1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 #ifndef MODULE 72 static void autostart_arrays(int part); 73 #endif 74 75 /* pers_list is a list of registered personalities protected 76 * by pers_lock. 77 * pers_lock does extra service to protect accesses to 78 * mddev->thread when the mutex cannot be held. 79 */ 80 static LIST_HEAD(pers_list); 81 static DEFINE_SPINLOCK(pers_lock); 82 83 static struct kobj_type md_ktype; 84 85 struct md_cluster_operations *md_cluster_ops; 86 EXPORT_SYMBOL(md_cluster_ops); 87 static struct module *md_cluster_mod; 88 89 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 90 static struct workqueue_struct *md_wq; 91 static struct workqueue_struct *md_misc_wq; 92 static struct workqueue_struct *md_rdev_misc_wq; 93 94 static int remove_and_add_spares(struct mddev *mddev, 95 struct md_rdev *this); 96 static void mddev_detach(struct mddev *mddev); 97 98 /* 99 * Default number of read corrections we'll attempt on an rdev 100 * before ejecting it from the array. We divide the read error 101 * count by 2 for every hour elapsed between read errors. 102 */ 103 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 104 /* Default safemode delay: 200 msec */ 105 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static void rdev_uninit_serial(struct md_rdev *rdev) 134 { 135 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 136 return; 137 138 kvfree(rdev->serial); 139 rdev->serial = NULL; 140 } 141 142 static void rdevs_uninit_serial(struct mddev *mddev) 143 { 144 struct md_rdev *rdev; 145 146 rdev_for_each(rdev, mddev) 147 rdev_uninit_serial(rdev); 148 } 149 150 static int rdev_init_serial(struct md_rdev *rdev) 151 { 152 /* serial_nums equals with BARRIER_BUCKETS_NR */ 153 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 154 struct serial_in_rdev *serial = NULL; 155 156 if (test_bit(CollisionCheck, &rdev->flags)) 157 return 0; 158 159 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 160 GFP_KERNEL); 161 if (!serial) 162 return -ENOMEM; 163 164 for (i = 0; i < serial_nums; i++) { 165 struct serial_in_rdev *serial_tmp = &serial[i]; 166 167 spin_lock_init(&serial_tmp->serial_lock); 168 serial_tmp->serial_rb = RB_ROOT_CACHED; 169 init_waitqueue_head(&serial_tmp->serial_io_wait); 170 } 171 172 rdev->serial = serial; 173 set_bit(CollisionCheck, &rdev->flags); 174 175 return 0; 176 } 177 178 static int rdevs_init_serial(struct mddev *mddev) 179 { 180 struct md_rdev *rdev; 181 int ret = 0; 182 183 rdev_for_each(rdev, mddev) { 184 ret = rdev_init_serial(rdev); 185 if (ret) 186 break; 187 } 188 189 /* Free all resources if pool is not existed */ 190 if (ret && !mddev->serial_info_pool) 191 rdevs_uninit_serial(mddev); 192 193 return ret; 194 } 195 196 /* 197 * rdev needs to enable serial stuffs if it meets the conditions: 198 * 1. it is multi-queue device flaged with writemostly. 199 * 2. the write-behind mode is enabled. 200 */ 201 static int rdev_need_serial(struct md_rdev *rdev) 202 { 203 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 204 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 205 test_bit(WriteMostly, &rdev->flags)); 206 } 207 208 /* 209 * Init resource for rdev(s), then create serial_info_pool if: 210 * 1. rdev is the first device which return true from rdev_enable_serial. 211 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 212 */ 213 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 214 bool is_suspend) 215 { 216 int ret = 0; 217 218 if (rdev && !rdev_need_serial(rdev) && 219 !test_bit(CollisionCheck, &rdev->flags)) 220 return; 221 222 if (!is_suspend) 223 mddev_suspend(mddev); 224 225 if (!rdev) 226 ret = rdevs_init_serial(mddev); 227 else 228 ret = rdev_init_serial(rdev); 229 if (ret) 230 goto abort; 231 232 if (mddev->serial_info_pool == NULL) { 233 /* 234 * already in memalloc noio context by 235 * mddev_suspend() 236 */ 237 mddev->serial_info_pool = 238 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 239 sizeof(struct serial_info)); 240 if (!mddev->serial_info_pool) { 241 rdevs_uninit_serial(mddev); 242 pr_err("can't alloc memory pool for serialization\n"); 243 } 244 } 245 246 abort: 247 if (!is_suspend) 248 mddev_resume(mddev); 249 } 250 251 /* 252 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 253 * 1. rdev is the last device flaged with CollisionCheck. 254 * 2. when bitmap is destroyed while policy is not enabled. 255 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 256 */ 257 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 258 bool is_suspend) 259 { 260 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 261 return; 262 263 if (mddev->serial_info_pool) { 264 struct md_rdev *temp; 265 int num = 0; /* used to track if other rdevs need the pool */ 266 267 if (!is_suspend) 268 mddev_suspend(mddev); 269 rdev_for_each(temp, mddev) { 270 if (!rdev) { 271 if (!mddev->serialize_policy || 272 !rdev_need_serial(temp)) 273 rdev_uninit_serial(temp); 274 else 275 num++; 276 } else if (temp != rdev && 277 test_bit(CollisionCheck, &temp->flags)) 278 num++; 279 } 280 281 if (rdev) 282 rdev_uninit_serial(rdev); 283 284 if (num) 285 pr_info("The mempool could be used by other devices\n"); 286 else { 287 mempool_destroy(mddev->serial_info_pool); 288 mddev->serial_info_pool = NULL; 289 } 290 if (!is_suspend) 291 mddev_resume(mddev); 292 } 293 } 294 295 static struct ctl_table_header *raid_table_header; 296 297 static struct ctl_table raid_table[] = { 298 { 299 .procname = "speed_limit_min", 300 .data = &sysctl_speed_limit_min, 301 .maxlen = sizeof(int), 302 .mode = S_IRUGO|S_IWUSR, 303 .proc_handler = proc_dointvec, 304 }, 305 { 306 .procname = "speed_limit_max", 307 .data = &sysctl_speed_limit_max, 308 .maxlen = sizeof(int), 309 .mode = S_IRUGO|S_IWUSR, 310 .proc_handler = proc_dointvec, 311 }, 312 { } 313 }; 314 315 static struct ctl_table raid_dir_table[] = { 316 { 317 .procname = "raid", 318 .maxlen = 0, 319 .mode = S_IRUGO|S_IXUGO, 320 .child = raid_table, 321 }, 322 { } 323 }; 324 325 static struct ctl_table raid_root_table[] = { 326 { 327 .procname = "dev", 328 .maxlen = 0, 329 .mode = 0555, 330 .child = raid_dir_table, 331 }, 332 { } 333 }; 334 335 static const struct block_device_operations md_fops; 336 337 static int start_readonly; 338 339 /* 340 * The original mechanism for creating an md device is to create 341 * a device node in /dev and to open it. This causes races with device-close. 342 * The preferred method is to write to the "new_array" module parameter. 343 * This can avoid races. 344 * Setting create_on_open to false disables the original mechanism 345 * so all the races disappear. 346 */ 347 static bool create_on_open = true; 348 349 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 350 struct mddev *mddev) 351 { 352 if (!mddev || !bioset_initialized(&mddev->bio_set)) 353 return bio_alloc(gfp_mask, nr_iovecs); 354 355 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 356 } 357 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 358 359 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 360 { 361 if (!mddev || !bioset_initialized(&mddev->sync_set)) 362 return bio_alloc(GFP_NOIO, 1); 363 364 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 365 } 366 367 /* 368 * We have a system wide 'event count' that is incremented 369 * on any 'interesting' event, and readers of /proc/mdstat 370 * can use 'poll' or 'select' to find out when the event 371 * count increases. 372 * 373 * Events are: 374 * start array, stop array, error, add device, remove device, 375 * start build, activate spare 376 */ 377 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 378 static atomic_t md_event_count; 379 void md_new_event(struct mddev *mddev) 380 { 381 atomic_inc(&md_event_count); 382 wake_up(&md_event_waiters); 383 } 384 EXPORT_SYMBOL_GPL(md_new_event); 385 386 /* 387 * Enables to iterate over all existing md arrays 388 * all_mddevs_lock protects this list. 389 */ 390 static LIST_HEAD(all_mddevs); 391 static DEFINE_SPINLOCK(all_mddevs_lock); 392 393 /* 394 * iterates through all used mddevs in the system. 395 * We take care to grab the all_mddevs_lock whenever navigating 396 * the list, and to always hold a refcount when unlocked. 397 * Any code which breaks out of this loop while own 398 * a reference to the current mddev and must mddev_put it. 399 */ 400 #define for_each_mddev(_mddev,_tmp) \ 401 \ 402 for (({ spin_lock(&all_mddevs_lock); \ 403 _tmp = all_mddevs.next; \ 404 _mddev = NULL;}); \ 405 ({ if (_tmp != &all_mddevs) \ 406 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 407 spin_unlock(&all_mddevs_lock); \ 408 if (_mddev) mddev_put(_mddev); \ 409 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 410 _tmp != &all_mddevs;}); \ 411 ({ spin_lock(&all_mddevs_lock); \ 412 _tmp = _tmp->next;}) \ 413 ) 414 415 /* Rather than calling directly into the personality make_request function, 416 * IO requests come here first so that we can check if the device is 417 * being suspended pending a reconfiguration. 418 * We hold a refcount over the call to ->make_request. By the time that 419 * call has finished, the bio has been linked into some internal structure 420 * and so is visible to ->quiesce(), so we don't need the refcount any more. 421 */ 422 static bool is_suspended(struct mddev *mddev, struct bio *bio) 423 { 424 if (mddev->suspended) 425 return true; 426 if (bio_data_dir(bio) != WRITE) 427 return false; 428 if (mddev->suspend_lo >= mddev->suspend_hi) 429 return false; 430 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 431 return false; 432 if (bio_end_sector(bio) < mddev->suspend_lo) 433 return false; 434 return true; 435 } 436 437 void md_handle_request(struct mddev *mddev, struct bio *bio) 438 { 439 check_suspended: 440 rcu_read_lock(); 441 if (is_suspended(mddev, bio)) { 442 DEFINE_WAIT(__wait); 443 for (;;) { 444 prepare_to_wait(&mddev->sb_wait, &__wait, 445 TASK_UNINTERRUPTIBLE); 446 if (!is_suspended(mddev, bio)) 447 break; 448 rcu_read_unlock(); 449 schedule(); 450 rcu_read_lock(); 451 } 452 finish_wait(&mddev->sb_wait, &__wait); 453 } 454 atomic_inc(&mddev->active_io); 455 rcu_read_unlock(); 456 457 if (!mddev->pers->make_request(mddev, bio)) { 458 atomic_dec(&mddev->active_io); 459 wake_up(&mddev->sb_wait); 460 goto check_suspended; 461 } 462 463 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 464 wake_up(&mddev->sb_wait); 465 } 466 EXPORT_SYMBOL(md_handle_request); 467 468 struct md_io { 469 struct mddev *mddev; 470 bio_end_io_t *orig_bi_end_io; 471 void *orig_bi_private; 472 unsigned long start_time; 473 }; 474 475 static void md_end_io(struct bio *bio) 476 { 477 struct md_io *md_io = bio->bi_private; 478 struct mddev *mddev = md_io->mddev; 479 480 disk_end_io_acct(mddev->gendisk, bio_op(bio), md_io->start_time); 481 482 bio->bi_end_io = md_io->orig_bi_end_io; 483 bio->bi_private = md_io->orig_bi_private; 484 485 mempool_free(md_io, &mddev->md_io_pool); 486 487 if (bio->bi_end_io) 488 bio->bi_end_io(bio); 489 } 490 491 static blk_qc_t md_submit_bio(struct bio *bio) 492 { 493 const int rw = bio_data_dir(bio); 494 struct mddev *mddev = bio->bi_disk->private_data; 495 496 if (mddev == NULL || mddev->pers == NULL) { 497 bio_io_error(bio); 498 return BLK_QC_T_NONE; 499 } 500 501 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 502 bio_io_error(bio); 503 return BLK_QC_T_NONE; 504 } 505 506 blk_queue_split(&bio); 507 508 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 509 if (bio_sectors(bio) != 0) 510 bio->bi_status = BLK_STS_IOERR; 511 bio_endio(bio); 512 return BLK_QC_T_NONE; 513 } 514 515 if (bio->bi_end_io != md_end_io) { 516 struct md_io *md_io; 517 518 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 519 md_io->mddev = mddev; 520 md_io->orig_bi_end_io = bio->bi_end_io; 521 md_io->orig_bi_private = bio->bi_private; 522 523 bio->bi_end_io = md_end_io; 524 bio->bi_private = md_io; 525 526 md_io->start_time = disk_start_io_acct(mddev->gendisk, 527 bio_sectors(bio), 528 bio_op(bio)); 529 } 530 531 /* bio could be mergeable after passing to underlayer */ 532 bio->bi_opf &= ~REQ_NOMERGE; 533 534 md_handle_request(mddev, bio); 535 536 return BLK_QC_T_NONE; 537 } 538 539 /* mddev_suspend makes sure no new requests are submitted 540 * to the device, and that any requests that have been submitted 541 * are completely handled. 542 * Once mddev_detach() is called and completes, the module will be 543 * completely unused. 544 */ 545 void mddev_suspend(struct mddev *mddev) 546 { 547 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 548 lockdep_assert_held(&mddev->reconfig_mutex); 549 if (mddev->suspended++) 550 return; 551 synchronize_rcu(); 552 wake_up(&mddev->sb_wait); 553 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 554 smp_mb__after_atomic(); 555 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 556 mddev->pers->quiesce(mddev, 1); 557 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 558 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 559 560 del_timer_sync(&mddev->safemode_timer); 561 /* restrict memory reclaim I/O during raid array is suspend */ 562 mddev->noio_flag = memalloc_noio_save(); 563 } 564 EXPORT_SYMBOL_GPL(mddev_suspend); 565 566 void mddev_resume(struct mddev *mddev) 567 { 568 /* entred the memalloc scope from mddev_suspend() */ 569 memalloc_noio_restore(mddev->noio_flag); 570 lockdep_assert_held(&mddev->reconfig_mutex); 571 if (--mddev->suspended) 572 return; 573 wake_up(&mddev->sb_wait); 574 mddev->pers->quiesce(mddev, 0); 575 576 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 577 md_wakeup_thread(mddev->thread); 578 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 579 } 580 EXPORT_SYMBOL_GPL(mddev_resume); 581 582 /* 583 * Generic flush handling for md 584 */ 585 586 static void md_end_flush(struct bio *bio) 587 { 588 struct md_rdev *rdev = bio->bi_private; 589 struct mddev *mddev = rdev->mddev; 590 591 rdev_dec_pending(rdev, mddev); 592 593 if (atomic_dec_and_test(&mddev->flush_pending)) { 594 /* The pre-request flush has finished */ 595 queue_work(md_wq, &mddev->flush_work); 596 } 597 bio_put(bio); 598 } 599 600 static void md_submit_flush_data(struct work_struct *ws); 601 602 static void submit_flushes(struct work_struct *ws) 603 { 604 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 605 struct md_rdev *rdev; 606 607 mddev->start_flush = ktime_get_boottime(); 608 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 609 atomic_set(&mddev->flush_pending, 1); 610 rcu_read_lock(); 611 rdev_for_each_rcu(rdev, mddev) 612 if (rdev->raid_disk >= 0 && 613 !test_bit(Faulty, &rdev->flags)) { 614 /* Take two references, one is dropped 615 * when request finishes, one after 616 * we reclaim rcu_read_lock 617 */ 618 struct bio *bi; 619 atomic_inc(&rdev->nr_pending); 620 atomic_inc(&rdev->nr_pending); 621 rcu_read_unlock(); 622 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 623 bi->bi_end_io = md_end_flush; 624 bi->bi_private = rdev; 625 bio_set_dev(bi, rdev->bdev); 626 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 627 atomic_inc(&mddev->flush_pending); 628 submit_bio(bi); 629 rcu_read_lock(); 630 rdev_dec_pending(rdev, mddev); 631 } 632 rcu_read_unlock(); 633 if (atomic_dec_and_test(&mddev->flush_pending)) 634 queue_work(md_wq, &mddev->flush_work); 635 } 636 637 static void md_submit_flush_data(struct work_struct *ws) 638 { 639 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 640 struct bio *bio = mddev->flush_bio; 641 642 /* 643 * must reset flush_bio before calling into md_handle_request to avoid a 644 * deadlock, because other bios passed md_handle_request suspend check 645 * could wait for this and below md_handle_request could wait for those 646 * bios because of suspend check 647 */ 648 mddev->last_flush = mddev->start_flush; 649 mddev->flush_bio = NULL; 650 wake_up(&mddev->sb_wait); 651 652 if (bio->bi_iter.bi_size == 0) { 653 /* an empty barrier - all done */ 654 bio_endio(bio); 655 } else { 656 bio->bi_opf &= ~REQ_PREFLUSH; 657 md_handle_request(mddev, bio); 658 } 659 } 660 661 /* 662 * Manages consolidation of flushes and submitting any flushes needed for 663 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 664 * being finished in another context. Returns false if the flushing is 665 * complete but still needs the I/O portion of the bio to be processed. 666 */ 667 bool md_flush_request(struct mddev *mddev, struct bio *bio) 668 { 669 ktime_t start = ktime_get_boottime(); 670 spin_lock_irq(&mddev->lock); 671 wait_event_lock_irq(mddev->sb_wait, 672 !mddev->flush_bio || 673 ktime_after(mddev->last_flush, start), 674 mddev->lock); 675 if (!ktime_after(mddev->last_flush, start)) { 676 WARN_ON(mddev->flush_bio); 677 mddev->flush_bio = bio; 678 bio = NULL; 679 } 680 spin_unlock_irq(&mddev->lock); 681 682 if (!bio) { 683 INIT_WORK(&mddev->flush_work, submit_flushes); 684 queue_work(md_wq, &mddev->flush_work); 685 } else { 686 /* flush was performed for some other bio while we waited. */ 687 if (bio->bi_iter.bi_size == 0) 688 /* an empty barrier - all done */ 689 bio_endio(bio); 690 else { 691 bio->bi_opf &= ~REQ_PREFLUSH; 692 return false; 693 } 694 } 695 return true; 696 } 697 EXPORT_SYMBOL(md_flush_request); 698 699 static inline struct mddev *mddev_get(struct mddev *mddev) 700 { 701 atomic_inc(&mddev->active); 702 return mddev; 703 } 704 705 static void mddev_delayed_delete(struct work_struct *ws); 706 707 static void mddev_put(struct mddev *mddev) 708 { 709 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 710 return; 711 if (!mddev->raid_disks && list_empty(&mddev->disks) && 712 mddev->ctime == 0 && !mddev->hold_active) { 713 /* Array is not configured at all, and not held active, 714 * so destroy it */ 715 list_del_init(&mddev->all_mddevs); 716 717 /* 718 * Call queue_work inside the spinlock so that 719 * flush_workqueue() after mddev_find will succeed in waiting 720 * for the work to be done. 721 */ 722 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 723 queue_work(md_misc_wq, &mddev->del_work); 724 } 725 spin_unlock(&all_mddevs_lock); 726 } 727 728 static void md_safemode_timeout(struct timer_list *t); 729 730 void mddev_init(struct mddev *mddev) 731 { 732 kobject_init(&mddev->kobj, &md_ktype); 733 mutex_init(&mddev->open_mutex); 734 mutex_init(&mddev->reconfig_mutex); 735 mutex_init(&mddev->bitmap_info.mutex); 736 INIT_LIST_HEAD(&mddev->disks); 737 INIT_LIST_HEAD(&mddev->all_mddevs); 738 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 739 atomic_set(&mddev->active, 1); 740 atomic_set(&mddev->openers, 0); 741 atomic_set(&mddev->active_io, 0); 742 spin_lock_init(&mddev->lock); 743 atomic_set(&mddev->flush_pending, 0); 744 init_waitqueue_head(&mddev->sb_wait); 745 init_waitqueue_head(&mddev->recovery_wait); 746 mddev->reshape_position = MaxSector; 747 mddev->reshape_backwards = 0; 748 mddev->last_sync_action = "none"; 749 mddev->resync_min = 0; 750 mddev->resync_max = MaxSector; 751 mddev->level = LEVEL_NONE; 752 } 753 EXPORT_SYMBOL_GPL(mddev_init); 754 755 static struct mddev *mddev_find(dev_t unit) 756 { 757 struct mddev *mddev, *new = NULL; 758 759 if (unit && MAJOR(unit) != MD_MAJOR) 760 unit &= ~((1<<MdpMinorShift)-1); 761 762 retry: 763 spin_lock(&all_mddevs_lock); 764 765 if (unit) { 766 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 767 if (mddev->unit == unit) { 768 mddev_get(mddev); 769 spin_unlock(&all_mddevs_lock); 770 kfree(new); 771 return mddev; 772 } 773 774 if (new) { 775 list_add(&new->all_mddevs, &all_mddevs); 776 spin_unlock(&all_mddevs_lock); 777 new->hold_active = UNTIL_IOCTL; 778 return new; 779 } 780 } else if (new) { 781 /* find an unused unit number */ 782 static int next_minor = 512; 783 int start = next_minor; 784 int is_free = 0; 785 int dev = 0; 786 while (!is_free) { 787 dev = MKDEV(MD_MAJOR, next_minor); 788 next_minor++; 789 if (next_minor > MINORMASK) 790 next_minor = 0; 791 if (next_minor == start) { 792 /* Oh dear, all in use. */ 793 spin_unlock(&all_mddevs_lock); 794 kfree(new); 795 return NULL; 796 } 797 798 is_free = 1; 799 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 800 if (mddev->unit == dev) { 801 is_free = 0; 802 break; 803 } 804 } 805 new->unit = dev; 806 new->md_minor = MINOR(dev); 807 new->hold_active = UNTIL_STOP; 808 list_add(&new->all_mddevs, &all_mddevs); 809 spin_unlock(&all_mddevs_lock); 810 return new; 811 } 812 spin_unlock(&all_mddevs_lock); 813 814 new = kzalloc(sizeof(*new), GFP_KERNEL); 815 if (!new) 816 return NULL; 817 818 new->unit = unit; 819 if (MAJOR(unit) == MD_MAJOR) 820 new->md_minor = MINOR(unit); 821 else 822 new->md_minor = MINOR(unit) >> MdpMinorShift; 823 824 mddev_init(new); 825 826 goto retry; 827 } 828 829 static struct attribute_group md_redundancy_group; 830 831 void mddev_unlock(struct mddev *mddev) 832 { 833 if (mddev->to_remove) { 834 /* These cannot be removed under reconfig_mutex as 835 * an access to the files will try to take reconfig_mutex 836 * while holding the file unremovable, which leads to 837 * a deadlock. 838 * So hold set sysfs_active while the remove in happeing, 839 * and anything else which might set ->to_remove or my 840 * otherwise change the sysfs namespace will fail with 841 * -EBUSY if sysfs_active is still set. 842 * We set sysfs_active under reconfig_mutex and elsewhere 843 * test it under the same mutex to ensure its correct value 844 * is seen. 845 */ 846 struct attribute_group *to_remove = mddev->to_remove; 847 mddev->to_remove = NULL; 848 mddev->sysfs_active = 1; 849 mutex_unlock(&mddev->reconfig_mutex); 850 851 if (mddev->kobj.sd) { 852 if (to_remove != &md_redundancy_group) 853 sysfs_remove_group(&mddev->kobj, to_remove); 854 if (mddev->pers == NULL || 855 mddev->pers->sync_request == NULL) { 856 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 857 if (mddev->sysfs_action) 858 sysfs_put(mddev->sysfs_action); 859 mddev->sysfs_action = NULL; 860 } 861 } 862 mddev->sysfs_active = 0; 863 } else 864 mutex_unlock(&mddev->reconfig_mutex); 865 866 /* As we've dropped the mutex we need a spinlock to 867 * make sure the thread doesn't disappear 868 */ 869 spin_lock(&pers_lock); 870 md_wakeup_thread(mddev->thread); 871 wake_up(&mddev->sb_wait); 872 spin_unlock(&pers_lock); 873 } 874 EXPORT_SYMBOL_GPL(mddev_unlock); 875 876 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 877 { 878 struct md_rdev *rdev; 879 880 rdev_for_each_rcu(rdev, mddev) 881 if (rdev->desc_nr == nr) 882 return rdev; 883 884 return NULL; 885 } 886 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 887 888 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 889 { 890 struct md_rdev *rdev; 891 892 rdev_for_each(rdev, mddev) 893 if (rdev->bdev->bd_dev == dev) 894 return rdev; 895 896 return NULL; 897 } 898 899 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 900 { 901 struct md_rdev *rdev; 902 903 rdev_for_each_rcu(rdev, mddev) 904 if (rdev->bdev->bd_dev == dev) 905 return rdev; 906 907 return NULL; 908 } 909 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 910 911 static struct md_personality *find_pers(int level, char *clevel) 912 { 913 struct md_personality *pers; 914 list_for_each_entry(pers, &pers_list, list) { 915 if (level != LEVEL_NONE && pers->level == level) 916 return pers; 917 if (strcmp(pers->name, clevel)==0) 918 return pers; 919 } 920 return NULL; 921 } 922 923 /* return the offset of the super block in 512byte sectors */ 924 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 925 { 926 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 927 return MD_NEW_SIZE_SECTORS(num_sectors); 928 } 929 930 static int alloc_disk_sb(struct md_rdev *rdev) 931 { 932 rdev->sb_page = alloc_page(GFP_KERNEL); 933 if (!rdev->sb_page) 934 return -ENOMEM; 935 return 0; 936 } 937 938 void md_rdev_clear(struct md_rdev *rdev) 939 { 940 if (rdev->sb_page) { 941 put_page(rdev->sb_page); 942 rdev->sb_loaded = 0; 943 rdev->sb_page = NULL; 944 rdev->sb_start = 0; 945 rdev->sectors = 0; 946 } 947 if (rdev->bb_page) { 948 put_page(rdev->bb_page); 949 rdev->bb_page = NULL; 950 } 951 badblocks_exit(&rdev->badblocks); 952 } 953 EXPORT_SYMBOL_GPL(md_rdev_clear); 954 955 static void super_written(struct bio *bio) 956 { 957 struct md_rdev *rdev = bio->bi_private; 958 struct mddev *mddev = rdev->mddev; 959 960 if (bio->bi_status) { 961 pr_err("md: %s gets error=%d\n", __func__, 962 blk_status_to_errno(bio->bi_status)); 963 md_error(mddev, rdev); 964 if (!test_bit(Faulty, &rdev->flags) 965 && (bio->bi_opf & MD_FAILFAST)) { 966 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 967 set_bit(LastDev, &rdev->flags); 968 } 969 } else 970 clear_bit(LastDev, &rdev->flags); 971 972 if (atomic_dec_and_test(&mddev->pending_writes)) 973 wake_up(&mddev->sb_wait); 974 rdev_dec_pending(rdev, mddev); 975 bio_put(bio); 976 } 977 978 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 979 sector_t sector, int size, struct page *page) 980 { 981 /* write first size bytes of page to sector of rdev 982 * Increment mddev->pending_writes before returning 983 * and decrement it on completion, waking up sb_wait 984 * if zero is reached. 985 * If an error occurred, call md_error 986 */ 987 struct bio *bio; 988 int ff = 0; 989 990 if (!page) 991 return; 992 993 if (test_bit(Faulty, &rdev->flags)) 994 return; 995 996 bio = md_bio_alloc_sync(mddev); 997 998 atomic_inc(&rdev->nr_pending); 999 1000 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 1001 bio->bi_iter.bi_sector = sector; 1002 bio_add_page(bio, page, size, 0); 1003 bio->bi_private = rdev; 1004 bio->bi_end_io = super_written; 1005 1006 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1007 test_bit(FailFast, &rdev->flags) && 1008 !test_bit(LastDev, &rdev->flags)) 1009 ff = MD_FAILFAST; 1010 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1011 1012 atomic_inc(&mddev->pending_writes); 1013 submit_bio(bio); 1014 } 1015 1016 int md_super_wait(struct mddev *mddev) 1017 { 1018 /* wait for all superblock writes that were scheduled to complete */ 1019 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1020 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1021 return -EAGAIN; 1022 return 0; 1023 } 1024 1025 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1026 struct page *page, int op, int op_flags, bool metadata_op) 1027 { 1028 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1029 int ret; 1030 1031 if (metadata_op && rdev->meta_bdev) 1032 bio_set_dev(bio, rdev->meta_bdev); 1033 else 1034 bio_set_dev(bio, rdev->bdev); 1035 bio_set_op_attrs(bio, op, op_flags); 1036 if (metadata_op) 1037 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1038 else if (rdev->mddev->reshape_position != MaxSector && 1039 (rdev->mddev->reshape_backwards == 1040 (sector >= rdev->mddev->reshape_position))) 1041 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1042 else 1043 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1044 bio_add_page(bio, page, size, 0); 1045 1046 submit_bio_wait(bio); 1047 1048 ret = !bio->bi_status; 1049 bio_put(bio); 1050 return ret; 1051 } 1052 EXPORT_SYMBOL_GPL(sync_page_io); 1053 1054 static int read_disk_sb(struct md_rdev *rdev, int size) 1055 { 1056 char b[BDEVNAME_SIZE]; 1057 1058 if (rdev->sb_loaded) 1059 return 0; 1060 1061 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1062 goto fail; 1063 rdev->sb_loaded = 1; 1064 return 0; 1065 1066 fail: 1067 pr_err("md: disabled device %s, could not read superblock.\n", 1068 bdevname(rdev->bdev,b)); 1069 return -EINVAL; 1070 } 1071 1072 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1073 { 1074 return sb1->set_uuid0 == sb2->set_uuid0 && 1075 sb1->set_uuid1 == sb2->set_uuid1 && 1076 sb1->set_uuid2 == sb2->set_uuid2 && 1077 sb1->set_uuid3 == sb2->set_uuid3; 1078 } 1079 1080 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1081 { 1082 int ret; 1083 mdp_super_t *tmp1, *tmp2; 1084 1085 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1086 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1087 1088 if (!tmp1 || !tmp2) { 1089 ret = 0; 1090 goto abort; 1091 } 1092 1093 *tmp1 = *sb1; 1094 *tmp2 = *sb2; 1095 1096 /* 1097 * nr_disks is not constant 1098 */ 1099 tmp1->nr_disks = 0; 1100 tmp2->nr_disks = 0; 1101 1102 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1103 abort: 1104 kfree(tmp1); 1105 kfree(tmp2); 1106 return ret; 1107 } 1108 1109 static u32 md_csum_fold(u32 csum) 1110 { 1111 csum = (csum & 0xffff) + (csum >> 16); 1112 return (csum & 0xffff) + (csum >> 16); 1113 } 1114 1115 static unsigned int calc_sb_csum(mdp_super_t *sb) 1116 { 1117 u64 newcsum = 0; 1118 u32 *sb32 = (u32*)sb; 1119 int i; 1120 unsigned int disk_csum, csum; 1121 1122 disk_csum = sb->sb_csum; 1123 sb->sb_csum = 0; 1124 1125 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1126 newcsum += sb32[i]; 1127 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1128 1129 #ifdef CONFIG_ALPHA 1130 /* This used to use csum_partial, which was wrong for several 1131 * reasons including that different results are returned on 1132 * different architectures. It isn't critical that we get exactly 1133 * the same return value as before (we always csum_fold before 1134 * testing, and that removes any differences). However as we 1135 * know that csum_partial always returned a 16bit value on 1136 * alphas, do a fold to maximise conformity to previous behaviour. 1137 */ 1138 sb->sb_csum = md_csum_fold(disk_csum); 1139 #else 1140 sb->sb_csum = disk_csum; 1141 #endif 1142 return csum; 1143 } 1144 1145 /* 1146 * Handle superblock details. 1147 * We want to be able to handle multiple superblock formats 1148 * so we have a common interface to them all, and an array of 1149 * different handlers. 1150 * We rely on user-space to write the initial superblock, and support 1151 * reading and updating of superblocks. 1152 * Interface methods are: 1153 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1154 * loads and validates a superblock on dev. 1155 * if refdev != NULL, compare superblocks on both devices 1156 * Return: 1157 * 0 - dev has a superblock that is compatible with refdev 1158 * 1 - dev has a superblock that is compatible and newer than refdev 1159 * so dev should be used as the refdev in future 1160 * -EINVAL superblock incompatible or invalid 1161 * -othererror e.g. -EIO 1162 * 1163 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1164 * Verify that dev is acceptable into mddev. 1165 * The first time, mddev->raid_disks will be 0, and data from 1166 * dev should be merged in. Subsequent calls check that dev 1167 * is new enough. Return 0 or -EINVAL 1168 * 1169 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1170 * Update the superblock for rdev with data in mddev 1171 * This does not write to disc. 1172 * 1173 */ 1174 1175 struct super_type { 1176 char *name; 1177 struct module *owner; 1178 int (*load_super)(struct md_rdev *rdev, 1179 struct md_rdev *refdev, 1180 int minor_version); 1181 int (*validate_super)(struct mddev *mddev, 1182 struct md_rdev *rdev); 1183 void (*sync_super)(struct mddev *mddev, 1184 struct md_rdev *rdev); 1185 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1186 sector_t num_sectors); 1187 int (*allow_new_offset)(struct md_rdev *rdev, 1188 unsigned long long new_offset); 1189 }; 1190 1191 /* 1192 * Check that the given mddev has no bitmap. 1193 * 1194 * This function is called from the run method of all personalities that do not 1195 * support bitmaps. It prints an error message and returns non-zero if mddev 1196 * has a bitmap. Otherwise, it returns 0. 1197 * 1198 */ 1199 int md_check_no_bitmap(struct mddev *mddev) 1200 { 1201 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1202 return 0; 1203 pr_warn("%s: bitmaps are not supported for %s\n", 1204 mdname(mddev), mddev->pers->name); 1205 return 1; 1206 } 1207 EXPORT_SYMBOL(md_check_no_bitmap); 1208 1209 /* 1210 * load_super for 0.90.0 1211 */ 1212 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1213 { 1214 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1215 mdp_super_t *sb; 1216 int ret; 1217 bool spare_disk = true; 1218 1219 /* 1220 * Calculate the position of the superblock (512byte sectors), 1221 * it's at the end of the disk. 1222 * 1223 * It also happens to be a multiple of 4Kb. 1224 */ 1225 rdev->sb_start = calc_dev_sboffset(rdev); 1226 1227 ret = read_disk_sb(rdev, MD_SB_BYTES); 1228 if (ret) 1229 return ret; 1230 1231 ret = -EINVAL; 1232 1233 bdevname(rdev->bdev, b); 1234 sb = page_address(rdev->sb_page); 1235 1236 if (sb->md_magic != MD_SB_MAGIC) { 1237 pr_warn("md: invalid raid superblock magic on %s\n", b); 1238 goto abort; 1239 } 1240 1241 if (sb->major_version != 0 || 1242 sb->minor_version < 90 || 1243 sb->minor_version > 91) { 1244 pr_warn("Bad version number %d.