xref: /openbmc/linux/drivers/md/md.c (revision 4f205687)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	/* bio could be mergeable after passing to underlayer */
288 	bio->bi_rw &= ~REQ_NOMERGE;
289 	mddev->pers->make_request(mddev, bio);
290 
291 	cpu = part_stat_lock();
292 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 	part_stat_unlock();
295 
296 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 		wake_up(&mddev->sb_wait);
298 
299 	return BLK_QC_T_NONE;
300 }
301 
302 /* mddev_suspend makes sure no new requests are submitted
303  * to the device, and that any requests that have been submitted
304  * are completely handled.
305  * Once mddev_detach() is called and completes, the module will be
306  * completely unused.
307  */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
311 	if (mddev->suspended++)
312 		return;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	if (--mddev->suspended)
324 		return;
325 	wake_up(&mddev->sb_wait);
326 	mddev->pers->quiesce(mddev, 0);
327 
328 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 	md_wakeup_thread(mddev->thread);
330 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333 
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 	struct md_personality *pers = mddev->pers;
337 	int ret = 0;
338 
339 	rcu_read_lock();
340 	if (mddev->suspended)
341 		ret = 1;
342 	else if (pers && pers->congested)
343 		ret = pers->congested(mddev, bits);
344 	rcu_read_unlock();
345 	return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 	struct mddev *mddev = data;
351 	return mddev_congested(mddev, bits);
352 }
353 
354 /*
355  * Generic flush handling for md
356  */
357 
358 static void md_end_flush(struct bio *bio)
359 {
360 	struct md_rdev *rdev = bio->bi_private;
361 	struct mddev *mddev = rdev->mddev;
362 
363 	rdev_dec_pending(rdev, mddev);
364 
365 	if (atomic_dec_and_test(&mddev->flush_pending)) {
366 		/* The pre-request flush has finished */
367 		queue_work(md_wq, &mddev->flush_work);
368 	}
369 	bio_put(bio);
370 }
371 
372 static void md_submit_flush_data(struct work_struct *ws);
373 
374 static void submit_flushes(struct work_struct *ws)
375 {
376 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 	struct md_rdev *rdev;
378 
379 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 	atomic_set(&mddev->flush_pending, 1);
381 	rcu_read_lock();
382 	rdev_for_each_rcu(rdev, mddev)
383 		if (rdev->raid_disk >= 0 &&
384 		    !test_bit(Faulty, &rdev->flags)) {
385 			/* Take two references, one is dropped
386 			 * when request finishes, one after
387 			 * we reclaim rcu_read_lock
388 			 */
389 			struct bio *bi;
390 			atomic_inc(&rdev->nr_pending);
391 			atomic_inc(&rdev->nr_pending);
392 			rcu_read_unlock();
393 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 			bi->bi_end_io = md_end_flush;
395 			bi->bi_private = rdev;
396 			bi->bi_bdev = rdev->bdev;
397 			atomic_inc(&mddev->flush_pending);
398 			submit_bio(WRITE_FLUSH, bi);
399 			rcu_read_lock();
400 			rdev_dec_pending(rdev, mddev);
401 		}
402 	rcu_read_unlock();
403 	if (atomic_dec_and_test(&mddev->flush_pending))
404 		queue_work(md_wq, &mddev->flush_work);
405 }
406 
407 static void md_submit_flush_data(struct work_struct *ws)
408 {
409 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 	struct bio *bio = mddev->flush_bio;
411 
412 	if (bio->bi_iter.bi_size == 0)
413 		/* an empty barrier - all done */
414 		bio_endio(bio);
415 	else {
416 		bio->bi_rw &= ~REQ_FLUSH;
417 		mddev->pers->make_request(mddev, bio);
418 	}
419 
420 	mddev->flush_bio = NULL;
421 	wake_up(&mddev->sb_wait);
422 }
423 
424 void md_flush_request(struct mddev *mddev, struct bio *bio)
425 {
426 	spin_lock_irq(&mddev->lock);
427 	wait_event_lock_irq(mddev->sb_wait,
428 			    !mddev->flush_bio,
429 			    mddev->lock);
430 	mddev->flush_bio = bio;
431 	spin_unlock_irq(&mddev->lock);
432 
433 	INIT_WORK(&mddev->flush_work, submit_flushes);
434 	queue_work(md_wq, &mddev->flush_work);
435 }
436 EXPORT_SYMBOL(md_flush_request);
437 
438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
439 {
440 	struct mddev *mddev = cb->data;
441 	md_wakeup_thread(mddev->thread);
442 	kfree(cb);
443 }
444 EXPORT_SYMBOL(md_unplug);
445 
446 static inline struct mddev *mddev_get(struct mddev *mddev)
447 {
448 	atomic_inc(&mddev->active);
449 	return mddev;
450 }
451 
452 static void mddev_delayed_delete(struct work_struct *ws);
453 
454 static void mddev_put(struct mddev *mddev)
455 {
456 	struct bio_set *bs = NULL;
457 
458 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
459 		return;
460 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
461 	    mddev->ctime == 0 && !mddev->hold_active) {
462 		/* Array is not configured at all, and not held active,
463 		 * so destroy it */
464 		list_del_init(&mddev->all_mddevs);
465 		bs = mddev->bio_set;
466 		mddev->bio_set = NULL;
467 		if (mddev->gendisk) {
468 			/* We did a probe so need to clean up.  Call
469 			 * queue_work inside the spinlock so that
470 			 * flush_workqueue() after mddev_find will
471 			 * succeed in waiting for the work to be done.
472 			 */
473 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
474 			queue_work(md_misc_wq, &mddev->del_work);
475 		} else
476 			kfree(mddev);
477 	}
478 	spin_unlock(&all_mddevs_lock);
479 	if (bs)
480 		bioset_free(bs);
481 }
482 
483 static void md_safemode_timeout(unsigned long data);
484 
485 void mddev_init(struct mddev *mddev)
486 {
487 	mutex_init(&mddev->open_mutex);
488 	mutex_init(&mddev->reconfig_mutex);
489 	mutex_init(&mddev->bitmap_info.mutex);
490 	INIT_LIST_HEAD(&mddev->disks);
491 	INIT_LIST_HEAD(&mddev->all_mddevs);
492 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
493 		    (unsigned long) mddev);
494 	atomic_set(&mddev->active, 1);
495 	atomic_set(&mddev->openers, 0);
496 	atomic_set(&mddev->active_io, 0);
497 	spin_lock_init(&mddev->lock);
498 	atomic_set(&mddev->flush_pending, 0);
499 	init_waitqueue_head(&mddev->sb_wait);
500 	init_waitqueue_head(&mddev->recovery_wait);
501 	mddev->reshape_position = MaxSector;
502 	mddev->reshape_backwards = 0;
503 	mddev->last_sync_action = "none";
504 	mddev->resync_min = 0;
505 	mddev->resync_max = MaxSector;
506 	mddev->level = LEVEL_NONE;
507 }
508 EXPORT_SYMBOL_GPL(mddev_init);
509 
510 static struct mddev *mddev_find(dev_t unit)
511 {
512 	struct mddev *mddev, *new = NULL;
513 
514 	if (unit && MAJOR(unit) != MD_MAJOR)
515 		unit &= ~((1<<MdpMinorShift)-1);
516 
517  retry:
518 	spin_lock(&all_mddevs_lock);
519 
520 	if (unit) {
521 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
522 			if (mddev->unit == unit) {
523 				mddev_get(mddev);
524 				spin_unlock(&all_mddevs_lock);
525 				kfree(new);
526 				return mddev;
527 			}
528 
529 		if (new) {
530 			list_add(&new->all_mddevs, &all_mddevs);
531 			spin_unlock(&all_mddevs_lock);
532 			new->hold_active = UNTIL_IOCTL;
533 			return new;
534 		}
535 	} else if (new) {
536 		/* find an unused unit number */
537 		static int next_minor = 512;
538 		int start = next_minor;
539 		int is_free = 0;
540 		int dev = 0;
541 		while (!is_free) {
542 			dev = MKDEV(MD_MAJOR, next_minor);
543 			next_minor++;
544 			if (next_minor > MINORMASK)
545 				next_minor = 0;
546 			if (next_minor == start) {
547 				/* Oh dear, all in use. */
548 				spin_unlock(&all_mddevs_lock);
549 				kfree(new);
550 				return NULL;
551 			}
552 
553 			is_free = 1;
554 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
555 				if (mddev->unit == dev) {
556 					is_free = 0;
557 					break;
558 				}
559 		}
560 		new->unit = dev;
561 		new->md_minor = MINOR(dev);
562 		new->hold_active = UNTIL_STOP;
563 		list_add(&new->all_mddevs, &all_mddevs);
564 		spin_unlock(&all_mddevs_lock);
565 		return new;
566 	}
567 	spin_unlock(&all_mddevs_lock);
568 
569 	new = kzalloc(sizeof(*new), GFP_KERNEL);
570 	if (!new)
571 		return NULL;
572 
573 	new->unit = unit;
574 	if (MAJOR(unit) == MD_MAJOR)
575 		new->md_minor = MINOR(unit);
576 	else
577 		new->md_minor = MINOR(unit) >> MdpMinorShift;
578 
579 	mddev_init(new);
580 
581 	goto retry;
582 }
583 
584 static struct attribute_group md_redundancy_group;
585 
586 void mddev_unlock(struct mddev *mddev)
587 {
588 	if (mddev->to_remove) {
589 		/* These cannot be removed under reconfig_mutex as
590 		 * an access to the files will try to take reconfig_mutex
591 		 * while holding the file unremovable, which leads to
592 		 * a deadlock.
593 		 * So hold set sysfs_active while the remove in happeing,
594 		 * and anything else which might set ->to_remove or my
595 		 * otherwise change the sysfs namespace will fail with
596 		 * -EBUSY if sysfs_active is still set.
597 		 * We set sysfs_active under reconfig_mutex and elsewhere
598 		 * test it under the same mutex to ensure its correct value
599 		 * is seen.
600 		 */
601 		struct attribute_group *to_remove = mddev->to_remove;
602 		mddev->to_remove = NULL;
603 		mddev->sysfs_active = 1;
604 		mutex_unlock(&mddev->reconfig_mutex);
605 
606 		if (mddev->kobj.sd) {
607 			if (to_remove != &md_redundancy_group)
608 				sysfs_remove_group(&mddev->kobj, to_remove);
609 			if (mddev->pers == NULL ||
610 			    mddev->pers->sync_request == NULL) {
611 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
612 				if (mddev->sysfs_action)
613 					sysfs_put(mddev->sysfs_action);
614 				mddev->sysfs_action = NULL;
615 			}
616 		}
617 		mddev->sysfs_active = 0;
618 	} else
619 		mutex_unlock(&mddev->reconfig_mutex);
620 
621 	/* As we've dropped the mutex we need a spinlock to
622 	 * make sure the thread doesn't disappear
623 	 */
624 	spin_lock(&pers_lock);
625 	md_wakeup_thread(mddev->thread);
626 	spin_unlock(&pers_lock);
627 }
628 EXPORT_SYMBOL_GPL(mddev_unlock);
629 
630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
631 {
632 	struct md_rdev *rdev;
633 
634 	rdev_for_each_rcu(rdev, mddev)
635 		if (rdev->desc_nr == nr)
636 			return rdev;
637 
638 	return NULL;
639 }
640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
641 
642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
643 {
644 	struct md_rdev *rdev;
645 
646 	rdev_for_each(rdev, mddev)
647 		if (rdev->bdev->bd_dev == dev)
648 			return rdev;
649 
650 	return NULL;
651 }
652 
653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
654 {
655 	struct md_rdev *rdev;
656 
657 	rdev_for_each_rcu(rdev, mddev)
658 		if (rdev->bdev->bd_dev == dev)
659 			return rdev;
660 
661 	return NULL;
662 }
663 
664 static struct md_personality *find_pers(int level, char *clevel)
665 {
666 	struct md_personality *pers;
667 	list_for_each_entry(pers, &pers_list, list) {
668 		if (level != LEVEL_NONE && pers->level == level)
669 			return pers;
670 		if (strcmp(pers->name, clevel)==0)
671 			return pers;
672 	}
673 	return NULL;
674 }
675 
676 /* return the offset of the super block in 512byte sectors */
677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
678 {
679 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
680 	return MD_NEW_SIZE_SECTORS(num_sectors);
681 }
682 
683 static int alloc_disk_sb(struct md_rdev *rdev)
684 {
685 	rdev->sb_page = alloc_page(GFP_KERNEL);
686 	if (!rdev->sb_page) {
687 		printk(KERN_ALERT "md: out of memory.\n");
688 		return -ENOMEM;
689 	}
690 
691 	return 0;
692 }
693 
694 void md_rdev_clear(struct md_rdev *rdev)
695 {
696 	if (rdev->sb_page) {
697 		put_page(rdev->sb_page);
698 		rdev->sb_loaded = 0;
699 		rdev->sb_page = NULL;
700 		rdev->sb_start = 0;
701 		rdev->sectors = 0;
702 	}
703 	if (rdev->bb_page) {
704 		put_page(rdev->bb_page);
705 		rdev->bb_page = NULL;
706 	}
707 	badblocks_exit(&rdev->badblocks);
708 }
709 EXPORT_SYMBOL_GPL(md_rdev_clear);
710 
711 static void super_written(struct bio *bio)
712 {
713 	struct md_rdev *rdev = bio->bi_private;
714 	struct mddev *mddev = rdev->mddev;
715 
716 	if (bio->bi_error) {
717 		printk("md: super_written gets error=%d\n", bio->bi_error);
718 		md_error(mddev, rdev);
719 	}
720 
721 	if (atomic_dec_and_test(&mddev->pending_writes))
722 		wake_up(&mddev->sb_wait);
723 	rdev_dec_pending(rdev, mddev);
724 	bio_put(bio);
725 }
726 
727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
728 		   sector_t sector, int size, struct page *page)
729 {
730 	/* write first size bytes of page to sector of rdev
731 	 * Increment mddev->pending_writes before returning
732 	 * and decrement it on completion, waking up sb_wait
733 	 * if zero is reached.
734 	 * If an error occurred, call md_error
735 	 */
736 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
737 
738 	atomic_inc(&rdev->nr_pending);
739 
740 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
741 	bio->bi_iter.bi_sector = sector;
742 	bio_add_page(bio, page, size, 0);
743 	bio->bi_private = rdev;
744 	bio->bi_end_io = super_written;
745 
746 	atomic_inc(&mddev->pending_writes);
747 	submit_bio(WRITE_FLUSH_FUA, bio);
748 }
749 
750 void md_super_wait(struct mddev *mddev)
751 {
752 	/* wait for all superblock writes that were scheduled to complete */
753 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
754 }
755 
756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
757 		 struct page *page, int rw, bool metadata_op)
758 {
759 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
760 	int ret;
761 
762 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
763 		rdev->meta_bdev : rdev->bdev;
764 	if (metadata_op)
765 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
766 	else if (rdev->mddev->reshape_position != MaxSector &&
767 		 (rdev->mddev->reshape_backwards ==
768 		  (sector >= rdev->mddev->reshape_position)))
769 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
770 	else
771 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
772 	bio_add_page(bio, page, size, 0);
773 	submit_bio_wait(rw, bio);
774 
775 	ret = !bio->bi_error;
776 	bio_put(bio);
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(sync_page_io);
780 
781 static int read_disk_sb(struct md_rdev *rdev, int size)
782 {
783 	char b[BDEVNAME_SIZE];
784 
785 	if (rdev->sb_loaded)
786 		return 0;
787 
788 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
789 		goto fail;
790 	rdev->sb_loaded = 1;
791 	return 0;
792 
793 fail:
794 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
795 		bdevname(rdev->bdev,b));
796 	return -EINVAL;
797 }
798 
799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
802 		sb1->set_uuid1 == sb2->set_uuid1 &&
803 		sb1->set_uuid2 == sb2->set_uuid2 &&
804 		sb1->set_uuid3 == sb2->set_uuid3;
805 }
806 
807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 	int ret;
810 	mdp_super_t *tmp1, *tmp2;
811 
812 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
813 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
814 
815 	if (!tmp1 || !tmp2) {
816 		ret = 0;
817 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
818 		goto abort;
819 	}
820 
821 	*tmp1 = *sb1;
822 	*tmp2 = *sb2;
823 
824 	/*
825 	 * nr_disks is not constant
826 	 */
827 	tmp1->nr_disks = 0;
828 	tmp2->nr_disks = 0;
829 
830 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
831 abort:
832 	kfree(tmp1);
833 	kfree(tmp2);
834 	return ret;
835 }
836 
837 static u32 md_csum_fold(u32 csum)
838 {
839 	csum = (csum & 0xffff) + (csum >> 16);
840 	return (csum & 0xffff) + (csum >> 16);
841 }
842 
843 static unsigned int calc_sb_csum(mdp_super_t *sb)
844 {
845 	u64 newcsum = 0;
846 	u32 *sb32 = (u32*)sb;
847 	int i;
848 	unsigned int disk_csum, csum;
849 
850 	disk_csum = sb->sb_csum;
851 	sb->sb_csum = 0;
852 
853 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
854 		newcsum += sb32[i];
855 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
856 
857 #ifdef CONFIG_ALPHA
858 	/* This used to use csum_partial, which was wrong for several
859 	 * reasons including that different results are returned on
860 	 * different architectures.  It isn't critical that we get exactly
861 	 * the same return value as before (we always csum_fold before
862 	 * testing, and that removes any differences).  However as we
863 	 * know that csum_partial always returned a 16bit value on
864 	 * alphas, do a fold to maximise conformity to previous behaviour.
865 	 */
866 	sb->sb_csum = md_csum_fold(disk_csum);
867 #else
868 	sb->sb_csum = disk_csum;
869 #endif
870 	return csum;
871 }
872 
873 /*
874  * Handle superblock details.
875  * We want to be able to handle multiple superblock formats
876  * so we have a common interface to them all, and an array of
877  * different handlers.
878  * We rely on user-space to write the initial superblock, and support
879  * reading and updating of superblocks.
880  * Interface methods are:
881  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
882  *      loads and validates a superblock on dev.
883  *      if refdev != NULL, compare superblocks on both devices
884  *    Return:
885  *      0 - dev has a superblock that is compatible with refdev
886  *      1 - dev has a superblock that is compatible and newer than refdev
887  *          so dev should be used as the refdev in future
888  *     -EINVAL superblock incompatible or invalid
889  *     -othererror e.g. -EIO
890  *
891  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
892  *      Verify that dev is acceptable into mddev.
893  *       The first time, mddev->raid_disks will be 0, and data from
894  *       dev should be merged in.  Subsequent calls check that dev
895  *       is new enough.  Return 0 or -EINVAL
896  *
897  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
898  *     Update the superblock for rdev with data in mddev
899  *     This does not write to disc.
900  *
901  */
902 
903 struct super_type  {
904 	char		    *name;
905 	struct module	    *owner;
906 	int		    (*load_super)(struct md_rdev *rdev,
907 					  struct md_rdev *refdev,
908 					  int minor_version);
909 	int		    (*validate_super)(struct mddev *mddev,
910 					      struct md_rdev *rdev);
911 	void		    (*sync_super)(struct mddev *mddev,
912 					  struct md_rdev *rdev);
913 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
914 						sector_t num_sectors);
915 	int		    (*allow_new_offset)(struct md_rdev *rdev,
916 						unsigned long long new_offset);
917 };
918 
919 /*
920  * Check that the given mddev has no bitmap.
921  *
922  * This function is called from the run method of all personalities that do not
923  * support bitmaps. It prints an error message and returns non-zero if mddev
924  * has a bitmap. Otherwise, it returns 0.
925  *
926  */
927 int md_check_no_bitmap(struct mddev *mddev)
928 {
929 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
930 		return 0;
931 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
932 		mdname(mddev), mddev->pers->name);
933 	return 1;
934 }
935 EXPORT_SYMBOL(md_check_no_bitmap);
936 
937 /*
938  * load_super for 0.90.0
939  */
940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
941 {
942 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
943 	mdp_super_t *sb;
944 	int ret;
945 
946 	/*
947 	 * Calculate the position of the superblock (512byte sectors),
948 	 * it's at the end of the disk.
949 	 *
950 	 * It also happens to be a multiple of 4Kb.
951 	 */
952 	rdev->sb_start = calc_dev_sboffset(rdev);
953 
954 	ret = read_disk_sb(rdev, MD_SB_BYTES);
955 	if (ret) return ret;
956 
957 	ret = -EINVAL;
958 
959 	bdevname(rdev->bdev, b);
960 	sb = page_address(rdev->sb_page);
961 
962 	if (sb->md_magic != MD_SB_MAGIC) {
963 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
964 		       b);
965 		goto abort;
966 	}
967 
968 	if (sb->major_version != 0 ||
969 	    sb->minor_version < 90 ||
970 	    sb->minor_version > 91) {
971 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
972 			sb->major_version, sb->minor_version,
973 			b);
974 		goto abort;
975 	}
976 
977 	if (sb->raid_disks <= 0)
978 		goto abort;
979 
980 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
981 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
982 			b);
983 		goto abort;
984 	}
985 
986 	rdev->preferred_minor = sb->md_minor;
987 	rdev->data_offset = 0;
988 	rdev->new_data_offset = 0;
989 	rdev->sb_size = MD_SB_BYTES;
990 	rdev->badblocks.shift = -1;
991 
992 	if (sb->level == LEVEL_MULTIPATH)
993 		rdev->desc_nr = -1;
994 	else
995 		rdev->desc_nr = sb->this_disk.number;
996 
997 	if (!refdev) {
998 		ret = 1;
999 	} else {
1000 		__u64 ev1, ev2;
1001 		mdp_super_t *refsb = page_address(refdev->sb_page);
1002 		if (!uuid_equal(refsb, sb)) {
1003 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1004 				b, bdevname(refdev->bdev,b2));
1005 			goto abort;
1006 		}
1007 		if (!sb_equal(refsb, sb)) {
1008 			printk(KERN_WARNING "md: %s has same UUID"
1009 			       " but different superblock to %s\n",
1010 			       b, bdevname(refdev->bdev, b2));
1011 			goto abort;
1012 		}
1013 		ev1 = md_event(sb);
1014 		ev2 = md_event(refsb);
1015 		if (ev1 > ev2)
1016 			ret = 1;
1017 		else
1018 			ret = 0;
1019 	}
1020 	rdev->sectors = rdev->sb_start;
1021 	/* Limit to 4TB as metadata cannot record more than that.
1022 	 * (not needed for Linear and RAID0 as metadata doesn't
1023 	 * record this size)
1024 	 */
1025 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1026 	    sb->level >= 1)
1027 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1028 
1029 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1030 		/* "this cannot possibly happen" ... */
1031 		ret = -EINVAL;
1032 
1033  abort:
1034 	return ret;
1035 }
1036 
1037 /*
1038  * validate_super for 0.90.0
1039  */
1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1041 {
1042 	mdp_disk_t *desc;
1043 	mdp_super_t *sb = page_address(rdev->sb_page);
1044 	__u64 ev1 = md_event(sb);
1045 
1046 	rdev->raid_disk = -1;
1047 	clear_bit(Faulty, &rdev->flags);
1048 	clear_bit(In_sync, &rdev->flags);
1049 	clear_bit(Bitmap_sync, &rdev->flags);
1050 	clear_bit(WriteMostly, &rdev->flags);
1051 
1052 	if (mddev->raid_disks == 0) {
1053 		mddev->major_version = 0;
1054 		mddev->minor_version = sb->minor_version;
1055 		mddev->patch_version = sb->patch_version;
1056 		mddev->external = 0;
1057 		mddev->chunk_sectors = sb->chunk_size >> 9;
1058 		mddev->ctime = sb->ctime;
1059 		mddev->utime = sb->utime;
1060 		mddev->level = sb->level;
1061 		mddev->clevel[0] = 0;
1062 		mddev->layout = sb->layout;
1063 		mddev->raid_disks = sb->raid_disks;
1064 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1065 		mddev->events = ev1;
1066 		mddev->bitmap_info.offset = 0;
1067 		mddev->bitmap_info.space = 0;
1068 		/* bitmap can use 60 K after the 4K superblocks */
1069 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1070 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1071 		mddev->reshape_backwards = 0;
1072 
1073 		if (mddev->minor_version >= 91) {
1074 			mddev->reshape_position = sb->reshape_position;
1075 			mddev->delta_disks = sb->delta_disks;
1076 			mddev->new_level = sb->new_level;
1077 			mddev->new_layout = sb->new_layout;
1078 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1079 			if (mddev->delta_disks < 0)
1080 				mddev->reshape_backwards = 1;
1081 		} else {
1082 			mddev->reshape_position = MaxSector;
1083 			mddev->delta_disks = 0;
1084 			mddev->new_level = mddev->level;
1085 			mddev->new_layout = mddev->layout;
1086 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1087 		}
1088 
1089 		if (sb->state & (1<<MD_SB_CLEAN))
1090 			mddev->recovery_cp = MaxSector;
1091 		else {
1092 			if (sb->events_hi == sb->cp_events_hi &&
1093 				sb->events_lo == sb->cp_events_lo) {
1094 				mddev->recovery_cp = sb->recovery_cp;
1095 			} else
1096 				mddev->recovery_cp = 0;
1097 		}
1098 
1099 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1100 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1101 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1102 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1103 
1104 		mddev->max_disks = MD_SB_DISKS;
1105 
1106 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1107 		    mddev->bitmap_info.file == NULL) {
1108 			mddev->bitmap_info.offset =
1109 				mddev->bitmap_info.default_offset;
1110 			mddev->bitmap_info.space =
1111 				mddev->bitmap_info.default_space;
1112 		}
1113 
1114 	} else if (mddev->pers == NULL) {
1115 		/* Insist on good event counter while assembling, except
1116 		 * for spares (which don't need an event count) */
1117 		++ev1;
1118 		if (sb->disks[rdev->desc_nr].state & (
1119 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1120 			if (ev1 < mddev->events)
1121 				return -EINVAL;
1122 	} else if (mddev->bitmap) {
1123 		/* if adding to array with a bitmap, then we can accept an
1124 		 * older device ... but not too old.
1125 		 */
1126 		if (ev1 < mddev->bitmap->events_cleared)
1127 			return 0;
1128 		if (ev1 < mddev->events)
1129 			set_bit(Bitmap_sync, &rdev->flags);
1130 	} else {
1131 		if (ev1 < mddev->events)
1132 			/* just a hot-add of a new device, leave raid_disk at -1 */
1133 			return 0;
1134 	}
1135 
1136 	if (mddev->level != LEVEL_MULTIPATH) {
1137 		desc = sb->disks + rdev->desc_nr;
1138 
1139 		if (desc->state & (1<<MD_DISK_FAULTY))
1140 			set_bit(Faulty, &rdev->flags);
1141 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1142 			    desc->raid_disk < mddev->raid_disks */) {
1143 			set_bit(In_sync, &rdev->flags);
1144 			rdev->raid_disk = desc->raid_disk;
1145 			rdev->saved_raid_disk = desc->raid_disk;
1146 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1147 			/* active but not in sync implies recovery up to
1148 			 * reshape position.  We don't know exactly where
1149 			 * that is, so set to zero for now */
1150 			if (mddev->minor_version >= 91) {
1151 				rdev->recovery_offset = 0;
1152 				rdev->raid_disk = desc->raid_disk;
1153 			}
1154 		}
1155 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1156 			set_bit(WriteMostly, &rdev->flags);
1157 	} else /* MULTIPATH are always insync */
1158 		set_bit(In_sync, &rdev->flags);
1159 	return 0;
1160 }
1161 
1162 /*
1163  * sync_super for 0.90.0
1164  */
1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1166 {
1167 	mdp_super_t *sb;
1168 	struct md_rdev *rdev2;
1169 	int next_spare = mddev->raid_disks;
1170 
1171 	/* make rdev->sb match mddev data..
1172 	 *
1173 	 * 1/ zero out disks
1174 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1175 	 * 3/ any empty disks < next_spare become removed
1176 	 *
1177 	 * disks[0] gets initialised to REMOVED because
1178 	 * we cannot be sure from other fields if it has
1179 	 * been initialised or not.
1180 	 */
1181 	int i;
1182 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1183 
1184 	rdev->sb_size = MD_SB_BYTES;
1185 
1186 	sb = page_address(rdev->sb_page);
1187 
1188 	memset(sb, 0, sizeof(*sb));
1189 
1190 	sb->md_magic = MD_SB_MAGIC;
1191 	sb->major_version = mddev->major_version;
1192 	sb->patch_version = mddev->patch_version;
1193 	sb->gvalid_words  = 0; /* ignored */
1194 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1195 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1196 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1197 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1198 
1199 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1200 	sb->level = mddev->level;
1201 	sb->size = mddev->dev_sectors / 2;
1202 	sb->raid_disks = mddev->raid_disks;
1203 	sb->md_minor = mddev->md_minor;
1204 	sb->not_persistent = 0;
1205 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1206 	sb->state = 0;
1207 	sb->events_hi = (mddev->events>>32);
1208 	sb->events_lo = (u32)mddev->events;
1209 
1210 	if (mddev->reshape_position == MaxSector)
1211 		sb->minor_version = 90;
1212 	else {
1213 		sb->minor_version = 91;
1214 		sb->reshape_position = mddev->reshape_position;
1215 		sb->new_level = mddev->new_level;
1216 		sb->delta_disks = mddev->delta_disks;
1217 		sb->new_layout = mddev->new_layout;
1218 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1219 	}
1220 	mddev->minor_version = sb->minor_version;
1221 	if (mddev->in_sync)
1222 	{
1223 		sb->recovery_cp = mddev->recovery_cp;
1224 		sb->cp_events_hi = (mddev->events>>32);
1225 		sb->cp_events_lo = (u32)mddev->events;
1226 		if (mddev->recovery_cp == MaxSector)
1227 			sb->state = (1<< MD_SB_CLEAN);
1228 	} else
1229 		sb->recovery_cp = 0;
1230 
1231 	sb->layout = mddev->layout;
1232 	sb->chunk_size = mddev->chunk_sectors << 9;
1233 
1234 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1235 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1236 
1237 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1238 	rdev_for_each(rdev2, mddev) {
1239 		mdp_disk_t *d;
1240 		int desc_nr;
1241 		int is_active = test_bit(In_sync, &rdev2->flags);
1242 
1243 		if (rdev2->raid_disk >= 0 &&
1244 		    sb->minor_version >= 91)
1245 			/* we have nowhere to store the recovery_offset,
1246 			 * but if it is not below the reshape_position,
1247 			 * we can piggy-back on that.
1248 			 */
1249 			is_active = 1;
1250 		if (rdev2->raid_disk < 0 ||
1251 		    test_bit(Faulty, &rdev2->flags))
1252 			is_active = 0;
1253 		if (is_active)
1254 			desc_nr = rdev2->raid_disk;
1255 		else
1256 			desc_nr = next_spare++;
1257 		rdev2->desc_nr = desc_nr;
1258 		d = &sb->disks[rdev2->desc_nr];
1259 		nr_disks++;
1260 		d->number = rdev2->desc_nr;
1261 		d->major = MAJOR(rdev2->bdev->bd_dev);
1262 		d->minor = MINOR(rdev2->bdev->bd_dev);
1263 		if (is_active)
1264 			d->raid_disk = rdev2->raid_disk;
1265 		else
1266 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1267 		if (test_bit(Faulty, &rdev2->flags))
1268 			d->state = (1<<MD_DISK_FAULTY);
1269 		else if (is_active) {
1270 			d->state = (1<<MD_DISK_ACTIVE);
1271 			if (test_bit(In_sync, &rdev2->flags))
1272 				d->state |= (1<<MD_DISK_SYNC);
1273 			active++;
1274 			working++;
1275 		} else {
1276 			d->state = 0;
1277 			spare++;
1278 			working++;
1279 		}
1280 		if (test_bit(WriteMostly, &rdev2->flags))
1281 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1282 	}
1283 	/* now set the "removed" and "faulty" bits on any missing devices */
1284 	for (i=0 ; i < mddev->raid_disks ; i++) {
1285 		mdp_disk_t *d = &sb->disks[i];
1286 		if (d->state == 0 && d->number == 0) {
1287 			d->number = i;
1288 			d->raid_disk = i;
1289 			d->state = (1<<MD_DISK_REMOVED);
1290 			d->state |= (1<<MD_DISK_FAULTY);
1291 			failed++;
1292 		}
1293 	}
1294 	sb->nr_disks = nr_disks;
1295 	sb->active_disks = active;
1296 	sb->working_disks = working;
1297 	sb->failed_disks = failed;
1298 	sb->spare_disks = spare;
1299 
1300 	sb->this_disk = sb->disks[rdev->desc_nr];
1301 	sb->sb_csum = calc_sb_csum(sb);
1302 }
1303 
1304 /*
1305  * rdev_size_change for 0.90.0
1306  */
1307 static unsigned long long
1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1309 {
1310 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1311 		return 0; /* component must fit device */
1312 	if (rdev->mddev->bitmap_info.offset)
1313 		return 0; /* can't move bitmap */
1314 	rdev->sb_start = calc_dev_sboffset(rdev);
1315 	if (!num_sectors || num_sectors > rdev->sb_start)
1316 		num_sectors = rdev->sb_start;
1317 	/* Limit to 4TB as metadata cannot record more than that.
1318 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1319 	 */
1320 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1321 	    rdev->mddev->level >= 1)
1322 		num_sectors = (sector_t)(2ULL << 32) - 2;
1323 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1324 		       rdev->sb_page);
1325 	md_super_wait(rdev->mddev);
1326 	return num_sectors;
1327 }
1328 
1329 static int
1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1331 {
1332 	/* non-zero offset changes not possible with v0.90 */
1333 	return new_offset == 0;
1334 }
1335 
1336 /*
1337  * version 1 superblock
1338  */
1339 
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1341 {
1342 	__le32 disk_csum;
1343 	u32 csum;
1344 	unsigned long long newcsum;
1345 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 	__le32 *isuper = (__le32*)sb;
1347 
1348 	disk_csum = sb->sb_csum;
1349 	sb->sb_csum = 0;
1350 	newcsum = 0;
1351 	for (; size >= 4; size -= 4)
1352 		newcsum += le32_to_cpu(*isuper++);
1353 
1354 	if (size == 2)
1355 		newcsum += le16_to_cpu(*(__le16*) isuper);
1356 
1357 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1358 	sb->sb_csum = disk_csum;
1359 	return cpu_to_le32(csum);
1360 }
1361 
1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1363 {
1364 	struct mdp_superblock_1 *sb;
1365 	int ret;
1366 	sector_t sb_start;
1367 	sector_t sectors;
1368 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 	int bmask;
1370 
1371 	/*
1372 	 * Calculate the position of the superblock in 512byte sectors.
1373 	 * It is always aligned to a 4K boundary and
1374 	 * depeding on minor_version, it can be:
1375 	 * 0: At least 8K, but less than 12K, from end of device
1376 	 * 1: At start of device
1377 	 * 2: 4K from start of device.
