xref: /openbmc/linux/drivers/md/md.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65 
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70 
71 /* pers_list is a list of registered personalities protected
72  * by pers_lock.
73  * pers_lock does extra service to protect accesses to
74  * mddev->thread when the mutex cannot be held.
75  */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78 
79 static struct kobj_type md_ktype;
80 
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84 
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89 
90 static int remove_and_add_spares(struct mddev *mddev,
91 				 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93 
94 /*
95  * Default number of read corrections we'll attempt on an rdev
96  * before ejecting it from the array. We divide the read error
97  * count by 2 for every hour elapsed between read errors.
98  */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104  * is 1000 KB/sec, so the extra system load does not show up that much.
105  * Increase it if you want to have more _guaranteed_ speed. Note that
106  * the RAID driver will use the maximum available bandwidth if the IO
107  * subsystem is idle. There is also an 'absolute maximum' reconstruction
108  * speed limit - in case reconstruction slows down your system despite
109  * idle IO detection.
110  *
111  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112  * or /sys/block/mdX/md/sync_speed_{min,max}
113  */
114 
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
117 static inline int speed_min(struct mddev *mddev)
118 {
119 	return mddev->sync_speed_min ?
120 		mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122 
123 static inline int speed_max(struct mddev *mddev)
124 {
125 	return mddev->sync_speed_max ?
126 		mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128 
129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 		return;
133 
134 	kvfree(rdev->serial);
135 	rdev->serial = NULL;
136 }
137 
138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 	struct md_rdev *rdev;
141 
142 	rdev_for_each(rdev, mddev)
143 		rdev_uninit_serial(rdev);
144 }
145 
146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 	/* serial_nums equals with BARRIER_BUCKETS_NR */
149 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 	struct serial_in_rdev *serial = NULL;
151 
152 	if (test_bit(CollisionCheck, &rdev->flags))
153 		return 0;
154 
155 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 			  GFP_KERNEL);
157 	if (!serial)
158 		return -ENOMEM;
159 
160 	for (i = 0; i < serial_nums; i++) {
161 		struct serial_in_rdev *serial_tmp = &serial[i];
162 
163 		spin_lock_init(&serial_tmp->serial_lock);
164 		serial_tmp->serial_rb = RB_ROOT_CACHED;
165 		init_waitqueue_head(&serial_tmp->serial_io_wait);
166 	}
167 
168 	rdev->serial = serial;
169 	set_bit(CollisionCheck, &rdev->flags);
170 
171 	return 0;
172 }
173 
174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 	struct md_rdev *rdev;
177 	int ret = 0;
178 
179 	rdev_for_each(rdev, mddev) {
180 		ret = rdev_init_serial(rdev);
181 		if (ret)
182 			break;
183 	}
184 
185 	/* Free all resources if pool is not existed */
186 	if (ret && !mddev->serial_info_pool)
187 		rdevs_uninit_serial(mddev);
188 
189 	return ret;
190 }
191 
192 /*
193  * rdev needs to enable serial stuffs if it meets the conditions:
194  * 1. it is multi-queue device flaged with writemostly.
195  * 2. the write-behind mode is enabled.
196  */
197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 		test_bit(WriteMostly, &rdev->flags));
202 }
203 
204 /*
205  * Init resource for rdev(s), then create serial_info_pool if:
206  * 1. rdev is the first device which return true from rdev_enable_serial.
207  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208  */
209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 			      bool is_suspend)
211 {
212 	int ret = 0;
213 
214 	if (rdev && !rdev_need_serial(rdev) &&
215 	    !test_bit(CollisionCheck, &rdev->flags))
216 		return;
217 
218 	if (!is_suspend)
219 		mddev_suspend(mddev);
220 
221 	if (!rdev)
222 		ret = rdevs_init_serial(mddev);
223 	else
224 		ret = rdev_init_serial(rdev);
225 	if (ret)
226 		goto abort;
227 
228 	if (mddev->serial_info_pool == NULL) {
229 		/*
230 		 * already in memalloc noio context by
231 		 * mddev_suspend()
232 		 */
233 		mddev->serial_info_pool =
234 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 						sizeof(struct serial_info));
236 		if (!mddev->serial_info_pool) {
237 			rdevs_uninit_serial(mddev);
238 			pr_err("can't alloc memory pool for serialization\n");
239 		}
240 	}
241 
242 abort:
243 	if (!is_suspend)
244 		mddev_resume(mddev);
245 }
246 
247 /*
248  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249  * 1. rdev is the last device flaged with CollisionCheck.
250  * 2. when bitmap is destroyed while policy is not enabled.
251  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252  */
253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 			       bool is_suspend)
255 {
256 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 		return;
258 
259 	if (mddev->serial_info_pool) {
260 		struct md_rdev *temp;
261 		int num = 0; /* used to track if other rdevs need the pool */
262 
263 		if (!is_suspend)
264 			mddev_suspend(mddev);
265 		rdev_for_each(temp, mddev) {
266 			if (!rdev) {
267 				if (!mddev->serialize_policy ||
268 				    !rdev_need_serial(temp))
269 					rdev_uninit_serial(temp);
270 				else
271 					num++;
272 			} else if (temp != rdev &&
273 				   test_bit(CollisionCheck, &temp->flags))
274 				num++;
275 		}
276 
277 		if (rdev)
278 			rdev_uninit_serial(rdev);
279 
280 		if (num)
281 			pr_info("The mempool could be used by other devices\n");
282 		else {
283 			mempool_destroy(mddev->serial_info_pool);
284 			mddev->serial_info_pool = NULL;
285 		}
286 		if (!is_suspend)
287 			mddev_resume(mddev);
288 	}
289 }
290 
291 static struct ctl_table_header *raid_table_header;
292 
293 static struct ctl_table raid_table[] = {
294 	{
295 		.procname	= "speed_limit_min",
296 		.data		= &sysctl_speed_limit_min,
297 		.maxlen		= sizeof(int),
298 		.mode		= S_IRUGO|S_IWUSR,
299 		.proc_handler	= proc_dointvec,
300 	},
301 	{
302 		.procname	= "speed_limit_max",
303 		.data		= &sysctl_speed_limit_max,
304 		.maxlen		= sizeof(int),
305 		.mode		= S_IRUGO|S_IWUSR,
306 		.proc_handler	= proc_dointvec,
307 	},
308 	{ }
309 };
310 
311 static struct ctl_table raid_dir_table[] = {
312 	{
313 		.procname	= "raid",
314 		.maxlen		= 0,
315 		.mode		= S_IRUGO|S_IXUGO,
316 		.child		= raid_table,
317 	},
318 	{ }
319 };
320 
321 static struct ctl_table raid_root_table[] = {
322 	{
323 		.procname	= "dev",
324 		.maxlen		= 0,
325 		.mode		= 0555,
326 		.child		= raid_dir_table,
327 	},
328 	{  }
329 };
330 
331 static int start_readonly;
332 
333 /*
334  * The original mechanism for creating an md device is to create
335  * a device node in /dev and to open it.  This causes races with device-close.
336  * The preferred method is to write to the "new_array" module parameter.
337  * This can avoid races.
338  * Setting create_on_open to false disables the original mechanism
339  * so all the races disappear.
340  */
341 static bool create_on_open = true;
342 
343 /*
344  * We have a system wide 'event count' that is incremented
345  * on any 'interesting' event, and readers of /proc/mdstat
346  * can use 'poll' or 'select' to find out when the event
347  * count increases.
348  *
349  * Events are:
350  *  start array, stop array, error, add device, remove device,
351  *  start build, activate spare
352  */
353 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
354 static atomic_t md_event_count;
355 void md_new_event(struct mddev *mddev)
356 {
357 	atomic_inc(&md_event_count);
358 	wake_up(&md_event_waiters);
359 }
360 EXPORT_SYMBOL_GPL(md_new_event);
361 
362 /*
363  * Enables to iterate over all existing md arrays
364  * all_mddevs_lock protects this list.
365  */
366 static LIST_HEAD(all_mddevs);
367 static DEFINE_SPINLOCK(all_mddevs_lock);
368 
369 /*
370  * iterates through all used mddevs in the system.
371  * We take care to grab the all_mddevs_lock whenever navigating
372  * the list, and to always hold a refcount when unlocked.
373  * Any code which breaks out of this loop while own
374  * a reference to the current mddev and must mddev_put it.
375  */
376 #define for_each_mddev(_mddev,_tmp)					\
377 									\
378 	for (({ spin_lock(&all_mddevs_lock);				\
379 		_tmp = all_mddevs.next;					\
380 		_mddev = NULL;});					\
381 	     ({ if (_tmp != &all_mddevs)				\
382 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
383 		spin_unlock(&all_mddevs_lock);				\
384 		if (_mddev) mddev_put(_mddev);				\
385 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
386 		_tmp != &all_mddevs;});					\
387 	     ({ spin_lock(&all_mddevs_lock);				\
388 		_tmp = _tmp->next;})					\
389 		)
390 
391 /* Rather than calling directly into the personality make_request function,
392  * IO requests come here first so that we can check if the device is
393  * being suspended pending a reconfiguration.
394  * We hold a refcount over the call to ->make_request.  By the time that
395  * call has finished, the bio has been linked into some internal structure
396  * and so is visible to ->quiesce(), so we don't need the refcount any more.
397  */
398 static bool is_suspended(struct mddev *mddev, struct bio *bio)
399 {
400 	if (mddev->suspended)
401 		return true;
402 	if (bio_data_dir(bio) != WRITE)
403 		return false;
404 	if (mddev->suspend_lo >= mddev->suspend_hi)
405 		return false;
406 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
407 		return false;
408 	if (bio_end_sector(bio) < mddev->suspend_lo)
409 		return false;
410 	return true;
411 }
412 
413 void md_handle_request(struct mddev *mddev, struct bio *bio)
414 {
415 check_suspended:
416 	rcu_read_lock();
417 	if (is_suspended(mddev, bio)) {
418 		DEFINE_WAIT(__wait);
419 		for (;;) {
420 			prepare_to_wait(&mddev->sb_wait, &__wait,
421 					TASK_UNINTERRUPTIBLE);
422 			if (!is_suspended(mddev, bio))
423 				break;
424 			rcu_read_unlock();
425 			schedule();
426 			rcu_read_lock();
427 		}
428 		finish_wait(&mddev->sb_wait, &__wait);
429 	}
430 	atomic_inc(&mddev->active_io);
431 	rcu_read_unlock();
432 
433 	if (!mddev->pers->make_request(mddev, bio)) {
434 		atomic_dec(&mddev->active_io);
435 		wake_up(&mddev->sb_wait);
436 		goto check_suspended;
437 	}
438 
439 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
440 		wake_up(&mddev->sb_wait);
441 }
442 EXPORT_SYMBOL(md_handle_request);
443 
444 static blk_qc_t md_submit_bio(struct bio *bio)
445 {
446 	const int rw = bio_data_dir(bio);
447 	struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
448 
449 	if (mddev == NULL || mddev->pers == NULL) {
450 		bio_io_error(bio);
451 		return BLK_QC_T_NONE;
452 	}
453 
454 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
455 		bio_io_error(bio);
456 		return BLK_QC_T_NONE;
457 	}
458 
459 	blk_queue_split(&bio);
460 
461 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
462 		if (bio_sectors(bio) != 0)
463 			bio->bi_status = BLK_STS_IOERR;
464 		bio_endio(bio);
465 		return BLK_QC_T_NONE;
466 	}
467 
468 	/* bio could be mergeable after passing to underlayer */
469 	bio->bi_opf &= ~REQ_NOMERGE;
470 
471 	md_handle_request(mddev, bio);
472 
473 	return BLK_QC_T_NONE;
474 }
475 
476 /* mddev_suspend makes sure no new requests are submitted
477  * to the device, and that any requests that have been submitted
478  * are completely handled.
479  * Once mddev_detach() is called and completes, the module will be
480  * completely unused.
481  */
482 void mddev_suspend(struct mddev *mddev)
483 {
484 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
485 	lockdep_assert_held(&mddev->reconfig_mutex);
486 	if (mddev->suspended++)
487 		return;
488 	synchronize_rcu();
489 	wake_up(&mddev->sb_wait);
490 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
491 	smp_mb__after_atomic();
492 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
493 	mddev->pers->quiesce(mddev, 1);
494 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
495 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
496 
497 	del_timer_sync(&mddev->safemode_timer);
498 	/* restrict memory reclaim I/O during raid array is suspend */
499 	mddev->noio_flag = memalloc_noio_save();
500 }
501 EXPORT_SYMBOL_GPL(mddev_suspend);
502 
503 void mddev_resume(struct mddev *mddev)
504 {
505 	/* entred the memalloc scope from mddev_suspend() */
506 	memalloc_noio_restore(mddev->noio_flag);
507 	lockdep_assert_held(&mddev->reconfig_mutex);
508 	if (--mddev->suspended)
509 		return;
510 	wake_up(&mddev->sb_wait);
511 	mddev->pers->quiesce(mddev, 0);
512 
513 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
514 	md_wakeup_thread(mddev->thread);
515 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
516 }
517 EXPORT_SYMBOL_GPL(mddev_resume);
518 
519 /*
520  * Generic flush handling for md
521  */
522 
523 static void md_end_flush(struct bio *bio)
524 {
525 	struct md_rdev *rdev = bio->bi_private;
526 	struct mddev *mddev = rdev->mddev;
527 
528 	rdev_dec_pending(rdev, mddev);
529 
530 	if (atomic_dec_and_test(&mddev->flush_pending)) {
531 		/* The pre-request flush has finished */
532 		queue_work(md_wq, &mddev->flush_work);
533 	}
534 	bio_put(bio);
535 }
536 
537 static void md_submit_flush_data(struct work_struct *ws);
538 
539 static void submit_flushes(struct work_struct *ws)
540 {
541 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
542 	struct md_rdev *rdev;
543 
544 	mddev->start_flush = ktime_get_boottime();
545 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
546 	atomic_set(&mddev->flush_pending, 1);
547 	rcu_read_lock();
548 	rdev_for_each_rcu(rdev, mddev)
549 		if (rdev->raid_disk >= 0 &&
550 		    !test_bit(Faulty, &rdev->flags)) {
551 			/* Take two references, one is dropped
552 			 * when request finishes, one after
553 			 * we reclaim rcu_read_lock
554 			 */
555 			struct bio *bi;
556 			atomic_inc(&rdev->nr_pending);
557 			atomic_inc(&rdev->nr_pending);
558 			rcu_read_unlock();
559 			bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
560 			bi->bi_end_io = md_end_flush;
561 			bi->bi_private = rdev;
562 			bio_set_dev(bi, rdev->bdev);
563 			bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
564 			atomic_inc(&mddev->flush_pending);
565 			submit_bio(bi);
566 			rcu_read_lock();
567 			rdev_dec_pending(rdev, mddev);
568 		}
569 	rcu_read_unlock();
570 	if (atomic_dec_and_test(&mddev->flush_pending))
571 		queue_work(md_wq, &mddev->flush_work);
572 }
573 
574 static void md_submit_flush_data(struct work_struct *ws)
575 {
576 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
577 	struct bio *bio = mddev->flush_bio;
578 
579 	/*
580 	 * must reset flush_bio before calling into md_handle_request to avoid a
581 	 * deadlock, because other bios passed md_handle_request suspend check
582 	 * could wait for this and below md_handle_request could wait for those
583 	 * bios because of suspend check
584 	 */
585 	spin_lock_irq(&mddev->lock);
586 	mddev->prev_flush_start = mddev->start_flush;
587 	mddev->flush_bio = NULL;
588 	spin_unlock_irq(&mddev->lock);
589 	wake_up(&mddev->sb_wait);
590 
591 	if (bio->bi_iter.bi_size == 0) {
592 		/* an empty barrier - all done */
593 		bio_endio(bio);
594 	} else {
595 		bio->bi_opf &= ~REQ_PREFLUSH;
596 		md_handle_request(mddev, bio);
597 	}
598 }
599 
600 /*
601  * Manages consolidation of flushes and submitting any flushes needed for
602  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
603  * being finished in another context.  Returns false if the flushing is
604  * complete but still needs the I/O portion of the bio to be processed.
605  */
606 bool md_flush_request(struct mddev *mddev, struct bio *bio)
607 {
608 	ktime_t req_start = ktime_get_boottime();
609 	spin_lock_irq(&mddev->lock);
610 	/* flush requests wait until ongoing flush completes,
611 	 * hence coalescing all the pending requests.
612 	 */
613 	wait_event_lock_irq(mddev->sb_wait,
614 			    !mddev->flush_bio ||
615 			    ktime_before(req_start, mddev->prev_flush_start),
616 			    mddev->lock);
617 	/* new request after previous flush is completed */
618 	if (ktime_after(req_start, mddev->prev_flush_start)) {
619 		WARN_ON(mddev->flush_bio);
620 		mddev->flush_bio = bio;
621 		bio = NULL;
622 	}
623 	spin_unlock_irq(&mddev->lock);
624 
625 	if (!bio) {
626 		INIT_WORK(&mddev->flush_work, submit_flushes);
627 		queue_work(md_wq, &mddev->flush_work);
628 	} else {
629 		/* flush was performed for some other bio while we waited. */
630 		if (bio->bi_iter.bi_size == 0)
631 			/* an empty barrier - all done */
632 			bio_endio(bio);
633 		else {
634 			bio->bi_opf &= ~REQ_PREFLUSH;
635 			return false;
636 		}
637 	}
638 	return true;
639 }
640 EXPORT_SYMBOL(md_flush_request);
641 
642 static inline struct mddev *mddev_get(struct mddev *mddev)
643 {
644 	atomic_inc(&mddev->active);
645 	return mddev;
646 }
647 
648 static void mddev_delayed_delete(struct work_struct *ws);
649 
650 static void mddev_put(struct mddev *mddev)
651 {
652 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
653 		return;
654 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
655 	    mddev->ctime == 0 && !mddev->hold_active) {
656 		/* Array is not configured at all, and not held active,
657 		 * so destroy it */
658 		list_del_init(&mddev->all_mddevs);
659 
660 		/*
661 		 * Call queue_work inside the spinlock so that
662 		 * flush_workqueue() after mddev_find will succeed in waiting
663 		 * for the work to be done.
664 		 */
665 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
666 		queue_work(md_misc_wq, &mddev->del_work);
667 	}
668 	spin_unlock(&all_mddevs_lock);
669 }
670 
671 static void md_safemode_timeout(struct timer_list *t);
672 
673 void mddev_init(struct mddev *mddev)
674 {
675 	kobject_init(&mddev->kobj, &md_ktype);
676 	mutex_init(&mddev->open_mutex);
677 	mutex_init(&mddev->reconfig_mutex);
678 	mutex_init(&mddev->bitmap_info.mutex);
679 	INIT_LIST_HEAD(&mddev->disks);
680 	INIT_LIST_HEAD(&mddev->all_mddevs);
681 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
682 	atomic_set(&mddev->active, 1);
683 	atomic_set(&mddev->openers, 0);
684 	atomic_set(&mddev->active_io, 0);
685 	spin_lock_init(&mddev->lock);
686 	atomic_set(&mddev->flush_pending, 0);
687 	init_waitqueue_head(&mddev->sb_wait);
688 	init_waitqueue_head(&mddev->recovery_wait);
689 	mddev->reshape_position = MaxSector;
690 	mddev->reshape_backwards = 0;
691 	mddev->last_sync_action = "none";
692 	mddev->resync_min = 0;
693 	mddev->resync_max = MaxSector;
694 	mddev->level = LEVEL_NONE;
695 }
696 EXPORT_SYMBOL_GPL(mddev_init);
697 
698 static struct mddev *mddev_find_locked(dev_t unit)
699 {
700 	struct mddev *mddev;
701 
702 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
703 		if (mddev->unit == unit)
704 			return mddev;
705 
706 	return NULL;
707 }
708 
709 /* find an unused unit number */
710 static dev_t mddev_alloc_unit(void)
711 {
712 	static int next_minor = 512;
713 	int start = next_minor;
714 	bool is_free = 0;
715 	dev_t dev = 0;
716 
717 	while (!is_free) {
718 		dev = MKDEV(MD_MAJOR, next_minor);
719 		next_minor++;
720 		if (next_minor > MINORMASK)
721 			next_minor = 0;
722 		if (next_minor == start)
723 			return 0;		/* Oh dear, all in use. */
724 		is_free = !mddev_find_locked(dev);
725 	}
726 
727 	return dev;
728 }
729 
730 static struct mddev *mddev_find(dev_t unit)
731 {
732 	struct mddev *mddev;
733 
734 	if (MAJOR(unit) != MD_MAJOR)
735 		unit &= ~((1 << MdpMinorShift) - 1);
736 
737 	spin_lock(&all_mddevs_lock);
738 	mddev = mddev_find_locked(unit);
739 	if (mddev)
740 		mddev_get(mddev);
741 	spin_unlock(&all_mddevs_lock);
742 
743 	return mddev;
744 }
745 
746 static struct mddev *mddev_alloc(dev_t unit)
747 {
748 	struct mddev *new;
749 	int error;
750 
751 	if (unit && MAJOR(unit) != MD_MAJOR)
752 		unit &= ~((1 << MdpMinorShift) - 1);
753 
754 	new = kzalloc(sizeof(*new), GFP_KERNEL);
755 	if (!new)
756 		return ERR_PTR(-ENOMEM);
757 	mddev_init(new);
758 
759 	spin_lock(&all_mddevs_lock);
760 	if (unit) {
761 		error = -EEXIST;
762 		if (mddev_find_locked(unit))
763 			goto out_free_new;
764 		new->unit = unit;
765 		if (MAJOR(unit) == MD_MAJOR)
766 			new->md_minor = MINOR(unit);
767 		else
768 			new->md_minor = MINOR(unit) >> MdpMinorShift;
769 		new->hold_active = UNTIL_IOCTL;
770 	} else {
771 		error = -ENODEV;
772 		new->unit = mddev_alloc_unit();
773 		if (!new->unit)
774 			goto out_free_new;
775 		new->md_minor = MINOR(new->unit);
776 		new->hold_active = UNTIL_STOP;
777 	}
778 
779 	list_add(&new->all_mddevs, &all_mddevs);
780 	spin_unlock(&all_mddevs_lock);
781 	return new;
782 out_free_new:
783 	spin_unlock(&all_mddevs_lock);
784 	kfree(new);
785 	return ERR_PTR(error);
786 }
787 
788 static const struct attribute_group md_redundancy_group;
789 
790 void mddev_unlock(struct mddev *mddev)
791 {
792 	if (mddev->to_remove) {
793 		/* These cannot be removed under reconfig_mutex as
794 		 * an access to the files will try to take reconfig_mutex
795 		 * while holding the file unremovable, which leads to
796 		 * a deadlock.
797 		 * So hold set sysfs_active while the remove in happeing,
798 		 * and anything else which might set ->to_remove or my
799 		 * otherwise change the sysfs namespace will fail with
800 		 * -EBUSY if sysfs_active is still set.
801 		 * We set sysfs_active under reconfig_mutex and elsewhere
802 		 * test it under the same mutex to ensure its correct value
803 		 * is seen.
804 		 */
805 		const struct attribute_group *to_remove = mddev->to_remove;
806 		mddev->to_remove = NULL;
807 		mddev->sysfs_active = 1;
808 		mutex_unlock(&mddev->reconfig_mutex);
809 
810 		if (mddev->kobj.sd) {
811 			if (to_remove != &md_redundancy_group)
812 				sysfs_remove_group(&mddev->kobj, to_remove);
813 			if (mddev->pers == NULL ||
814 			    mddev->pers->sync_request == NULL) {
815 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
816 				if (mddev->sysfs_action)
817 					sysfs_put(mddev->sysfs_action);
818 				if (mddev->sysfs_completed)
819 					sysfs_put(mddev->sysfs_completed);
820 				if (mddev->sysfs_degraded)
821 					sysfs_put(mddev->sysfs_degraded);
822 				mddev->sysfs_action = NULL;
823 				mddev->sysfs_completed = NULL;
824 				mddev->sysfs_degraded = NULL;
825 			}
826 		}
827 		mddev->sysfs_active = 0;
828 	} else
829 		mutex_unlock(&mddev->reconfig_mutex);
830 
831 	/* As we've dropped the mutex we need a spinlock to
832 	 * make sure the thread doesn't disappear
833 	 */
834 	spin_lock(&pers_lock);
835 	md_wakeup_thread(mddev->thread);
836 	wake_up(&mddev->sb_wait);
837 	spin_unlock(&pers_lock);
838 }
839 EXPORT_SYMBOL_GPL(mddev_unlock);
840 
841 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
842 {
843 	struct md_rdev *rdev;
844 
845 	rdev_for_each_rcu(rdev, mddev)
846 		if (rdev->desc_nr == nr)
847 			return rdev;
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
852 
853 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
854 {
855 	struct md_rdev *rdev;
856 
857 	rdev_for_each(rdev, mddev)
858 		if (rdev->bdev->bd_dev == dev)
859 			return rdev;
860 
861 	return NULL;
862 }
863 
864 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
865 {
866 	struct md_rdev *rdev;
867 
868 	rdev_for_each_rcu(rdev, mddev)
869 		if (rdev->bdev->bd_dev == dev)
870 			return rdev;
871 
872 	return NULL;
873 }
874 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
875 
876 static struct md_personality *find_pers(int level, char *clevel)
877 {
878 	struct md_personality *pers;
879 	list_for_each_entry(pers, &pers_list, list) {
880 		if (level != LEVEL_NONE && pers->level == level)
881 			return pers;
882 		if (strcmp(pers->name, clevel)==0)
883 			return pers;
884 	}
885 	return NULL;
886 }
887 
888 /* return the offset of the super block in 512byte sectors */
889 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
890 {
891 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
892 	return MD_NEW_SIZE_SECTORS(num_sectors);
893 }
894 
895 static int alloc_disk_sb(struct md_rdev *rdev)
896 {
897 	rdev->sb_page = alloc_page(GFP_KERNEL);
898 	if (!rdev->sb_page)
899 		return -ENOMEM;
900 	return 0;
901 }
902 
903 void md_rdev_clear(struct md_rdev *rdev)
904 {
905 	if (rdev->sb_page) {
906 		put_page(rdev->sb_page);
907 		rdev->sb_loaded = 0;
908 		rdev->sb_page = NULL;
909 		rdev->sb_start = 0;
910 		rdev->sectors = 0;
911 	}
912 	if (rdev->bb_page) {
913 		put_page(rdev->bb_page);
914 		rdev->bb_page = NULL;
915 	}
916 	badblocks_exit(&rdev->badblocks);
917 }
918 EXPORT_SYMBOL_GPL(md_rdev_clear);
919 
920 static void super_written(struct bio *bio)
921 {
922 	struct md_rdev *rdev = bio->bi_private;
923 	struct mddev *mddev = rdev->mddev;
924 
925 	if (bio->bi_status) {
926 		pr_err("md: %s gets error=%d\n", __func__,
927 		       blk_status_to_errno(bio->bi_status));
928 		md_error(mddev, rdev);
929 		if (!test_bit(Faulty, &rdev->flags)
930 		    && (bio->bi_opf & MD_FAILFAST)) {
931 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
932 			set_bit(LastDev, &rdev->flags);
933 		}
934 	} else
935 		clear_bit(LastDev, &rdev->flags);
936 
937 	if (atomic_dec_and_test(&mddev->pending_writes))
938 		wake_up(&mddev->sb_wait);
939 	rdev_dec_pending(rdev, mddev);
940 	bio_put(bio);
941 }
942 
943 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
944 		   sector_t sector, int size, struct page *page)
945 {
946 	/* write first size bytes of page to sector of rdev
947 	 * Increment mddev->pending_writes before returning
948 	 * and decrement it on completion, waking up sb_wait
949 	 * if zero is reached.
950 	 * If an error occurred, call md_error
951 	 */
952 	struct bio *bio;
953 	int ff = 0;
954 
955 	if (!page)
956 		return;
957 
958 	if (test_bit(Faulty, &rdev->flags))
959 		return;
960 
961 	bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
962 
963 	atomic_inc(&rdev->nr_pending);
964 
965 	bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
966 	bio->bi_iter.bi_sector = sector;
967 	bio_add_page(bio, page, size, 0);
968 	bio->bi_private = rdev;
969 	bio->bi_end_io = super_written;
970 
971 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
972 	    test_bit(FailFast, &rdev->flags) &&
973 	    !test_bit(LastDev, &rdev->flags))
974 		ff = MD_FAILFAST;
975 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
976 
977 	atomic_inc(&mddev->pending_writes);
978 	submit_bio(bio);
979 }
980 
981 int md_super_wait(struct mddev *mddev)
982 {
983 	/* wait for all superblock writes that were scheduled to complete */
984 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
985 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
986 		return -EAGAIN;
987 	return 0;
988 }
989 
990 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
991 		 struct page *page, int op, int op_flags, bool metadata_op)
992 {
993 	struct bio bio;
994 	struct bio_vec bvec;
995 
996 	bio_init(&bio, &bvec, 1);
997 
998 	if (metadata_op && rdev->meta_bdev)
999 		bio_set_dev(&bio, rdev->meta_bdev);
1000 	else
1001 		bio_set_dev(&bio, rdev->bdev);
1002 	bio.bi_opf = op | op_flags;
1003 	if (metadata_op)
1004 		bio.bi_iter.bi_sector = sector + rdev->sb_start;
1005 	else if (rdev->mddev->reshape_position != MaxSector &&
1006 		 (rdev->mddev->reshape_backwards ==
1007 		  (sector >= rdev->mddev->reshape_position)))
1008 		bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1009 	else
1010 		bio.bi_iter.bi_sector = sector + rdev->data_offset;
1011 	bio_add_page(&bio, page, size, 0);
1012 
1013 	submit_bio_wait(&bio);
1014 
1015 	return !bio.bi_status;
1016 }
1017 EXPORT_SYMBOL_GPL(sync_page_io);
1018 
1019 static int read_disk_sb(struct md_rdev *rdev, int size)
1020 {
1021 	char b[BDEVNAME_SIZE];
1022 
1023 	if (rdev->sb_loaded)
1024 		return 0;
1025 
1026 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1027 		goto fail;
1028 	rdev->sb_loaded = 1;
1029 	return 0;
1030 
1031 fail:
1032 	pr_err("md: disabled device %s, could not read superblock.\n",
1033 	       bdevname(rdev->bdev,b));
1034 	return -EINVAL;
1035 }
1036 
1037 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1038 {
1039 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1040 		sb1->set_uuid1 == sb2->set_uuid1 &&
1041 		sb1->set_uuid2 == sb2->set_uuid2 &&
1042 		sb1->set_uuid3 == sb2->set_uuid3;
1043 }
1044 
1045 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1046 {
1047 	int ret;
1048 	mdp_super_t *tmp1, *tmp2;
1049 
1050 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1051 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1052 
1053 	if (!tmp1 || !tmp2) {
1054 		ret = 0;
1055 		goto abort;
1056 	}
1057 
1058 	*tmp1 = *sb1;
1059 	*tmp2 = *sb2;
1060 
1061 	/*
1062 	 * nr_disks is not constant
1063 	 */
1064 	tmp1->nr_disks = 0;
1065 	tmp2->nr_disks = 0;
1066 
1067 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1068 abort:
1069 	kfree(tmp1);
1070 	kfree(tmp2);
1071 	return ret;
1072 }
1073 
1074 static u32 md_csum_fold(u32 csum)
1075 {
1076 	csum = (csum & 0xffff) + (csum >> 16);
1077 	return (csum & 0xffff) + (csum >> 16);
1078 }
1079 
1080 static unsigned int calc_sb_csum(mdp_super_t *sb)
1081 {
1082 	u64 newcsum = 0;
1083 	u32 *sb32 = (u32*)sb;
1084 	int i;
1085 	unsigned int disk_csum, csum;
1086 
1087 	disk_csum = sb->sb_csum;
1088 	sb->sb_csum = 0;
1089 
1090 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1091 		newcsum += sb32[i];
1092 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1093 
1094 #ifdef CONFIG_ALPHA
1095 	/* This used to use csum_partial, which was wrong for several
1096 	 * reasons including that different results are returned on
1097 	 * different architectures.  It isn't critical that we get exactly
1098 	 * the same return value as before (we always csum_fold before
1099 	 * testing, and that removes any differences).  However as we
1100 	 * know that csum_partial always returned a 16bit value on
1101 	 * alphas, do a fold to maximise conformity to previous behaviour.
1102 	 */
1103 	sb->sb_csum = md_csum_fold(disk_csum);
1104 #else
1105 	sb->sb_csum = disk_csum;
1106 #endif
1107 	return csum;
1108 }
1109 
1110 /*
1111  * Handle superblock details.
1112  * We want to be able to handle multiple superblock formats
1113  * so we have a common interface to them all, and an array of
1114  * different handlers.
1115  * We rely on user-space to write the initial superblock, and support
1116  * reading and updating of superblocks.
1117  * Interface methods are:
1118  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1119  *      loads and validates a superblock on dev.
1120  *      if refdev != NULL, compare superblocks on both devices
1121  *    Return:
1122  *      0 - dev has a superblock that is compatible with refdev
1123  *      1 - dev has a superblock that is compatible and newer than refdev
1124  *          so dev should be used as the refdev in future
1125  *     -EINVAL superblock incompatible or invalid
1126  *     -othererror e.g. -EIO
1127  *
1128  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1129  *      Verify that dev is acceptable into mddev.
1130  *       The first time, mddev->raid_disks will be 0, and data from
1131  *       dev should be merged in.  Subsequent calls check that dev
1132  *       is new enough.  Return 0 or -EINVAL
1133  *
1134  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1135  *     Update the superblock for rdev with data in mddev
1136  *     This does not write to disc.
1137  *
1138  */
1139 
1140 struct super_type  {
1141 	char		    *name;
1142 	struct module	    *owner;
1143 	int		    (*load_super)(struct md_rdev *rdev,
1144 					  struct md_rdev *refdev,
1145 					  int minor_version);
1146 	int		    (*validate_super)(struct mddev *mddev,
1147 					      struct md_rdev *rdev);
1148 	void		    (*sync_super)(struct mddev *mddev,
1149 					  struct md_rdev *rdev);
1150 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1151 						sector_t num_sectors);
1152 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1153 						unsigned long long new_offset);
1154 };
1155 
1156 /*
1157  * Check that the given mddev has no bitmap.
1158  *
1159  * This function is called from the run method of all personalities that do not
1160  * support bitmaps. It prints an error message and returns non-zero if mddev
1161  * has a bitmap. Otherwise, it returns 0.
1162  *
1163  */
1164 int md_check_no_bitmap(struct mddev *mddev)
1165 {
1166 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1167 		return 0;
1168 	pr_warn("%s: bitmaps are not supported for %s\n",
1169 		mdname(mddev), mddev->pers->name);
1170 	return 1;
1171 }
1172 EXPORT_SYMBOL(md_check_no_bitmap);
1173 
1174 /*
1175  * load_super for 0.90.0
1176  */
1177 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1178 {
1179 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1180 	mdp_super_t *sb;
1181 	int ret;
1182 	bool spare_disk = true;
1183 
1184 	/*
1185 	 * Calculate the position of the superblock (512byte sectors),
1186 	 * it's at the end of the disk.
1187 	 *
1188 	 * It also happens to be a multiple of 4Kb.
1189 	 */
1190 	rdev->sb_start = calc_dev_sboffset(rdev);
1191 
1192 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1193 	if (ret)
1194 		return ret;
1195 
1196 	ret = -EINVAL;
1197 
1198 	bdevname(rdev->bdev, b);
1199 	sb = page_address(rdev->sb_page);
1200 
1201 	if (sb->md_magic != MD_SB_MAGIC) {
1202 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1203 		goto abort;
1204 	}
1205 
1206 	if (sb->major_version != 0 ||
1207 	    sb->minor_version < 90 ||
1208 	    sb->minor_version > 91) {
1209 		pr_warn("Bad version number %d.%d on %s\n",
1210 			sb->major_version, sb->minor_version, b);
1211 		goto abort;
1212 	}
1213 
1214 	if (sb->raid_disks <= 0)
1215 		goto abort;
1216 
1217 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1218 		pr_warn("md: invalid superblock checksum on %s\n", b);
1219 		goto abort;
1220 	}
1221 
1222 	rdev->preferred_minor = sb->md_minor;
1223 	rdev->data_offset = 0;
1224 	rdev->new_data_offset = 0;
1225 	rdev->sb_size = MD_SB_BYTES;
1226 	rdev->badblocks.shift = -1;
1227 
1228 	if (sb->level == LEVEL_MULTIPATH)
1229 		rdev->desc_nr = -1;
1230 	else
1231 		rdev->desc_nr = sb->this_disk.number;
1232 
1233 	/* not spare disk, or LEVEL_MULTIPATH */
1234 	if (sb->level == LEVEL_MULTIPATH ||
1235 		(rdev->desc_nr >= 0 &&
1236 		 rdev->desc_nr < MD_SB_DISKS &&
1237 		 sb->disks[rdev->desc_nr].state &
1238 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1239 		spare_disk = false;
1240 
1241 	if (!refdev) {
1242 		if (!spare_disk)
1243 			ret = 1;
1244 		else
1245 			ret = 0;
1246 	} else {
1247 		__u64 ev1, ev2;
1248 		mdp_super_t *refsb = page_address(refdev->sb_page);
1249 		if (!md_uuid_equal(refsb, sb)) {
1250 			pr_warn("md: %s has different UUID to %s\n",
1251 				b, bdevname(refdev->bdev,b2));
1252 			goto abort;
1253 		}
1254 		if (!md_sb_equal(refsb, sb)) {
1255 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1256 				b, bdevname(refdev->bdev, b2));
1257 			goto abort;
1258 		}
1259 		ev1 = md_event(sb);
1260 		ev2 = md_event(refsb);
1261 
1262 		if (!spare_disk && ev1 > ev2)
1263 			ret = 1;
1264 		else
1265 			ret = 0;
1266 	}
1267 	rdev->sectors = rdev->sb_start;
1268 	/* Limit to 4TB as metadata cannot record more than that.
1269 	 * (not needed for Linear and RAID0 as metadata doesn't
1270 	 * record this size)
1271 	 */
1272 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1273 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1274 
1275 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1276 		/* "this cannot possibly happen" ... */
1277 		ret = -EINVAL;
1278 
1279  abort:
1280 	return ret;
1281 }
1282 
1283 /*
1284  * validate_super for 0.90.0
1285  */
1286 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1287 {
1288 	mdp_disk_t *desc;
1289 	mdp_super_t *sb = page_address(rdev->sb_page);
1290 	__u64 ev1 = md_event(sb);
1291 
1292 	rdev->raid_disk = -1;
1293 	clear_bit(Faulty, &rdev->flags);
1294 	clear_bit(In_sync, &rdev->flags);
1295 	clear_bit(Bitmap_sync, &rdev->flags);
1296 	clear_bit(WriteMostly, &rdev->flags);
1297 
1298 	if (mddev->raid_disks == 0) {
1299 		mddev->major_version = 0;
1300 		mddev->minor_version = sb->minor_version;
1301 		mddev->patch_version = sb->patch_version;
1302 		mddev->external = 0;
1303 		mddev->chunk_sectors = sb->chunk_size >> 9;
1304 		mddev->ctime = sb->ctime;
1305 		mddev->utime = sb->utime;
1306 		mddev->level = sb->level;
1307 		mddev->clevel[0] = 0;
1308 		mddev->layout = sb->layout;
1309 		mddev->raid_disks = sb->raid_disks;
1310 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1311 		mddev->events = ev1;
1312 		mddev->bitmap_info.offset = 0;
1313 		mddev->bitmap_info.space = 0;
1314 		/* bitmap can use 60 K after the 4K superblocks */
1315 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1316 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1317 		mddev->reshape_backwards = 0;
1318 
1319 		if (mddev->minor_version >= 91) {
1320 			mddev->reshape_position = sb->reshape_position;
1321 			mddev->delta_disks = sb->delta_disks;
1322 			mddev->new_level = sb->new_level;
1323 			mddev->new_layout = sb->new_layout;
1324 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1325 			if (mddev->delta_disks < 0)
1326 				mddev->reshape_backwards = 1;
1327 		} else {
1328 			mddev->reshape_position = MaxSector;
1329 			mddev->delta_disks = 0;
1330 			mddev->new_level = mddev->level;
1331 			mddev->new_layout = mddev->layout;
1332 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1333 		}
1334 		if (mddev->level == 0)
1335 			mddev->layout = -1;
1336 
1337 		if (sb->state & (1<<MD_SB_CLEAN))
1338 			mddev->recovery_cp = MaxSector;
1339 		else {
1340 			if (sb->events_hi == sb->cp_events_hi &&
1341 				sb->events_lo == sb->cp_events_lo) {
1342 				mddev->recovery_cp = sb->recovery_cp;
1343 			} else
1344 				mddev->recovery_cp = 0;
1345 		}
1346 
1347 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1348 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1349 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1350 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1351 
1352 		mddev->max_disks = MD_SB_DISKS;
1353 
1354 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1355 		    mddev->bitmap_info.file == NULL) {
1356 			mddev->bitmap_info.offset =
1357 				mddev->bitmap_info.default_offset;
1358 			mddev->bitmap_info.space =
1359 				mddev->bitmap_info.default_space;
1360 		}
1361 
1362 	} else if (mddev->pers == NULL) {
1363 		/* Insist on good event counter while assembling, except
1364 		 * for spares (which don't need an event count) */
1365 		++ev1;
1366 		if (sb->disks[rdev->desc_nr].state & (
1367 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1368 			if (ev1 < mddev->events)
1369 				return -EINVAL;
1370 	} else if (mddev->bitmap) {
1371 		/* if adding to array with a bitmap, then we can accept an
1372 		 * older device ... but not too old.
