xref: /openbmc/linux/drivers/md/md.c (revision 4f3db074)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	if (mddev == NULL || mddev->pers == NULL
261 	    || !mddev->ready) {
262 		bio_io_error(bio);
263 		return;
264 	}
265 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 		return;
268 	}
269 	smp_rmb(); /* Ensure implications of  'active' are visible */
270 	rcu_read_lock();
271 	if (mddev->suspended) {
272 		DEFINE_WAIT(__wait);
273 		for (;;) {
274 			prepare_to_wait(&mddev->sb_wait, &__wait,
275 					TASK_UNINTERRUPTIBLE);
276 			if (!mddev->suspended)
277 				break;
278 			rcu_read_unlock();
279 			schedule();
280 			rcu_read_lock();
281 		}
282 		finish_wait(&mddev->sb_wait, &__wait);
283 	}
284 	atomic_inc(&mddev->active_io);
285 	rcu_read_unlock();
286 
287 	/*
288 	 * save the sectors now since our bio can
289 	 * go away inside make_request
290 	 */
291 	sectors = bio_sectors(bio);
292 	mddev->pers->make_request(mddev, bio);
293 
294 	cpu = part_stat_lock();
295 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 	part_stat_unlock();
298 
299 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 		wake_up(&mddev->sb_wait);
301 }
302 
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 	BUG_ON(mddev->suspended);
312 	mddev->suspended = 1;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	mddev->suspended = 0;
324 	wake_up(&mddev->sb_wait);
325 	mddev->pers->quiesce(mddev, 0);
326 
327 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 	md_wakeup_thread(mddev->thread);
329 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332 
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 	struct md_personality *pers = mddev->pers;
336 	int ret = 0;
337 
338 	rcu_read_lock();
339 	if (mddev->suspended)
340 		ret = 1;
341 	else if (pers && pers->congested)
342 		ret = pers->congested(mddev, bits);
343 	rcu_read_unlock();
344 	return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 	struct mddev *mddev = data;
350 	return mddev_congested(mddev, bits);
351 }
352 
353 static int md_mergeable_bvec(struct request_queue *q,
354 			     struct bvec_merge_data *bvm,
355 			     struct bio_vec *biovec)
356 {
357 	struct mddev *mddev = q->queuedata;
358 	int ret;
359 	rcu_read_lock();
360 	if (mddev->suspended) {
361 		/* Must always allow one vec */
362 		if (bvm->bi_size == 0)
363 			ret = biovec->bv_len;
364 		else
365 			ret = 0;
366 	} else {
367 		struct md_personality *pers = mddev->pers;
368 		if (pers && pers->mergeable_bvec)
369 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 		else
371 			ret = biovec->bv_len;
372 	}
373 	rcu_read_unlock();
374 	return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379 
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 	struct md_rdev *rdev = bio->bi_private;
383 	struct mddev *mddev = rdev->mddev;
384 
385 	rdev_dec_pending(rdev, mddev);
386 
387 	if (atomic_dec_and_test(&mddev->flush_pending)) {
388 		/* The pre-request flush has finished */
389 		queue_work(md_wq, &mddev->flush_work);
390 	}
391 	bio_put(bio);
392 }
393 
394 static void md_submit_flush_data(struct work_struct *ws);
395 
396 static void submit_flushes(struct work_struct *ws)
397 {
398 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 	struct md_rdev *rdev;
400 
401 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 	atomic_set(&mddev->flush_pending, 1);
403 	rcu_read_lock();
404 	rdev_for_each_rcu(rdev, mddev)
405 		if (rdev->raid_disk >= 0 &&
406 		    !test_bit(Faulty, &rdev->flags)) {
407 			/* Take two references, one is dropped
408 			 * when request finishes, one after
409 			 * we reclaim rcu_read_lock
410 			 */
411 			struct bio *bi;
412 			atomic_inc(&rdev->nr_pending);
413 			atomic_inc(&rdev->nr_pending);
414 			rcu_read_unlock();
415 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 			bi->bi_end_io = md_end_flush;
417 			bi->bi_private = rdev;
418 			bi->bi_bdev = rdev->bdev;
419 			atomic_inc(&mddev->flush_pending);
420 			submit_bio(WRITE_FLUSH, bi);
421 			rcu_read_lock();
422 			rdev_dec_pending(rdev, mddev);
423 		}
424 	rcu_read_unlock();
425 	if (atomic_dec_and_test(&mddev->flush_pending))
426 		queue_work(md_wq, &mddev->flush_work);
427 }
428 
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 	struct bio *bio = mddev->flush_bio;
433 
434 	if (bio->bi_iter.bi_size == 0)
435 		/* an empty barrier - all done */
436 		bio_endio(bio, 0);
437 	else {
438 		bio->bi_rw &= ~REQ_FLUSH;
439 		mddev->pers->make_request(mddev, bio);
440 	}
441 
442 	mddev->flush_bio = NULL;
443 	wake_up(&mddev->sb_wait);
444 }
445 
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 	spin_lock_irq(&mddev->lock);
449 	wait_event_lock_irq(mddev->sb_wait,
450 			    !mddev->flush_bio,
451 			    mddev->lock);
452 	mddev->flush_bio = bio;
453 	spin_unlock_irq(&mddev->lock);
454 
455 	INIT_WORK(&mddev->flush_work, submit_flushes);
456 	queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459 
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 	struct mddev *mddev = cb->data;
463 	md_wakeup_thread(mddev->thread);
464 	kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467 
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 	atomic_inc(&mddev->active);
471 	return mddev;
472 }
473 
474 static void mddev_delayed_delete(struct work_struct *ws);
475 
476 static void mddev_put(struct mddev *mddev)
477 {
478 	struct bio_set *bs = NULL;
479 
480 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 		return;
482 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 	    mddev->ctime == 0 && !mddev->hold_active) {
484 		/* Array is not configured at all, and not held active,
485 		 * so destroy it */
486 		list_del_init(&mddev->all_mddevs);
487 		bs = mddev->bio_set;
488 		mddev->bio_set = NULL;
489 		if (mddev->gendisk) {
490 			/* We did a probe so need to clean up.  Call
491 			 * queue_work inside the spinlock so that
492 			 * flush_workqueue() after mddev_find will
493 			 * succeed in waiting for the work to be done.
494 			 */
495 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 			queue_work(md_misc_wq, &mddev->del_work);
497 		} else
498 			kfree(mddev);
499 	}
500 	spin_unlock(&all_mddevs_lock);
501 	if (bs)
502 		bioset_free(bs);
503 }
504 
505 void mddev_init(struct mddev *mddev)
506 {
507 	mutex_init(&mddev->open_mutex);
508 	mutex_init(&mddev->reconfig_mutex);
509 	mutex_init(&mddev->bitmap_info.mutex);
510 	INIT_LIST_HEAD(&mddev->disks);
511 	INIT_LIST_HEAD(&mddev->all_mddevs);
512 	init_timer(&mddev->safemode_timer);
513 	atomic_set(&mddev->active, 1);
514 	atomic_set(&mddev->openers, 0);
515 	atomic_set(&mddev->active_io, 0);
516 	spin_lock_init(&mddev->lock);
517 	atomic_set(&mddev->flush_pending, 0);
518 	init_waitqueue_head(&mddev->sb_wait);
519 	init_waitqueue_head(&mddev->recovery_wait);
520 	mddev->reshape_position = MaxSector;
521 	mddev->reshape_backwards = 0;
522 	mddev->last_sync_action = "none";
523 	mddev->resync_min = 0;
524 	mddev->resync_max = MaxSector;
525 	mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528 
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 	struct mddev *mddev, *new = NULL;
532 
533 	if (unit && MAJOR(unit) != MD_MAJOR)
534 		unit &= ~((1<<MdpMinorShift)-1);
535 
536  retry:
537 	spin_lock(&all_mddevs_lock);
538 
539 	if (unit) {
540 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 			if (mddev->unit == unit) {
542 				mddev_get(mddev);
543 				spin_unlock(&all_mddevs_lock);
544 				kfree(new);
545 				return mddev;
546 			}
547 
548 		if (new) {
549 			list_add(&new->all_mddevs, &all_mddevs);
550 			spin_unlock(&all_mddevs_lock);
551 			new->hold_active = UNTIL_IOCTL;
552 			return new;
553 		}
554 	} else if (new) {
555 		/* find an unused unit number */
556 		static int next_minor = 512;
557 		int start = next_minor;
558 		int is_free = 0;
559 		int dev = 0;
560 		while (!is_free) {
561 			dev = MKDEV(MD_MAJOR, next_minor);
562 			next_minor++;
563 			if (next_minor > MINORMASK)
564 				next_minor = 0;
565 			if (next_minor == start) {
566 				/* Oh dear, all in use. */
567 				spin_unlock(&all_mddevs_lock);
568 				kfree(new);
569 				return NULL;
570 			}
571 
572 			is_free = 1;
573 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 				if (mddev->unit == dev) {
575 					is_free = 0;
576 					break;
577 				}
578 		}
579 		new->unit = dev;
580 		new->md_minor = MINOR(dev);
581 		new->hold_active = UNTIL_STOP;
582 		list_add(&new->all_mddevs, &all_mddevs);
583 		spin_unlock(&all_mddevs_lock);
584 		return new;
585 	}
586 	spin_unlock(&all_mddevs_lock);
587 
588 	new = kzalloc(sizeof(*new), GFP_KERNEL);
589 	if (!new)
590 		return NULL;
591 
592 	new->unit = unit;
593 	if (MAJOR(unit) == MD_MAJOR)
594 		new->md_minor = MINOR(unit);
595 	else
596 		new->md_minor = MINOR(unit) >> MdpMinorShift;
597 
598 	mddev_init(new);
599 
600 	goto retry;
601 }
602 
603 static struct attribute_group md_redundancy_group;
604 
605 void mddev_unlock(struct mddev *mddev)
606 {
607 	if (mddev->to_remove) {
608 		/* These cannot be removed under reconfig_mutex as
609 		 * an access to the files will try to take reconfig_mutex
610 		 * while holding the file unremovable, which leads to
611 		 * a deadlock.
612 		 * So hold set sysfs_active while the remove in happeing,
613 		 * and anything else which might set ->to_remove or my
614 		 * otherwise change the sysfs namespace will fail with
615 		 * -EBUSY if sysfs_active is still set.
616 		 * We set sysfs_active under reconfig_mutex and elsewhere
617 		 * test it under the same mutex to ensure its correct value
618 		 * is seen.
619 		 */
620 		struct attribute_group *to_remove = mddev->to_remove;
621 		mddev->to_remove = NULL;
622 		mddev->sysfs_active = 1;
623 		mutex_unlock(&mddev->reconfig_mutex);
624 
625 		if (mddev->kobj.sd) {
626 			if (to_remove != &md_redundancy_group)
627 				sysfs_remove_group(&mddev->kobj, to_remove);
628 			if (mddev->pers == NULL ||
629 			    mddev->pers->sync_request == NULL) {
630 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 				if (mddev->sysfs_action)
632 					sysfs_put(mddev->sysfs_action);
633 				mddev->sysfs_action = NULL;
634 			}
635 		}
636 		mddev->sysfs_active = 0;
637 	} else
638 		mutex_unlock(&mddev->reconfig_mutex);
639 
640 	/* As we've dropped the mutex we need a spinlock to
641 	 * make sure the thread doesn't disappear
642 	 */
643 	spin_lock(&pers_lock);
644 	md_wakeup_thread(mddev->thread);
645 	spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648 
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 	struct md_rdev *rdev;
652 
653 	rdev_for_each_rcu(rdev, mddev)
654 		if (rdev->desc_nr == nr)
655 			return rdev;
656 
657 	return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660 
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 	struct md_rdev *rdev;
675 
676 	rdev_for_each_rcu(rdev, mddev)
677 		if (rdev->bdev->bd_dev == dev)
678 			return rdev;
679 
680 	return NULL;
681 }
682 
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 	struct md_personality *pers;
686 	list_for_each_entry(pers, &pers_list, list) {
687 		if (level != LEVEL_NONE && pers->level == level)
688 			return pers;
689 		if (strcmp(pers->name, clevel)==0)
690 			return pers;
691 	}
692 	return NULL;
693 }
694 
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 	return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701 
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 	rdev->sb_page = alloc_page(GFP_KERNEL);
705 	if (!rdev->sb_page) {
706 		printk(KERN_ALERT "md: out of memory.\n");
707 		return -ENOMEM;
708 	}
709 
710 	return 0;
711 }
712 
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 	if (rdev->sb_page) {
716 		put_page(rdev->sb_page);
717 		rdev->sb_loaded = 0;
718 		rdev->sb_page = NULL;
719 		rdev->sb_start = 0;
720 		rdev->sectors = 0;
721 	}
722 	if (rdev->bb_page) {
723 		put_page(rdev->bb_page);
724 		rdev->bb_page = NULL;
725 	}
726 	kfree(rdev->badblocks.page);
727 	rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730 
731 static void super_written(struct bio *bio, int error)
732 {
733 	struct md_rdev *rdev = bio->bi_private;
734 	struct mddev *mddev = rdev->mddev;
735 
736 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 		printk("md: super_written gets error=%d, uptodate=%d\n",
738 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 		md_error(mddev, rdev);
741 	}
742 
743 	if (atomic_dec_and_test(&mddev->pending_writes))
744 		wake_up(&mddev->sb_wait);
745 	bio_put(bio);
746 }
747 
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 		   sector_t sector, int size, struct page *page)
750 {
751 	/* write first size bytes of page to sector of rdev
752 	 * Increment mddev->pending_writes before returning
753 	 * and decrement it on completion, waking up sb_wait
754 	 * if zero is reached.
755 	 * If an error occurred, call md_error
756 	 */
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758 
759 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 	bio->bi_iter.bi_sector = sector;
761 	bio_add_page(bio, page, size, 0);
762 	bio->bi_private = rdev;
763 	bio->bi_end_io = super_written;
764 
765 	atomic_inc(&mddev->pending_writes);
766 	submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768 
769 void md_super_wait(struct mddev *mddev)
770 {
771 	/* wait for all superblock writes that were scheduled to complete */
772 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774 
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 		 struct page *page, int rw, bool metadata_op)
777 {
778 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 	int ret;
780 
781 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 		rdev->meta_bdev : rdev->bdev;
783 	if (metadata_op)
784 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 	else if (rdev->mddev->reshape_position != MaxSector &&
786 		 (rdev->mddev->reshape_backwards ==
787 		  (sector >= rdev->mddev->reshape_position)))
788 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 	else
790 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 	bio_add_page(bio, page, size, 0);
792 	submit_bio_wait(rw, bio);
793 
794 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 	bio_put(bio);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799 
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 	char b[BDEVNAME_SIZE];
803 
804 	if (rdev->sb_loaded)
805 		return 0;
806 
807 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 		goto fail;
809 	rdev->sb_loaded = 1;
810 	return 0;
811 
812 fail:
813 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 		bdevname(rdev->bdev,b));
815 	return -EINVAL;
816 }
817 
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
821 		sb1->set_uuid1 == sb2->set_uuid1 &&
822 		sb1->set_uuid2 == sb2->set_uuid2 &&
823 		sb1->set_uuid3 == sb2->set_uuid3;
824 }
825 
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 	int ret;
829 	mdp_super_t *tmp1, *tmp2;
830 
831 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833 
834 	if (!tmp1 || !tmp2) {
835 		ret = 0;
836 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 		goto abort;
838 	}
839 
840 	*tmp1 = *sb1;
841 	*tmp2 = *sb2;
842 
843 	/*
844 	 * nr_disks is not constant
845 	 */
846 	tmp1->nr_disks = 0;
847 	tmp2->nr_disks = 0;
848 
849 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 	kfree(tmp1);
852 	kfree(tmp2);
853 	return ret;
854 }
855 
856 static u32 md_csum_fold(u32 csum)
857 {
858 	csum = (csum & 0xffff) + (csum >> 16);
859 	return (csum & 0xffff) + (csum >> 16);
860 }
861 
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 	u64 newcsum = 0;
865 	u32 *sb32 = (u32*)sb;
866 	int i;
867 	unsigned int disk_csum, csum;
868 
869 	disk_csum = sb->sb_csum;
870 	sb->sb_csum = 0;
871 
872 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 		newcsum += sb32[i];
874 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
875 
876 #ifdef CONFIG_ALPHA
877 	/* This used to use csum_partial, which was wrong for several
878 	 * reasons including that different results are returned on
879 	 * different architectures.  It isn't critical that we get exactly
880 	 * the same return value as before (we always csum_fold before
881 	 * testing, and that removes any differences).  However as we
882 	 * know that csum_partial always returned a 16bit value on
883 	 * alphas, do a fold to maximise conformity to previous behaviour.
884 	 */
885 	sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 	sb->sb_csum = disk_csum;
888 #endif
889 	return csum;
890 }
891 
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921 
922 struct super_type  {
923 	char		    *name;
924 	struct module	    *owner;
925 	int		    (*load_super)(struct md_rdev *rdev,
926 					  struct md_rdev *refdev,
927 					  int minor_version);
928 	int		    (*validate_super)(struct mddev *mddev,
929 					      struct md_rdev *rdev);
930 	void		    (*sync_super)(struct mddev *mddev,
931 					  struct md_rdev *rdev);
932 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933 						sector_t num_sectors);
934 	int		    (*allow_new_offset)(struct md_rdev *rdev,
935 						unsigned long long new_offset);
936 };
937 
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 		return 0;
950 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 		mdname(mddev), mddev->pers->name);
952 	return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955 
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 	mdp_super_t *sb;
963 	int ret;
964 
965 	/*
966 	 * Calculate the position of the superblock (512byte sectors),
967 	 * it's at the end of the disk.
968 	 *
969 	 * It also happens to be a multiple of 4Kb.
970 	 */
971 	rdev->sb_start = calc_dev_sboffset(rdev);
972 
973 	ret = read_disk_sb(rdev, MD_SB_BYTES);
974 	if (ret) return ret;
975 
976 	ret = -EINVAL;
977 
978 	bdevname(rdev->bdev, b);
979 	sb = page_address(rdev->sb_page);
980 
981 	if (sb->md_magic != MD_SB_MAGIC) {
982 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 		       b);
984 		goto abort;
985 	}
986 
987 	if (sb->major_version != 0 ||
988 	    sb->minor_version < 90 ||
989 	    sb->minor_version > 91) {
990 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 			sb->major_version, sb->minor_version,
992 			b);
993 		goto abort;
994 	}
995 
996 	if (sb->raid_disks <= 0)
997 		goto abort;
998 
999 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 			b);
1002 		goto abort;
1003 	}
1004 
1005 	rdev->preferred_minor = sb->md_minor;
1006 	rdev->data_offset = 0;
1007 	rdev->new_data_offset = 0;
1008 	rdev->sb_size = MD_SB_BYTES;
1009 	rdev->badblocks.shift = -1;
1010 
1011 	if (sb->level == LEVEL_MULTIPATH)
1012 		rdev->desc_nr = -1;
1013 	else
1014 		rdev->desc_nr = sb->this_disk.number;
1015 
1016 	if (!refdev) {
1017 		ret = 1;
1018 	} else {
1019 		__u64 ev1, ev2;
1020 		mdp_super_t *refsb = page_address(refdev->sb_page);
1021 		if (!uuid_equal(refsb, sb)) {
1022 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 				b, bdevname(refdev->bdev,b2));
1024 			goto abort;
1025 		}
1026 		if (!sb_equal(refsb, sb)) {
1027 			printk(KERN_WARNING "md: %s has same UUID"
1028 			       " but different superblock to %s\n",
1029 			       b, bdevname(refdev->bdev, b2));
1030 			goto abort;
1031 		}
1032 		ev1 = md_event(sb);
1033 		ev2 = md_event(refsb);
1034 		if (ev1 > ev2)
1035 			ret = 1;
1036 		else
1037 			ret = 0;
1038 	}
1039 	rdev->sectors = rdev->sb_start;
1040 	/* Limit to 4TB as metadata cannot record more than that.
1041 	 * (not needed for Linear and RAID0 as metadata doesn't
1042 	 * record this size)
1043 	 */
1044 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 		rdev->sectors = (2ULL << 32) - 2;
1046 
1047 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 		/* "this cannot possibly happen" ... */
1049 		ret = -EINVAL;
1050 
1051  abort:
1052 	return ret;
1053 }
1054 
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 	mdp_disk_t *desc;
1061 	mdp_super_t *sb = page_address(rdev->sb_page);
1062 	__u64 ev1 = md_event(sb);
1063 
1064 	rdev->raid_disk = -1;
1065 	clear_bit(Faulty, &rdev->flags);
1066 	clear_bit(In_sync, &rdev->flags);
1067 	clear_bit(Bitmap_sync, &rdev->flags);
1068 	clear_bit(WriteMostly, &rdev->flags);
1069 
1070 	if (mddev->raid_disks == 0) {
1071 		mddev->major_version = 0;
1072 		mddev->minor_version = sb->minor_version;
1073 		mddev->patch_version = sb->patch_version;
1074 		mddev->external = 0;
1075 		mddev->chunk_sectors = sb->chunk_size >> 9;
1076 		mddev->ctime = sb->ctime;
1077 		mddev->utime = sb->utime;
1078 		mddev->level = sb->level;
1079 		mddev->clevel[0] = 0;
1080 		mddev->layout = sb->layout;
1081 		mddev->raid_disks = sb->raid_disks;
1082 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 		mddev->events = ev1;
1084 		mddev->bitmap_info.offset = 0;
1085 		mddev->bitmap_info.space = 0;
1086 		/* bitmap can use 60 K after the 4K superblocks */
1087 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 		mddev->reshape_backwards = 0;
1090 
1091 		if (mddev->minor_version >= 91) {
1092 			mddev->reshape_position = sb->reshape_position;
1093 			mddev->delta_disks = sb->delta_disks;
1094 			mddev->new_level = sb->new_level;
1095 			mddev->new_layout = sb->new_layout;
1096 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 			if (mddev->delta_disks < 0)
1098 				mddev->reshape_backwards = 1;
1099 		} else {
1100 			mddev->reshape_position = MaxSector;
1101 			mddev->delta_disks = 0;
1102 			mddev->new_level = mddev->level;
1103 			mddev->new_layout = mddev->layout;
1104 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 		}
1106 
1107 		if (sb->state & (1<<MD_SB_CLEAN))
1108 			mddev->recovery_cp = MaxSector;
1109 		else {
1110 			if (sb->events_hi == sb->cp_events_hi &&
1111 				sb->events_lo == sb->cp_events_lo) {
1112 				mddev->recovery_cp = sb->recovery_cp;
1113 			} else
1114 				mddev->recovery_cp = 0;
1115 		}
1116 
1117 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121 
1122 		mddev->max_disks = MD_SB_DISKS;
1123 
1124 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 		    mddev->bitmap_info.file == NULL) {
1126 			mddev->bitmap_info.offset =
1127 				mddev->bitmap_info.default_offset;
1128 			mddev->bitmap_info.space =
1129 				mddev->bitmap_info.default_space;
1130 		}
1131 
1132 	} else if (mddev->pers == NULL) {
1133 		/* Insist on good event counter while assembling, except
1134 		 * for spares (which don't need an event count) */
1135 		++ev1;
1136 		if (sb->disks[rdev->desc_nr].state & (
1137 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 			if (ev1 < mddev->events)
1139 				return -EINVAL;
1140 	} else if (mddev->bitmap) {
1141 		/* if adding to array with a bitmap, then we can accept an
1142 		 * older device ... but not too old.
1143 		 */
1144 		if (ev1 < mddev->bitmap->events_cleared)
1145 			return 0;
1146 		if (ev1 < mddev->events)
1147 			set_bit(Bitmap_sync, &rdev->flags);
1148 	} else {
1149 		if (ev1 < mddev->events)
1150 			/* just a hot-add of a new device, leave raid_disk at -1 */
1151 			return 0;
1152 	}
1153 
1154 	if (mddev->level != LEVEL_MULTIPATH) {
1155 		desc = sb->disks + rdev->desc_nr;
1156 
1157 		if (desc->state & (1<<MD_DISK_FAULTY))
1158 			set_bit(Faulty, &rdev->flags);
1159 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 			    desc->raid_disk < mddev->raid_disks */) {
1161 			set_bit(In_sync, &rdev->flags);
1162 			rdev->raid_disk = desc->raid_disk;
1163 			rdev->saved_raid_disk = desc->raid_disk;
1164 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 			/* active but not in sync implies recovery up to
1166 			 * reshape position.  We don't know exactly where
1167 			 * that is, so set to zero for now */
1168 			if (mddev->minor_version >= 91) {
1169 				rdev->recovery_offset = 0;
1170 				rdev->raid_disk = desc->raid_disk;
1171 			}
1172 		}
1173 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 			set_bit(WriteMostly, &rdev->flags);
1175 	} else /* MULTIPATH are always insync */
1176 		set_bit(In_sync, &rdev->flags);
1177 	return 0;
1178 }
1179 
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 	mdp_super_t *sb;
1186 	struct md_rdev *rdev2;
1187 	int next_spare = mddev->raid_disks;
1188 
1189 	/* make rdev->sb match mddev data..
1190 	 *
1191 	 * 1/ zero out disks
1192 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 	 * 3/ any empty disks < next_spare become removed
1194 	 *
1195 	 * disks[0] gets initialised to REMOVED because
1196 	 * we cannot be sure from other fields if it has
1197 	 * been initialised or not.
1198 	 */
1199 	int i;
1200 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201 
1202 	rdev->sb_size = MD_SB_BYTES;
1203 
1204 	sb = page_address(rdev->sb_page);
1205 
1206 	memset(sb, 0, sizeof(*sb));
1207 
1208 	sb->md_magic = MD_SB_MAGIC;
1209 	sb->major_version = mddev->major_version;
1210 	sb->patch_version = mddev->patch_version;
1211 	sb->gvalid_words  = 0; /* ignored */
1212 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216 
1217 	sb->ctime = mddev->ctime;
1218 	sb->level = mddev->level;
1219 	sb->size = mddev->dev_sectors / 2;
1220 	sb->raid_disks = mddev->raid_disks;
1221 	sb->md_minor = mddev->md_minor;
1222 	sb->not_persistent = 0;
1223 	sb->utime = mddev->utime;
1224 	sb->state = 0;
1225 	sb->events_hi = (mddev->events>>32);
1226 	sb->events_lo = (u32)mddev->events;
1227 
1228 	if (mddev->reshape_position == MaxSector)
1229 		sb->minor_version = 90;
1230 	else {
1231 		sb->minor_version = 91;
1232 		sb->reshape_position = mddev->reshape_position;
1233 		sb->new_level = mddev->new_level;
1234 		sb->delta_disks = mddev->delta_disks;
1235 		sb->new_layout = mddev->new_layout;
1236 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 	}
1238 	mddev->minor_version = sb->minor_version;
1239 	if (mddev->in_sync)
1240 	{
1241 		sb->recovery_cp = mddev->recovery_cp;
1242 		sb->cp_events_hi = (mddev->events>>32);
1243 		sb->cp_events_lo = (u32)mddev->events;
1244 		if (mddev->recovery_cp == MaxSector)
1245 			sb->state = (1<< MD_SB_CLEAN);
1246 	} else
1247 		sb->recovery_cp = 0;
1248 
1249 	sb->layout = mddev->layout;
1250 	sb->chunk_size = mddev->chunk_sectors << 9;
1251 
1252 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254 
1255 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 	rdev_for_each(rdev2, mddev) {
1257 		mdp_disk_t *d;
1258 		int desc_nr;
1259 		int is_active = test_bit(In_sync, &rdev2->flags);
1260 
1261 		if (rdev2->raid_disk >= 0 &&
1262 		    sb->minor_version >= 91)
1263 			/* we have nowhere to store the recovery_offset,
1264 			 * but if it is not below the reshape_position,
1265 			 * we can piggy-back on that.
1266 			 */
1267 			is_active = 1;
1268 		if (rdev2->raid_disk < 0 ||
1269 		    test_bit(Faulty, &rdev2->flags))
1270 			is_active = 0;
1271 		if (is_active)
1272 			desc_nr = rdev2->raid_disk;
1273 		else
1274 			desc_nr = next_spare++;
1275 		rdev2->desc_nr = desc_nr;
1276 		d = &sb->disks[rdev2->desc_nr];
1277 		nr_disks++;
1278 		d->number = rdev2->desc_nr;
1279 		d->major = MAJOR(rdev2->bdev->bd_dev);
1280 		d->minor = MINOR(rdev2->bdev->bd_dev);
1281 		if (is_active)
1282 			d->raid_disk = rdev2->raid_disk;
1283 		else
1284 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 		if (test_bit(Faulty, &rdev2->flags))
1286 			d->state = (1<<MD_DISK_FAULTY);
1287 		else if (is_active) {
1288 			d->state = (1<<MD_DISK_ACTIVE);
1289 			if (test_bit(In_sync, &rdev2->flags))
1290 				d->state |= (1<<MD_DISK_SYNC);
1291 			active++;
1292 			working++;
1293 		} else {
1294 			d->state = 0;
1295 			spare++;
1296 			working++;
1297 		}
1298 		if (test_bit(WriteMostly, &rdev2->flags))
1299 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 	}
1301 	/* now set the "removed" and "faulty" bits on any missing devices */
1302 	for (i=0 ; i < mddev->raid_disks ; i++) {
1303 		mdp_disk_t *d = &sb->disks[i];
1304 		if (d->state == 0 && d->number == 0) {
1305 			d->number = i;
1306 			d->raid_disk = i;
1307 			d->state = (1<<MD_DISK_REMOVED);
1308 			d->state |= (1<<MD_DISK_FAULTY);
1309 			failed++;
1310 		}
1311 	}
1312 	sb->nr_disks = nr_disks;
1313 	sb->active_disks = active;
1314 	sb->working_disks = working;
1315 	sb->failed_disks = failed;
1316 	sb->spare_disks = spare;
1317 
1318 	sb->this_disk = sb->disks[rdev->desc_nr];
1319 	sb->sb_csum = calc_sb_csum(sb);
1320 }
1321 
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 		return 0; /* component must fit device */
1330 	if (rdev->mddev->bitmap_info.offset)
1331 		return 0; /* can't move bitmap */
1332 	rdev->sb_start = calc_dev_sboffset(rdev);
1333 	if (!num_sectors || num_sectors > rdev->sb_start)
1334 		num_sectors = rdev->sb_start;
1335 	/* Limit to 4TB as metadata cannot record more than that.
1336 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 	 */
1338 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 		num_sectors = (2ULL << 32) - 2;
1340 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 		       rdev->sb_page);
1342 	md_super_wait(rdev->mddev);
1343 	return num_sectors;
1344 }
1345 
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 	/* non-zero offset changes not possible with v0.90 */
1350 	return new_offset == 0;
1351 }
1352 
1353 /*
1354  * version 1 superblock
1355  */
1356 
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 	__le32 disk_csum;
1360 	u32 csum;
1361 	unsigned long long newcsum;
1362 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 	__le32 *isuper = (__le32*)sb;
1364 
1365 	disk_csum = sb->sb_csum;
1366 	sb->sb_csum = 0;
1367 	newcsum = 0;
1368 	for (; size >= 4; size -= 4)
1369 		newcsum += le32_to_cpu(*isuper++);
1370 
1371 	if (size == 2)
1372 		newcsum += le16_to_cpu(*(__le16*) isuper);
1373 
1374 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 	sb->sb_csum = disk_csum;
1376 	return cpu_to_le32(csum);
1377 }
1378 
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 			    int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 	struct mdp_superblock_1 *sb;
1384 	int ret;
1385 	sector_t sb_start;
1386 	sector_t sectors;
1387 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 	int bmask;
1389 
1390 	/*
1391 	 * Calculate the position of the superblock in 512byte sectors.
1392 	 * It is always aligned to a 4K boundary and
1393 	 * depeding on minor_version, it can be:
1394 	 * 0: At least 8K, but less than 12K, from end of device
1395 	 * 1: At start of device
1396 	 * 2: 4K from start of device.
1397 	 */
1398 	switch(minor_version) {
1399 	case 0:
1400 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 		sb_start -= 8*2;
1402 		sb_start &= ~(sector_t)(4*2-1);
1403 		break;
1404 	case 1:
1405 		sb_start = 0;
1406 		break;
1407 	case 2:
1408 		sb_start = 8;
1409 		break;
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 	rdev->sb_start = sb_start;
1414 
1415 	/* superblock is rarely larger than 1K, but it can be larger,
1416 	 * and it is safe to read 4k, so we do that
1417 	 */
1418 	ret = read_disk_sb(rdev, 4096);
1419 	if (ret) return ret;
1420 
1421 	sb = page_address(rdev->sb_page);
1422 
1423 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 	    sb->major_version != cpu_to_le32(1) ||
1425 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 		return -EINVAL;
1429 
1430 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 		printk("md: invalid superblock checksum on %s\n",
1432 			bdevname(rdev->bdev,b));
1433 		return -EINVAL;
1434 	}
1435 	if (le64_to_cpu(sb->data_size) < 10) {
1436 		printk("md: data_size too small on %s\n",
1437 		       bdevname(rdev->bdev,b));
1438 		return -EINVAL;
1439 	}
1440 	if (sb->pad0 ||
1441 	    sb->pad3[0] ||
1442 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 		/* Some padding is non-zero, might be a new feature */
1444 		return -EINVAL;
1445 
1446 	rdev->preferred_minor = 0xffff;
1447 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 	rdev->new_data_offset = rdev->data_offset;
1449 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453 
1454 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 	if (rdev->sb_size & bmask)
1457 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458 
1459 	if (minor_version
1460 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 		return -EINVAL;
1462 	if (minor_version
1463 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 		return -EINVAL;
1465 
1466 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 		rdev->desc_nr = -1;
1468 	else
1469 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470 
1471 	if (!rdev->bb_page) {
1472 		rdev->bb_page = alloc_page(GFP_KERNEL);
1473 		if (!rdev->bb_page)
1474 			return -ENOMEM;
1475 	}
1476 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 	    rdev->badblocks.count == 0) {
1478 		/* need to load the bad block list.
1479 		 * Currently we limit it to one page.
