1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/kthread.h> 38 #include <linux/linkage.h> 39 #include <linux/raid/md.h> 40 #include <linux/raid/bitmap.h> 41 #include <linux/sysctl.h> 42 #include <linux/buffer_head.h> /* for invalidate_bdev */ 43 #include <linux/poll.h> 44 #include <linux/mutex.h> 45 #include <linux/ctype.h> 46 #include <linux/freezer.h> 47 48 #include <linux/init.h> 49 50 #include <linux/file.h> 51 52 #ifdef CONFIG_KMOD 53 #include <linux/kmod.h> 54 #endif 55 56 #include <asm/unaligned.h> 57 58 #define MAJOR_NR MD_MAJOR 59 #define MD_DRIVER 60 61 /* 63 partitions with the alternate major number (mdp) */ 62 #define MdpMinorShift 6 63 64 #define DEBUG 0 65 #define dprintk(x...) ((void)(DEBUG && printk(x))) 66 67 68 #ifndef MODULE 69 static void autostart_arrays (int part); 70 #endif 71 72 static LIST_HEAD(pers_list); 73 static DEFINE_SPINLOCK(pers_lock); 74 75 static void md_print_devices(void); 76 77 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 78 79 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 80 81 /* 82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 83 * is 1000 KB/sec, so the extra system load does not show up that much. 84 * Increase it if you want to have more _guaranteed_ speed. Note that 85 * the RAID driver will use the maximum available bandwidth if the IO 86 * subsystem is idle. There is also an 'absolute maximum' reconstruction 87 * speed limit - in case reconstruction slows down your system despite 88 * idle IO detection. 89 * 90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 91 * or /sys/block/mdX/md/sync_speed_{min,max} 92 */ 93 94 static int sysctl_speed_limit_min = 1000; 95 static int sysctl_speed_limit_max = 200000; 96 static inline int speed_min(mddev_t *mddev) 97 { 98 return mddev->sync_speed_min ? 99 mddev->sync_speed_min : sysctl_speed_limit_min; 100 } 101 102 static inline int speed_max(mddev_t *mddev) 103 { 104 return mddev->sync_speed_max ? 105 mddev->sync_speed_max : sysctl_speed_limit_max; 106 } 107 108 static struct ctl_table_header *raid_table_header; 109 110 static ctl_table raid_table[] = { 111 { 112 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN, 113 .procname = "speed_limit_min", 114 .data = &sysctl_speed_limit_min, 115 .maxlen = sizeof(int), 116 .mode = S_IRUGO|S_IWUSR, 117 .proc_handler = &proc_dointvec, 118 }, 119 { 120 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX, 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = &proc_dointvec, 126 }, 127 { .ctl_name = 0 } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .ctl_name = DEV_RAID, 133 .procname = "raid", 134 .maxlen = 0, 135 .mode = S_IRUGO|S_IXUGO, 136 .child = raid_table, 137 }, 138 { .ctl_name = 0 } 139 }; 140 141 static ctl_table raid_root_table[] = { 142 { 143 .ctl_name = CTL_DEV, 144 .procname = "dev", 145 .maxlen = 0, 146 .mode = 0555, 147 .child = raid_dir_table, 148 }, 149 { .ctl_name = 0 } 150 }; 151 152 static struct block_device_operations md_fops; 153 154 static int start_readonly; 155 156 /* 157 * We have a system wide 'event count' that is incremented 158 * on any 'interesting' event, and readers of /proc/mdstat 159 * can use 'poll' or 'select' to find out when the event 160 * count increases. 161 * 162 * Events are: 163 * start array, stop array, error, add device, remove device, 164 * start build, activate spare 165 */ 166 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 167 static atomic_t md_event_count; 168 void md_new_event(mddev_t *mddev) 169 { 170 atomic_inc(&md_event_count); 171 wake_up(&md_event_waiters); 172 } 173 EXPORT_SYMBOL_GPL(md_new_event); 174 175 /* Alternate version that can be called from interrupts 176 * when calling sysfs_notify isn't needed. 177 */ 178 static void md_new_event_inintr(mddev_t *mddev) 179 { 180 atomic_inc(&md_event_count); 181 wake_up(&md_event_waiters); 182 } 183 184 /* 185 * Enables to iterate over all existing md arrays 186 * all_mddevs_lock protects this list. 187 */ 188 static LIST_HEAD(all_mddevs); 189 static DEFINE_SPINLOCK(all_mddevs_lock); 190 191 192 /* 193 * iterates through all used mddevs in the system. 194 * We take care to grab the all_mddevs_lock whenever navigating 195 * the list, and to always hold a refcount when unlocked. 196 * Any code which breaks out of this loop while own 197 * a reference to the current mddev and must mddev_put it. 198 */ 199 #define for_each_mddev(mddev,tmp) \ 200 \ 201 for (({ spin_lock(&all_mddevs_lock); \ 202 tmp = all_mddevs.next; \ 203 mddev = NULL;}); \ 204 ({ if (tmp != &all_mddevs) \ 205 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\ 206 spin_unlock(&all_mddevs_lock); \ 207 if (mddev) mddev_put(mddev); \ 208 mddev = list_entry(tmp, mddev_t, all_mddevs); \ 209 tmp != &all_mddevs;}); \ 210 ({ spin_lock(&all_mddevs_lock); \ 211 tmp = tmp->next;}) \ 212 ) 213 214 215 static int md_fail_request (struct request_queue *q, struct bio *bio) 216 { 217 bio_io_error(bio); 218 return 0; 219 } 220 221 static inline mddev_t *mddev_get(mddev_t *mddev) 222 { 223 atomic_inc(&mddev->active); 224 return mddev; 225 } 226 227 static void mddev_put(mddev_t *mddev) 228 { 229 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 230 return; 231 if (!mddev->raid_disks && list_empty(&mddev->disks)) { 232 list_del(&mddev->all_mddevs); 233 spin_unlock(&all_mddevs_lock); 234 blk_cleanup_queue(mddev->queue); 235 kobject_put(&mddev->kobj); 236 } else 237 spin_unlock(&all_mddevs_lock); 238 } 239 240 static mddev_t * mddev_find(dev_t unit) 241 { 242 mddev_t *mddev, *new = NULL; 243 244 retry: 245 spin_lock(&all_mddevs_lock); 246 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 247 if (mddev->unit == unit) { 248 mddev_get(mddev); 249 spin_unlock(&all_mddevs_lock); 250 kfree(new); 251 return mddev; 252 } 253 254 if (new) { 255 list_add(&new->all_mddevs, &all_mddevs); 256 spin_unlock(&all_mddevs_lock); 257 return new; 258 } 259 spin_unlock(&all_mddevs_lock); 260 261 new = kzalloc(sizeof(*new), GFP_KERNEL); 262 if (!new) 263 return NULL; 264 265 new->unit = unit; 266 if (MAJOR(unit) == MD_MAJOR) 267 new->md_minor = MINOR(unit); 268 else 269 new->md_minor = MINOR(unit) >> MdpMinorShift; 270 271 mutex_init(&new->reconfig_mutex); 272 INIT_LIST_HEAD(&new->disks); 273 INIT_LIST_HEAD(&new->all_mddevs); 274 init_timer(&new->safemode_timer); 275 atomic_set(&new->active, 1); 276 atomic_set(&new->openers, 0); 277 spin_lock_init(&new->write_lock); 278 init_waitqueue_head(&new->sb_wait); 279 init_waitqueue_head(&new->recovery_wait); 280 new->reshape_position = MaxSector; 281 new->resync_min = 0; 282 new->resync_max = MaxSector; 283 new->level = LEVEL_NONE; 284 285 new->queue = blk_alloc_queue(GFP_KERNEL); 286 if (!new->queue) { 287 kfree(new); 288 return NULL; 289 } 290 /* Can be unlocked because the queue is new: no concurrency */ 291 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, new->queue); 292 293 blk_queue_make_request(new->queue, md_fail_request); 294 295 goto retry; 296 } 297 298 static inline int mddev_lock(mddev_t * mddev) 299 { 300 return mutex_lock_interruptible(&mddev->reconfig_mutex); 301 } 302 303 static inline int mddev_trylock(mddev_t * mddev) 304 { 305 return mutex_trylock(&mddev->reconfig_mutex); 306 } 307 308 static inline void mddev_unlock(mddev_t * mddev) 309 { 310 mutex_unlock(&mddev->reconfig_mutex); 311 312 md_wakeup_thread(mddev->thread); 313 } 314 315 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr) 316 { 317 mdk_rdev_t * rdev; 318 struct list_head *tmp; 319 320 rdev_for_each(rdev, tmp, mddev) { 321 if (rdev->desc_nr == nr) 322 return rdev; 323 } 324 return NULL; 325 } 326 327 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev) 328 { 329 struct list_head *tmp; 330 mdk_rdev_t *rdev; 331 332 rdev_for_each(rdev, tmp, mddev) { 333 if (rdev->bdev->bd_dev == dev) 334 return rdev; 335 } 336 return NULL; 337 } 338 339 static struct mdk_personality *find_pers(int level, char *clevel) 340 { 341 struct mdk_personality *pers; 342 list_for_each_entry(pers, &pers_list, list) { 343 if (level != LEVEL_NONE && pers->level == level) 344 return pers; 345 if (strcmp(pers->name, clevel)==0) 346 return pers; 347 } 348 return NULL; 349 } 350 351 /* return the offset of the super block in 512byte sectors */ 352 static inline sector_t calc_dev_sboffset(struct block_device *bdev) 353 { 354 sector_t num_sectors = bdev->bd_inode->i_size / 512; 355 return MD_NEW_SIZE_SECTORS(num_sectors); 356 } 357 358 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size) 359 { 360 sector_t num_sectors = rdev->sb_start; 361 362 if (chunk_size) 363 num_sectors &= ~((sector_t)chunk_size/512 - 1); 364 return num_sectors; 365 } 366 367 static int alloc_disk_sb(mdk_rdev_t * rdev) 368 { 369 if (rdev->sb_page) 370 MD_BUG(); 371 372 rdev->sb_page = alloc_page(GFP_KERNEL); 373 if (!rdev->sb_page) { 374 printk(KERN_ALERT "md: out of memory.\n"); 375 return -ENOMEM; 376 } 377 378 return 0; 379 } 380 381 static void free_disk_sb(mdk_rdev_t * rdev) 382 { 383 if (rdev->sb_page) { 384 put_page(rdev->sb_page); 385 rdev->sb_loaded = 0; 386 rdev->sb_page = NULL; 387 rdev->sb_start = 0; 388 rdev->size = 0; 389 } 390 } 391 392 393 static void super_written(struct bio *bio, int error) 394 { 395 mdk_rdev_t *rdev = bio->bi_private; 396 mddev_t *mddev = rdev->mddev; 397 398 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 399 printk("md: super_written gets error=%d, uptodate=%d\n", 400 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 401 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 402 md_error(mddev, rdev); 403 } 404 405 if (atomic_dec_and_test(&mddev->pending_writes)) 406 wake_up(&mddev->sb_wait); 407 bio_put(bio); 408 } 409 410 static void super_written_barrier(struct bio *bio, int error) 411 { 412 struct bio *bio2 = bio->bi_private; 413 mdk_rdev_t *rdev = bio2->bi_private; 414 mddev_t *mddev = rdev->mddev; 415 416 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) && 417 error == -EOPNOTSUPP) { 418 unsigned long flags; 419 /* barriers don't appear to be supported :-( */ 420 set_bit(BarriersNotsupp, &rdev->flags); 421 mddev->barriers_work = 0; 422 spin_lock_irqsave(&mddev->write_lock, flags); 423 bio2->bi_next = mddev->biolist; 424 mddev->biolist = bio2; 425 spin_unlock_irqrestore(&mddev->write_lock, flags); 426 wake_up(&mddev->sb_wait); 427 bio_put(bio); 428 } else { 429 bio_put(bio2); 430 bio->bi_private = rdev; 431 super_written(bio, error); 432 } 433 } 434 435 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev, 436 sector_t sector, int size, struct page *page) 437 { 438 /* write first size bytes of page to sector of rdev 439 * Increment mddev->pending_writes before returning 440 * and decrement it on completion, waking up sb_wait 441 * if zero is reached. 442 * If an error occurred, call md_error 443 * 444 * As we might need to resubmit the request if BIO_RW_BARRIER 445 * causes ENOTSUPP, we allocate a spare bio... 446 */ 447 struct bio *bio = bio_alloc(GFP_NOIO, 1); 448 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC); 449 450 bio->bi_bdev = rdev->bdev; 451 bio->bi_sector = sector; 452 bio_add_page(bio, page, size, 0); 453 bio->bi_private = rdev; 454 bio->bi_end_io = super_written; 455 bio->bi_rw = rw; 456 457 atomic_inc(&mddev->pending_writes); 458 if (!test_bit(BarriersNotsupp, &rdev->flags)) { 459 struct bio *rbio; 460 rw |= (1<<BIO_RW_BARRIER); 461 rbio = bio_clone(bio, GFP_NOIO); 462 rbio->bi_private = bio; 463 rbio->bi_end_io = super_written_barrier; 464 submit_bio(rw, rbio); 465 } else 466 submit_bio(rw, bio); 467 } 468 469 void md_super_wait(mddev_t *mddev) 470 { 471 /* wait for all superblock writes that were scheduled to complete. 472 * if any had to be retried (due to BARRIER problems), retry them 473 */ 474 DEFINE_WAIT(wq); 475 for(;;) { 476 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 477 if (atomic_read(&mddev->pending_writes)==0) 478 break; 479 while (mddev->biolist) { 480 struct bio *bio; 481 spin_lock_irq(&mddev->write_lock); 482 bio = mddev->biolist; 483 mddev->biolist = bio->bi_next ; 484 bio->bi_next = NULL; 485 spin_unlock_irq(&mddev->write_lock); 486 submit_bio(bio->bi_rw, bio); 487 } 488 schedule(); 489 } 490 finish_wait(&mddev->sb_wait, &wq); 491 } 492 493 static void bi_complete(struct bio *bio, int error) 494 { 495 complete((struct completion*)bio->bi_private); 496 } 497 498 int sync_page_io(struct block_device *bdev, sector_t sector, int size, 499 struct page *page, int rw) 500 { 501 struct bio *bio = bio_alloc(GFP_NOIO, 1); 502 struct completion event; 503 int ret; 504 505 rw |= (1 << BIO_RW_SYNC); 506 507 bio->bi_bdev = bdev; 508 bio->bi_sector = sector; 509 bio_add_page(bio, page, size, 0); 510 init_completion(&event); 511 bio->bi_private = &event; 512 bio->bi_end_io = bi_complete; 513 submit_bio(rw, bio); 514 wait_for_completion(&event); 515 516 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 517 bio_put(bio); 518 return ret; 519 } 520 EXPORT_SYMBOL_GPL(sync_page_io); 521 522 static int read_disk_sb(mdk_rdev_t * rdev, int size) 523 { 524 char b[BDEVNAME_SIZE]; 525 if (!rdev->sb_page) { 526 MD_BUG(); 527 return -EINVAL; 528 } 529 if (rdev->sb_loaded) 530 return 0; 531 532 533 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ)) 534 goto fail; 535 rdev->sb_loaded = 1; 536 return 0; 537 538 fail: 539 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 540 bdevname(rdev->bdev,b)); 541 return -EINVAL; 542 } 543 544 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 545 { 546 return sb1->set_uuid0 == sb2->set_uuid0 && 547 sb1->set_uuid1 == sb2->set_uuid1 && 548 sb1->set_uuid2 == sb2->set_uuid2 && 549 sb1->set_uuid3 == sb2->set_uuid3; 550 } 551 552 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 553 { 554 int ret; 555 mdp_super_t *tmp1, *tmp2; 556 557 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 558 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 559 560 if (!tmp1 || !tmp2) { 561 ret = 0; 562 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 563 goto abort; 564 } 565 566 *tmp1 = *sb1; 567 *tmp2 = *sb2; 568 569 /* 570 * nr_disks is not constant 571 */ 572 tmp1->nr_disks = 0; 573 tmp2->nr_disks = 0; 574 575 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 576 abort: 577 kfree(tmp1); 578 kfree(tmp2); 579 return ret; 580 } 581 582 583 static u32 md_csum_fold(u32 csum) 584 { 585 csum = (csum & 0xffff) + (csum >> 16); 586 return (csum & 0xffff) + (csum >> 16); 587 } 588 589 static unsigned int calc_sb_csum(mdp_super_t * sb) 590 { 591 u64 newcsum = 0; 592 u32 *sb32 = (u32*)sb; 593 int i; 594 unsigned int disk_csum, csum; 595 596 disk_csum = sb->sb_csum; 597 sb->sb_csum = 0; 598 599 for (i = 0; i < MD_SB_BYTES/4 ; i++) 600 newcsum += sb32[i]; 601 csum = (newcsum & 0xffffffff) + (newcsum>>32); 602 603 604 #ifdef CONFIG_ALPHA 605 /* This used to use csum_partial, which was wrong for several 606 * reasons including that different results are returned on 607 * different architectures. It isn't critical that we get exactly 608 * the same return value as before (we always csum_fold before 609 * testing, and that removes any differences). However as we 610 * know that csum_partial always returned a 16bit value on 611 * alphas, do a fold to maximise conformity to previous behaviour. 612 */ 613 sb->sb_csum = md_csum_fold(disk_csum); 614 #else 615 sb->sb_csum = disk_csum; 616 #endif 617 return csum; 618 } 619 620 621 /* 622 * Handle superblock details. 623 * We want to be able to handle multiple superblock formats 624 * so we have a common interface to them all, and an array of 625 * different handlers. 626 * We rely on user-space to write the initial superblock, and support 627 * reading and updating of superblocks. 628 * Interface methods are: 629 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version) 630 * loads and validates a superblock on dev. 631 * if refdev != NULL, compare superblocks on both devices 632 * Return: 633 * 0 - dev has a superblock that is compatible with refdev 634 * 1 - dev has a superblock that is compatible and newer than refdev 635 * so dev should be used as the refdev in future 636 * -EINVAL superblock incompatible or invalid 637 * -othererror e.g. -EIO 638 * 639 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev) 640 * Verify that dev is acceptable into mddev. 641 * The first time, mddev->raid_disks will be 0, and data from 642 * dev should be merged in. Subsequent calls check that dev 643 * is new enough. Return 0 or -EINVAL 644 * 645 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev) 646 * Update the superblock for rdev with data in mddev 647 * This does not write to disc. 648 * 649 */ 650 651 struct super_type { 652 char *name; 653 struct module *owner; 654 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, 655 int minor_version); 656 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev); 657 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev); 658 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev, 659 sector_t num_sectors); 660 }; 661 662 /* 663 * load_super for 0.90.0 664 */ 665 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 666 { 667 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 668 mdp_super_t *sb; 669 int ret; 670 671 /* 672 * Calculate the position of the superblock (512byte sectors), 673 * it's at the end of the disk. 674 * 675 * It also happens to be a multiple of 4Kb. 676 */ 677 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 678 679 ret = read_disk_sb(rdev, MD_SB_BYTES); 680 if (ret) return ret; 681 682 ret = -EINVAL; 683 684 bdevname(rdev->bdev, b); 685 sb = (mdp_super_t*)page_address(rdev->sb_page); 686 687 if (sb->md_magic != MD_SB_MAGIC) { 688 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 689 b); 690 goto abort; 691 } 692 693 if (sb->major_version != 0 || 694 sb->minor_version < 90 || 695 sb->minor_version > 91) { 696 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 697 sb->major_version, sb->minor_version, 698 b); 699 goto abort; 700 } 701 702 if (sb->raid_disks <= 0) 703 goto abort; 704 705 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 706 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 707 b); 708 goto abort; 709 } 710 711 rdev->preferred_minor = sb->md_minor; 712 rdev->data_offset = 0; 713 rdev->sb_size = MD_SB_BYTES; 714 715 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) { 716 if (sb->level != 1 && sb->level != 4 717 && sb->level != 5 && sb->level != 6 718 && sb->level != 10) { 719 /* FIXME use a better test */ 720 printk(KERN_WARNING 721 "md: bitmaps not supported for this level.\n"); 722 goto abort; 723 } 724 } 725 726 if (sb->level == LEVEL_MULTIPATH) 727 rdev->desc_nr = -1; 728 else 729 rdev->desc_nr = sb->this_disk.number; 730 731 if (!refdev) { 732 ret = 1; 733 } else { 734 __u64 ev1, ev2; 735 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page); 736 if (!uuid_equal(refsb, sb)) { 737 printk(KERN_WARNING "md: %s has different UUID to %s\n", 738 b, bdevname(refdev->bdev,b2)); 739 goto abort; 740 } 741 if (!sb_equal(refsb, sb)) { 742 printk(KERN_WARNING "md: %s has same UUID" 743 " but different superblock to %s\n", 744 b, bdevname(refdev->bdev, b2)); 745 goto abort; 746 } 747 ev1 = md_event(sb); 748 ev2 = md_event(refsb); 749 if (ev1 > ev2) 750 ret = 1; 751 else 752 ret = 0; 753 } 754 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2; 755 756 if (rdev->size < sb->size && sb->level > 1) 757 /* "this cannot possibly happen" ... */ 758 ret = -EINVAL; 759 760 abort: 761 return ret; 762 } 763 764 /* 765 * validate_super for 0.90.0 766 */ 767 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev) 768 { 769 mdp_disk_t *desc; 770 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page); 771 __u64 ev1 = md_event(sb); 772 773 rdev->raid_disk = -1; 774 clear_bit(Faulty, &rdev->flags); 775 clear_bit(In_sync, &rdev->flags); 776 clear_bit(WriteMostly, &rdev->flags); 777 clear_bit(BarriersNotsupp, &rdev->flags); 778 779 if (mddev->raid_disks == 0) { 780 mddev->major_version = 0; 781 mddev->minor_version = sb->minor_version; 782 mddev->patch_version = sb->patch_version; 783 mddev->external = 0; 784 mddev->chunk_size = sb->chunk_size; 785 mddev->ctime = sb->ctime; 786 mddev->utime = sb->utime; 787 mddev->level = sb->level; 788 mddev->clevel[0] = 0; 789 mddev->layout = sb->layout; 790 mddev->raid_disks = sb->raid_disks; 791 mddev->size = sb->size; 792 mddev->events = ev1; 793 mddev->bitmap_offset = 0; 794 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 795 796 if (mddev->minor_version >= 91) { 797 mddev->reshape_position = sb->reshape_position; 798 mddev->delta_disks = sb->delta_disks; 799 mddev->new_level = sb->new_level; 800 mddev->new_layout = sb->new_layout; 801 mddev->new_chunk = sb->new_chunk; 802 } else { 803 mddev->reshape_position = MaxSector; 804 mddev->delta_disks = 0; 805 mddev->new_level = mddev->level; 806 mddev->new_layout = mddev->layout; 807 mddev->new_chunk = mddev->chunk_size; 808 } 809 810 if (sb->state & (1<<MD_SB_CLEAN)) 811 mddev->recovery_cp = MaxSector; 812 else { 813 if (sb->events_hi == sb->cp_events_hi && 814 sb->events_lo == sb->cp_events_lo) { 815 mddev->recovery_cp = sb->recovery_cp; 816 } else 817 mddev->recovery_cp = 0; 818 } 819 820 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 821 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 822 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 823 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 824 825 mddev->max_disks = MD_SB_DISKS; 826 827 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 828 mddev->bitmap_file == NULL) 829 mddev->bitmap_offset = mddev->default_bitmap_offset; 830 831 } else if (mddev->pers == NULL) { 832 /* Insist on good event counter while assembling */ 833 ++ev1; 834 if (ev1 < mddev->events) 835 return -EINVAL; 836 } else if (mddev->bitmap) { 837 /* if adding to array with a bitmap, then we can accept an 838 * older device ... but not too old. 839 */ 840 if (ev1 < mddev->bitmap->events_cleared) 841 return 0; 842 } else { 843 if (ev1 < mddev->events) 844 /* just a hot-add of a new device, leave raid_disk at -1 */ 845 return 0; 846 } 847 848 if (mddev->level != LEVEL_MULTIPATH) { 849 desc = sb->disks + rdev->desc_nr; 850 851 if (desc->state & (1<<MD_DISK_FAULTY)) 852 set_bit(Faulty, &rdev->flags); 853 else if (desc->state & (1<<MD_DISK_SYNC) /* && 854 desc->raid_disk < mddev->raid_disks */) { 855 set_bit(In_sync, &rdev->flags); 856 rdev->raid_disk = desc->raid_disk; 857 } 858 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 859 set_bit(WriteMostly, &rdev->flags); 860 } else /* MULTIPATH are always insync */ 861 set_bit(In_sync, &rdev->flags); 862 return 0; 863 } 864 865 /* 866 * sync_super for 