xref: /openbmc/linux/drivers/md/md.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65 
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70 
71 #ifndef MODULE
72 static void autostart_arrays(int part);
73 #endif
74 
75 /* pers_list is a list of registered personalities protected
76  * by pers_lock.
77  * pers_lock does extra service to protect accesses to
78  * mddev->thread when the mutex cannot be held.
79  */
80 static LIST_HEAD(pers_list);
81 static DEFINE_SPINLOCK(pers_lock);
82 
83 static struct kobj_type md_ktype;
84 
85 struct md_cluster_operations *md_cluster_ops;
86 EXPORT_SYMBOL(md_cluster_ops);
87 static struct module *md_cluster_mod;
88 
89 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
90 static struct workqueue_struct *md_wq;
91 static struct workqueue_struct *md_misc_wq;
92 static struct workqueue_struct *md_rdev_misc_wq;
93 
94 static int remove_and_add_spares(struct mddev *mddev,
95 				 struct md_rdev *this);
96 static void mddev_detach(struct mddev *mddev);
97 
98 /*
99  * Default number of read corrections we'll attempt on an rdev
100  * before ejecting it from the array. We divide the read error
101  * count by 2 for every hour elapsed between read errors.
102  */
103 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
104 /* Default safemode delay: 200 msec */
105 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
106 /*
107  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
108  * is 1000 KB/sec, so the extra system load does not show up that much.
109  * Increase it if you want to have more _guaranteed_ speed. Note that
110  * the RAID driver will use the maximum available bandwidth if the IO
111  * subsystem is idle. There is also an 'absolute maximum' reconstruction
112  * speed limit - in case reconstruction slows down your system despite
113  * idle IO detection.
114  *
115  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
116  * or /sys/block/mdX/md/sync_speed_{min,max}
117  */
118 
119 static int sysctl_speed_limit_min = 1000;
120 static int sysctl_speed_limit_max = 200000;
121 static inline int speed_min(struct mddev *mddev)
122 {
123 	return mddev->sync_speed_min ?
124 		mddev->sync_speed_min : sysctl_speed_limit_min;
125 }
126 
127 static inline int speed_max(struct mddev *mddev)
128 {
129 	return mddev->sync_speed_max ?
130 		mddev->sync_speed_max : sysctl_speed_limit_max;
131 }
132 
133 static void rdev_uninit_serial(struct md_rdev *rdev)
134 {
135 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
136 		return;
137 
138 	kvfree(rdev->serial);
139 	rdev->serial = NULL;
140 }
141 
142 static void rdevs_uninit_serial(struct mddev *mddev)
143 {
144 	struct md_rdev *rdev;
145 
146 	rdev_for_each(rdev, mddev)
147 		rdev_uninit_serial(rdev);
148 }
149 
150 static int rdev_init_serial(struct md_rdev *rdev)
151 {
152 	/* serial_nums equals with BARRIER_BUCKETS_NR */
153 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
154 	struct serial_in_rdev *serial = NULL;
155 
156 	if (test_bit(CollisionCheck, &rdev->flags))
157 		return 0;
158 
159 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
160 			  GFP_KERNEL);
161 	if (!serial)
162 		return -ENOMEM;
163 
164 	for (i = 0; i < serial_nums; i++) {
165 		struct serial_in_rdev *serial_tmp = &serial[i];
166 
167 		spin_lock_init(&serial_tmp->serial_lock);
168 		serial_tmp->serial_rb = RB_ROOT_CACHED;
169 		init_waitqueue_head(&serial_tmp->serial_io_wait);
170 	}
171 
172 	rdev->serial = serial;
173 	set_bit(CollisionCheck, &rdev->flags);
174 
175 	return 0;
176 }
177 
178 static int rdevs_init_serial(struct mddev *mddev)
179 {
180 	struct md_rdev *rdev;
181 	int ret = 0;
182 
183 	rdev_for_each(rdev, mddev) {
184 		ret = rdev_init_serial(rdev);
185 		if (ret)
186 			break;
187 	}
188 
189 	/* Free all resources if pool is not existed */
190 	if (ret && !mddev->serial_info_pool)
191 		rdevs_uninit_serial(mddev);
192 
193 	return ret;
194 }
195 
196 /*
197  * rdev needs to enable serial stuffs if it meets the conditions:
198  * 1. it is multi-queue device flaged with writemostly.
199  * 2. the write-behind mode is enabled.
200  */
201 static int rdev_need_serial(struct md_rdev *rdev)
202 {
203 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
204 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
205 		test_bit(WriteMostly, &rdev->flags));
206 }
207 
208 /*
209  * Init resource for rdev(s), then create serial_info_pool if:
210  * 1. rdev is the first device which return true from rdev_enable_serial.
211  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
212  */
213 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
214 			      bool is_suspend)
215 {
216 	int ret = 0;
217 
218 	if (rdev && !rdev_need_serial(rdev) &&
219 	    !test_bit(CollisionCheck, &rdev->flags))
220 		return;
221 
222 	if (!is_suspend)
223 		mddev_suspend(mddev);
224 
225 	if (!rdev)
226 		ret = rdevs_init_serial(mddev);
227 	else
228 		ret = rdev_init_serial(rdev);
229 	if (ret)
230 		goto abort;
231 
232 	if (mddev->serial_info_pool == NULL) {
233 		/*
234 		 * already in memalloc noio context by
235 		 * mddev_suspend()
236 		 */
237 		mddev->serial_info_pool =
238 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
239 						sizeof(struct serial_info));
240 		if (!mddev->serial_info_pool) {
241 			rdevs_uninit_serial(mddev);
242 			pr_err("can't alloc memory pool for serialization\n");
243 		}
244 	}
245 
246 abort:
247 	if (!is_suspend)
248 		mddev_resume(mddev);
249 }
250 
251 /*
252  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
253  * 1. rdev is the last device flaged with CollisionCheck.
254  * 2. when bitmap is destroyed while policy is not enabled.
255  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
256  */
257 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
258 			       bool is_suspend)
259 {
260 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
261 		return;
262 
263 	if (mddev->serial_info_pool) {
264 		struct md_rdev *temp;
265 		int num = 0; /* used to track if other rdevs need the pool */
266 
267 		if (!is_suspend)
268 			mddev_suspend(mddev);
269 		rdev_for_each(temp, mddev) {
270 			if (!rdev) {
271 				if (!mddev->serialize_policy ||
272 				    !rdev_need_serial(temp))
273 					rdev_uninit_serial(temp);
274 				else
275 					num++;
276 			} else if (temp != rdev &&
277 				   test_bit(CollisionCheck, &temp->flags))
278 				num++;
279 		}
280 
281 		if (rdev)
282 			rdev_uninit_serial(rdev);
283 
284 		if (num)
285 			pr_info("The mempool could be used by other devices\n");
286 		else {
287 			mempool_destroy(mddev->serial_info_pool);
288 			mddev->serial_info_pool = NULL;
289 		}
290 		if (!is_suspend)
291 			mddev_resume(mddev);
292 	}
293 }
294 
295 static struct ctl_table_header *raid_table_header;
296 
297 static struct ctl_table raid_table[] = {
298 	{
299 		.procname	= "speed_limit_min",
300 		.data		= &sysctl_speed_limit_min,
301 		.maxlen		= sizeof(int),
302 		.mode		= S_IRUGO|S_IWUSR,
303 		.proc_handler	= proc_dointvec,
304 	},
305 	{
306 		.procname	= "speed_limit_max",
307 		.data		= &sysctl_speed_limit_max,
308 		.maxlen		= sizeof(int),
309 		.mode		= S_IRUGO|S_IWUSR,
310 		.proc_handler	= proc_dointvec,
311 	},
312 	{ }
313 };
314 
315 static struct ctl_table raid_dir_table[] = {
316 	{
317 		.procname	= "raid",
318 		.maxlen		= 0,
319 		.mode		= S_IRUGO|S_IXUGO,
320 		.child		= raid_table,
321 	},
322 	{ }
323 };
324 
325 static struct ctl_table raid_root_table[] = {
326 	{
327 		.procname	= "dev",
328 		.maxlen		= 0,
329 		.mode		= 0555,
330 		.child		= raid_dir_table,
331 	},
332 	{  }
333 };
334 
335 static const struct block_device_operations md_fops;
336 
337 static int start_readonly;
338 
339 /*
340  * The original mechanism for creating an md device is to create
341  * a device node in /dev and to open it.  This causes races with device-close.
342  * The preferred method is to write to the "new_array" module parameter.
343  * This can avoid races.
344  * Setting create_on_open to false disables the original mechanism
345  * so all the races disappear.
346  */
347 static bool create_on_open = true;
348 
349 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
350 			    struct mddev *mddev)
351 {
352 	if (!mddev || !bioset_initialized(&mddev->bio_set))
353 		return bio_alloc(gfp_mask, nr_iovecs);
354 
355 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
356 }
357 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
358 
359 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
360 {
361 	if (!mddev || !bioset_initialized(&mddev->sync_set))
362 		return bio_alloc(GFP_NOIO, 1);
363 
364 	return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
365 }
366 
367 /*
368  * We have a system wide 'event count' that is incremented
369  * on any 'interesting' event, and readers of /proc/mdstat
370  * can use 'poll' or 'select' to find out when the event
371  * count increases.
372  *
373  * Events are:
374  *  start array, stop array, error, add device, remove device,
375  *  start build, activate spare
376  */
377 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
378 static atomic_t md_event_count;
379 void md_new_event(struct mddev *mddev)
380 {
381 	atomic_inc(&md_event_count);
382 	wake_up(&md_event_waiters);
383 }
384 EXPORT_SYMBOL_GPL(md_new_event);
385 
386 /*
387  * Enables to iterate over all existing md arrays
388  * all_mddevs_lock protects this list.
389  */
390 static LIST_HEAD(all_mddevs);
391 static DEFINE_SPINLOCK(all_mddevs_lock);
392 
393 /*
394  * iterates through all used mddevs in the system.
395  * We take care to grab the all_mddevs_lock whenever navigating
396  * the list, and to always hold a refcount when unlocked.
397  * Any code which breaks out of this loop while own
398  * a reference to the current mddev and must mddev_put it.
399  */
400 #define for_each_mddev(_mddev,_tmp)					\
401 									\
402 	for (({ spin_lock(&all_mddevs_lock);				\
403 		_tmp = all_mddevs.next;					\
404 		_mddev = NULL;});					\
405 	     ({ if (_tmp != &all_mddevs)				\
406 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
407 		spin_unlock(&all_mddevs_lock);				\
408 		if (_mddev) mddev_put(_mddev);				\
409 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
410 		_tmp != &all_mddevs;});					\
411 	     ({ spin_lock(&all_mddevs_lock);				\
412 		_tmp = _tmp->next;})					\
413 		)
414 
415 /* Rather than calling directly into the personality make_request function,
416  * IO requests come here first so that we can check if the device is
417  * being suspended pending a reconfiguration.
418  * We hold a refcount over the call to ->make_request.  By the time that
419  * call has finished, the bio has been linked into some internal structure
420  * and so is visible to ->quiesce(), so we don't need the refcount any more.
421  */
422 static bool is_suspended(struct mddev *mddev, struct bio *bio)
423 {
424 	if (mddev->suspended)
425 		return true;
426 	if (bio_data_dir(bio) != WRITE)
427 		return false;
428 	if (mddev->suspend_lo >= mddev->suspend_hi)
429 		return false;
430 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
431 		return false;
432 	if (bio_end_sector(bio) < mddev->suspend_lo)
433 		return false;
434 	return true;
435 }
436 
437 void md_handle_request(struct mddev *mddev, struct bio *bio)
438 {
439 check_suspended:
440 	rcu_read_lock();
441 	if (is_suspended(mddev, bio)) {
442 		DEFINE_WAIT(__wait);
443 		for (;;) {
444 			prepare_to_wait(&mddev->sb_wait, &__wait,
445 					TASK_UNINTERRUPTIBLE);
446 			if (!is_suspended(mddev, bio))
447 				break;
448 			rcu_read_unlock();
449 			schedule();
450 			rcu_read_lock();
451 		}
452 		finish_wait(&mddev->sb_wait, &__wait);
453 	}
454 	atomic_inc(&mddev->active_io);
455 	rcu_read_unlock();
456 
457 	if (!mddev->pers->make_request(mddev, bio)) {
458 		atomic_dec(&mddev->active_io);
459 		wake_up(&mddev->sb_wait);
460 		goto check_suspended;
461 	}
462 
463 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
464 		wake_up(&mddev->sb_wait);
465 }
466 EXPORT_SYMBOL(md_handle_request);
467 
468 struct md_io {
469 	struct mddev *mddev;
470 	bio_end_io_t *orig_bi_end_io;
471 	void *orig_bi_private;
472 	unsigned long start_time;
473 };
474 
475 static void md_end_io(struct bio *bio)
476 {
477 	struct md_io *md_io = bio->bi_private;
478 	struct mddev *mddev = md_io->mddev;
479 
480 	disk_end_io_acct(mddev->gendisk, bio_op(bio), md_io->start_time);
481 
482 	bio->bi_end_io = md_io->orig_bi_end_io;
483 	bio->bi_private = md_io->orig_bi_private;
484 
485 	mempool_free(md_io, &mddev->md_io_pool);
486 
487 	if (bio->bi_end_io)
488 		bio->bi_end_io(bio);
489 }
490 
491 static blk_qc_t md_submit_bio(struct bio *bio)
492 {
493 	const int rw = bio_data_dir(bio);
494 	struct mddev *mddev = bio->bi_disk->private_data;
495 
496 	if (mddev == NULL || mddev->pers == NULL) {
497 		bio_io_error(bio);
498 		return BLK_QC_T_NONE;
499 	}
500 
501 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
502 		bio_io_error(bio);
503 		return BLK_QC_T_NONE;
504 	}
505 
506 	blk_queue_split(&bio);
507 
508 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
509 		if (bio_sectors(bio) != 0)
510 			bio->bi_status = BLK_STS_IOERR;
511 		bio_endio(bio);
512 		return BLK_QC_T_NONE;
513 	}
514 
515 	if (bio->bi_end_io != md_end_io) {
516 		struct md_io *md_io;
517 
518 		md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO);
519 		md_io->mddev = mddev;
520 		md_io->orig_bi_end_io = bio->bi_end_io;
521 		md_io->orig_bi_private = bio->bi_private;
522 
523 		bio->bi_end_io = md_end_io;
524 		bio->bi_private = md_io;
525 
526 		md_io->start_time = disk_start_io_acct(mddev->gendisk,
527 						       bio_sectors(bio),
528 						       bio_op(bio));
529 	}
530 
531 	/* bio could be mergeable after passing to underlayer */
532 	bio->bi_opf &= ~REQ_NOMERGE;
533 
534 	md_handle_request(mddev, bio);
535 
536 	return BLK_QC_T_NONE;
537 }
538 
539 /* mddev_suspend makes sure no new requests are submitted
540  * to the device, and that any requests that have been submitted
541  * are completely handled.
542  * Once mddev_detach() is called and completes, the module will be
543  * completely unused.
544  */
545 void mddev_suspend(struct mddev *mddev)
546 {
547 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
548 	lockdep_assert_held(&mddev->reconfig_mutex);
549 	if (mddev->suspended++)
550 		return;
551 	synchronize_rcu();
552 	wake_up(&mddev->sb_wait);
553 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
554 	smp_mb__after_atomic();
555 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
556 	mddev->pers->quiesce(mddev, 1);
557 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
558 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
559 
560 	del_timer_sync(&mddev->safemode_timer);
561 	/* restrict memory reclaim I/O during raid array is suspend */
562 	mddev->noio_flag = memalloc_noio_save();
563 }
564 EXPORT_SYMBOL_GPL(mddev_suspend);
565 
566 void mddev_resume(struct mddev *mddev)
567 {
568 	/* entred the memalloc scope from mddev_suspend() */
569 	memalloc_noio_restore(mddev->noio_flag);
570 	lockdep_assert_held(&mddev->reconfig_mutex);
571 	if (--mddev->suspended)
572 		return;
573 	wake_up(&mddev->sb_wait);
574 	mddev->pers->quiesce(mddev, 0);
575 
576 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
577 	md_wakeup_thread(mddev->thread);
578 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
579 }
580 EXPORT_SYMBOL_GPL(mddev_resume);
581 
582 /*
583  * Generic flush handling for md
584  */
585 
586 static void md_end_flush(struct bio *bio)
587 {
588 	struct md_rdev *rdev = bio->bi_private;
589 	struct mddev *mddev = rdev->mddev;
590 
591 	rdev_dec_pending(rdev, mddev);
592 
593 	if (atomic_dec_and_test(&mddev->flush_pending)) {
594 		/* The pre-request flush has finished */
595 		queue_work(md_wq, &mddev->flush_work);
596 	}
597 	bio_put(bio);
598 }
599 
600 static void md_submit_flush_data(struct work_struct *ws);
601 
602 static void submit_flushes(struct work_struct *ws)
603 {
604 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
605 	struct md_rdev *rdev;
606 
607 	mddev->start_flush = ktime_get_boottime();
608 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
609 	atomic_set(&mddev->flush_pending, 1);
610 	rcu_read_lock();
611 	rdev_for_each_rcu(rdev, mddev)
612 		if (rdev->raid_disk >= 0 &&
613 		    !test_bit(Faulty, &rdev->flags)) {
614 			/* Take two references, one is dropped
615 			 * when request finishes, one after
616 			 * we reclaim rcu_read_lock
617 			 */
618 			struct bio *bi;
619 			atomic_inc(&rdev->nr_pending);
620 			atomic_inc(&rdev->nr_pending);
621 			rcu_read_unlock();
622 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
623 			bi->bi_end_io = md_end_flush;
624 			bi->bi_private = rdev;
625 			bio_set_dev(bi, rdev->bdev);
626 			bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
627 			atomic_inc(&mddev->flush_pending);
628 			submit_bio(bi);
629 			rcu_read_lock();
630 			rdev_dec_pending(rdev, mddev);
631 		}
632 	rcu_read_unlock();
633 	if (atomic_dec_and_test(&mddev->flush_pending))
634 		queue_work(md_wq, &mddev->flush_work);
635 }
636 
637 static void md_submit_flush_data(struct work_struct *ws)
638 {
639 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
640 	struct bio *bio = mddev->flush_bio;
641 
642 	/*
643 	 * must reset flush_bio before calling into md_handle_request to avoid a
644 	 * deadlock, because other bios passed md_handle_request suspend check
645 	 * could wait for this and below md_handle_request could wait for those
646 	 * bios because of suspend check
647 	 */
648 	mddev->last_flush = mddev->start_flush;
649 	mddev->flush_bio = NULL;
650 	wake_up(&mddev->sb_wait);
651 
652 	if (bio->bi_iter.bi_size == 0) {
653 		/* an empty barrier - all done */
654 		bio_endio(bio);
655 	} else {
656 		bio->bi_opf &= ~REQ_PREFLUSH;
657 		md_handle_request(mddev, bio);
658 	}
659 }
660 
661 /*
662  * Manages consolidation of flushes and submitting any flushes needed for
663  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
664  * being finished in another context.  Returns false if the flushing is
665  * complete but still needs the I/O portion of the bio to be processed.
666  */
667 bool md_flush_request(struct mddev *mddev, struct bio *bio)
668 {
669 	ktime_t start = ktime_get_boottime();
670 	spin_lock_irq(&mddev->lock);
671 	wait_event_lock_irq(mddev->sb_wait,
672 			    !mddev->flush_bio ||
673 			    ktime_after(mddev->last_flush, start),
674 			    mddev->lock);
675 	if (!ktime_after(mddev->last_flush, start)) {
676 		WARN_ON(mddev->flush_bio);
677 		mddev->flush_bio = bio;
678 		bio = NULL;
679 	}
680 	spin_unlock_irq(&mddev->lock);
681 
682 	if (!bio) {
683 		INIT_WORK(&mddev->flush_work, submit_flushes);
684 		queue_work(md_wq, &mddev->flush_work);
685 	} else {
686 		/* flush was performed for some other bio while we waited. */
687 		if (bio->bi_iter.bi_size == 0)
688 			/* an empty barrier - all done */
689 			bio_endio(bio);
690 		else {
691 			bio->bi_opf &= ~REQ_PREFLUSH;
692 			return false;
693 		}
694 	}
695 	return true;
696 }
697 EXPORT_SYMBOL(md_flush_request);
698 
699 static inline struct mddev *mddev_get(struct mddev *mddev)
700 {
701 	atomic_inc(&mddev->active);
702 	return mddev;
703 }
704 
705 static void mddev_delayed_delete(struct work_struct *ws);
706 
707 static void mddev_put(struct mddev *mddev)
708 {
709 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
710 		return;
711 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
712 	    mddev->ctime == 0 && !mddev->hold_active) {
713 		/* Array is not configured at all, and not held active,
714 		 * so destroy it */
715 		list_del_init(&mddev->all_mddevs);
716 
717 		/*
718 		 * Call queue_work inside the spinlock so that
719 		 * flush_workqueue() after mddev_find will succeed in waiting
720 		 * for the work to be done.
721 		 */
722 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
723 		queue_work(md_misc_wq, &mddev->del_work);
724 	}
725 	spin_unlock(&all_mddevs_lock);
726 }
727 
728 static void md_safemode_timeout(struct timer_list *t);
729 
730 void mddev_init(struct mddev *mddev)
731 {
732 	kobject_init(&mddev->kobj, &md_ktype);
733 	mutex_init(&mddev->open_mutex);
734 	mutex_init(&mddev->reconfig_mutex);
735 	mutex_init(&mddev->bitmap_info.mutex);
736 	INIT_LIST_HEAD(&mddev->disks);
737 	INIT_LIST_HEAD(&mddev->all_mddevs);
738 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
739 	atomic_set(&mddev->active, 1);
740 	atomic_set(&mddev->openers, 0);
741 	atomic_set(&mddev->active_io, 0);
742 	spin_lock_init(&mddev->lock);
743 	atomic_set(&mddev->flush_pending, 0);
744 	init_waitqueue_head(&mddev->sb_wait);
745 	init_waitqueue_head(&mddev->recovery_wait);
746 	mddev->reshape_position = MaxSector;
747 	mddev->reshape_backwards = 0;
748 	mddev->last_sync_action = "none";
749 	mddev->resync_min = 0;
750 	mddev->resync_max = MaxSector;
751 	mddev->level = LEVEL_NONE;
752 }
753 EXPORT_SYMBOL_GPL(mddev_init);
754 
755 static struct mddev *mddev_find(dev_t unit)
756 {
757 	struct mddev *mddev, *new = NULL;
758 
759 	if (unit && MAJOR(unit) != MD_MAJOR)
760 		unit &= ~((1<<MdpMinorShift)-1);
761 
762  retry:
763 	spin_lock(&all_mddevs_lock);
764 
765 	if (unit) {
766 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
767 			if (mddev->unit == unit) {
768 				mddev_get(mddev);
769 				spin_unlock(&all_mddevs_lock);
770 				kfree(new);
771 				return mddev;
772 			}
773 
774 		if (new) {
775 			list_add(&new->all_mddevs, &all_mddevs);
776 			spin_unlock(&all_mddevs_lock);
777 			new->hold_active = UNTIL_IOCTL;
778 			return new;
779 		}
780 	} else if (new) {
781 		/* find an unused unit number */
782 		static int next_minor = 512;
783 		int start = next_minor;
784 		int is_free = 0;
785 		int dev = 0;
786 		while (!is_free) {
787 			dev = MKDEV(MD_MAJOR, next_minor);
788 			next_minor++;
789 			if (next_minor > MINORMASK)
790 				next_minor = 0;
791 			if (next_minor == start) {
792 				/* Oh dear, all in use. */
793 				spin_unlock(&all_mddevs_lock);
794 				kfree(new);
795 				return NULL;
796 			}
797 
798 			is_free = 1;
799 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
800 				if (mddev->unit == dev) {
801 					is_free = 0;
802 					break;
803 				}
804 		}
805 		new->unit = dev;
806 		new->md_minor = MINOR(dev);
807 		new->hold_active = UNTIL_STOP;
808 		list_add(&new->all_mddevs, &all_mddevs);
809 		spin_unlock(&all_mddevs_lock);
810 		return new;
811 	}
812 	spin_unlock(&all_mddevs_lock);
813 
814 	new = kzalloc(sizeof(*new), GFP_KERNEL);
815 	if (!new)
816 		return NULL;
817 
818 	new->unit = unit;
819 	if (MAJOR(unit) == MD_MAJOR)
820 		new->md_minor = MINOR(unit);
821 	else
822 		new->md_minor = MINOR(unit) >> MdpMinorShift;
823 
824 	mddev_init(new);
825 
826 	goto retry;
827 }
828 
829 static struct attribute_group md_redundancy_group;
830 
831 void mddev_unlock(struct mddev *mddev)
832 {
833 	if (mddev->to_remove) {
834 		/* These cannot be removed under reconfig_mutex as
835 		 * an access to the files will try to take reconfig_mutex
836 		 * while holding the file unremovable, which leads to
837 		 * a deadlock.
838 		 * So hold set sysfs_active while the remove in happeing,
839 		 * and anything else which might set ->to_remove or my
840 		 * otherwise change the sysfs namespace will fail with
841 		 * -EBUSY if sysfs_active is still set.
842 		 * We set sysfs_active under reconfig_mutex and elsewhere
843 		 * test it under the same mutex to ensure its correct value
844 		 * is seen.
845 		 */
846 		struct attribute_group *to_remove = mddev->to_remove;
847 		mddev->to_remove = NULL;
848 		mddev->sysfs_active = 1;
849 		mutex_unlock(&mddev->reconfig_mutex);
850 
851 		if (mddev->kobj.sd) {
852 			if (to_remove != &md_redundancy_group)
853 				sysfs_remove_group(&mddev->kobj, to_remove);
854 			if (mddev->pers == NULL ||
855 			    mddev->pers->sync_request == NULL) {
856 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
857 				if (mddev->sysfs_action)
858 					sysfs_put(mddev->sysfs_action);
859 				mddev->sysfs_action = NULL;
860 			}
861 		}
862 		mddev->sysfs_active = 0;
863 	} else
864 		mutex_unlock(&mddev->reconfig_mutex);
865 
866 	/* As we've dropped the mutex we need a spinlock to
867 	 * make sure the thread doesn't disappear
868 	 */
869 	spin_lock(&pers_lock);
870 	md_wakeup_thread(mddev->thread);
871 	wake_up(&mddev->sb_wait);
872 	spin_unlock(&pers_lock);
873 }
874 EXPORT_SYMBOL_GPL(mddev_unlock);
875 
876 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
877 {
878 	struct md_rdev *rdev;
879 
880 	rdev_for_each_rcu(rdev, mddev)
881 		if (rdev->desc_nr == nr)
882 			return rdev;
883 
884 	return NULL;
885 }
886 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
887 
888 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
889 {
890 	struct md_rdev *rdev;
891 
892 	rdev_for_each(rdev, mddev)
893 		if (rdev->bdev->bd_dev == dev)
894 			return rdev;
895 
896 	return NULL;
897 }
898 
899 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
900 {
901 	struct md_rdev *rdev;
902 
903 	rdev_for_each_rcu(rdev, mddev)
904 		if (rdev->bdev->bd_dev == dev)
905 			return rdev;
906 
907 	return NULL;
908 }
909 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
910 
911 static struct md_personality *find_pers(int level, char *clevel)
912 {
913 	struct md_personality *pers;
914 	list_for_each_entry(pers, &pers_list, list) {
915 		if (level != LEVEL_NONE && pers->level == level)
916 			return pers;
917 		if (strcmp(pers->name, clevel)==0)
918 			return pers;
919 	}
920 	return NULL;
921 }
922 
923 /* return the offset of the super block in 512byte sectors */
924 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
925 {
926 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
927 	return MD_NEW_SIZE_SECTORS(num_sectors);
928 }
929 
930 static int alloc_disk_sb(struct md_rdev *rdev)
931 {
932 	rdev->sb_page = alloc_page(GFP_KERNEL);
933 	if (!rdev->sb_page)
934 		return -ENOMEM;
935 	return 0;
936 }
937 
938 void md_rdev_clear(struct md_rdev *rdev)
939 {
940 	if (rdev->sb_page) {
941 		put_page(rdev->sb_page);
942 		rdev->sb_loaded = 0;
943 		rdev->sb_page = NULL;
944 		rdev->sb_start = 0;
945 		rdev->sectors = 0;
946 	}
947 	if (rdev->bb_page) {
948 		put_page(rdev->bb_page);
949 		rdev->bb_page = NULL;
950 	}
951 	badblocks_exit(&rdev->badblocks);
952 }
953 EXPORT_SYMBOL_GPL(md_rdev_clear);
954 
955 static void super_written(struct bio *bio)
956 {
957 	struct md_rdev *rdev = bio->bi_private;
958 	struct mddev *mddev = rdev->mddev;
959 
960 	if (bio->bi_status) {
961 		pr_err("md: %s gets error=%d\n", __func__,
962 		       blk_status_to_errno(bio->bi_status));
963 		md_error(mddev, rdev);
964 		if (!test_bit(Faulty, &rdev->flags)
965 		    && (bio->bi_opf & MD_FAILFAST)) {
966 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
967 			set_bit(LastDev, &rdev->flags);
968 		}
969 	} else
970 		clear_bit(LastDev, &rdev->flags);
971 
972 	if (atomic_dec_and_test(&mddev->pending_writes))
973 		wake_up(&mddev->sb_wait);
974 	rdev_dec_pending(rdev, mddev);
975 	bio_put(bio);
976 }
977 
978 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
979 		   sector_t sector, int size, struct page *page)
980 {
981 	/* write first size bytes of page to sector of rdev
982 	 * Increment mddev->pending_writes before returning
983 	 * and decrement it on completion, waking up sb_wait
984 	 * if zero is reached.
985 	 * If an error occurred, call md_error
986 	 */
987 	struct bio *bio;
988 	int ff = 0;
989 
990 	if (!page)
991 		return;
992 
993 	if (test_bit(Faulty, &rdev->flags))
994 		return;
995 
996 	bio = md_bio_alloc_sync(mddev);
997 
998 	atomic_inc(&rdev->nr_pending);
999 
1000 	bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
1001 	bio->bi_iter.bi_sector = sector;
1002 	bio_add_page(bio, page, size, 0);
1003 	bio->bi_private = rdev;
1004 	bio->bi_end_io = super_written;
1005 
1006 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
1007 	    test_bit(FailFast, &rdev->flags) &&
1008 	    !test_bit(LastDev, &rdev->flags))
1009 		ff = MD_FAILFAST;
1010 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
1011 
1012 	atomic_inc(&mddev->pending_writes);
1013 	submit_bio(bio);
1014 }
1015 
1016 int md_super_wait(struct mddev *mddev)
1017 {
1018 	/* wait for all superblock writes that were scheduled to complete */
1019 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1020 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1021 		return -EAGAIN;
1022 	return 0;
1023 }
1024 
1025 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1026 		 struct page *page, int op, int op_flags, bool metadata_op)
1027 {
1028 	struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1029 	int ret;
1030 
1031 	if (metadata_op && rdev->meta_bdev)
1032 		bio_set_dev(bio, rdev->meta_bdev);
1033 	else
1034 		bio_set_dev(bio, rdev->bdev);
1035 	bio_set_op_attrs(bio, op, op_flags);
1036 	if (metadata_op)
1037 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
1038 	else if (rdev->mddev->reshape_position != MaxSector &&
1039 		 (rdev->mddev->reshape_backwards ==
1040 		  (sector >= rdev->mddev->reshape_position)))
1041 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1042 	else
1043 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
1044 	bio_add_page(bio, page, size, 0);
1045 
1046 	submit_bio_wait(bio);
1047 
1048 	ret = !bio->bi_status;
1049 	bio_put(bio);
1050 	return ret;
1051 }
1052 EXPORT_SYMBOL_GPL(sync_page_io);
1053 
1054 static int read_disk_sb(struct md_rdev *rdev, int size)
1055 {
1056 	char b[BDEVNAME_SIZE];
1057 
1058 	if (rdev->sb_loaded)
1059 		return 0;
1060 
1061 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1062 		goto fail;
1063 	rdev->sb_loaded = 1;
1064 	return 0;
1065 
1066 fail:
1067 	pr_err("md: disabled device %s, could not read superblock.\n",
1068 	       bdevname(rdev->bdev,b));
1069 	return -EINVAL;
1070 }
1071 
1072 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1073 {
1074 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1075 		sb1->set_uuid1 == sb2->set_uuid1 &&
1076 		sb1->set_uuid2 == sb2->set_uuid2 &&
1077 		sb1->set_uuid3 == sb2->set_uuid3;
1078 }
1079 
1080 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1081 {
1082 	int ret;
1083 	mdp_super_t *tmp1, *tmp2;
1084 
1085 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1086 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1087 
1088 	if (!tmp1 || !tmp2) {
1089 		ret = 0;
1090 		goto abort;
1091 	}
1092 
1093 	*tmp1 = *sb1;
1094 	*tmp2 = *sb2;
1095 
1096 	/*
1097 	 * nr_disks is not constant
1098 	 */
1099 	tmp1->nr_disks = 0;
1100 	tmp2->nr_disks = 0;
1101 
1102 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1103 abort:
1104 	kfree(tmp1);
1105 	kfree(tmp2);
1106 	return ret;
1107 }
1108 
1109 static u32 md_csum_fold(u32 csum)
1110 {
1111 	csum = (csum & 0xffff) + (csum >> 16);
1112 	return (csum & 0xffff) + (csum >> 16);
1113 }
1114 
1115 static unsigned int calc_sb_csum(mdp_super_t *sb)
1116 {
1117 	u64 newcsum = 0;
1118 	u32 *sb32 = (u32*)sb;
1119 	int i;
1120 	unsigned int disk_csum, csum;
1121 
1122 	disk_csum = sb->sb_csum;
1123 	sb->sb_csum = 0;
1124 
1125 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1126 		newcsum += sb32[i];
1127 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1128 
1129 #ifdef CONFIG_ALPHA
1130 	/* This used to use csum_partial, which was wrong for several
1131 	 * reasons including that different results are returned on
1132 	 * different architectures.  It isn't critical that we get exactly
1133 	 * the same return value as before (we always csum_fold before
1134 	 * testing, and that removes any differences).  However as we
1135 	 * know that csum_partial always returned a 16bit value on
1136 	 * alphas, do a fold to maximise conformity to previous behaviour.
1137 	 */
1138 	sb->sb_csum = md_csum_fold(disk_csum);
1139 #else
1140 	sb->sb_csum = disk_csum;
1141 #endif
1142 	return csum;
1143 }
1144 
1145 /*
1146  * Handle superblock details.
1147  * We want to be able to handle multiple superblock formats
1148  * so we have a common interface to them all, and an array of
1149  * different handlers.
1150  * We rely on user-space to write the initial superblock, and support
1151  * reading and updating of superblocks.
1152  * Interface methods are:
1153  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1154  *      loads and validates a superblock on dev.
1155  *      if refdev != NULL, compare superblocks on both devices
1156  *    Return:
1157  *      0 - dev has a superblock that is compatible with refdev
1158  *      1 - dev has a superblock that is compatible and newer than refdev
1159  *          so dev should be used as the refdev in future
1160  *     -EINVAL superblock incompatible or invalid
1161  *     -othererror e.g. -EIO
1162  *
1163  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1164  *      Verify that dev is acceptable into mddev.
1165  *       The first time, mddev->raid_disks will be 0, and data from
1166  *       dev should be merged in.  Subsequent calls check that dev
1167  *       is new enough.  Return 0 or -EINVAL
1168  *
1169  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1170  *     Update the superblock for rdev with data in mddev
1171  *     This does not write to disc.
1172  *
1173  */
1174 
1175 struct super_type  {
1176 	char		    *name;
1177 	struct module	    *owner;
1178 	int		    (*load_super)(struct md_rdev *rdev,
1179 					  struct md_rdev *refdev,
1180 					  int minor_version);
1181 	int		    (*validate_super)(struct mddev *mddev,
1182 					      struct md_rdev *rdev);
1183 	void		    (*sync_super)(struct mddev *mddev,
1184 					  struct md_rdev *rdev);
1185 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1186 						sector_t num_sectors);
1187 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1188 						unsigned long long new_offset);
1189 };
1190 
1191 /*
1192  * Check that the given mddev has no bitmap.
1193  *
1194  * This function is called from the run method of all personalities that do not
1195  * support bitmaps. It prints an error message and returns non-zero if mddev
1196  * has a bitmap. Otherwise, it returns 0.
1197  *
1198  */
1199 int md_check_no_bitmap(struct mddev *mddev)
1200 {
1201 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1202 		return 0;
1203 	pr_warn("%s: bitmaps are not supported for %s\n",
1204 		mdname(mddev), mddev->pers->name);
1205 	return 1;
1206 }
1207 EXPORT_SYMBOL(md_check_no_bitmap);
1208 
1209 /*
1210  * load_super for 0.90.0
1211  */
1212 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1213 {
1214 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1215 	mdp_super_t *sb;
1216 	int ret;
1217 	bool spare_disk = true;
1218 
1219 	/*
1220 	 * Calculate the position of the superblock (512byte sectors),
1221 	 * it's at the end of the disk.
1222 	 *
1223 	 * It also happens to be a multiple of 4Kb.
1224 	 */
1225 	rdev->sb_start = calc_dev_sboffset(rdev);
1226 
1227 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1228 	if (ret)
1229 		return ret;
1230 
1231 	ret = -EINVAL;
1232 
1233 	bdevname(rdev->bdev, b);
1234 	sb = page_address(rdev->sb_page);
1235 
1236 	if (sb->md_magic != MD_SB_MAGIC) {
1237 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1238 		goto abort;
1239 	}
1240 
1241 	if (sb->major_version != 0 ||
1242 	    sb->minor_version < 90 ||
1243 	    sb->minor_version > 91) {
1244 		pr_warn("Bad version number %d.%d on %s\n",
1245 			sb->major_version, sb->minor_version, b);
1246 		goto abort;
1247 	}
1248 
1249 	if (sb->raid_disks <= 0)
1250 		goto abort;
1251 
1252 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1253 		pr_warn("md: invalid superblock checksum on %s\n", b);
1254 		goto abort;
1255 	}
1256 
1257 	rdev->preferred_minor = sb->md_minor;
1258 	rdev->data_offset = 0;
1259 	rdev->new_data_offset = 0;
1260 	rdev->sb_size = MD_SB_BYTES;
1261 	rdev->badblocks.shift = -1;
1262 
1263 	if (sb->level == LEVEL_MULTIPATH)
1264 		rdev->desc_nr = -1;
1265 	else
1266 		rdev->desc_nr = sb->this_disk.number;
1267 
1268 	/* not spare disk, or LEVEL_MULTIPATH */
1269 	if (sb->level == LEVEL_MULTIPATH ||
1270 		(rdev->desc_nr >= 0 &&
1271 		 rdev->desc_nr < MD_SB_DISKS &&
1272 		 sb->disks[rdev->desc_nr].state &
1273 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1274 		spare_disk = false;
1275 
1276 	if (!refdev) {
1277 		if (!spare_disk)
1278 			ret = 1;
1279 		else
1280 			ret = 0;
1281 	} else {
1282 		__u64 ev1, ev2;
1283 		mdp_super_t *refsb = page_address(refdev->sb_page);
1284 		if (!md_uuid_equal(refsb, sb)) {
1285 			pr_warn("md: %s has different UUID to %s\n",
1286 				b, bdevname(refdev->bdev,b2));
1287 			goto abort;
1288 		}
1289 		if (!md_sb_equal(refsb, sb)) {
1290 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1291 				b, bdevname(refdev->bdev, b2));
1292 			goto abort;
1293 		}
1294 		ev1 = md_event(sb);
1295 		ev2 = md_event(refsb);
1296 
1297 		if (!spare_disk && ev1 > ev2)
1298 			ret = 1;
1299 		else
1300 			ret = 0;
1301 	}
1302 	rdev->sectors = rdev->sb_start;
1303 	/* Limit to 4TB as metadata cannot record more than that.
