1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 static struct kobj_type md_ktype; 88 89 struct md_cluster_operations *md_cluster_ops; 90 EXPORT_SYMBOL(md_cluster_ops); 91 struct module *md_cluster_mod; 92 EXPORT_SYMBOL(md_cluster_mod); 93 94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 95 static struct workqueue_struct *md_wq; 96 static struct workqueue_struct *md_misc_wq; 97 98 static int remove_and_add_spares(struct mddev *mddev, 99 struct md_rdev *this); 100 static void mddev_detach(struct mddev *mddev); 101 102 /* 103 * Default number of read corrections we'll attempt on an rdev 104 * before ejecting it from the array. We divide the read error 105 * count by 2 for every hour elapsed between read errors. 106 */ 107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 108 /* 109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 110 * is 1000 KB/sec, so the extra system load does not show up that much. 111 * Increase it if you want to have more _guaranteed_ speed. Note that 112 * the RAID driver will use the maximum available bandwidth if the IO 113 * subsystem is idle. There is also an 'absolute maximum' reconstruction 114 * speed limit - in case reconstruction slows down your system despite 115 * idle IO detection. 116 * 117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 118 * or /sys/block/mdX/md/sync_speed_{min,max} 119 */ 120 121 static int sysctl_speed_limit_min = 1000; 122 static int sysctl_speed_limit_max = 200000; 123 static inline int speed_min(struct mddev *mddev) 124 { 125 return mddev->sync_speed_min ? 126 mddev->sync_speed_min : sysctl_speed_limit_min; 127 } 128 129 static inline int speed_max(struct mddev *mddev) 130 { 131 return mddev->sync_speed_max ? 132 mddev->sync_speed_max : sysctl_speed_limit_max; 133 } 134 135 static void * flush_info_alloc(gfp_t gfp_flags, void *data) 136 { 137 return kzalloc(sizeof(struct flush_info), gfp_flags); 138 } 139 static void flush_info_free(void *flush_info, void *data) 140 { 141 kfree(flush_info); 142 } 143 144 static void * flush_bio_alloc(gfp_t gfp_flags, void *data) 145 { 146 return kzalloc(sizeof(struct flush_bio), gfp_flags); 147 } 148 static void flush_bio_free(void *flush_bio, void *data) 149 { 150 kfree(flush_bio); 151 } 152 153 static struct ctl_table_header *raid_table_header; 154 155 static struct ctl_table raid_table[] = { 156 { 157 .procname = "speed_limit_min", 158 .data = &sysctl_speed_limit_min, 159 .maxlen = sizeof(int), 160 .mode = S_IRUGO|S_IWUSR, 161 .proc_handler = proc_dointvec, 162 }, 163 { 164 .procname = "speed_limit_max", 165 .data = &sysctl_speed_limit_max, 166 .maxlen = sizeof(int), 167 .mode = S_IRUGO|S_IWUSR, 168 .proc_handler = proc_dointvec, 169 }, 170 { } 171 }; 172 173 static struct ctl_table raid_dir_table[] = { 174 { 175 .procname = "raid", 176 .maxlen = 0, 177 .mode = S_IRUGO|S_IXUGO, 178 .child = raid_table, 179 }, 180 { } 181 }; 182 183 static struct ctl_table raid_root_table[] = { 184 { 185 .procname = "dev", 186 .maxlen = 0, 187 .mode = 0555, 188 .child = raid_dir_table, 189 }, 190 { } 191 }; 192 193 static const struct block_device_operations md_fops; 194 195 static int start_readonly; 196 197 /* 198 * The original mechanism for creating an md device is to create 199 * a device node in /dev and to open it. This causes races with device-close. 200 * The preferred method is to write to the "new_array" module parameter. 201 * This can avoid races. 202 * Setting create_on_open to false disables the original mechanism 203 * so all the races disappear. 204 */ 205 static bool create_on_open = true; 206 207 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 208 struct mddev *mddev) 209 { 210 struct bio *b; 211 212 if (!mddev || !bioset_initialized(&mddev->bio_set)) 213 return bio_alloc(gfp_mask, nr_iovecs); 214 215 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 216 if (!b) 217 return NULL; 218 return b; 219 } 220 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 221 222 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 223 { 224 if (!mddev || !bioset_initialized(&mddev->sync_set)) 225 return bio_alloc(GFP_NOIO, 1); 226 227 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 228 } 229 230 /* 231 * We have a system wide 'event count' that is incremented 232 * on any 'interesting' event, and readers of /proc/mdstat 233 * can use 'poll' or 'select' to find out when the event 234 * count increases. 235 * 236 * Events are: 237 * start array, stop array, error, add device, remove device, 238 * start build, activate spare 239 */ 240 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 241 static atomic_t md_event_count; 242 void md_new_event(struct mddev *mddev) 243 { 244 atomic_inc(&md_event_count); 245 wake_up(&md_event_waiters); 246 } 247 EXPORT_SYMBOL_GPL(md_new_event); 248 249 /* 250 * Enables to iterate over all existing md arrays 251 * all_mddevs_lock protects this list. 252 */ 253 static LIST_HEAD(all_mddevs); 254 static DEFINE_SPINLOCK(all_mddevs_lock); 255 256 /* 257 * iterates through all used mddevs in the system. 258 * We take care to grab the all_mddevs_lock whenever navigating 259 * the list, and to always hold a refcount when unlocked. 260 * Any code which breaks out of this loop while own 261 * a reference to the current mddev and must mddev_put it. 262 */ 263 #define for_each_mddev(_mddev,_tmp) \ 264 \ 265 for (({ spin_lock(&all_mddevs_lock); \ 266 _tmp = all_mddevs.next; \ 267 _mddev = NULL;}); \ 268 ({ if (_tmp != &all_mddevs) \ 269 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 270 spin_unlock(&all_mddevs_lock); \ 271 if (_mddev) mddev_put(_mddev); \ 272 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 273 _tmp != &all_mddevs;}); \ 274 ({ spin_lock(&all_mddevs_lock); \ 275 _tmp = _tmp->next;}) \ 276 ) 277 278 /* Rather than calling directly into the personality make_request function, 279 * IO requests come here first so that we can check if the device is 280 * being suspended pending a reconfiguration. 281 * We hold a refcount over the call to ->make_request. By the time that 282 * call has finished, the bio has been linked into some internal structure 283 * and so is visible to ->quiesce(), so we don't need the refcount any more. 284 */ 285 static bool is_suspended(struct mddev *mddev, struct bio *bio) 286 { 287 if (mddev->suspended) 288 return true; 289 if (bio_data_dir(bio) != WRITE) 290 return false; 291 if (mddev->suspend_lo >= mddev->suspend_hi) 292 return false; 293 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 294 return false; 295 if (bio_end_sector(bio) < mddev->suspend_lo) 296 return false; 297 return true; 298 } 299 300 void md_handle_request(struct mddev *mddev, struct bio *bio) 301 { 302 check_suspended: 303 rcu_read_lock(); 304 if (is_suspended(mddev, bio)) { 305 DEFINE_WAIT(__wait); 306 for (;;) { 307 prepare_to_wait(&mddev->sb_wait, &__wait, 308 TASK_UNINTERRUPTIBLE); 309 if (!is_suspended(mddev, bio)) 310 break; 311 rcu_read_unlock(); 312 schedule(); 313 rcu_read_lock(); 314 } 315 finish_wait(&mddev->sb_wait, &__wait); 316 } 317 atomic_inc(&mddev->active_io); 318 rcu_read_unlock(); 319 320 if (!mddev->pers->make_request(mddev, bio)) { 321 atomic_dec(&mddev->active_io); 322 wake_up(&mddev->sb_wait); 323 goto check_suspended; 324 } 325 326 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 327 wake_up(&mddev->sb_wait); 328 } 329 EXPORT_SYMBOL(md_handle_request); 330 331 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 332 { 333 const int rw = bio_data_dir(bio); 334 const int sgrp = op_stat_group(bio_op(bio)); 335 struct mddev *mddev = q->queuedata; 336 unsigned int sectors; 337 int cpu; 338 339 blk_queue_split(q, &bio); 340 341 if (mddev == NULL || mddev->pers == NULL) { 342 bio_io_error(bio); 343 return BLK_QC_T_NONE; 344 } 345 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 346 if (bio_sectors(bio) != 0) 347 bio->bi_status = BLK_STS_IOERR; 348 bio_endio(bio); 349 return BLK_QC_T_NONE; 350 } 351 352 /* 353 * save the sectors now since our bio can 354 * go away inside make_request 355 */ 356 sectors = bio_sectors(bio); 357 /* bio could be mergeable after passing to underlayer */ 358 bio->bi_opf &= ~REQ_NOMERGE; 359 360 md_handle_request(mddev, bio); 361 362 cpu = part_stat_lock(); 363 part_stat_inc(cpu, &mddev->gendisk->part0, ios[sgrp]); 364 part_stat_add(cpu, &mddev->gendisk->part0, sectors[sgrp], sectors); 365 part_stat_unlock(); 366 367 return BLK_QC_T_NONE; 368 } 369 370 /* mddev_suspend makes sure no new requests are submitted 371 * to the device, and that any requests that have been submitted 372 * are completely handled. 373 * Once mddev_detach() is called and completes, the module will be 374 * completely unused. 375 */ 376 void mddev_suspend(struct mddev *mddev) 377 { 378 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 379 lockdep_assert_held(&mddev->reconfig_mutex); 380 if (mddev->suspended++) 381 return; 382 synchronize_rcu(); 383 wake_up(&mddev->sb_wait); 384 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 385 smp_mb__after_atomic(); 386 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 387 mddev->pers->quiesce(mddev, 1); 388 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 389 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 390 391 del_timer_sync(&mddev->safemode_timer); 392 } 393 EXPORT_SYMBOL_GPL(mddev_suspend); 394 395 void mddev_resume(struct mddev *mddev) 396 { 397 lockdep_assert_held(&mddev->reconfig_mutex); 398 if (--mddev->suspended) 399 return; 400 wake_up(&mddev->sb_wait); 401 mddev->pers->quiesce(mddev, 0); 402 403 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 404 md_wakeup_thread(mddev->thread); 405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 406 } 407 EXPORT_SYMBOL_GPL(mddev_resume); 408 409 int mddev_congested(struct mddev *mddev, int bits) 410 { 411 struct md_personality *pers = mddev->pers; 412 int ret = 0; 413 414 rcu_read_lock(); 415 if (mddev->suspended) 416 ret = 1; 417 else if (pers && pers->congested) 418 ret = pers->congested(mddev, bits); 419 rcu_read_unlock(); 420 return ret; 421 } 422 EXPORT_SYMBOL_GPL(mddev_congested); 423 static int md_congested(void *data, int bits) 424 { 425 struct mddev *mddev = data; 426 return mddev_congested(mddev, bits); 427 } 428 429 /* 430 * Generic flush handling for md 431 */ 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct flush_info *fi = container_of(ws, struct flush_info, flush_work); 435 struct mddev *mddev = fi->mddev; 436 struct bio *bio = fi->bio; 437 438 bio->bi_opf &= ~REQ_PREFLUSH; 439 md_handle_request(mddev, bio); 440 441 mempool_free(fi, mddev->flush_pool); 442 } 443 444 static void md_end_flush(struct bio *fbio) 445 { 446 struct flush_bio *fb = fbio->bi_private; 447 struct md_rdev *rdev = fb->rdev; 448 struct flush_info *fi = fb->fi; 449 struct bio *bio = fi->bio; 450 struct mddev *mddev = fi->mddev; 451 452 rdev_dec_pending(rdev, mddev); 453 454 if (atomic_dec_and_test(&fi->flush_pending)) { 455 if (bio->bi_iter.bi_size == 0) 456 /* an empty barrier - all done */ 457 bio_endio(bio); 458 else { 459 INIT_WORK(&fi->flush_work, submit_flushes); 460 queue_work(md_wq, &fi->flush_work); 461 } 462 } 463 464 mempool_free(fb, mddev->flush_bio_pool); 465 bio_put(fbio); 466 } 467 468 void md_flush_request(struct mddev *mddev, struct bio *bio) 469 { 470 struct md_rdev *rdev; 471 struct flush_info *fi; 472 473 fi = mempool_alloc(mddev->flush_pool, GFP_NOIO); 474 475 fi->bio = bio; 476 fi->mddev = mddev; 477 atomic_set(&fi->flush_pending, 1); 478 479 rcu_read_lock(); 480 rdev_for_each_rcu(rdev, mddev) 481 if (rdev->raid_disk >= 0 && 482 !test_bit(Faulty, &rdev->flags)) { 483 /* Take two references, one is dropped 484 * when request finishes, one after 485 * we reclaim rcu_read_lock 486 */ 487 struct bio *bi; 488 struct flush_bio *fb; 489 atomic_inc(&rdev->nr_pending); 490 atomic_inc(&rdev->nr_pending); 491 rcu_read_unlock(); 492 493 fb = mempool_alloc(mddev->flush_bio_pool, GFP_NOIO); 494 fb->fi = fi; 495 fb->rdev = rdev; 496 497 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 498 bio_set_dev(bi, rdev->bdev); 499 bi->bi_end_io = md_end_flush; 500 bi->bi_private = fb; 501 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 502 503 atomic_inc(&fi->flush_pending); 504 submit_bio(bi); 505 506 rcu_read_lock(); 507 rdev_dec_pending(rdev, mddev); 508 } 509 rcu_read_unlock(); 510 511 if (atomic_dec_and_test(&fi->flush_pending)) { 512 if (bio->bi_iter.bi_size == 0) 513 /* an empty barrier - all done */ 514 bio_endio(bio); 515 else { 516 INIT_WORK(&fi->flush_work, submit_flushes); 517 queue_work(md_wq, &fi->flush_work); 518 } 519 } 520 } 521 EXPORT_SYMBOL(md_flush_request); 522 523 static inline struct mddev *mddev_get(struct mddev *mddev) 524 { 525 atomic_inc(&mddev->active); 526 return mddev; 527 } 528 529 static void mddev_delayed_delete(struct work_struct *ws); 530 531 static void mddev_put(struct mddev *mddev) 532 { 533 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 534 return; 535 if (!mddev->raid_disks && list_empty(&mddev->disks) && 536 mddev->ctime == 0 && !mddev->hold_active) { 537 /* Array is not configured at all, and not held active, 538 * so destroy it */ 539 list_del_init(&mddev->all_mddevs); 540 541 /* 542 * Call queue_work inside the spinlock so that 543 * flush_workqueue() after mddev_find will succeed in waiting 544 * for the work to be done. 545 */ 546 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 547 queue_work(md_misc_wq, &mddev->del_work); 548 } 549 spin_unlock(&all_mddevs_lock); 550 } 551 552 static void md_safemode_timeout(struct timer_list *t); 553 554 void mddev_init(struct mddev *mddev) 555 { 556 kobject_init(&mddev->kobj, &md_ktype); 557 mutex_init(&mddev->open_mutex); 558 mutex_init(&mddev->reconfig_mutex); 559 mutex_init(&mddev->bitmap_info.mutex); 560 INIT_LIST_HEAD(&mddev->disks); 561 INIT_LIST_HEAD(&mddev->all_mddevs); 562 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 563 atomic_set(&mddev->active, 1); 564 atomic_set(&mddev->openers, 0); 565 atomic_set(&mddev->active_io, 0); 566 spin_lock_init(&mddev->lock); 567 init_waitqueue_head(&mddev->sb_wait); 568 init_waitqueue_head(&mddev->recovery_wait); 569 mddev->reshape_position = MaxSector; 570 mddev->reshape_backwards = 0; 571 mddev->last_sync_action = "none"; 572 mddev->resync_min = 0; 573 mddev->resync_max = MaxSector; 574 mddev->level = LEVEL_NONE; 575 } 576 EXPORT_SYMBOL_GPL(mddev_init); 577 578 static struct mddev *mddev_find(dev_t unit) 579 { 580 struct mddev *mddev, *new = NULL; 581 582 if (unit && MAJOR(unit) != MD_MAJOR) 583 unit &= ~((1<<MdpMinorShift)-1); 584 585 retry: 586 spin_lock(&all_mddevs_lock); 587 588 if (unit) { 589 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 590 if (mddev->unit == unit) { 591 mddev_get(mddev); 592 spin_unlock(&all_mddevs_lock); 593 kfree(new); 594 return mddev; 595 } 596 597 if (new) { 598 list_add(&new->all_mddevs, &all_mddevs); 599 spin_unlock(&all_mddevs_lock); 600 new->hold_active = UNTIL_IOCTL; 601 return new; 602 } 603 } else if (new) { 604 /* find an unused unit number */ 605 static int next_minor = 512; 606 int start = next_minor; 607 int is_free = 0; 608 int dev = 0; 609 while (!is_free) { 610 dev = MKDEV(MD_MAJOR, next_minor); 611 next_minor++; 612 if (next_minor > MINORMASK) 613 next_minor = 0; 614 if (next_minor == start) { 615 /* Oh dear, all in use. */ 616 spin_unlock(&all_mddevs_lock); 617 kfree(new); 618 return NULL; 619 } 620 621 is_free = 1; 622 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 623 if (mddev->unit == dev) { 624 is_free = 0; 625 break; 626 } 627 } 628 new->unit = dev; 629 new->md_minor = MINOR(dev); 630 new->hold_active = UNTIL_STOP; 631 list_add(&new->all_mddevs, &all_mddevs); 632 spin_unlock(&all_mddevs_lock); 633 return new; 634 } 635 spin_unlock(&all_mddevs_lock); 636 637 new = kzalloc(sizeof(*new), GFP_KERNEL); 638 if (!new) 639 return NULL; 640 641 new->unit = unit; 642 if (MAJOR(unit) == MD_MAJOR) 643 new->md_minor = MINOR(unit); 644 else 645 new->md_minor = MINOR(unit) >> MdpMinorShift; 646 647 mddev_init(new); 648 649 goto retry; 650 } 651 652 static struct attribute_group md_redundancy_group; 653 654 void mddev_unlock(struct mddev *mddev) 655 { 656 if (mddev->to_remove) { 657 /* These cannot be removed under reconfig_mutex as 658 * an access to the files will try to take reconfig_mutex 659 * while holding the file unremovable, which leads to 660 * a deadlock. 661 * So hold set sysfs_active while the remove in happeing, 662 * and anything else which might set ->to_remove or my 663 * otherwise change the sysfs namespace will fail with 664 * -EBUSY if sysfs_active is still set. 665 * We set sysfs_active under reconfig_mutex and elsewhere 666 * test it under the same mutex to ensure its correct value 667 * is seen. 668 */ 669 struct attribute_group *to_remove = mddev->to_remove; 670 mddev->to_remove = NULL; 671 mddev->sysfs_active = 1; 672 mutex_unlock(&mddev->reconfig_mutex); 673 674 if (mddev->kobj.sd) { 675 if (to_remove != &md_redundancy_group) 676 sysfs_remove_group(&mddev->kobj, to_remove); 677 if (mddev->pers == NULL || 678 mddev->pers->sync_request == NULL) { 679 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 680 if (mddev->sysfs_action) 681 sysfs_put(mddev->sysfs_action); 682 mddev->sysfs_action = NULL; 683 } 684 } 685 mddev->sysfs_active = 0; 686 } else 687 mutex_unlock(&mddev->reconfig_mutex); 688 689 /* As we've dropped the mutex we need a spinlock to 690 * make sure the thread doesn't disappear 691 */ 692 spin_lock(&pers_lock); 693 md_wakeup_thread(mddev->thread); 694 wake_up(&mddev->sb_wait); 695 spin_unlock(&pers_lock); 696 } 697 EXPORT_SYMBOL_GPL(mddev_unlock); 698 699 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 700 { 701 struct md_rdev *rdev; 702 703 rdev_for_each_rcu(rdev, mddev) 704 if (rdev->desc_nr == nr) 705 return rdev; 706 707 return NULL; 708 } 709 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 710 711 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 712 { 713 struct md_rdev *rdev; 714 715 rdev_for_each(rdev, mddev) 716 if (rdev->bdev->bd_dev == dev) 717 return rdev; 718 719 return NULL; 720 } 721 722 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 723 { 724 struct md_rdev *rdev; 725 726 rdev_for_each_rcu(rdev, mddev) 727 if (rdev->bdev->bd_dev == dev) 728 return rdev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 733 734 static struct md_personality *find_pers(int level, char *clevel) 735 { 736 struct md_personality *pers; 737 list_for_each_entry(pers, &pers_list, list) { 738 if (level != LEVEL_NONE && pers->level == level) 739 return pers; 740 if (strcmp(pers->name, clevel)==0) 741 return pers; 742 } 743 return NULL; 744 } 745 746 /* return the offset of the super block in 512byte sectors */ 747 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 748 { 749 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 750 return MD_NEW_SIZE_SECTORS(num_sectors); 751 } 752 753 static int alloc_disk_sb(struct md_rdev *rdev) 754 { 755 rdev->sb_page = alloc_page(GFP_KERNEL); 756 if (!rdev->sb_page) 757 return -ENOMEM; 758 return 0; 759 } 760 761 void md_rdev_clear(struct md_rdev *rdev) 762 { 763 if (rdev->sb_page) { 764 put_page(rdev->sb_page); 765 rdev->sb_loaded = 0; 766 rdev->sb_page = NULL; 767 rdev->sb_start = 0; 768 rdev->sectors = 0; 769 } 770 if (rdev->bb_page) { 771 put_page(rdev->bb_page); 772 rdev->bb_page = NULL; 773 } 774 badblocks_exit(&rdev->badblocks); 775 } 776 EXPORT_SYMBOL_GPL(md_rdev_clear); 777 778 static void super_written(struct bio *bio) 779 { 780 struct md_rdev *rdev = bio->bi_private; 781 struct mddev *mddev = rdev->mddev; 782 783 if (bio->bi_status) { 784 pr_err("md: super_written gets error=%d\n", bio->bi_status); 785 md_error(mddev, rdev); 786 if (!test_bit(Faulty, &rdev->flags) 787 && (bio->bi_opf & MD_FAILFAST)) { 788 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 789 set_bit(LastDev, &rdev->flags); 790 } 791 } else 792 clear_bit(LastDev, &rdev->flags); 793 794 if (atomic_dec_and_test(&mddev->pending_writes)) 795 wake_up(&mddev->sb_wait); 796 rdev_dec_pending(rdev, mddev); 797 bio_put(bio); 798 } 799 800 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 801 sector_t sector, int size, struct page *page) 802 { 803 /* write first size bytes of page to sector of rdev 804 * Increment mddev->pending_writes before returning 805 * and decrement it on completion, waking up sb_wait 806 * if zero is reached. 807 * If an error occurred, call md_error 808 */ 809 struct bio *bio; 810 int ff = 0; 811 812 if (!page) 813 return; 814 815 if (test_bit(Faulty, &rdev->flags)) 816 return; 817 818 bio = md_bio_alloc_sync(mddev); 819 820 atomic_inc(&rdev->nr_pending); 821 822 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 823 bio->bi_iter.bi_sector = sector; 824 bio_add_page(bio, page, size, 0); 825 bio->bi_private = rdev; 826 bio->bi_end_io = super_written; 827 828 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 829 test_bit(FailFast, &rdev->flags) && 830 !test_bit(LastDev, &rdev->flags)) 831 ff = MD_FAILFAST; 832 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 833 834 atomic_inc(&mddev->pending_writes); 835 submit_bio(bio); 836 } 837 838 int md_super_wait(struct mddev *mddev) 839 { 840 /* wait for all superblock writes that were scheduled to complete */ 841 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 842 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 843 return -EAGAIN; 844 return 0; 845 } 846 847 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 848 struct page *page, int op, int op_flags, bool metadata_op) 849 { 850 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 851 int ret; 852 853 if (metadata_op && rdev->meta_bdev) 854 bio_set_dev(bio, rdev->meta_bdev); 855 else 856 bio_set_dev(bio, rdev->bdev); 857 bio_set_op_attrs(bio, op, op_flags); 858 if (metadata_op) 859 bio->bi_iter.bi_sector = sector + rdev->sb_start; 860 else if (rdev->mddev->reshape_position != MaxSector && 861 (rdev->mddev->reshape_backwards == 862 (sector >= rdev->mddev->reshape_position))) 863 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 864 else 865 bio->bi_iter.bi_sector = sector + rdev->data_offset; 866 bio_add_page(bio, page, size, 0); 867 868 submit_bio_wait(bio); 869 870 ret = !bio->bi_status; 871 bio_put(bio); 872 return ret; 873 } 874 EXPORT_SYMBOL_GPL(sync_page_io); 875 876 static int read_disk_sb(struct md_rdev *rdev, int size) 877 { 878 char b[BDEVNAME_SIZE]; 879 880 if (rdev->sb_loaded) 881 return 0; 882 883 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 884 goto fail; 885 rdev->sb_loaded = 1; 886 return 0; 887 888 fail: 889 pr_err("md: disabled device %s, could not read superblock.\n", 890 bdevname(rdev->bdev,b)); 891 return -EINVAL; 892 } 893 894 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 895 { 896 return sb1->set_uuid0 == sb2->set_uuid0 && 897 sb1->set_uuid1 == sb2->set_uuid1 && 898 sb1->set_uuid2 == sb2->set_uuid2 && 899 sb1->set_uuid3 == sb2->set_uuid3; 900 } 901 902 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 903 { 904 int ret; 905 mdp_super_t *tmp1, *tmp2; 906 907 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 908 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 909 910 if (!tmp1 || !tmp2) { 911 ret = 0; 912 goto abort; 913 } 914 915 *tmp1 = *sb1; 916 *tmp2 = *sb2; 917 918 /* 919 * nr_disks is not constant 920 */ 921 tmp1->nr_disks = 0; 922 tmp2->nr_disks = 0; 923 924 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 925 abort: 926 kfree(tmp1); 927 kfree(tmp2); 928 return ret; 929 } 930 931 static u32 md_csum_fold(u32 csum) 932 { 933 csum = (csum & 0xffff) + (csum >> 16); 934 return (csum & 0xffff) + (csum >> 16); 935 } 936 937 static unsigned int calc_sb_csum(mdp_super_t *sb) 938 { 939 u64 newcsum = 0; 940 u32 *sb32 = (u32*)sb; 941 int i; 942 unsigned int disk_csum, csum; 943 944 disk_csum = sb->sb_csum; 945 sb->sb_csum = 0; 946 947 for (i = 0; i < MD_SB_BYTES/4 ; i++) 948 newcsum += sb32[i]; 949 csum = (newcsum & 0xffffffff) + (newcsum>>32); 950 951 #ifdef CONFIG_ALPHA 952 /* This used to use csum_partial, which was wrong for several 953 * reasons including that different results are returned on 954 * different architectures. It isn't critical that we get exactly 955 * the same return value as before (we always csum_fold before 956 * testing, and that removes any differences). However as we 957 * know that csum_partial always returned a 16bit value on 958 * alphas, do a fold to maximise conformity to previous behaviour. 959 */ 960 sb->sb_csum = md_csum_fold(disk_csum); 961 #else 962 sb->sb_csum = disk_csum; 963 #endif 964 return csum; 965 } 966 967 /* 968 * Handle superblock details. 969 * We want to be able to handle multiple superblock formats 970 * so we have a common interface to them all, and an array of 971 * different handlers. 972 * We rely on user-space to write the initial superblock, and support 973 * reading and updating of superblocks. 974 * Interface methods are: 975 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 976 * loads and validates a superblock on dev. 977 * if refdev != NULL, compare superblocks on both devices 978 * Return: 979 * 0 - dev has a superblock that is compatible with refdev 980 * 1 - dev has a superblock that is compatible and newer than refdev 981 * so dev should be used as the refdev in future 982 * -EINVAL superblock incompatible or invalid 983 * -othererror e.g. -EIO 984 * 985 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 986 * Verify that dev is acceptable into mddev. 987 * The first time, mddev->raid_disks will be 0, and data from 988 * dev should be merged in. Subsequent calls check that dev 989 * is new enough. Return 0 or -EINVAL 990 * 991 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 992 * Update the superblock for rdev with data in mddev 993 * This does not write to disc. 994 * 995 */ 996 997 struct super_type { 998 char *name; 999 struct module *owner; 1000 int (*load_super)(struct md_rdev *rdev, 1001 struct md_rdev *refdev, 1002 int minor_version); 1003 int (*validate_super)(struct mddev *mddev, 1004 struct md_rdev *rdev); 1005 void (*sync_super)(struct mddev *mddev, 1006 struct md_rdev *rdev); 1007 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1008 sector_t num_sectors); 1009 int (*allow_new_offset)(struct md_rdev *rdev, 1010 unsigned long long new_offset); 1011 }; 1012 1013 /* 1014 * Check that the given mddev has no bitmap. 1015 * 1016 * This function is called from the run method of all personalities that do not 1017 * support bitmaps. It prints an error message and returns non-zero if mddev 1018 * has a bitmap. Otherwise, it returns 0. 1019 * 1020 */ 1021 int md_check_no_bitmap(struct mddev *mddev) 1022 { 1023 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1024 return 0; 1025 pr_warn("%s: bitmaps are not supported for %s\n", 1026 mdname(mddev), mddev->pers->name); 1027 return 1; 1028 } 1029 EXPORT_SYMBOL(md_check_no_bitmap); 1030 1031 /* 1032 * load_super for 0.90.0 1033 */ 1034 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1035 { 1036 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1037 mdp_super_t *sb; 1038 int ret; 1039 1040 /* 1041 * Calculate the position of the superblock (512byte sectors), 1042 * it's at the end of the disk. 1043 * 1044 * It also happens to be a multiple of 4Kb. 1045 */ 1046 rdev->sb_start = calc_dev_sboffset(rdev); 1047 1048 ret = read_disk_sb(rdev, MD_SB_BYTES); 1049 if (ret) 1050 return ret; 1051 1052 ret = -EINVAL; 1053 1054 bdevname(rdev->bdev, b); 1055 sb = page_address(rdev->sb_page); 1056 1057 if (sb->md_magic != MD_SB_MAGIC) { 1058 pr_warn("md: invalid raid superblock magic on %s\n", b); 1059 goto abort; 1060 } 1061 1062 if (sb->major_version != 0 || 1063 sb->minor_version < 90 || 1064 sb->minor_version > 91) { 1065 pr_warn("Bad version number %d.%d on %s\n", 1066 sb->major_version, sb->minor_version, b); 1067 goto abort; 1068 } 1069 1070 if (sb->raid_disks <= 0) 1071 goto abort; 1072 1073 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1074 pr_warn("md: invalid superblock checksum on %s\n", b); 1075 goto abort; 1076 } 1077 1078 rdev->preferred_minor = sb->md_minor; 1079 rdev->data_offset = 0; 1080 rdev->new_data_offset = 0; 1081 rdev->sb_size = MD_SB_BYTES; 1082 rdev->badblocks.shift = -1; 1083 1084 if (sb->level == LEVEL_MULTIPATH) 1085 rdev->desc_nr = -1; 1086 else 1087 rdev->desc_nr = sb->this_disk.number; 1088 1089 if (!refdev) { 1090 ret = 1; 1091 } else { 1092 __u64 ev1, ev2; 1093 mdp_super_t *refsb = page_address(refdev->sb_page); 1094 if (!md_uuid_equal(refsb, sb)) { 1095 pr_warn("md: %s has different UUID to %s\n", 1096 b, bdevname(refdev->bdev,b2)); 1097 goto abort; 1098 } 1099 if (!md_sb_equal(refsb, sb)) { 1100 pr_warn("md: %s has same UUID but different superblock to %s\n", 1101 b, bdevname(refdev->bdev, b2)); 1102 goto abort; 1103 } 1104 ev1 = md_event(sb); 1105 ev2 = md_event(refsb); 1106 if (ev1 > ev2) 1107 ret = 1; 1108 else 1109 ret = 0; 1110 } 1111 rdev->sectors = rdev->sb_start; 1112 /* Limit to 4TB as metadata cannot record more than that. 1113 * (not needed for Linear and RAID0 as metadata doesn't 1114 * record this size) 1115 */ 1116 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1117 sb->level >= 1) 1118 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1119 1120 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1121 /* "this cannot possibly happen" ... */ 1122 ret = -EINVAL; 1123 1124 abort: 1125 return ret; 1126 } 1127 1128 /* 1129 * validate_super for 0.90.0 1130 */ 1131 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1132 { 1133 mdp_disk_t *desc; 1134 mdp_super_t *sb = page_address(rdev->sb_page); 1135 __u64 ev1 = md_event(sb); 1136 1137 rdev->raid_disk = -1; 1138 clear_bit(Faulty, &rdev->flags); 1139 clear_bit(In_sync, &rdev->flags); 1140 clear_bit(Bitmap_sync, &rdev->flags); 1141 clear_bit(WriteMostly, &rdev->flags); 1142 1143 if (mddev->raid_disks == 0) { 1144 mddev->major_version = 0; 1145 mddev->minor_version = sb->minor_version; 1146 mddev->patch_version = sb->patch_version; 1147 mddev->external = 0; 1148 mddev->chunk_sectors = sb->chunk_size >> 9; 1149 mddev->ctime = sb->ctime; 1150 mddev->utime = sb->utime; 1151 mddev->level = sb->level; 1152 mddev->clevel[0] = 0; 1153 mddev->layout = sb->layout; 1154 mddev->raid_disks = sb->raid_disks; 1155 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1156 mddev->events = ev1; 1157 mddev->bitmap_info.offset = 0; 1158 mddev->bitmap_info.space = 0; 1159 /* bitmap can use 60 K after the 4K superblocks */ 1160 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1161 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1162 mddev->reshape_backwards = 0; 1163 1164 if (mddev->minor_version >= 91) { 1165 mddev->reshape_position = sb->reshape_position; 1166 mddev->delta_disks = sb->delta_disks; 1167 mddev->new_level = sb->new_level; 1168 mddev->new_layout = sb->new_layout; 1169 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1170 if (mddev->delta_disks < 0) 1171 mddev->reshape_backwards = 1; 1172 } else { 1173 mddev->reshape_position = MaxSector; 1174 mddev->delta_disks = 0; 1175 mddev->new_level = mddev->level; 1176 mddev->new_layout = mddev->layout; 1177 mddev->new_chunk_sectors = mddev->chunk_sectors; 1178 } 1179 1180 if (sb->state & (1<<MD_SB_CLEAN)) 1181 mddev->recovery_cp = MaxSector; 1182 else { 1183 if (sb->events_hi == sb->cp_events_hi && 1184 sb->events_lo == sb->cp_events_lo) { 1185 mddev->recovery_cp = sb->recovery_cp; 1186 } else 1187 mddev->recovery_cp = 0; 1188 } 1189 1190 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1191 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1192 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1193 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1194 1195 mddev->max_disks = MD_SB_DISKS; 1196 1197 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1198 mddev->bitmap_info.file == NULL) { 1199 mddev->bitmap_info.offset = 1200 mddev->bitmap_info.default_offset; 1201 mddev->bitmap_info.space = 1202 mddev->bitmap_info.default_space; 1203 } 1204 1205 } else if (mddev->pers == NULL) { 1206 /* Insist on good event counter while assembling, except 1207 * for spares (which don't need an event count) */ 1208 ++ev1; 1209 if (sb->disks[rdev->desc_nr].state & ( 1210 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1211 if (ev1 < mddev->events) 1212 return -EINVAL; 1213 } else if (mddev->bitmap) { 1214 /* if adding to array with a bitmap, then we can accept an 1215 * older device ... but not too old. 1216 */ 1217 if (ev1 < mddev->bitmap->events_cleared) 1218 return 0; 1219 if (ev1 < mddev->events) 1220 set_bit(Bitmap_sync, &rdev->flags); 1221 } else { 1222 if (ev1 < mddev->events) 1223 /* just a hot-add of a new device, leave raid_disk at -1 */ 1224 return 0; 1225 } 1226 1227 if (mddev->level != LEVEL_MULTIPATH) { 1228 desc = sb->disks + rdev->desc_nr; 1229 1230 if (desc->state & (1<<MD_DISK_FAULTY)) 1231 set_bit(Faulty, &rdev->flags); 1232 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1233 desc->raid_disk < mddev->raid_disks */) { 1234 set_bit(In_sync, &rdev->flags); 1235 rdev->raid_disk = desc->raid_disk; 1236 rdev->saved_raid_disk = desc->raid_disk; 1237 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1238 /* active but not in sync implies recovery up to 1239 * reshape position. We don't know exactly where 1240 * that is, so set to zero for now */ 1241 if (mddev->minor_version >= 91) { 1242 rdev->recovery_offset = 0; 1243 rdev->raid_disk = desc->raid_disk; 1244 } 1245 } 1246 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1247 set_bit(WriteMostly, &rdev->flags); 1248 if (desc->state & (1<<MD_DISK_FAILFAST)) 1249 set_bit(FailFast, &rdev->flags); 1250 } else /* MULTIPATH are always insync */ 1251 set_bit(In_sync, &rdev->flags); 1252 return 0; 1253 } 1254 1255 /* 1256 * sync_super for 0.90.0 1257 */ 1258 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1259 { 1260 mdp_super_t *sb; 1261 struct md_rdev *rdev2; 1262 int next_spare = mddev->raid_disks; 1263 1264 /* make rdev->sb match mddev data.. 1265 * 1266 * 1/ zero out disks 1267 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1268 * 3/ any empty disks < next_spare become removed 1269 * 1270 * disks[0] gets initialised to REMOVED because 1271 * we cannot be sure from other fields if it has 1272 * been initialised or not. 1273 */ 1274 int i; 1275 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1276 1277 rdev->sb_size = MD_SB_BYTES; 1278 1279 sb = page_address(rdev->sb_page); 1280 1281 memset(sb, 0, sizeof(*sb)); 1282 1283 sb->md_magic = MD_SB_MAGIC; 1284 sb->major_version = mddev->major_version; 1285 sb->patch_version = mddev->patch_version; 1286 sb->gvalid_words = 0; /* ignored */ 1287 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1288 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1289 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1290 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1291 1292 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1293 sb->level = mddev->level; 1294 sb->size = mddev->dev_sectors / 2; 1295 sb->raid_disks = mddev->raid_disks; 1296 sb->md_minor = mddev->md_minor; 1297 sb->not_persistent = 0; 1298 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1299 sb->state = 0; 1300 sb->events_hi = (mddev->events>>32); 1301 sb->events_lo = (u32)mddev->events; 1302 1303 if (mddev->reshape_position == MaxSector) 1304 sb->minor_version = 90; 1305 else { 1306 sb->minor_version = 91; 1307 sb->reshape_position = mddev->reshape_position; 1308 sb->new_level = mddev->new_level; 1309 sb->delta_disks = mddev->delta_disks; 1310 sb->new_layout = mddev->new_layout; 1311 sb->new_chunk = mddev->new_chunk_sectors << 9; 1312 } 1313 mddev->minor_version = sb->minor_version; 1314 if (mddev->in_sync) 1315 { 1316 sb->recovery_cp = mddev->recovery_cp; 1317 sb->cp_events_hi = (mddev->events>>32); 1318 sb->cp_events_lo = (u32)mddev->events; 1319 if (mddev->recovery_cp == MaxSector) 1320 sb->state = (1<< MD_SB_CLEAN); 1321 } else 1322 sb->recovery_cp = 0; 1323 1324 sb->layout = mddev->layout; 1325 sb->chunk_size = mddev->chunk_sectors << 9; 1326 1327 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1328 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1329 1330 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1331 rdev_for_each(rdev2, mddev) { 1332 mdp_disk_t *d; 1333 int desc_nr; 1334 int is_active = test_bit(In_sync, &rdev2->flags); 1335 1336 if (rdev2->raid_disk >= 0 && 1337 sb->minor_version >= 91) 1338 /* we have nowhere to store the recovery_offset, 1339 * but if it is not below the reshape_position, 1340 * we can piggy-back on that. 1341 */ 1342 is_active = 1; 1343 if (rdev2->raid_disk < 0 || 1344 test_bit(Faulty, &rdev2->flags)) 1345 is_active = 0; 1346 if (is_active) 1347 desc_nr = rdev2->raid_disk; 1348 else 1349 desc_nr = next_spare++; 1350 rdev2->desc_nr = desc_nr; 1351 d = &sb->disks[rdev2->desc_nr]; 1352 nr_disks++; 1353 d->number = rdev2->desc_nr; 1354 d->major = MAJOR(rdev2->bdev->bd_dev); 1355 d->minor = MINOR(rdev2->bdev->bd_dev); 1356 if (is_active) 1357 d->raid_disk = rdev2->raid_disk; 1358 else 1359 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1360 if (test_bit(Faulty, &rdev2->flags)) 1361 d->state = (1<<MD_DISK_FAULTY); 1362 else if (is_active) { 1363 d->state = (1<<MD_DISK_ACTIVE); 1364 if (test_bit(In_sync, &rdev2->flags)) 1365 d->state |= (1<<MD_DISK_SYNC); 1366 active++; 1367 working++; 1368 } else { 1369 d->state = 0; 1370 spare++; 1371 working++; 1372 } 1373 if (test_bit(WriteMostly, &rdev2->flags)) 1374 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1375 if (test_bit(FailFast, &rdev2->flags)) 1376 d->state |= (1<<MD_DISK_FAILFAST); 1377 } 1378 /* now set the "removed" and "faulty" bits on any missing devices */ 1379 for (i=0 ; i < mddev->raid_disks ; i++) { 1380 mdp_disk_t *d = &sb->disks[i]; 1381 if (d->state == 0 && d->number == 0) { 1382 d->number = i; 1383 d->raid_disk = i; 1384 d->state = (1<<MD_DISK_REMOVED); 1385 d->state |= (1<<MD_DISK_FAULTY); 1386 failed++; 1387 } 1388 } 1389 sb->nr_disks = nr_disks; 1390 sb->active_disks = active; 1391 sb->working_disks = working; 1392 sb->failed_disks = failed; 1393 sb->spare_disks = spare; 1394 1395 sb->this_disk = sb->disks[rdev->desc_nr]; 1396 sb->sb_csum = calc_sb_csum(sb); 1397 } 1398 1399 /* 1400 * rdev_size_change for 0.90.0 1401 */ 1402 static unsigned long long 1403 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1404 { 1405 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1406 return 0; /* component must fit device */ 1407 if (rdev->mddev->bitmap_info.offset) 1408 return 0; /* can't move bitmap */ 1409 rdev->sb_start = calc_dev_sboffset(rdev); 1410 if (!num_sectors || num_sectors > rdev->sb_start) 1411 num_sectors = rdev->sb_start; 1412 /* Limit to 4TB as metadata cannot record more than that. 1413 * 4TB == 2^32 KB, or 2*2^32 sectors. 