0.90.0 867 */ 868 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev) 869 { 870 mdp_super_t *sb; 871 struct list_head *tmp; 872 mdk_rdev_t *rdev2; 873 int next_spare = mddev->raid_disks; 874 875 876 /* make rdev->sb match mddev data.. 877 * 878 * 1/ zero out disks 879 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 880 * 3/ any empty disks < next_spare become removed 881 * 882 * disks[0] gets initialised to REMOVED because 883 * we cannot be sure from other fields if it has 884 * been initialised or not. 885 */ 886 int i; 887 int active=0, working=0,failed=0,spare=0,nr_disks=0; 888 889 rdev->sb_size = MD_SB_BYTES; 890 891 sb = (mdp_super_t*)page_address(rdev->sb_page); 892 893 memset(sb, 0, sizeof(*sb)); 894 895 sb->md_magic = MD_SB_MAGIC; 896 sb->major_version = mddev->major_version; 897 sb->patch_version = mddev->patch_version; 898 sb->gvalid_words = 0; /* ignored */ 899 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 900 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 901 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 902 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 903 904 sb->ctime = mddev->ctime; 905 sb->level = mddev->level; 906 sb->size = mddev->size; 907 sb->raid_disks = mddev->raid_disks; 908 sb->md_minor = mddev->md_minor; 909 sb->not_persistent = 0; 910 sb->utime = mddev->utime; 911 sb->state = 0; 912 sb->events_hi = (mddev->events>>32); 913 sb->events_lo = (u32)mddev->events; 914 915 if (mddev->reshape_position == MaxSector) 916 sb->minor_version = 90; 917 else { 918 sb->minor_version = 91; 919 sb->reshape_position = mddev->reshape_position; 920 sb->new_level = mddev->new_level; 921 sb->delta_disks = mddev->delta_disks; 922 sb->new_layout = mddev->new_layout; 923 sb->new_chunk = mddev->new_chunk; 924 } 925 mddev->minor_version = sb->minor_version; 926 if (mddev->in_sync) 927 { 928 sb->recovery_cp = mddev->recovery_cp; 929 sb->cp_events_hi = (mddev->events>>32); 930 sb->cp_events_lo = (u32)mddev->events; 931 if (mddev->recovery_cp == MaxSector) 932 sb->state = (1<< MD_SB_CLEAN); 933 } else 934 sb->recovery_cp = 0; 935 936 sb->layout = mddev->layout; 937 sb->chunk_size = mddev->chunk_size; 938 939 if (mddev->bitmap && mddev->bitmap_file == NULL) 940 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 941 942 sb->disks[0].state = (1<<MD_DISK_REMOVED); 943 rdev_for_each(rdev2, tmp, mddev) { 944 mdp_disk_t *d; 945 int desc_nr; 946 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 947 && !test_bit(Faulty, &rdev2->flags)) 948 desc_nr = rdev2->raid_disk; 949 else 950 desc_nr = next_spare++; 951 rdev2->desc_nr = desc_nr; 952 d = &sb->disks[rdev2->desc_nr]; 953 nr_disks++; 954 d->number = rdev2->desc_nr; 955 d->major = MAJOR(rdev2->bdev->bd_dev); 956 d->minor = MINOR(rdev2->bdev->bd_dev); 957 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags) 958 && !test_bit(Faulty, &rdev2->flags)) 959 d->raid_disk = rdev2->raid_disk; 960 else 961 d->raid_disk = rdev2->desc_nr; /* compatibility */ 962 if (test_bit(Faulty, &rdev2->flags)) 963 d->state = (1<<MD_DISK_FAULTY); 964 else if (test_bit(In_sync, &rdev2->flags)) { 965 d->state = (1<<MD_DISK_ACTIVE); 966 d->state |= (1<<MD_DISK_SYNC); 967 active++; 968 working++; 969 } else { 970 d->state = 0; 971 spare++; 972 working++; 973 } 974 if (test_bit(WriteMostly, &rdev2->flags)) 975 d->state |= (1<<MD_DISK_WRITEMOSTLY); 976 } 977 /* now set the "removed" and "faulty" bits on any missing devices */ 978 for (i=0 ; i < mddev->raid_disks ; i++) { 979 mdp_disk_t *d = &sb->disks[i]; 980 if (d->state == 0 && d->number == 0) { 981 d->number = i; 982 d->raid_disk = i; 983 d->state = (1<<MD_DISK_REMOVED); 984 d->state |= (1<<MD_DISK_FAULTY); 985 failed++; 986 } 987 } 988 sb->nr_disks = nr_disks; 989 sb->active_disks = active; 990 sb->working_disks = working; 991 sb->failed_disks = failed; 992 sb->spare_disks = spare; 993 994 sb->this_disk = sb->disks[rdev->desc_nr]; 995 sb->sb_csum = calc_sb_csum(sb); 996 } 997 998 /* 999 * rdev_size_change for 0.90.0 1000 */ 1001 static unsigned long long 1002 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1003 { 1004 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1005 return 0; /* component must fit device */ 1006 if (rdev->mddev->bitmap_offset) 1007 return 0; /* can't move bitmap */ 1008 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 1009 if (!num_sectors || num_sectors > rdev->sb_start) 1010 num_sectors = rdev->sb_start; 1011 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1012 rdev->sb_page); 1013 md_super_wait(rdev->mddev); 1014 return num_sectors / 2; /* kB for sysfs */ 1015 } 1016 1017 1018 /* 1019 * version 1 superblock 1020 */ 1021 1022 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1023 { 1024 __le32 disk_csum; 1025 u32 csum; 1026 unsigned long long newcsum; 1027 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1028 __le32 *isuper = (__le32*)sb; 1029 int i; 1030 1031 disk_csum = sb->sb_csum; 1032 sb->sb_csum = 0; 1033 newcsum = 0; 1034 for (i=0; size>=4; size -= 4 ) 1035 newcsum += le32_to_cpu(*isuper++); 1036 1037 if (size == 2) 1038 newcsum += le16_to_cpu(*(__le16*) isuper); 1039 1040 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1041 sb->sb_csum = disk_csum; 1042 return cpu_to_le32(csum); 1043 } 1044 1045 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version) 1046 { 1047 struct mdp_superblock_1 *sb; 1048 int ret; 1049 sector_t sb_start; 1050 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1051 int bmask; 1052 1053 /* 1054 * Calculate the position of the superblock in 512byte sectors. 1055 * It is always aligned to a 4K boundary and 1056 * depeding on minor_version, it can be: 1057 * 0: At least 8K, but less than 12K, from end of device 1058 * 1: At start of device 1059 * 2: 4K from start of device. 1060 */ 1061 switch(minor_version) { 1062 case 0: 1063 sb_start = rdev->bdev->bd_inode->i_size >> 9; 1064 sb_start -= 8*2; 1065 sb_start &= ~(sector_t)(4*2-1); 1066 break; 1067 case 1: 1068 sb_start = 0; 1069 break; 1070 case 2: 1071 sb_start = 8; 1072 break; 1073 default: 1074 return -EINVAL; 1075 } 1076 rdev->sb_start = sb_start; 1077 1078 /* superblock is rarely larger than 1K, but it can be larger, 1079 * and it is safe to read 4k, so we do that 1080 */ 1081 ret = read_disk_sb(rdev, 4096); 1082 if (ret) return ret; 1083 1084 1085 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1086 1087 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1088 sb->major_version != cpu_to_le32(1) || 1089 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1090 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1091 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1092 return -EINVAL; 1093 1094 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1095 printk("md: invalid superblock checksum on %s\n", 1096 bdevname(rdev->bdev,b)); 1097 return -EINVAL; 1098 } 1099 if (le64_to_cpu(sb->data_size) < 10) { 1100 printk("md: data_size too small on %s\n", 1101 bdevname(rdev->bdev,b)); 1102 return -EINVAL; 1103 } 1104 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) { 1105 if (sb->level != cpu_to_le32(1) && 1106 sb->level != cpu_to_le32(4) && 1107 sb->level != cpu_to_le32(5) && 1108 sb->level != cpu_to_le32(6) && 1109 sb->level != cpu_to_le32(10)) { 1110 printk(KERN_WARNING 1111 "md: bitmaps not supported for this level.\n"); 1112 return -EINVAL; 1113 } 1114 } 1115 1116 rdev->preferred_minor = 0xffff; 1117 rdev->data_offset = le64_to_cpu(sb->data_offset); 1118 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1119 1120 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1121 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1; 1122 if (rdev->sb_size & bmask) 1123 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1124 1125 if (minor_version 1126 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1127 return -EINVAL; 1128 1129 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1130 rdev->desc_nr = -1; 1131 else 1132 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1133 1134 if (!refdev) { 1135 ret = 1; 1136 } else { 1137 __u64 ev1, ev2; 1138 struct mdp_superblock_1 *refsb = 1139 (struct mdp_superblock_1*)page_address(refdev->sb_page); 1140 1141 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1142 sb->level != refsb->level || 1143 sb->layout != refsb->layout || 1144 sb->chunksize != refsb->chunksize) { 1145 printk(KERN_WARNING "md: %s has strangely different" 1146 " superblock to %s\n", 1147 bdevname(rdev->bdev,b), 1148 bdevname(refdev->bdev,b2)); 1149 return -EINVAL; 1150 } 1151 ev1 = le64_to_cpu(sb->events); 1152 ev2 = le64_to_cpu(refsb->events); 1153 1154 if (ev1 > ev2) 1155 ret = 1; 1156 else 1157 ret = 0; 1158 } 1159 if (minor_version) 1160 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2; 1161 else 1162 rdev->size = rdev->sb_start / 2; 1163 if (rdev->size < le64_to_cpu(sb->data_size)/2) 1164 return -EINVAL; 1165 rdev->size = le64_to_cpu(sb->data_size)/2; 1166 if (le32_to_cpu(sb->chunksize)) 1167 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1); 1168 1169 if (le64_to_cpu(sb->size) > rdev->size*2) 1170 return -EINVAL; 1171 return ret; 1172 } 1173 1174 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev) 1175 { 1176 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1177 __u64 ev1 = le64_to_cpu(sb->events); 1178 1179 rdev->raid_disk = -1; 1180 clear_bit(Faulty, &rdev->flags); 1181 clear_bit(In_sync, &rdev->flags); 1182 clear_bit(WriteMostly, &rdev->flags); 1183 clear_bit(BarriersNotsupp, &rdev->flags); 1184 1185 if (mddev->raid_disks == 0) { 1186 mddev->major_version = 1; 1187 mddev->patch_version = 0; 1188 mddev->external = 0; 1189 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9; 1190 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1191 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1192 mddev->level = le32_to_cpu(sb->level); 1193 mddev->clevel[0] = 0; 1194 mddev->layout = le32_to_cpu(sb->layout); 1195 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1196 mddev->size = le64_to_cpu(sb->size)/2; 1197 mddev->events = ev1; 1198 mddev->bitmap_offset = 0; 1199 mddev->default_bitmap_offset = 1024 >> 9; 1200 1201 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1202 memcpy(mddev->uuid, sb->set_uuid, 16); 1203 1204 mddev->max_disks = (4096-256)/2; 1205 1206 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1207 mddev->bitmap_file == NULL ) 1208 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset); 1209 1210 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1211 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1212 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1213 mddev->new_level = le32_to_cpu(sb->new_level); 1214 mddev->new_layout = le32_to_cpu(sb->new_layout); 1215 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9; 1216 } else { 1217 mddev->reshape_position = MaxSector; 1218 mddev->delta_disks = 0; 1219 mddev->new_level = mddev->level; 1220 mddev->new_layout = mddev->layout; 1221 mddev->new_chunk = mddev->chunk_size; 1222 } 1223 1224 } else if (mddev->pers == NULL) { 1225 /* Insist of good event counter while assembling */ 1226 ++ev1; 1227 if (ev1 < mddev->events) 1228 return -EINVAL; 1229 } else if (mddev->bitmap) { 1230 /* If adding to array with a bitmap, then we can accept an 1231 * older device, but not too old. 1232 */ 1233 if (ev1 < mddev->bitmap->events_cleared) 1234 return 0; 1235 } else { 1236 if (ev1 < mddev->events) 1237 /* just a hot-add of a new device, leave raid_disk at -1 */ 1238 return 0; 1239 } 1240 if (mddev->level != LEVEL_MULTIPATH) { 1241 int role; 1242 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1243 switch(role) { 1244 case 0xffff: /* spare */ 1245 break; 1246 case 0xfffe: /* faulty */ 1247 set_bit(Faulty, &rdev->flags); 1248 break; 1249 default: 1250 if ((le32_to_cpu(sb->feature_map) & 1251 MD_FEATURE_RECOVERY_OFFSET)) 1252 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1253 else 1254 set_bit(In_sync, &rdev->flags); 1255 rdev->raid_disk = role; 1256 break; 1257 } 1258 if (sb->devflags & WriteMostly1) 1259 set_bit(WriteMostly, &rdev->flags); 1260 } else /* MULTIPATH are always insync */ 1261 set_bit(In_sync, &rdev->flags); 1262 1263 return 0; 1264 } 1265 1266 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev) 1267 { 1268 struct mdp_superblock_1 *sb; 1269 struct list_head *tmp; 1270 mdk_rdev_t *rdev2; 1271 int max_dev, i; 1272 /* make rdev->sb match mddev and rdev data. */ 1273 1274 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page); 1275 1276 sb->feature_map = 0; 1277 sb->pad0 = 0; 1278 sb->recovery_offset = cpu_to_le64(0); 1279 memset(sb->pad1, 0, sizeof(sb->pad1)); 1280 memset(sb->pad2, 0, sizeof(sb->pad2)); 1281 memset(sb->pad3, 0, sizeof(sb->pad3)); 1282 1283 sb->utime = cpu_to_le64((__u64)mddev->utime); 1284 sb->events = cpu_to_le64(mddev->events); 1285 if (mddev->in_sync) 1286 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1287 else 1288 sb->resync_offset = cpu_to_le64(0); 1289 1290 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1291 1292 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1293 sb->size = cpu_to_le64(mddev->size<<1); 1294 1295 if (mddev->bitmap && mddev->bitmap_file == NULL) { 1296 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset); 1297 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1298 } 1299 1300 if (rdev->raid_disk >= 0 && 1301 !test_bit(In_sync, &rdev->flags) && 1302 rdev->recovery_offset > 0) { 1303 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1304 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset); 1305 } 1306 1307 if (mddev->reshape_position != MaxSector) { 1308 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1309 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1310 sb->new_layout = cpu_to_le32(mddev->new_layout); 1311 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1312 sb->new_level = cpu_to_le32(mddev->new_level); 1313 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9); 1314 } 1315 1316 max_dev = 0; 1317 rdev_for_each(rdev2, tmp, mddev) 1318 if (rdev2->desc_nr+1 > max_dev) 1319 max_dev = rdev2->desc_nr+1; 1320 1321 if (max_dev > le32_to_cpu(sb->max_dev)) 1322 sb->max_dev = cpu_to_le32(max_dev); 1323 for (i=0; i<max_dev;i++) 1324 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1325 1326 rdev_for_each(rdev2, tmp, mddev) { 1327 i = rdev2->desc_nr; 1328 if (test_bit(Faulty, &rdev2->flags)) 1329 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1330 else if (test_bit(In_sync, &rdev2->flags)) 1331 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1332 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0) 1333 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1334 else 1335 sb->dev_roles[i] = cpu_to_le16(0xffff); 1336 } 1337 1338 sb->sb_csum = calc_sb_1_csum(sb); 1339 } 1340 1341 static unsigned long long 1342 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors) 1343 { 1344 struct mdp_superblock_1 *sb; 1345 sector_t max_sectors; 1346 if (num_sectors && num_sectors < rdev->mddev->size * 2) 1347 return 0; /* component must fit device */ 1348 if (rdev->sb_start < rdev->data_offset) { 1349 /* minor versions 1 and 2; superblock before data */ 1350 max_sectors = rdev->bdev->bd_inode->i_size >> 9; 1351 max_sectors -= rdev->data_offset; 1352 if (!num_sectors || num_sectors > max_sectors) 1353 num_sectors = max_sectors; 1354 } else if (rdev->mddev->bitmap_offset) { 1355 /* minor version 0 with bitmap we can't move */ 1356 return 0; 1357 } else { 1358 /* minor version 0; superblock after data */ 1359 sector_t sb_start; 1360 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2; 1361 sb_start &= ~(sector_t)(4*2 - 1); 1362 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start; 1363 if (!num_sectors || num_sectors > max_sectors) 1364 num_sectors = max_sectors; 1365 rdev->sb_start = sb_start; 1366 } 1367 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page); 1368 sb->data_size = cpu_to_le64(num_sectors); 1369 sb->super_offset = rdev->sb_start; 1370 sb->sb_csum = calc_sb_1_csum(sb); 1371 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1372 rdev->sb_page); 1373 md_super_wait(rdev->mddev); 1374 return num_sectors / 2; /* kB for sysfs */ 1375 } 1376 1377 static struct super_type super_types[] = { 1378 [0] = { 1379 .name = "0.90.0", 1380 .owner = THIS_MODULE, 1381 .load_super = super_90_load, 1382 .validate_super = super_90_validate, 1383 .sync_super = super_90_sync, 1384 .rdev_size_change = super_90_rdev_size_change, 1385 }, 1386 [1] = { 1387 .name = "md-1", 1388 .owner = THIS_MODULE, 1389 .load_super = super_1_load, 1390 .validate_super = super_1_validate, 1391 .sync_super = super_1_sync, 1392 .rdev_size_change = super_1_rdev_size_change, 1393 }, 1394 }; 1395 1396 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2) 1397 { 1398 mdk_rdev_t *rdev, *rdev2; 1399 1400 rcu_read_lock(); 1401 rdev_for_each_rcu(rdev, mddev1) 1402 rdev_for_each_rcu(rdev2, mddev2) 1403 if (rdev->bdev->bd_contains == 1404 rdev2->bdev->bd_contains) { 1405 rcu_read_unlock(); 1406 return 1; 1407 } 1408 rcu_read_unlock(); 1409 return 0; 1410 } 1411 1412 static LIST_HEAD(pending_raid_disks); 1413 1414 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev) 1415 { 1416 char b[BDEVNAME_SIZE]; 1417 struct kobject *ko; 1418 char *s; 1419 int err; 1420 1421 if (rdev->mddev) { 1422 MD_BUG(); 1423 return -EINVAL; 1424 } 1425 1426 /* prevent duplicates */ 1427 if (find_rdev(mddev, rdev->bdev->bd_dev)) 1428 return -EEXIST; 1429 1430 /* make sure rdev->size exceeds mddev->size */ 1431 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) { 1432 if (mddev->pers) { 1433 /* Cannot change size, so fail 1434 * If mddev->level <= 0, then we don't care 1435 * about aligning sizes (e.g. linear) 1436 */ 1437 if (mddev->level > 0) 1438 return -ENOSPC; 1439 } else 1440 mddev->size = rdev->size; 1441 } 1442 1443 /* Verify rdev->desc_nr is unique. 1444 * If it is -1, assign a free number, else 1445 * check number is not in use 1446 */ 1447 if (rdev->desc_nr < 0) { 1448 int choice = 0; 1449 if (mddev->pers) choice = mddev->raid_disks; 1450 while (find_rdev_nr(mddev, choice)) 1451 choice++; 1452 rdev->desc_nr = choice; 1453 } else { 1454 if (find_rdev_nr(mddev, rdev->desc_nr)) 1455 return -EBUSY; 1456 } 1457 bdevname(rdev->bdev,b); 1458 while ( (s=strchr(b, '/')) != NULL) 1459 *s = '!'; 1460 1461 rdev->mddev = mddev; 1462 printk(KERN_INFO "md: bind<%s>\n", b); 1463 1464 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 1465 goto fail; 1466 1467 if (rdev->bdev->bd_part) 1468 ko = &rdev->bdev->bd_part->dev.kobj; 1469 else 1470 ko = &rdev->bdev->bd_disk->dev.kobj; 1471 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) { 1472 kobject_del(&rdev->kobj); 1473 goto fail; 1474 } 1475 list_add_rcu(&rdev->same_set, &mddev->disks); 1476 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk); 1477 return 0; 1478 1479 fail: 1480 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 1481 b, mdname(mddev)); 1482 return err; 1483 } 1484 1485 static void md_delayed_delete(struct work_struct *ws) 1486 { 1487 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work); 1488 kobject_del(&rdev->kobj); 1489 kobject_put(&rdev->kobj); 1490 } 1491 1492 static void unbind_rdev_from_array(mdk_rdev_t * rdev) 1493 { 1494 char b[BDEVNAME_SIZE]; 1495 if (!rdev->mddev) { 1496 MD_BUG(); 1497 return; 1498 } 1499 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk); 1500 list_del_rcu(&rdev->same_set); 1501 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 1502 rdev->mddev = NULL; 1503 sysfs_remove_link(&rdev->kobj, "block"); 1504 1505 /* We need to delay this, otherwise we can deadlock when 1506 * writing to 'remove' to "dev/state". We also need 1507 * to delay it due to rcu usage. 1508 */ 1509 synchronize_rcu(); 1510 INIT_WORK(&rdev->del_work, md_delayed_delete); 1511 kobject_get(&rdev->kobj); 1512 schedule_work(&rdev->del_work); 1513 } 1514 1515 /* 1516 * prevent the device from being mounted, repartitioned or 1517 * otherwise reused by a RAID array (or any other kernel 1518 * subsystem), by bd_claiming the device. 1519 */ 1520 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared) 1521 { 1522 int err = 0; 1523 struct block_device *bdev; 1524 char b[BDEVNAME_SIZE]; 1525 1526 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE); 1527 if (IS_ERR(bdev)) { 1528 printk(KERN_ERR "md: could not open %s.\n", 1529 __bdevname(dev, b)); 1530 return PTR_ERR(bdev); 1531 } 1532 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev); 1533 if (err) { 1534 printk(KERN_ERR "md: could not bd_claim %s.\n", 1535 bdevname(bdev, b)); 1536 blkdev_put(bdev); 1537 return err; 1538 } 1539 if (!shared) 1540 set_bit(AllReserved, &rdev->flags); 1541 rdev->bdev = bdev; 1542 return err; 1543 } 1544 1545 static void unlock_rdev(mdk_rdev_t *rdev) 1546 { 1547 struct block_device *bdev = rdev->bdev; 1548 rdev->bdev = NULL; 1549 if (!bdev) 1550 MD_BUG(); 1551 bd_release(bdev); 1552 blkdev_put(bdev); 1553 } 1554 1555 void md_autodetect_dev(dev_t dev); 1556 1557 static void export_rdev(mdk_rdev_t * rdev) 1558 { 1559 char b[BDEVNAME_SIZE]; 1560 printk(KERN_INFO "md: export_rdev(%s)\n", 1561 bdevname(rdev->bdev,b)); 1562 if (rdev->mddev) 1563 MD_BUG(); 1564 free_disk_sb(rdev); 1565 #ifndef MODULE 1566 if (test_bit(AutoDetected, &rdev->flags)) 1567 md_autodetect_dev(rdev->bdev->bd_dev); 1568 #endif 1569 unlock_rdev(rdev); 1570 kobject_put(&rdev->kobj); 1571 } 1572 1573 static void kick_rdev_from_array(mdk_rdev_t * rdev) 1574 { 1575 unbind_rdev_from_array(rdev); 1576 export_rdev(rdev); 1577 } 1578 1579 static void export_array(mddev_t *mddev) 1580 { 1581 struct list_head *tmp; 1582 mdk_rdev_t *rdev; 1583 1584 rdev_for_each(rdev, tmp, mddev) { 1585 if (!rdev->mddev) { 1586 MD_BUG(); 1587 continue; 1588 } 1589 kick_rdev_from_array(rdev); 1590 } 1591 if (!list_empty(&mddev->disks)) 1592 MD_BUG(); 1593 mddev->raid_disks = 0; 1594 mddev->major_version = 0; 1595 } 1596 1597 static void print_desc(mdp_disk_t *desc) 1598 { 1599 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 1600 desc->major,desc->minor,desc->raid_disk,desc->state); 1601 } 1602 1603 static void print_sb(mdp_super_t *sb) 1604 { 1605 int i; 1606 1607 printk(KERN_INFO 1608 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 1609 sb->major_version, sb->minor_version, sb->patch_version, 1610 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 1611 sb->ctime); 1612 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 1613 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 1614 sb->md_minor, sb->layout, sb->chunk_size); 1615 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 1616 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 1617 sb->utime, sb->state, sb->active_disks, sb->working_disks, 1618 sb->failed_disks, sb->spare_disks, 1619 sb->sb_csum, (unsigned long)sb->events_lo); 1620 1621 printk(KERN_INFO); 1622 for (i = 0; i < MD_SB_DISKS; i++) { 1623 mdp_disk_t *desc; 1624 1625 desc = sb->disks + i; 1626 if (desc->number || desc->major || desc->minor || 1627 desc->raid_disk || (desc->state && (desc->state != 4))) { 1628 printk(" D %2d: ", i); 1629 print_desc(desc); 1630 } 1631 } 1632 printk(KERN_INFO "md: THIS: "); 1633 print_desc(&sb->this_disk); 1634 1635 } 1636 1637 static void print_rdev(mdk_rdev_t *rdev) 1638 { 1639 char b[BDEVNAME_SIZE]; 1640 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n", 1641 bdevname(rdev->bdev,b), (unsigned long long)rdev->size, 1642 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 1643 rdev->desc_nr); 1644 if (rdev->sb_loaded) { 1645 printk(KERN_INFO "md: rdev superblock:\n"); 1646 print_sb((mdp_super_t*)page_address(rdev->sb_page)); 1647 } else 1648 printk(KERN_INFO "md: no rdev superblock!