xref: /openbmc/linux/drivers/md/md.c (revision 5c73cc4b6c83e88863a5de869cc5df3b913aef4a)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 static int remove_and_add_spares(struct mddev *mddev,
74 				 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static struct ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static struct ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static struct ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 			    struct mddev *mddev)
160 {
161 	struct bio *b;
162 
163 	if (!mddev || !mddev->bio_set)
164 		return bio_alloc(gfp_mask, nr_iovecs);
165 
166 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 	if (!b)
168 		return NULL;
169 	return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172 
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 			    struct mddev *mddev)
175 {
176 	if (!mddev || !mddev->bio_set)
177 		return bio_clone(bio, gfp_mask);
178 
179 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182 
183 /*
184  * We have a system wide 'event count' that is incremented
185  * on any 'interesting' event, and readers of /proc/mdstat
186  * can use 'poll' or 'select' to find out when the event
187  * count increases.
188  *
189  * Events are:
190  *  start array, stop array, error, add device, remove device,
191  *  start build, activate spare
192  */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 	atomic_inc(&md_event_count);
198 	wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201 
202 /* Alternate version that can be called from interrupts
203  * when calling sysfs_notify isn't needed.
204  */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 	atomic_inc(&md_event_count);
208 	wake_up(&md_event_waiters);
209 }
210 
211 /*
212  * Enables to iterate over all existing md arrays
213  * all_mddevs_lock protects this list.
214  */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217 
218 /*
219  * iterates through all used mddevs in the system.
220  * We take care to grab the all_mddevs_lock whenever navigating
221  * the list, and to always hold a refcount when unlocked.
222  * Any code which breaks out of this loop while own
223  * a reference to the current mddev and must mddev_put it.
224  */
225 #define for_each_mddev(_mddev,_tmp)					\
226 									\
227 	for (({ spin_lock(&all_mddevs_lock);				\
228 		_tmp = all_mddevs.next;					\
229 		_mddev = NULL;});					\
230 	     ({ if (_tmp != &all_mddevs)				\
231 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 		spin_unlock(&all_mddevs_lock);				\
233 		if (_mddev) mddev_put(_mddev);				\
234 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
235 		_tmp != &all_mddevs;});					\
236 	     ({ spin_lock(&all_mddevs_lock);				\
237 		_tmp = _tmp->next;})					\
238 		)
239 
240 /* Rather than calling directly into the personality make_request function,
241  * IO requests come here first so that we can check if the device is
242  * being suspended pending a reconfiguration.
243  * We hold a refcount over the call to ->make_request.  By the time that
244  * call has finished, the bio has been linked into some internal structure
245  * and so is visible to ->quiesce(), so we don't need the refcount any more.
246  */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 	const int rw = bio_data_dir(bio);
250 	struct mddev *mddev = q->queuedata;
251 	unsigned int sectors;
252 	int cpu;
253 
254 	if (mddev == NULL || mddev->pers == NULL
255 	    || !mddev->ready) {
256 		bio_io_error(bio);
257 		return;
258 	}
259 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
260 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
261 		return;
262 	}
263 	smp_rmb(); /* Ensure implications of  'active' are visible */
264 	rcu_read_lock();
265 	if (mddev->suspended) {
266 		DEFINE_WAIT(__wait);
267 		for (;;) {
268 			prepare_to_wait(&mddev->sb_wait, &__wait,
269 					TASK_UNINTERRUPTIBLE);
270 			if (!mddev->suspended)
271 				break;
272 			rcu_read_unlock();
273 			schedule();
274 			rcu_read_lock();
275 		}
276 		finish_wait(&mddev->sb_wait, &__wait);
277 	}
278 	atomic_inc(&mddev->active_io);
279 	rcu_read_unlock();
280 
281 	/*
282 	 * save the sectors now since our bio can
283 	 * go away inside make_request
284 	 */
285 	sectors = bio_sectors(bio);
286 	mddev->pers->make_request(mddev, bio);
287 
288 	cpu = part_stat_lock();
289 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
290 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
291 	part_stat_unlock();
292 
293 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
294 		wake_up(&mddev->sb_wait);
295 }
296 
297 /* mddev_suspend makes sure no new requests are submitted
298  * to the device, and that any requests that have been submitted
299  * are completely handled.
300  * Once mddev_detach() is called and completes, the module will be
301  * completely unused.
302  */
303 void mddev_suspend(struct mddev *mddev)
304 {
305 	BUG_ON(mddev->suspended);
306 	mddev->suspended = 1;
307 	synchronize_rcu();
308 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
309 	mddev->pers->quiesce(mddev, 1);
310 
311 	del_timer_sync(&mddev->safemode_timer);
312 }
313 EXPORT_SYMBOL_GPL(mddev_suspend);
314 
315 void mddev_resume(struct mddev *mddev)
316 {
317 	mddev->suspended = 0;
318 	wake_up(&mddev->sb_wait);
319 	mddev->pers->quiesce(mddev, 0);
320 
321 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
322 	md_wakeup_thread(mddev->thread);
323 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
324 }
325 EXPORT_SYMBOL_GPL(mddev_resume);
326 
327 int mddev_congested(struct mddev *mddev, int bits)
328 {
329 	struct md_personality *pers = mddev->pers;
330 	int ret = 0;
331 
332 	rcu_read_lock();
333 	if (mddev->suspended)
334 		ret = 1;
335 	else if (pers && pers->congested)
336 		ret = pers->congested(mddev, bits);
337 	rcu_read_unlock();
338 	return ret;
339 }
340 EXPORT_SYMBOL_GPL(mddev_congested);
341 static int md_congested(void *data, int bits)
342 {
343 	struct mddev *mddev = data;
344 	return mddev_congested(mddev, bits);
345 }
346 
347 static int md_mergeable_bvec(struct request_queue *q,
348 			     struct bvec_merge_data *bvm,
349 			     struct bio_vec *biovec)
350 {
351 	struct mddev *mddev = q->queuedata;
352 	int ret;
353 	rcu_read_lock();
354 	if (mddev->suspended) {
355 		/* Must always allow one vec */
356 		if (bvm->bi_size == 0)
357 			ret = biovec->bv_len;
358 		else
359 			ret = 0;
360 	} else {
361 		struct md_personality *pers = mddev->pers;
362 		if (pers && pers->mergeable_bvec)
363 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
364 		else
365 			ret = biovec->bv_len;
366 	}
367 	rcu_read_unlock();
368 	return ret;
369 }
370 /*
371  * Generic flush handling for md
372  */
373 
374 static void md_end_flush(struct bio *bio, int err)
375 {
376 	struct md_rdev *rdev = bio->bi_private;
377 	struct mddev *mddev = rdev->mddev;
378 
379 	rdev_dec_pending(rdev, mddev);
380 
381 	if (atomic_dec_and_test(&mddev->flush_pending)) {
382 		/* The pre-request flush has finished */
383 		queue_work(md_wq, &mddev->flush_work);
384 	}
385 	bio_put(bio);
386 }
387 
388 static void md_submit_flush_data(struct work_struct *ws);
389 
390 static void submit_flushes(struct work_struct *ws)
391 {
392 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
393 	struct md_rdev *rdev;
394 
395 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
396 	atomic_set(&mddev->flush_pending, 1);
397 	rcu_read_lock();
398 	rdev_for_each_rcu(rdev, mddev)
399 		if (rdev->raid_disk >= 0 &&
400 		    !test_bit(Faulty, &rdev->flags)) {
401 			/* Take two references, one is dropped
402 			 * when request finishes, one after
403 			 * we reclaim rcu_read_lock
404 			 */
405 			struct bio *bi;
406 			atomic_inc(&rdev->nr_pending);
407 			atomic_inc(&rdev->nr_pending);
408 			rcu_read_unlock();
409 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
410 			bi->bi_end_io = md_end_flush;
411 			bi->bi_private = rdev;
412 			bi->bi_bdev = rdev->bdev;
413 			atomic_inc(&mddev->flush_pending);
414 			submit_bio(WRITE_FLUSH, bi);
415 			rcu_read_lock();
416 			rdev_dec_pending(rdev, mddev);
417 		}
418 	rcu_read_unlock();
419 	if (atomic_dec_and_test(&mddev->flush_pending))
420 		queue_work(md_wq, &mddev->flush_work);
421 }
422 
423 static void md_submit_flush_data(struct work_struct *ws)
424 {
425 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
426 	struct bio *bio = mddev->flush_bio;
427 
428 	if (bio->bi_iter.bi_size == 0)
429 		/* an empty barrier - all done */
430 		bio_endio(bio, 0);
431 	else {
432 		bio->bi_rw &= ~REQ_FLUSH;
433 		mddev->pers->make_request(mddev, bio);
434 	}
435 
436 	mddev->flush_bio = NULL;
437 	wake_up(&mddev->sb_wait);
438 }
439 
440 void md_flush_request(struct mddev *mddev, struct bio *bio)
441 {
442 	spin_lock_irq(&mddev->lock);
443 	wait_event_lock_irq(mddev->sb_wait,
444 			    !mddev->flush_bio,
445 			    mddev->lock);
446 	mddev->flush_bio = bio;
447 	spin_unlock_irq(&mddev->lock);
448 
449 	INIT_WORK(&mddev->flush_work, submit_flushes);
450 	queue_work(md_wq, &mddev->flush_work);
451 }
452 EXPORT_SYMBOL(md_flush_request);
453 
454 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
455 {
456 	struct mddev *mddev = cb->data;
457 	md_wakeup_thread(mddev->thread);
458 	kfree(cb);
459 }
460 EXPORT_SYMBOL(md_unplug);
461 
462 static inline struct mddev *mddev_get(struct mddev *mddev)
463 {
464 	atomic_inc(&mddev->active);
465 	return mddev;
466 }
467 
468 static void mddev_delayed_delete(struct work_struct *ws);
469 
470 static void mddev_put(struct mddev *mddev)
471 {
472 	struct bio_set *bs = NULL;
473 
474 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
475 		return;
476 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
477 	    mddev->ctime == 0 && !mddev->hold_active) {
478 		/* Array is not configured at all, and not held active,
479 		 * so destroy it */
480 		list_del_init(&mddev->all_mddevs);
481 		bs = mddev->bio_set;
482 		mddev->bio_set = NULL;
483 		if (mddev->gendisk) {
484 			/* We did a probe so need to clean up.  Call
485 			 * queue_work inside the spinlock so that
486 			 * flush_workqueue() after mddev_find will
487 			 * succeed in waiting for the work to be done.
488 			 */
489 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
490 			queue_work(md_misc_wq, &mddev->del_work);
491 		} else
492 			kfree(mddev);
493 	}
494 	spin_unlock(&all_mddevs_lock);
495 	if (bs)
496 		bioset_free(bs);
497 }
498 
499 void mddev_init(struct mddev *mddev)
500 {
501 	mutex_init(&mddev->open_mutex);
502 	mutex_init(&mddev->reconfig_mutex);
503 	mutex_init(&mddev->bitmap_info.mutex);
504 	INIT_LIST_HEAD(&mddev->disks);
505 	INIT_LIST_HEAD(&mddev->all_mddevs);
506 	init_timer(&mddev->safemode_timer);
507 	atomic_set(&mddev->active, 1);
508 	atomic_set(&mddev->openers, 0);
509 	atomic_set(&mddev->active_io, 0);
510 	spin_lock_init(&mddev->lock);
511 	atomic_set(&mddev->flush_pending, 0);
512 	init_waitqueue_head(&mddev->sb_wait);
513 	init_waitqueue_head(&mddev->recovery_wait);
514 	mddev->reshape_position = MaxSector;
515 	mddev->reshape_backwards = 0;
516 	mddev->last_sync_action = "none";
517 	mddev->resync_min = 0;
518 	mddev->resync_max = MaxSector;
519 	mddev->level = LEVEL_NONE;
520 }
521 EXPORT_SYMBOL_GPL(mddev_init);
522 
523 static struct mddev *mddev_find(dev_t unit)
524 {
525 	struct mddev *mddev, *new = NULL;
526 
527 	if (unit && MAJOR(unit) != MD_MAJOR)
528 		unit &= ~((1<<MdpMinorShift)-1);
529 
530  retry:
531 	spin_lock(&all_mddevs_lock);
532 
533 	if (unit) {
534 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
535 			if (mddev->unit == unit) {
536 				mddev_get(mddev);
537 				spin_unlock(&all_mddevs_lock);
538 				kfree(new);
539 				return mddev;
540 			}
541 
542 		if (new) {
543 			list_add(&new->all_mddevs, &all_mddevs);
544 			spin_unlock(&all_mddevs_lock);
545 			new->hold_active = UNTIL_IOCTL;
546 			return new;
547 		}
548 	} else if (new) {
549 		/* find an unused unit number */
550 		static int next_minor = 512;
551 		int start = next_minor;
552 		int is_free = 0;
553 		int dev = 0;
554 		while (!is_free) {
555 			dev = MKDEV(MD_MAJOR, next_minor);
556 			next_minor++;
557 			if (next_minor > MINORMASK)
558 				next_minor = 0;
559 			if (next_minor == start) {
560 				/* Oh dear, all in use. */
561 				spin_unlock(&all_mddevs_lock);
562 				kfree(new);
563 				return NULL;
564 			}
565 
566 			is_free = 1;
567 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
568 				if (mddev->unit == dev) {
569 					is_free = 0;
570 					break;
571 				}
572 		}
573 		new->unit = dev;
574 		new->md_minor = MINOR(dev);
575 		new->hold_active = UNTIL_STOP;
576 		list_add(&new->all_mddevs, &all_mddevs);
577 		spin_unlock(&all_mddevs_lock);
578 		return new;
579 	}
580 	spin_unlock(&all_mddevs_lock);
581 
582 	new = kzalloc(sizeof(*new), GFP_KERNEL);
583 	if (!new)
584 		return NULL;
585 
586 	new->unit = unit;
587 	if (MAJOR(unit) == MD_MAJOR)
588 		new->md_minor = MINOR(unit);
589 	else
590 		new->md_minor = MINOR(unit) >> MdpMinorShift;
591 
592 	mddev_init(new);
593 
594 	goto retry;
595 }
596 
597 static struct attribute_group md_redundancy_group;
598 
599 void mddev_unlock(struct mddev *mddev)
600 {
601 	if (mddev->to_remove) {
602 		/* These cannot be removed under reconfig_mutex as
603 		 * an access to the files will try to take reconfig_mutex
604 		 * while holding the file unremovable, which leads to
605 		 * a deadlock.
606 		 * So hold set sysfs_active while the remove in happeing,
607 		 * and anything else which might set ->to_remove or my
608 		 * otherwise change the sysfs namespace will fail with
609 		 * -EBUSY if sysfs_active is still set.
610 		 * We set sysfs_active under reconfig_mutex and elsewhere
611 		 * test it under the same mutex to ensure its correct value
612 		 * is seen.
613 		 */
614 		struct attribute_group *to_remove = mddev->to_remove;
615 		mddev->to_remove = NULL;
616 		mddev->sysfs_active = 1;
617 		mutex_unlock(&mddev->reconfig_mutex);
618 
619 		if (mddev->kobj.sd) {
620 			if (to_remove != &md_redundancy_group)
621 				sysfs_remove_group(&mddev->kobj, to_remove);
622 			if (mddev->pers == NULL ||
623 			    mddev->pers->sync_request == NULL) {
624 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
625 				if (mddev->sysfs_action)
626 					sysfs_put(mddev->sysfs_action);
627 				mddev->sysfs_action = NULL;
628 			}
629 		}
630 		mddev->sysfs_active = 0;
631 	} else
632 		mutex_unlock(&mddev->reconfig_mutex);
633 
634 	/* As we've dropped the mutex we need a spinlock to
635 	 * make sure the thread doesn't disappear
636 	 */
637 	spin_lock(&pers_lock);
638 	md_wakeup_thread(mddev->thread);
639 	spin_unlock(&pers_lock);
640 }
641 EXPORT_SYMBOL_GPL(mddev_unlock);
642 
643 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
644 {
645 	struct md_rdev *rdev;
646 
647 	rdev_for_each_rcu(rdev, mddev)
648 		if (rdev->desc_nr == nr)
649 			return rdev;
650 
651 	return NULL;
652 }
653 
654 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
655 {
656 	struct md_rdev *rdev;
657 
658 	rdev_for_each(rdev, mddev)
659 		if (rdev->bdev->bd_dev == dev)
660 			return rdev;
661 
662 	return NULL;
663 }
664 
665 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
666 {
667 	struct md_rdev *rdev;
668 
669 	rdev_for_each_rcu(rdev, mddev)
670 		if (rdev->bdev->bd_dev == dev)
671 			return rdev;
672 
673 	return NULL;
674 }
675 
676 static struct md_personality *find_pers(int level, char *clevel)
677 {
678 	struct md_personality *pers;
679 	list_for_each_entry(pers, &pers_list, list) {
680 		if (level != LEVEL_NONE && pers->level == level)
681 			return pers;
682 		if (strcmp(pers->name, clevel)==0)
683 			return pers;
684 	}
685 	return NULL;
686 }
687 
688 /* return the offset of the super block in 512byte sectors */
689 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
690 {
691 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
692 	return MD_NEW_SIZE_SECTORS(num_sectors);
693 }
694 
695 static int alloc_disk_sb(struct md_rdev *rdev)
696 {
697 	rdev->sb_page = alloc_page(GFP_KERNEL);
698 	if (!rdev->sb_page) {
699 		printk(KERN_ALERT "md: out of memory.\n");
700 		return -ENOMEM;
701 	}
702 
703 	return 0;
704 }
705 
706 void md_rdev_clear(struct md_rdev *rdev)
707 {
708 	if (rdev->sb_page) {
709 		put_page(rdev->sb_page);
710 		rdev->sb_loaded = 0;
711 		rdev->sb_page = NULL;
712 		rdev->sb_start = 0;
713 		rdev->sectors = 0;
714 	}
715 	if (rdev->bb_page) {
716 		put_page(rdev->bb_page);
717 		rdev->bb_page = NULL;
718 	}
719 	kfree(rdev->badblocks.page);
720 	rdev->badblocks.page = NULL;
721 }
722 EXPORT_SYMBOL_GPL(md_rdev_clear);
723 
724 static void super_written(struct bio *bio, int error)
725 {
726 	struct md_rdev *rdev = bio->bi_private;
727 	struct mddev *mddev = rdev->mddev;
728 
729 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
730 		printk("md: super_written gets error=%d, uptodate=%d\n",
731 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
732 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
733 		md_error(mddev, rdev);
734 	}
735 
736 	if (atomic_dec_and_test(&mddev->pending_writes))
737 		wake_up(&mddev->sb_wait);
738 	bio_put(bio);
739 }
740 
741 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
742 		   sector_t sector, int size, struct page *page)
743 {
744 	/* write first size bytes of page to sector of rdev
745 	 * Increment mddev->pending_writes before returning
746 	 * and decrement it on completion, waking up sb_wait
747 	 * if zero is reached.
748 	 * If an error occurred, call md_error
749 	 */
750 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
751 
752 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
753 	bio->bi_iter.bi_sector = sector;
754 	bio_add_page(bio, page, size, 0);
755 	bio->bi_private = rdev;
756 	bio->bi_end_io = super_written;
757 
758 	atomic_inc(&mddev->pending_writes);
759 	submit_bio(WRITE_FLUSH_FUA, bio);
760 }
761 
762 void md_super_wait(struct mddev *mddev)
763 {
764 	/* wait for all superblock writes that were scheduled to complete */
765 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
766 }
767 
768 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
769 		 struct page *page, int rw, bool metadata_op)
770 {
771 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
772 	int ret;
773 
774 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
775 		rdev->meta_bdev : rdev->bdev;
776 	if (metadata_op)
777 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
778 	else if (rdev->mddev->reshape_position != MaxSector &&
779 		 (rdev->mddev->reshape_backwards ==
780 		  (sector >= rdev->mddev->reshape_position)))
781 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
782 	else
783 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
784 	bio_add_page(bio, page, size, 0);
785 	submit_bio_wait(rw, bio);
786 
787 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
788 	bio_put(bio);
789 	return ret;
790 }
791 EXPORT_SYMBOL_GPL(sync_page_io);
792 
793 static int read_disk_sb(struct md_rdev *rdev, int size)
794 {
795 	char b[BDEVNAME_SIZE];
796 
797 	if (rdev->sb_loaded)
798 		return 0;
799 
800 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
801 		goto fail;
802 	rdev->sb_loaded = 1;
803 	return 0;
804 
805 fail:
806 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
807 		bdevname(rdev->bdev,b));
808 	return -EINVAL;
809 }
810 
811 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
814 		sb1->set_uuid1 == sb2->set_uuid1 &&
815 		sb1->set_uuid2 == sb2->set_uuid2 &&
816 		sb1->set_uuid3 == sb2->set_uuid3;
817 }
818 
819 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
820 {
821 	int ret;
822 	mdp_super_t *tmp1, *tmp2;
823 
824 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
825 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
826 
827 	if (!tmp1 || !tmp2) {
828 		ret = 0;
829 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
830 		goto abort;
831 	}
832 
833 	*tmp1 = *sb1;
834 	*tmp2 = *sb2;
835 
836 	/*
837 	 * nr_disks is not constant
838 	 */
839 	tmp1->nr_disks = 0;
840 	tmp2->nr_disks = 0;
841 
842 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
843 abort:
844 	kfree(tmp1);
845 	kfree(tmp2);
846 	return ret;
847 }
848 
849 static u32 md_csum_fold(u32 csum)
850 {
851 	csum = (csum & 0xffff) + (csum >> 16);
852 	return (csum & 0xffff) + (csum >> 16);
853 }
854 
855 static unsigned int calc_sb_csum(mdp_super_t *sb)
856 {
857 	u64 newcsum = 0;
858 	u32 *sb32 = (u32*)sb;
859 	int i;
860 	unsigned int disk_csum, csum;
861 
862 	disk_csum = sb->sb_csum;
863 	sb->sb_csum = 0;
864 
865 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
866 		newcsum += sb32[i];
867 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
868 
869 #ifdef CONFIG_ALPHA
870 	/* This used to use csum_partial, which was wrong for several
871 	 * reasons including that different results are returned on
872 	 * different architectures.  It isn't critical that we get exactly
873 	 * the same return value as before (we always csum_fold before
874 	 * testing, and that removes any differences).  However as we
875 	 * know that csum_partial always returned a 16bit value on
876 	 * alphas, do a fold to maximise conformity to previous behaviour.
877 	 */
878 	sb->sb_csum = md_csum_fold(disk_csum);
879 #else
880 	sb->sb_csum = disk_csum;
881 #endif
882 	return csum;
883 }
884 
885 /*
886  * Handle superblock details.
887  * We want to be able to handle multiple superblock formats
888  * so we have a common interface to them all, and an array of
889  * different handlers.
890  * We rely on user-space to write the initial superblock, and support
891  * reading and updating of superblocks.
892  * Interface methods are:
893  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894  *      loads and validates a superblock on dev.
895  *      if refdev != NULL, compare superblocks on both devices
896  *    Return:
897  *      0 - dev has a superblock that is compatible with refdev
898  *      1 - dev has a superblock that is compatible and newer than refdev
899  *          so dev should be used as the refdev in future
900  *     -EINVAL superblock incompatible or invalid
901  *     -othererror e.g. -EIO
902  *
903  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
904  *      Verify that dev is acceptable into mddev.
905  *       The first time, mddev->raid_disks will be 0, and data from
906  *       dev should be merged in.  Subsequent calls check that dev
907  *       is new enough.  Return 0 or -EINVAL
908  *
909  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
910  *     Update the superblock for rdev with data in mddev
911  *     This does not write to disc.
912  *
913  */
914 
915 struct super_type  {
916 	char		    *name;
917 	struct module	    *owner;
918 	int		    (*load_super)(struct md_rdev *rdev,
919 					  struct md_rdev *refdev,
920 					  int minor_version);
921 	int		    (*validate_super)(struct mddev *mddev,
922 					      struct md_rdev *rdev);
923 	void		    (*sync_super)(struct mddev *mddev,
924 					  struct md_rdev *rdev);
925 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
926 						sector_t num_sectors);
927 	int		    (*allow_new_offset)(struct md_rdev *rdev,
928 						unsigned long long new_offset);
929 };
930 
931 /*
932  * Check that the given mddev has no bitmap.
933  *
934  * This function is called from the run method of all personalities that do not
935  * support bitmaps. It prints an error message and returns non-zero if mddev
936  * has a bitmap. Otherwise, it returns 0.
937  *
938  */
939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942 		return 0;
943 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 		mdname(mddev), mddev->pers->name);
945 	return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948 
949 /*
950  * load_super for 0.90.0
951  */
952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955 	mdp_super_t *sb;
956 	int ret;
957 
958 	/*
959 	 * Calculate the position of the superblock (512byte sectors),
960 	 * it's at the end of the disk.
961 	 *
962 	 * It also happens to be a multiple of 4Kb.
963 	 */
964 	rdev->sb_start = calc_dev_sboffset(rdev);
965 
966 	ret = read_disk_sb(rdev, MD_SB_BYTES);
967 	if (ret) return ret;
968 
969 	ret = -EINVAL;
970 
971 	bdevname(rdev->bdev, b);
972 	sb = page_address(rdev->sb_page);
973 
974 	if (sb->md_magic != MD_SB_MAGIC) {
975 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976 		       b);
977 		goto abort;
978 	}
979 
980 	if (sb->major_version != 0 ||
981 	    sb->minor_version < 90 ||
982 	    sb->minor_version > 91) {
983 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 			sb->major_version, sb->minor_version,
985 			b);
986 		goto abort;
987 	}
988 
989 	if (sb->raid_disks <= 0)
990 		goto abort;
991 
992 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994 			b);
995 		goto abort;
996 	}
997 
998 	rdev->preferred_minor = sb->md_minor;
999 	rdev->data_offset = 0;
1000 	rdev->new_data_offset = 0;
1001 	rdev->sb_size = MD_SB_BYTES;
1002 	rdev->badblocks.shift = -1;
1003 
1004 	if (sb->level == LEVEL_MULTIPATH)
1005 		rdev->desc_nr = -1;
1006 	else
1007 		rdev->desc_nr = sb->this_disk.number;
1008 
1009 	if (!refdev) {
1010 		ret = 1;
1011 	} else {
1012 		__u64 ev1, ev2;
1013 		mdp_super_t *refsb = page_address(refdev->sb_page);
1014 		if (!uuid_equal(refsb, sb)) {
1015 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 				b, bdevname(refdev->bdev,b2));
1017 			goto abort;
1018 		}
1019 		if (!sb_equal(refsb, sb)) {
1020 			printk(KERN_WARNING "md: %s has same UUID"
1021 			       " but different superblock to %s\n",
1022 			       b, bdevname(refdev->bdev, b2));
1023 			goto abort;
1024 		}
1025 		ev1 = md_event(sb);
1026 		ev2 = md_event(refsb);
1027 		if (ev1 > ev2)
1028 			ret = 1;
1029 		else
1030 			ret = 0;
1031 	}
1032 	rdev->sectors = rdev->sb_start;
1033 	/* Limit to 4TB as metadata cannot record more than that.
1034 	 * (not needed for Linear and RAID0 as metadata doesn't
1035 	 * record this size)
1036 	 */
1037 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1038 		rdev->sectors = (2ULL << 32) - 2;
1039 
1040 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1041 		/* "this cannot possibly happen" ... */
1042 		ret = -EINVAL;
1043 
1044  abort:
1045 	return ret;
1046 }
1047 
1048 /*
1049  * validate_super for 0.90.0
1050  */
1051 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1052 {
1053 	mdp_disk_t *desc;
1054 	mdp_super_t *sb = page_address(rdev->sb_page);
1055 	__u64 ev1 = md_event(sb);
1056 
1057 	rdev->raid_disk = -1;
1058 	clear_bit(Faulty, &rdev->flags);
1059 	clear_bit(In_sync, &rdev->flags);
1060 	clear_bit(Bitmap_sync, &rdev->flags);
1061 	clear_bit(WriteMostly, &rdev->flags);
1062 
1063 	if (mddev->raid_disks == 0) {
1064 		mddev->major_version = 0;
1065 		mddev->minor_version = sb->minor_version;
1066 		mddev->patch_version = sb->patch_version;
1067 		mddev->external = 0;
1068 		mddev->chunk_sectors = sb->chunk_size >> 9;
1069 		mddev->ctime = sb->ctime;
1070 		mddev->utime = sb->utime;
1071 		mddev->level = sb->level;
1072 		mddev->clevel[0] = 0;
1073 		mddev->layout = sb->layout;
1074 		mddev->raid_disks = sb->raid_disks;
1075 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1076 		mddev->events = ev1;
1077 		mddev->bitmap_info.offset = 0;
1078 		mddev->bitmap_info.space = 0;
1079 		/* bitmap can use 60 K after the 4K superblocks */
1080 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1081 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1082 		mddev->reshape_backwards = 0;
1083 
1084 		if (mddev->minor_version >= 91) {
1085 			mddev->reshape_position = sb->reshape_position;
1086 			mddev->delta_disks = sb->delta_disks;
1087 			mddev->new_level = sb->new_level;
1088 			mddev->new_layout = sb->new_layout;
1089 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1090 			if (mddev->delta_disks < 0)
1091 				mddev->reshape_backwards = 1;
1092 		} else {
1093 			mddev->reshape_position = MaxSector;
1094 			mddev->delta_disks = 0;
1095 			mddev->new_level = mddev->level;
1096 			mddev->new_layout = mddev->layout;
1097 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1098 		}
1099 
1100 		if (sb->state & (1<<MD_SB_CLEAN))
1101 			mddev->recovery_cp = MaxSector;
1102 		else {
1103 			if (sb->events_hi == sb->cp_events_hi &&
1104 				sb->events_lo == sb->cp_events_lo) {
1105 				mddev->recovery_cp = sb->recovery_cp;
1106 			} else
1107 				mddev->recovery_cp = 0;
1108 		}
1109 
1110 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1111 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1112 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1113 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1114 
1115 		mddev->max_disks = MD_SB_DISKS;
1116 
1117 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1118 		    mddev->bitmap_info.file == NULL) {
1119 			mddev->bitmap_info.offset =
1120 				mddev->bitmap_info.default_offset;
1121 			mddev->bitmap_info.space =
1122 				mddev->bitmap_info.default_space;
1123 		}
1124 
1125 	} else if (mddev->pers == NULL) {
1126 		/* Insist on good event counter while assembling, except
1127 		 * for spares (which don't need an event count) */
1128 		++ev1;
1129 		if (sb->disks[rdev->desc_nr].state & (
1130 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1131 			if (ev1 < mddev->events)
1132 				return -EINVAL;
1133 	} else if (mddev->bitmap) {
1134 		/* if adding to array with a bitmap, then we can accept an
1135 		 * older device ... but not too old.
1136 		 */
1137 		if (ev1 < mddev->bitmap->events_cleared)
1138 			return 0;
1139 		if (ev1 < mddev->events)
1140 			set_bit(Bitmap_sync, &rdev->flags);
1141 	} else {
1142 		if (ev1 < mddev->events)
1143 			/* just a hot-add of a new device, leave raid_disk at -1 */
1144 			return 0;
1145 	}
1146 
1147 	if (mddev->level != LEVEL_MULTIPATH) {
1148 		desc = sb->disks + rdev->desc_nr;
1149 
1150 		if (desc->state & (1<<MD_DISK_FAULTY))
1151 			set_bit(Faulty, &rdev->flags);
1152 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153 			    desc->raid_disk < mddev->raid_disks */) {
1154 			set_bit(In_sync, &rdev->flags);
1155 			rdev->raid_disk = desc->raid_disk;
1156 			rdev->saved_raid_disk = desc->raid_disk;
1157 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 			/* active but not in sync implies recovery up to
1159 			 * reshape position.  We don't know exactly where
1160 			 * that is, so set to zero for now */
1161 			if (mddev->minor_version >= 91) {
1162 				rdev->recovery_offset = 0;
1163 				rdev->raid_disk = desc->raid_disk;
1164 			}
1165 		}
1166 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 			set_bit(WriteMostly, &rdev->flags);
1168 	} else /* MULTIPATH are always insync */
1169 		set_bit(In_sync, &rdev->flags);
1170 	return 0;
1171 }
1172 
1173 /*
1174  * sync_super for 0.90.0
1175  */
1176 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1177 {
1178 	mdp_super_t *sb;
1179 	struct md_rdev *rdev2;
1180 	int next_spare = mddev->raid_disks;
1181 
1182 	/* make rdev->sb match mddev data..
1183 	 *
1184 	 * 1/ zero out disks
1185 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1186 	 * 3/ any empty disks < next_spare become removed
1187 	 *
1188 	 * disks[0] gets initialised to REMOVED because
1189 	 * we cannot be sure from other fields if it has
1190 	 * been initialised or not.
1191 	 */
1192 	int i;
1193 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1194 
1195 	rdev->sb_size = MD_SB_BYTES;
1196 
1197 	sb = page_address(rdev->sb_page);
1198 
1199 	memset(sb, 0, sizeof(*sb));
1200 
1201 	sb->md_magic = MD_SB_MAGIC;
1202 	sb->major_version = mddev->major_version;
1203 	sb->patch_version = mddev->patch_version;
1204 	sb->gvalid_words  = 0; /* ignored */
1205 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1206 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1207 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1208 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1209 
1210 	sb->ctime = mddev->ctime;
1211 	sb->level = mddev->level;
1212 	sb->size = mddev->dev_sectors / 2;
1213 	sb->raid_disks = mddev->raid_disks;
1214 	sb->md_minor = mddev->md_minor;
1215 	sb->not_persistent = 0;
1216 	sb->utime = mddev->utime;
1217 	sb->state = 0;
1218 	sb->events_hi = (mddev->events>>32);
1219 	sb->events_lo = (u32)mddev->events;
1220 
1221 	if (mddev->reshape_position == MaxSector)
1222 		sb->minor_version = 90;
1223 	else {
1224 		sb->minor_version = 91;
1225 		sb->reshape_position = mddev->reshape_position;
1226 		sb->new_level = mddev->new_level;
1227 		sb->delta_disks = mddev->delta_disks;
1228 		sb->new_layout = mddev->new_layout;
1229 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1230 	}
1231 	mddev->minor_version = sb->minor_version;
1232 	if (mddev->in_sync)
1233 	{
1234 		sb->recovery_cp = mddev->recovery_cp;
1235 		sb->cp_events_hi = (mddev->events>>32);
1236 		sb->cp_events_lo = (u32)mddev->events;
1237 		if (mddev->recovery_cp == MaxSector)
1238 			sb->state = (1<< MD_SB_CLEAN);
1239 	} else
1240 		sb->recovery_cp = 0;
1241 
1242 	sb->layout = mddev->layout;
1243 	sb->chunk_size = mddev->chunk_sectors << 9;
1244 
1245 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1246 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1247 
1248 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1249 	rdev_for_each(rdev2, mddev) {
1250 		mdp_disk_t *d;
1251 		int desc_nr;
1252 		int is_active = test_bit(In_sync, &rdev2->flags);
1253 
1254 		if (rdev2->raid_disk >= 0 &&
1255 		    sb->minor_version >= 91)
1256 			/* we have nowhere to store the recovery_offset,
1257 			 * but if it is not below the reshape_position,
1258 			 * we can piggy-back on that.