%d on %s\n", 1245 sb->major_version, sb->minor_version, b); 1246 goto abort; 1247 } 1248 1249 if (sb->raid_disks <= 0) 1250 goto abort; 1251 1252 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1253 pr_warn("md: invalid superblock checksum on %s\n", b); 1254 goto abort; 1255 } 1256 1257 rdev->preferred_minor = sb->md_minor; 1258 rdev->data_offset = 0; 1259 rdev->new_data_offset = 0; 1260 rdev->sb_size = MD_SB_BYTES; 1261 rdev->badblocks.shift = -1; 1262 1263 if (sb->level == LEVEL_MULTIPATH) 1264 rdev->desc_nr = -1; 1265 else 1266 rdev->desc_nr = sb->this_disk.number; 1267 1268 /* not spare disk, or LEVEL_MULTIPATH */ 1269 if (sb->level == LEVEL_MULTIPATH || 1270 (rdev->desc_nr >= 0 && 1271 rdev->desc_nr < MD_SB_DISKS && 1272 sb->disks[rdev->desc_nr].state & 1273 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1274 spare_disk = false; 1275 1276 if (!refdev) { 1277 if (!spare_disk) 1278 ret = 1; 1279 else 1280 ret = 0; 1281 } else { 1282 __u64 ev1, ev2; 1283 mdp_super_t *refsb = page_address(refdev->sb_page); 1284 if (!md_uuid_equal(refsb, sb)) { 1285 pr_warn("md: %s has different UUID to %s\n", 1286 b, bdevname(refdev->bdev,b2)); 1287 goto abort; 1288 } 1289 if (!md_sb_equal(refsb, sb)) { 1290 pr_warn("md: %s has same UUID but different superblock to %s\n", 1291 b, bdevname(refdev->bdev, b2)); 1292 goto abort; 1293 } 1294 ev1 = md_event(sb); 1295 ev2 = md_event(refsb); 1296 1297 if (!spare_disk && ev1 > ev2) 1298 ret = 1; 1299 else 1300 ret = 0; 1301 } 1302 rdev->sectors = rdev->sb_start; 1303 /* Limit to 4TB as metadata cannot record more than that. 1304 * (not needed for Linear and RAID0 as metadata doesn't 1305 * record this size) 1306 */ 1307 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1308 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1309 1310 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1311 /* "this cannot possibly happen" ... */ 1312 ret = -EINVAL; 1313 1314 abort: 1315 return ret; 1316 } 1317 1318 /* 1319 * validate_super for 0.90.0 1320 */ 1321 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1322 { 1323 mdp_disk_t *desc; 1324 mdp_super_t *sb = page_address(rdev->sb_page); 1325 __u64 ev1 = md_event(sb); 1326 1327 rdev->raid_disk = -1; 1328 clear_bit(Faulty, &rdev->flags); 1329 clear_bit(In_sync, &rdev->flags); 1330 clear_bit(Bitmap_sync, &rdev->flags); 1331 clear_bit(WriteMostly, &rdev->flags); 1332 1333 if (mddev->raid_disks == 0) { 1334 mddev->major_version = 0; 1335 mddev->minor_version = sb->minor_version; 1336 mddev->patch_version = sb->patch_version; 1337 mddev->external = 0; 1338 mddev->chunk_sectors = sb->chunk_size >> 9; 1339 mddev->ctime = sb->ctime; 1340 mddev->utime = sb->utime; 1341 mddev->level = sb->level; 1342 mddev->clevel[0] = 0; 1343 mddev->layout = sb->layout; 1344 mddev->raid_disks = sb->raid_disks; 1345 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1346 mddev->events = ev1; 1347 mddev->bitmap_info.offset = 0; 1348 mddev->bitmap_info.space = 0; 1349 /* bitmap can use 60 K after the 4K superblocks */ 1350 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1351 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1352 mddev->reshape_backwards = 0; 1353 1354 if (mddev->minor_version >= 91) { 1355 mddev->reshape_position = sb->reshape_position; 1356 mddev->delta_disks = sb->delta_disks; 1357 mddev->new_level = sb->new_level; 1358 mddev->new_layout = sb->new_layout; 1359 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1360 if (mddev->delta_disks < 0) 1361 mddev->reshape_backwards = 1; 1362 } else { 1363 mddev->reshape_position = MaxSector; 1364 mddev->delta_disks = 0; 1365 mddev->new_level = mddev->level; 1366 mddev->new_layout = mddev->layout; 1367 mddev->new_chunk_sectors = mddev->chunk_sectors; 1368 } 1369 if (mddev->level == 0) 1370 mddev->layout = -1; 1371 1372 if (sb->state & (1<<MD_SB_CLEAN)) 1373 mddev->recovery_cp = MaxSector; 1374 else { 1375 if (sb->events_hi == sb->cp_events_hi && 1376 sb->events_lo == sb->cp_events_lo) { 1377 mddev->recovery_cp = sb->recovery_cp; 1378 } else 1379 mddev->recovery_cp = 0; 1380 } 1381 1382 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1383 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1384 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1385 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1386 1387 mddev->max_disks = MD_SB_DISKS; 1388 1389 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1390 mddev->bitmap_info.file == NULL) { 1391 mddev->bitmap_info.offset = 1392 mddev->bitmap_info.default_offset; 1393 mddev->bitmap_info.space = 1394 mddev->bitmap_info.default_space; 1395 } 1396 1397 } else if (mddev->pers == NULL) { 1398 /* Insist on good event counter while assembling, except 1399 * for spares (which don't need an event count) */ 1400 ++ev1; 1401 if (sb->disks[rdev->desc_nr].state & ( 1402 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1403 if (ev1 < mddev->events) 1404 return -EINVAL; 1405 } else if (mddev->bitmap) { 1406 /* if adding to array with a bitmap, then we can accept an 1407 * older device ... but not too old. 1408 */ 1409 if (ev1 < mddev->bitmap->events_cleared) 1410 return 0; 1411 if (ev1 < mddev->events) 1412 set_bit(Bitmap_sync, &rdev->flags); 1413 } else { 1414 if (ev1 < mddev->events) 1415 /* just a hot-add of a new device, leave raid_disk at -1 */ 1416 return 0; 1417 } 1418 1419 if (mddev->level != LEVEL_MULTIPATH) { 1420 desc = sb->disks + rdev->desc_nr; 1421 1422 if (desc->state & (1<<MD_DISK_FAULTY)) 1423 set_bit(Faulty, &rdev->flags); 1424 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1425 desc->raid_disk < mddev->raid_disks */) { 1426 set_bit(In_sync, &rdev->flags); 1427 rdev->raid_disk = desc->raid_disk; 1428 rdev->saved_raid_disk = desc->raid_disk; 1429 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1430 /* active but not in sync implies recovery up to 1431 * reshape position. We don't know exactly where 1432 * that is, so set to zero for now */ 1433 if (mddev->minor_version >= 91) { 1434 rdev->recovery_offset = 0; 1435 rdev->raid_disk = desc->raid_disk; 1436 } 1437 } 1438 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1439 set_bit(WriteMostly, &rdev->flags); 1440 if (desc->state & (1<<MD_DISK_FAILFAST)) 1441 set_bit(FailFast, &rdev->flags); 1442 } else /* MULTIPATH are always insync */ 1443 set_bit(In_sync, &rdev->flags); 1444 return 0; 1445 } 1446 1447 /* 1448 * sync_super for 0.90.0 1449 */ 1450 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1451 { 1452 mdp_super_t *sb; 1453 struct md_rdev *rdev2; 1454 int next_spare = mddev->raid_disks; 1455 1456 /* make rdev->sb match mddev data.. 1457 * 1458 * 1/ zero out disks 1459 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1460 * 3/ any empty disks < next_spare become removed 1461 * 1462 * disks[0] gets initialised to REMOVED because 1463 * we cannot be sure from other fields if it has 1464 * been initialised or not. 1465 */ 1466 int i; 1467 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1468 1469 rdev->sb_size = MD_SB_BYTES; 1470 1471 sb = page_address(rdev->sb_page); 1472 1473 memset(sb, 0, sizeof(*sb)); 1474 1475 sb->md_magic = MD_SB_MAGIC; 1476 sb->major_version = mddev->major_version; 1477 sb->patch_version = mddev->patch_version; 1478 sb->gvalid_words = 0; /* ignored */ 1479 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1480 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1481 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1482 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1483 1484 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1485 sb->level = mddev->level; 1486 sb->size = mddev->dev_sectors / 2; 1487 sb->raid_disks = mddev->raid_disks; 1488 sb->md_minor = mddev->md_minor; 1489 sb->not_persistent = 0; 1490 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1491 sb->state = 0; 1492 sb->events_hi = (mddev->events>>32); 1493 sb->events_lo = (u32)mddev->events; 1494 1495 if (mddev->reshape_position == MaxSector) 1496 sb->minor_version = 90; 1497 else { 1498 sb->minor_version = 91; 1499 sb->reshape_position = mddev->reshape_position; 1500 sb->new_level = mddev->new_level; 1501 sb->delta_disks = mddev->delta_disks; 1502 sb->new_layout = mddev->new_layout; 1503 sb->new_chunk = mddev->new_chunk_sectors << 9; 1504 } 1505 mddev->minor_version = sb->minor_version; 1506 if (mddev->in_sync) 1507 { 1508 sb->recovery_cp = mddev->recovery_cp; 1509 sb->cp_events_hi = (mddev->events>>32); 1510 sb->cp_events_lo = (u32)mddev->events; 1511 if (mddev->recovery_cp == MaxSector) 1512 sb->state = (1<< MD_SB_CLEAN); 1513 } else 1514 sb->recovery_cp = 0; 1515 1516 sb->layout = mddev->layout; 1517 sb->chunk_size = mddev->chunk_sectors << 9; 1518 1519 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1520 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1521 1522 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1523 rdev_for_each(rdev2, mddev) { 1524 mdp_disk_t *d; 1525 int desc_nr; 1526 int is_active = test_bit(In_sync, &rdev2->flags); 1527 1528 if (rdev2->raid_disk >= 0 && 1529 sb->minor_version >= 91) 1530 /* we have nowhere to store the recovery_offset, 1531 * but if it is not below the reshape_position, 1532 * we can piggy-back on that. 1533 */ 1534 is_active = 1; 1535 if (rdev2->raid_disk < 0 || 1536 test_bit(Faulty, &rdev2->flags)) 1537 is_active = 0; 1538 if (is_active) 1539 desc_nr = rdev2->raid_disk; 1540 else 1541 desc_nr = next_spare++; 1542 rdev2->desc_nr = desc_nr; 1543 d = &sb->disks[rdev2->desc_nr]; 1544 nr_disks++; 1545 d->number = rdev2->desc_nr; 1546 d->major = MAJOR(rdev2->bdev->bd_dev); 1547 d->minor = MINOR(rdev2->bdev->bd_dev); 1548 if (is_active) 1549 d->raid_disk = rdev2->raid_disk; 1550 else 1551 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1552 if (test_bit(Faulty, &rdev2->flags)) 1553 d->state = (1<<MD_DISK_FAULTY); 1554 else if (is_active) { 1555 d->state = (1<<MD_DISK_ACTIVE); 1556 if (test_bit(In_sync, &rdev2->flags)) 1557 d->state |= (1<<MD_DISK_SYNC); 1558 active++; 1559 working++; 1560 } else { 1561 d->state = 0; 1562 spare++; 1563 working++; 1564 } 1565 if (test_bit(WriteMostly, &rdev2->flags)) 1566 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1567 if (test_bit(FailFast, &rdev2->flags)) 1568 d->state |= (1<<MD_DISK_FAILFAST); 1569 } 1570 /* now set the "removed" and "faulty" bits on any missing devices */ 1571 for (i=0 ; i < mddev->raid_disks ; i++) { 1572 mdp_disk_t *d = &sb->disks[i]; 1573 if (d->state == 0 && d->number == 0) { 1574 d->number = i; 1575 d->raid_disk = i; 1576 d->state = (1<<MD_DISK_REMOVED); 1577 d->state |= (1<<MD_DISK_FAULTY); 1578 failed++; 1579 } 1580 } 1581 sb->nr_disks = nr_disks; 1582 sb->active_disks = active; 1583 sb->working_disks = working; 1584 sb->failed_disks = failed; 1585 sb->spare_disks = spare; 1586 1587 sb->this_disk = sb->disks[rdev->desc_nr]; 1588 sb->sb_csum = calc_sb_csum(sb); 1589 } 1590 1591 /* 1592 * rdev_size_change for 0.90.0 1593 */ 1594 static unsigned long long 1595 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1596 { 1597 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1598 return 0; /* component must fit device */ 1599 if (rdev->mddev->bitmap_info.offset) 1600 return 0; /* can't move bitmap */ 1601 rdev->sb_start = calc_dev_sboffset(rdev); 1602 if (!num_sectors || num_sectors > rdev->sb_start) 1603 num_sectors = rdev->sb_start; 1604 /* Limit to 4TB as metadata cannot record more than that. 1605 * 4TB == 2^32 KB, or 2*2^32 sectors. 1606 */ 1607 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1608 num_sectors = (sector_t)(2ULL << 32) - 2; 1609 do { 1610 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1611 rdev->sb_page); 1612 } while (md_super_wait(rdev->mddev) < 0); 1613 return num_sectors; 1614 } 1615 1616 static int 1617 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1618 { 1619 /* non-zero offset changes not possible with v0.90 */ 1620 return new_offset == 0; 1621 } 1622 1623 /* 1624 * version 1 superblock 1625 */ 1626 1627 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1628 { 1629 __le32 disk_csum; 1630 u32 csum; 1631 unsigned long long newcsum; 1632 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1633 __le32 *isuper = (__le32*)sb; 1634 1635 disk_csum = sb->sb_csum; 1636 sb->sb_csum = 0; 1637 newcsum = 0; 1638 for (; size >= 4; size -= 4) 1639 newcsum += le32_to_cpu(*isuper++); 1640 1641 if (size == 2) 1642 newcsum += le16_to_cpu(*(__le16*) isuper); 1643 1644 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1645 sb->sb_csum = disk_csum; 1646 return cpu_to_le32(csum); 1647 } 1648 1649 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1650 { 1651 struct mdp_superblock_1 *sb; 1652 int ret; 1653 sector_t sb_start; 1654 sector_t sectors; 1655 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1656 int bmask; 1657 bool spare_disk = true; 1658 1659 /* 1660 * Calculate the position of the superblock in 512byte sectors. 1661 * It is always aligned to a 4K boundary and 1662 * depeding on minor_version, it can be: 1663 * 0: At least 8K, but less than 12K, from end of device 1664 * 1: At start of device 1665 * 2: 4K from start of device. 1666 */ 1667 switch(minor_version) { 1668 case 0: 1669 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1670 sb_start -= 8*2; 1671 sb_start &= ~(sector_t)(4*2-1); 1672 break; 1673 case 1: 1674 sb_start = 0; 1675 break; 1676 case 2: 1677 sb_start = 8; 1678 break; 1679 default: 1680 return -EINVAL; 1681 } 1682 rdev->sb_start = sb_start; 1683 1684 /* superblock is rarely larger than 1K, but it can be larger, 1685 * and it is safe to read 4k, so we do that 1686 */ 1687 ret = read_disk_sb(rdev, 4096); 1688 if (ret) return ret; 1689 1690 sb = page_address(rdev->sb_page); 1691 1692 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1693 sb->major_version != cpu_to_le32(1) || 1694 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1695 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1696 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1697 return -EINVAL; 1698 1699 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1700 pr_warn("md: invalid superblock checksum on %s\n", 1701 bdevname(rdev->bdev,b)); 1702 return -EINVAL; 1703 } 1704 if (le64_to_cpu(sb->data_size) < 10) { 1705 pr_warn("md: data_size too small on %s\n", 1706 bdevname(rdev->bdev,b)); 1707 return -EINVAL; 1708 } 1709 if (sb->pad0 || 1710 sb->pad3[0] || 1711 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1712 /* Some padding is non-zero, might be a new feature */ 1713 return -EINVAL; 1714 1715 rdev->preferred_minor = 0xffff; 1716 rdev->data_offset = le64_to_cpu(sb->data_offset); 1717 rdev->new_data_offset = rdev->data_offset; 1718 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1719 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1720 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1721 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1722 1723 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1724 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1725 if (rdev->sb_size & bmask) 1726 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1727 1728 if (minor_version 1729 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1730 return -EINVAL; 1731 if (minor_version 1732 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1733 return -EINVAL; 1734 1735 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1736 rdev->desc_nr = -1; 1737 else 1738 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1739 1740 if (!rdev->bb_page) { 1741 rdev->bb_page = alloc_page(GFP_KERNEL); 1742 if (!rdev->bb_page) 1743 return -ENOMEM; 1744 } 1745 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1746 rdev->badblocks.count == 0) { 1747 /* need to load the bad block list. 1748 * Currently we limit it to one page. 1749 */ 1750 s32 offset; 1751 sector_t bb_sector; 1752 __le64 *bbp; 1753 int i; 1754 int sectors = le16_to_cpu(sb->bblog_size); 1755 if (sectors > (PAGE_SIZE / 512)) 1756 return -EINVAL; 1757 offset = le32_to_cpu(sb->bblog_offset); 1758 if (offset == 0) 1759 return -EINVAL; 1760 bb_sector = (long long)offset; 1761 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1762 rdev->bb_page, REQ_OP_READ, 0, true)) 1763 return -EIO; 1764 bbp = (__le64 *)page_address(rdev->bb_page); 1765 rdev->badblocks.shift = sb->bblog_shift; 1766 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1767 u64 bb = le64_to_cpu(*bbp); 1768 int count = bb & (0x3ff); 1769 u64 sector = bb >> 10; 1770 sector <<= sb->bblog_shift; 1771 count <<= sb->bblog_shift; 1772 if (bb + 1 == 0) 1773 break; 1774 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1775 return -EINVAL; 1776 } 1777 } else if (sb->bblog_offset != 0) 1778 rdev->badblocks.shift = 0; 1779 1780 if ((le32_to_cpu(sb->feature_map) & 1781 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1782 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1783 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1784 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1785 } 1786 1787 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1788 sb->level != 0) 1789 return -EINVAL; 1790 1791 /* not spare disk, or LEVEL_MULTIPATH */ 1792 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1793 (rdev->desc_nr >= 0 && 1794 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1795 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1796 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1797 spare_disk = false; 1798 1799 if (!refdev) { 1800 if (!spare_disk) 1801 ret = 1; 1802 else 1803 ret = 0; 1804 } else { 1805 __u64 ev1, ev2; 1806 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1807 1808 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1809 sb->level != refsb->level || 1810 sb->layout != refsb->layout || 1811 sb->chunksize != refsb->chunksize) { 1812 pr_warn("md: %s has strangely different superblock to %s\n", 1813 bdevname(rdev->bdev,b), 1814 bdevname(refdev->bdev,b2)); 1815 return -EINVAL; 1816 } 1817 ev1 = le64_to_cpu(sb->events); 1818 ev2 = le64_to_cpu(refsb->events); 1819 1820 if (!spare_disk && ev1 > ev2) 1821 ret = 1; 1822 else 1823 ret = 0; 1824 } 1825 if (minor_version) { 1826 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1827 sectors -= rdev->data_offset; 1828 } else 1829 sectors = rdev->sb_start; 1830 if (sectors < le64_to_cpu(sb->data_size)) 1831 return -EINVAL; 1832 rdev->sectors = le64_to_cpu(sb->data_size); 1833 return ret; 1834 } 1835 1836 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1837 { 1838 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1839 __u64 ev1 = le64_to_cpu(sb->events); 1840 1841 rdev->raid_disk = -1; 1842 clear_bit(Faulty, &rdev->flags); 1843 clear_bit(In_sync, &rdev->flags); 1844 clear_bit(Bitmap_sync, &rdev->flags); 1845 clear_bit(WriteMostly, &rdev->flags); 1846 1847 if (mddev->raid_disks == 0) { 1848 mddev->major_version = 1; 1849 mddev->patch_version = 0; 1850 mddev->external = 0; 1851 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1852 mddev->ctime = le64_to_cpu(sb->ctime); 1853 mddev->utime = le64_to_cpu(sb->utime); 1854 mddev->level = le32_to_cpu(sb->level); 1855 mddev->clevel[0] = 0; 1856 mddev->layout = le32_to_cpu(sb->layout); 1857 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1858 mddev->dev_sectors = le64_to_cpu(sb->size); 1859 mddev->events = ev1; 1860 mddev->bitmap_info.offset = 0; 1861 mddev->bitmap_info.space = 0; 1862 /* Default location for bitmap is 1K after superblock 1863 * using 3K - total of 4K 1864 */ 1865 mddev->bitmap_info.default_offset = 1024 >> 9; 1866 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1867 mddev->reshape_backwards = 0; 1868 1869 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1870 memcpy(mddev->uuid, sb->set_uuid, 16); 1871 1872 mddev->max_disks = (4096-256)/2; 1873 1874 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1875 mddev->bitmap_info.file == NULL) { 1876 mddev->bitmap_info.offset = 1877 (__s32)le32_to_cpu(sb->bitmap_offset); 1878 /* Metadata doesn't record how much space is available. 1879 * For 1.0, we assume we can use up to the superblock 1880 * if before, else to 4K beyond superblock. 1881 * For others, assume no change is possible. 1882 */ 1883 if (mddev->minor_version > 0) 1884 mddev->bitmap_info.space = 0; 1885 else if (mddev->bitmap_info.offset > 0) 1886 mddev->bitmap_info.space = 1887 8 - mddev->bitmap_info.offset; 1888 else 1889 mddev->bitmap_info.space = 1890 -mddev->bitmap_info.offset; 1891 } 1892 1893 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1894 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1895 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1896 mddev->new_level = le32_to_cpu(sb->new_level); 1897 mddev->new_layout = le32_to_cpu(sb->new_layout); 1898 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1899 if (mddev->delta_disks < 0 || 1900 (mddev->delta_disks == 0 && 1901 (le32_to_cpu(sb->feature_map) 1902 & MD_FEATURE_RESHAPE_BACKWARDS))) 1903 mddev->reshape_backwards = 1; 1904 } else { 1905 mddev->reshape_position = MaxSector; 1906 mddev->delta_disks = 0; 1907 mddev->new_level = mddev->level; 1908 mddev->new_layout = mddev->layout; 1909 mddev->new_chunk_sectors = mddev->chunk_sectors; 1910 } 1911 1912 if (mddev->level == 0 && 1913 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1914 mddev->layout = -1; 1915 1916 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1917 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1918 1919 if (le32_to_cpu(sb->feature_map) & 1920 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1921 if (le32_to_cpu(sb->feature_map) & 1922 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1923 return -EINVAL; 1924 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1925 (le32_to_cpu(sb->feature_map) & 1926 MD_FEATURE_MULTIPLE_PPLS)) 1927 return -EINVAL; 1928 set_bit(MD_HAS_PPL, &mddev->flags); 1929 } 1930 } else if (mddev->pers == NULL) { 1931 /* Insist of good event counter while assembling, except for 1932 * spares (which don't need an event count) */ 1933 ++ev1; 1934 if (rdev->desc_nr >= 0 && 1935 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1936 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1937 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1938 if (ev1 < mddev->events) 1939 return -EINVAL; 1940 } else if (mddev->bitmap) { 1941 /* If adding to array with a bitmap, then we can accept an 1942 * older device, but not too old. 1943 */ 1944 if (ev1 < mddev->bitmap->events_cleared) 1945 return 0; 1946 if (ev1 < mddev->events) 1947 set_bit(Bitmap_sync, &rdev->flags); 1948 } else { 1949 if (ev1 < mddev->events) 1950 /* just a hot-add of a new device, leave raid_disk at -1 */ 1951 return 0; 1952 } 1953 if (mddev->level != LEVEL_MULTIPATH) { 1954 int role; 1955 if (rdev->desc_nr < 0 || 1956 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1957 role = MD_DISK_ROLE_SPARE; 1958 rdev->desc_nr = -1; 1959 } else 1960 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1961 switch(role) { 1962 case MD_DISK_ROLE_SPARE: /* spare */ 1963 break; 1964 case MD_DISK_ROLE_FAULTY: /* faulty */ 1965 set_bit(Faulty, &rdev->flags); 1966 break; 1967 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1968 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1969 /* journal device without journal feature */ 1970 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1971 return -EINVAL; 1972 } 1973 set_bit(Journal, &rdev->flags); 1974 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1975 rdev->raid_disk = 0; 1976 break; 1977 default: 1978 rdev->saved_raid_disk = role; 1979 if ((le32_to_cpu(sb->feature_map) & 1980 MD_FEATURE_RECOVERY_OFFSET)) { 1981 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1982 if (!(le32_to_cpu(sb->feature_map) & 1983 MD_FEATURE_RECOVERY_BITMAP)) 1984 rdev->saved_raid_disk = -1; 1985 } else { 1986 /* 1987 * If the array is FROZEN, then the device can't 1988 * be in_sync with rest of array. 1989 */ 1990 if (!test_bit(MD_RECOVERY_FROZEN, 1991 &mddev->recovery)) 1992 set_bit(In_sync, &rdev->flags); 1993 } 1994 rdev->raid_disk = role; 1995 break; 1996 } 1997 if (sb->devflags & WriteMostly1) 1998 set_bit(WriteMostly, &rdev->flags); 1999 if (sb->devflags & FailFast1) 2000 set_bit(FailFast, &rdev->flags); 2001 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2002 set_bit(Replacement, &rdev->flags); 2003 } else /* MULTIPATH are always insync */ 2004 set_bit(In_sync, &rdev->flags); 2005 2006 return 0; 2007 } 2008 2009 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2010 { 2011 struct mdp_superblock_1 *sb; 2012 struct md_rdev *rdev2; 2013 int max_dev, i; 2014 /* make rdev->sb match mddev and rdev data. */ 2015 2016 sb = page_address(rdev->sb_page); 2017 2018 sb->feature_map = 0; 2019 sb->pad0 = 0; 2020 sb->recovery_offset = cpu_to_le64(0); 2021 memset(sb->pad3, 0, sizeof(sb->pad3)); 2022 2023 sb->utime = cpu_to_le64((__u64)mddev->utime); 2024 sb->events = cpu_to_le64(mddev->events); 2025 if (mddev->in_sync) 2026 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2027 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2028 sb->resync_offset = cpu_to_le64(MaxSector); 2029 else 2030 sb->resync_offset = cpu_to_le64(0); 2031 2032 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2033 2034 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2035 sb->size = cpu_to_le64(mddev->dev_sectors); 2036 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2037 sb->level = cpu_to_le32(mddev->level); 2038 sb->layout = cpu_to_le32(mddev->layout); 2039 if (test_bit(FailFast, &rdev->flags)) 2040 sb->devflags |= FailFast1; 2041 else 2042 sb->devflags &= ~FailFast1; 2043 2044 if (test_bit(WriteMostly, &rdev->flags)) 2045 sb->devflags |= WriteMostly1; 2046 else 2047 sb->devflags &= ~WriteMostly1; 2048 sb->data_offset = cpu_to_le64(rdev->data_offset); 2049 sb->data_size = cpu_to_le64(rdev->sectors); 2050 2051 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2052 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2053 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2054 } 2055 2056 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2057 !test_bit(In_sync, &rdev->flags)) { 2058 sb->feature_map |= 2059 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2060 sb->recovery_offset = 2061 cpu_to_le64(rdev->recovery_offset); 2062 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2063 sb->feature_map |= 2064 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2065 } 2066 /* Note: recovery_offset and journal_tail share space */ 2067 if (test_bit(Journal, &rdev->flags)) 2068 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2069 if (test_bit(Replacement, &rdev->flags)) 2070 sb->feature_map |= 2071 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2072 2073 if (mddev->reshape_position != MaxSector) { 2074 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2075 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2076 sb->new_layout = cpu_to_le32(mddev->new_layout); 2077 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2078 sb->new_level = cpu_to_le32(mddev->new_level); 2079 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2080 if (mddev->delta_disks == 0 && 2081 mddev->reshape_backwards) 2082 sb->feature_map 2083 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2084 if (rdev->new_data_offset != rdev->data_offset) { 2085 sb->feature_map 2086 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2087 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2088 - rdev->data_offset)); 2089 } 2090 } 2091 2092 if (mddev_is_clustered(mddev)) 2093 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2094 2095 if (rdev->badblocks.count == 0) 2096 /* Nothing to do for bad blocks*/ ; 2097 else if (sb->bblog_offset == 0) 2098 /* Cannot record bad blocks on this device */ 2099 md_error(mddev, rdev); 2100 else { 2101 struct badblocks *bb = &rdev->badblocks; 2102 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2103 u64 *p = bb->page; 2104 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2105 if (bb->changed) { 2106 unsigned seq; 2107 2108 retry: 2109 seq = read_seqbegin(&bb->lock); 2110 2111 memset(bbp, 0xff, PAGE_SIZE); 2112 2113 for (i = 0 ; i < bb->count ; i++) { 2114 u64 internal_bb = p[i]; 2115 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2116 | BB_LEN(internal_bb)); 2117 bbp[i] = cpu_to_le64(store_bb); 2118 } 2119 bb->changed = 0; 2120 if (read_seqretry(&bb->lock, seq)) 2121 goto retry; 2122 2123 bb->sector = (rdev->sb_start + 2124 (int)le32_to_cpu(sb->bblog_offset)); 2125 bb->size = le16_to_cpu(sb->bblog_size); 2126 } 2127 } 2128 2129 max_dev = 0; 2130 rdev_for_each(rdev2, mddev) 2131 if (rdev2->desc_nr+1 > max_dev) 2132 max_dev = rdev2->desc_nr+1; 2133 2134 if (max_dev > le32_to_cpu(sb->max_dev)) { 2135 int bmask; 2136 sb->max_dev = cpu_to_le32(max_dev); 2137 rdev->sb_size = max_dev * 2 + 256; 2138 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2139 if (rdev->sb_size & bmask) 2140 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2141 } else 2142 max_dev = le32_to_cpu(sb->max_dev); 2143 2144 for (i=0; i<max_dev;i++) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2146 2147 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2148 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2149 2150 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2151 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2152 sb->feature_map |= 2153 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2154 else 2155 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2156 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2157 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2158 } 2159 2160 rdev_for_each(rdev2, mddev) { 2161 i = rdev2->desc_nr; 2162 if (test_bit(Faulty, &rdev2->flags)) 2163 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2164 else if (test_bit(In_sync, &rdev2->flags)) 2165 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2166 else if (test_bit(Journal, &rdev2->flags)) 2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2168 else if (rdev2->raid_disk >= 0) 2169 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2170 else 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2172 } 2173 2174 sb->sb_csum = calc_sb_1_csum(sb); 2175 } 2176 2177 static sector_t super_1_choose_bm_space(sector_t dev_size) 2178 { 2179 sector_t bm_space; 2180 2181 /* if the device is bigger than 8Gig, save 64k for bitmap 2182 * usage, if bigger than 200Gig, save 128k 2183 */ 2184 if (dev_size < 64*2) 2185 bm_space = 0; 2186 else if (dev_size - 64*2 >= 200*1024*1024*2) 2187 bm_space = 128*2; 2188 else if (dev_size - 4*2 > 8*1024*1024*2) 2189 bm_space = 64*2; 2190 else 2191 bm_space = 4*2; 2192 return bm_space; 2193 } 2194 2195 static unsigned long long 2196 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2197 { 2198 struct mdp_superblock_1 *sb; 2199 sector_t max_sectors; 2200 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2201 return 0; /* component must fit device */ 2202 if (rdev->data_offset != rdev->new_data_offset) 2203 return 0; /* too confusing */ 2204 if (rdev->sb_start < rdev->data_offset) { 2205 /* minor versions 1 and 2; superblock before data */ 2206 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2207 max_sectors -= rdev->data_offset; 2208 if (!num_sectors || num_sectors > max_sectors) 2209 num_sectors = max_sectors; 2210 } else if (rdev->mddev->bitmap_info.offset) { 2211 /* minor version 0 with bitmap we can't move */ 2212 return 0; 2213 } else { 2214 /* minor version 0; superblock after data */ 2215 sector_t sb_start, bm_space; 2216 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2217 2218 /* 8K is for superblock */ 2219 sb_start = dev_size - 8*2; 2220 sb_start &= ~(sector_t)(4*2 - 1); 2221 2222 bm_space = super_1_choose_bm_space(dev_size); 2223 2224 /* Space that can be used to store date needs to decrease 2225 * superblock bitmap space and bad block space(4K) 2226 */ 2227 max_sectors = sb_start - bm_space - 4*2; 2228 2229 if (!num_sectors || num_sectors > max_sectors) 2230 num_sectors = max_sectors; 2231 } 2232 sb = page_address(rdev->sb_page); 2233 sb->data_size = cpu_to_le64(num_sectors); 2234 sb->super_offset = cpu_to_le64(rdev->sb_start); 2235 sb->sb_csum = calc_sb_1_csum(sb); 2236 do { 2237 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2238 rdev->sb_page); 2239 } while (md_super_wait(rdev->mddev) < 0); 2240 return num_sectors; 2241 2242 } 2243 2244 static int 2245 super_1_allow_new_offset(struct md_rdev *rdev, 2246 unsigned long long new_offset) 2247 { 2248 /* All necessary checks on new >= old have been done */ 2249 struct bitmap *bitmap; 2250 if (new_offset >= rdev->data_offset) 2251 return 1; 2252 2253 /* with 1.0 metadata, there is no metadata to tread on 2254 * so we can always move back */ 2255 if (rdev->mddev->minor_version == 0) 2256 return 1; 2257 2258 /* otherwise we must be sure not to step on 2259 * any metadata, so stay: 2260 * 36K beyond start of superblock 2261 * beyond end of badblocks 2262 * beyond write-intent bitmap 2263 */ 2264 if (rdev->sb_start + (32+4)*2 > new_offset) 2265 return 0; 2266 bitmap = rdev->mddev->bitmap; 2267 if (bitmap && !rdev->mddev->bitmap_info.file && 2268 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2269 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2270 return 0; 2271 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2272 return 0; 2273 2274 return 1; 2275 } 2276 2277 static struct super_type super_types[] = { 2278 [0] = { 2279 .name = "0.90.0", 2280 .owner = THIS_MODULE, 2281 .load_super = super_90_load, 2282 .validate_super = super_90_validate, 2283 .sync_super = super_90_sync, 2284 .rdev_size_change = super_90_rdev_size_change, 2285 .allow_new_offset = super_90_allow_new_offset, 2286 }, 2287 [1] = { 2288 .name = "md-1", 2289 .owner = THIS_MODULE, 2290 .load_super = super_1_load, 2291 .validate_super = super_1_validate, 2292 .sync_super = super_1_sync, 2293 .rdev_size_change = super_1_rdev_size_change, 2294 .allow_new_offset = super_1_allow_new_offset, 2295 }, 2296 }; 2297 2298 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2299 { 2300 if (mddev->sync_super) { 2301 mddev->sync_super(mddev, rdev); 2302 return; 2303 } 2304 2305 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2306 2307 super_types[mddev->major_version].sync_super(mddev, rdev); 2308 } 2309 2310 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2311 { 2312 struct md_rdev *rdev, *rdev2; 2313 2314 rcu_read_lock(); 2315 rdev_for_each_rcu(rdev, mddev1) { 2316 if (test_bit(Faulty, &rdev->flags) || 2317 test_bit(Journal, &rdev->flags) || 2318 rdev->raid_disk == -1) 2319 continue; 2320 rdev_for_each_rcu(rdev2, mddev2) { 2321 if (test_bit(Faulty, &rdev2->flags) || 2322 test_bit(Journal, &rdev2->flags) || 2323 rdev2->raid_disk == -1) 2324 continue; 2325 if (rdev->bdev->bd_contains == 2326 rdev2->bdev->bd_contains) { 2327 rcu_read_unlock(); 2328 return 1; 2329 } 2330 } 2331 } 2332 rcu_read_unlock(); 2333 return 0; 2334 } 2335 2336 static LIST_HEAD(pending_raid_disks); 2337 2338 /* 2339 * Try to register data integrity profile for an mddev 2340 * 2341 * This is called when an array is started and after a disk has been kicked 2342 * from the array. It only succeeds if all working and active component devices 2343 * are integrity capable with matching profiles. 2344 */ 2345 int md_integrity_register(struct mddev *mddev) 2346 { 2347 struct md_rdev *rdev, *reference = NULL; 2348 2349 if (list_empty(&mddev->disks)) 2350 return 0; /* nothing to do */ 2351 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2352 return 0; /* shouldn't register, or already is */ 2353 rdev_for_each(rdev, mddev) { 2354 /* skip spares and non-functional disks */ 2355 if (test_bit(Faulty, &rdev->flags)) 2356 continue; 2357 if (rdev->raid_disk < 0) 2358 continue; 2359 if (!reference) { 2360 /* Use the first rdev as the reference */ 2361 reference = rdev; 2362 continue; 2363 } 2364 /* does this rdev's profile match the reference profile? */ 2365 if (blk_integrity_compare(reference->bdev->bd_disk, 2366 rdev->bdev->bd_disk) < 0) 2367 return -EINVAL; 2368 } 2369 if (!reference || !bdev_get_integrity(reference->bdev)) 2370 return 0; 2371 /* 2372 * All component devices are integrity capable and have matching 2373 * profiles, register the common profile for the md device. 2374 */ 2375 blk_integrity_register(mddev->gendisk, 2376 bdev_get_integrity(reference->bdev)); 2377 2378 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2379 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2380 pr_err("md: failed to create integrity pool for %s\n", 2381 mdname(mddev)); 2382 return -EINVAL; 2383 } 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(md_integrity_register); 2387 2388 /* 2389 * Attempt to add an rdev, but only if it is consistent with the current 2390 * integrity profile 2391 */ 2392 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2393 { 2394 struct blk_integrity *bi_mddev; 2395 char name[BDEVNAME_SIZE]; 2396 2397 if (!mddev->gendisk) 2398 return 0; 2399 2400 bi_mddev = blk_get_integrity(mddev->gendisk); 2401 2402 if (!bi_mddev) /* nothing to do */ 2403 return 0; 2404 2405 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2406 pr_err("%s: incompatible integrity profile for %s\n", 2407 mdname(mddev), bdevname(rdev->bdev, name)); 2408 return -ENXIO; 2409 } 2410 2411 return 0; 2412 } 2413 EXPORT_SYMBOL(md_integrity_add_rdev); 2414 2415 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2416 { 2417 char b[BDEVNAME_SIZE]; 2418 struct kobject *ko; 2419 int err; 2420 2421 /* prevent duplicates */ 2422 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2423 return -EEXIST; 2424 2425 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2426 mddev->pers) 2427 return -EROFS; 2428 2429 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2430 if (!test_bit(Journal, &rdev->flags) && 2431 rdev->sectors && 2432 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2433 if (mddev->pers) { 2434 /* Cannot change size, so fail 2435 * If mddev->level <= 0, then we don't care 2436 * about aligning sizes (e.g. linear) 2437 */ 2438 if (mddev->level > 0) 2439 return -ENOSPC; 2440 } else 2441 mddev->dev_sectors = rdev->sectors; 2442 } 2443 2444 /* Verify rdev->desc_nr is unique. 