\n"); 1649 } 1650 1651 static void md_print_devices(void) 1652 { 1653 struct list_head *tmp, *tmp2; 1654 mdk_rdev_t *rdev; 1655 mddev_t *mddev; 1656 char b[BDEVNAME_SIZE]; 1657 1658 printk("\n"); 1659 printk("md: **********************************\n"); 1660 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 1661 printk("md: **********************************\n"); 1662 for_each_mddev(mddev, tmp) { 1663 1664 if (mddev->bitmap) 1665 bitmap_print_sb(mddev->bitmap); 1666 else 1667 printk("%s: ", mdname(mddev)); 1668 rdev_for_each(rdev, tmp2, mddev) 1669 printk("<%s>", bdevname(rdev->bdev,b)); 1670 printk("\n"); 1671 1672 rdev_for_each(rdev, tmp2, mddev) 1673 print_rdev(rdev); 1674 } 1675 printk("md: **********************************\n"); 1676 printk("\n"); 1677 } 1678 1679 1680 static void sync_sbs(mddev_t * mddev, int nospares) 1681 { 1682 /* Update each superblock (in-memory image), but 1683 * if we are allowed to, skip spares which already 1684 * have the right event counter, or have one earlier 1685 * (which would mean they aren't being marked as dirty 1686 * with the rest of the array) 1687 */ 1688 mdk_rdev_t *rdev; 1689 struct list_head *tmp; 1690 1691 rdev_for_each(rdev, tmp, mddev) { 1692 if (rdev->sb_events == mddev->events || 1693 (nospares && 1694 rdev->raid_disk < 0 && 1695 (rdev->sb_events&1)==0 && 1696 rdev->sb_events+1 == mddev->events)) { 1697 /* Don't update this superblock */ 1698 rdev->sb_loaded = 2; 1699 } else { 1700 super_types[mddev->major_version]. 1701 sync_super(mddev, rdev); 1702 rdev->sb_loaded = 1; 1703 } 1704 } 1705 } 1706 1707 static void md_update_sb(mddev_t * mddev, int force_change) 1708 { 1709 struct list_head *tmp; 1710 mdk_rdev_t *rdev; 1711 int sync_req; 1712 int nospares = 0; 1713 1714 if (mddev->external) 1715 return; 1716 repeat: 1717 spin_lock_irq(&mddev->write_lock); 1718 1719 set_bit(MD_CHANGE_PENDING, &mddev->flags); 1720 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 1721 force_change = 1; 1722 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 1723 /* just a clean<-> dirty transition, possibly leave spares alone, 1724 * though if events isn't the right even/odd, we will have to do 1725 * spares after all 1726 */ 1727 nospares = 1; 1728 if (force_change) 1729 nospares = 0; 1730 if (mddev->degraded) 1731 /* If the array is degraded, then skipping spares is both 1732 * dangerous and fairly pointless. 1733 * Dangerous because a device that was removed from the array 1734 * might have a event_count that still looks up-to-date, 1735 * so it can be re-added without a resync. 1736 * Pointless because if there are any spares to skip, 1737 * then a recovery will happen and soon that array won't 1738 * be degraded any more and the spare can go back to sleep then. 1739 */ 1740 nospares = 0; 1741 1742 sync_req = mddev->in_sync; 1743 mddev->utime = get_seconds(); 1744 1745 /* If this is just a dirty<->clean transition, and the array is clean 1746 * and 'events' is odd, we can roll back to the previous clean state */ 1747 if (nospares 1748 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 1749 && (mddev->events & 1) 1750 && mddev->events != 1) 1751 mddev->events--; 1752 else { 1753 /* otherwise we have to go forward and ... */ 1754 mddev->events ++; 1755 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */ 1756 /* .. if the array isn't clean, insist on an odd 'events' */ 1757 if ((mddev->events&1)==0) { 1758 mddev->events++; 1759 nospares = 0; 1760 } 1761 } else { 1762 /* otherwise insist on an even 'events' (for clean states) */ 1763 if ((mddev->events&1)) { 1764 mddev->events++; 1765 nospares = 0; 1766 } 1767 } 1768 } 1769 1770 if (!mddev->events) { 1771 /* 1772 * oops, this 64-bit counter should never wrap. 1773 * Either we are in around ~1 trillion A.C., assuming 1774 * 1 reboot per second, or we have a bug: 1775 */ 1776 MD_BUG(); 1777 mddev->events --; 1778 } 1779 1780 /* 1781 * do not write anything to disk if using 1782 * nonpersistent superblocks 1783 */ 1784 if (!mddev->persistent) { 1785 if (!mddev->external) 1786 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1787 1788 spin_unlock_irq(&mddev->write_lock); 1789 wake_up(&mddev->sb_wait); 1790 return; 1791 } 1792 sync_sbs(mddev, nospares); 1793 spin_unlock_irq(&mddev->write_lock); 1794 1795 dprintk(KERN_INFO 1796 "md: updating %s RAID superblock on device (in sync %d)\n", 1797 mdname(mddev),mddev->in_sync); 1798 1799 bitmap_update_sb(mddev->bitmap); 1800 rdev_for_each(rdev, tmp, mddev) { 1801 char b[BDEVNAME_SIZE]; 1802 dprintk(KERN_INFO "md: "); 1803 if (rdev->sb_loaded != 1) 1804 continue; /* no noise on spare devices */ 1805 if (test_bit(Faulty, &rdev->flags)) 1806 dprintk("(skipping faulty "); 1807 1808 dprintk("%s ", bdevname(rdev->bdev,b)); 1809 if (!test_bit(Faulty, &rdev->flags)) { 1810 md_super_write(mddev,rdev, 1811 rdev->sb_start, rdev->sb_size, 1812 rdev->sb_page); 1813 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n", 1814 bdevname(rdev->bdev,b), 1815 (unsigned long long)rdev->sb_start); 1816 rdev->sb_events = mddev->events; 1817 1818 } else 1819 dprintk(")\n"); 1820 if (mddev->level == LEVEL_MULTIPATH) 1821 /* only need to write one superblock... */ 1822 break; 1823 } 1824 md_super_wait(mddev); 1825 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 1826 1827 spin_lock_irq(&mddev->write_lock); 1828 if (mddev->in_sync != sync_req || 1829 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 1830 /* have to write it out again */ 1831 spin_unlock_irq(&mddev->write_lock); 1832 goto repeat; 1833 } 1834 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 1835 spin_unlock_irq(&mddev->write_lock); 1836 wake_up(&mddev->sb_wait); 1837 1838 } 1839 1840 /* words written to sysfs files may, or may not, be \n terminated. 1841 * We want to accept with case. For this we use cmd_match. 1842 */ 1843 static int cmd_match(const char *cmd, const char *str) 1844 { 1845 /* See if cmd, written into a sysfs file, matches 1846 * str. They must either be the same, or cmd can 1847 * have a trailing newline 1848 */ 1849 while (*cmd && *str && *cmd == *str) { 1850 cmd++; 1851 str++; 1852 } 1853 if (*cmd == '\n') 1854 cmd++; 1855 if (*str || *cmd) 1856 return 0; 1857 return 1; 1858 } 1859 1860 struct rdev_sysfs_entry { 1861 struct attribute attr; 1862 ssize_t (*show)(mdk_rdev_t *, char *); 1863 ssize_t (*store)(mdk_rdev_t *, const char *, size_t); 1864 }; 1865 1866 static ssize_t 1867 state_show(mdk_rdev_t *rdev, char *page) 1868 { 1869 char *sep = ""; 1870 size_t len = 0; 1871 1872 if (test_bit(Faulty, &rdev->flags)) { 1873 len+= sprintf(page+len, "%sfaulty",sep); 1874 sep = ","; 1875 } 1876 if (test_bit(In_sync, &rdev->flags)) { 1877 len += sprintf(page+len, "%sin_sync",sep); 1878 sep = ","; 1879 } 1880 if (test_bit(WriteMostly, &rdev->flags)) { 1881 len += sprintf(page+len, "%swrite_mostly",sep); 1882 sep = ","; 1883 } 1884 if (test_bit(Blocked, &rdev->flags)) { 1885 len += sprintf(page+len, "%sblocked", sep); 1886 sep = ","; 1887 } 1888 if (!test_bit(Faulty, &rdev->flags) && 1889 !test_bit(In_sync, &rdev->flags)) { 1890 len += sprintf(page+len, "%sspare", sep); 1891 sep = ","; 1892 } 1893 return len+sprintf(page+len, "\n"); 1894 } 1895 1896 static ssize_t 1897 state_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1898 { 1899 /* can write 1900 * faulty - simulates and error 1901 * remove - disconnects the device 1902 * writemostly - sets write_mostly 1903 * -writemostly - clears write_mostly 1904 * blocked - sets the Blocked flag 1905 * -blocked - clears the Blocked flag 1906 */ 1907 int err = -EINVAL; 1908 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 1909 md_error(rdev->mddev, rdev); 1910 err = 0; 1911 } else if (cmd_match(buf, "remove")) { 1912 if (rdev->raid_disk >= 0) 1913 err = -EBUSY; 1914 else { 1915 mddev_t *mddev = rdev->mddev; 1916 kick_rdev_from_array(rdev); 1917 if (mddev->pers) 1918 md_update_sb(mddev, 1); 1919 md_new_event(mddev); 1920 err = 0; 1921 } 1922 } else if (cmd_match(buf, "writemostly")) { 1923 set_bit(WriteMostly, &rdev->flags); 1924 err = 0; 1925 } else if (cmd_match(buf, "-writemostly")) { 1926 clear_bit(WriteMostly, &rdev->flags); 1927 err = 0; 1928 } else if (cmd_match(buf, "blocked")) { 1929 set_bit(Blocked, &rdev->flags); 1930 err = 0; 1931 } else if (cmd_match(buf, "-blocked")) { 1932 clear_bit(Blocked, &rdev->flags); 1933 wake_up(&rdev->blocked_wait); 1934 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 1935 md_wakeup_thread(rdev->mddev->thread); 1936 1937 err = 0; 1938 } 1939 if (!err) 1940 sysfs_notify(&rdev->kobj, NULL, "state"); 1941 return err ? err : len; 1942 } 1943 static struct rdev_sysfs_entry rdev_state = 1944 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 1945 1946 static ssize_t 1947 errors_show(mdk_rdev_t *rdev, char *page) 1948 { 1949 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 1950 } 1951 1952 static ssize_t 1953 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1954 { 1955 char *e; 1956 unsigned long n = simple_strtoul(buf, &e, 10); 1957 if (*buf && (*e == 0 || *e == '\n')) { 1958 atomic_set(&rdev->corrected_errors, n); 1959 return len; 1960 } 1961 return -EINVAL; 1962 } 1963 static struct rdev_sysfs_entry rdev_errors = 1964 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 1965 1966 static ssize_t 1967 slot_show(mdk_rdev_t *rdev, char *page) 1968 { 1969 if (rdev->raid_disk < 0) 1970 return sprintf(page, "none\n"); 1971 else 1972 return sprintf(page, "%d\n", rdev->raid_disk); 1973 } 1974 1975 static ssize_t 1976 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len) 1977 { 1978 char *e; 1979 int err; 1980 char nm[20]; 1981 int slot = simple_strtoul(buf, &e, 10); 1982 if (strncmp(buf, "none", 4)==0) 1983 slot = -1; 1984 else if (e==buf || (*e && *e!= '\n')) 1985 return -EINVAL; 1986 if (rdev->mddev->pers && slot == -1) { 1987 /* Setting 'slot' on an active array requires also 1988 * updating the 'rd%d' link, and communicating 1989 * with the personality with ->hot_*_disk. 1990 * For now we only support removing 1991 * failed/spare devices. This normally happens automatically, 1992 * but not when the metadata is externally managed. 1993 */ 1994 if (rdev->raid_disk == -1) 1995 return -EEXIST; 1996 /* personality does all needed checks */ 1997 if (rdev->mddev->pers->hot_add_disk == NULL) 1998 return -EINVAL; 1999 err = rdev->mddev->pers-> 2000 hot_remove_disk(rdev->mddev, rdev->raid_disk); 2001 if (err) 2002 return err; 2003 sprintf(nm, "rd%d", rdev->raid_disk); 2004 sysfs_remove_link(&rdev->mddev->kobj, nm); 2005 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2006 md_wakeup_thread(rdev->mddev->thread); 2007 } else if (rdev->mddev->pers) { 2008 mdk_rdev_t *rdev2; 2009 struct list_head *tmp; 2010 /* Activating a spare .. or possibly reactivating 2011 * if we every get bitmaps working here. 2012 */ 2013 2014 if (rdev->raid_disk != -1) 2015 return -EBUSY; 2016 2017 if (rdev->mddev->pers->hot_add_disk == NULL) 2018 return -EINVAL; 2019 2020 rdev_for_each(rdev2, tmp, rdev->mddev) 2021 if (rdev2->raid_disk == slot) 2022 return -EEXIST; 2023 2024 rdev->raid_disk = slot; 2025 if (test_bit(In_sync, &rdev->flags)) 2026 rdev->saved_raid_disk = slot; 2027 else 2028 rdev->saved_raid_disk = -1; 2029 err = rdev->mddev->pers-> 2030 hot_add_disk(rdev->mddev, rdev); 2031 if (err) { 2032 rdev->raid_disk = -1; 2033 return err; 2034 } else 2035 sysfs_notify(&rdev->kobj, NULL, "state"); 2036 sprintf(nm, "rd%d", rdev->raid_disk); 2037 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm)) 2038 printk(KERN_WARNING 2039 "md: cannot register " 2040 "%s for %s\n", 2041 nm, mdname(rdev->mddev)); 2042 2043 /* don't wakeup anyone, leave that to userspace. */ 2044 } else { 2045 if (slot >= rdev->mddev->raid_disks) 2046 return -ENOSPC; 2047 rdev->raid_disk = slot; 2048 /* assume it is working */ 2049 clear_bit(Faulty, &rdev->flags); 2050 clear_bit(WriteMostly, &rdev->flags); 2051 set_bit(In_sync, &rdev->flags); 2052 sysfs_notify(&rdev->kobj, NULL, "state"); 2053 } 2054 return len; 2055 } 2056 2057 2058 static struct rdev_sysfs_entry rdev_slot = 2059 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2060 2061 static ssize_t 2062 offset_show(mdk_rdev_t *rdev, char *page) 2063 { 2064 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2065 } 2066 2067 static ssize_t 2068 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2069 { 2070 char *e; 2071 unsigned long long offset = simple_strtoull(buf, &e, 10); 2072 if (e==buf || (*e && *e != '\n')) 2073 return -EINVAL; 2074 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2075 return -EBUSY; 2076 if (rdev->size && rdev->mddev->external) 2077 /* Must set offset before size, so overlap checks 2078 * can be sane */ 2079 return -EBUSY; 2080 rdev->data_offset = offset; 2081 return len; 2082 } 2083 2084 static struct rdev_sysfs_entry rdev_offset = 2085 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2086 2087 static ssize_t 2088 rdev_size_show(mdk_rdev_t *rdev, char *page) 2089 { 2090 return sprintf(page, "%llu\n", (unsigned long long)rdev->size); 2091 } 2092 2093 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2094 { 2095 /* check if two start/length pairs overlap */ 2096 if (s1+l1 <= s2) 2097 return 0; 2098 if (s2+l2 <= s1) 2099 return 0; 2100 return 1; 2101 } 2102 2103 static ssize_t 2104 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len) 2105 { 2106 unsigned long long size; 2107 unsigned long long oldsize = rdev->size; 2108 mddev_t *my_mddev = rdev->mddev; 2109 2110 if (strict_strtoull(buf, 10, &size) < 0) 2111 return -EINVAL; 2112 if (size < my_mddev->size) 2113 return -EINVAL; 2114 if (my_mddev->pers && rdev->raid_disk >= 0) { 2115 if (my_mddev->persistent) { 2116 size = super_types[my_mddev->major_version]. 2117 rdev_size_change(rdev, size * 2); 2118 if (!size) 2119 return -EBUSY; 2120 } else if (!size) { 2121 size = (rdev->bdev->bd_inode->i_size >> 10); 2122 size -= rdev->data_offset/2; 2123 } 2124 if (size < my_mddev->size) 2125 return -EINVAL; /* component must fit device */ 2126 } 2127 2128 rdev->size = size; 2129 if (size > oldsize && my_mddev->external) { 2130 /* need to check that all other rdevs with the same ->bdev 2131 * do not overlap. We need to unlock the mddev to avoid 2132 * a deadlock. We have already changed rdev->size, and if 2133 * we have to change it back, we will have the lock again. 2134 */ 2135 mddev_t *mddev; 2136 int overlap = 0; 2137 struct list_head *tmp, *tmp2; 2138 2139 mddev_unlock(my_mddev); 2140 for_each_mddev(mddev, tmp) { 2141 mdk_rdev_t *rdev2; 2142 2143 mddev_lock(mddev); 2144 rdev_for_each(rdev2, tmp2, mddev) 2145 if (test_bit(AllReserved, &rdev2->flags) || 2146 (rdev->bdev == rdev2->bdev && 2147 rdev != rdev2 && 2148 overlaps(rdev->data_offset, rdev->size * 2, 2149 rdev2->data_offset, 2150 rdev2->size * 2))) { 2151 overlap = 1; 2152 break; 2153 } 2154 mddev_unlock(mddev); 2155 if (overlap) { 2156 mddev_put(mddev); 2157 break; 2158 } 2159 } 2160 mddev_lock(my_mddev); 2161 if (overlap) { 2162 /* Someone else could have slipped in a size 2163 * change here, but doing so is just silly. 2164 * We put oldsize back because we *know* it is 2165 * safe, and trust userspace not to race with 2166 * itself 2167 */ 2168 rdev->size = oldsize; 2169 return -EBUSY; 2170 } 2171 } 2172 return len; 2173 } 2174 2175 static struct rdev_sysfs_entry rdev_size = 2176 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 2177 2178 static struct attribute *rdev_default_attrs[] = { 2179 &rdev_state.attr, 2180 &rdev_errors.attr, 2181 &rdev_slot.attr, 2182 &rdev_offset.attr, 2183 &rdev_size.attr, 2184 NULL, 2185 }; 2186 static ssize_t 2187 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 2188 { 2189 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2190 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2191 mddev_t *mddev = rdev->mddev; 2192 ssize_t rv; 2193 2194 if (!entry->show) 2195 return -EIO; 2196 2197 rv = mddev ? mddev_lock(mddev) : -EBUSY; 2198 if (!rv) { 2199 if (rdev->mddev == NULL) 2200 rv = -EBUSY; 2201 else 2202 rv = entry->show(rdev, page); 2203 mddev_unlock(mddev); 2204 } 2205 return rv; 2206 } 2207 2208 static ssize_t 2209 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 2210 const char *page, size_t length) 2211 { 2212 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 2213 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj); 2214 ssize_t rv; 2215 mddev_t *mddev = rdev->mddev; 2216 2217 if (!entry->store) 2218 return -EIO; 2219 if (!capable(CAP_SYS_ADMIN)) 2220 return -EACCES; 2221 rv = mddev ? mddev_lock(mddev): -EBUSY; 2222 if (!rv) { 2223 if (rdev->mddev == NULL) 2224 rv = -EBUSY; 2225 else 2226 rv = entry->store(rdev, page, length); 2227 mddev_unlock(mddev); 2228 } 2229 return rv; 2230 } 2231 2232 static void rdev_free(struct kobject *ko) 2233 { 2234 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj); 2235 kfree(rdev); 2236 } 2237 static struct sysfs_ops rdev_sysfs_ops = { 2238 .show = rdev_attr_show, 2239 .store = rdev_attr_store, 2240 }; 2241 static struct kobj_type rdev_ktype = { 2242 .release = rdev_free, 2243 .sysfs_ops = &rdev_sysfs_ops, 2244 .default_attrs = rdev_default_attrs, 2245 }; 2246 2247 /* 2248 * Import a device. If 'super_format' >= 0, then sanity check the superblock 2249 * 2250 * mark the device faulty if: 2251 * 2252 * - the device is nonexistent (zero size) 2253 * - the device has no valid superblock 2254 * 2255 * a faulty rdev _never_ has rdev->sb set. 2256 */ 2257 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor) 2258 { 2259 char b[BDEVNAME_SIZE]; 2260 int err; 2261 mdk_rdev_t *rdev; 2262 sector_t size; 2263 2264 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 2265 if (!rdev) { 2266 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 2267 return ERR_PTR(-ENOMEM); 2268 } 2269 2270 if ((err = alloc_disk_sb(rdev))) 2271 goto abort_free; 2272 2273 err = lock_rdev(rdev, newdev, super_format == -2); 2274 if (err) 2275 goto abort_free; 2276 2277 kobject_init(&rdev->kobj, &rdev_ktype); 2278 2279 rdev->desc_nr = -1; 2280 rdev->saved_raid_disk = -1; 2281 rdev->raid_disk = -1; 2282 rdev->flags = 0; 2283 rdev->data_offset = 0; 2284 rdev->sb_events = 0; 2285 atomic_set(&rdev->nr_pending, 0); 2286 atomic_set(&rdev->read_errors, 0); 2287 atomic_set(&rdev->corrected_errors, 0); 2288 2289 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS; 2290 if (!size) { 2291 printk(KERN_WARNING 2292 "md: %s has zero or unknown size, marking faulty!\n", 2293 bdevname(rdev->bdev,b)); 2294 err = -EINVAL; 2295 goto abort_free; 2296 } 2297 2298 if (super_format >= 0) { 2299 err = super_types[super_format]. 2300 load_super(rdev, NULL, super_minor); 2301 if (err == -EINVAL) { 2302 printk(KERN_WARNING 2303 "md: %s does not have a valid v%d.%d " 2304 "superblock, not importing!\n", 2305 bdevname(rdev->bdev,b), 2306 super_format, super_minor); 2307 goto abort_free; 2308 } 2309 if (err < 0) { 2310 printk(KERN_WARNING 2311 "md: could not read %s's sb, not importing!\n", 2312 bdevname(rdev->bdev,b)); 2313 goto abort_free; 2314 } 2315 } 2316 2317 INIT_LIST_HEAD(&rdev->same_set); 2318 init_waitqueue_head(&rdev->blocked_wait); 2319 2320 return rdev; 2321 2322 abort_free: 2323 if (rdev->sb_page) { 2324 if (rdev->bdev) 2325 unlock_rdev(rdev); 2326 free_disk_sb(rdev); 2327 } 2328 kfree(rdev); 2329 return ERR_PTR(err); 2330 } 2331 2332 /* 2333 * Check a full RAID array for plausibility 2334 */ 2335 2336 2337 static void analyze_sbs(mddev_t * mddev) 2338 { 2339 int i; 2340 struct list_head *tmp; 2341 mdk_rdev_t *rdev, *freshest; 2342 char b[BDEVNAME_SIZE]; 2343 2344 freshest = NULL; 2345 rdev_for_each(rdev, tmp, mddev) 2346 switch (super_types[mddev->major_version]. 2347 load_super(rdev, freshest, mddev->minor_version)) { 2348 case 1: 2349 freshest = rdev; 2350 break; 2351 case 0: 2352 break; 2353 default: 2354 printk( KERN_ERR \ 2355 "md: fatal superblock inconsistency in %s" 2356 " -- removing from array\n", 2357 bdevname(rdev->bdev,b)); 2358 kick_rdev_from_array(rdev); 2359 } 2360 2361 2362 super_types[mddev->major_version]. 2363 validate_super(mddev, freshest); 2364 2365 i = 0; 2366 rdev_for_each(rdev, tmp, mddev) { 2367 if (rdev != freshest) 2368 if (super_types[mddev->major_version]. 2369 validate_super(mddev, rdev)) { 2370 printk(KERN_WARNING "md: kicking non-fresh %s" 2371 " from array!