1259 			 */
1260 			is_active = 1;
1261 		if (rdev2->raid_disk < 0 ||
1262 		    test_bit(Faulty, &rdev2->flags))
1263 			is_active = 0;
1264 		if (is_active)
1265 			desc_nr = rdev2->raid_disk;
1266 		else
1267 			desc_nr = next_spare++;
1268 		rdev2->desc_nr = desc_nr;
1269 		d = &sb->disks[rdev2->desc_nr];
1270 		nr_disks++;
1271 		d->number = rdev2->desc_nr;
1272 		d->major = MAJOR(rdev2->bdev->bd_dev);
1273 		d->minor = MINOR(rdev2->bdev->bd_dev);
1274 		if (is_active)
1275 			d->raid_disk = rdev2->raid_disk;
1276 		else
1277 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1278 		if (test_bit(Faulty, &rdev2->flags))
1279 			d->state = (1<<MD_DISK_FAULTY);
1280 		else if (is_active) {
1281 			d->state = (1<<MD_DISK_ACTIVE);
1282 			if (test_bit(In_sync, &rdev2->flags))
1283 				d->state |= (1<<MD_DISK_SYNC);
1284 			active++;
1285 			working++;
1286 		} else {
1287 			d->state = 0;
1288 			spare++;
1289 			working++;
1290 		}
1291 		if (test_bit(WriteMostly, &rdev2->flags))
1292 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1293 	}
1294 	/* now set the "removed" and "faulty" bits on any missing devices */
1295 	for (i=0 ; i < mddev->raid_disks ; i++) {
1296 		mdp_disk_t *d = &sb->disks[i];
1297 		if (d->state == 0 && d->number == 0) {
1298 			d->number = i;
1299 			d->raid_disk = i;
1300 			d->state = (1<<MD_DISK_REMOVED);
1301 			d->state |= (1<<MD_DISK_FAULTY);
1302 			failed++;
1303 		}
1304 	}
1305 	sb->nr_disks = nr_disks;
1306 	sb->active_disks = active;
1307 	sb->working_disks = working;
1308 	sb->failed_disks = failed;
1309 	sb->spare_disks = spare;
1310 
1311 	sb->this_disk = sb->disks[rdev->desc_nr];
1312 	sb->sb_csum = calc_sb_csum(sb);
1313 }
1314 
1315 /*
1316  * rdev_size_change for 0.90.0
1317  */
1318 static unsigned long long
1319 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1320 {
1321 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1322 		return 0; /* component must fit device */
1323 	if (rdev->mddev->bitmap_info.offset)
1324 		return 0; /* can't move bitmap */
1325 	rdev->sb_start = calc_dev_sboffset(rdev);
1326 	if (!num_sectors || num_sectors > rdev->sb_start)
1327 		num_sectors = rdev->sb_start;
1328 	/* Limit to 4TB as metadata cannot record more than that.
1329 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1330 	 */
1331 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1332 		num_sectors = (2ULL << 32) - 2;
1333 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1334 		       rdev->sb_page);
1335 	md_super_wait(rdev->mddev);
1336 	return num_sectors;
1337 }
1338 
1339 static int
1340 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1341 {
1342 	/* non-zero offset changes not possible with v0.90 */
1343 	return new_offset == 0;
1344 }
1345 
1346 /*
1347  * version 1 superblock
1348  */
1349 
1350 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1351 {
1352 	__le32 disk_csum;
1353 	u32 csum;
1354 	unsigned long long newcsum;
1355 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1356 	__le32 *isuper = (__le32*)sb;
1357 
1358 	disk_csum = sb->sb_csum;
1359 	sb->sb_csum = 0;
1360 	newcsum = 0;
1361 	for (; size >= 4; size -= 4)
1362 		newcsum += le32_to_cpu(*isuper++);
1363 
1364 	if (size == 2)
1365 		newcsum += le16_to_cpu(*(__le16*) isuper);
1366 
1367 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1368 	sb->sb_csum = disk_csum;
1369 	return cpu_to_le32(csum);
1370 }
1371 
1372 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1373 			    int acknowledged);
1374 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1375 {
1376 	struct mdp_superblock_1 *sb;
1377 	int ret;
1378 	sector_t sb_start;
1379 	sector_t sectors;
1380 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1381 	int bmask;
1382 
1383 	/*
1384 	 * Calculate the position of the superblock in 512byte sectors.
1385 	 * It is always aligned to a 4K boundary and
1386 	 * depeding on minor_version, it can be:
1387 	 * 0: At least 8K, but less than 12K, from end of device
1388 	 * 1: At start of device
1389 	 * 2: 4K from start of device.
1390 	 */
1391 	switch(minor_version) {
1392 	case 0:
1393 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1394 		sb_start -= 8*2;
1395 		sb_start &= ~(sector_t)(4*2-1);
1396 		break;
1397 	case 1:
1398 		sb_start = 0;
1399 		break;
1400 	case 2:
1401 		sb_start = 8;
1402 		break;
1403 	default:
1404 		return -EINVAL;
1405 	}
1406 	rdev->sb_start = sb_start;
1407 
1408 	/* superblock is rarely larger than 1K, but it can be larger,
1409 	 * and it is safe to read 4k, so we do that
1410 	 */
1411 	ret = read_disk_sb(rdev, 4096);
1412 	if (ret) return ret;
1413 
1414 	sb = page_address(rdev->sb_page);
1415 
1416 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1417 	    sb->major_version != cpu_to_le32(1) ||
1418 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1419 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1420 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1421 		return -EINVAL;
1422 
1423 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1424 		printk("md: invalid superblock checksum on %s\n",
1425 			bdevname(rdev->bdev,b));
1426 		return -EINVAL;
1427 	}
1428 	if (le64_to_cpu(sb->data_size) < 10) {
1429 		printk("md: data_size too small on %s\n",
1430 		       bdevname(rdev->bdev,b));
1431 		return -EINVAL;
1432 	}
1433 	if (sb->pad0 ||
1434 	    sb->pad3[0] ||
1435 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1436 		/* Some padding is non-zero, might be a new feature */
1437 		return -EINVAL;
1438 
1439 	rdev->preferred_minor = 0xffff;
1440 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1441 	rdev->new_data_offset = rdev->data_offset;
1442 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1443 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1444 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1445 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1446 
1447 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1448 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1449 	if (rdev->sb_size & bmask)
1450 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1451 
1452 	if (minor_version
1453 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1454 		return -EINVAL;
1455 	if (minor_version
1456 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1457 		return -EINVAL;
1458 
1459 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1460 		rdev->desc_nr = -1;
1461 	else
1462 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1463 
1464 	if (!rdev->bb_page) {
1465 		rdev->bb_page = alloc_page(GFP_KERNEL);
1466 		if (!rdev->bb_page)
1467 			return -ENOMEM;
1468 	}
1469 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1470 	    rdev->badblocks.count == 0) {
1471 		/* need to load the bad block list.
1472 		 * Currently we limit it to one page.
1473 		 */
1474 		s32 offset;
1475 		sector_t bb_sector;
1476 		u64 *bbp;
1477 		int i;
1478 		int sectors = le16_to_cpu(sb->bblog_size);
1479 		if (sectors > (PAGE_SIZE / 512))
1480 			return -EINVAL;
1481 		offset = le32_to_cpu(sb->bblog_offset);
1482 		if (offset == 0)
1483 			return -EINVAL;
1484 		bb_sector = (long long)offset;
1485 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1486 				  rdev->bb_page, READ, true))
1487 			return -EIO;
1488 		bbp = (u64 *)page_address(rdev->bb_page);
1489 		rdev->badblocks.shift = sb->bblog_shift;
1490 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1491 			u64 bb = le64_to_cpu(*bbp);
1492 			int count = bb & (0x3ff);
1493 			u64 sector = bb >> 10;
1494 			sector <<= sb->bblog_shift;
1495 			count <<= sb->bblog_shift;
1496 			if (bb + 1 == 0)
1497 				break;
1498 			if (md_set_badblocks(&rdev->badblocks,
1499 					     sector, count, 1) == 0)
1500 				return -EINVAL;
1501 		}
1502 	} else if (sb->bblog_offset != 0)
1503 		rdev->badblocks.shift = 0;
1504 
1505 	if (!refdev) {
1506 		ret = 1;
1507 	} else {
1508 		__u64 ev1, ev2;
1509 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1510 
1511 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1512 		    sb->level != refsb->level ||
1513 		    sb->layout != refsb->layout ||
1514 		    sb->chunksize != refsb->chunksize) {
1515 			printk(KERN_WARNING "md: %s has strangely different"
1516 				" superblock to %s\n",
1517 				bdevname(rdev->bdev,b),
1518 				bdevname(refdev->bdev,b2));
1519 			return -EINVAL;
1520 		}
1521 		ev1 = le64_to_cpu(sb->events);
1522 		ev2 = le64_to_cpu(refsb->events);
1523 
1524 		if (ev1 > ev2)
1525 			ret = 1;
1526 		else
1527 			ret = 0;
1528 	}
1529 	if (minor_version) {
1530 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1531 		sectors -= rdev->data_offset;
1532 	} else
1533 		sectors = rdev->sb_start;
1534 	if (sectors < le64_to_cpu(sb->data_size))
1535 		return -EINVAL;
1536 	rdev->sectors = le64_to_cpu(sb->data_size);
1537 	return ret;
1538 }
1539 
1540 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1541 {
1542 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1543 	__u64 ev1 = le64_to_cpu(sb->events);
1544 
1545 	rdev->raid_disk = -1;
1546 	clear_bit(Faulty, &rdev->flags);
1547 	clear_bit(In_sync, &rdev->flags);
1548 	clear_bit(Bitmap_sync, &rdev->flags);
1549 	clear_bit(WriteMostly, &rdev->flags);
1550 
1551 	if (mddev->raid_disks == 0) {
1552 		mddev->major_version = 1;
1553 		mddev->patch_version = 0;
1554 		mddev->external = 0;
1555 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1556 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1557 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1558 		mddev->level = le32_to_cpu(sb->level);
1559 		mddev->clevel[0] = 0;
1560 		mddev->layout = le32_to_cpu(sb->layout);
1561 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1562 		mddev->dev_sectors = le64_to_cpu(sb->size);
1563 		mddev->events = ev1;
1564 		mddev->bitmap_info.offset = 0;
1565 		mddev->bitmap_info.space = 0;
1566 		/* Default location for bitmap is 1K after superblock
1567 		 * using 3K - total of 4K
1568 		 */
1569 		mddev->bitmap_info.default_offset = 1024 >> 9;
1570 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1571 		mddev->reshape_backwards = 0;
1572 
1573 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1574 		memcpy(mddev->uuid, sb->set_uuid, 16);
1575 
1576 		mddev->max_disks =  (4096-256)/2;
1577 
1578 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1579 		    mddev->bitmap_info.file == NULL) {
1580 			mddev->bitmap_info.offset =
1581 				(__s32)le32_to_cpu(sb->bitmap_offset);
1582 			/* Metadata doesn't record how much space is available.
1583 			 * For 1.0, we assume we can use up to the superblock
1584 			 * if before, else to 4K beyond superblock.
1585 			 * For others, assume no change is possible.
1586 			 */
1587 			if (mddev->minor_version > 0)
1588 				mddev->bitmap_info.space = 0;
1589 			else if (mddev->bitmap_info.offset > 0)
1590 				mddev->bitmap_info.space =
1591 					8 - mddev->bitmap_info.offset;
1592 			else
1593 				mddev->bitmap_info.space =
1594 					-mddev->bitmap_info.offset;
1595 		}
1596 
1597 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1598 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1599 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1600 			mddev->new_level = le32_to_cpu(sb->new_level);
1601 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1602 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1603 			if (mddev->delta_disks < 0 ||
1604 			    (mddev->delta_disks == 0 &&
1605 			     (le32_to_cpu(sb->feature_map)
1606 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1607 				mddev->reshape_backwards = 1;
1608 		} else {
1609 			mddev->reshape_position = MaxSector;
1610 			mddev->delta_disks = 0;
1611 			mddev->new_level = mddev->level;
1612 			mddev->new_layout = mddev->layout;
1613 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1614 		}
1615 
1616 	} else if (mddev->pers == NULL) {
1617 		/* Insist of good event counter while assembling, except for
1618 		 * spares (which don't need an event count) */
1619 		++ev1;
1620 		if (rdev->desc_nr >= 0 &&
1621 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1622 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1623 			if (ev1 < mddev->events)
1624 				return -EINVAL;
1625 	} else if (mddev->bitmap) {
1626 		/* If adding to array with a bitmap, then we can accept an
1627 		 * older device, but not too old.
1628 		 */
1629 		if (ev1 < mddev->bitmap->events_cleared)
1630 			return 0;
1631 		if (ev1 < mddev->events)
1632 			set_bit(Bitmap_sync, &rdev->flags);
1633 	} else {
1634 		if (ev1 < mddev->events)
1635 			/* just a hot-add of a new device, leave raid_disk at -1 */
1636 			return 0;
1637 	}
1638 	if (mddev->level != LEVEL_MULTIPATH) {
1639 		int role;
1640 		if (rdev->desc_nr < 0 ||
1641 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1642 			role = 0xffff;
1643 			rdev->desc_nr = -1;
1644 		} else
1645 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1646 		switch(role) {
1647 		case 0xffff: /* spare */
1648 			break;
1649 		case 0xfffe: /* faulty */
1650 			set_bit(Faulty, &rdev->flags);
1651 			break;
1652 		default:
1653 			rdev->saved_raid_disk = role;
1654 			if ((le32_to_cpu(sb->feature_map) &
1655 			     MD_FEATURE_RECOVERY_OFFSET)) {
1656 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1657 				if (!(le32_to_cpu(sb->feature_map) &
1658 				      MD_FEATURE_RECOVERY_BITMAP))
1659 					rdev->saved_raid_disk = -1;
1660 			} else
1661 				set_bit(In_sync, &rdev->flags);
1662 			rdev->raid_disk = role;
1663 			break;
1664 		}
1665 		if (sb->devflags & WriteMostly1)
1666 			set_bit(WriteMostly, &rdev->flags);
1667 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1668 			set_bit(Replacement, &rdev->flags);
1669 	} else /* MULTIPATH are always insync */
1670 		set_bit(In_sync, &rdev->flags);
1671 
1672 	return 0;
1673 }
1674 
1675 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1676 {
1677 	struct mdp_superblock_1 *sb;
1678 	struct md_rdev *rdev2;
1679 	int max_dev, i;
1680 	/* make rdev->sb match mddev and rdev data. */
1681 
1682 	sb = page_address(rdev->sb_page);
1683 
1684 	sb->feature_map = 0;
1685 	sb->pad0 = 0;
1686 	sb->recovery_offset = cpu_to_le64(0);
1687 	memset(sb->pad3, 0, sizeof(sb->pad3));
1688 
1689 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1690 	sb->events = cpu_to_le64(mddev->events);
1691 	if (mddev->in_sync)
1692 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1693 	else
1694 		sb->resync_offset = cpu_to_le64(0);
1695 
1696 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1697 
1698 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1699 	sb->size = cpu_to_le64(mddev->dev_sectors);
1700 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1701 	sb->level = cpu_to_le32(mddev->level);
1702 	sb->layout = cpu_to_le32(mddev->layout);
1703 
1704 	if (test_bit(WriteMostly, &rdev->flags))
1705 		sb->devflags |= WriteMostly1;
1706 	else
1707 		sb->devflags &= ~WriteMostly1;
1708 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1709 	sb->data_size = cpu_to_le64(rdev->sectors);
1710 
1711 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1712 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1713 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1714 	}
1715 
1716 	if (rdev->raid_disk >= 0 &&
1717 	    !test_bit(In_sync, &rdev->flags)) {
1718 		sb->feature_map |=
1719 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1720 		sb->recovery_offset =
1721 			cpu_to_le64(rdev->recovery_offset);
1722 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1723 			sb->feature_map |=
1724 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1725 	}
1726 	if (test_bit(Replacement, &rdev->flags))
1727 		sb->feature_map |=
1728 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1729 
1730 	if (mddev->reshape_position != MaxSector) {
1731 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1732 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1733 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1734 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1735 		sb->new_level = cpu_to_le32(mddev->new_level);
1736 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1737 		if (mddev->delta_disks == 0 &&
1738 		    mddev->reshape_backwards)
1739 			sb->feature_map
1740 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1741 		if (rdev->new_data_offset != rdev->data_offset) {
1742 			sb->feature_map
1743 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1744 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1745 							     - rdev->data_offset));
1746 		}
1747 	}
1748 
1749 	if (rdev->badblocks.count == 0)
1750 		/* Nothing to do for bad blocks*/ ;
1751 	else if (sb->bblog_offset == 0)
1752 		/* Cannot record bad blocks on this device */
1753 		md_error(mddev, rdev);
1754 	else {
1755 		struct badblocks *bb = &rdev->badblocks;
1756 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1757 		u64 *p = bb->page;
1758 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1759 		if (bb->changed) {
1760 			unsigned seq;
1761 
1762 retry:
1763 			seq = read_seqbegin(&bb->lock);
1764 
1765 			memset(bbp, 0xff, PAGE_SIZE);
1766 
1767 			for (i = 0 ; i < bb->count ; i++) {
1768 				u64 internal_bb = p[i];
1769 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1770 						| BB_LEN(internal_bb));
1771 				bbp[i] = cpu_to_le64(store_bb);
1772 			}
1773 			bb->changed = 0;
1774 			if (read_seqretry(&bb->lock, seq))
1775 				goto retry;
1776 
1777 			bb->sector = (rdev->sb_start +
1778 				      (int)le32_to_cpu(sb->bblog_offset));
1779 			bb->size = le16_to_cpu(sb->bblog_size);
1780 		}
1781 	}
1782 
1783 	max_dev = 0;
1784 	rdev_for_each(rdev2, mddev)
1785 		if (rdev2->desc_nr+1 > max_dev)
1786 			max_dev = rdev2->desc_nr+1;
1787 
1788 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1789 		int bmask;
1790 		sb->max_dev = cpu_to_le32(max_dev);
1791 		rdev->sb_size = max_dev * 2 + 256;
1792 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1793 		if (rdev->sb_size & bmask)
1794 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1795 	} else
1796 		max_dev = le32_to_cpu(sb->max_dev);
1797 
1798 	for (i=0; i<max_dev;i++)
1799 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1800 
1801 	rdev_for_each(rdev2, mddev) {
1802 		i = rdev2->desc_nr;
1803 		if (test_bit(Faulty, &rdev2->flags))
1804 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1805 		else if (test_bit(In_sync, &rdev2->flags))
1806 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1807 		else if (rdev2->raid_disk >= 0)
1808 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1809 		else
1810 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1811 	}
1812 
1813 	sb->sb_csum = calc_sb_1_csum(sb);
1814 }
1815 
1816 static unsigned long long
1817 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1818 {
1819 	struct mdp_superblock_1 *sb;
1820 	sector_t max_sectors;
1821 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1822 		return 0; /* component must fit device */
1823 	if (rdev->data_offset != rdev->new_data_offset)
1824 		return 0; /* too confusing */
1825 	if (rdev->sb_start < rdev->data_offset) {
1826 		/* minor versions 1 and 2; superblock before data */
1827 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1828 		max_sectors -= rdev->data_offset;
1829 		if (!num_sectors || num_sectors > max_sectors)
1830 			num_sectors = max_sectors;
1831 	} else if (rdev->mddev->bitmap_info.offset) {
1832 		/* minor version 0 with bitmap we can't move */
1833 		return 0;
1834 	} else {
1835 		/* minor version 0; superblock after data */
1836 		sector_t sb_start;
1837 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1838 		sb_start &= ~(sector_t)(4*2 - 1);
1839 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1840 		if (!num_sectors || num_sectors > max_sectors)
1841 			num_sectors = max_sectors;
1842 		rdev->sb_start = sb_start;
1843 	}
1844 	sb = page_address(rdev->sb_page);
1845 	sb->data_size = cpu_to_le64(num_sectors);
1846 	sb->super_offset = rdev->sb_start;
1847 	sb->sb_csum = calc_sb_1_csum(sb);
1848 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1849 		       rdev->sb_page);
1850 	md_super_wait(rdev->mddev);
1851 	return num_sectors;
1852 
1853 }
1854 
1855 static int
1856 super_1_allow_new_offset(struct md_rdev *rdev,
1857 			 unsigned long long new_offset)
1858 {
1859 	/* All necessary checks on new >= old have been done */
1860 	struct bitmap *bitmap;
1861 	if (new_offset >= rdev->data_offset)
1862 		return 1;
1863 
1864 	/* with 1.0 metadata, there is no metadata to tread on
1865 	 * so we can always move back */
1866 	if (rdev->mddev->minor_version == 0)
1867 		return 1;
1868 
1869 	/* otherwise we must be sure not to step on
1870 	 * any metadata, so stay:
1871 	 * 36K beyond start of superblock
1872 	 * beyond end of badblocks
1873 	 * beyond write-intent bitmap
1874 	 */
1875 	if (rdev->sb_start + (32+4)*2 > new_offset)
1876 		return 0;
1877 	bitmap = rdev->mddev->bitmap;
1878 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1879 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1880 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1881 		return 0;
1882 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1883 		return 0;
1884 
1885 	return 1;
1886 }
1887 
1888 static struct super_type super_types[] = {
1889 	[0] = {
1890 		.name	= "0.90.0",
1891 		.owner	= THIS_MODULE,
1892 		.load_super	    = super_90_load,
1893 		.validate_super	    = super_90_validate,
1894 		.sync_super	    = super_90_sync,
1895 		.rdev_size_change   = super_90_rdev_size_change,
1896 		.allow_new_offset   = super_90_allow_new_offset,
1897 	},
1898 	[1] = {
1899 		.name	= "md-1",
1900 		.owner	= THIS_MODULE,
1901 		.load_super	    = super_1_load,
1902 		.validate_super	    = super_1_validate,
1903 		.sync_super	    = super_1_sync,
1904 		.rdev_size_change   = super_1_rdev_size_change,
1905 		.allow_new_offset   = super_1_allow_new_offset,
1906 	},
1907 };
1908 
1909 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1910 {
1911 	if (mddev->sync_super) {
1912 		mddev->sync_super(mddev, rdev);
1913 		return;
1914 	}
1915 
1916 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1917 
1918 	super_types[mddev->major_version].sync_super(mddev, rdev);
1919 }
1920 
1921 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1922 {
1923 	struct md_rdev *rdev, *rdev2;
1924 
1925 	rcu_read_lock();
1926 	rdev_for_each_rcu(rdev, mddev1)
1927 		rdev_for_each_rcu(rdev2, mddev2)
1928 			if (rdev->bdev->bd_contains ==
1929 			    rdev2->bdev->bd_contains) {
1930 				rcu_read_unlock();
1931 				return 1;
1932 			}
1933 	rcu_read_unlock();
1934 	return 0;
1935 }
1936 
1937 static LIST_HEAD(pending_raid_disks);
1938 
1939 /*
1940  * Try to register data integrity profile for an mddev
1941  *
1942  * This is called when an array is started and after a disk has been kicked
1943  * from the array. It only succeeds if all working and active component devices
1944  * are integrity capable with matching profiles.
1945  */
1946 int md_integrity_register(struct mddev *mddev)
1947 {
1948 	struct md_rdev *rdev, *reference = NULL;
1949 
1950 	if (list_empty(&mddev->disks))
1951 		return 0; /* nothing to do */
1952 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1953 		return 0; /* shouldn't register, or already is */
1954 	rdev_for_each(rdev, mddev) {
1955 		/* skip spares and non-functional disks */
1956 		if (test_bit(Faulty, &rdev->flags))
1957 			continue;
1958 		if (rdev->raid_disk < 0)
1959 			continue;
1960 		if (!reference) {
1961 			/* Use the first rdev as the reference */
1962 			reference = rdev;
1963 			continue;
1964 		}
1965 		/* does this rdev's profile match the reference profile? */
1966 		if (blk_integrity_compare(reference->bdev->bd_disk,
1967 				rdev->bdev->bd_disk) < 0)
1968 			return -EINVAL;
1969 	}
1970 	if (!reference || !bdev_get_integrity(reference->bdev))
1971 		return 0;
1972 	/*
1973 	 * All component devices are integrity capable and have matching
1974 	 * profiles, register the common profile for the md device.
1975 	 */
1976 	if (blk_integrity_register(mddev->gendisk,
1977 			bdev_get_integrity(reference->bdev)) != 0) {
1978 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1979 			mdname(mddev));
1980 		return -EINVAL;
1981 	}
1982 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1983 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1984 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1985 		       mdname(mddev));
1986 		return -EINVAL;
1987 	}
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL(md_integrity_register);
1991 
1992 /* Disable data integrity if non-capable/non-matching disk is being added */
1993 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1994 {
1995 	struct blk_integrity *bi_rdev;
1996 	struct blk_integrity *bi_mddev;
1997 
1998 	if (!mddev->gendisk)
1999 		return;
2000 
2001 	bi_rdev = bdev_get_integrity(rdev->bdev);
2002 	bi_mddev = blk_get_integrity(mddev->gendisk);
2003 
2004 	if (!bi_mddev) /* nothing to do */
2005 		return;
2006 	if (rdev->raid_disk < 0) /* skip spares */
2007 		return;
2008 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2009 					     rdev->bdev->bd_disk) >= 0)
2010 		return;
2011 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2012 	blk_integrity_unregister(mddev->gendisk);
2013 }
2014 EXPORT_SYMBOL(md_integrity_add_rdev);
2015 
2016 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2017 {
2018 	char b[BDEVNAME_SIZE];
2019 	struct kobject *ko;
2020 	char *s;
2021 	int err;
2022 
2023 	/* prevent duplicates */
2024 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2025 		return -EEXIST;
2026 
2027 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2028 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2029 			rdev->sectors < mddev->dev_sectors)) {
2030 		if (mddev->pers) {
2031 			/* Cannot change size, so fail
2032 			 * If mddev->level <= 0, then we don't care
2033 			 * about aligning sizes (e.g. linear)
2034 			 */
2035 			if (mddev->level > 0)
2036 				return -ENOSPC;
2037 		} else
2038 			mddev->dev_sectors = rdev->sectors;
2039 	}
2040 
2041 	/* Verify rdev->desc_nr is unique.
2042 	 * If it is -1, assign a free number, else
2043 	 * check number is not in use
2044 	 */
2045 	rcu_read_lock();
2046 	if (rdev->desc_nr < 0) {
2047 		int choice = 0;
2048 		if (mddev->pers)
2049 			choice = mddev->raid_disks;
2050 		while (find_rdev_nr_rcu(mddev, choice))
2051 			choice++;
2052 		rdev->desc_nr = choice;
2053 	} else {
2054 		if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2055 			rcu_read_unlock();
2056 			return -EBUSY;
2057 		}
2058 	}
2059 	rcu_read_unlock();
2060 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2061 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2062 		       mdname(mddev), mddev->max_disks);
2063 		return -EBUSY;
2064 	}
2065 	bdevname(rdev->bdev,b);
2066 	while ( (s=strchr(b, '/')) != NULL)
2067 		*s = '!';
2068 
2069 	rdev->mddev = mddev;
2070 	printk(KERN_INFO "md: bind<%s>\n", b);
2071 
2072 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2073 		goto fail;
2074 
2075 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2076 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2077 		/* failure here is OK */;
2078 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2079 
2080 	list_add_rcu(&rdev->same_set, &mddev->disks);
2081 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2082 
2083 	/* May as well allow recovery to be retried once */
2084 	mddev->recovery_disabled++;
2085 
2086 	return 0;
2087 
2088  fail:
2089 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2090 	       b, mdname(mddev));
2091 	return err;
2092 }
2093 
2094 static void md_delayed_delete(struct work_struct *ws)
2095 {
2096 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2097 	kobject_del(&rdev->kobj);
2098 	kobject_put(&rdev->kobj);
2099 }
2100 
2101 static void unbind_rdev_from_array(struct md_rdev *rdev)
2102 {
2103 	char b[BDEVNAME_SIZE];
2104 
2105 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2106 	list_del_rcu(&rdev->same_set);
2107 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2108 	rdev->mddev = NULL;
2109 	sysfs_remove_link(&rdev->kobj, "block");
2110 	sysfs_put(rdev->sysfs_state);
2111 	rdev->sysfs_state = NULL;
2112 	rdev->badblocks.count = 0;
2113 	/* We need to delay this, otherwise we can deadlock when
2114 	 * writing to 'remove' to "dev/state".  We also need
2115 	 * to delay it due to rcu usage.
2116 	 */
2117 	synchronize_rcu();
2118 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2119 	kobject_get(&rdev->kobj);
2120 	queue_work(md_misc_wq, &rdev->del_work);
2121 }
2122 
2123 /*
2124  * prevent the device from being mounted, repartitioned or
2125  * otherwise reused by a RAID array (or any other kernel
2126  * subsystem), by bd_claiming the device.
2127  */
2128 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2129 {
2130 	int err = 0;
2131 	struct block_device *bdev;
2132 	char b[BDEVNAME_SIZE];
2133 
2134 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2135 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2136 	if (IS_ERR(bdev)) {
2137 		printk(KERN_ERR "md: could not open %s.\n",
2138 			__bdevname(dev, b));
2139 		return PTR_ERR(bdev);
2140 	}
2141 	rdev->bdev = bdev;
2142 	return err;
2143 }
2144 
2145 static void unlock_rdev(struct md_rdev *rdev)
2146 {
2147 	struct block_device *bdev = rdev->bdev;
2148 	rdev->bdev = NULL;
2149 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2150 }
2151 
2152 void md_autodetect_dev(dev_t dev);
2153 
2154 static void export_rdev(struct md_rdev *rdev)
2155 {
2156 	char b[BDEVNAME_SIZE];
2157 
2158 	printk(KERN_INFO "md: export_rdev(%s)\n",
2159 		bdevname(rdev->bdev,b));
2160 	md_rdev_clear(rdev);
2161 #ifndef MODULE
2162 	if (test_bit(AutoDetected, &rdev->flags))
2163 		md_autodetect_dev(rdev->bdev->bd_dev);
2164 #endif
2165 	unlock_rdev(rdev);
2166 	kobject_put(&rdev->kobj);
2167 }
2168 
2169 static void kick_rdev_from_array(struct md_rdev *rdev)
2170 {
2171 	unbind_rdev_from_array(rdev);
2172 	export_rdev(rdev);
2173 }
2174 
2175 static void export_array(struct mddev *mddev)
2176 {
2177 	struct md_rdev *rdev;
2178 
2179 	while (!list_empty(&mddev->disks)) {
2180 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2181 					same_set);
2182 		kick_rdev_from_array(rdev);
2183 	}
2184 	mddev->raid_disks = 0;
2185 	mddev->major_version = 0;
2186 }
2187 
2188 static void sync_sbs(struct mddev *mddev, int nospares)
2189 {
2190 	/* Update each superblock (in-memory image), but
2191 	 * if we are allowed to, skip spares which already
2192 	 * have the right event counter, or have one earlier
2193 	 * (which would mean they aren't being marked as dirty
2194 	 * with the rest of the array)
2195 	 */
2196 	struct md_rdev *rdev;
2197 	rdev_for_each(rdev, mddev) {
2198 		if (rdev->sb_events == mddev->events ||
2199 		    (nospares &&
2200 		     rdev->raid_disk < 0 &&
2201 		     rdev->sb_events+1 == mddev->events)) {
2202 			/* Don't update this superblock */
2203 			rdev->sb_loaded = 2;
2204 		} else {
2205 			sync_super(mddev, rdev);
2206 			rdev->sb_loaded = 1;
2207 		}
2208 	}
2209 }
2210 
2211 static void md_update_sb(struct mddev *mddev, int force_change)
2212 {
2213 	struct md_rdev *rdev;
2214 	int sync_req;
2215 	int nospares = 0;
2216 	int any_badblocks_changed = 0;
2217 
2218 	if (mddev->ro) {
2219 		if (force_change)
2220 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2221 		return;
2222 	}
2223 repeat:
2224 	/* First make sure individual recovery_offsets are correct */
2225 	rdev_for_each(rdev, mddev) {
2226 		if (rdev->raid_disk >= 0 &&
2227 		    mddev->delta_disks >= 0 &&
2228 		    !test_bit(In_sync, &rdev->flags) &&
2229 		    mddev->curr_resync_completed > rdev->recovery_offset)
2230 				rdev->recovery_offset = mddev->curr_resync_completed;
2231 
2232 	}
2233 	if (!mddev->persistent) {
2234 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2235 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2236 		if (!mddev->external) {
2237 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2238 			rdev_for_each(rdev, mddev) {
2239 				if (rdev->badblocks.changed) {
2240 					rdev->badblocks.changed = 0;
2241 					md_ack_all_badblocks(&rdev->badblocks);
2242 					md_error(mddev, rdev);
2243 				}
2244 				clear_bit(Blocked, &rdev->flags);
2245 				clear_bit(BlockedBadBlocks, &rdev->flags);
2246 				wake_up(&rdev->blocked_wait);
2247 			}
2248 		}
2249 		wake_up(&mddev->sb_wait);
2250 		return;
2251 	}
2252 
2253 	spin_lock(&mddev->lock);
2254 
2255 	mddev->utime = get_seconds();
2256 
2257 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2258 		force_change = 1;
2259 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2260 		/* just a clean<-> dirty transition, possibly leave spares alone,
2261 		 * though if events isn't the right even/odd, we will have to do
2262 		 * spares after all
2263 		 */
2264 		nospares = 1;
2265 	if (force_change)
2266 		nospares = 0;
2267 	if (mddev->degraded)
2268 		/* If the array is degraded, then skipping spares is both
2269 		 * dangerous and fairly pointless.
2270 		 * Dangerous because a device that was removed from the array
2271 		 * might have a event_count that still looks up-to-date,
2272 		 * so it can be re-added without a resync.
2273 		 * Pointless because if there are any spares to skip,
2274 		 * then a recovery will happen and soon that array won't
2275 		 * be degraded any more and the spare can go back to sleep then.
2276 		 */
2277 		nospares = 0;
2278 
2279 	sync_req = mddev->in_sync;
2280 
2281 	/* If this is just a dirty<->clean transition, and the array is clean
2282 	 * and 'events' is odd, we can roll back to the previous clean state */
2283 	if (nospares
2284 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2285 	    && mddev->can_decrease_events
2286 	    && mddev->events != 1) {
2287 		mddev->events--;
2288 		mddev->can_decrease_events = 0;
2289 	} else {
2290 		/* otherwise we have to go forward and ... */
2291 		mddev->events ++;
2292 		mddev->can_decrease_events = nospares;
2293 	}
2294 
2295 	/*
2296 	 * This 64-bit counter should never wrap.
2297 	 * Either we are in around ~1 trillion A.C., assuming
2298 	 * 1 reboot per second, or we have a bug...