1304 	 * (not needed for Linear and RAID0 as metadata doesn't
1305 	 * record this size)
1306 	 */
1307 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1308 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1309 
1310 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1311 		/* "this cannot possibly happen" ... */
1312 		ret = -EINVAL;
1313 
1314  abort:
1315 	return ret;
1316 }
1317 
1318 /*
1319  * validate_super for 0.90.0
1320  */
1321 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1322 {
1323 	mdp_disk_t *desc;
1324 	mdp_super_t *sb = page_address(rdev->sb_page);
1325 	__u64 ev1 = md_event(sb);
1326 
1327 	rdev->raid_disk = -1;
1328 	clear_bit(Faulty, &rdev->flags);
1329 	clear_bit(In_sync, &rdev->flags);
1330 	clear_bit(Bitmap_sync, &rdev->flags);
1331 	clear_bit(WriteMostly, &rdev->flags);
1332 
1333 	if (mddev->raid_disks == 0) {
1334 		mddev->major_version = 0;
1335 		mddev->minor_version = sb->minor_version;
1336 		mddev->patch_version = sb->patch_version;
1337 		mddev->external = 0;
1338 		mddev->chunk_sectors = sb->chunk_size >> 9;
1339 		mddev->ctime = sb->ctime;
1340 		mddev->utime = sb->utime;
1341 		mddev->level = sb->level;
1342 		mddev->clevel[0] = 0;
1343 		mddev->layout = sb->layout;
1344 		mddev->raid_disks = sb->raid_disks;
1345 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1346 		mddev->events = ev1;
1347 		mddev->bitmap_info.offset = 0;
1348 		mddev->bitmap_info.space = 0;
1349 		/* bitmap can use 60 K after the 4K superblocks */
1350 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1351 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1352 		mddev->reshape_backwards = 0;
1353 
1354 		if (mddev->minor_version >= 91) {
1355 			mddev->reshape_position = sb->reshape_position;
1356 			mddev->delta_disks = sb->delta_disks;
1357 			mddev->new_level = sb->new_level;
1358 			mddev->new_layout = sb->new_layout;
1359 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1360 			if (mddev->delta_disks < 0)
1361 				mddev->reshape_backwards = 1;
1362 		} else {
1363 			mddev->reshape_position = MaxSector;
1364 			mddev->delta_disks = 0;
1365 			mddev->new_level = mddev->level;
1366 			mddev->new_layout = mddev->layout;
1367 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1368 		}
1369 		if (mddev->level == 0)
1370 			mddev->layout = -1;
1371 
1372 		if (sb->state & (1<<MD_SB_CLEAN))
1373 			mddev->recovery_cp = MaxSector;
1374 		else {
1375 			if (sb->events_hi == sb->cp_events_hi &&
1376 				sb->events_lo == sb->cp_events_lo) {
1377 				mddev->recovery_cp = sb->recovery_cp;
1378 			} else
1379 				mddev->recovery_cp = 0;
1380 		}
1381 
1382 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1383 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1384 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1385 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1386 
1387 		mddev->max_disks = MD_SB_DISKS;
1388 
1389 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1390 		    mddev->bitmap_info.file == NULL) {
1391 			mddev->bitmap_info.offset =
1392 				mddev->bitmap_info.default_offset;
1393 			mddev->bitmap_info.space =
1394 				mddev->bitmap_info.default_space;
1395 		}
1396 
1397 	} else if (mddev->pers == NULL) {
1398 		/* Insist on good event counter while assembling, except
1399 		 * for spares (which don't need an event count) */
1400 		++ev1;
1401 		if (sb->disks[rdev->desc_nr].state & (
1402 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1403 			if (ev1 < mddev->events)
1404 				return -EINVAL;
1405 	} else if (mddev->bitmap) {
1406 		/* if adding to array with a bitmap, then we can accept an
1407 		 * older device ... but not too old.
1408 		 */
1409 		if (ev1 < mddev->bitmap->events_cleared)
1410 			return 0;
1411 		if (ev1 < mddev->events)
1412 			set_bit(Bitmap_sync, &rdev->flags);
1413 	} else {
1414 		if (ev1 < mddev->events)
1415 			/* just a hot-add of a new device, leave raid_disk at -1 */
1416 			return 0;
1417 	}
1418 
1419 	if (mddev->level != LEVEL_MULTIPATH) {
1420 		desc = sb->disks + rdev->desc_nr;
1421 
1422 		if (desc->state & (1<<MD_DISK_FAULTY))
1423 			set_bit(Faulty, &rdev->flags);
1424 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1425 			    desc->raid_disk < mddev->raid_disks */) {
1426 			set_bit(In_sync, &rdev->flags);
1427 			rdev->raid_disk = desc->raid_disk;
1428 			rdev->saved_raid_disk = desc->raid_disk;
1429 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1430 			/* active but not in sync implies recovery up to
1431 			 * reshape position.  We don't know exactly where
1432 			 * that is, so set to zero for now */
1433 			if (mddev->minor_version >= 91) {
1434 				rdev->recovery_offset = 0;
1435 				rdev->raid_disk = desc->raid_disk;
1436 			}
1437 		}
1438 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1439 			set_bit(WriteMostly, &rdev->flags);
1440 		if (desc->state & (1<<MD_DISK_FAILFAST))
1441 			set_bit(FailFast, &rdev->flags);
1442 	} else /* MULTIPATH are always insync */
1443 		set_bit(In_sync, &rdev->flags);
1444 	return 0;
1445 }
1446 
1447 /*
1448  * sync_super for 0.90.0
1449  */
1450 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1451 {
1452 	mdp_super_t *sb;
1453 	struct md_rdev *rdev2;
1454 	int next_spare = mddev->raid_disks;
1455 
1456 	/* make rdev->sb match mddev data..
1457 	 *
1458 	 * 1/ zero out disks
1459 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1460 	 * 3/ any empty disks < next_spare become removed
1461 	 *
1462 	 * disks[0] gets initialised to REMOVED because
1463 	 * we cannot be sure from other fields if it has
1464 	 * been initialised or not.
1465 	 */
1466 	int i;
1467 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1468 
1469 	rdev->sb_size = MD_SB_BYTES;
1470 
1471 	sb = page_address(rdev->sb_page);
1472 
1473 	memset(sb, 0, sizeof(*sb));
1474 
1475 	sb->md_magic = MD_SB_MAGIC;
1476 	sb->major_version = mddev->major_version;
1477 	sb->patch_version = mddev->patch_version;
1478 	sb->gvalid_words  = 0; /* ignored */
1479 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1480 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1481 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1482 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1483 
1484 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1485 	sb->level = mddev->level;
1486 	sb->size = mddev->dev_sectors / 2;
1487 	sb->raid_disks = mddev->raid_disks;
1488 	sb->md_minor = mddev->md_minor;
1489 	sb->not_persistent = 0;
1490 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1491 	sb->state = 0;
1492 	sb->events_hi = (mddev->events>>32);
1493 	sb->events_lo = (u32)mddev->events;
1494 
1495 	if (mddev->reshape_position == MaxSector)
1496 		sb->minor_version = 90;
1497 	else {
1498 		sb->minor_version = 91;
1499 		sb->reshape_position = mddev->reshape_position;
1500 		sb->new_level = mddev->new_level;
1501 		sb->delta_disks = mddev->delta_disks;
1502 		sb->new_layout = mddev->new_layout;
1503 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1504 	}
1505 	mddev->minor_version = sb->minor_version;
1506 	if (mddev->in_sync)
1507 	{
1508 		sb->recovery_cp = mddev->recovery_cp;
1509 		sb->cp_events_hi = (mddev->events>>32);
1510 		sb->cp_events_lo = (u32)mddev->events;
1511 		if (mddev->recovery_cp == MaxSector)
1512 			sb->state = (1<< MD_SB_CLEAN);
1513 	} else
1514 		sb->recovery_cp = 0;
1515 
1516 	sb->layout = mddev->layout;
1517 	sb->chunk_size = mddev->chunk_sectors << 9;
1518 
1519 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1520 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1521 
1522 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1523 	rdev_for_each(rdev2, mddev) {
1524 		mdp_disk_t *d;
1525 		int desc_nr;
1526 		int is_active = test_bit(In_sync, &rdev2->flags);
1527 
1528 		if (rdev2->raid_disk >= 0 &&
1529 		    sb->minor_version >= 91)
1530 			/* we have nowhere to store the recovery_offset,
1531 			 * but if it is not below the reshape_position,
1532 			 * we can piggy-back on that.
1533 			 */
1534 			is_active = 1;
1535 		if (rdev2->raid_disk < 0 ||
1536 		    test_bit(Faulty, &rdev2->flags))
1537 			is_active = 0;
1538 		if (is_active)
1539 			desc_nr = rdev2->raid_disk;
1540 		else
1541 			desc_nr = next_spare++;
1542 		rdev2->desc_nr = desc_nr;
1543 		d = &sb->disks[rdev2->desc_nr];
1544 		nr_disks++;
1545 		d->number = rdev2->desc_nr;
1546 		d->major = MAJOR(rdev2->bdev->bd_dev);
1547 		d->minor = MINOR(rdev2->bdev->bd_dev);
1548 		if (is_active)
1549 			d->raid_disk = rdev2->raid_disk;
1550 		else
1551 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1552 		if (test_bit(Faulty, &rdev2->flags))
1553 			d->state = (1<<MD_DISK_FAULTY);
1554 		else if (is_active) {
1555 			d->state = (1<<MD_DISK_ACTIVE);
1556 			if (test_bit(In_sync, &rdev2->flags))
1557 				d->state |= (1<<MD_DISK_SYNC);
1558 			active++;
1559 			working++;
1560 		} else {
1561 			d->state = 0;
1562 			spare++;
1563 			working++;
1564 		}
1565 		if (test_bit(WriteMostly, &rdev2->flags))
1566 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1567 		if (test_bit(FailFast, &rdev2->flags))
1568 			d->state |= (1<<MD_DISK_FAILFAST);
1569 	}
1570 	/* now set the "removed" and "faulty" bits on any missing devices */
1571 	for (i=0 ; i < mddev->raid_disks ; i++) {
1572 		mdp_disk_t *d = &sb->disks[i];
1573 		if (d->state == 0 && d->number == 0) {
1574 			d->number = i;
1575 			d->raid_disk = i;
1576 			d->state = (1<<MD_DISK_REMOVED);
1577 			d->state |= (1<<MD_DISK_FAULTY);
1578 			failed++;
1579 		}
1580 	}
1581 	sb->nr_disks = nr_disks;
1582 	sb->active_disks = active;
1583 	sb->working_disks = working;
1584 	sb->failed_disks = failed;
1585 	sb->spare_disks = spare;
1586 
1587 	sb->this_disk = sb->disks[rdev->desc_nr];
1588 	sb->sb_csum = calc_sb_csum(sb);
1589 }
1590 
1591 /*
1592  * rdev_size_change for 0.90.0
1593  */
1594 static unsigned long long
1595 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1596 {
1597 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1598 		return 0; /* component must fit device */
1599 	if (rdev->mddev->bitmap_info.offset)
1600 		return 0; /* can't move bitmap */
1601 	rdev->sb_start = calc_dev_sboffset(rdev);
1602 	if (!num_sectors || num_sectors > rdev->sb_start)
1603 		num_sectors = rdev->sb_start;
1604 	/* Limit to 4TB as metadata cannot record more than that.
1605 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1606 	 */
1607 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1608 		num_sectors = (sector_t)(2ULL << 32) - 2;
1609 	do {
1610 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1611 		       rdev->sb_page);
1612 	} while (md_super_wait(rdev->mddev) < 0);
1613 	return num_sectors;
1614 }
1615 
1616 static int
1617 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1618 {
1619 	/* non-zero offset changes not possible with v0.90 */
1620 	return new_offset == 0;
1621 }
1622 
1623 /*
1624  * version 1 superblock
1625  */
1626 
1627 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1628 {
1629 	__le32 disk_csum;
1630 	u32 csum;
1631 	unsigned long long newcsum;
1632 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1633 	__le32 *isuper = (__le32*)sb;
1634 
1635 	disk_csum = sb->sb_csum;
1636 	sb->sb_csum = 0;
1637 	newcsum = 0;
1638 	for (; size >= 4; size -= 4)
1639 		newcsum += le32_to_cpu(*isuper++);
1640 
1641 	if (size == 2)
1642 		newcsum += le16_to_cpu(*(__le16*) isuper);
1643 
1644 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1645 	sb->sb_csum = disk_csum;
1646 	return cpu_to_le32(csum);
1647 }
1648 
1649 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1650 {
1651 	struct mdp_superblock_1 *sb;
1652 	int ret;
1653 	sector_t sb_start;
1654 	sector_t sectors;
1655 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1656 	int bmask;
1657 	bool spare_disk = true;
1658 
1659 	/*
1660 	 * Calculate the position of the superblock in 512byte sectors.
1661 	 * It is always aligned to a 4K boundary and
1662 	 * depeding on minor_version, it can be:
1663 	 * 0: At least 8K, but less than 12K, from end of device
1664 	 * 1: At start of device
1665 	 * 2: 4K from start of device.
1666 	 */
1667 	switch(minor_version) {
1668 	case 0:
1669 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1670 		sb_start -= 8*2;
1671 		sb_start &= ~(sector_t)(4*2-1);
1672 		break;
1673 	case 1:
1674 		sb_start = 0;
1675 		break;
1676 	case 2:
1677 		sb_start = 8;
1678 		break;
1679 	default:
1680 		return -EINVAL;
1681 	}
1682 	rdev->sb_start = sb_start;
1683 
1684 	/* superblock is rarely larger than 1K, but it can be larger,
1685 	 * and it is safe to read 4k, so we do that
1686 	 */
1687 	ret = read_disk_sb(rdev, 4096);
1688 	if (ret) return ret;
1689 
1690 	sb = page_address(rdev->sb_page);
1691 
1692 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1693 	    sb->major_version != cpu_to_le32(1) ||
1694 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1695 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1696 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1697 		return -EINVAL;
1698 
1699 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1700 		pr_warn("md: invalid superblock checksum on %s\n",
1701 			bdevname(rdev->bdev,b));
1702 		return -EINVAL;
1703 	}
1704 	if (le64_to_cpu(sb->data_size) < 10) {
1705 		pr_warn("md: data_size too small on %s\n",
1706 			bdevname(rdev->bdev,b));
1707 		return -EINVAL;
1708 	}
1709 	if (sb->pad0 ||
1710 	    sb->pad3[0] ||
1711 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1712 		/* Some padding is non-zero, might be a new feature */
1713 		return -EINVAL;
1714 
1715 	rdev->preferred_minor = 0xffff;
1716 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1717 	rdev->new_data_offset = rdev->data_offset;
1718 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1719 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1720 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1721 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1722 
1723 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1724 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1725 	if (rdev->sb_size & bmask)
1726 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1727 
1728 	if (minor_version
1729 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1730 		return -EINVAL;
1731 	if (minor_version
1732 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1733 		return -EINVAL;
1734 
1735 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1736 		rdev->desc_nr = -1;
1737 	else
1738 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1739 
1740 	if (!rdev->bb_page) {
1741 		rdev->bb_page = alloc_page(GFP_KERNEL);
1742 		if (!rdev->bb_page)
1743 			return -ENOMEM;
1744 	}
1745 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1746 	    rdev->badblocks.count == 0) {
1747 		/* need to load the bad block list.
1748 		 * Currently we limit it to one page.
1749 		 */
1750 		s32 offset;
1751 		sector_t bb_sector;
1752 		__le64 *bbp;
1753 		int i;
1754 		int sectors = le16_to_cpu(sb->bblog_size);
1755 		if (sectors > (PAGE_SIZE / 512))
1756 			return -EINVAL;
1757 		offset = le32_to_cpu(sb->bblog_offset);
1758 		if (offset == 0)
1759 			return -EINVAL;
1760 		bb_sector = (long long)offset;
1761 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1762 				  rdev->bb_page, REQ_OP_READ, 0, true))
1763 			return -EIO;
1764 		bbp = (__le64 *)page_address(rdev->bb_page);
1765 		rdev->badblocks.shift = sb->bblog_shift;
1766 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1767 			u64 bb = le64_to_cpu(*bbp);
1768 			int count = bb & (0x3ff);
1769 			u64 sector = bb >> 10;
1770 			sector <<= sb->bblog_shift;
1771 			count <<= sb->bblog_shift;
1772 			if (bb + 1 == 0)
1773 				break;
1774 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1775 				return -EINVAL;
1776 		}
1777 	} else if (sb->bblog_offset != 0)
1778 		rdev->badblocks.shift = 0;
1779 
1780 	if ((le32_to_cpu(sb->feature_map) &
1781 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1782 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1783 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1784 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1785 	}
1786 
1787 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1788 	    sb->level != 0)
1789 		return -EINVAL;
1790 
1791 	/* not spare disk, or LEVEL_MULTIPATH */
1792 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1793 		(rdev->desc_nr >= 0 &&
1794 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1795 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1796 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1797 		spare_disk = false;
1798 
1799 	if (!refdev) {
1800 		if (!spare_disk)
1801 			ret = 1;
1802 		else
1803 			ret = 0;
1804 	} else {
1805 		__u64 ev1, ev2;
1806 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1807 
1808 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1809 		    sb->level != refsb->level ||
1810 		    sb->layout != refsb->layout ||
1811 		    sb->chunksize != refsb->chunksize) {
1812 			pr_warn("md: %s has strangely different superblock to %s\n",
1813 				bdevname(rdev->bdev,b),
1814 				bdevname(refdev->bdev,b2));
1815 			return -EINVAL;
1816 		}
1817 		ev1 = le64_to_cpu(sb->events);
1818 		ev2 = le64_to_cpu(refsb->events);
1819 
1820 		if (!spare_disk && ev1 > ev2)
1821 			ret = 1;
1822 		else
1823 			ret = 0;
1824 	}
1825 	if (minor_version) {
1826 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1827 		sectors -= rdev->data_offset;
1828 	} else
1829 		sectors = rdev->sb_start;
1830 	if (sectors < le64_to_cpu(sb->data_size))
1831 		return -EINVAL;
1832 	rdev->sectors = le64_to_cpu(sb->data_size);
1833 	return ret;
1834 }
1835 
1836 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1837 {
1838 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1839 	__u64 ev1 = le64_to_cpu(sb->events);
1840 
1841 	rdev->raid_disk = -1;
1842 	clear_bit(Faulty, &rdev->flags);
1843 	clear_bit(In_sync, &rdev->flags);
1844 	clear_bit(Bitmap_sync, &rdev->flags);
1845 	clear_bit(WriteMostly, &rdev->flags);
1846 
1847 	if (mddev->raid_disks == 0) {
1848 		mddev->major_version = 1;
1849 		mddev->patch_version = 0;
1850 		mddev->external = 0;
1851 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1852 		mddev->ctime = le64_to_cpu(sb->ctime);
1853 		mddev->utime = le64_to_cpu(sb->utime);
1854 		mddev->level = le32_to_cpu(sb->level);
1855 		mddev->clevel[0] = 0;
1856 		mddev->layout = le32_to_cpu(sb->layout);
1857 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1858 		mddev->dev_sectors = le64_to_cpu(sb->size);
1859 		mddev->events = ev1;
1860 		mddev->bitmap_info.offset = 0;
1861 		mddev->bitmap_info.space = 0;
1862 		/* Default location for bitmap is 1K after superblock
1863 		 * using 3K - total of 4K
1864 		 */
1865 		mddev->bitmap_info.default_offset = 1024 >> 9;
1866 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1867 		mddev->reshape_backwards = 0;
1868 
1869 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1870 		memcpy(mddev->uuid, sb->set_uuid, 16);
1871 
1872 		mddev->max_disks =  (4096-256)/2;
1873 
1874 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1875 		    mddev->bitmap_info.file == NULL) {
1876 			mddev->bitmap_info.offset =
1877 				(__s32)le32_to_cpu(sb->bitmap_offset);
1878 			/* Metadata doesn't record how much space is available.
1879 			 * For 1.0, we assume we can use up to the superblock
1880 			 * if before, else to 4K beyond superblock.
1881 			 * For others, assume no change is possible.
1882 			 */
1883 			if (mddev->minor_version > 0)
1884 				mddev->bitmap_info.space = 0;
1885 			else if (mddev->bitmap_info.offset > 0)
1886 				mddev->bitmap_info.space =
1887 					8 - mddev->bitmap_info.offset;
1888 			else
1889 				mddev->bitmap_info.space =
1890 					-mddev->bitmap_info.offset;
1891 		}
1892 
1893 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1894 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1895 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1896 			mddev->new_level = le32_to_cpu(sb->new_level);
1897 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1898 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1899 			if (mddev->delta_disks < 0 ||
1900 			    (mddev->delta_disks == 0 &&
1901 			     (le32_to_cpu(sb->feature_map)
1902 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1903 				mddev->reshape_backwards = 1;
1904 		} else {
1905 			mddev->reshape_position = MaxSector;
1906 			mddev->delta_disks = 0;
1907 			mddev->new_level = mddev->level;
1908 			mddev->new_layout = mddev->layout;
1909 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1910 		}
1911 
1912 		if (mddev->level == 0 &&
1913 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1914 			mddev->layout = -1;
1915 
1916 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1917 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1918 
1919 		if (le32_to_cpu(sb->feature_map) &
1920 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1921 			if (le32_to_cpu(sb->feature_map) &
1922 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1923 				return -EINVAL;
1924 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1925 			    (le32_to_cpu(sb->feature_map) &
1926 					    MD_FEATURE_MULTIPLE_PPLS))
1927 				return -EINVAL;
1928 			set_bit(MD_HAS_PPL, &mddev->flags);
1929 		}
1930 	} else if (mddev->pers == NULL) {
1931 		/* Insist of good event counter while assembling, except for
1932 		 * spares (which don't need an event count) */
1933 		++ev1;
1934 		if (rdev->desc_nr >= 0 &&
1935 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1936 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1937 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1938 			if (ev1 < mddev->events)
1939 				return -EINVAL;
1940 	} else if (mddev->bitmap) {
1941 		/* If adding to array with a bitmap, then we can accept an
1942 		 * older device, but not too old.
1943 		 */
1944 		if (ev1 < mddev->bitmap->events_cleared)
1945 			return 0;
1946 		if (ev1 < mddev->events)
1947 			set_bit(Bitmap_sync, &rdev->flags);
1948 	} else {
1949 		if (ev1 < mddev->events)
1950 			/* just a hot-add of a new device, leave raid_disk at -1 */
1951 			return 0;
1952 	}
1953 	if (mddev->level != LEVEL_MULTIPATH) {
1954 		int role;
1955 		if (rdev->desc_nr < 0 ||
1956 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1957 			role = MD_DISK_ROLE_SPARE;
1958 			rdev->desc_nr = -1;
1959 		} else
1960 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1961 		switch(role) {
1962 		case MD_DISK_ROLE_SPARE: /* spare */
1963 			break;
1964 		case MD_DISK_ROLE_FAULTY: /* faulty */
1965 			set_bit(Faulty, &rdev->flags);
1966 			break;
1967 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1968 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1969 				/* journal device without journal feature */
1970 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1971 				return -EINVAL;
1972 			}
1973 			set_bit(Journal, &rdev->flags);
1974 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1975 			rdev->raid_disk = 0;
1976 			break;
1977 		default:
1978 			rdev->saved_raid_disk = role;
1979 			if ((le32_to_cpu(sb->feature_map) &
1980 			     MD_FEATURE_RECOVERY_OFFSET)) {
1981 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1982 				if (!(le32_to_cpu(sb->feature_map) &
1983 				      MD_FEATURE_RECOVERY_BITMAP))
1984 					rdev->saved_raid_disk = -1;
1985 			} else {
1986 				/*
1987 				 * If the array is FROZEN, then the device can't
1988 				 * be in_sync with rest of array.
1989 				 */
1990 				if (!test_bit(MD_RECOVERY_FROZEN,
1991 					      &mddev->recovery))
1992 					set_bit(In_sync, &rdev->flags);
1993 			}
1994 			rdev->raid_disk = role;
1995 			break;
1996 		}
1997 		if (sb->devflags & WriteMostly1)
1998 			set_bit(WriteMostly, &rdev->flags);
1999 		if (sb->devflags & FailFast1)
2000 			set_bit(FailFast, &rdev->flags);
2001 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2002 			set_bit(Replacement, &rdev->flags);
2003 	} else /* MULTIPATH are always insync */
2004 		set_bit(In_sync, &rdev->flags);
2005 
2006 	return 0;
2007 }
2008 
2009 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2010 {
2011 	struct mdp_superblock_1 *sb;
2012 	struct md_rdev *rdev2;
2013 	int max_dev, i;
2014 	/* make rdev->sb match mddev and rdev data. */
2015 
2016 	sb = page_address(rdev->sb_page);
2017 
2018 	sb->feature_map = 0;
2019 	sb->pad0 = 0;
2020 	sb->recovery_offset = cpu_to_le64(0);
2021 	memset(sb->pad3, 0, sizeof(sb->pad3));
2022 
2023 	sb->utime = cpu_to_le64((__u64)mddev->utime);
2024 	sb->events = cpu_to_le64(mddev->events);
2025 	if (mddev->in_sync)
2026 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2027 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2028 		sb->resync_offset = cpu_to_le64(MaxSector);
2029 	else
2030 		sb->resync_offset = cpu_to_le64(0);
2031 
2032 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2033 
2034 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2035 	sb->size = cpu_to_le64(mddev->dev_sectors);
2036 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2037 	sb->level = cpu_to_le32(mddev->level);
2038 	sb->layout = cpu_to_le32(mddev->layout);
2039 	if (test_bit(FailFast, &rdev->flags))
2040 		sb->devflags |= FailFast1;
2041 	else
2042 		sb->devflags &= ~FailFast1;
2043 
2044 	if (test_bit(WriteMostly, &rdev->flags))
2045 		sb->devflags |= WriteMostly1;
2046 	else
2047 		sb->devflags &= ~WriteMostly1;
2048 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2049 	sb->data_size = cpu_to_le64(rdev->sectors);
2050 
2051 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2052 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2053 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2054 	}
2055 
2056 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2057 	    !test_bit(In_sync, &rdev->flags)) {
2058 		sb->feature_map |=
2059 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2060 		sb->recovery_offset =
2061 			cpu_to_le64(rdev->recovery_offset);
2062 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2063 			sb->feature_map |=
2064 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2065 	}
2066 	/* Note: recovery_offset and journal_tail share space  */
2067 	if (test_bit(Journal, &rdev->flags))
2068 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2069 	if (test_bit(Replacement, &rdev->flags))
2070 		sb->feature_map |=
2071 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2072 
2073 	if (mddev->reshape_position != MaxSector) {
2074 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2075 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2076 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2077 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2078 		sb->new_level = cpu_to_le32(mddev->new_level);
2079 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2080 		if (mddev->delta_disks == 0 &&
2081 		    mddev->reshape_backwards)
2082 			sb->feature_map
2083 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2084 		if (rdev->new_data_offset != rdev->data_offset) {
2085 			sb->feature_map
2086 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2087 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2088 							     - rdev->data_offset));
2089 		}
2090 	}
2091 
2092 	if (mddev_is_clustered(mddev))
2093 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2094 
2095 	if (rdev->badblocks.count == 0)
2096 		/* Nothing to do for bad blocks*/ ;
2097 	else if (sb->bblog_offset == 0)
2098 		/* Cannot record bad blocks on this device */
2099 		md_error(mddev, rdev);
2100 	else {
2101 		struct badblocks *bb = &rdev->badblocks;
2102 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2103 		u64 *p = bb->page;
2104 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2105 		if (bb->changed) {
2106 			unsigned seq;
2107 
2108 retry:
2109 			seq = read_seqbegin(&bb->lock);
2110 
2111 			memset(bbp, 0xff, PAGE_SIZE);
2112 
2113 			for (i = 0 ; i < bb->count ; i++) {
2114 				u64 internal_bb = p[i];
2115 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2116 						| BB_LEN(internal_bb));
2117 				bbp[i] = cpu_to_le64(store_bb);
2118 			}
2119 			bb->changed = 0;
2120 			if (read_seqretry(&bb->lock, seq))
2121 				goto retry;
2122 
2123 			bb->sector = (rdev->sb_start +
2124 				      (int)le32_to_cpu(sb->bblog_offset));
2125 			bb->size = le16_to_cpu(sb->bblog_size);
2126 		}
2127 	}
2128 
2129 	max_dev = 0;
2130 	rdev_for_each(rdev2, mddev)
2131 		if (rdev2->desc_nr+1 > max_dev)
2132 			max_dev = rdev2->desc_nr+1;
2133 
2134 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2135 		int bmask;
2136 		sb->max_dev = cpu_to_le32(max_dev);
2137 		rdev->sb_size = max_dev * 2 + 256;
2138 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2139 		if (rdev->sb_size & bmask)
2140 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2141 	} else
2142 		max_dev = le32_to_cpu(sb->max_dev);
2143 
2144 	for (i=0; i<max_dev;i++)
2145 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2146 
2147 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2148 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2149 
2150 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2151 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2152 			sb->feature_map |=
2153 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2154 		else
2155 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2156 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2157 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2158 	}
2159 
2160 	rdev_for_each(rdev2, mddev) {
2161 		i = rdev2->desc_nr;
2162 		if (test_bit(Faulty, &rdev2->flags))
2163 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2164 		else if (test_bit(In_sync, &rdev2->flags))
2165 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2166 		else if (test_bit(Journal, &rdev2->flags))
2167 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2168 		else if (rdev2->raid_disk >= 0)
2169 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2170 		else
2171 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2172 	}
2173 
2174 	sb->sb_csum = calc_sb_1_csum(sb);
2175 }
2176 
2177 static sector_t super_1_choose_bm_space(sector_t dev_size)
2178 {
2179 	sector_t bm_space;
2180 
2181 	/* if the device is bigger than 8Gig, save 64k for bitmap
2182 	 * usage, if bigger than 200Gig, save 128k
2183 	 */
2184 	if (dev_size < 64*2)
2185 		bm_space = 0;
2186 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2187 		bm_space = 128*2;
2188 	else if (dev_size - 4*2 > 8*1024*1024*2)
2189 		bm_space = 64*2;
2190 	else
2191 		bm_space = 4*2;
2192 	return bm_space;
2193 }
2194 
2195 static unsigned long long
2196 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2197 {
2198 	struct mdp_superblock_1 *sb;
2199 	sector_t max_sectors;
2200 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2201 		return 0; /* component must fit device */
2202 	if (rdev->data_offset != rdev->new_data_offset)
2203 		return 0; /* too confusing */
2204 	if (rdev->sb_start < rdev->data_offset) {
2205 		/* minor versions 1 and 2; superblock before data */
2206 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2207 		max_sectors -= rdev->data_offset;
2208 		if (!num_sectors || num_sectors > max_sectors)
2209 			num_sectors = max_sectors;
2210 	} else if (rdev->mddev->bitmap_info.offset) {
2211 		/* minor version 0 with bitmap we can't move */
2212 		return 0;
2213 	} else {
2214 		/* minor version 0; superblock after data */
2215 		sector_t sb_start, bm_space;
2216 		sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2217 
2218 		/* 8K is for superblock */
2219 		sb_start = dev_size - 8*2;
2220 		sb_start &= ~(sector_t)(4*2 - 1);
2221 
2222 		bm_space = super_1_choose_bm_space(dev_size);
2223 
2224 		/* Space that can be used to store date needs to decrease
2225 		 * superblock bitmap space and bad block space(4K)
2226 		 */
2227 		max_sectors = sb_start - bm_space - 4*2;
2228 
2229 		if (!num_sectors || num_sectors > max_sectors)
2230 			num_sectors = max_sectors;
2231 	}
2232 	sb = page_address(rdev->sb_page);
2233 	sb->data_size = cpu_to_le64(num_sectors);
2234 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2235 	sb->sb_csum = calc_sb_1_csum(sb);
2236 	do {
2237 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2238 			       rdev->sb_page);
2239 	} while (md_super_wait(rdev->mddev) < 0);
2240 	return num_sectors;
2241 
2242 }
2243 
2244 static int
2245 super_1_allow_new_offset(struct md_rdev *rdev,
2246 			 unsigned long long new_offset)
2247 {
2248 	/* All necessary checks on new >= old have been done */
2249 	struct bitmap *bitmap;
2250 	if (new_offset >= rdev->data_offset)
2251 		return 1;
2252 
2253 	/* with 1.0 metadata, there is no metadata to tread on
2254 	 * so we can always move back */
2255 	if (rdev->mddev->minor_version == 0)
2256 		return 1;
2257 
2258 	/* otherwise we must be sure not to step on
2259 	 * any metadata, so stay:
2260 	 * 36K beyond start of superblock
2261 	 * beyond end of badblocks
2262 	 * beyond write-intent bitmap
2263 	 */
2264 	if (rdev->sb_start + (32+4)*2 > new_offset)
2265 		return 0;
2266 	bitmap = rdev->mddev->bitmap;
2267 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2268 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2269 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2270 		return 0;
2271 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2272 		return 0;
2273 
2274 	return 1;
2275 }
2276 
2277 static struct super_type super_types[] = {
2278 	[0] = {
2279 		.name	= "0.90.0",
2280 		.owner	= THIS_MODULE,
2281 		.load_super	    = super_90_load,
2282 		.validate_super	    = super_90_validate,
2283 		.sync_super	    = super_90_sync,
2284 		.rdev_size_change   = super_90_rdev_size_change,
2285 		.allow_new_offset   = super_90_allow_new_offset,
2286 	},
2287 	[1] = {
2288 		.name	= "md-1",
2289 		.owner	= THIS_MODULE,
2290 		.load_super	    = super_1_load,
2291 		.validate_super	    = super_1_validate,
2292 		.sync_super	    = super_1_sync,
2293 		.rdev_size_change   = super_1_rdev_size_change,
2294 		.allow_new_offset   = super_1_allow_new_offset,
2295 	},
2296 };
2297 
2298 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2299 {
2300 	if (mddev->sync_super) {
2301 		mddev->sync_super(mddev, rdev);
2302 		return;
2303 	}
2304 
2305 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2306 
2307 	super_types[mddev->major_version].sync_super(mddev, rdev);
2308 }
2309 
2310 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2311 {
2312 	struct md_rdev *rdev, *rdev2;
2313 
2314 	rcu_read_lock();
2315 	rdev_for_each_rcu(rdev, mddev1) {
2316 		if (test_bit(Faulty, &rdev->flags) ||
2317 		    test_bit(Journal, &rdev->flags) ||
2318 		    rdev->raid_disk == -1)
2319 			continue;
2320 		rdev_for_each_rcu(rdev2, mddev2) {
2321 			if (test_bit(Faulty, &rdev2->flags) ||
2322 			    test_bit(Journal, &rdev2->flags) ||
2323 			    rdev2->raid_disk == -1)
2324 				continue;
2325 			if (rdev->bdev->bd_contains ==
2326 			    rdev2->bdev->bd_contains) {
2327 				rcu_read_unlock();
2328 				return 1;
2329 			}
2330 		}
2331 	}
2332 	rcu_read_unlock();
2333 	return 0;
2334 }
2335 
2336 static LIST_HEAD(pending_raid_disks);
2337 
2338 /*
2339  * Try to register data integrity profile for an mddev
2340  *
2341  * This is called when an array is started and after a disk has been kicked
2342  * from the array. It only succeeds if all working and active component devices
2343  * are integrity capable with matching profiles.
2344  */
2345 int md_integrity_register(struct mddev *mddev)
2346 {
2347 	struct md_rdev *rdev, *reference = NULL;
2348 
2349 	if (list_empty(&mddev->disks))
2350 		return 0; /* nothing to do */
2351 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2352 		return 0; /* shouldn't register, or already is */
2353 	rdev_for_each(rdev, mddev) {
2354 		/* skip spares and non-functional disks */
2355 		if (test_bit(Faulty, &rdev->flags))
2356 			continue;
2357 		if (rdev->raid_disk < 0)
2358 			continue;
2359 		if (!reference) {
2360 			/* Use the first rdev as the reference */
2361 			reference = rdev;
2362 			continue;
2363 		}
2364 		/* does this rdev's profile match the reference profile? */
2365 		if (blk_integrity_compare(reference->bdev->bd_disk,
2366 				rdev->bdev->bd_disk) < 0)
2367 			return -EINVAL;
2368 	}
2369 	if (!reference || !bdev_get_integrity(reference->bdev))
2370 		return 0;
2371 	/*
2372 	 * All component devices are integrity capable and have matching
2373 	 * profiles, register the common profile for the md device.
2374 	 */
2375 	blk_integrity_register(mddev->gendisk,
2376 			       bdev_get_integrity(reference->bdev));
2377 
2378 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2379 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2380 		pr_err("md: failed to create integrity pool for %s\n",
2381 		       mdname(mddev));
2382 		return -EINVAL;
2383 	}
2384 	return 0;
2385 }
2386 EXPORT_SYMBOL(md_integrity_register);
2387 
2388 /*
2389  * Attempt to add an rdev, but only if it is consistent with the current
2390  * integrity profile
2391  */
2392 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2393 {
2394 	struct blk_integrity *bi_mddev;
2395 	char name[BDEVNAME_SIZE];
2396 
2397 	if (!mddev->gendisk)
2398 		return 0;
2399 
2400 	bi_mddev = blk_get_integrity(mddev->gendisk);
2401 
2402 	if (!bi_mddev) /* nothing to do */
2403 		return 0;
2404 
2405 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2406 		pr_err("%s: incompatible integrity profile for %s\n",
2407 		       mdname(mddev), bdevname(rdev->bdev, name));
2408 		return -ENXIO;
2409 	}
2410 
2411 	return 0;
2412 }
2413 EXPORT_SYMBOL(md_integrity_add_rdev);
2414 
2415 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2416 {
2417 	char b[BDEVNAME_SIZE];
2418 	struct kobject *ko;
2419 	int err;
2420 
2421 	/* prevent duplicates */
2422 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2423 		return -EEXIST;
2424 
2425 	if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2426 	    mddev->pers)
2427 		return -EROFS;
2428 
2429 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2430 	if (!test_bit(Journal, &rdev->flags) &&
2431 	    rdev->sectors &&
2432 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2433 		if (mddev->pers) {
2434 			/* Cannot change size, so fail
2435 			 * If mddev->level <= 0, then we don't care
2436 			 * about aligning sizes (e.g. linear)
2437 			 */
2438 			if (mddev->level > 0)
2439 				return -ENOSPC;
2440 		} else
2441 			mddev->dev_sectors = rdev->sectors;
2442 	}
2443 
2444 	/* Verify rdev->desc_nr is unique.
2445 	 * If it is -1, assign a free number, else
2446 	 * check number is not in use
2447 	 */
2448 	rcu_read_lock();
2449 	if (rdev->desc_nr < 0) {
2450 		int choice = 0;
2451 		if (mddev->pers)
2452 			choice = mddev->raid_disks;
2453 		while (md_find_rdev_nr_rcu(mddev, choice))
2454 			choice++;
2455 		rdev->desc_nr = choice;
2456 	} else {
2457 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2458 			rcu_read_unlock();
2459 			return -EBUSY;
2460 		}
2461 	}
2462 	rcu_read_unlock();
2463 	if (!test_bit(Journal, &rdev->flags) &&
2464 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2465 		pr_warn("md: %s: array is limited to %d devices\n",
2466 			mdname(mddev), mddev->max_disks);
2467 		return -EBUSY;
2468 	}
2469 	bdevname(rdev->bdev,b);
2470 	strreplace(b, '/', '!');
2471 
2472 	rdev->mddev = mddev;
2473 	pr_debug("md: bind<%s>\n", b);
2474 
2475 	if (mddev->raid_disks)
2476 		mddev_create_serial_pool(mddev, rdev, false);
2477 
2478 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2479 		goto fail;
2480 
2481 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2482 	/* failure here is OK */
2483 	err = sysfs_create_link(&rdev->kobj, ko, "block");
2484 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2485 	rdev->sysfs_unack_badblocks =
2486 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2487 	rdev->sysfs_badblocks =
2488 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2489 
2490 	list_add_rcu(&rdev->same_set, &mddev->disks);
2491 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2492 
2493 	/* May as well allow recovery to be retried once */
2494 	mddev->recovery_disabled++;
2495 
2496 	return 0;
2497 
2498  fail:
2499 	pr_warn("md: failed to register dev-%s for %s\n",
2500 		b, mdname(mddev));
2501 	return err;
2502 }
2503 
2504 static void rdev_delayed_delete(struct work_struct *ws)
2505 {
2506 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2507 	kobject_del(&rdev->kobj);
2508 	kobject_put(&rdev->kobj);
2509 }
2510 
2511 static void unbind_rdev_from_array(struct md_rdev *rdev)
2512 {
2513 	char b[BDEVNAME_SIZE];
2514 
2515 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2516 	list_del_rcu(&rdev->same_set);
2517 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2518 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2519 	rdev->mddev = NULL;
2520 	sysfs_remove_link(&rdev->kobj, "block");
2521 	sysfs_put(rdev->sysfs_state);
2522 	sysfs_put(rdev->sysfs_unack_badblocks);
2523 	sysfs_put(rdev->sysfs_badblocks);
2524 	rdev->sysfs_state = NULL;
2525 	rdev->sysfs_unack_badblocks = NULL;
2526 	rdev->sysfs_badblocks = NULL;
2527 	rdev->badblocks.count = 0;
2528 	/* We need to delay this, otherwise we can deadlock when
2529 	 * writing to 'remove' to "dev/state".  We also need
2530 	 * to delay it due to rcu usage.
