xref: /openbmc/linux/drivers/md/md.c (revision 52fb57e7)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	if (mddev == NULL || mddev->pers == NULL
261 	    || !mddev->ready) {
262 		bio_io_error(bio);
263 		return;
264 	}
265 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 		return;
268 	}
269 	smp_rmb(); /* Ensure implications of  'active' are visible */
270 	rcu_read_lock();
271 	if (mddev->suspended) {
272 		DEFINE_WAIT(__wait);
273 		for (;;) {
274 			prepare_to_wait(&mddev->sb_wait, &__wait,
275 					TASK_UNINTERRUPTIBLE);
276 			if (!mddev->suspended)
277 				break;
278 			rcu_read_unlock();
279 			schedule();
280 			rcu_read_lock();
281 		}
282 		finish_wait(&mddev->sb_wait, &__wait);
283 	}
284 	atomic_inc(&mddev->active_io);
285 	rcu_read_unlock();
286 
287 	/*
288 	 * save the sectors now since our bio can
289 	 * go away inside make_request
290 	 */
291 	sectors = bio_sectors(bio);
292 	mddev->pers->make_request(mddev, bio);
293 
294 	cpu = part_stat_lock();
295 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 	part_stat_unlock();
298 
299 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 		wake_up(&mddev->sb_wait);
301 }
302 
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 	BUG_ON(mddev->suspended);
312 	mddev->suspended = 1;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	mddev->suspended = 0;
324 	wake_up(&mddev->sb_wait);
325 	mddev->pers->quiesce(mddev, 0);
326 
327 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 	md_wakeup_thread(mddev->thread);
329 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332 
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 	struct md_personality *pers = mddev->pers;
336 	int ret = 0;
337 
338 	rcu_read_lock();
339 	if (mddev->suspended)
340 		ret = 1;
341 	else if (pers && pers->congested)
342 		ret = pers->congested(mddev, bits);
343 	rcu_read_unlock();
344 	return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 	struct mddev *mddev = data;
350 	return mddev_congested(mddev, bits);
351 }
352 
353 static int md_mergeable_bvec(struct request_queue *q,
354 			     struct bvec_merge_data *bvm,
355 			     struct bio_vec *biovec)
356 {
357 	struct mddev *mddev = q->queuedata;
358 	int ret;
359 	rcu_read_lock();
360 	if (mddev->suspended) {
361 		/* Must always allow one vec */
362 		if (bvm->bi_size == 0)
363 			ret = biovec->bv_len;
364 		else
365 			ret = 0;
366 	} else {
367 		struct md_personality *pers = mddev->pers;
368 		if (pers && pers->mergeable_bvec)
369 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 		else
371 			ret = biovec->bv_len;
372 	}
373 	rcu_read_unlock();
374 	return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379 
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 	struct md_rdev *rdev = bio->bi_private;
383 	struct mddev *mddev = rdev->mddev;
384 
385 	rdev_dec_pending(rdev, mddev);
386 
387 	if (atomic_dec_and_test(&mddev->flush_pending)) {
388 		/* The pre-request flush has finished */
389 		queue_work(md_wq, &mddev->flush_work);
390 	}
391 	bio_put(bio);
392 }
393 
394 static void md_submit_flush_data(struct work_struct *ws);
395 
396 static void submit_flushes(struct work_struct *ws)
397 {
398 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 	struct md_rdev *rdev;
400 
401 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 	atomic_set(&mddev->flush_pending, 1);
403 	rcu_read_lock();
404 	rdev_for_each_rcu(rdev, mddev)
405 		if (rdev->raid_disk >= 0 &&
406 		    !test_bit(Faulty, &rdev->flags)) {
407 			/* Take two references, one is dropped
408 			 * when request finishes, one after
409 			 * we reclaim rcu_read_lock
410 			 */
411 			struct bio *bi;
412 			atomic_inc(&rdev->nr_pending);
413 			atomic_inc(&rdev->nr_pending);
414 			rcu_read_unlock();
415 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 			bi->bi_end_io = md_end_flush;
417 			bi->bi_private = rdev;
418 			bi->bi_bdev = rdev->bdev;
419 			atomic_inc(&mddev->flush_pending);
420 			submit_bio(WRITE_FLUSH, bi);
421 			rcu_read_lock();
422 			rdev_dec_pending(rdev, mddev);
423 		}
424 	rcu_read_unlock();
425 	if (atomic_dec_and_test(&mddev->flush_pending))
426 		queue_work(md_wq, &mddev->flush_work);
427 }
428 
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 	struct bio *bio = mddev->flush_bio;
433 
434 	if (bio->bi_iter.bi_size == 0)
435 		/* an empty barrier - all done */
436 		bio_endio(bio, 0);
437 	else {
438 		bio->bi_rw &= ~REQ_FLUSH;
439 		mddev->pers->make_request(mddev, bio);
440 	}
441 
442 	mddev->flush_bio = NULL;
443 	wake_up(&mddev->sb_wait);
444 }
445 
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 	spin_lock_irq(&mddev->lock);
449 	wait_event_lock_irq(mddev->sb_wait,
450 			    !mddev->flush_bio,
451 			    mddev->lock);
452 	mddev->flush_bio = bio;
453 	spin_unlock_irq(&mddev->lock);
454 
455 	INIT_WORK(&mddev->flush_work, submit_flushes);
456 	queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459 
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 	struct mddev *mddev = cb->data;
463 	md_wakeup_thread(mddev->thread);
464 	kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467 
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 	atomic_inc(&mddev->active);
471 	return mddev;
472 }
473 
474 static void mddev_delayed_delete(struct work_struct *ws);
475 
476 static void mddev_put(struct mddev *mddev)
477 {
478 	struct bio_set *bs = NULL;
479 
480 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 		return;
482 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 	    mddev->ctime == 0 && !mddev->hold_active) {
484 		/* Array is not configured at all, and not held active,
485 		 * so destroy it */
486 		list_del_init(&mddev->all_mddevs);
487 		bs = mddev->bio_set;
488 		mddev->bio_set = NULL;
489 		if (mddev->gendisk) {
490 			/* We did a probe so need to clean up.  Call
491 			 * queue_work inside the spinlock so that
492 			 * flush_workqueue() after mddev_find will
493 			 * succeed in waiting for the work to be done.
494 			 */
495 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 			queue_work(md_misc_wq, &mddev->del_work);
497 		} else
498 			kfree(mddev);
499 	}
500 	spin_unlock(&all_mddevs_lock);
501 	if (bs)
502 		bioset_free(bs);
503 }
504 
505 void mddev_init(struct mddev *mddev)
506 {
507 	mutex_init(&mddev->open_mutex);
508 	mutex_init(&mddev->reconfig_mutex);
509 	mutex_init(&mddev->bitmap_info.mutex);
510 	INIT_LIST_HEAD(&mddev->disks);
511 	INIT_LIST_HEAD(&mddev->all_mddevs);
512 	init_timer(&mddev->safemode_timer);
513 	atomic_set(&mddev->active, 1);
514 	atomic_set(&mddev->openers, 0);
515 	atomic_set(&mddev->active_io, 0);
516 	spin_lock_init(&mddev->lock);
517 	atomic_set(&mddev->flush_pending, 0);
518 	init_waitqueue_head(&mddev->sb_wait);
519 	init_waitqueue_head(&mddev->recovery_wait);
520 	mddev->reshape_position = MaxSector;
521 	mddev->reshape_backwards = 0;
522 	mddev->last_sync_action = "none";
523 	mddev->resync_min = 0;
524 	mddev->resync_max = MaxSector;
525 	mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528 
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 	struct mddev *mddev, *new = NULL;
532 
533 	if (unit && MAJOR(unit) != MD_MAJOR)
534 		unit &= ~((1<<MdpMinorShift)-1);
535 
536  retry:
537 	spin_lock(&all_mddevs_lock);
538 
539 	if (unit) {
540 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 			if (mddev->unit == unit) {
542 				mddev_get(mddev);
543 				spin_unlock(&all_mddevs_lock);
544 				kfree(new);
545 				return mddev;
546 			}
547 
548 		if (new) {
549 			list_add(&new->all_mddevs, &all_mddevs);
550 			spin_unlock(&all_mddevs_lock);
551 			new->hold_active = UNTIL_IOCTL;
552 			return new;
553 		}
554 	} else if (new) {
555 		/* find an unused unit number */
556 		static int next_minor = 512;
557 		int start = next_minor;
558 		int is_free = 0;
559 		int dev = 0;
560 		while (!is_free) {
561 			dev = MKDEV(MD_MAJOR, next_minor);
562 			next_minor++;
563 			if (next_minor > MINORMASK)
564 				next_minor = 0;
565 			if (next_minor == start) {
566 				/* Oh dear, all in use. */
567 				spin_unlock(&all_mddevs_lock);
568 				kfree(new);
569 				return NULL;
570 			}
571 
572 			is_free = 1;
573 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 				if (mddev->unit == dev) {
575 					is_free = 0;
576 					break;
577 				}
578 		}
579 		new->unit = dev;
580 		new->md_minor = MINOR(dev);
581 		new->hold_active = UNTIL_STOP;
582 		list_add(&new->all_mddevs, &all_mddevs);
583 		spin_unlock(&all_mddevs_lock);
584 		return new;
585 	}
586 	spin_unlock(&all_mddevs_lock);
587 
588 	new = kzalloc(sizeof(*new), GFP_KERNEL);
589 	if (!new)
590 		return NULL;
591 
592 	new->unit = unit;
593 	if (MAJOR(unit) == MD_MAJOR)
594 		new->md_minor = MINOR(unit);
595 	else
596 		new->md_minor = MINOR(unit) >> MdpMinorShift;
597 
598 	mddev_init(new);
599 
600 	goto retry;
601 }
602 
603 static struct attribute_group md_redundancy_group;
604 
605 void mddev_unlock(struct mddev *mddev)
606 {
607 	if (mddev->to_remove) {
608 		/* These cannot be removed under reconfig_mutex as
609 		 * an access to the files will try to take reconfig_mutex
610 		 * while holding the file unremovable, which leads to
611 		 * a deadlock.
612 		 * So hold set sysfs_active while the remove in happeing,
613 		 * and anything else which might set ->to_remove or my
614 		 * otherwise change the sysfs namespace will fail with
615 		 * -EBUSY if sysfs_active is still set.
616 		 * We set sysfs_active under reconfig_mutex and elsewhere
617 		 * test it under the same mutex to ensure its correct value
618 		 * is seen.
619 		 */
620 		struct attribute_group *to_remove = mddev->to_remove;
621 		mddev->to_remove = NULL;
622 		mddev->sysfs_active = 1;
623 		mutex_unlock(&mddev->reconfig_mutex);
624 
625 		if (mddev->kobj.sd) {
626 			if (to_remove != &md_redundancy_group)
627 				sysfs_remove_group(&mddev->kobj, to_remove);
628 			if (mddev->pers == NULL ||
629 			    mddev->pers->sync_request == NULL) {
630 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 				if (mddev->sysfs_action)
632 					sysfs_put(mddev->sysfs_action);
633 				mddev->sysfs_action = NULL;
634 			}
635 		}
636 		mddev->sysfs_active = 0;
637 	} else
638 		mutex_unlock(&mddev->reconfig_mutex);
639 
640 	/* As we've dropped the mutex we need a spinlock to
641 	 * make sure the thread doesn't disappear
642 	 */
643 	spin_lock(&pers_lock);
644 	md_wakeup_thread(mddev->thread);
645 	spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648 
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 	struct md_rdev *rdev;
652 
653 	rdev_for_each_rcu(rdev, mddev)
654 		if (rdev->desc_nr == nr)
655 			return rdev;
656 
657 	return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660 
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 	struct md_rdev *rdev;
675 
676 	rdev_for_each_rcu(rdev, mddev)
677 		if (rdev->bdev->bd_dev == dev)
678 			return rdev;
679 
680 	return NULL;
681 }
682 
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 	struct md_personality *pers;
686 	list_for_each_entry(pers, &pers_list, list) {
687 		if (level != LEVEL_NONE && pers->level == level)
688 			return pers;
689 		if (strcmp(pers->name, clevel)==0)
690 			return pers;
691 	}
692 	return NULL;
693 }
694 
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 	return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701 
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 	rdev->sb_page = alloc_page(GFP_KERNEL);
705 	if (!rdev->sb_page) {
706 		printk(KERN_ALERT "md: out of memory.\n");
707 		return -ENOMEM;
708 	}
709 
710 	return 0;
711 }
712 
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 	if (rdev->sb_page) {
716 		put_page(rdev->sb_page);
717 		rdev->sb_loaded = 0;
718 		rdev->sb_page = NULL;
719 		rdev->sb_start = 0;
720 		rdev->sectors = 0;
721 	}
722 	if (rdev->bb_page) {
723 		put_page(rdev->bb_page);
724 		rdev->bb_page = NULL;
725 	}
726 	kfree(rdev->badblocks.page);
727 	rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730 
731 static void super_written(struct bio *bio, int error)
732 {
733 	struct md_rdev *rdev = bio->bi_private;
734 	struct mddev *mddev = rdev->mddev;
735 
736 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 		printk("md: super_written gets error=%d, uptodate=%d\n",
738 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 		md_error(mddev, rdev);
741 	}
742 
743 	if (atomic_dec_and_test(&mddev->pending_writes))
744 		wake_up(&mddev->sb_wait);
745 	bio_put(bio);
746 }
747 
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 		   sector_t sector, int size, struct page *page)
750 {
751 	/* write first size bytes of page to sector of rdev
752 	 * Increment mddev->pending_writes before returning
753 	 * and decrement it on completion, waking up sb_wait
754 	 * if zero is reached.
755 	 * If an error occurred, call md_error
756 	 */
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758 
759 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 	bio->bi_iter.bi_sector = sector;
761 	bio_add_page(bio, page, size, 0);
762 	bio->bi_private = rdev;
763 	bio->bi_end_io = super_written;
764 
765 	atomic_inc(&mddev->pending_writes);
766 	submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768 
769 void md_super_wait(struct mddev *mddev)
770 {
771 	/* wait for all superblock writes that were scheduled to complete */
772 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774 
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 		 struct page *page, int rw, bool metadata_op)
777 {
778 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 	int ret;
780 
781 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 		rdev->meta_bdev : rdev->bdev;
783 	if (metadata_op)
784 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 	else if (rdev->mddev->reshape_position != MaxSector &&
786 		 (rdev->mddev->reshape_backwards ==
787 		  (sector >= rdev->mddev->reshape_position)))
788 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 	else
790 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 	bio_add_page(bio, page, size, 0);
792 	submit_bio_wait(rw, bio);
793 
794 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 	bio_put(bio);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799 
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 	char b[BDEVNAME_SIZE];
803 
804 	if (rdev->sb_loaded)
805 		return 0;
806 
807 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 		goto fail;
809 	rdev->sb_loaded = 1;
810 	return 0;
811 
812 fail:
813 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 		bdevname(rdev->bdev,b));
815 	return -EINVAL;
816 }
817 
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
821 		sb1->set_uuid1 == sb2->set_uuid1 &&
822 		sb1->set_uuid2 == sb2->set_uuid2 &&
823 		sb1->set_uuid3 == sb2->set_uuid3;
824 }
825 
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 	int ret;
829 	mdp_super_t *tmp1, *tmp2;
830 
831 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833 
834 	if (!tmp1 || !tmp2) {
835 		ret = 0;
836 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 		goto abort;
838 	}
839 
840 	*tmp1 = *sb1;
841 	*tmp2 = *sb2;
842 
843 	/*
844 	 * nr_disks is not constant
845 	 */
846 	tmp1->nr_disks = 0;
847 	tmp2->nr_disks = 0;
848 
849 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 	kfree(tmp1);
852 	kfree(tmp2);
853 	return ret;
854 }
855 
856 static u32 md_csum_fold(u32 csum)
857 {
858 	csum = (csum & 0xffff) + (csum >> 16);
859 	return (csum & 0xffff) + (csum >> 16);
860 }
861 
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 	u64 newcsum = 0;
865 	u32 *sb32 = (u32*)sb;
866 	int i;
867 	unsigned int disk_csum, csum;
868 
869 	disk_csum = sb->sb_csum;
870 	sb->sb_csum = 0;
871 
872 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 		newcsum += sb32[i];
874 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
875 
876 #ifdef CONFIG_ALPHA
877 	/* This used to use csum_partial, which was wrong for several
878 	 * reasons including that different results are returned on
879 	 * different architectures.  It isn't critical that we get exactly
880 	 * the same return value as before (we always csum_fold before
881 	 * testing, and that removes any differences).  However as we
882 	 * know that csum_partial always returned a 16bit value on
883 	 * alphas, do a fold to maximise conformity to previous behaviour.
884 	 */
885 	sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 	sb->sb_csum = disk_csum;
888 #endif
889 	return csum;
890 }
891 
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921 
922 struct super_type  {
923 	char		    *name;
924 	struct module	    *owner;
925 	int		    (*load_super)(struct md_rdev *rdev,
926 					  struct md_rdev *refdev,
927 					  int minor_version);
928 	int		    (*validate_super)(struct mddev *mddev,
929 					      struct md_rdev *rdev);
930 	void		    (*sync_super)(struct mddev *mddev,
931 					  struct md_rdev *rdev);
932 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933 						sector_t num_sectors);
934 	int		    (*allow_new_offset)(struct md_rdev *rdev,
935 						unsigned long long new_offset);
936 };
937 
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 		return 0;
950 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 		mdname(mddev), mddev->pers->name);
952 	return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955 
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 	mdp_super_t *sb;
963 	int ret;
964 
965 	/*
966 	 * Calculate the position of the superblock (512byte sectors),
967 	 * it's at the end of the disk.
968 	 *
969 	 * It also happens to be a multiple of 4Kb.
970 	 */
971 	rdev->sb_start = calc_dev_sboffset(rdev);
972 
973 	ret = read_disk_sb(rdev, MD_SB_BYTES);
974 	if (ret) return ret;
975 
976 	ret = -EINVAL;
977 
978 	bdevname(rdev->bdev, b);
979 	sb = page_address(rdev->sb_page);
980 
981 	if (sb->md_magic != MD_SB_MAGIC) {
982 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 		       b);
984 		goto abort;
985 	}
986 
987 	if (sb->major_version != 0 ||
988 	    sb->minor_version < 90 ||
989 	    sb->minor_version > 91) {
990 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 			sb->major_version, sb->minor_version,
992 			b);
993 		goto abort;
994 	}
995 
996 	if (sb->raid_disks <= 0)
997 		goto abort;
998 
999 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 			b);
1002 		goto abort;
1003 	}
1004 
1005 	rdev->preferred_minor = sb->md_minor;
1006 	rdev->data_offset = 0;
1007 	rdev->new_data_offset = 0;
1008 	rdev->sb_size = MD_SB_BYTES;
1009 	rdev->badblocks.shift = -1;
1010 
1011 	if (sb->level == LEVEL_MULTIPATH)
1012 		rdev->desc_nr = -1;
1013 	else
1014 		rdev->desc_nr = sb->this_disk.number;
1015 
1016 	if (!refdev) {
1017 		ret = 1;
1018 	} else {
1019 		__u64 ev1, ev2;
1020 		mdp_super_t *refsb = page_address(refdev->sb_page);
1021 		if (!uuid_equal(refsb, sb)) {
1022 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 				b, bdevname(refdev->bdev,b2));
1024 			goto abort;
1025 		}
1026 		if (!sb_equal(refsb, sb)) {
1027 			printk(KERN_WARNING "md: %s has same UUID"
1028 			       " but different superblock to %s\n",
1029 			       b, bdevname(refdev->bdev, b2));
1030 			goto abort;
1031 		}
1032 		ev1 = md_event(sb);
1033 		ev2 = md_event(refsb);
1034 		if (ev1 > ev2)
1035 			ret = 1;
1036 		else
1037 			ret = 0;
1038 	}
1039 	rdev->sectors = rdev->sb_start;
1040 	/* Limit to 4TB as metadata cannot record more than that.
1041 	 * (not needed for Linear and RAID0 as metadata doesn't
1042 	 * record this size)
1043 	 */
1044 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 		rdev->sectors = (2ULL << 32) - 2;
1046 
1047 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 		/* "this cannot possibly happen" ... */
1049 		ret = -EINVAL;
1050 
1051  abort:
1052 	return ret;
1053 }
1054 
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 	mdp_disk_t *desc;
1061 	mdp_super_t *sb = page_address(rdev->sb_page);
1062 	__u64 ev1 = md_event(sb);
1063 
1064 	rdev->raid_disk = -1;
1065 	clear_bit(Faulty, &rdev->flags);
1066 	clear_bit(In_sync, &rdev->flags);
1067 	clear_bit(Bitmap_sync, &rdev->flags);
1068 	clear_bit(WriteMostly, &rdev->flags);
1069 
1070 	if (mddev->raid_disks == 0) {
1071 		mddev->major_version = 0;
1072 		mddev->minor_version = sb->minor_version;
1073 		mddev->patch_version = sb->patch_version;
1074 		mddev->external = 0;
1075 		mddev->chunk_sectors = sb->chunk_size >> 9;
1076 		mddev->ctime = sb->ctime;
1077 		mddev->utime = sb->utime;
1078 		mddev->level = sb->level;
1079 		mddev->clevel[0] = 0;
1080 		mddev->layout = sb->layout;
1081 		mddev->raid_disks = sb->raid_disks;
1082 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 		mddev->events = ev1;
1084 		mddev->bitmap_info.offset = 0;
1085 		mddev->bitmap_info.space = 0;
1086 		/* bitmap can use 60 K after the 4K superblocks */
1087 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 		mddev->reshape_backwards = 0;
1090 
1091 		if (mddev->minor_version >= 91) {
1092 			mddev->reshape_position = sb->reshape_position;
1093 			mddev->delta_disks = sb->delta_disks;
1094 			mddev->new_level = sb->new_level;
1095 			mddev->new_layout = sb->new_layout;
1096 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 			if (mddev->delta_disks < 0)
1098 				mddev->reshape_backwards = 1;
1099 		} else {
1100 			mddev->reshape_position = MaxSector;
1101 			mddev->delta_disks = 0;
1102 			mddev->new_level = mddev->level;
1103 			mddev->new_layout = mddev->layout;
1104 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 		}
1106 
1107 		if (sb->state & (1<<MD_SB_CLEAN))
1108 			mddev->recovery_cp = MaxSector;
1109 		else {
1110 			if (sb->events_hi == sb->cp_events_hi &&
1111 				sb->events_lo == sb->cp_events_lo) {
1112 				mddev->recovery_cp = sb->recovery_cp;
1113 			} else
1114 				mddev->recovery_cp = 0;
1115 		}
1116 
1117 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121 
1122 		mddev->max_disks = MD_SB_DISKS;
1123 
1124 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 		    mddev->bitmap_info.file == NULL) {
1126 			mddev->bitmap_info.offset =
1127 				mddev->bitmap_info.default_offset;
1128 			mddev->bitmap_info.space =
1129 				mddev->bitmap_info.default_space;
1130 		}
1131 
1132 	} else if (mddev->pers == NULL) {
1133 		/* Insist on good event counter while assembling, except
1134 		 * for spares (which don't need an event count) */
1135 		++ev1;
1136 		if (sb->disks[rdev->desc_nr].state & (
1137 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 			if (ev1 < mddev->events)
1139 				return -EINVAL;
1140 	} else if (mddev->bitmap) {
1141 		/* if adding to array with a bitmap, then we can accept an
1142 		 * older device ... but not too old.
1143 		 */
1144 		if (ev1 < mddev->bitmap->events_cleared)
1145 			return 0;
1146 		if (ev1 < mddev->events)
1147 			set_bit(Bitmap_sync, &rdev->flags);
1148 	} else {
1149 		if (ev1 < mddev->events)
1150 			/* just a hot-add of a new device, leave raid_disk at -1 */
1151 			return 0;
1152 	}
1153 
1154 	if (mddev->level != LEVEL_MULTIPATH) {
1155 		desc = sb->disks + rdev->desc_nr;
1156 
1157 		if (desc->state & (1<<MD_DISK_FAULTY))
1158 			set_bit(Faulty, &rdev->flags);
1159 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 			    desc->raid_disk < mddev->raid_disks */) {
1161 			set_bit(In_sync, &rdev->flags);
1162 			rdev->raid_disk = desc->raid_disk;
1163 			rdev->saved_raid_disk = desc->raid_disk;
1164 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 			/* active but not in sync implies recovery up to
1166 			 * reshape position.  We don't know exactly where
1167 			 * that is, so set to zero for now */
1168 			if (mddev->minor_version >= 91) {
1169 				rdev->recovery_offset = 0;
1170 				rdev->raid_disk = desc->raid_disk;
1171 			}
1172 		}
1173 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 			set_bit(WriteMostly, &rdev->flags);
1175 	} else /* MULTIPATH are always insync */
1176 		set_bit(In_sync, &rdev->flags);
1177 	return 0;
1178 }
1179 
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 	mdp_super_t *sb;
1186 	struct md_rdev *rdev2;
1187 	int next_spare = mddev->raid_disks;
1188 
1189 	/* make rdev->sb match mddev data..
1190 	 *
1191 	 * 1/ zero out disks
1192 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 	 * 3/ any empty disks < next_spare become removed
1194 	 *
1195 	 * disks[0] gets initialised to REMOVED because
1196 	 * we cannot be sure from other fields if it has
1197 	 * been initialised or not.
1198 	 */
1199 	int i;
1200 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201 
1202 	rdev->sb_size = MD_SB_BYTES;
1203 
1204 	sb = page_address(rdev->sb_page);
1205 
1206 	memset(sb, 0, sizeof(*sb));
1207 
1208 	sb->md_magic = MD_SB_MAGIC;
1209 	sb->major_version = mddev->major_version;
1210 	sb->patch_version = mddev->patch_version;
1211 	sb->gvalid_words  = 0; /* ignored */
1212 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216 
1217 	sb->ctime = mddev->ctime;
1218 	sb->level = mddev->level;
1219 	sb->size = mddev->dev_sectors / 2;
1220 	sb->raid_disks = mddev->raid_disks;
1221 	sb->md_minor = mddev->md_minor;
1222 	sb->not_persistent = 0;
1223 	sb->utime = mddev->utime;
1224 	sb->state = 0;
1225 	sb->events_hi = (mddev->events>>32);
1226 	sb->events_lo = (u32)mddev->events;
1227 
1228 	if (mddev->reshape_position == MaxSector)
1229 		sb->minor_version = 90;
1230 	else {
1231 		sb->minor_version = 91;
1232 		sb->reshape_position = mddev->reshape_position;
1233 		sb->new_level = mddev->new_level;
1234 		sb->delta_disks = mddev->delta_disks;
1235 		sb->new_layout = mddev->new_layout;
1236 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 	}
1238 	mddev->minor_version = sb->minor_version;
1239 	if (mddev->in_sync)
1240 	{
1241 		sb->recovery_cp = mddev->recovery_cp;
1242 		sb->cp_events_hi = (mddev->events>>32);
1243 		sb->cp_events_lo = (u32)mddev->events;
1244 		if (mddev->recovery_cp == MaxSector)
1245 			sb->state = (1<< MD_SB_CLEAN);
1246 	} else
1247 		sb->recovery_cp = 0;
1248 
1249 	sb->layout = mddev->layout;
1250 	sb->chunk_size = mddev->chunk_sectors << 9;
1251 
1252 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254 
1255 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 	rdev_for_each(rdev2, mddev) {
1257 		mdp_disk_t *d;
1258 		int desc_nr;
1259 		int is_active = test_bit(In_sync, &rdev2->flags);
1260 
1261 		if (rdev2->raid_disk >= 0 &&
1262 		    sb->minor_version >= 91)
1263 			/* we have nowhere to store the recovery_offset,
1264 			 * but if it is not below the reshape_position,
1265 			 * we can piggy-back on that.
1266 			 */
1267 			is_active = 1;
1268 		if (rdev2->raid_disk < 0 ||
1269 		    test_bit(Faulty, &rdev2->flags))
1270 			is_active = 0;
1271 		if (is_active)
1272 			desc_nr = rdev2->raid_disk;
1273 		else
1274 			desc_nr = next_spare++;
1275 		rdev2->desc_nr = desc_nr;
1276 		d = &sb->disks[rdev2->desc_nr];
1277 		nr_disks++;
1278 		d->number = rdev2->desc_nr;
1279 		d->major = MAJOR(rdev2->bdev->bd_dev);
1280 		d->minor = MINOR(rdev2->bdev->bd_dev);
1281 		if (is_active)
1282 			d->raid_disk = rdev2->raid_disk;
1283 		else
1284 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 		if (test_bit(Faulty, &rdev2->flags))
1286 			d->state = (1<<MD_DISK_FAULTY);
1287 		else if (is_active) {
1288 			d->state = (1<<MD_DISK_ACTIVE);
1289 			if (test_bit(In_sync, &rdev2->flags))
1290 				d->state |= (1<<MD_DISK_SYNC);
1291 			active++;
1292 			working++;
1293 		} else {
1294 			d->state = 0;
1295 			spare++;
1296 			working++;
1297 		}
1298 		if (test_bit(WriteMostly, &rdev2->flags))
1299 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 	}
1301 	/* now set the "removed" and "faulty" bits on any missing devices */
1302 	for (i=0 ; i < mddev->raid_disks ; i++) {
1303 		mdp_disk_t *d = &sb->disks[i];
1304 		if (d->state == 0 && d->number == 0) {
1305 			d->number = i;
1306 			d->raid_disk = i;
1307 			d->state = (1<<MD_DISK_REMOVED);
1308 			d->state |= (1<<MD_DISK_FAULTY);
1309 			failed++;
1310 		}
1311 	}
1312 	sb->nr_disks = nr_disks;
1313 	sb->active_disks = active;
1314 	sb->working_disks = working;
1315 	sb->failed_disks = failed;
1316 	sb->spare_disks = spare;
1317 
1318 	sb->this_disk = sb->disks[rdev->desc_nr];
1319 	sb->sb_csum = calc_sb_csum(sb);
1320 }
1321 
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 		return 0; /* component must fit device */
1330 	if (rdev->mddev->bitmap_info.offset)
1331 		return 0; /* can't move bitmap */
1332 	rdev->sb_start = calc_dev_sboffset(rdev);
1333 	if (!num_sectors || num_sectors > rdev->sb_start)
1334 		num_sectors = rdev->sb_start;
1335 	/* Limit to 4TB as metadata cannot record more than that.
1336 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 	 */
1338 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 		num_sectors = (2ULL << 32) - 2;
1340 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 		       rdev->sb_page);
1342 	md_super_wait(rdev->mddev);
1343 	return num_sectors;
1344 }
1345 
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 	/* non-zero offset changes not possible with v0.90 */
1350 	return new_offset == 0;
1351 }
1352 
1353 /*
1354  * version 1 superblock
1355  */
1356 
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 	__le32 disk_csum;
1360 	u32 csum;
1361 	unsigned long long newcsum;
1362 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 	__le32 *isuper = (__le32*)sb;
1364 
1365 	disk_csum = sb->sb_csum;
1366 	sb->sb_csum = 0;
1367 	newcsum = 0;
1368 	for (; size >= 4; size -= 4)
1369 		newcsum += le32_to_cpu(*isuper++);
1370 
1371 	if (size == 2)
1372 		newcsum += le16_to_cpu(*(__le16*) isuper);
1373 
1374 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 	sb->sb_csum = disk_csum;
1376 	return cpu_to_le32(csum);
1377 }
1378 
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 			    int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 	struct mdp_superblock_1 *sb;
1384 	int ret;
1385 	sector_t sb_start;
1386 	sector_t sectors;
1387 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 	int bmask;
1389 
1390 	/*
1391 	 * Calculate the position of the superblock in 512byte sectors.
1392 	 * It is always aligned to a 4K boundary and
1393 	 * depeding on minor_version, it can be:
1394 	 * 0: At least 8K, but less than 12K, from end of device
1395 	 * 1: At start of device
1396 	 * 2: 4K from start of device.
1397 	 */
1398 	switch(minor_version) {
1399 	case 0:
1400 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 		sb_start -= 8*2;
1402 		sb_start &= ~(sector_t)(4*2-1);
1403 		break;
1404 	case 1:
1405 		sb_start = 0;
1406 		break;
1407 	case 2:
1408 		sb_start = 8;
1409 		break;
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 	rdev->sb_start = sb_start;
1414 
1415 	/* superblock is rarely larger than 1K, but it can be larger,
1416 	 * and it is safe to read 4k, so we do that
1417 	 */
1418 	ret = read_disk_sb(rdev, 4096);
1419 	if (ret) return ret;
1420 
1421 	sb = page_address(rdev->sb_page);
1422 
1423 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 	    sb->major_version != cpu_to_le32(1) ||
1425 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 		return -EINVAL;
1429 
1430 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 		printk("md: invalid superblock checksum on %s\n",
1432 			bdevname(rdev->bdev,b));
1433 		return -EINVAL;
1434 	}
1435 	if (le64_to_cpu(sb->data_size) < 10) {
1436 		printk("md: data_size too small on %s\n",
1437 		       bdevname(rdev->bdev,b));
1438 		return -EINVAL;
1439 	}
1440 	if (sb->pad0 ||
1441 	    sb->pad3[0] ||
1442 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 		/* Some padding is non-zero, might be a new feature */
1444 		return -EINVAL;
1445 
1446 	rdev->preferred_minor = 0xffff;
1447 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 	rdev->new_data_offset = rdev->data_offset;
1449 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453 
1454 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 	if (rdev->sb_size & bmask)
1457 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458 
1459 	if (minor_version
1460 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 		return -EINVAL;
1462 	if (minor_version
1463 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 		return -EINVAL;
1465 
1466 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 		rdev->desc_nr = -1;
1468 	else
1469 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470 
1471 	if (!rdev->bb_page) {
1472 		rdev->bb_page = alloc_page(GFP_KERNEL);
1473 		if (!rdev->bb_page)
1474 			return -ENOMEM;
1475 	}
1476 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 	    rdev->badblocks.count == 0) {
1478 		/* need to load the bad block list.
1479 		 * Currently we limit it to one page.