2299 	 */
2300 	WARN_ON(mddev->events == 0);
2301 
2302 	rdev_for_each(rdev, mddev) {
2303 		if (rdev->badblocks.changed)
2304 			any_badblocks_changed++;
2305 		if (test_bit(Faulty, &rdev->flags))
2306 			set_bit(FaultRecorded, &rdev->flags);
2307 	}
2308 
2309 	sync_sbs(mddev, nospares);
2310 	spin_unlock(&mddev->lock);
2311 
2312 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2313 		 mdname(mddev), mddev->in_sync);
2314 
2315 	bitmap_update_sb(mddev->bitmap);
2316 	rdev_for_each(rdev, mddev) {
2317 		char b[BDEVNAME_SIZE];
2318 
2319 		if (rdev->sb_loaded != 1)
2320 			continue; /* no noise on spare devices */
2321 
2322 		if (!test_bit(Faulty, &rdev->flags)) {
2323 			md_super_write(mddev,rdev,
2324 				       rdev->sb_start, rdev->sb_size,
2325 				       rdev->sb_page);
2326 			pr_debug("md: (write) %s's sb offset: %llu\n",
2327 				 bdevname(rdev->bdev, b),
2328 				 (unsigned long long)rdev->sb_start);
2329 			rdev->sb_events = mddev->events;
2330 			if (rdev->badblocks.size) {
2331 				md_super_write(mddev, rdev,
2332 					       rdev->badblocks.sector,
2333 					       rdev->badblocks.size << 9,
2334 					       rdev->bb_page);
2335 				rdev->badblocks.size = 0;
2336 			}
2337 
2338 		} else
2339 			pr_debug("md: %s (skipping faulty)\n",
2340 				 bdevname(rdev->bdev, b));
2341 
2342 		if (mddev->level == LEVEL_MULTIPATH)
2343 			/* only need to write one superblock... */
2344 			break;
2345 	}
2346 	md_super_wait(mddev);
2347 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2348 
2349 	spin_lock(&mddev->lock);
2350 	if (mddev->in_sync != sync_req ||
2351 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2352 		/* have to write it out again */
2353 		spin_unlock(&mddev->lock);
2354 		goto repeat;
2355 	}
2356 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2357 	spin_unlock(&mddev->lock);
2358 	wake_up(&mddev->sb_wait);
2359 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2360 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2361 
2362 	rdev_for_each(rdev, mddev) {
2363 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2364 			clear_bit(Blocked, &rdev->flags);
2365 
2366 		if (any_badblocks_changed)
2367 			md_ack_all_badblocks(&rdev->badblocks);
2368 		clear_bit(BlockedBadBlocks, &rdev->flags);
2369 		wake_up(&rdev->blocked_wait);
2370 	}
2371 }
2372 
2373 /* words written to sysfs files may, or may not, be \n terminated.
2374  * We want to accept with case. For this we use cmd_match.
2375  */
2376 static int cmd_match(const char *cmd, const char *str)
2377 {
2378 	/* See if cmd, written into a sysfs file, matches
2379 	 * str.  They must either be the same, or cmd can
2380 	 * have a trailing newline
2381 	 */
2382 	while (*cmd && *str && *cmd == *str) {
2383 		cmd++;
2384 		str++;
2385 	}
2386 	if (*cmd == '\n')
2387 		cmd++;
2388 	if (*str || *cmd)
2389 		return 0;
2390 	return 1;
2391 }
2392 
2393 struct rdev_sysfs_entry {
2394 	struct attribute attr;
2395 	ssize_t (*show)(struct md_rdev *, char *);
2396 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2397 };
2398 
2399 static ssize_t
2400 state_show(struct md_rdev *rdev, char *page)
2401 {
2402 	char *sep = "";
2403 	size_t len = 0;
2404 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2405 
2406 	if (test_bit(Faulty, &flags) ||
2407 	    rdev->badblocks.unacked_exist) {
2408 		len+= sprintf(page+len, "%sfaulty",sep);
2409 		sep = ",";
2410 	}
2411 	if (test_bit(In_sync, &flags)) {
2412 		len += sprintf(page+len, "%sin_sync",sep);
2413 		sep = ",";
2414 	}
2415 	if (test_bit(WriteMostly, &flags)) {
2416 		len += sprintf(page+len, "%swrite_mostly",sep);
2417 		sep = ",";
2418 	}
2419 	if (test_bit(Blocked, &flags) ||
2420 	    (rdev->badblocks.unacked_exist
2421 	     && !test_bit(Faulty, &flags))) {
2422 		len += sprintf(page+len, "%sblocked", sep);
2423 		sep = ",";
2424 	}
2425 	if (!test_bit(Faulty, &flags) &&
2426 	    !test_bit(In_sync, &flags)) {
2427 		len += sprintf(page+len, "%sspare", sep);
2428 		sep = ",";
2429 	}
2430 	if (test_bit(WriteErrorSeen, &flags)) {
2431 		len += sprintf(page+len, "%swrite_error", sep);
2432 		sep = ",";
2433 	}
2434 	if (test_bit(WantReplacement, &flags)) {
2435 		len += sprintf(page+len, "%swant_replacement", sep);
2436 		sep = ",";
2437 	}
2438 	if (test_bit(Replacement, &flags)) {
2439 		len += sprintf(page+len, "%sreplacement", sep);
2440 		sep = ",";
2441 	}
2442 
2443 	return len+sprintf(page+len, "\n");
2444 }
2445 
2446 static ssize_t
2447 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2448 {
2449 	/* can write
2450 	 *  faulty  - simulates an error
2451 	 *  remove  - disconnects the device
2452 	 *  writemostly - sets write_mostly
2453 	 *  -writemostly - clears write_mostly
2454 	 *  blocked - sets the Blocked flags
2455 	 *  -blocked - clears the Blocked and possibly simulates an error
2456 	 *  insync - sets Insync providing device isn't active
2457 	 *  -insync - clear Insync for a device with a slot assigned,
2458 	 *            so that it gets rebuilt based on bitmap
2459 	 *  write_error - sets WriteErrorSeen
2460 	 *  -write_error - clears WriteErrorSeen
2461 	 */
2462 	int err = -EINVAL;
2463 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2464 		md_error(rdev->mddev, rdev);
2465 		if (test_bit(Faulty, &rdev->flags))
2466 			err = 0;
2467 		else
2468 			err = -EBUSY;
2469 	} else if (cmd_match(buf, "remove")) {
2470 		if (rdev->raid_disk >= 0)
2471 			err = -EBUSY;
2472 		else {
2473 			struct mddev *mddev = rdev->mddev;
2474 			kick_rdev_from_array(rdev);
2475 			if (mddev->pers)
2476 				md_update_sb(mddev, 1);
2477 			md_new_event(mddev);
2478 			err = 0;
2479 		}
2480 	} else if (cmd_match(buf, "writemostly")) {
2481 		set_bit(WriteMostly, &rdev->flags);
2482 		err = 0;
2483 	} else if (cmd_match(buf, "-writemostly")) {
2484 		clear_bit(WriteMostly, &rdev->flags);
2485 		err = 0;
2486 	} else if (cmd_match(buf, "blocked")) {
2487 		set_bit(Blocked, &rdev->flags);
2488 		err = 0;
2489 	} else if (cmd_match(buf, "-blocked")) {
2490 		if (!test_bit(Faulty, &rdev->flags) &&
2491 		    rdev->badblocks.unacked_exist) {
2492 			/* metadata handler doesn't understand badblocks,
2493 			 * so we need to fail the device
2494 			 */
2495 			md_error(rdev->mddev, rdev);
2496 		}
2497 		clear_bit(Blocked, &rdev->flags);
2498 		clear_bit(BlockedBadBlocks, &rdev->flags);
2499 		wake_up(&rdev->blocked_wait);
2500 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2501 		md_wakeup_thread(rdev->mddev->thread);
2502 
2503 		err = 0;
2504 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2505 		set_bit(In_sync, &rdev->flags);
2506 		err = 0;
2507 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2508 		if (rdev->mddev->pers == NULL) {
2509 			clear_bit(In_sync, &rdev->flags);
2510 			rdev->saved_raid_disk = rdev->raid_disk;
2511 			rdev->raid_disk = -1;
2512 			err = 0;
2513 		}
2514 	} else if (cmd_match(buf, "write_error")) {
2515 		set_bit(WriteErrorSeen, &rdev->flags);
2516 		err = 0;
2517 	} else if (cmd_match(buf, "-write_error")) {
2518 		clear_bit(WriteErrorSeen, &rdev->flags);
2519 		err = 0;
2520 	} else if (cmd_match(buf, "want_replacement")) {
2521 		/* Any non-spare device that is not a replacement can
2522 		 * become want_replacement at any time, but we then need to
2523 		 * check if recovery is needed.
2524 		 */
2525 		if (rdev->raid_disk >= 0 &&
2526 		    !test_bit(Replacement, &rdev->flags))
2527 			set_bit(WantReplacement, &rdev->flags);
2528 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2529 		md_wakeup_thread(rdev->mddev->thread);
2530 		err = 0;
2531 	} else if (cmd_match(buf, "-want_replacement")) {
2532 		/* Clearing 'want_replacement' is always allowed.
2533 		 * Once replacements starts it is too late though.
2534 		 */
2535 		err = 0;
2536 		clear_bit(WantReplacement, &rdev->flags);
2537 	} else if (cmd_match(buf, "replacement")) {
2538 		/* Can only set a device as a replacement when array has not
2539 		 * yet been started.  Once running, replacement is automatic
2540 		 * from spares, or by assigning 'slot'.
2541 		 */
2542 		if (rdev->mddev->pers)
2543 			err = -EBUSY;
2544 		else {
2545 			set_bit(Replacement, &rdev->flags);
2546 			err = 0;
2547 		}
2548 	} else if (cmd_match(buf, "-replacement")) {
2549 		/* Similarly, can only clear Replacement before start */
2550 		if (rdev->mddev->pers)
2551 			err = -EBUSY;
2552 		else {
2553 			clear_bit(Replacement, &rdev->flags);
2554 			err = 0;
2555 		}
2556 	}
2557 	if (!err)
2558 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2559 	return err ? err : len;
2560 }
2561 static struct rdev_sysfs_entry rdev_state =
2562 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2563 
2564 static ssize_t
2565 errors_show(struct md_rdev *rdev, char *page)
2566 {
2567 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2568 }
2569 
2570 static ssize_t
2571 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2572 {
2573 	char *e;
2574 	unsigned long n = simple_strtoul(buf, &e, 10);
2575 	if (*buf && (*e == 0 || *e == '\n')) {
2576 		atomic_set(&rdev->corrected_errors, n);
2577 		return len;
2578 	}
2579 	return -EINVAL;
2580 }
2581 static struct rdev_sysfs_entry rdev_errors =
2582 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2583 
2584 static ssize_t
2585 slot_show(struct md_rdev *rdev, char *page)
2586 {
2587 	if (rdev->raid_disk < 0)
2588 		return sprintf(page, "none\n");
2589 	else
2590 		return sprintf(page, "%d\n", rdev->raid_disk);
2591 }
2592 
2593 static ssize_t
2594 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2595 {
2596 	char *e;
2597 	int err;
2598 	int slot = simple_strtoul(buf, &e, 10);
2599 	if (strncmp(buf, "none", 4)==0)
2600 		slot = -1;
2601 	else if (e==buf || (*e && *e!= '\n'))
2602 		return -EINVAL;
2603 	if (rdev->mddev->pers && slot == -1) {
2604 		/* Setting 'slot' on an active array requires also
2605 		 * updating the 'rd%d' link, and communicating
2606 		 * with the personality with ->hot_*_disk.
2607 		 * For now we only support removing
2608 		 * failed/spare devices.  This normally happens automatically,
2609 		 * but not when the metadata is externally managed.
2610 		 */
2611 		if (rdev->raid_disk == -1)
2612 			return -EEXIST;
2613 		/* personality does all needed checks */
2614 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2615 			return -EINVAL;
2616 		clear_bit(Blocked, &rdev->flags);
2617 		remove_and_add_spares(rdev->mddev, rdev);
2618 		if (rdev->raid_disk >= 0)
2619 			return -EBUSY;
2620 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2621 		md_wakeup_thread(rdev->mddev->thread);
2622 	} else if (rdev->mddev->pers) {
2623 		/* Activating a spare .. or possibly reactivating
2624 		 * if we ever get bitmaps working here.
2625 		 */
2626 
2627 		if (rdev->raid_disk != -1)
2628 			return -EBUSY;
2629 
2630 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2631 			return -EBUSY;
2632 
2633 		if (rdev->mddev->pers->hot_add_disk == NULL)
2634 			return -EINVAL;
2635 
2636 		if (slot >= rdev->mddev->raid_disks &&
2637 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2638 			return -ENOSPC;
2639 
2640 		rdev->raid_disk = slot;
2641 		if (test_bit(In_sync, &rdev->flags))
2642 			rdev->saved_raid_disk = slot;
2643 		else
2644 			rdev->saved_raid_disk = -1;
2645 		clear_bit(In_sync, &rdev->flags);
2646 		clear_bit(Bitmap_sync, &rdev->flags);
2647 		err = rdev->mddev->pers->
2648 			hot_add_disk(rdev->mddev, rdev);
2649 		if (err) {
2650 			rdev->raid_disk = -1;
2651 			return err;
2652 		} else
2653 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2654 		if (sysfs_link_rdev(rdev->mddev, rdev))
2655 			/* failure here is OK */;
2656 		/* don't wakeup anyone, leave that to userspace. */
2657 	} else {
2658 		if (slot >= rdev->mddev->raid_disks &&
2659 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2660 			return -ENOSPC;
2661 		rdev->raid_disk = slot;
2662 		/* assume it is working */
2663 		clear_bit(Faulty, &rdev->flags);
2664 		clear_bit(WriteMostly, &rdev->flags);
2665 		set_bit(In_sync, &rdev->flags);
2666 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2667 	}
2668 	return len;
2669 }
2670 
2671 static struct rdev_sysfs_entry rdev_slot =
2672 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2673 
2674 static ssize_t
2675 offset_show(struct md_rdev *rdev, char *page)
2676 {
2677 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2678 }
2679 
2680 static ssize_t
2681 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2682 {
2683 	unsigned long long offset;
2684 	if (kstrtoull(buf, 10, &offset) < 0)
2685 		return -EINVAL;
2686 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2687 		return -EBUSY;
2688 	if (rdev->sectors && rdev->mddev->external)
2689 		/* Must set offset before size, so overlap checks
2690 		 * can be sane */
2691 		return -EBUSY;
2692 	rdev->data_offset = offset;
2693 	rdev->new_data_offset = offset;
2694 	return len;
2695 }
2696 
2697 static struct rdev_sysfs_entry rdev_offset =
2698 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2699 
2700 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2701 {
2702 	return sprintf(page, "%llu\n",
2703 		       (unsigned long long)rdev->new_data_offset);
2704 }
2705 
2706 static ssize_t new_offset_store(struct md_rdev *rdev,
2707 				const char *buf, size_t len)
2708 {
2709 	unsigned long long new_offset;
2710 	struct mddev *mddev = rdev->mddev;
2711 
2712 	if (kstrtoull(buf, 10, &new_offset) < 0)
2713 		return -EINVAL;
2714 
2715 	if (mddev->sync_thread ||
2716 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2717 		return -EBUSY;
2718 	if (new_offset == rdev->data_offset)
2719 		/* reset is always permitted */
2720 		;
2721 	else if (new_offset > rdev->data_offset) {
2722 		/* must not push array size beyond rdev_sectors */
2723 		if (new_offset - rdev->data_offset
2724 		    + mddev->dev_sectors > rdev->sectors)
2725 				return -E2BIG;
2726 	}
2727 	/* Metadata worries about other space details. */
2728 
2729 	/* decreasing the offset is inconsistent with a backwards
2730 	 * reshape.
2731 	 */
2732 	if (new_offset < rdev->data_offset &&
2733 	    mddev->reshape_backwards)
2734 		return -EINVAL;
2735 	/* Increasing offset is inconsistent with forwards
2736 	 * reshape.  reshape_direction should be set to
2737 	 * 'backwards' first.
2738 	 */
2739 	if (new_offset > rdev->data_offset &&
2740 	    !mddev->reshape_backwards)
2741 		return -EINVAL;
2742 
2743 	if (mddev->pers && mddev->persistent &&
2744 	    !super_types[mddev->major_version]
2745 	    .allow_new_offset(rdev, new_offset))
2746 		return -E2BIG;
2747 	rdev->new_data_offset = new_offset;
2748 	if (new_offset > rdev->data_offset)
2749 		mddev->reshape_backwards = 1;
2750 	else if (new_offset < rdev->data_offset)
2751 		mddev->reshape_backwards = 0;
2752 
2753 	return len;
2754 }
2755 static struct rdev_sysfs_entry rdev_new_offset =
2756 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2757 
2758 static ssize_t
2759 rdev_size_show(struct md_rdev *rdev, char *page)
2760 {
2761 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2762 }
2763 
2764 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2765 {
2766 	/* check if two start/length pairs overlap */
2767 	if (s1+l1 <= s2)
2768 		return 0;
2769 	if (s2+l2 <= s1)
2770 		return 0;
2771 	return 1;
2772 }
2773 
2774 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2775 {
2776 	unsigned long long blocks;
2777 	sector_t new;
2778 
2779 	if (kstrtoull(buf, 10, &blocks) < 0)
2780 		return -EINVAL;
2781 
2782 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2783 		return -EINVAL; /* sector conversion overflow */
2784 
2785 	new = blocks * 2;
2786 	if (new != blocks * 2)
2787 		return -EINVAL; /* unsigned long long to sector_t overflow */
2788 
2789 	*sectors = new;
2790 	return 0;
2791 }
2792 
2793 static ssize_t
2794 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2795 {
2796 	struct mddev *my_mddev = rdev->mddev;
2797 	sector_t oldsectors = rdev->sectors;
2798 	sector_t sectors;
2799 
2800 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2801 		return -EINVAL;
2802 	if (rdev->data_offset != rdev->new_data_offset)
2803 		return -EINVAL; /* too confusing */
2804 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2805 		if (my_mddev->persistent) {
2806 			sectors = super_types[my_mddev->major_version].
2807 				rdev_size_change(rdev, sectors);
2808 			if (!sectors)
2809 				return -EBUSY;
2810 		} else if (!sectors)
2811 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2812 				rdev->data_offset;
2813 		if (!my_mddev->pers->resize)
2814 			/* Cannot change size for RAID0 or Linear etc */
2815 			return -EINVAL;
2816 	}
2817 	if (sectors < my_mddev->dev_sectors)
2818 		return -EINVAL; /* component must fit device */
2819 
2820 	rdev->sectors = sectors;
2821 	if (sectors > oldsectors && my_mddev->external) {
2822 		/* Need to check that all other rdevs with the same
2823 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2824 		 * the rdev lists safely.
2825 		 * This check does not provide a hard guarantee, it
2826 		 * just helps avoid dangerous mistakes.
2827 		 */
2828 		struct mddev *mddev;
2829 		int overlap = 0;
2830 		struct list_head *tmp;
2831 
2832 		rcu_read_lock();
2833 		for_each_mddev(mddev, tmp) {
2834 			struct md_rdev *rdev2;
2835 
2836 			rdev_for_each(rdev2, mddev)
2837 				if (rdev->bdev == rdev2->bdev &&
2838 				    rdev != rdev2 &&
2839 				    overlaps(rdev->data_offset, rdev->sectors,
2840 					     rdev2->data_offset,
2841 					     rdev2->sectors)) {
2842 					overlap = 1;
2843 					break;
2844 				}
2845 			if (overlap) {
2846 				mddev_put(mddev);
2847 				break;
2848 			}
2849 		}
2850 		rcu_read_unlock();
2851 		if (overlap) {
2852 			/* Someone else could have slipped in a size
2853 			 * change here, but doing so is just silly.
2854 			 * We put oldsectors back because we *know* it is
2855 			 * safe, and trust userspace not to race with
2856 			 * itself
2857 			 */
2858 			rdev->sectors = oldsectors;
2859 			return -EBUSY;
2860 		}
2861 	}
2862 	return len;
2863 }
2864 
2865 static struct rdev_sysfs_entry rdev_size =
2866 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2867 
2868 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2869 {
2870 	unsigned long long recovery_start = rdev->recovery_offset;
2871 
2872 	if (test_bit(In_sync, &rdev->flags) ||
2873 	    recovery_start == MaxSector)
2874 		return sprintf(page, "none\n");
2875 
2876 	return sprintf(page, "%llu\n", recovery_start);
2877 }
2878 
2879 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2880 {
2881 	unsigned long long recovery_start;
2882 
2883 	if (cmd_match(buf, "none"))
2884 		recovery_start = MaxSector;
2885 	else if (kstrtoull(buf, 10, &recovery_start))
2886 		return -EINVAL;
2887 
2888 	if (rdev->mddev->pers &&
2889 	    rdev->raid_disk >= 0)
2890 		return -EBUSY;
2891 
2892 	rdev->recovery_offset = recovery_start;
2893 	if (recovery_start == MaxSector)
2894 		set_bit(In_sync, &rdev->flags);
2895 	else
2896 		clear_bit(In_sync, &rdev->flags);
2897 	return len;
2898 }
2899 
2900 static struct rdev_sysfs_entry rdev_recovery_start =
2901 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2902 
2903 static ssize_t
2904 badblocks_show(struct badblocks *bb, char *page, int unack);
2905 static ssize_t
2906 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2907 
2908 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2909 {
2910 	return badblocks_show(&rdev->badblocks, page, 0);
2911 }
2912 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2913 {
2914 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2915 	/* Maybe that ack was all we needed */
2916 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2917 		wake_up(&rdev->blocked_wait);
2918 	return rv;
2919 }
2920 static struct rdev_sysfs_entry rdev_bad_blocks =
2921 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2922 
2923 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2924 {
2925 	return badblocks_show(&rdev->badblocks, page, 1);
2926 }
2927 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2928 {
2929 	return badblocks_store(&rdev->badblocks, page, len, 1);
2930 }
2931 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2932 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2933 
2934 static struct attribute *rdev_default_attrs[] = {
2935 	&rdev_state.attr,
2936 	&rdev_errors.attr,
2937 	&rdev_slot.attr,
2938 	&rdev_offset.attr,
2939 	&rdev_new_offset.attr,
2940 	&rdev_size.attr,
2941 	&rdev_recovery_start.attr,
2942 	&rdev_bad_blocks.attr,
2943 	&rdev_unack_bad_blocks.attr,
2944 	NULL,
2945 };
2946 static ssize_t
2947 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2948 {
2949 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2950 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2951 
2952 	if (!entry->show)
2953 		return -EIO;
2954 	if (!rdev->mddev)
2955 		return -EBUSY;
2956 	return entry->show(rdev, page);
2957 }
2958 
2959 static ssize_t
2960 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2961 	      const char *page, size_t length)
2962 {
2963 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2964 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2965 	ssize_t rv;
2966 	struct mddev *mddev = rdev->mddev;
2967 
2968 	if (!entry->store)
2969 		return -EIO;
2970 	if (!capable(CAP_SYS_ADMIN))
2971 		return -EACCES;
2972 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2973 	if (!rv) {
2974 		if (rdev->mddev == NULL)
2975 			rv = -EBUSY;
2976 		else
2977 			rv = entry->store(rdev, page, length);
2978 		mddev_unlock(mddev);
2979 	}
2980 	return rv;
2981 }
2982 
2983 static void rdev_free(struct kobject *ko)
2984 {
2985 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2986 	kfree(rdev);
2987 }
2988 static const struct sysfs_ops rdev_sysfs_ops = {
2989 	.show		= rdev_attr_show,
2990 	.store		= rdev_attr_store,
2991 };
2992 static struct kobj_type rdev_ktype = {
2993 	.release	= rdev_free,
2994 	.sysfs_ops	= &rdev_sysfs_ops,
2995 	.default_attrs	= rdev_default_attrs,
2996 };
2997 
2998 int md_rdev_init(struct md_rdev *rdev)
2999 {
3000 	rdev->desc_nr = -1;
3001 	rdev->saved_raid_disk = -1;
3002 	rdev->raid_disk = -1;
3003 	rdev->flags = 0;
3004 	rdev->data_offset = 0;
3005 	rdev->new_data_offset = 0;
3006 	rdev->sb_events = 0;
3007 	rdev->last_read_error.tv_sec  = 0;
3008 	rdev->last_read_error.tv_nsec = 0;
3009 	rdev->sb_loaded = 0;
3010 	rdev->bb_page = NULL;
3011 	atomic_set(&rdev->nr_pending, 0);
3012 	atomic_set(&rdev->read_errors, 0);
3013 	atomic_set(&rdev->corrected_errors, 0);
3014 
3015 	INIT_LIST_HEAD(&rdev->same_set);
3016 	init_waitqueue_head(&rdev->blocked_wait);
3017 
3018 	/* Add space to store bad block list.
3019 	 * This reserves the space even on arrays where it cannot
3020 	 * be used - I wonder if that matters
3021 	 */
3022 	rdev->badblocks.count = 0;
3023 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3024 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3025 	seqlock_init(&rdev->badblocks.lock);
3026 	if (rdev->badblocks.page == NULL)
3027 		return -ENOMEM;
3028 
3029 	return 0;
3030 }
3031 EXPORT_SYMBOL_GPL(md_rdev_init);
3032 /*
3033  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3034  *
3035  * mark the device faulty if:
3036  *
3037  *   - the device is nonexistent (zero size)
3038  *   - the device has no valid superblock
3039  *
3040  * a faulty rdev _never_ has rdev->sb set.
3041  */
3042 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3043 {
3044 	char b[BDEVNAME_SIZE];
3045 	int err;
3046 	struct md_rdev *rdev;
3047 	sector_t size;
3048 
3049 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3050 	if (!rdev) {
3051 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3052 		return ERR_PTR(-ENOMEM);
3053 	}
3054 
3055 	err = md_rdev_init(rdev);
3056 	if (err)
3057 		goto abort_free;
3058 	err = alloc_disk_sb(rdev);
3059 	if (err)
3060 		goto abort_free;
3061 
3062 	err = lock_rdev(rdev, newdev, super_format == -2);
3063 	if (err)
3064 		goto abort_free;
3065 
3066 	kobject_init(&rdev->kobj, &rdev_ktype);
3067 
3068 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3069 	if (!size) {
3070 		printk(KERN_WARNING
3071 			"md: %s has zero or unknown size, marking faulty!\n",
3072 			bdevname(rdev->bdev,b));
3073 		err = -EINVAL;
3074 		goto abort_free;
3075 	}
3076 
3077 	if (super_format >= 0) {
3078 		err = super_types[super_format].
3079 			load_super(rdev, NULL, super_minor);
3080 		if (err == -EINVAL) {
3081 			printk(KERN_WARNING
3082 				"md: %s does not have a valid v%d.%d "
3083 			       "superblock, not importing!\n",
3084 				bdevname(rdev->bdev,b),
3085 			       super_format, super_minor);
3086 			goto abort_free;
3087 		}
3088 		if (err < 0) {
3089 			printk(KERN_WARNING
3090 				"md: could not read %s's sb, not importing!\n",
3091 				bdevname(rdev->bdev,b));
3092 			goto abort_free;
3093 		}
3094 	}
3095 
3096 	return rdev;
3097 
3098 abort_free:
3099 	if (rdev->bdev)
3100 		unlock_rdev(rdev);
3101 	md_rdev_clear(rdev);
3102 	kfree(rdev);
3103 	return ERR_PTR(err);
3104 }
3105 
3106 /*
3107  * Check a full RAID array for plausibility
3108  */
3109 
3110 static void analyze_sbs(struct mddev *mddev)
3111 {
3112 	int i;
3113 	struct md_rdev *rdev, *freshest, *tmp;
3114 	char b[BDEVNAME_SIZE];
3115 
3116 	freshest = NULL;
3117 	rdev_for_each_safe(rdev, tmp, mddev)
3118 		switch (super_types[mddev->major_version].
3119 			load_super(rdev, freshest, mddev->minor_version)) {
3120 		case 1:
3121 			freshest = rdev;
3122 			break;
3123 		case 0:
3124 			break;
3125 		default:
3126 			printk( KERN_ERR \
3127 				"md: fatal superblock inconsistency in %s"
3128 				" -- removing from array\n",
3129 				bdevname(rdev->bdev,b));
3130 			kick_rdev_from_array(rdev);
3131 		}
3132 
3133 	super_types[mddev->major_version].
3134 		validate_super(mddev, freshest);
3135 
3136 	i = 0;
3137 	rdev_for_each_safe(rdev, tmp, mddev) {
3138 		if (mddev->max_disks &&
3139 		    (rdev->desc_nr >= mddev->max_disks ||
3140 		     i > mddev->max_disks)) {
3141 			printk(KERN_WARNING
3142 			       "md: %s: %s: only %d devices permitted\n",
3143 			       mdname(mddev), bdevname(rdev->bdev, b),
3144 			       mddev->max_disks);
3145 			kick_rdev_from_array(rdev);
3146 			continue;
3147 		}
3148 		if (rdev != freshest)
3149 			if (super_types[mddev->major_version].
3150 			    validate_super(mddev, rdev)) {
3151 				printk(KERN_WARNING "md: kicking non-fresh %s"
3152 					" from array!\n",
3153 					bdevname(rdev->bdev,b));
3154 				kick_rdev_from_array(rdev);
3155 				continue;
3156 			}
3157 		if (mddev->level == LEVEL_MULTIPATH) {
3158 			rdev->desc_nr = i++;
3159 			rdev->raid_disk = rdev->desc_nr;
3160 			set_bit(In_sync, &rdev->flags);
3161 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3162 			rdev->raid_disk = -1;
3163 			clear_bit(In_sync, &rdev->flags);
3164 		}
3165 	}
3166 }
3167 
3168 /* Read a fixed-point number.
3169  * Numbers in sysfs attributes should be in "standard" units where
3170  * possible, so time should be in seconds.
3171  * However we internally use a a much smaller unit such as
3172  * milliseconds or jiffies.
3173  * This function takes a decimal number with a possible fractional
3174  * component, and produces an integer which is the result of
3175  * multiplying that number by 10^'scale'.
3176  * all without any floating-point arithmetic.
3177  */
3178 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3179 {
3180 	unsigned long result = 0;
3181 	long decimals = -1;
3182 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3183 		if (*cp == '.')
3184 			decimals = 0;
3185 		else if (decimals < scale) {
3186 			unsigned int value;
3187 			value = *cp - '0';
3188 			result = result * 10 + value;
3189 			if (decimals >= 0)
3190 				decimals++;
3191 		}
3192 		cp++;
3193 	}
3194 	if (*cp == '\n')
3195 		cp++;
3196 	if (*cp)
3197 		return -EINVAL;
3198 	if (decimals < 0)
3199 		decimals = 0;
3200 	while (decimals < scale) {
3201 		result *= 10;
3202 		decimals ++;
3203 	}
3204 	*res = result;
3205 	return 0;
3206 }
3207 
3208 static void md_safemode_timeout(unsigned long data);
3209 
3210 static ssize_t
3211 safe_delay_show(struct mddev *mddev, char *page)
3212 {
3213 	int msec = (mddev->safemode_delay*1000)/HZ;
3214 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3215 }
3216 static ssize_t
3217 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3218 {
3219 	unsigned long msec;
3220 
3221 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3222 		return -EINVAL;
3223 	if (msec == 0)
3224 		mddev->safemode_delay = 0;
3225 	else {
3226 		unsigned long old_delay = mddev->safemode_delay;
3227 		unsigned long new_delay = (msec*HZ)/1000;
3228 
3229 		if (new_delay == 0)
3230 			new_delay = 1;
3231 		mddev->safemode_delay = new_delay;
3232 		if (new_delay < old_delay || old_delay == 0)
3233 			mod_timer(&mddev->safemode_timer, jiffies+1);
3234 	}
3235 	return len;
3236 }
3237 static struct md_sysfs_entry md_safe_delay =
3238 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3239 
3240 static ssize_t
3241 level_show(struct mddev *mddev, char *page)
3242 {
3243 	struct md_personality *p;
3244 	int ret;
3245 	spin_lock(&mddev->lock);
3246 	p = mddev->pers;
3247 	if (p)
3248 		ret = sprintf(page, "%s\n", p->name);
3249 	else if (mddev->clevel[0])
3250 		ret = sprintf(page, "%s\n", mddev->clevel);
3251 	else if (mddev->level != LEVEL_NONE)
3252 		ret = sprintf(page, "%d\n", mddev->level);
3253 	else
3254 		ret = 0;
3255 	spin_unlock(&mddev->lock);
3256 	return ret;
3257 }
3258 
3259 static ssize_t
3260 level_store(struct mddev *mddev, const char *buf, size_t len)
3261 {
3262 	char clevel[16];
3263 	ssize_t rv;
3264 	size_t slen = len;
3265 	struct md_personality *pers, *oldpers;
3266 	long level;
3267 	void *priv, *oldpriv;
3268 	struct md_rdev *rdev;
3269 
3270 	if (slen == 0 || slen >= sizeof(clevel))
3271 		return -EINVAL;
3272 
3273 	rv = mddev_lock(mddev);
3274 	if (rv)
3275 		return rv;
3276 
3277 	if (mddev->pers == NULL) {
3278 		strncpy(mddev->clevel, buf, slen);
3279 		if (mddev->clevel[slen-1] == '\n')
3280 			slen--;
3281 		mddev->clevel[slen] = 0;
3282 		mddev->level = LEVEL_NONE;
3283 		rv = len;
3284 		goto out_unlock;
3285 	}
3286 	rv = -EROFS;
3287 	if (mddev->ro)
3288 		goto out_unlock;
3289 
3290 	/* request to change the personality.  Need to ensure:
3291 	 *  - array is not engaged in resync/recovery/reshape
3292 	 *  - old personality can be suspended
3293 	 *  - new personality will access other array.
3294 	 */
3295 
3296 	rv = -EBUSY;
3297 	if (mddev->sync_thread ||
3298 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3299 	    mddev->reshape_position != MaxSector ||
3300 	    mddev->sysfs_active)
3301 		goto out_unlock;
3302 
3303 	rv = -EINVAL;
3304 	if (!mddev->pers->quiesce) {
3305 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3306 		       mdname(mddev), mddev->pers->name);
3307 		goto out_unlock;
3308 	}
3309 
3310 	/* Now find the new personality */
3311 	strncpy(clevel, buf, slen);
3312 	if (clevel[slen-1] == '\n')
3313 		slen--;
3314 	clevel[slen] = 0;
3315 	if (kstrtol(clevel, 10, &level))
3316 		level = LEVEL_NONE;
3317 
3318 	if (request_module("md-%s", clevel) != 0)
3319 		request_module("md-level-%s", clevel);
3320 	spin_lock(&pers_lock);
3321 	pers = find_pers(level, clevel);
3322 	if (!pers || !try_module_get(pers->owner)) {
3323 		spin_unlock(&pers_lock);
3324 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3325 		rv = -EINVAL;
3326 		goto out_unlock;
3327 	}
3328 	spin_unlock(&pers_lock);
3329 
3330 	if (pers == mddev->pers) {
3331 		/* Nothing to do! */
3332 		module_put(pers->owner);
3333 		rv = len;
3334 		goto out_unlock;
3335 	}
3336 	if (!pers->takeover) {
3337 		module_put(pers->owner);
3338 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3339 		       mdname(mddev), clevel);
3340 		rv = -EINVAL;
3341 		goto out_unlock;
3342 	}
3343 
3344 	rdev_for_each(rdev, mddev)
3345 		rdev->new_raid_disk = rdev->raid_disk;
3346 
3347 	/* ->takeover must set new_* and/or delta_disks
3348 	 * if it succeeds, and may set them when it fails.