1414 */ 1415 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1416 rdev->mddev->level >= 1) 1417 num_sectors = (sector_t)(2ULL << 32) - 2; 1418 do { 1419 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1420 rdev->sb_page); 1421 } while (md_super_wait(rdev->mddev) < 0); 1422 return num_sectors; 1423 } 1424 1425 static int 1426 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1427 { 1428 /* non-zero offset changes not possible with v0.90 */ 1429 return new_offset == 0; 1430 } 1431 1432 /* 1433 * version 1 superblock 1434 */ 1435 1436 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1437 { 1438 __le32 disk_csum; 1439 u32 csum; 1440 unsigned long long newcsum; 1441 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1442 __le32 *isuper = (__le32*)sb; 1443 1444 disk_csum = sb->sb_csum; 1445 sb->sb_csum = 0; 1446 newcsum = 0; 1447 for (; size >= 4; size -= 4) 1448 newcsum += le32_to_cpu(*isuper++); 1449 1450 if (size == 2) 1451 newcsum += le16_to_cpu(*(__le16*) isuper); 1452 1453 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1454 sb->sb_csum = disk_csum; 1455 return cpu_to_le32(csum); 1456 } 1457 1458 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1459 { 1460 struct mdp_superblock_1 *sb; 1461 int ret; 1462 sector_t sb_start; 1463 sector_t sectors; 1464 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1465 int bmask; 1466 1467 /* 1468 * Calculate the position of the superblock in 512byte sectors. 1469 * It is always aligned to a 4K boundary and 1470 * depeding on minor_version, it can be: 1471 * 0: At least 8K, but less than 12K, from end of device 1472 * 1: At start of device 1473 * 2: 4K from start of device. 1474 */ 1475 switch(minor_version) { 1476 case 0: 1477 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1478 sb_start -= 8*2; 1479 sb_start &= ~(sector_t)(4*2-1); 1480 break; 1481 case 1: 1482 sb_start = 0; 1483 break; 1484 case 2: 1485 sb_start = 8; 1486 break; 1487 default: 1488 return -EINVAL; 1489 } 1490 rdev->sb_start = sb_start; 1491 1492 /* superblock is rarely larger than 1K, but it can be larger, 1493 * and it is safe to read 4k, so we do that 1494 */ 1495 ret = read_disk_sb(rdev, 4096); 1496 if (ret) return ret; 1497 1498 sb = page_address(rdev->sb_page); 1499 1500 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1501 sb->major_version != cpu_to_le32(1) || 1502 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1503 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1504 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1505 return -EINVAL; 1506 1507 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1508 pr_warn("md: invalid superblock checksum on %s\n", 1509 bdevname(rdev->bdev,b)); 1510 return -EINVAL; 1511 } 1512 if (le64_to_cpu(sb->data_size) < 10) { 1513 pr_warn("md: data_size too small on %s\n", 1514 bdevname(rdev->bdev,b)); 1515 return -EINVAL; 1516 } 1517 if (sb->pad0 || 1518 sb->pad3[0] || 1519 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1520 /* Some padding is non-zero, might be a new feature */ 1521 return -EINVAL; 1522 1523 rdev->preferred_minor = 0xffff; 1524 rdev->data_offset = le64_to_cpu(sb->data_offset); 1525 rdev->new_data_offset = rdev->data_offset; 1526 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1527 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1528 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1529 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1530 1531 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1532 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1533 if (rdev->sb_size & bmask) 1534 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1535 1536 if (minor_version 1537 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1538 return -EINVAL; 1539 if (minor_version 1540 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1541 return -EINVAL; 1542 1543 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1544 rdev->desc_nr = -1; 1545 else 1546 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1547 1548 if (!rdev->bb_page) { 1549 rdev->bb_page = alloc_page(GFP_KERNEL); 1550 if (!rdev->bb_page) 1551 return -ENOMEM; 1552 } 1553 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1554 rdev->badblocks.count == 0) { 1555 /* need to load the bad block list. 1556 * Currently we limit it to one page. 1557 */ 1558 s32 offset; 1559 sector_t bb_sector; 1560 u64 *bbp; 1561 int i; 1562 int sectors = le16_to_cpu(sb->bblog_size); 1563 if (sectors > (PAGE_SIZE / 512)) 1564 return -EINVAL; 1565 offset = le32_to_cpu(sb->bblog_offset); 1566 if (offset == 0) 1567 return -EINVAL; 1568 bb_sector = (long long)offset; 1569 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1570 rdev->bb_page, REQ_OP_READ, 0, true)) 1571 return -EIO; 1572 bbp = (u64 *)page_address(rdev->bb_page); 1573 rdev->badblocks.shift = sb->bblog_shift; 1574 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1575 u64 bb = le64_to_cpu(*bbp); 1576 int count = bb & (0x3ff); 1577 u64 sector = bb >> 10; 1578 sector <<= sb->bblog_shift; 1579 count <<= sb->bblog_shift; 1580 if (bb + 1 == 0) 1581 break; 1582 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1583 return -EINVAL; 1584 } 1585 } else if (sb->bblog_offset != 0) 1586 rdev->badblocks.shift = 0; 1587 1588 if ((le32_to_cpu(sb->feature_map) & 1589 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1590 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1591 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1592 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1593 } 1594 1595 if (!refdev) { 1596 ret = 1; 1597 } else { 1598 __u64 ev1, ev2; 1599 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1600 1601 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1602 sb->level != refsb->level || 1603 sb->layout != refsb->layout || 1604 sb->chunksize != refsb->chunksize) { 1605 pr_warn("md: %s has strangely different superblock to %s\n", 1606 bdevname(rdev->bdev,b), 1607 bdevname(refdev->bdev,b2)); 1608 return -EINVAL; 1609 } 1610 ev1 = le64_to_cpu(sb->events); 1611 ev2 = le64_to_cpu(refsb->events); 1612 1613 if (ev1 > ev2) 1614 ret = 1; 1615 else 1616 ret = 0; 1617 } 1618 if (minor_version) { 1619 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1620 sectors -= rdev->data_offset; 1621 } else 1622 sectors = rdev->sb_start; 1623 if (sectors < le64_to_cpu(sb->data_size)) 1624 return -EINVAL; 1625 rdev->sectors = le64_to_cpu(sb->data_size); 1626 return ret; 1627 } 1628 1629 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1630 { 1631 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1632 __u64 ev1 = le64_to_cpu(sb->events); 1633 1634 rdev->raid_disk = -1; 1635 clear_bit(Faulty, &rdev->flags); 1636 clear_bit(In_sync, &rdev->flags); 1637 clear_bit(Bitmap_sync, &rdev->flags); 1638 clear_bit(WriteMostly, &rdev->flags); 1639 1640 if (mddev->raid_disks == 0) { 1641 mddev->major_version = 1; 1642 mddev->patch_version = 0; 1643 mddev->external = 0; 1644 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1645 mddev->ctime = le64_to_cpu(sb->ctime); 1646 mddev->utime = le64_to_cpu(sb->utime); 1647 mddev->level = le32_to_cpu(sb->level); 1648 mddev->clevel[0] = 0; 1649 mddev->layout = le32_to_cpu(sb->layout); 1650 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1651 mddev->dev_sectors = le64_to_cpu(sb->size); 1652 mddev->events = ev1; 1653 mddev->bitmap_info.offset = 0; 1654 mddev->bitmap_info.space = 0; 1655 /* Default location for bitmap is 1K after superblock 1656 * using 3K - total of 4K 1657 */ 1658 mddev->bitmap_info.default_offset = 1024 >> 9; 1659 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1660 mddev->reshape_backwards = 0; 1661 1662 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1663 memcpy(mddev->uuid, sb->set_uuid, 16); 1664 1665 mddev->max_disks = (4096-256)/2; 1666 1667 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1668 mddev->bitmap_info.file == NULL) { 1669 mddev->bitmap_info.offset = 1670 (__s32)le32_to_cpu(sb->bitmap_offset); 1671 /* Metadata doesn't record how much space is available. 1672 * For 1.0, we assume we can use up to the superblock 1673 * if before, else to 4K beyond superblock. 1674 * For others, assume no change is possible. 1675 */ 1676 if (mddev->minor_version > 0) 1677 mddev->bitmap_info.space = 0; 1678 else if (mddev->bitmap_info.offset > 0) 1679 mddev->bitmap_info.space = 1680 8 - mddev->bitmap_info.offset; 1681 else 1682 mddev->bitmap_info.space = 1683 -mddev->bitmap_info.offset; 1684 } 1685 1686 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1687 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1688 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1689 mddev->new_level = le32_to_cpu(sb->new_level); 1690 mddev->new_layout = le32_to_cpu(sb->new_layout); 1691 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1692 if (mddev->delta_disks < 0 || 1693 (mddev->delta_disks == 0 && 1694 (le32_to_cpu(sb->feature_map) 1695 & MD_FEATURE_RESHAPE_BACKWARDS))) 1696 mddev->reshape_backwards = 1; 1697 } else { 1698 mddev->reshape_position = MaxSector; 1699 mddev->delta_disks = 0; 1700 mddev->new_level = mddev->level; 1701 mddev->new_layout = mddev->layout; 1702 mddev->new_chunk_sectors = mddev->chunk_sectors; 1703 } 1704 1705 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1706 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1707 1708 if (le32_to_cpu(sb->feature_map) & 1709 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1710 if (le32_to_cpu(sb->feature_map) & 1711 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1712 return -EINVAL; 1713 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1714 (le32_to_cpu(sb->feature_map) & 1715 MD_FEATURE_MULTIPLE_PPLS)) 1716 return -EINVAL; 1717 set_bit(MD_HAS_PPL, &mddev->flags); 1718 } 1719 } else if (mddev->pers == NULL) { 1720 /* Insist of good event counter while assembling, except for 1721 * spares (which don't need an event count) */ 1722 ++ev1; 1723 if (rdev->desc_nr >= 0 && 1724 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1725 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1726 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1727 if (ev1 < mddev->events) 1728 return -EINVAL; 1729 } else if (mddev->bitmap) { 1730 /* If adding to array with a bitmap, then we can accept an 1731 * older device, but not too old. 1732 */ 1733 if (ev1 < mddev->bitmap->events_cleared) 1734 return 0; 1735 if (ev1 < mddev->events) 1736 set_bit(Bitmap_sync, &rdev->flags); 1737 } else { 1738 if (ev1 < mddev->events) 1739 /* just a hot-add of a new device, leave raid_disk at -1 */ 1740 return 0; 1741 } 1742 if (mddev->level != LEVEL_MULTIPATH) { 1743 int role; 1744 if (rdev->desc_nr < 0 || 1745 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1746 role = MD_DISK_ROLE_SPARE; 1747 rdev->desc_nr = -1; 1748 } else 1749 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1750 switch(role) { 1751 case MD_DISK_ROLE_SPARE: /* spare */ 1752 break; 1753 case MD_DISK_ROLE_FAULTY: /* faulty */ 1754 set_bit(Faulty, &rdev->flags); 1755 break; 1756 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1757 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1758 /* journal device without journal feature */ 1759 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1760 return -EINVAL; 1761 } 1762 set_bit(Journal, &rdev->flags); 1763 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1764 rdev->raid_disk = 0; 1765 break; 1766 default: 1767 rdev->saved_raid_disk = role; 1768 if ((le32_to_cpu(sb->feature_map) & 1769 MD_FEATURE_RECOVERY_OFFSET)) { 1770 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1771 if (!(le32_to_cpu(sb->feature_map) & 1772 MD_FEATURE_RECOVERY_BITMAP)) 1773 rdev->saved_raid_disk = -1; 1774 } else 1775 set_bit(In_sync, &rdev->flags); 1776 rdev->raid_disk = role; 1777 break; 1778 } 1779 if (sb->devflags & WriteMostly1) 1780 set_bit(WriteMostly, &rdev->flags); 1781 if (sb->devflags & FailFast1) 1782 set_bit(FailFast, &rdev->flags); 1783 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1784 set_bit(Replacement, &rdev->flags); 1785 } else /* MULTIPATH are always insync */ 1786 set_bit(In_sync, &rdev->flags); 1787 1788 return 0; 1789 } 1790 1791 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1792 { 1793 struct mdp_superblock_1 *sb; 1794 struct md_rdev *rdev2; 1795 int max_dev, i; 1796 /* make rdev->sb match mddev and rdev data. */ 1797 1798 sb = page_address(rdev->sb_page); 1799 1800 sb->feature_map = 0; 1801 sb->pad0 = 0; 1802 sb->recovery_offset = cpu_to_le64(0); 1803 memset(sb->pad3, 0, sizeof(sb->pad3)); 1804 1805 sb->utime = cpu_to_le64((__u64)mddev->utime); 1806 sb->events = cpu_to_le64(mddev->events); 1807 if (mddev->in_sync) 1808 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1809 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1810 sb->resync_offset = cpu_to_le64(MaxSector); 1811 else 1812 sb->resync_offset = cpu_to_le64(0); 1813 1814 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1815 1816 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1817 sb->size = cpu_to_le64(mddev->dev_sectors); 1818 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1819 sb->level = cpu_to_le32(mddev->level); 1820 sb->layout = cpu_to_le32(mddev->layout); 1821 if (test_bit(FailFast, &rdev->flags)) 1822 sb->devflags |= FailFast1; 1823 else 1824 sb->devflags &= ~FailFast1; 1825 1826 if (test_bit(WriteMostly, &rdev->flags)) 1827 sb->devflags |= WriteMostly1; 1828 else 1829 sb->devflags &= ~WriteMostly1; 1830 sb->data_offset = cpu_to_le64(rdev->data_offset); 1831 sb->data_size = cpu_to_le64(rdev->sectors); 1832 1833 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1834 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1835 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1836 } 1837 1838 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1839 !test_bit(In_sync, &rdev->flags)) { 1840 sb->feature_map |= 1841 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1842 sb->recovery_offset = 1843 cpu_to_le64(rdev->recovery_offset); 1844 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1845 sb->feature_map |= 1846 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1847 } 1848 /* Note: recovery_offset and journal_tail share space */ 1849 if (test_bit(Journal, &rdev->flags)) 1850 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1851 if (test_bit(Replacement, &rdev->flags)) 1852 sb->feature_map |= 1853 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1854 1855 if (mddev->reshape_position != MaxSector) { 1856 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1857 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1858 sb->new_layout = cpu_to_le32(mddev->new_layout); 1859 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1860 sb->new_level = cpu_to_le32(mddev->new_level); 1861 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1862 if (mddev->delta_disks == 0 && 1863 mddev->reshape_backwards) 1864 sb->feature_map 1865 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1866 if (rdev->new_data_offset != rdev->data_offset) { 1867 sb->feature_map 1868 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1869 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1870 - rdev->data_offset)); 1871 } 1872 } 1873 1874 if (mddev_is_clustered(mddev)) 1875 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1876 1877 if (rdev->badblocks.count == 0) 1878 /* Nothing to do for bad blocks*/ ; 1879 else if (sb->bblog_offset == 0) 1880 /* Cannot record bad blocks on this device */ 1881 md_error(mddev, rdev); 1882 else { 1883 struct badblocks *bb = &rdev->badblocks; 1884 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1885 u64 *p = bb->page; 1886 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1887 if (bb->changed) { 1888 unsigned seq; 1889 1890 retry: 1891 seq = read_seqbegin(&bb->lock); 1892 1893 memset(bbp, 0xff, PAGE_SIZE); 1894 1895 for (i = 0 ; i < bb->count ; i++) { 1896 u64 internal_bb = p[i]; 1897 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1898 | BB_LEN(internal_bb)); 1899 bbp[i] = cpu_to_le64(store_bb); 1900 } 1901 bb->changed = 0; 1902 if (read_seqretry(&bb->lock, seq)) 1903 goto retry; 1904 1905 bb->sector = (rdev->sb_start + 1906 (int)le32_to_cpu(sb->bblog_offset)); 1907 bb->size = le16_to_cpu(sb->bblog_size); 1908 } 1909 } 1910 1911 max_dev = 0; 1912 rdev_for_each(rdev2, mddev) 1913 if (rdev2->desc_nr+1 > max_dev) 1914 max_dev = rdev2->desc_nr+1; 1915 1916 if (max_dev > le32_to_cpu(sb->max_dev)) { 1917 int bmask; 1918 sb->max_dev = cpu_to_le32(max_dev); 1919 rdev->sb_size = max_dev * 2 + 256; 1920 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1921 if (rdev->sb_size & bmask) 1922 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1923 } else 1924 max_dev = le32_to_cpu(sb->max_dev); 1925 1926 for (i=0; i<max_dev;i++) 1927 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1928 1929 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1930 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1931 1932 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1933 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1934 sb->feature_map |= 1935 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1936 else 1937 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1938 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1939 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1940 } 1941 1942 rdev_for_each(rdev2, mddev) { 1943 i = rdev2->desc_nr; 1944 if (test_bit(Faulty, &rdev2->flags)) 1945 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1946 else if (test_bit(In_sync, &rdev2->flags)) 1947 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1948 else if (test_bit(Journal, &rdev2->flags)) 1949 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1950 else if (rdev2->raid_disk >= 0) 1951 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1952 else 1953 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1954 } 1955 1956 sb->sb_csum = calc_sb_1_csum(sb); 1957 } 1958 1959 static unsigned long long 1960 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1961 { 1962 struct mdp_superblock_1 *sb; 1963 sector_t max_sectors; 1964 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1965 return 0; /* component must fit device */ 1966 if (rdev->data_offset != rdev->new_data_offset) 1967 return 0; /* too confusing */ 1968 if (rdev->sb_start < rdev->data_offset) { 1969 /* minor versions 1 and 2; superblock before data */ 1970 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1971 max_sectors -= rdev->data_offset; 1972 if (!num_sectors || num_sectors > max_sectors) 1973 num_sectors = max_sectors; 1974 } else if (rdev->mddev->bitmap_info.offset) { 1975 /* minor version 0 with bitmap we can't move */ 1976 return 0; 1977 } else { 1978 /* minor version 0; superblock after data */ 1979 sector_t sb_start; 1980 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1981 sb_start &= ~(sector_t)(4*2 - 1); 1982 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1983 if (!num_sectors || num_sectors > max_sectors) 1984 num_sectors = max_sectors; 1985 rdev->sb_start = sb_start; 1986 } 1987 sb = page_address(rdev->sb_page); 1988 sb->data_size = cpu_to_le64(num_sectors); 1989 sb->super_offset = cpu_to_le64(rdev->sb_start); 1990 sb->sb_csum = calc_sb_1_csum(sb); 1991 do { 1992 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1993 rdev->sb_page); 1994 } while (md_super_wait(rdev->mddev) < 0); 1995 return num_sectors; 1996 1997 } 1998 1999 static int 2000 super_1_allow_new_offset(struct md_rdev *rdev, 2001 unsigned long long new_offset) 2002 { 2003 /* All necessary checks on new >= old have been done */ 2004 struct bitmap *bitmap; 2005 if (new_offset >= rdev->data_offset) 2006 return 1; 2007 2008 /* with 1.0 metadata, there is no metadata to tread on 2009 * so we can always move back */ 2010 if (rdev->mddev->minor_version == 0) 2011 return 1; 2012 2013 /* otherwise we must be sure not to step on 2014 * any metadata, so stay: 2015 * 36K beyond start of superblock 2016 * beyond end of badblocks 2017 * beyond write-intent bitmap 2018 */ 2019 if (rdev->sb_start + (32+4)*2 > new_offset) 2020 return 0; 2021 bitmap = rdev->mddev->bitmap; 2022 if (bitmap && !rdev->mddev->bitmap_info.file && 2023 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2024 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2025 return 0; 2026 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2027 return 0; 2028 2029 return 1; 2030 } 2031 2032 static struct super_type super_types[] = { 2033 [0] = { 2034 .name = "0.90.0", 2035 .owner = THIS_MODULE, 2036 .load_super = super_90_load, 2037 .validate_super = super_90_validate, 2038 .sync_super = super_90_sync, 2039 .rdev_size_change = super_90_rdev_size_change, 2040 .allow_new_offset = super_90_allow_new_offset, 2041 }, 2042 [1] = { 2043 .name = "md-1", 2044 .owner = THIS_MODULE, 2045 .load_super = super_1_load, 2046 .validate_super = super_1_validate, 2047 .sync_super = super_1_sync, 2048 .rdev_size_change = super_1_rdev_size_change, 2049 .allow_new_offset = super_1_allow_new_offset, 2050 }, 2051 }; 2052 2053 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2054 { 2055 if (mddev->sync_super) { 2056 mddev->sync_super(mddev, rdev); 2057 return; 2058 } 2059 2060 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2061 2062 super_types[mddev->major_version].sync_super(mddev, rdev); 2063 } 2064 2065 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2066 { 2067 struct md_rdev *rdev, *rdev2; 2068 2069 rcu_read_lock(); 2070 rdev_for_each_rcu(rdev, mddev1) { 2071 if (test_bit(Faulty, &rdev->flags) || 2072 test_bit(Journal, &rdev->flags) || 2073 rdev->raid_disk == -1) 2074 continue; 2075 rdev_for_each_rcu(rdev2, mddev2) { 2076 if (test_bit(Faulty, &rdev2->flags) || 2077 test_bit(Journal, &rdev2->flags) || 2078 rdev2->raid_disk == -1) 2079 continue; 2080 if (rdev->bdev->bd_contains == 2081 rdev2->bdev->bd_contains) { 2082 rcu_read_unlock(); 2083 return 1; 2084 } 2085 } 2086 } 2087 rcu_read_unlock(); 2088 return 0; 2089 } 2090 2091 static LIST_HEAD(pending_raid_disks); 2092 2093 /* 2094 * Try to register data integrity profile for an mddev 2095 * 2096 * This is called when an array is started and after a disk has been kicked 2097 * from the array. It only succeeds if all working and active component devices 2098 * are integrity capable with matching profiles. 2099 */ 2100 int md_integrity_register(struct mddev *mddev) 2101 { 2102 struct md_rdev *rdev, *reference = NULL; 2103 2104 if (list_empty(&mddev->disks)) 2105 return 0; /* nothing to do */ 2106 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2107 return 0; /* shouldn't register, or already is */ 2108 rdev_for_each(rdev, mddev) { 2109 /* skip spares and non-functional disks */ 2110 if (test_bit(Faulty, &rdev->flags)) 2111 continue; 2112 if (rdev->raid_disk < 0) 2113 continue; 2114 if (!reference) { 2115 /* Use the first rdev as the reference */ 2116 reference = rdev; 2117 continue; 2118 } 2119 /* does this rdev's profile match the reference profile? */ 2120 if (blk_integrity_compare(reference->bdev->bd_disk, 2121 rdev->bdev->bd_disk) < 0) 2122 return -EINVAL; 2123 } 2124 if (!reference || !bdev_get_integrity(reference->bdev)) 2125 return 0; 2126 /* 2127 * All component devices are integrity capable and have matching 2128 * profiles, register the common profile for the md device. 2129 */ 2130 blk_integrity_register(mddev->gendisk, 2131 bdev_get_integrity(reference->bdev)); 2132 2133 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2134 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2135 pr_err("md: failed to create integrity pool for %s\n", 2136 mdname(mddev)); 2137 return -EINVAL; 2138 } 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(md_integrity_register); 2142 2143 /* 2144 * Attempt to add an rdev, but only if it is consistent with the current 2145 * integrity profile 2146 */ 2147 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2148 { 2149 struct blk_integrity *bi_rdev; 2150 struct blk_integrity *bi_mddev; 2151 char name[BDEVNAME_SIZE]; 2152 2153 if (!mddev->gendisk) 2154 return 0; 2155 2156 bi_rdev = bdev_get_integrity(rdev->bdev); 2157 bi_mddev = blk_get_integrity(mddev->gendisk); 2158 2159 if (!bi_mddev) /* nothing to do */ 2160 return 0; 2161 2162 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2163 pr_err("%s: incompatible integrity profile for %s\n", 2164 mdname(mddev), bdevname(rdev->bdev, name)); 2165 return -ENXIO; 2166 } 2167 2168 return 0; 2169 } 2170 EXPORT_SYMBOL(md_integrity_add_rdev); 2171 2172 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2173 { 2174 char b[BDEVNAME_SIZE]; 2175 struct kobject *ko; 2176 int err; 2177 2178 /* prevent duplicates */ 2179 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2180 return -EEXIST; 2181 2182 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2183 mddev->pers) 2184 return -EROFS; 2185 2186 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2187 if (!test_bit(Journal, &rdev->flags) && 2188 rdev->sectors && 2189 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2190 if (mddev->pers) { 2191 /* Cannot change size, so fail 2192 * If mddev->level <= 0, then we don't care 2193 * about aligning sizes (e.g. linear) 2194 */ 2195 if (mddev->level > 0) 2196 return -ENOSPC; 2197 } else 2198 mddev->dev_sectors = rdev->sectors; 2199 } 2200 2201 /* Verify rdev->desc_nr is unique. 2202 * If it is -1, assign a free number, else 2203 * check number is not in use 2204 */ 2205 rcu_read_lock(); 2206 if (rdev->desc_nr < 0) { 2207 int choice = 0; 2208 if (mddev->pers) 2209 choice = mddev->raid_disks; 2210 while (md_find_rdev_nr_rcu(mddev, choice)) 2211 choice++; 2212 rdev->desc_nr = choice; 2213 } else { 2214 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2215 rcu_read_unlock(); 2216 return -EBUSY; 2217 } 2218 } 2219 rcu_read_unlock(); 2220 if (!test_bit(Journal, &rdev->flags) && 2221 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2222 pr_warn("md: %s: array is limited to %d devices\n", 2223 mdname(mddev), mddev->max_disks); 2224 return -EBUSY; 2225 } 2226 bdevname(rdev->bdev,b); 2227 strreplace(b, '/', '!'); 2228 2229 rdev->mddev = mddev; 2230 pr_debug("md: bind<%s>\n", b); 2231 2232 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2233 goto fail; 2234 2235 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2236 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2237 /* failure here is OK */; 2238 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2239 2240 list_add_rcu(&rdev->same_set, &mddev->disks); 2241 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2242 2243 /* May as well allow recovery to be retried once */ 2244 mddev->recovery_disabled++; 2245 2246 return 0; 2247 2248 fail: 2249 pr_warn("md: failed to register dev-%s for %s\n", 2250 b, mdname(mddev)); 2251 return err; 2252 } 2253 2254 static void md_delayed_delete(struct work_struct *ws) 2255 { 2256 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2257 kobject_del(&rdev->kobj); 2258 kobject_put(&rdev->kobj); 2259 } 2260 2261 static void unbind_rdev_from_array(struct md_rdev *rdev) 2262 { 2263 char b[BDEVNAME_SIZE]; 2264 2265 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2266 list_del_rcu(&rdev->same_set); 2267 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2268 rdev->mddev = NULL; 2269 sysfs_remove_link(&rdev->kobj, "block"); 2270 sysfs_put(rdev->sysfs_state); 2271 rdev->sysfs_state = NULL; 2272 rdev->badblocks.count = 0; 2273 /* We need to delay this, otherwise we can deadlock when 2274 * writing to 'remove' to "dev/state". We also need 2275 * to delay it due to rcu usage. 2276 */ 2277 synchronize_rcu(); 2278 INIT_WORK(&rdev->del_work, md_delayed_delete); 2279 kobject_get(&rdev->kobj); 2280 queue_work(md_misc_wq, &rdev->del_work); 2281 } 2282 2283 /* 2284 * prevent the device from being mounted, repartitioned or 2285 * otherwise reused by a RAID array (or any other kernel 2286 * subsystem), by bd_claiming the device. 2287 */ 2288 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2289 { 2290 int err = 0; 2291 struct block_device *bdev; 2292 char b[BDEVNAME_SIZE]; 2293 2294 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2295 shared ? (struct md_rdev *)lock_rdev : rdev); 2296 if (IS_ERR(bdev)) { 2297 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2298 return PTR_ERR(bdev); 2299 } 2300 rdev->bdev = bdev; 2301 return err; 2302 } 2303 2304 static void unlock_rdev(struct md_rdev *rdev) 2305 { 2306 struct block_device *bdev = rdev->bdev; 2307 rdev->bdev = NULL; 2308 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2309 } 2310 2311 void md_autodetect_dev(dev_t dev); 2312 2313 static void export_rdev(struct md_rdev *rdev) 2314 { 2315 char b[BDEVNAME_SIZE]; 2316 2317 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2318 md_rdev_clear(rdev); 2319 #ifndef MODULE 2320 if (test_bit(AutoDetected, &rdev->flags)) 2321 md_autodetect_dev(rdev->bdev->bd_dev); 2322 #endif 2323 unlock_rdev(rdev); 2324 kobject_put(&rdev->kobj); 2325 } 2326 2327 void md_kick_rdev_from_array(struct md_rdev *rdev) 2328 { 2329 unbind_rdev_from_array(rdev); 2330 export_rdev(rdev); 2331 } 2332 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2333 2334 static void export_array(struct mddev *mddev) 2335 { 2336 struct md_rdev *rdev; 2337 2338 while (!list_empty(&mddev->disks)) { 2339 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2340 same_set); 2341 md_kick_rdev_from_array(rdev); 2342 } 2343 mddev->raid_disks = 0; 2344 mddev->major_version = 0; 2345 } 2346 2347 static bool set_in_sync(struct mddev *mddev) 2348 { 2349 lockdep_assert_held(&mddev->lock); 2350 if (!mddev->in_sync) { 2351 mddev->sync_checkers++; 2352 spin_unlock(&mddev->lock); 2353 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2354 spin_lock(&mddev->lock); 2355 if (!mddev->in_sync && 2356 percpu_ref_is_zero(&mddev->writes_pending)) { 2357 mddev->in_sync = 1; 2358 /* 2359 * Ensure ->in_sync is visible before we clear 2360 * ->sync_checkers. 