2531 	 */
2532 	synchronize_rcu();
2533 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2534 	kobject_get(&rdev->kobj);
2535 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2536 }
2537 
2538 /*
2539  * prevent the device from being mounted, repartitioned or
2540  * otherwise reused by a RAID array (or any other kernel
2541  * subsystem), by bd_claiming the device.
2542  */
2543 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2544 {
2545 	int err = 0;
2546 	struct block_device *bdev;
2547 
2548 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2549 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2550 	if (IS_ERR(bdev)) {
2551 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2552 			MAJOR(dev), MINOR(dev));
2553 		return PTR_ERR(bdev);
2554 	}
2555 	rdev->bdev = bdev;
2556 	return err;
2557 }
2558 
2559 static void unlock_rdev(struct md_rdev *rdev)
2560 {
2561 	struct block_device *bdev = rdev->bdev;
2562 	rdev->bdev = NULL;
2563 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2564 }
2565 
2566 void md_autodetect_dev(dev_t dev);
2567 
2568 static void export_rdev(struct md_rdev *rdev)
2569 {
2570 	char b[BDEVNAME_SIZE];
2571 
2572 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2573 	md_rdev_clear(rdev);
2574 #ifndef MODULE
2575 	if (test_bit(AutoDetected, &rdev->flags))
2576 		md_autodetect_dev(rdev->bdev->bd_dev);
2577 #endif
2578 	unlock_rdev(rdev);
2579 	kobject_put(&rdev->kobj);
2580 }
2581 
2582 void md_kick_rdev_from_array(struct md_rdev *rdev)
2583 {
2584 	unbind_rdev_from_array(rdev);
2585 	export_rdev(rdev);
2586 }
2587 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2588 
2589 static void export_array(struct mddev *mddev)
2590 {
2591 	struct md_rdev *rdev;
2592 
2593 	while (!list_empty(&mddev->disks)) {
2594 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2595 					same_set);
2596 		md_kick_rdev_from_array(rdev);
2597 	}
2598 	mddev->raid_disks = 0;
2599 	mddev->major_version = 0;
2600 }
2601 
2602 static bool set_in_sync(struct mddev *mddev)
2603 {
2604 	lockdep_assert_held(&mddev->lock);
2605 	if (!mddev->in_sync) {
2606 		mddev->sync_checkers++;
2607 		spin_unlock(&mddev->lock);
2608 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2609 		spin_lock(&mddev->lock);
2610 		if (!mddev->in_sync &&
2611 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2612 			mddev->in_sync = 1;
2613 			/*
2614 			 * Ensure ->in_sync is visible before we clear
2615 			 * ->sync_checkers.
2616 			 */
2617 			smp_mb();
2618 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2619 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2620 		}
2621 		if (--mddev->sync_checkers == 0)
2622 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2623 	}
2624 	if (mddev->safemode == 1)
2625 		mddev->safemode = 0;
2626 	return mddev->in_sync;
2627 }
2628 
2629 static void sync_sbs(struct mddev *mddev, int nospares)
2630 {
2631 	/* Update each superblock (in-memory image), but
2632 	 * if we are allowed to, skip spares which already
2633 	 * have the right event counter, or have one earlier
2634 	 * (which would mean they aren't being marked as dirty
2635 	 * with the rest of the array)
2636 	 */
2637 	struct md_rdev *rdev;
2638 	rdev_for_each(rdev, mddev) {
2639 		if (rdev->sb_events == mddev->events ||
2640 		    (nospares &&
2641 		     rdev->raid_disk < 0 &&
2642 		     rdev->sb_events+1 == mddev->events)) {
2643 			/* Don't update this superblock */
2644 			rdev->sb_loaded = 2;
2645 		} else {
2646 			sync_super(mddev, rdev);
2647 			rdev->sb_loaded = 1;
2648 		}
2649 	}
2650 }
2651 
2652 static bool does_sb_need_changing(struct mddev *mddev)
2653 {
2654 	struct md_rdev *rdev;
2655 	struct mdp_superblock_1 *sb;
2656 	int role;
2657 
2658 	/* Find a good rdev */
2659 	rdev_for_each(rdev, mddev)
2660 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2661 			break;
2662 
2663 	/* No good device found. */
2664 	if (!rdev)
2665 		return false;
2666 
2667 	sb = page_address(rdev->sb_page);
2668 	/* Check if a device has become faulty or a spare become active */
2669 	rdev_for_each(rdev, mddev) {
2670 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2671 		/* Device activated? */
2672 		if (role == 0xffff && rdev->raid_disk >=0 &&
2673 		    !test_bit(Faulty, &rdev->flags))
2674 			return true;
2675 		/* Device turned faulty? */
2676 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2677 			return true;
2678 	}
2679 
2680 	/* Check if any mddev parameters have changed */
2681 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2682 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2683 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2684 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2685 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2686 		return true;
2687 
2688 	return false;
2689 }
2690 
2691 void md_update_sb(struct mddev *mddev, int force_change)
2692 {
2693 	struct md_rdev *rdev;
2694 	int sync_req;
2695 	int nospares = 0;
2696 	int any_badblocks_changed = 0;
2697 	int ret = -1;
2698 
2699 	if (mddev->ro) {
2700 		if (force_change)
2701 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2702 		return;
2703 	}
2704 
2705 repeat:
2706 	if (mddev_is_clustered(mddev)) {
2707 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2708 			force_change = 1;
2709 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2710 			nospares = 1;
2711 		ret = md_cluster_ops->metadata_update_start(mddev);
2712 		/* Has someone else has updated the sb */
2713 		if (!does_sb_need_changing(mddev)) {
2714 			if (ret == 0)
2715 				md_cluster_ops->metadata_update_cancel(mddev);
2716 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2717 							 BIT(MD_SB_CHANGE_DEVS) |
2718 							 BIT(MD_SB_CHANGE_CLEAN));
2719 			return;
2720 		}
2721 	}
2722 
2723 	/*
2724 	 * First make sure individual recovery_offsets are correct
2725 	 * curr_resync_completed can only be used during recovery.
2726 	 * During reshape/resync it might use array-addresses rather
2727 	 * that device addresses.
2728 	 */
2729 	rdev_for_each(rdev, mddev) {
2730 		if (rdev->raid_disk >= 0 &&
2731 		    mddev->delta_disks >= 0 &&
2732 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2733 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2734 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2735 		    !test_bit(Journal, &rdev->flags) &&
2736 		    !test_bit(In_sync, &rdev->flags) &&
2737 		    mddev->curr_resync_completed > rdev->recovery_offset)
2738 				rdev->recovery_offset = mddev->curr_resync_completed;
2739 
2740 	}
2741 	if (!mddev->persistent) {
2742 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2743 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2744 		if (!mddev->external) {
2745 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2746 			rdev_for_each(rdev, mddev) {
2747 				if (rdev->badblocks.changed) {
2748 					rdev->badblocks.changed = 0;
2749 					ack_all_badblocks(&rdev->badblocks);
2750 					md_error(mddev, rdev);
2751 				}
2752 				clear_bit(Blocked, &rdev->flags);
2753 				clear_bit(BlockedBadBlocks, &rdev->flags);
2754 				wake_up(&rdev->blocked_wait);
2755 			}
2756 		}
2757 		wake_up(&mddev->sb_wait);
2758 		return;
2759 	}
2760 
2761 	spin_lock(&mddev->lock);
2762 
2763 	mddev->utime = ktime_get_real_seconds();
2764 
2765 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2766 		force_change = 1;
2767 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2768 		/* just a clean<-> dirty transition, possibly leave spares alone,
2769 		 * though if events isn't the right even/odd, we will have to do
2770 		 * spares after all
2771 		 */
2772 		nospares = 1;
2773 	if (force_change)
2774 		nospares = 0;
2775 	if (mddev->degraded)
2776 		/* If the array is degraded, then skipping spares is both
2777 		 * dangerous and fairly pointless.
2778 		 * Dangerous because a device that was removed from the array
2779 		 * might have a event_count that still looks up-to-date,
2780 		 * so it can be re-added without a resync.
2781 		 * Pointless because if there are any spares to skip,
2782 		 * then a recovery will happen and soon that array won't
2783 		 * be degraded any more and the spare can go back to sleep then.
2784 		 */
2785 		nospares = 0;
2786 
2787 	sync_req = mddev->in_sync;
2788 
2789 	/* If this is just a dirty<->clean transition, and the array is clean
2790 	 * and 'events' is odd, we can roll back to the previous clean state */
2791 	if (nospares
2792 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2793 	    && mddev->can_decrease_events
2794 	    && mddev->events != 1) {
2795 		mddev->events--;
2796 		mddev->can_decrease_events = 0;
2797 	} else {
2798 		/* otherwise we have to go forward and ... */
2799 		mddev->events ++;
2800 		mddev->can_decrease_events = nospares;
2801 	}
2802 
2803 	/*
2804 	 * This 64-bit counter should never wrap.
2805 	 * Either we are in around ~1 trillion A.C., assuming
2806 	 * 1 reboot per second, or we have a bug...
2807 	 */
2808 	WARN_ON(mddev->events == 0);
2809 
2810 	rdev_for_each(rdev, mddev) {
2811 		if (rdev->badblocks.changed)
2812 			any_badblocks_changed++;
2813 		if (test_bit(Faulty, &rdev->flags))
2814 			set_bit(FaultRecorded, &rdev->flags);
2815 	}
2816 
2817 	sync_sbs(mddev, nospares);
2818 	spin_unlock(&mddev->lock);
2819 
2820 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2821 		 mdname(mddev), mddev->in_sync);
2822 
2823 	if (mddev->queue)
2824 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2825 rewrite:
2826 	md_bitmap_update_sb(mddev->bitmap);
2827 	rdev_for_each(rdev, mddev) {
2828 		char b[BDEVNAME_SIZE];
2829 
2830 		if (rdev->sb_loaded != 1)
2831 			continue; /* no noise on spare devices */
2832 
2833 		if (!test_bit(Faulty, &rdev->flags)) {
2834 			md_super_write(mddev,rdev,
2835 				       rdev->sb_start, rdev->sb_size,
2836 				       rdev->sb_page);
2837 			pr_debug("md: (write) %s's sb offset: %llu\n",
2838 				 bdevname(rdev->bdev, b),
2839 				 (unsigned long long)rdev->sb_start);
2840 			rdev->sb_events = mddev->events;
2841 			if (rdev->badblocks.size) {
2842 				md_super_write(mddev, rdev,
2843 					       rdev->badblocks.sector,
2844 					       rdev->badblocks.size << 9,
2845 					       rdev->bb_page);
2846 				rdev->badblocks.size = 0;
2847 			}
2848 
2849 		} else
2850 			pr_debug("md: %s (skipping faulty)\n",
2851 				 bdevname(rdev->bdev, b));
2852 
2853 		if (mddev->level == LEVEL_MULTIPATH)
2854 			/* only need to write one superblock... */
2855 			break;
2856 	}
2857 	if (md_super_wait(mddev) < 0)
2858 		goto rewrite;
2859 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2860 
2861 	if (mddev_is_clustered(mddev) && ret == 0)
2862 		md_cluster_ops->metadata_update_finish(mddev);
2863 
2864 	if (mddev->in_sync != sync_req ||
2865 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2866 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2867 		/* have to write it out again */
2868 		goto repeat;
2869 	wake_up(&mddev->sb_wait);
2870 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2871 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2872 
2873 	rdev_for_each(rdev, mddev) {
2874 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2875 			clear_bit(Blocked, &rdev->flags);
2876 
2877 		if (any_badblocks_changed)
2878 			ack_all_badblocks(&rdev->badblocks);
2879 		clear_bit(BlockedBadBlocks, &rdev->flags);
2880 		wake_up(&rdev->blocked_wait);
2881 	}
2882 }
2883 EXPORT_SYMBOL(md_update_sb);
2884 
2885 static int add_bound_rdev(struct md_rdev *rdev)
2886 {
2887 	struct mddev *mddev = rdev->mddev;
2888 	int err = 0;
2889 	bool add_journal = test_bit(Journal, &rdev->flags);
2890 
2891 	if (!mddev->pers->hot_remove_disk || add_journal) {
2892 		/* If there is hot_add_disk but no hot_remove_disk
2893 		 * then added disks for geometry changes,
2894 		 * and should be added immediately.
2895 		 */
2896 		super_types[mddev->major_version].
2897 			validate_super(mddev, rdev);
2898 		if (add_journal)
2899 			mddev_suspend(mddev);
2900 		err = mddev->pers->hot_add_disk(mddev, rdev);
2901 		if (add_journal)
2902 			mddev_resume(mddev);
2903 		if (err) {
2904 			md_kick_rdev_from_array(rdev);
2905 			return err;
2906 		}
2907 	}
2908 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2909 
2910 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2911 	if (mddev->degraded)
2912 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2913 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2914 	md_new_event(mddev);
2915 	md_wakeup_thread(mddev->thread);
2916 	return 0;
2917 }
2918 
2919 /* words written to sysfs files may, or may not, be \n terminated.
2920  * We want to accept with case. For this we use cmd_match.
2921  */
2922 static int cmd_match(const char *cmd, const char *str)
2923 {
2924 	/* See if cmd, written into a sysfs file, matches
2925 	 * str.  They must either be the same, or cmd can
2926 	 * have a trailing newline
2927 	 */
2928 	while (*cmd && *str && *cmd == *str) {
2929 		cmd++;
2930 		str++;
2931 	}
2932 	if (*cmd == '\n')
2933 		cmd++;
2934 	if (*str || *cmd)
2935 		return 0;
2936 	return 1;
2937 }
2938 
2939 struct rdev_sysfs_entry {
2940 	struct attribute attr;
2941 	ssize_t (*show)(struct md_rdev *, char *);
2942 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2943 };
2944 
2945 static ssize_t
2946 state_show(struct md_rdev *rdev, char *page)
2947 {
2948 	char *sep = ",";
2949 	size_t len = 0;
2950 	unsigned long flags = READ_ONCE(rdev->flags);
2951 
2952 	if (test_bit(Faulty, &flags) ||
2953 	    (!test_bit(ExternalBbl, &flags) &&
2954 	    rdev->badblocks.unacked_exist))
2955 		len += sprintf(page+len, "faulty%s", sep);
2956 	if (test_bit(In_sync, &flags))
2957 		len += sprintf(page+len, "in_sync%s", sep);
2958 	if (test_bit(Journal, &flags))
2959 		len += sprintf(page+len, "journal%s", sep);
2960 	if (test_bit(WriteMostly, &flags))
2961 		len += sprintf(page+len, "write_mostly%s", sep);
2962 	if (test_bit(Blocked, &flags) ||
2963 	    (rdev->badblocks.unacked_exist
2964 	     && !test_bit(Faulty, &flags)))
2965 		len += sprintf(page+len, "blocked%s", sep);
2966 	if (!test_bit(Faulty, &flags) &&
2967 	    !test_bit(Journal, &flags) &&
2968 	    !test_bit(In_sync, &flags))
2969 		len += sprintf(page+len, "spare%s", sep);
2970 	if (test_bit(WriteErrorSeen, &flags))
2971 		len += sprintf(page+len, "write_error%s", sep);
2972 	if (test_bit(WantReplacement, &flags))
2973 		len += sprintf(page+len, "want_replacement%s", sep);
2974 	if (test_bit(Replacement, &flags))
2975 		len += sprintf(page+len, "replacement%s", sep);
2976 	if (test_bit(ExternalBbl, &flags))
2977 		len += sprintf(page+len, "external_bbl%s", sep);
2978 	if (test_bit(FailFast, &flags))
2979 		len += sprintf(page+len, "failfast%s", sep);
2980 
2981 	if (len)
2982 		len -= strlen(sep);
2983 
2984 	return len+sprintf(page+len, "\n");
2985 }
2986 
2987 static ssize_t
2988 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 {
2990 	/* can write
2991 	 *  faulty  - simulates an error
2992 	 *  remove  - disconnects the device
2993 	 *  writemostly - sets write_mostly
2994 	 *  -writemostly - clears write_mostly
2995 	 *  blocked - sets the Blocked flags
2996 	 *  -blocked - clears the Blocked and possibly simulates an error
2997 	 *  insync - sets Insync providing device isn't active
2998 	 *  -insync - clear Insync for a device with a slot assigned,
2999 	 *            so that it gets rebuilt based on bitmap
3000 	 *  write_error - sets WriteErrorSeen
3001 	 *  -write_error - clears WriteErrorSeen
3002 	 *  {,-}failfast - set/clear FailFast
3003 	 */
3004 	int err = -EINVAL;
3005 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3006 		md_error(rdev->mddev, rdev);
3007 		if (test_bit(Faulty, &rdev->flags))
3008 			err = 0;
3009 		else
3010 			err = -EBUSY;
3011 	} else if (cmd_match(buf, "remove")) {
3012 		if (rdev->mddev->pers) {
3013 			clear_bit(Blocked, &rdev->flags);
3014 			remove_and_add_spares(rdev->mddev, rdev);
3015 		}
3016 		if (rdev->raid_disk >= 0)
3017 			err = -EBUSY;
3018 		else {
3019 			struct mddev *mddev = rdev->mddev;
3020 			err = 0;
3021 			if (mddev_is_clustered(mddev))
3022 				err = md_cluster_ops->remove_disk(mddev, rdev);
3023 
3024 			if (err == 0) {
3025 				md_kick_rdev_from_array(rdev);
3026 				if (mddev->pers) {
3027 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3028 					md_wakeup_thread(mddev->thread);
3029 				}
3030 				md_new_event(mddev);
3031 			}
3032 		}
3033 	} else if (cmd_match(buf, "writemostly")) {
3034 		set_bit(WriteMostly, &rdev->flags);
3035 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3036 		err = 0;
3037 	} else if (cmd_match(buf, "-writemostly")) {
3038 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3039 		clear_bit(WriteMostly, &rdev->flags);
3040 		err = 0;
3041 	} else if (cmd_match(buf, "blocked")) {
3042 		set_bit(Blocked, &rdev->flags);
3043 		err = 0;
3044 	} else if (cmd_match(buf, "-blocked")) {
3045 		if (!test_bit(Faulty, &rdev->flags) &&
3046 		    !test_bit(ExternalBbl, &rdev->flags) &&
3047 		    rdev->badblocks.unacked_exist) {
3048 			/* metadata handler doesn't understand badblocks,
3049 			 * so we need to fail the device
3050 			 */
3051 			md_error(rdev->mddev, rdev);
3052 		}
3053 		clear_bit(Blocked, &rdev->flags);
3054 		clear_bit(BlockedBadBlocks, &rdev->flags);
3055 		wake_up(&rdev->blocked_wait);
3056 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3057 		md_wakeup_thread(rdev->mddev->thread);
3058 
3059 		err = 0;
3060 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3061 		set_bit(In_sync, &rdev->flags);
3062 		err = 0;
3063 	} else if (cmd_match(buf, "failfast")) {
3064 		set_bit(FailFast, &rdev->flags);
3065 		err = 0;
3066 	} else if (cmd_match(buf, "-failfast")) {
3067 		clear_bit(FailFast, &rdev->flags);
3068 		err = 0;
3069 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3070 		   !test_bit(Journal, &rdev->flags)) {
3071 		if (rdev->mddev->pers == NULL) {
3072 			clear_bit(In_sync, &rdev->flags);
3073 			rdev->saved_raid_disk = rdev->raid_disk;
3074 			rdev->raid_disk = -1;
3075 			err = 0;
3076 		}
3077 	} else if (cmd_match(buf, "write_error")) {
3078 		set_bit(WriteErrorSeen, &rdev->flags);
3079 		err = 0;
3080 	} else if (cmd_match(buf, "-write_error")) {
3081 		clear_bit(WriteErrorSeen, &rdev->flags);
3082 		err = 0;
3083 	} else if (cmd_match(buf, "want_replacement")) {
3084 		/* Any non-spare device that is not a replacement can
3085 		 * become want_replacement at any time, but we then need to
3086 		 * check if recovery is needed.
3087 		 */
3088 		if (rdev->raid_disk >= 0 &&
3089 		    !test_bit(Journal, &rdev->flags) &&
3090 		    !test_bit(Replacement, &rdev->flags))
3091 			set_bit(WantReplacement, &rdev->flags);
3092 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3093 		md_wakeup_thread(rdev->mddev->thread);
3094 		err = 0;
3095 	} else if (cmd_match(buf, "-want_replacement")) {
3096 		/* Clearing 'want_replacement' is always allowed.
3097 		 * Once replacements starts it is too late though.
3098 		 */
3099 		err = 0;
3100 		clear_bit(WantReplacement, &rdev->flags);
3101 	} else if (cmd_match(buf, "replacement")) {
3102 		/* Can only set a device as a replacement when array has not
3103 		 * yet been started.  Once running, replacement is automatic
3104 		 * from spares, or by assigning 'slot'.
3105 		 */
3106 		if (rdev->mddev->pers)
3107 			err = -EBUSY;
3108 		else {
3109 			set_bit(Replacement, &rdev->flags);
3110 			err = 0;
3111 		}
3112 	} else if (cmd_match(buf, "-replacement")) {
3113 		/* Similarly, can only clear Replacement before start */
3114 		if (rdev->mddev->pers)
3115 			err = -EBUSY;
3116 		else {
3117 			clear_bit(Replacement, &rdev->flags);
3118 			err = 0;
3119 		}
3120 	} else if (cmd_match(buf, "re-add")) {
3121 		if (!rdev->mddev->pers)
3122 			err = -EINVAL;
3123 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3124 				rdev->saved_raid_disk >= 0) {
3125 			/* clear_bit is performed _after_ all the devices
3126 			 * have their local Faulty bit cleared. If any writes
3127 			 * happen in the meantime in the local node, they
3128 			 * will land in the local bitmap, which will be synced
3129 			 * by this node eventually
3130 			 */
3131 			if (!mddev_is_clustered(rdev->mddev) ||
3132 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3133 				clear_bit(Faulty, &rdev->flags);
3134 				err = add_bound_rdev(rdev);
3135 			}
3136 		} else
3137 			err = -EBUSY;
3138 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3139 		set_bit(ExternalBbl, &rdev->flags);
3140 		rdev->badblocks.shift = 0;
3141 		err = 0;
3142 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3143 		clear_bit(ExternalBbl, &rdev->flags);
3144 		err = 0;
3145 	}
3146 	if (!err)
3147 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3148 	return err ? err : len;
3149 }
3150 static struct rdev_sysfs_entry rdev_state =
3151 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3152 
3153 static ssize_t
3154 errors_show(struct md_rdev *rdev, char *page)
3155 {
3156 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3157 }
3158 
3159 static ssize_t
3160 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3161 {
3162 	unsigned int n;
3163 	int rv;
3164 
3165 	rv = kstrtouint(buf, 10, &n);
3166 	if (rv < 0)
3167 		return rv;
3168 	atomic_set(&rdev->corrected_errors, n);
3169 	return len;
3170 }
3171 static struct rdev_sysfs_entry rdev_errors =
3172 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3173 
3174 static ssize_t
3175 slot_show(struct md_rdev *rdev, char *page)
3176 {
3177 	if (test_bit(Journal, &rdev->flags))
3178 		return sprintf(page, "journal\n");
3179 	else if (rdev->raid_disk < 0)
3180 		return sprintf(page, "none\n");
3181 	else
3182 		return sprintf(page, "%d\n", rdev->raid_disk);
3183 }
3184 
3185 static ssize_t
3186 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3187 {
3188 	int slot;
3189 	int err;
3190 
3191 	if (test_bit(Journal, &rdev->flags))
3192 		return -EBUSY;
3193 	if (strncmp(buf, "none", 4)==0)
3194 		slot = -1;
3195 	else {
3196 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3197 		if (err < 0)
3198 			return err;
3199 	}
3200 	if (rdev->mddev->pers && slot == -1) {
3201 		/* Setting 'slot' on an active array requires also
3202 		 * updating the 'rd%d' link, and communicating
3203 		 * with the personality with ->hot_*_disk.
3204 		 * For now we only support removing
3205 		 * failed/spare devices.  This normally happens automatically,
3206 		 * but not when the metadata is externally managed.
3207 		 */
3208 		if (rdev->raid_disk == -1)
3209 			return -EEXIST;
3210 		/* personality does all needed checks */
3211 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3212 			return -EINVAL;
3213 		clear_bit(Blocked, &rdev->flags);
3214 		remove_and_add_spares(rdev->mddev, rdev);
3215 		if (rdev->raid_disk >= 0)
3216 			return -EBUSY;
3217 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3218 		md_wakeup_thread(rdev->mddev->thread);
3219 	} else if (rdev->mddev->pers) {
3220 		/* Activating a spare .. or possibly reactivating
3221 		 * if we ever get bitmaps working here.
3222 		 */
3223 		int err;
3224 
3225 		if (rdev->raid_disk != -1)
3226 			return -EBUSY;
3227 
3228 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3229 			return -EBUSY;
3230 
3231 		if (rdev->mddev->pers->hot_add_disk == NULL)
3232 			return -EINVAL;
3233 
3234 		if (slot >= rdev->mddev->raid_disks &&
3235 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3236 			return -ENOSPC;
3237 
3238 		rdev->raid_disk = slot;
3239 		if (test_bit(In_sync, &rdev->flags))
3240 			rdev->saved_raid_disk = slot;
3241 		else
3242 			rdev->saved_raid_disk = -1;
3243 		clear_bit(In_sync, &rdev->flags);
3244 		clear_bit(Bitmap_sync, &rdev->flags);
3245 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3246 		if (err) {
3247 			rdev->raid_disk = -1;
3248 			return err;
3249 		} else
3250 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3251 		/* failure here is OK */;
3252 		sysfs_link_rdev(rdev->mddev, rdev);
3253 		/* don't wakeup anyone, leave that to userspace. */
3254 	} else {
3255 		if (slot >= rdev->mddev->raid_disks &&
3256 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3257 			return -ENOSPC;
3258 		rdev->raid_disk = slot;
3259 		/* assume it is working */
3260 		clear_bit(Faulty, &rdev->flags);
3261 		clear_bit(WriteMostly, &rdev->flags);
3262 		set_bit(In_sync, &rdev->flags);
3263 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3264 	}
3265 	return len;
3266 }
3267 
3268 static struct rdev_sysfs_entry rdev_slot =
3269 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3270 
3271 static ssize_t
3272 offset_show(struct md_rdev *rdev, char *page)
3273 {
3274 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3275 }
3276 
3277 static ssize_t
3278 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3279 {
3280 	unsigned long long offset;
3281 	if (kstrtoull(buf, 10, &offset) < 0)
3282 		return -EINVAL;
3283 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3284 		return -EBUSY;
3285 	if (rdev->sectors && rdev->mddev->external)
3286 		/* Must set offset before size, so overlap checks
3287 		 * can be sane */
3288 		return -EBUSY;
3289 	rdev->data_offset = offset;
3290 	rdev->new_data_offset = offset;
3291 	return len;
3292 }
3293 
3294 static struct rdev_sysfs_entry rdev_offset =
3295 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3296 
3297 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3298 {
3299 	return sprintf(page, "%llu\n",
3300 		       (unsigned long long)rdev->new_data_offset);
3301 }
3302 
3303 static ssize_t new_offset_store(struct md_rdev *rdev,
3304 				const char *buf, size_t len)
3305 {
3306 	unsigned long long new_offset;
3307 	struct mddev *mddev = rdev->mddev;
3308 
3309 	if (kstrtoull(buf, 10, &new_offset) < 0)
3310 		return -EINVAL;
3311 
3312 	if (mddev->sync_thread ||
3313 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3314 		return -EBUSY;
3315 	if (new_offset == rdev->data_offset)
3316 		/* reset is always permitted */
3317 		;
3318 	else if (new_offset > rdev->data_offset) {
3319 		/* must not push array size beyond rdev_sectors */
3320 		if (new_offset - rdev->data_offset
3321 		    + mddev->dev_sectors > rdev->sectors)
3322 				return -E2BIG;
3323 	}
3324 	/* Metadata worries about other space details. */
3325 
3326 	/* decreasing the offset is inconsistent with a backwards
3327 	 * reshape.
3328 	 */
3329 	if (new_offset < rdev->data_offset &&
3330 	    mddev->reshape_backwards)
3331 		return -EINVAL;
3332 	/* Increasing offset is inconsistent with forwards
3333 	 * reshape.  reshape_direction should be set to
3334 	 * 'backwards' first.
3335 	 */
3336 	if (new_offset > rdev->data_offset &&
3337 	    !mddev->reshape_backwards)
3338 		return -EINVAL;
3339 
3340 	if (mddev->pers && mddev->persistent &&
3341 	    !super_types[mddev->major_version]
3342 	    .allow_new_offset(rdev, new_offset))
3343 		return -E2BIG;
3344 	rdev->new_data_offset = new_offset;
3345 	if (new_offset > rdev->data_offset)
3346 		mddev->reshape_backwards = 1;
3347 	else if (new_offset < rdev->data_offset)
3348 		mddev->reshape_backwards = 0;
3349 
3350 	return len;
3351 }
3352 static struct rdev_sysfs_entry rdev_new_offset =
3353 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3354 
3355 static ssize_t
3356 rdev_size_show(struct md_rdev *rdev, char *page)
3357 {
3358 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3359 }
3360 
3361 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3362 {
3363 	/* check if two start/length pairs overlap */
3364 	if (s1+l1 <= s2)
3365 		return 0;
3366 	if (s2+l2 <= s1)
3367 		return 0;
3368 	return 1;
3369 }
3370 
3371 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3372 {
3373 	unsigned long long blocks;
3374 	sector_t new;
3375 
3376 	if (kstrtoull(buf, 10, &blocks) < 0)
3377 		return -EINVAL;
3378 
3379 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3380 		return -EINVAL; /* sector conversion overflow */
3381 
3382 	new = blocks * 2;
3383 	if (new != blocks * 2)
3384 		return -EINVAL; /* unsigned long long to sector_t overflow */
3385 
3386 	*sectors = new;
3387 	return 0;
3388 }
3389 
3390 static ssize_t
3391 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3392 {
3393 	struct mddev *my_mddev = rdev->mddev;
3394 	sector_t oldsectors = rdev->sectors;
3395 	sector_t sectors;
3396 
3397 	if (test_bit(Journal, &rdev->flags))
3398 		return -EBUSY;
3399 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3400 		return -EINVAL;
3401 	if (rdev->data_offset != rdev->new_data_offset)
3402 		return -EINVAL; /* too confusing */
3403 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3404 		if (my_mddev->persistent) {
3405 			sectors = super_types[my_mddev->major_version].
3406 				rdev_size_change(rdev, sectors);
3407 			if (!sectors)
3408 				return -EBUSY;
3409 		} else if (!sectors)
3410 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3411 				rdev->data_offset;
3412 		if (!my_mddev->pers->resize)
3413 			/* Cannot change size for RAID0 or Linear etc */
3414 			return -EINVAL;
3415 	}
3416 	if (sectors < my_mddev->dev_sectors)
3417 		return -EINVAL; /* component must fit device */
3418 
3419 	rdev->sectors = sectors;
3420 	if (sectors > oldsectors && my_mddev->external) {
3421 		/* Need to check that all other rdevs with the same
3422 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3423 		 * the rdev lists safely.
3424 		 * This check does not provide a hard guarantee, it
3425 		 * just helps avoid dangerous mistakes.
3426 		 */
3427 		struct mddev *mddev;
3428 		int overlap = 0;
3429 		struct list_head *tmp;
3430 
3431 		rcu_read_lock();
3432 		for_each_mddev(mddev, tmp) {
3433 			struct md_rdev *rdev2;
3434 
3435 			rdev_for_each(rdev2, mddev)
3436 				if (rdev->bdev == rdev2->bdev &&
3437 				    rdev != rdev2 &&
3438 				    overlaps(rdev->data_offset, rdev->sectors,
3439 					     rdev2->data_offset,
3440 					     rdev2->sectors)) {
3441 					overlap = 1;
3442 					break;
3443 				}
3444 			if (overlap) {
3445 				mddev_put(mddev);
3446 				break;
3447 			}
3448 		}
3449 		rcu_read_unlock();
3450 		if (overlap) {
3451 			/* Someone else could have slipped in a size
3452 			 * change here, but doing so is just silly.
3453 			 * We put oldsectors back because we *know* it is
3454 			 * safe, and trust userspace not to race with
3455 			 * itself
3456 			 */
3457 			rdev->sectors = oldsectors;
3458 			return -EBUSY;
3459 		}
3460 	}
3461 	return len;
3462 }
3463 
3464 static struct rdev_sysfs_entry rdev_size =
3465 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3466 
3467 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3468 {
3469 	unsigned long long recovery_start = rdev->recovery_offset;
3470 
3471 	if (test_bit(In_sync, &rdev->flags) ||
3472 	    recovery_start == MaxSector)
3473 		return sprintf(page, "none\n");
3474 
3475 	return sprintf(page, "%llu\n", recovery_start);
3476 }
3477 
3478 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3479 {
3480 	unsigned long long recovery_start;
3481 
3482 	if (cmd_match(buf, "none"))
3483 		recovery_start = MaxSector;
3484 	else if (kstrtoull(buf, 10, &recovery_start))
3485 		return -EINVAL;
3486 
3487 	if (rdev->mddev->pers &&
3488 	    rdev->raid_disk >= 0)
3489 		return -EBUSY;
3490 
3491 	rdev->recovery_offset = recovery_start;
3492 	if (recovery_start == MaxSector)
3493 		set_bit(In_sync, &rdev->flags);
3494 	else
3495 		clear_bit(In_sync, &rdev->flags);
3496 	return len;
3497 }
3498 
3499 static struct rdev_sysfs_entry rdev_recovery_start =
3500 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3501 
3502 /* sysfs access to bad-blocks list.
3503  * We present two files.
3504  * 'bad-blocks' lists sector numbers and lengths of ranges that
3505  *    are recorded as bad.  The list is truncated to fit within
3506  *    the one-page limit of sysfs.
3507  *    Writing "sector length" to this file adds an acknowledged
3508  *    bad block list.
3509  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3510  *    been acknowledged.  Writing to this file adds bad blocks
3511  *    without acknowledging them.  This is largely for testing.
3512  */
3513 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3514 {
3515 	return badblocks_show(&rdev->badblocks, page, 0);
3516 }
3517 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3518 {
3519 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3520 	/* Maybe that ack was all we needed */
3521 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3522 		wake_up(&rdev->blocked_wait);
3523 	return rv;
3524 }
3525 static struct rdev_sysfs_entry rdev_bad_blocks =
3526 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3527 
3528 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3529 {
3530 	return badblocks_show(&rdev->badblocks, page, 1);
3531 }
3532 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3533 {
3534 	return badblocks_store(&rdev->badblocks, page, len, 1);
3535 }
3536 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3537 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3538 
3539 static ssize_t
3540 ppl_sector_show(struct md_rdev *rdev, char *page)
3541 {
3542 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3543 }
3544 
3545 static ssize_t
3546 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3547 {
3548 	unsigned long long sector;
3549 
3550 	if (kstrtoull(buf, 10, &sector) < 0)
3551 		return -EINVAL;
3552 	if (sector != (sector_t)sector)
3553 		return -EINVAL;
3554 
3555 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3556 	    rdev->raid_disk >= 0)
3557 		return -EBUSY;
3558 
3559 	if (rdev->mddev->persistent) {
3560 		if (rdev->mddev->major_version == 0)
3561 			return -EINVAL;
3562 		if ((sector > rdev->sb_start &&
3563 		     sector - rdev->sb_start > S16_MAX) ||
3564 		    (sector < rdev->sb_start &&
3565 		     rdev->sb_start - sector > -S16_MIN))
3566 			return -EINVAL;
3567 		rdev->ppl.offset = sector - rdev->sb_start;
3568 	} else if (!rdev->mddev->external) {
3569 		return -EBUSY;
3570 	}
3571 	rdev->ppl.sector = sector;
3572 	return len;
3573 }
3574 
3575 static struct rdev_sysfs_entry rdev_ppl_sector =
3576 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3577 
3578 static ssize_t
3579 ppl_size_show(struct md_rdev *rdev, char *page)
3580 {
3581 	return sprintf(page, "%u\n", rdev->ppl.size);
3582 }
3583 
3584 static ssize_t
3585 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3586 {
3587 	unsigned int size;
3588 
3589 	if (kstrtouint(buf, 10, &size) < 0)
3590 		return -EINVAL;
3591 
3592 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3593 	    rdev->raid_disk >= 0)
3594 		return -EBUSY;
3595 
3596 	if (rdev->mddev->persistent) {
3597 		if (rdev->mddev->major_version == 0)
3598 			return -EINVAL;
3599 		if (size > U16_MAX)
3600 			return -EINVAL;
3601 	} else if (!rdev->mddev->external) {
3602 		return -EBUSY;
3603 	}
3604 	rdev->ppl.size = size;
3605 	return len;
3606 }
3607 
3608 static struct rdev_sysfs_entry rdev_ppl_size =
3609 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3610 
3611 static struct attribute *rdev_default_attrs[] = {
3612 	&rdev_state.attr,
3613 	&rdev_errors.attr,
3614 	&rdev_slot.attr,
3615 	&rdev_offset.attr,
3616 	&rdev_new_offset.attr,
3617 	&rdev_size.attr,
3618 	&rdev_recovery_start.attr,
3619 	&rdev_bad_blocks.attr,
3620 	&rdev_unack_bad_blocks.attr,
3621 	&rdev_ppl_sector.attr,
3622 	&rdev_ppl_size.attr,
3623 	NULL,
3624 };
3625 static ssize_t
3626 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3627 {
3628 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3629 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3630 
3631 	if (!entry->show)
3632 		return -EIO;
3633 	if (!rdev->mddev)
3634 		return -ENODEV;
3635 	return entry->show(rdev, page);
3636 }
3637 
3638 static ssize_t
3639 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3640 	      const char *page, size_t length)
3641 {
3642 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3643 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3644 	ssize_t rv;
3645 	struct mddev *mddev = rdev->mddev;
3646 
3647 	if (!entry->store)
3648 		return -EIO;
3649 	if (!capable(CAP_SYS_ADMIN))
3650 		return -EACCES;
3651 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3652 	if (!rv) {
3653 		if (rdev->mddev == NULL)
3654 			rv = -ENODEV;
3655 		else
3656 			rv = entry->store(rdev, page, length);
3657 		mddev_unlock(mddev);
3658 	}
3659 	return rv;
3660 }
3661 
3662 static void rdev_free(struct kobject *ko)
3663 {
3664 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3665 	kfree(rdev);
3666 }
3667 static const struct sysfs_ops rdev_sysfs_ops = {
3668 	.show		= rdev_attr_show,
3669 	.store		= rdev_attr_store,
3670 };
3671 static struct kobj_type rdev_ktype = {
3672 	.release	= rdev_free,
3673 	.sysfs_ops	= &rdev_sysfs_ops,
3674 	.default_attrs	= rdev_default_attrs,
3675 };
3676 
3677 int md_rdev_init(struct md_rdev *rdev)
3678 {
3679 	rdev->desc_nr = -1;
3680 	rdev->saved_raid_disk = -1;
3681 	rdev->raid_disk = -1;
3682 	rdev->flags = 0;
3683 	rdev->data_offset = 0;
3684 	rdev->new_data_offset = 0;
3685 	rdev->sb_events = 0;
3686 	rdev->last_read_error = 0;
3687 	rdev->sb_loaded = 0;
3688 	rdev->bb_page = NULL;
3689 	atomic_set(&rdev->nr_pending, 0);
3690 	atomic_set(&rdev->read_errors, 0);
3691 	atomic_set(&rdev->corrected_errors, 0);
3692 
3693 	INIT_LIST_HEAD(&rdev->same_set);
3694 	init_waitqueue_head(&rdev->blocked_wait);
3695 
3696 	/* Add space to store bad block list.