1378 	 */
1379 	switch(minor_version) {
1380 	case 0:
1381 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1382 		sb_start -= 8*2;
1383 		sb_start &= ~(sector_t)(4*2-1);
1384 		break;
1385 	case 1:
1386 		sb_start = 0;
1387 		break;
1388 	case 2:
1389 		sb_start = 8;
1390 		break;
1391 	default:
1392 		return -EINVAL;
1393 	}
1394 	rdev->sb_start = sb_start;
1395 
1396 	/* superblock is rarely larger than 1K, but it can be larger,
1397 	 * and it is safe to read 4k, so we do that
1398 	 */
1399 	ret = read_disk_sb(rdev, 4096);
1400 	if (ret) return ret;
1401 
1402 	sb = page_address(rdev->sb_page);
1403 
1404 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1405 	    sb->major_version != cpu_to_le32(1) ||
1406 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1407 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1408 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1409 		return -EINVAL;
1410 
1411 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1412 		printk("md: invalid superblock checksum on %s\n",
1413 			bdevname(rdev->bdev,b));
1414 		return -EINVAL;
1415 	}
1416 	if (le64_to_cpu(sb->data_size) < 10) {
1417 		printk("md: data_size too small on %s\n",
1418 		       bdevname(rdev->bdev,b));
1419 		return -EINVAL;
1420 	}
1421 	if (sb->pad0 ||
1422 	    sb->pad3[0] ||
1423 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1424 		/* Some padding is non-zero, might be a new feature */
1425 		return -EINVAL;
1426 
1427 	rdev->preferred_minor = 0xffff;
1428 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1429 	rdev->new_data_offset = rdev->data_offset;
1430 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1431 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1432 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1433 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1434 
1435 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1436 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1437 	if (rdev->sb_size & bmask)
1438 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1439 
1440 	if (minor_version
1441 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1442 		return -EINVAL;
1443 	if (minor_version
1444 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1445 		return -EINVAL;
1446 
1447 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1448 		rdev->desc_nr = -1;
1449 	else
1450 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1451 
1452 	if (!rdev->bb_page) {
1453 		rdev->bb_page = alloc_page(GFP_KERNEL);
1454 		if (!rdev->bb_page)
1455 			return -ENOMEM;
1456 	}
1457 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1458 	    rdev->badblocks.count == 0) {
1459 		/* need to load the bad block list.
1460 		 * Currently we limit it to one page.
1461 		 */
1462 		s32 offset;
1463 		sector_t bb_sector;
1464 		u64 *bbp;
1465 		int i;
1466 		int sectors = le16_to_cpu(sb->bblog_size);
1467 		if (sectors > (PAGE_SIZE / 512))
1468 			return -EINVAL;
1469 		offset = le32_to_cpu(sb->bblog_offset);
1470 		if (offset == 0)
1471 			return -EINVAL;
1472 		bb_sector = (long long)offset;
1473 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1474 				  rdev->bb_page, READ, true))
1475 			return -EIO;
1476 		bbp = (u64 *)page_address(rdev->bb_page);
1477 		rdev->badblocks.shift = sb->bblog_shift;
1478 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1479 			u64 bb = le64_to_cpu(*bbp);
1480 			int count = bb & (0x3ff);
1481 			u64 sector = bb >> 10;
1482 			sector <<= sb->bblog_shift;
1483 			count <<= sb->bblog_shift;
1484 			if (bb + 1 == 0)
1485 				break;
1486 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1487 				return -EINVAL;
1488 		}
1489 	} else if (sb->bblog_offset != 0)
1490 		rdev->badblocks.shift = 0;
1491 
1492 	if (!refdev) {
1493 		ret = 1;
1494 	} else {
1495 		__u64 ev1, ev2;
1496 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1497 
1498 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1499 		    sb->level != refsb->level ||
1500 		    sb->layout != refsb->layout ||
1501 		    sb->chunksize != refsb->chunksize) {
1502 			printk(KERN_WARNING "md: %s has strangely different"
1503 				" superblock to %s\n",
1504 				bdevname(rdev->bdev,b),
1505 				bdevname(refdev->bdev,b2));
1506 			return -EINVAL;
1507 		}
1508 		ev1 = le64_to_cpu(sb->events);
1509 		ev2 = le64_to_cpu(refsb->events);
1510 
1511 		if (ev1 > ev2)
1512 			ret = 1;
1513 		else
1514 			ret = 0;
1515 	}
1516 	if (minor_version) {
1517 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1518 		sectors -= rdev->data_offset;
1519 	} else
1520 		sectors = rdev->sb_start;
1521 	if (sectors < le64_to_cpu(sb->data_size))
1522 		return -EINVAL;
1523 	rdev->sectors = le64_to_cpu(sb->data_size);
1524 	return ret;
1525 }
1526 
1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1528 {
1529 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1530 	__u64 ev1 = le64_to_cpu(sb->events);
1531 
1532 	rdev->raid_disk = -1;
1533 	clear_bit(Faulty, &rdev->flags);
1534 	clear_bit(In_sync, &rdev->flags);
1535 	clear_bit(Bitmap_sync, &rdev->flags);
1536 	clear_bit(WriteMostly, &rdev->flags);
1537 
1538 	if (mddev->raid_disks == 0) {
1539 		mddev->major_version = 1;
1540 		mddev->patch_version = 0;
1541 		mddev->external = 0;
1542 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1543 		mddev->ctime = le64_to_cpu(sb->ctime);
1544 		mddev->utime = le64_to_cpu(sb->utime);
1545 		mddev->level = le32_to_cpu(sb->level);
1546 		mddev->clevel[0] = 0;
1547 		mddev->layout = le32_to_cpu(sb->layout);
1548 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1549 		mddev->dev_sectors = le64_to_cpu(sb->size);
1550 		mddev->events = ev1;
1551 		mddev->bitmap_info.offset = 0;
1552 		mddev->bitmap_info.space = 0;
1553 		/* Default location for bitmap is 1K after superblock
1554 		 * using 3K - total of 4K
1555 		 */
1556 		mddev->bitmap_info.default_offset = 1024 >> 9;
1557 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1558 		mddev->reshape_backwards = 0;
1559 
1560 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1561 		memcpy(mddev->uuid, sb->set_uuid, 16);
1562 
1563 		mddev->max_disks =  (4096-256)/2;
1564 
1565 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1566 		    mddev->bitmap_info.file == NULL) {
1567 			mddev->bitmap_info.offset =
1568 				(__s32)le32_to_cpu(sb->bitmap_offset);
1569 			/* Metadata doesn't record how much space is available.
1570 			 * For 1.0, we assume we can use up to the superblock
1571 			 * if before, else to 4K beyond superblock.
1572 			 * For others, assume no change is possible.
1573 			 */
1574 			if (mddev->minor_version > 0)
1575 				mddev->bitmap_info.space = 0;
1576 			else if (mddev->bitmap_info.offset > 0)
1577 				mddev->bitmap_info.space =
1578 					8 - mddev->bitmap_info.offset;
1579 			else
1580 				mddev->bitmap_info.space =
1581 					-mddev->bitmap_info.offset;
1582 		}
1583 
1584 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1585 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1586 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1587 			mddev->new_level = le32_to_cpu(sb->new_level);
1588 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1589 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1590 			if (mddev->delta_disks < 0 ||
1591 			    (mddev->delta_disks == 0 &&
1592 			     (le32_to_cpu(sb->feature_map)
1593 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1594 				mddev->reshape_backwards = 1;
1595 		} else {
1596 			mddev->reshape_position = MaxSector;
1597 			mddev->delta_disks = 0;
1598 			mddev->new_level = mddev->level;
1599 			mddev->new_layout = mddev->layout;
1600 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1601 		}
1602 
1603 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1604 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1605 			if (mddev->recovery_cp == MaxSector)
1606 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1607 		}
1608 	} else if (mddev->pers == NULL) {
1609 		/* Insist of good event counter while assembling, except for
1610 		 * spares (which don't need an event count) */
1611 		++ev1;
1612 		if (rdev->desc_nr >= 0 &&
1613 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 			if (ev1 < mddev->events)
1617 				return -EINVAL;
1618 	} else if (mddev->bitmap) {
1619 		/* If adding to array with a bitmap, then we can accept an
1620 		 * older device, but not too old.
1621 		 */
1622 		if (ev1 < mddev->bitmap->events_cleared)
1623 			return 0;
1624 		if (ev1 < mddev->events)
1625 			set_bit(Bitmap_sync, &rdev->flags);
1626 	} else {
1627 		if (ev1 < mddev->events)
1628 			/* just a hot-add of a new device, leave raid_disk at -1 */
1629 			return 0;
1630 	}
1631 	if (mddev->level != LEVEL_MULTIPATH) {
1632 		int role;
1633 		if (rdev->desc_nr < 0 ||
1634 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 			role = MD_DISK_ROLE_SPARE;
1636 			rdev->desc_nr = -1;
1637 		} else
1638 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 		switch(role) {
1640 		case MD_DISK_ROLE_SPARE: /* spare */
1641 			break;
1642 		case MD_DISK_ROLE_FAULTY: /* faulty */
1643 			set_bit(Faulty, &rdev->flags);
1644 			break;
1645 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 				/* journal device without journal feature */
1648 				printk(KERN_WARNING
1649 				  "md: journal device provided without journal feature, ignoring the device\n");
1650 				return -EINVAL;
1651 			}
1652 			set_bit(Journal, &rdev->flags);
1653 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 			rdev->raid_disk = 0;
1655 			break;
1656 		default:
1657 			rdev->saved_raid_disk = role;
1658 			if ((le32_to_cpu(sb->feature_map) &
1659 			     MD_FEATURE_RECOVERY_OFFSET)) {
1660 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1661 				if (!(le32_to_cpu(sb->feature_map) &
1662 				      MD_FEATURE_RECOVERY_BITMAP))
1663 					rdev->saved_raid_disk = -1;
1664 			} else
1665 				set_bit(In_sync, &rdev->flags);
1666 			rdev->raid_disk = role;
1667 			break;
1668 		}
1669 		if (sb->devflags & WriteMostly1)
1670 			set_bit(WriteMostly, &rdev->flags);
1671 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1672 			set_bit(Replacement, &rdev->flags);
1673 	} else /* MULTIPATH are always insync */
1674 		set_bit(In_sync, &rdev->flags);
1675 
1676 	return 0;
1677 }
1678 
1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1680 {
1681 	struct mdp_superblock_1 *sb;
1682 	struct md_rdev *rdev2;
1683 	int max_dev, i;
1684 	/* make rdev->sb match mddev and rdev data. */
1685 
1686 	sb = page_address(rdev->sb_page);
1687 
1688 	sb->feature_map = 0;
1689 	sb->pad0 = 0;
1690 	sb->recovery_offset = cpu_to_le64(0);
1691 	memset(sb->pad3, 0, sizeof(sb->pad3));
1692 
1693 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1694 	sb->events = cpu_to_le64(mddev->events);
1695 	if (mddev->in_sync)
1696 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1697 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1698 		sb->resync_offset = cpu_to_le64(MaxSector);
1699 	else
1700 		sb->resync_offset = cpu_to_le64(0);
1701 
1702 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1703 
1704 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1705 	sb->size = cpu_to_le64(mddev->dev_sectors);
1706 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1707 	sb->level = cpu_to_le32(mddev->level);
1708 	sb->layout = cpu_to_le32(mddev->layout);
1709 
1710 	if (test_bit(WriteMostly, &rdev->flags))
1711 		sb->devflags |= WriteMostly1;
1712 	else
1713 		sb->devflags &= ~WriteMostly1;
1714 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1715 	sb->data_size = cpu_to_le64(rdev->sectors);
1716 
1717 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1718 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1719 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1720 	}
1721 
1722 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1723 	    !test_bit(In_sync, &rdev->flags)) {
1724 		sb->feature_map |=
1725 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1726 		sb->recovery_offset =
1727 			cpu_to_le64(rdev->recovery_offset);
1728 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1729 			sb->feature_map |=
1730 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1731 	}
1732 	/* Note: recovery_offset and journal_tail share space  */
1733 	if (test_bit(Journal, &rdev->flags))
1734 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1735 	if (test_bit(Replacement, &rdev->flags))
1736 		sb->feature_map |=
1737 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1738 
1739 	if (mddev->reshape_position != MaxSector) {
1740 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1741 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1742 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1743 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1744 		sb->new_level = cpu_to_le32(mddev->new_level);
1745 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1746 		if (mddev->delta_disks == 0 &&
1747 		    mddev->reshape_backwards)
1748 			sb->feature_map
1749 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1750 		if (rdev->new_data_offset != rdev->data_offset) {
1751 			sb->feature_map
1752 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1753 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1754 							     - rdev->data_offset));
1755 		}
1756 	}
1757 
1758 	if (mddev_is_clustered(mddev))
1759 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1760 
1761 	if (rdev->badblocks.count == 0)
1762 		/* Nothing to do for bad blocks*/ ;
1763 	else if (sb->bblog_offset == 0)
1764 		/* Cannot record bad blocks on this device */
1765 		md_error(mddev, rdev);
1766 	else {
1767 		struct badblocks *bb = &rdev->badblocks;
1768 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1769 		u64 *p = bb->page;
1770 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1771 		if (bb->changed) {
1772 			unsigned seq;
1773 
1774 retry:
1775 			seq = read_seqbegin(&bb->lock);
1776 
1777 			memset(bbp, 0xff, PAGE_SIZE);
1778 
1779 			for (i = 0 ; i < bb->count ; i++) {
1780 				u64 internal_bb = p[i];
1781 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1782 						| BB_LEN(internal_bb));
1783 				bbp[i] = cpu_to_le64(store_bb);
1784 			}
1785 			bb->changed = 0;
1786 			if (read_seqretry(&bb->lock, seq))
1787 				goto retry;
1788 
1789 			bb->sector = (rdev->sb_start +
1790 				      (int)le32_to_cpu(sb->bblog_offset));
1791 			bb->size = le16_to_cpu(sb->bblog_size);
1792 		}
1793 	}
1794 
1795 	max_dev = 0;
1796 	rdev_for_each(rdev2, mddev)
1797 		if (rdev2->desc_nr+1 > max_dev)
1798 			max_dev = rdev2->desc_nr+1;
1799 
1800 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1801 		int bmask;
1802 		sb->max_dev = cpu_to_le32(max_dev);
1803 		rdev->sb_size = max_dev * 2 + 256;
1804 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1805 		if (rdev->sb_size & bmask)
1806 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1807 	} else
1808 		max_dev = le32_to_cpu(sb->max_dev);
1809 
1810 	for (i=0; i<max_dev;i++)
1811 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1812 
1813 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1814 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1815 
1816 	rdev_for_each(rdev2, mddev) {
1817 		i = rdev2->desc_nr;
1818 		if (test_bit(Faulty, &rdev2->flags))
1819 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1820 		else if (test_bit(In_sync, &rdev2->flags))
1821 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1822 		else if (test_bit(Journal, &rdev2->flags))
1823 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1824 		else if (rdev2->raid_disk >= 0)
1825 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 		else
1827 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1828 	}
1829 
1830 	sb->sb_csum = calc_sb_1_csum(sb);
1831 }
1832 
1833 static unsigned long long
1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1835 {
1836 	struct mdp_superblock_1 *sb;
1837 	sector_t max_sectors;
1838 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1839 		return 0; /* component must fit device */
1840 	if (rdev->data_offset != rdev->new_data_offset)
1841 		return 0; /* too confusing */
1842 	if (rdev->sb_start < rdev->data_offset) {
1843 		/* minor versions 1 and 2; superblock before data */
1844 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1845 		max_sectors -= rdev->data_offset;
1846 		if (!num_sectors || num_sectors > max_sectors)
1847 			num_sectors = max_sectors;
1848 	} else if (rdev->mddev->bitmap_info.offset) {
1849 		/* minor version 0 with bitmap we can't move */
1850 		return 0;
1851 	} else {
1852 		/* minor version 0; superblock after data */
1853 		sector_t sb_start;
1854 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1855 		sb_start &= ~(sector_t)(4*2 - 1);
1856 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1857 		if (!num_sectors || num_sectors > max_sectors)
1858 			num_sectors = max_sectors;
1859 		rdev->sb_start = sb_start;
1860 	}
1861 	sb = page_address(rdev->sb_page);
1862 	sb->data_size = cpu_to_le64(num_sectors);
1863 	sb->super_offset = rdev->sb_start;
1864 	sb->sb_csum = calc_sb_1_csum(sb);
1865 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1866 		       rdev->sb_page);
1867 	md_super_wait(rdev->mddev);
1868 	return num_sectors;
1869 
1870 }
1871 
1872 static int
1873 super_1_allow_new_offset(struct md_rdev *rdev,
1874 			 unsigned long long new_offset)
1875 {
1876 	/* All necessary checks on new >= old have been done */
1877 	struct bitmap *bitmap;
1878 	if (new_offset >= rdev->data_offset)
1879 		return 1;
1880 
1881 	/* with 1.0 metadata, there is no metadata to tread on
1882 	 * so we can always move back */
1883 	if (rdev->mddev->minor_version == 0)
1884 		return 1;
1885 
1886 	/* otherwise we must be sure not to step on
1887 	 * any metadata, so stay:
1888 	 * 36K beyond start of superblock
1889 	 * beyond end of badblocks
1890 	 * beyond write-intent bitmap
1891 	 */
1892 	if (rdev->sb_start + (32+4)*2 > new_offset)
1893 		return 0;
1894 	bitmap = rdev->mddev->bitmap;
1895 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1896 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1897 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1898 		return 0;
1899 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1900 		return 0;
1901 
1902 	return 1;
1903 }
1904 
1905 static struct super_type super_types[] = {
1906 	[0] = {
1907 		.name	= "0.90.0",
1908 		.owner	= THIS_MODULE,
1909 		.load_super	    = super_90_load,
1910 		.validate_super	    = super_90_validate,
1911 		.sync_super	    = super_90_sync,
1912 		.rdev_size_change   = super_90_rdev_size_change,
1913 		.allow_new_offset   = super_90_allow_new_offset,
1914 	},
1915 	[1] = {
1916 		.name	= "md-1",
1917 		.owner	= THIS_MODULE,
1918 		.load_super	    = super_1_load,
1919 		.validate_super	    = super_1_validate,
1920 		.sync_super	    = super_1_sync,
1921 		.rdev_size_change   = super_1_rdev_size_change,
1922 		.allow_new_offset   = super_1_allow_new_offset,
1923 	},
1924 };
1925 
1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 	if (mddev->sync_super) {
1929 		mddev->sync_super(mddev, rdev);
1930 		return;
1931 	}
1932 
1933 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1934 
1935 	super_types[mddev->major_version].sync_super(mddev, rdev);
1936 }
1937 
1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1939 {
1940 	struct md_rdev *rdev, *rdev2;
1941 
1942 	rcu_read_lock();
1943 	rdev_for_each_rcu(rdev, mddev1) {
1944 		if (test_bit(Faulty, &rdev->flags) ||
1945 		    test_bit(Journal, &rdev->flags) ||
1946 		    rdev->raid_disk == -1)
1947 			continue;
1948 		rdev_for_each_rcu(rdev2, mddev2) {
1949 			if (test_bit(Faulty, &rdev2->flags) ||
1950 			    test_bit(Journal, &rdev2->flags) ||
1951 			    rdev2->raid_disk == -1)
1952 				continue;
1953 			if (rdev->bdev->bd_contains ==
1954 			    rdev2->bdev->bd_contains) {
1955 				rcu_read_unlock();
1956 				return 1;
1957 			}
1958 		}
1959 	}
1960 	rcu_read_unlock();
1961 	return 0;
1962 }
1963 
1964 static LIST_HEAD(pending_raid_disks);
1965 
1966 /*
1967  * Try to register data integrity profile for an mddev
1968  *
1969  * This is called when an array is started and after a disk has been kicked
1970  * from the array. It only succeeds if all working and active component devices
1971  * are integrity capable with matching profiles.
1972  */
1973 int md_integrity_register(struct mddev *mddev)
1974 {
1975 	struct md_rdev *rdev, *reference = NULL;
1976 
1977 	if (list_empty(&mddev->disks))
1978 		return 0; /* nothing to do */
1979 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1980 		return 0; /* shouldn't register, or already is */
1981 	rdev_for_each(rdev, mddev) {
1982 		/* skip spares and non-functional disks */
1983 		if (test_bit(Faulty, &rdev->flags))
1984 			continue;
1985 		if (rdev->raid_disk < 0)
1986 			continue;
1987 		if (!reference) {
1988 			/* Use the first rdev as the reference */
1989 			reference = rdev;
1990 			continue;
1991 		}
1992 		/* does this rdev's profile match the reference profile? */
1993 		if (blk_integrity_compare(reference->bdev->bd_disk,
1994 				rdev->bdev->bd_disk) < 0)
1995 			return -EINVAL;
1996 	}
1997 	if (!reference || !bdev_get_integrity(reference->bdev))
1998 		return 0;
1999 	/*
2000 	 * All component devices are integrity capable and have matching
2001 	 * profiles, register the common profile for the md device.
2002 	 */
2003 	blk_integrity_register(mddev->gendisk,
2004 			       bdev_get_integrity(reference->bdev));
2005 
2006 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2007 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2008 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2009 		       mdname(mddev));
2010 		return -EINVAL;
2011 	}
2012 	return 0;
2013 }
2014 EXPORT_SYMBOL(md_integrity_register);
2015 
2016 /*
2017  * Attempt to add an rdev, but only if it is consistent with the current
2018  * integrity profile
2019  */
2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2021 {
2022 	struct blk_integrity *bi_rdev;
2023 	struct blk_integrity *bi_mddev;
2024 	char name[BDEVNAME_SIZE];
2025 
2026 	if (!mddev->gendisk)
2027 		return 0;
2028 
2029 	bi_rdev = bdev_get_integrity(rdev->bdev);
2030 	bi_mddev = blk_get_integrity(mddev->gendisk);
2031 
2032 	if (!bi_mddev) /* nothing to do */
2033 		return 0;
2034 
2035 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2036 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2037 				mdname(mddev), bdevname(rdev->bdev, name));
2038 		return -ENXIO;
2039 	}
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044 
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 	char b[BDEVNAME_SIZE];
2048 	struct kobject *ko;
2049 	int err;
2050 
2051 	/* prevent duplicates */
2052 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 		return -EEXIST;
2054 
2055 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 	if (!test_bit(Journal, &rdev->flags) &&
2057 	    rdev->sectors &&
2058 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2059 		if (mddev->pers) {
2060 			/* Cannot change size, so fail
2061 			 * If mddev->level <= 0, then we don't care
2062 			 * about aligning sizes (e.g. linear)
2063 			 */
2064 			if (mddev->level > 0)
2065 				return -ENOSPC;
2066 		} else
2067 			mddev->dev_sectors = rdev->sectors;
2068 	}
2069 
2070 	/* Verify rdev->desc_nr is unique.
2071 	 * If it is -1, assign a free number, else
2072 	 * check number is not in use
2073 	 */
2074 	rcu_read_lock();
2075 	if (rdev->desc_nr < 0) {
2076 		int choice = 0;
2077 		if (mddev->pers)
2078 			choice = mddev->raid_disks;
2079 		while (md_find_rdev_nr_rcu(mddev, choice))
2080 			choice++;
2081 		rdev->desc_nr = choice;
2082 	} else {
2083 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2084 			rcu_read_unlock();
2085 			return -EBUSY;
2086 		}
2087 	}
2088 	rcu_read_unlock();
2089 	if (!test_bit(Journal, &rdev->flags) &&
2090 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2091 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2092 		       mdname(mddev), mddev->max_disks);
2093 		return -EBUSY;
2094 	}
2095 	bdevname(rdev->bdev,b);
2096 	strreplace(b, '/', '!');
2097 
2098 	rdev->mddev = mddev;
2099 	printk(KERN_INFO "md: bind<%s>\n", b);
2100 
2101 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2102 		goto fail;
2103 
2104 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2105 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2106 		/* failure here is OK */;
2107 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2108 
2109 	list_add_rcu(&rdev->same_set, &mddev->disks);
2110 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2111 
2112 	/* May as well allow recovery to be retried once */
2113 	mddev->recovery_disabled++;
2114 
2115 	return 0;
2116 
2117  fail:
2118 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2119 	       b, mdname(mddev));
2120 	return err;
2121 }
2122 
2123 static void md_delayed_delete(struct work_struct *ws)
2124 {
2125 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2126 	kobject_del(&rdev->kobj);
2127 	kobject_put(&rdev->kobj);
2128 }
2129 
2130 static void unbind_rdev_from_array(struct md_rdev *rdev)
2131 {
2132 	char b[BDEVNAME_SIZE];
2133 
2134 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2135 	list_del_rcu(&rdev->same_set);
2136 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2137 	rdev->mddev = NULL;
2138 	sysfs_remove_link(&rdev->kobj, "block");
2139 	sysfs_put(rdev->sysfs_state);
2140 	rdev->sysfs_state = NULL;
2141 	rdev->badblocks.count = 0;
2142 	/* We need to delay this, otherwise we can deadlock when
2143 	 * writing to 'remove' to "dev/state".  We also need
2144 	 * to delay it due to rcu usage.
2145 	 */
2146 	synchronize_rcu();
2147 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2148 	kobject_get(&rdev->kobj);
2149 	queue_work(md_misc_wq, &rdev->del_work);
2150 }
2151 
2152 /*
2153  * prevent the device from being mounted, repartitioned or
2154  * otherwise reused by a RAID array (or any other kernel
2155  * subsystem), by bd_claiming the device.
2156  */
2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2158 {
2159 	int err = 0;
2160 	struct block_device *bdev;
2161 	char b[BDEVNAME_SIZE];
2162 
2163 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2164 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2165 	if (IS_ERR(bdev)) {
2166 		printk(KERN_ERR "md: could not open %s.\n",
2167 			__bdevname(dev, b));
2168 		return PTR_ERR(bdev);
2169 	}
2170 	rdev->bdev = bdev;
2171 	return err;
2172 }
2173 
2174 static void unlock_rdev(struct md_rdev *rdev)
2175 {
2176 	struct block_device *bdev = rdev->bdev;
2177 	rdev->bdev = NULL;
2178 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2179 }
2180 
2181 void md_autodetect_dev(dev_t dev);
2182 
2183 static void export_rdev(struct md_rdev *rdev)
2184 {
2185 	char b[BDEVNAME_SIZE];
2186 
2187 	printk(KERN_INFO "md: export_rdev(%s)\n",
2188 		bdevname(rdev->bdev,b));
2189 	md_rdev_clear(rdev);
2190 #ifndef MODULE
2191 	if (test_bit(AutoDetected, &rdev->flags))
2192 		md_autodetect_dev(rdev->bdev->bd_dev);
2193 #endif
2194 	unlock_rdev(rdev);
2195 	kobject_put(&rdev->kobj);
2196 }
2197 
2198 void md_kick_rdev_from_array(struct md_rdev *rdev)
2199 {
2200 	unbind_rdev_from_array(rdev);
2201 	export_rdev(rdev);
2202 }
2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2204 
2205 static void export_array(struct mddev *mddev)
2206 {
2207 	struct md_rdev *rdev;
2208 
2209 	while (!list_empty(&mddev->disks)) {
2210 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2211 					same_set);
2212 		md_kick_rdev_from_array(rdev);
2213 	}
2214 	mddev->raid_disks = 0;
2215 	mddev->major_version = 0;
2216 }
2217 
2218 static void sync_sbs(struct mddev *mddev, int nospares)
2219 {
2220 	/* Update each superblock (in-memory image), but
2221 	 * if we are allowed to, skip spares which already
2222 	 * have the right event counter, or have one earlier
2223 	 * (which would mean they aren't being marked as dirty
2224 	 * with the rest of the array)
2225 	 */
2226 	struct md_rdev *rdev;
2227 	rdev_for_each(rdev, mddev) {
2228 		if (rdev->sb_events == mddev->events ||
2229 		    (nospares &&
2230 		     rdev->raid_disk < 0 &&
2231 		     rdev->sb_events+1 == mddev->events)) {
2232 			/* Don't update this superblock */
2233 			rdev->sb_loaded = 2;
2234 		} else {
2235 			sync_super(mddev, rdev);
2236 			rdev->sb_loaded = 1;
2237 		}
2238 	}
2239 }
2240 
2241 static bool does_sb_need_changing(struct mddev *mddev)
2242 {
2243 	struct md_rdev *rdev;
2244 	struct mdp_superblock_1 *sb;
2245 	int role;
2246 
2247 	/* Find a good rdev */
2248 	rdev_for_each(rdev, mddev)
2249 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2250 			break;
2251 
2252 	/* No good device found. */
2253 	if (!rdev)
2254 		return false;
2255 
2256 	sb = page_address(rdev->sb_page);
2257 	/* Check if a device has become faulty or a spare become active */
2258 	rdev_for_each(rdev, mddev) {
2259 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2260 		/* Device activated? */
2261 		if (role == 0xffff && rdev->raid_disk >=0 &&
2262 		    !test_bit(Faulty, &rdev->flags))
2263 			return true;
2264 		/* Device turned faulty? */
2265 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2266 			return true;
2267 	}
2268 
2269 	/* Check if any mddev parameters have changed */
2270 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2271 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2272 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2273 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2274 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2275 		return true;
2276 
2277 	return false;
2278 }
2279 
2280 void md_update_sb(struct mddev *mddev, int force_change)
2281 {
2282 	struct md_rdev *rdev;
2283 	int sync_req;
2284 	int nospares = 0;
2285 	int any_badblocks_changed = 0;
2286 	int ret = -1;
2287 
2288 	if (mddev->ro) {
2289 		if (force_change)
2290 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2291 		return;
2292 	}
2293 
2294 repeat:
2295 	if (mddev_is_clustered(mddev)) {
2296 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2297 			force_change = 1;
2298 		if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2299 			nospares = 1;
2300 		ret = md_cluster_ops->metadata_update_start(mddev);
2301 		/* Has someone else has updated the sb */
2302 		if (!does_sb_need_changing(mddev)) {
2303 			if (ret == 0)
2304 				md_cluster_ops->metadata_update_cancel(mddev);
2305 			bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2306 							 BIT(MD_CHANGE_DEVS) |
2307 							 BIT(MD_CHANGE_CLEAN));
2308 			return;
2309 		}
2310 	}
2311 
2312 	/* First make sure individual recovery_offsets are correct */
2313 	rdev_for_each(rdev, mddev) {
2314 		if (rdev->raid_disk >= 0 &&
2315 		    mddev->delta_disks >= 0 &&
2316 		    !test_bit(Journal, &rdev->flags) &&
2317 		    !test_bit(In_sync, &rdev->flags) &&
2318 		    mddev->curr_resync_completed > rdev->recovery_offset)
2319 				rdev->recovery_offset = mddev->curr_resync_completed;
2320 
2321 	}
2322 	if (!mddev->persistent) {
2323 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2324 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2325 		if (!mddev->external) {
2326 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2327 			rdev_for_each(rdev, mddev) {
2328 				if (rdev->badblocks.changed) {
2329 					rdev->badblocks.changed = 0;
2330 					ack_all_badblocks(&rdev->badblocks);
2331 					md_error(mddev, rdev);
2332 				}
2333 				clear_bit(Blocked, &rdev->flags);
2334 				clear_bit(BlockedBadBlocks, &rdev->flags);
2335 				wake_up(&rdev->blocked_wait);
2336 			}
2337 		}
2338 		wake_up(&mddev->sb_wait);
2339 		return;
2340 	}
2341 
2342 	spin_lock(&mddev->lock);
2343 
2344 	mddev->utime = ktime_get_real_seconds();
2345 
2346 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2347 		force_change = 1;
2348 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2349 		/* just a clean<-> dirty transition, possibly leave spares alone,
2350 		 * though if events isn't the right even/odd, we will have to do
2351 		 * spares after all
2352 		 */
2353 		nospares = 1;
2354 	if (force_change)
2355 		nospares = 0;
2356 	if (mddev->degraded)
2357 		/* If the array is degraded, then skipping spares is both
2358 		 * dangerous and fairly pointless.
2359 		 * Dangerous because a device that was removed from the array
2360 		 * might have a event_count that still looks up-to-date,
2361 		 * so it can be re-added without a resync.
2362 		 * Pointless because if there are any spares to skip,
2363 		 * then a recovery will happen and soon that array won't
2364 		 * be degraded any more and the spare can go back to sleep then.
2365 		 */
2366 		nospares = 0;
2367 
2368 	sync_req = mddev->in_sync;
2369 
2370 	/* If this is just a dirty<->clean transition, and the array is clean
2371 	 * and 'events' is odd, we can roll back to the previous clean state */
2372 	if (nospares
2373 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2374 	    && mddev->can_decrease_events
2375 	    && mddev->events != 1) {
2376 		mddev->events--;
2377 		mddev->can_decrease_events = 0;
2378 	} else {
2379 		/* otherwise we have to go forward and ... */
2380 		mddev->events ++;
2381 		mddev->can_decrease_events = nospares;
2382 	}
2383 
2384 	/*
2385 	 * This 64-bit counter should never wrap.
2386 	 * Either we are in around ~1 trillion A.C., assuming
2387 	 * 1 reboot per second, or we have a bug...
2388 	 */
2389 	WARN_ON(mddev->events == 0);
2390 
2391 	rdev_for_each(rdev, mddev) {
2392 		if (rdev->badblocks.changed)
2393 			any_badblocks_changed++;
2394 		if (test_bit(Faulty, &rdev->flags))
2395 			set_bit(FaultRecorded, &rdev->flags);
2396 	}
2397 
2398 	sync_sbs(mddev, nospares);
2399 	spin_unlock(&mddev->lock);
2400 
2401 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2402 		 mdname(mddev), mddev->in_sync);
2403 
2404 	bitmap_update_sb(mddev->bitmap);
2405 	rdev_for_each(rdev, mddev) {
2406 		char b[BDEVNAME_SIZE];
2407 
2408 		if (rdev->sb_loaded != 1)
2409 			continue; /* no noise on spare devices */
2410 
2411 		if (!test_bit(Faulty, &rdev->flags)) {
2412 			md_super_write(mddev,rdev,
2413 				       rdev->sb_start, rdev->sb_size,
2414 				       rdev->sb_page);
2415 			pr_debug("md: (write) %s's sb offset: %llu\n",
2416 				 bdevname(rdev->bdev, b),
2417 				 (unsigned long long)rdev->sb_start);
2418 			rdev->sb_events = mddev->events;
2419 			if (rdev->badblocks.size) {
2420 				md_super_write(mddev, rdev,
2421 					       rdev->badblocks.sector,
2422 					       rdev->badblocks.size << 9,
2423 					       rdev->bb_page);
2424 				rdev->badblocks.size = 0;
2425 			}
2426 
2427 		} else
2428 			pr_debug("md: %s (skipping faulty)\n",
2429 				 bdevname(rdev->bdev, b));
2430 
2431 		if (mddev->level == LEVEL_MULTIPATH)
2432 			/* only need to write one superblock... */
2433 			break;
2434 	}
2435 	md_super_wait(mddev);
2436 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2437 
2438 	if (mddev_is_clustered(mddev) && ret == 0)
2439 		md_cluster_ops->metadata_update_finish(mddev);
2440 
2441 	if (mddev->in_sync != sync_req ||
2442 	    !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2443 			       BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN)))
2444 		/* have to write it out again */
2445 		goto repeat;
2446 	wake_up(&mddev->sb_wait);
2447 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2448 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2449 
2450 	rdev_for_each(rdev, mddev) {
2451 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2452 			clear_bit(Blocked, &rdev->flags);
2453 
2454 		if (any_badblocks_changed)
2455 			ack_all_badblocks(&rdev->badblocks);
2456 		clear_bit(BlockedBadBlocks, &rdev->flags);
2457 		wake_up(&rdev->blocked_wait);
2458 	}
2459 }
2460 EXPORT_SYMBOL(md_update_sb);
2461 
2462 static int add_bound_rdev(struct md_rdev *rdev)
2463 {
2464 	struct mddev *mddev = rdev->mddev;
2465 	int err = 0;
2466 	bool add_journal = test_bit(Journal, &rdev->flags);
2467 
2468 	if (!mddev->pers->hot_remove_disk || add_journal) {
2469 		/* If there is hot_add_disk but no hot_remove_disk
2470 		 * then added disks for geometry changes,
2471 		 * and should be added immediately.
