xref: /openbmc/linux/drivers/md/md.c (revision 5bd8e16d)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 static int remove_and_add_spares(struct mddev *mddev,
76 				 struct md_rdev *this);
77 
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 
80 /*
81  * Default number of read corrections we'll attempt on an rdev
82  * before ejecting it from the array. We divide the read error
83  * count by 2 for every hour elapsed between read errors.
84  */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88  * is 1000 KB/sec, so the extra system load does not show up that much.
89  * Increase it if you want to have more _guaranteed_ speed. Note that
90  * the RAID driver will use the maximum available bandwidth if the IO
91  * subsystem is idle. There is also an 'absolute maximum' reconstruction
92  * speed limit - in case reconstruction slows down your system despite
93  * idle IO detection.
94  *
95  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96  * or /sys/block/mdX/md/sync_speed_{min,max}
97  */
98 
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 	return mddev->sync_speed_min ?
104 		mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106 
107 static inline int speed_max(struct mddev *mddev)
108 {
109 	return mddev->sync_speed_max ?
110 		mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112 
113 static struct ctl_table_header *raid_table_header;
114 
115 static ctl_table raid_table[] = {
116 	{
117 		.procname	= "speed_limit_min",
118 		.data		= &sysctl_speed_limit_min,
119 		.maxlen		= sizeof(int),
120 		.mode		= S_IRUGO|S_IWUSR,
121 		.proc_handler	= proc_dointvec,
122 	},
123 	{
124 		.procname	= "speed_limit_max",
125 		.data		= &sysctl_speed_limit_max,
126 		.maxlen		= sizeof(int),
127 		.mode		= S_IRUGO|S_IWUSR,
128 		.proc_handler	= proc_dointvec,
129 	},
130 	{ }
131 };
132 
133 static ctl_table raid_dir_table[] = {
134 	{
135 		.procname	= "raid",
136 		.maxlen		= 0,
137 		.mode		= S_IRUGO|S_IXUGO,
138 		.child		= raid_table,
139 	},
140 	{ }
141 };
142 
143 static ctl_table raid_root_table[] = {
144 	{
145 		.procname	= "dev",
146 		.maxlen		= 0,
147 		.mode		= 0555,
148 		.child		= raid_dir_table,
149 	},
150 	{  }
151 };
152 
153 static const struct block_device_operations md_fops;
154 
155 static int start_readonly;
156 
157 /* bio_clone_mddev
158  * like bio_clone, but with a local bio set
159  */
160 
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 			    struct mddev *mddev)
163 {
164 	struct bio *b;
165 
166 	if (!mddev || !mddev->bio_set)
167 		return bio_alloc(gfp_mask, nr_iovecs);
168 
169 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 	if (!b)
171 		return NULL;
172 	return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175 
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 			    struct mddev *mddev)
178 {
179 	if (!mddev || !mddev->bio_set)
180 		return bio_clone(bio, gfp_mask);
181 
182 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185 
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 	/* 'bio' is a cloned bio which we need to trim to match
189 	 * the given offset and size.
190 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 	 */
192 	int i;
193 	struct bio_vec *bvec;
194 	int sofar = 0;
195 
196 	size <<= 9;
197 	if (offset == 0 && size == bio->bi_size)
198 		return;
199 
200 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201 
202 	bio_advance(bio, offset << 9);
203 
204 	bio->bi_size = size;
205 
206 	/* avoid any complications with bi_idx being non-zero*/
207 	if (bio->bi_idx) {
208 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 		bio->bi_vcnt -= bio->bi_idx;
211 		bio->bi_idx = 0;
212 	}
213 	/* Make sure vcnt and last bv are not too big */
214 	bio_for_each_segment(bvec, bio, i) {
215 		if (sofar + bvec->bv_len > size)
216 			bvec->bv_len = size - sofar;
217 		if (bvec->bv_len == 0) {
218 			bio->bi_vcnt = i;
219 			break;
220 		}
221 		sofar += bvec->bv_len;
222 	}
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225 
226 /*
227  * We have a system wide 'event count' that is incremented
228  * on any 'interesting' event, and readers of /proc/mdstat
229  * can use 'poll' or 'select' to find out when the event
230  * count increases.
231  *
232  * Events are:
233  *  start array, stop array, error, add device, remove device,
234  *  start build, activate spare
235  */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240 	atomic_inc(&md_event_count);
241 	wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244 
245 /* Alternate version that can be called from interrupts
246  * when calling sysfs_notify isn't needed.
247  */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250 	atomic_inc(&md_event_count);
251 	wake_up(&md_event_waiters);
252 }
253 
254 /*
255  * Enables to iterate over all existing md arrays
256  * all_mddevs_lock protects this list.
257  */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260 
261 
262 /*
263  * iterates through all used mddevs in the system.
264  * We take care to grab the all_mddevs_lock whenever navigating
265  * the list, and to always hold a refcount when unlocked.
266  * Any code which breaks out of this loop while own
267  * a reference to the current mddev and must mddev_put it.
268  */
269 #define for_each_mddev(_mddev,_tmp)					\
270 									\
271 	for (({ spin_lock(&all_mddevs_lock); 				\
272 		_tmp = all_mddevs.next;					\
273 		_mddev = NULL;});					\
274 	     ({ if (_tmp != &all_mddevs)				\
275 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 		spin_unlock(&all_mddevs_lock);				\
277 		if (_mddev) mddev_put(_mddev);				\
278 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
279 		_tmp != &all_mddevs;});					\
280 	     ({ spin_lock(&all_mddevs_lock);				\
281 		_tmp = _tmp->next;})					\
282 		)
283 
284 
285 /* Rather than calling directly into the personality make_request function,
286  * IO requests come here first so that we can check if the device is
287  * being suspended pending a reconfiguration.
288  * We hold a refcount over the call to ->make_request.  By the time that
289  * call has finished, the bio has been linked into some internal structure
290  * and so is visible to ->quiesce(), so we don't need the refcount any more.
291  */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294 	const int rw = bio_data_dir(bio);
295 	struct mddev *mddev = q->queuedata;
296 	int cpu;
297 	unsigned int sectors;
298 
299 	if (mddev == NULL || mddev->pers == NULL
300 	    || !mddev->ready) {
301 		bio_io_error(bio);
302 		return;
303 	}
304 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 		return;
307 	}
308 	smp_rmb(); /* Ensure implications of  'active' are visible */
309 	rcu_read_lock();
310 	if (mddev->suspended) {
311 		DEFINE_WAIT(__wait);
312 		for (;;) {
313 			prepare_to_wait(&mddev->sb_wait, &__wait,
314 					TASK_UNINTERRUPTIBLE);
315 			if (!mddev->suspended)
316 				break;
317 			rcu_read_unlock();
318 			schedule();
319 			rcu_read_lock();
320 		}
321 		finish_wait(&mddev->sb_wait, &__wait);
322 	}
323 	atomic_inc(&mddev->active_io);
324 	rcu_read_unlock();
325 
326 	/*
327 	 * save the sectors now since our bio can
328 	 * go away inside make_request
329 	 */
330 	sectors = bio_sectors(bio);
331 	mddev->pers->make_request(mddev, bio);
332 
333 	cpu = part_stat_lock();
334 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 	part_stat_unlock();
337 
338 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 		wake_up(&mddev->sb_wait);
340 }
341 
342 /* mddev_suspend makes sure no new requests are submitted
343  * to the device, and that any requests that have been submitted
344  * are completely handled.
345  * Once ->stop is called and completes, the module will be completely
346  * unused.
347  */
348 void mddev_suspend(struct mddev *mddev)
349 {
350 	BUG_ON(mddev->suspended);
351 	mddev->suspended = 1;
352 	synchronize_rcu();
353 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 	mddev->pers->quiesce(mddev, 1);
355 
356 	del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359 
360 void mddev_resume(struct mddev *mddev)
361 {
362 	mddev->suspended = 0;
363 	wake_up(&mddev->sb_wait);
364 	mddev->pers->quiesce(mddev, 0);
365 
366 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 	md_wakeup_thread(mddev->thread);
368 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371 
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374 	return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377 
378 /*
379  * Generic flush handling for md
380  */
381 
382 static void md_end_flush(struct bio *bio, int err)
383 {
384 	struct md_rdev *rdev = bio->bi_private;
385 	struct mddev *mddev = rdev->mddev;
386 
387 	rdev_dec_pending(rdev, mddev);
388 
389 	if (atomic_dec_and_test(&mddev->flush_pending)) {
390 		/* The pre-request flush has finished */
391 		queue_work(md_wq, &mddev->flush_work);
392 	}
393 	bio_put(bio);
394 }
395 
396 static void md_submit_flush_data(struct work_struct *ws);
397 
398 static void submit_flushes(struct work_struct *ws)
399 {
400 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 	struct md_rdev *rdev;
402 
403 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 	atomic_set(&mddev->flush_pending, 1);
405 	rcu_read_lock();
406 	rdev_for_each_rcu(rdev, mddev)
407 		if (rdev->raid_disk >= 0 &&
408 		    !test_bit(Faulty, &rdev->flags)) {
409 			/* Take two references, one is dropped
410 			 * when request finishes, one after
411 			 * we reclaim rcu_read_lock
412 			 */
413 			struct bio *bi;
414 			atomic_inc(&rdev->nr_pending);
415 			atomic_inc(&rdev->nr_pending);
416 			rcu_read_unlock();
417 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 			bi->bi_end_io = md_end_flush;
419 			bi->bi_private = rdev;
420 			bi->bi_bdev = rdev->bdev;
421 			atomic_inc(&mddev->flush_pending);
422 			submit_bio(WRITE_FLUSH, bi);
423 			rcu_read_lock();
424 			rdev_dec_pending(rdev, mddev);
425 		}
426 	rcu_read_unlock();
427 	if (atomic_dec_and_test(&mddev->flush_pending))
428 		queue_work(md_wq, &mddev->flush_work);
429 }
430 
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 	struct bio *bio = mddev->flush_bio;
435 
436 	if (bio->bi_size == 0)
437 		/* an empty barrier - all done */
438 		bio_endio(bio, 0);
439 	else {
440 		bio->bi_rw &= ~REQ_FLUSH;
441 		mddev->pers->make_request(mddev, bio);
442 	}
443 
444 	mddev->flush_bio = NULL;
445 	wake_up(&mddev->sb_wait);
446 }
447 
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 	spin_lock_irq(&mddev->write_lock);
451 	wait_event_lock_irq(mddev->sb_wait,
452 			    !mddev->flush_bio,
453 			    mddev->write_lock);
454 	mddev->flush_bio = bio;
455 	spin_unlock_irq(&mddev->write_lock);
456 
457 	INIT_WORK(&mddev->flush_work, submit_flushes);
458 	queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461 
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 	struct mddev *mddev = cb->data;
465 	md_wakeup_thread(mddev->thread);
466 	kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469 
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 	atomic_inc(&mddev->active);
473 	return mddev;
474 }
475 
476 static void mddev_delayed_delete(struct work_struct *ws);
477 
478 static void mddev_put(struct mddev *mddev)
479 {
480 	struct bio_set *bs = NULL;
481 
482 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 		return;
484 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 	    mddev->ctime == 0 && !mddev->hold_active) {
486 		/* Array is not configured at all, and not held active,
487 		 * so destroy it */
488 		list_del_init(&mddev->all_mddevs);
489 		bs = mddev->bio_set;
490 		mddev->bio_set = NULL;
491 		if (mddev->gendisk) {
492 			/* We did a probe so need to clean up.  Call
493 			 * queue_work inside the spinlock so that
494 			 * flush_workqueue() after mddev_find will
495 			 * succeed in waiting for the work to be done.
496 			 */
497 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 			queue_work(md_misc_wq, &mddev->del_work);
499 		} else
500 			kfree(mddev);
501 	}
502 	spin_unlock(&all_mddevs_lock);
503 	if (bs)
504 		bioset_free(bs);
505 }
506 
507 void mddev_init(struct mddev *mddev)
508 {
509 	mutex_init(&mddev->open_mutex);
510 	mutex_init(&mddev->reconfig_mutex);
511 	mutex_init(&mddev->bitmap_info.mutex);
512 	INIT_LIST_HEAD(&mddev->disks);
513 	INIT_LIST_HEAD(&mddev->all_mddevs);
514 	init_timer(&mddev->safemode_timer);
515 	atomic_set(&mddev->active, 1);
516 	atomic_set(&mddev->openers, 0);
517 	atomic_set(&mddev->active_io, 0);
518 	spin_lock_init(&mddev->write_lock);
519 	atomic_set(&mddev->flush_pending, 0);
520 	init_waitqueue_head(&mddev->sb_wait);
521 	init_waitqueue_head(&mddev->recovery_wait);
522 	mddev->reshape_position = MaxSector;
523 	mddev->reshape_backwards = 0;
524 	mddev->last_sync_action = "none";
525 	mddev->resync_min = 0;
526 	mddev->resync_max = MaxSector;
527 	mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530 
531 static struct mddev * mddev_find(dev_t unit)
532 {
533 	struct mddev *mddev, *new = NULL;
534 
535 	if (unit && MAJOR(unit) != MD_MAJOR)
536 		unit &= ~((1<<MdpMinorShift)-1);
537 
538  retry:
539 	spin_lock(&all_mddevs_lock);
540 
541 	if (unit) {
542 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 			if (mddev->unit == unit) {
544 				mddev_get(mddev);
545 				spin_unlock(&all_mddevs_lock);
546 				kfree(new);
547 				return mddev;
548 			}
549 
550 		if (new) {
551 			list_add(&new->all_mddevs, &all_mddevs);
552 			spin_unlock(&all_mddevs_lock);
553 			new->hold_active = UNTIL_IOCTL;
554 			return new;
555 		}
556 	} else if (new) {
557 		/* find an unused unit number */
558 		static int next_minor = 512;
559 		int start = next_minor;
560 		int is_free = 0;
561 		int dev = 0;
562 		while (!is_free) {
563 			dev = MKDEV(MD_MAJOR, next_minor);
564 			next_minor++;
565 			if (next_minor > MINORMASK)
566 				next_minor = 0;
567 			if (next_minor == start) {
568 				/* Oh dear, all in use. */
569 				spin_unlock(&all_mddevs_lock);
570 				kfree(new);
571 				return NULL;
572 			}
573 
574 			is_free = 1;
575 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 				if (mddev->unit == dev) {
577 					is_free = 0;
578 					break;
579 				}
580 		}
581 		new->unit = dev;
582 		new->md_minor = MINOR(dev);
583 		new->hold_active = UNTIL_STOP;
584 		list_add(&new->all_mddevs, &all_mddevs);
585 		spin_unlock(&all_mddevs_lock);
586 		return new;
587 	}
588 	spin_unlock(&all_mddevs_lock);
589 
590 	new = kzalloc(sizeof(*new), GFP_KERNEL);
591 	if (!new)
592 		return NULL;
593 
594 	new->unit = unit;
595 	if (MAJOR(unit) == MD_MAJOR)
596 		new->md_minor = MINOR(unit);
597 	else
598 		new->md_minor = MINOR(unit) >> MdpMinorShift;
599 
600 	mddev_init(new);
601 
602 	goto retry;
603 }
604 
605 static inline int mddev_lock(struct mddev * mddev)
606 {
607 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609 
610 static inline int mddev_is_locked(struct mddev *mddev)
611 {
612 	return mutex_is_locked(&mddev->reconfig_mutex);
613 }
614 
615 static inline int mddev_trylock(struct mddev * mddev)
616 {
617 	return mutex_trylock(&mddev->reconfig_mutex);
618 }
619 
620 static struct attribute_group md_redundancy_group;
621 
622 static void mddev_unlock(struct mddev * mddev)
623 {
624 	if (mddev->to_remove) {
625 		/* These cannot be removed under reconfig_mutex as
626 		 * an access to the files will try to take reconfig_mutex
627 		 * while holding the file unremovable, which leads to
628 		 * a deadlock.
629 		 * So hold set sysfs_active while the remove in happeing,
630 		 * and anything else which might set ->to_remove or my
631 		 * otherwise change the sysfs namespace will fail with
632 		 * -EBUSY if sysfs_active is still set.
633 		 * We set sysfs_active under reconfig_mutex and elsewhere
634 		 * test it under the same mutex to ensure its correct value
635 		 * is seen.
636 		 */
637 		struct attribute_group *to_remove = mddev->to_remove;
638 		mddev->to_remove = NULL;
639 		mddev->sysfs_active = 1;
640 		mutex_unlock(&mddev->reconfig_mutex);
641 
642 		if (mddev->kobj.sd) {
643 			if (to_remove != &md_redundancy_group)
644 				sysfs_remove_group(&mddev->kobj, to_remove);
645 			if (mddev->pers == NULL ||
646 			    mddev->pers->sync_request == NULL) {
647 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648 				if (mddev->sysfs_action)
649 					sysfs_put(mddev->sysfs_action);
650 				mddev->sysfs_action = NULL;
651 			}
652 		}
653 		mddev->sysfs_active = 0;
654 	} else
655 		mutex_unlock(&mddev->reconfig_mutex);
656 
657 	/* As we've dropped the mutex we need a spinlock to
658 	 * make sure the thread doesn't disappear
659 	 */
660 	spin_lock(&pers_lock);
661 	md_wakeup_thread(mddev->thread);
662 	spin_unlock(&pers_lock);
663 }
664 
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 {
667 	struct md_rdev *rdev;
668 
669 	rdev_for_each(rdev, mddev)
670 		if (rdev->desc_nr == nr)
671 			return rdev;
672 
673 	return NULL;
674 }
675 
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 {
678 	struct md_rdev *rdev;
679 
680 	rdev_for_each_rcu(rdev, mddev)
681 		if (rdev->desc_nr == nr)
682 			return rdev;
683 
684 	return NULL;
685 }
686 
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 {
689 	struct md_rdev *rdev;
690 
691 	rdev_for_each(rdev, mddev)
692 		if (rdev->bdev->bd_dev == dev)
693 			return rdev;
694 
695 	return NULL;
696 }
697 
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 {
700 	struct md_rdev *rdev;
701 
702 	rdev_for_each_rcu(rdev, mddev)
703 		if (rdev->bdev->bd_dev == dev)
704 			return rdev;
705 
706 	return NULL;
707 }
708 
709 static struct md_personality *find_pers(int level, char *clevel)
710 {
711 	struct md_personality *pers;
712 	list_for_each_entry(pers, &pers_list, list) {
713 		if (level != LEVEL_NONE && pers->level == level)
714 			return pers;
715 		if (strcmp(pers->name, clevel)==0)
716 			return pers;
717 	}
718 	return NULL;
719 }
720 
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 {
724 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725 	return MD_NEW_SIZE_SECTORS(num_sectors);
726 }
727 
728 static int alloc_disk_sb(struct md_rdev * rdev)
729 {
730 	if (rdev->sb_page)
731 		MD_BUG();
732 
733 	rdev->sb_page = alloc_page(GFP_KERNEL);
734 	if (!rdev->sb_page) {
735 		printk(KERN_ALERT "md: out of memory.\n");
736 		return -ENOMEM;
737 	}
738 
739 	return 0;
740 }
741 
742 void md_rdev_clear(struct md_rdev *rdev)
743 {
744 	if (rdev->sb_page) {
745 		put_page(rdev->sb_page);
746 		rdev->sb_loaded = 0;
747 		rdev->sb_page = NULL;
748 		rdev->sb_start = 0;
749 		rdev->sectors = 0;
750 	}
751 	if (rdev->bb_page) {
752 		put_page(rdev->bb_page);
753 		rdev->bb_page = NULL;
754 	}
755 	kfree(rdev->badblocks.page);
756 	rdev->badblocks.page = NULL;
757 }
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
759 
760 static void super_written(struct bio *bio, int error)
761 {
762 	struct md_rdev *rdev = bio->bi_private;
763 	struct mddev *mddev = rdev->mddev;
764 
765 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766 		printk("md: super_written gets error=%d, uptodate=%d\n",
767 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769 		md_error(mddev, rdev);
770 	}
771 
772 	if (atomic_dec_and_test(&mddev->pending_writes))
773 		wake_up(&mddev->sb_wait);
774 	bio_put(bio);
775 }
776 
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778 		   sector_t sector, int size, struct page *page)
779 {
780 	/* write first size bytes of page to sector of rdev
781 	 * Increment mddev->pending_writes before returning
782 	 * and decrement it on completion, waking up sb_wait
783 	 * if zero is reached.
784 	 * If an error occurred, call md_error
785 	 */
786 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787 
788 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789 	bio->bi_sector = sector;
790 	bio_add_page(bio, page, size, 0);
791 	bio->bi_private = rdev;
792 	bio->bi_end_io = super_written;
793 
794 	atomic_inc(&mddev->pending_writes);
795 	submit_bio(WRITE_FLUSH_FUA, bio);
796 }
797 
798 void md_super_wait(struct mddev *mddev)
799 {
800 	/* wait for all superblock writes that were scheduled to complete */
801 	DEFINE_WAIT(wq);
802 	for(;;) {
803 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804 		if (atomic_read(&mddev->pending_writes)==0)
805 			break;
806 		schedule();
807 	}
808 	finish_wait(&mddev->sb_wait, &wq);
809 }
810 
811 static void bi_complete(struct bio *bio, int error)
812 {
813 	complete((struct completion*)bio->bi_private);
814 }
815 
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817 		 struct page *page, int rw, bool metadata_op)
818 {
819 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820 	struct completion event;
821 	int ret;
822 
823 	rw |= REQ_SYNC;
824 
825 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826 		rdev->meta_bdev : rdev->bdev;
827 	if (metadata_op)
828 		bio->bi_sector = sector + rdev->sb_start;
829 	else if (rdev->mddev->reshape_position != MaxSector &&
830 		 (rdev->mddev->reshape_backwards ==
831 		  (sector >= rdev->mddev->reshape_position)))
832 		bio->bi_sector = sector + rdev->new_data_offset;
833 	else
834 		bio->bi_sector = sector + rdev->data_offset;
835 	bio_add_page(bio, page, size, 0);
836 	init_completion(&event);
837 	bio->bi_private = &event;
838 	bio->bi_end_io = bi_complete;
839 	submit_bio(rw, bio);
840 	wait_for_completion(&event);
841 
842 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843 	bio_put(bio);
844 	return ret;
845 }
846 EXPORT_SYMBOL_GPL(sync_page_io);
847 
848 static int read_disk_sb(struct md_rdev * rdev, int size)
849 {
850 	char b[BDEVNAME_SIZE];
851 	if (!rdev->sb_page) {
852 		MD_BUG();
853 		return -EINVAL;
854 	}
855 	if (rdev->sb_loaded)
856 		return 0;
857 
858 
859 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860 		goto fail;
861 	rdev->sb_loaded = 1;
862 	return 0;
863 
864 fail:
865 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866 		bdevname(rdev->bdev,b));
867 	return -EINVAL;
868 }
869 
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 {
872 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
873 		sb1->set_uuid1 == sb2->set_uuid1 &&
874 		sb1->set_uuid2 == sb2->set_uuid2 &&
875 		sb1->set_uuid3 == sb2->set_uuid3;
876 }
877 
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880 	int ret;
881 	mdp_super_t *tmp1, *tmp2;
882 
883 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885 
886 	if (!tmp1 || !tmp2) {
887 		ret = 0;
888 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889 		goto abort;
890 	}
891 
892 	*tmp1 = *sb1;
893 	*tmp2 = *sb2;
894 
895 	/*
896 	 * nr_disks is not constant
897 	 */
898 	tmp1->nr_disks = 0;
899 	tmp2->nr_disks = 0;
900 
901 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903 	kfree(tmp1);
904 	kfree(tmp2);
905 	return ret;
906 }
907 
908 
909 static u32 md_csum_fold(u32 csum)
910 {
911 	csum = (csum & 0xffff) + (csum >> 16);
912 	return (csum & 0xffff) + (csum >> 16);
913 }
914 
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
916 {
917 	u64 newcsum = 0;
918 	u32 *sb32 = (u32*)sb;
919 	int i;
920 	unsigned int disk_csum, csum;
921 
922 	disk_csum = sb->sb_csum;
923 	sb->sb_csum = 0;
924 
925 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 		newcsum += sb32[i];
927 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
928 
929 
930 #ifdef CONFIG_ALPHA
931 	/* This used to use csum_partial, which was wrong for several
932 	 * reasons including that different results are returned on
933 	 * different architectures.  It isn't critical that we get exactly
934 	 * the same return value as before (we always csum_fold before
935 	 * testing, and that removes any differences).  However as we
936 	 * know that csum_partial always returned a 16bit value on
937 	 * alphas, do a fold to maximise conformity to previous behaviour.
938 	 */
939 	sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941 	sb->sb_csum = disk_csum;
942 #endif
943 	return csum;
944 }
945 
946 
947 /*
948  * Handle superblock details.
949  * We want to be able to handle multiple superblock formats
950  * so we have a common interface to them all, and an array of
951  * different handlers.
952  * We rely on user-space to write the initial superblock, and support
953  * reading and updating of superblocks.
954  * Interface methods are:
955  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956  *      loads and validates a superblock on dev.
957  *      if refdev != NULL, compare superblocks on both devices
958  *    Return:
959  *      0 - dev has a superblock that is compatible with refdev
960  *      1 - dev has a superblock that is compatible and newer than refdev
961  *          so dev should be used as the refdev in future
962  *     -EINVAL superblock incompatible or invalid
963  *     -othererror e.g. -EIO
964  *
965  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
966  *      Verify that dev is acceptable into mddev.
967  *       The first time, mddev->raid_disks will be 0, and data from
968  *       dev should be merged in.  Subsequent calls check that dev
969  *       is new enough.  Return 0 or -EINVAL
970  *
971  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
972  *     Update the superblock for rdev with data in mddev
973  *     This does not write to disc.
974  *
975  */
976 
977 struct super_type  {
978 	char		    *name;
979 	struct module	    *owner;
980 	int		    (*load_super)(struct md_rdev *rdev,
981 					  struct md_rdev *refdev,
982 					  int minor_version);
983 	int		    (*validate_super)(struct mddev *mddev,
984 					      struct md_rdev *rdev);
985 	void		    (*sync_super)(struct mddev *mddev,
986 					  struct md_rdev *rdev);
987 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
988 						sector_t num_sectors);
989 	int		    (*allow_new_offset)(struct md_rdev *rdev,
990 						unsigned long long new_offset);
991 };
992 
993 /*
994  * Check that the given mddev has no bitmap.
995  *
996  * This function is called from the run method of all personalities that do not
997  * support bitmaps. It prints an error message and returns non-zero if mddev
998  * has a bitmap. Otherwise, it returns 0.
999  *
1000  */
1001 int md_check_no_bitmap(struct mddev *mddev)
1002 {
1003 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 		return 0;
1005 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006 		mdname(mddev), mddev->pers->name);
1007 	return 1;
1008 }
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1010 
1011 /*
1012  * load_super for 0.90.0
1013  */
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 {
1016 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017 	mdp_super_t *sb;
1018 	int ret;
1019 
1020 	/*
1021 	 * Calculate the position of the superblock (512byte sectors),
1022 	 * it's at the end of the disk.
1023 	 *
1024 	 * It also happens to be a multiple of 4Kb.
1025 	 */
1026 	rdev->sb_start = calc_dev_sboffset(rdev);
1027 
1028 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1029 	if (ret) return ret;
1030 
1031 	ret = -EINVAL;
1032 
1033 	bdevname(rdev->bdev, b);
1034 	sb = page_address(rdev->sb_page);
1035 
1036 	if (sb->md_magic != MD_SB_MAGIC) {
1037 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1038 		       b);
1039 		goto abort;
1040 	}
1041 
1042 	if (sb->major_version != 0 ||
1043 	    sb->minor_version < 90 ||
1044 	    sb->minor_version > 91) {
1045 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046 			sb->major_version, sb->minor_version,
1047 			b);
1048 		goto abort;
1049 	}
1050 
1051 	if (sb->raid_disks <= 0)
1052 		goto abort;
1053 
1054 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1056 			b);
1057 		goto abort;
1058 	}
1059 
1060 	rdev->preferred_minor = sb->md_minor;
1061 	rdev->data_offset = 0;
1062 	rdev->new_data_offset = 0;
1063 	rdev->sb_size = MD_SB_BYTES;
1064 	rdev->badblocks.shift = -1;
1065 
1066 	if (sb->level == LEVEL_MULTIPATH)
1067 		rdev->desc_nr = -1;
1068 	else
1069 		rdev->desc_nr = sb->this_disk.number;
1070 
1071 	if (!refdev) {
1072 		ret = 1;
1073 	} else {
1074 		__u64 ev1, ev2;
1075 		mdp_super_t *refsb = page_address(refdev->sb_page);
1076 		if (!uuid_equal(refsb, sb)) {
1077 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078 				b, bdevname(refdev->bdev,b2));
1079 			goto abort;
1080 		}
1081 		if (!sb_equal(refsb, sb)) {
1082 			printk(KERN_WARNING "md: %s has same UUID"
1083 			       " but different superblock to %s\n",
1084 			       b, bdevname(refdev->bdev, b2));
1085 			goto abort;
1086 		}
1087 		ev1 = md_event(sb);
1088 		ev2 = md_event(refsb);
1089 		if (ev1 > ev2)
1090 			ret = 1;
1091 		else
1092 			ret = 0;
1093 	}
1094 	rdev->sectors = rdev->sb_start;
1095 	/* Limit to 4TB as metadata cannot record more than that.
1096 	 * (not needed for Linear and RAID0 as metadata doesn't
1097 	 * record this size)
1098 	 */
1099 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100 		rdev->sectors = (2ULL << 32) - 2;
1101 
1102 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103 		/* "this cannot possibly happen" ... */
1104 		ret = -EINVAL;
1105 
1106  abort:
1107 	return ret;
1108 }
1109 
1110 /*
1111  * validate_super for 0.90.0
1112  */
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1114 {
1115 	mdp_disk_t *desc;
1116 	mdp_super_t *sb = page_address(rdev->sb_page);
1117 	__u64 ev1 = md_event(sb);
1118 
1119 	rdev->raid_disk = -1;
1120 	clear_bit(Faulty, &rdev->flags);
1121 	clear_bit(In_sync, &rdev->flags);
1122 	clear_bit(WriteMostly, &rdev->flags);
1123 
1124 	if (mddev->raid_disks == 0) {
1125 		mddev->major_version = 0;
1126 		mddev->minor_version = sb->minor_version;
1127 		mddev->patch_version = sb->patch_version;
1128 		mddev->external = 0;
1129 		mddev->chunk_sectors = sb->chunk_size >> 9;
1130 		mddev->ctime = sb->ctime;
1131 		mddev->utime = sb->utime;
1132 		mddev->level = sb->level;
1133 		mddev->clevel[0] = 0;
1134 		mddev->layout = sb->layout;
1135 		mddev->raid_disks = sb->raid_disks;
1136 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1137 		mddev->events = ev1;
1138 		mddev->bitmap_info.offset = 0;
1139 		mddev->bitmap_info.space = 0;
1140 		/* bitmap can use 60 K after the 4K superblocks */
1141 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1142 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1143 		mddev->reshape_backwards = 0;
1144 
1145 		if (mddev->minor_version >= 91) {
1146 			mddev->reshape_position = sb->reshape_position;
1147 			mddev->delta_disks = sb->delta_disks;
1148 			mddev->new_level = sb->new_level;
1149 			mddev->new_layout = sb->new_layout;
1150 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1151 			if (mddev->delta_disks < 0)
1152 				mddev->reshape_backwards = 1;
1153 		} else {
1154 			mddev->reshape_position = MaxSector;
1155 			mddev->delta_disks = 0;
1156 			mddev->new_level = mddev->level;
1157 			mddev->new_layout = mddev->layout;
1158 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1159 		}
1160 
1161 		if (sb->state & (1<<MD_SB_CLEAN))
1162 			mddev->recovery_cp = MaxSector;
1163 		else {
1164 			if (sb->events_hi == sb->cp_events_hi &&
1165 				sb->events_lo == sb->cp_events_lo) {
1166 				mddev->recovery_cp = sb->recovery_cp;
1167 			} else
1168 				mddev->recovery_cp = 0;
1169 		}
1170 
1171 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1172 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1173 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1174 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175 
1176 		mddev->max_disks = MD_SB_DISKS;
1177 
1178 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1179 		    mddev->bitmap_info.file == NULL) {
1180 			mddev->bitmap_info.offset =
1181 				mddev->bitmap_info.default_offset;
1182 			mddev->bitmap_info.space =
1183 				mddev->bitmap_info.default_space;
1184 		}
1185 
1186 	} else if (mddev->pers == NULL) {
1187 		/* Insist on good event counter while assembling, except
1188 		 * for spares (which don't need an event count) */
1189 		++ev1;
1190 		if (sb->disks[rdev->desc_nr].state & (
1191 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1192 			if (ev1 < mddev->events)
1193 				return -EINVAL;
1194 	} else if (mddev->bitmap) {
1195 		/* if adding to array with a bitmap, then we can accept an
1196 		 * older device ... but not too old.
1197 		 */
1198 		if (ev1 < mddev->bitmap->events_cleared)
1199 			return 0;
1200 	} else {
1201 		if (ev1 < mddev->events)
1202 			/* just a hot-add of a new device, leave raid_disk at -1 */
1203 			return 0;
1204 	}
1205 
1206 	if (mddev->level != LEVEL_MULTIPATH) {
1207 		desc = sb->disks + rdev->desc_nr;
1208 
1209 		if (desc->state & (1<<MD_DISK_FAULTY))
1210 			set_bit(Faulty, &rdev->flags);
1211 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1212 			    desc->raid_disk < mddev->raid_disks */) {
1213 			set_bit(In_sync, &rdev->flags);
1214 			rdev->raid_disk = desc->raid_disk;
1215 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1216 			/* active but not in sync implies recovery up to
1217 			 * reshape position.  We don't know exactly where
1218 			 * that is, so set to zero for now */
1219 			if (mddev->minor_version >= 91) {
1220 				rdev->recovery_offset = 0;
1221 				rdev->raid_disk = desc->raid_disk;
1222 			}
1223 		}
1224 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1225 			set_bit(WriteMostly, &rdev->flags);
1226 	} else /* MULTIPATH are always insync */
1227 		set_bit(In_sync, &rdev->flags);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * sync_super for 0.90.0
1233  */
1234 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1235 {
1236 	mdp_super_t *sb;
1237 	struct md_rdev *rdev2;
1238 	int next_spare = mddev->raid_disks;
1239 
1240 
1241 	/* make rdev->sb match mddev data..