1373 		 */
1374 		if (ev1 < mddev->bitmap->events_cleared)
1375 			return 0;
1376 		if (ev1 < mddev->events)
1377 			set_bit(Bitmap_sync, &rdev->flags);
1378 	} else {
1379 		if (ev1 < mddev->events)
1380 			/* just a hot-add of a new device, leave raid_disk at -1 */
1381 			return 0;
1382 	}
1383 
1384 	if (mddev->level != LEVEL_MULTIPATH) {
1385 		desc = sb->disks + rdev->desc_nr;
1386 
1387 		if (desc->state & (1<<MD_DISK_FAULTY))
1388 			set_bit(Faulty, &rdev->flags);
1389 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1390 			    desc->raid_disk < mddev->raid_disks */) {
1391 			set_bit(In_sync, &rdev->flags);
1392 			rdev->raid_disk = desc->raid_disk;
1393 			rdev->saved_raid_disk = desc->raid_disk;
1394 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1395 			/* active but not in sync implies recovery up to
1396 			 * reshape position.  We don't know exactly where
1397 			 * that is, so set to zero for now */
1398 			if (mddev->minor_version >= 91) {
1399 				rdev->recovery_offset = 0;
1400 				rdev->raid_disk = desc->raid_disk;
1401 			}
1402 		}
1403 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1404 			set_bit(WriteMostly, &rdev->flags);
1405 		if (desc->state & (1<<MD_DISK_FAILFAST))
1406 			set_bit(FailFast, &rdev->flags);
1407 	} else /* MULTIPATH are always insync */
1408 		set_bit(In_sync, &rdev->flags);
1409 	return 0;
1410 }
1411 
1412 /*
1413  * sync_super for 0.90.0
1414  */
1415 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1416 {
1417 	mdp_super_t *sb;
1418 	struct md_rdev *rdev2;
1419 	int next_spare = mddev->raid_disks;
1420 
1421 	/* make rdev->sb match mddev data..
1422 	 *
1423 	 * 1/ zero out disks
1424 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1425 	 * 3/ any empty disks < next_spare become removed
1426 	 *
1427 	 * disks[0] gets initialised to REMOVED because
1428 	 * we cannot be sure from other fields if it has
1429 	 * been initialised or not.
1430 	 */
1431 	int i;
1432 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1433 
1434 	rdev->sb_size = MD_SB_BYTES;
1435 
1436 	sb = page_address(rdev->sb_page);
1437 
1438 	memset(sb, 0, sizeof(*sb));
1439 
1440 	sb->md_magic = MD_SB_MAGIC;
1441 	sb->major_version = mddev->major_version;
1442 	sb->patch_version = mddev->patch_version;
1443 	sb->gvalid_words  = 0; /* ignored */
1444 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1445 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1446 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1447 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1448 
1449 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1450 	sb->level = mddev->level;
1451 	sb->size = mddev->dev_sectors / 2;
1452 	sb->raid_disks = mddev->raid_disks;
1453 	sb->md_minor = mddev->md_minor;
1454 	sb->not_persistent = 0;
1455 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1456 	sb->state = 0;
1457 	sb->events_hi = (mddev->events>>32);
1458 	sb->events_lo = (u32)mddev->events;
1459 
1460 	if (mddev->reshape_position == MaxSector)
1461 		sb->minor_version = 90;
1462 	else {
1463 		sb->minor_version = 91;
1464 		sb->reshape_position = mddev->reshape_position;
1465 		sb->new_level = mddev->new_level;
1466 		sb->delta_disks = mddev->delta_disks;
1467 		sb->new_layout = mddev->new_layout;
1468 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1469 	}
1470 	mddev->minor_version = sb->minor_version;
1471 	if (mddev->in_sync)
1472 	{
1473 		sb->recovery_cp = mddev->recovery_cp;
1474 		sb->cp_events_hi = (mddev->events>>32);
1475 		sb->cp_events_lo = (u32)mddev->events;
1476 		if (mddev->recovery_cp == MaxSector)
1477 			sb->state = (1<< MD_SB_CLEAN);
1478 	} else
1479 		sb->recovery_cp = 0;
1480 
1481 	sb->layout = mddev->layout;
1482 	sb->chunk_size = mddev->chunk_sectors << 9;
1483 
1484 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1485 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1486 
1487 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1488 	rdev_for_each(rdev2, mddev) {
1489 		mdp_disk_t *d;
1490 		int desc_nr;
1491 		int is_active = test_bit(In_sync, &rdev2->flags);
1492 
1493 		if (rdev2->raid_disk >= 0 &&
1494 		    sb->minor_version >= 91)
1495 			/* we have nowhere to store the recovery_offset,
1496 			 * but if it is not below the reshape_position,
1497 			 * we can piggy-back on that.
1498 			 */
1499 			is_active = 1;
1500 		if (rdev2->raid_disk < 0 ||
1501 		    test_bit(Faulty, &rdev2->flags))
1502 			is_active = 0;
1503 		if (is_active)
1504 			desc_nr = rdev2->raid_disk;
1505 		else
1506 			desc_nr = next_spare++;
1507 		rdev2->desc_nr = desc_nr;
1508 		d = &sb->disks[rdev2->desc_nr];
1509 		nr_disks++;
1510 		d->number = rdev2->desc_nr;
1511 		d->major = MAJOR(rdev2->bdev->bd_dev);
1512 		d->minor = MINOR(rdev2->bdev->bd_dev);
1513 		if (is_active)
1514 			d->raid_disk = rdev2->raid_disk;
1515 		else
1516 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1517 		if (test_bit(Faulty, &rdev2->flags))
1518 			d->state = (1<<MD_DISK_FAULTY);
1519 		else if (is_active) {
1520 			d->state = (1<<MD_DISK_ACTIVE);
1521 			if (test_bit(In_sync, &rdev2->flags))
1522 				d->state |= (1<<MD_DISK_SYNC);
1523 			active++;
1524 			working++;
1525 		} else {
1526 			d->state = 0;
1527 			spare++;
1528 			working++;
1529 		}
1530 		if (test_bit(WriteMostly, &rdev2->flags))
1531 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1532 		if (test_bit(FailFast, &rdev2->flags))
1533 			d->state |= (1<<MD_DISK_FAILFAST);
1534 	}
1535 	/* now set the "removed" and "faulty" bits on any missing devices */
1536 	for (i=0 ; i < mddev->raid_disks ; i++) {
1537 		mdp_disk_t *d = &sb->disks[i];
1538 		if (d->state == 0 && d->number == 0) {
1539 			d->number = i;
1540 			d->raid_disk = i;
1541 			d->state = (1<<MD_DISK_REMOVED);
1542 			d->state |= (1<<MD_DISK_FAULTY);
1543 			failed++;
1544 		}
1545 	}
1546 	sb->nr_disks = nr_disks;
1547 	sb->active_disks = active;
1548 	sb->working_disks = working;
1549 	sb->failed_disks = failed;
1550 	sb->spare_disks = spare;
1551 
1552 	sb->this_disk = sb->disks[rdev->desc_nr];
1553 	sb->sb_csum = calc_sb_csum(sb);
1554 }
1555 
1556 /*
1557  * rdev_size_change for 0.90.0
1558  */
1559 static unsigned long long
1560 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1561 {
1562 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1563 		return 0; /* component must fit device */
1564 	if (rdev->mddev->bitmap_info.offset)
1565 		return 0; /* can't move bitmap */
1566 	rdev->sb_start = calc_dev_sboffset(rdev);
1567 	if (!num_sectors || num_sectors > rdev->sb_start)
1568 		num_sectors = rdev->sb_start;
1569 	/* Limit to 4TB as metadata cannot record more than that.
1570 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1571 	 */
1572 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1573 		num_sectors = (sector_t)(2ULL << 32) - 2;
1574 	do {
1575 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1576 		       rdev->sb_page);
1577 	} while (md_super_wait(rdev->mddev) < 0);
1578 	return num_sectors;
1579 }
1580 
1581 static int
1582 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1583 {
1584 	/* non-zero offset changes not possible with v0.90 */
1585 	return new_offset == 0;
1586 }
1587 
1588 /*
1589  * version 1 superblock
1590  */
1591 
1592 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1593 {
1594 	__le32 disk_csum;
1595 	u32 csum;
1596 	unsigned long long newcsum;
1597 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1598 	__le32 *isuper = (__le32*)sb;
1599 
1600 	disk_csum = sb->sb_csum;
1601 	sb->sb_csum = 0;
1602 	newcsum = 0;
1603 	for (; size >= 4; size -= 4)
1604 		newcsum += le32_to_cpu(*isuper++);
1605 
1606 	if (size == 2)
1607 		newcsum += le16_to_cpu(*(__le16*) isuper);
1608 
1609 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1610 	sb->sb_csum = disk_csum;
1611 	return cpu_to_le32(csum);
1612 }
1613 
1614 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1615 {
1616 	struct mdp_superblock_1 *sb;
1617 	int ret;
1618 	sector_t sb_start;
1619 	sector_t sectors;
1620 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1621 	int bmask;
1622 	bool spare_disk = true;
1623 
1624 	/*
1625 	 * Calculate the position of the superblock in 512byte sectors.
1626 	 * It is always aligned to a 4K boundary and
1627 	 * depeding on minor_version, it can be:
1628 	 * 0: At least 8K, but less than 12K, from end of device
1629 	 * 1: At start of device
1630 	 * 2: 4K from start of device.
1631 	 */
1632 	switch(minor_version) {
1633 	case 0:
1634 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1635 		sb_start -= 8*2;
1636 		sb_start &= ~(sector_t)(4*2-1);
1637 		break;
1638 	case 1:
1639 		sb_start = 0;
1640 		break;
1641 	case 2:
1642 		sb_start = 8;
1643 		break;
1644 	default:
1645 		return -EINVAL;
1646 	}
1647 	rdev->sb_start = sb_start;
1648 
1649 	/* superblock is rarely larger than 1K, but it can be larger,
1650 	 * and it is safe to read 4k, so we do that
1651 	 */
1652 	ret = read_disk_sb(rdev, 4096);
1653 	if (ret) return ret;
1654 
1655 	sb = page_address(rdev->sb_page);
1656 
1657 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1658 	    sb->major_version != cpu_to_le32(1) ||
1659 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1660 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1661 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1662 		return -EINVAL;
1663 
1664 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1665 		pr_warn("md: invalid superblock checksum on %s\n",
1666 			bdevname(rdev->bdev,b));
1667 		return -EINVAL;
1668 	}
1669 	if (le64_to_cpu(sb->data_size) < 10) {
1670 		pr_warn("md: data_size too small on %s\n",
1671 			bdevname(rdev->bdev,b));
1672 		return -EINVAL;
1673 	}
1674 	if (sb->pad0 ||
1675 	    sb->pad3[0] ||
1676 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1677 		/* Some padding is non-zero, might be a new feature */
1678 		return -EINVAL;
1679 
1680 	rdev->preferred_minor = 0xffff;
1681 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1682 	rdev->new_data_offset = rdev->data_offset;
1683 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1684 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1685 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1686 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1687 
1688 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1689 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1690 	if (rdev->sb_size & bmask)
1691 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1692 
1693 	if (minor_version
1694 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1695 		return -EINVAL;
1696 	if (minor_version
1697 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1698 		return -EINVAL;
1699 
1700 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1701 		rdev->desc_nr = -1;
1702 	else
1703 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1704 
1705 	if (!rdev->bb_page) {
1706 		rdev->bb_page = alloc_page(GFP_KERNEL);
1707 		if (!rdev->bb_page)
1708 			return -ENOMEM;
1709 	}
1710 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1711 	    rdev->badblocks.count == 0) {
1712 		/* need to load the bad block list.
1713 		 * Currently we limit it to one page.
1714 		 */
1715 		s32 offset;
1716 		sector_t bb_sector;
1717 		__le64 *bbp;
1718 		int i;
1719 		int sectors = le16_to_cpu(sb->bblog_size);
1720 		if (sectors > (PAGE_SIZE / 512))
1721 			return -EINVAL;
1722 		offset = le32_to_cpu(sb->bblog_offset);
1723 		if (offset == 0)
1724 			return -EINVAL;
1725 		bb_sector = (long long)offset;
1726 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1727 				  rdev->bb_page, REQ_OP_READ, 0, true))
1728 			return -EIO;
1729 		bbp = (__le64 *)page_address(rdev->bb_page);
1730 		rdev->badblocks.shift = sb->bblog_shift;
1731 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1732 			u64 bb = le64_to_cpu(*bbp);
1733 			int count = bb & (0x3ff);
1734 			u64 sector = bb >> 10;
1735 			sector <<= sb->bblog_shift;
1736 			count <<= sb->bblog_shift;
1737 			if (bb + 1 == 0)
1738 				break;
1739 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1740 				return -EINVAL;
1741 		}
1742 	} else if (sb->bblog_offset != 0)
1743 		rdev->badblocks.shift = 0;
1744 
1745 	if ((le32_to_cpu(sb->feature_map) &
1746 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1747 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1748 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1749 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1750 	}
1751 
1752 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1753 	    sb->level != 0)
1754 		return -EINVAL;
1755 
1756 	/* not spare disk, or LEVEL_MULTIPATH */
1757 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1758 		(rdev->desc_nr >= 0 &&
1759 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1760 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1761 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1762 		spare_disk = false;
1763 
1764 	if (!refdev) {
1765 		if (!spare_disk)
1766 			ret = 1;
1767 		else
1768 			ret = 0;
1769 	} else {
1770 		__u64 ev1, ev2;
1771 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1772 
1773 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1774 		    sb->level != refsb->level ||
1775 		    sb->layout != refsb->layout ||
1776 		    sb->chunksize != refsb->chunksize) {
1777 			pr_warn("md: %s has strangely different superblock to %s\n",
1778 				bdevname(rdev->bdev,b),
1779 				bdevname(refdev->bdev,b2));
1780 			return -EINVAL;
1781 		}
1782 		ev1 = le64_to_cpu(sb->events);
1783 		ev2 = le64_to_cpu(refsb->events);
1784 
1785 		if (!spare_disk && ev1 > ev2)
1786 			ret = 1;
1787 		else
1788 			ret = 0;
1789 	}
1790 	if (minor_version) {
1791 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1792 		sectors -= rdev->data_offset;
1793 	} else
1794 		sectors = rdev->sb_start;
1795 	if (sectors < le64_to_cpu(sb->data_size))
1796 		return -EINVAL;
1797 	rdev->sectors = le64_to_cpu(sb->data_size);
1798 	return ret;
1799 }
1800 
1801 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1802 {
1803 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1804 	__u64 ev1 = le64_to_cpu(sb->events);
1805 
1806 	rdev->raid_disk = -1;
1807 	clear_bit(Faulty, &rdev->flags);
1808 	clear_bit(In_sync, &rdev->flags);
1809 	clear_bit(Bitmap_sync, &rdev->flags);
1810 	clear_bit(WriteMostly, &rdev->flags);
1811 
1812 	if (mddev->raid_disks == 0) {
1813 		mddev->major_version = 1;
1814 		mddev->patch_version = 0;
1815 		mddev->external = 0;
1816 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1817 		mddev->ctime = le64_to_cpu(sb->ctime);
1818 		mddev->utime = le64_to_cpu(sb->utime);
1819 		mddev->level = le32_to_cpu(sb->level);
1820 		mddev->clevel[0] = 0;
1821 		mddev->layout = le32_to_cpu(sb->layout);
1822 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1823 		mddev->dev_sectors = le64_to_cpu(sb->size);
1824 		mddev->events = ev1;
1825 		mddev->bitmap_info.offset = 0;
1826 		mddev->bitmap_info.space = 0;
1827 		/* Default location for bitmap is 1K after superblock
1828 		 * using 3K - total of 4K
1829 		 */
1830 		mddev->bitmap_info.default_offset = 1024 >> 9;
1831 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1832 		mddev->reshape_backwards = 0;
1833 
1834 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1835 		memcpy(mddev->uuid, sb->set_uuid, 16);
1836 
1837 		mddev->max_disks =  (4096-256)/2;
1838 
1839 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1840 		    mddev->bitmap_info.file == NULL) {
1841 			mddev->bitmap_info.offset =
1842 				(__s32)le32_to_cpu(sb->bitmap_offset);
1843 			/* Metadata doesn't record how much space is available.
1844 			 * For 1.0, we assume we can use up to the superblock
1845 			 * if before, else to 4K beyond superblock.
1846 			 * For others, assume no change is possible.
1847 			 */
1848 			if (mddev->minor_version > 0)
1849 				mddev->bitmap_info.space = 0;
1850 			else if (mddev->bitmap_info.offset > 0)
1851 				mddev->bitmap_info.space =
1852 					8 - mddev->bitmap_info.offset;
1853 			else
1854 				mddev->bitmap_info.space =
1855 					-mddev->bitmap_info.offset;
1856 		}
1857 
1858 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1859 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1860 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1861 			mddev->new_level = le32_to_cpu(sb->new_level);
1862 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1863 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1864 			if (mddev->delta_disks < 0 ||
1865 			    (mddev->delta_disks == 0 &&
1866 			     (le32_to_cpu(sb->feature_map)
1867 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1868 				mddev->reshape_backwards = 1;
1869 		} else {
1870 			mddev->reshape_position = MaxSector;
1871 			mddev->delta_disks = 0;
1872 			mddev->new_level = mddev->level;
1873 			mddev->new_layout = mddev->layout;
1874 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1875 		}
1876 
1877 		if (mddev->level == 0 &&
1878 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1879 			mddev->layout = -1;
1880 
1881 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1882 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1883 
1884 		if (le32_to_cpu(sb->feature_map) &
1885 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1886 			if (le32_to_cpu(sb->feature_map) &
1887 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1888 				return -EINVAL;
1889 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1890 			    (le32_to_cpu(sb->feature_map) &
1891 					    MD_FEATURE_MULTIPLE_PPLS))
1892 				return -EINVAL;
1893 			set_bit(MD_HAS_PPL, &mddev->flags);
1894 		}
1895 	} else if (mddev->pers == NULL) {
1896 		/* Insist of good event counter while assembling, except for
1897 		 * spares (which don't need an event count) */
1898 		++ev1;
1899 		if (rdev->desc_nr >= 0 &&
1900 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1901 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1902 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1903 			if (ev1 < mddev->events)
1904 				return -EINVAL;
1905 	} else if (mddev->bitmap) {
1906 		/* If adding to array with a bitmap, then we can accept an
1907 		 * older device, but not too old.
1908 		 */
1909 		if (ev1 < mddev->bitmap->events_cleared)
1910 			return 0;
1911 		if (ev1 < mddev->events)
1912 			set_bit(Bitmap_sync, &rdev->flags);
1913 	} else {
1914 		if (ev1 < mddev->events)
1915 			/* just a hot-add of a new device, leave raid_disk at -1 */
1916 			return 0;
1917 	}
1918 	if (mddev->level != LEVEL_MULTIPATH) {
1919 		int role;
1920 		if (rdev->desc_nr < 0 ||
1921 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1922 			role = MD_DISK_ROLE_SPARE;
1923 			rdev->desc_nr = -1;
1924 		} else
1925 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1926 		switch(role) {
1927 		case MD_DISK_ROLE_SPARE: /* spare */
1928 			break;
1929 		case MD_DISK_ROLE_FAULTY: /* faulty */
1930 			set_bit(Faulty, &rdev->flags);
1931 			break;
1932 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1933 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1934 				/* journal device without journal feature */
1935 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1936 				return -EINVAL;
1937 			}
1938 			set_bit(Journal, &rdev->flags);
1939 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1940 			rdev->raid_disk = 0;
1941 			break;
1942 		default:
1943 			rdev->saved_raid_disk = role;
1944 			if ((le32_to_cpu(sb->feature_map) &
1945 			     MD_FEATURE_RECOVERY_OFFSET)) {
1946 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1947 				if (!(le32_to_cpu(sb->feature_map) &
1948 				      MD_FEATURE_RECOVERY_BITMAP))
1949 					rdev->saved_raid_disk = -1;
1950 			} else {
1951 				/*
1952 				 * If the array is FROZEN, then the device can't
1953 				 * be in_sync with rest of array.
1954 				 */
1955 				if (!test_bit(MD_RECOVERY_FROZEN,
1956 					      &mddev->recovery))
1957 					set_bit(In_sync, &rdev->flags);
1958 			}
1959 			rdev->raid_disk = role;
1960 			break;
1961 		}
1962 		if (sb->devflags & WriteMostly1)
1963 			set_bit(WriteMostly, &rdev->flags);
1964 		if (sb->devflags & FailFast1)
1965 			set_bit(FailFast, &rdev->flags);
1966 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1967 			set_bit(Replacement, &rdev->flags);
1968 	} else /* MULTIPATH are always insync */
1969 		set_bit(In_sync, &rdev->flags);
1970 
1971 	return 0;
1972 }
1973 
1974 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1975 {
1976 	struct mdp_superblock_1 *sb;
1977 	struct md_rdev *rdev2;
1978 	int max_dev, i;
1979 	/* make rdev->sb match mddev and rdev data. */
1980 
1981 	sb = page_address(rdev->sb_page);
1982 
1983 	sb->feature_map = 0;
1984 	sb->pad0 = 0;
1985 	sb->recovery_offset = cpu_to_le64(0);
1986 	memset(sb->pad3, 0, sizeof(sb->pad3));
1987 
1988 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1989 	sb->events = cpu_to_le64(mddev->events);
1990 	if (mddev->in_sync)
1991 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1992 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1993 		sb->resync_offset = cpu_to_le64(MaxSector);
1994 	else
1995 		sb->resync_offset = cpu_to_le64(0);
1996 
1997 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1998 
1999 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2000 	sb->size = cpu_to_le64(mddev->dev_sectors);
2001 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2002 	sb->level = cpu_to_le32(mddev->level);
2003 	sb->layout = cpu_to_le32(mddev->layout);
2004 	if (test_bit(FailFast, &rdev->flags))
2005 		sb->devflags |= FailFast1;
2006 	else
2007 		sb->devflags &= ~FailFast1;
2008 
2009 	if (test_bit(WriteMostly, &rdev->flags))
2010 		sb->devflags |= WriteMostly1;
2011 	else
2012 		sb->devflags &= ~WriteMostly1;
2013 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2014 	sb->data_size = cpu_to_le64(rdev->sectors);
2015 
2016 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2017 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2018 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2019 	}
2020 
2021 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2022 	    !test_bit(In_sync, &rdev->flags)) {
2023 		sb->feature_map |=
2024 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2025 		sb->recovery_offset =
2026 			cpu_to_le64(rdev->recovery_offset);
2027 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2028 			sb->feature_map |=
2029 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2030 	}
2031 	/* Note: recovery_offset and journal_tail share space  */
2032 	if (test_bit(Journal, &rdev->flags))
2033 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2034 	if (test_bit(Replacement, &rdev->flags))
2035 		sb->feature_map |=
2036 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2037 
2038 	if (mddev->reshape_position != MaxSector) {
2039 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2040 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2041 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2042 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2043 		sb->new_level = cpu_to_le32(mddev->new_level);
2044 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2045 		if (mddev->delta_disks == 0 &&
2046 		    mddev->reshape_backwards)
2047 			sb->feature_map
2048 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2049 		if (rdev->new_data_offset != rdev->data_offset) {
2050 			sb->feature_map
2051 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2052 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2053 							     - rdev->data_offset));
2054 		}
2055 	}
2056 
2057 	if (mddev_is_clustered(mddev))
2058 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2059 
2060 	if (rdev->badblocks.count == 0)
2061 		/* Nothing to do for bad blocks*/ ;
2062 	else if (sb->bblog_offset == 0)
2063 		/* Cannot record bad blocks on this device */
2064 		md_error(mddev, rdev);
2065 	else {
2066 		struct badblocks *bb = &rdev->badblocks;
2067 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2068 		u64 *p = bb->page;
2069 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2070 		if (bb->changed) {
2071 			unsigned seq;
2072 
2073 retry:
2074 			seq = read_seqbegin(&bb->lock);
2075 
2076 			memset(bbp, 0xff, PAGE_SIZE);
2077 
2078 			for (i = 0 ; i < bb->count ; i++) {
2079 				u64 internal_bb = p[i];
2080 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2081 						| BB_LEN(internal_bb));
2082 				bbp[i] = cpu_to_le64(store_bb);
2083 			}
2084 			bb->changed = 0;
2085 			if (read_seqretry(&bb->lock, seq))
2086 				goto retry;
2087 
2088 			bb->sector = (rdev->sb_start +
2089 				      (int)le32_to_cpu(sb->bblog_offset));
2090 			bb->size = le16_to_cpu(sb->bblog_size);
2091 		}
2092 	}
2093 
2094 	max_dev = 0;
2095 	rdev_for_each(rdev2, mddev)
2096 		if (rdev2->desc_nr+1 > max_dev)
2097 			max_dev = rdev2->desc_nr+1;
2098 
2099 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2100 		int bmask;
2101 		sb->max_dev = cpu_to_le32(max_dev);
2102 		rdev->sb_size = max_dev * 2 + 256;
2103 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2104 		if (rdev->sb_size & bmask)
2105 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2106 	} else
2107 		max_dev = le32_to_cpu(sb->max_dev);
2108 
2109 	for (i=0; i<max_dev;i++)
2110 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2111 
2112 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2113 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2114 
2115 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2116 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2117 			sb->feature_map |=
2118 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2119 		else
2120 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2121 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2122 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2123 	}
2124 
2125 	rdev_for_each(rdev2, mddev) {
2126 		i = rdev2->desc_nr;
2127 		if (test_bit(Faulty, &rdev2->flags))
2128 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2129 		else if (test_bit(In_sync, &rdev2->flags))
2130 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2131 		else if (test_bit(Journal, &rdev2->flags))
2132 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2133 		else if (rdev2->raid_disk >= 0)
2134 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2135 		else
2136 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2137 	}
2138 
2139 	sb->sb_csum = calc_sb_1_csum(sb);
2140 }
2141 
2142 static sector_t super_1_choose_bm_space(sector_t dev_size)
2143 {
2144 	sector_t bm_space;
2145 
2146 	/* if the device is bigger than 8Gig, save 64k for bitmap
2147 	 * usage, if bigger than 200Gig, save 128k
2148 	 */
2149 	if (dev_size < 64*2)
2150 		bm_space = 0;
2151 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2152 		bm_space = 128*2;
2153 	else if (dev_size - 4*2 > 8*1024*1024*2)
2154 		bm_space = 64*2;
2155 	else
2156 		bm_space = 4*2;
2157 	return bm_space;
2158 }
2159 
2160 static unsigned long long
2161 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2162 {
2163 	struct mdp_superblock_1 *sb;
2164 	sector_t max_sectors;
2165 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2166 		return 0; /* component must fit device */
2167 	if (rdev->data_offset != rdev->new_data_offset)
2168 		return 0; /* too confusing */
2169 	if (rdev->sb_start < rdev->data_offset) {
2170 		/* minor versions 1 and 2; superblock before data */
2171 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2172 		max_sectors -= rdev->data_offset;
2173 		if (!num_sectors || num_sectors > max_sectors)
2174 			num_sectors = max_sectors;
2175 	} else if (rdev->mddev->bitmap_info.offset) {
2176 		/* minor version 0 with bitmap we can't move */
2177 		return 0;
2178 	} else {
2179 		/* minor version 0; superblock after data */
2180 		sector_t sb_start, bm_space;
2181 		sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2182 
2183 		/* 8K is for superblock */
2184 		sb_start = dev_size - 8*2;
2185 		sb_start &= ~(sector_t)(4*2 - 1);
2186 
2187 		bm_space = super_1_choose_bm_space(dev_size);
2188 
2189 		/* Space that can be used to store date needs to decrease
2190 		 * superblock bitmap space and bad block space(4K)
2191 		 */
2192 		max_sectors = sb_start - bm_space - 4*2;
2193 
2194 		if (!num_sectors || num_sectors > max_sectors)
2195 			num_sectors = max_sectors;
2196 	}
2197 	sb = page_address(rdev->sb_page);
2198 	sb->data_size = cpu_to_le64(num_sectors);
2199 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2200 	sb->sb_csum = calc_sb_1_csum(sb);
2201 	do {
2202 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2203 			       rdev->sb_page);
2204 	} while (md_super_wait(rdev->mddev) < 0);
2205 	return num_sectors;
2206 
2207 }
2208 
2209 static int
2210 super_1_allow_new_offset(struct md_rdev *rdev,
2211 			 unsigned long long new_offset)
2212 {
2213 	/* All necessary checks on new >= old have been done */
2214 	struct bitmap *bitmap;
2215 	if (new_offset >= rdev->data_offset)
2216 		return 1;
2217 
2218 	/* with 1.0 metadata, there is no metadata to tread on
2219 	 * so we can always move back */
2220 	if (rdev->mddev->minor_version == 0)
2221 		return 1;
2222 
2223 	/* otherwise we must be sure not to step on
2224 	 * any metadata, so stay:
2225 	 * 36K beyond start of superblock
2226 	 * beyond end of badblocks
2227 	 * beyond write-intent bitmap
2228 	 */
2229 	if (rdev->sb_start + (32+4)*2 > new_offset)
2230 		return 0;
2231 	bitmap = rdev->mddev->bitmap;
2232 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2233 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2234 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2235 		return 0;
2236 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2237 		return 0;
2238 
2239 	return 1;
2240 }
2241 
2242 static struct super_type super_types[] = {
2243 	[0] = {
2244 		.name	= "0.90.0",
2245 		.owner	= THIS_MODULE,
2246 		.load_super	    = super_90_load,
2247 		.validate_super	    = super_90_validate,
2248 		.sync_super	    = super_90_sync,
2249 		.rdev_size_change   = super_90_rdev_size_change,
2250 		.allow_new_offset   = super_90_allow_new_offset,
2251 	},
2252 	[1] = {
2253 		.name	= "md-1",
2254 		.owner	= THIS_MODULE,
2255 		.load_super	    = super_1_load,
2256 		.validate_super	    = super_1_validate,
2257 		.sync_super	    = super_1_sync,
2258 		.rdev_size_change   = super_1_rdev_size_change,
2259 		.allow_new_offset   = super_1_allow_new_offset,
2260 	},
2261 };
2262 
2263 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2264 {
2265 	if (mddev->sync_super) {
2266 		mddev->sync_super(mddev, rdev);
2267 		return;
2268 	}
2269 
2270 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2271 
2272 	super_types[mddev->major_version].sync_super(mddev, rdev);
2273 }
2274 
2275 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2276 {
2277 	struct md_rdev *rdev, *rdev2;
2278 
2279 	rcu_read_lock();
2280 	rdev_for_each_rcu(rdev, mddev1) {
2281 		if (test_bit(Faulty, &rdev->flags) ||
2282 		    test_bit(Journal, &rdev->flags) ||
2283 		    rdev->raid_disk == -1)
2284 			continue;
2285 		rdev_for_each_rcu(rdev2, mddev2) {
2286 			if (test_bit(Faulty, &rdev2->flags) ||
2287 			    test_bit(Journal, &rdev2->flags) ||
2288 			    rdev2->raid_disk == -1)
2289 				continue;
2290 			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2291 				rcu_read_unlock();
2292 				return 1;
2293 			}
2294 		}
2295 	}
2296 	rcu_read_unlock();
2297 	return 0;
2298 }
2299 
2300 static LIST_HEAD(pending_raid_disks);
2301 
2302 /*
2303  * Try to register data integrity profile for an mddev
2304  *
2305  * This is called when an array is started and after a disk has been kicked
2306  * from the array. It only succeeds if all working and active component devices
2307  * are integrity capable with matching profiles.
2308  */
2309 int md_integrity_register(struct mddev *mddev)
2310 {
2311 	struct md_rdev *rdev, *reference = NULL;
2312 
2313 	if (list_empty(&mddev->disks))
2314 		return 0; /* nothing to do */
2315 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2316 		return 0; /* shouldn't register, or already is */
2317 	rdev_for_each(rdev, mddev) {
2318 		/* skip spares and non-functional disks */
2319 		if (test_bit(Faulty, &rdev->flags))
2320 			continue;
2321 		if (rdev->raid_disk < 0)
2322 			continue;
2323 		if (!reference) {
2324 			/* Use the first rdev as the reference */
2325 			reference = rdev;
2326 			continue;
2327 		}
2328 		/* does this rdev's profile match the reference profile? */
2329 		if (blk_integrity_compare(reference->bdev->bd_disk,
2330 				rdev->bdev->bd_disk) < 0)
2331 			return -EINVAL;
2332 	}
2333 	if (!reference || !bdev_get_integrity(reference->bdev))
2334 		return 0;
2335 	/*
2336 	 * All component devices are integrity capable and have matching
2337 	 * profiles, register the common profile for the md device.
2338 	 */
2339 	blk_integrity_register(mddev->gendisk,
2340 			       bdev_get_integrity(reference->bdev));
2341 
2342 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2343 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2344 	    (mddev->level != 1 && mddev->level != 10 &&
2345 	     bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2346 		/*
2347 		 * No need to handle the failure of bioset_integrity_create,
2348 		 * because the function is called by md_run() -> pers->run(),
2349 		 * md_run calls bioset_exit -> bioset_integrity_free in case
2350 		 * of failure case.
2351 		 */
2352 		pr_err("md: failed to create integrity pool for %s\n",
2353 		       mdname(mddev));
2354 		return -EINVAL;
2355 	}
2356 	return 0;
2357 }
2358 EXPORT_SYMBOL(md_integrity_register);
2359 
2360 /*
2361  * Attempt to add an rdev, but only if it is consistent with the current
2362  * integrity profile
2363  */
2364 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2365 {
2366 	struct blk_integrity *bi_mddev;
2367 	char name[BDEVNAME_SIZE];
2368 
2369 	if (!mddev->gendisk)
2370 		return 0;
2371 
2372 	bi_mddev = blk_get_integrity(mddev->gendisk);
2373 
2374 	if (!bi_mddev) /* nothing to do */
2375 		return 0;
2376 
2377 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2378 		pr_err("%s: incompatible integrity profile for %s\n",
2379 		       mdname(mddev), bdevname(rdev->bdev, name));
2380 		return -ENXIO;
2381 	}
2382 
2383 	return 0;
2384 }
2385 EXPORT_SYMBOL(md_integrity_add_rdev);
2386 
2387 static bool rdev_read_only(struct md_rdev *rdev)
2388 {
2389 	return bdev_read_only(rdev->bdev) ||
2390 		(rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2391 }
2392 
2393 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2394 {
2395 	char b[BDEVNAME_SIZE];
2396 	int err;
2397 
2398 	/* prevent duplicates */
2399 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2400 		return -EEXIST;
2401 
2402 	if (rdev_read_only(rdev) && mddev->pers)
2403 		return -EROFS;
2404 
2405 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2406 	if (!test_bit(Journal, &rdev->flags) &&
2407 	    rdev->sectors &&
2408 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2409 		if (mddev->pers) {
2410 			/* Cannot change size, so fail
2411 			 * If mddev->level <= 0, then we don't care
2412 			 * about aligning sizes (e.g. linear)
2413 			 */
2414 			if (mddev->level > 0)
2415 				return -ENOSPC;
2416 		} else
2417 			mddev->dev_sectors = rdev->sectors;
2418 	}
2419 
2420 	/* Verify rdev->desc_nr is unique.
2421 	 * If it is -1, assign a free number, else
2422 	 * check number is not in use
2423 	 */
2424 	rcu_read_lock();
2425 	if (rdev->desc_nr < 0) {
2426 		int choice = 0;
2427 		if (mddev->pers)
2428 			choice = mddev->raid_disks;
2429 		while (md_find_rdev_nr_rcu(mddev, choice))
2430 			choice++;
2431 		rdev->desc_nr = choice;
2432 	} else {
2433 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2434 			rcu_read_unlock();
2435 			return -EBUSY;
2436 		}
2437 	}
2438 	rcu_read_unlock();
2439 	if (!test_bit(Journal, &rdev->flags) &&
2440 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2441 		pr_warn("md: %s: array is limited to %d devices\n",
2442 			mdname(mddev), mddev->max_disks);
2443 		return -EBUSY;
2444 	}
2445 	bdevname(rdev->bdev,b);
2446 	strreplace(b, '/', '!');
2447 
2448 	rdev->mddev = mddev;
2449 	pr_debug("md: bind<%s>\n", b);
2450 
2451 	if (mddev->raid_disks)
2452 		mddev_create_serial_pool(mddev, rdev, false);
2453 
2454 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2455 		goto fail;
2456 
2457 	/* failure here is OK */
2458 	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2459 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2460 	rdev->sysfs_unack_badblocks =
2461 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2462 	rdev->sysfs_badblocks =
2463 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2464 
2465 	list_add_rcu(&rdev->same_set, &mddev->disks);
2466 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2467 
2468 	/* May as well allow recovery to be retried once */
2469 	mddev->recovery_disabled++;
2470 
2471 	return 0;
2472 
2473  fail:
2474 	pr_warn("md: failed to register dev-%s for %s\n",
2475 		b, mdname(mddev));
2476 	return err;
2477 }
2478 
2479 static void rdev_delayed_delete(struct work_struct *ws)
2480 {
2481 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2482 	kobject_del(&rdev->kobj);
2483 	kobject_put(&rdev->kobj);
2484 }
2485 
2486 static void unbind_rdev_from_array(struct md_rdev *rdev)
2487 {
2488 	char b[BDEVNAME_SIZE];
2489 
2490 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2491 	list_del_rcu(&rdev->same_set);
2492 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2493 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2494 	rdev->mddev = NULL;
2495 	sysfs_remove_link(&rdev->kobj, "block");
2496 	sysfs_put(rdev->sysfs_state);
2497 	sysfs_put(rdev->sysfs_unack_badblocks);
2498 	sysfs_put(rdev->sysfs_badblocks);
2499 	rdev->sysfs_state = NULL;
2500 	rdev->sysfs_unack_badblocks = NULL;
2501 	rdev->sysfs_badblocks = NULL;
2502 	rdev->badblocks.count = 0;
2503 	/* We need to delay this, otherwise we can deadlock when
2504 	 * writing to 'remove' to "dev/state".  We also need
2505 	 * to delay it due to rcu usage.
2506 	 */
2507 	synchronize_rcu();
2508 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2509 	kobject_get(&rdev->kobj);
2510 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2511 }
2512 
2513 /*
2514  * prevent the device from being mounted, repartitioned or
2515  * otherwise reused by a RAID array (or any other kernel
2516  * subsystem), by bd_claiming the device.
