1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/badblocks.h> 38 #include <linux/sysctl.h> 39 #include <linux/seq_file.h> 40 #include <linux/fs.h> 41 #include <linux/poll.h> 42 #include <linux/ctype.h> 43 #include <linux/string.h> 44 #include <linux/hdreg.h> 45 #include <linux/proc_fs.h> 46 #include <linux/random.h> 47 #include <linux/module.h> 48 #include <linux/reboot.h> 49 #include <linux/file.h> 50 #include <linux/compat.h> 51 #include <linux/delay.h> 52 #include <linux/raid/md_p.h> 53 #include <linux/raid/md_u.h> 54 #include <linux/slab.h> 55 #include "md.h" 56 #include "bitmap.h" 57 #include "md-cluster.h" 58 59 #ifndef MODULE 60 static void autostart_arrays(int part); 61 #endif 62 63 /* pers_list is a list of registered personalities protected 64 * by pers_lock. 65 * pers_lock does extra service to protect accesses to 66 * mddev->thread when the mutex cannot be held. 67 */ 68 static LIST_HEAD(pers_list); 69 static DEFINE_SPINLOCK(pers_lock); 70 71 struct md_cluster_operations *md_cluster_ops; 72 EXPORT_SYMBOL(md_cluster_ops); 73 struct module *md_cluster_mod; 74 EXPORT_SYMBOL(md_cluster_mod); 75 76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 77 static struct workqueue_struct *md_wq; 78 static struct workqueue_struct *md_misc_wq; 79 80 static int remove_and_add_spares(struct mddev *mddev, 81 struct md_rdev *this); 82 static void mddev_detach(struct mddev *mddev); 83 84 /* 85 * Default number of read corrections we'll attempt on an rdev 86 * before ejecting it from the array. We divide the read error 87 * count by 2 for every hour elapsed between read errors. 88 */ 89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 90 /* 91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 92 * is 1000 KB/sec, so the extra system load does not show up that much. 93 * Increase it if you want to have more _guaranteed_ speed. Note that 94 * the RAID driver will use the maximum available bandwidth if the IO 95 * subsystem is idle. There is also an 'absolute maximum' reconstruction 96 * speed limit - in case reconstruction slows down your system despite 97 * idle IO detection. 98 * 99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 100 * or /sys/block/mdX/md/sync_speed_{min,max} 101 */ 102 103 static int sysctl_speed_limit_min = 1000; 104 static int sysctl_speed_limit_max = 200000; 105 static inline int speed_min(struct mddev *mddev) 106 { 107 return mddev->sync_speed_min ? 108 mddev->sync_speed_min : sysctl_speed_limit_min; 109 } 110 111 static inline int speed_max(struct mddev *mddev) 112 { 113 return mddev->sync_speed_max ? 114 mddev->sync_speed_max : sysctl_speed_limit_max; 115 } 116 117 static struct ctl_table_header *raid_table_header; 118 119 static struct ctl_table raid_table[] = { 120 { 121 .procname = "speed_limit_min", 122 .data = &sysctl_speed_limit_min, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { 128 .procname = "speed_limit_max", 129 .data = &sysctl_speed_limit_max, 130 .maxlen = sizeof(int), 131 .mode = S_IRUGO|S_IWUSR, 132 .proc_handler = proc_dointvec, 133 }, 134 { } 135 }; 136 137 static struct ctl_table raid_dir_table[] = { 138 { 139 .procname = "raid", 140 .maxlen = 0, 141 .mode = S_IRUGO|S_IXUGO, 142 .child = raid_table, 143 }, 144 { } 145 }; 146 147 static struct ctl_table raid_root_table[] = { 148 { 149 .procname = "dev", 150 .maxlen = 0, 151 .mode = 0555, 152 .child = raid_dir_table, 153 }, 154 { } 155 }; 156 157 static const struct block_device_operations md_fops; 158 159 static int start_readonly; 160 161 /* bio_clone_mddev 162 * like bio_clone, but with a local bio set 163 */ 164 165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 166 struct mddev *mddev) 167 { 168 struct bio *b; 169 170 if (!mddev || !mddev->bio_set) 171 return bio_alloc(gfp_mask, nr_iovecs); 172 173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 174 if (!b) 175 return NULL; 176 return b; 177 } 178 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 179 180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 181 struct mddev *mddev) 182 { 183 if (!mddev || !mddev->bio_set) 184 return bio_clone(bio, gfp_mask); 185 186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 187 } 188 EXPORT_SYMBOL_GPL(bio_clone_mddev); 189 190 /* 191 * We have a system wide 'event count' that is incremented 192 * on any 'interesting' event, and readers of /proc/mdstat 193 * can use 'poll' or 'select' to find out when the event 194 * count increases. 195 * 196 * Events are: 197 * start array, stop array, error, add device, remove device, 198 * start build, activate spare 199 */ 200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 201 static atomic_t md_event_count; 202 void md_new_event(struct mddev *mddev) 203 { 204 atomic_inc(&md_event_count); 205 wake_up(&md_event_waiters); 206 } 207 EXPORT_SYMBOL_GPL(md_new_event); 208 209 /* 210 * Enables to iterate over all existing md arrays 211 * all_mddevs_lock protects this list. 212 */ 213 static LIST_HEAD(all_mddevs); 214 static DEFINE_SPINLOCK(all_mddevs_lock); 215 216 /* 217 * iterates through all used mddevs in the system. 218 * We take care to grab the all_mddevs_lock whenever navigating 219 * the list, and to always hold a refcount when unlocked. 220 * Any code which breaks out of this loop while own 221 * a reference to the current mddev and must mddev_put it. 222 */ 223 #define for_each_mddev(_mddev,_tmp) \ 224 \ 225 for (({ spin_lock(&all_mddevs_lock); \ 226 _tmp = all_mddevs.next; \ 227 _mddev = NULL;}); \ 228 ({ if (_tmp != &all_mddevs) \ 229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 230 spin_unlock(&all_mddevs_lock); \ 231 if (_mddev) mddev_put(_mddev); \ 232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 233 _tmp != &all_mddevs;}); \ 234 ({ spin_lock(&all_mddevs_lock); \ 235 _tmp = _tmp->next;}) \ 236 ) 237 238 /* Rather than calling directly into the personality make_request function, 239 * IO requests come here first so that we can check if the device is 240 * being suspended pending a reconfiguration. 241 * We hold a refcount over the call to ->make_request. By the time that 242 * call has finished, the bio has been linked into some internal structure 243 * and so is visible to ->quiesce(), so we don't need the refcount any more. 244 */ 245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 246 { 247 const int rw = bio_data_dir(bio); 248 struct mddev *mddev = q->queuedata; 249 unsigned int sectors; 250 int cpu; 251 252 blk_queue_split(q, &bio, q->bio_split); 253 254 if (mddev == NULL || mddev->pers == NULL) { 255 bio_io_error(bio); 256 return BLK_QC_T_NONE; 257 } 258 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 259 if (bio_sectors(bio) != 0) 260 bio->bi_error = -EROFS; 261 bio_endio(bio); 262 return BLK_QC_T_NONE; 263 } 264 smp_rmb(); /* Ensure implications of 'active' are visible */ 265 rcu_read_lock(); 266 if (mddev->suspended) { 267 DEFINE_WAIT(__wait); 268 for (;;) { 269 prepare_to_wait(&mddev->sb_wait, &__wait, 270 TASK_UNINTERRUPTIBLE); 271 if (!mddev->suspended) 272 break; 273 rcu_read_unlock(); 274 schedule(); 275 rcu_read_lock(); 276 } 277 finish_wait(&mddev->sb_wait, &__wait); 278 } 279 atomic_inc(&mddev->active_io); 280 rcu_read_unlock(); 281 282 /* 283 * save the sectors now since our bio can 284 * go away inside make_request 285 */ 286 sectors = bio_sectors(bio); 287 /* bio could be mergeable after passing to underlayer */ 288 bio->bi_rw &= ~REQ_NOMERGE; 289 mddev->pers->make_request(mddev, bio); 290 291 cpu = part_stat_lock(); 292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 294 part_stat_unlock(); 295 296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 297 wake_up(&mddev->sb_wait); 298 299 return BLK_QC_T_NONE; 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once mddev_detach() is called and completes, the module will be 306 * completely unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 WARN_ON_ONCE(current == mddev->thread->tsk); 311 if (mddev->suspended++) 312 return; 313 synchronize_rcu(); 314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 315 mddev->pers->quiesce(mddev, 1); 316 317 del_timer_sync(&mddev->safemode_timer); 318 } 319 EXPORT_SYMBOL_GPL(mddev_suspend); 320 321 void mddev_resume(struct mddev *mddev) 322 { 323 if (--mddev->suspended) 324 return; 325 wake_up(&mddev->sb_wait); 326 mddev->pers->quiesce(mddev, 0); 327 328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 329 md_wakeup_thread(mddev->thread); 330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 331 } 332 EXPORT_SYMBOL_GPL(mddev_resume); 333 334 int mddev_congested(struct mddev *mddev, int bits) 335 { 336 struct md_personality *pers = mddev->pers; 337 int ret = 0; 338 339 rcu_read_lock(); 340 if (mddev->suspended) 341 ret = 1; 342 else if (pers && pers->congested) 343 ret = pers->congested(mddev, bits); 344 rcu_read_unlock(); 345 return ret; 346 } 347 EXPORT_SYMBOL_GPL(mddev_congested); 348 static int md_congested(void *data, int bits) 349 { 350 struct mddev *mddev = data; 351 return mddev_congested(mddev, bits); 352 } 353 354 /* 355 * Generic flush handling for md 356 */ 357 358 static void md_end_flush(struct bio *bio) 359 { 360 struct md_rdev *rdev = bio->bi_private; 361 struct mddev *mddev = rdev->mddev; 362 363 rdev_dec_pending(rdev, mddev); 364 365 if (atomic_dec_and_test(&mddev->flush_pending)) { 366 /* The pre-request flush has finished */ 367 queue_work(md_wq, &mddev->flush_work); 368 } 369 bio_put(bio); 370 } 371 372 static void md_submit_flush_data(struct work_struct *ws); 373 374 static void submit_flushes(struct work_struct *ws) 375 { 376 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 377 struct md_rdev *rdev; 378 379 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 380 atomic_set(&mddev->flush_pending, 1); 381 rcu_read_lock(); 382 rdev_for_each_rcu(rdev, mddev) 383 if (rdev->raid_disk >= 0 && 384 !test_bit(Faulty, &rdev->flags)) { 385 /* Take two references, one is dropped 386 * when request finishes, one after 387 * we reclaim rcu_read_lock 388 */ 389 struct bio *bi; 390 atomic_inc(&rdev->nr_pending); 391 atomic_inc(&rdev->nr_pending); 392 rcu_read_unlock(); 393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 394 bi->bi_end_io = md_end_flush; 395 bi->bi_private = rdev; 396 bi->bi_bdev = rdev->bdev; 397 atomic_inc(&mddev->flush_pending); 398 submit_bio(WRITE_FLUSH, bi); 399 rcu_read_lock(); 400 rdev_dec_pending(rdev, mddev); 401 } 402 rcu_read_unlock(); 403 if (atomic_dec_and_test(&mddev->flush_pending)) 404 queue_work(md_wq, &mddev->flush_work); 405 } 406 407 static void md_submit_flush_data(struct work_struct *ws) 408 { 409 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 410 struct bio *bio = mddev->flush_bio; 411 412 if (bio->bi_iter.bi_size == 0) 413 /* an empty barrier - all done */ 414 bio_endio(bio); 415 else { 416 bio->bi_rw &= ~REQ_FLUSH; 417 mddev->pers->make_request(mddev, bio); 418 } 419 420 mddev->flush_bio = NULL; 421 wake_up(&mddev->sb_wait); 422 } 423 424 void md_flush_request(struct mddev *mddev, struct bio *bio) 425 { 426 spin_lock_irq(&mddev->lock); 427 wait_event_lock_irq(mddev->sb_wait, 428 !mddev->flush_bio, 429 mddev->lock); 430 mddev->flush_bio = bio; 431 spin_unlock_irq(&mddev->lock); 432 433 INIT_WORK(&mddev->flush_work, submit_flushes); 434 queue_work(md_wq, &mddev->flush_work); 435 } 436 EXPORT_SYMBOL(md_flush_request); 437 438 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 439 { 440 struct mddev *mddev = cb->data; 441 md_wakeup_thread(mddev->thread); 442 kfree(cb); 443 } 444 EXPORT_SYMBOL(md_unplug); 445 446 static inline struct mddev *mddev_get(struct mddev *mddev) 447 { 448 atomic_inc(&mddev->active); 449 return mddev; 450 } 451 452 static void mddev_delayed_delete(struct work_struct *ws); 453 454 static void mddev_put(struct mddev *mddev) 455 { 456 struct bio_set *bs = NULL; 457 458 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 459 return; 460 if (!mddev->raid_disks && list_empty(&mddev->disks) && 461 mddev->ctime == 0 && !mddev->hold_active) { 462 /* Array is not configured at all, and not held active, 463 * so destroy it */ 464 list_del_init(&mddev->all_mddevs); 465 bs = mddev->bio_set; 466 mddev->bio_set = NULL; 467 if (mddev->gendisk) { 468 /* We did a probe so need to clean up. Call 469 * queue_work inside the spinlock so that 470 * flush_workqueue() after mddev_find will 471 * succeed in waiting for the work to be done. 472 */ 473 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 474 queue_work(md_misc_wq, &mddev->del_work); 475 } else 476 kfree(mddev); 477 } 478 spin_unlock(&all_mddevs_lock); 479 if (bs) 480 bioset_free(bs); 481 } 482 483 static void md_safemode_timeout(unsigned long data); 484 485 void mddev_init(struct mddev *mddev) 486 { 487 mutex_init(&mddev->open_mutex); 488 mutex_init(&mddev->reconfig_mutex); 489 mutex_init(&mddev->bitmap_info.mutex); 490 INIT_LIST_HEAD(&mddev->disks); 491 INIT_LIST_HEAD(&mddev->all_mddevs); 492 setup_timer(&mddev->safemode_timer, md_safemode_timeout, 493 (unsigned long) mddev); 494 atomic_set(&mddev->active, 1); 495 atomic_set(&mddev->openers, 0); 496 atomic_set(&mddev->active_io, 0); 497 spin_lock_init(&mddev->lock); 498 atomic_set(&mddev->flush_pending, 0); 499 init_waitqueue_head(&mddev->sb_wait); 500 init_waitqueue_head(&mddev->recovery_wait); 501 mddev->reshape_position = MaxSector; 502 mddev->reshape_backwards = 0; 503 mddev->last_sync_action = "none"; 504 mddev->resync_min = 0; 505 mddev->resync_max = MaxSector; 506 mddev->level = LEVEL_NONE; 507 } 508 EXPORT_SYMBOL_GPL(mddev_init); 509 510 static struct mddev *mddev_find(dev_t unit) 511 { 512 struct mddev *mddev, *new = NULL; 513 514 if (unit && MAJOR(unit) != MD_MAJOR) 515 unit &= ~((1<<MdpMinorShift)-1); 516 517 retry: 518 spin_lock(&all_mddevs_lock); 519 520 if (unit) { 521 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 522 if (mddev->unit == unit) { 523 mddev_get(mddev); 524 spin_unlock(&all_mddevs_lock); 525 kfree(new); 526 return mddev; 527 } 528 529 if (new) { 530 list_add(&new->all_mddevs, &all_mddevs); 531 spin_unlock(&all_mddevs_lock); 532 new->hold_active = UNTIL_IOCTL; 533 return new; 534 } 535 } else if (new) { 536 /* find an unused unit number */ 537 static int next_minor = 512; 538 int start = next_minor; 539 int is_free = 0; 540 int dev = 0; 541 while (!is_free) { 542 dev = MKDEV(MD_MAJOR, next_minor); 543 next_minor++; 544 if (next_minor > MINORMASK) 545 next_minor = 0; 546 if (next_minor == start) { 547 /* Oh dear, all in use. */ 548 spin_unlock(&all_mddevs_lock); 549 kfree(new); 550 return NULL; 551 } 552 553 is_free = 1; 554 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 555 if (mddev->unit == dev) { 556 is_free = 0; 557 break; 558 } 559 } 560 new->unit = dev; 561 new->md_minor = MINOR(dev); 562 new->hold_active = UNTIL_STOP; 563 list_add(&new->all_mddevs, &all_mddevs); 564 spin_unlock(&all_mddevs_lock); 565 return new; 566 } 567 spin_unlock(&all_mddevs_lock); 568 569 new = kzalloc(sizeof(*new), GFP_KERNEL); 570 if (!new) 571 return NULL; 572 573 new->unit = unit; 574 if (MAJOR(unit) == MD_MAJOR) 575 new->md_minor = MINOR(unit); 576 else 577 new->md_minor = MINOR(unit) >> MdpMinorShift; 578 579 mddev_init(new); 580 581 goto retry; 582 } 583 584 static struct attribute_group md_redundancy_group; 585 586 void mddev_unlock(struct mddev *mddev) 587 { 588 if (mddev->to_remove) { 589 /* These cannot be removed under reconfig_mutex as 590 * an access to the files will try to take reconfig_mutex 591 * while holding the file unremovable, which leads to 592 * a deadlock. 593 * So hold set sysfs_active while the remove in happeing, 594 * and anything else which might set ->to_remove or my 595 * otherwise change the sysfs namespace will fail with 596 * -EBUSY if sysfs_active is still set. 597 * We set sysfs_active under reconfig_mutex and elsewhere 598 * test it under the same mutex to ensure its correct value 599 * is seen. 600 */ 601 struct attribute_group *to_remove = mddev->to_remove; 602 mddev->to_remove = NULL; 603 mddev->sysfs_active = 1; 604 mutex_unlock(&mddev->reconfig_mutex); 605 606 if (mddev->kobj.sd) { 607 if (to_remove != &md_redundancy_group) 608 sysfs_remove_group(&mddev->kobj, to_remove); 609 if (mddev->pers == NULL || 610 mddev->pers->sync_request == NULL) { 611 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 612 if (mddev->sysfs_action) 613 sysfs_put(mddev->sysfs_action); 614 mddev->sysfs_action = NULL; 615 } 616 } 617 mddev->sysfs_active = 0; 618 } else 619 mutex_unlock(&mddev->reconfig_mutex); 620 621 /* As we've dropped the mutex we need a spinlock to 622 * make sure the thread doesn't disappear 623 */ 624 spin_lock(&pers_lock); 625 md_wakeup_thread(mddev->thread); 626 spin_unlock(&pers_lock); 627 } 628 EXPORT_SYMBOL_GPL(mddev_unlock); 629 630 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 631 { 632 struct md_rdev *rdev; 633 634 rdev_for_each_rcu(rdev, mddev) 635 if (rdev->desc_nr == nr) 636 return rdev; 637 638 return NULL; 639 } 640 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 641 642 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 643 { 644 struct md_rdev *rdev; 645 646 rdev_for_each(rdev, mddev) 647 if (rdev->bdev->bd_dev == dev) 648 return rdev; 649 650 return NULL; 651 } 652 653 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 654 { 655 struct md_rdev *rdev; 656 657 rdev_for_each_rcu(rdev, mddev) 658 if (rdev->bdev->bd_dev == dev) 659 return rdev; 660 661 return NULL; 662 } 663 664 static struct md_personality *find_pers(int level, char *clevel) 665 { 666 struct md_personality *pers; 667 list_for_each_entry(pers, &pers_list, list) { 668 if (level != LEVEL_NONE && pers->level == level) 669 return pers; 670 if (strcmp(pers->name, clevel)==0) 671 return pers; 672 } 673 return NULL; 674 } 675 676 /* return the offset of the super block in 512byte sectors */ 677 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 678 { 679 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 680 return MD_NEW_SIZE_SECTORS(num_sectors); 681 } 682 683 static int alloc_disk_sb(struct md_rdev *rdev) 684 { 685 rdev->sb_page = alloc_page(GFP_KERNEL); 686 if (!rdev->sb_page) { 687 printk(KERN_ALERT "md: out of memory.\n"); 688 return -ENOMEM; 689 } 690 691 return 0; 692 } 693 694 void md_rdev_clear(struct md_rdev *rdev) 695 { 696 if (rdev->sb_page) { 697 put_page(rdev->sb_page); 698 rdev->sb_loaded = 0; 699 rdev->sb_page = NULL; 700 rdev->sb_start = 0; 701 rdev->sectors = 0; 702 } 703 if (rdev->bb_page) { 704 put_page(rdev->bb_page); 705 rdev->bb_page = NULL; 706 } 707 badblocks_exit(&rdev->badblocks); 708 } 709 EXPORT_SYMBOL_GPL(md_rdev_clear); 710 711 static void super_written(struct bio *bio) 712 { 713 struct md_rdev *rdev = bio->bi_private; 714 struct mddev *mddev = rdev->mddev; 715 716 if (bio->bi_error) { 717 printk("md: super_written gets error=%d\n", bio->bi_error); 718 md_error(mddev, rdev); 719 } 720 721 if (atomic_dec_and_test(&mddev->pending_writes)) 722 wake_up(&mddev->sb_wait); 723 rdev_dec_pending(rdev, mddev); 724 bio_put(bio); 725 } 726 727 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 728 sector_t sector, int size, struct page *page) 729 { 730 /* write first size bytes of page to sector of rdev 731 * Increment mddev->pending_writes before returning 732 * and decrement it on completion, waking up sb_wait 733 * if zero is reached. 734 * If an error occurred, call md_error 735 */ 736 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 737 738 atomic_inc(&rdev->nr_pending); 739 740 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 741 bio->bi_iter.bi_sector = sector; 742 bio_add_page(bio, page, size, 0); 743 bio->bi_private = rdev; 744 bio->bi_end_io = super_written; 745 746 atomic_inc(&mddev->pending_writes); 747 submit_bio(WRITE_FLUSH_FUA, bio); 748 } 749 750 void md_super_wait(struct mddev *mddev) 751 { 752 /* wait for all superblock writes that were scheduled to complete */ 753 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 754 } 755 756 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 757 struct page *page, int rw, bool metadata_op) 758 { 759 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 760 int ret; 761 762 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 763 rdev->meta_bdev : rdev->bdev; 764 if (metadata_op) 765 bio->bi_iter.bi_sector = sector + rdev->sb_start; 766 else if (rdev->mddev->reshape_position != MaxSector && 767 (rdev->mddev->reshape_backwards == 768 (sector >= rdev->mddev->reshape_position))) 769 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 770 else 771 bio->bi_iter.bi_sector = sector + rdev->data_offset; 772 bio_add_page(bio, page, size, 0); 773 submit_bio_wait(rw, bio); 774 775 ret = !bio->bi_error; 776 bio_put(bio); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(sync_page_io); 780 781 static int read_disk_sb(struct md_rdev *rdev, int size) 782 { 783 char b[BDEVNAME_SIZE]; 784 785 if (rdev->sb_loaded) 786 return 0; 787 788 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 789 goto fail; 790 rdev->sb_loaded = 1; 791 return 0; 792 793 fail: 794 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 795 bdevname(rdev->bdev,b)); 796 return -EINVAL; 797 } 798 799 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 800 { 801 return sb1->set_uuid0 == sb2->set_uuid0 && 802 sb1->set_uuid1 == sb2->set_uuid1 && 803 sb1->set_uuid2 == sb2->set_uuid2 && 804 sb1->set_uuid3 == sb2->set_uuid3; 805 } 806 807 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 808 { 809 int ret; 810 mdp_super_t *tmp1, *tmp2; 811 812 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 813 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 814 815 if (!tmp1 || !tmp2) { 816 ret = 0; 817 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 818 goto abort; 819 } 820 821 *tmp1 = *sb1; 822 *tmp2 = *sb2; 823 824 /* 825 * nr_disks is not constant 826 */ 827 tmp1->nr_disks = 0; 828 tmp2->nr_disks = 0; 829 830 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 831 abort: 832 kfree(tmp1); 833 kfree(tmp2); 834 return ret; 835 } 836 837 static u32 md_csum_fold(u32 csum) 838 { 839 csum = (csum & 0xffff) + (csum >> 16); 840 return (csum & 0xffff) + (csum >> 16); 841 } 842 843 static unsigned int calc_sb_csum(mdp_super_t *sb) 844 { 845 u64 newcsum = 0; 846 u32 *sb32 = (u32*)sb; 847 int i; 848 unsigned int disk_csum, csum; 849 850 disk_csum = sb->sb_csum; 851 sb->sb_csum = 0; 852 853 for (i = 0; i < MD_SB_BYTES/4 ; i++) 854 newcsum += sb32[i]; 855 csum = (newcsum & 0xffffffff) + (newcsum>>32); 856 857 #ifdef CONFIG_ALPHA 858 /* This used to use csum_partial, which was wrong for several 859 * reasons including that different results are returned on 860 * different architectures. It isn't critical that we get exactly 861 * the same return value as before (we always csum_fold before 862 * testing, and that removes any differences). However as we 863 * know that csum_partial always returned a 16bit value on 864 * alphas, do a fold to maximise conformity to previous behaviour. 865 */ 866 sb->sb_csum = md_csum_fold(disk_csum); 867 #else 868 sb->sb_csum = disk_csum; 869 #endif 870 return csum; 871 } 872 873 /* 874 * Handle superblock details. 875 * We want to be able to handle multiple superblock formats 876 * so we have a common interface to them all, and an array of 877 * different handlers. 878 * We rely on user-space to write the initial superblock, and support 879 * reading and updating of superblocks. 880 * Interface methods are: 881 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 882 * loads and validates a superblock on dev. 883 * if refdev != NULL, compare superblocks on both devices 884 * Return: 885 * 0 - dev has a superblock that is compatible with refdev 886 * 1 - dev has a superblock that is compatible and newer than refdev 887 * so dev should be used as the refdev in future 888 * -EINVAL superblock incompatible or invalid 889 * -othererror e.g. -EIO 890 * 891 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 892 * Verify that dev is acceptable into mddev. 893 * The first time, mddev->raid_disks will be 0, and data from 894 * dev should be merged in. Subsequent calls check that dev 895 * is new enough. Return 0 or -EINVAL 896 * 897 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 898 * Update the superblock for rdev with data in mddev 899 * This does not write to disc. 900 * 901 */ 902 903 struct super_type { 904 char *name; 905 struct module *owner; 906 int (*load_super)(struct md_rdev *rdev, 907 struct md_rdev *refdev, 908 int minor_version); 909 int (*validate_super)(struct mddev *mddev, 910 struct md_rdev *rdev); 911 void (*sync_super)(struct mddev *mddev, 912 struct md_rdev *rdev); 913 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 914 sector_t num_sectors); 915 int (*allow_new_offset)(struct md_rdev *rdev, 916 unsigned long long new_offset); 917 }; 918 919 /* 920 * Check that the given mddev has no bitmap. 921 * 922 * This function is called from the run method of all personalities that do not 923 * support bitmaps. It prints an error message and returns non-zero if mddev 924 * has a bitmap. Otherwise, it returns 0. 