1480 		 */
1481 		s32 offset;
1482 		sector_t bb_sector;
1483 		u64 *bbp;
1484 		int i;
1485 		int sectors = le16_to_cpu(sb->bblog_size);
1486 		if (sectors > (PAGE_SIZE / 512))
1487 			return -EINVAL;
1488 		offset = le32_to_cpu(sb->bblog_offset);
1489 		if (offset == 0)
1490 			return -EINVAL;
1491 		bb_sector = (long long)offset;
1492 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 				  rdev->bb_page, READ, true))
1494 			return -EIO;
1495 		bbp = (u64 *)page_address(rdev->bb_page);
1496 		rdev->badblocks.shift = sb->bblog_shift;
1497 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 			u64 bb = le64_to_cpu(*bbp);
1499 			int count = bb & (0x3ff);
1500 			u64 sector = bb >> 10;
1501 			sector <<= sb->bblog_shift;
1502 			count <<= sb->bblog_shift;
1503 			if (bb + 1 == 0)
1504 				break;
1505 			if (md_set_badblocks(&rdev->badblocks,
1506 					     sector, count, 1) == 0)
1507 				return -EINVAL;
1508 		}
1509 	} else if (sb->bblog_offset != 0)
1510 		rdev->badblocks.shift = 0;
1511 
1512 	if (!refdev) {
1513 		ret = 1;
1514 	} else {
1515 		__u64 ev1, ev2;
1516 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517 
1518 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 		    sb->level != refsb->level ||
1520 		    sb->layout != refsb->layout ||
1521 		    sb->chunksize != refsb->chunksize) {
1522 			printk(KERN_WARNING "md: %s has strangely different"
1523 				" superblock to %s\n",
1524 				bdevname(rdev->bdev,b),
1525 				bdevname(refdev->bdev,b2));
1526 			return -EINVAL;
1527 		}
1528 		ev1 = le64_to_cpu(sb->events);
1529 		ev2 = le64_to_cpu(refsb->events);
1530 
1531 		if (ev1 > ev2)
1532 			ret = 1;
1533 		else
1534 			ret = 0;
1535 	}
1536 	if (minor_version) {
1537 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 		sectors -= rdev->data_offset;
1539 	} else
1540 		sectors = rdev->sb_start;
1541 	if (sectors < le64_to_cpu(sb->data_size))
1542 		return -EINVAL;
1543 	rdev->sectors = le64_to_cpu(sb->data_size);
1544 	return ret;
1545 }
1546 
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 	__u64 ev1 = le64_to_cpu(sb->events);
1551 
1552 	rdev->raid_disk = -1;
1553 	clear_bit(Faulty, &rdev->flags);
1554 	clear_bit(In_sync, &rdev->flags);
1555 	clear_bit(Bitmap_sync, &rdev->flags);
1556 	clear_bit(WriteMostly, &rdev->flags);
1557 
1558 	if (mddev->raid_disks == 0) {
1559 		mddev->major_version = 1;
1560 		mddev->patch_version = 0;
1561 		mddev->external = 0;
1562 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 		mddev->level = le32_to_cpu(sb->level);
1566 		mddev->clevel[0] = 0;
1567 		mddev->layout = le32_to_cpu(sb->layout);
1568 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 		mddev->dev_sectors = le64_to_cpu(sb->size);
1570 		mddev->events = ev1;
1571 		mddev->bitmap_info.offset = 0;
1572 		mddev->bitmap_info.space = 0;
1573 		/* Default location for bitmap is 1K after superblock
1574 		 * using 3K - total of 4K
1575 		 */
1576 		mddev->bitmap_info.default_offset = 1024 >> 9;
1577 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 		mddev->reshape_backwards = 0;
1579 
1580 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 		memcpy(mddev->uuid, sb->set_uuid, 16);
1582 
1583 		mddev->max_disks =  (4096-256)/2;
1584 
1585 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 		    mddev->bitmap_info.file == NULL) {
1587 			mddev->bitmap_info.offset =
1588 				(__s32)le32_to_cpu(sb->bitmap_offset);
1589 			/* Metadata doesn't record how much space is available.
1590 			 * For 1.0, we assume we can use up to the superblock
1591 			 * if before, else to 4K beyond superblock.
1592 			 * For others, assume no change is possible.
1593 			 */
1594 			if (mddev->minor_version > 0)
1595 				mddev->bitmap_info.space = 0;
1596 			else if (mddev->bitmap_info.offset > 0)
1597 				mddev->bitmap_info.space =
1598 					8 - mddev->bitmap_info.offset;
1599 			else
1600 				mddev->bitmap_info.space =
1601 					-mddev->bitmap_info.offset;
1602 		}
1603 
1604 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 			mddev->new_level = le32_to_cpu(sb->new_level);
1608 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 			if (mddev->delta_disks < 0 ||
1611 			    (mddev->delta_disks == 0 &&
1612 			     (le32_to_cpu(sb->feature_map)
1613 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 				mddev->reshape_backwards = 1;
1615 		} else {
1616 			mddev->reshape_position = MaxSector;
1617 			mddev->delta_disks = 0;
1618 			mddev->new_level = mddev->level;
1619 			mddev->new_layout = mddev->layout;
1620 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 		}
1622 
1623 	} else if (mddev->pers == NULL) {
1624 		/* Insist of good event counter while assembling, except for
1625 		 * spares (which don't need an event count) */
1626 		++ev1;
1627 		if (rdev->desc_nr >= 0 &&
1628 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 			if (ev1 < mddev->events)
1631 				return -EINVAL;
1632 	} else if (mddev->bitmap) {
1633 		/* If adding to array with a bitmap, then we can accept an
1634 		 * older device, but not too old.
1635 		 */
1636 		if (ev1 < mddev->bitmap->events_cleared)
1637 			return 0;
1638 		if (ev1 < mddev->events)
1639 			set_bit(Bitmap_sync, &rdev->flags);
1640 	} else {
1641 		if (ev1 < mddev->events)
1642 			/* just a hot-add of a new device, leave raid_disk at -1 */
1643 			return 0;
1644 	}
1645 	if (mddev->level != LEVEL_MULTIPATH) {
1646 		int role;
1647 		if (rdev->desc_nr < 0 ||
1648 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 			role = 0xffff;
1650 			rdev->desc_nr = -1;
1651 		} else
1652 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 		switch(role) {
1654 		case 0xffff: /* spare */
1655 			break;
1656 		case 0xfffe: /* faulty */
1657 			set_bit(Faulty, &rdev->flags);
1658 			break;
1659 		default:
1660 			rdev->saved_raid_disk = role;
1661 			if ((le32_to_cpu(sb->feature_map) &
1662 			     MD_FEATURE_RECOVERY_OFFSET)) {
1663 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 				if (!(le32_to_cpu(sb->feature_map) &
1665 				      MD_FEATURE_RECOVERY_BITMAP))
1666 					rdev->saved_raid_disk = -1;
1667 			} else
1668 				set_bit(In_sync, &rdev->flags);
1669 			rdev->raid_disk = role;
1670 			break;
1671 		}
1672 		if (sb->devflags & WriteMostly1)
1673 			set_bit(WriteMostly, &rdev->flags);
1674 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 			set_bit(Replacement, &rdev->flags);
1676 	} else /* MULTIPATH are always insync */
1677 		set_bit(In_sync, &rdev->flags);
1678 
1679 	return 0;
1680 }
1681 
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct mdp_superblock_1 *sb;
1685 	struct md_rdev *rdev2;
1686 	int max_dev, i;
1687 	/* make rdev->sb match mddev and rdev data. */
1688 
1689 	sb = page_address(rdev->sb_page);
1690 
1691 	sb->feature_map = 0;
1692 	sb->pad0 = 0;
1693 	sb->recovery_offset = cpu_to_le64(0);
1694 	memset(sb->pad3, 0, sizeof(sb->pad3));
1695 
1696 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 	sb->events = cpu_to_le64(mddev->events);
1698 	if (mddev->in_sync)
1699 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 	else
1701 		sb->resync_offset = cpu_to_le64(0);
1702 
1703 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704 
1705 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 	sb->size = cpu_to_le64(mddev->dev_sectors);
1707 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 	sb->level = cpu_to_le32(mddev->level);
1709 	sb->layout = cpu_to_le32(mddev->layout);
1710 
1711 	if (test_bit(WriteMostly, &rdev->flags))
1712 		sb->devflags |= WriteMostly1;
1713 	else
1714 		sb->devflags &= ~WriteMostly1;
1715 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 	sb->data_size = cpu_to_le64(rdev->sectors);
1717 
1718 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 	}
1722 
1723 	if (rdev->raid_disk >= 0 &&
1724 	    !test_bit(In_sync, &rdev->flags)) {
1725 		sb->feature_map |=
1726 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 		sb->recovery_offset =
1728 			cpu_to_le64(rdev->recovery_offset);
1729 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 			sb->feature_map |=
1731 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 	}
1733 	if (test_bit(Replacement, &rdev->flags))
1734 		sb->feature_map |=
1735 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736 
1737 	if (mddev->reshape_position != MaxSector) {
1738 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 		sb->new_level = cpu_to_le32(mddev->new_level);
1743 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 		if (mddev->delta_disks == 0 &&
1745 		    mddev->reshape_backwards)
1746 			sb->feature_map
1747 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 		if (rdev->new_data_offset != rdev->data_offset) {
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 							     - rdev->data_offset));
1753 		}
1754 	}
1755 
1756 	if (rdev->badblocks.count == 0)
1757 		/* Nothing to do for bad blocks*/ ;
1758 	else if (sb->bblog_offset == 0)
1759 		/* Cannot record bad blocks on this device */
1760 		md_error(mddev, rdev);
1761 	else {
1762 		struct badblocks *bb = &rdev->badblocks;
1763 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 		u64 *p = bb->page;
1765 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 		if (bb->changed) {
1767 			unsigned seq;
1768 
1769 retry:
1770 			seq = read_seqbegin(&bb->lock);
1771 
1772 			memset(bbp, 0xff, PAGE_SIZE);
1773 
1774 			for (i = 0 ; i < bb->count ; i++) {
1775 				u64 internal_bb = p[i];
1776 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 						| BB_LEN(internal_bb));
1778 				bbp[i] = cpu_to_le64(store_bb);
1779 			}
1780 			bb->changed = 0;
1781 			if (read_seqretry(&bb->lock, seq))
1782 				goto retry;
1783 
1784 			bb->sector = (rdev->sb_start +
1785 				      (int)le32_to_cpu(sb->bblog_offset));
1786 			bb->size = le16_to_cpu(sb->bblog_size);
1787 		}
1788 	}
1789 
1790 	max_dev = 0;
1791 	rdev_for_each(rdev2, mddev)
1792 		if (rdev2->desc_nr+1 > max_dev)
1793 			max_dev = rdev2->desc_nr+1;
1794 
1795 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 		int bmask;
1797 		sb->max_dev = cpu_to_le32(max_dev);
1798 		rdev->sb_size = max_dev * 2 + 256;
1799 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 		if (rdev->sb_size & bmask)
1801 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 	} else
1803 		max_dev = le32_to_cpu(sb->max_dev);
1804 
1805 	for (i=0; i<max_dev;i++)
1806 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807 
1808 	rdev_for_each(rdev2, mddev) {
1809 		i = rdev2->desc_nr;
1810 		if (test_bit(Faulty, &rdev2->flags))
1811 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 		else if (test_bit(In_sync, &rdev2->flags))
1813 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 		else if (rdev2->raid_disk >= 0)
1815 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 		else
1817 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 	}
1819 
1820 	sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822 
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 	struct mdp_superblock_1 *sb;
1827 	sector_t max_sectors;
1828 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 		return 0; /* component must fit device */
1830 	if (rdev->data_offset != rdev->new_data_offset)
1831 		return 0; /* too confusing */
1832 	if (rdev->sb_start < rdev->data_offset) {
1833 		/* minor versions 1 and 2; superblock before data */
1834 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 		max_sectors -= rdev->data_offset;
1836 		if (!num_sectors || num_sectors > max_sectors)
1837 			num_sectors = max_sectors;
1838 	} else if (rdev->mddev->bitmap_info.offset) {
1839 		/* minor version 0 with bitmap we can't move */
1840 		return 0;
1841 	} else {
1842 		/* minor version 0; superblock after data */
1843 		sector_t sb_start;
1844 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 		sb_start &= ~(sector_t)(4*2 - 1);
1846 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 		if (!num_sectors || num_sectors > max_sectors)
1848 			num_sectors = max_sectors;
1849 		rdev->sb_start = sb_start;
1850 	}
1851 	sb = page_address(rdev->sb_page);
1852 	sb->data_size = cpu_to_le64(num_sectors);
1853 	sb->super_offset = rdev->sb_start;
1854 	sb->sb_csum = calc_sb_1_csum(sb);
1855 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 		       rdev->sb_page);
1857 	md_super_wait(rdev->mddev);
1858 	return num_sectors;
1859 
1860 }
1861 
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 			 unsigned long long new_offset)
1865 {
1866 	/* All necessary checks on new >= old have been done */
1867 	struct bitmap *bitmap;
1868 	if (new_offset >= rdev->data_offset)
1869 		return 1;
1870 
1871 	/* with 1.0 metadata, there is no metadata to tread on
1872 	 * so we can always move back */
1873 	if (rdev->mddev->minor_version == 0)
1874 		return 1;
1875 
1876 	/* otherwise we must be sure not to step on
1877 	 * any metadata, so stay:
1878 	 * 36K beyond start of superblock
1879 	 * beyond end of badblocks
1880 	 * beyond write-intent bitmap
1881 	 */
1882 	if (rdev->sb_start + (32+4)*2 > new_offset)
1883 		return 0;
1884 	bitmap = rdev->mddev->bitmap;
1885 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 		return 0;
1889 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 		return 0;
1891 
1892 	return 1;
1893 }
1894 
1895 static struct super_type super_types[] = {
1896 	[0] = {
1897 		.name	= "0.90.0",
1898 		.owner	= THIS_MODULE,
1899 		.load_super	    = super_90_load,
1900 		.validate_super	    = super_90_validate,
1901 		.sync_super	    = super_90_sync,
1902 		.rdev_size_change   = super_90_rdev_size_change,
1903 		.allow_new_offset   = super_90_allow_new_offset,
1904 	},
1905 	[1] = {
1906 		.name	= "md-1",
1907 		.owner	= THIS_MODULE,
1908 		.load_super	    = super_1_load,
1909 		.validate_super	    = super_1_validate,
1910 		.sync_super	    = super_1_sync,
1911 		.rdev_size_change   = super_1_rdev_size_change,
1912 		.allow_new_offset   = super_1_allow_new_offset,
1913 	},
1914 };
1915 
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 	if (mddev->sync_super) {
1919 		mddev->sync_super(mddev, rdev);
1920 		return;
1921 	}
1922 
1923 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924 
1925 	super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927 
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 	struct md_rdev *rdev, *rdev2;
1931 
1932 	rcu_read_lock();
1933 	rdev_for_each_rcu(rdev, mddev1)
1934 		rdev_for_each_rcu(rdev2, mddev2)
1935 			if (rdev->bdev->bd_contains ==
1936 			    rdev2->bdev->bd_contains) {
1937 				rcu_read_unlock();
1938 				return 1;
1939 			}
1940 	rcu_read_unlock();
1941 	return 0;
1942 }
1943 
1944 static LIST_HEAD(pending_raid_disks);
1945 
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 	struct md_rdev *rdev, *reference = NULL;
1956 
1957 	if (list_empty(&mddev->disks))
1958 		return 0; /* nothing to do */
1959 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 		return 0; /* shouldn't register, or already is */
1961 	rdev_for_each(rdev, mddev) {
1962 		/* skip spares and non-functional disks */
1963 		if (test_bit(Faulty, &rdev->flags))
1964 			continue;
1965 		if (rdev->raid_disk < 0)
1966 			continue;
1967 		if (!reference) {
1968 			/* Use the first rdev as the reference */
1969 			reference = rdev;
1970 			continue;
1971 		}
1972 		/* does this rdev's profile match the reference profile? */
1973 		if (blk_integrity_compare(reference->bdev->bd_disk,
1974 				rdev->bdev->bd_disk) < 0)
1975 			return -EINVAL;
1976 	}
1977 	if (!reference || !bdev_get_integrity(reference->bdev))
1978 		return 0;
1979 	/*
1980 	 * All component devices are integrity capable and have matching
1981 	 * profiles, register the common profile for the md device.
1982 	 */
1983 	if (blk_integrity_register(mddev->gendisk,
1984 			bdev_get_integrity(reference->bdev)) != 0) {
1985 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 			mdname(mddev));
1987 		return -EINVAL;
1988 	}
1989 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 		       mdname(mddev));
1993 		return -EINVAL;
1994 	}
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998 
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 	struct blk_integrity *bi_rdev;
2003 	struct blk_integrity *bi_mddev;
2004 
2005 	if (!mddev->gendisk)
2006 		return;
2007 
2008 	bi_rdev = bdev_get_integrity(rdev->bdev);
2009 	bi_mddev = blk_get_integrity(mddev->gendisk);
2010 
2011 	if (!bi_mddev) /* nothing to do */
2012 		return;
2013 	if (rdev->raid_disk < 0) /* skip spares */
2014 		return;
2015 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 					     rdev->bdev->bd_disk) >= 0)
2017 		return;
2018 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 	blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022 
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 	char b[BDEVNAME_SIZE];
2026 	struct kobject *ko;
2027 	char *s;
2028 	int err;
2029 
2030 	/* prevent duplicates */
2031 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2032 		return -EEXIST;
2033 
2034 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2035 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036 			rdev->sectors < mddev->dev_sectors)) {
2037 		if (mddev->pers) {
2038 			/* Cannot change size, so fail
2039 			 * If mddev->level <= 0, then we don't care
2040 			 * about aligning sizes (e.g. linear)
2041 			 */
2042 			if (mddev->level > 0)
2043 				return -ENOSPC;
2044 		} else
2045 			mddev->dev_sectors = rdev->sectors;
2046 	}
2047 
2048 	/* Verify rdev->desc_nr is unique.
2049 	 * If it is -1, assign a free number, else
2050 	 * check number is not in use
2051 	 */
2052 	rcu_read_lock();
2053 	if (rdev->desc_nr < 0) {
2054 		int choice = 0;
2055 		if (mddev->pers)
2056 			choice = mddev->raid_disks;
2057 		while (md_find_rdev_nr_rcu(mddev, choice))
2058 			choice++;
2059 		rdev->desc_nr = choice;
2060 	} else {
2061 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062 			rcu_read_unlock();
2063 			return -EBUSY;
2064 		}
2065 	}
2066 	rcu_read_unlock();
2067 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069 		       mdname(mddev), mddev->max_disks);
2070 		return -EBUSY;
2071 	}
2072 	bdevname(rdev->bdev,b);
2073 	while ( (s=strchr(b, '/')) != NULL)
2074 		*s = '!';
2075 
2076 	rdev->mddev = mddev;
2077 	printk(KERN_INFO "md: bind<%s>\n", b);
2078 
2079 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080 		goto fail;
2081 
2082 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084 		/* failure here is OK */;
2085 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086 
2087 	list_add_rcu(&rdev->same_set, &mddev->disks);
2088 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089 
2090 	/* May as well allow recovery to be retried once */
2091 	mddev->recovery_disabled++;
2092 
2093 	return 0;
2094 
2095  fail:
2096 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097 	       b, mdname(mddev));
2098 	return err;
2099 }
2100 
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104 	kobject_del(&rdev->kobj);
2105 	kobject_put(&rdev->kobj);
2106 }
2107 
2108 static void unbind_rdev_from_array(struct md_rdev *rdev)
2109 {
2110 	char b[BDEVNAME_SIZE];
2111 
2112 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2113 	list_del_rcu(&rdev->same_set);
2114 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2115 	rdev->mddev = NULL;
2116 	sysfs_remove_link(&rdev->kobj, "block");
2117 	sysfs_put(rdev->sysfs_state);
2118 	rdev->sysfs_state = NULL;
2119 	rdev->badblocks.count = 0;
2120 	/* We need to delay this, otherwise we can deadlock when
2121 	 * writing to 'remove' to "dev/state".  We also need
2122 	 * to delay it due to rcu usage.
2123 	 */
2124 	synchronize_rcu();
2125 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2126 	kobject_get(&rdev->kobj);
2127 	queue_work(md_misc_wq, &rdev->del_work);
2128 }
2129 
2130 /*
2131  * prevent the device from being mounted, repartitioned or
2132  * otherwise reused by a RAID array (or any other kernel
2133  * subsystem), by bd_claiming the device.
2134  */
2135 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2136 {
2137 	int err = 0;
2138 	struct block_device *bdev;
2139 	char b[BDEVNAME_SIZE];
2140 
2141 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2142 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2143 	if (IS_ERR(bdev)) {
2144 		printk(KERN_ERR "md: could not open %s.\n",
2145 			__bdevname(dev, b));
2146 		return PTR_ERR(bdev);
2147 	}
2148 	rdev->bdev = bdev;
2149 	return err;
2150 }
2151 
2152 static void unlock_rdev(struct md_rdev *rdev)
2153 {
2154 	struct block_device *bdev = rdev->bdev;
2155 	rdev->bdev = NULL;
2156 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2157 }
2158 
2159 void md_autodetect_dev(dev_t dev);
2160 
2161 static void export_rdev(struct md_rdev *rdev)
2162 {
2163 	char b[BDEVNAME_SIZE];
2164 
2165 	printk(KERN_INFO "md: export_rdev(%s)\n",
2166 		bdevname(rdev->bdev,b));
2167 	md_rdev_clear(rdev);
2168 #ifndef MODULE
2169 	if (test_bit(AutoDetected, &rdev->flags))
2170 		md_autodetect_dev(rdev->bdev->bd_dev);
2171 #endif
2172 	unlock_rdev(rdev);
2173 	kobject_put(&rdev->kobj);
2174 }
2175 
2176 void md_kick_rdev_from_array(struct md_rdev *rdev)
2177 {
2178 	unbind_rdev_from_array(rdev);
2179 	export_rdev(rdev);
2180 }
2181 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2182 
2183 static void export_array(struct mddev *mddev)
2184 {
2185 	struct md_rdev *rdev;
2186 
2187 	while (!list_empty(&mddev->disks)) {
2188 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2189 					same_set);
2190 		md_kick_rdev_from_array(rdev);
2191 	}
2192 	mddev->raid_disks = 0;
2193 	mddev->major_version = 0;
2194 }
2195 
2196 static void sync_sbs(struct mddev *mddev, int nospares)
2197 {
2198 	/* Update each superblock (in-memory image), but
2199 	 * if we are allowed to, skip spares which already
2200 	 * have the right event counter, or have one earlier
2201 	 * (which would mean they aren't being marked as dirty
2202 	 * with the rest of the array)
2203 	 */
2204 	struct md_rdev *rdev;
2205 	rdev_for_each(rdev, mddev) {
2206 		if (rdev->sb_events == mddev->events ||
2207 		    (nospares &&
2208 		     rdev->raid_disk < 0 &&
2209 		     rdev->sb_events+1 == mddev->events)) {
2210 			/* Don't update this superblock */
2211 			rdev->sb_loaded = 2;
2212 		} else {
2213 			sync_super(mddev, rdev);
2214 			rdev->sb_loaded = 1;
2215 		}
2216 	}
2217 }
2218 
2219 void md_update_sb(struct mddev *mddev, int force_change)
2220 {
2221 	struct md_rdev *rdev;
2222 	int sync_req;
2223 	int nospares = 0;
2224 	int any_badblocks_changed = 0;
2225 
2226 	if (mddev->ro) {
2227 		if (force_change)
2228 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2229 		return;
2230 	}
2231 repeat:
2232 	/* First make sure individual recovery_offsets are correct */
2233 	rdev_for_each(rdev, mddev) {
2234 		if (rdev->raid_disk >= 0 &&
2235 		    mddev->delta_disks >= 0 &&
2236 		    !test_bit(In_sync, &rdev->flags) &&
2237 		    mddev->curr_resync_completed > rdev->recovery_offset)
2238 				rdev->recovery_offset = mddev->curr_resync_completed;
2239 
2240 	}
2241 	if (!mddev->persistent) {
2242 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2243 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2244 		if (!mddev->external) {
2245 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2246 			rdev_for_each(rdev, mddev) {
2247 				if (rdev->badblocks.changed) {
2248 					rdev->badblocks.changed = 0;
2249 					md_ack_all_badblocks(&rdev->badblocks);
2250 					md_error(mddev, rdev);
2251 				}
2252 				clear_bit(Blocked, &rdev->flags);
2253 				clear_bit(BlockedBadBlocks, &rdev->flags);
2254 				wake_up(&rdev->blocked_wait);
2255 			}
2256 		}
2257 		wake_up(&mddev->sb_wait);
2258 		return;
2259 	}
2260 
2261 	spin_lock(&mddev->lock);
2262 
2263 	mddev->utime = get_seconds();
2264 
2265 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2266 		force_change = 1;
2267 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2268 		/* just a clean<-> dirty transition, possibly leave spares alone,
2269 		 * though if events isn't the right even/odd, we will have to do
2270 		 * spares after all
2271 		 */
2272 		nospares = 1;
2273 	if (force_change)
2274 		nospares = 0;
2275 	if (mddev->degraded)
2276 		/* If the array is degraded, then skipping spares is both
2277 		 * dangerous and fairly pointless.
2278 		 * Dangerous because a device that was removed from the array
2279 		 * might have a event_count that still looks up-to-date,
2280 		 * so it can be re-added without a resync.
2281 		 * Pointless because if there are any spares to skip,
2282 		 * then a recovery will happen and soon that array won't
2283 		 * be degraded any more and the spare can go back to sleep then.
2284 		 */
2285 		nospares = 0;
2286 
2287 	sync_req = mddev->in_sync;
2288 
2289 	/* If this is just a dirty<->clean transition, and the array is clean
2290 	 * and 'events' is odd, we can roll back to the previous clean state */
2291 	if (nospares
2292 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2293 	    && mddev->can_decrease_events
2294 	    && mddev->events != 1) {
2295 		mddev->events--;
2296 		mddev->can_decrease_events = 0;
2297 	} else {
2298 		/* otherwise we have to go forward and ... */
2299 		mddev->events ++;
2300 		mddev->can_decrease_events = nospares;
2301 	}
2302 
2303 	/*
2304 	 * This 64-bit counter should never wrap.
2305 	 * Either we are in around ~1 trillion A.C., assuming
2306 	 * 1 reboot per second, or we have a bug...
2307 	 */
2308 	WARN_ON(mddev->events == 0);
2309 
2310 	rdev_for_each(rdev, mddev) {
2311 		if (rdev->badblocks.changed)
2312 			any_badblocks_changed++;
2313 		if (test_bit(Faulty, &rdev->flags))
2314 			set_bit(FaultRecorded, &rdev->flags);
2315 	}
2316 
2317 	sync_sbs(mddev, nospares);
2318 	spin_unlock(&mddev->lock);
2319 
2320 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2321 		 mdname(mddev), mddev->in_sync);
2322 
2323 	bitmap_update_sb(mddev->bitmap);
2324 	rdev_for_each(rdev, mddev) {
2325 		char b[BDEVNAME_SIZE];
2326 
2327 		if (rdev->sb_loaded != 1)
2328 			continue; /* no noise on spare devices */
2329 
2330 		if (!test_bit(Faulty, &rdev->flags)) {
2331 			md_super_write(mddev,rdev,
2332 				       rdev->sb_start, rdev->sb_size,
2333 				       rdev->sb_page);
2334 			pr_debug("md: (write) %s's sb offset: %llu\n",
2335 				 bdevname(rdev->bdev, b),
2336 				 (unsigned long long)rdev->sb_start);
2337 			rdev->sb_events = mddev->events;
2338 			if (rdev->badblocks.size) {
2339 				md_super_write(mddev, rdev,
2340 					       rdev->badblocks.sector,
2341 					       rdev->badblocks.size << 9,
2342 					       rdev->bb_page);
2343 				rdev->badblocks.size = 0;
2344 			}
2345 
2346 		} else
2347 			pr_debug("md: %s (skipping faulty)\n",
2348 				 bdevname(rdev->bdev, b));
2349 
2350 		if (mddev->level == LEVEL_MULTIPATH)
2351 			/* only need to write one superblock... */
2352 			break;
2353 	}
2354 	md_super_wait(mddev);
2355 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2356 
2357 	spin_lock(&mddev->lock);
2358 	if (mddev->in_sync != sync_req ||
2359 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2360 		/* have to write it out again */
2361 		spin_unlock(&mddev->lock);
2362 		goto repeat;
2363 	}
2364 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2365 	spin_unlock(&mddev->lock);
2366 	wake_up(&mddev->sb_wait);
2367 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2368 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2369 
2370 	rdev_for_each(rdev, mddev) {
2371 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2372 			clear_bit(Blocked, &rdev->flags);
2373 
2374 		if (any_badblocks_changed)
2375 			md_ack_all_badblocks(&rdev->badblocks);
2376 		clear_bit(BlockedBadBlocks, &rdev->flags);
2377 		wake_up(&rdev->blocked_wait);
2378 	}
2379 }
2380 EXPORT_SYMBOL(md_update_sb);
2381 
2382 static int add_bound_rdev(struct md_rdev *rdev)
2383 {
2384 	struct mddev *mddev = rdev->mddev;
2385 	int err = 0;
2386 
2387 	if (!mddev->pers->hot_remove_disk) {
2388 		/* If there is hot_add_disk but no hot_remove_disk
2389 		 * then added disks for geometry changes,
2390 		 * and should be added immediately.
2391 		 */
2392 		super_types[mddev->major_version].
2393 			validate_super(mddev, rdev);
2394 		err = mddev->pers->hot_add_disk(mddev, rdev);
2395 		if (err) {
2396 			unbind_rdev_from_array(rdev);
2397 			export_rdev(rdev);
2398 			return err;
2399 		}
2400 	}
2401 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2402 
2403 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2404 	if (mddev->degraded)
2405 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2406 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2407 	md_new_event(mddev);
2408 	md_wakeup_thread(mddev->thread);
2409 	return 0;
2410 }
2411 
2412 /* words written to sysfs files may, or may not, be \n terminated.
2413  * We want to accept with case. For this we use cmd_match.
2414  */
2415 static int cmd_match(const char *cmd, const char *str)
2416 {
2417 	/* See if cmd, written into a sysfs file, matches
2418 	 * str.  They must either be the same, or cmd can
2419 	 * have a trailing newline
2420 	 */
2421 	while (*cmd && *str && *cmd == *str) {
2422 		cmd++;
2423 		str++;
2424 	}
2425 	if (*cmd == '\n')
2426 		cmd++;
2427 	if (*str || *cmd)
2428 		return 0;
2429 	return 1;
2430 }
2431 
2432 struct rdev_sysfs_entry {
2433 	struct attribute attr;
2434 	ssize_t (*show)(struct md_rdev *, char *);
2435 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2436 };
2437 
2438 static ssize_t
2439 state_show(struct md_rdev *rdev, char *page)
2440 {
2441 	char *sep = "";
2442 	size_t len = 0;
2443 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2444 
2445 	if (test_bit(Faulty, &flags) ||
2446 	    rdev->badblocks.unacked_exist) {
2447 		len+= sprintf(page+len, "%sfaulty",sep);
2448 		sep = ",";
2449 	}
2450 	if (test_bit(In_sync, &flags)) {
2451 		len += sprintf(page+len, "%sin_sync",sep);
2452 		sep = ",";
2453 	}
2454 	if (test_bit(WriteMostly, &flags)) {
2455 		len += sprintf(page+len, "%swrite_mostly",sep);
2456 		sep = ",";
2457 	}
2458 	if (test_bit(Blocked, &flags) ||
2459 	    (rdev->badblocks.unacked_exist
2460 	     && !test_bit(Faulty, &flags))) {
2461 		len += sprintf(page+len, "%sblocked", sep);
2462 		sep = ",";
2463 	}
2464 	if (!test_bit(Faulty, &flags) &&
2465 	    !test_bit(In_sync, &flags)) {
2466 		len += sprintf(page+len, "%sspare", sep);
2467 		sep = ",";
2468 	}
2469 	if (test_bit(WriteErrorSeen, &flags)) {
2470 		len += sprintf(page+len, "%swrite_error", sep);
2471 		sep = ",";
2472 	}
2473 	if (test_bit(WantReplacement, &flags)) {
2474 		len += sprintf(page+len, "%swant_replacement", sep);
2475 		sep = ",";
2476 	}
2477 	if (test_bit(Replacement, &flags)) {
2478 		len += sprintf(page+len, "%sreplacement", sep);
2479 		sep = ",";
2480 	}
2481 
2482 	return len+sprintf(page+len, "\n");
2483 }
2484 
2485 static ssize_t
2486 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2487 {
2488 	/* can write
2489 	 *  faulty  - simulates an error
2490 	 *  remove  - disconnects the device
2491 	 *  writemostly - sets write_mostly
2492 	 *  -writemostly - clears write_mostly
2493 	 *  blocked - sets the Blocked flags
2494 	 *  -blocked - clears the Blocked and possibly simulates an error
2495 	 *  insync - sets Insync providing device isn't active
2496 	 *  -insync - clear Insync for a device with a slot assigned,
2497 	 *            so that it gets rebuilt based on bitmap
2498 	 *  write_error - sets WriteErrorSeen
2499 	 *  -write_error - clears WriteErrorSeen
2500 	 */
2501 	int err = -EINVAL;
2502 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2503 		md_error(rdev->mddev, rdev);
2504 		if (test_bit(Faulty, &rdev->flags))
2505 			err = 0;
2506 		else
2507 			err = -EBUSY;
2508 	} else if (cmd_match(buf, "remove")) {
2509 		if (rdev->raid_disk >= 0)
2510 			err = -EBUSY;
2511 		else {
2512 			struct mddev *mddev = rdev->mddev;
2513 			if (mddev_is_clustered(mddev))
2514 				md_cluster_ops->remove_disk(mddev, rdev);
2515 			md_kick_rdev_from_array(rdev);
2516 			if (mddev_is_clustered(mddev))
2517 				md_cluster_ops->metadata_update_start(mddev);
2518 			if (mddev->pers)
2519 				md_update_sb(mddev, 1);
2520 			md_new_event(mddev);
2521 			if (mddev_is_clustered(mddev))
2522 				md_cluster_ops->metadata_update_finish(mddev);
2523 			err = 0;
2524 		}
2525 	} else if (cmd_match(buf, "writemostly")) {
2526 		set_bit(WriteMostly, &rdev->flags);
2527 		err = 0;
2528 	} else if (cmd_match(buf, "-writemostly")) {
2529 		clear_bit(WriteMostly, &rdev->flags);
2530 		err = 0;
2531 	} else if (cmd_match(buf, "blocked")) {
2532 		set_bit(Blocked, &rdev->flags);
2533 		err = 0;
2534 	} else if (cmd_match(buf, "-blocked")) {
2535 		if (!test_bit(Faulty, &rdev->flags) &&
2536 		    rdev->badblocks.unacked_exist) {
2537 			/* metadata handler doesn't understand badblocks,
2538 			 * so we need to fail the device
2539 			 */
2540 			md_error(rdev->mddev, rdev);
2541 		}
2542 		clear_bit(Blocked, &rdev->flags);
2543 		clear_bit(BlockedBadBlocks, &rdev->flags);
2544 		wake_up(&rdev->blocked_wait);
2545 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2546 		md_wakeup_thread(rdev->mddev->thread);
2547 
2548 		err = 0;
2549 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2550 		set_bit(In_sync, &rdev->flags);
2551 		err = 0;
2552 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2553 		if (rdev->mddev->pers == NULL) {
2554 			clear_bit(In_sync, &rdev->flags);
2555 			rdev->saved_raid_disk = rdev->raid_disk;
2556 			rdev->raid_disk = -1;
2557 			err = 0;
2558 		}
2559 	} else if (cmd_match(buf, "write_error")) {
2560 		set_bit(WriteErrorSeen, &rdev->flags);
2561 		err = 0;
2562 	} else if (cmd_match(buf, "-write_error")) {
2563 		clear_bit(WriteErrorSeen, &rdev->flags);
2564 		err = 0;
2565 	} else if (cmd_match(buf, "want_replacement")) {
2566 		/* Any non-spare device that is not a replacement can
2567 		 * become want_replacement at any time, but we then need to
2568 		 * check if recovery is needed.