\n", 2372 bdevname(rdev->bdev,b)); 2373 kick_rdev_from_array(rdev); 2374 continue; 2375 } 2376 if (mddev->level == LEVEL_MULTIPATH) { 2377 rdev->desc_nr = i++; 2378 rdev->raid_disk = rdev->desc_nr; 2379 set_bit(In_sync, &rdev->flags); 2380 } else if (rdev->raid_disk >= mddev->raid_disks) { 2381 rdev->raid_disk = -1; 2382 clear_bit(In_sync, &rdev->flags); 2383 } 2384 } 2385 2386 2387 2388 if (mddev->recovery_cp != MaxSector && 2389 mddev->level >= 1) 2390 printk(KERN_ERR "md: %s: raid array is not clean" 2391 " -- starting background reconstruction\n", 2392 mdname(mddev)); 2393 2394 } 2395 2396 static ssize_t 2397 safe_delay_show(mddev_t *mddev, char *page) 2398 { 2399 int msec = (mddev->safemode_delay*1000)/HZ; 2400 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 2401 } 2402 static ssize_t 2403 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len) 2404 { 2405 int scale=1; 2406 int dot=0; 2407 int i; 2408 unsigned long msec; 2409 char buf[30]; 2410 char *e; 2411 /* remove a period, and count digits after it */ 2412 if (len >= sizeof(buf)) 2413 return -EINVAL; 2414 strlcpy(buf, cbuf, len); 2415 buf[len] = 0; 2416 for (i=0; i<len; i++) { 2417 if (dot) { 2418 if (isdigit(buf[i])) { 2419 buf[i-1] = buf[i]; 2420 scale *= 10; 2421 } 2422 buf[i] = 0; 2423 } else if (buf[i] == '.') { 2424 dot=1; 2425 buf[i] = 0; 2426 } 2427 } 2428 msec = simple_strtoul(buf, &e, 10); 2429 if (e == buf || (*e && *e != '\n')) 2430 return -EINVAL; 2431 msec = (msec * 1000) / scale; 2432 if (msec == 0) 2433 mddev->safemode_delay = 0; 2434 else { 2435 mddev->safemode_delay = (msec*HZ)/1000; 2436 if (mddev->safemode_delay == 0) 2437 mddev->safemode_delay = 1; 2438 } 2439 return len; 2440 } 2441 static struct md_sysfs_entry md_safe_delay = 2442 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 2443 2444 static ssize_t 2445 level_show(mddev_t *mddev, char *page) 2446 { 2447 struct mdk_personality *p = mddev->pers; 2448 if (p) 2449 return sprintf(page, "%s\n", p->name); 2450 else if (mddev->clevel[0]) 2451 return sprintf(page, "%s\n", mddev->clevel); 2452 else if (mddev->level != LEVEL_NONE) 2453 return sprintf(page, "%d\n", mddev->level); 2454 else 2455 return 0; 2456 } 2457 2458 static ssize_t 2459 level_store(mddev_t *mddev, const char *buf, size_t len) 2460 { 2461 ssize_t rv = len; 2462 if (mddev->pers) 2463 return -EBUSY; 2464 if (len == 0) 2465 return 0; 2466 if (len >= sizeof(mddev->clevel)) 2467 return -ENOSPC; 2468 strncpy(mddev->clevel, buf, len); 2469 if (mddev->clevel[len-1] == '\n') 2470 len--; 2471 mddev->clevel[len] = 0; 2472 mddev->level = LEVEL_NONE; 2473 return rv; 2474 } 2475 2476 static struct md_sysfs_entry md_level = 2477 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 2478 2479 2480 static ssize_t 2481 layout_show(mddev_t *mddev, char *page) 2482 { 2483 /* just a number, not meaningful for all levels */ 2484 if (mddev->reshape_position != MaxSector && 2485 mddev->layout != mddev->new_layout) 2486 return sprintf(page, "%d (%d)\n", 2487 mddev->new_layout, mddev->layout); 2488 return sprintf(page, "%d\n", mddev->layout); 2489 } 2490 2491 static ssize_t 2492 layout_store(mddev_t *mddev, const char *buf, size_t len) 2493 { 2494 char *e; 2495 unsigned long n = simple_strtoul(buf, &e, 10); 2496 2497 if (!*buf || (*e && *e != '\n')) 2498 return -EINVAL; 2499 2500 if (mddev->pers) 2501 return -EBUSY; 2502 if (mddev->reshape_position != MaxSector) 2503 mddev->new_layout = n; 2504 else 2505 mddev->layout = n; 2506 return len; 2507 } 2508 static struct md_sysfs_entry md_layout = 2509 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 2510 2511 2512 static ssize_t 2513 raid_disks_show(mddev_t *mddev, char *page) 2514 { 2515 if (mddev->raid_disks == 0) 2516 return 0; 2517 if (mddev->reshape_position != MaxSector && 2518 mddev->delta_disks != 0) 2519 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 2520 mddev->raid_disks - mddev->delta_disks); 2521 return sprintf(page, "%d\n", mddev->raid_disks); 2522 } 2523 2524 static int update_raid_disks(mddev_t *mddev, int raid_disks); 2525 2526 static ssize_t 2527 raid_disks_store(mddev_t *mddev, const char *buf, size_t len) 2528 { 2529 char *e; 2530 int rv = 0; 2531 unsigned long n = simple_strtoul(buf, &e, 10); 2532 2533 if (!*buf || (*e && *e != '\n')) 2534 return -EINVAL; 2535 2536 if (mddev->pers) 2537 rv = update_raid_disks(mddev, n); 2538 else if (mddev->reshape_position != MaxSector) { 2539 int olddisks = mddev->raid_disks - mddev->delta_disks; 2540 mddev->delta_disks = n - olddisks; 2541 mddev->raid_disks = n; 2542 } else 2543 mddev->raid_disks = n; 2544 return rv ? rv : len; 2545 } 2546 static struct md_sysfs_entry md_raid_disks = 2547 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 2548 2549 static ssize_t 2550 chunk_size_show(mddev_t *mddev, char *page) 2551 { 2552 if (mddev->reshape_position != MaxSector && 2553 mddev->chunk_size != mddev->new_chunk) 2554 return sprintf(page, "%d (%d)\n", mddev->new_chunk, 2555 mddev->chunk_size); 2556 return sprintf(page, "%d\n", mddev->chunk_size); 2557 } 2558 2559 static ssize_t 2560 chunk_size_store(mddev_t *mddev, const char *buf, size_t len) 2561 { 2562 /* can only set chunk_size if array is not yet active */ 2563 char *e; 2564 unsigned long n = simple_strtoul(buf, &e, 10); 2565 2566 if (!*buf || (*e && *e != '\n')) 2567 return -EINVAL; 2568 2569 if (mddev->pers) 2570 return -EBUSY; 2571 else if (mddev->reshape_position != MaxSector) 2572 mddev->new_chunk = n; 2573 else 2574 mddev->chunk_size = n; 2575 return len; 2576 } 2577 static struct md_sysfs_entry md_chunk_size = 2578 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 2579 2580 static ssize_t 2581 resync_start_show(mddev_t *mddev, char *page) 2582 { 2583 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 2584 } 2585 2586 static ssize_t 2587 resync_start_store(mddev_t *mddev, const char *buf, size_t len) 2588 { 2589 char *e; 2590 unsigned long long n = simple_strtoull(buf, &e, 10); 2591 2592 if (mddev->pers) 2593 return -EBUSY; 2594 if (!*buf || (*e && *e != '\n')) 2595 return -EINVAL; 2596 2597 mddev->recovery_cp = n; 2598 return len; 2599 } 2600 static struct md_sysfs_entry md_resync_start = 2601 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 2602 2603 /* 2604 * The array state can be: 2605 * 2606 * clear 2607 * No devices, no size, no level 2608 * Equivalent to STOP_ARRAY ioctl 2609 * inactive 2610 * May have some settings, but array is not active 2611 * all IO results in error 2612 * When written, doesn't tear down array, but just stops it 2613 * suspended (not supported yet) 2614 * All IO requests will block. The array can be reconfigured. 2615 * Writing this, if accepted, will block until array is quiescent 2616 * readonly 2617 * no resync can happen. no superblocks get written. 2618 * write requests fail 2619 * read-auto 2620 * like readonly, but behaves like 'clean' on a write request. 2621 * 2622 * clean - no pending writes, but otherwise active. 2623 * When written to inactive array, starts without resync 2624 * If a write request arrives then 2625 * if metadata is known, mark 'dirty' and switch to 'active'. 2626 * if not known, block and switch to write-pending 2627 * If written to an active array that has pending writes, then fails. 2628 * active 2629 * fully active: IO and resync can be happening. 2630 * When written to inactive array, starts with resync 2631 * 2632 * write-pending 2633 * clean, but writes are blocked waiting for 'active' to be written. 2634 * 2635 * active-idle 2636 * like active, but no writes have been seen for a while (100msec). 2637 * 2638 */ 2639 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 2640 write_pending, active_idle, bad_word}; 2641 static char *array_states[] = { 2642 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 2643 "write-pending", "active-idle", NULL }; 2644 2645 static int match_word(const char *word, char **list) 2646 { 2647 int n; 2648 for (n=0; list[n]; n++) 2649 if (cmd_match(word, list[n])) 2650 break; 2651 return n; 2652 } 2653 2654 static ssize_t 2655 array_state_show(mddev_t *mddev, char *page) 2656 { 2657 enum array_state st = inactive; 2658 2659 if (mddev->pers) 2660 switch(mddev->ro) { 2661 case 1: 2662 st = readonly; 2663 break; 2664 case 2: 2665 st = read_auto; 2666 break; 2667 case 0: 2668 if (mddev->in_sync) 2669 st = clean; 2670 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2671 st = write_pending; 2672 else if (mddev->safemode) 2673 st = active_idle; 2674 else 2675 st = active; 2676 } 2677 else { 2678 if (list_empty(&mddev->disks) && 2679 mddev->raid_disks == 0 && 2680 mddev->size == 0) 2681 st = clear; 2682 else 2683 st = inactive; 2684 } 2685 return sprintf(page, "%s\n", array_states[st]); 2686 } 2687 2688 static int do_md_stop(mddev_t * mddev, int ro, int is_open); 2689 static int do_md_run(mddev_t * mddev); 2690 static int restart_array(mddev_t *mddev); 2691 2692 static ssize_t 2693 array_state_store(mddev_t *mddev, const char *buf, size_t len) 2694 { 2695 int err = -EINVAL; 2696 enum array_state st = match_word(buf, array_states); 2697 switch(st) { 2698 case bad_word: 2699 break; 2700 case clear: 2701 /* stopping an active array */ 2702 if (atomic_read(&mddev->openers) > 0) 2703 return -EBUSY; 2704 err = do_md_stop(mddev, 0, 0); 2705 break; 2706 case inactive: 2707 /* stopping an active array */ 2708 if (mddev->pers) { 2709 if (atomic_read(&mddev->openers) > 0) 2710 return -EBUSY; 2711 err = do_md_stop(mddev, 2, 0); 2712 } else 2713 err = 0; /* already inactive */ 2714 break; 2715 case suspended: 2716 break; /* not supported yet */ 2717 case readonly: 2718 if (mddev->pers) 2719 err = do_md_stop(mddev, 1, 0); 2720 else { 2721 mddev->ro = 1; 2722 set_disk_ro(mddev->gendisk, 1); 2723 err = do_md_run(mddev); 2724 } 2725 break; 2726 case read_auto: 2727 if (mddev->pers) { 2728 if (mddev->ro != 1) 2729 err = do_md_stop(mddev, 1, 0); 2730 else 2731 err = restart_array(mddev); 2732 if (err == 0) { 2733 mddev->ro = 2; 2734 set_disk_ro(mddev->gendisk, 0); 2735 } 2736 } else { 2737 mddev->ro = 2; 2738 err = do_md_run(mddev); 2739 } 2740 break; 2741 case clean: 2742 if (mddev->pers) { 2743 restart_array(mddev); 2744 spin_lock_irq(&mddev->write_lock); 2745 if (atomic_read(&mddev->writes_pending) == 0) { 2746 if (mddev->in_sync == 0) { 2747 mddev->in_sync = 1; 2748 if (mddev->safemode == 1) 2749 mddev->safemode = 0; 2750 if (mddev->persistent) 2751 set_bit(MD_CHANGE_CLEAN, 2752 &mddev->flags); 2753 } 2754 err = 0; 2755 } else 2756 err = -EBUSY; 2757 spin_unlock_irq(&mddev->write_lock); 2758 } else { 2759 mddev->ro = 0; 2760 mddev->recovery_cp = MaxSector; 2761 err = do_md_run(mddev); 2762 } 2763 break; 2764 case active: 2765 if (mddev->pers) { 2766 restart_array(mddev); 2767 if (mddev->external) 2768 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2769 wake_up(&mddev->sb_wait); 2770 err = 0; 2771 } else { 2772 mddev->ro = 0; 2773 set_disk_ro(mddev->gendisk, 0); 2774 err = do_md_run(mddev); 2775 } 2776 break; 2777 case write_pending: 2778 case active_idle: 2779 /* these cannot be set */ 2780 break; 2781 } 2782 if (err) 2783 return err; 2784 else { 2785 sysfs_notify(&mddev->kobj, NULL, "array_state"); 2786 return len; 2787 } 2788 } 2789 static struct md_sysfs_entry md_array_state = 2790 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 2791 2792 static ssize_t 2793 null_show(mddev_t *mddev, char *page) 2794 { 2795 return -EINVAL; 2796 } 2797 2798 static ssize_t 2799 new_dev_store(mddev_t *mddev, const char *buf, size_t len) 2800 { 2801 /* buf must be %d:%d\n? giving major and minor numbers */ 2802 /* The new device is added to the array. 2803 * If the array has a persistent superblock, we read the 2804 * superblock to initialise info and check validity. 2805 * Otherwise, only checking done is that in bind_rdev_to_array, 2806 * which mainly checks size. 2807 */ 2808 char *e; 2809 int major = simple_strtoul(buf, &e, 10); 2810 int minor; 2811 dev_t dev; 2812 mdk_rdev_t *rdev; 2813 int err; 2814 2815 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 2816 return -EINVAL; 2817 minor = simple_strtoul(e+1, &e, 10); 2818 if (*e && *e != '\n') 2819 return -EINVAL; 2820 dev = MKDEV(major, minor); 2821 if (major != MAJOR(dev) || 2822 minor != MINOR(dev)) 2823 return -EOVERFLOW; 2824 2825 2826 if (mddev->persistent) { 2827 rdev = md_import_device(dev, mddev->major_version, 2828 mddev->minor_version); 2829 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 2830 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 2831 mdk_rdev_t, same_set); 2832 err = super_types[mddev->major_version] 2833 .load_super(rdev, rdev0, mddev->minor_version); 2834 if (err < 0) 2835 goto out; 2836 } 2837 } else if (mddev->external) 2838 rdev = md_import_device(dev, -2, -1); 2839 else 2840 rdev = md_import_device(dev, -1, -1); 2841 2842 if (IS_ERR(rdev)) 2843 return PTR_ERR(rdev); 2844 err = bind_rdev_to_array(rdev, mddev); 2845 out: 2846 if (err) 2847 export_rdev(rdev); 2848 return err ? err : len; 2849 } 2850 2851 static struct md_sysfs_entry md_new_device = 2852 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 2853 2854 static ssize_t 2855 bitmap_store(mddev_t *mddev, const char *buf, size_t len) 2856 { 2857 char *end; 2858 unsigned long chunk, end_chunk; 2859 2860 if (!mddev->bitmap) 2861 goto out; 2862 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 2863 while (*buf) { 2864 chunk = end_chunk = simple_strtoul(buf, &end, 0); 2865 if (buf == end) break; 2866 if (*end == '-') { /* range */ 2867 buf = end + 1; 2868 end_chunk = simple_strtoul(buf, &end, 0); 2869 if (buf == end) break; 2870 } 2871 if (*end && !isspace(*end)) break; 2872 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 2873 buf = end; 2874 while (isspace(*buf)) buf++; 2875 } 2876 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 2877 out: 2878 return len; 2879 } 2880 2881 static struct md_sysfs_entry md_bitmap = 2882 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 2883 2884 static ssize_t 2885 size_show(mddev_t *mddev, char *page) 2886 { 2887 return sprintf(page, "%llu\n", (unsigned long long)mddev->size); 2888 } 2889 2890 static int update_size(mddev_t *mddev, sector_t num_sectors); 2891 2892 static ssize_t 2893 size_store(mddev_t *mddev, const char *buf, size_t len) 2894 { 2895 /* If array is inactive, we can reduce the component size, but 2896 * not increase it (except from 0). 2897 * If array is active, we can try an on-line resize 2898 */ 2899 char *e; 2900 int err = 0; 2901 unsigned long long size = simple_strtoull(buf, &e, 10); 2902 if (!*buf || *buf == '\n' || 2903 (*e && *e != '\n')) 2904 return -EINVAL; 2905 2906 if (mddev->pers) { 2907 err = update_size(mddev, size * 2); 2908 md_update_sb(mddev, 1); 2909 } else { 2910 if (mddev->size == 0 || 2911 mddev->size > size) 2912 mddev->size = size; 2913 else 2914 err = -ENOSPC; 2915 } 2916 return err ? err : len; 2917 } 2918 2919 static struct md_sysfs_entry md_size = 2920 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 2921 2922 2923 /* Metdata version. 2924 * This is one of 2925 * 'none' for arrays with no metadata (good luck...) 2926 * 'external' for arrays with externally managed metadata, 2927 * or N.M for internally known formats 2928 */ 2929 static ssize_t 2930 metadata_show(mddev_t *mddev, char *page) 2931 { 2932 if (mddev->persistent) 2933 return sprintf(page, "%d.%d\n", 2934 mddev->major_version, mddev->minor_version); 2935 else if (mddev->external) 2936 return sprintf(page, "external:%s\n", mddev->metadata_type); 2937 else 2938 return sprintf(page, "none\n"); 2939 } 2940 2941 static ssize_t 2942 metadata_store(mddev_t *mddev, const char *buf, size_t len) 2943 { 2944 int major, minor; 2945 char *e; 2946 if (!list_empty(&mddev->disks)) 2947 return -EBUSY; 2948 2949 if (cmd_match(buf, "none")) { 2950 mddev->persistent = 0; 2951 mddev->external = 0; 2952 mddev->major_version = 0; 2953 mddev->minor_version = 90; 2954 return len; 2955 } 2956 if (strncmp(buf, "external:", 9) == 0) { 2957 size_t namelen = len-9; 2958 if (namelen >= sizeof(mddev->metadata_type)) 2959 namelen = sizeof(mddev->metadata_type)-1; 2960 strncpy(mddev->metadata_type, buf+9, namelen); 2961 mddev->metadata_type[namelen] = 0; 2962 if (namelen && mddev->metadata_type[namelen-1] == '\n') 2963 mddev->metadata_type[--namelen] = 0; 2964 mddev->persistent = 0; 2965 mddev->external = 1; 2966 mddev->major_version = 0; 2967 mddev->minor_version = 90; 2968 return len; 2969 } 2970 major = simple_strtoul(buf, &e, 10); 2971 if (e==buf || *e != '.') 2972 return -EINVAL; 2973 buf = e+1; 2974 minor = simple_strtoul(buf, &e, 10); 2975 if (e==buf || (*e && *e != '\n') ) 2976 return -EINVAL; 2977 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 2978 return -ENOENT; 2979 mddev->major_version = major; 2980 mddev->minor_version = minor; 2981 mddev->persistent = 1; 2982 mddev->external = 0; 2983 return len; 2984 } 2985 2986 static struct md_sysfs_entry md_metadata = 2987 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 2988 2989 static ssize_t 2990 action_show(mddev_t *mddev, char *page) 2991 { 2992 char *type = "idle"; 2993 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 2994 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 2995 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 2996 type = "reshape"; 2997 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 2998 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 2999 type = "resync"; 3000 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 3001 type = "check"; 3002 else 3003 type = "repair"; 3004 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 3005 type = "recover"; 3006 } 3007 return sprintf(page, "%s\n", type); 3008 } 3009 3010 static ssize_t 3011 action_store(mddev_t *mddev, const char *page, size_t len) 3012 { 3013 if (!mddev->pers || !mddev->pers->sync_request) 3014 return -EINVAL; 3015 3016 if (cmd_match(page, "idle")) { 3017 if (mddev->sync_thread) { 3018 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3019 md_unregister_thread(mddev->sync_thread); 3020 mddev->sync_thread = NULL; 3021 mddev->recovery = 0; 3022 } 3023 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3024 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 3025 return -EBUSY; 3026 else if (cmd_match(page, "resync")) 3027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3028 else if (cmd_match(page, "recover")) { 3029 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 3030 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3031 } else if (cmd_match(page, "reshape")) { 3032 int err; 3033 if (mddev->pers->start_reshape == NULL) 3034 return -EINVAL; 3035 err = mddev->pers->start_reshape(mddev); 3036 if (err) 3037 return err; 3038 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3039 } else { 3040 if (cmd_match(page, "check")) 3041 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 3042 else if (!cmd_match(page, "repair")) 3043 return -EINVAL; 3044 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 3045 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 3046 } 3047 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3048 md_wakeup_thread(mddev->thread); 3049 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 3050 return len; 3051 } 3052 3053 static ssize_t 3054 mismatch_cnt_show(mddev_t *mddev, char *page) 3055 { 3056 return sprintf(page, "%llu\n", 3057 (unsigned long long) mddev->resync_mismatches); 3058 } 3059 3060 static struct md_sysfs_entry md_scan_mode = 3061 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 3062 3063 3064 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 3065 3066 static ssize_t 3067 sync_min_show(mddev_t *mddev, char *page) 3068 { 3069 return sprintf(page, "%d (%s)\n", speed_min(mddev), 3070 mddev->sync_speed_min ? "local": "system"); 3071 } 3072 3073 static ssize_t 3074 sync_min_store(mddev_t *mddev, const char *buf, size_t len) 3075 { 3076 int min; 3077 char *e; 3078 if (strncmp(buf, "system", 6)==0) { 3079 mddev->sync_speed_min = 0; 3080 return len; 3081 } 3082 min = simple_strtoul(buf, &e, 10); 3083 if (buf == e || (*e && *e != '\n') || min <= 0) 3084 return -EINVAL; 3085 mddev->sync_speed_min = min; 3086 return len; 3087 } 3088 3089 static struct md_sysfs_entry md_sync_min = 3090 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 3091 3092 static ssize_t 3093 sync_max_show(mddev_t *mddev, char *page) 3094 { 3095 return sprintf(page, "%d (%s)\n", speed_max(mddev), 3096 mddev->sync_speed_max ? "local": "system"); 3097 } 3098 3099 static ssize_t 3100 sync_max_store(mddev_t *mddev, const char *buf, size_t len) 3101 { 3102 int max; 3103 char *e; 3104 if (strncmp(buf, "system", 6)==0) { 3105 mddev->sync_speed_max = 0; 3106 return len; 3107 } 3108 max = simple_strtoul(buf, &e, 10); 3109 if (buf == e || (*e && *e != '\n') || max <= 0) 3110 return -EINVAL; 3111 mddev->sync_speed_max = max; 3112 return len; 3113 } 3114 3115 static struct md_sysfs_entry md_sync_max = 3116 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 3117 3118 static ssize_t 3119 degraded_show(mddev_t *mddev, char *page) 3120 { 3121 return sprintf(page, "%d\n", mddev->degraded); 3122 } 3123 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 3124 3125 static ssize_t 3126 sync_force_parallel_show(mddev_t *mddev, char *page) 3127 { 3128 return sprintf(page, "%d\n", mddev->parallel_resync); 3129 } 3130 3131 static ssize_t 3132 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len) 3133 { 3134 long n; 3135 3136 if (strict_strtol(buf, 10, &n)) 3137 return -EINVAL; 3138 3139 if (n != 0 && n != 1) 3140 return -EINVAL; 3141 3142 mddev->parallel_resync = n; 3143 3144 if (mddev->sync_thread) 3145 wake_up(&resync_wait); 3146 3147 return len; 3148 } 3149 3150 /* force parallel resync, even with shared block devices */ 3151 static struct md_sysfs_entry md_sync_force_parallel = 3152 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 3153 sync_force_parallel_show, sync_force_parallel_store); 3154 3155 static ssize_t 3156 sync_speed_show(mddev_t *mddev, char *page) 3157 { 3158 unsigned long resync, dt, db; 3159 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 3160 dt = (jiffies - mddev->resync_mark) / HZ; 3161 if (!dt) dt++; 3162 db = resync - mddev->resync_mark_cnt; 3163 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 3164 } 3165 3166 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 3167 3168 static ssize_t 3169 sync_completed_show(mddev_t *mddev, char *page) 3170 { 3171 unsigned long max_blocks, resync; 3172 3173 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 3174 max_blocks = mddev->resync_max_sectors; 3175 else 3176 max_blocks = mddev->size << 1; 3177 3178 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active)); 3179 return sprintf(page, "%lu / %lu\n", resync, max_blocks); 3180 } 3181 3182 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 3183 3184 static ssize_t 3185 min_sync_show(mddev_t *mddev, char *page) 3186 { 3187 return sprintf(page, "%llu\n", 3188 (unsigned long long)mddev->resync_min); 3189 } 3190 static ssize_t 3191 min_sync_store(mddev_t *mddev, const char *buf, size_t len) 3192 { 3193 unsigned long long min; 3194 if (strict_strtoull(buf, 10, &min)) 3195 return -EINVAL; 3196 if (min > mddev->resync_max) 3197 return -EINVAL; 3198 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3199 return -EBUSY; 3200 3201 /* Must be a multiple of chunk_size */ 3202 if (mddev->chunk_size) { 3203 if (min & (sector_t)((mddev->chunk_size>>9)-1)) 3204 return -EINVAL; 3205 } 3206 mddev->resync_min = min; 3207 3208 return len; 3209 } 3210 3211 static struct md_sysfs_entry md_min_sync = 3212 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 3213 3214 static ssize_t 3215 max_sync_show(mddev_t *mddev, char *page) 3216 { 3217 if (mddev->resync_max == MaxSector) 3218 return sprintf(page, "max\n"); 3219 else 3220 return sprintf(page, "%llu\n", 3221 (unsigned long long)mddev->resync_max); 3222 } 3223 static