3697 	 * This reserves the space even on arrays where it cannot
3698 	 * be used - I wonder if that matters
3699 	 */
3700 	return badblocks_init(&rdev->badblocks, 0);
3701 }
3702 EXPORT_SYMBOL_GPL(md_rdev_init);
3703 /*
3704  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3705  *
3706  * mark the device faulty if:
3707  *
3708  *   - the device is nonexistent (zero size)
3709  *   - the device has no valid superblock
3710  *
3711  * a faulty rdev _never_ has rdev->sb set.
3712  */
3713 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3714 {
3715 	char b[BDEVNAME_SIZE];
3716 	int err;
3717 	struct md_rdev *rdev;
3718 	sector_t size;
3719 
3720 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3721 	if (!rdev)
3722 		return ERR_PTR(-ENOMEM);
3723 
3724 	err = md_rdev_init(rdev);
3725 	if (err)
3726 		goto abort_free;
3727 	err = alloc_disk_sb(rdev);
3728 	if (err)
3729 		goto abort_free;
3730 
3731 	err = lock_rdev(rdev, newdev, super_format == -2);
3732 	if (err)
3733 		goto abort_free;
3734 
3735 	kobject_init(&rdev->kobj, &rdev_ktype);
3736 
3737 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3738 	if (!size) {
3739 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3740 			bdevname(rdev->bdev,b));
3741 		err = -EINVAL;
3742 		goto abort_free;
3743 	}
3744 
3745 	if (super_format >= 0) {
3746 		err = super_types[super_format].
3747 			load_super(rdev, NULL, super_minor);
3748 		if (err == -EINVAL) {
3749 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3750 				bdevname(rdev->bdev,b),
3751 				super_format, super_minor);
3752 			goto abort_free;
3753 		}
3754 		if (err < 0) {
3755 			pr_warn("md: could not read %s's sb, not importing!\n",
3756 				bdevname(rdev->bdev,b));
3757 			goto abort_free;
3758 		}
3759 	}
3760 
3761 	return rdev;
3762 
3763 abort_free:
3764 	if (rdev->bdev)
3765 		unlock_rdev(rdev);
3766 	md_rdev_clear(rdev);
3767 	kfree(rdev);
3768 	return ERR_PTR(err);
3769 }
3770 
3771 /*
3772  * Check a full RAID array for plausibility
3773  */
3774 
3775 static int analyze_sbs(struct mddev *mddev)
3776 {
3777 	int i;
3778 	struct md_rdev *rdev, *freshest, *tmp;
3779 	char b[BDEVNAME_SIZE];
3780 
3781 	freshest = NULL;
3782 	rdev_for_each_safe(rdev, tmp, mddev)
3783 		switch (super_types[mddev->major_version].
3784 			load_super(rdev, freshest, mddev->minor_version)) {
3785 		case 1:
3786 			freshest = rdev;
3787 			break;
3788 		case 0:
3789 			break;
3790 		default:
3791 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3792 				bdevname(rdev->bdev,b));
3793 			md_kick_rdev_from_array(rdev);
3794 		}
3795 
3796 	/* Cannot find a valid fresh disk */
3797 	if (!freshest) {
3798 		pr_warn("md: cannot find a valid disk\n");
3799 		return -EINVAL;
3800 	}
3801 
3802 	super_types[mddev->major_version].
3803 		validate_super(mddev, freshest);
3804 
3805 	i = 0;
3806 	rdev_for_each_safe(rdev, tmp, mddev) {
3807 		if (mddev->max_disks &&
3808 		    (rdev->desc_nr >= mddev->max_disks ||
3809 		     i > mddev->max_disks)) {
3810 			pr_warn("md: %s: %s: only %d devices permitted\n",
3811 				mdname(mddev), bdevname(rdev->bdev, b),
3812 				mddev->max_disks);
3813 			md_kick_rdev_from_array(rdev);
3814 			continue;
3815 		}
3816 		if (rdev != freshest) {
3817 			if (super_types[mddev->major_version].
3818 			    validate_super(mddev, rdev)) {
3819 				pr_warn("md: kicking non-fresh %s from array!\n",
3820 					bdevname(rdev->bdev,b));
3821 				md_kick_rdev_from_array(rdev);
3822 				continue;
3823 			}
3824 		}
3825 		if (mddev->level == LEVEL_MULTIPATH) {
3826 			rdev->desc_nr = i++;
3827 			rdev->raid_disk = rdev->desc_nr;
3828 			set_bit(In_sync, &rdev->flags);
3829 		} else if (rdev->raid_disk >=
3830 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3831 			   !test_bit(Journal, &rdev->flags)) {
3832 			rdev->raid_disk = -1;
3833 			clear_bit(In_sync, &rdev->flags);
3834 		}
3835 	}
3836 
3837 	return 0;
3838 }
3839 
3840 /* Read a fixed-point number.
3841  * Numbers in sysfs attributes should be in "standard" units where
3842  * possible, so time should be in seconds.
3843  * However we internally use a a much smaller unit such as
3844  * milliseconds or jiffies.
3845  * This function takes a decimal number with a possible fractional
3846  * component, and produces an integer which is the result of
3847  * multiplying that number by 10^'scale'.
3848  * all without any floating-point arithmetic.
3849  */
3850 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3851 {
3852 	unsigned long result = 0;
3853 	long decimals = -1;
3854 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3855 		if (*cp == '.')
3856 			decimals = 0;
3857 		else if (decimals < scale) {
3858 			unsigned int value;
3859 			value = *cp - '0';
3860 			result = result * 10 + value;
3861 			if (decimals >= 0)
3862 				decimals++;
3863 		}
3864 		cp++;
3865 	}
3866 	if (*cp == '\n')
3867 		cp++;
3868 	if (*cp)
3869 		return -EINVAL;
3870 	if (decimals < 0)
3871 		decimals = 0;
3872 	*res = result * int_pow(10, scale - decimals);
3873 	return 0;
3874 }
3875 
3876 static ssize_t
3877 safe_delay_show(struct mddev *mddev, char *page)
3878 {
3879 	int msec = (mddev->safemode_delay*1000)/HZ;
3880 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3881 }
3882 static ssize_t
3883 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3884 {
3885 	unsigned long msec;
3886 
3887 	if (mddev_is_clustered(mddev)) {
3888 		pr_warn("md: Safemode is disabled for clustered mode\n");
3889 		return -EINVAL;
3890 	}
3891 
3892 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3893 		return -EINVAL;
3894 	if (msec == 0)
3895 		mddev->safemode_delay = 0;
3896 	else {
3897 		unsigned long old_delay = mddev->safemode_delay;
3898 		unsigned long new_delay = (msec*HZ)/1000;
3899 
3900 		if (new_delay == 0)
3901 			new_delay = 1;
3902 		mddev->safemode_delay = new_delay;
3903 		if (new_delay < old_delay || old_delay == 0)
3904 			mod_timer(&mddev->safemode_timer, jiffies+1);
3905 	}
3906 	return len;
3907 }
3908 static struct md_sysfs_entry md_safe_delay =
3909 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3910 
3911 static ssize_t
3912 level_show(struct mddev *mddev, char *page)
3913 {
3914 	struct md_personality *p;
3915 	int ret;
3916 	spin_lock(&mddev->lock);
3917 	p = mddev->pers;
3918 	if (p)
3919 		ret = sprintf(page, "%s\n", p->name);
3920 	else if (mddev->clevel[0])
3921 		ret = sprintf(page, "%s\n", mddev->clevel);
3922 	else if (mddev->level != LEVEL_NONE)
3923 		ret = sprintf(page, "%d\n", mddev->level);
3924 	else
3925 		ret = 0;
3926 	spin_unlock(&mddev->lock);
3927 	return ret;
3928 }
3929 
3930 static ssize_t
3931 level_store(struct mddev *mddev, const char *buf, size_t len)
3932 {
3933 	char clevel[16];
3934 	ssize_t rv;
3935 	size_t slen = len;
3936 	struct md_personality *pers, *oldpers;
3937 	long level;
3938 	void *priv, *oldpriv;
3939 	struct md_rdev *rdev;
3940 
3941 	if (slen == 0 || slen >= sizeof(clevel))
3942 		return -EINVAL;
3943 
3944 	rv = mddev_lock(mddev);
3945 	if (rv)
3946 		return rv;
3947 
3948 	if (mddev->pers == NULL) {
3949 		strncpy(mddev->clevel, buf, slen);
3950 		if (mddev->clevel[slen-1] == '\n')
3951 			slen--;
3952 		mddev->clevel[slen] = 0;
3953 		mddev->level = LEVEL_NONE;
3954 		rv = len;
3955 		goto out_unlock;
3956 	}
3957 	rv = -EROFS;
3958 	if (mddev->ro)
3959 		goto out_unlock;
3960 
3961 	/* request to change the personality.  Need to ensure:
3962 	 *  - array is not engaged in resync/recovery/reshape
3963 	 *  - old personality can be suspended
3964 	 *  - new personality will access other array.
3965 	 */
3966 
3967 	rv = -EBUSY;
3968 	if (mddev->sync_thread ||
3969 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3970 	    mddev->reshape_position != MaxSector ||
3971 	    mddev->sysfs_active)
3972 		goto out_unlock;
3973 
3974 	rv = -EINVAL;
3975 	if (!mddev->pers->quiesce) {
3976 		pr_warn("md: %s: %s does not support online personality change\n",
3977 			mdname(mddev), mddev->pers->name);
3978 		goto out_unlock;
3979 	}
3980 
3981 	/* Now find the new personality */
3982 	strncpy(clevel, buf, slen);
3983 	if (clevel[slen-1] == '\n')
3984 		slen--;
3985 	clevel[slen] = 0;
3986 	if (kstrtol(clevel, 10, &level))
3987 		level = LEVEL_NONE;
3988 
3989 	if (request_module("md-%s", clevel) != 0)
3990 		request_module("md-level-%s", clevel);
3991 	spin_lock(&pers_lock);
3992 	pers = find_pers(level, clevel);
3993 	if (!pers || !try_module_get(pers->owner)) {
3994 		spin_unlock(&pers_lock);
3995 		pr_warn("md: personality %s not loaded\n", clevel);
3996 		rv = -EINVAL;
3997 		goto out_unlock;
3998 	}
3999 	spin_unlock(&pers_lock);
4000 
4001 	if (pers == mddev->pers) {
4002 		/* Nothing to do! */
4003 		module_put(pers->owner);
4004 		rv = len;
4005 		goto out_unlock;
4006 	}
4007 	if (!pers->takeover) {
4008 		module_put(pers->owner);
4009 		pr_warn("md: %s: %s does not support personality takeover\n",
4010 			mdname(mddev), clevel);
4011 		rv = -EINVAL;
4012 		goto out_unlock;
4013 	}
4014 
4015 	rdev_for_each(rdev, mddev)
4016 		rdev->new_raid_disk = rdev->raid_disk;
4017 
4018 	/* ->takeover must set new_* and/or delta_disks
4019 	 * if it succeeds, and may set them when it fails.
4020 	 */
4021 	priv = pers->takeover(mddev);
4022 	if (IS_ERR(priv)) {
4023 		mddev->new_level = mddev->level;
4024 		mddev->new_layout = mddev->layout;
4025 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4026 		mddev->raid_disks -= mddev->delta_disks;
4027 		mddev->delta_disks = 0;
4028 		mddev->reshape_backwards = 0;
4029 		module_put(pers->owner);
4030 		pr_warn("md: %s: %s would not accept array\n",
4031 			mdname(mddev), clevel);
4032 		rv = PTR_ERR(priv);
4033 		goto out_unlock;
4034 	}
4035 
4036 	/* Looks like we have a winner */
4037 	mddev_suspend(mddev);
4038 	mddev_detach(mddev);
4039 
4040 	spin_lock(&mddev->lock);
4041 	oldpers = mddev->pers;
4042 	oldpriv = mddev->private;
4043 	mddev->pers = pers;
4044 	mddev->private = priv;
4045 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4046 	mddev->level = mddev->new_level;
4047 	mddev->layout = mddev->new_layout;
4048 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4049 	mddev->delta_disks = 0;
4050 	mddev->reshape_backwards = 0;
4051 	mddev->degraded = 0;
4052 	spin_unlock(&mddev->lock);
4053 
4054 	if (oldpers->sync_request == NULL &&
4055 	    mddev->external) {
4056 		/* We are converting from a no-redundancy array
4057 		 * to a redundancy array and metadata is managed
4058 		 * externally so we need to be sure that writes
4059 		 * won't block due to a need to transition
4060 		 *      clean->dirty
4061 		 * until external management is started.
4062 		 */
4063 		mddev->in_sync = 0;
4064 		mddev->safemode_delay = 0;
4065 		mddev->safemode = 0;
4066 	}
4067 
4068 	oldpers->free(mddev, oldpriv);
4069 
4070 	if (oldpers->sync_request == NULL &&
4071 	    pers->sync_request != NULL) {
4072 		/* need to add the md_redundancy_group */
4073 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4074 			pr_warn("md: cannot register extra attributes for %s\n",
4075 				mdname(mddev));
4076 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4077 	}
4078 	if (oldpers->sync_request != NULL &&
4079 	    pers->sync_request == NULL) {
4080 		/* need to remove the md_redundancy_group */
4081 		if (mddev->to_remove == NULL)
4082 			mddev->to_remove = &md_redundancy_group;
4083 	}
4084 
4085 	module_put(oldpers->owner);
4086 
4087 	rdev_for_each(rdev, mddev) {
4088 		if (rdev->raid_disk < 0)
4089 			continue;
4090 		if (rdev->new_raid_disk >= mddev->raid_disks)
4091 			rdev->new_raid_disk = -1;
4092 		if (rdev->new_raid_disk == rdev->raid_disk)
4093 			continue;
4094 		sysfs_unlink_rdev(mddev, rdev);
4095 	}
4096 	rdev_for_each(rdev, mddev) {
4097 		if (rdev->raid_disk < 0)
4098 			continue;
4099 		if (rdev->new_raid_disk == rdev->raid_disk)
4100 			continue;
4101 		rdev->raid_disk = rdev->new_raid_disk;
4102 		if (rdev->raid_disk < 0)
4103 			clear_bit(In_sync, &rdev->flags);
4104 		else {
4105 			if (sysfs_link_rdev(mddev, rdev))
4106 				pr_warn("md: cannot register rd%d for %s after level change\n",
4107 					rdev->raid_disk, mdname(mddev));
4108 		}
4109 	}
4110 
4111 	if (pers->sync_request == NULL) {
4112 		/* this is now an array without redundancy, so
4113 		 * it must always be in_sync
4114 		 */
4115 		mddev->in_sync = 1;
4116 		del_timer_sync(&mddev->safemode_timer);
4117 	}
4118 	blk_set_stacking_limits(&mddev->queue->limits);
4119 	pers->run(mddev);
4120 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4121 	mddev_resume(mddev);
4122 	if (!mddev->thread)
4123 		md_update_sb(mddev, 1);
4124 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4125 	md_new_event(mddev);
4126 	rv = len;
4127 out_unlock:
4128 	mddev_unlock(mddev);
4129 	return rv;
4130 }
4131 
4132 static struct md_sysfs_entry md_level =
4133 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4134 
4135 static ssize_t
4136 layout_show(struct mddev *mddev, char *page)
4137 {
4138 	/* just a number, not meaningful for all levels */
4139 	if (mddev->reshape_position != MaxSector &&
4140 	    mddev->layout != mddev->new_layout)
4141 		return sprintf(page, "%d (%d)\n",
4142 			       mddev->new_layout, mddev->layout);
4143 	return sprintf(page, "%d\n", mddev->layout);
4144 }
4145 
4146 static ssize_t
4147 layout_store(struct mddev *mddev, const char *buf, size_t len)
4148 {
4149 	unsigned int n;
4150 	int err;
4151 
4152 	err = kstrtouint(buf, 10, &n);
4153 	if (err < 0)
4154 		return err;
4155 	err = mddev_lock(mddev);
4156 	if (err)
4157 		return err;
4158 
4159 	if (mddev->pers) {
4160 		if (mddev->pers->check_reshape == NULL)
4161 			err = -EBUSY;
4162 		else if (mddev->ro)
4163 			err = -EROFS;
4164 		else {
4165 			mddev->new_layout = n;
4166 			err = mddev->pers->check_reshape(mddev);
4167 			if (err)
4168 				mddev->new_layout = mddev->layout;
4169 		}
4170 	} else {
4171 		mddev->new_layout = n;
4172 		if (mddev->reshape_position == MaxSector)
4173 			mddev->layout = n;
4174 	}
4175 	mddev_unlock(mddev);
4176 	return err ?: len;
4177 }
4178 static struct md_sysfs_entry md_layout =
4179 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4180 
4181 static ssize_t
4182 raid_disks_show(struct mddev *mddev, char *page)
4183 {
4184 	if (mddev->raid_disks == 0)
4185 		return 0;
4186 	if (mddev->reshape_position != MaxSector &&
4187 	    mddev->delta_disks != 0)
4188 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4189 			       mddev->raid_disks - mddev->delta_disks);
4190 	return sprintf(page, "%d\n", mddev->raid_disks);
4191 }
4192 
4193 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4194 
4195 static ssize_t
4196 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4197 {
4198 	unsigned int n;
4199 	int err;
4200 
4201 	err = kstrtouint(buf, 10, &n);
4202 	if (err < 0)
4203 		return err;
4204 
4205 	err = mddev_lock(mddev);
4206 	if (err)
4207 		return err;
4208 	if (mddev->pers)
4209 		err = update_raid_disks(mddev, n);
4210 	else if (mddev->reshape_position != MaxSector) {
4211 		struct md_rdev *rdev;
4212 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4213 
4214 		err = -EINVAL;
4215 		rdev_for_each(rdev, mddev) {
4216 			if (olddisks < n &&
4217 			    rdev->data_offset < rdev->new_data_offset)
4218 				goto out_unlock;
4219 			if (olddisks > n &&
4220 			    rdev->data_offset > rdev->new_data_offset)
4221 				goto out_unlock;
4222 		}
4223 		err = 0;
4224 		mddev->delta_disks = n - olddisks;
4225 		mddev->raid_disks = n;
4226 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4227 	} else
4228 		mddev->raid_disks = n;
4229 out_unlock:
4230 	mddev_unlock(mddev);
4231 	return err ? err : len;
4232 }
4233 static struct md_sysfs_entry md_raid_disks =
4234 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4235 
4236 static ssize_t
4237 uuid_show(struct mddev *mddev, char *page)
4238 {
4239 	return sprintf(page, "%pU\n", mddev->uuid);
4240 }
4241 static struct md_sysfs_entry md_uuid =
4242 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4243 
4244 static ssize_t
4245 chunk_size_show(struct mddev *mddev, char *page)
4246 {
4247 	if (mddev->reshape_position != MaxSector &&
4248 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4249 		return sprintf(page, "%d (%d)\n",
4250 			       mddev->new_chunk_sectors << 9,
4251 			       mddev->chunk_sectors << 9);
4252 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4253 }
4254 
4255 static ssize_t
4256 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4257 {
4258 	unsigned long n;
4259 	int err;
4260 
4261 	err = kstrtoul(buf, 10, &n);
4262 	if (err < 0)
4263 		return err;
4264 
4265 	err = mddev_lock(mddev);
4266 	if (err)
4267 		return err;
4268 	if (mddev->pers) {
4269 		if (mddev->pers->check_reshape == NULL)
4270 			err = -EBUSY;
4271 		else if (mddev->ro)
4272 			err = -EROFS;
4273 		else {
4274 			mddev->new_chunk_sectors = n >> 9;
4275 			err = mddev->pers->check_reshape(mddev);
4276 			if (err)
4277 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4278 		}
4279 	} else {
4280 		mddev->new_chunk_sectors = n >> 9;
4281 		if (mddev->reshape_position == MaxSector)
4282 			mddev->chunk_sectors = n >> 9;
4283 	}
4284 	mddev_unlock(mddev);
4285 	return err ?: len;
4286 }
4287 static struct md_sysfs_entry md_chunk_size =
4288 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4289 
4290 static ssize_t
4291 resync_start_show(struct mddev *mddev, char *page)
4292 {
4293 	if (mddev->recovery_cp == MaxSector)
4294 		return sprintf(page, "none\n");
4295 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4296 }
4297 
4298 static ssize_t
4299 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 	unsigned long long n;
4302 	int err;
4303 
4304 	if (cmd_match(buf, "none"))
4305 		n = MaxSector;
4306 	else {
4307 		err = kstrtoull(buf, 10, &n);
4308 		if (err < 0)
4309 			return err;
4310 		if (n != (sector_t)n)
4311 			return -EINVAL;
4312 	}
4313 
4314 	err = mddev_lock(mddev);
4315 	if (err)
4316 		return err;
4317 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4318 		err = -EBUSY;
4319 
4320 	if (!err) {
4321 		mddev->recovery_cp = n;
4322 		if (mddev->pers)
4323 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4324 	}
4325 	mddev_unlock(mddev);
4326 	return err ?: len;
4327 }
4328 static struct md_sysfs_entry md_resync_start =
4329 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4330 		resync_start_show, resync_start_store);
4331 
4332 /*
4333  * The array state can be:
4334  *
4335  * clear
4336  *     No devices, no size, no level
4337  *     Equivalent to STOP_ARRAY ioctl
4338  * inactive
4339  *     May have some settings, but array is not active
4340  *        all IO results in error
4341  *     When written, doesn't tear down array, but just stops it
4342  * suspended (not supported yet)
4343  *     All IO requests will block. The array can be reconfigured.
4344  *     Writing this, if accepted, will block until array is quiescent
4345  * readonly
4346  *     no resync can happen.  no superblocks get written.
4347  *     write requests fail
4348  * read-auto
4349  *     like readonly, but behaves like 'clean' on a write request.
4350  *
4351  * clean - no pending writes, but otherwise active.
4352  *     When written to inactive array, starts without resync
4353  *     If a write request arrives then
4354  *       if metadata is known, mark 'dirty' and switch to 'active'.
4355  *       if not known, block and switch to write-pending
4356  *     If written to an active array that has pending writes, then fails.
4357  * active
4358  *     fully active: IO and resync can be happening.
4359  *     When written to inactive array, starts with resync
4360  *
4361  * write-pending
4362  *     clean, but writes are blocked waiting for 'active' to be written.
4363  *
4364  * active-idle
4365  *     like active, but no writes have been seen for a while (100msec).
4366  *
4367  * broken
4368  *     RAID0/LINEAR-only: same as clean, but array is missing a member.
4369  *     It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4370  *     when a member is gone, so this state will at least alert the
4371  *     user that something is wrong.
4372  */
4373 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4374 		   write_pending, active_idle, broken, bad_word};
4375 static char *array_states[] = {
4376 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4377 	"write-pending", "active-idle", "broken", NULL };
4378 
4379 static int match_word(const char *word, char **list)
4380 {
4381 	int n;
4382 	for (n=0; list[n]; n++)
4383 		if (cmd_match(word, list[n]))
4384 			break;
4385 	return n;
4386 }
4387 
4388 static ssize_t
4389 array_state_show(struct mddev *mddev, char *page)
4390 {
4391 	enum array_state st = inactive;
4392 
4393 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4394 		switch(mddev->ro) {
4395 		case 1:
4396 			st = readonly;
4397 			break;
4398 		case 2:
4399 			st = read_auto;
4400 			break;
4401 		case 0:
4402 			spin_lock(&mddev->lock);
4403 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4404 				st = write_pending;
4405 			else if (mddev->in_sync)
4406 				st = clean;
4407 			else if (mddev->safemode)
4408 				st = active_idle;
4409 			else
4410 				st = active;
4411 			spin_unlock(&mddev->lock);
4412 		}
4413 
4414 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4415 			st = broken;
4416 	} else {
4417 		if (list_empty(&mddev->disks) &&
4418 		    mddev->raid_disks == 0 &&
4419 		    mddev->dev_sectors == 0)
4420 			st = clear;
4421 		else
4422 			st = inactive;
4423 	}
4424 	return sprintf(page, "%s\n", array_states[st]);
4425 }
4426 
4427 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4428 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4429 static int do_md_run(struct mddev *mddev);
4430 static int restart_array(struct mddev *mddev);
4431 
4432 static ssize_t
4433 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 	int err = 0;
4436 	enum array_state st = match_word(buf, array_states);
4437 
4438 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4439 		/* don't take reconfig_mutex when toggling between
4440 		 * clean and active
4441 		 */
4442 		spin_lock(&mddev->lock);
4443 		if (st == active) {
4444 			restart_array(mddev);
4445 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4446 			md_wakeup_thread(mddev->thread);
4447 			wake_up(&mddev->sb_wait);
4448 		} else /* st == clean */ {
4449 			restart_array(mddev);
4450 			if (!set_in_sync(mddev))
4451 				err = -EBUSY;
4452 		}
4453 		if (!err)
4454 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4455 		spin_unlock(&mddev->lock);
4456 		return err ?: len;
4457 	}
4458 	err = mddev_lock(mddev);
4459 	if (err)
4460 		return err;
4461 	err = -EINVAL;
4462 	switch(st) {
4463 	case bad_word:
4464 		break;
4465 	case clear:
4466 		/* stopping an active array */
4467 		err = do_md_stop(mddev, 0, NULL);
4468 		break;
4469 	case inactive:
4470 		/* stopping an active array */
4471 		if (mddev->pers)
4472 			err = do_md_stop(mddev, 2, NULL);
4473 		else
4474 			err = 0; /* already inactive */
4475 		break;
4476 	case suspended:
4477 		break; /* not supported yet */
4478 	case readonly:
4479 		if (mddev->pers)
4480 			err = md_set_readonly(mddev, NULL);
4481 		else {
4482 			mddev->ro = 1;
4483 			set_disk_ro(mddev->gendisk, 1);
4484 			err = do_md_run(mddev);
4485 		}
4486 		break;
4487 	case read_auto:
4488 		if (mddev->pers) {
4489 			if (mddev->ro == 0)
4490 				err = md_set_readonly(mddev, NULL);
4491 			else if (mddev->ro == 1)
4492 				err = restart_array(mddev);
4493 			if (err == 0) {
4494 				mddev->ro = 2;
4495 				set_disk_ro(mddev->gendisk, 0);
4496 			}
4497 		} else {
4498 			mddev->ro = 2;
4499 			err = do_md_run(mddev);
4500 		}
4501 		break;
4502 	case clean:
4503 		if (mddev->pers) {
4504 			err = restart_array(mddev);
4505 			if (err)
4506 				break;
4507 			spin_lock(&mddev->lock);
4508 			if (!set_in_sync(mddev))
4509 				err = -EBUSY;
4510 			spin_unlock(&mddev->lock);
4511 		} else
4512 			err = -EINVAL;
4513 		break;
4514 	case active:
4515 		if (mddev->pers) {
4516 			err = restart_array(mddev);
4517 			if (err)
4518 				break;
4519 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4520 			wake_up(&mddev->sb_wait);
4521 			err = 0;
4522 		} else {
4523 			mddev->ro = 0;
4524 			set_disk_ro(mddev->gendisk, 0);
4525 			err = do_md_run(mddev);
4526 		}
4527 		break;
4528 	case write_pending:
4529 	case active_idle:
4530 	case broken:
4531 		/* these cannot be set */
4532 		break;
4533 	}
4534 
4535 	if (!err) {
4536 		if (mddev->hold_active == UNTIL_IOCTL)
4537 			mddev->hold_active = 0;
4538 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4539 	}
4540 	mddev_unlock(mddev);
4541 	return err ?: len;
4542 }
4543 static struct md_sysfs_entry md_array_state =
4544 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4545 
4546 static ssize_t
4547 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4548 	return sprintf(page, "%d\n",
4549 		       atomic_read(&mddev->max_corr_read_errors));
4550 }
4551 
4552 static ssize_t
4553 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4554 {
4555 	unsigned int n;
4556 	int rv;
4557 
4558 	rv = kstrtouint(buf, 10, &n);
4559 	if (rv < 0)
4560 		return rv;
4561 	atomic_set(&mddev->max_corr_read_errors, n);
4562 	return len;
4563 }
4564 
4565 static struct md_sysfs_entry max_corr_read_errors =
4566 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4567 	max_corrected_read_errors_store);
4568 
4569 static ssize_t
4570 null_show(struct mddev *mddev, char *page)
4571 {
4572 	return -EINVAL;
4573 }
4574 
4575 /* need to ensure rdev_delayed_delete() has completed */
4576 static void flush_rdev_wq(struct mddev *mddev)
4577 {
4578 	struct md_rdev *rdev;
4579 
4580 	rcu_read_lock();
4581 	rdev_for_each_rcu(rdev, mddev)
4582 		if (work_pending(&rdev->del_work)) {
4583 			flush_workqueue(md_rdev_misc_wq);
4584 			break;
4585 		}
4586 	rcu_read_unlock();
4587 }
4588 
4589 static ssize_t
4590 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4591 {
4592 	/* buf must be %d:%d\n? giving major and minor numbers */
4593 	/* The new device is added to the array.
4594 	 * If the array has a persistent superblock, we read the
4595 	 * superblock to initialise info and check validity.
4596 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4597 	 * which mainly checks size.
4598 	 */
4599 	char *e;
4600 	int major = simple_strtoul(buf, &e, 10);
4601 	int minor;
4602 	dev_t dev;
4603 	struct md_rdev *rdev;
4604 	int err;
4605 
4606 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4607 		return -EINVAL;
4608 	minor = simple_strtoul(e+1, &e, 10);
4609 	if (*e && *e != '\n')
4610 		return -EINVAL;
4611 	dev = MKDEV(major, minor);
4612 	if (major != MAJOR(dev) ||
4613 	    minor != MINOR(dev))
4614 		return -EOVERFLOW;
4615 
4616 	flush_rdev_wq(mddev);
4617 	err = mddev_lock(mddev);
4618 	if (err)
4619 		return err;
4620 	if (mddev->persistent) {
4621 		rdev = md_import_device(dev, mddev->major_version,
4622 					mddev->minor_version);
4623 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4624 			struct md_rdev *rdev0
4625 				= list_entry(mddev->disks.next,
4626 					     struct md_rdev, same_set);
4627 			err = super_types[mddev->major_version]
4628 				.load_super(rdev, rdev0, mddev->minor_version);
4629 			if (err < 0)
4630 				goto out;
4631 		}
4632 	} else if (mddev->external)
4633 		rdev = md_import_device(dev, -2, -1);
4634 	else
4635 		rdev = md_import_device(dev, -1, -1);
4636 
4637 	if (IS_ERR(rdev)) {
4638 		mddev_unlock(mddev);
4639 		return PTR_ERR(rdev);
4640 	}
4641 	err = bind_rdev_to_array(rdev, mddev);
4642  out:
4643 	if (err)
4644 		export_rdev(rdev);
4645 	mddev_unlock(mddev);
4646 	if (!err)
4647 		md_new_event(mddev);
4648 	return err ? err : len;
4649 }
4650 
4651 static struct md_sysfs_entry md_new_device =
4652 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4653 
4654 static ssize_t
4655 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4656 {
4657 	char *end;
4658 	unsigned long chunk, end_chunk;
4659 	int err;
4660 
4661 	err = mddev_lock(mddev);
4662 	if (err)
4663 		return err;
4664 	if (!mddev->bitmap)
4665 		goto out;
4666 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4667 	while (*buf) {
4668 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4669 		if (buf == end) break;
4670 		if (*end == '-') { /* range */
4671 			buf = end + 1;
4672 			end_chunk = simple_strtoul(buf, &end, 0);
4673 			if (buf == end) break;
4674 		}
4675 		if (*end && !isspace(*end)) break;
4676 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4677 		buf = skip_spaces(end);
4678 	}
4679 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4680 out:
4681 	mddev_unlock(mddev);
4682 	return len;
4683 }
4684 
4685 static struct md_sysfs_entry md_bitmap =
4686 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4687 
4688 static ssize_t
4689 size_show(struct mddev *mddev, char *page)
4690 {
4691 	return sprintf(page, "%llu\n",
4692 		(unsigned long long)mddev->dev_sectors / 2);
4693 }
4694 
4695 static int update_size(struct mddev *mddev, sector_t num_sectors);
4696 
4697 static ssize_t
4698 size_store(struct mddev *mddev, const char *buf, size_t len)
4699 {
4700 	/* If array is inactive, we can reduce the component size, but
4701 	 * not increase it (except from 0).
4702 	 * If array is active, we can try an on-line resize
4703 	 */
4704 	sector_t sectors;
4705 	int err = strict_blocks_to_sectors(buf, &sectors);
4706 
4707 	if (err < 0)
4708 		return err;
4709 	err = mddev_lock(mddev);
4710 	if (err)
4711 		return err;
4712 	if (mddev->pers) {
4713 		err = update_size(mddev, sectors);
4714 		if (err == 0)
4715 			md_update_sb(mddev, 1);
4716 	} else {
4717 		if (mddev->dev_sectors == 0 ||
4718 		    mddev->dev_sectors > sectors)
4719 			mddev->dev_sectors = sectors;
4720 		else
4721 			err = -ENOSPC;
4722 	}
4723 	mddev_unlock(mddev);
4724 	return err ? err : len;
4725 }
4726 
4727 static struct md_sysfs_entry md_size =
4728 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4729 
4730 /* Metadata version.
4731  * This is one of
4732  *   'none' for arrays with no metadata (good luck...)
4733  *   'external' for arrays with externally managed metadata,
4734  * or N.M for internally known formats
4735  */
4736 static ssize_t
4737 metadata_show(struct mddev *mddev, char *page)
4738 {
4739 	if (mddev->persistent)
4740 		return sprintf(page, "%d.%d\n",
4741 			       mddev->major_version, mddev->minor_version);
4742 	else if (mddev->external)
4743 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4744 	else
4745 		return sprintf(page, "none\n");
4746 }
4747 
4748 static ssize_t
4749 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4750 {
4751 	int major, minor;
4752 	char *e;
4753 	int err;
4754 	/* Changing the details of 'external' metadata is
4755 	 * always permitted.  Otherwise there must be
4756 	 * no devices attached to the array.
4757 	 */
4758 
4759 	err = mddev_lock(mddev);
4760 	if (err)
4761 		return err;
4762 	err = -EBUSY;
4763 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4764 		;
4765 	else if (!list_empty(&mddev->disks))
4766 		goto out_unlock;
4767 
4768 	err = 0;
4769 	if (cmd_match(buf, "none")) {
4770 		mddev->persistent = 0;
4771 		mddev->external = 0;
4772 		mddev->major_version = 0;
4773 		mddev->minor_version = 90;
4774 		goto out_unlock;
4775 	}
4776 	if (strncmp(buf, "external:", 9) == 0) {
4777 		size_t namelen = len-9;
4778 		if (namelen >= sizeof(mddev->metadata_type))
4779 			namelen = sizeof(mddev->metadata_type)-1;
4780 		strncpy(mddev->metadata_type, buf+9, namelen);
4781 		mddev->metadata_type[namelen] = 0;
4782 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4783 			mddev->metadata_type[--namelen] = 0;
4784 		mddev->persistent = 0;
4785 		mddev->external = 1;
4786 		mddev->major_version = 0;
4787 		mddev->minor_version = 90;
4788 		goto out_unlock;
4789 	}
4790 	major = simple_strtoul(buf, &e, 10);
4791 	err = -EINVAL;
4792 	if (e==buf || *e != '.')