925 * 926 */ 927 int md_check_no_bitmap(struct mddev *mddev) 928 { 929 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 930 return 0; 931 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 932 mdname(mddev), mddev->pers->name); 933 return 1; 934 } 935 EXPORT_SYMBOL(md_check_no_bitmap); 936 937 /* 938 * load_super for 0.90.0 939 */ 940 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 941 { 942 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 943 mdp_super_t *sb; 944 int ret; 945 946 /* 947 * Calculate the position of the superblock (512byte sectors), 948 * it's at the end of the disk. 949 * 950 * It also happens to be a multiple of 4Kb. 951 */ 952 rdev->sb_start = calc_dev_sboffset(rdev); 953 954 ret = read_disk_sb(rdev, MD_SB_BYTES); 955 if (ret) return ret; 956 957 ret = -EINVAL; 958 959 bdevname(rdev->bdev, b); 960 sb = page_address(rdev->sb_page); 961 962 if (sb->md_magic != MD_SB_MAGIC) { 963 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 964 b); 965 goto abort; 966 } 967 968 if (sb->major_version != 0 || 969 sb->minor_version < 90 || 970 sb->minor_version > 91) { 971 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 972 sb->major_version, sb->minor_version, 973 b); 974 goto abort; 975 } 976 977 if (sb->raid_disks <= 0) 978 goto abort; 979 980 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 981 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 982 b); 983 goto abort; 984 } 985 986 rdev->preferred_minor = sb->md_minor; 987 rdev->data_offset = 0; 988 rdev->new_data_offset = 0; 989 rdev->sb_size = MD_SB_BYTES; 990 rdev->badblocks.shift = -1; 991 992 if (sb->level == LEVEL_MULTIPATH) 993 rdev->desc_nr = -1; 994 else 995 rdev->desc_nr = sb->this_disk.number; 996 997 if (!refdev) { 998 ret = 1; 999 } else { 1000 __u64 ev1, ev2; 1001 mdp_super_t *refsb = page_address(refdev->sb_page); 1002 if (!uuid_equal(refsb, sb)) { 1003 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1004 b, bdevname(refdev->bdev,b2)); 1005 goto abort; 1006 } 1007 if (!sb_equal(refsb, sb)) { 1008 printk(KERN_WARNING "md: %s has same UUID" 1009 " but different superblock to %s\n", 1010 b, bdevname(refdev->bdev, b2)); 1011 goto abort; 1012 } 1013 ev1 = md_event(sb); 1014 ev2 = md_event(refsb); 1015 if (ev1 > ev2) 1016 ret = 1; 1017 else 1018 ret = 0; 1019 } 1020 rdev->sectors = rdev->sb_start; 1021 /* Limit to 4TB as metadata cannot record more than that. 1022 * (not needed for Linear and RAID0 as metadata doesn't 1023 * record this size) 1024 */ 1025 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1026 sb->level >= 1) 1027 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1028 1029 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1030 /* "this cannot possibly happen" ... */ 1031 ret = -EINVAL; 1032 1033 abort: 1034 return ret; 1035 } 1036 1037 /* 1038 * validate_super for 0.90.0 1039 */ 1040 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1041 { 1042 mdp_disk_t *desc; 1043 mdp_super_t *sb = page_address(rdev->sb_page); 1044 __u64 ev1 = md_event(sb); 1045 1046 rdev->raid_disk = -1; 1047 clear_bit(Faulty, &rdev->flags); 1048 clear_bit(In_sync, &rdev->flags); 1049 clear_bit(Bitmap_sync, &rdev->flags); 1050 clear_bit(WriteMostly, &rdev->flags); 1051 1052 if (mddev->raid_disks == 0) { 1053 mddev->major_version = 0; 1054 mddev->minor_version = sb->minor_version; 1055 mddev->patch_version = sb->patch_version; 1056 mddev->external = 0; 1057 mddev->chunk_sectors = sb->chunk_size >> 9; 1058 mddev->ctime = sb->ctime; 1059 mddev->utime = sb->utime; 1060 mddev->level = sb->level; 1061 mddev->clevel[0] = 0; 1062 mddev->layout = sb->layout; 1063 mddev->raid_disks = sb->raid_disks; 1064 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1065 mddev->events = ev1; 1066 mddev->bitmap_info.offset = 0; 1067 mddev->bitmap_info.space = 0; 1068 /* bitmap can use 60 K after the 4K superblocks */ 1069 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1070 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1071 mddev->reshape_backwards = 0; 1072 1073 if (mddev->minor_version >= 91) { 1074 mddev->reshape_position = sb->reshape_position; 1075 mddev->delta_disks = sb->delta_disks; 1076 mddev->new_level = sb->new_level; 1077 mddev->new_layout = sb->new_layout; 1078 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1079 if (mddev->delta_disks < 0) 1080 mddev->reshape_backwards = 1; 1081 } else { 1082 mddev->reshape_position = MaxSector; 1083 mddev->delta_disks = 0; 1084 mddev->new_level = mddev->level; 1085 mddev->new_layout = mddev->layout; 1086 mddev->new_chunk_sectors = mddev->chunk_sectors; 1087 } 1088 1089 if (sb->state & (1<<MD_SB_CLEAN)) 1090 mddev->recovery_cp = MaxSector; 1091 else { 1092 if (sb->events_hi == sb->cp_events_hi && 1093 sb->events_lo == sb->cp_events_lo) { 1094 mddev->recovery_cp = sb->recovery_cp; 1095 } else 1096 mddev->recovery_cp = 0; 1097 } 1098 1099 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1100 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1101 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1102 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1103 1104 mddev->max_disks = MD_SB_DISKS; 1105 1106 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1107 mddev->bitmap_info.file == NULL) { 1108 mddev->bitmap_info.offset = 1109 mddev->bitmap_info.default_offset; 1110 mddev->bitmap_info.space = 1111 mddev->bitmap_info.default_space; 1112 } 1113 1114 } else if (mddev->pers == NULL) { 1115 /* Insist on good event counter while assembling, except 1116 * for spares (which don't need an event count) */ 1117 ++ev1; 1118 if (sb->disks[rdev->desc_nr].state & ( 1119 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1120 if (ev1 < mddev->events) 1121 return -EINVAL; 1122 } else if (mddev->bitmap) { 1123 /* if adding to array with a bitmap, then we can accept an 1124 * older device ... but not too old. 1125 */ 1126 if (ev1 < mddev->bitmap->events_cleared) 1127 return 0; 1128 if (ev1 < mddev->events) 1129 set_bit(Bitmap_sync, &rdev->flags); 1130 } else { 1131 if (ev1 < mddev->events) 1132 /* just a hot-add of a new device, leave raid_disk at -1 */ 1133 return 0; 1134 } 1135 1136 if (mddev->level != LEVEL_MULTIPATH) { 1137 desc = sb->disks + rdev->desc_nr; 1138 1139 if (desc->state & (1<<MD_DISK_FAULTY)) 1140 set_bit(Faulty, &rdev->flags); 1141 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1142 desc->raid_disk < mddev->raid_disks */) { 1143 set_bit(In_sync, &rdev->flags); 1144 rdev->raid_disk = desc->raid_disk; 1145 rdev->saved_raid_disk = desc->raid_disk; 1146 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1147 /* active but not in sync implies recovery up to 1148 * reshape position. We don't know exactly where 1149 * that is, so set to zero for now */ 1150 if (mddev->minor_version >= 91) { 1151 rdev->recovery_offset = 0; 1152 rdev->raid_disk = desc->raid_disk; 1153 } 1154 } 1155 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1156 set_bit(WriteMostly, &rdev->flags); 1157 } else /* MULTIPATH are always insync */ 1158 set_bit(In_sync, &rdev->flags); 1159 return 0; 1160 } 1161 1162 /* 1163 * sync_super for 0.90.0 1164 */ 1165 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1166 { 1167 mdp_super_t *sb; 1168 struct md_rdev *rdev2; 1169 int next_spare = mddev->raid_disks; 1170 1171 /* make rdev->sb match mddev data.. 1172 * 1173 * 1/ zero out disks 1174 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1175 * 3/ any empty disks < next_spare become removed 1176 * 1177 * disks[0] gets initialised to REMOVED because 1178 * we cannot be sure from other fields if it has 1179 * been initialised or not. 1180 */ 1181 int i; 1182 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1183 1184 rdev->sb_size = MD_SB_BYTES; 1185 1186 sb = page_address(rdev->sb_page); 1187 1188 memset(sb, 0, sizeof(*sb)); 1189 1190 sb->md_magic = MD_SB_MAGIC; 1191 sb->major_version = mddev->major_version; 1192 sb->patch_version = mddev->patch_version; 1193 sb->gvalid_words = 0; /* ignored */ 1194 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1195 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1196 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1197 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1198 1199 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1200 sb->level = mddev->level; 1201 sb->size = mddev->dev_sectors / 2; 1202 sb->raid_disks = mddev->raid_disks; 1203 sb->md_minor = mddev->md_minor; 1204 sb->not_persistent = 0; 1205 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1206 sb->state = 0; 1207 sb->events_hi = (mddev->events>>32); 1208 sb->events_lo = (u32)mddev->events; 1209 1210 if (mddev->reshape_position == MaxSector) 1211 sb->minor_version = 90; 1212 else { 1213 sb->minor_version = 91; 1214 sb->reshape_position = mddev->reshape_position; 1215 sb->new_level = mddev->new_level; 1216 sb->delta_disks = mddev->delta_disks; 1217 sb->new_layout = mddev->new_layout; 1218 sb->new_chunk = mddev->new_chunk_sectors << 9; 1219 } 1220 mddev->minor_version = sb->minor_version; 1221 if (mddev->in_sync) 1222 { 1223 sb->recovery_cp = mddev->recovery_cp; 1224 sb->cp_events_hi = (mddev->events>>32); 1225 sb->cp_events_lo = (u32)mddev->events; 1226 if (mddev->recovery_cp == MaxSector) 1227 sb->state = (1<< MD_SB_CLEAN); 1228 } else 1229 sb->recovery_cp = 0; 1230 1231 sb->layout = mddev->layout; 1232 sb->chunk_size = mddev->chunk_sectors << 9; 1233 1234 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1235 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1236 1237 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1238 rdev_for_each(rdev2, mddev) { 1239 mdp_disk_t *d; 1240 int desc_nr; 1241 int is_active = test_bit(In_sync, &rdev2->flags); 1242 1243 if (rdev2->raid_disk >= 0 && 1244 sb->minor_version >= 91) 1245 /* we have nowhere to store the recovery_offset, 1246 * but if it is not below the reshape_position, 1247 * we can piggy-back on that. 1248 */ 1249 is_active = 1; 1250 if (rdev2->raid_disk < 0 || 1251 test_bit(Faulty, &rdev2->flags)) 1252 is_active = 0; 1253 if (is_active) 1254 desc_nr = rdev2->raid_disk; 1255 else 1256 desc_nr = next_spare++; 1257 rdev2->desc_nr = desc_nr; 1258 d = &sb->disks[rdev2->desc_nr]; 1259 nr_disks++; 1260 d->number = rdev2->desc_nr; 1261 d->major = MAJOR(rdev2->bdev->bd_dev); 1262 d->minor = MINOR(rdev2->bdev->bd_dev); 1263 if (is_active) 1264 d->raid_disk = rdev2->raid_disk; 1265 else 1266 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1267 if (test_bit(Faulty, &rdev2->flags)) 1268 d->state = (1<<MD_DISK_FAULTY); 1269 else if (is_active) { 1270 d->state = (1<<MD_DISK_ACTIVE); 1271 if (test_bit(In_sync, &rdev2->flags)) 1272 d->state |= (1<<MD_DISK_SYNC); 1273 active++; 1274 working++; 1275 } else { 1276 d->state = 0; 1277 spare++; 1278 working++; 1279 } 1280 if (test_bit(WriteMostly, &rdev2->flags)) 1281 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1282 } 1283 /* now set the "removed" and "faulty" bits on any missing devices */ 1284 for (i=0 ; i < mddev->raid_disks ; i++) { 1285 mdp_disk_t *d = &sb->disks[i]; 1286 if (d->state == 0 && d->number == 0) { 1287 d->number = i; 1288 d->raid_disk = i; 1289 d->state = (1<<MD_DISK_REMOVED); 1290 d->state |= (1<<MD_DISK_FAULTY); 1291 failed++; 1292 } 1293 } 1294 sb->nr_disks = nr_disks; 1295 sb->active_disks = active; 1296 sb->working_disks = working; 1297 sb->failed_disks = failed; 1298 sb->spare_disks = spare; 1299 1300 sb->this_disk = sb->disks[rdev->desc_nr]; 1301 sb->sb_csum = calc_sb_csum(sb); 1302 } 1303 1304 /* 1305 * rdev_size_change for 0.90.0 1306 */ 1307 static unsigned long long 1308 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1309 { 1310 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1311 return 0; /* component must fit device */ 1312 if (rdev->mddev->bitmap_info.offset) 1313 return 0; /* can't move bitmap */ 1314 rdev->sb_start = calc_dev_sboffset(rdev); 1315 if (!num_sectors || num_sectors > rdev->sb_start) 1316 num_sectors = rdev->sb_start; 1317 /* Limit to 4TB as metadata cannot record more than that. 1318 * 4TB == 2^32 KB, or 2*2^32 sectors. 1319 */ 1320 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1321 rdev->mddev->level >= 1) 1322 num_sectors = (sector_t)(2ULL << 32) - 2; 1323 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1324 rdev->sb_page); 1325 md_super_wait(rdev->mddev); 1326 return num_sectors; 1327 } 1328 1329 static int 1330 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1331 { 1332 /* non-zero offset changes not possible with v0.90 */ 1333 return new_offset == 0; 1334 } 1335 1336 /* 1337 * version 1 superblock 1338 */ 1339 1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1341 { 1342 __le32 disk_csum; 1343 u32 csum; 1344 unsigned long long newcsum; 1345 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1346 __le32 *isuper = (__le32*)sb; 1347 1348 disk_csum = sb->sb_csum; 1349 sb->sb_csum = 0; 1350 newcsum = 0; 1351 for (; size >= 4; size -= 4) 1352 newcsum += le32_to_cpu(*isuper++); 1353 1354 if (size == 2) 1355 newcsum += le16_to_cpu(*(__le16*) isuper); 1356 1357 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1358 sb->sb_csum = disk_csum; 1359 return cpu_to_le32(csum); 1360 } 1361 1362 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1363 { 1364 struct mdp_superblock_1 *sb; 1365 int ret; 1366 sector_t sb_start; 1367 sector_t sectors; 1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1369 int bmask; 1370 1371 /* 1372 * Calculate the position of the superblock in 512byte sectors. 1373 * It is always aligned to a 4K boundary and 1374 * depeding on minor_version, it can be: 1375 * 0: At least 8K, but less than 12K, from end of device 1376 * 1: At start of device 1377 * 2: 4K from start of device. 1378 */ 1379 switch(minor_version) { 1380 case 0: 1381 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1382 sb_start -= 8*2; 1383 sb_start &= ~(sector_t)(4*2-1); 1384 break; 1385 case 1: 1386 sb_start = 0; 1387 break; 1388 case 2: 1389 sb_start = 8; 1390 break; 1391 default: 1392 return -EINVAL; 1393 } 1394 rdev->sb_start = sb_start; 1395 1396 /* superblock is rarely larger than 1K, but it can be larger, 1397 * and it is safe to read 4k, so we do that 1398 */ 1399 ret = read_disk_sb(rdev, 4096); 1400 if (ret) return ret; 1401 1402 sb = page_address(rdev->sb_page); 1403 1404 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1405 sb->major_version != cpu_to_le32(1) || 1406 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1407 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1408 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1409 return -EINVAL; 1410 1411 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1412 printk("md: invalid superblock checksum on %s\n", 1413 bdevname(rdev->bdev,b)); 1414 return -EINVAL; 1415 } 1416 if (le64_to_cpu(sb->data_size) < 10) { 1417 printk("md: data_size too small on %s\n", 1418 bdevname(rdev->bdev,b)); 1419 return -EINVAL; 1420 } 1421 if (sb->pad0 || 1422 sb->pad3[0] || 1423 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1424 /* Some padding is non-zero, might be a new feature */ 1425 return -EINVAL; 1426 1427 rdev->preferred_minor = 0xffff; 1428 rdev->data_offset = le64_to_cpu(sb->data_offset); 1429 rdev->new_data_offset = rdev->data_offset; 1430 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1431 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1432 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1433 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1434 1435 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1436 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1437 if (rdev->sb_size & bmask) 1438 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1439 1440 if (minor_version 1441 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1442 return -EINVAL; 1443 if (minor_version 1444 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1445 return -EINVAL; 1446 1447 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1448 rdev->desc_nr = -1; 1449 else 1450 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1451 1452 if (!rdev->bb_page) { 1453 rdev->bb_page = alloc_page(GFP_KERNEL); 1454 if (!rdev->bb_page) 1455 return -ENOMEM; 1456 } 1457 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1458 rdev->badblocks.count == 0) { 1459 /* need to load the bad block list. 1460 * Currently we limit it to one page. 1461 */ 1462 s32 offset; 1463 sector_t bb_sector; 1464 u64 *bbp; 1465 int i; 1466 int sectors = le16_to_cpu(sb->bblog_size); 1467 if (sectors > (PAGE_SIZE / 512)) 1468 return -EINVAL; 1469 offset = le32_to_cpu(sb->bblog_offset); 1470 if (offset == 0) 1471 return -EINVAL; 1472 bb_sector = (long long)offset; 1473 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1474 rdev->bb_page, READ, true)) 1475 return -EIO; 1476 bbp = (u64 *)page_address(rdev->bb_page); 1477 rdev->badblocks.shift = sb->bblog_shift; 1478 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1479 u64 bb = le64_to_cpu(*bbp); 1480 int count = bb & (0x3ff); 1481 u64 sector = bb >> 10; 1482 sector <<= sb->bblog_shift; 1483 count <<= sb->bblog_shift; 1484 if (bb + 1 == 0) 1485 break; 1486 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1487 return -EINVAL; 1488 } 1489 } else if (sb->bblog_offset != 0) 1490 rdev->badblocks.shift = 0; 1491 1492 if (!refdev) { 1493 ret = 1; 1494 } else { 1495 __u64 ev1, ev2; 1496 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1497 1498 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1499 sb->level != refsb->level || 1500 sb->layout != refsb->layout || 1501 sb->chunksize != refsb->chunksize) { 1502 printk(KERN_WARNING "md: %s has strangely different" 1503 " superblock to %s\n", 1504 bdevname(rdev->bdev,b), 1505 bdevname(refdev->bdev,b2)); 1506 return -EINVAL; 1507 } 1508 ev1 = le64_to_cpu(sb->events); 1509 ev2 = le64_to_cpu(refsb->events); 1510 1511 if (ev1 > ev2) 1512 ret = 1; 1513 else 1514 ret = 0; 1515 } 1516 if (minor_version) { 1517 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1518 sectors -= rdev->data_offset; 1519 } else 1520 sectors = rdev->sb_start; 1521 if (sectors < le64_to_cpu(sb->data_size)) 1522 return -EINVAL; 1523 rdev->sectors = le64_to_cpu(sb->data_size); 1524 return ret; 1525 } 1526 1527 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1528 { 1529 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1530 __u64 ev1 = le64_to_cpu(sb->events); 1531 1532 rdev->raid_disk = -1; 1533 clear_bit(Faulty, &rdev->flags); 1534 clear_bit(In_sync, &rdev->flags); 1535 clear_bit(Bitmap_sync, &rdev->flags); 1536 clear_bit(WriteMostly, &rdev->flags); 1537 1538 if (mddev->raid_disks == 0) { 1539 mddev->major_version = 1; 1540 mddev->patch_version = 0; 1541 mddev->external = 0; 1542 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1543 mddev->ctime = le64_to_cpu(sb->ctime); 1544 mddev->utime = le64_to_cpu(sb->utime); 1545 mddev->level = le32_to_cpu(sb->level); 1546 mddev->clevel[0] = 0; 1547 mddev->layout = le32_to_cpu(sb->layout); 1548 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1549 mddev->dev_sectors = le64_to_cpu(sb->size); 1550 mddev->events = ev1; 1551 mddev->bitmap_info.offset = 0; 1552 mddev->bitmap_info.space = 0; 1553 /* Default location for bitmap is 1K after superblock 1554 * using 3K - total of 4K 1555 */ 1556 mddev->bitmap_info.default_offset = 1024 >> 9; 1557 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1558 mddev->reshape_backwards = 0; 1559 1560 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1561 memcpy(mddev->uuid, sb->set_uuid, 16); 1562 1563 mddev->max_disks = (4096-256)/2; 1564 1565 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1566 mddev->bitmap_info.file == NULL) { 1567 mddev->bitmap_info.offset = 1568 (__s32)le32_to_cpu(sb->bitmap_offset); 1569 /* Metadata doesn't record how much space is available. 1570 * For 1.0, we assume we can use up to the superblock 1571 * if before, else to 4K beyond superblock. 1572 * For others, assume no change is possible. 1573 */ 1574 if (mddev->minor_version > 0) 1575 mddev->bitmap_info.space = 0; 1576 else if (mddev->bitmap_info.offset > 0) 1577 mddev->bitmap_info.space = 1578 8 - mddev->bitmap_info.offset; 1579 else 1580 mddev->bitmap_info.space = 1581 -mddev->bitmap_info.offset; 1582 } 1583 1584 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1585 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1586 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1587 mddev->new_level = le32_to_cpu(sb->new_level); 1588 mddev->new_layout = le32_to_cpu(sb->new_layout); 1589 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1590 if (mddev->delta_disks < 0 || 1591 (mddev->delta_disks == 0 && 1592 (le32_to_cpu(sb->feature_map) 1593 & MD_FEATURE_RESHAPE_BACKWARDS))) 1594 mddev->reshape_backwards = 1; 1595 } else { 1596 mddev->reshape_position = MaxSector; 1597 mddev->delta_disks = 0; 1598 mddev->new_level = mddev->level; 1599 mddev->new_layout = mddev->layout; 1600 mddev->new_chunk_sectors = mddev->chunk_sectors; 1601 } 1602 1603 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) { 1604 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1605 if (mddev->recovery_cp == MaxSector) 1606 set_bit(MD_JOURNAL_CLEAN, &mddev->flags); 1607 } 1608 } else if (mddev->pers == NULL) { 1609 /* Insist of good event counter while assembling, except for 1610 * spares (which don't need an event count) */ 1611 ++ev1; 1612 if (rdev->desc_nr >= 0 && 1613 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1614 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1615 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1616 if (ev1 < mddev->events) 1617 return -EINVAL; 1618 } else if (mddev->bitmap) { 1619 /* If adding to array with a bitmap, then we can accept an 1620 * older device, but not too old. 1621 */ 1622 if (ev1 < mddev->bitmap->events_cleared) 1623 return 0; 1624 if (ev1 < mddev->events) 1625 set_bit(Bitmap_sync, &rdev->flags); 1626 } else { 1627 if (ev1 < mddev->events) 1628 /* just a hot-add of a new device, leave raid_disk at -1 */ 1629 return 0; 1630 } 1631 if (mddev->level != LEVEL_MULTIPATH) { 1632 int role; 1633 if (rdev->desc_nr < 0 || 1634 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1635 role = MD_DISK_ROLE_SPARE; 1636 rdev->desc_nr = -1; 1637 } else 1638 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1639 switch(role) { 1640 case MD_DISK_ROLE_SPARE: /* spare */ 1641 break; 1642 case MD_DISK_ROLE_FAULTY: /* faulty */ 1643 set_bit(Faulty, &rdev->flags); 1644 break; 1645 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1646 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1647 /* journal device without journal feature */ 1648 printk(KERN_WARNING 1649 "md: journal device provided without journal feature, ignoring the device\n"); 1650 return -EINVAL; 1651 } 1652 set_bit(Journal, &rdev->flags); 1653 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1654 rdev->raid_disk = 0; 1655 break; 1656 default: 1657 rdev->saved_raid_disk = role; 1658 if ((le32_to_cpu(sb->feature_map) & 1659 MD_FEATURE_RECOVERY_OFFSET)) { 1660 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1661 if (!(le32_to_cpu(sb->feature_map) & 1662 MD_FEATURE_RECOVERY_BITMAP)) 1663 rdev->saved_raid_disk = -1; 1664 } else 1665 set_bit(In_sync, &rdev->flags); 1666 rdev->raid_disk = role; 1667 break; 1668 } 1669 if (sb->devflags & WriteMostly1) 1670 set_bit(WriteMostly, &rdev->flags); 1671 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1672 set_bit(Replacement, &rdev->flags); 1673 } else /* MULTIPATH are always insync */ 1674 set_bit(In_sync, &rdev->flags); 1675 1676 return 0; 1677 } 1678 1679 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1680 { 1681 struct mdp_superblock_1 *sb; 1682 struct md_rdev *rdev2; 1683 int max_dev, i; 1684 /* make rdev->sb match mddev and rdev data. */ 1685 1686 sb = page_address(rdev->sb_page); 1687 1688 sb->feature_map = 0; 1689 sb->pad0 = 0; 1690 sb->recovery_offset = cpu_to_le64(0); 1691 memset(sb->pad3, 0, sizeof(sb->pad3)); 1692 1693 sb->utime = cpu_to_le64((__u64)mddev->utime); 1694 sb->events = cpu_to_le64(mddev->events); 1695 if (mddev->in_sync) 1696 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1697 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1698 sb->resync_offset = cpu_to_le64(MaxSector); 1699 else 1700 sb->resync_offset = cpu_to_le64(0); 1701 1702 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1703 1704 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1705 sb->size = cpu_to_le64(mddev->dev_sectors); 1706 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1707 sb->level = cpu_to_le32(mddev->level); 1708 sb->layout = cpu_to_le32(mddev->layout); 1709 1710 if (test_bit(WriteMostly, &rdev->flags)) 1711 sb->devflags |= WriteMostly1; 1712 else 1713 sb->devflags &= ~WriteMostly1; 1714 sb->data_offset = cpu_to_le64(rdev->data_offset); 1715 sb->data_size = cpu_to_le64(rdev->sectors); 1716 1717 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1718 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1719 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1720 } 1721 1722 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1723 !test_bit(In_sync, &rdev->flags)) { 1724 sb->feature_map |= 1725 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1726 sb->recovery_offset = 1727 cpu_to_le64(rdev->recovery_offset); 1728 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1729 sb->feature_map |= 1730 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1731 } 1732 /* Note: recovery_offset and journal_tail share space */ 1733 if (test_bit(Journal, &rdev->flags)) 1734 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1735 if (test_bit(Replacement, &rdev->flags)) 1736 sb->feature_map |= 1737 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1738 1739 if (mddev->reshape_position != MaxSector) { 1740 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1741 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1742 sb->new_layout = cpu_to_le32(mddev->new_layout); 1743 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1744 sb->new_level = cpu_to_le32(mddev->new_level); 1745 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1746 if (mddev->delta_disks == 0 && 1747 mddev->reshape_backwards) 1748 sb->feature_map 1749 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1750 if (rdev->new_data_offset != rdev->data_offset) { 1751 sb->feature_map 1752 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1753 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1754 - rdev->data_offset)); 1755 } 1756 } 1757 1758 if (mddev_is_clustered(mddev)) 1759 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1760 1761 if (rdev->badblocks.count == 0) 1762 /* Nothing to do for bad blocks*/ ; 1763 else if (sb->bblog_offset == 0) 1764 /* Cannot record bad blocks on this device */ 1765 md_error(mddev, rdev); 1766 else { 1767 struct badblocks *bb = &rdev->badblocks; 1768 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1769 u64 *p = bb->page; 1770 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1771 if (bb->changed) { 1772 unsigned seq; 1773 1774 retry: 1775 seq = read_seqbegin(&bb->lock); 1776 1777 memset(bbp, 0xff, PAGE_SIZE); 1778 1779 for (i = 0 ; i < bb->count ; i++) { 1780 u64 internal_bb = p[i]; 1781 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1782 | BB_LEN(internal_bb)); 1783 bbp[i] = cpu_to_le64(store_bb); 1784 } 1785 bb->changed = 0; 1786 if (read_seqretry(&bb->lock, seq)) 1787 goto retry; 1788 1789 bb->sector = (rdev->sb_start + 1790 (int)le32_to_cpu(sb->bblog_offset)); 1791 bb->size = le16_to_cpu(sb->bblog_size); 1792 } 1793 } 1794 1795 max_dev = 0; 1796 rdev_for_each(rdev2, mddev) 1797 if (rdev2->desc_nr+1 > max_dev) 1798 max_dev = rdev2->desc_nr+1; 1799 1800 if (max_dev > le32_to_cpu(sb->max_dev)) { 1801 int bmask; 1802 sb->max_dev = cpu_to_le32(max_dev); 1803 rdev->sb_size = max_dev * 2 + 256; 1804 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1805 if (rdev->sb_size & bmask) 1806 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1807 } else 1808 max_dev = le32_to_cpu(sb->max_dev); 1809 1810 for (i=0; i<max_dev;i++) 1811 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1812 1813 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1814 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1815 1816 rdev_for_each(rdev2, mddev) { 1817 i = rdev2->desc_nr; 1818 if (test_bit(Faulty, &rdev2->flags)) 1819 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1820 else if (test_bit(In_sync, &rdev2->flags)) 1821 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1822 else if (test_bit(Journal, &rdev2->flags)) 1823 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1824 else if (rdev2->raid_disk >= 0) 1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1826 else 1827 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1828 } 1829 1830 sb->sb_csum = calc_sb_1_csum(sb); 1831 } 1832 1833 static unsigned long long 1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1835 { 1836 struct mdp_superblock_1 *sb; 1837 sector_t max_sectors; 1838 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1839 return 0; /* component must fit device */ 1840 if (rdev->data_offset != rdev->new_data_offset) 1841 return 0; /* too confusing */ 1842 if (rdev->sb_start < rdev->data_offset) { 1843 /* minor versions 1 and 2; superblock before data */ 1844 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1845 max_sectors -= rdev->data_offset; 1846 if (!num_sectors || num_sectors > max_sectors) 1847 num_sectors = max_sectors; 1848 } else if (rdev->mddev->bitmap_info.offset) { 1849 /* minor version 0 with bitmap we can't move */ 1850 return 0; 1851 } else { 1852 /* minor version 0; superblock after data */ 1853 sector_t sb_start; 1854 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1855 sb_start &= ~(sector_t)(4*2 - 1); 1856 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1857 if (!num_sectors || num_sectors > max_sectors) 1858 num_sectors = max_sectors; 1859 rdev->sb_start = sb_start; 1860 } 1861 sb = page_address(rdev->sb_page); 1862 sb->data_size = cpu_to_le64(num_sectors); 1863 sb->super_offset = rdev->sb_start; 1864 sb->sb_csum = calc_sb_1_csum(sb); 1865 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1866 rdev->sb_page); 1867 md_super_wait(rdev->mddev); 1868 return num_sectors; 1869 1870 } 1871 1872 static int 1873 super_1_allow_new_offset(struct md_rdev *rdev, 1874 unsigned long long new_offset) 1875 { 1876 /* All necessary checks on new >= old have been done */ 1877 struct bitmap *bitmap; 1878 if (new_offset >= rdev->data_offset) 1879 return 1; 1880 1881 /* with 1.0 metadata, there is no metadata to tread on 1882 * so we can always move back */ 1883 if (rdev->mddev->minor_version == 0) 1884 return 1; 1885 1886 /* otherwise we must be sure not to step on 1887 * any metadata, so stay: 1888 * 36K beyond start of superblock 1889 * beyond end of badblocks 1890 * beyond write-intent bitmap 1891 */ 1892 if (rdev->sb_start + (32+4)*2 > new_offset) 1893 return 0; 1894 bitmap = rdev->mddev->bitmap; 1895 if (bitmap && !rdev->mddev->bitmap_info.file && 1896 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1897 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1898 return 0; 1899 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1900 return 0; 1901 1902 return 1; 1903 } 1904 1905 static struct super_type super_types[] = { 1906 [0] = { 1907 .name = "0.90.0", 1908 .owner = THIS_MODULE, 1909 .load_super = super_90_load, 1910 .validate_super = super_90_validate, 1911 .sync_super = super_90_sync, 1912 .rdev_size_change = super_90_rdev_size_change, 1913 .allow_new_offset = super_90_allow_new_offset, 1914 }, 1915 [1] = { 1916 .name = "md-1", 1917 .owner = THIS_MODULE, 1918 .load_super = super_1_load, 1919 .validate_super = super_1_validate, 1920 .sync_super = super_1_sync, 1921 .rdev_size_change = super_1_rdev_size_change, 1922 .allow_new_offset = super_1_allow_new_offset, 1923 }, 1924 }; 1925 1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1927 { 1928 if (mddev->sync_super) { 1929 mddev->sync_super(mddev, rdev); 1930 return; 1931 } 1932 1933 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1934 1935 super_types[mddev->major_version].sync_super(mddev, rdev); 1936 } 1937 1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1939 { 1940 struct md_rdev *rdev, *rdev2; 1941 1942 rcu_read_lock(); 1943 rdev_for_each_rcu(rdev, mddev1) { 1944 if (test_bit(Faulty, &rdev->flags) || 1945 test_bit(Journal, &rdev->flags) || 1946 rdev->raid_disk == -1) 1947 continue; 1948 rdev_for_each_rcu(rdev2, mddev2) { 1949 if (test_bit(Faulty, &rdev2->flags) || 1950 test_bit(Journal, &rdev2->flags) || 1951 rdev2->raid_disk == -1) 1952 continue; 1953 if (rdev->bdev->bd_contains == 1954 rdev2->bdev->bd_contains) { 1955 rcu_read_unlock(); 1956 return 1; 1957 } 1958 } 1959 } 1960 rcu_read_unlock(); 1961 return 0; 1962 } 1963 1964 static LIST_HEAD(pending_raid_disks); 1965 1966 /* 1967 * Try to register data integrity profile for an mddev 1968 * 1969 * This is called when an array is started and after a disk has been kicked 1970 * from the array. It only succeeds if all working and active component devices 1971 * are integrity capable with matching profiles. 