1242 	 *
1243 	 * 1/ zero out disks
1244 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1245 	 * 3/ any empty disks < next_spare become removed
1246 	 *
1247 	 * disks[0] gets initialised to REMOVED because
1248 	 * we cannot be sure from other fields if it has
1249 	 * been initialised or not.
1250 	 */
1251 	int i;
1252 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1253 
1254 	rdev->sb_size = MD_SB_BYTES;
1255 
1256 	sb = page_address(rdev->sb_page);
1257 
1258 	memset(sb, 0, sizeof(*sb));
1259 
1260 	sb->md_magic = MD_SB_MAGIC;
1261 	sb->major_version = mddev->major_version;
1262 	sb->patch_version = mddev->patch_version;
1263 	sb->gvalid_words  = 0; /* ignored */
1264 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1265 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1266 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1267 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1268 
1269 	sb->ctime = mddev->ctime;
1270 	sb->level = mddev->level;
1271 	sb->size = mddev->dev_sectors / 2;
1272 	sb->raid_disks = mddev->raid_disks;
1273 	sb->md_minor = mddev->md_minor;
1274 	sb->not_persistent = 0;
1275 	sb->utime = mddev->utime;
1276 	sb->state = 0;
1277 	sb->events_hi = (mddev->events>>32);
1278 	sb->events_lo = (u32)mddev->events;
1279 
1280 	if (mddev->reshape_position == MaxSector)
1281 		sb->minor_version = 90;
1282 	else {
1283 		sb->minor_version = 91;
1284 		sb->reshape_position = mddev->reshape_position;
1285 		sb->new_level = mddev->new_level;
1286 		sb->delta_disks = mddev->delta_disks;
1287 		sb->new_layout = mddev->new_layout;
1288 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1289 	}
1290 	mddev->minor_version = sb->minor_version;
1291 	if (mddev->in_sync)
1292 	{
1293 		sb->recovery_cp = mddev->recovery_cp;
1294 		sb->cp_events_hi = (mddev->events>>32);
1295 		sb->cp_events_lo = (u32)mddev->events;
1296 		if (mddev->recovery_cp == MaxSector)
1297 			sb->state = (1<< MD_SB_CLEAN);
1298 	} else
1299 		sb->recovery_cp = 0;
1300 
1301 	sb->layout = mddev->layout;
1302 	sb->chunk_size = mddev->chunk_sectors << 9;
1303 
1304 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1305 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1306 
1307 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1308 	rdev_for_each(rdev2, mddev) {
1309 		mdp_disk_t *d;
1310 		int desc_nr;
1311 		int is_active = test_bit(In_sync, &rdev2->flags);
1312 
1313 		if (rdev2->raid_disk >= 0 &&
1314 		    sb->minor_version >= 91)
1315 			/* we have nowhere to store the recovery_offset,
1316 			 * but if it is not below the reshape_position,
1317 			 * we can piggy-back on that.
1318 			 */
1319 			is_active = 1;
1320 		if (rdev2->raid_disk < 0 ||
1321 		    test_bit(Faulty, &rdev2->flags))
1322 			is_active = 0;
1323 		if (is_active)
1324 			desc_nr = rdev2->raid_disk;
1325 		else
1326 			desc_nr = next_spare++;
1327 		rdev2->desc_nr = desc_nr;
1328 		d = &sb->disks[rdev2->desc_nr];
1329 		nr_disks++;
1330 		d->number = rdev2->desc_nr;
1331 		d->major = MAJOR(rdev2->bdev->bd_dev);
1332 		d->minor = MINOR(rdev2->bdev->bd_dev);
1333 		if (is_active)
1334 			d->raid_disk = rdev2->raid_disk;
1335 		else
1336 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1337 		if (test_bit(Faulty, &rdev2->flags))
1338 			d->state = (1<<MD_DISK_FAULTY);
1339 		else if (is_active) {
1340 			d->state = (1<<MD_DISK_ACTIVE);
1341 			if (test_bit(In_sync, &rdev2->flags))
1342 				d->state |= (1<<MD_DISK_SYNC);
1343 			active++;
1344 			working++;
1345 		} else {
1346 			d->state = 0;
1347 			spare++;
1348 			working++;
1349 		}
1350 		if (test_bit(WriteMostly, &rdev2->flags))
1351 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1352 	}
1353 	/* now set the "removed" and "faulty" bits on any missing devices */
1354 	for (i=0 ; i < mddev->raid_disks ; i++) {
1355 		mdp_disk_t *d = &sb->disks[i];
1356 		if (d->state == 0 && d->number == 0) {
1357 			d->number = i;
1358 			d->raid_disk = i;
1359 			d->state = (1<<MD_DISK_REMOVED);
1360 			d->state |= (1<<MD_DISK_FAULTY);
1361 			failed++;
1362 		}
1363 	}
1364 	sb->nr_disks = nr_disks;
1365 	sb->active_disks = active;
1366 	sb->working_disks = working;
1367 	sb->failed_disks = failed;
1368 	sb->spare_disks = spare;
1369 
1370 	sb->this_disk = sb->disks[rdev->desc_nr];
1371 	sb->sb_csum = calc_sb_csum(sb);
1372 }
1373 
1374 /*
1375  * rdev_size_change for 0.90.0
1376  */
1377 static unsigned long long
1378 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1379 {
1380 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1381 		return 0; /* component must fit device */
1382 	if (rdev->mddev->bitmap_info.offset)
1383 		return 0; /* can't move bitmap */
1384 	rdev->sb_start = calc_dev_sboffset(rdev);
1385 	if (!num_sectors || num_sectors > rdev->sb_start)
1386 		num_sectors = rdev->sb_start;
1387 	/* Limit to 4TB as metadata cannot record more than that.
1388 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1389 	 */
1390 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1391 		num_sectors = (2ULL << 32) - 2;
1392 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1393 		       rdev->sb_page);
1394 	md_super_wait(rdev->mddev);
1395 	return num_sectors;
1396 }
1397 
1398 static int
1399 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1400 {
1401 	/* non-zero offset changes not possible with v0.90 */
1402 	return new_offset == 0;
1403 }
1404 
1405 /*
1406  * version 1 superblock
1407  */
1408 
1409 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1410 {
1411 	__le32 disk_csum;
1412 	u32 csum;
1413 	unsigned long long newcsum;
1414 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1415 	__le32 *isuper = (__le32*)sb;
1416 
1417 	disk_csum = sb->sb_csum;
1418 	sb->sb_csum = 0;
1419 	newcsum = 0;
1420 	for (; size >= 4; size -= 4)
1421 		newcsum += le32_to_cpu(*isuper++);
1422 
1423 	if (size == 2)
1424 		newcsum += le16_to_cpu(*(__le16*) isuper);
1425 
1426 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1427 	sb->sb_csum = disk_csum;
1428 	return cpu_to_le32(csum);
1429 }
1430 
1431 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1432 			    int acknowledged);
1433 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1434 {
1435 	struct mdp_superblock_1 *sb;
1436 	int ret;
1437 	sector_t sb_start;
1438 	sector_t sectors;
1439 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1440 	int bmask;
1441 
1442 	/*
1443 	 * Calculate the position of the superblock in 512byte sectors.
1444 	 * It is always aligned to a 4K boundary and
1445 	 * depeding on minor_version, it can be:
1446 	 * 0: At least 8K, but less than 12K, from end of device
1447 	 * 1: At start of device
1448 	 * 2: 4K from start of device.
1449 	 */
1450 	switch(minor_version) {
1451 	case 0:
1452 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1453 		sb_start -= 8*2;
1454 		sb_start &= ~(sector_t)(4*2-1);
1455 		break;
1456 	case 1:
1457 		sb_start = 0;
1458 		break;
1459 	case 2:
1460 		sb_start = 8;
1461 		break;
1462 	default:
1463 		return -EINVAL;
1464 	}
1465 	rdev->sb_start = sb_start;
1466 
1467 	/* superblock is rarely larger than 1K, but it can be larger,
1468 	 * and it is safe to read 4k, so we do that
1469 	 */
1470 	ret = read_disk_sb(rdev, 4096);
1471 	if (ret) return ret;
1472 
1473 
1474 	sb = page_address(rdev->sb_page);
1475 
1476 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1477 	    sb->major_version != cpu_to_le32(1) ||
1478 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1479 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1480 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1481 		return -EINVAL;
1482 
1483 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1484 		printk("md: invalid superblock checksum on %s\n",
1485 			bdevname(rdev->bdev,b));
1486 		return -EINVAL;
1487 	}
1488 	if (le64_to_cpu(sb->data_size) < 10) {
1489 		printk("md: data_size too small on %s\n",
1490 		       bdevname(rdev->bdev,b));
1491 		return -EINVAL;
1492 	}
1493 	if (sb->pad0 ||
1494 	    sb->pad3[0] ||
1495 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1496 		/* Some padding is non-zero, might be a new feature */
1497 		return -EINVAL;
1498 
1499 	rdev->preferred_minor = 0xffff;
1500 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1501 	rdev->new_data_offset = rdev->data_offset;
1502 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1503 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1504 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1505 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1506 
1507 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1508 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1509 	if (rdev->sb_size & bmask)
1510 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1511 
1512 	if (minor_version
1513 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1514 		return -EINVAL;
1515 	if (minor_version
1516 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1517 		return -EINVAL;
1518 
1519 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1520 		rdev->desc_nr = -1;
1521 	else
1522 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1523 
1524 	if (!rdev->bb_page) {
1525 		rdev->bb_page = alloc_page(GFP_KERNEL);
1526 		if (!rdev->bb_page)
1527 			return -ENOMEM;
1528 	}
1529 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1530 	    rdev->badblocks.count == 0) {
1531 		/* need to load the bad block list.
1532 		 * Currently we limit it to one page.
1533 		 */
1534 		s32 offset;
1535 		sector_t bb_sector;
1536 		u64 *bbp;
1537 		int i;
1538 		int sectors = le16_to_cpu(sb->bblog_size);
1539 		if (sectors > (PAGE_SIZE / 512))
1540 			return -EINVAL;
1541 		offset = le32_to_cpu(sb->bblog_offset);
1542 		if (offset == 0)
1543 			return -EINVAL;
1544 		bb_sector = (long long)offset;
1545 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1546 				  rdev->bb_page, READ, true))
1547 			return -EIO;
1548 		bbp = (u64 *)page_address(rdev->bb_page);
1549 		rdev->badblocks.shift = sb->bblog_shift;
1550 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1551 			u64 bb = le64_to_cpu(*bbp);
1552 			int count = bb & (0x3ff);
1553 			u64 sector = bb >> 10;
1554 			sector <<= sb->bblog_shift;
1555 			count <<= sb->bblog_shift;
1556 			if (bb + 1 == 0)
1557 				break;
1558 			if (md_set_badblocks(&rdev->badblocks,
1559 					     sector, count, 1) == 0)
1560 				return -EINVAL;
1561 		}
1562 	} else if (sb->bblog_offset != 0)
1563 		rdev->badblocks.shift = 0;
1564 
1565 	if (!refdev) {
1566 		ret = 1;
1567 	} else {
1568 		__u64 ev1, ev2;
1569 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1570 
1571 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1572 		    sb->level != refsb->level ||
1573 		    sb->layout != refsb->layout ||
1574 		    sb->chunksize != refsb->chunksize) {
1575 			printk(KERN_WARNING "md: %s has strangely different"
1576 				" superblock to %s\n",
1577 				bdevname(rdev->bdev,b),
1578 				bdevname(refdev->bdev,b2));
1579 			return -EINVAL;
1580 		}
1581 		ev1 = le64_to_cpu(sb->events);
1582 		ev2 = le64_to_cpu(refsb->events);
1583 
1584 		if (ev1 > ev2)
1585 			ret = 1;
1586 		else
1587 			ret = 0;
1588 	}
1589 	if (minor_version) {
1590 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1591 		sectors -= rdev->data_offset;
1592 	} else
1593 		sectors = rdev->sb_start;
1594 	if (sectors < le64_to_cpu(sb->data_size))
1595 		return -EINVAL;
1596 	rdev->sectors = le64_to_cpu(sb->data_size);
1597 	return ret;
1598 }
1599 
1600 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1603 	__u64 ev1 = le64_to_cpu(sb->events);
1604 
1605 	rdev->raid_disk = -1;
1606 	clear_bit(Faulty, &rdev->flags);
1607 	clear_bit(In_sync, &rdev->flags);
1608 	clear_bit(WriteMostly, &rdev->flags);
1609 
1610 	if (mddev->raid_disks == 0) {
1611 		mddev->major_version = 1;
1612 		mddev->patch_version = 0;
1613 		mddev->external = 0;
1614 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1615 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1616 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1617 		mddev->level = le32_to_cpu(sb->level);
1618 		mddev->clevel[0] = 0;
1619 		mddev->layout = le32_to_cpu(sb->layout);
1620 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1621 		mddev->dev_sectors = le64_to_cpu(sb->size);
1622 		mddev->events = ev1;
1623 		mddev->bitmap_info.offset = 0;
1624 		mddev->bitmap_info.space = 0;
1625 		/* Default location for bitmap is 1K after superblock
1626 		 * using 3K - total of 4K
1627 		 */
1628 		mddev->bitmap_info.default_offset = 1024 >> 9;
1629 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1630 		mddev->reshape_backwards = 0;
1631 
1632 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1633 		memcpy(mddev->uuid, sb->set_uuid, 16);
1634 
1635 		mddev->max_disks =  (4096-256)/2;
1636 
1637 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1638 		    mddev->bitmap_info.file == NULL) {
1639 			mddev->bitmap_info.offset =
1640 				(__s32)le32_to_cpu(sb->bitmap_offset);
1641 			/* Metadata doesn't record how much space is available.
1642 			 * For 1.0, we assume we can use up to the superblock
1643 			 * if before, else to 4K beyond superblock.
1644 			 * For others, assume no change is possible.
1645 			 */
1646 			if (mddev->minor_version > 0)
1647 				mddev->bitmap_info.space = 0;
1648 			else if (mddev->bitmap_info.offset > 0)
1649 				mddev->bitmap_info.space =
1650 					8 - mddev->bitmap_info.offset;
1651 			else
1652 				mddev->bitmap_info.space =
1653 					-mddev->bitmap_info.offset;
1654 		}
1655 
1656 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1657 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1658 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1659 			mddev->new_level = le32_to_cpu(sb->new_level);
1660 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1661 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1662 			if (mddev->delta_disks < 0 ||
1663 			    (mddev->delta_disks == 0 &&
1664 			     (le32_to_cpu(sb->feature_map)
1665 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1666 				mddev->reshape_backwards = 1;
1667 		} else {
1668 			mddev->reshape_position = MaxSector;
1669 			mddev->delta_disks = 0;
1670 			mddev->new_level = mddev->level;
1671 			mddev->new_layout = mddev->layout;
1672 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1673 		}
1674 
1675 	} else if (mddev->pers == NULL) {
1676 		/* Insist of good event counter while assembling, except for
1677 		 * spares (which don't need an event count) */
1678 		++ev1;
1679 		if (rdev->desc_nr >= 0 &&
1680 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682 			if (ev1 < mddev->events)
1683 				return -EINVAL;
1684 	} else if (mddev->bitmap) {
1685 		/* If adding to array with a bitmap, then we can accept an
1686 		 * older device, but not too old.
1687 		 */
1688 		if (ev1 < mddev->bitmap->events_cleared)
1689 			return 0;
1690 	} else {
1691 		if (ev1 < mddev->events)
1692 			/* just a hot-add of a new device, leave raid_disk at -1 */
1693 			return 0;
1694 	}
1695 	if (mddev->level != LEVEL_MULTIPATH) {
1696 		int role;
1697 		if (rdev->desc_nr < 0 ||
1698 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 			role = 0xffff;
1700 			rdev->desc_nr = -1;
1701 		} else
1702 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 		switch(role) {
1704 		case 0xffff: /* spare */
1705 			break;
1706 		case 0xfffe: /* faulty */
1707 			set_bit(Faulty, &rdev->flags);
1708 			break;
1709 		default:
1710 			if ((le32_to_cpu(sb->feature_map) &
1711 			     MD_FEATURE_RECOVERY_OFFSET))
1712 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713 			else
1714 				set_bit(In_sync, &rdev->flags);
1715 			rdev->raid_disk = role;
1716 			break;
1717 		}
1718 		if (sb->devflags & WriteMostly1)
1719 			set_bit(WriteMostly, &rdev->flags);
1720 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1721 			set_bit(Replacement, &rdev->flags);
1722 	} else /* MULTIPATH are always insync */
1723 		set_bit(In_sync, &rdev->flags);
1724 
1725 	return 0;
1726 }
1727 
1728 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1729 {
1730 	struct mdp_superblock_1 *sb;
1731 	struct md_rdev *rdev2;
1732 	int max_dev, i;
1733 	/* make rdev->sb match mddev and rdev data. */
1734 
1735 	sb = page_address(rdev->sb_page);
1736 
1737 	sb->feature_map = 0;
1738 	sb->pad0 = 0;
1739 	sb->recovery_offset = cpu_to_le64(0);
1740 	memset(sb->pad3, 0, sizeof(sb->pad3));
1741 
1742 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1743 	sb->events = cpu_to_le64(mddev->events);
1744 	if (mddev->in_sync)
1745 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746 	else
1747 		sb->resync_offset = cpu_to_le64(0);
1748 
1749 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750 
1751 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1752 	sb->size = cpu_to_le64(mddev->dev_sectors);
1753 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1754 	sb->level = cpu_to_le32(mddev->level);
1755 	sb->layout = cpu_to_le32(mddev->layout);
1756 
1757 	if (test_bit(WriteMostly, &rdev->flags))
1758 		sb->devflags |= WriteMostly1;
1759 	else
1760 		sb->devflags &= ~WriteMostly1;
1761 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1762 	sb->data_size = cpu_to_le64(rdev->sectors);
1763 
1764 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1765 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1766 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1767 	}
1768 
1769 	if (rdev->raid_disk >= 0 &&
1770 	    !test_bit(In_sync, &rdev->flags)) {
1771 		sb->feature_map |=
1772 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1773 		sb->recovery_offset =
1774 			cpu_to_le64(rdev->recovery_offset);
1775 	}
1776 	if (test_bit(Replacement, &rdev->flags))
1777 		sb->feature_map |=
1778 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1779 
1780 	if (mddev->reshape_position != MaxSector) {
1781 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1782 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1783 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1784 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1785 		sb->new_level = cpu_to_le32(mddev->new_level);
1786 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1787 		if (mddev->delta_disks == 0 &&
1788 		    mddev->reshape_backwards)
1789 			sb->feature_map
1790 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1791 		if (rdev->new_data_offset != rdev->data_offset) {
1792 			sb->feature_map
1793 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1794 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1795 							     - rdev->data_offset));
1796 		}
1797 	}
1798 
1799 	if (rdev->badblocks.count == 0)
1800 		/* Nothing to do for bad blocks*/ ;
1801 	else if (sb->bblog_offset == 0)
1802 		/* Cannot record bad blocks on this device */
1803 		md_error(mddev, rdev);
1804 	else {
1805 		struct badblocks *bb = &rdev->badblocks;
1806 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1807 		u64 *p = bb->page;
1808 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1809 		if (bb->changed) {
1810 			unsigned seq;
1811 
1812 retry:
1813 			seq = read_seqbegin(&bb->lock);
1814 
1815 			memset(bbp, 0xff, PAGE_SIZE);
1816 
1817 			for (i = 0 ; i < bb->count ; i++) {
1818 				u64 internal_bb = p[i];
1819 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1820 						| BB_LEN(internal_bb));
1821 				bbp[i] = cpu_to_le64(store_bb);
1822 			}
1823 			bb->changed = 0;
1824 			if (read_seqretry(&bb->lock, seq))
1825 				goto retry;
1826 
1827 			bb->sector = (rdev->sb_start +
1828 				      (int)le32_to_cpu(sb->bblog_offset));
1829 			bb->size = le16_to_cpu(sb->bblog_size);
1830 		}
1831 	}
1832 
1833 	max_dev = 0;
1834 	rdev_for_each(rdev2, mddev)
1835 		if (rdev2->desc_nr+1 > max_dev)
1836 			max_dev = rdev2->desc_nr+1;
1837 
1838 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1839 		int bmask;
1840 		sb->max_dev = cpu_to_le32(max_dev);
1841 		rdev->sb_size = max_dev * 2 + 256;
1842 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1843 		if (rdev->sb_size & bmask)
1844 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1845 	} else
1846 		max_dev = le32_to_cpu(sb->max_dev);
1847 
1848 	for (i=0; i<max_dev;i++)
1849 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1850 
1851 	rdev_for_each(rdev2, mddev) {
1852 		i = rdev2->desc_nr;
1853 		if (test_bit(Faulty, &rdev2->flags))
1854 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855 		else if (test_bit(In_sync, &rdev2->flags))
1856 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1857 		else if (rdev2->raid_disk >= 0)
1858 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859 		else
1860 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1861 	}
1862 
1863 	sb->sb_csum = calc_sb_1_csum(sb);
1864 }
1865 
1866 static unsigned long long
1867 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1868 {
1869 	struct mdp_superblock_1 *sb;
1870 	sector_t max_sectors;
1871 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1872 		return 0; /* component must fit device */
1873 	if (rdev->data_offset != rdev->new_data_offset)
1874 		return 0; /* too confusing */
1875 	if (rdev->sb_start < rdev->data_offset) {
1876 		/* minor versions 1 and 2; superblock before data */
1877 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1878 		max_sectors -= rdev->data_offset;
1879 		if (!num_sectors || num_sectors > max_sectors)
1880 			num_sectors = max_sectors;
1881 	} else if (rdev->mddev->bitmap_info.offset) {
1882 		/* minor version 0 with bitmap we can't move */
1883 		return 0;
1884 	} else {
1885 		/* minor version 0; superblock after data */
1886 		sector_t sb_start;
1887 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1888 		sb_start &= ~(sector_t)(4*2 - 1);
1889 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1890 		if (!num_sectors || num_sectors > max_sectors)
1891 			num_sectors = max_sectors;
1892 		rdev->sb_start = sb_start;
1893 	}
1894 	sb = page_address(rdev->sb_page);
1895 	sb->data_size = cpu_to_le64(num_sectors);
1896 	sb->super_offset = rdev->sb_start;
1897 	sb->sb_csum = calc_sb_1_csum(sb);
1898 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1899 		       rdev->sb_page);
1900 	md_super_wait(rdev->mddev);
1901 	return num_sectors;
1902 
1903 }
1904 
1905 static int
1906 super_1_allow_new_offset(struct md_rdev *rdev,
1907 			 unsigned long long new_offset)
1908 {
1909 	/* All necessary checks on new >= old have been done */
1910 	struct bitmap *bitmap;
1911 	if (new_offset >= rdev->data_offset)
1912 		return 1;
1913 
1914 	/* with 1.0 metadata, there is no metadata to tread on
1915 	 * so we can always move back */
1916 	if (rdev->mddev->minor_version == 0)
1917 		return 1;
1918 
1919 	/* otherwise we must be sure not to step on
1920 	 * any metadata, so stay:
1921 	 * 36K beyond start of superblock
1922 	 * beyond end of badblocks
1923 	 * beyond write-intent bitmap
1924 	 */
1925 	if (rdev->sb_start + (32+4)*2 > new_offset)
1926 		return 0;
1927 	bitmap = rdev->mddev->bitmap;
1928 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1929 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1930 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1931 		return 0;
1932 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1933 		return 0;
1934 
1935 	return 1;
1936 }
1937 
1938 static struct super_type super_types[] = {
1939 	[0] = {
1940 		.name	= "0.90.0",
1941 		.owner	= THIS_MODULE,
1942 		.load_super	    = super_90_load,
1943 		.validate_super	    = super_90_validate,
1944 		.sync_super	    = super_90_sync,
1945 		.rdev_size_change   = super_90_rdev_size_change,
1946 		.allow_new_offset   = super_90_allow_new_offset,
1947 	},
1948 	[1] = {
1949 		.name	= "md-1",
1950 		.owner	= THIS_MODULE,
1951 		.load_super	    = super_1_load,
1952 		.validate_super	    = super_1_validate,
1953 		.sync_super	    = super_1_sync,
1954 		.rdev_size_change   = super_1_rdev_size_change,
1955 		.allow_new_offset   = super_1_allow_new_offset,
1956 	},
1957 };
1958 
1959 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961 	if (mddev->sync_super) {
1962 		mddev->sync_super(mddev, rdev);
1963 		return;
1964 	}
1965 
1966 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1967 
1968 	super_types[mddev->major_version].sync_super(mddev, rdev);
1969 }
1970 
1971 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1972 {
1973 	struct md_rdev *rdev, *rdev2;
1974 
1975 	rcu_read_lock();
1976 	rdev_for_each_rcu(rdev, mddev1)
1977 		rdev_for_each_rcu(rdev2, mddev2)
1978 			if (rdev->bdev->bd_contains ==
1979 			    rdev2->bdev->bd_contains) {
1980 				rcu_read_unlock();
1981 				return 1;
1982 			}
1983 	rcu_read_unlock();
1984 	return 0;
1985 }
1986 
1987 static LIST_HEAD(pending_raid_disks);
1988 
1989 /*
1990  * Try to register data integrity profile for an mddev
1991  *
1992  * This is called when an array is started and after a disk has been kicked
1993  * from the array. It only succeeds if all working and active component devices
1994  * are integrity capable with matching profiles.
1995  */
1996 int md_integrity_register(struct mddev *mddev)
1997 {
1998 	struct md_rdev *rdev, *reference = NULL;
1999 
2000 	if (list_empty(&mddev->disks))
2001 		return 0; /* nothing to do */
2002 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2003 		return 0; /* shouldn't register, or already is */
2004 	rdev_for_each(rdev, mddev) {
2005 		/* skip spares and non-functional disks */
2006 		if (test_bit(Faulty, &rdev->flags))
2007 			continue;
2008 		if (rdev->raid_disk < 0)
2009 			continue;
2010 		if (!reference) {
2011 			/* Use the first rdev as the reference */
2012 			reference = rdev;
2013 			continue;
2014 		}
2015 		/* does this rdev's profile match the reference profile? */
2016 		if (blk_integrity_compare(reference->bdev->bd_disk,
2017 				rdev->bdev->bd_disk) < 0)
2018 			return -EINVAL;
2019 	}
2020 	if (!reference || !bdev_get_integrity(reference->bdev))
2021 		return 0;
2022 	/*
2023 	 * All component devices are integrity capable and have matching
2024 	 * profiles, register the common profile for the md device.
2025 	 */
2026 	if (blk_integrity_register(mddev->gendisk,
2027 			bdev_get_integrity(reference->bdev)) != 0) {
2028 		printk(KERN_ERR "md: failed to register integrity for %s\n",
2029 			mdname(mddev));
2030 		return -EINVAL;
2031 	}
2032 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2033 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2034 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2035 		       mdname(mddev));
2036 		return -EINVAL;
2037 	}
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL(md_integrity_register);
2041 
2042 /* Disable data integrity if non-capable/non-matching disk is being added */
2043 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2044 {
2045 	struct blk_integrity *bi_rdev;
2046 	struct blk_integrity *bi_mddev;
2047 
2048 	if (!mddev->gendisk)
2049 		return;
2050 
2051 	bi_rdev = bdev_get_integrity(rdev->bdev);
2052 	bi_mddev = blk_get_integrity(mddev->gendisk);
2053 
2054 	if (!bi_mddev) /* nothing to do */
2055 		return;
2056 	if (rdev->raid_disk < 0) /* skip spares */
2057 		return;
2058 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2059 					     rdev->bdev->bd_disk) >= 0)
2060 		return;
2061 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2062 	blk_integrity_unregister(mddev->gendisk);
2063 }
2064 EXPORT_SYMBOL(md_integrity_add_rdev);
2065 
2066 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2067 {
2068 	char b[BDEVNAME_SIZE];
2069 	struct kobject *ko;
2070 	char *s;
2071 	int err;
2072 
2073 	if (rdev->mddev) {
2074 		MD_BUG();
2075 		return -EINVAL;
2076 	}
2077 
2078 	/* prevent duplicates */
2079 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2080 		return -EEXIST;
2081 
2082 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2083 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2084 			rdev->sectors < mddev->dev_sectors)) {
2085 		if (mddev->pers) {
2086 			/* Cannot change size, so fail
2087 			 * If mddev->level <= 0, then we don't care
2088 			 * about aligning sizes (e.g. linear)
2089 			 */
2090 			if (mddev->level > 0)
2091 				return -ENOSPC;
2092 		} else
2093 			mddev->dev_sectors = rdev->sectors;
2094 	}
2095 
2096 	/* Verify rdev->desc_nr is unique.
2097 	 * If it is -1, assign a free number, else
2098 	 * check number is not in use
2099 	 */
2100 	if (rdev->desc_nr < 0) {
2101 		int choice = 0;
2102 		if (mddev->pers) choice = mddev->raid_disks;
2103 		while (find_rdev_nr(mddev, choice))
2104 			choice++;
2105 		rdev->desc_nr = choice;
2106 	} else {
2107 		if (find_rdev_nr(mddev, rdev->desc_nr))
2108 			return -EBUSY;
2109 	}
2110 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2111 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2112 		       mdname(mddev), mddev->max_disks);
2113 		return -EBUSY;
2114 	}
2115 	bdevname(rdev->bdev,b);
2116 	while ( (s=strchr(b, '/')) != NULL)
2117 		*s = '!';
2118 
2119 	rdev->mddev = mddev;
2120 	printk(KERN_INFO "md: bind<%s>\n", b);
2121 
2122 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2123 		goto fail;
2124 
2125 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2126 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2127 		/* failure here is OK */;
2128 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2129 
2130 	list_add_rcu(&rdev->same_set, &mddev->disks);
2131 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2132 
2133 	/* May as well allow recovery to be retried once */
2134 	mddev->recovery_disabled++;
2135 
2136 	return 0;
2137 
2138  fail:
2139 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2140 	       b, mdname(mddev));
2141 	return err;
2142 }
2143 
2144 static void md_delayed_delete(struct work_struct *ws)
2145 {
2146 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2147 	kobject_del(&rdev->kobj);
2148 	kobject_put(&rdev->kobj);
2149 }
2150 
2151 static void unbind_rdev_from_array(struct md_rdev * rdev)
2152 {
2153 	char b[BDEVNAME_SIZE];
2154 	if (!rdev->mddev) {
2155 		MD_BUG();
2156 		return;
2157 	}
2158 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2159 	list_del_rcu(&rdev->same_set);
2160 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2161 	rdev->mddev = NULL;
2162 	sysfs_remove_link(&rdev->kobj, "block");
2163 	sysfs_put(rdev->sysfs_state);
2164 	rdev->sysfs_state = NULL;
2165 	rdev->badblocks.count = 0;
2166 	/* We need to delay this, otherwise we can deadlock when
2167 	 * writing to 'remove' to "dev/state".  We also need
2168 	 * to delay it due to rcu usage.
2169 	 */
2170 	synchronize_rcu();
2171 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2172 	kobject_get(&rdev->kobj);
2173 	queue_work(md_misc_wq, &rdev->del_work);
2174 }
2175 
2176 /*
2177  * prevent the device from being mounted, repartitioned or
2178  * otherwise reused by a RAID array (or any other kernel
2179  * subsystem), by bd_claiming the device.