4793 		goto out_unlock;
4794 	buf = e+1;
4795 	minor = simple_strtoul(buf, &e, 10);
4796 	if (e==buf || (*e && *e != '\n') )
4797 		goto out_unlock;
4798 	err = -ENOENT;
4799 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4800 		goto out_unlock;
4801 	mddev->major_version = major;
4802 	mddev->minor_version = minor;
4803 	mddev->persistent = 1;
4804 	mddev->external = 0;
4805 	err = 0;
4806 out_unlock:
4807 	mddev_unlock(mddev);
4808 	return err ?: len;
4809 }
4810 
4811 static struct md_sysfs_entry md_metadata =
4812 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4813 
4814 static ssize_t
4815 action_show(struct mddev *mddev, char *page)
4816 {
4817 	char *type = "idle";
4818 	unsigned long recovery = mddev->recovery;
4819 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4820 		type = "frozen";
4821 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4822 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4823 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4824 			type = "reshape";
4825 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4826 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4827 				type = "resync";
4828 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4829 				type = "check";
4830 			else
4831 				type = "repair";
4832 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4833 			type = "recover";
4834 		else if (mddev->reshape_position != MaxSector)
4835 			type = "reshape";
4836 	}
4837 	return sprintf(page, "%s\n", type);
4838 }
4839 
4840 static ssize_t
4841 action_store(struct mddev *mddev, const char *page, size_t len)
4842 {
4843 	if (!mddev->pers || !mddev->pers->sync_request)
4844 		return -EINVAL;
4845 
4846 
4847 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4848 		if (cmd_match(page, "frozen"))
4849 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4850 		else
4851 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4852 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4853 		    mddev_lock(mddev) == 0) {
4854 			if (work_pending(&mddev->del_work))
4855 				flush_workqueue(md_misc_wq);
4856 			if (mddev->sync_thread) {
4857 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4858 				md_reap_sync_thread(mddev);
4859 			}
4860 			mddev_unlock(mddev);
4861 		}
4862 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4863 		return -EBUSY;
4864 	else if (cmd_match(page, "resync"))
4865 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4866 	else if (cmd_match(page, "recover")) {
4867 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4869 	} else if (cmd_match(page, "reshape")) {
4870 		int err;
4871 		if (mddev->pers->start_reshape == NULL)
4872 			return -EINVAL;
4873 		err = mddev_lock(mddev);
4874 		if (!err) {
4875 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4876 				err =  -EBUSY;
4877 			else {
4878 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4879 				err = mddev->pers->start_reshape(mddev);
4880 			}
4881 			mddev_unlock(mddev);
4882 		}
4883 		if (err)
4884 			return err;
4885 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4886 	} else {
4887 		if (cmd_match(page, "check"))
4888 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4889 		else if (!cmd_match(page, "repair"))
4890 			return -EINVAL;
4891 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4892 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4893 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4894 	}
4895 	if (mddev->ro == 2) {
4896 		/* A write to sync_action is enough to justify
4897 		 * canceling read-auto mode
4898 		 */
4899 		mddev->ro = 0;
4900 		md_wakeup_thread(mddev->sync_thread);
4901 	}
4902 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4903 	md_wakeup_thread(mddev->thread);
4904 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4905 	return len;
4906 }
4907 
4908 static struct md_sysfs_entry md_scan_mode =
4909 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4910 
4911 static ssize_t
4912 last_sync_action_show(struct mddev *mddev, char *page)
4913 {
4914 	return sprintf(page, "%s\n", mddev->last_sync_action);
4915 }
4916 
4917 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4918 
4919 static ssize_t
4920 mismatch_cnt_show(struct mddev *mddev, char *page)
4921 {
4922 	return sprintf(page, "%llu\n",
4923 		       (unsigned long long)
4924 		       atomic64_read(&mddev->resync_mismatches));
4925 }
4926 
4927 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4928 
4929 static ssize_t
4930 sync_min_show(struct mddev *mddev, char *page)
4931 {
4932 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4933 		       mddev->sync_speed_min ? "local": "system");
4934 }
4935 
4936 static ssize_t
4937 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4938 {
4939 	unsigned int min;
4940 	int rv;
4941 
4942 	if (strncmp(buf, "system", 6)==0) {
4943 		min = 0;
4944 	} else {
4945 		rv = kstrtouint(buf, 10, &min);
4946 		if (rv < 0)
4947 			return rv;
4948 		if (min == 0)
4949 			return -EINVAL;
4950 	}
4951 	mddev->sync_speed_min = min;
4952 	return len;
4953 }
4954 
4955 static struct md_sysfs_entry md_sync_min =
4956 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4957 
4958 static ssize_t
4959 sync_max_show(struct mddev *mddev, char *page)
4960 {
4961 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4962 		       mddev->sync_speed_max ? "local": "system");
4963 }
4964 
4965 static ssize_t
4966 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4967 {
4968 	unsigned int max;
4969 	int rv;
4970 
4971 	if (strncmp(buf, "system", 6)==0) {
4972 		max = 0;
4973 	} else {
4974 		rv = kstrtouint(buf, 10, &max);
4975 		if (rv < 0)
4976 			return rv;
4977 		if (max == 0)
4978 			return -EINVAL;
4979 	}
4980 	mddev->sync_speed_max = max;
4981 	return len;
4982 }
4983 
4984 static struct md_sysfs_entry md_sync_max =
4985 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4986 
4987 static ssize_t
4988 degraded_show(struct mddev *mddev, char *page)
4989 {
4990 	return sprintf(page, "%d\n", mddev->degraded);
4991 }
4992 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4993 
4994 static ssize_t
4995 sync_force_parallel_show(struct mddev *mddev, char *page)
4996 {
4997 	return sprintf(page, "%d\n", mddev->parallel_resync);
4998 }
4999 
5000 static ssize_t
5001 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5002 {
5003 	long n;
5004 
5005 	if (kstrtol(buf, 10, &n))
5006 		return -EINVAL;
5007 
5008 	if (n != 0 && n != 1)
5009 		return -EINVAL;
5010 
5011 	mddev->parallel_resync = n;
5012 
5013 	if (mddev->sync_thread)
5014 		wake_up(&resync_wait);
5015 
5016 	return len;
5017 }
5018 
5019 /* force parallel resync, even with shared block devices */
5020 static struct md_sysfs_entry md_sync_force_parallel =
5021 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5022        sync_force_parallel_show, sync_force_parallel_store);
5023 
5024 static ssize_t
5025 sync_speed_show(struct mddev *mddev, char *page)
5026 {
5027 	unsigned long resync, dt, db;
5028 	if (mddev->curr_resync == 0)
5029 		return sprintf(page, "none\n");
5030 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5031 	dt = (jiffies - mddev->resync_mark) / HZ;
5032 	if (!dt) dt++;
5033 	db = resync - mddev->resync_mark_cnt;
5034 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5035 }
5036 
5037 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5038 
5039 static ssize_t
5040 sync_completed_show(struct mddev *mddev, char *page)
5041 {
5042 	unsigned long long max_sectors, resync;
5043 
5044 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5045 		return sprintf(page, "none\n");
5046 
5047 	if (mddev->curr_resync == 1 ||
5048 	    mddev->curr_resync == 2)
5049 		return sprintf(page, "delayed\n");
5050 
5051 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5052 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5053 		max_sectors = mddev->resync_max_sectors;
5054 	else
5055 		max_sectors = mddev->dev_sectors;
5056 
5057 	resync = mddev->curr_resync_completed;
5058 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5059 }
5060 
5061 static struct md_sysfs_entry md_sync_completed =
5062 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5063 
5064 static ssize_t
5065 min_sync_show(struct mddev *mddev, char *page)
5066 {
5067 	return sprintf(page, "%llu\n",
5068 		       (unsigned long long)mddev->resync_min);
5069 }
5070 static ssize_t
5071 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5072 {
5073 	unsigned long long min;
5074 	int err;
5075 
5076 	if (kstrtoull(buf, 10, &min))
5077 		return -EINVAL;
5078 
5079 	spin_lock(&mddev->lock);
5080 	err = -EINVAL;
5081 	if (min > mddev->resync_max)
5082 		goto out_unlock;
5083 
5084 	err = -EBUSY;
5085 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5086 		goto out_unlock;
5087 
5088 	/* Round down to multiple of 4K for safety */
5089 	mddev->resync_min = round_down(min, 8);
5090 	err = 0;
5091 
5092 out_unlock:
5093 	spin_unlock(&mddev->lock);
5094 	return err ?: len;
5095 }
5096 
5097 static struct md_sysfs_entry md_min_sync =
5098 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5099 
5100 static ssize_t
5101 max_sync_show(struct mddev *mddev, char *page)
5102 {
5103 	if (mddev->resync_max == MaxSector)
5104 		return sprintf(page, "max\n");
5105 	else
5106 		return sprintf(page, "%llu\n",
5107 			       (unsigned long long)mddev->resync_max);
5108 }
5109 static ssize_t
5110 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5111 {
5112 	int err;
5113 	spin_lock(&mddev->lock);
5114 	if (strncmp(buf, "max", 3) == 0)
5115 		mddev->resync_max = MaxSector;
5116 	else {
5117 		unsigned long long max;
5118 		int chunk;
5119 
5120 		err = -EINVAL;
5121 		if (kstrtoull(buf, 10, &max))
5122 			goto out_unlock;
5123 		if (max < mddev->resync_min)
5124 			goto out_unlock;
5125 
5126 		err = -EBUSY;
5127 		if (max < mddev->resync_max &&
5128 		    mddev->ro == 0 &&
5129 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5130 			goto out_unlock;
5131 
5132 		/* Must be a multiple of chunk_size */
5133 		chunk = mddev->chunk_sectors;
5134 		if (chunk) {
5135 			sector_t temp = max;
5136 
5137 			err = -EINVAL;
5138 			if (sector_div(temp, chunk))
5139 				goto out_unlock;
5140 		}
5141 		mddev->resync_max = max;
5142 	}
5143 	wake_up(&mddev->recovery_wait);
5144 	err = 0;
5145 out_unlock:
5146 	spin_unlock(&mddev->lock);
5147 	return err ?: len;
5148 }
5149 
5150 static struct md_sysfs_entry md_max_sync =
5151 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5152 
5153 static ssize_t
5154 suspend_lo_show(struct mddev *mddev, char *page)
5155 {
5156 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5157 }
5158 
5159 static ssize_t
5160 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5161 {
5162 	unsigned long long new;
5163 	int err;
5164 
5165 	err = kstrtoull(buf, 10, &new);
5166 	if (err < 0)
5167 		return err;
5168 	if (new != (sector_t)new)
5169 		return -EINVAL;
5170 
5171 	err = mddev_lock(mddev);
5172 	if (err)
5173 		return err;
5174 	err = -EINVAL;
5175 	if (mddev->pers == NULL ||
5176 	    mddev->pers->quiesce == NULL)
5177 		goto unlock;
5178 	mddev_suspend(mddev);
5179 	mddev->suspend_lo = new;
5180 	mddev_resume(mddev);
5181 
5182 	err = 0;
5183 unlock:
5184 	mddev_unlock(mddev);
5185 	return err ?: len;
5186 }
5187 static struct md_sysfs_entry md_suspend_lo =
5188 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5189 
5190 static ssize_t
5191 suspend_hi_show(struct mddev *mddev, char *page)
5192 {
5193 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5194 }
5195 
5196 static ssize_t
5197 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5198 {
5199 	unsigned long long new;
5200 	int err;
5201 
5202 	err = kstrtoull(buf, 10, &new);
5203 	if (err < 0)
5204 		return err;
5205 	if (new != (sector_t)new)
5206 		return -EINVAL;
5207 
5208 	err = mddev_lock(mddev);
5209 	if (err)
5210 		return err;
5211 	err = -EINVAL;
5212 	if (mddev->pers == NULL)
5213 		goto unlock;
5214 
5215 	mddev_suspend(mddev);
5216 	mddev->suspend_hi = new;
5217 	mddev_resume(mddev);
5218 
5219 	err = 0;
5220 unlock:
5221 	mddev_unlock(mddev);
5222 	return err ?: len;
5223 }
5224 static struct md_sysfs_entry md_suspend_hi =
5225 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5226 
5227 static ssize_t
5228 reshape_position_show(struct mddev *mddev, char *page)
5229 {
5230 	if (mddev->reshape_position != MaxSector)
5231 		return sprintf(page, "%llu\n",
5232 			       (unsigned long long)mddev->reshape_position);
5233 	strcpy(page, "none\n");
5234 	return 5;
5235 }
5236 
5237 static ssize_t
5238 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5239 {
5240 	struct md_rdev *rdev;
5241 	unsigned long long new;
5242 	int err;
5243 
5244 	err = kstrtoull(buf, 10, &new);
5245 	if (err < 0)
5246 		return err;
5247 	if (new != (sector_t)new)
5248 		return -EINVAL;
5249 	err = mddev_lock(mddev);
5250 	if (err)
5251 		return err;
5252 	err = -EBUSY;
5253 	if (mddev->pers)
5254 		goto unlock;
5255 	mddev->reshape_position = new;
5256 	mddev->delta_disks = 0;
5257 	mddev->reshape_backwards = 0;
5258 	mddev->new_level = mddev->level;
5259 	mddev->new_layout = mddev->layout;
5260 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5261 	rdev_for_each(rdev, mddev)
5262 		rdev->new_data_offset = rdev->data_offset;
5263 	err = 0;
5264 unlock:
5265 	mddev_unlock(mddev);
5266 	return err ?: len;
5267 }
5268 
5269 static struct md_sysfs_entry md_reshape_position =
5270 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5271        reshape_position_store);
5272 
5273 static ssize_t
5274 reshape_direction_show(struct mddev *mddev, char *page)
5275 {
5276 	return sprintf(page, "%s\n",
5277 		       mddev->reshape_backwards ? "backwards" : "forwards");
5278 }
5279 
5280 static ssize_t
5281 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5282 {
5283 	int backwards = 0;
5284 	int err;
5285 
5286 	if (cmd_match(buf, "forwards"))
5287 		backwards = 0;
5288 	else if (cmd_match(buf, "backwards"))
5289 		backwards = 1;
5290 	else
5291 		return -EINVAL;
5292 	if (mddev->reshape_backwards == backwards)
5293 		return len;
5294 
5295 	err = mddev_lock(mddev);
5296 	if (err)
5297 		return err;
5298 	/* check if we are allowed to change */
5299 	if (mddev->delta_disks)
5300 		err = -EBUSY;
5301 	else if (mddev->persistent &&
5302 	    mddev->major_version == 0)
5303 		err =  -EINVAL;
5304 	else
5305 		mddev->reshape_backwards = backwards;
5306 	mddev_unlock(mddev);
5307 	return err ?: len;
5308 }
5309 
5310 static struct md_sysfs_entry md_reshape_direction =
5311 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5312        reshape_direction_store);
5313 
5314 static ssize_t
5315 array_size_show(struct mddev *mddev, char *page)
5316 {
5317 	if (mddev->external_size)
5318 		return sprintf(page, "%llu\n",
5319 			       (unsigned long long)mddev->array_sectors/2);
5320 	else
5321 		return sprintf(page, "default\n");
5322 }
5323 
5324 static ssize_t
5325 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5326 {
5327 	sector_t sectors;
5328 	int err;
5329 
5330 	err = mddev_lock(mddev);
5331 	if (err)
5332 		return err;
5333 
5334 	/* cluster raid doesn't support change array_sectors */
5335 	if (mddev_is_clustered(mddev)) {
5336 		mddev_unlock(mddev);
5337 		return -EINVAL;
5338 	}
5339 
5340 	if (strncmp(buf, "default", 7) == 0) {
5341 		if (mddev->pers)
5342 			sectors = mddev->pers->size(mddev, 0, 0);
5343 		else
5344 			sectors = mddev->array_sectors;
5345 
5346 		mddev->external_size = 0;
5347 	} else {
5348 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5349 			err = -EINVAL;
5350 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5351 			err = -E2BIG;
5352 		else
5353 			mddev->external_size = 1;
5354 	}
5355 
5356 	if (!err) {
5357 		mddev->array_sectors = sectors;
5358 		if (mddev->pers) {
5359 			set_capacity(mddev->gendisk, mddev->array_sectors);
5360 			revalidate_disk(mddev->gendisk);
5361 		}
5362 	}
5363 	mddev_unlock(mddev);
5364 	return err ?: len;
5365 }
5366 
5367 static struct md_sysfs_entry md_array_size =
5368 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5369        array_size_store);
5370 
5371 static ssize_t
5372 consistency_policy_show(struct mddev *mddev, char *page)
5373 {
5374 	int ret;
5375 
5376 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5377 		ret = sprintf(page, "journal\n");
5378 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5379 		ret = sprintf(page, "ppl\n");
5380 	} else if (mddev->bitmap) {
5381 		ret = sprintf(page, "bitmap\n");
5382 	} else if (mddev->pers) {
5383 		if (mddev->pers->sync_request)
5384 			ret = sprintf(page, "resync\n");
5385 		else
5386 			ret = sprintf(page, "none\n");
5387 	} else {
5388 		ret = sprintf(page, "unknown\n");
5389 	}
5390 
5391 	return ret;
5392 }
5393 
5394 static ssize_t
5395 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5396 {
5397 	int err = 0;
5398 
5399 	if (mddev->pers) {
5400 		if (mddev->pers->change_consistency_policy)
5401 			err = mddev->pers->change_consistency_policy(mddev, buf);
5402 		else
5403 			err = -EBUSY;
5404 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5405 		set_bit(MD_HAS_PPL, &mddev->flags);
5406 	} else {
5407 		err = -EINVAL;
5408 	}
5409 
5410 	return err ? err : len;
5411 }
5412 
5413 static struct md_sysfs_entry md_consistency_policy =
5414 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5415        consistency_policy_store);
5416 
5417 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5418 {
5419 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5420 }
5421 
5422 /*
5423  * Setting fail_last_dev to true to allow last device to be forcibly removed
5424  * from RAID1/RAID10.
5425  */
5426 static ssize_t
5427 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5428 {
5429 	int ret;
5430 	bool value;
5431 
5432 	ret = kstrtobool(buf, &value);
5433 	if (ret)
5434 		return ret;
5435 
5436 	if (value != mddev->fail_last_dev)
5437 		mddev->fail_last_dev = value;
5438 
5439 	return len;
5440 }
5441 static struct md_sysfs_entry md_fail_last_dev =
5442 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5443        fail_last_dev_store);
5444 
5445 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5446 {
5447 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5448 		return sprintf(page, "n/a\n");
5449 	else
5450 		return sprintf(page, "%d\n", mddev->serialize_policy);
5451 }
5452 
5453 /*
5454  * Setting serialize_policy to true to enforce write IO is not reordered
5455  * for raid1.
5456  */
5457 static ssize_t
5458 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5459 {
5460 	int err;
5461 	bool value;
5462 
5463 	err = kstrtobool(buf, &value);
5464 	if (err)
5465 		return err;
5466 
5467 	if (value == mddev->serialize_policy)
5468 		return len;
5469 
5470 	err = mddev_lock(mddev);
5471 	if (err)
5472 		return err;
5473 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5474 		pr_err("md: serialize_policy is only effective for raid1\n");
5475 		err = -EINVAL;
5476 		goto unlock;
5477 	}
5478 
5479 	mddev_suspend(mddev);
5480 	if (value)
5481 		mddev_create_serial_pool(mddev, NULL, true);
5482 	else
5483 		mddev_destroy_serial_pool(mddev, NULL, true);
5484 	mddev->serialize_policy = value;
5485 	mddev_resume(mddev);
5486 unlock:
5487 	mddev_unlock(mddev);
5488 	return err ?: len;
5489 }
5490 
5491 static struct md_sysfs_entry md_serialize_policy =
5492 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5493        serialize_policy_store);
5494 
5495 
5496 static struct attribute *md_default_attrs[] = {
5497 	&md_level.attr,
5498 	&md_layout.attr,
5499 	&md_raid_disks.attr,
5500 	&md_uuid.attr,
5501 	&md_chunk_size.attr,
5502 	&md_size.attr,
5503 	&md_resync_start.attr,
5504 	&md_metadata.attr,
5505 	&md_new_device.attr,
5506 	&md_safe_delay.attr,
5507 	&md_array_state.attr,
5508 	&md_reshape_position.attr,
5509 	&md_reshape_direction.attr,
5510 	&md_array_size.attr,
5511 	&max_corr_read_errors.attr,
5512 	&md_consistency_policy.attr,
5513 	&md_fail_last_dev.attr,
5514 	&md_serialize_policy.attr,
5515 	NULL,
5516 };
5517 
5518 static struct attribute *md_redundancy_attrs[] = {
5519 	&md_scan_mode.attr,
5520 	&md_last_scan_mode.attr,
5521 	&md_mismatches.attr,
5522 	&md_sync_min.attr,
5523 	&md_sync_max.attr,
5524 	&md_sync_speed.attr,
5525 	&md_sync_force_parallel.attr,
5526 	&md_sync_completed.attr,
5527 	&md_min_sync.attr,
5528 	&md_max_sync.attr,
5529 	&md_suspend_lo.attr,
5530 	&md_suspend_hi.attr,
5531 	&md_bitmap.attr,
5532 	&md_degraded.attr,
5533 	NULL,
5534 };
5535 static struct attribute_group md_redundancy_group = {
5536 	.name = NULL,
5537 	.attrs = md_redundancy_attrs,
5538 };
5539 
5540 static ssize_t
5541 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5542 {
5543 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5544 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5545 	ssize_t rv;
5546 
5547 	if (!entry->show)
5548 		return -EIO;
5549 	spin_lock(&all_mddevs_lock);
5550 	if (list_empty(&mddev->all_mddevs)) {
5551 		spin_unlock(&all_mddevs_lock);
5552 		return -EBUSY;
5553 	}
5554 	mddev_get(mddev);
5555 	spin_unlock(&all_mddevs_lock);
5556 
5557 	rv = entry->show(mddev, page);
5558 	mddev_put(mddev);
5559 	return rv;
5560 }
5561 
5562 static ssize_t
5563 md_attr_store(struct kobject *kobj, struct attribute *attr,
5564 	      const char *page, size_t length)
5565 {
5566 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5567 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5568 	ssize_t rv;
5569 
5570 	if (!entry->store)
5571 		return -EIO;
5572 	if (!capable(CAP_SYS_ADMIN))
5573 		return -EACCES;
5574 	spin_lock(&all_mddevs_lock);
5575 	if (list_empty(&mddev->all_mddevs)) {
5576 		spin_unlock(&all_mddevs_lock);
5577 		return -EBUSY;
5578 	}
5579 	mddev_get(mddev);
5580 	spin_unlock(&all_mddevs_lock);
5581 	rv = entry->store(mddev, page, length);
5582 	mddev_put(mddev);
5583 	return rv;
5584 }
5585 
5586 static void md_free(struct kobject *ko)
5587 {
5588 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5589 
5590 	if (mddev->sysfs_state)
5591 		sysfs_put(mddev->sysfs_state);
5592 	if (mddev->sysfs_completed)
5593 		sysfs_put(mddev->sysfs_completed);
5594 	if (mddev->sysfs_degraded)
5595 		sysfs_put(mddev->sysfs_degraded);
5596 	if (mddev->sysfs_level)
5597 		sysfs_put(mddev->sysfs_level);
5598 
5599 
5600 	if (mddev->gendisk)
5601 		del_gendisk(mddev->gendisk);
5602 	if (mddev->queue)
5603 		blk_cleanup_queue(mddev->queue);
5604 	if (mddev->gendisk)
5605 		put_disk(mddev->gendisk);
5606 	percpu_ref_exit(&mddev->writes_pending);
5607 
5608 	bioset_exit(&mddev->bio_set);
5609 	bioset_exit(&mddev->sync_set);
5610 	mempool_exit(&mddev->md_io_pool);
5611 	kfree(mddev);
5612 }
5613 
5614 static const struct sysfs_ops md_sysfs_ops = {
5615 	.show	= md_attr_show,
5616 	.store	= md_attr_store,
5617 };
5618 static struct kobj_type md_ktype = {
5619 	.release	= md_free,
5620 	.sysfs_ops	= &md_sysfs_ops,
5621 	.default_attrs	= md_default_attrs,
5622 };
5623 
5624 int mdp_major = 0;
5625 
5626 static void mddev_delayed_delete(struct work_struct *ws)
5627 {
5628 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5629 
5630 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5631 	kobject_del(&mddev->kobj);
5632 	kobject_put(&mddev->kobj);
5633 }
5634 
5635 static void no_op(struct percpu_ref *r) {}
5636 
5637 int mddev_init_writes_pending(struct mddev *mddev)
5638 {
5639 	if (mddev->writes_pending.percpu_count_ptr)
5640 		return 0;
5641 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5642 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5643 		return -ENOMEM;
5644 	/* We want to start with the refcount at zero */
5645 	percpu_ref_put(&mddev->writes_pending);
5646 	return 0;
5647 }
5648 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5649 
5650 static int md_alloc(dev_t dev, char *name)
5651 {
5652 	/*
5653 	 * If dev is zero, name is the name of a device to allocate with
5654 	 * an arbitrary minor number.  It will be "md_???"
5655 	 * If dev is non-zero it must be a device number with a MAJOR of
5656 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5657 	 * the device is being created by opening a node in /dev.
5658 	 * If "name" is not NULL, the device is being created by
5659 	 * writing to /sys/module/md_mod/parameters/new_array.
5660 	 */
5661 	static DEFINE_MUTEX(disks_mutex);
5662 	struct mddev *mddev = mddev_find(dev);
5663 	struct gendisk *disk;
5664 	int partitioned;
5665 	int shift;
5666 	int unit;
5667 	int error;
5668 
5669 	if (!mddev)
5670 		return -ENODEV;
5671 
5672 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5673 	shift = partitioned ? MdpMinorShift : 0;
5674 	unit = MINOR(mddev->unit) >> shift;
5675 
5676 	/* wait for any previous instance of this device to be
5677 	 * completely removed (mddev_delayed_delete).
5678 	 */
5679 	flush_workqueue(md_misc_wq);
5680 
5681 	mutex_lock(&disks_mutex);
5682 	error = -EEXIST;
5683 	if (mddev->gendisk)
5684 		goto abort;
5685 
5686 	if (name && !dev) {
5687 		/* Need to ensure that 'name' is not a duplicate.
5688 		 */
5689 		struct mddev *mddev2;
5690 		spin_lock(&all_mddevs_lock);
5691 
5692 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5693 			if (mddev2->gendisk &&
5694 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5695 				spin_unlock(&all_mddevs_lock);
5696 				goto abort;
5697 			}
5698 		spin_unlock(&all_mddevs_lock);
5699 	}
5700 	if (name && dev)
5701 		/*
5702 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5703 		 */
5704 		mddev->hold_active = UNTIL_STOP;
5705 
5706 	error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE,
5707 					  sizeof(struct md_io));
5708 	if (error)
5709 		goto abort;
5710 
5711 	error = -ENOMEM;
5712 	mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5713 	if (!mddev->queue)
5714 		goto abort;
5715 
5716 	blk_set_stacking_limits(&mddev->queue->limits);
5717 
5718 	disk = alloc_disk(1 << shift);
5719 	if (!disk) {
5720 		blk_cleanup_queue(mddev->queue);
5721 		mddev->queue = NULL;
5722 		goto abort;
5723 	}
5724 	disk->major = MAJOR(mddev->unit);
5725 	disk->first_minor = unit << shift;
5726 	if (name)
5727 		strcpy(disk->disk_name, name);
5728 	else if (partitioned)
5729 		sprintf(disk->disk_name, "md_d%d", unit);
5730 	else
5731 		sprintf(disk->disk_name, "md%d", unit);
5732 	disk->fops = &md_fops;
5733 	disk->private_data = mddev;
5734 	disk->queue = mddev->queue;
5735 	blk_queue_write_cache(mddev->queue, true, true);
5736 	/* Allow extended partitions.  This makes the
5737 	 * 'mdp' device redundant, but we can't really
5738 	 * remove it now.
5739 	 */
5740 	disk->flags |= GENHD_FL_EXT_DEVT;
5741 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5742 	mddev->gendisk = disk;
5743 	/* As soon as we call add_disk(), another thread could get
5744 	 * through to md_open, so make sure it doesn't get too far
5745 	 */
5746 	mutex_lock(&mddev->open_mutex);
5747 	add_disk(disk);
5748 
5749 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5750 	if (error) {
5751 		/* This isn't possible, but as kobject_init_and_add is marked
5752 		 * __must_check, we must do something with the result
5753 		 */
5754 		pr_debug("md: cannot register %s/md - name in use\n",
5755 			 disk->disk_name);
5756 		error = 0;
5757 	}
5758 	if (mddev->kobj.sd &&
5759 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5760 		pr_debug("pointless warning\n");
5761 	mutex_unlock(&mddev->open_mutex);
5762  abort:
5763 	mutex_unlock(&disks_mutex);
5764 	if (!error && mddev->kobj.sd) {
5765 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5766 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5767 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
5768 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
5769 		mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5770 	}
5771 	mddev_put(mddev);
5772 	return error;
5773 }
5774 
5775 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5776 {
5777 	if (create_on_open)
5778 		md_alloc(dev, NULL);
5779 	return NULL;
5780 }
5781 
5782 static int add_named_array(const char *val, const struct kernel_param *kp)
5783 {
5784 	/*
5785 	 * val must be "md_*" or "mdNNN".
5786 	 * For "md_*" we allocate an array with a large free minor number, and
5787 	 * set the name to val.  val must not already be an active name.
5788 	 * For "mdNNN" we allocate an array with the minor number NNN
5789 	 * which must not already be in use.
5790 	 */
5791 	int len = strlen(val);
5792 	char buf[DISK_NAME_LEN];
5793 	unsigned long devnum;
5794 
5795 	while (len && val[len-1] == '\n')
5796 		len--;
5797 	if (len >= DISK_NAME_LEN)
5798 		return -E2BIG;
5799 	strlcpy(buf, val, len+1);
5800 	if (strncmp(buf, "md_", 3) == 0)
5801 		return md_alloc(0, buf);
5802 	if (strncmp(buf, "md", 2) == 0 &&
5803 	    isdigit(buf[2]) &&
5804 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5805 	    devnum <= MINORMASK)
5806 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5807 
5808 	return -EINVAL;
5809 }
5810 
5811 static void md_safemode_timeout(struct timer_list *t)
5812 {
5813 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5814 
5815 	mddev->safemode = 1;
5816 	if (mddev->external)
5817 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5818 
5819 	md_wakeup_thread(mddev->thread);
5820 }
5821 
5822 static int start_dirty_degraded;
5823 
5824 int md_run(struct mddev *mddev)
5825 {
5826 	int err;
5827 	struct md_rdev *rdev;
5828 	struct md_personality *pers;
5829 
5830 	if (list_empty(&mddev->disks))
5831 		/* cannot run an array with no devices.. */
5832 		return -EINVAL;
5833 
5834 	if (mddev->pers)
5835 		return -EBUSY;
5836 	/* Cannot run until previous stop completes properly */
5837 	if (mddev->sysfs_active)
5838 		return -EBUSY;
5839 
5840 	/*
5841 	 * Analyze all RAID superblock(s)
5842 	 */
5843 	if (!mddev->raid_disks) {
5844 		if (!mddev->persistent)
5845 			return -EINVAL;
5846 		err = analyze_sbs(mddev);
5847 		if (err)
5848 			return -EINVAL;
5849 	}
5850 
5851 	if (mddev->level != LEVEL_NONE)
5852 		request_module("md-level-%d", mddev->level);
5853 	else if (mddev->clevel[0])
5854 		request_module("md-%s", mddev->clevel);
5855 
5856 	/*
5857 	 * Drop all container device buffers, from now on
5858 	 * the only valid external interface is through the md
5859 	 * device.
5860 	 */
5861 	mddev->has_superblocks = false;
5862 	rdev_for_each(rdev, mddev) {
5863 		if (test_bit(Faulty, &rdev->flags))
5864 			continue;
5865 		sync_blockdev(rdev->bdev);
5866 		invalidate_bdev(rdev->bdev);
5867 		if (mddev->ro != 1 &&
5868 		    (bdev_read_only(rdev->bdev) ||
5869 		     bdev_read_only(rdev->meta_bdev))) {
5870 			mddev->ro = 1;
5871 			if (mddev->gendisk)
5872 				set_disk_ro(mddev->gendisk, 1);
5873 		}
5874 
5875 		if (rdev->sb_page)
5876 			mddev->has_superblocks = true;
5877 
5878 		/* perform some consistency tests on the device.
5879 		 * We don't want the data to overlap the metadata,
5880 		 * Internal Bitmap issues have been handled elsewhere.
5881 		 */
5882 		if (rdev->meta_bdev) {
5883 			/* Nothing to check */;
5884 		} else if (rdev->data_offset < rdev->sb_start) {
5885 			if (mddev->dev_sectors &&
5886 			    rdev->data_offset + mddev->dev_sectors
5887 			    > rdev->sb_start) {
5888 				pr_warn("md: %s: data overlaps metadata\n",
5889 					mdname(mddev));
5890 				return -EINVAL;
5891 			}
5892 		} else {
5893 			if (rdev->sb_start + rdev->sb_size/512
5894 			    > rdev->data_offset) {
5895 				pr_warn("md: %s: metadata overlaps data\n",
5896 					mdname(mddev));
5897 				return -EINVAL;
5898 			}
5899 		}
5900 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5901 	}
5902 
5903 	if (!bioset_initialized(&mddev->bio_set)) {
5904 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5905 		if (err)
5906 			return err;
5907 	}
5908 	if (!bioset_initialized(&mddev->sync_set)) {
5909 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5910 		if (err)
5911 			return err;
5912 	}
5913 
5914 	spin_lock(&pers_lock);
5915 	pers = find_pers(mddev->level, mddev->clevel);
5916 	if (!pers || !try_module_get(pers->owner)) {
5917 		spin_unlock(&pers_lock);
5918 		if (mddev->level != LEVEL_NONE)
5919 			pr_warn("md: personality for level %d is not loaded!\n",
5920 				mddev->level);
5921 		else
5922 			pr_warn("md: personality for level %s is not loaded!\n",
5923 				mddev->clevel);
5924 		err = -EINVAL;
5925 		goto abort;
5926 	}
5927 	spin_unlock(&pers_lock);
5928 	if (mddev->level != pers->level) {
5929 		mddev->level = pers->level;
5930 		mddev->new_level = pers->level;
5931 	}
5932 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5933 
5934 	if (mddev->reshape_position != MaxSector &&
5935 	    pers->start_reshape == NULL) {
5936 		/* This personality cannot handle reshaping... */
5937 		module_put(pers->owner);
5938 		err = -EINVAL;
5939 		goto abort;
5940 	}
5941 
5942 	if (pers->sync_request) {
5943 		/* Warn if this is a potentially silly
5944 		 * configuration.
5945 		 */
5946 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5947 		struct md_rdev *rdev2;
5948 		int warned = 0;
5949 
5950 		rdev_for_each(rdev, mddev)
5951 			rdev_for_each(rdev2, mddev) {
5952 				if (rdev < rdev2 &&
5953 				    rdev->bdev->bd_contains ==
5954 				    rdev2->bdev->bd_contains) {
5955 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5956 						mdname(mddev),
5957 						bdevname(rdev->bdev,b),
5958 						bdevname(rdev2->bdev,b2));
5959 					warned = 1;
5960 				}
5961 			}
5962 
5963 		if (warned)
5964 			pr_warn("True protection against single-disk failure might be compromised.\n");
5965 	}
5966 
5967 	mddev->recovery = 0;
5968 	/* may be over-ridden by personality */
5969 	mddev->resync_max_sectors = mddev->dev_sectors;
5970 
5971 	mddev->ok_start_degraded = start_dirty_degraded;
5972 
5973 	if (start_readonly && mddev->ro == 0)
5974 		mddev->ro = 2; /* read-only, but switch on first write */
5975 
5976 	err = pers->run(mddev);
5977 	if (err)
5978 		pr_warn("md: pers->run() failed ...\n");
5979 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5980 		WARN_ONCE(!mddev->external_size,
5981 			  "%s: default size too small, but 'external_size' not in effect?\n",
5982 			  __func__);
5983 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5984 			(unsigned long long)mddev->array_sectors / 2,
5985 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5986 		err = -EINVAL;
5987 	}
5988 	if (err == 0 && pers->sync_request &&
5989 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5990 		struct bitmap *bitmap;
5991 
5992 		bitmap = md_bitmap_create(mddev, -1);
5993 		if (IS_ERR(bitmap)) {
5994 			err = PTR_ERR(bitmap);
5995 			pr_warn("%s: failed to create bitmap (%d)\n",
5996 				mdname(mddev), err);
5997 		} else
5998 			mddev->bitmap = bitmap;
5999 
6000 	}
6001 	if (err)
6002 		goto bitmap_abort;
6003 
6004 	if (mddev->bitmap_info.max_write_behind > 0) {
6005 		bool create_pool = false;
6006 
6007 		rdev_for_each(rdev, mddev) {
6008 			if (test_bit(WriteMostly, &rdev->flags) &&
6009 			    rdev_init_serial(rdev))
6010 				create_pool = true;
6011 		}
6012 		if (create_pool && mddev->serial_info_pool == NULL) {
6013 			mddev->serial_info_pool =
6014 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6015 						    sizeof(struct serial_info));
6016 			if (!mddev->serial_info_pool) {
6017 				err = -ENOMEM;
6018 				goto bitmap_abort;
6019 			}
6020 		}
6021 	}
6022 
6023 	if (mddev->queue) {
6024 		bool nonrot = true;
6025 
6026 		rdev_for_each(rdev, mddev) {
6027 			if (rdev->raid_disk >= 0 &&
6028 			    !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6029 				nonrot = false;
6030 				break;
6031 			}
6032 		}
6033 		if (mddev->degraded)
6034 			nonrot = false;
6035 		if (nonrot)
6036 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6037 		else
6038 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6039 	}
6040 	if (pers->sync_request) {
6041 		if (mddev->kobj.sd &&
6042 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6043 			pr_warn("md: cannot register extra attributes for %s\n",
6044 				mdname(mddev));
6045 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6046 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6047 		mddev->ro = 0;
6048 
6049 	atomic_set(&mddev->max_corr_read_errors,
6050 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6051 	mddev->safemode = 0;
6052 	if (mddev_is_clustered(mddev))
6053 		mddev->safemode_delay = 0;
6054 	else
6055 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6056 	mddev->in_sync = 1;
6057 	smp_wmb();
6058 	spin_lock(&mddev->lock);
6059 	mddev->pers = pers;
6060 	spin_unlock(&mddev->lock);
6061 	rdev_for_each(rdev, mddev)
6062 		if (rdev->raid_disk >= 0)
6063 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6064 
6065 	if (mddev->degraded && !mddev->ro)
6066 		/* This ensures that recovering status is reported immediately
6067 		 * via sysfs - until a lack of spares is confirmed.
6068 		 */
6069 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6070 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6071 
6072 	if (mddev->sb_flags)
6073 		md_update_sb(mddev, 0);
6074 
6075 	md_new_event(mddev);
6076 	return 0;
6077 
6078 bitmap_abort:
6079 	mddev_detach(mddev);
6080 	if (mddev->private)
6081 		pers->free(mddev, mddev->private);
6082 	mddev->private = NULL;
6083 	module_put(pers->owner);
6084 	md_bitmap_destroy(mddev);
6085 abort:
6086 	bioset_exit(&mddev->bio_set);
6087 	bioset_exit(&mddev->sync_set);
6088 	return err;
6089 }
6090 EXPORT_SYMBOL_GPL(md_run);
6091 
6092 static int do_md_run(struct mddev *mddev)
6093 {
6094 	int err;
6095 
6096 	set_bit(MD_NOT_READY, &mddev->flags);
6097 	err = md_run(mddev);
6098 	if (err)
6099 		goto out;
6100 	err = md_bitmap_load(mddev);
6101 	if (err) {
6102 		md_bitmap_destroy(mddev);
6103 		goto out;
6104 	}
6105 
6106 	if (mddev_is_clustered(mddev))
6107 		md_allow_write(mddev);
6108 
6109 	/* run start up tasks that require md_thread */
6110 	md_start(mddev);
6111 
6112 	md_wakeup_thread(mddev->thread);
6113 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6114 
6115 	set_capacity(mddev->gendisk, mddev->array_sectors);
6116 	revalidate_disk(mddev->gendisk);
6117 	clear_bit(MD_NOT_READY, &mddev->flags);
6118 	mddev->changed = 1;
6119 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6120 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6121 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6122 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6123 out:
6124 	clear_bit(MD_NOT_READY, &mddev->flags);
6125 	return err;
6126 }
6127 
6128 int md_start(struct mddev *mddev)
6129 {
6130 	int ret = 0;
6131 
6132 	if (mddev->pers->start) {
6133 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6134 		md_wakeup_thread(mddev->thread);
6135 		ret = mddev->pers->start(mddev);
6136 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6137 		md_wakeup_thread(mddev->sync_thread);
6138 	}
6139 	return ret;
6140 }
6141 EXPORT_SYMBOL_GPL(md_start);
6142 
6143 static int restart_array(struct mddev *mddev)
6144 {
6145 	struct gendisk *disk = mddev->gendisk;
6146 	struct md_rdev *rdev;
6147 	bool has_journal = false;
6148 	bool has_readonly = false;
6149 
6150 	/* Complain if it has no devices */
6151 	if (list_empty(&mddev->disks))
6152 		return -ENXIO;
6153 	if (!mddev->pers)
6154 		return -EINVAL;
6155 	if (!mddev->ro)
6156 		return -EBUSY;
6157 
6158 	rcu_read_lock();
6159 	rdev_for_each_rcu(rdev, mddev) {
6160 		if (test_bit(Journal, &rdev->flags) &&
6161 		    !test_bit(Faulty, &rdev->flags))
6162 			has_journal = true;
6163 		if (bdev_read_only(rdev->bdev))
6164 			has_readonly = true;
6165 	}
6166 	rcu_read_unlock();
6167 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6168 		/* Don't restart rw with journal missing/faulty */
6169 			return -EINVAL;
6170 	if (has_readonly)
6171 		return -EROFS;
6172 
6173 	mddev->safemode = 0;
6174 	mddev->ro = 0;
6175 	set_disk_ro(disk, 0);
6176 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6177 	/* Kick recovery or resync if necessary */
6178 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6179 	md_wakeup_thread(mddev->thread);
6180 	md_wakeup_thread(mddev->sync_thread);
6181 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6182 	return 0;
6183 }
6184 
6185 static void md_clean(struct mddev *mddev)
6186 {
6187 	mddev->array_sectors = 0;
6188 	mddev->external_size = 0;
6189 	mddev->dev_sectors = 0;
6190 	mddev->raid_disks = 0;
6191 	mddev->recovery_cp = 0;
6192 	mddev->resync_min = 0;
6193 	mddev->resync_max = MaxSector;
6194 	mddev->reshape_position = MaxSector;
6195 	mddev->external = 0;
6196 	mddev->persistent = 0;
6197 	mddev->level = LEVEL_NONE;
6198 	mddev->clevel[0] = 0;
6199 	mddev->flags = 0;
6200 	mddev->sb_flags = 0;
6201 	mddev->ro = 0;
6202 	mddev->metadata_type[0] = 0;
6203 	mddev->chunk_sectors = 0;
6204 	mddev->ctime = mddev->utime = 0;
6205 	mddev->layout = 0;
6206 	mddev->max_disks = 0;
6207 	mddev->events = 0;
6208 	mddev->can_decrease_events = 0;
6209 	mddev->delta_disks = 0;
6210 	mddev->reshape_backwards = 0;
6211 	mddev->new_level = LEVEL_NONE;
6212 	mddev->new_layout = 0;
6213 	mddev->new_chunk_sectors = 0;
6214 	mddev->curr_resync = 0;
6215 	atomic64_set(&mddev->resync_mismatches, 0);
6216 	mddev->suspend_lo = mddev->suspend_hi = 0;
6217 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6218 	mddev->recovery = 0;
6219 	mddev->in_sync = 0;
6220 	mddev->changed = 0;
6221 	mddev->degraded = 0;
6222 	mddev->safemode = 0;
6223 	mddev->private = NULL;
6224 	mddev->cluster_info = NULL;
6225 	mddev->bitmap_info.offset = 0;
6226 	mddev->bitmap_info.default_offset = 0;
6227 	mddev->bitmap_info.default_space = 0;
6228 	mddev->bitmap_info.chunksize = 0;
6229 	mddev->bitmap_info.daemon_sleep = 0;
6230 	mddev->bitmap_info.max_write_behind = 0;
6231 	mddev->bitmap_info.nodes = 0;
6232 }
6233 
6234 static void __md_stop_writes(struct mddev *mddev)
6235 {
6236 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6237 	if (work_pending(&mddev->del_work))
6238 		flush_workqueue(md_misc_wq);
6239 	if (mddev->sync_thread) {
6240 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6241 		md_reap_sync_thread(mddev);
6242 	}
6243 
6244 	del_timer_sync(&mddev->safemode_timer);
6245 
6246 	if (mddev->pers && mddev->pers->quiesce) {
6247 		mddev->pers->quiesce(mddev, 1);
6248 		mddev->pers->quiesce(mddev, 0);
6249 	}
6250 	md_bitmap_flush(mddev);
6251 
6252 	if (mddev->ro == 0 &&
6253 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6254 	     mddev->sb_flags)) {
6255 		/* mark array as shutdown cleanly */
6256 		if (!mddev_is_clustered(mddev))
6257 			mddev->in_sync = 1;
6258 		md_update_sb(mddev, 1);
6259 	}
6260 	/* disable policy to guarantee rdevs free resources for serialization */
6261 	mddev->serialize_policy = 0;
6262 	mddev_destroy_serial_pool(mddev, NULL, true);
6263 }
6264 
6265 void md_stop_writes(struct mddev *mddev)
6266 {
6267 	mddev_lock_nointr(mddev);
6268 	__md_stop_writes(mddev);
6269 	mddev_unlock(mddev);
6270 }
6271 EXPORT_SYMBOL_GPL(md_stop_writes);
6272 
6273 static void mddev_detach(struct mddev *mddev)
6274 {
6275 	md_bitmap_wait_behind_writes(mddev);
6276 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6277 		mddev->pers->quiesce(mddev, 1);
6278 		mddev->pers->quiesce(mddev, 0);
6279 	}
6280 	md_unregister_thread(&mddev->thread);
6281 	if (mddev->queue)
6282 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6283 }
6284 
6285 static void __md_stop(struct mddev *mddev)
6286 {
6287 	struct md_personality *pers = mddev->pers;
6288 	md_bitmap_destroy(mddev);
6289 	mddev_detach(mddev);
6290 	/* Ensure ->event_work is done */
6291 	if (mddev->event_work.func)
6292 		flush_workqueue(md_misc_wq);
6293 	spin_lock(&mddev->lock);
6294 	mddev->pers = NULL;
6295 	spin_unlock(&mddev->lock);
6296 	pers->free(mddev, mddev->private);
6297 	mddev->private = NULL;
6298 	if (pers->sync_request && mddev->to_remove == NULL)
6299 		mddev->to_remove = &md_redundancy_group;
6300 	module_put(pers->owner);
6301 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6302 }
6303 
6304 void md_stop(struct mddev *mddev)
6305 {
6306 	/* stop the array and free an attached data structures.