2472 		 */
2473 		super_types[mddev->major_version].
2474 			validate_super(mddev, rdev);
2475 		if (add_journal)
2476 			mddev_suspend(mddev);
2477 		err = mddev->pers->hot_add_disk(mddev, rdev);
2478 		if (add_journal)
2479 			mddev_resume(mddev);
2480 		if (err) {
2481 			unbind_rdev_from_array(rdev);
2482 			export_rdev(rdev);
2483 			return err;
2484 		}
2485 	}
2486 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2487 
2488 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2489 	if (mddev->degraded)
2490 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2491 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2492 	md_new_event(mddev);
2493 	md_wakeup_thread(mddev->thread);
2494 	return 0;
2495 }
2496 
2497 /* words written to sysfs files may, or may not, be \n terminated.
2498  * We want to accept with case. For this we use cmd_match.
2499  */
2500 static int cmd_match(const char *cmd, const char *str)
2501 {
2502 	/* See if cmd, written into a sysfs file, matches
2503 	 * str.  They must either be the same, or cmd can
2504 	 * have a trailing newline
2505 	 */
2506 	while (*cmd && *str && *cmd == *str) {
2507 		cmd++;
2508 		str++;
2509 	}
2510 	if (*cmd == '\n')
2511 		cmd++;
2512 	if (*str || *cmd)
2513 		return 0;
2514 	return 1;
2515 }
2516 
2517 struct rdev_sysfs_entry {
2518 	struct attribute attr;
2519 	ssize_t (*show)(struct md_rdev *, char *);
2520 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2521 };
2522 
2523 static ssize_t
2524 state_show(struct md_rdev *rdev, char *page)
2525 {
2526 	char *sep = "";
2527 	size_t len = 0;
2528 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2529 
2530 	if (test_bit(Faulty, &flags) ||
2531 	    rdev->badblocks.unacked_exist) {
2532 		len+= sprintf(page+len, "%sfaulty",sep);
2533 		sep = ",";
2534 	}
2535 	if (test_bit(In_sync, &flags)) {
2536 		len += sprintf(page+len, "%sin_sync",sep);
2537 		sep = ",";
2538 	}
2539 	if (test_bit(Journal, &flags)) {
2540 		len += sprintf(page+len, "%sjournal",sep);
2541 		sep = ",";
2542 	}
2543 	if (test_bit(WriteMostly, &flags)) {
2544 		len += sprintf(page+len, "%swrite_mostly",sep);
2545 		sep = ",";
2546 	}
2547 	if (test_bit(Blocked, &flags) ||
2548 	    (rdev->badblocks.unacked_exist
2549 	     && !test_bit(Faulty, &flags))) {
2550 		len += sprintf(page+len, "%sblocked", sep);
2551 		sep = ",";
2552 	}
2553 	if (!test_bit(Faulty, &flags) &&
2554 	    !test_bit(Journal, &flags) &&
2555 	    !test_bit(In_sync, &flags)) {
2556 		len += sprintf(page+len, "%sspare", sep);
2557 		sep = ",";
2558 	}
2559 	if (test_bit(WriteErrorSeen, &flags)) {
2560 		len += sprintf(page+len, "%swrite_error", sep);
2561 		sep = ",";
2562 	}
2563 	if (test_bit(WantReplacement, &flags)) {
2564 		len += sprintf(page+len, "%swant_replacement", sep);
2565 		sep = ",";
2566 	}
2567 	if (test_bit(Replacement, &flags)) {
2568 		len += sprintf(page+len, "%sreplacement", sep);
2569 		sep = ",";
2570 	}
2571 
2572 	return len+sprintf(page+len, "\n");
2573 }
2574 
2575 static ssize_t
2576 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2577 {
2578 	/* can write
2579 	 *  faulty  - simulates an error
2580 	 *  remove  - disconnects the device
2581 	 *  writemostly - sets write_mostly
2582 	 *  -writemostly - clears write_mostly
2583 	 *  blocked - sets the Blocked flags
2584 	 *  -blocked - clears the Blocked and possibly simulates an error
2585 	 *  insync - sets Insync providing device isn't active
2586 	 *  -insync - clear Insync for a device with a slot assigned,
2587 	 *            so that it gets rebuilt based on bitmap
2588 	 *  write_error - sets WriteErrorSeen
2589 	 *  -write_error - clears WriteErrorSeen
2590 	 */
2591 	int err = -EINVAL;
2592 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2593 		md_error(rdev->mddev, rdev);
2594 		if (test_bit(Faulty, &rdev->flags))
2595 			err = 0;
2596 		else
2597 			err = -EBUSY;
2598 	} else if (cmd_match(buf, "remove")) {
2599 		if (rdev->raid_disk >= 0)
2600 			err = -EBUSY;
2601 		else {
2602 			struct mddev *mddev = rdev->mddev;
2603 			err = 0;
2604 			if (mddev_is_clustered(mddev))
2605 				err = md_cluster_ops->remove_disk(mddev, rdev);
2606 
2607 			if (err == 0) {
2608 				md_kick_rdev_from_array(rdev);
2609 				if (mddev->pers)
2610 					md_update_sb(mddev, 1);
2611 				md_new_event(mddev);
2612 			}
2613 		}
2614 	} else if (cmd_match(buf, "writemostly")) {
2615 		set_bit(WriteMostly, &rdev->flags);
2616 		err = 0;
2617 	} else if (cmd_match(buf, "-writemostly")) {
2618 		clear_bit(WriteMostly, &rdev->flags);
2619 		err = 0;
2620 	} else if (cmd_match(buf, "blocked")) {
2621 		set_bit(Blocked, &rdev->flags);
2622 		err = 0;
2623 	} else if (cmd_match(buf, "-blocked")) {
2624 		if (!test_bit(Faulty, &rdev->flags) &&
2625 		    rdev->badblocks.unacked_exist) {
2626 			/* metadata handler doesn't understand badblocks,
2627 			 * so we need to fail the device
2628 			 */
2629 			md_error(rdev->mddev, rdev);
2630 		}
2631 		clear_bit(Blocked, &rdev->flags);
2632 		clear_bit(BlockedBadBlocks, &rdev->flags);
2633 		wake_up(&rdev->blocked_wait);
2634 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2635 		md_wakeup_thread(rdev->mddev->thread);
2636 
2637 		err = 0;
2638 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2639 		set_bit(In_sync, &rdev->flags);
2640 		err = 0;
2641 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2642 		   !test_bit(Journal, &rdev->flags)) {
2643 		if (rdev->mddev->pers == NULL) {
2644 			clear_bit(In_sync, &rdev->flags);
2645 			rdev->saved_raid_disk = rdev->raid_disk;
2646 			rdev->raid_disk = -1;
2647 			err = 0;
2648 		}
2649 	} else if (cmd_match(buf, "write_error")) {
2650 		set_bit(WriteErrorSeen, &rdev->flags);
2651 		err = 0;
2652 	} else if (cmd_match(buf, "-write_error")) {
2653 		clear_bit(WriteErrorSeen, &rdev->flags);
2654 		err = 0;
2655 	} else if (cmd_match(buf, "want_replacement")) {
2656 		/* Any non-spare device that is not a replacement can
2657 		 * become want_replacement at any time, but we then need to
2658 		 * check if recovery is needed.
2659 		 */
2660 		if (rdev->raid_disk >= 0 &&
2661 		    !test_bit(Journal, &rdev->flags) &&
2662 		    !test_bit(Replacement, &rdev->flags))
2663 			set_bit(WantReplacement, &rdev->flags);
2664 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2665 		md_wakeup_thread(rdev->mddev->thread);
2666 		err = 0;
2667 	} else if (cmd_match(buf, "-want_replacement")) {
2668 		/* Clearing 'want_replacement' is always allowed.
2669 		 * Once replacements starts it is too late though.
2670 		 */
2671 		err = 0;
2672 		clear_bit(WantReplacement, &rdev->flags);
2673 	} else if (cmd_match(buf, "replacement")) {
2674 		/* Can only set a device as a replacement when array has not
2675 		 * yet been started.  Once running, replacement is automatic
2676 		 * from spares, or by assigning 'slot'.
2677 		 */
2678 		if (rdev->mddev->pers)
2679 			err = -EBUSY;
2680 		else {
2681 			set_bit(Replacement, &rdev->flags);
2682 			err = 0;
2683 		}
2684 	} else if (cmd_match(buf, "-replacement")) {
2685 		/* Similarly, can only clear Replacement before start */
2686 		if (rdev->mddev->pers)
2687 			err = -EBUSY;
2688 		else {
2689 			clear_bit(Replacement, &rdev->flags);
2690 			err = 0;
2691 		}
2692 	} else if (cmd_match(buf, "re-add")) {
2693 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2694 			/* clear_bit is performed _after_ all the devices
2695 			 * have their local Faulty bit cleared. If any writes
2696 			 * happen in the meantime in the local node, they
2697 			 * will land in the local bitmap, which will be synced
2698 			 * by this node eventually
2699 			 */
2700 			if (!mddev_is_clustered(rdev->mddev) ||
2701 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2702 				clear_bit(Faulty, &rdev->flags);
2703 				err = add_bound_rdev(rdev);
2704 			}
2705 		} else
2706 			err = -EBUSY;
2707 	}
2708 	if (!err)
2709 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2710 	return err ? err : len;
2711 }
2712 static struct rdev_sysfs_entry rdev_state =
2713 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2714 
2715 static ssize_t
2716 errors_show(struct md_rdev *rdev, char *page)
2717 {
2718 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2719 }
2720 
2721 static ssize_t
2722 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2723 {
2724 	unsigned int n;
2725 	int rv;
2726 
2727 	rv = kstrtouint(buf, 10, &n);
2728 	if (rv < 0)
2729 		return rv;
2730 	atomic_set(&rdev->corrected_errors, n);
2731 	return len;
2732 }
2733 static struct rdev_sysfs_entry rdev_errors =
2734 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2735 
2736 static ssize_t
2737 slot_show(struct md_rdev *rdev, char *page)
2738 {
2739 	if (test_bit(Journal, &rdev->flags))
2740 		return sprintf(page, "journal\n");
2741 	else if (rdev->raid_disk < 0)
2742 		return sprintf(page, "none\n");
2743 	else
2744 		return sprintf(page, "%d\n", rdev->raid_disk);
2745 }
2746 
2747 static ssize_t
2748 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2749 {
2750 	int slot;
2751 	int err;
2752 
2753 	if (test_bit(Journal, &rdev->flags))
2754 		return -EBUSY;
2755 	if (strncmp(buf, "none", 4)==0)
2756 		slot = -1;
2757 	else {
2758 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2759 		if (err < 0)
2760 			return err;
2761 	}
2762 	if (rdev->mddev->pers && slot == -1) {
2763 		/* Setting 'slot' on an active array requires also
2764 		 * updating the 'rd%d' link, and communicating
2765 		 * with the personality with ->hot_*_disk.
2766 		 * For now we only support removing
2767 		 * failed/spare devices.  This normally happens automatically,
2768 		 * but not when the metadata is externally managed.
2769 		 */
2770 		if (rdev->raid_disk == -1)
2771 			return -EEXIST;
2772 		/* personality does all needed checks */
2773 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2774 			return -EINVAL;
2775 		clear_bit(Blocked, &rdev->flags);
2776 		remove_and_add_spares(rdev->mddev, rdev);
2777 		if (rdev->raid_disk >= 0)
2778 			return -EBUSY;
2779 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2780 		md_wakeup_thread(rdev->mddev->thread);
2781 	} else if (rdev->mddev->pers) {
2782 		/* Activating a spare .. or possibly reactivating
2783 		 * if we ever get bitmaps working here.
2784 		 */
2785 		int err;
2786 
2787 		if (rdev->raid_disk != -1)
2788 			return -EBUSY;
2789 
2790 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2791 			return -EBUSY;
2792 
2793 		if (rdev->mddev->pers->hot_add_disk == NULL)
2794 			return -EINVAL;
2795 
2796 		if (slot >= rdev->mddev->raid_disks &&
2797 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2798 			return -ENOSPC;
2799 
2800 		rdev->raid_disk = slot;
2801 		if (test_bit(In_sync, &rdev->flags))
2802 			rdev->saved_raid_disk = slot;
2803 		else
2804 			rdev->saved_raid_disk = -1;
2805 		clear_bit(In_sync, &rdev->flags);
2806 		clear_bit(Bitmap_sync, &rdev->flags);
2807 		err = rdev->mddev->pers->
2808 			hot_add_disk(rdev->mddev, rdev);
2809 		if (err) {
2810 			rdev->raid_disk = -1;
2811 			return err;
2812 		} else
2813 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2814 		if (sysfs_link_rdev(rdev->mddev, rdev))
2815 			/* failure here is OK */;
2816 		/* don't wakeup anyone, leave that to userspace. */
2817 	} else {
2818 		if (slot >= rdev->mddev->raid_disks &&
2819 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2820 			return -ENOSPC;
2821 		rdev->raid_disk = slot;
2822 		/* assume it is working */
2823 		clear_bit(Faulty, &rdev->flags);
2824 		clear_bit(WriteMostly, &rdev->flags);
2825 		set_bit(In_sync, &rdev->flags);
2826 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2827 	}
2828 	return len;
2829 }
2830 
2831 static struct rdev_sysfs_entry rdev_slot =
2832 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2833 
2834 static ssize_t
2835 offset_show(struct md_rdev *rdev, char *page)
2836 {
2837 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2838 }
2839 
2840 static ssize_t
2841 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2842 {
2843 	unsigned long long offset;
2844 	if (kstrtoull(buf, 10, &offset) < 0)
2845 		return -EINVAL;
2846 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2847 		return -EBUSY;
2848 	if (rdev->sectors && rdev->mddev->external)
2849 		/* Must set offset before size, so overlap checks
2850 		 * can be sane */
2851 		return -EBUSY;
2852 	rdev->data_offset = offset;
2853 	rdev->new_data_offset = offset;
2854 	return len;
2855 }
2856 
2857 static struct rdev_sysfs_entry rdev_offset =
2858 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2859 
2860 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2861 {
2862 	return sprintf(page, "%llu\n",
2863 		       (unsigned long long)rdev->new_data_offset);
2864 }
2865 
2866 static ssize_t new_offset_store(struct md_rdev *rdev,
2867 				const char *buf, size_t len)
2868 {
2869 	unsigned long long new_offset;
2870 	struct mddev *mddev = rdev->mddev;
2871 
2872 	if (kstrtoull(buf, 10, &new_offset) < 0)
2873 		return -EINVAL;
2874 
2875 	if (mddev->sync_thread ||
2876 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2877 		return -EBUSY;
2878 	if (new_offset == rdev->data_offset)
2879 		/* reset is always permitted */
2880 		;
2881 	else if (new_offset > rdev->data_offset) {
2882 		/* must not push array size beyond rdev_sectors */
2883 		if (new_offset - rdev->data_offset
2884 		    + mddev->dev_sectors > rdev->sectors)
2885 				return -E2BIG;
2886 	}
2887 	/* Metadata worries about other space details. */
2888 
2889 	/* decreasing the offset is inconsistent with a backwards
2890 	 * reshape.
2891 	 */
2892 	if (new_offset < rdev->data_offset &&
2893 	    mddev->reshape_backwards)
2894 		return -EINVAL;
2895 	/* Increasing offset is inconsistent with forwards
2896 	 * reshape.  reshape_direction should be set to
2897 	 * 'backwards' first.
2898 	 */
2899 	if (new_offset > rdev->data_offset &&
2900 	    !mddev->reshape_backwards)
2901 		return -EINVAL;
2902 
2903 	if (mddev->pers && mddev->persistent &&
2904 	    !super_types[mddev->major_version]
2905 	    .allow_new_offset(rdev, new_offset))
2906 		return -E2BIG;
2907 	rdev->new_data_offset = new_offset;
2908 	if (new_offset > rdev->data_offset)
2909 		mddev->reshape_backwards = 1;
2910 	else if (new_offset < rdev->data_offset)
2911 		mddev->reshape_backwards = 0;
2912 
2913 	return len;
2914 }
2915 static struct rdev_sysfs_entry rdev_new_offset =
2916 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2917 
2918 static ssize_t
2919 rdev_size_show(struct md_rdev *rdev, char *page)
2920 {
2921 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2922 }
2923 
2924 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2925 {
2926 	/* check if two start/length pairs overlap */
2927 	if (s1+l1 <= s2)
2928 		return 0;
2929 	if (s2+l2 <= s1)
2930 		return 0;
2931 	return 1;
2932 }
2933 
2934 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2935 {
2936 	unsigned long long blocks;
2937 	sector_t new;
2938 
2939 	if (kstrtoull(buf, 10, &blocks) < 0)
2940 		return -EINVAL;
2941 
2942 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2943 		return -EINVAL; /* sector conversion overflow */
2944 
2945 	new = blocks * 2;
2946 	if (new != blocks * 2)
2947 		return -EINVAL; /* unsigned long long to sector_t overflow */
2948 
2949 	*sectors = new;
2950 	return 0;
2951 }
2952 
2953 static ssize_t
2954 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2955 {
2956 	struct mddev *my_mddev = rdev->mddev;
2957 	sector_t oldsectors = rdev->sectors;
2958 	sector_t sectors;
2959 
2960 	if (test_bit(Journal, &rdev->flags))
2961 		return -EBUSY;
2962 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2963 		return -EINVAL;
2964 	if (rdev->data_offset != rdev->new_data_offset)
2965 		return -EINVAL; /* too confusing */
2966 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2967 		if (my_mddev->persistent) {
2968 			sectors = super_types[my_mddev->major_version].
2969 				rdev_size_change(rdev, sectors);
2970 			if (!sectors)
2971 				return -EBUSY;
2972 		} else if (!sectors)
2973 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2974 				rdev->data_offset;
2975 		if (!my_mddev->pers->resize)
2976 			/* Cannot change size for RAID0 or Linear etc */
2977 			return -EINVAL;
2978 	}
2979 	if (sectors < my_mddev->dev_sectors)
2980 		return -EINVAL; /* component must fit device */
2981 
2982 	rdev->sectors = sectors;
2983 	if (sectors > oldsectors && my_mddev->external) {
2984 		/* Need to check that all other rdevs with the same
2985 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2986 		 * the rdev lists safely.
2987 		 * This check does not provide a hard guarantee, it
2988 		 * just helps avoid dangerous mistakes.
2989 		 */
2990 		struct mddev *mddev;
2991 		int overlap = 0;
2992 		struct list_head *tmp;
2993 
2994 		rcu_read_lock();
2995 		for_each_mddev(mddev, tmp) {
2996 			struct md_rdev *rdev2;
2997 
2998 			rdev_for_each(rdev2, mddev)
2999 				if (rdev->bdev == rdev2->bdev &&
3000 				    rdev != rdev2 &&
3001 				    overlaps(rdev->data_offset, rdev->sectors,
3002 					     rdev2->data_offset,
3003 					     rdev2->sectors)) {
3004 					overlap = 1;
3005 					break;
3006 				}
3007 			if (overlap) {
3008 				mddev_put(mddev);
3009 				break;
3010 			}
3011 		}
3012 		rcu_read_unlock();
3013 		if (overlap) {
3014 			/* Someone else could have slipped in a size
3015 			 * change here, but doing so is just silly.
3016 			 * We put oldsectors back because we *know* it is
3017 			 * safe, and trust userspace not to race with
3018 			 * itself
3019 			 */
3020 			rdev->sectors = oldsectors;
3021 			return -EBUSY;
3022 		}
3023 	}
3024 	return len;
3025 }
3026 
3027 static struct rdev_sysfs_entry rdev_size =
3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3029 
3030 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3031 {
3032 	unsigned long long recovery_start = rdev->recovery_offset;
3033 
3034 	if (test_bit(In_sync, &rdev->flags) ||
3035 	    recovery_start == MaxSector)
3036 		return sprintf(page, "none\n");
3037 
3038 	return sprintf(page, "%llu\n", recovery_start);
3039 }
3040 
3041 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3042 {
3043 	unsigned long long recovery_start;
3044 
3045 	if (cmd_match(buf, "none"))
3046 		recovery_start = MaxSector;
3047 	else if (kstrtoull(buf, 10, &recovery_start))
3048 		return -EINVAL;
3049 
3050 	if (rdev->mddev->pers &&
3051 	    rdev->raid_disk >= 0)
3052 		return -EBUSY;
3053 
3054 	rdev->recovery_offset = recovery_start;
3055 	if (recovery_start == MaxSector)
3056 		set_bit(In_sync, &rdev->flags);
3057 	else
3058 		clear_bit(In_sync, &rdev->flags);
3059 	return len;
3060 }
3061 
3062 static struct rdev_sysfs_entry rdev_recovery_start =
3063 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3064 
3065 /* sysfs access to bad-blocks list.
3066  * We present two files.
3067  * 'bad-blocks' lists sector numbers and lengths of ranges that
3068  *    are recorded as bad.  The list is truncated to fit within
3069  *    the one-page limit of sysfs.
3070  *    Writing "sector length" to this file adds an acknowledged
3071  *    bad block list.
3072  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3073  *    been acknowledged.  Writing to this file adds bad blocks
3074  *    without acknowledging them.  This is largely for testing.
3075  */
3076 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3077 {
3078 	return badblocks_show(&rdev->badblocks, page, 0);
3079 }
3080 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3081 {
3082 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3083 	/* Maybe that ack was all we needed */
3084 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3085 		wake_up(&rdev->blocked_wait);
3086 	return rv;
3087 }
3088 static struct rdev_sysfs_entry rdev_bad_blocks =
3089 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3090 
3091 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3092 {
3093 	return badblocks_show(&rdev->badblocks, page, 1);
3094 }
3095 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3096 {
3097 	return badblocks_store(&rdev->badblocks, page, len, 1);
3098 }
3099 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3100 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3101 
3102 static struct attribute *rdev_default_attrs[] = {
3103 	&rdev_state.attr,
3104 	&rdev_errors.attr,
3105 	&rdev_slot.attr,
3106 	&rdev_offset.attr,
3107 	&rdev_new_offset.attr,
3108 	&rdev_size.attr,
3109 	&rdev_recovery_start.attr,
3110 	&rdev_bad_blocks.attr,
3111 	&rdev_unack_bad_blocks.attr,
3112 	NULL,
3113 };
3114 static ssize_t
3115 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3116 {
3117 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3118 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3119 
3120 	if (!entry->show)
3121 		return -EIO;
3122 	if (!rdev->mddev)
3123 		return -EBUSY;
3124 	return entry->show(rdev, page);
3125 }
3126 
3127 static ssize_t
3128 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3129 	      const char *page, size_t length)
3130 {
3131 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3132 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3133 	ssize_t rv;
3134 	struct mddev *mddev = rdev->mddev;
3135 
3136 	if (!entry->store)
3137 		return -EIO;
3138 	if (!capable(CAP_SYS_ADMIN))
3139 		return -EACCES;
3140 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3141 	if (!rv) {
3142 		if (rdev->mddev == NULL)
3143 			rv = -EBUSY;
3144 		else
3145 			rv = entry->store(rdev, page, length);
3146 		mddev_unlock(mddev);
3147 	}
3148 	return rv;
3149 }
3150 
3151 static void rdev_free(struct kobject *ko)
3152 {
3153 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3154 	kfree(rdev);
3155 }
3156 static const struct sysfs_ops rdev_sysfs_ops = {
3157 	.show		= rdev_attr_show,
3158 	.store		= rdev_attr_store,
3159 };
3160 static struct kobj_type rdev_ktype = {
3161 	.release	= rdev_free,
3162 	.sysfs_ops	= &rdev_sysfs_ops,
3163 	.default_attrs	= rdev_default_attrs,
3164 };
3165 
3166 int md_rdev_init(struct md_rdev *rdev)
3167 {
3168 	rdev->desc_nr = -1;
3169 	rdev->saved_raid_disk = -1;
3170 	rdev->raid_disk = -1;
3171 	rdev->flags = 0;
3172 	rdev->data_offset = 0;
3173 	rdev->new_data_offset = 0;
3174 	rdev->sb_events = 0;
3175 	rdev->last_read_error.tv_sec  = 0;
3176 	rdev->last_read_error.tv_nsec = 0;
3177 	rdev->sb_loaded = 0;
3178 	rdev->bb_page = NULL;
3179 	atomic_set(&rdev->nr_pending, 0);
3180 	atomic_set(&rdev->read_errors, 0);
3181 	atomic_set(&rdev->corrected_errors, 0);
3182 
3183 	INIT_LIST_HEAD(&rdev->same_set);
3184 	init_waitqueue_head(&rdev->blocked_wait);
3185 
3186 	/* Add space to store bad block list.
3187 	 * This reserves the space even on arrays where it cannot
3188 	 * be used - I wonder if that matters
3189 	 */
3190 	return badblocks_init(&rdev->badblocks, 0);
3191 }
3192 EXPORT_SYMBOL_GPL(md_rdev_init);
3193 /*
3194  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3195  *
3196  * mark the device faulty if:
3197  *
3198  *   - the device is nonexistent (zero size)
3199  *   - the device has no valid superblock
3200  *
3201  * a faulty rdev _never_ has rdev->sb set.
3202  */
3203 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3204 {
3205 	char b[BDEVNAME_SIZE];
3206 	int err;
3207 	struct md_rdev *rdev;
3208 	sector_t size;
3209 
3210 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3211 	if (!rdev) {
3212 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3213 		return ERR_PTR(-ENOMEM);
3214 	}
3215 
3216 	err = md_rdev_init(rdev);
3217 	if (err)
3218 		goto abort_free;
3219 	err = alloc_disk_sb(rdev);
3220 	if (err)
3221 		goto abort_free;
3222 
3223 	err = lock_rdev(rdev, newdev, super_format == -2);
3224 	if (err)
3225 		goto abort_free;
3226 
3227 	kobject_init(&rdev->kobj, &rdev_ktype);
3228 
3229 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3230 	if (!size) {
3231 		printk(KERN_WARNING
3232 			"md: %s has zero or unknown size, marking faulty!\n",
3233 			bdevname(rdev->bdev,b));
3234 		err = -EINVAL;
3235 		goto abort_free;
3236 	}
3237 
3238 	if (super_format >= 0) {
3239 		err = super_types[super_format].
3240 			load_super(rdev, NULL, super_minor);
3241 		if (err == -EINVAL) {
3242 			printk(KERN_WARNING
3243 				"md: %s does not have a valid v%d.%d "
3244 			       "superblock, not importing!\n",
3245 				bdevname(rdev->bdev,b),
3246 			       super_format, super_minor);
3247 			goto abort_free;
3248 		}
3249 		if (err < 0) {
3250 			printk(KERN_WARNING
3251 				"md: could not read %s's sb, not importing!\n",
3252 				bdevname(rdev->bdev,b));
3253 			goto abort_free;
3254 		}
3255 	}
3256 
3257 	return rdev;
3258 
3259 abort_free:
3260 	if (rdev->bdev)
3261 		unlock_rdev(rdev);
3262 	md_rdev_clear(rdev);
3263 	kfree(rdev);
3264 	return ERR_PTR(err);
3265 }
3266 
3267 /*
3268  * Check a full RAID array for plausibility
3269  */
3270 
3271 static void analyze_sbs(struct mddev *mddev)
3272 {
3273 	int i;
3274 	struct md_rdev *rdev, *freshest, *tmp;
3275 	char b[BDEVNAME_SIZE];
3276 
3277 	freshest = NULL;
3278 	rdev_for_each_safe(rdev, tmp, mddev)
3279 		switch (super_types[mddev->major_version].
3280 			load_super(rdev, freshest, mddev->minor_version)) {
3281 		case 1:
3282 			freshest = rdev;
3283 			break;
3284 		case 0:
3285 			break;
3286 		default:
3287 			printk( KERN_ERR \
3288 				"md: fatal superblock inconsistency in %s"
3289 				" -- removing from array\n",
3290 				bdevname(rdev->bdev,b));
3291 			md_kick_rdev_from_array(rdev);
3292 		}
3293 
3294 	super_types[mddev->major_version].
3295 		validate_super(mddev, freshest);
3296 
3297 	i = 0;
3298 	rdev_for_each_safe(rdev, tmp, mddev) {
3299 		if (mddev->max_disks &&
3300 		    (rdev->desc_nr >= mddev->max_disks ||
3301 		     i > mddev->max_disks)) {
3302 			printk(KERN_WARNING
3303 			       "md: %s: %s: only %d devices permitted\n",
3304 			       mdname(mddev), bdevname(rdev->bdev, b),
3305 			       mddev->max_disks);
3306 			md_kick_rdev_from_array(rdev);
3307 			continue;
3308 		}
3309 		if (rdev != freshest) {
3310 			if (super_types[mddev->major_version].
3311 			    validate_super(mddev, rdev)) {
3312 				printk(KERN_WARNING "md: kicking non-fresh %s"
3313 					" from array!\n",
3314 					bdevname(rdev->bdev,b));
3315 				md_kick_rdev_from_array(rdev);
3316 				continue;
3317 			}
3318 		}
3319 		if (mddev->level == LEVEL_MULTIPATH) {
3320 			rdev->desc_nr = i++;
3321 			rdev->raid_disk = rdev->desc_nr;
3322 			set_bit(In_sync, &rdev->flags);
3323 		} else if (rdev->raid_disk >=
3324 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3325 			   !test_bit(Journal, &rdev->flags)) {
3326 			rdev->raid_disk = -1;
3327 			clear_bit(In_sync, &rdev->flags);
3328 		}
3329 	}
3330 }
3331 
3332 /* Read a fixed-point number.
3333  * Numbers in sysfs attributes should be in "standard" units where
3334  * possible, so time should be in seconds.
3335  * However we internally use a a much smaller unit such as
3336  * milliseconds or jiffies.
3337  * This function takes a decimal number with a possible fractional
3338  * component, and produces an integer which is the result of
3339  * multiplying that number by 10^'scale'.
3340  * all without any floating-point arithmetic.
3341  */
3342 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3343 {
3344 	unsigned long result = 0;
3345 	long decimals = -1;
3346 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3347 		if (*cp == '.')
3348 			decimals = 0;
3349 		else if (decimals < scale) {
3350 			unsigned int value;
3351 			value = *cp - '0';
3352 			result = result * 10 + value;
3353 			if (decimals >= 0)
3354 				decimals++;
3355 		}
3356 		cp++;
3357 	}
3358 	if (*cp == '\n')
3359 		cp++;
3360 	if (*cp)
3361 		return -EINVAL;
3362 	if (decimals < 0)
3363 		decimals = 0;
3364 	while (decimals < scale) {
3365 		result *= 10;
3366 		decimals ++;
3367 	}
3368 	*res = result;
3369 	return 0;
3370 }
3371 
3372 static ssize_t
3373 safe_delay_show(struct mddev *mddev, char *page)
3374 {
3375 	int msec = (mddev->safemode_delay*1000)/HZ;
3376 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3377 }
3378 static ssize_t
3379 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3380 {
3381 	unsigned long msec;
3382 
3383 	if (mddev_is_clustered(mddev)) {
3384 		pr_info("md: Safemode is disabled for clustered mode\n");
3385 		return -EINVAL;
3386 	}
3387 
3388 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3389 		return -EINVAL;
3390 	if (msec == 0)
3391 		mddev->safemode_delay = 0;
3392 	else {
3393 		unsigned long old_delay = mddev->safemode_delay;
3394 		unsigned long new_delay = (msec*HZ)/1000;
3395 
3396 		if (new_delay == 0)
3397 			new_delay = 1;
3398 		mddev->safemode_delay = new_delay;
3399 		if (new_delay < old_delay || old_delay == 0)
3400 			mod_timer(&mddev->safemode_timer, jiffies+1);
3401 	}
3402 	return len;
3403 }
3404 static struct md_sysfs_entry md_safe_delay =
3405 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3406 
3407 static ssize_t
3408 level_show(struct mddev *mddev, char *page)
3409 {
3410 	struct md_personality *p;
3411 	int ret;
3412 	spin_lock(&mddev->lock);
3413 	p = mddev->pers;
3414 	if (p)
3415 		ret = sprintf(page, "%s\n", p->name);
3416 	else if (mddev->clevel[0])
3417 		ret = sprintf(page, "%s\n", mddev->clevel);
3418 	else if (mddev->level != LEVEL_NONE)
3419 		ret = sprintf(page, "%d\n", mddev->level);
3420 	else
3421 		ret = 0;
3422 	spin_unlock(&mddev->lock);
3423 	return ret;
3424 }
3425 
3426 static ssize_t
3427 level_store(struct mddev *mddev, const char *buf, size_t len)
3428 {
3429 	char clevel[16];
3430 	ssize_t rv;
3431 	size_t slen = len;
3432 	struct md_personality *pers, *oldpers;
3433 	long level;
3434 	void *priv, *oldpriv;
3435 	struct md_rdev *rdev;
3436 
3437 	if (slen == 0 || slen >= sizeof(clevel))
3438 		return -EINVAL;
3439 
3440 	rv = mddev_lock(mddev);
3441 	if (rv)
3442 		return rv;
3443 
3444 	if (mddev->pers == NULL) {
3445 		strncpy(mddev->clevel, buf, slen);
3446 		if (mddev->clevel[slen-1] == '\n')
3447 			slen--;
3448 		mddev->clevel[slen] = 0;
3449 		mddev->level = LEVEL_NONE;
3450 		rv = len;
3451 		goto out_unlock;
3452 	}
3453 	rv = -EROFS;
3454 	if (mddev->ro)
3455 		goto out_unlock;
3456 
3457 	/* request to change the personality.  Need to ensure:
3458 	 *  - array is not engaged in resync/recovery/reshape
3459 	 *  - old personality can be suspended
3460 	 *  - new personality will access other array.