2445 * If it is -1, assign a free number, else 2446 * check number is not in use 2447 */ 2448 rcu_read_lock(); 2449 if (rdev->desc_nr < 0) { 2450 int choice = 0; 2451 if (mddev->pers) 2452 choice = mddev->raid_disks; 2453 while (md_find_rdev_nr_rcu(mddev, choice)) 2454 choice++; 2455 rdev->desc_nr = choice; 2456 } else { 2457 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2458 rcu_read_unlock(); 2459 return -EBUSY; 2460 } 2461 } 2462 rcu_read_unlock(); 2463 if (!test_bit(Journal, &rdev->flags) && 2464 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2465 pr_warn("md: %s: array is limited to %d devices\n", 2466 mdname(mddev), mddev->max_disks); 2467 return -EBUSY; 2468 } 2469 bdevname(rdev->bdev,b); 2470 strreplace(b, '/', '!'); 2471 2472 rdev->mddev = mddev; 2473 pr_debug("md: bind<%s>\n", b); 2474 2475 if (mddev->raid_disks) 2476 mddev_create_serial_pool(mddev, rdev, false); 2477 2478 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2479 goto fail; 2480 2481 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2482 /* failure here is OK */ 2483 err = sysfs_create_link(&rdev->kobj, ko, "block"); 2484 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2485 rdev->sysfs_unack_badblocks = 2486 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2487 rdev->sysfs_badblocks = 2488 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2489 2490 list_add_rcu(&rdev->same_set, &mddev->disks); 2491 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2492 2493 /* May as well allow recovery to be retried once */ 2494 mddev->recovery_disabled++; 2495 2496 return 0; 2497 2498 fail: 2499 pr_warn("md: failed to register dev-%s for %s\n", 2500 b, mdname(mddev)); 2501 return err; 2502 } 2503 2504 static void rdev_delayed_delete(struct work_struct *ws) 2505 { 2506 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2507 kobject_del(&rdev->kobj); 2508 kobject_put(&rdev->kobj); 2509 } 2510 2511 static void unbind_rdev_from_array(struct md_rdev *rdev) 2512 { 2513 char b[BDEVNAME_SIZE]; 2514 2515 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2516 list_del_rcu(&rdev->same_set); 2517 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2518 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2519 rdev->mddev = NULL; 2520 sysfs_remove_link(&rdev->kobj, "block"); 2521 sysfs_put(rdev->sysfs_state); 2522 sysfs_put(rdev->sysfs_unack_badblocks); 2523 sysfs_put(rdev->sysfs_badblocks); 2524 rdev->sysfs_state = NULL; 2525 rdev->sysfs_unack_badblocks = NULL; 2526 rdev->sysfs_badblocks = NULL; 2527 rdev->badblocks.count = 0; 2528 /* We need to delay this, otherwise we can deadlock when 2529 * writing to 'remove' to "dev/state". We also need 2530 * to delay it due to rcu usage. 2531 */ 2532 synchronize_rcu(); 2533 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2534 kobject_get(&rdev->kobj); 2535 queue_work(md_rdev_misc_wq, &rdev->del_work); 2536 } 2537 2538 /* 2539 * prevent the device from being mounted, repartitioned or 2540 * otherwise reused by a RAID array (or any other kernel 2541 * subsystem), by bd_claiming the device. 2542 */ 2543 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2544 { 2545 int err = 0; 2546 struct block_device *bdev; 2547 2548 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2549 shared ? (struct md_rdev *)lock_rdev : rdev); 2550 if (IS_ERR(bdev)) { 2551 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2552 MAJOR(dev), MINOR(dev)); 2553 return PTR_ERR(bdev); 2554 } 2555 rdev->bdev = bdev; 2556 return err; 2557 } 2558 2559 static void unlock_rdev(struct md_rdev *rdev) 2560 { 2561 struct block_device *bdev = rdev->bdev; 2562 rdev->bdev = NULL; 2563 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2564 } 2565 2566 void md_autodetect_dev(dev_t dev); 2567 2568 static void export_rdev(struct md_rdev *rdev) 2569 { 2570 char b[BDEVNAME_SIZE]; 2571 2572 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2573 md_rdev_clear(rdev); 2574 #ifndef MODULE 2575 if (test_bit(AutoDetected, &rdev->flags)) 2576 md_autodetect_dev(rdev->bdev->bd_dev); 2577 #endif 2578 unlock_rdev(rdev); 2579 kobject_put(&rdev->kobj); 2580 } 2581 2582 void md_kick_rdev_from_array(struct md_rdev *rdev) 2583 { 2584 unbind_rdev_from_array(rdev); 2585 export_rdev(rdev); 2586 } 2587 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2588 2589 static void export_array(struct mddev *mddev) 2590 { 2591 struct md_rdev *rdev; 2592 2593 while (!list_empty(&mddev->disks)) { 2594 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2595 same_set); 2596 md_kick_rdev_from_array(rdev); 2597 } 2598 mddev->raid_disks = 0; 2599 mddev->major_version = 0; 2600 } 2601 2602 static bool set_in_sync(struct mddev *mddev) 2603 { 2604 lockdep_assert_held(&mddev->lock); 2605 if (!mddev->in_sync) { 2606 mddev->sync_checkers++; 2607 spin_unlock(&mddev->lock); 2608 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2609 spin_lock(&mddev->lock); 2610 if (!mddev->in_sync && 2611 percpu_ref_is_zero(&mddev->writes_pending)) { 2612 mddev->in_sync = 1; 2613 /* 2614 * Ensure ->in_sync is visible before we clear 2615 * ->sync_checkers. 2616 */ 2617 smp_mb(); 2618 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2619 sysfs_notify_dirent_safe(mddev->sysfs_state); 2620 } 2621 if (--mddev->sync_checkers == 0) 2622 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2623 } 2624 if (mddev->safemode == 1) 2625 mddev->safemode = 0; 2626 return mddev->in_sync; 2627 } 2628 2629 static void sync_sbs(struct mddev *mddev, int nospares) 2630 { 2631 /* Update each superblock (in-memory image), but 2632 * if we are allowed to, skip spares which already 2633 * have the right event counter, or have one earlier 2634 * (which would mean they aren't being marked as dirty 2635 * with the rest of the array) 2636 */ 2637 struct md_rdev *rdev; 2638 rdev_for_each(rdev, mddev) { 2639 if (rdev->sb_events == mddev->events || 2640 (nospares && 2641 rdev->raid_disk < 0 && 2642 rdev->sb_events+1 == mddev->events)) { 2643 /* Don't update this superblock */ 2644 rdev->sb_loaded = 2; 2645 } else { 2646 sync_super(mddev, rdev); 2647 rdev->sb_loaded = 1; 2648 } 2649 } 2650 } 2651 2652 static bool does_sb_need_changing(struct mddev *mddev) 2653 { 2654 struct md_rdev *rdev; 2655 struct mdp_superblock_1 *sb; 2656 int role; 2657 2658 /* Find a good rdev */ 2659 rdev_for_each(rdev, mddev) 2660 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2661 break; 2662 2663 /* No good device found. */ 2664 if (!rdev) 2665 return false; 2666 2667 sb = page_address(rdev->sb_page); 2668 /* Check if a device has become faulty or a spare become active */ 2669 rdev_for_each(rdev, mddev) { 2670 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2671 /* Device activated? */ 2672 if (role == 0xffff && rdev->raid_disk >=0 && 2673 !test_bit(Faulty, &rdev->flags)) 2674 return true; 2675 /* Device turned faulty? */ 2676 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2677 return true; 2678 } 2679 2680 /* Check if any mddev parameters have changed */ 2681 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2682 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2683 (mddev->layout != le32_to_cpu(sb->layout)) || 2684 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2685 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2686 return true; 2687 2688 return false; 2689 } 2690 2691 void md_update_sb(struct mddev *mddev, int force_change) 2692 { 2693 struct md_rdev *rdev; 2694 int sync_req; 2695 int nospares = 0; 2696 int any_badblocks_changed = 0; 2697 int ret = -1; 2698 2699 if (mddev->ro) { 2700 if (force_change) 2701 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2702 return; 2703 } 2704 2705 repeat: 2706 if (mddev_is_clustered(mddev)) { 2707 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2708 force_change = 1; 2709 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2710 nospares = 1; 2711 ret = md_cluster_ops->metadata_update_start(mddev); 2712 /* Has someone else has updated the sb */ 2713 if (!does_sb_need_changing(mddev)) { 2714 if (ret == 0) 2715 md_cluster_ops->metadata_update_cancel(mddev); 2716 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2717 BIT(MD_SB_CHANGE_DEVS) | 2718 BIT(MD_SB_CHANGE_CLEAN)); 2719 return; 2720 } 2721 } 2722 2723 /* 2724 * First make sure individual recovery_offsets are correct 2725 * curr_resync_completed can only be used during recovery. 2726 * During reshape/resync it might use array-addresses rather 2727 * that device addresses. 2728 */ 2729 rdev_for_each(rdev, mddev) { 2730 if (rdev->raid_disk >= 0 && 2731 mddev->delta_disks >= 0 && 2732 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2733 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2734 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2735 !test_bit(Journal, &rdev->flags) && 2736 !test_bit(In_sync, &rdev->flags) && 2737 mddev->curr_resync_completed > rdev->recovery_offset) 2738 rdev->recovery_offset = mddev->curr_resync_completed; 2739 2740 } 2741 if (!mddev->persistent) { 2742 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2743 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2744 if (!mddev->external) { 2745 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2746 rdev_for_each(rdev, mddev) { 2747 if (rdev->badblocks.changed) { 2748 rdev->badblocks.changed = 0; 2749 ack_all_badblocks(&rdev->badblocks); 2750 md_error(mddev, rdev); 2751 } 2752 clear_bit(Blocked, &rdev->flags); 2753 clear_bit(BlockedBadBlocks, &rdev->flags); 2754 wake_up(&rdev->blocked_wait); 2755 } 2756 } 2757 wake_up(&mddev->sb_wait); 2758 return; 2759 } 2760 2761 spin_lock(&mddev->lock); 2762 2763 mddev->utime = ktime_get_real_seconds(); 2764 2765 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2766 force_change = 1; 2767 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2768 /* just a clean<-> dirty transition, possibly leave spares alone, 2769 * though if events isn't the right even/odd, we will have to do 2770 * spares after all 2771 */ 2772 nospares = 1; 2773 if (force_change) 2774 nospares = 0; 2775 if (mddev->degraded) 2776 /* If the array is degraded, then skipping spares is both 2777 * dangerous and fairly pointless. 2778 * Dangerous because a device that was removed from the array 2779 * might have a event_count that still looks up-to-date, 2780 * so it can be re-added without a resync. 2781 * Pointless because if there are any spares to skip, 2782 * then a recovery will happen and soon that array won't 2783 * be degraded any more and the spare can go back to sleep then. 2784 */ 2785 nospares = 0; 2786 2787 sync_req = mddev->in_sync; 2788 2789 /* If this is just a dirty<->clean transition, and the array is clean 2790 * and 'events' is odd, we can roll back to the previous clean state */ 2791 if (nospares 2792 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2793 && mddev->can_decrease_events 2794 && mddev->events != 1) { 2795 mddev->events--; 2796 mddev->can_decrease_events = 0; 2797 } else { 2798 /* otherwise we have to go forward and ... */ 2799 mddev->events ++; 2800 mddev->can_decrease_events = nospares; 2801 } 2802 2803 /* 2804 * This 64-bit counter should never wrap. 2805 * Either we are in around ~1 trillion A.C., assuming 2806 * 1 reboot per second, or we have a bug... 2807 */ 2808 WARN_ON(mddev->events == 0); 2809 2810 rdev_for_each(rdev, mddev) { 2811 if (rdev->badblocks.changed) 2812 any_badblocks_changed++; 2813 if (test_bit(Faulty, &rdev->flags)) 2814 set_bit(FaultRecorded, &rdev->flags); 2815 } 2816 2817 sync_sbs(mddev, nospares); 2818 spin_unlock(&mddev->lock); 2819 2820 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2821 mdname(mddev), mddev->in_sync); 2822 2823 if (mddev->queue) 2824 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2825 rewrite: 2826 md_bitmap_update_sb(mddev->bitmap); 2827 rdev_for_each(rdev, mddev) { 2828 char b[BDEVNAME_SIZE]; 2829 2830 if (rdev->sb_loaded != 1) 2831 continue; /* no noise on spare devices */ 2832 2833 if (!test_bit(Faulty, &rdev->flags)) { 2834 md_super_write(mddev,rdev, 2835 rdev->sb_start, rdev->sb_size, 2836 rdev->sb_page); 2837 pr_debug("md: (write) %s's sb offset: %llu\n", 2838 bdevname(rdev->bdev, b), 2839 (unsigned long long)rdev->sb_start); 2840 rdev->sb_events = mddev->events; 2841 if (rdev->badblocks.size) { 2842 md_super_write(mddev, rdev, 2843 rdev->badblocks.sector, 2844 rdev->badblocks.size << 9, 2845 rdev->bb_page); 2846 rdev->badblocks.size = 0; 2847 } 2848 2849 } else 2850 pr_debug("md: %s (skipping faulty)\n", 2851 bdevname(rdev->bdev, b)); 2852 2853 if (mddev->level == LEVEL_MULTIPATH) 2854 /* only need to write one superblock... */ 2855 break; 2856 } 2857 if (md_super_wait(mddev) < 0) 2858 goto rewrite; 2859 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2860 2861 if (mddev_is_clustered(mddev) && ret == 0) 2862 md_cluster_ops->metadata_update_finish(mddev); 2863 2864 if (mddev->in_sync != sync_req || 2865 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2866 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2867 /* have to write it out again */ 2868 goto repeat; 2869 wake_up(&mddev->sb_wait); 2870 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2871 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2872 2873 rdev_for_each(rdev, mddev) { 2874 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2875 clear_bit(Blocked, &rdev->flags); 2876 2877 if (any_badblocks_changed) 2878 ack_all_badblocks(&rdev->badblocks); 2879 clear_bit(BlockedBadBlocks, &rdev->flags); 2880 wake_up(&rdev->blocked_wait); 2881 } 2882 } 2883 EXPORT_SYMBOL(md_update_sb); 2884 2885 static int add_bound_rdev(struct md_rdev *rdev) 2886 { 2887 struct mddev *mddev = rdev->mddev; 2888 int err = 0; 2889 bool add_journal = test_bit(Journal, &rdev->flags); 2890 2891 if (!mddev->pers->hot_remove_disk || add_journal) { 2892 /* If there is hot_add_disk but no hot_remove_disk 2893 * then added disks for geometry changes, 2894 * and should be added immediately. 2895 */ 2896 super_types[mddev->major_version]. 2897 validate_super(mddev, rdev); 2898 if (add_journal) 2899 mddev_suspend(mddev); 2900 err = mddev->pers->hot_add_disk(mddev, rdev); 2901 if (add_journal) 2902 mddev_resume(mddev); 2903 if (err) { 2904 md_kick_rdev_from_array(rdev); 2905 return err; 2906 } 2907 } 2908 sysfs_notify_dirent_safe(rdev->sysfs_state); 2909 2910 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2911 if (mddev->degraded) 2912 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2913 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2914 md_new_event(mddev); 2915 md_wakeup_thread(mddev->thread); 2916 return 0; 2917 } 2918 2919 /* words written to sysfs files may, or may not, be \n terminated. 2920 * We want to accept with case. For this we use cmd_match. 2921 */ 2922 static int cmd_match(const char *cmd, const char *str) 2923 { 2924 /* See if cmd, written into a sysfs file, matches 2925 * str. They must either be the same, or cmd can 2926 * have a trailing newline 2927 */ 2928 while (*cmd && *str && *cmd == *str) { 2929 cmd++; 2930 str++; 2931 } 2932 if (*cmd == '\n') 2933 cmd++; 2934 if (*str || *cmd) 2935 return 0; 2936 return 1; 2937 } 2938 2939 struct rdev_sysfs_entry { 2940 struct attribute attr; 2941 ssize_t (*show)(struct md_rdev *, char *); 2942 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2943 }; 2944 2945 static ssize_t 2946 state_show(struct md_rdev *rdev, char *page) 2947 { 2948 char *sep = ","; 2949 size_t len = 0; 2950 unsigned long flags = READ_ONCE(rdev->flags); 2951 2952 if (test_bit(Faulty, &flags) || 2953 (!test_bit(ExternalBbl, &flags) && 2954 rdev->badblocks.unacked_exist)) 2955 len += sprintf(page+len, "faulty%s", sep); 2956 if (test_bit(In_sync, &flags)) 2957 len += sprintf(page+len, "in_sync%s", sep); 2958 if (test_bit(Journal, &flags)) 2959 len += sprintf(page+len, "journal%s", sep); 2960 if (test_bit(WriteMostly, &flags)) 2961 len += sprintf(page+len, "write_mostly%s", sep); 2962 if (test_bit(Blocked, &flags) || 2963 (rdev->badblocks.unacked_exist 2964 && !test_bit(Faulty, &flags))) 2965 len += sprintf(page+len, "blocked%s", sep); 2966 if (!test_bit(Faulty, &flags) && 2967 !test_bit(Journal, &flags) && 2968 !test_bit(In_sync, &flags)) 2969 len += sprintf(page+len, "spare%s", sep); 2970 if (test_bit(WriteErrorSeen, &flags)) 2971 len += sprintf(page+len, "write_error%s", sep); 2972 if (test_bit(WantReplacement, &flags)) 2973 len += sprintf(page+len, "want_replacement%s", sep); 2974 if (test_bit(Replacement, &flags)) 2975 len += sprintf(page+len, "replacement%s", sep); 2976 if (test_bit(ExternalBbl, &flags)) 2977 len += sprintf(page+len, "external_bbl%s", sep); 2978 if (test_bit(FailFast, &flags)) 2979 len += sprintf(page+len, "failfast%s", sep); 2980 2981 if (len) 2982 len -= strlen(sep); 2983 2984 return len+sprintf(page+len, "\n"); 2985 } 2986 2987 static ssize_t 2988 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2989 { 2990 /* can write 2991 * faulty - simulates an error 2992 * remove - disconnects the device 2993 * writemostly - sets write_mostly 2994 * -writemostly - clears write_mostly 2995 * blocked - sets the Blocked flags 2996 * -blocked - clears the Blocked and possibly simulates an error 2997 * insync - sets Insync providing device isn't active 2998 * -insync - clear Insync for a device with a slot assigned, 2999 * so that it gets rebuilt based on bitmap 3000 * write_error - sets WriteErrorSeen 3001 * -write_error - clears WriteErrorSeen 3002 * {,-}failfast - set/clear FailFast 3003 */ 3004 int err = -EINVAL; 3005 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3006 md_error(rdev->mddev, rdev); 3007 if (test_bit(Faulty, &rdev->flags)) 3008 err = 0; 3009 else 3010 err = -EBUSY; 3011 } else if (cmd_match(buf, "remove")) { 3012 if (rdev->mddev->pers) { 3013 clear_bit(Blocked, &rdev->flags); 3014 remove_and_add_spares(rdev->mddev, rdev); 3015 } 3016 if (rdev->raid_disk >= 0) 3017 err = -EBUSY; 3018 else { 3019 struct mddev *mddev = rdev->mddev; 3020 err = 0; 3021 if (mddev_is_clustered(mddev)) 3022 err = md_cluster_ops->remove_disk(mddev, rdev); 3023 3024 if (err == 0) { 3025 md_kick_rdev_from_array(rdev); 3026 if (mddev->pers) { 3027 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3028 md_wakeup_thread(mddev->thread); 3029 } 3030 md_new_event(mddev); 3031 } 3032 } 3033 } else if (cmd_match(buf, "writemostly")) { 3034 set_bit(WriteMostly, &rdev->flags); 3035 mddev_create_serial_pool(rdev->mddev, rdev, false); 3036 err = 0; 3037 } else if (cmd_match(buf, "-writemostly")) { 3038 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3039 clear_bit(WriteMostly, &rdev->flags); 3040 err = 0; 3041 } else if (cmd_match(buf, "blocked")) { 3042 set_bit(Blocked, &rdev->flags); 3043 err = 0; 3044 } else if (cmd_match(buf, "-blocked")) { 3045 if (!test_bit(Faulty, &rdev->flags) && 3046 !test_bit(ExternalBbl, &rdev->flags) && 3047 rdev->badblocks.unacked_exist) { 3048 /* metadata handler doesn't understand badblocks, 3049 * so we need to fail the device 3050 */ 3051 md_error(rdev->mddev, rdev); 3052 } 3053 clear_bit(Blocked, &rdev->flags); 3054 clear_bit(BlockedBadBlocks, &rdev->flags); 3055 wake_up(&rdev->blocked_wait); 3056 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3057 md_wakeup_thread(rdev->mddev->thread); 3058 3059 err = 0; 3060 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3061 set_bit(In_sync, &rdev->flags); 3062 err = 0; 3063 } else if (cmd_match(buf, "failfast")) { 3064 set_bit(FailFast, &rdev->flags); 3065 err = 0; 3066 } else if (cmd_match(buf, "-failfast")) { 3067 clear_bit(FailFast, &rdev->flags); 3068 err = 0; 3069 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3070 !test_bit(Journal, &rdev->flags)) { 3071 if (rdev->mddev->pers == NULL) { 3072 clear_bit(In_sync, &rdev->flags); 3073 rdev->saved_raid_disk = rdev->raid_disk; 3074 rdev->raid_disk = -1; 3075 err = 0; 3076 } 3077 } else if (cmd_match(buf, "write_error")) { 3078 set_bit(WriteErrorSeen, &rdev->flags); 3079 err = 0; 3080 } else if (cmd_match(buf, "-write_error")) { 3081 clear_bit(WriteErrorSeen, &rdev->flags); 3082 err = 0; 3083 } else if (cmd_match(buf, "want_replacement")) { 3084 /* Any non-spare device that is not a replacement can 3085 * become want_replacement at any time, but we then need to 3086 * check if recovery is needed. 3087 */ 3088 if (rdev->raid_disk >= 0 && 3089 !test_bit(Journal, &rdev->flags) && 3090 !test_bit(Replacement, &rdev->flags)) 3091 set_bit(WantReplacement, &rdev->flags); 3092 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3093 md_wakeup_thread(rdev->mddev->thread); 3094 err = 0; 3095 } else if (cmd_match(buf, "-want_replacement")) { 3096 /* Clearing 'want_replacement' is always allowed. 3097 * Once replacements starts it is too late though. 3098 */ 3099 err = 0; 3100 clear_bit(WantReplacement, &rdev->flags); 3101 } else if (cmd_match(buf, "replacement")) { 3102 /* Can only set a device as a replacement when array has not 3103 * yet been started. Once running, replacement is automatic 3104 * from spares, or by assigning 'slot'. 3105 */ 3106 if (rdev->mddev->pers) 3107 err = -EBUSY; 3108 else { 3109 set_bit(Replacement, &rdev->flags); 3110 err = 0; 3111 } 3112 } else if (cmd_match(buf, "-replacement")) { 3113 /* Similarly, can only clear Replacement before start */ 3114 if (rdev->mddev->pers) 3115 err = -EBUSY; 3116 else { 3117 clear_bit(Replacement, &rdev->flags); 3118 err = 0; 3119 } 3120 } else if (cmd_match(buf, "re-add")) { 3121 if (!rdev->mddev->pers) 3122 err = -EINVAL; 3123 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3124 rdev->saved_raid_disk >= 0) { 3125 /* clear_bit is performed _after_ all the devices 3126 * have their local Faulty bit cleared. If any writes 3127 * happen in the meantime in the local node, they 3128 * will land in the local bitmap, which will be synced 3129 * by this node eventually 3130 */ 3131 if (!mddev_is_clustered(rdev->mddev) || 3132 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3133 clear_bit(Faulty, &rdev->flags); 3134 err = add_bound_rdev(rdev); 3135 } 3136 } else 3137 err = -EBUSY; 3138 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3139 set_bit(ExternalBbl, &rdev->flags); 3140 rdev->badblocks.shift = 0; 3141 err = 0; 3142 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3143 clear_bit(ExternalBbl, &rdev->flags); 3144 err = 0; 3145 } 3146 if (!err) 3147 sysfs_notify_dirent_safe(rdev->sysfs_state); 3148 return err ? err : len; 3149 } 3150 static struct rdev_sysfs_entry rdev_state = 3151 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3152 3153 static ssize_t 3154 errors_show(struct md_rdev *rdev, char *page) 3155 { 3156 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3157 } 3158 3159 static ssize_t 3160 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3161 { 3162 unsigned int n; 3163 int rv; 3164 3165 rv = kstrtouint(buf, 10, &n); 3166 if (rv < 0) 3167 return rv; 3168 atomic_set(&rdev->corrected_errors, n); 3169 return len; 3170 } 3171 static struct rdev_sysfs_entry rdev_errors = 3172 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3173 3174 static ssize_t 3175 slot_show(struct md_rdev *rdev, char *page) 3176 { 3177 if (test_bit(Journal, &rdev->flags)) 3178 return sprintf(page, "journal\n"); 3179 else if (rdev->raid_disk < 0) 3180 return sprintf(page, "none\n"); 3181 else 3182 return sprintf(page, "%d\n", rdev->raid_disk); 3183 } 3184 3185 static ssize_t 3186 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3187 { 3188 int slot; 3189 int err; 3190 3191 if (test_bit(Journal, &rdev->flags)) 3192 return -EBUSY; 3193 if (strncmp(buf, "none", 4)==0) 3194 slot = -1; 3195 else { 3196 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3197 if (err < 0) 3198 return err; 3199 } 3200 if (rdev->mddev->pers && slot == -1) { 3201 /* Setting 'slot' on an active array requires also 3202 * updating the 'rd%d' link, and communicating 3203 * with the personality with ->hot_*_disk. 3204 * For now we only support removing 3205 * failed/spare devices. This normally happens automatically, 3206 * but not when the metadata is externally managed. 3207 */ 3208 if (rdev->raid_disk == -1) 3209 return -EEXIST; 3210 /* personality does all needed checks */ 3211 if (rdev->mddev->pers->hot_remove_disk == NULL) 3212 return -EINVAL; 3213 clear_bit(Blocked, &rdev->flags); 3214 remove_and_add_spares(rdev->mddev, rdev); 3215 if (rdev->raid_disk >= 0) 3216 return -EBUSY; 3217 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3218 md_wakeup_thread(rdev->mddev->thread); 3219 } else if (rdev->mddev->pers) { 3220 /* Activating a spare .. or possibly reactivating 3221 * if we ever get bitmaps working here. 3222 */ 3223 int err; 3224 3225 if (rdev->raid_disk != -1) 3226 return -EBUSY; 3227 3228 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3229 return -EBUSY; 3230 3231 if (rdev->mddev->pers->hot_add_disk == NULL) 3232 return -EINVAL; 3233 3234 if (slot >= rdev->mddev->raid_disks && 3235 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3236 return -ENOSPC; 3237 3238 rdev->raid_disk = slot; 3239 if (test_bit(In_sync, &rdev->flags)) 3240 rdev->saved_raid_disk = slot; 3241 else 3242 rdev->saved_raid_disk = -1; 3243 clear_bit(In_sync, &rdev->flags); 3244 clear_bit(Bitmap_sync, &rdev->flags); 3245 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3246 if (err) { 3247 rdev->raid_disk = -1; 3248 return err; 3249 } else 3250 sysfs_notify_dirent_safe(rdev->sysfs_state); 3251 /* failure here is OK */; 3252 sysfs_link_rdev(rdev->mddev, rdev); 3253 /* don't wakeup anyone, leave that to userspace. */ 3254 } else { 3255 if (slot >= rdev->mddev->raid_disks && 3256 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3257 return -ENOSPC; 3258 rdev->raid_disk = slot; 3259 /* assume it is working */ 3260 clear_bit(Faulty, &rdev->flags); 3261 clear_bit(WriteMostly, &rdev->flags); 3262 set_bit(In_sync, &rdev->flags); 3263 sysfs_notify_dirent_safe(rdev->sysfs_state); 3264 } 3265 return len; 3266 } 3267 3268 static struct rdev_sysfs_entry rdev_slot = 3269 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3270 3271 static ssize_t 3272 offset_show(struct md_rdev *rdev, char *page) 3273 { 3274 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3275 } 3276 3277 static ssize_t 3278 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3279 { 3280 unsigned long long offset; 3281 if (kstrtoull(buf, 10, &offset) < 0) 3282 return -EINVAL; 3283 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3284 return -EBUSY; 3285 if (rdev->sectors && rdev->mddev->external) 3286 /* Must set offset before size, so overlap checks 3287 * can be sane */ 3288 return -EBUSY; 3289 rdev->data_offset = offset; 3290 rdev->new_data_offset = offset; 3291 return len; 3292 } 3293 3294 static struct rdev_sysfs_entry rdev_offset = 3295 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3296 3297 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3298 { 3299 return sprintf(page, "%llu\n", 3300 (unsigned long long)rdev->new_data_offset); 3301 } 3302 3303 static ssize_t new_offset_store(struct md_rdev *rdev, 3304 const char *buf, size_t len) 3305 { 3306 unsigned long long new_offset; 3307 struct mddev *mddev = rdev->mddev; 3308 3309 if (kstrtoull(buf, 10, &new_offset) < 0) 3310 return -EINVAL; 3311 3312 if (mddev->sync_thread || 3313 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3314 return -EBUSY; 3315 if (new_offset == rdev->data_offset) 3316 /* reset is always permitted */ 3317 ; 3318 else if (new_offset > rdev->data_offset) { 3319 /* must not push array size beyond rdev_sectors */ 3320 if (new_offset - rdev->data_offset 3321 + mddev->dev_sectors > rdev->sectors) 3322 return -E2BIG; 3323 } 3324 /* Metadata worries about other space details. */ 3325 3326 /* decreasing the offset is inconsistent with a backwards 3327 * reshape. 3328 */ 3329 if (new_offset < rdev->data_offset && 3330 mddev->reshape_backwards) 3331 return -EINVAL; 3332 /* Increasing offset is inconsistent with forwards 3333 * reshape. reshape_direction should be set to 3334 * 'backwards' first. 3335 */ 3336 if (new_offset > rdev->data_offset && 3337 !mddev->reshape_backwards) 3338 return -EINVAL; 3339 3340 if (mddev->pers && mddev->persistent && 3341 !super_types[mddev->major_version] 3342 .allow_new_offset(rdev, new_offset)) 3343 return -E2BIG; 3344 rdev->new_data_offset = new_offset; 3345 if (new_offset > rdev->data_offset) 3346 mddev->reshape_backwards = 1; 3347 else if (new_offset < rdev->data_offset) 3348 mddev->reshape_backwards = 0; 3349 3350 return len; 3351 } 3352 static struct rdev_sysfs_entry rdev_new_offset = 3353 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3354 3355 static ssize_t 3356 rdev_size_show(struct md_rdev *rdev, char *page) 3357 { 3358 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3359 } 3360 3361 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3362 { 3363 /* check if two start/length pairs overlap */ 3364 if (s1+l1 <= s2) 3365 return 0; 3366 if (s2+l2 <= s1) 3367 return 0; 3368 return 1; 3369 } 3370 3371 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3372 { 3373 unsigned long long blocks; 3374 sector_t new; 3375 3376 if (kstrtoull(buf, 10, &blocks) < 0) 3377 return -EINVAL; 3378 3379 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3380 return -EINVAL; /* sector conversion overflow */ 3381 3382 new = blocks * 2; 3383 if (new != blocks * 2) 3384 return -EINVAL; /* unsigned long long to sector_t overflow */ 3385 3386 *sectors = new; 3387 return 0; 3388 } 3389 3390 static ssize_t 3391 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3392 { 3393 struct mddev *my_mddev = rdev->mddev; 3394 sector_t oldsectors = rdev->sectors; 3395 sector_t sectors; 3396 3397 if (test_bit(Journal, &rdev->flags)) 3398 return -EBUSY; 3399 if (strict_blocks_to_sectors(buf, §ors) < 0) 3400 return -EINVAL; 3401 if (rdev->data_offset != rdev->new_data_offset) 3402 return -EINVAL; /* too confusing */ 3403 if (my_mddev->pers && rdev->raid_disk >= 0) { 3404 if (my_mddev->persistent) { 3405 sectors = super_types[my_mddev->major_version]. 3406 rdev_size_change(rdev, sectors); 3407 if (!sectors) 3408 return -EBUSY; 3409 } else if (!sectors) 3410 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3411 rdev->data_offset; 3412 if (!my_mddev->pers->resize) 3413 /* Cannot change size for RAID0 or Linear etc */ 3414 return -EINVAL; 3415 } 3416 if (sectors < my_mddev->dev_sectors) 3417 return -EINVAL; /* component must fit device */ 3418 3419 rdev->sectors = sectors; 3420 if (sectors > oldsectors && my_mddev->external) { 3421 /* Need to check that all other rdevs with the same 3422 * ->bdev do not overlap. 'rcu' is sufficient to walk 3423 * the rdev lists safely. 3424 * This check does not provide a hard guarantee, it 3425 * just helps avoid dangerous mistakes. 3426 */ 3427 struct mddev *mddev; 3428 int overlap = 0; 3429 struct list_head *tmp; 3430 3431 rcu_read_lock(); 3432 for_each_mddev(mddev, tmp) { 3433 struct md_rdev *rdev2; 3434 3435 rdev_for_each(rdev2, mddev) 3436 if (rdev->bdev == rdev2->bdev && 3437 rdev != rdev2 && 3438 overlaps(rdev->data_offset, rdev->sectors, 3439 rdev2->data_offset, 3440 rdev2->sectors)) { 3441 overlap = 1; 3442 break; 3443 } 3444 if (overlap) { 3445 mddev_put(mddev); 3446 break; 3447 } 3448 } 3449 rcu_read_unlock(); 3450 if (overlap) { 3451 /* Someone else could have slipped in a size 3452 * change here, but doing so is just silly. 3453 * We put oldsectors back because we *know* it is 3454 * safe, and trust userspace not to race with 3455 * itself 3456 */ 3457 rdev->sectors = oldsectors; 3458 return -EBUSY; 3459 } 3460 } 3461 return len; 3462 } 3463 3464 static struct rdev_sysfs_entry rdev_size = 3465 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3466 3467 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3468 { 3469 unsigned long long recovery_start = rdev->recovery_offset; 3470 3471 if (test_bit(In_sync, &rdev->flags) || 3472 recovery_start == MaxSector) 3473 return sprintf(page, "none\n"); 3474 3475 return sprintf(page, "%llu\n", recovery_start); 3476 } 3477 3478 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3479 { 3480 unsigned long long recovery_start; 3481 3482 if (cmd_match(buf, "none")) 3483 recovery_start = MaxSector; 3484 else if (kstrtoull(buf, 10, &recovery_start)) 3485 return -EINVAL; 3486 3487 if (rdev->mddev->pers && 3488 rdev->raid_disk >= 0) 3489 return -EBUSY; 3490 3491 rdev->recovery_offset = recovery_start; 3492 if (recovery_start == MaxSector) 3493 set_bit(In_sync, &rdev->flags); 3494 else 3495 clear_bit(In_sync, &rdev->flags); 3496 return len; 3497 } 3498 3499 static struct rdev_sysfs_entry rdev_recovery_start = 3500 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3501 3502 /* sysfs access to bad-blocks list. 3503 * We present two files. 3504 * 'bad-blocks' lists sector numbers and lengths of ranges that 3505 * are recorded as bad. The list is truncated to fit within 3506 * the one-page limit of sysfs. 3507 * Writing "sector length" to this file adds an acknowledged 3508 * bad block list. 3509 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3510 * been acknowledged. Writing to this file adds bad blocks 3511 * without acknowledging them. This is largely for testing. 3512 */ 3513 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3514 { 3515 return badblocks_show(&rdev->badblocks, page, 0); 3516 } 3517 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3518 { 3519 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3520 /* Maybe that ack was all we needed */ 3521 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3522 wake_up(&rdev->blocked_wait); 3523 return rv; 3524 } 3525 static struct rdev_sysfs_entry rdev_bad_blocks = 3526 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3527 3528 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3529 { 3530 return badblocks_show(&rdev->badblocks, page, 1); 3531 } 3532 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3533 { 3534 return badblocks_store(&rdev->badblocks, page, len, 1); 3535 } 3536 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3537 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3538 3539 static ssize_t 3540 ppl_sector_show(struct md_rdev *rdev, char *page) 3541 { 3542 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3543 } 3544 3545 static ssize_t 3546 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3547 { 3548 unsigned long long sector; 3549 3550 if (kstrtoull(buf, 10, §or) < 0) 3551 return -EINVAL; 3552 if (sector != (sector_t)sector) 3553 return -EINVAL; 3554 3555 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3556 rdev->raid_disk >= 0) 3557 return -EBUSY; 3558 3559 if (rdev->mddev->persistent) { 3560 if (rdev->mddev->major_version == 0) 3561 return -EINVAL; 3562 if ((sector > rdev->sb_start && 3563 sector - rdev->sb_start > S16_MAX) || 3564 (sector < rdev->sb_start && 3565 rdev->sb_start - sector > -S16_MIN)) 3566 return -EINVAL; 3567 rdev->ppl.offset = sector - rdev->sb_start; 3568 } else if (!rdev->mddev->external) { 3569 return -EBUSY; 3570 } 3571 rdev->ppl.sector = sector; 3572 return len; 3573 } 3574 3575 static struct rdev_sysfs_entry rdev_ppl_sector = 3576 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3577 3578 static ssize_t 3579 ppl_size_show(struct md_rdev *rdev, char *page) 3580 { 3581 return sprintf(page, "%u\n", rdev->ppl.size); 3582 } 3583 3584 static ssize_t 3585 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3586 { 3587 unsigned int size; 3588 3589 if (kstrtouint(buf, 10, &size) < 0) 3590 return -EINVAL; 3591 3592 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3593 rdev->raid_disk >= 0) 3594 return -EBUSY; 3595 3596 if (rdev->mddev->persistent) { 3597 if (rdev->mddev->major_version == 0) 3598 return -EINVAL; 3599 if (size > U16_MAX) 3600 return -EINVAL; 3601 } else if (!rdev->mddev->external) { 3602 return -EBUSY; 3603 } 3604 rdev->ppl.size = size; 3605 return len; 3606 } 3607 3608 static struct rdev_sysfs_entry rdev_ppl_size = 3609 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3610 3611 static struct attribute *rdev_default_attrs[] = { 3612 &rdev_state.attr, 3613 &rdev_errors.attr, 3614 &rdev_slot.attr, 3615 &rdev_offset.attr, 3616 &rdev_new_offset.attr, 3617 &rdev_size.attr, 3618 &rdev_recovery_start.attr, 3619 &rdev_bad_blocks.attr, 3620 &rdev_unack_bad_blocks.attr, 3621 &rdev_ppl_sector.attr, 3622 &rdev_ppl_size.attr, 3623 NULL, 3624 }; 3625 static ssize_t 3626 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3627 { 3628 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3629 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3630 3631 if (!entry->show) 3632 return -EIO; 3633 if (!rdev->mddev) 3634 return -ENODEV; 3635 return entry->show(rdev, page); 3636 } 3637 3638 static ssize_t 3639 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3640 const char *page, size_t length) 3641 { 3642 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3643 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3644 ssize_t rv; 3645 struct mddev *mddev = rdev->mddev; 3646 3647 if (!entry->store) 3648 return -EIO; 3649 if (!capable(CAP_SYS_ADMIN)) 3650 return -EACCES; 3651 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3652 if (!rv) { 3653 if (rdev->mddev == NULL) 3654 rv = -ENODEV; 3655 else 3656 rv = entry->store(rdev, page, length); 3657 mddev_unlock(mddev); 3658 } 3659 return rv; 3660 } 3661 3662 static void rdev_free(struct kobject *ko) 3663 { 3664 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3665 kfree(rdev); 3666 } 3667 static const struct sysfs_ops rdev_sysfs_ops = { 3668 .show = rdev_attr_show, 3669 .store = rdev_attr_store, 3670 }; 3671 static struct kobj_type rdev_ktype = { 3672 .release = rdev_free, 3673 .sysfs_ops = &rdev_sysfs_ops, 3674 .default_attrs = rdev_default_attrs, 3675 }; 3676 3677 int md_rdev_init(struct md_rdev *rdev) 3678 { 3679 rdev->desc_nr = -1; 3680 rdev->saved_raid_disk = -1; 3681 rdev->raid_disk = -1; 3682 rdev->flags = 0; 3683 rdev->data_offset = 0; 3684 rdev->new_data_offset = 0; 3685 rdev->sb_events = 0; 3686 rdev->last_read_error = 0; 3687 rdev->sb_loaded = 0; 3688 rdev->bb_page = NULL; 3689 atomic_set(&rdev->nr_pending, 0); 3690 atomic_set(&rdev->read_errors, 0); 3691 atomic_set(&rdev->corrected_errors, 0); 3692 3693 INIT_LIST_HEAD(&rdev->same_set); 3694 init_waitqueue_head(&rdev->blocked_wait); 3695 3696 /* Add space to store bad block list. 3697 * This reserves the space even on arrays where it cannot 3698 * be used - I wonder if that matters 3699 */ 3700 return badblocks_init(&rdev->badblocks, 0); 3701 } 3702 EXPORT_SYMBOL_GPL(md_rdev_init); 3703 /* 3704 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3705 * 3706 * mark the device faulty if: 3707 * 3708 * - the device is nonexistent (zero size) 3709 * - the device has no valid superblock 3710 * 3711 * a faulty rdev _never_ has rdev->sb set. 3712 */ 3713 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3714 { 3715 char b[BDEVNAME_SIZE]; 3716 int err; 3717 struct md_rdev *rdev; 3718 sector_t size; 3719 3720 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3721 if (!rdev) 3722 return ERR_PTR(-ENOMEM); 3723 3724 err = md_rdev_init(rdev); 3725 if (err) 3726 goto abort_free; 3727 err = alloc_disk_sb(rdev); 3728 if (err) 3729 goto abort_free; 3730 3731 err = lock_rdev(rdev, newdev, super_format == -2); 3732 if (err) 3733 goto abort_free; 3734 3735 kobject_init(&rdev->kobj, &rdev_ktype); 3736 3737 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3738 if (!size) { 3739 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3740 bdevname(rdev->bdev,b)); 3741 err = -EINVAL; 3742 goto abort_free; 3743 } 3744 3745 if (super_format >= 0) { 3746 err = super_types[super_format]. 