6307 	 * This is called from dm-raid
6308 	 */
6309 	__md_stop(mddev);
6310 	bioset_exit(&mddev->bio_set);
6311 	bioset_exit(&mddev->sync_set);
6312 }
6313 
6314 EXPORT_SYMBOL_GPL(md_stop);
6315 
6316 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6317 {
6318 	int err = 0;
6319 	int did_freeze = 0;
6320 
6321 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6322 		did_freeze = 1;
6323 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6324 		md_wakeup_thread(mddev->thread);
6325 	}
6326 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6327 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6328 	if (mddev->sync_thread)
6329 		/* Thread might be blocked waiting for metadata update
6330 		 * which will now never happen */
6331 		wake_up_process(mddev->sync_thread->tsk);
6332 
6333 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6334 		return -EBUSY;
6335 	mddev_unlock(mddev);
6336 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6337 					  &mddev->recovery));
6338 	wait_event(mddev->sb_wait,
6339 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6340 	mddev_lock_nointr(mddev);
6341 
6342 	mutex_lock(&mddev->open_mutex);
6343 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6344 	    mddev->sync_thread ||
6345 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6346 		pr_warn("md: %s still in use.\n",mdname(mddev));
6347 		if (did_freeze) {
6348 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6349 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6350 			md_wakeup_thread(mddev->thread);
6351 		}
6352 		err = -EBUSY;
6353 		goto out;
6354 	}
6355 	if (mddev->pers) {
6356 		__md_stop_writes(mddev);
6357 
6358 		err  = -ENXIO;
6359 		if (mddev->ro==1)
6360 			goto out;
6361 		mddev->ro = 1;
6362 		set_disk_ro(mddev->gendisk, 1);
6363 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6364 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6365 		md_wakeup_thread(mddev->thread);
6366 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6367 		err = 0;
6368 	}
6369 out:
6370 	mutex_unlock(&mddev->open_mutex);
6371 	return err;
6372 }
6373 
6374 /* mode:
6375  *   0 - completely stop and dis-assemble array
6376  *   2 - stop but do not disassemble array
6377  */
6378 static int do_md_stop(struct mddev *mddev, int mode,
6379 		      struct block_device *bdev)
6380 {
6381 	struct gendisk *disk = mddev->gendisk;
6382 	struct md_rdev *rdev;
6383 	int did_freeze = 0;
6384 
6385 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6386 		did_freeze = 1;
6387 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6388 		md_wakeup_thread(mddev->thread);
6389 	}
6390 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6391 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6392 	if (mddev->sync_thread)
6393 		/* Thread might be blocked waiting for metadata update
6394 		 * which will now never happen */
6395 		wake_up_process(mddev->sync_thread->tsk);
6396 
6397 	mddev_unlock(mddev);
6398 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6399 				 !test_bit(MD_RECOVERY_RUNNING,
6400 					   &mddev->recovery)));
6401 	mddev_lock_nointr(mddev);
6402 
6403 	mutex_lock(&mddev->open_mutex);
6404 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6405 	    mddev->sysfs_active ||
6406 	    mddev->sync_thread ||
6407 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6408 		pr_warn("md: %s still in use.\n",mdname(mddev));
6409 		mutex_unlock(&mddev->open_mutex);
6410 		if (did_freeze) {
6411 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6412 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6413 			md_wakeup_thread(mddev->thread);
6414 		}
6415 		return -EBUSY;
6416 	}
6417 	if (mddev->pers) {
6418 		if (mddev->ro)
6419 			set_disk_ro(disk, 0);
6420 
6421 		__md_stop_writes(mddev);
6422 		__md_stop(mddev);
6423 
6424 		/* tell userspace to handle 'inactive' */
6425 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6426 
6427 		rdev_for_each(rdev, mddev)
6428 			if (rdev->raid_disk >= 0)
6429 				sysfs_unlink_rdev(mddev, rdev);
6430 
6431 		set_capacity(disk, 0);
6432 		mutex_unlock(&mddev->open_mutex);
6433 		mddev->changed = 1;
6434 		revalidate_disk(disk);
6435 
6436 		if (mddev->ro)
6437 			mddev->ro = 0;
6438 	} else
6439 		mutex_unlock(&mddev->open_mutex);
6440 	/*
6441 	 * Free resources if final stop
6442 	 */
6443 	if (mode == 0) {
6444 		pr_info("md: %s stopped.\n", mdname(mddev));
6445 
6446 		if (mddev->bitmap_info.file) {
6447 			struct file *f = mddev->bitmap_info.file;
6448 			spin_lock(&mddev->lock);
6449 			mddev->bitmap_info.file = NULL;
6450 			spin_unlock(&mddev->lock);
6451 			fput(f);
6452 		}
6453 		mddev->bitmap_info.offset = 0;
6454 
6455 		export_array(mddev);
6456 
6457 		md_clean(mddev);
6458 		if (mddev->hold_active == UNTIL_STOP)
6459 			mddev->hold_active = 0;
6460 	}
6461 	md_new_event(mddev);
6462 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6463 	return 0;
6464 }
6465 
6466 #ifndef MODULE
6467 static void autorun_array(struct mddev *mddev)
6468 {
6469 	struct md_rdev *rdev;
6470 	int err;
6471 
6472 	if (list_empty(&mddev->disks))
6473 		return;
6474 
6475 	pr_info("md: running: ");
6476 
6477 	rdev_for_each(rdev, mddev) {
6478 		char b[BDEVNAME_SIZE];
6479 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6480 	}
6481 	pr_cont("\n");
6482 
6483 	err = do_md_run(mddev);
6484 	if (err) {
6485 		pr_warn("md: do_md_run() returned %d\n", err);
6486 		do_md_stop(mddev, 0, NULL);
6487 	}
6488 }
6489 
6490 /*
6491  * lets try to run arrays based on all disks that have arrived
6492  * until now. (those are in pending_raid_disks)
6493  *
6494  * the method: pick the first pending disk, collect all disks with
6495  * the same UUID, remove all from the pending list and put them into
6496  * the 'same_array' list. Then order this list based on superblock
6497  * update time (freshest comes first), kick out 'old' disks and
6498  * compare superblocks. If everything's fine then run it.
6499  *
6500  * If "unit" is allocated, then bump its reference count
6501  */
6502 static void autorun_devices(int part)
6503 {
6504 	struct md_rdev *rdev0, *rdev, *tmp;
6505 	struct mddev *mddev;
6506 	char b[BDEVNAME_SIZE];
6507 
6508 	pr_info("md: autorun ...\n");
6509 	while (!list_empty(&pending_raid_disks)) {
6510 		int unit;
6511 		dev_t dev;
6512 		LIST_HEAD(candidates);
6513 		rdev0 = list_entry(pending_raid_disks.next,
6514 					 struct md_rdev, same_set);
6515 
6516 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6517 		INIT_LIST_HEAD(&candidates);
6518 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6519 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6520 				pr_debug("md:  adding %s ...\n",
6521 					 bdevname(rdev->bdev,b));
6522 				list_move(&rdev->same_set, &candidates);
6523 			}
6524 		/*
6525 		 * now we have a set of devices, with all of them having
6526 		 * mostly sane superblocks. It's time to allocate the
6527 		 * mddev.
6528 		 */
6529 		if (part) {
6530 			dev = MKDEV(mdp_major,
6531 				    rdev0->preferred_minor << MdpMinorShift);
6532 			unit = MINOR(dev) >> MdpMinorShift;
6533 		} else {
6534 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6535 			unit = MINOR(dev);
6536 		}
6537 		if (rdev0->preferred_minor != unit) {
6538 			pr_warn("md: unit number in %s is bad: %d\n",
6539 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6540 			break;
6541 		}
6542 
6543 		md_probe(dev, NULL, NULL);
6544 		mddev = mddev_find(dev);
6545 		if (!mddev || !mddev->gendisk) {
6546 			if (mddev)
6547 				mddev_put(mddev);
6548 			break;
6549 		}
6550 		if (mddev_lock(mddev))
6551 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6552 		else if (mddev->raid_disks || mddev->major_version
6553 			 || !list_empty(&mddev->disks)) {
6554 			pr_warn("md: %s already running, cannot run %s\n",
6555 				mdname(mddev), bdevname(rdev0->bdev,b));
6556 			mddev_unlock(mddev);
6557 		} else {
6558 			pr_debug("md: created %s\n", mdname(mddev));
6559 			mddev->persistent = 1;
6560 			rdev_for_each_list(rdev, tmp, &candidates) {
6561 				list_del_init(&rdev->same_set);
6562 				if (bind_rdev_to_array(rdev, mddev))
6563 					export_rdev(rdev);
6564 			}
6565 			autorun_array(mddev);
6566 			mddev_unlock(mddev);
6567 		}
6568 		/* on success, candidates will be empty, on error
6569 		 * it won't...
6570 		 */
6571 		rdev_for_each_list(rdev, tmp, &candidates) {
6572 			list_del_init(&rdev->same_set);
6573 			export_rdev(rdev);
6574 		}
6575 		mddev_put(mddev);
6576 	}
6577 	pr_info("md: ... autorun DONE.\n");
6578 }
6579 #endif /* !MODULE */
6580 
6581 static int get_version(void __user *arg)
6582 {
6583 	mdu_version_t ver;
6584 
6585 	ver.major = MD_MAJOR_VERSION;
6586 	ver.minor = MD_MINOR_VERSION;
6587 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6588 
6589 	if (copy_to_user(arg, &ver, sizeof(ver)))
6590 		return -EFAULT;
6591 
6592 	return 0;
6593 }
6594 
6595 static int get_array_info(struct mddev *mddev, void __user *arg)
6596 {
6597 	mdu_array_info_t info;
6598 	int nr,working,insync,failed,spare;
6599 	struct md_rdev *rdev;
6600 
6601 	nr = working = insync = failed = spare = 0;
6602 	rcu_read_lock();
6603 	rdev_for_each_rcu(rdev, mddev) {
6604 		nr++;
6605 		if (test_bit(Faulty, &rdev->flags))
6606 			failed++;
6607 		else {
6608 			working++;
6609 			if (test_bit(In_sync, &rdev->flags))
6610 				insync++;
6611 			else if (test_bit(Journal, &rdev->flags))
6612 				/* TODO: add journal count to md_u.h */
6613 				;
6614 			else
6615 				spare++;
6616 		}
6617 	}
6618 	rcu_read_unlock();
6619 
6620 	info.major_version = mddev->major_version;
6621 	info.minor_version = mddev->minor_version;
6622 	info.patch_version = MD_PATCHLEVEL_VERSION;
6623 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6624 	info.level         = mddev->level;
6625 	info.size          = mddev->dev_sectors / 2;
6626 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6627 		info.size = -1;
6628 	info.nr_disks      = nr;
6629 	info.raid_disks    = mddev->raid_disks;
6630 	info.md_minor      = mddev->md_minor;
6631 	info.not_persistent= !mddev->persistent;
6632 
6633 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6634 	info.state         = 0;
6635 	if (mddev->in_sync)
6636 		info.state = (1<<MD_SB_CLEAN);
6637 	if (mddev->bitmap && mddev->bitmap_info.offset)
6638 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6639 	if (mddev_is_clustered(mddev))
6640 		info.state |= (1<<MD_SB_CLUSTERED);
6641 	info.active_disks  = insync;
6642 	info.working_disks = working;
6643 	info.failed_disks  = failed;
6644 	info.spare_disks   = spare;
6645 
6646 	info.layout        = mddev->layout;
6647 	info.chunk_size    = mddev->chunk_sectors << 9;
6648 
6649 	if (copy_to_user(arg, &info, sizeof(info)))
6650 		return -EFAULT;
6651 
6652 	return 0;
6653 }
6654 
6655 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6656 {
6657 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6658 	char *ptr;
6659 	int err;
6660 
6661 	file = kzalloc(sizeof(*file), GFP_NOIO);
6662 	if (!file)
6663 		return -ENOMEM;
6664 
6665 	err = 0;
6666 	spin_lock(&mddev->lock);
6667 	/* bitmap enabled */
6668 	if (mddev->bitmap_info.file) {
6669 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6670 				sizeof(file->pathname));
6671 		if (IS_ERR(ptr))
6672 			err = PTR_ERR(ptr);
6673 		else
6674 			memmove(file->pathname, ptr,
6675 				sizeof(file->pathname)-(ptr-file->pathname));
6676 	}
6677 	spin_unlock(&mddev->lock);
6678 
6679 	if (err == 0 &&
6680 	    copy_to_user(arg, file, sizeof(*file)))
6681 		err = -EFAULT;
6682 
6683 	kfree(file);
6684 	return err;
6685 }
6686 
6687 static int get_disk_info(struct mddev *mddev, void __user * arg)
6688 {
6689 	mdu_disk_info_t info;
6690 	struct md_rdev *rdev;
6691 
6692 	if (copy_from_user(&info, arg, sizeof(info)))
6693 		return -EFAULT;
6694 
6695 	rcu_read_lock();
6696 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6697 	if (rdev) {
6698 		info.major = MAJOR(rdev->bdev->bd_dev);
6699 		info.minor = MINOR(rdev->bdev->bd_dev);
6700 		info.raid_disk = rdev->raid_disk;
6701 		info.state = 0;
6702 		if (test_bit(Faulty, &rdev->flags))
6703 			info.state |= (1<<MD_DISK_FAULTY);
6704 		else if (test_bit(In_sync, &rdev->flags)) {
6705 			info.state |= (1<<MD_DISK_ACTIVE);
6706 			info.state |= (1<<MD_DISK_SYNC);
6707 		}
6708 		if (test_bit(Journal, &rdev->flags))
6709 			info.state |= (1<<MD_DISK_JOURNAL);
6710 		if (test_bit(WriteMostly, &rdev->flags))
6711 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6712 		if (test_bit(FailFast, &rdev->flags))
6713 			info.state |= (1<<MD_DISK_FAILFAST);
6714 	} else {
6715 		info.major = info.minor = 0;
6716 		info.raid_disk = -1;
6717 		info.state = (1<<MD_DISK_REMOVED);
6718 	}
6719 	rcu_read_unlock();
6720 
6721 	if (copy_to_user(arg, &info, sizeof(info)))
6722 		return -EFAULT;
6723 
6724 	return 0;
6725 }
6726 
6727 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
6728 {
6729 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6730 	struct md_rdev *rdev;
6731 	dev_t dev = MKDEV(info->major,info->minor);
6732 
6733 	if (mddev_is_clustered(mddev) &&
6734 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6735 		pr_warn("%s: Cannot add to clustered mddev.\n",
6736 			mdname(mddev));
6737 		return -EINVAL;
6738 	}
6739 
6740 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6741 		return -EOVERFLOW;
6742 
6743 	if (!mddev->raid_disks) {
6744 		int err;
6745 		/* expecting a device which has a superblock */
6746 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6747 		if (IS_ERR(rdev)) {
6748 			pr_warn("md: md_import_device returned %ld\n",
6749 				PTR_ERR(rdev));
6750 			return PTR_ERR(rdev);
6751 		}
6752 		if (!list_empty(&mddev->disks)) {
6753 			struct md_rdev *rdev0
6754 				= list_entry(mddev->disks.next,
6755 					     struct md_rdev, same_set);
6756 			err = super_types[mddev->major_version]
6757 				.load_super(rdev, rdev0, mddev->minor_version);
6758 			if (err < 0) {
6759 				pr_warn("md: %s has different UUID to %s\n",
6760 					bdevname(rdev->bdev,b),
6761 					bdevname(rdev0->bdev,b2));
6762 				export_rdev(rdev);
6763 				return -EINVAL;
6764 			}
6765 		}
6766 		err = bind_rdev_to_array(rdev, mddev);
6767 		if (err)
6768 			export_rdev(rdev);
6769 		return err;
6770 	}
6771 
6772 	/*
6773 	 * add_new_disk can be used once the array is assembled
6774 	 * to add "hot spares".  They must already have a superblock
6775 	 * written
6776 	 */
6777 	if (mddev->pers) {
6778 		int err;
6779 		if (!mddev->pers->hot_add_disk) {
6780 			pr_warn("%s: personality does not support diskops!\n",
6781 				mdname(mddev));
6782 			return -EINVAL;
6783 		}
6784 		if (mddev->persistent)
6785 			rdev = md_import_device(dev, mddev->major_version,
6786 						mddev->minor_version);
6787 		else
6788 			rdev = md_import_device(dev, -1, -1);
6789 		if (IS_ERR(rdev)) {
6790 			pr_warn("md: md_import_device returned %ld\n",
6791 				PTR_ERR(rdev));
6792 			return PTR_ERR(rdev);
6793 		}
6794 		/* set saved_raid_disk if appropriate */
6795 		if (!mddev->persistent) {
6796 			if (info->state & (1<<MD_DISK_SYNC)  &&
6797 			    info->raid_disk < mddev->raid_disks) {
6798 				rdev->raid_disk = info->raid_disk;
6799 				set_bit(In_sync, &rdev->flags);
6800 				clear_bit(Bitmap_sync, &rdev->flags);
6801 			} else
6802 				rdev->raid_disk = -1;
6803 			rdev->saved_raid_disk = rdev->raid_disk;
6804 		} else
6805 			super_types[mddev->major_version].
6806 				validate_super(mddev, rdev);
6807 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6808 		     rdev->raid_disk != info->raid_disk) {
6809 			/* This was a hot-add request, but events doesn't
6810 			 * match, so reject it.
6811 			 */
6812 			export_rdev(rdev);
6813 			return -EINVAL;
6814 		}
6815 
6816 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6817 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6818 			set_bit(WriteMostly, &rdev->flags);
6819 		else
6820 			clear_bit(WriteMostly, &rdev->flags);
6821 		if (info->state & (1<<MD_DISK_FAILFAST))
6822 			set_bit(FailFast, &rdev->flags);
6823 		else
6824 			clear_bit(FailFast, &rdev->flags);
6825 
6826 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6827 			struct md_rdev *rdev2;
6828 			bool has_journal = false;
6829 
6830 			/* make sure no existing journal disk */
6831 			rdev_for_each(rdev2, mddev) {
6832 				if (test_bit(Journal, &rdev2->flags)) {
6833 					has_journal = true;
6834 					break;
6835 				}
6836 			}
6837 			if (has_journal || mddev->bitmap) {
6838 				export_rdev(rdev);
6839 				return -EBUSY;
6840 			}
6841 			set_bit(Journal, &rdev->flags);
6842 		}
6843 		/*
6844 		 * check whether the device shows up in other nodes
6845 		 */
6846 		if (mddev_is_clustered(mddev)) {
6847 			if (info->state & (1 << MD_DISK_CANDIDATE))
6848 				set_bit(Candidate, &rdev->flags);
6849 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6850 				/* --add initiated by this node */
6851 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6852 				if (err) {
6853 					export_rdev(rdev);
6854 					return err;
6855 				}
6856 			}
6857 		}
6858 
6859 		rdev->raid_disk = -1;
6860 		err = bind_rdev_to_array(rdev, mddev);
6861 
6862 		if (err)
6863 			export_rdev(rdev);
6864 
6865 		if (mddev_is_clustered(mddev)) {
6866 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6867 				if (!err) {
6868 					err = md_cluster_ops->new_disk_ack(mddev,
6869 						err == 0);
6870 					if (err)
6871 						md_kick_rdev_from_array(rdev);
6872 				}
6873 			} else {
6874 				if (err)
6875 					md_cluster_ops->add_new_disk_cancel(mddev);
6876 				else
6877 					err = add_bound_rdev(rdev);
6878 			}
6879 
6880 		} else if (!err)
6881 			err = add_bound_rdev(rdev);
6882 
6883 		return err;
6884 	}
6885 
6886 	/* otherwise, add_new_disk is only allowed
6887 	 * for major_version==0 superblocks
6888 	 */
6889 	if (mddev->major_version != 0) {
6890 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6891 		return -EINVAL;
6892 	}
6893 
6894 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6895 		int err;
6896 		rdev = md_import_device(dev, -1, 0);
6897 		if (IS_ERR(rdev)) {
6898 			pr_warn("md: error, md_import_device() returned %ld\n",
6899 				PTR_ERR(rdev));
6900 			return PTR_ERR(rdev);
6901 		}
6902 		rdev->desc_nr = info->number;
6903 		if (info->raid_disk < mddev->raid_disks)
6904 			rdev->raid_disk = info->raid_disk;
6905 		else
6906 			rdev->raid_disk = -1;
6907 
6908 		if (rdev->raid_disk < mddev->raid_disks)
6909 			if (info->state & (1<<MD_DISK_SYNC))
6910 				set_bit(In_sync, &rdev->flags);
6911 
6912 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6913 			set_bit(WriteMostly, &rdev->flags);
6914 		if (info->state & (1<<MD_DISK_FAILFAST))
6915 			set_bit(FailFast, &rdev->flags);
6916 
6917 		if (!mddev->persistent) {
6918 			pr_debug("md: nonpersistent superblock ...\n");
6919 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6920 		} else
6921 			rdev->sb_start = calc_dev_sboffset(rdev);
6922 		rdev->sectors = rdev->sb_start;
6923 
6924 		err = bind_rdev_to_array(rdev, mddev);
6925 		if (err) {
6926 			export_rdev(rdev);
6927 			return err;
6928 		}
6929 	}
6930 
6931 	return 0;
6932 }
6933 
6934 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6935 {
6936 	char b[BDEVNAME_SIZE];
6937 	struct md_rdev *rdev;
6938 
6939 	if (!mddev->pers)
6940 		return -ENODEV;
6941 
6942 	rdev = find_rdev(mddev, dev);
6943 	if (!rdev)
6944 		return -ENXIO;
6945 
6946 	if (rdev->raid_disk < 0)
6947 		goto kick_rdev;
6948 
6949 	clear_bit(Blocked, &rdev->flags);
6950 	remove_and_add_spares(mddev, rdev);
6951 
6952 	if (rdev->raid_disk >= 0)
6953 		goto busy;
6954 
6955 kick_rdev:
6956 	if (mddev_is_clustered(mddev))
6957 		md_cluster_ops->remove_disk(mddev, rdev);
6958 
6959 	md_kick_rdev_from_array(rdev);
6960 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6961 	if (mddev->thread)
6962 		md_wakeup_thread(mddev->thread);
6963 	else
6964 		md_update_sb(mddev, 1);
6965 	md_new_event(mddev);
6966 
6967 	return 0;
6968 busy:
6969 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6970 		 bdevname(rdev->bdev,b), mdname(mddev));
6971 	return -EBUSY;
6972 }
6973 
6974 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6975 {
6976 	char b[BDEVNAME_SIZE];
6977 	int err;
6978 	struct md_rdev *rdev;
6979 
6980 	if (!mddev->pers)
6981 		return -ENODEV;
6982 
6983 	if (mddev->major_version != 0) {
6984 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6985 			mdname(mddev));
6986 		return -EINVAL;
6987 	}
6988 	if (!mddev->pers->hot_add_disk) {
6989 		pr_warn("%s: personality does not support diskops!\n",
6990 			mdname(mddev));
6991 		return -EINVAL;
6992 	}
6993 
6994 	rdev = md_import_device(dev, -1, 0);
6995 	if (IS_ERR(rdev)) {
6996 		pr_warn("md: error, md_import_device() returned %ld\n",
6997 			PTR_ERR(rdev));
6998 		return -EINVAL;
6999 	}
7000 
7001 	if (mddev->persistent)
7002 		rdev->sb_start = calc_dev_sboffset(rdev);
7003 	else
7004 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7005 
7006 	rdev->sectors = rdev->sb_start;
7007 
7008 	if (test_bit(Faulty, &rdev->flags)) {
7009 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7010 			bdevname(rdev->bdev,b), mdname(mddev));
7011 		err = -EINVAL;
7012 		goto abort_export;
7013 	}
7014 
7015 	clear_bit(In_sync, &rdev->flags);
7016 	rdev->desc_nr = -1;
7017 	rdev->saved_raid_disk = -1;
7018 	err = bind_rdev_to_array(rdev, mddev);
7019 	if (err)
7020 		goto abort_export;
7021 
7022 	/*
7023 	 * The rest should better be atomic, we can have disk failures
7024 	 * noticed in interrupt contexts ...
7025 	 */
7026 
7027 	rdev->raid_disk = -1;
7028 
7029 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7030 	if (!mddev->thread)
7031 		md_update_sb(mddev, 1);
7032 	/*
7033 	 * Kick recovery, maybe this spare has to be added to the
7034 	 * array immediately.
7035 	 */
7036 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7037 	md_wakeup_thread(mddev->thread);
7038 	md_new_event(mddev);
7039 	return 0;
7040 
7041 abort_export:
7042 	export_rdev(rdev);
7043 	return err;
7044 }
7045 
7046 static int set_bitmap_file(struct mddev *mddev, int fd)
7047 {
7048 	int err = 0;
7049 
7050 	if (mddev->pers) {
7051 		if (!mddev->pers->quiesce || !mddev->thread)
7052 			return -EBUSY;
7053 		if (mddev->recovery || mddev->sync_thread)
7054 			return -EBUSY;
7055 		/* we should be able to change the bitmap.. */
7056 	}
7057 
7058 	if (fd >= 0) {
7059 		struct inode *inode;
7060 		struct file *f;
7061 
7062 		if (mddev->bitmap || mddev->bitmap_info.file)
7063 			return -EEXIST; /* cannot add when bitmap is present */
7064 		f = fget(fd);
7065 
7066 		if (f == NULL) {
7067 			pr_warn("%s: error: failed to get bitmap file\n",
7068 				mdname(mddev));
7069 			return -EBADF;
7070 		}
7071 
7072 		inode = f->f_mapping->host;
7073 		if (!S_ISREG(inode->i_mode)) {
7074 			pr_warn("%s: error: bitmap file must be a regular file\n",
7075 				mdname(mddev));
7076 			err = -EBADF;
7077 		} else if (!(f->f_mode & FMODE_WRITE)) {
7078 			pr_warn("%s: error: bitmap file must open for write\n",
7079 				mdname(mddev));
7080 			err = -EBADF;
7081 		} else if (atomic_read(&inode->i_writecount) != 1) {
7082 			pr_warn("%s: error: bitmap file is already in use\n",
7083 				mdname(mddev));
7084 			err = -EBUSY;
7085 		}
7086 		if (err) {
7087 			fput(f);
7088 			return err;
7089 		}
7090 		mddev->bitmap_info.file = f;
7091 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7092 	} else if (mddev->bitmap == NULL)
7093 		return -ENOENT; /* cannot remove what isn't there */
7094 	err = 0;
7095 	if (mddev->pers) {
7096 		if (fd >= 0) {
7097 			struct bitmap *bitmap;
7098 
7099 			bitmap = md_bitmap_create(mddev, -1);
7100 			mddev_suspend(mddev);
7101 			if (!IS_ERR(bitmap)) {
7102 				mddev->bitmap = bitmap;
7103 				err = md_bitmap_load(mddev);
7104 			} else
7105 				err = PTR_ERR(bitmap);
7106 			if (err) {
7107 				md_bitmap_destroy(mddev);
7108 				fd = -1;
7109 			}
7110 			mddev_resume(mddev);
7111 		} else if (fd < 0) {
7112 			mddev_suspend(mddev);
7113 			md_bitmap_destroy(mddev);
7114 			mddev_resume(mddev);
7115 		}
7116 	}
7117 	if (fd < 0) {
7118 		struct file *f = mddev->bitmap_info.file;
7119 		if (f) {
7120 			spin_lock(&mddev->lock);
7121 			mddev->bitmap_info.file = NULL;
7122 			spin_unlock(&mddev->lock);
7123 			fput(f);
7124 		}
7125 	}
7126 
7127 	return err;
7128 }
7129 
7130 /*
7131  * set_array_info is used two different ways
7132  * The original usage is when creating a new array.
7133  * In this usage, raid_disks is > 0 and it together with
7134  *  level, size, not_persistent,layout,chunksize determine the
7135  *  shape of the array.
7136  *  This will always create an array with a type-0.90.0 superblock.
7137  * The newer usage is when assembling an array.
7138  *  In this case raid_disks will be 0, and the major_version field is
7139  *  use to determine which style super-blocks are to be found on the devices.
7140  *  The minor and patch _version numbers are also kept incase the
7141  *  super_block handler wishes to interpret them.
7142  */
7143 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
7144 {
7145 
7146 	if (info->raid_disks == 0) {
7147 		/* just setting version number for superblock loading */
7148 		if (info->major_version < 0 ||
7149 		    info->major_version >= ARRAY_SIZE(super_types) ||
7150 		    super_types[info->major_version].name == NULL) {
7151 			/* maybe try to auto-load a module? */
7152 			pr_warn("md: superblock version %d not known\n",
7153 				info->major_version);
7154 			return -EINVAL;
7155 		}
7156 		mddev->major_version = info->major_version;
7157 		mddev->minor_version = info->minor_version;
7158 		mddev->patch_version = info->patch_version;
7159 		mddev->persistent = !info->not_persistent;
7160 		/* ensure mddev_put doesn't delete this now that there
7161 		 * is some minimal configuration.
7162 		 */
7163 		mddev->ctime         = ktime_get_real_seconds();
7164 		return 0;
7165 	}
7166 	mddev->major_version = MD_MAJOR_VERSION;
7167 	mddev->minor_version = MD_MINOR_VERSION;
7168 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7169 	mddev->ctime         = ktime_get_real_seconds();
7170 
7171 	mddev->level         = info->level;
7172 	mddev->clevel[0]     = 0;
7173 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7174 	mddev->raid_disks    = info->raid_disks;
7175 	/* don't set md_minor, it is determined by which /dev/md* was
7176 	 * openned
7177 	 */
7178 	if (info->state & (1<<MD_SB_CLEAN))
7179 		mddev->recovery_cp = MaxSector;
7180 	else
7181 		mddev->recovery_cp = 0;
7182 	mddev->persistent    = ! info->not_persistent;
7183 	mddev->external	     = 0;
7184 
7185 	mddev->layout        = info->layout;
7186 	if (mddev->level == 0)
7187 		/* Cannot trust RAID0 layout info here */
7188 		mddev->layout = -1;
7189 	mddev->chunk_sectors = info->chunk_size >> 9;
7190 
7191 	if (mddev->persistent) {
7192 		mddev->max_disks = MD_SB_DISKS;
7193 		mddev->flags = 0;
7194 		mddev->sb_flags = 0;
7195 	}
7196 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7197 
7198 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7199 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7200 	mddev->bitmap_info.offset = 0;
7201 
7202 	mddev->reshape_position = MaxSector;
7203 
7204 	/*
7205 	 * Generate a 128 bit UUID
7206 	 */
7207 	get_random_bytes(mddev->uuid, 16);
7208 
7209 	mddev->new_level = mddev->level;
7210 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7211 	mddev->new_layout = mddev->layout;
7212 	mddev->delta_disks = 0;
7213 	mddev->reshape_backwards = 0;
7214 
7215 	return 0;
7216 }
7217 
7218 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7219 {
7220 	lockdep_assert_held(&mddev->reconfig_mutex);
7221 
7222 	if (mddev->external_size)
7223 		return;
7224 
7225 	mddev->array_sectors = array_sectors;
7226 }
7227 EXPORT_SYMBOL(md_set_array_sectors);
7228 
7229 static int update_size(struct mddev *mddev, sector_t num_sectors)
7230 {
7231 	struct md_rdev *rdev;
7232 	int rv;
7233 	int fit = (num_sectors == 0);
7234 	sector_t old_dev_sectors = mddev->dev_sectors;
7235 
7236 	if (mddev->pers->resize == NULL)
7237 		return -EINVAL;
7238 	/* The "num_sectors" is the number of sectors of each device that
7239 	 * is used.  This can only make sense for arrays with redundancy.
7240 	 * linear and raid0 always use whatever space is available. We can only
7241 	 * consider changing this number if no resync or reconstruction is
7242 	 * happening, and if the new size is acceptable. It must fit before the
7243 	 * sb_start or, if that is <data_offset, it must fit before the size
7244 	 * of each device.  If num_sectors is zero, we find the largest size
7245 	 * that fits.
7246 	 */
7247 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7248 	    mddev->sync_thread)
7249 		return -EBUSY;
7250 	if (mddev->ro)
7251 		return -EROFS;
7252 
7253 	rdev_for_each(rdev, mddev) {
7254 		sector_t avail = rdev->sectors;
7255 
7256 		if (fit && (num_sectors == 0 || num_sectors > avail))
7257 			num_sectors = avail;
7258 		if (avail < num_sectors)
7259 			return -ENOSPC;
7260 	}
7261 	rv = mddev->pers->resize(mddev, num_sectors);
7262 	if (!rv) {
7263 		if (mddev_is_clustered(mddev))
7264 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7265 		else if (mddev->queue) {
7266 			set_capacity(mddev->gendisk, mddev->array_sectors);
7267 			revalidate_disk(mddev->gendisk);
7268 		}
7269 	}
7270 	return rv;
7271 }
7272 
7273 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7274 {
7275 	int rv;
7276 	struct md_rdev *rdev;
7277 	/* change the number of raid disks */
7278 	if (mddev->pers->check_reshape == NULL)
7279 		return -EINVAL;
7280 	if (mddev->ro)
7281 		return -EROFS;
7282 	if (raid_disks <= 0 ||
7283 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7284 		return -EINVAL;
7285 	if (mddev->sync_thread ||
7286 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7287 	    mddev->reshape_position != MaxSector)
7288 		return -EBUSY;
7289 
7290 	rdev_for_each(rdev, mddev) {
7291 		if (mddev->raid_disks < raid_disks &&
7292 		    rdev->data_offset < rdev->new_data_offset)
7293 			return -EINVAL;
7294 		if (mddev->raid_disks > raid_disks &&
7295 		    rdev->data_offset > rdev->new_data_offset)
7296 			return -EINVAL;
7297 	}
7298 
7299 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7300 	if (mddev->delta_disks < 0)
7301 		mddev->reshape_backwards = 1;
7302 	else if (mddev->delta_disks > 0)
7303 		mddev->reshape_backwards = 0;
7304 
7305 	rv = mddev->pers->check_reshape(mddev);
7306 	if (rv < 0) {
7307 		mddev->delta_disks = 0;
7308 		mddev->reshape_backwards = 0;
7309 	}
7310 	return rv;
7311 }
7312 
7313 /*
7314  * update_array_info is used to change the configuration of an
7315  * on-line array.
7316  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7317  * fields in the info are checked against the array.
7318  * Any differences that cannot be handled will cause an error.
7319  * Normally, only one change can be managed at a time.
7320  */
7321 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7322 {
7323 	int rv = 0;
7324 	int cnt = 0;
7325 	int state = 0;
7326 
7327 	/* calculate expected state,ignoring low bits */
7328 	if (mddev->bitmap && mddev->bitmap_info.offset)
7329 		state |= (1 << MD_SB_BITMAP_PRESENT);
7330 
7331 	if (mddev->major_version != info->major_version ||
7332 	    mddev->minor_version != info->minor_version ||
7333 /*	    mddev->patch_version != info->patch_version || */
7334 	    mddev->ctime         != info->ctime         ||
7335 	    mddev->level         != info->level         ||
7336 /*	    mddev->layout        != info->layout        || */
7337 	    mddev->persistent	 != !info->not_persistent ||
7338 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7339 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7340 	    ((state^info->state) & 0xfffffe00)
7341 		)
7342 		return -EINVAL;
7343 	/* Check there is only one change */
7344 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7345 		cnt++;
7346 	if (mddev->raid_disks != info->raid_disks)
7347 		cnt++;
7348 	if (mddev->layout != info->layout)
7349 		cnt++;
7350 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7351 		cnt++;
7352 	if (cnt == 0)
7353 		return 0;
7354 	if (cnt > 1)
7355 		return -EINVAL;
7356 
7357 	if (mddev->layout != info->layout) {
7358 		/* Change layout
7359 		 * we don't need to do anything at the md level, the
7360 		 * personality will take care of it all.