1480 		 */
1481 		s32 offset;
1482 		sector_t bb_sector;
1483 		u64 *bbp;
1484 		int i;
1485 		int sectors = le16_to_cpu(sb->bblog_size);
1486 		if (sectors > (PAGE_SIZE / 512))
1487 			return -EINVAL;
1488 		offset = le32_to_cpu(sb->bblog_offset);
1489 		if (offset == 0)
1490 			return -EINVAL;
1491 		bb_sector = (long long)offset;
1492 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 				  rdev->bb_page, READ, true))
1494 			return -EIO;
1495 		bbp = (u64 *)page_address(rdev->bb_page);
1496 		rdev->badblocks.shift = sb->bblog_shift;
1497 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 			u64 bb = le64_to_cpu(*bbp);
1499 			int count = bb & (0x3ff);
1500 			u64 sector = bb >> 10;
1501 			sector <<= sb->bblog_shift;
1502 			count <<= sb->bblog_shift;
1503 			if (bb + 1 == 0)
1504 				break;
1505 			if (md_set_badblocks(&rdev->badblocks,
1506 					     sector, count, 1) == 0)
1507 				return -EINVAL;
1508 		}
1509 	} else if (sb->bblog_offset != 0)
1510 		rdev->badblocks.shift = 0;
1511 
1512 	if (!refdev) {
1513 		ret = 1;
1514 	} else {
1515 		__u64 ev1, ev2;
1516 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517 
1518 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 		    sb->level != refsb->level ||
1520 		    sb->layout != refsb->layout ||
1521 		    sb->chunksize != refsb->chunksize) {
1522 			printk(KERN_WARNING "md: %s has strangely different"
1523 				" superblock to %s\n",
1524 				bdevname(rdev->bdev,b),
1525 				bdevname(refdev->bdev,b2));
1526 			return -EINVAL;
1527 		}
1528 		ev1 = le64_to_cpu(sb->events);
1529 		ev2 = le64_to_cpu(refsb->events);
1530 
1531 		if (ev1 > ev2)
1532 			ret = 1;
1533 		else
1534 			ret = 0;
1535 	}
1536 	if (minor_version) {
1537 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 		sectors -= rdev->data_offset;
1539 	} else
1540 		sectors = rdev->sb_start;
1541 	if (sectors < le64_to_cpu(sb->data_size))
1542 		return -EINVAL;
1543 	rdev->sectors = le64_to_cpu(sb->data_size);
1544 	return ret;
1545 }
1546 
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 	__u64 ev1 = le64_to_cpu(sb->events);
1551 
1552 	rdev->raid_disk = -1;
1553 	clear_bit(Faulty, &rdev->flags);
1554 	clear_bit(In_sync, &rdev->flags);
1555 	clear_bit(Bitmap_sync, &rdev->flags);
1556 	clear_bit(WriteMostly, &rdev->flags);
1557 
1558 	if (mddev->raid_disks == 0) {
1559 		mddev->major_version = 1;
1560 		mddev->patch_version = 0;
1561 		mddev->external = 0;
1562 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 		mddev->level = le32_to_cpu(sb->level);
1566 		mddev->clevel[0] = 0;
1567 		mddev->layout = le32_to_cpu(sb->layout);
1568 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 		mddev->dev_sectors = le64_to_cpu(sb->size);
1570 		mddev->events = ev1;
1571 		mddev->bitmap_info.offset = 0;
1572 		mddev->bitmap_info.space = 0;
1573 		/* Default location for bitmap is 1K after superblock
1574 		 * using 3K - total of 4K
1575 		 */
1576 		mddev->bitmap_info.default_offset = 1024 >> 9;
1577 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 		mddev->reshape_backwards = 0;
1579 
1580 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 		memcpy(mddev->uuid, sb->set_uuid, 16);
1582 
1583 		mddev->max_disks =  (4096-256)/2;
1584 
1585 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 		    mddev->bitmap_info.file == NULL) {
1587 			mddev->bitmap_info.offset =
1588 				(__s32)le32_to_cpu(sb->bitmap_offset);
1589 			/* Metadata doesn't record how much space is available.
1590 			 * For 1.0, we assume we can use up to the superblock
1591 			 * if before, else to 4K beyond superblock.
1592 			 * For others, assume no change is possible.
1593 			 */
1594 			if (mddev->minor_version > 0)
1595 				mddev->bitmap_info.space = 0;
1596 			else if (mddev->bitmap_info.offset > 0)
1597 				mddev->bitmap_info.space =
1598 					8 - mddev->bitmap_info.offset;
1599 			else
1600 				mddev->bitmap_info.space =
1601 					-mddev->bitmap_info.offset;
1602 		}
1603 
1604 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 			mddev->new_level = le32_to_cpu(sb->new_level);
1608 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 			if (mddev->delta_disks < 0 ||
1611 			    (mddev->delta_disks == 0 &&
1612 			     (le32_to_cpu(sb->feature_map)
1613 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 				mddev->reshape_backwards = 1;
1615 		} else {
1616 			mddev->reshape_position = MaxSector;
1617 			mddev->delta_disks = 0;
1618 			mddev->new_level = mddev->level;
1619 			mddev->new_layout = mddev->layout;
1620 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 		}
1622 
1623 	} else if (mddev->pers == NULL) {
1624 		/* Insist of good event counter while assembling, except for
1625 		 * spares (which don't need an event count) */
1626 		++ev1;
1627 		if (rdev->desc_nr >= 0 &&
1628 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 			if (ev1 < mddev->events)
1631 				return -EINVAL;
1632 	} else if (mddev->bitmap) {
1633 		/* If adding to array with a bitmap, then we can accept an
1634 		 * older device, but not too old.
1635 		 */
1636 		if (ev1 < mddev->bitmap->events_cleared)
1637 			return 0;
1638 		if (ev1 < mddev->events)
1639 			set_bit(Bitmap_sync, &rdev->flags);
1640 	} else {
1641 		if (ev1 < mddev->events)
1642 			/* just a hot-add of a new device, leave raid_disk at -1 */
1643 			return 0;
1644 	}
1645 	if (mddev->level != LEVEL_MULTIPATH) {
1646 		int role;
1647 		if (rdev->desc_nr < 0 ||
1648 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 			role = 0xffff;
1650 			rdev->desc_nr = -1;
1651 		} else
1652 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 		switch(role) {
1654 		case 0xffff: /* spare */
1655 			break;
1656 		case 0xfffe: /* faulty */
1657 			set_bit(Faulty, &rdev->flags);
1658 			break;
1659 		default:
1660 			rdev->saved_raid_disk = role;
1661 			if ((le32_to_cpu(sb->feature_map) &
1662 			     MD_FEATURE_RECOVERY_OFFSET)) {
1663 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 				if (!(le32_to_cpu(sb->feature_map) &
1665 				      MD_FEATURE_RECOVERY_BITMAP))
1666 					rdev->saved_raid_disk = -1;
1667 			} else
1668 				set_bit(In_sync, &rdev->flags);
1669 			rdev->raid_disk = role;
1670 			break;
1671 		}
1672 		if (sb->devflags & WriteMostly1)
1673 			set_bit(WriteMostly, &rdev->flags);
1674 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 			set_bit(Replacement, &rdev->flags);
1676 	} else /* MULTIPATH are always insync */
1677 		set_bit(In_sync, &rdev->flags);
1678 
1679 	return 0;
1680 }
1681 
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct mdp_superblock_1 *sb;
1685 	struct md_rdev *rdev2;
1686 	int max_dev, i;
1687 	/* make rdev->sb match mddev and rdev data. */
1688 
1689 	sb = page_address(rdev->sb_page);
1690 
1691 	sb->feature_map = 0;
1692 	sb->pad0 = 0;
1693 	sb->recovery_offset = cpu_to_le64(0);
1694 	memset(sb->pad3, 0, sizeof(sb->pad3));
1695 
1696 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 	sb->events = cpu_to_le64(mddev->events);
1698 	if (mddev->in_sync)
1699 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 	else
1701 		sb->resync_offset = cpu_to_le64(0);
1702 
1703 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704 
1705 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 	sb->size = cpu_to_le64(mddev->dev_sectors);
1707 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 	sb->level = cpu_to_le32(mddev->level);
1709 	sb->layout = cpu_to_le32(mddev->layout);
1710 
1711 	if (test_bit(WriteMostly, &rdev->flags))
1712 		sb->devflags |= WriteMostly1;
1713 	else
1714 		sb->devflags &= ~WriteMostly1;
1715 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 	sb->data_size = cpu_to_le64(rdev->sectors);
1717 
1718 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 	}
1722 
1723 	if (rdev->raid_disk >= 0 &&
1724 	    !test_bit(In_sync, &rdev->flags)) {
1725 		sb->feature_map |=
1726 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 		sb->recovery_offset =
1728 			cpu_to_le64(rdev->recovery_offset);
1729 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 			sb->feature_map |=
1731 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 	}
1733 	if (test_bit(Replacement, &rdev->flags))
1734 		sb->feature_map |=
1735 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736 
1737 	if (mddev->reshape_position != MaxSector) {
1738 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 		sb->new_level = cpu_to_le32(mddev->new_level);
1743 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 		if (mddev->delta_disks == 0 &&
1745 		    mddev->reshape_backwards)
1746 			sb->feature_map
1747 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 		if (rdev->new_data_offset != rdev->data_offset) {
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 							     - rdev->data_offset));
1753 		}
1754 	}
1755 
1756 	if (rdev->badblocks.count == 0)
1757 		/* Nothing to do for bad blocks*/ ;
1758 	else if (sb->bblog_offset == 0)
1759 		/* Cannot record bad blocks on this device */
1760 		md_error(mddev, rdev);
1761 	else {
1762 		struct badblocks *bb = &rdev->badblocks;
1763 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 		u64 *p = bb->page;
1765 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 		if (bb->changed) {
1767 			unsigned seq;
1768 
1769 retry:
1770 			seq = read_seqbegin(&bb->lock);
1771 
1772 			memset(bbp, 0xff, PAGE_SIZE);
1773 
1774 			for (i = 0 ; i < bb->count ; i++) {
1775 				u64 internal_bb = p[i];
1776 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 						| BB_LEN(internal_bb));
1778 				bbp[i] = cpu_to_le64(store_bb);
1779 			}
1780 			bb->changed = 0;
1781 			if (read_seqretry(&bb->lock, seq))
1782 				goto retry;
1783 
1784 			bb->sector = (rdev->sb_start +
1785 				      (int)le32_to_cpu(sb->bblog_offset));
1786 			bb->size = le16_to_cpu(sb->bblog_size);
1787 		}
1788 	}
1789 
1790 	max_dev = 0;
1791 	rdev_for_each(rdev2, mddev)
1792 		if (rdev2->desc_nr+1 > max_dev)
1793 			max_dev = rdev2->desc_nr+1;
1794 
1795 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 		int bmask;
1797 		sb->max_dev = cpu_to_le32(max_dev);
1798 		rdev->sb_size = max_dev * 2 + 256;
1799 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 		if (rdev->sb_size & bmask)
1801 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 	} else
1803 		max_dev = le32_to_cpu(sb->max_dev);
1804 
1805 	for (i=0; i<max_dev;i++)
1806 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807 
1808 	rdev_for_each(rdev2, mddev) {
1809 		i = rdev2->desc_nr;
1810 		if (test_bit(Faulty, &rdev2->flags))
1811 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 		else if (test_bit(In_sync, &rdev2->flags))
1813 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 		else if (rdev2->raid_disk >= 0)
1815 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 		else
1817 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 	}
1819 
1820 	sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822 
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 	struct mdp_superblock_1 *sb;
1827 	sector_t max_sectors;
1828 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 		return 0; /* component must fit device */
1830 	if (rdev->data_offset != rdev->new_data_offset)
1831 		return 0; /* too confusing */
1832 	if (rdev->sb_start < rdev->data_offset) {
1833 		/* minor versions 1 and 2; superblock before data */
1834 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 		max_sectors -= rdev->data_offset;
1836 		if (!num_sectors || num_sectors > max_sectors)
1837 			num_sectors = max_sectors;
1838 	} else if (rdev->mddev->bitmap_info.offset) {
1839 		/* minor version 0 with bitmap we can't move */
1840 		return 0;
1841 	} else {
1842 		/* minor version 0; superblock after data */
1843 		sector_t sb_start;
1844 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 		sb_start &= ~(sector_t)(4*2 - 1);
1846 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 		if (!num_sectors || num_sectors > max_sectors)
1848 			num_sectors = max_sectors;
1849 		rdev->sb_start = sb_start;
1850 	}
1851 	sb = page_address(rdev->sb_page);
1852 	sb->data_size = cpu_to_le64(num_sectors);
1853 	sb->super_offset = rdev->sb_start;
1854 	sb->sb_csum = calc_sb_1_csum(sb);
1855 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 		       rdev->sb_page);
1857 	md_super_wait(rdev->mddev);
1858 	return num_sectors;
1859 
1860 }
1861 
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 			 unsigned long long new_offset)
1865 {
1866 	/* All necessary checks on new >= old have been done */
1867 	struct bitmap *bitmap;
1868 	if (new_offset >= rdev->data_offset)
1869 		return 1;
1870 
1871 	/* with 1.0 metadata, there is no metadata to tread on
1872 	 * so we can always move back */
1873 	if (rdev->mddev->minor_version == 0)
1874 		return 1;
1875 
1876 	/* otherwise we must be sure not to step on
1877 	 * any metadata, so stay:
1878 	 * 36K beyond start of superblock
1879 	 * beyond end of badblocks
1880 	 * beyond write-intent bitmap
1881 	 */
1882 	if (rdev->sb_start + (32+4)*2 > new_offset)
1883 		return 0;
1884 	bitmap = rdev->mddev->bitmap;
1885 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 		return 0;
1889 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 		return 0;
1891 
1892 	return 1;
1893 }
1894 
1895 static struct super_type super_types[] = {
1896 	[0] = {
1897 		.name	= "0.90.0",
1898 		.owner	= THIS_MODULE,
1899 		.load_super	    = super_90_load,
1900 		.validate_super	    = super_90_validate,
1901 		.sync_super	    = super_90_sync,
1902 		.rdev_size_change   = super_90_rdev_size_change,
1903 		.allow_new_offset   = super_90_allow_new_offset,
1904 	},
1905 	[1] = {
1906 		.name	= "md-1",
1907 		.owner	= THIS_MODULE,
1908 		.load_super	    = super_1_load,
1909 		.validate_super	    = super_1_validate,
1910 		.sync_super	    = super_1_sync,
1911 		.rdev_size_change   = super_1_rdev_size_change,
1912 		.allow_new_offset   = super_1_allow_new_offset,
1913 	},
1914 };
1915 
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 	if (mddev->sync_super) {
1919 		mddev->sync_super(mddev, rdev);
1920 		return;
1921 	}
1922 
1923 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924 
1925 	super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927 
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 	struct md_rdev *rdev, *rdev2;
1931 
1932 	rcu_read_lock();
1933 	rdev_for_each_rcu(rdev, mddev1)
1934 		rdev_for_each_rcu(rdev2, mddev2)
1935 			if (rdev->bdev->bd_contains ==
1936 			    rdev2->bdev->bd_contains) {
1937 				rcu_read_unlock();
1938 				return 1;
1939 			}
1940 	rcu_read_unlock();
1941 	return 0;
1942 }
1943 
1944 static LIST_HEAD(pending_raid_disks);
1945 
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 	struct md_rdev *rdev, *reference = NULL;
1956 
1957 	if (list_empty(&mddev->disks))
1958 		return 0; /* nothing to do */
1959 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 		return 0; /* shouldn't register, or already is */
1961 	rdev_for_each(rdev, mddev) {
1962 		/* skip spares and non-functional disks */
1963 		if (test_bit(Faulty, &rdev->flags))
1964 			continue;
1965 		if (rdev->raid_disk < 0)
1966 			continue;
1967 		if (!reference) {
1968 			/* Use the first rdev as the reference */
1969 			reference = rdev;
1970 			continue;
1971 		}
1972 		/* does this rdev's profile match the reference profile? */
1973 		if (blk_integrity_compare(reference->bdev->bd_disk,
1974 				rdev->bdev->bd_disk) < 0)
1975 			return -EINVAL;
1976 	}
1977 	if (!reference || !bdev_get_integrity(reference->bdev))
1978 		return 0;
1979 	/*
1980 	 * All component devices are integrity capable and have matching
1981 	 * profiles, register the common profile for the md device.
1982 	 */
1983 	if (blk_integrity_register(mddev->gendisk,
1984 			bdev_get_integrity(reference->bdev)) != 0) {
1985 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 			mdname(mddev));
1987 		return -EINVAL;
1988 	}
1989 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 		       mdname(mddev));
1993 		return -EINVAL;
1994 	}
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998 
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 	struct blk_integrity *bi_rdev;
2003 	struct blk_integrity *bi_mddev;
2004 
2005 	if (!mddev->gendisk)
2006 		return;
2007 
2008 	bi_rdev = bdev_get_integrity(rdev->bdev);
2009 	bi_mddev = blk_get_integrity(mddev->gendisk);
2010 
2011 	if (!bi_mddev) /* nothing to do */
2012 		return;
2013 	if (rdev->raid_disk < 0) /* skip spares */
2014 		return;
2015 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 					     rdev->bdev->bd_disk) >= 0)
2017 		return;
2018 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 	blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022 
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 	char b[BDEVNAME_SIZE];
2026 	struct kobject *ko;
2027 	char *s;
2028 	int err;
2029 
2030 	/* prevent duplicates */
2031 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2032 		return -EEXIST;
2033 
2034 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2035 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036 			rdev->sectors < mddev->dev_sectors)) {
2037 		if (mddev->pers) {
2038 			/* Cannot change size, so fail
2039 			 * If mddev->level <= 0, then we don't care
2040 			 * about aligning sizes (e.g. linear)
2041 			 */
2042 			if (mddev->level > 0)
2043 				return -ENOSPC;
2044 		} else
2045 			mddev->dev_sectors = rdev->sectors;
2046 	}
2047 
2048 	/* Verify rdev->desc_nr is unique.
2049 	 * If it is -1, assign a free number, else
2050 	 * check number is not in use
2051 	 */
2052 	rcu_read_lock();
2053 	if (rdev->desc_nr < 0) {
2054 		int choice = 0;
2055 		if (mddev->pers)
2056 			choice = mddev->raid_disks;
2057 		while (md_find_rdev_nr_rcu(mddev, choice))
2058 			choice++;
2059 		rdev->desc_nr = choice;
2060 	} else {
2061 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062 			rcu_read_unlock();
2063 			return -EBUSY;
2064 		}
2065 	}
2066 	rcu_read_unlock();
2067 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069 		       mdname(mddev), mddev->max_disks);
2070 		return -EBUSY;
2071 	}
2072 	bdevname(rdev->bdev,b);
2073 	while ( (s=strchr(b, '/')) != NULL)
2074 		*s = '!';
2075 
2076 	rdev->mddev = mddev;
2077 	printk(KERN_INFO "md: bind<%s>\n", b);
2078 
2079 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080 		goto fail;
2081 
2082 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084 		/* failure here is OK */;
2085 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086 
2087 	list_add_rcu(&rdev->same_set, &mddev->disks);
2088 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089 
2090 	/* May as well allow recovery to be retried once */
2091 	mddev->recovery_disabled++;
2092 
2093 	return 0;
2094 
2095  fail:
2096 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097 	       b, mdname(mddev));
2098 	return err;
2099 }
2100 
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104 	kobject_del(&rdev->kobj);
2105 	kobject_put(&rdev->kobj);
2106 }
2107 
2108 static void unbind_rdev_from_array(struct md_rdev *rdev)
2109 {
2110 	char b[BDEVNAME_SIZE];
2111 
2112 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2113 	list_del_rcu(&rdev->same_set);
2114 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2115 	rdev->mddev = NULL;
2116 	sysfs_remove_link(&rdev->kobj, "block");
2117 	sysfs_put(rdev->sysfs_state);
2118 	rdev->sysfs_state = NULL;
2119 	rdev->badblocks.count = 0;
2120 	/* We need to delay this, otherwise we can deadlock when
2121 	 * writing to 'remove' to "dev/state".  We also need
2122 	 * to delay it due to rcu usage.
2123 	 */
2124 	synchronize_rcu();
2125 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2126 	kobject_get(&rdev->kobj);
2127 	queue_work(md_misc_wq, &rdev->del_work);
2128 }
2129 
2130 /*
2131  * prevent the device from being mounted, repartitioned or
2132  * otherwise reused by a RAID array (or any other kernel
2133  * subsystem), by bd_claiming the device.
2134  */
2135 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2136 {
2137 	int err = 0;
2138 	struct block_device *bdev;
2139 	char b[BDEVNAME_SIZE];
2140 
2141 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2142 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2143 	if (IS_ERR(bdev)) {
2144 		printk(KERN_ERR "md: could not open %s.\n",
2145 			__bdevname(dev, b));
2146 		return PTR_ERR(bdev);
2147 	}
2148 	rdev->bdev = bdev;
2149 	return err;
2150 }
2151 
2152 static void unlock_rdev(struct md_rdev *rdev)
2153 {
2154 	struct block_device *bdev = rdev->bdev;
2155 	rdev->bdev = NULL;
2156 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2157 }
2158 
2159 void md_autodetect_dev(dev_t dev);
2160 
2161 static void export_rdev(struct md_rdev *rdev)
2162 {
2163 	char b[BDEVNAME_SIZE];
2164 
2165 	printk(KERN_INFO "md: export_rdev(%s)\n",
2166 		bdevname(rdev->bdev,b));
2167 	md_rdev_clear(rdev);
2168 #ifndef MODULE
2169 	if (test_bit(AutoDetected, &rdev->flags))
2170 		md_autodetect_dev(rdev->bdev->bd_dev);
2171 #endif
2172 	unlock_rdev(rdev);
2173 	kobject_put(&rdev->kobj);
2174 }
2175 
2176 void md_kick_rdev_from_array(struct md_rdev *rdev)
2177 {
2178 	unbind_rdev_from_array(rdev);
2179 	export_rdev(rdev);
2180 }
2181 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2182 
2183 static void export_array(struct mddev *mddev)
2184 {
2185 	struct md_rdev *rdev;
2186 
2187 	while (!list_empty(&mddev->disks)) {
2188 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2189 					same_set);
2190 		md_kick_rdev_from_array(rdev);
2191 	}
2192 	mddev->raid_disks = 0;
2193 	mddev->major_version = 0;
2194 }
2195 
2196 static void sync_sbs(struct mddev *mddev, int nospares)
2197 {
2198 	/* Update each superblock (in-memory image), but
2199 	 * if we are allowed to, skip spares which already
2200 	 * have the right event counter, or have one earlier
2201 	 * (which would mean they aren't being marked as dirty
2202 	 * with the rest of the array)
2203 	 */
2204 	struct md_rdev *rdev;
2205 	rdev_for_each(rdev, mddev) {
2206 		if (rdev->sb_events == mddev->events ||
2207 		    (nospares &&
2208 		     rdev->raid_disk < 0 &&
2209 		     rdev->sb_events+1 == mddev->events)) {
2210 			/* Don't update this superblock */
2211 			rdev->sb_loaded = 2;
2212 		} else {
2213 			sync_super(mddev, rdev);
2214 			rdev->sb_loaded = 1;
2215 		}
2216 	}
2217 }
2218 
2219 void md_update_sb(struct mddev *mddev, int force_change)
2220 {
2221 	struct md_rdev *rdev;
2222 	int sync_req;
2223 	int nospares = 0;
2224 	int any_badblocks_changed = 0;
2225 
2226 	if (mddev->ro) {
2227 		if (force_change)
2228 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2229 		return;
2230 	}
2231 repeat:
2232 	/* First make sure individual recovery_offsets are correct */
2233 	rdev_for_each(rdev, mddev) {
2234 		if (rdev->raid_disk >= 0 &&
2235 		    mddev->delta_disks >= 0 &&
2236 		    !test_bit(In_sync, &rdev->flags) &&
2237 		    mddev->curr_resync_completed > rdev->recovery_offset)
2238 				rdev->recovery_offset = mddev->curr_resync_completed;
2239 
2240 	}
2241 	if (!mddev->persistent) {
2242 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2243 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2244 		if (!mddev->external) {
2245 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2246 			rdev_for_each(rdev, mddev) {
2247 				if (rdev->badblocks.changed) {
2248 					rdev->badblocks.changed = 0;
2249 					md_ack_all_badblocks(&rdev->badblocks);
2250 					md_error(mddev, rdev);
2251 				}
2252 				clear_bit(Blocked, &rdev->flags);
2253 				clear_bit(BlockedBadBlocks, &rdev->flags);
2254 				wake_up(&rdev->blocked_wait);
2255 			}
2256 		}
2257 		wake_up(&mddev->sb_wait);
2258 		return;
2259 	}
2260 
2261 	spin_lock(&mddev->lock);
2262 
2263 	mddev->utime = get_seconds();
2264 
2265 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2266 		force_change = 1;
2267 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2268 		/* just a clean<-> dirty transition, possibly leave spares alone,
2269 		 * though if events isn't the right even/odd, we will have to do
2270 		 * spares after all
2271 		 */
2272 		nospares = 1;
2273 	if (force_change)
2274 		nospares = 0;
2275 	if (mddev->degraded)
2276 		/* If the array is degraded, then skipping spares is both
2277 		 * dangerous and fairly pointless.
2278 		 * Dangerous because a device that was removed from the array
2279 		 * might have a event_count that still looks up-to-date,
2280 		 * so it can be re-added without a resync.
2281 		 * Pointless because if there are any spares to skip,
2282 		 * then a recovery will happen and soon that array won't
2283 		 * be degraded any more and the spare can go back to sleep then.
2284 		 */
2285 		nospares = 0;
2286 
2287 	sync_req = mddev->in_sync;
2288 
2289 	/* If this is just a dirty<->clean transition, and the array is clean
2290 	 * and 'events' is odd, we can roll back to the previous clean state */
2291 	if (nospares
2292 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2293 	    && mddev->can_decrease_events
2294 	    && mddev->events != 1) {
2295 		mddev->events--;
2296 		mddev->can_decrease_events = 0;
2297 	} else {
2298 		/* otherwise we have to go forward and ... */
2299 		mddev->events ++;
2300 		mddev->can_decrease_events = nospares;
2301 	}
2302 
2303 	/*
2304 	 * This 64-bit counter should never wrap.
2305 	 * Either we are in around ~1 trillion A.C., assuming
2306 	 * 1 reboot per second, or we have a bug...
2307 	 */
2308 	WARN_ON(mddev->events == 0);
2309 
2310 	rdev_for_each(rdev, mddev) {
2311 		if (rdev->badblocks.changed)
2312 			any_badblocks_changed++;
2313 		if (test_bit(Faulty, &rdev->flags))
2314 			set_bit(FaultRecorded, &rdev->flags);
2315 	}
2316 
2317 	sync_sbs(mddev, nospares);
2318 	spin_unlock(&mddev->lock);
2319 
2320 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2321 		 mdname(mddev), mddev->in_sync);
2322 
2323 	bitmap_update_sb(mddev->bitmap);
2324 	rdev_for_each(rdev, mddev) {
2325 		char b[BDEVNAME_SIZE];
2326 
2327 		if (rdev->sb_loaded != 1)
2328 			continue; /* no noise on spare devices */
2329 
2330 		if (!test_bit(Faulty, &rdev->flags)) {
2331 			md_super_write(mddev,rdev,
2332 				       rdev->sb_start, rdev->sb_size,
2333 				       rdev->sb_page);
2334 			pr_debug("md: (write) %s's sb offset: %llu\n",
2335 				 bdevname(rdev->bdev, b),
2336 				 (unsigned long long)rdev->sb_start);
2337 			rdev->sb_events = mddev->events;
2338 			if (rdev->badblocks.size) {
2339 				md_super_write(mddev, rdev,
2340 					       rdev->badblocks.sector,
2341 					       rdev->badblocks.size << 9,
2342 					       rdev->bb_page);
2343 				rdev->badblocks.size = 0;
2344 			}
2345 
2346 		} else
2347 			pr_debug("md: %s (skipping faulty)\n",
2348 				 bdevname(rdev->bdev, b));
2349 
2350 		if (mddev->level == LEVEL_MULTIPATH)
2351 			/* only need to write one superblock... */
2352 			break;
2353 	}
2354 	md_super_wait(mddev);
2355 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2356 
2357 	spin_lock(&mddev->lock);
2358 	if (mddev->in_sync != sync_req ||
2359 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2360 		/* have to write it out again */
2361 		spin_unlock(&mddev->lock);
2362 		goto repeat;
2363 	}
2364 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2365 	spin_unlock(&mddev->lock);
2366 	wake_up(&mddev->sb_wait);
2367 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2368 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2369 
2370 	rdev_for_each(rdev, mddev) {
2371 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2372 			clear_bit(Blocked, &rdev->flags);
2373 
2374 		if (any_badblocks_changed)
2375 			md_ack_all_badblocks(&rdev->badblocks);
2376 		clear_bit(BlockedBadBlocks, &rdev->flags);
2377 		wake_up(&rdev->blocked_wait);
2378 	}
2379 }
2380 EXPORT_SYMBOL(md_update_sb);
2381 
2382 static int add_bound_rdev(struct md_rdev *rdev)
2383 {
2384 	struct mddev *mddev = rdev->mddev;
2385 	int err = 0;
2386 
2387 	if (!mddev->pers->hot_remove_disk) {
2388 		/* If there is hot_add_disk but no hot_remove_disk
2389 		 * then added disks for geometry changes,
2390 		 * and should be added immediately.
2391 		 */
2392 		super_types[mddev->major_version].
2393 			validate_super(mddev, rdev);
2394 		err = mddev->pers->hot_add_disk(mddev, rdev);
2395 		if (err) {
2396 			unbind_rdev_from_array(rdev);
2397 			export_rdev(rdev);
2398 			return err;
2399 		}
2400 	}
2401 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2402 
2403 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2404 	if (mddev->degraded)
2405 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2406 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2407 	md_new_event(mddev);
2408 	md_wakeup_thread(mddev->thread);
2409 	return 0;
2410 }
2411 
2412 /* words written to sysfs files may, or may not, be \n terminated.
2413  * We want to accept with case. For this we use cmd_match.
2414  */
2415 static int cmd_match(const char *cmd, const char *str)
2416 {
2417 	/* See if cmd, written into a sysfs file, matches
2418 	 * str.  They must either be the same, or cmd can
2419 	 * have a trailing newline
2420 	 */
2421 	while (*cmd && *str && *cmd == *str) {
2422 		cmd++;
2423 		str++;
2424 	}
2425 	if (*cmd == '\n')
2426 		cmd++;
2427 	if (*str || *cmd)
2428 		return 0;
2429 	return 1;
2430 }
2431 
2432 struct rdev_sysfs_entry {
2433 	struct attribute attr;
2434 	ssize_t (*show)(struct md_rdev *, char *);
2435 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2436 };
2437 
2438 static ssize_t
2439 state_show(struct md_rdev *rdev, char *page)
2440 {
2441 	char *sep = "";
2442 	size_t len = 0;
2443 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2444 
2445 	if (test_bit(Faulty, &flags) ||
2446 	    rdev->badblocks.unacked_exist) {
2447 		len+= sprintf(page+len, "%sfaulty",sep);
2448 		sep = ",";
2449 	}
2450 	if (test_bit(In_sync, &flags)) {
2451 		len += sprintf(page+len, "%sin_sync",sep);
2452 		sep = ",";
2453 	}
2454 	if (test_bit(WriteMostly, &flags)) {
2455 		len += sprintf(page+len, "%swrite_mostly",sep);
2456 		sep = ",";
2457 	}
2458 	if (test_bit(Blocked, &flags) ||
2459 	    (rdev->badblocks.unacked_exist
2460 	     && !test_bit(Faulty, &flags))) {
2461 		len += sprintf(page+len, "%sblocked", sep);
2462 		sep = ",";
2463 	}
2464 	if (!test_bit(Faulty, &flags) &&
2465 	    !test_bit(In_sync, &flags)) {
2466 		len += sprintf(page+len, "%sspare", sep);
2467 		sep = ",";
2468 	}
2469 	if (test_bit(WriteErrorSeen, &flags)) {
2470 		len += sprintf(page+len, "%swrite_error", sep);
2471 		sep = ",";
2472 	}
2473 	if (test_bit(WantReplacement, &flags)) {
2474 		len += sprintf(page+len, "%swant_replacement", sep);
2475 		sep = ",";
2476 	}
2477 	if (test_bit(Replacement, &flags)) {
2478 		len += sprintf(page+len, "%sreplacement", sep);
2479 		sep = ",";
2480 	}
2481 
2482 	return len+sprintf(page+len, "\n");
2483 }
2484 
2485 static ssize_t
2486 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2487 {
2488 	/* can write
2489 	 *  faulty  - simulates an error
2490 	 *  remove  - disconnects the device
2491 	 *  writemostly - sets write_mostly
2492 	 *  -writemostly - clears write_mostly
2493 	 *  blocked - sets the Blocked flags
2494 	 *  -blocked - clears the Blocked and possibly simulates an error
2495 	 *  insync - sets Insync providing device isn't active
2496 	 *  -insync - clear Insync for a device with a slot assigned,
2497 	 *            so that it gets rebuilt based on bitmap
2498 	 *  write_error - sets WriteErrorSeen
2499 	 *  -write_error - clears WriteErrorSeen
2500 	 */
2501 	int err = -EINVAL;
2502 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2503 		md_error(rdev->mddev, rdev);
2504 		if (test_bit(Faulty, &rdev->flags))
2505 			err = 0;
2506 		else
2507 			err = -EBUSY;
2508 	} else if (cmd_match(buf, "remove")) {
2509 		if (rdev->raid_disk >= 0)
2510 			err = -EBUSY;
2511 		else {
2512 			struct mddev *mddev = rdev->mddev;
2513 			if (mddev_is_clustered(mddev))
2514 				md_cluster_ops->remove_disk(mddev, rdev);
2515 			md_kick_rdev_from_array(rdev);
2516 			if (mddev_is_clustered(mddev))
2517 				md_cluster_ops->metadata_update_start(mddev);
2518 			if (mddev->pers)
2519 				md_update_sb(mddev, 1);
2520 			md_new_event(mddev);
2521 			if (mddev_is_clustered(mddev))
2522 				md_cluster_ops->metadata_update_finish(mddev);
2523 			err = 0;
2524 		}
2525 	} else if (cmd_match(buf, "writemostly")) {
2526 		set_bit(WriteMostly, &rdev->flags);
2527 		err = 0;
2528 	} else if (cmd_match(buf, "-writemostly")) {
2529 		clear_bit(WriteMostly, &rdev->flags);
2530 		err = 0;
2531 	} else if (cmd_match(buf, "blocked")) {
2532 		set_bit(Blocked, &rdev->flags);
2533 		err = 0;
2534 	} else if (cmd_match(buf, "-blocked")) {
2535 		if (!test_bit(Faulty, &rdev->flags) &&
2536 		    rdev->badblocks.unacked_exist) {
2537 			/* metadata handler doesn't understand badblocks,
2538 			 * so we need to fail the device
2539 			 */
2540 			md_error(rdev->mddev, rdev);
2541 		}
2542 		clear_bit(Blocked, &rdev->flags);
2543 		clear_bit(BlockedBadBlocks, &rdev->flags);
2544 		wake_up(&rdev->blocked_wait);
2545 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2546 		md_wakeup_thread(rdev->mddev->thread);
2547 
2548 		err = 0;
2549 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2550 		set_bit(In_sync, &rdev->flags);
2551 		err = 0;
2552 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2553 		if (rdev->mddev->pers == NULL) {
2554 			clear_bit(In_sync, &rdev->flags);
2555 			rdev->saved_raid_disk = rdev->raid_disk;
2556 			rdev->raid_disk = -1;
2557 			err = 0;
2558 		}
2559 	} else if (cmd_match(buf, "write_error")) {
2560 		set_bit(WriteErrorSeen, &rdev->flags);
2561 		err = 0;
2562 	} else if (cmd_match(buf, "-write_error")) {
2563 		clear_bit(WriteErrorSeen, &rdev->flags);
2564 		err = 0;
2565 	} else if (cmd_match(buf, "want_replacement")) {
2566 		/* Any non-spare device that is not a replacement can
2567 		 * become want_replacement at any time, but we then need to
2568 		 * check if recovery is needed.