ssize_t 3224 max_sync_store(mddev_t *mddev, const char *buf, size_t len) 3225 { 3226 if (strncmp(buf, "max", 3) == 0) 3227 mddev->resync_max = MaxSector; 3228 else { 3229 unsigned long long max; 3230 if (strict_strtoull(buf, 10, &max)) 3231 return -EINVAL; 3232 if (max < mddev->resync_min) 3233 return -EINVAL; 3234 if (max < mddev->resync_max && 3235 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3236 return -EBUSY; 3237 3238 /* Must be a multiple of chunk_size */ 3239 if (mddev->chunk_size) { 3240 if (max & (sector_t)((mddev->chunk_size>>9)-1)) 3241 return -EINVAL; 3242 } 3243 mddev->resync_max = max; 3244 } 3245 wake_up(&mddev->recovery_wait); 3246 return len; 3247 } 3248 3249 static struct md_sysfs_entry md_max_sync = 3250 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 3251 3252 static ssize_t 3253 suspend_lo_show(mddev_t *mddev, char *page) 3254 { 3255 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 3256 } 3257 3258 static ssize_t 3259 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len) 3260 { 3261 char *e; 3262 unsigned long long new = simple_strtoull(buf, &e, 10); 3263 3264 if (mddev->pers->quiesce == NULL) 3265 return -EINVAL; 3266 if (buf == e || (*e && *e != '\n')) 3267 return -EINVAL; 3268 if (new >= mddev->suspend_hi || 3269 (new > mddev->suspend_lo && new < mddev->suspend_hi)) { 3270 mddev->suspend_lo = new; 3271 mddev->pers->quiesce(mddev, 2); 3272 return len; 3273 } else 3274 return -EINVAL; 3275 } 3276 static struct md_sysfs_entry md_suspend_lo = 3277 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 3278 3279 3280 static ssize_t 3281 suspend_hi_show(mddev_t *mddev, char *page) 3282 { 3283 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 3284 } 3285 3286 static ssize_t 3287 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len) 3288 { 3289 char *e; 3290 unsigned long long new = simple_strtoull(buf, &e, 10); 3291 3292 if (mddev->pers->quiesce == NULL) 3293 return -EINVAL; 3294 if (buf == e || (*e && *e != '\n')) 3295 return -EINVAL; 3296 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) || 3297 (new > mddev->suspend_lo && new > mddev->suspend_hi)) { 3298 mddev->suspend_hi = new; 3299 mddev->pers->quiesce(mddev, 1); 3300 mddev->pers->quiesce(mddev, 0); 3301 return len; 3302 } else 3303 return -EINVAL; 3304 } 3305 static struct md_sysfs_entry md_suspend_hi = 3306 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 3307 3308 static ssize_t 3309 reshape_position_show(mddev_t *mddev, char *page) 3310 { 3311 if (mddev->reshape_position != MaxSector) 3312 return sprintf(page, "%llu\n", 3313 (unsigned long long)mddev->reshape_position); 3314 strcpy(page, "none\n"); 3315 return 5; 3316 } 3317 3318 static ssize_t 3319 reshape_position_store(mddev_t *mddev, const char *buf, size_t len) 3320 { 3321 char *e; 3322 unsigned long long new = simple_strtoull(buf, &e, 10); 3323 if (mddev->pers) 3324 return -EBUSY; 3325 if (buf == e || (*e && *e != '\n')) 3326 return -EINVAL; 3327 mddev->reshape_position = new; 3328 mddev->delta_disks = 0; 3329 mddev->new_level = mddev->level; 3330 mddev->new_layout = mddev->layout; 3331 mddev->new_chunk = mddev->chunk_size; 3332 return len; 3333 } 3334 3335 static struct md_sysfs_entry md_reshape_position = 3336 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 3337 reshape_position_store); 3338 3339 3340 static struct attribute *md_default_attrs[] = { 3341 &md_level.attr, 3342 &md_layout.attr, 3343 &md_raid_disks.attr, 3344 &md_chunk_size.attr, 3345 &md_size.attr, 3346 &md_resync_start.attr, 3347 &md_metadata.attr, 3348 &md_new_device.attr, 3349 &md_safe_delay.attr, 3350 &md_array_state.attr, 3351 &md_reshape_position.attr, 3352 NULL, 3353 }; 3354 3355 static struct attribute *md_redundancy_attrs[] = { 3356 &md_scan_mode.attr, 3357 &md_mismatches.attr, 3358 &md_sync_min.attr, 3359 &md_sync_max.attr, 3360 &md_sync_speed.attr, 3361 &md_sync_force_parallel.attr, 3362 &md_sync_completed.attr, 3363 &md_min_sync.attr, 3364 &md_max_sync.attr, 3365 &md_suspend_lo.attr, 3366 &md_suspend_hi.attr, 3367 &md_bitmap.attr, 3368 &md_degraded.attr, 3369 NULL, 3370 }; 3371 static struct attribute_group md_redundancy_group = { 3372 .name = NULL, 3373 .attrs = md_redundancy_attrs, 3374 }; 3375 3376 3377 static ssize_t 3378 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3379 { 3380 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3381 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3382 ssize_t rv; 3383 3384 if (!entry->show) 3385 return -EIO; 3386 rv = mddev_lock(mddev); 3387 if (!rv) { 3388 rv = entry->show(mddev, page); 3389 mddev_unlock(mddev); 3390 } 3391 return rv; 3392 } 3393 3394 static ssize_t 3395 md_attr_store(struct kobject *kobj, struct attribute *attr, 3396 const char *page, size_t length) 3397 { 3398 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 3399 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj); 3400 ssize_t rv; 3401 3402 if (!entry->store) 3403 return -EIO; 3404 if (!capable(CAP_SYS_ADMIN)) 3405 return -EACCES; 3406 rv = mddev_lock(mddev); 3407 if (!rv) { 3408 rv = entry->store(mddev, page, length); 3409 mddev_unlock(mddev); 3410 } 3411 return rv; 3412 } 3413 3414 static void md_free(struct kobject *ko) 3415 { 3416 mddev_t *mddev = container_of(ko, mddev_t, kobj); 3417 kfree(mddev); 3418 } 3419 3420 static struct sysfs_ops md_sysfs_ops = { 3421 .show = md_attr_show, 3422 .store = md_attr_store, 3423 }; 3424 static struct kobj_type md_ktype = { 3425 .release = md_free, 3426 .sysfs_ops = &md_sysfs_ops, 3427 .default_attrs = md_default_attrs, 3428 }; 3429 3430 int mdp_major = 0; 3431 3432 static struct kobject *md_probe(dev_t dev, int *part, void *data) 3433 { 3434 static DEFINE_MUTEX(disks_mutex); 3435 mddev_t *mddev = mddev_find(dev); 3436 struct gendisk *disk; 3437 int partitioned = (MAJOR(dev) != MD_MAJOR); 3438 int shift = partitioned ? MdpMinorShift : 0; 3439 int unit = MINOR(dev) >> shift; 3440 int error; 3441 3442 if (!mddev) 3443 return NULL; 3444 3445 mutex_lock(&disks_mutex); 3446 if (mddev->gendisk) { 3447 mutex_unlock(&disks_mutex); 3448 mddev_put(mddev); 3449 return NULL; 3450 } 3451 disk = alloc_disk(1 << shift); 3452 if (!disk) { 3453 mutex_unlock(&disks_mutex); 3454 mddev_put(mddev); 3455 return NULL; 3456 } 3457 disk->major = MAJOR(dev); 3458 disk->first_minor = unit << shift; 3459 if (partitioned) 3460 sprintf(disk->disk_name, "md_d%d", unit); 3461 else 3462 sprintf(disk->disk_name, "md%d", unit); 3463 disk->fops = &md_fops; 3464 disk->private_data = mddev; 3465 disk->queue = mddev->queue; 3466 add_disk(disk); 3467 mddev->gendisk = disk; 3468 error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj, 3469 "%s", "md"); 3470 mutex_unlock(&disks_mutex); 3471 if (error) 3472 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 3473 disk->disk_name); 3474 else 3475 kobject_uevent(&mddev->kobj, KOBJ_ADD); 3476 return NULL; 3477 } 3478 3479 static void md_safemode_timeout(unsigned long data) 3480 { 3481 mddev_t *mddev = (mddev_t *) data; 3482 3483 if (!atomic_read(&mddev->writes_pending)) { 3484 mddev->safemode = 1; 3485 if (mddev->external) 3486 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3487 } 3488 md_wakeup_thread(mddev->thread); 3489 } 3490 3491 static int start_dirty_degraded; 3492 3493 static int do_md_run(mddev_t * mddev) 3494 { 3495 int err; 3496 int chunk_size; 3497 struct list_head *tmp; 3498 mdk_rdev_t *rdev; 3499 struct gendisk *disk; 3500 struct mdk_personality *pers; 3501 char b[BDEVNAME_SIZE]; 3502 3503 if (list_empty(&mddev->disks)) 3504 /* cannot run an array with no devices.. */ 3505 return -EINVAL; 3506 3507 if (mddev->pers) 3508 return -EBUSY; 3509 3510 /* 3511 * Analyze all RAID superblock(s) 3512 */ 3513 if (!mddev->raid_disks) { 3514 if (!mddev->persistent) 3515 return -EINVAL; 3516 analyze_sbs(mddev); 3517 } 3518 3519 chunk_size = mddev->chunk_size; 3520 3521 if (chunk_size) { 3522 if (chunk_size > MAX_CHUNK_SIZE) { 3523 printk(KERN_ERR "too big chunk_size: %d > %d\n", 3524 chunk_size, MAX_CHUNK_SIZE); 3525 return -EINVAL; 3526 } 3527 /* 3528 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE 3529 */ 3530 if ( (1 << ffz(~chunk_size)) != chunk_size) { 3531 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size); 3532 return -EINVAL; 3533 } 3534 if (chunk_size < PAGE_SIZE) { 3535 printk(KERN_ERR "too small chunk_size: %d < %ld\n", 3536 chunk_size, PAGE_SIZE); 3537 return -EINVAL; 3538 } 3539 3540 /* devices must have minimum size of one chunk */ 3541 rdev_for_each(rdev, tmp, mddev) { 3542 if (test_bit(Faulty, &rdev->flags)) 3543 continue; 3544 if (rdev->size < chunk_size / 1024) { 3545 printk(KERN_WARNING 3546 "md: Dev %s smaller than chunk_size:" 3547 " %lluk < %dk\n", 3548 bdevname(rdev->bdev,b), 3549 (unsigned long long)rdev->size, 3550 chunk_size / 1024); 3551 return -EINVAL; 3552 } 3553 } 3554 } 3555 3556 #ifdef CONFIG_KMOD 3557 if (mddev->level != LEVEL_NONE) 3558 request_module("md-level-%d", mddev->level); 3559 else if (mddev->clevel[0]) 3560 request_module("md-%s", mddev->clevel); 3561 #endif 3562 3563 /* 3564 * Drop all container device buffers, from now on 3565 * the only valid external interface is through the md 3566 * device. 3567 */ 3568 rdev_for_each(rdev, tmp, mddev) { 3569 if (test_bit(Faulty, &rdev->flags)) 3570 continue; 3571 sync_blockdev(rdev->bdev); 3572 invalidate_bdev(rdev->bdev); 3573 3574 /* perform some consistency tests on the device. 3575 * We don't want the data to overlap the metadata, 3576 * Internal Bitmap issues has handled elsewhere. 3577 */ 3578 if (rdev->data_offset < rdev->sb_start) { 3579 if (mddev->size && 3580 rdev->data_offset + mddev->size*2 3581 > rdev->sb_start) { 3582 printk("md: %s: data overlaps metadata\n", 3583 mdname(mddev)); 3584 return -EINVAL; 3585 } 3586 } else { 3587 if (rdev->sb_start + rdev->sb_size/512 3588 > rdev->data_offset) { 3589 printk("md: %s: metadata overlaps data\n", 3590 mdname(mddev)); 3591 return -EINVAL; 3592 } 3593 } 3594 sysfs_notify(&rdev->kobj, NULL, "state"); 3595 } 3596 3597 md_probe(mddev->unit, NULL, NULL); 3598 disk = mddev->gendisk; 3599 if (!disk) 3600 return -ENOMEM; 3601 3602 spin_lock(&pers_lock); 3603 pers = find_pers(mddev->level, mddev->clevel); 3604 if (!pers || !try_module_get(pers->owner)) { 3605 spin_unlock(&pers_lock); 3606 if (mddev->level != LEVEL_NONE) 3607 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 3608 mddev->level); 3609 else 3610 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 3611 mddev->clevel); 3612 return -EINVAL; 3613 } 3614 mddev->pers = pers; 3615 spin_unlock(&pers_lock); 3616 mddev->level = pers->level; 3617 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3618 3619 if (mddev->reshape_position != MaxSector && 3620 pers->start_reshape == NULL) { 3621 /* This personality cannot handle reshaping... */ 3622 mddev->pers = NULL; 3623 module_put(pers->owner); 3624 return -EINVAL; 3625 } 3626 3627 if (pers->sync_request) { 3628 /* Warn if this is a potentially silly 3629 * configuration. 3630 */ 3631 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 3632 mdk_rdev_t *rdev2; 3633 struct list_head *tmp2; 3634 int warned = 0; 3635 rdev_for_each(rdev, tmp, mddev) { 3636 rdev_for_each(rdev2, tmp2, mddev) { 3637 if (rdev < rdev2 && 3638 rdev->bdev->bd_contains == 3639 rdev2->bdev->bd_contains) { 3640 printk(KERN_WARNING 3641 "%s: WARNING: %s appears to be" 3642 " on the same physical disk as" 3643 " %s.\n", 3644 mdname(mddev), 3645 bdevname(rdev->bdev,b), 3646 bdevname(rdev2->bdev,b2)); 3647 warned = 1; 3648 } 3649 } 3650 } 3651 if (warned) 3652 printk(KERN_WARNING 3653 "True protection against single-disk" 3654 " failure might be compromised.\n"); 3655 } 3656 3657 mddev->recovery = 0; 3658 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */ 3659 mddev->barriers_work = 1; 3660 mddev->ok_start_degraded = start_dirty_degraded; 3661 3662 if (start_readonly) 3663 mddev->ro = 2; /* read-only, but switch on first write */ 3664 3665 err = mddev->pers->run(mddev); 3666 if (err) 3667 printk(KERN_ERR "md: pers->run() failed ...\n"); 3668 else if (mddev->pers->sync_request) { 3669 err = bitmap_create(mddev); 3670 if (err) { 3671 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 3672 mdname(mddev), err); 3673 mddev->pers->stop(mddev); 3674 } 3675 } 3676 if (err) { 3677 module_put(mddev->pers->owner); 3678 mddev->pers = NULL; 3679 bitmap_destroy(mddev); 3680 return err; 3681 } 3682 if (mddev->pers->sync_request) { 3683 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3684 printk(KERN_WARNING 3685 "md: cannot register extra attributes for %s\n", 3686 mdname(mddev)); 3687 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 3688 mddev->ro = 0; 3689 3690 atomic_set(&mddev->writes_pending,0); 3691 mddev->safemode = 0; 3692 mddev->safemode_timer.function = md_safemode_timeout; 3693 mddev->safemode_timer.data = (unsigned long) mddev; 3694 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 3695 mddev->in_sync = 1; 3696 3697 rdev_for_each(rdev, tmp, mddev) 3698 if (rdev->raid_disk >= 0) { 3699 char nm[20]; 3700 sprintf(nm, "rd%d", rdev->raid_disk); 3701 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm)) 3702 printk("md: cannot register %s for %s\n", 3703 nm, mdname(mddev)); 3704 } 3705 3706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3707 3708 if (mddev->flags) 3709 md_update_sb(mddev, 0); 3710 3711 set_capacity(disk, mddev->array_sectors); 3712 3713 /* If we call blk_queue_make_request here, it will 3714 * re-initialise max_sectors etc which may have been 3715 * refined inside -> run. So just set the bits we need to set. 3716 * Most initialisation happended when we called 3717 * blk_queue_make_request(..., md_fail_request) 3718 * earlier. 3719 */ 3720 mddev->queue->queuedata = mddev; 3721 mddev->queue->make_request_fn = mddev->pers->make_request; 3722 3723 /* If there is a partially-recovered drive we need to 3724 * start recovery here. If we leave it to md_check_recovery, 3725 * it will remove the drives and not do the right thing 3726 */ 3727 if (mddev->degraded && !mddev->sync_thread) { 3728 struct list_head *rtmp; 3729 int spares = 0; 3730 rdev_for_each(rdev, rtmp, mddev) 3731 if (rdev->raid_disk >= 0 && 3732 !test_bit(In_sync, &rdev->flags) && 3733 !test_bit(Faulty, &rdev->flags)) 3734 /* complete an interrupted recovery */ 3735 spares++; 3736 if (spares && mddev->pers->sync_request) { 3737 mddev->recovery = 0; 3738 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 3739 mddev->sync_thread = md_register_thread(md_do_sync, 3740 mddev, 3741 "%s_resync"); 3742 if (!mddev->sync_thread) { 3743 printk(KERN_ERR "%s: could not start resync" 3744 " thread...\n", 3745 mdname(mddev)); 3746 /* leave the spares where they are, it shouldn't hurt */ 3747 mddev->recovery = 0; 3748 } 3749 } 3750 } 3751 md_wakeup_thread(mddev->thread); 3752 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 3753 3754 mddev->changed = 1; 3755 md_new_event(mddev); 3756 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3757 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 3758 sysfs_notify(&mddev->kobj, NULL, "degraded"); 3759 kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE); 3760 return 0; 3761 } 3762 3763 static int restart_array(mddev_t *mddev) 3764 { 3765 struct gendisk *disk = mddev->gendisk; 3766 3767 /* Complain if it has no devices */ 3768 if (list_empty(&mddev->disks)) 3769 return -ENXIO; 3770 if (!mddev->pers) 3771 return -EINVAL; 3772 if (!mddev->ro) 3773 return -EBUSY; 3774 mddev->safemode = 0; 3775 mddev->ro = 0; 3776 set_disk_ro(disk, 0); 3777 printk(KERN_INFO "md: %s switched to read-write mode.\n", 3778 mdname(mddev)); 3779 /* Kick recovery or resync if necessary */ 3780 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 3781 md_wakeup_thread(mddev->thread); 3782 md_wakeup_thread(mddev->sync_thread); 3783 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3784 return 0; 3785 } 3786 3787 /* similar to deny_write_access, but accounts for our holding a reference 3788 * to the file ourselves */ 3789 static int deny_bitmap_write_access(struct file * file) 3790 { 3791 struct inode *inode = file->f_mapping->host; 3792 3793 spin_lock(&inode->i_lock); 3794 if (atomic_read(&inode->i_writecount) > 1) { 3795 spin_unlock(&inode->i_lock); 3796 return -ETXTBSY; 3797 } 3798 atomic_set(&inode->i_writecount, -1); 3799 spin_unlock(&inode->i_lock); 3800 3801 return 0; 3802 } 3803 3804 static void restore_bitmap_write_access(struct file *file) 3805 { 3806 struct inode *inode = file->f_mapping->host; 3807 3808 spin_lock(&inode->i_lock); 3809 atomic_set(&inode->i_writecount, 1); 3810 spin_unlock(&inode->i_lock); 3811 } 3812 3813 /* mode: 3814 * 0 - completely stop and dis-assemble array 3815 * 1 - switch to readonly 3816 * 2 - stop but do not disassemble array 3817 */ 3818 static int do_md_stop(mddev_t * mddev, int mode, int is_open) 3819 { 3820 int err = 0; 3821 struct gendisk *disk = mddev->gendisk; 3822 3823 if (atomic_read(&mddev->openers) > is_open) { 3824 printk("md: %s still in use.\n",mdname(mddev)); 3825 return -EBUSY; 3826 } 3827 3828 if (mddev->pers) { 3829 3830 if (mddev->sync_thread) { 3831 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3832 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 3833 md_unregister_thread(mddev->sync_thread); 3834 mddev->sync_thread = NULL; 3835 } 3836 3837 del_timer_sync(&mddev->safemode_timer); 3838 3839 invalidate_partition(disk, 0); 3840 3841 switch(mode) { 3842 case 1: /* readonly */ 3843 err = -ENXIO; 3844 if (mddev->ro==1) 3845 goto out; 3846 mddev->ro = 1; 3847 break; 3848 case 0: /* disassemble */ 3849 case 2: /* stop */ 3850 bitmap_flush(mddev); 3851 md_super_wait(mddev); 3852 if (mddev->ro) 3853 set_disk_ro(disk, 0); 3854 blk_queue_make_request(mddev->queue, md_fail_request); 3855 mddev->pers->stop(mddev); 3856 mddev->queue->merge_bvec_fn = NULL; 3857 mddev->queue->unplug_fn = NULL; 3858 mddev->queue->backing_dev_info.congested_fn = NULL; 3859 if (mddev->pers->sync_request) 3860 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 3861 3862 module_put(mddev->pers->owner); 3863 mddev->pers = NULL; 3864 /* tell userspace to handle 'inactive' */ 3865 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3866 3867 set_capacity(disk, 0); 3868 mddev->changed = 1; 3869 3870 if (mddev->ro) 3871 mddev->ro = 0; 3872 } 3873 if (!mddev->in_sync || mddev->flags) { 3874 /* mark array as shutdown cleanly */ 3875 mddev->in_sync = 1; 3876 md_update_sb(mddev, 1); 3877 } 3878 if (mode == 1) 3879 set_disk_ro(disk, 1); 3880 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 3881 } 3882 3883 /* 3884 * Free resources if final stop 3885 */ 3886 if (mode == 0) { 3887 mdk_rdev_t *rdev; 3888 struct list_head *tmp; 3889 3890 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 3891 3892 bitmap_destroy(mddev); 3893 if (mddev->bitmap_file) { 3894 restore_bitmap_write_access(mddev->bitmap_file); 3895 fput(mddev->bitmap_file); 3896 mddev->bitmap_file = NULL; 3897 } 3898 mddev->bitmap_offset = 0; 3899 3900 rdev_for_each(rdev, tmp, mddev) 3901 if (rdev->raid_disk >= 0) { 3902 char nm[20]; 3903 sprintf(nm, "rd%d", rdev->raid_disk); 3904 sysfs_remove_link(&mddev->kobj, nm); 3905 } 3906 3907 /* make sure all md_delayed_delete calls have finished */ 3908 flush_scheduled_work(); 3909 3910 export_array(mddev); 3911 3912 mddev->array_sectors = 0; 3913 mddev->size = 0; 3914 mddev->raid_disks = 0; 3915 mddev->recovery_cp = 0; 3916 mddev->resync_min = 0; 3917 mddev->resync_max = MaxSector; 3918 mddev->reshape_position = MaxSector; 3919 mddev->external = 0; 3920 mddev->persistent = 0; 3921 mddev->level = LEVEL_NONE; 3922 mddev->clevel[0] = 0; 3923 mddev->flags = 0; 3924 mddev->ro = 0; 3925 mddev->metadata_type[0] = 0; 3926 mddev->chunk_size = 0; 3927 mddev->ctime = mddev->utime = 0; 3928 mddev->layout = 0; 3929 mddev->max_disks = 0; 3930 mddev->events = 0; 3931 mddev->delta_disks = 0; 3932 mddev->new_level = LEVEL_NONE; 3933 mddev->new_layout = 0; 3934 mddev->new_chunk = 0; 3935 mddev->curr_resync = 0; 3936 mddev->resync_mismatches = 0; 3937 mddev->suspend_lo = mddev->suspend_hi = 0; 3938 mddev->sync_speed_min = mddev->sync_speed_max = 0; 3939 mddev->recovery = 0; 3940 mddev->in_sync = 0; 3941 mddev->changed = 0; 3942 mddev->degraded = 0; 3943 mddev->barriers_work = 0; 3944 mddev->safemode = 0; 3945 3946 } else if (mddev->pers) 3947 printk(KERN_INFO "md: %s switched to read-only mode.\n", 3948 mdname(mddev)); 3949 err = 0; 3950 md_new_event(mddev); 3951 sysfs_notify(&mddev->kobj, NULL, "array_state"); 3952 out: 3953 return err; 3954 } 3955 3956 #ifndef MODULE 3957 static void autorun_array(mddev_t *mddev) 3958 { 3959 mdk_rdev_t *rdev; 3960 struct list_head *tmp; 3961 int err; 3962 3963 if (list_empty(&mddev->disks)) 3964 return; 3965 3966 printk(KERN_INFO "md: running: "); 3967 3968 rdev_for_each(rdev, tmp, mddev) { 3969 char b[BDEVNAME_SIZE]; 3970 printk("<%s>", bdevname(rdev->bdev,b)); 3971 } 3972 printk("\n"); 3973 3974 err = do_md_run (mddev); 3975 if (err) { 3976 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 3977 do_md_stop (mddev, 0, 0); 3978 } 3979 } 3980 3981 /* 3982 * lets try to run arrays based on all disks that have arrived 3983 * until now. (those are in pending_raid_disks) 3984 * 3985 * the method: pick the first pending disk, collect all disks with 3986 * the same UUID, remove all from the pending list and put them into 3987 * the 'same_array' list. Then order this list based on superblock 3988 * update time (freshest comes first), kick out 'old' disks and 3989 * compare superblocks. If everything's fine then run it. 3990 * 3991 * If "unit" is allocated, then bump its reference count 3992 */ 3993 static void autorun_devices(int part) 3994 { 3995 struct list_head *tmp; 3996 mdk_rdev_t *rdev0, *rdev; 3997 mddev_t *mddev; 3998 char b[BDEVNAME_SIZE]; 3999 4000 printk(KERN_INFO "md: autorun ...\n"); 4001 while (!list_empty(&pending_raid_disks)) { 4002 int unit; 4003 dev_t dev; 4004 LIST_HEAD(candidates); 4005 rdev0 = list_entry(pending_raid_disks.next, 4006 mdk_rdev_t, same_set); 4007 4008 printk(KERN_INFO "md: considering %s ...\n", 4009 bdevname(rdev0->bdev,b)); 4010 INIT_LIST_HEAD(&candidates); 4011 rdev_for_each_list(rdev, tmp, pending_raid_disks) 4012 if (super_90_load(rdev, rdev0, 0) >= 0) { 4013 printk(KERN_INFO "md: adding %s ...\n", 4014 bdevname(rdev->bdev,b)); 4015 list_move(&rdev->same_set, &candidates); 4016 } 4017 /* 4018 * now we have a set of devices, with all of them having 4019 * mostly sane superblocks. It's time to allocate the 4020 * mddev. 