1972 */ 1973 int md_integrity_register(struct mddev *mddev) 1974 { 1975 struct md_rdev *rdev, *reference = NULL; 1976 1977 if (list_empty(&mddev->disks)) 1978 return 0; /* nothing to do */ 1979 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1980 return 0; /* shouldn't register, or already is */ 1981 rdev_for_each(rdev, mddev) { 1982 /* skip spares and non-functional disks */ 1983 if (test_bit(Faulty, &rdev->flags)) 1984 continue; 1985 if (rdev->raid_disk < 0) 1986 continue; 1987 if (!reference) { 1988 /* Use the first rdev as the reference */ 1989 reference = rdev; 1990 continue; 1991 } 1992 /* does this rdev's profile match the reference profile? */ 1993 if (blk_integrity_compare(reference->bdev->bd_disk, 1994 rdev->bdev->bd_disk) < 0) 1995 return -EINVAL; 1996 } 1997 if (!reference || !bdev_get_integrity(reference->bdev)) 1998 return 0; 1999 /* 2000 * All component devices are integrity capable and have matching 2001 * profiles, register the common profile for the md device. 2002 */ 2003 blk_integrity_register(mddev->gendisk, 2004 bdev_get_integrity(reference->bdev)); 2005 2006 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2007 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2008 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2009 mdname(mddev)); 2010 return -EINVAL; 2011 } 2012 return 0; 2013 } 2014 EXPORT_SYMBOL(md_integrity_register); 2015 2016 /* 2017 * Attempt to add an rdev, but only if it is consistent with the current 2018 * integrity profile 2019 */ 2020 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2021 { 2022 struct blk_integrity *bi_rdev; 2023 struct blk_integrity *bi_mddev; 2024 char name[BDEVNAME_SIZE]; 2025 2026 if (!mddev->gendisk) 2027 return 0; 2028 2029 bi_rdev = bdev_get_integrity(rdev->bdev); 2030 bi_mddev = blk_get_integrity(mddev->gendisk); 2031 2032 if (!bi_mddev) /* nothing to do */ 2033 return 0; 2034 2035 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2036 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n", 2037 mdname(mddev), bdevname(rdev->bdev, name)); 2038 return -ENXIO; 2039 } 2040 2041 return 0; 2042 } 2043 EXPORT_SYMBOL(md_integrity_add_rdev); 2044 2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2046 { 2047 char b[BDEVNAME_SIZE]; 2048 struct kobject *ko; 2049 int err; 2050 2051 /* prevent duplicates */ 2052 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2053 return -EEXIST; 2054 2055 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2056 if (!test_bit(Journal, &rdev->flags) && 2057 rdev->sectors && 2058 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2059 if (mddev->pers) { 2060 /* Cannot change size, so fail 2061 * If mddev->level <= 0, then we don't care 2062 * about aligning sizes (e.g. linear) 2063 */ 2064 if (mddev->level > 0) 2065 return -ENOSPC; 2066 } else 2067 mddev->dev_sectors = rdev->sectors; 2068 } 2069 2070 /* Verify rdev->desc_nr is unique. 2071 * If it is -1, assign a free number, else 2072 * check number is not in use 2073 */ 2074 rcu_read_lock(); 2075 if (rdev->desc_nr < 0) { 2076 int choice = 0; 2077 if (mddev->pers) 2078 choice = mddev->raid_disks; 2079 while (md_find_rdev_nr_rcu(mddev, choice)) 2080 choice++; 2081 rdev->desc_nr = choice; 2082 } else { 2083 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2084 rcu_read_unlock(); 2085 return -EBUSY; 2086 } 2087 } 2088 rcu_read_unlock(); 2089 if (!test_bit(Journal, &rdev->flags) && 2090 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2091 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2092 mdname(mddev), mddev->max_disks); 2093 return -EBUSY; 2094 } 2095 bdevname(rdev->bdev,b); 2096 strreplace(b, '/', '!'); 2097 2098 rdev->mddev = mddev; 2099 printk(KERN_INFO "md: bind<%s>\n", b); 2100 2101 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2102 goto fail; 2103 2104 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2105 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2106 /* failure here is OK */; 2107 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2108 2109 list_add_rcu(&rdev->same_set, &mddev->disks); 2110 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2111 2112 /* May as well allow recovery to be retried once */ 2113 mddev->recovery_disabled++; 2114 2115 return 0; 2116 2117 fail: 2118 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2119 b, mdname(mddev)); 2120 return err; 2121 } 2122 2123 static void md_delayed_delete(struct work_struct *ws) 2124 { 2125 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2126 kobject_del(&rdev->kobj); 2127 kobject_put(&rdev->kobj); 2128 } 2129 2130 static void unbind_rdev_from_array(struct md_rdev *rdev) 2131 { 2132 char b[BDEVNAME_SIZE]; 2133 2134 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2135 list_del_rcu(&rdev->same_set); 2136 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2137 rdev->mddev = NULL; 2138 sysfs_remove_link(&rdev->kobj, "block"); 2139 sysfs_put(rdev->sysfs_state); 2140 rdev->sysfs_state = NULL; 2141 rdev->badblocks.count = 0; 2142 /* We need to delay this, otherwise we can deadlock when 2143 * writing to 'remove' to "dev/state". We also need 2144 * to delay it due to rcu usage. 2145 */ 2146 synchronize_rcu(); 2147 INIT_WORK(&rdev->del_work, md_delayed_delete); 2148 kobject_get(&rdev->kobj); 2149 queue_work(md_misc_wq, &rdev->del_work); 2150 } 2151 2152 /* 2153 * prevent the device from being mounted, repartitioned or 2154 * otherwise reused by a RAID array (or any other kernel 2155 * subsystem), by bd_claiming the device. 2156 */ 2157 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2158 { 2159 int err = 0; 2160 struct block_device *bdev; 2161 char b[BDEVNAME_SIZE]; 2162 2163 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2164 shared ? (struct md_rdev *)lock_rdev : rdev); 2165 if (IS_ERR(bdev)) { 2166 printk(KERN_ERR "md: could not open %s.\n", 2167 __bdevname(dev, b)); 2168 return PTR_ERR(bdev); 2169 } 2170 rdev->bdev = bdev; 2171 return err; 2172 } 2173 2174 static void unlock_rdev(struct md_rdev *rdev) 2175 { 2176 struct block_device *bdev = rdev->bdev; 2177 rdev->bdev = NULL; 2178 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2179 } 2180 2181 void md_autodetect_dev(dev_t dev); 2182 2183 static void export_rdev(struct md_rdev *rdev) 2184 { 2185 char b[BDEVNAME_SIZE]; 2186 2187 printk(KERN_INFO "md: export_rdev(%s)\n", 2188 bdevname(rdev->bdev,b)); 2189 md_rdev_clear(rdev); 2190 #ifndef MODULE 2191 if (test_bit(AutoDetected, &rdev->flags)) 2192 md_autodetect_dev(rdev->bdev->bd_dev); 2193 #endif 2194 unlock_rdev(rdev); 2195 kobject_put(&rdev->kobj); 2196 } 2197 2198 void md_kick_rdev_from_array(struct md_rdev *rdev) 2199 { 2200 unbind_rdev_from_array(rdev); 2201 export_rdev(rdev); 2202 } 2203 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2204 2205 static void export_array(struct mddev *mddev) 2206 { 2207 struct md_rdev *rdev; 2208 2209 while (!list_empty(&mddev->disks)) { 2210 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2211 same_set); 2212 md_kick_rdev_from_array(rdev); 2213 } 2214 mddev->raid_disks = 0; 2215 mddev->major_version = 0; 2216 } 2217 2218 static void sync_sbs(struct mddev *mddev, int nospares) 2219 { 2220 /* Update each superblock (in-memory image), but 2221 * if we are allowed to, skip spares which already 2222 * have the right event counter, or have one earlier 2223 * (which would mean they aren't being marked as dirty 2224 * with the rest of the array) 2225 */ 2226 struct md_rdev *rdev; 2227 rdev_for_each(rdev, mddev) { 2228 if (rdev->sb_events == mddev->events || 2229 (nospares && 2230 rdev->raid_disk < 0 && 2231 rdev->sb_events+1 == mddev->events)) { 2232 /* Don't update this superblock */ 2233 rdev->sb_loaded = 2; 2234 } else { 2235 sync_super(mddev, rdev); 2236 rdev->sb_loaded = 1; 2237 } 2238 } 2239 } 2240 2241 static bool does_sb_need_changing(struct mddev *mddev) 2242 { 2243 struct md_rdev *rdev; 2244 struct mdp_superblock_1 *sb; 2245 int role; 2246 2247 /* Find a good rdev */ 2248 rdev_for_each(rdev, mddev) 2249 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2250 break; 2251 2252 /* No good device found. */ 2253 if (!rdev) 2254 return false; 2255 2256 sb = page_address(rdev->sb_page); 2257 /* Check if a device has become faulty or a spare become active */ 2258 rdev_for_each(rdev, mddev) { 2259 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2260 /* Device activated? */ 2261 if (role == 0xffff && rdev->raid_disk >=0 && 2262 !test_bit(Faulty, &rdev->flags)) 2263 return true; 2264 /* Device turned faulty? */ 2265 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2266 return true; 2267 } 2268 2269 /* Check if any mddev parameters have changed */ 2270 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2271 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2272 (mddev->layout != le64_to_cpu(sb->layout)) || 2273 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2274 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2275 return true; 2276 2277 return false; 2278 } 2279 2280 void md_update_sb(struct mddev *mddev, int force_change) 2281 { 2282 struct md_rdev *rdev; 2283 int sync_req; 2284 int nospares = 0; 2285 int any_badblocks_changed = 0; 2286 int ret = -1; 2287 2288 if (mddev->ro) { 2289 if (force_change) 2290 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2291 return; 2292 } 2293 2294 if (mddev_is_clustered(mddev)) { 2295 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2296 force_change = 1; 2297 ret = md_cluster_ops->metadata_update_start(mddev); 2298 /* Has someone else has updated the sb */ 2299 if (!does_sb_need_changing(mddev)) { 2300 if (ret == 0) 2301 md_cluster_ops->metadata_update_cancel(mddev); 2302 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2303 return; 2304 } 2305 } 2306 repeat: 2307 /* First make sure individual recovery_offsets are correct */ 2308 rdev_for_each(rdev, mddev) { 2309 if (rdev->raid_disk >= 0 && 2310 mddev->delta_disks >= 0 && 2311 !test_bit(Journal, &rdev->flags) && 2312 !test_bit(In_sync, &rdev->flags) && 2313 mddev->curr_resync_completed > rdev->recovery_offset) 2314 rdev->recovery_offset = mddev->curr_resync_completed; 2315 2316 } 2317 if (!mddev->persistent) { 2318 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2319 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2320 if (!mddev->external) { 2321 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2322 rdev_for_each(rdev, mddev) { 2323 if (rdev->badblocks.changed) { 2324 rdev->badblocks.changed = 0; 2325 ack_all_badblocks(&rdev->badblocks); 2326 md_error(mddev, rdev); 2327 } 2328 clear_bit(Blocked, &rdev->flags); 2329 clear_bit(BlockedBadBlocks, &rdev->flags); 2330 wake_up(&rdev->blocked_wait); 2331 } 2332 } 2333 wake_up(&mddev->sb_wait); 2334 return; 2335 } 2336 2337 spin_lock(&mddev->lock); 2338 2339 mddev->utime = ktime_get_real_seconds(); 2340 2341 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2342 force_change = 1; 2343 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2344 /* just a clean<-> dirty transition, possibly leave spares alone, 2345 * though if events isn't the right even/odd, we will have to do 2346 * spares after all 2347 */ 2348 nospares = 1; 2349 if (force_change) 2350 nospares = 0; 2351 if (mddev->degraded) 2352 /* If the array is degraded, then skipping spares is both 2353 * dangerous and fairly pointless. 2354 * Dangerous because a device that was removed from the array 2355 * might have a event_count that still looks up-to-date, 2356 * so it can be re-added without a resync. 2357 * Pointless because if there are any spares to skip, 2358 * then a recovery will happen and soon that array won't 2359 * be degraded any more and the spare can go back to sleep then. 2360 */ 2361 nospares = 0; 2362 2363 sync_req = mddev->in_sync; 2364 2365 /* If this is just a dirty<->clean transition, and the array is clean 2366 * and 'events' is odd, we can roll back to the previous clean state */ 2367 if (nospares 2368 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2369 && mddev->can_decrease_events 2370 && mddev->events != 1) { 2371 mddev->events--; 2372 mddev->can_decrease_events = 0; 2373 } else { 2374 /* otherwise we have to go forward and ... */ 2375 mddev->events ++; 2376 mddev->can_decrease_events = nospares; 2377 } 2378 2379 /* 2380 * This 64-bit counter should never wrap. 2381 * Either we are in around ~1 trillion A.C., assuming 2382 * 1 reboot per second, or we have a bug... 2383 */ 2384 WARN_ON(mddev->events == 0); 2385 2386 rdev_for_each(rdev, mddev) { 2387 if (rdev->badblocks.changed) 2388 any_badblocks_changed++; 2389 if (test_bit(Faulty, &rdev->flags)) 2390 set_bit(FaultRecorded, &rdev->flags); 2391 } 2392 2393 sync_sbs(mddev, nospares); 2394 spin_unlock(&mddev->lock); 2395 2396 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2397 mdname(mddev), mddev->in_sync); 2398 2399 bitmap_update_sb(mddev->bitmap); 2400 rdev_for_each(rdev, mddev) { 2401 char b[BDEVNAME_SIZE]; 2402 2403 if (rdev->sb_loaded != 1) 2404 continue; /* no noise on spare devices */ 2405 2406 if (!test_bit(Faulty, &rdev->flags)) { 2407 md_super_write(mddev,rdev, 2408 rdev->sb_start, rdev->sb_size, 2409 rdev->sb_page); 2410 pr_debug("md: (write) %s's sb offset: %llu\n", 2411 bdevname(rdev->bdev, b), 2412 (unsigned long long)rdev->sb_start); 2413 rdev->sb_events = mddev->events; 2414 if (rdev->badblocks.size) { 2415 md_super_write(mddev, rdev, 2416 rdev->badblocks.sector, 2417 rdev->badblocks.size << 9, 2418 rdev->bb_page); 2419 rdev->badblocks.size = 0; 2420 } 2421 2422 } else 2423 pr_debug("md: %s (skipping faulty)\n", 2424 bdevname(rdev->bdev, b)); 2425 2426 if (mddev->level == LEVEL_MULTIPATH) 2427 /* only need to write one superblock... */ 2428 break; 2429 } 2430 md_super_wait(mddev); 2431 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2432 2433 spin_lock(&mddev->lock); 2434 if (mddev->in_sync != sync_req || 2435 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2436 /* have to write it out again */ 2437 spin_unlock(&mddev->lock); 2438 goto repeat; 2439 } 2440 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2441 spin_unlock(&mddev->lock); 2442 wake_up(&mddev->sb_wait); 2443 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2444 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2445 2446 rdev_for_each(rdev, mddev) { 2447 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2448 clear_bit(Blocked, &rdev->flags); 2449 2450 if (any_badblocks_changed) 2451 ack_all_badblocks(&rdev->badblocks); 2452 clear_bit(BlockedBadBlocks, &rdev->flags); 2453 wake_up(&rdev->blocked_wait); 2454 } 2455 2456 if (mddev_is_clustered(mddev) && ret == 0) 2457 md_cluster_ops->metadata_update_finish(mddev); 2458 } 2459 EXPORT_SYMBOL(md_update_sb); 2460 2461 static int add_bound_rdev(struct md_rdev *rdev) 2462 { 2463 struct mddev *mddev = rdev->mddev; 2464 int err = 0; 2465 bool add_journal = test_bit(Journal, &rdev->flags); 2466 2467 if (!mddev->pers->hot_remove_disk || add_journal) { 2468 /* If there is hot_add_disk but no hot_remove_disk 2469 * then added disks for geometry changes, 2470 * and should be added immediately. 2471 */ 2472 super_types[mddev->major_version]. 2473 validate_super(mddev, rdev); 2474 if (add_journal) 2475 mddev_suspend(mddev); 2476 err = mddev->pers->hot_add_disk(mddev, rdev); 2477 if (add_journal) 2478 mddev_resume(mddev); 2479 if (err) { 2480 unbind_rdev_from_array(rdev); 2481 export_rdev(rdev); 2482 return err; 2483 } 2484 } 2485 sysfs_notify_dirent_safe(rdev->sysfs_state); 2486 2487 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2488 if (mddev->degraded) 2489 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2490 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2491 md_new_event(mddev); 2492 md_wakeup_thread(mddev->thread); 2493 return 0; 2494 } 2495 2496 /* words written to sysfs files may, or may not, be \n terminated. 2497 * We want to accept with case. For this we use cmd_match. 2498 */ 2499 static int cmd_match(const char *cmd, const char *str) 2500 { 2501 /* See if cmd, written into a sysfs file, matches 2502 * str. They must either be the same, or cmd can 2503 * have a trailing newline 2504 */ 2505 while (*cmd && *str && *cmd == *str) { 2506 cmd++; 2507 str++; 2508 } 2509 if (*cmd == '\n') 2510 cmd++; 2511 if (*str || *cmd) 2512 return 0; 2513 return 1; 2514 } 2515 2516 struct rdev_sysfs_entry { 2517 struct attribute attr; 2518 ssize_t (*show)(struct md_rdev *, char *); 2519 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2520 }; 2521 2522 static ssize_t 2523 state_show(struct md_rdev *rdev, char *page) 2524 { 2525 char *sep = ""; 2526 size_t len = 0; 2527 unsigned long flags = ACCESS_ONCE(rdev->flags); 2528 2529 if (test_bit(Faulty, &flags) || 2530 rdev->badblocks.unacked_exist) { 2531 len+= sprintf(page+len, "%sfaulty",sep); 2532 sep = ","; 2533 } 2534 if (test_bit(In_sync, &flags)) { 2535 len += sprintf(page+len, "%sin_sync",sep); 2536 sep = ","; 2537 } 2538 if (test_bit(Journal, &flags)) { 2539 len += sprintf(page+len, "%sjournal",sep); 2540 sep = ","; 2541 } 2542 if (test_bit(WriteMostly, &flags)) { 2543 len += sprintf(page+len, "%swrite_mostly",sep); 2544 sep = ","; 2545 } 2546 if (test_bit(Blocked, &flags) || 2547 (rdev->badblocks.unacked_exist 2548 && !test_bit(Faulty, &flags))) { 2549 len += sprintf(page+len, "%sblocked", sep); 2550 sep = ","; 2551 } 2552 if (!test_bit(Faulty, &flags) && 2553 !test_bit(Journal, &flags) && 2554 !test_bit(In_sync, &flags)) { 2555 len += sprintf(page+len, "%sspare", sep); 2556 sep = ","; 2557 } 2558 if (test_bit(WriteErrorSeen, &flags)) { 2559 len += sprintf(page+len, "%swrite_error", sep); 2560 sep = ","; 2561 } 2562 if (test_bit(WantReplacement, &flags)) { 2563 len += sprintf(page+len, "%swant_replacement", sep); 2564 sep = ","; 2565 } 2566 if (test_bit(Replacement, &flags)) { 2567 len += sprintf(page+len, "%sreplacement", sep); 2568 sep = ","; 2569 } 2570 2571 return len+sprintf(page+len, "\n"); 2572 } 2573 2574 static ssize_t 2575 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2576 { 2577 /* can write 2578 * faulty - simulates an error 2579 * remove - disconnects the device 2580 * writemostly - sets write_mostly 2581 * -writemostly - clears write_mostly 2582 * blocked - sets the Blocked flags 2583 * -blocked - clears the Blocked and possibly simulates an error 2584 * insync - sets Insync providing device isn't active 2585 * -insync - clear Insync for a device with a slot assigned, 2586 * so that it gets rebuilt based on bitmap 2587 * write_error - sets WriteErrorSeen 2588 * -write_error - clears WriteErrorSeen 2589 */ 2590 int err = -EINVAL; 2591 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2592 md_error(rdev->mddev, rdev); 2593 if (test_bit(Faulty, &rdev->flags)) 2594 err = 0; 2595 else 2596 err = -EBUSY; 2597 } else if (cmd_match(buf, "remove")) { 2598 if (rdev->raid_disk >= 0) 2599 err = -EBUSY; 2600 else { 2601 struct mddev *mddev = rdev->mddev; 2602 err = 0; 2603 if (mddev_is_clustered(mddev)) 2604 err = md_cluster_ops->remove_disk(mddev, rdev); 2605 2606 if (err == 0) { 2607 md_kick_rdev_from_array(rdev); 2608 if (mddev->pers) 2609 md_update_sb(mddev, 1); 2610 md_new_event(mddev); 2611 } 2612 } 2613 } else if (cmd_match(buf, "writemostly")) { 2614 set_bit(WriteMostly, &rdev->flags); 2615 err = 0; 2616 } else if (cmd_match(buf, "-writemostly")) { 2617 clear_bit(WriteMostly, &rdev->flags); 2618 err = 0; 2619 } else if (cmd_match(buf, "blocked")) { 2620 set_bit(Blocked, &rdev->flags); 2621 err = 0; 2622 } else if (cmd_match(buf, "-blocked")) { 2623 if (!test_bit(Faulty, &rdev->flags) && 2624 rdev->badblocks.unacked_exist) { 2625 /* metadata handler doesn't understand badblocks, 2626 * so we need to fail the device 2627 */ 2628 md_error(rdev->mddev, rdev); 2629 } 2630 clear_bit(Blocked, &rdev->flags); 2631 clear_bit(BlockedBadBlocks, &rdev->flags); 2632 wake_up(&rdev->blocked_wait); 2633 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2634 md_wakeup_thread(rdev->mddev->thread); 2635 2636 err = 0; 2637 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2638 set_bit(In_sync, &rdev->flags); 2639 err = 0; 2640 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2641 !test_bit(Journal, &rdev->flags)) { 2642 if (rdev->mddev->pers == NULL) { 2643 clear_bit(In_sync, &rdev->flags); 2644 rdev->saved_raid_disk = rdev->raid_disk; 2645 rdev->raid_disk = -1; 2646 err = 0; 2647 } 2648 } else if (cmd_match(buf, "write_error")) { 2649 set_bit(WriteErrorSeen, &rdev->flags); 2650 err = 0; 2651 } else if (cmd_match(buf, "-write_error")) { 2652 clear_bit(WriteErrorSeen, &rdev->flags); 2653 err = 0; 2654 } else if (cmd_match(buf, "want_replacement")) { 2655 /* Any non-spare device that is not a replacement can 2656 * become want_replacement at any time, but we then need to 2657 * check if recovery is needed. 2658 */ 2659 if (rdev->raid_disk >= 0 && 2660 !test_bit(Journal, &rdev->flags) && 2661 !test_bit(Replacement, &rdev->flags)) 2662 set_bit(WantReplacement, &rdev->flags); 2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2664 md_wakeup_thread(rdev->mddev->thread); 2665 err = 0; 2666 } else if (cmd_match(buf, "-want_replacement")) { 2667 /* Clearing 'want_replacement' is always allowed. 2668 * Once replacements starts it is too late though. 2669 */ 2670 err = 0; 2671 clear_bit(WantReplacement, &rdev->flags); 2672 } else if (cmd_match(buf, "replacement")) { 2673 /* Can only set a device as a replacement when array has not 2674 * yet been started. Once running, replacement is automatic 2675 * from spares, or by assigning 'slot'. 2676 */ 2677 if (rdev->mddev->pers) 2678 err = -EBUSY; 2679 else { 2680 set_bit(Replacement, &rdev->flags); 2681 err = 0; 2682 } 2683 } else if (cmd_match(buf, "-replacement")) { 2684 /* Similarly, can only clear Replacement before start */ 2685 if (rdev->mddev->pers) 2686 err = -EBUSY; 2687 else { 2688 clear_bit(Replacement, &rdev->flags); 2689 err = 0; 2690 } 2691 } else if (cmd_match(buf, "re-add")) { 2692 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2693 /* clear_bit is performed _after_ all the devices 2694 * have their local Faulty bit cleared. If any writes 2695 * happen in the meantime in the local node, they 2696 * will land in the local bitmap, which will be synced 2697 * by this node eventually 2698 */ 2699 if (!mddev_is_clustered(rdev->mddev) || 2700 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2701 clear_bit(Faulty, &rdev->flags); 2702 err = add_bound_rdev(rdev); 2703 } 2704 } else 2705 err = -EBUSY; 2706 } 2707 if (!err) 2708 sysfs_notify_dirent_safe(rdev->sysfs_state); 2709 return err ? err : len; 2710 } 2711 static struct rdev_sysfs_entry rdev_state = 2712 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2713 2714 static ssize_t 2715 errors_show(struct md_rdev *rdev, char *page) 2716 { 2717 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2718 } 2719 2720 static ssize_t 2721 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2722 { 2723 unsigned int n; 2724 int rv; 2725 2726 rv = kstrtouint(buf, 10, &n); 2727 if (rv < 0) 2728 return rv; 2729 atomic_set(&rdev->corrected_errors, n); 2730 return len; 2731 } 2732 static struct rdev_sysfs_entry rdev_errors = 2733 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2734 2735 static ssize_t 2736 slot_show(struct md_rdev *rdev, char *page) 2737 { 2738 if (test_bit(Journal, &rdev->flags)) 2739 return sprintf(page, "journal\n"); 2740 else if (rdev->raid_disk < 0) 2741 return sprintf(page, "none\n"); 2742 else 2743 return sprintf(page, "%d\n", rdev->raid_disk); 2744 } 2745 2746 static ssize_t 2747 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2748 { 2749 int slot; 2750 int err; 2751 2752 if (test_bit(Journal, &rdev->flags)) 2753 return -EBUSY; 2754 if (strncmp(buf, "none", 4)==0) 2755 slot = -1; 2756 else { 2757 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2758 if (err < 0) 2759 return err; 2760 } 2761 if (rdev->mddev->pers && slot == -1) { 2762 /* Setting 'slot' on an active array requires also 2763 * updating the 'rd%d' link, and communicating 2764 * with the personality with ->hot_*_disk. 2765 * For now we only support removing 2766 * failed/spare devices. This normally happens automatically, 2767 * but not when the metadata is externally managed. 