2569 		 */
2570 		if (rdev->raid_disk >= 0 &&
2571 		    !test_bit(Replacement, &rdev->flags))
2572 			set_bit(WantReplacement, &rdev->flags);
2573 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2574 		md_wakeup_thread(rdev->mddev->thread);
2575 		err = 0;
2576 	} else if (cmd_match(buf, "-want_replacement")) {
2577 		/* Clearing 'want_replacement' is always allowed.
2578 		 * Once replacements starts it is too late though.
2579 		 */
2580 		err = 0;
2581 		clear_bit(WantReplacement, &rdev->flags);
2582 	} else if (cmd_match(buf, "replacement")) {
2583 		/* Can only set a device as a replacement when array has not
2584 		 * yet been started.  Once running, replacement is automatic
2585 		 * from spares, or by assigning 'slot'.
2586 		 */
2587 		if (rdev->mddev->pers)
2588 			err = -EBUSY;
2589 		else {
2590 			set_bit(Replacement, &rdev->flags);
2591 			err = 0;
2592 		}
2593 	} else if (cmd_match(buf, "-replacement")) {
2594 		/* Similarly, can only clear Replacement before start */
2595 		if (rdev->mddev->pers)
2596 			err = -EBUSY;
2597 		else {
2598 			clear_bit(Replacement, &rdev->flags);
2599 			err = 0;
2600 		}
2601 	} else if (cmd_match(buf, "re-add")) {
2602 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2603 			/* clear_bit is performed _after_ all the devices
2604 			 * have their local Faulty bit cleared. If any writes
2605 			 * happen in the meantime in the local node, they
2606 			 * will land in the local bitmap, which will be synced
2607 			 * by this node eventually
2608 			 */
2609 			if (!mddev_is_clustered(rdev->mddev) ||
2610 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2611 				clear_bit(Faulty, &rdev->flags);
2612 				err = add_bound_rdev(rdev);
2613 			}
2614 		} else
2615 			err = -EBUSY;
2616 	}
2617 	if (!err)
2618 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2619 	return err ? err : len;
2620 }
2621 static struct rdev_sysfs_entry rdev_state =
2622 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2623 
2624 static ssize_t
2625 errors_show(struct md_rdev *rdev, char *page)
2626 {
2627 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2628 }
2629 
2630 static ssize_t
2631 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2632 {
2633 	char *e;
2634 	unsigned long n = simple_strtoul(buf, &e, 10);
2635 	if (*buf && (*e == 0 || *e == '\n')) {
2636 		atomic_set(&rdev->corrected_errors, n);
2637 		return len;
2638 	}
2639 	return -EINVAL;
2640 }
2641 static struct rdev_sysfs_entry rdev_errors =
2642 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2643 
2644 static ssize_t
2645 slot_show(struct md_rdev *rdev, char *page)
2646 {
2647 	if (rdev->raid_disk < 0)
2648 		return sprintf(page, "none\n");
2649 	else
2650 		return sprintf(page, "%d\n", rdev->raid_disk);
2651 }
2652 
2653 static ssize_t
2654 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2655 {
2656 	char *e;
2657 	int err;
2658 	int slot = simple_strtoul(buf, &e, 10);
2659 	if (strncmp(buf, "none", 4)==0)
2660 		slot = -1;
2661 	else if (e==buf || (*e && *e!= '\n'))
2662 		return -EINVAL;
2663 	if (rdev->mddev->pers && slot == -1) {
2664 		/* Setting 'slot' on an active array requires also
2665 		 * updating the 'rd%d' link, and communicating
2666 		 * with the personality with ->hot_*_disk.
2667 		 * For now we only support removing
2668 		 * failed/spare devices.  This normally happens automatically,
2669 		 * but not when the metadata is externally managed.
2670 		 */
2671 		if (rdev->raid_disk == -1)
2672 			return -EEXIST;
2673 		/* personality does all needed checks */
2674 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2675 			return -EINVAL;
2676 		clear_bit(Blocked, &rdev->flags);
2677 		remove_and_add_spares(rdev->mddev, rdev);
2678 		if (rdev->raid_disk >= 0)
2679 			return -EBUSY;
2680 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2681 		md_wakeup_thread(rdev->mddev->thread);
2682 	} else if (rdev->mddev->pers) {
2683 		/* Activating a spare .. or possibly reactivating
2684 		 * if we ever get bitmaps working here.
2685 		 */
2686 
2687 		if (rdev->raid_disk != -1)
2688 			return -EBUSY;
2689 
2690 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2691 			return -EBUSY;
2692 
2693 		if (rdev->mddev->pers->hot_add_disk == NULL)
2694 			return -EINVAL;
2695 
2696 		if (slot >= rdev->mddev->raid_disks &&
2697 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2698 			return -ENOSPC;
2699 
2700 		rdev->raid_disk = slot;
2701 		if (test_bit(In_sync, &rdev->flags))
2702 			rdev->saved_raid_disk = slot;
2703 		else
2704 			rdev->saved_raid_disk = -1;
2705 		clear_bit(In_sync, &rdev->flags);
2706 		clear_bit(Bitmap_sync, &rdev->flags);
2707 		err = rdev->mddev->pers->
2708 			hot_add_disk(rdev->mddev, rdev);
2709 		if (err) {
2710 			rdev->raid_disk = -1;
2711 			return err;
2712 		} else
2713 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2714 		if (sysfs_link_rdev(rdev->mddev, rdev))
2715 			/* failure here is OK */;
2716 		/* don't wakeup anyone, leave that to userspace. */
2717 	} else {
2718 		if (slot >= rdev->mddev->raid_disks &&
2719 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2720 			return -ENOSPC;
2721 		rdev->raid_disk = slot;
2722 		/* assume it is working */
2723 		clear_bit(Faulty, &rdev->flags);
2724 		clear_bit(WriteMostly, &rdev->flags);
2725 		set_bit(In_sync, &rdev->flags);
2726 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2727 	}
2728 	return len;
2729 }
2730 
2731 static struct rdev_sysfs_entry rdev_slot =
2732 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2733 
2734 static ssize_t
2735 offset_show(struct md_rdev *rdev, char *page)
2736 {
2737 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2738 }
2739 
2740 static ssize_t
2741 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2742 {
2743 	unsigned long long offset;
2744 	if (kstrtoull(buf, 10, &offset) < 0)
2745 		return -EINVAL;
2746 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2747 		return -EBUSY;
2748 	if (rdev->sectors && rdev->mddev->external)
2749 		/* Must set offset before size, so overlap checks
2750 		 * can be sane */
2751 		return -EBUSY;
2752 	rdev->data_offset = offset;
2753 	rdev->new_data_offset = offset;
2754 	return len;
2755 }
2756 
2757 static struct rdev_sysfs_entry rdev_offset =
2758 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2759 
2760 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2761 {
2762 	return sprintf(page, "%llu\n",
2763 		       (unsigned long long)rdev->new_data_offset);
2764 }
2765 
2766 static ssize_t new_offset_store(struct md_rdev *rdev,
2767 				const char *buf, size_t len)
2768 {
2769 	unsigned long long new_offset;
2770 	struct mddev *mddev = rdev->mddev;
2771 
2772 	if (kstrtoull(buf, 10, &new_offset) < 0)
2773 		return -EINVAL;
2774 
2775 	if (mddev->sync_thread ||
2776 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2777 		return -EBUSY;
2778 	if (new_offset == rdev->data_offset)
2779 		/* reset is always permitted */
2780 		;
2781 	else if (new_offset > rdev->data_offset) {
2782 		/* must not push array size beyond rdev_sectors */
2783 		if (new_offset - rdev->data_offset
2784 		    + mddev->dev_sectors > rdev->sectors)
2785 				return -E2BIG;
2786 	}
2787 	/* Metadata worries about other space details. */
2788 
2789 	/* decreasing the offset is inconsistent with a backwards
2790 	 * reshape.
2791 	 */
2792 	if (new_offset < rdev->data_offset &&
2793 	    mddev->reshape_backwards)
2794 		return -EINVAL;
2795 	/* Increasing offset is inconsistent with forwards
2796 	 * reshape.  reshape_direction should be set to
2797 	 * 'backwards' first.
2798 	 */
2799 	if (new_offset > rdev->data_offset &&
2800 	    !mddev->reshape_backwards)
2801 		return -EINVAL;
2802 
2803 	if (mddev->pers && mddev->persistent &&
2804 	    !super_types[mddev->major_version]
2805 	    .allow_new_offset(rdev, new_offset))
2806 		return -E2BIG;
2807 	rdev->new_data_offset = new_offset;
2808 	if (new_offset > rdev->data_offset)
2809 		mddev->reshape_backwards = 1;
2810 	else if (new_offset < rdev->data_offset)
2811 		mddev->reshape_backwards = 0;
2812 
2813 	return len;
2814 }
2815 static struct rdev_sysfs_entry rdev_new_offset =
2816 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2817 
2818 static ssize_t
2819 rdev_size_show(struct md_rdev *rdev, char *page)
2820 {
2821 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2822 }
2823 
2824 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2825 {
2826 	/* check if two start/length pairs overlap */
2827 	if (s1+l1 <= s2)
2828 		return 0;
2829 	if (s2+l2 <= s1)
2830 		return 0;
2831 	return 1;
2832 }
2833 
2834 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2835 {
2836 	unsigned long long blocks;
2837 	sector_t new;
2838 
2839 	if (kstrtoull(buf, 10, &blocks) < 0)
2840 		return -EINVAL;
2841 
2842 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2843 		return -EINVAL; /* sector conversion overflow */
2844 
2845 	new = blocks * 2;
2846 	if (new != blocks * 2)
2847 		return -EINVAL; /* unsigned long long to sector_t overflow */
2848 
2849 	*sectors = new;
2850 	return 0;
2851 }
2852 
2853 static ssize_t
2854 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2855 {
2856 	struct mddev *my_mddev = rdev->mddev;
2857 	sector_t oldsectors = rdev->sectors;
2858 	sector_t sectors;
2859 
2860 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2861 		return -EINVAL;
2862 	if (rdev->data_offset != rdev->new_data_offset)
2863 		return -EINVAL; /* too confusing */
2864 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2865 		if (my_mddev->persistent) {
2866 			sectors = super_types[my_mddev->major_version].
2867 				rdev_size_change(rdev, sectors);
2868 			if (!sectors)
2869 				return -EBUSY;
2870 		} else if (!sectors)
2871 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2872 				rdev->data_offset;
2873 		if (!my_mddev->pers->resize)
2874 			/* Cannot change size for RAID0 or Linear etc */
2875 			return -EINVAL;
2876 	}
2877 	if (sectors < my_mddev->dev_sectors)
2878 		return -EINVAL; /* component must fit device */
2879 
2880 	rdev->sectors = sectors;
2881 	if (sectors > oldsectors && my_mddev->external) {
2882 		/* Need to check that all other rdevs with the same
2883 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2884 		 * the rdev lists safely.
2885 		 * This check does not provide a hard guarantee, it
2886 		 * just helps avoid dangerous mistakes.
2887 		 */
2888 		struct mddev *mddev;
2889 		int overlap = 0;
2890 		struct list_head *tmp;
2891 
2892 		rcu_read_lock();
2893 		for_each_mddev(mddev, tmp) {
2894 			struct md_rdev *rdev2;
2895 
2896 			rdev_for_each(rdev2, mddev)
2897 				if (rdev->bdev == rdev2->bdev &&
2898 				    rdev != rdev2 &&
2899 				    overlaps(rdev->data_offset, rdev->sectors,
2900 					     rdev2->data_offset,
2901 					     rdev2->sectors)) {
2902 					overlap = 1;
2903 					break;
2904 				}
2905 			if (overlap) {
2906 				mddev_put(mddev);
2907 				break;
2908 			}
2909 		}
2910 		rcu_read_unlock();
2911 		if (overlap) {
2912 			/* Someone else could have slipped in a size
2913 			 * change here, but doing so is just silly.
2914 			 * We put oldsectors back because we *know* it is
2915 			 * safe, and trust userspace not to race with
2916 			 * itself
2917 			 */
2918 			rdev->sectors = oldsectors;
2919 			return -EBUSY;
2920 		}
2921 	}
2922 	return len;
2923 }
2924 
2925 static struct rdev_sysfs_entry rdev_size =
2926 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2927 
2928 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2929 {
2930 	unsigned long long recovery_start = rdev->recovery_offset;
2931 
2932 	if (test_bit(In_sync, &rdev->flags) ||
2933 	    recovery_start == MaxSector)
2934 		return sprintf(page, "none\n");
2935 
2936 	return sprintf(page, "%llu\n", recovery_start);
2937 }
2938 
2939 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2940 {
2941 	unsigned long long recovery_start;
2942 
2943 	if (cmd_match(buf, "none"))
2944 		recovery_start = MaxSector;
2945 	else if (kstrtoull(buf, 10, &recovery_start))
2946 		return -EINVAL;
2947 
2948 	if (rdev->mddev->pers &&
2949 	    rdev->raid_disk >= 0)
2950 		return -EBUSY;
2951 
2952 	rdev->recovery_offset = recovery_start;
2953 	if (recovery_start == MaxSector)
2954 		set_bit(In_sync, &rdev->flags);
2955 	else
2956 		clear_bit(In_sync, &rdev->flags);
2957 	return len;
2958 }
2959 
2960 static struct rdev_sysfs_entry rdev_recovery_start =
2961 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2962 
2963 static ssize_t
2964 badblocks_show(struct badblocks *bb, char *page, int unack);
2965 static ssize_t
2966 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2967 
2968 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2969 {
2970 	return badblocks_show(&rdev->badblocks, page, 0);
2971 }
2972 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2973 {
2974 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2975 	/* Maybe that ack was all we needed */
2976 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2977 		wake_up(&rdev->blocked_wait);
2978 	return rv;
2979 }
2980 static struct rdev_sysfs_entry rdev_bad_blocks =
2981 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2982 
2983 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2984 {
2985 	return badblocks_show(&rdev->badblocks, page, 1);
2986 }
2987 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2988 {
2989 	return badblocks_store(&rdev->badblocks, page, len, 1);
2990 }
2991 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2992 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2993 
2994 static struct attribute *rdev_default_attrs[] = {
2995 	&rdev_state.attr,
2996 	&rdev_errors.attr,
2997 	&rdev_slot.attr,
2998 	&rdev_offset.attr,
2999 	&rdev_new_offset.attr,
3000 	&rdev_size.attr,
3001 	&rdev_recovery_start.attr,
3002 	&rdev_bad_blocks.attr,
3003 	&rdev_unack_bad_blocks.attr,
3004 	NULL,
3005 };
3006 static ssize_t
3007 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3008 {
3009 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3010 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3011 
3012 	if (!entry->show)
3013 		return -EIO;
3014 	if (!rdev->mddev)
3015 		return -EBUSY;
3016 	return entry->show(rdev, page);
3017 }
3018 
3019 static ssize_t
3020 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3021 	      const char *page, size_t length)
3022 {
3023 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3024 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3025 	ssize_t rv;
3026 	struct mddev *mddev = rdev->mddev;
3027 
3028 	if (!entry->store)
3029 		return -EIO;
3030 	if (!capable(CAP_SYS_ADMIN))
3031 		return -EACCES;
3032 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3033 	if (!rv) {
3034 		if (rdev->mddev == NULL)
3035 			rv = -EBUSY;
3036 		else
3037 			rv = entry->store(rdev, page, length);
3038 		mddev_unlock(mddev);
3039 	}
3040 	return rv;
3041 }
3042 
3043 static void rdev_free(struct kobject *ko)
3044 {
3045 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3046 	kfree(rdev);
3047 }
3048 static const struct sysfs_ops rdev_sysfs_ops = {
3049 	.show		= rdev_attr_show,
3050 	.store		= rdev_attr_store,
3051 };
3052 static struct kobj_type rdev_ktype = {
3053 	.release	= rdev_free,
3054 	.sysfs_ops	= &rdev_sysfs_ops,
3055 	.default_attrs	= rdev_default_attrs,
3056 };
3057 
3058 int md_rdev_init(struct md_rdev *rdev)
3059 {
3060 	rdev->desc_nr = -1;
3061 	rdev->saved_raid_disk = -1;
3062 	rdev->raid_disk = -1;
3063 	rdev->flags = 0;
3064 	rdev->data_offset = 0;
3065 	rdev->new_data_offset = 0;
3066 	rdev->sb_events = 0;
3067 	rdev->last_read_error.tv_sec  = 0;
3068 	rdev->last_read_error.tv_nsec = 0;
3069 	rdev->sb_loaded = 0;
3070 	rdev->bb_page = NULL;
3071 	atomic_set(&rdev->nr_pending, 0);
3072 	atomic_set(&rdev->read_errors, 0);
3073 	atomic_set(&rdev->corrected_errors, 0);
3074 
3075 	INIT_LIST_HEAD(&rdev->same_set);
3076 	init_waitqueue_head(&rdev->blocked_wait);
3077 
3078 	/* Add space to store bad block list.
3079 	 * This reserves the space even on arrays where it cannot
3080 	 * be used - I wonder if that matters
3081 	 */
3082 	rdev->badblocks.count = 0;
3083 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3084 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3085 	seqlock_init(&rdev->badblocks.lock);
3086 	if (rdev->badblocks.page == NULL)
3087 		return -ENOMEM;
3088 
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(md_rdev_init);
3092 /*
3093  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3094  *
3095  * mark the device faulty if:
3096  *
3097  *   - the device is nonexistent (zero size)
3098  *   - the device has no valid superblock
3099  *
3100  * a faulty rdev _never_ has rdev->sb set.
3101  */
3102 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3103 {
3104 	char b[BDEVNAME_SIZE];
3105 	int err;
3106 	struct md_rdev *rdev;
3107 	sector_t size;
3108 
3109 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3110 	if (!rdev) {
3111 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3112 		return ERR_PTR(-ENOMEM);
3113 	}
3114 
3115 	err = md_rdev_init(rdev);
3116 	if (err)
3117 		goto abort_free;
3118 	err = alloc_disk_sb(rdev);
3119 	if (err)
3120 		goto abort_free;
3121 
3122 	err = lock_rdev(rdev, newdev, super_format == -2);
3123 	if (err)
3124 		goto abort_free;
3125 
3126 	kobject_init(&rdev->kobj, &rdev_ktype);
3127 
3128 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3129 	if (!size) {
3130 		printk(KERN_WARNING
3131 			"md: %s has zero or unknown size, marking faulty!\n",
3132 			bdevname(rdev->bdev,b));
3133 		err = -EINVAL;
3134 		goto abort_free;
3135 	}
3136 
3137 	if (super_format >= 0) {
3138 		err = super_types[super_format].
3139 			load_super(rdev, NULL, super_minor);
3140 		if (err == -EINVAL) {
3141 			printk(KERN_WARNING
3142 				"md: %s does not have a valid v%d.%d "
3143 			       "superblock, not importing!\n",
3144 				bdevname(rdev->bdev,b),
3145 			       super_format, super_minor);
3146 			goto abort_free;
3147 		}
3148 		if (err < 0) {
3149 			printk(KERN_WARNING
3150 				"md: could not read %s's sb, not importing!\n",
3151 				bdevname(rdev->bdev,b));
3152 			goto abort_free;
3153 		}
3154 	}
3155 
3156 	return rdev;
3157 
3158 abort_free:
3159 	if (rdev->bdev)
3160 		unlock_rdev(rdev);
3161 	md_rdev_clear(rdev);
3162 	kfree(rdev);
3163 	return ERR_PTR(err);
3164 }
3165 
3166 /*
3167  * Check a full RAID array for plausibility
3168  */
3169 
3170 static void analyze_sbs(struct mddev *mddev)
3171 {
3172 	int i;
3173 	struct md_rdev *rdev, *freshest, *tmp;
3174 	char b[BDEVNAME_SIZE];
3175 
3176 	freshest = NULL;
3177 	rdev_for_each_safe(rdev, tmp, mddev)
3178 		switch (super_types[mddev->major_version].
3179 			load_super(rdev, freshest, mddev->minor_version)) {
3180 		case 1:
3181 			freshest = rdev;
3182 			break;
3183 		case 0:
3184 			break;
3185 		default:
3186 			printk( KERN_ERR \
3187 				"md: fatal superblock inconsistency in %s"
3188 				" -- removing from array\n",
3189 				bdevname(rdev->bdev,b));
3190 			md_kick_rdev_from_array(rdev);
3191 		}
3192 
3193 	super_types[mddev->major_version].
3194 		validate_super(mddev, freshest);
3195 
3196 	i = 0;
3197 	rdev_for_each_safe(rdev, tmp, mddev) {
3198 		if (mddev->max_disks &&
3199 		    (rdev->desc_nr >= mddev->max_disks ||
3200 		     i > mddev->max_disks)) {
3201 			printk(KERN_WARNING
3202 			       "md: %s: %s: only %d devices permitted\n",
3203 			       mdname(mddev), bdevname(rdev->bdev, b),
3204 			       mddev->max_disks);
3205 			md_kick_rdev_from_array(rdev);
3206 			continue;
3207 		}
3208 		if (rdev != freshest) {
3209 			if (super_types[mddev->major_version].
3210 			    validate_super(mddev, rdev)) {
3211 				printk(KERN_WARNING "md: kicking non-fresh %s"
3212 					" from array!\n",
3213 					bdevname(rdev->bdev,b));
3214 				md_kick_rdev_from_array(rdev);
3215 				continue;
3216 			}
3217 			/* No device should have a Candidate flag
3218 			 * when reading devices
3219 			 */
3220 			if (test_bit(Candidate, &rdev->flags)) {
3221 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3222 					bdevname(rdev->bdev, b));
3223 				md_kick_rdev_from_array(rdev);
3224 			}
3225 		}
3226 		if (mddev->level == LEVEL_MULTIPATH) {
3227 			rdev->desc_nr = i++;
3228 			rdev->raid_disk = rdev->desc_nr;
3229 			set_bit(In_sync, &rdev->flags);
3230 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3231 			rdev->raid_disk = -1;
3232 			clear_bit(In_sync, &rdev->flags);
3233 		}
3234 	}
3235 }
3236 
3237 /* Read a fixed-point number.
3238  * Numbers in sysfs attributes should be in "standard" units where
3239  * possible, so time should be in seconds.
3240  * However we internally use a a much smaller unit such as
3241  * milliseconds or jiffies.
3242  * This function takes a decimal number with a possible fractional
3243  * component, and produces an integer which is the result of
3244  * multiplying that number by 10^'scale'.
3245  * all without any floating-point arithmetic.
3246  */
3247 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3248 {
3249 	unsigned long result = 0;
3250 	long decimals = -1;
3251 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3252 		if (*cp == '.')
3253 			decimals = 0;
3254 		else if (decimals < scale) {
3255 			unsigned int value;
3256 			value = *cp - '0';
3257 			result = result * 10 + value;
3258 			if (decimals >= 0)
3259 				decimals++;
3260 		}
3261 		cp++;
3262 	}
3263 	if (*cp == '\n')
3264 		cp++;
3265 	if (*cp)
3266 		return -EINVAL;
3267 	if (decimals < 0)
3268 		decimals = 0;
3269 	while (decimals < scale) {
3270 		result *= 10;
3271 		decimals ++;
3272 	}
3273 	*res = result;
3274 	return 0;
3275 }
3276 
3277 static void md_safemode_timeout(unsigned long data);
3278 
3279 static ssize_t
3280 safe_delay_show(struct mddev *mddev, char *page)
3281 {
3282 	int msec = (mddev->safemode_delay*1000)/HZ;
3283 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3284 }
3285 static ssize_t
3286 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3287 {
3288 	unsigned long msec;
3289 
3290 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3291 		return -EINVAL;
3292 	if (msec == 0)
3293 		mddev->safemode_delay = 0;
3294 	else {
3295 		unsigned long old_delay = mddev->safemode_delay;
3296 		unsigned long new_delay = (msec*HZ)/1000;
3297 
3298 		if (new_delay == 0)
3299 			new_delay = 1;
3300 		mddev->safemode_delay = new_delay;
3301 		if (new_delay < old_delay || old_delay == 0)
3302 			mod_timer(&mddev->safemode_timer, jiffies+1);
3303 	}
3304 	return len;
3305 }
3306 static struct md_sysfs_entry md_safe_delay =
3307 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3308 
3309 static ssize_t
3310 level_show(struct mddev *mddev, char *page)
3311 {
3312 	struct md_personality *p;
3313 	int ret;
3314 	spin_lock(&mddev->lock);
3315 	p = mddev->pers;
3316 	if (p)
3317 		ret = sprintf(page, "%s\n", p->name);
3318 	else if (mddev->clevel[0])
3319 		ret = sprintf(page, "%s\n", mddev->clevel);
3320 	else if (mddev->level != LEVEL_NONE)
3321 		ret = sprintf(page, "%d\n", mddev->level);
3322 	else
3323 		ret = 0;
3324 	spin_unlock(&mddev->lock);
3325 	return ret;
3326 }
3327 
3328 static ssize_t
3329 level_store(struct mddev *mddev, const char *buf, size_t len)
3330 {
3331 	char clevel[16];
3332 	ssize_t rv;
3333 	size_t slen = len;
3334 	struct md_personality *pers, *oldpers;
3335 	long level;
3336 	void *priv, *oldpriv;
3337 	struct md_rdev *rdev;
3338 
3339 	if (slen == 0 || slen >= sizeof(clevel))
3340 		return -EINVAL;
3341 
3342 	rv = mddev_lock(mddev);
3343 	if (rv)
3344 		return rv;
3345 
3346 	if (mddev->pers == NULL) {
3347 		strncpy(mddev->clevel, buf, slen);
3348 		if (mddev->clevel[slen-1] == '\n')
3349 			slen--;
3350 		mddev->clevel[slen] = 0;
3351 		mddev->level = LEVEL_NONE;
3352 		rv = len;
3353 		goto out_unlock;
3354 	}
3355 	rv = -EROFS;
3356 	if (mddev->ro)
3357 		goto out_unlock;
3358 
3359 	/* request to change the personality.  Need to ensure:
3360 	 *  - array is not engaged in resync/recovery/reshape
3361 	 *  - old personality can be suspended
3362 	 *  - new personality will access other array.
3363 	 */
3364 
3365 	rv = -EBUSY;
3366 	if (mddev->sync_thread ||
3367 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3368 	    mddev->reshape_position != MaxSector ||
3369 	    mddev->sysfs_active)
3370 		goto out_unlock;
3371 
3372 	rv = -EINVAL;
3373 	if (!mddev->pers->quiesce) {
3374 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3375 		       mdname(mddev), mddev->pers->name);
3376 		goto out_unlock;
3377 	}
3378 
3379 	/* Now find the new personality */
3380 	strncpy(clevel, buf, slen);
3381 	if (clevel[slen-1] == '\n')
3382 		slen--;
3383 	clevel[slen] = 0;
3384 	if (kstrtol(clevel, 10, &level))
3385 		level = LEVEL_NONE;
3386 
3387 	if (request_module("md-%s", clevel) != 0)
3388 		request_module("md-level-%s", clevel);
3389 	spin_lock(&pers_lock);
3390 	pers = find_pers(level, clevel);
3391 	if (!pers || !try_module_get(pers->owner)) {
3392 		spin_unlock(&pers_lock);
3393 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3394 		rv = -EINVAL;
3395 		goto out_unlock;
3396 	}
3397 	spin_unlock(&pers_lock);
3398 
3399 	if (pers == mddev->pers) {
3400 		/* Nothing to do! */
3401 		module_put(pers->owner);
3402 		rv = len;
3403 		goto out_unlock;
3404 	}
3405 	if (!pers->takeover) {
3406 		module_put(pers->owner);
3407 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3408 		       mdname(mddev), clevel);
3409 		rv = -EINVAL;
3410 		goto out_unlock;
3411 	}
3412 
3413 	rdev_for_each(rdev, mddev)
3414 		rdev->new_raid_disk = rdev->raid_disk;
3415 
3416 	/* ->takeover must set new_* and/or delta_disks
3417 	 * if it succeeds, and may set them when it fails.
3418 	 */
3419 	priv = pers->takeover(mddev);
3420 	if (IS_ERR(priv)) {
3421 		mddev->new_level = mddev->level;
3422 		mddev->new_layout = mddev->layout;
3423 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3424 		mddev->raid_disks -= mddev->delta_disks;
3425 		mddev->delta_disks = 0;
3426 		mddev->reshape_backwards = 0;
3427 		module_put(pers->owner);
3428 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3429 		       mdname(mddev), clevel);
3430 		rv = PTR_ERR(priv);
3431 		goto out_unlock;
3432 	}
3433 
3434 	/* Looks like we have a winner */
3435 	mddev_suspend(mddev);
3436 	mddev_detach(mddev);
3437 
3438 	spin_lock(&mddev->lock);
3439 	oldpers = mddev->pers;
3440 	oldpriv = mddev->private;
3441 	mddev->pers = pers;
3442 	mddev->private = priv;
3443 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3444 	mddev->level = mddev->new_level;
3445 	mddev->layout = mddev->new_layout;
3446 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3447 	mddev->delta_disks = 0;
3448 	mddev->reshape_backwards = 0;
3449 	mddev->degraded = 0;
3450 	spin_unlock(&mddev->lock);
3451 
3452 	if (oldpers->sync_request == NULL &&
3453 	    mddev->external) {
3454 		/* We are converting from a no-redundancy array
3455 		 * to a redundancy array and metadata is managed
3456 		 * externally so we need to be sure that writes
3457 		 * won't block due to a need to transition
3458 		 *      clean->dirty
3459 		 * until external management is started.
3460 		 */
3461 		mddev->in_sync = 0;
3462 		mddev->safemode_delay = 0;
3463 		mddev->safemode = 0;
3464 	}
3465 
3466 	oldpers->free(mddev, oldpriv);
3467 
3468 	if (oldpers->sync_request == NULL &&
3469 	    pers->sync_request != NULL) {
3470 		/* need to add the md_redundancy_group */
3471 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3472 			printk(KERN_WARNING
3473 			       "md: cannot register extra attributes for %s\n",
3474 			       mdname(mddev));
3475 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3476 	}
3477 	if (oldpers->sync_request != NULL &&
3478 	    pers->sync_request == NULL) {
3479 		/* need to remove the md_redundancy_group */
3480 		if (mddev->to_remove == NULL)
3481 			mddev->to_remove = &md_redundancy_group;
3482 	}
3483 
3484 	rdev_for_each(rdev, mddev) {
3485 		if (rdev->raid_disk < 0)
3486 			continue;
3487 		if (rdev->new_raid_disk >= mddev->raid_disks)
3488 			rdev->new_raid_disk = -1;
3489 		if (rdev->new_raid_disk == rdev->raid_disk)
3490 			continue;
3491 		sysfs_unlink_rdev(mddev, rdev);
3492 	}
3493 	rdev_for_each(rdev, mddev) {
3494 		if (rdev->raid_disk < 0)
3495 			continue;
3496 		if (rdev->new_raid_disk == rdev->raid_disk)
3497 			continue;
3498 		rdev->raid_disk = rdev->new_raid_disk;
3499 		if (rdev->raid_disk < 0)
3500 			clear_bit(In_sync, &rdev->flags);
3501 		else {
3502 			if (sysfs_link_rdev(mddev, rdev))
3503 				printk(KERN_WARNING "md: cannot register rd%d"
3504 				       " for %s after level change\n",
3505 				       rdev->raid_disk, mdname(mddev));
3506 		}
3507 	}
3508 
3509 	if (pers->sync_request == NULL) {
3510 		/* this is now an array without redundancy, so
3511 		 * it must always be in_sync
3512 		 */
3513 		mddev->in_sync = 1;
3514 		del_timer_sync(&mddev->safemode_timer);
3515 	}
3516 	blk_set_stacking_limits(&mddev->queue->limits);
3517 	pers->run(mddev);
3518 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3519 	mddev_resume(mddev);
3520 	if (!mddev->thread)
3521 		md_update_sb(mddev, 1);
3522 	sysfs_notify(&mddev->kobj, NULL, "level");
3523 	md_new_event(mddev);
3524 	rv = len;
3525 out_unlock:
3526 	mddev_unlock(mddev);
3527 	return rv;
3528 }
3529 
3530 static struct md_sysfs_entry md_level =
3531 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3532 
3533 static ssize_t
3534 layout_show(struct mddev *mddev, char *page)
3535 {
3536 	/* just a number, not meaningful for all levels */
3537 	if (mddev->reshape_position != MaxSector &&
3538 	    mddev->layout != mddev->new_layout)
3539 		return sprintf(page, "%d (%d)\n",
3540 			       mddev->new_layout, mddev->layout);
3541 	return sprintf(page, "%d\n", mddev->layout);
3542 }
3543 
3544 static ssize_t
3545 layout_store(struct mddev *mddev, const char *buf, size_t len)
3546 {
3547 	char *e;
3548 	unsigned long n = simple_strtoul(buf, &e, 10);
3549 	int err;
3550 
3551 	if (!*buf || (*e && *e != '\n'))
3552 		return -EINVAL;
3553 	err = mddev_lock(mddev);
3554 	if (err)
3555 		return err;
3556 
3557 	if (mddev->pers) {
3558 		if (mddev->pers->check_reshape == NULL)
3559 			err = -EBUSY;
3560 		else if (mddev->ro)
3561 			err = -EROFS;
3562 		else {
3563 			mddev->new_layout = n;
3564 			err = mddev->pers->check_reshape(mddev);
3565 			if (err)
3566 				mddev->new_layout = mddev->layout;
3567 		}
3568 	} else {
3569 		mddev->new_layout = n;
3570 		if (mddev->reshape_position == MaxSector)
3571 			mddev->layout = n;
3572 	}
3573 	mddev_unlock(mddev);
3574 	return err ?: len;
3575 }
3576 static struct md_sysfs_entry md_layout =
3577 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3578 
3579 static ssize_t
3580 raid_disks_show(struct mddev *mddev, char *page)
3581 {
3582 	if (mddev->raid_disks == 0)
3583 		return 0;
3584 	if (mddev->reshape_position != MaxSector &&
3585 	    mddev->delta_disks != 0)
3586 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3587 			       mddev->raid_disks - mddev->delta_disks);
3588 	return sprintf(page, "%d\n", mddev->raid_disks);
3589 }
3590 
3591 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3592 
3593 static ssize_t
3594 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596 	char *e;
3597 	int err;
3598 	unsigned long n = simple_strtoul(buf, &e, 10);
3599 
3600 	if (!*buf || (*e && *e != '\n'))
3601 		return -EINVAL;
3602 
3603 	err = mddev_lock(mddev);
3604 	if (err)
3605 		return err;
3606 	if (mddev->pers)
3607 		err = update_raid_disks(mddev, n);
3608 	else if (mddev->reshape_position != MaxSector) {
3609 		struct md_rdev *rdev;
3610 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3611 
3612 		err = -EINVAL;
3613 		rdev_for_each(rdev, mddev) {
3614 			if (olddisks < n &&
3615 			    rdev->data_offset < rdev->new_data_offset)
3616 				goto out_unlock;
3617 			if (olddisks > n &&
3618 			    rdev->data_offset > rdev->new_data_offset)
3619 				goto out_unlock;
3620 		}
3621 		err = 0;
3622 		mddev->delta_disks = n - olddisks;
3623 		mddev->raid_disks = n;
3624 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3625 	} else
3626 		mddev->raid_disks = n;
3627 out_unlock:
3628 	mddev_unlock(mddev);
3629 	return err ? err : len;
3630 }
3631 static struct md_sysfs_entry md_raid_disks =
3632 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3633 
3634 static ssize_t
3635 chunk_size_show(struct mddev *mddev, char *page)
3636 {
3637 	if (mddev->reshape_position != MaxSector &&
3638 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3639 		return sprintf(page, "%d (%d)\n",
3640 			       mddev->new_chunk_sectors << 9,
3641 			       mddev->chunk_sectors << 9);
3642 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3643 }
3644 
3645 static ssize_t
3646 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3647 {
3648 	int err;
3649 	char *e;
3650 	unsigned long n = simple_strtoul(buf, &e, 10);
3651 
3652 	if (!*buf || (*e && *e != '\n'))
3653 		return -EINVAL;
3654 
3655 	err = mddev_lock(mddev);
3656 	if (err)
3657 		return err;
3658 	if (mddev->pers) {
3659 		if (mddev->pers->check_reshape == NULL)
3660 			err = -EBUSY;
3661 		else if (mddev->ro)
3662 			err = -EROFS;
3663 		else {
3664 			mddev->new_chunk_sectors = n >> 9;
3665 			err = mddev->pers->check_reshape(mddev);
3666 			if (err)
3667 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3668 		}
3669 	} else {
3670 		mddev->new_chunk_sectors = n >> 9;
3671 		if (mddev->reshape_position == MaxSector)
3672 			mddev->chunk_sectors = n >> 9;
3673 	}
3674 	mddev_unlock(mddev);
3675 	return err ?: len;
3676 }
3677 static struct md_sysfs_entry md_chunk_size =
3678 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3679 
3680 static ssize_t
3681 resync_start_show(struct mddev *mddev, char *page)
3682 {
3683 	if (mddev->recovery_cp == MaxSector)
3684 		return sprintf(page, "none\n");
3685 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3686 }
3687 
3688 static ssize_t
3689 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691 	int err;
3692 	char *e;
3693 	unsigned long long n = simple_strtoull(buf, &e, 10);
3694 
3695 	err = mddev_lock(mddev);
3696 	if (err)
3697 		return err;
3698 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3699 		err = -EBUSY;
3700 	else if (cmd_match(buf, "none"))
3701 		n = MaxSector;
3702 	else if (!*buf || (*e && *e != '\n'))
3703 		err = -EINVAL;
3704 
3705 	if (!err) {
3706 		mddev->recovery_cp = n;
3707 		if (mddev->pers)
3708 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3709 	}
3710 	mddev_unlock(mddev);
3711 	return err ?: len;
3712 }
3713 static struct md_sysfs_entry md_resync_start =
3714 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3715 		resync_start_show, resync_start_store);
3716 
3717 /*
3718  * The array state can be:
3719  *
3720  * clear
3721  *     No devices, no size, no level
3722  *     Equivalent to STOP_ARRAY ioctl
3723  * inactive
3724  *     May have some settings, but array is not active
3725  *        all IO results in error
3726  *     When written, doesn't tear down array, but just stops it
3727  * suspended (not supported yet)
3728  *     All IO requests will block. The array can be reconfigured.