4021 */ 4022 if (part) { 4023 dev = MKDEV(mdp_major, 4024 rdev0->preferred_minor << MdpMinorShift); 4025 unit = MINOR(dev) >> MdpMinorShift; 4026 } else { 4027 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 4028 unit = MINOR(dev); 4029 } 4030 if (rdev0->preferred_minor != unit) { 4031 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 4032 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 4033 break; 4034 } 4035 4036 md_probe(dev, NULL, NULL); 4037 mddev = mddev_find(dev); 4038 if (!mddev || !mddev->gendisk) { 4039 if (mddev) 4040 mddev_put(mddev); 4041 printk(KERN_ERR 4042 "md: cannot allocate memory for md drive.\n"); 4043 break; 4044 } 4045 if (mddev_lock(mddev)) 4046 printk(KERN_WARNING "md: %s locked, cannot run\n", 4047 mdname(mddev)); 4048 else if (mddev->raid_disks || mddev->major_version 4049 || !list_empty(&mddev->disks)) { 4050 printk(KERN_WARNING 4051 "md: %s already running, cannot run %s\n", 4052 mdname(mddev), bdevname(rdev0->bdev,b)); 4053 mddev_unlock(mddev); 4054 } else { 4055 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 4056 mddev->persistent = 1; 4057 rdev_for_each_list(rdev, tmp, candidates) { 4058 list_del_init(&rdev->same_set); 4059 if (bind_rdev_to_array(rdev, mddev)) 4060 export_rdev(rdev); 4061 } 4062 autorun_array(mddev); 4063 mddev_unlock(mddev); 4064 } 4065 /* on success, candidates will be empty, on error 4066 * it won't... 4067 */ 4068 rdev_for_each_list(rdev, tmp, candidates) { 4069 list_del_init(&rdev->same_set); 4070 export_rdev(rdev); 4071 } 4072 mddev_put(mddev); 4073 } 4074 printk(KERN_INFO "md: ... autorun DONE.\n"); 4075 } 4076 #endif /* !MODULE */ 4077 4078 static int get_version(void __user * arg) 4079 { 4080 mdu_version_t ver; 4081 4082 ver.major = MD_MAJOR_VERSION; 4083 ver.minor = MD_MINOR_VERSION; 4084 ver.patchlevel = MD_PATCHLEVEL_VERSION; 4085 4086 if (copy_to_user(arg, &ver, sizeof(ver))) 4087 return -EFAULT; 4088 4089 return 0; 4090 } 4091 4092 static int get_array_info(mddev_t * mddev, void __user * arg) 4093 { 4094 mdu_array_info_t info; 4095 int nr,working,active,failed,spare; 4096 mdk_rdev_t *rdev; 4097 struct list_head *tmp; 4098 4099 nr=working=active=failed=spare=0; 4100 rdev_for_each(rdev, tmp, mddev) { 4101 nr++; 4102 if (test_bit(Faulty, &rdev->flags)) 4103 failed++; 4104 else { 4105 working++; 4106 if (test_bit(In_sync, &rdev->flags)) 4107 active++; 4108 else 4109 spare++; 4110 } 4111 } 4112 4113 info.major_version = mddev->major_version; 4114 info.minor_version = mddev->minor_version; 4115 info.patch_version = MD_PATCHLEVEL_VERSION; 4116 info.ctime = mddev->ctime; 4117 info.level = mddev->level; 4118 info.size = mddev->size; 4119 if (info.size != mddev->size) /* overflow */ 4120 info.size = -1; 4121 info.nr_disks = nr; 4122 info.raid_disks = mddev->raid_disks; 4123 info.md_minor = mddev->md_minor; 4124 info.not_persistent= !mddev->persistent; 4125 4126 info.utime = mddev->utime; 4127 info.state = 0; 4128 if (mddev->in_sync) 4129 info.state = (1<<MD_SB_CLEAN); 4130 if (mddev->bitmap && mddev->bitmap_offset) 4131 info.state = (1<<MD_SB_BITMAP_PRESENT); 4132 info.active_disks = active; 4133 info.working_disks = working; 4134 info.failed_disks = failed; 4135 info.spare_disks = spare; 4136 4137 info.layout = mddev->layout; 4138 info.chunk_size = mddev->chunk_size; 4139 4140 if (copy_to_user(arg, &info, sizeof(info))) 4141 return -EFAULT; 4142 4143 return 0; 4144 } 4145 4146 static int get_bitmap_file(mddev_t * mddev, void __user * arg) 4147 { 4148 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 4149 char *ptr, *buf = NULL; 4150 int err = -ENOMEM; 4151 4152 if (md_allow_write(mddev)) 4153 file = kmalloc(sizeof(*file), GFP_NOIO); 4154 else 4155 file = kmalloc(sizeof(*file), GFP_KERNEL); 4156 4157 if (!file) 4158 goto out; 4159 4160 /* bitmap disabled, zero the first byte and copy out */ 4161 if (!mddev->bitmap || !mddev->bitmap->file) { 4162 file->pathname[0] = '\0'; 4163 goto copy_out; 4164 } 4165 4166 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 4167 if (!buf) 4168 goto out; 4169 4170 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname)); 4171 if (IS_ERR(ptr)) 4172 goto out; 4173 4174 strcpy(file->pathname, ptr); 4175 4176 copy_out: 4177 err = 0; 4178 if (copy_to_user(arg, file, sizeof(*file))) 4179 err = -EFAULT; 4180 out: 4181 kfree(buf); 4182 kfree(file); 4183 return err; 4184 } 4185 4186 static int get_disk_info(mddev_t * mddev, void __user * arg) 4187 { 4188 mdu_disk_info_t info; 4189 mdk_rdev_t *rdev; 4190 4191 if (copy_from_user(&info, arg, sizeof(info))) 4192 return -EFAULT; 4193 4194 rdev = find_rdev_nr(mddev, info.number); 4195 if (rdev) { 4196 info.major = MAJOR(rdev->bdev->bd_dev); 4197 info.minor = MINOR(rdev->bdev->bd_dev); 4198 info.raid_disk = rdev->raid_disk; 4199 info.state = 0; 4200 if (test_bit(Faulty, &rdev->flags)) 4201 info.state |= (1<<MD_DISK_FAULTY); 4202 else if (test_bit(In_sync, &rdev->flags)) { 4203 info.state |= (1<<MD_DISK_ACTIVE); 4204 info.state |= (1<<MD_DISK_SYNC); 4205 } 4206 if (test_bit(WriteMostly, &rdev->flags)) 4207 info.state |= (1<<MD_DISK_WRITEMOSTLY); 4208 } else { 4209 info.major = info.minor = 0; 4210 info.raid_disk = -1; 4211 info.state = (1<<MD_DISK_REMOVED); 4212 } 4213 4214 if (copy_to_user(arg, &info, sizeof(info))) 4215 return -EFAULT; 4216 4217 return 0; 4218 } 4219 4220 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info) 4221 { 4222 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 4223 mdk_rdev_t *rdev; 4224 dev_t dev = MKDEV(info->major,info->minor); 4225 4226 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 4227 return -EOVERFLOW; 4228 4229 if (!mddev->raid_disks) { 4230 int err; 4231 /* expecting a device which has a superblock */ 4232 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 4233 if (IS_ERR(rdev)) { 4234 printk(KERN_WARNING 4235 "md: md_import_device returned %ld\n", 4236 PTR_ERR(rdev)); 4237 return PTR_ERR(rdev); 4238 } 4239 if (!list_empty(&mddev->disks)) { 4240 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next, 4241 mdk_rdev_t, same_set); 4242 int err = super_types[mddev->major_version] 4243 .load_super(rdev, rdev0, mddev->minor_version); 4244 if (err < 0) { 4245 printk(KERN_WARNING 4246 "md: %s has different UUID to %s\n", 4247 bdevname(rdev->bdev,b), 4248 bdevname(rdev0->bdev,b2)); 4249 export_rdev(rdev); 4250 return -EINVAL; 4251 } 4252 } 4253 err = bind_rdev_to_array(rdev, mddev); 4254 if (err) 4255 export_rdev(rdev); 4256 return err; 4257 } 4258 4259 /* 4260 * add_new_disk can be used once the array is assembled 4261 * to add "hot spares". They must already have a superblock 4262 * written 4263 */ 4264 if (mddev->pers) { 4265 int err; 4266 if (!mddev->pers->hot_add_disk) { 4267 printk(KERN_WARNING 4268 "%s: personality does not support diskops!\n", 4269 mdname(mddev)); 4270 return -EINVAL; 4271 } 4272 if (mddev->persistent) 4273 rdev = md_import_device(dev, mddev->major_version, 4274 mddev->minor_version); 4275 else 4276 rdev = md_import_device(dev, -1, -1); 4277 if (IS_ERR(rdev)) { 4278 printk(KERN_WARNING 4279 "md: md_import_device returned %ld\n", 4280 PTR_ERR(rdev)); 4281 return PTR_ERR(rdev); 4282 } 4283 /* set save_raid_disk if appropriate */ 4284 if (!mddev->persistent) { 4285 if (info->state & (1<<MD_DISK_SYNC) && 4286 info->raid_disk < mddev->raid_disks) 4287 rdev->raid_disk = info->raid_disk; 4288 else 4289 rdev->raid_disk = -1; 4290 } else 4291 super_types[mddev->major_version]. 4292 validate_super(mddev, rdev); 4293 rdev->saved_raid_disk = rdev->raid_disk; 4294 4295 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 4296 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4297 set_bit(WriteMostly, &rdev->flags); 4298 4299 rdev->raid_disk = -1; 4300 err = bind_rdev_to_array(rdev, mddev); 4301 if (!err && !mddev->pers->hot_remove_disk) { 4302 /* If there is hot_add_disk but no hot_remove_disk 4303 * then added disks for geometry changes, 4304 * and should be added immediately. 4305 */ 4306 super_types[mddev->major_version]. 4307 validate_super(mddev, rdev); 4308 err = mddev->pers->hot_add_disk(mddev, rdev); 4309 if (err) 4310 unbind_rdev_from_array(rdev); 4311 } 4312 if (err) 4313 export_rdev(rdev); 4314 else 4315 sysfs_notify(&rdev->kobj, NULL, "state"); 4316 4317 md_update_sb(mddev, 1); 4318 if (mddev->degraded) 4319 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4320 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4321 md_wakeup_thread(mddev->thread); 4322 return err; 4323 } 4324 4325 /* otherwise, add_new_disk is only allowed 4326 * for major_version==0 superblocks 4327 */ 4328 if (mddev->major_version != 0) { 4329 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 4330 mdname(mddev)); 4331 return -EINVAL; 4332 } 4333 4334 if (!(info->state & (1<<MD_DISK_FAULTY))) { 4335 int err; 4336 rdev = md_import_device (dev, -1, 0); 4337 if (IS_ERR(rdev)) { 4338 printk(KERN_WARNING 4339 "md: error, md_import_device() returned %ld\n", 4340 PTR_ERR(rdev)); 4341 return PTR_ERR(rdev); 4342 } 4343 rdev->desc_nr = info->number; 4344 if (info->raid_disk < mddev->raid_disks) 4345 rdev->raid_disk = info->raid_disk; 4346 else 4347 rdev->raid_disk = -1; 4348 4349 if (rdev->raid_disk < mddev->raid_disks) 4350 if (info->state & (1<<MD_DISK_SYNC)) 4351 set_bit(In_sync, &rdev->flags); 4352 4353 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 4354 set_bit(WriteMostly, &rdev->flags); 4355 4356 if (!mddev->persistent) { 4357 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 4358 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4359 } else 4360 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4361 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4362 4363 err = bind_rdev_to_array(rdev, mddev); 4364 if (err) { 4365 export_rdev(rdev); 4366 return err; 4367 } 4368 } 4369 4370 return 0; 4371 } 4372 4373 static int hot_remove_disk(mddev_t * mddev, dev_t dev) 4374 { 4375 char b[BDEVNAME_SIZE]; 4376 mdk_rdev_t *rdev; 4377 4378 rdev = find_rdev(mddev, dev); 4379 if (!rdev) 4380 return -ENXIO; 4381 4382 if (rdev->raid_disk >= 0) 4383 goto busy; 4384 4385 kick_rdev_from_array(rdev); 4386 md_update_sb(mddev, 1); 4387 md_new_event(mddev); 4388 4389 return 0; 4390 busy: 4391 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 4392 bdevname(rdev->bdev,b), mdname(mddev)); 4393 return -EBUSY; 4394 } 4395 4396 static int hot_add_disk(mddev_t * mddev, dev_t dev) 4397 { 4398 char b[BDEVNAME_SIZE]; 4399 int err; 4400 mdk_rdev_t *rdev; 4401 4402 if (!mddev->pers) 4403 return -ENODEV; 4404 4405 if (mddev->major_version != 0) { 4406 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 4407 " version-0 superblocks.\n", 4408 mdname(mddev)); 4409 return -EINVAL; 4410 } 4411 if (!mddev->pers->hot_add_disk) { 4412 printk(KERN_WARNING 4413 "%s: personality does not support diskops!\n", 4414 mdname(mddev)); 4415 return -EINVAL; 4416 } 4417 4418 rdev = md_import_device (dev, -1, 0); 4419 if (IS_ERR(rdev)) { 4420 printk(KERN_WARNING 4421 "md: error, md_import_device() returned %ld\n", 4422 PTR_ERR(rdev)); 4423 return -EINVAL; 4424 } 4425 4426 if (mddev->persistent) 4427 rdev->sb_start = calc_dev_sboffset(rdev->bdev); 4428 else 4429 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512; 4430 4431 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2; 4432 4433 if (test_bit(Faulty, &rdev->flags)) { 4434 printk(KERN_WARNING 4435 "md: can not hot-add faulty %s disk to %s!\n", 4436 bdevname(rdev->bdev,b), mdname(mddev)); 4437 err = -EINVAL; 4438 goto abort_export; 4439 } 4440 clear_bit(In_sync, &rdev->flags); 4441 rdev->desc_nr = -1; 4442 rdev->saved_raid_disk = -1; 4443 err = bind_rdev_to_array(rdev, mddev); 4444 if (err) 4445 goto abort_export; 4446 4447 /* 4448 * The rest should better be atomic, we can have disk failures 4449 * noticed in interrupt contexts ... 4450 */ 4451 4452 if (rdev->desc_nr == mddev->max_disks) { 4453 printk(KERN_WARNING "%s: can not hot-add to full array!\n", 4454 mdname(mddev)); 4455 err = -EBUSY; 4456 goto abort_unbind_export; 4457 } 4458 4459 rdev->raid_disk = -1; 4460 4461 md_update_sb(mddev, 1); 4462 4463 /* 4464 * Kick recovery, maybe this spare has to be added to the 4465 * array immediately. 4466 */ 4467 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4468 md_wakeup_thread(mddev->thread); 4469 md_new_event(mddev); 4470 return 0; 4471 4472 abort_unbind_export: 4473 unbind_rdev_from_array(rdev); 4474 4475 abort_export: 4476 export_rdev(rdev); 4477 return err; 4478 } 4479 4480 static int set_bitmap_file(mddev_t *mddev, int fd) 4481 { 4482 int err; 4483 4484 if (mddev->pers) { 4485 if (!mddev->pers->quiesce) 4486 return -EBUSY; 4487 if (mddev->recovery || mddev->sync_thread) 4488 return -EBUSY; 4489 /* we should be able to change the bitmap.. */ 4490 } 4491 4492 4493 if (fd >= 0) { 4494 if (mddev->bitmap) 4495 return -EEXIST; /* cannot add when bitmap is present */ 4496 mddev->bitmap_file = fget(fd); 4497 4498 if (mddev->bitmap_file == NULL) { 4499 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 4500 mdname(mddev)); 4501 return -EBADF; 4502 } 4503 4504 err = deny_bitmap_write_access(mddev->bitmap_file); 4505 if (err) { 4506 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 4507 mdname(mddev)); 4508 fput(mddev->bitmap_file); 4509 mddev->bitmap_file = NULL; 4510 return err; 4511 } 4512 mddev->bitmap_offset = 0; /* file overrides offset */ 4513 } else if (mddev->bitmap == NULL) 4514 return -ENOENT; /* cannot remove what isn't there */ 4515 err = 0; 4516 if (mddev->pers) { 4517 mddev->pers->quiesce(mddev, 1); 4518 if (fd >= 0) 4519 err = bitmap_create(mddev); 4520 if (fd < 0 || err) { 4521 bitmap_destroy(mddev); 4522 fd = -1; /* make sure to put the file */ 4523 } 4524 mddev->pers->quiesce(mddev, 0); 4525 } 4526 if (fd < 0) { 4527 if (mddev->bitmap_file) { 4528 restore_bitmap_write_access(mddev->bitmap_file); 4529 fput(mddev->bitmap_file); 4530 } 4531 mddev->bitmap_file = NULL; 4532 } 4533 4534 return err; 4535 } 4536 4537 /* 4538 * set_array_info is used two different ways 4539 * The original usage is when creating a new array. 4540 * In this usage, raid_disks is > 0 and it together with 4541 * level, size, not_persistent,layout,chunksize determine the 4542 * shape of the array. 4543 * This will always create an array with a type-0.90.0 superblock. 4544 * The newer usage is when assembling an array. 4545 * In this case raid_disks will be 0, and the major_version field is 4546 * use to determine which style super-blocks are to be found on the devices. 4547 * The minor and patch _version numbers are also kept incase the 4548 * super_block handler wishes to interpret them. 4549 */ 4550 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info) 4551 { 4552 4553 if (info->raid_disks == 0) { 4554 /* just setting version number for superblock loading */ 4555 if (info->major_version < 0 || 4556 info->major_version >= ARRAY_SIZE(super_types) || 4557 super_types[info->major_version].name == NULL) { 4558 /* maybe try to auto-load a module? */ 4559 printk(KERN_INFO 4560 "md: superblock version %d not known\n", 4561 info->major_version); 4562 return -EINVAL; 4563 } 4564 mddev->major_version = info->major_version; 4565 mddev->minor_version = info->minor_version; 4566 mddev->patch_version = info->patch_version; 4567 mddev->persistent = !info->not_persistent; 4568 return 0; 4569 } 4570 mddev->major_version = MD_MAJOR_VERSION; 4571 mddev->minor_version = MD_MINOR_VERSION; 4572 mddev->patch_version = MD_PATCHLEVEL_VERSION; 4573 mddev->ctime = get_seconds(); 4574 4575 mddev->level = info->level; 4576 mddev->clevel[0] = 0; 4577 mddev->size = info->size; 4578 mddev->raid_disks = info->raid_disks; 4579 /* don't set md_minor, it is determined by which /dev/md* was 4580 * openned 4581 */ 4582 if (info->state & (1<<MD_SB_CLEAN)) 4583 mddev->recovery_cp = MaxSector; 4584 else 4585 mddev->recovery_cp = 0; 4586 mddev->persistent = ! info->not_persistent; 4587 mddev->external = 0; 4588 4589 mddev->layout = info->layout; 4590 mddev->chunk_size = info->chunk_size; 4591 4592 mddev->max_disks = MD_SB_DISKS; 4593 4594 if (mddev->persistent) 4595 mddev->flags = 0; 4596 set_bit(MD_CHANGE_DEVS, &mddev->flags); 4597 4598 mddev->default_bitmap_offset = MD_SB_BYTES >> 9; 4599 mddev->bitmap_offset = 0; 4600 4601 mddev->reshape_position = MaxSector; 4602 4603 /* 4604 * Generate a 128 bit UUID 4605 */ 4606 get_random_bytes(mddev->uuid, 16); 4607 4608 mddev->new_level = mddev->level; 4609 mddev->new_chunk = mddev->chunk_size; 4610 mddev->new_layout = mddev->layout; 4611 mddev->delta_disks = 0; 4612 4613 return 0; 4614 } 4615 4616 static int update_size(mddev_t *mddev, sector_t num_sectors) 4617 { 4618 mdk_rdev_t * rdev; 4619 int rv; 4620 struct list_head *tmp; 4621 int fit = (num_sectors == 0); 4622 4623 if (mddev->pers->resize == NULL) 4624 return -EINVAL; 4625 /* The "num_sectors" is the number of sectors of each device that 4626 * is used. This can only make sense for arrays with redundancy. 4627 * linear and raid0 always use whatever space is available. We can only 4628 * consider changing this number if no resync or reconstruction is 4629 * happening, and if the new size is acceptable. It must fit before the 4630 * sb_start or, if that is <data_offset, it must fit before the size 4631 * of each device. If num_sectors is zero, we find the largest size 4632 * that fits. 4633 4634 */ 4635 if (mddev->sync_thread) 4636 return -EBUSY; 4637 rdev_for_each(rdev, tmp, mddev) { 4638 sector_t avail; 4639 avail = rdev->size * 2; 4640 4641 if (fit && (num_sectors == 0 || num_sectors > avail)) 4642 num_sectors = avail; 4643 if (avail < num_sectors) 4644 return -ENOSPC; 4645 } 4646 rv = mddev->pers->resize(mddev, num_sectors); 4647 if (!rv) { 4648 struct block_device *bdev; 4649 4650 bdev = bdget_disk(mddev->gendisk, 0); 4651 if (bdev) { 4652 mutex_lock(&bdev->bd_inode->i_mutex); 4653 i_size_write(bdev->bd_inode, 4654 (loff_t)mddev->array_sectors << 9); 4655 mutex_unlock(&bdev->bd_inode->i_mutex); 4656 bdput(bdev); 4657 } 4658 } 4659 return rv; 4660 } 4661 4662 static int update_raid_disks(mddev_t *mddev, int raid_disks) 4663 { 4664 int rv; 4665 /* change the number of raid disks */ 4666 if (mddev->pers->check_reshape == NULL) 4667 return -EINVAL; 4668 if (raid_disks <= 0 || 4669 raid_disks >= mddev->max_disks) 4670 return -EINVAL; 4671 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 4672 return -EBUSY; 4673 mddev->delta_disks = raid_disks - mddev->raid_disks; 4674 4675 rv = mddev->pers->check_reshape(mddev); 4676 return rv; 4677 } 4678 4679 4680 /* 4681 * update_array_info is used to change the configuration of an 4682 * on-line array. 4683 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 4684 * fields in the info are checked against the array. 4685 * Any differences that cannot be handled will cause an error. 4686 * Normally, only one change can be managed at a time. 4687 */ 4688 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info) 4689 { 4690 int rv = 0; 4691 int cnt = 0; 4692 int state = 0; 4693 4694 /* calculate expected state,ignoring low bits */ 4695 if (mddev->bitmap && mddev->bitmap_offset) 4696 state |= (1 << MD_SB_BITMAP_PRESENT); 4697 4698 if (mddev->major_version != info->major_version || 4699 mddev->minor_version != info->minor_version || 4700 /* mddev->patch_version != info->patch_version || */ 4701 mddev->ctime != info->ctime || 4702 mddev->level != info->level || 4703 /* mddev->layout != info->layout || */ 4704 !mddev->persistent != info->not_persistent|| 4705 mddev->chunk_size != info->chunk_size || 4706 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 4707 ((state^info->state) & 0xfffffe00) 4708 ) 4709 return -EINVAL; 4710 /* Check there is only one change */ 4711 if (info->size >= 0 && mddev->size != info->size) cnt++; 4712 if (mddev->raid_disks != info->raid_disks) cnt++; 4713 if (mddev->layout != info->layout) cnt++; 4714 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++; 4715 if (cnt == 0) return 0; 4716 if (cnt > 1) return -EINVAL; 4717 4718 if (mddev->layout != info->layout) { 4719 /* Change layout 4720 * we don't need to do anything at the md level, the 4721 * personality will take care of it all. 4722 */ 4723 if (mddev->pers->reconfig == NULL) 4724 return -EINVAL; 4725 else 4726 return mddev->pers->reconfig(mddev, info->layout, -1); 4727 } 4728 if (info->size >= 0 && mddev->size != info->size) 4729 rv = update_size(mddev, (sector_t)info->size * 2); 4730 4731 if (mddev->raid_disks != info->raid_disks) 4732 rv = update_raid_disks(mddev, info->raid_disks); 4733 4734 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 4735 if (mddev->pers->quiesce == NULL) 4736 return -EINVAL; 4737 if (mddev->recovery || mddev->sync_thread) 4738 return -EBUSY; 4739 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 4740 /* add the bitmap */ 4741 if (mddev->bitmap) 4742 return -EEXIST; 4743 if (mddev->default_bitmap_offset == 0) 4744 return -EINVAL; 4745 mddev->bitmap_offset = mddev->default_bitmap_offset; 4746 mddev->pers->quiesce(mddev, 1); 4747 rv = bitmap_create(mddev); 4748 if (rv) 4749 bitmap_destroy(mddev); 4750 mddev->pers->quiesce(mddev, 0); 4751 } else { 4752 /* remove the bitmap */ 4753 if (!mddev->bitmap) 4754 return -ENOENT; 4755 if (mddev->bitmap->file) 4756 return -EINVAL; 4757 mddev->pers->quiesce(mddev, 1); 4758 bitmap_destroy(mddev); 4759 mddev->pers->quiesce(mddev, 0); 4760 mddev->bitmap_offset = 0; 4761 } 4762 } 4763 md_update_sb(mddev, 1); 4764 return rv; 4765 } 4766 4767 static int set_disk_faulty(mddev_t *mddev, dev_t dev) 4768 { 4769 mdk_rdev_t *rdev; 4770 4771 if (mddev->pers == NULL) 4772 return -ENODEV; 4773 4774 rdev = find_rdev(mddev, dev); 4775 if (!rdev) 4776 return -ENODEV; 4777 4778 md_error(mddev, rdev); 4779 return 0; 4780 } 4781 4782 /* 4783 * We have a problem here : there is no easy way to give a CHS 4784 * virtual geometry. We currently pretend that we have a 2 heads 4785 * 4 sectors (with a BIG number of cylinders...). This drives 4786 * dosfs just mad... ;-) 4787 */ 4788 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 4789 { 4790 mddev_t *mddev = bdev->bd_disk->private_data; 4791 4792 geo->heads = 2; 4793 geo->sectors = 4; 4794 geo->cylinders = get_capacity(mddev->gendisk) / 8; 4795 return 0; 4796 } 4797 4798 static int md_ioctl(struct inode *inode, struct file *file, 4799 unsigned int cmd, unsigned long arg) 4800 { 4801 int err = 0; 4802 void __user *argp = (void __user *)arg; 4803 mddev_t *mddev = NULL; 4804 4805 if (!capable(CAP_SYS_ADMIN)) 4806 return -EACCES; 4807 4808 /* 4809 * Commands dealing with the RAID driver but not any 4810 * particular array: 4811 */ 4812 switch (cmd) 4813 { 4814 case RAID_VERSION: 4815 err = get_version(argp); 4816 goto done; 4817 4818 case PRINT_RAID_DEBUG: 4819 err = 0; 4820 md_print_devices(); 4821 goto done; 4822 4823 #ifndef MODULE 4824 case RAID_AUTORUN: 4825 err = 0; 4826 autostart_arrays(arg); 4827 goto done; 4828 #endif 4829 default:; 4830 } 4831 4832 /* 4833 * Commands creating/starting a new array: 4834 */ 4835 4836 mddev = inode->i_bdev->bd_disk->private_data; 4837 4838 if (!mddev) { 4839 BUG(); 4840 goto abort; 4841 } 4842 4843 err = mddev_lock(mddev); 4844 if (err) { 4845 printk(KERN_INFO 4846 "md: ioctl lock interrupted, reason %d, cmd %d\n", 4847 err, cmd); 4848 goto abort; 4849 } 4850 4851 switch (cmd) 4852 { 4853 case SET_ARRAY_INFO: 4854 { 4855 mdu_array_info_t info; 4856 if (!arg) 4857 memset(&info, 0, sizeof(info)); 4858 else if (copy_from_user(&info, argp, sizeof(info))) { 4859 err = -EFAULT; 4860 goto abort_unlock; 4861 } 4862 if (mddev->pers) { 4863 err = update_array_info(mddev, &info); 4864 if (err) { 4865 printk(KERN_WARNING "md: couldn't update" 4866 " array info. %d\n", err); 4867 goto abort_unlock; 4868 } 4869 goto done_unlock; 4870 } 4871 if (!list_empty(&mddev->disks)) { 4872 printk(KERN_WARNING 4873 "md: array %s already has disks!