2768 */ 2769 if (rdev->raid_disk == -1) 2770 return -EEXIST; 2771 /* personality does all needed checks */ 2772 if (rdev->mddev->pers->hot_remove_disk == NULL) 2773 return -EINVAL; 2774 clear_bit(Blocked, &rdev->flags); 2775 remove_and_add_spares(rdev->mddev, rdev); 2776 if (rdev->raid_disk >= 0) 2777 return -EBUSY; 2778 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2779 md_wakeup_thread(rdev->mddev->thread); 2780 } else if (rdev->mddev->pers) { 2781 /* Activating a spare .. or possibly reactivating 2782 * if we ever get bitmaps working here. 2783 */ 2784 int err; 2785 2786 if (rdev->raid_disk != -1) 2787 return -EBUSY; 2788 2789 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2790 return -EBUSY; 2791 2792 if (rdev->mddev->pers->hot_add_disk == NULL) 2793 return -EINVAL; 2794 2795 if (slot >= rdev->mddev->raid_disks && 2796 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2797 return -ENOSPC; 2798 2799 rdev->raid_disk = slot; 2800 if (test_bit(In_sync, &rdev->flags)) 2801 rdev->saved_raid_disk = slot; 2802 else 2803 rdev->saved_raid_disk = -1; 2804 clear_bit(In_sync, &rdev->flags); 2805 clear_bit(Bitmap_sync, &rdev->flags); 2806 err = rdev->mddev->pers-> 2807 hot_add_disk(rdev->mddev, rdev); 2808 if (err) { 2809 rdev->raid_disk = -1; 2810 return err; 2811 } else 2812 sysfs_notify_dirent_safe(rdev->sysfs_state); 2813 if (sysfs_link_rdev(rdev->mddev, rdev)) 2814 /* failure here is OK */; 2815 /* don't wakeup anyone, leave that to userspace. */ 2816 } else { 2817 if (slot >= rdev->mddev->raid_disks && 2818 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2819 return -ENOSPC; 2820 rdev->raid_disk = slot; 2821 /* assume it is working */ 2822 clear_bit(Faulty, &rdev->flags); 2823 clear_bit(WriteMostly, &rdev->flags); 2824 set_bit(In_sync, &rdev->flags); 2825 sysfs_notify_dirent_safe(rdev->sysfs_state); 2826 } 2827 return len; 2828 } 2829 2830 static struct rdev_sysfs_entry rdev_slot = 2831 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2832 2833 static ssize_t 2834 offset_show(struct md_rdev *rdev, char *page) 2835 { 2836 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2837 } 2838 2839 static ssize_t 2840 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2841 { 2842 unsigned long long offset; 2843 if (kstrtoull(buf, 10, &offset) < 0) 2844 return -EINVAL; 2845 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2846 return -EBUSY; 2847 if (rdev->sectors && rdev->mddev->external) 2848 /* Must set offset before size, so overlap checks 2849 * can be sane */ 2850 return -EBUSY; 2851 rdev->data_offset = offset; 2852 rdev->new_data_offset = offset; 2853 return len; 2854 } 2855 2856 static struct rdev_sysfs_entry rdev_offset = 2857 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2858 2859 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2860 { 2861 return sprintf(page, "%llu\n", 2862 (unsigned long long)rdev->new_data_offset); 2863 } 2864 2865 static ssize_t new_offset_store(struct md_rdev *rdev, 2866 const char *buf, size_t len) 2867 { 2868 unsigned long long new_offset; 2869 struct mddev *mddev = rdev->mddev; 2870 2871 if (kstrtoull(buf, 10, &new_offset) < 0) 2872 return -EINVAL; 2873 2874 if (mddev->sync_thread || 2875 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 2876 return -EBUSY; 2877 if (new_offset == rdev->data_offset) 2878 /* reset is always permitted */ 2879 ; 2880 else if (new_offset > rdev->data_offset) { 2881 /* must not push array size beyond rdev_sectors */ 2882 if (new_offset - rdev->data_offset 2883 + mddev->dev_sectors > rdev->sectors) 2884 return -E2BIG; 2885 } 2886 /* Metadata worries about other space details. */ 2887 2888 /* decreasing the offset is inconsistent with a backwards 2889 * reshape. 2890 */ 2891 if (new_offset < rdev->data_offset && 2892 mddev->reshape_backwards) 2893 return -EINVAL; 2894 /* Increasing offset is inconsistent with forwards 2895 * reshape. reshape_direction should be set to 2896 * 'backwards' first. 2897 */ 2898 if (new_offset > rdev->data_offset && 2899 !mddev->reshape_backwards) 2900 return -EINVAL; 2901 2902 if (mddev->pers && mddev->persistent && 2903 !super_types[mddev->major_version] 2904 .allow_new_offset(rdev, new_offset)) 2905 return -E2BIG; 2906 rdev->new_data_offset = new_offset; 2907 if (new_offset > rdev->data_offset) 2908 mddev->reshape_backwards = 1; 2909 else if (new_offset < rdev->data_offset) 2910 mddev->reshape_backwards = 0; 2911 2912 return len; 2913 } 2914 static struct rdev_sysfs_entry rdev_new_offset = 2915 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2916 2917 static ssize_t 2918 rdev_size_show(struct md_rdev *rdev, char *page) 2919 { 2920 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2921 } 2922 2923 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2924 { 2925 /* check if two start/length pairs overlap */ 2926 if (s1+l1 <= s2) 2927 return 0; 2928 if (s2+l2 <= s1) 2929 return 0; 2930 return 1; 2931 } 2932 2933 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2934 { 2935 unsigned long long blocks; 2936 sector_t new; 2937 2938 if (kstrtoull(buf, 10, &blocks) < 0) 2939 return -EINVAL; 2940 2941 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2942 return -EINVAL; /* sector conversion overflow */ 2943 2944 new = blocks * 2; 2945 if (new != blocks * 2) 2946 return -EINVAL; /* unsigned long long to sector_t overflow */ 2947 2948 *sectors = new; 2949 return 0; 2950 } 2951 2952 static ssize_t 2953 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2954 { 2955 struct mddev *my_mddev = rdev->mddev; 2956 sector_t oldsectors = rdev->sectors; 2957 sector_t sectors; 2958 2959 if (test_bit(Journal, &rdev->flags)) 2960 return -EBUSY; 2961 if (strict_blocks_to_sectors(buf, §ors) < 0) 2962 return -EINVAL; 2963 if (rdev->data_offset != rdev->new_data_offset) 2964 return -EINVAL; /* too confusing */ 2965 if (my_mddev->pers && rdev->raid_disk >= 0) { 2966 if (my_mddev->persistent) { 2967 sectors = super_types[my_mddev->major_version]. 2968 rdev_size_change(rdev, sectors); 2969 if (!sectors) 2970 return -EBUSY; 2971 } else if (!sectors) 2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2973 rdev->data_offset; 2974 if (!my_mddev->pers->resize) 2975 /* Cannot change size for RAID0 or Linear etc */ 2976 return -EINVAL; 2977 } 2978 if (sectors < my_mddev->dev_sectors) 2979 return -EINVAL; /* component must fit device */ 2980 2981 rdev->sectors = sectors; 2982 if (sectors > oldsectors && my_mddev->external) { 2983 /* Need to check that all other rdevs with the same 2984 * ->bdev do not overlap. 'rcu' is sufficient to walk 2985 * the rdev lists safely. 2986 * This check does not provide a hard guarantee, it 2987 * just helps avoid dangerous mistakes. 2988 */ 2989 struct mddev *mddev; 2990 int overlap = 0; 2991 struct list_head *tmp; 2992 2993 rcu_read_lock(); 2994 for_each_mddev(mddev, tmp) { 2995 struct md_rdev *rdev2; 2996 2997 rdev_for_each(rdev2, mddev) 2998 if (rdev->bdev == rdev2->bdev && 2999 rdev != rdev2 && 3000 overlaps(rdev->data_offset, rdev->sectors, 3001 rdev2->data_offset, 3002 rdev2->sectors)) { 3003 overlap = 1; 3004 break; 3005 } 3006 if (overlap) { 3007 mddev_put(mddev); 3008 break; 3009 } 3010 } 3011 rcu_read_unlock(); 3012 if (overlap) { 3013 /* Someone else could have slipped in a size 3014 * change here, but doing so is just silly. 3015 * We put oldsectors back because we *know* it is 3016 * safe, and trust userspace not to race with 3017 * itself 3018 */ 3019 rdev->sectors = oldsectors; 3020 return -EBUSY; 3021 } 3022 } 3023 return len; 3024 } 3025 3026 static struct rdev_sysfs_entry rdev_size = 3027 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3028 3029 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3030 { 3031 unsigned long long recovery_start = rdev->recovery_offset; 3032 3033 if (test_bit(In_sync, &rdev->flags) || 3034 recovery_start == MaxSector) 3035 return sprintf(page, "none\n"); 3036 3037 return sprintf(page, "%llu\n", recovery_start); 3038 } 3039 3040 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3041 { 3042 unsigned long long recovery_start; 3043 3044 if (cmd_match(buf, "none")) 3045 recovery_start = MaxSector; 3046 else if (kstrtoull(buf, 10, &recovery_start)) 3047 return -EINVAL; 3048 3049 if (rdev->mddev->pers && 3050 rdev->raid_disk >= 0) 3051 return -EBUSY; 3052 3053 rdev->recovery_offset = recovery_start; 3054 if (recovery_start == MaxSector) 3055 set_bit(In_sync, &rdev->flags); 3056 else 3057 clear_bit(In_sync, &rdev->flags); 3058 return len; 3059 } 3060 3061 static struct rdev_sysfs_entry rdev_recovery_start = 3062 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3063 3064 /* sysfs access to bad-blocks list. 3065 * We present two files. 3066 * 'bad-blocks' lists sector numbers and lengths of ranges that 3067 * are recorded as bad. The list is truncated to fit within 3068 * the one-page limit of sysfs. 3069 * Writing "sector length" to this file adds an acknowledged 3070 * bad block list. 3071 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3072 * been acknowledged. Writing to this file adds bad blocks 3073 * without acknowledging them. This is largely for testing. 3074 */ 3075 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3076 { 3077 return badblocks_show(&rdev->badblocks, page, 0); 3078 } 3079 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3080 { 3081 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3082 /* Maybe that ack was all we needed */ 3083 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3084 wake_up(&rdev->blocked_wait); 3085 return rv; 3086 } 3087 static struct rdev_sysfs_entry rdev_bad_blocks = 3088 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3089 3090 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3091 { 3092 return badblocks_show(&rdev->badblocks, page, 1); 3093 } 3094 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3095 { 3096 return badblocks_store(&rdev->badblocks, page, len, 1); 3097 } 3098 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3099 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3100 3101 static struct attribute *rdev_default_attrs[] = { 3102 &rdev_state.attr, 3103 &rdev_errors.attr, 3104 &rdev_slot.attr, 3105 &rdev_offset.attr, 3106 &rdev_new_offset.attr, 3107 &rdev_size.attr, 3108 &rdev_recovery_start.attr, 3109 &rdev_bad_blocks.attr, 3110 &rdev_unack_bad_blocks.attr, 3111 NULL, 3112 }; 3113 static ssize_t 3114 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3115 { 3116 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3117 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3118 3119 if (!entry->show) 3120 return -EIO; 3121 if (!rdev->mddev) 3122 return -EBUSY; 3123 return entry->show(rdev, page); 3124 } 3125 3126 static ssize_t 3127 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3128 const char *page, size_t length) 3129 { 3130 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3131 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3132 ssize_t rv; 3133 struct mddev *mddev = rdev->mddev; 3134 3135 if (!entry->store) 3136 return -EIO; 3137 if (!capable(CAP_SYS_ADMIN)) 3138 return -EACCES; 3139 rv = mddev ? mddev_lock(mddev): -EBUSY; 3140 if (!rv) { 3141 if (rdev->mddev == NULL) 3142 rv = -EBUSY; 3143 else 3144 rv = entry->store(rdev, page, length); 3145 mddev_unlock(mddev); 3146 } 3147 return rv; 3148 } 3149 3150 static void rdev_free(struct kobject *ko) 3151 { 3152 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3153 kfree(rdev); 3154 } 3155 static const struct sysfs_ops rdev_sysfs_ops = { 3156 .show = rdev_attr_show, 3157 .store = rdev_attr_store, 3158 }; 3159 static struct kobj_type rdev_ktype = { 3160 .release = rdev_free, 3161 .sysfs_ops = &rdev_sysfs_ops, 3162 .default_attrs = rdev_default_attrs, 3163 }; 3164 3165 int md_rdev_init(struct md_rdev *rdev) 3166 { 3167 rdev->desc_nr = -1; 3168 rdev->saved_raid_disk = -1; 3169 rdev->raid_disk = -1; 3170 rdev->flags = 0; 3171 rdev->data_offset = 0; 3172 rdev->new_data_offset = 0; 3173 rdev->sb_events = 0; 3174 rdev->last_read_error.tv_sec = 0; 3175 rdev->last_read_error.tv_nsec = 0; 3176 rdev->sb_loaded = 0; 3177 rdev->bb_page = NULL; 3178 atomic_set(&rdev->nr_pending, 0); 3179 atomic_set(&rdev->read_errors, 0); 3180 atomic_set(&rdev->corrected_errors, 0); 3181 3182 INIT_LIST_HEAD(&rdev->same_set); 3183 init_waitqueue_head(&rdev->blocked_wait); 3184 3185 /* Add space to store bad block list. 3186 * This reserves the space even on arrays where it cannot 3187 * be used - I wonder if that matters 3188 */ 3189 return badblocks_init(&rdev->badblocks, 0); 3190 } 3191 EXPORT_SYMBOL_GPL(md_rdev_init); 3192 /* 3193 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3194 * 3195 * mark the device faulty if: 3196 * 3197 * - the device is nonexistent (zero size) 3198 * - the device has no valid superblock 3199 * 3200 * a faulty rdev _never_ has rdev->sb set. 3201 */ 3202 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3203 { 3204 char b[BDEVNAME_SIZE]; 3205 int err; 3206 struct md_rdev *rdev; 3207 sector_t size; 3208 3209 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3210 if (!rdev) { 3211 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3212 return ERR_PTR(-ENOMEM); 3213 } 3214 3215 err = md_rdev_init(rdev); 3216 if (err) 3217 goto abort_free; 3218 err = alloc_disk_sb(rdev); 3219 if (err) 3220 goto abort_free; 3221 3222 err = lock_rdev(rdev, newdev, super_format == -2); 3223 if (err) 3224 goto abort_free; 3225 3226 kobject_init(&rdev->kobj, &rdev_ktype); 3227 3228 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3229 if (!size) { 3230 printk(KERN_WARNING 3231 "md: %s has zero or unknown size, marking faulty!\n", 3232 bdevname(rdev->bdev,b)); 3233 err = -EINVAL; 3234 goto abort_free; 3235 } 3236 3237 if (super_format >= 0) { 3238 err = super_types[super_format]. 3239 load_super(rdev, NULL, super_minor); 3240 if (err == -EINVAL) { 3241 printk(KERN_WARNING 3242 "md: %s does not have a valid v%d.%d " 3243 "superblock, not importing!\n", 3244 bdevname(rdev->bdev,b), 3245 super_format, super_minor); 3246 goto abort_free; 3247 } 3248 if (err < 0) { 3249 printk(KERN_WARNING 3250 "md: could not read %s's sb, not importing!\n", 3251 bdevname(rdev->bdev,b)); 3252 goto abort_free; 3253 } 3254 } 3255 3256 return rdev; 3257 3258 abort_free: 3259 if (rdev->bdev) 3260 unlock_rdev(rdev); 3261 md_rdev_clear(rdev); 3262 kfree(rdev); 3263 return ERR_PTR(err); 3264 } 3265 3266 /* 3267 * Check a full RAID array for plausibility 3268 */ 3269 3270 static void analyze_sbs(struct mddev *mddev) 3271 { 3272 int i; 3273 struct md_rdev *rdev, *freshest, *tmp; 3274 char b[BDEVNAME_SIZE]; 3275 3276 freshest = NULL; 3277 rdev_for_each_safe(rdev, tmp, mddev) 3278 switch (super_types[mddev->major_version]. 3279 load_super(rdev, freshest, mddev->minor_version)) { 3280 case 1: 3281 freshest = rdev; 3282 break; 3283 case 0: 3284 break; 3285 default: 3286 printk( KERN_ERR \ 3287 "md: fatal superblock inconsistency in %s" 3288 " -- removing from array\n", 3289 bdevname(rdev->bdev,b)); 3290 md_kick_rdev_from_array(rdev); 3291 } 3292 3293 super_types[mddev->major_version]. 3294 validate_super(mddev, freshest); 3295 3296 i = 0; 3297 rdev_for_each_safe(rdev, tmp, mddev) { 3298 if (mddev->max_disks && 3299 (rdev->desc_nr >= mddev->max_disks || 3300 i > mddev->max_disks)) { 3301 printk(KERN_WARNING 3302 "md: %s: %s: only %d devices permitted\n", 3303 mdname(mddev), bdevname(rdev->bdev, b), 3304 mddev->max_disks); 3305 md_kick_rdev_from_array(rdev); 3306 continue; 3307 } 3308 if (rdev != freshest) { 3309 if (super_types[mddev->major_version]. 3310 validate_super(mddev, rdev)) { 3311 printk(KERN_WARNING "md: kicking non-fresh %s" 3312 " from array!\n", 3313 bdevname(rdev->bdev,b)); 3314 md_kick_rdev_from_array(rdev); 3315 continue; 3316 } 3317 } 3318 if (mddev->level == LEVEL_MULTIPATH) { 3319 rdev->desc_nr = i++; 3320 rdev->raid_disk = rdev->desc_nr; 3321 set_bit(In_sync, &rdev->flags); 3322 } else if (rdev->raid_disk >= 3323 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3324 !test_bit(Journal, &rdev->flags)) { 3325 rdev->raid_disk = -1; 3326 clear_bit(In_sync, &rdev->flags); 3327 } 3328 } 3329 } 3330 3331 /* Read a fixed-point number. 3332 * Numbers in sysfs attributes should be in "standard" units where 3333 * possible, so time should be in seconds. 3334 * However we internally use a a much smaller unit such as 3335 * milliseconds or jiffies. 3336 * This function takes a decimal number with a possible fractional 3337 * component, and produces an integer which is the result of 3338 * multiplying that number by 10^'scale'. 3339 * all without any floating-point arithmetic. 3340 */ 3341 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3342 { 3343 unsigned long result = 0; 3344 long decimals = -1; 3345 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3346 if (*cp == '.') 3347 decimals = 0; 3348 else if (decimals < scale) { 3349 unsigned int value; 3350 value = *cp - '0'; 3351 result = result * 10 + value; 3352 if (decimals >= 0) 3353 decimals++; 3354 } 3355 cp++; 3356 } 3357 if (*cp == '\n') 3358 cp++; 3359 if (*cp) 3360 return -EINVAL; 3361 if (decimals < 0) 3362 decimals = 0; 3363 while (decimals < scale) { 3364 result *= 10; 3365 decimals ++; 3366 } 3367 *res = result; 3368 return 0; 3369 } 3370 3371 static ssize_t 3372 safe_delay_show(struct mddev *mddev, char *page) 3373 { 3374 int msec = (mddev->safemode_delay*1000)/HZ; 3375 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3376 } 3377 static ssize_t 3378 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3379 { 3380 unsigned long msec; 3381 3382 if (mddev_is_clustered(mddev)) { 3383 pr_info("md: Safemode is disabled for clustered mode\n"); 3384 return -EINVAL; 3385 } 3386 3387 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3388 return -EINVAL; 3389 if (msec == 0) 3390 mddev->safemode_delay = 0; 3391 else { 3392 unsigned long old_delay = mddev->safemode_delay; 3393 unsigned long new_delay = (msec*HZ)/1000; 3394 3395 if (new_delay == 0) 3396 new_delay = 1; 3397 mddev->safemode_delay = new_delay; 3398 if (new_delay < old_delay || old_delay == 0) 3399 mod_timer(&mddev->safemode_timer, jiffies+1); 3400 } 3401 return len; 3402 } 3403 static struct md_sysfs_entry md_safe_delay = 3404 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3405 3406 static ssize_t 3407 level_show(struct mddev *mddev, char *page) 3408 { 3409 struct md_personality *p; 3410 int ret; 3411 spin_lock(&mddev->lock); 3412 p = mddev->pers; 3413 if (p) 3414 ret = sprintf(page, "%s\n", p->name); 3415 else if (mddev->clevel[0]) 3416 ret = sprintf(page, "%s\n", mddev->clevel); 3417 else if (mddev->level != LEVEL_NONE) 3418 ret = sprintf(page, "%d\n", mddev->level); 3419 else 3420 ret = 0; 3421 spin_unlock(&mddev->lock); 3422 return ret; 3423 } 3424 3425 static ssize_t 3426 level_store(struct mddev *mddev, const char *buf, size_t len) 3427 { 3428 char clevel[16]; 3429 ssize_t rv; 3430 size_t slen = len; 3431 struct md_personality *pers, *oldpers; 3432 long level; 3433 void *priv, *oldpriv; 3434 struct md_rdev *rdev; 3435 3436 if (slen == 0 || slen >= sizeof(clevel)) 3437 return -EINVAL; 3438 3439 rv = mddev_lock(mddev); 3440 if (rv) 3441 return rv; 3442 3443 if (mddev->pers == NULL) { 3444 strncpy(mddev->clevel, buf, slen); 3445 if (mddev->clevel[slen-1] == '\n') 3446 slen--; 3447 mddev->clevel[slen] = 0; 3448 mddev->level = LEVEL_NONE; 3449 rv = len; 3450 goto out_unlock; 3451 } 3452 rv = -EROFS; 3453 if (mddev->ro) 3454 goto out_unlock; 3455 3456 /* request to change the personality. Need to ensure: 3457 * - array is not engaged in resync/recovery/reshape 3458 * - old personality can be suspended 3459 * - new personality will access other array. 3460 */ 3461 3462 rv = -EBUSY; 3463 if (mddev->sync_thread || 3464 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3465 mddev->reshape_position != MaxSector || 3466 mddev->sysfs_active) 3467 goto out_unlock; 3468 3469 rv = -EINVAL; 3470 if (!mddev->pers->quiesce) { 3471 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3472 mdname(mddev), mddev->pers->name); 3473 goto out_unlock; 3474 } 3475 3476 /* Now find the new personality */ 3477 strncpy(clevel, buf, slen); 3478 if (clevel[slen-1] == '\n') 3479 slen--; 3480 clevel[slen] = 0; 3481 if (kstrtol(clevel, 10, &level)) 3482 level = LEVEL_NONE; 3483 3484 if (request_module("md-%s", clevel) != 0) 3485 request_module("md-level-%s", clevel); 3486 spin_lock(&pers_lock); 3487 pers = find_pers(level, clevel); 3488 if (!pers || !try_module_get(pers->owner)) { 3489 spin_unlock(&pers_lock); 3490 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3491 rv = -EINVAL; 3492 goto out_unlock; 3493 } 3494 spin_unlock(&pers_lock); 3495 3496 if (pers == mddev->pers) { 3497 /* Nothing to do! */ 3498 module_put(pers->owner); 3499 rv = len; 3500 goto out_unlock; 3501 } 3502 if (!pers->takeover) { 3503 module_put(pers->owner); 3504 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3505 mdname(mddev), clevel); 3506 rv = -EINVAL; 3507 goto out_unlock; 3508 } 3509 3510 rdev_for_each(rdev, mddev) 3511 rdev->new_raid_disk = rdev->raid_disk; 3512 3513 /* ->takeover must set new_* and/or delta_disks 3514 * if it succeeds, and may set them when it fails. 3515 */ 3516 priv = pers->takeover(mddev); 3517 if (IS_ERR(priv)) { 3518 mddev->new_level = mddev->level; 3519 mddev->new_layout = mddev->layout; 3520 mddev->new_chunk_sectors = mddev->chunk_sectors; 3521 mddev->raid_disks -= mddev->delta_disks; 3522 mddev->delta_disks = 0; 3523 mddev->reshape_backwards = 0; 3524 module_put(pers->owner); 3525 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3526 mdname(mddev), clevel); 3527 rv = PTR_ERR(priv); 3528 goto out_unlock; 3529 } 3530 3531 /* Looks like we have a winner */ 3532 mddev_suspend(mddev); 3533 mddev_detach(mddev); 3534 3535 spin_lock(&mddev->lock); 3536 oldpers = mddev->pers; 3537 oldpriv = mddev->private; 3538 mddev->pers = pers; 3539 mddev->private = priv; 3540 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3541 mddev->level = mddev->new_level; 3542 mddev->layout = mddev->new_layout; 3543 mddev->chunk_sectors = mddev->new_chunk_sectors; 3544 mddev->delta_disks = 0; 3545 mddev->reshape_backwards = 0; 3546 mddev->degraded = 0; 3547 spin_unlock(&mddev->lock); 3548 3549 if (oldpers->sync_request == NULL && 3550 mddev->external) { 3551 /* We are converting from a no-redundancy array 3552 * to a redundancy array and metadata is managed 3553 * externally so we need to be sure that writes 3554 * won't block due to a need to transition 3555 * clean->dirty 3556 * until external management is started. 3557 */ 3558 mddev->in_sync = 0; 3559 mddev->safemode_delay = 0; 3560 mddev->safemode = 0; 3561 } 3562 3563 oldpers->free(mddev, oldpriv); 3564 3565 if (oldpers->sync_request == NULL && 3566 pers->sync_request != NULL) { 3567 /* need to add the md_redundancy_group */ 3568 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3569 printk(KERN_WARNING 3570 "md: cannot register extra attributes for %s\n", 3571 mdname(mddev)); 3572 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3573 } 3574 if (oldpers->sync_request != NULL && 3575 pers->sync_request == NULL) { 3576 /* need to remove the md_redundancy_group */ 3577 if (mddev->to_remove == NULL) 3578 mddev->to_remove = &md_redundancy_group; 3579 } 3580 3581 rdev_for_each(rdev, mddev) { 3582 if (rdev->raid_disk < 0) 3583 continue; 3584 if (rdev->new_raid_disk >= mddev->raid_disks) 3585 rdev->new_raid_disk = -1; 3586 if (rdev->new_raid_disk == rdev->raid_disk) 3587 continue; 3588 sysfs_unlink_rdev(mddev, rdev); 3589 } 3590 rdev_for_each(rdev, mddev) { 3591 if (rdev->raid_disk < 0) 3592 continue; 3593 if (rdev->new_raid_disk == rdev->raid_disk) 3594 continue; 3595 rdev->raid_disk = rdev->new_raid_disk; 3596 if (rdev->raid_disk < 0) 3597 clear_bit(In_sync, &rdev->flags); 3598 else { 3599 if (sysfs_link_rdev(mddev, rdev)) 3600 printk(KERN_WARNING "md: cannot register rd%d" 3601 " for %s after level change\n", 3602 rdev->raid_disk, mdname(mddev)); 3603 } 3604 } 3605 3606 if (pers->sync_request == NULL) { 3607 /* this is now an array without redundancy, so 3608 * it must always be in_sync 3609 */ 3610 mddev->in_sync = 1; 3611 del_timer_sync(&mddev->safemode_timer); 3612 } 3613 blk_set_stacking_limits(&mddev->queue->limits); 3614 pers->run(mddev); 3615 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3616 mddev_resume(mddev); 3617 if (!mddev->thread) 3618 md_update_sb(mddev, 1); 3619 sysfs_notify(&mddev->kobj, NULL, "level"); 3620 md_new_event(mddev); 3621 rv = len; 3622 out_unlock: 3623 mddev_unlock(mddev); 3624 return rv; 3625 } 3626 3627 static struct md_sysfs_entry md_level = 3628 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3629 3630 static ssize_t 3631 layout_show(struct mddev *mddev, char *page) 3632 { 3633 /* just a number, not meaningful for all levels */ 3634 if (mddev->reshape_position != MaxSector && 3635 mddev->layout != mddev->new_layout) 3636 return sprintf(page, "%d (%d)\n", 3637 mddev->new_layout, mddev->layout); 3638 return sprintf(page, "%d\n", mddev->layout); 3639 } 3640 3641 static ssize_t 3642 layout_store(struct mddev *mddev, const char *buf, size_t len) 3643 { 3644 unsigned int n; 3645 int err; 3646 3647 err = kstrtouint(buf, 10, &n); 3648 if (err < 0) 3649 return err; 3650 err = mddev_lock(mddev); 3651 if (err) 3652 return err; 3653 3654 if (mddev->pers) { 3655 if (mddev->pers->check_reshape == NULL) 3656 err = -EBUSY; 3657 else if (mddev->ro) 3658 err = -EROFS; 3659 else { 3660 mddev->new_layout = n; 3661 err = mddev->pers->check_reshape(mddev); 3662 if (err) 3663 mddev->new_layout = mddev->layout; 3664 } 3665 } else { 3666 mddev->new_layout = n; 3667 if (mddev->reshape_position == MaxSector) 3668 mddev->layout = n; 3669 } 3670 mddev_unlock(mddev); 3671 return err ?: len; 3672 } 3673 static struct md_sysfs_entry md_layout = 3674 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3675 3676 static ssize_t 3677 raid_disks_show(struct mddev *mddev, char *page) 3678 { 3679 if (mddev->raid_disks == 0) 3680 return 0; 3681 if (mddev->reshape_position != MaxSector && 3682 mddev->delta_disks != 0) 3683 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3684 mddev->raid_disks - mddev->delta_disks); 3685 return sprintf(page, "%d\n", mddev->raid_disks); 3686 } 3687 3688 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3689 3690 static ssize_t 3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3692 { 3693 unsigned int n; 3694 int err; 3695 3696 err = kstrtouint(buf, 10, &n); 3697 if (err < 0) 3698 return err; 3699 3700 err = mddev_lock(mddev); 3701 if (err) 3702 return err; 3703 if (mddev->pers) 3704 err = update_raid_disks(mddev, n); 3705 else if (mddev->reshape_position != MaxSector) { 3706 struct md_rdev *rdev; 3707 int olddisks = mddev->raid_disks - mddev->delta_disks; 3708 3709 err = -EINVAL; 3710 rdev_for_each(rdev, mddev) { 3711 if (olddisks < n && 3712 rdev->data_offset < rdev->new_data_offset) 3713 goto out_unlock; 3714 if (olddisks > n && 3715 rdev->data_offset > rdev->new_data_offset) 3716 goto out_unlock; 3717 } 3718 err = 0; 3719 mddev->delta_disks = n - olddisks; 3720 mddev->raid_disks = n; 3721 mddev->reshape_backwards = (mddev->delta_disks < 0); 3722 } else 3723 mddev->raid_disks = n; 3724 out_unlock: 3725 mddev_unlock(mddev); 3726 return err ? err : len; 3727 } 3728 static struct md_sysfs_entry md_raid_disks = 3729 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3730 3731 static ssize_t 3732 chunk_size_show(struct mddev *mddev, char *page) 3733 { 3734 if (mddev->reshape_position != MaxSector && 3735 mddev->chunk_sectors != mddev->new_chunk_sectors) 3736 return sprintf(page, "%d (%d)\n", 3737 mddev->new_chunk_sectors << 9, 3738 mddev->chunk_sectors << 9); 3739 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3740 } 3741 3742 static ssize_t 3743 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3744 { 3745 unsigned long n; 3746 int err; 3747 3748 err = kstrtoul(buf, 10, &n); 3749 if (err < 0) 3750 return err; 3751 3752 err = mddev_lock(mddev); 3753 if (err) 3754 return err; 3755 if (mddev->pers) { 3756 if (mddev->pers->check_reshape == NULL) 3757 err = -EBUSY; 3758 else if (mddev->ro) 3759 err = -EROFS; 3760 else { 3761 mddev->new_chunk_sectors = n >> 9; 3762 err = mddev->pers->check_reshape(mddev); 3763 if (err) 3764 mddev->new_chunk_sectors = mddev->chunk_sectors; 3765 } 3766 } else { 3767 mddev->new_chunk_sectors = n >> 9; 3768 if (mddev->reshape_position == MaxSector) 3769 mddev->chunk_sectors = n >> 9; 3770 } 3771 mddev_unlock(mddev); 3772 return err ?: len; 3773 } 3774 static struct md_sysfs_entry md_chunk_size = 3775 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3776 3777 static ssize_t 3778 resync_start_show(struct mddev *mddev, char *page) 3779 { 3780 if (mddev->recovery_cp == MaxSector) 3781 return sprintf(page, "none\n"); 3782 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3783 } 3784 3785 static ssize_t 3786 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3787 { 3788 unsigned long long n; 3789 int err; 3790 3791 if (cmd_match(buf, "none")) 3792 n = MaxSector; 3793 else { 3794 err = kstrtoull(buf, 10, &n); 3795 if (err < 0) 3796 return err; 3797 if (n != (sector_t)n) 3798 return -EINVAL; 3799 } 3800 3801 err = mddev_lock(mddev); 3802 if (err) 3803 return err; 3804 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3805 err = -EBUSY; 3806 3807 if (!err) { 3808 mddev->recovery_cp = n; 3809 if (mddev->pers) 3810 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3811 } 3812 mddev_unlock(mddev); 3813 return err ?: len; 3814 } 3815 static struct md_sysfs_entry md_resync_start = 3816 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 3817 resync_start_show, resync_start_store); 3818 3819 /* 3820 * The array state can be: 3821 * 3822 * clear 3823 * No devices, no size, no level 3824 * Equivalent to STOP_ARRAY ioctl 3825 * inactive 3826 * May have some settings, but array is not active 3827 * all IO results in error 3828 * When written, doesn't tear down array, but just stops it 3829 * suspended (not supported yet) 3830 * All IO requests will block. The array can be reconfigured. 