2180  */
2181 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2182 {
2183 	int err = 0;
2184 	struct block_device *bdev;
2185 	char b[BDEVNAME_SIZE];
2186 
2187 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2188 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2189 	if (IS_ERR(bdev)) {
2190 		printk(KERN_ERR "md: could not open %s.\n",
2191 			__bdevname(dev, b));
2192 		return PTR_ERR(bdev);
2193 	}
2194 	rdev->bdev = bdev;
2195 	return err;
2196 }
2197 
2198 static void unlock_rdev(struct md_rdev *rdev)
2199 {
2200 	struct block_device *bdev = rdev->bdev;
2201 	rdev->bdev = NULL;
2202 	if (!bdev)
2203 		MD_BUG();
2204 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2205 }
2206 
2207 void md_autodetect_dev(dev_t dev);
2208 
2209 static void export_rdev(struct md_rdev * rdev)
2210 {
2211 	char b[BDEVNAME_SIZE];
2212 	printk(KERN_INFO "md: export_rdev(%s)\n",
2213 		bdevname(rdev->bdev,b));
2214 	if (rdev->mddev)
2215 		MD_BUG();
2216 	md_rdev_clear(rdev);
2217 #ifndef MODULE
2218 	if (test_bit(AutoDetected, &rdev->flags))
2219 		md_autodetect_dev(rdev->bdev->bd_dev);
2220 #endif
2221 	unlock_rdev(rdev);
2222 	kobject_put(&rdev->kobj);
2223 }
2224 
2225 static void kick_rdev_from_array(struct md_rdev * rdev)
2226 {
2227 	unbind_rdev_from_array(rdev);
2228 	export_rdev(rdev);
2229 }
2230 
2231 static void export_array(struct mddev *mddev)
2232 {
2233 	struct md_rdev *rdev, *tmp;
2234 
2235 	rdev_for_each_safe(rdev, tmp, mddev) {
2236 		if (!rdev->mddev) {
2237 			MD_BUG();
2238 			continue;
2239 		}
2240 		kick_rdev_from_array(rdev);
2241 	}
2242 	if (!list_empty(&mddev->disks))
2243 		MD_BUG();
2244 	mddev->raid_disks = 0;
2245 	mddev->major_version = 0;
2246 }
2247 
2248 static void print_desc(mdp_disk_t *desc)
2249 {
2250 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2251 		desc->major,desc->minor,desc->raid_disk,desc->state);
2252 }
2253 
2254 static void print_sb_90(mdp_super_t *sb)
2255 {
2256 	int i;
2257 
2258 	printk(KERN_INFO
2259 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2260 		sb->major_version, sb->minor_version, sb->patch_version,
2261 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2262 		sb->ctime);
2263 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2264 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2265 		sb->md_minor, sb->layout, sb->chunk_size);
2266 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2267 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2268 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2269 		sb->failed_disks, sb->spare_disks,
2270 		sb->sb_csum, (unsigned long)sb->events_lo);
2271 
2272 	printk(KERN_INFO);
2273 	for (i = 0; i < MD_SB_DISKS; i++) {
2274 		mdp_disk_t *desc;
2275 
2276 		desc = sb->disks + i;
2277 		if (desc->number || desc->major || desc->minor ||
2278 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2279 			printk("     D %2d: ", i);
2280 			print_desc(desc);
2281 		}
2282 	}
2283 	printk(KERN_INFO "md:     THIS: ");
2284 	print_desc(&sb->this_disk);
2285 }
2286 
2287 static void print_sb_1(struct mdp_superblock_1 *sb)
2288 {
2289 	__u8 *uuid;
2290 
2291 	uuid = sb->set_uuid;
2292 	printk(KERN_INFO
2293 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2294 	       "md:    Name: \"%s\" CT:%llu\n",
2295 		le32_to_cpu(sb->major_version),
2296 		le32_to_cpu(sb->feature_map),
2297 		uuid,
2298 		sb->set_name,
2299 		(unsigned long long)le64_to_cpu(sb->ctime)
2300 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2301 
2302 	uuid = sb->device_uuid;
2303 	printk(KERN_INFO
2304 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2305 			" RO:%llu\n"
2306 	       "md:     Dev:%08x UUID: %pU\n"
2307 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2308 	       "md:         (MaxDev:%u) \n",
2309 		le32_to_cpu(sb->level),
2310 		(unsigned long long)le64_to_cpu(sb->size),
2311 		le32_to_cpu(sb->raid_disks),
2312 		le32_to_cpu(sb->layout),
2313 		le32_to_cpu(sb->chunksize),
2314 		(unsigned long long)le64_to_cpu(sb->data_offset),
2315 		(unsigned long long)le64_to_cpu(sb->data_size),
2316 		(unsigned long long)le64_to_cpu(sb->super_offset),
2317 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2318 		le32_to_cpu(sb->dev_number),
2319 		uuid,
2320 		sb->devflags,
2321 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2322 		(unsigned long long)le64_to_cpu(sb->events),
2323 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2324 		le32_to_cpu(sb->sb_csum),
2325 		le32_to_cpu(sb->max_dev)
2326 		);
2327 }
2328 
2329 static void print_rdev(struct md_rdev *rdev, int major_version)
2330 {
2331 	char b[BDEVNAME_SIZE];
2332 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2333 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2334 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2335 	        rdev->desc_nr);
2336 	if (rdev->sb_loaded) {
2337 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2338 		switch (major_version) {
2339 		case 0:
2340 			print_sb_90(page_address(rdev->sb_page));
2341 			break;
2342 		case 1:
2343 			print_sb_1(page_address(rdev->sb_page));
2344 			break;
2345 		}
2346 	} else
2347 		printk(KERN_INFO "md: no rdev superblock!\n");
2348 }
2349 
2350 static void md_print_devices(void)
2351 {
2352 	struct list_head *tmp;
2353 	struct md_rdev *rdev;
2354 	struct mddev *mddev;
2355 	char b[BDEVNAME_SIZE];
2356 
2357 	printk("\n");
2358 	printk("md:	**********************************\n");
2359 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2360 	printk("md:	**********************************\n");
2361 	for_each_mddev(mddev, tmp) {
2362 
2363 		if (mddev->bitmap)
2364 			bitmap_print_sb(mddev->bitmap);
2365 		else
2366 			printk("%s: ", mdname(mddev));
2367 		rdev_for_each(rdev, mddev)
2368 			printk("<%s>", bdevname(rdev->bdev,b));
2369 		printk("\n");
2370 
2371 		rdev_for_each(rdev, mddev)
2372 			print_rdev(rdev, mddev->major_version);
2373 	}
2374 	printk("md:	**********************************\n");
2375 	printk("\n");
2376 }
2377 
2378 
2379 static void sync_sbs(struct mddev * mddev, int nospares)
2380 {
2381 	/* Update each superblock (in-memory image), but
2382 	 * if we are allowed to, skip spares which already
2383 	 * have the right event counter, or have one earlier
2384 	 * (which would mean they aren't being marked as dirty
2385 	 * with the rest of the array)
2386 	 */
2387 	struct md_rdev *rdev;
2388 	rdev_for_each(rdev, mddev) {
2389 		if (rdev->sb_events == mddev->events ||
2390 		    (nospares &&
2391 		     rdev->raid_disk < 0 &&
2392 		     rdev->sb_events+1 == mddev->events)) {
2393 			/* Don't update this superblock */
2394 			rdev->sb_loaded = 2;
2395 		} else {
2396 			sync_super(mddev, rdev);
2397 			rdev->sb_loaded = 1;
2398 		}
2399 	}
2400 }
2401 
2402 static void md_update_sb(struct mddev * mddev, int force_change)
2403 {
2404 	struct md_rdev *rdev;
2405 	int sync_req;
2406 	int nospares = 0;
2407 	int any_badblocks_changed = 0;
2408 
2409 	if (mddev->ro) {
2410 		if (force_change)
2411 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2412 		return;
2413 	}
2414 repeat:
2415 	/* First make sure individual recovery_offsets are correct */
2416 	rdev_for_each(rdev, mddev) {
2417 		if (rdev->raid_disk >= 0 &&
2418 		    mddev->delta_disks >= 0 &&
2419 		    !test_bit(In_sync, &rdev->flags) &&
2420 		    mddev->curr_resync_completed > rdev->recovery_offset)
2421 				rdev->recovery_offset = mddev->curr_resync_completed;
2422 
2423 	}
2424 	if (!mddev->persistent) {
2425 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427 		if (!mddev->external) {
2428 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429 			rdev_for_each(rdev, mddev) {
2430 				if (rdev->badblocks.changed) {
2431 					rdev->badblocks.changed = 0;
2432 					md_ack_all_badblocks(&rdev->badblocks);
2433 					md_error(mddev, rdev);
2434 				}
2435 				clear_bit(Blocked, &rdev->flags);
2436 				clear_bit(BlockedBadBlocks, &rdev->flags);
2437 				wake_up(&rdev->blocked_wait);
2438 			}
2439 		}
2440 		wake_up(&mddev->sb_wait);
2441 		return;
2442 	}
2443 
2444 	spin_lock_irq(&mddev->write_lock);
2445 
2446 	mddev->utime = get_seconds();
2447 
2448 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449 		force_change = 1;
2450 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451 		/* just a clean<-> dirty transition, possibly leave spares alone,
2452 		 * though if events isn't the right even/odd, we will have to do
2453 		 * spares after all
2454 		 */
2455 		nospares = 1;
2456 	if (force_change)
2457 		nospares = 0;
2458 	if (mddev->degraded)
2459 		/* If the array is degraded, then skipping spares is both
2460 		 * dangerous and fairly pointless.
2461 		 * Dangerous because a device that was removed from the array
2462 		 * might have a event_count that still looks up-to-date,
2463 		 * so it can be re-added without a resync.
2464 		 * Pointless because if there are any spares to skip,
2465 		 * then a recovery will happen and soon that array won't
2466 		 * be degraded any more and the spare can go back to sleep then.
2467 		 */
2468 		nospares = 0;
2469 
2470 	sync_req = mddev->in_sync;
2471 
2472 	/* If this is just a dirty<->clean transition, and the array is clean
2473 	 * and 'events' is odd, we can roll back to the previous clean state */
2474 	if (nospares
2475 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476 	    && mddev->can_decrease_events
2477 	    && mddev->events != 1) {
2478 		mddev->events--;
2479 		mddev->can_decrease_events = 0;
2480 	} else {
2481 		/* otherwise we have to go forward and ... */
2482 		mddev->events ++;
2483 		mddev->can_decrease_events = nospares;
2484 	}
2485 
2486 	if (!mddev->events) {
2487 		/*
2488 		 * oops, this 64-bit counter should never wrap.
2489 		 * Either we are in around ~1 trillion A.C., assuming
2490 		 * 1 reboot per second, or we have a bug:
2491 		 */
2492 		MD_BUG();
2493 		mddev->events --;
2494 	}
2495 
2496 	rdev_for_each(rdev, mddev) {
2497 		if (rdev->badblocks.changed)
2498 			any_badblocks_changed++;
2499 		if (test_bit(Faulty, &rdev->flags))
2500 			set_bit(FaultRecorded, &rdev->flags);
2501 	}
2502 
2503 	sync_sbs(mddev, nospares);
2504 	spin_unlock_irq(&mddev->write_lock);
2505 
2506 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507 		 mdname(mddev), mddev->in_sync);
2508 
2509 	bitmap_update_sb(mddev->bitmap);
2510 	rdev_for_each(rdev, mddev) {
2511 		char b[BDEVNAME_SIZE];
2512 
2513 		if (rdev->sb_loaded != 1)
2514 			continue; /* no noise on spare devices */
2515 
2516 		if (!test_bit(Faulty, &rdev->flags) &&
2517 		    rdev->saved_raid_disk == -1) {
2518 			md_super_write(mddev,rdev,
2519 				       rdev->sb_start, rdev->sb_size,
2520 				       rdev->sb_page);
2521 			pr_debug("md: (write) %s's sb offset: %llu\n",
2522 				 bdevname(rdev->bdev, b),
2523 				 (unsigned long long)rdev->sb_start);
2524 			rdev->sb_events = mddev->events;
2525 			if (rdev->badblocks.size) {
2526 				md_super_write(mddev, rdev,
2527 					       rdev->badblocks.sector,
2528 					       rdev->badblocks.size << 9,
2529 					       rdev->bb_page);
2530 				rdev->badblocks.size = 0;
2531 			}
2532 
2533 		} else if (test_bit(Faulty, &rdev->flags))
2534 			pr_debug("md: %s (skipping faulty)\n",
2535 				 bdevname(rdev->bdev, b));
2536 		else
2537 			pr_debug("(skipping incremental s/r ");
2538 
2539 		if (mddev->level == LEVEL_MULTIPATH)
2540 			/* only need to write one superblock... */
2541 			break;
2542 	}
2543 	md_super_wait(mddev);
2544 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545 
2546 	spin_lock_irq(&mddev->write_lock);
2547 	if (mddev->in_sync != sync_req ||
2548 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549 		/* have to write it out again */
2550 		spin_unlock_irq(&mddev->write_lock);
2551 		goto repeat;
2552 	}
2553 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554 	spin_unlock_irq(&mddev->write_lock);
2555 	wake_up(&mddev->sb_wait);
2556 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558 
2559 	rdev_for_each(rdev, mddev) {
2560 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561 			clear_bit(Blocked, &rdev->flags);
2562 
2563 		if (any_badblocks_changed)
2564 			md_ack_all_badblocks(&rdev->badblocks);
2565 		clear_bit(BlockedBadBlocks, &rdev->flags);
2566 		wake_up(&rdev->blocked_wait);
2567 	}
2568 }
2569 
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571  * We want to accept with case. For this we use cmd_match.
2572  */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575 	/* See if cmd, written into a sysfs file, matches
2576 	 * str.  They must either be the same, or cmd can
2577 	 * have a trailing newline
2578 	 */
2579 	while (*cmd && *str && *cmd == *str) {
2580 		cmd++;
2581 		str++;
2582 	}
2583 	if (*cmd == '\n')
2584 		cmd++;
2585 	if (*str || *cmd)
2586 		return 0;
2587 	return 1;
2588 }
2589 
2590 struct rdev_sysfs_entry {
2591 	struct attribute attr;
2592 	ssize_t (*show)(struct md_rdev *, char *);
2593 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595 
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599 	char *sep = "";
2600 	size_t len = 0;
2601 
2602 	if (test_bit(Faulty, &rdev->flags) ||
2603 	    rdev->badblocks.unacked_exist) {
2604 		len+= sprintf(page+len, "%sfaulty",sep);
2605 		sep = ",";
2606 	}
2607 	if (test_bit(In_sync, &rdev->flags)) {
2608 		len += sprintf(page+len, "%sin_sync",sep);
2609 		sep = ",";
2610 	}
2611 	if (test_bit(WriteMostly, &rdev->flags)) {
2612 		len += sprintf(page+len, "%swrite_mostly",sep);
2613 		sep = ",";
2614 	}
2615 	if (test_bit(Blocked, &rdev->flags) ||
2616 	    (rdev->badblocks.unacked_exist
2617 	     && !test_bit(Faulty, &rdev->flags))) {
2618 		len += sprintf(page+len, "%sblocked", sep);
2619 		sep = ",";
2620 	}
2621 	if (!test_bit(Faulty, &rdev->flags) &&
2622 	    !test_bit(In_sync, &rdev->flags)) {
2623 		len += sprintf(page+len, "%sspare", sep);
2624 		sep = ",";
2625 	}
2626 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627 		len += sprintf(page+len, "%swrite_error", sep);
2628 		sep = ",";
2629 	}
2630 	if (test_bit(WantReplacement, &rdev->flags)) {
2631 		len += sprintf(page+len, "%swant_replacement", sep);
2632 		sep = ",";
2633 	}
2634 	if (test_bit(Replacement, &rdev->flags)) {
2635 		len += sprintf(page+len, "%sreplacement", sep);
2636 		sep = ",";
2637 	}
2638 
2639 	return len+sprintf(page+len, "\n");
2640 }
2641 
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645 	/* can write
2646 	 *  faulty  - simulates an error
2647 	 *  remove  - disconnects the device
2648 	 *  writemostly - sets write_mostly
2649 	 *  -writemostly - clears write_mostly
2650 	 *  blocked - sets the Blocked flags
2651 	 *  -blocked - clears the Blocked and possibly simulates an error
2652 	 *  insync - sets Insync providing device isn't active
2653 	 *  write_error - sets WriteErrorSeen
2654 	 *  -write_error - clears WriteErrorSeen
2655 	 */
2656 	int err = -EINVAL;
2657 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658 		md_error(rdev->mddev, rdev);
2659 		if (test_bit(Faulty, &rdev->flags))
2660 			err = 0;
2661 		else
2662 			err = -EBUSY;
2663 	} else if (cmd_match(buf, "remove")) {
2664 		if (rdev->raid_disk >= 0)
2665 			err = -EBUSY;
2666 		else {
2667 			struct mddev *mddev = rdev->mddev;
2668 			kick_rdev_from_array(rdev);
2669 			if (mddev->pers)
2670 				md_update_sb(mddev, 1);
2671 			md_new_event(mddev);
2672 			err = 0;
2673 		}
2674 	} else if (cmd_match(buf, "writemostly")) {
2675 		set_bit(WriteMostly, &rdev->flags);
2676 		err = 0;
2677 	} else if (cmd_match(buf, "-writemostly")) {
2678 		clear_bit(WriteMostly, &rdev->flags);
2679 		err = 0;
2680 	} else if (cmd_match(buf, "blocked")) {
2681 		set_bit(Blocked, &rdev->flags);
2682 		err = 0;
2683 	} else if (cmd_match(buf, "-blocked")) {
2684 		if (!test_bit(Faulty, &rdev->flags) &&
2685 		    rdev->badblocks.unacked_exist) {
2686 			/* metadata handler doesn't understand badblocks,
2687 			 * so we need to fail the device
2688 			 */
2689 			md_error(rdev->mddev, rdev);
2690 		}
2691 		clear_bit(Blocked, &rdev->flags);
2692 		clear_bit(BlockedBadBlocks, &rdev->flags);
2693 		wake_up(&rdev->blocked_wait);
2694 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695 		md_wakeup_thread(rdev->mddev->thread);
2696 
2697 		err = 0;
2698 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699 		set_bit(In_sync, &rdev->flags);
2700 		err = 0;
2701 	} else if (cmd_match(buf, "write_error")) {
2702 		set_bit(WriteErrorSeen, &rdev->flags);
2703 		err = 0;
2704 	} else if (cmd_match(buf, "-write_error")) {
2705 		clear_bit(WriteErrorSeen, &rdev->flags);
2706 		err = 0;
2707 	} else if (cmd_match(buf, "want_replacement")) {
2708 		/* Any non-spare device that is not a replacement can
2709 		 * become want_replacement at any time, but we then need to
2710 		 * check if recovery is needed.
2711 		 */
2712 		if (rdev->raid_disk >= 0 &&
2713 		    !test_bit(Replacement, &rdev->flags))
2714 			set_bit(WantReplacement, &rdev->flags);
2715 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716 		md_wakeup_thread(rdev->mddev->thread);
2717 		err = 0;
2718 	} else if (cmd_match(buf, "-want_replacement")) {
2719 		/* Clearing 'want_replacement' is always allowed.
2720 		 * Once replacements starts it is too late though.
2721 		 */
2722 		err = 0;
2723 		clear_bit(WantReplacement, &rdev->flags);
2724 	} else if (cmd_match(buf, "replacement")) {
2725 		/* Can only set a device as a replacement when array has not
2726 		 * yet been started.  Once running, replacement is automatic
2727 		 * from spares, or by assigning 'slot'.
2728 		 */
2729 		if (rdev->mddev->pers)
2730 			err = -EBUSY;
2731 		else {
2732 			set_bit(Replacement, &rdev->flags);
2733 			err = 0;
2734 		}
2735 	} else if (cmd_match(buf, "-replacement")) {
2736 		/* Similarly, can only clear Replacement before start */
2737 		if (rdev->mddev->pers)
2738 			err = -EBUSY;
2739 		else {
2740 			clear_bit(Replacement, &rdev->flags);
2741 			err = 0;
2742 		}
2743 	}
2744 	if (!err)
2745 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2746 	return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750 
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756 
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760 	char *e;
2761 	unsigned long n = simple_strtoul(buf, &e, 10);
2762 	if (*buf && (*e == 0 || *e == '\n')) {
2763 		atomic_set(&rdev->corrected_errors, n);
2764 		return len;
2765 	}
2766 	return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770 
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774 	if (rdev->raid_disk < 0)
2775 		return sprintf(page, "none\n");
2776 	else
2777 		return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779 
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783 	char *e;
2784 	int err;
2785 	int slot = simple_strtoul(buf, &e, 10);
2786 	if (strncmp(buf, "none", 4)==0)
2787 		slot = -1;
2788 	else if (e==buf || (*e && *e!= '\n'))
2789 		return -EINVAL;
2790 	if (rdev->mddev->pers && slot == -1) {
2791 		/* Setting 'slot' on an active array requires also
2792 		 * updating the 'rd%d' link, and communicating
2793 		 * with the personality with ->hot_*_disk.
2794 		 * For now we only support removing
2795 		 * failed/spare devices.  This normally happens automatically,
2796 		 * but not when the metadata is externally managed.
2797 		 */
2798 		if (rdev->raid_disk == -1)
2799 			return -EEXIST;
2800 		/* personality does all needed checks */
2801 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2802 			return -EINVAL;
2803 		clear_bit(Blocked, &rdev->flags);
2804 		remove_and_add_spares(rdev->mddev, rdev);
2805 		if (rdev->raid_disk >= 0)
2806 			return -EBUSY;
2807 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2808 		md_wakeup_thread(rdev->mddev->thread);
2809 	} else if (rdev->mddev->pers) {
2810 		/* Activating a spare .. or possibly reactivating
2811 		 * if we ever get bitmaps working here.
2812 		 */
2813 
2814 		if (rdev->raid_disk != -1)
2815 			return -EBUSY;
2816 
2817 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2818 			return -EBUSY;
2819 
2820 		if (rdev->mddev->pers->hot_add_disk == NULL)
2821 			return -EINVAL;
2822 
2823 		if (slot >= rdev->mddev->raid_disks &&
2824 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2825 			return -ENOSPC;
2826 
2827 		rdev->raid_disk = slot;
2828 		if (test_bit(In_sync, &rdev->flags))
2829 			rdev->saved_raid_disk = slot;
2830 		else
2831 			rdev->saved_raid_disk = -1;
2832 		clear_bit(In_sync, &rdev->flags);
2833 		err = rdev->mddev->pers->
2834 			hot_add_disk(rdev->mddev, rdev);
2835 		if (err) {
2836 			rdev->raid_disk = -1;
2837 			return err;
2838 		} else
2839 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2840 		if (sysfs_link_rdev(rdev->mddev, rdev))
2841 			/* failure here is OK */;
2842 		/* don't wakeup anyone, leave that to userspace. */
2843 	} else {
2844 		if (slot >= rdev->mddev->raid_disks &&
2845 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2846 			return -ENOSPC;
2847 		rdev->raid_disk = slot;
2848 		/* assume it is working */
2849 		clear_bit(Faulty, &rdev->flags);
2850 		clear_bit(WriteMostly, &rdev->flags);
2851 		set_bit(In_sync, &rdev->flags);
2852 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2853 	}
2854 	return len;
2855 }
2856 
2857 
2858 static struct rdev_sysfs_entry rdev_slot =
2859 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2860 
2861 static ssize_t
2862 offset_show(struct md_rdev *rdev, char *page)
2863 {
2864 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2865 }
2866 
2867 static ssize_t
2868 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2869 {
2870 	unsigned long long offset;
2871 	if (kstrtoull(buf, 10, &offset) < 0)
2872 		return -EINVAL;
2873 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2874 		return -EBUSY;
2875 	if (rdev->sectors && rdev->mddev->external)
2876 		/* Must set offset before size, so overlap checks
2877 		 * can be sane */
2878 		return -EBUSY;
2879 	rdev->data_offset = offset;
2880 	rdev->new_data_offset = offset;
2881 	return len;
2882 }
2883 
2884 static struct rdev_sysfs_entry rdev_offset =
2885 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2886 
2887 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2888 {
2889 	return sprintf(page, "%llu\n",
2890 		       (unsigned long long)rdev->new_data_offset);
2891 }
2892 
2893 static ssize_t new_offset_store(struct md_rdev *rdev,
2894 				const char *buf, size_t len)
2895 {
2896 	unsigned long long new_offset;
2897 	struct mddev *mddev = rdev->mddev;
2898 
2899 	if (kstrtoull(buf, 10, &new_offset) < 0)
2900 		return -EINVAL;
2901 
2902 	if (mddev->sync_thread)
2903 		return -EBUSY;
2904 	if (new_offset == rdev->data_offset)
2905 		/* reset is always permitted */
2906 		;
2907 	else if (new_offset > rdev->data_offset) {
2908 		/* must not push array size beyond rdev_sectors */
2909 		if (new_offset - rdev->data_offset
2910 		    + mddev->dev_sectors > rdev->sectors)
2911 				return -E2BIG;
2912 	}
2913 	/* Metadata worries about other space details. */
2914 
2915 	/* decreasing the offset is inconsistent with a backwards
2916 	 * reshape.
2917 	 */
2918 	if (new_offset < rdev->data_offset &&
2919 	    mddev->reshape_backwards)
2920 		return -EINVAL;
2921 	/* Increasing offset is inconsistent with forwards
2922 	 * reshape.  reshape_direction should be set to
2923 	 * 'backwards' first.
2924 	 */
2925 	if (new_offset > rdev->data_offset &&
2926 	    !mddev->reshape_backwards)
2927 		return -EINVAL;
2928 
2929 	if (mddev->pers && mddev->persistent &&
2930 	    !super_types[mddev->major_version]
2931 	    .allow_new_offset(rdev, new_offset))
2932 		return -E2BIG;
2933 	rdev->new_data_offset = new_offset;
2934 	if (new_offset > rdev->data_offset)
2935 		mddev->reshape_backwards = 1;
2936 	else if (new_offset < rdev->data_offset)
2937 		mddev->reshape_backwards = 0;
2938 
2939 	return len;
2940 }
2941 static struct rdev_sysfs_entry rdev_new_offset =
2942 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2943 
2944 static ssize_t
2945 rdev_size_show(struct md_rdev *rdev, char *page)
2946 {
2947 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2948 }
2949 
2950 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2951 {
2952 	/* check if two start/length pairs overlap */
2953 	if (s1+l1 <= s2)
2954 		return 0;
2955 	if (s2+l2 <= s1)
2956 		return 0;
2957 	return 1;
2958 }
2959 
2960 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2961 {
2962 	unsigned long long blocks;
2963 	sector_t new;
2964 
2965 	if (kstrtoull(buf, 10, &blocks) < 0)
2966 		return -EINVAL;
2967 
2968 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2969 		return -EINVAL; /* sector conversion overflow */
2970 
2971 	new = blocks * 2;
2972 	if (new != blocks * 2)
2973 		return -EINVAL; /* unsigned long long to sector_t overflow */
2974 
2975 	*sectors = new;
2976 	return 0;
2977 }
2978 
2979 static ssize_t
2980 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2981 {
2982 	struct mddev *my_mddev = rdev->mddev;
2983 	sector_t oldsectors = rdev->sectors;
2984 	sector_t sectors;
2985 
2986 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2987 		return -EINVAL;
2988 	if (rdev->data_offset != rdev->new_data_offset)
2989 		return -EINVAL; /* too confusing */
2990 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2991 		if (my_mddev->persistent) {
2992 			sectors = super_types[my_mddev->major_version].
2993 				rdev_size_change(rdev, sectors);
2994 			if (!sectors)
2995 				return -EBUSY;
2996 		} else if (!sectors)
2997 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2998 				rdev->data_offset;
2999 		if (!my_mddev->pers->resize)
3000 			/* Cannot change size for RAID0 or Linear etc */
3001 			return -EINVAL;
3002 	}
3003 	if (sectors < my_mddev->dev_sectors)
3004 		return -EINVAL; /* component must fit device */
3005 
3006 	rdev->sectors = sectors;
3007 	if (sectors > oldsectors && my_mddev->external) {
3008 		/* need to check that all other rdevs with the same ->bdev
3009 		 * do not overlap.  We need to unlock the mddev to avoid
3010 		 * a deadlock.  We have already changed rdev->sectors, and if
3011 		 * we have to change it back, we will have the lock again.
3012 		 */
3013 		struct mddev *mddev;
3014 		int overlap = 0;
3015 		struct list_head *tmp;
3016 
3017 		mddev_unlock(my_mddev);
3018 		for_each_mddev(mddev, tmp) {
3019 			struct md_rdev *rdev2;
3020 
3021 			mddev_lock(mddev);
3022 			rdev_for_each(rdev2, mddev)
3023 				if (rdev->bdev == rdev2->bdev &&
3024 				    rdev != rdev2 &&
3025 				    overlaps(rdev->data_offset, rdev->sectors,
3026 					     rdev2->data_offset,
3027 					     rdev2->sectors)) {
3028 					overlap = 1;
3029 					break;
3030 				}
3031 			mddev_unlock(mddev);
3032 			if (overlap) {
3033 				mddev_put(mddev);
3034 				break;
3035 			}
3036 		}
3037 		mddev_lock(my_mddev);
3038 		if (overlap) {
3039 			/* Someone else could have slipped in a size
3040 			 * change here, but doing so is just silly.
3041 			 * We put oldsectors back because we *know* it is
3042 			 * safe, and trust userspace not to race with
3043 			 * itself
3044 			 */
3045 			rdev->sectors = oldsectors;
3046 			return -EBUSY;
3047 		}
3048 	}
3049 	return len;
3050 }
3051 
3052 static struct rdev_sysfs_entry rdev_size =
3053 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3054 
3055 
3056 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3057 {
3058 	unsigned long long recovery_start = rdev->recovery_offset;
3059 
3060 	if (test_bit(In_sync, &rdev->flags) ||
3061 	    recovery_start == MaxSector)
3062 		return sprintf(page, "none\n");
3063 
3064 	return sprintf(page, "%llu\n", recovery_start);
3065 }
3066 
3067 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3068 {
3069 	unsigned long long recovery_start;
3070 
3071 	if (cmd_match(buf, "none"))
3072 		recovery_start = MaxSector;
3073 	else if (kstrtoull(buf, 10, &recovery_start))
3074 		return -EINVAL;
3075 
3076 	if (rdev->mddev->pers &&
3077 	    rdev->raid_disk >= 0)
3078 		return -EBUSY;
3079 
3080 	rdev->recovery_offset = recovery_start;
3081 	if (recovery_start == MaxSector)
3082 		set_bit(In_sync, &rdev->flags);
3083 	else
3084 		clear_bit(In_sync, &rdev->flags);
3085 	return len;
3086 }
3087 
3088 static struct rdev_sysfs_entry rdev_recovery_start =
3089 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3090 
3091 
3092 static ssize_t
3093 badblocks_show(struct badblocks *bb, char *page, int unack);
3094 static ssize_t
3095 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3096 
3097 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3098 {
3099 	return badblocks_show(&rdev->badblocks, page, 0);
3100 }
3101 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3102 {
3103 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3104 	/* Maybe that ack was all we needed */
3105 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3106 		wake_up(&rdev->blocked_wait);
3107 	return rv;
3108 }
3109 static struct rdev_sysfs_entry rdev_bad_blocks =
3110 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3111 
3112 
3113 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3114 {
3115 	return badblocks_show(&rdev->badblocks, page, 1);
3116 }
3117 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3118 {
3119 	return badblocks_store(&rdev->badblocks, page, len, 1);
3120 }
3121 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3122 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3123 
3124 static struct attribute *rdev_default_attrs[] = {
3125 	&rdev_state.attr,
3126 	&rdev_errors.attr,
3127 	&rdev_slot.attr,
3128 	&rdev_offset.attr,
3129 	&rdev_new_offset.attr,
3130 	&rdev_size.attr,
3131 	&rdev_recovery_start.attr,
3132 	&rdev_bad_blocks.attr,
3133 	&rdev_unack_bad_blocks.attr,
3134 	NULL,
3135 };
3136 static ssize_t
3137 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3138 {
3139 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3140 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3141 	struct mddev *mddev = rdev->mddev;
3142 	ssize_t rv;
3143 
3144 	if (!entry->show)
3145 		return -EIO;
3146 
3147 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3148 	if (!rv) {
3149 		if (rdev->mddev == NULL)
3150 			rv = -EBUSY;
3151 		else
3152 			rv = entry->show(rdev, page);
3153 		mddev_unlock(mddev);
3154 	}
3155 	return rv;
3156 }
3157 
3158 static ssize_t
3159 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3160 	      const char *page, size_t length)
3161 {
3162 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3163 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3164 	ssize_t rv;
3165 	struct mddev *mddev = rdev->mddev;
3166 
3167 	if (!entry->store)
3168 		return -EIO;
3169 	if (!capable(CAP_SYS_ADMIN))
3170 		return -EACCES;
3171 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3172 	if (!rv) {
3173 		if (rdev->mddev == NULL)
3174 			rv = -EBUSY;
3175 		else
3176 			rv = entry->store(rdev, page, length);
3177 		mddev_unlock(mddev);
3178 	}
3179 	return rv;
3180 }
3181 
3182 static void rdev_free(struct kobject *ko)
3183 {
3184 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3185 	kfree(rdev);
3186 }
3187 static const struct sysfs_ops rdev_sysfs_ops = {
3188 	.show		= rdev_attr_show,
3189 	.store		= rdev_attr_store,
3190 };
3191 static struct kobj_type rdev_ktype = {
3192 	.release	= rdev_free,
3193 	.sysfs_ops	= &rdev_sysfs_ops,
3194 	.default_attrs	= rdev_default_attrs,
3195 };
3196 
3197 int md_rdev_init(struct md_rdev *rdev)
3198 {
3199 	rdev->desc_nr = -1;
3200 	rdev->saved_raid_disk = -1;
3201 	rdev->raid_disk = -1;
3202 	rdev->flags = 0;
3203 	rdev->data_offset = 0;
3204 	rdev->new_data_offset = 0;
3205 	rdev->sb_events = 0;
3206 	rdev->last_read_error.tv_sec  = 0;
3207 	rdev->last_read_error.tv_nsec = 0;
3208 	rdev->sb_loaded = 0;
3209 	rdev->bb_page = NULL;
3210 	atomic_set(&rdev->nr_pending, 0);
3211 	atomic_set(&rdev->read_errors, 0);
3212 	atomic_set(&rdev->corrected_errors, 0);
3213 
3214 	INIT_LIST_HEAD(&rdev->same_set);
3215 	init_waitqueue_head(&rdev->blocked_wait);
3216 
3217 	/* Add space to store bad block list.
3218 	 * This reserves the space even on arrays where it cannot
3219 	 * be used - I wonder if that matters
3220 	 */
3221 	rdev->badblocks.count = 0;
3222 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3223 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3224 	seqlock_init(&rdev->badblocks.lock);
3225 	if (rdev->badblocks.page == NULL)
3226 		return -ENOMEM;
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(md_rdev_init);
3231 /*
3232  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3233  *
3234  * mark the device faulty if:
3235  *
3236  *   - the device is nonexistent (zero size)
3237  *   - the device has no valid superblock
3238  *
3239  * a faulty rdev _never_ has rdev->sb set.
3240  */
3241 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3242 {
3243 	char b[BDEVNAME_SIZE];
3244 	int err;
3245 	struct md_rdev *rdev;
3246 	sector_t size;
3247 
3248 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3249 	if (!rdev) {
3250 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3251 		return ERR_PTR(-ENOMEM);
3252 	}
3253 
3254 	err = md_rdev_init(rdev);
3255 	if (err)
3256 		goto abort_free;
3257 	err = alloc_disk_sb(rdev);
3258 	if (err)
3259 		goto abort_free;
3260 
3261 	err = lock_rdev(rdev, newdev, super_format == -2);
3262 	if (err)
3263 		goto abort_free;
3264 
3265 	kobject_init(&rdev->kobj, &rdev_ktype);
3266 
3267 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3268 	if (!size) {
3269 		printk(KERN_WARNING
3270 			"md: %s has zero or unknown size, marking faulty!\n",
3271 			bdevname(rdev->bdev,b));
3272 		err = -EINVAL;
3273 		goto abort_free;
3274 	}
3275 
3276 	if (super_format >= 0) {
3277 		err = super_types[super_format].
3278 			load_super(rdev, NULL, super_minor);
3279 		if (err == -EINVAL) {
3280 			printk(KERN_WARNING
3281 				"md: %s does not have a valid v%d.%d "
3282 			       "superblock, not importing!\n",
3283 				bdevname(rdev->bdev,b),
3284 			       super_format, super_minor);
3285 			goto abort_free;
3286 		}
3287 		if (err < 0) {
3288 			printk(KERN_WARNING
3289 				"md: could not read %s's sb, not importing!\n",
3290 				bdevname(rdev->bdev,b));
3291 			goto abort_free;
3292 		}
3293 	}
3294 
3295 	return rdev;
3296 
3297 abort_free:
3298 	if (rdev->bdev)
3299 		unlock_rdev(rdev);
3300 	md_rdev_clear(rdev);
3301 	kfree(rdev);
3302 	return ERR_PTR(err);
3303 }
3304 
3305 /*
3306  * Check a full RAID array for plausibility
3307  */
3308 
3309 
3310 static void analyze_sbs(struct mddev * mddev)
3311 {
3312 	int i;
3313 	struct md_rdev *rdev, *freshest, *tmp;
3314 	char b[BDEVNAME_SIZE];
3315 
3316 	freshest = NULL;
3317 	rdev_for_each_safe(rdev, tmp, mddev)
3318 		switch (super_types[mddev->major_version].