3747 load_super(rdev, NULL, super_minor); 3748 if (err == -EINVAL) { 3749 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3750 bdevname(rdev->bdev,b), 3751 super_format, super_minor); 3752 goto abort_free; 3753 } 3754 if (err < 0) { 3755 pr_warn("md: could not read %s's sb, not importing!\n", 3756 bdevname(rdev->bdev,b)); 3757 goto abort_free; 3758 } 3759 } 3760 3761 return rdev; 3762 3763 abort_free: 3764 if (rdev->bdev) 3765 unlock_rdev(rdev); 3766 md_rdev_clear(rdev); 3767 kfree(rdev); 3768 return ERR_PTR(err); 3769 } 3770 3771 /* 3772 * Check a full RAID array for plausibility 3773 */ 3774 3775 static int analyze_sbs(struct mddev *mddev) 3776 { 3777 int i; 3778 struct md_rdev *rdev, *freshest, *tmp; 3779 char b[BDEVNAME_SIZE]; 3780 3781 freshest = NULL; 3782 rdev_for_each_safe(rdev, tmp, mddev) 3783 switch (super_types[mddev->major_version]. 3784 load_super(rdev, freshest, mddev->minor_version)) { 3785 case 1: 3786 freshest = rdev; 3787 break; 3788 case 0: 3789 break; 3790 default: 3791 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3792 bdevname(rdev->bdev,b)); 3793 md_kick_rdev_from_array(rdev); 3794 } 3795 3796 /* Cannot find a valid fresh disk */ 3797 if (!freshest) { 3798 pr_warn("md: cannot find a valid disk\n"); 3799 return -EINVAL; 3800 } 3801 3802 super_types[mddev->major_version]. 3803 validate_super(mddev, freshest); 3804 3805 i = 0; 3806 rdev_for_each_safe(rdev, tmp, mddev) { 3807 if (mddev->max_disks && 3808 (rdev->desc_nr >= mddev->max_disks || 3809 i > mddev->max_disks)) { 3810 pr_warn("md: %s: %s: only %d devices permitted\n", 3811 mdname(mddev), bdevname(rdev->bdev, b), 3812 mddev->max_disks); 3813 md_kick_rdev_from_array(rdev); 3814 continue; 3815 } 3816 if (rdev != freshest) { 3817 if (super_types[mddev->major_version]. 3818 validate_super(mddev, rdev)) { 3819 pr_warn("md: kicking non-fresh %s from array!\n", 3820 bdevname(rdev->bdev,b)); 3821 md_kick_rdev_from_array(rdev); 3822 continue; 3823 } 3824 } 3825 if (mddev->level == LEVEL_MULTIPATH) { 3826 rdev->desc_nr = i++; 3827 rdev->raid_disk = rdev->desc_nr; 3828 set_bit(In_sync, &rdev->flags); 3829 } else if (rdev->raid_disk >= 3830 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3831 !test_bit(Journal, &rdev->flags)) { 3832 rdev->raid_disk = -1; 3833 clear_bit(In_sync, &rdev->flags); 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 /* Read a fixed-point number. 3841 * Numbers in sysfs attributes should be in "standard" units where 3842 * possible, so time should be in seconds. 3843 * However we internally use a a much smaller unit such as 3844 * milliseconds or jiffies. 3845 * This function takes a decimal number with a possible fractional 3846 * component, and produces an integer which is the result of 3847 * multiplying that number by 10^'scale'. 3848 * all without any floating-point arithmetic. 3849 */ 3850 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3851 { 3852 unsigned long result = 0; 3853 long decimals = -1; 3854 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3855 if (*cp == '.') 3856 decimals = 0; 3857 else if (decimals < scale) { 3858 unsigned int value; 3859 value = *cp - '0'; 3860 result = result * 10 + value; 3861 if (decimals >= 0) 3862 decimals++; 3863 } 3864 cp++; 3865 } 3866 if (*cp == '\n') 3867 cp++; 3868 if (*cp) 3869 return -EINVAL; 3870 if (decimals < 0) 3871 decimals = 0; 3872 *res = result * int_pow(10, scale - decimals); 3873 return 0; 3874 } 3875 3876 static ssize_t 3877 safe_delay_show(struct mddev *mddev, char *page) 3878 { 3879 int msec = (mddev->safemode_delay*1000)/HZ; 3880 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3881 } 3882 static ssize_t 3883 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3884 { 3885 unsigned long msec; 3886 3887 if (mddev_is_clustered(mddev)) { 3888 pr_warn("md: Safemode is disabled for clustered mode\n"); 3889 return -EINVAL; 3890 } 3891 3892 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3893 return -EINVAL; 3894 if (msec == 0) 3895 mddev->safemode_delay = 0; 3896 else { 3897 unsigned long old_delay = mddev->safemode_delay; 3898 unsigned long new_delay = (msec*HZ)/1000; 3899 3900 if (new_delay == 0) 3901 new_delay = 1; 3902 mddev->safemode_delay = new_delay; 3903 if (new_delay < old_delay || old_delay == 0) 3904 mod_timer(&mddev->safemode_timer, jiffies+1); 3905 } 3906 return len; 3907 } 3908 static struct md_sysfs_entry md_safe_delay = 3909 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3910 3911 static ssize_t 3912 level_show(struct mddev *mddev, char *page) 3913 { 3914 struct md_personality *p; 3915 int ret; 3916 spin_lock(&mddev->lock); 3917 p = mddev->pers; 3918 if (p) 3919 ret = sprintf(page, "%s\n", p->name); 3920 else if (mddev->clevel[0]) 3921 ret = sprintf(page, "%s\n", mddev->clevel); 3922 else if (mddev->level != LEVEL_NONE) 3923 ret = sprintf(page, "%d\n", mddev->level); 3924 else 3925 ret = 0; 3926 spin_unlock(&mddev->lock); 3927 return ret; 3928 } 3929 3930 static ssize_t 3931 level_store(struct mddev *mddev, const char *buf, size_t len) 3932 { 3933 char clevel[16]; 3934 ssize_t rv; 3935 size_t slen = len; 3936 struct md_personality *pers, *oldpers; 3937 long level; 3938 void *priv, *oldpriv; 3939 struct md_rdev *rdev; 3940 3941 if (slen == 0 || slen >= sizeof(clevel)) 3942 return -EINVAL; 3943 3944 rv = mddev_lock(mddev); 3945 if (rv) 3946 return rv; 3947 3948 if (mddev->pers == NULL) { 3949 strncpy(mddev->clevel, buf, slen); 3950 if (mddev->clevel[slen-1] == '\n') 3951 slen--; 3952 mddev->clevel[slen] = 0; 3953 mddev->level = LEVEL_NONE; 3954 rv = len; 3955 goto out_unlock; 3956 } 3957 rv = -EROFS; 3958 if (mddev->ro) 3959 goto out_unlock; 3960 3961 /* request to change the personality. Need to ensure: 3962 * - array is not engaged in resync/recovery/reshape 3963 * - old personality can be suspended 3964 * - new personality will access other array. 3965 */ 3966 3967 rv = -EBUSY; 3968 if (mddev->sync_thread || 3969 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3970 mddev->reshape_position != MaxSector || 3971 mddev->sysfs_active) 3972 goto out_unlock; 3973 3974 rv = -EINVAL; 3975 if (!mddev->pers->quiesce) { 3976 pr_warn("md: %s: %s does not support online personality change\n", 3977 mdname(mddev), mddev->pers->name); 3978 goto out_unlock; 3979 } 3980 3981 /* Now find the new personality */ 3982 strncpy(clevel, buf, slen); 3983 if (clevel[slen-1] == '\n') 3984 slen--; 3985 clevel[slen] = 0; 3986 if (kstrtol(clevel, 10, &level)) 3987 level = LEVEL_NONE; 3988 3989 if (request_module("md-%s", clevel) != 0) 3990 request_module("md-level-%s", clevel); 3991 spin_lock(&pers_lock); 3992 pers = find_pers(level, clevel); 3993 if (!pers || !try_module_get(pers->owner)) { 3994 spin_unlock(&pers_lock); 3995 pr_warn("md: personality %s not loaded\n", clevel); 3996 rv = -EINVAL; 3997 goto out_unlock; 3998 } 3999 spin_unlock(&pers_lock); 4000 4001 if (pers == mddev->pers) { 4002 /* Nothing to do! */ 4003 module_put(pers->owner); 4004 rv = len; 4005 goto out_unlock; 4006 } 4007 if (!pers->takeover) { 4008 module_put(pers->owner); 4009 pr_warn("md: %s: %s does not support personality takeover\n", 4010 mdname(mddev), clevel); 4011 rv = -EINVAL; 4012 goto out_unlock; 4013 } 4014 4015 rdev_for_each(rdev, mddev) 4016 rdev->new_raid_disk = rdev->raid_disk; 4017 4018 /* ->takeover must set new_* and/or delta_disks 4019 * if it succeeds, and may set them when it fails. 4020 */ 4021 priv = pers->takeover(mddev); 4022 if (IS_ERR(priv)) { 4023 mddev->new_level = mddev->level; 4024 mddev->new_layout = mddev->layout; 4025 mddev->new_chunk_sectors = mddev->chunk_sectors; 4026 mddev->raid_disks -= mddev->delta_disks; 4027 mddev->delta_disks = 0; 4028 mddev->reshape_backwards = 0; 4029 module_put(pers->owner); 4030 pr_warn("md: %s: %s would not accept array\n", 4031 mdname(mddev), clevel); 4032 rv = PTR_ERR(priv); 4033 goto out_unlock; 4034 } 4035 4036 /* Looks like we have a winner */ 4037 mddev_suspend(mddev); 4038 mddev_detach(mddev); 4039 4040 spin_lock(&mddev->lock); 4041 oldpers = mddev->pers; 4042 oldpriv = mddev->private; 4043 mddev->pers = pers; 4044 mddev->private = priv; 4045 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4046 mddev->level = mddev->new_level; 4047 mddev->layout = mddev->new_layout; 4048 mddev->chunk_sectors = mddev->new_chunk_sectors; 4049 mddev->delta_disks = 0; 4050 mddev->reshape_backwards = 0; 4051 mddev->degraded = 0; 4052 spin_unlock(&mddev->lock); 4053 4054 if (oldpers->sync_request == NULL && 4055 mddev->external) { 4056 /* We are converting from a no-redundancy array 4057 * to a redundancy array and metadata is managed 4058 * externally so we need to be sure that writes 4059 * won't block due to a need to transition 4060 * clean->dirty 4061 * until external management is started. 4062 */ 4063 mddev->in_sync = 0; 4064 mddev->safemode_delay = 0; 4065 mddev->safemode = 0; 4066 } 4067 4068 oldpers->free(mddev, oldpriv); 4069 4070 if (oldpers->sync_request == NULL && 4071 pers->sync_request != NULL) { 4072 /* need to add the md_redundancy_group */ 4073 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4074 pr_warn("md: cannot register extra attributes for %s\n", 4075 mdname(mddev)); 4076 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4077 } 4078 if (oldpers->sync_request != NULL && 4079 pers->sync_request == NULL) { 4080 /* need to remove the md_redundancy_group */ 4081 if (mddev->to_remove == NULL) 4082 mddev->to_remove = &md_redundancy_group; 4083 } 4084 4085 module_put(oldpers->owner); 4086 4087 rdev_for_each(rdev, mddev) { 4088 if (rdev->raid_disk < 0) 4089 continue; 4090 if (rdev->new_raid_disk >= mddev->raid_disks) 4091 rdev->new_raid_disk = -1; 4092 if (rdev->new_raid_disk == rdev->raid_disk) 4093 continue; 4094 sysfs_unlink_rdev(mddev, rdev); 4095 } 4096 rdev_for_each(rdev, mddev) { 4097 if (rdev->raid_disk < 0) 4098 continue; 4099 if (rdev->new_raid_disk == rdev->raid_disk) 4100 continue; 4101 rdev->raid_disk = rdev->new_raid_disk; 4102 if (rdev->raid_disk < 0) 4103 clear_bit(In_sync, &rdev->flags); 4104 else { 4105 if (sysfs_link_rdev(mddev, rdev)) 4106 pr_warn("md: cannot register rd%d for %s after level change\n", 4107 rdev->raid_disk, mdname(mddev)); 4108 } 4109 } 4110 4111 if (pers->sync_request == NULL) { 4112 /* this is now an array without redundancy, so 4113 * it must always be in_sync 4114 */ 4115 mddev->in_sync = 1; 4116 del_timer_sync(&mddev->safemode_timer); 4117 } 4118 blk_set_stacking_limits(&mddev->queue->limits); 4119 pers->run(mddev); 4120 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4121 mddev_resume(mddev); 4122 if (!mddev->thread) 4123 md_update_sb(mddev, 1); 4124 sysfs_notify_dirent_safe(mddev->sysfs_level); 4125 md_new_event(mddev); 4126 rv = len; 4127 out_unlock: 4128 mddev_unlock(mddev); 4129 return rv; 4130 } 4131 4132 static struct md_sysfs_entry md_level = 4133 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4134 4135 static ssize_t 4136 layout_show(struct mddev *mddev, char *page) 4137 { 4138 /* just a number, not meaningful for all levels */ 4139 if (mddev->reshape_position != MaxSector && 4140 mddev->layout != mddev->new_layout) 4141 return sprintf(page, "%d (%d)\n", 4142 mddev->new_layout, mddev->layout); 4143 return sprintf(page, "%d\n", mddev->layout); 4144 } 4145 4146 static ssize_t 4147 layout_store(struct mddev *mddev, const char *buf, size_t len) 4148 { 4149 unsigned int n; 4150 int err; 4151 4152 err = kstrtouint(buf, 10, &n); 4153 if (err < 0) 4154 return err; 4155 err = mddev_lock(mddev); 4156 if (err) 4157 return err; 4158 4159 if (mddev->pers) { 4160 if (mddev->pers->check_reshape == NULL) 4161 err = -EBUSY; 4162 else if (mddev->ro) 4163 err = -EROFS; 4164 else { 4165 mddev->new_layout = n; 4166 err = mddev->pers->check_reshape(mddev); 4167 if (err) 4168 mddev->new_layout = mddev->layout; 4169 } 4170 } else { 4171 mddev->new_layout = n; 4172 if (mddev->reshape_position == MaxSector) 4173 mddev->layout = n; 4174 } 4175 mddev_unlock(mddev); 4176 return err ?: len; 4177 } 4178 static struct md_sysfs_entry md_layout = 4179 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4180 4181 static ssize_t 4182 raid_disks_show(struct mddev *mddev, char *page) 4183 { 4184 if (mddev->raid_disks == 0) 4185 return 0; 4186 if (mddev->reshape_position != MaxSector && 4187 mddev->delta_disks != 0) 4188 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4189 mddev->raid_disks - mddev->delta_disks); 4190 return sprintf(page, "%d\n", mddev->raid_disks); 4191 } 4192 4193 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4194 4195 static ssize_t 4196 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4197 { 4198 unsigned int n; 4199 int err; 4200 4201 err = kstrtouint(buf, 10, &n); 4202 if (err < 0) 4203 return err; 4204 4205 err = mddev_lock(mddev); 4206 if (err) 4207 return err; 4208 if (mddev->pers) 4209 err = update_raid_disks(mddev, n); 4210 else if (mddev->reshape_position != MaxSector) { 4211 struct md_rdev *rdev; 4212 int olddisks = mddev->raid_disks - mddev->delta_disks; 4213 4214 err = -EINVAL; 4215 rdev_for_each(rdev, mddev) { 4216 if (olddisks < n && 4217 rdev->data_offset < rdev->new_data_offset) 4218 goto out_unlock; 4219 if (olddisks > n && 4220 rdev->data_offset > rdev->new_data_offset) 4221 goto out_unlock; 4222 } 4223 err = 0; 4224 mddev->delta_disks = n - olddisks; 4225 mddev->raid_disks = n; 4226 mddev->reshape_backwards = (mddev->delta_disks < 0); 4227 } else 4228 mddev->raid_disks = n; 4229 out_unlock: 4230 mddev_unlock(mddev); 4231 return err ? err : len; 4232 } 4233 static struct md_sysfs_entry md_raid_disks = 4234 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4235 4236 static ssize_t 4237 uuid_show(struct mddev *mddev, char *page) 4238 { 4239 return sprintf(page, "%pU\n", mddev->uuid); 4240 } 4241 static struct md_sysfs_entry md_uuid = 4242 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4243 4244 static ssize_t 4245 chunk_size_show(struct mddev *mddev, char *page) 4246 { 4247 if (mddev->reshape_position != MaxSector && 4248 mddev->chunk_sectors != mddev->new_chunk_sectors) 4249 return sprintf(page, "%d (%d)\n", 4250 mddev->new_chunk_sectors << 9, 4251 mddev->chunk_sectors << 9); 4252 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4253 } 4254 4255 static ssize_t 4256 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4257 { 4258 unsigned long n; 4259 int err; 4260 4261 err = kstrtoul(buf, 10, &n); 4262 if (err < 0) 4263 return err; 4264 4265 err = mddev_lock(mddev); 4266 if (err) 4267 return err; 4268 if (mddev->pers) { 4269 if (mddev->pers->check_reshape == NULL) 4270 err = -EBUSY; 4271 else if (mddev->ro) 4272 err = -EROFS; 4273 else { 4274 mddev->new_chunk_sectors = n >> 9; 4275 err = mddev->pers->check_reshape(mddev); 4276 if (err) 4277 mddev->new_chunk_sectors = mddev->chunk_sectors; 4278 } 4279 } else { 4280 mddev->new_chunk_sectors = n >> 9; 4281 if (mddev->reshape_position == MaxSector) 4282 mddev->chunk_sectors = n >> 9; 4283 } 4284 mddev_unlock(mddev); 4285 return err ?: len; 4286 } 4287 static struct md_sysfs_entry md_chunk_size = 4288 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4289 4290 static ssize_t 4291 resync_start_show(struct mddev *mddev, char *page) 4292 { 4293 if (mddev->recovery_cp == MaxSector) 4294 return sprintf(page, "none\n"); 4295 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4296 } 4297 4298 static ssize_t 4299 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4300 { 4301 unsigned long long n; 4302 int err; 4303 4304 if (cmd_match(buf, "none")) 4305 n = MaxSector; 4306 else { 4307 err = kstrtoull(buf, 10, &n); 4308 if (err < 0) 4309 return err; 4310 if (n != (sector_t)n) 4311 return -EINVAL; 4312 } 4313 4314 err = mddev_lock(mddev); 4315 if (err) 4316 return err; 4317 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4318 err = -EBUSY; 4319 4320 if (!err) { 4321 mddev->recovery_cp = n; 4322 if (mddev->pers) 4323 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4324 } 4325 mddev_unlock(mddev); 4326 return err ?: len; 4327 } 4328 static struct md_sysfs_entry md_resync_start = 4329 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4330 resync_start_show, resync_start_store); 4331 4332 /* 4333 * The array state can be: 4334 * 4335 * clear 4336 * No devices, no size, no level 4337 * Equivalent to STOP_ARRAY ioctl 4338 * inactive 4339 * May have some settings, but array is not active 4340 * all IO results in error 4341 * When written, doesn't tear down array, but just stops it 4342 * suspended (not supported yet) 4343 * All IO requests will block. The array can be reconfigured. 4344 * Writing this, if accepted, will block until array is quiescent 4345 * readonly 4346 * no resync can happen. no superblocks get written. 4347 * write requests fail 4348 * read-auto 4349 * like readonly, but behaves like 'clean' on a write request. 4350 * 4351 * clean - no pending writes, but otherwise active. 4352 * When written to inactive array, starts without resync 4353 * If a write request arrives then 4354 * if metadata is known, mark 'dirty' and switch to 'active'. 4355 * if not known, block and switch to write-pending 4356 * If written to an active array that has pending writes, then fails. 4357 * active 4358 * fully active: IO and resync can be happening. 4359 * When written to inactive array, starts with resync 4360 * 4361 * write-pending 4362 * clean, but writes are blocked waiting for 'active' to be written. 4363 * 4364 * active-idle 4365 * like active, but no writes have been seen for a while (100msec). 4366 * 4367 * broken 4368 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4369 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4370 * when a member is gone, so this state will at least alert the 4371 * user that something is wrong. 4372 */ 4373 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4374 write_pending, active_idle, broken, bad_word}; 4375 static char *array_states[] = { 4376 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4377 "write-pending", "active-idle", "broken", NULL }; 4378 4379 static int match_word(const char *word, char **list) 4380 { 4381 int n; 4382 for (n=0; list[n]; n++) 4383 if (cmd_match(word, list[n])) 4384 break; 4385 return n; 4386 } 4387 4388 static ssize_t 4389 array_state_show(struct mddev *mddev, char *page) 4390 { 4391 enum array_state st = inactive; 4392 4393 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4394 switch(mddev->ro) { 4395 case 1: 4396 st = readonly; 4397 break; 4398 case 2: 4399 st = read_auto; 4400 break; 4401 case 0: 4402 spin_lock(&mddev->lock); 4403 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4404 st = write_pending; 4405 else if (mddev->in_sync) 4406 st = clean; 4407 else if (mddev->safemode) 4408 st = active_idle; 4409 else 4410 st = active; 4411 spin_unlock(&mddev->lock); 4412 } 4413 4414 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4415 st = broken; 4416 } else { 4417 if (list_empty(&mddev->disks) && 4418 mddev->raid_disks == 0 && 4419 mddev->dev_sectors == 0) 4420 st = clear; 4421 else 4422 st = inactive; 4423 } 4424 return sprintf(page, "%s\n", array_states[st]); 4425 } 4426 4427 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4428 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4429 static int do_md_run(struct mddev *mddev); 4430 static int restart_array(struct mddev *mddev); 4431 4432 static ssize_t 4433 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4434 { 4435 int err = 0; 4436 enum array_state st = match_word(buf, array_states); 4437 4438 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4439 /* don't take reconfig_mutex when toggling between 4440 * clean and active 4441 */ 4442 spin_lock(&mddev->lock); 4443 if (st == active) { 4444 restart_array(mddev); 4445 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4446 md_wakeup_thread(mddev->thread); 4447 wake_up(&mddev->sb_wait); 4448 } else /* st == clean */ { 4449 restart_array(mddev); 4450 if (!set_in_sync(mddev)) 4451 err = -EBUSY; 4452 } 4453 if (!err) 4454 sysfs_notify_dirent_safe(mddev->sysfs_state); 4455 spin_unlock(&mddev->lock); 4456 return err ?: len; 4457 } 4458 err = mddev_lock(mddev); 4459 if (err) 4460 return err; 4461 err = -EINVAL; 4462 switch(st) { 4463 case bad_word: 4464 break; 4465 case clear: 4466 /* stopping an active array */ 4467 err = do_md_stop(mddev, 0, NULL); 4468 break; 4469 case inactive: 4470 /* stopping an active array */ 4471 if (mddev->pers) 4472 err = do_md_stop(mddev, 2, NULL); 4473 else 4474 err = 0; /* already inactive */ 4475 break; 4476 case suspended: 4477 break; /* not supported yet */ 4478 case readonly: 4479 if (mddev->pers) 4480 err = md_set_readonly(mddev, NULL); 4481 else { 4482 mddev->ro = 1; 4483 set_disk_ro(mddev->gendisk, 1); 4484 err = do_md_run(mddev); 4485 } 4486 break; 4487 case read_auto: 4488 if (mddev->pers) { 4489 if (mddev->ro == 0) 4490 err = md_set_readonly(mddev, NULL); 4491 else if (mddev->ro == 1) 4492 err = restart_array(mddev); 4493 if (err == 0) { 4494 mddev->ro = 2; 4495 set_disk_ro(mddev->gendisk, 0); 4496 } 4497 } else { 4498 mddev->ro = 2; 4499 err = do_md_run(mddev); 4500 } 4501 break; 4502 case clean: 4503 if (mddev->pers) { 4504 err = restart_array(mddev); 4505 if (err) 4506 break; 4507 spin_lock(&mddev->lock); 4508 if (!set_in_sync(mddev)) 4509 err = -EBUSY; 4510 spin_unlock(&mddev->lock); 4511 } else 4512 err = -EINVAL; 4513 break; 4514 case active: 4515 if (mddev->pers) { 4516 err = restart_array(mddev); 4517 if (err) 4518 break; 4519 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4520 wake_up(&mddev->sb_wait); 4521 err = 0; 4522 } else { 4523 mddev->ro = 0; 4524 set_disk_ro(mddev->gendisk, 0); 4525 err = do_md_run(mddev); 4526 } 4527 break; 4528 case write_pending: 4529 case active_idle: 4530 case broken: 4531 /* these cannot be set */ 4532 break; 4533 } 4534 4535 if (!err) { 4536 if (mddev->hold_active == UNTIL_IOCTL) 4537 mddev->hold_active = 0; 4538 sysfs_notify_dirent_safe(mddev->sysfs_state); 4539 } 4540 mddev_unlock(mddev); 4541 return err ?: len; 4542 } 4543 static struct md_sysfs_entry md_array_state = 4544 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4545 4546 static ssize_t 4547 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4548 return sprintf(page, "%d\n", 4549 atomic_read(&mddev->max_corr_read_errors)); 4550 } 4551 4552 static ssize_t 4553 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4554 { 4555 unsigned int n; 4556 int rv; 4557 4558 rv = kstrtouint(buf, 10, &n); 4559 if (rv < 0) 4560 return rv; 4561 atomic_set(&mddev->max_corr_read_errors, n); 4562 return len; 4563 } 4564 4565 static struct md_sysfs_entry max_corr_read_errors = 4566 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4567 max_corrected_read_errors_store); 4568 4569 static ssize_t 4570 null_show(struct mddev *mddev, char *page) 4571 { 4572 return -EINVAL; 4573 } 4574 4575 /* need to ensure rdev_delayed_delete() has completed */ 4576 static void flush_rdev_wq(struct mddev *mddev) 4577 { 4578 struct md_rdev *rdev; 4579 4580 rcu_read_lock(); 4581 rdev_for_each_rcu(rdev, mddev) 4582 if (work_pending(&rdev->del_work)) { 4583 flush_workqueue(md_rdev_misc_wq); 4584 break; 4585 } 4586 rcu_read_unlock(); 4587 } 4588 4589 static ssize_t 4590 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4591 { 4592 /* buf must be %d:%d\n? giving major and minor numbers */ 4593 /* The new device is added to the array. 4594 * If the array has a persistent superblock, we read the 4595 * superblock to initialise info and check validity. 4596 * Otherwise, only checking done is that in bind_rdev_to_array, 4597 * which mainly checks size. 4598 */ 4599 char *e; 4600 int major = simple_strtoul(buf, &e, 10); 4601 int minor; 4602 dev_t dev; 4603 struct md_rdev *rdev; 4604 int err; 4605 4606 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4607 return -EINVAL; 4608 minor = simple_strtoul(e+1, &e, 10); 4609 if (*e && *e != '\n') 4610 return -EINVAL; 4611 dev = MKDEV(major, minor); 4612 if (major != MAJOR(dev) || 4613 minor != MINOR(dev)) 4614 return -EOVERFLOW; 4615 4616 flush_rdev_wq(mddev); 4617 err = mddev_lock(mddev); 4618 if (err) 4619 return err; 4620 if (mddev->persistent) { 4621 rdev = md_import_device(dev, mddev->major_version, 4622 mddev->minor_version); 4623 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4624 struct md_rdev *rdev0 4625 = list_entry(mddev->disks.next, 4626 struct md_rdev, same_set); 4627 err = super_types[mddev->major_version] 4628 .load_super(rdev, rdev0, mddev->minor_version); 4629 if (err < 0) 4630 goto out; 4631 } 4632 } else if (mddev->external) 4633 rdev = md_import_device(dev, -2, -1); 4634 else 4635 rdev = md_import_device(dev, -1, -1); 4636 4637 if (IS_ERR(rdev)) { 4638 mddev_unlock(mddev); 4639 return PTR_ERR(rdev); 4640 } 4641 err = bind_rdev_to_array(rdev, mddev); 4642 out: 4643 if (err) 4644 export_rdev(rdev); 4645 mddev_unlock(mddev); 4646 if (!err) 4647 md_new_event(mddev); 4648 return err ? err : len; 4649 } 4650 4651 static struct md_sysfs_entry md_new_device = 4652 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4653 4654 static ssize_t 4655 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4656 { 4657 char *end; 4658 unsigned long chunk, end_chunk; 4659 int err; 4660 4661 err = mddev_lock(mddev); 4662 if (err) 4663 return err; 4664 if (!mddev->bitmap) 4665 goto out; 4666 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4667 while (*buf) { 4668 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4669 if (buf == end) break; 4670 if (*end == '-') { /* range */ 4671 buf = end + 1; 4672 end_chunk = simple_strtoul(buf, &end, 0); 4673 if (buf == end) break; 4674 } 4675 if (*end && !isspace(*end)) break; 4676 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4677 buf = skip_spaces(end); 4678 } 4679 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4680 out: 4681 mddev_unlock(mddev); 4682 return len; 4683 } 4684 4685 static struct md_sysfs_entry md_bitmap = 4686 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4687 4688 static ssize_t 4689 size_show(struct mddev *mddev, char *page) 4690 { 4691 return sprintf(page, "%llu\n", 4692 (unsigned long long)mddev->dev_sectors / 2); 4693 } 4694 4695 static int update_size(struct mddev *mddev, sector_t num_sectors); 4696 4697 static ssize_t 4698 size_store(struct mddev *mddev, const char *buf, size_t len) 4699 { 4700 /* If array is inactive, we can reduce the component size, but 4701 * not increase it (except from 0). 4702 * If array is active, we can try an on-line resize 4703 */ 4704 sector_t sectors; 4705 int err = strict_blocks_to_sectors(buf, §ors); 4706 4707 if (err < 0) 4708 return err; 4709 err = mddev_lock(mddev); 4710 if (err) 4711 return err; 4712 if (mddev->pers) { 4713 err = update_size(mddev, sectors); 4714 if (err == 0) 4715 md_update_sb(mddev, 1); 4716 } else { 4717 if (mddev->dev_sectors == 0 || 4718 mddev->dev_sectors > sectors) 4719 mddev->dev_sectors = sectors; 4720 else 4721 err = -ENOSPC; 4722 } 4723 mddev_unlock(mddev); 4724 return err ? err : len; 4725 } 4726 4727 static struct md_sysfs_entry md_size = 4728 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4729 4730 /* Metadata version. 4731 * This is one of 4732 * 'none' for arrays with no metadata (good luck...) 4733 * 'external' for arrays with externally managed metadata, 4734 * or N.M for internally known formats 4735 */ 4736 static ssize_t 4737 metadata_show(struct mddev *mddev, char *page) 4738 { 4739 if (mddev->persistent) 4740 return sprintf(page, "%d.%d\n", 4741 mddev->major_version, mddev->minor_version); 4742 else if (mddev->external) 4743 return sprintf(page, "external:%s\n", mddev->metadata_type); 4744 else 4745 return sprintf(page, "none\n"); 4746 } 4747 4748 static ssize_t 4749 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4750 { 4751 int major, minor; 4752 char *e; 4753 int err; 4754 /* Changing the details of 'external' metadata is 4755 * always permitted. Otherwise there must be 4756 * no devices attached to the array. 4757 */ 4758 4759 err = mddev_lock(mddev); 4760 if (err) 4761 return err; 4762 err = -EBUSY; 4763 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4764 ; 4765 else if (!list_empty(&mddev->disks)) 4766 goto out_unlock; 4767 4768 err = 0; 4769 if (cmd_match(buf, "none")) { 4770 mddev->persistent = 0; 4771 mddev->external = 0; 4772 mddev->major_version = 0; 4773 mddev->minor_version = 90; 4774 goto out_unlock; 4775 } 4776 if (strncmp(buf, "external:", 9) == 0) { 4777 size_t namelen = len-9; 4778 if (namelen >= sizeof(mddev->metadata_type)) 4779 namelen = sizeof(mddev->metadata_type)-1; 4780 strncpy(mddev->metadata_type, buf+9, namelen); 4781 mddev->metadata_type[namelen] = 0; 4782 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4783 mddev->metadata_type[--namelen] = 0; 4784 mddev->persistent = 0; 4785 mddev->external = 1; 4786 mddev->major_version = 0; 4787 mddev->minor_version = 90; 4788 goto out_unlock; 4789 } 4790 major = simple_strtoul(buf, &e, 10); 4791 err = -EINVAL; 4792 if (e==buf || *e != '.') 