3461 	 */
3462 
3463 	rv = -EBUSY;
3464 	if (mddev->sync_thread ||
3465 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3466 	    mddev->reshape_position != MaxSector ||
3467 	    mddev->sysfs_active)
3468 		goto out_unlock;
3469 
3470 	rv = -EINVAL;
3471 	if (!mddev->pers->quiesce) {
3472 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3473 		       mdname(mddev), mddev->pers->name);
3474 		goto out_unlock;
3475 	}
3476 
3477 	/* Now find the new personality */
3478 	strncpy(clevel, buf, slen);
3479 	if (clevel[slen-1] == '\n')
3480 		slen--;
3481 	clevel[slen] = 0;
3482 	if (kstrtol(clevel, 10, &level))
3483 		level = LEVEL_NONE;
3484 
3485 	if (request_module("md-%s", clevel) != 0)
3486 		request_module("md-level-%s", clevel);
3487 	spin_lock(&pers_lock);
3488 	pers = find_pers(level, clevel);
3489 	if (!pers || !try_module_get(pers->owner)) {
3490 		spin_unlock(&pers_lock);
3491 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3492 		rv = -EINVAL;
3493 		goto out_unlock;
3494 	}
3495 	spin_unlock(&pers_lock);
3496 
3497 	if (pers == mddev->pers) {
3498 		/* Nothing to do! */
3499 		module_put(pers->owner);
3500 		rv = len;
3501 		goto out_unlock;
3502 	}
3503 	if (!pers->takeover) {
3504 		module_put(pers->owner);
3505 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3506 		       mdname(mddev), clevel);
3507 		rv = -EINVAL;
3508 		goto out_unlock;
3509 	}
3510 
3511 	rdev_for_each(rdev, mddev)
3512 		rdev->new_raid_disk = rdev->raid_disk;
3513 
3514 	/* ->takeover must set new_* and/or delta_disks
3515 	 * if it succeeds, and may set them when it fails.
3516 	 */
3517 	priv = pers->takeover(mddev);
3518 	if (IS_ERR(priv)) {
3519 		mddev->new_level = mddev->level;
3520 		mddev->new_layout = mddev->layout;
3521 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3522 		mddev->raid_disks -= mddev->delta_disks;
3523 		mddev->delta_disks = 0;
3524 		mddev->reshape_backwards = 0;
3525 		module_put(pers->owner);
3526 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3527 		       mdname(mddev), clevel);
3528 		rv = PTR_ERR(priv);
3529 		goto out_unlock;
3530 	}
3531 
3532 	/* Looks like we have a winner */
3533 	mddev_suspend(mddev);
3534 	mddev_detach(mddev);
3535 
3536 	spin_lock(&mddev->lock);
3537 	oldpers = mddev->pers;
3538 	oldpriv = mddev->private;
3539 	mddev->pers = pers;
3540 	mddev->private = priv;
3541 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3542 	mddev->level = mddev->new_level;
3543 	mddev->layout = mddev->new_layout;
3544 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3545 	mddev->delta_disks = 0;
3546 	mddev->reshape_backwards = 0;
3547 	mddev->degraded = 0;
3548 	spin_unlock(&mddev->lock);
3549 
3550 	if (oldpers->sync_request == NULL &&
3551 	    mddev->external) {
3552 		/* We are converting from a no-redundancy array
3553 		 * to a redundancy array and metadata is managed
3554 		 * externally so we need to be sure that writes
3555 		 * won't block due to a need to transition
3556 		 *      clean->dirty
3557 		 * until external management is started.
3558 		 */
3559 		mddev->in_sync = 0;
3560 		mddev->safemode_delay = 0;
3561 		mddev->safemode = 0;
3562 	}
3563 
3564 	oldpers->free(mddev, oldpriv);
3565 
3566 	if (oldpers->sync_request == NULL &&
3567 	    pers->sync_request != NULL) {
3568 		/* need to add the md_redundancy_group */
3569 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3570 			printk(KERN_WARNING
3571 			       "md: cannot register extra attributes for %s\n",
3572 			       mdname(mddev));
3573 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3574 	}
3575 	if (oldpers->sync_request != NULL &&
3576 	    pers->sync_request == NULL) {
3577 		/* need to remove the md_redundancy_group */
3578 		if (mddev->to_remove == NULL)
3579 			mddev->to_remove = &md_redundancy_group;
3580 	}
3581 
3582 	rdev_for_each(rdev, mddev) {
3583 		if (rdev->raid_disk < 0)
3584 			continue;
3585 		if (rdev->new_raid_disk >= mddev->raid_disks)
3586 			rdev->new_raid_disk = -1;
3587 		if (rdev->new_raid_disk == rdev->raid_disk)
3588 			continue;
3589 		sysfs_unlink_rdev(mddev, rdev);
3590 	}
3591 	rdev_for_each(rdev, mddev) {
3592 		if (rdev->raid_disk < 0)
3593 			continue;
3594 		if (rdev->new_raid_disk == rdev->raid_disk)
3595 			continue;
3596 		rdev->raid_disk = rdev->new_raid_disk;
3597 		if (rdev->raid_disk < 0)
3598 			clear_bit(In_sync, &rdev->flags);
3599 		else {
3600 			if (sysfs_link_rdev(mddev, rdev))
3601 				printk(KERN_WARNING "md: cannot register rd%d"
3602 				       " for %s after level change\n",
3603 				       rdev->raid_disk, mdname(mddev));
3604 		}
3605 	}
3606 
3607 	if (pers->sync_request == NULL) {
3608 		/* this is now an array without redundancy, so
3609 		 * it must always be in_sync
3610 		 */
3611 		mddev->in_sync = 1;
3612 		del_timer_sync(&mddev->safemode_timer);
3613 	}
3614 	blk_set_stacking_limits(&mddev->queue->limits);
3615 	pers->run(mddev);
3616 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3617 	mddev_resume(mddev);
3618 	if (!mddev->thread)
3619 		md_update_sb(mddev, 1);
3620 	sysfs_notify(&mddev->kobj, NULL, "level");
3621 	md_new_event(mddev);
3622 	rv = len;
3623 out_unlock:
3624 	mddev_unlock(mddev);
3625 	return rv;
3626 }
3627 
3628 static struct md_sysfs_entry md_level =
3629 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3630 
3631 static ssize_t
3632 layout_show(struct mddev *mddev, char *page)
3633 {
3634 	/* just a number, not meaningful for all levels */
3635 	if (mddev->reshape_position != MaxSector &&
3636 	    mddev->layout != mddev->new_layout)
3637 		return sprintf(page, "%d (%d)\n",
3638 			       mddev->new_layout, mddev->layout);
3639 	return sprintf(page, "%d\n", mddev->layout);
3640 }
3641 
3642 static ssize_t
3643 layout_store(struct mddev *mddev, const char *buf, size_t len)
3644 {
3645 	unsigned int n;
3646 	int err;
3647 
3648 	err = kstrtouint(buf, 10, &n);
3649 	if (err < 0)
3650 		return err;
3651 	err = mddev_lock(mddev);
3652 	if (err)
3653 		return err;
3654 
3655 	if (mddev->pers) {
3656 		if (mddev->pers->check_reshape == NULL)
3657 			err = -EBUSY;
3658 		else if (mddev->ro)
3659 			err = -EROFS;
3660 		else {
3661 			mddev->new_layout = n;
3662 			err = mddev->pers->check_reshape(mddev);
3663 			if (err)
3664 				mddev->new_layout = mddev->layout;
3665 		}
3666 	} else {
3667 		mddev->new_layout = n;
3668 		if (mddev->reshape_position == MaxSector)
3669 			mddev->layout = n;
3670 	}
3671 	mddev_unlock(mddev);
3672 	return err ?: len;
3673 }
3674 static struct md_sysfs_entry md_layout =
3675 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3676 
3677 static ssize_t
3678 raid_disks_show(struct mddev *mddev, char *page)
3679 {
3680 	if (mddev->raid_disks == 0)
3681 		return 0;
3682 	if (mddev->reshape_position != MaxSector &&
3683 	    mddev->delta_disks != 0)
3684 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3685 			       mddev->raid_disks - mddev->delta_disks);
3686 	return sprintf(page, "%d\n", mddev->raid_disks);
3687 }
3688 
3689 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3690 
3691 static ssize_t
3692 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3693 {
3694 	unsigned int n;
3695 	int err;
3696 
3697 	err = kstrtouint(buf, 10, &n);
3698 	if (err < 0)
3699 		return err;
3700 
3701 	err = mddev_lock(mddev);
3702 	if (err)
3703 		return err;
3704 	if (mddev->pers)
3705 		err = update_raid_disks(mddev, n);
3706 	else if (mddev->reshape_position != MaxSector) {
3707 		struct md_rdev *rdev;
3708 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3709 
3710 		err = -EINVAL;
3711 		rdev_for_each(rdev, mddev) {
3712 			if (olddisks < n &&
3713 			    rdev->data_offset < rdev->new_data_offset)
3714 				goto out_unlock;
3715 			if (olddisks > n &&
3716 			    rdev->data_offset > rdev->new_data_offset)
3717 				goto out_unlock;
3718 		}
3719 		err = 0;
3720 		mddev->delta_disks = n - olddisks;
3721 		mddev->raid_disks = n;
3722 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3723 	} else
3724 		mddev->raid_disks = n;
3725 out_unlock:
3726 	mddev_unlock(mddev);
3727 	return err ? err : len;
3728 }
3729 static struct md_sysfs_entry md_raid_disks =
3730 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3731 
3732 static ssize_t
3733 chunk_size_show(struct mddev *mddev, char *page)
3734 {
3735 	if (mddev->reshape_position != MaxSector &&
3736 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3737 		return sprintf(page, "%d (%d)\n",
3738 			       mddev->new_chunk_sectors << 9,
3739 			       mddev->chunk_sectors << 9);
3740 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3741 }
3742 
3743 static ssize_t
3744 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 	unsigned long n;
3747 	int err;
3748 
3749 	err = kstrtoul(buf, 10, &n);
3750 	if (err < 0)
3751 		return err;
3752 
3753 	err = mddev_lock(mddev);
3754 	if (err)
3755 		return err;
3756 	if (mddev->pers) {
3757 		if (mddev->pers->check_reshape == NULL)
3758 			err = -EBUSY;
3759 		else if (mddev->ro)
3760 			err = -EROFS;
3761 		else {
3762 			mddev->new_chunk_sectors = n >> 9;
3763 			err = mddev->pers->check_reshape(mddev);
3764 			if (err)
3765 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3766 		}
3767 	} else {
3768 		mddev->new_chunk_sectors = n >> 9;
3769 		if (mddev->reshape_position == MaxSector)
3770 			mddev->chunk_sectors = n >> 9;
3771 	}
3772 	mddev_unlock(mddev);
3773 	return err ?: len;
3774 }
3775 static struct md_sysfs_entry md_chunk_size =
3776 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3777 
3778 static ssize_t
3779 resync_start_show(struct mddev *mddev, char *page)
3780 {
3781 	if (mddev->recovery_cp == MaxSector)
3782 		return sprintf(page, "none\n");
3783 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3784 }
3785 
3786 static ssize_t
3787 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3788 {
3789 	unsigned long long n;
3790 	int err;
3791 
3792 	if (cmd_match(buf, "none"))
3793 		n = MaxSector;
3794 	else {
3795 		err = kstrtoull(buf, 10, &n);
3796 		if (err < 0)
3797 			return err;
3798 		if (n != (sector_t)n)
3799 			return -EINVAL;
3800 	}
3801 
3802 	err = mddev_lock(mddev);
3803 	if (err)
3804 		return err;
3805 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3806 		err = -EBUSY;
3807 
3808 	if (!err) {
3809 		mddev->recovery_cp = n;
3810 		if (mddev->pers)
3811 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3812 	}
3813 	mddev_unlock(mddev);
3814 	return err ?: len;
3815 }
3816 static struct md_sysfs_entry md_resync_start =
3817 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3818 		resync_start_show, resync_start_store);
3819 
3820 /*
3821  * The array state can be:
3822  *
3823  * clear
3824  *     No devices, no size, no level
3825  *     Equivalent to STOP_ARRAY ioctl
3826  * inactive
3827  *     May have some settings, but array is not active
3828  *        all IO results in error
3829  *     When written, doesn't tear down array, but just stops it
3830  * suspended (not supported yet)
3831  *     All IO requests will block. The array can be reconfigured.
3832  *     Writing this, if accepted, will block until array is quiescent
3833  * readonly
3834  *     no resync can happen.  no superblocks get written.
3835  *     write requests fail
3836  * read-auto
3837  *     like readonly, but behaves like 'clean' on a write request.
3838  *
3839  * clean - no pending writes, but otherwise active.
3840  *     When written to inactive array, starts without resync
3841  *     If a write request arrives then
3842  *       if metadata is known, mark 'dirty' and switch to 'active'.
3843  *       if not known, block and switch to write-pending
3844  *     If written to an active array that has pending writes, then fails.
3845  * active
3846  *     fully active: IO and resync can be happening.
3847  *     When written to inactive array, starts with resync
3848  *
3849  * write-pending
3850  *     clean, but writes are blocked waiting for 'active' to be written.
3851  *
3852  * active-idle
3853  *     like active, but no writes have been seen for a while (100msec).
3854  *
3855  */
3856 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3857 		   write_pending, active_idle, bad_word};
3858 static char *array_states[] = {
3859 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3860 	"write-pending", "active-idle", NULL };
3861 
3862 static int match_word(const char *word, char **list)
3863 {
3864 	int n;
3865 	for (n=0; list[n]; n++)
3866 		if (cmd_match(word, list[n]))
3867 			break;
3868 	return n;
3869 }
3870 
3871 static ssize_t
3872 array_state_show(struct mddev *mddev, char *page)
3873 {
3874 	enum array_state st = inactive;
3875 
3876 	if (mddev->pers)
3877 		switch(mddev->ro) {
3878 		case 1:
3879 			st = readonly;
3880 			break;
3881 		case 2:
3882 			st = read_auto;
3883 			break;
3884 		case 0:
3885 			if (mddev->in_sync)
3886 				st = clean;
3887 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3888 				st = write_pending;
3889 			else if (mddev->safemode)
3890 				st = active_idle;
3891 			else
3892 				st = active;
3893 		}
3894 	else {
3895 		if (list_empty(&mddev->disks) &&
3896 		    mddev->raid_disks == 0 &&
3897 		    mddev->dev_sectors == 0)
3898 			st = clear;
3899 		else
3900 			st = inactive;
3901 	}
3902 	return sprintf(page, "%s\n", array_states[st]);
3903 }
3904 
3905 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3906 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3907 static int do_md_run(struct mddev *mddev);
3908 static int restart_array(struct mddev *mddev);
3909 
3910 static ssize_t
3911 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3912 {
3913 	int err;
3914 	enum array_state st = match_word(buf, array_states);
3915 
3916 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3917 		/* don't take reconfig_mutex when toggling between
3918 		 * clean and active
3919 		 */
3920 		spin_lock(&mddev->lock);
3921 		if (st == active) {
3922 			restart_array(mddev);
3923 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3924 			wake_up(&mddev->sb_wait);
3925 			err = 0;
3926 		} else /* st == clean */ {
3927 			restart_array(mddev);
3928 			if (atomic_read(&mddev->writes_pending) == 0) {
3929 				if (mddev->in_sync == 0) {
3930 					mddev->in_sync = 1;
3931 					if (mddev->safemode == 1)
3932 						mddev->safemode = 0;
3933 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3934 				}
3935 				err = 0;
3936 			} else
3937 				err = -EBUSY;
3938 		}
3939 		spin_unlock(&mddev->lock);
3940 		return err ?: len;
3941 	}
3942 	err = mddev_lock(mddev);
3943 	if (err)
3944 		return err;
3945 	err = -EINVAL;
3946 	switch(st) {
3947 	case bad_word:
3948 		break;
3949 	case clear:
3950 		/* stopping an active array */
3951 		err = do_md_stop(mddev, 0, NULL);
3952 		break;
3953 	case inactive:
3954 		/* stopping an active array */
3955 		if (mddev->pers)
3956 			err = do_md_stop(mddev, 2, NULL);
3957 		else
3958 			err = 0; /* already inactive */
3959 		break;
3960 	case suspended:
3961 		break; /* not supported yet */
3962 	case readonly:
3963 		if (mddev->pers)
3964 			err = md_set_readonly(mddev, NULL);
3965 		else {
3966 			mddev->ro = 1;
3967 			set_disk_ro(mddev->gendisk, 1);
3968 			err = do_md_run(mddev);
3969 		}
3970 		break;
3971 	case read_auto:
3972 		if (mddev->pers) {
3973 			if (mddev->ro == 0)
3974 				err = md_set_readonly(mddev, NULL);
3975 			else if (mddev->ro == 1)
3976 				err = restart_array(mddev);
3977 			if (err == 0) {
3978 				mddev->ro = 2;
3979 				set_disk_ro(mddev->gendisk, 0);
3980 			}
3981 		} else {
3982 			mddev->ro = 2;
3983 			err = do_md_run(mddev);
3984 		}
3985 		break;
3986 	case clean:
3987 		if (mddev->pers) {
3988 			err = restart_array(mddev);
3989 			if (err)
3990 				break;
3991 			spin_lock(&mddev->lock);
3992 			if (atomic_read(&mddev->writes_pending) == 0) {
3993 				if (mddev->in_sync == 0) {
3994 					mddev->in_sync = 1;
3995 					if (mddev->safemode == 1)
3996 						mddev->safemode = 0;
3997 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3998 				}
3999 				err = 0;
4000 			} else
4001 				err = -EBUSY;
4002 			spin_unlock(&mddev->lock);
4003 		} else
4004 			err = -EINVAL;
4005 		break;
4006 	case active:
4007 		if (mddev->pers) {
4008 			err = restart_array(mddev);
4009 			if (err)
4010 				break;
4011 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4012 			wake_up(&mddev->sb_wait);
4013 			err = 0;
4014 		} else {
4015 			mddev->ro = 0;
4016 			set_disk_ro(mddev->gendisk, 0);
4017 			err = do_md_run(mddev);
4018 		}
4019 		break;
4020 	case write_pending:
4021 	case active_idle:
4022 		/* these cannot be set */
4023 		break;
4024 	}
4025 
4026 	if (!err) {
4027 		if (mddev->hold_active == UNTIL_IOCTL)
4028 			mddev->hold_active = 0;
4029 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4030 	}
4031 	mddev_unlock(mddev);
4032 	return err ?: len;
4033 }
4034 static struct md_sysfs_entry md_array_state =
4035 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4036 
4037 static ssize_t
4038 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4039 	return sprintf(page, "%d\n",
4040 		       atomic_read(&mddev->max_corr_read_errors));
4041 }
4042 
4043 static ssize_t
4044 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4045 {
4046 	unsigned int n;
4047 	int rv;
4048 
4049 	rv = kstrtouint(buf, 10, &n);
4050 	if (rv < 0)
4051 		return rv;
4052 	atomic_set(&mddev->max_corr_read_errors, n);
4053 	return len;
4054 }
4055 
4056 static struct md_sysfs_entry max_corr_read_errors =
4057 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4058 	max_corrected_read_errors_store);
4059 
4060 static ssize_t
4061 null_show(struct mddev *mddev, char *page)
4062 {
4063 	return -EINVAL;
4064 }
4065 
4066 static ssize_t
4067 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4068 {
4069 	/* buf must be %d:%d\n? giving major and minor numbers */
4070 	/* The new device is added to the array.
4071 	 * If the array has a persistent superblock, we read the
4072 	 * superblock to initialise info and check validity.
4073 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4074 	 * which mainly checks size.
4075 	 */
4076 	char *e;
4077 	int major = simple_strtoul(buf, &e, 10);
4078 	int minor;
4079 	dev_t dev;
4080 	struct md_rdev *rdev;
4081 	int err;
4082 
4083 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4084 		return -EINVAL;
4085 	minor = simple_strtoul(e+1, &e, 10);
4086 	if (*e && *e != '\n')
4087 		return -EINVAL;
4088 	dev = MKDEV(major, minor);
4089 	if (major != MAJOR(dev) ||
4090 	    minor != MINOR(dev))
4091 		return -EOVERFLOW;
4092 
4093 	flush_workqueue(md_misc_wq);
4094 
4095 	err = mddev_lock(mddev);
4096 	if (err)
4097 		return err;
4098 	if (mddev->persistent) {
4099 		rdev = md_import_device(dev, mddev->major_version,
4100 					mddev->minor_version);
4101 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4102 			struct md_rdev *rdev0
4103 				= list_entry(mddev->disks.next,
4104 					     struct md_rdev, same_set);
4105 			err = super_types[mddev->major_version]
4106 				.load_super(rdev, rdev0, mddev->minor_version);
4107 			if (err < 0)
4108 				goto out;
4109 		}
4110 	} else if (mddev->external)
4111 		rdev = md_import_device(dev, -2, -1);
4112 	else
4113 		rdev = md_import_device(dev, -1, -1);
4114 
4115 	if (IS_ERR(rdev)) {
4116 		mddev_unlock(mddev);
4117 		return PTR_ERR(rdev);
4118 	}
4119 	err = bind_rdev_to_array(rdev, mddev);
4120  out:
4121 	if (err)
4122 		export_rdev(rdev);
4123 	mddev_unlock(mddev);
4124 	return err ? err : len;
4125 }
4126 
4127 static struct md_sysfs_entry md_new_device =
4128 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4129 
4130 static ssize_t
4131 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4132 {
4133 	char *end;
4134 	unsigned long chunk, end_chunk;
4135 	int err;
4136 
4137 	err = mddev_lock(mddev);
4138 	if (err)
4139 		return err;
4140 	if (!mddev->bitmap)
4141 		goto out;
4142 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4143 	while (*buf) {
4144 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4145 		if (buf == end) break;
4146 		if (*end == '-') { /* range */
4147 			buf = end + 1;
4148 			end_chunk = simple_strtoul(buf, &end, 0);
4149 			if (buf == end) break;
4150 		}
4151 		if (*end && !isspace(*end)) break;
4152 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4153 		buf = skip_spaces(end);
4154 	}
4155 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4156 out:
4157 	mddev_unlock(mddev);
4158 	return len;
4159 }
4160 
4161 static struct md_sysfs_entry md_bitmap =
4162 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4163 
4164 static ssize_t
4165 size_show(struct mddev *mddev, char *page)
4166 {
4167 	return sprintf(page, "%llu\n",
4168 		(unsigned long long)mddev->dev_sectors / 2);
4169 }
4170 
4171 static int update_size(struct mddev *mddev, sector_t num_sectors);
4172 
4173 static ssize_t
4174 size_store(struct mddev *mddev, const char *buf, size_t len)
4175 {
4176 	/* If array is inactive, we can reduce the component size, but
4177 	 * not increase it (except from 0).
4178 	 * If array is active, we can try an on-line resize
4179 	 */
4180 	sector_t sectors;
4181 	int err = strict_blocks_to_sectors(buf, &sectors);
4182 
4183 	if (err < 0)
4184 		return err;
4185 	err = mddev_lock(mddev);
4186 	if (err)
4187 		return err;
4188 	if (mddev->pers) {
4189 		err = update_size(mddev, sectors);
4190 		md_update_sb(mddev, 1);
4191 	} else {
4192 		if (mddev->dev_sectors == 0 ||
4193 		    mddev->dev_sectors > sectors)
4194 			mddev->dev_sectors = sectors;
4195 		else
4196 			err = -ENOSPC;
4197 	}
4198 	mddev_unlock(mddev);
4199 	return err ? err : len;
4200 }
4201 
4202 static struct md_sysfs_entry md_size =
4203 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4204 
4205 /* Metadata version.
4206  * This is one of
4207  *   'none' for arrays with no metadata (good luck...)
4208  *   'external' for arrays with externally managed metadata,
4209  * or N.M for internally known formats
4210  */
4211 static ssize_t
4212 metadata_show(struct mddev *mddev, char *page)
4213 {
4214 	if (mddev->persistent)
4215 		return sprintf(page, "%d.%d\n",
4216 			       mddev->major_version, mddev->minor_version);
4217 	else if (mddev->external)
4218 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4219 	else
4220 		return sprintf(page, "none\n");
4221 }
4222 
4223 static ssize_t
4224 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4225 {
4226 	int major, minor;
4227 	char *e;
4228 	int err;
4229 	/* Changing the details of 'external' metadata is
4230 	 * always permitted.  Otherwise there must be
4231 	 * no devices attached to the array.
4232 	 */
4233 
4234 	err = mddev_lock(mddev);
4235 	if (err)
4236 		return err;
4237 	err = -EBUSY;
4238 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4239 		;
4240 	else if (!list_empty(&mddev->disks))
4241 		goto out_unlock;
4242 
4243 	err = 0;
4244 	if (cmd_match(buf, "none")) {
4245 		mddev->persistent = 0;
4246 		mddev->external = 0;
4247 		mddev->major_version = 0;
4248 		mddev->minor_version = 90;
4249 		goto out_unlock;
4250 	}
4251 	if (strncmp(buf, "external:", 9) == 0) {
4252 		size_t namelen = len-9;
4253 		if (namelen >= sizeof(mddev->metadata_type))
4254 			namelen = sizeof(mddev->metadata_type)-1;
4255 		strncpy(mddev->metadata_type, buf+9, namelen);
4256 		mddev->metadata_type[namelen] = 0;
4257 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4258 			mddev->metadata_type[--namelen] = 0;
4259 		mddev->persistent = 0;
4260 		mddev->external = 1;
4261 		mddev->major_version = 0;
4262 		mddev->minor_version = 90;
4263 		goto out_unlock;
4264 	}
4265 	major = simple_strtoul(buf, &e, 10);
4266 	err = -EINVAL;
4267 	if (e==buf || *e != '.')