3319 			load_super(rdev, freshest, mddev->minor_version)) {
3320 		case 1:
3321 			freshest = rdev;
3322 			break;
3323 		case 0:
3324 			break;
3325 		default:
3326 			printk( KERN_ERR \
3327 				"md: fatal superblock inconsistency in %s"
3328 				" -- removing from array\n",
3329 				bdevname(rdev->bdev,b));
3330 			kick_rdev_from_array(rdev);
3331 		}
3332 
3333 
3334 	super_types[mddev->major_version].
3335 		validate_super(mddev, freshest);
3336 
3337 	i = 0;
3338 	rdev_for_each_safe(rdev, tmp, mddev) {
3339 		if (mddev->max_disks &&
3340 		    (rdev->desc_nr >= mddev->max_disks ||
3341 		     i > mddev->max_disks)) {
3342 			printk(KERN_WARNING
3343 			       "md: %s: %s: only %d devices permitted\n",
3344 			       mdname(mddev), bdevname(rdev->bdev, b),
3345 			       mddev->max_disks);
3346 			kick_rdev_from_array(rdev);
3347 			continue;
3348 		}
3349 		if (rdev != freshest)
3350 			if (super_types[mddev->major_version].
3351 			    validate_super(mddev, rdev)) {
3352 				printk(KERN_WARNING "md: kicking non-fresh %s"
3353 					" from array!\n",
3354 					bdevname(rdev->bdev,b));
3355 				kick_rdev_from_array(rdev);
3356 				continue;
3357 			}
3358 		if (mddev->level == LEVEL_MULTIPATH) {
3359 			rdev->desc_nr = i++;
3360 			rdev->raid_disk = rdev->desc_nr;
3361 			set_bit(In_sync, &rdev->flags);
3362 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3363 			rdev->raid_disk = -1;
3364 			clear_bit(In_sync, &rdev->flags);
3365 		}
3366 	}
3367 }
3368 
3369 /* Read a fixed-point number.
3370  * Numbers in sysfs attributes should be in "standard" units where
3371  * possible, so time should be in seconds.
3372  * However we internally use a a much smaller unit such as
3373  * milliseconds or jiffies.
3374  * This function takes a decimal number with a possible fractional
3375  * component, and produces an integer which is the result of
3376  * multiplying that number by 10^'scale'.
3377  * all without any floating-point arithmetic.
3378  */
3379 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3380 {
3381 	unsigned long result = 0;
3382 	long decimals = -1;
3383 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3384 		if (*cp == '.')
3385 			decimals = 0;
3386 		else if (decimals < scale) {
3387 			unsigned int value;
3388 			value = *cp - '0';
3389 			result = result * 10 + value;
3390 			if (decimals >= 0)
3391 				decimals++;
3392 		}
3393 		cp++;
3394 	}
3395 	if (*cp == '\n')
3396 		cp++;
3397 	if (*cp)
3398 		return -EINVAL;
3399 	if (decimals < 0)
3400 		decimals = 0;
3401 	while (decimals < scale) {
3402 		result *= 10;
3403 		decimals ++;
3404 	}
3405 	*res = result;
3406 	return 0;
3407 }
3408 
3409 
3410 static void md_safemode_timeout(unsigned long data);
3411 
3412 static ssize_t
3413 safe_delay_show(struct mddev *mddev, char *page)
3414 {
3415 	int msec = (mddev->safemode_delay*1000)/HZ;
3416 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3417 }
3418 static ssize_t
3419 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3420 {
3421 	unsigned long msec;
3422 
3423 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3424 		return -EINVAL;
3425 	if (msec == 0)
3426 		mddev->safemode_delay = 0;
3427 	else {
3428 		unsigned long old_delay = mddev->safemode_delay;
3429 		mddev->safemode_delay = (msec*HZ)/1000;
3430 		if (mddev->safemode_delay == 0)
3431 			mddev->safemode_delay = 1;
3432 		if (mddev->safemode_delay < old_delay || old_delay == 0)
3433 			md_safemode_timeout((unsigned long)mddev);
3434 	}
3435 	return len;
3436 }
3437 static struct md_sysfs_entry md_safe_delay =
3438 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3439 
3440 static ssize_t
3441 level_show(struct mddev *mddev, char *page)
3442 {
3443 	struct md_personality *p = mddev->pers;
3444 	if (p)
3445 		return sprintf(page, "%s\n", p->name);
3446 	else if (mddev->clevel[0])
3447 		return sprintf(page, "%s\n", mddev->clevel);
3448 	else if (mddev->level != LEVEL_NONE)
3449 		return sprintf(page, "%d\n", mddev->level);
3450 	else
3451 		return 0;
3452 }
3453 
3454 static ssize_t
3455 level_store(struct mddev *mddev, const char *buf, size_t len)
3456 {
3457 	char clevel[16];
3458 	ssize_t rv = len;
3459 	struct md_personality *pers;
3460 	long level;
3461 	void *priv;
3462 	struct md_rdev *rdev;
3463 
3464 	if (mddev->pers == NULL) {
3465 		if (len == 0)
3466 			return 0;
3467 		if (len >= sizeof(mddev->clevel))
3468 			return -ENOSPC;
3469 		strncpy(mddev->clevel, buf, len);
3470 		if (mddev->clevel[len-1] == '\n')
3471 			len--;
3472 		mddev->clevel[len] = 0;
3473 		mddev->level = LEVEL_NONE;
3474 		return rv;
3475 	}
3476 
3477 	/* request to change the personality.  Need to ensure:
3478 	 *  - array is not engaged in resync/recovery/reshape
3479 	 *  - old personality can be suspended
3480 	 *  - new personality will access other array.
3481 	 */
3482 
3483 	if (mddev->sync_thread ||
3484 	    mddev->reshape_position != MaxSector ||
3485 	    mddev->sysfs_active)
3486 		return -EBUSY;
3487 
3488 	if (!mddev->pers->quiesce) {
3489 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3490 		       mdname(mddev), mddev->pers->name);
3491 		return -EINVAL;
3492 	}
3493 
3494 	/* Now find the new personality */
3495 	if (len == 0 || len >= sizeof(clevel))
3496 		return -EINVAL;
3497 	strncpy(clevel, buf, len);
3498 	if (clevel[len-1] == '\n')
3499 		len--;
3500 	clevel[len] = 0;
3501 	if (kstrtol(clevel, 10, &level))
3502 		level = LEVEL_NONE;
3503 
3504 	if (request_module("md-%s", clevel) != 0)
3505 		request_module("md-level-%s", clevel);
3506 	spin_lock(&pers_lock);
3507 	pers = find_pers(level, clevel);
3508 	if (!pers || !try_module_get(pers->owner)) {
3509 		spin_unlock(&pers_lock);
3510 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3511 		return -EINVAL;
3512 	}
3513 	spin_unlock(&pers_lock);
3514 
3515 	if (pers == mddev->pers) {
3516 		/* Nothing to do! */
3517 		module_put(pers->owner);
3518 		return rv;
3519 	}
3520 	if (!pers->takeover) {
3521 		module_put(pers->owner);
3522 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3523 		       mdname(mddev), clevel);
3524 		return -EINVAL;
3525 	}
3526 
3527 	rdev_for_each(rdev, mddev)
3528 		rdev->new_raid_disk = rdev->raid_disk;
3529 
3530 	/* ->takeover must set new_* and/or delta_disks
3531 	 * if it succeeds, and may set them when it fails.
3532 	 */
3533 	priv = pers->takeover(mddev);
3534 	if (IS_ERR(priv)) {
3535 		mddev->new_level = mddev->level;
3536 		mddev->new_layout = mddev->layout;
3537 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3538 		mddev->raid_disks -= mddev->delta_disks;
3539 		mddev->delta_disks = 0;
3540 		mddev->reshape_backwards = 0;
3541 		module_put(pers->owner);
3542 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3543 		       mdname(mddev), clevel);
3544 		return PTR_ERR(priv);
3545 	}
3546 
3547 	/* Looks like we have a winner */
3548 	mddev_suspend(mddev);
3549 	mddev->pers->stop(mddev);
3550 
3551 	if (mddev->pers->sync_request == NULL &&
3552 	    pers->sync_request != NULL) {
3553 		/* need to add the md_redundancy_group */
3554 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555 			printk(KERN_WARNING
3556 			       "md: cannot register extra attributes for %s\n",
3557 			       mdname(mddev));
3558 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3559 	}
3560 	if (mddev->pers->sync_request != NULL &&
3561 	    pers->sync_request == NULL) {
3562 		/* need to remove the md_redundancy_group */
3563 		if (mddev->to_remove == NULL)
3564 			mddev->to_remove = &md_redundancy_group;
3565 	}
3566 
3567 	if (mddev->pers->sync_request == NULL &&
3568 	    mddev->external) {
3569 		/* We are converting from a no-redundancy array
3570 		 * to a redundancy array and metadata is managed
3571 		 * externally so we need to be sure that writes
3572 		 * won't block due to a need to transition
3573 		 *      clean->dirty
3574 		 * until external management is started.
3575 		 */
3576 		mddev->in_sync = 0;
3577 		mddev->safemode_delay = 0;
3578 		mddev->safemode = 0;
3579 	}
3580 
3581 	rdev_for_each(rdev, mddev) {
3582 		if (rdev->raid_disk < 0)
3583 			continue;
3584 		if (rdev->new_raid_disk >= mddev->raid_disks)
3585 			rdev->new_raid_disk = -1;
3586 		if (rdev->new_raid_disk == rdev->raid_disk)
3587 			continue;
3588 		sysfs_unlink_rdev(mddev, rdev);
3589 	}
3590 	rdev_for_each(rdev, mddev) {
3591 		if (rdev->raid_disk < 0)
3592 			continue;
3593 		if (rdev->new_raid_disk == rdev->raid_disk)
3594 			continue;
3595 		rdev->raid_disk = rdev->new_raid_disk;
3596 		if (rdev->raid_disk < 0)
3597 			clear_bit(In_sync, &rdev->flags);
3598 		else {
3599 			if (sysfs_link_rdev(mddev, rdev))
3600 				printk(KERN_WARNING "md: cannot register rd%d"
3601 				       " for %s after level change\n",
3602 				       rdev->raid_disk, mdname(mddev));
3603 		}
3604 	}
3605 
3606 	module_put(mddev->pers->owner);
3607 	mddev->pers = pers;
3608 	mddev->private = priv;
3609 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3610 	mddev->level = mddev->new_level;
3611 	mddev->layout = mddev->new_layout;
3612 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3613 	mddev->delta_disks = 0;
3614 	mddev->reshape_backwards = 0;
3615 	mddev->degraded = 0;
3616 	if (mddev->pers->sync_request == NULL) {
3617 		/* this is now an array without redundancy, so
3618 		 * it must always be in_sync
3619 		 */
3620 		mddev->in_sync = 1;
3621 		del_timer_sync(&mddev->safemode_timer);
3622 	}
3623 	pers->run(mddev);
3624 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3625 	mddev_resume(mddev);
3626 	sysfs_notify(&mddev->kobj, NULL, "level");
3627 	md_new_event(mddev);
3628 	return rv;
3629 }
3630 
3631 static struct md_sysfs_entry md_level =
3632 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3633 
3634 
3635 static ssize_t
3636 layout_show(struct mddev *mddev, char *page)
3637 {
3638 	/* just a number, not meaningful for all levels */
3639 	if (mddev->reshape_position != MaxSector &&
3640 	    mddev->layout != mddev->new_layout)
3641 		return sprintf(page, "%d (%d)\n",
3642 			       mddev->new_layout, mddev->layout);
3643 	return sprintf(page, "%d\n", mddev->layout);
3644 }
3645 
3646 static ssize_t
3647 layout_store(struct mddev *mddev, const char *buf, size_t len)
3648 {
3649 	char *e;
3650 	unsigned long n = simple_strtoul(buf, &e, 10);
3651 
3652 	if (!*buf || (*e && *e != '\n'))
3653 		return -EINVAL;
3654 
3655 	if (mddev->pers) {
3656 		int err;
3657 		if (mddev->pers->check_reshape == NULL)
3658 			return -EBUSY;
3659 		mddev->new_layout = n;
3660 		err = mddev->pers->check_reshape(mddev);
3661 		if (err) {
3662 			mddev->new_layout = mddev->layout;
3663 			return err;
3664 		}
3665 	} else {
3666 		mddev->new_layout = n;
3667 		if (mddev->reshape_position == MaxSector)
3668 			mddev->layout = n;
3669 	}
3670 	return len;
3671 }
3672 static struct md_sysfs_entry md_layout =
3673 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3674 
3675 
3676 static ssize_t
3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679 	if (mddev->raid_disks == 0)
3680 		return 0;
3681 	if (mddev->reshape_position != MaxSector &&
3682 	    mddev->delta_disks != 0)
3683 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684 			       mddev->raid_disks - mddev->delta_disks);
3685 	return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687 
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689 
3690 static ssize_t
3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 	char *e;
3694 	int rv = 0;
3695 	unsigned long n = simple_strtoul(buf, &e, 10);
3696 
3697 	if (!*buf || (*e && *e != '\n'))
3698 		return -EINVAL;
3699 
3700 	if (mddev->pers)
3701 		rv = update_raid_disks(mddev, n);
3702 	else if (mddev->reshape_position != MaxSector) {
3703 		struct md_rdev *rdev;
3704 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3705 
3706 		rdev_for_each(rdev, mddev) {
3707 			if (olddisks < n &&
3708 			    rdev->data_offset < rdev->new_data_offset)
3709 				return -EINVAL;
3710 			if (olddisks > n &&
3711 			    rdev->data_offset > rdev->new_data_offset)
3712 				return -EINVAL;
3713 		}
3714 		mddev->delta_disks = n - olddisks;
3715 		mddev->raid_disks = n;
3716 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3717 	} else
3718 		mddev->raid_disks = n;
3719 	return rv ? rv : len;
3720 }
3721 static struct md_sysfs_entry md_raid_disks =
3722 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3723 
3724 static ssize_t
3725 chunk_size_show(struct mddev *mddev, char *page)
3726 {
3727 	if (mddev->reshape_position != MaxSector &&
3728 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3729 		return sprintf(page, "%d (%d)\n",
3730 			       mddev->new_chunk_sectors << 9,
3731 			       mddev->chunk_sectors << 9);
3732 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3733 }
3734 
3735 static ssize_t
3736 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3737 {
3738 	char *e;
3739 	unsigned long n = simple_strtoul(buf, &e, 10);
3740 
3741 	if (!*buf || (*e && *e != '\n'))
3742 		return -EINVAL;
3743 
3744 	if (mddev->pers) {
3745 		int err;
3746 		if (mddev->pers->check_reshape == NULL)
3747 			return -EBUSY;
3748 		mddev->new_chunk_sectors = n >> 9;
3749 		err = mddev->pers->check_reshape(mddev);
3750 		if (err) {
3751 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3752 			return err;
3753 		}
3754 	} else {
3755 		mddev->new_chunk_sectors = n >> 9;
3756 		if (mddev->reshape_position == MaxSector)
3757 			mddev->chunk_sectors = n >> 9;
3758 	}
3759 	return len;
3760 }
3761 static struct md_sysfs_entry md_chunk_size =
3762 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3763 
3764 static ssize_t
3765 resync_start_show(struct mddev *mddev, char *page)
3766 {
3767 	if (mddev->recovery_cp == MaxSector)
3768 		return sprintf(page, "none\n");
3769 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3770 }
3771 
3772 static ssize_t
3773 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3774 {
3775 	char *e;
3776 	unsigned long long n = simple_strtoull(buf, &e, 10);
3777 
3778 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3779 		return -EBUSY;
3780 	if (cmd_match(buf, "none"))
3781 		n = MaxSector;
3782 	else if (!*buf || (*e && *e != '\n'))
3783 		return -EINVAL;
3784 
3785 	mddev->recovery_cp = n;
3786 	if (mddev->pers)
3787 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3788 	return len;
3789 }
3790 static struct md_sysfs_entry md_resync_start =
3791 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3792 
3793 /*
3794  * The array state can be:
3795  *
3796  * clear
3797  *     No devices, no size, no level
3798  *     Equivalent to STOP_ARRAY ioctl
3799  * inactive
3800  *     May have some settings, but array is not active
3801  *        all IO results in error
3802  *     When written, doesn't tear down array, but just stops it
3803  * suspended (not supported yet)
3804  *     All IO requests will block. The array can be reconfigured.
3805  *     Writing this, if accepted, will block until array is quiescent
3806  * readonly
3807  *     no resync can happen.  no superblocks get written.
3808  *     write requests fail
3809  * read-auto
3810  *     like readonly, but behaves like 'clean' on a write request.
3811  *
3812  * clean - no pending writes, but otherwise active.
3813  *     When written to inactive array, starts without resync
3814  *     If a write request arrives then
3815  *       if metadata is known, mark 'dirty' and switch to 'active'.
3816  *       if not known, block and switch to write-pending
3817  *     If written to an active array that has pending writes, then fails.
3818  * active
3819  *     fully active: IO and resync can be happening.
3820  *     When written to inactive array, starts with resync
3821  *
3822  * write-pending
3823  *     clean, but writes are blocked waiting for 'active' to be written.
3824  *
3825  * active-idle
3826  *     like active, but no writes have been seen for a while (100msec).
3827  *
3828  */
3829 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3830 		   write_pending, active_idle, bad_word};
3831 static char *array_states[] = {
3832 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3833 	"write-pending", "active-idle", NULL };
3834 
3835 static int match_word(const char *word, char **list)
3836 {
3837 	int n;
3838 	for (n=0; list[n]; n++)
3839 		if (cmd_match(word, list[n]))
3840 			break;
3841 	return n;
3842 }
3843 
3844 static ssize_t
3845 array_state_show(struct mddev *mddev, char *page)
3846 {
3847 	enum array_state st = inactive;
3848 
3849 	if (mddev->pers)
3850 		switch(mddev->ro) {
3851 		case 1:
3852 			st = readonly;
3853 			break;
3854 		case 2:
3855 			st = read_auto;
3856 			break;
3857 		case 0:
3858 			if (mddev->in_sync)
3859 				st = clean;
3860 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3861 				st = write_pending;
3862 			else if (mddev->safemode)
3863 				st = active_idle;
3864 			else
3865 				st = active;
3866 		}
3867 	else {
3868 		if (list_empty(&mddev->disks) &&
3869 		    mddev->raid_disks == 0 &&
3870 		    mddev->dev_sectors == 0)
3871 			st = clear;
3872 		else
3873 			st = inactive;
3874 	}
3875 	return sprintf(page, "%s\n", array_states[st]);
3876 }
3877 
3878 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3879 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3880 static int do_md_run(struct mddev * mddev);
3881 static int restart_array(struct mddev *mddev);
3882 
3883 static ssize_t
3884 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3885 {
3886 	int err = -EINVAL;
3887 	enum array_state st = match_word(buf, array_states);
3888 	switch(st) {
3889 	case bad_word:
3890 		break;
3891 	case clear:
3892 		/* stopping an active array */
3893 		err = do_md_stop(mddev, 0, NULL);
3894 		break;
3895 	case inactive:
3896 		/* stopping an active array */
3897 		if (mddev->pers)
3898 			err = do_md_stop(mddev, 2, NULL);
3899 		else
3900 			err = 0; /* already inactive */
3901 		break;
3902 	case suspended:
3903 		break; /* not supported yet */
3904 	case readonly:
3905 		if (mddev->pers)
3906 			err = md_set_readonly(mddev, NULL);
3907 		else {
3908 			mddev->ro = 1;
3909 			set_disk_ro(mddev->gendisk, 1);
3910 			err = do_md_run(mddev);
3911 		}
3912 		break;
3913 	case read_auto:
3914 		if (mddev->pers) {
3915 			if (mddev->ro == 0)
3916 				err = md_set_readonly(mddev, NULL);
3917 			else if (mddev->ro == 1)
3918 				err = restart_array(mddev);
3919 			if (err == 0) {
3920 				mddev->ro = 2;
3921 				set_disk_ro(mddev->gendisk, 0);
3922 			}
3923 		} else {
3924 			mddev->ro = 2;
3925 			err = do_md_run(mddev);
3926 		}
3927 		break;
3928 	case clean:
3929 		if (mddev->pers) {
3930 			restart_array(mddev);
3931 			spin_lock_irq(&mddev->write_lock);
3932 			if (atomic_read(&mddev->writes_pending) == 0) {
3933 				if (mddev->in_sync == 0) {
3934 					mddev->in_sync = 1;
3935 					if (mddev->safemode == 1)
3936 						mddev->safemode = 0;
3937 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3938 				}
3939 				err = 0;
3940 			} else
3941 				err = -EBUSY;
3942 			spin_unlock_irq(&mddev->write_lock);
3943 		} else
3944 			err = -EINVAL;
3945 		break;
3946 	case active:
3947 		if (mddev->pers) {
3948 			restart_array(mddev);
3949 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3950 			wake_up(&mddev->sb_wait);
3951 			err = 0;
3952 		} else {
3953 			mddev->ro = 0;
3954 			set_disk_ro(mddev->gendisk, 0);
3955 			err = do_md_run(mddev);
3956 		}
3957 		break;
3958 	case write_pending:
3959 	case active_idle:
3960 		/* these cannot be set */
3961 		break;
3962 	}
3963 	if (err)
3964 		return err;
3965 	else {
3966 		if (mddev->hold_active == UNTIL_IOCTL)
3967 			mddev->hold_active = 0;
3968 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3969 		return len;
3970 	}
3971 }
3972 static struct md_sysfs_entry md_array_state =
3973 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3974 
3975 static ssize_t
3976 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3977 	return sprintf(page, "%d\n",
3978 		       atomic_read(&mddev->max_corr_read_errors));
3979 }
3980 
3981 static ssize_t
3982 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3983 {
3984 	char *e;
3985 	unsigned long n = simple_strtoul(buf, &e, 10);
3986 
3987 	if (*buf && (*e == 0 || *e == '\n')) {
3988 		atomic_set(&mddev->max_corr_read_errors, n);
3989 		return len;
3990 	}
3991 	return -EINVAL;
3992 }
3993 
3994 static struct md_sysfs_entry max_corr_read_errors =
3995 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3996 	max_corrected_read_errors_store);
3997 
3998 static ssize_t
3999 null_show(struct mddev *mddev, char *page)
4000 {
4001 	return -EINVAL;
4002 }
4003 
4004 static ssize_t
4005 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4006 {
4007 	/* buf must be %d:%d\n? giving major and minor numbers */
4008 	/* The new device is added to the array.
4009 	 * If the array has a persistent superblock, we read the
4010 	 * superblock to initialise info and check validity.
4011 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4012 	 * which mainly checks size.
4013 	 */
4014 	char *e;
4015 	int major = simple_strtoul(buf, &e, 10);
4016 	int minor;
4017 	dev_t dev;
4018 	struct md_rdev *rdev;
4019 	int err;
4020 
4021 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4022 		return -EINVAL;
4023 	minor = simple_strtoul(e+1, &e, 10);
4024 	if (*e && *e != '\n')
4025 		return -EINVAL;
4026 	dev = MKDEV(major, minor);
4027 	if (major != MAJOR(dev) ||
4028 	    minor != MINOR(dev))
4029 		return -EOVERFLOW;
4030 
4031 
4032 	if (mddev->persistent) {
4033 		rdev = md_import_device(dev, mddev->major_version,
4034 					mddev->minor_version);
4035 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4036 			struct md_rdev *rdev0
4037 				= list_entry(mddev->disks.next,
4038 					     struct md_rdev, same_set);
4039 			err = super_types[mddev->major_version]
4040 				.load_super(rdev, rdev0, mddev->minor_version);
4041 			if (err < 0)
4042 				goto out;
4043 		}
4044 	} else if (mddev->external)
4045 		rdev = md_import_device(dev, -2, -1);
4046 	else
4047 		rdev = md_import_device(dev, -1, -1);
4048 
4049 	if (IS_ERR(rdev))
4050 		return PTR_ERR(rdev);
4051 	err = bind_rdev_to_array(rdev, mddev);
4052  out:
4053 	if (err)
4054 		export_rdev(rdev);
4055 	return err ? err : len;
4056 }
4057 
4058 static struct md_sysfs_entry md_new_device =
4059 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4060 
4061 static ssize_t
4062 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4063 {
4064 	char *end;
4065 	unsigned long chunk, end_chunk;
4066 
4067 	if (!mddev->bitmap)
4068 		goto out;
4069 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4070 	while (*buf) {
4071 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4072 		if (buf == end) break;
4073 		if (*end == '-') { /* range */
4074 			buf = end + 1;
4075 			end_chunk = simple_strtoul(buf, &end, 0);
4076 			if (buf == end) break;
4077 		}
4078 		if (*end && !isspace(*end)) break;
4079 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4080 		buf = skip_spaces(end);
4081 	}
4082 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4083 out:
4084 	return len;
4085 }
4086 
4087 static struct md_sysfs_entry md_bitmap =
4088 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4089 
4090 static ssize_t
4091 size_show(struct mddev *mddev, char *page)
4092 {
4093 	return sprintf(page, "%llu\n",
4094 		(unsigned long long)mddev->dev_sectors / 2);
4095 }
4096 
4097 static int update_size(struct mddev *mddev, sector_t num_sectors);
4098 
4099 static ssize_t
4100 size_store(struct mddev *mddev, const char *buf, size_t len)
4101 {
4102 	/* If array is inactive, we can reduce the component size, but
4103 	 * not increase it (except from 0).
4104 	 * If array is active, we can try an on-line resize
4105 	 */
4106 	sector_t sectors;
4107 	int err = strict_blocks_to_sectors(buf, &sectors);
4108 
4109 	if (err < 0)
4110 		return err;
4111 	if (mddev->pers) {
4112 		err = update_size(mddev, sectors);
4113 		md_update_sb(mddev, 1);
4114 	} else {
4115 		if (mddev->dev_sectors == 0 ||
4116 		    mddev->dev_sectors > sectors)
4117 			mddev->dev_sectors = sectors;
4118 		else
4119 			err = -ENOSPC;
4120 	}
4121 	return err ? err : len;
4122 }
4123 
4124 static struct md_sysfs_entry md_size =
4125 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4126 
4127 
4128 /* Metadata version.
4129  * This is one of
4130  *   'none' for arrays with no metadata (good luck...)
4131  *   'external' for arrays with externally managed metadata,
4132  * or N.M for internally known formats
4133  */
4134 static ssize_t
4135 metadata_show(struct mddev *mddev, char *page)
4136 {
4137 	if (mddev->persistent)
4138 		return sprintf(page, "%d.%d\n",
4139 			       mddev->major_version, mddev->minor_version);
4140 	else if (mddev->external)
4141 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4142 	else
4143 		return sprintf(page, "none\n");
4144 }
4145 
4146 static ssize_t
4147 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4148 {
4149 	int major, minor;
4150 	char *e;
4151 	/* Changing the details of 'external' metadata is
4152 	 * always permitted.  Otherwise there must be
4153 	 * no devices attached to the array.
4154 	 */
4155 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4156 		;
4157 	else if (!list_empty(&mddev->disks))
4158 		return -EBUSY;
4159 
4160 	if (cmd_match(buf, "none")) {
4161 		mddev->persistent = 0;
4162 		mddev->external = 0;
4163 		mddev->major_version = 0;
4164 		mddev->minor_version = 90;
4165 		return len;
4166 	}
4167 	if (strncmp(buf, "external:", 9) == 0) {
4168 		size_t namelen = len-9;
4169 		if (namelen >= sizeof(mddev->metadata_type))
4170 			namelen = sizeof(mddev->metadata_type)-1;
4171 		strncpy(mddev->metadata_type, buf+9, namelen);
4172 		mddev->metadata_type[namelen] = 0;
4173 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4174 			mddev->metadata_type[--namelen] = 0;
4175 		mddev->persistent = 0;
4176 		mddev->external = 1;
4177 		mddev->major_version = 0;
4178 		mddev->minor_version = 90;
4179 		return len;
4180 	}
4181 	major = simple_strtoul(buf, &e, 10);
4182 	if (e==buf || *e != '.')