4793 goto out_unlock; 4794 buf = e+1; 4795 minor = simple_strtoul(buf, &e, 10); 4796 if (e==buf || (*e && *e != '\n') ) 4797 goto out_unlock; 4798 err = -ENOENT; 4799 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4800 goto out_unlock; 4801 mddev->major_version = major; 4802 mddev->minor_version = minor; 4803 mddev->persistent = 1; 4804 mddev->external = 0; 4805 err = 0; 4806 out_unlock: 4807 mddev_unlock(mddev); 4808 return err ?: len; 4809 } 4810 4811 static struct md_sysfs_entry md_metadata = 4812 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4813 4814 static ssize_t 4815 action_show(struct mddev *mddev, char *page) 4816 { 4817 char *type = "idle"; 4818 unsigned long recovery = mddev->recovery; 4819 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4820 type = "frozen"; 4821 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4822 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4823 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4824 type = "reshape"; 4825 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4826 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4827 type = "resync"; 4828 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4829 type = "check"; 4830 else 4831 type = "repair"; 4832 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4833 type = "recover"; 4834 else if (mddev->reshape_position != MaxSector) 4835 type = "reshape"; 4836 } 4837 return sprintf(page, "%s\n", type); 4838 } 4839 4840 static ssize_t 4841 action_store(struct mddev *mddev, const char *page, size_t len) 4842 { 4843 if (!mddev->pers || !mddev->pers->sync_request) 4844 return -EINVAL; 4845 4846 4847 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4848 if (cmd_match(page, "frozen")) 4849 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4850 else 4851 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4852 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4853 mddev_lock(mddev) == 0) { 4854 if (work_pending(&mddev->del_work)) 4855 flush_workqueue(md_misc_wq); 4856 if (mddev->sync_thread) { 4857 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4858 md_reap_sync_thread(mddev); 4859 } 4860 mddev_unlock(mddev); 4861 } 4862 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4863 return -EBUSY; 4864 else if (cmd_match(page, "resync")) 4865 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4866 else if (cmd_match(page, "recover")) { 4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4868 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4869 } else if (cmd_match(page, "reshape")) { 4870 int err; 4871 if (mddev->pers->start_reshape == NULL) 4872 return -EINVAL; 4873 err = mddev_lock(mddev); 4874 if (!err) { 4875 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4876 err = -EBUSY; 4877 else { 4878 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4879 err = mddev->pers->start_reshape(mddev); 4880 } 4881 mddev_unlock(mddev); 4882 } 4883 if (err) 4884 return err; 4885 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4886 } else { 4887 if (cmd_match(page, "check")) 4888 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4889 else if (!cmd_match(page, "repair")) 4890 return -EINVAL; 4891 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4892 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4893 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4894 } 4895 if (mddev->ro == 2) { 4896 /* A write to sync_action is enough to justify 4897 * canceling read-auto mode 4898 */ 4899 mddev->ro = 0; 4900 md_wakeup_thread(mddev->sync_thread); 4901 } 4902 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4903 md_wakeup_thread(mddev->thread); 4904 sysfs_notify_dirent_safe(mddev->sysfs_action); 4905 return len; 4906 } 4907 4908 static struct md_sysfs_entry md_scan_mode = 4909 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4910 4911 static ssize_t 4912 last_sync_action_show(struct mddev *mddev, char *page) 4913 { 4914 return sprintf(page, "%s\n", mddev->last_sync_action); 4915 } 4916 4917 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4918 4919 static ssize_t 4920 mismatch_cnt_show(struct mddev *mddev, char *page) 4921 { 4922 return sprintf(page, "%llu\n", 4923 (unsigned long long) 4924 atomic64_read(&mddev->resync_mismatches)); 4925 } 4926 4927 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4928 4929 static ssize_t 4930 sync_min_show(struct mddev *mddev, char *page) 4931 { 4932 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4933 mddev->sync_speed_min ? "local": "system"); 4934 } 4935 4936 static ssize_t 4937 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4938 { 4939 unsigned int min; 4940 int rv; 4941 4942 if (strncmp(buf, "system", 6)==0) { 4943 min = 0; 4944 } else { 4945 rv = kstrtouint(buf, 10, &min); 4946 if (rv < 0) 4947 return rv; 4948 if (min == 0) 4949 return -EINVAL; 4950 } 4951 mddev->sync_speed_min = min; 4952 return len; 4953 } 4954 4955 static struct md_sysfs_entry md_sync_min = 4956 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4957 4958 static ssize_t 4959 sync_max_show(struct mddev *mddev, char *page) 4960 { 4961 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4962 mddev->sync_speed_max ? "local": "system"); 4963 } 4964 4965 static ssize_t 4966 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4967 { 4968 unsigned int max; 4969 int rv; 4970 4971 if (strncmp(buf, "system", 6)==0) { 4972 max = 0; 4973 } else { 4974 rv = kstrtouint(buf, 10, &max); 4975 if (rv < 0) 4976 return rv; 4977 if (max == 0) 4978 return -EINVAL; 4979 } 4980 mddev->sync_speed_max = max; 4981 return len; 4982 } 4983 4984 static struct md_sysfs_entry md_sync_max = 4985 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4986 4987 static ssize_t 4988 degraded_show(struct mddev *mddev, char *page) 4989 { 4990 return sprintf(page, "%d\n", mddev->degraded); 4991 } 4992 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4993 4994 static ssize_t 4995 sync_force_parallel_show(struct mddev *mddev, char *page) 4996 { 4997 return sprintf(page, "%d\n", mddev->parallel_resync); 4998 } 4999 5000 static ssize_t 5001 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5002 { 5003 long n; 5004 5005 if (kstrtol(buf, 10, &n)) 5006 return -EINVAL; 5007 5008 if (n != 0 && n != 1) 5009 return -EINVAL; 5010 5011 mddev->parallel_resync = n; 5012 5013 if (mddev->sync_thread) 5014 wake_up(&resync_wait); 5015 5016 return len; 5017 } 5018 5019 /* force parallel resync, even with shared block devices */ 5020 static struct md_sysfs_entry md_sync_force_parallel = 5021 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5022 sync_force_parallel_show, sync_force_parallel_store); 5023 5024 static ssize_t 5025 sync_speed_show(struct mddev *mddev, char *page) 5026 { 5027 unsigned long resync, dt, db; 5028 if (mddev->curr_resync == 0) 5029 return sprintf(page, "none\n"); 5030 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5031 dt = (jiffies - mddev->resync_mark) / HZ; 5032 if (!dt) dt++; 5033 db = resync - mddev->resync_mark_cnt; 5034 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5035 } 5036 5037 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5038 5039 static ssize_t 5040 sync_completed_show(struct mddev *mddev, char *page) 5041 { 5042 unsigned long long max_sectors, resync; 5043 5044 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5045 return sprintf(page, "none\n"); 5046 5047 if (mddev->curr_resync == 1 || 5048 mddev->curr_resync == 2) 5049 return sprintf(page, "delayed\n"); 5050 5051 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5052 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5053 max_sectors = mddev->resync_max_sectors; 5054 else 5055 max_sectors = mddev->dev_sectors; 5056 5057 resync = mddev->curr_resync_completed; 5058 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5059 } 5060 5061 static struct md_sysfs_entry md_sync_completed = 5062 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5063 5064 static ssize_t 5065 min_sync_show(struct mddev *mddev, char *page) 5066 { 5067 return sprintf(page, "%llu\n", 5068 (unsigned long long)mddev->resync_min); 5069 } 5070 static ssize_t 5071 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5072 { 5073 unsigned long long min; 5074 int err; 5075 5076 if (kstrtoull(buf, 10, &min)) 5077 return -EINVAL; 5078 5079 spin_lock(&mddev->lock); 5080 err = -EINVAL; 5081 if (min > mddev->resync_max) 5082 goto out_unlock; 5083 5084 err = -EBUSY; 5085 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5086 goto out_unlock; 5087 5088 /* Round down to multiple of 4K for safety */ 5089 mddev->resync_min = round_down(min, 8); 5090 err = 0; 5091 5092 out_unlock: 5093 spin_unlock(&mddev->lock); 5094 return err ?: len; 5095 } 5096 5097 static struct md_sysfs_entry md_min_sync = 5098 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5099 5100 static ssize_t 5101 max_sync_show(struct mddev *mddev, char *page) 5102 { 5103 if (mddev->resync_max == MaxSector) 5104 return sprintf(page, "max\n"); 5105 else 5106 return sprintf(page, "%llu\n", 5107 (unsigned long long)mddev->resync_max); 5108 } 5109 static ssize_t 5110 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5111 { 5112 int err; 5113 spin_lock(&mddev->lock); 5114 if (strncmp(buf, "max", 3) == 0) 5115 mddev->resync_max = MaxSector; 5116 else { 5117 unsigned long long max; 5118 int chunk; 5119 5120 err = -EINVAL; 5121 if (kstrtoull(buf, 10, &max)) 5122 goto out_unlock; 5123 if (max < mddev->resync_min) 5124 goto out_unlock; 5125 5126 err = -EBUSY; 5127 if (max < mddev->resync_max && 5128 mddev->ro == 0 && 5129 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5130 goto out_unlock; 5131 5132 /* Must be a multiple of chunk_size */ 5133 chunk = mddev->chunk_sectors; 5134 if (chunk) { 5135 sector_t temp = max; 5136 5137 err = -EINVAL; 5138 if (sector_div(temp, chunk)) 5139 goto out_unlock; 5140 } 5141 mddev->resync_max = max; 5142 } 5143 wake_up(&mddev->recovery_wait); 5144 err = 0; 5145 out_unlock: 5146 spin_unlock(&mddev->lock); 5147 return err ?: len; 5148 } 5149 5150 static struct md_sysfs_entry md_max_sync = 5151 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5152 5153 static ssize_t 5154 suspend_lo_show(struct mddev *mddev, char *page) 5155 { 5156 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5157 } 5158 5159 static ssize_t 5160 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5161 { 5162 unsigned long long new; 5163 int err; 5164 5165 err = kstrtoull(buf, 10, &new); 5166 if (err < 0) 5167 return err; 5168 if (new != (sector_t)new) 5169 return -EINVAL; 5170 5171 err = mddev_lock(mddev); 5172 if (err) 5173 return err; 5174 err = -EINVAL; 5175 if (mddev->pers == NULL || 5176 mddev->pers->quiesce == NULL) 5177 goto unlock; 5178 mddev_suspend(mddev); 5179 mddev->suspend_lo = new; 5180 mddev_resume(mddev); 5181 5182 err = 0; 5183 unlock: 5184 mddev_unlock(mddev); 5185 return err ?: len; 5186 } 5187 static struct md_sysfs_entry md_suspend_lo = 5188 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5189 5190 static ssize_t 5191 suspend_hi_show(struct mddev *mddev, char *page) 5192 { 5193 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5194 } 5195 5196 static ssize_t 5197 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5198 { 5199 unsigned long long new; 5200 int err; 5201 5202 err = kstrtoull(buf, 10, &new); 5203 if (err < 0) 5204 return err; 5205 if (new != (sector_t)new) 5206 return -EINVAL; 5207 5208 err = mddev_lock(mddev); 5209 if (err) 5210 return err; 5211 err = -EINVAL; 5212 if (mddev->pers == NULL) 5213 goto unlock; 5214 5215 mddev_suspend(mddev); 5216 mddev->suspend_hi = new; 5217 mddev_resume(mddev); 5218 5219 err = 0; 5220 unlock: 5221 mddev_unlock(mddev); 5222 return err ?: len; 5223 } 5224 static struct md_sysfs_entry md_suspend_hi = 5225 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5226 5227 static ssize_t 5228 reshape_position_show(struct mddev *mddev, char *page) 5229 { 5230 if (mddev->reshape_position != MaxSector) 5231 return sprintf(page, "%llu\n", 5232 (unsigned long long)mddev->reshape_position); 5233 strcpy(page, "none\n"); 5234 return 5; 5235 } 5236 5237 static ssize_t 5238 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5239 { 5240 struct md_rdev *rdev; 5241 unsigned long long new; 5242 int err; 5243 5244 err = kstrtoull(buf, 10, &new); 5245 if (err < 0) 5246 return err; 5247 if (new != (sector_t)new) 5248 return -EINVAL; 5249 err = mddev_lock(mddev); 5250 if (err) 5251 return err; 5252 err = -EBUSY; 5253 if (mddev->pers) 5254 goto unlock; 5255 mddev->reshape_position = new; 5256 mddev->delta_disks = 0; 5257 mddev->reshape_backwards = 0; 5258 mddev->new_level = mddev->level; 5259 mddev->new_layout = mddev->layout; 5260 mddev->new_chunk_sectors = mddev->chunk_sectors; 5261 rdev_for_each(rdev, mddev) 5262 rdev->new_data_offset = rdev->data_offset; 5263 err = 0; 5264 unlock: 5265 mddev_unlock(mddev); 5266 return err ?: len; 5267 } 5268 5269 static struct md_sysfs_entry md_reshape_position = 5270 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5271 reshape_position_store); 5272 5273 static ssize_t 5274 reshape_direction_show(struct mddev *mddev, char *page) 5275 { 5276 return sprintf(page, "%s\n", 5277 mddev->reshape_backwards ? "backwards" : "forwards"); 5278 } 5279 5280 static ssize_t 5281 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5282 { 5283 int backwards = 0; 5284 int err; 5285 5286 if (cmd_match(buf, "forwards")) 5287 backwards = 0; 5288 else if (cmd_match(buf, "backwards")) 5289 backwards = 1; 5290 else 5291 return -EINVAL; 5292 if (mddev->reshape_backwards == backwards) 5293 return len; 5294 5295 err = mddev_lock(mddev); 5296 if (err) 5297 return err; 5298 /* check if we are allowed to change */ 5299 if (mddev->delta_disks) 5300 err = -EBUSY; 5301 else if (mddev->persistent && 5302 mddev->major_version == 0) 5303 err = -EINVAL; 5304 else 5305 mddev->reshape_backwards = backwards; 5306 mddev_unlock(mddev); 5307 return err ?: len; 5308 } 5309 5310 static struct md_sysfs_entry md_reshape_direction = 5311 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5312 reshape_direction_store); 5313 5314 static ssize_t 5315 array_size_show(struct mddev *mddev, char *page) 5316 { 5317 if (mddev->external_size) 5318 return sprintf(page, "%llu\n", 5319 (unsigned long long)mddev->array_sectors/2); 5320 else 5321 return sprintf(page, "default\n"); 5322 } 5323 5324 static ssize_t 5325 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5326 { 5327 sector_t sectors; 5328 int err; 5329 5330 err = mddev_lock(mddev); 5331 if (err) 5332 return err; 5333 5334 /* cluster raid doesn't support change array_sectors */ 5335 if (mddev_is_clustered(mddev)) { 5336 mddev_unlock(mddev); 5337 return -EINVAL; 5338 } 5339 5340 if (strncmp(buf, "default", 7) == 0) { 5341 if (mddev->pers) 5342 sectors = mddev->pers->size(mddev, 0, 0); 5343 else 5344 sectors = mddev->array_sectors; 5345 5346 mddev->external_size = 0; 5347 } else { 5348 if (strict_blocks_to_sectors(buf, §ors) < 0) 5349 err = -EINVAL; 5350 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5351 err = -E2BIG; 5352 else 5353 mddev->external_size = 1; 5354 } 5355 5356 if (!err) { 5357 mddev->array_sectors = sectors; 5358 if (mddev->pers) { 5359 set_capacity(mddev->gendisk, mddev->array_sectors); 5360 revalidate_disk(mddev->gendisk); 5361 } 5362 } 5363 mddev_unlock(mddev); 5364 return err ?: len; 5365 } 5366 5367 static struct md_sysfs_entry md_array_size = 5368 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5369 array_size_store); 5370 5371 static ssize_t 5372 consistency_policy_show(struct mddev *mddev, char *page) 5373 { 5374 int ret; 5375 5376 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5377 ret = sprintf(page, "journal\n"); 5378 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5379 ret = sprintf(page, "ppl\n"); 5380 } else if (mddev->bitmap) { 5381 ret = sprintf(page, "bitmap\n"); 5382 } else if (mddev->pers) { 5383 if (mddev->pers->sync_request) 5384 ret = sprintf(page, "resync\n"); 5385 else 5386 ret = sprintf(page, "none\n"); 5387 } else { 5388 ret = sprintf(page, "unknown\n"); 5389 } 5390 5391 return ret; 5392 } 5393 5394 static ssize_t 5395 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5396 { 5397 int err = 0; 5398 5399 if (mddev->pers) { 5400 if (mddev->pers->change_consistency_policy) 5401 err = mddev->pers->change_consistency_policy(mddev, buf); 5402 else 5403 err = -EBUSY; 5404 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5405 set_bit(MD_HAS_PPL, &mddev->flags); 5406 } else { 5407 err = -EINVAL; 5408 } 5409 5410 return err ? err : len; 5411 } 5412 5413 static struct md_sysfs_entry md_consistency_policy = 5414 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5415 consistency_policy_store); 5416 5417 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5418 { 5419 return sprintf(page, "%d\n", mddev->fail_last_dev); 5420 } 5421 5422 /* 5423 * Setting fail_last_dev to true to allow last device to be forcibly removed 5424 * from RAID1/RAID10. 5425 */ 5426 static ssize_t 5427 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5428 { 5429 int ret; 5430 bool value; 5431 5432 ret = kstrtobool(buf, &value); 5433 if (ret) 5434 return ret; 5435 5436 if (value != mddev->fail_last_dev) 5437 mddev->fail_last_dev = value; 5438 5439 return len; 5440 } 5441 static struct md_sysfs_entry md_fail_last_dev = 5442 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5443 fail_last_dev_store); 5444 5445 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5446 { 5447 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5448 return sprintf(page, "n/a\n"); 5449 else 5450 return sprintf(page, "%d\n", mddev->serialize_policy); 5451 } 5452 5453 /* 5454 * Setting serialize_policy to true to enforce write IO is not reordered 5455 * for raid1. 5456 */ 5457 static ssize_t 5458 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5459 { 5460 int err; 5461 bool value; 5462 5463 err = kstrtobool(buf, &value); 5464 if (err) 5465 return err; 5466 5467 if (value == mddev->serialize_policy) 5468 return len; 5469 5470 err = mddev_lock(mddev); 5471 if (err) 5472 return err; 5473 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5474 pr_err("md: serialize_policy is only effective for raid1\n"); 5475 err = -EINVAL; 5476 goto unlock; 5477 } 5478 5479 mddev_suspend(mddev); 5480 if (value) 5481 mddev_create_serial_pool(mddev, NULL, true); 5482 else 5483 mddev_destroy_serial_pool(mddev, NULL, true); 5484 mddev->serialize_policy = value; 5485 mddev_resume(mddev); 5486 unlock: 5487 mddev_unlock(mddev); 5488 return err ?: len; 5489 } 5490 5491 static struct md_sysfs_entry md_serialize_policy = 5492 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5493 serialize_policy_store); 5494 5495 5496 static struct attribute *md_default_attrs[] = { 5497 &md_level.attr, 5498 &md_layout.attr, 5499 &md_raid_disks.attr, 5500 &md_uuid.attr, 5501 &md_chunk_size.attr, 5502 &md_size.attr, 5503 &md_resync_start.attr, 5504 &md_metadata.attr, 5505 &md_new_device.attr, 5506 &md_safe_delay.attr, 5507 &md_array_state.attr, 5508 &md_reshape_position.attr, 5509 &md_reshape_direction.attr, 5510 &md_array_size.attr, 5511 &max_corr_read_errors.attr, 5512 &md_consistency_policy.attr, 5513 &md_fail_last_dev.attr, 5514 &md_serialize_policy.attr, 5515 NULL, 5516 }; 5517 5518 static struct attribute *md_redundancy_attrs[] = { 5519 &md_scan_mode.attr, 5520 &md_last_scan_mode.attr, 5521 &md_mismatches.attr, 5522 &md_sync_min.attr, 5523 &md_sync_max.attr, 5524 &md_sync_speed.attr, 5525 &md_sync_force_parallel.attr, 5526 &md_sync_completed.attr, 5527 &md_min_sync.attr, 5528 &md_max_sync.attr, 5529 &md_suspend_lo.attr, 5530 &md_suspend_hi.attr, 5531 &md_bitmap.attr, 5532 &md_degraded.attr, 5533 NULL, 5534 }; 5535 static struct attribute_group md_redundancy_group = { 5536 .name = NULL, 5537 .attrs = md_redundancy_attrs, 5538 }; 5539 5540 static ssize_t 5541 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5542 { 5543 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5544 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5545 ssize_t rv; 5546 5547 if (!entry->show) 5548 return -EIO; 5549 spin_lock(&all_mddevs_lock); 5550 if (list_empty(&mddev->all_mddevs)) { 5551 spin_unlock(&all_mddevs_lock); 5552 return -EBUSY; 5553 } 5554 mddev_get(mddev); 5555 spin_unlock(&all_mddevs_lock); 5556 5557 rv = entry->show(mddev, page); 5558 mddev_put(mddev); 5559 return rv; 5560 } 5561 5562 static ssize_t 5563 md_attr_store(struct kobject *kobj, struct attribute *attr, 5564 const char *page, size_t length) 5565 { 5566 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5567 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5568 ssize_t rv; 5569 5570 if (!entry->store) 5571 return -EIO; 5572 if (!capable(CAP_SYS_ADMIN)) 5573 return -EACCES; 5574 spin_lock(&all_mddevs_lock); 5575 if (list_empty(&mddev->all_mddevs)) { 5576 spin_unlock(&all_mddevs_lock); 5577 return -EBUSY; 5578 } 5579 mddev_get(mddev); 5580 spin_unlock(&all_mddevs_lock); 5581 rv = entry->store(mddev, page, length); 5582 mddev_put(mddev); 5583 return rv; 5584 } 5585 5586 static void md_free(struct kobject *ko) 5587 { 5588 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5589 5590 if (mddev->sysfs_state) 5591 sysfs_put(mddev->sysfs_state); 5592 if (mddev->sysfs_completed) 5593 sysfs_put(mddev->sysfs_completed); 5594 if (mddev->sysfs_degraded) 5595 sysfs_put(mddev->sysfs_degraded); 5596 if (mddev->sysfs_level) 5597 sysfs_put(mddev->sysfs_level); 5598 5599 5600 if (mddev->gendisk) 5601 del_gendisk(mddev->gendisk); 5602 if (mddev->queue) 5603 blk_cleanup_queue(mddev->queue); 5604 if (mddev->gendisk) 5605 put_disk(mddev->gendisk); 5606 percpu_ref_exit(&mddev->writes_pending); 5607 5608 bioset_exit(&mddev->bio_set); 5609 bioset_exit(&mddev->sync_set); 5610 mempool_exit(&mddev->md_io_pool); 5611 kfree(mddev); 5612 } 5613 5614 static const struct sysfs_ops md_sysfs_ops = { 5615 .show = md_attr_show, 5616 .store = md_attr_store, 5617 }; 5618 static struct kobj_type md_ktype = { 5619 .release = md_free, 5620 .sysfs_ops = &md_sysfs_ops, 5621 .default_attrs = md_default_attrs, 5622 }; 5623 5624 int mdp_major = 0; 5625 5626 static void mddev_delayed_delete(struct work_struct *ws) 5627 { 5628 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5629 5630 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5631 kobject_del(&mddev->kobj); 5632 kobject_put(&mddev->kobj); 5633 } 5634 5635 static void no_op(struct percpu_ref *r) {} 5636 5637 int mddev_init_writes_pending(struct mddev *mddev) 5638 { 5639 if (mddev->writes_pending.percpu_count_ptr) 5640 return 0; 5641 if (percpu_ref_init(&mddev->writes_pending, no_op, 5642 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5643 return -ENOMEM; 5644 /* We want to start with the refcount at zero */ 5645 percpu_ref_put(&mddev->writes_pending); 5646 return 0; 5647 } 5648 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5649 5650 static int md_alloc(dev_t dev, char *name) 5651 { 5652 /* 5653 * If dev is zero, name is the name of a device to allocate with 5654 * an arbitrary minor number. It will be "md_???" 5655 * If dev is non-zero it must be a device number with a MAJOR of 5656 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5657 * the device is being created by opening a node in /dev. 5658 * If "name" is not NULL, the device is being created by 5659 * writing to /sys/module/md_mod/parameters/new_array. 5660 */ 5661 static DEFINE_MUTEX(disks_mutex); 5662 struct mddev *mddev = mddev_find(dev); 5663 struct gendisk *disk; 5664 int partitioned; 5665 int shift; 5666 int unit; 5667 int error; 5668 5669 if (!mddev) 5670 return -ENODEV; 5671 5672 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5673 shift = partitioned ? MdpMinorShift : 0; 5674 unit = MINOR(mddev->unit) >> shift; 5675 5676 /* wait for any previous instance of this device to be 5677 * completely removed (mddev_delayed_delete). 5678 */ 5679 flush_workqueue(md_misc_wq); 5680 5681 mutex_lock(&disks_mutex); 5682 error = -EEXIST; 5683 if (mddev->gendisk) 5684 goto abort; 5685 5686 if (name && !dev) { 5687 /* Need to ensure that 'name' is not a duplicate. 5688 */ 5689 struct mddev *mddev2; 5690 spin_lock(&all_mddevs_lock); 5691 5692 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5693 if (mddev2->gendisk && 5694 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5695 spin_unlock(&all_mddevs_lock); 5696 goto abort; 5697 } 5698 spin_unlock(&all_mddevs_lock); 5699 } 5700 if (name && dev) 5701 /* 5702 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5703 */ 5704 mddev->hold_active = UNTIL_STOP; 5705 5706 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5707 sizeof(struct md_io)); 5708 if (error) 5709 goto abort; 5710 5711 error = -ENOMEM; 5712 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5713 if (!mddev->queue) 5714 goto abort; 5715 5716 blk_set_stacking_limits(&mddev->queue->limits); 5717 5718 disk = alloc_disk(1 << shift); 5719 if (!disk) { 5720 blk_cleanup_queue(mddev->queue); 5721 mddev->queue = NULL; 5722 goto abort; 5723 } 5724 disk->major = MAJOR(mddev->unit); 5725 disk->first_minor = unit << shift; 5726 if (name) 5727 strcpy(disk->disk_name, name); 5728 else if (partitioned) 5729 sprintf(disk->disk_name, "md_d%d", unit); 5730 else 5731 sprintf(disk->disk_name, "md%d", unit); 5732 disk->fops = &md_fops; 5733 disk->private_data = mddev; 5734 disk->queue = mddev->queue; 5735 blk_queue_write_cache(mddev->queue, true, true); 5736 /* Allow extended partitions. This makes the 5737 * 'mdp' device redundant, but we can't really 5738 * remove it now. 5739 */ 5740 disk->flags |= GENHD_FL_EXT_DEVT; 5741 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5742 mddev->gendisk = disk; 5743 /* As soon as we call add_disk(), another thread could get 5744 * through to md_open, so make sure it doesn't get too far 5745 */ 5746 mutex_lock(&mddev->open_mutex); 5747 add_disk(disk); 5748 5749 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5750 if (error) { 5751 /* This isn't possible, but as kobject_init_and_add is marked 5752 * __must_check, we must do something with the result 5753 */ 5754 pr_debug("md: cannot register %s/md - name in use\n", 5755 disk->disk_name); 5756 error = 0; 5757 } 5758 if (mddev->kobj.sd && 5759 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5760 pr_debug("pointless warning\n"); 5761 mutex_unlock(&mddev->open_mutex); 5762 abort: 5763 mutex_unlock(&disks_mutex); 5764 if (!error && mddev->kobj.sd) { 5765 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5766 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5767 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5768 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5769 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5770 } 5771 mddev_put(mddev); 5772 return error; 5773 } 5774 5775 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5776 { 5777 if (create_on_open) 5778 md_alloc(dev, NULL); 5779 return NULL; 5780 } 5781 5782 static int add_named_array(const char *val, const struct kernel_param *kp) 5783 { 5784 /* 5785 * val must be "md_*" or "mdNNN". 5786 * For "md_*" we allocate an array with a large free minor number, and 5787 * set the name to val. val must not already be an active name. 5788 * For "mdNNN" we allocate an array with the minor number NNN 5789 * which must not already be in use. 5790 */ 5791 int len = strlen(val); 5792 char buf[DISK_NAME_LEN]; 5793 unsigned long devnum; 5794 5795 while (len && val[len-1] == '\n') 5796 len--; 5797 if (len >= DISK_NAME_LEN) 5798 return -E2BIG; 5799 strlcpy(buf, val, len+1); 5800 if (strncmp(buf, "md_", 3) == 0) 5801 return md_alloc(0, buf); 5802 if (strncmp(buf, "md", 2) == 0 && 5803 isdigit(buf[2]) && 5804 kstrtoul(buf+2, 10, &devnum) == 0 && 5805 devnum <= MINORMASK) 5806 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5807 5808 return -EINVAL; 5809 } 5810 5811 static void md_safemode_timeout(struct timer_list *t) 5812 { 5813 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5814 5815 mddev->safemode = 1; 5816 if (mddev->external) 5817 sysfs_notify_dirent_safe(mddev->sysfs_state); 5818 5819 md_wakeup_thread(mddev->thread); 5820 } 5821 5822 static int start_dirty_degraded; 5823 5824 int md_run(struct mddev *mddev) 5825 { 5826 int err; 5827 struct md_rdev *rdev; 5828 struct md_personality *pers; 5829 5830 if (list_empty(&mddev->disks)) 5831 /* cannot run an array with no devices.. */ 5832 return -EINVAL; 5833 5834 if (mddev->pers) 5835 return -EBUSY; 5836 /* Cannot run until previous stop completes properly */ 5837 if (mddev->sysfs_active) 5838 return -EBUSY; 5839 5840 /* 5841 * Analyze all RAID superblock(s) 5842 */ 5843 if (!mddev->raid_disks) { 5844 if (!mddev->persistent) 5845 return -EINVAL; 5846 err = analyze_sbs(mddev); 5847 if (err) 5848 return -EINVAL; 5849 } 5850 5851 if (mddev->level != LEVEL_NONE) 5852 request_module("md-level-%d", mddev->level); 5853 else if (mddev->clevel[0]) 5854 request_module("md-%s", mddev->clevel); 5855 5856 /* 5857 * Drop all container device buffers, from now on 5858 * the only valid external interface is through the md 5859 * device. 5860 */ 5861 mddev->has_superblocks = false; 5862 rdev_for_each(rdev, mddev) { 5863 if (test_bit(Faulty, &rdev->flags)) 5864 continue; 5865 sync_blockdev(rdev->bdev); 5866 invalidate_bdev(rdev->bdev); 5867 if (mddev->ro != 1 && 5868 (bdev_read_only(rdev->bdev) || 5869 bdev_read_only(rdev->meta_bdev))) { 5870 mddev->ro = 1; 5871 if (mddev->gendisk) 5872 set_disk_ro(mddev->gendisk, 1); 5873 } 5874 5875 if (rdev->sb_page) 5876 mddev->has_superblocks = true; 5877 5878 /* perform some consistency tests on the device. 5879 * We don't want the data to overlap the metadata, 5880 * Internal Bitmap issues have been handled elsewhere. 5881 */ 5882 if (rdev->meta_bdev) { 5883 /* Nothing to check */; 5884 } else if (rdev->data_offset < rdev->sb_start) { 5885 if (mddev->dev_sectors && 5886 rdev->data_offset + mddev->dev_sectors 5887 > rdev->sb_start) { 5888 pr_warn("md: %s: data overlaps metadata\n", 5889 mdname(mddev)); 5890 return -EINVAL; 5891 } 5892 } else { 5893 if (rdev->sb_start + rdev->sb_size/512 5894 > rdev->data_offset) { 5895 pr_warn("md: %s: metadata overlaps data\n", 5896 mdname(mddev)); 5897 return -EINVAL; 5898 } 5899 } 5900 sysfs_notify_dirent_safe(rdev->sysfs_state); 5901 } 5902 5903 if (!bioset_initialized(&mddev->bio_set)) { 5904 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5905 if (err) 5906 return err; 5907 } 5908 if (!bioset_initialized(&mddev->sync_set)) { 5909 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5910 if (err) 5911 return err; 5912 } 5913 5914 spin_lock(&pers_lock); 5915 pers = find_pers(mddev->level, mddev->clevel); 5916 if (!pers || !try_module_get(pers->owner)) { 5917 spin_unlock(&pers_lock); 5918 if (mddev->level != LEVEL_NONE) 5919 pr_warn("md: personality for level %d is not loaded!\n", 5920 mddev->level); 5921 else 5922 pr_warn("md: personality for level %s is not loaded!\n", 5923 mddev->clevel); 5924 err = -EINVAL; 5925 goto abort; 5926 } 5927 spin_unlock(&pers_lock); 5928 if (mddev->level != pers->level) { 5929 mddev->level = pers->level; 5930 mddev->new_level = pers->level; 5931 } 5932 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5933 5934 if (mddev->reshape_position != MaxSector && 5935 pers->start_reshape == NULL) { 5936 /* This personality cannot handle reshaping... */ 5937 module_put(pers->owner); 5938 err = -EINVAL; 5939 goto abort; 5940 } 5941 5942 if (pers->sync_request) { 5943 /* Warn if this is a potentially silly 5944 * configuration. 5945 */ 5946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5947 struct md_rdev *rdev2; 5948 int warned = 0; 5949 5950 rdev_for_each(rdev, mddev) 5951 rdev_for_each(rdev2, mddev) { 5952 if (rdev < rdev2 && 5953 rdev->bdev->bd_contains == 5954 rdev2->bdev->bd_contains) { 5955 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5956 mdname(mddev), 5957 bdevname(rdev->bdev,b), 5958 bdevname(rdev2->bdev,b2)); 5959 warned = 1; 5960 } 5961 } 5962 5963 if (warned) 5964 pr_warn("True protection against single-disk failure might be compromised.\n"); 5965 } 5966 5967 mddev->recovery = 0; 5968 /* may be over-ridden by personality */ 5969 mddev->resync_max_sectors = mddev->dev_sectors; 5970 5971 mddev->ok_start_degraded = start_dirty_degraded; 5972 5973 if (start_readonly && mddev->ro == 0) 5974 mddev->ro = 2; /* read-only, but switch on first write */ 5975 5976 err = pers->run(mddev); 5977 if (err) 5978 pr_warn("md: pers->run() failed ...\n"); 5979 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5980 WARN_ONCE(!mddev->external_size, 5981 "%s: default size too small, but 'external_size' not in effect?\n", 5982 __func__); 5983 pr_warn("md: invalid array_size %llu > default size %llu\n", 5984 (unsigned long long)mddev->array_sectors / 2, 5985 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5986 err = -EINVAL; 5987 } 5988 if (err == 0 && pers->sync_request && 5989 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5990 struct bitmap *bitmap; 5991 5992 bitmap = md_bitmap_create(mddev, -1); 5993 if (IS_ERR(bitmap)) { 5994 err = PTR_ERR(bitmap); 5995 pr_warn("%s: failed to create bitmap (%d)\n", 5996 mdname(mddev), err); 5997 } else 5998 mddev->bitmap = bitmap; 5999 6000 } 6001 if (err) 6002 goto bitmap_abort; 6003 6004 if (mddev->bitmap_info.max_write_behind > 0) { 6005 bool create_pool = false; 6006 6007 rdev_for_each(rdev, mddev) { 6008 if (test_bit(WriteMostly, &rdev->flags) && 6009 rdev_init_serial(rdev)) 6010 create_pool = true; 6011 } 6012 if (create_pool && mddev->serial_info_pool == NULL) { 6013 mddev->serial_info_pool = 6014 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6015 sizeof(struct serial_info)); 6016 if (!mddev->serial_info_pool) { 6017 err = -ENOMEM; 6018 goto bitmap_abort; 6019 } 6020 } 6021 } 6022 6023 if (mddev->queue) { 6024 bool nonrot = true; 6025 6026 rdev_for_each(rdev, mddev) { 6027 if (rdev->raid_disk >= 0 && 6028 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6029 nonrot = false; 6030 break; 6031 } 6032 } 6033 if (mddev->degraded) 6034 nonrot = false; 6035 if (nonrot) 6036 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6037 else 6038 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6039 } 6040 if (pers->sync_request) { 6041 if (mddev->kobj.sd && 6042 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6043 pr_warn("md: cannot register extra attributes for %s\n", 6044 mdname(mddev)); 6045 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6046 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6047 mddev->ro = 0; 6048 6049 atomic_set(&mddev->max_corr_read_errors, 6050 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6051 mddev->safemode = 0; 6052 if (mddev_is_clustered(mddev)) 6053 mddev->safemode_delay = 0; 6054 else 6055 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6056 mddev->in_sync = 1; 6057 smp_wmb(); 6058 spin_lock(&mddev->lock); 6059 mddev->pers = pers; 6060 spin_unlock(&mddev->lock); 6061 rdev_for_each(rdev, mddev) 6062 if (rdev->raid_disk >= 0) 6063 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6064 6065 if (mddev->degraded && !mddev->ro) 6066 /* This ensures that recovering status is reported immediately 6067 * via sysfs - until a lack of spares is confirmed. 6068 */ 6069 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6070 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6071 6072 if (mddev->sb_flags) 6073 md_update_sb(mddev, 0); 6074 6075 md_new_event(mddev); 6076 return 0; 6077 6078 bitmap_abort: 6079 mddev_detach(mddev); 6080 if (mddev->private) 6081 pers->free(mddev, mddev->private); 6082 mddev->private = NULL; 6083 module_put(pers->owner); 6084 md_bitmap_destroy(mddev); 6085 abort: 6086 bioset_exit(&mddev->bio_set); 6087 bioset_exit(&mddev->sync_set); 6088 return err; 6089 } 6090 EXPORT_SYMBOL_GPL(md_run); 6091 6092 static int do_md_run(struct mddev *mddev) 6093 { 6094 int err; 6095 6096 set_bit(MD_NOT_READY, &mddev->flags); 6097 err = md_run(mddev); 6098 if (err) 6099 goto out; 6100 err = md_bitmap_load(mddev); 6101 if (err) { 6102 md_bitmap_destroy(mddev); 6103 goto out; 6104 } 6105 6106 if (mddev_is_clustered(mddev)) 6107 md_allow_write(mddev); 6108 6109 /* run start up tasks that require md_thread */ 6110 md_start(mddev); 6111 6112 md_wakeup_thread(mddev->thread); 6113 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6114 6115 set_capacity(mddev->gendisk, mddev->array_sectors); 6116 revalidate_disk(mddev->gendisk); 6117 clear_bit(MD_NOT_READY, &mddev->flags); 6118 mddev->changed = 1; 6119 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6120 sysfs_notify_dirent_safe(mddev->sysfs_state); 6121 sysfs_notify_dirent_safe(mddev->sysfs_action); 6122 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6123 out: 6124 clear_bit(MD_NOT_READY, &mddev->flags); 6125 return err; 6126 } 6127 6128 int md_start(struct mddev *mddev) 6129 { 6130 int ret = 0; 6131 6132 if (mddev->pers->start) { 6133 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6134 md_wakeup_thread(mddev->thread); 6135 ret = mddev->pers->start(mddev); 6136 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6137 md_wakeup_thread(mddev->sync_thread); 6138 } 6139 return ret; 6140 } 6141 EXPORT_SYMBOL_GPL(md_start); 6142 6143 static int restart_array(struct mddev *mddev) 6144 { 6145 struct gendisk *disk = mddev->gendisk; 6146 struct md_rdev *rdev; 6147 bool has_journal = false; 6148 bool has_readonly = false; 6149 6150 /* Complain if it has no devices */ 6151 if (list_empty(&mddev->disks)) 6152 return -ENXIO; 6153 if (!mddev->pers) 6154 return -EINVAL; 6155 if (!mddev->ro) 6156 return -EBUSY; 6157 6158 rcu_read_lock(); 6159 rdev_for_each_rcu(rdev, mddev) { 6160 if (test_bit(Journal, &rdev->flags) && 6161 !test_bit(Faulty, &rdev->flags)) 6162 has_journal = true; 6163 if (bdev_read_only(rdev->bdev)) 6164 has_readonly = true; 6165 } 6166 rcu_read_unlock(); 6167 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6168 /* Don't restart rw with journal missing/faulty */ 6169 return -EINVAL; 6170 if (has_readonly) 6171 return -EROFS; 6172 6173 mddev->safemode = 0; 6174 mddev->ro = 0; 6175 set_disk_ro(disk, 0); 6176 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6177 /* Kick recovery or resync if necessary */ 6178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6179 md_wakeup_thread(mddev->thread); 6180 md_wakeup_thread(mddev->sync_thread); 6181 sysfs_notify_dirent_safe(mddev->sysfs_state); 6182 return 0; 6183 } 6184 6185 static void md_clean(struct mddev *mddev) 6186 { 6187 mddev->array_sectors = 0; 6188 mddev->external_size = 0; 6189 mddev->dev_sectors = 0; 6190 mddev->raid_disks = 0; 6191 mddev->recovery_cp = 0; 6192 mddev->resync_min = 0; 6193 mddev->resync_max = MaxSector; 6194 mddev->reshape_position = MaxSector; 6195 mddev->external = 0; 6196 mddev->persistent = 0; 6197 mddev->level = LEVEL_NONE; 6198 mddev->clevel[0] = 0; 6199 mddev->flags = 0; 6200 mddev->sb_flags = 0; 6201 mddev->ro = 0; 6202 mddev->metadata_type[0] = 0; 6203 mddev->chunk_sectors = 0; 6204 mddev->ctime = mddev->utime = 0; 6205 mddev->layout = 0; 6206 mddev->max_disks = 0; 6207 mddev->events = 0; 6208 mddev->can_decrease_events = 0; 6209 mddev->delta_disks = 0; 6210 mddev->reshape_backwards = 0; 6211 mddev->new_level = LEVEL_NONE; 6212 mddev->new_layout = 0; 6213 mddev->new_chunk_sectors = 0; 6214 mddev->curr_resync = 0; 6215 atomic64_set(&mddev->resync_mismatches, 0); 6216 mddev->suspend_lo = mddev->suspend_hi = 0; 6217 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6218 mddev->recovery = 0; 6219 mddev->in_sync = 0; 6220 mddev->changed = 0; 6221 mddev->degraded = 0; 6222 mddev->safemode = 0; 6223 mddev->private = NULL; 6224 mddev->cluster_info = NULL; 6225 mddev->bitmap_info.offset = 0; 6226 mddev->bitmap_info.default_offset = 0; 6227 mddev->bitmap_info.default_space = 0; 6228 mddev->bitmap_info.chunksize = 0; 6229 mddev->bitmap_info.daemon_sleep = 0; 6230 mddev->bitmap_info.max_write_behind = 0; 6231 mddev->bitmap_info.nodes = 0; 6232 } 6233 6234 static void __md_stop_writes(struct mddev *mddev) 6235 { 6236 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6237 if (work_pending(&mddev->del_work)) 6238 flush_workqueue(md_misc_wq); 6239 if (mddev->sync_thread) { 6240 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6241 md_reap_sync_thread(mddev); 6242 } 6243 6244 del_timer_sync(&mddev->safemode_timer); 6245 6246 if (mddev->pers && mddev->pers->quiesce) { 6247 mddev->pers->quiesce(mddev, 1); 6248 mddev->pers->quiesce(mddev, 0); 6249 } 6250 md_bitmap_flush(mddev); 6251 6252 if (mddev->ro == 0 && 6253 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6254 mddev->sb_flags)) { 6255 /* mark array as shutdown cleanly */ 6256 if (!mddev_is_clustered(mddev)) 6257 mddev->in_sync = 1; 6258 md_update_sb(mddev, 1); 6259 } 6260 /* disable policy to guarantee rdevs free resources for serialization */ 6261 mddev->serialize_policy = 0; 6262 mddev_destroy_serial_pool(mddev, NULL, true); 6263 } 6264 6265 void md_stop_writes(struct mddev *mddev) 6266 { 6267 mddev_lock_nointr(mddev); 6268 __md_stop_writes(mddev); 6269 mddev_unlock(mddev); 6270 } 6271 EXPORT_SYMBOL_GPL(md_stop_writes); 6272 6273 static void mddev_detach(struct mddev *mddev) 6274 { 6275 md_bitmap_wait_behind_writes(mddev); 6276 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6277 mddev->pers->quiesce(mddev, 1); 6278 mddev->pers->quiesce(mddev, 0); 6279 } 6280 md_unregister_thread(&mddev->thread); 6281 if (mddev->queue) 6282 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6283 } 6284 6285 static void __md_stop(struct mddev *mddev) 6286 { 6287 struct md_personality *pers = mddev->pers; 6288 md_bitmap_destroy(mddev); 6289 mddev_detach(mddev); 6290 /* Ensure ->event_work is done */ 6291 if (mddev->event_work.func) 6292 flush_workqueue(md_misc_wq); 6293 spin_lock(&mddev->lock); 6294 mddev->pers = NULL; 6295 spin_unlock(&mddev->lock); 6296 pers->free(mddev, mddev->private); 6297 mddev->private = NULL; 6298 if (pers->sync_request && mddev->to_remove == NULL) 6299 mddev->to_remove = &md_redundancy_group; 6300 module_put(pers->owner); 6301 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6302 } 6303 6304 void md_stop(struct mddev *mddev) 6305 { 6306 /* stop the array and free an attached data structures. 