2517  */
2518 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2519 {
2520 	int err = 0;
2521 	struct block_device *bdev;
2522 
2523 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2524 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2525 	if (IS_ERR(bdev)) {
2526 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2527 			MAJOR(dev), MINOR(dev));
2528 		return PTR_ERR(bdev);
2529 	}
2530 	rdev->bdev = bdev;
2531 	return err;
2532 }
2533 
2534 static void unlock_rdev(struct md_rdev *rdev)
2535 {
2536 	struct block_device *bdev = rdev->bdev;
2537 	rdev->bdev = NULL;
2538 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2539 }
2540 
2541 void md_autodetect_dev(dev_t dev);
2542 
2543 static void export_rdev(struct md_rdev *rdev)
2544 {
2545 	char b[BDEVNAME_SIZE];
2546 
2547 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2548 	md_rdev_clear(rdev);
2549 #ifndef MODULE
2550 	if (test_bit(AutoDetected, &rdev->flags))
2551 		md_autodetect_dev(rdev->bdev->bd_dev);
2552 #endif
2553 	unlock_rdev(rdev);
2554 	kobject_put(&rdev->kobj);
2555 }
2556 
2557 void md_kick_rdev_from_array(struct md_rdev *rdev)
2558 {
2559 	unbind_rdev_from_array(rdev);
2560 	export_rdev(rdev);
2561 }
2562 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2563 
2564 static void export_array(struct mddev *mddev)
2565 {
2566 	struct md_rdev *rdev;
2567 
2568 	while (!list_empty(&mddev->disks)) {
2569 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2570 					same_set);
2571 		md_kick_rdev_from_array(rdev);
2572 	}
2573 	mddev->raid_disks = 0;
2574 	mddev->major_version = 0;
2575 }
2576 
2577 static bool set_in_sync(struct mddev *mddev)
2578 {
2579 	lockdep_assert_held(&mddev->lock);
2580 	if (!mddev->in_sync) {
2581 		mddev->sync_checkers++;
2582 		spin_unlock(&mddev->lock);
2583 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2584 		spin_lock(&mddev->lock);
2585 		if (!mddev->in_sync &&
2586 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2587 			mddev->in_sync = 1;
2588 			/*
2589 			 * Ensure ->in_sync is visible before we clear
2590 			 * ->sync_checkers.
2591 			 */
2592 			smp_mb();
2593 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2594 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2595 		}
2596 		if (--mddev->sync_checkers == 0)
2597 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2598 	}
2599 	if (mddev->safemode == 1)
2600 		mddev->safemode = 0;
2601 	return mddev->in_sync;
2602 }
2603 
2604 static void sync_sbs(struct mddev *mddev, int nospares)
2605 {
2606 	/* Update each superblock (in-memory image), but
2607 	 * if we are allowed to, skip spares which already
2608 	 * have the right event counter, or have one earlier
2609 	 * (which would mean they aren't being marked as dirty
2610 	 * with the rest of the array)
2611 	 */
2612 	struct md_rdev *rdev;
2613 	rdev_for_each(rdev, mddev) {
2614 		if (rdev->sb_events == mddev->events ||
2615 		    (nospares &&
2616 		     rdev->raid_disk < 0 &&
2617 		     rdev->sb_events+1 == mddev->events)) {
2618 			/* Don't update this superblock */
2619 			rdev->sb_loaded = 2;
2620 		} else {
2621 			sync_super(mddev, rdev);
2622 			rdev->sb_loaded = 1;
2623 		}
2624 	}
2625 }
2626 
2627 static bool does_sb_need_changing(struct mddev *mddev)
2628 {
2629 	struct md_rdev *rdev;
2630 	struct mdp_superblock_1 *sb;
2631 	int role;
2632 
2633 	/* Find a good rdev */
2634 	rdev_for_each(rdev, mddev)
2635 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2636 			break;
2637 
2638 	/* No good device found. */
2639 	if (!rdev)
2640 		return false;
2641 
2642 	sb = page_address(rdev->sb_page);
2643 	/* Check if a device has become faulty or a spare become active */
2644 	rdev_for_each(rdev, mddev) {
2645 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2646 		/* Device activated? */
2647 		if (role == 0xffff && rdev->raid_disk >=0 &&
2648 		    !test_bit(Faulty, &rdev->flags))
2649 			return true;
2650 		/* Device turned faulty? */
2651 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2652 			return true;
2653 	}
2654 
2655 	/* Check if any mddev parameters have changed */
2656 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2657 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2658 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2659 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2660 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2661 		return true;
2662 
2663 	return false;
2664 }
2665 
2666 void md_update_sb(struct mddev *mddev, int force_change)
2667 {
2668 	struct md_rdev *rdev;
2669 	int sync_req;
2670 	int nospares = 0;
2671 	int any_badblocks_changed = 0;
2672 	int ret = -1;
2673 
2674 	if (mddev->ro) {
2675 		if (force_change)
2676 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2677 		return;
2678 	}
2679 
2680 repeat:
2681 	if (mddev_is_clustered(mddev)) {
2682 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2683 			force_change = 1;
2684 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2685 			nospares = 1;
2686 		ret = md_cluster_ops->metadata_update_start(mddev);
2687 		/* Has someone else has updated the sb */
2688 		if (!does_sb_need_changing(mddev)) {
2689 			if (ret == 0)
2690 				md_cluster_ops->metadata_update_cancel(mddev);
2691 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2692 							 BIT(MD_SB_CHANGE_DEVS) |
2693 							 BIT(MD_SB_CHANGE_CLEAN));
2694 			return;
2695 		}
2696 	}
2697 
2698 	/*
2699 	 * First make sure individual recovery_offsets are correct
2700 	 * curr_resync_completed can only be used during recovery.
2701 	 * During reshape/resync it might use array-addresses rather
2702 	 * that device addresses.
2703 	 */
2704 	rdev_for_each(rdev, mddev) {
2705 		if (rdev->raid_disk >= 0 &&
2706 		    mddev->delta_disks >= 0 &&
2707 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2708 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2709 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2710 		    !test_bit(Journal, &rdev->flags) &&
2711 		    !test_bit(In_sync, &rdev->flags) &&
2712 		    mddev->curr_resync_completed > rdev->recovery_offset)
2713 				rdev->recovery_offset = mddev->curr_resync_completed;
2714 
2715 	}
2716 	if (!mddev->persistent) {
2717 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2718 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2719 		if (!mddev->external) {
2720 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2721 			rdev_for_each(rdev, mddev) {
2722 				if (rdev->badblocks.changed) {
2723 					rdev->badblocks.changed = 0;
2724 					ack_all_badblocks(&rdev->badblocks);
2725 					md_error(mddev, rdev);
2726 				}
2727 				clear_bit(Blocked, &rdev->flags);
2728 				clear_bit(BlockedBadBlocks, &rdev->flags);
2729 				wake_up(&rdev->blocked_wait);
2730 			}
2731 		}
2732 		wake_up(&mddev->sb_wait);
2733 		return;
2734 	}
2735 
2736 	spin_lock(&mddev->lock);
2737 
2738 	mddev->utime = ktime_get_real_seconds();
2739 
2740 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2741 		force_change = 1;
2742 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2743 		/* just a clean<-> dirty transition, possibly leave spares alone,
2744 		 * though if events isn't the right even/odd, we will have to do
2745 		 * spares after all
2746 		 */
2747 		nospares = 1;
2748 	if (force_change)
2749 		nospares = 0;
2750 	if (mddev->degraded)
2751 		/* If the array is degraded, then skipping spares is both
2752 		 * dangerous and fairly pointless.
2753 		 * Dangerous because a device that was removed from the array
2754 		 * might have a event_count that still looks up-to-date,
2755 		 * so it can be re-added without a resync.
2756 		 * Pointless because if there are any spares to skip,
2757 		 * then a recovery will happen and soon that array won't
2758 		 * be degraded any more and the spare can go back to sleep then.
2759 		 */
2760 		nospares = 0;
2761 
2762 	sync_req = mddev->in_sync;
2763 
2764 	/* If this is just a dirty<->clean transition, and the array is clean
2765 	 * and 'events' is odd, we can roll back to the previous clean state */
2766 	if (nospares
2767 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2768 	    && mddev->can_decrease_events
2769 	    && mddev->events != 1) {
2770 		mddev->events--;
2771 		mddev->can_decrease_events = 0;
2772 	} else {
2773 		/* otherwise we have to go forward and ... */
2774 		mddev->events ++;
2775 		mddev->can_decrease_events = nospares;
2776 	}
2777 
2778 	/*
2779 	 * This 64-bit counter should never wrap.
2780 	 * Either we are in around ~1 trillion A.C., assuming
2781 	 * 1 reboot per second, or we have a bug...
2782 	 */
2783 	WARN_ON(mddev->events == 0);
2784 
2785 	rdev_for_each(rdev, mddev) {
2786 		if (rdev->badblocks.changed)
2787 			any_badblocks_changed++;
2788 		if (test_bit(Faulty, &rdev->flags))
2789 			set_bit(FaultRecorded, &rdev->flags);
2790 	}
2791 
2792 	sync_sbs(mddev, nospares);
2793 	spin_unlock(&mddev->lock);
2794 
2795 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2796 		 mdname(mddev), mddev->in_sync);
2797 
2798 	if (mddev->queue)
2799 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2800 rewrite:
2801 	md_bitmap_update_sb(mddev->bitmap);
2802 	rdev_for_each(rdev, mddev) {
2803 		char b[BDEVNAME_SIZE];
2804 
2805 		if (rdev->sb_loaded != 1)
2806 			continue; /* no noise on spare devices */
2807 
2808 		if (!test_bit(Faulty, &rdev->flags)) {
2809 			md_super_write(mddev,rdev,
2810 				       rdev->sb_start, rdev->sb_size,
2811 				       rdev->sb_page);
2812 			pr_debug("md: (write) %s's sb offset: %llu\n",
2813 				 bdevname(rdev->bdev, b),
2814 				 (unsigned long long)rdev->sb_start);
2815 			rdev->sb_events = mddev->events;
2816 			if (rdev->badblocks.size) {
2817 				md_super_write(mddev, rdev,
2818 					       rdev->badblocks.sector,
2819 					       rdev->badblocks.size << 9,
2820 					       rdev->bb_page);
2821 				rdev->badblocks.size = 0;
2822 			}
2823 
2824 		} else
2825 			pr_debug("md: %s (skipping faulty)\n",
2826 				 bdevname(rdev->bdev, b));
2827 
2828 		if (mddev->level == LEVEL_MULTIPATH)
2829 			/* only need to write one superblock... */
2830 			break;
2831 	}
2832 	if (md_super_wait(mddev) < 0)
2833 		goto rewrite;
2834 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2835 
2836 	if (mddev_is_clustered(mddev) && ret == 0)
2837 		md_cluster_ops->metadata_update_finish(mddev);
2838 
2839 	if (mddev->in_sync != sync_req ||
2840 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2841 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2842 		/* have to write it out again */
2843 		goto repeat;
2844 	wake_up(&mddev->sb_wait);
2845 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2846 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2847 
2848 	rdev_for_each(rdev, mddev) {
2849 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2850 			clear_bit(Blocked, &rdev->flags);
2851 
2852 		if (any_badblocks_changed)
2853 			ack_all_badblocks(&rdev->badblocks);
2854 		clear_bit(BlockedBadBlocks, &rdev->flags);
2855 		wake_up(&rdev->blocked_wait);
2856 	}
2857 }
2858 EXPORT_SYMBOL(md_update_sb);
2859 
2860 static int add_bound_rdev(struct md_rdev *rdev)
2861 {
2862 	struct mddev *mddev = rdev->mddev;
2863 	int err = 0;
2864 	bool add_journal = test_bit(Journal, &rdev->flags);
2865 
2866 	if (!mddev->pers->hot_remove_disk || add_journal) {
2867 		/* If there is hot_add_disk but no hot_remove_disk
2868 		 * then added disks for geometry changes,
2869 		 * and should be added immediately.
2870 		 */
2871 		super_types[mddev->major_version].
2872 			validate_super(mddev, rdev);
2873 		if (add_journal)
2874 			mddev_suspend(mddev);
2875 		err = mddev->pers->hot_add_disk(mddev, rdev);
2876 		if (add_journal)
2877 			mddev_resume(mddev);
2878 		if (err) {
2879 			md_kick_rdev_from_array(rdev);
2880 			return err;
2881 		}
2882 	}
2883 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2884 
2885 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2886 	if (mddev->degraded)
2887 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2888 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2889 	md_new_event(mddev);
2890 	md_wakeup_thread(mddev->thread);
2891 	return 0;
2892 }
2893 
2894 /* words written to sysfs files may, or may not, be \n terminated.
2895  * We want to accept with case. For this we use cmd_match.
2896  */
2897 static int cmd_match(const char *cmd, const char *str)
2898 {
2899 	/* See if cmd, written into a sysfs file, matches
2900 	 * str.  They must either be the same, or cmd can
2901 	 * have a trailing newline
2902 	 */
2903 	while (*cmd && *str && *cmd == *str) {
2904 		cmd++;
2905 		str++;
2906 	}
2907 	if (*cmd == '\n')
2908 		cmd++;
2909 	if (*str || *cmd)
2910 		return 0;
2911 	return 1;
2912 }
2913 
2914 struct rdev_sysfs_entry {
2915 	struct attribute attr;
2916 	ssize_t (*show)(struct md_rdev *, char *);
2917 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2918 };
2919 
2920 static ssize_t
2921 state_show(struct md_rdev *rdev, char *page)
2922 {
2923 	char *sep = ",";
2924 	size_t len = 0;
2925 	unsigned long flags = READ_ONCE(rdev->flags);
2926 
2927 	if (test_bit(Faulty, &flags) ||
2928 	    (!test_bit(ExternalBbl, &flags) &&
2929 	    rdev->badblocks.unacked_exist))
2930 		len += sprintf(page+len, "faulty%s", sep);
2931 	if (test_bit(In_sync, &flags))
2932 		len += sprintf(page+len, "in_sync%s", sep);
2933 	if (test_bit(Journal, &flags))
2934 		len += sprintf(page+len, "journal%s", sep);
2935 	if (test_bit(WriteMostly, &flags))
2936 		len += sprintf(page+len, "write_mostly%s", sep);
2937 	if (test_bit(Blocked, &flags) ||
2938 	    (rdev->badblocks.unacked_exist
2939 	     && !test_bit(Faulty, &flags)))
2940 		len += sprintf(page+len, "blocked%s", sep);
2941 	if (!test_bit(Faulty, &flags) &&
2942 	    !test_bit(Journal, &flags) &&
2943 	    !test_bit(In_sync, &flags))
2944 		len += sprintf(page+len, "spare%s", sep);
2945 	if (test_bit(WriteErrorSeen, &flags))
2946 		len += sprintf(page+len, "write_error%s", sep);
2947 	if (test_bit(WantReplacement, &flags))
2948 		len += sprintf(page+len, "want_replacement%s", sep);
2949 	if (test_bit(Replacement, &flags))
2950 		len += sprintf(page+len, "replacement%s", sep);
2951 	if (test_bit(ExternalBbl, &flags))
2952 		len += sprintf(page+len, "external_bbl%s", sep);
2953 	if (test_bit(FailFast, &flags))
2954 		len += sprintf(page+len, "failfast%s", sep);
2955 
2956 	if (len)
2957 		len -= strlen(sep);
2958 
2959 	return len+sprintf(page+len, "\n");
2960 }
2961 
2962 static ssize_t
2963 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2964 {
2965 	/* can write
2966 	 *  faulty  - simulates an error
2967 	 *  remove  - disconnects the device
2968 	 *  writemostly - sets write_mostly
2969 	 *  -writemostly - clears write_mostly
2970 	 *  blocked - sets the Blocked flags
2971 	 *  -blocked - clears the Blocked and possibly simulates an error
2972 	 *  insync - sets Insync providing device isn't active
2973 	 *  -insync - clear Insync for a device with a slot assigned,
2974 	 *            so that it gets rebuilt based on bitmap
2975 	 *  write_error - sets WriteErrorSeen
2976 	 *  -write_error - clears WriteErrorSeen
2977 	 *  {,-}failfast - set/clear FailFast
2978 	 */
2979 	int err = -EINVAL;
2980 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2981 		md_error(rdev->mddev, rdev);
2982 		if (test_bit(Faulty, &rdev->flags))
2983 			err = 0;
2984 		else
2985 			err = -EBUSY;
2986 	} else if (cmd_match(buf, "remove")) {
2987 		if (rdev->mddev->pers) {
2988 			clear_bit(Blocked, &rdev->flags);
2989 			remove_and_add_spares(rdev->mddev, rdev);
2990 		}
2991 		if (rdev->raid_disk >= 0)
2992 			err = -EBUSY;
2993 		else {
2994 			struct mddev *mddev = rdev->mddev;
2995 			err = 0;
2996 			if (mddev_is_clustered(mddev))
2997 				err = md_cluster_ops->remove_disk(mddev, rdev);
2998 
2999 			if (err == 0) {
3000 				md_kick_rdev_from_array(rdev);
3001 				if (mddev->pers) {
3002 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3003 					md_wakeup_thread(mddev->thread);
3004 				}
3005 				md_new_event(mddev);
3006 			}
3007 		}
3008 	} else if (cmd_match(buf, "writemostly")) {
3009 		set_bit(WriteMostly, &rdev->flags);
3010 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3011 		err = 0;
3012 	} else if (cmd_match(buf, "-writemostly")) {
3013 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3014 		clear_bit(WriteMostly, &rdev->flags);
3015 		err = 0;
3016 	} else if (cmd_match(buf, "blocked")) {
3017 		set_bit(Blocked, &rdev->flags);
3018 		err = 0;
3019 	} else if (cmd_match(buf, "-blocked")) {
3020 		if (!test_bit(Faulty, &rdev->flags) &&
3021 		    !test_bit(ExternalBbl, &rdev->flags) &&
3022 		    rdev->badblocks.unacked_exist) {
3023 			/* metadata handler doesn't understand badblocks,
3024 			 * so we need to fail the device
3025 			 */
3026 			md_error(rdev->mddev, rdev);
3027 		}
3028 		clear_bit(Blocked, &rdev->flags);
3029 		clear_bit(BlockedBadBlocks, &rdev->flags);
3030 		wake_up(&rdev->blocked_wait);
3031 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3032 		md_wakeup_thread(rdev->mddev->thread);
3033 
3034 		err = 0;
3035 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3036 		set_bit(In_sync, &rdev->flags);
3037 		err = 0;
3038 	} else if (cmd_match(buf, "failfast")) {
3039 		set_bit(FailFast, &rdev->flags);
3040 		err = 0;
3041 	} else if (cmd_match(buf, "-failfast")) {
3042 		clear_bit(FailFast, &rdev->flags);
3043 		err = 0;
3044 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3045 		   !test_bit(Journal, &rdev->flags)) {
3046 		if (rdev->mddev->pers == NULL) {
3047 			clear_bit(In_sync, &rdev->flags);
3048 			rdev->saved_raid_disk = rdev->raid_disk;
3049 			rdev->raid_disk = -1;
3050 			err = 0;
3051 		}
3052 	} else if (cmd_match(buf, "write_error")) {
3053 		set_bit(WriteErrorSeen, &rdev->flags);
3054 		err = 0;
3055 	} else if (cmd_match(buf, "-write_error")) {
3056 		clear_bit(WriteErrorSeen, &rdev->flags);
3057 		err = 0;
3058 	} else if (cmd_match(buf, "want_replacement")) {
3059 		/* Any non-spare device that is not a replacement can
3060 		 * become want_replacement at any time, but we then need to
3061 		 * check if recovery is needed.
3062 		 */
3063 		if (rdev->raid_disk >= 0 &&
3064 		    !test_bit(Journal, &rdev->flags) &&
3065 		    !test_bit(Replacement, &rdev->flags))
3066 			set_bit(WantReplacement, &rdev->flags);
3067 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3068 		md_wakeup_thread(rdev->mddev->thread);
3069 		err = 0;
3070 	} else if (cmd_match(buf, "-want_replacement")) {
3071 		/* Clearing 'want_replacement' is always allowed.
3072 		 * Once replacements starts it is too late though.
3073 		 */
3074 		err = 0;
3075 		clear_bit(WantReplacement, &rdev->flags);
3076 	} else if (cmd_match(buf, "replacement")) {
3077 		/* Can only set a device as a replacement when array has not
3078 		 * yet been started.  Once running, replacement is automatic
3079 		 * from spares, or by assigning 'slot'.
3080 		 */
3081 		if (rdev->mddev->pers)
3082 			err = -EBUSY;
3083 		else {
3084 			set_bit(Replacement, &rdev->flags);
3085 			err = 0;
3086 		}
3087 	} else if (cmd_match(buf, "-replacement")) {
3088 		/* Similarly, can only clear Replacement before start */
3089 		if (rdev->mddev->pers)
3090 			err = -EBUSY;
3091 		else {
3092 			clear_bit(Replacement, &rdev->flags);
3093 			err = 0;
3094 		}
3095 	} else if (cmd_match(buf, "re-add")) {
3096 		if (!rdev->mddev->pers)
3097 			err = -EINVAL;
3098 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3099 				rdev->saved_raid_disk >= 0) {
3100 			/* clear_bit is performed _after_ all the devices
3101 			 * have their local Faulty bit cleared. If any writes
3102 			 * happen in the meantime in the local node, they
3103 			 * will land in the local bitmap, which will be synced
3104 			 * by this node eventually
3105 			 */
3106 			if (!mddev_is_clustered(rdev->mddev) ||
3107 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3108 				clear_bit(Faulty, &rdev->flags);
3109 				err = add_bound_rdev(rdev);
3110 			}
3111 		} else
3112 			err = -EBUSY;
3113 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3114 		set_bit(ExternalBbl, &rdev->flags);
3115 		rdev->badblocks.shift = 0;
3116 		err = 0;
3117 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3118 		clear_bit(ExternalBbl, &rdev->flags);
3119 		err = 0;
3120 	}
3121 	if (!err)
3122 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3123 	return err ? err : len;
3124 }
3125 static struct rdev_sysfs_entry rdev_state =
3126 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3127 
3128 static ssize_t
3129 errors_show(struct md_rdev *rdev, char *page)
3130 {
3131 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3132 }
3133 
3134 static ssize_t
3135 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3136 {
3137 	unsigned int n;
3138 	int rv;
3139 
3140 	rv = kstrtouint(buf, 10, &n);
3141 	if (rv < 0)
3142 		return rv;
3143 	atomic_set(&rdev->corrected_errors, n);
3144 	return len;
3145 }
3146 static struct rdev_sysfs_entry rdev_errors =
3147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3148 
3149 static ssize_t
3150 slot_show(struct md_rdev *rdev, char *page)
3151 {
3152 	if (test_bit(Journal, &rdev->flags))
3153 		return sprintf(page, "journal\n");
3154 	else if (rdev->raid_disk < 0)
3155 		return sprintf(page, "none\n");
3156 	else
3157 		return sprintf(page, "%d\n", rdev->raid_disk);
3158 }
3159 
3160 static ssize_t
3161 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3162 {
3163 	int slot;
3164 	int err;
3165 
3166 	if (test_bit(Journal, &rdev->flags))
3167 		return -EBUSY;
3168 	if (strncmp(buf, "none", 4)==0)
3169 		slot = -1;
3170 	else {
3171 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3172 		if (err < 0)
3173 			return err;
3174 	}
3175 	if (rdev->mddev->pers && slot == -1) {
3176 		/* Setting 'slot' on an active array requires also
3177 		 * updating the 'rd%d' link, and communicating
3178 		 * with the personality with ->hot_*_disk.
3179 		 * For now we only support removing
3180 		 * failed/spare devices.  This normally happens automatically,
3181 		 * but not when the metadata is externally managed.
3182 		 */
3183 		if (rdev->raid_disk == -1)
3184 			return -EEXIST;
3185 		/* personality does all needed checks */
3186 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3187 			return -EINVAL;
3188 		clear_bit(Blocked, &rdev->flags);
3189 		remove_and_add_spares(rdev->mddev, rdev);
3190 		if (rdev->raid_disk >= 0)
3191 			return -EBUSY;
3192 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3193 		md_wakeup_thread(rdev->mddev->thread);
3194 	} else if (rdev->mddev->pers) {
3195 		/* Activating a spare .. or possibly reactivating
3196 		 * if we ever get bitmaps working here.
3197 		 */
3198 		int err;
3199 
3200 		if (rdev->raid_disk != -1)
3201 			return -EBUSY;
3202 
3203 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3204 			return -EBUSY;
3205 
3206 		if (rdev->mddev->pers->hot_add_disk == NULL)
3207 			return -EINVAL;
3208 
3209 		if (slot >= rdev->mddev->raid_disks &&
3210 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3211 			return -ENOSPC;
3212 
3213 		rdev->raid_disk = slot;
3214 		if (test_bit(In_sync, &rdev->flags))
3215 			rdev->saved_raid_disk = slot;
3216 		else
3217 			rdev->saved_raid_disk = -1;
3218 		clear_bit(In_sync, &rdev->flags);
3219 		clear_bit(Bitmap_sync, &rdev->flags);
3220 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3221 		if (err) {
3222 			rdev->raid_disk = -1;
3223 			return err;
3224 		} else
3225 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3226 		/* failure here is OK */;
3227 		sysfs_link_rdev(rdev->mddev, rdev);
3228 		/* don't wakeup anyone, leave that to userspace. */
3229 	} else {
3230 		if (slot >= rdev->mddev->raid_disks &&
3231 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3232 			return -ENOSPC;
3233 		rdev->raid_disk = slot;
3234 		/* assume it is working */
3235 		clear_bit(Faulty, &rdev->flags);
3236 		clear_bit(WriteMostly, &rdev->flags);
3237 		set_bit(In_sync, &rdev->flags);
3238 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3239 	}
3240 	return len;
3241 }
3242 
3243 static struct rdev_sysfs_entry rdev_slot =
3244 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3245 
3246 static ssize_t
3247 offset_show(struct md_rdev *rdev, char *page)
3248 {
3249 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3250 }
3251 
3252 static ssize_t
3253 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3254 {
3255 	unsigned long long offset;
3256 	if (kstrtoull(buf, 10, &offset) < 0)
3257 		return -EINVAL;
3258 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3259 		return -EBUSY;
3260 	if (rdev->sectors && rdev->mddev->external)
3261 		/* Must set offset before size, so overlap checks
3262 		 * can be sane */
3263 		return -EBUSY;
3264 	rdev->data_offset = offset;
3265 	rdev->new_data_offset = offset;
3266 	return len;
3267 }
3268 
3269 static struct rdev_sysfs_entry rdev_offset =
3270 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3271 
3272 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3273 {
3274 	return sprintf(page, "%llu\n",
3275 		       (unsigned long long)rdev->new_data_offset);
3276 }
3277 
3278 static ssize_t new_offset_store(struct md_rdev *rdev,
3279 				const char *buf, size_t len)
3280 {
3281 	unsigned long long new_offset;
3282 	struct mddev *mddev = rdev->mddev;
3283 
3284 	if (kstrtoull(buf, 10, &new_offset) < 0)
3285 		return -EINVAL;
3286 
3287 	if (mddev->sync_thread ||
3288 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3289 		return -EBUSY;
3290 	if (new_offset == rdev->data_offset)
3291 		/* reset is always permitted */
3292 		;
3293 	else if (new_offset > rdev->data_offset) {
3294 		/* must not push array size beyond rdev_sectors */
3295 		if (new_offset - rdev->data_offset
3296 		    + mddev->dev_sectors > rdev->sectors)
3297 				return -E2BIG;
3298 	}
3299 	/* Metadata worries about other space details. */
3300 
3301 	/* decreasing the offset is inconsistent with a backwards
3302 	 * reshape.
3303 	 */
3304 	if (new_offset < rdev->data_offset &&
3305 	    mddev->reshape_backwards)
3306 		return -EINVAL;
3307 	/* Increasing offset is inconsistent with forwards
3308 	 * reshape.  reshape_direction should be set to
3309 	 * 'backwards' first.
3310 	 */
3311 	if (new_offset > rdev->data_offset &&
3312 	    !mddev->reshape_backwards)
3313 		return -EINVAL;
3314 
3315 	if (mddev->pers && mddev->persistent &&
3316 	    !super_types[mddev->major_version]
3317 	    .allow_new_offset(rdev, new_offset))
3318 		return -E2BIG;
3319 	rdev->new_data_offset = new_offset;
3320 	if (new_offset > rdev->data_offset)
3321 		mddev->reshape_backwards = 1;
3322 	else if (new_offset < rdev->data_offset)
3323 		mddev->reshape_backwards = 0;
3324 
3325 	return len;
3326 }
3327 static struct rdev_sysfs_entry rdev_new_offset =
3328 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3329 
3330 static ssize_t
3331 rdev_size_show(struct md_rdev *rdev, char *page)
3332 {
3333 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3334 }
3335 
3336 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3337 {
3338 	/* check if two start/length pairs overlap */
3339 	if (s1+l1 <= s2)
3340 		return 0;
3341 	if (s2+l2 <= s1)
3342 		return 0;
3343 	return 1;
3344 }
3345 
3346 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3347 {
3348 	unsigned long long blocks;
3349 	sector_t new;
3350 
3351 	if (kstrtoull(buf, 10, &blocks) < 0)
3352 		return -EINVAL;
3353 
3354 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3355 		return -EINVAL; /* sector conversion overflow */
3356 
3357 	new = blocks * 2;
3358 	if (new != blocks * 2)
3359 		return -EINVAL; /* unsigned long long to sector_t overflow */
3360 
3361 	*sectors = new;
3362 	return 0;
3363 }
3364 
3365 static ssize_t
3366 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3367 {
3368 	struct mddev *my_mddev = rdev->mddev;
3369 	sector_t oldsectors = rdev->sectors;
3370 	sector_t sectors;
3371 
3372 	if (test_bit(Journal, &rdev->flags))
3373 		return -EBUSY;
3374 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3375 		return -EINVAL;
3376 	if (rdev->data_offset != rdev->new_data_offset)
3377 		return -EINVAL; /* too confusing */
3378 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3379 		if (my_mddev->persistent) {
3380 			sectors = super_types[my_mddev->major_version].
3381 				rdev_size_change(rdev, sectors);
3382 			if (!sectors)
3383 				return -EBUSY;
3384 		} else if (!sectors)
3385 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3386 				rdev->data_offset;
3387 		if (!my_mddev->pers->resize)
3388 			/* Cannot change size for RAID0 or Linear etc */
3389 			return -EINVAL;
3390 	}
3391 	if (sectors < my_mddev->dev_sectors)
3392 		return -EINVAL; /* component must fit device */
3393 
3394 	rdev->sectors = sectors;
3395 	if (sectors > oldsectors && my_mddev->external) {
3396 		/* Need to check that all other rdevs with the same
3397 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3398 		 * the rdev lists safely.
3399 		 * This check does not provide a hard guarantee, it
3400 		 * just helps avoid dangerous mistakes.
3401 		 */
3402 		struct mddev *mddev;
3403 		int overlap = 0;
3404 		struct list_head *tmp;
3405 
3406 		rcu_read_lock();
3407 		for_each_mddev(mddev, tmp) {
3408 			struct md_rdev *rdev2;
3409 
3410 			rdev_for_each(rdev2, mddev)
3411 				if (rdev->bdev == rdev2->bdev &&
3412 				    rdev != rdev2 &&
3413 				    overlaps(rdev->data_offset, rdev->sectors,
3414 					     rdev2->data_offset,
3415 					     rdev2->sectors)) {
3416 					overlap = 1;
3417 					break;
3418 				}
3419 			if (overlap) {
3420 				mddev_put(mddev);
3421 				break;
3422 			}
3423 		}
3424 		rcu_read_unlock();
3425 		if (overlap) {
3426 			/* Someone else could have slipped in a size
3427 			 * change here, but doing so is just silly.
3428 			 * We put oldsectors back because we *know* it is
3429 			 * safe, and trust userspace not to race with
3430 			 * itself
3431 			 */
3432 			rdev->sectors = oldsectors;
3433 			return -EBUSY;
3434 		}
3435 	}
3436 	return len;
3437 }
3438 
3439 static struct rdev_sysfs_entry rdev_size =
3440 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3441 
3442 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3443 {
3444 	unsigned long long recovery_start = rdev->recovery_offset;
3445 
3446 	if (test_bit(In_sync, &rdev->flags) ||
3447 	    recovery_start == MaxSector)
3448 		return sprintf(page, "none\n");
3449 
3450 	return sprintf(page, "%llu\n", recovery_start);
3451 }
3452 
3453 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3454 {
3455 	unsigned long long recovery_start;
3456 
3457 	if (cmd_match(buf, "none"))
3458 		recovery_start = MaxSector;
3459 	else if (kstrtoull(buf, 10, &recovery_start))
3460 		return -EINVAL;
3461 
3462 	if (rdev->mddev->pers &&
3463 	    rdev->raid_disk >= 0)
3464 		return -EBUSY;
3465 
3466 	rdev->recovery_offset = recovery_start;
3467 	if (recovery_start == MaxSector)
3468 		set_bit(In_sync, &rdev->flags);
3469 	else
3470 		clear_bit(In_sync, &rdev->flags);
3471 	return len;
3472 }
3473 
3474 static struct rdev_sysfs_entry rdev_recovery_start =
3475 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3476 
3477 /* sysfs access to bad-blocks list.
3478  * We present two files.
3479  * 'bad-blocks' lists sector numbers and lengths of ranges that
3480  *    are recorded as bad.  The list is truncated to fit within
3481  *    the one-page limit of sysfs.
3482  *    Writing "sector length" to this file adds an acknowledged
3483  *    bad block list.
3484  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3485  *    been acknowledged.  Writing to this file adds bad blocks
3486  *    without acknowledging them.  This is largely for testing.
3487  */
3488 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3489 {
3490 	return badblocks_show(&rdev->badblocks, page, 0);
3491 }
3492 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3493 {
3494 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3495 	/* Maybe that ack was all we needed */
3496 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3497 		wake_up(&rdev->blocked_wait);
3498 	return rv;
3499 }
3500 static struct rdev_sysfs_entry rdev_bad_blocks =
3501 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3502 
3503 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3504 {
3505 	return badblocks_show(&rdev->badblocks, page, 1);
3506 }
3507 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3508 {
3509 	return badblocks_store(&rdev->badblocks, page, len, 1);
3510 }
3511 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3512 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3513 
3514 static ssize_t
3515 ppl_sector_show(struct md_rdev *rdev, char *page)
3516 {
3517 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3518 }
3519 
3520 static ssize_t
3521 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3522 {
3523 	unsigned long long sector;
3524 
3525 	if (kstrtoull(buf, 10, &sector) < 0)
3526 		return -EINVAL;
3527 	if (sector != (sector_t)sector)
3528 		return -EINVAL;
3529 
3530 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3531 	    rdev->raid_disk >= 0)
3532 		return -EBUSY;
3533 
3534 	if (rdev->mddev->persistent) {
3535 		if (rdev->mddev->major_version == 0)
3536 			return -EINVAL;
3537 		if ((sector > rdev->sb_start &&
3538 		     sector - rdev->sb_start > S16_MAX) ||
3539 		    (sector < rdev->sb_start &&
3540 		     rdev->sb_start - sector > -S16_MIN))
3541 			return -EINVAL;
3542 		rdev->ppl.offset = sector - rdev->sb_start;
3543 	} else if (!rdev->mddev->external) {
3544 		return -EBUSY;
3545 	}
3546 	rdev->ppl.sector = sector;
3547 	return len;
3548 }
3549 
3550 static struct rdev_sysfs_entry rdev_ppl_sector =
3551 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3552 
3553 static ssize_t
3554 ppl_size_show(struct md_rdev *rdev, char *page)
3555 {
3556 	return sprintf(page, "%u\n", rdev->ppl.size);
3557 }
3558 
3559 static ssize_t
3560 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3561 {
3562 	unsigned int size;
3563 
3564 	if (kstrtouint(buf, 10, &size) < 0)
3565 		return -EINVAL;
3566 
3567 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3568 	    rdev->raid_disk >= 0)
3569 		return -EBUSY;
3570 
3571 	if (rdev->mddev->persistent) {
3572 		if (rdev->mddev->major_version == 0)
3573 			return -EINVAL;
3574 		if (size > U16_MAX)
3575 			return -EINVAL;
3576 	} else if (!rdev->mddev->external) {
3577 		return -EBUSY;
3578 	}
3579 	rdev->ppl.size = size;
3580 	return len;
3581 }
3582 
3583 static struct rdev_sysfs_entry rdev_ppl_size =
3584 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3585 
3586 static struct attribute *rdev_default_attrs[] = {
3587 	&rdev_state.attr,
3588 	&rdev_errors.attr,
3589 	&rdev_slot.attr,
3590 	&rdev_offset.attr,
3591 	&rdev_new_offset.attr,
3592 	&rdev_size.attr,
3593 	&rdev_recovery_start.attr,
3594 	&rdev_bad_blocks.attr,
3595 	&rdev_unack_bad_blocks.attr,
3596 	&rdev_ppl_sector.attr,
3597 	&rdev_ppl_size.attr,
3598 	NULL,
3599 };
3600 static ssize_t
3601 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3602 {
3603 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3604 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3605 
3606 	if (!entry->show)
3607 		return -EIO;
3608 	if (!rdev->mddev)
3609 		return -ENODEV;
3610 	return entry->show(rdev, page);
3611 }
3612 
3613 static ssize_t
3614 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3615 	      const char *page, size_t length)
3616 {
3617 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3618 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3619 	ssize_t rv;
3620 	struct mddev *mddev = rdev->mddev;
3621 
3622 	if (!entry->store)
3623 		return -EIO;
3624 	if (!capable(CAP_SYS_ADMIN))
3625 		return -EACCES;
3626 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3627 	if (!rv) {
3628 		if (rdev->mddev == NULL)
3629 			rv = -ENODEV;
3630 		else
3631 			rv = entry->store(rdev, page, length);
3632 		mddev_unlock(mddev);
3633 	}
3634 	return rv;
3635 }
3636 
3637 static void rdev_free(struct kobject *ko)
3638 {
3639 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3640 	kfree(rdev);
3641 }
3642 static const struct sysfs_ops rdev_sysfs_ops = {
3643 	.show		= rdev_attr_show,
3644 	.store		= rdev_attr_store,
3645 };
3646 static struct kobj_type rdev_ktype = {
3647 	.release	= rdev_free,
3648 	.sysfs_ops	= &rdev_sysfs_ops,
3649 	.default_attrs	= rdev_default_attrs,
3650 };
3651 
3652 int md_rdev_init(struct md_rdev *rdev)
3653 {
3654 	rdev->desc_nr = -1;
3655 	rdev->saved_raid_disk = -1;
3656 	rdev->raid_disk = -1;
3657 	rdev->flags = 0;
3658 	rdev->data_offset = 0;
3659 	rdev->new_data_offset = 0;
3660 	rdev->sb_events = 0;
3661 	rdev->last_read_error = 0;
3662 	rdev->sb_loaded = 0;
3663 	rdev->bb_page = NULL;
3664 	atomic_set(&rdev->nr_pending, 0);
3665 	atomic_set(&rdev->read_errors, 0);
3666 	atomic_set(&rdev->corrected_errors, 0);
3667 
3668 	INIT_LIST_HEAD(&rdev->same_set);
3669 	init_waitqueue_head(&rdev->blocked_wait);
3670 
3671 	/* Add space to store bad block list.
3672 	 * This reserves the space even on arrays where it cannot
3673 	 * be used - I wonder if that matters
3674 	 */
3675 	return badblocks_init(&rdev->badblocks, 0);
3676 }
3677 EXPORT_SYMBOL_GPL(md_rdev_init);
3678 /*
3679  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3680  *
3681  * mark the device faulty if:
3682  *
3683  *   - the device is nonexistent (zero size)
3684  *   - the device has no valid superblock
3685  *
3686  * a faulty rdev _never_ has rdev->sb set.
3687  */
3688 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3689 {
3690 	char b[BDEVNAME_SIZE];
3691 	int err;
3692 	struct md_rdev *rdev;
3693 	sector_t size;
3694 
3695 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3696 	if (!rdev)
3697 		return ERR_PTR(-ENOMEM);
3698 
3699 	err = md_rdev_init(rdev);
3700 	if (err)
3701 		goto abort_free;
3702 	err = alloc_disk_sb(rdev);
3703 	if (err)
3704 		goto abort_free;
3705 
3706 	err = lock_rdev(rdev, newdev, super_format == -2);
3707 	if (err)
3708 		goto abort_free;
3709 
3710 	kobject_init(&rdev->kobj, &rdev_ktype);
3711 
3712 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3713 	if (!size) {
3714 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3715 			bdevname(rdev->bdev,b));
3716 		err = -EINVAL;
3717 		goto abort_free;
3718 	}
3719 
3720 	if (super_format >= 0) {
3721 		err = super_types[super_format].
