 1101 if (!md_sb_equal(refsb, sb)) { 1102 pr_warn("md: %s has same UUID but different superblock to %s\n", 1103 b, bdevname(refdev->bdev, b2)); 1104 goto abort; 1105 } 1106 ev1 = md_event(sb); 1107 ev2 = md_event(refsb); 1108 if (ev1 > ev2) 1109 ret = 1; 1110 else 1111 ret = 0; 1112 } 1113 rdev->sectors = rdev->sb_start; 1114 /* Limit to 4TB as metadata cannot record more than that. 1115 * (not needed for Linear and RAID0 as metadata doesn't 1116 * record this size) 1117 */ 1118 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1119 sb->level >= 1) 1120 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1121 1122 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1123 /* "this cannot possibly happen" ... */ 1124 ret = -EINVAL; 1125 1126 abort: 1127 return ret; 1128 } 1129 1130 /* 1131 * validate_super for 0.90.0 1132 */ 1133 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1134 { 1135 mdp_disk_t *desc; 1136 mdp_super_t *sb = page_address(rdev->sb_page); 1137 __u64 ev1 = md_event(sb); 1138 1139 rdev->raid_disk = -1; 1140 clear_bit(Faulty, &rdev->flags); 1141 clear_bit(In_sync, &rdev->flags); 1142 clear_bit(Bitmap_sync, &rdev->flags); 1143 clear_bit(WriteMostly, &rdev->flags); 1144 1145 if (mddev->raid_disks == 0) { 1146 mddev->major_version = 0; 1147 mddev->minor_version = sb->minor_version; 1148 mddev->patch_version = sb->patch_version; 1149 mddev->external = 0; 1150 mddev->chunk_sectors = sb->chunk_size >> 9; 1151 mddev->ctime = sb->ctime; 1152 mddev->utime = sb->utime; 1153 mddev->level = sb->level; 1154 mddev->clevel[0] = 0; 1155 mddev->layout = sb->layout; 1156 mddev->raid_disks = sb->raid_disks; 1157 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1158 mddev->events = ev1; 1159 mddev->bitmap_info.offset = 0; 1160 mddev->bitmap_info.space = 0; 1161 /* bitmap can use 60 K after the 4K superblocks */ 1162 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1163 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1164 mddev->reshape_backwards = 0; 1165 1166 if (mddev->minor_version >= 91) { 1167 mddev->reshape_position = sb->reshape_position; 1168 mddev->delta_disks = sb->delta_disks; 1169 mddev->new_level = sb->new_level; 1170 mddev->new_layout = sb->new_layout; 1171 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1172 if (mddev->delta_disks < 0) 1173 mddev->reshape_backwards = 1; 1174 } else { 1175 mddev->reshape_position = MaxSector; 1176 mddev->delta_disks = 0; 1177 mddev->new_level = mddev->level; 1178 mddev->new_layout = mddev->layout; 1179 mddev->new_chunk_sectors = mddev->chunk_sectors; 1180 } 1181 1182 if (sb->state & (1<<MD_SB_CLEAN)) 1183 mddev->recovery_cp = MaxSector; 1184 else { 1185 if (sb->events_hi == sb->cp_events_hi && 1186 sb->events_lo == sb->cp_events_lo) { 1187 mddev->recovery_cp = sb->recovery_cp; 1188 } else 1189 mddev->recovery_cp = 0; 1190 } 1191 1192 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1193 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1194 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1195 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1196 1197 mddev->max_disks = MD_SB_DISKS; 1198 1199 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1200 mddev->bitmap_info.file == NULL) { 1201 mddev->bitmap_info.offset = 1202 mddev->bitmap_info.default_offset; 1203 mddev->bitmap_info.space = 1204 mddev->bitmap_info.default_space; 1205 } 1206 1207 } else if (mddev->pers == NULL) { 1208 /* Insist on good event counter while assembling, except 1209 * for spares (which don't need an event count) */ 1210 ++ev1; 1211 if (sb->disks[rdev->desc_nr].state & ( 1212 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1213 if (ev1 < mddev->events) 1214 return -EINVAL; 1215 } else if (mddev->bitmap) { 1216 /* if adding to array with a bitmap, then we can accept an 1217 * older device ... but not too old. 1218 */ 1219 if (ev1 < mddev->bitmap->events_cleared) 1220 return 0; 1221 if (ev1 < mddev->events) 1222 set_bit(Bitmap_sync, &rdev->flags); 1223 } else { 1224 if (ev1 < mddev->events) 1225 /* just a hot-add of a new device, leave raid_disk at -1 */ 1226 return 0; 1227 } 1228 1229 if (mddev->level != LEVEL_MULTIPATH) { 1230 desc = sb->disks + rdev->desc_nr; 1231 1232 if (desc->state & (1<<MD_DISK_FAULTY)) 1233 set_bit(Faulty, &rdev->flags); 1234 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1235 desc->raid_disk < mddev->raid_disks */) { 1236 set_bit(In_sync, &rdev->flags); 1237 rdev->raid_disk = desc->raid_disk; 1238 rdev->saved_raid_disk = desc->raid_disk; 1239 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1240 /* active but not in sync implies recovery up to 1241 * reshape position. We don't know exactly where 1242 * that is, so set to zero for now */ 1243 if (mddev->minor_version >= 91) { 1244 rdev->recovery_offset = 0; 1245 rdev->raid_disk = desc->raid_disk; 1246 } 1247 } 1248 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1249 set_bit(WriteMostly, &rdev->flags); 1250 if (desc->state & (1<<MD_DISK_FAILFAST)) 1251 set_bit(FailFast, &rdev->flags); 1252 } else /* MULTIPATH are always insync */ 1253 set_bit(In_sync, &rdev->flags); 1254 return 0; 1255 } 1256 1257 /* 1258 * sync_super for 0.90.0 1259 */ 1260 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1261 { 1262 mdp_super_t *sb; 1263 struct md_rdev *rdev2; 1264 int next_spare = mddev->raid_disks; 1265 1266 /* make rdev->sb match mddev data.. 1267 * 1268 * 1/ zero out disks 1269 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1270 * 3/ any empty disks < next_spare become removed 1271 * 1272 * disks[0] gets initialised to REMOVED because 1273 * we cannot be sure from other fields if it has 1274 * been initialised or not. 1275 */ 1276 int i; 1277 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1278 1279 rdev->sb_size = MD_SB_BYTES; 1280 1281 sb = page_address(rdev->sb_page); 1282 1283 memset(sb, 0, sizeof(*sb)); 1284 1285 sb->md_magic = MD_SB_MAGIC; 1286 sb->major_version = mddev->major_version; 1287 sb->patch_version = mddev->patch_version; 1288 sb->gvalid_words = 0; /* ignored */ 1289 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1290 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1291 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1292 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1293 1294 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1295 sb->level = mddev->level; 1296 sb->size = mddev->dev_sectors / 2; 1297 sb->raid_disks = mddev->raid_disks; 1298 sb->md_minor = mddev->md_minor; 1299 sb->not_persistent = 0; 1300 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1301 sb->state = 0; 1302 sb->events_hi = (mddev->events>>32); 1303 sb->events_lo = (u32)mddev->events; 1304 1305 if (mddev->reshape_position == MaxSector) 1306 sb->minor_version = 90; 1307 else { 1308 sb->minor_version = 91; 1309 sb->reshape_position = mddev->reshape_position; 1310 sb->new_level = mddev->new_level; 1311 sb->delta_disks = mddev->delta_disks; 1312 sb->new_layout = mddev->new_layout; 1313 sb->new_chunk = mddev->new_chunk_sectors << 9; 1314 } 1315 mddev->minor_version = sb->minor_version; 1316 if (mddev->in_sync) 1317 { 1318 sb->recovery_cp = mddev->recovery_cp; 1319 sb->cp_events_hi = (mddev->events>>32); 1320 sb->cp_events_lo = (u32)mddev->events; 1321 if (mddev->recovery_cp == MaxSector) 1322 sb->state = (1<< MD_SB_CLEAN); 1323 } else 1324 sb->recovery_cp = 0; 1325 1326 sb->layout = mddev->layout; 1327 sb->chunk_size = mddev->chunk_sectors << 9; 1328 1329 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1330 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1331 1332 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1333 rdev_for_each(rdev2, mddev) { 1334 mdp_disk_t *d; 1335 int desc_nr; 1336 int is_active = test_bit(In_sync, &rdev2->flags); 1337 1338 if (rdev2->raid_disk >= 0 && 1339 sb->minor_version >= 91) 1340 /* we have nowhere to store the recovery_offset, 1341 * but if it is not below the reshape_position, 1342 * we can piggy-back on that. 1343 */ 1344 is_active = 1; 1345 if (rdev2->raid_disk < 0 || 1346 test_bit(Faulty, &rdev2->flags)) 1347 is_active = 0; 1348 if (is_active) 1349 desc_nr = rdev2->raid_disk; 1350 else 1351 desc_nr = next_spare++; 1352 rdev2->desc_nr = desc_nr; 1353 d = &sb->disks[rdev2->desc_nr]; 1354 nr_disks++; 1355 d->number = rdev2->desc_nr; 1356 d->major = MAJOR(rdev2->bdev->bd_dev); 1357 d->minor = MINOR(rdev2->bdev->bd_dev); 1358 if (is_active) 1359 d->raid_disk = rdev2->raid_disk; 1360 else 1361 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1362 if (test_bit(Faulty, &rdev2->flags)) 1363 d->state = (1<<MD_DISK_FAULTY); 1364 else if (is_active) { 1365 d->state = (1<<MD_DISK_ACTIVE); 1366 if (test_bit(In_sync, &rdev2->flags)) 1367 d->state |= (1<<MD_DISK_SYNC); 1368 active++; 1369 working++; 1370 } else { 1371 d->state = 0; 1372 spare++; 1373 working++; 1374 } 1375 if (test_bit(WriteMostly, &rdev2->flags)) 1376 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1377 if (test_bit(FailFast, &rdev2->flags)) 1378 d->state |= (1<<MD_DISK_FAILFAST); 1379 } 1380 /* now set the "removed" and "faulty" bits on any missing devices */ 1381 for (i=0 ; i < mddev->raid_disks ; i++) { 1382 mdp_disk_t *d = &sb->disks[i]; 1383 if (d->state == 0 && d->number == 0) { 1384 d->number = i; 1385 d->raid_disk = i; 1386 d->state = (1<<MD_DISK_REMOVED); 1387 d->state |= (1<<MD_DISK_FAULTY); 1388 failed++; 1389 } 1390 } 1391 sb->nr_disks = nr_disks; 1392 sb->active_disks = active; 1393 sb->working_disks = working; 1394 sb->failed_disks = failed; 1395 sb->spare_disks = spare; 1396 1397 sb->this_disk = sb->disks[rdev->desc_nr]; 1398 sb->sb_csum = calc_sb_csum(sb); 1399 } 1400 1401 /* 1402 * rdev_size_change for 0.90.0 1403 */ 1404 static unsigned long long 1405 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1406 { 1407 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1408 return 0; /* component must fit device */ 1409 if (rdev->mddev->bitmap_info.offset) 1410 return 0; /* can't move bitmap */ 1411 rdev->sb_start = calc_dev_sboffset(rdev); 1412 if (!num_sectors || num_sectors > rdev->sb_start) 1413 num_sectors = rdev->sb_start; 1414 /* Limit to 4TB as metadata cannot record more than that. 1415 * 4TB == 2^32 KB, or 2*2^32 sectors. 1416 */ 1417 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1418 rdev->mddev->level >= 1) 1419 num_sectors = (sector_t)(2ULL << 32) - 2; 1420 do { 1421 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1422 rdev->sb_page); 1423 } while (md_super_wait(rdev->mddev) < 0); 1424 return num_sectors; 1425 } 1426 1427 static int 1428 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1429 { 1430 /* non-zero offset changes not possible with v0.90 */ 1431 return new_offset == 0; 1432 } 1433 1434 /* 1435 * version 1 superblock 1436 */ 1437 1438 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1439 { 1440 __le32 disk_csum; 1441 u32 csum; 1442 unsigned long long newcsum; 1443 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1444 __le32 *isuper = (__le32*)sb; 1445 1446 disk_csum = sb->sb_csum; 1447 sb->sb_csum = 0; 1448 newcsum = 0; 1449 for (; size >= 4; size -= 4) 1450 newcsum += le32_to_cpu(*isuper++); 1451 1452 if (size == 2) 1453 newcsum += le16_to_cpu(*(__le16*) isuper); 1454 1455 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1456 sb->sb_csum = disk_csum; 1457 return cpu_to_le32(csum); 1458 } 1459 1460 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1461 { 1462 struct mdp_superblock_1 *sb; 1463 int ret; 1464 sector_t sb_start; 1465 sector_t sectors; 1466 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1467 int bmask; 1468 1469 /* 1470 * Calculate the position of the superblock in 512byte sectors. 1471 * It is always aligned to a 4K boundary and 1472 * depeding on minor_version, it can be: 1473 * 0: At least 8K, but less than 12K, from end of device 1474 * 1: At start of device 1475 * 2: 4K from start of device. 1476 */ 1477 switch(minor_version) { 1478 case 0: 1479 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1480 sb_start -= 8*2; 1481 sb_start &= ~(sector_t)(4*2-1); 1482 break; 1483 case 1: 1484 sb_start = 0; 1485 break; 1486 case 2: 1487 sb_start = 8; 1488 break; 1489 default: 1490 return -EINVAL; 1491 } 1492 rdev->sb_start = sb_start; 1493 1494 /* superblock is rarely larger than 1K, but it can be larger, 1495 * and it is safe to read 4k, so we do that 1496 */ 1497 ret = read_disk_sb(rdev, 4096); 1498 if (ret) return ret; 1499 1500 sb = page_address(rdev->sb_page); 1501 1502 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1503 sb->major_version != cpu_to_le32(1) || 1504 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1505 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1506 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1507 return -EINVAL; 1508 1509 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1510 pr_warn("md: invalid superblock checksum on %s\n", 1511 bdevname(rdev->bdev,b)); 1512 return -EINVAL; 1513 } 1514 if (le64_to_cpu(sb->data_size) < 10) { 1515 pr_warn("md: data_size too small on %s\n", 1516 bdevname(rdev->bdev,b)); 1517 return -EINVAL; 1518 } 1519 if (sb->pad0 || 1520 sb->pad3[0] || 1521 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1522 /* Some padding is non-zero, might be a new feature */ 1523 return -EINVAL; 1524 1525 rdev->preferred_minor = 0xffff; 1526 rdev->data_offset = le64_to_cpu(sb->data_offset); 1527 rdev->new_data_offset = rdev->data_offset; 1528 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1529 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1530 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1531 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1532 1533 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1534 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1535 if (rdev->sb_size & bmask) 1536 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1537 1538 if (minor_version 1539 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1540 return -EINVAL; 1541 if (minor_version 1542 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1543 return -EINVAL; 1544 1545 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1546 rdev->desc_nr = -1; 1547 else 1548 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1549 1550 if (!rdev->bb_page) { 1551 rdev->bb_page = alloc_page(GFP_KERNEL); 1552 if (!rdev->bb_page) 1553 return -ENOMEM; 1554 } 1555 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1556 rdev->badblocks.count == 0) { 1557 /* need to load the bad block list. 1558 * Currently we limit it to one page. 1559 */ 1560 s32 offset; 1561 sector_t bb_sector; 1562 u64 *bbp; 1563 int i; 1564 int sectors = le16_to_cpu(sb->bblog_size); 1565 if (sectors > (PAGE_SIZE / 512)) 1566 return -EINVAL; 1567 offset = le32_to_cpu(sb->bblog_offset); 1568 if (offset == 0) 1569 return -EINVAL; 1570 bb_sector = (long long)offset; 1571 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1572 rdev->bb_page, REQ_OP_READ, 0, true)) 1573 return -EIO; 1574 bbp = (u64 *)page_address(rdev->bb_page); 1575 rdev->badblocks.shift = sb->bblog_shift; 1576 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1577 u64 bb = le64_to_cpu(*bbp); 1578 int count = bb & (0x3ff); 1579 u64 sector = bb >> 10; 1580 sector <<= sb->bblog_shift; 1581 count <<= sb->bblog_shift; 1582 if (bb + 1 == 0) 1583 break; 1584 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1585 return -EINVAL; 1586 } 1587 } else if (sb->bblog_offset != 0) 1588 rdev->badblocks.shift = 0; 1589 1590 if ((le32_to_cpu(sb->feature_map) & 1591 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1592 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1593 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1594 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1595 } 1596 1597 if (!refdev) { 1598 ret = 1; 1599 } else { 1600 __u64 ev1, ev2; 1601 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1602 1603 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1604 sb->level != refsb->level || 1605 sb->layout != refsb->layout || 1606 sb->chunksize != refsb->chunksize) { 1607 pr_warn("md: %s has strangely different superblock to %s\n", 1608 bdevname(rdev->bdev,b), 1609 bdevname(refdev->bdev,b2)); 1610 return -EINVAL; 1611 } 1612 ev1 = le64_to_cpu(sb->events); 1613 ev2 = le64_to_cpu(refsb->events); 1614 1615 if (ev1 > ev2) 1616 ret = 1; 1617 else 1618 ret = 0; 1619 } 1620 if (minor_version) { 1621 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1622 sectors -= rdev->data_offset; 1623 } else 1624 sectors = rdev->sb_start; 1625 if (sectors < le64_to_cpu(sb->data_size)) 1626 return -EINVAL; 1627 rdev->sectors = le64_to_cpu(sb->data_size); 1628 return ret; 1629 } 1630 1631 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1632 { 1633 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1634 __u64 ev1 = le64_to_cpu(sb->events); 1635 1636 rdev->raid_disk = -1; 1637 clear_bit(Faulty, &rdev->flags); 1638 clear_bit(In_sync, &rdev->flags); 1639 clear_bit(Bitmap_sync, &rdev->flags); 1640 clear_bit(WriteMostly, &rdev->flags); 1641 1642 if (mddev->raid_disks == 0) { 1643 mddev->major_version = 1; 1644 mddev->patch_version = 0; 1645 mddev->external = 0; 1646 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1647 mddev->ctime = le64_to_cpu(sb->ctime); 1648 mddev->utime = le64_to_cpu(sb->utime); 1649 mddev->level = le32_to_cpu(sb->level); 1650 mddev->clevel[0] = 0; 1651 mddev->layout = le32_to_cpu(sb->layout); 1652 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1653 mddev->dev_sectors = le64_to_cpu(sb->size); 1654 mddev->events = ev1; 1655 mddev->bitmap_info.offset = 0; 1656 mddev->bitmap_info.space = 0; 1657 /* Default location for bitmap is 1K after superblock 1658 * using 3K - total of 4K 1659 */ 1660 mddev->bitmap_info.default_offset = 1024 >> 9; 1661 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1662 mddev->reshape_backwards = 0; 1663 1664 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1665 memcpy(mddev->uuid, sb->set_uuid, 16); 1666 1667 mddev->max_disks = (4096-256)/2; 1668 1669 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1670 mddev->bitmap_info.file == NULL) { 1671 mddev->bitmap_info.offset = 1672 (__s32)le32_to_cpu(sb->bitmap_offset); 1673 /* Metadata doesn't record how much space is available. 1674 * For 1.0, we assume we can use up to the superblock 1675 * if before, else to 4K beyond superblock. 1676 * For others, assume no change is possible. 1677 */ 1678 if (mddev->minor_version > 0) 1679 mddev->bitmap_info.space = 0; 1680 else if (mddev->bitmap_info.offset > 0) 1681 mddev->bitmap_info.space = 1682 8 - mddev->bitmap_info.offset; 1683 else 1684 mddev->bitmap_info.space = 1685 -mddev->bitmap_info.offset; 1686 } 1687 1688 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1689 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1690 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1691 mddev->new_level = le32_to_cpu(sb->new_level); 1692 mddev->new_layout = le32_to_cpu(sb->new_layout); 1693 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1694 if (mddev->delta_disks < 0 || 1695 (mddev->delta_disks == 0 && 1696 (le32_to_cpu(sb->feature_map) 1697 & MD_FEATURE_RESHAPE_BACKWARDS))) 1698 mddev->reshape_backwards = 1; 1699 } else { 1700 mddev->reshape_position = MaxSector; 1701 mddev->delta_disks = 0; 1702 mddev->new_level = mddev->level; 1703 mddev->new_layout = mddev->layout; 1704 mddev->new_chunk_sectors = mddev->chunk_sectors; 1705 } 1706 1707 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1708 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1709 1710 if (le32_to_cpu(sb->feature_map) & 1711 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1712 if (le32_to_cpu(sb->feature_map) & 1713 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1714 return -EINVAL; 1715 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1716 (le32_to_cpu(sb->feature_map) & 1717 MD_FEATURE_MULTIPLE_PPLS)) 1718 return -EINVAL; 1719 set_bit(MD_HAS_PPL, &mddev->flags); 1720 } 1721 } else if (mddev->pers == NULL) { 1722 /* Insist of good event counter while assembling, except for 1723 * spares (which don't need an event count) */ 1724 ++ev1; 1725 if (rdev->desc_nr >= 0 && 1726 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1727 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1728 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1729 if (ev1 < mddev->events) 1730 return -EINVAL; 1731 } else if (mddev->bitmap) { 1732 /* If adding to array with a bitmap, then we can accept an 1733 * older device, but not too old. 1734 */ 1735 if (ev1 < mddev->bitmap->events_cleared) 1736 return 0; 1737 if (ev1 < mddev->events) 1738 set_bit(Bitmap_sync, &rdev->flags); 1739 } else { 1740 if (ev1 < mddev->events) 1741 /* just a hot-add of a new device, leave raid_disk at -1 */ 1742 return 0; 1743 } 1744 if (mddev->level != LEVEL_MULTIPATH) { 1745 int role; 1746 if (rdev->desc_nr < 0 || 1747 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1748 role = MD_DISK_ROLE_SPARE; 1749 rdev->desc_nr = -1; 1750 } else 1751 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1752 switch(role) { 1753 case MD_DISK_ROLE_SPARE: /* spare */ 1754 break; 1755 case MD_DISK_ROLE_FAULTY: /* faulty */ 1756 set_bit(Faulty, &rdev->flags); 1757 break; 1758 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1759 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1760 /* journal device without journal feature */ 1761 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1762 return -EINVAL; 1763 } 1764 set_bit(Journal, &rdev->flags); 1765 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1766 rdev->raid_disk = 0; 1767 break; 1768 default: 1769 rdev->saved_raid_disk = role; 1770 if ((le32_to_cpu(sb->feature_map) & 1771 MD_FEATURE_RECOVERY_OFFSET)) { 1772 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1773 if (!(le32_to_cpu(sb->feature_map) & 1774 MD_FEATURE_RECOVERY_BITMAP)) 1775 rdev->saved_raid_disk = -1; 1776 } else 1777 set_bit(In_sync, &rdev->flags); 1778 rdev->raid_disk = role; 1779 break; 1780 } 1781 if (sb->devflags & WriteMostly1) 1782 set_bit(WriteMostly, &rdev->flags); 1783 if (sb->devflags & FailFast1) 1784 set_bit(FailFast, &rdev->flags); 1785 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1786 set_bit(Replacement, &rdev->flags); 1787 } else /* MULTIPATH are always insync */ 1788 set_bit(In_sync, &rdev->flags); 1789 1790 return 0; 1791 } 1792 1793 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1794 { 1795 struct mdp_superblock_1 *sb; 1796 struct md_rdev *rdev2; 1797 int max_dev, i; 1798 /* make rdev->sb match mddev and rdev data. */ 1799 1800 sb = page_address(rdev->sb_page); 1801 1802 sb->feature_map = 0; 1803 sb->pad0 = 0; 1804 sb->recovery_offset = cpu_to_le64(0); 1805 memset(sb->pad3, 0, sizeof(sb->pad3)); 1806 1807 sb->utime = cpu_to_le64((__u64)mddev->utime); 1808 sb->events = cpu_to_le64(mddev->events); 1809 if (mddev->in_sync) 1810 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1811 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1812 sb->resync_offset = cpu_to_le64(MaxSector); 1813 else 1814 sb->resync_offset = cpu_to_le64(0); 1815 1816 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1817 1818 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1819 sb->size = cpu_to_le64(mddev->dev_sectors); 1820 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1821 sb->level = cpu_to_le32(mddev->level); 1822 sb->layout = cpu_to_le32(mddev->layout); 1823 if (test_bit(FailFast, &rdev->flags)) 1824 sb->devflags |= FailFast1; 1825 else 1826 sb->devflags &= ~FailFast1; 1827 1828 if (test_bit(WriteMostly, &rdev->flags)) 1829 sb->devflags |= WriteMostly1; 1830 else 1831 sb->devflags &= ~WriteMostly1; 1832 sb->data_offset = cpu_to_le64(rdev->data_offset); 1833 sb->data_size = cpu_to_le64(rdev->sectors); 1834 1835 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1836 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1837 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1838 } 1839 1840 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1841 !test_bit(In_sync, &rdev->flags)) { 1842 sb->feature_map |= 1843 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1844 sb->recovery_offset = 1845 cpu_to_le64(rdev->recovery_offset); 1846 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1847 sb->feature_map |= 1848 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1849 } 1850 /* Note: recovery_offset and journal_tail share space */ 1851 if (test_bit(Journal, &rdev->flags)) 1852 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1853 if (test_bit(Replacement, &rdev->flags)) 1854 sb->feature_map |= 1855 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1856 1857 if (mddev->reshape_position != MaxSector) { 1858 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1859 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1860 sb->new_layout = cpu_to_le32(mddev->new_layout); 1861 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1862 sb->new_level = cpu_to_le32(mddev->new_level); 1863 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1864 if (mddev->delta_disks == 0 && 1865 mddev->reshape_backwards) 1866 sb->feature_map 1867 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1868 if (rdev->new_data_offset != rdev->data_offset) { 1869 sb->feature_map 1870 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1871 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1872 - rdev->data_offset)); 1873 } 1874 } 1875 1876 if (mddev_is_clustered(mddev)) 1877 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1878 1879 if (rdev->badblocks.count == 0) 1880 /* Nothing to do for bad blocks*/ ; 1881 else if (sb->bblog_offset == 0) 1882 /* Cannot record bad blocks on this device */ 1883 md_error(mddev, rdev); 1884 else { 1885 struct badblocks *bb = &rdev->badblocks; 1886 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1887 u64 *p = bb->page; 1888 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1889 if (bb->changed) { 1890 unsigned seq; 1891 1892 retry: 1893 seq = read_seqbegin(&bb->lock); 1894 1895 memset(bbp, 0xff, PAGE_SIZE); 1896 1897 for (i = 0 ; i < bb->count ; i++) { 1898 u64 internal_bb = p[i]; 1899 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1900 | BB_LEN(internal_bb)); 1901 bbp[i] = cpu_to_le64(store_bb); 1902 } 1903 bb->changed = 0; 1904 if (read_seqretry(&bb->lock, seq)) 1905 goto retry; 1906 1907 bb->sector = (rdev->sb_start + 1908 (int)le32_to_cpu(sb->bblog_offset)); 1909 bb->size = le16_to_cpu(sb->bblog_size); 1910 } 1911 } 1912 1913 max_dev = 0; 1914 rdev_for_each(rdev2, mddev) 1915 if (rdev2->desc_nr+1 > max_dev) 1916 max_dev = rdev2->desc_nr+1; 1917 1918 if (max_dev > le32_to_cpu(sb->max_dev)) { 1919 int bmask; 1920 sb->max_dev = cpu_to_le32(max_dev); 1921 rdev->sb_size = max_dev * 2 + 256; 1922 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1923 if (rdev->sb_size & bmask) 1924 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1925 } else 1926 max_dev = le32_to_cpu(sb->max_dev); 1927 1928 for (i=0; i<max_dev;i++) 1929 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1930 1931 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1932 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1933 1934 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1935 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1936 sb->feature_map |= 1937 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1938 else 1939 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1940 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1941 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1942 } 1943 1944 rdev_for_each(rdev2, mddev) { 1945 i = rdev2->desc_nr; 1946 if (test_bit(Faulty, &rdev2->flags)) 1947 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1948 else if (test_bit(In_sync, &rdev2->flags)) 1949 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1950 else if (test_bit(Journal, &rdev2->flags)) 1951 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1952 else if (rdev2->raid_disk >= 0) 1953 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1954 else 1955 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1956 } 1957 1958 sb->sb_csum = calc_sb_1_csum(sb); 1959 } 1960 1961 static unsigned long long 1962 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1963 { 1964 struct mdp_superblock_1 *sb; 1965 sector_t max_sectors; 1966 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1967 return 0; /* component must fit device */ 1968 if (rdev->data_offset != rdev->new_data_offset) 1969 return 0; /* too confusing */ 1970 if (rdev->sb_start < rdev->data_offset) { 1971 /* minor versions 1 and 2; superblock before data */ 1972 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1973 max_sectors -= rdev->data_offset; 1974 if (!num_sectors || num_sectors > max_sectors) 1975 num_sectors = max_sectors; 1976 } else if (rdev->mddev->bitmap_info.offset) { 1977 /* minor version 0 with bitmap we can't move */ 1978 return 0; 1979 } else { 1980 /* minor version 0; superblock after data */ 1981 sector_t sb_start; 1982 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1983 sb_start &= ~(sector_t)(4*2 - 1); 1984 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1985 if (!num_sectors || num_sectors > max_sectors) 1986 num_sectors = max_sectors; 1987 rdev->sb_start = sb_start; 1988 } 1989 sb = page_address(rdev->sb_page); 1990 sb->data_size = cpu_to_le64(num_sectors); 1991 sb->super_offset = cpu_to_le64(rdev->sb_start); 1992 sb->sb_csum = calc_sb_1_csum(sb); 1993 do { 1994 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1995 rdev->sb_page); 1996 } while (md_super_wait(rdev->mddev) < 0); 1997 return num_sectors; 1998 1999 } 2000 2001 static int 2002 super_1_allow_new_offset(struct md_rdev *rdev, 2003 unsigned long long new_offset) 2004 { 2005 /* All necessary checks on new >= old have been done */ 2006 struct bitmap *bitmap; 2007 if (new_offset >= rdev->data_offset) 2008 return 1; 2009 2010 /* with 1.0 metadata, there is no metadata to tread on 2011 * so we can always move back */ 2012 if (rdev->mddev->minor_version == 0) 2013 return 1; 2014 2015 /* otherwise we must be sure not to step on 2016 * any metadata, so stay: 2017 * 36K beyond start of superblock 2018 * beyond end of badblocks 2019 * beyond write-intent bitmap 2020 */ 2021 if (rdev->sb_start + (32+4)*2 > new_offset) 2022 return 0; 2023 bitmap = rdev->mddev->bitmap; 2024 if (bitmap && !rdev->mddev->bitmap_info.file && 2025 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2026 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2027 return 0; 2028 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2029 return 0; 2030 2031 return 1; 2032 } 2033 2034 static struct super_type super_types[] = { 2035 [0] = { 2036 .name = "0.90.0", 2037 .owner = THIS_MODULE, 2038 .load_super = super_90_load, 2039 .validate_super = super_90_validate, 2040 .sync_super = super_90_sync, 2041 .rdev_size_change = super_90_rdev_size_change, 2042 .allow_new_offset = super_90_allow_new_offset, 2043 }, 2044 [1] = { 2045 .name = "md-1", 2046 .owner = THIS_MODULE, 2047 .load_super = super_1_load, 2048 .validate_super = super_1_validate, 2049 .sync_super = super_1_sync, 2050 .rdev_size_change = super_1_rdev_size_change, 2051 .allow_new_offset = super_1_allow_new_offset, 2052 }, 2053 }; 2054 2055 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2056 { 2057 if (mddev->sync_super) { 2058 mddev->sync_super(mddev, rdev); 2059 return; 2060 } 2061 2062 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2063 2064 super_types[mddev->major_version].sync_super(mddev, rdev); 2065 } 2066 2067 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2068 { 2069 struct md_rdev *rdev, *rdev2; 2070 2071 rcu_read_lock(); 2072 rdev_for_each_rcu(rdev, mddev1) { 2073 if (test_bit(Faulty, &rdev->flags) || 2074 test_bit(Journal, &rdev->flags) || 2075 rdev->raid_disk == -1) 2076 continue; 2077 rdev_for_each_rcu(rdev2, mddev2) { 2078 if (test_bit(Faulty, &rdev2->flags) || 2079 test_bit(Journal, &rdev2->flags) || 2080 rdev2->raid_disk == -1) 2081 continue; 2082 if (rdev->bdev->bd_contains == 2083 rdev2->bdev->bd_contains) { 2084 rcu_read_unlock(); 2085 return 1; 2086 } 2087 } 2088 } 2089 rcu_read_unlock(); 2090 return 0; 2091 } 2092 2093 static LIST_HEAD(pending_raid_disks); 2094 2095 /* 2096 * Try to register data integrity profile for an mddev 2097 * 2098 * This is called when an array is started and after a disk has been kicked 2099 * from the array. It only succeeds if all working and active component devices 2100 * are integrity capable with matching profiles. 