2361 */ 2362 smp_mb(); 2363 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2364 sysfs_notify_dirent_safe(mddev->sysfs_state); 2365 } 2366 if (--mddev->sync_checkers == 0) 2367 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2368 } 2369 if (mddev->safemode == 1) 2370 mddev->safemode = 0; 2371 return mddev->in_sync; 2372 } 2373 2374 static void sync_sbs(struct mddev *mddev, int nospares) 2375 { 2376 /* Update each superblock (in-memory image), but 2377 * if we are allowed to, skip spares which already 2378 * have the right event counter, or have one earlier 2379 * (which would mean they aren't being marked as dirty 2380 * with the rest of the array) 2381 */ 2382 struct md_rdev *rdev; 2383 rdev_for_each(rdev, mddev) { 2384 if (rdev->sb_events == mddev->events || 2385 (nospares && 2386 rdev->raid_disk < 0 && 2387 rdev->sb_events+1 == mddev->events)) { 2388 /* Don't update this superblock */ 2389 rdev->sb_loaded = 2; 2390 } else { 2391 sync_super(mddev, rdev); 2392 rdev->sb_loaded = 1; 2393 } 2394 } 2395 } 2396 2397 static bool does_sb_need_changing(struct mddev *mddev) 2398 { 2399 struct md_rdev *rdev; 2400 struct mdp_superblock_1 *sb; 2401 int role; 2402 2403 /* Find a good rdev */ 2404 rdev_for_each(rdev, mddev) 2405 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2406 break; 2407 2408 /* No good device found. */ 2409 if (!rdev) 2410 return false; 2411 2412 sb = page_address(rdev->sb_page); 2413 /* Check if a device has become faulty or a spare become active */ 2414 rdev_for_each(rdev, mddev) { 2415 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2416 /* Device activated? */ 2417 if (role == 0xffff && rdev->raid_disk >=0 && 2418 !test_bit(Faulty, &rdev->flags)) 2419 return true; 2420 /* Device turned faulty? */ 2421 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2422 return true; 2423 } 2424 2425 /* Check if any mddev parameters have changed */ 2426 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2427 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2428 (mddev->layout != le32_to_cpu(sb->layout)) || 2429 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2430 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2431 return true; 2432 2433 return false; 2434 } 2435 2436 void md_update_sb(struct mddev *mddev, int force_change) 2437 { 2438 struct md_rdev *rdev; 2439 int sync_req; 2440 int nospares = 0; 2441 int any_badblocks_changed = 0; 2442 int ret = -1; 2443 2444 if (mddev->ro) { 2445 if (force_change) 2446 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2447 return; 2448 } 2449 2450 repeat: 2451 if (mddev_is_clustered(mddev)) { 2452 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2453 force_change = 1; 2454 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2455 nospares = 1; 2456 ret = md_cluster_ops->metadata_update_start(mddev); 2457 /* Has someone else has updated the sb */ 2458 if (!does_sb_need_changing(mddev)) { 2459 if (ret == 0) 2460 md_cluster_ops->metadata_update_cancel(mddev); 2461 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2462 BIT(MD_SB_CHANGE_DEVS) | 2463 BIT(MD_SB_CHANGE_CLEAN)); 2464 return; 2465 } 2466 } 2467 2468 /* 2469 * First make sure individual recovery_offsets are correct 2470 * curr_resync_completed can only be used during recovery. 2471 * During reshape/resync it might use array-addresses rather 2472 * that device addresses. 2473 */ 2474 rdev_for_each(rdev, mddev) { 2475 if (rdev->raid_disk >= 0 && 2476 mddev->delta_disks >= 0 && 2477 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2478 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2479 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2480 !test_bit(Journal, &rdev->flags) && 2481 !test_bit(In_sync, &rdev->flags) && 2482 mddev->curr_resync_completed > rdev->recovery_offset) 2483 rdev->recovery_offset = mddev->curr_resync_completed; 2484 2485 } 2486 if (!mddev->persistent) { 2487 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2488 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2489 if (!mddev->external) { 2490 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2491 rdev_for_each(rdev, mddev) { 2492 if (rdev->badblocks.changed) { 2493 rdev->badblocks.changed = 0; 2494 ack_all_badblocks(&rdev->badblocks); 2495 md_error(mddev, rdev); 2496 } 2497 clear_bit(Blocked, &rdev->flags); 2498 clear_bit(BlockedBadBlocks, &rdev->flags); 2499 wake_up(&rdev->blocked_wait); 2500 } 2501 } 2502 wake_up(&mddev->sb_wait); 2503 return; 2504 } 2505 2506 spin_lock(&mddev->lock); 2507 2508 mddev->utime = ktime_get_real_seconds(); 2509 2510 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2511 force_change = 1; 2512 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2513 /* just a clean<-> dirty transition, possibly leave spares alone, 2514 * though if events isn't the right even/odd, we will have to do 2515 * spares after all 2516 */ 2517 nospares = 1; 2518 if (force_change) 2519 nospares = 0; 2520 if (mddev->degraded) 2521 /* If the array is degraded, then skipping spares is both 2522 * dangerous and fairly pointless. 2523 * Dangerous because a device that was removed from the array 2524 * might have a event_count that still looks up-to-date, 2525 * so it can be re-added without a resync. 2526 * Pointless because if there are any spares to skip, 2527 * then a recovery will happen and soon that array won't 2528 * be degraded any more and the spare can go back to sleep then. 2529 */ 2530 nospares = 0; 2531 2532 sync_req = mddev->in_sync; 2533 2534 /* If this is just a dirty<->clean transition, and the array is clean 2535 * and 'events' is odd, we can roll back to the previous clean state */ 2536 if (nospares 2537 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2538 && mddev->can_decrease_events 2539 && mddev->events != 1) { 2540 mddev->events--; 2541 mddev->can_decrease_events = 0; 2542 } else { 2543 /* otherwise we have to go forward and ... */ 2544 mddev->events ++; 2545 mddev->can_decrease_events = nospares; 2546 } 2547 2548 /* 2549 * This 64-bit counter should never wrap. 2550 * Either we are in around ~1 trillion A.C., assuming 2551 * 1 reboot per second, or we have a bug... 2552 */ 2553 WARN_ON(mddev->events == 0); 2554 2555 rdev_for_each(rdev, mddev) { 2556 if (rdev->badblocks.changed) 2557 any_badblocks_changed++; 2558 if (test_bit(Faulty, &rdev->flags)) 2559 set_bit(FaultRecorded, &rdev->flags); 2560 } 2561 2562 sync_sbs(mddev, nospares); 2563 spin_unlock(&mddev->lock); 2564 2565 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2566 mdname(mddev), mddev->in_sync); 2567 2568 if (mddev->queue) 2569 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2570 rewrite: 2571 md_bitmap_update_sb(mddev->bitmap); 2572 rdev_for_each(rdev, mddev) { 2573 char b[BDEVNAME_SIZE]; 2574 2575 if (rdev->sb_loaded != 1) 2576 continue; /* no noise on spare devices */ 2577 2578 if (!test_bit(Faulty, &rdev->flags)) { 2579 md_super_write(mddev,rdev, 2580 rdev->sb_start, rdev->sb_size, 2581 rdev->sb_page); 2582 pr_debug("md: (write) %s's sb offset: %llu\n", 2583 bdevname(rdev->bdev, b), 2584 (unsigned long long)rdev->sb_start); 2585 rdev->sb_events = mddev->events; 2586 if (rdev->badblocks.size) { 2587 md_super_write(mddev, rdev, 2588 rdev->badblocks.sector, 2589 rdev->badblocks.size << 9, 2590 rdev->bb_page); 2591 rdev->badblocks.size = 0; 2592 } 2593 2594 } else 2595 pr_debug("md: %s (skipping faulty)\n", 2596 bdevname(rdev->bdev, b)); 2597 2598 if (mddev->level == LEVEL_MULTIPATH) 2599 /* only need to write one superblock... */ 2600 break; 2601 } 2602 if (md_super_wait(mddev) < 0) 2603 goto rewrite; 2604 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2605 2606 if (mddev_is_clustered(mddev) && ret == 0) 2607 md_cluster_ops->metadata_update_finish(mddev); 2608 2609 if (mddev->in_sync != sync_req || 2610 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2611 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2612 /* have to write it out again */ 2613 goto repeat; 2614 wake_up(&mddev->sb_wait); 2615 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2616 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2617 2618 rdev_for_each(rdev, mddev) { 2619 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2620 clear_bit(Blocked, &rdev->flags); 2621 2622 if (any_badblocks_changed) 2623 ack_all_badblocks(&rdev->badblocks); 2624 clear_bit(BlockedBadBlocks, &rdev->flags); 2625 wake_up(&rdev->blocked_wait); 2626 } 2627 } 2628 EXPORT_SYMBOL(md_update_sb); 2629 2630 static int add_bound_rdev(struct md_rdev *rdev) 2631 { 2632 struct mddev *mddev = rdev->mddev; 2633 int err = 0; 2634 bool add_journal = test_bit(Journal, &rdev->flags); 2635 2636 if (!mddev->pers->hot_remove_disk || add_journal) { 2637 /* If there is hot_add_disk but no hot_remove_disk 2638 * then added disks for geometry changes, 2639 * and should be added immediately. 2640 */ 2641 super_types[mddev->major_version]. 2642 validate_super(mddev, rdev); 2643 if (add_journal) 2644 mddev_suspend(mddev); 2645 err = mddev->pers->hot_add_disk(mddev, rdev); 2646 if (add_journal) 2647 mddev_resume(mddev); 2648 if (err) { 2649 md_kick_rdev_from_array(rdev); 2650 return err; 2651 } 2652 } 2653 sysfs_notify_dirent_safe(rdev->sysfs_state); 2654 2655 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2656 if (mddev->degraded) 2657 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2658 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2659 md_new_event(mddev); 2660 md_wakeup_thread(mddev->thread); 2661 return 0; 2662 } 2663 2664 /* words written to sysfs files may, or may not, be \n terminated. 2665 * We want to accept with case. For this we use cmd_match. 2666 */ 2667 static int cmd_match(const char *cmd, const char *str) 2668 { 2669 /* See if cmd, written into a sysfs file, matches 2670 * str. They must either be the same, or cmd can 2671 * have a trailing newline 2672 */ 2673 while (*cmd && *str && *cmd == *str) { 2674 cmd++; 2675 str++; 2676 } 2677 if (*cmd == '\n') 2678 cmd++; 2679 if (*str || *cmd) 2680 return 0; 2681 return 1; 2682 } 2683 2684 struct rdev_sysfs_entry { 2685 struct attribute attr; 2686 ssize_t (*show)(struct md_rdev *, char *); 2687 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2688 }; 2689 2690 static ssize_t 2691 state_show(struct md_rdev *rdev, char *page) 2692 { 2693 char *sep = ","; 2694 size_t len = 0; 2695 unsigned long flags = READ_ONCE(rdev->flags); 2696 2697 if (test_bit(Faulty, &flags) || 2698 (!test_bit(ExternalBbl, &flags) && 2699 rdev->badblocks.unacked_exist)) 2700 len += sprintf(page+len, "faulty%s", sep); 2701 if (test_bit(In_sync, &flags)) 2702 len += sprintf(page+len, "in_sync%s", sep); 2703 if (test_bit(Journal, &flags)) 2704 len += sprintf(page+len, "journal%s", sep); 2705 if (test_bit(WriteMostly, &flags)) 2706 len += sprintf(page+len, "write_mostly%s", sep); 2707 if (test_bit(Blocked, &flags) || 2708 (rdev->badblocks.unacked_exist 2709 && !test_bit(Faulty, &flags))) 2710 len += sprintf(page+len, "blocked%s", sep); 2711 if (!test_bit(Faulty, &flags) && 2712 !test_bit(Journal, &flags) && 2713 !test_bit(In_sync, &flags)) 2714 len += sprintf(page+len, "spare%s", sep); 2715 if (test_bit(WriteErrorSeen, &flags)) 2716 len += sprintf(page+len, "write_error%s", sep); 2717 if (test_bit(WantReplacement, &flags)) 2718 len += sprintf(page+len, "want_replacement%s", sep); 2719 if (test_bit(Replacement, &flags)) 2720 len += sprintf(page+len, "replacement%s", sep); 2721 if (test_bit(ExternalBbl, &flags)) 2722 len += sprintf(page+len, "external_bbl%s", sep); 2723 if (test_bit(FailFast, &flags)) 2724 len += sprintf(page+len, "failfast%s", sep); 2725 2726 if (len) 2727 len -= strlen(sep); 2728 2729 return len+sprintf(page+len, "\n"); 2730 } 2731 2732 static ssize_t 2733 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2734 { 2735 /* can write 2736 * faulty - simulates an error 2737 * remove - disconnects the device 2738 * writemostly - sets write_mostly 2739 * -writemostly - clears write_mostly 2740 * blocked - sets the Blocked flags 2741 * -blocked - clears the Blocked and possibly simulates an error 2742 * insync - sets Insync providing device isn't active 2743 * -insync - clear Insync for a device with a slot assigned, 2744 * so that it gets rebuilt based on bitmap 2745 * write_error - sets WriteErrorSeen 2746 * -write_error - clears WriteErrorSeen 2747 * {,-}failfast - set/clear FailFast 2748 */ 2749 int err = -EINVAL; 2750 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2751 md_error(rdev->mddev, rdev); 2752 if (test_bit(Faulty, &rdev->flags)) 2753 err = 0; 2754 else 2755 err = -EBUSY; 2756 } else if (cmd_match(buf, "remove")) { 2757 if (rdev->mddev->pers) { 2758 clear_bit(Blocked, &rdev->flags); 2759 remove_and_add_spares(rdev->mddev, rdev); 2760 } 2761 if (rdev->raid_disk >= 0) 2762 err = -EBUSY; 2763 else { 2764 struct mddev *mddev = rdev->mddev; 2765 err = 0; 2766 if (mddev_is_clustered(mddev)) 2767 err = md_cluster_ops->remove_disk(mddev, rdev); 2768 2769 if (err == 0) { 2770 md_kick_rdev_from_array(rdev); 2771 if (mddev->pers) { 2772 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2773 md_wakeup_thread(mddev->thread); 2774 } 2775 md_new_event(mddev); 2776 } 2777 } 2778 } else if (cmd_match(buf, "writemostly")) { 2779 set_bit(WriteMostly, &rdev->flags); 2780 err = 0; 2781 } else if (cmd_match(buf, "-writemostly")) { 2782 clear_bit(WriteMostly, &rdev->flags); 2783 err = 0; 2784 } else if (cmd_match(buf, "blocked")) { 2785 set_bit(Blocked, &rdev->flags); 2786 err = 0; 2787 } else if (cmd_match(buf, "-blocked")) { 2788 if (!test_bit(Faulty, &rdev->flags) && 2789 !test_bit(ExternalBbl, &rdev->flags) && 2790 rdev->badblocks.unacked_exist) { 2791 /* metadata handler doesn't understand badblocks, 2792 * so we need to fail the device 2793 */ 2794 md_error(rdev->mddev, rdev); 2795 } 2796 clear_bit(Blocked, &rdev->flags); 2797 clear_bit(BlockedBadBlocks, &rdev->flags); 2798 wake_up(&rdev->blocked_wait); 2799 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2800 md_wakeup_thread(rdev->mddev->thread); 2801 2802 err = 0; 2803 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2804 set_bit(In_sync, &rdev->flags); 2805 err = 0; 2806 } else if (cmd_match(buf, "failfast")) { 2807 set_bit(FailFast, &rdev->flags); 2808 err = 0; 2809 } else if (cmd_match(buf, "-failfast")) { 2810 clear_bit(FailFast, &rdev->flags); 2811 err = 0; 2812 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2813 !test_bit(Journal, &rdev->flags)) { 2814 if (rdev->mddev->pers == NULL) { 2815 clear_bit(In_sync, &rdev->flags); 2816 rdev->saved_raid_disk = rdev->raid_disk; 2817 rdev->raid_disk = -1; 2818 err = 0; 2819 } 2820 } else if (cmd_match(buf, "write_error")) { 2821 set_bit(WriteErrorSeen, &rdev->flags); 2822 err = 0; 2823 } else if (cmd_match(buf, "-write_error")) { 2824 clear_bit(WriteErrorSeen, &rdev->flags); 2825 err = 0; 2826 } else if (cmd_match(buf, "want_replacement")) { 2827 /* Any non-spare device that is not a replacement can 2828 * become want_replacement at any time, but we then need to 2829 * check if recovery is needed. 2830 */ 2831 if (rdev->raid_disk >= 0 && 2832 !test_bit(Journal, &rdev->flags) && 2833 !test_bit(Replacement, &rdev->flags)) 2834 set_bit(WantReplacement, &rdev->flags); 2835 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2836 md_wakeup_thread(rdev->mddev->thread); 2837 err = 0; 2838 } else if (cmd_match(buf, "-want_replacement")) { 2839 /* Clearing 'want_replacement' is always allowed. 2840 * Once replacements starts it is too late though. 2841 */ 2842 err = 0; 2843 clear_bit(WantReplacement, &rdev->flags); 2844 } else if (cmd_match(buf, "replacement")) { 2845 /* Can only set a device as a replacement when array has not 2846 * yet been started. Once running, replacement is automatic 2847 * from spares, or by assigning 'slot'. 2848 */ 2849 if (rdev->mddev->pers) 2850 err = -EBUSY; 2851 else { 2852 set_bit(Replacement, &rdev->flags); 2853 err = 0; 2854 } 2855 } else if (cmd_match(buf, "-replacement")) { 2856 /* Similarly, can only clear Replacement before start */ 2857 if (rdev->mddev->pers) 2858 err = -EBUSY; 2859 else { 2860 clear_bit(Replacement, &rdev->flags); 2861 err = 0; 2862 } 2863 } else if (cmd_match(buf, "re-add")) { 2864 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2865 rdev->saved_raid_disk >= 0) { 2866 /* clear_bit is performed _after_ all the devices 2867 * have their local Faulty bit cleared. If any writes 2868 * happen in the meantime in the local node, they 2869 * will land in the local bitmap, which will be synced 2870 * by this node eventually 2871 */ 2872 if (!mddev_is_clustered(rdev->mddev) || 2873 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2874 clear_bit(Faulty, &rdev->flags); 2875 err = add_bound_rdev(rdev); 2876 } 2877 } else 2878 err = -EBUSY; 2879 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2880 set_bit(ExternalBbl, &rdev->flags); 2881 rdev->badblocks.shift = 0; 2882 err = 0; 2883 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2884 clear_bit(ExternalBbl, &rdev->flags); 2885 err = 0; 2886 } 2887 if (!err) 2888 sysfs_notify_dirent_safe(rdev->sysfs_state); 2889 return err ? err : len; 2890 } 2891 static struct rdev_sysfs_entry rdev_state = 2892 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2893 2894 static ssize_t 2895 errors_show(struct md_rdev *rdev, char *page) 2896 { 2897 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2898 } 2899 2900 static ssize_t 2901 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2902 { 2903 unsigned int n; 2904 int rv; 2905 2906 rv = kstrtouint(buf, 10, &n); 2907 if (rv < 0) 2908 return rv; 2909 atomic_set(&rdev->corrected_errors, n); 2910 return len; 2911 } 2912 static struct rdev_sysfs_entry rdev_errors = 2913 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2914 2915 static ssize_t 2916 slot_show(struct md_rdev *rdev, char *page) 2917 { 2918 if (test_bit(Journal, &rdev->flags)) 2919 return sprintf(page, "journal\n"); 2920 else if (rdev->raid_disk < 0) 2921 return sprintf(page, "none\n"); 2922 else 2923 return sprintf(page, "%d\n", rdev->raid_disk); 2924 } 2925 2926 static ssize_t 2927 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2928 { 2929 int slot; 2930 int err; 2931 2932 if (test_bit(Journal, &rdev->flags)) 2933 return -EBUSY; 2934 if (strncmp(buf, "none", 4)==0) 2935 slot = -1; 2936 else { 2937 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2938 if (err < 0) 2939 return err; 2940 } 2941 if (rdev->mddev->pers && slot == -1) { 2942 /* Setting 'slot' on an active array requires also 2943 * updating the 'rd%d' link, and communicating 2944 * with the personality with ->hot_*_disk. 2945 * For now we only support removing 2946 * failed/spare devices. This normally happens automatically, 2947 * but not when the metadata is externally managed. 2948 */ 2949 if (rdev->raid_disk == -1) 2950 return -EEXIST; 2951 /* personality does all needed checks */ 2952 if (rdev->mddev->pers->hot_remove_disk == NULL) 2953 return -EINVAL; 2954 clear_bit(Blocked, &rdev->flags); 2955 remove_and_add_spares(rdev->mddev, rdev); 2956 if (rdev->raid_disk >= 0) 2957 return -EBUSY; 2958 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2959 md_wakeup_thread(rdev->mddev->thread); 2960 } else if (rdev->mddev->pers) { 2961 /* Activating a spare .. or possibly reactivating 2962 * if we ever get bitmaps working here. 2963 */ 2964 int err; 2965 2966 if (rdev->raid_disk != -1) 2967 return -EBUSY; 2968 2969 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2970 return -EBUSY; 2971 2972 if (rdev->mddev->pers->hot_add_disk == NULL) 2973 return -EINVAL; 2974 2975 if (slot >= rdev->mddev->raid_disks && 2976 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2977 return -ENOSPC; 2978 2979 rdev->raid_disk = slot; 2980 if (test_bit(In_sync, &rdev->flags)) 2981 rdev->saved_raid_disk = slot; 2982 else 2983 rdev->saved_raid_disk = -1; 2984 clear_bit(In_sync, &rdev->flags); 2985 clear_bit(Bitmap_sync, &rdev->flags); 2986 err = rdev->mddev->pers-> 2987 hot_add_disk(rdev->mddev, rdev); 2988 if (err) { 2989 rdev->raid_disk = -1; 2990 return err; 2991 } else 2992 sysfs_notify_dirent_safe(rdev->sysfs_state); 2993 if (sysfs_link_rdev(rdev->mddev, rdev)) 2994 /* failure here is OK */; 2995 /* don't wakeup anyone, leave that to userspace. */ 2996 } else { 2997 if (slot >= rdev->mddev->raid_disks && 2998 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2999 return -ENOSPC; 3000 rdev->raid_disk = slot; 3001 /* assume it is working */ 3002 clear_bit(Faulty, &rdev->flags); 3003 clear_bit(WriteMostly, &rdev->flags); 3004 set_bit(In_sync, &rdev->flags); 3005 sysfs_notify_dirent_safe(rdev->sysfs_state); 3006 } 3007 return len; 3008 } 3009 3010 static struct rdev_sysfs_entry rdev_slot = 3011 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3012 3013 static ssize_t 3014 offset_show(struct md_rdev *rdev, char *page) 3015 { 3016 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3017 } 3018 3019 static ssize_t 3020 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3021 { 3022 unsigned long long offset; 3023 if (kstrtoull(buf, 10, &offset) < 0) 3024 return -EINVAL; 3025 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3026 return -EBUSY; 3027 if (rdev->sectors && rdev->mddev->external) 3028 /* Must set offset before size, so overlap checks 3029 * can be sane */ 3030 return -EBUSY; 3031 rdev->data_offset = offset; 3032 rdev->new_data_offset = offset; 3033 return len; 3034 } 3035 3036 static struct rdev_sysfs_entry rdev_offset = 3037 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3038 3039 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3040 { 3041 return sprintf(page, "%llu\n", 3042 (unsigned long long)rdev->new_data_offset); 3043 } 3044 3045 static ssize_t new_offset_store(struct md_rdev *rdev, 3046 const char *buf, size_t len) 3047 { 3048 unsigned long long new_offset; 3049 struct mddev *mddev = rdev->mddev; 3050 3051 if (kstrtoull(buf, 10, &new_offset) < 0) 3052 return -EINVAL; 3053 3054 if (mddev->sync_thread || 3055 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3056 return -EBUSY; 3057 if (new_offset == rdev->data_offset) 3058 /* reset is always permitted */ 3059 ; 3060 else if (new_offset > rdev->data_offset) { 3061 /* must not push array size beyond rdev_sectors */ 3062 if (new_offset - rdev->data_offset 3063 + mddev->dev_sectors > rdev->sectors) 3064 return -E2BIG; 3065 } 3066 /* Metadata worries about other space details. */ 3067 3068 /* decreasing the offset is inconsistent with a backwards 3069 * reshape. 3070 */ 3071 if (new_offset < rdev->data_offset && 3072 mddev->reshape_backwards) 3073 return -EINVAL; 3074 /* Increasing offset is inconsistent with forwards 3075 * reshape. reshape_direction should be set to 3076 * 'backwards' first. 3077 */ 3078 if (new_offset > rdev->data_offset && 3079 !mddev->reshape_backwards) 3080 return -EINVAL; 3081 3082 if (mddev->pers && mddev->persistent && 3083 !super_types[mddev->major_version] 3084 .allow_new_offset(rdev, new_offset)) 3085 return -E2BIG; 3086 rdev->new_data_offset = new_offset; 3087 if (new_offset > rdev->data_offset) 3088 mddev->reshape_backwards = 1; 3089 else if (new_offset < rdev->data_offset) 3090 mddev->reshape_backwards = 0; 3091 3092 return len; 3093 } 3094 static struct rdev_sysfs_entry rdev_new_offset = 3095 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3096 3097 static ssize_t 3098 rdev_size_show(struct md_rdev *rdev, char *page) 3099 { 3100 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3101 } 3102 3103 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3104 { 3105 /* check if two start/length pairs overlap */ 3106 if (s1+l1 <= s2) 3107 return 0; 3108 if (s2+l2 <= s1) 3109 return 0; 3110 return 1; 3111 } 3112 3113 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3114 { 3115 unsigned long long blocks; 3116 sector_t new; 3117 3118 if (kstrtoull(buf, 10, &blocks) < 0) 3119 return -EINVAL; 3120 3121 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3122 return -EINVAL; /* sector conversion overflow */ 3123 3124 new = blocks * 2; 3125 if (new != blocks * 2) 3126 return -EINVAL; /* unsigned long long to sector_t overflow */ 3127 3128 *sectors = new; 3129 return 0; 3130 } 3131 3132 static ssize_t 3133 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3134 { 3135 struct mddev *my_mddev = rdev->mddev; 3136 sector_t oldsectors = rdev->sectors; 3137 sector_t sectors; 3138 3139 if (test_bit(Journal, &rdev->flags)) 3140 return -EBUSY; 3141 if (strict_blocks_to_sectors(buf, §ors) < 0) 3142 return -EINVAL; 3143 if (rdev->data_offset != rdev->new_data_offset) 3144 return -EINVAL; /* too confusing */ 3145 if (my_mddev->pers && rdev->raid_disk >= 0) { 3146 if (my_mddev->persistent) { 3147 sectors = super_types[my_mddev->major_version]. 3148 rdev_size_change(rdev, sectors); 3149 if (!sectors) 3150 return -EBUSY; 3151 } else if (!sectors) 3152 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3153 rdev->data_offset; 3154 if (!my_mddev->pers->resize) 3155 /* Cannot change size for RAID0 or Linear etc */ 3156 return -EINVAL; 3157 } 3158 if (sectors < my_mddev->dev_sectors) 3159 return -EINVAL; /* component must fit device */ 3160 3161 rdev->sectors = sectors; 3162 if (sectors > oldsectors && my_mddev->external) { 3163 /* Need to check that all other rdevs with the same 3164 * ->bdev do not overlap. 'rcu' is sufficient to walk 3165 * the rdev lists safely. 3166 * This check does not provide a hard guarantee, it 3167 * just helps avoid dangerous mistakes. 3168 */ 3169 struct mddev *mddev; 3170 int overlap = 0; 3171 struct list_head *tmp; 3172 3173 rcu_read_lock(); 3174 for_each_mddev(mddev, tmp) { 3175 struct md_rdev *rdev2; 3176 3177 rdev_for_each(rdev2, mddev) 3178 if (rdev->bdev == rdev2->bdev && 3179 rdev != rdev2 && 3180 overlaps(rdev->data_offset, rdev->sectors, 3181 rdev2->data_offset, 3182 rdev2->sectors)) { 3183 overlap = 1; 3184 break; 3185 } 3186 if (overlap) { 3187 mddev_put(mddev); 3188 break; 3189 } 3190 } 3191 rcu_read_unlock(); 3192 if (overlap) { 3193 /* Someone else could have slipped in a size 3194 * change here, but doing so is just silly. 3195 * We put oldsectors back because we *know* it is 3196 * safe, and trust userspace not to race with 3197 * itself 3198 */ 3199 rdev->sectors = oldsectors; 3200 return -EBUSY; 3201 } 3202 } 3203 return len; 3204 } 3205 3206 static struct rdev_sysfs_entry rdev_size = 3207 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3208 3209 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3210 { 3211 unsigned long long recovery_start = rdev->recovery_offset; 3212 3213 if (test_bit(In_sync, &rdev->flags) || 3214 recovery_start == MaxSector) 3215 return sprintf(page, "none\n"); 3216 3217 return sprintf(page, "%llu\n", recovery_start); 3218 } 3219 3220 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3221 { 3222 unsigned long long recovery_start; 3223 3224 if (cmd_match(buf, "none")) 3225 recovery_start = MaxSector; 3226 else if (kstrtoull(buf, 10, &recovery_start)) 3227 return -EINVAL; 3228 3229 if (rdev->mddev->pers && 3230 rdev->raid_disk >= 0) 3231 return -EBUSY; 3232 3233 rdev->recovery_offset = recovery_start; 3234 if (recovery_start == MaxSector) 3235 set_bit(In_sync, &rdev->flags); 3236 else 3237 clear_bit(In_sync, &rdev->flags); 3238 return len; 3239 } 3240 3241 static struct rdev_sysfs_entry rdev_recovery_start = 3242 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3243 3244 /* sysfs access to bad-blocks list. 3245 * We present two files. 3246 * 'bad-blocks' lists sector numbers and lengths of ranges that 3247 * are recorded as bad. The list is truncated to fit within 3248 * the one-page limit of sysfs. 3249 * Writing "sector length" to this file adds an acknowledged 3250 * bad block list. 3251 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3252 * been acknowledged. Writing to this file adds bad blocks 3253 * without acknowledging them. This is largely for testing. 3254 */ 3255 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3256 { 3257 return badblocks_show(&rdev->badblocks, page, 0); 3258 } 3259 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3260 { 3261 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3262 /* Maybe that ack was all we needed */ 3263 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3264 wake_up(&rdev->blocked_wait); 3265 return rv; 3266 } 3267 static struct rdev_sysfs_entry rdev_bad_blocks = 3268 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3269 3270 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3271 { 3272 return badblocks_show(&rdev->badblocks, page, 1); 3273 } 3274 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3275 { 3276 return badblocks_store(&rdev->badblocks, page, len, 1); 3277 } 3278 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3279 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3280 3281 static ssize_t 3282 ppl_sector_show(struct md_rdev *rdev, char *page) 3283 { 3284 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3285 } 3286 3287 static ssize_t 3288 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3289 { 3290 unsigned long long sector; 3291 3292 if (kstrtoull(buf, 10, §or) < 0) 3293 return -EINVAL; 3294 if (sector != (sector_t)sector) 3295 return -EINVAL; 3296 3297 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3298 rdev->raid_disk >= 0) 3299 return -EBUSY; 3300 3301 if (rdev->mddev->persistent) { 3302 if (rdev->mddev->major_version == 0) 3303 return -EINVAL; 3304 if ((sector > rdev->sb_start && 3305 sector - rdev->sb_start > S16_MAX) || 3306 (sector < rdev->sb_start && 3307 rdev->sb_start - sector > -S16_MIN)) 3308 return -EINVAL; 3309 rdev->ppl.offset = sector - rdev->sb_start; 3310 } else if (!rdev->mddev->external) { 3311 return -EBUSY; 3312 } 3313 rdev->ppl.sector = sector; 3314 return len; 3315 } 3316 3317 static struct rdev_sysfs_entry rdev_ppl_sector = 3318 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3319 3320 static ssize_t 3321 ppl_size_show(struct md_rdev *rdev, char *page) 3322 { 3323 return sprintf(page, "%u\n", rdev->ppl.size); 3324 } 3325 3326 static ssize_t 3327 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3328 { 3329 unsigned int size; 3330 3331 if (kstrtouint(buf, 10, &size) < 0) 3332 return -EINVAL; 3333 3334 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3335 rdev->raid_disk >= 0) 3336 return -EBUSY; 3337 3338 if (rdev->mddev->persistent) { 3339 if (rdev->mddev->major_version == 0) 3340 return -EINVAL; 3341 if (size > U16_MAX) 3342 return -EINVAL; 3343 } else if (!rdev->mddev->external) { 3344 return -EBUSY; 3345 } 3346 rdev->ppl.size = size; 3347 return len; 3348 } 3349 3350 static struct rdev_sysfs_entry rdev_ppl_size = 3351 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3352 3353 static struct attribute *rdev_default_attrs[] = { 3354 &rdev_state.attr, 3355 &rdev_errors.attr, 3356 &rdev_slot.attr, 3357 &rdev_offset.attr, 3358 &rdev_new_offset.attr, 3359 &rdev_size.attr, 3360 &rdev_recovery_start.attr, 3361 &rdev_bad_blocks.attr, 3362 &rdev_unack_bad_blocks.attr, 3363 &rdev_ppl_sector.attr, 3364 &rdev_ppl_size.attr, 3365 NULL, 3366 }; 3367 static ssize_t 3368 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3369 { 3370 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3371 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3372 3373 if (!entry->show) 3374 return -EIO; 3375 if (!rdev->mddev) 3376 return -EBUSY; 3377 return entry->show(rdev, page); 3378 } 3379 3380 static ssize_t 3381 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3382 const char *page, size_t length) 3383 { 3384 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3385 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3386 ssize_t rv; 3387 struct mddev *mddev = rdev->mddev; 3388 3389 if (!entry->store) 3390 return -EIO; 3391 if (!capable(CAP_SYS_ADMIN)) 3392 return -EACCES; 3393 rv = mddev ? mddev_lock(mddev): -EBUSY; 3394 if (!rv) { 3395 if (rdev->mddev == NULL) 3396 rv = -EBUSY; 3397 else 3398 rv = entry->store(rdev, page, length); 3399 mddev_unlock(mddev); 3400 } 3401 return rv; 3402 } 3403 3404 static void rdev_free(struct kobject *ko) 3405 { 3406 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3407 kfree(rdev); 3408 } 3409 static const struct sysfs_ops rdev_sysfs_ops = { 3410 .show = rdev_attr_show, 3411 .store = rdev_attr_store, 3412 }; 3413 static struct kobj_type rdev_ktype = { 3414 .release = rdev_free, 3415 .sysfs_ops = &rdev_sysfs_ops, 3416 .default_attrs = rdev_default_attrs, 3417 }; 3418 3419 int md_rdev_init(struct md_rdev *rdev) 3420 { 3421 rdev->desc_nr = -1; 3422 rdev->saved_raid_disk = -1; 3423 rdev->raid_disk = -1; 3424 rdev->flags = 0; 3425 rdev->data_offset = 0; 3426 rdev->new_data_offset = 0; 3427 rdev->sb_events = 0; 3428 rdev->last_read_error = 0; 3429 rdev->sb_loaded = 0; 3430 rdev->bb_page = NULL; 3431 atomic_set(&rdev->nr_pending, 0); 3432 atomic_set(&rdev->read_errors, 0); 3433 atomic_set(&rdev->corrected_errors, 0); 3434 3435 INIT_LIST_HEAD(&rdev->same_set); 3436 init_waitqueue_head(&rdev->blocked_wait); 3437 3438 /* Add space to store bad block list. 3439 * This reserves the space even on arrays where it cannot 3440 * be used - I wonder if that matters 3441 */ 3442 return badblocks_init(&rdev->badblocks, 0); 3443 } 3444 EXPORT_SYMBOL_GPL(md_rdev_init); 3445 /* 3446 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3447 * 3448 * mark the device faulty if: 3449 * 3450 * - the device is nonexistent (zero size) 3451 * - the device has no valid superblock 3452 * 3453 * a faulty rdev _never_ has rdev->sb set. 3454 */ 3455 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3456 { 3457 char b[BDEVNAME_SIZE]; 3458 int err; 3459 struct md_rdev *rdev; 3460 sector_t size; 3461 3462 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3463 if (!rdev) 3464 return ERR_PTR(-ENOMEM); 3465 3466 err = md_rdev_init(rdev); 3467 if (err) 3468 goto abort_free; 3469 err = alloc_disk_sb(rdev); 3470 if (err) 3471 goto abort_free; 3472 3473 err = lock_rdev(rdev, newdev, super_format == -2); 3474 if (err) 3475 goto abort_free; 3476 3477 kobject_init(&rdev->kobj, &rdev_ktype); 3478 3479 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3480 if (!size) { 3481 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3482 bdevname(rdev->bdev,b)); 3483 err = -EINVAL; 3484 goto abort_free; 3485 } 3486 3487 if (super_format >= 0) { 3488 err = super_types[super_format]. 