3722 			load_super(rdev, NULL, super_minor);
3723 		if (err == -EINVAL) {
3724 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3725 				bdevname(rdev->bdev,b),
3726 				super_format, super_minor);
3727 			goto abort_free;
3728 		}
3729 		if (err < 0) {
3730 			pr_warn("md: could not read %s's sb, not importing!\n",
3731 				bdevname(rdev->bdev,b));
3732 			goto abort_free;
3733 		}
3734 	}
3735 
3736 	return rdev;
3737 
3738 abort_free:
3739 	if (rdev->bdev)
3740 		unlock_rdev(rdev);
3741 	md_rdev_clear(rdev);
3742 	kfree(rdev);
3743 	return ERR_PTR(err);
3744 }
3745 
3746 /*
3747  * Check a full RAID array for plausibility
3748  */
3749 
3750 static int analyze_sbs(struct mddev *mddev)
3751 {
3752 	int i;
3753 	struct md_rdev *rdev, *freshest, *tmp;
3754 	char b[BDEVNAME_SIZE];
3755 
3756 	freshest = NULL;
3757 	rdev_for_each_safe(rdev, tmp, mddev)
3758 		switch (super_types[mddev->major_version].
3759 			load_super(rdev, freshest, mddev->minor_version)) {
3760 		case 1:
3761 			freshest = rdev;
3762 			break;
3763 		case 0:
3764 			break;
3765 		default:
3766 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3767 				bdevname(rdev->bdev,b));
3768 			md_kick_rdev_from_array(rdev);
3769 		}
3770 
3771 	/* Cannot find a valid fresh disk */
3772 	if (!freshest) {
3773 		pr_warn("md: cannot find a valid disk\n");
3774 		return -EINVAL;
3775 	}
3776 
3777 	super_types[mddev->major_version].
3778 		validate_super(mddev, freshest);
3779 
3780 	i = 0;
3781 	rdev_for_each_safe(rdev, tmp, mddev) {
3782 		if (mddev->max_disks &&
3783 		    (rdev->desc_nr >= mddev->max_disks ||
3784 		     i > mddev->max_disks)) {
3785 			pr_warn("md: %s: %s: only %d devices permitted\n",
3786 				mdname(mddev), bdevname(rdev->bdev, b),
3787 				mddev->max_disks);
3788 			md_kick_rdev_from_array(rdev);
3789 			continue;
3790 		}
3791 		if (rdev != freshest) {
3792 			if (super_types[mddev->major_version].
3793 			    validate_super(mddev, rdev)) {
3794 				pr_warn("md: kicking non-fresh %s from array!\n",
3795 					bdevname(rdev->bdev,b));
3796 				md_kick_rdev_from_array(rdev);
3797 				continue;
3798 			}
3799 		}
3800 		if (mddev->level == LEVEL_MULTIPATH) {
3801 			rdev->desc_nr = i++;
3802 			rdev->raid_disk = rdev->desc_nr;
3803 			set_bit(In_sync, &rdev->flags);
3804 		} else if (rdev->raid_disk >=
3805 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3806 			   !test_bit(Journal, &rdev->flags)) {
3807 			rdev->raid_disk = -1;
3808 			clear_bit(In_sync, &rdev->flags);
3809 		}
3810 	}
3811 
3812 	return 0;
3813 }
3814 
3815 /* Read a fixed-point number.
3816  * Numbers in sysfs attributes should be in "standard" units where
3817  * possible, so time should be in seconds.
3818  * However we internally use a a much smaller unit such as
3819  * milliseconds or jiffies.
3820  * This function takes a decimal number with a possible fractional
3821  * component, and produces an integer which is the result of
3822  * multiplying that number by 10^'scale'.
3823  * all without any floating-point arithmetic.
3824  */
3825 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3826 {
3827 	unsigned long result = 0;
3828 	long decimals = -1;
3829 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3830 		if (*cp == '.')
3831 			decimals = 0;
3832 		else if (decimals < scale) {
3833 			unsigned int value;
3834 			value = *cp - '0';
3835 			result = result * 10 + value;
3836 			if (decimals >= 0)
3837 				decimals++;
3838 		}
3839 		cp++;
3840 	}
3841 	if (*cp == '\n')
3842 		cp++;
3843 	if (*cp)
3844 		return -EINVAL;
3845 	if (decimals < 0)
3846 		decimals = 0;
3847 	*res = result * int_pow(10, scale - decimals);
3848 	return 0;
3849 }
3850 
3851 static ssize_t
3852 safe_delay_show(struct mddev *mddev, char *page)
3853 {
3854 	int msec = (mddev->safemode_delay*1000)/HZ;
3855 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3856 }
3857 static ssize_t
3858 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3859 {
3860 	unsigned long msec;
3861 
3862 	if (mddev_is_clustered(mddev)) {
3863 		pr_warn("md: Safemode is disabled for clustered mode\n");
3864 		return -EINVAL;
3865 	}
3866 
3867 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3868 		return -EINVAL;
3869 	if (msec == 0)
3870 		mddev->safemode_delay = 0;
3871 	else {
3872 		unsigned long old_delay = mddev->safemode_delay;
3873 		unsigned long new_delay = (msec*HZ)/1000;
3874 
3875 		if (new_delay == 0)
3876 			new_delay = 1;
3877 		mddev->safemode_delay = new_delay;
3878 		if (new_delay < old_delay || old_delay == 0)
3879 			mod_timer(&mddev->safemode_timer, jiffies+1);
3880 	}
3881 	return len;
3882 }
3883 static struct md_sysfs_entry md_safe_delay =
3884 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3885 
3886 static ssize_t
3887 level_show(struct mddev *mddev, char *page)
3888 {
3889 	struct md_personality *p;
3890 	int ret;
3891 	spin_lock(&mddev->lock);
3892 	p = mddev->pers;
3893 	if (p)
3894 		ret = sprintf(page, "%s\n", p->name);
3895 	else if (mddev->clevel[0])
3896 		ret = sprintf(page, "%s\n", mddev->clevel);
3897 	else if (mddev->level != LEVEL_NONE)
3898 		ret = sprintf(page, "%d\n", mddev->level);
3899 	else
3900 		ret = 0;
3901 	spin_unlock(&mddev->lock);
3902 	return ret;
3903 }
3904 
3905 static ssize_t
3906 level_store(struct mddev *mddev, const char *buf, size_t len)
3907 {
3908 	char clevel[16];
3909 	ssize_t rv;
3910 	size_t slen = len;
3911 	struct md_personality *pers, *oldpers;
3912 	long level;
3913 	void *priv, *oldpriv;
3914 	struct md_rdev *rdev;
3915 
3916 	if (slen == 0 || slen >= sizeof(clevel))
3917 		return -EINVAL;
3918 
3919 	rv = mddev_lock(mddev);
3920 	if (rv)
3921 		return rv;
3922 
3923 	if (mddev->pers == NULL) {
3924 		strncpy(mddev->clevel, buf, slen);
3925 		if (mddev->clevel[slen-1] == '\n')
3926 			slen--;
3927 		mddev->clevel[slen] = 0;
3928 		mddev->level = LEVEL_NONE;
3929 		rv = len;
3930 		goto out_unlock;
3931 	}
3932 	rv = -EROFS;
3933 	if (mddev->ro)
3934 		goto out_unlock;
3935 
3936 	/* request to change the personality.  Need to ensure:
3937 	 *  - array is not engaged in resync/recovery/reshape
3938 	 *  - old personality can be suspended
3939 	 *  - new personality will access other array.
3940 	 */
3941 
3942 	rv = -EBUSY;
3943 	if (mddev->sync_thread ||
3944 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3945 	    mddev->reshape_position != MaxSector ||
3946 	    mddev->sysfs_active)
3947 		goto out_unlock;
3948 
3949 	rv = -EINVAL;
3950 	if (!mddev->pers->quiesce) {
3951 		pr_warn("md: %s: %s does not support online personality change\n",
3952 			mdname(mddev), mddev->pers->name);
3953 		goto out_unlock;
3954 	}
3955 
3956 	/* Now find the new personality */
3957 	strncpy(clevel, buf, slen);
3958 	if (clevel[slen-1] == '\n')
3959 		slen--;
3960 	clevel[slen] = 0;
3961 	if (kstrtol(clevel, 10, &level))
3962 		level = LEVEL_NONE;
3963 
3964 	if (request_module("md-%s", clevel) != 0)
3965 		request_module("md-level-%s", clevel);
3966 	spin_lock(&pers_lock);
3967 	pers = find_pers(level, clevel);
3968 	if (!pers || !try_module_get(pers->owner)) {
3969 		spin_unlock(&pers_lock);
3970 		pr_warn("md: personality %s not loaded\n", clevel);
3971 		rv = -EINVAL;
3972 		goto out_unlock;
3973 	}
3974 	spin_unlock(&pers_lock);
3975 
3976 	if (pers == mddev->pers) {
3977 		/* Nothing to do! */
3978 		module_put(pers->owner);
3979 		rv = len;
3980 		goto out_unlock;
3981 	}
3982 	if (!pers->takeover) {
3983 		module_put(pers->owner);
3984 		pr_warn("md: %s: %s does not support personality takeover\n",
3985 			mdname(mddev), clevel);
3986 		rv = -EINVAL;
3987 		goto out_unlock;
3988 	}
3989 
3990 	rdev_for_each(rdev, mddev)
3991 		rdev->new_raid_disk = rdev->raid_disk;
3992 
3993 	/* ->takeover must set new_* and/or delta_disks
3994 	 * if it succeeds, and may set them when it fails.
3995 	 */
3996 	priv = pers->takeover(mddev);
3997 	if (IS_ERR(priv)) {
3998 		mddev->new_level = mddev->level;
3999 		mddev->new_layout = mddev->layout;
4000 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4001 		mddev->raid_disks -= mddev->delta_disks;
4002 		mddev->delta_disks = 0;
4003 		mddev->reshape_backwards = 0;
4004 		module_put(pers->owner);
4005 		pr_warn("md: %s: %s would not accept array\n",
4006 			mdname(mddev), clevel);
4007 		rv = PTR_ERR(priv);
4008 		goto out_unlock;
4009 	}
4010 
4011 	/* Looks like we have a winner */
4012 	mddev_suspend(mddev);
4013 	mddev_detach(mddev);
4014 
4015 	spin_lock(&mddev->lock);
4016 	oldpers = mddev->pers;
4017 	oldpriv = mddev->private;
4018 	mddev->pers = pers;
4019 	mddev->private = priv;
4020 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4021 	mddev->level = mddev->new_level;
4022 	mddev->layout = mddev->new_layout;
4023 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4024 	mddev->delta_disks = 0;
4025 	mddev->reshape_backwards = 0;
4026 	mddev->degraded = 0;
4027 	spin_unlock(&mddev->lock);
4028 
4029 	if (oldpers->sync_request == NULL &&
4030 	    mddev->external) {
4031 		/* We are converting from a no-redundancy array
4032 		 * to a redundancy array and metadata is managed
4033 		 * externally so we need to be sure that writes
4034 		 * won't block due to a need to transition
4035 		 *      clean->dirty
4036 		 * until external management is started.
4037 		 */
4038 		mddev->in_sync = 0;
4039 		mddev->safemode_delay = 0;
4040 		mddev->safemode = 0;
4041 	}
4042 
4043 	oldpers->free(mddev, oldpriv);
4044 
4045 	if (oldpers->sync_request == NULL &&
4046 	    pers->sync_request != NULL) {
4047 		/* need to add the md_redundancy_group */
4048 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4049 			pr_warn("md: cannot register extra attributes for %s\n",
4050 				mdname(mddev));
4051 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4052 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4053 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4054 	}
4055 	if (oldpers->sync_request != NULL &&
4056 	    pers->sync_request == NULL) {
4057 		/* need to remove the md_redundancy_group */
4058 		if (mddev->to_remove == NULL)
4059 			mddev->to_remove = &md_redundancy_group;
4060 	}
4061 
4062 	module_put(oldpers->owner);
4063 
4064 	rdev_for_each(rdev, mddev) {
4065 		if (rdev->raid_disk < 0)
4066 			continue;
4067 		if (rdev->new_raid_disk >= mddev->raid_disks)
4068 			rdev->new_raid_disk = -1;
4069 		if (rdev->new_raid_disk == rdev->raid_disk)
4070 			continue;
4071 		sysfs_unlink_rdev(mddev, rdev);
4072 	}
4073 	rdev_for_each(rdev, mddev) {
4074 		if (rdev->raid_disk < 0)
4075 			continue;
4076 		if (rdev->new_raid_disk == rdev->raid_disk)
4077 			continue;
4078 		rdev->raid_disk = rdev->new_raid_disk;
4079 		if (rdev->raid_disk < 0)
4080 			clear_bit(In_sync, &rdev->flags);
4081 		else {
4082 			if (sysfs_link_rdev(mddev, rdev))
4083 				pr_warn("md: cannot register rd%d for %s after level change\n",
4084 					rdev->raid_disk, mdname(mddev));
4085 		}
4086 	}
4087 
4088 	if (pers->sync_request == NULL) {
4089 		/* this is now an array without redundancy, so
4090 		 * it must always be in_sync
4091 		 */
4092 		mddev->in_sync = 1;
4093 		del_timer_sync(&mddev->safemode_timer);
4094 	}
4095 	blk_set_stacking_limits(&mddev->queue->limits);
4096 	pers->run(mddev);
4097 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4098 	mddev_resume(mddev);
4099 	if (!mddev->thread)
4100 		md_update_sb(mddev, 1);
4101 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4102 	md_new_event(mddev);
4103 	rv = len;
4104 out_unlock:
4105 	mddev_unlock(mddev);
4106 	return rv;
4107 }
4108 
4109 static struct md_sysfs_entry md_level =
4110 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4111 
4112 static ssize_t
4113 layout_show(struct mddev *mddev, char *page)
4114 {
4115 	/* just a number, not meaningful for all levels */
4116 	if (mddev->reshape_position != MaxSector &&
4117 	    mddev->layout != mddev->new_layout)
4118 		return sprintf(page, "%d (%d)\n",
4119 			       mddev->new_layout, mddev->layout);
4120 	return sprintf(page, "%d\n", mddev->layout);
4121 }
4122 
4123 static ssize_t
4124 layout_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 	unsigned int n;
4127 	int err;
4128 
4129 	err = kstrtouint(buf, 10, &n);
4130 	if (err < 0)
4131 		return err;
4132 	err = mddev_lock(mddev);
4133 	if (err)
4134 		return err;
4135 
4136 	if (mddev->pers) {
4137 		if (mddev->pers->check_reshape == NULL)
4138 			err = -EBUSY;
4139 		else if (mddev->ro)
4140 			err = -EROFS;
4141 		else {
4142 			mddev->new_layout = n;
4143 			err = mddev->pers->check_reshape(mddev);
4144 			if (err)
4145 				mddev->new_layout = mddev->layout;
4146 		}
4147 	} else {
4148 		mddev->new_layout = n;
4149 		if (mddev->reshape_position == MaxSector)
4150 			mddev->layout = n;
4151 	}
4152 	mddev_unlock(mddev);
4153 	return err ?: len;
4154 }
4155 static struct md_sysfs_entry md_layout =
4156 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4157 
4158 static ssize_t
4159 raid_disks_show(struct mddev *mddev, char *page)
4160 {
4161 	if (mddev->raid_disks == 0)
4162 		return 0;
4163 	if (mddev->reshape_position != MaxSector &&
4164 	    mddev->delta_disks != 0)
4165 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4166 			       mddev->raid_disks - mddev->delta_disks);
4167 	return sprintf(page, "%d\n", mddev->raid_disks);
4168 }
4169 
4170 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4171 
4172 static ssize_t
4173 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4174 {
4175 	unsigned int n;
4176 	int err;
4177 
4178 	err = kstrtouint(buf, 10, &n);
4179 	if (err < 0)
4180 		return err;
4181 
4182 	err = mddev_lock(mddev);
4183 	if (err)
4184 		return err;
4185 	if (mddev->pers)
4186 		err = update_raid_disks(mddev, n);
4187 	else if (mddev->reshape_position != MaxSector) {
4188 		struct md_rdev *rdev;
4189 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4190 
4191 		err = -EINVAL;
4192 		rdev_for_each(rdev, mddev) {
4193 			if (olddisks < n &&
4194 			    rdev->data_offset < rdev->new_data_offset)
4195 				goto out_unlock;
4196 			if (olddisks > n &&
4197 			    rdev->data_offset > rdev->new_data_offset)
4198 				goto out_unlock;
4199 		}
4200 		err = 0;
4201 		mddev->delta_disks = n - olddisks;
4202 		mddev->raid_disks = n;
4203 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4204 	} else
4205 		mddev->raid_disks = n;
4206 out_unlock:
4207 	mddev_unlock(mddev);
4208 	return err ? err : len;
4209 }
4210 static struct md_sysfs_entry md_raid_disks =
4211 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4212 
4213 static ssize_t
4214 uuid_show(struct mddev *mddev, char *page)
4215 {
4216 	return sprintf(page, "%pU\n", mddev->uuid);
4217 }
4218 static struct md_sysfs_entry md_uuid =
4219 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4220 
4221 static ssize_t
4222 chunk_size_show(struct mddev *mddev, char *page)
4223 {
4224 	if (mddev->reshape_position != MaxSector &&
4225 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4226 		return sprintf(page, "%d (%d)\n",
4227 			       mddev->new_chunk_sectors << 9,
4228 			       mddev->chunk_sectors << 9);
4229 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4230 }
4231 
4232 static ssize_t
4233 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4234 {
4235 	unsigned long n;
4236 	int err;
4237 
4238 	err = kstrtoul(buf, 10, &n);
4239 	if (err < 0)
4240 		return err;
4241 
4242 	err = mddev_lock(mddev);
4243 	if (err)
4244 		return err;
4245 	if (mddev->pers) {
4246 		if (mddev->pers->check_reshape == NULL)
4247 			err = -EBUSY;
4248 		else if (mddev->ro)
4249 			err = -EROFS;
4250 		else {
4251 			mddev->new_chunk_sectors = n >> 9;
4252 			err = mddev->pers->check_reshape(mddev);
4253 			if (err)
4254 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4255 		}
4256 	} else {
4257 		mddev->new_chunk_sectors = n >> 9;
4258 		if (mddev->reshape_position == MaxSector)
4259 			mddev->chunk_sectors = n >> 9;
4260 	}
4261 	mddev_unlock(mddev);
4262 	return err ?: len;
4263 }
4264 static struct md_sysfs_entry md_chunk_size =
4265 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4266 
4267 static ssize_t
4268 resync_start_show(struct mddev *mddev, char *page)
4269 {
4270 	if (mddev->recovery_cp == MaxSector)
4271 		return sprintf(page, "none\n");
4272 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4273 }
4274 
4275 static ssize_t
4276 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4277 {
4278 	unsigned long long n;
4279 	int err;
4280 
4281 	if (cmd_match(buf, "none"))
4282 		n = MaxSector;
4283 	else {
4284 		err = kstrtoull(buf, 10, &n);
4285 		if (err < 0)
4286 			return err;
4287 		if (n != (sector_t)n)
4288 			return -EINVAL;
4289 	}
4290 
4291 	err = mddev_lock(mddev);
4292 	if (err)
4293 		return err;
4294 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4295 		err = -EBUSY;
4296 
4297 	if (!err) {
4298 		mddev->recovery_cp = n;
4299 		if (mddev->pers)
4300 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4301 	}
4302 	mddev_unlock(mddev);
4303 	return err ?: len;
4304 }
4305 static struct md_sysfs_entry md_resync_start =
4306 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4307 		resync_start_show, resync_start_store);
4308 
4309 /*
4310  * The array state can be:
4311  *
4312  * clear
4313  *     No devices, no size, no level
4314  *     Equivalent to STOP_ARRAY ioctl
4315  * inactive
4316  *     May have some settings, but array is not active
4317  *        all IO results in error
4318  *     When written, doesn't tear down array, but just stops it
4319  * suspended (not supported yet)
4320  *     All IO requests will block. The array can be reconfigured.
4321  *     Writing this, if accepted, will block until array is quiescent
4322  * readonly
4323  *     no resync can happen.  no superblocks get written.
4324  *     write requests fail
4325  * read-auto
4326  *     like readonly, but behaves like 'clean' on a write request.
4327  *
4328  * clean - no pending writes, but otherwise active.
4329  *     When written to inactive array, starts without resync
4330  *     If a write request arrives then
4331  *       if metadata is known, mark 'dirty' and switch to 'active'.
4332  *       if not known, block and switch to write-pending
4333  *     If written to an active array that has pending writes, then fails.
4334  * active
4335  *     fully active: IO and resync can be happening.
4336  *     When written to inactive array, starts with resync
4337  *
4338  * write-pending
4339  *     clean, but writes are blocked waiting for 'active' to be written.
4340  *
4341  * active-idle
4342  *     like active, but no writes have been seen for a while (100msec).
4343  *
4344  * broken
4345  *     RAID0/LINEAR-only: same as clean, but array is missing a member.
4346  *     It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4347  *     when a member is gone, so this state will at least alert the
4348  *     user that something is wrong.
4349  */
4350 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4351 		   write_pending, active_idle, broken, bad_word};
4352 static char *array_states[] = {
4353 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4354 	"write-pending", "active-idle", "broken", NULL };
4355 
4356 static int match_word(const char *word, char **list)
4357 {
4358 	int n;
4359 	for (n=0; list[n]; n++)
4360 		if (cmd_match(word, list[n]))
4361 			break;
4362 	return n;
4363 }
4364 
4365 static ssize_t
4366 array_state_show(struct mddev *mddev, char *page)
4367 {
4368 	enum array_state st = inactive;
4369 
4370 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4371 		switch(mddev->ro) {
4372 		case 1:
4373 			st = readonly;
4374 			break;
4375 		case 2:
4376 			st = read_auto;
4377 			break;
4378 		case 0:
4379 			spin_lock(&mddev->lock);
4380 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4381 				st = write_pending;
4382 			else if (mddev->in_sync)
4383 				st = clean;
4384 			else if (mddev->safemode)
4385 				st = active_idle;
4386 			else
4387 				st = active;
4388 			spin_unlock(&mddev->lock);
4389 		}
4390 
4391 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4392 			st = broken;
4393 	} else {
4394 		if (list_empty(&mddev->disks) &&
4395 		    mddev->raid_disks == 0 &&
4396 		    mddev->dev_sectors == 0)
4397 			st = clear;
4398 		else
4399 			st = inactive;
4400 	}
4401 	return sprintf(page, "%s\n", array_states[st]);
4402 }
4403 
4404 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4405 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4406 static int restart_array(struct mddev *mddev);
4407 
4408 static ssize_t
4409 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4410 {
4411 	int err = 0;
4412 	enum array_state st = match_word(buf, array_states);
4413 
4414 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4415 		/* don't take reconfig_mutex when toggling between
4416 		 * clean and active
4417 		 */
4418 		spin_lock(&mddev->lock);
4419 		if (st == active) {
4420 			restart_array(mddev);
4421 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4422 			md_wakeup_thread(mddev->thread);
4423 			wake_up(&mddev->sb_wait);
4424 		} else /* st == clean */ {
4425 			restart_array(mddev);
4426 			if (!set_in_sync(mddev))
4427 				err = -EBUSY;
4428 		}
4429 		if (!err)
4430 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4431 		spin_unlock(&mddev->lock);
4432 		return err ?: len;
4433 	}
4434 	err = mddev_lock(mddev);
4435 	if (err)
4436 		return err;
4437 	err = -EINVAL;
4438 	switch(st) {
4439 	case bad_word:
4440 		break;
4441 	case clear:
4442 		/* stopping an active array */
4443 		err = do_md_stop(mddev, 0, NULL);
4444 		break;
4445 	case inactive:
4446 		/* stopping an active array */
4447 		if (mddev->pers)
4448 			err = do_md_stop(mddev, 2, NULL);
4449 		else
4450 			err = 0; /* already inactive */
4451 		break;
4452 	case suspended:
4453 		break; /* not supported yet */
4454 	case readonly:
4455 		if (mddev->pers)
4456 			err = md_set_readonly(mddev, NULL);
4457 		else {
4458 			mddev->ro = 1;
4459 			set_disk_ro(mddev->gendisk, 1);
4460 			err = do_md_run(mddev);
4461 		}
4462 		break;
4463 	case read_auto:
4464 		if (mddev->pers) {
4465 			if (mddev->ro == 0)
4466 				err = md_set_readonly(mddev, NULL);
4467 			else if (mddev->ro == 1)
4468 				err = restart_array(mddev);
4469 			if (err == 0) {
4470 				mddev->ro = 2;
4471 				set_disk_ro(mddev->gendisk, 0);
4472 			}
4473 		} else {
4474 			mddev->ro = 2;
4475 			err = do_md_run(mddev);
4476 		}
4477 		break;
4478 	case clean:
4479 		if (mddev->pers) {
4480 			err = restart_array(mddev);
4481 			if (err)
4482 				break;
4483 			spin_lock(&mddev->lock);
4484 			if (!set_in_sync(mddev))
4485 				err = -EBUSY;
4486 			spin_unlock(&mddev->lock);
4487 		} else
4488 			err = -EINVAL;
4489 		break;
4490 	case active:
4491 		if (mddev->pers) {
4492 			err = restart_array(mddev);
4493 			if (err)
4494 				break;
4495 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4496 			wake_up(&mddev->sb_wait);
4497 			err = 0;
4498 		} else {
4499 			mddev->ro = 0;
4500 			set_disk_ro(mddev->gendisk, 0);
4501 			err = do_md_run(mddev);
4502 		}
4503 		break;
4504 	case write_pending:
4505 	case active_idle:
4506 	case broken:
4507 		/* these cannot be set */
4508 		break;
4509 	}
4510 
4511 	if (!err) {
4512 		if (mddev->hold_active == UNTIL_IOCTL)
4513 			mddev->hold_active = 0;
4514 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4515 	}
4516 	mddev_unlock(mddev);
4517 	return err ?: len;
4518 }
4519 static struct md_sysfs_entry md_array_state =
4520 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4521 
4522 static ssize_t
4523 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4524 	return sprintf(page, "%d\n",
4525 		       atomic_read(&mddev->max_corr_read_errors));
4526 }
4527 
4528 static ssize_t
4529 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4530 {
4531 	unsigned int n;
4532 	int rv;
4533 
4534 	rv = kstrtouint(buf, 10, &n);
4535 	if (rv < 0)
4536 		return rv;
4537 	atomic_set(&mddev->max_corr_read_errors, n);
4538 	return len;
4539 }
4540 
4541 static struct md_sysfs_entry max_corr_read_errors =
4542 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4543 	max_corrected_read_errors_store);
4544 
4545 static ssize_t
4546 null_show(struct mddev *mddev, char *page)
4547 {
4548 	return -EINVAL;
4549 }
4550 
4551 /* need to ensure rdev_delayed_delete() has completed */
4552 static void flush_rdev_wq(struct mddev *mddev)
4553 {
4554 	struct md_rdev *rdev;
4555 
4556 	rcu_read_lock();
4557 	rdev_for_each_rcu(rdev, mddev)
4558 		if (work_pending(&rdev->del_work)) {
4559 			flush_workqueue(md_rdev_misc_wq);
4560 			break;
4561 		}
4562 	rcu_read_unlock();
4563 }
4564 
4565 static ssize_t
4566 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4567 {
4568 	/* buf must be %d:%d\n? giving major and minor numbers */
4569 	/* The new device is added to the array.
4570 	 * If the array has a persistent superblock, we read the
4571 	 * superblock to initialise info and check validity.
4572 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4573 	 * which mainly checks size.
4574 	 */
4575 	char *e;
4576 	int major = simple_strtoul(buf, &e, 10);
4577 	int minor;
4578 	dev_t dev;
4579 	struct md_rdev *rdev;
4580 	int err;
4581 
4582 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4583 		return -EINVAL;
4584 	minor = simple_strtoul(e+1, &e, 10);
4585 	if (*e && *e != '\n')
4586 		return -EINVAL;
4587 	dev = MKDEV(major, minor);
4588 	if (major != MAJOR(dev) ||
4589 	    minor != MINOR(dev))
4590 		return -EOVERFLOW;
4591 
4592 	flush_rdev_wq(mddev);
4593 	err = mddev_lock(mddev);
4594 	if (err)
4595 		return err;
4596 	if (mddev->persistent) {
4597 		rdev = md_import_device(dev, mddev->major_version,
4598 					mddev->minor_version);
4599 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4600 			struct md_rdev *rdev0
4601 				= list_entry(mddev->disks.next,
4602 					     struct md_rdev, same_set);
4603 			err = super_types[mddev->major_version]
4604 				.load_super(rdev, rdev0, mddev->minor_version);
4605 			if (err < 0)
4606 				goto out;
4607 		}
4608 	} else if (mddev->external)
4609 		rdev = md_import_device(dev, -2, -1);
4610 	else
4611 		rdev = md_import_device(dev, -1, -1);
4612 
4613 	if (IS_ERR(rdev)) {
4614 		mddev_unlock(mddev);
4615 		return PTR_ERR(rdev);
4616 	}
4617 	err = bind_rdev_to_array(rdev, mddev);
4618  out:
4619 	if (err)
4620 		export_rdev(rdev);
4621 	mddev_unlock(mddev);
4622 	if (!err)
4623 		md_new_event(mddev);
4624 	return err ? err : len;
4625 }
4626 
4627 static struct md_sysfs_entry md_new_device =
4628 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4629 
4630 static ssize_t
4631 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 	char *end;
4634 	unsigned long chunk, end_chunk;
4635 	int err;
4636 
4637 	err = mddev_lock(mddev);
4638 	if (err)
4639 		return err;
4640 	if (!mddev->bitmap)
4641 		goto out;
4642 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4643 	while (*buf) {
4644 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4645 		if (buf == end) break;
4646 		if (*end == '-') { /* range */
4647 			buf = end + 1;
4648 			end_chunk = simple_strtoul(buf, &end, 0);
4649 			if (buf == end) break;
4650 		}
4651 		if (*end && !isspace(*end)) break;
4652 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4653 		buf = skip_spaces(end);
4654 	}
4655 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4656 out:
4657 	mddev_unlock(mddev);
4658 	return len;
4659 }
4660 
4661 static struct md_sysfs_entry md_bitmap =
4662 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4663 
4664 static ssize_t
4665 size_show(struct mddev *mddev, char *page)
4666 {
4667 	return sprintf(page, "%llu\n",
4668 		(unsigned long long)mddev->dev_sectors / 2);
4669 }
4670 
4671 static int update_size(struct mddev *mddev, sector_t num_sectors);
4672 
4673 static ssize_t
4674 size_store(struct mddev *mddev, const char *buf, size_t len)
4675 {
4676 	/* If array is inactive, we can reduce the component size, but
4677 	 * not increase it (except from 0).
4678 	 * If array is active, we can try an on-line resize
4679 	 */
4680 	sector_t sectors;
4681 	int err = strict_blocks_to_sectors(buf, &sectors);
4682 
4683 	if (err < 0)
4684 		return err;
4685 	err = mddev_lock(mddev);
4686 	if (err)
4687 		return err;
4688 	if (mddev->pers) {
4689 		err = update_size(mddev, sectors);
4690 		if (err == 0)
4691 			md_update_sb(mddev, 1);
4692 	} else {
4693 		if (mddev->dev_sectors == 0 ||
4694 		    mddev->dev_sectors > sectors)
4695 			mddev->dev_sectors = sectors;
4696 		else
4697 			err = -ENOSPC;
4698 	}
4699 	mddev_unlock(mddev);
4700 	return err ? err : len;
4701 }
4702 
4703 static struct md_sysfs_entry md_size =
4704 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4705 
4706 /* Metadata version.
4707  * This is one of
4708  *   'none' for arrays with no metadata (good luck...)
4709  *   'external' for arrays with externally managed metadata,
4710  * or N.M for internally known formats
4711  */
4712 static ssize_t
4713 metadata_show(struct mddev *mddev, char *page)
4714 {
4715 	if (mddev->persistent)
4716 		return sprintf(page, "%d.%d\n",
4717 			       mddev->major_version, mddev->minor_version);
4718 	else if (mddev->external)
4719 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4720 	else
4721 		return sprintf(page, "none\n");
4722 }
4723 
4724 static ssize_t
4725 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4726 {
4727 	int major, minor;
4728 	char *e;
4729 	int err;
4730 	/* Changing the details of 'external' metadata is
4731 	 * always permitted.  Otherwise there must be
4732 	 * no devices attached to the array.
4733 	 */
4734 
4735 	err = mddev_lock(mddev);
4736 	if (err)
4737 		return err;
4738 	err = -EBUSY;
4739 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4740 		;
4741 	else if (!list_empty(&mddev->disks))
4742 		goto out_unlock;
4743 
4744 	err = 0;
4745 	if (cmd_match(buf, "none")) {
4746 		mddev->persistent = 0;
4747 		mddev->external = 0;
4748 		mddev->major_version = 0;
4749 		mddev->minor_version = 90;
4750 		goto out_unlock;
4751 	}
4752 	if (strncmp(buf, "external:", 9) == 0) {
4753 		size_t namelen = len-9;
4754 		if (namelen >= sizeof(mddev->metadata_type))
4755 			namelen = sizeof(mddev->metadata_type)-1;
4756 		strncpy(mddev->metadata_type, buf+9, namelen);
4757 		mddev->metadata_type[namelen] = 0;
4758 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4759 			mddev->metadata_type[--namelen] = 0;
4760 		mddev->persistent = 0;
4761 		mddev->external = 1;
4762 		mddev->major_version = 0;
4763 		mddev->minor_version = 90;
4764 		goto out_unlock;
4765 	}
4766 	major = simple_strtoul(buf, &e, 10);
4767 	err = -EINVAL;
4768 	if (e==buf || *e != '.')