4268 		goto out_unlock;
4269 	buf = e+1;
4270 	minor = simple_strtoul(buf, &e, 10);
4271 	if (e==buf || (*e && *e != '\n') )
4272 		goto out_unlock;
4273 	err = -ENOENT;
4274 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4275 		goto out_unlock;
4276 	mddev->major_version = major;
4277 	mddev->minor_version = minor;
4278 	mddev->persistent = 1;
4279 	mddev->external = 0;
4280 	err = 0;
4281 out_unlock:
4282 	mddev_unlock(mddev);
4283 	return err ?: len;
4284 }
4285 
4286 static struct md_sysfs_entry md_metadata =
4287 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4288 
4289 static ssize_t
4290 action_show(struct mddev *mddev, char *page)
4291 {
4292 	char *type = "idle";
4293 	unsigned long recovery = mddev->recovery;
4294 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4295 		type = "frozen";
4296 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4297 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4298 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4299 			type = "reshape";
4300 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4301 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4302 				type = "resync";
4303 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4304 				type = "check";
4305 			else
4306 				type = "repair";
4307 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4308 			type = "recover";
4309 		else if (mddev->reshape_position != MaxSector)
4310 			type = "reshape";
4311 	}
4312 	return sprintf(page, "%s\n", type);
4313 }
4314 
4315 static ssize_t
4316 action_store(struct mddev *mddev, const char *page, size_t len)
4317 {
4318 	if (!mddev->pers || !mddev->pers->sync_request)
4319 		return -EINVAL;
4320 
4321 
4322 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4323 		if (cmd_match(page, "frozen"))
4324 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4325 		else
4326 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4327 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4328 		    mddev_lock(mddev) == 0) {
4329 			flush_workqueue(md_misc_wq);
4330 			if (mddev->sync_thread) {
4331 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4332 				md_reap_sync_thread(mddev);
4333 			}
4334 			mddev_unlock(mddev);
4335 		}
4336 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4337 		return -EBUSY;
4338 	else if (cmd_match(page, "resync"))
4339 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4340 	else if (cmd_match(page, "recover")) {
4341 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4342 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4343 	} else if (cmd_match(page, "reshape")) {
4344 		int err;
4345 		if (mddev->pers->start_reshape == NULL)
4346 			return -EINVAL;
4347 		err = mddev_lock(mddev);
4348 		if (!err) {
4349 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4350 				err =  -EBUSY;
4351 			else {
4352 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4353 				err = mddev->pers->start_reshape(mddev);
4354 			}
4355 			mddev_unlock(mddev);
4356 		}
4357 		if (err)
4358 			return err;
4359 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4360 	} else {
4361 		if (cmd_match(page, "check"))
4362 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4363 		else if (!cmd_match(page, "repair"))
4364 			return -EINVAL;
4365 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4366 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4367 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4368 	}
4369 	if (mddev->ro == 2) {
4370 		/* A write to sync_action is enough to justify
4371 		 * canceling read-auto mode
4372 		 */
4373 		mddev->ro = 0;
4374 		md_wakeup_thread(mddev->sync_thread);
4375 	}
4376 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4377 	md_wakeup_thread(mddev->thread);
4378 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4379 	return len;
4380 }
4381 
4382 static struct md_sysfs_entry md_scan_mode =
4383 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4384 
4385 static ssize_t
4386 last_sync_action_show(struct mddev *mddev, char *page)
4387 {
4388 	return sprintf(page, "%s\n", mddev->last_sync_action);
4389 }
4390 
4391 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4392 
4393 static ssize_t
4394 mismatch_cnt_show(struct mddev *mddev, char *page)
4395 {
4396 	return sprintf(page, "%llu\n",
4397 		       (unsigned long long)
4398 		       atomic64_read(&mddev->resync_mismatches));
4399 }
4400 
4401 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4402 
4403 static ssize_t
4404 sync_min_show(struct mddev *mddev, char *page)
4405 {
4406 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4407 		       mddev->sync_speed_min ? "local": "system");
4408 }
4409 
4410 static ssize_t
4411 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4412 {
4413 	unsigned int min;
4414 	int rv;
4415 
4416 	if (strncmp(buf, "system", 6)==0) {
4417 		min = 0;
4418 	} else {
4419 		rv = kstrtouint(buf, 10, &min);
4420 		if (rv < 0)
4421 			return rv;
4422 		if (min == 0)
4423 			return -EINVAL;
4424 	}
4425 	mddev->sync_speed_min = min;
4426 	return len;
4427 }
4428 
4429 static struct md_sysfs_entry md_sync_min =
4430 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4431 
4432 static ssize_t
4433 sync_max_show(struct mddev *mddev, char *page)
4434 {
4435 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4436 		       mddev->sync_speed_max ? "local": "system");
4437 }
4438 
4439 static ssize_t
4440 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4441 {
4442 	unsigned int max;
4443 	int rv;
4444 
4445 	if (strncmp(buf, "system", 6)==0) {
4446 		max = 0;
4447 	} else {
4448 		rv = kstrtouint(buf, 10, &max);
4449 		if (rv < 0)
4450 			return rv;
4451 		if (max == 0)
4452 			return -EINVAL;
4453 	}
4454 	mddev->sync_speed_max = max;
4455 	return len;
4456 }
4457 
4458 static struct md_sysfs_entry md_sync_max =
4459 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4460 
4461 static ssize_t
4462 degraded_show(struct mddev *mddev, char *page)
4463 {
4464 	return sprintf(page, "%d\n", mddev->degraded);
4465 }
4466 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4467 
4468 static ssize_t
4469 sync_force_parallel_show(struct mddev *mddev, char *page)
4470 {
4471 	return sprintf(page, "%d\n", mddev->parallel_resync);
4472 }
4473 
4474 static ssize_t
4475 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4476 {
4477 	long n;
4478 
4479 	if (kstrtol(buf, 10, &n))
4480 		return -EINVAL;
4481 
4482 	if (n != 0 && n != 1)
4483 		return -EINVAL;
4484 
4485 	mddev->parallel_resync = n;
4486 
4487 	if (mddev->sync_thread)
4488 		wake_up(&resync_wait);
4489 
4490 	return len;
4491 }
4492 
4493 /* force parallel resync, even with shared block devices */
4494 static struct md_sysfs_entry md_sync_force_parallel =
4495 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4496        sync_force_parallel_show, sync_force_parallel_store);
4497 
4498 static ssize_t
4499 sync_speed_show(struct mddev *mddev, char *page)
4500 {
4501 	unsigned long resync, dt, db;
4502 	if (mddev->curr_resync == 0)
4503 		return sprintf(page, "none\n");
4504 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4505 	dt = (jiffies - mddev->resync_mark) / HZ;
4506 	if (!dt) dt++;
4507 	db = resync - mddev->resync_mark_cnt;
4508 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4509 }
4510 
4511 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4512 
4513 static ssize_t
4514 sync_completed_show(struct mddev *mddev, char *page)
4515 {
4516 	unsigned long long max_sectors, resync;
4517 
4518 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4519 		return sprintf(page, "none\n");
4520 
4521 	if (mddev->curr_resync == 1 ||
4522 	    mddev->curr_resync == 2)
4523 		return sprintf(page, "delayed\n");
4524 
4525 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4526 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4527 		max_sectors = mddev->resync_max_sectors;
4528 	else
4529 		max_sectors = mddev->dev_sectors;
4530 
4531 	resync = mddev->curr_resync_completed;
4532 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4533 }
4534 
4535 static struct md_sysfs_entry md_sync_completed =
4536 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4537 
4538 static ssize_t
4539 min_sync_show(struct mddev *mddev, char *page)
4540 {
4541 	return sprintf(page, "%llu\n",
4542 		       (unsigned long long)mddev->resync_min);
4543 }
4544 static ssize_t
4545 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4546 {
4547 	unsigned long long min;
4548 	int err;
4549 
4550 	if (kstrtoull(buf, 10, &min))
4551 		return -EINVAL;
4552 
4553 	spin_lock(&mddev->lock);
4554 	err = -EINVAL;
4555 	if (min > mddev->resync_max)
4556 		goto out_unlock;
4557 
4558 	err = -EBUSY;
4559 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4560 		goto out_unlock;
4561 
4562 	/* Round down to multiple of 4K for safety */
4563 	mddev->resync_min = round_down(min, 8);
4564 	err = 0;
4565 
4566 out_unlock:
4567 	spin_unlock(&mddev->lock);
4568 	return err ?: len;
4569 }
4570 
4571 static struct md_sysfs_entry md_min_sync =
4572 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4573 
4574 static ssize_t
4575 max_sync_show(struct mddev *mddev, char *page)
4576 {
4577 	if (mddev->resync_max == MaxSector)
4578 		return sprintf(page, "max\n");
4579 	else
4580 		return sprintf(page, "%llu\n",
4581 			       (unsigned long long)mddev->resync_max);
4582 }
4583 static ssize_t
4584 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4585 {
4586 	int err;
4587 	spin_lock(&mddev->lock);
4588 	if (strncmp(buf, "max", 3) == 0)
4589 		mddev->resync_max = MaxSector;
4590 	else {
4591 		unsigned long long max;
4592 		int chunk;
4593 
4594 		err = -EINVAL;
4595 		if (kstrtoull(buf, 10, &max))
4596 			goto out_unlock;
4597 		if (max < mddev->resync_min)
4598 			goto out_unlock;
4599 
4600 		err = -EBUSY;
4601 		if (max < mddev->resync_max &&
4602 		    mddev->ro == 0 &&
4603 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4604 			goto out_unlock;
4605 
4606 		/* Must be a multiple of chunk_size */
4607 		chunk = mddev->chunk_sectors;
4608 		if (chunk) {
4609 			sector_t temp = max;
4610 
4611 			err = -EINVAL;
4612 			if (sector_div(temp, chunk))
4613 				goto out_unlock;
4614 		}
4615 		mddev->resync_max = max;
4616 	}
4617 	wake_up(&mddev->recovery_wait);
4618 	err = 0;
4619 out_unlock:
4620 	spin_unlock(&mddev->lock);
4621 	return err ?: len;
4622 }
4623 
4624 static struct md_sysfs_entry md_max_sync =
4625 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4626 
4627 static ssize_t
4628 suspend_lo_show(struct mddev *mddev, char *page)
4629 {
4630 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4631 }
4632 
4633 static ssize_t
4634 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4635 {
4636 	unsigned long long old, new;
4637 	int err;
4638 
4639 	err = kstrtoull(buf, 10, &new);
4640 	if (err < 0)
4641 		return err;
4642 	if (new != (sector_t)new)
4643 		return -EINVAL;
4644 
4645 	err = mddev_lock(mddev);
4646 	if (err)
4647 		return err;
4648 	err = -EINVAL;
4649 	if (mddev->pers == NULL ||
4650 	    mddev->pers->quiesce == NULL)
4651 		goto unlock;
4652 	old = mddev->suspend_lo;
4653 	mddev->suspend_lo = new;
4654 	if (new >= old)
4655 		/* Shrinking suspended region */
4656 		mddev->pers->quiesce(mddev, 2);
4657 	else {
4658 		/* Expanding suspended region - need to wait */
4659 		mddev->pers->quiesce(mddev, 1);
4660 		mddev->pers->quiesce(mddev, 0);
4661 	}
4662 	err = 0;
4663 unlock:
4664 	mddev_unlock(mddev);
4665 	return err ?: len;
4666 }
4667 static struct md_sysfs_entry md_suspend_lo =
4668 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4669 
4670 static ssize_t
4671 suspend_hi_show(struct mddev *mddev, char *page)
4672 {
4673 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4674 }
4675 
4676 static ssize_t
4677 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4678 {
4679 	unsigned long long old, new;
4680 	int err;
4681 
4682 	err = kstrtoull(buf, 10, &new);
4683 	if (err < 0)
4684 		return err;
4685 	if (new != (sector_t)new)
4686 		return -EINVAL;
4687 
4688 	err = mddev_lock(mddev);
4689 	if (err)
4690 		return err;
4691 	err = -EINVAL;
4692 	if (mddev->pers == NULL ||
4693 	    mddev->pers->quiesce == NULL)
4694 		goto unlock;
4695 	old = mddev->suspend_hi;
4696 	mddev->suspend_hi = new;
4697 	if (new <= old)
4698 		/* Shrinking suspended region */
4699 		mddev->pers->quiesce(mddev, 2);
4700 	else {
4701 		/* Expanding suspended region - need to wait */
4702 		mddev->pers->quiesce(mddev, 1);
4703 		mddev->pers->quiesce(mddev, 0);
4704 	}
4705 	err = 0;
4706 unlock:
4707 	mddev_unlock(mddev);
4708 	return err ?: len;
4709 }
4710 static struct md_sysfs_entry md_suspend_hi =
4711 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4712 
4713 static ssize_t
4714 reshape_position_show(struct mddev *mddev, char *page)
4715 {
4716 	if (mddev->reshape_position != MaxSector)
4717 		return sprintf(page, "%llu\n",
4718 			       (unsigned long long)mddev->reshape_position);
4719 	strcpy(page, "none\n");
4720 	return 5;
4721 }
4722 
4723 static ssize_t
4724 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4725 {
4726 	struct md_rdev *rdev;
4727 	unsigned long long new;
4728 	int err;
4729 
4730 	err = kstrtoull(buf, 10, &new);
4731 	if (err < 0)
4732 		return err;
4733 	if (new != (sector_t)new)
4734 		return -EINVAL;
4735 	err = mddev_lock(mddev);
4736 	if (err)
4737 		return err;
4738 	err = -EBUSY;
4739 	if (mddev->pers)
4740 		goto unlock;
4741 	mddev->reshape_position = new;
4742 	mddev->delta_disks = 0;
4743 	mddev->reshape_backwards = 0;
4744 	mddev->new_level = mddev->level;
4745 	mddev->new_layout = mddev->layout;
4746 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4747 	rdev_for_each(rdev, mddev)
4748 		rdev->new_data_offset = rdev->data_offset;
4749 	err = 0;
4750 unlock:
4751 	mddev_unlock(mddev);
4752 	return err ?: len;
4753 }
4754 
4755 static struct md_sysfs_entry md_reshape_position =
4756 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4757        reshape_position_store);
4758 
4759 static ssize_t
4760 reshape_direction_show(struct mddev *mddev, char *page)
4761 {
4762 	return sprintf(page, "%s\n",
4763 		       mddev->reshape_backwards ? "backwards" : "forwards");
4764 }
4765 
4766 static ssize_t
4767 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4768 {
4769 	int backwards = 0;
4770 	int err;
4771 
4772 	if (cmd_match(buf, "forwards"))
4773 		backwards = 0;
4774 	else if (cmd_match(buf, "backwards"))
4775 		backwards = 1;
4776 	else
4777 		return -EINVAL;
4778 	if (mddev->reshape_backwards == backwards)
4779 		return len;
4780 
4781 	err = mddev_lock(mddev);
4782 	if (err)
4783 		return err;
4784 	/* check if we are allowed to change */
4785 	if (mddev->delta_disks)
4786 		err = -EBUSY;
4787 	else if (mddev->persistent &&
4788 	    mddev->major_version == 0)
4789 		err =  -EINVAL;
4790 	else
4791 		mddev->reshape_backwards = backwards;
4792 	mddev_unlock(mddev);
4793 	return err ?: len;
4794 }
4795 
4796 static struct md_sysfs_entry md_reshape_direction =
4797 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4798        reshape_direction_store);
4799 
4800 static ssize_t
4801 array_size_show(struct mddev *mddev, char *page)
4802 {
4803 	if (mddev->external_size)
4804 		return sprintf(page, "%llu\n",
4805 			       (unsigned long long)mddev->array_sectors/2);
4806 	else
4807 		return sprintf(page, "default\n");
4808 }
4809 
4810 static ssize_t
4811 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4812 {
4813 	sector_t sectors;
4814 	int err;
4815 
4816 	err = mddev_lock(mddev);
4817 	if (err)
4818 		return err;
4819 
4820 	/* cluster raid doesn't support change array_sectors */
4821 	if (mddev_is_clustered(mddev))
4822 		return -EINVAL;
4823 
4824 	if (strncmp(buf, "default", 7) == 0) {
4825 		if (mddev->pers)
4826 			sectors = mddev->pers->size(mddev, 0, 0);
4827 		else
4828 			sectors = mddev->array_sectors;
4829 
4830 		mddev->external_size = 0;
4831 	} else {
4832 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4833 			err = -EINVAL;
4834 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4835 			err = -E2BIG;
4836 		else
4837 			mddev->external_size = 1;
4838 	}
4839 
4840 	if (!err) {
4841 		mddev->array_sectors = sectors;
4842 		if (mddev->pers) {
4843 			set_capacity(mddev->gendisk, mddev->array_sectors);
4844 			revalidate_disk(mddev->gendisk);
4845 		}
4846 	}
4847 	mddev_unlock(mddev);
4848 	return err ?: len;
4849 }
4850 
4851 static struct md_sysfs_entry md_array_size =
4852 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4853        array_size_store);
4854 
4855 static struct attribute *md_default_attrs[] = {
4856 	&md_level.attr,
4857 	&md_layout.attr,
4858 	&md_raid_disks.attr,
4859 	&md_chunk_size.attr,
4860 	&md_size.attr,
4861 	&md_resync_start.attr,
4862 	&md_metadata.attr,
4863 	&md_new_device.attr,
4864 	&md_safe_delay.attr,
4865 	&md_array_state.attr,
4866 	&md_reshape_position.attr,
4867 	&md_reshape_direction.attr,
4868 	&md_array_size.attr,
4869 	&max_corr_read_errors.attr,
4870 	NULL,
4871 };
4872 
4873 static struct attribute *md_redundancy_attrs[] = {
4874 	&md_scan_mode.attr,
4875 	&md_last_scan_mode.attr,
4876 	&md_mismatches.attr,
4877 	&md_sync_min.attr,
4878 	&md_sync_max.attr,
4879 	&md_sync_speed.attr,
4880 	&md_sync_force_parallel.attr,
4881 	&md_sync_completed.attr,
4882 	&md_min_sync.attr,
4883 	&md_max_sync.attr,
4884 	&md_suspend_lo.attr,
4885 	&md_suspend_hi.attr,
4886 	&md_bitmap.attr,
4887 	&md_degraded.attr,
4888 	NULL,
4889 };
4890 static struct attribute_group md_redundancy_group = {
4891 	.name = NULL,
4892 	.attrs = md_redundancy_attrs,
4893 };
4894 
4895 static ssize_t
4896 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4897 {
4898 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4899 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4900 	ssize_t rv;
4901 
4902 	if (!entry->show)
4903 		return -EIO;
4904 	spin_lock(&all_mddevs_lock);
4905 	if (list_empty(&mddev->all_mddevs)) {
4906 		spin_unlock(&all_mddevs_lock);
4907 		return -EBUSY;
4908 	}
4909 	mddev_get(mddev);
4910 	spin_unlock(&all_mddevs_lock);
4911 
4912 	rv = entry->show(mddev, page);
4913 	mddev_put(mddev);
4914 	return rv;
4915 }
4916 
4917 static ssize_t
4918 md_attr_store(struct kobject *kobj, struct attribute *attr,
4919 	      const char *page, size_t length)
4920 {
4921 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4922 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4923 	ssize_t rv;
4924 
4925 	if (!entry->store)
4926 		return -EIO;
4927 	if (!capable(CAP_SYS_ADMIN))
4928 		return -EACCES;
4929 	spin_lock(&all_mddevs_lock);
4930 	if (list_empty(&mddev->all_mddevs)) {
4931 		spin_unlock(&all_mddevs_lock);
4932 		return -EBUSY;
4933 	}
4934 	mddev_get(mddev);
4935 	spin_unlock(&all_mddevs_lock);
4936 	rv = entry->store(mddev, page, length);
4937 	mddev_put(mddev);
4938 	return rv;
4939 }
4940 
4941 static void md_free(struct kobject *ko)
4942 {
4943 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4944 
4945 	if (mddev->sysfs_state)
4946 		sysfs_put(mddev->sysfs_state);
4947 
4948 	if (mddev->queue)
4949 		blk_cleanup_queue(mddev->queue);
4950 	if (mddev->gendisk) {
4951 		del_gendisk(mddev->gendisk);
4952 		put_disk(mddev->gendisk);
4953 	}
4954 
4955 	kfree(mddev);
4956 }
4957 
4958 static const struct sysfs_ops md_sysfs_ops = {
4959 	.show	= md_attr_show,
4960 	.store	= md_attr_store,
4961 };
4962 static struct kobj_type md_ktype = {
4963 	.release	= md_free,
4964 	.sysfs_ops	= &md_sysfs_ops,
4965 	.default_attrs	= md_default_attrs,
4966 };
4967 
4968 int mdp_major = 0;
4969 
4970 static void mddev_delayed_delete(struct work_struct *ws)
4971 {
4972 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4973 
4974 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4975 	kobject_del(&mddev->kobj);
4976 	kobject_put(&mddev->kobj);
4977 }
4978 
4979 static int md_alloc(dev_t dev, char *name)
4980 {
4981 	static DEFINE_MUTEX(disks_mutex);
4982 	struct mddev *mddev = mddev_find(dev);
4983 	struct gendisk *disk;
4984 	int partitioned;
4985 	int shift;
4986 	int unit;
4987 	int error;
4988 
4989 	if (!mddev)
4990 		return -ENODEV;
4991 
4992 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4993 	shift = partitioned ? MdpMinorShift : 0;
4994 	unit = MINOR(mddev->unit) >> shift;
4995 
4996 	/* wait for any previous instance of this device to be
4997 	 * completely removed (mddev_delayed_delete).
4998 	 */
4999 	flush_workqueue(md_misc_wq);
5000 
5001 	mutex_lock(&disks_mutex);
5002 	error = -EEXIST;
5003 	if (mddev->gendisk)
5004 		goto abort;
5005 
5006 	if (name) {
5007 		/* Need to ensure that 'name' is not a duplicate.
5008 		 */
5009 		struct mddev *mddev2;
5010 		spin_lock(&all_mddevs_lock);
5011 
5012 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5013 			if (mddev2->gendisk &&
5014 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5015 				spin_unlock(&all_mddevs_lock);
5016 				goto abort;
5017 			}
5018 		spin_unlock(&all_mddevs_lock);
5019 	}
5020 
5021 	error = -ENOMEM;
5022 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5023 	if (!mddev->queue)
5024 		goto abort;
5025 	mddev->queue->queuedata = mddev;
5026 
5027 	blk_queue_make_request(mddev->queue, md_make_request);
5028 	blk_set_stacking_limits(&mddev->queue->limits);
5029 
5030 	disk = alloc_disk(1 << shift);
5031 	if (!disk) {
5032 		blk_cleanup_queue(mddev->queue);
5033 		mddev->queue = NULL;
5034 		goto abort;
5035 	}
5036 	disk->major = MAJOR(mddev->unit);
5037 	disk->first_minor = unit << shift;
5038 	if (name)
5039 		strcpy(disk->disk_name, name);
5040 	else if (partitioned)
5041 		sprintf(disk->disk_name, "md_d%d", unit);
5042 	else
5043 		sprintf(disk->disk_name, "md%d", unit);
5044 	disk->fops = &md_fops;
5045 	disk->private_data = mddev;
5046 	disk->queue = mddev->queue;
5047 	blk_queue_write_cache(mddev->queue, true, true);
5048 	/* Allow extended partitions.  This makes the
5049 	 * 'mdp' device redundant, but we can't really
5050 	 * remove it now.
5051 	 */
5052 	disk->flags |= GENHD_FL_EXT_DEVT;
5053 	mddev->gendisk = disk;
5054 	/* As soon as we call add_disk(), another thread could get
5055 	 * through to md_open, so make sure it doesn't get too far
5056 	 */
5057 	mutex_lock(&mddev->open_mutex);
5058 	add_disk(disk);
5059 
5060 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5061 				     &disk_to_dev(disk)->kobj, "%s", "md");
5062 	if (error) {
5063 		/* This isn't possible, but as kobject_init_and_add is marked
5064 		 * __must_check, we must do something with the result
5065 		 */
5066 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5067 		       disk->disk_name);
5068 		error = 0;
5069 	}
5070 	if (mddev->kobj.sd &&
5071 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5072 		printk(KERN_DEBUG "pointless warning\n");
5073 	mutex_unlock(&mddev->open_mutex);
5074  abort:
5075 	mutex_unlock(&disks_mutex);
5076 	if (!error && mddev->kobj.sd) {
5077 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5078 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5079 	}
5080 	mddev_put(mddev);
5081 	return error;
5082 }
5083 
5084 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5085 {
5086 	md_alloc(dev, NULL);
5087 	return NULL;
5088 }
5089 
5090 static int add_named_array(const char *val, struct kernel_param *kp)
5091 {
5092 	/* val must be "md_*" where * is not all digits.
5093 	 * We allocate an array with a large free minor number, and
5094 	 * set the name to val.  val must not already be an active name.
5095 	 */
5096 	int len = strlen(val);
5097 	char buf[DISK_NAME_LEN];
5098 
5099 	while (len && val[len-1] == '\n')
5100 		len--;
5101 	if (len >= DISK_NAME_LEN)
5102 		return -E2BIG;
5103 	strlcpy(buf, val, len+1);
5104 	if (strncmp(buf, "md_", 3) != 0)
5105 		return -EINVAL;
5106 	return md_alloc(0, buf);
5107 }
5108 
5109 static void md_safemode_timeout(unsigned long data)
5110 {
5111 	struct mddev *mddev = (struct mddev *) data;
5112 
5113 	if (!atomic_read(&mddev->writes_pending)) {
5114 		mddev->safemode = 1;
5115 		if (mddev->external)
5116 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5117 	}
5118 	md_wakeup_thread(mddev->thread);
5119 }
5120 
5121 static int start_dirty_degraded;
5122 
5123 int md_run(struct mddev *mddev)
5124 {
5125 	int err;
5126 	struct md_rdev *rdev;
5127 	struct md_personality *pers;
5128 
5129 	if (list_empty(&mddev->disks))
5130 		/* cannot run an array with no devices.. */
5131 		return -EINVAL;
5132 
5133 	if (mddev->pers)
5134 		return -EBUSY;
5135 	/* Cannot run until previous stop completes properly */
5136 	if (mddev->sysfs_active)
5137 		return -EBUSY;
5138 
5139 	/*
5140 	 * Analyze all RAID superblock(s)
5141 	 */
5142 	if (!mddev->raid_disks) {
5143 		if (!mddev->persistent)
5144 			return -EINVAL;
5145 		analyze_sbs(mddev);
5146 	}
5147 
5148 	if (mddev->level != LEVEL_NONE)
5149 		request_module("md-level-%d", mddev->level);
5150 	else if (mddev->clevel[0])
5151 		request_module("md-%s", mddev->clevel);
5152 
5153 	/*
5154 	 * Drop all container device buffers, from now on
5155 	 * the only valid external interface is through the md
5156 	 * device.
5157 	 */
5158 	rdev_for_each(rdev, mddev) {
5159 		if (test_bit(Faulty, &rdev->flags))
5160 			continue;
5161 		sync_blockdev(rdev->bdev);
5162 		invalidate_bdev(rdev->bdev);
5163 
5164 		/* perform some consistency tests on the device.
5165 		 * We don't want the data to overlap the metadata,
5166 		 * Internal Bitmap issues have been handled elsewhere.
5167 		 */
5168 		if (rdev->meta_bdev) {
5169 			/* Nothing to check */;
5170 		} else if (rdev->data_offset < rdev->sb_start) {
5171 			if (mddev->dev_sectors &&
5172 			    rdev->data_offset + mddev->dev_sectors
5173 			    > rdev->sb_start) {
5174 				printk("md: %s: data overlaps metadata\n",
5175 				       mdname(mddev));
5176 				return -EINVAL;
5177 			}
5178 		} else {
5179 			if (rdev->sb_start + rdev->sb_size/512
5180 			    > rdev->data_offset) {
5181 				printk("md: %s: metadata overlaps data\n",
5182 				       mdname(mddev));
5183 				return -EINVAL;
5184 			}
5185 		}
5186 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5187 	}
5188 
5189 	if (mddev->bio_set == NULL)
5190 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5191 
5192 	spin_lock(&pers_lock);
5193 	pers = find_pers(mddev->level, mddev->clevel);
5194 	if (!pers || !try_module_get(pers->owner)) {
5195 		spin_unlock(&pers_lock);
5196 		if (mddev->level != LEVEL_NONE)
5197 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5198 			       mddev->level);
5199 		else
5200 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5201 			       mddev->clevel);
5202 		return -EINVAL;
5203 	}
5204 	spin_unlock(&pers_lock);
5205 	if (mddev->level != pers->level) {
5206 		mddev->level = pers->level;
5207 		mddev->new_level = pers->level;
5208 	}
5209 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5210 
5211 	if (mddev->reshape_position != MaxSector &&
5212 	    pers->start_reshape == NULL) {
5213 		/* This personality cannot handle reshaping... */
5214 		module_put(pers->owner);
5215 		return -EINVAL;
5216 	}
5217 
5218 	if (pers->sync_request) {
5219 		/* Warn if this is a potentially silly
5220 		 * configuration.
5221 		 */
5222 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5223 		struct md_rdev *rdev2;
5224 		int warned = 0;
5225 
5226 		rdev_for_each(rdev, mddev)
5227 			rdev_for_each(rdev2, mddev) {
5228 				if (rdev < rdev2 &&
5229 				    rdev->bdev->bd_contains ==
5230 				    rdev2->bdev->bd_contains) {
5231 					printk(KERN_WARNING
5232 					       "%s: WARNING: %s appears to be"
5233 					       " on the same physical disk as"
5234 					       " %s.\n",
5235 					       mdname(mddev),
5236 					       bdevname(rdev->bdev,b),
5237 					       bdevname(rdev2->bdev,b2));
5238 					warned = 1;
5239 				}
5240 			}
5241 
5242 		if (warned)
5243 			printk(KERN_WARNING
5244 			       "True protection against single-disk"
5245 			       " failure might be compromised.\n");
5246 	}
5247 
5248 	mddev->recovery = 0;
5249 	/* may be over-ridden by personality */
5250 	mddev->resync_max_sectors = mddev->dev_sectors;
5251 
5252 	mddev->ok_start_degraded = start_dirty_degraded;
5253 
5254 	if (start_readonly && mddev->ro == 0)
5255 		mddev->ro = 2; /* read-only, but switch on first write */
5256 
5257 	err = pers->run(mddev);
5258 	if (err)
5259 		printk(KERN_ERR "md: pers->run() failed ...\n");
5260 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5261 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5262 			  " but 'external_size' not in effect?\n", __func__);
5263 		printk(KERN_ERR
5264 		       "md: invalid array_size %llu > default size %llu\n",
5265 		       (unsigned long long)mddev->array_sectors / 2,
5266 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5267 		err = -EINVAL;
5268 	}
5269 	if (err == 0 && pers->sync_request &&
5270 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5271 		struct bitmap *bitmap;
5272 
5273 		bitmap = bitmap_create(mddev, -1);
5274 		if (IS_ERR(bitmap)) {
5275 			err = PTR_ERR(bitmap);
5276 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5277 			       mdname(mddev), err);
5278 		} else
5279 			mddev->bitmap = bitmap;
5280 
5281 	}
5282 	if (err) {
5283 		mddev_detach(mddev);
5284 		if (mddev->private)
5285 			pers->free(mddev, mddev->private);
5286 		mddev->private = NULL;
5287 		module_put(pers->owner);
5288 		bitmap_destroy(mddev);
5289 		return err;
5290 	}
5291 	if (mddev->queue) {
5292 		mddev->queue->backing_dev_info.congested_data = mddev;
5293 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5294 	}
5295 	if (pers->sync_request) {
5296 		if (mddev->kobj.sd &&
5297 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5298 			printk(KERN_WARNING
5299 			       "md: cannot register extra attributes for %s\n",
5300 			       mdname(mddev));
5301 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5302 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5303 		mddev->ro = 0;
5304 
5305 	atomic_set(&mddev->writes_pending,0);
5306 	atomic_set(&mddev->max_corr_read_errors,
5307 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5308 	mddev->safemode = 0;
5309 	if (mddev_is_clustered(mddev))
5310 		mddev->safemode_delay = 0;
5311 	else
5312 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5313 	mddev->in_sync = 1;
5314 	smp_wmb();
5315 	spin_lock(&mddev->lock);
5316 	mddev->pers = pers;
5317 	spin_unlock(&mddev->lock);
5318 	rdev_for_each(rdev, mddev)
5319 		if (rdev->raid_disk >= 0)
5320 			if (sysfs_link_rdev(mddev, rdev))
5321 				/* failure here is OK */;
5322 
5323 	if (mddev->degraded && !mddev->ro)
5324 		/* This ensures that recovering status is reported immediately
5325 		 * via sysfs - until a lack of spares is confirmed.
5326 		 */
5327 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5328 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5329 
5330 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5331 		md_update_sb(mddev, 0);
5332 
5333 	md_new_event(mddev);
5334 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5335 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5336 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5337 	return 0;
5338 }
5339 EXPORT_SYMBOL_GPL(md_run);
5340 
5341 static int do_md_run(struct mddev *mddev)
5342 {
5343 	int err;
5344 
5345 	err = md_run(mddev);
5346 	if (err)
5347 		goto out;
5348 	err = bitmap_load(mddev);
5349 	if (err) {
5350 		bitmap_destroy(mddev);
5351 		goto out;
5352 	}
5353 
5354 	if (mddev_is_clustered(mddev))
5355 		md_allow_write(mddev);
5356 
5357 	md_wakeup_thread(mddev->thread);
5358 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5359 
5360 	set_capacity(mddev->gendisk, mddev->array_sectors);
5361 	revalidate_disk(mddev->gendisk);
5362 	mddev->changed = 1;
5363 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5364 out:
5365 	return err;
5366 }
5367 
5368 static int restart_array(struct mddev *mddev)
5369 {
5370 	struct gendisk *disk = mddev->gendisk;
5371 
5372 	/* Complain if it has no devices */
5373 	if (list_empty(&mddev->disks))
5374 		return -ENXIO;
5375 	if (!mddev->pers)
5376 		return -EINVAL;
5377 	if (!mddev->ro)
5378 		return -EBUSY;
5379 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5380 		struct md_rdev *rdev;
5381 		bool has_journal = false;
5382 
5383 		rcu_read_lock();
5384 		rdev_for_each_rcu(rdev, mddev) {
5385 			if (test_bit(Journal, &rdev->flags) &&
5386 			    !test_bit(Faulty, &rdev->flags)) {
5387 				has_journal = true;
5388 				break;
5389 			}
5390 		}
5391 		rcu_read_unlock();
5392 
5393 		/* Don't restart rw with journal missing/faulty */
5394 		if (!has_journal)
5395 			return -EINVAL;
5396 	}
5397 
5398 	mddev->safemode = 0;
5399 	mddev->ro = 0;
5400 	set_disk_ro(disk, 0);
5401 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5402 		mdname(mddev));
5403 	/* Kick recovery or resync if necessary */
5404 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5405 	md_wakeup_thread(mddev->thread);
5406 	md_wakeup_thread(mddev->sync_thread);
5407 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5408 	return 0;
5409 }
5410 
5411 static void md_clean(struct mddev *mddev)
5412 {
5413 	mddev->array_sectors = 0;
5414 	mddev->external_size = 0;
5415 	mddev->dev_sectors = 0;
5416 	mddev->raid_disks = 0;
5417 	mddev->recovery_cp = 0;
5418 	mddev->resync_min = 0;
5419 	mddev->resync_max = MaxSector;
5420 	mddev->reshape_position = MaxSector;
5421 	mddev->external = 0;
5422 	mddev->persistent = 0;
5423 	mddev->level = LEVEL_NONE;
5424 	mddev->clevel[0] = 0;
5425 	mddev->flags = 0;
5426 	mddev->ro = 0;
5427 	mddev->metadata_type[0] = 0;
5428 	mddev->chunk_sectors = 0;
5429 	mddev->ctime = mddev->utime = 0;
5430 	mddev->layout = 0;
5431 	mddev->max_disks = 0;
5432 	mddev->events = 0;
5433 	mddev->can_decrease_events = 0;
5434 	mddev->delta_disks = 0;
5435 	mddev->reshape_backwards = 0;
5436 	mddev->new_level = LEVEL_NONE;
5437 	mddev->new_layout = 0;
5438 	mddev->new_chunk_sectors = 0;
5439 	mddev->curr_resync = 0;
5440 	atomic64_set(&mddev->resync_mismatches, 0);
5441 	mddev->suspend_lo = mddev->suspend_hi = 0;
5442 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5443 	mddev->recovery = 0;
5444 	mddev->in_sync = 0;
5445 	mddev->changed = 0;
5446 	mddev->degraded = 0;
5447 	mddev->safemode = 0;
5448 	mddev->private = NULL;
5449 	mddev->bitmap_info.offset = 0;
5450 	mddev->bitmap_info.default_offset = 0;
5451 	mddev->bitmap_info.default_space = 0;
5452 	mddev->bitmap_info.chunksize = 0;
5453 	mddev->bitmap_info.daemon_sleep = 0;
5454 	mddev->bitmap_info.max_write_behind = 0;
5455 }
5456 
5457 static void __md_stop_writes(struct mddev *mddev)
5458 {
5459 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5460 	flush_workqueue(md_misc_wq);
5461 	if (mddev->sync_thread) {
5462 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5463 		md_reap_sync_thread(mddev);
5464 	}
5465 
5466 	del_timer_sync(&mddev->safemode_timer);
5467 
5468 	bitmap_flush(mddev);
5469 	md_super_wait(mddev);
5470 
5471 	if (mddev->ro == 0 &&
5472 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5473 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5474 		/* mark array as shutdown cleanly */
5475 		if (!mddev_is_clustered(mddev))
5476 			mddev->in_sync = 1;
5477 		md_update_sb(mddev, 1);
5478 	}
5479 }
5480 
5481 void md_stop_writes(struct mddev *mddev)
5482 {
5483 	mddev_lock_nointr(mddev);
5484 	__md_stop_writes(mddev);
5485 	mddev_unlock(mddev);
5486 }
5487 EXPORT_SYMBOL_GPL(md_stop_writes);
5488 
5489 static void mddev_detach(struct mddev *mddev)
5490 {
5491 	struct bitmap *bitmap = mddev->bitmap;
5492 	/* wait for behind writes to complete */
5493 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5494 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5495 		       mdname(mddev));
5496 		/* need to kick something here to make sure I/O goes? */
5497 		wait_event(bitmap->behind_wait,
5498 			   atomic_read(&bitmap->behind_writes) == 0);
5499 	}
5500 	if (mddev->pers && mddev->pers->quiesce) {
5501 		mddev->pers->quiesce(mddev, 1);
5502 		mddev->pers->quiesce(mddev, 0);
5503 	}
5504 	md_unregister_thread(&mddev->thread);
5505 	if (mddev->queue)
5506 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5507 }
5508 
5509 static void __md_stop(struct mddev *mddev)
5510 {
5511 	struct md_personality *pers = mddev->pers;
5512 	mddev_detach(mddev);
5513 	/* Ensure ->event_work is done */
5514 	flush_workqueue(md_misc_wq);
5515 	spin_lock(&mddev->lock);
5516 	mddev->pers = NULL;
5517 	spin_unlock(&mddev->lock);
5518 	pers->free(mddev, mddev->private);
5519 	mddev->private = NULL;
5520 	if (pers->sync_request && mddev->to_remove == NULL)
5521 		mddev->to_remove = &md_redundancy_group;
5522 	module_put(pers->owner);
5523 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5524 }
5525 
5526 void md_stop(struct mddev *mddev)
5527 {
5528 	/* stop the array and free an attached data structures.
5529 	 * This is called from dm-raid
5530 	 */
5531 	__md_stop(mddev);
5532 	bitmap_destroy(mddev);
5533 	if (mddev->bio_set)
5534 		bioset_free(mddev->bio_set);
5535 }
5536 
5537 EXPORT_SYMBOL_GPL(md_stop);
5538 
5539 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5540 {
5541 	int err = 0;
5542 	int did_freeze = 0;
5543 
5544 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5545 		did_freeze = 1;
5546 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5547 		md_wakeup_thread(mddev->thread);
5548 	}
5549 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5550 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5551 	if (mddev->sync_thread)
5552 		/* Thread might be blocked waiting for metadata update
5553 		 * which will now never happen */
5554 		wake_up_process(mddev->sync_thread->tsk);
5555 
5556 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5557 		return -EBUSY;
5558 	mddev_unlock(mddev);
5559 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5560 					  &mddev->recovery));
5561 	wait_event(mddev->sb_wait,
5562 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5563 	mddev_lock_nointr(mddev);
5564 
5565 	mutex_lock(&mddev->open_mutex);
5566 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5567 	    mddev->sync_thread ||
5568 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5569 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5570 		printk("md: %s still in use.\n",mdname(mddev));
5571 		if (did_freeze) {
5572 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5573 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5574 			md_wakeup_thread(mddev->thread);
5575 		}
5576 		err = -EBUSY;
5577 		goto out;
5578 	}
5579 	if (mddev->pers) {
5580 		__md_stop_writes(mddev);
5581 
5582 		err  = -ENXIO;
5583 		if (mddev->ro==1)
5584 			goto out;
5585 		mddev->ro = 1;
5586 		set_disk_ro(mddev->gendisk, 1);
5587 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5588 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5589 		md_wakeup_thread(mddev->thread);
5590 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5591 		err = 0;
5592 	}
5593 out:
5594 	mutex_unlock(&mddev->open_mutex);
5595 	return err;
5596 }
5597 
5598 /* mode:
5599  *   0 - completely stop and dis-assemble array
5600  *   2 - stop but do not disassemble array
5601  */
5602 static int do_md_stop(struct mddev *mddev, int mode,
5603 		      struct block_device *bdev)
5604 {
5605 	struct gendisk *disk = mddev->gendisk;
5606 	struct md_rdev *rdev;
5607 	int did_freeze = 0;
5608 
5609 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5610 		did_freeze = 1;
5611 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5612 		md_wakeup_thread(mddev->thread);
5613 	}
5614 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5615 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5616 	if (mddev->sync_thread)
5617 		/* Thread might be blocked waiting for metadata update
5618 		 * which will now never happen */
5619 		wake_up_process(mddev->sync_thread->tsk);
5620 
5621 	mddev_unlock(mddev);
5622 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5623 				 !test_bit(MD_RECOVERY_RUNNING,
5624 					   &mddev->recovery)));
5625 	mddev_lock_nointr(mddev);
5626 
5627 	mutex_lock(&mddev->open_mutex);
5628 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5629 	    mddev->sysfs_active ||
5630 	    mddev->sync_thread ||
5631 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5632 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5633 		printk("md: %s still in use.\n",mdname(mddev));
5634 		mutex_unlock(&mddev->open_mutex);
5635 		if (did_freeze) {
5636 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5637 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5638 			md_wakeup_thread(mddev->thread);
5639 		}
5640 		return -EBUSY;
5641 	}
5642 	if (mddev->pers) {
5643 		if (mddev->ro)
5644 			set_disk_ro(disk, 0);
5645 
5646 		__md_stop_writes(mddev);
5647 		__md_stop(mddev);
5648 		mddev->queue->backing_dev_info.congested_fn = NULL;
5649 
5650 		/* tell userspace to handle 'inactive' */
5651 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5652 
5653 		rdev_for_each(rdev, mddev)
5654 			if (rdev->raid_disk >= 0)
5655 				sysfs_unlink_rdev(mddev, rdev);
5656 
5657 		set_capacity(disk, 0);
5658 		mutex_unlock(&mddev->open_mutex);
5659 		mddev->changed = 1;
5660 		revalidate_disk(disk);
5661 
5662 		if (mddev->ro)
5663 			mddev->ro = 0;
5664 	} else
5665 		mutex_unlock(&mddev->open_mutex);
5666 	/*
5667 	 * Free resources if final stop
5668 	 */
5669 	if (mode == 0) {
5670 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5671 
5672 		bitmap_destroy(mddev);
5673 		if (mddev->bitmap_info.file) {
5674 			struct file *f = mddev->bitmap_info.file;
5675 			spin_lock(&mddev->lock);
5676 			mddev->bitmap_info.file = NULL;
5677 			spin_unlock(&mddev->lock);
5678 			fput(f);
5679 		}
5680 		mddev->bitmap_info.offset = 0;
5681 
5682 		export_array(mddev);
5683 
5684 		md_clean(mddev);
5685 		if (mddev->hold_active == UNTIL_STOP)
5686 			mddev->hold_active = 0;
5687 	}
5688 	md_new_event(mddev);
5689 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5690 	return 0;
5691 }
5692 
5693 #ifndef MODULE
5694 static void autorun_array(struct mddev *mddev)
5695 {
5696 	struct md_rdev *rdev;
5697 	int err;
5698 
5699 	if (list_empty(&mddev->disks))
5700 		return;
5701 
5702 	printk(KERN_INFO "md: running: ");
5703 
5704 	rdev_for_each(rdev, mddev) {
5705 		char b[BDEVNAME_SIZE];
5706 		printk("<%s>", bdevname(rdev->bdev,b));
5707 	}
5708 	printk("\n");
5709 
5710 	err = do_md_run(mddev);
5711 	if (err) {
5712 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5713 		do_md_stop(mddev, 0, NULL);
5714 	}
5715 }
5716 
5717 /*
5718  * lets try to run arrays based on all disks that have arrived
5719  * until now. (those are in pending_raid_disks)
5720  *
5721  * the method: pick the first pending disk, collect all disks with
5722  * the same UUID, remove all from the pending list and put them into
5723  * the 'same_array' list. Then order this list based on superblock
5724  * update time (freshest comes first), kick out 'old' disks and
5725  * compare superblocks. If everything's fine then run it.