2101 */ 2102 int md_integrity_register(struct mddev *mddev) 2103 { 2104 struct md_rdev *rdev, *reference = NULL; 2105 2106 if (list_empty(&mddev->disks)) 2107 return 0; /* nothing to do */ 2108 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2109 return 0; /* shouldn't register, or already is */ 2110 rdev_for_each(rdev, mddev) { 2111 /* skip spares and non-functional disks */ 2112 if (test_bit(Faulty, &rdev->flags)) 2113 continue; 2114 if (rdev->raid_disk < 0) 2115 continue; 2116 if (!reference) { 2117 /* Use the first rdev as the reference */ 2118 reference = rdev; 2119 continue; 2120 } 2121 /* does this rdev's profile match the reference profile? */ 2122 if (blk_integrity_compare(reference->bdev->bd_disk, 2123 rdev->bdev->bd_disk) < 0) 2124 return -EINVAL; 2125 } 2126 if (!reference || !bdev_get_integrity(reference->bdev)) 2127 return 0; 2128 /* 2129 * All component devices are integrity capable and have matching 2130 * profiles, register the common profile for the md device. 2131 */ 2132 blk_integrity_register(mddev->gendisk, 2133 bdev_get_integrity(reference->bdev)); 2134 2135 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2136 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2137 pr_err("md: failed to create integrity pool for %s\n", 2138 mdname(mddev)); 2139 return -EINVAL; 2140 } 2141 return 0; 2142 } 2143 EXPORT_SYMBOL(md_integrity_register); 2144 2145 /* 2146 * Attempt to add an rdev, but only if it is consistent with the current 2147 * integrity profile 2148 */ 2149 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2150 { 2151 struct blk_integrity *bi_rdev; 2152 struct blk_integrity *bi_mddev; 2153 char name[BDEVNAME_SIZE]; 2154 2155 if (!mddev->gendisk) 2156 return 0; 2157 2158 bi_rdev = bdev_get_integrity(rdev->bdev); 2159 bi_mddev = blk_get_integrity(mddev->gendisk); 2160 2161 if (!bi_mddev) /* nothing to do */ 2162 return 0; 2163 2164 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2165 pr_err("%s: incompatible integrity profile for %s\n", 2166 mdname(mddev), bdevname(rdev->bdev, name)); 2167 return -ENXIO; 2168 } 2169 2170 return 0; 2171 } 2172 EXPORT_SYMBOL(md_integrity_add_rdev); 2173 2174 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2175 { 2176 char b[BDEVNAME_SIZE]; 2177 struct kobject *ko; 2178 int err; 2179 2180 /* prevent duplicates */ 2181 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2182 return -EEXIST; 2183 2184 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2185 mddev->pers) 2186 return -EROFS; 2187 2188 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2189 if (!test_bit(Journal, &rdev->flags) && 2190 rdev->sectors && 2191 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2192 if (mddev->pers) { 2193 /* Cannot change size, so fail 2194 * If mddev->level <= 0, then we don't care 2195 * about aligning sizes (e.g. linear) 2196 */ 2197 if (mddev->level > 0) 2198 return -ENOSPC; 2199 } else 2200 mddev->dev_sectors = rdev->sectors; 2201 } 2202 2203 /* Verify rdev->desc_nr is unique. 2204 * If it is -1, assign a free number, else 2205 * check number is not in use 2206 */ 2207 rcu_read_lock(); 2208 if (rdev->desc_nr < 0) { 2209 int choice = 0; 2210 if (mddev->pers) 2211 choice = mddev->raid_disks; 2212 while (md_find_rdev_nr_rcu(mddev, choice)) 2213 choice++; 2214 rdev->desc_nr = choice; 2215 } else { 2216 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2217 rcu_read_unlock(); 2218 return -EBUSY; 2219 } 2220 } 2221 rcu_read_unlock(); 2222 if (!test_bit(Journal, &rdev->flags) && 2223 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2224 pr_warn("md: %s: array is limited to %d devices\n", 2225 mdname(mddev), mddev->max_disks); 2226 return -EBUSY; 2227 } 2228 bdevname(rdev->bdev,b); 2229 strreplace(b, '/', '!'); 2230 2231 rdev->mddev = mddev; 2232 pr_debug("md: bind<%s>\n", b); 2233 2234 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2235 goto fail; 2236 2237 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2238 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2239 /* failure here is OK */; 2240 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2241 2242 list_add_rcu(&rdev->same_set, &mddev->disks); 2243 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2244 2245 /* May as well allow recovery to be retried once */ 2246 mddev->recovery_disabled++; 2247 2248 return 0; 2249 2250 fail: 2251 pr_warn("md: failed to register dev-%s for %s\n", 2252 b, mdname(mddev)); 2253 return err; 2254 } 2255 2256 static void md_delayed_delete(struct work_struct *ws) 2257 { 2258 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2259 kobject_del(&rdev->kobj); 2260 kobject_put(&rdev->kobj); 2261 } 2262 2263 static void unbind_rdev_from_array(struct md_rdev *rdev) 2264 { 2265 char b[BDEVNAME_SIZE]; 2266 2267 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2268 list_del_rcu(&rdev->same_set); 2269 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2270 rdev->mddev = NULL; 2271 sysfs_remove_link(&rdev->kobj, "block"); 2272 sysfs_put(rdev->sysfs_state); 2273 rdev->sysfs_state = NULL; 2274 rdev->badblocks.count = 0; 2275 /* We need to delay this, otherwise we can deadlock when 2276 * writing to 'remove' to "dev/state". We also need 2277 * to delay it due to rcu usage. 2278 */ 2279 synchronize_rcu(); 2280 INIT_WORK(&rdev->del_work, md_delayed_delete); 2281 kobject_get(&rdev->kobj); 2282 queue_work(md_misc_wq, &rdev->del_work); 2283 } 2284 2285 /* 2286 * prevent the device from being mounted, repartitioned or 2287 * otherwise reused by a RAID array (or any other kernel 2288 * subsystem), by bd_claiming the device. 2289 */ 2290 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2291 { 2292 int err = 0; 2293 struct block_device *bdev; 2294 char b[BDEVNAME_SIZE]; 2295 2296 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2297 shared ? (struct md_rdev *)lock_rdev : rdev); 2298 if (IS_ERR(bdev)) { 2299 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2300 return PTR_ERR(bdev); 2301 } 2302 rdev->bdev = bdev; 2303 return err; 2304 } 2305 2306 static void unlock_rdev(struct md_rdev *rdev) 2307 { 2308 struct block_device *bdev = rdev->bdev; 2309 rdev->bdev = NULL; 2310 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2311 } 2312 2313 void md_autodetect_dev(dev_t dev); 2314 2315 static void export_rdev(struct md_rdev *rdev) 2316 { 2317 char b[BDEVNAME_SIZE]; 2318 2319 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2320 md_rdev_clear(rdev); 2321 #ifndef MODULE 2322 if (test_bit(AutoDetected, &rdev->flags)) 2323 md_autodetect_dev(rdev->bdev->bd_dev); 2324 #endif 2325 unlock_rdev(rdev); 2326 kobject_put(&rdev->kobj); 2327 } 2328 2329 void md_kick_rdev_from_array(struct md_rdev *rdev) 2330 { 2331 unbind_rdev_from_array(rdev); 2332 export_rdev(rdev); 2333 } 2334 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2335 2336 static void export_array(struct mddev *mddev) 2337 { 2338 struct md_rdev *rdev; 2339 2340 while (!list_empty(&mddev->disks)) { 2341 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2342 same_set); 2343 md_kick_rdev_from_array(rdev); 2344 } 2345 mddev->raid_disks = 0; 2346 mddev->major_version = 0; 2347 } 2348 2349 static bool set_in_sync(struct mddev *mddev) 2350 { 2351 lockdep_assert_held(&mddev->lock); 2352 if (!mddev->in_sync) { 2353 mddev->sync_checkers++; 2354 spin_unlock(&mddev->lock); 2355 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2356 spin_lock(&mddev->lock); 2357 if (!mddev->in_sync && 2358 percpu_ref_is_zero(&mddev->writes_pending)) { 2359 mddev->in_sync = 1; 2360 /* 2361 * Ensure ->in_sync is visible before we clear 2362 * ->sync_checkers. 2363 */ 2364 smp_mb(); 2365 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2366 sysfs_notify_dirent_safe(mddev->sysfs_state); 2367 } 2368 if (--mddev->sync_checkers == 0) 2369 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2370 } 2371 if (mddev->safemode == 1) 2372 mddev->safemode = 0; 2373 return mddev->in_sync; 2374 } 2375 2376 static void sync_sbs(struct mddev *mddev, int nospares) 2377 { 2378 /* Update each superblock (in-memory image), but 2379 * if we are allowed to, skip spares which already 2380 * have the right event counter, or have one earlier 2381 * (which would mean they aren't being marked as dirty 2382 * with the rest of the array) 2383 */ 2384 struct md_rdev *rdev; 2385 rdev_for_each(rdev, mddev) { 2386 if (rdev->sb_events == mddev->events || 2387 (nospares && 2388 rdev->raid_disk < 0 && 2389 rdev->sb_events+1 == mddev->events)) { 2390 /* Don't update this superblock */ 2391 rdev->sb_loaded = 2; 2392 } else { 2393 sync_super(mddev, rdev); 2394 rdev->sb_loaded = 1; 2395 } 2396 } 2397 } 2398 2399 static bool does_sb_need_changing(struct mddev *mddev) 2400 { 2401 struct md_rdev *rdev; 2402 struct mdp_superblock_1 *sb; 2403 int role; 2404 2405 /* Find a good rdev */ 2406 rdev_for_each(rdev, mddev) 2407 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2408 break; 2409 2410 /* No good device found. */ 2411 if (!rdev) 2412 return false; 2413 2414 sb = page_address(rdev->sb_page); 2415 /* Check if a device has become faulty or a spare become active */ 2416 rdev_for_each(rdev, mddev) { 2417 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2418 /* Device activated? */ 2419 if (role == 0xffff && rdev->raid_disk >=0 && 2420 !test_bit(Faulty, &rdev->flags)) 2421 return true; 2422 /* Device turned faulty? */ 2423 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2424 return true; 2425 } 2426 2427 /* Check if any mddev parameters have changed */ 2428 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2429 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2430 (mddev->layout != le32_to_cpu(sb->layout)) || 2431 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2432 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2433 return true; 2434 2435 return false; 2436 } 2437 2438 void md_update_sb(struct mddev *mddev, int force_change) 2439 { 2440 struct md_rdev *rdev; 2441 int sync_req; 2442 int nospares = 0; 2443 int any_badblocks_changed = 0; 2444 int ret = -1; 2445 2446 if (mddev->ro) { 2447 if (force_change) 2448 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2449 return; 2450 } 2451 2452 repeat: 2453 if (mddev_is_clustered(mddev)) { 2454 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2455 force_change = 1; 2456 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2457 nospares = 1; 2458 ret = md_cluster_ops->metadata_update_start(mddev); 2459 /* Has someone else has updated the sb */ 2460 if (!does_sb_need_changing(mddev)) { 2461 if (ret == 0) 2462 md_cluster_ops->metadata_update_cancel(mddev); 2463 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2464 BIT(MD_SB_CHANGE_DEVS) | 2465 BIT(MD_SB_CHANGE_CLEAN)); 2466 return; 2467 } 2468 } 2469 2470 /* 2471 * First make sure individual recovery_offsets are correct 2472 * curr_resync_completed can only be used during recovery. 2473 * During reshape/resync it might use array-addresses rather 2474 * that device addresses. 2475 */ 2476 rdev_for_each(rdev, mddev) { 2477 if (rdev->raid_disk >= 0 && 2478 mddev->delta_disks >= 0 && 2479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2480 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2481 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2482 !test_bit(Journal, &rdev->flags) && 2483 !test_bit(In_sync, &rdev->flags) && 2484 mddev->curr_resync_completed > rdev->recovery_offset) 2485 rdev->recovery_offset = mddev->curr_resync_completed; 2486 2487 } 2488 if (!mddev->persistent) { 2489 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2490 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2491 if (!mddev->external) { 2492 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2493 rdev_for_each(rdev, mddev) { 2494 if (rdev->badblocks.changed) { 2495 rdev->badblocks.changed = 0; 2496 ack_all_badblocks(&rdev->badblocks); 2497 md_error(mddev, rdev); 2498 } 2499 clear_bit(Blocked, &rdev->flags); 2500 clear_bit(BlockedBadBlocks, &rdev->flags); 2501 wake_up(&rdev->blocked_wait); 2502 } 2503 } 2504 wake_up(&mddev->sb_wait); 2505 return; 2506 } 2507 2508 spin_lock(&mddev->lock); 2509 2510 mddev->utime = ktime_get_real_seconds(); 2511 2512 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2513 force_change = 1; 2514 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2515 /* just a clean<-> dirty transition, possibly leave spares alone, 2516 * though if events isn't the right even/odd, we will have to do 2517 * spares after all 2518 */ 2519 nospares = 1; 2520 if (force_change) 2521 nospares = 0; 2522 if (mddev->degraded) 2523 /* If the array is degraded, then skipping spares is both 2524 * dangerous and fairly pointless. 2525 * Dangerous because a device that was removed from the array 2526 * might have a event_count that still looks up-to-date, 2527 * so it can be re-added without a resync. 2528 * Pointless because if there are any spares to skip, 2529 * then a recovery will happen and soon that array won't 2530 * be degraded any more and the spare can go back to sleep then. 2531 */ 2532 nospares = 0; 2533 2534 sync_req = mddev->in_sync; 2535 2536 /* If this is just a dirty<->clean transition, and the array is clean 2537 * and 'events' is odd, we can roll back to the previous clean state */ 2538 if (nospares 2539 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2540 && mddev->can_decrease_events 2541 && mddev->events != 1) { 2542 mddev->events--; 2543 mddev->can_decrease_events = 0; 2544 } else { 2545 /* otherwise we have to go forward and ... */ 2546 mddev->events ++; 2547 mddev->can_decrease_events = nospares; 2548 } 2549 2550 /* 2551 * This 64-bit counter should never wrap. 2552 * Either we are in around ~1 trillion A.C., assuming 2553 * 1 reboot per second, or we have a bug... 2554 */ 2555 WARN_ON(mddev->events == 0); 2556 2557 rdev_for_each(rdev, mddev) { 2558 if (rdev->badblocks.changed) 2559 any_badblocks_changed++; 2560 if (test_bit(Faulty, &rdev->flags)) 2561 set_bit(FaultRecorded, &rdev->flags); 2562 } 2563 2564 sync_sbs(mddev, nospares); 2565 spin_unlock(&mddev->lock); 2566 2567 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2568 mdname(mddev), mddev->in_sync); 2569 2570 if (mddev->queue) 2571 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2572 rewrite: 2573 md_bitmap_update_sb(mddev->bitmap); 2574 rdev_for_each(rdev, mddev) { 2575 char b[BDEVNAME_SIZE]; 2576 2577 if (rdev->sb_loaded != 1) 2578 continue; /* no noise on spare devices */ 2579 2580 if (!test_bit(Faulty, &rdev->flags)) { 2581 md_super_write(mddev,rdev, 2582 rdev->sb_start, rdev->sb_size, 2583 rdev->sb_page); 2584 pr_debug("md: (write) %s's sb offset: %llu\n", 2585 bdevname(rdev->bdev, b), 2586 (unsigned long long)rdev->sb_start); 2587 rdev->sb_events = mddev->events; 2588 if (rdev->badblocks.size) { 2589 md_super_write(mddev, rdev, 2590 rdev->badblocks.sector, 2591 rdev->badblocks.size << 9, 2592 rdev->bb_page); 2593 rdev->badblocks.size = 0; 2594 } 2595 2596 } else 2597 pr_debug("md: %s (skipping faulty)\n", 2598 bdevname(rdev->bdev, b)); 2599 2600 if (mddev->level == LEVEL_MULTIPATH) 2601 /* only need to write one superblock... */ 2602 break; 2603 } 2604 if (md_super_wait(mddev) < 0) 2605 goto rewrite; 2606 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2607 2608 if (mddev_is_clustered(mddev) && ret == 0) 2609 md_cluster_ops->metadata_update_finish(mddev); 2610 2611 if (mddev->in_sync != sync_req || 2612 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2613 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2614 /* have to write it out again */ 2615 goto repeat; 2616 wake_up(&mddev->sb_wait); 2617 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2618 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2619 2620 rdev_for_each(rdev, mddev) { 2621 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2622 clear_bit(Blocked, &rdev->flags); 2623 2624 if (any_badblocks_changed) 2625 ack_all_badblocks(&rdev->badblocks); 2626 clear_bit(BlockedBadBlocks, &rdev->flags); 2627 wake_up(&rdev->blocked_wait); 2628 } 2629 } 2630 EXPORT_SYMBOL(md_update_sb); 2631 2632 static int add_bound_rdev(struct md_rdev *rdev) 2633 { 2634 struct mddev *mddev = rdev->mddev; 2635 int err = 0; 2636 bool add_journal = test_bit(Journal, &rdev->flags); 2637 2638 if (!mddev->pers->hot_remove_disk || add_journal) { 2639 /* If there is hot_add_disk but no hot_remove_disk 2640 * then added disks for geometry changes, 2641 * and should be added immediately. 2642 */ 2643 super_types[mddev->major_version]. 2644 validate_super(mddev, rdev); 2645 if (add_journal) 2646 mddev_suspend(mddev); 2647 err = mddev->pers->hot_add_disk(mddev, rdev); 2648 if (add_journal) 2649 mddev_resume(mddev); 2650 if (err) { 2651 md_kick_rdev_from_array(rdev); 2652 return err; 2653 } 2654 } 2655 sysfs_notify_dirent_safe(rdev->sysfs_state); 2656 2657 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2658 if (mddev->degraded) 2659 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2661 md_new_event(mddev); 2662 md_wakeup_thread(mddev->thread); 2663 return 0; 2664 } 2665 2666 /* words written to sysfs files may, or may not, be \n terminated. 2667 * We want to accept with case. For this we use cmd_match. 2668 */ 2669 static int cmd_match(const char *cmd, const char *str) 2670 { 2671 /* See if cmd, written into a sysfs file, matches 2672 * str. They must either be the same, or cmd can 2673 * have a trailing newline 2674 */ 2675 while (*cmd && *str && *cmd == *str) { 2676 cmd++; 2677 str++; 2678 } 2679 if (*cmd == '\n') 2680 cmd++; 2681 if (*str || *cmd) 2682 return 0; 2683 return 1; 2684 } 2685 2686 struct rdev_sysfs_entry { 2687 struct attribute attr; 2688 ssize_t (*show)(struct md_rdev *, char *); 2689 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2690 }; 2691 2692 static ssize_t 2693 state_show(struct md_rdev *rdev, char *page) 2694 { 2695 char *sep = ","; 2696 size_t len = 0; 2697 unsigned long flags = READ_ONCE(rdev->flags); 2698 2699 if (test_bit(Faulty, &flags) || 2700 (!test_bit(ExternalBbl, &flags) && 2701 rdev->badblocks.unacked_exist)) 2702 len += sprintf(page+len, "faulty%s", sep); 2703 if (test_bit(In_sync, &flags)) 2704 len += sprintf(page+len, "in_sync%s", sep); 2705 if (test_bit(Journal, &flags)) 2706 len += sprintf(page+len, "journal%s", sep); 2707 if (test_bit(WriteMostly, &flags)) 2708 len += sprintf(page+len, "write_mostly%s", sep); 2709 if (test_bit(Blocked, &flags) || 2710 (rdev->badblocks.unacked_exist 2711 && !test_bit(Faulty, &flags))) 2712 len += sprintf(page+len, "blocked%s", sep); 2713 if (!test_bit(Faulty, &flags) && 2714 !test_bit(Journal, &flags) && 2715 !test_bit(In_sync, &flags)) 2716 len += sprintf(page+len, "spare%s", sep); 2717 if (test_bit(WriteErrorSeen, &flags)) 2718 len += sprintf(page+len, "write_error%s", sep); 2719 if (test_bit(WantReplacement, &flags)) 2720 len += sprintf(page+len, "want_replacement%s", sep); 2721 if (test_bit(Replacement, &flags)) 2722 len += sprintf(page+len, "replacement%s", sep); 2723 if (test_bit(ExternalBbl, &flags)) 2724 len += sprintf(page+len, "external_bbl%s", sep); 2725 if (test_bit(FailFast, &flags)) 2726 len += sprintf(page+len, "failfast%s", sep); 2727 2728 if (len) 2729 len -= strlen(sep); 2730 2731 return len+sprintf(page+len, "\n"); 2732 } 2733 2734 static ssize_t 2735 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2736 { 2737 /* can write 2738 * faulty - simulates an error 2739 * remove - disconnects the device 2740 * writemostly - sets write_mostly 2741 * -writemostly - clears write_mostly 2742 * blocked - sets the Blocked flags 2743 * -blocked - clears the Blocked and possibly simulates an error 2744 * insync - sets Insync providing device isn't active 2745 * -insync - clear Insync for a device with a slot assigned, 2746 * so that it gets rebuilt based on bitmap 2747 * write_error - sets WriteErrorSeen 2748 * -write_error - clears WriteErrorSeen 2749 * {,-}failfast - set/clear FailFast 2750 */ 2751 int err = -EINVAL; 2752 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2753 md_error(rdev->mddev, rdev); 2754 if (test_bit(Faulty, &rdev->flags)) 2755 err = 0; 2756 else 2757 err = -EBUSY; 2758 } else if (cmd_match(buf, "remove")) { 2759 if (rdev->mddev->pers) { 2760 clear_bit(Blocked, &rdev->flags); 2761 remove_and_add_spares(rdev->mddev, rdev); 2762 } 2763 if (rdev->raid_disk >= 0) 2764 err = -EBUSY; 2765 else { 2766 struct mddev *mddev = rdev->mddev; 2767 err = 0; 2768 if (mddev_is_clustered(mddev)) 2769 err = md_cluster_ops->remove_disk(mddev, rdev); 2770 2771 if (err == 0) { 2772 md_kick_rdev_from_array(rdev); 2773 if (mddev->pers) { 2774 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2775 md_wakeup_thread(mddev->thread); 2776 } 2777 md_new_event(mddev); 2778 } 2779 } 2780 } else if (cmd_match(buf, "writemostly")) { 2781 set_bit(WriteMostly, &rdev->flags); 2782 err = 0; 2783 } else if (cmd_match(buf, "-writemostly")) { 2784 clear_bit(WriteMostly, &rdev->flags); 2785 err = 0; 2786 } else if (cmd_match(buf, "blocked")) { 2787 set_bit(Blocked, &rdev->flags); 2788 err = 0; 2789 } else if (cmd_match(buf, "-blocked")) { 2790 if (!test_bit(Faulty, &rdev->flags) && 2791 !test_bit(ExternalBbl, &rdev->flags) && 2792 rdev->badblocks.unacked_exist) { 2793 /* metadata handler doesn't understand badblocks, 2794 * so we need to fail the device 2795 */ 2796 md_error(rdev->mddev, rdev); 2797 } 2798 clear_bit(Blocked, &rdev->flags); 2799 clear_bit(BlockedBadBlocks, &rdev->flags); 2800 wake_up(&rdev->blocked_wait); 2801 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2802 md_wakeup_thread(rdev->mddev->thread); 2803 2804 err = 0; 2805 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2806 set_bit(In_sync, &rdev->flags); 2807 err = 0; 2808 } else if (cmd_match(buf, "failfast")) { 2809 set_bit(FailFast, &rdev->flags); 2810 err = 0; 2811 } else if (cmd_match(buf, "-failfast")) { 2812 clear_bit(FailFast, &rdev->flags); 2813 err = 0; 2814 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2815 !test_bit(Journal, &rdev->flags)) { 2816 if (rdev->mddev->pers == NULL) { 2817 clear_bit(In_sync, &rdev->flags); 2818 rdev->saved_raid_disk = rdev->raid_disk; 2819 rdev->raid_disk = -1; 2820 err = 0; 2821 } 2822 } else if (cmd_match(buf, "write_error")) { 2823 set_bit(WriteErrorSeen, &rdev->flags); 2824 err = 0; 2825 } else if (cmd_match(buf, "-write_error")) { 2826 clear_bit(WriteErrorSeen, &rdev->flags); 2827 err = 0; 2828 } else if (cmd_match(buf, "want_replacement")) { 2829 /* Any non-spare device that is not a replacement can 2830 * become want_replacement at any time, but we then need to 2831 * check if recovery is needed. 2832 */ 2833 if (rdev->raid_disk >= 0 && 2834 !test_bit(Journal, &rdev->flags) && 2835 !test_bit(Replacement, &rdev->flags)) 2836 set_bit(WantReplacement, &rdev->flags); 2837 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2838 md_wakeup_thread(rdev->mddev->thread); 2839 err = 0; 2840 } else if (cmd_match(buf, "-want_replacement")) { 2841 /* Clearing 'want_replacement' is always allowed. 2842 * Once replacements starts it is too late though. 2843 */ 2844 err = 0; 2845 clear_bit(WantReplacement, &rdev->flags); 2846 } else if (cmd_match(buf, "replacement")) { 2847 /* Can only set a device as a replacement when array has not 2848 * yet been started. Once running, replacement is automatic 2849 * from spares, or by assigning 'slot'. 2850 */ 2851 if (rdev->mddev->pers) 2852 err = -EBUSY; 2853 else { 2854 set_bit(Replacement, &rdev->flags); 2855 err = 0; 2856 } 2857 } else if (cmd_match(buf, "-replacement")) { 2858 /* Similarly, can only clear Replacement before start */ 2859 if (rdev->mddev->pers) 2860 err = -EBUSY; 2861 else { 2862 clear_bit(Replacement, &rdev->flags); 2863 err = 0; 2864 } 2865 } else if (cmd_match(buf, "re-add")) { 2866 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2867 rdev->saved_raid_disk >= 0) { 2868 /* clear_bit is performed _after_ all the devices 2869 * have their local Faulty bit cleared. If any writes 2870 * happen in the meantime in the local node, they 2871 * will land in the local bitmap, which will be synced 2872 * by this node eventually 2873 */ 2874 if (!mddev_is_clustered(rdev->mddev) || 2875 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2876 clear_bit(Faulty, &rdev->flags); 2877 err = add_bound_rdev(rdev); 2878 } 2879 } else 2880 err = -EBUSY; 2881 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2882 set_bit(ExternalBbl, &rdev->flags); 2883 rdev->badblocks.shift = 0; 2884 err = 0; 2885 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2886 clear_bit(ExternalBbl, &rdev->flags); 2887 err = 0; 2888 } 2889 if (!err) 2890 sysfs_notify_dirent_safe(rdev->sysfs_state); 2891 return err ? err : len; 2892 } 2893 static struct rdev_sysfs_entry rdev_state = 2894 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2895 2896 static ssize_t 2897 errors_show(struct md_rdev *rdev, char *page) 2898 { 2899 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2900 } 2901 2902 static ssize_t 2903 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2904 { 2905 unsigned int n; 2906 int rv; 2907 2908 rv = kstrtouint(buf, 10, &n); 2909 if (rv < 0) 2910 return rv; 2911 atomic_set(&rdev->corrected_errors, n); 2912 return len; 2913 } 2914 static struct rdev_sysfs_entry rdev_errors = 2915 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2916 2917 static ssize_t 2918 slot_show(struct md_rdev *rdev, char *page) 2919 { 2920 if (test_bit(Journal, &rdev->flags)) 2921 return sprintf(page, "journal\n"); 2922 else if (rdev->raid_disk < 0) 2923 return sprintf(page, "none\n"); 2924 else 2925 return sprintf(page, "%d\n", rdev->raid_disk); 2926 } 2927 2928 static ssize_t 2929 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2930 { 2931 int slot; 2932 int err; 2933 2934 if (test_bit(Journal, &rdev->flags)) 2935 return -EBUSY; 2936 if (strncmp(buf, "none", 4)==0) 2937 slot = -1; 2938 else { 2939 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2940 if (err < 0) 2941 return err; 2942 } 2943 if (rdev->mddev->pers && slot == -1) { 2944 /* Setting 'slot' on an active array requires also 2945 * updating the 'rd%d' link, and communicating 2946 * with the personality with ->hot_*_disk. 2947 * For now we only support removing 2948 * failed/spare devices. This normally happens automatically, 2949 * but not when the metadata is externally managed. 2950 */ 2951 if (rdev->raid_disk == -1) 2952 return -EEXIST; 2953 /* personality does all needed checks */ 2954 if (rdev->mddev->pers->hot_remove_disk == NULL) 2955 return -EINVAL; 2956 clear_bit(Blocked, &rdev->flags); 2957 remove_and_add_spares(rdev->mddev, rdev); 2958 if (rdev->raid_disk >= 0) 2959 return -EBUSY; 2960 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2961 md_wakeup_thread(rdev->mddev->thread); 2962 } else if (rdev->mddev->pers) { 2963 /* Activating a spare .. or possibly reactivating 2964 * if we ever get bitmaps working here. 2965 */ 2966 int err; 2967 2968 if (rdev->raid_disk != -1) 2969 return -EBUSY; 2970 2971 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2972 return -EBUSY; 2973 2974 if (rdev->mddev->pers->hot_add_disk == NULL) 2975 return -EINVAL; 2976 2977 if (slot >= rdev->mddev->raid_disks && 2978 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2979 return -ENOSPC; 2980 2981 rdev->raid_disk = slot; 2982 if (test_bit(In_sync, &rdev->flags)) 2983 rdev->saved_raid_disk = slot; 2984 else 2985 rdev->saved_raid_disk = -1; 2986 clear_bit(In_sync, &rdev->flags); 2987 clear_bit(Bitmap_sync, &rdev->flags); 2988 err = rdev->mddev->pers-> 2989 hot_add_disk(rdev->mddev, rdev); 2990 if (err) { 2991 rdev->raid_disk = -1; 2992 return err; 2993 } else 2994 sysfs_notify_dirent_safe(rdev->sysfs_state); 2995 if (sysfs_link_rdev(rdev->mddev, rdev)) 2996 /* failure here is OK */; 2997 /* don't wakeup anyone, leave that to userspace. */ 2998 } else { 2999 if (slot >= rdev->mddev->raid_disks && 3000 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3001 return -ENOSPC; 3002 rdev->raid_disk = slot; 3003 /* assume it is working */ 3004 clear_bit(Faulty, &rdev->flags); 3005 clear_bit(WriteMostly, &rdev->flags); 3006 set_bit(In_sync, &rdev->flags); 3007 sysfs_notify_dirent_safe(rdev->sysfs_state); 3008 } 3009 return len; 3010 } 3011 3012 static struct rdev_sysfs_entry rdev_slot = 3013 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3014 3015 static ssize_t 3016 offset_show(struct md_rdev *rdev, char *page) 3017 { 3018 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3019 } 3020 3021 static ssize_t 3022 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3023 { 3024 unsigned long long offset; 3025 if (kstrtoull(buf, 10, &offset) < 0) 3026 return -EINVAL; 3027 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3028 return -EBUSY; 3029 if (rdev->sectors && rdev->mddev->external) 3030 /* Must set offset before size, so overlap checks 3031 * can be sane */ 3032 return -EBUSY; 3033 rdev->data_offset = offset; 3034 rdev->new_data_offset = offset; 3035 return len; 3036 } 3037 3038 static struct rdev_sysfs_entry rdev_offset = 3039 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3040 3041 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3042 { 3043 return sprintf(page, "%llu\n", 3044 (unsigned long long)rdev->new_data_offset); 3045 } 3046 3047 static ssize_t new_offset_store(struct md_rdev *rdev, 3048 const char *buf, size_t len) 3049 { 3050 unsigned long long new_offset; 3051 struct mddev *mddev = rdev->mddev; 3052 3053 if (kstrtoull(buf, 10, &new_offset) < 0) 3054 return -EINVAL; 3055 3056 if (mddev->sync_thread || 3057 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3058 return -EBUSY; 3059 if (new_offset == rdev->data_offset) 3060 /* reset is always permitted */ 3061 ; 3062 else if (new_offset > rdev->data_offset) { 3063 /* must not push array size beyond rdev_sectors */ 3064 if (new_offset - rdev->data_offset 3065 + mddev->dev_sectors > rdev->sectors) 3066 return -E2BIG; 3067 } 3068 /* Metadata worries about other space details. */ 3069 3070 /* decreasing the offset is inconsistent with a backwards 3071 * reshape. 