4183 		return -EINVAL;
4184 	buf = e+1;
4185 	minor = simple_strtoul(buf, &e, 10);
4186 	if (e==buf || (*e && *e != '\n') )
4187 		return -EINVAL;
4188 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4189 		return -ENOENT;
4190 	mddev->major_version = major;
4191 	mddev->minor_version = minor;
4192 	mddev->persistent = 1;
4193 	mddev->external = 0;
4194 	return len;
4195 }
4196 
4197 static struct md_sysfs_entry md_metadata =
4198 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4199 
4200 static ssize_t
4201 action_show(struct mddev *mddev, char *page)
4202 {
4203 	char *type = "idle";
4204 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4205 		type = "frozen";
4206 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4207 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4208 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4209 			type = "reshape";
4210 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4211 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4212 				type = "resync";
4213 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4214 				type = "check";
4215 			else
4216 				type = "repair";
4217 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4218 			type = "recover";
4219 	}
4220 	return sprintf(page, "%s\n", type);
4221 }
4222 
4223 static ssize_t
4224 action_store(struct mddev *mddev, const char *page, size_t len)
4225 {
4226 	if (!mddev->pers || !mddev->pers->sync_request)
4227 		return -EINVAL;
4228 
4229 	if (cmd_match(page, "frozen"))
4230 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231 	else
4232 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233 
4234 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4235 		if (mddev->sync_thread) {
4236 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237 			md_reap_sync_thread(mddev);
4238 		}
4239 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4240 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4241 		return -EBUSY;
4242 	else if (cmd_match(page, "resync"))
4243 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244 	else if (cmd_match(page, "recover")) {
4245 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247 	} else if (cmd_match(page, "reshape")) {
4248 		int err;
4249 		if (mddev->pers->start_reshape == NULL)
4250 			return -EINVAL;
4251 		err = mddev->pers->start_reshape(mddev);
4252 		if (err)
4253 			return err;
4254 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4255 	} else {
4256 		if (cmd_match(page, "check"))
4257 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258 		else if (!cmd_match(page, "repair"))
4259 			return -EINVAL;
4260 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262 	}
4263 	if (mddev->ro == 2) {
4264 		/* A write to sync_action is enough to justify
4265 		 * canceling read-auto mode
4266 		 */
4267 		mddev->ro = 0;
4268 		md_wakeup_thread(mddev->sync_thread);
4269 	}
4270 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271 	md_wakeup_thread(mddev->thread);
4272 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4273 	return len;
4274 }
4275 
4276 static struct md_sysfs_entry md_scan_mode =
4277 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4278 
4279 static ssize_t
4280 last_sync_action_show(struct mddev *mddev, char *page)
4281 {
4282 	return sprintf(page, "%s\n", mddev->last_sync_action);
4283 }
4284 
4285 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4286 
4287 static ssize_t
4288 mismatch_cnt_show(struct mddev *mddev, char *page)
4289 {
4290 	return sprintf(page, "%llu\n",
4291 		       (unsigned long long)
4292 		       atomic64_read(&mddev->resync_mismatches));
4293 }
4294 
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296 
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301 		       mddev->sync_speed_min ? "local": "system");
4302 }
4303 
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 	int min;
4308 	char *e;
4309 	if (strncmp(buf, "system", 6)==0) {
4310 		mddev->sync_speed_min = 0;
4311 		return len;
4312 	}
4313 	min = simple_strtoul(buf, &e, 10);
4314 	if (buf == e || (*e && *e != '\n') || min <= 0)
4315 		return -EINVAL;
4316 	mddev->sync_speed_min = min;
4317 	return len;
4318 }
4319 
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322 
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327 		       mddev->sync_speed_max ? "local": "system");
4328 }
4329 
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333 	int max;
4334 	char *e;
4335 	if (strncmp(buf, "system", 6)==0) {
4336 		mddev->sync_speed_max = 0;
4337 		return len;
4338 	}
4339 	max = simple_strtoul(buf, &e, 10);
4340 	if (buf == e || (*e && *e != '\n') || max <= 0)
4341 		return -EINVAL;
4342 	mddev->sync_speed_max = max;
4343 	return len;
4344 }
4345 
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348 
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355 
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359 	return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361 
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365 	long n;
4366 
4367 	if (kstrtol(buf, 10, &n))
4368 		return -EINVAL;
4369 
4370 	if (n != 0 && n != 1)
4371 		return -EINVAL;
4372 
4373 	mddev->parallel_resync = n;
4374 
4375 	if (mddev->sync_thread)
4376 		wake_up(&resync_wait);
4377 
4378 	return len;
4379 }
4380 
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384        sync_force_parallel_show, sync_force_parallel_store);
4385 
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389 	unsigned long resync, dt, db;
4390 	if (mddev->curr_resync == 0)
4391 		return sprintf(page, "none\n");
4392 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393 	dt = (jiffies - mddev->resync_mark) / HZ;
4394 	if (!dt) dt++;
4395 	db = resync - mddev->resync_mark_cnt;
4396 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398 
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400 
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404 	unsigned long long max_sectors, resync;
4405 
4406 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407 		return sprintf(page, "none\n");
4408 
4409 	if (mddev->curr_resync == 1 ||
4410 	    mddev->curr_resync == 2)
4411 		return sprintf(page, "delayed\n");
4412 
4413 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415 		max_sectors = mddev->resync_max_sectors;
4416 	else
4417 		max_sectors = mddev->dev_sectors;
4418 
4419 	resync = mddev->curr_resync_completed;
4420 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422 
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424 
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428 	return sprintf(page, "%llu\n",
4429 		       (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434 	unsigned long long min;
4435 	if (kstrtoull(buf, 10, &min))
4436 		return -EINVAL;
4437 	if (min > mddev->resync_max)
4438 		return -EINVAL;
4439 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440 		return -EBUSY;
4441 
4442 	/* Must be a multiple of chunk_size */
4443 	if (mddev->chunk_sectors) {
4444 		sector_t temp = min;
4445 		if (sector_div(temp, mddev->chunk_sectors))
4446 			return -EINVAL;
4447 	}
4448 	mddev->resync_min = min;
4449 
4450 	return len;
4451 }
4452 
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455 
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459 	if (mddev->resync_max == MaxSector)
4460 		return sprintf(page, "max\n");
4461 	else
4462 		return sprintf(page, "%llu\n",
4463 			       (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468 	if (strncmp(buf, "max", 3) == 0)
4469 		mddev->resync_max = MaxSector;
4470 	else {
4471 		unsigned long long max;
4472 		if (kstrtoull(buf, 10, &max))
4473 			return -EINVAL;
4474 		if (max < mddev->resync_min)
4475 			return -EINVAL;
4476 		if (max < mddev->resync_max &&
4477 		    mddev->ro == 0 &&
4478 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479 			return -EBUSY;
4480 
4481 		/* Must be a multiple of chunk_size */
4482 		if (mddev->chunk_sectors) {
4483 			sector_t temp = max;
4484 			if (sector_div(temp, mddev->chunk_sectors))
4485 				return -EINVAL;
4486 		}
4487 		mddev->resync_max = max;
4488 	}
4489 	wake_up(&mddev->recovery_wait);
4490 	return len;
4491 }
4492 
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495 
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501 
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505 	char *e;
4506 	unsigned long long new = simple_strtoull(buf, &e, 10);
4507 	unsigned long long old = mddev->suspend_lo;
4508 
4509 	if (mddev->pers == NULL ||
4510 	    mddev->pers->quiesce == NULL)
4511 		return -EINVAL;
4512 	if (buf == e || (*e && *e != '\n'))
4513 		return -EINVAL;
4514 
4515 	mddev->suspend_lo = new;
4516 	if (new >= old)
4517 		/* Shrinking suspended region */
4518 		mddev->pers->quiesce(mddev, 2);
4519 	else {
4520 		/* Expanding suspended region - need to wait */
4521 		mddev->pers->quiesce(mddev, 1);
4522 		mddev->pers->quiesce(mddev, 0);
4523 	}
4524 	return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528 
4529 
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535 
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539 	char *e;
4540 	unsigned long long new = simple_strtoull(buf, &e, 10);
4541 	unsigned long long old = mddev->suspend_hi;
4542 
4543 	if (mddev->pers == NULL ||
4544 	    mddev->pers->quiesce == NULL)
4545 		return -EINVAL;
4546 	if (buf == e || (*e && *e != '\n'))
4547 		return -EINVAL;
4548 
4549 	mddev->suspend_hi = new;
4550 	if (new <= old)
4551 		/* Shrinking suspended region */
4552 		mddev->pers->quiesce(mddev, 2);
4553 	else {
4554 		/* Expanding suspended region - need to wait */
4555 		mddev->pers->quiesce(mddev, 1);
4556 		mddev->pers->quiesce(mddev, 0);
4557 	}
4558 	return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562 
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566 	if (mddev->reshape_position != MaxSector)
4567 		return sprintf(page, "%llu\n",
4568 			       (unsigned long long)mddev->reshape_position);
4569 	strcpy(page, "none\n");
4570 	return 5;
4571 }
4572 
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 	struct md_rdev *rdev;
4577 	char *e;
4578 	unsigned long long new = simple_strtoull(buf, &e, 10);
4579 	if (mddev->pers)
4580 		return -EBUSY;
4581 	if (buf == e || (*e && *e != '\n'))
4582 		return -EINVAL;
4583 	mddev->reshape_position = new;
4584 	mddev->delta_disks = 0;
4585 	mddev->reshape_backwards = 0;
4586 	mddev->new_level = mddev->level;
4587 	mddev->new_layout = mddev->layout;
4588 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4589 	rdev_for_each(rdev, mddev)
4590 		rdev->new_data_offset = rdev->data_offset;
4591 	return len;
4592 }
4593 
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596        reshape_position_store);
4597 
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601 	return sprintf(page, "%s\n",
4602 		       mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604 
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608 	int backwards = 0;
4609 	if (cmd_match(buf, "forwards"))
4610 		backwards = 0;
4611 	else if (cmd_match(buf, "backwards"))
4612 		backwards = 1;
4613 	else
4614 		return -EINVAL;
4615 	if (mddev->reshape_backwards == backwards)
4616 		return len;
4617 
4618 	/* check if we are allowed to change */
4619 	if (mddev->delta_disks)
4620 		return -EBUSY;
4621 
4622 	if (mddev->persistent &&
4623 	    mddev->major_version == 0)
4624 		return -EINVAL;
4625 
4626 	mddev->reshape_backwards = backwards;
4627 	return len;
4628 }
4629 
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632        reshape_direction_store);
4633 
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637 	if (mddev->external_size)
4638 		return sprintf(page, "%llu\n",
4639 			       (unsigned long long)mddev->array_sectors/2);
4640 	else
4641 		return sprintf(page, "default\n");
4642 }
4643 
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 	sector_t sectors;
4648 
4649 	if (strncmp(buf, "default", 7) == 0) {
4650 		if (mddev->pers)
4651 			sectors = mddev->pers->size(mddev, 0, 0);
4652 		else
4653 			sectors = mddev->array_sectors;
4654 
4655 		mddev->external_size = 0;
4656 	} else {
4657 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658 			return -EINVAL;
4659 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660 			return -E2BIG;
4661 
4662 		mddev->external_size = 1;
4663 	}
4664 
4665 	mddev->array_sectors = sectors;
4666 	if (mddev->pers) {
4667 		set_capacity(mddev->gendisk, mddev->array_sectors);
4668 		revalidate_disk(mddev->gendisk);
4669 	}
4670 	return len;
4671 }
4672 
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675        array_size_store);
4676 
4677 static struct attribute *md_default_attrs[] = {
4678 	&md_level.attr,
4679 	&md_layout.attr,
4680 	&md_raid_disks.attr,
4681 	&md_chunk_size.attr,
4682 	&md_size.attr,
4683 	&md_resync_start.attr,
4684 	&md_metadata.attr,
4685 	&md_new_device.attr,
4686 	&md_safe_delay.attr,
4687 	&md_array_state.attr,
4688 	&md_reshape_position.attr,
4689 	&md_reshape_direction.attr,
4690 	&md_array_size.attr,
4691 	&max_corr_read_errors.attr,
4692 	NULL,
4693 };
4694 
4695 static struct attribute *md_redundancy_attrs[] = {
4696 	&md_scan_mode.attr,
4697 	&md_last_scan_mode.attr,
4698 	&md_mismatches.attr,
4699 	&md_sync_min.attr,
4700 	&md_sync_max.attr,
4701 	&md_sync_speed.attr,
4702 	&md_sync_force_parallel.attr,
4703 	&md_sync_completed.attr,
4704 	&md_min_sync.attr,
4705 	&md_max_sync.attr,
4706 	&md_suspend_lo.attr,
4707 	&md_suspend_hi.attr,
4708 	&md_bitmap.attr,
4709 	&md_degraded.attr,
4710 	NULL,
4711 };
4712 static struct attribute_group md_redundancy_group = {
4713 	.name = NULL,
4714 	.attrs = md_redundancy_attrs,
4715 };
4716 
4717 
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4720 {
4721 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723 	ssize_t rv;
4724 
4725 	if (!entry->show)
4726 		return -EIO;
4727 	spin_lock(&all_mddevs_lock);
4728 	if (list_empty(&mddev->all_mddevs)) {
4729 		spin_unlock(&all_mddevs_lock);
4730 		return -EBUSY;
4731 	}
4732 	mddev_get(mddev);
4733 	spin_unlock(&all_mddevs_lock);
4734 
4735 	rv = mddev_lock(mddev);
4736 	if (!rv) {
4737 		rv = entry->show(mddev, page);
4738 		mddev_unlock(mddev);
4739 	}
4740 	mddev_put(mddev);
4741 	return rv;
4742 }
4743 
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746 	      const char *page, size_t length)
4747 {
4748 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750 	ssize_t rv;
4751 
4752 	if (!entry->store)
4753 		return -EIO;
4754 	if (!capable(CAP_SYS_ADMIN))
4755 		return -EACCES;
4756 	spin_lock(&all_mddevs_lock);
4757 	if (list_empty(&mddev->all_mddevs)) {
4758 		spin_unlock(&all_mddevs_lock);
4759 		return -EBUSY;
4760 	}
4761 	mddev_get(mddev);
4762 	spin_unlock(&all_mddevs_lock);
4763 	if (entry->store == new_dev_store)
4764 		flush_workqueue(md_misc_wq);
4765 	rv = mddev_lock(mddev);
4766 	if (!rv) {
4767 		rv = entry->store(mddev, page, length);
4768 		mddev_unlock(mddev);
4769 	}
4770 	mddev_put(mddev);
4771 	return rv;
4772 }
4773 
4774 static void md_free(struct kobject *ko)
4775 {
4776 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4777 
4778 	if (mddev->sysfs_state)
4779 		sysfs_put(mddev->sysfs_state);
4780 
4781 	if (mddev->gendisk) {
4782 		del_gendisk(mddev->gendisk);
4783 		put_disk(mddev->gendisk);
4784 	}
4785 	if (mddev->queue)
4786 		blk_cleanup_queue(mddev->queue);
4787 
4788 	kfree(mddev);
4789 }
4790 
4791 static const struct sysfs_ops md_sysfs_ops = {
4792 	.show	= md_attr_show,
4793 	.store	= md_attr_store,
4794 };
4795 static struct kobj_type md_ktype = {
4796 	.release	= md_free,
4797 	.sysfs_ops	= &md_sysfs_ops,
4798 	.default_attrs	= md_default_attrs,
4799 };
4800 
4801 int mdp_major = 0;
4802 
4803 static void mddev_delayed_delete(struct work_struct *ws)
4804 {
4805 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4806 
4807 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808 	kobject_del(&mddev->kobj);
4809 	kobject_put(&mddev->kobj);
4810 }
4811 
4812 static int md_alloc(dev_t dev, char *name)
4813 {
4814 	static DEFINE_MUTEX(disks_mutex);
4815 	struct mddev *mddev = mddev_find(dev);
4816 	struct gendisk *disk;
4817 	int partitioned;
4818 	int shift;
4819 	int unit;
4820 	int error;
4821 
4822 	if (!mddev)
4823 		return -ENODEV;
4824 
4825 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826 	shift = partitioned ? MdpMinorShift : 0;
4827 	unit = MINOR(mddev->unit) >> shift;
4828 
4829 	/* wait for any previous instance of this device to be
4830 	 * completely removed (mddev_delayed_delete).
4831 	 */
4832 	flush_workqueue(md_misc_wq);
4833 
4834 	mutex_lock(&disks_mutex);
4835 	error = -EEXIST;
4836 	if (mddev->gendisk)
4837 		goto abort;
4838 
4839 	if (name) {
4840 		/* Need to ensure that 'name' is not a duplicate.
4841 		 */
4842 		struct mddev *mddev2;
4843 		spin_lock(&all_mddevs_lock);
4844 
4845 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846 			if (mddev2->gendisk &&
4847 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848 				spin_unlock(&all_mddevs_lock);
4849 				goto abort;
4850 			}
4851 		spin_unlock(&all_mddevs_lock);
4852 	}
4853 
4854 	error = -ENOMEM;
4855 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856 	if (!mddev->queue)
4857 		goto abort;
4858 	mddev->queue->queuedata = mddev;
4859 
4860 	blk_queue_make_request(mddev->queue, md_make_request);
4861 	blk_set_stacking_limits(&mddev->queue->limits);
4862 
4863 	disk = alloc_disk(1 << shift);
4864 	if (!disk) {
4865 		blk_cleanup_queue(mddev->queue);
4866 		mddev->queue = NULL;
4867 		goto abort;
4868 	}
4869 	disk->major = MAJOR(mddev->unit);
4870 	disk->first_minor = unit << shift;
4871 	if (name)
4872 		strcpy(disk->disk_name, name);
4873 	else if (partitioned)
4874 		sprintf(disk->disk_name, "md_d%d", unit);
4875 	else
4876 		sprintf(disk->disk_name, "md%d", unit);
4877 	disk->fops = &md_fops;
4878 	disk->private_data = mddev;
4879 	disk->queue = mddev->queue;
4880 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881 	/* Allow extended partitions.  This makes the
4882 	 * 'mdp' device redundant, but we can't really
4883 	 * remove it now.
4884 	 */
4885 	disk->flags |= GENHD_FL_EXT_DEVT;
4886 	mddev->gendisk = disk;
4887 	/* As soon as we call add_disk(), another thread could get
4888 	 * through to md_open, so make sure it doesn't get too far
4889 	 */
4890 	mutex_lock(&mddev->open_mutex);
4891 	add_disk(disk);
4892 
4893 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894 				     &disk_to_dev(disk)->kobj, "%s", "md");
4895 	if (error) {
4896 		/* This isn't possible, but as kobject_init_and_add is marked
4897 		 * __must_check, we must do something with the result
4898 		 */
4899 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900 		       disk->disk_name);
4901 		error = 0;
4902 	}
4903 	if (mddev->kobj.sd &&
4904 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905 		printk(KERN_DEBUG "pointless warning\n");
4906 	mutex_unlock(&mddev->open_mutex);
4907  abort:
4908 	mutex_unlock(&disks_mutex);
4909 	if (!error && mddev->kobj.sd) {
4910 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4912 	}
4913 	mddev_put(mddev);
4914 	return error;
4915 }
4916 
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4918 {
4919 	md_alloc(dev, NULL);
4920 	return NULL;
4921 }
4922 
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4924 {
4925 	/* val must be "md_*" where * is not all digits.
4926 	 * We allocate an array with a large free minor number, and
4927 	 * set the name to val.  val must not already be an active name.
4928 	 */
4929 	int len = strlen(val);
4930 	char buf[DISK_NAME_LEN];
4931 
4932 	while (len && val[len-1] == '\n')
4933 		len--;
4934 	if (len >= DISK_NAME_LEN)
4935 		return -E2BIG;
4936 	strlcpy(buf, val, len+1);
4937 	if (strncmp(buf, "md_", 3) != 0)
4938 		return -EINVAL;
4939 	return md_alloc(0, buf);
4940 }
4941 
4942 static void md_safemode_timeout(unsigned long data)
4943 {
4944 	struct mddev *mddev = (struct mddev *) data;
4945 
4946 	if (!atomic_read(&mddev->writes_pending)) {
4947 		mddev->safemode = 1;
4948 		if (mddev->external)
4949 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4950 	}
4951 	md_wakeup_thread(mddev->thread);
4952 }
4953 
4954 static int start_dirty_degraded;
4955 
4956 int md_run(struct mddev *mddev)
4957 {
4958 	int err;
4959 	struct md_rdev *rdev;
4960 	struct md_personality *pers;
4961 
4962 	if (list_empty(&mddev->disks))
4963 		/* cannot run an array with no devices.. */
4964 		return -EINVAL;
4965 
4966 	if (mddev->pers)
4967 		return -EBUSY;
4968 	/* Cannot run until previous stop completes properly */
4969 	if (mddev->sysfs_active)
4970 		return -EBUSY;
4971 
4972 	/*
4973 	 * Analyze all RAID superblock(s)
4974 	 */
4975 	if (!mddev->raid_disks) {
4976 		if (!mddev->persistent)
4977 			return -EINVAL;
4978 		analyze_sbs(mddev);
4979 	}
4980 
4981 	if (mddev->level != LEVEL_NONE)
4982 		request_module("md-level-%d", mddev->level);
4983 	else if (mddev->clevel[0])
4984 		request_module("md-%s", mddev->clevel);
4985 
4986 	/*
4987 	 * Drop all container device buffers, from now on
4988 	 * the only valid external interface is through the md
4989 	 * device.
4990 	 */
4991 	rdev_for_each(rdev, mddev) {
4992 		if (test_bit(Faulty, &rdev->flags))
4993 			continue;
4994 		sync_blockdev(rdev->bdev);
4995 		invalidate_bdev(rdev->bdev);
4996 
4997 		/* perform some consistency tests on the device.
4998 		 * We don't want the data to overlap the metadata,
4999 		 * Internal Bitmap issues have been handled elsewhere.
5000 		 */
5001 		if (rdev->meta_bdev) {
5002 			/* Nothing to check */;
5003 		} else if (rdev->data_offset < rdev->sb_start) {
5004 			if (mddev->dev_sectors &&
5005 			    rdev->data_offset + mddev->dev_sectors
5006 			    > rdev->sb_start) {
5007 				printk("md: %s: data overlaps metadata\n",
5008 				       mdname(mddev));
5009 				return -EINVAL;
5010 			}
5011 		} else {
5012 			if (rdev->sb_start + rdev->sb_size/512
5013 			    > rdev->data_offset) {
5014 				printk("md: %s: metadata overlaps data\n",
5015 				       mdname(mddev));
5016 				return -EINVAL;
5017 			}
5018 		}
5019 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5020 	}
5021 
5022 	if (mddev->bio_set == NULL)
5023 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5024 
5025 	spin_lock(&pers_lock);
5026 	pers = find_pers(mddev->level, mddev->clevel);
5027 	if (!pers || !try_module_get(pers->owner)) {
5028 		spin_unlock(&pers_lock);
5029 		if (mddev->level != LEVEL_NONE)
5030 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031 			       mddev->level);
5032 		else
5033 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034 			       mddev->clevel);
5035 		return -EINVAL;
5036 	}
5037 	mddev->pers = pers;
5038 	spin_unlock(&pers_lock);
5039 	if (mddev->level != pers->level) {
5040 		mddev->level = pers->level;
5041 		mddev->new_level = pers->level;
5042 	}
5043 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5044 
5045 	if (mddev->reshape_position != MaxSector &&
5046 	    pers->start_reshape == NULL) {
5047 		/* This personality cannot handle reshaping... */
5048 		mddev->pers = NULL;
5049 		module_put(pers->owner);
5050 		return -EINVAL;
5051 	}
5052 
5053 	if (pers->sync_request) {
5054 		/* Warn if this is a potentially silly
5055 		 * configuration.
5056 		 */
5057 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058 		struct md_rdev *rdev2;
5059 		int warned = 0;
5060 
5061 		rdev_for_each(rdev, mddev)
5062 			rdev_for_each(rdev2, mddev) {
5063 				if (rdev < rdev2 &&
5064 				    rdev->bdev->bd_contains ==
5065 				    rdev2->bdev->bd_contains) {
5066 					printk(KERN_WARNING
5067 					       "%s: WARNING: %s appears to be"
5068 					       " on the same physical disk as"
5069 					       " %s.\n",
5070 					       mdname(mddev),
5071 					       bdevname(rdev->bdev,b),
5072 					       bdevname(rdev2->bdev,b2));
5073 					warned = 1;
5074 				}
5075 			}
5076 
5077 		if (warned)
5078 			printk(KERN_WARNING
5079 			       "True protection against single-disk"
5080 			       " failure might be compromised.\n");
5081 	}
5082 
5083 	mddev->recovery = 0;
5084 	/* may be over-ridden by personality */
5085 	mddev->resync_max_sectors = mddev->dev_sectors;
5086 
5087 	mddev->ok_start_degraded = start_dirty_degraded;
5088 
5089 	if (start_readonly && mddev->ro == 0)
5090 		mddev->ro = 2; /* read-only, but switch on first write */
5091 
5092 	err = mddev->pers->run(mddev);
5093 	if (err)
5094 		printk(KERN_ERR "md: pers->run() failed ...\n");
5095 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097 			  " but 'external_size' not in effect?\n", __func__);
5098 		printk(KERN_ERR
5099 		       "md: invalid array_size %llu > default size %llu\n",
5100 		       (unsigned long long)mddev->array_sectors / 2,
5101 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102 		err = -EINVAL;
5103 		mddev->pers->stop(mddev);
5104 	}
5105 	if (err == 0 && mddev->pers->sync_request &&
5106 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107 		err = bitmap_create(mddev);
5108 		if (err) {
5109 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110 			       mdname(mddev), err);
5111 			mddev->pers->stop(mddev);
5112 		}
5113 	}
5114 	if (err) {
5115 		module_put(mddev->pers->owner);
5116 		mddev->pers = NULL;
5117 		bitmap_destroy(mddev);
5118 		return err;
5119 	}
5120 	if (mddev->pers->sync_request) {
5121 		if (mddev->kobj.sd &&
5122 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123 			printk(KERN_WARNING
5124 			       "md: cannot register extra attributes for %s\n",
5125 			       mdname(mddev));
5126 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128 		mddev->ro = 0;
5129 
5130  	atomic_set(&mddev->writes_pending,0);
5131 	atomic_set(&mddev->max_corr_read_errors,
5132 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133 	mddev->safemode = 0;
5134 	mddev->safemode_timer.function = md_safemode_timeout;
5135 	mddev->safemode_timer.data = (unsigned long) mddev;
5136 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137 	mddev->in_sync = 1;
5138 	smp_wmb();
5139 	mddev->ready = 1;
5140 	rdev_for_each(rdev, mddev)
5141 		if (rdev->raid_disk >= 0)
5142 			if (sysfs_link_rdev(mddev, rdev))
5143 				/* failure here is OK */;
5144 
5145 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146 
5147 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5148 		md_update_sb(mddev, 0);
5149 
5150 	md_new_event(mddev);
5151 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5153 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5154 	return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(md_run);
5157 
5158 static int do_md_run(struct mddev *mddev)
5159 {
5160 	int err;
5161 
5162 	err = md_run(mddev);
5163 	if (err)
5164 		goto out;
5165 	err = bitmap_load(mddev);
5166 	if (err) {
5167 		bitmap_destroy(mddev);
5168 		goto out;
5169 	}
5170 
5171 	md_wakeup_thread(mddev->thread);
5172 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5173 
5174 	set_capacity(mddev->gendisk, mddev->array_sectors);
5175 	revalidate_disk(mddev->gendisk);
5176 	mddev->changed = 1;
5177 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179 	return err;
5180 }
5181 
5182 static int restart_array(struct mddev *mddev)
5183 {
5184 	struct gendisk *disk = mddev->gendisk;
5185 
5186 	/* Complain if it has no devices */
5187 	if (list_empty(&mddev->disks))
5188 		return -ENXIO;
5189 	if (!mddev->pers)
5190 		return -EINVAL;
5191 	if (!mddev->ro)
5192 		return -EBUSY;
5193 	mddev->safemode = 0;
5194 	mddev->ro = 0;
5195 	set_disk_ro(disk, 0);
5196 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197 		mdname(mddev));
5198 	/* Kick recovery or resync if necessary */
5199 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 	md_wakeup_thread(mddev->thread);
5201 	md_wakeup_thread(mddev->sync_thread);
5202 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 	return 0;
5204 }
5205 
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207  * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5209 {
5210 	struct inode *inode = file->f_mapping->host;
5211 
5212 	spin_lock(&inode->i_lock);
5213 	if (atomic_read(&inode->i_writecount) > 1) {
5214 		spin_unlock(&inode->i_lock);
5215 		return -ETXTBSY;
5216 	}
5217 	atomic_set(&inode->i_writecount, -1);
5218 	spin_unlock(&inode->i_lock);
5219 
5220 	return 0;
5221 }
5222 
5223 void restore_bitmap_write_access(struct file *file)
5224 {
5225 	struct inode *inode = file->f_mapping->host;
5226 
5227 	spin_lock(&inode->i_lock);
5228 	atomic_set(&inode->i_writecount, 1);
5229 	spin_unlock(&inode->i_lock);
5230 }
5231 
5232 static void md_clean(struct mddev *mddev)
5233 {
5234 	mddev->array_sectors = 0;
5235 	mddev->external_size = 0;
5236 	mddev->dev_sectors = 0;
5237 	mddev->raid_disks = 0;
5238 	mddev->recovery_cp = 0;
5239 	mddev->resync_min = 0;
5240 	mddev->resync_max = MaxSector;
5241 	mddev->reshape_position = MaxSector;
5242 	mddev->external = 0;
5243 	mddev->persistent = 0;
5244 	mddev->level = LEVEL_NONE;
5245 	mddev->clevel[0] = 0;
5246 	mddev->flags = 0;
5247 	mddev->ro = 0;
5248 	mddev->metadata_type[0] = 0;
5249 	mddev->chunk_sectors = 0;
5250 	mddev->ctime = mddev->utime = 0;
5251 	mddev->layout = 0;
5252 	mddev->max_disks = 0;
5253 	mddev->events = 0;
5254 	mddev->can_decrease_events = 0;
5255 	mddev->delta_disks = 0;
5256 	mddev->reshape_backwards = 0;
5257 	mddev->new_level = LEVEL_NONE;
5258 	mddev->new_layout = 0;
5259 	mddev->new_chunk_sectors = 0;
5260 	mddev->curr_resync = 0;
5261 	atomic64_set(&mddev->resync_mismatches, 0);
5262 	mddev->suspend_lo = mddev->suspend_hi = 0;
5263 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264 	mddev->recovery = 0;
5265 	mddev->in_sync = 0;
5266 	mddev->changed = 0;
5267 	mddev->degraded = 0;
5268 	mddev->safemode = 0;
5269 	mddev->merge_check_needed = 0;
5270 	mddev->bitmap_info.offset = 0;
5271 	mddev->bitmap_info.default_offset = 0;
5272 	mddev->bitmap_info.default_space = 0;
5273 	mddev->bitmap_info.chunksize = 0;
5274 	mddev->bitmap_info.daemon_sleep = 0;
5275 	mddev->bitmap_info.max_write_behind = 0;
5276 }
5277 
5278 static void __md_stop_writes(struct mddev *mddev)
5279 {
5280 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281 	if (mddev->sync_thread) {
5282 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283 		md_reap_sync_thread(mddev);
5284 	}
5285 
5286 	del_timer_sync(&mddev->safemode_timer);
5287 
5288 	bitmap_flush(mddev);
5289 	md_super_wait(mddev);
5290 
5291 	if (mddev->ro == 0 &&
5292 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5293 		/* mark array as shutdown cleanly */
5294 		mddev->in_sync = 1;
5295 		md_update_sb(mddev, 1);
5296 	}
5297 }
5298 
5299 void md_stop_writes(struct mddev *mddev)
5300 {
5301 	mddev_lock(mddev);
5302 	__md_stop_writes(mddev);
5303 	mddev_unlock(mddev);
5304 }
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5306 
5307 static void __md_stop(struct mddev *mddev)
5308 {
5309 	mddev->ready = 0;
5310 	mddev->pers->stop(mddev);
5311 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5312 		mddev->to_remove = &md_redundancy_group;
5313 	module_put(mddev->pers->owner);
5314 	mddev->pers = NULL;
5315 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5316 }
5317 
5318 void md_stop(struct mddev *mddev)
5319 {
5320 	/* stop the array and free an attached data structures.
5321 	 * This is called from dm-raid
5322 	 */
5323 	__md_stop(mddev);
5324 	bitmap_destroy(mddev);
5325 	if (mddev->bio_set)
5326 		bioset_free(mddev->bio_set);
5327 }
5328 
5329 EXPORT_SYMBOL_GPL(md_stop);
5330 
5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5332 {
5333 	int err = 0;
5334 	mutex_lock(&mddev->open_mutex);
5335 	if (atomic_read(&mddev->openers) > !!bdev) {
5336 		printk("md: %s still in use.\n",mdname(mddev));
5337 		err = -EBUSY;
5338 		goto out;
5339 	}
5340 	if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5341 		/* Someone opened the device since we flushed it
5342 		 * so page cache could be dirty and it is too late
5343 		 * to flush.  So abort
5344 		 */
5345 		mutex_unlock(&mddev->open_mutex);
5346 		return -EBUSY;
5347 	}
5348 	if (mddev->pers) {
5349 		__md_stop_writes(mddev);
5350 
5351 		err  = -ENXIO;
5352 		if (mddev->ro==1)
5353 			goto out;
5354 		mddev->ro = 1;
5355 		set_disk_ro(mddev->gendisk, 1);
5356 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5357 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5358 		err = 0;
5359 	}
5360 out:
5361 	mutex_unlock(&mddev->open_mutex);
5362 	return err;
5363 }
5364 
5365 /* mode:
5366  *   0 - completely stop and dis-assemble array
5367  *   2 - stop but do not disassemble array
5368  */
5369 static int do_md_stop(struct mddev * mddev, int mode,
5370 		      struct block_device *bdev)
5371 {
5372 	struct gendisk *disk = mddev->gendisk;
5373 	struct md_rdev *rdev;
5374 
5375 	mutex_lock(&mddev->open_mutex);
5376 	if (atomic_read(&mddev->openers) > !!bdev ||
5377 	    mddev->sysfs_active) {
5378 		printk("md: %s still in use.\n",mdname(mddev));
5379 		mutex_unlock(&mddev->open_mutex);
5380 		return -EBUSY;
5381 	}
5382 	if (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags)) {
5383 		/* Someone opened the device since we flushed it
5384 		 * so page cache could be dirty and it is too late
5385 		 * to flush.  So abort
5386 		 */
5387 		mutex_unlock(&mddev->open_mutex);
5388 		return -EBUSY;
5389 	}
5390 	if (mddev->pers) {
5391 		if (mddev->ro)
5392 			set_disk_ro(disk, 0);
5393 
5394 		__md_stop_writes(mddev);
5395 		__md_stop(mddev);
5396 		mddev->queue->merge_bvec_fn = NULL;
5397 		mddev->queue->backing_dev_info.congested_fn = NULL;
5398 
5399 		/* tell userspace to handle 'inactive' */
5400 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5401 
5402 		rdev_for_each(rdev, mddev)
5403 			if (rdev->raid_disk >= 0)
5404 				sysfs_unlink_rdev(mddev, rdev);
5405 
5406 		set_capacity(disk, 0);
5407 		mutex_unlock(&mddev->open_mutex);
5408 		mddev->changed = 1;
5409 		revalidate_disk(disk);
5410 
5411 		if (mddev->ro)
5412 			mddev->ro = 0;
5413 	} else
5414 		mutex_unlock(&mddev->open_mutex);
5415 	/*
5416 	 * Free resources if final stop
5417 	 */
5418 	if (mode == 0) {
5419 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5420 
5421 		bitmap_destroy(mddev);
5422 		if (mddev->bitmap_info.file) {
5423 			restore_bitmap_write_access(mddev->bitmap_info.file);
5424 			fput(mddev->bitmap_info.file);
5425 			mddev->bitmap_info.file = NULL;
5426 		}
5427 		mddev->bitmap_info.offset = 0;
5428 
5429 		export_array(mddev);
5430 
5431 		md_clean(mddev);
5432 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5433 		if (mddev->hold_active == UNTIL_STOP)
5434 			mddev->hold_active = 0;
5435 	}
5436 	blk_integrity_unregister(disk);
5437 	md_new_event(mddev);
5438 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5439 	return 0;
5440 }
5441 
5442 #ifndef MODULE
5443 static void autorun_array(struct mddev *mddev)
5444 {
5445 	struct md_rdev *rdev;
5446 	int err;
5447 
5448 	if (list_empty(&mddev->disks))
5449 		return;
5450 
5451 	printk(KERN_INFO "md: running: ");
5452 
5453 	rdev_for_each(rdev, mddev) {
5454 		char b[BDEVNAME_SIZE];
5455 		printk("<%s>", bdevname(rdev->bdev,b));
5456 	}
5457 	printk("\n");
5458 
5459 	err = do_md_run(mddev);
5460 	if (err) {
5461 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5462 		do_md_stop(mddev, 0, NULL);
5463 	}
5464 }
5465 
5466 /*
5467  * lets try to run arrays based on all disks that have arrived
5468  * until now. (those are in pending_raid_disks)
5469  *
5470  * the method: pick the first pending disk, collect all disks with
5471  * the same UUID, remove all from the pending list and put them into
5472  * the 'same_array' list. Then order this list based on superblock
5473  * update time (freshest comes first), kick out 'old' disks and
5474  * compare superblocks. If everything's fine then run it.
5475  *
5476  * If "unit" is allocated, then bump its reference count
5477  */
5478 static void autorun_devices(int part)
5479 {
5480 	struct md_rdev *rdev0, *rdev, *tmp;
5481 	struct mddev *mddev;
5482 	char b[BDEVNAME_SIZE];
5483 
5484 	printk(KERN_INFO "md: autorun ...\n");
5485 	while (!list_empty(&pending_raid_disks)) {
5486 		int unit;
5487 		dev_t dev;
5488 		LIST_HEAD(candidates);
5489 		rdev0 = list_entry(pending_raid_disks.next,
5490 					 struct md_rdev, same_set);
5491 
5492 		printk(KERN_INFO "md: considering %s ...\n",
5493 			bdevname(rdev0->bdev,b));
5494 		INIT_LIST_HEAD(&candidates);
5495 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5496 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5497 				printk(KERN_INFO "md:  adding %s ...\n",
5498 					bdevname(rdev->bdev,b));
5499 				list_move(&rdev->same_set, &candidates);
5500 			}
5501 		/*
5502 		 * now we have a set of devices, with all of them having
5503 		 * mostly sane superblocks. It's time to allocate the
5504 		 * mddev.
5505 		 */
5506 		if (part) {
5507 			dev = MKDEV(mdp_major,
5508 				    rdev0->preferred_minor << MdpMinorShift);
5509 			unit = MINOR(dev) >> MdpMinorShift;
5510 		} else {
5511 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5512 			unit = MINOR(dev);
5513 		}
5514 		if (rdev0->preferred_minor != unit) {
5515 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5516 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5517 			break;
5518 		}
5519 
5520 		md_probe(dev, NULL, NULL);
5521 		mddev = mddev_find(dev);
5522 		if (!mddev || !mddev->gendisk) {
5523 			if (mddev)
5524 				mddev_put(mddev);
5525 			printk(KERN_ERR
5526 				"md: cannot allocate memory for md drive.\n");
5527 			break;
5528 		}
5529 		if (mddev_lock(mddev))
5530 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5531 			       mdname(mddev));
5532 		else if (mddev->raid_disks || mddev->major_version
5533 			 || !list_empty(&mddev->disks)) {
5534 			printk(KERN_WARNING
5535 				"md: %s already running, cannot run %s\n",
5536 				mdname(mddev), bdevname(rdev0->bdev,b));
5537 			mddev_unlock(mddev);
5538 		} else {
5539 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5540 			mddev->persistent = 1;
5541 			rdev_for_each_list(rdev, tmp, &candidates) {
5542 				list_del_init(&rdev->same_set);
5543 				if (bind_rdev_to_array(rdev, mddev))
5544 					export_rdev(rdev);
5545 			}
5546 			autorun_array(mddev);
5547 			mddev_unlock(mddev);
5548 		}
5549 		/* on success, candidates will be empty, on error
5550 		 * it won't...