2569 		 */
2570 		if (rdev->raid_disk >= 0 &&
2571 		    !test_bit(Replacement, &rdev->flags))
2572 			set_bit(WantReplacement, &rdev->flags);
2573 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2574 		md_wakeup_thread(rdev->mddev->thread);
2575 		err = 0;
2576 	} else if (cmd_match(buf, "-want_replacement")) {
2577 		/* Clearing 'want_replacement' is always allowed.
2578 		 * Once replacements starts it is too late though.
2579 		 */
2580 		err = 0;
2581 		clear_bit(WantReplacement, &rdev->flags);
2582 	} else if (cmd_match(buf, "replacement")) {
2583 		/* Can only set a device as a replacement when array has not
2584 		 * yet been started.  Once running, replacement is automatic
2585 		 * from spares, or by assigning 'slot'.
2586 		 */
2587 		if (rdev->mddev->pers)
2588 			err = -EBUSY;
2589 		else {
2590 			set_bit(Replacement, &rdev->flags);
2591 			err = 0;
2592 		}
2593 	} else if (cmd_match(buf, "-replacement")) {
2594 		/* Similarly, can only clear Replacement before start */
2595 		if (rdev->mddev->pers)
2596 			err = -EBUSY;
2597 		else {
2598 			clear_bit(Replacement, &rdev->flags);
2599 			err = 0;
2600 		}
2601 	} else if (cmd_match(buf, "re-add")) {
2602 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2603 			/* clear_bit is performed _after_ all the devices
2604 			 * have their local Faulty bit cleared. If any writes
2605 			 * happen in the meantime in the local node, they
2606 			 * will land in the local bitmap, which will be synced
2607 			 * by this node eventually
2608 			 */
2609 			if (!mddev_is_clustered(rdev->mddev) ||
2610 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2611 				clear_bit(Faulty, &rdev->flags);
2612 				err = add_bound_rdev(rdev);
2613 			}
2614 		} else
2615 			err = -EBUSY;
2616 	}
2617 	if (!err)
2618 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2619 	return err ? err : len;
2620 }
2621 static struct rdev_sysfs_entry rdev_state =
2622 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2623 
2624 static ssize_t
2625 errors_show(struct md_rdev *rdev, char *page)
2626 {
2627 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2628 }
2629 
2630 static ssize_t
2631 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2632 {
2633 	char *e;
2634 	unsigned long n = simple_strtoul(buf, &e, 10);
2635 	if (*buf && (*e == 0 || *e == '\n')) {
2636 		atomic_set(&rdev->corrected_errors, n);
2637 		return len;
2638 	}
2639 	return -EINVAL;
2640 }
2641 static struct rdev_sysfs_entry rdev_errors =
2642 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2643 
2644 static ssize_t
2645 slot_show(struct md_rdev *rdev, char *page)
2646 {
2647 	if (rdev->raid_disk < 0)
2648 		return sprintf(page, "none\n");
2649 	else
2650 		return sprintf(page, "%d\n", rdev->raid_disk);
2651 }
2652 
2653 static ssize_t
2654 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2655 {
2656 	char *e;
2657 	int err;
2658 	int slot = simple_strtoul(buf, &e, 10);
2659 	if (strncmp(buf, "none", 4)==0)
2660 		slot = -1;
2661 	else if (e==buf || (*e && *e!= '\n'))
2662 		return -EINVAL;
2663 	if (rdev->mddev->pers && slot == -1) {
2664 		/* Setting 'slot' on an active array requires also
2665 		 * updating the 'rd%d' link, and communicating
2666 		 * with the personality with ->hot_*_disk.
2667 		 * For now we only support removing
2668 		 * failed/spare devices.  This normally happens automatically,
2669 		 * but not when the metadata is externally managed.
2670 		 */
2671 		if (rdev->raid_disk == -1)
2672 			return -EEXIST;
2673 		/* personality does all needed checks */
2674 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2675 			return -EINVAL;
2676 		clear_bit(Blocked, &rdev->flags);
2677 		remove_and_add_spares(rdev->mddev, rdev);
2678 		if (rdev->raid_disk >= 0)
2679 			return -EBUSY;
2680 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2681 		md_wakeup_thread(rdev->mddev->thread);
2682 	} else if (rdev->mddev->pers) {
2683 		/* Activating a spare .. or possibly reactivating
2684 		 * if we ever get bitmaps working here.
2685 		 */
2686 
2687 		if (rdev->raid_disk != -1)
2688 			return -EBUSY;
2689 
2690 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2691 			return -EBUSY;
2692 
2693 		if (rdev->mddev->pers->hot_add_disk == NULL)
2694 			return -EINVAL;
2695 
2696 		if (slot >= rdev->mddev->raid_disks &&
2697 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2698 			return -ENOSPC;
2699 
2700 		rdev->raid_disk = slot;
2701 		if (test_bit(In_sync, &rdev->flags))
2702 			rdev->saved_raid_disk = slot;
2703 		else
2704 			rdev->saved_raid_disk = -1;
2705 		clear_bit(In_sync, &rdev->flags);
2706 		clear_bit(Bitmap_sync, &rdev->flags);
2707 		err = rdev->mddev->pers->
2708 			hot_add_disk(rdev->mddev, rdev);
2709 		if (err) {
2710 			rdev->raid_disk = -1;
2711 			return err;
2712 		} else
2713 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2714 		if (sysfs_link_rdev(rdev->mddev, rdev))
2715 			/* failure here is OK */;
2716 		/* don't wakeup anyone, leave that to userspace. */
2717 	} else {
2718 		if (slot >= rdev->mddev->raid_disks &&
2719 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2720 			return -ENOSPC;
2721 		rdev->raid_disk = slot;
2722 		/* assume it is working */
2723 		clear_bit(Faulty, &rdev->flags);
2724 		clear_bit(WriteMostly, &rdev->flags);
2725 		set_bit(In_sync, &rdev->flags);
2726 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2727 	}
2728 	return len;
2729 }
2730 
2731 static struct rdev_sysfs_entry rdev_slot =
2732 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2733 
2734 static ssize_t
2735 offset_show(struct md_rdev *rdev, char *page)
2736 {
2737 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2738 }
2739 
2740 static ssize_t
2741 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2742 {
2743 	unsigned long long offset;
2744 	if (kstrtoull(buf, 10, &offset) < 0)
2745 		return -EINVAL;
2746 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2747 		return -EBUSY;
2748 	if (rdev->sectors && rdev->mddev->external)
2749 		/* Must set offset before size, so overlap checks
2750 		 * can be sane */
2751 		return -EBUSY;
2752 	rdev->data_offset = offset;
2753 	rdev->new_data_offset = offset;
2754 	return len;
2755 }
2756 
2757 static struct rdev_sysfs_entry rdev_offset =
2758 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2759 
2760 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2761 {
2762 	return sprintf(page, "%llu\n",
2763 		       (unsigned long long)rdev->new_data_offset);
2764 }
2765 
2766 static ssize_t new_offset_store(struct md_rdev *rdev,
2767 				const char *buf, size_t len)
2768 {
2769 	unsigned long long new_offset;
2770 	struct mddev *mddev = rdev->mddev;
2771 
2772 	if (kstrtoull(buf, 10, &new_offset) < 0)
2773 		return -EINVAL;
2774 
2775 	if (mddev->sync_thread ||
2776 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2777 		return -EBUSY;
2778 	if (new_offset == rdev->data_offset)
2779 		/* reset is always permitted */
2780 		;
2781 	else if (new_offset > rdev->data_offset) {
2782 		/* must not push array size beyond rdev_sectors */
2783 		if (new_offset - rdev->data_offset
2784 		    + mddev->dev_sectors > rdev->sectors)
2785 				return -E2BIG;
2786 	}
2787 	/* Metadata worries about other space details. */
2788 
2789 	/* decreasing the offset is inconsistent with a backwards
2790 	 * reshape.
2791 	 */
2792 	if (new_offset < rdev->data_offset &&
2793 	    mddev->reshape_backwards)
2794 		return -EINVAL;
2795 	/* Increasing offset is inconsistent with forwards
2796 	 * reshape.  reshape_direction should be set to
2797 	 * 'backwards' first.
2798 	 */
2799 	if (new_offset > rdev->data_offset &&
2800 	    !mddev->reshape_backwards)
2801 		return -EINVAL;
2802 
2803 	if (mddev->pers && mddev->persistent &&
2804 	    !super_types[mddev->major_version]
2805 	    .allow_new_offset(rdev, new_offset))
2806 		return -E2BIG;
2807 	rdev->new_data_offset = new_offset;
2808 	if (new_offset > rdev->data_offset)
2809 		mddev->reshape_backwards = 1;
2810 	else if (new_offset < rdev->data_offset)
2811 		mddev->reshape_backwards = 0;
2812 
2813 	return len;
2814 }
2815 static struct rdev_sysfs_entry rdev_new_offset =
2816 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2817 
2818 static ssize_t
2819 rdev_size_show(struct md_rdev *rdev, char *page)
2820 {
2821 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2822 }
2823 
2824 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2825 {
2826 	/* check if two start/length pairs overlap */
2827 	if (s1+l1 <= s2)
2828 		return 0;
2829 	if (s2+l2 <= s1)
2830 		return 0;
2831 	return 1;
2832 }
2833 
2834 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2835 {
2836 	unsigned long long blocks;
2837 	sector_t new;
2838 
2839 	if (kstrtoull(buf, 10, &blocks) < 0)
2840 		return -EINVAL;
2841 
2842 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2843 		return -EINVAL; /* sector conversion overflow */
2844 
2845 	new = blocks * 2;
2846 	if (new != blocks * 2)
2847 		return -EINVAL; /* unsigned long long to sector_t overflow */
2848 
2849 	*sectors = new;
2850 	return 0;
2851 }
2852 
2853 static ssize_t
2854 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2855 {
2856 	struct mddev *my_mddev = rdev->mddev;
2857 	sector_t oldsectors = rdev->sectors;
2858 	sector_t sectors;
2859 
2860 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2861 		return -EINVAL;
2862 	if (rdev->data_offset != rdev->new_data_offset)
2863 		return -EINVAL; /* too confusing */
2864 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2865 		if (my_mddev->persistent) {
2866 			sectors = super_types[my_mddev->major_version].
2867 				rdev_size_change(rdev, sectors);
2868 			if (!sectors)
2869 				return -EBUSY;
2870 		} else if (!sectors)
2871 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2872 				rdev->data_offset;
2873 		if (!my_mddev->pers->resize)
2874 			/* Cannot change size for RAID0 or Linear etc */
2875 			return -EINVAL;
2876 	}
2877 	if (sectors < my_mddev->dev_sectors)
2878 		return -EINVAL; /* component must fit device */
2879 
2880 	rdev->sectors = sectors;
2881 	if (sectors > oldsectors && my_mddev->external) {
2882 		/* Need to check that all other rdevs with the same
2883 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2884 		 * the rdev lists safely.
2885 		 * This check does not provide a hard guarantee, it
2886 		 * just helps avoid dangerous mistakes.
2887 		 */
2888 		struct mddev *mddev;
2889 		int overlap = 0;
2890 		struct list_head *tmp;
2891 
2892 		rcu_read_lock();
2893 		for_each_mddev(mddev, tmp) {
2894 			struct md_rdev *rdev2;
2895 
2896 			rdev_for_each(rdev2, mddev)
2897 				if (rdev->bdev == rdev2->bdev &&
2898 				    rdev != rdev2 &&
2899 				    overlaps(rdev->data_offset, rdev->sectors,
2900 					     rdev2->data_offset,
2901 					     rdev2->sectors)) {
2902 					overlap = 1;
2903 					break;
2904 				}
2905 			if (overlap) {
2906 				mddev_put(mddev);
2907 				break;
2908 			}
2909 		}
2910 		rcu_read_unlock();
2911 		if (overlap) {
2912 			/* Someone else could have slipped in a size
2913 			 * change here, but doing so is just silly.
2914 			 * We put oldsectors back because we *know* it is
2915 			 * safe, and trust userspace not to race with
2916 			 * itself
2917 			 */
2918 			rdev->sectors = oldsectors;
2919 			return -EBUSY;
2920 		}
2921 	}
2922 	return len;
2923 }
2924 
2925 static struct rdev_sysfs_entry rdev_size =
2926 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2927 
2928 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2929 {
2930 	unsigned long long recovery_start = rdev->recovery_offset;
2931 
2932 	if (test_bit(In_sync, &rdev->flags) ||
2933 	    recovery_start == MaxSector)
2934 		return sprintf(page, "none\n");
2935 
2936 	return sprintf(page, "%llu\n", recovery_start);
2937 }
2938 
2939 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2940 {
2941 	unsigned long long recovery_start;
2942 
2943 	if (cmd_match(buf, "none"))
2944 		recovery_start = MaxSector;
2945 	else if (kstrtoull(buf, 10, &recovery_start))
2946 		return -EINVAL;
2947 
2948 	if (rdev->mddev->pers &&
2949 	    rdev->raid_disk >= 0)
2950 		return -EBUSY;
2951 
2952 	rdev->recovery_offset = recovery_start;
2953 	if (recovery_start == MaxSector)
2954 		set_bit(In_sync, &rdev->flags);
2955 	else
2956 		clear_bit(In_sync, &rdev->flags);
2957 	return len;
2958 }
2959 
2960 static struct rdev_sysfs_entry rdev_recovery_start =
2961 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2962 
2963 static ssize_t
2964 badblocks_show(struct badblocks *bb, char *page, int unack);
2965 static ssize_t
2966 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2967 
2968 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2969 {
2970 	return badblocks_show(&rdev->badblocks, page, 0);
2971 }
2972 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2973 {
2974 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2975 	/* Maybe that ack was all we needed */
2976 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2977 		wake_up(&rdev->blocked_wait);
2978 	return rv;
2979 }
2980 static struct rdev_sysfs_entry rdev_bad_blocks =
2981 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2982 
2983 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2984 {
2985 	return badblocks_show(&rdev->badblocks, page, 1);
2986 }
2987 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2988 {
2989 	return badblocks_store(&rdev->badblocks, page, len, 1);
2990 }
2991 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2992 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2993 
2994 static struct attribute *rdev_default_attrs[] = {
2995 	&rdev_state.attr,
2996 	&rdev_errors.attr,
2997 	&rdev_slot.attr,
2998 	&rdev_offset.attr,
2999 	&rdev_new_offset.attr,
3000 	&rdev_size.attr,
3001 	&rdev_recovery_start.attr,
3002 	&rdev_bad_blocks.attr,
3003 	&rdev_unack_bad_blocks.attr,
3004 	NULL,
3005 };
3006 static ssize_t
3007 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3008 {
3009 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3010 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3011 
3012 	if (!entry->show)
3013 		return -EIO;
3014 	if (!rdev->mddev)
3015 		return -EBUSY;
3016 	return entry->show(rdev, page);
3017 }
3018 
3019 static ssize_t
3020 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3021 	      const char *page, size_t length)
3022 {
3023 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3024 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3025 	ssize_t rv;
3026 	struct mddev *mddev = rdev->mddev;
3027 
3028 	if (!entry->store)
3029 		return -EIO;
3030 	if (!capable(CAP_SYS_ADMIN))
3031 		return -EACCES;
3032 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3033 	if (!rv) {
3034 		if (rdev->mddev == NULL)
3035 			rv = -EBUSY;
3036 		else
3037 			rv = entry->store(rdev, page, length);
3038 		mddev_unlock(mddev);
3039 	}
3040 	return rv;
3041 }
3042 
3043 static void rdev_free(struct kobject *ko)
3044 {
3045 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3046 	kfree(rdev);
3047 }
3048 static const struct sysfs_ops rdev_sysfs_ops = {
3049 	.show		= rdev_attr_show,
3050 	.store		= rdev_attr_store,
3051 };
3052 static struct kobj_type rdev_ktype = {
3053 	.release	= rdev_free,
3054 	.sysfs_ops	= &rdev_sysfs_ops,
3055 	.default_attrs	= rdev_default_attrs,
3056 };
3057 
3058 int md_rdev_init(struct md_rdev *rdev)
3059 {
3060 	rdev->desc_nr = -1;
3061 	rdev->saved_raid_disk = -1;
3062 	rdev->raid_disk = -1;
3063 	rdev->flags = 0;
3064 	rdev->data_offset = 0;
3065 	rdev->new_data_offset = 0;
3066 	rdev->sb_events = 0;
3067 	rdev->last_read_error.tv_sec  = 0;
3068 	rdev->last_read_error.tv_nsec = 0;
3069 	rdev->sb_loaded = 0;
3070 	rdev->bb_page = NULL;
3071 	atomic_set(&rdev->nr_pending, 0);
3072 	atomic_set(&rdev->read_errors, 0);
3073 	atomic_set(&rdev->corrected_errors, 0);
3074 
3075 	INIT_LIST_HEAD(&rdev->same_set);
3076 	init_waitqueue_head(&rdev->blocked_wait);
3077 
3078 	/* Add space to store bad block list.
3079 	 * This reserves the space even on arrays where it cannot
3080 	 * be used - I wonder if that matters
3081 	 */
3082 	rdev->badblocks.count = 0;
3083 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3084 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3085 	seqlock_init(&rdev->badblocks.lock);
3086 	if (rdev->badblocks.page == NULL)
3087 		return -ENOMEM;
3088 
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(md_rdev_init);
3092 /*
3093  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3094  *
3095  * mark the device faulty if:
3096  *
3097  *   - the device is nonexistent (zero size)
3098  *   - the device has no valid superblock
3099  *
3100  * a faulty rdev _never_ has rdev->sb set.
3101  */
3102 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3103 {
3104 	char b[BDEVNAME_SIZE];
3105 	int err;
3106 	struct md_rdev *rdev;
3107 	sector_t size;
3108 
3109 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3110 	if (!rdev) {
3111 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3112 		return ERR_PTR(-ENOMEM);
3113 	}
3114 
3115 	err = md_rdev_init(rdev);
3116 	if (err)
3117 		goto abort_free;
3118 	err = alloc_disk_sb(rdev);
3119 	if (err)
3120 		goto abort_free;
3121 
3122 	err = lock_rdev(rdev, newdev, super_format == -2);
3123 	if (err)
3124 		goto abort_free;
3125 
3126 	kobject_init(&rdev->kobj, &rdev_ktype);
3127 
3128 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3129 	if (!size) {
3130 		printk(KERN_WARNING
3131 			"md: %s has zero or unknown size, marking faulty!\n",
3132 			bdevname(rdev->bdev,b));
3133 		err = -EINVAL;
3134 		goto abort_free;
3135 	}
3136 
3137 	if (super_format >= 0) {
3138 		err = super_types[super_format].
3139 			load_super(rdev, NULL, super_minor);
3140 		if (err == -EINVAL) {
3141 			printk(KERN_WARNING
3142 				"md: %s does not have a valid v%d.%d "
3143 			       "superblock, not importing!\n",
3144 				bdevname(rdev->bdev,b),
3145 			       super_format, super_minor);
3146 			goto abort_free;
3147 		}
3148 		if (err < 0) {
3149 			printk(KERN_WARNING
3150 				"md: could not read %s's sb, not importing!\n",
3151 				bdevname(rdev->bdev,b));
3152 			goto abort_free;
3153 		}
3154 	}
3155 
3156 	return rdev;
3157 
3158 abort_free:
3159 	if (rdev->bdev)
3160 		unlock_rdev(rdev);
3161 	md_rdev_clear(rdev);
3162 	kfree(rdev);
3163 	return ERR_PTR(err);
3164 }
3165 
3166 /*
3167  * Check a full RAID array for plausibility
3168  */
3169 
3170 static void analyze_sbs(struct mddev *mddev)
3171 {
3172 	int i;
3173 	struct md_rdev *rdev, *freshest, *tmp;
3174 	char b[BDEVNAME_SIZE];
3175 
3176 	freshest = NULL;
3177 	rdev_for_each_safe(rdev, tmp, mddev)
3178 		switch (super_types[mddev->major_version].
3179 			load_super(rdev, freshest, mddev->minor_version)) {
3180 		case 1:
3181 			freshest = rdev;
3182 			break;
3183 		case 0:
3184 			break;
3185 		default:
3186 			printk( KERN_ERR \
3187 				"md: fatal superblock inconsistency in %s"
3188 				" -- removing from array\n",
3189 				bdevname(rdev->bdev,b));
3190 			md_kick_rdev_from_array(rdev);
3191 		}
3192 
3193 	super_types[mddev->major_version].
3194 		validate_super(mddev, freshest);
3195 
3196 	i = 0;
3197 	rdev_for_each_safe(rdev, tmp, mddev) {
3198 		if (mddev->max_disks &&
3199 		    (rdev->desc_nr >= mddev->max_disks ||
3200 		     i > mddev->max_disks)) {
3201 			printk(KERN_WARNING
3202 			       "md: %s: %s: only %d devices permitted\n",
3203 			       mdname(mddev), bdevname(rdev->bdev, b),
3204 			       mddev->max_disks);
3205 			md_kick_rdev_from_array(rdev);
3206 			continue;
3207 		}
3208 		if (rdev != freshest) {
3209 			if (super_types[mddev->major_version].
3210 			    validate_super(mddev, rdev)) {
3211 				printk(KERN_WARNING "md: kicking non-fresh %s"
3212 					" from array!\n",
3213 					bdevname(rdev->bdev,b));
3214 				md_kick_rdev_from_array(rdev);
3215 				continue;
3216 			}
3217 			/* No device should have a Candidate flag
3218 			 * when reading devices
3219 			 */
3220 			if (test_bit(Candidate, &rdev->flags)) {
3221 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3222 					bdevname(rdev->bdev, b));
3223 				md_kick_rdev_from_array(rdev);
3224 			}
3225 		}
3226 		if (mddev->level == LEVEL_MULTIPATH) {
3227 			rdev->desc_nr = i++;
3228 			rdev->raid_disk = rdev->desc_nr;
3229 			set_bit(In_sync, &rdev->flags);
3230 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3231 			rdev->raid_disk = -1;
3232 			clear_bit(In_sync, &rdev->flags);
3233 		}
3234 	}
3235 }
3236 
3237 /* Read a fixed-point number.
3238  * Numbers in sysfs attributes should be in "standard" units where
3239  * possible, so time should be in seconds.
3240  * However we internally use a a much smaller unit such as
3241  * milliseconds or jiffies.
3242  * This function takes a decimal number with a possible fractional
3243  * component, and produces an integer which is the result of
3244  * multiplying that number by 10^'scale'.
3245  * all without any floating-point arithmetic.
3246  */
3247 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3248 {
3249 	unsigned long result = 0;
3250 	long decimals = -1;
3251 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3252 		if (*cp == '.')
3253 			decimals = 0;
3254 		else if (decimals < scale) {
3255 			unsigned int value;
3256 			value = *cp - '0';
3257 			result = result * 10 + value;
3258 			if (decimals >= 0)
3259 				decimals++;
3260 		}
3261 		cp++;
3262 	}
3263 	if (*cp == '\n')
3264 		cp++;
3265 	if (*cp)
3266 		return -EINVAL;
3267 	if (decimals < 0)
3268 		decimals = 0;
3269 	while (decimals < scale) {
3270 		result *= 10;
3271 		decimals ++;
3272 	}
3273 	*res = result;
3274 	return 0;
3275 }
3276 
3277 static void md_safemode_timeout(unsigned long data);
3278 
3279 static ssize_t
3280 safe_delay_show(struct mddev *mddev, char *page)
3281 {
3282 	int msec = (mddev->safemode_delay*1000)/HZ;
3283 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3284 }
3285 static ssize_t
3286 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3287 {
3288 	unsigned long msec;
3289 
3290 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3291 		return -EINVAL;
3292 	if (msec == 0)
3293 		mddev->safemode_delay = 0;
3294 	else {
3295 		unsigned long old_delay = mddev->safemode_delay;
3296 		unsigned long new_delay = (msec*HZ)/1000;
3297 
3298 		if (new_delay == 0)
3299 			new_delay = 1;
3300 		mddev->safemode_delay = new_delay;
3301 		if (new_delay < old_delay || old_delay == 0)
3302 			mod_timer(&mddev->safemode_timer, jiffies+1);
3303 	}
3304 	return len;
3305 }
3306 static struct md_sysfs_entry md_safe_delay =
3307 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3308 
3309 static ssize_t
3310 level_show(struct mddev *mddev, char *page)
3311 {
3312 	struct md_personality *p;
3313 	int ret;
3314 	spin_lock(&mddev->lock);
3315 	p = mddev->pers;
3316 	if (p)
3317 		ret = sprintf(page, "%s\n", p->name);
3318 	else if (mddev->clevel[0])
3319 		ret = sprintf(page, "%s\n", mddev->clevel);
3320 	else if (mddev->level != LEVEL_NONE)
3321 		ret = sprintf(page, "%d\n", mddev->level);
3322 	else
3323 		ret = 0;
3324 	spin_unlock(&mddev->lock);
3325 	return ret;
3326 }
3327 
3328 static ssize_t
3329 level_store(struct mddev *mddev, const char *buf, size_t len)
3330 {
3331 	char clevel[16];
3332 	ssize_t rv;
3333 	size_t slen = len;
3334 	struct md_personality *pers, *oldpers;
3335 	long level;
3336 	void *priv, *oldpriv;
3337 	struct md_rdev *rdev;
3338 
3339 	if (slen == 0 || slen >= sizeof(clevel))
3340 		return -EINVAL;
3341 
3342 	rv = mddev_lock(mddev);
3343 	if (rv)
3344 		return rv;
3345 
3346 	if (mddev->pers == NULL) {
3347 		strncpy(mddev->clevel, buf, slen);
3348 		if (mddev->clevel[slen-1] == '\n')
3349 			slen--;
3350 		mddev->clevel[slen] = 0;
3351 		mddev->level = LEVEL_NONE;
3352 		rv = len;
3353 		goto out_unlock;
3354 	}
3355 	rv = -EROFS;
3356 	if (mddev->ro)
3357 		goto out_unlock;
3358 
3359 	/* request to change the personality.  Need to ensure:
3360 	 *  - array is not engaged in resync/recovery/reshape
3361 	 *  - old personality can be suspended
3362 	 *  - new personality will access other array.
3363 	 */
3364 
3365 	rv = -EBUSY;
3366 	if (mddev->sync_thread ||
3367 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3368 	    mddev->reshape_position != MaxSector ||
3369 	    mddev->sysfs_active)
3370 		goto out_unlock;
3371 
3372 	rv = -EINVAL;
3373 	if (!mddev->pers->quiesce) {
3374 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3375 		       mdname(mddev), mddev->pers->name);
3376 		goto out_unlock;
3377 	}
3378 
3379 	/* Now find the new personality */
3380 	strncpy(clevel, buf, slen);
3381 	if (clevel[slen-1] == '\n')
3382 		slen--;
3383 	clevel[slen] = 0;
3384 	if (kstrtol(clevel, 10, &level))
3385 		level = LEVEL_NONE;
3386 
3387 	if (request_module("md-%s", clevel) != 0)
3388 		request_module("md-level-%s", clevel);
3389 	spin_lock(&pers_lock);
3390 	pers = find_pers(level, clevel);
3391 	if (!pers || !try_module_get(pers->owner)) {
3392 		spin_unlock(&pers_lock);
3393 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3394 		rv = -EINVAL;
3395 		goto out_unlock;
3396 	}
3397 	spin_unlock(&pers_lock);
3398 
3399 	if (pers == mddev->pers) {
3400 		/* Nothing to do! */
3401 		module_put(pers->owner);
3402 		rv = len;
3403 		goto out_unlock;
3404 	}
3405 	if (!pers->takeover) {
3406 		module_put(pers->owner);
3407 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3408 		       mdname(mddev), clevel);
3409 		rv = -EINVAL;
3410 		goto out_unlock;
3411 	}
3412 
3413 	rdev_for_each(rdev, mddev)
3414 		rdev->new_raid_disk = rdev->raid_disk;
3415 
3416 	/* ->takeover must set new_* and/or delta_disks
3417 	 * if it succeeds, and may set them when it fails.
3418 	 */
3419 	priv = pers->takeover(mddev);
3420 	if (IS_ERR(priv)) {
3421 		mddev->new_level = mddev->level;
3422 		mddev->new_layout = mddev->layout;
3423 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3424 		mddev->raid_disks -= mddev->delta_disks;
3425 		mddev->delta_disks = 0;
3426 		mddev->reshape_backwards = 0;
3427 		module_put(pers->owner);
3428 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3429 		       mdname(mddev), clevel);
3430 		rv = PTR_ERR(priv);
3431 		goto out_unlock;
3432 	}
3433 
3434 	/* Looks like we have a winner */
3435 	mddev_suspend(mddev);
3436 	mddev_detach(mddev);
3437 
3438 	spin_lock(&mddev->lock);
3439 	oldpers = mddev->pers;
3440 	oldpriv = mddev->private;
3441 	mddev->pers = pers;
3442 	mddev->private = priv;
3443 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3444 	mddev->level = mddev->new_level;
3445 	mddev->layout = mddev->new_layout;
3446 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3447 	mddev->delta_disks = 0;
3448 	mddev->reshape_backwards = 0;
3449 	mddev->degraded = 0;
3450 	spin_unlock(&mddev->lock);
3451 
3452 	if (oldpers->sync_request == NULL &&
3453 	    mddev->external) {
3454 		/* We are converting from a no-redundancy array
3455 		 * to a redundancy array and metadata is managed
3456 		 * externally so we need to be sure that writes
3457 		 * won't block due to a need to transition
3458 		 *      clean->dirty
3459 		 * until external management is started.
3460 		 */
3461 		mddev->in_sync = 0;
3462 		mddev->safemode_delay = 0;
3463 		mddev->safemode = 0;
3464 	}
3465 
3466 	oldpers->free(mddev, oldpriv);
3467 
3468 	if (oldpers->sync_request == NULL &&
3469 	    pers->sync_request != NULL) {
3470 		/* need to add the md_redundancy_group */
3471 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3472 			printk(KERN_WARNING
3473 			       "md: cannot register extra attributes for %s\n",
3474 			       mdname(mddev));
3475 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3476 	}
3477 	if (oldpers->sync_request != NULL &&
3478 	    pers->sync_request == NULL) {
3479 		/* need to remove the md_redundancy_group */
3480 		if (mddev->to_remove == NULL)
3481 			mddev->to_remove = &md_redundancy_group;
3482 	}
3483 
3484 	rdev_for_each(rdev, mddev) {
3485 		if (rdev->raid_disk < 0)
3486 			continue;
3487 		if (rdev->new_raid_disk >= mddev->raid_disks)
3488 			rdev->new_raid_disk = -1;
3489 		if (rdev->new_raid_disk == rdev->raid_disk)
3490 			continue;
3491 		sysfs_unlink_rdev(mddev, rdev);
3492 	}
3493 	rdev_for_each(rdev, mddev) {
3494 		if (rdev->raid_disk < 0)
3495 			continue;
3496 		if (rdev->new_raid_disk == rdev->raid_disk)
3497 			continue;
3498 		rdev->raid_disk = rdev->new_raid_disk;
3499 		if (rdev->raid_disk < 0)
3500 			clear_bit(In_sync, &rdev->flags);
3501 		else {
3502 			if (sysfs_link_rdev(mddev, rdev))
3503 				printk(KERN_WARNING "md: cannot register rd%d"
3504 				       " for %s after level change\n",
3505 				       rdev->raid_disk, mdname(mddev));
3506 		}
3507 	}
3508 
3509 	if (pers->sync_request == NULL) {
3510 		/* this is now an array without redundancy, so
3511 		 * it must always be in_sync
3512 		 */
3513 		mddev->in_sync = 1;
3514 		del_timer_sync(&mddev->safemode_timer);
3515 	}
3516 	blk_set_stacking_limits(&mddev->queue->limits);
3517 	pers->run(mddev);
3518 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3519 	mddev_resume(mddev);
3520 	if (!mddev->thread)
3521 		md_update_sb(mddev, 1);
3522 	sysfs_notify(&mddev->kobj, NULL, "level");
3523 	md_new_event(mddev);
3524 	rv = len;
3525 out_unlock:
3526 	mddev_unlock(mddev);
3527 	return rv;
3528 }
3529 
3530 static struct md_sysfs_entry md_level =
3531 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3532 
3533 static ssize_t
3534 layout_show(struct mddev *mddev, char *page)
3535 {
3536 	/* just a number, not meaningful for all levels */
3537 	if (mddev->reshape_position != MaxSector &&
3538 	    mddev->layout != mddev->new_layout)
3539 		return sprintf(page, "%d (%d)\n",
3540 			       mddev->new_layout, mddev->layout);
3541 	return sprintf(page, "%d\n", mddev->layout);
3542 }
3543 
3544 static ssize_t
3545 layout_store(struct mddev *mddev, const char *buf, size_t len)
3546 {
3547 	char *e;
3548 	unsigned long n = simple_strtoul(buf, &e, 10);
3549 	int err;
3550 
3551 	if (!*buf || (*e && *e != '\n'))
3552 		return -EINVAL;
3553 	err = mddev_lock(mddev);
3554 	if (err)
3555 		return err;
3556 
3557 	if (mddev->pers) {
3558 		if (mddev->pers->check_reshape == NULL)
3559 			err = -EBUSY;
3560 		else if (mddev->ro)
3561 			err = -EROFS;
3562 		else {
3563 			mddev->new_layout = n;
3564 			err = mddev->pers->check_reshape(mddev);
3565 			if (err)
3566 				mddev->new_layout = mddev->layout;
3567 		}
3568 	} else {
3569 		mddev->new_layout = n;
3570 		if (mddev->reshape_position == MaxSector)
3571 			mddev->layout = n;
3572 	}
3573 	mddev_unlock(mddev);
3574 	return err ?: len;
3575 }
3576 static struct md_sysfs_entry md_layout =
3577 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3578 
3579 static ssize_t
3580 raid_disks_show(struct mddev *mddev, char *page)
3581 {
3582 	if (mddev->raid_disks == 0)
3583 		return 0;
3584 	if (mddev->reshape_position != MaxSector &&
3585 	    mddev->delta_disks != 0)
3586 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3587 			       mddev->raid_disks - mddev->delta_disks);
3588 	return sprintf(page, "%d\n", mddev->raid_disks);
3589 }
3590 
3591 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3592 
3593 static ssize_t
3594 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596 	char *e;
3597 	int err;
3598 	unsigned long n = simple_strtoul(buf, &e, 10);
3599 
3600 	if (!*buf || (*e && *e != '\n'))
3601 		return -EINVAL;
3602 
3603 	err = mddev_lock(mddev);
3604 	if (err)
3605 		return err;
3606 	if (mddev->pers)
3607 		err = update_raid_disks(mddev, n);
3608 	else if (mddev->reshape_position != MaxSector) {
3609 		struct md_rdev *rdev;
3610 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3611 
3612 		err = -EINVAL;
3613 		rdev_for_each(rdev, mddev) {
3614 			if (olddisks < n &&
3615 			    rdev->data_offset < rdev->new_data_offset)
3616 				goto out_unlock;
3617 			if (olddisks > n &&
3618 			    rdev->data_offset > rdev->new_data_offset)
3619 				goto out_unlock;
3620 		}
3621 		err = 0;
3622 		mddev->delta_disks = n - olddisks;
3623 		mddev->raid_disks = n;
3624 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3625 	} else
3626 		mddev->raid_disks = n;
3627 out_unlock:
3628 	mddev_unlock(mddev);
3629 	return err ? err : len;
3630 }
3631 static struct md_sysfs_entry md_raid_disks =
3632 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3633 
3634 static ssize_t
3635 chunk_size_show(struct mddev *mddev, char *page)
3636 {
3637 	if (mddev->reshape_position != MaxSector &&
3638 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3639 		return sprintf(page, "%d (%d)\n",
3640 			       mddev->new_chunk_sectors << 9,
3641 			       mddev->chunk_sectors << 9);
3642 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3643 }
3644 
3645 static ssize_t
3646 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 	int err;
3649 	char *e;
3650 	unsigned long n = simple_strtoul(buf, &e, 10);
3651 
3652 	if (!*buf || (*e && *e != '\n'))
3653 		return -EINVAL;
3654 
3655 	err = mddev_lock(mddev);
3656 	if (err)
3657 		return err;
3658 	if (mddev->pers) {
3659 		if (mddev->pers->check_reshape == NULL)
3660 			err = -EBUSY;
3661 		else if (mddev->ro)
3662 			err = -EROFS;
3663 		else {
3664 			mddev->new_chunk_sectors = n >> 9;
3665 			err = mddev->pers->check_reshape(mddev);
3666 			if (err)
3667 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3668 		}
3669 	} else {
3670 		mddev->new_chunk_sectors = n >> 9;
3671 		if (mddev->reshape_position == MaxSector)
3672 			mddev->chunk_sectors = n >> 9;
3673 	}
3674 	mddev_unlock(mddev);
3675 	return err ?: len;
3676 }
3677 static struct md_sysfs_entry md_chunk_size =
3678 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3679 
3680 static ssize_t
3681 resync_start_show(struct mddev *mddev, char *page)
3682 {
3683 	if (mddev->recovery_cp == MaxSector)
3684 		return sprintf(page, "none\n");
3685 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3686 }
3687 
3688 static ssize_t
3689 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691 	int err;
3692 	char *e;
3693 	unsigned long long n = simple_strtoull(buf, &e, 10);
3694 
3695 	err = mddev_lock(mddev);
3696 	if (err)
3697 		return err;
3698 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3699 		err = -EBUSY;
3700 	else if (cmd_match(buf, "none"))
3701 		n = MaxSector;
3702 	else if (!*buf || (*e && *e != '\n'))
3703 		err = -EINVAL;
3704 
3705 	if (!err) {
3706 		mddev->recovery_cp = n;
3707 		if (mddev->pers)
3708 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3709 	}
3710 	mddev_unlock(mddev);
3711 	return err ?: len;
3712 }
3713 static struct md_sysfs_entry md_resync_start =
3714 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3715 		resync_start_show, resync_start_store);
3716 
3717 /*
3718  * The array state can be:
3719  *
3720  * clear
3721  *     No devices, no size, no level
3722  *     Equivalent to STOP_ARRAY ioctl
3723  * inactive
3724  *     May have some settings, but array is not active
3725  *        all IO results in error
3726  *     When written, doesn't tear down array, but just stops it
3727  * suspended (not supported yet)
3728  *     All IO requests will block. The array can be reconfigured.