3489 load_super(rdev, NULL, super_minor); 3490 if (err == -EINVAL) { 3491 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3492 bdevname(rdev->bdev,b), 3493 super_format, super_minor); 3494 goto abort_free; 3495 } 3496 if (err < 0) { 3497 pr_warn("md: could not read %s's sb, not importing!\n", 3498 bdevname(rdev->bdev,b)); 3499 goto abort_free; 3500 } 3501 } 3502 3503 return rdev; 3504 3505 abort_free: 3506 if (rdev->bdev) 3507 unlock_rdev(rdev); 3508 md_rdev_clear(rdev); 3509 kfree(rdev); 3510 return ERR_PTR(err); 3511 } 3512 3513 /* 3514 * Check a full RAID array for plausibility 3515 */ 3516 3517 static void analyze_sbs(struct mddev *mddev) 3518 { 3519 int i; 3520 struct md_rdev *rdev, *freshest, *tmp; 3521 char b[BDEVNAME_SIZE]; 3522 3523 freshest = NULL; 3524 rdev_for_each_safe(rdev, tmp, mddev) 3525 switch (super_types[mddev->major_version]. 3526 load_super(rdev, freshest, mddev->minor_version)) { 3527 case 1: 3528 freshest = rdev; 3529 break; 3530 case 0: 3531 break; 3532 default: 3533 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3534 bdevname(rdev->bdev,b)); 3535 md_kick_rdev_from_array(rdev); 3536 } 3537 3538 super_types[mddev->major_version]. 3539 validate_super(mddev, freshest); 3540 3541 i = 0; 3542 rdev_for_each_safe(rdev, tmp, mddev) { 3543 if (mddev->max_disks && 3544 (rdev->desc_nr >= mddev->max_disks || 3545 i > mddev->max_disks)) { 3546 pr_warn("md: %s: %s: only %d devices permitted\n", 3547 mdname(mddev), bdevname(rdev->bdev, b), 3548 mddev->max_disks); 3549 md_kick_rdev_from_array(rdev); 3550 continue; 3551 } 3552 if (rdev != freshest) { 3553 if (super_types[mddev->major_version]. 3554 validate_super(mddev, rdev)) { 3555 pr_warn("md: kicking non-fresh %s from array!\n", 3556 bdevname(rdev->bdev,b)); 3557 md_kick_rdev_from_array(rdev); 3558 continue; 3559 } 3560 } 3561 if (mddev->level == LEVEL_MULTIPATH) { 3562 rdev->desc_nr = i++; 3563 rdev->raid_disk = rdev->desc_nr; 3564 set_bit(In_sync, &rdev->flags); 3565 } else if (rdev->raid_disk >= 3566 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3567 !test_bit(Journal, &rdev->flags)) { 3568 rdev->raid_disk = -1; 3569 clear_bit(In_sync, &rdev->flags); 3570 } 3571 } 3572 } 3573 3574 /* Read a fixed-point number. 3575 * Numbers in sysfs attributes should be in "standard" units where 3576 * possible, so time should be in seconds. 3577 * However we internally use a a much smaller unit such as 3578 * milliseconds or jiffies. 3579 * This function takes a decimal number with a possible fractional 3580 * component, and produces an integer which is the result of 3581 * multiplying that number by 10^'scale'. 3582 * all without any floating-point arithmetic. 3583 */ 3584 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3585 { 3586 unsigned long result = 0; 3587 long decimals = -1; 3588 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3589 if (*cp == '.') 3590 decimals = 0; 3591 else if (decimals < scale) { 3592 unsigned int value; 3593 value = *cp - '0'; 3594 result = result * 10 + value; 3595 if (decimals >= 0) 3596 decimals++; 3597 } 3598 cp++; 3599 } 3600 if (*cp == '\n') 3601 cp++; 3602 if (*cp) 3603 return -EINVAL; 3604 if (decimals < 0) 3605 decimals = 0; 3606 while (decimals < scale) { 3607 result *= 10; 3608 decimals ++; 3609 } 3610 *res = result; 3611 return 0; 3612 } 3613 3614 static ssize_t 3615 safe_delay_show(struct mddev *mddev, char *page) 3616 { 3617 int msec = (mddev->safemode_delay*1000)/HZ; 3618 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3619 } 3620 static ssize_t 3621 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3622 { 3623 unsigned long msec; 3624 3625 if (mddev_is_clustered(mddev)) { 3626 pr_warn("md: Safemode is disabled for clustered mode\n"); 3627 return -EINVAL; 3628 } 3629 3630 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3631 return -EINVAL; 3632 if (msec == 0) 3633 mddev->safemode_delay = 0; 3634 else { 3635 unsigned long old_delay = mddev->safemode_delay; 3636 unsigned long new_delay = (msec*HZ)/1000; 3637 3638 if (new_delay == 0) 3639 new_delay = 1; 3640 mddev->safemode_delay = new_delay; 3641 if (new_delay < old_delay || old_delay == 0) 3642 mod_timer(&mddev->safemode_timer, jiffies+1); 3643 } 3644 return len; 3645 } 3646 static struct md_sysfs_entry md_safe_delay = 3647 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3648 3649 static ssize_t 3650 level_show(struct mddev *mddev, char *page) 3651 { 3652 struct md_personality *p; 3653 int ret; 3654 spin_lock(&mddev->lock); 3655 p = mddev->pers; 3656 if (p) 3657 ret = sprintf(page, "%s\n", p->name); 3658 else if (mddev->clevel[0]) 3659 ret = sprintf(page, "%s\n", mddev->clevel); 3660 else if (mddev->level != LEVEL_NONE) 3661 ret = sprintf(page, "%d\n", mddev->level); 3662 else 3663 ret = 0; 3664 spin_unlock(&mddev->lock); 3665 return ret; 3666 } 3667 3668 static ssize_t 3669 level_store(struct mddev *mddev, const char *buf, size_t len) 3670 { 3671 char clevel[16]; 3672 ssize_t rv; 3673 size_t slen = len; 3674 struct md_personality *pers, *oldpers; 3675 long level; 3676 void *priv, *oldpriv; 3677 struct md_rdev *rdev; 3678 3679 if (slen == 0 || slen >= sizeof(clevel)) 3680 return -EINVAL; 3681 3682 rv = mddev_lock(mddev); 3683 if (rv) 3684 return rv; 3685 3686 if (mddev->pers == NULL) { 3687 strncpy(mddev->clevel, buf, slen); 3688 if (mddev->clevel[slen-1] == '\n') 3689 slen--; 3690 mddev->clevel[slen] = 0; 3691 mddev->level = LEVEL_NONE; 3692 rv = len; 3693 goto out_unlock; 3694 } 3695 rv = -EROFS; 3696 if (mddev->ro) 3697 goto out_unlock; 3698 3699 /* request to change the personality. Need to ensure: 3700 * - array is not engaged in resync/recovery/reshape 3701 * - old personality can be suspended 3702 * - new personality will access other array. 3703 */ 3704 3705 rv = -EBUSY; 3706 if (mddev->sync_thread || 3707 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3708 mddev->reshape_position != MaxSector || 3709 mddev->sysfs_active) 3710 goto out_unlock; 3711 3712 rv = -EINVAL; 3713 if (!mddev->pers->quiesce) { 3714 pr_warn("md: %s: %s does not support online personality change\n", 3715 mdname(mddev), mddev->pers->name); 3716 goto out_unlock; 3717 } 3718 3719 /* Now find the new personality */ 3720 strncpy(clevel, buf, slen); 3721 if (clevel[slen-1] == '\n') 3722 slen--; 3723 clevel[slen] = 0; 3724 if (kstrtol(clevel, 10, &level)) 3725 level = LEVEL_NONE; 3726 3727 if (request_module("md-%s", clevel) != 0) 3728 request_module("md-level-%s", clevel); 3729 spin_lock(&pers_lock); 3730 pers = find_pers(level, clevel); 3731 if (!pers || !try_module_get(pers->owner)) { 3732 spin_unlock(&pers_lock); 3733 pr_warn("md: personality %s not loaded\n", clevel); 3734 rv = -EINVAL; 3735 goto out_unlock; 3736 } 3737 spin_unlock(&pers_lock); 3738 3739 if (pers == mddev->pers) { 3740 /* Nothing to do! */ 3741 module_put(pers->owner); 3742 rv = len; 3743 goto out_unlock; 3744 } 3745 if (!pers->takeover) { 3746 module_put(pers->owner); 3747 pr_warn("md: %s: %s does not support personality takeover\n", 3748 mdname(mddev), clevel); 3749 rv = -EINVAL; 3750 goto out_unlock; 3751 } 3752 3753 rdev_for_each(rdev, mddev) 3754 rdev->new_raid_disk = rdev->raid_disk; 3755 3756 /* ->takeover must set new_* and/or delta_disks 3757 * if it succeeds, and may set them when it fails. 3758 */ 3759 priv = pers->takeover(mddev); 3760 if (IS_ERR(priv)) { 3761 mddev->new_level = mddev->level; 3762 mddev->new_layout = mddev->layout; 3763 mddev->new_chunk_sectors = mddev->chunk_sectors; 3764 mddev->raid_disks -= mddev->delta_disks; 3765 mddev->delta_disks = 0; 3766 mddev->reshape_backwards = 0; 3767 module_put(pers->owner); 3768 pr_warn("md: %s: %s would not accept array\n", 3769 mdname(mddev), clevel); 3770 rv = PTR_ERR(priv); 3771 goto out_unlock; 3772 } 3773 3774 /* Looks like we have a winner */ 3775 mddev_suspend(mddev); 3776 mddev_detach(mddev); 3777 3778 spin_lock(&mddev->lock); 3779 oldpers = mddev->pers; 3780 oldpriv = mddev->private; 3781 mddev->pers = pers; 3782 mddev->private = priv; 3783 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3784 mddev->level = mddev->new_level; 3785 mddev->layout = mddev->new_layout; 3786 mddev->chunk_sectors = mddev->new_chunk_sectors; 3787 mddev->delta_disks = 0; 3788 mddev->reshape_backwards = 0; 3789 mddev->degraded = 0; 3790 spin_unlock(&mddev->lock); 3791 3792 if (oldpers->sync_request == NULL && 3793 mddev->external) { 3794 /* We are converting from a no-redundancy array 3795 * to a redundancy array and metadata is managed 3796 * externally so we need to be sure that writes 3797 * won't block due to a need to transition 3798 * clean->dirty 3799 * until external management is started. 3800 */ 3801 mddev->in_sync = 0; 3802 mddev->safemode_delay = 0; 3803 mddev->safemode = 0; 3804 } 3805 3806 oldpers->free(mddev, oldpriv); 3807 3808 if (oldpers->sync_request == NULL && 3809 pers->sync_request != NULL) { 3810 /* need to add the md_redundancy_group */ 3811 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3812 pr_warn("md: cannot register extra attributes for %s\n", 3813 mdname(mddev)); 3814 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3815 } 3816 if (oldpers->sync_request != NULL && 3817 pers->sync_request == NULL) { 3818 /* need to remove the md_redundancy_group */ 3819 if (mddev->to_remove == NULL) 3820 mddev->to_remove = &md_redundancy_group; 3821 } 3822 3823 module_put(oldpers->owner); 3824 3825 rdev_for_each(rdev, mddev) { 3826 if (rdev->raid_disk < 0) 3827 continue; 3828 if (rdev->new_raid_disk >= mddev->raid_disks) 3829 rdev->new_raid_disk = -1; 3830 if (rdev->new_raid_disk == rdev->raid_disk) 3831 continue; 3832 sysfs_unlink_rdev(mddev, rdev); 3833 } 3834 rdev_for_each(rdev, mddev) { 3835 if (rdev->raid_disk < 0) 3836 continue; 3837 if (rdev->new_raid_disk == rdev->raid_disk) 3838 continue; 3839 rdev->raid_disk = rdev->new_raid_disk; 3840 if (rdev->raid_disk < 0) 3841 clear_bit(In_sync, &rdev->flags); 3842 else { 3843 if (sysfs_link_rdev(mddev, rdev)) 3844 pr_warn("md: cannot register rd%d for %s after level change\n", 3845 rdev->raid_disk, mdname(mddev)); 3846 } 3847 } 3848 3849 if (pers->sync_request == NULL) { 3850 /* this is now an array without redundancy, so 3851 * it must always be in_sync 3852 */ 3853 mddev->in_sync = 1; 3854 del_timer_sync(&mddev->safemode_timer); 3855 } 3856 blk_set_stacking_limits(&mddev->queue->limits); 3857 pers->run(mddev); 3858 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3859 mddev_resume(mddev); 3860 if (!mddev->thread) 3861 md_update_sb(mddev, 1); 3862 sysfs_notify(&mddev->kobj, NULL, "level"); 3863 md_new_event(mddev); 3864 rv = len; 3865 out_unlock: 3866 mddev_unlock(mddev); 3867 return rv; 3868 } 3869 3870 static struct md_sysfs_entry md_level = 3871 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3872 3873 static ssize_t 3874 layout_show(struct mddev *mddev, char *page) 3875 { 3876 /* just a number, not meaningful for all levels */ 3877 if (mddev->reshape_position != MaxSector && 3878 mddev->layout != mddev->new_layout) 3879 return sprintf(page, "%d (%d)\n", 3880 mddev->new_layout, mddev->layout); 3881 return sprintf(page, "%d\n", mddev->layout); 3882 } 3883 3884 static ssize_t 3885 layout_store(struct mddev *mddev, const char *buf, size_t len) 3886 { 3887 unsigned int n; 3888 int err; 3889 3890 err = kstrtouint(buf, 10, &n); 3891 if (err < 0) 3892 return err; 3893 err = mddev_lock(mddev); 3894 if (err) 3895 return err; 3896 3897 if (mddev->pers) { 3898 if (mddev->pers->check_reshape == NULL) 3899 err = -EBUSY; 3900 else if (mddev->ro) 3901 err = -EROFS; 3902 else { 3903 mddev->new_layout = n; 3904 err = mddev->pers->check_reshape(mddev); 3905 if (err) 3906 mddev->new_layout = mddev->layout; 3907 } 3908 } else { 3909 mddev->new_layout = n; 3910 if (mddev->reshape_position == MaxSector) 3911 mddev->layout = n; 3912 } 3913 mddev_unlock(mddev); 3914 return err ?: len; 3915 } 3916 static struct md_sysfs_entry md_layout = 3917 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3918 3919 static ssize_t 3920 raid_disks_show(struct mddev *mddev, char *page) 3921 { 3922 if (mddev->raid_disks == 0) 3923 return 0; 3924 if (mddev->reshape_position != MaxSector && 3925 mddev->delta_disks != 0) 3926 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3927 mddev->raid_disks - mddev->delta_disks); 3928 return sprintf(page, "%d\n", mddev->raid_disks); 3929 } 3930 3931 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3932 3933 static ssize_t 3934 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3935 { 3936 unsigned int n; 3937 int err; 3938 3939 err = kstrtouint(buf, 10, &n); 3940 if (err < 0) 3941 return err; 3942 3943 err = mddev_lock(mddev); 3944 if (err) 3945 return err; 3946 if (mddev->pers) 3947 err = update_raid_disks(mddev, n); 3948 else if (mddev->reshape_position != MaxSector) { 3949 struct md_rdev *rdev; 3950 int olddisks = mddev->raid_disks - mddev->delta_disks; 3951 3952 err = -EINVAL; 3953 rdev_for_each(rdev, mddev) { 3954 if (olddisks < n && 3955 rdev->data_offset < rdev->new_data_offset) 3956 goto out_unlock; 3957 if (olddisks > n && 3958 rdev->data_offset > rdev->new_data_offset) 3959 goto out_unlock; 3960 } 3961 err = 0; 3962 mddev->delta_disks = n - olddisks; 3963 mddev->raid_disks = n; 3964 mddev->reshape_backwards = (mddev->delta_disks < 0); 3965 } else 3966 mddev->raid_disks = n; 3967 out_unlock: 3968 mddev_unlock(mddev); 3969 return err ? err : len; 3970 } 3971 static struct md_sysfs_entry md_raid_disks = 3972 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3973 3974 static ssize_t 3975 chunk_size_show(struct mddev *mddev, char *page) 3976 { 3977 if (mddev->reshape_position != MaxSector && 3978 mddev->chunk_sectors != mddev->new_chunk_sectors) 3979 return sprintf(page, "%d (%d)\n", 3980 mddev->new_chunk_sectors << 9, 3981 mddev->chunk_sectors << 9); 3982 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3983 } 3984 3985 static ssize_t 3986 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3987 { 3988 unsigned long n; 3989 int err; 3990 3991 err = kstrtoul(buf, 10, &n); 3992 if (err < 0) 3993 return err; 3994 3995 err = mddev_lock(mddev); 3996 if (err) 3997 return err; 3998 if (mddev->pers) { 3999 if (mddev->pers->check_reshape == NULL) 4000 err = -EBUSY; 4001 else if (mddev->ro) 4002 err = -EROFS; 4003 else { 4004 mddev->new_chunk_sectors = n >> 9; 4005 err = mddev->pers->check_reshape(mddev); 4006 if (err) 4007 mddev->new_chunk_sectors = mddev->chunk_sectors; 4008 } 4009 } else { 4010 mddev->new_chunk_sectors = n >> 9; 4011 if (mddev->reshape_position == MaxSector) 4012 mddev->chunk_sectors = n >> 9; 4013 } 4014 mddev_unlock(mddev); 4015 return err ?: len; 4016 } 4017 static struct md_sysfs_entry md_chunk_size = 4018 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4019 4020 static ssize_t 4021 resync_start_show(struct mddev *mddev, char *page) 4022 { 4023 if (mddev->recovery_cp == MaxSector) 4024 return sprintf(page, "none\n"); 4025 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4026 } 4027 4028 static ssize_t 4029 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4030 { 4031 unsigned long long n; 4032 int err; 4033 4034 if (cmd_match(buf, "none")) 4035 n = MaxSector; 4036 else { 4037 err = kstrtoull(buf, 10, &n); 4038 if (err < 0) 4039 return err; 4040 if (n != (sector_t)n) 4041 return -EINVAL; 4042 } 4043 4044 err = mddev_lock(mddev); 4045 if (err) 4046 return err; 4047 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4048 err = -EBUSY; 4049 4050 if (!err) { 4051 mddev->recovery_cp = n; 4052 if (mddev->pers) 4053 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4054 } 4055 mddev_unlock(mddev); 4056 return err ?: len; 4057 } 4058 static struct md_sysfs_entry md_resync_start = 4059 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4060 resync_start_show, resync_start_store); 4061 4062 /* 4063 * The array state can be: 4064 * 4065 * clear 4066 * No devices, no size, no level 4067 * Equivalent to STOP_ARRAY ioctl 4068 * inactive 4069 * May have some settings, but array is not active 4070 * all IO results in error 4071 * When written, doesn't tear down array, but just stops it 4072 * suspended (not supported yet) 4073 * All IO requests will block. The array can be reconfigured. 4074 * Writing this, if accepted, will block until array is quiescent 4075 * readonly 4076 * no resync can happen. no superblocks get written. 4077 * write requests fail 4078 * read-auto 4079 * like readonly, but behaves like 'clean' on a write request. 4080 * 4081 * clean - no pending writes, but otherwise active. 4082 * When written to inactive array, starts without resync 4083 * If a write request arrives then 4084 * if metadata is known, mark 'dirty' and switch to 'active'. 4085 * if not known, block and switch to write-pending 4086 * If written to an active array that has pending writes, then fails. 4087 * active 4088 * fully active: IO and resync can be happening. 4089 * When written to inactive array, starts with resync 4090 * 4091 * write-pending 4092 * clean, but writes are blocked waiting for 'active' to be written. 4093 * 4094 * active-idle 4095 * like active, but no writes have been seen for a while (100msec). 4096 * 4097 */ 4098 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4099 write_pending, active_idle, bad_word}; 4100 static char *array_states[] = { 4101 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4102 "write-pending", "active-idle", NULL }; 4103 4104 static int match_word(const char *word, char **list) 4105 { 4106 int n; 4107 for (n=0; list[n]; n++) 4108 if (cmd_match(word, list[n])) 4109 break; 4110 return n; 4111 } 4112 4113 static ssize_t 4114 array_state_show(struct mddev *mddev, char *page) 4115 { 4116 enum array_state st = inactive; 4117 4118 if (mddev->pers) 4119 switch(mddev->ro) { 4120 case 1: 4121 st = readonly; 4122 break; 4123 case 2: 4124 st = read_auto; 4125 break; 4126 case 0: 4127 spin_lock(&mddev->lock); 4128 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4129 st = write_pending; 4130 else if (mddev->in_sync) 4131 st = clean; 4132 else if (mddev->safemode) 4133 st = active_idle; 4134 else 4135 st = active; 4136 spin_unlock(&mddev->lock); 4137 } 4138 else { 4139 if (list_empty(&mddev->disks) && 4140 mddev->raid_disks == 0 && 4141 mddev->dev_sectors == 0) 4142 st = clear; 4143 else 4144 st = inactive; 4145 } 4146 return sprintf(page, "%s\n", array_states[st]); 4147 } 4148 4149 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4150 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4151 static int do_md_run(struct mddev *mddev); 4152 static int restart_array(struct mddev *mddev); 4153 4154 static ssize_t 4155 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4156 { 4157 int err = 0; 4158 enum array_state st = match_word(buf, array_states); 4159 4160 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4161 /* don't take reconfig_mutex when toggling between 4162 * clean and active 4163 */ 4164 spin_lock(&mddev->lock); 4165 if (st == active) { 4166 restart_array(mddev); 4167 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4168 md_wakeup_thread(mddev->thread); 4169 wake_up(&mddev->sb_wait); 4170 } else /* st == clean */ { 4171 restart_array(mddev); 4172 if (!set_in_sync(mddev)) 4173 err = -EBUSY; 4174 } 4175 if (!err) 4176 sysfs_notify_dirent_safe(mddev->sysfs_state); 4177 spin_unlock(&mddev->lock); 4178 return err ?: len; 4179 } 4180 err = mddev_lock(mddev); 4181 if (err) 4182 return err; 4183 err = -EINVAL; 4184 switch(st) { 4185 case bad_word: 4186 break; 4187 case clear: 4188 /* stopping an active array */ 4189 err = do_md_stop(mddev, 0, NULL); 4190 break; 4191 case inactive: 4192 /* stopping an active array */ 4193 if (mddev->pers) 4194 err = do_md_stop(mddev, 2, NULL); 4195 else 4196 err = 0; /* already inactive */ 4197 break; 4198 case suspended: 4199 break; /* not supported yet */ 4200 case readonly: 4201 if (mddev->pers) 4202 err = md_set_readonly(mddev, NULL); 4203 else { 4204 mddev->ro = 1; 4205 set_disk_ro(mddev->gendisk, 1); 4206 err = do_md_run(mddev); 4207 } 4208 break; 4209 case read_auto: 4210 if (mddev->pers) { 4211 if (mddev->ro == 0) 4212 err = md_set_readonly(mddev, NULL); 4213 else if (mddev->ro == 1) 4214 err = restart_array(mddev); 4215 if (err == 0) { 4216 mddev->ro = 2; 4217 set_disk_ro(mddev->gendisk, 0); 4218 } 4219 } else { 4220 mddev->ro = 2; 4221 err = do_md_run(mddev); 4222 } 4223 break; 4224 case clean: 4225 if (mddev->pers) { 4226 err = restart_array(mddev); 4227 if (err) 4228 break; 4229 spin_lock(&mddev->lock); 4230 if (!set_in_sync(mddev)) 4231 err = -EBUSY; 4232 spin_unlock(&mddev->lock); 4233 } else 4234 err = -EINVAL; 4235 break; 4236 case active: 4237 if (mddev->pers) { 4238 err = restart_array(mddev); 4239 if (err) 4240 break; 4241 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4242 wake_up(&mddev->sb_wait); 4243 err = 0; 4244 } else { 4245 mddev->ro = 0; 4246 set_disk_ro(mddev->gendisk, 0); 4247 err = do_md_run(mddev); 4248 } 4249 break; 4250 case write_pending: 4251 case active_idle: 4252 /* these cannot be set */ 4253 break; 4254 } 4255 4256 if (!err) { 4257 if (mddev->hold_active == UNTIL_IOCTL) 4258 mddev->hold_active = 0; 4259 sysfs_notify_dirent_safe(mddev->sysfs_state); 4260 } 4261 mddev_unlock(mddev); 4262 return err ?: len; 4263 } 4264 static struct md_sysfs_entry md_array_state = 4265 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4266 4267 static ssize_t 4268 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4269 return sprintf(page, "%d\n", 4270 atomic_read(&mddev->max_corr_read_errors)); 4271 } 4272 4273 static ssize_t 4274 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4275 { 4276 unsigned int n; 4277 int rv; 4278 4279 rv = kstrtouint(buf, 10, &n); 4280 if (rv < 0) 4281 return rv; 4282 atomic_set(&mddev->max_corr_read_errors, n); 4283 return len; 4284 } 4285 4286 static struct md_sysfs_entry max_corr_read_errors = 4287 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4288 max_corrected_read_errors_store); 4289 4290 static ssize_t 4291 null_show(struct mddev *mddev, char *page) 4292 { 4293 return -EINVAL; 4294 } 4295 4296 static ssize_t 4297 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4298 { 4299 /* buf must be %d:%d\n? giving major and minor numbers */ 4300 /* The new device is added to the array. 4301 * If the array has a persistent superblock, we read the 4302 * superblock to initialise info and check validity. 4303 * Otherwise, only checking done is that in bind_rdev_to_array, 4304 * which mainly checks size. 4305 */ 4306 char *e; 4307 int major = simple_strtoul(buf, &e, 10); 4308 int minor; 4309 dev_t dev; 4310 struct md_rdev *rdev; 4311 int err; 4312 4313 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4314 return -EINVAL; 4315 minor = simple_strtoul(e+1, &e, 10); 4316 if (*e && *e != '\n') 4317 return -EINVAL; 4318 dev = MKDEV(major, minor); 4319 if (major != MAJOR(dev) || 4320 minor != MINOR(dev)) 4321 return -EOVERFLOW; 4322 4323 flush_workqueue(md_misc_wq); 4324 4325 err = mddev_lock(mddev); 4326 if (err) 4327 return err; 4328 if (mddev->persistent) { 4329 rdev = md_import_device(dev, mddev->major_version, 4330 mddev->minor_version); 4331 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4332 struct md_rdev *rdev0 4333 = list_entry(mddev->disks.next, 4334 struct md_rdev, same_set); 4335 err = super_types[mddev->major_version] 4336 .load_super(rdev, rdev0, mddev->minor_version); 4337 if (err < 0) 4338 goto out; 4339 } 4340 } else if (mddev->external) 4341 rdev = md_import_device(dev, -2, -1); 4342 else 4343 rdev = md_import_device(dev, -1, -1); 4344 4345 if (IS_ERR(rdev)) { 4346 mddev_unlock(mddev); 4347 return PTR_ERR(rdev); 4348 } 4349 err = bind_rdev_to_array(rdev, mddev); 4350 out: 4351 if (err) 4352 export_rdev(rdev); 4353 mddev_unlock(mddev); 4354 if (!err) 4355 md_new_event(mddev); 4356 return err ? err : len; 4357 } 4358 4359 static struct md_sysfs_entry md_new_device = 4360 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4361 4362 static ssize_t 4363 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4364 { 4365 char *end; 4366 unsigned long chunk, end_chunk; 4367 int err; 4368 4369 err = mddev_lock(mddev); 4370 if (err) 4371 return err; 4372 if (!mddev->bitmap) 4373 goto out; 4374 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4375 while (*buf) { 4376 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4377 if (buf == end) break; 4378 if (*end == '-') { /* range */ 4379 buf = end + 1; 4380 end_chunk = simple_strtoul(buf, &end, 0); 4381 if (buf == end) break; 4382 } 4383 if (*end && !isspace(*end)) break; 4384 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4385 buf = skip_spaces(end); 4386 } 4387 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4388 out: 4389 mddev_unlock(mddev); 4390 return len; 4391 } 4392 4393 static struct md_sysfs_entry md_bitmap = 4394 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4395 4396 static ssize_t 4397 size_show(struct mddev *mddev, char *page) 4398 { 4399 return sprintf(page, "%llu\n", 4400 (unsigned long long)mddev->dev_sectors / 2); 4401 } 4402 4403 static int update_size(struct mddev *mddev, sector_t num_sectors); 4404 4405 static ssize_t 4406 size_store(struct mddev *mddev, const char *buf, size_t len) 4407 { 4408 /* If array is inactive, we can reduce the component size, but 4409 * not increase it (except from 0). 4410 * If array is active, we can try an on-line resize 4411 */ 4412 sector_t sectors; 4413 int err = strict_blocks_to_sectors(buf, §ors); 4414 4415 if (err < 0) 4416 return err; 4417 err = mddev_lock(mddev); 4418 if (err) 4419 return err; 4420 if (mddev->pers) { 4421 err = update_size(mddev, sectors); 4422 if (err == 0) 4423 md_update_sb(mddev, 1); 4424 } else { 4425 if (mddev->dev_sectors == 0 || 4426 mddev->dev_sectors > sectors) 4427 mddev->dev_sectors = sectors; 4428 else 4429 err = -ENOSPC; 4430 } 4431 mddev_unlock(mddev); 4432 return err ? err : len; 4433 } 4434 4435 static struct md_sysfs_entry md_size = 4436 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4437 4438 /* Metadata version. 4439 * This is one of 4440 * 'none' for arrays with no metadata (good luck...) 4441 * 'external' for arrays with externally managed metadata, 4442 * or N.M for internally known formats 4443 */ 4444 static ssize_t 4445 metadata_show(struct mddev *mddev, char *page) 4446 { 4447 if (mddev->persistent) 4448 return sprintf(page, "%d.%d\n", 4449 mddev->major_version, mddev->minor_version); 4450 else if (mddev->external) 4451 return sprintf(page, "external:%s\n", mddev->metadata_type); 4452 else 4453 return sprintf(page, "none\n"); 4454 } 4455 4456 static ssize_t 4457 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4458 { 4459 int major, minor; 4460 char *e; 4461 int err; 4462 /* Changing the details of 'external' metadata is 4463 * always permitted. Otherwise there must be 4464 * no devices attached to the array. 4465 */ 4466 4467 err = mddev_lock(mddev); 4468 if (err) 4469 return err; 4470 err = -EBUSY; 4471 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4472 ; 4473 else if (!list_empty(&mddev->disks)) 4474 goto out_unlock; 4475 4476 err = 0; 4477 if (cmd_match(buf, "none")) { 4478 mddev->persistent = 0; 4479 mddev->external = 0; 4480 mddev->major_version = 0; 4481 mddev->minor_version = 90; 4482 goto out_unlock; 4483 } 4484 if (strncmp(buf, "external:", 9) == 0) { 4485 size_t namelen = len-9; 4486 if (namelen >= sizeof(mddev->metadata_type)) 4487 namelen = sizeof(mddev->metadata_type)-1; 4488 strncpy(mddev->metadata_type, buf+9, namelen); 4489 mddev->metadata_type[namelen] = 0; 4490 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4491 mddev->metadata_type[--namelen] = 0; 4492 mddev->persistent = 0; 4493 mddev->external = 1; 4494 mddev->major_version = 0; 4495 mddev->minor_version = 90; 4496 goto out_unlock; 4497 } 4498 major = simple_strtoul(buf, &e, 10); 4499 err = -EINVAL; 4500 if (e==buf || *e != '.') 4501 goto out_unlock; 4502 buf = e+1; 4503 minor = simple_strtoul(buf, &e, 10); 4504 if (e==buf || (*e && *e != '\n') ) 4505 goto out_unlock; 4506 err = -ENOENT; 4507 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4508 goto out_unlock; 4509 mddev->major_version = major; 4510 mddev->minor_version = minor; 4511 mddev->persistent = 1; 4512 mddev->external = 0; 4513 err = 0; 4514 out_unlock: 4515 mddev_unlock(mddev); 4516 return err ?: len; 4517 } 4518 4519 static struct md_sysfs_entry md_metadata = 4520 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4521 4522 static ssize_t 4523 action_show(struct mddev *mddev, char *page) 4524 { 4525 char *type = "idle"; 4526 unsigned long recovery = mddev->recovery; 4527 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4528 type = "frozen"; 4529 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4530 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4531 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4532 type = "reshape"; 4533 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4534 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4535 type = "resync"; 4536 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4537 type = "check"; 4538 else 4539 type = "repair"; 4540 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4541 type = "recover"; 4542 else if (mddev->reshape_position != MaxSector) 4543 type = "reshape"; 4544 } 4545 return sprintf(page, "%s\n", type); 4546 } 4547 4548 static ssize_t 4549 action_store(struct mddev *mddev, const char *page, size_t len) 4550 { 4551 if (!mddev->pers || !mddev->pers->sync_request) 4552 return -EINVAL; 4553 4554 4555 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4556 if (cmd_match(page, "frozen")) 4557 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4558 else 4559 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4560 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4561 mddev_lock(mddev) == 0) { 4562 flush_workqueue(md_misc_wq); 4563 if (mddev->sync_thread) { 4564 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4565 md_reap_sync_thread(mddev); 4566 } 4567 mddev_unlock(mddev); 4568 } 4569 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4570 return -EBUSY; 4571 else if (cmd_match(page, "resync")) 4572 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4573 else if (cmd_match(page, "recover")) { 4574 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4575 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4576 } else if (cmd_match(page, "reshape")) { 4577 int err; 4578 if (mddev->pers->start_reshape == NULL) 4579 return -EINVAL; 4580 err = mddev_lock(mddev); 4581 if (!err) { 4582 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4583 err = -EBUSY; 4584 else { 4585 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4586 err = mddev->pers->start_reshape(mddev); 4587 } 4588 mddev_unlock(mddev); 4589 } 4590 if (err) 4591 return err; 4592 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4593 } else { 4594 if (cmd_match(page, "check")) 4595 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4596 else if (!cmd_match(page, "repair")) 4597 return -EINVAL; 4598 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4599 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4600 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4601 } 4602 if (mddev->ro == 2) { 4603 /* A write to sync_action is enough to justify 4604 * canceling read-auto mode 4605 */ 4606 mddev->ro = 0; 4607 md_wakeup_thread(mddev->sync_thread); 4608 } 4609 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4610 md_wakeup_thread(mddev->thread); 4611 sysfs_notify_dirent_safe(mddev->sysfs_action); 4612 return len; 4613 } 4614 4615 static struct md_sysfs_entry md_scan_mode = 4616 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4617 4618 static ssize_t 4619 last_sync_action_show(struct mddev *mddev, char *page) 4620 { 4621 return sprintf(page, "%s\n", mddev->last_sync_action); 4622 } 4623 4624 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4625 4626 static ssize_t 4627 mismatch_cnt_show(struct mddev *mddev, char *page) 4628 { 4629 return sprintf(page, "%llu\n", 4630 (unsigned long long) 4631 atomic64_read(&mddev->resync_mismatches)); 4632 } 4633 4634 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4635 4636 static ssize_t 4637 sync_min_show(struct mddev *mddev, char *page) 4638 { 4639 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4640 mddev->sync_speed_min ? "local": "system"); 4641 } 4642 4643 static ssize_t 4644 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4645 { 4646 unsigned int min; 4647 int rv; 4648 4649 if (strncmp(buf, "system", 6)==0) { 4650 min = 0; 4651 } else { 4652 rv = kstrtouint(buf, 10, &min); 4653 if (rv < 0) 4654 return rv; 4655 if (min == 0) 4656 return -EINVAL; 4657 } 4658 mddev->sync_speed_min = min; 4659 return len; 4660 } 4661 4662 static struct md_sysfs_entry md_sync_min = 4663 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4664 4665 static ssize_t 4666 sync_max_show(struct mddev *mddev, char *page) 4667 { 4668 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4669 mddev->sync_speed_max ? "local": "system"); 4670 } 4671 4672 static ssize_t 4673 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4674 { 4675 unsigned int max; 4676 int rv; 4677 4678 if (strncmp(buf, "system", 6)==0) { 4679 max = 0; 4680 } else { 4681 rv = kstrtouint(buf, 10, &max); 4682 if (rv < 0) 4683 return rv; 4684 if (max == 0) 4685 return -EINVAL; 4686 } 4687 mddev->sync_speed_max = max; 4688 return len; 4689 } 4690 4691 static struct md_sysfs_entry md_sync_max = 4692 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4693 4694 static ssize_t 4695 degraded_show(struct mddev *mddev, char *page) 4696 { 4697 return sprintf(page, "%d\n", mddev->degraded); 4698 } 4699 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4700 4701 static ssize_t 4702 sync_force_parallel_show(struct