3831 * Writing this, if accepted, will block until array is quiescent 3832 * readonly 3833 * no resync can happen. no superblocks get written. 3834 * write requests fail 3835 * read-auto 3836 * like readonly, but behaves like 'clean' on a write request. 3837 * 3838 * clean - no pending writes, but otherwise active. 3839 * When written to inactive array, starts without resync 3840 * If a write request arrives then 3841 * if metadata is known, mark 'dirty' and switch to 'active'. 3842 * if not known, block and switch to write-pending 3843 * If written to an active array that has pending writes, then fails. 3844 * active 3845 * fully active: IO and resync can be happening. 3846 * When written to inactive array, starts with resync 3847 * 3848 * write-pending 3849 * clean, but writes are blocked waiting for 'active' to be written. 3850 * 3851 * active-idle 3852 * like active, but no writes have been seen for a while (100msec). 3853 * 3854 */ 3855 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3856 write_pending, active_idle, bad_word}; 3857 static char *array_states[] = { 3858 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3859 "write-pending", "active-idle", NULL }; 3860 3861 static int match_word(const char *word, char **list) 3862 { 3863 int n; 3864 for (n=0; list[n]; n++) 3865 if (cmd_match(word, list[n])) 3866 break; 3867 return n; 3868 } 3869 3870 static ssize_t 3871 array_state_show(struct mddev *mddev, char *page) 3872 { 3873 enum array_state st = inactive; 3874 3875 if (mddev->pers) 3876 switch(mddev->ro) { 3877 case 1: 3878 st = readonly; 3879 break; 3880 case 2: 3881 st = read_auto; 3882 break; 3883 case 0: 3884 if (mddev->in_sync) 3885 st = clean; 3886 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3887 st = write_pending; 3888 else if (mddev->safemode) 3889 st = active_idle; 3890 else 3891 st = active; 3892 } 3893 else { 3894 if (list_empty(&mddev->disks) && 3895 mddev->raid_disks == 0 && 3896 mddev->dev_sectors == 0) 3897 st = clear; 3898 else 3899 st = inactive; 3900 } 3901 return sprintf(page, "%s\n", array_states[st]); 3902 } 3903 3904 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 3905 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 3906 static int do_md_run(struct mddev *mddev); 3907 static int restart_array(struct mddev *mddev); 3908 3909 static ssize_t 3910 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3911 { 3912 int err; 3913 enum array_state st = match_word(buf, array_states); 3914 3915 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 3916 /* don't take reconfig_mutex when toggling between 3917 * clean and active 3918 */ 3919 spin_lock(&mddev->lock); 3920 if (st == active) { 3921 restart_array(mddev); 3922 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3923 wake_up(&mddev->sb_wait); 3924 err = 0; 3925 } else /* st == clean */ { 3926 restart_array(mddev); 3927 if (atomic_read(&mddev->writes_pending) == 0) { 3928 if (mddev->in_sync == 0) { 3929 mddev->in_sync = 1; 3930 if (mddev->safemode == 1) 3931 mddev->safemode = 0; 3932 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3933 } 3934 err = 0; 3935 } else 3936 err = -EBUSY; 3937 } 3938 spin_unlock(&mddev->lock); 3939 return err ?: len; 3940 } 3941 err = mddev_lock(mddev); 3942 if (err) 3943 return err; 3944 err = -EINVAL; 3945 switch(st) { 3946 case bad_word: 3947 break; 3948 case clear: 3949 /* stopping an active array */ 3950 err = do_md_stop(mddev, 0, NULL); 3951 break; 3952 case inactive: 3953 /* stopping an active array */ 3954 if (mddev->pers) 3955 err = do_md_stop(mddev, 2, NULL); 3956 else 3957 err = 0; /* already inactive */ 3958 break; 3959 case suspended: 3960 break; /* not supported yet */ 3961 case readonly: 3962 if (mddev->pers) 3963 err = md_set_readonly(mddev, NULL); 3964 else { 3965 mddev->ro = 1; 3966 set_disk_ro(mddev->gendisk, 1); 3967 err = do_md_run(mddev); 3968 } 3969 break; 3970 case read_auto: 3971 if (mddev->pers) { 3972 if (mddev->ro == 0) 3973 err = md_set_readonly(mddev, NULL); 3974 else if (mddev->ro == 1) 3975 err = restart_array(mddev); 3976 if (err == 0) { 3977 mddev->ro = 2; 3978 set_disk_ro(mddev->gendisk, 0); 3979 } 3980 } else { 3981 mddev->ro = 2; 3982 err = do_md_run(mddev); 3983 } 3984 break; 3985 case clean: 3986 if (mddev->pers) { 3987 err = restart_array(mddev); 3988 if (err) 3989 break; 3990 spin_lock(&mddev->lock); 3991 if (atomic_read(&mddev->writes_pending) == 0) { 3992 if (mddev->in_sync == 0) { 3993 mddev->in_sync = 1; 3994 if (mddev->safemode == 1) 3995 mddev->safemode = 0; 3996 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3997 } 3998 err = 0; 3999 } else 4000 err = -EBUSY; 4001 spin_unlock(&mddev->lock); 4002 } else 4003 err = -EINVAL; 4004 break; 4005 case active: 4006 if (mddev->pers) { 4007 err = restart_array(mddev); 4008 if (err) 4009 break; 4010 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 4011 wake_up(&mddev->sb_wait); 4012 err = 0; 4013 } else { 4014 mddev->ro = 0; 4015 set_disk_ro(mddev->gendisk, 0); 4016 err = do_md_run(mddev); 4017 } 4018 break; 4019 case write_pending: 4020 case active_idle: 4021 /* these cannot be set */ 4022 break; 4023 } 4024 4025 if (!err) { 4026 if (mddev->hold_active == UNTIL_IOCTL) 4027 mddev->hold_active = 0; 4028 sysfs_notify_dirent_safe(mddev->sysfs_state); 4029 } 4030 mddev_unlock(mddev); 4031 return err ?: len; 4032 } 4033 static struct md_sysfs_entry md_array_state = 4034 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4035 4036 static ssize_t 4037 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4038 return sprintf(page, "%d\n", 4039 atomic_read(&mddev->max_corr_read_errors)); 4040 } 4041 4042 static ssize_t 4043 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4044 { 4045 unsigned int n; 4046 int rv; 4047 4048 rv = kstrtouint(buf, 10, &n); 4049 if (rv < 0) 4050 return rv; 4051 atomic_set(&mddev->max_corr_read_errors, n); 4052 return len; 4053 } 4054 4055 static struct md_sysfs_entry max_corr_read_errors = 4056 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4057 max_corrected_read_errors_store); 4058 4059 static ssize_t 4060 null_show(struct mddev *mddev, char *page) 4061 { 4062 return -EINVAL; 4063 } 4064 4065 static ssize_t 4066 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4067 { 4068 /* buf must be %d:%d\n? giving major and minor numbers */ 4069 /* The new device is added to the array. 4070 * If the array has a persistent superblock, we read the 4071 * superblock to initialise info and check validity. 4072 * Otherwise, only checking done is that in bind_rdev_to_array, 4073 * which mainly checks size. 4074 */ 4075 char *e; 4076 int major = simple_strtoul(buf, &e, 10); 4077 int minor; 4078 dev_t dev; 4079 struct md_rdev *rdev; 4080 int err; 4081 4082 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4083 return -EINVAL; 4084 minor = simple_strtoul(e+1, &e, 10); 4085 if (*e && *e != '\n') 4086 return -EINVAL; 4087 dev = MKDEV(major, minor); 4088 if (major != MAJOR(dev) || 4089 minor != MINOR(dev)) 4090 return -EOVERFLOW; 4091 4092 flush_workqueue(md_misc_wq); 4093 4094 err = mddev_lock(mddev); 4095 if (err) 4096 return err; 4097 if (mddev->persistent) { 4098 rdev = md_import_device(dev, mddev->major_version, 4099 mddev->minor_version); 4100 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4101 struct md_rdev *rdev0 4102 = list_entry(mddev->disks.next, 4103 struct md_rdev, same_set); 4104 err = super_types[mddev->major_version] 4105 .load_super(rdev, rdev0, mddev->minor_version); 4106 if (err < 0) 4107 goto out; 4108 } 4109 } else if (mddev->external) 4110 rdev = md_import_device(dev, -2, -1); 4111 else 4112 rdev = md_import_device(dev, -1, -1); 4113 4114 if (IS_ERR(rdev)) { 4115 mddev_unlock(mddev); 4116 return PTR_ERR(rdev); 4117 } 4118 err = bind_rdev_to_array(rdev, mddev); 4119 out: 4120 if (err) 4121 export_rdev(rdev); 4122 mddev_unlock(mddev); 4123 return err ? err : len; 4124 } 4125 4126 static struct md_sysfs_entry md_new_device = 4127 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4128 4129 static ssize_t 4130 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4131 { 4132 char *end; 4133 unsigned long chunk, end_chunk; 4134 int err; 4135 4136 err = mddev_lock(mddev); 4137 if (err) 4138 return err; 4139 if (!mddev->bitmap) 4140 goto out; 4141 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4142 while (*buf) { 4143 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4144 if (buf == end) break; 4145 if (*end == '-') { /* range */ 4146 buf = end + 1; 4147 end_chunk = simple_strtoul(buf, &end, 0); 4148 if (buf == end) break; 4149 } 4150 if (*end && !isspace(*end)) break; 4151 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4152 buf = skip_spaces(end); 4153 } 4154 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4155 out: 4156 mddev_unlock(mddev); 4157 return len; 4158 } 4159 4160 static struct md_sysfs_entry md_bitmap = 4161 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4162 4163 static ssize_t 4164 size_show(struct mddev *mddev, char *page) 4165 { 4166 return sprintf(page, "%llu\n", 4167 (unsigned long long)mddev->dev_sectors / 2); 4168 } 4169 4170 static int update_size(struct mddev *mddev, sector_t num_sectors); 4171 4172 static ssize_t 4173 size_store(struct mddev *mddev, const char *buf, size_t len) 4174 { 4175 /* If array is inactive, we can reduce the component size, but 4176 * not increase it (except from 0). 4177 * If array is active, we can try an on-line resize 4178 */ 4179 sector_t sectors; 4180 int err = strict_blocks_to_sectors(buf, §ors); 4181 4182 if (err < 0) 4183 return err; 4184 err = mddev_lock(mddev); 4185 if (err) 4186 return err; 4187 if (mddev->pers) { 4188 err = update_size(mddev, sectors); 4189 md_update_sb(mddev, 1); 4190 } else { 4191 if (mddev->dev_sectors == 0 || 4192 mddev->dev_sectors > sectors) 4193 mddev->dev_sectors = sectors; 4194 else 4195 err = -ENOSPC; 4196 } 4197 mddev_unlock(mddev); 4198 return err ? err : len; 4199 } 4200 4201 static struct md_sysfs_entry md_size = 4202 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4203 4204 /* Metadata version. 4205 * This is one of 4206 * 'none' for arrays with no metadata (good luck...) 4207 * 'external' for arrays with externally managed metadata, 4208 * or N.M for internally known formats 4209 */ 4210 static ssize_t 4211 metadata_show(struct mddev *mddev, char *page) 4212 { 4213 if (mddev->persistent) 4214 return sprintf(page, "%d.%d\n", 4215 mddev->major_version, mddev->minor_version); 4216 else if (mddev->external) 4217 return sprintf(page, "external:%s\n", mddev->metadata_type); 4218 else 4219 return sprintf(page, "none\n"); 4220 } 4221 4222 static ssize_t 4223 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4224 { 4225 int major, minor; 4226 char *e; 4227 int err; 4228 /* Changing the details of 'external' metadata is 4229 * always permitted. Otherwise there must be 4230 * no devices attached to the array. 4231 */ 4232 4233 err = mddev_lock(mddev); 4234 if (err) 4235 return err; 4236 err = -EBUSY; 4237 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4238 ; 4239 else if (!list_empty(&mddev->disks)) 4240 goto out_unlock; 4241 4242 err = 0; 4243 if (cmd_match(buf, "none")) { 4244 mddev->persistent = 0; 4245 mddev->external = 0; 4246 mddev->major_version = 0; 4247 mddev->minor_version = 90; 4248 goto out_unlock; 4249 } 4250 if (strncmp(buf, "external:", 9) == 0) { 4251 size_t namelen = len-9; 4252 if (namelen >= sizeof(mddev->metadata_type)) 4253 namelen = sizeof(mddev->metadata_type)-1; 4254 strncpy(mddev->metadata_type, buf+9, namelen); 4255 mddev->metadata_type[namelen] = 0; 4256 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4257 mddev->metadata_type[--namelen] = 0; 4258 mddev->persistent = 0; 4259 mddev->external = 1; 4260 mddev->major_version = 0; 4261 mddev->minor_version = 90; 4262 goto out_unlock; 4263 } 4264 major = simple_strtoul(buf, &e, 10); 4265 err = -EINVAL; 4266 if (e==buf || *e != '.') 4267 goto out_unlock; 4268 buf = e+1; 4269 minor = simple_strtoul(buf, &e, 10); 4270 if (e==buf || (*e && *e != '\n') ) 4271 goto out_unlock; 4272 err = -ENOENT; 4273 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4274 goto out_unlock; 4275 mddev->major_version = major; 4276 mddev->minor_version = minor; 4277 mddev->persistent = 1; 4278 mddev->external = 0; 4279 err = 0; 4280 out_unlock: 4281 mddev_unlock(mddev); 4282 return err ?: len; 4283 } 4284 4285 static struct md_sysfs_entry md_metadata = 4286 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4287 4288 static ssize_t 4289 action_show(struct mddev *mddev, char *page) 4290 { 4291 char *type = "idle"; 4292 unsigned long recovery = mddev->recovery; 4293 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4294 type = "frozen"; 4295 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4296 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4297 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4298 type = "reshape"; 4299 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4300 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4301 type = "resync"; 4302 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4303 type = "check"; 4304 else 4305 type = "repair"; 4306 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4307 type = "recover"; 4308 else if (mddev->reshape_position != MaxSector) 4309 type = "reshape"; 4310 } 4311 return sprintf(page, "%s\n", type); 4312 } 4313 4314 static ssize_t 4315 action_store(struct mddev *mddev, const char *page, size_t len) 4316 { 4317 if (!mddev->pers || !mddev->pers->sync_request) 4318 return -EINVAL; 4319 4320 4321 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4322 if (cmd_match(page, "frozen")) 4323 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4324 else 4325 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4326 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4327 mddev_lock(mddev) == 0) { 4328 flush_workqueue(md_misc_wq); 4329 if (mddev->sync_thread) { 4330 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4331 md_reap_sync_thread(mddev); 4332 } 4333 mddev_unlock(mddev); 4334 } 4335 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4336 return -EBUSY; 4337 else if (cmd_match(page, "resync")) 4338 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4339 else if (cmd_match(page, "recover")) { 4340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4341 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4342 } else if (cmd_match(page, "reshape")) { 4343 int err; 4344 if (mddev->pers->start_reshape == NULL) 4345 return -EINVAL; 4346 err = mddev_lock(mddev); 4347 if (!err) { 4348 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4349 err = -EBUSY; 4350 else { 4351 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4352 err = mddev->pers->start_reshape(mddev); 4353 } 4354 mddev_unlock(mddev); 4355 } 4356 if (err) 4357 return err; 4358 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4359 } else { 4360 if (cmd_match(page, "check")) 4361 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4362 else if (!cmd_match(page, "repair")) 4363 return -EINVAL; 4364 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4365 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4366 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4367 } 4368 if (mddev->ro == 2) { 4369 /* A write to sync_action is enough to justify 4370 * canceling read-auto mode 4371 */ 4372 mddev->ro = 0; 4373 md_wakeup_thread(mddev->sync_thread); 4374 } 4375 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4376 md_wakeup_thread(mddev->thread); 4377 sysfs_notify_dirent_safe(mddev->sysfs_action); 4378 return len; 4379 } 4380 4381 static struct md_sysfs_entry md_scan_mode = 4382 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4383 4384 static ssize_t 4385 last_sync_action_show(struct mddev *mddev, char *page) 4386 { 4387 return sprintf(page, "%s\n", mddev->last_sync_action); 4388 } 4389 4390 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4391 4392 static ssize_t 4393 mismatch_cnt_show(struct mddev *mddev, char *page) 4394 { 4395 return sprintf(page, "%llu\n", 4396 (unsigned long long) 4397 atomic64_read(&mddev->resync_mismatches)); 4398 } 4399 4400 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4401 4402 static ssize_t 4403 sync_min_show(struct mddev *mddev, char *page) 4404 { 4405 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4406 mddev->sync_speed_min ? "local": "system"); 4407 } 4408 4409 static ssize_t 4410 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4411 { 4412 unsigned int min; 4413 int rv; 4414 4415 if (strncmp(buf, "system", 6)==0) { 4416 min = 0; 4417 } else { 4418 rv = kstrtouint(buf, 10, &min); 4419 if (rv < 0) 4420 return rv; 4421 if (min == 0) 4422 return -EINVAL; 4423 } 4424 mddev->sync_speed_min = min; 4425 return len; 4426 } 4427 4428 static struct md_sysfs_entry md_sync_min = 4429 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4430 4431 static ssize_t 4432 sync_max_show(struct mddev *mddev, char *page) 4433 { 4434 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4435 mddev->sync_speed_max ? "local": "system"); 4436 } 4437 4438 static ssize_t 4439 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4440 { 4441 unsigned int max; 4442 int rv; 4443 4444 if (strncmp(buf, "system", 6)==0) { 4445 max = 0; 4446 } else { 4447 rv = kstrtouint(buf, 10, &max); 4448 if (rv < 0) 4449 return rv; 4450 if (max == 0) 4451 return -EINVAL; 4452 } 4453 mddev->sync_speed_max = max; 4454 return len; 4455 } 4456 4457 static struct md_sysfs_entry md_sync_max = 4458 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4459 4460 static ssize_t 4461 degraded_show(struct mddev *mddev, char *page) 4462 { 4463 return sprintf(page, "%d\n", mddev->degraded); 4464 } 4465 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4466 4467 static ssize_t 4468 sync_force_parallel_show(struct mddev *mddev, char *page) 4469 { 4470 return sprintf(page, "%d\n", mddev->parallel_resync); 4471 } 4472 4473 static ssize_t 4474 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4475 { 4476 long n; 4477 4478 if (kstrtol(buf, 10, &n)) 4479 return -EINVAL; 4480 4481 if (n != 0 && n != 1) 4482 return -EINVAL; 4483 4484 mddev->parallel_resync = n; 4485 4486 if (mddev->sync_thread) 4487 wake_up(&resync_wait); 4488 4489 return len; 4490 } 4491 4492 /* force parallel resync, even with shared block devices */ 4493 static struct md_sysfs_entry md_sync_force_parallel = 4494 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4495 sync_force_parallel_show, sync_force_parallel_store); 4496 4497 static ssize_t 4498 sync_speed_show(struct mddev *mddev, char *page) 4499 { 4500 unsigned long resync, dt, db; 4501 if (mddev->curr_resync == 0) 4502 return sprintf(page, "none\n"); 4503 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4504 dt = (jiffies - mddev->resync_mark) / HZ; 4505 if (!dt) dt++; 4506 db = resync - mddev->resync_mark_cnt; 4507 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4508 } 4509 4510 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4511 4512 static ssize_t 4513 sync_completed_show(struct mddev *mddev, char *page) 4514 { 4515 unsigned long long max_sectors, resync; 4516 4517 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4518 return sprintf(page, "none\n"); 4519 4520 if (mddev->curr_resync == 1 || 4521 mddev->curr_resync == 2) 4522 return sprintf(page, "delayed\n"); 4523 4524 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4525 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4526 max_sectors = mddev->resync_max_sectors; 4527 else 4528 max_sectors = mddev->dev_sectors; 4529 4530 resync = mddev->curr_resync_completed; 4531 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4532 } 4533 4534 static struct md_sysfs_entry md_sync_completed = 4535 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4536 4537 static ssize_t 4538 min_sync_show(struct mddev *mddev, char *page) 4539 { 4540 return sprintf(page, "%llu\n", 4541 (unsigned long long)mddev->resync_min); 4542 } 4543 static ssize_t 4544 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4545 { 4546 unsigned long long min; 4547 int err; 4548 4549 if (kstrtoull(buf, 10, &min)) 4550 return -EINVAL; 4551 4552 spin_lock(&mddev->lock); 4553 err = -EINVAL; 4554 if (min > mddev->resync_max) 4555 goto out_unlock; 4556 4557 err = -EBUSY; 4558 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4559 goto out_unlock; 4560 4561 /* Round down to multiple of 4K for safety */ 4562 mddev->resync_min = round_down(min, 8); 4563 err = 0; 4564 4565 out_unlock: 4566 spin_unlock(&mddev->lock); 4567 return err ?: len; 4568 } 4569 4570 static struct md_sysfs_entry md_min_sync = 4571 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4572 4573 static ssize_t 4574 max_sync_show(struct mddev *mddev, char *page) 4575 { 4576 if (mddev->resync_max == MaxSector) 4577 return sprintf(page, "max\n"); 4578 else 4579 return sprintf(page, "%llu\n", 4580 (unsigned long long)mddev->resync_max); 4581 } 4582 static ssize_t 4583 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4584 { 4585 int err; 4586 spin_lock(&mddev->lock); 4587 if (strncmp(buf, "max", 3) == 0) 4588 mddev->resync_max = MaxSector; 4589 else { 4590 unsigned long long max; 4591 int chunk; 4592 4593 err = -EINVAL; 4594 if (kstrtoull(buf, 10, &max)) 4595 goto out_unlock; 4596 if (max < mddev->resync_min) 4597 goto out_unlock; 4598 4599 err = -EBUSY; 4600 if (max < mddev->resync_max && 4601 mddev->ro == 0 && 4602 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4603 goto out_unlock; 4604 4605 /* Must be a multiple of chunk_size */ 4606 chunk = mddev->chunk_sectors; 4607 if (chunk) { 4608 sector_t temp = max; 4609 4610 err = -EINVAL; 4611 if (sector_div(temp, chunk)) 4612 goto out_unlock; 4613 } 4614 mddev->resync_max = max; 4615 } 4616 wake_up(&mddev->recovery_wait); 4617 err = 0; 4618 out_unlock: 4619 spin_unlock(&mddev->lock); 4620 return err ?: len; 4621 } 4622 4623 static struct md_sysfs_entry md_max_sync = 4624 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4625 4626 static ssize_t 4627 suspend_lo_show(struct mddev *mddev, char *page) 4628 { 4629 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4630 } 4631 4632 static ssize_t 4633 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4634 { 4635 unsigned long long old, new; 4636 int err; 4637 4638 err = kstrtoull(buf, 10, &new); 4639 if (err < 0) 4640 return err; 4641 if (new != (sector_t)new) 4642 return -EINVAL; 4643 4644 err = mddev_lock(mddev); 4645 if (err) 4646 return err; 4647 err = -EINVAL; 4648 if (mddev->pers == NULL || 4649 mddev->pers->quiesce == NULL) 4650 goto unlock; 4651 old = mddev->suspend_lo; 4652 mddev->suspend_lo = new; 4653 if (new >= old) 4654 /* Shrinking suspended region */ 4655 mddev->pers->quiesce(mddev, 2); 4656 else { 4657 /* Expanding suspended region - need to wait */ 4658 mddev->pers->quiesce(mddev, 1); 4659 mddev->pers->quiesce(mddev, 0); 4660 } 4661 err = 0; 4662 unlock: 4663 mddev_unlock(mddev); 4664 return err ?: len; 4665 } 4666 static struct md_sysfs_entry md_suspend_lo = 4667 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4668 4669 static ssize_t 4670 suspend_hi_show(struct mddev *mddev, char *page) 4671 { 4672 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4673 } 4674 4675 static ssize_t 4676 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4677 { 4678 unsigned long long old, new; 4679 int err; 4680 4681 err = kstrtoull(buf, 10, &new); 4682 if (err < 0) 4683 return err; 4684 if (new != (sector_t)new) 4685 return -EINVAL; 4686 4687 err = mddev_lock(mddev); 4688 if (err) 4689 return err; 4690 err = -EINVAL; 4691 if (mddev->pers == NULL || 4692 mddev->pers->quiesce == NULL) 4693 goto unlock; 4694 old = mddev->suspend_hi; 4695 mddev->suspend_hi = new; 4696 if (new <= old) 4697 /* Shrinking suspended region */ 4698 mddev->pers->quiesce(mddev, 2); 4699 else { 4700 /* Expanding suspended region - need to wait */ 4701 mddev->pers->quiesce(mddev, 1); 4702 mddev->pers->quiesce(mddev, 0); 4703 } 4704 err = 0; 4705 unlock: 4706 mddev_unlock(mddev); 4707 return err ?: len; 4708 } 4709 static struct md_sysfs_entry md_suspend_hi = 4710 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4711 4712 static ssize_t 4713 reshape_position_show(struct mddev *mddev, char *page) 4714 { 4715 if (mddev->reshape_position != MaxSector) 4716 return sprintf(page, "%llu\n", 4717 (unsigned long long)mddev->reshape_position); 4718 strcpy(page, "none\n"); 4719 return 5; 4720 } 4721 4722 static ssize_t 4723 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4724 { 4725 struct md_rdev *rdev; 4726 unsigned long long new; 4727 int err; 4728 4729 err = kstrtoull(buf, 10, &new); 4730 if (err < 0) 4731 return err; 4732 if (new != (sector_t)new) 4733 return -EINVAL; 4734 err = mddev_lock(mddev); 4735 if (err) 4736 return err; 4737 err = -EBUSY; 4738 if (mddev->pers) 4739 goto unlock; 4740 mddev->reshape_position = new; 4741 mddev->delta_disks = 0; 4742 mddev->reshape_backwards = 0; 4743 mddev->new_level = mddev->level; 4744 mddev->new_layout = mddev->layout; 4745 mddev->new_chunk_sectors = mddev->chunk_sectors; 4746 rdev_for_each(rdev, mddev) 4747 rdev->new_data_offset = rdev->data_offset; 4748 err = 0; 4749 unlock: 4750 mddev_unlock(mddev); 4751 return err ?: len; 4752 } 4753 4754 static struct md_sysfs_entry md_reshape_position = 4755 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4756 reshape_position_store); 4757 4758 static ssize_t 4759 reshape_direction_show(struct mddev *mddev, char *page) 4760 { 4761 return sprintf(page, "%s\n", 4762 mddev->reshape_backwards ? "backwards" : "forwards"); 4763 } 4764 4765 static ssize_t 4766 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4767 { 4768 int backwards = 0; 4769 int err; 4770 4771 if (cmd_match(buf, "forwards")) 4772 backwards = 0; 4773 else if (cmd_match(buf, "backwards")) 4774 backwards = 1; 4775 else 4776 return -EINVAL; 4777 if (mddev->reshape_backwards == backwards) 4778 return len; 4779 4780 err = mddev_lock(mddev); 4781 if (err) 4782 return err; 4783 /* check if we are allowed to change */ 4784 if (mddev->delta_disks) 4785 err = -EBUSY; 4786 else if (mddev->persistent && 4787 mddev->major_version == 0) 4788 err = -EINVAL; 4789 else 4790 mddev->reshape_backwards = backwards; 4791 mddev_unlock(mddev); 4792 return err ?: len; 4793 } 4794 4795 static struct md_sysfs_entry md_reshape_direction = 4796 