6307 * This is called from dm-raid 6308 */ 6309 __md_stop(mddev); 6310 bioset_exit(&mddev->bio_set); 6311 bioset_exit(&mddev->sync_set); 6312 } 6313 6314 EXPORT_SYMBOL_GPL(md_stop); 6315 6316 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6317 { 6318 int err = 0; 6319 int did_freeze = 0; 6320 6321 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6322 did_freeze = 1; 6323 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6324 md_wakeup_thread(mddev->thread); 6325 } 6326 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6327 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6328 if (mddev->sync_thread) 6329 /* Thread might be blocked waiting for metadata update 6330 * which will now never happen */ 6331 wake_up_process(mddev->sync_thread->tsk); 6332 6333 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6334 return -EBUSY; 6335 mddev_unlock(mddev); 6336 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6337 &mddev->recovery)); 6338 wait_event(mddev->sb_wait, 6339 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6340 mddev_lock_nointr(mddev); 6341 6342 mutex_lock(&mddev->open_mutex); 6343 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6344 mddev->sync_thread || 6345 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6346 pr_warn("md: %s still in use.\n",mdname(mddev)); 6347 if (did_freeze) { 6348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6350 md_wakeup_thread(mddev->thread); 6351 } 6352 err = -EBUSY; 6353 goto out; 6354 } 6355 if (mddev->pers) { 6356 __md_stop_writes(mddev); 6357 6358 err = -ENXIO; 6359 if (mddev->ro==1) 6360 goto out; 6361 mddev->ro = 1; 6362 set_disk_ro(mddev->gendisk, 1); 6363 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6365 md_wakeup_thread(mddev->thread); 6366 sysfs_notify_dirent_safe(mddev->sysfs_state); 6367 err = 0; 6368 } 6369 out: 6370 mutex_unlock(&mddev->open_mutex); 6371 return err; 6372 } 6373 6374 /* mode: 6375 * 0 - completely stop and dis-assemble array 6376 * 2 - stop but do not disassemble array 6377 */ 6378 static int do_md_stop(struct mddev *mddev, int mode, 6379 struct block_device *bdev) 6380 { 6381 struct gendisk *disk = mddev->gendisk; 6382 struct md_rdev *rdev; 6383 int did_freeze = 0; 6384 6385 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6386 did_freeze = 1; 6387 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6388 md_wakeup_thread(mddev->thread); 6389 } 6390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6391 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6392 if (mddev->sync_thread) 6393 /* Thread might be blocked waiting for metadata update 6394 * which will now never happen */ 6395 wake_up_process(mddev->sync_thread->tsk); 6396 6397 mddev_unlock(mddev); 6398 wait_event(resync_wait, (mddev->sync_thread == NULL && 6399 !test_bit(MD_RECOVERY_RUNNING, 6400 &mddev->recovery))); 6401 mddev_lock_nointr(mddev); 6402 6403 mutex_lock(&mddev->open_mutex); 6404 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6405 mddev->sysfs_active || 6406 mddev->sync_thread || 6407 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6408 pr_warn("md: %s still in use.\n",mdname(mddev)); 6409 mutex_unlock(&mddev->open_mutex); 6410 if (did_freeze) { 6411 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6412 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6413 md_wakeup_thread(mddev->thread); 6414 } 6415 return -EBUSY; 6416 } 6417 if (mddev->pers) { 6418 if (mddev->ro) 6419 set_disk_ro(disk, 0); 6420 6421 __md_stop_writes(mddev); 6422 __md_stop(mddev); 6423 6424 /* tell userspace to handle 'inactive' */ 6425 sysfs_notify_dirent_safe(mddev->sysfs_state); 6426 6427 rdev_for_each(rdev, mddev) 6428 if (rdev->raid_disk >= 0) 6429 sysfs_unlink_rdev(mddev, rdev); 6430 6431 set_capacity(disk, 0); 6432 mutex_unlock(&mddev->open_mutex); 6433 mddev->changed = 1; 6434 revalidate_disk(disk); 6435 6436 if (mddev->ro) 6437 mddev->ro = 0; 6438 } else 6439 mutex_unlock(&mddev->open_mutex); 6440 /* 6441 * Free resources if final stop 6442 */ 6443 if (mode == 0) { 6444 pr_info("md: %s stopped.\n", mdname(mddev)); 6445 6446 if (mddev->bitmap_info.file) { 6447 struct file *f = mddev->bitmap_info.file; 6448 spin_lock(&mddev->lock); 6449 mddev->bitmap_info.file = NULL; 6450 spin_unlock(&mddev->lock); 6451 fput(f); 6452 } 6453 mddev->bitmap_info.offset = 0; 6454 6455 export_array(mddev); 6456 6457 md_clean(mddev); 6458 if (mddev->hold_active == UNTIL_STOP) 6459 mddev->hold_active = 0; 6460 } 6461 md_new_event(mddev); 6462 sysfs_notify_dirent_safe(mddev->sysfs_state); 6463 return 0; 6464 } 6465 6466 #ifndef MODULE 6467 static void autorun_array(struct mddev *mddev) 6468 { 6469 struct md_rdev *rdev; 6470 int err; 6471 6472 if (list_empty(&mddev->disks)) 6473 return; 6474 6475 pr_info("md: running: "); 6476 6477 rdev_for_each(rdev, mddev) { 6478 char b[BDEVNAME_SIZE]; 6479 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6480 } 6481 pr_cont("\n"); 6482 6483 err = do_md_run(mddev); 6484 if (err) { 6485 pr_warn("md: do_md_run() returned %d\n", err); 6486 do_md_stop(mddev, 0, NULL); 6487 } 6488 } 6489 6490 /* 6491 * lets try to run arrays based on all disks that have arrived 6492 * until now. (those are in pending_raid_disks) 6493 * 6494 * the method: pick the first pending disk, collect all disks with 6495 * the same UUID, remove all from the pending list and put them into 6496 * the 'same_array' list. Then order this list based on superblock 6497 * update time (freshest comes first), kick out 'old' disks and 6498 * compare superblocks. If everything's fine then run it. 6499 * 6500 * If "unit" is allocated, then bump its reference count 6501 */ 6502 static void autorun_devices(int part) 6503 { 6504 struct md_rdev *rdev0, *rdev, *tmp; 6505 struct mddev *mddev; 6506 char b[BDEVNAME_SIZE]; 6507 6508 pr_info("md: autorun ...\n"); 6509 while (!list_empty(&pending_raid_disks)) { 6510 int unit; 6511 dev_t dev; 6512 LIST_HEAD(candidates); 6513 rdev0 = list_entry(pending_raid_disks.next, 6514 struct md_rdev, same_set); 6515 6516 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6517 INIT_LIST_HEAD(&candidates); 6518 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6519 if (super_90_load(rdev, rdev0, 0) >= 0) { 6520 pr_debug("md: adding %s ...\n", 6521 bdevname(rdev->bdev,b)); 6522 list_move(&rdev->same_set, &candidates); 6523 } 6524 /* 6525 * now we have a set of devices, with all of them having 6526 * mostly sane superblocks. It's time to allocate the 6527 * mddev. 6528 */ 6529 if (part) { 6530 dev = MKDEV(mdp_major, 6531 rdev0->preferred_minor << MdpMinorShift); 6532 unit = MINOR(dev) >> MdpMinorShift; 6533 } else { 6534 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6535 unit = MINOR(dev); 6536 } 6537 if (rdev0->preferred_minor != unit) { 6538 pr_warn("md: unit number in %s is bad: %d\n", 6539 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6540 break; 6541 } 6542 6543 md_probe(dev, NULL, NULL); 6544 mddev = mddev_find(dev); 6545 if (!mddev || !mddev->gendisk) { 6546 if (mddev) 6547 mddev_put(mddev); 6548 break; 6549 } 6550 if (mddev_lock(mddev)) 6551 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6552 else if (mddev->raid_disks || mddev->major_version 6553 || !list_empty(&mddev->disks)) { 6554 pr_warn("md: %s already running, cannot run %s\n", 6555 mdname(mddev), bdevname(rdev0->bdev,b)); 6556 mddev_unlock(mddev); 6557 } else { 6558 pr_debug("md: created %s\n", mdname(mddev)); 6559 mddev->persistent = 1; 6560 rdev_for_each_list(rdev, tmp, &candidates) { 6561 list_del_init(&rdev->same_set); 6562 if (bind_rdev_to_array(rdev, mddev)) 6563 export_rdev(rdev); 6564 } 6565 autorun_array(mddev); 6566 mddev_unlock(mddev); 6567 } 6568 /* on success, candidates will be empty, on error 6569 * it won't... 6570 */ 6571 rdev_for_each_list(rdev, tmp, &candidates) { 6572 list_del_init(&rdev->same_set); 6573 export_rdev(rdev); 6574 } 6575 mddev_put(mddev); 6576 } 6577 pr_info("md: ... autorun DONE.\n"); 6578 } 6579 #endif /* !MODULE */ 6580 6581 static int get_version(void __user *arg) 6582 { 6583 mdu_version_t ver; 6584 6585 ver.major = MD_MAJOR_VERSION; 6586 ver.minor = MD_MINOR_VERSION; 6587 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6588 6589 if (copy_to_user(arg, &ver, sizeof(ver))) 6590 return -EFAULT; 6591 6592 return 0; 6593 } 6594 6595 static int get_array_info(struct mddev *mddev, void __user *arg) 6596 { 6597 mdu_array_info_t info; 6598 int nr,working,insync,failed,spare; 6599 struct md_rdev *rdev; 6600 6601 nr = working = insync = failed = spare = 0; 6602 rcu_read_lock(); 6603 rdev_for_each_rcu(rdev, mddev) { 6604 nr++; 6605 if (test_bit(Faulty, &rdev->flags)) 6606 failed++; 6607 else { 6608 working++; 6609 if (test_bit(In_sync, &rdev->flags)) 6610 insync++; 6611 else if (test_bit(Journal, &rdev->flags)) 6612 /* TODO: add journal count to md_u.h */ 6613 ; 6614 else 6615 spare++; 6616 } 6617 } 6618 rcu_read_unlock(); 6619 6620 info.major_version = mddev->major_version; 6621 info.minor_version = mddev->minor_version; 6622 info.patch_version = MD_PATCHLEVEL_VERSION; 6623 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6624 info.level = mddev->level; 6625 info.size = mddev->dev_sectors / 2; 6626 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6627 info.size = -1; 6628 info.nr_disks = nr; 6629 info.raid_disks = mddev->raid_disks; 6630 info.md_minor = mddev->md_minor; 6631 info.not_persistent= !mddev->persistent; 6632 6633 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6634 info.state = 0; 6635 if (mddev->in_sync) 6636 info.state = (1<<MD_SB_CLEAN); 6637 if (mddev->bitmap && mddev->bitmap_info.offset) 6638 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6639 if (mddev_is_clustered(mddev)) 6640 info.state |= (1<<MD_SB_CLUSTERED); 6641 info.active_disks = insync; 6642 info.working_disks = working; 6643 info.failed_disks = failed; 6644 info.spare_disks = spare; 6645 6646 info.layout = mddev->layout; 6647 info.chunk_size = mddev->chunk_sectors << 9; 6648 6649 if (copy_to_user(arg, &info, sizeof(info))) 6650 return -EFAULT; 6651 6652 return 0; 6653 } 6654 6655 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6656 { 6657 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6658 char *ptr; 6659 int err; 6660 6661 file = kzalloc(sizeof(*file), GFP_NOIO); 6662 if (!file) 6663 return -ENOMEM; 6664 6665 err = 0; 6666 spin_lock(&mddev->lock); 6667 /* bitmap enabled */ 6668 if (mddev->bitmap_info.file) { 6669 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6670 sizeof(file->pathname)); 6671 if (IS_ERR(ptr)) 6672 err = PTR_ERR(ptr); 6673 else 6674 memmove(file->pathname, ptr, 6675 sizeof(file->pathname)-(ptr-file->pathname)); 6676 } 6677 spin_unlock(&mddev->lock); 6678 6679 if (err == 0 && 6680 copy_to_user(arg, file, sizeof(*file))) 6681 err = -EFAULT; 6682 6683 kfree(file); 6684 return err; 6685 } 6686 6687 static int get_disk_info(struct mddev *mddev, void __user * arg) 6688 { 6689 mdu_disk_info_t info; 6690 struct md_rdev *rdev; 6691 6692 if (copy_from_user(&info, arg, sizeof(info))) 6693 return -EFAULT; 6694 6695 rcu_read_lock(); 6696 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6697 if (rdev) { 6698 info.major = MAJOR(rdev->bdev->bd_dev); 6699 info.minor = MINOR(rdev->bdev->bd_dev); 6700 info.raid_disk = rdev->raid_disk; 6701 info.state = 0; 6702 if (test_bit(Faulty, &rdev->flags)) 6703 info.state |= (1<<MD_DISK_FAULTY); 6704 else if (test_bit(In_sync, &rdev->flags)) { 6705 info.state |= (1<<MD_DISK_ACTIVE); 6706 info.state |= (1<<MD_DISK_SYNC); 6707 } 6708 if (test_bit(Journal, &rdev->flags)) 6709 info.state |= (1<<MD_DISK_JOURNAL); 6710 if (test_bit(WriteMostly, &rdev->flags)) 6711 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6712 if (test_bit(FailFast, &rdev->flags)) 6713 info.state |= (1<<MD_DISK_FAILFAST); 6714 } else { 6715 info.major = info.minor = 0; 6716 info.raid_disk = -1; 6717 info.state = (1<<MD_DISK_REMOVED); 6718 } 6719 rcu_read_unlock(); 6720 6721 if (copy_to_user(arg, &info, sizeof(info))) 6722 return -EFAULT; 6723 6724 return 0; 6725 } 6726 6727 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6728 { 6729 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6730 struct md_rdev *rdev; 6731 dev_t dev = MKDEV(info->major,info->minor); 6732 6733 if (mddev_is_clustered(mddev) && 6734 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6735 pr_warn("%s: Cannot add to clustered mddev.\n", 6736 mdname(mddev)); 6737 return -EINVAL; 6738 } 6739 6740 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6741 return -EOVERFLOW; 6742 6743 if (!mddev->raid_disks) { 6744 int err; 6745 /* expecting a device which has a superblock */ 6746 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6747 if (IS_ERR(rdev)) { 6748 pr_warn("md: md_import_device returned %ld\n", 6749 PTR_ERR(rdev)); 6750 return PTR_ERR(rdev); 6751 } 6752 if (!list_empty(&mddev->disks)) { 6753 struct md_rdev *rdev0 6754 = list_entry(mddev->disks.next, 6755 struct md_rdev, same_set); 6756 err = super_types[mddev->major_version] 6757 .load_super(rdev, rdev0, mddev->minor_version); 6758 if (err < 0) { 6759 pr_warn("md: %s has different UUID to %s\n", 6760 bdevname(rdev->bdev,b), 6761 bdevname(rdev0->bdev,b2)); 6762 export_rdev(rdev); 6763 return -EINVAL; 6764 } 6765 } 6766 err = bind_rdev_to_array(rdev, mddev); 6767 if (err) 6768 export_rdev(rdev); 6769 return err; 6770 } 6771 6772 /* 6773 * add_new_disk can be used once the array is assembled 6774 * to add "hot spares". They must already have a superblock 6775 * written 6776 */ 6777 if (mddev->pers) { 6778 int err; 6779 if (!mddev->pers->hot_add_disk) { 6780 pr_warn("%s: personality does not support diskops!\n", 6781 mdname(mddev)); 6782 return -EINVAL; 6783 } 6784 if (mddev->persistent) 6785 rdev = md_import_device(dev, mddev->major_version, 6786 mddev->minor_version); 6787 else 6788 rdev = md_import_device(dev, -1, -1); 6789 if (IS_ERR(rdev)) { 6790 pr_warn("md: md_import_device returned %ld\n", 6791 PTR_ERR(rdev)); 6792 return PTR_ERR(rdev); 6793 } 6794 /* set saved_raid_disk if appropriate */ 6795 if (!mddev->persistent) { 6796 if (info->state & (1<<MD_DISK_SYNC) && 6797 info->raid_disk < mddev->raid_disks) { 6798 rdev->raid_disk = info->raid_disk; 6799 set_bit(In_sync, &rdev->flags); 6800 clear_bit(Bitmap_sync, &rdev->flags); 6801 } else 6802 rdev->raid_disk = -1; 6803 rdev->saved_raid_disk = rdev->raid_disk; 6804 } else 6805 super_types[mddev->major_version]. 6806 validate_super(mddev, rdev); 6807 if ((info->state & (1<<MD_DISK_SYNC)) && 6808 rdev->raid_disk != info->raid_disk) { 6809 /* This was a hot-add request, but events doesn't 6810 * match, so reject it. 6811 */ 6812 export_rdev(rdev); 6813 return -EINVAL; 6814 } 6815 6816 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6817 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6818 set_bit(WriteMostly, &rdev->flags); 6819 else 6820 clear_bit(WriteMostly, &rdev->flags); 6821 if (info->state & (1<<MD_DISK_FAILFAST)) 6822 set_bit(FailFast, &rdev->flags); 6823 else 6824 clear_bit(FailFast, &rdev->flags); 6825 6826 if (info->state & (1<<MD_DISK_JOURNAL)) { 6827 struct md_rdev *rdev2; 6828 bool has_journal = false; 6829 6830 /* make sure no existing journal disk */ 6831 rdev_for_each(rdev2, mddev) { 6832 if (test_bit(Journal, &rdev2->flags)) { 6833 has_journal = true; 6834 break; 6835 } 6836 } 6837 if (has_journal || mddev->bitmap) { 6838 export_rdev(rdev); 6839 return -EBUSY; 6840 } 6841 set_bit(Journal, &rdev->flags); 6842 } 6843 /* 6844 * check whether the device shows up in other nodes 6845 */ 6846 if (mddev_is_clustered(mddev)) { 6847 if (info->state & (1 << MD_DISK_CANDIDATE)) 6848 set_bit(Candidate, &rdev->flags); 6849 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6850 /* --add initiated by this node */ 6851 err = md_cluster_ops->add_new_disk(mddev, rdev); 6852 if (err) { 6853 export_rdev(rdev); 6854 return err; 6855 } 6856 } 6857 } 6858 6859 rdev->raid_disk = -1; 6860 err = bind_rdev_to_array(rdev, mddev); 6861 6862 if (err) 6863 export_rdev(rdev); 6864 6865 if (mddev_is_clustered(mddev)) { 6866 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6867 if (!err) { 6868 err = md_cluster_ops->new_disk_ack(mddev, 6869 err == 0); 6870 if (err) 6871 md_kick_rdev_from_array(rdev); 6872 } 6873 } else { 6874 if (err) 6875 md_cluster_ops->add_new_disk_cancel(mddev); 6876 else 6877 err = add_bound_rdev(rdev); 6878 } 6879 6880 } else if (!err) 6881 err = add_bound_rdev(rdev); 6882 6883 return err; 6884 } 6885 6886 /* otherwise, add_new_disk is only allowed 6887 * for major_version==0 superblocks 6888 */ 6889 if (mddev->major_version != 0) { 6890 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6891 return -EINVAL; 6892 } 6893 6894 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6895 int err; 6896 rdev = md_import_device(dev, -1, 0); 6897 if (IS_ERR(rdev)) { 6898 pr_warn("md: error, md_import_device() returned %ld\n", 6899 PTR_ERR(rdev)); 6900 return PTR_ERR(rdev); 6901 } 6902 rdev->desc_nr = info->number; 6903 if (info->raid_disk < mddev->raid_disks) 6904 rdev->raid_disk = info->raid_disk; 6905 else 6906 rdev->raid_disk = -1; 6907 6908 if (rdev->raid_disk < mddev->raid_disks) 6909 if (info->state & (1<<MD_DISK_SYNC)) 6910 set_bit(In_sync, &rdev->flags); 6911 6912 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6913 set_bit(WriteMostly, &rdev->flags); 6914 if (info->state & (1<<MD_DISK_FAILFAST)) 6915 set_bit(FailFast, &rdev->flags); 6916 6917 if (!mddev->persistent) { 6918 pr_debug("md: nonpersistent superblock ...\n"); 6919 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6920 } else 6921 rdev->sb_start = calc_dev_sboffset(rdev); 6922 rdev->sectors = rdev->sb_start; 6923 6924 err = bind_rdev_to_array(rdev, mddev); 6925 if (err) { 6926 export_rdev(rdev); 6927 return err; 6928 } 6929 } 6930 6931 return 0; 6932 } 6933 6934 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6935 { 6936 char b[BDEVNAME_SIZE]; 6937 struct md_rdev *rdev; 6938 6939 if (!mddev->pers) 6940 return -ENODEV; 6941 6942 rdev = find_rdev(mddev, dev); 6943 if (!rdev) 6944 return -ENXIO; 6945 6946 if (rdev->raid_disk < 0) 6947 goto kick_rdev; 6948 6949 clear_bit(Blocked, &rdev->flags); 6950 remove_and_add_spares(mddev, rdev); 6951 6952 if (rdev->raid_disk >= 0) 6953 goto busy; 6954 6955 kick_rdev: 6956 if (mddev_is_clustered(mddev)) 6957 md_cluster_ops->remove_disk(mddev, rdev); 6958 6959 md_kick_rdev_from_array(rdev); 6960 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6961 if (mddev->thread) 6962 md_wakeup_thread(mddev->thread); 6963 else 6964 md_update_sb(mddev, 1); 6965 md_new_event(mddev); 6966 6967 return 0; 6968 busy: 6969 pr_debug("md: cannot remove active disk %s from %s ...\n", 6970 bdevname(rdev->bdev,b), mdname(mddev)); 6971 return -EBUSY; 6972 } 6973 6974 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6975 { 6976 char b[BDEVNAME_SIZE]; 6977 int err; 6978 struct md_rdev *rdev; 6979 6980 if (!mddev->pers) 6981 return -ENODEV; 6982 6983 if (mddev->major_version != 0) { 6984 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6985 mdname(mddev)); 6986 return -EINVAL; 6987 } 6988 if (!mddev->pers->hot_add_disk) { 6989 pr_warn("%s: personality does not support diskops!\n", 6990 mdname(mddev)); 6991 return -EINVAL; 6992 } 6993 6994 rdev = md_import_device(dev, -1, 0); 6995 if (IS_ERR(rdev)) { 6996 pr_warn("md: error, md_import_device() returned %ld\n", 6997 PTR_ERR(rdev)); 6998 return -EINVAL; 6999 } 7000 7001 if (mddev->persistent) 7002 rdev->sb_start = calc_dev_sboffset(rdev); 7003 else 7004 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 7005 7006 rdev->sectors = rdev->sb_start; 7007 7008 if (test_bit(Faulty, &rdev->flags)) { 7009 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7010 bdevname(rdev->bdev,b), mdname(mddev)); 7011 err = -EINVAL; 7012 goto abort_export; 7013 } 7014 7015 clear_bit(In_sync, &rdev->flags); 7016 rdev->desc_nr = -1; 7017 rdev->saved_raid_disk = -1; 7018 err = bind_rdev_to_array(rdev, mddev); 7019 if (err) 7020 goto abort_export; 7021 7022 /* 7023 * The rest should better be atomic, we can have disk failures 7024 * noticed in interrupt contexts ... 7025 */ 7026 7027 rdev->raid_disk = -1; 7028 7029 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7030 if (!mddev->thread) 7031 md_update_sb(mddev, 1); 7032 /* 7033 * Kick recovery, maybe this spare has to be added to the 7034 * array immediately. 7035 */ 7036 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7037 md_wakeup_thread(mddev->thread); 7038 md_new_event(mddev); 7039 return 0; 7040 7041 abort_export: 7042 export_rdev(rdev); 7043 return err; 7044 } 7045 7046 static int set_bitmap_file(struct mddev *mddev, int fd) 7047 { 7048 int err = 0; 7049 7050 if (mddev->pers) { 7051 if (!mddev->pers->quiesce || !mddev->thread) 7052 return -EBUSY; 7053 if (mddev->recovery || mddev->sync_thread) 7054 return -EBUSY; 7055 /* we should be able to change the bitmap.. */ 7056 } 7057 7058 if (fd >= 0) { 7059 struct inode *inode; 7060 struct file *f; 7061 7062 if (mddev->bitmap || mddev->bitmap_info.file) 7063 return -EEXIST; /* cannot add when bitmap is present */ 7064 f = fget(fd); 7065 7066 if (f == NULL) { 7067 pr_warn("%s: error: failed to get bitmap file\n", 7068 mdname(mddev)); 7069 return -EBADF; 7070 } 7071 7072 inode = f->f_mapping->host; 7073 if (!S_ISREG(inode->i_mode)) { 7074 pr_warn("%s: error: bitmap file must be a regular file\n", 7075 mdname(mddev)); 7076 err = -EBADF; 7077 } else if (!(f->f_mode & FMODE_WRITE)) { 7078 pr_warn("%s: error: bitmap file must open for write\n", 7079 mdname(mddev)); 7080 err = -EBADF; 7081 } else if (atomic_read(&inode->i_writecount) != 1) { 7082 pr_warn("%s: error: bitmap file is already in use\n", 7083 mdname(mddev)); 7084 err = -EBUSY; 7085 } 7086 if (err) { 7087 fput(f); 7088 return err; 7089 } 7090 mddev->bitmap_info.file = f; 7091 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7092 } else if (mddev->bitmap == NULL) 7093 return -ENOENT; /* cannot remove what isn't there */ 7094 err = 0; 7095 if (mddev->pers) { 7096 if (fd >= 0) { 7097 struct bitmap *bitmap; 7098 7099 bitmap = md_bitmap_create(mddev, -1); 7100 mddev_suspend(mddev); 7101 if (!IS_ERR(bitmap)) { 7102 mddev->bitmap = bitmap; 7103 err = md_bitmap_load(mddev); 7104 } else 7105 err = PTR_ERR(bitmap); 7106 if (err) { 7107 md_bitmap_destroy(mddev); 7108 fd = -1; 7109 } 7110 mddev_resume(mddev); 7111 } else if (fd < 0) { 7112 mddev_suspend(mddev); 7113 md_bitmap_destroy(mddev); 7114 mddev_resume(mddev); 7115 } 7116 } 7117 if (fd < 0) { 7118 struct file *f = mddev->bitmap_info.file; 7119 if (f) { 7120 spin_lock(&mddev->lock); 7121 mddev->bitmap_info.file = NULL; 7122 spin_unlock(&mddev->lock); 7123 fput(f); 7124 } 7125 } 7126 7127 return err; 7128 } 7129 7130 /* 7131 * set_array_info is used two different ways 7132 * The original usage is when creating a new array. 7133 * In this usage, raid_disks is > 0 and it together with 7134 * level, size, not_persistent,layout,chunksize determine the 7135 * shape of the array. 7136 * This will always create an array with a type-0.90.0 superblock. 7137 * The newer usage is when assembling an array. 7138 * In this case raid_disks will be 0, and the major_version field is 7139 * use to determine which style super-blocks are to be found on the devices. 7140 * The minor and patch _version numbers are also kept incase the 7141 * super_block handler wishes to interpret them. 7142 */ 7143 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 7144 { 7145 7146 if (info->raid_disks == 0) { 7147 /* just setting version number for superblock loading */ 7148 if (info->major_version < 0 || 7149 info->major_version >= ARRAY_SIZE(super_types) || 7150 super_types[info->major_version].name == NULL) { 7151 /* maybe try to auto-load a module? */ 7152 pr_warn("md: superblock version %d not known\n", 7153 info->major_version); 7154 return -EINVAL; 7155 } 7156 mddev->major_version = info->major_version; 7157 mddev->minor_version = info->minor_version; 7158 mddev->patch_version = info->patch_version; 7159 mddev->persistent = !info->not_persistent; 7160 /* ensure mddev_put doesn't delete this now that there 7161 * is some minimal configuration. 7162 */ 7163 mddev->ctime = ktime_get_real_seconds(); 7164 return 0; 7165 } 7166 mddev->major_version = MD_MAJOR_VERSION; 7167 mddev->minor_version = MD_MINOR_VERSION; 7168 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7169 mddev->ctime = ktime_get_real_seconds(); 7170 7171 mddev->level = info->level; 7172 mddev->clevel[0] = 0; 7173 mddev->dev_sectors = 2 * (sector_t)info->size; 7174 mddev->raid_disks = info->raid_disks; 7175 /* don't set md_minor, it is determined by which /dev/md* was 7176 * openned 7177 */ 7178 if (info->state & (1<<MD_SB_CLEAN)) 7179 mddev->recovery_cp = MaxSector; 7180 else 7181 mddev->recovery_cp = 0; 7182 mddev->persistent = ! info->not_persistent; 7183 mddev->external = 0; 7184 7185 mddev->layout = info->layout; 7186 if (mddev->level == 0) 7187 /* Cannot trust RAID0 layout info here */ 7188 mddev->layout = -1; 7189 mddev->chunk_sectors = info->chunk_size >> 9; 7190 7191 if (mddev->persistent) { 7192 mddev->max_disks = MD_SB_DISKS; 7193 mddev->flags = 0; 7194 mddev->sb_flags = 0; 7195 } 7196 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7197 7198 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7199 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7200 mddev->bitmap_info.offset = 0; 7201 7202 mddev->reshape_position = MaxSector; 7203 7204 /* 7205 * Generate a 128 bit UUID 7206 */ 7207 get_random_bytes(mddev->uuid, 16); 7208 7209 mddev->new_level = mddev->level; 7210 mddev->new_chunk_sectors = mddev->chunk_sectors; 7211 mddev->new_layout = mddev->layout; 7212 mddev->delta_disks = 0; 7213 mddev->reshape_backwards = 0; 7214 7215 return 0; 7216 } 7217 7218 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7219 { 7220 lockdep_assert_held(&mddev->reconfig_mutex); 7221 7222 if (mddev->external_size) 7223 return; 7224 7225 mddev->array_sectors = array_sectors; 7226 } 7227 EXPORT_SYMBOL(md_set_array_sectors); 7228 7229 static int update_size(struct mddev *mddev, sector_t num_sectors) 7230 { 7231 struct md_rdev *rdev; 7232 int rv; 7233 int fit = (num_sectors == 0); 7234 sector_t old_dev_sectors = mddev->dev_sectors; 7235 7236 if (mddev->pers->resize == NULL) 7237 return -EINVAL; 7238 /* The "num_sectors" is the number of sectors of each device that 7239 * is used. This can only make sense for arrays with redundancy. 7240 * linear and raid0 always use whatever space is available. We can only 7241 * consider changing this number if no resync or reconstruction is 7242 * happening, and if the new size is acceptable. It must fit before the 7243 * sb_start or, if that is <data_offset, it must fit before the size 7244 * of each device. If num_sectors is zero, we find the largest size 7245 * that fits. 7246 */ 7247 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7248 mddev->sync_thread) 7249 return -EBUSY; 7250 if (mddev->ro) 7251 return -EROFS; 7252 7253 rdev_for_each(rdev, mddev) { 7254 sector_t avail = rdev->sectors; 7255 7256 if (fit && (num_sectors == 0 || num_sectors > avail)) 7257 num_sectors = avail; 7258 if (avail < num_sectors) 7259 return -ENOSPC; 7260 } 7261 rv = mddev->pers->resize(mddev, num_sectors); 7262 if (!rv) { 7263 if (mddev_is_clustered(mddev)) 7264 md_cluster_ops->update_size(mddev, old_dev_sectors); 7265 else if (mddev->queue) { 7266 set_capacity(mddev->gendisk, mddev->array_sectors); 7267 revalidate_disk(mddev->gendisk); 7268 } 7269 } 7270 return rv; 7271 } 7272 7273 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7274 { 7275 int rv; 7276 struct md_rdev *rdev; 7277 /* change the number of raid disks */ 7278 if (mddev->pers->check_reshape == NULL) 7279 return -EINVAL; 7280 if (mddev->ro) 7281 return -EROFS; 7282 if (raid_disks <= 0 || 7283 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7284 return -EINVAL; 7285 if (mddev->sync_thread || 7286 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7287 mddev->reshape_position != MaxSector) 7288 return -EBUSY; 7289 7290 rdev_for_each(rdev, mddev) { 7291 if (mddev->raid_disks < raid_disks && 7292 rdev->data_offset < rdev->new_data_offset) 7293 return -EINVAL; 7294 if (mddev->raid_disks > raid_disks && 7295 rdev->data_offset > rdev->new_data_offset) 7296 return -EINVAL; 7297 } 7298 7299 mddev->delta_disks = raid_disks - mddev->raid_disks; 7300 if (mddev->delta_disks < 0) 7301 mddev->reshape_backwards = 1; 7302 else if (mddev->delta_disks > 0) 7303 mddev->reshape_backwards = 0; 7304 7305 rv = mddev->pers->check_reshape(mddev); 7306 if (rv < 0) { 7307 mddev->delta_disks = 0; 7308 mddev->reshape_backwards = 0; 7309 } 7310 return rv; 7311 } 7312 7313 /* 7314 * update_array_info is used to change the configuration of an 7315 * on-line array. 7316 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7317 * fields in the info are checked against the array. 7318 * Any differences that cannot be handled will cause an error. 7319 * Normally, only one change can be managed at a time. 7320 */ 7321 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7322 { 7323 int rv = 0; 7324 int cnt = 0; 7325 int state = 0; 7326 7327 /* calculate expected state,ignoring low bits */ 7328 if (mddev->bitmap && mddev->bitmap_info.offset) 7329 state |= (1 << MD_SB_BITMAP_PRESENT); 7330 7331 if (mddev->major_version != info->major_version || 7332 mddev->minor_version != info->minor_version || 7333 /* mddev->patch_version != info->patch_version || */ 7334 mddev->ctime != info->ctime || 7335 mddev->level != info->level || 7336 /* mddev->layout != info->layout || */ 7337 mddev->persistent != !info->not_persistent || 7338 mddev->chunk_sectors != info->chunk_size >> 9 || 7339 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7340 ((state^info->state) & 0xfffffe00) 7341 ) 7342 return -EINVAL; 7343 /* Check there is only one change */ 7344 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7345 cnt++; 7346 if (mddev->raid_disks != info->raid_disks) 7347 cnt++; 7348 if (mddev->layout != info->layout) 7349 cnt++; 7350 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7351 cnt++; 7352 if (cnt == 0) 7353 return 0; 7354 if (cnt > 1) 7355 return -EINVAL; 7356 7357 if (mddev->layout != info->layout) { 7358 /* Change layout 7359 * we don't need to do anything at the md level, the 7360 * personality will take care of it all. 7361 */ 7362 if (mddev->pers->check_reshape == NULL) 7363 return -EINVAL; 7364 else { 7365 mddev->new_layout = info->layout; 7366 rv = mddev->pers->check_reshape(mddev); 7367 if (rv) 7368 mddev->new_layout = mddev->layout; 7369 return rv; 7370 } 7371 } 7372 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7373 rv = update_size(mddev, (sector_t)info->size * 2); 7374 7375 if (mddev->raid_disks != info->raid_disks) 7376 rv = update_raid_disks(mddev, info->raid_disks); 7377 7378 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7379 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7380 rv = -EINVAL; 7381 goto err; 7382 } 7383 if (mddev->recovery || mddev->sync_thread) { 7384 rv = -EBUSY; 7385 goto err; 7386 } 7387 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7388 struct bitmap *bitmap; 7389 /* add the bitmap */ 7390 if (mddev->bitmap) { 7391 rv = -EEXIST; 7392 goto err; 7393 } 7394 if (mddev->bitmap_info.default_offset == 0) { 7395 rv = -EINVAL; 7396 goto err; 7397 } 7398 mddev->bitmap_info.offset = 7399 mddev->bitmap_info.default_offset; 7400 mddev->bitmap_info.space = 7401 mddev->bitmap_info.default_space; 7402 bitmap = md_bitmap_create(mddev, -1); 7403 mddev_suspend(mddev); 7404 if (!IS_ERR(bitmap)) { 7405 mddev->bitmap = bitmap; 7406 rv = md_bitmap_load(mddev); 7407 } else 7408 rv = PTR_ERR(bitmap); 7409 if (rv) 7410 md_bitmap_destroy(mddev); 7411 mddev_resume(mddev); 7412 } else { 7413 /* remove the bitmap */ 7414 if (!mddev->bitmap) { 7415 rv = -ENOENT; 7416 goto err; 7417 } 7418 if (mddev->bitmap->storage.file) { 7419 rv = -EINVAL; 7420 goto err; 7421 } 7422 if (mddev->bitmap_info.nodes) { 7423 /* hold PW on all the bitmap lock */ 7424 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7425 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7426 rv = -EPERM; 7427 md_cluster_ops->unlock_all_bitmaps(mddev); 7428 goto err; 7429 } 7430 7431 mddev->bitmap_info.nodes = 0; 7432 md_cluster_ops->leave(mddev); 7433 module_put(md_cluster_mod); 7434 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7435 } 7436 mddev_suspend(mddev); 7437 md_bitmap_destroy(mddev); 7438 mddev_resume(mddev); 7439 mddev->bitmap_info.offset = 0; 7440 } 7441 } 7442 md_update_sb(mddev, 1); 7443 return rv; 7444 err: 7445 return rv; 7446 } 7447 7448 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7449 { 7450 struct md_rdev *rdev; 7451 int err = 0; 7452 7453 if (mddev->pers == NULL) 7454 return -ENODEV; 7455 7456 rcu_read_lock(); 7457 rdev = md_find_rdev_rcu(mddev, dev); 7458 if (!rdev) 7459 err = -ENODEV; 7460 else { 7461 md_error(mddev, rdev); 7462 if (!test_bit(Faulty, &rdev->flags)) 7463 err = -EBUSY; 7464 } 7465 rcu_read_unlock(); 7466 return err; 7467 } 7468 7469 /* 7470 * We have a problem here : there is no easy way to give a CHS 7471 * virtual geometry. We currently pretend that we have a 2 heads 7472 * 4 sectors (with a BIG number of cylinders...). This drives 7473 * dosfs just mad... ;-) 7474 */ 7475 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7476 { 7477 struct mddev *mddev = bdev->bd_disk->private_data; 7478 7479 geo->heads = 2; 7480 geo->sectors = 4; 7481 geo->cylinders = mddev->array_sectors / 8; 7482 return 0; 7483 } 7484 7485 static inline bool md_ioctl_valid(unsigned int cmd) 7486 { 7487 switch (cmd) { 7488 case ADD_NEW_DISK: 7489 case BLKROSET: 7490 case GET_ARRAY_INFO: 7491 case GET_BITMAP_FILE: 7492 case GET_DISK_INFO: 7493 case HOT_ADD_DISK: 7494 case HOT_REMOVE_DISK: 7495 case RAID_AUTORUN: 7496 case RAID_VERSION: 7497 case RESTART_ARRAY_RW: 7498 case RUN_ARRAY: 7499 case SET_ARRAY_INFO: 7500 case SET_BITMAP_FILE: 7501 case SET_DISK_FAULTY: 7502 case STOP_ARRAY: 7503 case STOP_ARRAY_RO: 7504 case CLUSTERED_DISK_NACK: 7505 return true; 7506 default: 7507 return false; 7508 } 7509 } 7510 7511 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7512 unsigned int cmd, unsigned long arg) 7513 { 7514 int err = 0; 7515 void __user *argp = (void __user *)arg; 7516 struct mddev *mddev = NULL; 7517 int ro; 7518 bool did_set_md_closing = false; 7519 7520 if (!md_ioctl_valid(cmd)) 7521 return -ENOTTY; 7522 7523 switch (cmd) { 7524 case RAID_VERSION: 7525 case GET_ARRAY_INFO: 7526 case GET_DISK_INFO: 7527 break; 7528 default: 7529 if (!capable(CAP_SYS_ADMIN)) 7530 return -EACCES; 7531 } 7532 7533 /* 7534 * Commands dealing with the RAID driver but not any 7535 * particular array: 7536 */ 7537 switch (cmd) { 7538 case RAID_VERSION: 7539 err = get_version(argp); 7540 goto out; 7541 7542 #ifndef MODULE 7543 case RAID_AUTORUN: 7544 err = 0; 7545 autostart_arrays(arg); 7546 goto out; 7547 #endif 7548 default:; 7549 } 7550 7551 /* 7552 * Commands creating/starting a new array: 7553 */ 7554 7555 mddev = bdev->bd_disk->private_data; 7556 7557 if (!mddev) { 7558 BUG(); 7559 goto out; 7560 } 7561 7562 /* Some actions do not requires the mutex */ 7563 switch (cmd) { 7564 case GET_ARRAY_INFO: 7565 if (!mddev->raid_disks && !mddev->external) 7566 err = -ENODEV; 7567 else 7568 err = get_array_info(mddev, argp); 7569 goto out; 7570 7571 case GET_DISK_INFO: 7572 if (!mddev->raid_disks && !mddev->external) 7573 err = -ENODEV; 7574 else 7575 err = get_disk_info(mddev, argp); 7576 goto out; 7577 7578 case SET_DISK_FAULTY: 7579 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7580 goto out; 7581 7582 case GET_BITMAP_FILE: 7583 err = get_bitmap_file(mddev, argp); 7584 goto out; 7585 7586 } 7587 7588 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7589 flush_rdev_wq(mddev); 7590 7591 if (cmd == HOT_REMOVE_DISK) 7592 /* need to ensure recovery thread has run */ 7593 wait_event_interruptible_timeout(mddev->sb_wait, 7594 !test_bit(MD_RECOVERY_NEEDED, 7595 &mddev->recovery), 7596 msecs_to_jiffies(5000)); 7597 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7598 /* Need to flush page cache, and ensure no-one else opens 7599 * and writes 7600 */ 7601 mutex_lock(&mddev->open_mutex); 7602 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7603 mutex_unlock(&mddev->open_mutex); 7604 err = -EBUSY; 7605 goto out; 7606 } 7607 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7608 set_bit(MD_CLOSING, &mddev->flags); 7609 did_set_md_closing = true; 7610 mutex_unlock(&mddev->open_mutex); 7611 sync_blockdev(bdev); 7612 } 7613 err = mddev_lock(mddev); 7614 if (err) { 7615 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7616 err, cmd); 7617 goto out; 7618 } 7619 7620 if (cmd == SET_ARRAY_INFO) { 7621 mdu_array_info_t info; 7622 if (!arg) 7623 memset(&info, 0, sizeof(info)); 7624 else if (copy_from_user(&info, argp, sizeof(info))) { 7625 err = -EFAULT; 7626 goto unlock; 7627 } 7628 if (mddev->pers) { 7629 err = update_array_info(mddev, &info); 7630 if (err) { 7631 pr_warn("md: couldn't update array info. %d\n", err); 7632 goto unlock; 7633 } 7634 goto unlock; 7635 } 7636 if (!list_empty(&mddev->disks)) { 7637 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7638 err = -EBUSY; 7639 goto unlock; 7640 } 7641 if (mddev->raid_disks) { 7642 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7643 err = -EBUSY; 7644 goto unlock; 7645 } 7646 err = set_array_info(mddev, &info); 7647 if (err) { 7648 pr_warn("md: couldn't set array info. %d\n", err); 7649 goto unlock; 7650 } 7651 goto unlock; 7652 } 7653 7654 /* 7655 * Commands querying/configuring an existing array: 7656 */ 7657 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7658 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7659 if ((!mddev->raid_disks && !mddev->external) 7660 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7661 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7662 && cmd != GET_BITMAP_FILE) { 7663 err = -ENODEV; 7664 goto unlock; 7665 } 7666 7667 /* 7668 * Commands even a read-only array can execute: 7669 */ 7670 switch (cmd) { 7671 case RESTART_ARRAY_RW: 7672 err = restart_array(mddev); 7673 goto unlock; 7674 7675 case STOP_ARRAY: 7676 err = do_md_stop(mddev, 0, bdev); 7677 goto unlock; 7678 7679 case STOP_ARRAY_RO: 7680 err = md_set_readonly(mddev, bdev); 7681 goto unlock; 7682 7683 case HOT_REMOVE_DISK: 7684 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7685 goto unlock; 7686 7687 case ADD_NEW_DISK: 7688 /* We can support ADD_NEW_DISK on read-only arrays 7689 * only if we are re-adding a preexisting device. 