3729  *     Writing this, if accepted, will block until array is quiescent
3730  * readonly
3731  *     no resync can happen.  no superblocks get written.
3732  *     write requests fail
3733  * read-auto
3734  *     like readonly, but behaves like 'clean' on a write request.
3735  *
3736  * clean - no pending writes, but otherwise active.
3737  *     When written to inactive array, starts without resync
3738  *     If a write request arrives then
3739  *       if metadata is known, mark 'dirty' and switch to 'active'.
3740  *       if not known, block and switch to write-pending
3741  *     If written to an active array that has pending writes, then fails.
3742  * active
3743  *     fully active: IO and resync can be happening.
3744  *     When written to inactive array, starts with resync
3745  *
3746  * write-pending
3747  *     clean, but writes are blocked waiting for 'active' to be written.
3748  *
3749  * active-idle
3750  *     like active, but no writes have been seen for a while (100msec).
3751  *
3752  */
3753 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3754 		   write_pending, active_idle, bad_word};
3755 static char *array_states[] = {
3756 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3757 	"write-pending", "active-idle", NULL };
3758 
3759 static int match_word(const char *word, char **list)
3760 {
3761 	int n;
3762 	for (n=0; list[n]; n++)
3763 		if (cmd_match(word, list[n]))
3764 			break;
3765 	return n;
3766 }
3767 
3768 static ssize_t
3769 array_state_show(struct mddev *mddev, char *page)
3770 {
3771 	enum array_state st = inactive;
3772 
3773 	if (mddev->pers)
3774 		switch(mddev->ro) {
3775 		case 1:
3776 			st = readonly;
3777 			break;
3778 		case 2:
3779 			st = read_auto;
3780 			break;
3781 		case 0:
3782 			if (mddev->in_sync)
3783 				st = clean;
3784 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3785 				st = write_pending;
3786 			else if (mddev->safemode)
3787 				st = active_idle;
3788 			else
3789 				st = active;
3790 		}
3791 	else {
3792 		if (list_empty(&mddev->disks) &&
3793 		    mddev->raid_disks == 0 &&
3794 		    mddev->dev_sectors == 0)
3795 			st = clear;
3796 		else
3797 			st = inactive;
3798 	}
3799 	return sprintf(page, "%s\n", array_states[st]);
3800 }
3801 
3802 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3803 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3804 static int do_md_run(struct mddev *mddev);
3805 static int restart_array(struct mddev *mddev);
3806 
3807 static ssize_t
3808 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3809 {
3810 	int err;
3811 	enum array_state st = match_word(buf, array_states);
3812 
3813 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3814 		/* don't take reconfig_mutex when toggling between
3815 		 * clean and active
3816 		 */
3817 		spin_lock(&mddev->lock);
3818 		if (st == active) {
3819 			restart_array(mddev);
3820 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 			wake_up(&mddev->sb_wait);
3822 			err = 0;
3823 		} else /* st == clean */ {
3824 			restart_array(mddev);
3825 			if (atomic_read(&mddev->writes_pending) == 0) {
3826 				if (mddev->in_sync == 0) {
3827 					mddev->in_sync = 1;
3828 					if (mddev->safemode == 1)
3829 						mddev->safemode = 0;
3830 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3831 				}
3832 				err = 0;
3833 			} else
3834 				err = -EBUSY;
3835 		}
3836 		spin_unlock(&mddev->lock);
3837 		return err;
3838 	}
3839 	err = mddev_lock(mddev);
3840 	if (err)
3841 		return err;
3842 	err = -EINVAL;
3843 	switch(st) {
3844 	case bad_word:
3845 		break;
3846 	case clear:
3847 		/* stopping an active array */
3848 		err = do_md_stop(mddev, 0, NULL);
3849 		break;
3850 	case inactive:
3851 		/* stopping an active array */
3852 		if (mddev->pers)
3853 			err = do_md_stop(mddev, 2, NULL);
3854 		else
3855 			err = 0; /* already inactive */
3856 		break;
3857 	case suspended:
3858 		break; /* not supported yet */
3859 	case readonly:
3860 		if (mddev->pers)
3861 			err = md_set_readonly(mddev, NULL);
3862 		else {
3863 			mddev->ro = 1;
3864 			set_disk_ro(mddev->gendisk, 1);
3865 			err = do_md_run(mddev);
3866 		}
3867 		break;
3868 	case read_auto:
3869 		if (mddev->pers) {
3870 			if (mddev->ro == 0)
3871 				err = md_set_readonly(mddev, NULL);
3872 			else if (mddev->ro == 1)
3873 				err = restart_array(mddev);
3874 			if (err == 0) {
3875 				mddev->ro = 2;
3876 				set_disk_ro(mddev->gendisk, 0);
3877 			}
3878 		} else {
3879 			mddev->ro = 2;
3880 			err = do_md_run(mddev);
3881 		}
3882 		break;
3883 	case clean:
3884 		if (mddev->pers) {
3885 			restart_array(mddev);
3886 			spin_lock(&mddev->lock);
3887 			if (atomic_read(&mddev->writes_pending) == 0) {
3888 				if (mddev->in_sync == 0) {
3889 					mddev->in_sync = 1;
3890 					if (mddev->safemode == 1)
3891 						mddev->safemode = 0;
3892 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3893 				}
3894 				err = 0;
3895 			} else
3896 				err = -EBUSY;
3897 			spin_unlock(&mddev->lock);
3898 		} else
3899 			err = -EINVAL;
3900 		break;
3901 	case active:
3902 		if (mddev->pers) {
3903 			restart_array(mddev);
3904 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3905 			wake_up(&mddev->sb_wait);
3906 			err = 0;
3907 		} else {
3908 			mddev->ro = 0;
3909 			set_disk_ro(mddev->gendisk, 0);
3910 			err = do_md_run(mddev);
3911 		}
3912 		break;
3913 	case write_pending:
3914 	case active_idle:
3915 		/* these cannot be set */
3916 		break;
3917 	}
3918 
3919 	if (!err) {
3920 		if (mddev->hold_active == UNTIL_IOCTL)
3921 			mddev->hold_active = 0;
3922 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3923 	}
3924 	mddev_unlock(mddev);
3925 	return err ?: len;
3926 }
3927 static struct md_sysfs_entry md_array_state =
3928 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3929 
3930 static ssize_t
3931 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3932 	return sprintf(page, "%d\n",
3933 		       atomic_read(&mddev->max_corr_read_errors));
3934 }
3935 
3936 static ssize_t
3937 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3938 {
3939 	char *e;
3940 	unsigned long n = simple_strtoul(buf, &e, 10);
3941 
3942 	if (*buf && (*e == 0 || *e == '\n')) {
3943 		atomic_set(&mddev->max_corr_read_errors, n);
3944 		return len;
3945 	}
3946 	return -EINVAL;
3947 }
3948 
3949 static struct md_sysfs_entry max_corr_read_errors =
3950 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3951 	max_corrected_read_errors_store);
3952 
3953 static ssize_t
3954 null_show(struct mddev *mddev, char *page)
3955 {
3956 	return -EINVAL;
3957 }
3958 
3959 static ssize_t
3960 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3961 {
3962 	/* buf must be %d:%d\n? giving major and minor numbers */
3963 	/* The new device is added to the array.
3964 	 * If the array has a persistent superblock, we read the
3965 	 * superblock to initialise info and check validity.
3966 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3967 	 * which mainly checks size.
3968 	 */
3969 	char *e;
3970 	int major = simple_strtoul(buf, &e, 10);
3971 	int minor;
3972 	dev_t dev;
3973 	struct md_rdev *rdev;
3974 	int err;
3975 
3976 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3977 		return -EINVAL;
3978 	minor = simple_strtoul(e+1, &e, 10);
3979 	if (*e && *e != '\n')
3980 		return -EINVAL;
3981 	dev = MKDEV(major, minor);
3982 	if (major != MAJOR(dev) ||
3983 	    minor != MINOR(dev))
3984 		return -EOVERFLOW;
3985 
3986 	flush_workqueue(md_misc_wq);
3987 
3988 	err = mddev_lock(mddev);
3989 	if (err)
3990 		return err;
3991 	if (mddev->persistent) {
3992 		rdev = md_import_device(dev, mddev->major_version,
3993 					mddev->minor_version);
3994 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3995 			struct md_rdev *rdev0
3996 				= list_entry(mddev->disks.next,
3997 					     struct md_rdev, same_set);
3998 			err = super_types[mddev->major_version]
3999 				.load_super(rdev, rdev0, mddev->minor_version);
4000 			if (err < 0)
4001 				goto out;
4002 		}
4003 	} else if (mddev->external)
4004 		rdev = md_import_device(dev, -2, -1);
4005 	else
4006 		rdev = md_import_device(dev, -1, -1);
4007 
4008 	if (IS_ERR(rdev))
4009 		return PTR_ERR(rdev);
4010 	err = bind_rdev_to_array(rdev, mddev);
4011  out:
4012 	if (err)
4013 		export_rdev(rdev);
4014 	mddev_unlock(mddev);
4015 	return err ? err : len;
4016 }
4017 
4018 static struct md_sysfs_entry md_new_device =
4019 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4020 
4021 static ssize_t
4022 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4023 {
4024 	char *end;
4025 	unsigned long chunk, end_chunk;
4026 	int err;
4027 
4028 	err = mddev_lock(mddev);
4029 	if (err)
4030 		return err;
4031 	if (!mddev->bitmap)
4032 		goto out;
4033 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4034 	while (*buf) {
4035 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4036 		if (buf == end) break;
4037 		if (*end == '-') { /* range */
4038 			buf = end + 1;
4039 			end_chunk = simple_strtoul(buf, &end, 0);
4040 			if (buf == end) break;
4041 		}
4042 		if (*end && !isspace(*end)) break;
4043 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4044 		buf = skip_spaces(end);
4045 	}
4046 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4047 out:
4048 	mddev_unlock(mddev);
4049 	return len;
4050 }
4051 
4052 static struct md_sysfs_entry md_bitmap =
4053 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4054 
4055 static ssize_t
4056 size_show(struct mddev *mddev, char *page)
4057 {
4058 	return sprintf(page, "%llu\n",
4059 		(unsigned long long)mddev->dev_sectors / 2);
4060 }
4061 
4062 static int update_size(struct mddev *mddev, sector_t num_sectors);
4063 
4064 static ssize_t
4065 size_store(struct mddev *mddev, const char *buf, size_t len)
4066 {
4067 	/* If array is inactive, we can reduce the component size, but
4068 	 * not increase it (except from 0).
4069 	 * If array is active, we can try an on-line resize
4070 	 */
4071 	sector_t sectors;
4072 	int err = strict_blocks_to_sectors(buf, &sectors);
4073 
4074 	if (err < 0)
4075 		return err;
4076 	err = mddev_lock(mddev);
4077 	if (err)
4078 		return err;
4079 	if (mddev->pers) {
4080 		if (mddev_is_clustered(mddev))
4081 			md_cluster_ops->metadata_update_start(mddev);
4082 		err = update_size(mddev, sectors);
4083 		md_update_sb(mddev, 1);
4084 		if (mddev_is_clustered(mddev))
4085 			md_cluster_ops->metadata_update_finish(mddev);
4086 	} else {
4087 		if (mddev->dev_sectors == 0 ||
4088 		    mddev->dev_sectors > sectors)
4089 			mddev->dev_sectors = sectors;
4090 		else
4091 			err = -ENOSPC;
4092 	}
4093 	mddev_unlock(mddev);
4094 	return err ? err : len;
4095 }
4096 
4097 static struct md_sysfs_entry md_size =
4098 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4099 
4100 /* Metadata version.
4101  * This is one of
4102  *   'none' for arrays with no metadata (good luck...)
4103  *   'external' for arrays with externally managed metadata,
4104  * or N.M for internally known formats
4105  */
4106 static ssize_t
4107 metadata_show(struct mddev *mddev, char *page)
4108 {
4109 	if (mddev->persistent)
4110 		return sprintf(page, "%d.%d\n",
4111 			       mddev->major_version, mddev->minor_version);
4112 	else if (mddev->external)
4113 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4114 	else
4115 		return sprintf(page, "none\n");
4116 }
4117 
4118 static ssize_t
4119 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121 	int major, minor;
4122 	char *e;
4123 	int err;
4124 	/* Changing the details of 'external' metadata is
4125 	 * always permitted.  Otherwise there must be
4126 	 * no devices attached to the array.
4127 	 */
4128 
4129 	err = mddev_lock(mddev);
4130 	if (err)
4131 		return err;
4132 	err = -EBUSY;
4133 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4134 		;
4135 	else if (!list_empty(&mddev->disks))
4136 		goto out_unlock;
4137 
4138 	err = 0;
4139 	if (cmd_match(buf, "none")) {
4140 		mddev->persistent = 0;
4141 		mddev->external = 0;
4142 		mddev->major_version = 0;
4143 		mddev->minor_version = 90;
4144 		goto out_unlock;
4145 	}
4146 	if (strncmp(buf, "external:", 9) == 0) {
4147 		size_t namelen = len-9;
4148 		if (namelen >= sizeof(mddev->metadata_type))
4149 			namelen = sizeof(mddev->metadata_type)-1;
4150 		strncpy(mddev->metadata_type, buf+9, namelen);
4151 		mddev->metadata_type[namelen] = 0;
4152 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4153 			mddev->metadata_type[--namelen] = 0;
4154 		mddev->persistent = 0;
4155 		mddev->external = 1;
4156 		mddev->major_version = 0;
4157 		mddev->minor_version = 90;
4158 		goto out_unlock;
4159 	}
4160 	major = simple_strtoul(buf, &e, 10);
4161 	err = -EINVAL;
4162 	if (e==buf || *e != '.')
4163 		goto out_unlock;
4164 	buf = e+1;
4165 	minor = simple_strtoul(buf, &e, 10);
4166 	if (e==buf || (*e && *e != '\n') )
4167 		goto out_unlock;
4168 	err = -ENOENT;
4169 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4170 		goto out_unlock;
4171 	mddev->major_version = major;
4172 	mddev->minor_version = minor;
4173 	mddev->persistent = 1;
4174 	mddev->external = 0;
4175 	err = 0;
4176 out_unlock:
4177 	mddev_unlock(mddev);
4178 	return err ?: len;
4179 }
4180 
4181 static struct md_sysfs_entry md_metadata =
4182 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4183 
4184 static ssize_t
4185 action_show(struct mddev *mddev, char *page)
4186 {
4187 	char *type = "idle";
4188 	unsigned long recovery = mddev->recovery;
4189 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4190 		type = "frozen";
4191 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4192 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4193 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4194 			type = "reshape";
4195 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4196 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4197 				type = "resync";
4198 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4199 				type = "check";
4200 			else
4201 				type = "repair";
4202 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4203 			type = "recover";
4204 	}
4205 	return sprintf(page, "%s\n", type);
4206 }
4207 
4208 static ssize_t
4209 action_store(struct mddev *mddev, const char *page, size_t len)
4210 {
4211 	if (!mddev->pers || !mddev->pers->sync_request)
4212 		return -EINVAL;
4213 
4214 
4215 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4216 		if (cmd_match(page, "frozen"))
4217 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4218 		else
4219 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4220 		flush_workqueue(md_misc_wq);
4221 		if (mddev->sync_thread) {
4222 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4223 			if (mddev_lock(mddev) == 0) {
4224 				md_reap_sync_thread(mddev);
4225 				mddev_unlock(mddev);
4226 			}
4227 		}
4228 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4229 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4230 		return -EBUSY;
4231 	else if (cmd_match(page, "resync"))
4232 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233 	else if (cmd_match(page, "recover")) {
4234 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4235 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4236 	} else if (cmd_match(page, "reshape")) {
4237 		int err;
4238 		if (mddev->pers->start_reshape == NULL)
4239 			return -EINVAL;
4240 		err = mddev_lock(mddev);
4241 		if (!err) {
4242 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4243 			err = mddev->pers->start_reshape(mddev);
4244 			mddev_unlock(mddev);
4245 		}
4246 		if (err)
4247 			return err;
4248 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4249 	} else {
4250 		if (cmd_match(page, "check"))
4251 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4252 		else if (!cmd_match(page, "repair"))
4253 			return -EINVAL;
4254 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4255 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4256 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4257 	}
4258 	if (mddev->ro == 2) {
4259 		/* A write to sync_action is enough to justify
4260 		 * canceling read-auto mode
4261 		 */
4262 		mddev->ro = 0;
4263 		md_wakeup_thread(mddev->sync_thread);
4264 	}
4265 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4266 	md_wakeup_thread(mddev->thread);
4267 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4268 	return len;
4269 }
4270 
4271 static struct md_sysfs_entry md_scan_mode =
4272 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4273 
4274 static ssize_t
4275 last_sync_action_show(struct mddev *mddev, char *page)
4276 {
4277 	return sprintf(page, "%s\n", mddev->last_sync_action);
4278 }
4279 
4280 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4281 
4282 static ssize_t
4283 mismatch_cnt_show(struct mddev *mddev, char *page)
4284 {
4285 	return sprintf(page, "%llu\n",
4286 		       (unsigned long long)
4287 		       atomic64_read(&mddev->resync_mismatches));
4288 }
4289 
4290 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4291 
4292 static ssize_t
4293 sync_min_show(struct mddev *mddev, char *page)
4294 {
4295 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4296 		       mddev->sync_speed_min ? "local": "system");
4297 }
4298 
4299 static ssize_t
4300 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4301 {
4302 	int min;
4303 	char *e;
4304 	if (strncmp(buf, "system", 6)==0) {
4305 		mddev->sync_speed_min = 0;
4306 		return len;
4307 	}
4308 	min = simple_strtoul(buf, &e, 10);
4309 	if (buf == e || (*e && *e != '\n') || min <= 0)
4310 		return -EINVAL;
4311 	mddev->sync_speed_min = min;
4312 	return len;
4313 }
4314 
4315 static struct md_sysfs_entry md_sync_min =
4316 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4317 
4318 static ssize_t
4319 sync_max_show(struct mddev *mddev, char *page)
4320 {
4321 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4322 		       mddev->sync_speed_max ? "local": "system");
4323 }
4324 
4325 static ssize_t
4326 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4327 {
4328 	int max;
4329 	char *e;
4330 	if (strncmp(buf, "system", 6)==0) {
4331 		mddev->sync_speed_max = 0;
4332 		return len;
4333 	}
4334 	max = simple_strtoul(buf, &e, 10);
4335 	if (buf == e || (*e && *e != '\n') || max <= 0)
4336 		return -EINVAL;
4337 	mddev->sync_speed_max = max;
4338 	return len;
4339 }
4340 
4341 static struct md_sysfs_entry md_sync_max =
4342 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4343 
4344 static ssize_t
4345 degraded_show(struct mddev *mddev, char *page)
4346 {
4347 	return sprintf(page, "%d\n", mddev->degraded);
4348 }
4349 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4350 
4351 static ssize_t
4352 sync_force_parallel_show(struct mddev *mddev, char *page)
4353 {
4354 	return sprintf(page, "%d\n", mddev->parallel_resync);
4355 }
4356 
4357 static ssize_t
4358 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4359 {
4360 	long n;
4361 
4362 	if (kstrtol(buf, 10, &n))
4363 		return -EINVAL;
4364 
4365 	if (n != 0 && n != 1)
4366 		return -EINVAL;
4367 
4368 	mddev->parallel_resync = n;
4369 
4370 	if (mddev->sync_thread)
4371 		wake_up(&resync_wait);
4372 
4373 	return len;
4374 }
4375 
4376 /* force parallel resync, even with shared block devices */
4377 static struct md_sysfs_entry md_sync_force_parallel =
4378 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4379        sync_force_parallel_show, sync_force_parallel_store);
4380 
4381 static ssize_t
4382 sync_speed_show(struct mddev *mddev, char *page)
4383 {
4384 	unsigned long resync, dt, db;
4385 	if (mddev->curr_resync == 0)
4386 		return sprintf(page, "none\n");
4387 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4388 	dt = (jiffies - mddev->resync_mark) / HZ;
4389 	if (!dt) dt++;
4390 	db = resync - mddev->resync_mark_cnt;
4391 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4392 }
4393 
4394 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4395 
4396 static ssize_t
4397 sync_completed_show(struct mddev *mddev, char *page)
4398 {
4399 	unsigned long long max_sectors, resync;
4400 
4401 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4402 		return sprintf(page, "none\n");
4403 
4404 	if (mddev->curr_resync == 1 ||
4405 	    mddev->curr_resync == 2)
4406 		return sprintf(page, "delayed\n");
4407 
4408 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4409 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4410 		max_sectors = mddev->resync_max_sectors;
4411 	else
4412 		max_sectors = mddev->dev_sectors;
4413 
4414 	resync = mddev->curr_resync_completed;
4415 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4416 }
4417 
4418 static struct md_sysfs_entry md_sync_completed =
4419 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4420 
4421 static ssize_t
4422 min_sync_show(struct mddev *mddev, char *page)
4423 {
4424 	return sprintf(page, "%llu\n",
4425 		       (unsigned long long)mddev->resync_min);
4426 }
4427 static ssize_t
4428 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4429 {
4430 	unsigned long long min;
4431 	int err;
4432 
4433 	if (kstrtoull(buf, 10, &min))
4434 		return -EINVAL;
4435 
4436 	spin_lock(&mddev->lock);
4437 	err = -EINVAL;
4438 	if (min > mddev->resync_max)
4439 		goto out_unlock;
4440 
4441 	err = -EBUSY;
4442 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4443 		goto out_unlock;
4444 
4445 	/* Round down to multiple of 4K for safety */
4446 	mddev->resync_min = round_down(min, 8);
4447 	err = 0;
4448 
4449 out_unlock:
4450 	spin_unlock(&mddev->lock);
4451 	return err ?: len;
4452 }
4453 
4454 static struct md_sysfs_entry md_min_sync =
4455 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4456 
4457 static ssize_t
4458 max_sync_show(struct mddev *mddev, char *page)
4459 {
4460 	if (mddev->resync_max == MaxSector)
4461 		return sprintf(page, "max\n");
4462 	else
4463 		return sprintf(page, "%llu\n",
4464 			       (unsigned long long)mddev->resync_max);
4465 }
4466 static ssize_t
4467 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4468 {
4469 	int err;
4470 	spin_lock(&mddev->lock);
4471 	if (strncmp(buf, "max", 3) == 0)
4472 		mddev->resync_max = MaxSector;
4473 	else {
4474 		unsigned long long max;
4475 		int chunk;
4476 
4477 		err = -EINVAL;
4478 		if (kstrtoull(buf, 10, &max))
4479 			goto out_unlock;
4480 		if (max < mddev->resync_min)
4481 			goto out_unlock;
4482 
4483 		err = -EBUSY;
4484 		if (max < mddev->resync_max &&
4485 		    mddev->ro == 0 &&
4486 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4487 			goto out_unlock;
4488 
4489 		/* Must be a multiple of chunk_size */
4490 		chunk = mddev->chunk_sectors;
4491 		if (chunk) {
4492 			sector_t temp = max;
4493 
4494 			err = -EINVAL;
4495 			if (sector_div(temp, chunk))
4496 				goto out_unlock;
4497 		}
4498 		mddev->resync_max = max;
4499 	}
4500 	wake_up(&mddev->recovery_wait);
4501 	err = 0;
4502 out_unlock:
4503 	spin_unlock(&mddev->lock);
4504 	return err ?: len;
4505 }
4506 
4507 static struct md_sysfs_entry md_max_sync =
4508 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4509 
4510 static ssize_t
4511 suspend_lo_show(struct mddev *mddev, char *page)
4512 {
4513 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4514 }
4515 
4516 static ssize_t
4517 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4518 {
4519 	char *e;
4520 	unsigned long long new = simple_strtoull(buf, &e, 10);
4521 	unsigned long long old;
4522 	int err;
4523 
4524 	if (buf == e || (*e && *e != '\n'))
4525 		return -EINVAL;
4526 
4527 	err = mddev_lock(mddev);
4528 	if (err)
4529 		return err;
4530 	err = -EINVAL;
4531 	if (mddev->pers == NULL ||
4532 	    mddev->pers->quiesce == NULL)
4533 		goto unlock;
4534 	old = mddev->suspend_lo;
4535 	mddev->suspend_lo = new;
4536 	if (new >= old)
4537 		/* Shrinking suspended region */
4538 		mddev->pers->quiesce(mddev, 2);
4539 	else {
4540 		/* Expanding suspended region - need to wait */
4541 		mddev->pers->quiesce(mddev, 1);
4542 		mddev->pers->quiesce(mddev, 0);
4543 	}
4544 	err = 0;
4545 unlock:
4546 	mddev_unlock(mddev);
4547 	return err ?: len;
4548 }
4549 static struct md_sysfs_entry md_suspend_lo =
4550 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4551 
4552 static ssize_t
4553 suspend_hi_show(struct mddev *mddev, char *page)
4554 {
4555 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4556 }
4557 
4558 static ssize_t
4559 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4560 {
4561 	char *e;
4562 	unsigned long long new = simple_strtoull(buf, &e, 10);
4563 	unsigned long long old;
4564 	int err;
4565 
4566 	if (buf == e || (*e && *e != '\n'))
4567 		return -EINVAL;
4568 
4569 	err = mddev_lock(mddev);
4570 	if (err)
4571 		return err;
4572 	err = -EINVAL;
4573 	if (mddev->pers == NULL ||
4574 	    mddev->pers->quiesce == NULL)
4575 		goto unlock;
4576 	old = mddev->suspend_hi;
4577 	mddev->suspend_hi = new;
4578 	if (new <= old)
4579 		/* Shrinking suspended region */
4580 		mddev->pers->quiesce(mddev, 2);
4581 	else {
4582 		/* Expanding suspended region - need to wait */
4583 		mddev->pers->quiesce(mddev, 1);
4584 		mddev->pers->quiesce(mddev, 0);
4585 	}
4586 	err = 0;
4587 unlock:
4588 	mddev_unlock(mddev);
4589 	return err ?: len;
4590 }
4591 static struct md_sysfs_entry md_suspend_hi =
4592 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4593 
4594 static ssize_t
4595 reshape_position_show(struct mddev *mddev, char *page)
4596 {
4597 	if (mddev->reshape_position != MaxSector)
4598 		return sprintf(page, "%llu\n",
4599 			       (unsigned long long)mddev->reshape_position);
4600 	strcpy(page, "none\n");
4601 	return 5;
4602 }
4603 
4604 static ssize_t
4605 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4606 {
4607 	struct md_rdev *rdev;
4608 	char *e;
4609 	int err;
4610 	unsigned long long new = simple_strtoull(buf, &e, 10);
4611 
4612 	if (buf == e || (*e && *e != '\n'))
4613 		return -EINVAL;
4614 	err = mddev_lock(mddev);
4615 	if (err)
4616 		return err;
4617 	err = -EBUSY;
4618 	if (mddev->pers)
4619 		goto unlock;
4620 	mddev->reshape_position = new;
4621 	mddev->delta_disks = 0;
4622 	mddev->reshape_backwards = 0;
4623 	mddev->new_level = mddev->level;
4624 	mddev->new_layout = mddev->layout;
4625 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4626 	rdev_for_each(rdev, mddev)
4627 		rdev->new_data_offset = rdev->data_offset;
4628 	err = 0;
4629 unlock:
4630 	mddev_unlock(mddev);
4631 	return err ?: len;
4632 }
4633 
4634 static struct md_sysfs_entry md_reshape_position =
4635 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4636        reshape_position_store);
4637 
4638 static ssize_t
4639 reshape_direction_show(struct mddev *mddev, char *page)
4640 {
4641 	return sprintf(page, "%s\n",
4642 		       mddev->reshape_backwards ? "backwards" : "forwards");
4643 }
4644 
4645 static ssize_t
4646 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4647 {
4648 	int backwards = 0;
4649 	int err;
4650 
4651 	if (cmd_match(buf, "forwards"))
4652 		backwards = 0;
4653 	else if (cmd_match(buf, "backwards"))
4654 		backwards = 1;
4655 	else
4656 		return -EINVAL;
4657 	if (mddev->reshape_backwards == backwards)
4658 		return len;
4659 
4660 	err = mddev_lock(mddev);
4661 	if (err)
4662 		return err;
4663 	/* check if we are allowed to change */
4664 	if (mddev->delta_disks)
4665 		err = -EBUSY;
4666 	else if (mddev->persistent &&
4667 	    mddev->major_version == 0)
4668 		err =  -EINVAL;
4669 	else
4670 		mddev->reshape_backwards = backwards;
4671 	mddev_unlock(mddev);
4672 	return err ?: len;
4673 }
4674 
4675 static struct md_sysfs_entry md_reshape_direction =
4676 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4677        reshape_direction_store);
4678 
4679 static ssize_t
4680 array_size_show(struct mddev *mddev, char *page)
4681 {
4682 	if (mddev->external_size)
4683 		return sprintf(page, "%llu\n",
4684 			       (unsigned long long)mddev->array_sectors/2);
4685 	else
4686 		return sprintf(page, "default\n");
4687 }
4688 
4689 static ssize_t
4690 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4691 {
4692 	sector_t sectors;
4693 	int err;
4694 
4695 	err = mddev_lock(mddev);
4696 	if (err)
4697 		return err;
4698 
4699 	if (strncmp(buf, "default", 7) == 0) {
4700 		if (mddev->pers)
4701 			sectors = mddev->pers->size(mddev, 0, 0);
4702 		else
4703 			sectors = mddev->array_sectors;
4704 
4705 		mddev->external_size = 0;
4706 	} else {
4707 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4708 			err = -EINVAL;
4709 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4710 			err = -E2BIG;
4711 		else
4712 			mddev->external_size = 1;
4713 	}
4714 
4715 	if (!err) {
4716 		mddev->array_sectors = sectors;
4717 		if (mddev->pers) {
4718 			set_capacity(mddev->gendisk, mddev->array_sectors);
4719 			revalidate_disk(mddev->gendisk);
4720 		}
4721 	}
4722 	mddev_unlock(mddev);
4723 	return err ?: len;
4724 }
4725 
4726 static struct md_sysfs_entry md_array_size =
4727 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4728        array_size_store);
4729 
4730 static struct attribute *md_default_attrs[] = {
4731 	&md_level.attr,
4732 	&md_layout.attr,
4733 	&md_raid_disks.attr,
4734 	&md_chunk_size.attr,
4735 	&md_size.attr,
4736 	&md_resync_start.attr,
4737 	&md_metadata.attr,
4738 	&md_new_device.attr,
4739 	&md_safe_delay.attr,
4740 	&md_array_state.attr,
4741 	&md_reshape_position.attr,
4742 	&md_reshape_direction.attr,
4743 	&md_array_size.attr,
4744 	&max_corr_read_errors.attr,
4745 	NULL,
4746 };
4747 
4748 static struct attribute *md_redundancy_attrs[] = {
4749 	&md_scan_mode.attr,
4750 	&md_last_scan_mode.attr,
4751 	&md_mismatches.attr,
4752 	&md_sync_min.attr,
4753 	&md_sync_max.attr,
4754 	&md_sync_speed.attr,
4755 	&md_sync_force_parallel.attr,
4756 	&md_sync_completed.attr,
4757 	&md_min_sync.attr,
4758 	&md_max_sync.attr,
4759 	&md_suspend_lo.attr,
4760 	&md_suspend_hi.attr,
4761 	&md_bitmap.attr,
4762 	&md_degraded.attr,
4763 	NULL,
4764 };
4765 static struct attribute_group md_redundancy_group = {
4766 	.name = NULL,
4767 	.attrs = md_redundancy_attrs,
4768 };
4769 
4770 static ssize_t
4771 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4772 {
4773 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4774 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4775 	ssize_t rv;
4776 
4777 	if (!entry->show)
4778 		return -EIO;
4779 	spin_lock(&all_mddevs_lock);
4780 	if (list_empty(&mddev->all_mddevs)) {
4781 		spin_unlock(&all_mddevs_lock);
4782 		return -EBUSY;
4783 	}
4784 	mddev_get(mddev);
4785 	spin_unlock(&all_mddevs_lock);
4786 
4787 	rv = entry->show(mddev, page);
4788 	mddev_put(mddev);
4789 	return rv;
4790 }
4791 
4792 static ssize_t
4793 md_attr_store(struct kobject *kobj, struct attribute *attr,
4794 	      const char *page, size_t length)
4795 {
4796 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4797 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4798 	ssize_t rv;
4799 
4800 	if (!entry->store)
4801 		return -EIO;
4802 	if (!capable(CAP_SYS_ADMIN))
4803 		return -EACCES;
4804 	spin_lock(&all_mddevs_lock);
4805 	if (list_empty(&mddev->all_mddevs)) {
4806 		spin_unlock(&all_mddevs_lock);
4807 		return -EBUSY;
4808 	}
4809 	mddev_get(mddev);
4810 	spin_unlock(&all_mddevs_lock);
4811 	rv = entry->store(mddev, page, length);
4812 	mddev_put(mddev);
4813 	return rv;
4814 }
4815 
4816 static void md_free(struct kobject *ko)
4817 {
4818 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4819 
4820 	if (mddev->sysfs_state)
4821 		sysfs_put(mddev->sysfs_state);
4822 
4823 	if (mddev->queue)
4824 		blk_cleanup_queue(mddev->queue);
4825 	if (mddev->gendisk) {
4826 		del_gendisk(mddev->gendisk);
4827 		put_disk(mddev->gendisk);
4828 	}
4829 
4830 	kfree(mddev);
4831 }
4832 
4833 static const struct sysfs_ops md_sysfs_ops = {
4834 	.show	= md_attr_show,
4835 	.store	= md_attr_store,
4836 };
4837 static struct kobj_type md_ktype = {
4838 	.release	= md_free,
4839 	.sysfs_ops	= &md_sysfs_ops,
4840 	.default_attrs	= md_default_attrs,
4841 };
4842 
4843 int mdp_major = 0;
4844 
4845 static void mddev_delayed_delete(struct work_struct *ws)
4846 {
4847 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4848 
4849 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4850 	kobject_del(&mddev->kobj);
4851 	kobject_put(&mddev->kobj);
4852 }
4853 
4854 static int md_alloc(dev_t dev, char *name)
4855 {
4856 	static DEFINE_MUTEX(disks_mutex);
4857 	struct mddev *mddev = mddev_find(dev);
4858 	struct gendisk *disk;
4859 	int partitioned;
4860 	int shift;
4861 	int unit;
4862 	int error;
4863 
4864 	if (!mddev)
4865 		return -ENODEV;
4866 
4867 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4868 	shift = partitioned ? MdpMinorShift : 0;
4869 	unit = MINOR(mddev->unit) >> shift;
4870 
4871 	/* wait for any previous instance of this device to be
4872 	 * completely removed (mddev_delayed_delete).