5726  *
5727  * If "unit" is allocated, then bump its reference count
5728  */
5729 static void autorun_devices(int part)
5730 {
5731 	struct md_rdev *rdev0, *rdev, *tmp;
5732 	struct mddev *mddev;
5733 	char b[BDEVNAME_SIZE];
5734 
5735 	printk(KERN_INFO "md: autorun ...\n");
5736 	while (!list_empty(&pending_raid_disks)) {
5737 		int unit;
5738 		dev_t dev;
5739 		LIST_HEAD(candidates);
5740 		rdev0 = list_entry(pending_raid_disks.next,
5741 					 struct md_rdev, same_set);
5742 
5743 		printk(KERN_INFO "md: considering %s ...\n",
5744 			bdevname(rdev0->bdev,b));
5745 		INIT_LIST_HEAD(&candidates);
5746 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5747 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5748 				printk(KERN_INFO "md:  adding %s ...\n",
5749 					bdevname(rdev->bdev,b));
5750 				list_move(&rdev->same_set, &candidates);
5751 			}
5752 		/*
5753 		 * now we have a set of devices, with all of them having
5754 		 * mostly sane superblocks. It's time to allocate the
5755 		 * mddev.
5756 		 */
5757 		if (part) {
5758 			dev = MKDEV(mdp_major,
5759 				    rdev0->preferred_minor << MdpMinorShift);
5760 			unit = MINOR(dev) >> MdpMinorShift;
5761 		} else {
5762 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5763 			unit = MINOR(dev);
5764 		}
5765 		if (rdev0->preferred_minor != unit) {
5766 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5767 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5768 			break;
5769 		}
5770 
5771 		md_probe(dev, NULL, NULL);
5772 		mddev = mddev_find(dev);
5773 		if (!mddev || !mddev->gendisk) {
5774 			if (mddev)
5775 				mddev_put(mddev);
5776 			printk(KERN_ERR
5777 				"md: cannot allocate memory for md drive.\n");
5778 			break;
5779 		}
5780 		if (mddev_lock(mddev))
5781 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5782 			       mdname(mddev));
5783 		else if (mddev->raid_disks || mddev->major_version
5784 			 || !list_empty(&mddev->disks)) {
5785 			printk(KERN_WARNING
5786 				"md: %s already running, cannot run %s\n",
5787 				mdname(mddev), bdevname(rdev0->bdev,b));
5788 			mddev_unlock(mddev);
5789 		} else {
5790 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5791 			mddev->persistent = 1;
5792 			rdev_for_each_list(rdev, tmp, &candidates) {
5793 				list_del_init(&rdev->same_set);
5794 				if (bind_rdev_to_array(rdev, mddev))
5795 					export_rdev(rdev);
5796 			}
5797 			autorun_array(mddev);
5798 			mddev_unlock(mddev);
5799 		}
5800 		/* on success, candidates will be empty, on error
5801 		 * it won't...
5802 		 */
5803 		rdev_for_each_list(rdev, tmp, &candidates) {
5804 			list_del_init(&rdev->same_set);
5805 			export_rdev(rdev);
5806 		}
5807 		mddev_put(mddev);
5808 	}
5809 	printk(KERN_INFO "md: ... autorun DONE.\n");
5810 }
5811 #endif /* !MODULE */
5812 
5813 static int get_version(void __user *arg)
5814 {
5815 	mdu_version_t ver;
5816 
5817 	ver.major = MD_MAJOR_VERSION;
5818 	ver.minor = MD_MINOR_VERSION;
5819 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5820 
5821 	if (copy_to_user(arg, &ver, sizeof(ver)))
5822 		return -EFAULT;
5823 
5824 	return 0;
5825 }
5826 
5827 static int get_array_info(struct mddev *mddev, void __user *arg)
5828 {
5829 	mdu_array_info_t info;
5830 	int nr,working,insync,failed,spare;
5831 	struct md_rdev *rdev;
5832 
5833 	nr = working = insync = failed = spare = 0;
5834 	rcu_read_lock();
5835 	rdev_for_each_rcu(rdev, mddev) {
5836 		nr++;
5837 		if (test_bit(Faulty, &rdev->flags))
5838 			failed++;
5839 		else {
5840 			working++;
5841 			if (test_bit(In_sync, &rdev->flags))
5842 				insync++;
5843 			else
5844 				spare++;
5845 		}
5846 	}
5847 	rcu_read_unlock();
5848 
5849 	info.major_version = mddev->major_version;
5850 	info.minor_version = mddev->minor_version;
5851 	info.patch_version = MD_PATCHLEVEL_VERSION;
5852 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5853 	info.level         = mddev->level;
5854 	info.size          = mddev->dev_sectors / 2;
5855 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5856 		info.size = -1;
5857 	info.nr_disks      = nr;
5858 	info.raid_disks    = mddev->raid_disks;
5859 	info.md_minor      = mddev->md_minor;
5860 	info.not_persistent= !mddev->persistent;
5861 
5862 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5863 	info.state         = 0;
5864 	if (mddev->in_sync)
5865 		info.state = (1<<MD_SB_CLEAN);
5866 	if (mddev->bitmap && mddev->bitmap_info.offset)
5867 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5868 	if (mddev_is_clustered(mddev))
5869 		info.state |= (1<<MD_SB_CLUSTERED);
5870 	info.active_disks  = insync;
5871 	info.working_disks = working;
5872 	info.failed_disks  = failed;
5873 	info.spare_disks   = spare;
5874 
5875 	info.layout        = mddev->layout;
5876 	info.chunk_size    = mddev->chunk_sectors << 9;
5877 
5878 	if (copy_to_user(arg, &info, sizeof(info)))
5879 		return -EFAULT;
5880 
5881 	return 0;
5882 }
5883 
5884 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5885 {
5886 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5887 	char *ptr;
5888 	int err;
5889 
5890 	file = kzalloc(sizeof(*file), GFP_NOIO);
5891 	if (!file)
5892 		return -ENOMEM;
5893 
5894 	err = 0;
5895 	spin_lock(&mddev->lock);
5896 	/* bitmap enabled */
5897 	if (mddev->bitmap_info.file) {
5898 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5899 				sizeof(file->pathname));
5900 		if (IS_ERR(ptr))
5901 			err = PTR_ERR(ptr);
5902 		else
5903 			memmove(file->pathname, ptr,
5904 				sizeof(file->pathname)-(ptr-file->pathname));
5905 	}
5906 	spin_unlock(&mddev->lock);
5907 
5908 	if (err == 0 &&
5909 	    copy_to_user(arg, file, sizeof(*file)))
5910 		err = -EFAULT;
5911 
5912 	kfree(file);
5913 	return err;
5914 }
5915 
5916 static int get_disk_info(struct mddev *mddev, void __user * arg)
5917 {
5918 	mdu_disk_info_t info;
5919 	struct md_rdev *rdev;
5920 
5921 	if (copy_from_user(&info, arg, sizeof(info)))
5922 		return -EFAULT;
5923 
5924 	rcu_read_lock();
5925 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5926 	if (rdev) {
5927 		info.major = MAJOR(rdev->bdev->bd_dev);
5928 		info.minor = MINOR(rdev->bdev->bd_dev);
5929 		info.raid_disk = rdev->raid_disk;
5930 		info.state = 0;
5931 		if (test_bit(Faulty, &rdev->flags))
5932 			info.state |= (1<<MD_DISK_FAULTY);
5933 		else if (test_bit(In_sync, &rdev->flags)) {
5934 			info.state |= (1<<MD_DISK_ACTIVE);
5935 			info.state |= (1<<MD_DISK_SYNC);
5936 		}
5937 		if (test_bit(Journal, &rdev->flags))
5938 			info.state |= (1<<MD_DISK_JOURNAL);
5939 		if (test_bit(WriteMostly, &rdev->flags))
5940 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5941 	} else {
5942 		info.major = info.minor = 0;
5943 		info.raid_disk = -1;
5944 		info.state = (1<<MD_DISK_REMOVED);
5945 	}
5946 	rcu_read_unlock();
5947 
5948 	if (copy_to_user(arg, &info, sizeof(info)))
5949 		return -EFAULT;
5950 
5951 	return 0;
5952 }
5953 
5954 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5955 {
5956 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5957 	struct md_rdev *rdev;
5958 	dev_t dev = MKDEV(info->major,info->minor);
5959 
5960 	if (mddev_is_clustered(mddev) &&
5961 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5962 		pr_err("%s: Cannot add to clustered mddev.\n",
5963 			       mdname(mddev));
5964 		return -EINVAL;
5965 	}
5966 
5967 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5968 		return -EOVERFLOW;
5969 
5970 	if (!mddev->raid_disks) {
5971 		int err;
5972 		/* expecting a device which has a superblock */
5973 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5974 		if (IS_ERR(rdev)) {
5975 			printk(KERN_WARNING
5976 				"md: md_import_device returned %ld\n",
5977 				PTR_ERR(rdev));
5978 			return PTR_ERR(rdev);
5979 		}
5980 		if (!list_empty(&mddev->disks)) {
5981 			struct md_rdev *rdev0
5982 				= list_entry(mddev->disks.next,
5983 					     struct md_rdev, same_set);
5984 			err = super_types[mddev->major_version]
5985 				.load_super(rdev, rdev0, mddev->minor_version);
5986 			if (err < 0) {
5987 				printk(KERN_WARNING
5988 					"md: %s has different UUID to %s\n",
5989 					bdevname(rdev->bdev,b),
5990 					bdevname(rdev0->bdev,b2));
5991 				export_rdev(rdev);
5992 				return -EINVAL;
5993 			}
5994 		}
5995 		err = bind_rdev_to_array(rdev, mddev);
5996 		if (err)
5997 			export_rdev(rdev);
5998 		return err;
5999 	}
6000 
6001 	/*
6002 	 * add_new_disk can be used once the array is assembled
6003 	 * to add "hot spares".  They must already have a superblock
6004 	 * written
6005 	 */
6006 	if (mddev->pers) {
6007 		int err;
6008 		if (!mddev->pers->hot_add_disk) {
6009 			printk(KERN_WARNING
6010 				"%s: personality does not support diskops!\n",
6011 			       mdname(mddev));
6012 			return -EINVAL;
6013 		}
6014 		if (mddev->persistent)
6015 			rdev = md_import_device(dev, mddev->major_version,
6016 						mddev->minor_version);
6017 		else
6018 			rdev = md_import_device(dev, -1, -1);
6019 		if (IS_ERR(rdev)) {
6020 			printk(KERN_WARNING
6021 				"md: md_import_device returned %ld\n",
6022 				PTR_ERR(rdev));
6023 			return PTR_ERR(rdev);
6024 		}
6025 		/* set saved_raid_disk if appropriate */
6026 		if (!mddev->persistent) {
6027 			if (info->state & (1<<MD_DISK_SYNC)  &&
6028 			    info->raid_disk < mddev->raid_disks) {
6029 				rdev->raid_disk = info->raid_disk;
6030 				set_bit(In_sync, &rdev->flags);
6031 				clear_bit(Bitmap_sync, &rdev->flags);
6032 			} else
6033 				rdev->raid_disk = -1;
6034 			rdev->saved_raid_disk = rdev->raid_disk;
6035 		} else
6036 			super_types[mddev->major_version].
6037 				validate_super(mddev, rdev);
6038 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6039 		     rdev->raid_disk != info->raid_disk) {
6040 			/* This was a hot-add request, but events doesn't
6041 			 * match, so reject it.
6042 			 */
6043 			export_rdev(rdev);
6044 			return -EINVAL;
6045 		}
6046 
6047 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6048 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6049 			set_bit(WriteMostly, &rdev->flags);
6050 		else
6051 			clear_bit(WriteMostly, &rdev->flags);
6052 
6053 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6054 			struct md_rdev *rdev2;
6055 			bool has_journal = false;
6056 
6057 			/* make sure no existing journal disk */
6058 			rdev_for_each(rdev2, mddev) {
6059 				if (test_bit(Journal, &rdev2->flags)) {
6060 					has_journal = true;
6061 					break;
6062 				}
6063 			}
6064 			if (has_journal) {
6065 				export_rdev(rdev);
6066 				return -EBUSY;
6067 			}
6068 			set_bit(Journal, &rdev->flags);
6069 		}
6070 		/*
6071 		 * check whether the device shows up in other nodes
6072 		 */
6073 		if (mddev_is_clustered(mddev)) {
6074 			if (info->state & (1 << MD_DISK_CANDIDATE))
6075 				set_bit(Candidate, &rdev->flags);
6076 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6077 				/* --add initiated by this node */
6078 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6079 				if (err) {
6080 					export_rdev(rdev);
6081 					return err;
6082 				}
6083 			}
6084 		}
6085 
6086 		rdev->raid_disk = -1;
6087 		err = bind_rdev_to_array(rdev, mddev);
6088 
6089 		if (err)
6090 			export_rdev(rdev);
6091 
6092 		if (mddev_is_clustered(mddev)) {
6093 			if (info->state & (1 << MD_DISK_CANDIDATE))
6094 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6095 			else {
6096 				if (err)
6097 					md_cluster_ops->add_new_disk_cancel(mddev);
6098 				else
6099 					err = add_bound_rdev(rdev);
6100 			}
6101 
6102 		} else if (!err)
6103 			err = add_bound_rdev(rdev);
6104 
6105 		return err;
6106 	}
6107 
6108 	/* otherwise, add_new_disk is only allowed
6109 	 * for major_version==0 superblocks
6110 	 */
6111 	if (mddev->major_version != 0) {
6112 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6113 		       mdname(mddev));
6114 		return -EINVAL;
6115 	}
6116 
6117 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6118 		int err;
6119 		rdev = md_import_device(dev, -1, 0);
6120 		if (IS_ERR(rdev)) {
6121 			printk(KERN_WARNING
6122 				"md: error, md_import_device() returned %ld\n",
6123 				PTR_ERR(rdev));
6124 			return PTR_ERR(rdev);
6125 		}
6126 		rdev->desc_nr = info->number;
6127 		if (info->raid_disk < mddev->raid_disks)
6128 			rdev->raid_disk = info->raid_disk;
6129 		else
6130 			rdev->raid_disk = -1;
6131 
6132 		if (rdev->raid_disk < mddev->raid_disks)
6133 			if (info->state & (1<<MD_DISK_SYNC))
6134 				set_bit(In_sync, &rdev->flags);
6135 
6136 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6137 			set_bit(WriteMostly, &rdev->flags);
6138 
6139 		if (!mddev->persistent) {
6140 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6141 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6142 		} else
6143 			rdev->sb_start = calc_dev_sboffset(rdev);
6144 		rdev->sectors = rdev->sb_start;
6145 
6146 		err = bind_rdev_to_array(rdev, mddev);
6147 		if (err) {
6148 			export_rdev(rdev);
6149 			return err;
6150 		}
6151 	}
6152 
6153 	return 0;
6154 }
6155 
6156 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6157 {
6158 	char b[BDEVNAME_SIZE];
6159 	struct md_rdev *rdev;
6160 
6161 	rdev = find_rdev(mddev, dev);
6162 	if (!rdev)
6163 		return -ENXIO;
6164 
6165 	if (rdev->raid_disk < 0)
6166 		goto kick_rdev;
6167 
6168 	clear_bit(Blocked, &rdev->flags);
6169 	remove_and_add_spares(mddev, rdev);
6170 
6171 	if (rdev->raid_disk >= 0)
6172 		goto busy;
6173 
6174 kick_rdev:
6175 	if (mddev_is_clustered(mddev))
6176 		md_cluster_ops->remove_disk(mddev, rdev);
6177 
6178 	md_kick_rdev_from_array(rdev);
6179 	md_update_sb(mddev, 1);
6180 	md_new_event(mddev);
6181 
6182 	return 0;
6183 busy:
6184 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6185 		bdevname(rdev->bdev,b), mdname(mddev));
6186 	return -EBUSY;
6187 }
6188 
6189 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6190 {
6191 	char b[BDEVNAME_SIZE];
6192 	int err;
6193 	struct md_rdev *rdev;
6194 
6195 	if (!mddev->pers)
6196 		return -ENODEV;
6197 
6198 	if (mddev->major_version != 0) {
6199 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6200 			" version-0 superblocks.\n",
6201 			mdname(mddev));
6202 		return -EINVAL;
6203 	}
6204 	if (!mddev->pers->hot_add_disk) {
6205 		printk(KERN_WARNING
6206 			"%s: personality does not support diskops!\n",
6207 			mdname(mddev));
6208 		return -EINVAL;
6209 	}
6210 
6211 	rdev = md_import_device(dev, -1, 0);
6212 	if (IS_ERR(rdev)) {
6213 		printk(KERN_WARNING
6214 			"md: error, md_import_device() returned %ld\n",
6215 			PTR_ERR(rdev));
6216 		return -EINVAL;
6217 	}
6218 
6219 	if (mddev->persistent)
6220 		rdev->sb_start = calc_dev_sboffset(rdev);
6221 	else
6222 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6223 
6224 	rdev->sectors = rdev->sb_start;
6225 
6226 	if (test_bit(Faulty, &rdev->flags)) {
6227 		printk(KERN_WARNING
6228 			"md: can not hot-add faulty %s disk to %s!\n",
6229 			bdevname(rdev->bdev,b), mdname(mddev));
6230 		err = -EINVAL;
6231 		goto abort_export;
6232 	}
6233 
6234 	clear_bit(In_sync, &rdev->flags);
6235 	rdev->desc_nr = -1;
6236 	rdev->saved_raid_disk = -1;
6237 	err = bind_rdev_to_array(rdev, mddev);
6238 	if (err)
6239 		goto abort_export;
6240 
6241 	/*
6242 	 * The rest should better be atomic, we can have disk failures
6243 	 * noticed in interrupt contexts ...
6244 	 */
6245 
6246 	rdev->raid_disk = -1;
6247 
6248 	md_update_sb(mddev, 1);
6249 	/*
6250 	 * Kick recovery, maybe this spare has to be added to the
6251 	 * array immediately.
6252 	 */
6253 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6254 	md_wakeup_thread(mddev->thread);
6255 	md_new_event(mddev);
6256 	return 0;
6257 
6258 abort_export:
6259 	export_rdev(rdev);
6260 	return err;
6261 }
6262 
6263 static int set_bitmap_file(struct mddev *mddev, int fd)
6264 {
6265 	int err = 0;
6266 
6267 	if (mddev->pers) {
6268 		if (!mddev->pers->quiesce || !mddev->thread)
6269 			return -EBUSY;
6270 		if (mddev->recovery || mddev->sync_thread)
6271 			return -EBUSY;
6272 		/* we should be able to change the bitmap.. */
6273 	}
6274 
6275 	if (fd >= 0) {
6276 		struct inode *inode;
6277 		struct file *f;
6278 
6279 		if (mddev->bitmap || mddev->bitmap_info.file)
6280 			return -EEXIST; /* cannot add when bitmap is present */
6281 		f = fget(fd);
6282 
6283 		if (f == NULL) {
6284 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6285 			       mdname(mddev));
6286 			return -EBADF;
6287 		}
6288 
6289 		inode = f->f_mapping->host;
6290 		if (!S_ISREG(inode->i_mode)) {
6291 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6292 			       mdname(mddev));
6293 			err = -EBADF;
6294 		} else if (!(f->f_mode & FMODE_WRITE)) {
6295 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6296 			       mdname(mddev));
6297 			err = -EBADF;
6298 		} else if (atomic_read(&inode->i_writecount) != 1) {
6299 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6300 			       mdname(mddev));
6301 			err = -EBUSY;
6302 		}
6303 		if (err) {
6304 			fput(f);
6305 			return err;
6306 		}
6307 		mddev->bitmap_info.file = f;
6308 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6309 	} else if (mddev->bitmap == NULL)
6310 		return -ENOENT; /* cannot remove what isn't there */
6311 	err = 0;
6312 	if (mddev->pers) {
6313 		mddev->pers->quiesce(mddev, 1);
6314 		if (fd >= 0) {
6315 			struct bitmap *bitmap;
6316 
6317 			bitmap = bitmap_create(mddev, -1);
6318 			if (!IS_ERR(bitmap)) {
6319 				mddev->bitmap = bitmap;
6320 				err = bitmap_load(mddev);
6321 			} else
6322 				err = PTR_ERR(bitmap);
6323 		}
6324 		if (fd < 0 || err) {
6325 			bitmap_destroy(mddev);
6326 			fd = -1; /* make sure to put the file */
6327 		}
6328 		mddev->pers->quiesce(mddev, 0);
6329 	}
6330 	if (fd < 0) {
6331 		struct file *f = mddev->bitmap_info.file;
6332 		if (f) {
6333 			spin_lock(&mddev->lock);
6334 			mddev->bitmap_info.file = NULL;
6335 			spin_unlock(&mddev->lock);
6336 			fput(f);
6337 		}
6338 	}
6339 
6340 	return err;
6341 }
6342 
6343 /*
6344  * set_array_info is used two different ways
6345  * The original usage is when creating a new array.
6346  * In this usage, raid_disks is > 0 and it together with
6347  *  level, size, not_persistent,layout,chunksize determine the
6348  *  shape of the array.
6349  *  This will always create an array with a type-0.90.0 superblock.
6350  * The newer usage is when assembling an array.
6351  *  In this case raid_disks will be 0, and the major_version field is
6352  *  use to determine which style super-blocks are to be found on the devices.
6353  *  The minor and patch _version numbers are also kept incase the
6354  *  super_block handler wishes to interpret them.
6355  */
6356 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6357 {
6358 
6359 	if (info->raid_disks == 0) {
6360 		/* just setting version number for superblock loading */
6361 		if (info->major_version < 0 ||
6362 		    info->major_version >= ARRAY_SIZE(super_types) ||
6363 		    super_types[info->major_version].name == NULL) {
6364 			/* maybe try to auto-load a module? */
6365 			printk(KERN_INFO
6366 				"md: superblock version %d not known\n",
6367 				info->major_version);
6368 			return -EINVAL;
6369 		}
6370 		mddev->major_version = info->major_version;
6371 		mddev->minor_version = info->minor_version;
6372 		mddev->patch_version = info->patch_version;
6373 		mddev->persistent = !info->not_persistent;
6374 		/* ensure mddev_put doesn't delete this now that there
6375 		 * is some minimal configuration.
6376 		 */
6377 		mddev->ctime         = ktime_get_real_seconds();
6378 		return 0;
6379 	}
6380 	mddev->major_version = MD_MAJOR_VERSION;
6381 	mddev->minor_version = MD_MINOR_VERSION;
6382 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6383 	mddev->ctime         = ktime_get_real_seconds();
6384 
6385 	mddev->level         = info->level;
6386 	mddev->clevel[0]     = 0;
6387 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6388 	mddev->raid_disks    = info->raid_disks;
6389 	/* don't set md_minor, it is determined by which /dev/md* was
6390 	 * openned
6391 	 */
6392 	if (info->state & (1<<MD_SB_CLEAN))
6393 		mddev->recovery_cp = MaxSector;
6394 	else
6395 		mddev->recovery_cp = 0;
6396 	mddev->persistent    = ! info->not_persistent;
6397 	mddev->external	     = 0;
6398 
6399 	mddev->layout        = info->layout;
6400 	mddev->chunk_sectors = info->chunk_size >> 9;
6401 
6402 	mddev->max_disks     = MD_SB_DISKS;
6403 
6404 	if (mddev->persistent)
6405 		mddev->flags         = 0;
6406 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6407 
6408 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6409 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6410 	mddev->bitmap_info.offset = 0;
6411 
6412 	mddev->reshape_position = MaxSector;
6413 
6414 	/*
6415 	 * Generate a 128 bit UUID
6416 	 */
6417 	get_random_bytes(mddev->uuid, 16);
6418 
6419 	mddev->new_level = mddev->level;
6420 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6421 	mddev->new_layout = mddev->layout;
6422 	mddev->delta_disks = 0;
6423 	mddev->reshape_backwards = 0;
6424 
6425 	return 0;
6426 }
6427 
6428 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6429 {
6430 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6431 
6432 	if (mddev->external_size)
6433 		return;
6434 
6435 	mddev->array_sectors = array_sectors;
6436 }
6437 EXPORT_SYMBOL(md_set_array_sectors);
6438 
6439 static int update_size(struct mddev *mddev, sector_t num_sectors)
6440 {
6441 	struct md_rdev *rdev;
6442 	int rv;
6443 	int fit = (num_sectors == 0);
6444 
6445 	/* cluster raid doesn't support update size */
6446 	if (mddev_is_clustered(mddev))
6447 		return -EINVAL;
6448 
6449 	if (mddev->pers->resize == NULL)
6450 		return -EINVAL;
6451 	/* The "num_sectors" is the number of sectors of each device that
6452 	 * is used.  This can only make sense for arrays with redundancy.
6453 	 * linear and raid0 always use whatever space is available. We can only
6454 	 * consider changing this number if no resync or reconstruction is
6455 	 * happening, and if the new size is acceptable. It must fit before the
6456 	 * sb_start or, if that is <data_offset, it must fit before the size
6457 	 * of each device.  If num_sectors is zero, we find the largest size
6458 	 * that fits.
6459 	 */
6460 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6461 	    mddev->sync_thread)
6462 		return -EBUSY;
6463 	if (mddev->ro)
6464 		return -EROFS;
6465 
6466 	rdev_for_each(rdev, mddev) {
6467 		sector_t avail = rdev->sectors;
6468 
6469 		if (fit && (num_sectors == 0 || num_sectors > avail))
6470 			num_sectors = avail;
6471 		if (avail < num_sectors)
6472 			return -ENOSPC;
6473 	}
6474 	rv = mddev->pers->resize(mddev, num_sectors);
6475 	if (!rv)
6476 		revalidate_disk(mddev->gendisk);
6477 	return rv;
6478 }
6479 
6480 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6481 {
6482 	int rv;
6483 	struct md_rdev *rdev;
6484 	/* change the number of raid disks */
6485 	if (mddev->pers->check_reshape == NULL)
6486 		return -EINVAL;
6487 	if (mddev->ro)
6488 		return -EROFS;
6489 	if (raid_disks <= 0 ||
6490 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6491 		return -EINVAL;
6492 	if (mddev->sync_thread ||
6493 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6494 	    mddev->reshape_position != MaxSector)
6495 		return -EBUSY;
6496 
6497 	rdev_for_each(rdev, mddev) {
6498 		if (mddev->raid_disks < raid_disks &&
6499 		    rdev->data_offset < rdev->new_data_offset)
6500 			return -EINVAL;
6501 		if (mddev->raid_disks > raid_disks &&
6502 		    rdev->data_offset > rdev->new_data_offset)
6503 			return -EINVAL;
6504 	}
6505 
6506 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6507 	if (mddev->delta_disks < 0)
6508 		mddev->reshape_backwards = 1;
6509 	else if (mddev->delta_disks > 0)
6510 		mddev->reshape_backwards = 0;
6511 
6512 	rv = mddev->pers->check_reshape(mddev);
6513 	if (rv < 0) {
6514 		mddev->delta_disks = 0;
6515 		mddev->reshape_backwards = 0;
6516 	}
6517 	return rv;
6518 }
6519 
6520 /*
6521  * update_array_info is used to change the configuration of an
6522  * on-line array.
6523  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6524  * fields in the info are checked against the array.
6525  * Any differences that cannot be handled will cause an error.
6526  * Normally, only one change can be managed at a time.
6527  */
6528 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6529 {
6530 	int rv = 0;
6531 	int cnt = 0;
6532 	int state = 0;
6533 
6534 	/* calculate expected state,ignoring low bits */
6535 	if (mddev->bitmap && mddev->bitmap_info.offset)
6536 		state |= (1 << MD_SB_BITMAP_PRESENT);
6537 
6538 	if (mddev->major_version != info->major_version ||
6539 	    mddev->minor_version != info->minor_version ||
6540 /*	    mddev->patch_version != info->patch_version || */
6541 	    mddev->ctime         != info->ctime         ||
6542 	    mddev->level         != info->level         ||
6543 /*	    mddev->layout        != info->layout        || */
6544 	    mddev->persistent	 != !info->not_persistent ||
6545 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6546 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6547 	    ((state^info->state) & 0xfffffe00)
6548 		)
6549 		return -EINVAL;
6550 	/* Check there is only one change */
6551 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6552 		cnt++;
6553 	if (mddev->raid_disks != info->raid_disks)
6554 		cnt++;
6555 	if (mddev->layout != info->layout)
6556 		cnt++;
6557 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6558 		cnt++;
6559 	if (cnt == 0)
6560 		return 0;
6561 	if (cnt > 1)
6562 		return -EINVAL;
6563 
6564 	if (mddev->layout != info->layout) {
6565 		/* Change layout
6566 		 * we don't need to do anything at the md level, the
6567 		 * personality will take care of it all.