7690 * So require mddev->pers and MD_DISK_SYNC. 7691 */ 7692 if (mddev->pers) { 7693 mdu_disk_info_t info; 7694 if (copy_from_user(&info, argp, sizeof(info))) 7695 err = -EFAULT; 7696 else if (!(info.state & (1<<MD_DISK_SYNC))) 7697 /* Need to clear read-only for this */ 7698 break; 7699 else 7700 err = add_new_disk(mddev, &info); 7701 goto unlock; 7702 } 7703 break; 7704 7705 case BLKROSET: 7706 if (get_user(ro, (int __user *)(arg))) { 7707 err = -EFAULT; 7708 goto unlock; 7709 } 7710 err = -EINVAL; 7711 7712 /* if the bdev is going readonly the value of mddev->ro 7713 * does not matter, no writes are coming 7714 */ 7715 if (ro) 7716 goto unlock; 7717 7718 /* are we are already prepared for writes? */ 7719 if (mddev->ro != 1) 7720 goto unlock; 7721 7722 /* transitioning to readauto need only happen for 7723 * arrays that call md_write_start 7724 */ 7725 if (mddev->pers) { 7726 err = restart_array(mddev); 7727 if (err == 0) { 7728 mddev->ro = 2; 7729 set_disk_ro(mddev->gendisk, 0); 7730 } 7731 } 7732 goto unlock; 7733 } 7734 7735 /* 7736 * The remaining ioctls are changing the state of the 7737 * superblock, so we do not allow them on read-only arrays. 7738 */ 7739 if (mddev->ro && mddev->pers) { 7740 if (mddev->ro == 2) { 7741 mddev->ro = 0; 7742 sysfs_notify_dirent_safe(mddev->sysfs_state); 7743 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7744 /* mddev_unlock will wake thread */ 7745 /* If a device failed while we were read-only, we 7746 * need to make sure the metadata is updated now. 7747 */ 7748 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7749 mddev_unlock(mddev); 7750 wait_event(mddev->sb_wait, 7751 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7752 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7753 mddev_lock_nointr(mddev); 7754 } 7755 } else { 7756 err = -EROFS; 7757 goto unlock; 7758 } 7759 } 7760 7761 switch (cmd) { 7762 case ADD_NEW_DISK: 7763 { 7764 mdu_disk_info_t info; 7765 if (copy_from_user(&info, argp, sizeof(info))) 7766 err = -EFAULT; 7767 else 7768 err = add_new_disk(mddev, &info); 7769 goto unlock; 7770 } 7771 7772 case CLUSTERED_DISK_NACK: 7773 if (mddev_is_clustered(mddev)) 7774 md_cluster_ops->new_disk_ack(mddev, false); 7775 else 7776 err = -EINVAL; 7777 goto unlock; 7778 7779 case HOT_ADD_DISK: 7780 err = hot_add_disk(mddev, new_decode_dev(arg)); 7781 goto unlock; 7782 7783 case RUN_ARRAY: 7784 err = do_md_run(mddev); 7785 goto unlock; 7786 7787 case SET_BITMAP_FILE: 7788 err = set_bitmap_file(mddev, (int)arg); 7789 goto unlock; 7790 7791 default: 7792 err = -EINVAL; 7793 goto unlock; 7794 } 7795 7796 unlock: 7797 if (mddev->hold_active == UNTIL_IOCTL && 7798 err != -EINVAL) 7799 mddev->hold_active = 0; 7800 mddev_unlock(mddev); 7801 out: 7802 if(did_set_md_closing) 7803 clear_bit(MD_CLOSING, &mddev->flags); 7804 return err; 7805 } 7806 #ifdef CONFIG_COMPAT 7807 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7808 unsigned int cmd, unsigned long arg) 7809 { 7810 switch (cmd) { 7811 case HOT_REMOVE_DISK: 7812 case HOT_ADD_DISK: 7813 case SET_DISK_FAULTY: 7814 case SET_BITMAP_FILE: 7815 /* These take in integer arg, do not convert */ 7816 break; 7817 default: 7818 arg = (unsigned long)compat_ptr(arg); 7819 break; 7820 } 7821 7822 return md_ioctl(bdev, mode, cmd, arg); 7823 } 7824 #endif /* CONFIG_COMPAT */ 7825 7826 static int md_open(struct block_device *bdev, fmode_t mode) 7827 { 7828 /* 7829 * Succeed if we can lock the mddev, which confirms that 7830 * it isn't being stopped right now. 7831 */ 7832 struct mddev *mddev = mddev_find(bdev->bd_dev); 7833 int err; 7834 7835 if (!mddev) 7836 return -ENODEV; 7837 7838 if (mddev->gendisk != bdev->bd_disk) { 7839 /* we are racing with mddev_put which is discarding this 7840 * bd_disk. 7841 */ 7842 mddev_put(mddev); 7843 /* Wait until bdev->bd_disk is definitely gone */ 7844 if (work_pending(&mddev->del_work)) 7845 flush_workqueue(md_misc_wq); 7846 /* Then retry the open from the top */ 7847 return -ERESTARTSYS; 7848 } 7849 BUG_ON(mddev != bdev->bd_disk->private_data); 7850 7851 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7852 goto out; 7853 7854 if (test_bit(MD_CLOSING, &mddev->flags)) { 7855 mutex_unlock(&mddev->open_mutex); 7856 err = -ENODEV; 7857 goto out; 7858 } 7859 7860 err = 0; 7861 atomic_inc(&mddev->openers); 7862 mutex_unlock(&mddev->open_mutex); 7863 7864 check_disk_change(bdev); 7865 out: 7866 if (err) 7867 mddev_put(mddev); 7868 return err; 7869 } 7870 7871 static void md_release(struct gendisk *disk, fmode_t mode) 7872 { 7873 struct mddev *mddev = disk->private_data; 7874 7875 BUG_ON(!mddev); 7876 atomic_dec(&mddev->openers); 7877 mddev_put(mddev); 7878 } 7879 7880 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7881 { 7882 struct mddev *mddev = disk->private_data; 7883 unsigned int ret = 0; 7884 7885 if (mddev->changed) 7886 ret = DISK_EVENT_MEDIA_CHANGE; 7887 mddev->changed = 0; 7888 return ret; 7889 } 7890 7891 static const struct block_device_operations md_fops = 7892 { 7893 .owner = THIS_MODULE, 7894 .submit_bio = md_submit_bio, 7895 .open = md_open, 7896 .release = md_release, 7897 .ioctl = md_ioctl, 7898 #ifdef CONFIG_COMPAT 7899 .compat_ioctl = md_compat_ioctl, 7900 #endif 7901 .getgeo = md_getgeo, 7902 .check_events = md_check_events, 7903 }; 7904 7905 static int md_thread(void *arg) 7906 { 7907 struct md_thread *thread = arg; 7908 7909 /* 7910 * md_thread is a 'system-thread', it's priority should be very 7911 * high. We avoid resource deadlocks individually in each 7912 * raid personality. (RAID5 does preallocation) We also use RR and 7913 * the very same RT priority as kswapd, thus we will never get 7914 * into a priority inversion deadlock. 7915 * 7916 * we definitely have to have equal or higher priority than 7917 * bdflush, otherwise bdflush will deadlock if there are too 7918 * many dirty RAID5 blocks. 7919 */ 7920 7921 allow_signal(SIGKILL); 7922 while (!kthread_should_stop()) { 7923 7924 /* We need to wait INTERRUPTIBLE so that 7925 * we don't add to the load-average. 7926 * That means we need to be sure no signals are 7927 * pending 7928 */ 7929 if (signal_pending(current)) 7930 flush_signals(current); 7931 7932 wait_event_interruptible_timeout 7933 (thread->wqueue, 7934 test_bit(THREAD_WAKEUP, &thread->flags) 7935 || kthread_should_stop() || kthread_should_park(), 7936 thread->timeout); 7937 7938 clear_bit(THREAD_WAKEUP, &thread->flags); 7939 if (kthread_should_park()) 7940 kthread_parkme(); 7941 if (!kthread_should_stop()) 7942 thread->run(thread); 7943 } 7944 7945 return 0; 7946 } 7947 7948 void md_wakeup_thread(struct md_thread *thread) 7949 { 7950 if (thread) { 7951 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7952 set_bit(THREAD_WAKEUP, &thread->flags); 7953 wake_up(&thread->wqueue); 7954 } 7955 } 7956 EXPORT_SYMBOL(md_wakeup_thread); 7957 7958 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7959 struct mddev *mddev, const char *name) 7960 { 7961 struct md_thread *thread; 7962 7963 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7964 if (!thread) 7965 return NULL; 7966 7967 init_waitqueue_head(&thread->wqueue); 7968 7969 thread->run = run; 7970 thread->mddev = mddev; 7971 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7972 thread->tsk = kthread_run(md_thread, thread, 7973 "%s_%s", 7974 mdname(thread->mddev), 7975 name); 7976 if (IS_ERR(thread->tsk)) { 7977 kfree(thread); 7978 return NULL; 7979 } 7980 return thread; 7981 } 7982 EXPORT_SYMBOL(md_register_thread); 7983 7984 void md_unregister_thread(struct md_thread **threadp) 7985 { 7986 struct md_thread *thread = *threadp; 7987 if (!thread) 7988 return; 7989 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7990 /* Locking ensures that mddev_unlock does not wake_up a 7991 * non-existent thread 7992 */ 7993 spin_lock(&pers_lock); 7994 *threadp = NULL; 7995 spin_unlock(&pers_lock); 7996 7997 kthread_stop(thread->tsk); 7998 kfree(thread); 7999 } 8000 EXPORT_SYMBOL(md_unregister_thread); 8001 8002 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8003 { 8004 if (!rdev || test_bit(Faulty, &rdev->flags)) 8005 return; 8006 8007 if (!mddev->pers || !mddev->pers->error_handler) 8008 return; 8009 mddev->pers->error_handler(mddev,rdev); 8010 if (mddev->degraded) 8011 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8012 sysfs_notify_dirent_safe(rdev->sysfs_state); 8013 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8014 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8015 md_wakeup_thread(mddev->thread); 8016 if (mddev->event_work.func) 8017 queue_work(md_misc_wq, &mddev->event_work); 8018 md_new_event(mddev); 8019 } 8020 EXPORT_SYMBOL(md_error); 8021 8022 /* seq_file implementation /proc/mdstat */ 8023 8024 static void status_unused(struct seq_file *seq) 8025 { 8026 int i = 0; 8027 struct md_rdev *rdev; 8028 8029 seq_printf(seq, "unused devices: "); 8030 8031 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8032 char b[BDEVNAME_SIZE]; 8033 i++; 8034 seq_printf(seq, "%s ", 8035 bdevname(rdev->bdev,b)); 8036 } 8037 if (!i) 8038 seq_printf(seq, "<none>"); 8039 8040 seq_printf(seq, "\n"); 8041 } 8042 8043 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8044 { 8045 sector_t max_sectors, resync, res; 8046 unsigned long dt, db = 0; 8047 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8048 int scale, recovery_active; 8049 unsigned int per_milli; 8050 8051 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8052 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8053 max_sectors = mddev->resync_max_sectors; 8054 else 8055 max_sectors = mddev->dev_sectors; 8056 8057 resync = mddev->curr_resync; 8058 if (resync <= 3) { 8059 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8060 /* Still cleaning up */ 8061 resync = max_sectors; 8062 } else if (resync > max_sectors) 8063 resync = max_sectors; 8064 else 8065 resync -= atomic_read(&mddev->recovery_active); 8066 8067 if (resync == 0) { 8068 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8069 struct md_rdev *rdev; 8070 8071 rdev_for_each(rdev, mddev) 8072 if (rdev->raid_disk >= 0 && 8073 !test_bit(Faulty, &rdev->flags) && 8074 rdev->recovery_offset != MaxSector && 8075 rdev->recovery_offset) { 8076 seq_printf(seq, "\trecover=REMOTE"); 8077 return 1; 8078 } 8079 if (mddev->reshape_position != MaxSector) 8080 seq_printf(seq, "\treshape=REMOTE"); 8081 else 8082 seq_printf(seq, "\tresync=REMOTE"); 8083 return 1; 8084 } 8085 if (mddev->recovery_cp < MaxSector) { 8086 seq_printf(seq, "\tresync=PENDING"); 8087 return 1; 8088 } 8089 return 0; 8090 } 8091 if (resync < 3) { 8092 seq_printf(seq, "\tresync=DELAYED"); 8093 return 1; 8094 } 8095 8096 WARN_ON(max_sectors == 0); 8097 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8098 * in a sector_t, and (max_sectors>>scale) will fit in a 8099 * u32, as those are the requirements for sector_div. 8100 * Thus 'scale' must be at least 10 8101 */ 8102 scale = 10; 8103 if (sizeof(sector_t) > sizeof(unsigned long)) { 8104 while ( max_sectors/2 > (1ULL<<(scale+32))) 8105 scale++; 8106 } 8107 res = (resync>>scale)*1000; 8108 sector_div(res, (u32)((max_sectors>>scale)+1)); 8109 8110 per_milli = res; 8111 { 8112 int i, x = per_milli/50, y = 20-x; 8113 seq_printf(seq, "["); 8114 for (i = 0; i < x; i++) 8115 seq_printf(seq, "="); 8116 seq_printf(seq, ">"); 8117 for (i = 0; i < y; i++) 8118 seq_printf(seq, "."); 8119 seq_printf(seq, "] "); 8120 } 8121 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8122 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8123 "reshape" : 8124 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8125 "check" : 8126 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8127 "resync" : "recovery"))), 8128 per_milli/10, per_milli % 10, 8129 (unsigned long long) resync/2, 8130 (unsigned long long) max_sectors/2); 8131 8132 /* 8133 * dt: time from mark until now 8134 * db: blocks written from mark until now 8135 * rt: remaining time 8136 * 8137 * rt is a sector_t, which is always 64bit now. We are keeping 8138 * the original algorithm, but it is not really necessary. 8139 * 8140 * Original algorithm: 8141 * So we divide before multiply in case it is 32bit and close 8142 * to the limit. 8143 * We scale the divisor (db) by 32 to avoid losing precision 8144 * near the end of resync when the number of remaining sectors 8145 * is close to 'db'. 8146 * We then divide rt by 32 after multiplying by db to compensate. 8147 * The '+1' avoids division by zero if db is very small. 8148 */ 8149 dt = ((jiffies - mddev->resync_mark) / HZ); 8150 if (!dt) dt++; 8151 8152 curr_mark_cnt = mddev->curr_mark_cnt; 8153 recovery_active = atomic_read(&mddev->recovery_active); 8154 resync_mark_cnt = mddev->resync_mark_cnt; 8155 8156 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8157 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8158 8159 rt = max_sectors - resync; /* number of remaining sectors */ 8160 rt = div64_u64(rt, db/32+1); 8161 rt *= dt; 8162 rt >>= 5; 8163 8164 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8165 ((unsigned long)rt % 60)/6); 8166 8167 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8168 return 1; 8169 } 8170 8171 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8172 { 8173 struct list_head *tmp; 8174 loff_t l = *pos; 8175 struct mddev *mddev; 8176 8177 if (l >= 0x10000) 8178 return NULL; 8179 if (!l--) 8180 /* header */ 8181 return (void*)1; 8182 8183 spin_lock(&all_mddevs_lock); 8184 list_for_each(tmp,&all_mddevs) 8185 if (!l--) { 8186 mddev = list_entry(tmp, struct mddev, all_mddevs); 8187 mddev_get(mddev); 8188 spin_unlock(&all_mddevs_lock); 8189 return mddev; 8190 } 8191 spin_unlock(&all_mddevs_lock); 8192 if (!l--) 8193 return (void*)2;/* tail */ 8194 return NULL; 8195 } 8196 8197 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8198 { 8199 struct list_head *tmp; 8200 struct mddev *next_mddev, *mddev = v; 8201 8202 ++*pos; 8203 if (v == (void*)2) 8204 return NULL; 8205 8206 spin_lock(&all_mddevs_lock); 8207 if (v == (void*)1) 8208 tmp = all_mddevs.next; 8209 else 8210 tmp = mddev->all_mddevs.next; 8211 if (tmp != &all_mddevs) 8212 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8213 else { 8214 next_mddev = (void*)2; 8215 *pos = 0x10000; 8216 } 8217 spin_unlock(&all_mddevs_lock); 8218 8219 if (v != (void*)1) 8220 mddev_put(mddev); 8221 return next_mddev; 8222 8223 } 8224 8225 static void md_seq_stop(struct seq_file *seq, void *v) 8226 { 8227 struct mddev *mddev = v; 8228 8229 if (mddev && v != (void*)1 && v != (void*)2) 8230 mddev_put(mddev); 8231 } 8232 8233 static int md_seq_show(struct seq_file *seq, void *v) 8234 { 8235 struct mddev *mddev = v; 8236 sector_t sectors; 8237 struct md_rdev *rdev; 8238 8239 if (v == (void*)1) { 8240 struct md_personality *pers; 8241 seq_printf(seq, "Personalities : "); 8242 spin_lock(&pers_lock); 8243 list_for_each_entry(pers, &pers_list, list) 8244 seq_printf(seq, "[%s] ", pers->name); 8245 8246 spin_unlock(&pers_lock); 8247 seq_printf(seq, "\n"); 8248 seq->poll_event = atomic_read(&md_event_count); 8249 return 0; 8250 } 8251 if (v == (void*)2) { 8252 status_unused(seq); 8253 return 0; 8254 } 8255 8256 spin_lock(&mddev->lock); 8257 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8258 seq_printf(seq, "%s : %sactive", mdname(mddev), 8259 mddev->pers ? "" : "in"); 8260 if (mddev->pers) { 8261 if (mddev->ro==1) 8262 seq_printf(seq, " (read-only)"); 8263 if (mddev->ro==2) 8264 seq_printf(seq, " (auto-read-only)"); 8265 seq_printf(seq, " %s", mddev->pers->name); 8266 } 8267 8268 sectors = 0; 8269 rcu_read_lock(); 8270 rdev_for_each_rcu(rdev, mddev) { 8271 char b[BDEVNAME_SIZE]; 8272 seq_printf(seq, " %s[%d]", 8273 bdevname(rdev->bdev,b), rdev->desc_nr); 8274 if (test_bit(WriteMostly, &rdev->flags)) 8275 seq_printf(seq, "(W)"); 8276 if (test_bit(Journal, &rdev->flags)) 8277 seq_printf(seq, "(J)"); 8278 if (test_bit(Faulty, &rdev->flags)) { 8279 seq_printf(seq, "(F)"); 8280 continue; 8281 } 8282 if (rdev->raid_disk < 0) 8283 seq_printf(seq, "(S)"); /* spare */ 8284 if (test_bit(Replacement, &rdev->flags)) 8285 seq_printf(seq, "(R)"); 8286 sectors += rdev->sectors; 8287 } 8288 rcu_read_unlock(); 8289 8290 if (!list_empty(&mddev->disks)) { 8291 if (mddev->pers) 8292 seq_printf(seq, "\n %llu blocks", 8293 (unsigned long long) 8294 mddev->array_sectors / 2); 8295 else 8296 seq_printf(seq, "\n %llu blocks", 8297 (unsigned long long)sectors / 2); 8298 } 8299 if (mddev->persistent) { 8300 if (mddev->major_version != 0 || 8301 mddev->minor_version != 90) { 8302 seq_printf(seq," super %d.%d", 8303 mddev->major_version, 8304 mddev->minor_version); 8305 } 8306 } else if (mddev->external) 8307 seq_printf(seq, " super external:%s", 8308 mddev->metadata_type); 8309 else 8310 seq_printf(seq, " super non-persistent"); 8311 8312 if (mddev->pers) { 8313 mddev->pers->status(seq, mddev); 8314 seq_printf(seq, "\n "); 8315 if (mddev->pers->sync_request) { 8316 if (status_resync(seq, mddev)) 8317 seq_printf(seq, "\n "); 8318 } 8319 } else 8320 seq_printf(seq, "\n "); 8321 8322 md_bitmap_status(seq, mddev->bitmap); 8323 8324 seq_printf(seq, "\n"); 8325 } 8326 spin_unlock(&mddev->lock); 8327 8328 return 0; 8329 } 8330 8331 static const struct seq_operations md_seq_ops = { 8332 .start = md_seq_start, 8333 .next = md_seq_next, 8334 .stop = md_seq_stop, 8335 .show = md_seq_show, 8336 }; 8337 8338 static int md_seq_open(struct inode *inode, struct file *file) 8339 { 8340 struct seq_file *seq; 8341 int error; 8342 8343 error = seq_open(file, &md_seq_ops); 8344 if (error) 8345 return error; 8346 8347 seq = file->private_data; 8348 seq->poll_event = atomic_read(&md_event_count); 8349 return error; 8350 } 8351 8352 static int md_unloading; 8353 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8354 { 8355 struct seq_file *seq = filp->private_data; 8356 __poll_t mask; 8357 8358 if (md_unloading) 8359 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8360 poll_wait(filp, &md_event_waiters, wait); 8361 8362 /* always allow read */ 8363 mask = EPOLLIN | EPOLLRDNORM; 8364 8365 if (seq->poll_event != atomic_read(&md_event_count)) 8366 mask |= EPOLLERR | EPOLLPRI; 8367 return mask; 8368 } 8369 8370 static const struct proc_ops mdstat_proc_ops = { 8371 .proc_open = md_seq_open, 8372 .proc_read = seq_read, 8373 .proc_lseek = seq_lseek, 8374 .proc_release = seq_release, 8375 .proc_poll = mdstat_poll, 8376 }; 8377 8378 int register_md_personality(struct md_personality *p) 8379 { 8380 pr_debug("md: %s personality registered for level %d\n", 8381 p->name, p->level); 8382 spin_lock(&pers_lock); 8383 list_add_tail(&p->list, &pers_list); 8384 spin_unlock(&pers_lock); 8385 return 0; 8386 } 8387 EXPORT_SYMBOL(register_md_personality); 8388 8389 int unregister_md_personality(struct md_personality *p) 8390 { 8391 pr_debug("md: %s personality unregistered\n", p->name); 8392 spin_lock(&pers_lock); 8393 list_del_init(&p->list); 8394 spin_unlock(&pers_lock); 8395 return 0; 8396 } 8397 EXPORT_SYMBOL(unregister_md_personality); 8398 8399 int register_md_cluster_operations(struct md_cluster_operations *ops, 8400 struct module *module) 8401 { 8402 int ret = 0; 8403 spin_lock(&pers_lock); 8404 if (md_cluster_ops != NULL) 8405 ret = -EALREADY; 8406 else { 8407 md_cluster_ops = ops; 8408 md_cluster_mod = module; 8409 } 8410 spin_unlock(&pers_lock); 8411 return ret; 8412 } 8413 EXPORT_SYMBOL(register_md_cluster_operations); 8414 8415 int unregister_md_cluster_operations(void) 8416 { 8417 spin_lock(&pers_lock); 8418 md_cluster_ops = NULL; 8419 spin_unlock(&pers_lock); 8420 return 0; 8421 } 8422 EXPORT_SYMBOL(unregister_md_cluster_operations); 8423 8424 int md_setup_cluster(struct mddev *mddev, int nodes) 8425 { 8426 int ret; 8427 if (!md_cluster_ops) 8428 request_module("md-cluster"); 8429 spin_lock(&pers_lock); 8430 /* ensure module won't be unloaded */ 8431 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8432 pr_warn("can't find md-cluster module or get it's reference.\n"); 8433 spin_unlock(&pers_lock); 8434 return -ENOENT; 8435 } 8436 spin_unlock(&pers_lock); 8437 8438 ret = md_cluster_ops->join(mddev, nodes); 8439 if (!ret) 8440 mddev->safemode_delay = 0; 8441 return ret; 8442 } 8443 8444 void md_cluster_stop(struct mddev *mddev) 8445 { 8446 if (!md_cluster_ops) 8447 return; 8448 md_cluster_ops->leave(mddev); 8449 module_put(md_cluster_mod); 8450 } 8451 8452 static int is_mddev_idle(struct mddev *mddev, int init) 8453 { 8454 struct md_rdev *rdev; 8455 int idle; 8456 int curr_events; 8457 8458 idle = 1; 8459 rcu_read_lock(); 8460 rdev_for_each_rcu(rdev, mddev) { 8461 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8462 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8463 atomic_read(&disk->sync_io); 8464 /* sync IO will cause sync_io to increase before the disk_stats 8465 * as sync_io is counted when a request starts, and 8466 * disk_stats is counted when it completes. 8467 * So resync activity will cause curr_events to be smaller than 8468 * when there was no such activity. 8469 * non-sync IO will cause disk_stat to increase without 8470 * increasing sync_io so curr_events will (eventually) 8471 * be larger than it was before. Once it becomes 8472 * substantially larger, the test below will cause 8473 * the array to appear non-idle, and resync will slow 8474 * down. 8475 * If there is a lot of outstanding resync activity when 8476 * we set last_event to curr_events, then all that activity 8477 * completing might cause the array to appear non-idle 8478 * and resync will be slowed down even though there might 8479 * not have been non-resync activity. This will only 8480 * happen once though. 'last_events' will soon reflect 8481 * the state where there is little or no outstanding 8482 * resync requests, and further resync activity will 8483 * always make curr_events less than last_events. 8484 * 8485 */ 8486 if (init || curr_events - rdev->last_events > 64) { 8487 rdev->last_events = curr_events; 8488 idle = 0; 8489 } 8490 } 8491 rcu_read_unlock(); 8492 return idle; 8493 } 8494 8495 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8496 { 8497 /* another "blocks" (512byte) blocks have been synced */ 8498 atomic_sub(blocks, &mddev->recovery_active); 8499 wake_up(&mddev->recovery_wait); 8500 if (!ok) { 8501 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8502 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8503 md_wakeup_thread(mddev->thread); 8504 // stop recovery, signal do_sync .... 8505 } 8506 } 8507 EXPORT_SYMBOL(md_done_sync); 8508 8509 /* md_write_start(mddev, bi) 8510 * If we need to update some array metadata (e.g. 'active' flag 8511 * in superblock) before writing, schedule a superblock update 8512 * and wait for it to complete. 8513 * A return value of 'false' means that the write wasn't recorded 8514 * and cannot proceed as the array is being suspend. 8515 */ 8516 bool md_write_start(struct mddev *mddev, struct bio *bi) 8517 { 8518 int did_change = 0; 8519 8520 if (bio_data_dir(bi) != WRITE) 8521 return true; 8522 8523 BUG_ON(mddev->ro == 1); 8524 if (mddev->ro == 2) { 8525 /* need to switch to read/write */ 8526 mddev->ro = 0; 8527 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8528 md_wakeup_thread(mddev->thread); 8529 md_wakeup_thread(mddev->sync_thread); 8530 did_change = 1; 8531 } 8532 rcu_read_lock(); 8533 percpu_ref_get(&mddev->writes_pending); 8534 smp_mb(); /* Match smp_mb in set_in_sync() */ 8535 if (mddev->safemode == 1) 8536 mddev->safemode = 0; 8537 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8538 if (mddev->in_sync || mddev->sync_checkers) { 8539 spin_lock(&mddev->lock); 8540 if (mddev->in_sync) { 8541 mddev->in_sync = 0; 8542 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8543 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8544 md_wakeup_thread(mddev->thread); 8545 did_change = 1; 8546 } 8547 spin_unlock(&mddev->lock); 8548 } 8549 rcu_read_unlock(); 8550 if (did_change) 8551 sysfs_notify_dirent_safe(mddev->sysfs_state); 8552 if (!mddev->has_superblocks) 8553 return true; 8554 wait_event(mddev->sb_wait, 8555 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8556 mddev->suspended); 8557 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8558 percpu_ref_put(&mddev->writes_pending); 8559 return false; 8560 } 8561 return true; 8562 } 8563 EXPORT_SYMBOL(md_write_start); 8564 8565 /* md_write_inc can only be called when md_write_start() has 8566 * already been called at least once of the current request. 8567 * It increments the counter and is useful when a single request 8568 * is split into several parts. Each part causes an increment and 8569 * so needs a matching md_write_end(). 8570 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8571 * a spinlocked region. 8572 */ 8573 void md_write_inc(struct mddev *mddev, struct bio *bi) 8574 { 8575 if (bio_data_dir(bi) != WRITE) 8576 return; 8577 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8578 percpu_ref_get(&mddev->writes_pending); 8579 } 8580 EXPORT_SYMBOL(md_write_inc); 8581 8582 void md_write_end(struct mddev *mddev) 8583 { 8584 percpu_ref_put(&mddev->writes_pending); 8585 8586 if (mddev->safemode == 2) 8587 md_wakeup_thread(mddev->thread); 8588 else if (mddev->safemode_delay) 8589 /* The roundup() ensures this only performs locking once 8590 * every ->safemode_delay jiffies 8591 */ 8592 mod_timer(&mddev->safemode_timer, 8593 roundup(jiffies, mddev->safemode_delay) + 8594 mddev->safemode_delay); 8595 } 8596 8597 EXPORT_SYMBOL(md_write_end); 8598 8599 /* md_allow_write(mddev) 8600 * Calling this ensures that the array is marked 'active' so that writes 8601 * may proceed without blocking. It is important to call this before 8602 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8603 * Must be called with mddev_lock held. 8604 */ 8605 void md_allow_write(struct mddev *mddev) 8606 { 8607 if (!mddev->pers) 8608 return; 8609 if (mddev->ro) 8610 return; 8611 if (!mddev->pers->sync_request) 8612 return; 8613 8614 spin_lock(&mddev->lock); 8615 if (mddev->in_sync) { 8616 mddev->in_sync = 0; 8617 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8618 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8619 if (mddev->safemode_delay && 8620 mddev->safemode == 0) 8621 mddev->safemode = 1; 8622 spin_unlock(&mddev->lock); 8623 md_update_sb(mddev, 0); 8624 sysfs_notify_dirent_safe(mddev->sysfs_state); 8625 /* wait for the dirty state to be recorded in the metadata */ 8626 wait_event(mddev->sb_wait, 8627 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8628 } else 8629 spin_unlock(&mddev->lock); 8630 } 8631 EXPORT_SYMBOL_GPL(md_allow_write); 8632 8633 #define SYNC_MARKS 10 8634 #define SYNC_MARK_STEP (3*HZ) 8635 #define UPDATE_FREQUENCY (5*60*HZ) 8636 void md_do_sync(struct md_thread *thread) 8637 { 8638 struct mddev *mddev = thread->mddev; 8639 struct mddev *mddev2; 8640 unsigned int currspeed = 0, window; 8641 sector_t max_sectors,j, io_sectors, recovery_done; 8642 unsigned long mark[SYNC_MARKS]; 8643 unsigned long update_time; 8644 sector_t mark_cnt[SYNC_MARKS]; 8645 int last_mark,m; 8646 struct list_head *tmp; 8647 sector_t last_check; 8648 int skipped = 0; 8649 struct md_rdev *rdev; 8650 char *desc, *action = NULL; 8651 struct blk_plug plug; 8652 int ret; 8653 8654 /* just incase thread restarts... */ 8655 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8656 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8657 return; 8658 if (mddev->ro) {/* never try to sync a read-only array */ 8659 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8660 return; 8661 } 8662 8663 if (mddev_is_clustered(mddev)) { 8664 ret = md_cluster_ops->resync_start(mddev); 8665 if (ret) 8666 goto skip; 8667 8668 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8669 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8670 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8671 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8672 && ((unsigned long long)mddev->curr_resync_completed 8673 < (unsigned long long)mddev->resync_max_sectors)) 8674 goto skip; 8675 } 8676 8677 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8678 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8679 desc = "data-check"; 8680 action = "check"; 8681 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8682 desc = "requested-resync"; 8683 action = "repair"; 8684 } else 8685 desc = "resync"; 8686 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8687 desc = "reshape"; 8688 else 8689 desc = "recovery"; 8690 8691 mddev->last_sync_action = action ?: desc; 8692 8693 /* we overload curr_resync somewhat here. 8694 * 0 == not engaged in resync at all 8695 * 2 == checking that there is no conflict with another sync 8696 * 1 == like 2, but have yielded to allow conflicting resync to 8697 * commence 8698 * other == active in resync - this many blocks 8699 * 8700 * Before starting a resync we must have set curr_resync to 8701 * 2, and then checked that every "conflicting" array has curr_resync 8702 * less than ours. When we find one that is the same or higher 8703 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8704 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8705 * This will mean we have to start checking from the beginning again. 8706 * 8707 */ 8708 8709 do { 8710 int mddev2_minor = -1; 8711 mddev->curr_resync = 2; 8712 8713 try_again: 8714 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8715 goto skip; 8716 for_each_mddev(mddev2, tmp) { 8717 if (mddev2 == mddev) 8718 continue; 8719 if (!mddev->parallel_resync 8720 && mddev2->curr_resync 8721 && match_mddev_units(mddev, mddev2)) { 8722 DEFINE_WAIT(wq); 8723 if (mddev < mddev2 && mddev->curr_resync == 2) { 8724 /* arbitrarily yield */ 8725 mddev->curr_resync = 1; 8726 wake_up(&resync_wait); 8727 } 8728 if (mddev > mddev2 && mddev->curr_resync == 1) 8729 /* no need to wait here, we can wait the next 8730 * time 'round when curr_resync == 2 8731 */ 8732 continue; 8733 /* We need to wait 'interruptible' so as not to 8734 * contribute to the load average, and not to 8735 * be caught by 'softlockup' 8736 */ 8737 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8738 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8739 mddev2->curr_resync >= mddev->curr_resync) { 8740 if (mddev2_minor != mddev2->md_minor) { 8741 mddev2_minor = mddev2->md_minor; 8742 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8743 desc, mdname(mddev), 8744 mdname(mddev2)); 8745 } 8746 mddev_put(mddev2); 8747 if (signal_pending(current)) 8748 flush_signals(current); 8749 schedule(); 8750 finish_wait(&resync_wait, &wq); 8751 goto try_again; 8752 } 8753 finish_wait(&resync_wait, &wq); 8754 } 8755 } 8756 } while (mddev->curr_resync < 2); 8757 8758 j = 0; 8759 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8760 /* resync follows the size requested by the personality, 8761 * which defaults to physical size, but can be virtual size 8762 */ 8763 max_sectors = mddev->resync_max_sectors; 8764 atomic64_set(&mddev->resync_mismatches, 0); 8765 /* we don't use the checkpoint if there's a bitmap */ 8766 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8767 j = mddev->resync_min; 8768 else if (!mddev->bitmap) 8769 j = mddev->recovery_cp; 8770 8771 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8772 max_sectors = mddev->resync_max_sectors; 8773 /* 8774 * If the original node aborts reshaping then we continue the 8775 * reshaping, so set j again to avoid restart reshape from the 8776 * first beginning 8777 */ 8778 if (mddev_is_clustered(mddev) && 8779 mddev->reshape_position != MaxSector) 8780 j = mddev->reshape_position; 8781 } else { 8782 /* recovery follows the physical size of devices */ 8783 max_sectors = mddev->dev_sectors; 8784 j = MaxSector; 8785 rcu_read_lock(); 8786 rdev_for_each_rcu(rdev, mddev) 8787 if (rdev->raid_disk >= 0 && 8788 !test_bit(Journal, &rdev->flags) && 8789 !test_bit(Faulty, &rdev->flags) && 8790 !test_bit(In_sync, &rdev->flags) && 8791 rdev->recovery_offset < j) 8792 j = rdev->recovery_offset; 8793 rcu_read_unlock(); 8794 8795 /* If there is a bitmap, we need to make sure all 8796 * writes that started before we added a spare 8797 * complete before we start doing a recovery. 