3349 	 */
3350 	priv = pers->takeover(mddev);
3351 	if (IS_ERR(priv)) {
3352 		mddev->new_level = mddev->level;
3353 		mddev->new_layout = mddev->layout;
3354 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3355 		mddev->raid_disks -= mddev->delta_disks;
3356 		mddev->delta_disks = 0;
3357 		mddev->reshape_backwards = 0;
3358 		module_put(pers->owner);
3359 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3360 		       mdname(mddev), clevel);
3361 		rv = PTR_ERR(priv);
3362 		goto out_unlock;
3363 	}
3364 
3365 	/* Looks like we have a winner */
3366 	mddev_suspend(mddev);
3367 	mddev_detach(mddev);
3368 
3369 	spin_lock(&mddev->lock);
3370 	oldpers = mddev->pers;
3371 	oldpriv = mddev->private;
3372 	mddev->pers = pers;
3373 	mddev->private = priv;
3374 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3375 	mddev->level = mddev->new_level;
3376 	mddev->layout = mddev->new_layout;
3377 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3378 	mddev->delta_disks = 0;
3379 	mddev->reshape_backwards = 0;
3380 	mddev->degraded = 0;
3381 	spin_unlock(&mddev->lock);
3382 
3383 	if (oldpers->sync_request == NULL &&
3384 	    mddev->external) {
3385 		/* We are converting from a no-redundancy array
3386 		 * to a redundancy array and metadata is managed
3387 		 * externally so we need to be sure that writes
3388 		 * won't block due to a need to transition
3389 		 *      clean->dirty
3390 		 * until external management is started.
3391 		 */
3392 		mddev->in_sync = 0;
3393 		mddev->safemode_delay = 0;
3394 		mddev->safemode = 0;
3395 	}
3396 
3397 	oldpers->free(mddev, oldpriv);
3398 
3399 	if (oldpers->sync_request == NULL &&
3400 	    pers->sync_request != NULL) {
3401 		/* need to add the md_redundancy_group */
3402 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3403 			printk(KERN_WARNING
3404 			       "md: cannot register extra attributes for %s\n",
3405 			       mdname(mddev));
3406 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3407 	}
3408 	if (oldpers->sync_request != NULL &&
3409 	    pers->sync_request == NULL) {
3410 		/* need to remove the md_redundancy_group */
3411 		if (mddev->to_remove == NULL)
3412 			mddev->to_remove = &md_redundancy_group;
3413 	}
3414 
3415 	rdev_for_each(rdev, mddev) {
3416 		if (rdev->raid_disk < 0)
3417 			continue;
3418 		if (rdev->new_raid_disk >= mddev->raid_disks)
3419 			rdev->new_raid_disk = -1;
3420 		if (rdev->new_raid_disk == rdev->raid_disk)
3421 			continue;
3422 		sysfs_unlink_rdev(mddev, rdev);
3423 	}
3424 	rdev_for_each(rdev, mddev) {
3425 		if (rdev->raid_disk < 0)
3426 			continue;
3427 		if (rdev->new_raid_disk == rdev->raid_disk)
3428 			continue;
3429 		rdev->raid_disk = rdev->new_raid_disk;
3430 		if (rdev->raid_disk < 0)
3431 			clear_bit(In_sync, &rdev->flags);
3432 		else {
3433 			if (sysfs_link_rdev(mddev, rdev))
3434 				printk(KERN_WARNING "md: cannot register rd%d"
3435 				       " for %s after level change\n",
3436 				       rdev->raid_disk, mdname(mddev));
3437 		}
3438 	}
3439 
3440 	if (pers->sync_request == NULL) {
3441 		/* this is now an array without redundancy, so
3442 		 * it must always be in_sync
3443 		 */
3444 		mddev->in_sync = 1;
3445 		del_timer_sync(&mddev->safemode_timer);
3446 	}
3447 	blk_set_stacking_limits(&mddev->queue->limits);
3448 	pers->run(mddev);
3449 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3450 	mddev_resume(mddev);
3451 	if (!mddev->thread)
3452 		md_update_sb(mddev, 1);
3453 	sysfs_notify(&mddev->kobj, NULL, "level");
3454 	md_new_event(mddev);
3455 	rv = len;
3456 out_unlock:
3457 	mddev_unlock(mddev);
3458 	return rv;
3459 }
3460 
3461 static struct md_sysfs_entry md_level =
3462 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3463 
3464 static ssize_t
3465 layout_show(struct mddev *mddev, char *page)
3466 {
3467 	/* just a number, not meaningful for all levels */
3468 	if (mddev->reshape_position != MaxSector &&
3469 	    mddev->layout != mddev->new_layout)
3470 		return sprintf(page, "%d (%d)\n",
3471 			       mddev->new_layout, mddev->layout);
3472 	return sprintf(page, "%d\n", mddev->layout);
3473 }
3474 
3475 static ssize_t
3476 layout_store(struct mddev *mddev, const char *buf, size_t len)
3477 {
3478 	char *e;
3479 	unsigned long n = simple_strtoul(buf, &e, 10);
3480 	int err;
3481 
3482 	if (!*buf || (*e && *e != '\n'))
3483 		return -EINVAL;
3484 	err = mddev_lock(mddev);
3485 	if (err)
3486 		return err;
3487 
3488 	if (mddev->pers) {
3489 		if (mddev->pers->check_reshape == NULL)
3490 			err = -EBUSY;
3491 		else if (mddev->ro)
3492 			err = -EROFS;
3493 		else {
3494 			mddev->new_layout = n;
3495 			err = mddev->pers->check_reshape(mddev);
3496 			if (err)
3497 				mddev->new_layout = mddev->layout;
3498 		}
3499 	} else {
3500 		mddev->new_layout = n;
3501 		if (mddev->reshape_position == MaxSector)
3502 			mddev->layout = n;
3503 	}
3504 	mddev_unlock(mddev);
3505 	return err ?: len;
3506 }
3507 static struct md_sysfs_entry md_layout =
3508 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3509 
3510 static ssize_t
3511 raid_disks_show(struct mddev *mddev, char *page)
3512 {
3513 	if (mddev->raid_disks == 0)
3514 		return 0;
3515 	if (mddev->reshape_position != MaxSector &&
3516 	    mddev->delta_disks != 0)
3517 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518 			       mddev->raid_disks - mddev->delta_disks);
3519 	return sprintf(page, "%d\n", mddev->raid_disks);
3520 }
3521 
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3523 
3524 static ssize_t
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3526 {
3527 	char *e;
3528 	int err;
3529 	unsigned long n = simple_strtoul(buf, &e, 10);
3530 
3531 	if (!*buf || (*e && *e != '\n'))
3532 		return -EINVAL;
3533 
3534 	err = mddev_lock(mddev);
3535 	if (err)
3536 		return err;
3537 	if (mddev->pers)
3538 		err = update_raid_disks(mddev, n);
3539 	else if (mddev->reshape_position != MaxSector) {
3540 		struct md_rdev *rdev;
3541 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3542 
3543 		err = -EINVAL;
3544 		rdev_for_each(rdev, mddev) {
3545 			if (olddisks < n &&
3546 			    rdev->data_offset < rdev->new_data_offset)
3547 				goto out_unlock;
3548 			if (olddisks > n &&
3549 			    rdev->data_offset > rdev->new_data_offset)
3550 				goto out_unlock;
3551 		}
3552 		err = 0;
3553 		mddev->delta_disks = n - olddisks;
3554 		mddev->raid_disks = n;
3555 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3556 	} else
3557 		mddev->raid_disks = n;
3558 out_unlock:
3559 	mddev_unlock(mddev);
3560 	return err ? err : len;
3561 }
3562 static struct md_sysfs_entry md_raid_disks =
3563 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3564 
3565 static ssize_t
3566 chunk_size_show(struct mddev *mddev, char *page)
3567 {
3568 	if (mddev->reshape_position != MaxSector &&
3569 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3570 		return sprintf(page, "%d (%d)\n",
3571 			       mddev->new_chunk_sectors << 9,
3572 			       mddev->chunk_sectors << 9);
3573 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3574 }
3575 
3576 static ssize_t
3577 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3578 {
3579 	int err;
3580 	char *e;
3581 	unsigned long n = simple_strtoul(buf, &e, 10);
3582 
3583 	if (!*buf || (*e && *e != '\n'))
3584 		return -EINVAL;
3585 
3586 	err = mddev_lock(mddev);
3587 	if (err)
3588 		return err;
3589 	if (mddev->pers) {
3590 		if (mddev->pers->check_reshape == NULL)
3591 			err = -EBUSY;
3592 		else if (mddev->ro)
3593 			err = -EROFS;
3594 		else {
3595 			mddev->new_chunk_sectors = n >> 9;
3596 			err = mddev->pers->check_reshape(mddev);
3597 			if (err)
3598 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3599 		}
3600 	} else {
3601 		mddev->new_chunk_sectors = n >> 9;
3602 		if (mddev->reshape_position == MaxSector)
3603 			mddev->chunk_sectors = n >> 9;
3604 	}
3605 	mddev_unlock(mddev);
3606 	return err ?: len;
3607 }
3608 static struct md_sysfs_entry md_chunk_size =
3609 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3610 
3611 static ssize_t
3612 resync_start_show(struct mddev *mddev, char *page)
3613 {
3614 	if (mddev->recovery_cp == MaxSector)
3615 		return sprintf(page, "none\n");
3616 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3617 }
3618 
3619 static ssize_t
3620 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3621 {
3622 	int err;
3623 	char *e;
3624 	unsigned long long n = simple_strtoull(buf, &e, 10);
3625 
3626 	err = mddev_lock(mddev);
3627 	if (err)
3628 		return err;
3629 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3630 		err = -EBUSY;
3631 	else if (cmd_match(buf, "none"))
3632 		n = MaxSector;
3633 	else if (!*buf || (*e && *e != '\n'))
3634 		err = -EINVAL;
3635 
3636 	if (!err) {
3637 		mddev->recovery_cp = n;
3638 		if (mddev->pers)
3639 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3640 	}
3641 	mddev_unlock(mddev);
3642 	return err ?: len;
3643 }
3644 static struct md_sysfs_entry md_resync_start =
3645 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3646 		resync_start_show, resync_start_store);
3647 
3648 /*
3649  * The array state can be:
3650  *
3651  * clear
3652  *     No devices, no size, no level
3653  *     Equivalent to STOP_ARRAY ioctl
3654  * inactive
3655  *     May have some settings, but array is not active
3656  *        all IO results in error
3657  *     When written, doesn't tear down array, but just stops it
3658  * suspended (not supported yet)
3659  *     All IO requests will block. The array can be reconfigured.
3660  *     Writing this, if accepted, will block until array is quiescent
3661  * readonly
3662  *     no resync can happen.  no superblocks get written.
3663  *     write requests fail
3664  * read-auto
3665  *     like readonly, but behaves like 'clean' on a write request.
3666  *
3667  * clean - no pending writes, but otherwise active.
3668  *     When written to inactive array, starts without resync
3669  *     If a write request arrives then
3670  *       if metadata is known, mark 'dirty' and switch to 'active'.
3671  *       if not known, block and switch to write-pending
3672  *     If written to an active array that has pending writes, then fails.
3673  * active
3674  *     fully active: IO and resync can be happening.
3675  *     When written to inactive array, starts with resync
3676  *
3677  * write-pending
3678  *     clean, but writes are blocked waiting for 'active' to be written.
3679  *
3680  * active-idle
3681  *     like active, but no writes have been seen for a while (100msec).
3682  *
3683  */
3684 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3685 		   write_pending, active_idle, bad_word};
3686 static char *array_states[] = {
3687 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3688 	"write-pending", "active-idle", NULL };
3689 
3690 static int match_word(const char *word, char **list)
3691 {
3692 	int n;
3693 	for (n=0; list[n]; n++)
3694 		if (cmd_match(word, list[n]))
3695 			break;
3696 	return n;
3697 }
3698 
3699 static ssize_t
3700 array_state_show(struct mddev *mddev, char *page)
3701 {
3702 	enum array_state st = inactive;
3703 
3704 	if (mddev->pers)
3705 		switch(mddev->ro) {
3706 		case 1:
3707 			st = readonly;
3708 			break;
3709 		case 2:
3710 			st = read_auto;
3711 			break;
3712 		case 0:
3713 			if (mddev->in_sync)
3714 				st = clean;
3715 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3716 				st = write_pending;
3717 			else if (mddev->safemode)
3718 				st = active_idle;
3719 			else
3720 				st = active;
3721 		}
3722 	else {
3723 		if (list_empty(&mddev->disks) &&
3724 		    mddev->raid_disks == 0 &&
3725 		    mddev->dev_sectors == 0)
3726 			st = clear;
3727 		else
3728 			st = inactive;
3729 	}
3730 	return sprintf(page, "%s\n", array_states[st]);
3731 }
3732 
3733 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3734 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3735 static int do_md_run(struct mddev *mddev);
3736 static int restart_array(struct mddev *mddev);
3737 
3738 static ssize_t
3739 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3740 {
3741 	int err;
3742 	enum array_state st = match_word(buf, array_states);
3743 
3744 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3745 		/* don't take reconfig_mutex when toggling between
3746 		 * clean and active
3747 		 */
3748 		spin_lock(&mddev->lock);
3749 		if (st == active) {
3750 			restart_array(mddev);
3751 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3752 			wake_up(&mddev->sb_wait);
3753 			err = 0;
3754 		} else /* st == clean */ {
3755 			restart_array(mddev);
3756 			if (atomic_read(&mddev->writes_pending) == 0) {
3757 				if (mddev->in_sync == 0) {
3758 					mddev->in_sync = 1;
3759 					if (mddev->safemode == 1)
3760 						mddev->safemode = 0;
3761 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3762 				}
3763 				err = 0;
3764 			} else
3765 				err = -EBUSY;
3766 		}
3767 		spin_unlock(&mddev->lock);
3768 		return err;
3769 	}
3770 	err = mddev_lock(mddev);
3771 	if (err)
3772 		return err;
3773 	err = -EINVAL;
3774 	switch(st) {
3775 	case bad_word:
3776 		break;
3777 	case clear:
3778 		/* stopping an active array */
3779 		err = do_md_stop(mddev, 0, NULL);
3780 		break;
3781 	case inactive:
3782 		/* stopping an active array */
3783 		if (mddev->pers)
3784 			err = do_md_stop(mddev, 2, NULL);
3785 		else
3786 			err = 0; /* already inactive */
3787 		break;
3788 	case suspended:
3789 		break; /* not supported yet */
3790 	case readonly:
3791 		if (mddev->pers)
3792 			err = md_set_readonly(mddev, NULL);
3793 		else {
3794 			mddev->ro = 1;
3795 			set_disk_ro(mddev->gendisk, 1);
3796 			err = do_md_run(mddev);
3797 		}
3798 		break;
3799 	case read_auto:
3800 		if (mddev->pers) {
3801 			if (mddev->ro == 0)
3802 				err = md_set_readonly(mddev, NULL);
3803 			else if (mddev->ro == 1)
3804 				err = restart_array(mddev);
3805 			if (err == 0) {
3806 				mddev->ro = 2;
3807 				set_disk_ro(mddev->gendisk, 0);
3808 			}
3809 		} else {
3810 			mddev->ro = 2;
3811 			err = do_md_run(mddev);
3812 		}
3813 		break;
3814 	case clean:
3815 		if (mddev->pers) {
3816 			restart_array(mddev);
3817 			spin_lock(&mddev->lock);
3818 			if (atomic_read(&mddev->writes_pending) == 0) {
3819 				if (mddev->in_sync == 0) {
3820 					mddev->in_sync = 1;
3821 					if (mddev->safemode == 1)
3822 						mddev->safemode = 0;
3823 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3824 				}
3825 				err = 0;
3826 			} else
3827 				err = -EBUSY;
3828 			spin_unlock(&mddev->lock);
3829 		} else
3830 			err = -EINVAL;
3831 		break;
3832 	case active:
3833 		if (mddev->pers) {
3834 			restart_array(mddev);
3835 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3836 			wake_up(&mddev->sb_wait);
3837 			err = 0;
3838 		} else {
3839 			mddev->ro = 0;
3840 			set_disk_ro(mddev->gendisk, 0);
3841 			err = do_md_run(mddev);
3842 		}
3843 		break;
3844 	case write_pending:
3845 	case active_idle:
3846 		/* these cannot be set */
3847 		break;
3848 	}
3849 
3850 	if (!err) {
3851 		if (mddev->hold_active == UNTIL_IOCTL)
3852 			mddev->hold_active = 0;
3853 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3854 	}
3855 	mddev_unlock(mddev);
3856 	return err ?: len;
3857 }
3858 static struct md_sysfs_entry md_array_state =
3859 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3860 
3861 static ssize_t
3862 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3863 	return sprintf(page, "%d\n",
3864 		       atomic_read(&mddev->max_corr_read_errors));
3865 }
3866 
3867 static ssize_t
3868 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3869 {
3870 	char *e;
3871 	unsigned long n = simple_strtoul(buf, &e, 10);
3872 
3873 	if (*buf && (*e == 0 || *e == '\n')) {
3874 		atomic_set(&mddev->max_corr_read_errors, n);
3875 		return len;
3876 	}
3877 	return -EINVAL;
3878 }
3879 
3880 static struct md_sysfs_entry max_corr_read_errors =
3881 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3882 	max_corrected_read_errors_store);
3883 
3884 static ssize_t
3885 null_show(struct mddev *mddev, char *page)
3886 {
3887 	return -EINVAL;
3888 }
3889 
3890 static ssize_t
3891 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3892 {
3893 	/* buf must be %d:%d\n? giving major and minor numbers */
3894 	/* The new device is added to the array.
3895 	 * If the array has a persistent superblock, we read the
3896 	 * superblock to initialise info and check validity.
3897 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3898 	 * which mainly checks size.
3899 	 */
3900 	char *e;
3901 	int major = simple_strtoul(buf, &e, 10);
3902 	int minor;
3903 	dev_t dev;
3904 	struct md_rdev *rdev;
3905 	int err;
3906 
3907 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3908 		return -EINVAL;
3909 	minor = simple_strtoul(e+1, &e, 10);
3910 	if (*e && *e != '\n')
3911 		return -EINVAL;
3912 	dev = MKDEV(major, minor);
3913 	if (major != MAJOR(dev) ||
3914 	    minor != MINOR(dev))
3915 		return -EOVERFLOW;
3916 
3917 	flush_workqueue(md_misc_wq);
3918 
3919 	err = mddev_lock(mddev);
3920 	if (err)
3921 		return err;
3922 	if (mddev->persistent) {
3923 		rdev = md_import_device(dev, mddev->major_version,
3924 					mddev->minor_version);
3925 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3926 			struct md_rdev *rdev0
3927 				= list_entry(mddev->disks.next,
3928 					     struct md_rdev, same_set);
3929 			err = super_types[mddev->major_version]
3930 				.load_super(rdev, rdev0, mddev->minor_version);
3931 			if (err < 0)
3932 				goto out;
3933 		}
3934 	} else if (mddev->external)
3935 		rdev = md_import_device(dev, -2, -1);
3936 	else
3937 		rdev = md_import_device(dev, -1, -1);
3938 
3939 	if (IS_ERR(rdev))
3940 		return PTR_ERR(rdev);
3941 	err = bind_rdev_to_array(rdev, mddev);
3942  out:
3943 	if (err)
3944 		export_rdev(rdev);
3945 	mddev_unlock(mddev);
3946 	return err ? err : len;
3947 }
3948 
3949 static struct md_sysfs_entry md_new_device =
3950 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3951 
3952 static ssize_t
3953 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3954 {
3955 	char *end;
3956 	unsigned long chunk, end_chunk;
3957 	int err;
3958 
3959 	err = mddev_lock(mddev);
3960 	if (err)
3961 		return err;
3962 	if (!mddev->bitmap)
3963 		goto out;
3964 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3965 	while (*buf) {
3966 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3967 		if (buf == end) break;
3968 		if (*end == '-') { /* range */
3969 			buf = end + 1;
3970 			end_chunk = simple_strtoul(buf, &end, 0);
3971 			if (buf == end) break;
3972 		}
3973 		if (*end && !isspace(*end)) break;
3974 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3975 		buf = skip_spaces(end);
3976 	}
3977 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3978 out:
3979 	mddev_unlock(mddev);
3980 	return len;
3981 }
3982 
3983 static struct md_sysfs_entry md_bitmap =
3984 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3985 
3986 static ssize_t
3987 size_show(struct mddev *mddev, char *page)
3988 {
3989 	return sprintf(page, "%llu\n",
3990 		(unsigned long long)mddev->dev_sectors / 2);
3991 }
3992 
3993 static int update_size(struct mddev *mddev, sector_t num_sectors);
3994 
3995 static ssize_t
3996 size_store(struct mddev *mddev, const char *buf, size_t len)
3997 {
3998 	/* If array is inactive, we can reduce the component size, but
3999 	 * not increase it (except from 0).
4000 	 * If array is active, we can try an on-line resize
4001 	 */
4002 	sector_t sectors;
4003 	int err = strict_blocks_to_sectors(buf, &sectors);
4004 
4005 	if (err < 0)
4006 		return err;
4007 	err = mddev_lock(mddev);
4008 	if (err)
4009 		return err;
4010 	if (mddev->pers) {
4011 		err = update_size(mddev, sectors);
4012 		md_update_sb(mddev, 1);
4013 	} else {
4014 		if (mddev->dev_sectors == 0 ||
4015 		    mddev->dev_sectors > sectors)
4016 			mddev->dev_sectors = sectors;
4017 		else
4018 			err = -ENOSPC;
4019 	}
4020 	mddev_unlock(mddev);
4021 	return err ? err : len;
4022 }
4023 
4024 static struct md_sysfs_entry md_size =
4025 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4026 
4027 /* Metadata version.
4028  * This is one of
4029  *   'none' for arrays with no metadata (good luck...)
4030  *   'external' for arrays with externally managed metadata,
4031  * or N.M for internally known formats
4032  */
4033 static ssize_t
4034 metadata_show(struct mddev *mddev, char *page)
4035 {
4036 	if (mddev->persistent)
4037 		return sprintf(page, "%d.%d\n",
4038 			       mddev->major_version, mddev->minor_version);
4039 	else if (mddev->external)
4040 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4041 	else
4042 		return sprintf(page, "none\n");
4043 }
4044 
4045 static ssize_t
4046 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4047 {
4048 	int major, minor;
4049 	char *e;
4050 	int err;
4051 	/* Changing the details of 'external' metadata is
4052 	 * always permitted.  Otherwise there must be
4053 	 * no devices attached to the array.
4054 	 */
4055 
4056 	err = mddev_lock(mddev);
4057 	if (err)
4058 		return err;
4059 	err = -EBUSY;
4060 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4061 		;
4062 	else if (!list_empty(&mddev->disks))
4063 		goto out_unlock;
4064 
4065 	err = 0;
4066 	if (cmd_match(buf, "none")) {
4067 		mddev->persistent = 0;
4068 		mddev->external = 0;
4069 		mddev->major_version = 0;
4070 		mddev->minor_version = 90;
4071 		goto out_unlock;
4072 	}
4073 	if (strncmp(buf, "external:", 9) == 0) {
4074 		size_t namelen = len-9;
4075 		if (namelen >= sizeof(mddev->metadata_type))
4076 			namelen = sizeof(mddev->metadata_type)-1;
4077 		strncpy(mddev->metadata_type, buf+9, namelen);
4078 		mddev->metadata_type[namelen] = 0;
4079 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4080 			mddev->metadata_type[--namelen] = 0;
4081 		mddev->persistent = 0;
4082 		mddev->external = 1;
4083 		mddev->major_version = 0;
4084 		mddev->minor_version = 90;
4085 		goto out_unlock;
4086 	}
4087 	major = simple_strtoul(buf, &e, 10);
4088 	err = -EINVAL;
4089 	if (e==buf || *e != '.')
4090 		goto out_unlock;
4091 	buf = e+1;
4092 	minor = simple_strtoul(buf, &e, 10);
4093 	if (e==buf || (*e && *e != '\n') )
4094 		goto out_unlock;
4095 	err = -ENOENT;
4096 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4097 		goto out_unlock;
4098 	mddev->major_version = major;
4099 	mddev->minor_version = minor;
4100 	mddev->persistent = 1;
4101 	mddev->external = 0;
4102 	err = 0;
4103 out_unlock:
4104 	mddev_unlock(mddev);
4105 	return err ?: len;
4106 }
4107 
4108 static struct md_sysfs_entry md_metadata =
4109 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4110 
4111 static ssize_t
4112 action_show(struct mddev *mddev, char *page)
4113 {
4114 	char *type = "idle";
4115 	unsigned long recovery = mddev->recovery;
4116 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4117 		type = "frozen";
4118 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4119 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4120 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4121 			type = "reshape";
4122 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4123 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4124 				type = "resync";
4125 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4126 				type = "check";
4127 			else
4128 				type = "repair";
4129 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4130 			type = "recover";
4131 	}
4132 	return sprintf(page, "%s\n", type);
4133 }
4134 
4135 static ssize_t
4136 action_store(struct mddev *mddev, const char *page, size_t len)
4137 {
4138 	if (!mddev->pers || !mddev->pers->sync_request)
4139 		return -EINVAL;
4140 
4141 	if (cmd_match(page, "frozen"))
4142 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4143 	else
4144 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4145 
4146 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4147 		flush_workqueue(md_misc_wq);
4148 		if (mddev->sync_thread) {
4149 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4150 			if (mddev_lock(mddev) == 0) {
4151 				md_reap_sync_thread(mddev);
4152 				mddev_unlock(mddev);
4153 			}
4154 		}
4155 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4156 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4157 		return -EBUSY;
4158 	else if (cmd_match(page, "resync"))
4159 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4160 	else if (cmd_match(page, "recover")) {
4161 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4162 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4163 	} else if (cmd_match(page, "reshape")) {
4164 		int err;
4165 		if (mddev->pers->start_reshape == NULL)
4166 			return -EINVAL;
4167 		err = mddev_lock(mddev);
4168 		if (!err) {
4169 			err = mddev->pers->start_reshape(mddev);
4170 			mddev_unlock(mddev);
4171 		}
4172 		if (err)
4173 			return err;
4174 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4175 	} else {
4176 		if (cmd_match(page, "check"))
4177 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4178 		else if (!cmd_match(page, "repair"))
4179 			return -EINVAL;
4180 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4181 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4182 	}
4183 	if (mddev->ro == 2) {
4184 		/* A write to sync_action is enough to justify
4185 		 * canceling read-auto mode
4186 		 */
4187 		mddev->ro = 0;
4188 		md_wakeup_thread(mddev->sync_thread);
4189 	}
4190 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4191 	md_wakeup_thread(mddev->thread);
4192 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4193 	return len;
4194 }
4195 
4196 static struct md_sysfs_entry md_scan_mode =
4197 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4198 
4199 static ssize_t
4200 last_sync_action_show(struct mddev *mddev, char *page)
4201 {
4202 	return sprintf(page, "%s\n", mddev->last_sync_action);
4203 }
4204 
4205 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4206 
4207 static ssize_t
4208 mismatch_cnt_show(struct mddev *mddev, char *page)
4209 {
4210 	return sprintf(page, "%llu\n",
4211 		       (unsigned long long)
4212 		       atomic64_read(&mddev->resync_mismatches));
4213 }
4214 
4215 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4216 
4217 static ssize_t
4218 sync_min_show(struct mddev *mddev, char *page)
4219 {
4220 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4221 		       mddev->sync_speed_min ? "local": "system");
4222 }
4223 
4224 static ssize_t
4225 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4226 {
4227 	int min;
4228 	char *e;
4229 	if (strncmp(buf, "system", 6)==0) {
4230 		mddev->sync_speed_min = 0;
4231 		return len;
4232 	}
4233 	min = simple_strtoul(buf, &e, 10);
4234 	if (buf == e || (*e && *e != '\n') || min <= 0)
4235 		return -EINVAL;
4236 	mddev->sync_speed_min = min;
4237 	return len;
4238 }
4239 
4240 static struct md_sysfs_entry md_sync_min =
4241 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4242 
4243 static ssize_t
4244 sync_max_show(struct mddev *mddev, char *page)
4245 {
4246 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4247 		       mddev->sync_speed_max ? "local": "system");
4248 }
4249 
4250 static ssize_t
4251 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4252 {
4253 	int max;
4254 	char *e;
4255 	if (strncmp(buf, "system", 6)==0) {
4256 		mddev->sync_speed_max = 0;
4257 		return len;
4258 	}
4259 	max = simple_strtoul(buf, &e, 10);
4260 	if (buf == e || (*e && *e != '\n') || max <= 0)
4261 		return -EINVAL;
4262 	mddev->sync_speed_max = max;
4263 	return len;
4264 }
4265 
4266 static struct md_sysfs_entry md_sync_max =
4267 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4268 
4269 static ssize_t
4270 degraded_show(struct mddev *mddev, char *page)
4271 {
4272 	return sprintf(page, "%d\n", mddev->degraded);
4273 }
4274 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4275 
4276 static ssize_t
4277 sync_force_parallel_show(struct mddev *mddev, char *page)
4278 {
4279 	return sprintf(page, "%d\n", mddev->parallel_resync);
4280 }
4281 
4282 static ssize_t
4283 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4284 {
4285 	long n;
4286 
4287 	if (kstrtol(buf, 10, &n))
4288 		return -EINVAL;
4289 
4290 	if (n != 0 && n != 1)
4291 		return -EINVAL;
4292 
4293 	mddev->parallel_resync = n;
4294 
4295 	if (mddev->sync_thread)
4296 		wake_up(&resync_wait);
4297 
4298 	return len;
4299 }
4300 
4301 /* force parallel resync, even with shared block devices */
4302 static struct md_sysfs_entry md_sync_force_parallel =
4303 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4304        sync_force_parallel_show, sync_force_parallel_store);
4305 
4306 static ssize_t
4307 sync_speed_show(struct mddev *mddev, char *page)
4308 {
4309 	unsigned long resync, dt, db;
4310 	if (mddev->curr_resync == 0)
4311 		return sprintf(page, "none\n");
4312 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4313 	dt = (jiffies - mddev->resync_mark) / HZ;
4314 	if (!dt) dt++;
4315 	db = resync - mddev->resync_mark_cnt;
4316 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4317 }
4318 
4319 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4320 
4321 static ssize_t
4322 sync_completed_show(struct mddev *mddev, char *page)
4323 {
4324 	unsigned long long max_sectors, resync;
4325 
4326 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4327 		return sprintf(page, "none\n");
4328 
4329 	if (mddev->curr_resync == 1 ||
4330 	    mddev->curr_resync == 2)
4331 		return sprintf(page, "delayed\n");
4332 
4333 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4334 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4335 		max_sectors = mddev->resync_max_sectors;
4336 	else
4337 		max_sectors = mddev->dev_sectors;
4338 
4339 	resync = mddev->curr_resync_completed;
4340 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4341 }
4342 
4343 static struct md_sysfs_entry md_sync_completed =
4344 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4345 
4346 static ssize_t
4347 min_sync_show(struct mddev *mddev, char *page)
4348 {
4349 	return sprintf(page, "%llu\n",
4350 		       (unsigned long long)mddev->resync_min);
4351 }
4352 static ssize_t
4353 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4354 {
4355 	unsigned long long min;
4356 	int err;
4357 	int chunk;
4358 
4359 	if (kstrtoull(buf, 10, &min))
4360 		return -EINVAL;
4361 
4362 	spin_lock(&mddev->lock);
4363 	err = -EINVAL;
4364 	if (min > mddev->resync_max)
4365 		goto out_unlock;
4366 
4367 	err = -EBUSY;
4368 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4369 		goto out_unlock;
4370 
4371 	/* Must be a multiple of chunk_size */
4372 	chunk = mddev->chunk_sectors;
4373 	if (chunk) {
4374 		sector_t temp = min;
4375 
4376 		err = -EINVAL;
4377 		if (sector_div(temp, chunk))
4378 			goto out_unlock;
4379 	}
4380 	mddev->resync_min = min;
4381 	err = 0;
4382 
4383 out_unlock:
4384 	spin_unlock(&mddev->lock);
4385 	return err ?: len;
4386 }
4387 
4388 static struct md_sysfs_entry md_min_sync =
4389 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4390 
4391 static ssize_t
4392 max_sync_show(struct mddev *mddev, char *page)
4393 {
4394 	if (mddev->resync_max == MaxSector)
4395 		return sprintf(page, "max\n");
4396 	else
4397 		return sprintf(page, "%llu\n",
4398 			       (unsigned long long)mddev->resync_max);
4399 }
4400 static ssize_t
4401 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 	int err;
4404 	spin_lock(&mddev->lock);
4405 	if (strncmp(buf, "max", 3) == 0)
4406 		mddev->resync_max = MaxSector;
4407 	else {
4408 		unsigned long long max;
4409 		int chunk;
4410 
4411 		err = -EINVAL;
4412 		if (kstrtoull(buf, 10, &max))
4413 			goto out_unlock;
4414 		if (max < mddev->resync_min)
4415 			goto out_unlock;
4416 
4417 		err = -EBUSY;
4418 		if (max < mddev->resync_max &&
4419 		    mddev->ro == 0 &&
4420 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4421 			goto out_unlock;
4422 
4423 		/* Must be a multiple of chunk_size */
4424 		chunk = mddev->chunk_sectors;
4425 		if (chunk) {
4426 			sector_t temp = max;
4427 
4428 			err = -EINVAL;
4429 			if (sector_div(temp, chunk))
4430 				goto out_unlock;
4431 		}
4432 		mddev->resync_max = max;
4433 	}
4434 	wake_up(&mddev->recovery_wait);
4435 	err = 0;
4436 out_unlock:
4437 	spin_unlock(&mddev->lock);
4438 	return err ?: len;
4439 }
4440 
4441 static struct md_sysfs_entry md_max_sync =
4442 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4443 
4444 static ssize_t
4445 suspend_lo_show(struct mddev *mddev, char *page)
4446 {
4447 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4448 }
4449 
4450 static ssize_t
4451 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4452 {
4453 	char *e;
4454 	unsigned long long new = simple_strtoull(buf, &e, 10);
4455 	unsigned long long old;
4456 	int err;
4457 
4458 	if (buf == e || (*e && *e != '\n'))
4459 		return -EINVAL;
4460 
4461 	err = mddev_lock(mddev);
4462 	if (err)
4463 		return err;
4464 	err = -EINVAL;
4465 	if (mddev->pers == NULL ||
4466 	    mddev->pers->quiesce == NULL)
4467 		goto unlock;
4468 	old = mddev->suspend_lo;
4469 	mddev->suspend_lo = new;
4470 	if (new >= old)
4471 		/* Shrinking suspended region */
4472 		mddev->pers->quiesce(mddev, 2);
4473 	else {
4474 		/* Expanding suspended region - need to wait */
4475 		mddev->pers->quiesce(mddev, 1);
4476 		mddev->pers->quiesce(mddev, 0);
4477 	}
4478 	err = 0;
4479 unlock:
4480 	mddev_unlock(mddev);
4481 	return err ?: len;
4482 }
4483 static struct md_sysfs_entry md_suspend_lo =
4484 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4485 
4486 static ssize_t
4487 suspend_hi_show(struct mddev *mddev, char *page)
4488 {
4489 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4490 }
4491 
4492 static ssize_t
4493 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4494 {
4495 	char *e;
4496 	unsigned long long new = simple_strtoull(buf, &e, 10);
4497 	unsigned long long old;
4498 	int err;
4499 
4500 	if (buf == e || (*e && *e != '\n'))
4501 		return -EINVAL;
4502 
4503 	err = mddev_lock(mddev);
4504 	if (err)
4505 		return err;
4506 	err = -EINVAL;
4507 	if (mddev->pers == NULL ||
4508 	    mddev->pers->quiesce == NULL)
4509 		goto unlock;
4510 	old = mddev->suspend_hi;
4511 	mddev->suspend_hi = new;
4512 	if (new <= old)
4513 		/* Shrinking suspended region */
4514 		mddev->pers->quiesce(mddev, 2);
4515 	else {
4516 		/* Expanding suspended region - need to wait */
4517 		mddev->pers->quiesce(mddev, 1);
4518 		mddev->pers->quiesce(mddev, 0);
4519 	}
4520 	err = 0;
4521 unlock:
4522 	mddev_unlock(mddev);
4523 	return err ?: len;
4524 }
4525 static struct md_sysfs_entry md_suspend_hi =
4526 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4527 
4528 static ssize_t
4529 reshape_position_show(struct mddev *mddev, char *page)
4530 {
4531 	if (mddev->reshape_position != MaxSector)
4532 		return sprintf(page, "%llu\n",
4533 			       (unsigned long long)mddev->reshape_position);
4534 	strcpy(page, "none\n");
4535 	return 5;
4536 }
4537 
4538 static ssize_t
4539 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4540 {
4541 	struct md_rdev *rdev;
4542 	char *e;
4543 	int err;
4544 	unsigned long long new = simple_strtoull(buf, &e, 10);
4545 
4546 	if (buf == e || (*e && *e != '\n'))
4547 		return -EINVAL;
4548 	err = mddev_lock(mddev);
4549 	if (err)
4550 		return err;
4551 	err = -EBUSY;
4552 	if (mddev->pers)
4553 		goto unlock;
4554 	mddev->reshape_position = new;
4555 	mddev->delta_disks = 0;
4556 	mddev->reshape_backwards = 0;
4557 	mddev->new_level = mddev->level;
4558 	mddev->new_layout = mddev->layout;
4559 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4560 	rdev_for_each(rdev, mddev)
4561 		rdev->new_data_offset = rdev->data_offset;
4562 	err = 0;
4563 unlock:
4564 	mddev_unlock(mddev);
4565 	return err ?: len;
4566 }
4567 
4568 static struct md_sysfs_entry md_reshape_position =
4569 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4570        reshape_position_store);
4571 
4572 static ssize_t
4573 reshape_direction_show(struct mddev *mddev, char *page)
4574 {
4575 	return sprintf(page, "%s\n",
4576 		       mddev->reshape_backwards ? "backwards" : "forwards");
4577 }
4578 
4579 static ssize_t
4580 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4581 {
4582 	int backwards = 0;
4583 	int err;
4584 
4585 	if (cmd_match(buf, "forwards"))
4586 		backwards = 0;
4587 	else if (cmd_match(buf, "backwards"))
4588 		backwards = 1;
4589 	else
4590 		return -EINVAL;
4591 	if (mddev->reshape_backwards == backwards)
4592 		return len;
4593 
4594 	err = mddev_lock(mddev);
4595 	if (err)
4596 		return err;
4597 	/* check if we are allowed to change */
4598 	if (mddev->delta_disks)
4599 		err = -EBUSY;
4600 	else if (mddev->persistent &&
4601 	    mddev->major_version == 0)
4602 		err =  -EINVAL;
4603 	else
4604 		mddev->reshape_backwards = backwards;
4605 	mddev_unlock(mddev);
4606 	return err ?: len;
4607 }
4608 
4609 static struct md_sysfs_entry md_reshape_direction =
4610 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4611        reshape_direction_store);
4612 
4613 static ssize_t
4614 array_size_show(struct mddev *mddev, char *page)
4615 {
4616 	if (mddev->external_size)
4617 		return sprintf(page, "%llu\n",
4618 			       (unsigned long long)mddev->array_sectors/2);
4619 	else
4620 		return sprintf(page, "default\n");
4621 }
4622 
4623 static ssize_t
4624 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4625 {
4626 	sector_t sectors;
4627 	int err;
4628 
4629 	err = mddev_lock(mddev);
4630 	if (err)
4631 		return err;
4632 
4633 	if (strncmp(buf, "default", 7) == 0) {
4634 		if (mddev->pers)
4635 			sectors = mddev->pers->size(mddev, 0, 0);
4636 		else
4637 			sectors = mddev->array_sectors;
4638 
4639 		mddev->external_size = 0;
4640 	} else {
4641 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4642 			err = -EINVAL;
4643 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4644 			err = -E2BIG;
4645 		else
4646 			mddev->external_size = 1;
4647 	}
4648 
4649 	if (!err) {
4650 		mddev->array_sectors = sectors;
4651 		if (mddev->pers) {
4652 			set_capacity(mddev->gendisk, mddev->array_sectors);
4653 			revalidate_disk(mddev->gendisk);
4654 		}
4655 	}
4656 	mddev_unlock(mddev);
4657 	return err ?: len;
4658 }
4659 
4660 static struct md_sysfs_entry md_array_size =
4661 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4662        array_size_store);
4663 
4664 static struct attribute *md_default_attrs[] = {
4665 	&md_level.attr,
4666 	&md_layout.attr,
4667 	&md_raid_disks.attr,
4668 	&md_chunk_size.attr,
4669 	&md_size.attr,
4670 	&md_resync_start.attr,
4671 	&md_metadata.attr,
4672 	&md_new_device.attr,
4673 	&md_safe_delay.attr,
4674 	&md_array_state.attr,
4675 	&md_reshape_position.attr,
4676 	&md_reshape_direction.attr,
4677 	&md_array_size.attr,
4678 	&max_corr_read_errors.attr,
4679 	NULL,
4680 };
4681 
4682 static struct attribute *md_redundancy_attrs[] = {
4683 	&md_scan_mode.attr,
4684 	&md_last_scan_mode.attr,
4685 	&md_mismatches.attr,
4686 	&md_sync_min.attr,
4687 	&md_sync_max.attr,
4688 	&md_sync_speed.attr,
4689 	&md_sync_force_parallel.attr,
4690 	&md_sync_completed.attr,
4691 	&md_min_sync.attr,
4692 	&md_max_sync.attr,
4693 	&md_suspend_lo.attr,
4694 	&md_suspend_hi.attr,
4695 	&md_bitmap.attr,
4696 	&md_degraded.attr,
4697 	NULL,
4698 };
4699 static struct attribute_group md_redundancy_group = {
4700 	.name = NULL,
4701 	.attrs = md_redundancy_attrs,
4702 };
4703 
4704 static ssize_t
4705 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4706 {
4707 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4708 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4709 	ssize_t rv;
4710 
4711 	if (!entry->show)
4712 		return -EIO;
4713 	spin_lock(&all_mddevs_lock);
4714 	if (list_empty(&mddev->all_mddevs)) {
4715 		spin_unlock(&all_mddevs_lock);
4716 		return -EBUSY;
4717 	}
4718 	mddev_get(mddev);
4719 	spin_unlock(&all_mddevs_lock);
4720 
4721 	rv = entry->show(mddev, page);
4722 	mddev_put(mddev);
4723 	return rv;
4724 }
4725 
4726 static ssize_t
4727 md_attr_store(struct kobject *kobj, struct attribute *attr,
4728 	      const char *page, size_t length)
4729 {
4730 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4731 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4732 	ssize_t rv;
4733 
4734 	if (!entry->store)
4735 		return -EIO;
4736 	if (!capable(CAP_SYS_ADMIN))
4737 		return -EACCES;
4738 	spin_lock(&all_mddevs_lock);
4739 	if (list_empty(&mddev->all_mddevs)) {
4740 		spin_unlock(&all_mddevs_lock);
4741 		return -EBUSY;
4742 	}
4743 	mddev_get(mddev);
4744 	spin_unlock(&all_mddevs_lock);
4745 	rv = entry->store(mddev, page, length);
4746 	mddev_put(mddev);
4747 	return rv;
4748 }
4749 
4750 static void md_free(struct kobject *ko)
4751 {
4752 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4753 
4754 	if (mddev->sysfs_state)
4755 		sysfs_put(mddev->sysfs_state);
4756 
4757 	if (mddev->gendisk) {
4758 		del_gendisk(mddev->gendisk);
4759 		put_disk(mddev->gendisk);
4760 	}
4761 	if (mddev->queue)
4762 		blk_cleanup_queue(mddev->queue);
4763 
4764 	kfree(mddev);
4765 }
4766 
4767 static const struct sysfs_ops md_sysfs_ops = {
4768 	.show	= md_attr_show,
4769 	.store	= md_attr_store,
4770 };
4771 static struct kobj_type md_ktype = {
4772 	.release	= md_free,
4773 	.sysfs_ops	= &md_sysfs_ops,
4774 	.default_attrs	= md_default_attrs,
4775 };
4776 
4777 int mdp_major = 0;
4778 
4779 static void mddev_delayed_delete(struct work_struct *ws)
4780 {
4781 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4782 
4783 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4784 	kobject_del(&mddev->kobj);
4785 	kobject_put(&mddev->kobj);
4786 }
4787 
4788 static int md_alloc(dev_t dev, char *name)
4789 {
4790 	static DEFINE_MUTEX(disks_mutex);
4791 	struct mddev *mddev = mddev_find(dev);
4792 	struct gendisk *disk;
4793 	int partitioned;
4794 	int shift;
4795 	int unit;
4796 	int error;
4797 
4798 	if (!mddev)
4799 		return -ENODEV;
4800 
4801 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4802 	shift = partitioned ? MdpMinorShift : 0;
4803 	unit = MINOR(mddev->unit) >> shift;
4804 
4805 	/* wait for any previous instance of this device to be
4806 	 * completely removed (mddev_delayed_delete).