4873 	 */
4874 	flush_workqueue(md_misc_wq);
4875 
4876 	mutex_lock(&disks_mutex);
4877 	error = -EEXIST;
4878 	if (mddev->gendisk)
4879 		goto abort;
4880 
4881 	if (name) {
4882 		/* Need to ensure that 'name' is not a duplicate.
4883 		 */
4884 		struct mddev *mddev2;
4885 		spin_lock(&all_mddevs_lock);
4886 
4887 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4888 			if (mddev2->gendisk &&
4889 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4890 				spin_unlock(&all_mddevs_lock);
4891 				goto abort;
4892 			}
4893 		spin_unlock(&all_mddevs_lock);
4894 	}
4895 
4896 	error = -ENOMEM;
4897 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4898 	if (!mddev->queue)
4899 		goto abort;
4900 	mddev->queue->queuedata = mddev;
4901 
4902 	blk_queue_make_request(mddev->queue, md_make_request);
4903 	blk_set_stacking_limits(&mddev->queue->limits);
4904 
4905 	disk = alloc_disk(1 << shift);
4906 	if (!disk) {
4907 		blk_cleanup_queue(mddev->queue);
4908 		mddev->queue = NULL;
4909 		goto abort;
4910 	}
4911 	disk->major = MAJOR(mddev->unit);
4912 	disk->first_minor = unit << shift;
4913 	if (name)
4914 		strcpy(disk->disk_name, name);
4915 	else if (partitioned)
4916 		sprintf(disk->disk_name, "md_d%d", unit);
4917 	else
4918 		sprintf(disk->disk_name, "md%d", unit);
4919 	disk->fops = &md_fops;
4920 	disk->private_data = mddev;
4921 	disk->queue = mddev->queue;
4922 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4923 	/* Allow extended partitions.  This makes the
4924 	 * 'mdp' device redundant, but we can't really
4925 	 * remove it now.
4926 	 */
4927 	disk->flags |= GENHD_FL_EXT_DEVT;
4928 	mddev->gendisk = disk;
4929 	/* As soon as we call add_disk(), another thread could get
4930 	 * through to md_open, so make sure it doesn't get too far
4931 	 */
4932 	mutex_lock(&mddev->open_mutex);
4933 	add_disk(disk);
4934 
4935 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4936 				     &disk_to_dev(disk)->kobj, "%s", "md");
4937 	if (error) {
4938 		/* This isn't possible, but as kobject_init_and_add is marked
4939 		 * __must_check, we must do something with the result
4940 		 */
4941 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4942 		       disk->disk_name);
4943 		error = 0;
4944 	}
4945 	if (mddev->kobj.sd &&
4946 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4947 		printk(KERN_DEBUG "pointless warning\n");
4948 	mutex_unlock(&mddev->open_mutex);
4949  abort:
4950 	mutex_unlock(&disks_mutex);
4951 	if (!error && mddev->kobj.sd) {
4952 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4953 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4954 	}
4955 	mddev_put(mddev);
4956 	return error;
4957 }
4958 
4959 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4960 {
4961 	md_alloc(dev, NULL);
4962 	return NULL;
4963 }
4964 
4965 static int add_named_array(const char *val, struct kernel_param *kp)
4966 {
4967 	/* val must be "md_*" where * is not all digits.
4968 	 * We allocate an array with a large free minor number, and
4969 	 * set the name to val.  val must not already be an active name.
4970 	 */
4971 	int len = strlen(val);
4972 	char buf[DISK_NAME_LEN];
4973 
4974 	while (len && val[len-1] == '\n')
4975 		len--;
4976 	if (len >= DISK_NAME_LEN)
4977 		return -E2BIG;
4978 	strlcpy(buf, val, len+1);
4979 	if (strncmp(buf, "md_", 3) != 0)
4980 		return -EINVAL;
4981 	return md_alloc(0, buf);
4982 }
4983 
4984 static void md_safemode_timeout(unsigned long data)
4985 {
4986 	struct mddev *mddev = (struct mddev *) data;
4987 
4988 	if (!atomic_read(&mddev->writes_pending)) {
4989 		mddev->safemode = 1;
4990 		if (mddev->external)
4991 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4992 	}
4993 	md_wakeup_thread(mddev->thread);
4994 }
4995 
4996 static int start_dirty_degraded;
4997 
4998 int md_run(struct mddev *mddev)
4999 {
5000 	int err;
5001 	struct md_rdev *rdev;
5002 	struct md_personality *pers;
5003 
5004 	if (list_empty(&mddev->disks))
5005 		/* cannot run an array with no devices.. */
5006 		return -EINVAL;
5007 
5008 	if (mddev->pers)
5009 		return -EBUSY;
5010 	/* Cannot run until previous stop completes properly */
5011 	if (mddev->sysfs_active)
5012 		return -EBUSY;
5013 
5014 	/*
5015 	 * Analyze all RAID superblock(s)
5016 	 */
5017 	if (!mddev->raid_disks) {
5018 		if (!mddev->persistent)
5019 			return -EINVAL;
5020 		analyze_sbs(mddev);
5021 	}
5022 
5023 	if (mddev->level != LEVEL_NONE)
5024 		request_module("md-level-%d", mddev->level);
5025 	else if (mddev->clevel[0])
5026 		request_module("md-%s", mddev->clevel);
5027 
5028 	/*
5029 	 * Drop all container device buffers, from now on
5030 	 * the only valid external interface is through the md
5031 	 * device.
5032 	 */
5033 	rdev_for_each(rdev, mddev) {
5034 		if (test_bit(Faulty, &rdev->flags))
5035 			continue;
5036 		sync_blockdev(rdev->bdev);
5037 		invalidate_bdev(rdev->bdev);
5038 
5039 		/* perform some consistency tests on the device.
5040 		 * We don't want the data to overlap the metadata,
5041 		 * Internal Bitmap issues have been handled elsewhere.
5042 		 */
5043 		if (rdev->meta_bdev) {
5044 			/* Nothing to check */;
5045 		} else if (rdev->data_offset < rdev->sb_start) {
5046 			if (mddev->dev_sectors &&
5047 			    rdev->data_offset + mddev->dev_sectors
5048 			    > rdev->sb_start) {
5049 				printk("md: %s: data overlaps metadata\n",
5050 				       mdname(mddev));
5051 				return -EINVAL;
5052 			}
5053 		} else {
5054 			if (rdev->sb_start + rdev->sb_size/512
5055 			    > rdev->data_offset) {
5056 				printk("md: %s: metadata overlaps data\n",
5057 				       mdname(mddev));
5058 				return -EINVAL;
5059 			}
5060 		}
5061 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5062 	}
5063 
5064 	if (mddev->bio_set == NULL)
5065 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5066 
5067 	spin_lock(&pers_lock);
5068 	pers = find_pers(mddev->level, mddev->clevel);
5069 	if (!pers || !try_module_get(pers->owner)) {
5070 		spin_unlock(&pers_lock);
5071 		if (mddev->level != LEVEL_NONE)
5072 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5073 			       mddev->level);
5074 		else
5075 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5076 			       mddev->clevel);
5077 		return -EINVAL;
5078 	}
5079 	spin_unlock(&pers_lock);
5080 	if (mddev->level != pers->level) {
5081 		mddev->level = pers->level;
5082 		mddev->new_level = pers->level;
5083 	}
5084 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5085 
5086 	if (mddev->reshape_position != MaxSector &&
5087 	    pers->start_reshape == NULL) {
5088 		/* This personality cannot handle reshaping... */
5089 		module_put(pers->owner);
5090 		return -EINVAL;
5091 	}
5092 
5093 	if (pers->sync_request) {
5094 		/* Warn if this is a potentially silly
5095 		 * configuration.
5096 		 */
5097 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5098 		struct md_rdev *rdev2;
5099 		int warned = 0;
5100 
5101 		rdev_for_each(rdev, mddev)
5102 			rdev_for_each(rdev2, mddev) {
5103 				if (rdev < rdev2 &&
5104 				    rdev->bdev->bd_contains ==
5105 				    rdev2->bdev->bd_contains) {
5106 					printk(KERN_WARNING
5107 					       "%s: WARNING: %s appears to be"
5108 					       " on the same physical disk as"
5109 					       " %s.\n",
5110 					       mdname(mddev),
5111 					       bdevname(rdev->bdev,b),
5112 					       bdevname(rdev2->bdev,b2));
5113 					warned = 1;
5114 				}
5115 			}
5116 
5117 		if (warned)
5118 			printk(KERN_WARNING
5119 			       "True protection against single-disk"
5120 			       " failure might be compromised.\n");
5121 	}
5122 
5123 	mddev->recovery = 0;
5124 	/* may be over-ridden by personality */
5125 	mddev->resync_max_sectors = mddev->dev_sectors;
5126 
5127 	mddev->ok_start_degraded = start_dirty_degraded;
5128 
5129 	if (start_readonly && mddev->ro == 0)
5130 		mddev->ro = 2; /* read-only, but switch on first write */
5131 
5132 	err = pers->run(mddev);
5133 	if (err)
5134 		printk(KERN_ERR "md: pers->run() failed ...\n");
5135 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5136 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5137 			  " but 'external_size' not in effect?\n", __func__);
5138 		printk(KERN_ERR
5139 		       "md: invalid array_size %llu > default size %llu\n",
5140 		       (unsigned long long)mddev->array_sectors / 2,
5141 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5142 		err = -EINVAL;
5143 	}
5144 	if (err == 0 && pers->sync_request &&
5145 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5146 		struct bitmap *bitmap;
5147 
5148 		bitmap = bitmap_create(mddev, -1);
5149 		if (IS_ERR(bitmap)) {
5150 			err = PTR_ERR(bitmap);
5151 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5152 			       mdname(mddev), err);
5153 		} else
5154 			mddev->bitmap = bitmap;
5155 
5156 	}
5157 	if (err) {
5158 		mddev_detach(mddev);
5159 		if (mddev->private)
5160 			pers->free(mddev, mddev->private);
5161 		module_put(pers->owner);
5162 		bitmap_destroy(mddev);
5163 		return err;
5164 	}
5165 	if (mddev->queue) {
5166 		mddev->queue->backing_dev_info.congested_data = mddev;
5167 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5168 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5169 	}
5170 	if (pers->sync_request) {
5171 		if (mddev->kobj.sd &&
5172 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5173 			printk(KERN_WARNING
5174 			       "md: cannot register extra attributes for %s\n",
5175 			       mdname(mddev));
5176 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5177 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5178 		mddev->ro = 0;
5179 
5180 	atomic_set(&mddev->writes_pending,0);
5181 	atomic_set(&mddev->max_corr_read_errors,
5182 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5183 	mddev->safemode = 0;
5184 	mddev->safemode_timer.function = md_safemode_timeout;
5185 	mddev->safemode_timer.data = (unsigned long) mddev;
5186 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5187 	mddev->in_sync = 1;
5188 	smp_wmb();
5189 	spin_lock(&mddev->lock);
5190 	mddev->pers = pers;
5191 	mddev->ready = 1;
5192 	spin_unlock(&mddev->lock);
5193 	rdev_for_each(rdev, mddev)
5194 		if (rdev->raid_disk >= 0)
5195 			if (sysfs_link_rdev(mddev, rdev))
5196 				/* failure here is OK */;
5197 
5198 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5199 
5200 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5201 		md_update_sb(mddev, 0);
5202 
5203 	md_new_event(mddev);
5204 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5205 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5206 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5207 	return 0;
5208 }
5209 EXPORT_SYMBOL_GPL(md_run);
5210 
5211 static int do_md_run(struct mddev *mddev)
5212 {
5213 	int err;
5214 
5215 	err = md_run(mddev);
5216 	if (err)
5217 		goto out;
5218 	err = bitmap_load(mddev);
5219 	if (err) {
5220 		bitmap_destroy(mddev);
5221 		goto out;
5222 	}
5223 
5224 	md_wakeup_thread(mddev->thread);
5225 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5226 
5227 	set_capacity(mddev->gendisk, mddev->array_sectors);
5228 	revalidate_disk(mddev->gendisk);
5229 	mddev->changed = 1;
5230 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5231 out:
5232 	return err;
5233 }
5234 
5235 static int restart_array(struct mddev *mddev)
5236 {
5237 	struct gendisk *disk = mddev->gendisk;
5238 
5239 	/* Complain if it has no devices */
5240 	if (list_empty(&mddev->disks))
5241 		return -ENXIO;
5242 	if (!mddev->pers)
5243 		return -EINVAL;
5244 	if (!mddev->ro)
5245 		return -EBUSY;
5246 	mddev->safemode = 0;
5247 	mddev->ro = 0;
5248 	set_disk_ro(disk, 0);
5249 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5250 		mdname(mddev));
5251 	/* Kick recovery or resync if necessary */
5252 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5253 	md_wakeup_thread(mddev->thread);
5254 	md_wakeup_thread(mddev->sync_thread);
5255 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5256 	return 0;
5257 }
5258 
5259 static void md_clean(struct mddev *mddev)
5260 {
5261 	mddev->array_sectors = 0;
5262 	mddev->external_size = 0;
5263 	mddev->dev_sectors = 0;
5264 	mddev->raid_disks = 0;
5265 	mddev->recovery_cp = 0;
5266 	mddev->resync_min = 0;
5267 	mddev->resync_max = MaxSector;
5268 	mddev->reshape_position = MaxSector;
5269 	mddev->external = 0;
5270 	mddev->persistent = 0;
5271 	mddev->level = LEVEL_NONE;
5272 	mddev->clevel[0] = 0;
5273 	mddev->flags = 0;
5274 	mddev->ro = 0;
5275 	mddev->metadata_type[0] = 0;
5276 	mddev->chunk_sectors = 0;
5277 	mddev->ctime = mddev->utime = 0;
5278 	mddev->layout = 0;
5279 	mddev->max_disks = 0;
5280 	mddev->events = 0;
5281 	mddev->can_decrease_events = 0;
5282 	mddev->delta_disks = 0;
5283 	mddev->reshape_backwards = 0;
5284 	mddev->new_level = LEVEL_NONE;
5285 	mddev->new_layout = 0;
5286 	mddev->new_chunk_sectors = 0;
5287 	mddev->curr_resync = 0;
5288 	atomic64_set(&mddev->resync_mismatches, 0);
5289 	mddev->suspend_lo = mddev->suspend_hi = 0;
5290 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5291 	mddev->recovery = 0;
5292 	mddev->in_sync = 0;
5293 	mddev->changed = 0;
5294 	mddev->degraded = 0;
5295 	mddev->safemode = 0;
5296 	mddev->merge_check_needed = 0;
5297 	mddev->bitmap_info.offset = 0;
5298 	mddev->bitmap_info.default_offset = 0;
5299 	mddev->bitmap_info.default_space = 0;
5300 	mddev->bitmap_info.chunksize = 0;
5301 	mddev->bitmap_info.daemon_sleep = 0;
5302 	mddev->bitmap_info.max_write_behind = 0;
5303 }
5304 
5305 static void __md_stop_writes(struct mddev *mddev)
5306 {
5307 	if (mddev_is_clustered(mddev))
5308 		md_cluster_ops->metadata_update_start(mddev);
5309 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5310 	flush_workqueue(md_misc_wq);
5311 	if (mddev->sync_thread) {
5312 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5313 		md_reap_sync_thread(mddev);
5314 	}
5315 
5316 	del_timer_sync(&mddev->safemode_timer);
5317 
5318 	bitmap_flush(mddev);
5319 	md_super_wait(mddev);
5320 
5321 	if (mddev->ro == 0 &&
5322 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5323 		/* mark array as shutdown cleanly */
5324 		mddev->in_sync = 1;
5325 		md_update_sb(mddev, 1);
5326 	}
5327 	if (mddev_is_clustered(mddev))
5328 		md_cluster_ops->metadata_update_finish(mddev);
5329 }
5330 
5331 void md_stop_writes(struct mddev *mddev)
5332 {
5333 	mddev_lock_nointr(mddev);
5334 	__md_stop_writes(mddev);
5335 	mddev_unlock(mddev);
5336 }
5337 EXPORT_SYMBOL_GPL(md_stop_writes);
5338 
5339 static void mddev_detach(struct mddev *mddev)
5340 {
5341 	struct bitmap *bitmap = mddev->bitmap;
5342 	/* wait for behind writes to complete */
5343 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5344 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5345 		       mdname(mddev));
5346 		/* need to kick something here to make sure I/O goes? */
5347 		wait_event(bitmap->behind_wait,
5348 			   atomic_read(&bitmap->behind_writes) == 0);
5349 	}
5350 	if (mddev->pers && mddev->pers->quiesce) {
5351 		mddev->pers->quiesce(mddev, 1);
5352 		mddev->pers->quiesce(mddev, 0);
5353 	}
5354 	md_unregister_thread(&mddev->thread);
5355 	if (mddev->queue)
5356 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5357 }
5358 
5359 static void __md_stop(struct mddev *mddev)
5360 {
5361 	struct md_personality *pers = mddev->pers;
5362 	mddev_detach(mddev);
5363 	spin_lock(&mddev->lock);
5364 	mddev->ready = 0;
5365 	mddev->pers = NULL;
5366 	spin_unlock(&mddev->lock);
5367 	pers->free(mddev, mddev->private);
5368 	if (pers->sync_request && mddev->to_remove == NULL)
5369 		mddev->to_remove = &md_redundancy_group;
5370 	module_put(pers->owner);
5371 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372 }
5373 
5374 void md_stop(struct mddev *mddev)
5375 {
5376 	/* stop the array and free an attached data structures.
5377 	 * This is called from dm-raid
5378 	 */
5379 	__md_stop(mddev);
5380 	bitmap_destroy(mddev);
5381 	if (mddev->bio_set)
5382 		bioset_free(mddev->bio_set);
5383 }
5384 
5385 EXPORT_SYMBOL_GPL(md_stop);
5386 
5387 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5388 {
5389 	int err = 0;
5390 	int did_freeze = 0;
5391 
5392 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5393 		did_freeze = 1;
5394 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5395 		md_wakeup_thread(mddev->thread);
5396 	}
5397 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5398 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5399 	if (mddev->sync_thread)
5400 		/* Thread might be blocked waiting for metadata update
5401 		 * which will now never happen */
5402 		wake_up_process(mddev->sync_thread->tsk);
5403 
5404 	mddev_unlock(mddev);
5405 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5406 					  &mddev->recovery));
5407 	mddev_lock_nointr(mddev);
5408 
5409 	mutex_lock(&mddev->open_mutex);
5410 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5411 	    mddev->sync_thread ||
5412 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5413 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5414 		printk("md: %s still in use.\n",mdname(mddev));
5415 		if (did_freeze) {
5416 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5417 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5418 			md_wakeup_thread(mddev->thread);
5419 		}
5420 		err = -EBUSY;
5421 		goto out;
5422 	}
5423 	if (mddev->pers) {
5424 		__md_stop_writes(mddev);
5425 
5426 		err  = -ENXIO;
5427 		if (mddev->ro==1)
5428 			goto out;
5429 		mddev->ro = 1;
5430 		set_disk_ro(mddev->gendisk, 1);
5431 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5432 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5433 		md_wakeup_thread(mddev->thread);
5434 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5435 		err = 0;
5436 	}
5437 out:
5438 	mutex_unlock(&mddev->open_mutex);
5439 	return err;
5440 }
5441 
5442 /* mode:
5443  *   0 - completely stop and dis-assemble array
5444  *   2 - stop but do not disassemble array
5445  */
5446 static int do_md_stop(struct mddev *mddev, int mode,
5447 		      struct block_device *bdev)
5448 {
5449 	struct gendisk *disk = mddev->gendisk;
5450 	struct md_rdev *rdev;
5451 	int did_freeze = 0;
5452 
5453 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5454 		did_freeze = 1;
5455 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5456 		md_wakeup_thread(mddev->thread);
5457 	}
5458 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5459 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5460 	if (mddev->sync_thread)
5461 		/* Thread might be blocked waiting for metadata update
5462 		 * which will now never happen */
5463 		wake_up_process(mddev->sync_thread->tsk);
5464 
5465 	mddev_unlock(mddev);
5466 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5467 				 !test_bit(MD_RECOVERY_RUNNING,
5468 					   &mddev->recovery)));
5469 	mddev_lock_nointr(mddev);
5470 
5471 	mutex_lock(&mddev->open_mutex);
5472 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5473 	    mddev->sysfs_active ||
5474 	    mddev->sync_thread ||
5475 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5476 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5477 		printk("md: %s still in use.\n",mdname(mddev));
5478 		mutex_unlock(&mddev->open_mutex);
5479 		if (did_freeze) {
5480 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5481 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5482 			md_wakeup_thread(mddev->thread);
5483 		}
5484 		return -EBUSY;
5485 	}
5486 	if (mddev->pers) {
5487 		if (mddev->ro)
5488 			set_disk_ro(disk, 0);
5489 
5490 		__md_stop_writes(mddev);
5491 		__md_stop(mddev);
5492 		mddev->queue->merge_bvec_fn = NULL;
5493 		mddev->queue->backing_dev_info.congested_fn = NULL;
5494 
5495 		/* tell userspace to handle 'inactive' */
5496 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5497 
5498 		rdev_for_each(rdev, mddev)
5499 			if (rdev->raid_disk >= 0)
5500 				sysfs_unlink_rdev(mddev, rdev);
5501 
5502 		set_capacity(disk, 0);
5503 		mutex_unlock(&mddev->open_mutex);
5504 		mddev->changed = 1;
5505 		revalidate_disk(disk);
5506 
5507 		if (mddev->ro)
5508 			mddev->ro = 0;
5509 	} else
5510 		mutex_unlock(&mddev->open_mutex);
5511 	/*
5512 	 * Free resources if final stop
5513 	 */
5514 	if (mode == 0) {
5515 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5516 
5517 		bitmap_destroy(mddev);
5518 		if (mddev->bitmap_info.file) {
5519 			struct file *f = mddev->bitmap_info.file;
5520 			spin_lock(&mddev->lock);
5521 			mddev->bitmap_info.file = NULL;
5522 			spin_unlock(&mddev->lock);
5523 			fput(f);
5524 		}
5525 		mddev->bitmap_info.offset = 0;
5526 
5527 		export_array(mddev);
5528 
5529 		md_clean(mddev);
5530 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5531 		if (mddev->hold_active == UNTIL_STOP)
5532 			mddev->hold_active = 0;
5533 	}
5534 	blk_integrity_unregister(disk);
5535 	md_new_event(mddev);
5536 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5537 	return 0;
5538 }
5539 
5540 #ifndef MODULE
5541 static void autorun_array(struct mddev *mddev)
5542 {
5543 	struct md_rdev *rdev;
5544 	int err;
5545 
5546 	if (list_empty(&mddev->disks))
5547 		return;
5548 
5549 	printk(KERN_INFO "md: running: ");
5550 
5551 	rdev_for_each(rdev, mddev) {
5552 		char b[BDEVNAME_SIZE];
5553 		printk("<%s>", bdevname(rdev->bdev,b));
5554 	}
5555 	printk("\n");
5556 
5557 	err = do_md_run(mddev);
5558 	if (err) {
5559 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5560 		do_md_stop(mddev, 0, NULL);
5561 	}
5562 }
5563 
5564 /*
5565  * lets try to run arrays based on all disks that have arrived
5566  * until now. (those are in pending_raid_disks)
5567  *
5568  * the method: pick the first pending disk, collect all disks with
5569  * the same UUID, remove all from the pending list and put them into
5570  * the 'same_array' list. Then order this list based on superblock
5571  * update time (freshest comes first), kick out 'old' disks and
5572  * compare superblocks. If everything's fine then run it.
5573  *
5574  * If "unit" is allocated, then bump its reference count
5575  */
5576 static void autorun_devices(int part)
5577 {
5578 	struct md_rdev *rdev0, *rdev, *tmp;
5579 	struct mddev *mddev;
5580 	char b[BDEVNAME_SIZE];
5581 
5582 	printk(KERN_INFO "md: autorun ...\n");
5583 	while (!list_empty(&pending_raid_disks)) {
5584 		int unit;
5585 		dev_t dev;
5586 		LIST_HEAD(candidates);
5587 		rdev0 = list_entry(pending_raid_disks.next,
5588 					 struct md_rdev, same_set);
5589 
5590 		printk(KERN_INFO "md: considering %s ...\n",
5591 			bdevname(rdev0->bdev,b));
5592 		INIT_LIST_HEAD(&candidates);
5593 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5594 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5595 				printk(KERN_INFO "md:  adding %s ...\n",
5596 					bdevname(rdev->bdev,b));
5597 				list_move(&rdev->same_set, &candidates);
5598 			}
5599 		/*
5600 		 * now we have a set of devices, with all of them having
5601 		 * mostly sane superblocks. It's time to allocate the
5602 		 * mddev.
5603 		 */
5604 		if (part) {
5605 			dev = MKDEV(mdp_major,
5606 				    rdev0->preferred_minor << MdpMinorShift);
5607 			unit = MINOR(dev) >> MdpMinorShift;
5608 		} else {
5609 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5610 			unit = MINOR(dev);
5611 		}
5612 		if (rdev0->preferred_minor != unit) {
5613 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5614 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5615 			break;
5616 		}
5617 
5618 		md_probe(dev, NULL, NULL);
5619 		mddev = mddev_find(dev);
5620 		if (!mddev || !mddev->gendisk) {
5621 			if (mddev)
5622 				mddev_put(mddev);
5623 			printk(KERN_ERR
5624 				"md: cannot allocate memory for md drive.\n");
5625 			break;
5626 		}
5627 		if (mddev_lock(mddev))
5628 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5629 			       mdname(mddev));
5630 		else if (mddev->raid_disks || mddev->major_version
5631 			 || !list_empty(&mddev->disks)) {
5632 			printk(KERN_WARNING
5633 				"md: %s already running, cannot run %s\n",
5634 				mdname(mddev), bdevname(rdev0->bdev,b));
5635 			mddev_unlock(mddev);
5636 		} else {
5637 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5638 			mddev->persistent = 1;
5639 			rdev_for_each_list(rdev, tmp, &candidates) {
5640 				list_del_init(&rdev->same_set);
5641 				if (bind_rdev_to_array(rdev, mddev))
5642 					export_rdev(rdev);
5643 			}
5644 			autorun_array(mddev);
5645 			mddev_unlock(mddev);
5646 		}
5647 		/* on success, candidates will be empty, on error
5648 		 * it won't...
5649 		 */
5650 		rdev_for_each_list(rdev, tmp, &candidates) {
5651 			list_del_init(&rdev->same_set);
5652 			export_rdev(rdev);
5653 		}
5654 		mddev_put(mddev);
5655 	}
5656 	printk(KERN_INFO "md: ... autorun DONE.\n");
5657 }
5658 #endif /* !MODULE */
5659 
5660 static int get_version(void __user *arg)
5661 {
5662 	mdu_version_t ver;
5663 
5664 	ver.major = MD_MAJOR_VERSION;
5665 	ver.minor = MD_MINOR_VERSION;
5666 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5667 
5668 	if (copy_to_user(arg, &ver, sizeof(ver)))
5669 		return -EFAULT;
5670 
5671 	return 0;
5672 }
5673 
5674 static int get_array_info(struct mddev *mddev, void __user *arg)
5675 {
5676 	mdu_array_info_t info;
5677 	int nr,working,insync,failed,spare;
5678 	struct md_rdev *rdev;
5679 
5680 	nr = working = insync = failed = spare = 0;
5681 	rcu_read_lock();
5682 	rdev_for_each_rcu(rdev, mddev) {
5683 		nr++;
5684 		if (test_bit(Faulty, &rdev->flags))
5685 			failed++;
5686 		else {
5687 			working++;
5688 			if (test_bit(In_sync, &rdev->flags))
5689 				insync++;
5690 			else
5691 				spare++;
5692 		}
5693 	}
5694 	rcu_read_unlock();
5695 
5696 	info.major_version = mddev->major_version;
5697 	info.minor_version = mddev->minor_version;
5698 	info.patch_version = MD_PATCHLEVEL_VERSION;
5699 	info.ctime         = mddev->ctime;
5700 	info.level         = mddev->level;
5701 	info.size          = mddev->dev_sectors / 2;
5702 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5703 		info.size = -1;
5704 	info.nr_disks      = nr;
5705 	info.raid_disks    = mddev->raid_disks;
5706 	info.md_minor      = mddev->md_minor;
5707 	info.not_persistent= !mddev->persistent;
5708 
5709 	info.utime         = mddev->utime;
5710 	info.state         = 0;
5711 	if (mddev->in_sync)
5712 		info.state = (1<<MD_SB_CLEAN);
5713 	if (mddev->bitmap && mddev->bitmap_info.offset)
5714 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5715 	if (mddev_is_clustered(mddev))
5716 		info.state |= (1<<MD_SB_CLUSTERED);
5717 	info.active_disks  = insync;
5718 	info.working_disks = working;
5719 	info.failed_disks  = failed;
5720 	info.spare_disks   = spare;
5721 
5722 	info.layout        = mddev->layout;
5723 	info.chunk_size    = mddev->chunk_sectors << 9;
5724 
5725 	if (copy_to_user(arg, &info, sizeof(info)))
5726 		return -EFAULT;
5727 
5728 	return 0;
5729 }
5730 
5731 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5732 {
5733 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5734 	char *ptr;
5735 	int err;
5736 
5737 	file = kmalloc(sizeof(*file), GFP_NOIO);
5738 	if (!file)
5739 		return -ENOMEM;
5740 
5741 	err = 0;
5742 	spin_lock(&mddev->lock);
5743 	/* bitmap disabled, zero the first byte and copy out */
5744 	if (!mddev->bitmap_info.file)
5745 		file->pathname[0] = '\0';
5746 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5747 			       file->pathname, sizeof(file->pathname))),
5748 		 IS_ERR(ptr))
5749 		err = PTR_ERR(ptr);
5750 	else
5751 		memmove(file->pathname, ptr,
5752 			sizeof(file->pathname)-(ptr-file->pathname));
5753 	spin_unlock(&mddev->lock);
5754 
5755 	if (err == 0 &&
5756 	    copy_to_user(arg, file, sizeof(*file)))
5757 		err = -EFAULT;
5758 
5759 	kfree(file);
5760 	return err;
5761 }
5762 
5763 static int get_disk_info(struct mddev *mddev, void __user * arg)
5764 {
5765 	mdu_disk_info_t info;
5766 	struct md_rdev *rdev;
5767 
5768 	if (copy_from_user(&info, arg, sizeof(info)))
5769 		return -EFAULT;
5770 
5771 	rcu_read_lock();
5772 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5773 	if (rdev) {
5774 		info.major = MAJOR(rdev->bdev->bd_dev);
5775 		info.minor = MINOR(rdev->bdev->bd_dev);
5776 		info.raid_disk = rdev->raid_disk;
5777 		info.state = 0;
5778 		if (test_bit(Faulty, &rdev->flags))
5779 			info.state |= (1<<MD_DISK_FAULTY);
5780 		else if (test_bit(In_sync, &rdev->flags)) {
5781 			info.state |= (1<<MD_DISK_ACTIVE);
5782 			info.state |= (1<<MD_DISK_SYNC);
5783 		}
5784 		if (test_bit(WriteMostly, &rdev->flags))
5785 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5786 	} else {
5787 		info.major = info.minor = 0;
5788 		info.raid_disk = -1;
5789 		info.state = (1<<MD_DISK_REMOVED);
5790 	}
5791 	rcu_read_unlock();
5792 
5793 	if (copy_to_user(arg, &info, sizeof(info)))
5794 		return -EFAULT;
5795 
5796 	return 0;
5797 }
5798 
5799 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5800 {
5801 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5802 	struct md_rdev *rdev;
5803 	dev_t dev = MKDEV(info->major,info->minor);
5804 
5805 	if (mddev_is_clustered(mddev) &&
5806 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5807 		pr_err("%s: Cannot add to clustered mddev.\n",
5808 			       mdname(mddev));
5809 		return -EINVAL;
5810 	}
5811 
5812 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5813 		return -EOVERFLOW;
5814 
5815 	if (!mddev->raid_disks) {
5816 		int err;
5817 		/* expecting a device which has a superblock */
5818 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5819 		if (IS_ERR(rdev)) {
5820 			printk(KERN_WARNING
5821 				"md: md_import_device returned %ld\n",
5822 				PTR_ERR(rdev));
5823 			return PTR_ERR(rdev);
5824 		}
5825 		if (!list_empty(&mddev->disks)) {
5826 			struct md_rdev *rdev0
5827 				= list_entry(mddev->disks.next,
5828 					     struct md_rdev, same_set);
5829 			err = super_types[mddev->major_version]
5830 				.load_super(rdev, rdev0, mddev->minor_version);
5831 			if (err < 0) {
5832 				printk(KERN_WARNING
5833 					"md: %s has different UUID to %s\n",
5834 					bdevname(rdev->bdev,b),
5835 					bdevname(rdev0->bdev,b2));
5836 				export_rdev(rdev);
5837 				return -EINVAL;
5838 			}
5839 		}
5840 		err = bind_rdev_to_array(rdev, mddev);
5841 		if (err)
5842 			export_rdev(rdev);
5843 		return err;
5844 	}
5845 
5846 	/*
5847 	 * add_new_disk can be used once the array is assembled
5848 	 * to add "hot spares".  They must already have a superblock
5849 	 * written
5850 	 */
5851 	if (mddev->pers) {
5852 		int err;
5853 		if (!mddev->pers->hot_add_disk) {
5854 			printk(KERN_WARNING
5855 				"%s: personality does not support diskops!\n",
5856 			       mdname(mddev));
5857 			return -EINVAL;
5858 		}
5859 		if (mddev->persistent)
5860 			rdev = md_import_device(dev, mddev->major_version,
5861 						mddev->minor_version);
5862 		else
5863 			rdev = md_import_device(dev, -1, -1);
5864 		if (IS_ERR(rdev)) {
5865 			printk(KERN_WARNING
5866 				"md: md_import_device returned %ld\n",
5867 				PTR_ERR(rdev));
5868 			return PTR_ERR(rdev);
5869 		}
5870 		/* set saved_raid_disk if appropriate */
5871 		if (!mddev->persistent) {
5872 			if (info->state & (1<<MD_DISK_SYNC)  &&
5873 			    info->raid_disk < mddev->raid_disks) {
5874 				rdev->raid_disk = info->raid_disk;
5875 				set_bit(In_sync, &rdev->flags);
5876 				clear_bit(Bitmap_sync, &rdev->flags);
5877 			} else
5878 				rdev->raid_disk = -1;
5879 			rdev->saved_raid_disk = rdev->raid_disk;
5880 		} else
5881 			super_types[mddev->major_version].