7361 		 */
7362 		if (mddev->pers->check_reshape == NULL)
7363 			return -EINVAL;
7364 		else {
7365 			mddev->new_layout = info->layout;
7366 			rv = mddev->pers->check_reshape(mddev);
7367 			if (rv)
7368 				mddev->new_layout = mddev->layout;
7369 			return rv;
7370 		}
7371 	}
7372 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7373 		rv = update_size(mddev, (sector_t)info->size * 2);
7374 
7375 	if (mddev->raid_disks    != info->raid_disks)
7376 		rv = update_raid_disks(mddev, info->raid_disks);
7377 
7378 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7379 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7380 			rv = -EINVAL;
7381 			goto err;
7382 		}
7383 		if (mddev->recovery || mddev->sync_thread) {
7384 			rv = -EBUSY;
7385 			goto err;
7386 		}
7387 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7388 			struct bitmap *bitmap;
7389 			/* add the bitmap */
7390 			if (mddev->bitmap) {
7391 				rv = -EEXIST;
7392 				goto err;
7393 			}
7394 			if (mddev->bitmap_info.default_offset == 0) {
7395 				rv = -EINVAL;
7396 				goto err;
7397 			}
7398 			mddev->bitmap_info.offset =
7399 				mddev->bitmap_info.default_offset;
7400 			mddev->bitmap_info.space =
7401 				mddev->bitmap_info.default_space;
7402 			bitmap = md_bitmap_create(mddev, -1);
7403 			mddev_suspend(mddev);
7404 			if (!IS_ERR(bitmap)) {
7405 				mddev->bitmap = bitmap;
7406 				rv = md_bitmap_load(mddev);
7407 			} else
7408 				rv = PTR_ERR(bitmap);
7409 			if (rv)
7410 				md_bitmap_destroy(mddev);
7411 			mddev_resume(mddev);
7412 		} else {
7413 			/* remove the bitmap */
7414 			if (!mddev->bitmap) {
7415 				rv = -ENOENT;
7416 				goto err;
7417 			}
7418 			if (mddev->bitmap->storage.file) {
7419 				rv = -EINVAL;
7420 				goto err;
7421 			}
7422 			if (mddev->bitmap_info.nodes) {
7423 				/* hold PW on all the bitmap lock */
7424 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7425 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7426 					rv = -EPERM;
7427 					md_cluster_ops->unlock_all_bitmaps(mddev);
7428 					goto err;
7429 				}
7430 
7431 				mddev->bitmap_info.nodes = 0;
7432 				md_cluster_ops->leave(mddev);
7433 				module_put(md_cluster_mod);
7434 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7435 			}
7436 			mddev_suspend(mddev);
7437 			md_bitmap_destroy(mddev);
7438 			mddev_resume(mddev);
7439 			mddev->bitmap_info.offset = 0;
7440 		}
7441 	}
7442 	md_update_sb(mddev, 1);
7443 	return rv;
7444 err:
7445 	return rv;
7446 }
7447 
7448 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7449 {
7450 	struct md_rdev *rdev;
7451 	int err = 0;
7452 
7453 	if (mddev->pers == NULL)
7454 		return -ENODEV;
7455 
7456 	rcu_read_lock();
7457 	rdev = md_find_rdev_rcu(mddev, dev);
7458 	if (!rdev)
7459 		err =  -ENODEV;
7460 	else {
7461 		md_error(mddev, rdev);
7462 		if (!test_bit(Faulty, &rdev->flags))
7463 			err = -EBUSY;
7464 	}
7465 	rcu_read_unlock();
7466 	return err;
7467 }
7468 
7469 /*
7470  * We have a problem here : there is no easy way to give a CHS
7471  * virtual geometry. We currently pretend that we have a 2 heads
7472  * 4 sectors (with a BIG number of cylinders...). This drives
7473  * dosfs just mad... ;-)
7474  */
7475 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7476 {
7477 	struct mddev *mddev = bdev->bd_disk->private_data;
7478 
7479 	geo->heads = 2;
7480 	geo->sectors = 4;
7481 	geo->cylinders = mddev->array_sectors / 8;
7482 	return 0;
7483 }
7484 
7485 static inline bool md_ioctl_valid(unsigned int cmd)
7486 {
7487 	switch (cmd) {
7488 	case ADD_NEW_DISK:
7489 	case BLKROSET:
7490 	case GET_ARRAY_INFO:
7491 	case GET_BITMAP_FILE:
7492 	case GET_DISK_INFO:
7493 	case HOT_ADD_DISK:
7494 	case HOT_REMOVE_DISK:
7495 	case RAID_AUTORUN:
7496 	case RAID_VERSION:
7497 	case RESTART_ARRAY_RW:
7498 	case RUN_ARRAY:
7499 	case SET_ARRAY_INFO:
7500 	case SET_BITMAP_FILE:
7501 	case SET_DISK_FAULTY:
7502 	case STOP_ARRAY:
7503 	case STOP_ARRAY_RO:
7504 	case CLUSTERED_DISK_NACK:
7505 		return true;
7506 	default:
7507 		return false;
7508 	}
7509 }
7510 
7511 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7512 			unsigned int cmd, unsigned long arg)
7513 {
7514 	int err = 0;
7515 	void __user *argp = (void __user *)arg;
7516 	struct mddev *mddev = NULL;
7517 	int ro;
7518 	bool did_set_md_closing = false;
7519 
7520 	if (!md_ioctl_valid(cmd))
7521 		return -ENOTTY;
7522 
7523 	switch (cmd) {
7524 	case RAID_VERSION:
7525 	case GET_ARRAY_INFO:
7526 	case GET_DISK_INFO:
7527 		break;
7528 	default:
7529 		if (!capable(CAP_SYS_ADMIN))
7530 			return -EACCES;
7531 	}
7532 
7533 	/*
7534 	 * Commands dealing with the RAID driver but not any
7535 	 * particular array:
7536 	 */
7537 	switch (cmd) {
7538 	case RAID_VERSION:
7539 		err = get_version(argp);
7540 		goto out;
7541 
7542 #ifndef MODULE
7543 	case RAID_AUTORUN:
7544 		err = 0;
7545 		autostart_arrays(arg);
7546 		goto out;
7547 #endif
7548 	default:;
7549 	}
7550 
7551 	/*
7552 	 * Commands creating/starting a new array:
7553 	 */
7554 
7555 	mddev = bdev->bd_disk->private_data;
7556 
7557 	if (!mddev) {
7558 		BUG();
7559 		goto out;
7560 	}
7561 
7562 	/* Some actions do not requires the mutex */
7563 	switch (cmd) {
7564 	case GET_ARRAY_INFO:
7565 		if (!mddev->raid_disks && !mddev->external)
7566 			err = -ENODEV;
7567 		else
7568 			err = get_array_info(mddev, argp);
7569 		goto out;
7570 
7571 	case GET_DISK_INFO:
7572 		if (!mddev->raid_disks && !mddev->external)
7573 			err = -ENODEV;
7574 		else
7575 			err = get_disk_info(mddev, argp);
7576 		goto out;
7577 
7578 	case SET_DISK_FAULTY:
7579 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7580 		goto out;
7581 
7582 	case GET_BITMAP_FILE:
7583 		err = get_bitmap_file(mddev, argp);
7584 		goto out;
7585 
7586 	}
7587 
7588 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7589 		flush_rdev_wq(mddev);
7590 
7591 	if (cmd == HOT_REMOVE_DISK)
7592 		/* need to ensure recovery thread has run */
7593 		wait_event_interruptible_timeout(mddev->sb_wait,
7594 						 !test_bit(MD_RECOVERY_NEEDED,
7595 							   &mddev->recovery),
7596 						 msecs_to_jiffies(5000));
7597 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7598 		/* Need to flush page cache, and ensure no-one else opens
7599 		 * and writes
7600 		 */
7601 		mutex_lock(&mddev->open_mutex);
7602 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7603 			mutex_unlock(&mddev->open_mutex);
7604 			err = -EBUSY;
7605 			goto out;
7606 		}
7607 		WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags));
7608 		set_bit(MD_CLOSING, &mddev->flags);
7609 		did_set_md_closing = true;
7610 		mutex_unlock(&mddev->open_mutex);
7611 		sync_blockdev(bdev);
7612 	}
7613 	err = mddev_lock(mddev);
7614 	if (err) {
7615 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7616 			 err, cmd);
7617 		goto out;
7618 	}
7619 
7620 	if (cmd == SET_ARRAY_INFO) {
7621 		mdu_array_info_t info;
7622 		if (!arg)
7623 			memset(&info, 0, sizeof(info));
7624 		else if (copy_from_user(&info, argp, sizeof(info))) {
7625 			err = -EFAULT;
7626 			goto unlock;
7627 		}
7628 		if (mddev->pers) {
7629 			err = update_array_info(mddev, &info);
7630 			if (err) {
7631 				pr_warn("md: couldn't update array info. %d\n", err);
7632 				goto unlock;
7633 			}
7634 			goto unlock;
7635 		}
7636 		if (!list_empty(&mddev->disks)) {
7637 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7638 			err = -EBUSY;
7639 			goto unlock;
7640 		}
7641 		if (mddev->raid_disks) {
7642 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7643 			err = -EBUSY;
7644 			goto unlock;
7645 		}
7646 		err = set_array_info(mddev, &info);
7647 		if (err) {
7648 			pr_warn("md: couldn't set array info. %d\n", err);
7649 			goto unlock;
7650 		}
7651 		goto unlock;
7652 	}
7653 
7654 	/*
7655 	 * Commands querying/configuring an existing array:
7656 	 */
7657 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7658 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7659 	if ((!mddev->raid_disks && !mddev->external)
7660 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7661 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7662 	    && cmd != GET_BITMAP_FILE) {
7663 		err = -ENODEV;
7664 		goto unlock;
7665 	}
7666 
7667 	/*
7668 	 * Commands even a read-only array can execute:
7669 	 */
7670 	switch (cmd) {
7671 	case RESTART_ARRAY_RW:
7672 		err = restart_array(mddev);
7673 		goto unlock;
7674 
7675 	case STOP_ARRAY:
7676 		err = do_md_stop(mddev, 0, bdev);
7677 		goto unlock;
7678 
7679 	case STOP_ARRAY_RO:
7680 		err = md_set_readonly(mddev, bdev);
7681 		goto unlock;
7682 
7683 	case HOT_REMOVE_DISK:
7684 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7685 		goto unlock;
7686 
7687 	case ADD_NEW_DISK:
7688 		/* We can support ADD_NEW_DISK on read-only arrays
7689 		 * only if we are re-adding a preexisting device.
7690 		 * So require mddev->pers and MD_DISK_SYNC.
7691 		 */
7692 		if (mddev->pers) {
7693 			mdu_disk_info_t info;
7694 			if (copy_from_user(&info, argp, sizeof(info)))
7695 				err = -EFAULT;
7696 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7697 				/* Need to clear read-only for this */
7698 				break;
7699 			else
7700 				err = add_new_disk(mddev, &info);
7701 			goto unlock;
7702 		}
7703 		break;
7704 
7705 	case BLKROSET:
7706 		if (get_user(ro, (int __user *)(arg))) {
7707 			err = -EFAULT;
7708 			goto unlock;
7709 		}
7710 		err = -EINVAL;
7711 
7712 		/* if the bdev is going readonly the value of mddev->ro
7713 		 * does not matter, no writes are coming
7714 		 */
7715 		if (ro)
7716 			goto unlock;
7717 
7718 		/* are we are already prepared for writes? */
7719 		if (mddev->ro != 1)
7720 			goto unlock;
7721 
7722 		/* transitioning to readauto need only happen for
7723 		 * arrays that call md_write_start
7724 		 */
7725 		if (mddev->pers) {
7726 			err = restart_array(mddev);
7727 			if (err == 0) {
7728 				mddev->ro = 2;
7729 				set_disk_ro(mddev->gendisk, 0);
7730 			}
7731 		}
7732 		goto unlock;
7733 	}
7734 
7735 	/*
7736 	 * The remaining ioctls are changing the state of the
7737 	 * superblock, so we do not allow them on read-only arrays.
7738 	 */
7739 	if (mddev->ro && mddev->pers) {
7740 		if (mddev->ro == 2) {
7741 			mddev->ro = 0;
7742 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7743 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7744 			/* mddev_unlock will wake thread */
7745 			/* If a device failed while we were read-only, we
7746 			 * need to make sure the metadata is updated now.
7747 			 */
7748 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7749 				mddev_unlock(mddev);
7750 				wait_event(mddev->sb_wait,
7751 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7752 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7753 				mddev_lock_nointr(mddev);
7754 			}
7755 		} else {
7756 			err = -EROFS;
7757 			goto unlock;
7758 		}
7759 	}
7760 
7761 	switch (cmd) {
7762 	case ADD_NEW_DISK:
7763 	{
7764 		mdu_disk_info_t info;
7765 		if (copy_from_user(&info, argp, sizeof(info)))
7766 			err = -EFAULT;
7767 		else
7768 			err = add_new_disk(mddev, &info);
7769 		goto unlock;
7770 	}
7771 
7772 	case CLUSTERED_DISK_NACK:
7773 		if (mddev_is_clustered(mddev))
7774 			md_cluster_ops->new_disk_ack(mddev, false);
7775 		else
7776 			err = -EINVAL;
7777 		goto unlock;
7778 
7779 	case HOT_ADD_DISK:
7780 		err = hot_add_disk(mddev, new_decode_dev(arg));
7781 		goto unlock;
7782 
7783 	case RUN_ARRAY:
7784 		err = do_md_run(mddev);
7785 		goto unlock;
7786 
7787 	case SET_BITMAP_FILE:
7788 		err = set_bitmap_file(mddev, (int)arg);
7789 		goto unlock;
7790 
7791 	default:
7792 		err = -EINVAL;
7793 		goto unlock;
7794 	}
7795 
7796 unlock:
7797 	if (mddev->hold_active == UNTIL_IOCTL &&
7798 	    err != -EINVAL)
7799 		mddev->hold_active = 0;
7800 	mddev_unlock(mddev);
7801 out:
7802 	if(did_set_md_closing)
7803 		clear_bit(MD_CLOSING, &mddev->flags);
7804 	return err;
7805 }
7806 #ifdef CONFIG_COMPAT
7807 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7808 		    unsigned int cmd, unsigned long arg)
7809 {
7810 	switch (cmd) {
7811 	case HOT_REMOVE_DISK:
7812 	case HOT_ADD_DISK:
7813 	case SET_DISK_FAULTY:
7814 	case SET_BITMAP_FILE:
7815 		/* These take in integer arg, do not convert */
7816 		break;
7817 	default:
7818 		arg = (unsigned long)compat_ptr(arg);
7819 		break;
7820 	}
7821 
7822 	return md_ioctl(bdev, mode, cmd, arg);
7823 }
7824 #endif /* CONFIG_COMPAT */
7825 
7826 static int md_open(struct block_device *bdev, fmode_t mode)
7827 {
7828 	/*
7829 	 * Succeed if we can lock the mddev, which confirms that
7830 	 * it isn't being stopped right now.
7831 	 */
7832 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7833 	int err;
7834 
7835 	if (!mddev)
7836 		return -ENODEV;
7837 
7838 	if (mddev->gendisk != bdev->bd_disk) {
7839 		/* we are racing with mddev_put which is discarding this
7840 		 * bd_disk.
7841 		 */
7842 		mddev_put(mddev);
7843 		/* Wait until bdev->bd_disk is definitely gone */
7844 		if (work_pending(&mddev->del_work))
7845 			flush_workqueue(md_misc_wq);
7846 		/* Then retry the open from the top */
7847 		return -ERESTARTSYS;
7848 	}
7849 	BUG_ON(mddev != bdev->bd_disk->private_data);
7850 
7851 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7852 		goto out;
7853 
7854 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7855 		mutex_unlock(&mddev->open_mutex);
7856 		err = -ENODEV;
7857 		goto out;
7858 	}
7859 
7860 	err = 0;
7861 	atomic_inc(&mddev->openers);
7862 	mutex_unlock(&mddev->open_mutex);
7863 
7864 	check_disk_change(bdev);
7865  out:
7866 	if (err)
7867 		mddev_put(mddev);
7868 	return err;
7869 }
7870 
7871 static void md_release(struct gendisk *disk, fmode_t mode)
7872 {
7873 	struct mddev *mddev = disk->private_data;
7874 
7875 	BUG_ON(!mddev);
7876 	atomic_dec(&mddev->openers);
7877 	mddev_put(mddev);
7878 }
7879 
7880 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7881 {
7882 	struct mddev *mddev = disk->private_data;
7883 	unsigned int ret = 0;
7884 
7885 	if (mddev->changed)
7886 		ret = DISK_EVENT_MEDIA_CHANGE;
7887 	mddev->changed = 0;
7888 	return ret;
7889 }
7890 
7891 static const struct block_device_operations md_fops =
7892 {
7893 	.owner		= THIS_MODULE,
7894 	.submit_bio	= md_submit_bio,
7895 	.open		= md_open,
7896 	.release	= md_release,
7897 	.ioctl		= md_ioctl,
7898 #ifdef CONFIG_COMPAT
7899 	.compat_ioctl	= md_compat_ioctl,
7900 #endif
7901 	.getgeo		= md_getgeo,
7902 	.check_events	= md_check_events,
7903 };
7904 
7905 static int md_thread(void *arg)
7906 {
7907 	struct md_thread *thread = arg;
7908 
7909 	/*
7910 	 * md_thread is a 'system-thread', it's priority should be very
7911 	 * high. We avoid resource deadlocks individually in each
7912 	 * raid personality. (RAID5 does preallocation) We also use RR and
7913 	 * the very same RT priority as kswapd, thus we will never get
7914 	 * into a priority inversion deadlock.
7915 	 *
7916 	 * we definitely have to have equal or higher priority than
7917 	 * bdflush, otherwise bdflush will deadlock if there are too
7918 	 * many dirty RAID5 blocks.
7919 	 */
7920 
7921 	allow_signal(SIGKILL);
7922 	while (!kthread_should_stop()) {
7923 
7924 		/* We need to wait INTERRUPTIBLE so that
7925 		 * we don't add to the load-average.
7926 		 * That means we need to be sure no signals are
7927 		 * pending
7928 		 */
7929 		if (signal_pending(current))
7930 			flush_signals(current);
7931 
7932 		wait_event_interruptible_timeout
7933 			(thread->wqueue,
7934 			 test_bit(THREAD_WAKEUP, &thread->flags)
7935 			 || kthread_should_stop() || kthread_should_park(),
7936 			 thread->timeout);
7937 
7938 		clear_bit(THREAD_WAKEUP, &thread->flags);
7939 		if (kthread_should_park())
7940 			kthread_parkme();
7941 		if (!kthread_should_stop())
7942 			thread->run(thread);
7943 	}
7944 
7945 	return 0;
7946 }
7947 
7948 void md_wakeup_thread(struct md_thread *thread)
7949 {
7950 	if (thread) {
7951 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7952 		set_bit(THREAD_WAKEUP, &thread->flags);
7953 		wake_up(&thread->wqueue);
7954 	}
7955 }
7956 EXPORT_SYMBOL(md_wakeup_thread);
7957 
7958 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7959 		struct mddev *mddev, const char *name)
7960 {
7961 	struct md_thread *thread;
7962 
7963 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7964 	if (!thread)
7965 		return NULL;
7966 
7967 	init_waitqueue_head(&thread->wqueue);
7968 
7969 	thread->run = run;
7970 	thread->mddev = mddev;
7971 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7972 	thread->tsk = kthread_run(md_thread, thread,
7973 				  "%s_%s",
7974 				  mdname(thread->mddev),
7975 				  name);
7976 	if (IS_ERR(thread->tsk)) {
7977 		kfree(thread);
7978 		return NULL;
7979 	}
7980 	return thread;
7981 }
7982 EXPORT_SYMBOL(md_register_thread);
7983 
7984 void md_unregister_thread(struct md_thread **threadp)
7985 {
7986 	struct md_thread *thread = *threadp;
7987 	if (!thread)
7988 		return;
7989 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7990 	/* Locking ensures that mddev_unlock does not wake_up a
7991 	 * non-existent thread
7992 	 */
7993 	spin_lock(&pers_lock);
7994 	*threadp = NULL;
7995 	spin_unlock(&pers_lock);
7996 
7997 	kthread_stop(thread->tsk);
7998 	kfree(thread);
7999 }
8000 EXPORT_SYMBOL(md_unregister_thread);
8001 
8002 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8003 {
8004 	if (!rdev || test_bit(Faulty, &rdev->flags))
8005 		return;
8006 
8007 	if (!mddev->pers || !mddev->pers->error_handler)
8008 		return;
8009 	mddev->pers->error_handler(mddev,rdev);
8010 	if (mddev->degraded)
8011 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8012 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8013 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8014 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8015 	md_wakeup_thread(mddev->thread);
8016 	if (mddev->event_work.func)
8017 		queue_work(md_misc_wq, &mddev->event_work);
8018 	md_new_event(mddev);
8019 }
8020 EXPORT_SYMBOL(md_error);
8021 
8022 /* seq_file implementation /proc/mdstat */
8023 
8024 static void status_unused(struct seq_file *seq)
8025 {
8026 	int i = 0;
8027 	struct md_rdev *rdev;
8028 
8029 	seq_printf(seq, "unused devices: ");
8030 
8031 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8032 		char b[BDEVNAME_SIZE];
8033 		i++;
8034 		seq_printf(seq, "%s ",
8035 			      bdevname(rdev->bdev,b));
8036 	}
8037 	if (!i)
8038 		seq_printf(seq, "<none>");
8039 
8040 	seq_printf(seq, "\n");
8041 }
8042 
8043 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8044 {
8045 	sector_t max_sectors, resync, res;
8046 	unsigned long dt, db = 0;
8047 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8048 	int scale, recovery_active;
8049 	unsigned int per_milli;
8050 
8051 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8052 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8053 		max_sectors = mddev->resync_max_sectors;
8054 	else
8055 		max_sectors = mddev->dev_sectors;
8056 
8057 	resync = mddev->curr_resync;
8058 	if (resync <= 3) {
8059 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8060 			/* Still cleaning up */
8061 			resync = max_sectors;
8062 	} else if (resync > max_sectors)
8063 		resync = max_sectors;
8064 	else
8065 		resync -= atomic_read(&mddev->recovery_active);
8066 
8067 	if (resync == 0) {
8068 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8069 			struct md_rdev *rdev;
8070 
8071 			rdev_for_each(rdev, mddev)
8072 				if (rdev->raid_disk >= 0 &&
8073 				    !test_bit(Faulty, &rdev->flags) &&
8074 				    rdev->recovery_offset != MaxSector &&
8075 				    rdev->recovery_offset) {
8076 					seq_printf(seq, "\trecover=REMOTE");
8077 					return 1;
8078 				}
8079 			if (mddev->reshape_position != MaxSector)
8080 				seq_printf(seq, "\treshape=REMOTE");
8081 			else
8082 				seq_printf(seq, "\tresync=REMOTE");
8083 			return 1;
8084 		}
8085 		if (mddev->recovery_cp < MaxSector) {
8086 			seq_printf(seq, "\tresync=PENDING");
8087 			return 1;
8088 		}
8089 		return 0;
8090 	}
8091 	if (resync < 3) {
8092 		seq_printf(seq, "\tresync=DELAYED");
8093 		return 1;
8094 	}
8095 
8096 	WARN_ON(max_sectors == 0);
8097 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8098 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8099 	 * u32, as those are the requirements for sector_div.
8100 	 * Thus 'scale' must be at least 10
8101 	 */
8102 	scale = 10;
8103 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8104 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8105 			scale++;
8106 	}
8107 	res = (resync>>scale)*1000;
8108 	sector_div(res, (u32)((max_sectors>>scale)+1));
8109 
8110 	per_milli = res;
8111 	{
8112 		int i, x = per_milli/50, y = 20-x;
8113 		seq_printf(seq, "[");
8114 		for (i = 0; i < x; i++)
8115 			seq_printf(seq, "=");
8116 		seq_printf(seq, ">");
8117 		for (i = 0; i < y; i++)
8118 			seq_printf(seq, ".");
8119 		seq_printf(seq, "] ");
8120 	}
8121 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8122 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8123 		    "reshape" :
8124 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8125 		     "check" :
8126 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8127 		      "resync" : "recovery"))),
8128 		   per_milli/10, per_milli % 10,
8129 		   (unsigned long long) resync/2,
8130 		   (unsigned long long) max_sectors/2);
8131 
8132 	/*
8133 	 * dt: time from mark until now
8134 	 * db: blocks written from mark until now
8135 	 * rt: remaining time
8136 	 *
8137 	 * rt is a sector_t, which is always 64bit now. We are keeping
8138 	 * the original algorithm, but it is not really necessary.
8139 	 *
8140 	 * Original algorithm:
8141 	 *   So we divide before multiply in case it is 32bit and close
8142 	 *   to the limit.
8143 	 *   We scale the divisor (db) by 32 to avoid losing precision
8144 	 *   near the end of resync when the number of remaining sectors
8145 	 *   is close to 'db'.
8146 	 *   We then divide rt by 32 after multiplying by db to compensate.
8147 	 *   The '+1' avoids division by zero if db is very small.
8148 	 */
8149 	dt = ((jiffies - mddev->resync_mark) / HZ);
8150 	if (!dt) dt++;
8151 
8152 	curr_mark_cnt = mddev->curr_mark_cnt;
8153 	recovery_active = atomic_read(&mddev->recovery_active);
8154 	resync_mark_cnt = mddev->resync_mark_cnt;
8155 
8156 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8157 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8158 
8159 	rt = max_sectors - resync;    /* number of remaining sectors */
8160 	rt = div64_u64(rt, db/32+1);
8161 	rt *= dt;
8162 	rt >>= 5;
8163 
8164 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8165 		   ((unsigned long)rt % 60)/6);
8166 
8167 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8168 	return 1;
8169 }
8170 
8171 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8172 {
8173 	struct list_head *tmp;
8174 	loff_t l = *pos;
8175 	struct mddev *mddev;
8176 
8177 	if (l >= 0x10000)
8178 		return NULL;
8179 	if (!l--)
8180 		/* header */
8181 		return (void*)1;
8182 
8183 	spin_lock(&all_mddevs_lock);
8184 	list_for_each(tmp,&all_mddevs)
8185 		if (!l--) {
8186 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8187 			mddev_get(mddev);
8188 			spin_unlock(&all_mddevs_lock);
8189 			return mddev;
8190 		}
8191 	spin_unlock(&all_mddevs_lock);
8192 	if (!l--)
8193 		return (void*)2;/* tail */
8194 	return NULL;
8195 }
8196 
8197 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8198 {
8199 	struct list_head *tmp;
8200 	struct mddev *next_mddev, *mddev = v;
8201 
8202 	++*pos;
8203 	if (v == (void*)2)
8204 		return NULL;
8205 
8206 	spin_lock(&all_mddevs_lock);
8207 	if (v == (void*)1)
8208 		tmp = all_mddevs.next;
8209 	else
8210 		tmp = mddev->all_mddevs.next;
8211 	if (tmp != &all_mddevs)
8212 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8213 	else {
8214 		next_mddev = (void*)2;
8215 		*pos = 0x10000;
8216 	}
8217 	spin_unlock(&all_mddevs_lock);
8218 
8219 	if (v != (void*)1)
8220 		mddev_put(mddev);
8221 	return next_mddev;
8222 
8223 }
8224 
8225 static void md_seq_stop(struct seq_file *seq, void *v)
8226 {
8227 	struct mddev *mddev = v;
8228 
8229 	if (mddev && v != (void*)1 && v != (void*)2)
8230 		mddev_put(mddev);
8231 }
8232 
8233 static int md_seq_show(struct seq_file *seq, void *v)
8234 {
8235 	struct mddev *mddev = v;
8236 	sector_t sectors;
8237 	struct md_rdev *rdev;
8238 
8239 	if (v == (void*)1) {
8240 		struct md_personality *pers;
8241 		seq_printf(seq, "Personalities : ");
8242 		spin_lock(&pers_lock);
8243 		list_for_each_entry(pers, &pers_list, list)
8244 			seq_printf(seq, "[%s] ", pers->name);
8245 
8246 		spin_unlock(&pers_lock);
8247 		seq_printf(seq, "\n");
8248 		seq->poll_event = atomic_read(&md_event_count);
8249 		return 0;
8250 	}
8251 	if (v == (void*)2) {
8252 		status_unused(seq);
8253 		return 0;
8254 	}
8255 
8256 	spin_lock(&mddev->lock);
8257 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8258 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8259 						mddev->pers ? "" : "in");
8260 		if (mddev->pers) {
8261 			if (mddev->ro==1)
8262 				seq_printf(seq, " (read-only)");
8263 			if (mddev->ro==2)
8264 				seq_printf(seq, " (auto-read-only)");
8265 			seq_printf(seq, " %s", mddev->pers->name);
8266 		}
8267 
8268 		sectors = 0;
8269 		rcu_read_lock();
8270 		rdev_for_each_rcu(rdev, mddev) {
8271 			char b[BDEVNAME_SIZE];
8272 			seq_printf(seq, " %s[%d]",
8273 				bdevname(rdev->bdev,b), rdev->desc_nr);
8274 			if (test_bit(WriteMostly, &rdev->flags))
8275 				seq_printf(seq, "(W)");
8276 			if (test_bit(Journal, &rdev->flags))
8277 				seq_printf(seq, "(J)");
8278 			if (test_bit(Faulty, &rdev->flags)) {
8279 				seq_printf(seq, "(F)");
8280 				continue;
8281 			}
8282 			if (rdev->raid_disk < 0)
8283 				seq_printf(seq, "(S)"); /* spare */
8284 			if (test_bit(Replacement, &rdev->flags))
8285 				seq_printf(seq, "(R)");
8286 			sectors += rdev->sectors;
8287 		}
8288 		rcu_read_unlock();
8289 
8290 		if (!list_empty(&mddev->disks)) {
8291 			if (mddev->pers)
8292 				seq_printf(seq, "\n      %llu blocks",
8293 					   (unsigned long long)
8294 					   mddev->array_sectors / 2);
8295 			else
8296 				seq_printf(seq, "\n      %llu blocks",
8297 					   (unsigned long long)sectors / 2);
8298 		}
8299 		if (mddev->persistent) {
8300 			if (mddev->major_version != 0 ||
8301 			    mddev->minor_version != 90) {
8302 				seq_printf(seq," super %d.%d",
8303 					   mddev->major_version,
8304 					   mddev->minor_version);
8305 			}
8306 		} else if (mddev->external)
8307 			seq_printf(seq, " super external:%s",
8308 				   mddev->metadata_type);
8309 		else
8310 			seq_printf(seq, " super non-persistent");
8311 
8312 		if (mddev->pers) {
8313 			mddev->pers->status(seq, mddev);
8314 			seq_printf(seq, "\n      ");
8315 			if (mddev->pers->sync_request) {
8316 				if (status_resync(seq, mddev))
8317 					seq_printf(seq, "\n      ");
8318 			}
8319 		} else
8320 			seq_printf(seq, "\n       ");
8321 
8322 		md_bitmap_status(seq, mddev->bitmap);
8323 
8324 		seq_printf(seq, "\n");
8325 	}
8326 	spin_unlock(&mddev->lock);
8327 
8328 	return 0;
8329 }
8330 
8331 static const struct seq_operations md_seq_ops = {
8332 	.start  = md_seq_start,
8333 	.next   = md_seq_next,
8334 	.stop   = md_seq_stop,
8335 	.show   = md_seq_show,
8336 };
8337 
8338 static int md_seq_open(struct inode *inode, struct file *file)
8339 {
8340 	struct seq_file *seq;
8341 	int error;
8342 
8343 	error = seq_open(file, &md_seq_ops);
8344 	if (error)
8345 		return error;
8346 
8347 	seq = file->private_data;
8348 	seq->poll_event = atomic_read(&md_event_count);
8349 	return error;
8350 }
8351 
8352 static int md_unloading;
8353 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8354 {
8355 	struct seq_file *seq = filp->private_data;
8356 	__poll_t mask;
8357 
8358 	if (md_unloading)
8359 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8360 	poll_wait(filp, &md_event_waiters, wait);
8361 
8362 	/* always allow read */
8363 	mask = EPOLLIN | EPOLLRDNORM;
8364 
8365 	if (seq->poll_event != atomic_read(&md_event_count))
8366 		mask |= EPOLLERR | EPOLLPRI;
8367 	return mask;
8368 }
8369 
8370 static const struct proc_ops mdstat_proc_ops = {
8371 	.proc_open	= md_seq_open,
8372 	.proc_read	= seq_read,
8373 	.proc_lseek	= seq_lseek,
8374 	.proc_release	= seq_release,
8375 	.proc_poll	= mdstat_poll,
8376 };
8377 
8378 int register_md_personality(struct md_personality *p)
8379 {
8380 	pr_debug("md: %s personality registered for level %d\n",
8381 		 p->name, p->level);
8382 	spin_lock(&pers_lock);
8383 	list_add_tail(&p->list, &pers_list);
8384 	spin_unlock(&pers_lock);
8385 	return 0;
8386 }
8387 EXPORT_SYMBOL(register_md_personality);
8388 
8389 int unregister_md_personality(struct md_personality *p)
8390 {
8391 	pr_debug("md: %s personality unregistered\n", p->name);
8392 	spin_lock(&pers_lock);
8393 	list_del_init(&p->list);
8394 	spin_unlock(&pers_lock);
8395 	return 0;
8396 }
8397 EXPORT_SYMBOL(unregister_md_personality);
8398 
8399 int register_md_cluster_operations(struct md_cluster_operations *ops,
8400 				   struct module *module)
8401 {
8402 	int ret = 0;
8403 	spin_lock(&pers_lock);
8404 	if (md_cluster_ops != NULL)
8405 		ret = -EALREADY;
8406 	else {
8407 		md_cluster_ops = ops;
8408 		md_cluster_mod = module;
8409 	}
8410 	spin_unlock(&pers_lock);
8411 	return ret;
8412 }
8413 EXPORT_SYMBOL(register_md_cluster_operations);
8414 
8415 int unregister_md_cluster_operations(void)
8416 {
8417 	spin_lock(&pers_lock);
8418 	md_cluster_ops = NULL;
8419 	spin_unlock(&pers_lock);
8420 	return 0;
8421 }
8422 EXPORT_SYMBOL(unregister_md_cluster_operations);
8423 
8424 int md_setup_cluster(struct mddev *mddev, int nodes)
8425 {
8426 	int ret;
8427 	if (!md_cluster_ops)
8428 		request_module("md-cluster");
8429 	spin_lock(&pers_lock);
8430 	/* ensure module won't be unloaded */
8431 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8432 		pr_warn("can't find md-cluster module or get it's reference.\n");
8433 		spin_unlock(&pers_lock);
8434 		return -ENOENT;
8435 	}
8436 	spin_unlock(&pers_lock);
8437 
8438 	ret = md_cluster_ops->join(mddev, nodes);
8439 	if (!ret)
8440 		mddev->safemode_delay = 0;
8441 	return ret;
8442 }
8443 
8444 void md_cluster_stop(struct mddev *mddev)
8445 {
8446 	if (!md_cluster_ops)
8447 		return;
8448 	md_cluster_ops->leave(mddev);
8449 	module_put(md_cluster_mod);
8450 }
8451 
8452 static int is_mddev_idle(struct mddev *mddev, int init)
8453 {
8454 	struct md_rdev *rdev;
8455 	int idle;
8456 	int curr_events;
8457 
8458 	idle = 1;
8459 	rcu_read_lock();
8460 	rdev_for_each_rcu(rdev, mddev) {
8461 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
8462 		curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8463 			      atomic_read(&disk->sync_io);
8464 		/* sync IO will cause sync_io to increase before the disk_stats
8465 		 * as sync_io is counted when a request starts, and
8466 		 * disk_stats is counted when it completes.
8467 		 * So resync activity will cause curr_events to be smaller than
8468 		 * when there was no such activity.
8469 		 * non-sync IO will cause disk_stat to increase without
8470 		 * increasing sync_io so curr_events will (eventually)
8471 		 * be larger than it was before.  Once it becomes
8472 		 * substantially larger, the test below will cause
8473 		 * the array to appear non-idle, and resync will slow
8474 		 * down.
8475 		 * If there is a lot of outstanding resync activity when
8476 		 * we set last_event to curr_events, then all that activity
8477 		 * completing might cause the array to appear non-idle
8478 		 * and resync will be slowed down even though there might
8479 		 * not have been non-resync activity.  This will only
8480 		 * happen once though.  'last_events' will soon reflect
8481 		 * the state where there is little or no outstanding
8482 		 * resync requests, and further resync activity will
8483 		 * always make curr_events less than last_events.
8484 		 *
8485 		 */
8486 		if (init || curr_events - rdev->last_events > 64) {
8487 			rdev->last_events = curr_events;
8488 			idle = 0;
8489 		}
8490 	}
8491 	rcu_read_unlock();
8492 	return idle;
8493 }
8494 
8495 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8496 {
8497 	/* another "blocks" (512byte) blocks have been synced */
8498 	atomic_sub(blocks, &mddev->recovery_active);
8499 	wake_up(&mddev->recovery_wait);
8500 	if (!ok) {
8501 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8502 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8503 		md_wakeup_thread(mddev->thread);
8504 		// stop recovery, signal do_sync ....
8505 	}
8506 }
8507 EXPORT_SYMBOL(md_done_sync);
8508 
8509 /* md_write_start(mddev, bi)
8510  * If we need to update some array metadata (e.g. 'active' flag
8511  * in superblock) before writing, schedule a superblock update
8512  * and wait for it to complete.
8513  * A return value of 'false' means that the write wasn't recorded
8514  * and cannot proceed as the array is being suspend.
8515  */
8516 bool md_write_start(struct mddev *mddev, struct bio *bi)
8517 {
8518 	int did_change = 0;
8519 
8520 	if (bio_data_dir(bi) != WRITE)
8521 		return true;
8522 
8523 	BUG_ON(mddev->ro == 1);
8524 	if (mddev->ro == 2) {
8525 		/* need to switch to read/write */
8526 		mddev->ro = 0;
8527 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8528 		md_wakeup_thread(mddev->thread);
8529 		md_wakeup_thread(mddev->sync_thread);
8530 		did_change = 1;
8531 	}
8532 	rcu_read_lock();
8533 	percpu_ref_get(&mddev->writes_pending);
8534 	smp_mb(); /* Match smp_mb in set_in_sync() */
8535 	if (mddev->safemode == 1)
8536 		mddev->safemode = 0;
8537 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8538 	if (mddev->in_sync || mddev->sync_checkers) {
8539 		spin_lock(&mddev->lock);
8540 		if (mddev->in_sync) {
8541 			mddev->in_sync = 0;
8542 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8543 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8544 			md_wakeup_thread(mddev->thread);
8545 			did_change = 1;
8546 		}
8547 		spin_unlock(&mddev->lock);
8548 	}
8549 	rcu_read_unlock();
8550 	if (did_change)
8551 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8552 	if (!mddev->has_superblocks)
8553 		return true;
8554 	wait_event(mddev->sb_wait,
8555 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8556 		   mddev->suspended);
8557 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8558 		percpu_ref_put(&mddev->writes_pending);
8559 		return false;
8560 	}
8561 	return true;
8562 }
8563 EXPORT_SYMBOL(md_write_start);
8564 
8565 /* md_write_inc can only be called when md_write_start() has
8566  * already been called at least once of the current request.
8567  * It increments the counter and is useful when a single request
8568  * is split into several parts.  Each part causes an increment and
8569  * so needs a matching md_write_end().
8570  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8571  * a spinlocked region.
8572  */
8573 void md_write_inc(struct mddev *mddev, struct bio *bi)
8574 {
8575 	if (bio_data_dir(bi) != WRITE)
8576 		return;
8577 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8578 	percpu_ref_get(&mddev->writes_pending);
8579 }
8580 EXPORT_SYMBOL(md_write_inc);
8581 
8582 void md_write_end(struct mddev *mddev)
8583 {
8584 	percpu_ref_put(&mddev->writes_pending);
8585 
8586 	if (mddev->safemode == 2)
8587 		md_wakeup_thread(mddev->thread);
8588 	else if (mddev->safemode_delay)
8589 		/* The roundup() ensures this only performs locking once
8590 		 * every ->safemode_delay jiffies
8591 		 */
8592 		mod_timer(&mddev->safemode_timer,
8593 			  roundup(jiffies, mddev->safemode_delay) +
8594 			  mddev->safemode_delay);
8595 }
8596 
8597 EXPORT_SYMBOL(md_write_end);
8598 
8599 /* md_allow_write(mddev)
8600  * Calling this ensures that the array is marked 'active' so that writes
8601  * may proceed without blocking.  It is important to call this before
8602  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8603  * Must be called with mddev_lock held.
8604  */
8605 void md_allow_write(struct mddev *mddev)
8606 {
8607 	if (!mddev->pers)
8608 		return;
8609 	if (mddev->ro)
8610 		return;
8611 	if (!mddev->pers->sync_request)
8612 		return;
8613 
8614 	spin_lock(&mddev->lock);
8615 	if (mddev->in_sync) {
8616 		mddev->in_sync = 0;
8617 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8618 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8619 		if (mddev->safemode_delay &&
8620 		    mddev->safemode == 0)
8621 			mddev->safemode = 1;
8622 		spin_unlock(&mddev->lock);
8623 		md_update_sb(mddev, 0);
8624 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8625 		/* wait for the dirty state to be recorded in the metadata */
8626 		wait_event(mddev->sb_wait,
8627 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8628 	} else
8629 		spin_unlock(&mddev->lock);
8630 }
8631 EXPORT_SYMBOL_GPL(md_allow_write);
8632 
8633 #define SYNC_MARKS	10
8634 #define	SYNC_MARK_STEP	(3*HZ)
8635 #define UPDATE_FREQUENCY (5*60*HZ)
8636 void md_do_sync(struct md_thread *thread)
8637 {
8638 	struct mddev *mddev = thread->mddev;
8639 	struct mddev *mddev2;
8640 	unsigned int currspeed = 0, window;
8641 	sector_t max_sectors,j, io_sectors, recovery_done;
8642 	unsigned long mark[SYNC_MARKS];
8643 	unsigned long update_time;
8644 	sector_t mark_cnt[SYNC_MARKS];
8645 	int last_mark,m;
8646 	struct list_head *tmp;
8647 	sector_t last_check;
8648 	int skipped = 0;
8649 	struct md_rdev *rdev;
8650 	char *desc, *action = NULL;
8651 	struct blk_plug plug;
8652 	int ret;
8653 
8654 	/* just incase thread restarts... */
8655 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8656 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8657 		return;
8658 	if (mddev->ro) {/* never try to sync a read-only array */
8659 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8660 		return;
8661 	}
8662 
8663 	if (mddev_is_clustered(mddev)) {
8664 		ret = md_cluster_ops->resync_start(mddev);
8665 		if (ret)
8666 			goto skip;
8667 
8668 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8669 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8670 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8671 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8672 		     && ((unsigned long long)mddev->curr_resync_completed
8673 			 < (unsigned long long)mddev->resync_max_sectors))
8674 			goto skip;
8675 	}
8676 
8677 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8678 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8679 			desc = "data-check";
8680 			action = "check";
8681 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8682 			desc = "requested-resync";
8683 			action = "repair";
8684 		} else
8685 			desc = "resync";
8686 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8687 		desc = "reshape";
8688 	else
8689 		desc = "recovery";
8690 
8691 	mddev->last_sync_action = action ?: desc;
8692 
8693 	/* we overload curr_resync somewhat here.