mddev *mddev, char *page) 4703 { 4704 return sprintf(page, "%d\n", mddev->parallel_resync); 4705 } 4706 4707 static ssize_t 4708 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4709 { 4710 long n; 4711 4712 if (kstrtol(buf, 10, &n)) 4713 return -EINVAL; 4714 4715 if (n != 0 && n != 1) 4716 return -EINVAL; 4717 4718 mddev->parallel_resync = n; 4719 4720 if (mddev->sync_thread) 4721 wake_up(&resync_wait); 4722 4723 return len; 4724 } 4725 4726 /* force parallel resync, even with shared block devices */ 4727 static struct md_sysfs_entry md_sync_force_parallel = 4728 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4729 sync_force_parallel_show, sync_force_parallel_store); 4730 4731 static ssize_t 4732 sync_speed_show(struct mddev *mddev, char *page) 4733 { 4734 unsigned long resync, dt, db; 4735 if (mddev->curr_resync == 0) 4736 return sprintf(page, "none\n"); 4737 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4738 dt = (jiffies - mddev->resync_mark) / HZ; 4739 if (!dt) dt++; 4740 db = resync - mddev->resync_mark_cnt; 4741 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4742 } 4743 4744 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4745 4746 static ssize_t 4747 sync_completed_show(struct mddev *mddev, char *page) 4748 { 4749 unsigned long long max_sectors, resync; 4750 4751 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4752 return sprintf(page, "none\n"); 4753 4754 if (mddev->curr_resync == 1 || 4755 mddev->curr_resync == 2) 4756 return sprintf(page, "delayed\n"); 4757 4758 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4759 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4760 max_sectors = mddev->resync_max_sectors; 4761 else 4762 max_sectors = mddev->dev_sectors; 4763 4764 resync = mddev->curr_resync_completed; 4765 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4766 } 4767 4768 static struct md_sysfs_entry md_sync_completed = 4769 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4770 4771 static ssize_t 4772 min_sync_show(struct mddev *mddev, char *page) 4773 { 4774 return sprintf(page, "%llu\n", 4775 (unsigned long long)mddev->resync_min); 4776 } 4777 static ssize_t 4778 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4779 { 4780 unsigned long long min; 4781 int err; 4782 4783 if (kstrtoull(buf, 10, &min)) 4784 return -EINVAL; 4785 4786 spin_lock(&mddev->lock); 4787 err = -EINVAL; 4788 if (min > mddev->resync_max) 4789 goto out_unlock; 4790 4791 err = -EBUSY; 4792 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4793 goto out_unlock; 4794 4795 /* Round down to multiple of 4K for safety */ 4796 mddev->resync_min = round_down(min, 8); 4797 err = 0; 4798 4799 out_unlock: 4800 spin_unlock(&mddev->lock); 4801 return err ?: len; 4802 } 4803 4804 static struct md_sysfs_entry md_min_sync = 4805 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4806 4807 static ssize_t 4808 max_sync_show(struct mddev *mddev, char *page) 4809 { 4810 if (mddev->resync_max == MaxSector) 4811 return sprintf(page, "max\n"); 4812 else 4813 return sprintf(page, "%llu\n", 4814 (unsigned long long)mddev->resync_max); 4815 } 4816 static ssize_t 4817 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4818 { 4819 int err; 4820 spin_lock(&mddev->lock); 4821 if (strncmp(buf, "max", 3) == 0) 4822 mddev->resync_max = MaxSector; 4823 else { 4824 unsigned long long max; 4825 int chunk; 4826 4827 err = -EINVAL; 4828 if (kstrtoull(buf, 10, &max)) 4829 goto out_unlock; 4830 if (max < mddev->resync_min) 4831 goto out_unlock; 4832 4833 err = -EBUSY; 4834 if (max < mddev->resync_max && 4835 mddev->ro == 0 && 4836 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4837 goto out_unlock; 4838 4839 /* Must be a multiple of chunk_size */ 4840 chunk = mddev->chunk_sectors; 4841 if (chunk) { 4842 sector_t temp = max; 4843 4844 err = -EINVAL; 4845 if (sector_div(temp, chunk)) 4846 goto out_unlock; 4847 } 4848 mddev->resync_max = max; 4849 } 4850 wake_up(&mddev->recovery_wait); 4851 err = 0; 4852 out_unlock: 4853 spin_unlock(&mddev->lock); 4854 return err ?: len; 4855 } 4856 4857 static struct md_sysfs_entry md_max_sync = 4858 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4859 4860 static ssize_t 4861 suspend_lo_show(struct mddev *mddev, char *page) 4862 { 4863 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4864 } 4865 4866 static ssize_t 4867 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4868 { 4869 unsigned long long new; 4870 int err; 4871 4872 err = kstrtoull(buf, 10, &new); 4873 if (err < 0) 4874 return err; 4875 if (new != (sector_t)new) 4876 return -EINVAL; 4877 4878 err = mddev_lock(mddev); 4879 if (err) 4880 return err; 4881 err = -EINVAL; 4882 if (mddev->pers == NULL || 4883 mddev->pers->quiesce == NULL) 4884 goto unlock; 4885 mddev_suspend(mddev); 4886 mddev->suspend_lo = new; 4887 mddev_resume(mddev); 4888 4889 err = 0; 4890 unlock: 4891 mddev_unlock(mddev); 4892 return err ?: len; 4893 } 4894 static struct md_sysfs_entry md_suspend_lo = 4895 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4896 4897 static ssize_t 4898 suspend_hi_show(struct mddev *mddev, char *page) 4899 { 4900 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4901 } 4902 4903 static ssize_t 4904 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4905 { 4906 unsigned long long new; 4907 int err; 4908 4909 err = kstrtoull(buf, 10, &new); 4910 if (err < 0) 4911 return err; 4912 if (new != (sector_t)new) 4913 return -EINVAL; 4914 4915 err = mddev_lock(mddev); 4916 if (err) 4917 return err; 4918 err = -EINVAL; 4919 if (mddev->pers == NULL) 4920 goto unlock; 4921 4922 mddev_suspend(mddev); 4923 mddev->suspend_hi = new; 4924 mddev_resume(mddev); 4925 4926 err = 0; 4927 unlock: 4928 mddev_unlock(mddev); 4929 return err ?: len; 4930 } 4931 static struct md_sysfs_entry md_suspend_hi = 4932 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4933 4934 static ssize_t 4935 reshape_position_show(struct mddev *mddev, char *page) 4936 { 4937 if (mddev->reshape_position != MaxSector) 4938 return sprintf(page, "%llu\n", 4939 (unsigned long long)mddev->reshape_position); 4940 strcpy(page, "none\n"); 4941 return 5; 4942 } 4943 4944 static ssize_t 4945 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4946 { 4947 struct md_rdev *rdev; 4948 unsigned long long new; 4949 int err; 4950 4951 err = kstrtoull(buf, 10, &new); 4952 if (err < 0) 4953 return err; 4954 if (new != (sector_t)new) 4955 return -EINVAL; 4956 err = mddev_lock(mddev); 4957 if (err) 4958 return err; 4959 err = -EBUSY; 4960 if (mddev->pers) 4961 goto unlock; 4962 mddev->reshape_position = new; 4963 mddev->delta_disks = 0; 4964 mddev->reshape_backwards = 0; 4965 mddev->new_level = mddev->level; 4966 mddev->new_layout = mddev->layout; 4967 mddev->new_chunk_sectors = mddev->chunk_sectors; 4968 rdev_for_each(rdev, mddev) 4969 rdev->new_data_offset = rdev->data_offset; 4970 err = 0; 4971 unlock: 4972 mddev_unlock(mddev); 4973 return err ?: len; 4974 } 4975 4976 static struct md_sysfs_entry md_reshape_position = 4977 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4978 reshape_position_store); 4979 4980 static ssize_t 4981 reshape_direction_show(struct mddev *mddev, char *page) 4982 { 4983 return sprintf(page, "%s\n", 4984 mddev->reshape_backwards ? "backwards" : "forwards"); 4985 } 4986 4987 static ssize_t 4988 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4989 { 4990 int backwards = 0; 4991 int err; 4992 4993 if (cmd_match(buf, "forwards")) 4994 backwards = 0; 4995 else if (cmd_match(buf, "backwards")) 4996 backwards = 1; 4997 else 4998 return -EINVAL; 4999 if (mddev->reshape_backwards == backwards) 5000 return len; 5001 5002 err = mddev_lock(mddev); 5003 if (err) 5004 return err; 5005 /* check if we are allowed to change */ 5006 if (mddev->delta_disks) 5007 err = -EBUSY; 5008 else if (mddev->persistent && 5009 mddev->major_version == 0) 5010 err = -EINVAL; 5011 else 5012 mddev->reshape_backwards = backwards; 5013 mddev_unlock(mddev); 5014 return err ?: len; 5015 } 5016 5017 static struct md_sysfs_entry md_reshape_direction = 5018 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5019 reshape_direction_store); 5020 5021 static ssize_t 5022 array_size_show(struct mddev *mddev, char *page) 5023 { 5024 if (mddev->external_size) 5025 return sprintf(page, "%llu\n", 5026 (unsigned long long)mddev->array_sectors/2); 5027 else 5028 return sprintf(page, "default\n"); 5029 } 5030 5031 static ssize_t 5032 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5033 { 5034 sector_t sectors; 5035 int err; 5036 5037 err = mddev_lock(mddev); 5038 if (err) 5039 return err; 5040 5041 /* cluster raid doesn't support change array_sectors */ 5042 if (mddev_is_clustered(mddev)) { 5043 mddev_unlock(mddev); 5044 return -EINVAL; 5045 } 5046 5047 if (strncmp(buf, "default", 7) == 0) { 5048 if (mddev->pers) 5049 sectors = mddev->pers->size(mddev, 0, 0); 5050 else 5051 sectors = mddev->array_sectors; 5052 5053 mddev->external_size = 0; 5054 } else { 5055 if (strict_blocks_to_sectors(buf, §ors) < 0) 5056 err = -EINVAL; 5057 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5058 err = -E2BIG; 5059 else 5060 mddev->external_size = 1; 5061 } 5062 5063 if (!err) { 5064 mddev->array_sectors = sectors; 5065 if (mddev->pers) { 5066 set_capacity(mddev->gendisk, mddev->array_sectors); 5067 revalidate_disk(mddev->gendisk); 5068 } 5069 } 5070 mddev_unlock(mddev); 5071 return err ?: len; 5072 } 5073 5074 static struct md_sysfs_entry md_array_size = 5075 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5076 array_size_store); 5077 5078 static ssize_t 5079 consistency_policy_show(struct mddev *mddev, char *page) 5080 { 5081 int ret; 5082 5083 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5084 ret = sprintf(page, "journal\n"); 5085 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5086 ret = sprintf(page, "ppl\n"); 5087 } else if (mddev->bitmap) { 5088 ret = sprintf(page, "bitmap\n"); 5089 } else if (mddev->pers) { 5090 if (mddev->pers->sync_request) 5091 ret = sprintf(page, "resync\n"); 5092 else 5093 ret = sprintf(page, "none\n"); 5094 } else { 5095 ret = sprintf(page, "unknown\n"); 5096 } 5097 5098 return ret; 5099 } 5100 5101 static ssize_t 5102 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5103 { 5104 int err = 0; 5105 5106 if (mddev->pers) { 5107 if (mddev->pers->change_consistency_policy) 5108 err = mddev->pers->change_consistency_policy(mddev, buf); 5109 else 5110 err = -EBUSY; 5111 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5112 set_bit(MD_HAS_PPL, &mddev->flags); 5113 } else { 5114 err = -EINVAL; 5115 } 5116 5117 return err ? err : len; 5118 } 5119 5120 static struct md_sysfs_entry md_consistency_policy = 5121 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5122 consistency_policy_store); 5123 5124 static struct attribute *md_default_attrs[] = { 5125 &md_level.attr, 5126 &md_layout.attr, 5127 &md_raid_disks.attr, 5128 &md_chunk_size.attr, 5129 &md_size.attr, 5130 &md_resync_start.attr, 5131 &md_metadata.attr, 5132 &md_new_device.attr, 5133 &md_safe_delay.attr, 5134 &md_array_state.attr, 5135 &md_reshape_position.attr, 5136 &md_reshape_direction.attr, 5137 &md_array_size.attr, 5138 &max_corr_read_errors.attr, 5139 &md_consistency_policy.attr, 5140 NULL, 5141 }; 5142 5143 static struct attribute *md_redundancy_attrs[] = { 5144 &md_scan_mode.attr, 5145 &md_last_scan_mode.attr, 5146 &md_mismatches.attr, 5147 &md_sync_min.attr, 5148 &md_sync_max.attr, 5149 &md_sync_speed.attr, 5150 &md_sync_force_parallel.attr, 5151 &md_sync_completed.attr, 5152 &md_min_sync.attr, 5153 &md_max_sync.attr, 5154 &md_suspend_lo.attr, 5155 &md_suspend_hi.attr, 5156 &md_bitmap.attr, 5157 &md_degraded.attr, 5158 NULL, 5159 }; 5160 static struct attribute_group md_redundancy_group = { 5161 .name = NULL, 5162 .attrs = md_redundancy_attrs, 5163 }; 5164 5165 static ssize_t 5166 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5167 { 5168 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5169 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5170 ssize_t rv; 5171 5172 if (!entry->show) 5173 return -EIO; 5174 spin_lock(&all_mddevs_lock); 5175 if (list_empty(&mddev->all_mddevs)) { 5176 spin_unlock(&all_mddevs_lock); 5177 return -EBUSY; 5178 } 5179 mddev_get(mddev); 5180 spin_unlock(&all_mddevs_lock); 5181 5182 rv = entry->show(mddev, page); 5183 mddev_put(mddev); 5184 return rv; 5185 } 5186 5187 static ssize_t 5188 md_attr_store(struct kobject *kobj, struct attribute *attr, 5189 const char *page, size_t length) 5190 { 5191 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5192 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5193 ssize_t rv; 5194 5195 if (!entry->store) 5196 return -EIO; 5197 if (!capable(CAP_SYS_ADMIN)) 5198 return -EACCES; 5199 spin_lock(&all_mddevs_lock); 5200 if (list_empty(&mddev->all_mddevs)) { 5201 spin_unlock(&all_mddevs_lock); 5202 return -EBUSY; 5203 } 5204 mddev_get(mddev); 5205 spin_unlock(&all_mddevs_lock); 5206 rv = entry->store(mddev, page, length); 5207 mddev_put(mddev); 5208 return rv; 5209 } 5210 5211 static void md_free(struct kobject *ko) 5212 { 5213 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5214 5215 if (mddev->sysfs_state) 5216 sysfs_put(mddev->sysfs_state); 5217 5218 if (mddev->gendisk) 5219 del_gendisk(mddev->gendisk); 5220 if (mddev->queue) 5221 blk_cleanup_queue(mddev->queue); 5222 if (mddev->gendisk) 5223 put_disk(mddev->gendisk); 5224 percpu_ref_exit(&mddev->writes_pending); 5225 5226 bioset_exit(&mddev->bio_set); 5227 bioset_exit(&mddev->sync_set); 5228 kfree(mddev); 5229 } 5230 5231 static const struct sysfs_ops md_sysfs_ops = { 5232 .show = md_attr_show, 5233 .store = md_attr_store, 5234 }; 5235 static struct kobj_type md_ktype = { 5236 .release = md_free, 5237 .sysfs_ops = &md_sysfs_ops, 5238 .default_attrs = md_default_attrs, 5239 }; 5240 5241 int mdp_major = 0; 5242 5243 static void mddev_delayed_delete(struct work_struct *ws) 5244 { 5245 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5246 5247 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5248 kobject_del(&mddev->kobj); 5249 kobject_put(&mddev->kobj); 5250 } 5251 5252 static void no_op(struct percpu_ref *r) {} 5253 5254 int mddev_init_writes_pending(struct mddev *mddev) 5255 { 5256 if (mddev->writes_pending.percpu_count_ptr) 5257 return 0; 5258 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5259 return -ENOMEM; 5260 /* We want to start with the refcount at zero */ 5261 percpu_ref_put(&mddev->writes_pending); 5262 return 0; 5263 } 5264 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5265 5266 static int md_alloc(dev_t dev, char *name) 5267 { 5268 /* 5269 * If dev is zero, name is the name of a device to allocate with 5270 * an arbitrary minor number. It will be "md_???" 5271 * If dev is non-zero it must be a device number with a MAJOR of 5272 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5273 * the device is being created by opening a node in /dev. 5274 * If "name" is not NULL, the device is being created by 5275 * writing to /sys/module/md_mod/parameters/new_array. 5276 */ 5277 static DEFINE_MUTEX(disks_mutex); 5278 struct mddev *mddev = mddev_find(dev); 5279 struct gendisk *disk; 5280 int partitioned; 5281 int shift; 5282 int unit; 5283 int error; 5284 5285 if (!mddev) 5286 return -ENODEV; 5287 5288 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5289 shift = partitioned ? MdpMinorShift : 0; 5290 unit = MINOR(mddev->unit) >> shift; 5291 5292 /* wait for any previous instance of this device to be 5293 * completely removed (mddev_delayed_delete). 5294 */ 5295 flush_workqueue(md_misc_wq); 5296 5297 mutex_lock(&disks_mutex); 5298 error = -EEXIST; 5299 if (mddev->gendisk) 5300 goto abort; 5301 5302 if (name && !dev) { 5303 /* Need to ensure that 'name' is not a duplicate. 5304 */ 5305 struct mddev *mddev2; 5306 spin_lock(&all_mddevs_lock); 5307 5308 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5309 if (mddev2->gendisk && 5310 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5311 spin_unlock(&all_mddevs_lock); 5312 goto abort; 5313 } 5314 spin_unlock(&all_mddevs_lock); 5315 } 5316 if (name && dev) 5317 /* 5318 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5319 */ 5320 mddev->hold_active = UNTIL_STOP; 5321 5322 error = -ENOMEM; 5323 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5324 if (!mddev->queue) 5325 goto abort; 5326 mddev->queue->queuedata = mddev; 5327 5328 blk_queue_make_request(mddev->queue, md_make_request); 5329 blk_set_stacking_limits(&mddev->queue->limits); 5330 5331 disk = alloc_disk(1 << shift); 5332 if (!disk) { 5333 blk_cleanup_queue(mddev->queue); 5334 mddev->queue = NULL; 5335 goto abort; 5336 } 5337 disk->major = MAJOR(mddev->unit); 5338 disk->first_minor = unit << shift; 5339 if (name) 5340 strcpy(disk->disk_name, name); 5341 else if (partitioned) 5342 sprintf(disk->disk_name, "md_d%d", unit); 5343 else 5344 sprintf(disk->disk_name, "md%d", unit); 5345 disk->fops = &md_fops; 5346 disk->private_data = mddev; 5347 disk->queue = mddev->queue; 5348 blk_queue_write_cache(mddev->queue, true, true); 5349 /* Allow extended partitions. This makes the 5350 * 'mdp' device redundant, but we can't really 5351 * remove it now. 5352 */ 5353 disk->flags |= GENHD_FL_EXT_DEVT; 5354 mddev->gendisk = disk; 5355 /* As soon as we call add_disk(), another thread could get 5356 * through to md_open, so make sure it doesn't get too far 5357 */ 5358 mutex_lock(&mddev->open_mutex); 5359 add_disk(disk); 5360 5361 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5362 if (error) { 5363 /* This isn't possible, but as kobject_init_and_add is marked 5364 * __must_check, we must do something with the result 5365 */ 5366 pr_debug("md: cannot register %s/md - name in use\n", 5367 disk->disk_name); 5368 error = 0; 5369 } 5370 if (mddev->kobj.sd && 5371 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5372 pr_debug("pointless warning\n"); 5373 mutex_unlock(&mddev->open_mutex); 5374 abort: 5375 mutex_unlock(&disks_mutex); 5376 if (!error && mddev->kobj.sd) { 5377 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5378 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5379 } 5380 mddev_put(mddev); 5381 return error; 5382 } 5383 5384 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5385 { 5386 if (create_on_open) 5387 md_alloc(dev, NULL); 5388 return NULL; 5389 } 5390 5391 static int add_named_array(const char *val, const struct kernel_param *kp) 5392 { 5393 /* 5394 * val must be "md_*" or "mdNNN". 5395 * For "md_*" we allocate an array with a large free minor number, and 5396 * set the name to val. val must not already be an active name. 5397 * For "mdNNN" we allocate an array with the minor number NNN 5398 * which must not already be in use. 5399 */ 5400 int len = strlen(val); 5401 char buf[DISK_NAME_LEN]; 5402 unsigned long devnum; 5403 5404 while (len && val[len-1] == '\n') 5405 len--; 5406 if (len >= DISK_NAME_LEN) 5407 return -E2BIG; 5408 strlcpy(buf, val, len+1); 5409 if (strncmp(buf, "md_", 3) == 0) 5410 return md_alloc(0, buf); 5411 if (strncmp(buf, "md", 2) == 0 && 5412 isdigit(buf[2]) && 5413 kstrtoul(buf+2, 10, &devnum) == 0 && 5414 devnum <= MINORMASK) 5415 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5416 5417 return -EINVAL; 5418 } 5419 5420 static void md_safemode_timeout(struct timer_list *t) 5421 { 5422 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5423 5424 mddev->safemode = 1; 5425 if (mddev->external) 5426 sysfs_notify_dirent_safe(mddev->sysfs_state); 5427 5428 md_wakeup_thread(mddev->thread); 5429 } 5430 5431 static int start_dirty_degraded; 5432 5433 int md_run(struct mddev *mddev) 5434 { 5435 int err; 5436 struct md_rdev *rdev; 5437 struct md_personality *pers; 5438 5439 if (list_empty(&mddev->disks)) 5440 /* cannot run an array with no devices.. */ 5441 return -EINVAL; 5442 5443 if (mddev->pers) 5444 return -EBUSY; 5445 /* Cannot run until previous stop completes properly */ 5446 if (mddev->sysfs_active) 5447 return -EBUSY; 5448 5449 /* 5450 * Analyze all RAID superblock(s) 5451 */ 5452 if (!mddev->raid_disks) { 5453 if (!mddev->persistent) 5454 return -EINVAL; 5455 analyze_sbs(mddev); 5456 } 5457 5458 if (mddev->level != LEVEL_NONE) 5459 request_module("md-level-%d", mddev->level); 5460 else if (mddev->clevel[0]) 5461 request_module("md-%s", mddev->clevel); 5462 5463 /* 5464 * Drop all container device buffers, from now on 5465 * the only valid external interface is through the md 5466 * device. 5467 */ 5468 mddev->has_superblocks = false; 5469 rdev_for_each(rdev, mddev) { 5470 if (test_bit(Faulty, &rdev->flags)) 5471 continue; 5472 sync_blockdev(rdev->bdev); 5473 invalidate_bdev(rdev->bdev); 5474 if (mddev->ro != 1 && 5475 (bdev_read_only(rdev->bdev) || 5476 bdev_read_only(rdev->meta_bdev))) { 5477 mddev->ro = 1; 5478 if (mddev->gendisk) 5479 set_disk_ro(mddev->gendisk, 1); 5480 } 5481 5482 if (rdev->sb_page) 5483 mddev->has_superblocks = true; 5484 5485 /* perform some consistency tests on the device. 5486 * We don't want the data to overlap the metadata, 5487 * Internal Bitmap issues have been handled elsewhere. 5488 */ 5489 if (rdev->meta_bdev) { 5490 /* Nothing to check */; 5491 } else if (rdev->data_offset < rdev->sb_start) { 5492 if (mddev->dev_sectors && 5493 rdev->data_offset + mddev->dev_sectors 5494 > rdev->sb_start) { 5495 pr_warn("md: %s: data overlaps metadata\n", 5496 mdname(mddev)); 5497 return -EINVAL; 5498 } 5499 } else { 5500 if (rdev->sb_start + rdev->sb_size/512 5501 > rdev->data_offset) { 5502 pr_warn("md: %s: metadata overlaps data\n", 5503 mdname(mddev)); 5504 return -EINVAL; 5505 } 5506 } 5507 sysfs_notify_dirent_safe(rdev->sysfs_state); 5508 } 5509 5510 if (!bioset_initialized(&mddev->bio_set)) { 5511 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5512 if (err) 5513 return err; 5514 } 5515 if (!bioset_initialized(&mddev->sync_set)) { 5516 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5517 if (err) 5518 return err; 5519 } 5520 if (mddev->flush_pool == NULL) { 5521 mddev->flush_pool = mempool_create(NR_FLUSH_INFOS, flush_info_alloc, 5522 flush_info_free, mddev); 5523 if (!mddev->flush_pool) { 5524 err = -ENOMEM; 5525 goto abort; 5526 } 5527 } 5528 if (mddev->flush_bio_pool == NULL) { 5529 mddev->flush_bio_pool = mempool_create(NR_FLUSH_BIOS, flush_bio_alloc, 5530 flush_bio_free, mddev); 5531 if (!mddev->flush_bio_pool) { 5532 err = -ENOMEM; 5533 goto abort; 5534 } 5535 } 5536 5537 spin_lock(&pers_lock); 5538 pers = find_pers(mddev->level, mddev->clevel); 5539 if (!pers || !try_module_get(pers->owner)) { 5540 spin_unlock(&pers_lock); 5541 if (mddev->level != LEVEL_NONE) 5542 pr_warn("md: personality for level %d is not loaded!\n", 5543 mddev->level); 5544 else 5545 pr_warn("md: personality for level %s is not loaded!\n", 5546 mddev->clevel); 5547 err = -EINVAL; 5548 goto abort; 5549 } 5550 spin_unlock(&pers_lock); 5551 if (mddev->level != pers->level) { 5552 mddev->level = pers->level; 5553 mddev->new_level = pers->level; 5554 } 5555 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5556 5557 if (mddev->reshape_position != MaxSector && 5558 pers->start_reshape == NULL) { 5559 /* This personality cannot handle reshaping... */ 5560 module_put(pers->owner); 5561 err = -EINVAL; 5562 goto abort; 5563 } 5564 5565 if (pers->sync_request) { 5566 /* Warn if this is a potentially silly 5567 * configuration. 5568 */ 5569 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5570 struct md_rdev *rdev2; 5571 int warned = 0; 5572 5573 rdev_for_each(rdev, mddev) 5574 rdev_for_each(rdev2, mddev) { 5575 if (rdev < rdev2 && 5576 rdev->bdev->bd_contains == 5577 rdev2->bdev->bd_contains) { 5578 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5579 mdname(mddev), 5580 bdevname(rdev->bdev,b), 5581 bdevname(rdev2->bdev,b2)); 5582 warned = 1; 5583 } 5584 } 5585 5586 if (warned) 5587 pr_warn("True protection against single-disk failure might be compromised.\n"); 5588 } 5589 5590 mddev->recovery = 0; 5591 /* may be over-ridden by personality */ 5592 mddev->resync_max_sectors = mddev->dev_sectors; 5593 5594 mddev->ok_start_degraded = start_dirty_degraded; 5595 5596 if (start_readonly && mddev->ro == 0) 5597 mddev->ro = 2; /* read-only, but switch on first write */ 5598 5599 err = pers->run(mddev); 5600 if (err) 5601 pr_warn("md: pers->run() failed ...\n"); 5602 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5603 WARN_ONCE(!mddev->external_size, 5604 "%s: default size too small, but 'external_size' not in effect?\n", 5605 __func__); 5606 pr_warn("md: invalid array_size %llu > default size %llu\n", 5607 (unsigned long long)mddev->array_sectors / 2, 5608 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5609 err = -EINVAL; 5610 } 5611 if (err == 0 && pers->sync_request && 5612 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5613 struct bitmap *bitmap; 5614 5615 bitmap = md_bitmap_create(mddev, -1); 5616 if (IS_ERR(bitmap)) { 5617 err = PTR_ERR(bitmap); 5618 pr_warn("%s: failed to create bitmap (%d)\n", 5619 mdname(mddev), err); 5620 } else 5621 mddev->bitmap = bitmap; 5622 5623 } 5624 if (err) { 5625 mddev_detach(mddev); 5626 if (mddev->private) 5627 pers->free(mddev, mddev->private); 5628 mddev->private = NULL; 5629 module_put(pers->owner); 5630 md_bitmap_destroy(mddev); 5631 goto abort; 5632 } 5633 if (mddev->queue) { 5634 bool nonrot = true; 5635 5636 rdev_for_each(rdev, mddev) { 5637 if (rdev->raid_disk >= 0 && 5638 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5639 nonrot = false; 5640 break; 5641 } 5642 } 5643 if (mddev->degraded) 5644 nonrot = false; 5645 if (nonrot) 5646 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5647 else 5648 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5649 mddev->queue->backing_dev_info->congested_data = mddev; 5650 mddev->queue->backing_dev_info->congested_fn = md_congested; 5651 } 5652 if (pers->sync_request) { 5653 if (mddev->kobj.sd && 5654 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5655 pr_warn("md: cannot register extra attributes for %s\n", 5656 mdname(mddev)); 5657 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5658 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5659 mddev->ro = 0; 5660 5661 atomic_set(&mddev->max_corr_read_errors, 5662 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5663 mddev->safemode = 0; 5664 if (mddev_is_clustered(mddev)) 5665 mddev->safemode_delay = 0; 5666 else 5667 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5668 mddev->in_sync = 1; 5669 smp_wmb(); 5670 spin_lock(&mddev->lock); 5671 mddev->pers = pers; 5672 spin_unlock(&mddev->lock); 5673 rdev_for_each(rdev, mddev) 5674 if (rdev->raid_disk >= 0) 5675 if (sysfs_link_rdev(mddev, rdev)) 5676 /* failure here is OK */; 5677 5678 if (mddev->degraded && !mddev->ro) 5679 /* This ensures that recovering status is reported immediately 5680 * via sysfs - until a lack of spares is confirmed. 5681 */ 5682 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5683 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5684 5685 if (mddev->sb_flags) 5686 md_update_sb(mddev, 0); 5687 5688 md_new_event(mddev); 5689 sysfs_notify_dirent_safe(mddev->sysfs_state); 5690 sysfs_notify_dirent_safe(mddev->sysfs_action); 5691 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5692 return 0; 5693 5694 abort: 5695 if (mddev->flush_bio_pool) { 5696 mempool_destroy(mddev->flush_bio_pool); 5697 mddev->flush_bio_pool = NULL; 5698 } 5699 if (mddev->flush_pool){ 5700 mempool_destroy(mddev->flush_pool); 5701 mddev->flush_pool = NULL; 5702 } 5703 5704 return err; 5705 } 5706 EXPORT_SYMBOL_GPL(md_run); 5707 5708 static int do_md_run(struct mddev *mddev) 5709 { 5710 int err; 5711 5712 err = md_run(mddev); 5713 if (err) 5714 goto out; 5715 err = md_bitmap_load(mddev); 5716 if (err) { 5717 md_bitmap_destroy(mddev); 5718 goto out; 5719 } 5720 5721 if (mddev_is_clustered(mddev)) 5722 md_allow_write(mddev); 5723 5724 /* run start up tasks that require md_thread */ 5725 md_start(mddev); 5726 5727 md_wakeup_thread(mddev->thread); 5728 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5729 5730 set_capacity(mddev->gendisk, mddev->array_sectors); 5731 revalidate_disk(mddev->gendisk); 5732 mddev->changed = 1; 5733 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5734 out: 5735 return err; 5736 } 5737 5738 int md_start(struct mddev *mddev) 5739 { 5740 int ret = 0; 5741 5742 if (mddev->pers->start) { 5743 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5744 md_wakeup_thread(mddev->thread); 5745 ret = mddev->pers->start(mddev); 5746 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5747 md_wakeup_thread(mddev->sync_thread); 5748 } 5749 return ret; 5750 } 5751 EXPORT_SYMBOL_GPL(md_start); 5752 5753 static int restart_array(struct mddev *mddev) 5754 { 5755 struct gendisk *disk = mddev->gendisk; 5756 struct md_rdev *rdev; 5757 bool has_journal = false; 5758 bool has_readonly = false; 5759 5760 /* Complain if it has no devices */ 5761 if (list_empty(&mddev->disks)) 5762 return -ENXIO; 5763 if (!mddev->pers) 5764 return -EINVAL; 5765 if (!mddev->ro) 5766 return -EBUSY; 5767 5768 rcu_read_lock(); 5769 rdev_for_each_rcu(rdev, mddev) { 5770 if (test_bit(Journal, &rdev->flags) && 5771 !test_bit(Faulty, &rdev->flags)) 5772 has_journal = true; 5773 if (bdev_read_only(rdev->bdev)) 5774 has_readonly = true; 5775 } 5776 rcu_read_unlock(); 5777 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5778 /* Don't restart rw with journal missing/faulty */ 5779 return -EINVAL; 5780 if (has_readonly) 5781 return -EROFS; 5782 5783 mddev->safemode = 0; 5784 mddev->ro = 0; 5785 set_disk_ro(disk, 0); 5786 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5787 /* Kick recovery or resync if necessary */ 5788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5789 md_wakeup_thread(mddev->thread); 5790 md_wakeup_thread(mddev->sync_thread); 5791 sysfs_notify_dirent_safe(mddev->sysfs_state); 5792 return 0; 5793 } 5794 5795 static void md_clean(struct mddev *mddev) 5796 { 5797 mddev->array_sectors = 0; 5798 mddev->external_size = 0; 5799 mddev->dev_sectors = 0; 5800 mddev->raid_disks = 0; 5801 mddev->recovery_cp = 0; 5802 mddev->resync_min = 0; 5803 mddev->resync_max = MaxSector; 5804 mddev->reshape_position = MaxSector; 5805 mddev->external = 0; 5806 mddev->persistent = 0; 5807 mddev->level = LEVEL_NONE; 5808 mddev->clevel[0] = 0; 5809 mddev->flags = 0; 5810 mddev->sb_flags = 0; 5811 mddev->ro = 0; 5812 mddev->metadata_type[0] = 0; 5813 mddev->chunk_sectors = 0; 5814 mddev->ctime = mddev->utime = 0; 5815 mddev->layout = 0; 5816 mddev->max_disks = 0; 5817 mddev->events = 0; 5818 mddev->can_decrease_events = 0; 5819 mddev->delta_disks = 0; 5820 mddev->reshape_backwards = 0; 5821 mddev->new_level = LEVEL_NONE; 5822 mddev->new_layout = 0; 5823 mddev->new_chunk_sectors = 0; 5824 mddev->curr_resync = 0; 5825 atomic64_set(&mddev->resync_mismatches, 0); 5826 mddev->suspend_lo = mddev->suspend_hi = 0; 5827 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5828 mddev->recovery = 0; 5829 mddev->in_sync = 0; 5830 mddev->changed = 0; 5831 mddev->degraded = 0; 5832 mddev->safemode = 0; 5833 mddev->private = NULL; 5834 mddev->cluster_info = NULL; 5835 mddev->bitmap_info.offset = 0; 5836 mddev->bitmap_info.default_offset = 0; 5837 mddev->bitmap_info.default_space = 0; 5838 mddev->bitmap_info.chunksize = 0; 5839 mddev->bitmap_info.daemon_sleep = 0; 5840 mddev->bitmap_info.max_write_behind = 0; 5841 mddev->bitmap_info.nodes = 0; 5842 } 5843 5844 static void __md_stop_writes(struct mddev *mddev) 5845 { 5846 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5847 flush_workqueue(md_misc_wq); 5848 if (mddev->sync_thread) { 5849 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5850 md_reap_sync_thread(mddev); 5851 } 5852 5853 del_timer_sync(&mddev->safemode_timer); 5854 5855 if (mddev->pers && mddev->pers->quiesce) { 5856 mddev->pers->quiesce(mddev, 1); 5857 mddev->pers->quiesce(mddev, 0); 5858 } 5859 md_bitmap_flush(mddev); 5860 5861 if (mddev->ro == 0 && 5862 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5863 mddev->sb_flags)) { 5864 /* mark array as shutdown cleanly */ 5865 if (!mddev_is_clustered(mddev)) 5866 mddev->in_sync = 1; 5867 md_update_sb(mddev, 1); 5868 } 5869 } 5870 5871 void md_stop_writes(struct mddev *mddev) 5872 { 5873 mddev_lock_nointr(mddev); 5874 __md_stop_writes(mddev); 5875 mddev_unlock(mddev); 5876 } 5877 EXPORT_SYMBOL_GPL(md_stop_writes); 5878 5879 static void mddev_detach(struct mddev *mddev) 5880 { 5881 md_bitmap_wait_behind_writes(mddev); 5882 if (mddev->pers && mddev->pers->quiesce) { 5883 mddev->pers->quiesce(mddev, 1); 5884 mddev->pers->quiesce(mddev, 0); 5885 } 5886 md_unregister_thread(&mddev->thread); 5887 if (mddev->queue) 5888 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5889 } 5890 5891 static void __md_stop(struct mddev *mddev) 5892 { 5893 struct md_personality *pers = mddev->pers; 5894 md_bitmap_destroy(mddev); 5895 mddev_detach(mddev); 5896 /* Ensure ->event_work is done */ 5897 flush_workqueue(md_misc_wq); 5898 spin_lock(&mddev->lock); 5899 mddev->pers = NULL; 5900 spin_unlock(&mddev->lock); 5901 pers->free(mddev, mddev->private); 5902 mddev->private = NULL; 5903 if (pers->sync_request && mddev->to_remove == NULL) 5904 mddev->to_remove = &md_redundancy_group; 5905 module_put(pers->owner); 5906 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5907 } 5908 5909 void md_stop(struct mddev *mddev) 5910 { 5911 /* stop the array and free an attached data structures. 5912 * This is called from dm-raid 5913 */ 5914 __md_stop(mddev); 5915 if (mddev->flush_bio_pool) { 5916 mempool_destroy(mddev->flush_bio_pool); 5917 mddev->flush_bio_pool = NULL; 5918 } 5919 if (mddev->flush_pool) { 5920 mempool_destroy(mddev->flush_pool); 5921 mddev->flush_pool = NULL; 5922 } 5923 bioset_exit(&mddev->bio_set); 5924 bioset_exit(&mddev->sync_set); 5925 } 5926 5927 EXPORT_SYMBOL_GPL(md_stop); 5928 5929 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5930 { 5931 int err = 0; 5932 int did_freeze = 0; 5933 5934 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5935 did_freeze = 1; 5936 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5937 md_wakeup_thread(mddev->thread); 5938 } 5939 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5940 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5941 if (mddev->sync_thread) 5942 /* Thread might be blocked waiting for metadata update 5943 * which will now never happen */ 5944 wake_up_process(mddev->sync_thread->tsk); 5945 5946 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5947 return -EBUSY; 5948 mddev_unlock(mddev); 5949 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5950 &mddev->recovery)); 5951 wait_event(mddev->sb_wait, 5952 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5953 mddev_lock_nointr(mddev); 5954 5955 mutex_lock(&mddev->open_mutex); 5956 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5957 mddev->sync_thread || 5958 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5959 pr_warn("md: %s still in use.