5882 				validate_super(mddev, rdev);
5883 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5884 		     rdev->raid_disk != info->raid_disk) {
5885 			/* This was a hot-add request, but events doesn't
5886 			 * match, so reject it.
5887 			 */
5888 			export_rdev(rdev);
5889 			return -EINVAL;
5890 		}
5891 
5892 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5893 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5894 			set_bit(WriteMostly, &rdev->flags);
5895 		else
5896 			clear_bit(WriteMostly, &rdev->flags);
5897 
5898 		/*
5899 		 * check whether the device shows up in other nodes
5900 		 */
5901 		if (mddev_is_clustered(mddev)) {
5902 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5903 				/* Through --cluster-confirm */
5904 				set_bit(Candidate, &rdev->flags);
5905 				err = md_cluster_ops->new_disk_ack(mddev, true);
5906 				if (err) {
5907 					export_rdev(rdev);
5908 					return err;
5909 				}
5910 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5911 				/* --add initiated by this node */
5912 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5913 				if (err) {
5914 					md_cluster_ops->add_new_disk_finish(mddev);
5915 					export_rdev(rdev);
5916 					return err;
5917 				}
5918 			}
5919 		}
5920 
5921 		rdev->raid_disk = -1;
5922 		err = bind_rdev_to_array(rdev, mddev);
5923 		if (err)
5924 			export_rdev(rdev);
5925 		else
5926 			err = add_bound_rdev(rdev);
5927 		if (mddev_is_clustered(mddev) &&
5928 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5929 			md_cluster_ops->add_new_disk_finish(mddev);
5930 		return err;
5931 	}
5932 
5933 	/* otherwise, add_new_disk is only allowed
5934 	 * for major_version==0 superblocks
5935 	 */
5936 	if (mddev->major_version != 0) {
5937 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5938 		       mdname(mddev));
5939 		return -EINVAL;
5940 	}
5941 
5942 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5943 		int err;
5944 		rdev = md_import_device(dev, -1, 0);
5945 		if (IS_ERR(rdev)) {
5946 			printk(KERN_WARNING
5947 				"md: error, md_import_device() returned %ld\n",
5948 				PTR_ERR(rdev));
5949 			return PTR_ERR(rdev);
5950 		}
5951 		rdev->desc_nr = info->number;
5952 		if (info->raid_disk < mddev->raid_disks)
5953 			rdev->raid_disk = info->raid_disk;
5954 		else
5955 			rdev->raid_disk = -1;
5956 
5957 		if (rdev->raid_disk < mddev->raid_disks)
5958 			if (info->state & (1<<MD_DISK_SYNC))
5959 				set_bit(In_sync, &rdev->flags);
5960 
5961 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5962 			set_bit(WriteMostly, &rdev->flags);
5963 
5964 		if (!mddev->persistent) {
5965 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5966 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5967 		} else
5968 			rdev->sb_start = calc_dev_sboffset(rdev);
5969 		rdev->sectors = rdev->sb_start;
5970 
5971 		err = bind_rdev_to_array(rdev, mddev);
5972 		if (err) {
5973 			export_rdev(rdev);
5974 			return err;
5975 		}
5976 	}
5977 
5978 	return 0;
5979 }
5980 
5981 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5982 {
5983 	char b[BDEVNAME_SIZE];
5984 	struct md_rdev *rdev;
5985 
5986 	rdev = find_rdev(mddev, dev);
5987 	if (!rdev)
5988 		return -ENXIO;
5989 
5990 	if (mddev_is_clustered(mddev))
5991 		md_cluster_ops->metadata_update_start(mddev);
5992 
5993 	clear_bit(Blocked, &rdev->flags);
5994 	remove_and_add_spares(mddev, rdev);
5995 
5996 	if (rdev->raid_disk >= 0)
5997 		goto busy;
5998 
5999 	if (mddev_is_clustered(mddev))
6000 		md_cluster_ops->remove_disk(mddev, rdev);
6001 
6002 	md_kick_rdev_from_array(rdev);
6003 	md_update_sb(mddev, 1);
6004 	md_new_event(mddev);
6005 
6006 	if (mddev_is_clustered(mddev))
6007 		md_cluster_ops->metadata_update_finish(mddev);
6008 
6009 	return 0;
6010 busy:
6011 	if (mddev_is_clustered(mddev))
6012 		md_cluster_ops->metadata_update_cancel(mddev);
6013 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6014 		bdevname(rdev->bdev,b), mdname(mddev));
6015 	return -EBUSY;
6016 }
6017 
6018 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6019 {
6020 	char b[BDEVNAME_SIZE];
6021 	int err;
6022 	struct md_rdev *rdev;
6023 
6024 	if (!mddev->pers)
6025 		return -ENODEV;
6026 
6027 	if (mddev->major_version != 0) {
6028 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6029 			" version-0 superblocks.\n",
6030 			mdname(mddev));
6031 		return -EINVAL;
6032 	}
6033 	if (!mddev->pers->hot_add_disk) {
6034 		printk(KERN_WARNING
6035 			"%s: personality does not support diskops!\n",
6036 			mdname(mddev));
6037 		return -EINVAL;
6038 	}
6039 
6040 	rdev = md_import_device(dev, -1, 0);
6041 	if (IS_ERR(rdev)) {
6042 		printk(KERN_WARNING
6043 			"md: error, md_import_device() returned %ld\n",
6044 			PTR_ERR(rdev));
6045 		return -EINVAL;
6046 	}
6047 
6048 	if (mddev->persistent)
6049 		rdev->sb_start = calc_dev_sboffset(rdev);
6050 	else
6051 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6052 
6053 	rdev->sectors = rdev->sb_start;
6054 
6055 	if (test_bit(Faulty, &rdev->flags)) {
6056 		printk(KERN_WARNING
6057 			"md: can not hot-add faulty %s disk to %s!\n",
6058 			bdevname(rdev->bdev,b), mdname(mddev));
6059 		err = -EINVAL;
6060 		goto abort_export;
6061 	}
6062 
6063 	if (mddev_is_clustered(mddev))
6064 		md_cluster_ops->metadata_update_start(mddev);
6065 	clear_bit(In_sync, &rdev->flags);
6066 	rdev->desc_nr = -1;
6067 	rdev->saved_raid_disk = -1;
6068 	err = bind_rdev_to_array(rdev, mddev);
6069 	if (err)
6070 		goto abort_clustered;
6071 
6072 	/*
6073 	 * The rest should better be atomic, we can have disk failures
6074 	 * noticed in interrupt contexts ...
6075 	 */
6076 
6077 	rdev->raid_disk = -1;
6078 
6079 	md_update_sb(mddev, 1);
6080 
6081 	if (mddev_is_clustered(mddev))
6082 		md_cluster_ops->metadata_update_finish(mddev);
6083 	/*
6084 	 * Kick recovery, maybe this spare has to be added to the
6085 	 * array immediately.
6086 	 */
6087 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6088 	md_wakeup_thread(mddev->thread);
6089 	md_new_event(mddev);
6090 	return 0;
6091 
6092 abort_clustered:
6093 	if (mddev_is_clustered(mddev))
6094 		md_cluster_ops->metadata_update_cancel(mddev);
6095 abort_export:
6096 	export_rdev(rdev);
6097 	return err;
6098 }
6099 
6100 static int set_bitmap_file(struct mddev *mddev, int fd)
6101 {
6102 	int err = 0;
6103 
6104 	if (mddev->pers) {
6105 		if (!mddev->pers->quiesce || !mddev->thread)
6106 			return -EBUSY;
6107 		if (mddev->recovery || mddev->sync_thread)
6108 			return -EBUSY;
6109 		/* we should be able to change the bitmap.. */
6110 	}
6111 
6112 	if (fd >= 0) {
6113 		struct inode *inode;
6114 		struct file *f;
6115 
6116 		if (mddev->bitmap || mddev->bitmap_info.file)
6117 			return -EEXIST; /* cannot add when bitmap is present */
6118 		f = fget(fd);
6119 
6120 		if (f == NULL) {
6121 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6122 			       mdname(mddev));
6123 			return -EBADF;
6124 		}
6125 
6126 		inode = f->f_mapping->host;
6127 		if (!S_ISREG(inode->i_mode)) {
6128 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6129 			       mdname(mddev));
6130 			err = -EBADF;
6131 		} else if (!(f->f_mode & FMODE_WRITE)) {
6132 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6133 			       mdname(mddev));
6134 			err = -EBADF;
6135 		} else if (atomic_read(&inode->i_writecount) != 1) {
6136 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6137 			       mdname(mddev));
6138 			err = -EBUSY;
6139 		}
6140 		if (err) {
6141 			fput(f);
6142 			return err;
6143 		}
6144 		mddev->bitmap_info.file = f;
6145 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6146 	} else if (mddev->bitmap == NULL)
6147 		return -ENOENT; /* cannot remove what isn't there */
6148 	err = 0;
6149 	if (mddev->pers) {
6150 		mddev->pers->quiesce(mddev, 1);
6151 		if (fd >= 0) {
6152 			struct bitmap *bitmap;
6153 
6154 			bitmap = bitmap_create(mddev, -1);
6155 			if (!IS_ERR(bitmap)) {
6156 				mddev->bitmap = bitmap;
6157 				err = bitmap_load(mddev);
6158 			} else
6159 				err = PTR_ERR(bitmap);
6160 		}
6161 		if (fd < 0 || err) {
6162 			bitmap_destroy(mddev);
6163 			fd = -1; /* make sure to put the file */
6164 		}
6165 		mddev->pers->quiesce(mddev, 0);
6166 	}
6167 	if (fd < 0) {
6168 		struct file *f = mddev->bitmap_info.file;
6169 		if (f) {
6170 			spin_lock(&mddev->lock);
6171 			mddev->bitmap_info.file = NULL;
6172 			spin_unlock(&mddev->lock);
6173 			fput(f);
6174 		}
6175 	}
6176 
6177 	return err;
6178 }
6179 
6180 /*
6181  * set_array_info is used two different ways
6182  * The original usage is when creating a new array.
6183  * In this usage, raid_disks is > 0 and it together with
6184  *  level, size, not_persistent,layout,chunksize determine the
6185  *  shape of the array.
6186  *  This will always create an array with a type-0.90.0 superblock.
6187  * The newer usage is when assembling an array.
6188  *  In this case raid_disks will be 0, and the major_version field is
6189  *  use to determine which style super-blocks are to be found on the devices.
6190  *  The minor and patch _version numbers are also kept incase the
6191  *  super_block handler wishes to interpret them.
6192  */
6193 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6194 {
6195 
6196 	if (info->raid_disks == 0) {
6197 		/* just setting version number for superblock loading */
6198 		if (info->major_version < 0 ||
6199 		    info->major_version >= ARRAY_SIZE(super_types) ||
6200 		    super_types[info->major_version].name == NULL) {
6201 			/* maybe try to auto-load a module? */
6202 			printk(KERN_INFO
6203 				"md: superblock version %d not known\n",
6204 				info->major_version);
6205 			return -EINVAL;
6206 		}
6207 		mddev->major_version = info->major_version;
6208 		mddev->minor_version = info->minor_version;
6209 		mddev->patch_version = info->patch_version;
6210 		mddev->persistent = !info->not_persistent;
6211 		/* ensure mddev_put doesn't delete this now that there
6212 		 * is some minimal configuration.
6213 		 */
6214 		mddev->ctime         = get_seconds();
6215 		return 0;
6216 	}
6217 	mddev->major_version = MD_MAJOR_VERSION;
6218 	mddev->minor_version = MD_MINOR_VERSION;
6219 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6220 	mddev->ctime         = get_seconds();
6221 
6222 	mddev->level         = info->level;
6223 	mddev->clevel[0]     = 0;
6224 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6225 	mddev->raid_disks    = info->raid_disks;
6226 	/* don't set md_minor, it is determined by which /dev/md* was
6227 	 * openned
6228 	 */
6229 	if (info->state & (1<<MD_SB_CLEAN))
6230 		mddev->recovery_cp = MaxSector;
6231 	else
6232 		mddev->recovery_cp = 0;
6233 	mddev->persistent    = ! info->not_persistent;
6234 	mddev->external	     = 0;
6235 
6236 	mddev->layout        = info->layout;
6237 	mddev->chunk_sectors = info->chunk_size >> 9;
6238 
6239 	mddev->max_disks     = MD_SB_DISKS;
6240 
6241 	if (mddev->persistent)
6242 		mddev->flags         = 0;
6243 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6244 
6245 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6246 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6247 	mddev->bitmap_info.offset = 0;
6248 
6249 	mddev->reshape_position = MaxSector;
6250 
6251 	/*
6252 	 * Generate a 128 bit UUID
6253 	 */
6254 	get_random_bytes(mddev->uuid, 16);
6255 
6256 	mddev->new_level = mddev->level;
6257 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6258 	mddev->new_layout = mddev->layout;
6259 	mddev->delta_disks = 0;
6260 	mddev->reshape_backwards = 0;
6261 
6262 	return 0;
6263 }
6264 
6265 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6266 {
6267 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6268 
6269 	if (mddev->external_size)
6270 		return;
6271 
6272 	mddev->array_sectors = array_sectors;
6273 }
6274 EXPORT_SYMBOL(md_set_array_sectors);
6275 
6276 static int update_size(struct mddev *mddev, sector_t num_sectors)
6277 {
6278 	struct md_rdev *rdev;
6279 	int rv;
6280 	int fit = (num_sectors == 0);
6281 
6282 	if (mddev->pers->resize == NULL)
6283 		return -EINVAL;
6284 	/* The "num_sectors" is the number of sectors of each device that
6285 	 * is used.  This can only make sense for arrays with redundancy.
6286 	 * linear and raid0 always use whatever space is available. We can only
6287 	 * consider changing this number if no resync or reconstruction is
6288 	 * happening, and if the new size is acceptable. It must fit before the
6289 	 * sb_start or, if that is <data_offset, it must fit before the size
6290 	 * of each device.  If num_sectors is zero, we find the largest size
6291 	 * that fits.
6292 	 */
6293 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6294 	    mddev->sync_thread)
6295 		return -EBUSY;
6296 	if (mddev->ro)
6297 		return -EROFS;
6298 
6299 	rdev_for_each(rdev, mddev) {
6300 		sector_t avail = rdev->sectors;
6301 
6302 		if (fit && (num_sectors == 0 || num_sectors > avail))
6303 			num_sectors = avail;
6304 		if (avail < num_sectors)
6305 			return -ENOSPC;
6306 	}
6307 	rv = mddev->pers->resize(mddev, num_sectors);
6308 	if (!rv)
6309 		revalidate_disk(mddev->gendisk);
6310 	return rv;
6311 }
6312 
6313 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6314 {
6315 	int rv;
6316 	struct md_rdev *rdev;
6317 	/* change the number of raid disks */
6318 	if (mddev->pers->check_reshape == NULL)
6319 		return -EINVAL;
6320 	if (mddev->ro)
6321 		return -EROFS;
6322 	if (raid_disks <= 0 ||
6323 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6324 		return -EINVAL;
6325 	if (mddev->sync_thread ||
6326 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6327 	    mddev->reshape_position != MaxSector)
6328 		return -EBUSY;
6329 
6330 	rdev_for_each(rdev, mddev) {
6331 		if (mddev->raid_disks < raid_disks &&
6332 		    rdev->data_offset < rdev->new_data_offset)
6333 			return -EINVAL;
6334 		if (mddev->raid_disks > raid_disks &&
6335 		    rdev->data_offset > rdev->new_data_offset)
6336 			return -EINVAL;
6337 	}
6338 
6339 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6340 	if (mddev->delta_disks < 0)
6341 		mddev->reshape_backwards = 1;
6342 	else if (mddev->delta_disks > 0)
6343 		mddev->reshape_backwards = 0;
6344 
6345 	rv = mddev->pers->check_reshape(mddev);
6346 	if (rv < 0) {
6347 		mddev->delta_disks = 0;
6348 		mddev->reshape_backwards = 0;
6349 	}
6350 	return rv;
6351 }
6352 
6353 /*
6354  * update_array_info is used to change the configuration of an
6355  * on-line array.
6356  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6357  * fields in the info are checked against the array.
6358  * Any differences that cannot be handled will cause an error.
6359  * Normally, only one change can be managed at a time.
6360  */
6361 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6362 {
6363 	int rv = 0;
6364 	int cnt = 0;
6365 	int state = 0;
6366 
6367 	/* calculate expected state,ignoring low bits */
6368 	if (mddev->bitmap && mddev->bitmap_info.offset)
6369 		state |= (1 << MD_SB_BITMAP_PRESENT);
6370 
6371 	if (mddev->major_version != info->major_version ||
6372 	    mddev->minor_version != info->minor_version ||
6373 /*	    mddev->patch_version != info->patch_version || */
6374 	    mddev->ctime         != info->ctime         ||
6375 	    mddev->level         != info->level         ||
6376 /*	    mddev->layout        != info->layout        || */
6377 	    !mddev->persistent	 != info->not_persistent||
6378 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6379 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6380 	    ((state^info->state) & 0xfffffe00)
6381 		)
6382 		return -EINVAL;
6383 	/* Check there is only one change */
6384 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6385 		cnt++;
6386 	if (mddev->raid_disks != info->raid_disks)
6387 		cnt++;
6388 	if (mddev->layout != info->layout)
6389 		cnt++;
6390 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6391 		cnt++;
6392 	if (cnt == 0)
6393 		return 0;
6394 	if (cnt > 1)
6395 		return -EINVAL;
6396 
6397 	if (mddev->layout != info->layout) {
6398 		/* Change layout
6399 		 * we don't need to do anything at the md level, the
6400 		 * personality will take care of it all.
6401 		 */
6402 		if (mddev->pers->check_reshape == NULL)
6403 			return -EINVAL;
6404 		else {
6405 			mddev->new_layout = info->layout;
6406 			rv = mddev->pers->check_reshape(mddev);
6407 			if (rv)
6408 				mddev->new_layout = mddev->layout;
6409 			return rv;
6410 		}
6411 	}
6412 	if (mddev_is_clustered(mddev))
6413 		md_cluster_ops->metadata_update_start(mddev);
6414 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6415 		rv = update_size(mddev, (sector_t)info->size * 2);
6416 
6417 	if (mddev->raid_disks    != info->raid_disks)
6418 		rv = update_raid_disks(mddev, info->raid_disks);
6419 
6420 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6421 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6422 			rv = -EINVAL;
6423 			goto err;
6424 		}
6425 		if (mddev->recovery || mddev->sync_thread) {
6426 			rv = -EBUSY;
6427 			goto err;
6428 		}
6429 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6430 			struct bitmap *bitmap;
6431 			/* add the bitmap */
6432 			if (mddev->bitmap) {
6433 				rv = -EEXIST;
6434 				goto err;
6435 			}
6436 			if (mddev->bitmap_info.default_offset == 0) {
6437 				rv = -EINVAL;
6438 				goto err;
6439 			}
6440 			mddev->bitmap_info.offset =
6441 				mddev->bitmap_info.default_offset;
6442 			mddev->bitmap_info.space =
6443 				mddev->bitmap_info.default_space;
6444 			mddev->pers->quiesce(mddev, 1);
6445 			bitmap = bitmap_create(mddev, -1);
6446 			if (!IS_ERR(bitmap)) {
6447 				mddev->bitmap = bitmap;
6448 				rv = bitmap_load(mddev);
6449 			} else
6450 				rv = PTR_ERR(bitmap);
6451 			if (rv)
6452 				bitmap_destroy(mddev);
6453 			mddev->pers->quiesce(mddev, 0);
6454 		} else {
6455 			/* remove the bitmap */
6456 			if (!mddev->bitmap) {
6457 				rv = -ENOENT;
6458 				goto err;
6459 			}
6460 			if (mddev->bitmap->storage.file) {
6461 				rv = -EINVAL;
6462 				goto err;
6463 			}
6464 			mddev->pers->quiesce(mddev, 1);
6465 			bitmap_destroy(mddev);
6466 			mddev->pers->quiesce(mddev, 0);
6467 			mddev->bitmap_info.offset = 0;
6468 		}
6469 	}
6470 	md_update_sb(mddev, 1);
6471 	if (mddev_is_clustered(mddev))
6472 		md_cluster_ops->metadata_update_finish(mddev);
6473 	return rv;
6474 err:
6475 	if (mddev_is_clustered(mddev))
6476 		md_cluster_ops->metadata_update_cancel(mddev);
6477 	return rv;
6478 }
6479 
6480 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6481 {
6482 	struct md_rdev *rdev;
6483 	int err = 0;
6484 
6485 	if (mddev->pers == NULL)
6486 		return -ENODEV;
6487 
6488 	rcu_read_lock();
6489 	rdev = find_rdev_rcu(mddev, dev);
6490 	if (!rdev)
6491 		err =  -ENODEV;
6492 	else {
6493 		md_error(mddev, rdev);
6494 		if (!test_bit(Faulty, &rdev->flags))
6495 			err = -EBUSY;
6496 	}
6497 	rcu_read_unlock();
6498 	return err;
6499 }
6500 
6501 /*
6502  * We have a problem here : there is no easy way to give a CHS
6503  * virtual geometry. We currently pretend that we have a 2 heads
6504  * 4 sectors (with a BIG number of cylinders...). This drives
6505  * dosfs just mad... ;-)
6506  */
6507 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6508 {
6509 	struct mddev *mddev = bdev->bd_disk->private_data;
6510 
6511 	geo->heads = 2;
6512 	geo->sectors = 4;
6513 	geo->cylinders = mddev->array_sectors / 8;
6514 	return 0;
6515 }
6516 
6517 static inline bool md_ioctl_valid(unsigned int cmd)
6518 {
6519 	switch (cmd) {
6520 	case ADD_NEW_DISK:
6521 	case BLKROSET:
6522 	case GET_ARRAY_INFO:
6523 	case GET_BITMAP_FILE:
6524 	case GET_DISK_INFO:
6525 	case HOT_ADD_DISK:
6526 	case HOT_REMOVE_DISK:
6527 	case RAID_AUTORUN:
6528 	case RAID_VERSION:
6529 	case RESTART_ARRAY_RW:
6530 	case RUN_ARRAY:
6531 	case SET_ARRAY_INFO:
6532 	case SET_BITMAP_FILE:
6533 	case SET_DISK_FAULTY:
6534 	case STOP_ARRAY:
6535 	case STOP_ARRAY_RO:
6536 	case CLUSTERED_DISK_NACK:
6537 		return true;
6538 	default:
6539 		return false;
6540 	}
6541 }
6542 
6543 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6544 			unsigned int cmd, unsigned long arg)
6545 {
6546 	int err = 0;
6547 	void __user *argp = (void __user *)arg;
6548 	struct mddev *mddev = NULL;
6549 	int ro;
6550 
6551 	if (!md_ioctl_valid(cmd))
6552 		return -ENOTTY;
6553 
6554 	switch (cmd) {
6555 	case RAID_VERSION:
6556 	case GET_ARRAY_INFO:
6557 	case GET_DISK_INFO:
6558 		break;
6559 	default:
6560 		if (!capable(CAP_SYS_ADMIN))
6561 			return -EACCES;
6562 	}
6563 
6564 	/*
6565 	 * Commands dealing with the RAID driver but not any
6566 	 * particular array:
6567 	 */
6568 	switch (cmd) {
6569 	case RAID_VERSION:
6570 		err = get_version(argp);
6571 		goto out;
6572 
6573 #ifndef MODULE
6574 	case RAID_AUTORUN:
6575 		err = 0;
6576 		autostart_arrays(arg);
6577 		goto out;
6578 #endif
6579 	default:;
6580 	}
6581 
6582 	/*
6583 	 * Commands creating/starting a new array:
6584 	 */
6585 
6586 	mddev = bdev->bd_disk->private_data;
6587 
6588 	if (!mddev) {
6589 		BUG();
6590 		goto out;
6591 	}
6592 
6593 	/* Some actions do not requires the mutex */
6594 	switch (cmd) {
6595 	case GET_ARRAY_INFO:
6596 		if (!mddev->raid_disks && !mddev->external)
6597 			err = -ENODEV;
6598 		else
6599 			err = get_array_info(mddev, argp);
6600 		goto out;
6601 
6602 	case GET_DISK_INFO:
6603 		if (!mddev->raid_disks && !mddev->external)
6604 			err = -ENODEV;
6605 		else
6606 			err = get_disk_info(mddev, argp);
6607 		goto out;
6608 
6609 	case SET_DISK_FAULTY:
6610 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6611 		goto out;
6612 
6613 	case GET_BITMAP_FILE:
6614 		err = get_bitmap_file(mddev, argp);
6615 		goto out;
6616 
6617 	}
6618 
6619 	if (cmd == ADD_NEW_DISK)
6620 		/* need to ensure md_delayed_delete() has completed */
6621 		flush_workqueue(md_misc_wq);
6622 
6623 	if (cmd == HOT_REMOVE_DISK)
6624 		/* need to ensure recovery thread has run */
6625 		wait_event_interruptible_timeout(mddev->sb_wait,
6626 						 !test_bit(MD_RECOVERY_NEEDED,
6627 							   &mddev->flags),
6628 						 msecs_to_jiffies(5000));
6629 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6630 		/* Need to flush page cache, and ensure no-one else opens
6631 		 * and writes
6632 		 */
6633 		mutex_lock(&mddev->open_mutex);
6634 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6635 			mutex_unlock(&mddev->open_mutex);
6636 			err = -EBUSY;
6637 			goto out;
6638 		}
6639 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6640 		mutex_unlock(&mddev->open_mutex);
6641 		sync_blockdev(bdev);
6642 	}
6643 	err = mddev_lock(mddev);
6644 	if (err) {
6645 		printk(KERN_INFO
6646 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6647 			err, cmd);
6648 		goto out;
6649 	}
6650 
6651 	if (cmd == SET_ARRAY_INFO) {
6652 		mdu_array_info_t info;
6653 		if (!arg)
6654 			memset(&info, 0, sizeof(info));
6655 		else if (copy_from_user(&info, argp, sizeof(info))) {
6656 			err = -EFAULT;
6657 			goto unlock;
6658 		}
6659 		if (mddev->pers) {
6660 			err = update_array_info(mddev, &info);
6661 			if (err) {
6662 				printk(KERN_WARNING "md: couldn't update"
6663 				       " array info. %d\n", err);
6664 				goto unlock;
6665 			}
6666 			goto unlock;
6667 		}
6668 		if (!list_empty(&mddev->disks)) {
6669 			printk(KERN_WARNING
6670 			       "md: array %s already has disks!\n",
6671 			       mdname(mddev));
6672 			err = -EBUSY;
6673 			goto unlock;
6674 		}
6675 		if (mddev->raid_disks) {
6676 			printk(KERN_WARNING
6677 			       "md: array %s already initialised!\n",
6678 			       mdname(mddev));
6679 			err = -EBUSY;
6680 			goto unlock;
6681 		}
6682 		err = set_array_info(mddev, &info);
6683 		if (err) {
6684 			printk(KERN_WARNING "md: couldn't set"
6685 			       " array info. %d\n", err);
6686 			goto unlock;
6687 		}
6688 		goto unlock;
6689 	}
6690 
6691 	/*
6692 	 * Commands querying/configuring an existing array:
6693 	 */
6694 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6695 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6696 	if ((!mddev->raid_disks && !mddev->external)
6697 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6698 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6699 	    && cmd != GET_BITMAP_FILE) {
6700 		err = -ENODEV;
6701 		goto unlock;
6702 	}
6703 
6704 	/*
6705 	 * Commands even a read-only array can execute:
6706 	 */
6707 	switch (cmd) {
6708 	case RESTART_ARRAY_RW:
6709 		err = restart_array(mddev);
6710 		goto unlock;
6711 
6712 	case STOP_ARRAY:
6713 		err = do_md_stop(mddev, 0, bdev);
6714 		goto unlock;
6715 
6716 	case STOP_ARRAY_RO:
6717 		err = md_set_readonly(mddev, bdev);
6718 		goto unlock;
6719 
6720 	case HOT_REMOVE_DISK:
6721 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6722 		goto unlock;
6723 
6724 	case ADD_NEW_DISK:
6725 		/* We can support ADD_NEW_DISK on read-only arrays
6726 		 * on if we are re-adding a preexisting device.
6727 		 * So require mddev->pers and MD_DISK_SYNC.
6728 		 */
6729 		if (mddev->pers) {
6730 			mdu_disk_info_t info;
6731 			if (copy_from_user(&info, argp, sizeof(info)))
6732 				err = -EFAULT;
6733 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6734 				/* Need to clear read-only for this */
6735 				break;
6736 			else
6737 				err = add_new_disk(mddev, &info);
6738 			goto unlock;
6739 		}
6740 		break;
6741 
6742 	case BLKROSET:
6743 		if (get_user(ro, (int __user *)(arg))) {
6744 			err = -EFAULT;
6745 			goto unlock;
6746 		}
6747 		err = -EINVAL;
6748 
6749 		/* if the bdev is going readonly the value of mddev->ro
6750 		 * does not matter, no writes are coming
6751 		 */
6752 		if (ro)
6753 			goto unlock;
6754 
6755 		/* are we are already prepared for writes? */
6756 		if (mddev->ro != 1)
6757 			goto unlock;
6758 
6759 		/* transitioning to readauto need only happen for
6760 		 * arrays that call md_write_start
6761 		 */
6762 		if (mddev->pers) {
6763 			err = restart_array(mddev);
6764 			if (err == 0) {
6765 				mddev->ro = 2;
6766 				set_disk_ro(mddev->gendisk, 0);
6767 			}
6768 		}
6769 		goto unlock;
6770 	}
6771 
6772 	/*
6773 	 * The remaining ioctls are changing the state of the
6774 	 * superblock, so we do not allow them on read-only arrays.
6775 	 */
6776 	if (mddev->ro && mddev->pers) {
6777 		if (mddev->ro == 2) {
6778 			mddev->ro = 0;
6779 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6780 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6781 			/* mddev_unlock will wake thread */
6782 			/* If a device failed while we were read-only, we
6783 			 * need to make sure the metadata is updated now.
6784 			 */
6785 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6786 				mddev_unlock(mddev);
6787 				wait_event(mddev->sb_wait,
6788 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6789 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6790 				mddev_lock_nointr(mddev);
6791 			}
6792 		} else {
6793 			err = -EROFS;
6794 			goto unlock;
6795 		}
6796 	}
6797 
6798 	switch (cmd) {
6799 	case ADD_NEW_DISK:
6800 	{
6801 		mdu_disk_info_t info;
6802 		if (copy_from_user(&info, argp, sizeof(info)))
6803 			err = -EFAULT;
6804 		else
6805 			err = add_new_disk(mddev, &info);
6806 		goto unlock;
6807 	}
6808 
6809 	case CLUSTERED_DISK_NACK:
6810 		if (mddev_is_clustered(mddev))
6811 			md_cluster_ops->new_disk_ack(mddev, false);
6812 		else
6813 			err = -EINVAL;
6814 		goto unlock;
6815 
6816 	case HOT_ADD_DISK:
6817 		err = hot_add_disk(mddev, new_decode_dev(arg));
6818 		goto unlock;
6819 
6820 	case RUN_ARRAY:
6821 		err = do_md_run(mddev);
6822 		goto unlock;
6823 
6824 	case SET_BITMAP_FILE:
6825 		err = set_bitmap_file(mddev, (int)arg);
6826 		goto unlock;
6827 
6828 	default:
6829 		err = -EINVAL;
6830 		goto unlock;
6831 	}
6832 
6833 unlock:
6834 	if (mddev->hold_active == UNTIL_IOCTL &&
6835 	    err != -EINVAL)
6836 		mddev->hold_active = 0;
6837 	mddev_unlock(mddev);
6838 out:
6839 	return err;
6840 }
6841 #ifdef CONFIG_COMPAT
6842 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6843 		    unsigned int cmd, unsigned long arg)
6844 {
6845 	switch (cmd) {
6846 	case HOT_REMOVE_DISK:
6847 	case HOT_ADD_DISK:
6848 	case SET_DISK_FAULTY:
6849 	case SET_BITMAP_FILE:
6850 		/* These take in integer arg, do not convert */
6851 		break;
6852 	default:
6853 		arg = (unsigned long)compat_ptr(arg);
6854 		break;
6855 	}
6856 
6857 	return md_ioctl(bdev, mode, cmd, arg);
6858 }
6859 #endif /* CONFIG_COMPAT */
6860 
6861 static int md_open(struct block_device *bdev, fmode_t mode)
6862 {
6863 	/*
6864 	 * Succeed if we can lock the mddev, which confirms that
6865 	 * it isn't being stopped right now.