3729  *     Writing this, if accepted, will block until array is quiescent
3730  * readonly
3731  *     no resync can happen.  no superblocks get written.
3732  *     write requests fail
3733  * read-auto
3734  *     like readonly, but behaves like 'clean' on a write request.
3735  *
3736  * clean - no pending writes, but otherwise active.
3737  *     When written to inactive array, starts without resync
3738  *     If a write request arrives then
3739  *       if metadata is known, mark 'dirty' and switch to 'active'.
3740  *       if not known, block and switch to write-pending
3741  *     If written to an active array that has pending writes, then fails.
3742  * active
3743  *     fully active: IO and resync can be happening.
3744  *     When written to inactive array, starts with resync
3745  *
3746  * write-pending
3747  *     clean, but writes are blocked waiting for 'active' to be written.
3748  *
3749  * active-idle
3750  *     like active, but no writes have been seen for a while (100msec).
3751  *
3752  */
3753 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3754 		   write_pending, active_idle, bad_word};
3755 static char *array_states[] = {
3756 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3757 	"write-pending", "active-idle", NULL };
3758 
3759 static int match_word(const char *word, char **list)
3760 {
3761 	int n;
3762 	for (n=0; list[n]; n++)
3763 		if (cmd_match(word, list[n]))
3764 			break;
3765 	return n;
3766 }
3767 
3768 static ssize_t
3769 array_state_show(struct mddev *mddev, char *page)
3770 {
3771 	enum array_state st = inactive;
3772 
3773 	if (mddev->pers)
3774 		switch(mddev->ro) {
3775 		case 1:
3776 			st = readonly;
3777 			break;
3778 		case 2:
3779 			st = read_auto;
3780 			break;
3781 		case 0:
3782 			if (mddev->in_sync)
3783 				st = clean;
3784 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3785 				st = write_pending;
3786 			else if (mddev->safemode)
3787 				st = active_idle;
3788 			else
3789 				st = active;
3790 		}
3791 	else {
3792 		if (list_empty(&mddev->disks) &&
3793 		    mddev->raid_disks == 0 &&
3794 		    mddev->dev_sectors == 0)
3795 			st = clear;
3796 		else
3797 			st = inactive;
3798 	}
3799 	return sprintf(page, "%s\n", array_states[st]);
3800 }
3801 
3802 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3803 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3804 static int do_md_run(struct mddev *mddev);
3805 static int restart_array(struct mddev *mddev);
3806 
3807 static ssize_t
3808 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3809 {
3810 	int err;
3811 	enum array_state st = match_word(buf, array_states);
3812 
3813 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3814 		/* don't take reconfig_mutex when toggling between
3815 		 * clean and active
3816 		 */
3817 		spin_lock(&mddev->lock);
3818 		if (st == active) {
3819 			restart_array(mddev);
3820 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 			wake_up(&mddev->sb_wait);
3822 			err = 0;
3823 		} else /* st == clean */ {
3824 			restart_array(mddev);
3825 			if (atomic_read(&mddev->writes_pending) == 0) {
3826 				if (mddev->in_sync == 0) {
3827 					mddev->in_sync = 1;
3828 					if (mddev->safemode == 1)
3829 						mddev->safemode = 0;
3830 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3831 				}
3832 				err = 0;
3833 			} else
3834 				err = -EBUSY;
3835 		}
3836 		spin_unlock(&mddev->lock);
3837 		return err;
3838 	}
3839 	err = mddev_lock(mddev);
3840 	if (err)
3841 		return err;
3842 	err = -EINVAL;
3843 	switch(st) {
3844 	case bad_word:
3845 		break;
3846 	case clear:
3847 		/* stopping an active array */
3848 		err = do_md_stop(mddev, 0, NULL);
3849 		break;
3850 	case inactive:
3851 		/* stopping an active array */
3852 		if (mddev->pers)
3853 			err = do_md_stop(mddev, 2, NULL);
3854 		else
3855 			err = 0; /* already inactive */
3856 		break;
3857 	case suspended:
3858 		break; /* not supported yet */
3859 	case readonly:
3860 		if (mddev->pers)
3861 			err = md_set_readonly(mddev, NULL);
3862 		else {
3863 			mddev->ro = 1;
3864 			set_disk_ro(mddev->gendisk, 1);
3865 			err = do_md_run(mddev);
3866 		}
3867 		break;
3868 	case read_auto:
3869 		if (mddev->pers) {
3870 			if (mddev->ro == 0)
3871 				err = md_set_readonly(mddev, NULL);
3872 			else if (mddev->ro == 1)
3873 				err = restart_array(mddev);
3874 			if (err == 0) {
3875 				mddev->ro = 2;
3876 				set_disk_ro(mddev->gendisk, 0);
3877 			}
3878 		} else {
3879 			mddev->ro = 2;
3880 			err = do_md_run(mddev);
3881 		}
3882 		break;
3883 	case clean:
3884 		if (mddev->pers) {
3885 			restart_array(mddev);
3886 			spin_lock(&mddev->lock);
3887 			if (atomic_read(&mddev->writes_pending) == 0) {
3888 				if (mddev->in_sync == 0) {
3889 					mddev->in_sync = 1;
3890 					if (mddev->safemode == 1)
3891 						mddev->safemode = 0;
3892 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3893 				}
3894 				err = 0;
3895 			} else
3896 				err = -EBUSY;
3897 			spin_unlock(&mddev->lock);
3898 		} else
3899 			err = -EINVAL;
3900 		break;
3901 	case active:
3902 		if (mddev->pers) {
3903 			restart_array(mddev);
3904 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3905 			wake_up(&mddev->sb_wait);
3906 			err = 0;
3907 		} else {
3908 			mddev->ro = 0;
3909 			set_disk_ro(mddev->gendisk, 0);
3910 			err = do_md_run(mddev);
3911 		}
3912 		break;
3913 	case write_pending:
3914 	case active_idle:
3915 		/* these cannot be set */
3916 		break;
3917 	}
3918 
3919 	if (!err) {
3920 		if (mddev->hold_active == UNTIL_IOCTL)
3921 			mddev->hold_active = 0;
3922 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3923 	}
3924 	mddev_unlock(mddev);
3925 	return err ?: len;
3926 }
3927 static struct md_sysfs_entry md_array_state =
3928 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3929 
3930 static ssize_t
3931 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3932 	return sprintf(page, "%d\n",
3933 		       atomic_read(&mddev->max_corr_read_errors));
3934 }
3935 
3936 static ssize_t
3937 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3938 {
3939 	char *e;
3940 	unsigned long n = simple_strtoul(buf, &e, 10);
3941 
3942 	if (*buf && (*e == 0 || *e == '\n')) {
3943 		atomic_set(&mddev->max_corr_read_errors, n);
3944 		return len;
3945 	}
3946 	return -EINVAL;
3947 }
3948 
3949 static struct md_sysfs_entry max_corr_read_errors =
3950 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3951 	max_corrected_read_errors_store);
3952 
3953 static ssize_t
3954 null_show(struct mddev *mddev, char *page)
3955 {
3956 	return -EINVAL;
3957 }
3958 
3959 static ssize_t
3960 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3961 {
3962 	/* buf must be %d:%d\n? giving major and minor numbers */
3963 	/* The new device is added to the array.
3964 	 * If the array has a persistent superblock, we read the
3965 	 * superblock to initialise info and check validity.
3966 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3967 	 * which mainly checks size.
3968 	 */
3969 	char *e;
3970 	int major = simple_strtoul(buf, &e, 10);
3971 	int minor;
3972 	dev_t dev;
3973 	struct md_rdev *rdev;
3974 	int err;
3975 
3976 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3977 		return -EINVAL;
3978 	minor = simple_strtoul(e+1, &e, 10);
3979 	if (*e && *e != '\n')
3980 		return -EINVAL;
3981 	dev = MKDEV(major, minor);
3982 	if (major != MAJOR(dev) ||
3983 	    minor != MINOR(dev))
3984 		return -EOVERFLOW;
3985 
3986 	flush_workqueue(md_misc_wq);
3987 
3988 	err = mddev_lock(mddev);
3989 	if (err)
3990 		return err;
3991 	if (mddev->persistent) {
3992 		rdev = md_import_device(dev, mddev->major_version,
3993 					mddev->minor_version);
3994 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3995 			struct md_rdev *rdev0
3996 				= list_entry(mddev->disks.next,
3997 					     struct md_rdev, same_set);
3998 			err = super_types[mddev->major_version]
3999 				.load_super(rdev, rdev0, mddev->minor_version);
4000 			if (err < 0)
4001 				goto out;
4002 		}
4003 	} else if (mddev->external)
4004 		rdev = md_import_device(dev, -2, -1);
4005 	else
4006 		rdev = md_import_device(dev, -1, -1);
4007 
4008 	if (IS_ERR(rdev))
4009 		return PTR_ERR(rdev);
4010 	err = bind_rdev_to_array(rdev, mddev);
4011  out:
4012 	if (err)
4013 		export_rdev(rdev);
4014 	mddev_unlock(mddev);
4015 	return err ? err : len;
4016 }
4017 
4018 static struct md_sysfs_entry md_new_device =
4019 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4020 
4021 static ssize_t
4022 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4023 {
4024 	char *end;
4025 	unsigned long chunk, end_chunk;
4026 	int err;
4027 
4028 	err = mddev_lock(mddev);
4029 	if (err)
4030 		return err;
4031 	if (!mddev->bitmap)
4032 		goto out;
4033 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4034 	while (*buf) {
4035 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4036 		if (buf == end) break;
4037 		if (*end == '-') { /* range */
4038 			buf = end + 1;
4039 			end_chunk = simple_strtoul(buf, &end, 0);
4040 			if (buf == end) break;
4041 		}
4042 		if (*end && !isspace(*end)) break;
4043 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4044 		buf = skip_spaces(end);
4045 	}
4046 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4047 out:
4048 	mddev_unlock(mddev);
4049 	return len;
4050 }
4051 
4052 static struct md_sysfs_entry md_bitmap =
4053 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4054 
4055 static ssize_t
4056 size_show(struct mddev *mddev, char *page)
4057 {
4058 	return sprintf(page, "%llu\n",
4059 		(unsigned long long)mddev->dev_sectors / 2);
4060 }
4061 
4062 static int update_size(struct mddev *mddev, sector_t num_sectors);
4063 
4064 static ssize_t
4065 size_store(struct mddev *mddev, const char *buf, size_t len)
4066 {
4067 	/* If array is inactive, we can reduce the component size, but
4068 	 * not increase it (except from 0).
4069 	 * If array is active, we can try an on-line resize
4070 	 */
4071 	sector_t sectors;
4072 	int err = strict_blocks_to_sectors(buf, &sectors);
4073 
4074 	if (err < 0)
4075 		return err;
4076 	err = mddev_lock(mddev);
4077 	if (err)
4078 		return err;
4079 	if (mddev->pers) {
4080 		if (mddev_is_clustered(mddev))
4081 			md_cluster_ops->metadata_update_start(mddev);
4082 		err = update_size(mddev, sectors);
4083 		md_update_sb(mddev, 1);
4084 		if (mddev_is_clustered(mddev))
4085 			md_cluster_ops->metadata_update_finish(mddev);
4086 	} else {
4087 		if (mddev->dev_sectors == 0 ||
4088 		    mddev->dev_sectors > sectors)
4089 			mddev->dev_sectors = sectors;
4090 		else
4091 			err = -ENOSPC;
4092 	}
4093 	mddev_unlock(mddev);
4094 	return err ? err : len;
4095 }
4096 
4097 static struct md_sysfs_entry md_size =
4098 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4099 
4100 /* Metadata version.
4101  * This is one of
4102  *   'none' for arrays with no metadata (good luck...)
4103  *   'external' for arrays with externally managed metadata,
4104  * or N.M for internally known formats
4105  */
4106 static ssize_t
4107 metadata_show(struct mddev *mddev, char *page)
4108 {
4109 	if (mddev->persistent)
4110 		return sprintf(page, "%d.%d\n",
4111 			       mddev->major_version, mddev->minor_version);
4112 	else if (mddev->external)
4113 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4114 	else
4115 		return sprintf(page, "none\n");
4116 }
4117 
4118 static ssize_t
4119 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4120 {
4121 	int major, minor;
4122 	char *e;
4123 	int err;
4124 	/* Changing the details of 'external' metadata is
4125 	 * always permitted.  Otherwise there must be
4126 	 * no devices attached to the array.
4127 	 */
4128 
4129 	err = mddev_lock(mddev);
4130 	if (err)
4131 		return err;
4132 	err = -EBUSY;
4133 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4134 		;
4135 	else if (!list_empty(&mddev->disks))
4136 		goto out_unlock;
4137 
4138 	err = 0;
4139 	if (cmd_match(buf, "none")) {
4140 		mddev->persistent = 0;
4141 		mddev->external = 0;
4142 		mddev->major_version = 0;
4143 		mddev->minor_version = 90;
4144 		goto out_unlock;
4145 	}
4146 	if (strncmp(buf, "external:", 9) == 0) {
4147 		size_t namelen = len-9;
4148 		if (namelen >= sizeof(mddev->metadata_type))
4149 			namelen = sizeof(mddev->metadata_type)-1;
4150 		strncpy(mddev->metadata_type, buf+9, namelen);
4151 		mddev->metadata_type[namelen] = 0;
4152 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4153 			mddev->metadata_type[--namelen] = 0;
4154 		mddev->persistent = 0;
4155 		mddev->external = 1;
4156 		mddev->major_version = 0;
4157 		mddev->minor_version = 90;
4158 		goto out_unlock;
4159 	}
4160 	major = simple_strtoul(buf, &e, 10);
4161 	err = -EINVAL;
4162 	if (e==buf || *e != '.')
4163 		goto out_unlock;
4164 	buf = e+1;
4165 	minor = simple_strtoul(buf, &e, 10);
4166 	if (e==buf || (*e && *e != '\n') )
4167 		goto out_unlock;
4168 	err = -ENOENT;
4169 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4170 		goto out_unlock;
4171 	mddev->major_version = major;
4172 	mddev->minor_version = minor;
4173 	mddev->persistent = 1;
4174 	mddev->external = 0;
4175 	err = 0;
4176 out_unlock:
4177 	mddev_unlock(mddev);
4178 	return err ?: len;
4179 }
4180 
4181 static struct md_sysfs_entry md_metadata =
4182 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4183 
4184 static ssize_t
4185 action_show(struct mddev *mddev, char *page)
4186 {
4187 	char *type = "idle";
4188 	unsigned long recovery = mddev->recovery;
4189 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4190 		type = "frozen";
4191 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4192 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4193 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4194 			type = "reshape";
4195 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4196 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4197 				type = "resync";
4198 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4199 				type = "check";
4200 			else
4201 				type = "repair";
4202 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4203 			type = "recover";
4204 	}
4205 	return sprintf(page, "%s\n", type);
4206 }
4207 
4208 static ssize_t
4209 action_store(struct mddev *mddev, const char *page, size_t len)
4210 {
4211 	if (!mddev->pers || !mddev->pers->sync_request)
4212 		return -EINVAL;
4213 
4214 	if (cmd_match(page, "frozen"))
4215 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4216 	else
4217 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4218 
4219 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4220 		flush_workqueue(md_misc_wq);
4221 		if (mddev->sync_thread) {
4222 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4223 			if (mddev_lock(mddev) == 0) {
4224 				md_reap_sync_thread(mddev);
4225 				mddev_unlock(mddev);
4226 			}
4227 		}
4228 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4229 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4230 		return -EBUSY;
4231 	else if (cmd_match(page, "resync"))
4232 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4233 	else if (cmd_match(page, "recover")) {
4234 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4235 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4236 	} else if (cmd_match(page, "reshape")) {
4237 		int err;
4238 		if (mddev->pers->start_reshape == NULL)
4239 			return -EINVAL;
4240 		err = mddev_lock(mddev);
4241 		if (!err) {
4242 			err = mddev->pers->start_reshape(mddev);
4243 			mddev_unlock(mddev);
4244 		}
4245 		if (err)
4246 			return err;
4247 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4248 	} else {
4249 		if (cmd_match(page, "check"))
4250 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4251 		else if (!cmd_match(page, "repair"))
4252 			return -EINVAL;
4253 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4254 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255 	}
4256 	if (mddev->ro == 2) {
4257 		/* A write to sync_action is enough to justify
4258 		 * canceling read-auto mode
4259 		 */
4260 		mddev->ro = 0;
4261 		md_wakeup_thread(mddev->sync_thread);
4262 	}
4263 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4264 	md_wakeup_thread(mddev->thread);
4265 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4266 	return len;
4267 }
4268 
4269 static struct md_sysfs_entry md_scan_mode =
4270 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4271 
4272 static ssize_t
4273 last_sync_action_show(struct mddev *mddev, char *page)
4274 {
4275 	return sprintf(page, "%s\n", mddev->last_sync_action);
4276 }
4277 
4278 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4279 
4280 static ssize_t
4281 mismatch_cnt_show(struct mddev *mddev, char *page)
4282 {
4283 	return sprintf(page, "%llu\n",
4284 		       (unsigned long long)
4285 		       atomic64_read(&mddev->resync_mismatches));
4286 }
4287 
4288 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4289 
4290 static ssize_t
4291 sync_min_show(struct mddev *mddev, char *page)
4292 {
4293 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4294 		       mddev->sync_speed_min ? "local": "system");
4295 }
4296 
4297 static ssize_t
4298 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4299 {
4300 	int min;
4301 	char *e;
4302 	if (strncmp(buf, "system", 6)==0) {
4303 		mddev->sync_speed_min = 0;
4304 		return len;
4305 	}
4306 	min = simple_strtoul(buf, &e, 10);
4307 	if (buf == e || (*e && *e != '\n') || min <= 0)
4308 		return -EINVAL;
4309 	mddev->sync_speed_min = min;
4310 	return len;
4311 }
4312 
4313 static struct md_sysfs_entry md_sync_min =
4314 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4315 
4316 static ssize_t
4317 sync_max_show(struct mddev *mddev, char *page)
4318 {
4319 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4320 		       mddev->sync_speed_max ? "local": "system");
4321 }
4322 
4323 static ssize_t
4324 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4325 {
4326 	int max;
4327 	char *e;
4328 	if (strncmp(buf, "system", 6)==0) {
4329 		mddev->sync_speed_max = 0;
4330 		return len;
4331 	}
4332 	max = simple_strtoul(buf, &e, 10);
4333 	if (buf == e || (*e && *e != '\n') || max <= 0)
4334 		return -EINVAL;
4335 	mddev->sync_speed_max = max;
4336 	return len;
4337 }
4338 
4339 static struct md_sysfs_entry md_sync_max =
4340 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4341 
4342 static ssize_t
4343 degraded_show(struct mddev *mddev, char *page)
4344 {
4345 	return sprintf(page, "%d\n", mddev->degraded);
4346 }
4347 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4348 
4349 static ssize_t
4350 sync_force_parallel_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%d\n", mddev->parallel_resync);
4353 }
4354 
4355 static ssize_t
4356 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 	long n;
4359 
4360 	if (kstrtol(buf, 10, &n))
4361 		return -EINVAL;
4362 
4363 	if (n != 0 && n != 1)
4364 		return -EINVAL;
4365 
4366 	mddev->parallel_resync = n;
4367 
4368 	if (mddev->sync_thread)
4369 		wake_up(&resync_wait);
4370 
4371 	return len;
4372 }
4373 
4374 /* force parallel resync, even with shared block devices */
4375 static struct md_sysfs_entry md_sync_force_parallel =
4376 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4377        sync_force_parallel_show, sync_force_parallel_store);
4378 
4379 static ssize_t
4380 sync_speed_show(struct mddev *mddev, char *page)
4381 {
4382 	unsigned long resync, dt, db;
4383 	if (mddev->curr_resync == 0)
4384 		return sprintf(page, "none\n");
4385 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4386 	dt = (jiffies - mddev->resync_mark) / HZ;
4387 	if (!dt) dt++;
4388 	db = resync - mddev->resync_mark_cnt;
4389 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4390 }
4391 
4392 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4393 
4394 static ssize_t
4395 sync_completed_show(struct mddev *mddev, char *page)
4396 {
4397 	unsigned long long max_sectors, resync;
4398 
4399 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4400 		return sprintf(page, "none\n");
4401 
4402 	if (mddev->curr_resync == 1 ||
4403 	    mddev->curr_resync == 2)
4404 		return sprintf(page, "delayed\n");
4405 
4406 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4407 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4408 		max_sectors = mddev->resync_max_sectors;
4409 	else
4410 		max_sectors = mddev->dev_sectors;
4411 
4412 	resync = mddev->curr_resync_completed;
4413 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4414 }
4415 
4416 static struct md_sysfs_entry md_sync_completed =
4417 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4418 
4419 static ssize_t
4420 min_sync_show(struct mddev *mddev, char *page)
4421 {
4422 	return sprintf(page, "%llu\n",
4423 		       (unsigned long long)mddev->resync_min);
4424 }
4425 static ssize_t
4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4427 {
4428 	unsigned long long min;
4429 	int err;
4430 
4431 	if (kstrtoull(buf, 10, &min))
4432 		return -EINVAL;
4433 
4434 	spin_lock(&mddev->lock);
4435 	err = -EINVAL;
4436 	if (min > mddev->resync_max)
4437 		goto out_unlock;
4438 
4439 	err = -EBUSY;
4440 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4441 		goto out_unlock;
4442 
4443 	/* Round down to multiple of 4K for safety */
4444 	mddev->resync_min = round_down(min, 8);
4445 	err = 0;
4446 
4447 out_unlock:
4448 	spin_unlock(&mddev->lock);
4449 	return err ?: len;
4450 }
4451 
4452 static struct md_sysfs_entry md_min_sync =
4453 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4454 
4455 static ssize_t
4456 max_sync_show(struct mddev *mddev, char *page)
4457 {
4458 	if (mddev->resync_max == MaxSector)
4459 		return sprintf(page, "max\n");
4460 	else
4461 		return sprintf(page, "%llu\n",
4462 			       (unsigned long long)mddev->resync_max);
4463 }
4464 static ssize_t
4465 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4466 {
4467 	int err;
4468 	spin_lock(&mddev->lock);
4469 	if (strncmp(buf, "max", 3) == 0)
4470 		mddev->resync_max = MaxSector;
4471 	else {
4472 		unsigned long long max;
4473 		int chunk;
4474 
4475 		err = -EINVAL;
4476 		if (kstrtoull(buf, 10, &max))
4477 			goto out_unlock;
4478 		if (max < mddev->resync_min)
4479 			goto out_unlock;
4480 
4481 		err = -EBUSY;
4482 		if (max < mddev->resync_max &&
4483 		    mddev->ro == 0 &&
4484 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4485 			goto out_unlock;
4486 
4487 		/* Must be a multiple of chunk_size */
4488 		chunk = mddev->chunk_sectors;
4489 		if (chunk) {
4490 			sector_t temp = max;
4491 
4492 			err = -EINVAL;
4493 			if (sector_div(temp, chunk))
4494 				goto out_unlock;
4495 		}
4496 		mddev->resync_max = max;
4497 	}
4498 	wake_up(&mddev->recovery_wait);
4499 	err = 0;
4500 out_unlock:
4501 	spin_unlock(&mddev->lock);
4502 	return err ?: len;
4503 }
4504 
4505 static struct md_sysfs_entry md_max_sync =
4506 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4507 
4508 static ssize_t
4509 suspend_lo_show(struct mddev *mddev, char *page)
4510 {
4511 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4512 }
4513 
4514 static ssize_t
4515 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4516 {
4517 	char *e;
4518 	unsigned long long new = simple_strtoull(buf, &e, 10);
4519 	unsigned long long old;
4520 	int err;
4521 
4522 	if (buf == e || (*e && *e != '\n'))
4523 		return -EINVAL;
4524 
4525 	err = mddev_lock(mddev);
4526 	if (err)
4527 		return err;
4528 	err = -EINVAL;
4529 	if (mddev->pers == NULL ||
4530 	    mddev->pers->quiesce == NULL)
4531 		goto unlock;
4532 	old = mddev->suspend_lo;
4533 	mddev->suspend_lo = new;
4534 	if (new >= old)
4535 		/* Shrinking suspended region */
4536 		mddev->pers->quiesce(mddev, 2);
4537 	else {
4538 		/* Expanding suspended region - need to wait */
4539 		mddev->pers->quiesce(mddev, 1);
4540 		mddev->pers->quiesce(mddev, 0);
4541 	}
4542 	err = 0;
4543 unlock:
4544 	mddev_unlock(mddev);
4545 	return err ?: len;
4546 }
4547 static struct md_sysfs_entry md_suspend_lo =
4548 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4549 
4550 static ssize_t
4551 suspend_hi_show(struct mddev *mddev, char *page)
4552 {
4553 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4554 }
4555 
4556 static ssize_t
4557 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4558 {
4559 	char *e;
4560 	unsigned long long new = simple_strtoull(buf, &e, 10);
4561 	unsigned long long old;
4562 	int err;
4563 
4564 	if (buf == e || (*e && *e != '\n'))
4565 		return -EINVAL;
4566 
4567 	err = mddev_lock(mddev);
4568 	if (err)
4569 		return err;
4570 	err = -EINVAL;
4571 	if (mddev->pers == NULL ||
4572 	    mddev->pers->quiesce == NULL)
4573 		goto unlock;
4574 	old = mddev->suspend_hi;
4575 	mddev->suspend_hi = new;
4576 	if (new <= old)
4577 		/* Shrinking suspended region */
4578 		mddev->pers->quiesce(mddev, 2);
4579 	else {
4580 		/* Expanding suspended region - need to wait */
4581 		mddev->pers->quiesce(mddev, 1);
4582 		mddev->pers->quiesce(mddev, 0);
4583 	}
4584 	err = 0;
4585 unlock:
4586 	mddev_unlock(mddev);
4587 	return err ?: len;
4588 }
4589 static struct md_sysfs_entry md_suspend_hi =
4590 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4591 
4592 static ssize_t
4593 reshape_position_show(struct mddev *mddev, char *page)
4594 {
4595 	if (mddev->reshape_position != MaxSector)
4596 		return sprintf(page, "%llu\n",
4597 			       (unsigned long long)mddev->reshape_position);
4598 	strcpy(page, "none\n");
4599 	return 5;
4600 }
4601 
4602 static ssize_t
4603 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4604 {
4605 	struct md_rdev *rdev;
4606 	char *e;
4607 	int err;
4608 	unsigned long long new = simple_strtoull(buf, &e, 10);
4609 
4610 	if (buf == e || (*e && *e != '\n'))
4611 		return -EINVAL;
4612 	err = mddev_lock(mddev);
4613 	if (err)
4614 		return err;
4615 	err = -EBUSY;
4616 	if (mddev->pers)
4617 		goto unlock;
4618 	mddev->reshape_position = new;
4619 	mddev->delta_disks = 0;
4620 	mddev->reshape_backwards = 0;
4621 	mddev->new_level = mddev->level;
4622 	mddev->new_layout = mddev->layout;
4623 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4624 	rdev_for_each(rdev, mddev)
4625 		rdev->new_data_offset = rdev->data_offset;
4626 	err = 0;
4627 unlock:
4628 	mddev_unlock(mddev);
4629 	return err ?: len;
4630 }
4631 
4632 static struct md_sysfs_entry md_reshape_position =
4633 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4634        reshape_position_store);
4635 
4636 static ssize_t
4637 reshape_direction_show(struct mddev *mddev, char *page)
4638 {
4639 	return sprintf(page, "%s\n",
4640 		       mddev->reshape_backwards ? "backwards" : "forwards");
4641 }
4642 
4643 static ssize_t
4644 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4645 {
4646 	int backwards = 0;
4647 	int err;
4648 
4649 	if (cmd_match(buf, "forwards"))
4650 		backwards = 0;
4651 	else if (cmd_match(buf, "backwards"))
4652 		backwards = 1;
4653 	else
4654 		return -EINVAL;
4655 	if (mddev->reshape_backwards == backwards)
4656 		return len;
4657 
4658 	err = mddev_lock(mddev);
4659 	if (err)
4660 		return err;
4661 	/* check if we are allowed to change */
4662 	if (mddev->delta_disks)
4663 		err = -EBUSY;
4664 	else if (mddev->persistent &&
4665 	    mddev->major_version == 0)
4666 		err =  -EINVAL;
4667 	else
4668 		mddev->reshape_backwards = backwards;
4669 	mddev_unlock(mddev);
4670 	return err ?: len;
4671 }
4672 
4673 static struct md_sysfs_entry md_reshape_direction =
4674 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4675        reshape_direction_store);
4676 
4677 static ssize_t
4678 array_size_show(struct mddev *mddev, char *page)
4679 {
4680 	if (mddev->external_size)
4681 		return sprintf(page, "%llu\n",
4682 			       (unsigned long long)mddev->array_sectors/2);
4683 	else
4684 		return sprintf(page, "default\n");
4685 }
4686 
4687 static ssize_t
4688 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4689 {
4690 	sector_t sectors;
4691 	int err;
4692 
4693 	err = mddev_lock(mddev);
4694 	if (err)
4695 		return err;
4696 
4697 	if (strncmp(buf, "default", 7) == 0) {
4698 		if (mddev->pers)
4699 			sectors = mddev->pers->size(mddev, 0, 0);
4700 		else
4701 			sectors = mddev->array_sectors;
4702 
4703 		mddev->external_size = 0;
4704 	} else {
4705 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4706 			err = -EINVAL;
4707 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4708 			err = -E2BIG;
4709 		else
4710 			mddev->external_size = 1;
4711 	}
4712 
4713 	if (!err) {
4714 		mddev->array_sectors = sectors;
4715 		if (mddev->pers) {
4716 			set_capacity(mddev->gendisk, mddev->array_sectors);
4717 			revalidate_disk(mddev->gendisk);
4718 		}
4719 	}
4720 	mddev_unlock(mddev);
4721 	return err ?: len;
4722 }
4723 
4724 static struct md_sysfs_entry md_array_size =
4725 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4726        array_size_store);
4727 
4728 static struct attribute *md_default_attrs[] = {
4729 	&md_level.attr,
4730 	&md_layout.attr,
4731 	&md_raid_disks.attr,
4732 	&md_chunk_size.attr,
4733 	&md_size.attr,
4734 	&md_resync_start.attr,
4735 	&md_metadata.attr,
4736 	&md_new_device.attr,
4737 	&md_safe_delay.attr,
4738 	&md_array_state.attr,
4739 	&md_reshape_position.attr,
4740 	&md_reshape_direction.attr,
4741 	&md_array_size.attr,
4742 	&max_corr_read_errors.attr,
4743 	NULL,
4744 };
4745 
4746 static struct attribute *md_redundancy_attrs[] = {
4747 	&md_scan_mode.attr,
4748 	&md_last_scan_mode.attr,
4749 	&md_mismatches.attr,
4750 	&md_sync_min.attr,
4751 	&md_sync_max.attr,
4752 	&md_sync_speed.attr,
4753 	&md_sync_force_parallel.attr,
4754 	&md_sync_completed.attr,
4755 	&md_min_sync.attr,
4756 	&md_max_sync.attr,
4757 	&md_suspend_lo.attr,
4758 	&md_suspend_hi.attr,
4759 	&md_bitmap.attr,
4760 	&md_degraded.attr,
4761 	NULL,
4762 };
4763 static struct attribute_group md_redundancy_group = {
4764 	.name = NULL,
4765 	.attrs = md_redundancy_attrs,
4766 };
4767 
4768 static ssize_t
4769 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4770 {
4771 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4772 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4773 	ssize_t rv;
4774 
4775 	if (!entry->show)
4776 		return -EIO;
4777 	spin_lock(&all_mddevs_lock);
4778 	if (list_empty(&mddev->all_mddevs)) {
4779 		spin_unlock(&all_mddevs_lock);
4780 		return -EBUSY;
4781 	}
4782 	mddev_get(mddev);
4783 	spin_unlock(&all_mddevs_lock);
4784 
4785 	rv = entry->show(mddev, page);
4786 	mddev_put(mddev);
4787 	return rv;
4788 }
4789 
4790 static ssize_t
4791 md_attr_store(struct kobject *kobj, struct attribute *attr,
4792 	      const char *page, size_t length)
4793 {
4794 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4795 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4796 	ssize_t rv;
4797 
4798 	if (!entry->store)
4799 		return -EIO;
4800 	if (!capable(CAP_SYS_ADMIN))
4801 		return -EACCES;
4802 	spin_lock(&all_mddevs_lock);
4803 	if (list_empty(&mddev->all_mddevs)) {
4804 		spin_unlock(&all_mddevs_lock);
4805 		return -EBUSY;
4806 	}
4807 	mddev_get(mddev);
4808 	spin_unlock(&all_mddevs_lock);
4809 	rv = entry->store(mddev, page, length);
4810 	mddev_put(mddev);
4811 	return rv;
4812 }
4813 
4814 static void md_free(struct kobject *ko)
4815 {
4816 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4817 
4818 	if (mddev->sysfs_state)
4819 		sysfs_put(mddev->sysfs_state);
4820 
4821 	if (mddev->gendisk) {
4822 		del_gendisk(mddev->gendisk);
4823 		put_disk(mddev->gendisk);
4824 	}
4825 	if (mddev->queue)
4826 		blk_cleanup_queue(mddev->queue);
4827 
4828 	kfree(mddev);
4829 }
4830 
4831 static const struct sysfs_ops md_sysfs_ops = {
4832 	.show	= md_attr_show,
4833 	.store	= md_attr_store,
4834 };
4835 static struct kobj_type md_ktype = {
4836 	.release	= md_free,
4837 	.sysfs_ops	= &md_sysfs_ops,
4838 	.default_attrs	= md_default_attrs,
4839 };
4840 
4841 int mdp_major = 0;
4842 
4843 static void mddev_delayed_delete(struct work_struct *ws)
4844 {
4845 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4846 
4847 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4848 	kobject_del(&mddev->kobj);
4849 	kobject_put(&mddev->kobj);
4850 }
4851 
4852 static int md_alloc(dev_t dev, char *name)
4853 {
4854 	static DEFINE_MUTEX(disks_mutex);
4855 	struct mddev *mddev = mddev_find(dev);
4856 	struct gendisk *disk;
4857 	int partitioned;
4858 	int shift;
4859 	int unit;
4860 	int error;
4861 
4862 	if (!mddev)
4863 		return -ENODEV;
4864 
4865 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4866 	shift = partitioned ? MdpMinorShift : 0;
4867 	unit = MINOR(mddev->unit) >> shift;
4868 
4869 	/* wait for any previous instance of this device to be
4870 	 * completely removed (mddev_delayed_delete).