5551 		 */
5552 		rdev_for_each_list(rdev, tmp, &candidates) {
5553 			list_del_init(&rdev->same_set);
5554 			export_rdev(rdev);
5555 		}
5556 		mddev_put(mddev);
5557 	}
5558 	printk(KERN_INFO "md: ... autorun DONE.\n");
5559 }
5560 #endif /* !MODULE */
5561 
5562 static int get_version(void __user * arg)
5563 {
5564 	mdu_version_t ver;
5565 
5566 	ver.major = MD_MAJOR_VERSION;
5567 	ver.minor = MD_MINOR_VERSION;
5568 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5569 
5570 	if (copy_to_user(arg, &ver, sizeof(ver)))
5571 		return -EFAULT;
5572 
5573 	return 0;
5574 }
5575 
5576 static int get_array_info(struct mddev * mddev, void __user * arg)
5577 {
5578 	mdu_array_info_t info;
5579 	int nr,working,insync,failed,spare;
5580 	struct md_rdev *rdev;
5581 
5582 	nr = working = insync = failed = spare = 0;
5583 	rcu_read_lock();
5584 	rdev_for_each_rcu(rdev, mddev) {
5585 		nr++;
5586 		if (test_bit(Faulty, &rdev->flags))
5587 			failed++;
5588 		else {
5589 			working++;
5590 			if (test_bit(In_sync, &rdev->flags))
5591 				insync++;
5592 			else
5593 				spare++;
5594 		}
5595 	}
5596 	rcu_read_unlock();
5597 
5598 	info.major_version = mddev->major_version;
5599 	info.minor_version = mddev->minor_version;
5600 	info.patch_version = MD_PATCHLEVEL_VERSION;
5601 	info.ctime         = mddev->ctime;
5602 	info.level         = mddev->level;
5603 	info.size          = mddev->dev_sectors / 2;
5604 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5605 		info.size = -1;
5606 	info.nr_disks      = nr;
5607 	info.raid_disks    = mddev->raid_disks;
5608 	info.md_minor      = mddev->md_minor;
5609 	info.not_persistent= !mddev->persistent;
5610 
5611 	info.utime         = mddev->utime;
5612 	info.state         = 0;
5613 	if (mddev->in_sync)
5614 		info.state = (1<<MD_SB_CLEAN);
5615 	if (mddev->bitmap && mddev->bitmap_info.offset)
5616 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5617 	info.active_disks  = insync;
5618 	info.working_disks = working;
5619 	info.failed_disks  = failed;
5620 	info.spare_disks   = spare;
5621 
5622 	info.layout        = mddev->layout;
5623 	info.chunk_size    = mddev->chunk_sectors << 9;
5624 
5625 	if (copy_to_user(arg, &info, sizeof(info)))
5626 		return -EFAULT;
5627 
5628 	return 0;
5629 }
5630 
5631 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5632 {
5633 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5634 	char *ptr, *buf = NULL;
5635 	int err = -ENOMEM;
5636 
5637 	file = kmalloc(sizeof(*file), GFP_NOIO);
5638 
5639 	if (!file)
5640 		goto out;
5641 
5642 	/* bitmap disabled, zero the first byte and copy out */
5643 	if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5644 		file->pathname[0] = '\0';
5645 		goto copy_out;
5646 	}
5647 
5648 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5649 	if (!buf)
5650 		goto out;
5651 
5652 	ptr = d_path(&mddev->bitmap->storage.file->f_path,
5653 		     buf, sizeof(file->pathname));
5654 	if (IS_ERR(ptr))
5655 		goto out;
5656 
5657 	strcpy(file->pathname, ptr);
5658 
5659 copy_out:
5660 	err = 0;
5661 	if (copy_to_user(arg, file, sizeof(*file)))
5662 		err = -EFAULT;
5663 out:
5664 	kfree(buf);
5665 	kfree(file);
5666 	return err;
5667 }
5668 
5669 static int get_disk_info(struct mddev * mddev, void __user * arg)
5670 {
5671 	mdu_disk_info_t info;
5672 	struct md_rdev *rdev;
5673 
5674 	if (copy_from_user(&info, arg, sizeof(info)))
5675 		return -EFAULT;
5676 
5677 	rcu_read_lock();
5678 	rdev = find_rdev_nr_rcu(mddev, info.number);
5679 	if (rdev) {
5680 		info.major = MAJOR(rdev->bdev->bd_dev);
5681 		info.minor = MINOR(rdev->bdev->bd_dev);
5682 		info.raid_disk = rdev->raid_disk;
5683 		info.state = 0;
5684 		if (test_bit(Faulty, &rdev->flags))
5685 			info.state |= (1<<MD_DISK_FAULTY);
5686 		else if (test_bit(In_sync, &rdev->flags)) {
5687 			info.state |= (1<<MD_DISK_ACTIVE);
5688 			info.state |= (1<<MD_DISK_SYNC);
5689 		}
5690 		if (test_bit(WriteMostly, &rdev->flags))
5691 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5692 	} else {
5693 		info.major = info.minor = 0;
5694 		info.raid_disk = -1;
5695 		info.state = (1<<MD_DISK_REMOVED);
5696 	}
5697 	rcu_read_unlock();
5698 
5699 	if (copy_to_user(arg, &info, sizeof(info)))
5700 		return -EFAULT;
5701 
5702 	return 0;
5703 }
5704 
5705 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5706 {
5707 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5708 	struct md_rdev *rdev;
5709 	dev_t dev = MKDEV(info->major,info->minor);
5710 
5711 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5712 		return -EOVERFLOW;
5713 
5714 	if (!mddev->raid_disks) {
5715 		int err;
5716 		/* expecting a device which has a superblock */
5717 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5718 		if (IS_ERR(rdev)) {
5719 			printk(KERN_WARNING
5720 				"md: md_import_device returned %ld\n",
5721 				PTR_ERR(rdev));
5722 			return PTR_ERR(rdev);
5723 		}
5724 		if (!list_empty(&mddev->disks)) {
5725 			struct md_rdev *rdev0
5726 				= list_entry(mddev->disks.next,
5727 					     struct md_rdev, same_set);
5728 			err = super_types[mddev->major_version]
5729 				.load_super(rdev, rdev0, mddev->minor_version);
5730 			if (err < 0) {
5731 				printk(KERN_WARNING
5732 					"md: %s has different UUID to %s\n",
5733 					bdevname(rdev->bdev,b),
5734 					bdevname(rdev0->bdev,b2));
5735 				export_rdev(rdev);
5736 				return -EINVAL;
5737 			}
5738 		}
5739 		err = bind_rdev_to_array(rdev, mddev);
5740 		if (err)
5741 			export_rdev(rdev);
5742 		return err;
5743 	}
5744 
5745 	/*
5746 	 * add_new_disk can be used once the array is assembled
5747 	 * to add "hot spares".  They must already have a superblock
5748 	 * written
5749 	 */
5750 	if (mddev->pers) {
5751 		int err;
5752 		if (!mddev->pers->hot_add_disk) {
5753 			printk(KERN_WARNING
5754 				"%s: personality does not support diskops!\n",
5755 			       mdname(mddev));
5756 			return -EINVAL;
5757 		}
5758 		if (mddev->persistent)
5759 			rdev = md_import_device(dev, mddev->major_version,
5760 						mddev->minor_version);
5761 		else
5762 			rdev = md_import_device(dev, -1, -1);
5763 		if (IS_ERR(rdev)) {
5764 			printk(KERN_WARNING
5765 				"md: md_import_device returned %ld\n",
5766 				PTR_ERR(rdev));
5767 			return PTR_ERR(rdev);
5768 		}
5769 		/* set saved_raid_disk if appropriate */
5770 		if (!mddev->persistent) {
5771 			if (info->state & (1<<MD_DISK_SYNC)  &&
5772 			    info->raid_disk < mddev->raid_disks) {
5773 				rdev->raid_disk = info->raid_disk;
5774 				set_bit(In_sync, &rdev->flags);
5775 			} else
5776 				rdev->raid_disk = -1;
5777 		} else
5778 			super_types[mddev->major_version].
5779 				validate_super(mddev, rdev);
5780 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5781 		     rdev->raid_disk != info->raid_disk) {
5782 			/* This was a hot-add request, but events doesn't
5783 			 * match, so reject it.
5784 			 */
5785 			export_rdev(rdev);
5786 			return -EINVAL;
5787 		}
5788 
5789 		if (test_bit(In_sync, &rdev->flags))
5790 			rdev->saved_raid_disk = rdev->raid_disk;
5791 		else
5792 			rdev->saved_raid_disk = -1;
5793 
5794 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5795 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5796 			set_bit(WriteMostly, &rdev->flags);
5797 		else
5798 			clear_bit(WriteMostly, &rdev->flags);
5799 
5800 		rdev->raid_disk = -1;
5801 		err = bind_rdev_to_array(rdev, mddev);
5802 		if (!err && !mddev->pers->hot_remove_disk) {
5803 			/* If there is hot_add_disk but no hot_remove_disk
5804 			 * then added disks for geometry changes,
5805 			 * and should be added immediately.
5806 			 */
5807 			super_types[mddev->major_version].
5808 				validate_super(mddev, rdev);
5809 			err = mddev->pers->hot_add_disk(mddev, rdev);
5810 			if (err)
5811 				unbind_rdev_from_array(rdev);
5812 		}
5813 		if (err)
5814 			export_rdev(rdev);
5815 		else
5816 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5817 
5818 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
5819 		if (mddev->degraded)
5820 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5821 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5822 		if (!err)
5823 			md_new_event(mddev);
5824 		md_wakeup_thread(mddev->thread);
5825 		return err;
5826 	}
5827 
5828 	/* otherwise, add_new_disk is only allowed
5829 	 * for major_version==0 superblocks
5830 	 */
5831 	if (mddev->major_version != 0) {
5832 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5833 		       mdname(mddev));
5834 		return -EINVAL;
5835 	}
5836 
5837 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5838 		int err;
5839 		rdev = md_import_device(dev, -1, 0);
5840 		if (IS_ERR(rdev)) {
5841 			printk(KERN_WARNING
5842 				"md: error, md_import_device() returned %ld\n",
5843 				PTR_ERR(rdev));
5844 			return PTR_ERR(rdev);
5845 		}
5846 		rdev->desc_nr = info->number;
5847 		if (info->raid_disk < mddev->raid_disks)
5848 			rdev->raid_disk = info->raid_disk;
5849 		else
5850 			rdev->raid_disk = -1;
5851 
5852 		if (rdev->raid_disk < mddev->raid_disks)
5853 			if (info->state & (1<<MD_DISK_SYNC))
5854 				set_bit(In_sync, &rdev->flags);
5855 
5856 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5857 			set_bit(WriteMostly, &rdev->flags);
5858 
5859 		if (!mddev->persistent) {
5860 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5861 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5862 		} else
5863 			rdev->sb_start = calc_dev_sboffset(rdev);
5864 		rdev->sectors = rdev->sb_start;
5865 
5866 		err = bind_rdev_to_array(rdev, mddev);
5867 		if (err) {
5868 			export_rdev(rdev);
5869 			return err;
5870 		}
5871 	}
5872 
5873 	return 0;
5874 }
5875 
5876 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5877 {
5878 	char b[BDEVNAME_SIZE];
5879 	struct md_rdev *rdev;
5880 
5881 	rdev = find_rdev(mddev, dev);
5882 	if (!rdev)
5883 		return -ENXIO;
5884 
5885 	clear_bit(Blocked, &rdev->flags);
5886 	remove_and_add_spares(mddev, rdev);
5887 
5888 	if (rdev->raid_disk >= 0)
5889 		goto busy;
5890 
5891 	kick_rdev_from_array(rdev);
5892 	md_update_sb(mddev, 1);
5893 	md_new_event(mddev);
5894 
5895 	return 0;
5896 busy:
5897 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5898 		bdevname(rdev->bdev,b), mdname(mddev));
5899 	return -EBUSY;
5900 }
5901 
5902 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5903 {
5904 	char b[BDEVNAME_SIZE];
5905 	int err;
5906 	struct md_rdev *rdev;
5907 
5908 	if (!mddev->pers)
5909 		return -ENODEV;
5910 
5911 	if (mddev->major_version != 0) {
5912 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5913 			" version-0 superblocks.\n",
5914 			mdname(mddev));
5915 		return -EINVAL;
5916 	}
5917 	if (!mddev->pers->hot_add_disk) {
5918 		printk(KERN_WARNING
5919 			"%s: personality does not support diskops!\n",
5920 			mdname(mddev));
5921 		return -EINVAL;
5922 	}
5923 
5924 	rdev = md_import_device(dev, -1, 0);
5925 	if (IS_ERR(rdev)) {
5926 		printk(KERN_WARNING
5927 			"md: error, md_import_device() returned %ld\n",
5928 			PTR_ERR(rdev));
5929 		return -EINVAL;
5930 	}
5931 
5932 	if (mddev->persistent)
5933 		rdev->sb_start = calc_dev_sboffset(rdev);
5934 	else
5935 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5936 
5937 	rdev->sectors = rdev->sb_start;
5938 
5939 	if (test_bit(Faulty, &rdev->flags)) {
5940 		printk(KERN_WARNING
5941 			"md: can not hot-add faulty %s disk to %s!\n",
5942 			bdevname(rdev->bdev,b), mdname(mddev));
5943 		err = -EINVAL;
5944 		goto abort_export;
5945 	}
5946 	clear_bit(In_sync, &rdev->flags);
5947 	rdev->desc_nr = -1;
5948 	rdev->saved_raid_disk = -1;
5949 	err = bind_rdev_to_array(rdev, mddev);
5950 	if (err)
5951 		goto abort_export;
5952 
5953 	/*
5954 	 * The rest should better be atomic, we can have disk failures
5955 	 * noticed in interrupt contexts ...
5956 	 */
5957 
5958 	rdev->raid_disk = -1;
5959 
5960 	md_update_sb(mddev, 1);
5961 
5962 	/*
5963 	 * Kick recovery, maybe this spare has to be added to the
5964 	 * array immediately.
5965 	 */
5966 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5967 	md_wakeup_thread(mddev->thread);
5968 	md_new_event(mddev);
5969 	return 0;
5970 
5971 abort_export:
5972 	export_rdev(rdev);
5973 	return err;
5974 }
5975 
5976 static int set_bitmap_file(struct mddev *mddev, int fd)
5977 {
5978 	int err;
5979 
5980 	if (mddev->pers) {
5981 		if (!mddev->pers->quiesce)
5982 			return -EBUSY;
5983 		if (mddev->recovery || mddev->sync_thread)
5984 			return -EBUSY;
5985 		/* we should be able to change the bitmap.. */
5986 	}
5987 
5988 
5989 	if (fd >= 0) {
5990 		if (mddev->bitmap)
5991 			return -EEXIST; /* cannot add when bitmap is present */
5992 		mddev->bitmap_info.file = fget(fd);
5993 
5994 		if (mddev->bitmap_info.file == NULL) {
5995 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5996 			       mdname(mddev));
5997 			return -EBADF;
5998 		}
5999 
6000 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
6001 		if (err) {
6002 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6003 			       mdname(mddev));
6004 			fput(mddev->bitmap_info.file);
6005 			mddev->bitmap_info.file = NULL;
6006 			return err;
6007 		}
6008 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6009 	} else if (mddev->bitmap == NULL)
6010 		return -ENOENT; /* cannot remove what isn't there */
6011 	err = 0;
6012 	if (mddev->pers) {
6013 		mddev->pers->quiesce(mddev, 1);
6014 		if (fd >= 0) {
6015 			err = bitmap_create(mddev);
6016 			if (!err)
6017 				err = bitmap_load(mddev);
6018 		}
6019 		if (fd < 0 || err) {
6020 			bitmap_destroy(mddev);
6021 			fd = -1; /* make sure to put the file */
6022 		}
6023 		mddev->pers->quiesce(mddev, 0);
6024 	}
6025 	if (fd < 0) {
6026 		if (mddev->bitmap_info.file) {
6027 			restore_bitmap_write_access(mddev->bitmap_info.file);
6028 			fput(mddev->bitmap_info.file);
6029 		}
6030 		mddev->bitmap_info.file = NULL;
6031 	}
6032 
6033 	return err;
6034 }
6035 
6036 /*
6037  * set_array_info is used two different ways
6038  * The original usage is when creating a new array.
6039  * In this usage, raid_disks is > 0 and it together with
6040  *  level, size, not_persistent,layout,chunksize determine the
6041  *  shape of the array.
6042  *  This will always create an array with a type-0.90.0 superblock.
6043  * The newer usage is when assembling an array.
6044  *  In this case raid_disks will be 0, and the major_version field is
6045  *  use to determine which style super-blocks are to be found on the devices.
6046  *  The minor and patch _version numbers are also kept incase the
6047  *  super_block handler wishes to interpret them.
6048  */
6049 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6050 {
6051 
6052 	if (info->raid_disks == 0) {
6053 		/* just setting version number for superblock loading */
6054 		if (info->major_version < 0 ||
6055 		    info->major_version >= ARRAY_SIZE(super_types) ||
6056 		    super_types[info->major_version].name == NULL) {
6057 			/* maybe try to auto-load a module? */
6058 			printk(KERN_INFO
6059 				"md: superblock version %d not known\n",
6060 				info->major_version);
6061 			return -EINVAL;
6062 		}
6063 		mddev->major_version = info->major_version;
6064 		mddev->minor_version = info->minor_version;
6065 		mddev->patch_version = info->patch_version;
6066 		mddev->persistent = !info->not_persistent;
6067 		/* ensure mddev_put doesn't delete this now that there
6068 		 * is some minimal configuration.
6069 		 */
6070 		mddev->ctime         = get_seconds();
6071 		return 0;
6072 	}
6073 	mddev->major_version = MD_MAJOR_VERSION;
6074 	mddev->minor_version = MD_MINOR_VERSION;
6075 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6076 	mddev->ctime         = get_seconds();
6077 
6078 	mddev->level         = info->level;
6079 	mddev->clevel[0]     = 0;
6080 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6081 	mddev->raid_disks    = info->raid_disks;
6082 	/* don't set md_minor, it is determined by which /dev/md* was
6083 	 * openned
6084 	 */
6085 	if (info->state & (1<<MD_SB_CLEAN))
6086 		mddev->recovery_cp = MaxSector;
6087 	else
6088 		mddev->recovery_cp = 0;
6089 	mddev->persistent    = ! info->not_persistent;
6090 	mddev->external	     = 0;
6091 
6092 	mddev->layout        = info->layout;
6093 	mddev->chunk_sectors = info->chunk_size >> 9;
6094 
6095 	mddev->max_disks     = MD_SB_DISKS;
6096 
6097 	if (mddev->persistent)
6098 		mddev->flags         = 0;
6099 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6100 
6101 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6102 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6103 	mddev->bitmap_info.offset = 0;
6104 
6105 	mddev->reshape_position = MaxSector;
6106 
6107 	/*
6108 	 * Generate a 128 bit UUID
6109 	 */
6110 	get_random_bytes(mddev->uuid, 16);
6111 
6112 	mddev->new_level = mddev->level;
6113 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6114 	mddev->new_layout = mddev->layout;
6115 	mddev->delta_disks = 0;
6116 	mddev->reshape_backwards = 0;
6117 
6118 	return 0;
6119 }
6120 
6121 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6122 {
6123 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6124 
6125 	if (mddev->external_size)
6126 		return;
6127 
6128 	mddev->array_sectors = array_sectors;
6129 }
6130 EXPORT_SYMBOL(md_set_array_sectors);
6131 
6132 static int update_size(struct mddev *mddev, sector_t num_sectors)
6133 {
6134 	struct md_rdev *rdev;
6135 	int rv;
6136 	int fit = (num_sectors == 0);
6137 
6138 	if (mddev->pers->resize == NULL)
6139 		return -EINVAL;
6140 	/* The "num_sectors" is the number of sectors of each device that
6141 	 * is used.  This can only make sense for arrays with redundancy.
6142 	 * linear and raid0 always use whatever space is available. We can only
6143 	 * consider changing this number if no resync or reconstruction is
6144 	 * happening, and if the new size is acceptable. It must fit before the
6145 	 * sb_start or, if that is <data_offset, it must fit before the size
6146 	 * of each device.  If num_sectors is zero, we find the largest size
6147 	 * that fits.
6148 	 */
6149 	if (mddev->sync_thread)
6150 		return -EBUSY;
6151 
6152 	rdev_for_each(rdev, mddev) {
6153 		sector_t avail = rdev->sectors;
6154 
6155 		if (fit && (num_sectors == 0 || num_sectors > avail))
6156 			num_sectors = avail;
6157 		if (avail < num_sectors)
6158 			return -ENOSPC;
6159 	}
6160 	rv = mddev->pers->resize(mddev, num_sectors);
6161 	if (!rv)
6162 		revalidate_disk(mddev->gendisk);
6163 	return rv;
6164 }
6165 
6166 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6167 {
6168 	int rv;
6169 	struct md_rdev *rdev;
6170 	/* change the number of raid disks */
6171 	if (mddev->pers->check_reshape == NULL)
6172 		return -EINVAL;
6173 	if (raid_disks <= 0 ||
6174 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6175 		return -EINVAL;
6176 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6177 		return -EBUSY;
6178 
6179 	rdev_for_each(rdev, mddev) {
6180 		if (mddev->raid_disks < raid_disks &&
6181 		    rdev->data_offset < rdev->new_data_offset)
6182 			return -EINVAL;
6183 		if (mddev->raid_disks > raid_disks &&
6184 		    rdev->data_offset > rdev->new_data_offset)
6185 			return -EINVAL;
6186 	}
6187 
6188 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6189 	if (mddev->delta_disks < 0)
6190 		mddev->reshape_backwards = 1;
6191 	else if (mddev->delta_disks > 0)
6192 		mddev->reshape_backwards = 0;
6193 
6194 	rv = mddev->pers->check_reshape(mddev);
6195 	if (rv < 0) {
6196 		mddev->delta_disks = 0;
6197 		mddev->reshape_backwards = 0;
6198 	}
6199 	return rv;
6200 }
6201 
6202 
6203 /*
6204  * update_array_info is used to change the configuration of an
6205  * on-line array.
6206  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6207  * fields in the info are checked against the array.
6208  * Any differences that cannot be handled will cause an error.
6209  * Normally, only one change can be managed at a time.
6210  */
6211 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6212 {
6213 	int rv = 0;
6214 	int cnt = 0;
6215 	int state = 0;
6216 
6217 	/* calculate expected state,ignoring low bits */
6218 	if (mddev->bitmap && mddev->bitmap_info.offset)
6219 		state |= (1 << MD_SB_BITMAP_PRESENT);
6220 
6221 	if (mddev->major_version != info->major_version ||
6222 	    mddev->minor_version != info->minor_version ||
6223 /*	    mddev->patch_version != info->patch_version || */
6224 	    mddev->ctime         != info->ctime         ||
6225 	    mddev->level         != info->level         ||
6226 /*	    mddev->layout        != info->layout        || */
6227 	    !mddev->persistent	 != info->not_persistent||
6228 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6229 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6230 	    ((state^info->state) & 0xfffffe00)
6231 		)
6232 		return -EINVAL;
6233 	/* Check there is only one change */
6234 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6235 		cnt++;
6236 	if (mddev->raid_disks != info->raid_disks)
6237 		cnt++;
6238 	if (mddev->layout != info->layout)
6239 		cnt++;
6240 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6241 		cnt++;
6242 	if (cnt == 0)
6243 		return 0;
6244 	if (cnt > 1)
6245 		return -EINVAL;
6246 
6247 	if (mddev->layout != info->layout) {
6248 		/* Change layout
6249 		 * we don't need to do anything at the md level, the
6250 		 * personality will take care of it all.
6251 		 */
6252 		if (mddev->pers->check_reshape == NULL)
6253 			return -EINVAL;
6254 		else {
6255 			mddev->new_layout = info->layout;
6256 			rv = mddev->pers->check_reshape(mddev);
6257 			if (rv)
6258 				mddev->new_layout = mddev->layout;
6259 			return rv;
6260 		}
6261 	}
6262 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6263 		rv = update_size(mddev, (sector_t)info->size * 2);
6264 
6265 	if (mddev->raid_disks    != info->raid_disks)
6266 		rv = update_raid_disks(mddev, info->raid_disks);
6267 
6268 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6269 		if (mddev->pers->quiesce == NULL)
6270 			return -EINVAL;
6271 		if (mddev->recovery || mddev->sync_thread)
6272 			return -EBUSY;
6273 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6274 			/* add the bitmap */
6275 			if (mddev->bitmap)
6276 				return -EEXIST;
6277 			if (mddev->bitmap_info.default_offset == 0)
6278 				return -EINVAL;
6279 			mddev->bitmap_info.offset =
6280 				mddev->bitmap_info.default_offset;
6281 			mddev->bitmap_info.space =
6282 				mddev->bitmap_info.default_space;
6283 			mddev->pers->quiesce(mddev, 1);
6284 			rv = bitmap_create(mddev);
6285 			if (!rv)
6286 				rv = bitmap_load(mddev);
6287 			if (rv)
6288 				bitmap_destroy(mddev);
6289 			mddev->pers->quiesce(mddev, 0);
6290 		} else {
6291 			/* remove the bitmap */
6292 			if (!mddev->bitmap)
6293 				return -ENOENT;
6294 			if (mddev->bitmap->storage.file)
6295 				return -EINVAL;
6296 			mddev->pers->quiesce(mddev, 1);
6297 			bitmap_destroy(mddev);
6298 			mddev->pers->quiesce(mddev, 0);
6299 			mddev->bitmap_info.offset = 0;
6300 		}
6301 	}
6302 	md_update_sb(mddev, 1);
6303 	return rv;
6304 }
6305 
6306 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6307 {
6308 	struct md_rdev *rdev;
6309 	int err = 0;
6310 
6311 	if (mddev->pers == NULL)
6312 		return -ENODEV;
6313 
6314 	rcu_read_lock();
6315 	rdev = find_rdev_rcu(mddev, dev);
6316 	if (!rdev)
6317 		err =  -ENODEV;
6318 	else {
6319 		md_error(mddev, rdev);
6320 		if (!test_bit(Faulty, &rdev->flags))
6321 			err = -EBUSY;
6322 	}
6323 	rcu_read_unlock();
6324 	return err;
6325 }
6326 
6327 /*
6328  * We have a problem here : there is no easy way to give a CHS
6329  * virtual geometry. We currently pretend that we have a 2 heads
6330  * 4 sectors (with a BIG number of cylinders...). This drives
6331  * dosfs just mad... ;-)
6332  */
6333 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6334 {
6335 	struct mddev *mddev = bdev->bd_disk->private_data;
6336 
6337 	geo->heads = 2;
6338 	geo->sectors = 4;
6339 	geo->cylinders = mddev->array_sectors / 8;
6340 	return 0;
6341 }
6342 
6343 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6344 			unsigned int cmd, unsigned long arg)
6345 {
6346 	int err = 0;
6347 	void __user *argp = (void __user *)arg;
6348 	struct mddev *mddev = NULL;
6349 	int ro;
6350 
6351 	switch (cmd) {
6352 	case RAID_VERSION:
6353 	case GET_ARRAY_INFO:
6354 	case GET_DISK_INFO:
6355 		break;
6356 	default:
6357 		if (!capable(CAP_SYS_ADMIN))
6358 			return -EACCES;
6359 	}
6360 
6361 	/*
6362 	 * Commands dealing with the RAID driver but not any
6363 	 * particular array:
6364 	 */
6365 	switch (cmd) {
6366 	case RAID_VERSION:
6367 		err = get_version(argp);
6368 		goto done;
6369 
6370 	case PRINT_RAID_DEBUG:
6371 		err = 0;
6372 		md_print_devices();
6373 		goto done;
6374 
6375 #ifndef MODULE
6376 	case RAID_AUTORUN:
6377 		err = 0;
6378 		autostart_arrays(arg);
6379 		goto done;
6380 #endif
6381 	default:;
6382 	}
6383 
6384 	/*
6385 	 * Commands creating/starting a new array:
6386 	 */
6387 
6388 	mddev = bdev->bd_disk->private_data;
6389 
6390 	if (!mddev) {
6391 		BUG();
6392 		goto abort;
6393 	}
6394 
6395 	/* Some actions do not requires the mutex */
6396 	switch (cmd) {
6397 	case GET_ARRAY_INFO:
6398 		if (!mddev->raid_disks && !mddev->external)
6399 			err = -ENODEV;
6400 		else
6401 			err = get_array_info(mddev, argp);
6402 		goto abort;
6403 
6404 	case GET_DISK_INFO:
6405 		if (!mddev->raid_disks && !mddev->external)
6406 			err = -ENODEV;
6407 		else
6408 			err = get_disk_info(mddev, argp);
6409 		goto abort;
6410 
6411 	case SET_DISK_FAULTY:
6412 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6413 		goto abort;
6414 	}
6415 
6416 	if (cmd == ADD_NEW_DISK)
6417 		/* need to ensure md_delayed_delete() has completed */
6418 		flush_workqueue(md_misc_wq);
6419 
6420 	if (cmd == HOT_REMOVE_DISK)
6421 		/* need to ensure recovery thread has run */
6422 		wait_event_interruptible_timeout(mddev->sb_wait,
6423 						 !test_bit(MD_RECOVERY_NEEDED,
6424 							   &mddev->flags),
6425 						 msecs_to_jiffies(5000));
6426 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6427 		/* Need to flush page cache, and ensure no-one else opens
6428 		 * and writes
6429 		 */
6430 		mutex_lock(&mddev->open_mutex);
6431 		if (atomic_read(&mddev->openers) > 1) {
6432 			mutex_unlock(&mddev->open_mutex);
6433 			err = -EBUSY;
6434 			goto abort;
6435 		}
6436 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6437 		mutex_unlock(&mddev->open_mutex);
6438 		sync_blockdev(bdev);
6439 	}
6440 	err = mddev_lock(mddev);
6441 	if (err) {
6442 		printk(KERN_INFO
6443 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6444 			err, cmd);
6445 		goto abort;
6446 	}
6447 
6448 	if (cmd == SET_ARRAY_INFO) {
6449 		mdu_array_info_t info;
6450 		if (!arg)
6451 			memset(&info, 0, sizeof(info));
6452 		else if (copy_from_user(&info, argp, sizeof(info))) {
6453 			err = -EFAULT;
6454 			goto abort_unlock;
6455 		}
6456 		if (mddev->pers) {
6457 			err = update_array_info(mddev, &info);
6458 			if (err) {
6459 				printk(KERN_WARNING "md: couldn't update"
6460 				       " array info. %d\n", err);
6461 				goto abort_unlock;
6462 			}
6463 			goto done_unlock;
6464 		}
6465 		if (!list_empty(&mddev->disks)) {
6466 			printk(KERN_WARNING
6467 			       "md: array %s already has disks!\n",
6468 			       mdname(mddev));
6469 			err = -EBUSY;
6470 			goto abort_unlock;
6471 		}
6472 		if (mddev->raid_disks) {
6473 			printk(KERN_WARNING
6474 			       "md: array %s already initialised!\n",
6475 			       mdname(mddev));
6476 			err = -EBUSY;
6477 			goto abort_unlock;
6478 		}
6479 		err = set_array_info(mddev, &info);
6480 		if (err) {
6481 			printk(KERN_WARNING "md: couldn't set"
6482 			       " array info. %d\n", err);
6483 			goto abort_unlock;
6484 		}
6485 		goto done_unlock;
6486 	}
6487 
6488 	/*
6489 	 * Commands querying/configuring an existing array:
6490 	 */
6491 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6492 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6493 	if ((!mddev->raid_disks && !mddev->external)
6494 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6495 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6496 	    && cmd != GET_BITMAP_FILE) {
6497 		err = -ENODEV;
6498 		goto abort_unlock;
6499 	}
6500 
6501 	/*
6502 	 * Commands even a read-only array can execute:
6503 	 */
6504 	switch (cmd) {
6505 	case GET_BITMAP_FILE:
6506 		err = get_bitmap_file(mddev, argp);
6507 		goto done_unlock;
6508 
6509 	case RESTART_ARRAY_RW:
6510 		err = restart_array(mddev);
6511 		goto done_unlock;
6512 
6513 	case STOP_ARRAY:
6514 		err = do_md_stop(mddev, 0, bdev);
6515 		goto done_unlock;
6516 
6517 	case STOP_ARRAY_RO:
6518 		err = md_set_readonly(mddev, bdev);
6519 		goto done_unlock;
6520 
6521 	case HOT_REMOVE_DISK:
6522 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6523 		goto done_unlock;
6524 
6525 	case ADD_NEW_DISK:
6526 		/* We can support ADD_NEW_DISK on read-only arrays
6527 		 * on if we are re-adding a preexisting device.
6528 		 * So require mddev->pers and MD_DISK_SYNC.
6529 		 */
6530 		if (mddev->pers) {
6531 			mdu_disk_info_t info;
6532 			if (copy_from_user(&info, argp, sizeof(info)))
6533 				err = -EFAULT;
6534 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6535 				/* Need to clear read-only for this */
6536 				break;
6537 			else
6538 				err = add_new_disk(mddev, &info);
6539 			goto done_unlock;
6540 		}
6541 		break;
6542 
6543 	case BLKROSET:
6544 		if (get_user(ro, (int __user *)(arg))) {
6545 			err = -EFAULT;
6546 			goto done_unlock;
6547 		}
6548 		err = -EINVAL;
6549 
6550 		/* if the bdev is going readonly the value of mddev->ro
6551 		 * does not matter, no writes are coming
6552 		 */
6553 		if (ro)
6554 			goto done_unlock;
6555 
6556 		/* are we are already prepared for writes? */
6557 		if (mddev->ro != 1)
6558 			goto done_unlock;
6559 
6560 		/* transitioning to readauto need only happen for
6561 		 * arrays that call md_write_start
6562 		 */
6563 		if (mddev->pers) {
6564 			err = restart_array(mddev);
6565 			if (err == 0) {
6566 				mddev->ro = 2;
6567 				set_disk_ro(mddev->gendisk, 0);
6568 			}
6569 		}
6570 		goto done_unlock;
6571 	}
6572 
6573 	/*
6574 	 * The remaining ioctls are changing the state of the
6575 	 * superblock, so we do not allow them on read-only arrays.