3072 */ 3073 if (new_offset < rdev->data_offset && 3074 mddev->reshape_backwards) 3075 return -EINVAL; 3076 /* Increasing offset is inconsistent with forwards 3077 * reshape. reshape_direction should be set to 3078 * 'backwards' first. 3079 */ 3080 if (new_offset > rdev->data_offset && 3081 !mddev->reshape_backwards) 3082 return -EINVAL; 3083 3084 if (mddev->pers && mddev->persistent && 3085 !super_types[mddev->major_version] 3086 .allow_new_offset(rdev, new_offset)) 3087 return -E2BIG; 3088 rdev->new_data_offset = new_offset; 3089 if (new_offset > rdev->data_offset) 3090 mddev->reshape_backwards = 1; 3091 else if (new_offset < rdev->data_offset) 3092 mddev->reshape_backwards = 0; 3093 3094 return len; 3095 } 3096 static struct rdev_sysfs_entry rdev_new_offset = 3097 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3098 3099 static ssize_t 3100 rdev_size_show(struct md_rdev *rdev, char *page) 3101 { 3102 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3103 } 3104 3105 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3106 { 3107 /* check if two start/length pairs overlap */ 3108 if (s1+l1 <= s2) 3109 return 0; 3110 if (s2+l2 <= s1) 3111 return 0; 3112 return 1; 3113 } 3114 3115 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3116 { 3117 unsigned long long blocks; 3118 sector_t new; 3119 3120 if (kstrtoull(buf, 10, &blocks) < 0) 3121 return -EINVAL; 3122 3123 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3124 return -EINVAL; /* sector conversion overflow */ 3125 3126 new = blocks * 2; 3127 if (new != blocks * 2) 3128 return -EINVAL; /* unsigned long long to sector_t overflow */ 3129 3130 *sectors = new; 3131 return 0; 3132 } 3133 3134 static ssize_t 3135 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3136 { 3137 struct mddev *my_mddev = rdev->mddev; 3138 sector_t oldsectors = rdev->sectors; 3139 sector_t sectors; 3140 3141 if (test_bit(Journal, &rdev->flags)) 3142 return -EBUSY; 3143 if (strict_blocks_to_sectors(buf, §ors) < 0) 3144 return -EINVAL; 3145 if (rdev->data_offset != rdev->new_data_offset) 3146 return -EINVAL; /* too confusing */ 3147 if (my_mddev->pers && rdev->raid_disk >= 0) { 3148 if (my_mddev->persistent) { 3149 sectors = super_types[my_mddev->major_version]. 3150 rdev_size_change(rdev, sectors); 3151 if (!sectors) 3152 return -EBUSY; 3153 } else if (!sectors) 3154 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3155 rdev->data_offset; 3156 if (!my_mddev->pers->resize) 3157 /* Cannot change size for RAID0 or Linear etc */ 3158 return -EINVAL; 3159 } 3160 if (sectors < my_mddev->dev_sectors) 3161 return -EINVAL; /* component must fit device */ 3162 3163 rdev->sectors = sectors; 3164 if (sectors > oldsectors && my_mddev->external) { 3165 /* Need to check that all other rdevs with the same 3166 * ->bdev do not overlap. 'rcu' is sufficient to walk 3167 * the rdev lists safely. 3168 * This check does not provide a hard guarantee, it 3169 * just helps avoid dangerous mistakes. 3170 */ 3171 struct mddev *mddev; 3172 int overlap = 0; 3173 struct list_head *tmp; 3174 3175 rcu_read_lock(); 3176 for_each_mddev(mddev, tmp) { 3177 struct md_rdev *rdev2; 3178 3179 rdev_for_each(rdev2, mddev) 3180 if (rdev->bdev == rdev2->bdev && 3181 rdev != rdev2 && 3182 overlaps(rdev->data_offset, rdev->sectors, 3183 rdev2->data_offset, 3184 rdev2->sectors)) { 3185 overlap = 1; 3186 break; 3187 } 3188 if (overlap) { 3189 mddev_put(mddev); 3190 break; 3191 } 3192 } 3193 rcu_read_unlock(); 3194 if (overlap) { 3195 /* Someone else could have slipped in a size 3196 * change here, but doing so is just silly. 3197 * We put oldsectors back because we *know* it is 3198 * safe, and trust userspace not to race with 3199 * itself 3200 */ 3201 rdev->sectors = oldsectors; 3202 return -EBUSY; 3203 } 3204 } 3205 return len; 3206 } 3207 3208 static struct rdev_sysfs_entry rdev_size = 3209 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3210 3211 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3212 { 3213 unsigned long long recovery_start = rdev->recovery_offset; 3214 3215 if (test_bit(In_sync, &rdev->flags) || 3216 recovery_start == MaxSector) 3217 return sprintf(page, "none\n"); 3218 3219 return sprintf(page, "%llu\n", recovery_start); 3220 } 3221 3222 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3223 { 3224 unsigned long long recovery_start; 3225 3226 if (cmd_match(buf, "none")) 3227 recovery_start = MaxSector; 3228 else if (kstrtoull(buf, 10, &recovery_start)) 3229 return -EINVAL; 3230 3231 if (rdev->mddev->pers && 3232 rdev->raid_disk >= 0) 3233 return -EBUSY; 3234 3235 rdev->recovery_offset = recovery_start; 3236 if (recovery_start == MaxSector) 3237 set_bit(In_sync, &rdev->flags); 3238 else 3239 clear_bit(In_sync, &rdev->flags); 3240 return len; 3241 } 3242 3243 static struct rdev_sysfs_entry rdev_recovery_start = 3244 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3245 3246 /* sysfs access to bad-blocks list. 3247 * We present two files. 3248 * 'bad-blocks' lists sector numbers and lengths of ranges that 3249 * are recorded as bad. The list is truncated to fit within 3250 * the one-page limit of sysfs. 3251 * Writing "sector length" to this file adds an acknowledged 3252 * bad block list. 3253 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3254 * been acknowledged. Writing to this file adds bad blocks 3255 * without acknowledging them. This is largely for testing. 3256 */ 3257 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3258 { 3259 return badblocks_show(&rdev->badblocks, page, 0); 3260 } 3261 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3262 { 3263 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3264 /* Maybe that ack was all we needed */ 3265 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3266 wake_up(&rdev->blocked_wait); 3267 return rv; 3268 } 3269 static struct rdev_sysfs_entry rdev_bad_blocks = 3270 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3271 3272 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3273 { 3274 return badblocks_show(&rdev->badblocks, page, 1); 3275 } 3276 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3277 { 3278 return badblocks_store(&rdev->badblocks, page, len, 1); 3279 } 3280 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3281 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3282 3283 static ssize_t 3284 ppl_sector_show(struct md_rdev *rdev, char *page) 3285 { 3286 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3287 } 3288 3289 static ssize_t 3290 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3291 { 3292 unsigned long long sector; 3293 3294 if (kstrtoull(buf, 10, §or) < 0) 3295 return -EINVAL; 3296 if (sector != (sector_t)sector) 3297 return -EINVAL; 3298 3299 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3300 rdev->raid_disk >= 0) 3301 return -EBUSY; 3302 3303 if (rdev->mddev->persistent) { 3304 if (rdev->mddev->major_version == 0) 3305 return -EINVAL; 3306 if ((sector > rdev->sb_start && 3307 sector - rdev->sb_start > S16_MAX) || 3308 (sector < rdev->sb_start && 3309 rdev->sb_start - sector > -S16_MIN)) 3310 return -EINVAL; 3311 rdev->ppl.offset = sector - rdev->sb_start; 3312 } else if (!rdev->mddev->external) { 3313 return -EBUSY; 3314 } 3315 rdev->ppl.sector = sector; 3316 return len; 3317 } 3318 3319 static struct rdev_sysfs_entry rdev_ppl_sector = 3320 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3321 3322 static ssize_t 3323 ppl_size_show(struct md_rdev *rdev, char *page) 3324 { 3325 return sprintf(page, "%u\n", rdev->ppl.size); 3326 } 3327 3328 static ssize_t 3329 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3330 { 3331 unsigned int size; 3332 3333 if (kstrtouint(buf, 10, &size) < 0) 3334 return -EINVAL; 3335 3336 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3337 rdev->raid_disk >= 0) 3338 return -EBUSY; 3339 3340 if (rdev->mddev->persistent) { 3341 if (rdev->mddev->major_version == 0) 3342 return -EINVAL; 3343 if (size > U16_MAX) 3344 return -EINVAL; 3345 } else if (!rdev->mddev->external) { 3346 return -EBUSY; 3347 } 3348 rdev->ppl.size = size; 3349 return len; 3350 } 3351 3352 static struct rdev_sysfs_entry rdev_ppl_size = 3353 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3354 3355 static struct attribute *rdev_default_attrs[] = { 3356 &rdev_state.attr, 3357 &rdev_errors.attr, 3358 &rdev_slot.attr, 3359 &rdev_offset.attr, 3360 &rdev_new_offset.attr, 3361 &rdev_size.attr, 3362 &rdev_recovery_start.attr, 3363 &rdev_bad_blocks.attr, 3364 &rdev_unack_bad_blocks.attr, 3365 &rdev_ppl_sector.attr, 3366 &rdev_ppl_size.attr, 3367 NULL, 3368 }; 3369 static ssize_t 3370 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3371 { 3372 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3373 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3374 3375 if (!entry->show) 3376 return -EIO; 3377 if (!rdev->mddev) 3378 return -EBUSY; 3379 return entry->show(rdev, page); 3380 } 3381 3382 static ssize_t 3383 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3384 const char *page, size_t length) 3385 { 3386 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3387 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3388 ssize_t rv; 3389 struct mddev *mddev = rdev->mddev; 3390 3391 if (!entry->store) 3392 return -EIO; 3393 if (!capable(CAP_SYS_ADMIN)) 3394 return -EACCES; 3395 rv = mddev ? mddev_lock(mddev): -EBUSY; 3396 if (!rv) { 3397 if (rdev->mddev == NULL) 3398 rv = -EBUSY; 3399 else 3400 rv = entry->store(rdev, page, length); 3401 mddev_unlock(mddev); 3402 } 3403 return rv; 3404 } 3405 3406 static void rdev_free(struct kobject *ko) 3407 { 3408 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3409 kfree(rdev); 3410 } 3411 static const struct sysfs_ops rdev_sysfs_ops = { 3412 .show = rdev_attr_show, 3413 .store = rdev_attr_store, 3414 }; 3415 static struct kobj_type rdev_ktype = { 3416 .release = rdev_free, 3417 .sysfs_ops = &rdev_sysfs_ops, 3418 .default_attrs = rdev_default_attrs, 3419 }; 3420 3421 int md_rdev_init(struct md_rdev *rdev) 3422 { 3423 rdev->desc_nr = -1; 3424 rdev->saved_raid_disk = -1; 3425 rdev->raid_disk = -1; 3426 rdev->flags = 0; 3427 rdev->data_offset = 0; 3428 rdev->new_data_offset = 0; 3429 rdev->sb_events = 0; 3430 rdev->last_read_error = 0; 3431 rdev->sb_loaded = 0; 3432 rdev->bb_page = NULL; 3433 atomic_set(&rdev->nr_pending, 0); 3434 atomic_set(&rdev->read_errors, 0); 3435 atomic_set(&rdev->corrected_errors, 0); 3436 3437 INIT_LIST_HEAD(&rdev->same_set); 3438 init_waitqueue_head(&rdev->blocked_wait); 3439 3440 /* Add space to store bad block list. 3441 * This reserves the space even on arrays where it cannot 3442 * be used - I wonder if that matters 3443 */ 3444 return badblocks_init(&rdev->badblocks, 0); 3445 } 3446 EXPORT_SYMBOL_GPL(md_rdev_init); 3447 /* 3448 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3449 * 3450 * mark the device faulty if: 3451 * 3452 * - the device is nonexistent (zero size) 3453 * - the device has no valid superblock 3454 * 3455 * a faulty rdev _never_ has rdev->sb set. 3456 */ 3457 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3458 { 3459 char b[BDEVNAME_SIZE]; 3460 int err; 3461 struct md_rdev *rdev; 3462 sector_t size; 3463 3464 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3465 if (!rdev) 3466 return ERR_PTR(-ENOMEM); 3467 3468 err = md_rdev_init(rdev); 3469 if (err) 3470 goto abort_free; 3471 err = alloc_disk_sb(rdev); 3472 if (err) 3473 goto abort_free; 3474 3475 err = lock_rdev(rdev, newdev, super_format == -2); 3476 if (err) 3477 goto abort_free; 3478 3479 kobject_init(&rdev->kobj, &rdev_ktype); 3480 3481 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3482 if (!size) { 3483 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3484 bdevname(rdev->bdev,b)); 3485 err = -EINVAL; 3486 goto abort_free; 3487 } 3488 3489 if (super_format >= 0) { 3490 err = super_types[super_format]. 3491 load_super(rdev, NULL, super_minor); 3492 if (err == -EINVAL) { 3493 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3494 bdevname(rdev->bdev,b), 3495 super_format, super_minor); 3496 goto abort_free; 3497 } 3498 if (err < 0) { 3499 pr_warn("md: could not read %s's sb, not importing!\n", 3500 bdevname(rdev->bdev,b)); 3501 goto abort_free; 3502 } 3503 } 3504 3505 return rdev; 3506 3507 abort_free: 3508 if (rdev->bdev) 3509 unlock_rdev(rdev); 3510 md_rdev_clear(rdev); 3511 kfree(rdev); 3512 return ERR_PTR(err); 3513 } 3514 3515 /* 3516 * Check a full RAID array for plausibility 3517 */ 3518 3519 static void analyze_sbs(struct mddev *mddev) 3520 { 3521 int i; 3522 struct md_rdev *rdev, *freshest, *tmp; 3523 char b[BDEVNAME_SIZE]; 3524 3525 freshest = NULL; 3526 rdev_for_each_safe(rdev, tmp, mddev) 3527 switch (super_types[mddev->major_version]. 3528 load_super(rdev, freshest, mddev->minor_version)) { 3529 case 1: 3530 freshest = rdev; 3531 break; 3532 case 0: 3533 break; 3534 default: 3535 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3536 bdevname(rdev->bdev,b)); 3537 md_kick_rdev_from_array(rdev); 3538 } 3539 3540 super_types[mddev->major_version]. 3541 validate_super(mddev, freshest); 3542 3543 i = 0; 3544 rdev_for_each_safe(rdev, tmp, mddev) { 3545 if (mddev->max_disks && 3546 (rdev->desc_nr >= mddev->max_disks || 3547 i > mddev->max_disks)) { 3548 pr_warn("md: %s: %s: only %d devices permitted\n", 3549 mdname(mddev), bdevname(rdev->bdev, b), 3550 mddev->max_disks); 3551 md_kick_rdev_from_array(rdev); 3552 continue; 3553 } 3554 if (rdev != freshest) { 3555 if (super_types[mddev->major_version]. 3556 validate_super(mddev, rdev)) { 3557 pr_warn("md: kicking non-fresh %s from array!\n", 3558 bdevname(rdev->bdev,b)); 3559 md_kick_rdev_from_array(rdev); 3560 continue; 3561 } 3562 } 3563 if (mddev->level == LEVEL_MULTIPATH) { 3564 rdev->desc_nr = i++; 3565 rdev->raid_disk = rdev->desc_nr; 3566 set_bit(In_sync, &rdev->flags); 3567 } else if (rdev->raid_disk >= 3568 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3569 !test_bit(Journal, &rdev->flags)) { 3570 rdev->raid_disk = -1; 3571 clear_bit(In_sync, &rdev->flags); 3572 } 3573 } 3574 } 3575 3576 /* Read a fixed-point number. 3577 * Numbers in sysfs attributes should be in "standard" units where 3578 * possible, so time should be in seconds. 3579 * However we internally use a a much smaller unit such as 3580 * milliseconds or jiffies. 3581 * This function takes a decimal number with a possible fractional 3582 * component, and produces an integer which is the result of 3583 * multiplying that number by 10^'scale'. 3584 * all without any floating-point arithmetic. 3585 */ 3586 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3587 { 3588 unsigned long result = 0; 3589 long decimals = -1; 3590 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3591 if (*cp == '.') 3592 decimals = 0; 3593 else if (decimals < scale) { 3594 unsigned int value; 3595 value = *cp - '0'; 3596 result = result * 10 + value; 3597 if (decimals >= 0) 3598 decimals++; 3599 } 3600 cp++; 3601 } 3602 if (*cp == '\n') 3603 cp++; 3604 if (*cp) 3605 return -EINVAL; 3606 if (decimals < 0) 3607 decimals = 0; 3608 while (decimals < scale) { 3609 result *= 10; 3610 decimals ++; 3611 } 3612 *res = result; 3613 return 0; 3614 } 3615 3616 static ssize_t 3617 safe_delay_show(struct mddev *mddev, char *page) 3618 { 3619 int msec = (mddev->safemode_delay*1000)/HZ; 3620 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3621 } 3622 static ssize_t 3623 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3624 { 3625 unsigned long msec; 3626 3627 if (mddev_is_clustered(mddev)) { 3628 pr_warn("md: Safemode is disabled for clustered mode\n"); 3629 return -EINVAL; 3630 } 3631 3632 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3633 return -EINVAL; 3634 if (msec == 0) 3635 mddev->safemode_delay = 0; 3636 else { 3637 unsigned long old_delay = mddev->safemode_delay; 3638 unsigned long new_delay = (msec*HZ)/1000; 3639 3640 if (new_delay == 0) 3641 new_delay = 1; 3642 mddev->safemode_delay = new_delay; 3643 if (new_delay < old_delay || old_delay == 0) 3644 mod_timer(&mddev->safemode_timer, jiffies+1); 3645 } 3646 return len; 3647 } 3648 static struct md_sysfs_entry md_safe_delay = 3649 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3650 3651 static ssize_t 3652 level_show(struct mddev *mddev, char *page) 3653 { 3654 struct md_personality *p; 3655 int ret; 3656 spin_lock(&mddev->lock); 3657 p = mddev->pers; 3658 if (p) 3659 ret = sprintf(page, "%s\n", p->name); 3660 else if (mddev->clevel[0]) 3661 ret = sprintf(page, "%s\n", mddev->clevel); 3662 else if (mddev->level != LEVEL_NONE) 3663 ret = sprintf(page, "%d\n", mddev->level); 3664 else 3665 ret = 0; 3666 spin_unlock(&mddev->lock); 3667 return ret; 3668 } 3669 3670 static ssize_t 3671 level_store(struct mddev *mddev, const char *buf, size_t len) 3672 { 3673 char clevel[16]; 3674 ssize_t rv; 3675 size_t slen = len; 3676 struct md_personality *pers, *oldpers; 3677 long level; 3678 void *priv, *oldpriv; 3679 struct md_rdev *rdev; 3680 3681 if (slen == 0 || slen >= sizeof(clevel)) 3682 return -EINVAL; 3683 3684 rv = mddev_lock(mddev); 3685 if (rv) 3686 return rv; 3687 3688 if (mddev->pers == NULL) { 3689 strncpy(mddev->clevel, buf, slen); 3690 if (mddev->clevel[slen-1] == '\n') 3691 slen--; 3692 mddev->clevel[slen] = 0; 3693 mddev->level = LEVEL_NONE; 3694 rv = len; 3695 goto out_unlock; 3696 } 3697 rv = -EROFS; 3698 if (mddev->ro) 3699 goto out_unlock; 3700 3701 /* request to change the personality. Need to ensure: 3702 * - array is not engaged in resync/recovery/reshape 3703 * - old personality can be suspended 3704 * - new personality will access other array. 3705 */ 3706 3707 rv = -EBUSY; 3708 if (mddev->sync_thread || 3709 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3710 mddev->reshape_position != MaxSector || 3711 mddev->sysfs_active) 3712 goto out_unlock; 3713 3714 rv = -EINVAL; 3715 if (!mddev->pers->quiesce) { 3716 pr_warn("md: %s: %s does not support online personality change\n", 3717 mdname(mddev), mddev->pers->name); 3718 goto out_unlock; 3719 } 3720 3721 /* Now find the new personality */ 3722 strncpy(clevel, buf, slen); 3723 if (clevel[slen-1] == '\n') 3724 slen--; 3725 clevel[slen] = 0; 3726 if (kstrtol(clevel, 10, &level)) 3727 level = LEVEL_NONE; 3728 3729 if (request_module("md-%s", clevel) != 0) 3730 request_module("md-level-%s", clevel); 3731 spin_lock(&pers_lock); 3732 pers = find_pers(level, clevel); 3733 if (!pers || !try_module_get(pers->owner)) { 3734 spin_unlock(&pers_lock); 3735 pr_warn("md: personality %s not loaded\n", clevel); 3736 rv = -EINVAL; 3737 goto out_unlock; 3738 } 3739 spin_unlock(&pers_lock); 3740 3741 if (pers == mddev->pers) { 3742 /* Nothing to do! */ 3743 module_put(pers->owner); 3744 rv = len; 3745 goto out_unlock; 3746 } 3747 if (!pers->takeover) { 3748 module_put(pers->owner); 3749 pr_warn("md: %s: %s does not support personality takeover\n", 3750 mdname(mddev), clevel); 3751 rv = -EINVAL; 3752 goto out_unlock; 3753 } 3754 3755 rdev_for_each(rdev, mddev) 3756 rdev->new_raid_disk = rdev->raid_disk; 3757 3758 /* ->takeover must set new_* and/or delta_disks 3759 * if it succeeds, and may set them when it fails. 3760 */ 3761 priv = pers->takeover(mddev); 3762 if (IS_ERR(priv)) { 3763 mddev->new_level = mddev->level; 3764 mddev->new_layout = mddev->layout; 3765 mddev->new_chunk_sectors = mddev->chunk_sectors; 3766 mddev->raid_disks -= mddev->delta_disks; 3767 mddev->delta_disks = 0; 3768 mddev->reshape_backwards = 0; 3769 module_put(pers->owner); 3770 pr_warn("md: %s: %s would not accept array\n", 3771 mdname(mddev), clevel); 3772 rv = PTR_ERR(priv); 3773 goto out_unlock; 3774 } 3775 3776 /* Looks like we have a winner */ 3777 mddev_suspend(mddev); 3778 mddev_detach(mddev); 3779 3780 spin_lock(&mddev->lock); 3781 oldpers = mddev->pers; 3782 oldpriv = mddev->private; 3783 mddev->pers = pers; 3784 mddev->private = priv; 3785 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3786 mddev->level = mddev->new_level; 3787 mddev->layout = mddev->new_layout; 3788 mddev->chunk_sectors = mddev->new_chunk_sectors; 3789 mddev->delta_disks = 0; 3790 mddev->reshape_backwards = 0; 3791 mddev->degraded = 0; 3792 spin_unlock(&mddev->lock); 3793 3794 if (oldpers->sync_request == NULL && 3795 mddev->external) { 3796 /* We are converting from a no-redundancy array 3797 * to a redundancy array and metadata is managed 3798 * externally so we need to be sure that writes 3799 * won't block due to a need to transition 3800 * clean->dirty 3801 * until external management is started. 3802 */ 3803 mddev->in_sync = 0; 3804 mddev->safemode_delay = 0; 3805 mddev->safemode = 0; 3806 } 3807 3808 oldpers->free(mddev, oldpriv); 3809 3810 if (oldpers->sync_request == NULL && 3811 pers->sync_request != NULL) { 3812 /* need to add the md_redundancy_group */ 3813 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3814 pr_warn("md: cannot register extra attributes for %s\n", 3815 mdname(mddev)); 3816 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3817 } 3818 if (oldpers->sync_request != NULL && 3819 pers->sync_request == NULL) { 3820 /* need to remove the md_redundancy_group */ 3821 if (mddev->to_remove == NULL) 3822 mddev->to_remove = &md_redundancy_group; 3823 } 3824 3825 module_put(oldpers->owner); 3826 3827 rdev_for_each(rdev, mddev) { 3828 if (rdev->raid_disk < 0) 3829 continue; 3830 if (rdev->new_raid_disk >= mddev->raid_disks) 3831 rdev->new_raid_disk = -1; 3832 if (rdev->new_raid_disk == rdev->raid_disk) 3833 continue; 3834 sysfs_unlink_rdev(mddev, rdev); 3835 } 3836 rdev_for_each(rdev, mddev) { 3837 if (rdev->raid_disk < 0) 3838 continue; 3839 if (rdev->new_raid_disk == rdev->raid_disk) 3840 continue; 3841 rdev->raid_disk = rdev->new_raid_disk; 3842 if (rdev->raid_disk < 0) 3843 clear_bit(In_sync, &rdev->flags); 3844 else { 3845 if (sysfs_link_rdev(mddev, rdev)) 3846 pr_warn("md: cannot register rd%d for %s after level change\n", 3847 rdev->raid_disk, mdname(mddev)); 3848 } 3849 } 3850 3851 if (pers->sync_request == NULL) { 3852 /* this is now an array without redundancy, so 3853 * it must always be in_sync 3854 */ 3855 mddev->in_sync = 1; 3856 del_timer_sync(&mddev->safemode_timer); 3857 } 3858 blk_set_stacking_limits(&mddev->queue->limits); 3859 pers->run(mddev); 3860 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3861 mddev_resume(mddev); 3862 if (!mddev->thread) 3863 md_update_sb(mddev, 1); 3864 sysfs_notify(&mddev->kobj, NULL, "level"); 3865 md_new_event(mddev); 3866 rv = len; 3867 out_unlock: 3868 mddev_unlock(mddev); 3869 return rv; 3870 } 3871 3872 static struct md_sysfs_entry md_level = 3873 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3874 3875 static ssize_t 3876 layout_show(struct mddev *mddev, char *page) 3877 { 3878 /* just a number, not meaningful for all levels */ 3879 if (mddev->reshape_position != MaxSector && 3880 mddev->layout != mddev->new_layout) 3881 return sprintf(page, "%d (%d)\n", 3882 mddev->new_layout, mddev->layout); 3883 return sprintf(page, "%d\n", mddev->layout); 3884 } 3885 3886 static ssize_t 3887 layout_store(struct mddev *mddev, const char *buf, size_t len) 3888 { 3889 unsigned int n; 3890 int err; 3891 3892 err = kstrtouint(buf, 10, &n); 3893 if (err < 0) 3894 return err; 3895 err = mddev_lock(mddev); 3896 if (err) 3897 return err; 3898 3899 if (mddev->pers) { 3900 if (mddev->pers->check_reshape == NULL) 3901 err = -EBUSY; 3902 else if (mddev->ro) 3903 err = -EROFS; 3904 else { 3905 mddev->new_layout = n; 3906 err = mddev->pers->check_reshape(mddev); 3907 if (err) 3908 mddev->new_layout = mddev->layout; 3909 } 3910 } else { 3911 mddev->new_layout = n; 3912 if (mddev->reshape_position == MaxSector) 3913 mddev->layout = n; 3914 } 3915 mddev_unlock(mddev); 3916 return err ?: len; 3917 } 3918 static struct md_sysfs_entry md_layout = 3919 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3920 3921 static ssize_t 3922 raid_disks_show(struct mddev *mddev, char *page) 3923 { 3924 if (mddev->raid_disks == 0) 3925 return 0; 3926 if (mddev->reshape_position != MaxSector && 3927 mddev->delta_disks != 0) 3928 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3929 mddev->raid_disks - mddev->delta_disks); 3930 return sprintf(page, "%d\n", mddev->raid_disks); 3931 } 3932 3933 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3934 3935 static ssize_t 3936 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3937 { 3938 unsigned int n; 3939 int err; 3940 3941 err = kstrtouint(buf, 10, &n); 3942 if (err < 0) 3943 return err; 3944 3945 err = mddev_lock(mddev); 3946 if (err) 3947 return err; 3948 if (mddev->pers) 3949 err = update_raid_disks(mddev, n); 3950 else if (mddev->reshape_position != MaxSector) { 3951 struct md_rdev *rdev; 3952 int olddisks = mddev->raid_disks - mddev->delta_disks; 3953 3954 err = -EINVAL; 3955 rdev_for_each(rdev, mddev) { 3956 if (olddisks < n && 3957 rdev->data_offset < rdev->new_data_offset) 3958 goto out_unlock; 3959 if (olddisks > n && 3960 rdev->data_offset > rdev->new_data_offset) 3961 goto out_unlock; 3962 } 3963 err = 0; 3964 mddev->delta_disks = n - olddisks; 3965 mddev->raid_disks = n; 3966 mddev->reshape_backwards = (mddev->delta_disks < 0); 3967 } else 3968 mddev->raid_disks = n; 3969 out_unlock: 3970 mddev_unlock(mddev); 3971 return err ? err : len; 3972 } 3973 static struct md_sysfs_entry md_raid_disks = 3974 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3975 3976 static ssize_t 3977 chunk_size_show(struct mddev *mddev, char *page) 3978 { 3979 if (mddev->reshape_position != MaxSector && 3980 mddev->chunk_sectors != mddev->new_chunk_sectors) 3981 return sprintf(page, "%d (%d)\n", 3982 mddev->new_chunk_sectors << 9, 3983 mddev->chunk_sectors << 9); 3984 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3985 } 3986 3987 static ssize_t 3988 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3989 { 3990 unsigned long n; 3991 int err; 3992 3993 err = kstrtoul(buf, 10, &n); 3994 if (err < 0) 3995 return err; 3996 3997 err = mddev_lock(mddev); 3998 if (err) 3999 return err; 4000 if (mddev->pers) { 4001 if (mddev->pers->check_reshape == NULL) 4002 err = -EBUSY; 4003 else if (mddev->ro) 4004 err = -EROFS; 4005 else { 4006 mddev->new_chunk_sectors = n >> 9; 4007 err = mddev->pers->check_reshape(mddev); 4008 if (err) 4009 mddev->new_chunk_sectors = mddev->chunk_sectors; 4010 } 4011 } else { 4012 mddev->new_chunk_sectors = n >> 9; 4013 if (mddev->reshape_position == MaxSector) 4014 mddev->chunk_sectors = n >> 9; 4015 } 4016 mddev_unlock(mddev); 4017 return err ?: len; 4018 } 4019 static struct md_sysfs_entry md_chunk_size = 4020 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4021 4022 static ssize_t 4023 resync_start_show(struct mddev *mddev, char *page) 4024 { 4025 if (mddev->recovery_cp == MaxSector) 4026 return sprintf(page, "none\n"); 4027 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4028 } 4029 4030 static ssize_t 4031 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4032 { 4033 unsigned long long n; 4034 int err; 4035 4036 if (cmd_match(buf, "none")) 4037 n = MaxSector; 4038 else { 4039 err = kstrtoull(buf, 10, &n); 4040 if (err < 0) 4041 return err; 4042 if (n != (sector_t)n) 4043 return -EINVAL; 4044 } 4045 4046 err = mddev_lock(mddev); 4047 if (err) 4048 return err; 4049 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4050 err = -EBUSY; 4051 4052 if (!err) { 4053 mddev->recovery_cp = n; 4054 if (mddev->pers) 4055 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4056 } 4057 mddev_unlock(mddev); 4058 return err ?: len; 4059 } 4060 static struct md_sysfs_entry md_resync_start = 4061 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4062 resync_start_show, resync_start_store); 4063 4064 /* 4065 * The array state can be: 4066 * 4067 * clear 4068 * No devices, no size, no level 4069 * Equivalent to STOP_ARRAY ioctl 4070 * inactive 4071 * May have some settings, but array is not active 4072 * all IO results in error 4073 * When written, doesn't tear down array, but just stops it 4074 * suspended (not supported yet) 4075 * All IO requests will block. The array can be reconfigured. 4076 * Writing this, if accepted, will block until array is quiescent 4077 * readonly 4078 * no resync can happen. no superblocks get written. 4079 * write requests fail 4080 * read-auto 4081 * like readonly, but behaves like 'clean' on a write request. 4082 * 4083 * clean - no pending writes, but otherwise active. 4084 * When written to inactive array, starts without resync 4085 * If a write request arrives then 4086 * if metadata is known, mark 'dirty' and switch to 'active'. 4087 * if not known, block and switch to write-pending 4088 * If written to an active array that has pending writes, then fails. 4089 * active 4090 * fully active: IO and resync can be happening. 4091 * When written to inactive array, starts with resync 4092 * 4093 * write-pending 4094 * clean, but writes are blocked waiting for 'active' to be written. 4095 * 4096 * active-idle 4097 * like active, but no writes have been seen for a while (100msec). 