\n",mdname(mddev)); 5960 if (did_freeze) { 5961 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5962 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5963 md_wakeup_thread(mddev->thread); 5964 } 5965 err = -EBUSY; 5966 goto out; 5967 } 5968 if (mddev->pers) { 5969 __md_stop_writes(mddev); 5970 5971 err = -ENXIO; 5972 if (mddev->ro==1) 5973 goto out; 5974 mddev->ro = 1; 5975 set_disk_ro(mddev->gendisk, 1); 5976 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5977 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5978 md_wakeup_thread(mddev->thread); 5979 sysfs_notify_dirent_safe(mddev->sysfs_state); 5980 err = 0; 5981 } 5982 out: 5983 mutex_unlock(&mddev->open_mutex); 5984 return err; 5985 } 5986 5987 /* mode: 5988 * 0 - completely stop and dis-assemble array 5989 * 2 - stop but do not disassemble array 5990 */ 5991 static int do_md_stop(struct mddev *mddev, int mode, 5992 struct block_device *bdev) 5993 { 5994 struct gendisk *disk = mddev->gendisk; 5995 struct md_rdev *rdev; 5996 int did_freeze = 0; 5997 5998 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5999 did_freeze = 1; 6000 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6001 md_wakeup_thread(mddev->thread); 6002 } 6003 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6004 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6005 if (mddev->sync_thread) 6006 /* Thread might be blocked waiting for metadata update 6007 * which will now never happen */ 6008 wake_up_process(mddev->sync_thread->tsk); 6009 6010 mddev_unlock(mddev); 6011 wait_event(resync_wait, (mddev->sync_thread == NULL && 6012 !test_bit(MD_RECOVERY_RUNNING, 6013 &mddev->recovery))); 6014 mddev_lock_nointr(mddev); 6015 6016 mutex_lock(&mddev->open_mutex); 6017 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6018 mddev->sysfs_active || 6019 mddev->sync_thread || 6020 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6021 pr_warn("md: %s still in use.\n",mdname(mddev)); 6022 mutex_unlock(&mddev->open_mutex); 6023 if (did_freeze) { 6024 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6025 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6026 md_wakeup_thread(mddev->thread); 6027 } 6028 return -EBUSY; 6029 } 6030 if (mddev->pers) { 6031 if (mddev->ro) 6032 set_disk_ro(disk, 0); 6033 6034 __md_stop_writes(mddev); 6035 __md_stop(mddev); 6036 mddev->queue->backing_dev_info->congested_fn = NULL; 6037 6038 /* tell userspace to handle 'inactive' */ 6039 sysfs_notify_dirent_safe(mddev->sysfs_state); 6040 6041 rdev_for_each(rdev, mddev) 6042 if (rdev->raid_disk >= 0) 6043 sysfs_unlink_rdev(mddev, rdev); 6044 6045 set_capacity(disk, 0); 6046 mutex_unlock(&mddev->open_mutex); 6047 mddev->changed = 1; 6048 revalidate_disk(disk); 6049 6050 if (mddev->ro) 6051 mddev->ro = 0; 6052 } else 6053 mutex_unlock(&mddev->open_mutex); 6054 /* 6055 * Free resources if final stop 6056 */ 6057 if (mode == 0) { 6058 pr_info("md: %s stopped.\n", mdname(mddev)); 6059 6060 if (mddev->bitmap_info.file) { 6061 struct file *f = mddev->bitmap_info.file; 6062 spin_lock(&mddev->lock); 6063 mddev->bitmap_info.file = NULL; 6064 spin_unlock(&mddev->lock); 6065 fput(f); 6066 } 6067 mddev->bitmap_info.offset = 0; 6068 6069 export_array(mddev); 6070 6071 md_clean(mddev); 6072 if (mddev->hold_active == UNTIL_STOP) 6073 mddev->hold_active = 0; 6074 } 6075 md_new_event(mddev); 6076 sysfs_notify_dirent_safe(mddev->sysfs_state); 6077 return 0; 6078 } 6079 6080 #ifndef MODULE 6081 static void autorun_array(struct mddev *mddev) 6082 { 6083 struct md_rdev *rdev; 6084 int err; 6085 6086 if (list_empty(&mddev->disks)) 6087 return; 6088 6089 pr_info("md: running: "); 6090 6091 rdev_for_each(rdev, mddev) { 6092 char b[BDEVNAME_SIZE]; 6093 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6094 } 6095 pr_cont("\n"); 6096 6097 err = do_md_run(mddev); 6098 if (err) { 6099 pr_warn("md: do_md_run() returned %d\n", err); 6100 do_md_stop(mddev, 0, NULL); 6101 } 6102 } 6103 6104 /* 6105 * lets try to run arrays based on all disks that have arrived 6106 * until now. (those are in pending_raid_disks) 6107 * 6108 * the method: pick the first pending disk, collect all disks with 6109 * the same UUID, remove all from the pending list and put them into 6110 * the 'same_array' list. Then order this list based on superblock 6111 * update time (freshest comes first), kick out 'old' disks and 6112 * compare superblocks. If everything's fine then run it. 6113 * 6114 * If "unit" is allocated, then bump its reference count 6115 */ 6116 static void autorun_devices(int part) 6117 { 6118 struct md_rdev *rdev0, *rdev, *tmp; 6119 struct mddev *mddev; 6120 char b[BDEVNAME_SIZE]; 6121 6122 pr_info("md: autorun ...\n"); 6123 while (!list_empty(&pending_raid_disks)) { 6124 int unit; 6125 dev_t dev; 6126 LIST_HEAD(candidates); 6127 rdev0 = list_entry(pending_raid_disks.next, 6128 struct md_rdev, same_set); 6129 6130 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6131 INIT_LIST_HEAD(&candidates); 6132 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6133 if (super_90_load(rdev, rdev0, 0) >= 0) { 6134 pr_debug("md: adding %s ...\n", 6135 bdevname(rdev->bdev,b)); 6136 list_move(&rdev->same_set, &candidates); 6137 } 6138 /* 6139 * now we have a set of devices, with all of them having 6140 * mostly sane superblocks. It's time to allocate the 6141 * mddev. 6142 */ 6143 if (part) { 6144 dev = MKDEV(mdp_major, 6145 rdev0->preferred_minor << MdpMinorShift); 6146 unit = MINOR(dev) >> MdpMinorShift; 6147 } else { 6148 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6149 unit = MINOR(dev); 6150 } 6151 if (rdev0->preferred_minor != unit) { 6152 pr_warn("md: unit number in %s is bad: %d\n", 6153 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6154 break; 6155 } 6156 6157 md_probe(dev, NULL, NULL); 6158 mddev = mddev_find(dev); 6159 if (!mddev || !mddev->gendisk) { 6160 if (mddev) 6161 mddev_put(mddev); 6162 break; 6163 } 6164 if (mddev_lock(mddev)) 6165 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6166 else if (mddev->raid_disks || mddev->major_version 6167 || !list_empty(&mddev->disks)) { 6168 pr_warn("md: %s already running, cannot run %s\n", 6169 mdname(mddev), bdevname(rdev0->bdev,b)); 6170 mddev_unlock(mddev); 6171 } else { 6172 pr_debug("md: created %s\n", mdname(mddev)); 6173 mddev->persistent = 1; 6174 rdev_for_each_list(rdev, tmp, &candidates) { 6175 list_del_init(&rdev->same_set); 6176 if (bind_rdev_to_array(rdev, mddev)) 6177 export_rdev(rdev); 6178 } 6179 autorun_array(mddev); 6180 mddev_unlock(mddev); 6181 } 6182 /* on success, candidates will be empty, on error 6183 * it won't... 6184 */ 6185 rdev_for_each_list(rdev, tmp, &candidates) { 6186 list_del_init(&rdev->same_set); 6187 export_rdev(rdev); 6188 } 6189 mddev_put(mddev); 6190 } 6191 pr_info("md: ... autorun DONE.\n"); 6192 } 6193 #endif /* !MODULE */ 6194 6195 static int get_version(void __user *arg) 6196 { 6197 mdu_version_t ver; 6198 6199 ver.major = MD_MAJOR_VERSION; 6200 ver.minor = MD_MINOR_VERSION; 6201 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6202 6203 if (copy_to_user(arg, &ver, sizeof(ver))) 6204 return -EFAULT; 6205 6206 return 0; 6207 } 6208 6209 static int get_array_info(struct mddev *mddev, void __user *arg) 6210 { 6211 mdu_array_info_t info; 6212 int nr,working,insync,failed,spare; 6213 struct md_rdev *rdev; 6214 6215 nr = working = insync = failed = spare = 0; 6216 rcu_read_lock(); 6217 rdev_for_each_rcu(rdev, mddev) { 6218 nr++; 6219 if (test_bit(Faulty, &rdev->flags)) 6220 failed++; 6221 else { 6222 working++; 6223 if (test_bit(In_sync, &rdev->flags)) 6224 insync++; 6225 else if (test_bit(Journal, &rdev->flags)) 6226 /* TODO: add journal count to md_u.h */ 6227 ; 6228 else 6229 spare++; 6230 } 6231 } 6232 rcu_read_unlock(); 6233 6234 info.major_version = mddev->major_version; 6235 info.minor_version = mddev->minor_version; 6236 info.patch_version = MD_PATCHLEVEL_VERSION; 6237 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6238 info.level = mddev->level; 6239 info.size = mddev->dev_sectors / 2; 6240 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6241 info.size = -1; 6242 info.nr_disks = nr; 6243 info.raid_disks = mddev->raid_disks; 6244 info.md_minor = mddev->md_minor; 6245 info.not_persistent= !mddev->persistent; 6246 6247 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6248 info.state = 0; 6249 if (mddev->in_sync) 6250 info.state = (1<<MD_SB_CLEAN); 6251 if (mddev->bitmap && mddev->bitmap_info.offset) 6252 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6253 if (mddev_is_clustered(mddev)) 6254 info.state |= (1<<MD_SB_CLUSTERED); 6255 info.active_disks = insync; 6256 info.working_disks = working; 6257 info.failed_disks = failed; 6258 info.spare_disks = spare; 6259 6260 info.layout = mddev->layout; 6261 info.chunk_size = mddev->chunk_sectors << 9; 6262 6263 if (copy_to_user(arg, &info, sizeof(info))) 6264 return -EFAULT; 6265 6266 return 0; 6267 } 6268 6269 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6270 { 6271 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6272 char *ptr; 6273 int err; 6274 6275 file = kzalloc(sizeof(*file), GFP_NOIO); 6276 if (!file) 6277 return -ENOMEM; 6278 6279 err = 0; 6280 spin_lock(&mddev->lock); 6281 /* bitmap enabled */ 6282 if (mddev->bitmap_info.file) { 6283 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6284 sizeof(file->pathname)); 6285 if (IS_ERR(ptr)) 6286 err = PTR_ERR(ptr); 6287 else 6288 memmove(file->pathname, ptr, 6289 sizeof(file->pathname)-(ptr-file->pathname)); 6290 } 6291 spin_unlock(&mddev->lock); 6292 6293 if (err == 0 && 6294 copy_to_user(arg, file, sizeof(*file))) 6295 err = -EFAULT; 6296 6297 kfree(file); 6298 return err; 6299 } 6300 6301 static int get_disk_info(struct mddev *mddev, void __user * arg) 6302 { 6303 mdu_disk_info_t info; 6304 struct md_rdev *rdev; 6305 6306 if (copy_from_user(&info, arg, sizeof(info))) 6307 return -EFAULT; 6308 6309 rcu_read_lock(); 6310 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6311 if (rdev) { 6312 info.major = MAJOR(rdev->bdev->bd_dev); 6313 info.minor = MINOR(rdev->bdev->bd_dev); 6314 info.raid_disk = rdev->raid_disk; 6315 info.state = 0; 6316 if (test_bit(Faulty, &rdev->flags)) 6317 info.state |= (1<<MD_DISK_FAULTY); 6318 else if (test_bit(In_sync, &rdev->flags)) { 6319 info.state |= (1<<MD_DISK_ACTIVE); 6320 info.state |= (1<<MD_DISK_SYNC); 6321 } 6322 if (test_bit(Journal, &rdev->flags)) 6323 info.state |= (1<<MD_DISK_JOURNAL); 6324 if (test_bit(WriteMostly, &rdev->flags)) 6325 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6326 if (test_bit(FailFast, &rdev->flags)) 6327 info.state |= (1<<MD_DISK_FAILFAST); 6328 } else { 6329 info.major = info.minor = 0; 6330 info.raid_disk = -1; 6331 info.state = (1<<MD_DISK_REMOVED); 6332 } 6333 rcu_read_unlock(); 6334 6335 if (copy_to_user(arg, &info, sizeof(info))) 6336 return -EFAULT; 6337 6338 return 0; 6339 } 6340 6341 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6342 { 6343 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6344 struct md_rdev *rdev; 6345 dev_t dev = MKDEV(info->major,info->minor); 6346 6347 if (mddev_is_clustered(mddev) && 6348 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6349 pr_warn("%s: Cannot add to clustered mddev.\n", 6350 mdname(mddev)); 6351 return -EINVAL; 6352 } 6353 6354 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6355 return -EOVERFLOW; 6356 6357 if (!mddev->raid_disks) { 6358 int err; 6359 /* expecting a device which has a superblock */ 6360 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6361 if (IS_ERR(rdev)) { 6362 pr_warn("md: md_import_device returned %ld\n", 6363 PTR_ERR(rdev)); 6364 return PTR_ERR(rdev); 6365 } 6366 if (!list_empty(&mddev->disks)) { 6367 struct md_rdev *rdev0 6368 = list_entry(mddev->disks.next, 6369 struct md_rdev, same_set); 6370 err = super_types[mddev->major_version] 6371 .load_super(rdev, rdev0, mddev->minor_version); 6372 if (err < 0) { 6373 pr_warn("md: %s has different UUID to %s\n", 6374 bdevname(rdev->bdev,b), 6375 bdevname(rdev0->bdev,b2)); 6376 export_rdev(rdev); 6377 return -EINVAL; 6378 } 6379 } 6380 err = bind_rdev_to_array(rdev, mddev); 6381 if (err) 6382 export_rdev(rdev); 6383 return err; 6384 } 6385 6386 /* 6387 * add_new_disk can be used once the array is assembled 6388 * to add "hot spares". They must already have a superblock 6389 * written 6390 */ 6391 if (mddev->pers) { 6392 int err; 6393 if (!mddev->pers->hot_add_disk) { 6394 pr_warn("%s: personality does not support diskops!\n", 6395 mdname(mddev)); 6396 return -EINVAL; 6397 } 6398 if (mddev->persistent) 6399 rdev = md_import_device(dev, mddev->major_version, 6400 mddev->minor_version); 6401 else 6402 rdev = md_import_device(dev, -1, -1); 6403 if (IS_ERR(rdev)) { 6404 pr_warn("md: md_import_device returned %ld\n", 6405 PTR_ERR(rdev)); 6406 return PTR_ERR(rdev); 6407 } 6408 /* set saved_raid_disk if appropriate */ 6409 if (!mddev->persistent) { 6410 if (info->state & (1<<MD_DISK_SYNC) && 6411 info->raid_disk < mddev->raid_disks) { 6412 rdev->raid_disk = info->raid_disk; 6413 set_bit(In_sync, &rdev->flags); 6414 clear_bit(Bitmap_sync, &rdev->flags); 6415 } else 6416 rdev->raid_disk = -1; 6417 rdev->saved_raid_disk = rdev->raid_disk; 6418 } else 6419 super_types[mddev->major_version]. 6420 validate_super(mddev, rdev); 6421 if ((info->state & (1<<MD_DISK_SYNC)) && 6422 rdev->raid_disk != info->raid_disk) { 6423 /* This was a hot-add request, but events doesn't 6424 * match, so reject it. 6425 */ 6426 export_rdev(rdev); 6427 return -EINVAL; 6428 } 6429 6430 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6431 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6432 set_bit(WriteMostly, &rdev->flags); 6433 else 6434 clear_bit(WriteMostly, &rdev->flags); 6435 if (info->state & (1<<MD_DISK_FAILFAST)) 6436 set_bit(FailFast, &rdev->flags); 6437 else 6438 clear_bit(FailFast, &rdev->flags); 6439 6440 if (info->state & (1<<MD_DISK_JOURNAL)) { 6441 struct md_rdev *rdev2; 6442 bool has_journal = false; 6443 6444 /* make sure no existing journal disk */ 6445 rdev_for_each(rdev2, mddev) { 6446 if (test_bit(Journal, &rdev2->flags)) { 6447 has_journal = true; 6448 break; 6449 } 6450 } 6451 if (has_journal || mddev->bitmap) { 6452 export_rdev(rdev); 6453 return -EBUSY; 6454 } 6455 set_bit(Journal, &rdev->flags); 6456 } 6457 /* 6458 * check whether the device shows up in other nodes 6459 */ 6460 if (mddev_is_clustered(mddev)) { 6461 if (info->state & (1 << MD_DISK_CANDIDATE)) 6462 set_bit(Candidate, &rdev->flags); 6463 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6464 /* --add initiated by this node */ 6465 err = md_cluster_ops->add_new_disk(mddev, rdev); 6466 if (err) { 6467 export_rdev(rdev); 6468 return err; 6469 } 6470 } 6471 } 6472 6473 rdev->raid_disk = -1; 6474 err = bind_rdev_to_array(rdev, mddev); 6475 6476 if (err) 6477 export_rdev(rdev); 6478 6479 if (mddev_is_clustered(mddev)) { 6480 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6481 if (!err) { 6482 err = md_cluster_ops->new_disk_ack(mddev, 6483 err == 0); 6484 if (err) 6485 md_kick_rdev_from_array(rdev); 6486 } 6487 } else { 6488 if (err) 6489 md_cluster_ops->add_new_disk_cancel(mddev); 6490 else 6491 err = add_bound_rdev(rdev); 6492 } 6493 6494 } else if (!err) 6495 err = add_bound_rdev(rdev); 6496 6497 return err; 6498 } 6499 6500 /* otherwise, add_new_disk is only allowed 6501 * for major_version==0 superblocks 6502 */ 6503 if (mddev->major_version != 0) { 6504 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6505 return -EINVAL; 6506 } 6507 6508 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6509 int err; 6510 rdev = md_import_device(dev, -1, 0); 6511 if (IS_ERR(rdev)) { 6512 pr_warn("md: error, md_import_device() returned %ld\n", 6513 PTR_ERR(rdev)); 6514 return PTR_ERR(rdev); 6515 } 6516 rdev->desc_nr = info->number; 6517 if (info->raid_disk < mddev->raid_disks) 6518 rdev->raid_disk = info->raid_disk; 6519 else 6520 rdev->raid_disk = -1; 6521 6522 if (rdev->raid_disk < mddev->raid_disks) 6523 if (info->state & (1<<MD_DISK_SYNC)) 6524 set_bit(In_sync, &rdev->flags); 6525 6526 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6527 set_bit(WriteMostly, &rdev->flags); 6528 if (info->state & (1<<MD_DISK_FAILFAST)) 6529 set_bit(FailFast, &rdev->flags); 6530 6531 if (!mddev->persistent) { 6532 pr_debug("md: nonpersistent superblock ...\n"); 6533 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6534 } else 6535 rdev->sb_start = calc_dev_sboffset(rdev); 6536 rdev->sectors = rdev->sb_start; 6537 6538 err = bind_rdev_to_array(rdev, mddev); 6539 if (err) { 6540 export_rdev(rdev); 6541 return err; 6542 } 6543 } 6544 6545 return 0; 6546 } 6547 6548 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6549 { 6550 char b[BDEVNAME_SIZE]; 6551 struct md_rdev *rdev; 6552 6553 if (!mddev->pers) 6554 return -ENODEV; 6555 6556 rdev = find_rdev(mddev, dev); 6557 if (!rdev) 6558 return -ENXIO; 6559 6560 if (rdev->raid_disk < 0) 6561 goto kick_rdev; 6562 6563 clear_bit(Blocked, &rdev->flags); 6564 remove_and_add_spares(mddev, rdev); 6565 6566 if (rdev->raid_disk >= 0) 6567 goto busy; 6568 6569 kick_rdev: 6570 if (mddev_is_clustered(mddev)) 6571 md_cluster_ops->remove_disk(mddev, rdev); 6572 6573 md_kick_rdev_from_array(rdev); 6574 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6575 if (mddev->thread) 6576 md_wakeup_thread(mddev->thread); 6577 else 6578 md_update_sb(mddev, 1); 6579 md_new_event(mddev); 6580 6581 return 0; 6582 busy: 6583 pr_debug("md: cannot remove active disk %s from %s ...\n", 6584 bdevname(rdev->bdev,b), mdname(mddev)); 6585 return -EBUSY; 6586 } 6587 6588 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6589 { 6590 char b[BDEVNAME_SIZE]; 6591 int err; 6592 struct md_rdev *rdev; 6593 6594 if (!mddev->pers) 6595 return -ENODEV; 6596 6597 if (mddev->major_version != 0) { 6598 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6599 mdname(mddev)); 6600 return -EINVAL; 6601 } 6602 if (!mddev->pers->hot_add_disk) { 6603 pr_warn("%s: personality does not support diskops!\n", 6604 mdname(mddev)); 6605 return -EINVAL; 6606 } 6607 6608 rdev = md_import_device(dev, -1, 0); 6609 if (IS_ERR(rdev)) { 6610 pr_warn("md: error, md_import_device() returned %ld\n", 6611 PTR_ERR(rdev)); 6612 return -EINVAL; 6613 } 6614 6615 if (mddev->persistent) 6616 rdev->sb_start = calc_dev_sboffset(rdev); 6617 else 6618 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6619 6620 rdev->sectors = rdev->sb_start; 6621 6622 if (test_bit(Faulty, &rdev->flags)) { 6623 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6624 bdevname(rdev->bdev,b), mdname(mddev)); 6625 err = -EINVAL; 6626 goto abort_export; 6627 } 6628 6629 clear_bit(In_sync, &rdev->flags); 6630 rdev->desc_nr = -1; 6631 rdev->saved_raid_disk = -1; 6632 err = bind_rdev_to_array(rdev, mddev); 6633 if (err) 6634 goto abort_export; 6635 6636 /* 6637 * The rest should better be atomic, we can have disk failures 6638 * noticed in interrupt contexts ... 6639 */ 6640 6641 rdev->raid_disk = -1; 6642 6643 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6644 if (!mddev->thread) 6645 md_update_sb(mddev, 1); 6646 /* 6647 * Kick recovery, maybe this spare has to be added to the 6648 * array immediately. 6649 */ 6650 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6651 md_wakeup_thread(mddev->thread); 6652 md_new_event(mddev); 6653 return 0; 6654 6655 abort_export: 6656 export_rdev(rdev); 6657 return err; 6658 } 6659 6660 static int set_bitmap_file(struct mddev *mddev, int fd) 6661 { 6662 int err = 0; 6663 6664 if (mddev->pers) { 6665 if (!mddev->pers->quiesce || !mddev->thread) 6666 return -EBUSY; 6667 if (mddev->recovery || mddev->sync_thread) 6668 return -EBUSY; 6669 /* we should be able to change the bitmap.. */ 6670 } 6671 6672 if (fd >= 0) { 6673 struct inode *inode; 6674 struct file *f; 6675 6676 if (mddev->bitmap || mddev->bitmap_info.file) 6677 return -EEXIST; /* cannot add when bitmap is present */ 6678 f = fget(fd); 6679 6680 if (f == NULL) { 6681 pr_warn("%s: error: failed to get bitmap file\n", 6682 mdname(mddev)); 6683 return -EBADF; 6684 } 6685 6686 inode = f->f_mapping->host; 6687 if (!S_ISREG(inode->i_mode)) { 6688 pr_warn("%s: error: bitmap file must be a regular file\n", 6689 mdname(mddev)); 6690 err = -EBADF; 6691 } else if (!(f->f_mode & FMODE_WRITE)) { 6692 pr_warn("%s: error: bitmap file must open for write\n", 6693 mdname(mddev)); 6694 err = -EBADF; 6695 } else if (atomic_read(&inode->i_writecount) != 1) { 6696 pr_warn("%s: error: bitmap file is already in use\n", 6697 mdname(mddev)); 6698 err = -EBUSY; 6699 } 6700 if (err) { 6701 fput(f); 6702 return err; 6703 } 6704 mddev->bitmap_info.file = f; 6705 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6706 } else if (mddev->bitmap == NULL) 6707 return -ENOENT; /* cannot remove what isn't there */ 6708 err = 0; 6709 if (mddev->pers) { 6710 if (fd >= 0) { 6711 struct bitmap *bitmap; 6712 6713 bitmap = md_bitmap_create(mddev, -1); 6714 mddev_suspend(mddev); 6715 if (!IS_ERR(bitmap)) { 6716 mddev->bitmap = bitmap; 6717 err = md_bitmap_load(mddev); 6718 } else 6719 err = PTR_ERR(bitmap); 6720 if (err) { 6721 md_bitmap_destroy(mddev); 6722 fd = -1; 6723 } 6724 mddev_resume(mddev); 6725 } else if (fd < 0) { 6726 mddev_suspend(mddev); 6727 md_bitmap_destroy(mddev); 6728 mddev_resume(mddev); 6729 } 6730 } 6731 if (fd < 0) { 6732 struct file *f = mddev->bitmap_info.file; 6733 if (f) { 6734 spin_lock(&mddev->lock); 6735 mddev->bitmap_info.file = NULL; 6736 spin_unlock(&mddev->lock); 6737 fput(f); 6738 } 6739 } 6740 6741 return err; 6742 } 6743 6744 /* 6745 * set_array_info is used two different ways 6746 * The original usage is when creating a new array. 6747 * In this usage, raid_disks is > 0 and it together with 6748 * level, size, not_persistent,layout,chunksize determine the 6749 * shape of the array. 6750 * This will always create an array with a type-0.90.0 superblock. 6751 * The newer usage is when assembling an array. 6752 * In this case raid_disks will be 0, and the major_version field is 6753 * use to determine which style super-blocks are to be found on the devices. 6754 * The minor and patch _version numbers are also kept incase the 6755 * super_block handler wishes to interpret them. 6756 */ 6757 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6758 { 6759 6760 if (info->raid_disks == 0) { 6761 /* just setting version number for superblock loading */ 6762 if (info->major_version < 0 || 6763 info->major_version >= ARRAY_SIZE(super_types) || 6764 super_types[info->major_version].name == NULL) { 6765 /* maybe try to auto-load a module? */ 6766 pr_warn("md: superblock version %d not known\n", 6767 info->major_version); 6768 return -EINVAL; 6769 } 6770 mddev->major_version = info->major_version; 6771 mddev->minor_version = info->minor_version; 6772 mddev->patch_version = info->patch_version; 6773 mddev->persistent = !info->not_persistent; 6774 /* ensure mddev_put doesn't delete this now that there 6775 * is some minimal configuration. 6776 */ 6777 mddev->ctime = ktime_get_real_seconds(); 6778 return 0; 6779 } 6780 mddev->major_version = MD_MAJOR_VERSION; 6781 mddev->minor_version = MD_MINOR_VERSION; 6782 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6783 mddev->ctime = ktime_get_real_seconds(); 6784 6785 mddev->level = info->level; 6786 mddev->clevel[0] = 0; 6787 mddev->dev_sectors = 2 * (sector_t)info->size; 6788 mddev->raid_disks = info->raid_disks; 6789 /* don't set md_minor, it is determined by which /dev/md* was 6790 * openned 6791 */ 6792 if (info->state & (1<<MD_SB_CLEAN)) 6793 mddev->recovery_cp = MaxSector; 6794 else 6795 mddev->recovery_cp = 0; 6796 mddev->persistent = ! info->not_persistent; 6797 mddev->external = 0; 6798 6799 mddev->layout = info->layout; 6800 mddev->chunk_sectors = info->chunk_size >> 9; 6801 6802 if (mddev->persistent) { 6803 mddev->max_disks = MD_SB_DISKS; 6804 mddev->flags = 0; 6805 mddev->sb_flags = 0; 6806 } 6807 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6808 6809 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6810 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6811 mddev->bitmap_info.offset = 0; 6812 6813 mddev->reshape_position = MaxSector; 6814 6815 /* 6816 * Generate a 128 bit UUID 6817 */ 6818 get_random_bytes(mddev->uuid, 16); 6819 6820 mddev->new_level = mddev->level; 6821 mddev->new_chunk_sectors = mddev->chunk_sectors; 6822 mddev->new_layout = mddev->layout; 6823 mddev->delta_disks = 0; 6824 mddev->reshape_backwards = 0; 6825 6826 return 0; 6827 } 6828 6829 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6830 { 6831 lockdep_assert_held(&mddev->reconfig_mutex); 6832 6833 if (mddev->external_size) 6834 return; 6835 6836 mddev->array_sectors = array_sectors; 6837 } 6838 EXPORT_SYMBOL(md_set_array_sectors); 6839 6840 static int update_size(struct mddev *mddev, sector_t num_sectors) 6841 { 6842 struct md_rdev *rdev; 6843 int rv; 6844 int fit = (num_sectors == 0); 6845 sector_t old_dev_sectors = mddev->dev_sectors; 6846 6847 if (mddev->pers->resize == NULL) 6848 return -EINVAL; 6849 /* The "num_sectors" is the number of sectors of each device that 6850 * is used. This can only make sense for arrays with redundancy. 6851 * linear and raid0 always use whatever space is available. We can only 6852 * consider changing this number if no resync or reconstruction is 6853 * happening, and if the new size is acceptable. It must fit before the 6854 * sb_start or, if that is <data_offset, it must fit before the size 6855 * of each device. If num_sectors is zero, we find the largest size 6856 * that fits. 6857 */ 6858 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6859 mddev->sync_thread) 6860 return -EBUSY; 6861 if (mddev->ro) 6862 return -EROFS; 6863 6864 rdev_for_each(rdev, mddev) { 6865 sector_t avail = rdev->sectors; 6866 6867 if (fit && (num_sectors == 0 || num_sectors > avail)) 6868 num_sectors = avail; 6869 if (avail < num_sectors) 6870 return -ENOSPC; 6871 } 6872 rv = mddev->pers->resize(mddev, num_sectors); 6873 if (!rv) { 6874 if (mddev_is_clustered(mddev)) 6875 md_cluster_ops->update_size(mddev, old_dev_sectors); 6876 else if (mddev->queue) { 6877 set_capacity(mddev->gendisk, mddev->array_sectors); 6878 revalidate_disk(mddev->gendisk); 6879 } 6880 } 6881 return rv; 6882 } 6883 6884 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6885 { 6886 int rv; 6887 struct md_rdev *rdev; 6888 /* change the number of raid disks */ 6889 if (mddev->pers->check_reshape == NULL) 6890 return -EINVAL; 6891 if (mddev->ro) 6892 return -EROFS; 6893 if (raid_disks <= 0 || 6894 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6895 return -EINVAL; 6896 if (mddev->sync_thread || 6897 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6898 mddev->reshape_position != MaxSector) 6899 return -EBUSY; 6900 6901 rdev_for_each(rdev, mddev) { 6902 if (mddev->raid_disks < raid_disks && 6903 rdev->data_offset < rdev->new_data_offset) 6904 return -EINVAL; 6905 if (mddev->raid_disks > raid_disks && 6906 rdev->data_offset > rdev->new_data_offset) 6907 return -EINVAL; 6908 } 6909 6910 mddev->delta_disks = raid_disks - mddev->raid_disks; 6911 if (mddev->delta_disks < 0) 6912 mddev->reshape_backwards = 1; 6913 else if (mddev->delta_disks > 0) 6914 mddev->reshape_backwards = 0; 6915 6916 rv = mddev->pers->check_reshape(mddev); 6917 if (rv < 0) { 6918 mddev->delta_disks = 0; 6919 mddev->reshape_backwards = 0; 6920 } 6921 return rv; 6922 } 6923 6924 /* 6925 * update_array_info is used to change the configuration of an 6926 * on-line array. 6927 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6928 * fields in the info are checked against the array. 6929 * Any differences that cannot be handled will cause an error. 6930 * Normally, only one change can be managed at a time. 6931 */ 6932 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6933 { 6934 int rv = 0; 6935 int cnt = 0; 6936 int state = 0; 6937 6938 /* calculate expected state,ignoring low bits */ 6939 if (mddev->bitmap && mddev->bitmap_info.offset) 6940 state |= (1 << MD_SB_BITMAP_PRESENT); 6941 6942 if (mddev->major_version != info->major_version || 6943 mddev->minor_version != info->minor_version || 6944 /* mddev->patch_version != info->patch_version || */ 6945 mddev->ctime != info->ctime || 6946 mddev->level != info->level || 6947 /* mddev->layout != info->layout || */ 6948 mddev->persistent != !info->not_persistent || 6949 mddev->chunk_sectors != info->chunk_size >> 9 || 6950 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6951 ((state^info->state) & 0xfffffe00) 6952 ) 6953 return -EINVAL; 6954 /* Check there is only one change */ 6955 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6956 cnt++; 6957 if (mddev->raid_disks != info->raid_disks) 6958 cnt++; 6959 if (mddev->layout != info->layout) 6960 cnt++; 6961 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6962 cnt++; 6963 if (cnt == 0) 6964 return 0; 6965 if (cnt > 1) 6966 return -EINVAL; 6967 6968 if (mddev->layout != info->layout) { 6969 /* Change layout 6970 * we don't need to do anything at the md level, the 6971 * personality will take care of it all. 6972 */ 6973 if (mddev->pers->check_reshape == NULL) 6974 return -EINVAL; 6975 else { 6976 mddev->new_layout = info->layout; 6977 rv = mddev->pers->check_reshape(mddev); 6978 if (rv) 6979 mddev->new_layout = mddev->layout; 6980 return rv; 6981 } 6982 } 6983 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6984 rv = update_size(mddev, (sector_t)info->size * 2); 6985 6986 if (mddev->raid_disks != info->raid_disks) 6987 rv = update_raid_disks(mddev, info->raid_disks); 6988 6989 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6990 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6991 rv = -EINVAL; 6992 goto err; 6993 } 6994 if (mddev->recovery || mddev->sync_thread) { 6995 rv = -EBUSY; 6996 goto err; 6997 } 6998 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6999 struct bitmap *bitmap; 7000 /* add the bitmap */ 7001 if (mddev->bitmap) { 7002 rv = -EEXIST; 7003 goto err; 7004 } 7005 if (mddev->bitmap_info.default_offset == 0) { 7006 rv = -EINVAL; 7007 goto err; 7008 } 7009 mddev->bitmap_info.offset = 7010 mddev->bitmap_info.default_offset; 7011 mddev->bitmap_info.space = 7012 mddev->bitmap_info.default_space; 7013 bitmap = md_bitmap_create(mddev, -1); 7014 mddev_suspend(mddev); 7015 if (!IS_ERR(bitmap)) { 7016 mddev->bitmap = bitmap; 7017 rv = md_bitmap_load(mddev); 7018 } else 7019 rv = PTR_ERR(bitmap); 7020 if (rv) 7021 md_bitmap_destroy(mddev); 7022 mddev_resume(mddev); 7023 } else { 7024 /* remove the bitmap */ 7025 if (!mddev->bitmap) { 7026 rv = -ENOENT; 7027 goto err; 7028 } 7029 if (mddev->bitmap->storage.file) { 7030 rv = -EINVAL; 7031 goto err; 7032 } 7033 if (mddev->bitmap_info.nodes) { 7034 /* hold PW on all the bitmap lock */ 7035 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7036 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7037 rv = -EPERM; 7038 md_cluster_ops->unlock_all_bitmaps(mddev); 7039 goto err; 7040 } 7041 7042 mddev->bitmap_info.nodes = 0; 7043 md_cluster_ops->leave(mddev); 7044 } 7045 mddev_suspend(mddev); 7046 md_bitmap_destroy(mddev); 7047 mddev_resume(mddev); 7048 mddev->bitmap_info.offset = 0; 7049 } 7050 } 7051 md_update_sb(mddev, 1); 7052 return rv; 7053 err: 7054 return rv; 7055 } 7056 7057 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7058 { 7059 struct md_rdev *rdev; 7060 int err = 0; 7061 7062 if (mddev->pers == NULL) 7063 return -ENODEV; 7064 7065 rcu_read_lock(); 7066 rdev = md_find_rdev_rcu(mddev, dev); 7067 if (!rdev) 7068 err = -ENODEV; 7069 else { 7070 md_error(mddev, rdev); 7071 if (!test_bit(Faulty, &rdev->flags)) 7072 err = -EBUSY; 7073 } 7074 rcu_read_unlock(); 7075 return err; 7076 } 7077 7078 /* 7079 * We have a problem here : there is no easy way to give a CHS 7080 * virtual geometry. We currently pretend that we have a 2 heads 7081 * 4 sectors (with a BIG number of cylinders...). This drives 7082 * dosfs just mad... ;-) 7083 */ 7084 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7085 { 7086 struct mddev *mddev = bdev->bd_disk->private_data; 7087 7088 geo->heads = 2; 7089 geo->sectors = 4; 7090 geo->cylinders = mddev->array_sectors / 8; 7091 return 0; 7092 } 7093 7094 static inline bool md_ioctl_valid(unsigned int cmd) 7095 { 7096 switch (cmd) { 7097 case ADD_NEW_DISK: 7098 case BLKROSET: 7099 case GET_ARRAY_INFO: 7100 case GET_BITMAP_FILE: 7101 case GET_DISK_INFO: 7102 case HOT_ADD_DISK: 7103 case HOT_REMOVE_DISK: 7104 case RAID_AUTORUN: 7105 case RAID_VERSION: 7106 case RESTART_ARRAY_RW: 7107 case RUN_ARRAY: 7108 case SET_ARRAY_INFO: 7109 case SET_BITMAP_FILE: 7110 case SET_DISK_FAULTY: 7111 case STOP_ARRAY: 7112 case STOP_ARRAY_RO: 7113 case CLUSTERED_DISK_NACK: 7114 return true; 7115 default: 7116 return false; 7117 } 7118 } 7119 7120 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7121 unsigned int cmd, unsigned long arg) 7122 { 7123 int err = 0; 7124 void __user *argp = (void __user *)arg; 7125 struct mddev *mddev = NULL; 7126 int ro; 7127 bool did_set_md_closing = false; 7128 7129 if (!md_ioctl_valid(cmd)) 7130 return -ENOTTY; 7131 7132 switch (cmd) { 7133 case RAID_VERSION: 7134 case GET_ARRAY_INFO: 7135 case GET_DISK_INFO: 7136 break; 7137 default: 7138 if (!capable(CAP_SYS_ADMIN)) 7139 return -EACCES; 7140 } 7141 7142 /* 7143 * Commands dealing with the RAID driver but not any 7144 * particular array: 7145 */ 7146 switch (cmd) { 7147 case RAID_VERSION: 7148 err = get_version(argp); 7149 goto out; 7150 7151 #ifndef MODULE 7152 case RAID_AUTORUN: 7153 err = 0; 7154 autostart_arrays(arg); 7155 goto out; 7156 #endif 7157 default:; 7158 } 7159 7160 /* 7161 * Commands creating/starting a new array: 7162 */ 7163 7164 mddev = bdev->bd_disk->private_data; 7165 7166 if (!mddev) { 7167 BUG(); 7168 goto out; 7169 } 7170 7171 /* Some actions do not requires the mutex */ 7172 switch (cmd) { 7173 case GET_ARRAY_INFO: 7174 if (!mddev->raid_disks && !mddev->external) 7175 err = -ENODEV; 7176 else 7177 err = get_array_info(mddev, argp); 7178 goto out; 7179 7180 case GET_DISK_INFO: 7181 if (!mddev->raid_disks && !mddev->external) 7182 err = -ENODEV; 7183 else 7184 err = get_disk_info(mddev, argp); 7185 goto out; 7186 7187 case SET_DISK_FAULTY: 7188 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7189 goto out; 7190 7191 case GET_BITMAP_FILE: 7192 err = get_bitmap_file(mddev, argp); 7193 goto out; 7194 7195 } 7196 7197 if (cmd == ADD_NEW_DISK) 7198 /* need to ensure md_delayed_delete() has completed */ 7199 flush_workqueue(md_misc_wq); 7200 7201 if (cmd == HOT_REMOVE_DISK) 7202 /* need to ensure recovery thread has run */ 7203 wait_event_interruptible_timeout(mddev->sb_wait, 7204 !test_bit(MD_RECOVERY_NEEDED, 7205 &mddev->recovery), 7206 msecs_to_jiffies(5000)); 7207 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7208 /* Need to flush page cache, and ensure no-one else opens 7209 * and writes 7210 */ 7211 mutex_lock(&mddev->open_mutex); 7212 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7213 mutex_unlock(&mddev->open_mutex); 7214 err = -EBUSY; 7215 goto out; 7216 } 7217 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7218 set_bit(MD_CLOSING, &mddev->flags); 7219 did_set_md_closing = true; 7220 mutex_unlock(&mddev->open_mutex); 7221 sync_blockdev(bdev); 7222 } 7223 err = mddev_lock(mddev); 7224 if (err) { 7225 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7226 err, cmd); 7227 goto out; 7228 } 7229 7230 if (cmd == SET_ARRAY_INFO) { 7231 mdu_array_info_t info; 7232 if (!arg) 7233 memset(&info, 0, sizeof(info)); 7234 else if (copy_from_user(&info, argp, sizeof(info))) { 7235 err = -EFAULT; 7236 goto unlock; 7237 } 7238 if (mddev->pers) { 7239 err = update_array_info(mddev, &info); 7240 if (err) { 7241 pr_warn("md: couldn't update array info. %d\n", err); 7242 goto unlock; 7243 } 7244 goto unlock; 7245 } 7246 if (!list_empty(&mddev->disks)) { 7247 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7248 err = -EBUSY; 7249 goto unlock; 7250 } 7251 if (mddev->raid_disks) { 7252 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7253 err = -EBUSY; 7254 goto unlock; 7255 } 7256 err = set_array_info(mddev, &info); 7257 if (err) { 7258 pr_warn("md: couldn't set array info. %d\n", err); 7259 goto unlock; 7260 } 7261 goto unlock; 7262 } 7263 7264 /* 7265 * Commands querying/configuring an existing array: 7266 */ 7267 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7268 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7269 if ((!mddev->raid_disks && !mddev->external) 7270 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7271 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7272 && cmd != GET_BITMAP_FILE) { 7273 err = -ENODEV; 7274 goto unlock; 7275 } 7276 7277 /* 7278 * Commands even a read-only array can execute: 7279 */ 7280 switch (cmd) { 7281 case RESTART_ARRAY_RW: 7282 err = restart_array(mddev); 7283 goto unlock; 7284 7285 case STOP_ARRAY: 7286 err = do_md_stop(mddev, 0, bdev); 7287 goto unlock; 7288 7289 case STOP_ARRAY_RO: 7290 err = md_set_readonly(mddev, bdev); 7291 goto unlock; 7292 7293 case HOT_REMOVE_DISK: 7294 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7295 goto unlock; 7296 7297 case ADD_NEW_DISK: 7298 /* We can support ADD_NEW_DISK on read-only arrays 7299 * only if we are re-adding a preexisting device. 