6576 	 * However non-MD ioctls (e.g. get-size) will still come through
6577 	 * here and hit the 'default' below, so only disallow
6578 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6579 	 */
6580 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6581 		if (mddev->ro == 2) {
6582 			mddev->ro = 0;
6583 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6584 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6585 			/* mddev_unlock will wake thread */
6586 			/* If a device failed while we were read-only, we
6587 			 * need to make sure the metadata is updated now.
6588 			 */
6589 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6590 				mddev_unlock(mddev);
6591 				wait_event(mddev->sb_wait,
6592 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6593 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6594 				mddev_lock(mddev);
6595 			}
6596 		} else {
6597 			err = -EROFS;
6598 			goto abort_unlock;
6599 		}
6600 	}
6601 
6602 	switch (cmd) {
6603 	case ADD_NEW_DISK:
6604 	{
6605 		mdu_disk_info_t info;
6606 		if (copy_from_user(&info, argp, sizeof(info)))
6607 			err = -EFAULT;
6608 		else
6609 			err = add_new_disk(mddev, &info);
6610 		goto done_unlock;
6611 	}
6612 
6613 	case HOT_ADD_DISK:
6614 		err = hot_add_disk(mddev, new_decode_dev(arg));
6615 		goto done_unlock;
6616 
6617 	case RUN_ARRAY:
6618 		err = do_md_run(mddev);
6619 		goto done_unlock;
6620 
6621 	case SET_BITMAP_FILE:
6622 		err = set_bitmap_file(mddev, (int)arg);
6623 		goto done_unlock;
6624 
6625 	default:
6626 		err = -EINVAL;
6627 		goto abort_unlock;
6628 	}
6629 
6630 done_unlock:
6631 abort_unlock:
6632 	if (mddev->hold_active == UNTIL_IOCTL &&
6633 	    err != -EINVAL)
6634 		mddev->hold_active = 0;
6635 	mddev_unlock(mddev);
6636 
6637 	return err;
6638 done:
6639 	if (err)
6640 		MD_BUG();
6641 abort:
6642 	return err;
6643 }
6644 #ifdef CONFIG_COMPAT
6645 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6646 		    unsigned int cmd, unsigned long arg)
6647 {
6648 	switch (cmd) {
6649 	case HOT_REMOVE_DISK:
6650 	case HOT_ADD_DISK:
6651 	case SET_DISK_FAULTY:
6652 	case SET_BITMAP_FILE:
6653 		/* These take in integer arg, do not convert */
6654 		break;
6655 	default:
6656 		arg = (unsigned long)compat_ptr(arg);
6657 		break;
6658 	}
6659 
6660 	return md_ioctl(bdev, mode, cmd, arg);
6661 }
6662 #endif /* CONFIG_COMPAT */
6663 
6664 static int md_open(struct block_device *bdev, fmode_t mode)
6665 {
6666 	/*
6667 	 * Succeed if we can lock the mddev, which confirms that
6668 	 * it isn't being stopped right now.
6669 	 */
6670 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6671 	int err;
6672 
6673 	if (!mddev)
6674 		return -ENODEV;
6675 
6676 	if (mddev->gendisk != bdev->bd_disk) {
6677 		/* we are racing with mddev_put which is discarding this
6678 		 * bd_disk.
6679 		 */
6680 		mddev_put(mddev);
6681 		/* Wait until bdev->bd_disk is definitely gone */
6682 		flush_workqueue(md_misc_wq);
6683 		/* Then retry the open from the top */
6684 		return -ERESTARTSYS;
6685 	}
6686 	BUG_ON(mddev != bdev->bd_disk->private_data);
6687 
6688 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6689 		goto out;
6690 
6691 	err = 0;
6692 	atomic_inc(&mddev->openers);
6693 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6694 	mutex_unlock(&mddev->open_mutex);
6695 
6696 	check_disk_change(bdev);
6697  out:
6698 	return err;
6699 }
6700 
6701 static void md_release(struct gendisk *disk, fmode_t mode)
6702 {
6703  	struct mddev *mddev = disk->private_data;
6704 
6705 	BUG_ON(!mddev);
6706 	atomic_dec(&mddev->openers);
6707 	mddev_put(mddev);
6708 }
6709 
6710 static int md_media_changed(struct gendisk *disk)
6711 {
6712 	struct mddev *mddev = disk->private_data;
6713 
6714 	return mddev->changed;
6715 }
6716 
6717 static int md_revalidate(struct gendisk *disk)
6718 {
6719 	struct mddev *mddev = disk->private_data;
6720 
6721 	mddev->changed = 0;
6722 	return 0;
6723 }
6724 static const struct block_device_operations md_fops =
6725 {
6726 	.owner		= THIS_MODULE,
6727 	.open		= md_open,
6728 	.release	= md_release,
6729 	.ioctl		= md_ioctl,
6730 #ifdef CONFIG_COMPAT
6731 	.compat_ioctl	= md_compat_ioctl,
6732 #endif
6733 	.getgeo		= md_getgeo,
6734 	.media_changed  = md_media_changed,
6735 	.revalidate_disk= md_revalidate,
6736 };
6737 
6738 static int md_thread(void * arg)
6739 {
6740 	struct md_thread *thread = arg;
6741 
6742 	/*
6743 	 * md_thread is a 'system-thread', it's priority should be very
6744 	 * high. We avoid resource deadlocks individually in each
6745 	 * raid personality. (RAID5 does preallocation) We also use RR and
6746 	 * the very same RT priority as kswapd, thus we will never get
6747 	 * into a priority inversion deadlock.
6748 	 *
6749 	 * we definitely have to have equal or higher priority than
6750 	 * bdflush, otherwise bdflush will deadlock if there are too
6751 	 * many dirty RAID5 blocks.
6752 	 */
6753 
6754 	allow_signal(SIGKILL);
6755 	while (!kthread_should_stop()) {
6756 
6757 		/* We need to wait INTERRUPTIBLE so that
6758 		 * we don't add to the load-average.
6759 		 * That means we need to be sure no signals are
6760 		 * pending
6761 		 */
6762 		if (signal_pending(current))
6763 			flush_signals(current);
6764 
6765 		wait_event_interruptible_timeout
6766 			(thread->wqueue,
6767 			 test_bit(THREAD_WAKEUP, &thread->flags)
6768 			 || kthread_should_stop(),
6769 			 thread->timeout);
6770 
6771 		clear_bit(THREAD_WAKEUP, &thread->flags);
6772 		if (!kthread_should_stop())
6773 			thread->run(thread);
6774 	}
6775 
6776 	return 0;
6777 }
6778 
6779 void md_wakeup_thread(struct md_thread *thread)
6780 {
6781 	if (thread) {
6782 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6783 		set_bit(THREAD_WAKEUP, &thread->flags);
6784 		wake_up(&thread->wqueue);
6785 	}
6786 }
6787 
6788 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6789 		struct mddev *mddev, const char *name)
6790 {
6791 	struct md_thread *thread;
6792 
6793 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6794 	if (!thread)
6795 		return NULL;
6796 
6797 	init_waitqueue_head(&thread->wqueue);
6798 
6799 	thread->run = run;
6800 	thread->mddev = mddev;
6801 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6802 	thread->tsk = kthread_run(md_thread, thread,
6803 				  "%s_%s",
6804 				  mdname(thread->mddev),
6805 				  name);
6806 	if (IS_ERR(thread->tsk)) {
6807 		kfree(thread);
6808 		return NULL;
6809 	}
6810 	return thread;
6811 }
6812 
6813 void md_unregister_thread(struct md_thread **threadp)
6814 {
6815 	struct md_thread *thread = *threadp;
6816 	if (!thread)
6817 		return;
6818 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6819 	/* Locking ensures that mddev_unlock does not wake_up a
6820 	 * non-existent thread
6821 	 */
6822 	spin_lock(&pers_lock);
6823 	*threadp = NULL;
6824 	spin_unlock(&pers_lock);
6825 
6826 	kthread_stop(thread->tsk);
6827 	kfree(thread);
6828 }
6829 
6830 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6831 {
6832 	if (!mddev) {
6833 		MD_BUG();
6834 		return;
6835 	}
6836 
6837 	if (!rdev || test_bit(Faulty, &rdev->flags))
6838 		return;
6839 
6840 	if (!mddev->pers || !mddev->pers->error_handler)
6841 		return;
6842 	mddev->pers->error_handler(mddev,rdev);
6843 	if (mddev->degraded)
6844 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6845 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6846 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6847 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6848 	md_wakeup_thread(mddev->thread);
6849 	if (mddev->event_work.func)
6850 		queue_work(md_misc_wq, &mddev->event_work);
6851 	md_new_event_inintr(mddev);
6852 }
6853 
6854 /* seq_file implementation /proc/mdstat */
6855 
6856 static void status_unused(struct seq_file *seq)
6857 {
6858 	int i = 0;
6859 	struct md_rdev *rdev;
6860 
6861 	seq_printf(seq, "unused devices: ");
6862 
6863 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6864 		char b[BDEVNAME_SIZE];
6865 		i++;
6866 		seq_printf(seq, "%s ",
6867 			      bdevname(rdev->bdev,b));
6868 	}
6869 	if (!i)
6870 		seq_printf(seq, "<none>");
6871 
6872 	seq_printf(seq, "\n");
6873 }
6874 
6875 
6876 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6877 {
6878 	sector_t max_sectors, resync, res;
6879 	unsigned long dt, db;
6880 	sector_t rt;
6881 	int scale;
6882 	unsigned int per_milli;
6883 
6884 	if (mddev->curr_resync <= 3)
6885 		resync = 0;
6886 	else
6887 		resync = mddev->curr_resync
6888 			- atomic_read(&mddev->recovery_active);
6889 
6890 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6891 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6892 		max_sectors = mddev->resync_max_sectors;
6893 	else
6894 		max_sectors = mddev->dev_sectors;
6895 
6896 	/*
6897 	 * Should not happen.
6898 	 */
6899 	if (!max_sectors) {
6900 		MD_BUG();
6901 		return;
6902 	}
6903 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6904 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6905 	 * u32, as those are the requirements for sector_div.
6906 	 * Thus 'scale' must be at least 10
6907 	 */
6908 	scale = 10;
6909 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6910 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6911 			scale++;
6912 	}
6913 	res = (resync>>scale)*1000;
6914 	sector_div(res, (u32)((max_sectors>>scale)+1));
6915 
6916 	per_milli = res;
6917 	{
6918 		int i, x = per_milli/50, y = 20-x;
6919 		seq_printf(seq, "[");
6920 		for (i = 0; i < x; i++)
6921 			seq_printf(seq, "=");
6922 		seq_printf(seq, ">");
6923 		for (i = 0; i < y; i++)
6924 			seq_printf(seq, ".");
6925 		seq_printf(seq, "] ");
6926 	}
6927 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6928 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6929 		    "reshape" :
6930 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6931 		     "check" :
6932 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6933 		      "resync" : "recovery"))),
6934 		   per_milli/10, per_milli % 10,
6935 		   (unsigned long long) resync/2,
6936 		   (unsigned long long) max_sectors/2);
6937 
6938 	/*
6939 	 * dt: time from mark until now
6940 	 * db: blocks written from mark until now
6941 	 * rt: remaining time
6942 	 *
6943 	 * rt is a sector_t, so could be 32bit or 64bit.
6944 	 * So we divide before multiply in case it is 32bit and close
6945 	 * to the limit.
6946 	 * We scale the divisor (db) by 32 to avoid losing precision
6947 	 * near the end of resync when the number of remaining sectors
6948 	 * is close to 'db'.
6949 	 * We then divide rt by 32 after multiplying by db to compensate.
6950 	 * The '+1' avoids division by zero if db is very small.
6951 	 */
6952 	dt = ((jiffies - mddev->resync_mark) / HZ);
6953 	if (!dt) dt++;
6954 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6955 		- mddev->resync_mark_cnt;
6956 
6957 	rt = max_sectors - resync;    /* number of remaining sectors */
6958 	sector_div(rt, db/32+1);
6959 	rt *= dt;
6960 	rt >>= 5;
6961 
6962 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6963 		   ((unsigned long)rt % 60)/6);
6964 
6965 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6966 }
6967 
6968 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6969 {
6970 	struct list_head *tmp;
6971 	loff_t l = *pos;
6972 	struct mddev *mddev;
6973 
6974 	if (l >= 0x10000)
6975 		return NULL;
6976 	if (!l--)
6977 		/* header */
6978 		return (void*)1;
6979 
6980 	spin_lock(&all_mddevs_lock);
6981 	list_for_each(tmp,&all_mddevs)
6982 		if (!l--) {
6983 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6984 			mddev_get(mddev);
6985 			spin_unlock(&all_mddevs_lock);
6986 			return mddev;
6987 		}
6988 	spin_unlock(&all_mddevs_lock);
6989 	if (!l--)
6990 		return (void*)2;/* tail */
6991 	return NULL;
6992 }
6993 
6994 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6995 {
6996 	struct list_head *tmp;
6997 	struct mddev *next_mddev, *mddev = v;
6998 
6999 	++*pos;
7000 	if (v == (void*)2)
7001 		return NULL;
7002 
7003 	spin_lock(&all_mddevs_lock);
7004 	if (v == (void*)1)
7005 		tmp = all_mddevs.next;
7006 	else
7007 		tmp = mddev->all_mddevs.next;
7008 	if (tmp != &all_mddevs)
7009 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7010 	else {
7011 		next_mddev = (void*)2;
7012 		*pos = 0x10000;
7013 	}
7014 	spin_unlock(&all_mddevs_lock);
7015 
7016 	if (v != (void*)1)
7017 		mddev_put(mddev);
7018 	return next_mddev;
7019 
7020 }
7021 
7022 static void md_seq_stop(struct seq_file *seq, void *v)
7023 {
7024 	struct mddev *mddev = v;
7025 
7026 	if (mddev && v != (void*)1 && v != (void*)2)
7027 		mddev_put(mddev);
7028 }
7029 
7030 static int md_seq_show(struct seq_file *seq, void *v)
7031 {
7032 	struct mddev *mddev = v;
7033 	sector_t sectors;
7034 	struct md_rdev *rdev;
7035 
7036 	if (v == (void*)1) {
7037 		struct md_personality *pers;
7038 		seq_printf(seq, "Personalities : ");
7039 		spin_lock(&pers_lock);
7040 		list_for_each_entry(pers, &pers_list, list)
7041 			seq_printf(seq, "[%s] ", pers->name);
7042 
7043 		spin_unlock(&pers_lock);
7044 		seq_printf(seq, "\n");
7045 		seq->poll_event = atomic_read(&md_event_count);
7046 		return 0;
7047 	}
7048 	if (v == (void*)2) {
7049 		status_unused(seq);
7050 		return 0;
7051 	}
7052 
7053 	if (mddev_lock(mddev) < 0)
7054 		return -EINTR;
7055 
7056 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7057 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7058 						mddev->pers ? "" : "in");
7059 		if (mddev->pers) {
7060 			if (mddev->ro==1)
7061 				seq_printf(seq, " (read-only)");
7062 			if (mddev->ro==2)
7063 				seq_printf(seq, " (auto-read-only)");
7064 			seq_printf(seq, " %s", mddev->pers->name);
7065 		}
7066 
7067 		sectors = 0;
7068 		rdev_for_each(rdev, mddev) {
7069 			char b[BDEVNAME_SIZE];
7070 			seq_printf(seq, " %s[%d]",
7071 				bdevname(rdev->bdev,b), rdev->desc_nr);
7072 			if (test_bit(WriteMostly, &rdev->flags))
7073 				seq_printf(seq, "(W)");
7074 			if (test_bit(Faulty, &rdev->flags)) {
7075 				seq_printf(seq, "(F)");
7076 				continue;
7077 			}
7078 			if (rdev->raid_disk < 0)
7079 				seq_printf(seq, "(S)"); /* spare */
7080 			if (test_bit(Replacement, &rdev->flags))
7081 				seq_printf(seq, "(R)");
7082 			sectors += rdev->sectors;
7083 		}
7084 
7085 		if (!list_empty(&mddev->disks)) {
7086 			if (mddev->pers)
7087 				seq_printf(seq, "\n      %llu blocks",
7088 					   (unsigned long long)
7089 					   mddev->array_sectors / 2);
7090 			else
7091 				seq_printf(seq, "\n      %llu blocks",
7092 					   (unsigned long long)sectors / 2);
7093 		}
7094 		if (mddev->persistent) {
7095 			if (mddev->major_version != 0 ||
7096 			    mddev->minor_version != 90) {
7097 				seq_printf(seq," super %d.%d",
7098 					   mddev->major_version,
7099 					   mddev->minor_version);
7100 			}
7101 		} else if (mddev->external)
7102 			seq_printf(seq, " super external:%s",
7103 				   mddev->metadata_type);
7104 		else
7105 			seq_printf(seq, " super non-persistent");
7106 
7107 		if (mddev->pers) {
7108 			mddev->pers->status(seq, mddev);
7109 	 		seq_printf(seq, "\n      ");
7110 			if (mddev->pers->sync_request) {
7111 				if (mddev->curr_resync > 2) {
7112 					status_resync(seq, mddev);
7113 					seq_printf(seq, "\n      ");
7114 				} else if (mddev->curr_resync >= 1)
7115 					seq_printf(seq, "\tresync=DELAYED\n      ");
7116 				else if (mddev->recovery_cp < MaxSector)
7117 					seq_printf(seq, "\tresync=PENDING\n      ");
7118 			}
7119 		} else
7120 			seq_printf(seq, "\n       ");
7121 
7122 		bitmap_status(seq, mddev->bitmap);
7123 
7124 		seq_printf(seq, "\n");
7125 	}
7126 	mddev_unlock(mddev);
7127 
7128 	return 0;
7129 }
7130 
7131 static const struct seq_operations md_seq_ops = {
7132 	.start  = md_seq_start,
7133 	.next   = md_seq_next,
7134 	.stop   = md_seq_stop,
7135 	.show   = md_seq_show,
7136 };
7137 
7138 static int md_seq_open(struct inode *inode, struct file *file)
7139 {
7140 	struct seq_file *seq;
7141 	int error;
7142 
7143 	error = seq_open(file, &md_seq_ops);
7144 	if (error)
7145 		return error;
7146 
7147 	seq = file->private_data;
7148 	seq->poll_event = atomic_read(&md_event_count);
7149 	return error;
7150 }
7151 
7152 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7153 {
7154 	struct seq_file *seq = filp->private_data;
7155 	int mask;
7156 
7157 	poll_wait(filp, &md_event_waiters, wait);
7158 
7159 	/* always allow read */
7160 	mask = POLLIN | POLLRDNORM;
7161 
7162 	if (seq->poll_event != atomic_read(&md_event_count))
7163 		mask |= POLLERR | POLLPRI;
7164 	return mask;
7165 }
7166 
7167 static const struct file_operations md_seq_fops = {
7168 	.owner		= THIS_MODULE,
7169 	.open           = md_seq_open,
7170 	.read           = seq_read,
7171 	.llseek         = seq_lseek,
7172 	.release	= seq_release_private,
7173 	.poll		= mdstat_poll,
7174 };
7175 
7176 int register_md_personality(struct md_personality *p)
7177 {
7178 	spin_lock(&pers_lock);
7179 	list_add_tail(&p->list, &pers_list);
7180 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7181 	spin_unlock(&pers_lock);
7182 	return 0;
7183 }
7184 
7185 int unregister_md_personality(struct md_personality *p)
7186 {
7187 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7188 	spin_lock(&pers_lock);
7189 	list_del_init(&p->list);
7190 	spin_unlock(&pers_lock);
7191 	return 0;
7192 }
7193 
7194 static int is_mddev_idle(struct mddev *mddev, int init)
7195 {
7196 	struct md_rdev * rdev;
7197 	int idle;
7198 	int curr_events;
7199 
7200 	idle = 1;
7201 	rcu_read_lock();
7202 	rdev_for_each_rcu(rdev, mddev) {
7203 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7204 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7205 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7206 			      atomic_read(&disk->sync_io);
7207 		/* sync IO will cause sync_io to increase before the disk_stats
7208 		 * as sync_io is counted when a request starts, and
7209 		 * disk_stats is counted when it completes.
7210 		 * So resync activity will cause curr_events to be smaller than
7211 		 * when there was no such activity.
7212 		 * non-sync IO will cause disk_stat to increase without
7213 		 * increasing sync_io so curr_events will (eventually)
7214 		 * be larger than it was before.  Once it becomes
7215 		 * substantially larger, the test below will cause
7216 		 * the array to appear non-idle, and resync will slow
7217 		 * down.
7218 		 * If there is a lot of outstanding resync activity when
7219 		 * we set last_event to curr_events, then all that activity
7220 		 * completing might cause the array to appear non-idle
7221 		 * and resync will be slowed down even though there might
7222 		 * not have been non-resync activity.  This will only
7223 		 * happen once though.  'last_events' will soon reflect
7224 		 * the state where there is little or no outstanding
7225 		 * resync requests, and further resync activity will
7226 		 * always make curr_events less than last_events.
7227 		 *
7228 		 */
7229 		if (init || curr_events - rdev->last_events > 64) {
7230 			rdev->last_events = curr_events;
7231 			idle = 0;
7232 		}
7233 	}
7234 	rcu_read_unlock();
7235 	return idle;
7236 }
7237 
7238 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7239 {
7240 	/* another "blocks" (512byte) blocks have been synced */
7241 	atomic_sub(blocks, &mddev->recovery_active);
7242 	wake_up(&mddev->recovery_wait);
7243 	if (!ok) {
7244 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7245 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7246 		md_wakeup_thread(mddev->thread);
7247 		// stop recovery, signal do_sync ....
7248 	}
7249 }
7250 
7251 
7252 /* md_write_start(mddev, bi)
7253  * If we need to update some array metadata (e.g. 'active' flag
7254  * in superblock) before writing, schedule a superblock update
7255  * and wait for it to complete.
7256  */
7257 void md_write_start(struct mddev *mddev, struct bio *bi)
7258 {
7259 	int did_change = 0;
7260 	if (bio_data_dir(bi) != WRITE)
7261 		return;
7262 
7263 	BUG_ON(mddev->ro == 1);
7264 	if (mddev->ro == 2) {
7265 		/* need to switch to read/write */
7266 		mddev->ro = 0;
7267 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7268 		md_wakeup_thread(mddev->thread);
7269 		md_wakeup_thread(mddev->sync_thread);
7270 		did_change = 1;
7271 	}
7272 	atomic_inc(&mddev->writes_pending);
7273 	if (mddev->safemode == 1)
7274 		mddev->safemode = 0;
7275 	if (mddev->in_sync) {
7276 		spin_lock_irq(&mddev->write_lock);
7277 		if (mddev->in_sync) {
7278 			mddev->in_sync = 0;
7279 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7280 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7281 			md_wakeup_thread(mddev->thread);
7282 			did_change = 1;
7283 		}
7284 		spin_unlock_irq(&mddev->write_lock);
7285 	}
7286 	if (did_change)
7287 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7288 	wait_event(mddev->sb_wait,
7289 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7290 }
7291 
7292 void md_write_end(struct mddev *mddev)
7293 {
7294 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7295 		if (mddev->safemode == 2)
7296 			md_wakeup_thread(mddev->thread);
7297 		else if (mddev->safemode_delay)
7298 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7299 	}
7300 }
7301 
7302 /* md_allow_write(mddev)
7303  * Calling this ensures that the array is marked 'active' so that writes
7304  * may proceed without blocking.  It is important to call this before
7305  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7306  * Must be called with mddev_lock held.
7307  *
7308  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7309  * is dropped, so return -EAGAIN after notifying userspace.
7310  */
7311 int md_allow_write(struct mddev *mddev)
7312 {
7313 	if (!mddev->pers)
7314 		return 0;
7315 	if (mddev->ro)
7316 		return 0;
7317 	if (!mddev->pers->sync_request)
7318 		return 0;
7319 
7320 	spin_lock_irq(&mddev->write_lock);
7321 	if (mddev->in_sync) {
7322 		mddev->in_sync = 0;
7323 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7324 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7325 		if (mddev->safemode_delay &&
7326 		    mddev->safemode == 0)
7327 			mddev->safemode = 1;
7328 		spin_unlock_irq(&mddev->write_lock);
7329 		md_update_sb(mddev, 0);
7330 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7331 	} else
7332 		spin_unlock_irq(&mddev->write_lock);
7333 
7334 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7335 		return -EAGAIN;
7336 	else
7337 		return 0;
7338 }
7339 EXPORT_SYMBOL_GPL(md_allow_write);
7340 
7341 #define SYNC_MARKS	10
7342 #define	SYNC_MARK_STEP	(3*HZ)
7343 #define UPDATE_FREQUENCY (5*60*HZ)
7344 void md_do_sync(struct md_thread *thread)
7345 {
7346 	struct mddev *mddev = thread->mddev;
7347 	struct mddev *mddev2;
7348 	unsigned int currspeed = 0,
7349 		 window;
7350 	sector_t max_sectors,j, io_sectors;
7351 	unsigned long mark[SYNC_MARKS];
7352 	unsigned long update_time;
7353 	sector_t mark_cnt[SYNC_MARKS];
7354 	int last_mark,m;
7355 	struct list_head *tmp;
7356 	sector_t last_check;
7357 	int skipped = 0;
7358 	struct md_rdev *rdev;
7359 	char *desc, *action = NULL;
7360 	struct blk_plug plug;
7361 
7362 	/* just incase thread restarts... */
7363 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7364 		return;
7365 	if (mddev->ro) /* never try to sync a read-only array */
7366 		return;
7367 
7368 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7369 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7370 			desc = "data-check";
7371 			action = "check";
7372 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7373 			desc = "requested-resync";
7374 			action = "repair";
7375 		} else
7376 			desc = "resync";
7377 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7378 		desc = "reshape";
7379 	else
7380 		desc = "recovery";
7381 
7382 	mddev->last_sync_action = action ?: desc;
7383 
7384 	/* we overload curr_resync somewhat here.
7385 	 * 0 == not engaged in resync at all
7386 	 * 2 == checking that there is no conflict with another sync
7387 	 * 1 == like 2, but have yielded to allow conflicting resync to
7388 	 *		commense
7389 	 * other == active in resync - this many blocks
7390 	 *
7391 	 * Before starting a resync we must have set curr_resync to
7392 	 * 2, and then checked that every "conflicting" array has curr_resync
7393 	 * less than ours.  When we find one that is the same or higher
7394 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7395 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7396 	 * This will mean we have to start checking from the beginning again.
7397 	 *
7398 	 */
7399 
7400 	do {
7401 		mddev->curr_resync = 2;
7402 
7403 	try_again:
7404 		if (kthread_should_stop())
7405 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7406 
7407 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7408 			goto skip;
7409 		for_each_mddev(mddev2, tmp) {
7410 			if (mddev2 == mddev)
7411 				continue;
7412 			if (!mddev->parallel_resync
7413 			&&  mddev2->curr_resync
7414 			&&  match_mddev_units(mddev, mddev2)) {
7415 				DEFINE_WAIT(wq);
7416 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7417 					/* arbitrarily yield */
7418 					mddev->curr_resync = 1;
7419 					wake_up(&resync_wait);
7420 				}
7421 				if (mddev > mddev2 && mddev->curr_resync == 1)
7422 					/* no need to wait here, we can wait the next
7423 					 * time 'round when curr_resync == 2
7424 					 */
7425 					continue;
7426 				/* We need to wait 'interruptible' so as not to
7427 				 * contribute to the load average, and not to
7428 				 * be caught by 'softlockup'
7429 				 */
7430 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7431 				if (!kthread_should_stop() &&
7432 				    mddev2->curr_resync >= mddev->curr_resync) {
7433 					printk(KERN_INFO "md: delaying %s of %s"
7434 					       " until %s has finished (they"
7435 					       " share one or more physical units)\n",
7436 					       desc, mdname(mddev), mdname(mddev2));
7437 					mddev_put(mddev2);
7438 					if (signal_pending(current))
7439 						flush_signals(current);
7440 					schedule();
7441 					finish_wait(&resync_wait, &wq);
7442 					goto try_again;
7443 				}
7444 				finish_wait(&resync_wait, &wq);
7445 			}
7446 		}
7447 	} while (mddev->curr_resync < 2);
7448 
7449 	j = 0;
7450 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7451 		/* resync follows the size requested by the personality,
7452 		 * which defaults to physical size, but can be virtual size
7453 		 */
7454 		max_sectors = mddev->resync_max_sectors;
7455 		atomic64_set(&mddev->resync_mismatches, 0);
7456 		/* we don't use the checkpoint if there's a bitmap */
7457 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7458 			j = mddev->resync_min;
7459 		else if (!mddev->bitmap)
7460 			j = mddev->recovery_cp;
7461 
7462 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7463 		max_sectors = mddev->resync_max_sectors;
7464 	else {
7465 		/* recovery follows the physical size of devices */
7466 		max_sectors = mddev->dev_sectors;
7467 		j = MaxSector;
7468 		rcu_read_lock();
7469 		rdev_for_each_rcu(rdev, mddev)
7470 			if (rdev->raid_disk >= 0 &&
7471 			    !test_bit(Faulty, &rdev->flags) &&
7472 			    !test_bit(In_sync, &rdev->flags) &&
7473 			    rdev->recovery_offset < j)
7474 				j = rdev->recovery_offset;
7475 		rcu_read_unlock();
7476 	}
7477 
7478 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7479 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7480 		" %d KB/sec/disk.\n", speed_min(mddev));
7481 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7482 	       "(but not more than %d KB/sec) for %s.\n",
7483 	       speed_max(mddev), desc);
7484 
7485 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7486 
7487 	io_sectors = 0;
7488 	for (m = 0; m < SYNC_MARKS; m++) {
7489 		mark[m] = jiffies;
7490 		mark_cnt[m] = io_sectors;
7491 	}
7492 	last_mark = 0;
7493 	mddev->resync_mark = mark[last_mark];
7494 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7495 
7496 	/*
7497 	 * Tune reconstruction:
7498 	 */
7499 	window = 32*(PAGE_SIZE/512);
7500 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7501 		window/2, (unsigned long long)max_sectors/2);
7502 
7503 	atomic_set(&mddev->recovery_active, 0);
7504 	last_check = 0;
7505 
7506 	if (j>2) {
7507 		printk(KERN_INFO
7508 		       "md: resuming %s of %s from checkpoint.\n",
7509 		       desc, mdname(mddev));
7510 		mddev->curr_resync = j;
7511 	} else
7512 		mddev->curr_resync = 3; /* no longer delayed */
7513 	mddev->curr_resync_completed = j;
7514 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7515 	md_new_event(mddev);
7516 	update_time = jiffies;
7517 
7518 	blk_start_plug(&plug);
7519 	while (j < max_sectors) {
7520 		sector_t sectors;
7521 
7522 		skipped = 0;
7523 
7524 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7525 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7526 		      (mddev->curr_resync - mddev->curr_resync_completed)
7527 		      > (max_sectors >> 4)) ||
7528 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7529 		     (j - mddev->curr_resync_completed)*2
7530 		     >= mddev->resync_max - mddev->curr_resync_completed
7531 			    )) {
7532 			/* time to update curr_resync_completed */
7533 			wait_event(mddev->recovery_wait,
7534 				   atomic_read(&mddev->recovery_active) == 0);
7535 			mddev->curr_resync_completed = j;
7536 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7537 			    j > mddev->recovery_cp)
7538 				mddev->recovery_cp = j;
7539 			update_time = jiffies;
7540 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7541 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7542 		}
7543 
7544 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7545 			/* As this condition is controlled by user-space,
7546 			 * we can block indefinitely, so use '_interruptible'
7547 			 * to avoid triggering warnings.
7548 			 */
7549 			flush_signals(current); /* just in case */
7550 			wait_event_interruptible(mddev->recovery_wait,
7551 						 mddev->resync_max > j
7552 						 || kthread_should_stop());
7553 		}
7554 
7555 		if (kthread_should_stop())
7556 			goto interrupted;
7557 
7558 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7559 						  currspeed < speed_min(mddev));
7560 		if (sectors == 0) {
7561 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7562 			goto out;
7563 		}
7564 
7565 		if (!skipped) { /* actual IO requested */
7566 			io_sectors += sectors;
7567 			atomic_add(sectors, &mddev->recovery_active);
7568 		}
7569 
7570 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7571 			break;
7572 
7573 		j += sectors;
7574 		if (j > 2)
7575 			mddev->curr_resync = j;
7576 		mddev->curr_mark_cnt = io_sectors;
7577 		if (last_check == 0)
7578 			/* this is the earliest that rebuild will be
7579 			 * visible in /proc/mdstat
7580 			 */
7581 			md_new_event(mddev);
7582 
7583 		if (last_check + window > io_sectors || j == max_sectors)
7584 			continue;
7585 
7586 		last_check = io_sectors;
7587 	repeat:
7588 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7589 			/* step marks */
7590 			int next = (last_mark+1) % SYNC_MARKS;
7591 
7592 			mddev->resync_mark = mark[next];
7593 			mddev->resync_mark_cnt = mark_cnt[next];
7594 			mark[next] = jiffies;
7595 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7596 			last_mark = next;
7597 		}
7598 
7599 
7600 		if (kthread_should_stop())
7601 			goto interrupted;
7602 
7603 
7604 		/*
7605 		 * this loop exits only if either when we are slower than
7606 		 * the 'hard' speed limit, or the system was IO-idle for
7607 		 * a jiffy.