4098 * 4099 */ 4100 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4101 write_pending, active_idle, bad_word}; 4102 static char *array_states[] = { 4103 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4104 "write-pending", "active-idle", NULL }; 4105 4106 static int match_word(const char *word, char **list) 4107 { 4108 int n; 4109 for (n=0; list[n]; n++) 4110 if (cmd_match(word, list[n])) 4111 break; 4112 return n; 4113 } 4114 4115 static ssize_t 4116 array_state_show(struct mddev *mddev, char *page) 4117 { 4118 enum array_state st = inactive; 4119 4120 if (mddev->pers) 4121 switch(mddev->ro) { 4122 case 1: 4123 st = readonly; 4124 break; 4125 case 2: 4126 st = read_auto; 4127 break; 4128 case 0: 4129 spin_lock(&mddev->lock); 4130 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4131 st = write_pending; 4132 else if (mddev->in_sync) 4133 st = clean; 4134 else if (mddev->safemode) 4135 st = active_idle; 4136 else 4137 st = active; 4138 spin_unlock(&mddev->lock); 4139 } 4140 else { 4141 if (list_empty(&mddev->disks) && 4142 mddev->raid_disks == 0 && 4143 mddev->dev_sectors == 0) 4144 st = clear; 4145 else 4146 st = inactive; 4147 } 4148 return sprintf(page, "%s\n", array_states[st]); 4149 } 4150 4151 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4152 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4153 static int do_md_run(struct mddev *mddev); 4154 static int restart_array(struct mddev *mddev); 4155 4156 static ssize_t 4157 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4158 { 4159 int err = 0; 4160 enum array_state st = match_word(buf, array_states); 4161 4162 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4163 /* don't take reconfig_mutex when toggling between 4164 * clean and active 4165 */ 4166 spin_lock(&mddev->lock); 4167 if (st == active) { 4168 restart_array(mddev); 4169 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4170 md_wakeup_thread(mddev->thread); 4171 wake_up(&mddev->sb_wait); 4172 } else /* st == clean */ { 4173 restart_array(mddev); 4174 if (!set_in_sync(mddev)) 4175 err = -EBUSY; 4176 } 4177 if (!err) 4178 sysfs_notify_dirent_safe(mddev->sysfs_state); 4179 spin_unlock(&mddev->lock); 4180 return err ?: len; 4181 } 4182 err = mddev_lock(mddev); 4183 if (err) 4184 return err; 4185 err = -EINVAL; 4186 switch(st) { 4187 case bad_word: 4188 break; 4189 case clear: 4190 /* stopping an active array */ 4191 err = do_md_stop(mddev, 0, NULL); 4192 break; 4193 case inactive: 4194 /* stopping an active array */ 4195 if (mddev->pers) 4196 err = do_md_stop(mddev, 2, NULL); 4197 else 4198 err = 0; /* already inactive */ 4199 break; 4200 case suspended: 4201 break; /* not supported yet */ 4202 case readonly: 4203 if (mddev->pers) 4204 err = md_set_readonly(mddev, NULL); 4205 else { 4206 mddev->ro = 1; 4207 set_disk_ro(mddev->gendisk, 1); 4208 err = do_md_run(mddev); 4209 } 4210 break; 4211 case read_auto: 4212 if (mddev->pers) { 4213 if (mddev->ro == 0) 4214 err = md_set_readonly(mddev, NULL); 4215 else if (mddev->ro == 1) 4216 err = restart_array(mddev); 4217 if (err == 0) { 4218 mddev->ro = 2; 4219 set_disk_ro(mddev->gendisk, 0); 4220 } 4221 } else { 4222 mddev->ro = 2; 4223 err = do_md_run(mddev); 4224 } 4225 break; 4226 case clean: 4227 if (mddev->pers) { 4228 err = restart_array(mddev); 4229 if (err) 4230 break; 4231 spin_lock(&mddev->lock); 4232 if (!set_in_sync(mddev)) 4233 err = -EBUSY; 4234 spin_unlock(&mddev->lock); 4235 } else 4236 err = -EINVAL; 4237 break; 4238 case active: 4239 if (mddev->pers) { 4240 err = restart_array(mddev); 4241 if (err) 4242 break; 4243 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4244 wake_up(&mddev->sb_wait); 4245 err = 0; 4246 } else { 4247 mddev->ro = 0; 4248 set_disk_ro(mddev->gendisk, 0); 4249 err = do_md_run(mddev); 4250 } 4251 break; 4252 case write_pending: 4253 case active_idle: 4254 /* these cannot be set */ 4255 break; 4256 } 4257 4258 if (!err) { 4259 if (mddev->hold_active == UNTIL_IOCTL) 4260 mddev->hold_active = 0; 4261 sysfs_notify_dirent_safe(mddev->sysfs_state); 4262 } 4263 mddev_unlock(mddev); 4264 return err ?: len; 4265 } 4266 static struct md_sysfs_entry md_array_state = 4267 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4268 4269 static ssize_t 4270 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4271 return sprintf(page, "%d\n", 4272 atomic_read(&mddev->max_corr_read_errors)); 4273 } 4274 4275 static ssize_t 4276 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4277 { 4278 unsigned int n; 4279 int rv; 4280 4281 rv = kstrtouint(buf, 10, &n); 4282 if (rv < 0) 4283 return rv; 4284 atomic_set(&mddev->max_corr_read_errors, n); 4285 return len; 4286 } 4287 4288 static struct md_sysfs_entry max_corr_read_errors = 4289 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4290 max_corrected_read_errors_store); 4291 4292 static ssize_t 4293 null_show(struct mddev *mddev, char *page) 4294 { 4295 return -EINVAL; 4296 } 4297 4298 static ssize_t 4299 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4300 { 4301 /* buf must be %d:%d\n? giving major and minor numbers */ 4302 /* The new device is added to the array. 4303 * If the array has a persistent superblock, we read the 4304 * superblock to initialise info and check validity. 4305 * Otherwise, only checking done is that in bind_rdev_to_array, 4306 * which mainly checks size. 4307 */ 4308 char *e; 4309 int major = simple_strtoul(buf, &e, 10); 4310 int minor; 4311 dev_t dev; 4312 struct md_rdev *rdev; 4313 int err; 4314 4315 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4316 return -EINVAL; 4317 minor = simple_strtoul(e+1, &e, 10); 4318 if (*e && *e != '\n') 4319 return -EINVAL; 4320 dev = MKDEV(major, minor); 4321 if (major != MAJOR(dev) || 4322 minor != MINOR(dev)) 4323 return -EOVERFLOW; 4324 4325 flush_workqueue(md_misc_wq); 4326 4327 err = mddev_lock(mddev); 4328 if (err) 4329 return err; 4330 if (mddev->persistent) { 4331 rdev = md_import_device(dev, mddev->major_version, 4332 mddev->minor_version); 4333 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4334 struct md_rdev *rdev0 4335 = list_entry(mddev->disks.next, 4336 struct md_rdev, same_set); 4337 err = super_types[mddev->major_version] 4338 .load_super(rdev, rdev0, mddev->minor_version); 4339 if (err < 0) 4340 goto out; 4341 } 4342 } else if (mddev->external) 4343 rdev = md_import_device(dev, -2, -1); 4344 else 4345 rdev = md_import_device(dev, -1, -1); 4346 4347 if (IS_ERR(rdev)) { 4348 mddev_unlock(mddev); 4349 return PTR_ERR(rdev); 4350 } 4351 err = bind_rdev_to_array(rdev, mddev); 4352 out: 4353 if (err) 4354 export_rdev(rdev); 4355 mddev_unlock(mddev); 4356 if (!err) 4357 md_new_event(mddev); 4358 return err ? err : len; 4359 } 4360 4361 static struct md_sysfs_entry md_new_device = 4362 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4363 4364 static ssize_t 4365 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4366 { 4367 char *end; 4368 unsigned long chunk, end_chunk; 4369 int err; 4370 4371 err = mddev_lock(mddev); 4372 if (err) 4373 return err; 4374 if (!mddev->bitmap) 4375 goto out; 4376 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4377 while (*buf) { 4378 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4379 if (buf == end) break; 4380 if (*end == '-') { /* range */ 4381 buf = end + 1; 4382 end_chunk = simple_strtoul(buf, &end, 0); 4383 if (buf == end) break; 4384 } 4385 if (*end && !isspace(*end)) break; 4386 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4387 buf = skip_spaces(end); 4388 } 4389 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4390 out: 4391 mddev_unlock(mddev); 4392 return len; 4393 } 4394 4395 static struct md_sysfs_entry md_bitmap = 4396 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4397 4398 static ssize_t 4399 size_show(struct mddev *mddev, char *page) 4400 { 4401 return sprintf(page, "%llu\n", 4402 (unsigned long long)mddev->dev_sectors / 2); 4403 } 4404 4405 static int update_size(struct mddev *mddev, sector_t num_sectors); 4406 4407 static ssize_t 4408 size_store(struct mddev *mddev, const char *buf, size_t len) 4409 { 4410 /* If array is inactive, we can reduce the component size, but 4411 * not increase it (except from 0). 4412 * If array is active, we can try an on-line resize 4413 */ 4414 sector_t sectors; 4415 int err = strict_blocks_to_sectors(buf, §ors); 4416 4417 if (err < 0) 4418 return err; 4419 err = mddev_lock(mddev); 4420 if (err) 4421 return err; 4422 if (mddev->pers) { 4423 err = update_size(mddev, sectors); 4424 if (err == 0) 4425 md_update_sb(mddev, 1); 4426 } else { 4427 if (mddev->dev_sectors == 0 || 4428 mddev->dev_sectors > sectors) 4429 mddev->dev_sectors = sectors; 4430 else 4431 err = -ENOSPC; 4432 } 4433 mddev_unlock(mddev); 4434 return err ? err : len; 4435 } 4436 4437 static struct md_sysfs_entry md_size = 4438 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4439 4440 /* Metadata version. 4441 * This is one of 4442 * 'none' for arrays with no metadata (good luck...) 4443 * 'external' for arrays with externally managed metadata, 4444 * or N.M for internally known formats 4445 */ 4446 static ssize_t 4447 metadata_show(struct mddev *mddev, char *page) 4448 { 4449 if (mddev->persistent) 4450 return sprintf(page, "%d.%d\n", 4451 mddev->major_version, mddev->minor_version); 4452 else if (mddev->external) 4453 return sprintf(page, "external:%s\n", mddev->metadata_type); 4454 else 4455 return sprintf(page, "none\n"); 4456 } 4457 4458 static ssize_t 4459 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4460 { 4461 int major, minor; 4462 char *e; 4463 int err; 4464 /* Changing the details of 'external' metadata is 4465 * always permitted. Otherwise there must be 4466 * no devices attached to the array. 4467 */ 4468 4469 err = mddev_lock(mddev); 4470 if (err) 4471 return err; 4472 err = -EBUSY; 4473 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4474 ; 4475 else if (!list_empty(&mddev->disks)) 4476 goto out_unlock; 4477 4478 err = 0; 4479 if (cmd_match(buf, "none")) { 4480 mddev->persistent = 0; 4481 mddev->external = 0; 4482 mddev->major_version = 0; 4483 mddev->minor_version = 90; 4484 goto out_unlock; 4485 } 4486 if (strncmp(buf, "external:", 9) == 0) { 4487 size_t namelen = len-9; 4488 if (namelen >= sizeof(mddev->metadata_type)) 4489 namelen = sizeof(mddev->metadata_type)-1; 4490 strncpy(mddev->metadata_type, buf+9, namelen); 4491 mddev->metadata_type[namelen] = 0; 4492 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4493 mddev->metadata_type[--namelen] = 0; 4494 mddev->persistent = 0; 4495 mddev->external = 1; 4496 mddev->major_version = 0; 4497 mddev->minor_version = 90; 4498 goto out_unlock; 4499 } 4500 major = simple_strtoul(buf, &e, 10); 4501 err = -EINVAL; 4502 if (e==buf || *e != '.') 4503 goto out_unlock; 4504 buf = e+1; 4505 minor = simple_strtoul(buf, &e, 10); 4506 if (e==buf || (*e && *e != '\n') ) 4507 goto out_unlock; 4508 err = -ENOENT; 4509 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4510 goto out_unlock; 4511 mddev->major_version = major; 4512 mddev->minor_version = minor; 4513 mddev->persistent = 1; 4514 mddev->external = 0; 4515 err = 0; 4516 out_unlock: 4517 mddev_unlock(mddev); 4518 return err ?: len; 4519 } 4520 4521 static struct md_sysfs_entry md_metadata = 4522 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4523 4524 static ssize_t 4525 action_show(struct mddev *mddev, char *page) 4526 { 4527 char *type = "idle"; 4528 unsigned long recovery = mddev->recovery; 4529 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4530 type = "frozen"; 4531 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4532 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4533 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4534 type = "reshape"; 4535 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4536 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4537 type = "resync"; 4538 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4539 type = "check"; 4540 else 4541 type = "repair"; 4542 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4543 type = "recover"; 4544 else if (mddev->reshape_position != MaxSector) 4545 type = "reshape"; 4546 } 4547 return sprintf(page, "%s\n", type); 4548 } 4549 4550 static ssize_t 4551 action_store(struct mddev *mddev, const char *page, size_t len) 4552 { 4553 if (!mddev->pers || !mddev->pers->sync_request) 4554 return -EINVAL; 4555 4556 4557 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4558 if (cmd_match(page, "frozen")) 4559 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4560 else 4561 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4562 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4563 mddev_lock(mddev) == 0) { 4564 flush_workqueue(md_misc_wq); 4565 if (mddev->sync_thread) { 4566 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4567 md_reap_sync_thread(mddev); 4568 } 4569 mddev_unlock(mddev); 4570 } 4571 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4572 return -EBUSY; 4573 else if (cmd_match(page, "resync")) 4574 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4575 else if (cmd_match(page, "recover")) { 4576 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4577 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4578 } else if (cmd_match(page, "reshape")) { 4579 int err; 4580 if (mddev->pers->start_reshape == NULL) 4581 return -EINVAL; 4582 err = mddev_lock(mddev); 4583 if (!err) { 4584 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4585 err = -EBUSY; 4586 else { 4587 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4588 err = mddev->pers->start_reshape(mddev); 4589 } 4590 mddev_unlock(mddev); 4591 } 4592 if (err) 4593 return err; 4594 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4595 } else { 4596 if (cmd_match(page, "check")) 4597 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4598 else if (!cmd_match(page, "repair")) 4599 return -EINVAL; 4600 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4601 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4602 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4603 } 4604 if (mddev->ro == 2) { 4605 /* A write to sync_action is enough to justify 4606 * canceling read-auto mode 4607 */ 4608 mddev->ro = 0; 4609 md_wakeup_thread(mddev->sync_thread); 4610 } 4611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4612 md_wakeup_thread(mddev->thread); 4613 sysfs_notify_dirent_safe(mddev->sysfs_action); 4614 return len; 4615 } 4616 4617 static struct md_sysfs_entry md_scan_mode = 4618 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4619 4620 static ssize_t 4621 last_sync_action_show(struct mddev *mddev, char *page) 4622 { 4623 return sprintf(page, "%s\n", mddev->last_sync_action); 4624 } 4625 4626 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4627 4628 static ssize_t 4629 mismatch_cnt_show(struct mddev *mddev, char *page) 4630 { 4631 return sprintf(page, "%llu\n", 4632 (unsigned long long) 4633 atomic64_read(&mddev->resync_mismatches)); 4634 } 4635 4636 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4637 4638 static ssize_t 4639 sync_min_show(struct mddev *mddev, char *page) 4640 { 4641 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4642 mddev->sync_speed_min ? "local": "system"); 4643 } 4644 4645 static ssize_t 4646 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4647 { 4648 unsigned int min; 4649 int rv; 4650 4651 if (strncmp(buf, "system", 6)==0) { 4652 min = 0; 4653 } else { 4654 rv = kstrtouint(buf, 10, &min); 4655 if (rv < 0) 4656 return rv; 4657 if (min == 0) 4658 return -EINVAL; 4659 } 4660 mddev->sync_speed_min = min; 4661 return len; 4662 } 4663 4664 static struct md_sysfs_entry md_sync_min = 4665 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4666 4667 static ssize_t 4668 sync_max_show(struct mddev *mddev, char *page) 4669 { 4670 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4671 mddev->sync_speed_max ? "local": "system"); 4672 } 4673 4674 static ssize_t 4675 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4676 { 4677 unsigned int max; 4678 int rv; 4679 4680 if (strncmp(buf, "system", 6)==0) { 4681 max = 0; 4682 } else { 4683 rv = kstrtouint(buf, 10, &max); 4684 if (rv < 0) 4685 return rv; 4686 if (max == 0) 4687 return -EINVAL; 4688 } 4689 mddev->sync_speed_max = max; 4690 return len; 4691 } 4692 4693 static struct md_sysfs_entry md_sync_max = 4694 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4695 4696 static ssize_t 4697 degraded_show(struct mddev *mddev, char *page) 4698 { 4699 return sprintf(page, "%d\n", mddev->degraded); 4700 } 4701 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4702 4703 static ssize_t 4704 sync_force_parallel_show(struct mddev *mddev, char *page) 4705 { 4706 return sprintf(page, "%d\n", mddev->parallel_resync); 4707 } 4708 4709 static ssize_t 4710 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4711 { 4712 long n; 4713 4714 if (kstrtol(buf, 10, &n)) 4715 return -EINVAL; 4716 4717 if (n != 0 && n != 1) 4718 return -EINVAL; 4719 4720 mddev->parallel_resync = n; 4721 4722 if (mddev->sync_thread) 4723 wake_up(&resync_wait); 4724 4725 return len; 4726 } 4727 4728 /* force parallel resync, even with shared block devices */ 4729 static struct md_sysfs_entry md_sync_force_parallel = 4730 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4731 sync_force_parallel_show, sync_force_parallel_store); 4732 4733 static ssize_t 4734 sync_speed_show(struct mddev *mddev, char *page) 4735 { 4736 unsigned long resync, dt, db; 4737 if (mddev->curr_resync == 0) 4738 return sprintf(page, "none\n"); 4739 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4740 dt = (jiffies - mddev->resync_mark) / HZ; 4741 if (!dt) dt++; 4742 db = resync - mddev->resync_mark_cnt; 4743 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4744 } 4745 4746 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4747 4748 static ssize_t 4749 sync_completed_show(struct mddev *mddev, char *page) 4750 { 4751 unsigned long long max_sectors, resync; 4752 4753 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4754 return sprintf(page, "none\n"); 4755 4756 if (mddev->curr_resync == 1 || 4757 mddev->curr_resync == 2) 4758 return sprintf(page, "delayed\n"); 4759 4760 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4761 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4762 max_sectors = mddev->resync_max_sectors; 4763 else 4764 max_sectors = mddev->dev_sectors; 4765 4766 resync = mddev->curr_resync_completed; 4767 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4768 } 4769 4770 static struct md_sysfs_entry md_sync_completed = 4771 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4772 4773 static ssize_t 4774 min_sync_show(struct mddev *mddev, char *page) 4775 { 4776 return sprintf(page, "%llu\n", 4777 (unsigned long long)mddev->resync_min); 4778 } 4779 static ssize_t 4780 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4781 { 4782 unsigned long long min; 4783 int err; 4784 4785 if (kstrtoull(buf, 10, &min)) 4786 return -EINVAL; 4787 4788 spin_lock(&mddev->lock); 4789 err = -EINVAL; 4790 if (min > mddev->resync_max) 4791 goto out_unlock; 4792 4793 err = -EBUSY; 4794 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4795 goto out_unlock; 4796 4797 /* Round down to multiple of 4K for safety */ 4798 mddev->resync_min = round_down(min, 8); 4799 err = 0; 4800 4801 out_unlock: 4802 spin_unlock(&mddev->lock); 4803 return err ?: len; 4804 } 4805 4806 static struct md_sysfs_entry md_min_sync = 4807 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4808 4809 static ssize_t 4810 max_sync_show(struct mddev *mddev, char *page) 4811 { 4812 if (mddev->resync_max == MaxSector) 4813 return sprintf(page, "max\n"); 4814 else 4815 return sprintf(page, "%llu\n", 4816 (unsigned long long)mddev->resync_max); 4817 } 4818 static ssize_t 4819 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4820 { 4821 int err; 4822 spin_lock(&mddev->lock); 4823 if (strncmp(buf, "max", 3) == 0) 4824 mddev->resync_max = MaxSector; 4825 else { 4826 unsigned long long max; 4827 int chunk; 4828 4829 err = -EINVAL; 4830 if (kstrtoull(buf, 10, &max)) 4831 goto out_unlock; 4832 if (max < mddev->resync_min) 4833 goto out_unlock; 4834 4835 err = -EBUSY; 4836 if (max < mddev->resync_max && 4837 mddev->ro == 0 && 4838 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4839 goto out_unlock; 4840 4841 /* Must be a multiple of chunk_size */ 4842 chunk = mddev->chunk_sectors; 4843 if (chunk) { 4844 sector_t temp = max; 4845 4846 err = -EINVAL; 4847 if (sector_div(temp, chunk)) 4848 goto out_unlock; 4849 } 4850 mddev->resync_max = max; 4851 } 4852 wake_up(&mddev->recovery_wait); 4853 err = 0; 4854 out_unlock: 4855 spin_unlock(&mddev->lock); 4856 return err ?: len; 4857 } 4858 4859 static struct md_sysfs_entry md_max_sync = 4860 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4861 4862 static ssize_t 4863 suspend_lo_show(struct mddev *mddev, char *page) 4864 { 4865 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4866 } 4867 4868 static ssize_t 4869 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4870 { 4871 unsigned long long new; 4872 int err; 4873 4874 err = kstrtoull(buf, 10, &new); 4875 if (err < 0) 4876 return err; 4877 if (new != (sector_t)new) 4878 return -EINVAL; 4879 4880 err = mddev_lock(mddev); 4881 if (err) 4882 return err; 4883 err = -EINVAL; 4884 if (mddev->pers == NULL || 4885 mddev->pers->quiesce == NULL) 4886 goto unlock; 4887 mddev_suspend(mddev); 4888 mddev->suspend_lo = new; 4889 mddev_resume(mddev); 4890 4891 err = 0; 4892 unlock: 4893 mddev_unlock(mddev); 4894 return err ?: len; 4895 } 4896 static struct md_sysfs_entry md_suspend_lo = 4897 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4898 4899 static ssize_t 4900 suspend_hi_show(struct mddev *mddev, char *page) 4901 { 4902 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4903 } 4904 4905 static ssize_t 4906 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4907 { 4908 unsigned long long new; 4909 int err; 4910 4911 err = kstrtoull(buf, 10, &new); 4912 if (err < 0) 4913 return err; 4914 if (new != (sector_t)new) 4915 return -EINVAL; 4916 4917 err = mddev_lock(mddev); 4918 if (err) 4919 return err; 4920 err = -EINVAL; 4921 if (mddev->pers == NULL) 4922 goto unlock; 4923 4924 mddev_suspend(mddev); 4925 mddev->suspend_hi = new; 4926 mddev_resume(mddev); 4927 4928 err = 0; 4929 unlock: 4930 mddev_unlock(mddev); 4931 return err ?: len; 4932 } 4933 static struct md_sysfs_entry md_suspend_hi = 4934 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4935 4936 static ssize_t 4937 reshape_position_show(struct mddev *mddev, char *page) 4938 { 4939 if (mddev->reshape_position != MaxSector) 4940 return sprintf(page, "%llu\n", 4941 (unsigned long long)mddev->reshape_position); 4942 strcpy(page, "none\n"); 4943 return 5; 4944 } 4945 4946 static ssize_t 4947 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4948 { 4949 struct md_rdev *rdev; 4950 unsigned long long new; 4951 int err; 4952 4953 err = kstrtoull(buf, 10, &new); 4954 if (err < 0) 4955 return err; 4956 if (new != (sector_t)new) 4957 return -EINVAL; 4958 err = mddev_lock(mddev); 4959 if (err) 4960 return err; 4961 err = -EBUSY; 4962 if (mddev->pers) 4963 goto unlock; 4964 mddev->reshape_position = new; 4965 mddev->delta_disks = 0; 4966 mddev->reshape_backwards = 0; 4967 mddev->new_level = mddev->level; 4968 mddev->new_layout = mddev->layout; 4969 mddev->new_chunk_sectors = mddev->chunk_sectors; 4970 rdev_for_each(rdev, mddev) 4971 rdev->new_data_offset = rdev->data_offset; 4972 err = 0; 4973 unlock: 4974 mddev_unlock(mddev); 4975 return err ?: len; 4976 } 4977 4978 static struct md_sysfs_entry md_reshape_position = 4979 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4980 reshape_position_store); 4981 4982 static ssize_t 4983 reshape_direction_show(struct mddev *mddev, char *page) 4984 { 4985 return sprintf(page, "%s\n", 4986 mddev->reshape_backwards ? "backwards" : "forwards"); 4987 } 4988 4989 static ssize_t 4990 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4991 { 4992 int backwards = 0; 4993 int err; 4994 4995 if (cmd_match(buf, "forwards")) 4996 backwards = 0; 4997 else if (cmd_match(buf, "backwards")) 4998 backwards = 1; 4999 else 5000 return -EINVAL; 5001 if (mddev->reshape_backwards == backwards) 5002 return len; 5003 5004 err = mddev_lock(mddev); 5005 if (err) 5006 return err; 5007 /* check if we are allowed to change */ 5008 if (mddev->delta_disks) 5009 err = -EBUSY; 5010 else if (mddev->persistent && 5011 mddev->major_version == 0) 5012 err = -EINVAL; 5013 else 5014 mddev->reshape_backwards = backwards; 5015 mddev_unlock(mddev); 5016 return err ?: len; 5017 } 5018 5019 static struct md_sysfs_entry md_reshape_direction = 5020 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5021 reshape_direction_store); 5022 5023 static ssize_t 5024 array_size_show(struct mddev *mddev, char *page) 5025 { 5026 if (mddev->external_size) 5027 return sprintf(page, "%llu\n", 5028 (unsigned long long)mddev->array_sectors/2); 5029 else 5030 return sprintf(page, "default\n"); 5031 } 5032 5033 static ssize_t 5034 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5035 { 5036 sector_t sectors; 5037 int err; 5038 5039 err = mddev_lock(mddev); 5040 if (err) 5041 return err; 5042 5043 /* cluster raid doesn't support change array_sectors */ 5044 if (mddev_is_clustered(mddev)) { 5045 mddev_unlock(mddev); 5046 return -EINVAL; 5047 } 5048 5049 if (strncmp(buf, "default", 7) == 0) { 5050 if (mddev->pers) 5051 sectors = mddev->pers->size(mddev, 0, 0); 5052 else 5053 sectors = mddev->array_sectors; 5054 5055 mddev->external_size = 0; 5056 } else { 5057 if (strict_blocks_to_sectors(buf, §ors) < 0) 5058 err = -EINVAL; 5059 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5060 err = -E2BIG; 5061 else 5062 mddev->external_size = 1; 5063 } 5064 5065 if (!err) { 5066 mddev->array_sectors = sectors; 5067 if (mddev->pers) { 5068 set_capacity(mddev->gendisk, mddev->array_sectors); 5069 revalidate_disk(mddev->gendisk); 5070 } 5071 } 5072 mddev_unlock(mddev); 5073 return err ?: len; 5074 } 5075 5076 static struct md_sysfs_entry md_array_size = 5077 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5078 array_size_store); 5079 5080 static ssize_t 5081 consistency_policy_show(struct mddev *mddev, char *page) 5082 { 5083 int ret; 5084 5085 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5086 ret = sprintf(page, "journal\n"); 5087 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5088 ret = sprintf(page, "ppl\n"); 5089 } else if (mddev->bitmap) { 5090 ret = sprintf(page, "bitmap\n"); 5091 } else if (mddev->pers) { 5092 if (mddev->pers->sync_request) 5093 ret = sprintf(page, "resync\n"); 5094 else 5095 ret = sprintf(page, "none\n"); 5096 } else { 5097 ret = sprintf(page, "unknown\n"); 5098 } 5099 5100 return ret; 5101 } 5102 5103 static ssize_t 5104 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5105 { 5106 int err = 0; 5107 5108 if (mddev->pers) { 5109 if (mddev->pers->change_consistency_policy) 5110 err = mddev->pers->change_consistency_policy(mddev, buf); 5111 else 5112 err = -EBUSY; 5113 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5114 set_bit(MD_HAS_PPL, &mddev->flags); 5115 } else { 5116 err = -EINVAL; 5117 } 5118 5119 return err ? err : len; 5120 } 5121 5122 static struct md_sysfs_entry md_consistency_policy = 5123 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5124 consistency_policy_store); 5125 5126 static struct attribute *md_default_attrs[] = { 5127 &md_level.attr, 5128 &md_layout.attr, 5129 &md_raid_disks.attr, 5130 &md_chunk_size.attr, 5131 &md_size.attr, 5132 &md_resync_start.attr, 5133 &md_metadata.attr, 5134 &md_new_device.attr, 5135 &md_safe_delay.attr, 5136 &md_array_state.attr, 5137 &md_reshape_position.attr, 5138 &md_reshape_direction.attr, 5139 &md_array_size.attr, 5140 &max_corr_read_errors.attr, 5141 &md_consistency_policy.attr, 5142 NULL, 5143 }; 5144 5145 static struct attribute *md_redundancy_attrs[] = { 5146 &md_scan_mode.attr, 5147 &md_last_scan_mode.attr, 5148 &md_mismatches.attr, 5149 &md_sync_min.attr, 5150 &md_sync_max.attr, 5151 &md_sync_speed.attr, 5152 &md_sync_force_parallel.attr, 5153 &md_sync_completed.attr, 5154 &md_min_sync.attr, 5155 &md_max_sync.attr, 5156 &md_suspend_lo.attr, 5157 &md_suspend_hi.attr, 5158 &md_bitmap.attr, 5159 &md_degraded.attr, 5160 NULL, 5161 }; 5162 static struct attribute_group md_redundancy_group = { 5163 .name = NULL, 5164 .attrs = md_redundancy_attrs, 5165 }; 5166 5167 static ssize_t 5168 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5169 { 5170 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5171 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5172 ssize_t rv; 5173 5174 if (!entry->show) 5175 return -EIO; 5176 spin_lock(&all_mddevs_lock); 5177 if (list_empty(&mddev->all_mddevs)) { 5178 spin_unlock(&all_mddevs_lock); 5179 return -EBUSY; 5180 } 5181 mddev_get(mddev); 5182 spin_unlock(&all_mddevs_lock); 5183 5184 rv = entry->show(mddev, page); 5185 mddev_put(mddev); 5186 return rv; 5187 } 5188 5189 static ssize_t 5190 md_attr_store(struct kobject *kobj, struct attribute *attr, 5191 const char *page, size_t length) 5192 { 5193 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5194 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5195 ssize_t rv; 5196 5197 if (!entry->store) 5198 return -EIO; 5199 if (!capable(CAP_SYS_ADMIN)) 5200 return -EACCES; 5201 spin_lock(&all_mddevs_lock); 5202 if (list_empty(&mddev->all_mddevs)) { 5203 spin_unlock(&all_mddevs_lock); 5204 return -EBUSY; 5205 } 5206 mddev_get(mddev); 5207 spin_unlock(&all_mddevs_lock); 5208 rv = entry->store(mddev, page, length); 5209 mddev_put(mddev); 5210 return rv; 5211 } 5212 5213 static void md_free(struct kobject *ko) 5214 { 5215 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5216 5217 if (mddev->sysfs_state) 5218 sysfs_put(mddev->sysfs_state); 5219 5220 if (mddev->gendisk) 5221 del_gendisk(mddev->gendisk); 5222 if (mddev->queue) 5223 blk_cleanup_queue(mddev->queue); 5224 if (mddev->gendisk) 5225 put_disk(mddev->gendisk); 5226 percpu_ref_exit(&mddev->writes_pending); 5227 5228 bioset_exit(&mddev->bio_set); 5229 bioset_exit(&mddev->sync_set); 5230 kfree(mddev); 5231 } 5232 5233 static const struct sysfs_ops md_sysfs_ops = { 5234 .show = md_attr_show, 5235 .store = md_attr_store, 5236 }; 5237 static struct kobj_type md_ktype = { 5238 .release = md_free, 5239 .sysfs_ops = &md_sysfs_ops, 5240 .default_attrs = md_default_attrs, 5241 }; 5242 5243 int mdp_major = 0; 5244 5245 static void mddev_delayed_delete(struct work_struct *ws) 5246 { 5247 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5248 5249 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5250 kobject_del(&mddev->kobj); 5251 kobject_put(&mddev->kobj); 5252 } 5253 5254 static void no_op(struct percpu_ref *r) {} 5255 5256 int mddev_init_writes_pending(struct mddev *mddev) 5257 { 5258 if (mddev->writes_pending.percpu_count_ptr) 5259 return 0; 5260 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5261 return -ENOMEM; 5262 /* We want to start with the refcount at zero */ 5263 percpu_ref_put(&mddev->writes_pending); 5264 return 0; 5265 } 5266 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5267 5268 static int md_alloc(dev_t dev, char *name) 5269 { 5270 /* 5271 * If dev is zero, name is the name of a device to allocate with 5272 * an arbitrary minor number. It will be "md_???" 5273 * If dev is non-zero it must be a device number with a MAJOR of 5274 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5275 * the device is being created by opening a node in /dev. 5276 * If "name" is not NULL, the device is being created by 5277 * writing to /sys/module/md_mod/parameters/new_array. 