4871 	 */
4872 	flush_workqueue(md_misc_wq);
4873 
4874 	mutex_lock(&disks_mutex);
4875 	error = -EEXIST;
4876 	if (mddev->gendisk)
4877 		goto abort;
4878 
4879 	if (name) {
4880 		/* Need to ensure that 'name' is not a duplicate.
4881 		 */
4882 		struct mddev *mddev2;
4883 		spin_lock(&all_mddevs_lock);
4884 
4885 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4886 			if (mddev2->gendisk &&
4887 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4888 				spin_unlock(&all_mddevs_lock);
4889 				goto abort;
4890 			}
4891 		spin_unlock(&all_mddevs_lock);
4892 	}
4893 
4894 	error = -ENOMEM;
4895 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4896 	if (!mddev->queue)
4897 		goto abort;
4898 	mddev->queue->queuedata = mddev;
4899 
4900 	blk_queue_make_request(mddev->queue, md_make_request);
4901 	blk_set_stacking_limits(&mddev->queue->limits);
4902 
4903 	disk = alloc_disk(1 << shift);
4904 	if (!disk) {
4905 		blk_cleanup_queue(mddev->queue);
4906 		mddev->queue = NULL;
4907 		goto abort;
4908 	}
4909 	disk->major = MAJOR(mddev->unit);
4910 	disk->first_minor = unit << shift;
4911 	if (name)
4912 		strcpy(disk->disk_name, name);
4913 	else if (partitioned)
4914 		sprintf(disk->disk_name, "md_d%d", unit);
4915 	else
4916 		sprintf(disk->disk_name, "md%d", unit);
4917 	disk->fops = &md_fops;
4918 	disk->private_data = mddev;
4919 	disk->queue = mddev->queue;
4920 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4921 	/* Allow extended partitions.  This makes the
4922 	 * 'mdp' device redundant, but we can't really
4923 	 * remove it now.
4924 	 */
4925 	disk->flags |= GENHD_FL_EXT_DEVT;
4926 	mddev->gendisk = disk;
4927 	/* As soon as we call add_disk(), another thread could get
4928 	 * through to md_open, so make sure it doesn't get too far
4929 	 */
4930 	mutex_lock(&mddev->open_mutex);
4931 	add_disk(disk);
4932 
4933 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4934 				     &disk_to_dev(disk)->kobj, "%s", "md");
4935 	if (error) {
4936 		/* This isn't possible, but as kobject_init_and_add is marked
4937 		 * __must_check, we must do something with the result
4938 		 */
4939 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4940 		       disk->disk_name);
4941 		error = 0;
4942 	}
4943 	if (mddev->kobj.sd &&
4944 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4945 		printk(KERN_DEBUG "pointless warning\n");
4946 	mutex_unlock(&mddev->open_mutex);
4947  abort:
4948 	mutex_unlock(&disks_mutex);
4949 	if (!error && mddev->kobj.sd) {
4950 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4951 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4952 	}
4953 	mddev_put(mddev);
4954 	return error;
4955 }
4956 
4957 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4958 {
4959 	md_alloc(dev, NULL);
4960 	return NULL;
4961 }
4962 
4963 static int add_named_array(const char *val, struct kernel_param *kp)
4964 {
4965 	/* val must be "md_*" where * is not all digits.
4966 	 * We allocate an array with a large free minor number, and
4967 	 * set the name to val.  val must not already be an active name.
4968 	 */
4969 	int len = strlen(val);
4970 	char buf[DISK_NAME_LEN];
4971 
4972 	while (len && val[len-1] == '\n')
4973 		len--;
4974 	if (len >= DISK_NAME_LEN)
4975 		return -E2BIG;
4976 	strlcpy(buf, val, len+1);
4977 	if (strncmp(buf, "md_", 3) != 0)
4978 		return -EINVAL;
4979 	return md_alloc(0, buf);
4980 }
4981 
4982 static void md_safemode_timeout(unsigned long data)
4983 {
4984 	struct mddev *mddev = (struct mddev *) data;
4985 
4986 	if (!atomic_read(&mddev->writes_pending)) {
4987 		mddev->safemode = 1;
4988 		if (mddev->external)
4989 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4990 	}
4991 	md_wakeup_thread(mddev->thread);
4992 }
4993 
4994 static int start_dirty_degraded;
4995 
4996 int md_run(struct mddev *mddev)
4997 {
4998 	int err;
4999 	struct md_rdev *rdev;
5000 	struct md_personality *pers;
5001 
5002 	if (list_empty(&mddev->disks))
5003 		/* cannot run an array with no devices.. */
5004 		return -EINVAL;
5005 
5006 	if (mddev->pers)
5007 		return -EBUSY;
5008 	/* Cannot run until previous stop completes properly */
5009 	if (mddev->sysfs_active)
5010 		return -EBUSY;
5011 
5012 	/*
5013 	 * Analyze all RAID superblock(s)
5014 	 */
5015 	if (!mddev->raid_disks) {
5016 		if (!mddev->persistent)
5017 			return -EINVAL;
5018 		analyze_sbs(mddev);
5019 	}
5020 
5021 	if (mddev->level != LEVEL_NONE)
5022 		request_module("md-level-%d", mddev->level);
5023 	else if (mddev->clevel[0])
5024 		request_module("md-%s", mddev->clevel);
5025 
5026 	/*
5027 	 * Drop all container device buffers, from now on
5028 	 * the only valid external interface is through the md
5029 	 * device.
5030 	 */
5031 	rdev_for_each(rdev, mddev) {
5032 		if (test_bit(Faulty, &rdev->flags))
5033 			continue;
5034 		sync_blockdev(rdev->bdev);
5035 		invalidate_bdev(rdev->bdev);
5036 
5037 		/* perform some consistency tests on the device.
5038 		 * We don't want the data to overlap the metadata,
5039 		 * Internal Bitmap issues have been handled elsewhere.
5040 		 */
5041 		if (rdev->meta_bdev) {
5042 			/* Nothing to check */;
5043 		} else if (rdev->data_offset < rdev->sb_start) {
5044 			if (mddev->dev_sectors &&
5045 			    rdev->data_offset + mddev->dev_sectors
5046 			    > rdev->sb_start) {
5047 				printk("md: %s: data overlaps metadata\n",
5048 				       mdname(mddev));
5049 				return -EINVAL;
5050 			}
5051 		} else {
5052 			if (rdev->sb_start + rdev->sb_size/512
5053 			    > rdev->data_offset) {
5054 				printk("md: %s: metadata overlaps data\n",
5055 				       mdname(mddev));
5056 				return -EINVAL;
5057 			}
5058 		}
5059 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5060 	}
5061 
5062 	if (mddev->bio_set == NULL)
5063 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5064 
5065 	spin_lock(&pers_lock);
5066 	pers = find_pers(mddev->level, mddev->clevel);
5067 	if (!pers || !try_module_get(pers->owner)) {
5068 		spin_unlock(&pers_lock);
5069 		if (mddev->level != LEVEL_NONE)
5070 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5071 			       mddev->level);
5072 		else
5073 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5074 			       mddev->clevel);
5075 		return -EINVAL;
5076 	}
5077 	spin_unlock(&pers_lock);
5078 	if (mddev->level != pers->level) {
5079 		mddev->level = pers->level;
5080 		mddev->new_level = pers->level;
5081 	}
5082 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5083 
5084 	if (mddev->reshape_position != MaxSector &&
5085 	    pers->start_reshape == NULL) {
5086 		/* This personality cannot handle reshaping... */
5087 		module_put(pers->owner);
5088 		return -EINVAL;
5089 	}
5090 
5091 	if (pers->sync_request) {
5092 		/* Warn if this is a potentially silly
5093 		 * configuration.
5094 		 */
5095 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5096 		struct md_rdev *rdev2;
5097 		int warned = 0;
5098 
5099 		rdev_for_each(rdev, mddev)
5100 			rdev_for_each(rdev2, mddev) {
5101 				if (rdev < rdev2 &&
5102 				    rdev->bdev->bd_contains ==
5103 				    rdev2->bdev->bd_contains) {
5104 					printk(KERN_WARNING
5105 					       "%s: WARNING: %s appears to be"
5106 					       " on the same physical disk as"
5107 					       " %s.\n",
5108 					       mdname(mddev),
5109 					       bdevname(rdev->bdev,b),
5110 					       bdevname(rdev2->bdev,b2));
5111 					warned = 1;
5112 				}
5113 			}
5114 
5115 		if (warned)
5116 			printk(KERN_WARNING
5117 			       "True protection against single-disk"
5118 			       " failure might be compromised.\n");
5119 	}
5120 
5121 	mddev->recovery = 0;
5122 	/* may be over-ridden by personality */
5123 	mddev->resync_max_sectors = mddev->dev_sectors;
5124 
5125 	mddev->ok_start_degraded = start_dirty_degraded;
5126 
5127 	if (start_readonly && mddev->ro == 0)
5128 		mddev->ro = 2; /* read-only, but switch on first write */
5129 
5130 	err = pers->run(mddev);
5131 	if (err)
5132 		printk(KERN_ERR "md: pers->run() failed ...\n");
5133 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5134 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5135 			  " but 'external_size' not in effect?\n", __func__);
5136 		printk(KERN_ERR
5137 		       "md: invalid array_size %llu > default size %llu\n",
5138 		       (unsigned long long)mddev->array_sectors / 2,
5139 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5140 		err = -EINVAL;
5141 	}
5142 	if (err == 0 && pers->sync_request &&
5143 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5144 		struct bitmap *bitmap;
5145 
5146 		bitmap = bitmap_create(mddev, -1);
5147 		if (IS_ERR(bitmap)) {
5148 			err = PTR_ERR(bitmap);
5149 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5150 			       mdname(mddev), err);
5151 		} else
5152 			mddev->bitmap = bitmap;
5153 
5154 	}
5155 	if (err) {
5156 		mddev_detach(mddev);
5157 		if (mddev->private)
5158 			pers->free(mddev, mddev->private);
5159 		module_put(pers->owner);
5160 		bitmap_destroy(mddev);
5161 		return err;
5162 	}
5163 	if (mddev->queue) {
5164 		mddev->queue->backing_dev_info.congested_data = mddev;
5165 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5166 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5167 	}
5168 	if (pers->sync_request) {
5169 		if (mddev->kobj.sd &&
5170 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5171 			printk(KERN_WARNING
5172 			       "md: cannot register extra attributes for %s\n",
5173 			       mdname(mddev));
5174 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5175 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5176 		mddev->ro = 0;
5177 
5178 	atomic_set(&mddev->writes_pending,0);
5179 	atomic_set(&mddev->max_corr_read_errors,
5180 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5181 	mddev->safemode = 0;
5182 	mddev->safemode_timer.function = md_safemode_timeout;
5183 	mddev->safemode_timer.data = (unsigned long) mddev;
5184 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5185 	mddev->in_sync = 1;
5186 	smp_wmb();
5187 	spin_lock(&mddev->lock);
5188 	mddev->pers = pers;
5189 	mddev->ready = 1;
5190 	spin_unlock(&mddev->lock);
5191 	rdev_for_each(rdev, mddev)
5192 		if (rdev->raid_disk >= 0)
5193 			if (sysfs_link_rdev(mddev, rdev))
5194 				/* failure here is OK */;
5195 
5196 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5197 
5198 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5199 		md_update_sb(mddev, 0);
5200 
5201 	md_new_event(mddev);
5202 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5204 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5205 	return 0;
5206 }
5207 EXPORT_SYMBOL_GPL(md_run);
5208 
5209 static int do_md_run(struct mddev *mddev)
5210 {
5211 	int err;
5212 
5213 	err = md_run(mddev);
5214 	if (err)
5215 		goto out;
5216 	err = bitmap_load(mddev);
5217 	if (err) {
5218 		bitmap_destroy(mddev);
5219 		goto out;
5220 	}
5221 
5222 	md_wakeup_thread(mddev->thread);
5223 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5224 
5225 	set_capacity(mddev->gendisk, mddev->array_sectors);
5226 	revalidate_disk(mddev->gendisk);
5227 	mddev->changed = 1;
5228 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5229 out:
5230 	return err;
5231 }
5232 
5233 static int restart_array(struct mddev *mddev)
5234 {
5235 	struct gendisk *disk = mddev->gendisk;
5236 
5237 	/* Complain if it has no devices */
5238 	if (list_empty(&mddev->disks))
5239 		return -ENXIO;
5240 	if (!mddev->pers)
5241 		return -EINVAL;
5242 	if (!mddev->ro)
5243 		return -EBUSY;
5244 	mddev->safemode = 0;
5245 	mddev->ro = 0;
5246 	set_disk_ro(disk, 0);
5247 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5248 		mdname(mddev));
5249 	/* Kick recovery or resync if necessary */
5250 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5251 	md_wakeup_thread(mddev->thread);
5252 	md_wakeup_thread(mddev->sync_thread);
5253 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5254 	return 0;
5255 }
5256 
5257 static void md_clean(struct mddev *mddev)
5258 {
5259 	mddev->array_sectors = 0;
5260 	mddev->external_size = 0;
5261 	mddev->dev_sectors = 0;
5262 	mddev->raid_disks = 0;
5263 	mddev->recovery_cp = 0;
5264 	mddev->resync_min = 0;
5265 	mddev->resync_max = MaxSector;
5266 	mddev->reshape_position = MaxSector;
5267 	mddev->external = 0;
5268 	mddev->persistent = 0;
5269 	mddev->level = LEVEL_NONE;
5270 	mddev->clevel[0] = 0;
5271 	mddev->flags = 0;
5272 	mddev->ro = 0;
5273 	mddev->metadata_type[0] = 0;
5274 	mddev->chunk_sectors = 0;
5275 	mddev->ctime = mddev->utime = 0;
5276 	mddev->layout = 0;
5277 	mddev->max_disks = 0;
5278 	mddev->events = 0;
5279 	mddev->can_decrease_events = 0;
5280 	mddev->delta_disks = 0;
5281 	mddev->reshape_backwards = 0;
5282 	mddev->new_level = LEVEL_NONE;
5283 	mddev->new_layout = 0;
5284 	mddev->new_chunk_sectors = 0;
5285 	mddev->curr_resync = 0;
5286 	atomic64_set(&mddev->resync_mismatches, 0);
5287 	mddev->suspend_lo = mddev->suspend_hi = 0;
5288 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5289 	mddev->recovery = 0;
5290 	mddev->in_sync = 0;
5291 	mddev->changed = 0;
5292 	mddev->degraded = 0;
5293 	mddev->safemode = 0;
5294 	mddev->merge_check_needed = 0;
5295 	mddev->bitmap_info.offset = 0;
5296 	mddev->bitmap_info.default_offset = 0;
5297 	mddev->bitmap_info.default_space = 0;
5298 	mddev->bitmap_info.chunksize = 0;
5299 	mddev->bitmap_info.daemon_sleep = 0;
5300 	mddev->bitmap_info.max_write_behind = 0;
5301 }
5302 
5303 static void __md_stop_writes(struct mddev *mddev)
5304 {
5305 	if (mddev_is_clustered(mddev))
5306 		md_cluster_ops->metadata_update_start(mddev);
5307 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5308 	flush_workqueue(md_misc_wq);
5309 	if (mddev->sync_thread) {
5310 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5311 		md_reap_sync_thread(mddev);
5312 	}
5313 
5314 	del_timer_sync(&mddev->safemode_timer);
5315 
5316 	bitmap_flush(mddev);
5317 	md_super_wait(mddev);
5318 
5319 	if (mddev->ro == 0 &&
5320 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5321 		/* mark array as shutdown cleanly */
5322 		mddev->in_sync = 1;
5323 		md_update_sb(mddev, 1);
5324 	}
5325 	if (mddev_is_clustered(mddev))
5326 		md_cluster_ops->metadata_update_finish(mddev);
5327 }
5328 
5329 void md_stop_writes(struct mddev *mddev)
5330 {
5331 	mddev_lock_nointr(mddev);
5332 	__md_stop_writes(mddev);
5333 	mddev_unlock(mddev);
5334 }
5335 EXPORT_SYMBOL_GPL(md_stop_writes);
5336 
5337 static void mddev_detach(struct mddev *mddev)
5338 {
5339 	struct bitmap *bitmap = mddev->bitmap;
5340 	/* wait for behind writes to complete */
5341 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5342 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5343 		       mdname(mddev));
5344 		/* need to kick something here to make sure I/O goes? */
5345 		wait_event(bitmap->behind_wait,
5346 			   atomic_read(&bitmap->behind_writes) == 0);
5347 	}
5348 	if (mddev->pers && mddev->pers->quiesce) {
5349 		mddev->pers->quiesce(mddev, 1);
5350 		mddev->pers->quiesce(mddev, 0);
5351 	}
5352 	md_unregister_thread(&mddev->thread);
5353 	if (mddev->queue)
5354 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5355 }
5356 
5357 static void __md_stop(struct mddev *mddev)
5358 {
5359 	struct md_personality *pers = mddev->pers;
5360 	mddev_detach(mddev);
5361 	spin_lock(&mddev->lock);
5362 	mddev->ready = 0;
5363 	mddev->pers = NULL;
5364 	spin_unlock(&mddev->lock);
5365 	pers->free(mddev, mddev->private);
5366 	if (pers->sync_request && mddev->to_remove == NULL)
5367 		mddev->to_remove = &md_redundancy_group;
5368 	module_put(pers->owner);
5369 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5370 }
5371 
5372 void md_stop(struct mddev *mddev)
5373 {
5374 	/* stop the array and free an attached data structures.
5375 	 * This is called from dm-raid
5376 	 */
5377 	__md_stop(mddev);
5378 	bitmap_destroy(mddev);
5379 	if (mddev->bio_set)
5380 		bioset_free(mddev->bio_set);
5381 }
5382 
5383 EXPORT_SYMBOL_GPL(md_stop);
5384 
5385 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5386 {
5387 	int err = 0;
5388 	int did_freeze = 0;
5389 
5390 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5391 		did_freeze = 1;
5392 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5393 		md_wakeup_thread(mddev->thread);
5394 	}
5395 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5396 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5397 	if (mddev->sync_thread)
5398 		/* Thread might be blocked waiting for metadata update
5399 		 * which will now never happen */
5400 		wake_up_process(mddev->sync_thread->tsk);
5401 
5402 	mddev_unlock(mddev);
5403 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5404 					  &mddev->recovery));
5405 	mddev_lock_nointr(mddev);
5406 
5407 	mutex_lock(&mddev->open_mutex);
5408 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5409 	    mddev->sync_thread ||
5410 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5411 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5412 		printk("md: %s still in use.\n",mdname(mddev));
5413 		if (did_freeze) {
5414 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5415 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5416 			md_wakeup_thread(mddev->thread);
5417 		}
5418 		err = -EBUSY;
5419 		goto out;
5420 	}
5421 	if (mddev->pers) {
5422 		__md_stop_writes(mddev);
5423 
5424 		err  = -ENXIO;
5425 		if (mddev->ro==1)
5426 			goto out;
5427 		mddev->ro = 1;
5428 		set_disk_ro(mddev->gendisk, 1);
5429 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5430 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5431 		md_wakeup_thread(mddev->thread);
5432 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5433 		err = 0;
5434 	}
5435 out:
5436 	mutex_unlock(&mddev->open_mutex);
5437 	return err;
5438 }
5439 
5440 /* mode:
5441  *   0 - completely stop and dis-assemble array
5442  *   2 - stop but do not disassemble array
5443  */
5444 static int do_md_stop(struct mddev *mddev, int mode,
5445 		      struct block_device *bdev)
5446 {
5447 	struct gendisk *disk = mddev->gendisk;
5448 	struct md_rdev *rdev;
5449 	int did_freeze = 0;
5450 
5451 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5452 		did_freeze = 1;
5453 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5454 		md_wakeup_thread(mddev->thread);
5455 	}
5456 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5457 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5458 	if (mddev->sync_thread)
5459 		/* Thread might be blocked waiting for metadata update
5460 		 * which will now never happen */
5461 		wake_up_process(mddev->sync_thread->tsk);
5462 
5463 	mddev_unlock(mddev);
5464 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5465 				 !test_bit(MD_RECOVERY_RUNNING,
5466 					   &mddev->recovery)));
5467 	mddev_lock_nointr(mddev);
5468 
5469 	mutex_lock(&mddev->open_mutex);
5470 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5471 	    mddev->sysfs_active ||
5472 	    mddev->sync_thread ||
5473 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5474 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5475 		printk("md: %s still in use.\n",mdname(mddev));
5476 		mutex_unlock(&mddev->open_mutex);
5477 		if (did_freeze) {
5478 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5479 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5480 			md_wakeup_thread(mddev->thread);
5481 		}
5482 		return -EBUSY;
5483 	}
5484 	if (mddev->pers) {
5485 		if (mddev->ro)
5486 			set_disk_ro(disk, 0);
5487 
5488 		__md_stop_writes(mddev);
5489 		__md_stop(mddev);
5490 		mddev->queue->merge_bvec_fn = NULL;
5491 		mddev->queue->backing_dev_info.congested_fn = NULL;
5492 
5493 		/* tell userspace to handle 'inactive' */
5494 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5495 
5496 		rdev_for_each(rdev, mddev)
5497 			if (rdev->raid_disk >= 0)
5498 				sysfs_unlink_rdev(mddev, rdev);
5499 
5500 		set_capacity(disk, 0);
5501 		mutex_unlock(&mddev->open_mutex);
5502 		mddev->changed = 1;
5503 		revalidate_disk(disk);
5504 
5505 		if (mddev->ro)
5506 			mddev->ro = 0;
5507 	} else
5508 		mutex_unlock(&mddev->open_mutex);
5509 	/*
5510 	 * Free resources if final stop
5511 	 */
5512 	if (mode == 0) {
5513 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5514 
5515 		bitmap_destroy(mddev);
5516 		if (mddev->bitmap_info.file) {
5517 			struct file *f = mddev->bitmap_info.file;
5518 			spin_lock(&mddev->lock);
5519 			mddev->bitmap_info.file = NULL;
5520 			spin_unlock(&mddev->lock);
5521 			fput(f);
5522 		}
5523 		mddev->bitmap_info.offset = 0;
5524 
5525 		export_array(mddev);
5526 
5527 		md_clean(mddev);
5528 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5529 		if (mddev->hold_active == UNTIL_STOP)
5530 			mddev->hold_active = 0;
5531 	}
5532 	blk_integrity_unregister(disk);
5533 	md_new_event(mddev);
5534 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5535 	return 0;
5536 }
5537 
5538 #ifndef MODULE
5539 static void autorun_array(struct mddev *mddev)
5540 {
5541 	struct md_rdev *rdev;
5542 	int err;
5543 
5544 	if (list_empty(&mddev->disks))
5545 		return;
5546 
5547 	printk(KERN_INFO "md: running: ");
5548 
5549 	rdev_for_each(rdev, mddev) {
5550 		char b[BDEVNAME_SIZE];
5551 		printk("<%s>", bdevname(rdev->bdev,b));
5552 	}
5553 	printk("\n");
5554 
5555 	err = do_md_run(mddev);
5556 	if (err) {
5557 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5558 		do_md_stop(mddev, 0, NULL);
5559 	}
5560 }
5561 
5562 /*
5563  * lets try to run arrays based on all disks that have arrived
5564  * until now. (those are in pending_raid_disks)
5565  *
5566  * the method: pick the first pending disk, collect all disks with
5567  * the same UUID, remove all from the pending list and put them into
5568  * the 'same_array' list. Then order this list based on superblock
5569  * update time (freshest comes first), kick out 'old' disks and
5570  * compare superblocks. If everything's fine then run it.
5571  *
5572  * If "unit" is allocated, then bump its reference count
5573  */
5574 static void autorun_devices(int part)
5575 {
5576 	struct md_rdev *rdev0, *rdev, *tmp;
5577 	struct mddev *mddev;
5578 	char b[BDEVNAME_SIZE];
5579 
5580 	printk(KERN_INFO "md: autorun ...\n");
5581 	while (!list_empty(&pending_raid_disks)) {
5582 		int unit;
5583 		dev_t dev;
5584 		LIST_HEAD(candidates);
5585 		rdev0 = list_entry(pending_raid_disks.next,
5586 					 struct md_rdev, same_set);
5587 
5588 		printk(KERN_INFO "md: considering %s ...\n",
5589 			bdevname(rdev0->bdev,b));
5590 		INIT_LIST_HEAD(&candidates);
5591 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5592 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5593 				printk(KERN_INFO "md:  adding %s ...\n",
5594 					bdevname(rdev->bdev,b));
5595 				list_move(&rdev->same_set, &candidates);
5596 			}
5597 		/*
5598 		 * now we have a set of devices, with all of them having
5599 		 * mostly sane superblocks. It's time to allocate the
5600 		 * mddev.
5601 		 */
5602 		if (part) {
5603 			dev = MKDEV(mdp_major,
5604 				    rdev0->preferred_minor << MdpMinorShift);
5605 			unit = MINOR(dev) >> MdpMinorShift;
5606 		} else {
5607 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5608 			unit = MINOR(dev);
5609 		}
5610 		if (rdev0->preferred_minor != unit) {
5611 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5612 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5613 			break;
5614 		}
5615 
5616 		md_probe(dev, NULL, NULL);
5617 		mddev = mddev_find(dev);
5618 		if (!mddev || !mddev->gendisk) {
5619 			if (mddev)
5620 				mddev_put(mddev);
5621 			printk(KERN_ERR
5622 				"md: cannot allocate memory for md drive.\n");
5623 			break;
5624 		}
5625 		if (mddev_lock(mddev))
5626 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5627 			       mdname(mddev));
5628 		else if (mddev->raid_disks || mddev->major_version
5629 			 || !list_empty(&mddev->disks)) {
5630 			printk(KERN_WARNING
5631 				"md: %s already running, cannot run %s\n",
5632 				mdname(mddev), bdevname(rdev0->bdev,b));
5633 			mddev_unlock(mddev);
5634 		} else {
5635 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5636 			mddev->persistent = 1;
5637 			rdev_for_each_list(rdev, tmp, &candidates) {
5638 				list_del_init(&rdev->same_set);
5639 				if (bind_rdev_to_array(rdev, mddev))
5640 					export_rdev(rdev);
5641 			}
5642 			autorun_array(mddev);
5643 			mddev_unlock(mddev);
5644 		}
5645 		/* on success, candidates will be empty, on error
5646 		 * it won't...
5647 		 */
5648 		rdev_for_each_list(rdev, tmp, &candidates) {
5649 			list_del_init(&rdev->same_set);
5650 			export_rdev(rdev);
5651 		}
5652 		mddev_put(mddev);
5653 	}
5654 	printk(KERN_INFO "md: ... autorun DONE.\n");
5655 }
5656 #endif /* !MODULE */
5657 
5658 static int get_version(void __user *arg)
5659 {
5660 	mdu_version_t ver;
5661 
5662 	ver.major = MD_MAJOR_VERSION;
5663 	ver.minor = MD_MINOR_VERSION;
5664 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5665 
5666 	if (copy_to_user(arg, &ver, sizeof(ver)))
5667 		return -EFAULT;
5668 
5669 	return 0;
5670 }
5671 
5672 static int get_array_info(struct mddev *mddev, void __user *arg)
5673 {
5674 	mdu_array_info_t info;
5675 	int nr,working,insync,failed,spare;
5676 	struct md_rdev *rdev;
5677 
5678 	nr = working = insync = failed = spare = 0;
5679 	rcu_read_lock();
5680 	rdev_for_each_rcu(rdev, mddev) {
5681 		nr++;
5682 		if (test_bit(Faulty, &rdev->flags))
5683 			failed++;
5684 		else {
5685 			working++;
5686 			if (test_bit(In_sync, &rdev->flags))
5687 				insync++;
5688 			else
5689 				spare++;
5690 		}
5691 	}
5692 	rcu_read_unlock();
5693 
5694 	info.major_version = mddev->major_version;
5695 	info.minor_version = mddev->minor_version;
5696 	info.patch_version = MD_PATCHLEVEL_VERSION;
5697 	info.ctime         = mddev->ctime;
5698 	info.level         = mddev->level;
5699 	info.size          = mddev->dev_sectors / 2;
5700 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5701 		info.size = -1;
5702 	info.nr_disks      = nr;
5703 	info.raid_disks    = mddev->raid_disks;
5704 	info.md_minor      = mddev->md_minor;
5705 	info.not_persistent= !mddev->persistent;
5706 
5707 	info.utime         = mddev->utime;
5708 	info.state         = 0;
5709 	if (mddev->in_sync)
5710 		info.state = (1<<MD_SB_CLEAN);
5711 	if (mddev->bitmap && mddev->bitmap_info.offset)
5712 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5713 	if (mddev_is_clustered(mddev))
5714 		info.state |= (1<<MD_SB_CLUSTERED);
5715 	info.active_disks  = insync;
5716 	info.working_disks = working;
5717 	info.failed_disks  = failed;
5718 	info.spare_disks   = spare;
5719 
5720 	info.layout        = mddev->layout;
5721 	info.chunk_size    = mddev->chunk_sectors << 9;
5722 
5723 	if (copy_to_user(arg, &info, sizeof(info)))
5724 		return -EFAULT;
5725 
5726 	return 0;
5727 }
5728 
5729 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5730 {
5731 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5732 	char *ptr;
5733 	int err;
5734 
5735 	file = kmalloc(sizeof(*file), GFP_NOIO);
5736 	if (!file)
5737 		return -ENOMEM;
5738 
5739 	err = 0;
5740 	spin_lock(&mddev->lock);
5741 	/* bitmap disabled, zero the first byte and copy out */
5742 	if (!mddev->bitmap_info.file)
5743 		file->pathname[0] = '\0';
5744 	else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5745 			       file->pathname, sizeof(file->pathname))),
5746 		 IS_ERR(ptr))
5747 		err = PTR_ERR(ptr);
5748 	else
5749 		memmove(file->pathname, ptr,
5750 			sizeof(file->pathname)-(ptr-file->pathname));
5751 	spin_unlock(&mddev->lock);
5752 
5753 	if (err == 0 &&
5754 	    copy_to_user(arg, file, sizeof(*file)))
5755 		err = -EFAULT;
5756 
5757 	kfree(file);
5758 	return err;
5759 }
5760 
5761 static int get_disk_info(struct mddev *mddev, void __user * arg)
5762 {
5763 	mdu_disk_info_t info;
5764 	struct md_rdev *rdev;
5765 
5766 	if (copy_from_user(&info, arg, sizeof(info)))
5767 		return -EFAULT;
5768 
5769 	rcu_read_lock();
5770 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5771 	if (rdev) {
5772 		info.major = MAJOR(rdev->bdev->bd_dev);
5773 		info.minor = MINOR(rdev->bdev->bd_dev);
5774 		info.raid_disk = rdev->raid_disk;
5775 		info.state = 0;
5776 		if (test_bit(Faulty, &rdev->flags))
5777 			info.state |= (1<<MD_DISK_FAULTY);
5778 		else if (test_bit(In_sync, &rdev->flags)) {
5779 			info.state |= (1<<MD_DISK_ACTIVE);
5780 			info.state |= (1<<MD_DISK_SYNC);
5781 		}
5782 		if (test_bit(WriteMostly, &rdev->flags))
5783 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5784 	} else {
5785 		info.major = info.minor = 0;
5786 		info.raid_disk = -1;
5787 		info.state = (1<<MD_DISK_REMOVED);
5788 	}
5789 	rcu_read_unlock();
5790 
5791 	if (copy_to_user(arg, &info, sizeof(info)))
5792 		return -EFAULT;
5793 
5794 	return 0;
5795 }
5796 
5797 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5798 {
5799 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5800 	struct md_rdev *rdev;
5801 	dev_t dev = MKDEV(info->major,info->minor);
5802 
5803 	if (mddev_is_clustered(mddev) &&
5804 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5805 		pr_err("%s: Cannot add to clustered mddev.\n",
5806 			       mdname(mddev));
5807 		return -EINVAL;
5808 	}
5809 
5810 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5811 		return -EOVERFLOW;
5812 
5813 	if (!mddev->raid_disks) {
5814 		int err;
5815 		/* expecting a device which has a superblock */
5816 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5817 		if (IS_ERR(rdev)) {
5818 			printk(KERN_WARNING
5819 				"md: md_import_device returned %ld\n",
5820 				PTR_ERR(rdev));
5821 			return PTR_ERR(rdev);
5822 		}
5823 		if (!list_empty(&mddev->disks)) {
5824 			struct md_rdev *rdev0
5825 				= list_entry(mddev->disks.next,
5826 					     struct md_rdev, same_set);
5827 			err = super_types[mddev->major_version]
5828 				.load_super(rdev, rdev0, mddev->minor_version);
5829 			if (err < 0) {
5830 				printk(KERN_WARNING
5831 					"md: %s has different UUID to %s\n",
5832 					bdevname(rdev->bdev,b),
5833 					bdevname(rdev0->bdev,b2));
5834 				export_rdev(rdev);
5835 				return -EINVAL;
5836 			}
5837 		}
5838 		err = bind_rdev_to_array(rdev, mddev);
5839 		if (err)
5840 			export_rdev(rdev);
5841 		return err;
5842 	}
5843 
5844 	/*
5845 	 * add_new_disk can be used once the array is assembled
5846 	 * to add "hot spares".  They must already have a superblock
5847 	 * written
5848 	 */
5849 	if (mddev->pers) {
5850 		int err;
5851 		if (!mddev->pers->hot_add_disk) {
5852 			printk(KERN_WARNING
5853 				"%s: personality does not support diskops!\n",
5854 			       mdname(mddev));
5855 			return -EINVAL;
5856 		}
5857 		if (mddev->persistent)
5858 			rdev = md_import_device(dev, mddev->major_version,
5859 						mddev->minor_version);
5860 		else
5861 			rdev = md_import_device(dev, -1, -1);
5862 		if (IS_ERR(rdev)) {
5863 			printk(KERN_WARNING
5864 				"md: md_import_device returned %ld\n",
5865 				PTR_ERR(rdev));
5866 			return PTR_ERR(rdev);
5867 		}
5868 		/* set saved_raid_disk if appropriate */
5869 		if (!mddev->persistent) {
5870 			if (info->state & (1<<MD_DISK_SYNC)  &&
5871 			    info->raid_disk < mddev->raid_disks) {
5872 				rdev->raid_disk = info->raid_disk;
5873 				set_bit(In_sync, &rdev->flags);
5874 				clear_bit(Bitmap_sync, &rdev->flags);
5875 			} else
5876 				rdev->raid_disk = -1;
5877 			rdev->saved_raid_disk = rdev->raid_disk;
5878 		} else
5879 			super_types[mddev->major_version].