4807 	 */
4808 	flush_workqueue(md_misc_wq);
4809 
4810 	mutex_lock(&disks_mutex);
4811 	error = -EEXIST;
4812 	if (mddev->gendisk)
4813 		goto abort;
4814 
4815 	if (name) {
4816 		/* Need to ensure that 'name' is not a duplicate.
4817 		 */
4818 		struct mddev *mddev2;
4819 		spin_lock(&all_mddevs_lock);
4820 
4821 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4822 			if (mddev2->gendisk &&
4823 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4824 				spin_unlock(&all_mddevs_lock);
4825 				goto abort;
4826 			}
4827 		spin_unlock(&all_mddevs_lock);
4828 	}
4829 
4830 	error = -ENOMEM;
4831 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4832 	if (!mddev->queue)
4833 		goto abort;
4834 	mddev->queue->queuedata = mddev;
4835 
4836 	blk_queue_make_request(mddev->queue, md_make_request);
4837 	blk_set_stacking_limits(&mddev->queue->limits);
4838 
4839 	disk = alloc_disk(1 << shift);
4840 	if (!disk) {
4841 		blk_cleanup_queue(mddev->queue);
4842 		mddev->queue = NULL;
4843 		goto abort;
4844 	}
4845 	disk->major = MAJOR(mddev->unit);
4846 	disk->first_minor = unit << shift;
4847 	if (name)
4848 		strcpy(disk->disk_name, name);
4849 	else if (partitioned)
4850 		sprintf(disk->disk_name, "md_d%d", unit);
4851 	else
4852 		sprintf(disk->disk_name, "md%d", unit);
4853 	disk->fops = &md_fops;
4854 	disk->private_data = mddev;
4855 	disk->queue = mddev->queue;
4856 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4857 	/* Allow extended partitions.  This makes the
4858 	 * 'mdp' device redundant, but we can't really
4859 	 * remove it now.
4860 	 */
4861 	disk->flags |= GENHD_FL_EXT_DEVT;
4862 	mddev->gendisk = disk;
4863 	/* As soon as we call add_disk(), another thread could get
4864 	 * through to md_open, so make sure it doesn't get too far
4865 	 */
4866 	mutex_lock(&mddev->open_mutex);
4867 	add_disk(disk);
4868 
4869 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4870 				     &disk_to_dev(disk)->kobj, "%s", "md");
4871 	if (error) {
4872 		/* This isn't possible, but as kobject_init_and_add is marked
4873 		 * __must_check, we must do something with the result
4874 		 */
4875 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4876 		       disk->disk_name);
4877 		error = 0;
4878 	}
4879 	if (mddev->kobj.sd &&
4880 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4881 		printk(KERN_DEBUG "pointless warning\n");
4882 	mutex_unlock(&mddev->open_mutex);
4883  abort:
4884 	mutex_unlock(&disks_mutex);
4885 	if (!error && mddev->kobj.sd) {
4886 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4887 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4888 	}
4889 	mddev_put(mddev);
4890 	return error;
4891 }
4892 
4893 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4894 {
4895 	md_alloc(dev, NULL);
4896 	return NULL;
4897 }
4898 
4899 static int add_named_array(const char *val, struct kernel_param *kp)
4900 {
4901 	/* val must be "md_*" where * is not all digits.
4902 	 * We allocate an array with a large free minor number, and
4903 	 * set the name to val.  val must not already be an active name.
4904 	 */
4905 	int len = strlen(val);
4906 	char buf[DISK_NAME_LEN];
4907 
4908 	while (len && val[len-1] == '\n')
4909 		len--;
4910 	if (len >= DISK_NAME_LEN)
4911 		return -E2BIG;
4912 	strlcpy(buf, val, len+1);
4913 	if (strncmp(buf, "md_", 3) != 0)
4914 		return -EINVAL;
4915 	return md_alloc(0, buf);
4916 }
4917 
4918 static void md_safemode_timeout(unsigned long data)
4919 {
4920 	struct mddev *mddev = (struct mddev *) data;
4921 
4922 	if (!atomic_read(&mddev->writes_pending)) {
4923 		mddev->safemode = 1;
4924 		if (mddev->external)
4925 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4926 	}
4927 	md_wakeup_thread(mddev->thread);
4928 }
4929 
4930 static int start_dirty_degraded;
4931 
4932 int md_run(struct mddev *mddev)
4933 {
4934 	int err;
4935 	struct md_rdev *rdev;
4936 	struct md_personality *pers;
4937 
4938 	if (list_empty(&mddev->disks))
4939 		/* cannot run an array with no devices.. */
4940 		return -EINVAL;
4941 
4942 	if (mddev->pers)
4943 		return -EBUSY;
4944 	/* Cannot run until previous stop completes properly */
4945 	if (mddev->sysfs_active)
4946 		return -EBUSY;
4947 
4948 	/*
4949 	 * Analyze all RAID superblock(s)
4950 	 */
4951 	if (!mddev->raid_disks) {
4952 		if (!mddev->persistent)
4953 			return -EINVAL;
4954 		analyze_sbs(mddev);
4955 	}
4956 
4957 	if (mddev->level != LEVEL_NONE)
4958 		request_module("md-level-%d", mddev->level);
4959 	else if (mddev->clevel[0])
4960 		request_module("md-%s", mddev->clevel);
4961 
4962 	/*
4963 	 * Drop all container device buffers, from now on
4964 	 * the only valid external interface is through the md
4965 	 * device.
4966 	 */
4967 	rdev_for_each(rdev, mddev) {
4968 		if (test_bit(Faulty, &rdev->flags))
4969 			continue;
4970 		sync_blockdev(rdev->bdev);
4971 		invalidate_bdev(rdev->bdev);
4972 
4973 		/* perform some consistency tests on the device.
4974 		 * We don't want the data to overlap the metadata,
4975 		 * Internal Bitmap issues have been handled elsewhere.
4976 		 */
4977 		if (rdev->meta_bdev) {
4978 			/* Nothing to check */;
4979 		} else if (rdev->data_offset < rdev->sb_start) {
4980 			if (mddev->dev_sectors &&
4981 			    rdev->data_offset + mddev->dev_sectors
4982 			    > rdev->sb_start) {
4983 				printk("md: %s: data overlaps metadata\n",
4984 				       mdname(mddev));
4985 				return -EINVAL;
4986 			}
4987 		} else {
4988 			if (rdev->sb_start + rdev->sb_size/512
4989 			    > rdev->data_offset) {
4990 				printk("md: %s: metadata overlaps data\n",
4991 				       mdname(mddev));
4992 				return -EINVAL;
4993 			}
4994 		}
4995 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4996 	}
4997 
4998 	if (mddev->bio_set == NULL)
4999 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5000 
5001 	spin_lock(&pers_lock);
5002 	pers = find_pers(mddev->level, mddev->clevel);
5003 	if (!pers || !try_module_get(pers->owner)) {
5004 		spin_unlock(&pers_lock);
5005 		if (mddev->level != LEVEL_NONE)
5006 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5007 			       mddev->level);
5008 		else
5009 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5010 			       mddev->clevel);
5011 		return -EINVAL;
5012 	}
5013 	spin_unlock(&pers_lock);
5014 	if (mddev->level != pers->level) {
5015 		mddev->level = pers->level;
5016 		mddev->new_level = pers->level;
5017 	}
5018 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5019 
5020 	if (mddev->reshape_position != MaxSector &&
5021 	    pers->start_reshape == NULL) {
5022 		/* This personality cannot handle reshaping... */
5023 		module_put(pers->owner);
5024 		return -EINVAL;
5025 	}
5026 
5027 	if (pers->sync_request) {
5028 		/* Warn if this is a potentially silly
5029 		 * configuration.
5030 		 */
5031 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5032 		struct md_rdev *rdev2;
5033 		int warned = 0;
5034 
5035 		rdev_for_each(rdev, mddev)
5036 			rdev_for_each(rdev2, mddev) {
5037 				if (rdev < rdev2 &&
5038 				    rdev->bdev->bd_contains ==
5039 				    rdev2->bdev->bd_contains) {
5040 					printk(KERN_WARNING
5041 					       "%s: WARNING: %s appears to be"
5042 					       " on the same physical disk as"
5043 					       " %s.\n",
5044 					       mdname(mddev),
5045 					       bdevname(rdev->bdev,b),
5046 					       bdevname(rdev2->bdev,b2));
5047 					warned = 1;
5048 				}
5049 			}
5050 
5051 		if (warned)
5052 			printk(KERN_WARNING
5053 			       "True protection against single-disk"
5054 			       " failure might be compromised.\n");
5055 	}
5056 
5057 	mddev->recovery = 0;
5058 	/* may be over-ridden by personality */
5059 	mddev->resync_max_sectors = mddev->dev_sectors;
5060 
5061 	mddev->ok_start_degraded = start_dirty_degraded;
5062 
5063 	if (start_readonly && mddev->ro == 0)
5064 		mddev->ro = 2; /* read-only, but switch on first write */
5065 
5066 	err = pers->run(mddev);
5067 	if (err)
5068 		printk(KERN_ERR "md: pers->run() failed ...\n");
5069 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5070 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5071 			  " but 'external_size' not in effect?\n", __func__);
5072 		printk(KERN_ERR
5073 		       "md: invalid array_size %llu > default size %llu\n",
5074 		       (unsigned long long)mddev->array_sectors / 2,
5075 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5076 		err = -EINVAL;
5077 	}
5078 	if (err == 0 && pers->sync_request &&
5079 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5080 		err = bitmap_create(mddev);
5081 		if (err)
5082 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5083 			       mdname(mddev), err);
5084 	}
5085 	if (err) {
5086 		mddev_detach(mddev);
5087 		if (mddev->private)
5088 			pers->free(mddev, mddev->private);
5089 		module_put(pers->owner);
5090 		bitmap_destroy(mddev);
5091 		return err;
5092 	}
5093 	if (mddev->queue) {
5094 		mddev->queue->backing_dev_info.congested_data = mddev;
5095 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5096 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5097 	}
5098 	if (pers->sync_request) {
5099 		if (mddev->kobj.sd &&
5100 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5101 			printk(KERN_WARNING
5102 			       "md: cannot register extra attributes for %s\n",
5103 			       mdname(mddev));
5104 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5105 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5106 		mddev->ro = 0;
5107 
5108 	atomic_set(&mddev->writes_pending,0);
5109 	atomic_set(&mddev->max_corr_read_errors,
5110 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5111 	mddev->safemode = 0;
5112 	mddev->safemode_timer.function = md_safemode_timeout;
5113 	mddev->safemode_timer.data = (unsigned long) mddev;
5114 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5115 	mddev->in_sync = 1;
5116 	smp_wmb();
5117 	spin_lock(&mddev->lock);
5118 	mddev->pers = pers;
5119 	mddev->ready = 1;
5120 	spin_unlock(&mddev->lock);
5121 	rdev_for_each(rdev, mddev)
5122 		if (rdev->raid_disk >= 0)
5123 			if (sysfs_link_rdev(mddev, rdev))
5124 				/* failure here is OK */;
5125 
5126 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5127 
5128 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5129 		md_update_sb(mddev, 0);
5130 
5131 	md_new_event(mddev);
5132 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5133 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5134 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5135 	return 0;
5136 }
5137 EXPORT_SYMBOL_GPL(md_run);
5138 
5139 static int do_md_run(struct mddev *mddev)
5140 {
5141 	int err;
5142 
5143 	err = md_run(mddev);
5144 	if (err)
5145 		goto out;
5146 	err = bitmap_load(mddev);
5147 	if (err) {
5148 		bitmap_destroy(mddev);
5149 		goto out;
5150 	}
5151 
5152 	md_wakeup_thread(mddev->thread);
5153 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5154 
5155 	set_capacity(mddev->gendisk, mddev->array_sectors);
5156 	revalidate_disk(mddev->gendisk);
5157 	mddev->changed = 1;
5158 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5159 out:
5160 	return err;
5161 }
5162 
5163 static int restart_array(struct mddev *mddev)
5164 {
5165 	struct gendisk *disk = mddev->gendisk;
5166 
5167 	/* Complain if it has no devices */
5168 	if (list_empty(&mddev->disks))
5169 		return -ENXIO;
5170 	if (!mddev->pers)
5171 		return -EINVAL;
5172 	if (!mddev->ro)
5173 		return -EBUSY;
5174 	mddev->safemode = 0;
5175 	mddev->ro = 0;
5176 	set_disk_ro(disk, 0);
5177 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5178 		mdname(mddev));
5179 	/* Kick recovery or resync if necessary */
5180 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181 	md_wakeup_thread(mddev->thread);
5182 	md_wakeup_thread(mddev->sync_thread);
5183 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5184 	return 0;
5185 }
5186 
5187 static void md_clean(struct mddev *mddev)
5188 {
5189 	mddev->array_sectors = 0;
5190 	mddev->external_size = 0;
5191 	mddev->dev_sectors = 0;
5192 	mddev->raid_disks = 0;
5193 	mddev->recovery_cp = 0;
5194 	mddev->resync_min = 0;
5195 	mddev->resync_max = MaxSector;
5196 	mddev->reshape_position = MaxSector;
5197 	mddev->external = 0;
5198 	mddev->persistent = 0;
5199 	mddev->level = LEVEL_NONE;
5200 	mddev->clevel[0] = 0;
5201 	mddev->flags = 0;
5202 	mddev->ro = 0;
5203 	mddev->metadata_type[0] = 0;
5204 	mddev->chunk_sectors = 0;
5205 	mddev->ctime = mddev->utime = 0;
5206 	mddev->layout = 0;
5207 	mddev->max_disks = 0;
5208 	mddev->events = 0;
5209 	mddev->can_decrease_events = 0;
5210 	mddev->delta_disks = 0;
5211 	mddev->reshape_backwards = 0;
5212 	mddev->new_level = LEVEL_NONE;
5213 	mddev->new_layout = 0;
5214 	mddev->new_chunk_sectors = 0;
5215 	mddev->curr_resync = 0;
5216 	atomic64_set(&mddev->resync_mismatches, 0);
5217 	mddev->suspend_lo = mddev->suspend_hi = 0;
5218 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5219 	mddev->recovery = 0;
5220 	mddev->in_sync = 0;
5221 	mddev->changed = 0;
5222 	mddev->degraded = 0;
5223 	mddev->safemode = 0;
5224 	mddev->merge_check_needed = 0;
5225 	mddev->bitmap_info.offset = 0;
5226 	mddev->bitmap_info.default_offset = 0;
5227 	mddev->bitmap_info.default_space = 0;
5228 	mddev->bitmap_info.chunksize = 0;
5229 	mddev->bitmap_info.daemon_sleep = 0;
5230 	mddev->bitmap_info.max_write_behind = 0;
5231 }
5232 
5233 static void __md_stop_writes(struct mddev *mddev)
5234 {
5235 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5236 	flush_workqueue(md_misc_wq);
5237 	if (mddev->sync_thread) {
5238 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5239 		md_reap_sync_thread(mddev);
5240 	}
5241 
5242 	del_timer_sync(&mddev->safemode_timer);
5243 
5244 	bitmap_flush(mddev);
5245 	md_super_wait(mddev);
5246 
5247 	if (mddev->ro == 0 &&
5248 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5249 		/* mark array as shutdown cleanly */
5250 		mddev->in_sync = 1;
5251 		md_update_sb(mddev, 1);
5252 	}
5253 }
5254 
5255 void md_stop_writes(struct mddev *mddev)
5256 {
5257 	mddev_lock_nointr(mddev);
5258 	__md_stop_writes(mddev);
5259 	mddev_unlock(mddev);
5260 }
5261 EXPORT_SYMBOL_GPL(md_stop_writes);
5262 
5263 static void mddev_detach(struct mddev *mddev)
5264 {
5265 	struct bitmap *bitmap = mddev->bitmap;
5266 	/* wait for behind writes to complete */
5267 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5268 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5269 		       mdname(mddev));
5270 		/* need to kick something here to make sure I/O goes? */
5271 		wait_event(bitmap->behind_wait,
5272 			   atomic_read(&bitmap->behind_writes) == 0);
5273 	}
5274 	if (mddev->pers && mddev->pers->quiesce) {
5275 		mddev->pers->quiesce(mddev, 1);
5276 		mddev->pers->quiesce(mddev, 0);
5277 	}
5278 	md_unregister_thread(&mddev->thread);
5279 	if (mddev->queue)
5280 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5281 }
5282 
5283 static void __md_stop(struct mddev *mddev)
5284 {
5285 	struct md_personality *pers = mddev->pers;
5286 	mddev_detach(mddev);
5287 	spin_lock(&mddev->lock);
5288 	mddev->ready = 0;
5289 	mddev->pers = NULL;
5290 	spin_unlock(&mddev->lock);
5291 	pers->free(mddev, mddev->private);
5292 	if (pers->sync_request && mddev->to_remove == NULL)
5293 		mddev->to_remove = &md_redundancy_group;
5294 	module_put(pers->owner);
5295 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5296 }
5297 
5298 void md_stop(struct mddev *mddev)
5299 {
5300 	/* stop the array and free an attached data structures.
5301 	 * This is called from dm-raid
5302 	 */
5303 	__md_stop(mddev);
5304 	bitmap_destroy(mddev);
5305 	if (mddev->bio_set)
5306 		bioset_free(mddev->bio_set);
5307 }
5308 
5309 EXPORT_SYMBOL_GPL(md_stop);
5310 
5311 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5312 {
5313 	int err = 0;
5314 	int did_freeze = 0;
5315 
5316 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5317 		did_freeze = 1;
5318 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5319 		md_wakeup_thread(mddev->thread);
5320 	}
5321 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5322 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5323 	if (mddev->sync_thread)
5324 		/* Thread might be blocked waiting for metadata update
5325 		 * which will now never happen */
5326 		wake_up_process(mddev->sync_thread->tsk);
5327 
5328 	mddev_unlock(mddev);
5329 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5330 					  &mddev->recovery));
5331 	mddev_lock_nointr(mddev);
5332 
5333 	mutex_lock(&mddev->open_mutex);
5334 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5335 	    mddev->sync_thread ||
5336 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5337 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5338 		printk("md: %s still in use.\n",mdname(mddev));
5339 		if (did_freeze) {
5340 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342 			md_wakeup_thread(mddev->thread);
5343 		}
5344 		err = -EBUSY;
5345 		goto out;
5346 	}
5347 	if (mddev->pers) {
5348 		__md_stop_writes(mddev);
5349 
5350 		err  = -ENXIO;
5351 		if (mddev->ro==1)
5352 			goto out;
5353 		mddev->ro = 1;
5354 		set_disk_ro(mddev->gendisk, 1);
5355 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5356 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5357 		md_wakeup_thread(mddev->thread);
5358 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5359 		err = 0;
5360 	}
5361 out:
5362 	mutex_unlock(&mddev->open_mutex);
5363 	return err;
5364 }
5365 
5366 /* mode:
5367  *   0 - completely stop and dis-assemble array
5368  *   2 - stop but do not disassemble array
5369  */
5370 static int do_md_stop(struct mddev *mddev, int mode,
5371 		      struct block_device *bdev)
5372 {
5373 	struct gendisk *disk = mddev->gendisk;
5374 	struct md_rdev *rdev;
5375 	int did_freeze = 0;
5376 
5377 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5378 		did_freeze = 1;
5379 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5380 		md_wakeup_thread(mddev->thread);
5381 	}
5382 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5383 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5384 	if (mddev->sync_thread)
5385 		/* Thread might be blocked waiting for metadata update
5386 		 * which will now never happen */
5387 		wake_up_process(mddev->sync_thread->tsk);
5388 
5389 	mddev_unlock(mddev);
5390 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5391 				 !test_bit(MD_RECOVERY_RUNNING,
5392 					   &mddev->recovery)));
5393 	mddev_lock_nointr(mddev);
5394 
5395 	mutex_lock(&mddev->open_mutex);
5396 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5397 	    mddev->sysfs_active ||
5398 	    mddev->sync_thread ||
5399 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5400 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5401 		printk("md: %s still in use.\n",mdname(mddev));
5402 		mutex_unlock(&mddev->open_mutex);
5403 		if (did_freeze) {
5404 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5405 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5406 			md_wakeup_thread(mddev->thread);
5407 		}
5408 		return -EBUSY;
5409 	}
5410 	if (mddev->pers) {
5411 		if (mddev->ro)
5412 			set_disk_ro(disk, 0);
5413 
5414 		__md_stop_writes(mddev);
5415 		__md_stop(mddev);
5416 		mddev->queue->merge_bvec_fn = NULL;
5417 		mddev->queue->backing_dev_info.congested_fn = NULL;
5418 
5419 		/* tell userspace to handle 'inactive' */
5420 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5421 
5422 		rdev_for_each(rdev, mddev)
5423 			if (rdev->raid_disk >= 0)
5424 				sysfs_unlink_rdev(mddev, rdev);
5425 
5426 		set_capacity(disk, 0);
5427 		mutex_unlock(&mddev->open_mutex);
5428 		mddev->changed = 1;
5429 		revalidate_disk(disk);
5430 
5431 		if (mddev->ro)
5432 			mddev->ro = 0;
5433 	} else
5434 		mutex_unlock(&mddev->open_mutex);
5435 	/*
5436 	 * Free resources if final stop
5437 	 */
5438 	if (mode == 0) {
5439 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5440 
5441 		bitmap_destroy(mddev);
5442 		if (mddev->bitmap_info.file) {
5443 			struct file *f = mddev->bitmap_info.file;
5444 			spin_lock(&mddev->lock);
5445 			mddev->bitmap_info.file = NULL;
5446 			spin_unlock(&mddev->lock);
5447 			fput(f);
5448 		}
5449 		mddev->bitmap_info.offset = 0;
5450 
5451 		export_array(mddev);
5452 
5453 		md_clean(mddev);
5454 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5455 		if (mddev->hold_active == UNTIL_STOP)
5456 			mddev->hold_active = 0;
5457 	}
5458 	blk_integrity_unregister(disk);
5459 	md_new_event(mddev);
5460 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5461 	return 0;
5462 }
5463 
5464 #ifndef MODULE
5465 static void autorun_array(struct mddev *mddev)
5466 {
5467 	struct md_rdev *rdev;
5468 	int err;
5469 
5470 	if (list_empty(&mddev->disks))
5471 		return;
5472 
5473 	printk(KERN_INFO "md: running: ");
5474 
5475 	rdev_for_each(rdev, mddev) {
5476 		char b[BDEVNAME_SIZE];
5477 		printk("<%s>", bdevname(rdev->bdev,b));
5478 	}
5479 	printk("\n");
5480 
5481 	err = do_md_run(mddev);
5482 	if (err) {
5483 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5484 		do_md_stop(mddev, 0, NULL);
5485 	}
5486 }
5487 
5488 /*
5489  * lets try to run arrays based on all disks that have arrived
5490  * until now. (those are in pending_raid_disks)
5491  *
5492  * the method: pick the first pending disk, collect all disks with
5493  * the same UUID, remove all from the pending list and put them into
5494  * the 'same_array' list. Then order this list based on superblock
5495  * update time (freshest comes first), kick out 'old' disks and
5496  * compare superblocks. If everything's fine then run it.
5497  *
5498  * If "unit" is allocated, then bump its reference count
5499  */
5500 static void autorun_devices(int part)
5501 {
5502 	struct md_rdev *rdev0, *rdev, *tmp;
5503 	struct mddev *mddev;
5504 	char b[BDEVNAME_SIZE];
5505 
5506 	printk(KERN_INFO "md: autorun ...\n");
5507 	while (!list_empty(&pending_raid_disks)) {
5508 		int unit;
5509 		dev_t dev;
5510 		LIST_HEAD(candidates);
5511 		rdev0 = list_entry(pending_raid_disks.next,
5512 					 struct md_rdev, same_set);
5513 
5514 		printk(KERN_INFO "md: considering %s ...\n",
5515 			bdevname(rdev0->bdev,b));
5516 		INIT_LIST_HEAD(&candidates);
5517 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5518 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5519 				printk(KERN_INFO "md:  adding %s ...\n",
5520 					bdevname(rdev->bdev,b));
5521 				list_move(&rdev->same_set, &candidates);
5522 			}
5523 		/*
5524 		 * now we have a set of devices, with all of them having
5525 		 * mostly sane superblocks. It's time to allocate the
5526 		 * mddev.
5527 		 */
5528 		if (part) {
5529 			dev = MKDEV(mdp_major,
5530 				    rdev0->preferred_minor << MdpMinorShift);
5531 			unit = MINOR(dev) >> MdpMinorShift;
5532 		} else {
5533 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5534 			unit = MINOR(dev);
5535 		}
5536 		if (rdev0->preferred_minor != unit) {
5537 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5538 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5539 			break;
5540 		}
5541 
5542 		md_probe(dev, NULL, NULL);
5543 		mddev = mddev_find(dev);
5544 		if (!mddev || !mddev->gendisk) {
5545 			if (mddev)
5546 				mddev_put(mddev);
5547 			printk(KERN_ERR
5548 				"md: cannot allocate memory for md drive.\n");
5549 			break;
5550 		}
5551 		if (mddev_lock(mddev))
5552 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5553 			       mdname(mddev));
5554 		else if (mddev->raid_disks || mddev->major_version
5555 			 || !list_empty(&mddev->disks)) {
5556 			printk(KERN_WARNING
5557 				"md: %s already running, cannot run %s\n",
5558 				mdname(mddev), bdevname(rdev0->bdev,b));
5559 			mddev_unlock(mddev);
5560 		} else {
5561 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5562 			mddev->persistent = 1;
5563 			rdev_for_each_list(rdev, tmp, &candidates) {
5564 				list_del_init(&rdev->same_set);
5565 				if (bind_rdev_to_array(rdev, mddev))
5566 					export_rdev(rdev);
5567 			}
5568 			autorun_array(mddev);
5569 			mddev_unlock(mddev);
5570 		}
5571 		/* on success, candidates will be empty, on error
5572 		 * it won't...