6568 		 */
6569 		if (mddev->pers->check_reshape == NULL)
6570 			return -EINVAL;
6571 		else {
6572 			mddev->new_layout = info->layout;
6573 			rv = mddev->pers->check_reshape(mddev);
6574 			if (rv)
6575 				mddev->new_layout = mddev->layout;
6576 			return rv;
6577 		}
6578 	}
6579 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6580 		rv = update_size(mddev, (sector_t)info->size * 2);
6581 
6582 	if (mddev->raid_disks    != info->raid_disks)
6583 		rv = update_raid_disks(mddev, info->raid_disks);
6584 
6585 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6586 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6587 			rv = -EINVAL;
6588 			goto err;
6589 		}
6590 		if (mddev->recovery || mddev->sync_thread) {
6591 			rv = -EBUSY;
6592 			goto err;
6593 		}
6594 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6595 			struct bitmap *bitmap;
6596 			/* add the bitmap */
6597 			if (mddev->bitmap) {
6598 				rv = -EEXIST;
6599 				goto err;
6600 			}
6601 			if (mddev->bitmap_info.default_offset == 0) {
6602 				rv = -EINVAL;
6603 				goto err;
6604 			}
6605 			mddev->bitmap_info.offset =
6606 				mddev->bitmap_info.default_offset;
6607 			mddev->bitmap_info.space =
6608 				mddev->bitmap_info.default_space;
6609 			mddev->pers->quiesce(mddev, 1);
6610 			bitmap = bitmap_create(mddev, -1);
6611 			if (!IS_ERR(bitmap)) {
6612 				mddev->bitmap = bitmap;
6613 				rv = bitmap_load(mddev);
6614 			} else
6615 				rv = PTR_ERR(bitmap);
6616 			if (rv)
6617 				bitmap_destroy(mddev);
6618 			mddev->pers->quiesce(mddev, 0);
6619 		} else {
6620 			/* remove the bitmap */
6621 			if (!mddev->bitmap) {
6622 				rv = -ENOENT;
6623 				goto err;
6624 			}
6625 			if (mddev->bitmap->storage.file) {
6626 				rv = -EINVAL;
6627 				goto err;
6628 			}
6629 			if (mddev->bitmap_info.nodes) {
6630 				/* hold PW on all the bitmap lock */
6631 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6632 					printk("md: can't change bitmap to none since the"
6633 					       " array is in use by more than one node\n");
6634 					rv = -EPERM;
6635 					md_cluster_ops->unlock_all_bitmaps(mddev);
6636 					goto err;
6637 				}
6638 
6639 				mddev->bitmap_info.nodes = 0;
6640 				md_cluster_ops->leave(mddev);
6641 			}
6642 			mddev->pers->quiesce(mddev, 1);
6643 			bitmap_destroy(mddev);
6644 			mddev->pers->quiesce(mddev, 0);
6645 			mddev->bitmap_info.offset = 0;
6646 		}
6647 	}
6648 	md_update_sb(mddev, 1);
6649 	return rv;
6650 err:
6651 	return rv;
6652 }
6653 
6654 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6655 {
6656 	struct md_rdev *rdev;
6657 	int err = 0;
6658 
6659 	if (mddev->pers == NULL)
6660 		return -ENODEV;
6661 
6662 	rcu_read_lock();
6663 	rdev = find_rdev_rcu(mddev, dev);
6664 	if (!rdev)
6665 		err =  -ENODEV;
6666 	else {
6667 		md_error(mddev, rdev);
6668 		if (!test_bit(Faulty, &rdev->flags))
6669 			err = -EBUSY;
6670 	}
6671 	rcu_read_unlock();
6672 	return err;
6673 }
6674 
6675 /*
6676  * We have a problem here : there is no easy way to give a CHS
6677  * virtual geometry. We currently pretend that we have a 2 heads
6678  * 4 sectors (with a BIG number of cylinders...). This drives
6679  * dosfs just mad... ;-)
6680  */
6681 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6682 {
6683 	struct mddev *mddev = bdev->bd_disk->private_data;
6684 
6685 	geo->heads = 2;
6686 	geo->sectors = 4;
6687 	geo->cylinders = mddev->array_sectors / 8;
6688 	return 0;
6689 }
6690 
6691 static inline bool md_ioctl_valid(unsigned int cmd)
6692 {
6693 	switch (cmd) {
6694 	case ADD_NEW_DISK:
6695 	case BLKROSET:
6696 	case GET_ARRAY_INFO:
6697 	case GET_BITMAP_FILE:
6698 	case GET_DISK_INFO:
6699 	case HOT_ADD_DISK:
6700 	case HOT_REMOVE_DISK:
6701 	case RAID_AUTORUN:
6702 	case RAID_VERSION:
6703 	case RESTART_ARRAY_RW:
6704 	case RUN_ARRAY:
6705 	case SET_ARRAY_INFO:
6706 	case SET_BITMAP_FILE:
6707 	case SET_DISK_FAULTY:
6708 	case STOP_ARRAY:
6709 	case STOP_ARRAY_RO:
6710 	case CLUSTERED_DISK_NACK:
6711 		return true;
6712 	default:
6713 		return false;
6714 	}
6715 }
6716 
6717 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6718 			unsigned int cmd, unsigned long arg)
6719 {
6720 	int err = 0;
6721 	void __user *argp = (void __user *)arg;
6722 	struct mddev *mddev = NULL;
6723 	int ro;
6724 
6725 	if (!md_ioctl_valid(cmd))
6726 		return -ENOTTY;
6727 
6728 	switch (cmd) {
6729 	case RAID_VERSION:
6730 	case GET_ARRAY_INFO:
6731 	case GET_DISK_INFO:
6732 		break;
6733 	default:
6734 		if (!capable(CAP_SYS_ADMIN))
6735 			return -EACCES;
6736 	}
6737 
6738 	/*
6739 	 * Commands dealing with the RAID driver but not any
6740 	 * particular array:
6741 	 */
6742 	switch (cmd) {
6743 	case RAID_VERSION:
6744 		err = get_version(argp);
6745 		goto out;
6746 
6747 #ifndef MODULE
6748 	case RAID_AUTORUN:
6749 		err = 0;
6750 		autostart_arrays(arg);
6751 		goto out;
6752 #endif
6753 	default:;
6754 	}
6755 
6756 	/*
6757 	 * Commands creating/starting a new array:
6758 	 */
6759 
6760 	mddev = bdev->bd_disk->private_data;
6761 
6762 	if (!mddev) {
6763 		BUG();
6764 		goto out;
6765 	}
6766 
6767 	/* Some actions do not requires the mutex */
6768 	switch (cmd) {
6769 	case GET_ARRAY_INFO:
6770 		if (!mddev->raid_disks && !mddev->external)
6771 			err = -ENODEV;
6772 		else
6773 			err = get_array_info(mddev, argp);
6774 		goto out;
6775 
6776 	case GET_DISK_INFO:
6777 		if (!mddev->raid_disks && !mddev->external)
6778 			err = -ENODEV;
6779 		else
6780 			err = get_disk_info(mddev, argp);
6781 		goto out;
6782 
6783 	case SET_DISK_FAULTY:
6784 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6785 		goto out;
6786 
6787 	case GET_BITMAP_FILE:
6788 		err = get_bitmap_file(mddev, argp);
6789 		goto out;
6790 
6791 	}
6792 
6793 	if (cmd == ADD_NEW_DISK)
6794 		/* need to ensure md_delayed_delete() has completed */
6795 		flush_workqueue(md_misc_wq);
6796 
6797 	if (cmd == HOT_REMOVE_DISK)
6798 		/* need to ensure recovery thread has run */
6799 		wait_event_interruptible_timeout(mddev->sb_wait,
6800 						 !test_bit(MD_RECOVERY_NEEDED,
6801 							   &mddev->flags),
6802 						 msecs_to_jiffies(5000));
6803 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6804 		/* Need to flush page cache, and ensure no-one else opens
6805 		 * and writes
6806 		 */
6807 		mutex_lock(&mddev->open_mutex);
6808 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6809 			mutex_unlock(&mddev->open_mutex);
6810 			err = -EBUSY;
6811 			goto out;
6812 		}
6813 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6814 		mutex_unlock(&mddev->open_mutex);
6815 		sync_blockdev(bdev);
6816 	}
6817 	err = mddev_lock(mddev);
6818 	if (err) {
6819 		printk(KERN_INFO
6820 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6821 			err, cmd);
6822 		goto out;
6823 	}
6824 
6825 	if (cmd == SET_ARRAY_INFO) {
6826 		mdu_array_info_t info;
6827 		if (!arg)
6828 			memset(&info, 0, sizeof(info));
6829 		else if (copy_from_user(&info, argp, sizeof(info))) {
6830 			err = -EFAULT;
6831 			goto unlock;
6832 		}
6833 		if (mddev->pers) {
6834 			err = update_array_info(mddev, &info);
6835 			if (err) {
6836 				printk(KERN_WARNING "md: couldn't update"
6837 				       " array info. %d\n", err);
6838 				goto unlock;
6839 			}
6840 			goto unlock;
6841 		}
6842 		if (!list_empty(&mddev->disks)) {
6843 			printk(KERN_WARNING
6844 			       "md: array %s already has disks!\n",
6845 			       mdname(mddev));
6846 			err = -EBUSY;
6847 			goto unlock;
6848 		}
6849 		if (mddev->raid_disks) {
6850 			printk(KERN_WARNING
6851 			       "md: array %s already initialised!\n",
6852 			       mdname(mddev));
6853 			err = -EBUSY;
6854 			goto unlock;
6855 		}
6856 		err = set_array_info(mddev, &info);
6857 		if (err) {
6858 			printk(KERN_WARNING "md: couldn't set"
6859 			       " array info. %d\n", err);
6860 			goto unlock;
6861 		}
6862 		goto unlock;
6863 	}
6864 
6865 	/*
6866 	 * Commands querying/configuring an existing array:
6867 	 */
6868 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6869 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6870 	if ((!mddev->raid_disks && !mddev->external)
6871 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6872 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6873 	    && cmd != GET_BITMAP_FILE) {
6874 		err = -ENODEV;
6875 		goto unlock;
6876 	}
6877 
6878 	/*
6879 	 * Commands even a read-only array can execute:
6880 	 */
6881 	switch (cmd) {
6882 	case RESTART_ARRAY_RW:
6883 		err = restart_array(mddev);
6884 		goto unlock;
6885 
6886 	case STOP_ARRAY:
6887 		err = do_md_stop(mddev, 0, bdev);
6888 		goto unlock;
6889 
6890 	case STOP_ARRAY_RO:
6891 		err = md_set_readonly(mddev, bdev);
6892 		goto unlock;
6893 
6894 	case HOT_REMOVE_DISK:
6895 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6896 		goto unlock;
6897 
6898 	case ADD_NEW_DISK:
6899 		/* We can support ADD_NEW_DISK on read-only arrays
6900 		 * only if we are re-adding a preexisting device.
6901 		 * So require mddev->pers and MD_DISK_SYNC.
6902 		 */
6903 		if (mddev->pers) {
6904 			mdu_disk_info_t info;
6905 			if (copy_from_user(&info, argp, sizeof(info)))
6906 				err = -EFAULT;
6907 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6908 				/* Need to clear read-only for this */
6909 				break;
6910 			else
6911 				err = add_new_disk(mddev, &info);
6912 			goto unlock;
6913 		}
6914 		break;
6915 
6916 	case BLKROSET:
6917 		if (get_user(ro, (int __user *)(arg))) {
6918 			err = -EFAULT;
6919 			goto unlock;
6920 		}
6921 		err = -EINVAL;
6922 
6923 		/* if the bdev is going readonly the value of mddev->ro
6924 		 * does not matter, no writes are coming
6925 		 */
6926 		if (ro)
6927 			goto unlock;
6928 
6929 		/* are we are already prepared for writes? */
6930 		if (mddev->ro != 1)
6931 			goto unlock;
6932 
6933 		/* transitioning to readauto need only happen for
6934 		 * arrays that call md_write_start
6935 		 */
6936 		if (mddev->pers) {
6937 			err = restart_array(mddev);
6938 			if (err == 0) {
6939 				mddev->ro = 2;
6940 				set_disk_ro(mddev->gendisk, 0);
6941 			}
6942 		}
6943 		goto unlock;
6944 	}
6945 
6946 	/*
6947 	 * The remaining ioctls are changing the state of the
6948 	 * superblock, so we do not allow them on read-only arrays.
6949 	 */
6950 	if (mddev->ro && mddev->pers) {
6951 		if (mddev->ro == 2) {
6952 			mddev->ro = 0;
6953 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6954 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6955 			/* mddev_unlock will wake thread */
6956 			/* If a device failed while we were read-only, we
6957 			 * need to make sure the metadata is updated now.
6958 			 */
6959 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6960 				mddev_unlock(mddev);
6961 				wait_event(mddev->sb_wait,
6962 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6963 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6964 				mddev_lock_nointr(mddev);
6965 			}
6966 		} else {
6967 			err = -EROFS;
6968 			goto unlock;
6969 		}
6970 	}
6971 
6972 	switch (cmd) {
6973 	case ADD_NEW_DISK:
6974 	{
6975 		mdu_disk_info_t info;
6976 		if (copy_from_user(&info, argp, sizeof(info)))
6977 			err = -EFAULT;
6978 		else
6979 			err = add_new_disk(mddev, &info);
6980 		goto unlock;
6981 	}
6982 
6983 	case CLUSTERED_DISK_NACK:
6984 		if (mddev_is_clustered(mddev))
6985 			md_cluster_ops->new_disk_ack(mddev, false);
6986 		else
6987 			err = -EINVAL;
6988 		goto unlock;
6989 
6990 	case HOT_ADD_DISK:
6991 		err = hot_add_disk(mddev, new_decode_dev(arg));
6992 		goto unlock;
6993 
6994 	case RUN_ARRAY:
6995 		err = do_md_run(mddev);
6996 		goto unlock;
6997 
6998 	case SET_BITMAP_FILE:
6999 		err = set_bitmap_file(mddev, (int)arg);
7000 		goto unlock;
7001 
7002 	default:
7003 		err = -EINVAL;
7004 		goto unlock;
7005 	}
7006 
7007 unlock:
7008 	if (mddev->hold_active == UNTIL_IOCTL &&
7009 	    err != -EINVAL)
7010 		mddev->hold_active = 0;
7011 	mddev_unlock(mddev);
7012 out:
7013 	return err;
7014 }
7015 #ifdef CONFIG_COMPAT
7016 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7017 		    unsigned int cmd, unsigned long arg)
7018 {
7019 	switch (cmd) {
7020 	case HOT_REMOVE_DISK:
7021 	case HOT_ADD_DISK:
7022 	case SET_DISK_FAULTY:
7023 	case SET_BITMAP_FILE:
7024 		/* These take in integer arg, do not convert */
7025 		break;
7026 	default:
7027 		arg = (unsigned long)compat_ptr(arg);
7028 		break;
7029 	}
7030 
7031 	return md_ioctl(bdev, mode, cmd, arg);
7032 }
7033 #endif /* CONFIG_COMPAT */
7034 
7035 static int md_open(struct block_device *bdev, fmode_t mode)
7036 {
7037 	/*
7038 	 * Succeed if we can lock the mddev, which confirms that
7039 	 * it isn't being stopped right now.
7040 	 */
7041 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7042 	int err;
7043 
7044 	if (!mddev)
7045 		return -ENODEV;
7046 
7047 	if (mddev->gendisk != bdev->bd_disk) {
7048 		/* we are racing with mddev_put which is discarding this
7049 		 * bd_disk.
7050 		 */
7051 		mddev_put(mddev);
7052 		/* Wait until bdev->bd_disk is definitely gone */
7053 		flush_workqueue(md_misc_wq);
7054 		/* Then retry the open from the top */
7055 		return -ERESTARTSYS;
7056 	}
7057 	BUG_ON(mddev != bdev->bd_disk->private_data);
7058 
7059 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7060 		goto out;
7061 
7062 	err = 0;
7063 	atomic_inc(&mddev->openers);
7064 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7065 	mutex_unlock(&mddev->open_mutex);
7066 
7067 	check_disk_change(bdev);
7068  out:
7069 	return err;
7070 }
7071 
7072 static void md_release(struct gendisk *disk, fmode_t mode)
7073 {
7074 	struct mddev *mddev = disk->private_data;
7075 
7076 	BUG_ON(!mddev);
7077 	atomic_dec(&mddev->openers);
7078 	mddev_put(mddev);
7079 }
7080 
7081 static int md_media_changed(struct gendisk *disk)
7082 {
7083 	struct mddev *mddev = disk->private_data;
7084 
7085 	return mddev->changed;
7086 }
7087 
7088 static int md_revalidate(struct gendisk *disk)
7089 {
7090 	struct mddev *mddev = disk->private_data;
7091 
7092 	mddev->changed = 0;
7093 	return 0;
7094 }
7095 static const struct block_device_operations md_fops =
7096 {
7097 	.owner		= THIS_MODULE,
7098 	.open		= md_open,
7099 	.release	= md_release,
7100 	.ioctl		= md_ioctl,
7101 #ifdef CONFIG_COMPAT
7102 	.compat_ioctl	= md_compat_ioctl,
7103 #endif
7104 	.getgeo		= md_getgeo,
7105 	.media_changed  = md_media_changed,
7106 	.revalidate_disk= md_revalidate,
7107 };
7108 
7109 static int md_thread(void *arg)
7110 {
7111 	struct md_thread *thread = arg;
7112 
7113 	/*
7114 	 * md_thread is a 'system-thread', it's priority should be very
7115 	 * high. We avoid resource deadlocks individually in each
7116 	 * raid personality. (RAID5 does preallocation) We also use RR and
7117 	 * the very same RT priority as kswapd, thus we will never get
7118 	 * into a priority inversion deadlock.
7119 	 *
7120 	 * we definitely have to have equal or higher priority than
7121 	 * bdflush, otherwise bdflush will deadlock if there are too
7122 	 * many dirty RAID5 blocks.
7123 	 */
7124 
7125 	allow_signal(SIGKILL);
7126 	while (!kthread_should_stop()) {
7127 
7128 		/* We need to wait INTERRUPTIBLE so that
7129 		 * we don't add to the load-average.
7130 		 * That means we need to be sure no signals are
7131 		 * pending
7132 		 */
7133 		if (signal_pending(current))
7134 			flush_signals(current);
7135 
7136 		wait_event_interruptible_timeout
7137 			(thread->wqueue,
7138 			 test_bit(THREAD_WAKEUP, &thread->flags)
7139 			 || kthread_should_stop(),
7140 			 thread->timeout);
7141 
7142 		clear_bit(THREAD_WAKEUP, &thread->flags);
7143 		if (!kthread_should_stop())
7144 			thread->run(thread);
7145 	}
7146 
7147 	return 0;
7148 }
7149 
7150 void md_wakeup_thread(struct md_thread *thread)
7151 {
7152 	if (thread) {
7153 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7154 		set_bit(THREAD_WAKEUP, &thread->flags);
7155 		wake_up(&thread->wqueue);
7156 	}
7157 }
7158 EXPORT_SYMBOL(md_wakeup_thread);
7159 
7160 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7161 		struct mddev *mddev, const char *name)
7162 {
7163 	struct md_thread *thread;
7164 
7165 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7166 	if (!thread)
7167 		return NULL;
7168 
7169 	init_waitqueue_head(&thread->wqueue);
7170 
7171 	thread->run = run;
7172 	thread->mddev = mddev;
7173 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7174 	thread->tsk = kthread_run(md_thread, thread,
7175 				  "%s_%s",
7176 				  mdname(thread->mddev),
7177 				  name);
7178 	if (IS_ERR(thread->tsk)) {
7179 		kfree(thread);
7180 		return NULL;
7181 	}
7182 	return thread;
7183 }
7184 EXPORT_SYMBOL(md_register_thread);
7185 
7186 void md_unregister_thread(struct md_thread **threadp)
7187 {
7188 	struct md_thread *thread = *threadp;
7189 	if (!thread)
7190 		return;
7191 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7192 	/* Locking ensures that mddev_unlock does not wake_up a
7193 	 * non-existent thread
7194 	 */
7195 	spin_lock(&pers_lock);
7196 	*threadp = NULL;
7197 	spin_unlock(&pers_lock);
7198 
7199 	kthread_stop(thread->tsk);
7200 	kfree(thread);
7201 }
7202 EXPORT_SYMBOL(md_unregister_thread);
7203 
7204 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7205 {
7206 	if (!rdev || test_bit(Faulty, &rdev->flags))
7207 		return;
7208 
7209 	if (!mddev->pers || !mddev->pers->error_handler)
7210 		return;
7211 	mddev->pers->error_handler(mddev,rdev);
7212 	if (mddev->degraded)
7213 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7214 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7215 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7216 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7217 	md_wakeup_thread(mddev->thread);
7218 	if (mddev->event_work.func)
7219 		queue_work(md_misc_wq, &mddev->event_work);
7220 	md_new_event(mddev);
7221 }
7222 EXPORT_SYMBOL(md_error);
7223 
7224 /* seq_file implementation /proc/mdstat */
7225 
7226 static void status_unused(struct seq_file *seq)
7227 {
7228 	int i = 0;
7229 	struct md_rdev *rdev;
7230 
7231 	seq_printf(seq, "unused devices: ");
7232 
7233 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7234 		char b[BDEVNAME_SIZE];
7235 		i++;
7236 		seq_printf(seq, "%s ",
7237 			      bdevname(rdev->bdev,b));
7238 	}
7239 	if (!i)
7240 		seq_printf(seq, "<none>");
7241 
7242 	seq_printf(seq, "\n");
7243 }
7244 
7245 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7246 {
7247 	sector_t max_sectors, resync, res;
7248 	unsigned long dt, db;
7249 	sector_t rt;
7250 	int scale;
7251 	unsigned int per_milli;
7252 
7253 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7254 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7255 		max_sectors = mddev->resync_max_sectors;
7256 	else
7257 		max_sectors = mddev->dev_sectors;
7258 
7259 	resync = mddev->curr_resync;
7260 	if (resync <= 3) {
7261 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7262 			/* Still cleaning up */
7263 			resync = max_sectors;
7264 	} else
7265 		resync -= atomic_read(&mddev->recovery_active);
7266 
7267 	if (resync == 0) {
7268 		if (mddev->recovery_cp < MaxSector) {
7269 			seq_printf(seq, "\tresync=PENDING");
7270 			return 1;
7271 		}
7272 		return 0;
7273 	}
7274 	if (resync < 3) {
7275 		seq_printf(seq, "\tresync=DELAYED");
7276 		return 1;
7277 	}
7278 
7279 	WARN_ON(max_sectors == 0);
7280 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7281 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7282 	 * u32, as those are the requirements for sector_div.
7283 	 * Thus 'scale' must be at least 10
7284 	 */
7285 	scale = 10;
7286 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7287 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7288 			scale++;
7289 	}
7290 	res = (resync>>scale)*1000;
7291 	sector_div(res, (u32)((max_sectors>>scale)+1));
7292 
7293 	per_milli = res;
7294 	{
7295 		int i, x = per_milli/50, y = 20-x;
7296 		seq_printf(seq, "[");
7297 		for (i = 0; i < x; i++)
7298 			seq_printf(seq, "=");
7299 		seq_printf(seq, ">");
7300 		for (i = 0; i < y; i++)
7301 			seq_printf(seq, ".");
7302 		seq_printf(seq, "] ");
7303 	}
7304 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7305 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7306 		    "reshape" :
7307 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7308 		     "check" :
7309 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7310 		      "resync" : "recovery"))),
7311 		   per_milli/10, per_milli % 10,
7312 		   (unsigned long long) resync/2,
7313 		   (unsigned long long) max_sectors/2);
7314 
7315 	/*
7316 	 * dt: time from mark until now
7317 	 * db: blocks written from mark until now
7318 	 * rt: remaining time
7319 	 *
7320 	 * rt is a sector_t, so could be 32bit or 64bit.
7321 	 * So we divide before multiply in case it is 32bit and close
7322 	 * to the limit.
7323 	 * We scale the divisor (db) by 32 to avoid losing precision
7324 	 * near the end of resync when the number of remaining sectors
7325 	 * is close to 'db'.
7326 	 * We then divide rt by 32 after multiplying by db to compensate.
7327 	 * The '+1' avoids division by zero if db is very small.
7328 	 */
7329 	dt = ((jiffies - mddev->resync_mark) / HZ);
7330 	if (!dt) dt++;
7331 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7332 		- mddev->resync_mark_cnt;
7333 
7334 	rt = max_sectors - resync;    /* number of remaining sectors */
7335 	sector_div(rt, db/32+1);
7336 	rt *= dt;
7337 	rt >>= 5;
7338 
7339 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7340 		   ((unsigned long)rt % 60)/6);
7341 
7342 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7343 	return 1;
7344 }
7345 
7346 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7347 {
7348 	struct list_head *tmp;
7349 	loff_t l = *pos;
7350 	struct mddev *mddev;
7351 
7352 	if (l >= 0x10000)
7353 		return NULL;
7354 	if (!l--)
7355 		/* header */
7356 		return (void*)1;
7357 
7358 	spin_lock(&all_mddevs_lock);
7359 	list_for_each(tmp,&all_mddevs)
7360 		if (!l--) {
7361 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7362 			mddev_get(mddev);
7363 			spin_unlock(&all_mddevs_lock);
7364 			return mddev;
7365 		}
7366 	spin_unlock(&all_mddevs_lock);
7367 	if (!l--)
7368 		return (void*)2;/* tail */
7369 	return NULL;
7370 }
7371 
7372 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7373 {
7374 	struct list_head *tmp;
7375 	struct mddev *next_mddev, *mddev = v;
7376 
7377 	++*pos;
7378 	if (v == (void*)2)
7379 		return NULL;
7380 
7381 	spin_lock(&all_mddevs_lock);
7382 	if (v == (void*)1)
7383 		tmp = all_mddevs.next;
7384 	else
7385 		tmp = mddev->all_mddevs.next;
7386 	if (tmp != &all_mddevs)
7387 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7388 	else {
7389 		next_mddev = (void*)2;
7390 		*pos = 0x10000;
7391 	}
7392 	spin_unlock(&all_mddevs_lock);
7393 
7394 	if (v != (void*)1)
7395 		mddev_put(mddev);
7396 	return next_mddev;
7397 
7398 }
7399 
7400 static void md_seq_stop(struct seq_file *seq, void *v)
7401 {
7402 	struct mddev *mddev = v;
7403 
7404 	if (mddev && v != (void*)1 && v != (void*)2)
7405 		mddev_put(mddev);
7406 }
7407 
7408 static int md_seq_show(struct seq_file *seq, void *v)
7409 {
7410 	struct mddev *mddev = v;
7411 	sector_t sectors;
7412 	struct md_rdev *rdev;
7413 
7414 	if (v == (void*)1) {
7415 		struct md_personality *pers;
7416 		seq_printf(seq, "Personalities : ");
7417 		spin_lock(&pers_lock);
7418 		list_for_each_entry(pers, &pers_list, list)
7419 			seq_printf(seq, "[%s] ", pers->name);
7420 
7421 		spin_unlock(&pers_lock);
7422 		seq_printf(seq, "\n");
7423 		seq->poll_event = atomic_read(&md_event_count);
7424 		return 0;
7425 	}
7426 	if (v == (void*)2) {
7427 		status_unused(seq);
7428 		return 0;
7429 	}
7430 
7431 	spin_lock(&mddev->lock);
7432 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7433 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7434 						mddev->pers ? "" : "in");
7435 		if (mddev->pers) {
7436 			if (mddev->ro==1)
7437 				seq_printf(seq, " (read-only)");
7438 			if (mddev->ro==2)
7439 				seq_printf(seq, " (auto-read-only)");
7440 			seq_printf(seq, " %s", mddev->pers->name);
7441 		}
7442 
7443 		sectors = 0;
7444 		rcu_read_lock();
7445 		rdev_for_each_rcu(rdev, mddev) {
7446 			char b[BDEVNAME_SIZE];
7447 			seq_printf(seq, " %s[%d]",
7448 				bdevname(rdev->bdev,b), rdev->desc_nr);
7449 			if (test_bit(WriteMostly, &rdev->flags))
7450 				seq_printf(seq, "(W)");
7451 			if (test_bit(Journal, &rdev->flags))
7452 				seq_printf(seq, "(J)");
7453 			if (test_bit(Faulty, &rdev->flags)) {
7454 				seq_printf(seq, "(F)");
7455 				continue;
7456 			}
7457 			if (rdev->raid_disk < 0)
7458 				seq_printf(seq, "(S)"); /* spare */
7459 			if (test_bit(Replacement, &rdev->flags))
7460 				seq_printf(seq, "(R)");
7461 			sectors += rdev->sectors;
7462 		}
7463 		rcu_read_unlock();
7464 
7465 		if (!list_empty(&mddev->disks)) {
7466 			if (mddev->pers)
7467 				seq_printf(seq, "\n      %llu blocks",
7468 					   (unsigned long long)
7469 					   mddev->array_sectors / 2);
7470 			else
7471 				seq_printf(seq, "\n      %llu blocks",
7472 					   (unsigned long long)sectors / 2);
7473 		}
7474 		if (mddev->persistent) {
7475 			if (mddev->major_version != 0 ||
7476 			    mddev->minor_version != 90) {
7477 				seq_printf(seq," super %d.%d",
7478 					   mddev->major_version,
7479 					   mddev->minor_version);
7480 			}
7481 		} else if (mddev->external)
7482 			seq_printf(seq, " super external:%s",
7483 				   mddev->metadata_type);
7484 		else
7485 			seq_printf(seq, " super non-persistent");
7486 
7487 		if (mddev->pers) {
7488 			mddev->pers->status(seq, mddev);
7489 			seq_printf(seq, "\n      ");
7490 			if (mddev->pers->sync_request) {
7491 				if (status_resync(seq, mddev))
7492 					seq_printf(seq, "\n      ");
7493 			}
7494 		} else
7495 			seq_printf(seq, "\n       ");
7496 
7497 		bitmap_status(seq, mddev->bitmap);
7498 
7499 		seq_printf(seq, "\n");
7500 	}
7501 	spin_unlock(&mddev->lock);
7502 
7503 	return 0;
7504 }
7505 
7506 static const struct seq_operations md_seq_ops = {
7507 	.start  = md_seq_start,
7508 	.next   = md_seq_next,
7509 	.stop   = md_seq_stop,
7510 	.show   = md_seq_show,
7511 };
7512 
7513 static int md_seq_open(struct inode *inode, struct file *file)
7514 {
7515 	struct seq_file *seq;
7516 	int error;
7517 
7518 	error = seq_open(file, &md_seq_ops);
7519 	if (error)
7520 		return error;
7521 
7522 	seq = file->private_data;
7523 	seq->poll_event = atomic_read(&md_event_count);
7524 	return error;
7525 }
7526 
7527 static int md_unloading;
7528 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7529 {
7530 	struct seq_file *seq = filp->private_data;
7531 	int mask;
7532 
7533 	if (md_unloading)
7534 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7535 	poll_wait(filp, &md_event_waiters, wait);
7536 
7537 	/* always allow read */
7538 	mask = POLLIN | POLLRDNORM;
7539 
7540 	if (seq->poll_event != atomic_read(&md_event_count))
7541 		mask |= POLLERR | POLLPRI;
7542 	return mask;
7543 }
7544 
7545 static const struct file_operations md_seq_fops = {
7546 	.owner		= THIS_MODULE,
7547 	.open           = md_seq_open,
7548 	.read           = seq_read,
7549 	.llseek         = seq_lseek,
7550 	.release	= seq_release_private,
7551 	.poll		= mdstat_poll,
7552 };
7553 
7554 int register_md_personality(struct md_personality *p)
7555 {
7556 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7557 						p->name, p->level);
7558 	spin_lock(&pers_lock);
7559 	list_add_tail(&p->list, &pers_list);
7560 	spin_unlock(&pers_lock);
7561 	return 0;
7562 }
7563 EXPORT_SYMBOL(register_md_personality);
7564 
7565 int unregister_md_personality(struct md_personality *p)
7566 {
7567 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7568 	spin_lock(&pers_lock);
7569 	list_del_init(&p->list);
7570 	spin_unlock(&pers_lock);
7571 	return 0;
7572 }
7573 EXPORT_SYMBOL(unregister_md_personality);
7574 
7575 int register_md_cluster_operations(struct md_cluster_operations *ops,
7576 				   struct module *module)
7577 {
7578 	int ret = 0;
7579 	spin_lock(&pers_lock);
7580 	if (md_cluster_ops != NULL)
7581 		ret = -EALREADY;
7582 	else {
7583 		md_cluster_ops = ops;
7584 		md_cluster_mod = module;
7585 	}
7586 	spin_unlock(&pers_lock);
7587 	return ret;
7588 }
7589 EXPORT_SYMBOL(register_md_cluster_operations);
7590 
7591 int unregister_md_cluster_operations(void)
7592 {
7593 	spin_lock(&pers_lock);
7594 	md_cluster_ops = NULL;
7595 	spin_unlock(&pers_lock);
7596 	return 0;
7597 }
7598 EXPORT_SYMBOL(unregister_md_cluster_operations);
7599 
7600 int md_setup_cluster(struct mddev *mddev, int nodes)
7601 {
7602 	int err;
7603 
7604 	err = request_module("md-cluster");
7605 	if (err) {
7606 		pr_err("md-cluster module not found.\n");
7607 		return -ENOENT;
7608 	}
7609 
7610 	spin_lock(&pers_lock);
7611 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7612 		spin_unlock(&pers_lock);
7613 		return -ENOENT;
7614 	}
7615 	spin_unlock(&pers_lock);
7616 
7617 	return md_cluster_ops->join(mddev, nodes);
7618 }
7619 
7620 void md_cluster_stop(struct mddev *mddev)
7621 {
7622 	if (!md_cluster_ops)
7623 		return;
7624 	md_cluster_ops->leave(mddev);
7625 	module_put(md_cluster_mod);
7626 }
7627 
7628 static int is_mddev_idle(struct mddev *mddev, int init)
7629 {
7630 	struct md_rdev *rdev;
7631 	int idle;
7632 	int curr_events;
7633 
7634 	idle = 1;
7635 	rcu_read_lock();
7636 	rdev_for_each_rcu(rdev, mddev) {
7637 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7638 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7639 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7640 			      atomic_read(&disk->sync_io);
7641 		/* sync IO will cause sync_io to increase before the disk_stats
7642 		 * as sync_io is counted when a request starts, and
7643 		 * disk_stats is counted when it completes.
7644 		 * So resync activity will cause curr_events to be smaller than
7645 		 * when there was no such activity.
7646 		 * non-sync IO will cause disk_stat to increase without
7647 		 * increasing sync_io so curr_events will (eventually)
7648 		 * be larger than it was before.  Once it becomes
7649 		 * substantially larger, the test below will cause
7650 		 * the array to appear non-idle, and resync will slow
7651 		 * down.
7652 		 * If there is a lot of outstanding resync activity when
7653 		 * we set last_event to curr_events, then all that activity
7654 		 * completing might cause the array to appear non-idle
7655 		 * and resync will be slowed down even though there might
7656 		 * not have been non-resync activity.  This will only
7657 		 * happen once though.  'last_events' will soon reflect
7658 		 * the state where there is little or no outstanding
7659 		 * resync requests, and further resync activity will
7660 		 * always make curr_events less than last_events.
7661 		 *
7662 		 */
7663 		if (init || curr_events - rdev->last_events > 64) {
7664 			rdev->last_events = curr_events;
7665 			idle = 0;
7666 		}
7667 	}
7668 	rcu_read_unlock();
7669 	return idle;
7670 }
7671 
7672 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7673 {
7674 	/* another "blocks" (512byte) blocks have been synced */
7675 	atomic_sub(blocks, &mddev->recovery_active);
7676 	wake_up(&mddev->recovery_wait);
7677 	if (!ok) {
7678 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7679 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7680 		md_wakeup_thread(mddev->thread);
7681 		// stop recovery, signal do_sync ....
7682 	}
7683 }
7684 EXPORT_SYMBOL(md_done_sync);
7685 
7686 /* md_write_start(mddev, bi)
7687  * If we need to update some array metadata (e.g. 'active' flag
7688  * in superblock) before writing, schedule a superblock update
7689  * and wait for it to complete.
7690  */
7691 void md_write_start(struct mddev *mddev, struct bio *bi)
7692 {
7693 	int did_change = 0;
7694 	if (bio_data_dir(bi) != WRITE)
7695 		return;
7696 
7697 	BUG_ON(mddev->ro == 1);
7698 	if (mddev->ro == 2) {
7699 		/* need to switch to read/write */
7700 		mddev->ro = 0;
7701 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7702 		md_wakeup_thread(mddev->thread);
7703 		md_wakeup_thread(mddev->sync_thread);
7704 		did_change = 1;
7705 	}
7706 	atomic_inc(&mddev->writes_pending);
7707 	if (mddev->safemode == 1)
7708 		mddev->safemode = 0;
7709 	if (mddev->in_sync) {
7710 		spin_lock(&mddev->lock);
7711 		if (mddev->in_sync) {
7712 			mddev->in_sync = 0;
7713 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7714 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7715 			md_wakeup_thread(mddev->thread);
7716 			did_change = 1;
7717 		}
7718 		spin_unlock(&mddev->lock);
7719 	}
7720 	if (did_change)
7721 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7722 	wait_event(mddev->sb_wait,
7723 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7724 }
7725 EXPORT_SYMBOL(md_write_start);
7726 
7727 void md_write_end(struct mddev *mddev)
7728 {
7729 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7730 		if (mddev->safemode == 2)
7731 			md_wakeup_thread(mddev->thread);
7732 		else if (mddev->safemode_delay)
7733 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7734 	}
7735 }
7736 EXPORT_SYMBOL(md_write_end);
7737 
7738 /* md_allow_write(mddev)
7739  * Calling this ensures that the array is marked 'active' so that writes
7740  * may proceed without blocking.  It is important to call this before
7741  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7742  * Must be called with mddev_lock held.
7743  *
7744  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7745  * is dropped, so return -EAGAIN after notifying userspace.
7746  */
7747 int md_allow_write(struct mddev *mddev)
7748 {
7749 	if (!mddev->pers)
7750 		return 0;
7751 	if (mddev->ro)
7752 		return 0;
7753 	if (!mddev->pers->sync_request)
7754 		return 0;
7755 
7756 	spin_lock(&mddev->lock);
7757 	if (mddev->in_sync) {
7758 		mddev->in_sync = 0;
7759 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7760 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7761 		if (mddev->safemode_delay &&
7762 		    mddev->safemode == 0)
7763 			mddev->safemode = 1;
7764 		spin_unlock(&mddev->lock);
7765 		md_update_sb(mddev, 0);
7766 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7767 	} else
7768 		spin_unlock(&mddev->lock);
7769 
7770 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7771 		return -EAGAIN;
7772 	else
7773 		return 0;
7774 }
7775 EXPORT_SYMBOL_GPL(md_allow_write);
7776 
7777 #define SYNC_MARKS	10
7778 #define	SYNC_MARK_STEP	(3*HZ)
7779 #define UPDATE_FREQUENCY (5*60*HZ)
7780 void md_do_sync(struct md_thread *thread)
7781 {
7782 	struct mddev *mddev = thread->mddev;
7783 	struct mddev *mddev2;
7784 	unsigned int currspeed = 0,
7785 		 window;
7786 	sector_t max_sectors,j, io_sectors, recovery_done;
7787 	unsigned long mark[SYNC_MARKS];
7788 	unsigned long update_time;
7789 	sector_t mark_cnt[SYNC_MARKS];
7790 	int last_mark,m;
7791 	struct list_head *tmp;
7792 	sector_t last_check;
7793 	int skipped = 0;
7794 	struct md_rdev *rdev;
7795 	char *desc, *action = NULL;
7796 	struct blk_plug plug;
7797 	int ret;
7798 
7799 	/* just incase thread restarts... */
7800 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7801 		return;
7802 	if (mddev->ro) {/* never try to sync a read-only array */
7803 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7804 		return;
7805 	}
7806 
7807 	if (mddev_is_clustered(mddev)) {
7808 		ret = md_cluster_ops->resync_start(mddev);
7809 		if (ret)
7810 			goto skip;
7811 
7812 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7813 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7814 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7815 		     && ((unsigned long long)mddev->curr_resync_completed
7816 			 < (unsigned long long)mddev->resync_max_sectors))
7817 			goto skip;
7818 	}
7819 
7820 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7821 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7822 			desc = "data-check";
7823 			action = "check";
7824 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7825 			desc = "requested-resync";
7826 			action = "repair";
7827 		} else
7828 			desc = "resync";
7829 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7830 		desc = "reshape";
7831 	else
7832 		desc = "recovery";
7833 
7834 	mddev->last_sync_action = action ?: desc;
7835 
7836 	/* we overload curr_resync somewhat here.