\n", 4874 mdname(mddev)); 4875 err = -EBUSY; 4876 goto abort_unlock; 4877 } 4878 if (mddev->raid_disks) { 4879 printk(KERN_WARNING 4880 "md: array %s already initialised!\n", 4881 mdname(mddev)); 4882 err = -EBUSY; 4883 goto abort_unlock; 4884 } 4885 err = set_array_info(mddev, &info); 4886 if (err) { 4887 printk(KERN_WARNING "md: couldn't set" 4888 " array info. %d\n", err); 4889 goto abort_unlock; 4890 } 4891 } 4892 goto done_unlock; 4893 4894 default:; 4895 } 4896 4897 /* 4898 * Commands querying/configuring an existing array: 4899 */ 4900 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 4901 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 4902 if ((!mddev->raid_disks && !mddev->external) 4903 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 4904 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 4905 && cmd != GET_BITMAP_FILE) { 4906 err = -ENODEV; 4907 goto abort_unlock; 4908 } 4909 4910 /* 4911 * Commands even a read-only array can execute: 4912 */ 4913 switch (cmd) 4914 { 4915 case GET_ARRAY_INFO: 4916 err = get_array_info(mddev, argp); 4917 goto done_unlock; 4918 4919 case GET_BITMAP_FILE: 4920 err = get_bitmap_file(mddev, argp); 4921 goto done_unlock; 4922 4923 case GET_DISK_INFO: 4924 err = get_disk_info(mddev, argp); 4925 goto done_unlock; 4926 4927 case RESTART_ARRAY_RW: 4928 err = restart_array(mddev); 4929 goto done_unlock; 4930 4931 case STOP_ARRAY: 4932 err = do_md_stop (mddev, 0, 1); 4933 goto done_unlock; 4934 4935 case STOP_ARRAY_RO: 4936 err = do_md_stop (mddev, 1, 1); 4937 goto done_unlock; 4938 4939 } 4940 4941 /* 4942 * The remaining ioctls are changing the state of the 4943 * superblock, so we do not allow them on read-only arrays. 4944 * However non-MD ioctls (e.g. get-size) will still come through 4945 * here and hit the 'default' below, so only disallow 4946 * 'md' ioctls, and switch to rw mode if started auto-readonly. 4947 */ 4948 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 4949 if (mddev->ro == 2) { 4950 mddev->ro = 0; 4951 sysfs_notify(&mddev->kobj, NULL, "array_state"); 4952 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4953 md_wakeup_thread(mddev->thread); 4954 } else { 4955 err = -EROFS; 4956 goto abort_unlock; 4957 } 4958 } 4959 4960 switch (cmd) 4961 { 4962 case ADD_NEW_DISK: 4963 { 4964 mdu_disk_info_t info; 4965 if (copy_from_user(&info, argp, sizeof(info))) 4966 err = -EFAULT; 4967 else 4968 err = add_new_disk(mddev, &info); 4969 goto done_unlock; 4970 } 4971 4972 case HOT_REMOVE_DISK: 4973 err = hot_remove_disk(mddev, new_decode_dev(arg)); 4974 goto done_unlock; 4975 4976 case HOT_ADD_DISK: 4977 err = hot_add_disk(mddev, new_decode_dev(arg)); 4978 goto done_unlock; 4979 4980 case SET_DISK_FAULTY: 4981 err = set_disk_faulty(mddev, new_decode_dev(arg)); 4982 goto done_unlock; 4983 4984 case RUN_ARRAY: 4985 err = do_md_run (mddev); 4986 goto done_unlock; 4987 4988 case SET_BITMAP_FILE: 4989 err = set_bitmap_file(mddev, (int)arg); 4990 goto done_unlock; 4991 4992 default: 4993 err = -EINVAL; 4994 goto abort_unlock; 4995 } 4996 4997 done_unlock: 4998 abort_unlock: 4999 mddev_unlock(mddev); 5000 5001 return err; 5002 done: 5003 if (err) 5004 MD_BUG(); 5005 abort: 5006 return err; 5007 } 5008 5009 static int md_open(struct inode *inode, struct file *file) 5010 { 5011 /* 5012 * Succeed if we can lock the mddev, which confirms that 5013 * it isn't being stopped right now. 5014 */ 5015 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 5016 int err; 5017 5018 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1))) 5019 goto out; 5020 5021 err = 0; 5022 mddev_get(mddev); 5023 atomic_inc(&mddev->openers); 5024 mddev_unlock(mddev); 5025 5026 check_disk_change(inode->i_bdev); 5027 out: 5028 return err; 5029 } 5030 5031 static int md_release(struct inode *inode, struct file * file) 5032 { 5033 mddev_t *mddev = inode->i_bdev->bd_disk->private_data; 5034 5035 BUG_ON(!mddev); 5036 atomic_dec(&mddev->openers); 5037 mddev_put(mddev); 5038 5039 return 0; 5040 } 5041 5042 static int md_media_changed(struct gendisk *disk) 5043 { 5044 mddev_t *mddev = disk->private_data; 5045 5046 return mddev->changed; 5047 } 5048 5049 static int md_revalidate(struct gendisk *disk) 5050 { 5051 mddev_t *mddev = disk->private_data; 5052 5053 mddev->changed = 0; 5054 return 0; 5055 } 5056 static struct block_device_operations md_fops = 5057 { 5058 .owner = THIS_MODULE, 5059 .open = md_open, 5060 .release = md_release, 5061 .ioctl = md_ioctl, 5062 .getgeo = md_getgeo, 5063 .media_changed = md_media_changed, 5064 .revalidate_disk= md_revalidate, 5065 }; 5066 5067 static int md_thread(void * arg) 5068 { 5069 mdk_thread_t *thread = arg; 5070 5071 /* 5072 * md_thread is a 'system-thread', it's priority should be very 5073 * high. We avoid resource deadlocks individually in each 5074 * raid personality. (RAID5 does preallocation) We also use RR and 5075 * the very same RT priority as kswapd, thus we will never get 5076 * into a priority inversion deadlock. 5077 * 5078 * we definitely have to have equal or higher priority than 5079 * bdflush, otherwise bdflush will deadlock if there are too 5080 * many dirty RAID5 blocks. 5081 */ 5082 5083 allow_signal(SIGKILL); 5084 while (!kthread_should_stop()) { 5085 5086 /* We need to wait INTERRUPTIBLE so that 5087 * we don't add to the load-average. 5088 * That means we need to be sure no signals are 5089 * pending 5090 */ 5091 if (signal_pending(current)) 5092 flush_signals(current); 5093 5094 wait_event_interruptible_timeout 5095 (thread->wqueue, 5096 test_bit(THREAD_WAKEUP, &thread->flags) 5097 || kthread_should_stop(), 5098 thread->timeout); 5099 5100 clear_bit(THREAD_WAKEUP, &thread->flags); 5101 5102 thread->run(thread->mddev); 5103 } 5104 5105 return 0; 5106 } 5107 5108 void md_wakeup_thread(mdk_thread_t *thread) 5109 { 5110 if (thread) { 5111 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm); 5112 set_bit(THREAD_WAKEUP, &thread->flags); 5113 wake_up(&thread->wqueue); 5114 } 5115 } 5116 5117 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev, 5118 const char *name) 5119 { 5120 mdk_thread_t *thread; 5121 5122 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL); 5123 if (!thread) 5124 return NULL; 5125 5126 init_waitqueue_head(&thread->wqueue); 5127 5128 thread->run = run; 5129 thread->mddev = mddev; 5130 thread->timeout = MAX_SCHEDULE_TIMEOUT; 5131 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev)); 5132 if (IS_ERR(thread->tsk)) { 5133 kfree(thread); 5134 return NULL; 5135 } 5136 return thread; 5137 } 5138 5139 void md_unregister_thread(mdk_thread_t *thread) 5140 { 5141 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 5142 5143 kthread_stop(thread->tsk); 5144 kfree(thread); 5145 } 5146 5147 void md_error(mddev_t *mddev, mdk_rdev_t *rdev) 5148 { 5149 if (!mddev) { 5150 MD_BUG(); 5151 return; 5152 } 5153 5154 if (!rdev || test_bit(Faulty, &rdev->flags)) 5155 return; 5156 5157 if (mddev->external) 5158 set_bit(Blocked, &rdev->flags); 5159 /* 5160 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n", 5161 mdname(mddev), 5162 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev), 5163 __builtin_return_address(0),__builtin_return_address(1), 5164 __builtin_return_address(2),__builtin_return_address(3)); 5165 */ 5166 if (!mddev->pers) 5167 return; 5168 if (!mddev->pers->error_handler) 5169 return; 5170 mddev->pers->error_handler(mddev,rdev); 5171 if (mddev->degraded) 5172 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5173 set_bit(StateChanged, &rdev->flags); 5174 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5175 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5176 md_wakeup_thread(mddev->thread); 5177 md_new_event_inintr(mddev); 5178 } 5179 5180 /* seq_file implementation /proc/mdstat */ 5181 5182 static void status_unused(struct seq_file *seq) 5183 { 5184 int i = 0; 5185 mdk_rdev_t *rdev; 5186 struct list_head *tmp; 5187 5188 seq_printf(seq, "unused devices: "); 5189 5190 rdev_for_each_list(rdev, tmp, pending_raid_disks) { 5191 char b[BDEVNAME_SIZE]; 5192 i++; 5193 seq_printf(seq, "%s ", 5194 bdevname(rdev->bdev,b)); 5195 } 5196 if (!i) 5197 seq_printf(seq, "<none>"); 5198 5199 seq_printf(seq, "\n"); 5200 } 5201 5202 5203 static void status_resync(struct seq_file *seq, mddev_t * mddev) 5204 { 5205 sector_t max_blocks, resync, res; 5206 unsigned long dt, db, rt; 5207 int scale; 5208 unsigned int per_milli; 5209 5210 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2; 5211 5212 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 5213 max_blocks = mddev->resync_max_sectors >> 1; 5214 else 5215 max_blocks = mddev->size; 5216 5217 /* 5218 * Should not happen. 5219 */ 5220 if (!max_blocks) { 5221 MD_BUG(); 5222 return; 5223 } 5224 /* Pick 'scale' such that (resync>>scale)*1000 will fit 5225 * in a sector_t, and (max_blocks>>scale) will fit in a 5226 * u32, as those are the requirements for sector_div. 5227 * Thus 'scale' must be at least 10 5228 */ 5229 scale = 10; 5230 if (sizeof(sector_t) > sizeof(unsigned long)) { 5231 while ( max_blocks/2 > (1ULL<<(scale+32))) 5232 scale++; 5233 } 5234 res = (resync>>scale)*1000; 5235 sector_div(res, (u32)((max_blocks>>scale)+1)); 5236 5237 per_milli = res; 5238 { 5239 int i, x = per_milli/50, y = 20-x; 5240 seq_printf(seq, "["); 5241 for (i = 0; i < x; i++) 5242 seq_printf(seq, "="); 5243 seq_printf(seq, ">"); 5244 for (i = 0; i < y; i++) 5245 seq_printf(seq, "."); 5246 seq_printf(seq, "] "); 5247 } 5248 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 5249 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 5250 "reshape" : 5251 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 5252 "check" : 5253 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 5254 "resync" : "recovery"))), 5255 per_milli/10, per_milli % 10, 5256 (unsigned long long) resync, 5257 (unsigned long long) max_blocks); 5258 5259 /* 5260 * We do not want to overflow, so the order of operands and 5261 * the * 100 / 100 trick are important. We do a +1 to be 5262 * safe against division by zero. We only estimate anyway. 5263 * 5264 * dt: time from mark until now 5265 * db: blocks written from mark until now 5266 * rt: remaining time 5267 */ 5268 dt = ((jiffies - mddev->resync_mark) / HZ); 5269 if (!dt) dt++; 5270 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 5271 - mddev->resync_mark_cnt; 5272 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100; 5273 5274 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6); 5275 5276 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 5277 } 5278 5279 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 5280 { 5281 struct list_head *tmp; 5282 loff_t l = *pos; 5283 mddev_t *mddev; 5284 5285 if (l >= 0x10000) 5286 return NULL; 5287 if (!l--) 5288 /* header */ 5289 return (void*)1; 5290 5291 spin_lock(&all_mddevs_lock); 5292 list_for_each(tmp,&all_mddevs) 5293 if (!l--) { 5294 mddev = list_entry(tmp, mddev_t, all_mddevs); 5295 mddev_get(mddev); 5296 spin_unlock(&all_mddevs_lock); 5297 return mddev; 5298 } 5299 spin_unlock(&all_mddevs_lock); 5300 if (!l--) 5301 return (void*)2;/* tail */ 5302 return NULL; 5303 } 5304 5305 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 5306 { 5307 struct list_head *tmp; 5308 mddev_t *next_mddev, *mddev = v; 5309 5310 ++*pos; 5311 if (v == (void*)2) 5312 return NULL; 5313 5314 spin_lock(&all_mddevs_lock); 5315 if (v == (void*)1) 5316 tmp = all_mddevs.next; 5317 else 5318 tmp = mddev->all_mddevs.next; 5319 if (tmp != &all_mddevs) 5320 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs)); 5321 else { 5322 next_mddev = (void*)2; 5323 *pos = 0x10000; 5324 } 5325 spin_unlock(&all_mddevs_lock); 5326 5327 if (v != (void*)1) 5328 mddev_put(mddev); 5329 return next_mddev; 5330 5331 } 5332 5333 static void md_seq_stop(struct seq_file *seq, void *v) 5334 { 5335 mddev_t *mddev = v; 5336 5337 if (mddev && v != (void*)1 && v != (void*)2) 5338 mddev_put(mddev); 5339 } 5340 5341 struct mdstat_info { 5342 int event; 5343 }; 5344 5345 static int md_seq_show(struct seq_file *seq, void *v) 5346 { 5347 mddev_t *mddev = v; 5348 sector_t size; 5349 struct list_head *tmp2; 5350 mdk_rdev_t *rdev; 5351 struct mdstat_info *mi = seq->private; 5352 struct bitmap *bitmap; 5353 5354 if (v == (void*)1) { 5355 struct mdk_personality *pers; 5356 seq_printf(seq, "Personalities : "); 5357 spin_lock(&pers_lock); 5358 list_for_each_entry(pers, &pers_list, list) 5359 seq_printf(seq, "[%s] ", pers->name); 5360 5361 spin_unlock(&pers_lock); 5362 seq_printf(seq, "\n"); 5363 mi->event = atomic_read(&md_event_count); 5364 return 0; 5365 } 5366 if (v == (void*)2) { 5367 status_unused(seq); 5368 return 0; 5369 } 5370 5371 if (mddev_lock(mddev) < 0) 5372 return -EINTR; 5373 5374 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 5375 seq_printf(seq, "%s : %sactive", mdname(mddev), 5376 mddev->pers ? "" : "in"); 5377 if (mddev->pers) { 5378 if (mddev->ro==1) 5379 seq_printf(seq, " (read-only)"); 5380 if (mddev->ro==2) 5381 seq_printf(seq, " (auto-read-only)"); 5382 seq_printf(seq, " %s", mddev->pers->name); 5383 } 5384 5385 size = 0; 5386 rdev_for_each(rdev, tmp2, mddev) { 5387 char b[BDEVNAME_SIZE]; 5388 seq_printf(seq, " %s[%d]", 5389 bdevname(rdev->bdev,b), rdev->desc_nr); 5390 if (test_bit(WriteMostly, &rdev->flags)) 5391 seq_printf(seq, "(W)"); 5392 if (test_bit(Faulty, &rdev->flags)) { 5393 seq_printf(seq, "(F)"); 5394 continue; 5395 } else if (rdev->raid_disk < 0) 5396 seq_printf(seq, "(S)"); /* spare */ 5397 size += rdev->size; 5398 } 5399 5400 if (!list_empty(&mddev->disks)) { 5401 if (mddev->pers) 5402 seq_printf(seq, "\n %llu blocks", 5403 (unsigned long long) 5404 mddev->array_sectors / 2); 5405 else 5406 seq_printf(seq, "\n %llu blocks", 5407 (unsigned long long)size); 5408 } 5409 if (mddev->persistent) { 5410 if (mddev->major_version != 0 || 5411 mddev->minor_version != 90) { 5412 seq_printf(seq," super %d.%d", 5413 mddev->major_version, 5414 mddev->minor_version); 5415 } 5416 } else if (mddev->external) 5417 seq_printf(seq, " super external:%s", 5418 mddev->metadata_type); 5419 else 5420 seq_printf(seq, " super non-persistent"); 5421 5422 if (mddev->pers) { 5423 mddev->pers->status (seq, mddev); 5424 seq_printf(seq, "\n "); 5425 if (mddev->pers->sync_request) { 5426 if (mddev->curr_resync > 2) { 5427 status_resync (seq, mddev); 5428 seq_printf(seq, "\n "); 5429 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2) 5430 seq_printf(seq, "\tresync=DELAYED\n "); 5431 else if (mddev->recovery_cp < MaxSector) 5432 seq_printf(seq, "\tresync=PENDING\n "); 5433 } 5434 } else 5435 seq_printf(seq, "\n "); 5436 5437 if ((bitmap = mddev->bitmap)) { 5438 unsigned long chunk_kb; 5439 unsigned long flags; 5440 spin_lock_irqsave(&bitmap->lock, flags); 5441 chunk_kb = bitmap->chunksize >> 10; 5442 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], " 5443 "%lu%s chunk", 5444 bitmap->pages - bitmap->missing_pages, 5445 bitmap->pages, 5446 (bitmap->pages - bitmap->missing_pages) 5447 << (PAGE_SHIFT - 10), 5448 chunk_kb ? chunk_kb : bitmap->chunksize, 5449 chunk_kb ? "KB" : "B"); 5450 if (bitmap->file) { 5451 seq_printf(seq, ", file: "); 5452 seq_path(seq, &bitmap->file->f_path, " \t\n"); 5453 } 5454 5455 seq_printf(seq, "\n"); 5456 spin_unlock_irqrestore(&bitmap->lock, flags); 5457 } 5458 5459 seq_printf(seq, "\n"); 5460 } 5461 mddev_unlock(mddev); 5462 5463 return 0; 5464 } 5465 5466 static struct seq_operations md_seq_ops = { 5467 .start = md_seq_start, 5468 .next = md_seq_next, 5469 .stop = md_seq_stop, 5470 .show = md_seq_show, 5471 }; 5472 5473 static int md_seq_open(struct inode *inode, struct file *file) 5474 { 5475 int error; 5476 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL); 5477 if (mi == NULL) 5478 return -ENOMEM; 5479 5480 error = seq_open(file, &md_seq_ops); 5481 if (error) 5482 kfree(mi); 5483 else { 5484 struct seq_file *p = file->private_data; 5485 p->private = mi; 5486 mi->event = atomic_read(&md_event_count); 5487 } 5488 return error; 5489 } 5490 5491 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 5492 { 5493 struct seq_file *m = filp->private_data; 5494 struct mdstat_info *mi = m->private; 5495 int mask; 5496 5497 poll_wait(filp, &md_event_waiters, wait); 5498 5499 /* always allow read */ 5500 mask = POLLIN | POLLRDNORM; 5501 5502 if (mi->event != atomic_read(&md_event_count)) 5503 mask |= POLLERR | POLLPRI; 5504 return mask; 5505 } 5506 5507 static const struct file_operations md_seq_fops = { 5508 .owner = THIS_MODULE, 5509 .open = md_seq_open, 5510 .read = seq_read, 5511 .llseek = seq_lseek, 5512 .release = seq_release_private, 5513 .poll = mdstat_poll, 5514 }; 5515 5516 int register_md_personality(struct mdk_personality *p) 5517 { 5518 spin_lock(&pers_lock); 5519 list_add_tail(&p->list, &pers_list); 5520 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 5521 spin_unlock(&pers_lock); 5522 return 0; 5523 } 5524 5525 int unregister_md_personality(struct mdk_personality *p) 5526 { 5527 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 5528 spin_lock(&pers_lock); 5529 list_del_init(&p->list); 5530 spin_unlock(&pers_lock); 5531 return 0; 5532 } 5533 5534 static int is_mddev_idle(mddev_t *mddev) 5535 { 5536 mdk_rdev_t * rdev; 5537 int idle; 5538 long curr_events; 5539 5540 idle = 1; 5541 rcu_read_lock(); 5542 rdev_for_each_rcu(rdev, mddev) { 5543 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 5544 curr_events = disk_stat_read(disk, sectors[0]) + 5545 disk_stat_read(disk, sectors[1]) - 5546 atomic_read(&disk->sync_io); 5547 /* sync IO will cause sync_io to increase before the disk_stats 5548 * as sync_io is counted when a request starts, and 5549 * disk_stats is counted when it completes. 5550 * So resync activity will cause curr_events to be smaller than 5551 * when there was no such activity. 5552 * non-sync IO will cause disk_stat to increase without 5553 * increasing sync_io so curr_events will (eventually) 5554 * be larger than it was before. Once it becomes 5555 * substantially larger, the test below will cause 5556 * the array to appear non-idle, and resync will slow 5557 * down. 5558 * If there is a lot of outstanding resync activity when 5559 * we set last_event to curr_events, then all that activity 5560 * completing might cause the array to appear non-idle 5561 * and resync will be slowed down even though there might 5562 * not have been non-resync activity. This will only 5563 * happen once though. 'last_events' will soon reflect 5564 * the state where there is little or no outstanding 5565 * resync requests, and further resync activity will 5566 * always make curr_events less than last_events. 5567 * 5568 */ 5569 if (curr_events - rdev->last_events > 4096) { 5570 rdev->last_events = curr_events; 5571 idle = 0; 5572 } 5573 } 5574 rcu_read_unlock(); 5575 return idle; 5576 } 5577 5578 void md_done_sync(mddev_t *mddev, int blocks, int ok) 5579 { 5580 /* another "blocks" (512byte) blocks have been synced */ 5581 atomic_sub(blocks, &mddev->recovery_active); 5582 wake_up(&mddev->recovery_wait); 5583 if (!ok) { 5584 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5585 md_wakeup_thread(mddev->thread); 5586 // stop recovery, signal do_sync .... 5587 } 5588 } 5589 5590 5591 /* md_write_start(mddev, bi) 5592 * If we need to update some array metadata (e.g. 'active' flag 5593 * in superblock) before writing, schedule a superblock update 5594 * and wait for it to complete. 5595 */ 5596 void md_write_start(mddev_t *mddev, struct bio *bi) 5597 { 5598 int did_change = 0; 5599 if (bio_data_dir(bi) != WRITE) 5600 return; 5601 5602 BUG_ON(mddev->ro == 1); 5603 if (mddev->ro == 2) { 5604 /* need to switch to read/write */ 5605 mddev->ro = 0; 5606 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5607 md_wakeup_thread(mddev->thread); 5608 md_wakeup_thread(mddev->sync_thread); 5609 did_change = 1; 5610 } 5611 atomic_inc(&mddev->writes_pending); 5612 if (mddev->safemode == 1) 5613 mddev->safemode = 0; 5614 if (mddev->in_sync) { 5615 spin_lock_irq(&mddev->write_lock); 5616 if (mddev->in_sync) { 5617 mddev->in_sync = 0; 5618 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5619 md_wakeup_thread(mddev->thread); 5620 did_change = 1; 5621 } 5622 spin_unlock_irq(&mddev->write_lock); 5623 } 5624 if (did_change) 5625 sysfs_notify(&mddev->kobj, NULL, "array_state"); 5626 wait_event(mddev->sb_wait, 5627 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) && 5628 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5629 } 5630 5631 void md_write_end(mddev_t *mddev) 5632 { 5633 if (atomic_dec_and_test(&mddev->writes_pending)) { 5634 if (mddev->safemode == 2) 5635 md_wakeup_thread(mddev->thread); 5636 else if (mddev->safemode_delay) 5637 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 5638 } 5639 } 5640 5641 /* md_allow_write(mddev) 5642 * Calling this ensures that the array is marked 'active' so that writes 5643 * may proceed without blocking. It is important to call this before 5644 * attempting a GFP_KERNEL allocation while holding the mddev lock. 5645 * Must be called with mddev_lock held. 5646 * 5647 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 5648 * is dropped, so return -EAGAIN after notifying userspace. 