5880 				validate_super(mddev, rdev);
5881 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5882 		     rdev->raid_disk != info->raid_disk) {
5883 			/* This was a hot-add request, but events doesn't
5884 			 * match, so reject it.
5885 			 */
5886 			export_rdev(rdev);
5887 			return -EINVAL;
5888 		}
5889 
5890 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5891 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5892 			set_bit(WriteMostly, &rdev->flags);
5893 		else
5894 			clear_bit(WriteMostly, &rdev->flags);
5895 
5896 		/*
5897 		 * check whether the device shows up in other nodes
5898 		 */
5899 		if (mddev_is_clustered(mddev)) {
5900 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5901 				/* Through --cluster-confirm */
5902 				set_bit(Candidate, &rdev->flags);
5903 				err = md_cluster_ops->new_disk_ack(mddev, true);
5904 				if (err) {
5905 					export_rdev(rdev);
5906 					return err;
5907 				}
5908 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5909 				/* --add initiated by this node */
5910 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5911 				if (err) {
5912 					md_cluster_ops->add_new_disk_finish(mddev);
5913 					export_rdev(rdev);
5914 					return err;
5915 				}
5916 			}
5917 		}
5918 
5919 		rdev->raid_disk = -1;
5920 		err = bind_rdev_to_array(rdev, mddev);
5921 		if (err)
5922 			export_rdev(rdev);
5923 		else
5924 			err = add_bound_rdev(rdev);
5925 		if (mddev_is_clustered(mddev) &&
5926 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5927 			md_cluster_ops->add_new_disk_finish(mddev);
5928 		return err;
5929 	}
5930 
5931 	/* otherwise, add_new_disk is only allowed
5932 	 * for major_version==0 superblocks
5933 	 */
5934 	if (mddev->major_version != 0) {
5935 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5936 		       mdname(mddev));
5937 		return -EINVAL;
5938 	}
5939 
5940 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5941 		int err;
5942 		rdev = md_import_device(dev, -1, 0);
5943 		if (IS_ERR(rdev)) {
5944 			printk(KERN_WARNING
5945 				"md: error, md_import_device() returned %ld\n",
5946 				PTR_ERR(rdev));
5947 			return PTR_ERR(rdev);
5948 		}
5949 		rdev->desc_nr = info->number;
5950 		if (info->raid_disk < mddev->raid_disks)
5951 			rdev->raid_disk = info->raid_disk;
5952 		else
5953 			rdev->raid_disk = -1;
5954 
5955 		if (rdev->raid_disk < mddev->raid_disks)
5956 			if (info->state & (1<<MD_DISK_SYNC))
5957 				set_bit(In_sync, &rdev->flags);
5958 
5959 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5960 			set_bit(WriteMostly, &rdev->flags);
5961 
5962 		if (!mddev->persistent) {
5963 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5964 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5965 		} else
5966 			rdev->sb_start = calc_dev_sboffset(rdev);
5967 		rdev->sectors = rdev->sb_start;
5968 
5969 		err = bind_rdev_to_array(rdev, mddev);
5970 		if (err) {
5971 			export_rdev(rdev);
5972 			return err;
5973 		}
5974 	}
5975 
5976 	return 0;
5977 }
5978 
5979 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5980 {
5981 	char b[BDEVNAME_SIZE];
5982 	struct md_rdev *rdev;
5983 
5984 	rdev = find_rdev(mddev, dev);
5985 	if (!rdev)
5986 		return -ENXIO;
5987 
5988 	if (mddev_is_clustered(mddev))
5989 		md_cluster_ops->metadata_update_start(mddev);
5990 
5991 	clear_bit(Blocked, &rdev->flags);
5992 	remove_and_add_spares(mddev, rdev);
5993 
5994 	if (rdev->raid_disk >= 0)
5995 		goto busy;
5996 
5997 	if (mddev_is_clustered(mddev))
5998 		md_cluster_ops->remove_disk(mddev, rdev);
5999 
6000 	md_kick_rdev_from_array(rdev);
6001 	md_update_sb(mddev, 1);
6002 	md_new_event(mddev);
6003 
6004 	if (mddev_is_clustered(mddev))
6005 		md_cluster_ops->metadata_update_finish(mddev);
6006 
6007 	return 0;
6008 busy:
6009 	if (mddev_is_clustered(mddev))
6010 		md_cluster_ops->metadata_update_cancel(mddev);
6011 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6012 		bdevname(rdev->bdev,b), mdname(mddev));
6013 	return -EBUSY;
6014 }
6015 
6016 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6017 {
6018 	char b[BDEVNAME_SIZE];
6019 	int err;
6020 	struct md_rdev *rdev;
6021 
6022 	if (!mddev->pers)
6023 		return -ENODEV;
6024 
6025 	if (mddev->major_version != 0) {
6026 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6027 			" version-0 superblocks.\n",
6028 			mdname(mddev));
6029 		return -EINVAL;
6030 	}
6031 	if (!mddev->pers->hot_add_disk) {
6032 		printk(KERN_WARNING
6033 			"%s: personality does not support diskops!\n",
6034 			mdname(mddev));
6035 		return -EINVAL;
6036 	}
6037 
6038 	rdev = md_import_device(dev, -1, 0);
6039 	if (IS_ERR(rdev)) {
6040 		printk(KERN_WARNING
6041 			"md: error, md_import_device() returned %ld\n",
6042 			PTR_ERR(rdev));
6043 		return -EINVAL;
6044 	}
6045 
6046 	if (mddev->persistent)
6047 		rdev->sb_start = calc_dev_sboffset(rdev);
6048 	else
6049 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6050 
6051 	rdev->sectors = rdev->sb_start;
6052 
6053 	if (test_bit(Faulty, &rdev->flags)) {
6054 		printk(KERN_WARNING
6055 			"md: can not hot-add faulty %s disk to %s!\n",
6056 			bdevname(rdev->bdev,b), mdname(mddev));
6057 		err = -EINVAL;
6058 		goto abort_export;
6059 	}
6060 
6061 	if (mddev_is_clustered(mddev))
6062 		md_cluster_ops->metadata_update_start(mddev);
6063 	clear_bit(In_sync, &rdev->flags);
6064 	rdev->desc_nr = -1;
6065 	rdev->saved_raid_disk = -1;
6066 	err = bind_rdev_to_array(rdev, mddev);
6067 	if (err)
6068 		goto abort_clustered;
6069 
6070 	/*
6071 	 * The rest should better be atomic, we can have disk failures
6072 	 * noticed in interrupt contexts ...
6073 	 */
6074 
6075 	rdev->raid_disk = -1;
6076 
6077 	md_update_sb(mddev, 1);
6078 
6079 	if (mddev_is_clustered(mddev))
6080 		md_cluster_ops->metadata_update_finish(mddev);
6081 	/*
6082 	 * Kick recovery, maybe this spare has to be added to the
6083 	 * array immediately.
6084 	 */
6085 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6086 	md_wakeup_thread(mddev->thread);
6087 	md_new_event(mddev);
6088 	return 0;
6089 
6090 abort_clustered:
6091 	if (mddev_is_clustered(mddev))
6092 		md_cluster_ops->metadata_update_cancel(mddev);
6093 abort_export:
6094 	export_rdev(rdev);
6095 	return err;
6096 }
6097 
6098 static int set_bitmap_file(struct mddev *mddev, int fd)
6099 {
6100 	int err = 0;
6101 
6102 	if (mddev->pers) {
6103 		if (!mddev->pers->quiesce || !mddev->thread)
6104 			return -EBUSY;
6105 		if (mddev->recovery || mddev->sync_thread)
6106 			return -EBUSY;
6107 		/* we should be able to change the bitmap.. */
6108 	}
6109 
6110 	if (fd >= 0) {
6111 		struct inode *inode;
6112 		struct file *f;
6113 
6114 		if (mddev->bitmap || mddev->bitmap_info.file)
6115 			return -EEXIST; /* cannot add when bitmap is present */
6116 		f = fget(fd);
6117 
6118 		if (f == NULL) {
6119 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6120 			       mdname(mddev));
6121 			return -EBADF;
6122 		}
6123 
6124 		inode = f->f_mapping->host;
6125 		if (!S_ISREG(inode->i_mode)) {
6126 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6127 			       mdname(mddev));
6128 			err = -EBADF;
6129 		} else if (!(f->f_mode & FMODE_WRITE)) {
6130 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6131 			       mdname(mddev));
6132 			err = -EBADF;
6133 		} else if (atomic_read(&inode->i_writecount) != 1) {
6134 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6135 			       mdname(mddev));
6136 			err = -EBUSY;
6137 		}
6138 		if (err) {
6139 			fput(f);
6140 			return err;
6141 		}
6142 		mddev->bitmap_info.file = f;
6143 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6144 	} else if (mddev->bitmap == NULL)
6145 		return -ENOENT; /* cannot remove what isn't there */
6146 	err = 0;
6147 	if (mddev->pers) {
6148 		mddev->pers->quiesce(mddev, 1);
6149 		if (fd >= 0) {
6150 			struct bitmap *bitmap;
6151 
6152 			bitmap = bitmap_create(mddev, -1);
6153 			if (!IS_ERR(bitmap)) {
6154 				mddev->bitmap = bitmap;
6155 				err = bitmap_load(mddev);
6156 			} else
6157 				err = PTR_ERR(bitmap);
6158 		}
6159 		if (fd < 0 || err) {
6160 			bitmap_destroy(mddev);
6161 			fd = -1; /* make sure to put the file */
6162 		}
6163 		mddev->pers->quiesce(mddev, 0);
6164 	}
6165 	if (fd < 0) {
6166 		struct file *f = mddev->bitmap_info.file;
6167 		if (f) {
6168 			spin_lock(&mddev->lock);
6169 			mddev->bitmap_info.file = NULL;
6170 			spin_unlock(&mddev->lock);
6171 			fput(f);
6172 		}
6173 	}
6174 
6175 	return err;
6176 }
6177 
6178 /*
6179  * set_array_info is used two different ways
6180  * The original usage is when creating a new array.
6181  * In this usage, raid_disks is > 0 and it together with
6182  *  level, size, not_persistent,layout,chunksize determine the
6183  *  shape of the array.
6184  *  This will always create an array with a type-0.90.0 superblock.
6185  * The newer usage is when assembling an array.
6186  *  In this case raid_disks will be 0, and the major_version field is
6187  *  use to determine which style super-blocks are to be found on the devices.
6188  *  The minor and patch _version numbers are also kept incase the
6189  *  super_block handler wishes to interpret them.
6190  */
6191 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6192 {
6193 
6194 	if (info->raid_disks == 0) {
6195 		/* just setting version number for superblock loading */
6196 		if (info->major_version < 0 ||
6197 		    info->major_version >= ARRAY_SIZE(super_types) ||
6198 		    super_types[info->major_version].name == NULL) {
6199 			/* maybe try to auto-load a module? */
6200 			printk(KERN_INFO
6201 				"md: superblock version %d not known\n",
6202 				info->major_version);
6203 			return -EINVAL;
6204 		}
6205 		mddev->major_version = info->major_version;
6206 		mddev->minor_version = info->minor_version;
6207 		mddev->patch_version = info->patch_version;
6208 		mddev->persistent = !info->not_persistent;
6209 		/* ensure mddev_put doesn't delete this now that there
6210 		 * is some minimal configuration.
6211 		 */
6212 		mddev->ctime         = get_seconds();
6213 		return 0;
6214 	}
6215 	mddev->major_version = MD_MAJOR_VERSION;
6216 	mddev->minor_version = MD_MINOR_VERSION;
6217 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6218 	mddev->ctime         = get_seconds();
6219 
6220 	mddev->level         = info->level;
6221 	mddev->clevel[0]     = 0;
6222 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6223 	mddev->raid_disks    = info->raid_disks;
6224 	/* don't set md_minor, it is determined by which /dev/md* was
6225 	 * openned
6226 	 */
6227 	if (info->state & (1<<MD_SB_CLEAN))
6228 		mddev->recovery_cp = MaxSector;
6229 	else
6230 		mddev->recovery_cp = 0;
6231 	mddev->persistent    = ! info->not_persistent;
6232 	mddev->external	     = 0;
6233 
6234 	mddev->layout        = info->layout;
6235 	mddev->chunk_sectors = info->chunk_size >> 9;
6236 
6237 	mddev->max_disks     = MD_SB_DISKS;
6238 
6239 	if (mddev->persistent)
6240 		mddev->flags         = 0;
6241 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6242 
6243 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6244 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6245 	mddev->bitmap_info.offset = 0;
6246 
6247 	mddev->reshape_position = MaxSector;
6248 
6249 	/*
6250 	 * Generate a 128 bit UUID
6251 	 */
6252 	get_random_bytes(mddev->uuid, 16);
6253 
6254 	mddev->new_level = mddev->level;
6255 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6256 	mddev->new_layout = mddev->layout;
6257 	mddev->delta_disks = 0;
6258 	mddev->reshape_backwards = 0;
6259 
6260 	return 0;
6261 }
6262 
6263 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6264 {
6265 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6266 
6267 	if (mddev->external_size)
6268 		return;
6269 
6270 	mddev->array_sectors = array_sectors;
6271 }
6272 EXPORT_SYMBOL(md_set_array_sectors);
6273 
6274 static int update_size(struct mddev *mddev, sector_t num_sectors)
6275 {
6276 	struct md_rdev *rdev;
6277 	int rv;
6278 	int fit = (num_sectors == 0);
6279 
6280 	if (mddev->pers->resize == NULL)
6281 		return -EINVAL;
6282 	/* The "num_sectors" is the number of sectors of each device that
6283 	 * is used.  This can only make sense for arrays with redundancy.
6284 	 * linear and raid0 always use whatever space is available. We can only
6285 	 * consider changing this number if no resync or reconstruction is
6286 	 * happening, and if the new size is acceptable. It must fit before the
6287 	 * sb_start or, if that is <data_offset, it must fit before the size
6288 	 * of each device.  If num_sectors is zero, we find the largest size
6289 	 * that fits.
6290 	 */
6291 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6292 	    mddev->sync_thread)
6293 		return -EBUSY;
6294 	if (mddev->ro)
6295 		return -EROFS;
6296 
6297 	rdev_for_each(rdev, mddev) {
6298 		sector_t avail = rdev->sectors;
6299 
6300 		if (fit && (num_sectors == 0 || num_sectors > avail))
6301 			num_sectors = avail;
6302 		if (avail < num_sectors)
6303 			return -ENOSPC;
6304 	}
6305 	rv = mddev->pers->resize(mddev, num_sectors);
6306 	if (!rv)
6307 		revalidate_disk(mddev->gendisk);
6308 	return rv;
6309 }
6310 
6311 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6312 {
6313 	int rv;
6314 	struct md_rdev *rdev;
6315 	/* change the number of raid disks */
6316 	if (mddev->pers->check_reshape == NULL)
6317 		return -EINVAL;
6318 	if (mddev->ro)
6319 		return -EROFS;
6320 	if (raid_disks <= 0 ||
6321 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6322 		return -EINVAL;
6323 	if (mddev->sync_thread ||
6324 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6325 	    mddev->reshape_position != MaxSector)
6326 		return -EBUSY;
6327 
6328 	rdev_for_each(rdev, mddev) {
6329 		if (mddev->raid_disks < raid_disks &&
6330 		    rdev->data_offset < rdev->new_data_offset)
6331 			return -EINVAL;
6332 		if (mddev->raid_disks > raid_disks &&
6333 		    rdev->data_offset > rdev->new_data_offset)
6334 			return -EINVAL;
6335 	}
6336 
6337 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6338 	if (mddev->delta_disks < 0)
6339 		mddev->reshape_backwards = 1;
6340 	else if (mddev->delta_disks > 0)
6341 		mddev->reshape_backwards = 0;
6342 
6343 	rv = mddev->pers->check_reshape(mddev);
6344 	if (rv < 0) {
6345 		mddev->delta_disks = 0;
6346 		mddev->reshape_backwards = 0;
6347 	}
6348 	return rv;
6349 }
6350 
6351 /*
6352  * update_array_info is used to change the configuration of an
6353  * on-line array.
6354  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6355  * fields in the info are checked against the array.
6356  * Any differences that cannot be handled will cause an error.
6357  * Normally, only one change can be managed at a time.
6358  */
6359 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6360 {
6361 	int rv = 0;
6362 	int cnt = 0;
6363 	int state = 0;
6364 
6365 	/* calculate expected state,ignoring low bits */
6366 	if (mddev->bitmap && mddev->bitmap_info.offset)
6367 		state |= (1 << MD_SB_BITMAP_PRESENT);
6368 
6369 	if (mddev->major_version != info->major_version ||
6370 	    mddev->minor_version != info->minor_version ||
6371 /*	    mddev->patch_version != info->patch_version || */
6372 	    mddev->ctime         != info->ctime         ||
6373 	    mddev->level         != info->level         ||
6374 /*	    mddev->layout        != info->layout        || */
6375 	    !mddev->persistent	 != info->not_persistent||
6376 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6377 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6378 	    ((state^info->state) & 0xfffffe00)
6379 		)
6380 		return -EINVAL;
6381 	/* Check there is only one change */
6382 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6383 		cnt++;
6384 	if (mddev->raid_disks != info->raid_disks)
6385 		cnt++;
6386 	if (mddev->layout != info->layout)
6387 		cnt++;
6388 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6389 		cnt++;
6390 	if (cnt == 0)
6391 		return 0;
6392 	if (cnt > 1)
6393 		return -EINVAL;
6394 
6395 	if (mddev->layout != info->layout) {
6396 		/* Change layout
6397 		 * we don't need to do anything at the md level, the
6398 		 * personality will take care of it all.
6399 		 */
6400 		if (mddev->pers->check_reshape == NULL)
6401 			return -EINVAL;
6402 		else {
6403 			mddev->new_layout = info->layout;
6404 			rv = mddev->pers->check_reshape(mddev);
6405 			if (rv)
6406 				mddev->new_layout = mddev->layout;
6407 			return rv;
6408 		}
6409 	}
6410 	if (mddev_is_clustered(mddev))
6411 		md_cluster_ops->metadata_update_start(mddev);
6412 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6413 		rv = update_size(mddev, (sector_t)info->size * 2);
6414 
6415 	if (mddev->raid_disks    != info->raid_disks)
6416 		rv = update_raid_disks(mddev, info->raid_disks);
6417 
6418 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6419 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6420 			rv = -EINVAL;
6421 			goto err;
6422 		}
6423 		if (mddev->recovery || mddev->sync_thread) {
6424 			rv = -EBUSY;
6425 			goto err;
6426 		}
6427 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6428 			struct bitmap *bitmap;
6429 			/* add the bitmap */
6430 			if (mddev->bitmap) {
6431 				rv = -EEXIST;
6432 				goto err;
6433 			}
6434 			if (mddev->bitmap_info.default_offset == 0) {
6435 				rv = -EINVAL;
6436 				goto err;
6437 			}
6438 			mddev->bitmap_info.offset =
6439 				mddev->bitmap_info.default_offset;
6440 			mddev->bitmap_info.space =
6441 				mddev->bitmap_info.default_space;
6442 			mddev->pers->quiesce(mddev, 1);
6443 			bitmap = bitmap_create(mddev, -1);
6444 			if (!IS_ERR(bitmap)) {
6445 				mddev->bitmap = bitmap;
6446 				rv = bitmap_load(mddev);
6447 			} else
6448 				rv = PTR_ERR(bitmap);
6449 			if (rv)
6450 				bitmap_destroy(mddev);
6451 			mddev->pers->quiesce(mddev, 0);
6452 		} else {
6453 			/* remove the bitmap */
6454 			if (!mddev->bitmap) {
6455 				rv = -ENOENT;
6456 				goto err;
6457 			}
6458 			if (mddev->bitmap->storage.file) {
6459 				rv = -EINVAL;
6460 				goto err;
6461 			}
6462 			mddev->pers->quiesce(mddev, 1);
6463 			bitmap_destroy(mddev);
6464 			mddev->pers->quiesce(mddev, 0);
6465 			mddev->bitmap_info.offset = 0;
6466 		}
6467 	}
6468 	md_update_sb(mddev, 1);
6469 	if (mddev_is_clustered(mddev))
6470 		md_cluster_ops->metadata_update_finish(mddev);
6471 	return rv;
6472 err:
6473 	if (mddev_is_clustered(mddev))
6474 		md_cluster_ops->metadata_update_cancel(mddev);
6475 	return rv;
6476 }
6477 
6478 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6479 {
6480 	struct md_rdev *rdev;
6481 	int err = 0;
6482 
6483 	if (mddev->pers == NULL)
6484 		return -ENODEV;
6485 
6486 	rcu_read_lock();
6487 	rdev = find_rdev_rcu(mddev, dev);
6488 	if (!rdev)
6489 		err =  -ENODEV;
6490 	else {
6491 		md_error(mddev, rdev);
6492 		if (!test_bit(Faulty, &rdev->flags))
6493 			err = -EBUSY;
6494 	}
6495 	rcu_read_unlock();
6496 	return err;
6497 }
6498 
6499 /*
6500  * We have a problem here : there is no easy way to give a CHS
6501  * virtual geometry. We currently pretend that we have a 2 heads
6502  * 4 sectors (with a BIG number of cylinders...). This drives
6503  * dosfs just mad... ;-)
6504  */
6505 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6506 {
6507 	struct mddev *mddev = bdev->bd_disk->private_data;
6508 
6509 	geo->heads = 2;
6510 	geo->sectors = 4;
6511 	geo->cylinders = mddev->array_sectors / 8;
6512 	return 0;
6513 }
6514 
6515 static inline bool md_ioctl_valid(unsigned int cmd)
6516 {
6517 	switch (cmd) {
6518 	case ADD_NEW_DISK:
6519 	case BLKROSET:
6520 	case GET_ARRAY_INFO:
6521 	case GET_BITMAP_FILE:
6522 	case GET_DISK_INFO:
6523 	case HOT_ADD_DISK:
6524 	case HOT_REMOVE_DISK:
6525 	case RAID_AUTORUN:
6526 	case RAID_VERSION:
6527 	case RESTART_ARRAY_RW:
6528 	case RUN_ARRAY:
6529 	case SET_ARRAY_INFO:
6530 	case SET_BITMAP_FILE:
6531 	case SET_DISK_FAULTY:
6532 	case STOP_ARRAY:
6533 	case STOP_ARRAY_RO:
6534 	case CLUSTERED_DISK_NACK:
6535 		return true;
6536 	default:
6537 		return false;
6538 	}
6539 }
6540 
6541 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6542 			unsigned int cmd, unsigned long arg)
6543 {
6544 	int err = 0;
6545 	void __user *argp = (void __user *)arg;
6546 	struct mddev *mddev = NULL;
6547 	int ro;
6548 
6549 	if (!md_ioctl_valid(cmd))
6550 		return -ENOTTY;
6551 
6552 	switch (cmd) {
6553 	case RAID_VERSION:
6554 	case GET_ARRAY_INFO:
6555 	case GET_DISK_INFO:
6556 		break;
6557 	default:
6558 		if (!capable(CAP_SYS_ADMIN))
6559 			return -EACCES;
6560 	}
6561 
6562 	/*
6563 	 * Commands dealing with the RAID driver but not any
6564 	 * particular array:
6565 	 */
6566 	switch (cmd) {
6567 	case RAID_VERSION:
6568 		err = get_version(argp);
6569 		goto out;
6570 
6571 #ifndef MODULE
6572 	case RAID_AUTORUN:
6573 		err = 0;
6574 		autostart_arrays(arg);
6575 		goto out;
6576 #endif
6577 	default:;
6578 	}
6579 
6580 	/*
6581 	 * Commands creating/starting a new array:
6582 	 */
6583 
6584 	mddev = bdev->bd_disk->private_data;
6585 
6586 	if (!mddev) {
6587 		BUG();
6588 		goto out;
6589 	}
6590 
6591 	/* Some actions do not requires the mutex */
6592 	switch (cmd) {
6593 	case GET_ARRAY_INFO:
6594 		if (!mddev->raid_disks && !mddev->external)
6595 			err = -ENODEV;
6596 		else
6597 			err = get_array_info(mddev, argp);
6598 		goto out;
6599 
6600 	case GET_DISK_INFO:
6601 		if (!mddev->raid_disks && !mddev->external)
6602 			err = -ENODEV;
6603 		else
6604 			err = get_disk_info(mddev, argp);
6605 		goto out;
6606 
6607 	case SET_DISK_FAULTY:
6608 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6609 		goto out;
6610 
6611 	case GET_BITMAP_FILE:
6612 		err = get_bitmap_file(mddev, argp);
6613 		goto out;
6614 
6615 	}
6616 
6617 	if (cmd == ADD_NEW_DISK)
6618 		/* need to ensure md_delayed_delete() has completed */
6619 		flush_workqueue(md_misc_wq);
6620 
6621 	if (cmd == HOT_REMOVE_DISK)
6622 		/* need to ensure recovery thread has run */
6623 		wait_event_interruptible_timeout(mddev->sb_wait,
6624 						 !test_bit(MD_RECOVERY_NEEDED,
6625 							   &mddev->flags),
6626 						 msecs_to_jiffies(5000));
6627 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6628 		/* Need to flush page cache, and ensure no-one else opens
6629 		 * and writes
6630 		 */
6631 		mutex_lock(&mddev->open_mutex);
6632 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6633 			mutex_unlock(&mddev->open_mutex);
6634 			err = -EBUSY;
6635 			goto out;
6636 		}
6637 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6638 		mutex_unlock(&mddev->open_mutex);
6639 		sync_blockdev(bdev);
6640 	}
6641 	err = mddev_lock(mddev);
6642 	if (err) {
6643 		printk(KERN_INFO
6644 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6645 			err, cmd);
6646 		goto out;
6647 	}
6648 
6649 	if (cmd == SET_ARRAY_INFO) {
6650 		mdu_array_info_t info;
6651 		if (!arg)
6652 			memset(&info, 0, sizeof(info));
6653 		else if (copy_from_user(&info, argp, sizeof(info))) {
6654 			err = -EFAULT;
6655 			goto unlock;
6656 		}
6657 		if (mddev->pers) {
6658 			err = update_array_info(mddev, &info);
6659 			if (err) {
6660 				printk(KERN_WARNING "md: couldn't update"
6661 				       " array info. %d\n", err);
6662 				goto unlock;
6663 			}
6664 			goto unlock;
6665 		}
6666 		if (!list_empty(&mddev->disks)) {
6667 			printk(KERN_WARNING
6668 			       "md: array %s already has disks!\n",
6669 			       mdname(mddev));
6670 			err = -EBUSY;
6671 			goto unlock;
6672 		}
6673 		if (mddev->raid_disks) {
6674 			printk(KERN_WARNING
6675 			       "md: array %s already initialised!\n",
6676 			       mdname(mddev));
6677 			err = -EBUSY;
6678 			goto unlock;
6679 		}
6680 		err = set_array_info(mddev, &info);
6681 		if (err) {
6682 			printk(KERN_WARNING "md: couldn't set"
6683 			       " array info. %d\n", err);
6684 			goto unlock;
6685 		}
6686 		goto unlock;
6687 	}
6688 
6689 	/*
6690 	 * Commands querying/configuring an existing array:
6691 	 */
6692 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6693 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6694 	if ((!mddev->raid_disks && !mddev->external)
6695 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6696 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6697 	    && cmd != GET_BITMAP_FILE) {
6698 		err = -ENODEV;
6699 		goto unlock;
6700 	}
6701 
6702 	/*
6703 	 * Commands even a read-only array can execute:
6704 	 */
6705 	switch (cmd) {
6706 	case RESTART_ARRAY_RW:
6707 		err = restart_array(mddev);
6708 		goto unlock;
6709 
6710 	case STOP_ARRAY:
6711 		err = do_md_stop(mddev, 0, bdev);
6712 		goto unlock;
6713 
6714 	case STOP_ARRAY_RO:
6715 		err = md_set_readonly(mddev, bdev);
6716 		goto unlock;
6717 
6718 	case HOT_REMOVE_DISK:
6719 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6720 		goto unlock;
6721 
6722 	case ADD_NEW_DISK:
6723 		/* We can support ADD_NEW_DISK on read-only arrays
6724 		 * on if we are re-adding a preexisting device.
6725 		 * So require mddev->pers and MD_DISK_SYNC.
6726 		 */
6727 		if (mddev->pers) {
6728 			mdu_disk_info_t info;
6729 			if (copy_from_user(&info, argp, sizeof(info)))
6730 				err = -EFAULT;
6731 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6732 				/* Need to clear read-only for this */
6733 				break;
6734 			else
6735 				err = add_new_disk(mddev, &info);
6736 			goto unlock;
6737 		}
6738 		break;
6739 
6740 	case BLKROSET:
6741 		if (get_user(ro, (int __user *)(arg))) {
6742 			err = -EFAULT;
6743 			goto unlock;
6744 		}
6745 		err = -EINVAL;
6746 
6747 		/* if the bdev is going readonly the value of mddev->ro
6748 		 * does not matter, no writes are coming
6749 		 */
6750 		if (ro)
6751 			goto unlock;
6752 
6753 		/* are we are already prepared for writes? */
6754 		if (mddev->ro != 1)
6755 			goto unlock;
6756 
6757 		/* transitioning to readauto need only happen for
6758 		 * arrays that call md_write_start
6759 		 */
6760 		if (mddev->pers) {
6761 			err = restart_array(mddev);
6762 			if (err == 0) {
6763 				mddev->ro = 2;
6764 				set_disk_ro(mddev->gendisk, 0);
6765 			}
6766 		}
6767 		goto unlock;
6768 	}
6769 
6770 	/*
6771 	 * The remaining ioctls are changing the state of the
6772 	 * superblock, so we do not allow them on read-only arrays.
6773 	 */
6774 	if (mddev->ro && mddev->pers) {
6775 		if (mddev->ro == 2) {
6776 			mddev->ro = 0;
6777 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6778 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6779 			/* mddev_unlock will wake thread */
6780 			/* If a device failed while we were read-only, we
6781 			 * need to make sure the metadata is updated now.
6782 			 */
6783 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6784 				mddev_unlock(mddev);
6785 				wait_event(mddev->sb_wait,
6786 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6787 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6788 				mddev_lock_nointr(mddev);
6789 			}
6790 		} else {
6791 			err = -EROFS;
6792 			goto unlock;
6793 		}
6794 	}
6795 
6796 	switch (cmd) {
6797 	case ADD_NEW_DISK:
6798 	{
6799 		mdu_disk_info_t info;
6800 		if (copy_from_user(&info, argp, sizeof(info)))
6801 			err = -EFAULT;
6802 		else
6803 			err = add_new_disk(mddev, &info);
6804 		goto unlock;
6805 	}
6806 
6807 	case CLUSTERED_DISK_NACK:
6808 		if (mddev_is_clustered(mddev))
6809 			md_cluster_ops->new_disk_ack(mddev, false);
6810 		else
6811 			err = -EINVAL;
6812 		goto unlock;
6813 
6814 	case HOT_ADD_DISK:
6815 		err = hot_add_disk(mddev, new_decode_dev(arg));
6816 		goto unlock;
6817 
6818 	case RUN_ARRAY:
6819 		err = do_md_run(mddev);
6820 		goto unlock;
6821 
6822 	case SET_BITMAP_FILE:
6823 		err = set_bitmap_file(mddev, (int)arg);
6824 		goto unlock;
6825 
6826 	default:
6827 		err = -EINVAL;
6828 		goto unlock;
6829 	}
6830 
6831 unlock:
6832 	if (mddev->hold_active == UNTIL_IOCTL &&
6833 	    err != -EINVAL)
6834 		mddev->hold_active = 0;
6835 	mddev_unlock(mddev);
6836 out:
6837 	return err;
6838 }
6839 #ifdef CONFIG_COMPAT
6840 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6841 		    unsigned int cmd, unsigned long arg)
6842 {
6843 	switch (cmd) {
6844 	case HOT_REMOVE_DISK:
6845 	case HOT_ADD_DISK:
6846 	case SET_DISK_FAULTY:
6847 	case SET_BITMAP_FILE:
6848 		/* These take in integer arg, do not convert */
6849 		break;
6850 	default:
6851 		arg = (unsigned long)compat_ptr(arg);
6852 		break;
6853 	}
6854 
6855 	return md_ioctl(bdev, mode, cmd, arg);
6856 }
6857 #endif /* CONFIG_COMPAT */
6858 
6859 static int md_open(struct block_device *bdev, fmode_t mode)
6860 {
6861 	/*
6862 	 * Succeed if we can lock the mddev, which confirms that
6863 	 * it isn't being stopped right now.