7300 * So require mddev->pers and MD_DISK_SYNC. 7301 */ 7302 if (mddev->pers) { 7303 mdu_disk_info_t info; 7304 if (copy_from_user(&info, argp, sizeof(info))) 7305 err = -EFAULT; 7306 else if (!(info.state & (1<<MD_DISK_SYNC))) 7307 /* Need to clear read-only for this */ 7308 break; 7309 else 7310 err = add_new_disk(mddev, &info); 7311 goto unlock; 7312 } 7313 break; 7314 7315 case BLKROSET: 7316 if (get_user(ro, (int __user *)(arg))) { 7317 err = -EFAULT; 7318 goto unlock; 7319 } 7320 err = -EINVAL; 7321 7322 /* if the bdev is going readonly the value of mddev->ro 7323 * does not matter, no writes are coming 7324 */ 7325 if (ro) 7326 goto unlock; 7327 7328 /* are we are already prepared for writes? */ 7329 if (mddev->ro != 1) 7330 goto unlock; 7331 7332 /* transitioning to readauto need only happen for 7333 * arrays that call md_write_start 7334 */ 7335 if (mddev->pers) { 7336 err = restart_array(mddev); 7337 if (err == 0) { 7338 mddev->ro = 2; 7339 set_disk_ro(mddev->gendisk, 0); 7340 } 7341 } 7342 goto unlock; 7343 } 7344 7345 /* 7346 * The remaining ioctls are changing the state of the 7347 * superblock, so we do not allow them on read-only arrays. 7348 */ 7349 if (mddev->ro && mddev->pers) { 7350 if (mddev->ro == 2) { 7351 mddev->ro = 0; 7352 sysfs_notify_dirent_safe(mddev->sysfs_state); 7353 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7354 /* mddev_unlock will wake thread */ 7355 /* If a device failed while we were read-only, we 7356 * need to make sure the metadata is updated now. 7357 */ 7358 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7359 mddev_unlock(mddev); 7360 wait_event(mddev->sb_wait, 7361 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7362 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7363 mddev_lock_nointr(mddev); 7364 } 7365 } else { 7366 err = -EROFS; 7367 goto unlock; 7368 } 7369 } 7370 7371 switch (cmd) { 7372 case ADD_NEW_DISK: 7373 { 7374 mdu_disk_info_t info; 7375 if (copy_from_user(&info, argp, sizeof(info))) 7376 err = -EFAULT; 7377 else 7378 err = add_new_disk(mddev, &info); 7379 goto unlock; 7380 } 7381 7382 case CLUSTERED_DISK_NACK: 7383 if (mddev_is_clustered(mddev)) 7384 md_cluster_ops->new_disk_ack(mddev, false); 7385 else 7386 err = -EINVAL; 7387 goto unlock; 7388 7389 case HOT_ADD_DISK: 7390 err = hot_add_disk(mddev, new_decode_dev(arg)); 7391 goto unlock; 7392 7393 case RUN_ARRAY: 7394 err = do_md_run(mddev); 7395 goto unlock; 7396 7397 case SET_BITMAP_FILE: 7398 err = set_bitmap_file(mddev, (int)arg); 7399 goto unlock; 7400 7401 default: 7402 err = -EINVAL; 7403 goto unlock; 7404 } 7405 7406 unlock: 7407 if (mddev->hold_active == UNTIL_IOCTL && 7408 err != -EINVAL) 7409 mddev->hold_active = 0; 7410 mddev_unlock(mddev); 7411 out: 7412 if(did_set_md_closing) 7413 clear_bit(MD_CLOSING, &mddev->flags); 7414 return err; 7415 } 7416 #ifdef CONFIG_COMPAT 7417 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7418 unsigned int cmd, unsigned long arg) 7419 { 7420 switch (cmd) { 7421 case HOT_REMOVE_DISK: 7422 case HOT_ADD_DISK: 7423 case SET_DISK_FAULTY: 7424 case SET_BITMAP_FILE: 7425 /* These take in integer arg, do not convert */ 7426 break; 7427 default: 7428 arg = (unsigned long)compat_ptr(arg); 7429 break; 7430 } 7431 7432 return md_ioctl(bdev, mode, cmd, arg); 7433 } 7434 #endif /* CONFIG_COMPAT */ 7435 7436 static int md_open(struct block_device *bdev, fmode_t mode) 7437 { 7438 /* 7439 * Succeed if we can lock the mddev, which confirms that 7440 * it isn't being stopped right now. 7441 */ 7442 struct mddev *mddev = mddev_find(bdev->bd_dev); 7443 int err; 7444 7445 if (!mddev) 7446 return -ENODEV; 7447 7448 if (mddev->gendisk != bdev->bd_disk) { 7449 /* we are racing with mddev_put which is discarding this 7450 * bd_disk. 7451 */ 7452 mddev_put(mddev); 7453 /* Wait until bdev->bd_disk is definitely gone */ 7454 flush_workqueue(md_misc_wq); 7455 /* Then retry the open from the top */ 7456 return -ERESTARTSYS; 7457 } 7458 BUG_ON(mddev != bdev->bd_disk->private_data); 7459 7460 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7461 goto out; 7462 7463 if (test_bit(MD_CLOSING, &mddev->flags)) { 7464 mutex_unlock(&mddev->open_mutex); 7465 err = -ENODEV; 7466 goto out; 7467 } 7468 7469 err = 0; 7470 atomic_inc(&mddev->openers); 7471 mutex_unlock(&mddev->open_mutex); 7472 7473 check_disk_change(bdev); 7474 out: 7475 if (err) 7476 mddev_put(mddev); 7477 return err; 7478 } 7479 7480 static void md_release(struct gendisk *disk, fmode_t mode) 7481 { 7482 struct mddev *mddev = disk->private_data; 7483 7484 BUG_ON(!mddev); 7485 atomic_dec(&mddev->openers); 7486 mddev_put(mddev); 7487 } 7488 7489 static int md_media_changed(struct gendisk *disk) 7490 { 7491 struct mddev *mddev = disk->private_data; 7492 7493 return mddev->changed; 7494 } 7495 7496 static int md_revalidate(struct gendisk *disk) 7497 { 7498 struct mddev *mddev = disk->private_data; 7499 7500 mddev->changed = 0; 7501 return 0; 7502 } 7503 static const struct block_device_operations md_fops = 7504 { 7505 .owner = THIS_MODULE, 7506 .open = md_open, 7507 .release = md_release, 7508 .ioctl = md_ioctl, 7509 #ifdef CONFIG_COMPAT 7510 .compat_ioctl = md_compat_ioctl, 7511 #endif 7512 .getgeo = md_getgeo, 7513 .media_changed = md_media_changed, 7514 .revalidate_disk= md_revalidate, 7515 }; 7516 7517 static int md_thread(void *arg) 7518 { 7519 struct md_thread *thread = arg; 7520 7521 /* 7522 * md_thread is a 'system-thread', it's priority should be very 7523 * high. We avoid resource deadlocks individually in each 7524 * raid personality. (RAID5 does preallocation) We also use RR and 7525 * the very same RT priority as kswapd, thus we will never get 7526 * into a priority inversion deadlock. 7527 * 7528 * we definitely have to have equal or higher priority than 7529 * bdflush, otherwise bdflush will deadlock if there are too 7530 * many dirty RAID5 blocks. 7531 */ 7532 7533 allow_signal(SIGKILL); 7534 while (!kthread_should_stop()) { 7535 7536 /* We need to wait INTERRUPTIBLE so that 7537 * we don't add to the load-average. 7538 * That means we need to be sure no signals are 7539 * pending 7540 */ 7541 if (signal_pending(current)) 7542 flush_signals(current); 7543 7544 wait_event_interruptible_timeout 7545 (thread->wqueue, 7546 test_bit(THREAD_WAKEUP, &thread->flags) 7547 || kthread_should_stop() || kthread_should_park(), 7548 thread->timeout); 7549 7550 clear_bit(THREAD_WAKEUP, &thread->flags); 7551 if (kthread_should_park()) 7552 kthread_parkme(); 7553 if (!kthread_should_stop()) 7554 thread->run(thread); 7555 } 7556 7557 return 0; 7558 } 7559 7560 void md_wakeup_thread(struct md_thread *thread) 7561 { 7562 if (thread) { 7563 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7564 set_bit(THREAD_WAKEUP, &thread->flags); 7565 wake_up(&thread->wqueue); 7566 } 7567 } 7568 EXPORT_SYMBOL(md_wakeup_thread); 7569 7570 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7571 struct mddev *mddev, const char *name) 7572 { 7573 struct md_thread *thread; 7574 7575 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7576 if (!thread) 7577 return NULL; 7578 7579 init_waitqueue_head(&thread->wqueue); 7580 7581 thread->run = run; 7582 thread->mddev = mddev; 7583 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7584 thread->tsk = kthread_run(md_thread, thread, 7585 "%s_%s", 7586 mdname(thread->mddev), 7587 name); 7588 if (IS_ERR(thread->tsk)) { 7589 kfree(thread); 7590 return NULL; 7591 } 7592 return thread; 7593 } 7594 EXPORT_SYMBOL(md_register_thread); 7595 7596 void md_unregister_thread(struct md_thread **threadp) 7597 { 7598 struct md_thread *thread = *threadp; 7599 if (!thread) 7600 return; 7601 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7602 /* Locking ensures that mddev_unlock does not wake_up a 7603 * non-existent thread 7604 */ 7605 spin_lock(&pers_lock); 7606 *threadp = NULL; 7607 spin_unlock(&pers_lock); 7608 7609 kthread_stop(thread->tsk); 7610 kfree(thread); 7611 } 7612 EXPORT_SYMBOL(md_unregister_thread); 7613 7614 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7615 { 7616 if (!rdev || test_bit(Faulty, &rdev->flags)) 7617 return; 7618 7619 if (!mddev->pers || !mddev->pers->error_handler) 7620 return; 7621 mddev->pers->error_handler(mddev,rdev); 7622 if (mddev->degraded) 7623 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7624 sysfs_notify_dirent_safe(rdev->sysfs_state); 7625 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7626 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7627 md_wakeup_thread(mddev->thread); 7628 if (mddev->event_work.func) 7629 queue_work(md_misc_wq, &mddev->event_work); 7630 md_new_event(mddev); 7631 } 7632 EXPORT_SYMBOL(md_error); 7633 7634 /* seq_file implementation /proc/mdstat */ 7635 7636 static void status_unused(struct seq_file *seq) 7637 { 7638 int i = 0; 7639 struct md_rdev *rdev; 7640 7641 seq_printf(seq, "unused devices: "); 7642 7643 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7644 char b[BDEVNAME_SIZE]; 7645 i++; 7646 seq_printf(seq, "%s ", 7647 bdevname(rdev->bdev,b)); 7648 } 7649 if (!i) 7650 seq_printf(seq, "<none>"); 7651 7652 seq_printf(seq, "\n"); 7653 } 7654 7655 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7656 { 7657 sector_t max_sectors, resync, res; 7658 unsigned long dt, db; 7659 sector_t rt; 7660 int scale; 7661 unsigned int per_milli; 7662 7663 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7664 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7665 max_sectors = mddev->resync_max_sectors; 7666 else 7667 max_sectors = mddev->dev_sectors; 7668 7669 resync = mddev->curr_resync; 7670 if (resync <= 3) { 7671 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7672 /* Still cleaning up */ 7673 resync = max_sectors; 7674 } else if (resync > max_sectors) 7675 resync = max_sectors; 7676 else 7677 resync -= atomic_read(&mddev->recovery_active); 7678 7679 if (resync == 0) { 7680 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 7681 struct md_rdev *rdev; 7682 7683 rdev_for_each(rdev, mddev) 7684 if (rdev->raid_disk >= 0 && 7685 !test_bit(Faulty, &rdev->flags) && 7686 rdev->recovery_offset != MaxSector && 7687 rdev->recovery_offset) { 7688 seq_printf(seq, "\trecover=REMOTE"); 7689 return 1; 7690 } 7691 if (mddev->reshape_position != MaxSector) 7692 seq_printf(seq, "\treshape=REMOTE"); 7693 else 7694 seq_printf(seq, "\tresync=REMOTE"); 7695 return 1; 7696 } 7697 if (mddev->recovery_cp < MaxSector) { 7698 seq_printf(seq, "\tresync=PENDING"); 7699 return 1; 7700 } 7701 return 0; 7702 } 7703 if (resync < 3) { 7704 seq_printf(seq, "\tresync=DELAYED"); 7705 return 1; 7706 } 7707 7708 WARN_ON(max_sectors == 0); 7709 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7710 * in a sector_t, and (max_sectors>>scale) will fit in a 7711 * u32, as those are the requirements for sector_div. 7712 * Thus 'scale' must be at least 10 7713 */ 7714 scale = 10; 7715 if (sizeof(sector_t) > sizeof(unsigned long)) { 7716 while ( max_sectors/2 > (1ULL<<(scale+32))) 7717 scale++; 7718 } 7719 res = (resync>>scale)*1000; 7720 sector_div(res, (u32)((max_sectors>>scale)+1)); 7721 7722 per_milli = res; 7723 { 7724 int i, x = per_milli/50, y = 20-x; 7725 seq_printf(seq, "["); 7726 for (i = 0; i < x; i++) 7727 seq_printf(seq, "="); 7728 seq_printf(seq, ">"); 7729 for (i = 0; i < y; i++) 7730 seq_printf(seq, "."); 7731 seq_printf(seq, "] "); 7732 } 7733 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7734 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7735 "reshape" : 7736 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7737 "check" : 7738 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7739 "resync" : "recovery"))), 7740 per_milli/10, per_milli % 10, 7741 (unsigned long long) resync/2, 7742 (unsigned long long) max_sectors/2); 7743 7744 /* 7745 * dt: time from mark until now 7746 * db: blocks written from mark until now 7747 * rt: remaining time 7748 * 7749 * rt is a sector_t, so could be 32bit or 64bit. 7750 * So we divide before multiply in case it is 32bit and close 7751 * to the limit. 7752 * We scale the divisor (db) by 32 to avoid losing precision 7753 * near the end of resync when the number of remaining sectors 7754 * is close to 'db'. 7755 * We then divide rt by 32 after multiplying by db to compensate. 7756 * The '+1' avoids division by zero if db is very small. 7757 */ 7758 dt = ((jiffies - mddev->resync_mark) / HZ); 7759 if (!dt) dt++; 7760 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7761 - mddev->resync_mark_cnt; 7762 7763 rt = max_sectors - resync; /* number of remaining sectors */ 7764 sector_div(rt, db/32+1); 7765 rt *= dt; 7766 rt >>= 5; 7767 7768 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7769 ((unsigned long)rt % 60)/6); 7770 7771 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7772 return 1; 7773 } 7774 7775 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7776 { 7777 struct list_head *tmp; 7778 loff_t l = *pos; 7779 struct mddev *mddev; 7780 7781 if (l >= 0x10000) 7782 return NULL; 7783 if (!l--) 7784 /* header */ 7785 return (void*)1; 7786 7787 spin_lock(&all_mddevs_lock); 7788 list_for_each(tmp,&all_mddevs) 7789 if (!l--) { 7790 mddev = list_entry(tmp, struct mddev, all_mddevs); 7791 mddev_get(mddev); 7792 spin_unlock(&all_mddevs_lock); 7793 return mddev; 7794 } 7795 spin_unlock(&all_mddevs_lock); 7796 if (!l--) 7797 return (void*)2;/* tail */ 7798 return NULL; 7799 } 7800 7801 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7802 { 7803 struct list_head *tmp; 7804 struct mddev *next_mddev, *mddev = v; 7805 7806 ++*pos; 7807 if (v == (void*)2) 7808 return NULL; 7809 7810 spin_lock(&all_mddevs_lock); 7811 if (v == (void*)1) 7812 tmp = all_mddevs.next; 7813 else 7814 tmp = mddev->all_mddevs.next; 7815 if (tmp != &all_mddevs) 7816 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7817 else { 7818 next_mddev = (void*)2; 7819 *pos = 0x10000; 7820 } 7821 spin_unlock(&all_mddevs_lock); 7822 7823 if (v != (void*)1) 7824 mddev_put(mddev); 7825 return next_mddev; 7826 7827 } 7828 7829 static void md_seq_stop(struct seq_file *seq, void *v) 7830 { 7831 struct mddev *mddev = v; 7832 7833 if (mddev && v != (void*)1 && v != (void*)2) 7834 mddev_put(mddev); 7835 } 7836 7837 static int md_seq_show(struct seq_file *seq, void *v) 7838 { 7839 struct mddev *mddev = v; 7840 sector_t sectors; 7841 struct md_rdev *rdev; 7842 7843 if (v == (void*)1) { 7844 struct md_personality *pers; 7845 seq_printf(seq, "Personalities : "); 7846 spin_lock(&pers_lock); 7847 list_for_each_entry(pers, &pers_list, list) 7848 seq_printf(seq, "[%s] ", pers->name); 7849 7850 spin_unlock(&pers_lock); 7851 seq_printf(seq, "\n"); 7852 seq->poll_event = atomic_read(&md_event_count); 7853 return 0; 7854 } 7855 if (v == (void*)2) { 7856 status_unused(seq); 7857 return 0; 7858 } 7859 7860 spin_lock(&mddev->lock); 7861 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7862 seq_printf(seq, "%s : %sactive", mdname(mddev), 7863 mddev->pers ? "" : "in"); 7864 if (mddev->pers) { 7865 if (mddev->ro==1) 7866 seq_printf(seq, " (read-only)"); 7867 if (mddev->ro==2) 7868 seq_printf(seq, " (auto-read-only)"); 7869 seq_printf(seq, " %s", mddev->pers->name); 7870 } 7871 7872 sectors = 0; 7873 rcu_read_lock(); 7874 rdev_for_each_rcu(rdev, mddev) { 7875 char b[BDEVNAME_SIZE]; 7876 seq_printf(seq, " %s[%d]", 7877 bdevname(rdev->bdev,b), rdev->desc_nr); 7878 if (test_bit(WriteMostly, &rdev->flags)) 7879 seq_printf(seq, "(W)"); 7880 if (test_bit(Journal, &rdev->flags)) 7881 seq_printf(seq, "(J)"); 7882 if (test_bit(Faulty, &rdev->flags)) { 7883 seq_printf(seq, "(F)"); 7884 continue; 7885 } 7886 if (rdev->raid_disk < 0) 7887 seq_printf(seq, "(S)"); /* spare */ 7888 if (test_bit(Replacement, &rdev->flags)) 7889 seq_printf(seq, "(R)"); 7890 sectors += rdev->sectors; 7891 } 7892 rcu_read_unlock(); 7893 7894 if (!list_empty(&mddev->disks)) { 7895 if (mddev->pers) 7896 seq_printf(seq, "\n %llu blocks", 7897 (unsigned long long) 7898 mddev->array_sectors / 2); 7899 else 7900 seq_printf(seq, "\n %llu blocks", 7901 (unsigned long long)sectors / 2); 7902 } 7903 if (mddev->persistent) { 7904 if (mddev->major_version != 0 || 7905 mddev->minor_version != 90) { 7906 seq_printf(seq," super %d.%d", 7907 mddev->major_version, 7908 mddev->minor_version); 7909 } 7910 } else if (mddev->external) 7911 seq_printf(seq, " super external:%s", 7912 mddev->metadata_type); 7913 else 7914 seq_printf(seq, " super non-persistent"); 7915 7916 if (mddev->pers) { 7917 mddev->pers->status(seq, mddev); 7918 seq_printf(seq, "\n "); 7919 if (mddev->pers->sync_request) { 7920 if (status_resync(seq, mddev)) 7921 seq_printf(seq, "\n "); 7922 } 7923 } else 7924 seq_printf(seq, "\n "); 7925 7926 md_bitmap_status(seq, mddev->bitmap); 7927 7928 seq_printf(seq, "\n"); 7929 } 7930 spin_unlock(&mddev->lock); 7931 7932 return 0; 7933 } 7934 7935 static const struct seq_operations md_seq_ops = { 7936 .start = md_seq_start, 7937 .next = md_seq_next, 7938 .stop = md_seq_stop, 7939 .show = md_seq_show, 7940 }; 7941 7942 static int md_seq_open(struct inode *inode, struct file *file) 7943 { 7944 struct seq_file *seq; 7945 int error; 7946 7947 error = seq_open(file, &md_seq_ops); 7948 if (error) 7949 return error; 7950 7951 seq = file->private_data; 7952 seq->poll_event = atomic_read(&md_event_count); 7953 return error; 7954 } 7955 7956 static int md_unloading; 7957 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7958 { 7959 struct seq_file *seq = filp->private_data; 7960 __poll_t mask; 7961 7962 if (md_unloading) 7963 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7964 poll_wait(filp, &md_event_waiters, wait); 7965 7966 /* always allow read */ 7967 mask = EPOLLIN | EPOLLRDNORM; 7968 7969 if (seq->poll_event != atomic_read(&md_event_count)) 7970 mask |= EPOLLERR | EPOLLPRI; 7971 return mask; 7972 } 7973 7974 static const struct file_operations md_seq_fops = { 7975 .owner = THIS_MODULE, 7976 .open = md_seq_open, 7977 .read = seq_read, 7978 .llseek = seq_lseek, 7979 .release = seq_release, 7980 .poll = mdstat_poll, 7981 }; 7982 7983 int register_md_personality(struct md_personality *p) 7984 { 7985 pr_debug("md: %s personality registered for level %d\n", 7986 p->name, p->level); 7987 spin_lock(&pers_lock); 7988 list_add_tail(&p->list, &pers_list); 7989 spin_unlock(&pers_lock); 7990 return 0; 7991 } 7992 EXPORT_SYMBOL(register_md_personality); 7993 7994 int unregister_md_personality(struct md_personality *p) 7995 { 7996 pr_debug("md: %s personality unregistered\n", p->name); 7997 spin_lock(&pers_lock); 7998 list_del_init(&p->list); 7999 spin_unlock(&pers_lock); 8000 return 0; 8001 } 8002 EXPORT_SYMBOL(unregister_md_personality); 8003 8004 int register_md_cluster_operations(struct md_cluster_operations *ops, 8005 struct module *module) 8006 { 8007 int ret = 0; 8008 spin_lock(&pers_lock); 8009 if (md_cluster_ops != NULL) 8010 ret = -EALREADY; 8011 else { 8012 md_cluster_ops = ops; 8013 md_cluster_mod = module; 8014 } 8015 spin_unlock(&pers_lock); 8016 return ret; 8017 } 8018 EXPORT_SYMBOL(register_md_cluster_operations); 8019 8020 int unregister_md_cluster_operations(void) 8021 { 8022 spin_lock(&pers_lock); 8023 md_cluster_ops = NULL; 8024 spin_unlock(&pers_lock); 8025 return 0; 8026 } 8027 EXPORT_SYMBOL(unregister_md_cluster_operations); 8028 8029 int md_setup_cluster(struct mddev *mddev, int nodes) 8030 { 8031 if (!md_cluster_ops) 8032 request_module("md-cluster"); 8033 spin_lock(&pers_lock); 8034 /* ensure module won't be unloaded */ 8035 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8036 pr_warn("can't find md-cluster module or get it's reference.\n"); 8037 spin_unlock(&pers_lock); 8038 return -ENOENT; 8039 } 8040 spin_unlock(&pers_lock); 8041 8042 return md_cluster_ops->join(mddev, nodes); 8043 } 8044 8045 void md_cluster_stop(struct mddev *mddev) 8046 { 8047 if (!md_cluster_ops) 8048 return; 8049 md_cluster_ops->leave(mddev); 8050 module_put(md_cluster_mod); 8051 } 8052 8053 static int is_mddev_idle(struct mddev *mddev, int init) 8054 { 8055 struct md_rdev *rdev; 8056 int idle; 8057 int curr_events; 8058 8059 idle = 1; 8060 rcu_read_lock(); 8061 rdev_for_each_rcu(rdev, mddev) { 8062 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8063 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8064 atomic_read(&disk->sync_io); 8065 /* sync IO will cause sync_io to increase before the disk_stats 8066 * as sync_io is counted when a request starts, and 8067 * disk_stats is counted when it completes. 8068 * So resync activity will cause curr_events to be smaller than 8069 * when there was no such activity. 8070 * non-sync IO will cause disk_stat to increase without 8071 * increasing sync_io so curr_events will (eventually) 8072 * be larger than it was before. Once it becomes 8073 * substantially larger, the test below will cause 8074 * the array to appear non-idle, and resync will slow 8075 * down. 8076 * If there is a lot of outstanding resync activity when 8077 * we set last_event to curr_events, then all that activity 8078 * completing might cause the array to appear non-idle 8079 * and resync will be slowed down even though there might 8080 * not have been non-resync activity. This will only 8081 * happen once though. 'last_events' will soon reflect 8082 * the state where there is little or no outstanding 8083 * resync requests, and further resync activity will 8084 * always make curr_events less than last_events. 8085 * 8086 */ 8087 if (init || curr_events - rdev->last_events > 64) { 8088 rdev->last_events = curr_events; 8089 idle = 0; 8090 } 8091 } 8092 rcu_read_unlock(); 8093 return idle; 8094 } 8095 8096 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8097 { 8098 /* another "blocks" (512byte) blocks have been synced */ 8099 atomic_sub(blocks, &mddev->recovery_active); 8100 wake_up(&mddev->recovery_wait); 8101 if (!ok) { 8102 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8103 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8104 md_wakeup_thread(mddev->thread); 8105 // stop recovery, signal do_sync .... 8106 } 8107 } 8108 EXPORT_SYMBOL(md_done_sync); 8109 8110 /* md_write_start(mddev, bi) 8111 * If we need to update some array metadata (e.g. 'active' flag 8112 * in superblock) before writing, schedule a superblock update 8113 * and wait for it to complete. 8114 * A return value of 'false' means that the write wasn't recorded 8115 * and cannot proceed as the array is being suspend. 8116 */ 8117 bool md_write_start(struct mddev *mddev, struct bio *bi) 8118 { 8119 int did_change = 0; 8120 8121 if (bio_data_dir(bi) != WRITE) 8122 return true; 8123 8124 BUG_ON(mddev->ro == 1); 8125 if (mddev->ro == 2) { 8126 /* need to switch to read/write */ 8127 mddev->ro = 0; 8128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8129 md_wakeup_thread(mddev->thread); 8130 md_wakeup_thread(mddev->sync_thread); 8131 did_change = 1; 8132 } 8133 rcu_read_lock(); 8134 percpu_ref_get(&mddev->writes_pending); 8135 smp_mb(); /* Match smp_mb in set_in_sync() */ 8136 if (mddev->safemode == 1) 8137 mddev->safemode = 0; 8138 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8139 if (mddev->in_sync || mddev->sync_checkers) { 8140 spin_lock(&mddev->lock); 8141 if (mddev->in_sync) { 8142 mddev->in_sync = 0; 8143 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8144 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8145 md_wakeup_thread(mddev->thread); 8146 did_change = 1; 8147 } 8148 spin_unlock(&mddev->lock); 8149 } 8150 rcu_read_unlock(); 8151 if (did_change) 8152 sysfs_notify_dirent_safe(mddev->sysfs_state); 8153 if (!mddev->has_superblocks) 8154 return true; 8155 wait_event(mddev->sb_wait, 8156 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8157 mddev->suspended); 8158 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8159 percpu_ref_put(&mddev->writes_pending); 8160 return false; 8161 } 8162 return true; 8163 } 8164 EXPORT_SYMBOL(md_write_start); 8165 8166 /* md_write_inc can only be called when md_write_start() has 8167 * already been called at least once of the current request. 8168 * It increments the counter and is useful when a single request 8169 * is split into several parts. Each part causes an increment and 8170 * so needs a matching md_write_end(). 8171 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8172 * a spinlocked region. 8173 */ 8174 void md_write_inc(struct mddev *mddev, struct bio *bi) 8175 { 8176 if (bio_data_dir(bi) != WRITE) 8177 return; 8178 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8179 percpu_ref_get(&mddev->writes_pending); 8180 } 8181 EXPORT_SYMBOL(md_write_inc); 8182 8183 void md_write_end(struct mddev *mddev) 8184 { 8185 percpu_ref_put(&mddev->writes_pending); 8186 8187 if (mddev->safemode == 2) 8188 md_wakeup_thread(mddev->thread); 8189 else if (mddev->safemode_delay) 8190 /* The roundup() ensures this only performs locking once 8191 * every ->safemode_delay jiffies 8192 */ 8193 mod_timer(&mddev->safemode_timer, 8194 roundup(jiffies, mddev->safemode_delay) + 8195 mddev->safemode_delay); 8196 } 8197 8198 EXPORT_SYMBOL(md_write_end); 8199 8200 /* md_allow_write(mddev) 8201 * Calling this ensures that the array is marked 'active' so that writes 8202 * may proceed without blocking. It is important to call this before 8203 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8204 * Must be called with mddev_lock held. 8205 */ 8206 void md_allow_write(struct mddev *mddev) 8207 { 8208 if (!mddev->pers) 8209 return; 8210 if (mddev->ro) 8211 return; 8212 if (!mddev->pers->sync_request) 8213 return; 8214 8215 spin_lock(&mddev->lock); 8216 if (mddev->in_sync) { 8217 mddev->in_sync = 0; 8218 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8219 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8220 if (mddev->safemode_delay && 8221 mddev->safemode == 0) 8222 mddev->safemode = 1; 8223 spin_unlock(&mddev->lock); 8224 md_update_sb(mddev, 0); 8225 sysfs_notify_dirent_safe(mddev->sysfs_state); 8226 /* wait for the dirty state to be recorded in the metadata */ 8227 wait_event(mddev->sb_wait, 8228 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8229 } else 8230 spin_unlock(&mddev->lock); 8231 } 8232 EXPORT_SYMBOL_GPL(md_allow_write); 8233 8234 #define SYNC_MARKS 10 8235 #define SYNC_MARK_STEP (3*HZ) 8236 #define UPDATE_FREQUENCY (5*60*HZ) 8237 void md_do_sync(struct md_thread *thread) 8238 { 8239 struct mddev *mddev = thread->mddev; 8240 struct mddev *mddev2; 8241 unsigned int currspeed = 0, 8242 window; 8243 sector_t max_sectors,j, io_sectors, recovery_done; 8244 unsigned long mark[SYNC_MARKS]; 8245 unsigned long update_time; 8246 sector_t mark_cnt[SYNC_MARKS]; 8247 int last_mark,m; 8248 struct list_head *tmp; 8249 sector_t last_check; 8250 int skipped = 0; 8251 struct md_rdev *rdev; 8252 char *desc, *action = NULL; 8253 struct blk_plug plug; 8254 int ret; 8255 8256 /* just incase thread restarts... */ 8257 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8258 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8259 return; 8260 if (mddev->ro) {/* never try to sync a read-only array */ 8261 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8262 return; 8263 } 8264 8265 if (mddev_is_clustered(mddev)) { 8266 ret = md_cluster_ops->resync_start(mddev); 8267 if (ret) 8268 goto skip; 8269 8270 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8271 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8272 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8273 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8274 && ((unsigned long long)mddev->curr_resync_completed 8275 < (unsigned long long)mddev->resync_max_sectors)) 8276 goto skip; 8277 } 8278 8279 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8280 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8281 desc = "data-check"; 8282 action = "check"; 8283 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8284 desc = "requested-resync"; 8285 action = "repair"; 8286 } else 8287 desc = "resync"; 8288 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8289 desc = "reshape"; 8290 else 8291 desc = "recovery"; 8292 8293 mddev->last_sync_action = action ?: desc; 8294 8295 /* we overload curr_resync somewhat here. 8296 * 0 == not engaged in resync at all 8297 * 2 == checking that there is no conflict with another sync 8298 * 1 == like 2, but have yielded to allow conflicting resync to 8299 * commense 8300 * other == active in resync - this many blocks 8301 * 8302 * Before starting a resync we must have set curr_resync to 8303 * 2, and then checked that every "conflicting" array has curr_resync 8304 * less than ours. When we find one that is the same or higher 8305 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8306 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8307 * This will mean we have to start checking from the beginning again. 8308 * 8309 */ 8310 8311 do { 8312 int mddev2_minor = -1; 8313 mddev->curr_resync = 2; 8314 8315 try_again: 8316 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8317 goto skip; 8318 for_each_mddev(mddev2, tmp) { 8319 if (mddev2 == mddev) 8320 continue; 8321 if (!mddev->parallel_resync 8322 && mddev2->curr_resync 8323 && match_mddev_units(mddev, mddev2)) { 8324 DEFINE_WAIT(wq); 8325 if (mddev < mddev2 && mddev->curr_resync == 2) { 8326 /* arbitrarily yield */ 8327 mddev->curr_resync = 1; 8328 wake_up(&resync_wait); 8329 } 8330 if (mddev > mddev2 && mddev->curr_resync == 1) 8331 /* no need to wait here, we can wait the next 8332 * time 'round when curr_resync == 2 8333 */ 8334 continue; 8335 /* We need to wait 'interruptible' so as not to 8336 * contribute to the load average, and not to 8337 * be caught by 'softlockup' 8338 */ 8339 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8340 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8341 mddev2->curr_resync >= mddev->curr_resync) { 8342 if (mddev2_minor != mddev2->md_minor) { 8343 mddev2_minor = mddev2->md_minor; 8344 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8345 desc, mdname(mddev), 8346 mdname(mddev2)); 8347 } 8348 mddev_put(mddev2); 8349 if (signal_pending(current)) 8350 flush_signals(current); 8351 schedule(); 8352 finish_wait(&resync_wait, &wq); 8353 goto try_again; 8354 } 8355 finish_wait(&resync_wait, &wq); 8356 } 8357 } 8358 } while (mddev->curr_resync < 2); 8359 8360 j = 0; 8361 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8362 /* resync follows the size requested by the personality, 8363 * which defaults to physical size, but can be virtual size 8364 */ 8365 max_sectors = mddev->resync_max_sectors; 8366 atomic64_set(&mddev->resync_mismatches, 0); 8367 /* we don't use the checkpoint if there's a bitmap */ 8368 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8369 j = mddev->resync_min; 8370 else if (!mddev->bitmap) 8371 j = mddev->recovery_cp; 8372 8373 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8374 max_sectors = mddev->resync_max_sectors; 8375 else { 8376 /* recovery follows the physical size of devices */ 8377 max_sectors = mddev->dev_sectors; 8378 j = MaxSector; 8379 rcu_read_lock(); 8380 rdev_for_each_rcu(rdev, mddev) 8381 if (rdev->raid_disk >= 0 && 8382 !test_bit(Journal, &rdev->flags) && 8383 !test_bit(Faulty, &rdev->flags) && 8384 !test_bit(In_sync, &rdev->flags) && 8385 rdev->recovery_offset < j) 8386 j = rdev->recovery_offset; 8387 rcu_read_unlock(); 8388 8389 /* If there is a bitmap, we need to make sure all 8390 * writes that started before we added a spare 8391 * complete before we start doing a recovery. 