5649 */ 5650 int md_allow_write(mddev_t *mddev) 5651 { 5652 if (!mddev->pers) 5653 return 0; 5654 if (mddev->ro) 5655 return 0; 5656 if (!mddev->pers->sync_request) 5657 return 0; 5658 5659 spin_lock_irq(&mddev->write_lock); 5660 if (mddev->in_sync) { 5661 mddev->in_sync = 0; 5662 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 5663 if (mddev->safemode_delay && 5664 mddev->safemode == 0) 5665 mddev->safemode = 1; 5666 spin_unlock_irq(&mddev->write_lock); 5667 md_update_sb(mddev, 0); 5668 sysfs_notify(&mddev->kobj, NULL, "array_state"); 5669 } else 5670 spin_unlock_irq(&mddev->write_lock); 5671 5672 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags)) 5673 return -EAGAIN; 5674 else 5675 return 0; 5676 } 5677 EXPORT_SYMBOL_GPL(md_allow_write); 5678 5679 #define SYNC_MARKS 10 5680 #define SYNC_MARK_STEP (3*HZ) 5681 void md_do_sync(mddev_t *mddev) 5682 { 5683 mddev_t *mddev2; 5684 unsigned int currspeed = 0, 5685 window; 5686 sector_t max_sectors,j, io_sectors; 5687 unsigned long mark[SYNC_MARKS]; 5688 sector_t mark_cnt[SYNC_MARKS]; 5689 int last_mark,m; 5690 struct list_head *tmp; 5691 sector_t last_check; 5692 int skipped = 0; 5693 struct list_head *rtmp; 5694 mdk_rdev_t *rdev; 5695 char *desc; 5696 5697 /* just incase thread restarts... */ 5698 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 5699 return; 5700 if (mddev->ro) /* never try to sync a read-only array */ 5701 return; 5702 5703 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5704 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 5705 desc = "data-check"; 5706 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5707 desc = "requested-resync"; 5708 else 5709 desc = "resync"; 5710 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5711 desc = "reshape"; 5712 else 5713 desc = "recovery"; 5714 5715 /* we overload curr_resync somewhat here. 5716 * 0 == not engaged in resync at all 5717 * 2 == checking that there is no conflict with another sync 5718 * 1 == like 2, but have yielded to allow conflicting resync to 5719 * commense 5720 * other == active in resync - this many blocks 5721 * 5722 * Before starting a resync we must have set curr_resync to 5723 * 2, and then checked that every "conflicting" array has curr_resync 5724 * less than ours. When we find one that is the same or higher 5725 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 5726 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 5727 * This will mean we have to start checking from the beginning again. 5728 * 5729 */ 5730 5731 do { 5732 mddev->curr_resync = 2; 5733 5734 try_again: 5735 if (kthread_should_stop()) { 5736 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5737 goto skip; 5738 } 5739 for_each_mddev(mddev2, tmp) { 5740 if (mddev2 == mddev) 5741 continue; 5742 if (!mddev->parallel_resync 5743 && mddev2->curr_resync 5744 && match_mddev_units(mddev, mddev2)) { 5745 DEFINE_WAIT(wq); 5746 if (mddev < mddev2 && mddev->curr_resync == 2) { 5747 /* arbitrarily yield */ 5748 mddev->curr_resync = 1; 5749 wake_up(&resync_wait); 5750 } 5751 if (mddev > mddev2 && mddev->curr_resync == 1) 5752 /* no need to wait here, we can wait the next 5753 * time 'round when curr_resync == 2 5754 */ 5755 continue; 5756 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE); 5757 if (!kthread_should_stop() && 5758 mddev2->curr_resync >= mddev->curr_resync) { 5759 printk(KERN_INFO "md: delaying %s of %s" 5760 " until %s has finished (they" 5761 " share one or more physical units)\n", 5762 desc, mdname(mddev), mdname(mddev2)); 5763 mddev_put(mddev2); 5764 schedule(); 5765 finish_wait(&resync_wait, &wq); 5766 goto try_again; 5767 } 5768 finish_wait(&resync_wait, &wq); 5769 } 5770 } 5771 } while (mddev->curr_resync < 2); 5772 5773 j = 0; 5774 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5775 /* resync follows the size requested by the personality, 5776 * which defaults to physical size, but can be virtual size 5777 */ 5778 max_sectors = mddev->resync_max_sectors; 5779 mddev->resync_mismatches = 0; 5780 /* we don't use the checkpoint if there's a bitmap */ 5781 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 5782 j = mddev->resync_min; 5783 else if (!mddev->bitmap) 5784 j = mddev->recovery_cp; 5785 5786 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5787 max_sectors = mddev->size << 1; 5788 else { 5789 /* recovery follows the physical size of devices */ 5790 max_sectors = mddev->size << 1; 5791 j = MaxSector; 5792 rdev_for_each(rdev, rtmp, mddev) 5793 if (rdev->raid_disk >= 0 && 5794 !test_bit(Faulty, &rdev->flags) && 5795 !test_bit(In_sync, &rdev->flags) && 5796 rdev->recovery_offset < j) 5797 j = rdev->recovery_offset; 5798 } 5799 5800 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 5801 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 5802 " %d KB/sec/disk.\n", speed_min(mddev)); 5803 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 5804 "(but not more than %d KB/sec) for %s.\n", 5805 speed_max(mddev), desc); 5806 5807 is_mddev_idle(mddev); /* this also initializes IO event counters */ 5808 5809 io_sectors = 0; 5810 for (m = 0; m < SYNC_MARKS; m++) { 5811 mark[m] = jiffies; 5812 mark_cnt[m] = io_sectors; 5813 } 5814 last_mark = 0; 5815 mddev->resync_mark = mark[last_mark]; 5816 mddev->resync_mark_cnt = mark_cnt[last_mark]; 5817 5818 /* 5819 * Tune reconstruction: 5820 */ 5821 window = 32*(PAGE_SIZE/512); 5822 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n", 5823 window/2,(unsigned long long) max_sectors/2); 5824 5825 atomic_set(&mddev->recovery_active, 0); 5826 last_check = 0; 5827 5828 if (j>2) { 5829 printk(KERN_INFO 5830 "md: resuming %s of %s from checkpoint.\n", 5831 desc, mdname(mddev)); 5832 mddev->curr_resync = j; 5833 } 5834 5835 while (j < max_sectors) { 5836 sector_t sectors; 5837 5838 skipped = 0; 5839 if (j >= mddev->resync_max) { 5840 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5841 wait_event(mddev->recovery_wait, 5842 mddev->resync_max > j 5843 || kthread_should_stop()); 5844 } 5845 if (kthread_should_stop()) 5846 goto interrupted; 5847 sectors = mddev->pers->sync_request(mddev, j, &skipped, 5848 currspeed < speed_min(mddev)); 5849 if (sectors == 0) { 5850 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5851 goto out; 5852 } 5853 5854 if (!skipped) { /* actual IO requested */ 5855 io_sectors += sectors; 5856 atomic_add(sectors, &mddev->recovery_active); 5857 } 5858 5859 j += sectors; 5860 if (j>1) mddev->curr_resync = j; 5861 mddev->curr_mark_cnt = io_sectors; 5862 if (last_check == 0) 5863 /* this is the earliers that rebuilt will be 5864 * visible in /proc/mdstat 5865 */ 5866 md_new_event(mddev); 5867 5868 if (last_check + window > io_sectors || j == max_sectors) 5869 continue; 5870 5871 last_check = io_sectors; 5872 5873 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5874 break; 5875 5876 repeat: 5877 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 5878 /* step marks */ 5879 int next = (last_mark+1) % SYNC_MARKS; 5880 5881 mddev->resync_mark = mark[next]; 5882 mddev->resync_mark_cnt = mark_cnt[next]; 5883 mark[next] = jiffies; 5884 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 5885 last_mark = next; 5886 } 5887 5888 5889 if (kthread_should_stop()) 5890 goto interrupted; 5891 5892 5893 /* 5894 * this loop exits only if either when we are slower than 5895 * the 'hard' speed limit, or the system was IO-idle for 5896 * a jiffy. 5897 * the system might be non-idle CPU-wise, but we only care 5898 * about not overloading the IO subsystem. (things like an 5899 * e2fsck being done on the RAID array should execute fast) 5900 */ 5901 blk_unplug(mddev->queue); 5902 cond_resched(); 5903 5904 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 5905 /((jiffies-mddev->resync_mark)/HZ +1) +1; 5906 5907 if (currspeed > speed_min(mddev)) { 5908 if ((currspeed > speed_max(mddev)) || 5909 !is_mddev_idle(mddev)) { 5910 msleep(500); 5911 goto repeat; 5912 } 5913 } 5914 } 5915 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 5916 /* 5917 * this also signals 'finished resyncing' to md_stop 5918 */ 5919 out: 5920 blk_unplug(mddev->queue); 5921 5922 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 5923 5924 /* tell personality that we are finished */ 5925 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 5926 5927 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 5928 mddev->curr_resync > 2) { 5929 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 5930 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 5931 if (mddev->curr_resync >= mddev->recovery_cp) { 5932 printk(KERN_INFO 5933 "md: checkpointing %s of %s.\n", 5934 desc, mdname(mddev)); 5935 mddev->recovery_cp = mddev->curr_resync; 5936 } 5937 } else 5938 mddev->recovery_cp = MaxSector; 5939 } else { 5940 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 5941 mddev->curr_resync = MaxSector; 5942 rdev_for_each(rdev, rtmp, mddev) 5943 if (rdev->raid_disk >= 0 && 5944 !test_bit(Faulty, &rdev->flags) && 5945 !test_bit(In_sync, &rdev->flags) && 5946 rdev->recovery_offset < mddev->curr_resync) 5947 rdev->recovery_offset = mddev->curr_resync; 5948 } 5949 } 5950 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5951 5952 skip: 5953 mddev->curr_resync = 0; 5954 mddev->resync_min = 0; 5955 mddev->resync_max = MaxSector; 5956 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 5957 wake_up(&resync_wait); 5958 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 5959 md_wakeup_thread(mddev->thread); 5960 return; 5961 5962 interrupted: 5963 /* 5964 * got a signal, exit. 5965 */ 5966 printk(KERN_INFO 5967 "md: md_do_sync() got signal ... exiting\n"); 5968 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5969 goto out; 5970 5971 } 5972 EXPORT_SYMBOL_GPL(md_do_sync); 5973 5974 5975 static int remove_and_add_spares(mddev_t *mddev) 5976 { 5977 mdk_rdev_t *rdev; 5978 struct list_head *rtmp; 5979 int spares = 0; 5980 5981 rdev_for_each(rdev, rtmp, mddev) 5982 if (rdev->raid_disk >= 0 && 5983 !test_bit(Blocked, &rdev->flags) && 5984 (test_bit(Faulty, &rdev->flags) || 5985 ! test_bit(In_sync, &rdev->flags)) && 5986 atomic_read(&rdev->nr_pending)==0) { 5987 if (mddev->pers->hot_remove_disk( 5988 mddev, rdev->raid_disk)==0) { 5989 char nm[20]; 5990 sprintf(nm,"rd%d", rdev->raid_disk); 5991 sysfs_remove_link(&mddev->kobj, nm); 5992 rdev->raid_disk = -1; 5993 } 5994 } 5995 5996 if (mddev->degraded) { 5997 rdev_for_each(rdev, rtmp, mddev) { 5998 if (rdev->raid_disk >= 0 && 5999 !test_bit(In_sync, &rdev->flags)) 6000 spares++; 6001 if (rdev->raid_disk < 0 6002 && !test_bit(Faulty, &rdev->flags)) { 6003 rdev->recovery_offset = 0; 6004 if (mddev->pers-> 6005 hot_add_disk(mddev, rdev) == 0) { 6006 char nm[20]; 6007 sprintf(nm, "rd%d", rdev->raid_disk); 6008 if (sysfs_create_link(&mddev->kobj, 6009 &rdev->kobj, nm)) 6010 printk(KERN_WARNING 6011 "md: cannot register " 6012 "%s for %s\n", 6013 nm, mdname(mddev)); 6014 spares++; 6015 md_new_event(mddev); 6016 } else 6017 break; 6018 } 6019 } 6020 } 6021 return spares; 6022 } 6023 /* 6024 * This routine is regularly called by all per-raid-array threads to 6025 * deal with generic issues like resync and super-block update. 6026 * Raid personalities that don't have a thread (linear/raid0) do not 6027 * need this as they never do any recovery or update the superblock. 6028 * 6029 * It does not do any resync itself, but rather "forks" off other threads 6030 * to do that as needed. 6031 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 6032 * "->recovery" and create a thread at ->sync_thread. 6033 * When the thread finishes it sets MD_RECOVERY_DONE 6034 * and wakeups up this thread which will reap the thread and finish up. 6035 * This thread also removes any faulty devices (with nr_pending == 0). 6036 * 6037 * The overall approach is: 6038 * 1/ if the superblock needs updating, update it. 6039 * 2/ If a recovery thread is running, don't do anything else. 6040 * 3/ If recovery has finished, clean up, possibly marking spares active. 6041 * 4/ If there are any faulty devices, remove them. 6042 * 5/ If array is degraded, try to add spares devices 6043 * 6/ If array has spares or is not in-sync, start a resync thread. 6044 */ 6045 void md_check_recovery(mddev_t *mddev) 6046 { 6047 mdk_rdev_t *rdev; 6048 struct list_head *rtmp; 6049 6050 6051 if (mddev->bitmap) 6052 bitmap_daemon_work(mddev->bitmap); 6053 6054 if (mddev->ro) 6055 return; 6056 6057 if (signal_pending(current)) { 6058 if (mddev->pers->sync_request && !mddev->external) { 6059 printk(KERN_INFO "md: %s in immediate safe mode\n", 6060 mdname(mddev)); 6061 mddev->safemode = 2; 6062 } 6063 flush_signals(current); 6064 } 6065 6066 if ( ! ( 6067 (mddev->flags && !mddev->external) || 6068 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 6069 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 6070 (mddev->external == 0 && mddev->safemode == 1) || 6071 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 6072 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 6073 )) 6074 return; 6075 6076 if (mddev_trylock(mddev)) { 6077 int spares = 0; 6078 6079 if (!mddev->external) { 6080 int did_change = 0; 6081 spin_lock_irq(&mddev->write_lock); 6082 if (mddev->safemode && 6083 !atomic_read(&mddev->writes_pending) && 6084 !mddev->in_sync && 6085 mddev->recovery_cp == MaxSector) { 6086 mddev->in_sync = 1; 6087 did_change = 1; 6088 if (mddev->persistent) 6089 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 6090 } 6091 if (mddev->safemode == 1) 6092 mddev->safemode = 0; 6093 spin_unlock_irq(&mddev->write_lock); 6094 if (did_change) 6095 sysfs_notify(&mddev->kobj, NULL, "array_state"); 6096 } 6097 6098 if (mddev->flags) 6099 md_update_sb(mddev, 0); 6100 6101 rdev_for_each(rdev, rtmp, mddev) 6102 if (test_and_clear_bit(StateChanged, &rdev->flags)) 6103 sysfs_notify(&rdev->kobj, NULL, "state"); 6104 6105 6106 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 6107 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 6108 /* resync/recovery still happening */ 6109 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6110 goto unlock; 6111 } 6112 if (mddev->sync_thread) { 6113 /* resync has finished, collect result */ 6114 md_unregister_thread(mddev->sync_thread); 6115 mddev->sync_thread = NULL; 6116 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 6117 /* success...*/ 6118 /* activate any spares */ 6119 if (mddev->pers->spare_active(mddev)) 6120 sysfs_notify(&mddev->kobj, NULL, 6121 "degraded"); 6122 } 6123 md_update_sb(mddev, 1); 6124 6125 /* if array is no-longer degraded, then any saved_raid_disk 6126 * information must be scrapped 6127 */ 6128 if (!mddev->degraded) 6129 rdev_for_each(rdev, rtmp, mddev) 6130 rdev->saved_raid_disk = -1; 6131 6132 mddev->recovery = 0; 6133 /* flag recovery needed just to double check */ 6134 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6135 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6136 md_new_event(mddev); 6137 goto unlock; 6138 } 6139 /* Set RUNNING before clearing NEEDED to avoid 6140 * any transients in the value of "sync_action". 6141 */ 6142 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6143 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6144 /* Clear some bits that don't mean anything, but 6145 * might be left set 6146 */ 6147 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 6148 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 6149 6150 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 6151 goto unlock; 6152 /* no recovery is running. 6153 * remove any failed drives, then 6154 * add spares if possible. 6155 * Spare are also removed and re-added, to allow 6156 * the personality to fail the re-add. 6157 */ 6158 6159 if (mddev->reshape_position != MaxSector) { 6160 if (mddev->pers->check_reshape(mddev) != 0) 6161 /* Cannot proceed */ 6162 goto unlock; 6163 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 6164 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6165 } else if ((spares = remove_and_add_spares(mddev))) { 6166 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6167 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 6168 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6169 } else if (mddev->recovery_cp < MaxSector) { 6170 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 6171 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6172 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 6173 /* nothing to be done ... */ 6174 goto unlock; 6175 6176 if (mddev->pers->sync_request) { 6177 if (spares && mddev->bitmap && ! mddev->bitmap->file) { 6178 /* We are adding a device or devices to an array 6179 * which has the bitmap stored on all devices. 6180 * So make sure all bitmap pages get written 6181 */ 6182 bitmap_write_all(mddev->bitmap); 6183 } 6184 mddev->sync_thread = md_register_thread(md_do_sync, 6185 mddev, 6186 "%s_resync"); 6187 if (!mddev->sync_thread) { 6188 printk(KERN_ERR "%s: could not start resync" 6189 " thread...\n", 6190 mdname(mddev)); 6191 /* leave the spares where they are, it shouldn't hurt */ 6192 mddev->recovery = 0; 6193 } else 6194 md_wakeup_thread(mddev->sync_thread); 6195 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6196 md_new_event(mddev); 6197 } 6198 unlock: 6199 if (!mddev->sync_thread) { 6200 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 6201 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 6202 &mddev->recovery)) 6203 sysfs_notify(&mddev->kobj, NULL, "sync_action"); 6204 } 6205 mddev_unlock(mddev); 6206 } 6207 } 6208 6209 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev) 6210 { 6211 sysfs_notify(&rdev->kobj, NULL, "state"); 6212 wait_event_timeout(rdev->blocked_wait, 6213 !test_bit(Blocked, &rdev->flags), 6214 msecs_to_jiffies(5000)); 6215 rdev_dec_pending(rdev, mddev); 6216 } 6217 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 6218 6219 static int md_notify_reboot(struct notifier_block *this, 6220 unsigned long code, void *x) 6221 { 6222 struct list_head *tmp; 6223 mddev_t *mddev; 6224 6225 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) { 6226 6227 printk(KERN_INFO "md: stopping all md devices.\n"); 6228 6229 for_each_mddev(mddev, tmp) 6230 if (mddev_trylock(mddev)) { 6231 do_md_stop (mddev, 1, 0); 6232 mddev_unlock(mddev); 6233 } 6234 /* 6235 * certain more exotic SCSI devices are known to be 6236 * volatile wrt too early system reboots. While the 6237 * right place to handle this issue is the given 6238 * driver, we do want to have a safe RAID driver ... 6239 */ 6240 mdelay(1000*1); 6241 } 6242 return NOTIFY_DONE; 6243 } 6244 6245 static struct notifier_block md_notifier = { 6246 .notifier_call = md_notify_reboot, 6247 .next = NULL, 6248 .priority = INT_MAX, /* before any real devices */ 6249 }; 6250 6251 static void md_geninit(void) 6252 { 6253 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 6254 6255 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 6256 } 6257 6258 static int __init md_init(void) 6259 { 6260 if (register_blkdev(MAJOR_NR, "md")) 6261 return -1; 6262 if ((mdp_major=register_blkdev(0, "mdp"))<=0) { 6263 unregister_blkdev(MAJOR_NR, "md"); 6264 return -1; 6265 } 6266 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE, 6267 md_probe, NULL, NULL); 6268 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 6269 md_probe, NULL, NULL); 6270 6271 register_reboot_notifier(&md_notifier); 6272 raid_table_header = register_sysctl_table(raid_root_table); 6273 6274 md_geninit(); 6275 return (0); 6276 } 6277 6278 6279 #ifndef MODULE 6280 6281 /* 6282 * Searches all registered partitions for autorun RAID arrays 6283 * at boot time. 6284 */ 6285 6286 static LIST_HEAD(all_detected_devices); 6287 struct detected_devices_node { 6288 struct list_head list; 6289 dev_t dev; 6290 }; 6291 6292 void md_autodetect_dev(dev_t dev) 6293 { 6294 struct detected_devices_node *node_detected_dev; 6295 6296 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 6297 if (node_detected_dev) { 6298 node_detected_dev->dev = dev; 6299 list_add_tail(&node_detected_dev->list, &all_detected_devices); 6300 } else { 6301 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 6302 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 6303 } 6304 } 6305 6306 6307 static void autostart_arrays(int part) 6308 { 6309 mdk_rdev_t *rdev; 6310 struct detected_devices_node *node_detected_dev; 6311 dev_t dev; 6312 int i_scanned, i_passed; 6313 6314 i_scanned = 0; 6315 i_passed = 0; 6316 6317 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 6318 6319 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 6320 i_scanned++; 6321 node_detected_dev = list_entry(all_detected_devices.next, 6322 struct detected_devices_node, list); 6323 list_del(&node_detected_dev->list); 6324 dev = node_detected_dev->dev; 6325 kfree(node_detected_dev); 6326 rdev = md_import_device(dev,0, 90); 6327 if (IS_ERR(rdev)) 6328 continue; 6329 6330 if (test_bit(Faulty, &rdev->flags)) { 6331 MD_BUG(); 6332 continue; 6333 } 6334 set_bit(AutoDetected, &rdev->flags); 6335 list_add(&rdev->same_set, &pending_raid_disks); 6336 i_passed++; 6337 } 6338 6339 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 6340 i_scanned, i_passed); 6341 6342 autorun_devices(part); 6343 } 6344 6345 #endif /* !MODULE */ 6346 6347 static __exit void md_exit(void) 6348 { 6349 mddev_t *mddev; 6350 struct list_head *tmp; 6351 6352 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS); 6353 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 6354 6355 unregister_blkdev(MAJOR_NR,"md"); 6356 unregister_blkdev(mdp_major, "mdp"); 6357 unregister_reboot_notifier(&md_notifier); 6358 unregister_sysctl_table(raid_table_header); 6359 remove_proc_entry("mdstat", NULL); 6360 for_each_mddev(mddev, tmp) { 6361 struct gendisk *disk = mddev->gendisk; 6362 if (!disk) 6363 continue; 6364 export_array(mddev); 6365 del_gendisk(disk); 6366 put_disk(disk); 6367 mddev->gendisk = NULL; 6368 mddev_put(mddev); 6369 } 6370 } 6371 6372 subsys_initcall(md_init); 6373 module_exit(md_exit) 6374 6375 static int get_ro(char *buffer, struct kernel_param *kp) 6376 { 6377 return sprintf(buffer, "%d", start_readonly); 6378 } 6379 static int set_ro(const char *val, struct kernel_param *kp) 6380 { 6381 char *e; 6382 int num = simple_strtoul(val, &e, 10); 6383 if (*val && (*e == '\0' || *e == '\n')) { 6384 start_readonly = num; 6385 return 0; 6386 } 6387 return -EINVAL; 6388 } 6389 6390 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 6391 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 6392 6393 6394 EXPORT_SYMBOL(register_md_personality); 6395 EXPORT_SYMBOL(unregister_md_personality); 6396 EXPORT_SYMBOL(md_error); 6397 EXPORT_SYMBOL(md_done_sync); 6398 EXPORT_SYMBOL(md_write_start); 6399 EXPORT_SYMBOL(md_write_end); 6400 EXPORT_SYMBOL(md_register_thread); 6401 EXPORT_SYMBOL(md_unregister_thread); 6402 EXPORT_SYMBOL(md_wakeup_thread); 6403 EXPORT_SYMBOL(md_check_recovery); 6404 MODULE_LICENSE("GPL"); 6405 MODULE_ALIAS("md"); 6406 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 6407