4769 		goto out_unlock;
4770 	buf = e+1;
4771 	minor = simple_strtoul(buf, &e, 10);
4772 	if (e==buf || (*e && *e != '\n') )
4773 		goto out_unlock;
4774 	err = -ENOENT;
4775 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4776 		goto out_unlock;
4777 	mddev->major_version = major;
4778 	mddev->minor_version = minor;
4779 	mddev->persistent = 1;
4780 	mddev->external = 0;
4781 	err = 0;
4782 out_unlock:
4783 	mddev_unlock(mddev);
4784 	return err ?: len;
4785 }
4786 
4787 static struct md_sysfs_entry md_metadata =
4788 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4789 
4790 static ssize_t
4791 action_show(struct mddev *mddev, char *page)
4792 {
4793 	char *type = "idle";
4794 	unsigned long recovery = mddev->recovery;
4795 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4796 		type = "frozen";
4797 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4798 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4799 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4800 			type = "reshape";
4801 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4802 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4803 				type = "resync";
4804 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4805 				type = "check";
4806 			else
4807 				type = "repair";
4808 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4809 			type = "recover";
4810 		else if (mddev->reshape_position != MaxSector)
4811 			type = "reshape";
4812 	}
4813 	return sprintf(page, "%s\n", type);
4814 }
4815 
4816 static ssize_t
4817 action_store(struct mddev *mddev, const char *page, size_t len)
4818 {
4819 	if (!mddev->pers || !mddev->pers->sync_request)
4820 		return -EINVAL;
4821 
4822 
4823 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4824 		if (cmd_match(page, "frozen"))
4825 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4826 		else
4827 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4828 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4829 		    mddev_lock(mddev) == 0) {
4830 			if (work_pending(&mddev->del_work))
4831 				flush_workqueue(md_misc_wq);
4832 			if (mddev->sync_thread) {
4833 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4834 				md_reap_sync_thread(mddev);
4835 			}
4836 			mddev_unlock(mddev);
4837 		}
4838 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4839 		return -EBUSY;
4840 	else if (cmd_match(page, "resync"))
4841 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4842 	else if (cmd_match(page, "recover")) {
4843 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4844 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4845 	} else if (cmd_match(page, "reshape")) {
4846 		int err;
4847 		if (mddev->pers->start_reshape == NULL)
4848 			return -EINVAL;
4849 		err = mddev_lock(mddev);
4850 		if (!err) {
4851 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 				err =  -EBUSY;
4853 			else {
4854 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 				err = mddev->pers->start_reshape(mddev);
4856 			}
4857 			mddev_unlock(mddev);
4858 		}
4859 		if (err)
4860 			return err;
4861 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4862 	} else {
4863 		if (cmd_match(page, "check"))
4864 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4865 		else if (!cmd_match(page, "repair"))
4866 			return -EINVAL;
4867 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4869 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4870 	}
4871 	if (mddev->ro == 2) {
4872 		/* A write to sync_action is enough to justify
4873 		 * canceling read-auto mode
4874 		 */
4875 		mddev->ro = 0;
4876 		md_wakeup_thread(mddev->sync_thread);
4877 	}
4878 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4879 	md_wakeup_thread(mddev->thread);
4880 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4881 	return len;
4882 }
4883 
4884 static struct md_sysfs_entry md_scan_mode =
4885 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4886 
4887 static ssize_t
4888 last_sync_action_show(struct mddev *mddev, char *page)
4889 {
4890 	return sprintf(page, "%s\n", mddev->last_sync_action);
4891 }
4892 
4893 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4894 
4895 static ssize_t
4896 mismatch_cnt_show(struct mddev *mddev, char *page)
4897 {
4898 	return sprintf(page, "%llu\n",
4899 		       (unsigned long long)
4900 		       atomic64_read(&mddev->resync_mismatches));
4901 }
4902 
4903 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4904 
4905 static ssize_t
4906 sync_min_show(struct mddev *mddev, char *page)
4907 {
4908 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4909 		       mddev->sync_speed_min ? "local": "system");
4910 }
4911 
4912 static ssize_t
4913 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4914 {
4915 	unsigned int min;
4916 	int rv;
4917 
4918 	if (strncmp(buf, "system", 6)==0) {
4919 		min = 0;
4920 	} else {
4921 		rv = kstrtouint(buf, 10, &min);
4922 		if (rv < 0)
4923 			return rv;
4924 		if (min == 0)
4925 			return -EINVAL;
4926 	}
4927 	mddev->sync_speed_min = min;
4928 	return len;
4929 }
4930 
4931 static struct md_sysfs_entry md_sync_min =
4932 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4933 
4934 static ssize_t
4935 sync_max_show(struct mddev *mddev, char *page)
4936 {
4937 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4938 		       mddev->sync_speed_max ? "local": "system");
4939 }
4940 
4941 static ssize_t
4942 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4943 {
4944 	unsigned int max;
4945 	int rv;
4946 
4947 	if (strncmp(buf, "system", 6)==0) {
4948 		max = 0;
4949 	} else {
4950 		rv = kstrtouint(buf, 10, &max);
4951 		if (rv < 0)
4952 			return rv;
4953 		if (max == 0)
4954 			return -EINVAL;
4955 	}
4956 	mddev->sync_speed_max = max;
4957 	return len;
4958 }
4959 
4960 static struct md_sysfs_entry md_sync_max =
4961 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4962 
4963 static ssize_t
4964 degraded_show(struct mddev *mddev, char *page)
4965 {
4966 	return sprintf(page, "%d\n", mddev->degraded);
4967 }
4968 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4969 
4970 static ssize_t
4971 sync_force_parallel_show(struct mddev *mddev, char *page)
4972 {
4973 	return sprintf(page, "%d\n", mddev->parallel_resync);
4974 }
4975 
4976 static ssize_t
4977 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4978 {
4979 	long n;
4980 
4981 	if (kstrtol(buf, 10, &n))
4982 		return -EINVAL;
4983 
4984 	if (n != 0 && n != 1)
4985 		return -EINVAL;
4986 
4987 	mddev->parallel_resync = n;
4988 
4989 	if (mddev->sync_thread)
4990 		wake_up(&resync_wait);
4991 
4992 	return len;
4993 }
4994 
4995 /* force parallel resync, even with shared block devices */
4996 static struct md_sysfs_entry md_sync_force_parallel =
4997 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4998        sync_force_parallel_show, sync_force_parallel_store);
4999 
5000 static ssize_t
5001 sync_speed_show(struct mddev *mddev, char *page)
5002 {
5003 	unsigned long resync, dt, db;
5004 	if (mddev->curr_resync == 0)
5005 		return sprintf(page, "none\n");
5006 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5007 	dt = (jiffies - mddev->resync_mark) / HZ;
5008 	if (!dt) dt++;
5009 	db = resync - mddev->resync_mark_cnt;
5010 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5011 }
5012 
5013 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5014 
5015 static ssize_t
5016 sync_completed_show(struct mddev *mddev, char *page)
5017 {
5018 	unsigned long long max_sectors, resync;
5019 
5020 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5021 		return sprintf(page, "none\n");
5022 
5023 	if (mddev->curr_resync == 1 ||
5024 	    mddev->curr_resync == 2)
5025 		return sprintf(page, "delayed\n");
5026 
5027 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5028 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5029 		max_sectors = mddev->resync_max_sectors;
5030 	else
5031 		max_sectors = mddev->dev_sectors;
5032 
5033 	resync = mddev->curr_resync_completed;
5034 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5035 }
5036 
5037 static struct md_sysfs_entry md_sync_completed =
5038 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5039 
5040 static ssize_t
5041 min_sync_show(struct mddev *mddev, char *page)
5042 {
5043 	return sprintf(page, "%llu\n",
5044 		       (unsigned long long)mddev->resync_min);
5045 }
5046 static ssize_t
5047 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5048 {
5049 	unsigned long long min;
5050 	int err;
5051 
5052 	if (kstrtoull(buf, 10, &min))
5053 		return -EINVAL;
5054 
5055 	spin_lock(&mddev->lock);
5056 	err = -EINVAL;
5057 	if (min > mddev->resync_max)
5058 		goto out_unlock;
5059 
5060 	err = -EBUSY;
5061 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5062 		goto out_unlock;
5063 
5064 	/* Round down to multiple of 4K for safety */
5065 	mddev->resync_min = round_down(min, 8);
5066 	err = 0;
5067 
5068 out_unlock:
5069 	spin_unlock(&mddev->lock);
5070 	return err ?: len;
5071 }
5072 
5073 static struct md_sysfs_entry md_min_sync =
5074 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5075 
5076 static ssize_t
5077 max_sync_show(struct mddev *mddev, char *page)
5078 {
5079 	if (mddev->resync_max == MaxSector)
5080 		return sprintf(page, "max\n");
5081 	else
5082 		return sprintf(page, "%llu\n",
5083 			       (unsigned long long)mddev->resync_max);
5084 }
5085 static ssize_t
5086 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5087 {
5088 	int err;
5089 	spin_lock(&mddev->lock);
5090 	if (strncmp(buf, "max", 3) == 0)
5091 		mddev->resync_max = MaxSector;
5092 	else {
5093 		unsigned long long max;
5094 		int chunk;
5095 
5096 		err = -EINVAL;
5097 		if (kstrtoull(buf, 10, &max))
5098 			goto out_unlock;
5099 		if (max < mddev->resync_min)
5100 			goto out_unlock;
5101 
5102 		err = -EBUSY;
5103 		if (max < mddev->resync_max &&
5104 		    mddev->ro == 0 &&
5105 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5106 			goto out_unlock;
5107 
5108 		/* Must be a multiple of chunk_size */
5109 		chunk = mddev->chunk_sectors;
5110 		if (chunk) {
5111 			sector_t temp = max;
5112 
5113 			err = -EINVAL;
5114 			if (sector_div(temp, chunk))
5115 				goto out_unlock;
5116 		}
5117 		mddev->resync_max = max;
5118 	}
5119 	wake_up(&mddev->recovery_wait);
5120 	err = 0;
5121 out_unlock:
5122 	spin_unlock(&mddev->lock);
5123 	return err ?: len;
5124 }
5125 
5126 static struct md_sysfs_entry md_max_sync =
5127 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5128 
5129 static ssize_t
5130 suspend_lo_show(struct mddev *mddev, char *page)
5131 {
5132 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5133 }
5134 
5135 static ssize_t
5136 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5137 {
5138 	unsigned long long new;
5139 	int err;
5140 
5141 	err = kstrtoull(buf, 10, &new);
5142 	if (err < 0)
5143 		return err;
5144 	if (new != (sector_t)new)
5145 		return -EINVAL;
5146 
5147 	err = mddev_lock(mddev);
5148 	if (err)
5149 		return err;
5150 	err = -EINVAL;
5151 	if (mddev->pers == NULL ||
5152 	    mddev->pers->quiesce == NULL)
5153 		goto unlock;
5154 	mddev_suspend(mddev);
5155 	mddev->suspend_lo = new;
5156 	mddev_resume(mddev);
5157 
5158 	err = 0;
5159 unlock:
5160 	mddev_unlock(mddev);
5161 	return err ?: len;
5162 }
5163 static struct md_sysfs_entry md_suspend_lo =
5164 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5165 
5166 static ssize_t
5167 suspend_hi_show(struct mddev *mddev, char *page)
5168 {
5169 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5170 }
5171 
5172 static ssize_t
5173 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5174 {
5175 	unsigned long long new;
5176 	int err;
5177 
5178 	err = kstrtoull(buf, 10, &new);
5179 	if (err < 0)
5180 		return err;
5181 	if (new != (sector_t)new)
5182 		return -EINVAL;
5183 
5184 	err = mddev_lock(mddev);
5185 	if (err)
5186 		return err;
5187 	err = -EINVAL;
5188 	if (mddev->pers == NULL)
5189 		goto unlock;
5190 
5191 	mddev_suspend(mddev);
5192 	mddev->suspend_hi = new;
5193 	mddev_resume(mddev);
5194 
5195 	err = 0;
5196 unlock:
5197 	mddev_unlock(mddev);
5198 	return err ?: len;
5199 }
5200 static struct md_sysfs_entry md_suspend_hi =
5201 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5202 
5203 static ssize_t
5204 reshape_position_show(struct mddev *mddev, char *page)
5205 {
5206 	if (mddev->reshape_position != MaxSector)
5207 		return sprintf(page, "%llu\n",
5208 			       (unsigned long long)mddev->reshape_position);
5209 	strcpy(page, "none\n");
5210 	return 5;
5211 }
5212 
5213 static ssize_t
5214 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5215 {
5216 	struct md_rdev *rdev;
5217 	unsigned long long new;
5218 	int err;
5219 
5220 	err = kstrtoull(buf, 10, &new);
5221 	if (err < 0)
5222 		return err;
5223 	if (new != (sector_t)new)
5224 		return -EINVAL;
5225 	err = mddev_lock(mddev);
5226 	if (err)
5227 		return err;
5228 	err = -EBUSY;
5229 	if (mddev->pers)
5230 		goto unlock;
5231 	mddev->reshape_position = new;
5232 	mddev->delta_disks = 0;
5233 	mddev->reshape_backwards = 0;
5234 	mddev->new_level = mddev->level;
5235 	mddev->new_layout = mddev->layout;
5236 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5237 	rdev_for_each(rdev, mddev)
5238 		rdev->new_data_offset = rdev->data_offset;
5239 	err = 0;
5240 unlock:
5241 	mddev_unlock(mddev);
5242 	return err ?: len;
5243 }
5244 
5245 static struct md_sysfs_entry md_reshape_position =
5246 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5247        reshape_position_store);
5248 
5249 static ssize_t
5250 reshape_direction_show(struct mddev *mddev, char *page)
5251 {
5252 	return sprintf(page, "%s\n",
5253 		       mddev->reshape_backwards ? "backwards" : "forwards");
5254 }
5255 
5256 static ssize_t
5257 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5258 {
5259 	int backwards = 0;
5260 	int err;
5261 
5262 	if (cmd_match(buf, "forwards"))
5263 		backwards = 0;
5264 	else if (cmd_match(buf, "backwards"))
5265 		backwards = 1;
5266 	else
5267 		return -EINVAL;
5268 	if (mddev->reshape_backwards == backwards)
5269 		return len;
5270 
5271 	err = mddev_lock(mddev);
5272 	if (err)
5273 		return err;
5274 	/* check if we are allowed to change */
5275 	if (mddev->delta_disks)
5276 		err = -EBUSY;
5277 	else if (mddev->persistent &&
5278 	    mddev->major_version == 0)
5279 		err =  -EINVAL;
5280 	else
5281 		mddev->reshape_backwards = backwards;
5282 	mddev_unlock(mddev);
5283 	return err ?: len;
5284 }
5285 
5286 static struct md_sysfs_entry md_reshape_direction =
5287 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5288        reshape_direction_store);
5289 
5290 static ssize_t
5291 array_size_show(struct mddev *mddev, char *page)
5292 {
5293 	if (mddev->external_size)
5294 		return sprintf(page, "%llu\n",
5295 			       (unsigned long long)mddev->array_sectors/2);
5296 	else
5297 		return sprintf(page, "default\n");
5298 }
5299 
5300 static ssize_t
5301 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5302 {
5303 	sector_t sectors;
5304 	int err;
5305 
5306 	err = mddev_lock(mddev);
5307 	if (err)
5308 		return err;
5309 
5310 	/* cluster raid doesn't support change array_sectors */
5311 	if (mddev_is_clustered(mddev)) {
5312 		mddev_unlock(mddev);
5313 		return -EINVAL;
5314 	}
5315 
5316 	if (strncmp(buf, "default", 7) == 0) {
5317 		if (mddev->pers)
5318 			sectors = mddev->pers->size(mddev, 0, 0);
5319 		else
5320 			sectors = mddev->array_sectors;
5321 
5322 		mddev->external_size = 0;
5323 	} else {
5324 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5325 			err = -EINVAL;
5326 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5327 			err = -E2BIG;
5328 		else
5329 			mddev->external_size = 1;
5330 	}
5331 
5332 	if (!err) {
5333 		mddev->array_sectors = sectors;
5334 		if (mddev->pers)
5335 			set_capacity_and_notify(mddev->gendisk,
5336 						mddev->array_sectors);
5337 	}
5338 	mddev_unlock(mddev);
5339 	return err ?: len;
5340 }
5341 
5342 static struct md_sysfs_entry md_array_size =
5343 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5344        array_size_store);
5345 
5346 static ssize_t
5347 consistency_policy_show(struct mddev *mddev, char *page)
5348 {
5349 	int ret;
5350 
5351 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5352 		ret = sprintf(page, "journal\n");
5353 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5354 		ret = sprintf(page, "ppl\n");
5355 	} else if (mddev->bitmap) {
5356 		ret = sprintf(page, "bitmap\n");
5357 	} else if (mddev->pers) {
5358 		if (mddev->pers->sync_request)
5359 			ret = sprintf(page, "resync\n");
5360 		else
5361 			ret = sprintf(page, "none\n");
5362 	} else {
5363 		ret = sprintf(page, "unknown\n");
5364 	}
5365 
5366 	return ret;
5367 }
5368 
5369 static ssize_t
5370 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5371 {
5372 	int err = 0;
5373 
5374 	if (mddev->pers) {
5375 		if (mddev->pers->change_consistency_policy)
5376 			err = mddev->pers->change_consistency_policy(mddev, buf);
5377 		else
5378 			err = -EBUSY;
5379 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5380 		set_bit(MD_HAS_PPL, &mddev->flags);
5381 	} else {
5382 		err = -EINVAL;
5383 	}
5384 
5385 	return err ? err : len;
5386 }
5387 
5388 static struct md_sysfs_entry md_consistency_policy =
5389 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5390        consistency_policy_store);
5391 
5392 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5393 {
5394 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5395 }
5396 
5397 /*
5398  * Setting fail_last_dev to true to allow last device to be forcibly removed
5399  * from RAID1/RAID10.
5400  */
5401 static ssize_t
5402 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5403 {
5404 	int ret;
5405 	bool value;
5406 
5407 	ret = kstrtobool(buf, &value);
5408 	if (ret)
5409 		return ret;
5410 
5411 	if (value != mddev->fail_last_dev)
5412 		mddev->fail_last_dev = value;
5413 
5414 	return len;
5415 }
5416 static struct md_sysfs_entry md_fail_last_dev =
5417 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5418        fail_last_dev_store);
5419 
5420 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5421 {
5422 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5423 		return sprintf(page, "n/a\n");
5424 	else
5425 		return sprintf(page, "%d\n", mddev->serialize_policy);
5426 }
5427 
5428 /*
5429  * Setting serialize_policy to true to enforce write IO is not reordered
5430  * for raid1.
5431  */
5432 static ssize_t
5433 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5434 {
5435 	int err;
5436 	bool value;
5437 
5438 	err = kstrtobool(buf, &value);
5439 	if (err)
5440 		return err;
5441 
5442 	if (value == mddev->serialize_policy)
5443 		return len;
5444 
5445 	err = mddev_lock(mddev);
5446 	if (err)
5447 		return err;
5448 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5449 		pr_err("md: serialize_policy is only effective for raid1\n");
5450 		err = -EINVAL;
5451 		goto unlock;
5452 	}
5453 
5454 	mddev_suspend(mddev);
5455 	if (value)
5456 		mddev_create_serial_pool(mddev, NULL, true);
5457 	else
5458 		mddev_destroy_serial_pool(mddev, NULL, true);
5459 	mddev->serialize_policy = value;
5460 	mddev_resume(mddev);
5461 unlock:
5462 	mddev_unlock(mddev);
5463 	return err ?: len;
5464 }
5465 
5466 static struct md_sysfs_entry md_serialize_policy =
5467 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5468        serialize_policy_store);
5469 
5470 
5471 static struct attribute *md_default_attrs[] = {
5472 	&md_level.attr,
5473 	&md_layout.attr,
5474 	&md_raid_disks.attr,
5475 	&md_uuid.attr,
5476 	&md_chunk_size.attr,
5477 	&md_size.attr,
5478 	&md_resync_start.attr,
5479 	&md_metadata.attr,
5480 	&md_new_device.attr,
5481 	&md_safe_delay.attr,
5482 	&md_array_state.attr,
5483 	&md_reshape_position.attr,
5484 	&md_reshape_direction.attr,
5485 	&md_array_size.attr,
5486 	&max_corr_read_errors.attr,
5487 	&md_consistency_policy.attr,
5488 	&md_fail_last_dev.attr,
5489 	&md_serialize_policy.attr,
5490 	NULL,
5491 };
5492 
5493 static struct attribute *md_redundancy_attrs[] = {
5494 	&md_scan_mode.attr,
5495 	&md_last_scan_mode.attr,
5496 	&md_mismatches.attr,
5497 	&md_sync_min.attr,
5498 	&md_sync_max.attr,
5499 	&md_sync_speed.attr,
5500 	&md_sync_force_parallel.attr,
5501 	&md_sync_completed.attr,
5502 	&md_min_sync.attr,
5503 	&md_max_sync.attr,
5504 	&md_suspend_lo.attr,
5505 	&md_suspend_hi.attr,
5506 	&md_bitmap.attr,
5507 	&md_degraded.attr,
5508 	NULL,
5509 };
5510 static const struct attribute_group md_redundancy_group = {
5511 	.name = NULL,
5512 	.attrs = md_redundancy_attrs,
5513 };
5514 
5515 static ssize_t
5516 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5517 {
5518 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5519 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5520 	ssize_t rv;
5521 
5522 	if (!entry->show)
5523 		return -EIO;
5524 	spin_lock(&all_mddevs_lock);
5525 	if (list_empty(&mddev->all_mddevs)) {
5526 		spin_unlock(&all_mddevs_lock);
5527 		return -EBUSY;
5528 	}
5529 	mddev_get(mddev);
5530 	spin_unlock(&all_mddevs_lock);
5531 
5532 	rv = entry->show(mddev, page);
5533 	mddev_put(mddev);
5534 	return rv;
5535 }
5536 
5537 static ssize_t
5538 md_attr_store(struct kobject *kobj, struct attribute *attr,
5539 	      const char *page, size_t length)
5540 {
5541 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5542 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5543 	ssize_t rv;
5544 
5545 	if (!entry->store)
5546 		return -EIO;
5547 	if (!capable(CAP_SYS_ADMIN))
5548 		return -EACCES;
5549 	spin_lock(&all_mddevs_lock);
5550 	if (list_empty(&mddev->all_mddevs)) {
5551 		spin_unlock(&all_mddevs_lock);
5552 		return -EBUSY;
5553 	}
5554 	mddev_get(mddev);
5555 	spin_unlock(&all_mddevs_lock);
5556 	rv = entry->store(mddev, page, length);
5557 	mddev_put(mddev);
5558 	return rv;
5559 }
5560 
5561 static void md_free(struct kobject *ko)
5562 {
5563 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5564 
5565 	if (mddev->sysfs_state)
5566 		sysfs_put(mddev->sysfs_state);
5567 	if (mddev->sysfs_level)
5568 		sysfs_put(mddev->sysfs_level);
5569 
5570 	if (mddev->gendisk) {
5571 		del_gendisk(mddev->gendisk);
5572 		blk_cleanup_disk(mddev->gendisk);
5573 	}
5574 	percpu_ref_exit(&mddev->writes_pending);
5575 
5576 	bioset_exit(&mddev->bio_set);
5577 	bioset_exit(&mddev->sync_set);
5578 	if (mddev->level != 1 && mddev->level != 10)
5579 		bioset_exit(&mddev->io_acct_set);
5580 	kfree(mddev);
5581 }
5582 
5583 static const struct sysfs_ops md_sysfs_ops = {
5584 	.show	= md_attr_show,
5585 	.store	= md_attr_store,
5586 };
5587 static struct kobj_type md_ktype = {
5588 	.release	= md_free,
5589 	.sysfs_ops	= &md_sysfs_ops,
5590 	.default_attrs	= md_default_attrs,
5591 };
5592 
5593 int mdp_major = 0;
5594 
5595 static void mddev_delayed_delete(struct work_struct *ws)
5596 {
5597 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5598 
5599 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5600 	kobject_del(&mddev->kobj);
5601 	kobject_put(&mddev->kobj);
5602 }
5603 
5604 static void no_op(struct percpu_ref *r) {}
5605 
5606 int mddev_init_writes_pending(struct mddev *mddev)
5607 {
5608 	if (mddev->writes_pending.percpu_count_ptr)
5609 		return 0;
5610 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5611 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5612 		return -ENOMEM;
5613 	/* We want to start with the refcount at zero */
5614 	percpu_ref_put(&mddev->writes_pending);
5615 	return 0;
5616 }
5617 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5618 
5619 static int md_alloc(dev_t dev, char *name)
5620 {
5621 	/*
5622 	 * If dev is zero, name is the name of a device to allocate with
5623 	 * an arbitrary minor number.  It will be "md_???"
5624 	 * If dev is non-zero it must be a device number with a MAJOR of
5625 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5626 	 * the device is being created by opening a node in /dev.
5627 	 * If "name" is not NULL, the device is being created by
5628 	 * writing to /sys/module/md_mod/parameters/new_array.
5629 	 */
5630 	static DEFINE_MUTEX(disks_mutex);
5631 	struct mddev *mddev;
5632 	struct gendisk *disk;
5633 	int partitioned;
5634 	int shift;
5635 	int unit;
5636 	int error ;
5637 
5638 	/*
5639 	 * Wait for any previous instance of this device to be completely
5640 	 * removed (mddev_delayed_delete).
5641 	 */
5642 	flush_workqueue(md_misc_wq);
5643 
5644 	mutex_lock(&disks_mutex);
5645 	mddev = mddev_alloc(dev);
5646 	if (IS_ERR(mddev)) {
5647 		mutex_unlock(&disks_mutex);
5648 		return PTR_ERR(mddev);
5649 	}
5650 
5651 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5652 	shift = partitioned ? MdpMinorShift : 0;
5653 	unit = MINOR(mddev->unit) >> shift;
5654 
5655 	if (name && !dev) {
5656 		/* Need to ensure that 'name' is not a duplicate.
5657 		 */
5658 		struct mddev *mddev2;
5659 		spin_lock(&all_mddevs_lock);
5660 
5661 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5662 			if (mddev2->gendisk &&
5663 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5664 				spin_unlock(&all_mddevs_lock);
5665 				error = -EEXIST;
5666 				goto abort;
5667 			}
5668 		spin_unlock(&all_mddevs_lock);
5669 	}
5670 	if (name && dev)
5671 		/*
5672 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5673 		 */
5674 		mddev->hold_active = UNTIL_STOP;
5675 
5676 	error = -ENOMEM;
5677 	disk = blk_alloc_disk(NUMA_NO_NODE);
5678 	if (!disk)
5679 		goto abort;
5680 
5681 	disk->major = MAJOR(mddev->unit);
5682 	disk->first_minor = unit << shift;
5683 	disk->minors = 1 << shift;
5684 	if (name)
5685 		strcpy(disk->disk_name, name);
5686 	else if (partitioned)
5687 		sprintf(disk->disk_name, "md_d%d", unit);
5688 	else
5689 		sprintf(disk->disk_name, "md%d", unit);
5690 	disk->fops = &md_fops;
5691 	disk->private_data = mddev;
5692 
5693 	mddev->queue = disk->queue;
5694 	blk_set_stacking_limits(&mddev->queue->limits);
5695 	blk_queue_write_cache(mddev->queue, true, true);
5696 	/* Allow extended partitions.  This makes the
5697 	 * 'mdp' device redundant, but we can't really
5698 	 * remove it now.
5699 	 */
5700 	disk->flags |= GENHD_FL_EXT_DEVT;
5701 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5702 	mddev->gendisk = disk;
5703 	/* As soon as we call add_disk(), another thread could get
5704 	 * through to md_open, so make sure it doesn't get too far
5705 	 */
5706 	mutex_lock(&mddev->open_mutex);
5707 	add_disk(disk);
5708 
5709 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5710 	if (error) {
5711 		/* This isn't possible, but as kobject_init_and_add is marked
5712 		 * __must_check, we must do something with the result
5713 		 */
5714 		pr_debug("md: cannot register %s/md - name in use\n",
5715 			 disk->disk_name);
5716 		error = 0;
5717 	}
5718 	if (mddev->kobj.sd &&
5719 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5720 		pr_debug("pointless warning\n");
5721 	mutex_unlock(&mddev->open_mutex);
5722  abort:
5723 	mutex_unlock(&disks_mutex);
5724 	if (!error && mddev->kobj.sd) {
5725 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5726 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5727 		mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5728 	}
5729 	mddev_put(mddev);
5730 	return error;
5731 }
5732 
5733 static void md_probe(dev_t dev)
5734 {
5735 	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5736 		return;
5737 	if (create_on_open)
5738 		md_alloc(dev, NULL);
5739 }
5740 
5741 static int add_named_array(const char *val, const struct kernel_param *kp)
5742 {
5743 	/*
5744 	 * val must be "md_*" or "mdNNN".
5745 	 * For "md_*" we allocate an array with a large free minor number, and
5746 	 * set the name to val.  val must not already be an active name.
5747 	 * For "mdNNN" we allocate an array with the minor number NNN
5748 	 * which must not already be in use.
5749 	 */
5750 	int len = strlen(val);
5751 	char buf[DISK_NAME_LEN];
5752 	unsigned long devnum;
5753 
5754 	while (len && val[len-1] == '\n')
5755 		len--;
5756 	if (len >= DISK_NAME_LEN)
5757 		return -E2BIG;
5758 	strlcpy(buf, val, len+1);
5759 	if (strncmp(buf, "md_", 3) == 0)
5760 		return md_alloc(0, buf);
5761 	if (strncmp(buf, "md", 2) == 0 &&
5762 	    isdigit(buf[2]) &&
5763 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5764 	    devnum <= MINORMASK)
5765 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5766 
5767 	return -EINVAL;
5768 }
5769 
5770 static void md_safemode_timeout(struct timer_list *t)
5771 {
5772 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5773 
5774 	mddev->safemode = 1;
5775 	if (mddev->external)
5776 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5777 
5778 	md_wakeup_thread(mddev->thread);
5779 }
5780 
5781 static int start_dirty_degraded;
5782 
5783 int md_run(struct mddev *mddev)
5784 {
5785 	int err;
5786 	struct md_rdev *rdev;
5787 	struct md_personality *pers;
5788 
5789 	if (list_empty(&mddev->disks))
5790 		/* cannot run an array with no devices.. */
5791 		return -EINVAL;
5792 
5793 	if (mddev->pers)
5794 		return -EBUSY;
5795 	/* Cannot run until previous stop completes properly */
5796 	if (mddev->sysfs_active)
5797 		return -EBUSY;
5798 
5799 	/*
5800 	 * Analyze all RAID superblock(s)
5801 	 */
5802 	if (!mddev->raid_disks) {
5803 		if (!mddev->persistent)
5804 			return -EINVAL;
5805 		err = analyze_sbs(mddev);
5806 		if (err)
5807 			return -EINVAL;
5808 	}
5809 
5810 	if (mddev->level != LEVEL_NONE)
5811 		request_module("md-level-%d", mddev->level);
5812 	else if (mddev->clevel[0])
5813 		request_module("md-%s", mddev->clevel);
5814 
5815 	/*
5816 	 * Drop all container device buffers, from now on
5817 	 * the only valid external interface is through the md
5818 	 * device.
5819 	 */
5820 	mddev->has_superblocks = false;
5821 	rdev_for_each(rdev, mddev) {
5822 		if (test_bit(Faulty, &rdev->flags))
5823 			continue;
5824 		sync_blockdev(rdev->bdev);
5825 		invalidate_bdev(rdev->bdev);
5826 		if (mddev->ro != 1 && rdev_read_only(rdev)) {
5827 			mddev->ro = 1;
5828 			if (mddev->gendisk)
5829 				set_disk_ro(mddev->gendisk, 1);
5830 		}
5831 
5832 		if (rdev->sb_page)
5833 			mddev->has_superblocks = true;
5834 
5835 		/* perform some consistency tests on the device.
5836 		 * We don't want the data to overlap the metadata,
5837 		 * Internal Bitmap issues have been handled elsewhere.
5838 		 */
5839 		if (rdev->meta_bdev) {
5840 			/* Nothing to check */;
5841 		} else if (rdev->data_offset < rdev->sb_start) {
5842 			if (mddev->dev_sectors &&
5843 			    rdev->data_offset + mddev->dev_sectors
5844 			    > rdev->sb_start) {
5845 				pr_warn("md: %s: data overlaps metadata\n",
5846 					mdname(mddev));
5847 				return -EINVAL;
5848 			}
5849 		} else {
5850 			if (rdev->sb_start + rdev->sb_size/512
5851 			    > rdev->data_offset) {
5852 				pr_warn("md: %s: metadata overlaps data\n",
5853 					mdname(mddev));
5854 				return -EINVAL;
5855 			}
5856 		}
5857 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5858 	}
5859 
5860 	if (!bioset_initialized(&mddev->bio_set)) {
5861 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5862 		if (err)
5863 			return err;
5864 	}
5865 	if (!bioset_initialized(&mddev->sync_set)) {
5866 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5867 		if (err)
5868 			goto exit_bio_set;
5869 	}
5870 	if (mddev->level != 1 && mddev->level != 10 &&
5871 	    !bioset_initialized(&mddev->io_acct_set)) {
5872 		err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
5873 				  offsetof(struct md_io_acct, bio_clone), 0);
5874 		if (err)
5875 			goto exit_sync_set;
5876 	}
5877 
5878 	spin_lock(&pers_lock);
5879 	pers = find_pers(mddev->level, mddev->clevel);
5880 	if (!pers || !try_module_get(pers->owner)) {
5881 		spin_unlock(&pers_lock);
5882 		if (mddev->level != LEVEL_NONE)
5883 			pr_warn("md: personality for level %d is not loaded!\n",
5884 				mddev->level);
5885 		else
5886 			pr_warn("md: personality for level %s is not loaded!\n",
5887 				mddev->clevel);
5888 		err = -EINVAL;
5889 		goto abort;
5890 	}
5891 	spin_unlock(&pers_lock);
5892 	if (mddev->level != pers->level) {
5893 		mddev->level = pers->level;
5894 		mddev->new_level = pers->level;
5895 	}
5896 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5897 
5898 	if (mddev->reshape_position != MaxSector &&
5899 	    pers->start_reshape == NULL) {
5900 		/* This personality cannot handle reshaping... */
5901 		module_put(pers->owner);
5902 		err = -EINVAL;
5903 		goto abort;
5904 	}
5905 
5906 	if (pers->sync_request) {
5907 		/* Warn if this is a potentially silly
5908 		 * configuration.
5909 		 */
5910 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5911 		struct md_rdev *rdev2;
5912 		int warned = 0;
5913 
5914 		rdev_for_each(rdev, mddev)
5915 			rdev_for_each(rdev2, mddev) {
5916 				if (rdev < rdev2 &&
5917 				    rdev->bdev->bd_disk ==
5918 				    rdev2->bdev->bd_disk) {
5919 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5920 						mdname(mddev),
5921 						bdevname(rdev->bdev,b),
5922 						bdevname(rdev2->bdev,b2));
5923 					warned = 1;
5924 				}
5925 			}
5926 
5927 		if (warned)
5928 			pr_warn("True protection against single-disk failure might be compromised.\n");
5929 	}
5930 
5931 	mddev->recovery = 0;
5932 	/* may be over-ridden by personality */
5933 	mddev->resync_max_sectors = mddev->dev_sectors;
5934 
5935 	mddev->ok_start_degraded = start_dirty_degraded;
5936 
5937 	if (start_readonly && mddev->ro == 0)
5938 		mddev->ro = 2; /* read-only, but switch on first write */
5939 
5940 	err = pers->run(mddev);
5941 	if (err)
5942 		pr_warn("md: pers->run() failed ...\n");
5943 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5944 		WARN_ONCE(!mddev->external_size,
5945 			  "%s: default size too small, but 'external_size' not in effect?\n",
5946 			  __func__);
5947 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5948 			(unsigned long long)mddev->array_sectors / 2,
5949 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5950 		err = -EINVAL;
5951 	}
5952 	if (err == 0 && pers->sync_request &&
5953 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5954 		struct bitmap *bitmap;
5955 
5956 		bitmap = md_bitmap_create(mddev, -1);
5957 		if (IS_ERR(bitmap)) {
5958 			err = PTR_ERR(bitmap);
5959 			pr_warn("%s: failed to create bitmap (%d)\n",
5960 				mdname(mddev), err);
5961 		} else
5962 			mddev->bitmap = bitmap;
5963 
5964 	}
5965 	if (err)
5966 		goto bitmap_abort;
5967 
5968 	if (mddev->bitmap_info.max_write_behind > 0) {
5969 		bool create_pool = false;
5970 
5971 		rdev_for_each(rdev, mddev) {
5972 			if (test_bit(WriteMostly, &rdev->flags) &&
5973 			    rdev_init_serial(rdev))
5974 				create_pool = true;
5975 		}
5976 		if (create_pool && mddev->serial_info_pool == NULL) {
5977 			mddev->serial_info_pool =
5978 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5979 						    sizeof(struct serial_info));
5980 			if (!mddev->serial_info_pool) {
5981 				err = -ENOMEM;
5982 				goto bitmap_abort;
5983 			}
5984 		}
5985 	}
5986 
5987 	if (mddev->queue) {
5988 		bool nonrot = true;
5989 
5990 		rdev_for_each(rdev, mddev) {
5991 			if (rdev->raid_disk >= 0 &&
5992 			    !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5993 				nonrot = false;
5994 				break;
5995 			}
5996 		}
5997 		if (mddev->degraded)
5998 			nonrot = false;
5999 		if (nonrot)
6000 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6001 		else
6002 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6003 		blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6004 	}
6005 	if (pers->sync_request) {
6006 		if (mddev->kobj.sd &&
6007 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6008 			pr_warn("md: cannot register extra attributes for %s\n",
6009 				mdname(mddev));
6010 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6011 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6012 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6013 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6014 		mddev->ro = 0;
6015 
6016 	atomic_set(&mddev->max_corr_read_errors,
6017 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6018 	mddev->safemode = 0;
6019 	if (mddev_is_clustered(mddev))
6020 		mddev->safemode_delay = 0;
6021 	else
6022 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6023 	mddev->in_sync = 1;
6024 	smp_wmb();
6025 	spin_lock(&mddev->lock);
6026 	mddev->pers = pers;
6027 	spin_unlock(&mddev->lock);
6028 	rdev_for_each(rdev, mddev)
6029 		if (rdev->raid_disk >= 0)
6030 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6031 
6032 	if (mddev->degraded && !mddev->ro)
6033 		/* This ensures that recovering status is reported immediately
6034 		 * via sysfs - until a lack of spares is confirmed.
6035 		 */
6036 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6037 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6038 
6039 	if (mddev->sb_flags)
6040 		md_update_sb(mddev, 0);
6041 
6042 	md_new_event(mddev);
6043 	return 0;
6044 
6045 bitmap_abort:
6046 	mddev_detach(mddev);
6047 	if (mddev->private)
6048 		pers->free(mddev, mddev->private);
6049 	mddev->private = NULL;
6050 	module_put(pers->owner);
6051 	md_bitmap_destroy(mddev);
6052 abort:
6053 	if (mddev->level != 1 && mddev->level != 10)
6054 		bioset_exit(&mddev->io_acct_set);
6055 exit_sync_set:
6056 	bioset_exit(&mddev->sync_set);
6057 exit_bio_set:
6058 	bioset_exit(&mddev->bio_set);
6059 	return err;
6060 }
6061 EXPORT_SYMBOL_GPL(md_run);
6062 
6063 int do_md_run(struct mddev *mddev)
6064 {
6065 	int err;
6066 
6067 	set_bit(MD_NOT_READY, &mddev->flags);
6068 	err = md_run(mddev);
6069 	if (err)
6070 		goto out;
6071 	err = md_bitmap_load(mddev);
6072 	if (err) {
6073 		md_bitmap_destroy(mddev);
6074 		goto out;
6075 	}
6076 
6077 	if (mddev_is_clustered(mddev))
6078 		md_allow_write(mddev);
6079 
6080 	/* run start up tasks that require md_thread */
6081 	md_start(mddev);
6082 
6083 	md_wakeup_thread(mddev->thread);
6084 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6085 
6086 	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6087 	clear_bit(MD_NOT_READY, &mddev->flags);
6088 	mddev->changed = 1;
6089 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6090 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6091 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6092 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6093 out:
6094 	clear_bit(MD_NOT_READY, &mddev->flags);
6095 	return err;
6096 }
6097 
6098 int md_start(struct mddev *mddev)
6099 {
6100 	int ret = 0;
6101 
6102 	if (mddev->pers->start) {
6103 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6104 		md_wakeup_thread(mddev->thread);
6105 		ret = mddev->pers->start(mddev);
6106 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6107 		md_wakeup_thread(mddev->sync_thread);
6108 	}
6109 	return ret;
6110 }
6111 EXPORT_SYMBOL_GPL(md_start);
6112 
6113 static int restart_array(struct mddev *mddev)
6114 {
6115 	struct gendisk *disk = mddev->gendisk;
6116 	struct md_rdev *rdev;
6117 	bool has_journal = false;
6118 	bool has_readonly = false;
6119 
6120 	/* Complain if it has no devices */
6121 	if (list_empty(&mddev->disks))
6122 		return -ENXIO;
6123 	if (!mddev->pers)
6124 		return -EINVAL;
6125 	if (!mddev->ro)
6126 		return -EBUSY;
6127 
6128 	rcu_read_lock();
6129 	rdev_for_each_rcu(rdev, mddev) {
6130 		if (test_bit(Journal, &rdev->flags) &&
6131 		    !test_bit(Faulty, &rdev->flags))
6132 			has_journal = true;
6133 		if (rdev_read_only(rdev))
6134 			has_readonly = true;
6135 	}
6136 	rcu_read_unlock();
6137 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6138 		/* Don't restart rw with journal missing/faulty */
6139 			return -EINVAL;
6140 	if (has_readonly)
6141 		return -EROFS;
6142 
6143 	mddev->safemode = 0;
6144 	mddev->ro = 0;
6145 	set_disk_ro(disk, 0);
6146 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6147 	/* Kick recovery or resync if necessary */
6148 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6149 	md_wakeup_thread(mddev->thread);
6150 	md_wakeup_thread(mddev->sync_thread);
6151 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6152 	return 0;
6153 }
6154 
6155 static void md_clean(struct mddev *mddev)
6156 {
6157 	mddev->array_sectors = 0;
6158 	mddev->external_size = 0;
6159 	mddev->dev_sectors = 0;
6160 	mddev->raid_disks = 0;
6161 	mddev->recovery_cp = 0;
6162 	mddev->resync_min = 0;
6163 	mddev->resync_max = MaxSector;
6164 	mddev->reshape_position = MaxSector;
6165 	mddev->external = 0;
6166 	mddev->persistent = 0;
6167 	mddev->level = LEVEL_NONE;
6168 	mddev->clevel[0] = 0;
6169 	mddev->flags = 0;
6170 	mddev->sb_flags = 0;
6171 	mddev->ro = 0;
6172 	mddev->metadata_type[0] = 0;
6173 	mddev->chunk_sectors = 0;
6174 	mddev->ctime = mddev->utime = 0;
6175 	mddev->layout = 0;
6176 	mddev->max_disks = 0;
6177 	mddev->events = 0;
6178 	mddev->can_decrease_events = 0;
6179 	mddev->delta_disks = 0;
6180 	mddev->reshape_backwards = 0;
6181 	mddev->new_level = LEVEL_NONE;
6182 	mddev->new_layout = 0;
6183 	mddev->new_chunk_sectors = 0;
6184 	mddev->curr_resync = 0;
6185 	atomic64_set(&mddev->resync_mismatches, 0);
6186 	mddev->suspend_lo = mddev->suspend_hi = 0;
6187 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6188 	mddev->recovery = 0;
6189 	mddev->in_sync = 0;
6190 	mddev->changed = 0;
6191 	mddev->degraded = 0;
6192 	mddev->safemode = 0;
6193 	mddev->private = NULL;
6194 	mddev->cluster_info = NULL;
6195 	mddev->bitmap_info.offset = 0;
6196 	mddev->bitmap_info.default_offset = 0;
6197 	mddev->bitmap_info.default_space = 0;
6198 	mddev->bitmap_info.chunksize = 0;
6199 	mddev->bitmap_info.daemon_sleep = 0;
6200 	mddev->bitmap_info.max_write_behind = 0;
6201 	mddev->bitmap_info.nodes = 0;
6202 }
6203 
6204 static void __md_stop_writes(struct mddev *mddev)
6205 {
6206 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6207 	if (work_pending(&mddev->del_work))
6208 		flush_workqueue(md_misc_wq);
6209 	if (mddev->sync_thread) {
6210 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6211 		md_reap_sync_thread(mddev);
6212 	}
6213 
6214 	del_timer_sync(&mddev->safemode_timer);
6215 
6216 	if (mddev->pers && mddev->pers->quiesce) {
6217 		mddev->pers->quiesce(mddev, 1);
6218 		mddev->pers->quiesce(mddev, 0);
6219 	}
6220 	md_bitmap_flush(mddev);
6221 
6222 	if (mddev->ro == 0 &&
6223 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6224 	     mddev->sb_flags)) {
6225 		/* mark array as shutdown cleanly */
6226 		if (!mddev_is_clustered(mddev))
6227 			mddev->in_sync = 1;
6228 		md_update_sb(mddev, 1);
6229 	}
6230 	/* disable policy to guarantee rdevs free resources for serialization */
6231 	mddev->serialize_policy = 0;
6232 	mddev_destroy_serial_pool(mddev, NULL, true);
6233 }
6234 
6235 void md_stop_writes(struct mddev *mddev)
6236 {
6237 	mddev_lock_nointr(mddev);
6238 	__md_stop_writes(mddev);
6239 	mddev_unlock(mddev);
6240 }
6241 EXPORT_SYMBOL_GPL(md_stop_writes);
6242 
6243 static void mddev_detach(struct mddev *mddev)
6244 {
6245 	md_bitmap_wait_behind_writes(mddev);
6246 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6247 		mddev->pers->quiesce(mddev, 1);
6248 		mddev->pers->quiesce(mddev, 0);
6249 	}
6250 	md_unregister_thread(&mddev->thread);
6251 	if (mddev->queue)
6252 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6253 }
6254 
6255 static void __md_stop(struct mddev *mddev)
6256 {
6257 	struct md_personality *pers = mddev->pers;
6258 	md_bitmap_destroy(mddev);
6259 	mddev_detach(mddev);
6260 	/* Ensure ->event_work is done */
6261 	if (mddev->event_work.func)
6262 		flush_workqueue(md_misc_wq);
6263 	spin_lock(&mddev->lock);
6264 	mddev->pers = NULL;
6265 	spin_unlock(&mddev->lock);
6266 	pers->free(mddev, mddev->private);
6267 	mddev->private = NULL;
6268 	if (pers->sync_request && mddev->to_remove == NULL)
6269 		mddev->to_remove = &md_redundancy_group;
6270 	module_put(pers->owner);
6271 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6272 }
6273 
6274 void md_stop(struct mddev *mddev)
6275 {
6276 	/* stop the array and free an attached data structures.