5278 */ 5279 static DEFINE_MUTEX(disks_mutex); 5280 struct mddev *mddev = mddev_find(dev); 5281 struct gendisk *disk; 5282 int partitioned; 5283 int shift; 5284 int unit; 5285 int error; 5286 5287 if (!mddev) 5288 return -ENODEV; 5289 5290 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5291 shift = partitioned ? MdpMinorShift : 0; 5292 unit = MINOR(mddev->unit) >> shift; 5293 5294 /* wait for any previous instance of this device to be 5295 * completely removed (mddev_delayed_delete). 5296 */ 5297 flush_workqueue(md_misc_wq); 5298 5299 mutex_lock(&disks_mutex); 5300 error = -EEXIST; 5301 if (mddev->gendisk) 5302 goto abort; 5303 5304 if (name && !dev) { 5305 /* Need to ensure that 'name' is not a duplicate. 5306 */ 5307 struct mddev *mddev2; 5308 spin_lock(&all_mddevs_lock); 5309 5310 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5311 if (mddev2->gendisk && 5312 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5313 spin_unlock(&all_mddevs_lock); 5314 goto abort; 5315 } 5316 spin_unlock(&all_mddevs_lock); 5317 } 5318 if (name && dev) 5319 /* 5320 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5321 */ 5322 mddev->hold_active = UNTIL_STOP; 5323 5324 error = -ENOMEM; 5325 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5326 if (!mddev->queue) 5327 goto abort; 5328 mddev->queue->queuedata = mddev; 5329 5330 blk_queue_make_request(mddev->queue, md_make_request); 5331 blk_set_stacking_limits(&mddev->queue->limits); 5332 5333 disk = alloc_disk(1 << shift); 5334 if (!disk) { 5335 blk_cleanup_queue(mddev->queue); 5336 mddev->queue = NULL; 5337 goto abort; 5338 } 5339 disk->major = MAJOR(mddev->unit); 5340 disk->first_minor = unit << shift; 5341 if (name) 5342 strcpy(disk->disk_name, name); 5343 else if (partitioned) 5344 sprintf(disk->disk_name, "md_d%d", unit); 5345 else 5346 sprintf(disk->disk_name, "md%d", unit); 5347 disk->fops = &md_fops; 5348 disk->private_data = mddev; 5349 disk->queue = mddev->queue; 5350 blk_queue_write_cache(mddev->queue, true, true); 5351 /* Allow extended partitions. This makes the 5352 * 'mdp' device redundant, but we can't really 5353 * remove it now. 5354 */ 5355 disk->flags |= GENHD_FL_EXT_DEVT; 5356 mddev->gendisk = disk; 5357 /* As soon as we call add_disk(), another thread could get 5358 * through to md_open, so make sure it doesn't get too far 5359 */ 5360 mutex_lock(&mddev->open_mutex); 5361 add_disk(disk); 5362 5363 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5364 if (error) { 5365 /* This isn't possible, but as kobject_init_and_add is marked 5366 * __must_check, we must do something with the result 5367 */ 5368 pr_debug("md: cannot register %s/md - name in use\n", 5369 disk->disk_name); 5370 error = 0; 5371 } 5372 if (mddev->kobj.sd && 5373 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5374 pr_debug("pointless warning\n"); 5375 mutex_unlock(&mddev->open_mutex); 5376 abort: 5377 mutex_unlock(&disks_mutex); 5378 if (!error && mddev->kobj.sd) { 5379 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5380 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5381 } 5382 mddev_put(mddev); 5383 return error; 5384 } 5385 5386 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5387 { 5388 if (create_on_open) 5389 md_alloc(dev, NULL); 5390 return NULL; 5391 } 5392 5393 static int add_named_array(const char *val, const struct kernel_param *kp) 5394 { 5395 /* 5396 * val must be "md_*" or "mdNNN". 5397 * For "md_*" we allocate an array with a large free minor number, and 5398 * set the name to val. val must not already be an active name. 5399 * For "mdNNN" we allocate an array with the minor number NNN 5400 * which must not already be in use. 5401 */ 5402 int len = strlen(val); 5403 char buf[DISK_NAME_LEN]; 5404 unsigned long devnum; 5405 5406 while (len && val[len-1] == '\n') 5407 len--; 5408 if (len >= DISK_NAME_LEN) 5409 return -E2BIG; 5410 strlcpy(buf, val, len+1); 5411 if (strncmp(buf, "md_", 3) == 0) 5412 return md_alloc(0, buf); 5413 if (strncmp(buf, "md", 2) == 0 && 5414 isdigit(buf[2]) && 5415 kstrtoul(buf+2, 10, &devnum) == 0 && 5416 devnum <= MINORMASK) 5417 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5418 5419 return -EINVAL; 5420 } 5421 5422 static void md_safemode_timeout(struct timer_list *t) 5423 { 5424 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5425 5426 mddev->safemode = 1; 5427 if (mddev->external) 5428 sysfs_notify_dirent_safe(mddev->sysfs_state); 5429 5430 md_wakeup_thread(mddev->thread); 5431 } 5432 5433 static int start_dirty_degraded; 5434 5435 int md_run(struct mddev *mddev) 5436 { 5437 int err; 5438 struct md_rdev *rdev; 5439 struct md_personality *pers; 5440 5441 if (list_empty(&mddev->disks)) 5442 /* cannot run an array with no devices.. */ 5443 return -EINVAL; 5444 5445 if (mddev->pers) 5446 return -EBUSY; 5447 /* Cannot run until previous stop completes properly */ 5448 if (mddev->sysfs_active) 5449 return -EBUSY; 5450 5451 /* 5452 * Analyze all RAID superblock(s) 5453 */ 5454 if (!mddev->raid_disks) { 5455 if (!mddev->persistent) 5456 return -EINVAL; 5457 analyze_sbs(mddev); 5458 } 5459 5460 if (mddev->level != LEVEL_NONE) 5461 request_module("md-level-%d", mddev->level); 5462 else if (mddev->clevel[0]) 5463 request_module("md-%s", mddev->clevel); 5464 5465 /* 5466 * Drop all container device buffers, from now on 5467 * the only valid external interface is through the md 5468 * device. 5469 */ 5470 mddev->has_superblocks = false; 5471 rdev_for_each(rdev, mddev) { 5472 if (test_bit(Faulty, &rdev->flags)) 5473 continue; 5474 sync_blockdev(rdev->bdev); 5475 invalidate_bdev(rdev->bdev); 5476 if (mddev->ro != 1 && 5477 (bdev_read_only(rdev->bdev) || 5478 bdev_read_only(rdev->meta_bdev))) { 5479 mddev->ro = 1; 5480 if (mddev->gendisk) 5481 set_disk_ro(mddev->gendisk, 1); 5482 } 5483 5484 if (rdev->sb_page) 5485 mddev->has_superblocks = true; 5486 5487 /* perform some consistency tests on the device. 5488 * We don't want the data to overlap the metadata, 5489 * Internal Bitmap issues have been handled elsewhere. 5490 */ 5491 if (rdev->meta_bdev) { 5492 /* Nothing to check */; 5493 } else if (rdev->data_offset < rdev->sb_start) { 5494 if (mddev->dev_sectors && 5495 rdev->data_offset + mddev->dev_sectors 5496 > rdev->sb_start) { 5497 pr_warn("md: %s: data overlaps metadata\n", 5498 mdname(mddev)); 5499 return -EINVAL; 5500 } 5501 } else { 5502 if (rdev->sb_start + rdev->sb_size/512 5503 > rdev->data_offset) { 5504 pr_warn("md: %s: metadata overlaps data\n", 5505 mdname(mddev)); 5506 return -EINVAL; 5507 } 5508 } 5509 sysfs_notify_dirent_safe(rdev->sysfs_state); 5510 } 5511 5512 if (!bioset_initialized(&mddev->bio_set)) { 5513 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5514 if (err) 5515 return err; 5516 } 5517 if (!bioset_initialized(&mddev->sync_set)) { 5518 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5519 if (err) 5520 return err; 5521 } 5522 if (mddev->flush_pool == NULL) { 5523 mddev->flush_pool = mempool_create(NR_FLUSH_INFOS, flush_info_alloc, 5524 flush_info_free, mddev); 5525 if (!mddev->flush_pool) { 5526 err = -ENOMEM; 5527 goto abort; 5528 } 5529 } 5530 if (mddev->flush_bio_pool == NULL) { 5531 mddev->flush_bio_pool = mempool_create(NR_FLUSH_BIOS, flush_bio_alloc, 5532 flush_bio_free, mddev); 5533 if (!mddev->flush_bio_pool) { 5534 err = -ENOMEM; 5535 goto abort; 5536 } 5537 } 5538 5539 spin_lock(&pers_lock); 5540 pers = find_pers(mddev->level, mddev->clevel); 5541 if (!pers || !try_module_get(pers->owner)) { 5542 spin_unlock(&pers_lock); 5543 if (mddev->level != LEVEL_NONE) 5544 pr_warn("md: personality for level %d is not loaded!\n", 5545 mddev->level); 5546 else 5547 pr_warn("md: personality for level %s is not loaded!\n", 5548 mddev->clevel); 5549 err = -EINVAL; 5550 goto abort; 5551 } 5552 spin_unlock(&pers_lock); 5553 if (mddev->level != pers->level) { 5554 mddev->level = pers->level; 5555 mddev->new_level = pers->level; 5556 } 5557 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5558 5559 if (mddev->reshape_position != MaxSector && 5560 pers->start_reshape == NULL) { 5561 /* This personality cannot handle reshaping... */ 5562 module_put(pers->owner); 5563 err = -EINVAL; 5564 goto abort; 5565 } 5566 5567 if (pers->sync_request) { 5568 /* Warn if this is a potentially silly 5569 * configuration. 5570 */ 5571 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5572 struct md_rdev *rdev2; 5573 int warned = 0; 5574 5575 rdev_for_each(rdev, mddev) 5576 rdev_for_each(rdev2, mddev) { 5577 if (rdev < rdev2 && 5578 rdev->bdev->bd_contains == 5579 rdev2->bdev->bd_contains) { 5580 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5581 mdname(mddev), 5582 bdevname(rdev->bdev,b), 5583 bdevname(rdev2->bdev,b2)); 5584 warned = 1; 5585 } 5586 } 5587 5588 if (warned) 5589 pr_warn("True protection against single-disk failure might be compromised.\n"); 5590 } 5591 5592 mddev->recovery = 0; 5593 /* may be over-ridden by personality */ 5594 mddev->resync_max_sectors = mddev->dev_sectors; 5595 5596 mddev->ok_start_degraded = start_dirty_degraded; 5597 5598 if (start_readonly && mddev->ro == 0) 5599 mddev->ro = 2; /* read-only, but switch on first write */ 5600 5601 err = pers->run(mddev); 5602 if (err) 5603 pr_warn("md: pers->run() failed ...\n"); 5604 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5605 WARN_ONCE(!mddev->external_size, 5606 "%s: default size too small, but 'external_size' not in effect?\n", 5607 __func__); 5608 pr_warn("md: invalid array_size %llu > default size %llu\n", 5609 (unsigned long long)mddev->array_sectors / 2, 5610 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5611 err = -EINVAL; 5612 } 5613 if (err == 0 && pers->sync_request && 5614 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5615 struct bitmap *bitmap; 5616 5617 bitmap = md_bitmap_create(mddev, -1); 5618 if (IS_ERR(bitmap)) { 5619 err = PTR_ERR(bitmap); 5620 pr_warn("%s: failed to create bitmap (%d)\n", 5621 mdname(mddev), err); 5622 } else 5623 mddev->bitmap = bitmap; 5624 5625 } 5626 if (err) { 5627 mddev_detach(mddev); 5628 if (mddev->private) 5629 pers->free(mddev, mddev->private); 5630 mddev->private = NULL; 5631 module_put(pers->owner); 5632 md_bitmap_destroy(mddev); 5633 goto abort; 5634 } 5635 if (mddev->queue) { 5636 bool nonrot = true; 5637 5638 rdev_for_each(rdev, mddev) { 5639 if (rdev->raid_disk >= 0 && 5640 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5641 nonrot = false; 5642 break; 5643 } 5644 } 5645 if (mddev->degraded) 5646 nonrot = false; 5647 if (nonrot) 5648 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5649 else 5650 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5651 mddev->queue->backing_dev_info->congested_data = mddev; 5652 mddev->queue->backing_dev_info->congested_fn = md_congested; 5653 } 5654 if (pers->sync_request) { 5655 if (mddev->kobj.sd && 5656 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5657 pr_warn("md: cannot register extra attributes for %s\n", 5658 mdname(mddev)); 5659 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5660 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5661 mddev->ro = 0; 5662 5663 atomic_set(&mddev->max_corr_read_errors, 5664 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5665 mddev->safemode = 0; 5666 if (mddev_is_clustered(mddev)) 5667 mddev->safemode_delay = 0; 5668 else 5669 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5670 mddev->in_sync = 1; 5671 smp_wmb(); 5672 spin_lock(&mddev->lock); 5673 mddev->pers = pers; 5674 spin_unlock(&mddev->lock); 5675 rdev_for_each(rdev, mddev) 5676 if (rdev->raid_disk >= 0) 5677 if (sysfs_link_rdev(mddev, rdev)) 5678 /* failure here is OK */; 5679 5680 if (mddev->degraded && !mddev->ro) 5681 /* This ensures that recovering status is reported immediately 5682 * via sysfs - until a lack of spares is confirmed. 5683 */ 5684 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5686 5687 if (mddev->sb_flags) 5688 md_update_sb(mddev, 0); 5689 5690 md_new_event(mddev); 5691 sysfs_notify_dirent_safe(mddev->sysfs_state); 5692 sysfs_notify_dirent_safe(mddev->sysfs_action); 5693 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5694 return 0; 5695 5696 abort: 5697 if (mddev->flush_bio_pool) { 5698 mempool_destroy(mddev->flush_bio_pool); 5699 mddev->flush_bio_pool = NULL; 5700 } 5701 if (mddev->flush_pool){ 5702 mempool_destroy(mddev->flush_pool); 5703 mddev->flush_pool = NULL; 5704 } 5705 5706 return err; 5707 } 5708 EXPORT_SYMBOL_GPL(md_run); 5709 5710 static int do_md_run(struct mddev *mddev) 5711 { 5712 int err; 5713 5714 err = md_run(mddev); 5715 if (err) 5716 goto out; 5717 err = md_bitmap_load(mddev); 5718 if (err) { 5719 md_bitmap_destroy(mddev); 5720 goto out; 5721 } 5722 5723 if (mddev_is_clustered(mddev)) 5724 md_allow_write(mddev); 5725 5726 /* run start up tasks that require md_thread */ 5727 md_start(mddev); 5728 5729 md_wakeup_thread(mddev->thread); 5730 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5731 5732 set_capacity(mddev->gendisk, mddev->array_sectors); 5733 revalidate_disk(mddev->gendisk); 5734 mddev->changed = 1; 5735 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5736 out: 5737 return err; 5738 } 5739 5740 int md_start(struct mddev *mddev) 5741 { 5742 int ret = 0; 5743 5744 if (mddev->pers->start) { 5745 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5746 md_wakeup_thread(mddev->thread); 5747 ret = mddev->pers->start(mddev); 5748 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5749 md_wakeup_thread(mddev->sync_thread); 5750 } 5751 return ret; 5752 } 5753 EXPORT_SYMBOL_GPL(md_start); 5754 5755 static int restart_array(struct mddev *mddev) 5756 { 5757 struct gendisk *disk = mddev->gendisk; 5758 struct md_rdev *rdev; 5759 bool has_journal = false; 5760 bool has_readonly = false; 5761 5762 /* Complain if it has no devices */ 5763 if (list_empty(&mddev->disks)) 5764 return -ENXIO; 5765 if (!mddev->pers) 5766 return -EINVAL; 5767 if (!mddev->ro) 5768 return -EBUSY; 5769 5770 rcu_read_lock(); 5771 rdev_for_each_rcu(rdev, mddev) { 5772 if (test_bit(Journal, &rdev->flags) && 5773 !test_bit(Faulty, &rdev->flags)) 5774 has_journal = true; 5775 if (bdev_read_only(rdev->bdev)) 5776 has_readonly = true; 5777 } 5778 rcu_read_unlock(); 5779 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5780 /* Don't restart rw with journal missing/faulty */ 5781 return -EINVAL; 5782 if (has_readonly) 5783 return -EROFS; 5784 5785 mddev->safemode = 0; 5786 mddev->ro = 0; 5787 set_disk_ro(disk, 0); 5788 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5789 /* Kick recovery or resync if necessary */ 5790 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5791 md_wakeup_thread(mddev->thread); 5792 md_wakeup_thread(mddev->sync_thread); 5793 sysfs_notify_dirent_safe(mddev->sysfs_state); 5794 return 0; 5795 } 5796 5797 static void md_clean(struct mddev *mddev) 5798 { 5799 mddev->array_sectors = 0; 5800 mddev->external_size = 0; 5801 mddev->dev_sectors = 0; 5802 mddev->raid_disks = 0; 5803 mddev->recovery_cp = 0; 5804 mddev->resync_min = 0; 5805 mddev->resync_max = MaxSector; 5806 mddev->reshape_position = MaxSector; 5807 mddev->external = 0; 5808 mddev->persistent = 0; 5809 mddev->level = LEVEL_NONE; 5810 mddev->clevel[0] = 0; 5811 mddev->flags = 0; 5812 mddev->sb_flags = 0; 5813 mddev->ro = 0; 5814 mddev->metadata_type[0] = 0; 5815 mddev->chunk_sectors = 0; 5816 mddev->ctime = mddev->utime = 0; 5817 mddev->layout = 0; 5818 mddev->max_disks = 0; 5819 mddev->events = 0; 5820 mddev->can_decrease_events = 0; 5821 mddev->delta_disks = 0; 5822 mddev->reshape_backwards = 0; 5823 mddev->new_level = LEVEL_NONE; 5824 mddev->new_layout = 0; 5825 mddev->new_chunk_sectors = 0; 5826 mddev->curr_resync = 0; 5827 atomic64_set(&mddev->resync_mismatches, 0); 5828 mddev->suspend_lo = mddev->suspend_hi = 0; 5829 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5830 mddev->recovery = 0; 5831 mddev->in_sync = 0; 5832 mddev->changed = 0; 5833 mddev->degraded = 0; 5834 mddev->safemode = 0; 5835 mddev->private = NULL; 5836 mddev->cluster_info = NULL; 5837 mddev->bitmap_info.offset = 0; 5838 mddev->bitmap_info.default_offset = 0; 5839 mddev->bitmap_info.default_space = 0; 5840 mddev->bitmap_info.chunksize = 0; 5841 mddev->bitmap_info.daemon_sleep = 0; 5842 mddev->bitmap_info.max_write_behind = 0; 5843 mddev->bitmap_info.nodes = 0; 5844 } 5845 5846 static void __md_stop_writes(struct mddev *mddev) 5847 { 5848 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5849 flush_workqueue(md_misc_wq); 5850 if (mddev->sync_thread) { 5851 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5852 md_reap_sync_thread(mddev); 5853 } 5854 5855 del_timer_sync(&mddev->safemode_timer); 5856 5857 if (mddev->pers && mddev->pers->quiesce) { 5858 mddev->pers->quiesce(mddev, 1); 5859 mddev->pers->quiesce(mddev, 0); 5860 } 5861 md_bitmap_flush(mddev); 5862 5863 if (mddev->ro == 0 && 5864 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5865 mddev->sb_flags)) { 5866 /* mark array as shutdown cleanly */ 5867 if (!mddev_is_clustered(mddev)) 5868 mddev->in_sync = 1; 5869 md_update_sb(mddev, 1); 5870 } 5871 } 5872 5873 void md_stop_writes(struct mddev *mddev) 5874 { 5875 mddev_lock_nointr(mddev); 5876 __md_stop_writes(mddev); 5877 mddev_unlock(mddev); 5878 } 5879 EXPORT_SYMBOL_GPL(md_stop_writes); 5880 5881 static void mddev_detach(struct mddev *mddev) 5882 { 5883 md_bitmap_wait_behind_writes(mddev); 5884 if (mddev->pers && mddev->pers->quiesce) { 5885 mddev->pers->quiesce(mddev, 1); 5886 mddev->pers->quiesce(mddev, 0); 5887 } 5888 md_unregister_thread(&mddev->thread); 5889 if (mddev->queue) 5890 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5891 } 5892 5893 static void __md_stop(struct mddev *mddev) 5894 { 5895 struct md_personality *pers = mddev->pers; 5896 md_bitmap_destroy(mddev); 5897 mddev_detach(mddev); 5898 /* Ensure ->event_work is done */ 5899 flush_workqueue(md_misc_wq); 5900 spin_lock(&mddev->lock); 5901 mddev->pers = NULL; 5902 spin_unlock(&mddev->lock); 5903 pers->free(mddev, mddev->private); 5904 mddev->private = NULL; 5905 if (pers->sync_request && mddev->to_remove == NULL) 5906 mddev->to_remove = &md_redundancy_group; 5907 module_put(pers->owner); 5908 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5909 if (mddev->flush_bio_pool) { 5910 mempool_destroy(mddev->flush_bio_pool); 5911 mddev->flush_bio_pool = NULL; 5912 } 5913 if (mddev->flush_pool) { 5914 mempool_destroy(mddev->flush_pool); 5915 mddev->flush_pool = NULL; 5916 } 5917 } 5918 5919 void md_stop(struct mddev *mddev) 5920 { 5921 /* stop the array and free an attached data structures. 5922 * This is called from dm-raid 5923 */ 5924 __md_stop(mddev); 5925 bioset_exit(&mddev->bio_set); 5926 bioset_exit(&mddev->sync_set); 5927 } 5928 5929 EXPORT_SYMBOL_GPL(md_stop); 5930 5931 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5932 { 5933 int err = 0; 5934 int did_freeze = 0; 5935 5936 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5937 did_freeze = 1; 5938 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5939 md_wakeup_thread(mddev->thread); 5940 } 5941 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5942 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5943 if (mddev->sync_thread) 5944 /* Thread might be blocked waiting for metadata update 5945 * which will now never happen */ 5946 wake_up_process(mddev->sync_thread->tsk); 5947 5948 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5949 return -EBUSY; 5950 mddev_unlock(mddev); 5951 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5952 &mddev->recovery)); 5953 wait_event(mddev->sb_wait, 5954 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5955 mddev_lock_nointr(mddev); 5956 5957 mutex_lock(&mddev->open_mutex); 5958 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5959 mddev->sync_thread || 5960 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5961 pr_warn("md: %s still in use.\n",mdname(mddev)); 5962 if (did_freeze) { 5963 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5964 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5965 md_wakeup_thread(mddev->thread); 5966 } 5967 err = -EBUSY; 5968 goto out; 5969 } 5970 if (mddev->pers) { 5971 __md_stop_writes(mddev); 5972 5973 err = -ENXIO; 5974 if (mddev->ro==1) 5975 goto out; 5976 mddev->ro = 1; 5977 set_disk_ro(mddev->gendisk, 1); 5978 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5980 md_wakeup_thread(mddev->thread); 5981 sysfs_notify_dirent_safe(mddev->sysfs_state); 5982 err = 0; 5983 } 5984 out: 5985 mutex_unlock(&mddev->open_mutex); 5986 return err; 5987 } 5988 5989 /* mode: 5990 * 0 - completely stop and dis-assemble array 5991 * 2 - stop but do not disassemble array 5992 */ 5993 static int do_md_stop(struct mddev *mddev, int mode, 5994 struct block_device *bdev) 5995 { 5996 struct gendisk *disk = mddev->gendisk; 5997 struct md_rdev *rdev; 5998 int did_freeze = 0; 5999 6000 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6001 did_freeze = 1; 6002 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6003 md_wakeup_thread(mddev->thread); 6004 } 6005 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6006 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6007 if (mddev->sync_thread) 6008 /* Thread might be blocked waiting for metadata update 6009 * which will now never happen */ 6010 wake_up_process(mddev->sync_thread->tsk); 6011 6012 mddev_unlock(mddev); 6013 wait_event(resync_wait, (mddev->sync_thread == NULL && 6014 !test_bit(MD_RECOVERY_RUNNING, 6015 &mddev->recovery))); 6016 mddev_lock_nointr(mddev); 6017 6018 mutex_lock(&mddev->open_mutex); 6019 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6020 mddev->sysfs_active || 6021 mddev->sync_thread || 6022 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6023 pr_warn("md: %s still in use.\n",mdname(mddev)); 6024 mutex_unlock(&mddev->open_mutex); 6025 if (did_freeze) { 6026 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6028 md_wakeup_thread(mddev->thread); 6029 } 6030 return -EBUSY; 6031 } 6032 if (mddev->pers) { 6033 if (mddev->ro) 6034 set_disk_ro(disk, 0); 6035 6036 __md_stop_writes(mddev); 6037 __md_stop(mddev); 6038 mddev->queue->backing_dev_info->congested_fn = NULL; 6039 6040 /* tell userspace to handle 'inactive' */ 6041 sysfs_notify_dirent_safe(mddev->sysfs_state); 6042 6043 rdev_for_each(rdev, mddev) 6044 if (rdev->raid_disk >= 0) 6045 sysfs_unlink_rdev(mddev, rdev); 6046 6047 set_capacity(disk, 0); 6048 mutex_unlock(&mddev->open_mutex); 6049 mddev->changed = 1; 6050 revalidate_disk(disk); 6051 6052 if (mddev->ro) 6053 mddev->ro = 0; 6054 } else 6055 mutex_unlock(&mddev->open_mutex); 6056 /* 6057 * Free resources if final stop 6058 */ 6059 if (mode == 0) { 6060 pr_info("md: %s stopped.\n", mdname(mddev)); 6061 6062 if (mddev->bitmap_info.file) { 6063 struct file *f = mddev->bitmap_info.file; 6064 spin_lock(&mddev->lock); 6065 mddev->bitmap_info.file = NULL; 6066 spin_unlock(&mddev->lock); 6067 fput(f); 6068 } 6069 mddev->bitmap_info.offset = 0; 6070 6071 export_array(mddev); 6072 6073 md_clean(mddev); 6074 if (mddev->hold_active == UNTIL_STOP) 6075 mddev->hold_active = 0; 6076 } 6077 md_new_event(mddev); 6078 sysfs_notify_dirent_safe(mddev->sysfs_state); 6079 return 0; 6080 } 6081 6082 #ifndef MODULE 6083 static void autorun_array(struct mddev *mddev) 6084 { 6085 struct md_rdev *rdev; 6086 int err; 6087 6088 if (list_empty(&mddev->disks)) 6089 return; 6090 6091 pr_info("md: running: "); 6092 6093 rdev_for_each(rdev, mddev) { 6094 char b[BDEVNAME_SIZE]; 6095 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6096 } 6097 pr_cont("\n"); 6098 6099 err = do_md_run(mddev); 6100 if (err) { 6101 pr_warn("md: do_md_run() returned %d\n", err); 6102 do_md_stop(mddev, 0, NULL); 6103 } 6104 } 6105 6106 /* 6107 * lets try to run arrays based on all disks that have arrived 6108 * until now. (those are in pending_raid_disks) 6109 * 6110 * the method: pick the first pending disk, collect all disks with 6111 * the same UUID, remove all from the pending list and put them into 6112 * the 'same_array' list. Then order this list based on superblock 6113 * update time (freshest comes first), kick out 'old' disks and 6114 * compare superblocks. If everything's fine then run it. 6115 * 6116 * If "unit" is allocated, then bump its reference count 6117 */ 6118 static void autorun_devices(int part) 6119 { 6120 struct md_rdev *rdev0, *rdev, *tmp; 6121 struct mddev *mddev; 6122 char b[BDEVNAME_SIZE]; 6123 6124 pr_info("md: autorun ...\n"); 6125 while (!list_empty(&pending_raid_disks)) { 6126 int unit; 6127 dev_t dev; 6128 LIST_HEAD(candidates); 6129 rdev0 = list_entry(pending_raid_disks.next, 6130 struct md_rdev, same_set); 6131 6132 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6133 INIT_LIST_HEAD(&candidates); 6134 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6135 if (super_90_load(rdev, rdev0, 0) >= 0) { 6136 pr_debug("md: adding %s ...\n", 6137 bdevname(rdev->bdev,b)); 6138 list_move(&rdev->same_set, &candidates); 6139 } 6140 /* 6141 * now we have a set of devices, with all of them having 6142 * mostly sane superblocks. It's time to allocate the 6143 * mddev. 6144 */ 6145 if (part) { 6146 dev = MKDEV(mdp_major, 6147 rdev0->preferred_minor << MdpMinorShift); 6148 unit = MINOR(dev) >> MdpMinorShift; 6149 } else { 6150 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6151 unit = MINOR(dev); 6152 } 6153 if (rdev0->preferred_minor != unit) { 6154 pr_warn("md: unit number in %s is bad: %d\n", 6155 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6156 break; 6157 } 6158 6159 md_probe(dev, NULL, NULL); 6160 mddev = mddev_find(dev); 6161 if (!mddev || !mddev->gendisk) { 6162 if (mddev) 6163 mddev_put(mddev); 6164 break; 6165 } 6166 if (mddev_lock(mddev)) 6167 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6168 else if (mddev->raid_disks || mddev->major_version 6169 || !list_empty(&mddev->disks)) { 6170 pr_warn("md: %s already running, cannot run %s\n", 6171 mdname(mddev), bdevname(rdev0->bdev,b)); 6172 mddev_unlock(mddev); 6173 } else { 6174 pr_debug("md: created %s\n", mdname(mddev)); 6175 mddev->persistent = 1; 6176 rdev_for_each_list(rdev, tmp, &candidates) { 6177 list_del_init(&rdev->same_set); 6178 if (bind_rdev_to_array(rdev, mddev)) 6179 export_rdev(rdev); 6180 } 6181 autorun_array(mddev); 6182 mddev_unlock(mddev); 6183 } 6184 /* on success, candidates will be empty, on error 6185 * it won't... 6186 */ 6187 rdev_for_each_list(rdev, tmp, &candidates) { 6188 list_del_init(&rdev->same_set); 6189 export_rdev(rdev); 6190 } 6191 mddev_put(mddev); 6192 } 6193 pr_info("md: ... autorun DONE.\n"); 6194 } 6195 #endif /* !MODULE */ 6196 6197 static int get_version(void __user *arg) 6198 { 6199 mdu_version_t ver; 6200 6201 ver.major = MD_MAJOR_VERSION; 6202 ver.minor = MD_MINOR_VERSION; 6203 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6204 6205 if (copy_to_user(arg, &ver, sizeof(ver))) 6206 return -EFAULT; 6207 6208 return 0; 6209 } 6210 6211 static int get_array_info(struct mddev *mddev, void __user *arg) 6212 { 6213 mdu_array_info_t info; 6214 int nr,working,insync,failed,spare; 6215 struct md_rdev *rdev; 6216 6217 nr = working = insync = failed = spare = 0; 6218 rcu_read_lock(); 6219 rdev_for_each_rcu(rdev, mddev) { 6220 nr++; 6221 if (test_bit(Faulty, &rdev->flags)) 6222 failed++; 6223 else { 6224 working++; 6225 if (test_bit(In_sync, &rdev->flags)) 6226 insync++; 6227 else if (test_bit(Journal, &rdev->flags)) 6228 /* TODO: add journal count to md_u.h */ 6229 ; 6230 else 6231 spare++; 6232 } 6233 } 6234 rcu_read_unlock(); 6235 6236 info.major_version = mddev->major_version; 6237 info.minor_version = mddev->minor_version; 6238 info.patch_version = MD_PATCHLEVEL_VERSION; 6239 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6240 info.level = mddev->level; 6241 info.size = mddev->dev_sectors / 2; 6242 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6243 info.size = -1; 6244 info.nr_disks = nr; 6245 info.raid_disks = mddev->raid_disks; 6246 info.md_minor = mddev->md_minor; 6247 info.not_persistent= !mddev->persistent; 6248 6249 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6250 info.state = 0; 6251 if (mddev->in_sync) 6252 info.state = (1<<MD_SB_CLEAN); 6253 if (mddev->bitmap && mddev->bitmap_info.offset) 6254 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6255 if (mddev_is_clustered(mddev)) 6256 info.state |= (1<<MD_SB_CLUSTERED); 6257 info.active_disks = insync; 6258 info.working_disks = working; 6259 info.failed_disks = failed; 6260 info.spare_disks = spare; 6261 6262 info.layout = mddev->layout; 6263 info.chunk_size = mddev->chunk_sectors << 9; 6264 6265 if (copy_to_user(arg, &info, sizeof(info))) 6266 return -EFAULT; 6267 6268 return 0; 6269 } 6270 6271 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6272 { 6273 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6274 char *ptr; 6275 int err; 6276 6277 file = kzalloc(sizeof(*file), GFP_NOIO); 6278 if (!file) 6279 return -ENOMEM; 6280 6281 err = 0; 6282 spin_lock(&mddev->lock); 6283 /* bitmap enabled */ 6284 if (mddev->bitmap_info.file) { 6285 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6286 sizeof(file->pathname)); 6287 if (IS_ERR(ptr)) 6288 err = PTR_ERR(ptr); 6289 else 6290 memmove(file->pathname, ptr, 6291 sizeof(file->pathname)-(ptr-file->pathname)); 6292 } 6293 spin_unlock(&mddev->lock); 6294 6295 if (err == 0 && 6296 copy_to_user(arg, file, sizeof(*file))) 6297 err = -EFAULT; 6298 6299 kfree(file); 6300 return err; 6301 } 6302 6303 static int get_disk_info(struct mddev *mddev, void __user * arg) 6304 { 6305 mdu_disk_info_t info; 6306 struct md_rdev *rdev; 6307 6308 if (copy_from_user(&info, arg, sizeof(info))) 6309 return -EFAULT; 6310 6311 rcu_read_lock(); 6312 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6313 if (rdev) { 6314 info.major = MAJOR(rdev->bdev->bd_dev); 6315 info.minor = MINOR(rdev->bdev->bd_dev); 6316 info.raid_disk = rdev->raid_disk; 6317 info.state = 0; 6318 if (test_bit(Faulty, &rdev->flags)) 6319 info.state |= (1<<MD_DISK_FAULTY); 6320 else if (test_bit(In_sync, &rdev->flags)) { 6321 info.state |= (1<<MD_DISK_ACTIVE); 6322 info.state |= (1<<MD_DISK_SYNC); 6323 } 6324 if (test_bit(Journal, &rdev->flags)) 6325 info.state |= (1<<MD_DISK_JOURNAL); 6326 if (test_bit(WriteMostly, &rdev->flags)) 6327 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6328 if (test_bit(FailFast, &rdev->flags)) 6329 info.state |= (1<<MD_DISK_FAILFAST); 6330 } else { 6331 info.major = info.minor = 0; 6332 info.raid_disk = -1; 6333 info.state = (1<<MD_DISK_REMOVED); 6334 } 6335 rcu_read_unlock(); 6336 6337 if (copy_to_user(arg, &info, sizeof(info))) 6338 return -EFAULT; 6339 6340 return 0; 6341 } 6342 6343 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6344 { 6345 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6346 struct md_rdev *rdev; 6347 dev_t dev = MKDEV(info->major,info->minor); 6348 6349 if (mddev_is_clustered(mddev) && 6350 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6351 pr_warn("%s: Cannot add to clustered mddev.