6866 	 */
6867 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6868 	int err;
6869 
6870 	if (!mddev)
6871 		return -ENODEV;
6872 
6873 	if (mddev->gendisk != bdev->bd_disk) {
6874 		/* we are racing with mddev_put which is discarding this
6875 		 * bd_disk.
6876 		 */
6877 		mddev_put(mddev);
6878 		/* Wait until bdev->bd_disk is definitely gone */
6879 		flush_workqueue(md_misc_wq);
6880 		/* Then retry the open from the top */
6881 		return -ERESTARTSYS;
6882 	}
6883 	BUG_ON(mddev != bdev->bd_disk->private_data);
6884 
6885 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6886 		goto out;
6887 
6888 	err = 0;
6889 	atomic_inc(&mddev->openers);
6890 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6891 	mutex_unlock(&mddev->open_mutex);
6892 
6893 	check_disk_change(bdev);
6894  out:
6895 	return err;
6896 }
6897 
6898 static void md_release(struct gendisk *disk, fmode_t mode)
6899 {
6900 	struct mddev *mddev = disk->private_data;
6901 
6902 	BUG_ON(!mddev);
6903 	atomic_dec(&mddev->openers);
6904 	mddev_put(mddev);
6905 }
6906 
6907 static int md_media_changed(struct gendisk *disk)
6908 {
6909 	struct mddev *mddev = disk->private_data;
6910 
6911 	return mddev->changed;
6912 }
6913 
6914 static int md_revalidate(struct gendisk *disk)
6915 {
6916 	struct mddev *mddev = disk->private_data;
6917 
6918 	mddev->changed = 0;
6919 	return 0;
6920 }
6921 static const struct block_device_operations md_fops =
6922 {
6923 	.owner		= THIS_MODULE,
6924 	.open		= md_open,
6925 	.release	= md_release,
6926 	.ioctl		= md_ioctl,
6927 #ifdef CONFIG_COMPAT
6928 	.compat_ioctl	= md_compat_ioctl,
6929 #endif
6930 	.getgeo		= md_getgeo,
6931 	.media_changed  = md_media_changed,
6932 	.revalidate_disk= md_revalidate,
6933 };
6934 
6935 static int md_thread(void *arg)
6936 {
6937 	struct md_thread *thread = arg;
6938 
6939 	/*
6940 	 * md_thread is a 'system-thread', it's priority should be very
6941 	 * high. We avoid resource deadlocks individually in each
6942 	 * raid personality. (RAID5 does preallocation) We also use RR and
6943 	 * the very same RT priority as kswapd, thus we will never get
6944 	 * into a priority inversion deadlock.
6945 	 *
6946 	 * we definitely have to have equal or higher priority than
6947 	 * bdflush, otherwise bdflush will deadlock if there are too
6948 	 * many dirty RAID5 blocks.
6949 	 */
6950 
6951 	allow_signal(SIGKILL);
6952 	while (!kthread_should_stop()) {
6953 
6954 		/* We need to wait INTERRUPTIBLE so that
6955 		 * we don't add to the load-average.
6956 		 * That means we need to be sure no signals are
6957 		 * pending
6958 		 */
6959 		if (signal_pending(current))
6960 			flush_signals(current);
6961 
6962 		wait_event_interruptible_timeout
6963 			(thread->wqueue,
6964 			 test_bit(THREAD_WAKEUP, &thread->flags)
6965 			 || kthread_should_stop(),
6966 			 thread->timeout);
6967 
6968 		clear_bit(THREAD_WAKEUP, &thread->flags);
6969 		if (!kthread_should_stop())
6970 			thread->run(thread);
6971 	}
6972 
6973 	return 0;
6974 }
6975 
6976 void md_wakeup_thread(struct md_thread *thread)
6977 {
6978 	if (thread) {
6979 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6980 		set_bit(THREAD_WAKEUP, &thread->flags);
6981 		wake_up(&thread->wqueue);
6982 	}
6983 }
6984 EXPORT_SYMBOL(md_wakeup_thread);
6985 
6986 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6987 		struct mddev *mddev, const char *name)
6988 {
6989 	struct md_thread *thread;
6990 
6991 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6992 	if (!thread)
6993 		return NULL;
6994 
6995 	init_waitqueue_head(&thread->wqueue);
6996 
6997 	thread->run = run;
6998 	thread->mddev = mddev;
6999 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7000 	thread->tsk = kthread_run(md_thread, thread,
7001 				  "%s_%s",
7002 				  mdname(thread->mddev),
7003 				  name);
7004 	if (IS_ERR(thread->tsk)) {
7005 		kfree(thread);
7006 		return NULL;
7007 	}
7008 	return thread;
7009 }
7010 EXPORT_SYMBOL(md_register_thread);
7011 
7012 void md_unregister_thread(struct md_thread **threadp)
7013 {
7014 	struct md_thread *thread = *threadp;
7015 	if (!thread)
7016 		return;
7017 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7018 	/* Locking ensures that mddev_unlock does not wake_up a
7019 	 * non-existent thread
7020 	 */
7021 	spin_lock(&pers_lock);
7022 	*threadp = NULL;
7023 	spin_unlock(&pers_lock);
7024 
7025 	kthread_stop(thread->tsk);
7026 	kfree(thread);
7027 }
7028 EXPORT_SYMBOL(md_unregister_thread);
7029 
7030 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7031 {
7032 	if (!rdev || test_bit(Faulty, &rdev->flags))
7033 		return;
7034 
7035 	if (!mddev->pers || !mddev->pers->error_handler)
7036 		return;
7037 	mddev->pers->error_handler(mddev,rdev);
7038 	if (mddev->degraded)
7039 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7040 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7041 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7042 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7043 	md_wakeup_thread(mddev->thread);
7044 	if (mddev->event_work.func)
7045 		queue_work(md_misc_wq, &mddev->event_work);
7046 	md_new_event_inintr(mddev);
7047 }
7048 EXPORT_SYMBOL(md_error);
7049 
7050 /* seq_file implementation /proc/mdstat */
7051 
7052 static void status_unused(struct seq_file *seq)
7053 {
7054 	int i = 0;
7055 	struct md_rdev *rdev;
7056 
7057 	seq_printf(seq, "unused devices: ");
7058 
7059 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7060 		char b[BDEVNAME_SIZE];
7061 		i++;
7062 		seq_printf(seq, "%s ",
7063 			      bdevname(rdev->bdev,b));
7064 	}
7065 	if (!i)
7066 		seq_printf(seq, "<none>");
7067 
7068 	seq_printf(seq, "\n");
7069 }
7070 
7071 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7072 {
7073 	sector_t max_sectors, resync, res;
7074 	unsigned long dt, db;
7075 	sector_t rt;
7076 	int scale;
7077 	unsigned int per_milli;
7078 
7079 	if (mddev->curr_resync <= 3)
7080 		resync = 0;
7081 	else
7082 		resync = mddev->curr_resync
7083 			- atomic_read(&mddev->recovery_active);
7084 
7085 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7086 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7087 		max_sectors = mddev->resync_max_sectors;
7088 	else
7089 		max_sectors = mddev->dev_sectors;
7090 
7091 	WARN_ON(max_sectors == 0);
7092 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7093 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7094 	 * u32, as those are the requirements for sector_div.
7095 	 * Thus 'scale' must be at least 10
7096 	 */
7097 	scale = 10;
7098 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7099 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7100 			scale++;
7101 	}
7102 	res = (resync>>scale)*1000;
7103 	sector_div(res, (u32)((max_sectors>>scale)+1));
7104 
7105 	per_milli = res;
7106 	{
7107 		int i, x = per_milli/50, y = 20-x;
7108 		seq_printf(seq, "[");
7109 		for (i = 0; i < x; i++)
7110 			seq_printf(seq, "=");
7111 		seq_printf(seq, ">");
7112 		for (i = 0; i < y; i++)
7113 			seq_printf(seq, ".");
7114 		seq_printf(seq, "] ");
7115 	}
7116 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7117 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7118 		    "reshape" :
7119 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7120 		     "check" :
7121 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7122 		      "resync" : "recovery"))),
7123 		   per_milli/10, per_milli % 10,
7124 		   (unsigned long long) resync/2,
7125 		   (unsigned long long) max_sectors/2);
7126 
7127 	/*
7128 	 * dt: time from mark until now
7129 	 * db: blocks written from mark until now
7130 	 * rt: remaining time
7131 	 *
7132 	 * rt is a sector_t, so could be 32bit or 64bit.
7133 	 * So we divide before multiply in case it is 32bit and close
7134 	 * to the limit.
7135 	 * We scale the divisor (db) by 32 to avoid losing precision
7136 	 * near the end of resync when the number of remaining sectors
7137 	 * is close to 'db'.
7138 	 * We then divide rt by 32 after multiplying by db to compensate.
7139 	 * The '+1' avoids division by zero if db is very small.
7140 	 */
7141 	dt = ((jiffies - mddev->resync_mark) / HZ);
7142 	if (!dt) dt++;
7143 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7144 		- mddev->resync_mark_cnt;
7145 
7146 	rt = max_sectors - resync;    /* number of remaining sectors */
7147 	sector_div(rt, db/32+1);
7148 	rt *= dt;
7149 	rt >>= 5;
7150 
7151 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7152 		   ((unsigned long)rt % 60)/6);
7153 
7154 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7155 }
7156 
7157 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7158 {
7159 	struct list_head *tmp;
7160 	loff_t l = *pos;
7161 	struct mddev *mddev;
7162 
7163 	if (l >= 0x10000)
7164 		return NULL;
7165 	if (!l--)
7166 		/* header */
7167 		return (void*)1;
7168 
7169 	spin_lock(&all_mddevs_lock);
7170 	list_for_each(tmp,&all_mddevs)
7171 		if (!l--) {
7172 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7173 			mddev_get(mddev);
7174 			spin_unlock(&all_mddevs_lock);
7175 			return mddev;
7176 		}
7177 	spin_unlock(&all_mddevs_lock);
7178 	if (!l--)
7179 		return (void*)2;/* tail */
7180 	return NULL;
7181 }
7182 
7183 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7184 {
7185 	struct list_head *tmp;
7186 	struct mddev *next_mddev, *mddev = v;
7187 
7188 	++*pos;
7189 	if (v == (void*)2)
7190 		return NULL;
7191 
7192 	spin_lock(&all_mddevs_lock);
7193 	if (v == (void*)1)
7194 		tmp = all_mddevs.next;
7195 	else
7196 		tmp = mddev->all_mddevs.next;
7197 	if (tmp != &all_mddevs)
7198 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7199 	else {
7200 		next_mddev = (void*)2;
7201 		*pos = 0x10000;
7202 	}
7203 	spin_unlock(&all_mddevs_lock);
7204 
7205 	if (v != (void*)1)
7206 		mddev_put(mddev);
7207 	return next_mddev;
7208 
7209 }
7210 
7211 static void md_seq_stop(struct seq_file *seq, void *v)
7212 {
7213 	struct mddev *mddev = v;
7214 
7215 	if (mddev && v != (void*)1 && v != (void*)2)
7216 		mddev_put(mddev);
7217 }
7218 
7219 static int md_seq_show(struct seq_file *seq, void *v)
7220 {
7221 	struct mddev *mddev = v;
7222 	sector_t sectors;
7223 	struct md_rdev *rdev;
7224 
7225 	if (v == (void*)1) {
7226 		struct md_personality *pers;
7227 		seq_printf(seq, "Personalities : ");
7228 		spin_lock(&pers_lock);
7229 		list_for_each_entry(pers, &pers_list, list)
7230 			seq_printf(seq, "[%s] ", pers->name);
7231 
7232 		spin_unlock(&pers_lock);
7233 		seq_printf(seq, "\n");
7234 		seq->poll_event = atomic_read(&md_event_count);
7235 		return 0;
7236 	}
7237 	if (v == (void*)2) {
7238 		status_unused(seq);
7239 		return 0;
7240 	}
7241 
7242 	spin_lock(&mddev->lock);
7243 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7244 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7245 						mddev->pers ? "" : "in");
7246 		if (mddev->pers) {
7247 			if (mddev->ro==1)
7248 				seq_printf(seq, " (read-only)");
7249 			if (mddev->ro==2)
7250 				seq_printf(seq, " (auto-read-only)");
7251 			seq_printf(seq, " %s", mddev->pers->name);
7252 		}
7253 
7254 		sectors = 0;
7255 		rcu_read_lock();
7256 		rdev_for_each_rcu(rdev, mddev) {
7257 			char b[BDEVNAME_SIZE];
7258 			seq_printf(seq, " %s[%d]",
7259 				bdevname(rdev->bdev,b), rdev->desc_nr);
7260 			if (test_bit(WriteMostly, &rdev->flags))
7261 				seq_printf(seq, "(W)");
7262 			if (test_bit(Faulty, &rdev->flags)) {
7263 				seq_printf(seq, "(F)");
7264 				continue;
7265 			}
7266 			if (rdev->raid_disk < 0)
7267 				seq_printf(seq, "(S)"); /* spare */
7268 			if (test_bit(Replacement, &rdev->flags))
7269 				seq_printf(seq, "(R)");
7270 			sectors += rdev->sectors;
7271 		}
7272 		rcu_read_unlock();
7273 
7274 		if (!list_empty(&mddev->disks)) {
7275 			if (mddev->pers)
7276 				seq_printf(seq, "\n      %llu blocks",
7277 					   (unsigned long long)
7278 					   mddev->array_sectors / 2);
7279 			else
7280 				seq_printf(seq, "\n      %llu blocks",
7281 					   (unsigned long long)sectors / 2);
7282 		}
7283 		if (mddev->persistent) {
7284 			if (mddev->major_version != 0 ||
7285 			    mddev->minor_version != 90) {
7286 				seq_printf(seq," super %d.%d",
7287 					   mddev->major_version,
7288 					   mddev->minor_version);
7289 			}
7290 		} else if (mddev->external)
7291 			seq_printf(seq, " super external:%s",
7292 				   mddev->metadata_type);
7293 		else
7294 			seq_printf(seq, " super non-persistent");
7295 
7296 		if (mddev->pers) {
7297 			mddev->pers->status(seq, mddev);
7298 			seq_printf(seq, "\n      ");
7299 			if (mddev->pers->sync_request) {
7300 				if (mddev->curr_resync > 2) {
7301 					status_resync(seq, mddev);
7302 					seq_printf(seq, "\n      ");
7303 				} else if (mddev->curr_resync >= 1)
7304 					seq_printf(seq, "\tresync=DELAYED\n      ");
7305 				else if (mddev->recovery_cp < MaxSector)
7306 					seq_printf(seq, "\tresync=PENDING\n      ");
7307 			}
7308 		} else
7309 			seq_printf(seq, "\n       ");
7310 
7311 		bitmap_status(seq, mddev->bitmap);
7312 
7313 		seq_printf(seq, "\n");
7314 	}
7315 	spin_unlock(&mddev->lock);
7316 
7317 	return 0;
7318 }
7319 
7320 static const struct seq_operations md_seq_ops = {
7321 	.start  = md_seq_start,
7322 	.next   = md_seq_next,
7323 	.stop   = md_seq_stop,
7324 	.show   = md_seq_show,
7325 };
7326 
7327 static int md_seq_open(struct inode *inode, struct file *file)
7328 {
7329 	struct seq_file *seq;
7330 	int error;
7331 
7332 	error = seq_open(file, &md_seq_ops);
7333 	if (error)
7334 		return error;
7335 
7336 	seq = file->private_data;
7337 	seq->poll_event = atomic_read(&md_event_count);
7338 	return error;
7339 }
7340 
7341 static int md_unloading;
7342 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7343 {
7344 	struct seq_file *seq = filp->private_data;
7345 	int mask;
7346 
7347 	if (md_unloading)
7348 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7349 	poll_wait(filp, &md_event_waiters, wait);
7350 
7351 	/* always allow read */
7352 	mask = POLLIN | POLLRDNORM;
7353 
7354 	if (seq->poll_event != atomic_read(&md_event_count))
7355 		mask |= POLLERR | POLLPRI;
7356 	return mask;
7357 }
7358 
7359 static const struct file_operations md_seq_fops = {
7360 	.owner		= THIS_MODULE,
7361 	.open           = md_seq_open,
7362 	.read           = seq_read,
7363 	.llseek         = seq_lseek,
7364 	.release	= seq_release_private,
7365 	.poll		= mdstat_poll,
7366 };
7367 
7368 int register_md_personality(struct md_personality *p)
7369 {
7370 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7371 						p->name, p->level);
7372 	spin_lock(&pers_lock);
7373 	list_add_tail(&p->list, &pers_list);
7374 	spin_unlock(&pers_lock);
7375 	return 0;
7376 }
7377 EXPORT_SYMBOL(register_md_personality);
7378 
7379 int unregister_md_personality(struct md_personality *p)
7380 {
7381 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7382 	spin_lock(&pers_lock);
7383 	list_del_init(&p->list);
7384 	spin_unlock(&pers_lock);
7385 	return 0;
7386 }
7387 EXPORT_SYMBOL(unregister_md_personality);
7388 
7389 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7390 {
7391 	if (md_cluster_ops != NULL)
7392 		return -EALREADY;
7393 	spin_lock(&pers_lock);
7394 	md_cluster_ops = ops;
7395 	md_cluster_mod = module;
7396 	spin_unlock(&pers_lock);
7397 	return 0;
7398 }
7399 EXPORT_SYMBOL(register_md_cluster_operations);
7400 
7401 int unregister_md_cluster_operations(void)
7402 {
7403 	spin_lock(&pers_lock);
7404 	md_cluster_ops = NULL;
7405 	spin_unlock(&pers_lock);
7406 	return 0;
7407 }
7408 EXPORT_SYMBOL(unregister_md_cluster_operations);
7409 
7410 int md_setup_cluster(struct mddev *mddev, int nodes)
7411 {
7412 	int err;
7413 
7414 	err = request_module("md-cluster");
7415 	if (err) {
7416 		pr_err("md-cluster module not found.\n");
7417 		return err;
7418 	}
7419 
7420 	spin_lock(&pers_lock);
7421 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7422 		spin_unlock(&pers_lock);
7423 		return -ENOENT;
7424 	}
7425 	spin_unlock(&pers_lock);
7426 
7427 	return md_cluster_ops->join(mddev, nodes);
7428 }
7429 
7430 void md_cluster_stop(struct mddev *mddev)
7431 {
7432 	if (!md_cluster_ops)
7433 		return;
7434 	md_cluster_ops->leave(mddev);
7435 	module_put(md_cluster_mod);
7436 }
7437 
7438 static int is_mddev_idle(struct mddev *mddev, int init)
7439 {
7440 	struct md_rdev *rdev;
7441 	int idle;
7442 	int curr_events;
7443 
7444 	idle = 1;
7445 	rcu_read_lock();
7446 	rdev_for_each_rcu(rdev, mddev) {
7447 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7448 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7449 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7450 			      atomic_read(&disk->sync_io);
7451 		/* sync IO will cause sync_io to increase before the disk_stats
7452 		 * as sync_io is counted when a request starts, and
7453 		 * disk_stats is counted when it completes.
7454 		 * So resync activity will cause curr_events to be smaller than
7455 		 * when there was no such activity.
7456 		 * non-sync IO will cause disk_stat to increase without
7457 		 * increasing sync_io so curr_events will (eventually)
7458 		 * be larger than it was before.  Once it becomes
7459 		 * substantially larger, the test below will cause
7460 		 * the array to appear non-idle, and resync will slow
7461 		 * down.
7462 		 * If there is a lot of outstanding resync activity when
7463 		 * we set last_event to curr_events, then all that activity
7464 		 * completing might cause the array to appear non-idle
7465 		 * and resync will be slowed down even though there might
7466 		 * not have been non-resync activity.  This will only
7467 		 * happen once though.  'last_events' will soon reflect
7468 		 * the state where there is little or no outstanding
7469 		 * resync requests, and further resync activity will
7470 		 * always make curr_events less than last_events.
7471 		 *
7472 		 */
7473 		if (init || curr_events - rdev->last_events > 64) {
7474 			rdev->last_events = curr_events;
7475 			idle = 0;
7476 		}
7477 	}
7478 	rcu_read_unlock();
7479 	return idle;
7480 }
7481 
7482 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7483 {
7484 	/* another "blocks" (512byte) blocks have been synced */
7485 	atomic_sub(blocks, &mddev->recovery_active);
7486 	wake_up(&mddev->recovery_wait);
7487 	if (!ok) {
7488 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7489 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7490 		md_wakeup_thread(mddev->thread);
7491 		// stop recovery, signal do_sync ....
7492 	}
7493 }
7494 EXPORT_SYMBOL(md_done_sync);
7495 
7496 /* md_write_start(mddev, bi)
7497  * If we need to update some array metadata (e.g. 'active' flag
7498  * in superblock) before writing, schedule a superblock update
7499  * and wait for it to complete.
7500  */
7501 void md_write_start(struct mddev *mddev, struct bio *bi)
7502 {
7503 	int did_change = 0;
7504 	if (bio_data_dir(bi) != WRITE)
7505 		return;
7506 
7507 	BUG_ON(mddev->ro == 1);
7508 	if (mddev->ro == 2) {
7509 		/* need to switch to read/write */
7510 		mddev->ro = 0;
7511 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7512 		md_wakeup_thread(mddev->thread);
7513 		md_wakeup_thread(mddev->sync_thread);
7514 		did_change = 1;
7515 	}
7516 	atomic_inc(&mddev->writes_pending);
7517 	if (mddev->safemode == 1)
7518 		mddev->safemode = 0;
7519 	if (mddev->in_sync) {
7520 		spin_lock(&mddev->lock);
7521 		if (mddev->in_sync) {
7522 			mddev->in_sync = 0;
7523 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7524 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7525 			md_wakeup_thread(mddev->thread);
7526 			did_change = 1;
7527 		}
7528 		spin_unlock(&mddev->lock);
7529 	}
7530 	if (did_change)
7531 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7532 	wait_event(mddev->sb_wait,
7533 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7534 }
7535 EXPORT_SYMBOL(md_write_start);
7536 
7537 void md_write_end(struct mddev *mddev)
7538 {
7539 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7540 		if (mddev->safemode == 2)
7541 			md_wakeup_thread(mddev->thread);
7542 		else if (mddev->safemode_delay)
7543 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7544 	}
7545 }
7546 EXPORT_SYMBOL(md_write_end);
7547 
7548 /* md_allow_write(mddev)
7549  * Calling this ensures that the array is marked 'active' so that writes
7550  * may proceed without blocking.  It is important to call this before
7551  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7552  * Must be called with mddev_lock held.
7553  *
7554  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7555  * is dropped, so return -EAGAIN after notifying userspace.
7556  */
7557 int md_allow_write(struct mddev *mddev)
7558 {
7559 	if (!mddev->pers)
7560 		return 0;
7561 	if (mddev->ro)
7562 		return 0;
7563 	if (!mddev->pers->sync_request)
7564 		return 0;
7565 
7566 	spin_lock(&mddev->lock);
7567 	if (mddev->in_sync) {
7568 		mddev->in_sync = 0;
7569 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7570 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7571 		if (mddev->safemode_delay &&
7572 		    mddev->safemode == 0)
7573 			mddev->safemode = 1;
7574 		spin_unlock(&mddev->lock);
7575 		if (mddev_is_clustered(mddev))
7576 			md_cluster_ops->metadata_update_start(mddev);
7577 		md_update_sb(mddev, 0);
7578 		if (mddev_is_clustered(mddev))
7579 			md_cluster_ops->metadata_update_finish(mddev);
7580 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7581 	} else
7582 		spin_unlock(&mddev->lock);
7583 
7584 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7585 		return -EAGAIN;
7586 	else
7587 		return 0;
7588 }
7589 EXPORT_SYMBOL_GPL(md_allow_write);
7590 
7591 #define SYNC_MARKS	10
7592 #define	SYNC_MARK_STEP	(3*HZ)
7593 #define UPDATE_FREQUENCY (5*60*HZ)
7594 void md_do_sync(struct md_thread *thread)
7595 {
7596 	struct mddev *mddev = thread->mddev;
7597 	struct mddev *mddev2;
7598 	unsigned int currspeed = 0,
7599 		 window;
7600 	sector_t max_sectors,j, io_sectors, recovery_done;
7601 	unsigned long mark[SYNC_MARKS];
7602 	unsigned long update_time;
7603 	sector_t mark_cnt[SYNC_MARKS];
7604 	int last_mark,m;
7605 	struct list_head *tmp;
7606 	sector_t last_check;
7607 	int skipped = 0;
7608 	struct md_rdev *rdev;
7609 	char *desc, *action = NULL;
7610 	struct blk_plug plug;
7611 
7612 	/* just incase thread restarts... */
7613 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7614 		return;
7615 	if (mddev->ro) {/* never try to sync a read-only array */
7616 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7617 		return;
7618 	}
7619 
7620 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7621 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7622 			desc = "data-check";
7623 			action = "check";
7624 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7625 			desc = "requested-resync";
7626 			action = "repair";
7627 		} else
7628 			desc = "resync";
7629 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7630 		desc = "reshape";
7631 	else
7632 		desc = "recovery";
7633 
7634 	mddev->last_sync_action = action ?: desc;
7635 
7636 	/* we overload curr_resync somewhat here.
7637 	 * 0 == not engaged in resync at all
7638 	 * 2 == checking that there is no conflict with another sync
7639 	 * 1 == like 2, but have yielded to allow conflicting resync to
7640 	 *		commense
7641 	 * other == active in resync - this many blocks
7642 	 *
7643 	 * Before starting a resync we must have set curr_resync to
7644 	 * 2, and then checked that every "conflicting" array has curr_resync
7645 	 * less than ours.  When we find one that is the same or higher
7646 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7647 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7648 	 * This will mean we have to start checking from the beginning again.
7649 	 *
7650 	 */
7651 
7652 	do {
7653 		mddev->curr_resync = 2;
7654 
7655 	try_again:
7656 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7657 			goto skip;
7658 		for_each_mddev(mddev2, tmp) {
7659 			if (mddev2 == mddev)
7660 				continue;
7661 			if (!mddev->parallel_resync
7662 			&&  mddev2->curr_resync
7663 			&&  match_mddev_units(mddev, mddev2)) {
7664 				DEFINE_WAIT(wq);
7665 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7666 					/* arbitrarily yield */
7667 					mddev->curr_resync = 1;
7668 					wake_up(&resync_wait);
7669 				}
7670 				if (mddev > mddev2 && mddev->curr_resync == 1)
7671 					/* no need to wait here, we can wait the next
7672 					 * time 'round when curr_resync == 2
7673 					 */
7674 					continue;
7675 				/* We need to wait 'interruptible' so as not to
7676 				 * contribute to the load average, and not to
7677 				 * be caught by 'softlockup'
7678 				 */
7679 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7680 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7681 				    mddev2->curr_resync >= mddev->curr_resync) {
7682 					printk(KERN_INFO "md: delaying %s of %s"
7683 					       " until %s has finished (they"
7684 					       " share one or more physical units)\n",
7685 					       desc, mdname(mddev), mdname(mddev2));
7686 					mddev_put(mddev2);
7687 					if (signal_pending(current))
7688 						flush_signals(current);
7689 					schedule();
7690 					finish_wait(&resync_wait, &wq);
7691 					goto try_again;
7692 				}
7693 				finish_wait(&resync_wait, &wq);
7694 			}
7695 		}
7696 	} while (mddev->curr_resync < 2);
7697 
7698 	j = 0;
7699 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7700 		/* resync follows the size requested by the personality,
7701 		 * which defaults to physical size, but can be virtual size
7702 		 */
7703 		max_sectors = mddev->resync_max_sectors;
7704 		atomic64_set(&mddev->resync_mismatches, 0);
7705 		/* we don't use the checkpoint if there's a bitmap */
7706 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7707 			j = mddev->resync_min;
7708 		else if (!mddev->bitmap)
7709 			j = mddev->recovery_cp;
7710 
7711 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7712 		max_sectors = mddev->resync_max_sectors;
7713 	else {
7714 		/* recovery follows the physical size of devices */
7715 		max_sectors = mddev->dev_sectors;
7716 		j = MaxSector;
7717 		rcu_read_lock();
7718 		rdev_for_each_rcu(rdev, mddev)
7719 			if (rdev->raid_disk >= 0 &&
7720 			    !test_bit(Faulty, &rdev->flags) &&
7721 			    !test_bit(In_sync, &rdev->flags) &&
7722 			    rdev->recovery_offset < j)
7723 				j = rdev->recovery_offset;
7724 		rcu_read_unlock();
7725 
7726 		/* If there is a bitmap, we need to make sure all
7727 		 * writes that started before we added a spare
7728 		 * complete before we start doing a recovery.
7729 		 * Otherwise the write might complete and (via
7730 		 * bitmap_endwrite) set a bit in the bitmap after the
7731 		 * recovery has checked that bit and skipped that
7732 		 * region.
7733 		 */
7734 		if (mddev->bitmap) {
7735 			mddev->pers->quiesce(mddev, 1);
7736 			mddev->pers->quiesce(mddev, 0);
7737 		}
7738 	}
7739 
7740 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7741 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7742 		" %d KB/sec/disk.\n", speed_min(mddev));
7743 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7744 	       "(but not more than %d KB/sec) for %s.\n",
7745 	       speed_max(mddev), desc);
7746 
7747 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7748 
7749 	io_sectors = 0;
7750 	for (m = 0; m < SYNC_MARKS; m++) {
7751 		mark[m] = jiffies;
7752 		mark_cnt[m] = io_sectors;
7753 	}
7754 	last_mark = 0;
7755 	mddev->resync_mark = mark[last_mark];
7756 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7757 
7758 	/*
7759 	 * Tune reconstruction:
7760 	 */
7761 	window = 32*(PAGE_SIZE/512);
7762 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7763 		window/2, (unsigned long long)max_sectors/2);
7764 
7765 	atomic_set(&mddev->recovery_active, 0);
7766 	last_check = 0;
7767 
7768 	if (j>2) {
7769 		printk(KERN_INFO
7770 		       "md: resuming %s of %s from checkpoint.\n",
7771 		       desc, mdname(mddev));
7772 		mddev->curr_resync = j;
7773 	} else
7774 		mddev->curr_resync = 3; /* no longer delayed */
7775 	mddev->curr_resync_completed = j;
7776 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7777 	md_new_event(mddev);
7778 	update_time = jiffies;
7779 
7780 	if (mddev_is_clustered(mddev))
7781 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7782 
7783 	blk_start_plug(&plug);
7784 	while (j < max_sectors) {
7785 		sector_t sectors;
7786 
7787 		skipped = 0;
7788 
7789 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7790 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7791 		      (mddev->curr_resync - mddev->curr_resync_completed)
7792 		      > (max_sectors >> 4)) ||
7793 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7794 		     (j - mddev->curr_resync_completed)*2
7795 		     >= mddev->resync_max - mddev->curr_resync_completed
7796 			    )) {
7797 			/* time to update curr_resync_completed */
7798 			wait_event(mddev->recovery_wait,
7799 				   atomic_read(&mddev->recovery_active) == 0);
7800 			mddev->curr_resync_completed = j;
7801 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7802 			    j > mddev->recovery_cp)
7803 				mddev->recovery_cp = j;
7804 			update_time = jiffies;
7805 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7806 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7807 		}
7808 
7809 		while (j >= mddev->resync_max &&
7810 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7811 			/* As this condition is controlled by user-space,
7812 			 * we can block indefinitely, so use '_interruptible'
7813 			 * to avoid triggering warnings.
7814 			 */
7815 			flush_signals(current); /* just in case */
7816 			wait_event_interruptible(mddev->recovery_wait,
7817 						 mddev->resync_max > j
7818 						 || test_bit(MD_RECOVERY_INTR,
7819 							     &mddev->recovery));
7820 		}
7821 
7822 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7823 			break;
7824 
7825 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7826 		if (sectors == 0) {
7827 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7828 			break;
7829 		}
7830 
7831 		if (!skipped) { /* actual IO requested */
7832 			io_sectors += sectors;
7833 			atomic_add(sectors, &mddev->recovery_active);
7834 		}
7835 
7836 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7837 			break;
7838 
7839 		j += sectors;
7840 		if (j > 2)
7841 			mddev->curr_resync = j;
7842 		if (mddev_is_clustered(mddev))
7843 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7844 		mddev->curr_mark_cnt = io_sectors;
7845 		if (last_check == 0)
7846 			/* this is the earliest that rebuild will be
7847 			 * visible in /proc/mdstat
7848 			 */
7849 			md_new_event(mddev);
7850 
7851 		if (last_check + window > io_sectors || j == max_sectors)
7852 			continue;
7853 
7854 		last_check = io_sectors;
7855 	repeat:
7856 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7857 			/* step marks */
7858 			int next = (last_mark+1) % SYNC_MARKS;
7859 
7860 			mddev->resync_mark = mark[next];
7861 			mddev->resync_mark_cnt = mark_cnt[next];
7862 			mark[next] = jiffies;
7863 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7864 			last_mark = next;
7865 		}
7866 
7867 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7868 			break;
7869 
7870 		/*
7871 		 * this loop exits only if either when we are slower than
7872 		 * the 'hard' speed limit, or the system was IO-idle for
7873 		 * a jiffy.
7874 		 * the system might be non-idle CPU-wise, but we only care
7875 		 * about not overloading the IO subsystem. (things like an
7876 		 * e2fsck being done on the RAID array should execute fast)
7877 		 */
7878 		cond_resched();
7879 
7880 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7881 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7882 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7883 
7884 		if (currspeed > speed_min(mddev)) {
7885 			if (currspeed > speed_max(mddev)) {
7886 				msleep(500);
7887 				goto repeat;
7888 			}
7889 			if (!is_mddev_idle(mddev, 0)) {
7890 				/*
7891 				 * Give other IO more of a chance.
7892 				 * The faster the devices, the less we wait.