5573 		 */
5574 		rdev_for_each_list(rdev, tmp, &candidates) {
5575 			list_del_init(&rdev->same_set);
5576 			export_rdev(rdev);
5577 		}
5578 		mddev_put(mddev);
5579 	}
5580 	printk(KERN_INFO "md: ... autorun DONE.\n");
5581 }
5582 #endif /* !MODULE */
5583 
5584 static int get_version(void __user *arg)
5585 {
5586 	mdu_version_t ver;
5587 
5588 	ver.major = MD_MAJOR_VERSION;
5589 	ver.minor = MD_MINOR_VERSION;
5590 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5591 
5592 	if (copy_to_user(arg, &ver, sizeof(ver)))
5593 		return -EFAULT;
5594 
5595 	return 0;
5596 }
5597 
5598 static int get_array_info(struct mddev *mddev, void __user *arg)
5599 {
5600 	mdu_array_info_t info;
5601 	int nr,working,insync,failed,spare;
5602 	struct md_rdev *rdev;
5603 
5604 	nr = working = insync = failed = spare = 0;
5605 	rcu_read_lock();
5606 	rdev_for_each_rcu(rdev, mddev) {
5607 		nr++;
5608 		if (test_bit(Faulty, &rdev->flags))
5609 			failed++;
5610 		else {
5611 			working++;
5612 			if (test_bit(In_sync, &rdev->flags))
5613 				insync++;
5614 			else
5615 				spare++;
5616 		}
5617 	}
5618 	rcu_read_unlock();
5619 
5620 	info.major_version = mddev->major_version;
5621 	info.minor_version = mddev->minor_version;
5622 	info.patch_version = MD_PATCHLEVEL_VERSION;
5623 	info.ctime         = mddev->ctime;
5624 	info.level         = mddev->level;
5625 	info.size          = mddev->dev_sectors / 2;
5626 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5627 		info.size = -1;
5628 	info.nr_disks      = nr;
5629 	info.raid_disks    = mddev->raid_disks;
5630 	info.md_minor      = mddev->md_minor;
5631 	info.not_persistent= !mddev->persistent;
5632 
5633 	info.utime         = mddev->utime;
5634 	info.state         = 0;
5635 	if (mddev->in_sync)
5636 		info.state = (1<<MD_SB_CLEAN);
5637 	if (mddev->bitmap && mddev->bitmap_info.offset)
5638 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5639 	info.active_disks  = insync;
5640 	info.working_disks = working;
5641 	info.failed_disks  = failed;
5642 	info.spare_disks   = spare;
5643 
5644 	info.layout        = mddev->layout;
5645 	info.chunk_size    = mddev->chunk_sectors << 9;
5646 
5647 	if (copy_to_user(arg, &info, sizeof(info)))
5648 		return -EFAULT;
5649 
5650 	return 0;
5651 }
5652 
5653 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5654 {
5655 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5656 	char *ptr;
5657 	int err;
5658 
5659 	file = kmalloc(sizeof(*file), GFP_NOIO);
5660 	if (!file)
5661 		return -ENOMEM;
5662 
5663 	err = 0;
5664 	spin_lock(&mddev->lock);
5665 	/* bitmap disabled, zero the first byte and copy out */
5666 	if (!mddev->bitmap_info.file)
5667 		file->pathname[0] = '\0';
5668 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5669 			       file->pathname, sizeof(file->pathname))),
5670 		 IS_ERR(ptr))
5671 		err = PTR_ERR(ptr);
5672 	else
5673 		memmove(file->pathname, ptr,
5674 			sizeof(file->pathname)-(ptr-file->pathname));
5675 	spin_unlock(&mddev->lock);
5676 
5677 	if (err == 0 &&
5678 	    copy_to_user(arg, file, sizeof(*file)))
5679 		err = -EFAULT;
5680 
5681 	kfree(file);
5682 	return err;
5683 }
5684 
5685 static int get_disk_info(struct mddev *mddev, void __user * arg)
5686 {
5687 	mdu_disk_info_t info;
5688 	struct md_rdev *rdev;
5689 
5690 	if (copy_from_user(&info, arg, sizeof(info)))
5691 		return -EFAULT;
5692 
5693 	rcu_read_lock();
5694 	rdev = find_rdev_nr_rcu(mddev, info.number);
5695 	if (rdev) {
5696 		info.major = MAJOR(rdev->bdev->bd_dev);
5697 		info.minor = MINOR(rdev->bdev->bd_dev);
5698 		info.raid_disk = rdev->raid_disk;
5699 		info.state = 0;
5700 		if (test_bit(Faulty, &rdev->flags))
5701 			info.state |= (1<<MD_DISK_FAULTY);
5702 		else if (test_bit(In_sync, &rdev->flags)) {
5703 			info.state |= (1<<MD_DISK_ACTIVE);
5704 			info.state |= (1<<MD_DISK_SYNC);
5705 		}
5706 		if (test_bit(WriteMostly, &rdev->flags))
5707 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5708 	} else {
5709 		info.major = info.minor = 0;
5710 		info.raid_disk = -1;
5711 		info.state = (1<<MD_DISK_REMOVED);
5712 	}
5713 	rcu_read_unlock();
5714 
5715 	if (copy_to_user(arg, &info, sizeof(info)))
5716 		return -EFAULT;
5717 
5718 	return 0;
5719 }
5720 
5721 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5722 {
5723 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5724 	struct md_rdev *rdev;
5725 	dev_t dev = MKDEV(info->major,info->minor);
5726 
5727 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5728 		return -EOVERFLOW;
5729 
5730 	if (!mddev->raid_disks) {
5731 		int err;
5732 		/* expecting a device which has a superblock */
5733 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5734 		if (IS_ERR(rdev)) {
5735 			printk(KERN_WARNING
5736 				"md: md_import_device returned %ld\n",
5737 				PTR_ERR(rdev));
5738 			return PTR_ERR(rdev);
5739 		}
5740 		if (!list_empty(&mddev->disks)) {
5741 			struct md_rdev *rdev0
5742 				= list_entry(mddev->disks.next,
5743 					     struct md_rdev, same_set);
5744 			err = super_types[mddev->major_version]
5745 				.load_super(rdev, rdev0, mddev->minor_version);
5746 			if (err < 0) {
5747 				printk(KERN_WARNING
5748 					"md: %s has different UUID to %s\n",
5749 					bdevname(rdev->bdev,b),
5750 					bdevname(rdev0->bdev,b2));
5751 				export_rdev(rdev);
5752 				return -EINVAL;
5753 			}
5754 		}
5755 		err = bind_rdev_to_array(rdev, mddev);
5756 		if (err)
5757 			export_rdev(rdev);
5758 		return err;
5759 	}
5760 
5761 	/*
5762 	 * add_new_disk can be used once the array is assembled
5763 	 * to add "hot spares".  They must already have a superblock
5764 	 * written
5765 	 */
5766 	if (mddev->pers) {
5767 		int err;
5768 		if (!mddev->pers->hot_add_disk) {
5769 			printk(KERN_WARNING
5770 				"%s: personality does not support diskops!\n",
5771 			       mdname(mddev));
5772 			return -EINVAL;
5773 		}
5774 		if (mddev->persistent)
5775 			rdev = md_import_device(dev, mddev->major_version,
5776 						mddev->minor_version);
5777 		else
5778 			rdev = md_import_device(dev, -1, -1);
5779 		if (IS_ERR(rdev)) {
5780 			printk(KERN_WARNING
5781 				"md: md_import_device returned %ld\n",
5782 				PTR_ERR(rdev));
5783 			return PTR_ERR(rdev);
5784 		}
5785 		/* set saved_raid_disk if appropriate */
5786 		if (!mddev->persistent) {
5787 			if (info->state & (1<<MD_DISK_SYNC)  &&
5788 			    info->raid_disk < mddev->raid_disks) {
5789 				rdev->raid_disk = info->raid_disk;
5790 				set_bit(In_sync, &rdev->flags);
5791 				clear_bit(Bitmap_sync, &rdev->flags);
5792 			} else
5793 				rdev->raid_disk = -1;
5794 			rdev->saved_raid_disk = rdev->raid_disk;
5795 		} else
5796 			super_types[mddev->major_version].
5797 				validate_super(mddev, rdev);
5798 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5799 		     rdev->raid_disk != info->raid_disk) {
5800 			/* This was a hot-add request, but events doesn't
5801 			 * match, so reject it.
5802 			 */
5803 			export_rdev(rdev);
5804 			return -EINVAL;
5805 		}
5806 
5807 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5808 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5809 			set_bit(WriteMostly, &rdev->flags);
5810 		else
5811 			clear_bit(WriteMostly, &rdev->flags);
5812 
5813 		rdev->raid_disk = -1;
5814 		err = bind_rdev_to_array(rdev, mddev);
5815 		if (!err && !mddev->pers->hot_remove_disk) {
5816 			/* If there is hot_add_disk but no hot_remove_disk
5817 			 * then added disks for geometry changes,
5818 			 * and should be added immediately.
5819 			 */
5820 			super_types[mddev->major_version].
5821 				validate_super(mddev, rdev);
5822 			err = mddev->pers->hot_add_disk(mddev, rdev);
5823 			if (err)
5824 				unbind_rdev_from_array(rdev);
5825 		}
5826 		if (err)
5827 			export_rdev(rdev);
5828 		else
5829 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5830 
5831 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5832 		if (mddev->degraded)
5833 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5834 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5835 		if (!err)
5836 			md_new_event(mddev);
5837 		md_wakeup_thread(mddev->thread);
5838 		return err;
5839 	}
5840 
5841 	/* otherwise, add_new_disk is only allowed
5842 	 * for major_version==0 superblocks
5843 	 */
5844 	if (mddev->major_version != 0) {
5845 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5846 		       mdname(mddev));
5847 		return -EINVAL;
5848 	}
5849 
5850 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5851 		int err;
5852 		rdev = md_import_device(dev, -1, 0);
5853 		if (IS_ERR(rdev)) {
5854 			printk(KERN_WARNING
5855 				"md: error, md_import_device() returned %ld\n",
5856 				PTR_ERR(rdev));
5857 			return PTR_ERR(rdev);
5858 		}
5859 		rdev->desc_nr = info->number;
5860 		if (info->raid_disk < mddev->raid_disks)
5861 			rdev->raid_disk = info->raid_disk;
5862 		else
5863 			rdev->raid_disk = -1;
5864 
5865 		if (rdev->raid_disk < mddev->raid_disks)
5866 			if (info->state & (1<<MD_DISK_SYNC))
5867 				set_bit(In_sync, &rdev->flags);
5868 
5869 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5870 			set_bit(WriteMostly, &rdev->flags);
5871 
5872 		if (!mddev->persistent) {
5873 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5874 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5875 		} else
5876 			rdev->sb_start = calc_dev_sboffset(rdev);
5877 		rdev->sectors = rdev->sb_start;
5878 
5879 		err = bind_rdev_to_array(rdev, mddev);
5880 		if (err) {
5881 			export_rdev(rdev);
5882 			return err;
5883 		}
5884 	}
5885 
5886 	return 0;
5887 }
5888 
5889 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5890 {
5891 	char b[BDEVNAME_SIZE];
5892 	struct md_rdev *rdev;
5893 
5894 	rdev = find_rdev(mddev, dev);
5895 	if (!rdev)
5896 		return -ENXIO;
5897 
5898 	clear_bit(Blocked, &rdev->flags);
5899 	remove_and_add_spares(mddev, rdev);
5900 
5901 	if (rdev->raid_disk >= 0)
5902 		goto busy;
5903 
5904 	kick_rdev_from_array(rdev);
5905 	md_update_sb(mddev, 1);
5906 	md_new_event(mddev);
5907 
5908 	return 0;
5909 busy:
5910 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5911 		bdevname(rdev->bdev,b), mdname(mddev));
5912 	return -EBUSY;
5913 }
5914 
5915 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5916 {
5917 	char b[BDEVNAME_SIZE];
5918 	int err;
5919 	struct md_rdev *rdev;
5920 
5921 	if (!mddev->pers)
5922 		return -ENODEV;
5923 
5924 	if (mddev->major_version != 0) {
5925 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5926 			" version-0 superblocks.\n",
5927 			mdname(mddev));
5928 		return -EINVAL;
5929 	}
5930 	if (!mddev->pers->hot_add_disk) {
5931 		printk(KERN_WARNING
5932 			"%s: personality does not support diskops!\n",
5933 			mdname(mddev));
5934 		return -EINVAL;
5935 	}
5936 
5937 	rdev = md_import_device(dev, -1, 0);
5938 	if (IS_ERR(rdev)) {
5939 		printk(KERN_WARNING
5940 			"md: error, md_import_device() returned %ld\n",
5941 			PTR_ERR(rdev));
5942 		return -EINVAL;
5943 	}
5944 
5945 	if (mddev->persistent)
5946 		rdev->sb_start = calc_dev_sboffset(rdev);
5947 	else
5948 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5949 
5950 	rdev->sectors = rdev->sb_start;
5951 
5952 	if (test_bit(Faulty, &rdev->flags)) {
5953 		printk(KERN_WARNING
5954 			"md: can not hot-add faulty %s disk to %s!\n",
5955 			bdevname(rdev->bdev,b), mdname(mddev));
5956 		err = -EINVAL;
5957 		goto abort_export;
5958 	}
5959 	clear_bit(In_sync, &rdev->flags);
5960 	rdev->desc_nr = -1;
5961 	rdev->saved_raid_disk = -1;
5962 	err = bind_rdev_to_array(rdev, mddev);
5963 	if (err)
5964 		goto abort_export;
5965 
5966 	/*
5967 	 * The rest should better be atomic, we can have disk failures
5968 	 * noticed in interrupt contexts ...
5969 	 */
5970 
5971 	rdev->raid_disk = -1;
5972 
5973 	md_update_sb(mddev, 1);
5974 
5975 	/*
5976 	 * Kick recovery, maybe this spare has to be added to the
5977 	 * array immediately.
5978 	 */
5979 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5980 	md_wakeup_thread(mddev->thread);
5981 	md_new_event(mddev);
5982 	return 0;
5983 
5984 abort_export:
5985 	export_rdev(rdev);
5986 	return err;
5987 }
5988 
5989 static int set_bitmap_file(struct mddev *mddev, int fd)
5990 {
5991 	int err = 0;
5992 
5993 	if (mddev->pers) {
5994 		if (!mddev->pers->quiesce || !mddev->thread)
5995 			return -EBUSY;
5996 		if (mddev->recovery || mddev->sync_thread)
5997 			return -EBUSY;
5998 		/* we should be able to change the bitmap.. */
5999 	}
6000 
6001 	if (fd >= 0) {
6002 		struct inode *inode;
6003 		struct file *f;
6004 
6005 		if (mddev->bitmap || mddev->bitmap_info.file)
6006 			return -EEXIST; /* cannot add when bitmap is present */
6007 		f = fget(fd);
6008 
6009 		if (f == NULL) {
6010 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6011 			       mdname(mddev));
6012 			return -EBADF;
6013 		}
6014 
6015 		inode = f->f_mapping->host;
6016 		if (!S_ISREG(inode->i_mode)) {
6017 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6018 			       mdname(mddev));
6019 			err = -EBADF;
6020 		} else if (!(f->f_mode & FMODE_WRITE)) {
6021 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6022 			       mdname(mddev));
6023 			err = -EBADF;
6024 		} else if (atomic_read(&inode->i_writecount) != 1) {
6025 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6026 			       mdname(mddev));
6027 			err = -EBUSY;
6028 		}
6029 		if (err) {
6030 			fput(f);
6031 			return err;
6032 		}
6033 		mddev->bitmap_info.file = f;
6034 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6035 	} else if (mddev->bitmap == NULL)
6036 		return -ENOENT; /* cannot remove what isn't there */
6037 	err = 0;
6038 	if (mddev->pers) {
6039 		mddev->pers->quiesce(mddev, 1);
6040 		if (fd >= 0) {
6041 			err = bitmap_create(mddev);
6042 			if (!err)
6043 				err = bitmap_load(mddev);
6044 		}
6045 		if (fd < 0 || err) {
6046 			bitmap_destroy(mddev);
6047 			fd = -1; /* make sure to put the file */
6048 		}
6049 		mddev->pers->quiesce(mddev, 0);
6050 	}
6051 	if (fd < 0) {
6052 		struct file *f = mddev->bitmap_info.file;
6053 		if (f) {
6054 			spin_lock(&mddev->lock);
6055 			mddev->bitmap_info.file = NULL;
6056 			spin_unlock(&mddev->lock);
6057 			fput(f);
6058 		}
6059 	}
6060 
6061 	return err;
6062 }
6063 
6064 /*
6065  * set_array_info is used two different ways
6066  * The original usage is when creating a new array.
6067  * In this usage, raid_disks is > 0 and it together with
6068  *  level, size, not_persistent,layout,chunksize determine the
6069  *  shape of the array.
6070  *  This will always create an array with a type-0.90.0 superblock.
6071  * The newer usage is when assembling an array.
6072  *  In this case raid_disks will be 0, and the major_version field is
6073  *  use to determine which style super-blocks are to be found on the devices.
6074  *  The minor and patch _version numbers are also kept incase the
6075  *  super_block handler wishes to interpret them.
6076  */
6077 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6078 {
6079 
6080 	if (info->raid_disks == 0) {
6081 		/* just setting version number for superblock loading */
6082 		if (info->major_version < 0 ||
6083 		    info->major_version >= ARRAY_SIZE(super_types) ||
6084 		    super_types[info->major_version].name == NULL) {
6085 			/* maybe try to auto-load a module? */
6086 			printk(KERN_INFO
6087 				"md: superblock version %d not known\n",
6088 				info->major_version);
6089 			return -EINVAL;
6090 		}
6091 		mddev->major_version = info->major_version;
6092 		mddev->minor_version = info->minor_version;
6093 		mddev->patch_version = info->patch_version;
6094 		mddev->persistent = !info->not_persistent;
6095 		/* ensure mddev_put doesn't delete this now that there
6096 		 * is some minimal configuration.
6097 		 */
6098 		mddev->ctime         = get_seconds();
6099 		return 0;
6100 	}
6101 	mddev->major_version = MD_MAJOR_VERSION;
6102 	mddev->minor_version = MD_MINOR_VERSION;
6103 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6104 	mddev->ctime         = get_seconds();
6105 
6106 	mddev->level         = info->level;
6107 	mddev->clevel[0]     = 0;
6108 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6109 	mddev->raid_disks    = info->raid_disks;
6110 	/* don't set md_minor, it is determined by which /dev/md* was
6111 	 * openned
6112 	 */
6113 	if (info->state & (1<<MD_SB_CLEAN))
6114 		mddev->recovery_cp = MaxSector;
6115 	else
6116 		mddev->recovery_cp = 0;
6117 	mddev->persistent    = ! info->not_persistent;
6118 	mddev->external	     = 0;
6119 
6120 	mddev->layout        = info->layout;
6121 	mddev->chunk_sectors = info->chunk_size >> 9;
6122 
6123 	mddev->max_disks     = MD_SB_DISKS;
6124 
6125 	if (mddev->persistent)
6126 		mddev->flags         = 0;
6127 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6128 
6129 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6130 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6131 	mddev->bitmap_info.offset = 0;
6132 
6133 	mddev->reshape_position = MaxSector;
6134 
6135 	/*
6136 	 * Generate a 128 bit UUID
6137 	 */
6138 	get_random_bytes(mddev->uuid, 16);
6139 
6140 	mddev->new_level = mddev->level;
6141 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6142 	mddev->new_layout = mddev->layout;
6143 	mddev->delta_disks = 0;
6144 	mddev->reshape_backwards = 0;
6145 
6146 	return 0;
6147 }
6148 
6149 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6150 {
6151 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6152 
6153 	if (mddev->external_size)
6154 		return;
6155 
6156 	mddev->array_sectors = array_sectors;
6157 }
6158 EXPORT_SYMBOL(md_set_array_sectors);
6159 
6160 static int update_size(struct mddev *mddev, sector_t num_sectors)
6161 {
6162 	struct md_rdev *rdev;
6163 	int rv;
6164 	int fit = (num_sectors == 0);
6165 
6166 	if (mddev->pers->resize == NULL)
6167 		return -EINVAL;
6168 	/* The "num_sectors" is the number of sectors of each device that
6169 	 * is used.  This can only make sense for arrays with redundancy.
6170 	 * linear and raid0 always use whatever space is available. We can only
6171 	 * consider changing this number if no resync or reconstruction is
6172 	 * happening, and if the new size is acceptable. It must fit before the
6173 	 * sb_start or, if that is <data_offset, it must fit before the size
6174 	 * of each device.  If num_sectors is zero, we find the largest size
6175 	 * that fits.
6176 	 */
6177 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6178 	    mddev->sync_thread)
6179 		return -EBUSY;
6180 	if (mddev->ro)
6181 		return -EROFS;
6182 
6183 	rdev_for_each(rdev, mddev) {
6184 		sector_t avail = rdev->sectors;
6185 
6186 		if (fit && (num_sectors == 0 || num_sectors > avail))
6187 			num_sectors = avail;
6188 		if (avail < num_sectors)
6189 			return -ENOSPC;
6190 	}
6191 	rv = mddev->pers->resize(mddev, num_sectors);
6192 	if (!rv)
6193 		revalidate_disk(mddev->gendisk);
6194 	return rv;
6195 }
6196 
6197 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6198 {
6199 	int rv;
6200 	struct md_rdev *rdev;
6201 	/* change the number of raid disks */
6202 	if (mddev->pers->check_reshape == NULL)
6203 		return -EINVAL;
6204 	if (mddev->ro)
6205 		return -EROFS;
6206 	if (raid_disks <= 0 ||
6207 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6208 		return -EINVAL;
6209 	if (mddev->sync_thread ||
6210 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6211 	    mddev->reshape_position != MaxSector)
6212 		return -EBUSY;
6213 
6214 	rdev_for_each(rdev, mddev) {
6215 		if (mddev->raid_disks < raid_disks &&
6216 		    rdev->data_offset < rdev->new_data_offset)
6217 			return -EINVAL;
6218 		if (mddev->raid_disks > raid_disks &&
6219 		    rdev->data_offset > rdev->new_data_offset)
6220 			return -EINVAL;
6221 	}
6222 
6223 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6224 	if (mddev->delta_disks < 0)
6225 		mddev->reshape_backwards = 1;
6226 	else if (mddev->delta_disks > 0)
6227 		mddev->reshape_backwards = 0;
6228 
6229 	rv = mddev->pers->check_reshape(mddev);
6230 	if (rv < 0) {
6231 		mddev->delta_disks = 0;
6232 		mddev->reshape_backwards = 0;
6233 	}
6234 	return rv;
6235 }
6236 
6237 /*
6238  * update_array_info is used to change the configuration of an
6239  * on-line array.
6240  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6241  * fields in the info are checked against the array.
6242  * Any differences that cannot be handled will cause an error.
6243  * Normally, only one change can be managed at a time.
6244  */
6245 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6246 {
6247 	int rv = 0;
6248 	int cnt = 0;
6249 	int state = 0;
6250 
6251 	/* calculate expected state,ignoring low bits */
6252 	if (mddev->bitmap && mddev->bitmap_info.offset)
6253 		state |= (1 << MD_SB_BITMAP_PRESENT);
6254 
6255 	if (mddev->major_version != info->major_version ||
6256 	    mddev->minor_version != info->minor_version ||
6257 /*	    mddev->patch_version != info->patch_version || */
6258 	    mddev->ctime         != info->ctime         ||
6259 	    mddev->level         != info->level         ||
6260 /*	    mddev->layout        != info->layout        || */
6261 	    !mddev->persistent	 != info->not_persistent||
6262 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6263 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6264 	    ((state^info->state) & 0xfffffe00)
6265 		)
6266 		return -EINVAL;
6267 	/* Check there is only one change */
6268 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6269 		cnt++;
6270 	if (mddev->raid_disks != info->raid_disks)
6271 		cnt++;
6272 	if (mddev->layout != info->layout)
6273 		cnt++;
6274 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6275 		cnt++;
6276 	if (cnt == 0)
6277 		return 0;
6278 	if (cnt > 1)
6279 		return -EINVAL;
6280 
6281 	if (mddev->layout != info->layout) {
6282 		/* Change layout
6283 		 * we don't need to do anything at the md level, the
6284 		 * personality will take care of it all.
6285 		 */
6286 		if (mddev->pers->check_reshape == NULL)
6287 			return -EINVAL;
6288 		else {
6289 			mddev->new_layout = info->layout;
6290 			rv = mddev->pers->check_reshape(mddev);
6291 			if (rv)
6292 				mddev->new_layout = mddev->layout;
6293 			return rv;
6294 		}
6295 	}
6296 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6297 		rv = update_size(mddev, (sector_t)info->size * 2);
6298 
6299 	if (mddev->raid_disks    != info->raid_disks)
6300 		rv = update_raid_disks(mddev, info->raid_disks);
6301 
6302 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6303 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6304 			return -EINVAL;
6305 		if (mddev->recovery || mddev->sync_thread)
6306 			return -EBUSY;
6307 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6308 			/* add the bitmap */
6309 			if (mddev->bitmap)
6310 				return -EEXIST;
6311 			if (mddev->bitmap_info.default_offset == 0)
6312 				return -EINVAL;
6313 			mddev->bitmap_info.offset =
6314 				mddev->bitmap_info.default_offset;
6315 			mddev->bitmap_info.space =
6316 				mddev->bitmap_info.default_space;
6317 			mddev->pers->quiesce(mddev, 1);
6318 			rv = bitmap_create(mddev);
6319 			if (!rv)
6320 				rv = bitmap_load(mddev);
6321 			if (rv)
6322 				bitmap_destroy(mddev);
6323 			mddev->pers->quiesce(mddev, 0);
6324 		} else {
6325 			/* remove the bitmap */
6326 			if (!mddev->bitmap)
6327 				return -ENOENT;
6328 			if (mddev->bitmap->storage.file)
6329 				return -EINVAL;
6330 			mddev->pers->quiesce(mddev, 1);
6331 			bitmap_destroy(mddev);
6332 			mddev->pers->quiesce(mddev, 0);
6333 			mddev->bitmap_info.offset = 0;
6334 		}
6335 	}
6336 	md_update_sb(mddev, 1);
6337 	return rv;
6338 }
6339 
6340 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6341 {
6342 	struct md_rdev *rdev;
6343 	int err = 0;
6344 
6345 	if (mddev->pers == NULL)
6346 		return -ENODEV;
6347 
6348 	rcu_read_lock();
6349 	rdev = find_rdev_rcu(mddev, dev);
6350 	if (!rdev)
6351 		err =  -ENODEV;
6352 	else {
6353 		md_error(mddev, rdev);
6354 		if (!test_bit(Faulty, &rdev->flags))
6355 			err = -EBUSY;
6356 	}
6357 	rcu_read_unlock();
6358 	return err;
6359 }
6360 
6361 /*
6362  * We have a problem here : there is no easy way to give a CHS
6363  * virtual geometry. We currently pretend that we have a 2 heads
6364  * 4 sectors (with a BIG number of cylinders...). This drives
6365  * dosfs just mad... ;-)
6366  */
6367 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6368 {
6369 	struct mddev *mddev = bdev->bd_disk->private_data;
6370 
6371 	geo->heads = 2;
6372 	geo->sectors = 4;
6373 	geo->cylinders = mddev->array_sectors / 8;
6374 	return 0;
6375 }
6376 
6377 static inline bool md_ioctl_valid(unsigned int cmd)
6378 {
6379 	switch (cmd) {
6380 	case ADD_NEW_DISK:
6381 	case BLKROSET:
6382 	case GET_ARRAY_INFO:
6383 	case GET_BITMAP_FILE:
6384 	case GET_DISK_INFO:
6385 	case HOT_ADD_DISK:
6386 	case HOT_REMOVE_DISK:
6387 	case RAID_AUTORUN:
6388 	case RAID_VERSION:
6389 	case RESTART_ARRAY_RW:
6390 	case RUN_ARRAY:
6391 	case SET_ARRAY_INFO:
6392 	case SET_BITMAP_FILE:
6393 	case SET_DISK_FAULTY:
6394 	case STOP_ARRAY:
6395 	case STOP_ARRAY_RO:
6396 		return true;
6397 	default:
6398 		return false;
6399 	}
6400 }
6401 
6402 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6403 			unsigned int cmd, unsigned long arg)
6404 {
6405 	int err = 0;
6406 	void __user *argp = (void __user *)arg;
6407 	struct mddev *mddev = NULL;
6408 	int ro;
6409 
6410 	if (!md_ioctl_valid(cmd))
6411 		return -ENOTTY;
6412 
6413 	switch (cmd) {
6414 	case RAID_VERSION:
6415 	case GET_ARRAY_INFO:
6416 	case GET_DISK_INFO:
6417 		break;
6418 	default:
6419 		if (!capable(CAP_SYS_ADMIN))
6420 			return -EACCES;
6421 	}
6422 
6423 	/*
6424 	 * Commands dealing with the RAID driver but not any
6425 	 * particular array:
6426 	 */
6427 	switch (cmd) {
6428 	case RAID_VERSION:
6429 		err = get_version(argp);
6430 		goto out;
6431 
6432 #ifndef MODULE
6433 	case RAID_AUTORUN:
6434 		err = 0;
6435 		autostart_arrays(arg);
6436 		goto out;
6437 #endif
6438 	default:;
6439 	}
6440 
6441 	/*
6442 	 * Commands creating/starting a new array:
6443 	 */
6444 
6445 	mddev = bdev->bd_disk->private_data;
6446 
6447 	if (!mddev) {
6448 		BUG();
6449 		goto out;
6450 	}
6451 
6452 	/* Some actions do not requires the mutex */
6453 	switch (cmd) {
6454 	case GET_ARRAY_INFO:
6455 		if (!mddev->raid_disks && !mddev->external)
6456 			err = -ENODEV;
6457 		else
6458 			err = get_array_info(mddev, argp);
6459 		goto out;
6460 
6461 	case GET_DISK_INFO:
6462 		if (!mddev->raid_disks && !mddev->external)
6463 			err = -ENODEV;
6464 		else
6465 			err = get_disk_info(mddev, argp);
6466 		goto out;
6467 
6468 	case SET_DISK_FAULTY:
6469 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6470 		goto out;
6471 
6472 	case GET_BITMAP_FILE:
6473 		err = get_bitmap_file(mddev, argp);
6474 		goto out;
6475 
6476 	}
6477 
6478 	if (cmd == ADD_NEW_DISK)
6479 		/* need to ensure md_delayed_delete() has completed */
6480 		flush_workqueue(md_misc_wq);
6481 
6482 	if (cmd == HOT_REMOVE_DISK)
6483 		/* need to ensure recovery thread has run */
6484 		wait_event_interruptible_timeout(mddev->sb_wait,
6485 						 !test_bit(MD_RECOVERY_NEEDED,
6486 							   &mddev->flags),
6487 						 msecs_to_jiffies(5000));
6488 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6489 		/* Need to flush page cache, and ensure no-one else opens
6490 		 * and writes
6491 		 */
6492 		mutex_lock(&mddev->open_mutex);
6493 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6494 			mutex_unlock(&mddev->open_mutex);
6495 			err = -EBUSY;
6496 			goto out;
6497 		}
6498 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6499 		mutex_unlock(&mddev->open_mutex);
6500 		sync_blockdev(bdev);
6501 	}
6502 	err = mddev_lock(mddev);
6503 	if (err) {
6504 		printk(KERN_INFO
6505 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6506 			err, cmd);
6507 		goto out;
6508 	}
6509 
6510 	if (cmd == SET_ARRAY_INFO) {
6511 		mdu_array_info_t info;
6512 		if (!arg)
6513 			memset(&info, 0, sizeof(info));
6514 		else if (copy_from_user(&info, argp, sizeof(info))) {
6515 			err = -EFAULT;
6516 			goto unlock;
6517 		}
6518 		if (mddev->pers) {
6519 			err = update_array_info(mddev, &info);
6520 			if (err) {
6521 				printk(KERN_WARNING "md: couldn't update"
6522 				       " array info. %d\n", err);
6523 				goto unlock;
6524 			}
6525 			goto unlock;
6526 		}
6527 		if (!list_empty(&mddev->disks)) {
6528 			printk(KERN_WARNING
6529 			       "md: array %s already has disks!\n",
6530 			       mdname(mddev));
6531 			err = -EBUSY;
6532 			goto unlock;
6533 		}
6534 		if (mddev->raid_disks) {
6535 			printk(KERN_WARNING
6536 			       "md: array %s already initialised!\n",
6537 			       mdname(mddev));
6538 			err = -EBUSY;
6539 			goto unlock;
6540 		}
6541 		err = set_array_info(mddev, &info);
6542 		if (err) {
6543 			printk(KERN_WARNING "md: couldn't set"
6544 			       " array info. %d\n", err);
6545 			goto unlock;
6546 		}
6547 		goto unlock;
6548 	}
6549 
6550 	/*
6551 	 * Commands querying/configuring an existing array:
6552 	 */
6553 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6554 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6555 	if ((!mddev->raid_disks && !mddev->external)
6556 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6557 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6558 	    && cmd != GET_BITMAP_FILE) {
6559 		err = -ENODEV;
6560 		goto unlock;
6561 	}
6562 
6563 	/*
6564 	 * Commands even a read-only array can execute:
6565 	 */
6566 	switch (cmd) {
6567 	case RESTART_ARRAY_RW:
6568 		err = restart_array(mddev);
6569 		goto unlock;
6570 
6571 	case STOP_ARRAY:
6572 		err = do_md_stop(mddev, 0, bdev);
6573 		goto unlock;
6574 
6575 	case STOP_ARRAY_RO:
6576 		err = md_set_readonly(mddev, bdev);
6577 		goto unlock;
6578 
6579 	case HOT_REMOVE_DISK:
6580 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6581 		goto unlock;
6582 
6583 	case ADD_NEW_DISK:
6584 		/* We can support ADD_NEW_DISK on read-only arrays
6585 		 * on if we are re-adding a preexisting device.
6586 		 * So require mddev->pers and MD_DISK_SYNC.