7837 	 * 0 == not engaged in resync at all
7838 	 * 2 == checking that there is no conflict with another sync
7839 	 * 1 == like 2, but have yielded to allow conflicting resync to
7840 	 *		commense
7841 	 * other == active in resync - this many blocks
7842 	 *
7843 	 * Before starting a resync we must have set curr_resync to
7844 	 * 2, and then checked that every "conflicting" array has curr_resync
7845 	 * less than ours.  When we find one that is the same or higher
7846 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7847 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7848 	 * This will mean we have to start checking from the beginning again.
7849 	 *
7850 	 */
7851 
7852 	do {
7853 		mddev->curr_resync = 2;
7854 
7855 	try_again:
7856 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7857 			goto skip;
7858 		for_each_mddev(mddev2, tmp) {
7859 			if (mddev2 == mddev)
7860 				continue;
7861 			if (!mddev->parallel_resync
7862 			&&  mddev2->curr_resync
7863 			&&  match_mddev_units(mddev, mddev2)) {
7864 				DEFINE_WAIT(wq);
7865 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7866 					/* arbitrarily yield */
7867 					mddev->curr_resync = 1;
7868 					wake_up(&resync_wait);
7869 				}
7870 				if (mddev > mddev2 && mddev->curr_resync == 1)
7871 					/* no need to wait here, we can wait the next
7872 					 * time 'round when curr_resync == 2
7873 					 */
7874 					continue;
7875 				/* We need to wait 'interruptible' so as not to
7876 				 * contribute to the load average, and not to
7877 				 * be caught by 'softlockup'
7878 				 */
7879 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7880 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7881 				    mddev2->curr_resync >= mddev->curr_resync) {
7882 					printk(KERN_INFO "md: delaying %s of %s"
7883 					       " until %s has finished (they"
7884 					       " share one or more physical units)\n",
7885 					       desc, mdname(mddev), mdname(mddev2));
7886 					mddev_put(mddev2);
7887 					if (signal_pending(current))
7888 						flush_signals(current);
7889 					schedule();
7890 					finish_wait(&resync_wait, &wq);
7891 					goto try_again;
7892 				}
7893 				finish_wait(&resync_wait, &wq);
7894 			}
7895 		}
7896 	} while (mddev->curr_resync < 2);
7897 
7898 	j = 0;
7899 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7900 		/* resync follows the size requested by the personality,
7901 		 * which defaults to physical size, but can be virtual size
7902 		 */
7903 		max_sectors = mddev->resync_max_sectors;
7904 		atomic64_set(&mddev->resync_mismatches, 0);
7905 		/* we don't use the checkpoint if there's a bitmap */
7906 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7907 			j = mddev->resync_min;
7908 		else if (!mddev->bitmap)
7909 			j = mddev->recovery_cp;
7910 
7911 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7912 		max_sectors = mddev->resync_max_sectors;
7913 	else {
7914 		/* recovery follows the physical size of devices */
7915 		max_sectors = mddev->dev_sectors;
7916 		j = MaxSector;
7917 		rcu_read_lock();
7918 		rdev_for_each_rcu(rdev, mddev)
7919 			if (rdev->raid_disk >= 0 &&
7920 			    !test_bit(Journal, &rdev->flags) &&
7921 			    !test_bit(Faulty, &rdev->flags) &&
7922 			    !test_bit(In_sync, &rdev->flags) &&
7923 			    rdev->recovery_offset < j)
7924 				j = rdev->recovery_offset;
7925 		rcu_read_unlock();
7926 
7927 		/* If there is a bitmap, we need to make sure all
7928 		 * writes that started before we added a spare
7929 		 * complete before we start doing a recovery.
7930 		 * Otherwise the write might complete and (via
7931 		 * bitmap_endwrite) set a bit in the bitmap after the
7932 		 * recovery has checked that bit and skipped that
7933 		 * region.
7934 		 */
7935 		if (mddev->bitmap) {
7936 			mddev->pers->quiesce(mddev, 1);
7937 			mddev->pers->quiesce(mddev, 0);
7938 		}
7939 	}
7940 
7941 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7942 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7943 		" %d KB/sec/disk.\n", speed_min(mddev));
7944 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7945 	       "(but not more than %d KB/sec) for %s.\n",
7946 	       speed_max(mddev), desc);
7947 
7948 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7949 
7950 	io_sectors = 0;
7951 	for (m = 0; m < SYNC_MARKS; m++) {
7952 		mark[m] = jiffies;
7953 		mark_cnt[m] = io_sectors;
7954 	}
7955 	last_mark = 0;
7956 	mddev->resync_mark = mark[last_mark];
7957 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7958 
7959 	/*
7960 	 * Tune reconstruction:
7961 	 */
7962 	window = 32*(PAGE_SIZE/512);
7963 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7964 		window/2, (unsigned long long)max_sectors/2);
7965 
7966 	atomic_set(&mddev->recovery_active, 0);
7967 	last_check = 0;
7968 
7969 	if (j>2) {
7970 		printk(KERN_INFO
7971 		       "md: resuming %s of %s from checkpoint.\n",
7972 		       desc, mdname(mddev));
7973 		mddev->curr_resync = j;
7974 	} else
7975 		mddev->curr_resync = 3; /* no longer delayed */
7976 	mddev->curr_resync_completed = j;
7977 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7978 	md_new_event(mddev);
7979 	update_time = jiffies;
7980 
7981 	blk_start_plug(&plug);
7982 	while (j < max_sectors) {
7983 		sector_t sectors;
7984 
7985 		skipped = 0;
7986 
7987 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7988 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7989 		      (mddev->curr_resync - mddev->curr_resync_completed)
7990 		      > (max_sectors >> 4)) ||
7991 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7992 		     (j - mddev->curr_resync_completed)*2
7993 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7994 		     mddev->curr_resync_completed > mddev->resync_max
7995 			    )) {
7996 			/* time to update curr_resync_completed */
7997 			wait_event(mddev->recovery_wait,
7998 				   atomic_read(&mddev->recovery_active) == 0);
7999 			mddev->curr_resync_completed = j;
8000 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8001 			    j > mddev->recovery_cp)
8002 				mddev->recovery_cp = j;
8003 			update_time = jiffies;
8004 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8005 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8006 		}
8007 
8008 		while (j >= mddev->resync_max &&
8009 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8010 			/* As this condition is controlled by user-space,
8011 			 * we can block indefinitely, so use '_interruptible'
8012 			 * to avoid triggering warnings.
8013 			 */
8014 			flush_signals(current); /* just in case */
8015 			wait_event_interruptible(mddev->recovery_wait,
8016 						 mddev->resync_max > j
8017 						 || test_bit(MD_RECOVERY_INTR,
8018 							     &mddev->recovery));
8019 		}
8020 
8021 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8022 			break;
8023 
8024 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8025 		if (sectors == 0) {
8026 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8027 			break;
8028 		}
8029 
8030 		if (!skipped) { /* actual IO requested */
8031 			io_sectors += sectors;
8032 			atomic_add(sectors, &mddev->recovery_active);
8033 		}
8034 
8035 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8036 			break;
8037 
8038 		j += sectors;
8039 		if (j > max_sectors)
8040 			/* when skipping, extra large numbers can be returned. */
8041 			j = max_sectors;
8042 		if (j > 2)
8043 			mddev->curr_resync = j;
8044 		mddev->curr_mark_cnt = io_sectors;
8045 		if (last_check == 0)
8046 			/* this is the earliest that rebuild will be
8047 			 * visible in /proc/mdstat
8048 			 */
8049 			md_new_event(mddev);
8050 
8051 		if (last_check + window > io_sectors || j == max_sectors)
8052 			continue;
8053 
8054 		last_check = io_sectors;
8055 	repeat:
8056 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8057 			/* step marks */
8058 			int next = (last_mark+1) % SYNC_MARKS;
8059 
8060 			mddev->resync_mark = mark[next];
8061 			mddev->resync_mark_cnt = mark_cnt[next];
8062 			mark[next] = jiffies;
8063 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8064 			last_mark = next;
8065 		}
8066 
8067 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8068 			break;
8069 
8070 		/*
8071 		 * this loop exits only if either when we are slower than
8072 		 * the 'hard' speed limit, or the system was IO-idle for
8073 		 * a jiffy.
8074 		 * the system might be non-idle CPU-wise, but we only care
8075 		 * about not overloading the IO subsystem. (things like an
8076 		 * e2fsck being done on the RAID array should execute fast)
8077 		 */
8078 		cond_resched();
8079 
8080 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8081 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8082 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8083 
8084 		if (currspeed > speed_min(mddev)) {
8085 			if (currspeed > speed_max(mddev)) {
8086 				msleep(500);
8087 				goto repeat;
8088 			}
8089 			if (!is_mddev_idle(mddev, 0)) {
8090 				/*
8091 				 * Give other IO more of a chance.
8092 				 * The faster the devices, the less we wait.
8093 				 */
8094 				wait_event(mddev->recovery_wait,
8095 					   !atomic_read(&mddev->recovery_active));
8096 			}
8097 		}
8098 	}
8099 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8100 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8101 	       ? "interrupted" : "done");
8102 	/*
8103 	 * this also signals 'finished resyncing' to md_stop
8104 	 */
8105 	blk_finish_plug(&plug);
8106 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8107 
8108 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8109 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8110 	    mddev->curr_resync > 2) {
8111 		mddev->curr_resync_completed = mddev->curr_resync;
8112 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8113 	}
8114 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8115 
8116 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8117 	    mddev->curr_resync > 2) {
8118 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8119 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8120 				if (mddev->curr_resync >= mddev->recovery_cp) {
8121 					printk(KERN_INFO
8122 					       "md: checkpointing %s of %s.\n",
8123 					       desc, mdname(mddev));
8124 					if (test_bit(MD_RECOVERY_ERROR,
8125 						&mddev->recovery))
8126 						mddev->recovery_cp =
8127 							mddev->curr_resync_completed;
8128 					else
8129 						mddev->recovery_cp =
8130 							mddev->curr_resync;
8131 				}
8132 			} else
8133 				mddev->recovery_cp = MaxSector;
8134 		} else {
8135 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8136 				mddev->curr_resync = MaxSector;
8137 			rcu_read_lock();
8138 			rdev_for_each_rcu(rdev, mddev)
8139 				if (rdev->raid_disk >= 0 &&
8140 				    mddev->delta_disks >= 0 &&
8141 				    !test_bit(Journal, &rdev->flags) &&
8142 				    !test_bit(Faulty, &rdev->flags) &&
8143 				    !test_bit(In_sync, &rdev->flags) &&
8144 				    rdev->recovery_offset < mddev->curr_resync)
8145 					rdev->recovery_offset = mddev->curr_resync;
8146 			rcu_read_unlock();
8147 		}
8148 	}
8149  skip:
8150 	if (mddev_is_clustered(mddev) &&
8151 	    ret == 0) {
8152 		/* set CHANGE_PENDING here since maybe another
8153 		 * update is needed, so other nodes are informed */
8154 		set_mask_bits(&mddev->flags, 0,
8155 			      BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS));
8156 		md_wakeup_thread(mddev->thread);
8157 		wait_event(mddev->sb_wait,
8158 			   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
8159 		md_cluster_ops->resync_finish(mddev);
8160 	} else
8161 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8162 
8163 	spin_lock(&mddev->lock);
8164 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8165 		/* We completed so min/max setting can be forgotten if used. */
8166 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8167 			mddev->resync_min = 0;
8168 		mddev->resync_max = MaxSector;
8169 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8170 		mddev->resync_min = mddev->curr_resync_completed;
8171 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8172 	mddev->curr_resync = 0;
8173 	spin_unlock(&mddev->lock);
8174 
8175 	wake_up(&resync_wait);
8176 	md_wakeup_thread(mddev->thread);
8177 	return;
8178 }
8179 EXPORT_SYMBOL_GPL(md_do_sync);
8180 
8181 static int remove_and_add_spares(struct mddev *mddev,
8182 				 struct md_rdev *this)
8183 {
8184 	struct md_rdev *rdev;
8185 	int spares = 0;
8186 	int removed = 0;
8187 
8188 	rdev_for_each(rdev, mddev)
8189 		if ((this == NULL || rdev == this) &&
8190 		    rdev->raid_disk >= 0 &&
8191 		    !test_bit(Blocked, &rdev->flags) &&
8192 		    (test_bit(Faulty, &rdev->flags) ||
8193 		     (!test_bit(In_sync, &rdev->flags) &&
8194 		      !test_bit(Journal, &rdev->flags))) &&
8195 		    atomic_read(&rdev->nr_pending)==0) {
8196 			if (mddev->pers->hot_remove_disk(
8197 				    mddev, rdev) == 0) {
8198 				sysfs_unlink_rdev(mddev, rdev);
8199 				rdev->raid_disk = -1;
8200 				removed++;
8201 			}
8202 		}
8203 	if (removed && mddev->kobj.sd)
8204 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8205 
8206 	if (this && removed)
8207 		goto no_add;
8208 
8209 	rdev_for_each(rdev, mddev) {
8210 		if (this && this != rdev)
8211 			continue;
8212 		if (test_bit(Candidate, &rdev->flags))
8213 			continue;
8214 		if (rdev->raid_disk >= 0 &&
8215 		    !test_bit(In_sync, &rdev->flags) &&
8216 		    !test_bit(Journal, &rdev->flags) &&
8217 		    !test_bit(Faulty, &rdev->flags))
8218 			spares++;
8219 		if (rdev->raid_disk >= 0)
8220 			continue;
8221 		if (test_bit(Faulty, &rdev->flags))
8222 			continue;
8223 		if (!test_bit(Journal, &rdev->flags)) {
8224 			if (mddev->ro &&
8225 			    ! (rdev->saved_raid_disk >= 0 &&
8226 			       !test_bit(Bitmap_sync, &rdev->flags)))
8227 				continue;
8228 
8229 			rdev->recovery_offset = 0;
8230 		}
8231 		if (mddev->pers->
8232 		    hot_add_disk(mddev, rdev) == 0) {
8233 			if (sysfs_link_rdev(mddev, rdev))
8234 				/* failure here is OK */;
8235 			if (!test_bit(Journal, &rdev->flags))
8236 				spares++;
8237 			md_new_event(mddev);
8238 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8239 		}
8240 	}
8241 no_add:
8242 	if (removed)
8243 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8244 	return spares;
8245 }
8246 
8247 static void md_start_sync(struct work_struct *ws)
8248 {
8249 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8250 	int ret = 0;
8251 
8252 	mddev->sync_thread = md_register_thread(md_do_sync,
8253 						mddev,
8254 						"resync");
8255 	if (!mddev->sync_thread) {
8256 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8257 			printk(KERN_ERR "%s: could not start resync"
8258 			       " thread...\n",
8259 			       mdname(mddev));
8260 		/* leave the spares where they are, it shouldn't hurt */
8261 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8262 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8263 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8264 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8265 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8266 		wake_up(&resync_wait);
8267 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8268 				       &mddev->recovery))
8269 			if (mddev->sysfs_action)
8270 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8271 	} else
8272 		md_wakeup_thread(mddev->sync_thread);
8273 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8274 	md_new_event(mddev);
8275 }
8276 
8277 /*
8278  * This routine is regularly called by all per-raid-array threads to
8279  * deal with generic issues like resync and super-block update.
8280  * Raid personalities that don't have a thread (linear/raid0) do not
8281  * need this as they never do any recovery or update the superblock.
8282  *
8283  * It does not do any resync itself, but rather "forks" off other threads
8284  * to do that as needed.
8285  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8286  * "->recovery" and create a thread at ->sync_thread.
8287  * When the thread finishes it sets MD_RECOVERY_DONE
8288  * and wakeups up this thread which will reap the thread and finish up.
8289  * This thread also removes any faulty devices (with nr_pending == 0).
8290  *
8291  * The overall approach is:
8292  *  1/ if the superblock needs updating, update it.
8293  *  2/ If a recovery thread is running, don't do anything else.
8294  *  3/ If recovery has finished, clean up, possibly marking spares active.
8295  *  4/ If there are any faulty devices, remove them.
8296  *  5/ If array is degraded, try to add spares devices
8297  *  6/ If array has spares or is not in-sync, start a resync thread.
8298  */
8299 void md_check_recovery(struct mddev *mddev)
8300 {
8301 	if (mddev->suspended)
8302 		return;
8303 
8304 	if (mddev->bitmap)
8305 		bitmap_daemon_work(mddev);
8306 
8307 	if (signal_pending(current)) {
8308 		if (mddev->pers->sync_request && !mddev->external) {
8309 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8310 			       mdname(mddev));
8311 			mddev->safemode = 2;
8312 		}
8313 		flush_signals(current);
8314 	}
8315 
8316 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8317 		return;
8318 	if ( ! (
8319 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8320 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8321 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8322 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8323 		(mddev->external == 0 && mddev->safemode == 1) ||
8324 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8325 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8326 		))
8327 		return;
8328 
8329 	if (mddev_trylock(mddev)) {
8330 		int spares = 0;
8331 
8332 		if (mddev->ro) {
8333 			struct md_rdev *rdev;
8334 			if (!mddev->external && mddev->in_sync)
8335 				/* 'Blocked' flag not needed as failed devices
8336 				 * will be recorded if array switched to read/write.
8337 				 * Leaving it set will prevent the device
8338 				 * from being removed.
8339 				 */
8340 				rdev_for_each(rdev, mddev)
8341 					clear_bit(Blocked, &rdev->flags);
8342 			/* On a read-only array we can:
8343 			 * - remove failed devices
8344 			 * - add already-in_sync devices if the array itself
8345 			 *   is in-sync.
8346 			 * As we only add devices that are already in-sync,
8347 			 * we can activate the spares immediately.
8348 			 */
8349 			remove_and_add_spares(mddev, NULL);
8350 			/* There is no thread, but we need to call
8351 			 * ->spare_active and clear saved_raid_disk
8352 			 */
8353 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8354 			md_reap_sync_thread(mddev);
8355 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8356 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8357 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8358 			goto unlock;
8359 		}
8360 
8361 		if (mddev_is_clustered(mddev)) {
8362 			struct md_rdev *rdev;
8363 			/* kick the device if another node issued a
8364 			 * remove disk.
8365 			 */
8366 			rdev_for_each(rdev, mddev) {
8367 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8368 						rdev->raid_disk < 0)
8369 					md_kick_rdev_from_array(rdev);
8370 			}
8371 
8372 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8373 				md_reload_sb(mddev, mddev->good_device_nr);
8374 		}
8375 
8376 		if (!mddev->external) {
8377 			int did_change = 0;
8378 			spin_lock(&mddev->lock);
8379 			if (mddev->safemode &&
8380 			    !atomic_read(&mddev->writes_pending) &&
8381 			    !mddev->in_sync &&
8382 			    mddev->recovery_cp == MaxSector) {
8383 				mddev->in_sync = 1;
8384 				did_change = 1;
8385 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8386 			}
8387 			if (mddev->safemode == 1)
8388 				mddev->safemode = 0;
8389 			spin_unlock(&mddev->lock);
8390 			if (did_change)
8391 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8392 		}
8393 
8394 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8395 			md_update_sb(mddev, 0);
8396 
8397 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8398 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8399 			/* resync/recovery still happening */
8400 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8401 			goto unlock;
8402 		}
8403 		if (mddev->sync_thread) {
8404 			md_reap_sync_thread(mddev);
8405 			goto unlock;
8406 		}
8407 		/* Set RUNNING before clearing NEEDED to avoid
8408 		 * any transients in the value of "sync_action".
8409 		 */
8410 		mddev->curr_resync_completed = 0;
8411 		spin_lock(&mddev->lock);
8412 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8413 		spin_unlock(&mddev->lock);
8414 		/* Clear some bits that don't mean anything, but
8415 		 * might be left set
8416 		 */
8417 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8418 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8419 
8420 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8421 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8422 			goto not_running;
8423 		/* no recovery is running.
8424 		 * remove any failed drives, then
8425 		 * add spares if possible.
8426 		 * Spares are also removed and re-added, to allow
8427 		 * the personality to fail the re-add.
8428 		 */
8429 
8430 		if (mddev->reshape_position != MaxSector) {
8431 			if (mddev->pers->check_reshape == NULL ||
8432 			    mddev->pers->check_reshape(mddev) != 0)
8433 				/* Cannot proceed */
8434 				goto not_running;
8435 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8436 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8437 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8438 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8439 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8440 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8441 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8442 		} else if (mddev->recovery_cp < MaxSector) {
8443 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8444 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8445 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8446 			/* nothing to be done ... */
8447 			goto not_running;
8448 
8449 		if (mddev->pers->sync_request) {
8450 			if (spares) {
8451 				/* We are adding a device or devices to an array
8452 				 * which has the bitmap stored on all devices.
8453 				 * So make sure all bitmap pages get written
8454 				 */
8455 				bitmap_write_all(mddev->bitmap);
8456 			}
8457 			INIT_WORK(&mddev->del_work, md_start_sync);
8458 			queue_work(md_misc_wq, &mddev->del_work);
8459 			goto unlock;
8460 		}
8461 	not_running:
8462 		if (!mddev->sync_thread) {
8463 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8464 			wake_up(&resync_wait);
8465 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8466 					       &mddev->recovery))
8467 				if (mddev->sysfs_action)
8468 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8469 		}
8470 	unlock:
8471 		wake_up(&mddev->sb_wait);
8472 		mddev_unlock(mddev);
8473 	}
8474 }
8475 EXPORT_SYMBOL(md_check_recovery);
8476 
8477 void md_reap_sync_thread(struct mddev *mddev)
8478 {
8479 	struct md_rdev *rdev;
8480 
8481 	/* resync has finished, collect result */
8482 	md_unregister_thread(&mddev->sync_thread);
8483 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8484 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8485 		/* success...*/
8486 		/* activate any spares */
8487 		if (mddev->pers->spare_active(mddev)) {
8488 			sysfs_notify(&mddev->kobj, NULL,
8489 				     "degraded");
8490 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8491 		}
8492 	}
8493 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8494 	    mddev->pers->finish_reshape)
8495 		mddev->pers->finish_reshape(mddev);
8496 
8497 	/* If array is no-longer degraded, then any saved_raid_disk
8498 	 * information must be scrapped.
8499 	 */
8500 	if (!mddev->degraded)
8501 		rdev_for_each(rdev, mddev)
8502 			rdev->saved_raid_disk = -1;
8503 
8504 	md_update_sb(mddev, 1);
8505 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8506 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8507 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8508 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8509 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8510 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8511 	wake_up(&resync_wait);
8512 	/* flag recovery needed just to double check */
8513 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8514 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8515 	md_new_event(mddev);
8516 	if (mddev->event_work.func)
8517 		queue_work(md_misc_wq, &mddev->event_work);
8518 }
8519 EXPORT_SYMBOL(md_reap_sync_thread);
8520 
8521 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8522 {
8523 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8524 	wait_event_timeout(rdev->blocked_wait,
8525 			   !test_bit(Blocked, &rdev->flags) &&
8526 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8527 			   msecs_to_jiffies(5000));
8528 	rdev_dec_pending(rdev, mddev);
8529 }
8530 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8531 
8532 void md_finish_reshape(struct mddev *mddev)
8533 {
8534 	/* called be personality module when reshape completes. */
8535 	struct md_rdev *rdev;
8536 
8537 	rdev_for_each(rdev, mddev) {
8538 		if (rdev->data_offset > rdev->new_data_offset)
8539 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8540 		else
8541 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8542 		rdev->data_offset = rdev->new_data_offset;
8543 	}
8544 }
8545 EXPORT_SYMBOL(md_finish_reshape);
8546 
8547 /* Bad block management */
8548 
8549 /* Returns 1 on success, 0 on failure */
8550 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8551 		       int is_new)
8552 {
8553 	struct mddev *mddev = rdev->mddev;
8554 	int rv;
8555 	if (is_new)
8556 		s += rdev->new_data_offset;
8557 	else
8558 		s += rdev->data_offset;
8559 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8560 	if (rv == 0) {
8561 		/* Make sure they get written out promptly */
8562 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8563 		set_mask_bits(&mddev->flags, 0,
8564 			      BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING));
8565 		md_wakeup_thread(rdev->mddev->thread);
8566 		return 1;
8567 	} else
8568 		return 0;
8569 }
8570 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8571 
8572 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8573 			 int is_new)
8574 {
8575 	if (is_new)
8576 		s += rdev->new_data_offset;
8577 	else
8578 		s += rdev->data_offset;
8579 	return badblocks_clear(&rdev->badblocks,
8580 				  s, sectors);
8581 }
8582 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8583 
8584 static int md_notify_reboot(struct notifier_block *this,
8585 			    unsigned long code, void *x)
8586 {
8587 	struct list_head *tmp;
8588 	struct mddev *mddev;
8589 	int need_delay = 0;
8590 
8591 	for_each_mddev(mddev, tmp) {
8592 		if (mddev_trylock(mddev)) {
8593 			if (mddev->pers)
8594 				__md_stop_writes(mddev);
8595 			if (mddev->persistent)
8596 				mddev->safemode = 2;
8597 			mddev_unlock(mddev);
8598 		}
8599 		need_delay = 1;
8600 	}
8601 	/*
8602 	 * certain more exotic SCSI devices are known to be
8603 	 * volatile wrt too early system reboots. While the
8604 	 * right place to handle this issue is the given
8605 	 * driver, we do want to have a safe RAID driver ...
8606 	 */
8607 	if (need_delay)
8608 		mdelay(1000*1);
8609 
8610 	return NOTIFY_DONE;
8611 }
8612 
8613 static struct notifier_block md_notifier = {
8614 	.notifier_call	= md_notify_reboot,
8615 	.next		= NULL,
8616 	.priority	= INT_MAX, /* before any real devices */
8617 };
8618 
8619 static void md_geninit(void)
8620 {
8621 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8622 
8623 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8624 }
8625 
8626 static int __init md_init(void)
8627 {
8628 	int ret = -ENOMEM;
8629 
8630 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8631 	if (!md_wq)
8632 		goto err_wq;
8633 
8634 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8635 	if (!md_misc_wq)
8636 		goto err_misc_wq;
8637 
8638 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8639 		goto err_md;
8640 
8641 	if ((ret = register_blkdev(0, "mdp")) < 0)
8642 		goto err_mdp;
8643 	mdp_major = ret;
8644 
8645 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8646 			    md_probe, NULL, NULL);
8647 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8648 			    md_probe, NULL, NULL);
8649 
8650 	register_reboot_notifier(&md_notifier);
8651 	raid_table_header = register_sysctl_table(raid_root_table);
8652 
8653 	md_geninit();
8654 	return 0;
8655 
8656 err_mdp:
8657 	unregister_blkdev(MD_MAJOR, "md");
8658 err_md:
8659 	destroy_workqueue(md_misc_wq);
8660 err_misc_wq:
8661 	destroy_workqueue(md_wq);
8662 err_wq:
8663 	return ret;
8664 }
8665 
8666 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8667 {
8668 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8669 	struct md_rdev *rdev2;
8670 	int role, ret;
8671 	char b[BDEVNAME_SIZE];
8672 
8673 	/* Check for change of roles in the active devices */
8674 	rdev_for_each(rdev2, mddev) {
8675 		if (test_bit(Faulty, &rdev2->flags))
8676 			continue;
8677 
8678 		/* Check if the roles changed */
8679 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8680 
8681 		if (test_bit(Candidate, &rdev2->flags)) {
8682 			if (role == 0xfffe) {
8683 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8684 				md_kick_rdev_from_array(rdev2);
8685 				continue;
8686 			}
8687 			else
8688 				clear_bit(Candidate, &rdev2->flags);
8689 		}
8690 
8691 		if (role != rdev2->raid_disk) {
8692 			/* got activated */
8693 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8694 				rdev2->saved_raid_disk = role;
8695 				ret = remove_and_add_spares(mddev, rdev2);
8696 				pr_info("Activated spare: %s\n",
8697 						bdevname(rdev2->bdev,b));
8698 				/* wakeup mddev->thread here, so array could
8699 				 * perform resync with the new activated disk */
8700 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8701 				md_wakeup_thread(mddev->thread);
8702 
8703 			}
8704 			/* device faulty
8705 			 * We just want to do the minimum to mark the disk
8706 			 * as faulty. The recovery is performed by the
8707 			 * one who initiated the error.
8708 			 */
8709 			if ((role == 0xfffe) || (role == 0xfffd)) {
8710 				md_error(mddev, rdev2);
8711 				clear_bit(Blocked, &rdev2->flags);
8712 			}
8713 		}
8714 	}
8715 
8716 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8717 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8718 
8719 	/* Finally set the event to be up to date */
8720 	mddev->events = le64_to_cpu(sb->events);
8721 }
8722 
8723 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8724 {
8725 	int err;
8726 	struct page *swapout = rdev->sb_page;
8727 	struct mdp_superblock_1 *sb;
8728 
8729 	/* Store the sb page of the rdev in the swapout temporary
8730 	 * variable in case we err in the future
8731 	 */
8732 	rdev->sb_page = NULL;
8733 	alloc_disk_sb(rdev);
8734 	ClearPageUptodate(rdev->sb_page);
8735 	rdev->sb_loaded = 0;
8736 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8737 
8738 	if (err < 0) {
8739 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8740 				__func__, __LINE__, rdev->desc_nr, err);
8741 		put_page(rdev->sb_page);
8742 		rdev->sb_page = swapout;
8743 		rdev->sb_loaded = 1;
8744 		return err;
8745 	}
8746 
8747 	sb = page_address(rdev->sb_page);
8748 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8749 	 * is not set
8750 	 */
8751 
8752 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8753 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8754 
8755 	/* The other node finished recovery, call spare_active to set
8756 	 * device In_sync and mddev->degraded
8757 	 */
8758 	if (rdev->recovery_offset == MaxSector &&
8759 	    !test_bit(In_sync, &rdev->flags) &&
8760 	    mddev->pers->spare_active(mddev))
8761 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8762 
8763 	put_page(swapout);
8764 	return 0;
8765 }
8766 
8767 void md_reload_sb(struct mddev *mddev, int nr)
8768 {
8769 	struct md_rdev *rdev;
8770 	int err;
8771 
8772 	/* Find the rdev */
8773 	rdev_for_each_rcu(rdev, mddev) {
8774 		if (rdev->desc_nr == nr)
8775 			break;
8776 	}
8777 
8778 	if (!rdev || rdev->desc_nr != nr) {
8779 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8780 		return;
8781 	}
8782 
8783 	err = read_rdev(mddev, rdev);
8784 	if (err < 0)
8785 		return;
8786 
8787 	check_sb_changes(mddev, rdev);
8788 
8789 	/* Read all rdev's to update recovery_offset */
8790 	rdev_for_each_rcu(rdev, mddev)
8791 		read_rdev(mddev, rdev);
8792 }
8793 EXPORT_SYMBOL(md_reload_sb);
8794 
8795 #ifndef MODULE
8796 
8797 /*
8798  * Searches all registered partitions for autorun RAID arrays
8799  * at boot time.
8800  */
8801 
8802 static LIST_HEAD(all_detected_devices);
8803 struct detected_devices_node {
8804 	struct list_head list;
8805 	dev_t dev;
8806 };
8807 
8808 void md_autodetect_dev(dev_t dev)
8809 {
8810 	struct detected_devices_node *node_detected_dev;
8811 
8812 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8813 	if (node_detected_dev) {
8814 		node_detected_dev->dev = dev;
8815 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8816 	} else {
8817 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8818 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8819 	}
8820 }
8821 
8822 static void autostart_arrays(int part)
8823 {
8824 	struct md_rdev *rdev;
8825 	struct detected_devices_node *node_detected_dev;
8826 	dev_t dev;
8827 	int i_scanned, i_passed;
8828 
8829 	i_scanned = 0;
8830 	i_passed = 0;
8831 
8832 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8833 
8834 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8835 		i_scanned++;
8836 		node_detected_dev = list_entry(all_detected_devices.next,
8837 					struct detected_devices_node, list);
8838 		list_del(&node_detected_dev->list);
8839 		dev = node_detected_dev->dev;
8840 		kfree(node_detected_dev);
8841 		rdev = md_import_device(dev,0, 90);
8842 		if (IS_ERR(rdev))
8843 			continue;
8844 
8845 		if (test_bit(Faulty, &rdev->flags))
8846 			continue;
8847 
8848 		set_bit(AutoDetected, &rdev->flags);
8849 		list_add(&rdev->same_set, &pending_raid_disks);
8850 		i_passed++;
8851 	}
8852 
8853 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8854 						i_scanned, i_passed);
8855 
8856 	autorun_devices(part);
8857 }
8858 
8859 #endif /* !MODULE */
8860 
8861 static __exit void md_exit(void)
8862 {
8863 	struct mddev *mddev;
8864 	struct list_head *tmp;
8865 	int delay = 1;
8866 
8867 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8868 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8869 
8870 	unregister_blkdev(MD_MAJOR,"md");
8871 	unregister_blkdev(mdp_major, "mdp");
8872 	unregister_reboot_notifier(&md_notifier);
8873 	unregister_sysctl_table(raid_table_header);
8874 
8875 	/* We cannot unload the modules while some process is
8876 	 * waiting for us in select() or poll() - wake them up
8877 	 */
8878 	md_unloading = 1;
8879 	while (waitqueue_active(&md_event_waiters)) {
8880 		/* not safe to leave yet */
8881 		wake_up(&md_event_waiters);
8882 		msleep(delay);
8883 		delay += delay;
8884 	}
8885 	remove_proc_entry("mdstat", NULL);
8886 
8887 	for_each_mddev(mddev, tmp) {
8888 		export_array(mddev);
8889 		mddev->hold_active = 0;
8890 	}
8891 	destroy_workqueue(md_misc_wq);
8892 	destroy_workqueue(md_wq);
8893 }
8894 
8895 subsys_initcall(md_init);
8896 module_exit(md_exit)
8897 
8898 static int get_ro(char *buffer, struct kernel_param *kp)
8899 {
8900 	return sprintf(buffer, "%d", start_readonly);
8901 }
8902 static int set_ro(const char *val, struct kernel_param *kp)
8903 {
8904 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8905 }
8906 
8907 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8908 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8909 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8910 
8911 MODULE_LICENSE("GPL");
8912 MODULE_DESCRIPTION("MD RAID framework");
8913 MODULE_ALIAS("md");
8914 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8915