7608 		 * the system might be non-idle CPU-wise, but we only care
7609 		 * about not overloading the IO subsystem. (things like an
7610 		 * e2fsck being done on the RAID array should execute fast)
7611 		 */
7612 		cond_resched();
7613 
7614 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7615 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7616 
7617 		if (currspeed > speed_min(mddev)) {
7618 			if ((currspeed > speed_max(mddev)) ||
7619 					!is_mddev_idle(mddev, 0)) {
7620 				msleep(500);
7621 				goto repeat;
7622 			}
7623 		}
7624 	}
7625 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7626 	/*
7627 	 * this also signals 'finished resyncing' to md_stop
7628 	 */
7629  out:
7630 	blk_finish_plug(&plug);
7631 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7632 
7633 	/* tell personality that we are finished */
7634 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7635 
7636 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7637 	    mddev->curr_resync > 2) {
7638 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7639 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7640 				if (mddev->curr_resync >= mddev->recovery_cp) {
7641 					printk(KERN_INFO
7642 					       "md: checkpointing %s of %s.\n",
7643 					       desc, mdname(mddev));
7644 					if (test_bit(MD_RECOVERY_ERROR,
7645 						&mddev->recovery))
7646 						mddev->recovery_cp =
7647 							mddev->curr_resync_completed;
7648 					else
7649 						mddev->recovery_cp =
7650 							mddev->curr_resync;
7651 				}
7652 			} else
7653 				mddev->recovery_cp = MaxSector;
7654 		} else {
7655 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7656 				mddev->curr_resync = MaxSector;
7657 			rcu_read_lock();
7658 			rdev_for_each_rcu(rdev, mddev)
7659 				if (rdev->raid_disk >= 0 &&
7660 				    mddev->delta_disks >= 0 &&
7661 				    !test_bit(Faulty, &rdev->flags) &&
7662 				    !test_bit(In_sync, &rdev->flags) &&
7663 				    rdev->recovery_offset < mddev->curr_resync)
7664 					rdev->recovery_offset = mddev->curr_resync;
7665 			rcu_read_unlock();
7666 		}
7667 	}
7668  skip:
7669 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7670 
7671 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7672 		/* We completed so min/max setting can be forgotten if used. */
7673 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7674 			mddev->resync_min = 0;
7675 		mddev->resync_max = MaxSector;
7676 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7677 		mddev->resync_min = mddev->curr_resync_completed;
7678 	mddev->curr_resync = 0;
7679 	wake_up(&resync_wait);
7680 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7681 	md_wakeup_thread(mddev->thread);
7682 	return;
7683 
7684  interrupted:
7685 	/*
7686 	 * got a signal, exit.
7687 	 */
7688 	printk(KERN_INFO
7689 	       "md: md_do_sync() got signal ... exiting\n");
7690 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7691 	goto out;
7692 
7693 }
7694 EXPORT_SYMBOL_GPL(md_do_sync);
7695 
7696 static int remove_and_add_spares(struct mddev *mddev,
7697 				 struct md_rdev *this)
7698 {
7699 	struct md_rdev *rdev;
7700 	int spares = 0;
7701 	int removed = 0;
7702 
7703 	rdev_for_each(rdev, mddev)
7704 		if ((this == NULL || rdev == this) &&
7705 		    rdev->raid_disk >= 0 &&
7706 		    !test_bit(Blocked, &rdev->flags) &&
7707 		    (test_bit(Faulty, &rdev->flags) ||
7708 		     ! test_bit(In_sync, &rdev->flags)) &&
7709 		    atomic_read(&rdev->nr_pending)==0) {
7710 			if (mddev->pers->hot_remove_disk(
7711 				    mddev, rdev) == 0) {
7712 				sysfs_unlink_rdev(mddev, rdev);
7713 				rdev->raid_disk = -1;
7714 				removed++;
7715 			}
7716 		}
7717 	if (removed && mddev->kobj.sd)
7718 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7719 
7720 	if (this)
7721 		goto no_add;
7722 
7723 	rdev_for_each(rdev, mddev) {
7724 		if (rdev->raid_disk >= 0 &&
7725 		    !test_bit(In_sync, &rdev->flags) &&
7726 		    !test_bit(Faulty, &rdev->flags))
7727 			spares++;
7728 		if (rdev->raid_disk >= 0)
7729 			continue;
7730 		if (test_bit(Faulty, &rdev->flags))
7731 			continue;
7732 		if (mddev->ro &&
7733 		    rdev->saved_raid_disk < 0)
7734 			continue;
7735 
7736 		rdev->recovery_offset = 0;
7737 		if (mddev->pers->
7738 		    hot_add_disk(mddev, rdev) == 0) {
7739 			if (sysfs_link_rdev(mddev, rdev))
7740 				/* failure here is OK */;
7741 			spares++;
7742 			md_new_event(mddev);
7743 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7744 		}
7745 	}
7746 no_add:
7747 	if (removed)
7748 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
7749 	return spares;
7750 }
7751 
7752 /*
7753  * This routine is regularly called by all per-raid-array threads to
7754  * deal with generic issues like resync and super-block update.
7755  * Raid personalities that don't have a thread (linear/raid0) do not
7756  * need this as they never do any recovery or update the superblock.
7757  *
7758  * It does not do any resync itself, but rather "forks" off other threads
7759  * to do that as needed.
7760  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7761  * "->recovery" and create a thread at ->sync_thread.
7762  * When the thread finishes it sets MD_RECOVERY_DONE
7763  * and wakeups up this thread which will reap the thread and finish up.
7764  * This thread also removes any faulty devices (with nr_pending == 0).
7765  *
7766  * The overall approach is:
7767  *  1/ if the superblock needs updating, update it.
7768  *  2/ If a recovery thread is running, don't do anything else.
7769  *  3/ If recovery has finished, clean up, possibly marking spares active.
7770  *  4/ If there are any faulty devices, remove them.
7771  *  5/ If array is degraded, try to add spares devices
7772  *  6/ If array has spares or is not in-sync, start a resync thread.
7773  */
7774 void md_check_recovery(struct mddev *mddev)
7775 {
7776 	if (mddev->suspended)
7777 		return;
7778 
7779 	if (mddev->bitmap)
7780 		bitmap_daemon_work(mddev);
7781 
7782 	if (signal_pending(current)) {
7783 		if (mddev->pers->sync_request && !mddev->external) {
7784 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7785 			       mdname(mddev));
7786 			mddev->safemode = 2;
7787 		}
7788 		flush_signals(current);
7789 	}
7790 
7791 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7792 		return;
7793 	if ( ! (
7794 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7795 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7796 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7797 		(mddev->external == 0 && mddev->safemode == 1) ||
7798 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7799 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7800 		))
7801 		return;
7802 
7803 	if (mddev_trylock(mddev)) {
7804 		int spares = 0;
7805 
7806 		if (mddev->ro) {
7807 			/* On a read-only array we can:
7808 			 * - remove failed devices
7809 			 * - add already-in_sync devices if the array itself
7810 			 *   is in-sync.
7811 			 * As we only add devices that are already in-sync,
7812 			 * we can activate the spares immediately.
7813 			 */
7814 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7815 			remove_and_add_spares(mddev, NULL);
7816 			mddev->pers->spare_active(mddev);
7817 			goto unlock;
7818 		}
7819 
7820 		if (!mddev->external) {
7821 			int did_change = 0;
7822 			spin_lock_irq(&mddev->write_lock);
7823 			if (mddev->safemode &&
7824 			    !atomic_read(&mddev->writes_pending) &&
7825 			    !mddev->in_sync &&
7826 			    mddev->recovery_cp == MaxSector) {
7827 				mddev->in_sync = 1;
7828 				did_change = 1;
7829 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7830 			}
7831 			if (mddev->safemode == 1)
7832 				mddev->safemode = 0;
7833 			spin_unlock_irq(&mddev->write_lock);
7834 			if (did_change)
7835 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7836 		}
7837 
7838 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
7839 			md_update_sb(mddev, 0);
7840 
7841 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7842 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7843 			/* resync/recovery still happening */
7844 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7845 			goto unlock;
7846 		}
7847 		if (mddev->sync_thread) {
7848 			md_reap_sync_thread(mddev);
7849 			goto unlock;
7850 		}
7851 		/* Set RUNNING before clearing NEEDED to avoid
7852 		 * any transients in the value of "sync_action".
7853 		 */
7854 		mddev->curr_resync_completed = 0;
7855 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7856 		/* Clear some bits that don't mean anything, but
7857 		 * might be left set
7858 		 */
7859 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7860 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7861 
7862 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7863 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7864 			goto unlock;
7865 		/* no recovery is running.
7866 		 * remove any failed drives, then
7867 		 * add spares if possible.
7868 		 * Spares are also removed and re-added, to allow
7869 		 * the personality to fail the re-add.
7870 		 */
7871 
7872 		if (mddev->reshape_position != MaxSector) {
7873 			if (mddev->pers->check_reshape == NULL ||
7874 			    mddev->pers->check_reshape(mddev) != 0)
7875 				/* Cannot proceed */
7876 				goto unlock;
7877 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7878 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7879 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
7880 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7881 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7882 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7883 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7884 		} else if (mddev->recovery_cp < MaxSector) {
7885 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7886 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7887 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7888 			/* nothing to be done ... */
7889 			goto unlock;
7890 
7891 		if (mddev->pers->sync_request) {
7892 			if (spares) {
7893 				/* We are adding a device or devices to an array
7894 				 * which has the bitmap stored on all devices.
7895 				 * So make sure all bitmap pages get written
7896 				 */
7897 				bitmap_write_all(mddev->bitmap);
7898 			}
7899 			mddev->sync_thread = md_register_thread(md_do_sync,
7900 								mddev,
7901 								"resync");
7902 			if (!mddev->sync_thread) {
7903 				printk(KERN_ERR "%s: could not start resync"
7904 					" thread...\n",
7905 					mdname(mddev));
7906 				/* leave the spares where they are, it shouldn't hurt */
7907 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7908 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7909 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7910 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7911 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7912 			} else
7913 				md_wakeup_thread(mddev->sync_thread);
7914 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7915 			md_new_event(mddev);
7916 		}
7917 	unlock:
7918 		wake_up(&mddev->sb_wait);
7919 
7920 		if (!mddev->sync_thread) {
7921 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7922 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7923 					       &mddev->recovery))
7924 				if (mddev->sysfs_action)
7925 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7926 		}
7927 		mddev_unlock(mddev);
7928 	}
7929 }
7930 
7931 void md_reap_sync_thread(struct mddev *mddev)
7932 {
7933 	struct md_rdev *rdev;
7934 
7935 	/* resync has finished, collect result */
7936 	md_unregister_thread(&mddev->sync_thread);
7937 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7938 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7939 		/* success...*/
7940 		/* activate any spares */
7941 		if (mddev->pers->spare_active(mddev)) {
7942 			sysfs_notify(&mddev->kobj, NULL,
7943 				     "degraded");
7944 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
7945 		}
7946 	}
7947 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7948 	    mddev->pers->finish_reshape)
7949 		mddev->pers->finish_reshape(mddev);
7950 
7951 	/* If array is no-longer degraded, then any saved_raid_disk
7952 	 * information must be scrapped.  Also if any device is now
7953 	 * In_sync we must scrape the saved_raid_disk for that device
7954 	 * do the superblock for an incrementally recovered device
7955 	 * written out.
7956 	 */
7957 	rdev_for_each(rdev, mddev)
7958 		if (!mddev->degraded ||
7959 		    test_bit(In_sync, &rdev->flags))
7960 			rdev->saved_raid_disk = -1;
7961 
7962 	md_update_sb(mddev, 1);
7963 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7964 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7965 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7966 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7967 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7968 	/* flag recovery needed just to double check */
7969 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7970 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7971 	md_new_event(mddev);
7972 	if (mddev->event_work.func)
7973 		queue_work(md_misc_wq, &mddev->event_work);
7974 }
7975 
7976 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7977 {
7978 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7979 	wait_event_timeout(rdev->blocked_wait,
7980 			   !test_bit(Blocked, &rdev->flags) &&
7981 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7982 			   msecs_to_jiffies(5000));
7983 	rdev_dec_pending(rdev, mddev);
7984 }
7985 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7986 
7987 void md_finish_reshape(struct mddev *mddev)
7988 {
7989 	/* called be personality module when reshape completes. */
7990 	struct md_rdev *rdev;
7991 
7992 	rdev_for_each(rdev, mddev) {
7993 		if (rdev->data_offset > rdev->new_data_offset)
7994 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7995 		else
7996 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7997 		rdev->data_offset = rdev->new_data_offset;
7998 	}
7999 }
8000 EXPORT_SYMBOL(md_finish_reshape);
8001 
8002 /* Bad block management.
8003  * We can record which blocks on each device are 'bad' and so just
8004  * fail those blocks, or that stripe, rather than the whole device.
8005  * Entries in the bad-block table are 64bits wide.  This comprises:
8006  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8007  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8008  *  A 'shift' can be set so that larger blocks are tracked and
8009  *  consequently larger devices can be covered.
8010  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8011  *
8012  * Locking of the bad-block table uses a seqlock so md_is_badblock
8013  * might need to retry if it is very unlucky.
8014  * We will sometimes want to check for bad blocks in a bi_end_io function,
8015  * so we use the write_seqlock_irq variant.
8016  *
8017  * When looking for a bad block we specify a range and want to
8018  * know if any block in the range is bad.  So we binary-search
8019  * to the last range that starts at-or-before the given endpoint,
8020  * (or "before the sector after the target range")
8021  * then see if it ends after the given start.
8022  * We return
8023  *  0 if there are no known bad blocks in the range
8024  *  1 if there are known bad block which are all acknowledged
8025  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8026  * plus the start/length of the first bad section we overlap.
8027  */
8028 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8029 		   sector_t *first_bad, int *bad_sectors)
8030 {
8031 	int hi;
8032 	int lo;
8033 	u64 *p = bb->page;
8034 	int rv;
8035 	sector_t target = s + sectors;
8036 	unsigned seq;
8037 
8038 	if (bb->shift > 0) {
8039 		/* round the start down, and the end up */
8040 		s >>= bb->shift;
8041 		target += (1<<bb->shift) - 1;
8042 		target >>= bb->shift;
8043 		sectors = target - s;
8044 	}
8045 	/* 'target' is now the first block after the bad range */
8046 
8047 retry:
8048 	seq = read_seqbegin(&bb->lock);
8049 	lo = 0;
8050 	rv = 0;
8051 	hi = bb->count;
8052 
8053 	/* Binary search between lo and hi for 'target'
8054 	 * i.e. for the last range that starts before 'target'
8055 	 */
8056 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8057 	 * are known not to be the last range before target.
8058 	 * VARIANT: hi-lo is the number of possible
8059 	 * ranges, and decreases until it reaches 1
8060 	 */
8061 	while (hi - lo > 1) {
8062 		int mid = (lo + hi) / 2;
8063 		sector_t a = BB_OFFSET(p[mid]);
8064 		if (a < target)
8065 			/* This could still be the one, earlier ranges
8066 			 * could not. */
8067 			lo = mid;
8068 		else
8069 			/* This and later ranges are definitely out. */
8070 			hi = mid;
8071 	}
8072 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8073 	if (hi > lo) {
8074 		/* need to check all range that end after 's' to see if
8075 		 * any are unacknowledged.
8076 		 */
8077 		while (lo >= 0 &&
8078 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8079 			if (BB_OFFSET(p[lo]) < target) {
8080 				/* starts before the end, and finishes after
8081 				 * the start, so they must overlap
8082 				 */
8083 				if (rv != -1 && BB_ACK(p[lo]))
8084 					rv = 1;
8085 				else
8086 					rv = -1;
8087 				*first_bad = BB_OFFSET(p[lo]);
8088 				*bad_sectors = BB_LEN(p[lo]);
8089 			}
8090 			lo--;
8091 		}
8092 	}
8093 
8094 	if (read_seqretry(&bb->lock, seq))
8095 		goto retry;
8096 
8097 	return rv;
8098 }
8099 EXPORT_SYMBOL_GPL(md_is_badblock);
8100 
8101 /*
8102  * Add a range of bad blocks to the table.
8103  * This might extend the table, or might contract it
8104  * if two adjacent ranges can be merged.
8105  * We binary-search to find the 'insertion' point, then
8106  * decide how best to handle it.
8107  */
8108 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8109 			    int acknowledged)
8110 {
8111 	u64 *p;
8112 	int lo, hi;
8113 	int rv = 1;
8114 
8115 	if (bb->shift < 0)
8116 		/* badblocks are disabled */
8117 		return 0;
8118 
8119 	if (bb->shift) {
8120 		/* round the start down, and the end up */
8121 		sector_t next = s + sectors;
8122 		s >>= bb->shift;
8123 		next += (1<<bb->shift) - 1;
8124 		next >>= bb->shift;
8125 		sectors = next - s;
8126 	}
8127 
8128 	write_seqlock_irq(&bb->lock);
8129 
8130 	p = bb->page;
8131 	lo = 0;
8132 	hi = bb->count;
8133 	/* Find the last range that starts at-or-before 's' */
8134 	while (hi - lo > 1) {
8135 		int mid = (lo + hi) / 2;
8136 		sector_t a = BB_OFFSET(p[mid]);
8137 		if (a <= s)
8138 			lo = mid;
8139 		else
8140 			hi = mid;
8141 	}
8142 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8143 		hi = lo;
8144 
8145 	if (hi > lo) {
8146 		/* we found a range that might merge with the start
8147 		 * of our new range
8148 		 */
8149 		sector_t a = BB_OFFSET(p[lo]);
8150 		sector_t e = a + BB_LEN(p[lo]);
8151 		int ack = BB_ACK(p[lo]);
8152 		if (e >= s) {
8153 			/* Yes, we can merge with a previous range */
8154 			if (s == a && s + sectors >= e)
8155 				/* new range covers old */
8156 				ack = acknowledged;
8157 			else
8158 				ack = ack && acknowledged;
8159 
8160 			if (e < s + sectors)
8161 				e = s + sectors;
8162 			if (e - a <= BB_MAX_LEN) {
8163 				p[lo] = BB_MAKE(a, e-a, ack);
8164 				s = e;
8165 			} else {
8166 				/* does not all fit in one range,
8167 				 * make p[lo] maximal
8168 				 */
8169 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8170 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8171 				s = a + BB_MAX_LEN;
8172 			}
8173 			sectors = e - s;
8174 		}
8175 	}
8176 	if (sectors && hi < bb->count) {
8177 		/* 'hi' points to the first range that starts after 's'.
8178 		 * Maybe we can merge with the start of that range */
8179 		sector_t a = BB_OFFSET(p[hi]);
8180 		sector_t e = a + BB_LEN(p[hi]);
8181 		int ack = BB_ACK(p[hi]);
8182 		if (a <= s + sectors) {
8183 			/* merging is possible */
8184 			if (e <= s + sectors) {
8185 				/* full overlap */
8186 				e = s + sectors;
8187 				ack = acknowledged;
8188 			} else
8189 				ack = ack && acknowledged;
8190 
8191 			a = s;
8192 			if (e - a <= BB_MAX_LEN) {
8193 				p[hi] = BB_MAKE(a, e-a, ack);
8194 				s = e;
8195 			} else {
8196 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8197 				s = a + BB_MAX_LEN;
8198 			}
8199 			sectors = e - s;
8200 			lo = hi;
8201 			hi++;
8202 		}
8203 	}
8204 	if (sectors == 0 && hi < bb->count) {
8205 		/* we might be able to combine lo and hi */
8206 		/* Note: 's' is at the end of 'lo' */
8207 		sector_t a = BB_OFFSET(p[hi]);
8208 		int lolen = BB_LEN(p[lo]);
8209 		int hilen = BB_LEN(p[hi]);
8210 		int newlen = lolen + hilen - (s - a);
8211 		if (s >= a && newlen < BB_MAX_LEN) {
8212 			/* yes, we can combine them */
8213 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8214 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8215 			memmove(p + hi, p + hi + 1,
8216 				(bb->count - hi - 1) * 8);
8217 			bb->count--;
8218 		}
8219 	}
8220 	while (sectors) {
8221 		/* didn't merge (it all).
8222 		 * Need to add a range just before 'hi' */
8223 		if (bb->count >= MD_MAX_BADBLOCKS) {
8224 			/* No room for more */
8225 			rv = 0;
8226 			break;
8227 		} else {
8228 			int this_sectors = sectors;
8229 			memmove(p + hi + 1, p + hi,
8230 				(bb->count - hi) * 8);
8231 			bb->count++;
8232 
8233 			if (this_sectors > BB_MAX_LEN)
8234 				this_sectors = BB_MAX_LEN;
8235 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8236 			sectors -= this_sectors;
8237 			s += this_sectors;
8238 		}
8239 	}
8240 
8241 	bb->changed = 1;
8242 	if (!acknowledged)
8243 		bb->unacked_exist = 1;
8244 	write_sequnlock_irq(&bb->lock);
8245 
8246 	return rv;
8247 }
8248 
8249 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8250 		       int is_new)
8251 {
8252 	int rv;
8253 	if (is_new)
8254 		s += rdev->new_data_offset;
8255 	else
8256 		s += rdev->data_offset;
8257 	rv = md_set_badblocks(&rdev->badblocks,
8258 			      s, sectors, 0);
8259 	if (rv) {
8260 		/* Make sure they get written out promptly */
8261 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8262 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8263 		md_wakeup_thread(rdev->mddev->thread);
8264 	}
8265 	return rv;
8266 }
8267 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8268 
8269 /*
8270  * Remove a range of bad blocks from the table.
8271  * This may involve extending the table if we spilt a region,
8272  * but it must not fail.  So if the table becomes full, we just
8273  * drop the remove request.
8274  */
8275 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8276 {
8277 	u64 *p;
8278 	int lo, hi;
8279 	sector_t target = s + sectors;
8280 	int rv = 0;
8281 
8282 	if (bb->shift > 0) {
8283 		/* When clearing we round the start up and the end down.
8284 		 * This should not matter as the shift should align with
8285 		 * the block size and no rounding should ever be needed.
8286 		 * However it is better the think a block is bad when it
8287 		 * isn't than to think a block is not bad when it is.
8288 		 */
8289 		s += (1<<bb->shift) - 1;
8290 		s >>= bb->shift;
8291 		target >>= bb->shift;
8292 		sectors = target - s;
8293 	}
8294 
8295 	write_seqlock_irq(&bb->lock);
8296 
8297 	p = bb->page;
8298 	lo = 0;
8299 	hi = bb->count;
8300 	/* Find the last range that starts before 'target' */
8301 	while (hi - lo > 1) {
8302 		int mid = (lo + hi) / 2;
8303 		sector_t a = BB_OFFSET(p[mid]);
8304 		if (a < target)
8305 			lo = mid;
8306 		else
8307 			hi = mid;
8308 	}
8309 	if (hi > lo) {
8310 		/* p[lo] is the last range that could overlap the
8311 		 * current range.  Earlier ranges could also overlap,
8312 		 * but only this one can overlap the end of the range.
8313 		 */
8314 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8315 			/* Partial overlap, leave the tail of this range */
8316 			int ack = BB_ACK(p[lo]);
8317 			sector_t a = BB_OFFSET(p[lo]);
8318 			sector_t end = a + BB_LEN(p[lo]);
8319 
8320 			if (a < s) {
8321 				/* we need to split this range */
8322 				if (bb->count >= MD_MAX_BADBLOCKS) {
8323 					rv = 0;
8324 					goto out;
8325 				}
8326 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8327 				bb->count++;
8328 				p[lo] = BB_MAKE(a, s-a, ack);
8329 				lo++;
8330 			}
8331 			p[lo] = BB_MAKE(target, end - target, ack);
8332 			/* there is no longer an overlap */
8333 			hi = lo;
8334 			lo--;
8335 		}
8336 		while (lo >= 0 &&
8337 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8338 			/* This range does overlap */
8339 			if (BB_OFFSET(p[lo]) < s) {
8340 				/* Keep the early parts of this range. */
8341 				int ack = BB_ACK(p[lo]);
8342 				sector_t start = BB_OFFSET(p[lo]);
8343 				p[lo] = BB_MAKE(start, s - start, ack);
8344 				/* now low doesn't overlap, so.. */
8345 				break;
8346 			}
8347 			lo--;
8348 		}
8349 		/* 'lo' is strictly before, 'hi' is strictly after,
8350 		 * anything between needs to be discarded
8351 		 */
8352 		if (hi - lo > 1) {
8353 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8354 			bb->count -= (hi - lo - 1);
8355 		}
8356 	}
8357 
8358 	bb->changed = 1;
8359 out:
8360 	write_sequnlock_irq(&bb->lock);
8361 	return rv;
8362 }
8363 
8364 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8365 			 int is_new)
8366 {
8367 	if (is_new)
8368 		s += rdev->new_data_offset;
8369 	else
8370 		s += rdev->data_offset;
8371 	return md_clear_badblocks(&rdev->badblocks,
8372 				  s, sectors);
8373 }
8374 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8375 
8376 /*
8377  * Acknowledge all bad blocks in a list.
8378  * This only succeeds if ->changed is clear.  It is used by
8379  * in-kernel metadata updates
8380  */
8381 void md_ack_all_badblocks(struct badblocks *bb)
8382 {
8383 	if (bb->page == NULL || bb->changed)
8384 		/* no point even trying */
8385 		return;
8386 	write_seqlock_irq(&bb->lock);
8387 
8388 	if (bb->changed == 0 && bb->unacked_exist) {
8389 		u64 *p = bb->page;
8390 		int i;
8391 		for (i = 0; i < bb->count ; i++) {
8392 			if (!BB_ACK(p[i])) {
8393 				sector_t start = BB_OFFSET(p[i]);
8394 				int len = BB_LEN(p[i]);
8395 				p[i] = BB_MAKE(start, len, 1);
8396 			}
8397 		}
8398 		bb->unacked_exist = 0;
8399 	}
8400 	write_sequnlock_irq(&bb->lock);
8401 }
8402 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8403 
8404 /* sysfs access to bad-blocks list.
8405  * We present two files.
8406  * 'bad-blocks' lists sector numbers and lengths of ranges that
8407  *    are recorded as bad.  The list is truncated to fit within
8408  *    the one-page limit of sysfs.
8409  *    Writing "sector length" to this file adds an acknowledged
8410  *    bad block list.
8411  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8412  *    been acknowledged.  Writing to this file adds bad blocks
8413  *    without acknowledging them.  This is largely for testing.
8414  */
8415 
8416 static ssize_t
8417 badblocks_show(struct badblocks *bb, char *page, int unack)
8418 {
8419 	size_t len;
8420 	int i;
8421 	u64 *p = bb->page;
8422 	unsigned seq;
8423 
8424 	if (bb->shift < 0)
8425 		return 0;
8426 
8427 retry:
8428 	seq = read_seqbegin(&bb->lock);
8429 
8430 	len = 0;
8431 	i = 0;
8432 
8433 	while (len < PAGE_SIZE && i < bb->count) {
8434 		sector_t s = BB_OFFSET(p[i]);
8435 		unsigned int length = BB_LEN(p[i]);
8436 		int ack = BB_ACK(p[i]);
8437 		i++;
8438 
8439 		if (unack && ack)
8440 			continue;
8441 
8442 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8443 				(unsigned long long)s << bb->shift,
8444 				length << bb->shift);
8445 	}
8446 	if (unack && len == 0)
8447 		bb->unacked_exist = 0;
8448 
8449 	if (read_seqretry(&bb->lock, seq))
8450 		goto retry;
8451 
8452 	return len;
8453 }
8454 
8455 #define DO_DEBUG 1
8456 
8457 static ssize_t
8458 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8459 {
8460 	unsigned long long sector;
8461 	int length;
8462 	char newline;
8463 #ifdef DO_DEBUG
8464 	/* Allow clearing via sysfs *only* for testing/debugging.
8465 	 * Normally only a successful write may clear a badblock
8466 	 */
8467 	int clear = 0;
8468 	if (page[0] == '-') {
8469 		clear = 1;
8470 		page++;
8471 	}
8472 #endif /* DO_DEBUG */
8473 
8474 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8475 	case 3:
8476 		if (newline != '\n')
8477 			return -EINVAL;
8478 	case 2:
8479 		if (length <= 0)
8480 			return -EINVAL;
8481 		break;
8482 	default:
8483 		return -EINVAL;
8484 	}
8485 
8486 #ifdef DO_DEBUG
8487 	if (clear) {
8488 		md_clear_badblocks(bb, sector, length);
8489 		return len;
8490 	}
8491 #endif /* DO_DEBUG */
8492 	if (md_set_badblocks(bb, sector, length, !unack))
8493 		return len;
8494 	else
8495 		return -ENOSPC;
8496 }
8497 
8498 static int md_notify_reboot(struct notifier_block *this,
8499 			    unsigned long code, void *x)
8500 {
8501 	struct list_head *tmp;
8502 	struct mddev *mddev;
8503 	int need_delay = 0;
8504 
8505 	for_each_mddev(mddev, tmp) {
8506 		if (mddev_trylock(mddev)) {
8507 			if (mddev->pers)
8508 				__md_stop_writes(mddev);
8509 			mddev->safemode = 2;
8510 			mddev_unlock(mddev);
8511 		}
8512 		need_delay = 1;
8513 	}
8514 	/*
8515 	 * certain more exotic SCSI devices are known to be
8516 	 * volatile wrt too early system reboots. While the
8517 	 * right place to handle this issue is the given
8518 	 * driver, we do want to have a safe RAID driver ...
8519 	 */
8520 	if (need_delay)
8521 		mdelay(1000*1);
8522 
8523 	return NOTIFY_DONE;
8524 }
8525 
8526 static struct notifier_block md_notifier = {
8527 	.notifier_call	= md_notify_reboot,
8528 	.next		= NULL,
8529 	.priority	= INT_MAX, /* before any real devices */
8530 };
8531 
8532 static void md_geninit(void)
8533 {
8534 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8535 
8536 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8537 }
8538 
8539 static int __init md_init(void)
8540 {
8541 	int ret = -ENOMEM;
8542 
8543 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8544 	if (!md_wq)
8545 		goto err_wq;
8546 
8547 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8548 	if (!md_misc_wq)
8549 		goto err_misc_wq;
8550 
8551 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8552 		goto err_md;
8553 
8554 	if ((ret = register_blkdev(0, "mdp")) < 0)
8555 		goto err_mdp;
8556 	mdp_major = ret;
8557 
8558 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8559 			    md_probe, NULL, NULL);
8560 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8561 			    md_probe, NULL, NULL);
8562 
8563 	register_reboot_notifier(&md_notifier);
8564 	raid_table_header = register_sysctl_table(raid_root_table);
8565 
8566 	md_geninit();
8567 	return 0;
8568 
8569 err_mdp:
8570 	unregister_blkdev(MD_MAJOR, "md");
8571 err_md:
8572 	destroy_workqueue(md_misc_wq);
8573 err_misc_wq:
8574 	destroy_workqueue(md_wq);
8575 err_wq:
8576 	return ret;
8577 }
8578 
8579 #ifndef MODULE
8580 
8581 /*
8582  * Searches all registered partitions for autorun RAID arrays
8583  * at boot time.
8584  */
8585 
8586 static LIST_HEAD(all_detected_devices);
8587 struct detected_devices_node {
8588 	struct list_head list;
8589 	dev_t dev;
8590 };
8591 
8592 void md_autodetect_dev(dev_t dev)
8593 {
8594 	struct detected_devices_node *node_detected_dev;
8595 
8596 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8597 	if (node_detected_dev) {
8598 		node_detected_dev->dev = dev;
8599 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8600 	} else {
8601 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8602 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8603 	}
8604 }
8605 
8606 
8607 static void autostart_arrays(int part)
8608 {
8609 	struct md_rdev *rdev;
8610 	struct detected_devices_node *node_detected_dev;
8611 	dev_t dev;
8612 	int i_scanned, i_passed;
8613 
8614 	i_scanned = 0;
8615 	i_passed = 0;
8616 
8617 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8618 
8619 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8620 		i_scanned++;
8621 		node_detected_dev = list_entry(all_detected_devices.next,
8622 					struct detected_devices_node, list);
8623 		list_del(&node_detected_dev->list);
8624 		dev = node_detected_dev->dev;
8625 		kfree(node_detected_dev);
8626 		rdev = md_import_device(dev,0, 90);
8627 		if (IS_ERR(rdev))
8628 			continue;
8629 
8630 		if (test_bit(Faulty, &rdev->flags)) {
8631 			MD_BUG();
8632 			continue;
8633 		}
8634 		set_bit(AutoDetected, &rdev->flags);
8635 		list_add(&rdev->same_set, &pending_raid_disks);
8636 		i_passed++;
8637 	}
8638 
8639 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8640 						i_scanned, i_passed);
8641 
8642 	autorun_devices(part);
8643 }
8644 
8645 #endif /* !MODULE */
8646 
8647 static __exit void md_exit(void)
8648 {
8649 	struct mddev *mddev;
8650 	struct list_head *tmp;
8651 
8652 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8653 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8654 
8655 	unregister_blkdev(MD_MAJOR,"md");
8656 	unregister_blkdev(mdp_major, "mdp");
8657 	unregister_reboot_notifier(&md_notifier);
8658 	unregister_sysctl_table(raid_table_header);
8659 	remove_proc_entry("mdstat", NULL);
8660 	for_each_mddev(mddev, tmp) {
8661 		export_array(mddev);
8662 		mddev->hold_active = 0;
8663 	}
8664 	destroy_workqueue(md_misc_wq);
8665 	destroy_workqueue(md_wq);
8666 }
8667 
8668 subsys_initcall(md_init);
8669 module_exit(md_exit)
8670 
8671 static int get_ro(char *buffer, struct kernel_param *kp)
8672 {
8673 	return sprintf(buffer, "%d", start_readonly);
8674 }
8675 static int set_ro(const char *val, struct kernel_param *kp)
8676 {
8677 	char *e;
8678 	int num = simple_strtoul(val, &e, 10);
8679 	if (*val && (*e == '\0' || *e == '\n')) {
8680 		start_readonly = num;
8681 		return 0;
8682 	}
8683 	return -EINVAL;
8684 }
8685 
8686 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8687 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8688 
8689 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8690 
8691 EXPORT_SYMBOL(register_md_personality);
8692 EXPORT_SYMBOL(unregister_md_personality);
8693 EXPORT_SYMBOL(md_error);
8694 EXPORT_SYMBOL(md_done_sync);
8695 EXPORT_SYMBOL(md_write_start);
8696 EXPORT_SYMBOL(md_write_end);
8697 EXPORT_SYMBOL(md_register_thread);
8698 EXPORT_SYMBOL(md_unregister_thread);
8699 EXPORT_SYMBOL(md_wakeup_thread);
8700 EXPORT_SYMBOL(md_check_recovery);
8701 EXPORT_SYMBOL(md_reap_sync_thread);
8702 MODULE_LICENSE("GPL");
8703 MODULE_DESCRIPTION("MD RAID framework");
8704 MODULE_ALIAS("md");
8705 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8706