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4797 reshape_direction_store); 4798 4799 static ssize_t 4800 array_size_show(struct mddev *mddev, char *page) 4801 { 4802 if (mddev->external_size) 4803 return sprintf(page, "%llu\n", 4804 (unsigned long long)mddev->array_sectors/2); 4805 else 4806 return sprintf(page, "default\n"); 4807 } 4808 4809 static ssize_t 4810 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4811 { 4812 sector_t sectors; 4813 int err; 4814 4815 err = mddev_lock(mddev); 4816 if (err) 4817 return err; 4818 4819 if (strncmp(buf, "default", 7) == 0) { 4820 if (mddev->pers) 4821 sectors = mddev->pers->size(mddev, 0, 0); 4822 else 4823 sectors = mddev->array_sectors; 4824 4825 mddev->external_size = 0; 4826 } else { 4827 if (strict_blocks_to_sectors(buf, §ors) < 0) 4828 err = -EINVAL; 4829 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4830 err = -E2BIG; 4831 else 4832 mddev->external_size = 1; 4833 } 4834 4835 if (!err) { 4836 mddev->array_sectors = sectors; 4837 if (mddev->pers) { 4838 set_capacity(mddev->gendisk, mddev->array_sectors); 4839 revalidate_disk(mddev->gendisk); 4840 } 4841 } 4842 mddev_unlock(mddev); 4843 return err ?: len; 4844 } 4845 4846 static struct md_sysfs_entry md_array_size = 4847 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4848 array_size_store); 4849 4850 static struct attribute *md_default_attrs[] = { 4851 &md_level.attr, 4852 &md_layout.attr, 4853 &md_raid_disks.attr, 4854 &md_chunk_size.attr, 4855 &md_size.attr, 4856 &md_resync_start.attr, 4857 &md_metadata.attr, 4858 &md_new_device.attr, 4859 &md_safe_delay.attr, 4860 &md_array_state.attr, 4861 &md_reshape_position.attr, 4862 &md_reshape_direction.attr, 4863 &md_array_size.attr, 4864 &max_corr_read_errors.attr, 4865 NULL, 4866 }; 4867 4868 static struct attribute *md_redundancy_attrs[] = { 4869 &md_scan_mode.attr, 4870 &md_last_scan_mode.attr, 4871 &md_mismatches.attr, 4872 &md_sync_min.attr, 4873 &md_sync_max.attr, 4874 &md_sync_speed.attr, 4875 &md_sync_force_parallel.attr, 4876 &md_sync_completed.attr, 4877 &md_min_sync.attr, 4878 &md_max_sync.attr, 4879 &md_suspend_lo.attr, 4880 &md_suspend_hi.attr, 4881 &md_bitmap.attr, 4882 &md_degraded.attr, 4883 NULL, 4884 }; 4885 static struct attribute_group md_redundancy_group = { 4886 .name = NULL, 4887 .attrs = md_redundancy_attrs, 4888 }; 4889 4890 static ssize_t 4891 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4892 { 4893 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4894 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4895 ssize_t rv; 4896 4897 if (!entry->show) 4898 return -EIO; 4899 spin_lock(&all_mddevs_lock); 4900 if (list_empty(&mddev->all_mddevs)) { 4901 spin_unlock(&all_mddevs_lock); 4902 return -EBUSY; 4903 } 4904 mddev_get(mddev); 4905 spin_unlock(&all_mddevs_lock); 4906 4907 rv = entry->show(mddev, page); 4908 mddev_put(mddev); 4909 return rv; 4910 } 4911 4912 static ssize_t 4913 md_attr_store(struct kobject *kobj, struct attribute *attr, 4914 const char *page, size_t length) 4915 { 4916 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4917 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4918 ssize_t rv; 4919 4920 if (!entry->store) 4921 return -EIO; 4922 if (!capable(CAP_SYS_ADMIN)) 4923 return -EACCES; 4924 spin_lock(&all_mddevs_lock); 4925 if (list_empty(&mddev->all_mddevs)) { 4926 spin_unlock(&all_mddevs_lock); 4927 return -EBUSY; 4928 } 4929 mddev_get(mddev); 4930 spin_unlock(&all_mddevs_lock); 4931 rv = entry->store(mddev, page, length); 4932 mddev_put(mddev); 4933 return rv; 4934 } 4935 4936 static void md_free(struct kobject *ko) 4937 { 4938 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4939 4940 if (mddev->sysfs_state) 4941 sysfs_put(mddev->sysfs_state); 4942 4943 if (mddev->queue) 4944 blk_cleanup_queue(mddev->queue); 4945 if (mddev->gendisk) { 4946 del_gendisk(mddev->gendisk); 4947 put_disk(mddev->gendisk); 4948 } 4949 4950 kfree(mddev); 4951 } 4952 4953 static const struct sysfs_ops md_sysfs_ops = { 4954 .show = md_attr_show, 4955 .store = md_attr_store, 4956 }; 4957 static struct kobj_type md_ktype = { 4958 .release = md_free, 4959 .sysfs_ops = &md_sysfs_ops, 4960 .default_attrs = md_default_attrs, 4961 }; 4962 4963 int mdp_major = 0; 4964 4965 static void mddev_delayed_delete(struct work_struct *ws) 4966 { 4967 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4968 4969 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4970 kobject_del(&mddev->kobj); 4971 kobject_put(&mddev->kobj); 4972 } 4973 4974 static int md_alloc(dev_t dev, char *name) 4975 { 4976 static DEFINE_MUTEX(disks_mutex); 4977 struct mddev *mddev = mddev_find(dev); 4978 struct gendisk *disk; 4979 int partitioned; 4980 int shift; 4981 int unit; 4982 int error; 4983 4984 if (!mddev) 4985 return -ENODEV; 4986 4987 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4988 shift = partitioned ? MdpMinorShift : 0; 4989 unit = MINOR(mddev->unit) >> shift; 4990 4991 /* wait for any previous instance of this device to be 4992 * completely removed (mddev_delayed_delete). 4993 */ 4994 flush_workqueue(md_misc_wq); 4995 4996 mutex_lock(&disks_mutex); 4997 error = -EEXIST; 4998 if (mddev->gendisk) 4999 goto abort; 5000 5001 if (name) { 5002 /* Need to ensure that 'name' is not a duplicate. 5003 */ 5004 struct mddev *mddev2; 5005 spin_lock(&all_mddevs_lock); 5006 5007 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5008 if (mddev2->gendisk && 5009 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5010 spin_unlock(&all_mddevs_lock); 5011 goto abort; 5012 } 5013 spin_unlock(&all_mddevs_lock); 5014 } 5015 5016 error = -ENOMEM; 5017 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5018 if (!mddev->queue) 5019 goto abort; 5020 mddev->queue->queuedata = mddev; 5021 5022 blk_queue_make_request(mddev->queue, md_make_request); 5023 blk_set_stacking_limits(&mddev->queue->limits); 5024 5025 disk = alloc_disk(1 << shift); 5026 if (!disk) { 5027 blk_cleanup_queue(mddev->queue); 5028 mddev->queue = NULL; 5029 goto abort; 5030 } 5031 disk->major = MAJOR(mddev->unit); 5032 disk->first_minor = unit << shift; 5033 if (name) 5034 strcpy(disk->disk_name, name); 5035 else if (partitioned) 5036 sprintf(disk->disk_name, "md_d%d", unit); 5037 else 5038 sprintf(disk->disk_name, "md%d", unit); 5039 disk->fops = &md_fops; 5040 disk->private_data = mddev; 5041 disk->queue = mddev->queue; 5042 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 5043 /* Allow extended partitions. This makes the 5044 * 'mdp' device redundant, but we can't really 5045 * remove it now. 5046 */ 5047 disk->flags |= GENHD_FL_EXT_DEVT; 5048 mddev->gendisk = disk; 5049 /* As soon as we call add_disk(), another thread could get 5050 * through to md_open, so make sure it doesn't get too far 5051 */ 5052 mutex_lock(&mddev->open_mutex); 5053 add_disk(disk); 5054 5055 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5056 &disk_to_dev(disk)->kobj, "%s", "md"); 5057 if (error) { 5058 /* This isn't possible, but as kobject_init_and_add is marked 5059 * __must_check, we must do something with the result 5060 */ 5061 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 5062 disk->disk_name); 5063 error = 0; 5064 } 5065 if (mddev->kobj.sd && 5066 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5067 printk(KERN_DEBUG "pointless warning\n"); 5068 mutex_unlock(&mddev->open_mutex); 5069 abort: 5070 mutex_unlock(&disks_mutex); 5071 if (!error && mddev->kobj.sd) { 5072 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5073 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5074 } 5075 mddev_put(mddev); 5076 return error; 5077 } 5078 5079 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5080 { 5081 md_alloc(dev, NULL); 5082 return NULL; 5083 } 5084 5085 static int add_named_array(const char *val, struct kernel_param *kp) 5086 { 5087 /* val must be "md_*" where * is not all digits. 5088 * We allocate an array with a large free minor number, and 5089 * set the name to val. val must not already be an active name. 5090 */ 5091 int len = strlen(val); 5092 char buf[DISK_NAME_LEN]; 5093 5094 while (len && val[len-1] == '\n') 5095 len--; 5096 if (len >= DISK_NAME_LEN) 5097 return -E2BIG; 5098 strlcpy(buf, val, len+1); 5099 if (strncmp(buf, "md_", 3) != 0) 5100 return -EINVAL; 5101 return md_alloc(0, buf); 5102 } 5103 5104 static void md_safemode_timeout(unsigned long data) 5105 { 5106 struct mddev *mddev = (struct mddev *) data; 5107 5108 if (!atomic_read(&mddev->writes_pending)) { 5109 mddev->safemode = 1; 5110 if (mddev->external) 5111 sysfs_notify_dirent_safe(mddev->sysfs_state); 5112 } 5113 md_wakeup_thread(mddev->thread); 5114 } 5115 5116 static int start_dirty_degraded; 5117 5118 int md_run(struct mddev *mddev) 5119 { 5120 int err; 5121 struct md_rdev *rdev; 5122 struct md_personality *pers; 5123 5124 if (list_empty(&mddev->disks)) 5125 /* cannot run an array with no devices.. */ 5126 return -EINVAL; 5127 5128 if (mddev->pers) 5129 return -EBUSY; 5130 /* Cannot run until previous stop completes properly */ 5131 if (mddev->sysfs_active) 5132 return -EBUSY; 5133 5134 /* 5135 * Analyze all RAID superblock(s) 5136 */ 5137 if (!mddev->raid_disks) { 5138 if (!mddev->persistent) 5139 return -EINVAL; 5140 analyze_sbs(mddev); 5141 } 5142 5143 if (mddev->level != LEVEL_NONE) 5144 request_module("md-level-%d", mddev->level); 5145 else if (mddev->clevel[0]) 5146 request_module("md-%s", mddev->clevel); 5147 5148 /* 5149 * Drop all container device buffers, from now on 5150 * the only valid external interface is through the md 5151 * device. 5152 */ 5153 rdev_for_each(rdev, mddev) { 5154 if (test_bit(Faulty, &rdev->flags)) 5155 continue; 5156 sync_blockdev(rdev->bdev); 5157 invalidate_bdev(rdev->bdev); 5158 5159 /* perform some consistency tests on the device. 5160 * We don't want the data to overlap the metadata, 5161 * Internal Bitmap issues have been handled elsewhere. 5162 */ 5163 if (rdev->meta_bdev) { 5164 /* Nothing to check */; 5165 } else if (rdev->data_offset < rdev->sb_start) { 5166 if (mddev->dev_sectors && 5167 rdev->data_offset + mddev->dev_sectors 5168 > rdev->sb_start) { 5169 printk("md: %s: data overlaps metadata\n", 5170 mdname(mddev)); 5171 return -EINVAL; 5172 } 5173 } else { 5174 if (rdev->sb_start + rdev->sb_size/512 5175 > rdev->data_offset) { 5176 printk("md: %s: metadata overlaps data\n", 5177 mdname(mddev)); 5178 return -EINVAL; 5179 } 5180 } 5181 sysfs_notify_dirent_safe(rdev->sysfs_state); 5182 } 5183 5184 if (mddev->bio_set == NULL) 5185 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5186 5187 spin_lock(&pers_lock); 5188 pers = find_pers(mddev->level, mddev->clevel); 5189 if (!pers || !try_module_get(pers->owner)) { 5190 spin_unlock(&pers_lock); 5191 if (mddev->level != LEVEL_NONE) 5192 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5193 mddev->level); 5194 else 5195 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5196 mddev->clevel); 5197 return -EINVAL; 5198 } 5199 spin_unlock(&pers_lock); 5200 if (mddev->level != pers->level) { 5201 mddev->level = pers->level; 5202 mddev->new_level = pers->level; 5203 } 5204 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5205 5206 if (mddev->reshape_position != MaxSector && 5207 pers->start_reshape == NULL) { 5208 /* This personality cannot handle reshaping... */ 5209 module_put(pers->owner); 5210 return -EINVAL; 5211 } 5212 5213 if (pers->sync_request) { 5214 /* Warn if this is a potentially silly 5215 * configuration. 5216 */ 5217 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5218 struct md_rdev *rdev2; 5219 int warned = 0; 5220 5221 rdev_for_each(rdev, mddev) 5222 rdev_for_each(rdev2, mddev) { 5223 if (rdev < rdev2 && 5224 rdev->bdev->bd_contains == 5225 rdev2->bdev->bd_contains) { 5226 printk(KERN_WARNING 5227 "%s: WARNING: %s appears to be" 5228 " on the same physical disk as" 5229 " %s.\n", 5230 mdname(mddev), 5231 bdevname(rdev->bdev,b), 5232 bdevname(rdev2->bdev,b2)); 5233 warned = 1; 5234 } 5235 } 5236 5237 if (warned) 5238 printk(KERN_WARNING 5239 "True protection against single-disk" 5240 " failure might be compromised.\n"); 5241 } 5242 5243 mddev->recovery = 0; 5244 /* may be over-ridden by personality */ 5245 mddev->resync_max_sectors = mddev->dev_sectors; 5246 5247 mddev->ok_start_degraded = start_dirty_degraded; 5248 5249 if (start_readonly && mddev->ro == 0) 5250 mddev->ro = 2; /* read-only, but switch on first write */ 5251 5252 err = pers->run(mddev); 5253 if (err) 5254 printk(KERN_ERR "md: pers->run() failed ...\n"); 5255 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5256 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5257 " but 'external_size' not in effect?\n", __func__); 5258 printk(KERN_ERR 5259 "md: invalid array_size %llu > default size %llu\n", 5260 (unsigned long long)mddev->array_sectors / 2, 5261 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5262 err = -EINVAL; 5263 } 5264 if (err == 0 && pers->sync_request && 5265 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5266 struct bitmap *bitmap; 5267 5268 bitmap = bitmap_create(mddev, -1); 5269 if (IS_ERR(bitmap)) { 5270 err = PTR_ERR(bitmap); 5271 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5272 mdname(mddev), err); 5273 } else 5274 mddev->bitmap = bitmap; 5275 5276 } 5277 if (err) { 5278 mddev_detach(mddev); 5279 if (mddev->private) 5280 pers->free(mddev, mddev->private); 5281 mddev->private = NULL; 5282 module_put(pers->owner); 5283 bitmap_destroy(mddev); 5284 return err; 5285 } 5286 if (mddev->queue) { 5287 mddev->queue->backing_dev_info.congested_data = mddev; 5288 mddev->queue->backing_dev_info.congested_fn = md_congested; 5289 } 5290 if (pers->sync_request) { 5291 if (mddev->kobj.sd && 5292 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5293 printk(KERN_WARNING 5294 "md: cannot register extra attributes for %s\n", 5295 mdname(mddev)); 5296 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5297 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5298 mddev->ro = 0; 5299 5300 atomic_set(&mddev->writes_pending,0); 5301 atomic_set(&mddev->max_corr_read_errors, 5302 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5303 mddev->safemode = 0; 5304 if (mddev_is_clustered(mddev)) 5305 mddev->safemode_delay = 0; 5306 else 5307 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5308 mddev->in_sync = 1; 5309 smp_wmb(); 5310 spin_lock(&mddev->lock); 5311 mddev->pers = pers; 5312 spin_unlock(&mddev->lock); 5313 rdev_for_each(rdev, mddev) 5314 if (rdev->raid_disk >= 0) 5315 if (sysfs_link_rdev(mddev, rdev)) 5316 /* failure here is OK */; 5317 5318 if (mddev->degraded && !mddev->ro) 5319 /* This ensures that recovering status is reported immediately 5320 * via sysfs - until a lack of spares is confirmed. 5321 */ 5322 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5324 5325 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5326 md_update_sb(mddev, 0); 5327 5328 md_new_event(mddev); 5329 sysfs_notify_dirent_safe(mddev->sysfs_state); 5330 sysfs_notify_dirent_safe(mddev->sysfs_action); 5331 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5332 return 0; 5333 } 5334 EXPORT_SYMBOL_GPL(md_run); 5335 5336 static int do_md_run(struct mddev *mddev) 5337 { 5338 int err; 5339 5340 err = md_run(mddev); 5341 if (err) 5342 goto out; 5343 err = bitmap_load(mddev); 5344 if (err) { 5345 bitmap_destroy(mddev); 5346 goto out; 5347 } 5348 5349 if (mddev_is_clustered(mddev)) 5350 md_allow_write(mddev); 5351 5352 md_wakeup_thread(mddev->thread); 5353 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5354 5355 set_capacity(mddev->gendisk, mddev->array_sectors); 5356 revalidate_disk(mddev->gendisk); 5357 mddev->changed = 1; 5358 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5359 out: 5360 return err; 5361 } 5362 5363 static int restart_array(struct mddev *mddev) 5364 { 5365 struct gendisk *disk = mddev->gendisk; 5366 5367 /* Complain if it has no devices */ 5368 if (list_empty(&mddev->disks)) 5369 return -ENXIO; 5370 if (!mddev->pers) 5371 return -EINVAL; 5372 if (!mddev->ro) 5373 return -EBUSY; 5374 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5375 struct md_rdev *rdev; 5376 bool has_journal = false; 5377 5378 rcu_read_lock(); 5379 rdev_for_each_rcu(rdev, mddev) { 5380 if (test_bit(Journal, &rdev->flags) && 5381 !test_bit(Faulty, &rdev->flags)) { 5382 has_journal = true; 5383 break; 5384 } 5385 } 5386 rcu_read_unlock(); 5387 5388 /* Don't restart rw with journal missing/faulty */ 5389 if (!has_journal) 5390 return -EINVAL; 5391 } 5392 5393 mddev->safemode = 0; 5394 mddev->ro = 0; 5395 set_disk_ro(disk, 0); 5396 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5397 mdname(mddev)); 5398 /* Kick recovery or resync if necessary */ 5399 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5400 md_wakeup_thread(mddev->thread); 5401 md_wakeup_thread(mddev->sync_thread); 5402 sysfs_notify_dirent_safe(mddev->sysfs_state); 5403 return 0; 5404 } 5405 5406 static void md_clean(struct mddev *mddev) 5407 { 5408 mddev->array_sectors = 0; 5409 mddev->external_size = 0; 5410 mddev->dev_sectors = 0; 5411 mddev->raid_disks = 0; 5412 mddev->recovery_cp = 0; 5413 mddev->resync_min = 0; 5414 mddev->resync_max = MaxSector; 5415 mddev->reshape_position = MaxSector; 5416 mddev->external = 0; 5417 mddev->persistent = 0; 5418 mddev->level = LEVEL_NONE; 5419 mddev->clevel[0] = 0; 5420 mddev->flags = 0; 5421 mddev->ro = 0; 5422 mddev->metadata_type[0] = 0; 5423 mddev->chunk_sectors = 0; 5424 mddev->ctime = mddev->utime = 0; 5425 mddev->layout = 0; 5426 mddev->max_disks = 0; 5427 mddev->events = 0; 5428 mddev->can_decrease_events = 0; 5429 mddev->delta_disks = 0; 5430 mddev->reshape_backwards = 0; 5431 mddev->new_level = LEVEL_NONE; 5432 mddev->new_layout = 0; 5433 mddev->new_chunk_sectors = 0; 5434 mddev->curr_resync = 0; 5435 atomic64_set(&mddev->resync_mismatches, 0); 5436 mddev->suspend_lo = mddev->suspend_hi = 0; 5437 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5438 mddev->recovery = 0; 5439 mddev->in_sync = 0; 5440 mddev->changed = 0; 5441 mddev->degraded = 0; 5442 mddev->safemode = 0; 5443 mddev->private = NULL; 5444 mddev->bitmap_info.offset = 0; 5445 mddev->bitmap_info.default_offset = 0; 5446 mddev->bitmap_info.default_space = 0; 5447 mddev->bitmap_info.chunksize = 0; 5448 mddev->bitmap_info.daemon_sleep = 0; 5449 mddev->bitmap_info.max_write_behind = 0; 5450 } 5451 5452 static void __md_stop_writes(struct mddev *mddev) 5453 { 5454 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5455 flush_workqueue(md_misc_wq); 5456 if (mddev->sync_thread) { 5457 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5458 md_reap_sync_thread(mddev); 5459 } 5460 5461 del_timer_sync(&mddev->safemode_timer); 5462 5463 bitmap_flush(mddev); 5464 md_super_wait(mddev); 5465 5466 if (mddev->ro == 0 && 5467 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5468 (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5469 /* mark array as shutdown cleanly */ 5470 if (!mddev_is_clustered(mddev)) 5471 mddev->in_sync = 1; 5472 md_update_sb(mddev, 1); 5473 } 5474 } 5475 5476 void md_stop_writes(struct mddev *mddev) 5477 { 5478 mddev_lock_nointr(mddev); 5479 __md_stop_writes(mddev); 5480 mddev_unlock(mddev); 5481 } 5482 EXPORT_SYMBOL_GPL(md_stop_writes); 5483 5484 static void mddev_detach(struct mddev *mddev) 5485 { 5486 struct bitmap *bitmap = mddev->bitmap; 5487 /* wait for behind writes to complete */ 5488 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) { 5489 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n", 5490 mdname(mddev)); 5491 /* need to kick something here to make sure I/O goes? */ 5492 wait_event(bitmap->behind_wait, 5493 atomic_read(&bitmap->behind_writes) == 0); 5494 } 5495 if (mddev->pers && mddev->pers->quiesce) { 5496 mddev->pers->quiesce(mddev, 1); 5497 mddev->pers->quiesce(mddev, 0); 5498 } 5499 md_unregister_thread(&mddev->thread); 5500 if (mddev->queue) 5501 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5502 } 5503 5504 static void __md_stop(struct mddev *mddev) 5505 { 5506 struct md_personality *pers = mddev->pers; 5507 mddev_detach(mddev); 5508 /* Ensure ->event_work is done */ 5509 flush_workqueue(md_misc_wq); 5510 spin_lock(&mddev->lock); 5511 mddev->pers = NULL; 5512 spin_unlock(&mddev->lock); 5513 pers->free(mddev, mddev->private); 5514 mddev->private = NULL; 5515 if (pers->sync_request && mddev->to_remove == NULL) 5516 mddev->to_remove = &md_redundancy_group; 5517 module_put(pers->owner); 5518 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5519 } 5520 5521 void md_stop(struct mddev *mddev) 5522 { 5523 /* stop the array and free an attached data structures. 5524 * This is called from dm-raid 5525 */ 5526 __md_stop(mddev); 5527 bitmap_destroy(mddev); 5528 if (mddev->bio_set) 5529 bioset_free(mddev->bio_set); 5530 } 5531 5532 EXPORT_SYMBOL_GPL(md_stop); 5533 5534 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5535 { 5536 int err = 0; 5537 int did_freeze = 0; 5538 5539 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5540 did_freeze = 1; 5541 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5542 md_wakeup_thread(mddev->thread); 5543 } 5544 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5545 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5546 if (mddev->sync_thread) 5547 /* Thread might be blocked waiting for metadata update 5548 * which will now never happen */ 5549 wake_up_process(mddev->sync_thread->tsk); 5550 5551 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags)) 5552 return -EBUSY; 5553 mddev_unlock(mddev); 5554 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5555 &mddev->recovery)); 5556 wait_event(mddev->sb_wait, 5557 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 5558 mddev_lock_nointr(mddev); 5559 5560 mutex_lock(&mddev->open_mutex); 5561 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5562 mddev->sync_thread || 5563 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5564 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5565 printk("md: %s still in use.\n",mdname(mddev)); 5566 if (did_freeze) { 5567 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5569 md_wakeup_thread(mddev->thread); 5570 } 5571 err = -EBUSY; 5572 goto out; 5573 } 5574 if (mddev->pers) { 5575 __md_stop_writes(mddev); 5576 5577 err = -ENXIO; 5578 if (mddev->ro==1) 5579 goto out; 5580 mddev->ro = 1; 5581 set_disk_ro(mddev->gendisk, 1); 5582 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5583 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5584 md_wakeup_thread(mddev->thread); 5585 sysfs_notify_dirent_safe(mddev->sysfs_state); 5586 err = 0; 5587 } 5588 out: 5589 mutex_unlock(&mddev->open_mutex); 5590 return err; 5591 } 5592 5593 /* mode: 5594 * 0 - completely stop and dis-assemble array 5595 * 2 - stop but do not disassemble array 5596 */ 5597 static int do_md_stop(struct mddev *mddev, int mode, 5598 struct block_device *bdev) 5599 { 5600 struct gendisk *disk = mddev->gendisk; 5601 struct md_rdev *rdev; 5602 int did_freeze = 0; 5603 5604 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5605 did_freeze = 1; 5606 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5607 md_wakeup_thread(mddev->thread); 5608 } 5609 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5610 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5611 if (mddev->sync_thread) 5612 /* Thread might be blocked waiting for metadata update 5613 * which will now never happen */ 5614 wake_up_process(mddev->sync_thread->tsk); 5615 5616 mddev_unlock(mddev); 5617 wait_event(resync_wait, (mddev->sync_thread == NULL && 5618 !test_bit(MD_RECOVERY_RUNNING, 5619 &mddev->recovery))); 5620 mddev_lock_nointr(mddev); 5621 5622 mutex_lock(&mddev->open_mutex); 5623 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5624 mddev->sysfs_active || 5625 mddev->sync_thread || 5626 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 5627 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5628 printk("md: %s still in use.\n",mdname(mddev)); 5629 mutex_unlock(&mddev->open_mutex); 5630 if (did_freeze) { 5631 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5633 md_wakeup_thread(mddev->thread); 5634 } 5635 return -EBUSY; 5636 } 5637 if (mddev->pers) { 5638 if (mddev->ro) 5639 set_disk_ro(disk, 0); 5640 5641 __md_stop_writes(mddev); 5642 __md_stop(mddev); 5643 mddev->queue->backing_dev_info.congested_fn = NULL; 5644 5645 /* tell userspace to handle 'inactive' */ 5646 sysfs_notify_dirent_safe(mddev->sysfs_state); 5647 5648 rdev_for_each(rdev, mddev) 5649 if (rdev->raid_disk >= 0) 5650 sysfs_unlink_rdev(mddev, rdev); 5651 5652 set_capacity(disk, 0); 5653 mutex_unlock(&mddev->open_mutex); 5654 mddev->changed = 1; 5655 revalidate_disk(disk); 5656 5657 if (mddev->ro) 5658 mddev->ro = 0; 5659 } else 5660 mutex_unlock(&mddev->open_mutex); 5661 /* 5662 * Free resources if final stop 5663 */ 5664 if (mode == 0) { 5665 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5666 5667 bitmap_destroy(mddev); 5668 if (mddev->bitmap_info.file) { 5669 struct file *f = mddev->bitmap_info.file; 5670 spin_lock(&mddev->lock); 5671 mddev->bitmap_info.file = NULL; 5672 spin_unlock(&mddev->lock); 5673 fput(f); 5674 } 5675 mddev->bitmap_info.offset = 0; 5676 5677 export_array(mddev); 5678 5679 md_clean(mddev); 5680 if (mddev->hold_active == UNTIL_STOP) 5681 mddev->hold_active = 0; 5682 } 5683 md_new_event(mddev); 5684 sysfs_notify_dirent_safe(mddev->sysfs_state); 5685 return 0; 5686 } 5687 5688 #ifndef MODULE 5689 static void autorun_array(struct mddev *mddev) 5690 { 5691 struct md_rdev *rdev; 5692 int err; 5693 5694 if (list_empty(&mddev->disks)) 5695 return; 5696 5697 printk(KERN_INFO "md: running: "); 5698 5699 rdev_for_each(rdev, mddev) { 5700 char b[BDEVNAME_SIZE]; 5701 printk("<%s>", bdevname(rdev->bdev,b)); 5702 } 5703 printk("\n"); 5704 5705 err = do_md_run(mddev); 5706 if (err) { 5707 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5708 do_md_stop(mddev, 0, NULL); 5709 } 5710 } 5711 5712 /* 5713 * lets try to run arrays based on all disks that have arrived 5714 * until now. (those are in pending_raid_disks) 5715 * 5716 * the method: pick the first pending disk, collect all disks with 5717 * the same UUID, remove all from the pending list and put them into 5718 * the 'same_array' list. Then order this list based on superblock 5719 * update time (freshest comes first), kick out 'old' disks and 5720 * compare superblocks. If everything's fine then run it. 5721 * 5722 * If "unit" is allocated, then bump its reference count 5723 */ 5724 static void autorun_devices(int part) 5725 { 5726 struct md_rdev *rdev0, *rdev, *tmp; 5727 struct mddev *mddev; 5728 char b[BDEVNAME_SIZE]; 5729 5730 printk(KERN_INFO "md: autorun ...\n"); 5731 while (!list_empty(&pending_raid_disks)) { 5732 int unit; 5733 dev_t dev; 5734 LIST_HEAD(candidates); 5735 rdev0 = list_entry(pending_raid_disks.next, 5736 struct md_rdev, same_set); 5737 5738 printk(KERN_INFO "md: considering %s ...\n", 5739 bdevname(rdev0->bdev,b)); 5740 INIT_LIST_HEAD(&candidates); 5741 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5742 if (super_90_load(rdev, rdev0, 0) >= 0) { 5743 printk(KERN_INFO "md: adding %s ...\n", 5744 bdevname(rdev->bdev,b)); 5745 list_move(&rdev->same_set, &candidates); 5746 } 5747 /* 5748 * now we have a set of devices, with all of them having 5749 * mostly sane superblocks. It's time to allocate the 5750 * mddev. 5751 */ 5752 if (part) { 5753 dev = MKDEV(mdp_major, 5754 rdev0->preferred_minor << MdpMinorShift); 5755 unit = MINOR(dev) >> MdpMinorShift; 5756 } else { 5757 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5758 unit = MINOR(dev); 5759 } 5760 if (rdev0->preferred_minor != unit) { 5761 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5762 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5763 break; 5764 } 5765 5766 md_probe(dev, NULL, NULL); 5767 mddev = mddev_find(dev); 5768 if (!mddev || !mddev->gendisk) { 5769 if (mddev) 5770 mddev_put(mddev); 5771 printk(KERN_ERR 5772 "md: cannot allocate memory for md drive.