7893 				 */
7894 				wait_event(mddev->recovery_wait,
7895 					   !atomic_read(&mddev->recovery_active));
7896 			}
7897 		}
7898 	}
7899 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7900 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7901 	       ? "interrupted" : "done");
7902 	/*
7903 	 * this also signals 'finished resyncing' to md_stop
7904 	 */
7905 	blk_finish_plug(&plug);
7906 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7907 
7908 	/* tell personality that we are finished */
7909 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7910 
7911 	if (mddev_is_clustered(mddev))
7912 		md_cluster_ops->resync_finish(mddev);
7913 
7914 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7915 	    mddev->curr_resync > 2) {
7916 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7917 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7918 				if (mddev->curr_resync >= mddev->recovery_cp) {
7919 					printk(KERN_INFO
7920 					       "md: checkpointing %s of %s.\n",
7921 					       desc, mdname(mddev));
7922 					if (test_bit(MD_RECOVERY_ERROR,
7923 						&mddev->recovery))
7924 						mddev->recovery_cp =
7925 							mddev->curr_resync_completed;
7926 					else
7927 						mddev->recovery_cp =
7928 							mddev->curr_resync;
7929 				}
7930 			} else
7931 				mddev->recovery_cp = MaxSector;
7932 		} else {
7933 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7934 				mddev->curr_resync = MaxSector;
7935 			rcu_read_lock();
7936 			rdev_for_each_rcu(rdev, mddev)
7937 				if (rdev->raid_disk >= 0 &&
7938 				    mddev->delta_disks >= 0 &&
7939 				    !test_bit(Faulty, &rdev->flags) &&
7940 				    !test_bit(In_sync, &rdev->flags) &&
7941 				    rdev->recovery_offset < mddev->curr_resync)
7942 					rdev->recovery_offset = mddev->curr_resync;
7943 			rcu_read_unlock();
7944 		}
7945 	}
7946  skip:
7947 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7948 
7949 	spin_lock(&mddev->lock);
7950 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7951 		/* We completed so min/max setting can be forgotten if used. */
7952 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7953 			mddev->resync_min = 0;
7954 		mddev->resync_max = MaxSector;
7955 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7956 		mddev->resync_min = mddev->curr_resync_completed;
7957 	mddev->curr_resync = 0;
7958 	spin_unlock(&mddev->lock);
7959 
7960 	wake_up(&resync_wait);
7961 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7962 	md_wakeup_thread(mddev->thread);
7963 	return;
7964 }
7965 EXPORT_SYMBOL_GPL(md_do_sync);
7966 
7967 static int remove_and_add_spares(struct mddev *mddev,
7968 				 struct md_rdev *this)
7969 {
7970 	struct md_rdev *rdev;
7971 	int spares = 0;
7972 	int removed = 0;
7973 
7974 	rdev_for_each(rdev, mddev)
7975 		if ((this == NULL || rdev == this) &&
7976 		    rdev->raid_disk >= 0 &&
7977 		    !test_bit(Blocked, &rdev->flags) &&
7978 		    (test_bit(Faulty, &rdev->flags) ||
7979 		     ! test_bit(In_sync, &rdev->flags)) &&
7980 		    atomic_read(&rdev->nr_pending)==0) {
7981 			if (mddev->pers->hot_remove_disk(
7982 				    mddev, rdev) == 0) {
7983 				sysfs_unlink_rdev(mddev, rdev);
7984 				rdev->raid_disk = -1;
7985 				removed++;
7986 			}
7987 		}
7988 	if (removed && mddev->kobj.sd)
7989 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7990 
7991 	if (this)
7992 		goto no_add;
7993 
7994 	rdev_for_each(rdev, mddev) {
7995 		if (rdev->raid_disk >= 0 &&
7996 		    !test_bit(In_sync, &rdev->flags) &&
7997 		    !test_bit(Faulty, &rdev->flags))
7998 			spares++;
7999 		if (rdev->raid_disk >= 0)
8000 			continue;
8001 		if (test_bit(Faulty, &rdev->flags))
8002 			continue;
8003 		if (mddev->ro &&
8004 		    ! (rdev->saved_raid_disk >= 0 &&
8005 		       !test_bit(Bitmap_sync, &rdev->flags)))
8006 			continue;
8007 
8008 		if (rdev->saved_raid_disk < 0)
8009 			rdev->recovery_offset = 0;
8010 		if (mddev->pers->
8011 		    hot_add_disk(mddev, rdev) == 0) {
8012 			if (sysfs_link_rdev(mddev, rdev))
8013 				/* failure here is OK */;
8014 			spares++;
8015 			md_new_event(mddev);
8016 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8017 		}
8018 	}
8019 no_add:
8020 	if (removed)
8021 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8022 	return spares;
8023 }
8024 
8025 static void md_start_sync(struct work_struct *ws)
8026 {
8027 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8028 
8029 	mddev->sync_thread = md_register_thread(md_do_sync,
8030 						mddev,
8031 						"resync");
8032 	if (!mddev->sync_thread) {
8033 		printk(KERN_ERR "%s: could not start resync"
8034 		       " thread...\n",
8035 		       mdname(mddev));
8036 		/* leave the spares where they are, it shouldn't hurt */
8037 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8038 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8039 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8040 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8041 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8042 		wake_up(&resync_wait);
8043 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8044 				       &mddev->recovery))
8045 			if (mddev->sysfs_action)
8046 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8047 	} else
8048 		md_wakeup_thread(mddev->sync_thread);
8049 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8050 	md_new_event(mddev);
8051 }
8052 
8053 /*
8054  * This routine is regularly called by all per-raid-array threads to
8055  * deal with generic issues like resync and super-block update.
8056  * Raid personalities that don't have a thread (linear/raid0) do not
8057  * need this as they never do any recovery or update the superblock.
8058  *
8059  * It does not do any resync itself, but rather "forks" off other threads
8060  * to do that as needed.
8061  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8062  * "->recovery" and create a thread at ->sync_thread.
8063  * When the thread finishes it sets MD_RECOVERY_DONE
8064  * and wakeups up this thread which will reap the thread and finish up.
8065  * This thread also removes any faulty devices (with nr_pending == 0).
8066  *
8067  * The overall approach is:
8068  *  1/ if the superblock needs updating, update it.
8069  *  2/ If a recovery thread is running, don't do anything else.
8070  *  3/ If recovery has finished, clean up, possibly marking spares active.
8071  *  4/ If there are any faulty devices, remove them.
8072  *  5/ If array is degraded, try to add spares devices
8073  *  6/ If array has spares or is not in-sync, start a resync thread.
8074  */
8075 void md_check_recovery(struct mddev *mddev)
8076 {
8077 	if (mddev->suspended)
8078 		return;
8079 
8080 	if (mddev->bitmap)
8081 		bitmap_daemon_work(mddev);
8082 
8083 	if (signal_pending(current)) {
8084 		if (mddev->pers->sync_request && !mddev->external) {
8085 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8086 			       mdname(mddev));
8087 			mddev->safemode = 2;
8088 		}
8089 		flush_signals(current);
8090 	}
8091 
8092 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8093 		return;
8094 	if ( ! (
8095 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8096 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8097 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8098 		(mddev->external == 0 && mddev->safemode == 1) ||
8099 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8100 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8101 		))
8102 		return;
8103 
8104 	if (mddev_trylock(mddev)) {
8105 		int spares = 0;
8106 
8107 		if (mddev->ro) {
8108 			/* On a read-only array we can:
8109 			 * - remove failed devices
8110 			 * - add already-in_sync devices if the array itself
8111 			 *   is in-sync.
8112 			 * As we only add devices that are already in-sync,
8113 			 * we can activate the spares immediately.
8114 			 */
8115 			remove_and_add_spares(mddev, NULL);
8116 			/* There is no thread, but we need to call
8117 			 * ->spare_active and clear saved_raid_disk
8118 			 */
8119 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8120 			md_reap_sync_thread(mddev);
8121 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8122 			goto unlock;
8123 		}
8124 
8125 		if (!mddev->external) {
8126 			int did_change = 0;
8127 			spin_lock(&mddev->lock);
8128 			if (mddev->safemode &&
8129 			    !atomic_read(&mddev->writes_pending) &&
8130 			    !mddev->in_sync &&
8131 			    mddev->recovery_cp == MaxSector) {
8132 				mddev->in_sync = 1;
8133 				did_change = 1;
8134 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8135 			}
8136 			if (mddev->safemode == 1)
8137 				mddev->safemode = 0;
8138 			spin_unlock(&mddev->lock);
8139 			if (did_change)
8140 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8141 		}
8142 
8143 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8144 			if (mddev_is_clustered(mddev))
8145 				md_cluster_ops->metadata_update_start(mddev);
8146 			md_update_sb(mddev, 0);
8147 			if (mddev_is_clustered(mddev))
8148 				md_cluster_ops->metadata_update_finish(mddev);
8149 		}
8150 
8151 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8152 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8153 			/* resync/recovery still happening */
8154 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8155 			goto unlock;
8156 		}
8157 		if (mddev->sync_thread) {
8158 			md_reap_sync_thread(mddev);
8159 			goto unlock;
8160 		}
8161 		/* Set RUNNING before clearing NEEDED to avoid
8162 		 * any transients in the value of "sync_action".
8163 		 */
8164 		mddev->curr_resync_completed = 0;
8165 		spin_lock(&mddev->lock);
8166 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8167 		spin_unlock(&mddev->lock);
8168 		/* Clear some bits that don't mean anything, but
8169 		 * might be left set
8170 		 */
8171 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8172 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8173 
8174 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8175 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8176 			goto not_running;
8177 		/* no recovery is running.
8178 		 * remove any failed drives, then
8179 		 * add spares if possible.
8180 		 * Spares are also removed and re-added, to allow
8181 		 * the personality to fail the re-add.
8182 		 */
8183 
8184 		if (mddev->reshape_position != MaxSector) {
8185 			if (mddev->pers->check_reshape == NULL ||
8186 			    mddev->pers->check_reshape(mddev) != 0)
8187 				/* Cannot proceed */
8188 				goto not_running;
8189 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8190 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8191 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8192 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8193 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8194 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8195 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8196 		} else if (mddev->recovery_cp < MaxSector) {
8197 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8198 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8199 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8200 			/* nothing to be done ... */
8201 			goto not_running;
8202 
8203 		if (mddev->pers->sync_request) {
8204 			if (spares) {
8205 				/* We are adding a device or devices to an array
8206 				 * which has the bitmap stored on all devices.
8207 				 * So make sure all bitmap pages get written
8208 				 */
8209 				bitmap_write_all(mddev->bitmap);
8210 			}
8211 			INIT_WORK(&mddev->del_work, md_start_sync);
8212 			queue_work(md_misc_wq, &mddev->del_work);
8213 			goto unlock;
8214 		}
8215 	not_running:
8216 		if (!mddev->sync_thread) {
8217 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8218 			wake_up(&resync_wait);
8219 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8220 					       &mddev->recovery))
8221 				if (mddev->sysfs_action)
8222 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8223 		}
8224 	unlock:
8225 		wake_up(&mddev->sb_wait);
8226 		mddev_unlock(mddev);
8227 	}
8228 }
8229 EXPORT_SYMBOL(md_check_recovery);
8230 
8231 void md_reap_sync_thread(struct mddev *mddev)
8232 {
8233 	struct md_rdev *rdev;
8234 
8235 	/* resync has finished, collect result */
8236 	md_unregister_thread(&mddev->sync_thread);
8237 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8238 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8239 		/* success...*/
8240 		/* activate any spares */
8241 		if (mddev->pers->spare_active(mddev)) {
8242 			sysfs_notify(&mddev->kobj, NULL,
8243 				     "degraded");
8244 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8245 		}
8246 	}
8247 	if (mddev_is_clustered(mddev))
8248 		md_cluster_ops->metadata_update_start(mddev);
8249 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8250 	    mddev->pers->finish_reshape)
8251 		mddev->pers->finish_reshape(mddev);
8252 
8253 	/* If array is no-longer degraded, then any saved_raid_disk
8254 	 * information must be scrapped.
8255 	 */
8256 	if (!mddev->degraded)
8257 		rdev_for_each(rdev, mddev)
8258 			rdev->saved_raid_disk = -1;
8259 
8260 	md_update_sb(mddev, 1);
8261 	if (mddev_is_clustered(mddev))
8262 		md_cluster_ops->metadata_update_finish(mddev);
8263 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8264 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8265 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8266 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8267 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8268 	wake_up(&resync_wait);
8269 	/* flag recovery needed just to double check */
8270 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8271 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8272 	md_new_event(mddev);
8273 	if (mddev->event_work.func)
8274 		queue_work(md_misc_wq, &mddev->event_work);
8275 }
8276 EXPORT_SYMBOL(md_reap_sync_thread);
8277 
8278 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8279 {
8280 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8281 	wait_event_timeout(rdev->blocked_wait,
8282 			   !test_bit(Blocked, &rdev->flags) &&
8283 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8284 			   msecs_to_jiffies(5000));
8285 	rdev_dec_pending(rdev, mddev);
8286 }
8287 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8288 
8289 void md_finish_reshape(struct mddev *mddev)
8290 {
8291 	/* called be personality module when reshape completes. */
8292 	struct md_rdev *rdev;
8293 
8294 	rdev_for_each(rdev, mddev) {
8295 		if (rdev->data_offset > rdev->new_data_offset)
8296 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8297 		else
8298 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8299 		rdev->data_offset = rdev->new_data_offset;
8300 	}
8301 }
8302 EXPORT_SYMBOL(md_finish_reshape);
8303 
8304 /* Bad block management.
8305  * We can record which blocks on each device are 'bad' and so just
8306  * fail those blocks, or that stripe, rather than the whole device.
8307  * Entries in the bad-block table are 64bits wide.  This comprises:
8308  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8309  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8310  *  A 'shift' can be set so that larger blocks are tracked and
8311  *  consequently larger devices can be covered.
8312  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8313  *
8314  * Locking of the bad-block table uses a seqlock so md_is_badblock
8315  * might need to retry if it is very unlucky.
8316  * We will sometimes want to check for bad blocks in a bi_end_io function,
8317  * so we use the write_seqlock_irq variant.
8318  *
8319  * When looking for a bad block we specify a range and want to
8320  * know if any block in the range is bad.  So we binary-search
8321  * to the last range that starts at-or-before the given endpoint,
8322  * (or "before the sector after the target range")
8323  * then see if it ends after the given start.
8324  * We return
8325  *  0 if there are no known bad blocks in the range
8326  *  1 if there are known bad block which are all acknowledged
8327  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8328  * plus the start/length of the first bad section we overlap.
8329  */
8330 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8331 		   sector_t *first_bad, int *bad_sectors)
8332 {
8333 	int hi;
8334 	int lo;
8335 	u64 *p = bb->page;
8336 	int rv;
8337 	sector_t target = s + sectors;
8338 	unsigned seq;
8339 
8340 	if (bb->shift > 0) {
8341 		/* round the start down, and the end up */
8342 		s >>= bb->shift;
8343 		target += (1<<bb->shift) - 1;
8344 		target >>= bb->shift;
8345 		sectors = target - s;
8346 	}
8347 	/* 'target' is now the first block after the bad range */
8348 
8349 retry:
8350 	seq = read_seqbegin(&bb->lock);
8351 	lo = 0;
8352 	rv = 0;
8353 	hi = bb->count;
8354 
8355 	/* Binary search between lo and hi for 'target'
8356 	 * i.e. for the last range that starts before 'target'
8357 	 */
8358 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8359 	 * are known not to be the last range before target.
8360 	 * VARIANT: hi-lo is the number of possible
8361 	 * ranges, and decreases until it reaches 1
8362 	 */
8363 	while (hi - lo > 1) {
8364 		int mid = (lo + hi) / 2;
8365 		sector_t a = BB_OFFSET(p[mid]);
8366 		if (a < target)
8367 			/* This could still be the one, earlier ranges
8368 			 * could not. */
8369 			lo = mid;
8370 		else
8371 			/* This and later ranges are definitely out. */
8372 			hi = mid;
8373 	}
8374 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8375 	if (hi > lo) {
8376 		/* need to check all range that end after 's' to see if
8377 		 * any are unacknowledged.
8378 		 */
8379 		while (lo >= 0 &&
8380 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8381 			if (BB_OFFSET(p[lo]) < target) {
8382 				/* starts before the end, and finishes after
8383 				 * the start, so they must overlap
8384 				 */
8385 				if (rv != -1 && BB_ACK(p[lo]))
8386 					rv = 1;
8387 				else
8388 					rv = -1;
8389 				*first_bad = BB_OFFSET(p[lo]);
8390 				*bad_sectors = BB_LEN(p[lo]);
8391 			}
8392 			lo--;
8393 		}
8394 	}
8395 
8396 	if (read_seqretry(&bb->lock, seq))
8397 		goto retry;
8398 
8399 	return rv;
8400 }
8401 EXPORT_SYMBOL_GPL(md_is_badblock);
8402 
8403 /*
8404  * Add a range of bad blocks to the table.
8405  * This might extend the table, or might contract it
8406  * if two adjacent ranges can be merged.
8407  * We binary-search to find the 'insertion' point, then
8408  * decide how best to handle it.
8409  */
8410 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8411 			    int acknowledged)
8412 {
8413 	u64 *p;
8414 	int lo, hi;
8415 	int rv = 1;
8416 	unsigned long flags;
8417 
8418 	if (bb->shift < 0)
8419 		/* badblocks are disabled */
8420 		return 0;
8421 
8422 	if (bb->shift) {
8423 		/* round the start down, and the end up */
8424 		sector_t next = s + sectors;
8425 		s >>= bb->shift;
8426 		next += (1<<bb->shift) - 1;
8427 		next >>= bb->shift;
8428 		sectors = next - s;
8429 	}
8430 
8431 	write_seqlock_irqsave(&bb->lock, flags);
8432 
8433 	p = bb->page;
8434 	lo = 0;
8435 	hi = bb->count;
8436 	/* Find the last range that starts at-or-before 's' */
8437 	while (hi - lo > 1) {
8438 		int mid = (lo + hi) / 2;
8439 		sector_t a = BB_OFFSET(p[mid]);
8440 		if (a <= s)
8441 			lo = mid;
8442 		else
8443 			hi = mid;
8444 	}
8445 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8446 		hi = lo;
8447 
8448 	if (hi > lo) {
8449 		/* we found a range that might merge with the start
8450 		 * of our new range
8451 		 */
8452 		sector_t a = BB_OFFSET(p[lo]);
8453 		sector_t e = a + BB_LEN(p[lo]);
8454 		int ack = BB_ACK(p[lo]);
8455 		if (e >= s) {
8456 			/* Yes, we can merge with a previous range */
8457 			if (s == a && s + sectors >= e)
8458 				/* new range covers old */
8459 				ack = acknowledged;
8460 			else
8461 				ack = ack && acknowledged;
8462 
8463 			if (e < s + sectors)
8464 				e = s + sectors;
8465 			if (e - a <= BB_MAX_LEN) {
8466 				p[lo] = BB_MAKE(a, e-a, ack);
8467 				s = e;
8468 			} else {
8469 				/* does not all fit in one range,
8470 				 * make p[lo] maximal
8471 				 */
8472 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8473 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8474 				s = a + BB_MAX_LEN;
8475 			}
8476 			sectors = e - s;
8477 		}
8478 	}
8479 	if (sectors && hi < bb->count) {
8480 		/* 'hi' points to the first range that starts after 's'.
8481 		 * Maybe we can merge with the start of that range */
8482 		sector_t a = BB_OFFSET(p[hi]);
8483 		sector_t e = a + BB_LEN(p[hi]);
8484 		int ack = BB_ACK(p[hi]);
8485 		if (a <= s + sectors) {
8486 			/* merging is possible */
8487 			if (e <= s + sectors) {
8488 				/* full overlap */
8489 				e = s + sectors;
8490 				ack = acknowledged;
8491 			} else
8492 				ack = ack && acknowledged;
8493 
8494 			a = s;
8495 			if (e - a <= BB_MAX_LEN) {
8496 				p[hi] = BB_MAKE(a, e-a, ack);
8497 				s = e;
8498 			} else {
8499 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8500 				s = a + BB_MAX_LEN;
8501 			}
8502 			sectors = e - s;
8503 			lo = hi;
8504 			hi++;
8505 		}
8506 	}
8507 	if (sectors == 0 && hi < bb->count) {
8508 		/* we might be able to combine lo and hi */
8509 		/* Note: 's' is at the end of 'lo' */
8510 		sector_t a = BB_OFFSET(p[hi]);
8511 		int lolen = BB_LEN(p[lo]);
8512 		int hilen = BB_LEN(p[hi]);
8513 		int newlen = lolen + hilen - (s - a);
8514 		if (s >= a && newlen < BB_MAX_LEN) {
8515 			/* yes, we can combine them */
8516 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8517 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8518 			memmove(p + hi, p + hi + 1,
8519 				(bb->count - hi - 1) * 8);
8520 			bb->count--;
8521 		}
8522 	}
8523 	while (sectors) {
8524 		/* didn't merge (it all).
8525 		 * Need to add a range just before 'hi' */
8526 		if (bb->count >= MD_MAX_BADBLOCKS) {
8527 			/* No room for more */
8528 			rv = 0;
8529 			break;
8530 		} else {
8531 			int this_sectors = sectors;
8532 			memmove(p + hi + 1, p + hi,
8533 				(bb->count - hi) * 8);
8534 			bb->count++;
8535 
8536 			if (this_sectors > BB_MAX_LEN)
8537 				this_sectors = BB_MAX_LEN;
8538 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8539 			sectors -= this_sectors;
8540 			s += this_sectors;
8541 		}
8542 	}
8543 
8544 	bb->changed = 1;
8545 	if (!acknowledged)
8546 		bb->unacked_exist = 1;
8547 	write_sequnlock_irqrestore(&bb->lock, flags);
8548 
8549 	return rv;
8550 }
8551 
8552 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8553 		       int is_new)
8554 {
8555 	int rv;
8556 	if (is_new)
8557 		s += rdev->new_data_offset;
8558 	else
8559 		s += rdev->data_offset;
8560 	rv = md_set_badblocks(&rdev->badblocks,
8561 			      s, sectors, 0);
8562 	if (rv) {
8563 		/* Make sure they get written out promptly */
8564 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8565 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8566 		md_wakeup_thread(rdev->mddev->thread);
8567 	}
8568 	return rv;
8569 }
8570 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8571 
8572 /*
8573  * Remove a range of bad blocks from the table.
8574  * This may involve extending the table if we spilt a region,
8575  * but it must not fail.  So if the table becomes full, we just
8576  * drop the remove request.
8577  */
8578 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8579 {
8580 	u64 *p;
8581 	int lo, hi;
8582 	sector_t target = s + sectors;
8583 	int rv = 0;
8584 
8585 	if (bb->shift > 0) {
8586 		/* When clearing we round the start up and the end down.
8587 		 * This should not matter as the shift should align with
8588 		 * the block size and no rounding should ever be needed.
8589 		 * However it is better the think a block is bad when it
8590 		 * isn't than to think a block is not bad when it is.
8591 		 */
8592 		s += (1<<bb->shift) - 1;
8593 		s >>= bb->shift;
8594 		target >>= bb->shift;
8595 		sectors = target - s;
8596 	}
8597 
8598 	write_seqlock_irq(&bb->lock);
8599 
8600 	p = bb->page;
8601 	lo = 0;
8602 	hi = bb->count;
8603 	/* Find the last range that starts before 'target' */
8604 	while (hi - lo > 1) {
8605 		int mid = (lo + hi) / 2;
8606 		sector_t a = BB_OFFSET(p[mid]);
8607 		if (a < target)
8608 			lo = mid;
8609 		else
8610 			hi = mid;
8611 	}
8612 	if (hi > lo) {
8613 		/* p[lo] is the last range that could overlap the
8614 		 * current range.  Earlier ranges could also overlap,
8615 		 * but only this one can overlap the end of the range.
8616 		 */
8617 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8618 			/* Partial overlap, leave the tail of this range */
8619 			int ack = BB_ACK(p[lo]);
8620 			sector_t a = BB_OFFSET(p[lo]);
8621 			sector_t end = a + BB_LEN(p[lo]);
8622 
8623 			if (a < s) {
8624 				/* we need to split this range */
8625 				if (bb->count >= MD_MAX_BADBLOCKS) {
8626 					rv = -ENOSPC;
8627 					goto out;
8628 				}
8629 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8630 				bb->count++;
8631 				p[lo] = BB_MAKE(a, s-a, ack);
8632 				lo++;
8633 			}
8634 			p[lo] = BB_MAKE(target, end - target, ack);
8635 			/* there is no longer an overlap */
8636 			hi = lo;
8637 			lo--;
8638 		}
8639 		while (lo >= 0 &&
8640 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8641 			/* This range does overlap */
8642 			if (BB_OFFSET(p[lo]) < s) {
8643 				/* Keep the early parts of this range. */
8644 				int ack = BB_ACK(p[lo]);
8645 				sector_t start = BB_OFFSET(p[lo]);
8646 				p[lo] = BB_MAKE(start, s - start, ack);
8647 				/* now low doesn't overlap, so.. */
8648 				break;
8649 			}
8650 			lo--;
8651 		}
8652 		/* 'lo' is strictly before, 'hi' is strictly after,
8653 		 * anything between needs to be discarded
8654 		 */
8655 		if (hi - lo > 1) {
8656 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8657 			bb->count -= (hi - lo - 1);
8658 		}
8659 	}
8660 
8661 	bb->changed = 1;
8662 out:
8663 	write_sequnlock_irq(&bb->lock);
8664 	return rv;
8665 }
8666 
8667 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8668 			 int is_new)
8669 {
8670 	if (is_new)
8671 		s += rdev->new_data_offset;
8672 	else
8673 		s += rdev->data_offset;
8674 	return md_clear_badblocks(&rdev->badblocks,
8675 				  s, sectors);
8676 }
8677 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8678 
8679 /*
8680  * Acknowledge all bad blocks in a list.
8681  * This only succeeds if ->changed is clear.  It is used by
8682  * in-kernel metadata updates
8683  */
8684 void md_ack_all_badblocks(struct badblocks *bb)
8685 {
8686 	if (bb->page == NULL || bb->changed)
8687 		/* no point even trying */
8688 		return;
8689 	write_seqlock_irq(&bb->lock);
8690 
8691 	if (bb->changed == 0 && bb->unacked_exist) {
8692 		u64 *p = bb->page;
8693 		int i;
8694 		for (i = 0; i < bb->count ; i++) {
8695 			if (!BB_ACK(p[i])) {
8696 				sector_t start = BB_OFFSET(p[i]);
8697 				int len = BB_LEN(p[i]);
8698 				p[i] = BB_MAKE(start, len, 1);
8699 			}
8700 		}
8701 		bb->unacked_exist = 0;
8702 	}
8703 	write_sequnlock_irq(&bb->lock);
8704 }
8705 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8706 
8707 /* sysfs access to bad-blocks list.
8708  * We present two files.
8709  * 'bad-blocks' lists sector numbers and lengths of ranges that
8710  *    are recorded as bad.  The list is truncated to fit within
8711  *    the one-page limit of sysfs.
8712  *    Writing "sector length" to this file adds an acknowledged
8713  *    bad block list.
8714  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8715  *    been acknowledged.  Writing to this file adds bad blocks
8716  *    without acknowledging them.  This is largely for testing.
8717  */
8718 
8719 static ssize_t
8720 badblocks_show(struct badblocks *bb, char *page, int unack)
8721 {
8722 	size_t len;
8723 	int i;
8724 	u64 *p = bb->page;
8725 	unsigned seq;
8726 
8727 	if (bb->shift < 0)
8728 		return 0;
8729 
8730 retry:
8731 	seq = read_seqbegin(&bb->lock);
8732 
8733 	len = 0;
8734 	i = 0;
8735 
8736 	while (len < PAGE_SIZE && i < bb->count) {
8737 		sector_t s = BB_OFFSET(p[i]);
8738 		unsigned int length = BB_LEN(p[i]);
8739 		int ack = BB_ACK(p[i]);
8740 		i++;
8741 
8742 		if (unack && ack)
8743 			continue;
8744 
8745 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8746 				(unsigned long long)s << bb->shift,
8747 				length << bb->shift);
8748 	}
8749 	if (unack && len == 0)
8750 		bb->unacked_exist = 0;
8751 
8752 	if (read_seqretry(&bb->lock, seq))
8753 		goto retry;
8754 
8755 	return len;
8756 }
8757 
8758 #define DO_DEBUG 1
8759 
8760 static ssize_t
8761 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8762 {
8763 	unsigned long long sector;
8764 	int length;
8765 	char newline;
8766 #ifdef DO_DEBUG
8767 	/* Allow clearing via sysfs *only* for testing/debugging.
8768 	 * Normally only a successful write may clear a badblock
8769 	 */
8770 	int clear = 0;
8771 	if (page[0] == '-') {
8772 		clear = 1;
8773 		page++;
8774 	}
8775 #endif /* DO_DEBUG */
8776 
8777 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8778 	case 3:
8779 		if (newline != '\n')
8780 			return -EINVAL;
8781 	case 2:
8782 		if (length <= 0)
8783 			return -EINVAL;
8784 		break;
8785 	default:
8786 		return -EINVAL;
8787 	}
8788 
8789 #ifdef DO_DEBUG
8790 	if (clear) {
8791 		md_clear_badblocks(bb, sector, length);
8792 		return len;
8793 	}
8794 #endif /* DO_DEBUG */
8795 	if (md_set_badblocks(bb, sector, length, !unack))
8796 		return len;
8797 	else
8798 		return -ENOSPC;
8799 }
8800 
8801 static int md_notify_reboot(struct notifier_block *this,
8802 			    unsigned long code, void *x)
8803 {
8804 	struct list_head *tmp;
8805 	struct mddev *mddev;
8806 	int need_delay = 0;
8807 
8808 	for_each_mddev(mddev, tmp) {
8809 		if (mddev_trylock(mddev)) {
8810 			if (mddev->pers)
8811 				__md_stop_writes(mddev);
8812 			if (mddev->persistent)
8813 				mddev->safemode = 2;
8814 			mddev_unlock(mddev);
8815 		}
8816 		need_delay = 1;
8817 	}
8818 	/*
8819 	 * certain more exotic SCSI devices are known to be
8820 	 * volatile wrt too early system reboots. While the
8821 	 * right place to handle this issue is the given
8822 	 * driver, we do want to have a safe RAID driver ...
8823 	 */
8824 	if (need_delay)
8825 		mdelay(1000*1);
8826 
8827 	return NOTIFY_DONE;
8828 }
8829 
8830 static struct notifier_block md_notifier = {
8831 	.notifier_call	= md_notify_reboot,
8832 	.next		= NULL,
8833 	.priority	= INT_MAX, /* before any real devices */
8834 };
8835 
8836 static void md_geninit(void)
8837 {
8838 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8839 
8840 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8841 }
8842 
8843 static int __init md_init(void)
8844 {
8845 	int ret = -ENOMEM;
8846 
8847 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8848 	if (!md_wq)
8849 		goto err_wq;
8850 
8851 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8852 	if (!md_misc_wq)
8853 		goto err_misc_wq;
8854 
8855 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8856 		goto err_md;
8857 
8858 	if ((ret = register_blkdev(0, "mdp")) < 0)
8859 		goto err_mdp;
8860 	mdp_major = ret;
8861 
8862 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8863 			    md_probe, NULL, NULL);
8864 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8865 			    md_probe, NULL, NULL);
8866 
8867 	register_reboot_notifier(&md_notifier);
8868 	raid_table_header = register_sysctl_table(raid_root_table);
8869 
8870 	md_geninit();
8871 	return 0;
8872 
8873 err_mdp:
8874 	unregister_blkdev(MD_MAJOR, "md");
8875 err_md:
8876 	destroy_workqueue(md_misc_wq);
8877 err_misc_wq:
8878 	destroy_workqueue(md_wq);
8879 err_wq:
8880 	return ret;
8881 }
8882 
8883 void md_reload_sb(struct mddev *mddev)
8884 {
8885 	struct md_rdev *rdev, *tmp;
8886 
8887 	rdev_for_each_safe(rdev, tmp, mddev) {
8888 		rdev->sb_loaded = 0;
8889 		ClearPageUptodate(rdev->sb_page);
8890 	}
8891 	mddev->raid_disks = 0;
8892 	analyze_sbs(mddev);
8893 	rdev_for_each_safe(rdev, tmp, mddev) {
8894 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8895 		/* since we don't write to faulty devices, we figure out if the
8896 		 *  disk is faulty by comparing events
8897 		 */
8898 		if (mddev->events > sb->events)
8899 			set_bit(Faulty, &rdev->flags);
8900 	}
8901 
8902 }
8903 EXPORT_SYMBOL(md_reload_sb);
8904 
8905 #ifndef MODULE
8906 
8907 /*
8908  * Searches all registered partitions for autorun RAID arrays
8909  * at boot time.
8910  */
8911 
8912 static LIST_HEAD(all_detected_devices);
8913 struct detected_devices_node {
8914 	struct list_head list;
8915 	dev_t dev;
8916 };
8917 
8918 void md_autodetect_dev(dev_t dev)
8919 {
8920 	struct detected_devices_node *node_detected_dev;
8921 
8922 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8923 	if (node_detected_dev) {
8924 		node_detected_dev->dev = dev;
8925 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8926 	} else {
8927 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8928 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8929 	}
8930 }
8931 
8932 static void autostart_arrays(int part)
8933 {
8934 	struct md_rdev *rdev;
8935 	struct detected_devices_node *node_detected_dev;
8936 	dev_t dev;
8937 	int i_scanned, i_passed;
8938 
8939 	i_scanned = 0;
8940 	i_passed = 0;
8941 
8942 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8943 
8944 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8945 		i_scanned++;
8946 		node_detected_dev = list_entry(all_detected_devices.next,
8947 					struct detected_devices_node, list);
8948 		list_del(&node_detected_dev->list);
8949 		dev = node_detected_dev->dev;
8950 		kfree(node_detected_dev);
8951 		rdev = md_import_device(dev,0, 90);
8952 		if (IS_ERR(rdev))
8953 			continue;
8954 
8955 		if (test_bit(Faulty, &rdev->flags))
8956 			continue;
8957 
8958 		set_bit(AutoDetected, &rdev->flags);
8959 		list_add(&rdev->same_set, &pending_raid_disks);
8960 		i_passed++;
8961 	}
8962 
8963 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8964 						i_scanned, i_passed);
8965 
8966 	autorun_devices(part);
8967 }
8968 
8969 #endif /* !MODULE */
8970 
8971 static __exit void md_exit(void)
8972 {
8973 	struct mddev *mddev;
8974 	struct list_head *tmp;
8975 	int delay = 1;
8976 
8977 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8978 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8979 
8980 	unregister_blkdev(MD_MAJOR,"md");
8981 	unregister_blkdev(mdp_major, "mdp");
8982 	unregister_reboot_notifier(&md_notifier);
8983 	unregister_sysctl_table(raid_table_header);
8984 
8985 	/* We cannot unload the modules while some process is
8986 	 * waiting for us in select() or poll() - wake them up
8987 	 */
8988 	md_unloading = 1;
8989 	while (waitqueue_active(&md_event_waiters)) {
8990 		/* not safe to leave yet */
8991 		wake_up(&md_event_waiters);
8992 		msleep(delay);
8993 		delay += delay;
8994 	}
8995 	remove_proc_entry("mdstat", NULL);
8996 
8997 	for_each_mddev(mddev, tmp) {
8998 		export_array(mddev);
8999 		mddev->hold_active = 0;
9000 	}
9001 	destroy_workqueue(md_misc_wq);
9002 	destroy_workqueue(md_wq);
9003 }
9004 
9005 subsys_initcall(md_init);
9006 module_exit(md_exit)
9007 
9008 static int get_ro(char *buffer, struct kernel_param *kp)
9009 {
9010 	return sprintf(buffer, "%d", start_readonly);
9011 }
9012 static int set_ro(const char *val, struct kernel_param *kp)
9013 {
9014 	char *e;
9015 	int num = simple_strtoul(val, &e, 10);
9016 	if (*val && (*e == '\0' || *e == '\n')) {
9017 		start_readonly = num;
9018 		return 0;
9019 	}
9020 	return -EINVAL;
9021 }
9022 
9023 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9024 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9025 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9026 
9027 MODULE_LICENSE("GPL");
9028 MODULE_DESCRIPTION("MD RAID framework");
9029 MODULE_ALIAS("md");
9030 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9031