6864 	 */
6865 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6866 	int err;
6867 
6868 	if (!mddev)
6869 		return -ENODEV;
6870 
6871 	if (mddev->gendisk != bdev->bd_disk) {
6872 		/* we are racing with mddev_put which is discarding this
6873 		 * bd_disk.
6874 		 */
6875 		mddev_put(mddev);
6876 		/* Wait until bdev->bd_disk is definitely gone */
6877 		flush_workqueue(md_misc_wq);
6878 		/* Then retry the open from the top */
6879 		return -ERESTARTSYS;
6880 	}
6881 	BUG_ON(mddev != bdev->bd_disk->private_data);
6882 
6883 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6884 		goto out;
6885 
6886 	err = 0;
6887 	atomic_inc(&mddev->openers);
6888 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6889 	mutex_unlock(&mddev->open_mutex);
6890 
6891 	check_disk_change(bdev);
6892  out:
6893 	return err;
6894 }
6895 
6896 static void md_release(struct gendisk *disk, fmode_t mode)
6897 {
6898 	struct mddev *mddev = disk->private_data;
6899 
6900 	BUG_ON(!mddev);
6901 	atomic_dec(&mddev->openers);
6902 	mddev_put(mddev);
6903 }
6904 
6905 static int md_media_changed(struct gendisk *disk)
6906 {
6907 	struct mddev *mddev = disk->private_data;
6908 
6909 	return mddev->changed;
6910 }
6911 
6912 static int md_revalidate(struct gendisk *disk)
6913 {
6914 	struct mddev *mddev = disk->private_data;
6915 
6916 	mddev->changed = 0;
6917 	return 0;
6918 }
6919 static const struct block_device_operations md_fops =
6920 {
6921 	.owner		= THIS_MODULE,
6922 	.open		= md_open,
6923 	.release	= md_release,
6924 	.ioctl		= md_ioctl,
6925 #ifdef CONFIG_COMPAT
6926 	.compat_ioctl	= md_compat_ioctl,
6927 #endif
6928 	.getgeo		= md_getgeo,
6929 	.media_changed  = md_media_changed,
6930 	.revalidate_disk= md_revalidate,
6931 };
6932 
6933 static int md_thread(void *arg)
6934 {
6935 	struct md_thread *thread = arg;
6936 
6937 	/*
6938 	 * md_thread is a 'system-thread', it's priority should be very
6939 	 * high. We avoid resource deadlocks individually in each
6940 	 * raid personality. (RAID5 does preallocation) We also use RR and
6941 	 * the very same RT priority as kswapd, thus we will never get
6942 	 * into a priority inversion deadlock.
6943 	 *
6944 	 * we definitely have to have equal or higher priority than
6945 	 * bdflush, otherwise bdflush will deadlock if there are too
6946 	 * many dirty RAID5 blocks.
6947 	 */
6948 
6949 	allow_signal(SIGKILL);
6950 	while (!kthread_should_stop()) {
6951 
6952 		/* We need to wait INTERRUPTIBLE so that
6953 		 * we don't add to the load-average.
6954 		 * That means we need to be sure no signals are
6955 		 * pending
6956 		 */
6957 		if (signal_pending(current))
6958 			flush_signals(current);
6959 
6960 		wait_event_interruptible_timeout
6961 			(thread->wqueue,
6962 			 test_bit(THREAD_WAKEUP, &thread->flags)
6963 			 || kthread_should_stop(),
6964 			 thread->timeout);
6965 
6966 		clear_bit(THREAD_WAKEUP, &thread->flags);
6967 		if (!kthread_should_stop())
6968 			thread->run(thread);
6969 	}
6970 
6971 	return 0;
6972 }
6973 
6974 void md_wakeup_thread(struct md_thread *thread)
6975 {
6976 	if (thread) {
6977 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6978 		set_bit(THREAD_WAKEUP, &thread->flags);
6979 		wake_up(&thread->wqueue);
6980 	}
6981 }
6982 EXPORT_SYMBOL(md_wakeup_thread);
6983 
6984 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6985 		struct mddev *mddev, const char *name)
6986 {
6987 	struct md_thread *thread;
6988 
6989 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6990 	if (!thread)
6991 		return NULL;
6992 
6993 	init_waitqueue_head(&thread->wqueue);
6994 
6995 	thread->run = run;
6996 	thread->mddev = mddev;
6997 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6998 	thread->tsk = kthread_run(md_thread, thread,
6999 				  "%s_%s",
7000 				  mdname(thread->mddev),
7001 				  name);
7002 	if (IS_ERR(thread->tsk)) {
7003 		kfree(thread);
7004 		return NULL;
7005 	}
7006 	return thread;
7007 }
7008 EXPORT_SYMBOL(md_register_thread);
7009 
7010 void md_unregister_thread(struct md_thread **threadp)
7011 {
7012 	struct md_thread *thread = *threadp;
7013 	if (!thread)
7014 		return;
7015 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7016 	/* Locking ensures that mddev_unlock does not wake_up a
7017 	 * non-existent thread
7018 	 */
7019 	spin_lock(&pers_lock);
7020 	*threadp = NULL;
7021 	spin_unlock(&pers_lock);
7022 
7023 	kthread_stop(thread->tsk);
7024 	kfree(thread);
7025 }
7026 EXPORT_SYMBOL(md_unregister_thread);
7027 
7028 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7029 {
7030 	if (!rdev || test_bit(Faulty, &rdev->flags))
7031 		return;
7032 
7033 	if (!mddev->pers || !mddev->pers->error_handler)
7034 		return;
7035 	mddev->pers->error_handler(mddev,rdev);
7036 	if (mddev->degraded)
7037 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7038 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7039 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7040 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7041 	md_wakeup_thread(mddev->thread);
7042 	if (mddev->event_work.func)
7043 		queue_work(md_misc_wq, &mddev->event_work);
7044 	md_new_event_inintr(mddev);
7045 }
7046 EXPORT_SYMBOL(md_error);
7047 
7048 /* seq_file implementation /proc/mdstat */
7049 
7050 static void status_unused(struct seq_file *seq)
7051 {
7052 	int i = 0;
7053 	struct md_rdev *rdev;
7054 
7055 	seq_printf(seq, "unused devices: ");
7056 
7057 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7058 		char b[BDEVNAME_SIZE];
7059 		i++;
7060 		seq_printf(seq, "%s ",
7061 			      bdevname(rdev->bdev,b));
7062 	}
7063 	if (!i)
7064 		seq_printf(seq, "<none>");
7065 
7066 	seq_printf(seq, "\n");
7067 }
7068 
7069 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7070 {
7071 	sector_t max_sectors, resync, res;
7072 	unsigned long dt, db;
7073 	sector_t rt;
7074 	int scale;
7075 	unsigned int per_milli;
7076 
7077 	if (mddev->curr_resync <= 3)
7078 		resync = 0;
7079 	else
7080 		resync = mddev->curr_resync
7081 			- atomic_read(&mddev->recovery_active);
7082 
7083 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7084 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7085 		max_sectors = mddev->resync_max_sectors;
7086 	else
7087 		max_sectors = mddev->dev_sectors;
7088 
7089 	WARN_ON(max_sectors == 0);
7090 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7091 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7092 	 * u32, as those are the requirements for sector_div.
7093 	 * Thus 'scale' must be at least 10
7094 	 */
7095 	scale = 10;
7096 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7097 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7098 			scale++;
7099 	}
7100 	res = (resync>>scale)*1000;
7101 	sector_div(res, (u32)((max_sectors>>scale)+1));
7102 
7103 	per_milli = res;
7104 	{
7105 		int i, x = per_milli/50, y = 20-x;
7106 		seq_printf(seq, "[");
7107 		for (i = 0; i < x; i++)
7108 			seq_printf(seq, "=");
7109 		seq_printf(seq, ">");
7110 		for (i = 0; i < y; i++)
7111 			seq_printf(seq, ".");
7112 		seq_printf(seq, "] ");
7113 	}
7114 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7115 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7116 		    "reshape" :
7117 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7118 		     "check" :
7119 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7120 		      "resync" : "recovery"))),
7121 		   per_milli/10, per_milli % 10,
7122 		   (unsigned long long) resync/2,
7123 		   (unsigned long long) max_sectors/2);
7124 
7125 	/*
7126 	 * dt: time from mark until now
7127 	 * db: blocks written from mark until now
7128 	 * rt: remaining time
7129 	 *
7130 	 * rt is a sector_t, so could be 32bit or 64bit.
7131 	 * So we divide before multiply in case it is 32bit and close
7132 	 * to the limit.
7133 	 * We scale the divisor (db) by 32 to avoid losing precision
7134 	 * near the end of resync when the number of remaining sectors
7135 	 * is close to 'db'.
7136 	 * We then divide rt by 32 after multiplying by db to compensate.
7137 	 * The '+1' avoids division by zero if db is very small.
7138 	 */
7139 	dt = ((jiffies - mddev->resync_mark) / HZ);
7140 	if (!dt) dt++;
7141 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7142 		- mddev->resync_mark_cnt;
7143 
7144 	rt = max_sectors - resync;    /* number of remaining sectors */
7145 	sector_div(rt, db/32+1);
7146 	rt *= dt;
7147 	rt >>= 5;
7148 
7149 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7150 		   ((unsigned long)rt % 60)/6);
7151 
7152 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7153 }
7154 
7155 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7156 {
7157 	struct list_head *tmp;
7158 	loff_t l = *pos;
7159 	struct mddev *mddev;
7160 
7161 	if (l >= 0x10000)
7162 		return NULL;
7163 	if (!l--)
7164 		/* header */
7165 		return (void*)1;
7166 
7167 	spin_lock(&all_mddevs_lock);
7168 	list_for_each(tmp,&all_mddevs)
7169 		if (!l--) {
7170 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7171 			mddev_get(mddev);
7172 			spin_unlock(&all_mddevs_lock);
7173 			return mddev;
7174 		}
7175 	spin_unlock(&all_mddevs_lock);
7176 	if (!l--)
7177 		return (void*)2;/* tail */
7178 	return NULL;
7179 }
7180 
7181 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7182 {
7183 	struct list_head *tmp;
7184 	struct mddev *next_mddev, *mddev = v;
7185 
7186 	++*pos;
7187 	if (v == (void*)2)
7188 		return NULL;
7189 
7190 	spin_lock(&all_mddevs_lock);
7191 	if (v == (void*)1)
7192 		tmp = all_mddevs.next;
7193 	else
7194 		tmp = mddev->all_mddevs.next;
7195 	if (tmp != &all_mddevs)
7196 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7197 	else {
7198 		next_mddev = (void*)2;
7199 		*pos = 0x10000;
7200 	}
7201 	spin_unlock(&all_mddevs_lock);
7202 
7203 	if (v != (void*)1)
7204 		mddev_put(mddev);
7205 	return next_mddev;
7206 
7207 }
7208 
7209 static void md_seq_stop(struct seq_file *seq, void *v)
7210 {
7211 	struct mddev *mddev = v;
7212 
7213 	if (mddev && v != (void*)1 && v != (void*)2)
7214 		mddev_put(mddev);
7215 }
7216 
7217 static int md_seq_show(struct seq_file *seq, void *v)
7218 {
7219 	struct mddev *mddev = v;
7220 	sector_t sectors;
7221 	struct md_rdev *rdev;
7222 
7223 	if (v == (void*)1) {
7224 		struct md_personality *pers;
7225 		seq_printf(seq, "Personalities : ");
7226 		spin_lock(&pers_lock);
7227 		list_for_each_entry(pers, &pers_list, list)
7228 			seq_printf(seq, "[%s] ", pers->name);
7229 
7230 		spin_unlock(&pers_lock);
7231 		seq_printf(seq, "\n");
7232 		seq->poll_event = atomic_read(&md_event_count);
7233 		return 0;
7234 	}
7235 	if (v == (void*)2) {
7236 		status_unused(seq);
7237 		return 0;
7238 	}
7239 
7240 	spin_lock(&mddev->lock);
7241 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7242 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7243 						mddev->pers ? "" : "in");
7244 		if (mddev->pers) {
7245 			if (mddev->ro==1)
7246 				seq_printf(seq, " (read-only)");
7247 			if (mddev->ro==2)
7248 				seq_printf(seq, " (auto-read-only)");
7249 			seq_printf(seq, " %s", mddev->pers->name);
7250 		}
7251 
7252 		sectors = 0;
7253 		rcu_read_lock();
7254 		rdev_for_each_rcu(rdev, mddev) {
7255 			char b[BDEVNAME_SIZE];
7256 			seq_printf(seq, " %s[%d]",
7257 				bdevname(rdev->bdev,b), rdev->desc_nr);
7258 			if (test_bit(WriteMostly, &rdev->flags))
7259 				seq_printf(seq, "(W)");
7260 			if (test_bit(Faulty, &rdev->flags)) {
7261 				seq_printf(seq, "(F)");
7262 				continue;
7263 			}
7264 			if (rdev->raid_disk < 0)
7265 				seq_printf(seq, "(S)"); /* spare */
7266 			if (test_bit(Replacement, &rdev->flags))
7267 				seq_printf(seq, "(R)");
7268 			sectors += rdev->sectors;
7269 		}
7270 		rcu_read_unlock();
7271 
7272 		if (!list_empty(&mddev->disks)) {
7273 			if (mddev->pers)
7274 				seq_printf(seq, "\n      %llu blocks",
7275 					   (unsigned long long)
7276 					   mddev->array_sectors / 2);
7277 			else
7278 				seq_printf(seq, "\n      %llu blocks",
7279 					   (unsigned long long)sectors / 2);
7280 		}
7281 		if (mddev->persistent) {
7282 			if (mddev->major_version != 0 ||
7283 			    mddev->minor_version != 90) {
7284 				seq_printf(seq," super %d.%d",
7285 					   mddev->major_version,
7286 					   mddev->minor_version);
7287 			}
7288 		} else if (mddev->external)
7289 			seq_printf(seq, " super external:%s",
7290 				   mddev->metadata_type);
7291 		else
7292 			seq_printf(seq, " super non-persistent");
7293 
7294 		if (mddev->pers) {
7295 			mddev->pers->status(seq, mddev);
7296 			seq_printf(seq, "\n      ");
7297 			if (mddev->pers->sync_request) {
7298 				if (mddev->curr_resync > 2) {
7299 					status_resync(seq, mddev);
7300 					seq_printf(seq, "\n      ");
7301 				} else if (mddev->curr_resync >= 1)
7302 					seq_printf(seq, "\tresync=DELAYED\n      ");
7303 				else if (mddev->recovery_cp < MaxSector)
7304 					seq_printf(seq, "\tresync=PENDING\n      ");
7305 			}
7306 		} else
7307 			seq_printf(seq, "\n       ");
7308 
7309 		bitmap_status(seq, mddev->bitmap);
7310 
7311 		seq_printf(seq, "\n");
7312 	}
7313 	spin_unlock(&mddev->lock);
7314 
7315 	return 0;
7316 }
7317 
7318 static const struct seq_operations md_seq_ops = {
7319 	.start  = md_seq_start,
7320 	.next   = md_seq_next,
7321 	.stop   = md_seq_stop,
7322 	.show   = md_seq_show,
7323 };
7324 
7325 static int md_seq_open(struct inode *inode, struct file *file)
7326 {
7327 	struct seq_file *seq;
7328 	int error;
7329 
7330 	error = seq_open(file, &md_seq_ops);
7331 	if (error)
7332 		return error;
7333 
7334 	seq = file->private_data;
7335 	seq->poll_event = atomic_read(&md_event_count);
7336 	return error;
7337 }
7338 
7339 static int md_unloading;
7340 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7341 {
7342 	struct seq_file *seq = filp->private_data;
7343 	int mask;
7344 
7345 	if (md_unloading)
7346 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7347 	poll_wait(filp, &md_event_waiters, wait);
7348 
7349 	/* always allow read */
7350 	mask = POLLIN | POLLRDNORM;
7351 
7352 	if (seq->poll_event != atomic_read(&md_event_count))
7353 		mask |= POLLERR | POLLPRI;
7354 	return mask;
7355 }
7356 
7357 static const struct file_operations md_seq_fops = {
7358 	.owner		= THIS_MODULE,
7359 	.open           = md_seq_open,
7360 	.read           = seq_read,
7361 	.llseek         = seq_lseek,
7362 	.release	= seq_release_private,
7363 	.poll		= mdstat_poll,
7364 };
7365 
7366 int register_md_personality(struct md_personality *p)
7367 {
7368 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7369 						p->name, p->level);
7370 	spin_lock(&pers_lock);
7371 	list_add_tail(&p->list, &pers_list);
7372 	spin_unlock(&pers_lock);
7373 	return 0;
7374 }
7375 EXPORT_SYMBOL(register_md_personality);
7376 
7377 int unregister_md_personality(struct md_personality *p)
7378 {
7379 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7380 	spin_lock(&pers_lock);
7381 	list_del_init(&p->list);
7382 	spin_unlock(&pers_lock);
7383 	return 0;
7384 }
7385 EXPORT_SYMBOL(unregister_md_personality);
7386 
7387 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7388 {
7389 	if (md_cluster_ops != NULL)
7390 		return -EALREADY;
7391 	spin_lock(&pers_lock);
7392 	md_cluster_ops = ops;
7393 	md_cluster_mod = module;
7394 	spin_unlock(&pers_lock);
7395 	return 0;
7396 }
7397 EXPORT_SYMBOL(register_md_cluster_operations);
7398 
7399 int unregister_md_cluster_operations(void)
7400 {
7401 	spin_lock(&pers_lock);
7402 	md_cluster_ops = NULL;
7403 	spin_unlock(&pers_lock);
7404 	return 0;
7405 }
7406 EXPORT_SYMBOL(unregister_md_cluster_operations);
7407 
7408 int md_setup_cluster(struct mddev *mddev, int nodes)
7409 {
7410 	int err;
7411 
7412 	err = request_module("md-cluster");
7413 	if (err) {
7414 		pr_err("md-cluster module not found.\n");
7415 		return err;
7416 	}
7417 
7418 	spin_lock(&pers_lock);
7419 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7420 		spin_unlock(&pers_lock);
7421 		return -ENOENT;
7422 	}
7423 	spin_unlock(&pers_lock);
7424 
7425 	return md_cluster_ops->join(mddev, nodes);
7426 }
7427 
7428 void md_cluster_stop(struct mddev *mddev)
7429 {
7430 	if (!md_cluster_ops)
7431 		return;
7432 	md_cluster_ops->leave(mddev);
7433 	module_put(md_cluster_mod);
7434 }
7435 
7436 static int is_mddev_idle(struct mddev *mddev, int init)
7437 {
7438 	struct md_rdev *rdev;
7439 	int idle;
7440 	int curr_events;
7441 
7442 	idle = 1;
7443 	rcu_read_lock();
7444 	rdev_for_each_rcu(rdev, mddev) {
7445 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7446 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7447 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7448 			      atomic_read(&disk->sync_io);
7449 		/* sync IO will cause sync_io to increase before the disk_stats
7450 		 * as sync_io is counted when a request starts, and
7451 		 * disk_stats is counted when it completes.
7452 		 * So resync activity will cause curr_events to be smaller than
7453 		 * when there was no such activity.
7454 		 * non-sync IO will cause disk_stat to increase without
7455 		 * increasing sync_io so curr_events will (eventually)
7456 		 * be larger than it was before.  Once it becomes
7457 		 * substantially larger, the test below will cause
7458 		 * the array to appear non-idle, and resync will slow
7459 		 * down.
7460 		 * If there is a lot of outstanding resync activity when
7461 		 * we set last_event to curr_events, then all that activity
7462 		 * completing might cause the array to appear non-idle
7463 		 * and resync will be slowed down even though there might
7464 		 * not have been non-resync activity.  This will only
7465 		 * happen once though.  'last_events' will soon reflect
7466 		 * the state where there is little or no outstanding
7467 		 * resync requests, and further resync activity will
7468 		 * always make curr_events less than last_events.
7469 		 *
7470 		 */
7471 		if (init || curr_events - rdev->last_events > 64) {
7472 			rdev->last_events = curr_events;
7473 			idle = 0;
7474 		}
7475 	}
7476 	rcu_read_unlock();
7477 	return idle;
7478 }
7479 
7480 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7481 {
7482 	/* another "blocks" (512byte) blocks have been synced */
7483 	atomic_sub(blocks, &mddev->recovery_active);
7484 	wake_up(&mddev->recovery_wait);
7485 	if (!ok) {
7486 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7487 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7488 		md_wakeup_thread(mddev->thread);
7489 		// stop recovery, signal do_sync ....
7490 	}
7491 }
7492 EXPORT_SYMBOL(md_done_sync);
7493 
7494 /* md_write_start(mddev, bi)
7495  * If we need to update some array metadata (e.g. 'active' flag
7496  * in superblock) before writing, schedule a superblock update
7497  * and wait for it to complete.
7498  */
7499 void md_write_start(struct mddev *mddev, struct bio *bi)
7500 {
7501 	int did_change = 0;
7502 	if (bio_data_dir(bi) != WRITE)
7503 		return;
7504 
7505 	BUG_ON(mddev->ro == 1);
7506 	if (mddev->ro == 2) {
7507 		/* need to switch to read/write */
7508 		mddev->ro = 0;
7509 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7510 		md_wakeup_thread(mddev->thread);
7511 		md_wakeup_thread(mddev->sync_thread);
7512 		did_change = 1;
7513 	}
7514 	atomic_inc(&mddev->writes_pending);
7515 	if (mddev->safemode == 1)
7516 		mddev->safemode = 0;
7517 	if (mddev->in_sync) {
7518 		spin_lock(&mddev->lock);
7519 		if (mddev->in_sync) {
7520 			mddev->in_sync = 0;
7521 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7522 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7523 			md_wakeup_thread(mddev->thread);
7524 			did_change = 1;
7525 		}
7526 		spin_unlock(&mddev->lock);
7527 	}
7528 	if (did_change)
7529 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7530 	wait_event(mddev->sb_wait,
7531 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7532 }
7533 EXPORT_SYMBOL(md_write_start);
7534 
7535 void md_write_end(struct mddev *mddev)
7536 {
7537 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7538 		if (mddev->safemode == 2)
7539 			md_wakeup_thread(mddev->thread);
7540 		else if (mddev->safemode_delay)
7541 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7542 	}
7543 }
7544 EXPORT_SYMBOL(md_write_end);
7545 
7546 /* md_allow_write(mddev)
7547  * Calling this ensures that the array is marked 'active' so that writes
7548  * may proceed without blocking.  It is important to call this before
7549  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7550  * Must be called with mddev_lock held.
7551  *
7552  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7553  * is dropped, so return -EAGAIN after notifying userspace.
7554  */
7555 int md_allow_write(struct mddev *mddev)
7556 {
7557 	if (!mddev->pers)
7558 		return 0;
7559 	if (mddev->ro)
7560 		return 0;
7561 	if (!mddev->pers->sync_request)
7562 		return 0;
7563 
7564 	spin_lock(&mddev->lock);
7565 	if (mddev->in_sync) {
7566 		mddev->in_sync = 0;
7567 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7568 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7569 		if (mddev->safemode_delay &&
7570 		    mddev->safemode == 0)
7571 			mddev->safemode = 1;
7572 		spin_unlock(&mddev->lock);
7573 		if (mddev_is_clustered(mddev))
7574 			md_cluster_ops->metadata_update_start(mddev);
7575 		md_update_sb(mddev, 0);
7576 		if (mddev_is_clustered(mddev))
7577 			md_cluster_ops->metadata_update_finish(mddev);
7578 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7579 	} else
7580 		spin_unlock(&mddev->lock);
7581 
7582 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7583 		return -EAGAIN;
7584 	else
7585 		return 0;
7586 }
7587 EXPORT_SYMBOL_GPL(md_allow_write);
7588 
7589 #define SYNC_MARKS	10
7590 #define	SYNC_MARK_STEP	(3*HZ)
7591 #define UPDATE_FREQUENCY (5*60*HZ)
7592 void md_do_sync(struct md_thread *thread)
7593 {
7594 	struct mddev *mddev = thread->mddev;
7595 	struct mddev *mddev2;
7596 	unsigned int currspeed = 0,
7597 		 window;
7598 	sector_t max_sectors,j, io_sectors, recovery_done;
7599 	unsigned long mark[SYNC_MARKS];
7600 	unsigned long update_time;
7601 	sector_t mark_cnt[SYNC_MARKS];
7602 	int last_mark,m;
7603 	struct list_head *tmp;
7604 	sector_t last_check;
7605 	int skipped = 0;
7606 	struct md_rdev *rdev;
7607 	char *desc, *action = NULL;
7608 	struct blk_plug plug;
7609 
7610 	/* just incase thread restarts... */
7611 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7612 		return;
7613 	if (mddev->ro) {/* never try to sync a read-only array */
7614 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7615 		return;
7616 	}
7617 
7618 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7619 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7620 			desc = "data-check";
7621 			action = "check";
7622 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7623 			desc = "requested-resync";
7624 			action = "repair";
7625 		} else
7626 			desc = "resync";
7627 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7628 		desc = "reshape";
7629 	else
7630 		desc = "recovery";
7631 
7632 	mddev->last_sync_action = action ?: desc;
7633 
7634 	/* we overload curr_resync somewhat here.
7635 	 * 0 == not engaged in resync at all
7636 	 * 2 == checking that there is no conflict with another sync
7637 	 * 1 == like 2, but have yielded to allow conflicting resync to
7638 	 *		commense
7639 	 * other == active in resync - this many blocks
7640 	 *
7641 	 * Before starting a resync we must have set curr_resync to
7642 	 * 2, and then checked that every "conflicting" array has curr_resync
7643 	 * less than ours.  When we find one that is the same or higher
7644 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7645 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7646 	 * This will mean we have to start checking from the beginning again.
7647 	 *
7648 	 */
7649 
7650 	do {
7651 		mddev->curr_resync = 2;
7652 
7653 	try_again:
7654 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7655 			goto skip;
7656 		for_each_mddev(mddev2, tmp) {
7657 			if (mddev2 == mddev)
7658 				continue;
7659 			if (!mddev->parallel_resync
7660 			&&  mddev2->curr_resync
7661 			&&  match_mddev_units(mddev, mddev2)) {
7662 				DEFINE_WAIT(wq);
7663 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7664 					/* arbitrarily yield */
7665 					mddev->curr_resync = 1;
7666 					wake_up(&resync_wait);
7667 				}
7668 				if (mddev > mddev2 && mddev->curr_resync == 1)
7669 					/* no need to wait here, we can wait the next
7670 					 * time 'round when curr_resync == 2
7671 					 */
7672 					continue;
7673 				/* We need to wait 'interruptible' so as not to
7674 				 * contribute to the load average, and not to
7675 				 * be caught by 'softlockup'
7676 				 */
7677 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7678 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7679 				    mddev2->curr_resync >= mddev->curr_resync) {
7680 					printk(KERN_INFO "md: delaying %s of %s"
7681 					       " until %s has finished (they"
7682 					       " share one or more physical units)\n",
7683 					       desc, mdname(mddev), mdname(mddev2));
7684 					mddev_put(mddev2);
7685 					if (signal_pending(current))
7686 						flush_signals(current);
7687 					schedule();
7688 					finish_wait(&resync_wait, &wq);
7689 					goto try_again;
7690 				}
7691 				finish_wait(&resync_wait, &wq);
7692 			}
7693 		}
7694 	} while (mddev->curr_resync < 2);
7695 
7696 	j = 0;
7697 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7698 		/* resync follows the size requested by the personality,
7699 		 * which defaults to physical size, but can be virtual size
7700 		 */
7701 		max_sectors = mddev->resync_max_sectors;
7702 		atomic64_set(&mddev->resync_mismatches, 0);
7703 		/* we don't use the checkpoint if there's a bitmap */
7704 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7705 			j = mddev->resync_min;
7706 		else if (!mddev->bitmap)
7707 			j = mddev->recovery_cp;
7708 
7709 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7710 		max_sectors = mddev->resync_max_sectors;
7711 	else {
7712 		/* recovery follows the physical size of devices */
7713 		max_sectors = mddev->dev_sectors;
7714 		j = MaxSector;
7715 		rcu_read_lock();
7716 		rdev_for_each_rcu(rdev, mddev)
7717 			if (rdev->raid_disk >= 0 &&
7718 			    !test_bit(Faulty, &rdev->flags) &&
7719 			    !test_bit(In_sync, &rdev->flags) &&
7720 			    rdev->recovery_offset < j)
7721 				j = rdev->recovery_offset;
7722 		rcu_read_unlock();
7723 
7724 		/* If there is a bitmap, we need to make sure all
7725 		 * writes that started before we added a spare
7726 		 * complete before we start doing a recovery.
7727 		 * Otherwise the write might complete and (via
7728 		 * bitmap_endwrite) set a bit in the bitmap after the
7729 		 * recovery has checked that bit and skipped that
7730 		 * region.
7731 		 */
7732 		if (mddev->bitmap) {
7733 			mddev->pers->quiesce(mddev, 1);
7734 			mddev->pers->quiesce(mddev, 0);
7735 		}
7736 	}
7737 
7738 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7739 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7740 		" %d KB/sec/disk.\n", speed_min(mddev));
7741 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7742 	       "(but not more than %d KB/sec) for %s.\n",
7743 	       speed_max(mddev), desc);
7744 
7745 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7746 
7747 	io_sectors = 0;
7748 	for (m = 0; m < SYNC_MARKS; m++) {
7749 		mark[m] = jiffies;
7750 		mark_cnt[m] = io_sectors;
7751 	}
7752 	last_mark = 0;
7753 	mddev->resync_mark = mark[last_mark];
7754 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7755 
7756 	/*
7757 	 * Tune reconstruction:
7758 	 */
7759 	window = 32*(PAGE_SIZE/512);
7760 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7761 		window/2, (unsigned long long)max_sectors/2);
7762 
7763 	atomic_set(&mddev->recovery_active, 0);
7764 	last_check = 0;
7765 
7766 	if (j>2) {
7767 		printk(KERN_INFO
7768 		       "md: resuming %s of %s from checkpoint.\n",
7769 		       desc, mdname(mddev));
7770 		mddev->curr_resync = j;
7771 	} else
7772 		mddev->curr_resync = 3; /* no longer delayed */
7773 	mddev->curr_resync_completed = j;
7774 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7775 	md_new_event(mddev);
7776 	update_time = jiffies;
7777 
7778 	if (mddev_is_clustered(mddev))
7779 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7780 
7781 	blk_start_plug(&plug);
7782 	while (j < max_sectors) {
7783 		sector_t sectors;
7784 
7785 		skipped = 0;
7786 
7787 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7788 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7789 		      (mddev->curr_resync - mddev->curr_resync_completed)
7790 		      > (max_sectors >> 4)) ||
7791 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7792 		     (j - mddev->curr_resync_completed)*2
7793 		     >= mddev->resync_max - mddev->curr_resync_completed
7794 			    )) {
7795 			/* time to update curr_resync_completed */
7796 			wait_event(mddev->recovery_wait,
7797 				   atomic_read(&mddev->recovery_active) == 0);
7798 			mddev->curr_resync_completed = j;
7799 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7800 			    j > mddev->recovery_cp)
7801 				mddev->recovery_cp = j;
7802 			update_time = jiffies;
7803 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7804 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7805 		}
7806 
7807 		while (j >= mddev->resync_max &&
7808 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7809 			/* As this condition is controlled by user-space,
7810 			 * we can block indefinitely, so use '_interruptible'
7811 			 * to avoid triggering warnings.
7812 			 */
7813 			flush_signals(current); /* just in case */
7814 			wait_event_interruptible(mddev->recovery_wait,
7815 						 mddev->resync_max > j
7816 						 || test_bit(MD_RECOVERY_INTR,
7817 							     &mddev->recovery));
7818 		}
7819 
7820 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7821 			break;
7822 
7823 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7824 		if (sectors == 0) {
7825 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7826 			break;
7827 		}
7828 
7829 		if (!skipped) { /* actual IO requested */
7830 			io_sectors += sectors;
7831 			atomic_add(sectors, &mddev->recovery_active);
7832 		}
7833 
7834 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7835 			break;
7836 
7837 		j += sectors;
7838 		if (j > 2)
7839 			mddev->curr_resync = j;
7840 		if (mddev_is_clustered(mddev))
7841 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7842 		mddev->curr_mark_cnt = io_sectors;
7843 		if (last_check == 0)
7844 			/* this is the earliest that rebuild will be
7845 			 * visible in /proc/mdstat
7846 			 */
7847 			md_new_event(mddev);
7848 
7849 		if (last_check + window > io_sectors || j == max_sectors)
7850 			continue;
7851 
7852 		last_check = io_sectors;
7853 	repeat:
7854 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7855 			/* step marks */
7856 			int next = (last_mark+1) % SYNC_MARKS;
7857 
7858 			mddev->resync_mark = mark[next];
7859 			mddev->resync_mark_cnt = mark_cnt[next];
7860 			mark[next] = jiffies;
7861 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7862 			last_mark = next;
7863 		}
7864 
7865 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7866 			break;
7867 
7868 		/*
7869 		 * this loop exits only if either when we are slower than
7870 		 * the 'hard' speed limit, or the system was IO-idle for
7871 		 * a jiffy.
7872 		 * the system might be non-idle CPU-wise, but we only care
7873 		 * about not overloading the IO subsystem. (things like an
7874 		 * e2fsck being done on the RAID array should execute fast)
7875 		 */
7876 		cond_resched();
7877 
7878 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7879 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7880 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7881 
7882 		if (currspeed > speed_min(mddev)) {
7883 			if (currspeed > speed_max(mddev)) {
7884 				msleep(500);
7885 				goto repeat;
7886 			}
7887 			if (!is_mddev_idle(mddev, 0)) {
7888 				/*
7889 				 * Give other IO more of a chance.
7890 				 * The faster the devices, the less we wait.