\n"); 5773 break; 5774 } 5775 if (mddev_lock(mddev)) 5776 printk(KERN_WARNING "md: %s locked, cannot run\n", 5777 mdname(mddev)); 5778 else if (mddev->raid_disks || mddev->major_version 5779 || !list_empty(&mddev->disks)) { 5780 printk(KERN_WARNING 5781 "md: %s already running, cannot run %s\n", 5782 mdname(mddev), bdevname(rdev0->bdev,b)); 5783 mddev_unlock(mddev); 5784 } else { 5785 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5786 mddev->persistent = 1; 5787 rdev_for_each_list(rdev, tmp, &candidates) { 5788 list_del_init(&rdev->same_set); 5789 if (bind_rdev_to_array(rdev, mddev)) 5790 export_rdev(rdev); 5791 } 5792 autorun_array(mddev); 5793 mddev_unlock(mddev); 5794 } 5795 /* on success, candidates will be empty, on error 5796 * it won't... 5797 */ 5798 rdev_for_each_list(rdev, tmp, &candidates) { 5799 list_del_init(&rdev->same_set); 5800 export_rdev(rdev); 5801 } 5802 mddev_put(mddev); 5803 } 5804 printk(KERN_INFO "md: ... autorun DONE.\n"); 5805 } 5806 #endif /* !MODULE */ 5807 5808 static int get_version(void __user *arg) 5809 { 5810 mdu_version_t ver; 5811 5812 ver.major = MD_MAJOR_VERSION; 5813 ver.minor = MD_MINOR_VERSION; 5814 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5815 5816 if (copy_to_user(arg, &ver, sizeof(ver))) 5817 return -EFAULT; 5818 5819 return 0; 5820 } 5821 5822 static int get_array_info(struct mddev *mddev, void __user *arg) 5823 { 5824 mdu_array_info_t info; 5825 int nr,working,insync,failed,spare; 5826 struct md_rdev *rdev; 5827 5828 nr = working = insync = failed = spare = 0; 5829 rcu_read_lock(); 5830 rdev_for_each_rcu(rdev, mddev) { 5831 nr++; 5832 if (test_bit(Faulty, &rdev->flags)) 5833 failed++; 5834 else { 5835 working++; 5836 if (test_bit(In_sync, &rdev->flags)) 5837 insync++; 5838 else 5839 spare++; 5840 } 5841 } 5842 rcu_read_unlock(); 5843 5844 info.major_version = mddev->major_version; 5845 info.minor_version = mddev->minor_version; 5846 info.patch_version = MD_PATCHLEVEL_VERSION; 5847 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 5848 info.level = mddev->level; 5849 info.size = mddev->dev_sectors / 2; 5850 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5851 info.size = -1; 5852 info.nr_disks = nr; 5853 info.raid_disks = mddev->raid_disks; 5854 info.md_minor = mddev->md_minor; 5855 info.not_persistent= !mddev->persistent; 5856 5857 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 5858 info.state = 0; 5859 if (mddev->in_sync) 5860 info.state = (1<<MD_SB_CLEAN); 5861 if (mddev->bitmap && mddev->bitmap_info.offset) 5862 info.state |= (1<<MD_SB_BITMAP_PRESENT); 5863 if (mddev_is_clustered(mddev)) 5864 info.state |= (1<<MD_SB_CLUSTERED); 5865 info.active_disks = insync; 5866 info.working_disks = working; 5867 info.failed_disks = failed; 5868 info.spare_disks = spare; 5869 5870 info.layout = mddev->layout; 5871 info.chunk_size = mddev->chunk_sectors << 9; 5872 5873 if (copy_to_user(arg, &info, sizeof(info))) 5874 return -EFAULT; 5875 5876 return 0; 5877 } 5878 5879 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 5880 { 5881 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5882 char *ptr; 5883 int err; 5884 5885 file = kzalloc(sizeof(*file), GFP_NOIO); 5886 if (!file) 5887 return -ENOMEM; 5888 5889 err = 0; 5890 spin_lock(&mddev->lock); 5891 /* bitmap enabled */ 5892 if (mddev->bitmap_info.file) { 5893 ptr = file_path(mddev->bitmap_info.file, file->pathname, 5894 sizeof(file->pathname)); 5895 if (IS_ERR(ptr)) 5896 err = PTR_ERR(ptr); 5897 else 5898 memmove(file->pathname, ptr, 5899 sizeof(file->pathname)-(ptr-file->pathname)); 5900 } 5901 spin_unlock(&mddev->lock); 5902 5903 if (err == 0 && 5904 copy_to_user(arg, file, sizeof(*file))) 5905 err = -EFAULT; 5906 5907 kfree(file); 5908 return err; 5909 } 5910 5911 static int get_disk_info(struct mddev *mddev, void __user * arg) 5912 { 5913 mdu_disk_info_t info; 5914 struct md_rdev *rdev; 5915 5916 if (copy_from_user(&info, arg, sizeof(info))) 5917 return -EFAULT; 5918 5919 rcu_read_lock(); 5920 rdev = md_find_rdev_nr_rcu(mddev, info.number); 5921 if (rdev) { 5922 info.major = MAJOR(rdev->bdev->bd_dev); 5923 info.minor = MINOR(rdev->bdev->bd_dev); 5924 info.raid_disk = rdev->raid_disk; 5925 info.state = 0; 5926 if (test_bit(Faulty, &rdev->flags)) 5927 info.state |= (1<<MD_DISK_FAULTY); 5928 else if (test_bit(In_sync, &rdev->flags)) { 5929 info.state |= (1<<MD_DISK_ACTIVE); 5930 info.state |= (1<<MD_DISK_SYNC); 5931 } 5932 if (test_bit(Journal, &rdev->flags)) 5933 info.state |= (1<<MD_DISK_JOURNAL); 5934 if (test_bit(WriteMostly, &rdev->flags)) 5935 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5936 } else { 5937 info.major = info.minor = 0; 5938 info.raid_disk = -1; 5939 info.state = (1<<MD_DISK_REMOVED); 5940 } 5941 rcu_read_unlock(); 5942 5943 if (copy_to_user(arg, &info, sizeof(info))) 5944 return -EFAULT; 5945 5946 return 0; 5947 } 5948 5949 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 5950 { 5951 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5952 struct md_rdev *rdev; 5953 dev_t dev = MKDEV(info->major,info->minor); 5954 5955 if (mddev_is_clustered(mddev) && 5956 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 5957 pr_err("%s: Cannot add to clustered mddev.\n", 5958 mdname(mddev)); 5959 return -EINVAL; 5960 } 5961 5962 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5963 return -EOVERFLOW; 5964 5965 if (!mddev->raid_disks) { 5966 int err; 5967 /* expecting a device which has a superblock */ 5968 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5969 if (IS_ERR(rdev)) { 5970 printk(KERN_WARNING 5971 "md: md_import_device returned %ld\n", 5972 PTR_ERR(rdev)); 5973 return PTR_ERR(rdev); 5974 } 5975 if (!list_empty(&mddev->disks)) { 5976 struct md_rdev *rdev0 5977 = list_entry(mddev->disks.next, 5978 struct md_rdev, same_set); 5979 err = super_types[mddev->major_version] 5980 .load_super(rdev, rdev0, mddev->minor_version); 5981 if (err < 0) { 5982 printk(KERN_WARNING 5983 "md: %s has different UUID to %s\n", 5984 bdevname(rdev->bdev,b), 5985 bdevname(rdev0->bdev,b2)); 5986 export_rdev(rdev); 5987 return -EINVAL; 5988 } 5989 } 5990 err = bind_rdev_to_array(rdev, mddev); 5991 if (err) 5992 export_rdev(rdev); 5993 return err; 5994 } 5995 5996 /* 5997 * add_new_disk can be used once the array is assembled 5998 * to add "hot spares". They must already have a superblock 5999 * written 6000 */ 6001 if (mddev->pers) { 6002 int err; 6003 if (!mddev->pers->hot_add_disk) { 6004 printk(KERN_WARNING 6005 "%s: personality does not support diskops!\n", 6006 mdname(mddev)); 6007 return -EINVAL; 6008 } 6009 if (mddev->persistent) 6010 rdev = md_import_device(dev, mddev->major_version, 6011 mddev->minor_version); 6012 else 6013 rdev = md_import_device(dev, -1, -1); 6014 if (IS_ERR(rdev)) { 6015 printk(KERN_WARNING 6016 "md: md_import_device returned %ld\n", 6017 PTR_ERR(rdev)); 6018 return PTR_ERR(rdev); 6019 } 6020 /* set saved_raid_disk if appropriate */ 6021 if (!mddev->persistent) { 6022 if (info->state & (1<<MD_DISK_SYNC) && 6023 info->raid_disk < mddev->raid_disks) { 6024 rdev->raid_disk = info->raid_disk; 6025 set_bit(In_sync, &rdev->flags); 6026 clear_bit(Bitmap_sync, &rdev->flags); 6027 } else 6028 rdev->raid_disk = -1; 6029 rdev->saved_raid_disk = rdev->raid_disk; 6030 } else 6031 super_types[mddev->major_version]. 6032 validate_super(mddev, rdev); 6033 if ((info->state & (1<<MD_DISK_SYNC)) && 6034 rdev->raid_disk != info->raid_disk) { 6035 /* This was a hot-add request, but events doesn't 6036 * match, so reject it. 6037 */ 6038 export_rdev(rdev); 6039 return -EINVAL; 6040 } 6041 6042 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6043 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6044 set_bit(WriteMostly, &rdev->flags); 6045 else 6046 clear_bit(WriteMostly, &rdev->flags); 6047 6048 if (info->state & (1<<MD_DISK_JOURNAL)) { 6049 struct md_rdev *rdev2; 6050 bool has_journal = false; 6051 6052 /* make sure no existing journal disk */ 6053 rdev_for_each(rdev2, mddev) { 6054 if (test_bit(Journal, &rdev2->flags)) { 6055 has_journal = true; 6056 break; 6057 } 6058 } 6059 if (has_journal) { 6060 export_rdev(rdev); 6061 return -EBUSY; 6062 } 6063 set_bit(Journal, &rdev->flags); 6064 } 6065 /* 6066 * check whether the device shows up in other nodes 6067 */ 6068 if (mddev_is_clustered(mddev)) { 6069 if (info->state & (1 << MD_DISK_CANDIDATE)) 6070 set_bit(Candidate, &rdev->flags); 6071 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6072 /* --add initiated by this node */ 6073 err = md_cluster_ops->add_new_disk(mddev, rdev); 6074 if (err) { 6075 export_rdev(rdev); 6076 return err; 6077 } 6078 } 6079 } 6080 6081 rdev->raid_disk = -1; 6082 err = bind_rdev_to_array(rdev, mddev); 6083 6084 if (err) 6085 export_rdev(rdev); 6086 6087 if (mddev_is_clustered(mddev)) { 6088 if (info->state & (1 << MD_DISK_CANDIDATE)) 6089 md_cluster_ops->new_disk_ack(mddev, (err == 0)); 6090 else { 6091 if (err) 6092 md_cluster_ops->add_new_disk_cancel(mddev); 6093 else 6094 err = add_bound_rdev(rdev); 6095 } 6096 6097 } else if (!err) 6098 err = add_bound_rdev(rdev); 6099 6100 return err; 6101 } 6102 6103 /* otherwise, add_new_disk is only allowed 6104 * for major_version==0 superblocks 6105 */ 6106 if (mddev->major_version != 0) { 6107 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 6108 mdname(mddev)); 6109 return -EINVAL; 6110 } 6111 6112 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6113 int err; 6114 rdev = md_import_device(dev, -1, 0); 6115 if (IS_ERR(rdev)) { 6116 printk(KERN_WARNING 6117 "md: error, md_import_device() returned %ld\n", 6118 PTR_ERR(rdev)); 6119 return PTR_ERR(rdev); 6120 } 6121 rdev->desc_nr = info->number; 6122 if (info->raid_disk < mddev->raid_disks) 6123 rdev->raid_disk = info->raid_disk; 6124 else 6125 rdev->raid_disk = -1; 6126 6127 if (rdev->raid_disk < mddev->raid_disks) 6128 if (info->state & (1<<MD_DISK_SYNC)) 6129 set_bit(In_sync, &rdev->flags); 6130 6131 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6132 set_bit(WriteMostly, &rdev->flags); 6133 6134 if (!mddev->persistent) { 6135 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 6136 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6137 } else 6138 rdev->sb_start = calc_dev_sboffset(rdev); 6139 rdev->sectors = rdev->sb_start; 6140 6141 err = bind_rdev_to_array(rdev, mddev); 6142 if (err) { 6143 export_rdev(rdev); 6144 return err; 6145 } 6146 } 6147 6148 return 0; 6149 } 6150 6151 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6152 { 6153 char b[BDEVNAME_SIZE]; 6154 struct md_rdev *rdev; 6155 6156 rdev = find_rdev(mddev, dev); 6157 if (!rdev) 6158 return -ENXIO; 6159 6160 if (rdev->raid_disk < 0) 6161 goto kick_rdev; 6162 6163 clear_bit(Blocked, &rdev->flags); 6164 remove_and_add_spares(mddev, rdev); 6165 6166 if (rdev->raid_disk >= 0) 6167 goto busy; 6168 6169 kick_rdev: 6170 if (mddev_is_clustered(mddev)) 6171 md_cluster_ops->remove_disk(mddev, rdev); 6172 6173 md_kick_rdev_from_array(rdev); 6174 md_update_sb(mddev, 1); 6175 md_new_event(mddev); 6176 6177 return 0; 6178 busy: 6179 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 6180 bdevname(rdev->bdev,b), mdname(mddev)); 6181 return -EBUSY; 6182 } 6183 6184 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6185 { 6186 char b[BDEVNAME_SIZE]; 6187 int err; 6188 struct md_rdev *rdev; 6189 6190 if (!mddev->pers) 6191 return -ENODEV; 6192 6193 if (mddev->major_version != 0) { 6194 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 6195 " version-0 superblocks.\n", 6196 mdname(mddev)); 6197 return -EINVAL; 6198 } 6199 if (!mddev->pers->hot_add_disk) { 6200 printk(KERN_WARNING 6201 "%s: personality does not support diskops!\n", 6202 mdname(mddev)); 6203 return -EINVAL; 6204 } 6205 6206 rdev = md_import_device(dev, -1, 0); 6207 if (IS_ERR(rdev)) { 6208 printk(KERN_WARNING 6209 "md: error, md_import_device() returned %ld\n", 6210 PTR_ERR(rdev)); 6211 return -EINVAL; 6212 } 6213 6214 if (mddev->persistent) 6215 rdev->sb_start = calc_dev_sboffset(rdev); 6216 else 6217 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6218 6219 rdev->sectors = rdev->sb_start; 6220 6221 if (test_bit(Faulty, &rdev->flags)) { 6222 printk(KERN_WARNING 6223 "md: can not hot-add faulty %s disk to %s!\n", 6224 bdevname(rdev->bdev,b), mdname(mddev)); 6225 err = -EINVAL; 6226 goto abort_export; 6227 } 6228 6229 clear_bit(In_sync, &rdev->flags); 6230 rdev->desc_nr = -1; 6231 rdev->saved_raid_disk = -1; 6232 err = bind_rdev_to_array(rdev, mddev); 6233 if (err) 6234 goto abort_export; 6235 6236 /* 6237 * The rest should better be atomic, we can have disk failures 6238 * noticed in interrupt contexts ... 6239 */ 6240 6241 rdev->raid_disk = -1; 6242 6243 md_update_sb(mddev, 1); 6244 /* 6245 * Kick recovery, maybe this spare has to be added to the 6246 * array immediately. 6247 */ 6248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6249 md_wakeup_thread(mddev->thread); 6250 md_new_event(mddev); 6251 return 0; 6252 6253 abort_export: 6254 export_rdev(rdev); 6255 return err; 6256 } 6257 6258 static int set_bitmap_file(struct mddev *mddev, int fd) 6259 { 6260 int err = 0; 6261 6262 if (mddev->pers) { 6263 if (!mddev->pers->quiesce || !mddev->thread) 6264 return -EBUSY; 6265 if (mddev->recovery || mddev->sync_thread) 6266 return -EBUSY; 6267 /* we should be able to change the bitmap.. */ 6268 } 6269 6270 if (fd >= 0) { 6271 struct inode *inode; 6272 struct file *f; 6273 6274 if (mddev->bitmap || mddev->bitmap_info.file) 6275 return -EEXIST; /* cannot add when bitmap is present */ 6276 f = fget(fd); 6277 6278 if (f == NULL) { 6279 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6280 mdname(mddev)); 6281 return -EBADF; 6282 } 6283 6284 inode = f->f_mapping->host; 6285 if (!S_ISREG(inode->i_mode)) { 6286 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n", 6287 mdname(mddev)); 6288 err = -EBADF; 6289 } else if (!(f->f_mode & FMODE_WRITE)) { 6290 printk(KERN_ERR "%s: error: bitmap file must open for write\n", 6291 mdname(mddev)); 6292 err = -EBADF; 6293 } else if (atomic_read(&inode->i_writecount) != 1) { 6294 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6295 mdname(mddev)); 6296 err = -EBUSY; 6297 } 6298 if (err) { 6299 fput(f); 6300 return err; 6301 } 6302 mddev->bitmap_info.file = f; 6303 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6304 } else if (mddev->bitmap == NULL) 6305 return -ENOENT; /* cannot remove what isn't there */ 6306 err = 0; 6307 if (mddev->pers) { 6308 mddev->pers->quiesce(mddev, 1); 6309 if (fd >= 0) { 6310 struct bitmap *bitmap; 6311 6312 bitmap = bitmap_create(mddev, -1); 6313 if (!IS_ERR(bitmap)) { 6314 mddev->bitmap = bitmap; 6315 err = bitmap_load(mddev); 6316 } else 6317 err = PTR_ERR(bitmap); 6318 } 6319 if (fd < 0 || err) { 6320 bitmap_destroy(mddev); 6321 fd = -1; /* make sure to put the file */ 6322 } 6323 mddev->pers->quiesce(mddev, 0); 6324 } 6325 if (fd < 0) { 6326 struct file *f = mddev->bitmap_info.file; 6327 if (f) { 6328 spin_lock(&mddev->lock); 6329 mddev->bitmap_info.file = NULL; 6330 spin_unlock(&mddev->lock); 6331 fput(f); 6332 } 6333 } 6334 6335 return err; 6336 } 6337 6338 /* 6339 * set_array_info is used two different ways 6340 * The original usage is when creating a new array. 6341 * In this usage, raid_disks is > 0 and it together with 6342 * level, size, not_persistent,layout,chunksize determine the 6343 * shape of the array. 6344 * This will always create an array with a type-0.90.0 superblock. 6345 * The newer usage is when assembling an array. 6346 * In this case raid_disks will be 0, and the major_version field is 6347 * use to determine which style super-blocks are to be found on the devices. 6348 * The minor and patch _version numbers are also kept incase the 6349 * super_block handler wishes to interpret them. 6350 */ 6351 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6352 { 6353 6354 if (info->raid_disks == 0) { 6355 /* just setting version number for superblock loading */ 6356 if (info->major_version < 0 || 6357 info->major_version >= ARRAY_SIZE(super_types) || 6358 super_types[info->major_version].name == NULL) { 6359 /* maybe try to auto-load a module? */ 6360 printk(KERN_INFO 6361 "md: superblock version %d not known\n", 6362 info->major_version); 6363 return -EINVAL; 6364 } 6365 mddev->major_version = info->major_version; 6366 mddev->minor_version = info->minor_version; 6367 mddev->patch_version = info->patch_version; 6368 mddev->persistent = !info->not_persistent; 6369 /* ensure mddev_put doesn't delete this now that there 6370 * is some minimal configuration. 6371 */ 6372 mddev->ctime = ktime_get_real_seconds(); 6373 return 0; 6374 } 6375 mddev->major_version = MD_MAJOR_VERSION; 6376 mddev->minor_version = MD_MINOR_VERSION; 6377 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6378 mddev->ctime = ktime_get_real_seconds(); 6379 6380 mddev->level = info->level; 6381 mddev->clevel[0] = 0; 6382 mddev->dev_sectors = 2 * (sector_t)info->size; 6383 mddev->raid_disks = info->raid_disks; 6384 /* don't set md_minor, it is determined by which /dev/md* was 6385 * openned 6386 */ 6387 if (info->state & (1<<MD_SB_CLEAN)) 6388 mddev->recovery_cp = MaxSector; 6389 else 6390 mddev->recovery_cp = 0; 6391 mddev->persistent = ! info->not_persistent; 6392 mddev->external = 0; 6393 6394 mddev->layout = info->layout; 6395 mddev->chunk_sectors = info->chunk_size >> 9; 6396 6397 mddev->max_disks = MD_SB_DISKS; 6398 6399 if (mddev->persistent) 6400 mddev->flags = 0; 6401 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6402 6403 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6404 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6405 mddev->bitmap_info.offset = 0; 6406 6407 mddev->reshape_position = MaxSector; 6408 6409 /* 6410 * Generate a 128 bit UUID 6411 */ 6412 get_random_bytes(mddev->uuid, 16); 6413 6414 mddev->new_level = mddev->level; 6415 mddev->new_chunk_sectors = mddev->chunk_sectors; 6416 mddev->new_layout = mddev->layout; 6417 mddev->delta_disks = 0; 6418 mddev->reshape_backwards = 0; 6419 6420 return 0; 6421 } 6422 6423 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6424 { 6425 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6426 6427 if (mddev->external_size) 6428 return; 6429 6430 mddev->array_sectors = array_sectors; 6431 } 6432 EXPORT_SYMBOL(md_set_array_sectors); 6433 6434 static int update_size(struct mddev *mddev, sector_t num_sectors) 6435 { 6436 struct md_rdev *rdev; 6437 int rv; 6438 int fit = (num_sectors == 0); 6439 6440 if (mddev->pers->resize == NULL) 6441 return -EINVAL; 6442 /* The "num_sectors" is the number of sectors of each device that 6443 * is used. This can only make sense for arrays with redundancy. 6444 * linear and raid0 always use whatever space is available. We can only 6445 * consider changing this number if no resync or reconstruction is 6446 * happening, and if the new size is acceptable. It must fit before the 6447 * sb_start or, if that is <data_offset, it must fit before the size 6448 * of each device. If num_sectors is zero, we find the largest size 6449 * that fits. 6450 */ 6451 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6452 mddev->sync_thread) 6453 return -EBUSY; 6454 if (mddev->ro) 6455 return -EROFS; 6456 6457 rdev_for_each(rdev, mddev) { 6458 sector_t avail = rdev->sectors; 6459 6460 if (fit && (num_sectors == 0 || num_sectors > avail)) 6461 num_sectors = avail; 6462 if (avail < num_sectors) 6463 return -ENOSPC; 6464 } 6465 rv = mddev->pers->resize(mddev, num_sectors); 6466 if (!rv) 6467 revalidate_disk(mddev->gendisk); 6468 return rv; 6469 } 6470 6471 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6472 { 6473 int rv; 6474 struct md_rdev *rdev; 6475 /* change the number of raid disks */ 6476 if (mddev->pers->check_reshape == NULL) 6477 return -EINVAL; 6478 if (mddev->ro) 6479 return -EROFS; 6480 if (raid_disks <= 0 || 6481 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6482 return -EINVAL; 6483 if (mddev->sync_thread || 6484 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6485 mddev->reshape_position != MaxSector) 6486 return -EBUSY; 6487 6488 rdev_for_each(rdev, mddev) { 6489 if (mddev->raid_disks < raid_disks && 6490 rdev->data_offset < rdev->new_data_offset) 6491 return -EINVAL; 6492 if (mddev->raid_disks > raid_disks && 6493 rdev->data_offset > rdev->new_data_offset) 6494 return -EINVAL; 6495 } 6496 6497 mddev->delta_disks = raid_disks - mddev->raid_disks; 6498 if (mddev->delta_disks < 0) 6499 mddev->reshape_backwards = 1; 6500 else if (mddev->delta_disks > 0) 6501 mddev->reshape_backwards = 0; 6502 6503 rv = mddev->pers->check_reshape(mddev); 6504 if (rv < 0) { 6505 mddev->delta_disks = 0; 6506 mddev->reshape_backwards = 0; 6507 } 6508 return rv; 6509 } 6510 6511 /* 6512 * update_array_info is used to change the configuration of an 6513 * on-line array. 6514 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6515 * fields in the info are checked against the array. 6516 * Any differences that cannot be handled will cause an error. 6517 * Normally, only one change can be managed at a time. 6518 */ 6519 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6520 { 6521 int rv = 0; 6522 int cnt = 0; 6523 int state = 0; 6524 6525 /* calculate expected state,ignoring low bits */ 6526 if (mddev->bitmap && mddev->bitmap_info.offset) 6527 state |= (1 << MD_SB_BITMAP_PRESENT); 6528 6529 if (mddev->major_version != info->major_version || 6530 mddev->minor_version != info->minor_version || 6531 /* mddev->patch_version != info->patch_version || */ 6532 mddev->ctime != info->ctime || 6533 mddev->level != info->level || 6534 /* mddev->layout != info->layout || */ 6535 mddev->persistent != !info->not_persistent || 6536 mddev->chunk_sectors != info->chunk_size >> 9 || 6537 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6538 ((state^info->state) & 0xfffffe00) 6539 ) 6540 return -EINVAL; 6541 /* Check there is only one change */ 6542 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6543 cnt++; 6544 if (mddev->raid_disks != info->raid_disks) 6545 cnt++; 6546 if (mddev->layout != info->layout) 6547 cnt++; 6548 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6549 cnt++; 6550 if (cnt == 0) 6551 return 0; 6552 if (cnt > 1) 6553 return -EINVAL; 6554 6555 if (mddev->layout != info->layout) { 6556 /* Change layout 6557 * we don't need to do anything at the md level, the 6558 * personality will take care of it all. 6559 */ 6560 if (mddev->pers->check_reshape == NULL) 6561 return -EINVAL; 6562 else { 6563 mddev->new_layout = info->layout; 6564 rv = mddev->pers->check_reshape(mddev); 6565 if (rv) 6566 mddev->new_layout = mddev->layout; 6567 return rv; 6568 } 6569 } 6570 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6571 rv = update_size(mddev, (sector_t)info->size * 2); 6572 6573 if (mddev->raid_disks != info->raid_disks) 6574 rv = update_raid_disks(mddev, info->raid_disks); 6575 6576 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6577 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6578 rv = -EINVAL; 6579 goto err; 6580 } 6581 if (mddev->recovery || mddev->sync_thread) { 6582 rv = -EBUSY; 6583 goto err; 6584 } 6585 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6586 struct bitmap *bitmap; 6587 /* add the bitmap */ 6588 if (mddev->bitmap) { 6589 rv = -EEXIST; 6590 goto err; 6591 } 6592 if (mddev->bitmap_info.default_offset == 0) { 6593 rv = -EINVAL; 6594 goto err; 6595 } 6596 mddev->bitmap_info.offset = 6597 mddev->bitmap_info.default_offset; 6598 mddev->bitmap_info.space = 6599 mddev->bitmap_info.default_space; 6600 mddev->pers->quiesce(mddev, 1); 6601 bitmap = bitmap_create(mddev, -1); 6602 if (!IS_ERR(bitmap)) { 6603 mddev->bitmap = bitmap; 6604 rv = bitmap_load(mddev); 6605 } else 6606 rv = PTR_ERR(bitmap); 6607 if (rv) 6608 bitmap_destroy(mddev); 6609 mddev->pers->quiesce(mddev, 0); 6610 } else { 6611 /* remove the bitmap */ 6612 if (!mddev->bitmap) { 6613 rv = -ENOENT; 6614 goto err; 6615 } 6616 if (mddev->bitmap->storage.file) { 6617 rv = -EINVAL; 6618 goto err; 6619 } 6620 if (mddev->bitmap_info.nodes) { 6621 /* hold PW on all the bitmap lock */ 6622 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6623 printk("md: can't change bitmap to none since the" 6624 " array is in use by more than one node\n"); 6625 rv = -EPERM; 6626 md_cluster_ops->unlock_all_bitmaps(mddev); 6627 goto err; 6628 } 6629 6630 mddev->bitmap_info.nodes = 0; 6631 md_cluster_ops->leave(mddev); 6632 } 6633 mddev->pers->quiesce(mddev, 1); 6634 bitmap_destroy(mddev); 6635 mddev->pers->quiesce(mddev, 0); 6636 mddev->bitmap_info.offset = 0; 6637 } 6638 } 6639 md_update_sb(mddev, 1); 6640 return rv; 6641 err: 6642 return rv; 6643 } 6644 6645 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6646 { 6647 struct md_rdev *rdev; 6648 int err = 0; 6649 6650 if (mddev->pers == NULL) 6651 return -ENODEV; 6652 6653 rcu_read_lock(); 6654 rdev = find_rdev_rcu(mddev, dev); 6655 if (!rdev) 6656 err = -ENODEV; 6657 else { 6658 md_error(mddev, rdev); 6659 if (!test_bit(Faulty, &rdev->flags)) 6660 err = -EBUSY; 6661 } 6662 rcu_read_unlock(); 6663 return err; 6664 } 6665 6666 /* 6667 * We have a problem here : there is no easy way to give a CHS 6668 * virtual geometry. We currently pretend that we have a 2 heads 6669 * 4 sectors (with a BIG number of cylinders...). This drives 6670 * dosfs just mad... ;-) 6671 */ 6672 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6673 { 6674 struct mddev *mddev = bdev->bd_disk->private_data; 6675 6676 geo->heads = 2; 6677 geo->sectors = 4; 6678 geo->cylinders = mddev->array_sectors / 8; 6679 return 0; 6680 } 6681 6682 static inline bool md_ioctl_valid(unsigned int cmd) 6683 { 6684 switch (cmd) { 6685 case ADD_NEW_DISK: 6686 case BLKROSET: 6687 case GET_ARRAY_INFO: 6688 case GET_BITMAP_FILE: 6689 case GET_DISK_INFO: 6690 case HOT_ADD_DISK: 6691 case HOT_REMOVE_DISK: 6692 case RAID_AUTORUN: 6693 case RAID_VERSION: 6694 case RESTART_ARRAY_RW: 6695 case RUN_ARRAY: 6696 case SET_ARRAY_INFO: 6697 case SET_BITMAP_FILE: 6698 case SET_DISK_FAULTY: 6699 case STOP_ARRAY: 6700 case STOP_ARRAY_RO: 6701 case CLUSTERED_DISK_NACK: 6702 return true; 6703 default: 6704 return false; 6705 } 6706 } 6707 6708 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6709 unsigned int cmd, unsigned long arg) 6710 { 6711 int err = 0; 6712 void __user *argp = (void __user *)arg; 6713 struct mddev *mddev = NULL; 6714 int ro; 6715 6716 if (!md_ioctl_valid(cmd)) 6717 return -ENOTTY; 6718 6719 switch (cmd) { 6720 case RAID_VERSION: 6721 case GET_ARRAY_INFO: 6722 case GET_DISK_INFO: 6723 break; 6724 default: 6725 if (!capable(CAP_SYS_ADMIN)) 6726 return -EACCES; 6727 } 6728 6729 /* 6730 * Commands dealing with the RAID driver but not any 6731 * particular array: 6732 */ 6733 switch (cmd) { 6734 case RAID_VERSION: 6735 err = get_version(argp); 6736 goto out; 6737 6738 #ifndef MODULE 6739 case RAID_AUTORUN: 6740 err = 0; 6741 autostart_arrays(arg); 6742 goto out; 6743 #endif 6744 default:; 6745 } 6746 6747 /* 6748 * Commands creating/starting a new array: 6749 */ 6750 6751 mddev = bdev->bd_disk->private_data; 6752 6753 if (!mddev) { 6754 BUG(); 6755 goto out; 6756 } 6757 6758 /* Some actions do not requires the mutex */ 6759 switch (cmd) { 6760 case GET_ARRAY_INFO: 6761 if (!mddev->raid_disks && !mddev->external) 6762 err = -ENODEV; 6763 else 6764 err = get_array_info(mddev, argp); 6765 goto out; 6766 6767 case GET_DISK_INFO: 6768 if (!mddev->raid_disks && !mddev->external) 6769 err = -ENODEV; 6770 else 6771 err = get_disk_info(mddev, argp); 6772 goto out; 6773 6774 case SET_DISK_FAULTY: 6775 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6776 goto out; 6777 6778 case GET_BITMAP_FILE: 6779 err = get_bitmap_file(mddev, argp); 6780 goto out; 6781 6782 } 6783 6784 if (cmd == ADD_NEW_DISK) 6785 /* need to ensure md_delayed_delete() has completed */ 6786 flush_workqueue(md_misc_wq); 6787 6788 if (cmd == HOT_REMOVE_DISK) 6789 /* need to ensure recovery thread has run */ 6790 wait_event_interruptible_timeout(mddev->sb_wait, 6791 !test_bit(MD_RECOVERY_NEEDED, 6792 &mddev->flags), 6793 msecs_to_jiffies(5000)); 6794 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6795 /* Need to flush page cache, and ensure no-one else opens 6796 * and writes 6797 */ 6798 mutex_lock(&mddev->open_mutex); 6799 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 6800 mutex_unlock(&mddev->open_mutex); 6801 err = -EBUSY; 6802 goto out; 6803 } 6804 set_bit(MD_STILL_CLOSED, &mddev->flags); 6805 mutex_unlock(&mddev->open_mutex); 6806 sync_blockdev(bdev); 6807 } 6808 err = mddev_lock(mddev); 6809 if (err) { 6810 printk(KERN_INFO 6811 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6812 err, cmd); 6813 goto out; 6814 } 6815 6816 if (cmd == SET_ARRAY_INFO) { 6817 mdu_array_info_t info; 6818 if (!arg) 6819 memset(&info, 0, sizeof(info)); 6820 else if (copy_from_user(&info, argp, sizeof(info))) { 6821 err = -EFAULT; 6822 goto unlock; 6823 } 6824 if (mddev->pers) { 6825 err = update_array_info(mddev, &info); 6826 if (err) { 6827 printk(KERN_WARNING "md: couldn't update" 6828 " array info. %d\n", err); 6829 goto unlock; 6830 } 6831 goto unlock; 6832 } 6833 if (!list_empty(&mddev->disks)) { 6834 printk(KERN_WARNING 6835 "md: array %s already has disks!