6277 	 * This is called from dm-raid
6278 	 */
6279 	__md_stop(mddev);
6280 	bioset_exit(&mddev->bio_set);
6281 	bioset_exit(&mddev->sync_set);
6282 	if (mddev->level != 1 && mddev->level != 10)
6283 		bioset_exit(&mddev->io_acct_set);
6284 }
6285 
6286 EXPORT_SYMBOL_GPL(md_stop);
6287 
6288 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6289 {
6290 	int err = 0;
6291 	int did_freeze = 0;
6292 
6293 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6294 		did_freeze = 1;
6295 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6296 		md_wakeup_thread(mddev->thread);
6297 	}
6298 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6299 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6300 	if (mddev->sync_thread)
6301 		/* Thread might be blocked waiting for metadata update
6302 		 * which will now never happen */
6303 		wake_up_process(mddev->sync_thread->tsk);
6304 
6305 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6306 		return -EBUSY;
6307 	mddev_unlock(mddev);
6308 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6309 					  &mddev->recovery));
6310 	wait_event(mddev->sb_wait,
6311 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6312 	mddev_lock_nointr(mddev);
6313 
6314 	mutex_lock(&mddev->open_mutex);
6315 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6316 	    mddev->sync_thread ||
6317 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6318 		pr_warn("md: %s still in use.\n",mdname(mddev));
6319 		if (did_freeze) {
6320 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6321 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6322 			md_wakeup_thread(mddev->thread);
6323 		}
6324 		err = -EBUSY;
6325 		goto out;
6326 	}
6327 	if (mddev->pers) {
6328 		__md_stop_writes(mddev);
6329 
6330 		err  = -ENXIO;
6331 		if (mddev->ro==1)
6332 			goto out;
6333 		mddev->ro = 1;
6334 		set_disk_ro(mddev->gendisk, 1);
6335 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6336 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6337 		md_wakeup_thread(mddev->thread);
6338 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6339 		err = 0;
6340 	}
6341 out:
6342 	mutex_unlock(&mddev->open_mutex);
6343 	return err;
6344 }
6345 
6346 /* mode:
6347  *   0 - completely stop and dis-assemble array
6348  *   2 - stop but do not disassemble array
6349  */
6350 static int do_md_stop(struct mddev *mddev, int mode,
6351 		      struct block_device *bdev)
6352 {
6353 	struct gendisk *disk = mddev->gendisk;
6354 	struct md_rdev *rdev;
6355 	int did_freeze = 0;
6356 
6357 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6358 		did_freeze = 1;
6359 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6360 		md_wakeup_thread(mddev->thread);
6361 	}
6362 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6363 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6364 	if (mddev->sync_thread)
6365 		/* Thread might be blocked waiting for metadata update
6366 		 * which will now never happen */
6367 		wake_up_process(mddev->sync_thread->tsk);
6368 
6369 	mddev_unlock(mddev);
6370 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6371 				 !test_bit(MD_RECOVERY_RUNNING,
6372 					   &mddev->recovery)));
6373 	mddev_lock_nointr(mddev);
6374 
6375 	mutex_lock(&mddev->open_mutex);
6376 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6377 	    mddev->sysfs_active ||
6378 	    mddev->sync_thread ||
6379 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6380 		pr_warn("md: %s still in use.\n",mdname(mddev));
6381 		mutex_unlock(&mddev->open_mutex);
6382 		if (did_freeze) {
6383 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6384 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6385 			md_wakeup_thread(mddev->thread);
6386 		}
6387 		return -EBUSY;
6388 	}
6389 	if (mddev->pers) {
6390 		if (mddev->ro)
6391 			set_disk_ro(disk, 0);
6392 
6393 		__md_stop_writes(mddev);
6394 		__md_stop(mddev);
6395 
6396 		/* tell userspace to handle 'inactive' */
6397 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6398 
6399 		rdev_for_each(rdev, mddev)
6400 			if (rdev->raid_disk >= 0)
6401 				sysfs_unlink_rdev(mddev, rdev);
6402 
6403 		set_capacity_and_notify(disk, 0);
6404 		mutex_unlock(&mddev->open_mutex);
6405 		mddev->changed = 1;
6406 
6407 		if (mddev->ro)
6408 			mddev->ro = 0;
6409 	} else
6410 		mutex_unlock(&mddev->open_mutex);
6411 	/*
6412 	 * Free resources if final stop
6413 	 */
6414 	if (mode == 0) {
6415 		pr_info("md: %s stopped.\n", mdname(mddev));
6416 
6417 		if (mddev->bitmap_info.file) {
6418 			struct file *f = mddev->bitmap_info.file;
6419 			spin_lock(&mddev->lock);
6420 			mddev->bitmap_info.file = NULL;
6421 			spin_unlock(&mddev->lock);
6422 			fput(f);
6423 		}
6424 		mddev->bitmap_info.offset = 0;
6425 
6426 		export_array(mddev);
6427 
6428 		md_clean(mddev);
6429 		if (mddev->hold_active == UNTIL_STOP)
6430 			mddev->hold_active = 0;
6431 	}
6432 	md_new_event(mddev);
6433 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6434 	return 0;
6435 }
6436 
6437 #ifndef MODULE
6438 static void autorun_array(struct mddev *mddev)
6439 {
6440 	struct md_rdev *rdev;
6441 	int err;
6442 
6443 	if (list_empty(&mddev->disks))
6444 		return;
6445 
6446 	pr_info("md: running: ");
6447 
6448 	rdev_for_each(rdev, mddev) {
6449 		char b[BDEVNAME_SIZE];
6450 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6451 	}
6452 	pr_cont("\n");
6453 
6454 	err = do_md_run(mddev);
6455 	if (err) {
6456 		pr_warn("md: do_md_run() returned %d\n", err);
6457 		do_md_stop(mddev, 0, NULL);
6458 	}
6459 }
6460 
6461 /*
6462  * lets try to run arrays based on all disks that have arrived
6463  * until now. (those are in pending_raid_disks)
6464  *
6465  * the method: pick the first pending disk, collect all disks with
6466  * the same UUID, remove all from the pending list and put them into
6467  * the 'same_array' list. Then order this list based on superblock
6468  * update time (freshest comes first), kick out 'old' disks and
6469  * compare superblocks. If everything's fine then run it.
6470  *
6471  * If "unit" is allocated, then bump its reference count
6472  */
6473 static void autorun_devices(int part)
6474 {
6475 	struct md_rdev *rdev0, *rdev, *tmp;
6476 	struct mddev *mddev;
6477 	char b[BDEVNAME_SIZE];
6478 
6479 	pr_info("md: autorun ...\n");
6480 	while (!list_empty(&pending_raid_disks)) {
6481 		int unit;
6482 		dev_t dev;
6483 		LIST_HEAD(candidates);
6484 		rdev0 = list_entry(pending_raid_disks.next,
6485 					 struct md_rdev, same_set);
6486 
6487 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6488 		INIT_LIST_HEAD(&candidates);
6489 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6490 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6491 				pr_debug("md:  adding %s ...\n",
6492 					 bdevname(rdev->bdev,b));
6493 				list_move(&rdev->same_set, &candidates);
6494 			}
6495 		/*
6496 		 * now we have a set of devices, with all of them having
6497 		 * mostly sane superblocks. It's time to allocate the
6498 		 * mddev.
6499 		 */
6500 		if (part) {
6501 			dev = MKDEV(mdp_major,
6502 				    rdev0->preferred_minor << MdpMinorShift);
6503 			unit = MINOR(dev) >> MdpMinorShift;
6504 		} else {
6505 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6506 			unit = MINOR(dev);
6507 		}
6508 		if (rdev0->preferred_minor != unit) {
6509 			pr_warn("md: unit number in %s is bad: %d\n",
6510 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6511 			break;
6512 		}
6513 
6514 		md_probe(dev);
6515 		mddev = mddev_find(dev);
6516 		if (!mddev)
6517 			break;
6518 
6519 		if (mddev_lock(mddev))
6520 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6521 		else if (mddev->raid_disks || mddev->major_version
6522 			 || !list_empty(&mddev->disks)) {
6523 			pr_warn("md: %s already running, cannot run %s\n",
6524 				mdname(mddev), bdevname(rdev0->bdev,b));
6525 			mddev_unlock(mddev);
6526 		} else {
6527 			pr_debug("md: created %s\n", mdname(mddev));
6528 			mddev->persistent = 1;
6529 			rdev_for_each_list(rdev, tmp, &candidates) {
6530 				list_del_init(&rdev->same_set);
6531 				if (bind_rdev_to_array(rdev, mddev))
6532 					export_rdev(rdev);
6533 			}
6534 			autorun_array(mddev);
6535 			mddev_unlock(mddev);
6536 		}
6537 		/* on success, candidates will be empty, on error
6538 		 * it won't...
6539 		 */
6540 		rdev_for_each_list(rdev, tmp, &candidates) {
6541 			list_del_init(&rdev->same_set);
6542 			export_rdev(rdev);
6543 		}
6544 		mddev_put(mddev);
6545 	}
6546 	pr_info("md: ... autorun DONE.\n");
6547 }
6548 #endif /* !MODULE */
6549 
6550 static int get_version(void __user *arg)
6551 {
6552 	mdu_version_t ver;
6553 
6554 	ver.major = MD_MAJOR_VERSION;
6555 	ver.minor = MD_MINOR_VERSION;
6556 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6557 
6558 	if (copy_to_user(arg, &ver, sizeof(ver)))
6559 		return -EFAULT;
6560 
6561 	return 0;
6562 }
6563 
6564 static int get_array_info(struct mddev *mddev, void __user *arg)
6565 {
6566 	mdu_array_info_t info;
6567 	int nr,working,insync,failed,spare;
6568 	struct md_rdev *rdev;
6569 
6570 	nr = working = insync = failed = spare = 0;
6571 	rcu_read_lock();
6572 	rdev_for_each_rcu(rdev, mddev) {
6573 		nr++;
6574 		if (test_bit(Faulty, &rdev->flags))
6575 			failed++;
6576 		else {
6577 			working++;
6578 			if (test_bit(In_sync, &rdev->flags))
6579 				insync++;
6580 			else if (test_bit(Journal, &rdev->flags))
6581 				/* TODO: add journal count to md_u.h */
6582 				;
6583 			else
6584 				spare++;
6585 		}
6586 	}
6587 	rcu_read_unlock();
6588 
6589 	info.major_version = mddev->major_version;
6590 	info.minor_version = mddev->minor_version;
6591 	info.patch_version = MD_PATCHLEVEL_VERSION;
6592 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6593 	info.level         = mddev->level;
6594 	info.size          = mddev->dev_sectors / 2;
6595 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6596 		info.size = -1;
6597 	info.nr_disks      = nr;
6598 	info.raid_disks    = mddev->raid_disks;
6599 	info.md_minor      = mddev->md_minor;
6600 	info.not_persistent= !mddev->persistent;
6601 
6602 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6603 	info.state         = 0;
6604 	if (mddev->in_sync)
6605 		info.state = (1<<MD_SB_CLEAN);
6606 	if (mddev->bitmap && mddev->bitmap_info.offset)
6607 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6608 	if (mddev_is_clustered(mddev))
6609 		info.state |= (1<<MD_SB_CLUSTERED);
6610 	info.active_disks  = insync;
6611 	info.working_disks = working;
6612 	info.failed_disks  = failed;
6613 	info.spare_disks   = spare;
6614 
6615 	info.layout        = mddev->layout;
6616 	info.chunk_size    = mddev->chunk_sectors << 9;
6617 
6618 	if (copy_to_user(arg, &info, sizeof(info)))
6619 		return -EFAULT;
6620 
6621 	return 0;
6622 }
6623 
6624 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6625 {
6626 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6627 	char *ptr;
6628 	int err;
6629 
6630 	file = kzalloc(sizeof(*file), GFP_NOIO);
6631 	if (!file)
6632 		return -ENOMEM;
6633 
6634 	err = 0;
6635 	spin_lock(&mddev->lock);
6636 	/* bitmap enabled */
6637 	if (mddev->bitmap_info.file) {
6638 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6639 				sizeof(file->pathname));
6640 		if (IS_ERR(ptr))
6641 			err = PTR_ERR(ptr);
6642 		else
6643 			memmove(file->pathname, ptr,
6644 				sizeof(file->pathname)-(ptr-file->pathname));
6645 	}
6646 	spin_unlock(&mddev->lock);
6647 
6648 	if (err == 0 &&
6649 	    copy_to_user(arg, file, sizeof(*file)))
6650 		err = -EFAULT;
6651 
6652 	kfree(file);
6653 	return err;
6654 }
6655 
6656 static int get_disk_info(struct mddev *mddev, void __user * arg)
6657 {
6658 	mdu_disk_info_t info;
6659 	struct md_rdev *rdev;
6660 
6661 	if (copy_from_user(&info, arg, sizeof(info)))
6662 		return -EFAULT;
6663 
6664 	rcu_read_lock();
6665 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6666 	if (rdev) {
6667 		info.major = MAJOR(rdev->bdev->bd_dev);
6668 		info.minor = MINOR(rdev->bdev->bd_dev);
6669 		info.raid_disk = rdev->raid_disk;
6670 		info.state = 0;
6671 		if (test_bit(Faulty, &rdev->flags))
6672 			info.state |= (1<<MD_DISK_FAULTY);
6673 		else if (test_bit(In_sync, &rdev->flags)) {
6674 			info.state |= (1<<MD_DISK_ACTIVE);
6675 			info.state |= (1<<MD_DISK_SYNC);
6676 		}
6677 		if (test_bit(Journal, &rdev->flags))
6678 			info.state |= (1<<MD_DISK_JOURNAL);
6679 		if (test_bit(WriteMostly, &rdev->flags))
6680 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6681 		if (test_bit(FailFast, &rdev->flags))
6682 			info.state |= (1<<MD_DISK_FAILFAST);
6683 	} else {
6684 		info.major = info.minor = 0;
6685 		info.raid_disk = -1;
6686 		info.state = (1<<MD_DISK_REMOVED);
6687 	}
6688 	rcu_read_unlock();
6689 
6690 	if (copy_to_user(arg, &info, sizeof(info)))
6691 		return -EFAULT;
6692 
6693 	return 0;
6694 }
6695 
6696 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6697 {
6698 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6699 	struct md_rdev *rdev;
6700 	dev_t dev = MKDEV(info->major,info->minor);
6701 
6702 	if (mddev_is_clustered(mddev) &&
6703 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6704 		pr_warn("%s: Cannot add to clustered mddev.\n",
6705 			mdname(mddev));
6706 		return -EINVAL;
6707 	}
6708 
6709 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6710 		return -EOVERFLOW;
6711 
6712 	if (!mddev->raid_disks) {
6713 		int err;
6714 		/* expecting a device which has a superblock */
6715 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6716 		if (IS_ERR(rdev)) {
6717 			pr_warn("md: md_import_device returned %ld\n",
6718 				PTR_ERR(rdev));
6719 			return PTR_ERR(rdev);
6720 		}
6721 		if (!list_empty(&mddev->disks)) {
6722 			struct md_rdev *rdev0
6723 				= list_entry(mddev->disks.next,
6724 					     struct md_rdev, same_set);
6725 			err = super_types[mddev->major_version]
6726 				.load_super(rdev, rdev0, mddev->minor_version);
6727 			if (err < 0) {
6728 				pr_warn("md: %s has different UUID to %s\n",
6729 					bdevname(rdev->bdev,b),
6730 					bdevname(rdev0->bdev,b2));
6731 				export_rdev(rdev);
6732 				return -EINVAL;
6733 			}
6734 		}
6735 		err = bind_rdev_to_array(rdev, mddev);
6736 		if (err)
6737 			export_rdev(rdev);
6738 		return err;
6739 	}
6740 
6741 	/*
6742 	 * md_add_new_disk can be used once the array is assembled
6743 	 * to add "hot spares".  They must already have a superblock
6744 	 * written
6745 	 */
6746 	if (mddev->pers) {
6747 		int err;
6748 		if (!mddev->pers->hot_add_disk) {
6749 			pr_warn("%s: personality does not support diskops!\n",
6750 				mdname(mddev));
6751 			return -EINVAL;
6752 		}
6753 		if (mddev->persistent)
6754 			rdev = md_import_device(dev, mddev->major_version,
6755 						mddev->minor_version);
6756 		else
6757 			rdev = md_import_device(dev, -1, -1);
6758 		if (IS_ERR(rdev)) {
6759 			pr_warn("md: md_import_device returned %ld\n",
6760 				PTR_ERR(rdev));
6761 			return PTR_ERR(rdev);
6762 		}
6763 		/* set saved_raid_disk if appropriate */
6764 		if (!mddev->persistent) {
6765 			if (info->state & (1<<MD_DISK_SYNC)  &&
6766 			    info->raid_disk < mddev->raid_disks) {
6767 				rdev->raid_disk = info->raid_disk;
6768 				set_bit(In_sync, &rdev->flags);
6769 				clear_bit(Bitmap_sync, &rdev->flags);
6770 			} else
6771 				rdev->raid_disk = -1;
6772 			rdev->saved_raid_disk = rdev->raid_disk;
6773 		} else
6774 			super_types[mddev->major_version].
6775 				validate_super(mddev, rdev);
6776 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6777 		     rdev->raid_disk != info->raid_disk) {
6778 			/* This was a hot-add request, but events doesn't
6779 			 * match, so reject it.
6780 			 */
6781 			export_rdev(rdev);
6782 			return -EINVAL;
6783 		}
6784 
6785 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6786 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6787 			set_bit(WriteMostly, &rdev->flags);
6788 		else
6789 			clear_bit(WriteMostly, &rdev->flags);
6790 		if (info->state & (1<<MD_DISK_FAILFAST))
6791 			set_bit(FailFast, &rdev->flags);
6792 		else
6793 			clear_bit(FailFast, &rdev->flags);
6794 
6795 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6796 			struct md_rdev *rdev2;
6797 			bool has_journal = false;
6798 
6799 			/* make sure no existing journal disk */
6800 			rdev_for_each(rdev2, mddev) {
6801 				if (test_bit(Journal, &rdev2->flags)) {
6802 					has_journal = true;
6803 					break;
6804 				}
6805 			}
6806 			if (has_journal || mddev->bitmap) {
6807 				export_rdev(rdev);
6808 				return -EBUSY;
6809 			}
6810 			set_bit(Journal, &rdev->flags);
6811 		}
6812 		/*
6813 		 * check whether the device shows up in other nodes
6814 		 */
6815 		if (mddev_is_clustered(mddev)) {
6816 			if (info->state & (1 << MD_DISK_CANDIDATE))
6817 				set_bit(Candidate, &rdev->flags);
6818 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6819 				/* --add initiated by this node */
6820 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6821 				if (err) {
6822 					export_rdev(rdev);
6823 					return err;
6824 				}
6825 			}
6826 		}
6827 
6828 		rdev->raid_disk = -1;
6829 		err = bind_rdev_to_array(rdev, mddev);
6830 
6831 		if (err)
6832 			export_rdev(rdev);
6833 
6834 		if (mddev_is_clustered(mddev)) {
6835 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6836 				if (!err) {
6837 					err = md_cluster_ops->new_disk_ack(mddev,
6838 						err == 0);
6839 					if (err)
6840 						md_kick_rdev_from_array(rdev);
6841 				}
6842 			} else {
6843 				if (err)
6844 					md_cluster_ops->add_new_disk_cancel(mddev);
6845 				else
6846 					err = add_bound_rdev(rdev);
6847 			}
6848 
6849 		} else if (!err)
6850 			err = add_bound_rdev(rdev);
6851 
6852 		return err;
6853 	}
6854 
6855 	/* otherwise, md_add_new_disk is only allowed
6856 	 * for major_version==0 superblocks
6857 	 */
6858 	if (mddev->major_version != 0) {
6859 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6860 		return -EINVAL;
6861 	}
6862 
6863 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6864 		int err;
6865 		rdev = md_import_device(dev, -1, 0);
6866 		if (IS_ERR(rdev)) {
6867 			pr_warn("md: error, md_import_device() returned %ld\n",
6868 				PTR_ERR(rdev));
6869 			return PTR_ERR(rdev);
6870 		}
6871 		rdev->desc_nr = info->number;
6872 		if (info->raid_disk < mddev->raid_disks)
6873 			rdev->raid_disk = info->raid_disk;
6874 		else
6875 			rdev->raid_disk = -1;
6876 
6877 		if (rdev->raid_disk < mddev->raid_disks)
6878 			if (info->state & (1<<MD_DISK_SYNC))
6879 				set_bit(In_sync, &rdev->flags);
6880 
6881 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6882 			set_bit(WriteMostly, &rdev->flags);
6883 		if (info->state & (1<<MD_DISK_FAILFAST))
6884 			set_bit(FailFast, &rdev->flags);
6885 
6886 		if (!mddev->persistent) {
6887 			pr_debug("md: nonpersistent superblock ...\n");
6888 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6889 		} else
6890 			rdev->sb_start = calc_dev_sboffset(rdev);
6891 		rdev->sectors = rdev->sb_start;
6892 
6893 		err = bind_rdev_to_array(rdev, mddev);
6894 		if (err) {
6895 			export_rdev(rdev);
6896 			return err;
6897 		}
6898 	}
6899 
6900 	return 0;
6901 }
6902 
6903 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6904 {
6905 	char b[BDEVNAME_SIZE];
6906 	struct md_rdev *rdev;
6907 
6908 	if (!mddev->pers)
6909 		return -ENODEV;
6910 
6911 	rdev = find_rdev(mddev, dev);
6912 	if (!rdev)
6913 		return -ENXIO;
6914 
6915 	if (rdev->raid_disk < 0)
6916 		goto kick_rdev;
6917 
6918 	clear_bit(Blocked, &rdev->flags);
6919 	remove_and_add_spares(mddev, rdev);
6920 
6921 	if (rdev->raid_disk >= 0)
6922 		goto busy;
6923 
6924 kick_rdev:
6925 	if (mddev_is_clustered(mddev)) {
6926 		if (md_cluster_ops->remove_disk(mddev, rdev))
6927 			goto busy;
6928 	}
6929 
6930 	md_kick_rdev_from_array(rdev);
6931 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6932 	if (mddev->thread)
6933 		md_wakeup_thread(mddev->thread);
6934 	else
6935 		md_update_sb(mddev, 1);
6936 	md_new_event(mddev);
6937 
6938 	return 0;
6939 busy:
6940 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6941 		 bdevname(rdev->bdev,b), mdname(mddev));
6942 	return -EBUSY;
6943 }
6944 
6945 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6946 {
6947 	char b[BDEVNAME_SIZE];
6948 	int err;
6949 	struct md_rdev *rdev;
6950 
6951 	if (!mddev->pers)
6952 		return -ENODEV;
6953 
6954 	if (mddev->major_version != 0) {
6955 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6956 			mdname(mddev));
6957 		return -EINVAL;
6958 	}
6959 	if (!mddev->pers->hot_add_disk) {
6960 		pr_warn("%s: personality does not support diskops!\n",
6961 			mdname(mddev));
6962 		return -EINVAL;
6963 	}
6964 
6965 	rdev = md_import_device(dev, -1, 0);
6966 	if (IS_ERR(rdev)) {
6967 		pr_warn("md: error, md_import_device() returned %ld\n",
6968 			PTR_ERR(rdev));
6969 		return -EINVAL;
6970 	}
6971 
6972 	if (mddev->persistent)
6973 		rdev->sb_start = calc_dev_sboffset(rdev);
6974 	else
6975 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6976 
6977 	rdev->sectors = rdev->sb_start;
6978 
6979 	if (test_bit(Faulty, &rdev->flags)) {
6980 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6981 			bdevname(rdev->bdev,b), mdname(mddev));
6982 		err = -EINVAL;
6983 		goto abort_export;
6984 	}
6985 
6986 	clear_bit(In_sync, &rdev->flags);
6987 	rdev->desc_nr = -1;
6988 	rdev->saved_raid_disk = -1;
6989 	err = bind_rdev_to_array(rdev, mddev);
6990 	if (err)
6991 		goto abort_export;
6992 
6993 	/*
6994 	 * The rest should better be atomic, we can have disk failures
6995 	 * noticed in interrupt contexts ...
6996 	 */
6997 
6998 	rdev->raid_disk = -1;
6999 
7000 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7001 	if (!mddev->thread)
7002 		md_update_sb(mddev, 1);
7003 	/*
7004 	 * Kick recovery, maybe this spare has to be added to the
7005 	 * array immediately.
7006 	 */
7007 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7008 	md_wakeup_thread(mddev->thread);
7009 	md_new_event(mddev);
7010 	return 0;
7011 
7012 abort_export:
7013 	export_rdev(rdev);
7014 	return err;
7015 }
7016 
7017 static int set_bitmap_file(struct mddev *mddev, int fd)
7018 {
7019 	int err = 0;
7020 
7021 	if (mddev->pers) {
7022 		if (!mddev->pers->quiesce || !mddev->thread)
7023 			return -EBUSY;
7024 		if (mddev->recovery || mddev->sync_thread)
7025 			return -EBUSY;
7026 		/* we should be able to change the bitmap.. */
7027 	}
7028 
7029 	if (fd >= 0) {
7030 		struct inode *inode;
7031 		struct file *f;
7032 
7033 		if (mddev->bitmap || mddev->bitmap_info.file)
7034 			return -EEXIST; /* cannot add when bitmap is present */
7035 		f = fget(fd);
7036 
7037 		if (f == NULL) {
7038 			pr_warn("%s: error: failed to get bitmap file\n",
7039 				mdname(mddev));
7040 			return -EBADF;
7041 		}
7042 
7043 		inode = f->f_mapping->host;
7044 		if (!S_ISREG(inode->i_mode)) {
7045 			pr_warn("%s: error: bitmap file must be a regular file\n",
7046 				mdname(mddev));
7047 			err = -EBADF;
7048 		} else if (!(f->f_mode & FMODE_WRITE)) {
7049 			pr_warn("%s: error: bitmap file must open for write\n",
7050 				mdname(mddev));
7051 			err = -EBADF;
7052 		} else if (atomic_read(&inode->i_writecount) != 1) {
7053 			pr_warn("%s: error: bitmap file is already in use\n",
7054 				mdname(mddev));
7055 			err = -EBUSY;
7056 		}
7057 		if (err) {
7058 			fput(f);
7059 			return err;
7060 		}
7061 		mddev->bitmap_info.file = f;
7062 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7063 	} else if (mddev->bitmap == NULL)
7064 		return -ENOENT; /* cannot remove what isn't there */
7065 	err = 0;
7066 	if (mddev->pers) {
7067 		if (fd >= 0) {
7068 			struct bitmap *bitmap;
7069 
7070 			bitmap = md_bitmap_create(mddev, -1);
7071 			mddev_suspend(mddev);
7072 			if (!IS_ERR(bitmap)) {
7073 				mddev->bitmap = bitmap;
7074 				err = md_bitmap_load(mddev);
7075 			} else
7076 				err = PTR_ERR(bitmap);
7077 			if (err) {
7078 				md_bitmap_destroy(mddev);
7079 				fd = -1;
7080 			}
7081 			mddev_resume(mddev);
7082 		} else if (fd < 0) {
7083 			mddev_suspend(mddev);
7084 			md_bitmap_destroy(mddev);
7085 			mddev_resume(mddev);
7086 		}
7087 	}
7088 	if (fd < 0) {
7089 		struct file *f = mddev->bitmap_info.file;
7090 		if (f) {
7091 			spin_lock(&mddev->lock);
7092 			mddev->bitmap_info.file = NULL;
7093 			spin_unlock(&mddev->lock);
7094 			fput(f);
7095 		}
7096 	}
7097 
7098 	return err;
7099 }
7100 
7101 /*
7102  * md_set_array_info is used two different ways
7103  * The original usage is when creating a new array.
7104  * In this usage, raid_disks is > 0 and it together with
7105  *  level, size, not_persistent,layout,chunksize determine the
7106  *  shape of the array.
7107  *  This will always create an array with a type-0.90.0 superblock.
7108  * The newer usage is when assembling an array.
7109  *  In this case raid_disks will be 0, and the major_version field is
7110  *  use to determine which style super-blocks are to be found on the devices.
7111  *  The minor and patch _version numbers are also kept incase the
7112  *  super_block handler wishes to interpret them.
7113  */
7114 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7115 {
7116 	if (info->raid_disks == 0) {
7117 		/* just setting version number for superblock loading */
7118 		if (info->major_version < 0 ||
7119 		    info->major_version >= ARRAY_SIZE(super_types) ||
7120 		    super_types[info->major_version].name == NULL) {
7121 			/* maybe try to auto-load a module? */
7122 			pr_warn("md: superblock version %d not known\n",
7123 				info->major_version);
7124 			return -EINVAL;
7125 		}
7126 		mddev->major_version = info->major_version;
7127 		mddev->minor_version = info->minor_version;
7128 		mddev->patch_version = info->patch_version;
7129 		mddev->persistent = !info->not_persistent;
7130 		/* ensure mddev_put doesn't delete this now that there
7131 		 * is some minimal configuration.
7132 		 */
7133 		mddev->ctime         = ktime_get_real_seconds();
7134 		return 0;
7135 	}
7136 	mddev->major_version = MD_MAJOR_VERSION;
7137 	mddev->minor_version = MD_MINOR_VERSION;
7138 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7139 	mddev->ctime         = ktime_get_real_seconds();
7140 
7141 	mddev->level         = info->level;
7142 	mddev->clevel[0]     = 0;
7143 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7144 	mddev->raid_disks    = info->raid_disks;
7145 	/* don't set md_minor, it is determined by which /dev/md* was
7146 	 * openned
7147 	 */
7148 	if (info->state & (1<<MD_SB_CLEAN))
7149 		mddev->recovery_cp = MaxSector;
7150 	else
7151 		mddev->recovery_cp = 0;
7152 	mddev->persistent    = ! info->not_persistent;
7153 	mddev->external	     = 0;
7154 
7155 	mddev->layout        = info->layout;
7156 	if (mddev->level == 0)
7157 		/* Cannot trust RAID0 layout info here */
7158 		mddev->layout = -1;
7159 	mddev->chunk_sectors = info->chunk_size >> 9;
7160 
7161 	if (mddev->persistent) {
7162 		mddev->max_disks = MD_SB_DISKS;
7163 		mddev->flags = 0;
7164 		mddev->sb_flags = 0;
7165 	}
7166 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7167 
7168 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7169 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7170 	mddev->bitmap_info.offset = 0;
7171 
7172 	mddev->reshape_position = MaxSector;
7173 
7174 	/*
7175 	 * Generate a 128 bit UUID
7176 	 */
7177 	get_random_bytes(mddev->uuid, 16);
7178 
7179 	mddev->new_level = mddev->level;
7180 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7181 	mddev->new_layout = mddev->layout;
7182 	mddev->delta_disks = 0;
7183 	mddev->reshape_backwards = 0;
7184 
7185 	return 0;
7186 }
7187 
7188 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7189 {
7190 	lockdep_assert_held(&mddev->reconfig_mutex);
7191 
7192 	if (mddev->external_size)
7193 		return;
7194 
7195 	mddev->array_sectors = array_sectors;
7196 }
7197 EXPORT_SYMBOL(md_set_array_sectors);
7198 
7199 static int update_size(struct mddev *mddev, sector_t num_sectors)
7200 {
7201 	struct md_rdev *rdev;
7202 	int rv;
7203 	int fit = (num_sectors == 0);
7204 	sector_t old_dev_sectors = mddev->dev_sectors;
7205 
7206 	if (mddev->pers->resize == NULL)
7207 		return -EINVAL;
7208 	/* The "num_sectors" is the number of sectors of each device that
7209 	 * is used.  This can only make sense for arrays with redundancy.
7210 	 * linear and raid0 always use whatever space is available. We can only
7211 	 * consider changing this number if no resync or reconstruction is
7212 	 * happening, and if the new size is acceptable. It must fit before the
7213 	 * sb_start or, if that is <data_offset, it must fit before the size
7214 	 * of each device.  If num_sectors is zero, we find the largest size
7215 	 * that fits.
7216 	 */
7217 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7218 	    mddev->sync_thread)
7219 		return -EBUSY;
7220 	if (mddev->ro)
7221 		return -EROFS;
7222 
7223 	rdev_for_each(rdev, mddev) {
7224 		sector_t avail = rdev->sectors;
7225 
7226 		if (fit && (num_sectors == 0 || num_sectors > avail))
7227 			num_sectors = avail;
7228 		if (avail < num_sectors)
7229 			return -ENOSPC;
7230 	}
7231 	rv = mddev->pers->resize(mddev, num_sectors);
7232 	if (!rv) {
7233 		if (mddev_is_clustered(mddev))
7234 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7235 		else if (mddev->queue) {
7236 			set_capacity_and_notify(mddev->gendisk,
7237 						mddev->array_sectors);
7238 		}
7239 	}
7240 	return rv;
7241 }
7242 
7243 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7244 {
7245 	int rv;
7246 	struct md_rdev *rdev;
7247 	/* change the number of raid disks */
7248 	if (mddev->pers->check_reshape == NULL)
7249 		return -EINVAL;
7250 	if (mddev->ro)
7251 		return -EROFS;
7252 	if (raid_disks <= 0 ||
7253 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7254 		return -EINVAL;
7255 	if (mddev->sync_thread ||
7256 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7257 	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7258 	    mddev->reshape_position != MaxSector)
7259 		return -EBUSY;
7260 
7261 	rdev_for_each(rdev, mddev) {
7262 		if (mddev->raid_disks < raid_disks &&
7263 		    rdev->data_offset < rdev->new_data_offset)
7264 			return -EINVAL;
7265 		if (mddev->raid_disks > raid_disks &&
7266 		    rdev->data_offset > rdev->new_data_offset)
7267 			return -EINVAL;
7268 	}
7269 
7270 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7271 	if (mddev->delta_disks < 0)
7272 		mddev->reshape_backwards = 1;
7273 	else if (mddev->delta_disks > 0)
7274 		mddev->reshape_backwards = 0;
7275 
7276 	rv = mddev->pers->check_reshape(mddev);
7277 	if (rv < 0) {
7278 		mddev->delta_disks = 0;
7279 		mddev->reshape_backwards = 0;
7280 	}
7281 	return rv;
7282 }
7283 
7284 /*
7285  * update_array_info is used to change the configuration of an
7286  * on-line array.
7287  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7288  * fields in the info are checked against the array.
7289  * Any differences that cannot be handled will cause an error.
7290  * Normally, only one change can be managed at a time.
7291  */
7292 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7293 {
7294 	int rv = 0;
7295 	int cnt = 0;
7296 	int state = 0;
7297 
7298 	/* calculate expected state,ignoring low bits */
7299 	if (mddev->bitmap && mddev->bitmap_info.offset)
7300 		state |= (1 << MD_SB_BITMAP_PRESENT);
7301 
7302 	if (mddev->major_version != info->major_version ||
7303 	    mddev->minor_version != info->minor_version ||
7304 /*	    mddev->patch_version != info->patch_version || */
7305 	    mddev->ctime         != info->ctime         ||
7306 	    mddev->level         != info->level         ||
7307 /*	    mddev->layout        != info->layout        || */
7308 	    mddev->persistent	 != !info->not_persistent ||
7309 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7310 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7311 	    ((state^info->state) & 0xfffffe00)
7312 		)
7313 		return -EINVAL;
7314 	/* Check there is only one change */
7315 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7316 		cnt++;
7317 	if (mddev->raid_disks != info->raid_disks)
7318 		cnt++;
7319 	if (mddev->layout != info->layout)
7320 		cnt++;
7321 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7322 		cnt++;
7323 	if (cnt == 0)
7324 		return 0;
7325 	if (cnt > 1)
7326 		return -EINVAL;
7327 
7328 	if (mddev->layout != info->layout) {
7329 		/* Change layout
7330 		 * we don't need to do anything at the md level, the
7331 		 * personality will take care of it all.