\n", 6352 mdname(mddev)); 6353 return -EINVAL; 6354 } 6355 6356 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6357 return -EOVERFLOW; 6358 6359 if (!mddev->raid_disks) { 6360 int err; 6361 /* expecting a device which has a superblock */ 6362 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6363 if (IS_ERR(rdev)) { 6364 pr_warn("md: md_import_device returned %ld\n", 6365 PTR_ERR(rdev)); 6366 return PTR_ERR(rdev); 6367 } 6368 if (!list_empty(&mddev->disks)) { 6369 struct md_rdev *rdev0 6370 = list_entry(mddev->disks.next, 6371 struct md_rdev, same_set); 6372 err = super_types[mddev->major_version] 6373 .load_super(rdev, rdev0, mddev->minor_version); 6374 if (err < 0) { 6375 pr_warn("md: %s has different UUID to %s\n", 6376 bdevname(rdev->bdev,b), 6377 bdevname(rdev0->bdev,b2)); 6378 export_rdev(rdev); 6379 return -EINVAL; 6380 } 6381 } 6382 err = bind_rdev_to_array(rdev, mddev); 6383 if (err) 6384 export_rdev(rdev); 6385 return err; 6386 } 6387 6388 /* 6389 * add_new_disk can be used once the array is assembled 6390 * to add "hot spares". They must already have a superblock 6391 * written 6392 */ 6393 if (mddev->pers) { 6394 int err; 6395 if (!mddev->pers->hot_add_disk) { 6396 pr_warn("%s: personality does not support diskops!\n", 6397 mdname(mddev)); 6398 return -EINVAL; 6399 } 6400 if (mddev->persistent) 6401 rdev = md_import_device(dev, mddev->major_version, 6402 mddev->minor_version); 6403 else 6404 rdev = md_import_device(dev, -1, -1); 6405 if (IS_ERR(rdev)) { 6406 pr_warn("md: md_import_device returned %ld\n", 6407 PTR_ERR(rdev)); 6408 return PTR_ERR(rdev); 6409 } 6410 /* set saved_raid_disk if appropriate */ 6411 if (!mddev->persistent) { 6412 if (info->state & (1<<MD_DISK_SYNC) && 6413 info->raid_disk < mddev->raid_disks) { 6414 rdev->raid_disk = info->raid_disk; 6415 set_bit(In_sync, &rdev->flags); 6416 clear_bit(Bitmap_sync, &rdev->flags); 6417 } else 6418 rdev->raid_disk = -1; 6419 rdev->saved_raid_disk = rdev->raid_disk; 6420 } else 6421 super_types[mddev->major_version]. 6422 validate_super(mddev, rdev); 6423 if ((info->state & (1<<MD_DISK_SYNC)) && 6424 rdev->raid_disk != info->raid_disk) { 6425 /* This was a hot-add request, but events doesn't 6426 * match, so reject it. 6427 */ 6428 export_rdev(rdev); 6429 return -EINVAL; 6430 } 6431 6432 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6433 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6434 set_bit(WriteMostly, &rdev->flags); 6435 else 6436 clear_bit(WriteMostly, &rdev->flags); 6437 if (info->state & (1<<MD_DISK_FAILFAST)) 6438 set_bit(FailFast, &rdev->flags); 6439 else 6440 clear_bit(FailFast, &rdev->flags); 6441 6442 if (info->state & (1<<MD_DISK_JOURNAL)) { 6443 struct md_rdev *rdev2; 6444 bool has_journal = false; 6445 6446 /* make sure no existing journal disk */ 6447 rdev_for_each(rdev2, mddev) { 6448 if (test_bit(Journal, &rdev2->flags)) { 6449 has_journal = true; 6450 break; 6451 } 6452 } 6453 if (has_journal || mddev->bitmap) { 6454 export_rdev(rdev); 6455 return -EBUSY; 6456 } 6457 set_bit(Journal, &rdev->flags); 6458 } 6459 /* 6460 * check whether the device shows up in other nodes 6461 */ 6462 if (mddev_is_clustered(mddev)) { 6463 if (info->state & (1 << MD_DISK_CANDIDATE)) 6464 set_bit(Candidate, &rdev->flags); 6465 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6466 /* --add initiated by this node */ 6467 err = md_cluster_ops->add_new_disk(mddev, rdev); 6468 if (err) { 6469 export_rdev(rdev); 6470 return err; 6471 } 6472 } 6473 } 6474 6475 rdev->raid_disk = -1; 6476 err = bind_rdev_to_array(rdev, mddev); 6477 6478 if (err) 6479 export_rdev(rdev); 6480 6481 if (mddev_is_clustered(mddev)) { 6482 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6483 if (!err) { 6484 err = md_cluster_ops->new_disk_ack(mddev, 6485 err == 0); 6486 if (err) 6487 md_kick_rdev_from_array(rdev); 6488 } 6489 } else { 6490 if (err) 6491 md_cluster_ops->add_new_disk_cancel(mddev); 6492 else 6493 err = add_bound_rdev(rdev); 6494 } 6495 6496 } else if (!err) 6497 err = add_bound_rdev(rdev); 6498 6499 return err; 6500 } 6501 6502 /* otherwise, add_new_disk is only allowed 6503 * for major_version==0 superblocks 6504 */ 6505 if (mddev->major_version != 0) { 6506 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6507 return -EINVAL; 6508 } 6509 6510 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6511 int err; 6512 rdev = md_import_device(dev, -1, 0); 6513 if (IS_ERR(rdev)) { 6514 pr_warn("md: error, md_import_device() returned %ld\n", 6515 PTR_ERR(rdev)); 6516 return PTR_ERR(rdev); 6517 } 6518 rdev->desc_nr = info->number; 6519 if (info->raid_disk < mddev->raid_disks) 6520 rdev->raid_disk = info->raid_disk; 6521 else 6522 rdev->raid_disk = -1; 6523 6524 if (rdev->raid_disk < mddev->raid_disks) 6525 if (info->state & (1<<MD_DISK_SYNC)) 6526 set_bit(In_sync, &rdev->flags); 6527 6528 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6529 set_bit(WriteMostly, &rdev->flags); 6530 if (info->state & (1<<MD_DISK_FAILFAST)) 6531 set_bit(FailFast, &rdev->flags); 6532 6533 if (!mddev->persistent) { 6534 pr_debug("md: nonpersistent superblock ...\n"); 6535 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6536 } else 6537 rdev->sb_start = calc_dev_sboffset(rdev); 6538 rdev->sectors = rdev->sb_start; 6539 6540 err = bind_rdev_to_array(rdev, mddev); 6541 if (err) { 6542 export_rdev(rdev); 6543 return err; 6544 } 6545 } 6546 6547 return 0; 6548 } 6549 6550 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6551 { 6552 char b[BDEVNAME_SIZE]; 6553 struct md_rdev *rdev; 6554 6555 if (!mddev->pers) 6556 return -ENODEV; 6557 6558 rdev = find_rdev(mddev, dev); 6559 if (!rdev) 6560 return -ENXIO; 6561 6562 if (rdev->raid_disk < 0) 6563 goto kick_rdev; 6564 6565 clear_bit(Blocked, &rdev->flags); 6566 remove_and_add_spares(mddev, rdev); 6567 6568 if (rdev->raid_disk >= 0) 6569 goto busy; 6570 6571 kick_rdev: 6572 if (mddev_is_clustered(mddev)) 6573 md_cluster_ops->remove_disk(mddev, rdev); 6574 6575 md_kick_rdev_from_array(rdev); 6576 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6577 if (mddev->thread) 6578 md_wakeup_thread(mddev->thread); 6579 else 6580 md_update_sb(mddev, 1); 6581 md_new_event(mddev); 6582 6583 return 0; 6584 busy: 6585 pr_debug("md: cannot remove active disk %s from %s ...\n", 6586 bdevname(rdev->bdev,b), mdname(mddev)); 6587 return -EBUSY; 6588 } 6589 6590 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6591 { 6592 char b[BDEVNAME_SIZE]; 6593 int err; 6594 struct md_rdev *rdev; 6595 6596 if (!mddev->pers) 6597 return -ENODEV; 6598 6599 if (mddev->major_version != 0) { 6600 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6601 mdname(mddev)); 6602 return -EINVAL; 6603 } 6604 if (!mddev->pers->hot_add_disk) { 6605 pr_warn("%s: personality does not support diskops!\n", 6606 mdname(mddev)); 6607 return -EINVAL; 6608 } 6609 6610 rdev = md_import_device(dev, -1, 0); 6611 if (IS_ERR(rdev)) { 6612 pr_warn("md: error, md_import_device() returned %ld\n", 6613 PTR_ERR(rdev)); 6614 return -EINVAL; 6615 } 6616 6617 if (mddev->persistent) 6618 rdev->sb_start = calc_dev_sboffset(rdev); 6619 else 6620 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6621 6622 rdev->sectors = rdev->sb_start; 6623 6624 if (test_bit(Faulty, &rdev->flags)) { 6625 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6626 bdevname(rdev->bdev,b), mdname(mddev)); 6627 err = -EINVAL; 6628 goto abort_export; 6629 } 6630 6631 clear_bit(In_sync, &rdev->flags); 6632 rdev->desc_nr = -1; 6633 rdev->saved_raid_disk = -1; 6634 err = bind_rdev_to_array(rdev, mddev); 6635 if (err) 6636 goto abort_export; 6637 6638 /* 6639 * The rest should better be atomic, we can have disk failures 6640 * noticed in interrupt contexts ... 6641 */ 6642 6643 rdev->raid_disk = -1; 6644 6645 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6646 if (!mddev->thread) 6647 md_update_sb(mddev, 1); 6648 /* 6649 * Kick recovery, maybe this spare has to be added to the 6650 * array immediately. 6651 */ 6652 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6653 md_wakeup_thread(mddev->thread); 6654 md_new_event(mddev); 6655 return 0; 6656 6657 abort_export: 6658 export_rdev(rdev); 6659 return err; 6660 } 6661 6662 static int set_bitmap_file(struct mddev *mddev, int fd) 6663 { 6664 int err = 0; 6665 6666 if (mddev->pers) { 6667 if (!mddev->pers->quiesce || !mddev->thread) 6668 return -EBUSY; 6669 if (mddev->recovery || mddev->sync_thread) 6670 return -EBUSY; 6671 /* we should be able to change the bitmap.. */ 6672 } 6673 6674 if (fd >= 0) { 6675 struct inode *inode; 6676 struct file *f; 6677 6678 if (mddev->bitmap || mddev->bitmap_info.file) 6679 return -EEXIST; /* cannot add when bitmap is present */ 6680 f = fget(fd); 6681 6682 if (f == NULL) { 6683 pr_warn("%s: error: failed to get bitmap file\n", 6684 mdname(mddev)); 6685 return -EBADF; 6686 } 6687 6688 inode = f->f_mapping->host; 6689 if (!S_ISREG(inode->i_mode)) { 6690 pr_warn("%s: error: bitmap file must be a regular file\n", 6691 mdname(mddev)); 6692 err = -EBADF; 6693 } else if (!(f->f_mode & FMODE_WRITE)) { 6694 pr_warn("%s: error: bitmap file must open for write\n", 6695 mdname(mddev)); 6696 err = -EBADF; 6697 } else if (atomic_read(&inode->i_writecount) != 1) { 6698 pr_warn("%s: error: bitmap file is already in use\n", 6699 mdname(mddev)); 6700 err = -EBUSY; 6701 } 6702 if (err) { 6703 fput(f); 6704 return err; 6705 } 6706 mddev->bitmap_info.file = f; 6707 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6708 } else if (mddev->bitmap == NULL) 6709 return -ENOENT; /* cannot remove what isn't there */ 6710 err = 0; 6711 if (mddev->pers) { 6712 if (fd >= 0) { 6713 struct bitmap *bitmap; 6714 6715 bitmap = md_bitmap_create(mddev, -1); 6716 mddev_suspend(mddev); 6717 if (!IS_ERR(bitmap)) { 6718 mddev->bitmap = bitmap; 6719 err = md_bitmap_load(mddev); 6720 } else 6721 err = PTR_ERR(bitmap); 6722 if (err) { 6723 md_bitmap_destroy(mddev); 6724 fd = -1; 6725 } 6726 mddev_resume(mddev); 6727 } else if (fd < 0) { 6728 mddev_suspend(mddev); 6729 md_bitmap_destroy(mddev); 6730 mddev_resume(mddev); 6731 } 6732 } 6733 if (fd < 0) { 6734 struct file *f = mddev->bitmap_info.file; 6735 if (f) { 6736 spin_lock(&mddev->lock); 6737 mddev->bitmap_info.file = NULL; 6738 spin_unlock(&mddev->lock); 6739 fput(f); 6740 } 6741 } 6742 6743 return err; 6744 } 6745 6746 /* 6747 * set_array_info is used two different ways 6748 * The original usage is when creating a new array. 6749 * In this usage, raid_disks is > 0 and it together with 6750 * level, size, not_persistent,layout,chunksize determine the 6751 * shape of the array. 6752 * This will always create an array with a type-0.90.0 superblock. 6753 * The newer usage is when assembling an array. 6754 * In this case raid_disks will be 0, and the major_version field is 6755 * use to determine which style super-blocks are to be found on the devices. 6756 * The minor and patch _version numbers are also kept incase the 6757 * super_block handler wishes to interpret them. 6758 */ 6759 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6760 { 6761 6762 if (info->raid_disks == 0) { 6763 /* just setting version number for superblock loading */ 6764 if (info->major_version < 0 || 6765 info->major_version >= ARRAY_SIZE(super_types) || 6766 super_types[info->major_version].name == NULL) { 6767 /* maybe try to auto-load a module? */ 6768 pr_warn("md: superblock version %d not known\n", 6769 info->major_version); 6770 return -EINVAL; 6771 } 6772 mddev->major_version = info->major_version; 6773 mddev->minor_version = info->minor_version; 6774 mddev->patch_version = info->patch_version; 6775 mddev->persistent = !info->not_persistent; 6776 /* ensure mddev_put doesn't delete this now that there 6777 * is some minimal configuration. 6778 */ 6779 mddev->ctime = ktime_get_real_seconds(); 6780 return 0; 6781 } 6782 mddev->major_version = MD_MAJOR_VERSION; 6783 mddev->minor_version = MD_MINOR_VERSION; 6784 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6785 mddev->ctime = ktime_get_real_seconds(); 6786 6787 mddev->level = info->level; 6788 mddev->clevel[0] = 0; 6789 mddev->dev_sectors = 2 * (sector_t)info->size; 6790 mddev->raid_disks = info->raid_disks; 6791 /* don't set md_minor, it is determined by which /dev/md* was 6792 * openned 6793 */ 6794 if (info->state & (1<<MD_SB_CLEAN)) 6795 mddev->recovery_cp = MaxSector; 6796 else 6797 mddev->recovery_cp = 0; 6798 mddev->persistent = ! info->not_persistent; 6799 mddev->external = 0; 6800 6801 mddev->layout = info->layout; 6802 mddev->chunk_sectors = info->chunk_size >> 9; 6803 6804 if (mddev->persistent) { 6805 mddev->max_disks = MD_SB_DISKS; 6806 mddev->flags = 0; 6807 mddev->sb_flags = 0; 6808 } 6809 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6810 6811 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6812 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6813 mddev->bitmap_info.offset = 0; 6814 6815 mddev->reshape_position = MaxSector; 6816 6817 /* 6818 * Generate a 128 bit UUID 6819 */ 6820 get_random_bytes(mddev->uuid, 16); 6821 6822 mddev->new_level = mddev->level; 6823 mddev->new_chunk_sectors = mddev->chunk_sectors; 6824 mddev->new_layout = mddev->layout; 6825 mddev->delta_disks = 0; 6826 mddev->reshape_backwards = 0; 6827 6828 return 0; 6829 } 6830 6831 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6832 { 6833 lockdep_assert_held(&mddev->reconfig_mutex); 6834 6835 if (mddev->external_size) 6836 return; 6837 6838 mddev->array_sectors = array_sectors; 6839 } 6840 EXPORT_SYMBOL(md_set_array_sectors); 6841 6842 static int update_size(struct mddev *mddev, sector_t num_sectors) 6843 { 6844 struct md_rdev *rdev; 6845 int rv; 6846 int fit = (num_sectors == 0); 6847 sector_t old_dev_sectors = mddev->dev_sectors; 6848 6849 if (mddev->pers->resize == NULL) 6850 return -EINVAL; 6851 /* The "num_sectors" is the number of sectors of each device that 6852 * is used. This can only make sense for arrays with redundancy. 6853 * linear and raid0 always use whatever space is available. We can only 6854 * consider changing this number if no resync or reconstruction is 6855 * happening, and if the new size is acceptable. It must fit before the 6856 * sb_start or, if that is <data_offset, it must fit before the size 6857 * of each device. If num_sectors is zero, we find the largest size 6858 * that fits. 6859 */ 6860 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6861 mddev->sync_thread) 6862 return -EBUSY; 6863 if (mddev->ro) 6864 return -EROFS; 6865 6866 rdev_for_each(rdev, mddev) { 6867 sector_t avail = rdev->sectors; 6868 6869 if (fit && (num_sectors == 0 || num_sectors > avail)) 6870 num_sectors = avail; 6871 if (avail < num_sectors) 6872 return -ENOSPC; 6873 } 6874 rv = mddev->pers->resize(mddev, num_sectors); 6875 if (!rv) { 6876 if (mddev_is_clustered(mddev)) 6877 md_cluster_ops->update_size(mddev, old_dev_sectors); 6878 else if (mddev->queue) { 6879 set_capacity(mddev->gendisk, mddev->array_sectors); 6880 revalidate_disk(mddev->gendisk); 6881 } 6882 } 6883 return rv; 6884 } 6885 6886 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6887 { 6888 int rv; 6889 struct md_rdev *rdev; 6890 /* change the number of raid disks */ 6891 if (mddev->pers->check_reshape == NULL) 6892 return -EINVAL; 6893 if (mddev->ro) 6894 return -EROFS; 6895 if (raid_disks <= 0 || 6896 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6897 return -EINVAL; 6898 if (mddev->sync_thread || 6899 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6900 mddev->reshape_position != MaxSector) 6901 return -EBUSY; 6902 6903 rdev_for_each(rdev, mddev) { 6904 if (mddev->raid_disks < raid_disks && 6905 rdev->data_offset < rdev->new_data_offset) 6906 return -EINVAL; 6907 if (mddev->raid_disks > raid_disks && 6908 rdev->data_offset > rdev->new_data_offset) 6909 return -EINVAL; 6910 } 6911 6912 mddev->delta_disks = raid_disks - mddev->raid_disks; 6913 if (mddev->delta_disks < 0) 6914 mddev->reshape_backwards = 1; 6915 else if (mddev->delta_disks > 0) 6916 mddev->reshape_backwards = 0; 6917 6918 rv = mddev->pers->check_reshape(mddev); 6919 if (rv < 0) { 6920 mddev->delta_disks = 0; 6921 mddev->reshape_backwards = 0; 6922 } 6923 return rv; 6924 } 6925 6926 /* 6927 * update_array_info is used to change the configuration of an 6928 * on-line array. 6929 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6930 * fields in the info are checked against the array. 6931 * Any differences that cannot be handled will cause an error. 6932 * Normally, only one change can be managed at a time. 6933 */ 6934 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6935 { 6936 int rv = 0; 6937 int cnt = 0; 6938 int state = 0; 6939 6940 /* calculate expected state,ignoring low bits */ 6941 if (mddev->bitmap && mddev->bitmap_info.offset) 6942 state |= (1 << MD_SB_BITMAP_PRESENT); 6943 6944 if (mddev->major_version != info->major_version || 6945 mddev->minor_version != info->minor_version || 6946 /* mddev->patch_version != info->patch_version || */ 6947 mddev->ctime != info->ctime || 6948 mddev->level != info->level || 6949 /* mddev->layout != info->layout || */ 6950 mddev->persistent != !info->not_persistent || 6951 mddev->chunk_sectors != info->chunk_size >> 9 || 6952 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6953 ((state^info->state) & 0xfffffe00) 6954 ) 6955 return -EINVAL; 6956 /* Check there is only one change */ 6957 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6958 cnt++; 6959 if (mddev->raid_disks != info->raid_disks) 6960 cnt++; 6961 if (mddev->layout != info->layout) 6962 cnt++; 6963 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6964 cnt++; 6965 if (cnt == 0) 6966 return 0; 6967 if (cnt > 1) 6968 return -EINVAL; 6969 6970 if (mddev->layout != info->layout) { 6971 /* Change layout 6972 * we don't need to do anything at the md level, the 6973 * personality will take care of it all. 6974 */ 6975 if (mddev->pers->check_reshape == NULL) 6976 return -EINVAL; 6977 else { 6978 mddev->new_layout = info->layout; 6979 rv = mddev->pers->check_reshape(mddev); 6980 if (rv) 6981 mddev->new_layout = mddev->layout; 6982 return rv; 6983 } 6984 } 6985 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6986 rv = update_size(mddev, (sector_t)info->size * 2); 6987 6988 if (mddev->raid_disks != info->raid_disks) 6989 rv = update_raid_disks(mddev, info->raid_disks); 6990 6991 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6992 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6993 rv = -EINVAL; 6994 goto err; 6995 } 6996 if (mddev->recovery || mddev->sync_thread) { 6997 rv = -EBUSY; 6998 goto err; 6999 } 7000 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7001 struct bitmap *bitmap; 7002 /* add the bitmap */ 7003 if (mddev->bitmap) { 7004 rv = -EEXIST; 7005 goto err; 7006 } 7007 if (mddev->bitmap_info.default_offset == 0) { 7008 rv = -EINVAL; 7009 goto err; 7010 } 7011 mddev->bitmap_info.offset = 7012 mddev->bitmap_info.default_offset; 7013 mddev->bitmap_info.space = 7014 mddev->bitmap_info.default_space; 7015 bitmap = md_bitmap_create(mddev, -1); 7016 mddev_suspend(mddev); 7017 if (!IS_ERR(bitmap)) { 7018 mddev->bitmap = bitmap; 7019 rv = md_bitmap_load(mddev); 7020 } else 7021 rv = PTR_ERR(bitmap); 7022 if (rv) 7023 md_bitmap_destroy(mddev); 7024 mddev_resume(mddev); 7025 } else { 7026 /* remove the bitmap */ 7027 if (!mddev->bitmap) { 7028 rv = -ENOENT; 7029 goto err; 7030 } 7031 if (mddev->bitmap->storage.file) { 7032 rv = -EINVAL; 7033 goto err; 7034 } 7035 if (mddev->bitmap_info.nodes) { 7036 /* hold PW on all the bitmap lock */ 7037 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7038 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7039 rv = -EPERM; 7040 md_cluster_ops->unlock_all_bitmaps(mddev); 7041 goto err; 7042 } 7043 7044 mddev->bitmap_info.nodes = 0; 7045 md_cluster_ops->leave(mddev); 7046 } 7047 mddev_suspend(mddev); 7048 md_bitmap_destroy(mddev); 7049 mddev_resume(mddev); 7050 mddev->bitmap_info.offset = 0; 7051 } 7052 } 7053 md_update_sb(mddev, 1); 7054 return rv; 7055 err: 7056 return rv; 7057 } 7058 7059 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7060 { 7061 struct md_rdev *rdev; 7062 int err = 0; 7063 7064 if (mddev->pers == NULL) 7065 return -ENODEV; 7066 7067 rcu_read_lock(); 7068 rdev = md_find_rdev_rcu(mddev, dev); 7069 if (!rdev) 7070 err = -ENODEV; 7071 else { 7072 md_error(mddev, rdev); 7073 if (!test_bit(Faulty, &rdev->flags)) 7074 err = -EBUSY; 7075 } 7076 rcu_read_unlock(); 7077 return err; 7078 } 7079 7080 /* 7081 * We have a problem here : there is no easy way to give a CHS 7082 * virtual geometry. We currently pretend that we have a 2 heads 7083 * 4 sectors (with a BIG number of cylinders...). This drives 7084 * dosfs just mad... ;-) 7085 */ 7086 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7087 { 7088 struct mddev *mddev = bdev->bd_disk->private_data; 7089 7090 geo->heads = 2; 7091 geo->sectors = 4; 7092 geo->cylinders = mddev->array_sectors / 8; 7093 return 0; 7094 } 7095 7096 static inline bool md_ioctl_valid(unsigned int cmd) 7097 { 7098 switch (cmd) { 7099 case ADD_NEW_DISK: 7100 case BLKROSET: 7101 case GET_ARRAY_INFO: 7102 case GET_BITMAP_FILE: 7103 case GET_DISK_INFO: 7104 case HOT_ADD_DISK: 7105 case HOT_REMOVE_DISK: 7106 case RAID_AUTORUN: 7107 case RAID_VERSION: 7108 case RESTART_ARRAY_RW: 7109 case RUN_ARRAY: 7110 case SET_ARRAY_INFO: 7111 case SET_BITMAP_FILE: 7112 case SET_DISK_FAULTY: 7113 case STOP_ARRAY: 7114 case STOP_ARRAY_RO: 7115 case CLUSTERED_DISK_NACK: 7116 return true; 7117 default: 7118 return false; 7119 } 7120 } 7121 7122 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7123 unsigned int cmd, unsigned long arg) 7124 { 7125 int err = 0; 7126 void __user *argp = (void __user *)arg; 7127 struct mddev *mddev = NULL; 7128 int ro; 7129 bool did_set_md_closing = false; 7130 7131 if (!md_ioctl_valid(cmd)) 7132 return -ENOTTY; 7133 7134 switch (cmd) { 7135 case RAID_VERSION: 7136 case GET_ARRAY_INFO: 7137 case GET_DISK_INFO: 7138 break; 7139 default: 7140 if (!capable(CAP_SYS_ADMIN)) 7141 return -EACCES; 7142 } 7143 7144 /* 7145 * Commands dealing with the RAID driver but not any 7146 * particular array: 7147 */ 7148 switch (cmd) { 7149 case RAID_VERSION: 7150 err = get_version(argp); 7151 goto out; 7152 7153 #ifndef MODULE 7154 case RAID_AUTORUN: 7155 err = 0; 7156 autostart_arrays(arg); 7157 goto out; 7158 #endif 7159 default:; 7160 } 7161 7162 /* 7163 * Commands creating/starting a new array: 7164 */ 7165 7166 mddev = bdev->bd_disk->private_data; 7167 7168 if (!mddev) { 7169 BUG(); 7170 goto out; 7171 } 7172 7173 /* Some actions do not requires the mutex */ 7174 switch (cmd) { 7175 case GET_ARRAY_INFO: 7176 if (!mddev->raid_disks && !mddev->external) 7177 err = -ENODEV; 7178 else 7179 err = get_array_info(mddev, argp); 7180 goto out; 7181 7182 case GET_DISK_INFO: 7183 if (!mddev->raid_disks && !mddev->external) 7184 err = -ENODEV; 7185 else 7186 err = get_disk_info(mddev, argp); 7187 goto out; 7188 7189 case SET_DISK_FAULTY: 7190 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7191 goto out; 7192 7193 case GET_BITMAP_FILE: 7194 err = get_bitmap_file(mddev, argp); 7195 goto out; 7196 7197 } 7198 7199 if (cmd == ADD_NEW_DISK) 7200 /* need to ensure md_delayed_delete() has completed */ 7201 flush_workqueue(md_misc_wq); 7202 7203 if (cmd == HOT_REMOVE_DISK) 7204 /* need to ensure recovery thread has run */ 7205 wait_event_interruptible_timeout(mddev->sb_wait, 7206 !test_bit(MD_RECOVERY_NEEDED, 7207 &mddev->recovery), 7208 msecs_to_jiffies(5000)); 7209 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7210 /* Need to flush page cache, and ensure no-one else opens 7211 * and writes 7212 */ 7213 mutex_lock(&mddev->open_mutex); 7214 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7215 mutex_unlock(&mddev->open_mutex); 7216 err = -EBUSY; 7217 goto out; 7218 } 7219 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7220 set_bit(MD_CLOSING, &mddev->flags); 7221 did_set_md_closing = true; 7222 mutex_unlock(&mddev->open_mutex); 7223 sync_blockdev(bdev); 7224 } 7225 err = mddev_lock(mddev); 7226 if (err) { 7227 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7228 err, cmd); 7229 goto out; 7230 } 7231 7232 if (cmd == SET_ARRAY_INFO) { 7233 mdu_array_info_t info; 7234 if (!arg) 7235 memset(&info, 0, sizeof(info)); 7236 else if (copy_from_user(&info, argp, sizeof(info))) { 7237 err = -EFAULT; 7238 goto unlock; 7239 } 7240 if (mddev->pers) { 7241 err = update_array_info(mddev, &info); 7242 if (err) { 7243 pr_warn("md: couldn't update array info. %d\n", err); 7244 goto unlock; 7245 } 7246 goto unlock; 7247 } 7248 if (!list_empty(&mddev->disks)) { 7249 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7250 err = -EBUSY; 7251 goto unlock; 7252 } 7253 if (mddev->raid_disks) { 7254 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7255 err = -EBUSY; 7256 goto unlock; 7257 } 7258 err = set_array_info(mddev, &info); 7259 if (err) { 7260 pr_warn("md: couldn't set array info. %d\n", err); 7261 goto unlock; 7262 } 7263 goto unlock; 7264 } 7265 7266 /* 7267 * Commands querying/configuring an existing array: 7268 */ 7269 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7270 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7271 if ((!mddev->raid_disks && !mddev->external) 7272 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7273 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7274 && cmd != GET_BITMAP_FILE) { 7275 err = -ENODEV; 7276 goto unlock; 7277 } 7278 7279 /* 7280 * Commands even a read-only array can execute: 7281 */ 7282 switch (cmd) { 7283 case RESTART_ARRAY_RW: 7284 err = restart_array(mddev); 7285 goto unlock; 7286 7287 case STOP_ARRAY: 7288 err = do_md_stop(mddev, 0, bdev); 7289 goto unlock; 7290 7291 case STOP_ARRAY_RO: 7292 err = md_set_readonly(mddev, bdev); 7293 goto unlock; 7294 7295 case HOT_REMOVE_DISK: 7296 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7297 goto unlock; 7298 7299 case ADD_NEW_DISK: 7300 /* We can support ADD_NEW_DISK on read-only arrays 7301 * only if we are re-adding a preexisting device. 7302 * So require mddev->pers and MD_DISK_SYNC. 7303 */ 7304 if (mddev->pers) { 7305 mdu_disk_info_t info; 7306 if (copy_from_user(&info, argp, sizeof(info))) 7307 err = -EFAULT; 7308 else if (!(info.state & (1<<MD_DISK_SYNC))) 7309 /* Need to clear read-only for this */ 7310 break; 7311 else 7312 err = add_new_disk(mddev, &info); 7313 goto unlock; 7314 } 7315 break; 7316 7317 case BLKROSET: 7318 if (get_user(ro, (int __user *)(arg))) { 7319 err = -EFAULT; 7320 goto unlock; 7321 } 7322 err = -EINVAL; 7323 7324 /* if the bdev is going readonly the value of mddev->ro 7325 * does not matter, no writes are coming 7326 */ 7327 if (ro) 7328 goto unlock; 7329 7330 /* are we are already prepared for writes? */ 7331 if (mddev->ro != 1) 7332 goto unlock; 7333 7334 /* transitioning to readauto need only happen for 7335 * arrays that call md_write_start 7336 */ 7337 if (mddev->pers) { 7338 err = restart_array(mddev); 7339 if (err == 0) { 7340 mddev->ro = 2; 7341 set_disk_ro(mddev->gendisk, 0); 7342 } 7343 } 7344 goto unlock; 7345 } 7346 7347 /* 7348 * The remaining ioctls are changing the state of the 7349 * superblock, so we do not allow them on read-only arrays. 7350 */ 7351 if (mddev->ro && mddev->pers) { 7352 if (mddev->ro == 2) { 7353 mddev->ro = 0; 7354 sysfs_notify_dirent_safe(mddev->sysfs_state); 7355 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7356 /* mddev_unlock will wake thread */ 7357 /* If a device failed while we were read-only, we 7358 * need to make sure the metadata is updated now. 7359 */ 7360 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7361 mddev_unlock(mddev); 7362 wait_event(mddev->sb_wait, 7363 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7364 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7365 mddev_lock_nointr(mddev); 7366 } 7367 } else { 7368 err = -EROFS; 7369 goto unlock; 7370 } 7371 } 7372 7373 switch (cmd) { 7374 case ADD_NEW_DISK: 7375 { 7376 mdu_disk_info_t info; 7377 if (copy_from_user(&info, argp, sizeof(info))) 7378 err = -EFAULT; 7379 else 7380 err = add_new_disk(mddev, &info); 7381 goto unlock; 7382 } 7383 7384 case CLUSTERED_DISK_NACK: 7385 if (mddev_is_clustered(mddev)) 7386 md_cluster_ops->new_disk_ack(mddev, false); 7387 else 7388 err = -EINVAL; 7389 goto unlock; 7390 7391 case HOT_ADD_DISK: 7392 err = hot_add_disk(mddev, new_decode_dev(arg)); 7393 goto unlock; 7394 7395 case RUN_ARRAY: 7396 err = do_md_run(mddev); 7397 goto unlock; 7398 7399 case SET_BITMAP_FILE: 7400 err = set_bitmap_file(mddev, (int)arg); 7401 goto unlock; 7402 7403 default: 7404 err = -EINVAL; 7405 goto unlock; 7406 } 7407 7408 unlock: 7409 if (mddev->hold_active == UNTIL_IOCTL && 7410 err != -EINVAL) 7411 mddev->hold_active = 0; 7412 mddev_unlock(mddev); 7413 out: 7414 if(did_set_md_closing) 7415 clear_bit(MD_CLOSING, &mddev->flags); 7416 return err; 7417 } 7418 #ifdef CONFIG_COMPAT 7419 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7420 unsigned int cmd, unsigned long arg) 7421 { 7422 switch (cmd) { 7423 case HOT_REMOVE_DISK: 7424 case HOT_ADD_DISK: 7425 case SET_DISK_FAULTY: 7426 case SET_BITMAP_FILE: 7427 /* These take in integer arg, do not convert */ 7428 break; 7429 default: 7430 arg = (unsigned long)compat_ptr(arg); 7431 break; 7432 } 7433 7434 return md_ioctl(bdev, mode, cmd, arg); 7435 } 7436 #endif /* CONFIG_COMPAT */ 7437 7438 static int md_open(struct block_device *bdev, fmode_t mode) 7439 { 7440 /* 7441 * Succeed if we can lock the mddev, which confirms that 7442 * it isn't being stopped right now. 7443 */ 7444 struct mddev *mddev = mddev_find(bdev->bd_dev); 7445 int err; 7446 7447 if (!mddev) 7448 return -ENODEV; 7449 7450 if (mddev->gendisk != bdev->bd_disk) { 7451 /* we are racing with mddev_put which is discarding this 7452 * bd_disk. 7453 */ 7454 mddev_put(mddev); 7455 /* Wait until bdev->bd_disk is definitely gone */ 7456 flush_workqueue(md_misc_wq); 7457 /* Then retry the open from the top */ 7458 return -ERESTARTSYS; 7459 } 7460 BUG_ON(mddev != bdev->bd_disk->private_data); 7461 7462 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7463 goto out; 7464 7465 if (test_bit(MD_CLOSING, &mddev->flags)) { 7466 mutex_unlock(&mddev->open_mutex); 7467 err = -ENODEV; 7468 goto out; 7469 } 7470 7471 err = 0; 7472 atomic_inc(&mddev->openers); 7473 mutex_unlock(&mddev->open_mutex); 7474 7475 check_disk_change(bdev); 7476 out: 7477 if (err) 7478 mddev_put(mddev); 7479 return err; 7480 } 7481 7482 static void md_release(struct gendisk *disk, fmode_t mode) 7483 { 7484 struct mddev *mddev = disk->private_data; 7485 7486 BUG_ON(!mddev); 7487 atomic_dec(&mddev->openers); 7488 mddev_put(mddev); 7489 } 7490 7491 static int md_media_changed(struct gendisk *disk) 7492 { 7493 struct mddev *mddev = disk->private_data; 7494 7495 return mddev->changed; 7496 } 7497 7498 static int md_revalidate(struct gendisk *disk) 7499 { 7500 struct mddev *mddev = disk->private_data; 7501 7502 mddev->changed = 0; 7503 return 0; 7504 } 7505 static const struct block_device_operations md_fops = 7506 { 7507 .owner = THIS_MODULE, 7508 .open = md_open, 7509 .release = md_release, 7510 .ioctl = md_ioctl, 7511 #ifdef CONFIG_COMPAT 7512 .compat_ioctl = md_compat_ioctl, 7513 #endif 7514 .getgeo = md_getgeo, 7515 .media_changed = md_media_changed, 7516 .revalidate_disk= md_revalidate, 7517 }; 7518 7519 static int md_thread(void *arg) 7520 { 7521 struct md_thread *thread = arg; 7522 7523 /* 7524 * md_thread is a 'system-thread', it's priority should be very 7525 * high. We avoid resource deadlocks individually in each 7526 * raid personality. (RAID5 does preallocation) We also use RR and 7527 * the very same RT priority as kswapd, thus we will never get 7528 * into a priority inversion deadlock. 