8694 	 * 0 == not engaged in resync at all
8695 	 * 2 == checking that there is no conflict with another sync
8696 	 * 1 == like 2, but have yielded to allow conflicting resync to
8697 	 *		commence
8698 	 * other == active in resync - this many blocks
8699 	 *
8700 	 * Before starting a resync we must have set curr_resync to
8701 	 * 2, and then checked that every "conflicting" array has curr_resync
8702 	 * less than ours.  When we find one that is the same or higher
8703 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8704 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8705 	 * This will mean we have to start checking from the beginning again.
8706 	 *
8707 	 */
8708 
8709 	do {
8710 		int mddev2_minor = -1;
8711 		mddev->curr_resync = 2;
8712 
8713 	try_again:
8714 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8715 			goto skip;
8716 		for_each_mddev(mddev2, tmp) {
8717 			if (mddev2 == mddev)
8718 				continue;
8719 			if (!mddev->parallel_resync
8720 			&&  mddev2->curr_resync
8721 			&&  match_mddev_units(mddev, mddev2)) {
8722 				DEFINE_WAIT(wq);
8723 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8724 					/* arbitrarily yield */
8725 					mddev->curr_resync = 1;
8726 					wake_up(&resync_wait);
8727 				}
8728 				if (mddev > mddev2 && mddev->curr_resync == 1)
8729 					/* no need to wait here, we can wait the next
8730 					 * time 'round when curr_resync == 2
8731 					 */
8732 					continue;
8733 				/* We need to wait 'interruptible' so as not to
8734 				 * contribute to the load average, and not to
8735 				 * be caught by 'softlockup'
8736 				 */
8737 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8738 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8739 				    mddev2->curr_resync >= mddev->curr_resync) {
8740 					if (mddev2_minor != mddev2->md_minor) {
8741 						mddev2_minor = mddev2->md_minor;
8742 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8743 							desc, mdname(mddev),
8744 							mdname(mddev2));
8745 					}
8746 					mddev_put(mddev2);
8747 					if (signal_pending(current))
8748 						flush_signals(current);
8749 					schedule();
8750 					finish_wait(&resync_wait, &wq);
8751 					goto try_again;
8752 				}
8753 				finish_wait(&resync_wait, &wq);
8754 			}
8755 		}
8756 	} while (mddev->curr_resync < 2);
8757 
8758 	j = 0;
8759 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8760 		/* resync follows the size requested by the personality,
8761 		 * which defaults to physical size, but can be virtual size
8762 		 */
8763 		max_sectors = mddev->resync_max_sectors;
8764 		atomic64_set(&mddev->resync_mismatches, 0);
8765 		/* we don't use the checkpoint if there's a bitmap */
8766 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8767 			j = mddev->resync_min;
8768 		else if (!mddev->bitmap)
8769 			j = mddev->recovery_cp;
8770 
8771 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8772 		max_sectors = mddev->resync_max_sectors;
8773 		/*
8774 		 * If the original node aborts reshaping then we continue the
8775 		 * reshaping, so set j again to avoid restart reshape from the
8776 		 * first beginning
8777 		 */
8778 		if (mddev_is_clustered(mddev) &&
8779 		    mddev->reshape_position != MaxSector)
8780 			j = mddev->reshape_position;
8781 	} else {
8782 		/* recovery follows the physical size of devices */
8783 		max_sectors = mddev->dev_sectors;
8784 		j = MaxSector;
8785 		rcu_read_lock();
8786 		rdev_for_each_rcu(rdev, mddev)
8787 			if (rdev->raid_disk >= 0 &&
8788 			    !test_bit(Journal, &rdev->flags) &&
8789 			    !test_bit(Faulty, &rdev->flags) &&
8790 			    !test_bit(In_sync, &rdev->flags) &&
8791 			    rdev->recovery_offset < j)
8792 				j = rdev->recovery_offset;
8793 		rcu_read_unlock();
8794 
8795 		/* If there is a bitmap, we need to make sure all
8796 		 * writes that started before we added a spare
8797 		 * complete before we start doing a recovery.
8798 		 * Otherwise the write might complete and (via
8799 		 * bitmap_endwrite) set a bit in the bitmap after the
8800 		 * recovery has checked that bit and skipped that
8801 		 * region.
8802 		 */
8803 		if (mddev->bitmap) {
8804 			mddev->pers->quiesce(mddev, 1);
8805 			mddev->pers->quiesce(mddev, 0);
8806 		}
8807 	}
8808 
8809 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8810 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8811 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8812 		 speed_max(mddev), desc);
8813 
8814 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8815 
8816 	io_sectors = 0;
8817 	for (m = 0; m < SYNC_MARKS; m++) {
8818 		mark[m] = jiffies;
8819 		mark_cnt[m] = io_sectors;
8820 	}
8821 	last_mark = 0;
8822 	mddev->resync_mark = mark[last_mark];
8823 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8824 
8825 	/*
8826 	 * Tune reconstruction:
8827 	 */
8828 	window = 32 * (PAGE_SIZE / 512);
8829 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8830 		 window/2, (unsigned long long)max_sectors/2);
8831 
8832 	atomic_set(&mddev->recovery_active, 0);
8833 	last_check = 0;
8834 
8835 	if (j>2) {
8836 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8837 			 desc, mdname(mddev));
8838 		mddev->curr_resync = j;
8839 	} else
8840 		mddev->curr_resync = 3; /* no longer delayed */
8841 	mddev->curr_resync_completed = j;
8842 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8843 	md_new_event(mddev);
8844 	update_time = jiffies;
8845 
8846 	blk_start_plug(&plug);
8847 	while (j < max_sectors) {
8848 		sector_t sectors;
8849 
8850 		skipped = 0;
8851 
8852 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8853 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8854 		      (mddev->curr_resync - mddev->curr_resync_completed)
8855 		      > (max_sectors >> 4)) ||
8856 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8857 		     (j - mddev->curr_resync_completed)*2
8858 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8859 		     mddev->curr_resync_completed > mddev->resync_max
8860 			    )) {
8861 			/* time to update curr_resync_completed */
8862 			wait_event(mddev->recovery_wait,
8863 				   atomic_read(&mddev->recovery_active) == 0);
8864 			mddev->curr_resync_completed = j;
8865 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8866 			    j > mddev->recovery_cp)
8867 				mddev->recovery_cp = j;
8868 			update_time = jiffies;
8869 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8870 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8871 		}
8872 
8873 		while (j >= mddev->resync_max &&
8874 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8875 			/* As this condition is controlled by user-space,
8876 			 * we can block indefinitely, so use '_interruptible'
8877 			 * to avoid triggering warnings.
8878 			 */
8879 			flush_signals(current); /* just in case */
8880 			wait_event_interruptible(mddev->recovery_wait,
8881 						 mddev->resync_max > j
8882 						 || test_bit(MD_RECOVERY_INTR,
8883 							     &mddev->recovery));
8884 		}
8885 
8886 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8887 			break;
8888 
8889 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8890 		if (sectors == 0) {
8891 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8892 			break;
8893 		}
8894 
8895 		if (!skipped) { /* actual IO requested */
8896 			io_sectors += sectors;
8897 			atomic_add(sectors, &mddev->recovery_active);
8898 		}
8899 
8900 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8901 			break;
8902 
8903 		j += sectors;
8904 		if (j > max_sectors)
8905 			/* when skipping, extra large numbers can be returned. */
8906 			j = max_sectors;
8907 		if (j > 2)
8908 			mddev->curr_resync = j;
8909 		mddev->curr_mark_cnt = io_sectors;
8910 		if (last_check == 0)
8911 			/* this is the earliest that rebuild will be
8912 			 * visible in /proc/mdstat
8913 			 */
8914 			md_new_event(mddev);
8915 
8916 		if (last_check + window > io_sectors || j == max_sectors)
8917 			continue;
8918 
8919 		last_check = io_sectors;
8920 	repeat:
8921 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8922 			/* step marks */
8923 			int next = (last_mark+1) % SYNC_MARKS;
8924 
8925 			mddev->resync_mark = mark[next];
8926 			mddev->resync_mark_cnt = mark_cnt[next];
8927 			mark[next] = jiffies;
8928 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8929 			last_mark = next;
8930 		}
8931 
8932 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8933 			break;
8934 
8935 		/*
8936 		 * this loop exits only if either when we are slower than
8937 		 * the 'hard' speed limit, or the system was IO-idle for
8938 		 * a jiffy.
8939 		 * the system might be non-idle CPU-wise, but we only care
8940 		 * about not overloading the IO subsystem. (things like an
8941 		 * e2fsck being done on the RAID array should execute fast)
8942 		 */
8943 		cond_resched();
8944 
8945 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8946 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8947 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8948 
8949 		if (currspeed > speed_min(mddev)) {
8950 			if (currspeed > speed_max(mddev)) {
8951 				msleep(500);
8952 				goto repeat;
8953 			}
8954 			if (!is_mddev_idle(mddev, 0)) {
8955 				/*
8956 				 * Give other IO more of a chance.
8957 				 * The faster the devices, the less we wait.
8958 				 */
8959 				wait_event(mddev->recovery_wait,
8960 					   !atomic_read(&mddev->recovery_active));
8961 			}
8962 		}
8963 	}
8964 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8965 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8966 		? "interrupted" : "done");
8967 	/*
8968 	 * this also signals 'finished resyncing' to md_stop
8969 	 */
8970 	blk_finish_plug(&plug);
8971 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8972 
8973 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8974 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8975 	    mddev->curr_resync > 3) {
8976 		mddev->curr_resync_completed = mddev->curr_resync;
8977 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
8978 	}
8979 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8980 
8981 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8982 	    mddev->curr_resync > 3) {
8983 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8984 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8985 				if (mddev->curr_resync >= mddev->recovery_cp) {
8986 					pr_debug("md: checkpointing %s of %s.\n",
8987 						 desc, mdname(mddev));
8988 					if (test_bit(MD_RECOVERY_ERROR,
8989 						&mddev->recovery))
8990 						mddev->recovery_cp =
8991 							mddev->curr_resync_completed;
8992 					else
8993 						mddev->recovery_cp =
8994 							mddev->curr_resync;
8995 				}
8996 			} else
8997 				mddev->recovery_cp = MaxSector;
8998 		} else {
8999 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9000 				mddev->curr_resync = MaxSector;
9001 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9002 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9003 				rcu_read_lock();
9004 				rdev_for_each_rcu(rdev, mddev)
9005 					if (rdev->raid_disk >= 0 &&
9006 					    mddev->delta_disks >= 0 &&
9007 					    !test_bit(Journal, &rdev->flags) &&
9008 					    !test_bit(Faulty, &rdev->flags) &&
9009 					    !test_bit(In_sync, &rdev->flags) &&
9010 					    rdev->recovery_offset < mddev->curr_resync)
9011 						rdev->recovery_offset = mddev->curr_resync;
9012 				rcu_read_unlock();
9013 			}
9014 		}
9015 	}
9016  skip:
9017 	/* set CHANGE_PENDING here since maybe another update is needed,
9018 	 * so other nodes are informed. It should be harmless for normal
9019 	 * raid */
9020 	set_mask_bits(&mddev->sb_flags, 0,
9021 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9022 
9023 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9024 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9025 			mddev->delta_disks > 0 &&
9026 			mddev->pers->finish_reshape &&
9027 			mddev->pers->size &&
9028 			mddev->queue) {
9029 		mddev_lock_nointr(mddev);
9030 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9031 		mddev_unlock(mddev);
9032 		if (!mddev_is_clustered(mddev)) {
9033 			set_capacity(mddev->gendisk, mddev->array_sectors);
9034 			revalidate_disk(mddev->gendisk);
9035 		}
9036 	}
9037 
9038 	spin_lock(&mddev->lock);
9039 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9040 		/* We completed so min/max setting can be forgotten if used. */
9041 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9042 			mddev->resync_min = 0;
9043 		mddev->resync_max = MaxSector;
9044 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9045 		mddev->resync_min = mddev->curr_resync_completed;
9046 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9047 	mddev->curr_resync = 0;
9048 	spin_unlock(&mddev->lock);
9049 
9050 	wake_up(&resync_wait);
9051 	md_wakeup_thread(mddev->thread);
9052 	return;
9053 }
9054 EXPORT_SYMBOL_GPL(md_do_sync);
9055 
9056 static int remove_and_add_spares(struct mddev *mddev,
9057 				 struct md_rdev *this)
9058 {
9059 	struct md_rdev *rdev;
9060 	int spares = 0;
9061 	int removed = 0;
9062 	bool remove_some = false;
9063 
9064 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9065 		/* Mustn't remove devices when resync thread is running */
9066 		return 0;
9067 
9068 	rdev_for_each(rdev, mddev) {
9069 		if ((this == NULL || rdev == this) &&
9070 		    rdev->raid_disk >= 0 &&
9071 		    !test_bit(Blocked, &rdev->flags) &&
9072 		    test_bit(Faulty, &rdev->flags) &&
9073 		    atomic_read(&rdev->nr_pending)==0) {
9074 			/* Faulty non-Blocked devices with nr_pending == 0
9075 			 * never get nr_pending incremented,
9076 			 * never get Faulty cleared, and never get Blocked set.
9077 			 * So we can synchronize_rcu now rather than once per device
9078 			 */
9079 			remove_some = true;
9080 			set_bit(RemoveSynchronized, &rdev->flags);
9081 		}
9082 	}
9083 
9084 	if (remove_some)
9085 		synchronize_rcu();
9086 	rdev_for_each(rdev, mddev) {
9087 		if ((this == NULL || rdev == this) &&
9088 		    rdev->raid_disk >= 0 &&
9089 		    !test_bit(Blocked, &rdev->flags) &&
9090 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9091 		     (!test_bit(In_sync, &rdev->flags) &&
9092 		      !test_bit(Journal, &rdev->flags))) &&
9093 		    atomic_read(&rdev->nr_pending)==0)) {
9094 			if (mddev->pers->hot_remove_disk(
9095 				    mddev, rdev) == 0) {
9096 				sysfs_unlink_rdev(mddev, rdev);
9097 				rdev->saved_raid_disk = rdev->raid_disk;
9098 				rdev->raid_disk = -1;
9099 				removed++;
9100 			}
9101 		}
9102 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9103 			clear_bit(RemoveSynchronized, &rdev->flags);
9104 	}
9105 
9106 	if (removed && mddev->kobj.sd)
9107 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9108 
9109 	if (this && removed)
9110 		goto no_add;
9111 
9112 	rdev_for_each(rdev, mddev) {
9113 		if (this && this != rdev)
9114 			continue;
9115 		if (test_bit(Candidate, &rdev->flags))
9116 			continue;
9117 		if (rdev->raid_disk >= 0 &&
9118 		    !test_bit(In_sync, &rdev->flags) &&
9119 		    !test_bit(Journal, &rdev->flags) &&
9120 		    !test_bit(Faulty, &rdev->flags))
9121 			spares++;
9122 		if (rdev->raid_disk >= 0)
9123 			continue;
9124 		if (test_bit(Faulty, &rdev->flags))
9125 			continue;
9126 		if (!test_bit(Journal, &rdev->flags)) {
9127 			if (mddev->ro &&
9128 			    ! (rdev->saved_raid_disk >= 0 &&
9129 			       !test_bit(Bitmap_sync, &rdev->flags)))
9130 				continue;
9131 
9132 			rdev->recovery_offset = 0;
9133 		}
9134 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9135 			/* failure here is OK */
9136 			sysfs_link_rdev(mddev, rdev);
9137 			if (!test_bit(Journal, &rdev->flags))
9138 				spares++;
9139 			md_new_event(mddev);
9140 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9141 		}
9142 	}
9143 no_add:
9144 	if (removed)
9145 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9146 	return spares;
9147 }
9148 
9149 static void md_start_sync(struct work_struct *ws)
9150 {
9151 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9152 
9153 	mddev->sync_thread = md_register_thread(md_do_sync,
9154 						mddev,
9155 						"resync");
9156 	if (!mddev->sync_thread) {
9157 		pr_warn("%s: could not start resync thread...\n",
9158 			mdname(mddev));
9159 		/* leave the spares where they are, it shouldn't hurt */
9160 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9161 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9162 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9163 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9164 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9165 		wake_up(&resync_wait);
9166 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9167 				       &mddev->recovery))
9168 			if (mddev->sysfs_action)
9169 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9170 	} else
9171 		md_wakeup_thread(mddev->sync_thread);
9172 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9173 	md_new_event(mddev);
9174 }
9175 
9176 /*
9177  * This routine is regularly called by all per-raid-array threads to
9178  * deal with generic issues like resync and super-block update.
9179  * Raid personalities that don't have a thread (linear/raid0) do not
9180  * need this as they never do any recovery or update the superblock.
9181  *
9182  * It does not do any resync itself, but rather "forks" off other threads
9183  * to do that as needed.
9184  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9185  * "->recovery" and create a thread at ->sync_thread.
9186  * When the thread finishes it sets MD_RECOVERY_DONE
9187  * and wakeups up this thread which will reap the thread and finish up.
9188  * This thread also removes any faulty devices (with nr_pending == 0).
9189  *
9190  * The overall approach is:
9191  *  1/ if the superblock needs updating, update it.
9192  *  2/ If a recovery thread is running, don't do anything else.
9193  *  3/ If recovery has finished, clean up, possibly marking spares active.
9194  *  4/ If there are any faulty devices, remove them.
9195  *  5/ If array is degraded, try to add spares devices
9196  *  6/ If array has spares or is not in-sync, start a resync thread.
9197  */
9198 void md_check_recovery(struct mddev *mddev)
9199 {
9200 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9201 		/* Write superblock - thread that called mddev_suspend()
9202 		 * holds reconfig_mutex for us.
9203 		 */
9204 		set_bit(MD_UPDATING_SB, &mddev->flags);
9205 		smp_mb__after_atomic();
9206 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9207 			md_update_sb(mddev, 0);
9208 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9209 		wake_up(&mddev->sb_wait);
9210 	}
9211 
9212 	if (mddev->suspended)
9213 		return;
9214 
9215 	if (mddev->bitmap)
9216 		md_bitmap_daemon_work(mddev);
9217 
9218 	if (signal_pending(current)) {
9219 		if (mddev->pers->sync_request && !mddev->external) {
9220 			pr_debug("md: %s in immediate safe mode\n",
9221 				 mdname(mddev));
9222 			mddev->safemode = 2;
9223 		}
9224 		flush_signals(current);
9225 	}
9226 
9227 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9228 		return;
9229 	if ( ! (
9230 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9231 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9232 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9233 		(mddev->external == 0 && mddev->safemode == 1) ||
9234 		(mddev->safemode == 2
9235 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9236 		))
9237 		return;
9238 
9239 	if (mddev_trylock(mddev)) {
9240 		int spares = 0;
9241 		bool try_set_sync = mddev->safemode != 0;
9242 
9243 		if (!mddev->external && mddev->safemode == 1)
9244 			mddev->safemode = 0;
9245 
9246 		if (mddev->ro) {
9247 			struct md_rdev *rdev;
9248 			if (!mddev->external && mddev->in_sync)
9249 				/* 'Blocked' flag not needed as failed devices
9250 				 * will be recorded if array switched to read/write.
9251 				 * Leaving it set will prevent the device
9252 				 * from being removed.
9253 				 */
9254 				rdev_for_each(rdev, mddev)
9255 					clear_bit(Blocked, &rdev->flags);
9256 			/* On a read-only array we can:
9257 			 * - remove failed devices
9258 			 * - add already-in_sync devices if the array itself
9259 			 *   is in-sync.
9260 			 * As we only add devices that are already in-sync,
9261 			 * we can activate the spares immediately.
9262 			 */
9263 			remove_and_add_spares(mddev, NULL);
9264 			/* There is no thread, but we need to call
9265 			 * ->spare_active and clear saved_raid_disk
9266 			 */
9267 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9268 			md_reap_sync_thread(mddev);
9269 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9270 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9271 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9272 			goto unlock;
9273 		}
9274 
9275 		if (mddev_is_clustered(mddev)) {
9276 			struct md_rdev *rdev;
9277 			/* kick the device if another node issued a
9278 			 * remove disk.
9279 			 */
9280 			rdev_for_each(rdev, mddev) {
9281 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9282 						rdev->raid_disk < 0)
9283 					md_kick_rdev_from_array(rdev);
9284 			}
9285 		}
9286 
9287 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9288 			spin_lock(&mddev->lock);
9289 			set_in_sync(mddev);
9290 			spin_unlock(&mddev->lock);
9291 		}
9292 
9293 		if (mddev->sb_flags)
9294 			md_update_sb(mddev, 0);
9295 
9296 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9297 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9298 			/* resync/recovery still happening */
9299 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9300 			goto unlock;
9301 		}
9302 		if (mddev->sync_thread) {
9303 			md_reap_sync_thread(mddev);
9304 			goto unlock;
9305 		}
9306 		/* Set RUNNING before clearing NEEDED to avoid
9307 		 * any transients in the value of "sync_action".
9308 		 */
9309 		mddev->curr_resync_completed = 0;
9310 		spin_lock(&mddev->lock);
9311 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9312 		spin_unlock(&mddev->lock);
9313 		/* Clear some bits that don't mean anything, but
9314 		 * might be left set
9315 		 */
9316 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9317 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9318 
9319 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9320 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9321 			goto not_running;
9322 		/* no recovery is running.
9323 		 * remove any failed drives, then
9324 		 * add spares if possible.
9325 		 * Spares are also removed and re-added, to allow
9326 		 * the personality to fail the re-add.
9327 		 */
9328 
9329 		if (mddev->reshape_position != MaxSector) {
9330 			if (mddev->pers->check_reshape == NULL ||
9331 			    mddev->pers->check_reshape(mddev) != 0)
9332 				/* Cannot proceed */
9333 				goto not_running;
9334 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9335 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9336 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9337 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9338 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9339 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9340 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9341 		} else if (mddev->recovery_cp < MaxSector) {
9342 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9343 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9344 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9345 			/* nothing to be done ... */
9346 			goto not_running;
9347 
9348 		if (mddev->pers->sync_request) {
9349 			if (spares) {
9350 				/* We are adding a device or devices to an array
9351 				 * which has the bitmap stored on all devices.
9352 				 * So make sure all bitmap pages get written
9353 				 */
9354 				md_bitmap_write_all(mddev->bitmap);
9355 			}
9356 			INIT_WORK(&mddev->del_work, md_start_sync);
9357 			queue_work(md_misc_wq, &mddev->del_work);
9358 			goto unlock;
9359 		}
9360 	not_running:
9361 		if (!mddev->sync_thread) {
9362 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9363 			wake_up(&resync_wait);
9364 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9365 					       &mddev->recovery))
9366 				if (mddev->sysfs_action)
9367 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9368 		}
9369 	unlock:
9370 		wake_up(&mddev->sb_wait);
9371 		mddev_unlock(mddev);
9372 	}
9373 }
9374 EXPORT_SYMBOL(md_check_recovery);
9375 
9376 void md_reap_sync_thread(struct mddev *mddev)
9377 {
9378 	struct md_rdev *rdev;
9379 	sector_t old_dev_sectors = mddev->dev_sectors;
9380 	bool is_reshaped = false;
9381 
9382 	/* resync has finished, collect result */
9383 	md_unregister_thread(&mddev->sync_thread);
9384 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9385 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9386 	    mddev->degraded != mddev->raid_disks) {
9387 		/* success...*/
9388 		/* activate any spares */
9389 		if (mddev->pers->spare_active(mddev)) {
9390 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9391 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9392 		}
9393 	}
9394 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9395 	    mddev->pers->finish_reshape) {
9396 		mddev->pers->finish_reshape(mddev);
9397 		if (mddev_is_clustered(mddev))
9398 			is_reshaped = true;
9399 	}
9400 
9401 	/* If array is no-longer degraded, then any saved_raid_disk
9402 	 * information must be scrapped.
9403 	 */
9404 	if (!mddev->degraded)
9405 		rdev_for_each(rdev, mddev)
9406 			rdev->saved_raid_disk = -1;
9407 
9408 	md_update_sb(mddev, 1);
9409 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9410 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9411 	 * clustered raid */
9412 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9413 		md_cluster_ops->resync_finish(mddev);
9414 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9415 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9416 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9417 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9418 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9419 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9420 	/*
9421 	 * We call md_cluster_ops->update_size here because sync_size could
9422 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9423 	 * so it is time to update size across cluster.
9424 	 */
9425 	if (mddev_is_clustered(mddev) && is_reshaped
9426 				      && !test_bit(MD_CLOSING, &mddev->flags))
9427 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9428 	wake_up(&resync_wait);
9429 	/* flag recovery needed just to double check */
9430 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9431 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9432 	md_new_event(mddev);
9433 	if (mddev->event_work.func)
9434 		queue_work(md_misc_wq, &mddev->event_work);
9435 }
9436 EXPORT_SYMBOL(md_reap_sync_thread);
9437 
9438 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9439 {
9440 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9441 	wait_event_timeout(rdev->blocked_wait,
9442 			   !test_bit(Blocked, &rdev->flags) &&
9443 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9444 			   msecs_to_jiffies(5000));
9445 	rdev_dec_pending(rdev, mddev);
9446 }
9447 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9448 
9449 void md_finish_reshape(struct mddev *mddev)
9450 {
9451 	/* called be personality module when reshape completes. */
9452 	struct md_rdev *rdev;
9453 
9454 	rdev_for_each(rdev, mddev) {
9455 		if (rdev->data_offset > rdev->new_data_offset)
9456 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9457 		else
9458 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9459 		rdev->data_offset = rdev->new_data_offset;
9460 	}
9461 }
9462 EXPORT_SYMBOL(md_finish_reshape);
9463 
9464 /* Bad block management */
9465 
9466 /* Returns 1 on success, 0 on failure */
9467 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9468 		       int is_new)
9469 {
9470 	struct mddev *mddev = rdev->mddev;
9471 	int rv;
9472 	if (is_new)
9473 		s += rdev->new_data_offset;
9474 	else
9475 		s += rdev->data_offset;
9476 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9477 	if (rv == 0) {
9478 		/* Make sure they get written out promptly */
9479 		if (test_bit(ExternalBbl, &rdev->flags))
9480 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9481 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9482 		set_mask_bits(&mddev->sb_flags, 0,
9483 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9484 		md_wakeup_thread(rdev->mddev->thread);
9485 		return 1;
9486 	} else
9487 		return 0;
9488 }
9489 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9490 
9491 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9492 			 int is_new)
9493 {
9494 	int rv;
9495 	if (is_new)
9496 		s += rdev->new_data_offset;
9497 	else
9498 		s += rdev->data_offset;
9499 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9500 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9501 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9502 	return rv;
9503 }
9504 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9505 
9506 static int md_notify_reboot(struct notifier_block *this,
9507 			    unsigned long code, void *x)
9508 {
9509 	struct list_head *tmp;
9510 	struct mddev *mddev;
9511 	int need_delay = 0;
9512 
9513 	for_each_mddev(mddev, tmp) {
9514 		if (mddev_trylock(mddev)) {
9515 			if (mddev->pers)
9516 				__md_stop_writes(mddev);
9517 			if (mddev->persistent)
9518 				mddev->safemode = 2;
9519 			mddev_unlock(mddev);
9520 		}
9521 		need_delay = 1;
9522 	}
9523 	/*
9524 	 * certain more exotic SCSI devices are known to be
9525 	 * volatile wrt too early system reboots. While the
9526 	 * right place to handle this issue is the given
9527 	 * driver, we do want to have a safe RAID driver ...
9528 	 */
9529 	if (need_delay)
9530 		mdelay(1000*1);
9531 
9532 	return NOTIFY_DONE;
9533 }
9534 
9535 static struct notifier_block md_notifier = {
9536 	.notifier_call	= md_notify_reboot,
9537 	.next		= NULL,
9538 	.priority	= INT_MAX, /* before any real devices */
9539 };
9540 
9541 static void md_geninit(void)
9542 {
9543 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9544 
9545 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9546 }
9547 
9548 static int __init md_init(void)
9549 {
9550 	int ret = -ENOMEM;
9551 
9552 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9553 	if (!md_wq)
9554 		goto err_wq;
9555 
9556 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9557 	if (!md_misc_wq)
9558 		goto err_misc_wq;
9559 
9560 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9561 	if (!md_misc_wq)
9562 		goto err_rdev_misc_wq;
9563 
9564 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9565 		goto err_md;
9566 
9567 	if ((ret = register_blkdev(0, "mdp")) < 0)
9568 		goto err_mdp;
9569 	mdp_major = ret;
9570 
9571 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9572 			    md_probe, NULL, NULL);
9573 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9574 			    md_probe, NULL, NULL);
9575 
9576 	register_reboot_notifier(&md_notifier);
9577 	raid_table_header = register_sysctl_table(raid_root_table);
9578 
9579 	md_geninit();
9580 	return 0;
9581 
9582 err_mdp:
9583 	unregister_blkdev(MD_MAJOR, "md");
9584 err_md:
9585 	destroy_workqueue(md_rdev_misc_wq);
9586 err_rdev_misc_wq:
9587 	destroy_workqueue(md_misc_wq);
9588 err_misc_wq:
9589 	destroy_workqueue(md_wq);
9590 err_wq:
9591 	return ret;
9592 }
9593 
9594 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9595 {
9596 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9597 	struct md_rdev *rdev2;
9598 	int role, ret;
9599 	char b[BDEVNAME_SIZE];
9600 
9601 	/*
9602 	 * If size is changed in another node then we need to
9603 	 * do resize as well.
9604 	 */
9605 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9606 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9607 		if (ret)
9608 			pr_info("md-cluster: resize failed\n");
9609 		else
9610 			md_bitmap_update_sb(mddev->bitmap);
9611 	}
9612 
9613 	/* Check for change of roles in the active devices */
9614 	rdev_for_each(rdev2, mddev) {
9615 		if (test_bit(Faulty, &rdev2->flags))
9616 			continue;
9617 
9618 		/* Check if the roles changed */
9619 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9620 
9621 		if (test_bit(Candidate, &rdev2->flags)) {
9622 			if (role == 0xfffe) {
9623 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9624 				md_kick_rdev_from_array(rdev2);
9625 				continue;
9626 			}
9627 			else
9628 				clear_bit(Candidate, &rdev2->flags);
9629 		}
9630 
9631 		if (role != rdev2->raid_disk) {
9632 			/*
9633 			 * got activated except reshape is happening.
9634 			 */
9635 			if (rdev2->raid_disk == -1 && role != 0xffff &&
9636 			    !(le32_to_cpu(sb->feature_map) &
9637 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9638 				rdev2->saved_raid_disk = role;
9639 				ret = remove_and_add_spares(mddev, rdev2);
9640 				pr_info("Activated spare: %s\n",
9641 					bdevname(rdev2->bdev,b));
9642 				/* wakeup mddev->thread here, so array could
9643 				 * perform resync with the new activated disk */
9644 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9645 				md_wakeup_thread(mddev->thread);
9646 			}
9647 			/* device faulty
9648 			 * We just want to do the minimum to mark the disk
9649 			 * as faulty. The recovery is performed by the
9650 			 * one who initiated the error.
9651 			 */
9652 			if ((role == 0xfffe) || (role == 0xfffd)) {
9653 				md_error(mddev, rdev2);
9654 				clear_bit(Blocked, &rdev2->flags);
9655 			}
9656 		}
9657 	}
9658 
9659 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9660 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9661 
9662 	/*
9663 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9664 	 * so it is time to check reshape.
9665 	 */
9666 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9667 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9668 		/*
9669 		 * reshape is happening in the remote node, we need to
9670 		 * update reshape_position and call start_reshape.
9671 		 */
9672 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9673 		if (mddev->pers->update_reshape_pos)
9674 			mddev->pers->update_reshape_pos(mddev);
9675 		if (mddev->pers->start_reshape)
9676 			mddev->pers->start_reshape(mddev);
9677 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9678 		   mddev->reshape_position != MaxSector &&
9679 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9680 		/* reshape is just done in another node. */
9681 		mddev->reshape_position = MaxSector;
9682 		if (mddev->pers->update_reshape_pos)
9683 			mddev->pers->update_reshape_pos(mddev);
9684 	}
9685 
9686 	/* Finally set the event to be up to date */
9687 	mddev->events = le64_to_cpu(sb->events);
9688 }
9689 
9690 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9691 {
9692 	int err;
9693 	struct page *swapout = rdev->sb_page;
9694 	struct mdp_superblock_1 *sb;
9695 
9696 	/* Store the sb page of the rdev in the swapout temporary
9697 	 * variable in case we err in the future
9698 	 */
9699 	rdev->sb_page = NULL;
9700 	err = alloc_disk_sb(rdev);
9701 	if (err == 0) {
9702 		ClearPageUptodate(rdev->sb_page);
9703 		rdev->sb_loaded = 0;
9704 		err = super_types[mddev->major_version].
9705 			load_super(rdev, NULL, mddev->minor_version);
9706 	}
9707 	if (err < 0) {
9708 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9709 				__func__, __LINE__, rdev->desc_nr, err);
9710 		if (rdev->sb_page)
9711 			put_page(rdev->sb_page);
9712 		rdev->sb_page = swapout;
9713 		rdev->sb_loaded = 1;
9714 		return err;
9715 	}
9716 
9717 	sb = page_address(rdev->sb_page);
9718 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9719 	 * is not set
9720 	 */
9721 
9722 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9723 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9724 
9725 	/* The other node finished recovery, call spare_active to set
9726 	 * device In_sync and mddev->degraded
9727 	 */
9728 	if (rdev->recovery_offset == MaxSector &&
9729 	    !test_bit(In_sync, &rdev->flags) &&
9730 	    mddev->pers->spare_active(mddev))
9731 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9732 
9733 	put_page(swapout);
9734 	return 0;
9735 }
9736 
9737 void md_reload_sb(struct mddev *mddev, int nr)
9738 {
9739 	struct md_rdev *rdev;
9740 	int err;
9741 
9742 	/* Find the rdev */
9743 	rdev_for_each_rcu(rdev, mddev) {
9744 		if (rdev->desc_nr == nr)
9745 			break;
9746 	}
9747 
9748 	if (!rdev || rdev->desc_nr != nr) {
9749 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9750 		return;
9751 	}
9752 
9753 	err = read_rdev(mddev, rdev);
9754 	if (err < 0)
9755 		return;
9756 
9757 	check_sb_changes(mddev, rdev);
9758 
9759 	/* Read all rdev's to update recovery_offset */
9760 	rdev_for_each_rcu(rdev, mddev) {
9761 		if (!test_bit(Faulty, &rdev->flags))
9762 			read_rdev(mddev, rdev);
9763 	}
9764 }
9765 EXPORT_SYMBOL(md_reload_sb);
9766 
9767 #ifndef MODULE
9768 
9769 /*
9770  * Searches all registered partitions for autorun RAID arrays
9771  * at boot time.
9772  */
9773 
9774 static DEFINE_MUTEX(detected_devices_mutex);
9775 static LIST_HEAD(all_detected_devices);
9776 struct detected_devices_node {
9777 	struct list_head list;
9778 	dev_t dev;
9779 };
9780 
9781 void md_autodetect_dev(dev_t dev)
9782 {
9783 	struct detected_devices_node *node_detected_dev;
9784 
9785 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9786 	if (node_detected_dev) {
9787 		node_detected_dev->dev = dev;
9788 		mutex_lock(&detected_devices_mutex);
9789 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9790 		mutex_unlock(&detected_devices_mutex);
9791 	}
9792 }
9793 
9794 static void autostart_arrays(int part)
9795 {
9796 	struct md_rdev *rdev;
9797 	struct detected_devices_node *node_detected_dev;
9798 	dev_t dev;
9799 	int i_scanned, i_passed;
9800 
9801 	i_scanned = 0;
9802 	i_passed = 0;
9803 
9804 	pr_info("md: Autodetecting RAID arrays.\n");
9805 
9806 	mutex_lock(&detected_devices_mutex);
9807 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9808 		i_scanned++;
9809 		node_detected_dev = list_entry(all_detected_devices.next,
9810 					struct detected_devices_node, list);
9811 		list_del(&node_detected_dev->list);
9812 		dev = node_detected_dev->dev;
9813 		kfree(node_detected_dev);
9814 		mutex_unlock(&detected_devices_mutex);
9815 		rdev = md_import_device(dev,0, 90);
9816 		mutex_lock(&detected_devices_mutex);
9817 		if (IS_ERR(rdev))
9818 			continue;
9819 
9820 		if (test_bit(Faulty, &rdev->flags))
9821 			continue;
9822 
9823 		set_bit(AutoDetected, &rdev->flags);
9824 		list_add(&rdev->same_set, &pending_raid_disks);
9825 		i_passed++;
9826 	}
9827 	mutex_unlock(&detected_devices_mutex);
9828 
9829 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9830 
9831 	autorun_devices(part);
9832 }
9833 
9834 #endif /* !MODULE */
9835 
9836 static __exit void md_exit(void)
9837 {
9838 	struct mddev *mddev;
9839 	struct list_head *tmp;
9840 	int delay = 1;
9841 
9842 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9843 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9844 
9845 	unregister_blkdev(MD_MAJOR,"md");
9846 	unregister_blkdev(mdp_major, "mdp");
9847 	unregister_reboot_notifier(&md_notifier);
9848 	unregister_sysctl_table(raid_table_header);
9849 
9850 	/* We cannot unload the modules while some process is
9851 	 * waiting for us in select() or poll() - wake them up
9852 	 */
9853 	md_unloading = 1;
9854 	while (waitqueue_active(&md_event_waiters)) {
9855 		/* not safe to leave yet */
9856 		wake_up(&md_event_waiters);
9857 		msleep(delay);
9858 		delay += delay;
9859 	}
9860 	remove_proc_entry("mdstat", NULL);
9861 
9862 	for_each_mddev(mddev, tmp) {
9863 		export_array(mddev);
9864 		mddev->ctime = 0;
9865 		mddev->hold_active = 0;
9866 		/*
9867 		 * for_each_mddev() will call mddev_put() at the end of each
9868 		 * iteration.  As the mddev is now fully clear, this will
9869 		 * schedule the mddev for destruction by a workqueue, and the
9870 		 * destroy_workqueue() below will wait for that to complete.
9871 		 */
9872 	}
9873 	destroy_workqueue(md_rdev_misc_wq);
9874 	destroy_workqueue(md_misc_wq);
9875 	destroy_workqueue(md_wq);
9876 }
9877 
9878 subsys_initcall(md_init);
9879 module_exit(md_exit)
9880 
9881 static int get_ro(char *buffer, const struct kernel_param *kp)
9882 {
9883 	return sprintf(buffer, "%d\n", start_readonly);
9884 }
9885 static int set_ro(const char *val, const struct kernel_param *kp)
9886 {
9887 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9888 }
9889 
9890 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9891 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9892 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9893 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9894 
9895 MODULE_LICENSE("GPL");
9896 MODULE_DESCRIPTION("MD RAID framework");
9897 MODULE_ALIAS("md");
9898 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9899