8392 * Otherwise the write might complete and (via 8393 * bitmap_endwrite) set a bit in the bitmap after the 8394 * recovery has checked that bit and skipped that 8395 * region. 8396 */ 8397 if (mddev->bitmap) { 8398 mddev->pers->quiesce(mddev, 1); 8399 mddev->pers->quiesce(mddev, 0); 8400 } 8401 } 8402 8403 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8404 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8405 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8406 speed_max(mddev), desc); 8407 8408 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8409 8410 io_sectors = 0; 8411 for (m = 0; m < SYNC_MARKS; m++) { 8412 mark[m] = jiffies; 8413 mark_cnt[m] = io_sectors; 8414 } 8415 last_mark = 0; 8416 mddev->resync_mark = mark[last_mark]; 8417 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8418 8419 /* 8420 * Tune reconstruction: 8421 */ 8422 window = 32*(PAGE_SIZE/512); 8423 pr_debug("md: using %dk window, over a total of %lluk.\n", 8424 window/2, (unsigned long long)max_sectors/2); 8425 8426 atomic_set(&mddev->recovery_active, 0); 8427 last_check = 0; 8428 8429 if (j>2) { 8430 pr_debug("md: resuming %s of %s from checkpoint.\n", 8431 desc, mdname(mddev)); 8432 mddev->curr_resync = j; 8433 } else 8434 mddev->curr_resync = 3; /* no longer delayed */ 8435 mddev->curr_resync_completed = j; 8436 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8437 md_new_event(mddev); 8438 update_time = jiffies; 8439 8440 blk_start_plug(&plug); 8441 while (j < max_sectors) { 8442 sector_t sectors; 8443 8444 skipped = 0; 8445 8446 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8447 ((mddev->curr_resync > mddev->curr_resync_completed && 8448 (mddev->curr_resync - mddev->curr_resync_completed) 8449 > (max_sectors >> 4)) || 8450 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8451 (j - mddev->curr_resync_completed)*2 8452 >= mddev->resync_max - mddev->curr_resync_completed || 8453 mddev->curr_resync_completed > mddev->resync_max 8454 )) { 8455 /* time to update curr_resync_completed */ 8456 wait_event(mddev->recovery_wait, 8457 atomic_read(&mddev->recovery_active) == 0); 8458 mddev->curr_resync_completed = j; 8459 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8460 j > mddev->recovery_cp) 8461 mddev->recovery_cp = j; 8462 update_time = jiffies; 8463 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8464 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8465 } 8466 8467 while (j >= mddev->resync_max && 8468 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8469 /* As this condition is controlled by user-space, 8470 * we can block indefinitely, so use '_interruptible' 8471 * to avoid triggering warnings. 8472 */ 8473 flush_signals(current); /* just in case */ 8474 wait_event_interruptible(mddev->recovery_wait, 8475 mddev->resync_max > j 8476 || test_bit(MD_RECOVERY_INTR, 8477 &mddev->recovery)); 8478 } 8479 8480 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8481 break; 8482 8483 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8484 if (sectors == 0) { 8485 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8486 break; 8487 } 8488 8489 if (!skipped) { /* actual IO requested */ 8490 io_sectors += sectors; 8491 atomic_add(sectors, &mddev->recovery_active); 8492 } 8493 8494 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8495 break; 8496 8497 j += sectors; 8498 if (j > max_sectors) 8499 /* when skipping, extra large numbers can be returned. */ 8500 j = max_sectors; 8501 if (j > 2) 8502 mddev->curr_resync = j; 8503 mddev->curr_mark_cnt = io_sectors; 8504 if (last_check == 0) 8505 /* this is the earliest that rebuild will be 8506 * visible in /proc/mdstat 8507 */ 8508 md_new_event(mddev); 8509 8510 if (last_check + window > io_sectors || j == max_sectors) 8511 continue; 8512 8513 last_check = io_sectors; 8514 repeat: 8515 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8516 /* step marks */ 8517 int next = (last_mark+1) % SYNC_MARKS; 8518 8519 mddev->resync_mark = mark[next]; 8520 mddev->resync_mark_cnt = mark_cnt[next]; 8521 mark[next] = jiffies; 8522 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8523 last_mark = next; 8524 } 8525 8526 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8527 break; 8528 8529 /* 8530 * this loop exits only if either when we are slower than 8531 * the 'hard' speed limit, or the system was IO-idle for 8532 * a jiffy. 8533 * the system might be non-idle CPU-wise, but we only care 8534 * about not overloading the IO subsystem. (things like an 8535 * e2fsck being done on the RAID array should execute fast) 8536 */ 8537 cond_resched(); 8538 8539 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8540 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8541 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8542 8543 if (currspeed > speed_min(mddev)) { 8544 if (currspeed > speed_max(mddev)) { 8545 msleep(500); 8546 goto repeat; 8547 } 8548 if (!is_mddev_idle(mddev, 0)) { 8549 /* 8550 * Give other IO more of a chance. 8551 * The faster the devices, the less we wait. 8552 */ 8553 wait_event(mddev->recovery_wait, 8554 !atomic_read(&mddev->recovery_active)); 8555 } 8556 } 8557 } 8558 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8559 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8560 ? "interrupted" : "done"); 8561 /* 8562 * this also signals 'finished resyncing' to md_stop 8563 */ 8564 blk_finish_plug(&plug); 8565 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8566 8567 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8568 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8569 mddev->curr_resync > 3) { 8570 mddev->curr_resync_completed = mddev->curr_resync; 8571 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8572 } 8573 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8574 8575 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8576 mddev->curr_resync > 3) { 8577 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8578 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8579 if (mddev->curr_resync >= mddev->recovery_cp) { 8580 pr_debug("md: checkpointing %s of %s.\n", 8581 desc, mdname(mddev)); 8582 if (test_bit(MD_RECOVERY_ERROR, 8583 &mddev->recovery)) 8584 mddev->recovery_cp = 8585 mddev->curr_resync_completed; 8586 else 8587 mddev->recovery_cp = 8588 mddev->curr_resync; 8589 } 8590 } else 8591 mddev->recovery_cp = MaxSector; 8592 } else { 8593 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8594 mddev->curr_resync = MaxSector; 8595 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8596 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8597 rcu_read_lock(); 8598 rdev_for_each_rcu(rdev, mddev) 8599 if (rdev->raid_disk >= 0 && 8600 mddev->delta_disks >= 0 && 8601 !test_bit(Journal, &rdev->flags) && 8602 !test_bit(Faulty, &rdev->flags) && 8603 !test_bit(In_sync, &rdev->flags) && 8604 rdev->recovery_offset < mddev->curr_resync) 8605 rdev->recovery_offset = mddev->curr_resync; 8606 rcu_read_unlock(); 8607 } 8608 } 8609 } 8610 skip: 8611 /* set CHANGE_PENDING here since maybe another update is needed, 8612 * so other nodes are informed. It should be harmless for normal 8613 * raid */ 8614 set_mask_bits(&mddev->sb_flags, 0, 8615 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8616 8617 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8618 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8619 mddev->delta_disks > 0 && 8620 mddev->pers->finish_reshape && 8621 mddev->pers->size && 8622 mddev->queue) { 8623 mddev_lock_nointr(mddev); 8624 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8625 mddev_unlock(mddev); 8626 set_capacity(mddev->gendisk, mddev->array_sectors); 8627 revalidate_disk(mddev->gendisk); 8628 } 8629 8630 spin_lock(&mddev->lock); 8631 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8632 /* We completed so min/max setting can be forgotten if used. */ 8633 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8634 mddev->resync_min = 0; 8635 mddev->resync_max = MaxSector; 8636 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8637 mddev->resync_min = mddev->curr_resync_completed; 8638 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8639 mddev->curr_resync = 0; 8640 spin_unlock(&mddev->lock); 8641 8642 wake_up(&resync_wait); 8643 md_wakeup_thread(mddev->thread); 8644 return; 8645 } 8646 EXPORT_SYMBOL_GPL(md_do_sync); 8647 8648 static int remove_and_add_spares(struct mddev *mddev, 8649 struct md_rdev *this) 8650 { 8651 struct md_rdev *rdev; 8652 int spares = 0; 8653 int removed = 0; 8654 bool remove_some = false; 8655 8656 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8657 /* Mustn't remove devices when resync thread is running */ 8658 return 0; 8659 8660 rdev_for_each(rdev, mddev) { 8661 if ((this == NULL || rdev == this) && 8662 rdev->raid_disk >= 0 && 8663 !test_bit(Blocked, &rdev->flags) && 8664 test_bit(Faulty, &rdev->flags) && 8665 atomic_read(&rdev->nr_pending)==0) { 8666 /* Faulty non-Blocked devices with nr_pending == 0 8667 * never get nr_pending incremented, 8668 * never get Faulty cleared, and never get Blocked set. 8669 * So we can synchronize_rcu now rather than once per device 8670 */ 8671 remove_some = true; 8672 set_bit(RemoveSynchronized, &rdev->flags); 8673 } 8674 } 8675 8676 if (remove_some) 8677 synchronize_rcu(); 8678 rdev_for_each(rdev, mddev) { 8679 if ((this == NULL || rdev == this) && 8680 rdev->raid_disk >= 0 && 8681 !test_bit(Blocked, &rdev->flags) && 8682 ((test_bit(RemoveSynchronized, &rdev->flags) || 8683 (!test_bit(In_sync, &rdev->flags) && 8684 !test_bit(Journal, &rdev->flags))) && 8685 atomic_read(&rdev->nr_pending)==0)) { 8686 if (mddev->pers->hot_remove_disk( 8687 mddev, rdev) == 0) { 8688 sysfs_unlink_rdev(mddev, rdev); 8689 rdev->saved_raid_disk = rdev->raid_disk; 8690 rdev->raid_disk = -1; 8691 removed++; 8692 } 8693 } 8694 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8695 clear_bit(RemoveSynchronized, &rdev->flags); 8696 } 8697 8698 if (removed && mddev->kobj.sd) 8699 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8700 8701 if (this && removed) 8702 goto no_add; 8703 8704 rdev_for_each(rdev, mddev) { 8705 if (this && this != rdev) 8706 continue; 8707 if (test_bit(Candidate, &rdev->flags)) 8708 continue; 8709 if (rdev->raid_disk >= 0 && 8710 !test_bit(In_sync, &rdev->flags) && 8711 !test_bit(Journal, &rdev->flags) && 8712 !test_bit(Faulty, &rdev->flags)) 8713 spares++; 8714 if (rdev->raid_disk >= 0) 8715 continue; 8716 if (test_bit(Faulty, &rdev->flags)) 8717 continue; 8718 if (!test_bit(Journal, &rdev->flags)) { 8719 if (mddev->ro && 8720 ! (rdev->saved_raid_disk >= 0 && 8721 !test_bit(Bitmap_sync, &rdev->flags))) 8722 continue; 8723 8724 rdev->recovery_offset = 0; 8725 } 8726 if (mddev->pers-> 8727 hot_add_disk(mddev, rdev) == 0) { 8728 if (sysfs_link_rdev(mddev, rdev)) 8729 /* failure here is OK */; 8730 if (!test_bit(Journal, &rdev->flags)) 8731 spares++; 8732 md_new_event(mddev); 8733 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8734 } 8735 } 8736 no_add: 8737 if (removed) 8738 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8739 return spares; 8740 } 8741 8742 static void md_start_sync(struct work_struct *ws) 8743 { 8744 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8745 8746 mddev->sync_thread = md_register_thread(md_do_sync, 8747 mddev, 8748 "resync"); 8749 if (!mddev->sync_thread) { 8750 pr_warn("%s: could not start resync thread...\n", 8751 mdname(mddev)); 8752 /* leave the spares where they are, it shouldn't hurt */ 8753 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8754 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8755 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8756 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8757 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8758 wake_up(&resync_wait); 8759 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8760 &mddev->recovery)) 8761 if (mddev->sysfs_action) 8762 sysfs_notify_dirent_safe(mddev->sysfs_action); 8763 } else 8764 md_wakeup_thread(mddev->sync_thread); 8765 sysfs_notify_dirent_safe(mddev->sysfs_action); 8766 md_new_event(mddev); 8767 } 8768 8769 /* 8770 * This routine is regularly called by all per-raid-array threads to 8771 * deal with generic issues like resync and super-block update. 8772 * Raid personalities that don't have a thread (linear/raid0) do not 8773 * need this as they never do any recovery or update the superblock. 8774 * 8775 * It does not do any resync itself, but rather "forks" off other threads 8776 * to do that as needed. 8777 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8778 * "->recovery" and create a thread at ->sync_thread. 8779 * When the thread finishes it sets MD_RECOVERY_DONE 8780 * and wakeups up this thread which will reap the thread and finish up. 8781 * This thread also removes any faulty devices (with nr_pending == 0). 8782 * 8783 * The overall approach is: 8784 * 1/ if the superblock needs updating, update it. 8785 * 2/ If a recovery thread is running, don't do anything else. 8786 * 3/ If recovery has finished, clean up, possibly marking spares active. 8787 * 4/ If there are any faulty devices, remove them. 8788 * 5/ If array is degraded, try to add spares devices 8789 * 6/ If array has spares or is not in-sync, start a resync thread. 8790 */ 8791 void md_check_recovery(struct mddev *mddev) 8792 { 8793 if (mddev->suspended) 8794 return; 8795 8796 if (mddev->bitmap) 8797 md_bitmap_daemon_work(mddev); 8798 8799 if (signal_pending(current)) { 8800 if (mddev->pers->sync_request && !mddev->external) { 8801 pr_debug("md: %s in immediate safe mode\n", 8802 mdname(mddev)); 8803 mddev->safemode = 2; 8804 } 8805 flush_signals(current); 8806 } 8807 8808 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8809 return; 8810 if ( ! ( 8811 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8812 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8813 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8814 (mddev->external == 0 && mddev->safemode == 1) || 8815 (mddev->safemode == 2 8816 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8817 )) 8818 return; 8819 8820 if (mddev_trylock(mddev)) { 8821 int spares = 0; 8822 8823 if (!mddev->external && mddev->safemode == 1) 8824 mddev->safemode = 0; 8825 8826 if (mddev->ro) { 8827 struct md_rdev *rdev; 8828 if (!mddev->external && mddev->in_sync) 8829 /* 'Blocked' flag not needed as failed devices 8830 * will be recorded if array switched to read/write. 8831 * Leaving it set will prevent the device 8832 * from being removed. 8833 */ 8834 rdev_for_each(rdev, mddev) 8835 clear_bit(Blocked, &rdev->flags); 8836 /* On a read-only array we can: 8837 * - remove failed devices 8838 * - add already-in_sync devices if the array itself 8839 * is in-sync. 8840 * As we only add devices that are already in-sync, 8841 * we can activate the spares immediately. 8842 */ 8843 remove_and_add_spares(mddev, NULL); 8844 /* There is no thread, but we need to call 8845 * ->spare_active and clear saved_raid_disk 8846 */ 8847 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8848 md_reap_sync_thread(mddev); 8849 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8850 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8851 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8852 goto unlock; 8853 } 8854 8855 if (mddev_is_clustered(mddev)) { 8856 struct md_rdev *rdev; 8857 /* kick the device if another node issued a 8858 * remove disk. 8859 */ 8860 rdev_for_each(rdev, mddev) { 8861 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8862 rdev->raid_disk < 0) 8863 md_kick_rdev_from_array(rdev); 8864 } 8865 } 8866 8867 if (!mddev->external && !mddev->in_sync) { 8868 spin_lock(&mddev->lock); 8869 set_in_sync(mddev); 8870 spin_unlock(&mddev->lock); 8871 } 8872 8873 if (mddev->sb_flags) 8874 md_update_sb(mddev, 0); 8875 8876 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8877 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8878 /* resync/recovery still happening */ 8879 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8880 goto unlock; 8881 } 8882 if (mddev->sync_thread) { 8883 md_reap_sync_thread(mddev); 8884 goto unlock; 8885 } 8886 /* Set RUNNING before clearing NEEDED to avoid 8887 * any transients in the value of "sync_action". 8888 */ 8889 mddev->curr_resync_completed = 0; 8890 spin_lock(&mddev->lock); 8891 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8892 spin_unlock(&mddev->lock); 8893 /* Clear some bits that don't mean anything, but 8894 * might be left set 8895 */ 8896 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8897 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8898 8899 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8900 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8901 goto not_running; 8902 /* no recovery is running. 8903 * remove any failed drives, then 8904 * add spares if possible. 8905 * Spares are also removed and re-added, to allow 8906 * the personality to fail the re-add. 8907 */ 8908 8909 if (mddev->reshape_position != MaxSector) { 8910 if (mddev->pers->check_reshape == NULL || 8911 mddev->pers->check_reshape(mddev) != 0) 8912 /* Cannot proceed */ 8913 goto not_running; 8914 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8915 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8916 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8917 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8918 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8919 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8920 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8921 } else if (mddev->recovery_cp < MaxSector) { 8922 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8923 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8924 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8925 /* nothing to be done ... */ 8926 goto not_running; 8927 8928 if (mddev->pers->sync_request) { 8929 if (spares) { 8930 /* We are adding a device or devices to an array 8931 * which has the bitmap stored on all devices. 8932 * So make sure all bitmap pages get written 8933 */ 8934 md_bitmap_write_all(mddev->bitmap); 8935 } 8936 INIT_WORK(&mddev->del_work, md_start_sync); 8937 queue_work(md_misc_wq, &mddev->del_work); 8938 goto unlock; 8939 } 8940 not_running: 8941 if (!mddev->sync_thread) { 8942 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8943 wake_up(&resync_wait); 8944 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8945 &mddev->recovery)) 8946 if (mddev->sysfs_action) 8947 sysfs_notify_dirent_safe(mddev->sysfs_action); 8948 } 8949 unlock: 8950 wake_up(&mddev->sb_wait); 8951 mddev_unlock(mddev); 8952 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8953 /* Write superblock - thread that called mddev_suspend() 8954 * holds reconfig_mutex for us. 8955 */ 8956 set_bit(MD_UPDATING_SB, &mddev->flags); 8957 smp_mb__after_atomic(); 8958 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8959 md_update_sb(mddev, 0); 8960 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8961 wake_up(&mddev->sb_wait); 8962 } 8963 } 8964 EXPORT_SYMBOL(md_check_recovery); 8965 8966 void md_reap_sync_thread(struct mddev *mddev) 8967 { 8968 struct md_rdev *rdev; 8969 8970 /* resync has finished, collect result */ 8971 md_unregister_thread(&mddev->sync_thread); 8972 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8973 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8974 /* success...*/ 8975 /* activate any spares */ 8976 if (mddev->pers->spare_active(mddev)) { 8977 sysfs_notify(&mddev->kobj, NULL, 8978 "degraded"); 8979 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8980 } 8981 } 8982 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8983 mddev->pers->finish_reshape) 8984 mddev->pers->finish_reshape(mddev); 8985 8986 /* If array is no-longer degraded, then any saved_raid_disk 8987 * information must be scrapped. 8988 */ 8989 if (!mddev->degraded) 8990 rdev_for_each(rdev, mddev) 8991 rdev->saved_raid_disk = -1; 8992 8993 md_update_sb(mddev, 1); 8994 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8995 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8996 * clustered raid */ 8997 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8998 md_cluster_ops->resync_finish(mddev); 8999 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9000 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9001 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9002 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9003 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9004 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9005 wake_up(&resync_wait); 9006 /* flag recovery needed just to double check */ 9007 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9008 sysfs_notify_dirent_safe(mddev->sysfs_action); 9009 md_new_event(mddev); 9010 if (mddev->event_work.func) 9011 queue_work(md_misc_wq, &mddev->event_work); 9012 } 9013 EXPORT_SYMBOL(md_reap_sync_thread); 9014 9015 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9016 { 9017 sysfs_notify_dirent_safe(rdev->sysfs_state); 9018 wait_event_timeout(rdev->blocked_wait, 9019 !test_bit(Blocked, &rdev->flags) && 9020 !test_bit(BlockedBadBlocks, &rdev->flags), 9021 msecs_to_jiffies(5000)); 9022 rdev_dec_pending(rdev, mddev); 9023 } 9024 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9025 9026 void md_finish_reshape(struct mddev *mddev) 9027 { 9028 /* called be personality module when reshape completes. */ 9029 struct md_rdev *rdev; 9030 9031 rdev_for_each(rdev, mddev) { 9032 if (rdev->data_offset > rdev->new_data_offset) 9033 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9034 else 9035 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9036 rdev->data_offset = rdev->new_data_offset; 9037 } 9038 } 9039 EXPORT_SYMBOL(md_finish_reshape); 9040 9041 /* Bad block management */ 9042 9043 /* Returns 1 on success, 0 on failure */ 9044 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9045 int is_new) 9046 { 9047 struct mddev *mddev = rdev->mddev; 9048 int rv; 9049 if (is_new) 9050 s += rdev->new_data_offset; 9051 else 9052 s += rdev->data_offset; 9053 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9054 if (rv == 0) { 9055 /* Make sure they get written out promptly */ 9056 if (test_bit(ExternalBbl, &rdev->flags)) 9057 sysfs_notify(&rdev->kobj, NULL, 9058 "unacknowledged_bad_blocks"); 9059 sysfs_notify_dirent_safe(rdev->sysfs_state); 9060 set_mask_bits(&mddev->sb_flags, 0, 9061 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9062 md_wakeup_thread(rdev->mddev->thread); 9063 return 1; 9064 } else 9065 return 0; 9066 } 9067 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9068 9069 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9070 int is_new) 9071 { 9072 int rv; 9073 if (is_new) 9074 s += rdev->new_data_offset; 9075 else 9076 s += rdev->data_offset; 9077 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9078 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9079 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9080 return rv; 9081 } 9082 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9083 9084 static int md_notify_reboot(struct notifier_block *this, 9085 unsigned long code, void *x) 9086 { 9087 struct list_head *tmp; 9088 struct mddev *mddev; 9089 int need_delay = 0; 9090 9091 for_each_mddev(mddev, tmp) { 9092 if (mddev_trylock(mddev)) { 9093 if (mddev->pers) 9094 __md_stop_writes(mddev); 9095 if (mddev->persistent) 9096 mddev->safemode = 2; 9097 mddev_unlock(mddev); 9098 } 9099 need_delay = 1; 9100 } 9101 /* 9102 * certain more exotic SCSI devices are known to be 9103 * volatile wrt too early system reboots. While the 9104 * right place to handle this issue is the given 9105 * driver, we do want to have a safe RAID driver ... 9106 */ 9107 if (need_delay) 9108 mdelay(1000*1); 9109 9110 return NOTIFY_DONE; 9111 } 9112 9113 static struct notifier_block md_notifier = { 9114 .notifier_call = md_notify_reboot, 9115 .next = NULL, 9116 .priority = INT_MAX, /* before any real devices */ 9117 }; 9118 9119 static void md_geninit(void) 9120 { 9121 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9122 9123 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9124 } 9125 9126 static int __init md_init(void) 9127 { 9128 int ret = -ENOMEM; 9129 9130 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9131 if (!md_wq) 9132 goto err_wq; 9133 9134 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9135 if (!md_misc_wq) 9136 goto err_misc_wq; 9137 9138 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9139 goto err_md; 9140 9141 if ((ret = register_blkdev(0, "mdp")) < 0) 9142 goto err_mdp; 9143 mdp_major = ret; 9144 9145 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9146 md_probe, NULL, NULL); 9147 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9148 md_probe, NULL, NULL); 9149 9150 register_reboot_notifier(&md_notifier); 9151 raid_table_header = register_sysctl_table(raid_root_table); 9152 9153 md_geninit(); 9154 return 0; 9155 9156 err_mdp: 9157 unregister_blkdev(MD_MAJOR, "md"); 9158 err_md: 9159 destroy_workqueue(md_misc_wq); 9160 err_misc_wq: 9161 destroy_workqueue(md_wq); 9162 err_wq: 9163 return ret; 9164 } 9165 9166 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9167 { 9168 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9169 struct md_rdev *rdev2; 9170 int role, ret; 9171 char b[BDEVNAME_SIZE]; 9172 9173 /* 9174 * If size is changed in another node then we need to 9175 * do resize as well. 9176 */ 9177 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9178 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9179 if (ret) 9180 pr_info("md-cluster: resize failed\n"); 9181 else 9182 md_bitmap_update_sb(mddev->bitmap); 9183 } 9184 9185 /* Check for change of roles in the active devices */ 9186 rdev_for_each(rdev2, mddev) { 9187 if (test_bit(Faulty, &rdev2->flags)) 9188 continue; 9189 9190 /* Check if the roles changed */ 9191 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9192 9193 if (test_bit(Candidate, &rdev2->flags)) { 9194 if (role == 0xfffe) { 9195 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9196 md_kick_rdev_from_array(rdev2); 9197 continue; 9198 } 9199 else 9200 clear_bit(Candidate, &rdev2->flags); 9201 } 9202 9203 if (role != rdev2->raid_disk) { 9204 /* got activated */ 9205 if (rdev2->raid_disk == -1 && role != 0xffff) { 9206 rdev2->saved_raid_disk = role; 9207 ret = remove_and_add_spares(mddev, rdev2); 9208 pr_info("Activated spare: %s\n", 9209 bdevname(rdev2->bdev,b)); 9210 /* wakeup mddev->thread here, so array could 9211 * perform resync with the new activated disk */ 9212 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9213 md_wakeup_thread(mddev->thread); 9214 9215 } 9216 /* device faulty 9217 * We just want to do the minimum to mark the disk 9218 * as faulty. The recovery is performed by the 9219 * one who initiated the error. 9220 */ 9221 if ((role == 0xfffe) || (role == 0xfffd)) { 9222 md_error(mddev, rdev2); 9223 clear_bit(Blocked, &rdev2->flags); 9224 } 9225 } 9226 } 9227 9228 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9229 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9230 9231 /* Finally set the event to be up to date */ 9232 mddev->events = le64_to_cpu(sb->events); 9233 } 9234 9235 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9236 { 9237 int err; 9238 struct page *swapout = rdev->sb_page; 9239 struct mdp_superblock_1 *sb; 9240 9241 /* Store the sb page of the rdev in the swapout temporary 9242 * variable in case we err in the future 9243 */ 9244 rdev->sb_page = NULL; 9245 err = alloc_disk_sb(rdev); 9246 if (err == 0) { 9247 ClearPageUptodate(rdev->sb_page); 9248 rdev->sb_loaded = 0; 9249 err = super_types[mddev->major_version]. 9250 load_super(rdev, NULL, mddev->minor_version); 9251 } 9252 if (err < 0) { 9253 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9254 __func__, __LINE__, rdev->desc_nr, err); 9255 if (rdev->sb_page) 9256 put_page(rdev->sb_page); 9257 rdev->sb_page = swapout; 9258 rdev->sb_loaded = 1; 9259 return err; 9260 } 9261 9262 sb = page_address(rdev->sb_page); 9263 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9264 * is not set 9265 */ 9266 9267 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9268 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9269 9270 /* The other node finished recovery, call spare_active to set 9271 * device In_sync and mddev->degraded 9272 */ 9273 if (rdev->recovery_offset == MaxSector && 9274 !test_bit(In_sync, &rdev->flags) && 9275 mddev->pers->spare_active(mddev)) 9276 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9277 9278 put_page(swapout); 9279 return 0; 9280 } 9281 9282 void md_reload_sb(struct mddev *mddev, int nr) 9283 { 9284 struct md_rdev *rdev; 9285 int err; 9286 9287 /* Find the rdev */ 9288 rdev_for_each_rcu(rdev, mddev) { 9289 if (rdev->desc_nr == nr) 9290 break; 9291 } 9292 9293 if (!rdev || rdev->desc_nr != nr) { 9294 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9295 return; 9296 } 9297 9298 err = read_rdev(mddev, rdev); 9299 if (err < 0) 9300 return; 9301 9302 check_sb_changes(mddev, rdev); 9303 9304 /* Read all rdev's to update recovery_offset */ 9305 rdev_for_each_rcu(rdev, mddev) { 9306 if (!test_bit(Faulty, &rdev->flags)) 9307 read_rdev(mddev, rdev); 9308 } 9309 } 9310 EXPORT_SYMBOL(md_reload_sb); 9311 9312 #ifndef MODULE 9313 9314 /* 9315 * Searches all registered partitions for autorun RAID arrays 9316 * at boot time. 9317 */ 9318 9319 static DEFINE_MUTEX(detected_devices_mutex); 9320 static LIST_HEAD(all_detected_devices); 9321 struct detected_devices_node { 9322 struct list_head list; 9323 dev_t dev; 9324 }; 9325 9326 void md_autodetect_dev(dev_t dev) 9327 { 9328 struct detected_devices_node *node_detected_dev; 9329 9330 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9331 if (node_detected_dev) { 9332 node_detected_dev->dev = dev; 9333 mutex_lock(&detected_devices_mutex); 9334 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9335 mutex_unlock(&detected_devices_mutex); 9336 } 9337 } 9338 9339 static void autostart_arrays(int part) 9340 { 9341 struct md_rdev *rdev; 9342 struct detected_devices_node *node_detected_dev; 9343 dev_t dev; 9344 int i_scanned, i_passed; 9345 9346 i_scanned = 0; 9347 i_passed = 0; 9348 9349 pr_info("md: Autodetecting RAID arrays.\n"); 9350 9351 mutex_lock(&detected_devices_mutex); 9352 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9353 i_scanned++; 9354 node_detected_dev = list_entry(all_detected_devices.next, 9355 struct detected_devices_node, list); 9356 list_del(&node_detected_dev->list); 9357 dev = node_detected_dev->dev; 9358 kfree(node_detected_dev); 9359 mutex_unlock(&detected_devices_mutex); 9360 rdev = md_import_device(dev,0, 90); 9361 mutex_lock(&detected_devices_mutex); 9362 if (IS_ERR(rdev)) 9363 continue; 9364 9365 if (test_bit(Faulty, &rdev->flags)) 9366 continue; 9367 9368 set_bit(AutoDetected, &rdev->flags); 9369 list_add(&rdev->same_set, &pending_raid_disks); 9370 i_passed++; 9371 } 9372 mutex_unlock(&detected_devices_mutex); 9373 9374 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9375 9376 autorun_devices(part); 9377 } 9378 9379 #endif /* !MODULE */ 9380 9381 static __exit void md_exit(void) 9382 { 9383 struct mddev *mddev; 9384 struct list_head *tmp; 9385 int delay = 1; 9386 9387 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9388 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9389 9390 unregister_blkdev(MD_MAJOR,"md"); 9391 unregister_blkdev(mdp_major, "mdp"); 9392 unregister_reboot_notifier(&md_notifier); 9393 unregister_sysctl_table(raid_table_header); 9394 9395 /* We cannot unload the modules while some process is 9396 * waiting for us in select() or poll() - wake them up 9397 */ 9398 md_unloading = 1; 9399 while (waitqueue_active(&md_event_waiters)) { 9400 /* not safe to leave yet */ 9401 wake_up(&md_event_waiters); 9402 msleep(delay); 9403 delay += delay; 9404 } 9405 remove_proc_entry("mdstat", NULL); 9406 9407 for_each_mddev(mddev, tmp) { 9408 export_array(mddev); 9409 mddev->ctime = 0; 9410 mddev->hold_active = 0; 9411 /* 9412 * for_each_mddev() will call mddev_put() at the end of each 9413 * iteration. As the mddev is now fully clear, this will 9414 * schedule the mddev for destruction by a workqueue, and the 9415 * destroy_workqueue() below will wait for that to complete. 9416 */ 9417 } 9418 destroy_workqueue(md_misc_wq); 9419 destroy_workqueue(md_wq); 9420 } 9421 9422 subsys_initcall(md_init); 9423 module_exit(md_exit) 9424 9425 static int get_ro(char *buffer, const struct kernel_param *kp) 9426 { 9427 return sprintf(buffer, "%d", start_readonly); 9428 } 9429 static int set_ro(const char *val, const struct kernel_param *kp) 9430 { 9431 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9432 } 9433 9434 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9435 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9436 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9437 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9438 9439 MODULE_LICENSE("GPL"); 9440 MODULE_DESCRIPTION("MD RAID framework"); 9441 MODULE_ALIAS("md"); 9442 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9443