7891 				 */
7892 				wait_event(mddev->recovery_wait,
7893 					   !atomic_read(&mddev->recovery_active));
7894 			}
7895 		}
7896 	}
7897 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7898 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7899 	       ? "interrupted" : "done");
7900 	/*
7901 	 * this also signals 'finished resyncing' to md_stop
7902 	 */
7903 	blk_finish_plug(&plug);
7904 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7905 
7906 	/* tell personality that we are finished */
7907 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7908 
7909 	if (mddev_is_clustered(mddev))
7910 		md_cluster_ops->resync_finish(mddev);
7911 
7912 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7913 	    mddev->curr_resync > 2) {
7914 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7915 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7916 				if (mddev->curr_resync >= mddev->recovery_cp) {
7917 					printk(KERN_INFO
7918 					       "md: checkpointing %s of %s.\n",
7919 					       desc, mdname(mddev));
7920 					if (test_bit(MD_RECOVERY_ERROR,
7921 						&mddev->recovery))
7922 						mddev->recovery_cp =
7923 							mddev->curr_resync_completed;
7924 					else
7925 						mddev->recovery_cp =
7926 							mddev->curr_resync;
7927 				}
7928 			} else
7929 				mddev->recovery_cp = MaxSector;
7930 		} else {
7931 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7932 				mddev->curr_resync = MaxSector;
7933 			rcu_read_lock();
7934 			rdev_for_each_rcu(rdev, mddev)
7935 				if (rdev->raid_disk >= 0 &&
7936 				    mddev->delta_disks >= 0 &&
7937 				    !test_bit(Faulty, &rdev->flags) &&
7938 				    !test_bit(In_sync, &rdev->flags) &&
7939 				    rdev->recovery_offset < mddev->curr_resync)
7940 					rdev->recovery_offset = mddev->curr_resync;
7941 			rcu_read_unlock();
7942 		}
7943 	}
7944  skip:
7945 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7946 
7947 	spin_lock(&mddev->lock);
7948 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7949 		/* We completed so min/max setting can be forgotten if used. */
7950 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7951 			mddev->resync_min = 0;
7952 		mddev->resync_max = MaxSector;
7953 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7954 		mddev->resync_min = mddev->curr_resync_completed;
7955 	mddev->curr_resync = 0;
7956 	spin_unlock(&mddev->lock);
7957 
7958 	wake_up(&resync_wait);
7959 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7960 	md_wakeup_thread(mddev->thread);
7961 	return;
7962 }
7963 EXPORT_SYMBOL_GPL(md_do_sync);
7964 
7965 static int remove_and_add_spares(struct mddev *mddev,
7966 				 struct md_rdev *this)
7967 {
7968 	struct md_rdev *rdev;
7969 	int spares = 0;
7970 	int removed = 0;
7971 
7972 	rdev_for_each(rdev, mddev)
7973 		if ((this == NULL || rdev == this) &&
7974 		    rdev->raid_disk >= 0 &&
7975 		    !test_bit(Blocked, &rdev->flags) &&
7976 		    (test_bit(Faulty, &rdev->flags) ||
7977 		     ! test_bit(In_sync, &rdev->flags)) &&
7978 		    atomic_read(&rdev->nr_pending)==0) {
7979 			if (mddev->pers->hot_remove_disk(
7980 				    mddev, rdev) == 0) {
7981 				sysfs_unlink_rdev(mddev, rdev);
7982 				rdev->raid_disk = -1;
7983 				removed++;
7984 			}
7985 		}
7986 	if (removed && mddev->kobj.sd)
7987 		sysfs_notify(&mddev->kobj, NULL, "degraded");
7988 
7989 	if (this)
7990 		goto no_add;
7991 
7992 	rdev_for_each(rdev, mddev) {
7993 		if (rdev->raid_disk >= 0 &&
7994 		    !test_bit(In_sync, &rdev->flags) &&
7995 		    !test_bit(Faulty, &rdev->flags))
7996 			spares++;
7997 		if (rdev->raid_disk >= 0)
7998 			continue;
7999 		if (test_bit(Faulty, &rdev->flags))
8000 			continue;
8001 		if (mddev->ro &&
8002 		    ! (rdev->saved_raid_disk >= 0 &&
8003 		       !test_bit(Bitmap_sync, &rdev->flags)))
8004 			continue;
8005 
8006 		if (rdev->saved_raid_disk < 0)
8007 			rdev->recovery_offset = 0;
8008 		if (mddev->pers->
8009 		    hot_add_disk(mddev, rdev) == 0) {
8010 			if (sysfs_link_rdev(mddev, rdev))
8011 				/* failure here is OK */;
8012 			spares++;
8013 			md_new_event(mddev);
8014 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8015 		}
8016 	}
8017 no_add:
8018 	if (removed)
8019 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8020 	return spares;
8021 }
8022 
8023 static void md_start_sync(struct work_struct *ws)
8024 {
8025 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8026 
8027 	mddev->sync_thread = md_register_thread(md_do_sync,
8028 						mddev,
8029 						"resync");
8030 	if (!mddev->sync_thread) {
8031 		printk(KERN_ERR "%s: could not start resync"
8032 		       " thread...\n",
8033 		       mdname(mddev));
8034 		/* leave the spares where they are, it shouldn't hurt */
8035 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8036 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8037 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8038 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8039 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8040 		wake_up(&resync_wait);
8041 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8042 				       &mddev->recovery))
8043 			if (mddev->sysfs_action)
8044 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8045 	} else
8046 		md_wakeup_thread(mddev->sync_thread);
8047 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8048 	md_new_event(mddev);
8049 }
8050 
8051 /*
8052  * This routine is regularly called by all per-raid-array threads to
8053  * deal with generic issues like resync and super-block update.
8054  * Raid personalities that don't have a thread (linear/raid0) do not
8055  * need this as they never do any recovery or update the superblock.
8056  *
8057  * It does not do any resync itself, but rather "forks" off other threads
8058  * to do that as needed.
8059  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8060  * "->recovery" and create a thread at ->sync_thread.
8061  * When the thread finishes it sets MD_RECOVERY_DONE
8062  * and wakeups up this thread which will reap the thread and finish up.
8063  * This thread also removes any faulty devices (with nr_pending == 0).
8064  *
8065  * The overall approach is:
8066  *  1/ if the superblock needs updating, update it.
8067  *  2/ If a recovery thread is running, don't do anything else.
8068  *  3/ If recovery has finished, clean up, possibly marking spares active.
8069  *  4/ If there are any faulty devices, remove them.
8070  *  5/ If array is degraded, try to add spares devices
8071  *  6/ If array has spares or is not in-sync, start a resync thread.
8072  */
8073 void md_check_recovery(struct mddev *mddev)
8074 {
8075 	if (mddev->suspended)
8076 		return;
8077 
8078 	if (mddev->bitmap)
8079 		bitmap_daemon_work(mddev);
8080 
8081 	if (signal_pending(current)) {
8082 		if (mddev->pers->sync_request && !mddev->external) {
8083 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8084 			       mdname(mddev));
8085 			mddev->safemode = 2;
8086 		}
8087 		flush_signals(current);
8088 	}
8089 
8090 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8091 		return;
8092 	if ( ! (
8093 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8094 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8095 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8096 		(mddev->external == 0 && mddev->safemode == 1) ||
8097 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8098 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8099 		))
8100 		return;
8101 
8102 	if (mddev_trylock(mddev)) {
8103 		int spares = 0;
8104 
8105 		if (mddev->ro) {
8106 			/* On a read-only array we can:
8107 			 * - remove failed devices
8108 			 * - add already-in_sync devices if the array itself
8109 			 *   is in-sync.
8110 			 * As we only add devices that are already in-sync,
8111 			 * we can activate the spares immediately.
8112 			 */
8113 			remove_and_add_spares(mddev, NULL);
8114 			/* There is no thread, but we need to call
8115 			 * ->spare_active and clear saved_raid_disk
8116 			 */
8117 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8118 			md_reap_sync_thread(mddev);
8119 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8120 			goto unlock;
8121 		}
8122 
8123 		if (!mddev->external) {
8124 			int did_change = 0;
8125 			spin_lock(&mddev->lock);
8126 			if (mddev->safemode &&
8127 			    !atomic_read(&mddev->writes_pending) &&
8128 			    !mddev->in_sync &&
8129 			    mddev->recovery_cp == MaxSector) {
8130 				mddev->in_sync = 1;
8131 				did_change = 1;
8132 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8133 			}
8134 			if (mddev->safemode == 1)
8135 				mddev->safemode = 0;
8136 			spin_unlock(&mddev->lock);
8137 			if (did_change)
8138 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8139 		}
8140 
8141 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8142 			if (mddev_is_clustered(mddev))
8143 				md_cluster_ops->metadata_update_start(mddev);
8144 			md_update_sb(mddev, 0);
8145 			if (mddev_is_clustered(mddev))
8146 				md_cluster_ops->metadata_update_finish(mddev);
8147 		}
8148 
8149 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8150 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8151 			/* resync/recovery still happening */
8152 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8153 			goto unlock;
8154 		}
8155 		if (mddev->sync_thread) {
8156 			md_reap_sync_thread(mddev);
8157 			goto unlock;
8158 		}
8159 		/* Set RUNNING before clearing NEEDED to avoid
8160 		 * any transients in the value of "sync_action".
8161 		 */
8162 		mddev->curr_resync_completed = 0;
8163 		spin_lock(&mddev->lock);
8164 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8165 		spin_unlock(&mddev->lock);
8166 		/* Clear some bits that don't mean anything, but
8167 		 * might be left set
8168 		 */
8169 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8170 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8171 
8172 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8173 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8174 			goto not_running;
8175 		/* no recovery is running.
8176 		 * remove any failed drives, then
8177 		 * add spares if possible.
8178 		 * Spares are also removed and re-added, to allow
8179 		 * the personality to fail the re-add.
8180 		 */
8181 
8182 		if (mddev->reshape_position != MaxSector) {
8183 			if (mddev->pers->check_reshape == NULL ||
8184 			    mddev->pers->check_reshape(mddev) != 0)
8185 				/* Cannot proceed */
8186 				goto not_running;
8187 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8188 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8189 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8190 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8191 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8192 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8193 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8194 		} else if (mddev->recovery_cp < MaxSector) {
8195 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8196 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8197 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8198 			/* nothing to be done ... */
8199 			goto not_running;
8200 
8201 		if (mddev->pers->sync_request) {
8202 			if (spares) {
8203 				/* We are adding a device or devices to an array
8204 				 * which has the bitmap stored on all devices.
8205 				 * So make sure all bitmap pages get written
8206 				 */
8207 				bitmap_write_all(mddev->bitmap);
8208 			}
8209 			INIT_WORK(&mddev->del_work, md_start_sync);
8210 			queue_work(md_misc_wq, &mddev->del_work);
8211 			goto unlock;
8212 		}
8213 	not_running:
8214 		if (!mddev->sync_thread) {
8215 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8216 			wake_up(&resync_wait);
8217 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8218 					       &mddev->recovery))
8219 				if (mddev->sysfs_action)
8220 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8221 		}
8222 	unlock:
8223 		wake_up(&mddev->sb_wait);
8224 		mddev_unlock(mddev);
8225 	}
8226 }
8227 EXPORT_SYMBOL(md_check_recovery);
8228 
8229 void md_reap_sync_thread(struct mddev *mddev)
8230 {
8231 	struct md_rdev *rdev;
8232 
8233 	/* resync has finished, collect result */
8234 	md_unregister_thread(&mddev->sync_thread);
8235 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8236 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8237 		/* success...*/
8238 		/* activate any spares */
8239 		if (mddev->pers->spare_active(mddev)) {
8240 			sysfs_notify(&mddev->kobj, NULL,
8241 				     "degraded");
8242 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8243 		}
8244 	}
8245 	if (mddev_is_clustered(mddev))
8246 		md_cluster_ops->metadata_update_start(mddev);
8247 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8248 	    mddev->pers->finish_reshape)
8249 		mddev->pers->finish_reshape(mddev);
8250 
8251 	/* If array is no-longer degraded, then any saved_raid_disk
8252 	 * information must be scrapped.
8253 	 */
8254 	if (!mddev->degraded)
8255 		rdev_for_each(rdev, mddev)
8256 			rdev->saved_raid_disk = -1;
8257 
8258 	md_update_sb(mddev, 1);
8259 	if (mddev_is_clustered(mddev))
8260 		md_cluster_ops->metadata_update_finish(mddev);
8261 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8262 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8263 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8264 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8265 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8266 	wake_up(&resync_wait);
8267 	/* flag recovery needed just to double check */
8268 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8269 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8270 	md_new_event(mddev);
8271 	if (mddev->event_work.func)
8272 		queue_work(md_misc_wq, &mddev->event_work);
8273 }
8274 EXPORT_SYMBOL(md_reap_sync_thread);
8275 
8276 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8277 {
8278 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8279 	wait_event_timeout(rdev->blocked_wait,
8280 			   !test_bit(Blocked, &rdev->flags) &&
8281 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8282 			   msecs_to_jiffies(5000));
8283 	rdev_dec_pending(rdev, mddev);
8284 }
8285 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8286 
8287 void md_finish_reshape(struct mddev *mddev)
8288 {
8289 	/* called be personality module when reshape completes. */
8290 	struct md_rdev *rdev;
8291 
8292 	rdev_for_each(rdev, mddev) {
8293 		if (rdev->data_offset > rdev->new_data_offset)
8294 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8295 		else
8296 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8297 		rdev->data_offset = rdev->new_data_offset;
8298 	}
8299 }
8300 EXPORT_SYMBOL(md_finish_reshape);
8301 
8302 /* Bad block management.
8303  * We can record which blocks on each device are 'bad' and so just
8304  * fail those blocks, or that stripe, rather than the whole device.
8305  * Entries in the bad-block table are 64bits wide.  This comprises:
8306  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8307  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8308  *  A 'shift' can be set so that larger blocks are tracked and
8309  *  consequently larger devices can be covered.
8310  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8311  *
8312  * Locking of the bad-block table uses a seqlock so md_is_badblock
8313  * might need to retry if it is very unlucky.
8314  * We will sometimes want to check for bad blocks in a bi_end_io function,
8315  * so we use the write_seqlock_irq variant.
8316  *
8317  * When looking for a bad block we specify a range and want to
8318  * know if any block in the range is bad.  So we binary-search
8319  * to the last range that starts at-or-before the given endpoint,
8320  * (or "before the sector after the target range")
8321  * then see if it ends after the given start.
8322  * We return
8323  *  0 if there are no known bad blocks in the range
8324  *  1 if there are known bad block which are all acknowledged
8325  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8326  * plus the start/length of the first bad section we overlap.
8327  */
8328 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8329 		   sector_t *first_bad, int *bad_sectors)
8330 {
8331 	int hi;
8332 	int lo;
8333 	u64 *p = bb->page;
8334 	int rv;
8335 	sector_t target = s + sectors;
8336 	unsigned seq;
8337 
8338 	if (bb->shift > 0) {
8339 		/* round the start down, and the end up */
8340 		s >>= bb->shift;
8341 		target += (1<<bb->shift) - 1;
8342 		target >>= bb->shift;
8343 		sectors = target - s;
8344 	}
8345 	/* 'target' is now the first block after the bad range */
8346 
8347 retry:
8348 	seq = read_seqbegin(&bb->lock);
8349 	lo = 0;
8350 	rv = 0;
8351 	hi = bb->count;
8352 
8353 	/* Binary search between lo and hi for 'target'
8354 	 * i.e. for the last range that starts before 'target'
8355 	 */
8356 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8357 	 * are known not to be the last range before target.
8358 	 * VARIANT: hi-lo is the number of possible
8359 	 * ranges, and decreases until it reaches 1
8360 	 */
8361 	while (hi - lo > 1) {
8362 		int mid = (lo + hi) / 2;
8363 		sector_t a = BB_OFFSET(p[mid]);
8364 		if (a < target)
8365 			/* This could still be the one, earlier ranges
8366 			 * could not. */
8367 			lo = mid;
8368 		else
8369 			/* This and later ranges are definitely out. */
8370 			hi = mid;
8371 	}
8372 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8373 	if (hi > lo) {
8374 		/* need to check all range that end after 's' to see if
8375 		 * any are unacknowledged.
8376 		 */
8377 		while (lo >= 0 &&
8378 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8379 			if (BB_OFFSET(p[lo]) < target) {
8380 				/* starts before the end, and finishes after
8381 				 * the start, so they must overlap
8382 				 */
8383 				if (rv != -1 && BB_ACK(p[lo]))
8384 					rv = 1;
8385 				else
8386 					rv = -1;
8387 				*first_bad = BB_OFFSET(p[lo]);
8388 				*bad_sectors = BB_LEN(p[lo]);
8389 			}
8390 			lo--;
8391 		}
8392 	}
8393 
8394 	if (read_seqretry(&bb->lock, seq))
8395 		goto retry;
8396 
8397 	return rv;
8398 }
8399 EXPORT_SYMBOL_GPL(md_is_badblock);
8400 
8401 /*
8402  * Add a range of bad blocks to the table.
8403  * This might extend the table, or might contract it
8404  * if two adjacent ranges can be merged.
8405  * We binary-search to find the 'insertion' point, then
8406  * decide how best to handle it.
8407  */
8408 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8409 			    int acknowledged)
8410 {
8411 	u64 *p;
8412 	int lo, hi;
8413 	int rv = 1;
8414 	unsigned long flags;
8415 
8416 	if (bb->shift < 0)
8417 		/* badblocks are disabled */
8418 		return 0;
8419 
8420 	if (bb->shift) {
8421 		/* round the start down, and the end up */
8422 		sector_t next = s + sectors;
8423 		s >>= bb->shift;
8424 		next += (1<<bb->shift) - 1;
8425 		next >>= bb->shift;
8426 		sectors = next - s;
8427 	}
8428 
8429 	write_seqlock_irqsave(&bb->lock, flags);
8430 
8431 	p = bb->page;
8432 	lo = 0;
8433 	hi = bb->count;
8434 	/* Find the last range that starts at-or-before 's' */
8435 	while (hi - lo > 1) {
8436 		int mid = (lo + hi) / 2;
8437 		sector_t a = BB_OFFSET(p[mid]);
8438 		if (a <= s)
8439 			lo = mid;
8440 		else
8441 			hi = mid;
8442 	}
8443 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8444 		hi = lo;
8445 
8446 	if (hi > lo) {
8447 		/* we found a range that might merge with the start
8448 		 * of our new range
8449 		 */
8450 		sector_t a = BB_OFFSET(p[lo]);
8451 		sector_t e = a + BB_LEN(p[lo]);
8452 		int ack = BB_ACK(p[lo]);
8453 		if (e >= s) {
8454 			/* Yes, we can merge with a previous range */
8455 			if (s == a && s + sectors >= e)
8456 				/* new range covers old */
8457 				ack = acknowledged;
8458 			else
8459 				ack = ack && acknowledged;
8460 
8461 			if (e < s + sectors)
8462 				e = s + sectors;
8463 			if (e - a <= BB_MAX_LEN) {
8464 				p[lo] = BB_MAKE(a, e-a, ack);
8465 				s = e;
8466 			} else {
8467 				/* does not all fit in one range,
8468 				 * make p[lo] maximal
8469 				 */
8470 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8471 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8472 				s = a + BB_MAX_LEN;
8473 			}
8474 			sectors = e - s;
8475 		}
8476 	}
8477 	if (sectors && hi < bb->count) {
8478 		/* 'hi' points to the first range that starts after 's'.
8479 		 * Maybe we can merge with the start of that range */
8480 		sector_t a = BB_OFFSET(p[hi]);
8481 		sector_t e = a + BB_LEN(p[hi]);
8482 		int ack = BB_ACK(p[hi]);
8483 		if (a <= s + sectors) {
8484 			/* merging is possible */
8485 			if (e <= s + sectors) {
8486 				/* full overlap */
8487 				e = s + sectors;
8488 				ack = acknowledged;
8489 			} else
8490 				ack = ack && acknowledged;
8491 
8492 			a = s;
8493 			if (e - a <= BB_MAX_LEN) {
8494 				p[hi] = BB_MAKE(a, e-a, ack);
8495 				s = e;
8496 			} else {
8497 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8498 				s = a + BB_MAX_LEN;
8499 			}
8500 			sectors = e - s;
8501 			lo = hi;
8502 			hi++;
8503 		}
8504 	}
8505 	if (sectors == 0 && hi < bb->count) {
8506 		/* we might be able to combine lo and hi */
8507 		/* Note: 's' is at the end of 'lo' */
8508 		sector_t a = BB_OFFSET(p[hi]);
8509 		int lolen = BB_LEN(p[lo]);
8510 		int hilen = BB_LEN(p[hi]);
8511 		int newlen = lolen + hilen - (s - a);
8512 		if (s >= a && newlen < BB_MAX_LEN) {
8513 			/* yes, we can combine them */
8514 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8515 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8516 			memmove(p + hi, p + hi + 1,
8517 				(bb->count - hi - 1) * 8);
8518 			bb->count--;
8519 		}
8520 	}
8521 	while (sectors) {
8522 		/* didn't merge (it all).
8523 		 * Need to add a range just before 'hi' */
8524 		if (bb->count >= MD_MAX_BADBLOCKS) {
8525 			/* No room for more */
8526 			rv = 0;
8527 			break;
8528 		} else {
8529 			int this_sectors = sectors;
8530 			memmove(p + hi + 1, p + hi,
8531 				(bb->count - hi) * 8);
8532 			bb->count++;
8533 
8534 			if (this_sectors > BB_MAX_LEN)
8535 				this_sectors = BB_MAX_LEN;
8536 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8537 			sectors -= this_sectors;
8538 			s += this_sectors;
8539 		}
8540 	}
8541 
8542 	bb->changed = 1;
8543 	if (!acknowledged)
8544 		bb->unacked_exist = 1;
8545 	write_sequnlock_irqrestore(&bb->lock, flags);
8546 
8547 	return rv;
8548 }
8549 
8550 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8551 		       int is_new)
8552 {
8553 	int rv;
8554 	if (is_new)
8555 		s += rdev->new_data_offset;
8556 	else
8557 		s += rdev->data_offset;
8558 	rv = md_set_badblocks(&rdev->badblocks,
8559 			      s, sectors, 0);
8560 	if (rv) {
8561 		/* Make sure they get written out promptly */
8562 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8563 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8564 		md_wakeup_thread(rdev->mddev->thread);
8565 	}
8566 	return rv;
8567 }
8568 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8569 
8570 /*
8571  * Remove a range of bad blocks from the table.
8572  * This may involve extending the table if we spilt a region,
8573  * but it must not fail.  So if the table becomes full, we just
8574  * drop the remove request.
8575  */
8576 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8577 {
8578 	u64 *p;
8579 	int lo, hi;
8580 	sector_t target = s + sectors;
8581 	int rv = 0;
8582 
8583 	if (bb->shift > 0) {
8584 		/* When clearing we round the start up and the end down.
8585 		 * This should not matter as the shift should align with
8586 		 * the block size and no rounding should ever be needed.
8587 		 * However it is better the think a block is bad when it
8588 		 * isn't than to think a block is not bad when it is.
8589 		 */
8590 		s += (1<<bb->shift) - 1;
8591 		s >>= bb->shift;
8592 		target >>= bb->shift;
8593 		sectors = target - s;
8594 	}
8595 
8596 	write_seqlock_irq(&bb->lock);
8597 
8598 	p = bb->page;
8599 	lo = 0;
8600 	hi = bb->count;
8601 	/* Find the last range that starts before 'target' */
8602 	while (hi - lo > 1) {
8603 		int mid = (lo + hi) / 2;
8604 		sector_t a = BB_OFFSET(p[mid]);
8605 		if (a < target)
8606 			lo = mid;
8607 		else
8608 			hi = mid;
8609 	}
8610 	if (hi > lo) {
8611 		/* p[lo] is the last range that could overlap the
8612 		 * current range.  Earlier ranges could also overlap,
8613 		 * but only this one can overlap the end of the range.
8614 		 */
8615 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8616 			/* Partial overlap, leave the tail of this range */
8617 			int ack = BB_ACK(p[lo]);
8618 			sector_t a = BB_OFFSET(p[lo]);
8619 			sector_t end = a + BB_LEN(p[lo]);
8620 
8621 			if (a < s) {
8622 				/* we need to split this range */
8623 				if (bb->count >= MD_MAX_BADBLOCKS) {
8624 					rv = -ENOSPC;
8625 					goto out;
8626 				}
8627 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8628 				bb->count++;
8629 				p[lo] = BB_MAKE(a, s-a, ack);
8630 				lo++;
8631 			}
8632 			p[lo] = BB_MAKE(target, end - target, ack);
8633 			/* there is no longer an overlap */
8634 			hi = lo;
8635 			lo--;
8636 		}
8637 		while (lo >= 0 &&
8638 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8639 			/* This range does overlap */
8640 			if (BB_OFFSET(p[lo]) < s) {
8641 				/* Keep the early parts of this range. */
8642 				int ack = BB_ACK(p[lo]);
8643 				sector_t start = BB_OFFSET(p[lo]);
8644 				p[lo] = BB_MAKE(start, s - start, ack);
8645 				/* now low doesn't overlap, so.. */
8646 				break;
8647 			}
8648 			lo--;
8649 		}
8650 		/* 'lo' is strictly before, 'hi' is strictly after,
8651 		 * anything between needs to be discarded
8652 		 */
8653 		if (hi - lo > 1) {
8654 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8655 			bb->count -= (hi - lo - 1);
8656 		}
8657 	}
8658 
8659 	bb->changed = 1;
8660 out:
8661 	write_sequnlock_irq(&bb->lock);
8662 	return rv;
8663 }
8664 
8665 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8666 			 int is_new)
8667 {
8668 	if (is_new)
8669 		s += rdev->new_data_offset;
8670 	else
8671 		s += rdev->data_offset;
8672 	return md_clear_badblocks(&rdev->badblocks,
8673 				  s, sectors);
8674 }
8675 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8676 
8677 /*
8678  * Acknowledge all bad blocks in a list.
8679  * This only succeeds if ->changed is clear.  It is used by
8680  * in-kernel metadata updates
8681  */
8682 void md_ack_all_badblocks(struct badblocks *bb)
8683 {
8684 	if (bb->page == NULL || bb->changed)
8685 		/* no point even trying */
8686 		return;
8687 	write_seqlock_irq(&bb->lock);
8688 
8689 	if (bb->changed == 0 && bb->unacked_exist) {
8690 		u64 *p = bb->page;
8691 		int i;
8692 		for (i = 0; i < bb->count ; i++) {
8693 			if (!BB_ACK(p[i])) {
8694 				sector_t start = BB_OFFSET(p[i]);
8695 				int len = BB_LEN(p[i]);
8696 				p[i] = BB_MAKE(start, len, 1);
8697 			}
8698 		}
8699 		bb->unacked_exist = 0;
8700 	}
8701 	write_sequnlock_irq(&bb->lock);
8702 }
8703 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8704 
8705 /* sysfs access to bad-blocks list.
8706  * We present two files.
8707  * 'bad-blocks' lists sector numbers and lengths of ranges that
8708  *    are recorded as bad.  The list is truncated to fit within
8709  *    the one-page limit of sysfs.
8710  *    Writing "sector length" to this file adds an acknowledged
8711  *    bad block list.
8712  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8713  *    been acknowledged.  Writing to this file adds bad blocks
8714  *    without acknowledging them.  This is largely for testing.
8715  */
8716 
8717 static ssize_t
8718 badblocks_show(struct badblocks *bb, char *page, int unack)
8719 {
8720 	size_t len;
8721 	int i;
8722 	u64 *p = bb->page;
8723 	unsigned seq;
8724 
8725 	if (bb->shift < 0)
8726 		return 0;
8727 
8728 retry:
8729 	seq = read_seqbegin(&bb->lock);
8730 
8731 	len = 0;
8732 	i = 0;
8733 
8734 	while (len < PAGE_SIZE && i < bb->count) {
8735 		sector_t s = BB_OFFSET(p[i]);
8736 		unsigned int length = BB_LEN(p[i]);
8737 		int ack = BB_ACK(p[i]);
8738 		i++;
8739 
8740 		if (unack && ack)
8741 			continue;
8742 
8743 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8744 				(unsigned long long)s << bb->shift,
8745 				length << bb->shift);
8746 	}
8747 	if (unack && len == 0)
8748 		bb->unacked_exist = 0;
8749 
8750 	if (read_seqretry(&bb->lock, seq))
8751 		goto retry;
8752 
8753 	return len;
8754 }
8755 
8756 #define DO_DEBUG 1
8757 
8758 static ssize_t
8759 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8760 {
8761 	unsigned long long sector;
8762 	int length;
8763 	char newline;
8764 #ifdef DO_DEBUG
8765 	/* Allow clearing via sysfs *only* for testing/debugging.
8766 	 * Normally only a successful write may clear a badblock
8767 	 */
8768 	int clear = 0;
8769 	if (page[0] == '-') {
8770 		clear = 1;
8771 		page++;
8772 	}
8773 #endif /* DO_DEBUG */
8774 
8775 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8776 	case 3:
8777 		if (newline != '\n')
8778 			return -EINVAL;
8779 	case 2:
8780 		if (length <= 0)
8781 			return -EINVAL;
8782 		break;
8783 	default:
8784 		return -EINVAL;
8785 	}
8786 
8787 #ifdef DO_DEBUG
8788 	if (clear) {
8789 		md_clear_badblocks(bb, sector, length);
8790 		return len;
8791 	}
8792 #endif /* DO_DEBUG */
8793 	if (md_set_badblocks(bb, sector, length, !unack))
8794 		return len;
8795 	else
8796 		return -ENOSPC;
8797 }
8798 
8799 static int md_notify_reboot(struct notifier_block *this,
8800 			    unsigned long code, void *x)
8801 {
8802 	struct list_head *tmp;
8803 	struct mddev *mddev;
8804 	int need_delay = 0;
8805 
8806 	for_each_mddev(mddev, tmp) {
8807 		if (mddev_trylock(mddev)) {
8808 			if (mddev->pers)
8809 				__md_stop_writes(mddev);
8810 			if (mddev->persistent)
8811 				mddev->safemode = 2;
8812 			mddev_unlock(mddev);
8813 		}
8814 		need_delay = 1;
8815 	}
8816 	/*
8817 	 * certain more exotic SCSI devices are known to be
8818 	 * volatile wrt too early system reboots. While the
8819 	 * right place to handle this issue is the given
8820 	 * driver, we do want to have a safe RAID driver ...
8821 	 */
8822 	if (need_delay)
8823 		mdelay(1000*1);
8824 
8825 	return NOTIFY_DONE;
8826 }
8827 
8828 static struct notifier_block md_notifier = {
8829 	.notifier_call	= md_notify_reboot,
8830 	.next		= NULL,
8831 	.priority	= INT_MAX, /* before any real devices */
8832 };
8833 
8834 static void md_geninit(void)
8835 {
8836 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8837 
8838 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8839 }
8840 
8841 static int __init md_init(void)
8842 {
8843 	int ret = -ENOMEM;
8844 
8845 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8846 	if (!md_wq)
8847 		goto err_wq;
8848 
8849 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8850 	if (!md_misc_wq)
8851 		goto err_misc_wq;
8852 
8853 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8854 		goto err_md;
8855 
8856 	if ((ret = register_blkdev(0, "mdp")) < 0)
8857 		goto err_mdp;
8858 	mdp_major = ret;
8859 
8860 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8861 			    md_probe, NULL, NULL);
8862 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8863 			    md_probe, NULL, NULL);
8864 
8865 	register_reboot_notifier(&md_notifier);
8866 	raid_table_header = register_sysctl_table(raid_root_table);
8867 
8868 	md_geninit();
8869 	return 0;
8870 
8871 err_mdp:
8872 	unregister_blkdev(MD_MAJOR, "md");
8873 err_md:
8874 	destroy_workqueue(md_misc_wq);
8875 err_misc_wq:
8876 	destroy_workqueue(md_wq);
8877 err_wq:
8878 	return ret;
8879 }
8880 
8881 void md_reload_sb(struct mddev *mddev)
8882 {
8883 	struct md_rdev *rdev, *tmp;
8884 
8885 	rdev_for_each_safe(rdev, tmp, mddev) {
8886 		rdev->sb_loaded = 0;
8887 		ClearPageUptodate(rdev->sb_page);
8888 	}
8889 	mddev->raid_disks = 0;
8890 	analyze_sbs(mddev);
8891 	rdev_for_each_safe(rdev, tmp, mddev) {
8892 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8893 		/* since we don't write to faulty devices, we figure out if the
8894 		 *  disk is faulty by comparing events
8895 		 */
8896 		if (mddev->events > sb->events)
8897 			set_bit(Faulty, &rdev->flags);
8898 	}
8899 
8900 }
8901 EXPORT_SYMBOL(md_reload_sb);
8902 
8903 #ifndef MODULE
8904 
8905 /*
8906  * Searches all registered partitions for autorun RAID arrays
8907  * at boot time.
8908  */
8909 
8910 static LIST_HEAD(all_detected_devices);
8911 struct detected_devices_node {
8912 	struct list_head list;
8913 	dev_t dev;
8914 };
8915 
8916 void md_autodetect_dev(dev_t dev)
8917 {
8918 	struct detected_devices_node *node_detected_dev;
8919 
8920 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8921 	if (node_detected_dev) {
8922 		node_detected_dev->dev = dev;
8923 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8924 	} else {
8925 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8926 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8927 	}
8928 }
8929 
8930 static void autostart_arrays(int part)
8931 {
8932 	struct md_rdev *rdev;
8933 	struct detected_devices_node *node_detected_dev;
8934 	dev_t dev;
8935 	int i_scanned, i_passed;
8936 
8937 	i_scanned = 0;
8938 	i_passed = 0;
8939 
8940 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8941 
8942 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8943 		i_scanned++;
8944 		node_detected_dev = list_entry(all_detected_devices.next,
8945 					struct detected_devices_node, list);
8946 		list_del(&node_detected_dev->list);
8947 		dev = node_detected_dev->dev;
8948 		kfree(node_detected_dev);
8949 		rdev = md_import_device(dev,0, 90);
8950 		if (IS_ERR(rdev))
8951 			continue;
8952 
8953 		if (test_bit(Faulty, &rdev->flags))
8954 			continue;
8955 
8956 		set_bit(AutoDetected, &rdev->flags);
8957 		list_add(&rdev->same_set, &pending_raid_disks);
8958 		i_passed++;
8959 	}
8960 
8961 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8962 						i_scanned, i_passed);
8963 
8964 	autorun_devices(part);
8965 }
8966 
8967 #endif /* !MODULE */
8968 
8969 static __exit void md_exit(void)
8970 {
8971 	struct mddev *mddev;
8972 	struct list_head *tmp;
8973 	int delay = 1;
8974 
8975 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8976 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8977 
8978 	unregister_blkdev(MD_MAJOR,"md");
8979 	unregister_blkdev(mdp_major, "mdp");
8980 	unregister_reboot_notifier(&md_notifier);
8981 	unregister_sysctl_table(raid_table_header);
8982 
8983 	/* We cannot unload the modules while some process is
8984 	 * waiting for us in select() or poll() - wake them up
8985 	 */
8986 	md_unloading = 1;
8987 	while (waitqueue_active(&md_event_waiters)) {
8988 		/* not safe to leave yet */
8989 		wake_up(&md_event_waiters);
8990 		msleep(delay);
8991 		delay += delay;
8992 	}
8993 	remove_proc_entry("mdstat", NULL);
8994 
8995 	for_each_mddev(mddev, tmp) {
8996 		export_array(mddev);
8997 		mddev->hold_active = 0;
8998 	}
8999 	destroy_workqueue(md_misc_wq);
9000 	destroy_workqueue(md_wq);
9001 }
9002 
9003 subsys_initcall(md_init);
9004 module_exit(md_exit)
9005 
9006 static int get_ro(char *buffer, struct kernel_param *kp)
9007 {
9008 	return sprintf(buffer, "%d", start_readonly);
9009 }
9010 static int set_ro(const char *val, struct kernel_param *kp)
9011 {
9012 	char *e;
9013 	int num = simple_strtoul(val, &e, 10);
9014 	if (*val && (*e == '\0' || *e == '\n')) {
9015 		start_readonly = num;
9016 		return 0;
9017 	}
9018 	return -EINVAL;
9019 }
9020 
9021 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9022 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9023 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9024 
9025 MODULE_LICENSE("GPL");
9026 MODULE_DESCRIPTION("MD RAID framework");
9027 MODULE_ALIAS("md");
9028 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9029