7332 		 */
7333 		if (mddev->pers->check_reshape == NULL)
7334 			return -EINVAL;
7335 		else {
7336 			mddev->new_layout = info->layout;
7337 			rv = mddev->pers->check_reshape(mddev);
7338 			if (rv)
7339 				mddev->new_layout = mddev->layout;
7340 			return rv;
7341 		}
7342 	}
7343 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7344 		rv = update_size(mddev, (sector_t)info->size * 2);
7345 
7346 	if (mddev->raid_disks    != info->raid_disks)
7347 		rv = update_raid_disks(mddev, info->raid_disks);
7348 
7349 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7350 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7351 			rv = -EINVAL;
7352 			goto err;
7353 		}
7354 		if (mddev->recovery || mddev->sync_thread) {
7355 			rv = -EBUSY;
7356 			goto err;
7357 		}
7358 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7359 			struct bitmap *bitmap;
7360 			/* add the bitmap */
7361 			if (mddev->bitmap) {
7362 				rv = -EEXIST;
7363 				goto err;
7364 			}
7365 			if (mddev->bitmap_info.default_offset == 0) {
7366 				rv = -EINVAL;
7367 				goto err;
7368 			}
7369 			mddev->bitmap_info.offset =
7370 				mddev->bitmap_info.default_offset;
7371 			mddev->bitmap_info.space =
7372 				mddev->bitmap_info.default_space;
7373 			bitmap = md_bitmap_create(mddev, -1);
7374 			mddev_suspend(mddev);
7375 			if (!IS_ERR(bitmap)) {
7376 				mddev->bitmap = bitmap;
7377 				rv = md_bitmap_load(mddev);
7378 			} else
7379 				rv = PTR_ERR(bitmap);
7380 			if (rv)
7381 				md_bitmap_destroy(mddev);
7382 			mddev_resume(mddev);
7383 		} else {
7384 			/* remove the bitmap */
7385 			if (!mddev->bitmap) {
7386 				rv = -ENOENT;
7387 				goto err;
7388 			}
7389 			if (mddev->bitmap->storage.file) {
7390 				rv = -EINVAL;
7391 				goto err;
7392 			}
7393 			if (mddev->bitmap_info.nodes) {
7394 				/* hold PW on all the bitmap lock */
7395 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7396 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7397 					rv = -EPERM;
7398 					md_cluster_ops->unlock_all_bitmaps(mddev);
7399 					goto err;
7400 				}
7401 
7402 				mddev->bitmap_info.nodes = 0;
7403 				md_cluster_ops->leave(mddev);
7404 				module_put(md_cluster_mod);
7405 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7406 			}
7407 			mddev_suspend(mddev);
7408 			md_bitmap_destroy(mddev);
7409 			mddev_resume(mddev);
7410 			mddev->bitmap_info.offset = 0;
7411 		}
7412 	}
7413 	md_update_sb(mddev, 1);
7414 	return rv;
7415 err:
7416 	return rv;
7417 }
7418 
7419 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7420 {
7421 	struct md_rdev *rdev;
7422 	int err = 0;
7423 
7424 	if (mddev->pers == NULL)
7425 		return -ENODEV;
7426 
7427 	rcu_read_lock();
7428 	rdev = md_find_rdev_rcu(mddev, dev);
7429 	if (!rdev)
7430 		err =  -ENODEV;
7431 	else {
7432 		md_error(mddev, rdev);
7433 		if (!test_bit(Faulty, &rdev->flags))
7434 			err = -EBUSY;
7435 	}
7436 	rcu_read_unlock();
7437 	return err;
7438 }
7439 
7440 /*
7441  * We have a problem here : there is no easy way to give a CHS
7442  * virtual geometry. We currently pretend that we have a 2 heads
7443  * 4 sectors (with a BIG number of cylinders...). This drives
7444  * dosfs just mad... ;-)
7445  */
7446 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7447 {
7448 	struct mddev *mddev = bdev->bd_disk->private_data;
7449 
7450 	geo->heads = 2;
7451 	geo->sectors = 4;
7452 	geo->cylinders = mddev->array_sectors / 8;
7453 	return 0;
7454 }
7455 
7456 static inline bool md_ioctl_valid(unsigned int cmd)
7457 {
7458 	switch (cmd) {
7459 	case ADD_NEW_DISK:
7460 	case GET_ARRAY_INFO:
7461 	case GET_BITMAP_FILE:
7462 	case GET_DISK_INFO:
7463 	case HOT_ADD_DISK:
7464 	case HOT_REMOVE_DISK:
7465 	case RAID_VERSION:
7466 	case RESTART_ARRAY_RW:
7467 	case RUN_ARRAY:
7468 	case SET_ARRAY_INFO:
7469 	case SET_BITMAP_FILE:
7470 	case SET_DISK_FAULTY:
7471 	case STOP_ARRAY:
7472 	case STOP_ARRAY_RO:
7473 	case CLUSTERED_DISK_NACK:
7474 		return true;
7475 	default:
7476 		return false;
7477 	}
7478 }
7479 
7480 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7481 			unsigned int cmd, unsigned long arg)
7482 {
7483 	int err = 0;
7484 	void __user *argp = (void __user *)arg;
7485 	struct mddev *mddev = NULL;
7486 	bool did_set_md_closing = false;
7487 
7488 	if (!md_ioctl_valid(cmd))
7489 		return -ENOTTY;
7490 
7491 	switch (cmd) {
7492 	case RAID_VERSION:
7493 	case GET_ARRAY_INFO:
7494 	case GET_DISK_INFO:
7495 		break;
7496 	default:
7497 		if (!capable(CAP_SYS_ADMIN))
7498 			return -EACCES;
7499 	}
7500 
7501 	/*
7502 	 * Commands dealing with the RAID driver but not any
7503 	 * particular array:
7504 	 */
7505 	switch (cmd) {
7506 	case RAID_VERSION:
7507 		err = get_version(argp);
7508 		goto out;
7509 	default:;
7510 	}
7511 
7512 	/*
7513 	 * Commands creating/starting a new array:
7514 	 */
7515 
7516 	mddev = bdev->bd_disk->private_data;
7517 
7518 	if (!mddev) {
7519 		BUG();
7520 		goto out;
7521 	}
7522 
7523 	/* Some actions do not requires the mutex */
7524 	switch (cmd) {
7525 	case GET_ARRAY_INFO:
7526 		if (!mddev->raid_disks && !mddev->external)
7527 			err = -ENODEV;
7528 		else
7529 			err = get_array_info(mddev, argp);
7530 		goto out;
7531 
7532 	case GET_DISK_INFO:
7533 		if (!mddev->raid_disks && !mddev->external)
7534 			err = -ENODEV;
7535 		else
7536 			err = get_disk_info(mddev, argp);
7537 		goto out;
7538 
7539 	case SET_DISK_FAULTY:
7540 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7541 		goto out;
7542 
7543 	case GET_BITMAP_FILE:
7544 		err = get_bitmap_file(mddev, argp);
7545 		goto out;
7546 
7547 	}
7548 
7549 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7550 		flush_rdev_wq(mddev);
7551 
7552 	if (cmd == HOT_REMOVE_DISK)
7553 		/* need to ensure recovery thread has run */
7554 		wait_event_interruptible_timeout(mddev->sb_wait,
7555 						 !test_bit(MD_RECOVERY_NEEDED,
7556 							   &mddev->recovery),
7557 						 msecs_to_jiffies(5000));
7558 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7559 		/* Need to flush page cache, and ensure no-one else opens
7560 		 * and writes
7561 		 */
7562 		mutex_lock(&mddev->open_mutex);
7563 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7564 			mutex_unlock(&mddev->open_mutex);
7565 			err = -EBUSY;
7566 			goto out;
7567 		}
7568 		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7569 			mutex_unlock(&mddev->open_mutex);
7570 			err = -EBUSY;
7571 			goto out;
7572 		}
7573 		did_set_md_closing = true;
7574 		mutex_unlock(&mddev->open_mutex);
7575 		sync_blockdev(bdev);
7576 	}
7577 	err = mddev_lock(mddev);
7578 	if (err) {
7579 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7580 			 err, cmd);
7581 		goto out;
7582 	}
7583 
7584 	if (cmd == SET_ARRAY_INFO) {
7585 		mdu_array_info_t info;
7586 		if (!arg)
7587 			memset(&info, 0, sizeof(info));
7588 		else if (copy_from_user(&info, argp, sizeof(info))) {
7589 			err = -EFAULT;
7590 			goto unlock;
7591 		}
7592 		if (mddev->pers) {
7593 			err = update_array_info(mddev, &info);
7594 			if (err) {
7595 				pr_warn("md: couldn't update array info. %d\n", err);
7596 				goto unlock;
7597 			}
7598 			goto unlock;
7599 		}
7600 		if (!list_empty(&mddev->disks)) {
7601 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7602 			err = -EBUSY;
7603 			goto unlock;
7604 		}
7605 		if (mddev->raid_disks) {
7606 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7607 			err = -EBUSY;
7608 			goto unlock;
7609 		}
7610 		err = md_set_array_info(mddev, &info);
7611 		if (err) {
7612 			pr_warn("md: couldn't set array info. %d\n", err);
7613 			goto unlock;
7614 		}
7615 		goto unlock;
7616 	}
7617 
7618 	/*
7619 	 * Commands querying/configuring an existing array:
7620 	 */
7621 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7622 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7623 	if ((!mddev->raid_disks && !mddev->external)
7624 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7625 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7626 	    && cmd != GET_BITMAP_FILE) {
7627 		err = -ENODEV;
7628 		goto unlock;
7629 	}
7630 
7631 	/*
7632 	 * Commands even a read-only array can execute:
7633 	 */
7634 	switch (cmd) {
7635 	case RESTART_ARRAY_RW:
7636 		err = restart_array(mddev);
7637 		goto unlock;
7638 
7639 	case STOP_ARRAY:
7640 		err = do_md_stop(mddev, 0, bdev);
7641 		goto unlock;
7642 
7643 	case STOP_ARRAY_RO:
7644 		err = md_set_readonly(mddev, bdev);
7645 		goto unlock;
7646 
7647 	case HOT_REMOVE_DISK:
7648 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7649 		goto unlock;
7650 
7651 	case ADD_NEW_DISK:
7652 		/* We can support ADD_NEW_DISK on read-only arrays
7653 		 * only if we are re-adding a preexisting device.
7654 		 * So require mddev->pers and MD_DISK_SYNC.
7655 		 */
7656 		if (mddev->pers) {
7657 			mdu_disk_info_t info;
7658 			if (copy_from_user(&info, argp, sizeof(info)))
7659 				err = -EFAULT;
7660 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7661 				/* Need to clear read-only for this */
7662 				break;
7663 			else
7664 				err = md_add_new_disk(mddev, &info);
7665 			goto unlock;
7666 		}
7667 		break;
7668 	}
7669 
7670 	/*
7671 	 * The remaining ioctls are changing the state of the
7672 	 * superblock, so we do not allow them on read-only arrays.
7673 	 */
7674 	if (mddev->ro && mddev->pers) {
7675 		if (mddev->ro == 2) {
7676 			mddev->ro = 0;
7677 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7678 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7679 			/* mddev_unlock will wake thread */
7680 			/* If a device failed while we were read-only, we
7681 			 * need to make sure the metadata is updated now.
7682 			 */
7683 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7684 				mddev_unlock(mddev);
7685 				wait_event(mddev->sb_wait,
7686 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7687 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7688 				mddev_lock_nointr(mddev);
7689 			}
7690 		} else {
7691 			err = -EROFS;
7692 			goto unlock;
7693 		}
7694 	}
7695 
7696 	switch (cmd) {
7697 	case ADD_NEW_DISK:
7698 	{
7699 		mdu_disk_info_t info;
7700 		if (copy_from_user(&info, argp, sizeof(info)))
7701 			err = -EFAULT;
7702 		else
7703 			err = md_add_new_disk(mddev, &info);
7704 		goto unlock;
7705 	}
7706 
7707 	case CLUSTERED_DISK_NACK:
7708 		if (mddev_is_clustered(mddev))
7709 			md_cluster_ops->new_disk_ack(mddev, false);
7710 		else
7711 			err = -EINVAL;
7712 		goto unlock;
7713 
7714 	case HOT_ADD_DISK:
7715 		err = hot_add_disk(mddev, new_decode_dev(arg));
7716 		goto unlock;
7717 
7718 	case RUN_ARRAY:
7719 		err = do_md_run(mddev);
7720 		goto unlock;
7721 
7722 	case SET_BITMAP_FILE:
7723 		err = set_bitmap_file(mddev, (int)arg);
7724 		goto unlock;
7725 
7726 	default:
7727 		err = -EINVAL;
7728 		goto unlock;
7729 	}
7730 
7731 unlock:
7732 	if (mddev->hold_active == UNTIL_IOCTL &&
7733 	    err != -EINVAL)
7734 		mddev->hold_active = 0;
7735 	mddev_unlock(mddev);
7736 out:
7737 	if(did_set_md_closing)
7738 		clear_bit(MD_CLOSING, &mddev->flags);
7739 	return err;
7740 }
7741 #ifdef CONFIG_COMPAT
7742 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7743 		    unsigned int cmd, unsigned long arg)
7744 {
7745 	switch (cmd) {
7746 	case HOT_REMOVE_DISK:
7747 	case HOT_ADD_DISK:
7748 	case SET_DISK_FAULTY:
7749 	case SET_BITMAP_FILE:
7750 		/* These take in integer arg, do not convert */
7751 		break;
7752 	default:
7753 		arg = (unsigned long)compat_ptr(arg);
7754 		break;
7755 	}
7756 
7757 	return md_ioctl(bdev, mode, cmd, arg);
7758 }
7759 #endif /* CONFIG_COMPAT */
7760 
7761 static int md_set_read_only(struct block_device *bdev, bool ro)
7762 {
7763 	struct mddev *mddev = bdev->bd_disk->private_data;
7764 	int err;
7765 
7766 	err = mddev_lock(mddev);
7767 	if (err)
7768 		return err;
7769 
7770 	if (!mddev->raid_disks && !mddev->external) {
7771 		err = -ENODEV;
7772 		goto out_unlock;
7773 	}
7774 
7775 	/*
7776 	 * Transitioning to read-auto need only happen for arrays that call
7777 	 * md_write_start and which are not ready for writes yet.
7778 	 */
7779 	if (!ro && mddev->ro == 1 && mddev->pers) {
7780 		err = restart_array(mddev);
7781 		if (err)
7782 			goto out_unlock;
7783 		mddev->ro = 2;
7784 	}
7785 
7786 out_unlock:
7787 	mddev_unlock(mddev);
7788 	return err;
7789 }
7790 
7791 static int md_open(struct block_device *bdev, fmode_t mode)
7792 {
7793 	/*
7794 	 * Succeed if we can lock the mddev, which confirms that
7795 	 * it isn't being stopped right now.
7796 	 */
7797 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7798 	int err;
7799 
7800 	if (!mddev)
7801 		return -ENODEV;
7802 
7803 	if (mddev->gendisk != bdev->bd_disk) {
7804 		/* we are racing with mddev_put which is discarding this
7805 		 * bd_disk.
7806 		 */
7807 		mddev_put(mddev);
7808 		/* Wait until bdev->bd_disk is definitely gone */
7809 		if (work_pending(&mddev->del_work))
7810 			flush_workqueue(md_misc_wq);
7811 		return -EBUSY;
7812 	}
7813 	BUG_ON(mddev != bdev->bd_disk->private_data);
7814 
7815 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7816 		goto out;
7817 
7818 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7819 		mutex_unlock(&mddev->open_mutex);
7820 		err = -ENODEV;
7821 		goto out;
7822 	}
7823 
7824 	err = 0;
7825 	atomic_inc(&mddev->openers);
7826 	mutex_unlock(&mddev->open_mutex);
7827 
7828 	bdev_check_media_change(bdev);
7829  out:
7830 	if (err)
7831 		mddev_put(mddev);
7832 	return err;
7833 }
7834 
7835 static void md_release(struct gendisk *disk, fmode_t mode)
7836 {
7837 	struct mddev *mddev = disk->private_data;
7838 
7839 	BUG_ON(!mddev);
7840 	atomic_dec(&mddev->openers);
7841 	mddev_put(mddev);
7842 }
7843 
7844 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7845 {
7846 	struct mddev *mddev = disk->private_data;
7847 	unsigned int ret = 0;
7848 
7849 	if (mddev->changed)
7850 		ret = DISK_EVENT_MEDIA_CHANGE;
7851 	mddev->changed = 0;
7852 	return ret;
7853 }
7854 
7855 const struct block_device_operations md_fops =
7856 {
7857 	.owner		= THIS_MODULE,
7858 	.submit_bio	= md_submit_bio,
7859 	.open		= md_open,
7860 	.release	= md_release,
7861 	.ioctl		= md_ioctl,
7862 #ifdef CONFIG_COMPAT
7863 	.compat_ioctl	= md_compat_ioctl,
7864 #endif
7865 	.getgeo		= md_getgeo,
7866 	.check_events	= md_check_events,
7867 	.set_read_only	= md_set_read_only,
7868 };
7869 
7870 static int md_thread(void *arg)
7871 {
7872 	struct md_thread *thread = arg;
7873 
7874 	/*
7875 	 * md_thread is a 'system-thread', it's priority should be very
7876 	 * high. We avoid resource deadlocks individually in each
7877 	 * raid personality. (RAID5 does preallocation) We also use RR and
7878 	 * the very same RT priority as kswapd, thus we will never get
7879 	 * into a priority inversion deadlock.
7880 	 *
7881 	 * we definitely have to have equal or higher priority than
7882 	 * bdflush, otherwise bdflush will deadlock if there are too
7883 	 * many dirty RAID5 blocks.
7884 	 */
7885 
7886 	allow_signal(SIGKILL);
7887 	while (!kthread_should_stop()) {
7888 
7889 		/* We need to wait INTERRUPTIBLE so that
7890 		 * we don't add to the load-average.
7891 		 * That means we need to be sure no signals are
7892 		 * pending
7893 		 */
7894 		if (signal_pending(current))
7895 			flush_signals(current);
7896 
7897 		wait_event_interruptible_timeout
7898 			(thread->wqueue,
7899 			 test_bit(THREAD_WAKEUP, &thread->flags)
7900 			 || kthread_should_stop() || kthread_should_park(),
7901 			 thread->timeout);
7902 
7903 		clear_bit(THREAD_WAKEUP, &thread->flags);
7904 		if (kthread_should_park())
7905 			kthread_parkme();
7906 		if (!kthread_should_stop())
7907 			thread->run(thread);
7908 	}
7909 
7910 	return 0;
7911 }
7912 
7913 void md_wakeup_thread(struct md_thread *thread)
7914 {
7915 	if (thread) {
7916 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7917 		set_bit(THREAD_WAKEUP, &thread->flags);
7918 		wake_up(&thread->wqueue);
7919 	}
7920 }
7921 EXPORT_SYMBOL(md_wakeup_thread);
7922 
7923 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7924 		struct mddev *mddev, const char *name)
7925 {
7926 	struct md_thread *thread;
7927 
7928 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7929 	if (!thread)
7930 		return NULL;
7931 
7932 	init_waitqueue_head(&thread->wqueue);
7933 
7934 	thread->run = run;
7935 	thread->mddev = mddev;
7936 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7937 	thread->tsk = kthread_run(md_thread, thread,
7938 				  "%s_%s",
7939 				  mdname(thread->mddev),
7940 				  name);
7941 	if (IS_ERR(thread->tsk)) {
7942 		kfree(thread);
7943 		return NULL;
7944 	}
7945 	return thread;
7946 }
7947 EXPORT_SYMBOL(md_register_thread);
7948 
7949 void md_unregister_thread(struct md_thread **threadp)
7950 {
7951 	struct md_thread *thread = *threadp;
7952 	if (!thread)
7953 		return;
7954 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7955 	/* Locking ensures that mddev_unlock does not wake_up a
7956 	 * non-existent thread
7957 	 */
7958 	spin_lock(&pers_lock);
7959 	*threadp = NULL;
7960 	spin_unlock(&pers_lock);
7961 
7962 	kthread_stop(thread->tsk);
7963 	kfree(thread);
7964 }
7965 EXPORT_SYMBOL(md_unregister_thread);
7966 
7967 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7968 {
7969 	if (!rdev || test_bit(Faulty, &rdev->flags))
7970 		return;
7971 
7972 	if (!mddev->pers || !mddev->pers->error_handler)
7973 		return;
7974 	mddev->pers->error_handler(mddev,rdev);
7975 	if (mddev->degraded)
7976 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7977 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7978 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7979 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7980 	md_wakeup_thread(mddev->thread);
7981 	if (mddev->event_work.func)
7982 		queue_work(md_misc_wq, &mddev->event_work);
7983 	md_new_event(mddev);
7984 }
7985 EXPORT_SYMBOL(md_error);
7986 
7987 /* seq_file implementation /proc/mdstat */
7988 
7989 static void status_unused(struct seq_file *seq)
7990 {
7991 	int i = 0;
7992 	struct md_rdev *rdev;
7993 
7994 	seq_printf(seq, "unused devices: ");
7995 
7996 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7997 		char b[BDEVNAME_SIZE];
7998 		i++;
7999 		seq_printf(seq, "%s ",
8000 			      bdevname(rdev->bdev,b));
8001 	}
8002 	if (!i)
8003 		seq_printf(seq, "<none>");
8004 
8005 	seq_printf(seq, "\n");
8006 }
8007 
8008 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8009 {
8010 	sector_t max_sectors, resync, res;
8011 	unsigned long dt, db = 0;
8012 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8013 	int scale, recovery_active;
8014 	unsigned int per_milli;
8015 
8016 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8017 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8018 		max_sectors = mddev->resync_max_sectors;
8019 	else
8020 		max_sectors = mddev->dev_sectors;
8021 
8022 	resync = mddev->curr_resync;
8023 	if (resync <= 3) {
8024 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8025 			/* Still cleaning up */
8026 			resync = max_sectors;
8027 	} else if (resync > max_sectors)
8028 		resync = max_sectors;
8029 	else
8030 		resync -= atomic_read(&mddev->recovery_active);
8031 
8032 	if (resync == 0) {
8033 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8034 			struct md_rdev *rdev;
8035 
8036 			rdev_for_each(rdev, mddev)
8037 				if (rdev->raid_disk >= 0 &&
8038 				    !test_bit(Faulty, &rdev->flags) &&
8039 				    rdev->recovery_offset != MaxSector &&
8040 				    rdev->recovery_offset) {
8041 					seq_printf(seq, "\trecover=REMOTE");
8042 					return 1;
8043 				}
8044 			if (mddev->reshape_position != MaxSector)
8045 				seq_printf(seq, "\treshape=REMOTE");
8046 			else
8047 				seq_printf(seq, "\tresync=REMOTE");
8048 			return 1;
8049 		}
8050 		if (mddev->recovery_cp < MaxSector) {
8051 			seq_printf(seq, "\tresync=PENDING");
8052 			return 1;
8053 		}
8054 		return 0;
8055 	}
8056 	if (resync < 3) {
8057 		seq_printf(seq, "\tresync=DELAYED");
8058 		return 1;
8059 	}
8060 
8061 	WARN_ON(max_sectors == 0);
8062 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8063 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8064 	 * u32, as those are the requirements for sector_div.
8065 	 * Thus 'scale' must be at least 10
8066 	 */
8067 	scale = 10;
8068 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8069 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8070 			scale++;
8071 	}
8072 	res = (resync>>scale)*1000;
8073 	sector_div(res, (u32)((max_sectors>>scale)+1));
8074 
8075 	per_milli = res;
8076 	{
8077 		int i, x = per_milli/50, y = 20-x;
8078 		seq_printf(seq, "[");
8079 		for (i = 0; i < x; i++)
8080 			seq_printf(seq, "=");
8081 		seq_printf(seq, ">");
8082 		for (i = 0; i < y; i++)
8083 			seq_printf(seq, ".");
8084 		seq_printf(seq, "] ");
8085 	}
8086 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8087 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8088 		    "reshape" :
8089 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8090 		     "check" :
8091 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8092 		      "resync" : "recovery"))),
8093 		   per_milli/10, per_milli % 10,
8094 		   (unsigned long long) resync/2,
8095 		   (unsigned long long) max_sectors/2);
8096 
8097 	/*
8098 	 * dt: time from mark until now
8099 	 * db: blocks written from mark until now
8100 	 * rt: remaining time
8101 	 *
8102 	 * rt is a sector_t, which is always 64bit now. We are keeping
8103 	 * the original algorithm, but it is not really necessary.
8104 	 *
8105 	 * Original algorithm:
8106 	 *   So we divide before multiply in case it is 32bit and close
8107 	 *   to the limit.
8108 	 *   We scale the divisor (db) by 32 to avoid losing precision
8109 	 *   near the end of resync when the number of remaining sectors
8110 	 *   is close to 'db'.
8111 	 *   We then divide rt by 32 after multiplying by db to compensate.
8112 	 *   The '+1' avoids division by zero if db is very small.
8113 	 */
8114 	dt = ((jiffies - mddev->resync_mark) / HZ);
8115 	if (!dt) dt++;
8116 
8117 	curr_mark_cnt = mddev->curr_mark_cnt;
8118 	recovery_active = atomic_read(&mddev->recovery_active);
8119 	resync_mark_cnt = mddev->resync_mark_cnt;
8120 
8121 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8122 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8123 
8124 	rt = max_sectors - resync;    /* number of remaining sectors */
8125 	rt = div64_u64(rt, db/32+1);
8126 	rt *= dt;
8127 	rt >>= 5;
8128 
8129 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8130 		   ((unsigned long)rt % 60)/6);
8131 
8132 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8133 	return 1;
8134 }
8135 
8136 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8137 {
8138 	struct list_head *tmp;
8139 	loff_t l = *pos;
8140 	struct mddev *mddev;
8141 
8142 	if (l == 0x10000) {
8143 		++*pos;
8144 		return (void *)2;
8145 	}
8146 	if (l > 0x10000)
8147 		return NULL;
8148 	if (!l--)
8149 		/* header */
8150 		return (void*)1;
8151 
8152 	spin_lock(&all_mddevs_lock);
8153 	list_for_each(tmp,&all_mddevs)
8154 		if (!l--) {
8155 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8156 			mddev_get(mddev);
8157 			spin_unlock(&all_mddevs_lock);
8158 			return mddev;
8159 		}
8160 	spin_unlock(&all_mddevs_lock);
8161 	if (!l--)
8162 		return (void*)2;/* tail */
8163 	return NULL;
8164 }
8165 
8166 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8167 {
8168 	struct list_head *tmp;
8169 	struct mddev *next_mddev, *mddev = v;
8170 
8171 	++*pos;
8172 	if (v == (void*)2)
8173 		return NULL;
8174 
8175 	spin_lock(&all_mddevs_lock);
8176 	if (v == (void*)1)
8177 		tmp = all_mddevs.next;
8178 	else
8179 		tmp = mddev->all_mddevs.next;
8180 	if (tmp != &all_mddevs)
8181 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8182 	else {
8183 		next_mddev = (void*)2;
8184 		*pos = 0x10000;
8185 	}
8186 	spin_unlock(&all_mddevs_lock);
8187 
8188 	if (v != (void*)1)
8189 		mddev_put(mddev);
8190 	return next_mddev;
8191 
8192 }
8193 
8194 static void md_seq_stop(struct seq_file *seq, void *v)
8195 {
8196 	struct mddev *mddev = v;
8197 
8198 	if (mddev && v != (void*)1 && v != (void*)2)
8199 		mddev_put(mddev);
8200 }
8201 
8202 static int md_seq_show(struct seq_file *seq, void *v)
8203 {
8204 	struct mddev *mddev = v;
8205 	sector_t sectors;
8206 	struct md_rdev *rdev;
8207 
8208 	if (v == (void*)1) {
8209 		struct md_personality *pers;
8210 		seq_printf(seq, "Personalities : ");
8211 		spin_lock(&pers_lock);
8212 		list_for_each_entry(pers, &pers_list, list)
8213 			seq_printf(seq, "[%s] ", pers->name);
8214 
8215 		spin_unlock(&pers_lock);
8216 		seq_printf(seq, "\n");
8217 		seq->poll_event = atomic_read(&md_event_count);
8218 		return 0;
8219 	}
8220 	if (v == (void*)2) {
8221 		status_unused(seq);
8222 		return 0;
8223 	}
8224 
8225 	spin_lock(&mddev->lock);
8226 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8227 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8228 						mddev->pers ? "" : "in");
8229 		if (mddev->pers) {
8230 			if (mddev->ro==1)
8231 				seq_printf(seq, " (read-only)");
8232 			if (mddev->ro==2)
8233 				seq_printf(seq, " (auto-read-only)");
8234 			seq_printf(seq, " %s", mddev->pers->name);
8235 		}
8236 
8237 		sectors = 0;
8238 		rcu_read_lock();
8239 		rdev_for_each_rcu(rdev, mddev) {
8240 			char b[BDEVNAME_SIZE];
8241 			seq_printf(seq, " %s[%d]",
8242 				bdevname(rdev->bdev,b), rdev->desc_nr);
8243 			if (test_bit(WriteMostly, &rdev->flags))
8244 				seq_printf(seq, "(W)");
8245 			if (test_bit(Journal, &rdev->flags))
8246 				seq_printf(seq, "(J)");
8247 			if (test_bit(Faulty, &rdev->flags)) {
8248 				seq_printf(seq, "(F)");
8249 				continue;
8250 			}
8251 			if (rdev->raid_disk < 0)
8252 				seq_printf(seq, "(S)"); /* spare */
8253 			if (test_bit(Replacement, &rdev->flags))
8254 				seq_printf(seq, "(R)");
8255 			sectors += rdev->sectors;
8256 		}
8257 		rcu_read_unlock();
8258 
8259 		if (!list_empty(&mddev->disks)) {
8260 			if (mddev->pers)
8261 				seq_printf(seq, "\n      %llu blocks",
8262 					   (unsigned long long)
8263 					   mddev->array_sectors / 2);
8264 			else
8265 				seq_printf(seq, "\n      %llu blocks",
8266 					   (unsigned long long)sectors / 2);
8267 		}
8268 		if (mddev->persistent) {
8269 			if (mddev->major_version != 0 ||
8270 			    mddev->minor_version != 90) {
8271 				seq_printf(seq," super %d.%d",
8272 					   mddev->major_version,
8273 					   mddev->minor_version);
8274 			}
8275 		} else if (mddev->external)
8276 			seq_printf(seq, " super external:%s",
8277 				   mddev->metadata_type);
8278 		else
8279 			seq_printf(seq, " super non-persistent");
8280 
8281 		if (mddev->pers) {
8282 			mddev->pers->status(seq, mddev);
8283 			seq_printf(seq, "\n      ");
8284 			if (mddev->pers->sync_request) {
8285 				if (status_resync(seq, mddev))
8286 					seq_printf(seq, "\n      ");
8287 			}
8288 		} else
8289 			seq_printf(seq, "\n       ");
8290 
8291 		md_bitmap_status(seq, mddev->bitmap);
8292 
8293 		seq_printf(seq, "\n");
8294 	}
8295 	spin_unlock(&mddev->lock);
8296 
8297 	return 0;
8298 }
8299 
8300 static const struct seq_operations md_seq_ops = {
8301 	.start  = md_seq_start,
8302 	.next   = md_seq_next,
8303 	.stop   = md_seq_stop,
8304 	.show   = md_seq_show,
8305 };
8306 
8307 static int md_seq_open(struct inode *inode, struct file *file)
8308 {
8309 	struct seq_file *seq;
8310 	int error;
8311 
8312 	error = seq_open(file, &md_seq_ops);
8313 	if (error)
8314 		return error;
8315 
8316 	seq = file->private_data;
8317 	seq->poll_event = atomic_read(&md_event_count);
8318 	return error;
8319 }
8320 
8321 static int md_unloading;
8322 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8323 {
8324 	struct seq_file *seq = filp->private_data;
8325 	__poll_t mask;
8326 
8327 	if (md_unloading)
8328 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8329 	poll_wait(filp, &md_event_waiters, wait);
8330 
8331 	/* always allow read */
8332 	mask = EPOLLIN | EPOLLRDNORM;
8333 
8334 	if (seq->poll_event != atomic_read(&md_event_count))
8335 		mask |= EPOLLERR | EPOLLPRI;
8336 	return mask;
8337 }
8338 
8339 static const struct proc_ops mdstat_proc_ops = {
8340 	.proc_open	= md_seq_open,
8341 	.proc_read	= seq_read,
8342 	.proc_lseek	= seq_lseek,
8343 	.proc_release	= seq_release,
8344 	.proc_poll	= mdstat_poll,
8345 };
8346 
8347 int register_md_personality(struct md_personality *p)
8348 {
8349 	pr_debug("md: %s personality registered for level %d\n",
8350 		 p->name, p->level);
8351 	spin_lock(&pers_lock);
8352 	list_add_tail(&p->list, &pers_list);
8353 	spin_unlock(&pers_lock);
8354 	return 0;
8355 }
8356 EXPORT_SYMBOL(register_md_personality);
8357 
8358 int unregister_md_personality(struct md_personality *p)
8359 {
8360 	pr_debug("md: %s personality unregistered\n", p->name);
8361 	spin_lock(&pers_lock);
8362 	list_del_init(&p->list);
8363 	spin_unlock(&pers_lock);
8364 	return 0;
8365 }
8366 EXPORT_SYMBOL(unregister_md_personality);
8367 
8368 int register_md_cluster_operations(struct md_cluster_operations *ops,
8369 				   struct module *module)
8370 {
8371 	int ret = 0;
8372 	spin_lock(&pers_lock);
8373 	if (md_cluster_ops != NULL)
8374 		ret = -EALREADY;
8375 	else {
8376 		md_cluster_ops = ops;
8377 		md_cluster_mod = module;
8378 	}
8379 	spin_unlock(&pers_lock);
8380 	return ret;
8381 }
8382 EXPORT_SYMBOL(register_md_cluster_operations);
8383 
8384 int unregister_md_cluster_operations(void)
8385 {
8386 	spin_lock(&pers_lock);
8387 	md_cluster_ops = NULL;
8388 	spin_unlock(&pers_lock);
8389 	return 0;
8390 }
8391 EXPORT_SYMBOL(unregister_md_cluster_operations);
8392 
8393 int md_setup_cluster(struct mddev *mddev, int nodes)
8394 {
8395 	int ret;
8396 	if (!md_cluster_ops)
8397 		request_module("md-cluster");
8398 	spin_lock(&pers_lock);
8399 	/* ensure module won't be unloaded */
8400 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8401 		pr_warn("can't find md-cluster module or get it's reference.\n");
8402 		spin_unlock(&pers_lock);
8403 		return -ENOENT;
8404 	}
8405 	spin_unlock(&pers_lock);
8406 
8407 	ret = md_cluster_ops->join(mddev, nodes);
8408 	if (!ret)
8409 		mddev->safemode_delay = 0;
8410 	return ret;
8411 }
8412 
8413 void md_cluster_stop(struct mddev *mddev)
8414 {
8415 	if (!md_cluster_ops)
8416 		return;
8417 	md_cluster_ops->leave(mddev);
8418 	module_put(md_cluster_mod);
8419 }
8420 
8421 static int is_mddev_idle(struct mddev *mddev, int init)
8422 {
8423 	struct md_rdev *rdev;
8424 	int idle;
8425 	int curr_events;
8426 
8427 	idle = 1;
8428 	rcu_read_lock();
8429 	rdev_for_each_rcu(rdev, mddev) {
8430 		struct gendisk *disk = rdev->bdev->bd_disk;
8431 		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8432 			      atomic_read(&disk->sync_io);
8433 		/* sync IO will cause sync_io to increase before the disk_stats
8434 		 * as sync_io is counted when a request starts, and
8435 		 * disk_stats is counted when it completes.
8436 		 * So resync activity will cause curr_events to be smaller than
8437 		 * when there was no such activity.
8438 		 * non-sync IO will cause disk_stat to increase without
8439 		 * increasing sync_io so curr_events will (eventually)
8440 		 * be larger than it was before.  Once it becomes
8441 		 * substantially larger, the test below will cause
8442 		 * the array to appear non-idle, and resync will slow
8443 		 * down.
8444 		 * If there is a lot of outstanding resync activity when
8445 		 * we set last_event to curr_events, then all that activity
8446 		 * completing might cause the array to appear non-idle
8447 		 * and resync will be slowed down even though there might
8448 		 * not have been non-resync activity.  This will only
8449 		 * happen once though.  'last_events' will soon reflect
8450 		 * the state where there is little or no outstanding
8451 		 * resync requests, and further resync activity will
8452 		 * always make curr_events less than last_events.
8453 		 *
8454 		 */
8455 		if (init || curr_events - rdev->last_events > 64) {
8456 			rdev->last_events = curr_events;
8457 			idle = 0;
8458 		}
8459 	}
8460 	rcu_read_unlock();
8461 	return idle;
8462 }
8463 
8464 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8465 {
8466 	/* another "blocks" (512byte) blocks have been synced */
8467 	atomic_sub(blocks, &mddev->recovery_active);
8468 	wake_up(&mddev->recovery_wait);
8469 	if (!ok) {
8470 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8471 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8472 		md_wakeup_thread(mddev->thread);
8473 		// stop recovery, signal do_sync ....
8474 	}
8475 }
8476 EXPORT_SYMBOL(md_done_sync);
8477 
8478 /* md_write_start(mddev, bi)
8479  * If we need to update some array metadata (e.g. 'active' flag
8480  * in superblock) before writing, schedule a superblock update
8481  * and wait for it to complete.
8482  * A return value of 'false' means that the write wasn't recorded
8483  * and cannot proceed as the array is being suspend.
8484  */
8485 bool md_write_start(struct mddev *mddev, struct bio *bi)
8486 {
8487 	int did_change = 0;
8488 
8489 	if (bio_data_dir(bi) != WRITE)
8490 		return true;
8491 
8492 	BUG_ON(mddev->ro == 1);
8493 	if (mddev->ro == 2) {
8494 		/* need to switch to read/write */
8495 		mddev->ro = 0;
8496 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8497 		md_wakeup_thread(mddev->thread);
8498 		md_wakeup_thread(mddev->sync_thread);
8499 		did_change = 1;
8500 	}
8501 	rcu_read_lock();
8502 	percpu_ref_get(&mddev->writes_pending);
8503 	smp_mb(); /* Match smp_mb in set_in_sync() */
8504 	if (mddev->safemode == 1)
8505 		mddev->safemode = 0;
8506 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8507 	if (mddev->in_sync || mddev->sync_checkers) {
8508 		spin_lock(&mddev->lock);
8509 		if (mddev->in_sync) {
8510 			mddev->in_sync = 0;
8511 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8512 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8513 			md_wakeup_thread(mddev->thread);
8514 			did_change = 1;
8515 		}
8516 		spin_unlock(&mddev->lock);
8517 	}
8518 	rcu_read_unlock();
8519 	if (did_change)
8520 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8521 	if (!mddev->has_superblocks)
8522 		return true;
8523 	wait_event(mddev->sb_wait,
8524 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8525 		   mddev->suspended);
8526 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8527 		percpu_ref_put(&mddev->writes_pending);
8528 		return false;
8529 	}
8530 	return true;
8531 }
8532 EXPORT_SYMBOL(md_write_start);
8533 
8534 /* md_write_inc can only be called when md_write_start() has
8535  * already been called at least once of the current request.
8536  * It increments the counter and is useful when a single request
8537  * is split into several parts.  Each part causes an increment and
8538  * so needs a matching md_write_end().
8539  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8540  * a spinlocked region.
8541  */
8542 void md_write_inc(struct mddev *mddev, struct bio *bi)
8543 {
8544 	if (bio_data_dir(bi) != WRITE)
8545 		return;
8546 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8547 	percpu_ref_get(&mddev->writes_pending);
8548 }
8549 EXPORT_SYMBOL(md_write_inc);
8550 
8551 void md_write_end(struct mddev *mddev)
8552 {
8553 	percpu_ref_put(&mddev->writes_pending);
8554 
8555 	if (mddev->safemode == 2)
8556 		md_wakeup_thread(mddev->thread);
8557 	else if (mddev->safemode_delay)
8558 		/* The roundup() ensures this only performs locking once
8559 		 * every ->safemode_delay jiffies
8560 		 */
8561 		mod_timer(&mddev->safemode_timer,
8562 			  roundup(jiffies, mddev->safemode_delay) +
8563 			  mddev->safemode_delay);
8564 }
8565 
8566 EXPORT_SYMBOL(md_write_end);
8567 
8568 /* This is used by raid0 and raid10 */
8569 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8570 			struct bio *bio, sector_t start, sector_t size)
8571 {
8572 	struct bio *discard_bio = NULL;
8573 
8574 	if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8575 			&discard_bio) || !discard_bio)
8576 		return;
8577 
8578 	bio_chain(discard_bio, bio);
8579 	bio_clone_blkg_association(discard_bio, bio);
8580 	if (mddev->gendisk)
8581 		trace_block_bio_remap(discard_bio,
8582 				disk_devt(mddev->gendisk),
8583 				bio->bi_iter.bi_sector);
8584 	submit_bio_noacct(discard_bio);
8585 }
8586 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8587 
8588 static void md_end_io_acct(struct bio *bio)
8589 {
8590 	struct md_io_acct *md_io_acct = bio->bi_private;
8591 	struct bio *orig_bio = md_io_acct->orig_bio;
8592 
8593 	orig_bio->bi_status = bio->bi_status;
8594 
8595 	bio_end_io_acct(orig_bio, md_io_acct->start_time);
8596 	bio_put(bio);
8597 	bio_endio(orig_bio);
8598 }
8599 
8600 /*
8601  * Used by personalities that don't already clone the bio and thus can't
8602  * easily add the timestamp to their extended bio structure.
8603  */
8604 void md_account_bio(struct mddev *mddev, struct bio **bio)
8605 {
8606 	struct md_io_acct *md_io_acct;
8607 	struct bio *clone;
8608 
8609 	if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8610 		return;
8611 
8612 	clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8613 	md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8614 	md_io_acct->orig_bio = *bio;
8615 	md_io_acct->start_time = bio_start_io_acct(*bio);
8616 
8617 	clone->bi_end_io = md_end_io_acct;
8618 	clone->bi_private = md_io_acct;
8619 	*bio = clone;
8620 }
8621 EXPORT_SYMBOL_GPL(md_account_bio);
8622 
8623 /* md_allow_write(mddev)
8624  * Calling this ensures that the array is marked 'active' so that writes
8625  * may proceed without blocking.  It is important to call this before
8626  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8627  * Must be called with mddev_lock held.
8628  */
8629 void md_allow_write(struct mddev *mddev)
8630 {
8631 	if (!mddev->pers)
8632 		return;
8633 	if (mddev->ro)
8634 		return;
8635 	if (!mddev->pers->sync_request)
8636 		return;
8637 
8638 	spin_lock(&mddev->lock);
8639 	if (mddev->in_sync) {
8640 		mddev->in_sync = 0;
8641 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8642 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8643 		if (mddev->safemode_delay &&
8644 		    mddev->safemode == 0)
8645 			mddev->safemode = 1;
8646 		spin_unlock(&mddev->lock);
8647 		md_update_sb(mddev, 0);
8648 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8649 		/* wait for the dirty state to be recorded in the metadata */
8650 		wait_event(mddev->sb_wait,
8651 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8652 	} else
8653 		spin_unlock(&mddev->lock);
8654 }
8655 EXPORT_SYMBOL_GPL(md_allow_write);
8656 
8657 #define SYNC_MARKS	10
8658 #define	SYNC_MARK_STEP	(3*HZ)
8659 #define UPDATE_FREQUENCY (5*60*HZ)
8660 void md_do_sync(struct md_thread *thread)
8661 {
8662 	struct mddev *mddev = thread->mddev;
8663 	struct mddev *mddev2;
8664 	unsigned int currspeed = 0, window;
8665 	sector_t max_sectors,j, io_sectors, recovery_done;
8666 	unsigned long mark[SYNC_MARKS];
8667 	unsigned long update_time;
8668 	sector_t mark_cnt[SYNC_MARKS];
8669 	int last_mark,m;
8670 	struct list_head *tmp;
8671 	sector_t last_check;
8672 	int skipped = 0;
8673 	struct md_rdev *rdev;
8674 	char *desc, *action = NULL;
8675 	struct blk_plug plug;
8676 	int ret;
8677 
8678 	/* just incase thread restarts... */
8679 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8680 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8681 		return;
8682 	if (mddev->ro) {/* never try to sync a read-only array */
8683 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8684 		return;
8685 	}
8686 
8687 	if (mddev_is_clustered(mddev)) {
8688 		ret = md_cluster_ops->resync_start(mddev);
8689 		if (ret)
8690 			goto skip;
8691 
8692 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8693 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8694 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8695 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8696 		     && ((unsigned long long)mddev->curr_resync_completed
8697 			 < (unsigned long long)mddev->resync_max_sectors))
8698 			goto skip;
8699 	}
8700 
8701 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8702 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8703 			desc = "data-check";
8704 			action = "check";
8705 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8706 			desc = "requested-resync";
8707 			action = "repair";
8708 		} else
8709 			desc = "resync";
8710 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8711 		desc = "reshape";
8712 	else
8713 		desc = "recovery";
8714 
8715 	mddev->last_sync_action = action ?: desc;
8716 
8717 	/* we overload curr_resync somewhat here.