6587 		 */
6588 		if (mddev->pers) {
6589 			mdu_disk_info_t info;
6590 			if (copy_from_user(&info, argp, sizeof(info)))
6591 				err = -EFAULT;
6592 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6593 				/* Need to clear read-only for this */
6594 				break;
6595 			else
6596 				err = add_new_disk(mddev, &info);
6597 			goto unlock;
6598 		}
6599 		break;
6600 
6601 	case BLKROSET:
6602 		if (get_user(ro, (int __user *)(arg))) {
6603 			err = -EFAULT;
6604 			goto unlock;
6605 		}
6606 		err = -EINVAL;
6607 
6608 		/* if the bdev is going readonly the value of mddev->ro
6609 		 * does not matter, no writes are coming
6610 		 */
6611 		if (ro)
6612 			goto unlock;
6613 
6614 		/* are we are already prepared for writes? */
6615 		if (mddev->ro != 1)
6616 			goto unlock;
6617 
6618 		/* transitioning to readauto need only happen for
6619 		 * arrays that call md_write_start
6620 		 */
6621 		if (mddev->pers) {
6622 			err = restart_array(mddev);
6623 			if (err == 0) {
6624 				mddev->ro = 2;
6625 				set_disk_ro(mddev->gendisk, 0);
6626 			}
6627 		}
6628 		goto unlock;
6629 	}
6630 
6631 	/*
6632 	 * The remaining ioctls are changing the state of the
6633 	 * superblock, so we do not allow them on read-only arrays.
6634 	 */
6635 	if (mddev->ro && mddev->pers) {
6636 		if (mddev->ro == 2) {
6637 			mddev->ro = 0;
6638 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6639 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6640 			/* mddev_unlock will wake thread */
6641 			/* If a device failed while we were read-only, we
6642 			 * need to make sure the metadata is updated now.
6643 			 */
6644 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6645 				mddev_unlock(mddev);
6646 				wait_event(mddev->sb_wait,
6647 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6648 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6649 				mddev_lock_nointr(mddev);
6650 			}
6651 		} else {
6652 			err = -EROFS;
6653 			goto unlock;
6654 		}
6655 	}
6656 
6657 	switch (cmd) {
6658 	case ADD_NEW_DISK:
6659 	{
6660 		mdu_disk_info_t info;
6661 		if (copy_from_user(&info, argp, sizeof(info)))
6662 			err = -EFAULT;
6663 		else
6664 			err = add_new_disk(mddev, &info);
6665 		goto unlock;
6666 	}
6667 
6668 	case HOT_ADD_DISK:
6669 		err = hot_add_disk(mddev, new_decode_dev(arg));
6670 		goto unlock;
6671 
6672 	case RUN_ARRAY:
6673 		err = do_md_run(mddev);
6674 		goto unlock;
6675 
6676 	case SET_BITMAP_FILE:
6677 		err = set_bitmap_file(mddev, (int)arg);
6678 		goto unlock;
6679 
6680 	default:
6681 		err = -EINVAL;
6682 		goto unlock;
6683 	}
6684 
6685 unlock:
6686 	if (mddev->hold_active == UNTIL_IOCTL &&
6687 	    err != -EINVAL)
6688 		mddev->hold_active = 0;
6689 	mddev_unlock(mddev);
6690 out:
6691 	return err;
6692 }
6693 #ifdef CONFIG_COMPAT
6694 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6695 		    unsigned int cmd, unsigned long arg)
6696 {
6697 	switch (cmd) {
6698 	case HOT_REMOVE_DISK:
6699 	case HOT_ADD_DISK:
6700 	case SET_DISK_FAULTY:
6701 	case SET_BITMAP_FILE:
6702 		/* These take in integer arg, do not convert */
6703 		break;
6704 	default:
6705 		arg = (unsigned long)compat_ptr(arg);
6706 		break;
6707 	}
6708 
6709 	return md_ioctl(bdev, mode, cmd, arg);
6710 }
6711 #endif /* CONFIG_COMPAT */
6712 
6713 static int md_open(struct block_device *bdev, fmode_t mode)
6714 {
6715 	/*
6716 	 * Succeed if we can lock the mddev, which confirms that
6717 	 * it isn't being stopped right now.
6718 	 */
6719 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6720 	int err;
6721 
6722 	if (!mddev)
6723 		return -ENODEV;
6724 
6725 	if (mddev->gendisk != bdev->bd_disk) {
6726 		/* we are racing with mddev_put which is discarding this
6727 		 * bd_disk.
6728 		 */
6729 		mddev_put(mddev);
6730 		/* Wait until bdev->bd_disk is definitely gone */
6731 		flush_workqueue(md_misc_wq);
6732 		/* Then retry the open from the top */
6733 		return -ERESTARTSYS;
6734 	}
6735 	BUG_ON(mddev != bdev->bd_disk->private_data);
6736 
6737 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6738 		goto out;
6739 
6740 	err = 0;
6741 	atomic_inc(&mddev->openers);
6742 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6743 	mutex_unlock(&mddev->open_mutex);
6744 
6745 	check_disk_change(bdev);
6746  out:
6747 	return err;
6748 }
6749 
6750 static void md_release(struct gendisk *disk, fmode_t mode)
6751 {
6752 	struct mddev *mddev = disk->private_data;
6753 
6754 	BUG_ON(!mddev);
6755 	atomic_dec(&mddev->openers);
6756 	mddev_put(mddev);
6757 }
6758 
6759 static int md_media_changed(struct gendisk *disk)
6760 {
6761 	struct mddev *mddev = disk->private_data;
6762 
6763 	return mddev->changed;
6764 }
6765 
6766 static int md_revalidate(struct gendisk *disk)
6767 {
6768 	struct mddev *mddev = disk->private_data;
6769 
6770 	mddev->changed = 0;
6771 	return 0;
6772 }
6773 static const struct block_device_operations md_fops =
6774 {
6775 	.owner		= THIS_MODULE,
6776 	.open		= md_open,
6777 	.release	= md_release,
6778 	.ioctl		= md_ioctl,
6779 #ifdef CONFIG_COMPAT
6780 	.compat_ioctl	= md_compat_ioctl,
6781 #endif
6782 	.getgeo		= md_getgeo,
6783 	.media_changed  = md_media_changed,
6784 	.revalidate_disk= md_revalidate,
6785 };
6786 
6787 static int md_thread(void *arg)
6788 {
6789 	struct md_thread *thread = arg;
6790 
6791 	/*
6792 	 * md_thread is a 'system-thread', it's priority should be very
6793 	 * high. We avoid resource deadlocks individually in each
6794 	 * raid personality. (RAID5 does preallocation) We also use RR and
6795 	 * the very same RT priority as kswapd, thus we will never get
6796 	 * into a priority inversion deadlock.
6797 	 *
6798 	 * we definitely have to have equal or higher priority than
6799 	 * bdflush, otherwise bdflush will deadlock if there are too
6800 	 * many dirty RAID5 blocks.
6801 	 */
6802 
6803 	allow_signal(SIGKILL);
6804 	while (!kthread_should_stop()) {
6805 
6806 		/* We need to wait INTERRUPTIBLE so that
6807 		 * we don't add to the load-average.
6808 		 * That means we need to be sure no signals are
6809 		 * pending
6810 		 */
6811 		if (signal_pending(current))
6812 			flush_signals(current);
6813 
6814 		wait_event_interruptible_timeout
6815 			(thread->wqueue,
6816 			 test_bit(THREAD_WAKEUP, &thread->flags)
6817 			 || kthread_should_stop(),
6818 			 thread->timeout);
6819 
6820 		clear_bit(THREAD_WAKEUP, &thread->flags);
6821 		if (!kthread_should_stop())
6822 			thread->run(thread);
6823 	}
6824 
6825 	return 0;
6826 }
6827 
6828 void md_wakeup_thread(struct md_thread *thread)
6829 {
6830 	if (thread) {
6831 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6832 		set_bit(THREAD_WAKEUP, &thread->flags);
6833 		wake_up(&thread->wqueue);
6834 	}
6835 }
6836 EXPORT_SYMBOL(md_wakeup_thread);
6837 
6838 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6839 		struct mddev *mddev, const char *name)
6840 {
6841 	struct md_thread *thread;
6842 
6843 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6844 	if (!thread)
6845 		return NULL;
6846 
6847 	init_waitqueue_head(&thread->wqueue);
6848 
6849 	thread->run = run;
6850 	thread->mddev = mddev;
6851 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6852 	thread->tsk = kthread_run(md_thread, thread,
6853 				  "%s_%s",
6854 				  mdname(thread->mddev),
6855 				  name);
6856 	if (IS_ERR(thread->tsk)) {
6857 		kfree(thread);
6858 		return NULL;
6859 	}
6860 	return thread;
6861 }
6862 EXPORT_SYMBOL(md_register_thread);
6863 
6864 void md_unregister_thread(struct md_thread **threadp)
6865 {
6866 	struct md_thread *thread = *threadp;
6867 	if (!thread)
6868 		return;
6869 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6870 	/* Locking ensures that mddev_unlock does not wake_up a
6871 	 * non-existent thread
6872 	 */
6873 	spin_lock(&pers_lock);
6874 	*threadp = NULL;
6875 	spin_unlock(&pers_lock);
6876 
6877 	kthread_stop(thread->tsk);
6878 	kfree(thread);
6879 }
6880 EXPORT_SYMBOL(md_unregister_thread);
6881 
6882 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6883 {
6884 	if (!rdev || test_bit(Faulty, &rdev->flags))
6885 		return;
6886 
6887 	if (!mddev->pers || !mddev->pers->error_handler)
6888 		return;
6889 	mddev->pers->error_handler(mddev,rdev);
6890 	if (mddev->degraded)
6891 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6892 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6893 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6894 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6895 	md_wakeup_thread(mddev->thread);
6896 	if (mddev->event_work.func)
6897 		queue_work(md_misc_wq, &mddev->event_work);
6898 	md_new_event_inintr(mddev);
6899 }
6900 EXPORT_SYMBOL(md_error);
6901 
6902 /* seq_file implementation /proc/mdstat */
6903 
6904 static void status_unused(struct seq_file *seq)
6905 {
6906 	int i = 0;
6907 	struct md_rdev *rdev;
6908 
6909 	seq_printf(seq, "unused devices: ");
6910 
6911 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6912 		char b[BDEVNAME_SIZE];
6913 		i++;
6914 		seq_printf(seq, "%s ",
6915 			      bdevname(rdev->bdev,b));
6916 	}
6917 	if (!i)
6918 		seq_printf(seq, "<none>");
6919 
6920 	seq_printf(seq, "\n");
6921 }
6922 
6923 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6924 {
6925 	sector_t max_sectors, resync, res;
6926 	unsigned long dt, db;
6927 	sector_t rt;
6928 	int scale;
6929 	unsigned int per_milli;
6930 
6931 	if (mddev->curr_resync <= 3)
6932 		resync = 0;
6933 	else
6934 		resync = mddev->curr_resync
6935 			- atomic_read(&mddev->recovery_active);
6936 
6937 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6938 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6939 		max_sectors = mddev->resync_max_sectors;
6940 	else
6941 		max_sectors = mddev->dev_sectors;
6942 
6943 	WARN_ON(max_sectors == 0);
6944 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6945 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6946 	 * u32, as those are the requirements for sector_div.
6947 	 * Thus 'scale' must be at least 10
6948 	 */
6949 	scale = 10;
6950 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6951 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6952 			scale++;
6953 	}
6954 	res = (resync>>scale)*1000;
6955 	sector_div(res, (u32)((max_sectors>>scale)+1));
6956 
6957 	per_milli = res;
6958 	{
6959 		int i, x = per_milli/50, y = 20-x;
6960 		seq_printf(seq, "[");
6961 		for (i = 0; i < x; i++)
6962 			seq_printf(seq, "=");
6963 		seq_printf(seq, ">");
6964 		for (i = 0; i < y; i++)
6965 			seq_printf(seq, ".");
6966 		seq_printf(seq, "] ");
6967 	}
6968 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6969 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6970 		    "reshape" :
6971 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6972 		     "check" :
6973 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6974 		      "resync" : "recovery"))),
6975 		   per_milli/10, per_milli % 10,
6976 		   (unsigned long long) resync/2,
6977 		   (unsigned long long) max_sectors/2);
6978 
6979 	/*
6980 	 * dt: time from mark until now
6981 	 * db: blocks written from mark until now
6982 	 * rt: remaining time
6983 	 *
6984 	 * rt is a sector_t, so could be 32bit or 64bit.
6985 	 * So we divide before multiply in case it is 32bit and close
6986 	 * to the limit.
6987 	 * We scale the divisor (db) by 32 to avoid losing precision
6988 	 * near the end of resync when the number of remaining sectors
6989 	 * is close to 'db'.
6990 	 * We then divide rt by 32 after multiplying by db to compensate.
6991 	 * The '+1' avoids division by zero if db is very small.
6992 	 */
6993 	dt = ((jiffies - mddev->resync_mark) / HZ);
6994 	if (!dt) dt++;
6995 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6996 		- mddev->resync_mark_cnt;
6997 
6998 	rt = max_sectors - resync;    /* number of remaining sectors */
6999 	sector_div(rt, db/32+1);
7000 	rt *= dt;
7001 	rt >>= 5;
7002 
7003 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7004 		   ((unsigned long)rt % 60)/6);
7005 
7006 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7007 }
7008 
7009 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7010 {
7011 	struct list_head *tmp;
7012 	loff_t l = *pos;
7013 	struct mddev *mddev;
7014 
7015 	if (l >= 0x10000)
7016 		return NULL;
7017 	if (!l--)
7018 		/* header */
7019 		return (void*)1;
7020 
7021 	spin_lock(&all_mddevs_lock);
7022 	list_for_each(tmp,&all_mddevs)
7023 		if (!l--) {
7024 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7025 			mddev_get(mddev);
7026 			spin_unlock(&all_mddevs_lock);
7027 			return mddev;
7028 		}
7029 	spin_unlock(&all_mddevs_lock);
7030 	if (!l--)
7031 		return (void*)2;/* tail */
7032 	return NULL;
7033 }
7034 
7035 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7036 {
7037 	struct list_head *tmp;
7038 	struct mddev *next_mddev, *mddev = v;
7039 
7040 	++*pos;
7041 	if (v == (void*)2)
7042 		return NULL;
7043 
7044 	spin_lock(&all_mddevs_lock);
7045 	if (v == (void*)1)
7046 		tmp = all_mddevs.next;
7047 	else
7048 		tmp = mddev->all_mddevs.next;
7049 	if (tmp != &all_mddevs)
7050 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7051 	else {
7052 		next_mddev = (void*)2;
7053 		*pos = 0x10000;
7054 	}
7055 	spin_unlock(&all_mddevs_lock);
7056 
7057 	if (v != (void*)1)
7058 		mddev_put(mddev);
7059 	return next_mddev;
7060 
7061 }
7062 
7063 static void md_seq_stop(struct seq_file *seq, void *v)
7064 {
7065 	struct mddev *mddev = v;
7066 
7067 	if (mddev && v != (void*)1 && v != (void*)2)
7068 		mddev_put(mddev);
7069 }
7070 
7071 static int md_seq_show(struct seq_file *seq, void *v)
7072 {
7073 	struct mddev *mddev = v;
7074 	sector_t sectors;
7075 	struct md_rdev *rdev;
7076 
7077 	if (v == (void*)1) {
7078 		struct md_personality *pers;
7079 		seq_printf(seq, "Personalities : ");
7080 		spin_lock(&pers_lock);
7081 		list_for_each_entry(pers, &pers_list, list)
7082 			seq_printf(seq, "[%s] ", pers->name);
7083 
7084 		spin_unlock(&pers_lock);
7085 		seq_printf(seq, "\n");
7086 		seq->poll_event = atomic_read(&md_event_count);
7087 		return 0;
7088 	}
7089 	if (v == (void*)2) {
7090 		status_unused(seq);
7091 		return 0;
7092 	}
7093 
7094 	spin_lock(&mddev->lock);
7095 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7096 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7097 						mddev->pers ? "" : "in");
7098 		if (mddev->pers) {
7099 			if (mddev->ro==1)
7100 				seq_printf(seq, " (read-only)");
7101 			if (mddev->ro==2)
7102 				seq_printf(seq, " (auto-read-only)");
7103 			seq_printf(seq, " %s", mddev->pers->name);
7104 		}
7105 
7106 		sectors = 0;
7107 		rcu_read_lock();
7108 		rdev_for_each_rcu(rdev, mddev) {
7109 			char b[BDEVNAME_SIZE];
7110 			seq_printf(seq, " %s[%d]",
7111 				bdevname(rdev->bdev,b), rdev->desc_nr);
7112 			if (test_bit(WriteMostly, &rdev->flags))
7113 				seq_printf(seq, "(W)");
7114 			if (test_bit(Faulty, &rdev->flags)) {
7115 				seq_printf(seq, "(F)");
7116 				continue;
7117 			}
7118 			if (rdev->raid_disk < 0)
7119 				seq_printf(seq, "(S)"); /* spare */
7120 			if (test_bit(Replacement, &rdev->flags))
7121 				seq_printf(seq, "(R)");
7122 			sectors += rdev->sectors;
7123 		}
7124 		rcu_read_unlock();
7125 
7126 		if (!list_empty(&mddev->disks)) {
7127 			if (mddev->pers)
7128 				seq_printf(seq, "\n      %llu blocks",
7129 					   (unsigned long long)
7130 					   mddev->array_sectors / 2);
7131 			else
7132 				seq_printf(seq, "\n      %llu blocks",
7133 					   (unsigned long long)sectors / 2);
7134 		}
7135 		if (mddev->persistent) {
7136 			if (mddev->major_version != 0 ||
7137 			    mddev->minor_version != 90) {
7138 				seq_printf(seq," super %d.%d",
7139 					   mddev->major_version,
7140 					   mddev->minor_version);
7141 			}
7142 		} else if (mddev->external)
7143 			seq_printf(seq, " super external:%s",
7144 				   mddev->metadata_type);
7145 		else
7146 			seq_printf(seq, " super non-persistent");
7147 
7148 		if (mddev->pers) {
7149 			mddev->pers->status(seq, mddev);
7150 			seq_printf(seq, "\n      ");
7151 			if (mddev->pers->sync_request) {
7152 				if (mddev->curr_resync > 2) {
7153 					status_resync(seq, mddev);
7154 					seq_printf(seq, "\n      ");
7155 				} else if (mddev->curr_resync >= 1)
7156 					seq_printf(seq, "\tresync=DELAYED\n      ");
7157 				else if (mddev->recovery_cp < MaxSector)
7158 					seq_printf(seq, "\tresync=PENDING\n      ");
7159 			}
7160 		} else
7161 			seq_printf(seq, "\n       ");
7162 
7163 		bitmap_status(seq, mddev->bitmap);
7164 
7165 		seq_printf(seq, "\n");
7166 	}
7167 	spin_unlock(&mddev->lock);
7168 
7169 	return 0;
7170 }
7171 
7172 static const struct seq_operations md_seq_ops = {
7173 	.start  = md_seq_start,
7174 	.next   = md_seq_next,
7175 	.stop   = md_seq_stop,
7176 	.show   = md_seq_show,
7177 };
7178 
7179 static int md_seq_open(struct inode *inode, struct file *file)
7180 {
7181 	struct seq_file *seq;
7182 	int error;
7183 
7184 	error = seq_open(file, &md_seq_ops);
7185 	if (error)
7186 		return error;
7187 
7188 	seq = file->private_data;
7189 	seq->poll_event = atomic_read(&md_event_count);
7190 	return error;
7191 }
7192 
7193 static int md_unloading;
7194 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7195 {
7196 	struct seq_file *seq = filp->private_data;
7197 	int mask;
7198 
7199 	if (md_unloading)
7200 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7201 	poll_wait(filp, &md_event_waiters, wait);
7202 
7203 	/* always allow read */
7204 	mask = POLLIN | POLLRDNORM;
7205 
7206 	if (seq->poll_event != atomic_read(&md_event_count))
7207 		mask |= POLLERR | POLLPRI;
7208 	return mask;
7209 }
7210 
7211 static const struct file_operations md_seq_fops = {
7212 	.owner		= THIS_MODULE,
7213 	.open           = md_seq_open,
7214 	.read           = seq_read,
7215 	.llseek         = seq_lseek,
7216 	.release	= seq_release_private,
7217 	.poll		= mdstat_poll,
7218 };
7219 
7220 int register_md_personality(struct md_personality *p)
7221 {
7222 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7223 						p->name, p->level);
7224 	spin_lock(&pers_lock);
7225 	list_add_tail(&p->list, &pers_list);
7226 	spin_unlock(&pers_lock);
7227 	return 0;
7228 }
7229 EXPORT_SYMBOL(register_md_personality);
7230 
7231 int unregister_md_personality(struct md_personality *p)
7232 {
7233 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7234 	spin_lock(&pers_lock);
7235 	list_del_init(&p->list);
7236 	spin_unlock(&pers_lock);
7237 	return 0;
7238 }
7239 EXPORT_SYMBOL(unregister_md_personality);
7240 
7241 static int is_mddev_idle(struct mddev *mddev, int init)
7242 {
7243 	struct md_rdev *rdev;
7244 	int idle;
7245 	int curr_events;
7246 
7247 	idle = 1;
7248 	rcu_read_lock();
7249 	rdev_for_each_rcu(rdev, mddev) {
7250 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7251 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7252 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7253 			      atomic_read(&disk->sync_io);
7254 		/* sync IO will cause sync_io to increase before the disk_stats
7255 		 * as sync_io is counted when a request starts, and
7256 		 * disk_stats is counted when it completes.
7257 		 * So resync activity will cause curr_events to be smaller than
7258 		 * when there was no such activity.
7259 		 * non-sync IO will cause disk_stat to increase without
7260 		 * increasing sync_io so curr_events will (eventually)
7261 		 * be larger than it was before.  Once it becomes
7262 		 * substantially larger, the test below will cause
7263 		 * the array to appear non-idle, and resync will slow
7264 		 * down.
7265 		 * If there is a lot of outstanding resync activity when
7266 		 * we set last_event to curr_events, then all that activity
7267 		 * completing might cause the array to appear non-idle
7268 		 * and resync will be slowed down even though there might
7269 		 * not have been non-resync activity.  This will only
7270 		 * happen once though.  'last_events' will soon reflect
7271 		 * the state where there is little or no outstanding
7272 		 * resync requests, and further resync activity will
7273 		 * always make curr_events less than last_events.
7274 		 *
7275 		 */
7276 		if (init || curr_events - rdev->last_events > 64) {
7277 			rdev->last_events = curr_events;
7278 			idle = 0;
7279 		}
7280 	}
7281 	rcu_read_unlock();
7282 	return idle;
7283 }
7284 
7285 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7286 {
7287 	/* another "blocks" (512byte) blocks have been synced */
7288 	atomic_sub(blocks, &mddev->recovery_active);
7289 	wake_up(&mddev->recovery_wait);
7290 	if (!ok) {
7291 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7292 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7293 		md_wakeup_thread(mddev->thread);
7294 		// stop recovery, signal do_sync ....
7295 	}
7296 }
7297 EXPORT_SYMBOL(md_done_sync);
7298 
7299 /* md_write_start(mddev, bi)
7300  * If we need to update some array metadata (e.g. 'active' flag
7301  * in superblock) before writing, schedule a superblock update
7302  * and wait for it to complete.
7303  */
7304 void md_write_start(struct mddev *mddev, struct bio *bi)
7305 {
7306 	int did_change = 0;
7307 	if (bio_data_dir(bi) != WRITE)
7308 		return;
7309 
7310 	BUG_ON(mddev->ro == 1);
7311 	if (mddev->ro == 2) {
7312 		/* need to switch to read/write */
7313 		mddev->ro = 0;
7314 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7315 		md_wakeup_thread(mddev->thread);
7316 		md_wakeup_thread(mddev->sync_thread);
7317 		did_change = 1;
7318 	}
7319 	atomic_inc(&mddev->writes_pending);
7320 	if (mddev->safemode == 1)
7321 		mddev->safemode = 0;
7322 	if (mddev->in_sync) {
7323 		spin_lock(&mddev->lock);
7324 		if (mddev->in_sync) {
7325 			mddev->in_sync = 0;
7326 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7327 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7328 			md_wakeup_thread(mddev->thread);
7329 			did_change = 1;
7330 		}
7331 		spin_unlock(&mddev->lock);
7332 	}
7333 	if (did_change)
7334 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7335 	wait_event(mddev->sb_wait,
7336 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7337 }
7338 EXPORT_SYMBOL(md_write_start);
7339 
7340 void md_write_end(struct mddev *mddev)
7341 {
7342 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7343 		if (mddev->safemode == 2)
7344 			md_wakeup_thread(mddev->thread);
7345 		else if (mddev->safemode_delay)
7346 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7347 	}
7348 }
7349 EXPORT_SYMBOL(md_write_end);
7350 
7351 /* md_allow_write(mddev)
7352  * Calling this ensures that the array is marked 'active' so that writes
7353  * may proceed without blocking.  It is important to call this before
7354  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7355  * Must be called with mddev_lock held.
7356  *
7357  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7358  * is dropped, so return -EAGAIN after notifying userspace.
7359  */
7360 int md_allow_write(struct mddev *mddev)
7361 {
7362 	if (!mddev->pers)
7363 		return 0;
7364 	if (mddev->ro)
7365 		return 0;
7366 	if (!mddev->pers->sync_request)
7367 		return 0;
7368 
7369 	spin_lock(&mddev->lock);
7370 	if (mddev->in_sync) {
7371 		mddev->in_sync = 0;
7372 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7373 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7374 		if (mddev->safemode_delay &&
7375 		    mddev->safemode == 0)
7376 			mddev->safemode = 1;
7377 		spin_unlock(&mddev->lock);
7378 		md_update_sb(mddev, 0);
7379 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7380 	} else
7381 		spin_unlock(&mddev->lock);
7382 
7383 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7384 		return -EAGAIN;
7385 	else
7386 		return 0;
7387 }
7388 EXPORT_SYMBOL_GPL(md_allow_write);
7389 
7390 #define SYNC_MARKS	10
7391 #define	SYNC_MARK_STEP	(3*HZ)
7392 #define UPDATE_FREQUENCY (5*60*HZ)
7393 void md_do_sync(struct md_thread *thread)
7394 {
7395 	struct mddev *mddev = thread->mddev;
7396 	struct mddev *mddev2;
7397 	unsigned int currspeed = 0,
7398 		 window;
7399 	sector_t max_sectors,j, io_sectors, recovery_done;
7400 	unsigned long mark[SYNC_MARKS];
7401 	unsigned long update_time;
7402 	sector_t mark_cnt[SYNC_MARKS];
7403 	int last_mark,m;
7404 	struct list_head *tmp;
7405 	sector_t last_check;
7406 	int skipped = 0;
7407 	struct md_rdev *rdev;
7408 	char *desc, *action = NULL;
7409 	struct blk_plug plug;
7410 
7411 	/* just incase thread restarts... */
7412 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7413 		return;
7414 	if (mddev->ro) {/* never try to sync a read-only array */
7415 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7416 		return;
7417 	}
7418 
7419 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7420 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7421 			desc = "data-check";
7422 			action = "check";
7423 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7424 			desc = "requested-resync";
7425 			action = "repair";
7426 		} else
7427 			desc = "resync";
7428 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7429 		desc = "reshape";
7430 	else
7431 		desc = "recovery";
7432 
7433 	mddev->last_sync_action = action ?: desc;
7434 
7435 	/* we overload curr_resync somewhat here.
7436 	 * 0 == not engaged in resync at all
7437 	 * 2 == checking that there is no conflict with another sync
7438 	 * 1 == like 2, but have yielded to allow conflicting resync to
7439 	 *		commense
7440 	 * other == active in resync - this many blocks
7441 	 *
7442 	 * Before starting a resync we must have set curr_resync to
7443 	 * 2, and then checked that every "conflicting" array has curr_resync
7444 	 * less than ours.  When we find one that is the same or higher
7445 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7446 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7447 	 * This will mean we have to start checking from the beginning again.
7448 	 *
7449 	 */
7450 
7451 	do {
7452 		mddev->curr_resync = 2;
7453 
7454 	try_again:
7455 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7456 			goto skip;
7457 		for_each_mddev(mddev2, tmp) {
7458 			if (mddev2 == mddev)
7459 				continue;
7460 			if (!mddev->parallel_resync
7461 			&&  mddev2->curr_resync
7462 			&&  match_mddev_units(mddev, mddev2)) {
7463 				DEFINE_WAIT(wq);
7464 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7465 					/* arbitrarily yield */
7466 					mddev->curr_resync = 1;
7467 					wake_up(&resync_wait);
7468 				}
7469 				if (mddev > mddev2 && mddev->curr_resync == 1)
7470 					/* no need to wait here, we can wait the next
7471 					 * time 'round when curr_resync == 2
7472 					 */
7473 					continue;
7474 				/* We need to wait 'interruptible' so as not to
7475 				 * contribute to the load average, and not to
7476 				 * be caught by 'softlockup'
7477 				 */
7478 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7479 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7480 				    mddev2->curr_resync >= mddev->curr_resync) {
7481 					printk(KERN_INFO "md: delaying %s of %s"
7482 					       " until %s has finished (they"
7483 					       " share one or more physical units)\n",
7484 					       desc, mdname(mddev), mdname(mddev2));
7485 					mddev_put(mddev2);
7486 					if (signal_pending(current))
7487 						flush_signals(current);
7488 					schedule();
7489 					finish_wait(&resync_wait, &wq);
7490 					goto try_again;
7491 				}
7492 				finish_wait(&resync_wait, &wq);
7493 			}
7494 		}
7495 	} while (mddev->curr_resync < 2);
7496 
7497 	j = 0;
7498 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7499 		/* resync follows the size requested by the personality,
7500 		 * which defaults to physical size, but can be virtual size
7501 		 */
7502 		max_sectors = mddev->resync_max_sectors;
7503 		atomic64_set(&mddev->resync_mismatches, 0);
7504 		/* we don't use the checkpoint if there's a bitmap */
7505 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7506 			j = mddev->resync_min;
7507 		else if (!mddev->bitmap)
7508 			j = mddev->recovery_cp;
7509 
7510 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7511 		max_sectors = mddev->resync_max_sectors;
7512 	else {
7513 		/* recovery follows the physical size of devices */
7514 		max_sectors = mddev->dev_sectors;
7515 		j = MaxSector;
7516 		rcu_read_lock();
7517 		rdev_for_each_rcu(rdev, mddev)
7518 			if (rdev->raid_disk >= 0 &&
7519 			    !test_bit(Faulty, &rdev->flags) &&
7520 			    !test_bit(In_sync, &rdev->flags) &&
7521 			    rdev->recovery_offset < j)
7522 				j = rdev->recovery_offset;
7523 		rcu_read_unlock();
7524 
7525 		/* If there is a bitmap, we need to make sure all
7526 		 * writes that started before we added a spare
7527 		 * complete before we start doing a recovery.
7528 		 * Otherwise the write might complete and (via
7529 		 * bitmap_endwrite) set a bit in the bitmap after the
7530 		 * recovery has checked that bit and skipped that
7531 		 * region.
7532 		 */
7533 		if (mddev->bitmap) {
7534 			mddev->pers->quiesce(mddev, 1);
7535 			mddev->pers->quiesce(mddev, 0);
7536 		}
7537 	}
7538 
7539 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7540 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7541 		" %d KB/sec/disk.\n", speed_min(mddev));
7542 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7543 	       "(but not more than %d KB/sec) for %s.\n",
7544 	       speed_max(mddev), desc);
7545 
7546 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7547 
7548 	io_sectors = 0;
7549 	for (m = 0; m < SYNC_MARKS; m++) {
7550 		mark[m] = jiffies;
7551 		mark_cnt[m] = io_sectors;
7552 	}
7553 	last_mark = 0;
7554 	mddev->resync_mark = mark[last_mark];
7555 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7556 
7557 	/*
7558 	 * Tune reconstruction:
7559 	 */
7560 	window = 32*(PAGE_SIZE/512);
7561 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7562 		window/2, (unsigned long long)max_sectors/2);
7563 
7564 	atomic_set(&mddev->recovery_active, 0);
7565 	last_check = 0;
7566 
7567 	if (j>2) {
7568 		printk(KERN_INFO
7569 		       "md: resuming %s of %s from checkpoint.\n",
7570 		       desc, mdname(mddev));
7571 		mddev->curr_resync = j;
7572 	} else
7573 		mddev->curr_resync = 3; /* no longer delayed */
7574 	mddev->curr_resync_completed = j;
7575 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7576 	md_new_event(mddev);
7577 	update_time = jiffies;
7578 
7579 	blk_start_plug(&plug);
7580 	while (j < max_sectors) {
7581 		sector_t sectors;
7582 
7583 		skipped = 0;
7584 
7585 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7586 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7587 		      (mddev->curr_resync - mddev->curr_resync_completed)
7588 		      > (max_sectors >> 4)) ||
7589 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7590 		     (j - mddev->curr_resync_completed)*2
7591 		     >= mddev->resync_max - mddev->curr_resync_completed
7592 			    )) {
7593 			/* time to update curr_resync_completed */
7594 			wait_event(mddev->recovery_wait,
7595 				   atomic_read(&mddev->recovery_active) == 0);
7596 			mddev->curr_resync_completed = j;
7597 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7598 			    j > mddev->recovery_cp)
7599 				mddev->recovery_cp = j;
7600 			update_time = jiffies;
7601 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7602 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7603 		}
7604 
7605 		while (j >= mddev->resync_max &&
7606 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607 			/* As this condition is controlled by user-space,
7608 			 * we can block indefinitely, so use '_interruptible'
7609 			 * to avoid triggering warnings.
7610 			 */
7611 			flush_signals(current); /* just in case */
7612 			wait_event_interruptible(mddev->recovery_wait,
7613 						 mddev->resync_max > j
7614 						 || test_bit(MD_RECOVERY_INTR,
7615 							     &mddev->recovery));
7616 		}
7617 
7618 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7619 			break;
7620 
7621 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7622 						  currspeed < speed_min(mddev));
7623 		if (sectors == 0) {
7624 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7625 			break;
7626 		}
7627 
7628 		if (!skipped) { /* actual IO requested */
7629 			io_sectors += sectors;
7630 			atomic_add(sectors, &mddev->recovery_active);
7631 		}
7632 
7633 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7634 			break;
7635 
7636 		j += sectors;
7637 		if (j > 2)
7638 			mddev->curr_resync = j;
7639 		mddev->curr_mark_cnt = io_sectors;
7640 		if (last_check == 0)
7641 			/* this is the earliest that rebuild will be
7642 			 * visible in /proc/mdstat
7643 			 */
7644 			md_new_event(mddev);
7645 
7646 		if (last_check + window > io_sectors || j == max_sectors)
7647 			continue;
7648 
7649 		last_check = io_sectors;
7650 	repeat:
7651 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7652 			/* step marks */
7653 			int next = (last_mark+1) % SYNC_MARKS;
7654 
7655 			mddev->resync_mark = mark[next];
7656 			mddev->resync_mark_cnt = mark_cnt[next];
7657 			mark[next] = jiffies;
7658 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7659 			last_mark = next;
7660 		}
7661 
7662 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7663 			break;
7664 
7665 		/*
7666 		 * this loop exits only if either when we are slower than
7667 		 * the 'hard' speed limit, or the system was IO-idle for
7668 		 * a jiffy.