7529 * 7530 * we definitely have to have equal or higher priority than 7531 * bdflush, otherwise bdflush will deadlock if there are too 7532 * many dirty RAID5 blocks. 7533 */ 7534 7535 allow_signal(SIGKILL); 7536 while (!kthread_should_stop()) { 7537 7538 /* We need to wait INTERRUPTIBLE so that 7539 * we don't add to the load-average. 7540 * That means we need to be sure no signals are 7541 * pending 7542 */ 7543 if (signal_pending(current)) 7544 flush_signals(current); 7545 7546 wait_event_interruptible_timeout 7547 (thread->wqueue, 7548 test_bit(THREAD_WAKEUP, &thread->flags) 7549 || kthread_should_stop() || kthread_should_park(), 7550 thread->timeout); 7551 7552 clear_bit(THREAD_WAKEUP, &thread->flags); 7553 if (kthread_should_park()) 7554 kthread_parkme(); 7555 if (!kthread_should_stop()) 7556 thread->run(thread); 7557 } 7558 7559 return 0; 7560 } 7561 7562 void md_wakeup_thread(struct md_thread *thread) 7563 { 7564 if (thread) { 7565 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7566 set_bit(THREAD_WAKEUP, &thread->flags); 7567 wake_up(&thread->wqueue); 7568 } 7569 } 7570 EXPORT_SYMBOL(md_wakeup_thread); 7571 7572 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7573 struct mddev *mddev, const char *name) 7574 { 7575 struct md_thread *thread; 7576 7577 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7578 if (!thread) 7579 return NULL; 7580 7581 init_waitqueue_head(&thread->wqueue); 7582 7583 thread->run = run; 7584 thread->mddev = mddev; 7585 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7586 thread->tsk = kthread_run(md_thread, thread, 7587 "%s_%s", 7588 mdname(thread->mddev), 7589 name); 7590 if (IS_ERR(thread->tsk)) { 7591 kfree(thread); 7592 return NULL; 7593 } 7594 return thread; 7595 } 7596 EXPORT_SYMBOL(md_register_thread); 7597 7598 void md_unregister_thread(struct md_thread **threadp) 7599 { 7600 struct md_thread *thread = *threadp; 7601 if (!thread) 7602 return; 7603 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7604 /* Locking ensures that mddev_unlock does not wake_up a 7605 * non-existent thread 7606 */ 7607 spin_lock(&pers_lock); 7608 *threadp = NULL; 7609 spin_unlock(&pers_lock); 7610 7611 kthread_stop(thread->tsk); 7612 kfree(thread); 7613 } 7614 EXPORT_SYMBOL(md_unregister_thread); 7615 7616 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7617 { 7618 if (!rdev || test_bit(Faulty, &rdev->flags)) 7619 return; 7620 7621 if (!mddev->pers || !mddev->pers->error_handler) 7622 return; 7623 mddev->pers->error_handler(mddev,rdev); 7624 if (mddev->degraded) 7625 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7626 sysfs_notify_dirent_safe(rdev->sysfs_state); 7627 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7628 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7629 md_wakeup_thread(mddev->thread); 7630 if (mddev->event_work.func) 7631 queue_work(md_misc_wq, &mddev->event_work); 7632 md_new_event(mddev); 7633 } 7634 EXPORT_SYMBOL(md_error); 7635 7636 /* seq_file implementation /proc/mdstat */ 7637 7638 static void status_unused(struct seq_file *seq) 7639 { 7640 int i = 0; 7641 struct md_rdev *rdev; 7642 7643 seq_printf(seq, "unused devices: "); 7644 7645 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7646 char b[BDEVNAME_SIZE]; 7647 i++; 7648 seq_printf(seq, "%s ", 7649 bdevname(rdev->bdev,b)); 7650 } 7651 if (!i) 7652 seq_printf(seq, "<none>"); 7653 7654 seq_printf(seq, "\n"); 7655 } 7656 7657 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7658 { 7659 sector_t max_sectors, resync, res; 7660 unsigned long dt, db; 7661 sector_t rt; 7662 int scale; 7663 unsigned int per_milli; 7664 7665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7666 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7667 max_sectors = mddev->resync_max_sectors; 7668 else 7669 max_sectors = mddev->dev_sectors; 7670 7671 resync = mddev->curr_resync; 7672 if (resync <= 3) { 7673 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7674 /* Still cleaning up */ 7675 resync = max_sectors; 7676 } else if (resync > max_sectors) 7677 resync = max_sectors; 7678 else 7679 resync -= atomic_read(&mddev->recovery_active); 7680 7681 if (resync == 0) { 7682 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7683 struct md_rdev *rdev; 7684 7685 rdev_for_each(rdev, mddev) 7686 if (rdev->raid_disk >= 0 && 7687 !test_bit(Faulty, &rdev->flags) && 7688 rdev->recovery_offset != MaxSector && 7689 rdev->recovery_offset) { 7690 seq_printf(seq, "\trecover=REMOTE"); 7691 return 1; 7692 } 7693 if (mddev->reshape_position != MaxSector) 7694 seq_printf(seq, "\treshape=REMOTE"); 7695 else 7696 seq_printf(seq, "\tresync=REMOTE"); 7697 return 1; 7698 } 7699 if (mddev->recovery_cp < MaxSector) { 7700 seq_printf(seq, "\tresync=PENDING"); 7701 return 1; 7702 } 7703 return 0; 7704 } 7705 if (resync < 3) { 7706 seq_printf(seq, "\tresync=DELAYED"); 7707 return 1; 7708 } 7709 7710 WARN_ON(max_sectors == 0); 7711 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7712 * in a sector_t, and (max_sectors>>scale) will fit in a 7713 * u32, as those are the requirements for sector_div. 7714 * Thus 'scale' must be at least 10 7715 */ 7716 scale = 10; 7717 if (sizeof(sector_t) > sizeof(unsigned long)) { 7718 while ( max_sectors/2 > (1ULL<<(scale+32))) 7719 scale++; 7720 } 7721 res = (resync>>scale)*1000; 7722 sector_div(res, (u32)((max_sectors>>scale)+1)); 7723 7724 per_milli = res; 7725 { 7726 int i, x = per_milli/50, y = 20-x; 7727 seq_printf(seq, "["); 7728 for (i = 0; i < x; i++) 7729 seq_printf(seq, "="); 7730 seq_printf(seq, ">"); 7731 for (i = 0; i < y; i++) 7732 seq_printf(seq, "."); 7733 seq_printf(seq, "] "); 7734 } 7735 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7736 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7737 "reshape" : 7738 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7739 "check" : 7740 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7741 "resync" : "recovery"))), 7742 per_milli/10, per_milli % 10, 7743 (unsigned long long) resync/2, 7744 (unsigned long long) max_sectors/2); 7745 7746 /* 7747 * dt: time from mark until now 7748 * db: blocks written from mark until now 7749 * rt: remaining time 7750 * 7751 * rt is a sector_t, so could be 32bit or 64bit. 7752 * So we divide before multiply in case it is 32bit and close 7753 * to the limit. 7754 * We scale the divisor (db) by 32 to avoid losing precision 7755 * near the end of resync when the number of remaining sectors 7756 * is close to 'db'. 7757 * We then divide rt by 32 after multiplying by db to compensate. 7758 * The '+1' avoids division by zero if db is very small. 7759 */ 7760 dt = ((jiffies - mddev->resync_mark) / HZ); 7761 if (!dt) dt++; 7762 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7763 - mddev->resync_mark_cnt; 7764 7765 rt = max_sectors - resync; /* number of remaining sectors */ 7766 sector_div(rt, db/32+1); 7767 rt *= dt; 7768 rt >>= 5; 7769 7770 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7771 ((unsigned long)rt % 60)/6); 7772 7773 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7774 return 1; 7775 } 7776 7777 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7778 { 7779 struct list_head *tmp; 7780 loff_t l = *pos; 7781 struct mddev *mddev; 7782 7783 if (l >= 0x10000) 7784 return NULL; 7785 if (!l--) 7786 /* header */ 7787 return (void*)1; 7788 7789 spin_lock(&all_mddevs_lock); 7790 list_for_each(tmp,&all_mddevs) 7791 if (!l--) { 7792 mddev = list_entry(tmp, struct mddev, all_mddevs); 7793 mddev_get(mddev); 7794 spin_unlock(&all_mddevs_lock); 7795 return mddev; 7796 } 7797 spin_unlock(&all_mddevs_lock); 7798 if (!l--) 7799 return (void*)2;/* tail */ 7800 return NULL; 7801 } 7802 7803 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7804 { 7805 struct list_head *tmp; 7806 struct mddev *next_mddev, *mddev = v; 7807 7808 ++*pos; 7809 if (v == (void*)2) 7810 return NULL; 7811 7812 spin_lock(&all_mddevs_lock); 7813 if (v == (void*)1) 7814 tmp = all_mddevs.next; 7815 else 7816 tmp = mddev->all_mddevs.next; 7817 if (tmp != &all_mddevs) 7818 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7819 else { 7820 next_mddev = (void*)2; 7821 *pos = 0x10000; 7822 } 7823 spin_unlock(&all_mddevs_lock); 7824 7825 if (v != (void*)1) 7826 mddev_put(mddev); 7827 return next_mddev; 7828 7829 } 7830 7831 static void md_seq_stop(struct seq_file *seq, void *v) 7832 { 7833 struct mddev *mddev = v; 7834 7835 if (mddev && v != (void*)1 && v != (void*)2) 7836 mddev_put(mddev); 7837 } 7838 7839 static int md_seq_show(struct seq_file *seq, void *v) 7840 { 7841 struct mddev *mddev = v; 7842 sector_t sectors; 7843 struct md_rdev *rdev; 7844 7845 if (v == (void*)1) { 7846 struct md_personality *pers; 7847 seq_printf(seq, "Personalities : "); 7848 spin_lock(&pers_lock); 7849 list_for_each_entry(pers, &pers_list, list) 7850 seq_printf(seq, "[%s] ", pers->name); 7851 7852 spin_unlock(&pers_lock); 7853 seq_printf(seq, "\n"); 7854 seq->poll_event = atomic_read(&md_event_count); 7855 return 0; 7856 } 7857 if (v == (void*)2) { 7858 status_unused(seq); 7859 return 0; 7860 } 7861 7862 spin_lock(&mddev->lock); 7863 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7864 seq_printf(seq, "%s : %sactive", mdname(mddev), 7865 mddev->pers ? "" : "in"); 7866 if (mddev->pers) { 7867 if (mddev->ro==1) 7868 seq_printf(seq, " (read-only)"); 7869 if (mddev->ro==2) 7870 seq_printf(seq, " (auto-read-only)"); 7871 seq_printf(seq, " %s", mddev->pers->name); 7872 } 7873 7874 sectors = 0; 7875 rcu_read_lock(); 7876 rdev_for_each_rcu(rdev, mddev) { 7877 char b[BDEVNAME_SIZE]; 7878 seq_printf(seq, " %s[%d]", 7879 bdevname(rdev->bdev,b), rdev->desc_nr); 7880 if (test_bit(WriteMostly, &rdev->flags)) 7881 seq_printf(seq, "(W)"); 7882 if (test_bit(Journal, &rdev->flags)) 7883 seq_printf(seq, "(J)"); 7884 if (test_bit(Faulty, &rdev->flags)) { 7885 seq_printf(seq, "(F)"); 7886 continue; 7887 } 7888 if (rdev->raid_disk < 0) 7889 seq_printf(seq, "(S)"); /* spare */ 7890 if (test_bit(Replacement, &rdev->flags)) 7891 seq_printf(seq, "(R)"); 7892 sectors += rdev->sectors; 7893 } 7894 rcu_read_unlock(); 7895 7896 if (!list_empty(&mddev->disks)) { 7897 if (mddev->pers) 7898 seq_printf(seq, "\n %llu blocks", 7899 (unsigned long long) 7900 mddev->array_sectors / 2); 7901 else 7902 seq_printf(seq, "\n %llu blocks", 7903 (unsigned long long)sectors / 2); 7904 } 7905 if (mddev->persistent) { 7906 if (mddev->major_version != 0 || 7907 mddev->minor_version != 90) { 7908 seq_printf(seq," super %d.%d", 7909 mddev->major_version, 7910 mddev->minor_version); 7911 } 7912 } else if (mddev->external) 7913 seq_printf(seq, " super external:%s", 7914 mddev->metadata_type); 7915 else 7916 seq_printf(seq, " super non-persistent"); 7917 7918 if (mddev->pers) { 7919 mddev->pers->status(seq, mddev); 7920 seq_printf(seq, "\n "); 7921 if (mddev->pers->sync_request) { 7922 if (status_resync(seq, mddev)) 7923 seq_printf(seq, "\n "); 7924 } 7925 } else 7926 seq_printf(seq, "\n "); 7927 7928 md_bitmap_status(seq, mddev->bitmap); 7929 7930 seq_printf(seq, "\n"); 7931 } 7932 spin_unlock(&mddev->lock); 7933 7934 return 0; 7935 } 7936 7937 static const struct seq_operations md_seq_ops = { 7938 .start = md_seq_start, 7939 .next = md_seq_next, 7940 .stop = md_seq_stop, 7941 .show = md_seq_show, 7942 }; 7943 7944 static int md_seq_open(struct inode *inode, struct file *file) 7945 { 7946 struct seq_file *seq; 7947 int error; 7948 7949 error = seq_open(file, &md_seq_ops); 7950 if (error) 7951 return error; 7952 7953 seq = file->private_data; 7954 seq->poll_event = atomic_read(&md_event_count); 7955 return error; 7956 } 7957 7958 static int md_unloading; 7959 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7960 { 7961 struct seq_file *seq = filp->private_data; 7962 __poll_t mask; 7963 7964 if (md_unloading) 7965 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7966 poll_wait(filp, &md_event_waiters, wait); 7967 7968 /* always allow read */ 7969 mask = EPOLLIN | EPOLLRDNORM; 7970 7971 if (seq->poll_event != atomic_read(&md_event_count)) 7972 mask |= EPOLLERR | EPOLLPRI; 7973 return mask; 7974 } 7975 7976 static const struct file_operations md_seq_fops = { 7977 .owner = THIS_MODULE, 7978 .open = md_seq_open, 7979 .read = seq_read, 7980 .llseek = seq_lseek, 7981 .release = seq_release, 7982 .poll = mdstat_poll, 7983 }; 7984 7985 int register_md_personality(struct md_personality *p) 7986 { 7987 pr_debug("md: %s personality registered for level %d\n", 7988 p->name, p->level); 7989 spin_lock(&pers_lock); 7990 list_add_tail(&p->list, &pers_list); 7991 spin_unlock(&pers_lock); 7992 return 0; 7993 } 7994 EXPORT_SYMBOL(register_md_personality); 7995 7996 int unregister_md_personality(struct md_personality *p) 7997 { 7998 pr_debug("md: %s personality unregistered\n", p->name); 7999 spin_lock(&pers_lock); 8000 list_del_init(&p->list); 8001 spin_unlock(&pers_lock); 8002 return 0; 8003 } 8004 EXPORT_SYMBOL(unregister_md_personality); 8005 8006 int register_md_cluster_operations(struct md_cluster_operations *ops, 8007 struct module *module) 8008 { 8009 int ret = 0; 8010 spin_lock(&pers_lock); 8011 if (md_cluster_ops != NULL) 8012 ret = -EALREADY; 8013 else { 8014 md_cluster_ops = ops; 8015 md_cluster_mod = module; 8016 } 8017 spin_unlock(&pers_lock); 8018 return ret; 8019 } 8020 EXPORT_SYMBOL(register_md_cluster_operations); 8021 8022 int unregister_md_cluster_operations(void) 8023 { 8024 spin_lock(&pers_lock); 8025 md_cluster_ops = NULL; 8026 spin_unlock(&pers_lock); 8027 return 0; 8028 } 8029 EXPORT_SYMBOL(unregister_md_cluster_operations); 8030 8031 int md_setup_cluster(struct mddev *mddev, int nodes) 8032 { 8033 if (!md_cluster_ops) 8034 request_module("md-cluster"); 8035 spin_lock(&pers_lock); 8036 /* ensure module won't be unloaded */ 8037 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8038 pr_warn("can't find md-cluster module or get it's reference.\n"); 8039 spin_unlock(&pers_lock); 8040 return -ENOENT; 8041 } 8042 spin_unlock(&pers_lock); 8043 8044 return md_cluster_ops->join(mddev, nodes); 8045 } 8046 8047 void md_cluster_stop(struct mddev *mddev) 8048 { 8049 if (!md_cluster_ops) 8050 return; 8051 md_cluster_ops->leave(mddev); 8052 module_put(md_cluster_mod); 8053 } 8054 8055 static int is_mddev_idle(struct mddev *mddev, int init) 8056 { 8057 struct md_rdev *rdev; 8058 int idle; 8059 int curr_events; 8060 8061 idle = 1; 8062 rcu_read_lock(); 8063 rdev_for_each_rcu(rdev, mddev) { 8064 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8065 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8066 atomic_read(&disk->sync_io); 8067 /* sync IO will cause sync_io to increase before the disk_stats 8068 * as sync_io is counted when a request starts, and 8069 * disk_stats is counted when it completes. 8070 * So resync activity will cause curr_events to be smaller than 8071 * when there was no such activity. 8072 * non-sync IO will cause disk_stat to increase without 8073 * increasing sync_io so curr_events will (eventually) 8074 * be larger than it was before. Once it becomes 8075 * substantially larger, the test below will cause 8076 * the array to appear non-idle, and resync will slow 8077 * down. 8078 * If there is a lot of outstanding resync activity when 8079 * we set last_event to curr_events, then all that activity 8080 * completing might cause the array to appear non-idle 8081 * and resync will be slowed down even though there might 8082 * not have been non-resync activity. This will only 8083 * happen once though. 'last_events' will soon reflect 8084 * the state where there is little or no outstanding 8085 * resync requests, and further resync activity will 8086 * always make curr_events less than last_events. 8087 * 8088 */ 8089 if (init || curr_events - rdev->last_events > 64) { 8090 rdev->last_events = curr_events; 8091 idle = 0; 8092 } 8093 } 8094 rcu_read_unlock(); 8095 return idle; 8096 } 8097 8098 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8099 { 8100 /* another "blocks" (512byte) blocks have been synced */ 8101 atomic_sub(blocks, &mddev->recovery_active); 8102 wake_up(&mddev->recovery_wait); 8103 if (!ok) { 8104 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8105 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8106 md_wakeup_thread(mddev->thread); 8107 // stop recovery, signal do_sync .... 8108 } 8109 } 8110 EXPORT_SYMBOL(md_done_sync); 8111 8112 /* md_write_start(mddev, bi) 8113 * If we need to update some array metadata (e.g. 'active' flag 8114 * in superblock) before writing, schedule a superblock update 8115 * and wait for it to complete. 8116 * A return value of 'false' means that the write wasn't recorded 8117 * and cannot proceed as the array is being suspend. 8118 */ 8119 bool md_write_start(struct mddev *mddev, struct bio *bi) 8120 { 8121 int did_change = 0; 8122 8123 if (bio_data_dir(bi) != WRITE) 8124 return true; 8125 8126 BUG_ON(mddev->ro == 1); 8127 if (mddev->ro == 2) { 8128 /* need to switch to read/write */ 8129 mddev->ro = 0; 8130 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8131 md_wakeup_thread(mddev->thread); 8132 md_wakeup_thread(mddev->sync_thread); 8133 did_change = 1; 8134 } 8135 rcu_read_lock(); 8136 percpu_ref_get(&mddev->writes_pending); 8137 smp_mb(); /* Match smp_mb in set_in_sync() */ 8138 if (mddev->safemode == 1) 8139 mddev->safemode = 0; 8140 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8141 if (mddev->in_sync || mddev->sync_checkers) { 8142 spin_lock(&mddev->lock); 8143 if (mddev->in_sync) { 8144 mddev->in_sync = 0; 8145 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8146 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8147 md_wakeup_thread(mddev->thread); 8148 did_change = 1; 8149 } 8150 spin_unlock(&mddev->lock); 8151 } 8152 rcu_read_unlock(); 8153 if (did_change) 8154 sysfs_notify_dirent_safe(mddev->sysfs_state); 8155 if (!mddev->has_superblocks) 8156 return true; 8157 wait_event(mddev->sb_wait, 8158 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8159 mddev->suspended); 8160 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8161 percpu_ref_put(&mddev->writes_pending); 8162 return false; 8163 } 8164 return true; 8165 } 8166 EXPORT_SYMBOL(md_write_start); 8167 8168 /* md_write_inc can only be called when md_write_start() has 8169 * already been called at least once of the current request. 8170 * It increments the counter and is useful when a single request 8171 * is split into several parts. Each part causes an increment and 8172 * so needs a matching md_write_end(). 8173 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8174 * a spinlocked region. 8175 */ 8176 void md_write_inc(struct mddev *mddev, struct bio *bi) 8177 { 8178 if (bio_data_dir(bi) != WRITE) 8179 return; 8180 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8181 percpu_ref_get(&mddev->writes_pending); 8182 } 8183 EXPORT_SYMBOL(md_write_inc); 8184 8185 void md_write_end(struct mddev *mddev) 8186 { 8187 percpu_ref_put(&mddev->writes_pending); 8188 8189 if (mddev->safemode == 2) 8190 md_wakeup_thread(mddev->thread); 8191 else if (mddev->safemode_delay) 8192 /* The roundup() ensures this only performs locking once 8193 * every ->safemode_delay jiffies 8194 */ 8195 mod_timer(&mddev->safemode_timer, 8196 roundup(jiffies, mddev->safemode_delay) + 8197 mddev->safemode_delay); 8198 } 8199 8200 EXPORT_SYMBOL(md_write_end); 8201 8202 /* md_allow_write(mddev) 8203 * Calling this ensures that the array is marked 'active' so that writes 8204 * may proceed without blocking. It is important to call this before 8205 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8206 * Must be called with mddev_lock held. 8207 */ 8208 void md_allow_write(struct mddev *mddev) 8209 { 8210 if (!mddev->pers) 8211 return; 8212 if (mddev->ro) 8213 return; 8214 if (!mddev->pers->sync_request) 8215 return; 8216 8217 spin_lock(&mddev->lock); 8218 if (mddev->in_sync) { 8219 mddev->in_sync = 0; 8220 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8221 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8222 if (mddev->safemode_delay && 8223 mddev->safemode == 0) 8224 mddev->safemode = 1; 8225 spin_unlock(&mddev->lock); 8226 md_update_sb(mddev, 0); 8227 sysfs_notify_dirent_safe(mddev->sysfs_state); 8228 /* wait for the dirty state to be recorded in the metadata */ 8229 wait_event(mddev->sb_wait, 8230 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8231 } else 8232 spin_unlock(&mddev->lock); 8233 } 8234 EXPORT_SYMBOL_GPL(md_allow_write); 8235 8236 #define SYNC_MARKS 10 8237 #define SYNC_MARK_STEP (3*HZ) 8238 #define UPDATE_FREQUENCY (5*60*HZ) 8239 void md_do_sync(struct md_thread *thread) 8240 { 8241 struct mddev *mddev = thread->mddev; 8242 struct mddev *mddev2; 8243 unsigned int currspeed = 0, 8244 window; 8245 sector_t max_sectors,j, io_sectors, recovery_done; 8246 unsigned long mark[SYNC_MARKS]; 8247 unsigned long update_time; 8248 sector_t mark_cnt[SYNC_MARKS]; 8249 int last_mark,m; 8250 struct list_head *tmp; 8251 sector_t last_check; 8252 int skipped = 0; 8253 struct md_rdev *rdev; 8254 char *desc, *action = NULL; 8255 struct blk_plug plug; 8256 int ret; 8257 8258 /* just incase thread restarts... */ 8259 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8260 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8261 return; 8262 if (mddev->ro) {/* never try to sync a read-only array */ 8263 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8264 return; 8265 } 8266 8267 if (mddev_is_clustered(mddev)) { 8268 ret = md_cluster_ops->resync_start(mddev); 8269 if (ret) 8270 goto skip; 8271 8272 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8273 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8274 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8275 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8276 && ((unsigned long long)mddev->curr_resync_completed 8277 < (unsigned long long)mddev->resync_max_sectors)) 8278 goto skip; 8279 } 8280 8281 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8282 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8283 desc = "data-check"; 8284 action = "check"; 8285 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8286 desc = "requested-resync"; 8287 action = "repair"; 8288 } else 8289 desc = "resync"; 8290 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8291 desc = "reshape"; 8292 else 8293 desc = "recovery"; 8294 8295 mddev->last_sync_action = action ?: desc; 8296 8297 /* we overload curr_resync somewhat here. 8298 * 0 == not engaged in resync at all 8299 * 2 == checking that there is no conflict with another sync 8300 * 1 == like 2, but have yielded to allow conflicting resync to 8301 * commense 8302 * other == active in resync - this many blocks 8303 * 8304 * Before starting a resync we must have set curr_resync to 8305 * 2, and then checked that every "conflicting" array has curr_resync 8306 * less than ours. When we find one that is the same or higher 8307 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8308 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8309 * This will mean we have to start checking from the beginning again. 8310 * 8311 */ 8312 8313 do { 8314 int mddev2_minor = -1; 8315 mddev->curr_resync = 2; 8316 8317 try_again: 8318 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8319 goto skip; 8320 for_each_mddev(mddev2, tmp) { 8321 if (mddev2 == mddev) 8322 continue; 8323 if (!mddev->parallel_resync 8324 && mddev2->curr_resync 8325 && match_mddev_units(mddev, mddev2)) { 8326 DEFINE_WAIT(wq); 8327 if (mddev < mddev2 && mddev->curr_resync == 2) { 8328 /* arbitrarily yield */ 8329 mddev->curr_resync = 1; 8330 wake_up(&resync_wait); 8331 } 8332 if (mddev > mddev2 && mddev->curr_resync == 1) 8333 /* no need to wait here, we can wait the next 8334 * time 'round when curr_resync == 2 8335 */ 8336 continue; 8337 /* We need to wait 'interruptible' so as not to 8338 * contribute to the load average, and not to 8339 * be caught by 'softlockup' 8340 */ 8341 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8342 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8343 mddev2->curr_resync >= mddev->curr_resync) { 8344 if (mddev2_minor != mddev2->md_minor) { 8345 mddev2_minor = mddev2->md_minor; 8346 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8347 desc, mdname(mddev), 8348 mdname(mddev2)); 8349 } 8350 mddev_put(mddev2); 8351 if (signal_pending(current)) 8352 flush_signals(current); 8353 schedule(); 8354 finish_wait(&resync_wait, &wq); 8355 goto try_again; 8356 } 8357 finish_wait(&resync_wait, &wq); 8358 } 8359 } 8360 } while (mddev->curr_resync < 2); 8361 8362 j = 0; 8363 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8364 /* resync follows the size requested by the personality, 8365 * which defaults to physical size, but can be virtual size 8366 */ 8367 max_sectors = mddev->resync_max_sectors; 8368 atomic64_set(&mddev->resync_mismatches, 0); 8369 /* we don't use the checkpoint if there's a bitmap */ 8370 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8371 j = mddev->resync_min; 8372 else if (!mddev->bitmap) 8373 j = mddev->recovery_cp; 8374 8375 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8376 max_sectors = mddev->resync_max_sectors; 8377 /* 8378 * If the original node aborts reshaping then we continue the 8379 * reshaping, so set j again to avoid restart reshape from the 8380 * first beginning 8381 */ 8382 if (mddev_is_clustered(mddev) && 8383 mddev->reshape_position != MaxSector) 8384 j = mddev->reshape_position; 8385 } else { 8386 /* recovery follows the physical size of devices */ 8387 max_sectors = mddev->dev_sectors; 8388 j = MaxSector; 8389 rcu_read_lock(); 8390 rdev_for_each_rcu(rdev, mddev) 8391 if (rdev->raid_disk >= 0 && 8392 !test_bit(Journal, &rdev->flags) && 8393 !test_bit(Faulty, &rdev->flags) && 8394 !test_bit(In_sync, &rdev->flags) && 8395 rdev->recovery_offset < j) 8396 j = rdev->recovery_offset; 8397 rcu_read_unlock(); 8398 8399 /* If there is a bitmap, we need to make sure all 8400 * writes that started before we added a spare 8401 * complete before we start doing a recovery. 8402 * Otherwise the write might complete and (via 8403 * bitmap_endwrite) set a bit in the bitmap after the 8404 * recovery has checked that bit and skipped that 8405 * region. 8406 */ 8407 if (mddev->bitmap) { 8408 mddev->pers->quiesce(mddev, 1); 8409 mddev->pers->quiesce(mddev, 0); 8410 } 8411 } 8412 8413 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8414 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8415 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8416 speed_max(mddev), desc); 8417 8418 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8419 8420 io_sectors = 0; 8421 for (m = 0; m < SYNC_MARKS; m++) { 8422 mark[m] = jiffies; 8423 mark_cnt[m] = io_sectors; 8424 } 8425 last_mark = 0; 8426 mddev->resync_mark = mark[last_mark]; 8427 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8428 8429 /* 8430 * Tune reconstruction: 8431 */ 8432 window = 32*(PAGE_SIZE/512); 8433 pr_debug("md: using %dk window, over a total of %lluk.\n", 8434 window/2, (unsigned long long)max_sectors/2); 8435 8436 atomic_set(&mddev->recovery_active, 0); 8437 last_check = 0; 8438 8439 if (j>2) { 8440 pr_debug("md: resuming %s of %s from checkpoint.\n", 8441 desc, mdname(mddev)); 8442 mddev->curr_resync = j; 8443 } else 8444 mddev->curr_resync = 3; /* no longer delayed */ 8445 mddev->curr_resync_completed = j; 8446 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8447 md_new_event(mddev); 8448 update_time = jiffies; 8449 8450 blk_start_plug(&plug); 8451 while (j < max_sectors) { 8452 sector_t sectors; 8453 8454 skipped = 0; 8455 8456 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8457 ((mddev->curr_resync > mddev->curr_resync_completed && 8458 (mddev->curr_resync - mddev->curr_resync_completed) 8459 > (max_sectors >> 4)) || 8460 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8461 (j - mddev->curr_resync_completed)*2 8462 >= mddev->resync_max - mddev->curr_resync_completed || 8463 mddev->curr_resync_completed > mddev->resync_max 8464 )) { 8465 /* time to update curr_resync_completed */ 8466 wait_event(mddev->recovery_wait, 8467 atomic_read(&mddev->recovery_active) == 0); 8468 mddev->curr_resync_completed = j; 8469 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8470 j > mddev->recovery_cp) 8471 mddev->recovery_cp = j; 8472 update_time = jiffies; 8473 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8474 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8475 } 8476 8477 while (j >= mddev->resync_max && 8478 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8479 /* As this condition is controlled by user-space, 8480 * we can block indefinitely, so use '_interruptible' 8481 * to avoid triggering warnings. 8482 */ 8483 flush_signals(current); /* just in case */ 8484 wait_event_interruptible(mddev->recovery_wait, 8485 mddev->resync_max > j 8486 || test_bit(MD_RECOVERY_INTR, 8487 &mddev->recovery)); 8488 } 8489 8490 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8491 break; 8492 8493 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8494 if (sectors == 0) { 8495 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8496 break; 8497 } 8498 8499 if (!skipped) { /* actual IO requested */ 8500 io_sectors += sectors; 8501 atomic_add(sectors, &mddev->recovery_active); 8502 } 8503 8504 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8505 break; 8506 8507 j += sectors; 8508 if (j > max_sectors) 8509 /* when skipping, extra large numbers can be returned. */ 8510 j = max_sectors; 8511 if (j > 2) 8512 mddev->curr_resync = j; 8513 mddev->curr_mark_cnt = io_sectors; 8514 if (last_check == 0) 8515 /* this is the earliest that rebuild will be 8516 * visible in /proc/mdstat 8517 */ 8518 md_new_event(mddev); 8519 8520 if (last_check + window > io_sectors || j == max_sectors) 8521 continue; 8522 8523 last_check = io_sectors; 8524 repeat: 8525 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8526 /* step marks */ 8527 int next = (last_mark+1) % SYNC_MARKS; 8528 8529 mddev->resync_mark = mark[next]; 8530 mddev->resync_mark_cnt = mark_cnt[next]; 8531 mark[next] = jiffies; 8532 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8533 last_mark = next; 8534 } 8535 8536 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8537 break; 8538 8539 /* 8540 * this loop exits only if either when we are slower than 8541 * the 'hard' speed limit, or the system was IO-idle for 8542 * a jiffy. 