8718 	 * 0 == not engaged in resync at all
8719 	 * 2 == checking that there is no conflict with another sync
8720 	 * 1 == like 2, but have yielded to allow conflicting resync to
8721 	 *		commence
8722 	 * other == active in resync - this many blocks
8723 	 *
8724 	 * Before starting a resync we must have set curr_resync to
8725 	 * 2, and then checked that every "conflicting" array has curr_resync
8726 	 * less than ours.  When we find one that is the same or higher
8727 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8728 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8729 	 * This will mean we have to start checking from the beginning again.
8730 	 *
8731 	 */
8732 
8733 	do {
8734 		int mddev2_minor = -1;
8735 		mddev->curr_resync = 2;
8736 
8737 	try_again:
8738 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8739 			goto skip;
8740 		for_each_mddev(mddev2, tmp) {
8741 			if (mddev2 == mddev)
8742 				continue;
8743 			if (!mddev->parallel_resync
8744 			&&  mddev2->curr_resync
8745 			&&  match_mddev_units(mddev, mddev2)) {
8746 				DEFINE_WAIT(wq);
8747 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8748 					/* arbitrarily yield */
8749 					mddev->curr_resync = 1;
8750 					wake_up(&resync_wait);
8751 				}
8752 				if (mddev > mddev2 && mddev->curr_resync == 1)
8753 					/* no need to wait here, we can wait the next
8754 					 * time 'round when curr_resync == 2
8755 					 */
8756 					continue;
8757 				/* We need to wait 'interruptible' so as not to
8758 				 * contribute to the load average, and not to
8759 				 * be caught by 'softlockup'
8760 				 */
8761 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8762 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8763 				    mddev2->curr_resync >= mddev->curr_resync) {
8764 					if (mddev2_minor != mddev2->md_minor) {
8765 						mddev2_minor = mddev2->md_minor;
8766 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8767 							desc, mdname(mddev),
8768 							mdname(mddev2));
8769 					}
8770 					mddev_put(mddev2);
8771 					if (signal_pending(current))
8772 						flush_signals(current);
8773 					schedule();
8774 					finish_wait(&resync_wait, &wq);
8775 					goto try_again;
8776 				}
8777 				finish_wait(&resync_wait, &wq);
8778 			}
8779 		}
8780 	} while (mddev->curr_resync < 2);
8781 
8782 	j = 0;
8783 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8784 		/* resync follows the size requested by the personality,
8785 		 * which defaults to physical size, but can be virtual size
8786 		 */
8787 		max_sectors = mddev->resync_max_sectors;
8788 		atomic64_set(&mddev->resync_mismatches, 0);
8789 		/* we don't use the checkpoint if there's a bitmap */
8790 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8791 			j = mddev->resync_min;
8792 		else if (!mddev->bitmap)
8793 			j = mddev->recovery_cp;
8794 
8795 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8796 		max_sectors = mddev->resync_max_sectors;
8797 		/*
8798 		 * If the original node aborts reshaping then we continue the
8799 		 * reshaping, so set j again to avoid restart reshape from the
8800 		 * first beginning
8801 		 */
8802 		if (mddev_is_clustered(mddev) &&
8803 		    mddev->reshape_position != MaxSector)
8804 			j = mddev->reshape_position;
8805 	} else {
8806 		/* recovery follows the physical size of devices */
8807 		max_sectors = mddev->dev_sectors;
8808 		j = MaxSector;
8809 		rcu_read_lock();
8810 		rdev_for_each_rcu(rdev, mddev)
8811 			if (rdev->raid_disk >= 0 &&
8812 			    !test_bit(Journal, &rdev->flags) &&
8813 			    !test_bit(Faulty, &rdev->flags) &&
8814 			    !test_bit(In_sync, &rdev->flags) &&
8815 			    rdev->recovery_offset < j)
8816 				j = rdev->recovery_offset;
8817 		rcu_read_unlock();
8818 
8819 		/* If there is a bitmap, we need to make sure all
8820 		 * writes that started before we added a spare
8821 		 * complete before we start doing a recovery.
8822 		 * Otherwise the write might complete and (via
8823 		 * bitmap_endwrite) set a bit in the bitmap after the
8824 		 * recovery has checked that bit and skipped that
8825 		 * region.
8826 		 */
8827 		if (mddev->bitmap) {
8828 			mddev->pers->quiesce(mddev, 1);
8829 			mddev->pers->quiesce(mddev, 0);
8830 		}
8831 	}
8832 
8833 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8834 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8835 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8836 		 speed_max(mddev), desc);
8837 
8838 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8839 
8840 	io_sectors = 0;
8841 	for (m = 0; m < SYNC_MARKS; m++) {
8842 		mark[m] = jiffies;
8843 		mark_cnt[m] = io_sectors;
8844 	}
8845 	last_mark = 0;
8846 	mddev->resync_mark = mark[last_mark];
8847 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8848 
8849 	/*
8850 	 * Tune reconstruction:
8851 	 */
8852 	window = 32 * (PAGE_SIZE / 512);
8853 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8854 		 window/2, (unsigned long long)max_sectors/2);
8855 
8856 	atomic_set(&mddev->recovery_active, 0);
8857 	last_check = 0;
8858 
8859 	if (j>2) {
8860 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8861 			 desc, mdname(mddev));
8862 		mddev->curr_resync = j;
8863 	} else
8864 		mddev->curr_resync = 3; /* no longer delayed */
8865 	mddev->curr_resync_completed = j;
8866 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8867 	md_new_event(mddev);
8868 	update_time = jiffies;
8869 
8870 	blk_start_plug(&plug);
8871 	while (j < max_sectors) {
8872 		sector_t sectors;
8873 
8874 		skipped = 0;
8875 
8876 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8877 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8878 		      (mddev->curr_resync - mddev->curr_resync_completed)
8879 		      > (max_sectors >> 4)) ||
8880 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8881 		     (j - mddev->curr_resync_completed)*2
8882 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8883 		     mddev->curr_resync_completed > mddev->resync_max
8884 			    )) {
8885 			/* time to update curr_resync_completed */
8886 			wait_event(mddev->recovery_wait,
8887 				   atomic_read(&mddev->recovery_active) == 0);
8888 			mddev->curr_resync_completed = j;
8889 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8890 			    j > mddev->recovery_cp)
8891 				mddev->recovery_cp = j;
8892 			update_time = jiffies;
8893 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8894 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8895 		}
8896 
8897 		while (j >= mddev->resync_max &&
8898 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8899 			/* As this condition is controlled by user-space,
8900 			 * we can block indefinitely, so use '_interruptible'
8901 			 * to avoid triggering warnings.
8902 			 */
8903 			flush_signals(current); /* just in case */
8904 			wait_event_interruptible(mddev->recovery_wait,
8905 						 mddev->resync_max > j
8906 						 || test_bit(MD_RECOVERY_INTR,
8907 							     &mddev->recovery));
8908 		}
8909 
8910 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8911 			break;
8912 
8913 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8914 		if (sectors == 0) {
8915 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8916 			break;
8917 		}
8918 
8919 		if (!skipped) { /* actual IO requested */
8920 			io_sectors += sectors;
8921 			atomic_add(sectors, &mddev->recovery_active);
8922 		}
8923 
8924 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8925 			break;
8926 
8927 		j += sectors;
8928 		if (j > max_sectors)
8929 			/* when skipping, extra large numbers can be returned. */
8930 			j = max_sectors;
8931 		if (j > 2)
8932 			mddev->curr_resync = j;
8933 		mddev->curr_mark_cnt = io_sectors;
8934 		if (last_check == 0)
8935 			/* this is the earliest that rebuild will be
8936 			 * visible in /proc/mdstat
8937 			 */
8938 			md_new_event(mddev);
8939 
8940 		if (last_check + window > io_sectors || j == max_sectors)
8941 			continue;
8942 
8943 		last_check = io_sectors;
8944 	repeat:
8945 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8946 			/* step marks */
8947 			int next = (last_mark+1) % SYNC_MARKS;
8948 
8949 			mddev->resync_mark = mark[next];
8950 			mddev->resync_mark_cnt = mark_cnt[next];
8951 			mark[next] = jiffies;
8952 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8953 			last_mark = next;
8954 		}
8955 
8956 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8957 			break;
8958 
8959 		/*
8960 		 * this loop exits only if either when we are slower than
8961 		 * the 'hard' speed limit, or the system was IO-idle for
8962 		 * a jiffy.
8963 		 * the system might be non-idle CPU-wise, but we only care
8964 		 * about not overloading the IO subsystem. (things like an
8965 		 * e2fsck being done on the RAID array should execute fast)
8966 		 */
8967 		cond_resched();
8968 
8969 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8970 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8971 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8972 
8973 		if (currspeed > speed_min(mddev)) {
8974 			if (currspeed > speed_max(mddev)) {
8975 				msleep(500);
8976 				goto repeat;
8977 			}
8978 			if (!is_mddev_idle(mddev, 0)) {
8979 				/*
8980 				 * Give other IO more of a chance.
8981 				 * The faster the devices, the less we wait.
8982 				 */
8983 				wait_event(mddev->recovery_wait,
8984 					   !atomic_read(&mddev->recovery_active));
8985 			}
8986 		}
8987 	}
8988 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8989 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8990 		? "interrupted" : "done");
8991 	/*
8992 	 * this also signals 'finished resyncing' to md_stop
8993 	 */
8994 	blk_finish_plug(&plug);
8995 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8996 
8997 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8998 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8999 	    mddev->curr_resync > 3) {
9000 		mddev->curr_resync_completed = mddev->curr_resync;
9001 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
9002 	}
9003 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
9004 
9005 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9006 	    mddev->curr_resync > 3) {
9007 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9008 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9009 				if (mddev->curr_resync >= mddev->recovery_cp) {
9010 					pr_debug("md: checkpointing %s of %s.\n",
9011 						 desc, mdname(mddev));
9012 					if (test_bit(MD_RECOVERY_ERROR,
9013 						&mddev->recovery))
9014 						mddev->recovery_cp =
9015 							mddev->curr_resync_completed;
9016 					else
9017 						mddev->recovery_cp =
9018 							mddev->curr_resync;
9019 				}
9020 			} else
9021 				mddev->recovery_cp = MaxSector;
9022 		} else {
9023 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9024 				mddev->curr_resync = MaxSector;
9025 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9026 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9027 				rcu_read_lock();
9028 				rdev_for_each_rcu(rdev, mddev)
9029 					if (rdev->raid_disk >= 0 &&
9030 					    mddev->delta_disks >= 0 &&
9031 					    !test_bit(Journal, &rdev->flags) &&
9032 					    !test_bit(Faulty, &rdev->flags) &&
9033 					    !test_bit(In_sync, &rdev->flags) &&
9034 					    rdev->recovery_offset < mddev->curr_resync)
9035 						rdev->recovery_offset = mddev->curr_resync;
9036 				rcu_read_unlock();
9037 			}
9038 		}
9039 	}
9040  skip:
9041 	/* set CHANGE_PENDING here since maybe another update is needed,
9042 	 * so other nodes are informed. It should be harmless for normal
9043 	 * raid */
9044 	set_mask_bits(&mddev->sb_flags, 0,
9045 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9046 
9047 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9048 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9049 			mddev->delta_disks > 0 &&
9050 			mddev->pers->finish_reshape &&
9051 			mddev->pers->size &&
9052 			mddev->queue) {
9053 		mddev_lock_nointr(mddev);
9054 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9055 		mddev_unlock(mddev);
9056 		if (!mddev_is_clustered(mddev))
9057 			set_capacity_and_notify(mddev->gendisk,
9058 						mddev->array_sectors);
9059 	}
9060 
9061 	spin_lock(&mddev->lock);
9062 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9063 		/* We completed so min/max setting can be forgotten if used. */
9064 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9065 			mddev->resync_min = 0;
9066 		mddev->resync_max = MaxSector;
9067 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9068 		mddev->resync_min = mddev->curr_resync_completed;
9069 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9070 	mddev->curr_resync = 0;
9071 	spin_unlock(&mddev->lock);
9072 
9073 	wake_up(&resync_wait);
9074 	md_wakeup_thread(mddev->thread);
9075 	return;
9076 }
9077 EXPORT_SYMBOL_GPL(md_do_sync);
9078 
9079 static int remove_and_add_spares(struct mddev *mddev,
9080 				 struct md_rdev *this)
9081 {
9082 	struct md_rdev *rdev;
9083 	int spares = 0;
9084 	int removed = 0;
9085 	bool remove_some = false;
9086 
9087 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9088 		/* Mustn't remove devices when resync thread is running */
9089 		return 0;
9090 
9091 	rdev_for_each(rdev, mddev) {
9092 		if ((this == NULL || rdev == this) &&
9093 		    rdev->raid_disk >= 0 &&
9094 		    !test_bit(Blocked, &rdev->flags) &&
9095 		    test_bit(Faulty, &rdev->flags) &&
9096 		    atomic_read(&rdev->nr_pending)==0) {
9097 			/* Faulty non-Blocked devices with nr_pending == 0
9098 			 * never get nr_pending incremented,
9099 			 * never get Faulty cleared, and never get Blocked set.
9100 			 * So we can synchronize_rcu now rather than once per device
9101 			 */
9102 			remove_some = true;
9103 			set_bit(RemoveSynchronized, &rdev->flags);
9104 		}
9105 	}
9106 
9107 	if (remove_some)
9108 		synchronize_rcu();
9109 	rdev_for_each(rdev, mddev) {
9110 		if ((this == NULL || rdev == this) &&
9111 		    rdev->raid_disk >= 0 &&
9112 		    !test_bit(Blocked, &rdev->flags) &&
9113 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9114 		     (!test_bit(In_sync, &rdev->flags) &&
9115 		      !test_bit(Journal, &rdev->flags))) &&
9116 		    atomic_read(&rdev->nr_pending)==0)) {
9117 			if (mddev->pers->hot_remove_disk(
9118 				    mddev, rdev) == 0) {
9119 				sysfs_unlink_rdev(mddev, rdev);
9120 				rdev->saved_raid_disk = rdev->raid_disk;
9121 				rdev->raid_disk = -1;
9122 				removed++;
9123 			}
9124 		}
9125 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9126 			clear_bit(RemoveSynchronized, &rdev->flags);
9127 	}
9128 
9129 	if (removed && mddev->kobj.sd)
9130 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9131 
9132 	if (this && removed)
9133 		goto no_add;
9134 
9135 	rdev_for_each(rdev, mddev) {
9136 		if (this && this != rdev)
9137 			continue;
9138 		if (test_bit(Candidate, &rdev->flags))
9139 			continue;
9140 		if (rdev->raid_disk >= 0 &&
9141 		    !test_bit(In_sync, &rdev->flags) &&
9142 		    !test_bit(Journal, &rdev->flags) &&
9143 		    !test_bit(Faulty, &rdev->flags))
9144 			spares++;
9145 		if (rdev->raid_disk >= 0)
9146 			continue;
9147 		if (test_bit(Faulty, &rdev->flags))
9148 			continue;
9149 		if (!test_bit(Journal, &rdev->flags)) {
9150 			if (mddev->ro &&
9151 			    ! (rdev->saved_raid_disk >= 0 &&
9152 			       !test_bit(Bitmap_sync, &rdev->flags)))
9153 				continue;
9154 
9155 			rdev->recovery_offset = 0;
9156 		}
9157 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9158 			/* failure here is OK */
9159 			sysfs_link_rdev(mddev, rdev);
9160 			if (!test_bit(Journal, &rdev->flags))
9161 				spares++;
9162 			md_new_event(mddev);
9163 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9164 		}
9165 	}
9166 no_add:
9167 	if (removed)
9168 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9169 	return spares;
9170 }
9171 
9172 static void md_start_sync(struct work_struct *ws)
9173 {
9174 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9175 
9176 	mddev->sync_thread = md_register_thread(md_do_sync,
9177 						mddev,
9178 						"resync");
9179 	if (!mddev->sync_thread) {
9180 		pr_warn("%s: could not start resync thread...\n",
9181 			mdname(mddev));
9182 		/* leave the spares where they are, it shouldn't hurt */
9183 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9184 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9185 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9186 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9187 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9188 		wake_up(&resync_wait);
9189 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9190 				       &mddev->recovery))
9191 			if (mddev->sysfs_action)
9192 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9193 	} else
9194 		md_wakeup_thread(mddev->sync_thread);
9195 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9196 	md_new_event(mddev);
9197 }
9198 
9199 /*
9200  * This routine is regularly called by all per-raid-array threads to
9201  * deal with generic issues like resync and super-block update.
9202  * Raid personalities that don't have a thread (linear/raid0) do not
9203  * need this as they never do any recovery or update the superblock.
9204  *
9205  * It does not do any resync itself, but rather "forks" off other threads
9206  * to do that as needed.
9207  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9208  * "->recovery" and create a thread at ->sync_thread.
9209  * When the thread finishes it sets MD_RECOVERY_DONE
9210  * and wakeups up this thread which will reap the thread and finish up.
9211  * This thread also removes any faulty devices (with nr_pending == 0).
9212  *
9213  * The overall approach is:
9214  *  1/ if the superblock needs updating, update it.
9215  *  2/ If a recovery thread is running, don't do anything else.
9216  *  3/ If recovery has finished, clean up, possibly marking spares active.
9217  *  4/ If there are any faulty devices, remove them.
9218  *  5/ If array is degraded, try to add spares devices
9219  *  6/ If array has spares or is not in-sync, start a resync thread.
9220  */
9221 void md_check_recovery(struct mddev *mddev)
9222 {
9223 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9224 		/* Write superblock - thread that called mddev_suspend()
9225 		 * holds reconfig_mutex for us.
9226 		 */
9227 		set_bit(MD_UPDATING_SB, &mddev->flags);
9228 		smp_mb__after_atomic();
9229 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9230 			md_update_sb(mddev, 0);
9231 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9232 		wake_up(&mddev->sb_wait);
9233 	}
9234 
9235 	if (mddev->suspended)
9236 		return;
9237 
9238 	if (mddev->bitmap)
9239 		md_bitmap_daemon_work(mddev);
9240 
9241 	if (signal_pending(current)) {
9242 		if (mddev->pers->sync_request && !mddev->external) {
9243 			pr_debug("md: %s in immediate safe mode\n",
9244 				 mdname(mddev));
9245 			mddev->safemode = 2;
9246 		}
9247 		flush_signals(current);
9248 	}
9249 
9250 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9251 		return;
9252 	if ( ! (
9253 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9254 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9255 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9256 		(mddev->external == 0 && mddev->safemode == 1) ||
9257 		(mddev->safemode == 2
9258 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9259 		))
9260 		return;
9261 
9262 	if (mddev_trylock(mddev)) {
9263 		int spares = 0;
9264 		bool try_set_sync = mddev->safemode != 0;
9265 
9266 		if (!mddev->external && mddev->safemode == 1)
9267 			mddev->safemode = 0;
9268 
9269 		if (mddev->ro) {
9270 			struct md_rdev *rdev;
9271 			if (!mddev->external && mddev->in_sync)
9272 				/* 'Blocked' flag not needed as failed devices
9273 				 * will be recorded if array switched to read/write.
9274 				 * Leaving it set will prevent the device
9275 				 * from being removed.
9276 				 */
9277 				rdev_for_each(rdev, mddev)
9278 					clear_bit(Blocked, &rdev->flags);
9279 			/* On a read-only array we can:
9280 			 * - remove failed devices
9281 			 * - add already-in_sync devices if the array itself
9282 			 *   is in-sync.
9283 			 * As we only add devices that are already in-sync,
9284 			 * we can activate the spares immediately.
9285 			 */
9286 			remove_and_add_spares(mddev, NULL);
9287 			/* There is no thread, but we need to call
9288 			 * ->spare_active and clear saved_raid_disk
9289 			 */
9290 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9291 			md_reap_sync_thread(mddev);
9292 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9293 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9294 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9295 			goto unlock;
9296 		}
9297 
9298 		if (mddev_is_clustered(mddev)) {
9299 			struct md_rdev *rdev, *tmp;
9300 			/* kick the device if another node issued a
9301 			 * remove disk.
9302 			 */
9303 			rdev_for_each_safe(rdev, tmp, mddev) {
9304 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9305 						rdev->raid_disk < 0)
9306 					md_kick_rdev_from_array(rdev);
9307 			}
9308 		}
9309 
9310 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9311 			spin_lock(&mddev->lock);
9312 			set_in_sync(mddev);
9313 			spin_unlock(&mddev->lock);
9314 		}
9315 
9316 		if (mddev->sb_flags)
9317 			md_update_sb(mddev, 0);
9318 
9319 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9320 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9321 			/* resync/recovery still happening */
9322 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9323 			goto unlock;
9324 		}
9325 		if (mddev->sync_thread) {
9326 			md_reap_sync_thread(mddev);
9327 			goto unlock;
9328 		}
9329 		/* Set RUNNING before clearing NEEDED to avoid
9330 		 * any transients in the value of "sync_action".
9331 		 */
9332 		mddev->curr_resync_completed = 0;
9333 		spin_lock(&mddev->lock);
9334 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9335 		spin_unlock(&mddev->lock);
9336 		/* Clear some bits that don't mean anything, but
9337 		 * might be left set
9338 		 */
9339 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9340 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9341 
9342 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9343 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9344 			goto not_running;
9345 		/* no recovery is running.
9346 		 * remove any failed drives, then
9347 		 * add spares if possible.
9348 		 * Spares are also removed and re-added, to allow
9349 		 * the personality to fail the re-add.
9350 		 */
9351 
9352 		if (mddev->reshape_position != MaxSector) {
9353 			if (mddev->pers->check_reshape == NULL ||
9354 			    mddev->pers->check_reshape(mddev) != 0)
9355 				/* Cannot proceed */
9356 				goto not_running;
9357 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9358 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9359 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9360 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9361 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9362 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9363 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9364 		} else if (mddev->recovery_cp < MaxSector) {
9365 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9366 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9367 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9368 			/* nothing to be done ... */
9369 			goto not_running;
9370 
9371 		if (mddev->pers->sync_request) {
9372 			if (spares) {
9373 				/* We are adding a device or devices to an array
9374 				 * which has the bitmap stored on all devices.
9375 				 * So make sure all bitmap pages get written
9376 				 */
9377 				md_bitmap_write_all(mddev->bitmap);
9378 			}
9379 			INIT_WORK(&mddev->del_work, md_start_sync);
9380 			queue_work(md_misc_wq, &mddev->del_work);
9381 			goto unlock;
9382 		}
9383 	not_running:
9384 		if (!mddev->sync_thread) {
9385 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9386 			wake_up(&resync_wait);
9387 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9388 					       &mddev->recovery))
9389 				if (mddev->sysfs_action)
9390 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9391 		}
9392 	unlock:
9393 		wake_up(&mddev->sb_wait);
9394 		mddev_unlock(mddev);
9395 	}
9396 }
9397 EXPORT_SYMBOL(md_check_recovery);
9398 
9399 void md_reap_sync_thread(struct mddev *mddev)
9400 {
9401 	struct md_rdev *rdev;
9402 	sector_t old_dev_sectors = mddev->dev_sectors;
9403 	bool is_reshaped = false;
9404 
9405 	/* resync has finished, collect result */
9406 	md_unregister_thread(&mddev->sync_thread);
9407 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9408 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9409 	    mddev->degraded != mddev->raid_disks) {
9410 		/* success...*/
9411 		/* activate any spares */
9412 		if (mddev->pers->spare_active(mddev)) {
9413 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9414 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9415 		}
9416 	}
9417 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9418 	    mddev->pers->finish_reshape) {
9419 		mddev->pers->finish_reshape(mddev);
9420 		if (mddev_is_clustered(mddev))
9421 			is_reshaped = true;
9422 	}
9423 
9424 	/* If array is no-longer degraded, then any saved_raid_disk
9425 	 * information must be scrapped.
9426 	 */
9427 	if (!mddev->degraded)
9428 		rdev_for_each(rdev, mddev)
9429 			rdev->saved_raid_disk = -1;
9430 
9431 	md_update_sb(mddev, 1);
9432 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9433 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9434 	 * clustered raid */
9435 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9436 		md_cluster_ops->resync_finish(mddev);
9437 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9438 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9439 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9440 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9441 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9442 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9443 	/*
9444 	 * We call md_cluster_ops->update_size here because sync_size could
9445 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9446 	 * so it is time to update size across cluster.
9447 	 */
9448 	if (mddev_is_clustered(mddev) && is_reshaped
9449 				      && !test_bit(MD_CLOSING, &mddev->flags))
9450 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9451 	wake_up(&resync_wait);
9452 	/* flag recovery needed just to double check */
9453 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9454 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9455 	md_new_event(mddev);
9456 	if (mddev->event_work.func)
9457 		queue_work(md_misc_wq, &mddev->event_work);
9458 }
9459 EXPORT_SYMBOL(md_reap_sync_thread);
9460 
9461 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9462 {
9463 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9464 	wait_event_timeout(rdev->blocked_wait,
9465 			   !test_bit(Blocked, &rdev->flags) &&
9466 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9467 			   msecs_to_jiffies(5000));
9468 	rdev_dec_pending(rdev, mddev);
9469 }
9470 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9471 
9472 void md_finish_reshape(struct mddev *mddev)
9473 {
9474 	/* called be personality module when reshape completes. */
9475 	struct md_rdev *rdev;
9476 
9477 	rdev_for_each(rdev, mddev) {
9478 		if (rdev->data_offset > rdev->new_data_offset)
9479 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9480 		else
9481 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9482 		rdev->data_offset = rdev->new_data_offset;
9483 	}
9484 }
9485 EXPORT_SYMBOL(md_finish_reshape);
9486 
9487 /* Bad block management */
9488 
9489 /* Returns 1 on success, 0 on failure */
9490 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9491 		       int is_new)
9492 {
9493 	struct mddev *mddev = rdev->mddev;
9494 	int rv;
9495 	if (is_new)
9496 		s += rdev->new_data_offset;
9497 	else
9498 		s += rdev->data_offset;
9499 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9500 	if (rv == 0) {
9501 		/* Make sure they get written out promptly */
9502 		if (test_bit(ExternalBbl, &rdev->flags))
9503 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9504 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9505 		set_mask_bits(&mddev->sb_flags, 0,
9506 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9507 		md_wakeup_thread(rdev->mddev->thread);
9508 		return 1;
9509 	} else
9510 		return 0;
9511 }
9512 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9513 
9514 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9515 			 int is_new)
9516 {
9517 	int rv;
9518 	if (is_new)
9519 		s += rdev->new_data_offset;
9520 	else
9521 		s += rdev->data_offset;
9522 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9523 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9524 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9525 	return rv;
9526 }
9527 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9528 
9529 static int md_notify_reboot(struct notifier_block *this,
9530 			    unsigned long code, void *x)
9531 {
9532 	struct list_head *tmp;
9533 	struct mddev *mddev;
9534 	int need_delay = 0;
9535 
9536 	for_each_mddev(mddev, tmp) {
9537 		if (mddev_trylock(mddev)) {
9538 			if (mddev->pers)
9539 				__md_stop_writes(mddev);
9540 			if (mddev->persistent)
9541 				mddev->safemode = 2;
9542 			mddev_unlock(mddev);
9543 		}
9544 		need_delay = 1;
9545 	}
9546 	/*
9547 	 * certain more exotic SCSI devices are known to be
9548 	 * volatile wrt too early system reboots. While the
9549 	 * right place to handle this issue is the given
9550 	 * driver, we do want to have a safe RAID driver ...
9551 	 */
9552 	if (need_delay)
9553 		mdelay(1000*1);
9554 
9555 	return NOTIFY_DONE;
9556 }
9557 
9558 static struct notifier_block md_notifier = {
9559 	.notifier_call	= md_notify_reboot,
9560 	.next		= NULL,
9561 	.priority	= INT_MAX, /* before any real devices */
9562 };
9563 
9564 static void md_geninit(void)
9565 {
9566 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9567 
9568 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9569 }
9570 
9571 static int __init md_init(void)
9572 {
9573 	int ret = -ENOMEM;
9574 
9575 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9576 	if (!md_wq)
9577 		goto err_wq;
9578 
9579 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9580 	if (!md_misc_wq)
9581 		goto err_misc_wq;
9582 
9583 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9584 	if (!md_rdev_misc_wq)
9585 		goto err_rdev_misc_wq;
9586 
9587 	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9588 	if (ret < 0)
9589 		goto err_md;
9590 
9591 	ret = __register_blkdev(0, "mdp", md_probe);
9592 	if (ret < 0)
9593 		goto err_mdp;
9594 	mdp_major = ret;
9595 
9596 	register_reboot_notifier(&md_notifier);
9597 	raid_table_header = register_sysctl_table(raid_root_table);
9598 
9599 	md_geninit();
9600 	return 0;
9601 
9602 err_mdp:
9603 	unregister_blkdev(MD_MAJOR, "md");
9604 err_md:
9605 	destroy_workqueue(md_rdev_misc_wq);
9606 err_rdev_misc_wq:
9607 	destroy_workqueue(md_misc_wq);
9608 err_misc_wq:
9609 	destroy_workqueue(md_wq);
9610 err_wq:
9611 	return ret;
9612 }
9613 
9614 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9615 {
9616 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9617 	struct md_rdev *rdev2, *tmp;
9618 	int role, ret;
9619 	char b[BDEVNAME_SIZE];
9620 
9621 	/*
9622 	 * If size is changed in another node then we need to
9623 	 * do resize as well.
9624 	 */
9625 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9626 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9627 		if (ret)
9628 			pr_info("md-cluster: resize failed\n");
9629 		else
9630 			md_bitmap_update_sb(mddev->bitmap);
9631 	}
9632 
9633 	/* Check for change of roles in the active devices */
9634 	rdev_for_each_safe(rdev2, tmp, mddev) {
9635 		if (test_bit(Faulty, &rdev2->flags))
9636 			continue;
9637 
9638 		/* Check if the roles changed */
9639 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9640 
9641 		if (test_bit(Candidate, &rdev2->flags)) {
9642 			if (role == 0xfffe) {
9643 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9644 				md_kick_rdev_from_array(rdev2);
9645 				continue;
9646 			}
9647 			else
9648 				clear_bit(Candidate, &rdev2->flags);
9649 		}
9650 
9651 		if (role != rdev2->raid_disk) {
9652 			/*
9653 			 * got activated except reshape is happening.
9654 			 */
9655 			if (rdev2->raid_disk == -1 && role != 0xffff &&
9656 			    !(le32_to_cpu(sb->feature_map) &
9657 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9658 				rdev2->saved_raid_disk = role;
9659 				ret = remove_and_add_spares(mddev, rdev2);
9660 				pr_info("Activated spare: %s\n",
9661 					bdevname(rdev2->bdev,b));
9662 				/* wakeup mddev->thread here, so array could
9663 				 * perform resync with the new activated disk */
9664 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9665 				md_wakeup_thread(mddev->thread);
9666 			}
9667 			/* device faulty
9668 			 * We just want to do the minimum to mark the disk
9669 			 * as faulty. The recovery is performed by the
9670 			 * one who initiated the error.
9671 			 */
9672 			if ((role == 0xfffe) || (role == 0xfffd)) {
9673 				md_error(mddev, rdev2);
9674 				clear_bit(Blocked, &rdev2->flags);
9675 			}
9676 		}
9677 	}
9678 
9679 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9680 		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9681 		if (ret)
9682 			pr_warn("md: updating array disks failed. %d\n", ret);
9683 	}
9684 
9685 	/*
9686 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9687 	 * so it is time to check reshape.
9688 	 */
9689 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9690 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9691 		/*
9692 		 * reshape is happening in the remote node, we need to
9693 		 * update reshape_position and call start_reshape.
9694 		 */
9695 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9696 		if (mddev->pers->update_reshape_pos)
9697 			mddev->pers->update_reshape_pos(mddev);
9698 		if (mddev->pers->start_reshape)
9699 			mddev->pers->start_reshape(mddev);
9700 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9701 		   mddev->reshape_position != MaxSector &&
9702 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9703 		/* reshape is just done in another node. */
9704 		mddev->reshape_position = MaxSector;
9705 		if (mddev->pers->update_reshape_pos)
9706 			mddev->pers->update_reshape_pos(mddev);
9707 	}
9708 
9709 	/* Finally set the event to be up to date */
9710 	mddev->events = le64_to_cpu(sb->events);
9711 }
9712 
9713 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9714 {
9715 	int err;
9716 	struct page *swapout = rdev->sb_page;
9717 	struct mdp_superblock_1 *sb;
9718 
9719 	/* Store the sb page of the rdev in the swapout temporary
9720 	 * variable in case we err in the future
9721 	 */
9722 	rdev->sb_page = NULL;
9723 	err = alloc_disk_sb(rdev);
9724 	if (err == 0) {
9725 		ClearPageUptodate(rdev->sb_page);
9726 		rdev->sb_loaded = 0;
9727 		err = super_types[mddev->major_version].
9728 			load_super(rdev, NULL, mddev->minor_version);
9729 	}
9730 	if (err < 0) {
9731 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9732 				__func__, __LINE__, rdev->desc_nr, err);
9733 		if (rdev->sb_page)
9734 			put_page(rdev->sb_page);
9735 		rdev->sb_page = swapout;
9736 		rdev->sb_loaded = 1;
9737 		return err;
9738 	}
9739 
9740 	sb = page_address(rdev->sb_page);
9741 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9742 	 * is not set
9743 	 */
9744 
9745 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9746 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9747 
9748 	/* The other node finished recovery, call spare_active to set
9749 	 * device In_sync and mddev->degraded
9750 	 */
9751 	if (rdev->recovery_offset == MaxSector &&
9752 	    !test_bit(In_sync, &rdev->flags) &&
9753 	    mddev->pers->spare_active(mddev))
9754 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9755 
9756 	put_page(swapout);
9757 	return 0;
9758 }
9759 
9760 void md_reload_sb(struct mddev *mddev, int nr)
9761 {
9762 	struct md_rdev *rdev;
9763 	int err;
9764 
9765 	/* Find the rdev */
9766 	rdev_for_each_rcu(rdev, mddev) {
9767 		if (rdev->desc_nr == nr)
9768 			break;
9769 	}
9770 
9771 	if (!rdev || rdev->desc_nr != nr) {
9772 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9773 		return;
9774 	}
9775 
9776 	err = read_rdev(mddev, rdev);
9777 	if (err < 0)
9778 		return;
9779 
9780 	check_sb_changes(mddev, rdev);
9781 
9782 	/* Read all rdev's to update recovery_offset */
9783 	rdev_for_each_rcu(rdev, mddev) {
9784 		if (!test_bit(Faulty, &rdev->flags))
9785 			read_rdev(mddev, rdev);
9786 	}
9787 }
9788 EXPORT_SYMBOL(md_reload_sb);
9789 
9790 #ifndef MODULE
9791 
9792 /*
9793  * Searches all registered partitions for autorun RAID arrays
9794  * at boot time.
9795  */
9796 
9797 static DEFINE_MUTEX(detected_devices_mutex);
9798 static LIST_HEAD(all_detected_devices);
9799 struct detected_devices_node {
9800 	struct list_head list;
9801 	dev_t dev;
9802 };
9803 
9804 void md_autodetect_dev(dev_t dev)
9805 {
9806 	struct detected_devices_node *node_detected_dev;
9807 
9808 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9809 	if (node_detected_dev) {
9810 		node_detected_dev->dev = dev;
9811 		mutex_lock(&detected_devices_mutex);
9812 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9813 		mutex_unlock(&detected_devices_mutex);
9814 	}
9815 }
9816 
9817 void md_autostart_arrays(int part)
9818 {
9819 	struct md_rdev *rdev;
9820 	struct detected_devices_node *node_detected_dev;
9821 	dev_t dev;
9822 	int i_scanned, i_passed;
9823 
9824 	i_scanned = 0;
9825 	i_passed = 0;
9826 
9827 	pr_info("md: Autodetecting RAID arrays.\n");
9828 
9829 	mutex_lock(&detected_devices_mutex);
9830 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9831 		i_scanned++;
9832 		node_detected_dev = list_entry(all_detected_devices.next,
9833 					struct detected_devices_node, list);
9834 		list_del(&node_detected_dev->list);
9835 		dev = node_detected_dev->dev;
9836 		kfree(node_detected_dev);
9837 		mutex_unlock(&detected_devices_mutex);
9838 		rdev = md_import_device(dev,0, 90);
9839 		mutex_lock(&detected_devices_mutex);
9840 		if (IS_ERR(rdev))
9841 			continue;
9842 
9843 		if (test_bit(Faulty, &rdev->flags))
9844 			continue;
9845 
9846 		set_bit(AutoDetected, &rdev->flags);
9847 		list_add(&rdev->same_set, &pending_raid_disks);
9848 		i_passed++;
9849 	}
9850 	mutex_unlock(&detected_devices_mutex);
9851 
9852 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9853 
9854 	autorun_devices(part);
9855 }
9856 
9857 #endif /* !MODULE */
9858 
9859 static __exit void md_exit(void)
9860 {
9861 	struct mddev *mddev;
9862 	struct list_head *tmp;
9863 	int delay = 1;
9864 
9865 	unregister_blkdev(MD_MAJOR,"md");
9866 	unregister_blkdev(mdp_major, "mdp");
9867 	unregister_reboot_notifier(&md_notifier);
9868 	unregister_sysctl_table(raid_table_header);
9869 
9870 	/* We cannot unload the modules while some process is
9871 	 * waiting for us in select() or poll() - wake them up
9872 	 */
9873 	md_unloading = 1;
9874 	while (waitqueue_active(&md_event_waiters)) {
9875 		/* not safe to leave yet */
9876 		wake_up(&md_event_waiters);
9877 		msleep(delay);
9878 		delay += delay;
9879 	}
9880 	remove_proc_entry("mdstat", NULL);
9881 
9882 	for_each_mddev(mddev, tmp) {
9883 		export_array(mddev);
9884 		mddev->ctime = 0;
9885 		mddev->hold_active = 0;
9886 		/*
9887 		 * for_each_mddev() will call mddev_put() at the end of each
9888 		 * iteration.  As the mddev is now fully clear, this will
9889 		 * schedule the mddev for destruction by a workqueue, and the
9890 		 * destroy_workqueue() below will wait for that to complete.
9891 		 */
9892 	}
9893 	destroy_workqueue(md_rdev_misc_wq);
9894 	destroy_workqueue(md_misc_wq);
9895 	destroy_workqueue(md_wq);
9896 }
9897 
9898 subsys_initcall(md_init);
9899 module_exit(md_exit)
9900 
9901 static int get_ro(char *buffer, const struct kernel_param *kp)
9902 {
9903 	return sprintf(buffer, "%d\n", start_readonly);
9904 }
9905 static int set_ro(const char *val, const struct kernel_param *kp)
9906 {
9907 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9908 }
9909 
9910 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9911 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9912 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9913 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9914 
9915 MODULE_LICENSE("GPL");
9916 MODULE_DESCRIPTION("MD RAID framework");
9917 MODULE_ALIAS("md");
9918 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9919