7669 		 * the system might be non-idle CPU-wise, but we only care
7670 		 * about not overloading the IO subsystem. (things like an
7671 		 * e2fsck being done on the RAID array should execute fast)
7672 		 */
7673 		cond_resched();
7674 
7675 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7676 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7677 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7678 
7679 		if (currspeed > speed_min(mddev)) {
7680 			if ((currspeed > speed_max(mddev)) ||
7681 					!is_mddev_idle(mddev, 0)) {
7682 				msleep(500);
7683 				goto repeat;
7684 			}
7685 		}
7686 	}
7687 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7688 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7689 	       ? "interrupted" : "done");
7690 	/*
7691 	 * this also signals 'finished resyncing' to md_stop
7692 	 */
7693 	blk_finish_plug(&plug);
7694 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7695 
7696 	/* tell personality that we are finished */
7697 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7698 
7699 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7700 	    mddev->curr_resync > 2) {
7701 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7702 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7703 				if (mddev->curr_resync >= mddev->recovery_cp) {
7704 					printk(KERN_INFO
7705 					       "md: checkpointing %s of %s.\n",
7706 					       desc, mdname(mddev));
7707 					if (test_bit(MD_RECOVERY_ERROR,
7708 						&mddev->recovery))
7709 						mddev->recovery_cp =
7710 							mddev->curr_resync_completed;
7711 					else
7712 						mddev->recovery_cp =
7713 							mddev->curr_resync;
7714 				}
7715 			} else
7716 				mddev->recovery_cp = MaxSector;
7717 		} else {
7718 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7719 				mddev->curr_resync = MaxSector;
7720 			rcu_read_lock();
7721 			rdev_for_each_rcu(rdev, mddev)
7722 				if (rdev->raid_disk >= 0 &&
7723 				    mddev->delta_disks >= 0 &&
7724 				    !test_bit(Faulty, &rdev->flags) &&
7725 				    !test_bit(In_sync, &rdev->flags) &&
7726 				    rdev->recovery_offset < mddev->curr_resync)
7727 					rdev->recovery_offset = mddev->curr_resync;
7728 			rcu_read_unlock();
7729 		}
7730 	}
7731  skip:
7732 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7733 
7734 	spin_lock(&mddev->lock);
7735 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7736 		/* We completed so min/max setting can be forgotten if used. */
7737 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7738 			mddev->resync_min = 0;
7739 		mddev->resync_max = MaxSector;
7740 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7741 		mddev->resync_min = mddev->curr_resync_completed;
7742 	mddev->curr_resync = 0;
7743 	spin_unlock(&mddev->lock);
7744 
7745 	wake_up(&resync_wait);
7746 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7747 	md_wakeup_thread(mddev->thread);
7748 	return;
7749 }
7750 EXPORT_SYMBOL_GPL(md_do_sync);
7751 
7752 static int remove_and_add_spares(struct mddev *mddev,
7753 				 struct md_rdev *this)
7754 {
7755 	struct md_rdev *rdev;
7756 	int spares = 0;
7757 	int removed = 0;
7758 
7759 	rdev_for_each(rdev, mddev)
7760 		if ((this == NULL || rdev == this) &&
7761 		    rdev->raid_disk >= 0 &&
7762 		    !test_bit(Blocked, &rdev->flags) &&
7763 		    (test_bit(Faulty, &rdev->flags) ||
7764 		     ! test_bit(In_sync, &rdev->flags)) &&
7765 		    atomic_read(&rdev->nr_pending)==0) {
7766 			if (mddev->pers->hot_remove_disk(
7767 				    mddev, rdev) == 0) {
7768 				sysfs_unlink_rdev(mddev, rdev);
7769 				rdev->raid_disk = -1;
7770 				removed++;
7771 			}
7772 		}
7773 	if (removed && mddev->kobj.sd)
7774 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7775 
7776 	if (this)
7777 		goto no_add;
7778 
7779 	rdev_for_each(rdev, mddev) {
7780 		if (rdev->raid_disk >= 0 &&
7781 		    !test_bit(In_sync, &rdev->flags) &&
7782 		    !test_bit(Faulty, &rdev->flags))
7783 			spares++;
7784 		if (rdev->raid_disk >= 0)
7785 			continue;
7786 		if (test_bit(Faulty, &rdev->flags))
7787 			continue;
7788 		if (mddev->ro &&
7789 		    ! (rdev->saved_raid_disk >= 0 &&
7790 		       !test_bit(Bitmap_sync, &rdev->flags)))
7791 			continue;
7792 
7793 		if (rdev->saved_raid_disk < 0)
7794 			rdev->recovery_offset = 0;
7795 		if (mddev->pers->
7796 		    hot_add_disk(mddev, rdev) == 0) {
7797 			if (sysfs_link_rdev(mddev, rdev))
7798 				/* failure here is OK */;
7799 			spares++;
7800 			md_new_event(mddev);
7801 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 		}
7803 	}
7804 no_add:
7805 	if (removed)
7806 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7807 	return spares;
7808 }
7809 
7810 static void md_start_sync(struct work_struct *ws)
7811 {
7812 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
7813 
7814 	mddev->sync_thread = md_register_thread(md_do_sync,
7815 						mddev,
7816 						"resync");
7817 	if (!mddev->sync_thread) {
7818 		printk(KERN_ERR "%s: could not start resync"
7819 		       " thread...\n",
7820 		       mdname(mddev));
7821 		/* leave the spares where they are, it shouldn't hurt */
7822 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7823 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7824 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7825 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7826 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7827 		wake_up(&resync_wait);
7828 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7829 				       &mddev->recovery))
7830 			if (mddev->sysfs_action)
7831 				sysfs_notify_dirent_safe(mddev->sysfs_action);
7832 	} else
7833 		md_wakeup_thread(mddev->sync_thread);
7834 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7835 	md_new_event(mddev);
7836 }
7837 
7838 /*
7839  * This routine is regularly called by all per-raid-array threads to
7840  * deal with generic issues like resync and super-block update.
7841  * Raid personalities that don't have a thread (linear/raid0) do not
7842  * need this as they never do any recovery or update the superblock.
7843  *
7844  * It does not do any resync itself, but rather "forks" off other threads
7845  * to do that as needed.
7846  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7847  * "->recovery" and create a thread at ->sync_thread.
7848  * When the thread finishes it sets MD_RECOVERY_DONE
7849  * and wakeups up this thread which will reap the thread and finish up.
7850  * This thread also removes any faulty devices (with nr_pending == 0).
7851  *
7852  * The overall approach is:
7853  *  1/ if the superblock needs updating, update it.
7854  *  2/ If a recovery thread is running, don't do anything else.
7855  *  3/ If recovery has finished, clean up, possibly marking spares active.
7856  *  4/ If there are any faulty devices, remove them.
7857  *  5/ If array is degraded, try to add spares devices
7858  *  6/ If array has spares or is not in-sync, start a resync thread.
7859  */
7860 void md_check_recovery(struct mddev *mddev)
7861 {
7862 	if (mddev->suspended)
7863 		return;
7864 
7865 	if (mddev->bitmap)
7866 		bitmap_daemon_work(mddev);
7867 
7868 	if (signal_pending(current)) {
7869 		if (mddev->pers->sync_request && !mddev->external) {
7870 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7871 			       mdname(mddev));
7872 			mddev->safemode = 2;
7873 		}
7874 		flush_signals(current);
7875 	}
7876 
7877 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7878 		return;
7879 	if ( ! (
7880 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7881 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7882 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7883 		(mddev->external == 0 && mddev->safemode == 1) ||
7884 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7885 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7886 		))
7887 		return;
7888 
7889 	if (mddev_trylock(mddev)) {
7890 		int spares = 0;
7891 
7892 		if (mddev->ro) {
7893 			/* On a read-only array we can:
7894 			 * - remove failed devices
7895 			 * - add already-in_sync devices if the array itself
7896 			 *   is in-sync.
7897 			 * As we only add devices that are already in-sync,
7898 			 * we can activate the spares immediately.
7899 			 */
7900 			remove_and_add_spares(mddev, NULL);
7901 			/* There is no thread, but we need to call
7902 			 * ->spare_active and clear saved_raid_disk
7903 			 */
7904 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7905 			md_reap_sync_thread(mddev);
7906 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7907 			goto unlock;
7908 		}
7909 
7910 		if (!mddev->external) {
7911 			int did_change = 0;
7912 			spin_lock(&mddev->lock);
7913 			if (mddev->safemode &&
7914 			    !atomic_read(&mddev->writes_pending) &&
7915 			    !mddev->in_sync &&
7916 			    mddev->recovery_cp == MaxSector) {
7917 				mddev->in_sync = 1;
7918 				did_change = 1;
7919 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7920 			}
7921 			if (mddev->safemode == 1)
7922 				mddev->safemode = 0;
7923 			spin_unlock(&mddev->lock);
7924 			if (did_change)
7925 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7926 		}
7927 
7928 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7929 			md_update_sb(mddev, 0);
7930 
7931 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7932 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7933 			/* resync/recovery still happening */
7934 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7935 			goto unlock;
7936 		}
7937 		if (mddev->sync_thread) {
7938 			md_reap_sync_thread(mddev);
7939 			goto unlock;
7940 		}
7941 		/* Set RUNNING before clearing NEEDED to avoid
7942 		 * any transients in the value of "sync_action".
7943 		 */
7944 		mddev->curr_resync_completed = 0;
7945 		spin_lock(&mddev->lock);
7946 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7947 		spin_unlock(&mddev->lock);
7948 		/* Clear some bits that don't mean anything, but
7949 		 * might be left set
7950 		 */
7951 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7952 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7953 
7954 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7955 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7956 			goto not_running;
7957 		/* no recovery is running.
7958 		 * remove any failed drives, then
7959 		 * add spares if possible.
7960 		 * Spares are also removed and re-added, to allow
7961 		 * the personality to fail the re-add.
7962 		 */
7963 
7964 		if (mddev->reshape_position != MaxSector) {
7965 			if (mddev->pers->check_reshape == NULL ||
7966 			    mddev->pers->check_reshape(mddev) != 0)
7967 				/* Cannot proceed */
7968 				goto not_running;
7969 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7970 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7971 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7972 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7974 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7975 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7976 		} else if (mddev->recovery_cp < MaxSector) {
7977 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7978 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7979 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7980 			/* nothing to be done ... */
7981 			goto not_running;
7982 
7983 		if (mddev->pers->sync_request) {
7984 			if (spares) {
7985 				/* We are adding a device or devices to an array
7986 				 * which has the bitmap stored on all devices.
7987 				 * So make sure all bitmap pages get written
7988 				 */
7989 				bitmap_write_all(mddev->bitmap);
7990 			}
7991 			INIT_WORK(&mddev->del_work, md_start_sync);
7992 			queue_work(md_misc_wq, &mddev->del_work);
7993 			goto unlock;
7994 		}
7995 	not_running:
7996 		if (!mddev->sync_thread) {
7997 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7998 			wake_up(&resync_wait);
7999 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8000 					       &mddev->recovery))
8001 				if (mddev->sysfs_action)
8002 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8003 		}
8004 	unlock:
8005 		wake_up(&mddev->sb_wait);
8006 		mddev_unlock(mddev);
8007 	}
8008 }
8009 EXPORT_SYMBOL(md_check_recovery);
8010 
8011 void md_reap_sync_thread(struct mddev *mddev)
8012 {
8013 	struct md_rdev *rdev;
8014 
8015 	/* resync has finished, collect result */
8016 	md_unregister_thread(&mddev->sync_thread);
8017 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8018 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8019 		/* success...*/
8020 		/* activate any spares */
8021 		if (mddev->pers->spare_active(mddev)) {
8022 			sysfs_notify(&mddev->kobj, NULL,
8023 				     "degraded");
8024 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8025 		}
8026 	}
8027 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8028 	    mddev->pers->finish_reshape)
8029 		mddev->pers->finish_reshape(mddev);
8030 
8031 	/* If array is no-longer degraded, then any saved_raid_disk
8032 	 * information must be scrapped.
8033 	 */
8034 	if (!mddev->degraded)
8035 		rdev_for_each(rdev, mddev)
8036 			rdev->saved_raid_disk = -1;
8037 
8038 	md_update_sb(mddev, 1);
8039 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8040 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8041 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8042 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8043 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8044 	wake_up(&resync_wait);
8045 	/* flag recovery needed just to double check */
8046 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8047 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8048 	md_new_event(mddev);
8049 	if (mddev->event_work.func)
8050 		queue_work(md_misc_wq, &mddev->event_work);
8051 }
8052 EXPORT_SYMBOL(md_reap_sync_thread);
8053 
8054 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8055 {
8056 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8057 	wait_event_timeout(rdev->blocked_wait,
8058 			   !test_bit(Blocked, &rdev->flags) &&
8059 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8060 			   msecs_to_jiffies(5000));
8061 	rdev_dec_pending(rdev, mddev);
8062 }
8063 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8064 
8065 void md_finish_reshape(struct mddev *mddev)
8066 {
8067 	/* called be personality module when reshape completes. */
8068 	struct md_rdev *rdev;
8069 
8070 	rdev_for_each(rdev, mddev) {
8071 		if (rdev->data_offset > rdev->new_data_offset)
8072 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8073 		else
8074 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8075 		rdev->data_offset = rdev->new_data_offset;
8076 	}
8077 }
8078 EXPORT_SYMBOL(md_finish_reshape);
8079 
8080 /* Bad block management.
8081  * We can record which blocks on each device are 'bad' and so just
8082  * fail those blocks, or that stripe, rather than the whole device.
8083  * Entries in the bad-block table are 64bits wide.  This comprises:
8084  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8085  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8086  *  A 'shift' can be set so that larger blocks are tracked and
8087  *  consequently larger devices can be covered.
8088  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8089  *
8090  * Locking of the bad-block table uses a seqlock so md_is_badblock
8091  * might need to retry if it is very unlucky.
8092  * We will sometimes want to check for bad blocks in a bi_end_io function,
8093  * so we use the write_seqlock_irq variant.
8094  *
8095  * When looking for a bad block we specify a range and want to
8096  * know if any block in the range is bad.  So we binary-search
8097  * to the last range that starts at-or-before the given endpoint,
8098  * (or "before the sector after the target range")
8099  * then see if it ends after the given start.
8100  * We return
8101  *  0 if there are no known bad blocks in the range
8102  *  1 if there are known bad block which are all acknowledged
8103  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8104  * plus the start/length of the first bad section we overlap.
8105  */
8106 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8107 		   sector_t *first_bad, int *bad_sectors)
8108 {
8109 	int hi;
8110 	int lo;
8111 	u64 *p = bb->page;
8112 	int rv;
8113 	sector_t target = s + sectors;
8114 	unsigned seq;
8115 
8116 	if (bb->shift > 0) {
8117 		/* round the start down, and the end up */
8118 		s >>= bb->shift;
8119 		target += (1<<bb->shift) - 1;
8120 		target >>= bb->shift;
8121 		sectors = target - s;
8122 	}
8123 	/* 'target' is now the first block after the bad range */
8124 
8125 retry:
8126 	seq = read_seqbegin(&bb->lock);
8127 	lo = 0;
8128 	rv = 0;
8129 	hi = bb->count;
8130 
8131 	/* Binary search between lo and hi for 'target'
8132 	 * i.e. for the last range that starts before 'target'
8133 	 */
8134 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8135 	 * are known not to be the last range before target.
8136 	 * VARIANT: hi-lo is the number of possible
8137 	 * ranges, and decreases until it reaches 1
8138 	 */
8139 	while (hi - lo > 1) {
8140 		int mid = (lo + hi) / 2;
8141 		sector_t a = BB_OFFSET(p[mid]);
8142 		if (a < target)
8143 			/* This could still be the one, earlier ranges
8144 			 * could not. */
8145 			lo = mid;
8146 		else
8147 			/* This and later ranges are definitely out. */
8148 			hi = mid;
8149 	}
8150 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8151 	if (hi > lo) {
8152 		/* need to check all range that end after 's' to see if
8153 		 * any are unacknowledged.
8154 		 */
8155 		while (lo >= 0 &&
8156 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8157 			if (BB_OFFSET(p[lo]) < target) {
8158 				/* starts before the end, and finishes after
8159 				 * the start, so they must overlap
8160 				 */
8161 				if (rv != -1 && BB_ACK(p[lo]))
8162 					rv = 1;
8163 				else
8164 					rv = -1;
8165 				*first_bad = BB_OFFSET(p[lo]);
8166 				*bad_sectors = BB_LEN(p[lo]);
8167 			}
8168 			lo--;
8169 		}
8170 	}
8171 
8172 	if (read_seqretry(&bb->lock, seq))
8173 		goto retry;
8174 
8175 	return rv;
8176 }
8177 EXPORT_SYMBOL_GPL(md_is_badblock);
8178 
8179 /*
8180  * Add a range of bad blocks to the table.
8181  * This might extend the table, or might contract it
8182  * if two adjacent ranges can be merged.
8183  * We binary-search to find the 'insertion' point, then
8184  * decide how best to handle it.
8185  */
8186 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8187 			    int acknowledged)
8188 {
8189 	u64 *p;
8190 	int lo, hi;
8191 	int rv = 1;
8192 	unsigned long flags;
8193 
8194 	if (bb->shift < 0)
8195 		/* badblocks are disabled */
8196 		return 0;
8197 
8198 	if (bb->shift) {
8199 		/* round the start down, and the end up */
8200 		sector_t next = s + sectors;
8201 		s >>= bb->shift;
8202 		next += (1<<bb->shift) - 1;
8203 		next >>= bb->shift;
8204 		sectors = next - s;
8205 	}
8206 
8207 	write_seqlock_irqsave(&bb->lock, flags);
8208 
8209 	p = bb->page;
8210 	lo = 0;
8211 	hi = bb->count;
8212 	/* Find the last range that starts at-or-before 's' */
8213 	while (hi - lo > 1) {
8214 		int mid = (lo + hi) / 2;
8215 		sector_t a = BB_OFFSET(p[mid]);
8216 		if (a <= s)
8217 			lo = mid;
8218 		else
8219 			hi = mid;
8220 	}
8221 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8222 		hi = lo;
8223 
8224 	if (hi > lo) {
8225 		/* we found a range that might merge with the start
8226 		 * of our new range
8227 		 */
8228 		sector_t a = BB_OFFSET(p[lo]);
8229 		sector_t e = a + BB_LEN(p[lo]);
8230 		int ack = BB_ACK(p[lo]);
8231 		if (e >= s) {
8232 			/* Yes, we can merge with a previous range */
8233 			if (s == a && s + sectors >= e)
8234 				/* new range covers old */
8235 				ack = acknowledged;
8236 			else
8237 				ack = ack && acknowledged;
8238 
8239 			if (e < s + sectors)
8240 				e = s + sectors;
8241 			if (e - a <= BB_MAX_LEN) {
8242 				p[lo] = BB_MAKE(a, e-a, ack);
8243 				s = e;
8244 			} else {
8245 				/* does not all fit in one range,
8246 				 * make p[lo] maximal
8247 				 */
8248 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8249 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8250 				s = a + BB_MAX_LEN;
8251 			}
8252 			sectors = e - s;
8253 		}
8254 	}
8255 	if (sectors && hi < bb->count) {
8256 		/* 'hi' points to the first range that starts after 's'.
8257 		 * Maybe we can merge with the start of that range */
8258 		sector_t a = BB_OFFSET(p[hi]);
8259 		sector_t e = a + BB_LEN(p[hi]);
8260 		int ack = BB_ACK(p[hi]);
8261 		if (a <= s + sectors) {
8262 			/* merging is possible */
8263 			if (e <= s + sectors) {
8264 				/* full overlap */
8265 				e = s + sectors;
8266 				ack = acknowledged;
8267 			} else
8268 				ack = ack && acknowledged;
8269 
8270 			a = s;
8271 			if (e - a <= BB_MAX_LEN) {
8272 				p[hi] = BB_MAKE(a, e-a, ack);
8273 				s = e;
8274 			} else {
8275 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8276 				s = a + BB_MAX_LEN;
8277 			}
8278 			sectors = e - s;
8279 			lo = hi;
8280 			hi++;
8281 		}
8282 	}
8283 	if (sectors == 0 && hi < bb->count) {
8284 		/* we might be able to combine lo and hi */
8285 		/* Note: 's' is at the end of 'lo' */
8286 		sector_t a = BB_OFFSET(p[hi]);
8287 		int lolen = BB_LEN(p[lo]);
8288 		int hilen = BB_LEN(p[hi]);
8289 		int newlen = lolen + hilen - (s - a);
8290 		if (s >= a && newlen < BB_MAX_LEN) {
8291 			/* yes, we can combine them */
8292 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8293 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8294 			memmove(p + hi, p + hi + 1,
8295 				(bb->count - hi - 1) * 8);
8296 			bb->count--;
8297 		}
8298 	}
8299 	while (sectors) {
8300 		/* didn't merge (it all).
8301 		 * Need to add a range just before 'hi' */
8302 		if (bb->count >= MD_MAX_BADBLOCKS) {
8303 			/* No room for more */
8304 			rv = 0;
8305 			break;
8306 		} else {
8307 			int this_sectors = sectors;
8308 			memmove(p + hi + 1, p + hi,
8309 				(bb->count - hi) * 8);
8310 			bb->count++;
8311 
8312 			if (this_sectors > BB_MAX_LEN)
8313 				this_sectors = BB_MAX_LEN;
8314 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8315 			sectors -= this_sectors;
8316 			s += this_sectors;
8317 		}
8318 	}
8319 
8320 	bb->changed = 1;
8321 	if (!acknowledged)
8322 		bb->unacked_exist = 1;
8323 	write_sequnlock_irqrestore(&bb->lock, flags);
8324 
8325 	return rv;
8326 }
8327 
8328 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8329 		       int is_new)
8330 {
8331 	int rv;
8332 	if (is_new)
8333 		s += rdev->new_data_offset;
8334 	else
8335 		s += rdev->data_offset;
8336 	rv = md_set_badblocks(&rdev->badblocks,
8337 			      s, sectors, 0);
8338 	if (rv) {
8339 		/* Make sure they get written out promptly */
8340 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8341 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8342 		md_wakeup_thread(rdev->mddev->thread);
8343 	}
8344 	return rv;
8345 }
8346 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8347 
8348 /*
8349  * Remove a range of bad blocks from the table.
8350  * This may involve extending the table if we spilt a region,
8351  * but it must not fail.  So if the table becomes full, we just
8352  * drop the remove request.
8353  */
8354 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8355 {
8356 	u64 *p;
8357 	int lo, hi;
8358 	sector_t target = s + sectors;
8359 	int rv = 0;
8360 
8361 	if (bb->shift > 0) {
8362 		/* When clearing we round the start up and the end down.
8363 		 * This should not matter as the shift should align with
8364 		 * the block size and no rounding should ever be needed.
8365 		 * However it is better the think a block is bad when it
8366 		 * isn't than to think a block is not bad when it is.
8367 		 */
8368 		s += (1<<bb->shift) - 1;
8369 		s >>= bb->shift;
8370 		target >>= bb->shift;
8371 		sectors = target - s;
8372 	}
8373 
8374 	write_seqlock_irq(&bb->lock);
8375 
8376 	p = bb->page;
8377 	lo = 0;
8378 	hi = bb->count;
8379 	/* Find the last range that starts before 'target' */
8380 	while (hi - lo > 1) {
8381 		int mid = (lo + hi) / 2;
8382 		sector_t a = BB_OFFSET(p[mid]);
8383 		if (a < target)
8384 			lo = mid;
8385 		else
8386 			hi = mid;
8387 	}
8388 	if (hi > lo) {
8389 		/* p[lo] is the last range that could overlap the
8390 		 * current range.  Earlier ranges could also overlap,
8391 		 * but only this one can overlap the end of the range.
8392 		 */
8393 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8394 			/* Partial overlap, leave the tail of this range */
8395 			int ack = BB_ACK(p[lo]);
8396 			sector_t a = BB_OFFSET(p[lo]);
8397 			sector_t end = a + BB_LEN(p[lo]);
8398 
8399 			if (a < s) {
8400 				/* we need to split this range */
8401 				if (bb->count >= MD_MAX_BADBLOCKS) {
8402 					rv = -ENOSPC;
8403 					goto out;
8404 				}
8405 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8406 				bb->count++;
8407 				p[lo] = BB_MAKE(a, s-a, ack);
8408 				lo++;
8409 			}
8410 			p[lo] = BB_MAKE(target, end - target, ack);
8411 			/* there is no longer an overlap */
8412 			hi = lo;
8413 			lo--;
8414 		}
8415 		while (lo >= 0 &&
8416 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8417 			/* This range does overlap */
8418 			if (BB_OFFSET(p[lo]) < s) {
8419 				/* Keep the early parts of this range. */
8420 				int ack = BB_ACK(p[lo]);
8421 				sector_t start = BB_OFFSET(p[lo]);
8422 				p[lo] = BB_MAKE(start, s - start, ack);
8423 				/* now low doesn't overlap, so.. */
8424 				break;
8425 			}
8426 			lo--;
8427 		}
8428 		/* 'lo' is strictly before, 'hi' is strictly after,
8429 		 * anything between needs to be discarded
8430 		 */
8431 		if (hi - lo > 1) {
8432 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8433 			bb->count -= (hi - lo - 1);
8434 		}
8435 	}
8436 
8437 	bb->changed = 1;
8438 out:
8439 	write_sequnlock_irq(&bb->lock);
8440 	return rv;
8441 }
8442 
8443 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8444 			 int is_new)
8445 {
8446 	if (is_new)
8447 		s += rdev->new_data_offset;
8448 	else
8449 		s += rdev->data_offset;
8450 	return md_clear_badblocks(&rdev->badblocks,
8451 				  s, sectors);
8452 }
8453 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8454 
8455 /*
8456  * Acknowledge all bad blocks in a list.
8457  * This only succeeds if ->changed is clear.  It is used by
8458  * in-kernel metadata updates
8459  */
8460 void md_ack_all_badblocks(struct badblocks *bb)
8461 {
8462 	if (bb->page == NULL || bb->changed)
8463 		/* no point even trying */
8464 		return;
8465 	write_seqlock_irq(&bb->lock);
8466 
8467 	if (bb->changed == 0 && bb->unacked_exist) {
8468 		u64 *p = bb->page;
8469 		int i;
8470 		for (i = 0; i < bb->count ; i++) {
8471 			if (!BB_ACK(p[i])) {
8472 				sector_t start = BB_OFFSET(p[i]);
8473 				int len = BB_LEN(p[i]);
8474 				p[i] = BB_MAKE(start, len, 1);
8475 			}
8476 		}
8477 		bb->unacked_exist = 0;
8478 	}
8479 	write_sequnlock_irq(&bb->lock);
8480 }
8481 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8482 
8483 /* sysfs access to bad-blocks list.
8484  * We present two files.
8485  * 'bad-blocks' lists sector numbers and lengths of ranges that
8486  *    are recorded as bad.  The list is truncated to fit within
8487  *    the one-page limit of sysfs.
8488  *    Writing "sector length" to this file adds an acknowledged
8489  *    bad block list.
8490  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8491  *    been acknowledged.  Writing to this file adds bad blocks
8492  *    without acknowledging them.  This is largely for testing.
8493  */
8494 
8495 static ssize_t
8496 badblocks_show(struct badblocks *bb, char *page, int unack)
8497 {
8498 	size_t len;
8499 	int i;
8500 	u64 *p = bb->page;
8501 	unsigned seq;
8502 
8503 	if (bb->shift < 0)
8504 		return 0;
8505 
8506 retry:
8507 	seq = read_seqbegin(&bb->lock);
8508 
8509 	len = 0;
8510 	i = 0;
8511 
8512 	while (len < PAGE_SIZE && i < bb->count) {
8513 		sector_t s = BB_OFFSET(p[i]);
8514 		unsigned int length = BB_LEN(p[i]);
8515 		int ack = BB_ACK(p[i]);
8516 		i++;
8517 
8518 		if (unack && ack)
8519 			continue;
8520 
8521 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8522 				(unsigned long long)s << bb->shift,
8523 				length << bb->shift);
8524 	}
8525 	if (unack && len == 0)
8526 		bb->unacked_exist = 0;
8527 
8528 	if (read_seqretry(&bb->lock, seq))
8529 		goto retry;
8530 
8531 	return len;
8532 }
8533 
8534 #define DO_DEBUG 1
8535 
8536 static ssize_t
8537 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8538 {
8539 	unsigned long long sector;
8540 	int length;
8541 	char newline;
8542 #ifdef DO_DEBUG
8543 	/* Allow clearing via sysfs *only* for testing/debugging.
8544 	 * Normally only a successful write may clear a badblock
8545 	 */
8546 	int clear = 0;
8547 	if (page[0] == '-') {
8548 		clear = 1;
8549 		page++;
8550 	}
8551 #endif /* DO_DEBUG */
8552 
8553 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8554 	case 3:
8555 		if (newline != '\n')
8556 			return -EINVAL;
8557 	case 2:
8558 		if (length <= 0)
8559 			return -EINVAL;
8560 		break;
8561 	default:
8562 		return -EINVAL;
8563 	}
8564 
8565 #ifdef DO_DEBUG
8566 	if (clear) {
8567 		md_clear_badblocks(bb, sector, length);
8568 		return len;
8569 	}
8570 #endif /* DO_DEBUG */
8571 	if (md_set_badblocks(bb, sector, length, !unack))
8572 		return len;
8573 	else
8574 		return -ENOSPC;
8575 }
8576 
8577 static int md_notify_reboot(struct notifier_block *this,
8578 			    unsigned long code, void *x)
8579 {
8580 	struct list_head *tmp;
8581 	struct mddev *mddev;
8582 	int need_delay = 0;
8583 
8584 	for_each_mddev(mddev, tmp) {
8585 		if (mddev_trylock(mddev)) {
8586 			if (mddev->pers)
8587 				__md_stop_writes(mddev);
8588 			if (mddev->persistent)
8589 				mddev->safemode = 2;
8590 			mddev_unlock(mddev);
8591 		}
8592 		need_delay = 1;
8593 	}
8594 	/*
8595 	 * certain more exotic SCSI devices are known to be
8596 	 * volatile wrt too early system reboots. While the
8597 	 * right place to handle this issue is the given
8598 	 * driver, we do want to have a safe RAID driver ...
8599 	 */
8600 	if (need_delay)
8601 		mdelay(1000*1);
8602 
8603 	return NOTIFY_DONE;
8604 }
8605 
8606 static struct notifier_block md_notifier = {
8607 	.notifier_call	= md_notify_reboot,
8608 	.next		= NULL,
8609 	.priority	= INT_MAX, /* before any real devices */
8610 };
8611 
8612 static void md_geninit(void)
8613 {
8614 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8615 
8616 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8617 }
8618 
8619 static int __init md_init(void)
8620 {
8621 	int ret = -ENOMEM;
8622 
8623 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8624 	if (!md_wq)
8625 		goto err_wq;
8626 
8627 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8628 	if (!md_misc_wq)
8629 		goto err_misc_wq;
8630 
8631 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8632 		goto err_md;
8633 
8634 	if ((ret = register_blkdev(0, "mdp")) < 0)
8635 		goto err_mdp;
8636 	mdp_major = ret;
8637 
8638 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8639 			    md_probe, NULL, NULL);
8640 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8641 			    md_probe, NULL, NULL);
8642 
8643 	register_reboot_notifier(&md_notifier);
8644 	raid_table_header = register_sysctl_table(raid_root_table);
8645 
8646 	md_geninit();
8647 	return 0;
8648 
8649 err_mdp:
8650 	unregister_blkdev(MD_MAJOR, "md");
8651 err_md:
8652 	destroy_workqueue(md_misc_wq);
8653 err_misc_wq:
8654 	destroy_workqueue(md_wq);
8655 err_wq:
8656 	return ret;
8657 }
8658 
8659 #ifndef MODULE
8660 
8661 /*
8662  * Searches all registered partitions for autorun RAID arrays
8663  * at boot time.
8664  */
8665 
8666 static LIST_HEAD(all_detected_devices);
8667 struct detected_devices_node {
8668 	struct list_head list;
8669 	dev_t dev;
8670 };
8671 
8672 void md_autodetect_dev(dev_t dev)
8673 {
8674 	struct detected_devices_node *node_detected_dev;
8675 
8676 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8677 	if (node_detected_dev) {
8678 		node_detected_dev->dev = dev;
8679 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8680 	} else {
8681 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8682 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8683 	}
8684 }
8685 
8686 static void autostart_arrays(int part)
8687 {
8688 	struct md_rdev *rdev;
8689 	struct detected_devices_node *node_detected_dev;
8690 	dev_t dev;
8691 	int i_scanned, i_passed;
8692 
8693 	i_scanned = 0;
8694 	i_passed = 0;
8695 
8696 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8697 
8698 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8699 		i_scanned++;
8700 		node_detected_dev = list_entry(all_detected_devices.next,
8701 					struct detected_devices_node, list);
8702 		list_del(&node_detected_dev->list);
8703 		dev = node_detected_dev->dev;
8704 		kfree(node_detected_dev);
8705 		rdev = md_import_device(dev,0, 90);
8706 		if (IS_ERR(rdev))
8707 			continue;
8708 
8709 		if (test_bit(Faulty, &rdev->flags))
8710 			continue;
8711 
8712 		set_bit(AutoDetected, &rdev->flags);
8713 		list_add(&rdev->same_set, &pending_raid_disks);
8714 		i_passed++;
8715 	}
8716 
8717 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8718 						i_scanned, i_passed);
8719 
8720 	autorun_devices(part);
8721 }
8722 
8723 #endif /* !MODULE */
8724 
8725 static __exit void md_exit(void)
8726 {
8727 	struct mddev *mddev;
8728 	struct list_head *tmp;
8729 	int delay = 1;
8730 
8731 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8732 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8733 
8734 	unregister_blkdev(MD_MAJOR,"md");
8735 	unregister_blkdev(mdp_major, "mdp");
8736 	unregister_reboot_notifier(&md_notifier);
8737 	unregister_sysctl_table(raid_table_header);
8738 
8739 	/* We cannot unload the modules while some process is
8740 	 * waiting for us in select() or poll() - wake them up
8741 	 */
8742 	md_unloading = 1;
8743 	while (waitqueue_active(&md_event_waiters)) {
8744 		/* not safe to leave yet */
8745 		wake_up(&md_event_waiters);
8746 		msleep(delay);
8747 		delay += delay;
8748 	}
8749 	remove_proc_entry("mdstat", NULL);
8750 
8751 	for_each_mddev(mddev, tmp) {
8752 		export_array(mddev);
8753 		mddev->hold_active = 0;
8754 	}
8755 	destroy_workqueue(md_misc_wq);
8756 	destroy_workqueue(md_wq);
8757 }
8758 
8759 subsys_initcall(md_init);
8760 module_exit(md_exit)
8761 
8762 static int get_ro(char *buffer, struct kernel_param *kp)
8763 {
8764 	return sprintf(buffer, "%d", start_readonly);
8765 }
8766 static int set_ro(const char *val, struct kernel_param *kp)
8767 {
8768 	char *e;
8769 	int num = simple_strtoul(val, &e, 10);
8770 	if (*val && (*e == '\0' || *e == '\n')) {
8771 		start_readonly = num;
8772 		return 0;
8773 	}
8774 	return -EINVAL;
8775 }
8776 
8777 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8778 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8779 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8780 
8781 MODULE_LICENSE("GPL");
8782 MODULE_DESCRIPTION("MD RAID framework");
8783 MODULE_ALIAS("md");
8784 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8785