8798 * Otherwise the write might complete and (via 8799 * bitmap_endwrite) set a bit in the bitmap after the 8800 * recovery has checked that bit and skipped that 8801 * region. 8802 */ 8803 if (mddev->bitmap) { 8804 mddev->pers->quiesce(mddev, 1); 8805 mddev->pers->quiesce(mddev, 0); 8806 } 8807 } 8808 8809 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8810 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8811 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8812 speed_max(mddev), desc); 8813 8814 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8815 8816 io_sectors = 0; 8817 for (m = 0; m < SYNC_MARKS; m++) { 8818 mark[m] = jiffies; 8819 mark_cnt[m] = io_sectors; 8820 } 8821 last_mark = 0; 8822 mddev->resync_mark = mark[last_mark]; 8823 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8824 8825 /* 8826 * Tune reconstruction: 8827 */ 8828 window = 32 * (PAGE_SIZE / 512); 8829 pr_debug("md: using %dk window, over a total of %lluk.\n", 8830 window/2, (unsigned long long)max_sectors/2); 8831 8832 atomic_set(&mddev->recovery_active, 0); 8833 last_check = 0; 8834 8835 if (j>2) { 8836 pr_debug("md: resuming %s of %s from checkpoint.\n", 8837 desc, mdname(mddev)); 8838 mddev->curr_resync = j; 8839 } else 8840 mddev->curr_resync = 3; /* no longer delayed */ 8841 mddev->curr_resync_completed = j; 8842 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8843 md_new_event(mddev); 8844 update_time = jiffies; 8845 8846 blk_start_plug(&plug); 8847 while (j < max_sectors) { 8848 sector_t sectors; 8849 8850 skipped = 0; 8851 8852 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8853 ((mddev->curr_resync > mddev->curr_resync_completed && 8854 (mddev->curr_resync - mddev->curr_resync_completed) 8855 > (max_sectors >> 4)) || 8856 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8857 (j - mddev->curr_resync_completed)*2 8858 >= mddev->resync_max - mddev->curr_resync_completed || 8859 mddev->curr_resync_completed > mddev->resync_max 8860 )) { 8861 /* time to update curr_resync_completed */ 8862 wait_event(mddev->recovery_wait, 8863 atomic_read(&mddev->recovery_active) == 0); 8864 mddev->curr_resync_completed = j; 8865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8866 j > mddev->recovery_cp) 8867 mddev->recovery_cp = j; 8868 update_time = jiffies; 8869 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8870 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8871 } 8872 8873 while (j >= mddev->resync_max && 8874 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8875 /* As this condition is controlled by user-space, 8876 * we can block indefinitely, so use '_interruptible' 8877 * to avoid triggering warnings. 8878 */ 8879 flush_signals(current); /* just in case */ 8880 wait_event_interruptible(mddev->recovery_wait, 8881 mddev->resync_max > j 8882 || test_bit(MD_RECOVERY_INTR, 8883 &mddev->recovery)); 8884 } 8885 8886 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8887 break; 8888 8889 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8890 if (sectors == 0) { 8891 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8892 break; 8893 } 8894 8895 if (!skipped) { /* actual IO requested */ 8896 io_sectors += sectors; 8897 atomic_add(sectors, &mddev->recovery_active); 8898 } 8899 8900 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8901 break; 8902 8903 j += sectors; 8904 if (j > max_sectors) 8905 /* when skipping, extra large numbers can be returned. */ 8906 j = max_sectors; 8907 if (j > 2) 8908 mddev->curr_resync = j; 8909 mddev->curr_mark_cnt = io_sectors; 8910 if (last_check == 0) 8911 /* this is the earliest that rebuild will be 8912 * visible in /proc/mdstat 8913 */ 8914 md_new_event(mddev); 8915 8916 if (last_check + window > io_sectors || j == max_sectors) 8917 continue; 8918 8919 last_check = io_sectors; 8920 repeat: 8921 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8922 /* step marks */ 8923 int next = (last_mark+1) % SYNC_MARKS; 8924 8925 mddev->resync_mark = mark[next]; 8926 mddev->resync_mark_cnt = mark_cnt[next]; 8927 mark[next] = jiffies; 8928 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8929 last_mark = next; 8930 } 8931 8932 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8933 break; 8934 8935 /* 8936 * this loop exits only if either when we are slower than 8937 * the 'hard' speed limit, or the system was IO-idle for 8938 * a jiffy. 8939 * the system might be non-idle CPU-wise, but we only care 8940 * about not overloading the IO subsystem. (things like an 8941 * e2fsck being done on the RAID array should execute fast) 8942 */ 8943 cond_resched(); 8944 8945 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8946 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8947 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8948 8949 if (currspeed > speed_min(mddev)) { 8950 if (currspeed > speed_max(mddev)) { 8951 msleep(500); 8952 goto repeat; 8953 } 8954 if (!is_mddev_idle(mddev, 0)) { 8955 /* 8956 * Give other IO more of a chance. 8957 * The faster the devices, the less we wait. 8958 */ 8959 wait_event(mddev->recovery_wait, 8960 !atomic_read(&mddev->recovery_active)); 8961 } 8962 } 8963 } 8964 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8965 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8966 ? "interrupted" : "done"); 8967 /* 8968 * this also signals 'finished resyncing' to md_stop 8969 */ 8970 blk_finish_plug(&plug); 8971 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8972 8973 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8974 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8975 mddev->curr_resync > 3) { 8976 mddev->curr_resync_completed = mddev->curr_resync; 8977 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8978 } 8979 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8980 8981 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8982 mddev->curr_resync > 3) { 8983 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8984 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8985 if (mddev->curr_resync >= mddev->recovery_cp) { 8986 pr_debug("md: checkpointing %s of %s.\n", 8987 desc, mdname(mddev)); 8988 if (test_bit(MD_RECOVERY_ERROR, 8989 &mddev->recovery)) 8990 mddev->recovery_cp = 8991 mddev->curr_resync_completed; 8992 else 8993 mddev->recovery_cp = 8994 mddev->curr_resync; 8995 } 8996 } else 8997 mddev->recovery_cp = MaxSector; 8998 } else { 8999 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9000 mddev->curr_resync = MaxSector; 9001 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9002 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9003 rcu_read_lock(); 9004 rdev_for_each_rcu(rdev, mddev) 9005 if (rdev->raid_disk >= 0 && 9006 mddev->delta_disks >= 0 && 9007 !test_bit(Journal, &rdev->flags) && 9008 !test_bit(Faulty, &rdev->flags) && 9009 !test_bit(In_sync, &rdev->flags) && 9010 rdev->recovery_offset < mddev->curr_resync) 9011 rdev->recovery_offset = mddev->curr_resync; 9012 rcu_read_unlock(); 9013 } 9014 } 9015 } 9016 skip: 9017 /* set CHANGE_PENDING here since maybe another update is needed, 9018 * so other nodes are informed. It should be harmless for normal 9019 * raid */ 9020 set_mask_bits(&mddev->sb_flags, 0, 9021 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9022 9023 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9024 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9025 mddev->delta_disks > 0 && 9026 mddev->pers->finish_reshape && 9027 mddev->pers->size && 9028 mddev->queue) { 9029 mddev_lock_nointr(mddev); 9030 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9031 mddev_unlock(mddev); 9032 if (!mddev_is_clustered(mddev)) { 9033 set_capacity(mddev->gendisk, mddev->array_sectors); 9034 revalidate_disk(mddev->gendisk); 9035 } 9036 } 9037 9038 spin_lock(&mddev->lock); 9039 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9040 /* We completed so min/max setting can be forgotten if used. */ 9041 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9042 mddev->resync_min = 0; 9043 mddev->resync_max = MaxSector; 9044 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9045 mddev->resync_min = mddev->curr_resync_completed; 9046 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9047 mddev->curr_resync = 0; 9048 spin_unlock(&mddev->lock); 9049 9050 wake_up(&resync_wait); 9051 md_wakeup_thread(mddev->thread); 9052 return; 9053 } 9054 EXPORT_SYMBOL_GPL(md_do_sync); 9055 9056 static int remove_and_add_spares(struct mddev *mddev, 9057 struct md_rdev *this) 9058 { 9059 struct md_rdev *rdev; 9060 int spares = 0; 9061 int removed = 0; 9062 bool remove_some = false; 9063 9064 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9065 /* Mustn't remove devices when resync thread is running */ 9066 return 0; 9067 9068 rdev_for_each(rdev, mddev) { 9069 if ((this == NULL || rdev == this) && 9070 rdev->raid_disk >= 0 && 9071 !test_bit(Blocked, &rdev->flags) && 9072 test_bit(Faulty, &rdev->flags) && 9073 atomic_read(&rdev->nr_pending)==0) { 9074 /* Faulty non-Blocked devices with nr_pending == 0 9075 * never get nr_pending incremented, 9076 * never get Faulty cleared, and never get Blocked set. 9077 * So we can synchronize_rcu now rather than once per device 9078 */ 9079 remove_some = true; 9080 set_bit(RemoveSynchronized, &rdev->flags); 9081 } 9082 } 9083 9084 if (remove_some) 9085 synchronize_rcu(); 9086 rdev_for_each(rdev, mddev) { 9087 if ((this == NULL || rdev == this) && 9088 rdev->raid_disk >= 0 && 9089 !test_bit(Blocked, &rdev->flags) && 9090 ((test_bit(RemoveSynchronized, &rdev->flags) || 9091 (!test_bit(In_sync, &rdev->flags) && 9092 !test_bit(Journal, &rdev->flags))) && 9093 atomic_read(&rdev->nr_pending)==0)) { 9094 if (mddev->pers->hot_remove_disk( 9095 mddev, rdev) == 0) { 9096 sysfs_unlink_rdev(mddev, rdev); 9097 rdev->saved_raid_disk = rdev->raid_disk; 9098 rdev->raid_disk = -1; 9099 removed++; 9100 } 9101 } 9102 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9103 clear_bit(RemoveSynchronized, &rdev->flags); 9104 } 9105 9106 if (removed && mddev->kobj.sd) 9107 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9108 9109 if (this && removed) 9110 goto no_add; 9111 9112 rdev_for_each(rdev, mddev) { 9113 if (this && this != rdev) 9114 continue; 9115 if (test_bit(Candidate, &rdev->flags)) 9116 continue; 9117 if (rdev->raid_disk >= 0 && 9118 !test_bit(In_sync, &rdev->flags) && 9119 !test_bit(Journal, &rdev->flags) && 9120 !test_bit(Faulty, &rdev->flags)) 9121 spares++; 9122 if (rdev->raid_disk >= 0) 9123 continue; 9124 if (test_bit(Faulty, &rdev->flags)) 9125 continue; 9126 if (!test_bit(Journal, &rdev->flags)) { 9127 if (mddev->ro && 9128 ! (rdev->saved_raid_disk >= 0 && 9129 !test_bit(Bitmap_sync, &rdev->flags))) 9130 continue; 9131 9132 rdev->recovery_offset = 0; 9133 } 9134 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9135 /* failure here is OK */ 9136 sysfs_link_rdev(mddev, rdev); 9137 if (!test_bit(Journal, &rdev->flags)) 9138 spares++; 9139 md_new_event(mddev); 9140 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9141 } 9142 } 9143 no_add: 9144 if (removed) 9145 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9146 return spares; 9147 } 9148 9149 static void md_start_sync(struct work_struct *ws) 9150 { 9151 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9152 9153 mddev->sync_thread = md_register_thread(md_do_sync, 9154 mddev, 9155 "resync"); 9156 if (!mddev->sync_thread) { 9157 pr_warn("%s: could not start resync thread...\n", 9158 mdname(mddev)); 9159 /* leave the spares where they are, it shouldn't hurt */ 9160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9161 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9162 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9163 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9164 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9165 wake_up(&resync_wait); 9166 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9167 &mddev->recovery)) 9168 if (mddev->sysfs_action) 9169 sysfs_notify_dirent_safe(mddev->sysfs_action); 9170 } else 9171 md_wakeup_thread(mddev->sync_thread); 9172 sysfs_notify_dirent_safe(mddev->sysfs_action); 9173 md_new_event(mddev); 9174 } 9175 9176 /* 9177 * This routine is regularly called by all per-raid-array threads to 9178 * deal with generic issues like resync and super-block update. 9179 * Raid personalities that don't have a thread (linear/raid0) do not 9180 * need this as they never do any recovery or update the superblock. 9181 * 9182 * It does not do any resync itself, but rather "forks" off other threads 9183 * to do that as needed. 9184 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9185 * "->recovery" and create a thread at ->sync_thread. 9186 * When the thread finishes it sets MD_RECOVERY_DONE 9187 * and wakeups up this thread which will reap the thread and finish up. 9188 * This thread also removes any faulty devices (with nr_pending == 0). 9189 * 9190 * The overall approach is: 9191 * 1/ if the superblock needs updating, update it. 9192 * 2/ If a recovery thread is running, don't do anything else. 9193 * 3/ If recovery has finished, clean up, possibly marking spares active. 9194 * 4/ If there are any faulty devices, remove them. 9195 * 5/ If array is degraded, try to add spares devices 9196 * 6/ If array has spares or is not in-sync, start a resync thread. 9197 */ 9198 void md_check_recovery(struct mddev *mddev) 9199 { 9200 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9201 /* Write superblock - thread that called mddev_suspend() 9202 * holds reconfig_mutex for us. 9203 */ 9204 set_bit(MD_UPDATING_SB, &mddev->flags); 9205 smp_mb__after_atomic(); 9206 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9207 md_update_sb(mddev, 0); 9208 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9209 wake_up(&mddev->sb_wait); 9210 } 9211 9212 if (mddev->suspended) 9213 return; 9214 9215 if (mddev->bitmap) 9216 md_bitmap_daemon_work(mddev); 9217 9218 if (signal_pending(current)) { 9219 if (mddev->pers->sync_request && !mddev->external) { 9220 pr_debug("md: %s in immediate safe mode\n", 9221 mdname(mddev)); 9222 mddev->safemode = 2; 9223 } 9224 flush_signals(current); 9225 } 9226 9227 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9228 return; 9229 if ( ! ( 9230 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9231 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9232 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9233 (mddev->external == 0 && mddev->safemode == 1) || 9234 (mddev->safemode == 2 9235 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9236 )) 9237 return; 9238 9239 if (mddev_trylock(mddev)) { 9240 int spares = 0; 9241 bool try_set_sync = mddev->safemode != 0; 9242 9243 if (!mddev->external && mddev->safemode == 1) 9244 mddev->safemode = 0; 9245 9246 if (mddev->ro) { 9247 struct md_rdev *rdev; 9248 if (!mddev->external && mddev->in_sync) 9249 /* 'Blocked' flag not needed as failed devices 9250 * will be recorded if array switched to read/write. 9251 * Leaving it set will prevent the device 9252 * from being removed. 9253 */ 9254 rdev_for_each(rdev, mddev) 9255 clear_bit(Blocked, &rdev->flags); 9256 /* On a read-only array we can: 9257 * - remove failed devices 9258 * - add already-in_sync devices if the array itself 9259 * is in-sync. 9260 * As we only add devices that are already in-sync, 9261 * we can activate the spares immediately. 9262 */ 9263 remove_and_add_spares(mddev, NULL); 9264 /* There is no thread, but we need to call 9265 * ->spare_active and clear saved_raid_disk 9266 */ 9267 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9268 md_reap_sync_thread(mddev); 9269 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9270 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9271 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9272 goto unlock; 9273 } 9274 9275 if (mddev_is_clustered(mddev)) { 9276 struct md_rdev *rdev; 9277 /* kick the device if another node issued a 9278 * remove disk. 9279 */ 9280 rdev_for_each(rdev, mddev) { 9281 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9282 rdev->raid_disk < 0) 9283 md_kick_rdev_from_array(rdev); 9284 } 9285 } 9286 9287 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9288 spin_lock(&mddev->lock); 9289 set_in_sync(mddev); 9290 spin_unlock(&mddev->lock); 9291 } 9292 9293 if (mddev->sb_flags) 9294 md_update_sb(mddev, 0); 9295 9296 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9297 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9298 /* resync/recovery still happening */ 9299 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9300 goto unlock; 9301 } 9302 if (mddev->sync_thread) { 9303 md_reap_sync_thread(mddev); 9304 goto unlock; 9305 } 9306 /* Set RUNNING before clearing NEEDED to avoid 9307 * any transients in the value of "sync_action". 9308 */ 9309 mddev->curr_resync_completed = 0; 9310 spin_lock(&mddev->lock); 9311 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9312 spin_unlock(&mddev->lock); 9313 /* Clear some bits that don't mean anything, but 9314 * might be left set 9315 */ 9316 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9317 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9318 9319 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9320 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9321 goto not_running; 9322 /* no recovery is running. 9323 * remove any failed drives, then 9324 * add spares if possible. 9325 * Spares are also removed and re-added, to allow 9326 * the personality to fail the re-add. 9327 */ 9328 9329 if (mddev->reshape_position != MaxSector) { 9330 if (mddev->pers->check_reshape == NULL || 9331 mddev->pers->check_reshape(mddev) != 0) 9332 /* Cannot proceed */ 9333 goto not_running; 9334 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9335 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9336 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9337 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9338 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9339 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9340 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9341 } else if (mddev->recovery_cp < MaxSector) { 9342 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9343 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9344 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9345 /* nothing to be done ... */ 9346 goto not_running; 9347 9348 if (mddev->pers->sync_request) { 9349 if (spares) { 9350 /* We are adding a device or devices to an array 9351 * which has the bitmap stored on all devices. 9352 * So make sure all bitmap pages get written 9353 */ 9354 md_bitmap_write_all(mddev->bitmap); 9355 } 9356 INIT_WORK(&mddev->del_work, md_start_sync); 9357 queue_work(md_misc_wq, &mddev->del_work); 9358 goto unlock; 9359 } 9360 not_running: 9361 if (!mddev->sync_thread) { 9362 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9363 wake_up(&resync_wait); 9364 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9365 &mddev->recovery)) 9366 if (mddev->sysfs_action) 9367 sysfs_notify_dirent_safe(mddev->sysfs_action); 9368 } 9369 unlock: 9370 wake_up(&mddev->sb_wait); 9371 mddev_unlock(mddev); 9372 } 9373 } 9374 EXPORT_SYMBOL(md_check_recovery); 9375 9376 void md_reap_sync_thread(struct mddev *mddev) 9377 { 9378 struct md_rdev *rdev; 9379 sector_t old_dev_sectors = mddev->dev_sectors; 9380 bool is_reshaped = false; 9381 9382 /* resync has finished, collect result */ 9383 md_unregister_thread(&mddev->sync_thread); 9384 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9385 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9386 mddev->degraded != mddev->raid_disks) { 9387 /* success...*/ 9388 /* activate any spares */ 9389 if (mddev->pers->spare_active(mddev)) { 9390 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9391 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9392 } 9393 } 9394 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9395 mddev->pers->finish_reshape) { 9396 mddev->pers->finish_reshape(mddev); 9397 if (mddev_is_clustered(mddev)) 9398 is_reshaped = true; 9399 } 9400 9401 /* If array is no-longer degraded, then any saved_raid_disk 9402 * information must be scrapped. 9403 */ 9404 if (!mddev->degraded) 9405 rdev_for_each(rdev, mddev) 9406 rdev->saved_raid_disk = -1; 9407 9408 md_update_sb(mddev, 1); 9409 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9410 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9411 * clustered raid */ 9412 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9413 md_cluster_ops->resync_finish(mddev); 9414 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9415 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9416 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9417 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9418 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9419 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9420 /* 9421 * We call md_cluster_ops->update_size here because sync_size could 9422 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9423 * so it is time to update size across cluster. 9424 */ 9425 if (mddev_is_clustered(mddev) && is_reshaped 9426 && !test_bit(MD_CLOSING, &mddev->flags)) 9427 md_cluster_ops->update_size(mddev, old_dev_sectors); 9428 wake_up(&resync_wait); 9429 /* flag recovery needed just to double check */ 9430 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9431 sysfs_notify_dirent_safe(mddev->sysfs_action); 9432 md_new_event(mddev); 9433 if (mddev->event_work.func) 9434 queue_work(md_misc_wq, &mddev->event_work); 9435 } 9436 EXPORT_SYMBOL(md_reap_sync_thread); 9437 9438 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9439 { 9440 sysfs_notify_dirent_safe(rdev->sysfs_state); 9441 wait_event_timeout(rdev->blocked_wait, 9442 !test_bit(Blocked, &rdev->flags) && 9443 !test_bit(BlockedBadBlocks, &rdev->flags), 9444 msecs_to_jiffies(5000)); 9445 rdev_dec_pending(rdev, mddev); 9446 } 9447 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9448 9449 void md_finish_reshape(struct mddev *mddev) 9450 { 9451 /* called be personality module when reshape completes. */ 9452 struct md_rdev *rdev; 9453 9454 rdev_for_each(rdev, mddev) { 9455 if (rdev->data_offset > rdev->new_data_offset) 9456 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9457 else 9458 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9459 rdev->data_offset = rdev->new_data_offset; 9460 } 9461 } 9462 EXPORT_SYMBOL(md_finish_reshape); 9463 9464 /* Bad block management */ 9465 9466 /* Returns 1 on success, 0 on failure */ 9467 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9468 int is_new) 9469 { 9470 struct mddev *mddev = rdev->mddev; 9471 int rv; 9472 if (is_new) 9473 s += rdev->new_data_offset; 9474 else 9475 s += rdev->data_offset; 9476 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9477 if (rv == 0) { 9478 /* Make sure they get written out promptly */ 9479 if (test_bit(ExternalBbl, &rdev->flags)) 9480 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9481 sysfs_notify_dirent_safe(rdev->sysfs_state); 9482 set_mask_bits(&mddev->sb_flags, 0, 9483 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9484 md_wakeup_thread(rdev->mddev->thread); 9485 return 1; 9486 } else 9487 return 0; 9488 } 9489 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9490 9491 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9492 int is_new) 9493 { 9494 int rv; 9495 if (is_new) 9496 s += rdev->new_data_offset; 9497 else 9498 s += rdev->data_offset; 9499 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9500 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9501 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9502 return rv; 9503 } 9504 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9505 9506 static int md_notify_reboot(struct notifier_block *this, 9507 unsigned long code, void *x) 9508 { 9509 struct list_head *tmp; 9510 struct mddev *mddev; 9511 int need_delay = 0; 9512 9513 for_each_mddev(mddev, tmp) { 9514 if (mddev_trylock(mddev)) { 9515 if (mddev->pers) 9516 __md_stop_writes(mddev); 9517 if (mddev->persistent) 9518 mddev->safemode = 2; 9519 mddev_unlock(mddev); 9520 } 9521 need_delay = 1; 9522 } 9523 /* 9524 * certain more exotic SCSI devices are known to be 9525 * volatile wrt too early system reboots. While the 9526 * right place to handle this issue is the given 9527 * driver, we do want to have a safe RAID driver ... 9528 */ 9529 if (need_delay) 9530 mdelay(1000*1); 9531 9532 return NOTIFY_DONE; 9533 } 9534 9535 static struct notifier_block md_notifier = { 9536 .notifier_call = md_notify_reboot, 9537 .next = NULL, 9538 .priority = INT_MAX, /* before any real devices */ 9539 }; 9540 9541 static void md_geninit(void) 9542 { 9543 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9544 9545 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9546 } 9547 9548 static int __init md_init(void) 9549 { 9550 int ret = -ENOMEM; 9551 9552 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9553 if (!md_wq) 9554 goto err_wq; 9555 9556 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9557 if (!md_misc_wq) 9558 goto err_misc_wq; 9559 9560 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9561 if (!md_misc_wq) 9562 goto err_rdev_misc_wq; 9563 9564 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9565 goto err_md; 9566 9567 if ((ret = register_blkdev(0, "mdp")) < 0) 9568 goto err_mdp; 9569 mdp_major = ret; 9570 9571 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9572 md_probe, NULL, NULL); 9573 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9574 md_probe, NULL, NULL); 9575 9576 register_reboot_notifier(&md_notifier); 9577 raid_table_header = register_sysctl_table(raid_root_table); 9578 9579 md_geninit(); 9580 return 0; 9581 9582 err_mdp: 9583 unregister_blkdev(MD_MAJOR, "md"); 9584 err_md: 9585 destroy_workqueue(md_rdev_misc_wq); 9586 err_rdev_misc_wq: 9587 destroy_workqueue(md_misc_wq); 9588 err_misc_wq: 9589 destroy_workqueue(md_wq); 9590 err_wq: 9591 return ret; 9592 } 9593 9594 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9595 { 9596 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9597 struct md_rdev *rdev2; 9598 int role, ret; 9599 char b[BDEVNAME_SIZE]; 9600 9601 /* 9602 * If size is changed in another node then we need to 9603 * do resize as well. 9604 */ 9605 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9606 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9607 if (ret) 9608 pr_info("md-cluster: resize failed\n"); 9609 else 9610 md_bitmap_update_sb(mddev->bitmap); 9611 } 9612 9613 /* Check for change of roles in the active devices */ 9614 rdev_for_each(rdev2, mddev) { 9615 if (test_bit(Faulty, &rdev2->flags)) 9616 continue; 9617 9618 /* Check if the roles changed */ 9619 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9620 9621 if (test_bit(Candidate, &rdev2->flags)) { 9622 if (role == 0xfffe) { 9623 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9624 md_kick_rdev_from_array(rdev2); 9625 continue; 9626 } 9627 else 9628 clear_bit(Candidate, &rdev2->flags); 9629 } 9630 9631 if (role != rdev2->raid_disk) { 9632 /* 9633 * got activated except reshape is happening. 9634 */ 9635 if (rdev2->raid_disk == -1 && role != 0xffff && 9636 !(le32_to_cpu(sb->feature_map) & 9637 MD_FEATURE_RESHAPE_ACTIVE)) { 9638 rdev2->saved_raid_disk = role; 9639 ret = remove_and_add_spares(mddev, rdev2); 9640 pr_info("Activated spare: %s\n", 9641 bdevname(rdev2->bdev,b)); 9642 /* wakeup mddev->thread here, so array could 9643 * perform resync with the new activated disk */ 9644 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9645 md_wakeup_thread(mddev->thread); 9646 } 9647 /* device faulty 9648 * We just want to do the minimum to mark the disk 9649 * as faulty. The recovery is performed by the 9650 * one who initiated the error. 9651 */ 9652 if ((role == 0xfffe) || (role == 0xfffd)) { 9653 md_error(mddev, rdev2); 9654 clear_bit(Blocked, &rdev2->flags); 9655 } 9656 } 9657 } 9658 9659 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9660 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9661 9662 /* 9663 * Since mddev->delta_disks has already updated in update_raid_disks, 9664 * so it is time to check reshape. 9665 */ 9666 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9667 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9668 /* 9669 * reshape is happening in the remote node, we need to 9670 * update reshape_position and call start_reshape. 9671 */ 9672 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9673 if (mddev->pers->update_reshape_pos) 9674 mddev->pers->update_reshape_pos(mddev); 9675 if (mddev->pers->start_reshape) 9676 mddev->pers->start_reshape(mddev); 9677 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9678 mddev->reshape_position != MaxSector && 9679 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9680 /* reshape is just done in another node. */ 9681 mddev->reshape_position = MaxSector; 9682 if (mddev->pers->update_reshape_pos) 9683 mddev->pers->update_reshape_pos(mddev); 9684 } 9685 9686 /* Finally set the event to be up to date */ 9687 mddev->events = le64_to_cpu(sb->events); 9688 } 9689 9690 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9691 { 9692 int err; 9693 struct page *swapout = rdev->sb_page; 9694 struct mdp_superblock_1 *sb; 9695 9696 /* Store the sb page of the rdev in the swapout temporary 9697 * variable in case we err in the future 9698 */ 9699 rdev->sb_page = NULL; 9700 err = alloc_disk_sb(rdev); 9701 if (err == 0) { 9702 ClearPageUptodate(rdev->sb_page); 9703 rdev->sb_loaded = 0; 9704 err = super_types[mddev->major_version]. 9705 load_super(rdev, NULL, mddev->minor_version); 9706 } 9707 if (err < 0) { 9708 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9709 __func__, __LINE__, rdev->desc_nr, err); 9710 if (rdev->sb_page) 9711 put_page(rdev->sb_page); 9712 rdev->sb_page = swapout; 9713 rdev->sb_loaded = 1; 9714 return err; 9715 } 9716 9717 sb = page_address(rdev->sb_page); 9718 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9719 * is not set 9720 */ 9721 9722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9723 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9724 9725 /* The other node finished recovery, call spare_active to set 9726 * device In_sync and mddev->degraded 9727 */ 9728 if (rdev->recovery_offset == MaxSector && 9729 !test_bit(In_sync, &rdev->flags) && 9730 mddev->pers->spare_active(mddev)) 9731 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9732 9733 put_page(swapout); 9734 return 0; 9735 } 9736 9737 void md_reload_sb(struct mddev *mddev, int nr) 9738 { 9739 struct md_rdev *rdev; 9740 int err; 9741 9742 /* Find the rdev */ 9743 rdev_for_each_rcu(rdev, mddev) { 9744 if (rdev->desc_nr == nr) 9745 break; 9746 } 9747 9748 if (!rdev || rdev->desc_nr != nr) { 9749 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9750 return; 9751 } 9752 9753 err = read_rdev(mddev, rdev); 9754 if (err < 0) 9755 return; 9756 9757 check_sb_changes(mddev, rdev); 9758 9759 /* Read all rdev's to update recovery_offset */ 9760 rdev_for_each_rcu(rdev, mddev) { 9761 if (!test_bit(Faulty, &rdev->flags)) 9762 read_rdev(mddev, rdev); 9763 } 9764 } 9765 EXPORT_SYMBOL(md_reload_sb); 9766 9767 #ifndef MODULE 9768 9769 /* 9770 * Searches all registered partitions for autorun RAID arrays 9771 * at boot time. 9772 */ 9773 9774 static DEFINE_MUTEX(detected_devices_mutex); 9775 static LIST_HEAD(all_detected_devices); 9776 struct detected_devices_node { 9777 struct list_head list; 9778 dev_t dev; 9779 }; 9780 9781 void md_autodetect_dev(dev_t dev) 9782 { 9783 struct detected_devices_node *node_detected_dev; 9784 9785 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9786 if (node_detected_dev) { 9787 node_detected_dev->dev = dev; 9788 mutex_lock(&detected_devices_mutex); 9789 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9790 mutex_unlock(&detected_devices_mutex); 9791 } 9792 } 9793 9794 static void autostart_arrays(int part) 9795 { 9796 struct md_rdev *rdev; 9797 struct detected_devices_node *node_detected_dev; 9798 dev_t dev; 9799 int i_scanned, i_passed; 9800 9801 i_scanned = 0; 9802 i_passed = 0; 9803 9804 pr_info("md: Autodetecting RAID arrays.\n"); 9805 9806 mutex_lock(&detected_devices_mutex); 9807 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9808 i_scanned++; 9809 node_detected_dev = list_entry(all_detected_devices.next, 9810 struct detected_devices_node, list); 9811 list_del(&node_detected_dev->list); 9812 dev = node_detected_dev->dev; 9813 kfree(node_detected_dev); 9814 mutex_unlock(&detected_devices_mutex); 9815 rdev = md_import_device(dev,0, 90); 9816 mutex_lock(&detected_devices_mutex); 9817 if (IS_ERR(rdev)) 9818 continue; 9819 9820 if (test_bit(Faulty, &rdev->flags)) 9821 continue; 9822 9823 set_bit(AutoDetected, &rdev->flags); 9824 list_add(&rdev->same_set, &pending_raid_disks); 9825 i_passed++; 9826 } 9827 mutex_unlock(&detected_devices_mutex); 9828 9829 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9830 9831 autorun_devices(part); 9832 } 9833 9834 #endif /* !MODULE */ 9835 9836 static __exit void md_exit(void) 9837 { 9838 struct mddev *mddev; 9839 struct list_head *tmp; 9840 int delay = 1; 9841 9842 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9843 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9844 9845 unregister_blkdev(MD_MAJOR,"md"); 9846 unregister_blkdev(mdp_major, "mdp"); 9847 unregister_reboot_notifier(&md_notifier); 9848 unregister_sysctl_table(raid_table_header); 9849 9850 /* We cannot unload the modules while some process is 9851 * waiting for us in select() or poll() - wake them up 9852 */ 9853 md_unloading = 1; 9854 while (waitqueue_active(&md_event_waiters)) { 9855 /* not safe to leave yet */ 9856 wake_up(&md_event_waiters); 9857 msleep(delay); 9858 delay += delay; 9859 } 9860 remove_proc_entry("mdstat", NULL); 9861 9862 for_each_mddev(mddev, tmp) { 9863 export_array(mddev); 9864 mddev->ctime = 0; 9865 mddev->hold_active = 0; 9866 /* 9867 * for_each_mddev() will call mddev_put() at the end of each 9868 * iteration. As the mddev is now fully clear, this will 9869 * schedule the mddev for destruction by a workqueue, and the 9870 * destroy_workqueue() below will wait for that to complete. 9871 */ 9872 } 9873 destroy_workqueue(md_rdev_misc_wq); 9874 destroy_workqueue(md_misc_wq); 9875 destroy_workqueue(md_wq); 9876 } 9877 9878 subsys_initcall(md_init); 9879 module_exit(md_exit) 9880 9881 static int get_ro(char *buffer, const struct kernel_param *kp) 9882 { 9883 return sprintf(buffer, "%d\n", start_readonly); 9884 } 9885 static int set_ro(const char *val, const struct kernel_param *kp) 9886 { 9887 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9888 } 9889 9890 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9891 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9892 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9893 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9894 9895 MODULE_LICENSE("GPL"); 9896 MODULE_DESCRIPTION("MD RAID framework"); 9897 MODULE_ALIAS("md"); 9898 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9899