8543 * the system might be non-idle CPU-wise, but we only care 8544 * about not overloading the IO subsystem. (things like an 8545 * e2fsck being done on the RAID array should execute fast) 8546 */ 8547 cond_resched(); 8548 8549 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8550 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8551 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8552 8553 if (currspeed > speed_min(mddev)) { 8554 if (currspeed > speed_max(mddev)) { 8555 msleep(500); 8556 goto repeat; 8557 } 8558 if (!is_mddev_idle(mddev, 0)) { 8559 /* 8560 * Give other IO more of a chance. 8561 * The faster the devices, the less we wait. 8562 */ 8563 wait_event(mddev->recovery_wait, 8564 !atomic_read(&mddev->recovery_active)); 8565 } 8566 } 8567 } 8568 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8569 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8570 ? "interrupted" : "done"); 8571 /* 8572 * this also signals 'finished resyncing' to md_stop 8573 */ 8574 blk_finish_plug(&plug); 8575 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8576 8577 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8578 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8579 mddev->curr_resync > 3) { 8580 mddev->curr_resync_completed = mddev->curr_resync; 8581 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8582 } 8583 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8584 8585 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8586 mddev->curr_resync > 3) { 8587 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8588 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8589 if (mddev->curr_resync >= mddev->recovery_cp) { 8590 pr_debug("md: checkpointing %s of %s.\n", 8591 desc, mdname(mddev)); 8592 if (test_bit(MD_RECOVERY_ERROR, 8593 &mddev->recovery)) 8594 mddev->recovery_cp = 8595 mddev->curr_resync_completed; 8596 else 8597 mddev->recovery_cp = 8598 mddev->curr_resync; 8599 } 8600 } else 8601 mddev->recovery_cp = MaxSector; 8602 } else { 8603 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8604 mddev->curr_resync = MaxSector; 8605 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8606 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8607 rcu_read_lock(); 8608 rdev_for_each_rcu(rdev, mddev) 8609 if (rdev->raid_disk >= 0 && 8610 mddev->delta_disks >= 0 && 8611 !test_bit(Journal, &rdev->flags) && 8612 !test_bit(Faulty, &rdev->flags) && 8613 !test_bit(In_sync, &rdev->flags) && 8614 rdev->recovery_offset < mddev->curr_resync) 8615 rdev->recovery_offset = mddev->curr_resync; 8616 rcu_read_unlock(); 8617 } 8618 } 8619 } 8620 skip: 8621 /* set CHANGE_PENDING here since maybe another update is needed, 8622 * so other nodes are informed. It should be harmless for normal 8623 * raid */ 8624 set_mask_bits(&mddev->sb_flags, 0, 8625 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8626 8627 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8628 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8629 mddev->delta_disks > 0 && 8630 mddev->pers->finish_reshape && 8631 mddev->pers->size && 8632 mddev->queue) { 8633 mddev_lock_nointr(mddev); 8634 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8635 mddev_unlock(mddev); 8636 if (!mddev_is_clustered(mddev)) { 8637 set_capacity(mddev->gendisk, mddev->array_sectors); 8638 revalidate_disk(mddev->gendisk); 8639 } 8640 } 8641 8642 spin_lock(&mddev->lock); 8643 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8644 /* We completed so min/max setting can be forgotten if used. */ 8645 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8646 mddev->resync_min = 0; 8647 mddev->resync_max = MaxSector; 8648 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8649 mddev->resync_min = mddev->curr_resync_completed; 8650 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8651 mddev->curr_resync = 0; 8652 spin_unlock(&mddev->lock); 8653 8654 wake_up(&resync_wait); 8655 md_wakeup_thread(mddev->thread); 8656 return; 8657 } 8658 EXPORT_SYMBOL_GPL(md_do_sync); 8659 8660 static int remove_and_add_spares(struct mddev *mddev, 8661 struct md_rdev *this) 8662 { 8663 struct md_rdev *rdev; 8664 int spares = 0; 8665 int removed = 0; 8666 bool remove_some = false; 8667 8668 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8669 /* Mustn't remove devices when resync thread is running */ 8670 return 0; 8671 8672 rdev_for_each(rdev, mddev) { 8673 if ((this == NULL || rdev == this) && 8674 rdev->raid_disk >= 0 && 8675 !test_bit(Blocked, &rdev->flags) && 8676 test_bit(Faulty, &rdev->flags) && 8677 atomic_read(&rdev->nr_pending)==0) { 8678 /* Faulty non-Blocked devices with nr_pending == 0 8679 * never get nr_pending incremented, 8680 * never get Faulty cleared, and never get Blocked set. 8681 * So we can synchronize_rcu now rather than once per device 8682 */ 8683 remove_some = true; 8684 set_bit(RemoveSynchronized, &rdev->flags); 8685 } 8686 } 8687 8688 if (remove_some) 8689 synchronize_rcu(); 8690 rdev_for_each(rdev, mddev) { 8691 if ((this == NULL || rdev == this) && 8692 rdev->raid_disk >= 0 && 8693 !test_bit(Blocked, &rdev->flags) && 8694 ((test_bit(RemoveSynchronized, &rdev->flags) || 8695 (!test_bit(In_sync, &rdev->flags) && 8696 !test_bit(Journal, &rdev->flags))) && 8697 atomic_read(&rdev->nr_pending)==0)) { 8698 if (mddev->pers->hot_remove_disk( 8699 mddev, rdev) == 0) { 8700 sysfs_unlink_rdev(mddev, rdev); 8701 rdev->saved_raid_disk = rdev->raid_disk; 8702 rdev->raid_disk = -1; 8703 removed++; 8704 } 8705 } 8706 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8707 clear_bit(RemoveSynchronized, &rdev->flags); 8708 } 8709 8710 if (removed && mddev->kobj.sd) 8711 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8712 8713 if (this && removed) 8714 goto no_add; 8715 8716 rdev_for_each(rdev, mddev) { 8717 if (this && this != rdev) 8718 continue; 8719 if (test_bit(Candidate, &rdev->flags)) 8720 continue; 8721 if (rdev->raid_disk >= 0 && 8722 !test_bit(In_sync, &rdev->flags) && 8723 !test_bit(Journal, &rdev->flags) && 8724 !test_bit(Faulty, &rdev->flags)) 8725 spares++; 8726 if (rdev->raid_disk >= 0) 8727 continue; 8728 if (test_bit(Faulty, &rdev->flags)) 8729 continue; 8730 if (!test_bit(Journal, &rdev->flags)) { 8731 if (mddev->ro && 8732 ! (rdev->saved_raid_disk >= 0 && 8733 !test_bit(Bitmap_sync, &rdev->flags))) 8734 continue; 8735 8736 rdev->recovery_offset = 0; 8737 } 8738 if (mddev->pers-> 8739 hot_add_disk(mddev, rdev) == 0) { 8740 if (sysfs_link_rdev(mddev, rdev)) 8741 /* failure here is OK */; 8742 if (!test_bit(Journal, &rdev->flags)) 8743 spares++; 8744 md_new_event(mddev); 8745 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8746 } 8747 } 8748 no_add: 8749 if (removed) 8750 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8751 return spares; 8752 } 8753 8754 static void md_start_sync(struct work_struct *ws) 8755 { 8756 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8757 8758 mddev->sync_thread = md_register_thread(md_do_sync, 8759 mddev, 8760 "resync"); 8761 if (!mddev->sync_thread) { 8762 pr_warn("%s: could not start resync thread...\n", 8763 mdname(mddev)); 8764 /* leave the spares where they are, it shouldn't hurt */ 8765 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8766 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8767 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8768 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8769 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8770 wake_up(&resync_wait); 8771 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8772 &mddev->recovery)) 8773 if (mddev->sysfs_action) 8774 sysfs_notify_dirent_safe(mddev->sysfs_action); 8775 } else 8776 md_wakeup_thread(mddev->sync_thread); 8777 sysfs_notify_dirent_safe(mddev->sysfs_action); 8778 md_new_event(mddev); 8779 } 8780 8781 /* 8782 * This routine is regularly called by all per-raid-array threads to 8783 * deal with generic issues like resync and super-block update. 8784 * Raid personalities that don't have a thread (linear/raid0) do not 8785 * need this as they never do any recovery or update the superblock. 8786 * 8787 * It does not do any resync itself, but rather "forks" off other threads 8788 * to do that as needed. 8789 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8790 * "->recovery" and create a thread at ->sync_thread. 8791 * When the thread finishes it sets MD_RECOVERY_DONE 8792 * and wakeups up this thread which will reap the thread and finish up. 8793 * This thread also removes any faulty devices (with nr_pending == 0). 8794 * 8795 * The overall approach is: 8796 * 1/ if the superblock needs updating, update it. 8797 * 2/ If a recovery thread is running, don't do anything else. 8798 * 3/ If recovery has finished, clean up, possibly marking spares active. 8799 * 4/ If there are any faulty devices, remove them. 8800 * 5/ If array is degraded, try to add spares devices 8801 * 6/ If array has spares or is not in-sync, start a resync thread. 8802 */ 8803 void md_check_recovery(struct mddev *mddev) 8804 { 8805 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8806 /* Write superblock - thread that called mddev_suspend() 8807 * holds reconfig_mutex for us. 8808 */ 8809 set_bit(MD_UPDATING_SB, &mddev->flags); 8810 smp_mb__after_atomic(); 8811 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8812 md_update_sb(mddev, 0); 8813 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8814 wake_up(&mddev->sb_wait); 8815 } 8816 8817 if (mddev->suspended) 8818 return; 8819 8820 if (mddev->bitmap) 8821 md_bitmap_daemon_work(mddev); 8822 8823 if (signal_pending(current)) { 8824 if (mddev->pers->sync_request && !mddev->external) { 8825 pr_debug("md: %s in immediate safe mode\n", 8826 mdname(mddev)); 8827 mddev->safemode = 2; 8828 } 8829 flush_signals(current); 8830 } 8831 8832 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8833 return; 8834 if ( ! ( 8835 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8836 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8837 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8838 (mddev->external == 0 && mddev->safemode == 1) || 8839 (mddev->safemode == 2 8840 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8841 )) 8842 return; 8843 8844 if (mddev_trylock(mddev)) { 8845 int spares = 0; 8846 8847 if (!mddev->external && mddev->safemode == 1) 8848 mddev->safemode = 0; 8849 8850 if (mddev->ro) { 8851 struct md_rdev *rdev; 8852 if (!mddev->external && mddev->in_sync) 8853 /* 'Blocked' flag not needed as failed devices 8854 * will be recorded if array switched to read/write. 8855 * Leaving it set will prevent the device 8856 * from being removed. 8857 */ 8858 rdev_for_each(rdev, mddev) 8859 clear_bit(Blocked, &rdev->flags); 8860 /* On a read-only array we can: 8861 * - remove failed devices 8862 * - add already-in_sync devices if the array itself 8863 * is in-sync. 8864 * As we only add devices that are already in-sync, 8865 * we can activate the spares immediately. 8866 */ 8867 remove_and_add_spares(mddev, NULL); 8868 /* There is no thread, but we need to call 8869 * ->spare_active and clear saved_raid_disk 8870 */ 8871 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8872 md_reap_sync_thread(mddev); 8873 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8874 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8875 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8876 goto unlock; 8877 } 8878 8879 if (mddev_is_clustered(mddev)) { 8880 struct md_rdev *rdev; 8881 /* kick the device if another node issued a 8882 * remove disk. 8883 */ 8884 rdev_for_each(rdev, mddev) { 8885 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8886 rdev->raid_disk < 0) 8887 md_kick_rdev_from_array(rdev); 8888 } 8889 } 8890 8891 if (!mddev->external && !mddev->in_sync) { 8892 spin_lock(&mddev->lock); 8893 set_in_sync(mddev); 8894 spin_unlock(&mddev->lock); 8895 } 8896 8897 if (mddev->sb_flags) 8898 md_update_sb(mddev, 0); 8899 8900 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8901 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8902 /* resync/recovery still happening */ 8903 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8904 goto unlock; 8905 } 8906 if (mddev->sync_thread) { 8907 md_reap_sync_thread(mddev); 8908 goto unlock; 8909 } 8910 /* Set RUNNING before clearing NEEDED to avoid 8911 * any transients in the value of "sync_action". 8912 */ 8913 mddev->curr_resync_completed = 0; 8914 spin_lock(&mddev->lock); 8915 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8916 spin_unlock(&mddev->lock); 8917 /* Clear some bits that don't mean anything, but 8918 * might be left set 8919 */ 8920 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8921 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8922 8923 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8924 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8925 goto not_running; 8926 /* no recovery is running. 8927 * remove any failed drives, then 8928 * add spares if possible. 8929 * Spares are also removed and re-added, to allow 8930 * the personality to fail the re-add. 8931 */ 8932 8933 if (mddev->reshape_position != MaxSector) { 8934 if (mddev->pers->check_reshape == NULL || 8935 mddev->pers->check_reshape(mddev) != 0) 8936 /* Cannot proceed */ 8937 goto not_running; 8938 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8939 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8940 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8941 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8942 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8943 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8944 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8945 } else if (mddev->recovery_cp < MaxSector) { 8946 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8947 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8948 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8949 /* nothing to be done ... */ 8950 goto not_running; 8951 8952 if (mddev->pers->sync_request) { 8953 if (spares) { 8954 /* We are adding a device or devices to an array 8955 * which has the bitmap stored on all devices. 8956 * So make sure all bitmap pages get written 8957 */ 8958 md_bitmap_write_all(mddev->bitmap); 8959 } 8960 INIT_WORK(&mddev->del_work, md_start_sync); 8961 queue_work(md_misc_wq, &mddev->del_work); 8962 goto unlock; 8963 } 8964 not_running: 8965 if (!mddev->sync_thread) { 8966 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8967 wake_up(&resync_wait); 8968 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8969 &mddev->recovery)) 8970 if (mddev->sysfs_action) 8971 sysfs_notify_dirent_safe(mddev->sysfs_action); 8972 } 8973 unlock: 8974 wake_up(&mddev->sb_wait); 8975 mddev_unlock(mddev); 8976 } 8977 } 8978 EXPORT_SYMBOL(md_check_recovery); 8979 8980 void md_reap_sync_thread(struct mddev *mddev) 8981 { 8982 struct md_rdev *rdev; 8983 sector_t old_dev_sectors = mddev->dev_sectors; 8984 bool is_reshaped = false; 8985 8986 /* resync has finished, collect result */ 8987 md_unregister_thread(&mddev->sync_thread); 8988 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8989 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8990 /* success...*/ 8991 /* activate any spares */ 8992 if (mddev->pers->spare_active(mddev)) { 8993 sysfs_notify(&mddev->kobj, NULL, 8994 "degraded"); 8995 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8996 } 8997 } 8998 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8999 mddev->pers->finish_reshape) { 9000 mddev->pers->finish_reshape(mddev); 9001 if (mddev_is_clustered(mddev)) 9002 is_reshaped = true; 9003 } 9004 9005 /* If array is no-longer degraded, then any saved_raid_disk 9006 * information must be scrapped. 9007 */ 9008 if (!mddev->degraded) 9009 rdev_for_each(rdev, mddev) 9010 rdev->saved_raid_disk = -1; 9011 9012 md_update_sb(mddev, 1); 9013 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9014 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9015 * clustered raid */ 9016 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9017 md_cluster_ops->resync_finish(mddev); 9018 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9019 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9020 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9021 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9022 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9023 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9024 /* 9025 * We call md_cluster_ops->update_size here because sync_size could 9026 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9027 * so it is time to update size across cluster. 9028 */ 9029 if (mddev_is_clustered(mddev) && is_reshaped 9030 && !test_bit(MD_CLOSING, &mddev->flags)) 9031 md_cluster_ops->update_size(mddev, old_dev_sectors); 9032 wake_up(&resync_wait); 9033 /* flag recovery needed just to double check */ 9034 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9035 sysfs_notify_dirent_safe(mddev->sysfs_action); 9036 md_new_event(mddev); 9037 if (mddev->event_work.func) 9038 queue_work(md_misc_wq, &mddev->event_work); 9039 } 9040 EXPORT_SYMBOL(md_reap_sync_thread); 9041 9042 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9043 { 9044 sysfs_notify_dirent_safe(rdev->sysfs_state); 9045 wait_event_timeout(rdev->blocked_wait, 9046 !test_bit(Blocked, &rdev->flags) && 9047 !test_bit(BlockedBadBlocks, &rdev->flags), 9048 msecs_to_jiffies(5000)); 9049 rdev_dec_pending(rdev, mddev); 9050 } 9051 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9052 9053 void md_finish_reshape(struct mddev *mddev) 9054 { 9055 /* called be personality module when reshape completes. */ 9056 struct md_rdev *rdev; 9057 9058 rdev_for_each(rdev, mddev) { 9059 if (rdev->data_offset > rdev->new_data_offset) 9060 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9061 else 9062 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9063 rdev->data_offset = rdev->new_data_offset; 9064 } 9065 } 9066 EXPORT_SYMBOL(md_finish_reshape); 9067 9068 /* Bad block management */ 9069 9070 /* Returns 1 on success, 0 on failure */ 9071 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9072 int is_new) 9073 { 9074 struct mddev *mddev = rdev->mddev; 9075 int rv; 9076 if (is_new) 9077 s += rdev->new_data_offset; 9078 else 9079 s += rdev->data_offset; 9080 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9081 if (rv == 0) { 9082 /* Make sure they get written out promptly */ 9083 if (test_bit(ExternalBbl, &rdev->flags)) 9084 sysfs_notify(&rdev->kobj, NULL, 9085 "unacknowledged_bad_blocks"); 9086 sysfs_notify_dirent_safe(rdev->sysfs_state); 9087 set_mask_bits(&mddev->sb_flags, 0, 9088 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9089 md_wakeup_thread(rdev->mddev->thread); 9090 return 1; 9091 } else 9092 return 0; 9093 } 9094 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9095 9096 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9097 int is_new) 9098 { 9099 int rv; 9100 if (is_new) 9101 s += rdev->new_data_offset; 9102 else 9103 s += rdev->data_offset; 9104 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9105 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9106 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9107 return rv; 9108 } 9109 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9110 9111 static int md_notify_reboot(struct notifier_block *this, 9112 unsigned long code, void *x) 9113 { 9114 struct list_head *tmp; 9115 struct mddev *mddev; 9116 int need_delay = 0; 9117 9118 for_each_mddev(mddev, tmp) { 9119 if (mddev_trylock(mddev)) { 9120 if (mddev->pers) 9121 __md_stop_writes(mddev); 9122 if (mddev->persistent) 9123 mddev->safemode = 2; 9124 mddev_unlock(mddev); 9125 } 9126 need_delay = 1; 9127 } 9128 /* 9129 * certain more exotic SCSI devices are known to be 9130 * volatile wrt too early system reboots. While the 9131 * right place to handle this issue is the given 9132 * driver, we do want to have a safe RAID driver ... 9133 */ 9134 if (need_delay) 9135 mdelay(1000*1); 9136 9137 return NOTIFY_DONE; 9138 } 9139 9140 static struct notifier_block md_notifier = { 9141 .notifier_call = md_notify_reboot, 9142 .next = NULL, 9143 .priority = INT_MAX, /* before any real devices */ 9144 }; 9145 9146 static void md_geninit(void) 9147 { 9148 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9149 9150 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9151 } 9152 9153 static int __init md_init(void) 9154 { 9155 int ret = -ENOMEM; 9156 9157 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9158 if (!md_wq) 9159 goto err_wq; 9160 9161 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9162 if (!md_misc_wq) 9163 goto err_misc_wq; 9164 9165 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9166 goto err_md; 9167 9168 if ((ret = register_blkdev(0, "mdp")) < 0) 9169 goto err_mdp; 9170 mdp_major = ret; 9171 9172 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9173 md_probe, NULL, NULL); 9174 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9175 md_probe, NULL, NULL); 9176 9177 register_reboot_notifier(&md_notifier); 9178 raid_table_header = register_sysctl_table(raid_root_table); 9179 9180 md_geninit(); 9181 return 0; 9182 9183 err_mdp: 9184 unregister_blkdev(MD_MAJOR, "md"); 9185 err_md: 9186 destroy_workqueue(md_misc_wq); 9187 err_misc_wq: 9188 destroy_workqueue(md_wq); 9189 err_wq: 9190 return ret; 9191 } 9192 9193 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9194 { 9195 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9196 struct md_rdev *rdev2; 9197 int role, ret; 9198 char b[BDEVNAME_SIZE]; 9199 9200 /* 9201 * If size is changed in another node then we need to 9202 * do resize as well. 9203 */ 9204 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9205 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9206 if (ret) 9207 pr_info("md-cluster: resize failed\n"); 9208 else 9209 md_bitmap_update_sb(mddev->bitmap); 9210 } 9211 9212 /* Check for change of roles in the active devices */ 9213 rdev_for_each(rdev2, mddev) { 9214 if (test_bit(Faulty, &rdev2->flags)) 9215 continue; 9216 9217 /* Check if the roles changed */ 9218 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9219 9220 if (test_bit(Candidate, &rdev2->flags)) { 9221 if (role == 0xfffe) { 9222 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9223 md_kick_rdev_from_array(rdev2); 9224 continue; 9225 } 9226 else 9227 clear_bit(Candidate, &rdev2->flags); 9228 } 9229 9230 if (role != rdev2->raid_disk) { 9231 /* 9232 * got activated except reshape is happening. 9233 */ 9234 if (rdev2->raid_disk == -1 && role != 0xffff && 9235 !(le32_to_cpu(sb->feature_map) & 9236 MD_FEATURE_RESHAPE_ACTIVE)) { 9237 rdev2->saved_raid_disk = role; 9238 ret = remove_and_add_spares(mddev, rdev2); 9239 pr_info("Activated spare: %s\n", 9240 bdevname(rdev2->bdev,b)); 9241 /* wakeup mddev->thread here, so array could 9242 * perform resync with the new activated disk */ 9243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9244 md_wakeup_thread(mddev->thread); 9245 9246 } 9247 /* device faulty 9248 * We just want to do the minimum to mark the disk 9249 * as faulty. The recovery is performed by the 9250 * one who initiated the error. 9251 */ 9252 if ((role == 0xfffe) || (role == 0xfffd)) { 9253 md_error(mddev, rdev2); 9254 clear_bit(Blocked, &rdev2->flags); 9255 } 9256 } 9257 } 9258 9259 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9260 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9261 9262 /* 9263 * Since mddev->delta_disks has already updated in update_raid_disks, 9264 * so it is time to check reshape. 9265 */ 9266 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9267 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9268 /* 9269 * reshape is happening in the remote node, we need to 9270 * update reshape_position and call start_reshape. 9271 */ 9272 mddev->reshape_position = sb->reshape_position; 9273 if (mddev->pers->update_reshape_pos) 9274 mddev->pers->update_reshape_pos(mddev); 9275 if (mddev->pers->start_reshape) 9276 mddev->pers->start_reshape(mddev); 9277 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9278 mddev->reshape_position != MaxSector && 9279 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9280 /* reshape is just done in another node. */ 9281 mddev->reshape_position = MaxSector; 9282 if (mddev->pers->update_reshape_pos) 9283 mddev->pers->update_reshape_pos(mddev); 9284 } 9285 9286 /* Finally set the event to be up to date */ 9287 mddev->events = le64_to_cpu(sb->events); 9288 } 9289 9290 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9291 { 9292 int err; 9293 struct page *swapout = rdev->sb_page; 9294 struct mdp_superblock_1 *sb; 9295 9296 /* Store the sb page of the rdev in the swapout temporary 9297 * variable in case we err in the future 9298 */ 9299 rdev->sb_page = NULL; 9300 err = alloc_disk_sb(rdev); 9301 if (err == 0) { 9302 ClearPageUptodate(rdev->sb_page); 9303 rdev->sb_loaded = 0; 9304 err = super_types[mddev->major_version]. 9305 load_super(rdev, NULL, mddev->minor_version); 9306 } 9307 if (err < 0) { 9308 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9309 __func__, __LINE__, rdev->desc_nr, err); 9310 if (rdev->sb_page) 9311 put_page(rdev->sb_page); 9312 rdev->sb_page = swapout; 9313 rdev->sb_loaded = 1; 9314 return err; 9315 } 9316 9317 sb = page_address(rdev->sb_page); 9318 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9319 * is not set 9320 */ 9321 9322 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9323 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9324 9325 /* The other node finished recovery, call spare_active to set 9326 * device In_sync and mddev->degraded 9327 */ 9328 if (rdev->recovery_offset == MaxSector && 9329 !test_bit(In_sync, &rdev->flags) && 9330 mddev->pers->spare_active(mddev)) 9331 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9332 9333 put_page(swapout); 9334 return 0; 9335 } 9336 9337 void md_reload_sb(struct mddev *mddev, int nr) 9338 { 9339 struct md_rdev *rdev; 9340 int err; 9341 9342 /* Find the rdev */ 9343 rdev_for_each_rcu(rdev, mddev) { 9344 if (rdev->desc_nr == nr) 9345 break; 9346 } 9347 9348 if (!rdev || rdev->desc_nr != nr) { 9349 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9350 return; 9351 } 9352 9353 err = read_rdev(mddev, rdev); 9354 if (err < 0) 9355 return; 9356 9357 check_sb_changes(mddev, rdev); 9358 9359 /* Read all rdev's to update recovery_offset */ 9360 rdev_for_each_rcu(rdev, mddev) { 9361 if (!test_bit(Faulty, &rdev->flags)) 9362 read_rdev(mddev, rdev); 9363 } 9364 } 9365 EXPORT_SYMBOL(md_reload_sb); 9366 9367 #ifndef MODULE 9368 9369 /* 9370 * Searches all registered partitions for autorun RAID arrays 9371 * at boot time. 9372 */ 9373 9374 static DEFINE_MUTEX(detected_devices_mutex); 9375 static LIST_HEAD(all_detected_devices); 9376 struct detected_devices_node { 9377 struct list_head list; 9378 dev_t dev; 9379 }; 9380 9381 void md_autodetect_dev(dev_t dev) 9382 { 9383 struct detected_devices_node *node_detected_dev; 9384 9385 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9386 if (node_detected_dev) { 9387 node_detected_dev->dev = dev; 9388 mutex_lock(&detected_devices_mutex); 9389 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9390 mutex_unlock(&detected_devices_mutex); 9391 } 9392 } 9393 9394 static void autostart_arrays(int part) 9395 { 9396 struct md_rdev *rdev; 9397 struct detected_devices_node *node_detected_dev; 9398 dev_t dev; 9399 int i_scanned, i_passed; 9400 9401 i_scanned = 0; 9402 i_passed = 0; 9403 9404 pr_info("md: Autodetecting RAID arrays.\n"); 9405 9406 mutex_lock(&detected_devices_mutex); 9407 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9408 i_scanned++; 9409 node_detected_dev = list_entry(all_detected_devices.next, 9410 struct detected_devices_node, list); 9411 list_del(&node_detected_dev->list); 9412 dev = node_detected_dev->dev; 9413 kfree(node_detected_dev); 9414 mutex_unlock(&detected_devices_mutex); 9415 rdev = md_import_device(dev,0, 90); 9416 mutex_lock(&detected_devices_mutex); 9417 if (IS_ERR(rdev)) 9418 continue; 9419 9420 if (test_bit(Faulty, &rdev->flags)) 9421 continue; 9422 9423 set_bit(AutoDetected, &rdev->flags); 9424 list_add(&rdev->same_set, &pending_raid_disks); 9425 i_passed++; 9426 } 9427 mutex_unlock(&detected_devices_mutex); 9428 9429 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9430 9431 autorun_devices(part); 9432 } 9433 9434 #endif /* !MODULE */ 9435 9436 static __exit void md_exit(void) 9437 { 9438 struct mddev *mddev; 9439 struct list_head *tmp; 9440 int delay = 1; 9441 9442 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9443 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9444 9445 unregister_blkdev(MD_MAJOR,"md"); 9446 unregister_blkdev(mdp_major, "mdp"); 9447 unregister_reboot_notifier(&md_notifier); 9448 unregister_sysctl_table(raid_table_header); 9449 9450 /* We cannot unload the modules while some process is 9451 * waiting for us in select() or poll() - wake them up 9452 */ 9453 md_unloading = 1; 9454 while (waitqueue_active(&md_event_waiters)) { 9455 /* not safe to leave yet */ 9456 wake_up(&md_event_waiters); 9457 msleep(delay); 9458 delay += delay; 9459 } 9460 remove_proc_entry("mdstat", NULL); 9461 9462 for_each_mddev(mddev, tmp) { 9463 export_array(mddev); 9464 mddev->ctime = 0; 9465 mddev->hold_active = 0; 9466 /* 9467 * for_each_mddev() will call mddev_put() at the end of each 9468 * iteration. As the mddev is now fully clear, this will 9469 * schedule the mddev for destruction by a workqueue, and the 9470 * destroy_workqueue() below will wait for that to complete. 9471 */ 9472 } 9473 destroy_workqueue(md_misc_wq); 9474 destroy_workqueue(md_wq); 9475 } 9476 9477 subsys_initcall(md_init); 9478 module_exit(md_exit) 9479 9480 static int get_ro(char *buffer, const struct kernel_param *kp) 9481 { 9482 return sprintf(buffer, "%d", start_readonly); 9483 } 9484 static int set_ro(const char *val, const struct kernel_param *kp) 9485 { 9486 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9487 } 9488 9489 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9490 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9491 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9492 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9493 9494 MODULE_LICENSE("GPL"); 9495 MODULE_DESCRIPTION("MD RAID framework"); 9496 MODULE_ALIAS("md"); 9497 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9498