\n", 6836 mdname(mddev)); 6837 err = -EBUSY; 6838 goto unlock; 6839 } 6840 if (mddev->raid_disks) { 6841 printk(KERN_WARNING 6842 "md: array %s already initialised!\n", 6843 mdname(mddev)); 6844 err = -EBUSY; 6845 goto unlock; 6846 } 6847 err = set_array_info(mddev, &info); 6848 if (err) { 6849 printk(KERN_WARNING "md: couldn't set" 6850 " array info. %d\n", err); 6851 goto unlock; 6852 } 6853 goto unlock; 6854 } 6855 6856 /* 6857 * Commands querying/configuring an existing array: 6858 */ 6859 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6860 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6861 if ((!mddev->raid_disks && !mddev->external) 6862 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6863 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6864 && cmd != GET_BITMAP_FILE) { 6865 err = -ENODEV; 6866 goto unlock; 6867 } 6868 6869 /* 6870 * Commands even a read-only array can execute: 6871 */ 6872 switch (cmd) { 6873 case RESTART_ARRAY_RW: 6874 err = restart_array(mddev); 6875 goto unlock; 6876 6877 case STOP_ARRAY: 6878 err = do_md_stop(mddev, 0, bdev); 6879 goto unlock; 6880 6881 case STOP_ARRAY_RO: 6882 err = md_set_readonly(mddev, bdev); 6883 goto unlock; 6884 6885 case HOT_REMOVE_DISK: 6886 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6887 goto unlock; 6888 6889 case ADD_NEW_DISK: 6890 /* We can support ADD_NEW_DISK on read-only arrays 6891 * only if we are re-adding a preexisting device. 6892 * So require mddev->pers and MD_DISK_SYNC. 6893 */ 6894 if (mddev->pers) { 6895 mdu_disk_info_t info; 6896 if (copy_from_user(&info, argp, sizeof(info))) 6897 err = -EFAULT; 6898 else if (!(info.state & (1<<MD_DISK_SYNC))) 6899 /* Need to clear read-only for this */ 6900 break; 6901 else 6902 err = add_new_disk(mddev, &info); 6903 goto unlock; 6904 } 6905 break; 6906 6907 case BLKROSET: 6908 if (get_user(ro, (int __user *)(arg))) { 6909 err = -EFAULT; 6910 goto unlock; 6911 } 6912 err = -EINVAL; 6913 6914 /* if the bdev is going readonly the value of mddev->ro 6915 * does not matter, no writes are coming 6916 */ 6917 if (ro) 6918 goto unlock; 6919 6920 /* are we are already prepared for writes? */ 6921 if (mddev->ro != 1) 6922 goto unlock; 6923 6924 /* transitioning to readauto need only happen for 6925 * arrays that call md_write_start 6926 */ 6927 if (mddev->pers) { 6928 err = restart_array(mddev); 6929 if (err == 0) { 6930 mddev->ro = 2; 6931 set_disk_ro(mddev->gendisk, 0); 6932 } 6933 } 6934 goto unlock; 6935 } 6936 6937 /* 6938 * The remaining ioctls are changing the state of the 6939 * superblock, so we do not allow them on read-only arrays. 6940 */ 6941 if (mddev->ro && mddev->pers) { 6942 if (mddev->ro == 2) { 6943 mddev->ro = 0; 6944 sysfs_notify_dirent_safe(mddev->sysfs_state); 6945 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6946 /* mddev_unlock will wake thread */ 6947 /* If a device failed while we were read-only, we 6948 * need to make sure the metadata is updated now. 6949 */ 6950 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6951 mddev_unlock(mddev); 6952 wait_event(mddev->sb_wait, 6953 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6954 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6955 mddev_lock_nointr(mddev); 6956 } 6957 } else { 6958 err = -EROFS; 6959 goto unlock; 6960 } 6961 } 6962 6963 switch (cmd) { 6964 case ADD_NEW_DISK: 6965 { 6966 mdu_disk_info_t info; 6967 if (copy_from_user(&info, argp, sizeof(info))) 6968 err = -EFAULT; 6969 else 6970 err = add_new_disk(mddev, &info); 6971 goto unlock; 6972 } 6973 6974 case CLUSTERED_DISK_NACK: 6975 if (mddev_is_clustered(mddev)) 6976 md_cluster_ops->new_disk_ack(mddev, false); 6977 else 6978 err = -EINVAL; 6979 goto unlock; 6980 6981 case HOT_ADD_DISK: 6982 err = hot_add_disk(mddev, new_decode_dev(arg)); 6983 goto unlock; 6984 6985 case RUN_ARRAY: 6986 err = do_md_run(mddev); 6987 goto unlock; 6988 6989 case SET_BITMAP_FILE: 6990 err = set_bitmap_file(mddev, (int)arg); 6991 goto unlock; 6992 6993 default: 6994 err = -EINVAL; 6995 goto unlock; 6996 } 6997 6998 unlock: 6999 if (mddev->hold_active == UNTIL_IOCTL && 7000 err != -EINVAL) 7001 mddev->hold_active = 0; 7002 mddev_unlock(mddev); 7003 out: 7004 return err; 7005 } 7006 #ifdef CONFIG_COMPAT 7007 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7008 unsigned int cmd, unsigned long arg) 7009 { 7010 switch (cmd) { 7011 case HOT_REMOVE_DISK: 7012 case HOT_ADD_DISK: 7013 case SET_DISK_FAULTY: 7014 case SET_BITMAP_FILE: 7015 /* These take in integer arg, do not convert */ 7016 break; 7017 default: 7018 arg = (unsigned long)compat_ptr(arg); 7019 break; 7020 } 7021 7022 return md_ioctl(bdev, mode, cmd, arg); 7023 } 7024 #endif /* CONFIG_COMPAT */ 7025 7026 static int md_open(struct block_device *bdev, fmode_t mode) 7027 { 7028 /* 7029 * Succeed if we can lock the mddev, which confirms that 7030 * it isn't being stopped right now. 7031 */ 7032 struct mddev *mddev = mddev_find(bdev->bd_dev); 7033 int err; 7034 7035 if (!mddev) 7036 return -ENODEV; 7037 7038 if (mddev->gendisk != bdev->bd_disk) { 7039 /* we are racing with mddev_put which is discarding this 7040 * bd_disk. 7041 */ 7042 mddev_put(mddev); 7043 /* Wait until bdev->bd_disk is definitely gone */ 7044 flush_workqueue(md_misc_wq); 7045 /* Then retry the open from the top */ 7046 return -ERESTARTSYS; 7047 } 7048 BUG_ON(mddev != bdev->bd_disk->private_data); 7049 7050 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7051 goto out; 7052 7053 err = 0; 7054 atomic_inc(&mddev->openers); 7055 clear_bit(MD_STILL_CLOSED, &mddev->flags); 7056 mutex_unlock(&mddev->open_mutex); 7057 7058 check_disk_change(bdev); 7059 out: 7060 return err; 7061 } 7062 7063 static void md_release(struct gendisk *disk, fmode_t mode) 7064 { 7065 struct mddev *mddev = disk->private_data; 7066 7067 BUG_ON(!mddev); 7068 atomic_dec(&mddev->openers); 7069 mddev_put(mddev); 7070 } 7071 7072 static int md_media_changed(struct gendisk *disk) 7073 { 7074 struct mddev *mddev = disk->private_data; 7075 7076 return mddev->changed; 7077 } 7078 7079 static int md_revalidate(struct gendisk *disk) 7080 { 7081 struct mddev *mddev = disk->private_data; 7082 7083 mddev->changed = 0; 7084 return 0; 7085 } 7086 static const struct block_device_operations md_fops = 7087 { 7088 .owner = THIS_MODULE, 7089 .open = md_open, 7090 .release = md_release, 7091 .ioctl = md_ioctl, 7092 #ifdef CONFIG_COMPAT 7093 .compat_ioctl = md_compat_ioctl, 7094 #endif 7095 .getgeo = md_getgeo, 7096 .media_changed = md_media_changed, 7097 .revalidate_disk= md_revalidate, 7098 }; 7099 7100 static int md_thread(void *arg) 7101 { 7102 struct md_thread *thread = arg; 7103 7104 /* 7105 * md_thread is a 'system-thread', it's priority should be very 7106 * high. We avoid resource deadlocks individually in each 7107 * raid personality. (RAID5 does preallocation) We also use RR and 7108 * the very same RT priority as kswapd, thus we will never get 7109 * into a priority inversion deadlock. 7110 * 7111 * we definitely have to have equal or higher priority than 7112 * bdflush, otherwise bdflush will deadlock if there are too 7113 * many dirty RAID5 blocks. 7114 */ 7115 7116 allow_signal(SIGKILL); 7117 while (!kthread_should_stop()) { 7118 7119 /* We need to wait INTERRUPTIBLE so that 7120 * we don't add to the load-average. 7121 * That means we need to be sure no signals are 7122 * pending 7123 */ 7124 if (signal_pending(current)) 7125 flush_signals(current); 7126 7127 wait_event_interruptible_timeout 7128 (thread->wqueue, 7129 test_bit(THREAD_WAKEUP, &thread->flags) 7130 || kthread_should_stop(), 7131 thread->timeout); 7132 7133 clear_bit(THREAD_WAKEUP, &thread->flags); 7134 if (!kthread_should_stop()) 7135 thread->run(thread); 7136 } 7137 7138 return 0; 7139 } 7140 7141 void md_wakeup_thread(struct md_thread *thread) 7142 { 7143 if (thread) { 7144 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7145 set_bit(THREAD_WAKEUP, &thread->flags); 7146 wake_up(&thread->wqueue); 7147 } 7148 } 7149 EXPORT_SYMBOL(md_wakeup_thread); 7150 7151 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7152 struct mddev *mddev, const char *name) 7153 { 7154 struct md_thread *thread; 7155 7156 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7157 if (!thread) 7158 return NULL; 7159 7160 init_waitqueue_head(&thread->wqueue); 7161 7162 thread->run = run; 7163 thread->mddev = mddev; 7164 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7165 thread->tsk = kthread_run(md_thread, thread, 7166 "%s_%s", 7167 mdname(thread->mddev), 7168 name); 7169 if (IS_ERR(thread->tsk)) { 7170 kfree(thread); 7171 return NULL; 7172 } 7173 return thread; 7174 } 7175 EXPORT_SYMBOL(md_register_thread); 7176 7177 void md_unregister_thread(struct md_thread **threadp) 7178 { 7179 struct md_thread *thread = *threadp; 7180 if (!thread) 7181 return; 7182 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7183 /* Locking ensures that mddev_unlock does not wake_up a 7184 * non-existent thread 7185 */ 7186 spin_lock(&pers_lock); 7187 *threadp = NULL; 7188 spin_unlock(&pers_lock); 7189 7190 kthread_stop(thread->tsk); 7191 kfree(thread); 7192 } 7193 EXPORT_SYMBOL(md_unregister_thread); 7194 7195 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7196 { 7197 if (!rdev || test_bit(Faulty, &rdev->flags)) 7198 return; 7199 7200 if (!mddev->pers || !mddev->pers->error_handler) 7201 return; 7202 mddev->pers->error_handler(mddev,rdev); 7203 if (mddev->degraded) 7204 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7205 sysfs_notify_dirent_safe(rdev->sysfs_state); 7206 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7207 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7208 md_wakeup_thread(mddev->thread); 7209 if (mddev->event_work.func) 7210 queue_work(md_misc_wq, &mddev->event_work); 7211 md_new_event(mddev); 7212 } 7213 EXPORT_SYMBOL(md_error); 7214 7215 /* seq_file implementation /proc/mdstat */ 7216 7217 static void status_unused(struct seq_file *seq) 7218 { 7219 int i = 0; 7220 struct md_rdev *rdev; 7221 7222 seq_printf(seq, "unused devices: "); 7223 7224 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7225 char b[BDEVNAME_SIZE]; 7226 i++; 7227 seq_printf(seq, "%s ", 7228 bdevname(rdev->bdev,b)); 7229 } 7230 if (!i) 7231 seq_printf(seq, "<none>"); 7232 7233 seq_printf(seq, "\n"); 7234 } 7235 7236 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7237 { 7238 sector_t max_sectors, resync, res; 7239 unsigned long dt, db; 7240 sector_t rt; 7241 int scale; 7242 unsigned int per_milli; 7243 7244 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7245 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7246 max_sectors = mddev->resync_max_sectors; 7247 else 7248 max_sectors = mddev->dev_sectors; 7249 7250 resync = mddev->curr_resync; 7251 if (resync <= 3) { 7252 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7253 /* Still cleaning up */ 7254 resync = max_sectors; 7255 } else 7256 resync -= atomic_read(&mddev->recovery_active); 7257 7258 if (resync == 0) { 7259 if (mddev->recovery_cp < MaxSector) { 7260 seq_printf(seq, "\tresync=PENDING"); 7261 return 1; 7262 } 7263 return 0; 7264 } 7265 if (resync < 3) { 7266 seq_printf(seq, "\tresync=DELAYED"); 7267 return 1; 7268 } 7269 7270 WARN_ON(max_sectors == 0); 7271 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7272 * in a sector_t, and (max_sectors>>scale) will fit in a 7273 * u32, as those are the requirements for sector_div. 7274 * Thus 'scale' must be at least 10 7275 */ 7276 scale = 10; 7277 if (sizeof(sector_t) > sizeof(unsigned long)) { 7278 while ( max_sectors/2 > (1ULL<<(scale+32))) 7279 scale++; 7280 } 7281 res = (resync>>scale)*1000; 7282 sector_div(res, (u32)((max_sectors>>scale)+1)); 7283 7284 per_milli = res; 7285 { 7286 int i, x = per_milli/50, y = 20-x; 7287 seq_printf(seq, "["); 7288 for (i = 0; i < x; i++) 7289 seq_printf(seq, "="); 7290 seq_printf(seq, ">"); 7291 for (i = 0; i < y; i++) 7292 seq_printf(seq, "."); 7293 seq_printf(seq, "] "); 7294 } 7295 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7296 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7297 "reshape" : 7298 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7299 "check" : 7300 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7301 "resync" : "recovery"))), 7302 per_milli/10, per_milli % 10, 7303 (unsigned long long) resync/2, 7304 (unsigned long long) max_sectors/2); 7305 7306 /* 7307 * dt: time from mark until now 7308 * db: blocks written from mark until now 7309 * rt: remaining time 7310 * 7311 * rt is a sector_t, so could be 32bit or 64bit. 7312 * So we divide before multiply in case it is 32bit and close 7313 * to the limit. 7314 * We scale the divisor (db) by 32 to avoid losing precision 7315 * near the end of resync when the number of remaining sectors 7316 * is close to 'db'. 7317 * We then divide rt by 32 after multiplying by db to compensate. 7318 * The '+1' avoids division by zero if db is very small. 7319 */ 7320 dt = ((jiffies - mddev->resync_mark) / HZ); 7321 if (!dt) dt++; 7322 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7323 - mddev->resync_mark_cnt; 7324 7325 rt = max_sectors - resync; /* number of remaining sectors */ 7326 sector_div(rt, db/32+1); 7327 rt *= dt; 7328 rt >>= 5; 7329 7330 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7331 ((unsigned long)rt % 60)/6); 7332 7333 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7334 return 1; 7335 } 7336 7337 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7338 { 7339 struct list_head *tmp; 7340 loff_t l = *pos; 7341 struct mddev *mddev; 7342 7343 if (l >= 0x10000) 7344 return NULL; 7345 if (!l--) 7346 /* header */ 7347 return (void*)1; 7348 7349 spin_lock(&all_mddevs_lock); 7350 list_for_each(tmp,&all_mddevs) 7351 if (!l--) { 7352 mddev = list_entry(tmp, struct mddev, all_mddevs); 7353 mddev_get(mddev); 7354 spin_unlock(&all_mddevs_lock); 7355 return mddev; 7356 } 7357 spin_unlock(&all_mddevs_lock); 7358 if (!l--) 7359 return (void*)2;/* tail */ 7360 return NULL; 7361 } 7362 7363 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7364 { 7365 struct list_head *tmp; 7366 struct mddev *next_mddev, *mddev = v; 7367 7368 ++*pos; 7369 if (v == (void*)2) 7370 return NULL; 7371 7372 spin_lock(&all_mddevs_lock); 7373 if (v == (void*)1) 7374 tmp = all_mddevs.next; 7375 else 7376 tmp = mddev->all_mddevs.next; 7377 if (tmp != &all_mddevs) 7378 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7379 else { 7380 next_mddev = (void*)2; 7381 *pos = 0x10000; 7382 } 7383 spin_unlock(&all_mddevs_lock); 7384 7385 if (v != (void*)1) 7386 mddev_put(mddev); 7387 return next_mddev; 7388 7389 } 7390 7391 static void md_seq_stop(struct seq_file *seq, void *v) 7392 { 7393 struct mddev *mddev = v; 7394 7395 if (mddev && v != (void*)1 && v != (void*)2) 7396 mddev_put(mddev); 7397 } 7398 7399 static int md_seq_show(struct seq_file *seq, void *v) 7400 { 7401 struct mddev *mddev = v; 7402 sector_t sectors; 7403 struct md_rdev *rdev; 7404 7405 if (v == (void*)1) { 7406 struct md_personality *pers; 7407 seq_printf(seq, "Personalities : "); 7408 spin_lock(&pers_lock); 7409 list_for_each_entry(pers, &pers_list, list) 7410 seq_printf(seq, "[%s] ", pers->name); 7411 7412 spin_unlock(&pers_lock); 7413 seq_printf(seq, "\n"); 7414 seq->poll_event = atomic_read(&md_event_count); 7415 return 0; 7416 } 7417 if (v == (void*)2) { 7418 status_unused(seq); 7419 return 0; 7420 } 7421 7422 spin_lock(&mddev->lock); 7423 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7424 seq_printf(seq, "%s : %sactive", mdname(mddev), 7425 mddev->pers ? "" : "in"); 7426 if (mddev->pers) { 7427 if (mddev->ro==1) 7428 seq_printf(seq, " (read-only)"); 7429 if (mddev->ro==2) 7430 seq_printf(seq, " (auto-read-only)"); 7431 seq_printf(seq, " %s", mddev->pers->name); 7432 } 7433 7434 sectors = 0; 7435 rcu_read_lock(); 7436 rdev_for_each_rcu(rdev, mddev) { 7437 char b[BDEVNAME_SIZE]; 7438 seq_printf(seq, " %s[%d]", 7439 bdevname(rdev->bdev,b), rdev->desc_nr); 7440 if (test_bit(WriteMostly, &rdev->flags)) 7441 seq_printf(seq, "(W)"); 7442 if (test_bit(Journal, &rdev->flags)) 7443 seq_printf(seq, "(J)"); 7444 if (test_bit(Faulty, &rdev->flags)) { 7445 seq_printf(seq, "(F)"); 7446 continue; 7447 } 7448 if (rdev->raid_disk < 0) 7449 seq_printf(seq, "(S)"); /* spare */ 7450 if (test_bit(Replacement, &rdev->flags)) 7451 seq_printf(seq, "(R)"); 7452 sectors += rdev->sectors; 7453 } 7454 rcu_read_unlock(); 7455 7456 if (!list_empty(&mddev->disks)) { 7457 if (mddev->pers) 7458 seq_printf(seq, "\n %llu blocks", 7459 (unsigned long long) 7460 mddev->array_sectors / 2); 7461 else 7462 seq_printf(seq, "\n %llu blocks", 7463 (unsigned long long)sectors / 2); 7464 } 7465 if (mddev->persistent) { 7466 if (mddev->major_version != 0 || 7467 mddev->minor_version != 90) { 7468 seq_printf(seq," super %d.%d", 7469 mddev->major_version, 7470 mddev->minor_version); 7471 } 7472 } else if (mddev->external) 7473 seq_printf(seq, " super external:%s", 7474 mddev->metadata_type); 7475 else 7476 seq_printf(seq, " super non-persistent"); 7477 7478 if (mddev->pers) { 7479 mddev->pers->status(seq, mddev); 7480 seq_printf(seq, "\n "); 7481 if (mddev->pers->sync_request) { 7482 if (status_resync(seq, mddev)) 7483 seq_printf(seq, "\n "); 7484 } 7485 } else 7486 seq_printf(seq, "\n "); 7487 7488 bitmap_status(seq, mddev->bitmap); 7489 7490 seq_printf(seq, "\n"); 7491 } 7492 spin_unlock(&mddev->lock); 7493 7494 return 0; 7495 } 7496 7497 static const struct seq_operations md_seq_ops = { 7498 .start = md_seq_start, 7499 .next = md_seq_next, 7500 .stop = md_seq_stop, 7501 .show = md_seq_show, 7502 }; 7503 7504 static int md_seq_open(struct inode *inode, struct file *file) 7505 { 7506 struct seq_file *seq; 7507 int error; 7508 7509 error = seq_open(file, &md_seq_ops); 7510 if (error) 7511 return error; 7512 7513 seq = file->private_data; 7514 seq->poll_event = atomic_read(&md_event_count); 7515 return error; 7516 } 7517 7518 static int md_unloading; 7519 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7520 { 7521 struct seq_file *seq = filp->private_data; 7522 int mask; 7523 7524 if (md_unloading) 7525 return POLLIN|POLLRDNORM|POLLERR|POLLPRI; 7526 poll_wait(filp, &md_event_waiters, wait); 7527 7528 /* always allow read */ 7529 mask = POLLIN | POLLRDNORM; 7530 7531 if (seq->poll_event != atomic_read(&md_event_count)) 7532 mask |= POLLERR | POLLPRI; 7533 return mask; 7534 } 7535 7536 static const struct file_operations md_seq_fops = { 7537 .owner = THIS_MODULE, 7538 .open = md_seq_open, 7539 .read = seq_read, 7540 .llseek = seq_lseek, 7541 .release = seq_release_private, 7542 .poll = mdstat_poll, 7543 }; 7544 7545 int register_md_personality(struct md_personality *p) 7546 { 7547 printk(KERN_INFO "md: %s personality registered for level %d\n", 7548 p->name, p->level); 7549 spin_lock(&pers_lock); 7550 list_add_tail(&p->list, &pers_list); 7551 spin_unlock(&pers_lock); 7552 return 0; 7553 } 7554 EXPORT_SYMBOL(register_md_personality); 7555 7556 int unregister_md_personality(struct md_personality *p) 7557 { 7558 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7559 spin_lock(&pers_lock); 7560 list_del_init(&p->list); 7561 spin_unlock(&pers_lock); 7562 return 0; 7563 } 7564 EXPORT_SYMBOL(unregister_md_personality); 7565 7566 int register_md_cluster_operations(struct md_cluster_operations *ops, 7567 struct module *module) 7568 { 7569 int ret = 0; 7570 spin_lock(&pers_lock); 7571 if (md_cluster_ops != NULL) 7572 ret = -EALREADY; 7573 else { 7574 md_cluster_ops = ops; 7575 md_cluster_mod = module; 7576 } 7577 spin_unlock(&pers_lock); 7578 return ret; 7579 } 7580 EXPORT_SYMBOL(register_md_cluster_operations); 7581 7582 int unregister_md_cluster_operations(void) 7583 { 7584 spin_lock(&pers_lock); 7585 md_cluster_ops = NULL; 7586 spin_unlock(&pers_lock); 7587 return 0; 7588 } 7589 EXPORT_SYMBOL(unregister_md_cluster_operations); 7590 7591 int md_setup_cluster(struct mddev *mddev, int nodes) 7592 { 7593 int err; 7594 7595 err = request_module("md-cluster"); 7596 if (err) { 7597 pr_err("md-cluster module not found.\n"); 7598 return -ENOENT; 7599 } 7600 7601 spin_lock(&pers_lock); 7602 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7603 spin_unlock(&pers_lock); 7604 return -ENOENT; 7605 } 7606 spin_unlock(&pers_lock); 7607 7608 return md_cluster_ops->join(mddev, nodes); 7609 } 7610 7611 void md_cluster_stop(struct mddev *mddev) 7612 { 7613 if (!md_cluster_ops) 7614 return; 7615 md_cluster_ops->leave(mddev); 7616 module_put(md_cluster_mod); 7617 } 7618 7619 static int is_mddev_idle(struct mddev *mddev, int init) 7620 { 7621 struct md_rdev *rdev; 7622 int idle; 7623 int curr_events; 7624 7625 idle = 1; 7626 rcu_read_lock(); 7627 rdev_for_each_rcu(rdev, mddev) { 7628 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7629 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7630 (int)part_stat_read(&disk->part0, sectors[1]) - 7631 atomic_read(&disk->sync_io); 7632 /* sync IO will cause sync_io to increase before the disk_stats 7633 * as sync_io is counted when a request starts, and 7634 * disk_stats is counted when it completes. 7635 * So resync activity will cause curr_events to be smaller than 7636 * when there was no such activity. 7637 * non-sync IO will cause disk_stat to increase without 7638 * increasing sync_io so curr_events will (eventually) 7639 * be larger than it was before. Once it becomes 7640 * substantially larger, the test below will cause 7641 * the array to appear non-idle, and resync will slow 7642 * down. 7643 * If there is a lot of outstanding resync activity when 7644 * we set last_event to curr_events, then all that activity 7645 * completing might cause the array to appear non-idle 7646 * and resync will be slowed down even though there might 7647 * not have been non-resync activity. This will only 7648 * happen once though. 'last_events' will soon reflect 7649 * the state where there is little or no outstanding 7650 * resync requests, and further resync activity will 7651 * always make curr_events less than last_events. 7652 * 7653 */ 7654 if (init || curr_events - rdev->last_events > 64) { 7655 rdev->last_events = curr_events; 7656 idle = 0; 7657 } 7658 } 7659 rcu_read_unlock(); 7660 return idle; 7661 } 7662 7663 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7664 { 7665 /* another "blocks" (512byte) blocks have been synced */ 7666 atomic_sub(blocks, &mddev->recovery_active); 7667 wake_up(&mddev->recovery_wait); 7668 if (!ok) { 7669 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7670 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7671 md_wakeup_thread(mddev->thread); 7672 // stop recovery, signal do_sync .... 7673 } 7674 } 7675 EXPORT_SYMBOL(md_done_sync); 7676 7677 /* md_write_start(mddev, bi) 7678 * If we need to update some array metadata (e.g. 'active' flag 7679 * in superblock) before writing, schedule a superblock update 7680 * and wait for it to complete. 7681 */ 7682 void md_write_start(struct mddev *mddev, struct bio *bi) 7683 { 7684 int did_change = 0; 7685 if (bio_data_dir(bi) != WRITE) 7686 return; 7687 7688 BUG_ON(mddev->ro == 1); 7689 if (mddev->ro == 2) { 7690 /* need to switch to read/write */ 7691 mddev->ro = 0; 7692 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7693 md_wakeup_thread(mddev->thread); 7694 md_wakeup_thread(mddev->sync_thread); 7695 did_change = 1; 7696 } 7697 atomic_inc(&mddev->writes_pending); 7698 if (mddev->safemode == 1) 7699 mddev->safemode = 0; 7700 if (mddev->in_sync) { 7701 spin_lock(&mddev->lock); 7702 if (mddev->in_sync) { 7703 mddev->in_sync = 0; 7704 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7705 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7706 md_wakeup_thread(mddev->thread); 7707 did_change = 1; 7708 } 7709 spin_unlock(&mddev->lock); 7710 } 7711 if (did_change) 7712 sysfs_notify_dirent_safe(mddev->sysfs_state); 7713 wait_event(mddev->sb_wait, 7714 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7715 } 7716 EXPORT_SYMBOL(md_write_start); 7717 7718 void md_write_end(struct mddev *mddev) 7719 { 7720 if (atomic_dec_and_test(&mddev->writes_pending)) { 7721 if (mddev->safemode == 2) 7722 md_wakeup_thread(mddev->thread); 7723 else if (mddev->safemode_delay) 7724 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7725 } 7726 } 7727 EXPORT_SYMBOL(md_write_end); 7728 7729 /* md_allow_write(mddev) 7730 * Calling this ensures that the array is marked 'active' so that writes 7731 * may proceed without blocking. It is important to call this before 7732 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7733 * Must be called with mddev_lock held. 7734 * 7735 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock 7736 * is dropped, so return -EAGAIN after notifying userspace. 7737 */ 7738 int md_allow_write(struct mddev *mddev) 7739 { 7740 if (!mddev->pers) 7741 return 0; 7742 if (mddev->ro) 7743 return 0; 7744 if (!mddev->pers->sync_request) 7745 return 0; 7746 7747 spin_lock(&mddev->lock); 7748 if (mddev->in_sync) { 7749 mddev->in_sync = 0; 7750 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7751 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7752 if (mddev->safemode_delay && 7753 mddev->safemode == 0) 7754 mddev->safemode = 1; 7755 spin_unlock(&mddev->lock); 7756 md_update_sb(mddev, 0); 7757 sysfs_notify_dirent_safe(mddev->sysfs_state); 7758 } else 7759 spin_unlock(&mddev->lock); 7760 7761 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7762 return -EAGAIN; 7763 else 7764 return 0; 7765 } 7766 EXPORT_SYMBOL_GPL(md_allow_write); 7767 7768 #define SYNC_MARKS 10 7769 #define SYNC_MARK_STEP (3*HZ) 7770 #define UPDATE_FREQUENCY (5*60*HZ) 7771 void md_do_sync(struct md_thread *thread) 7772 { 7773 struct mddev *mddev = thread->mddev; 7774 struct mddev *mddev2; 7775 unsigned int currspeed = 0, 7776 window; 7777 sector_t max_sectors,j, io_sectors, recovery_done; 7778 unsigned long mark[SYNC_MARKS]; 7779 unsigned long update_time; 7780 sector_t mark_cnt[SYNC_MARKS]; 7781 int last_mark,m; 7782 struct list_head *tmp; 7783 sector_t last_check; 7784 int skipped = 0; 7785 struct md_rdev *rdev; 7786 char *desc, *action = NULL; 7787 struct blk_plug plug; 7788 bool cluster_resync_finished = false; 7789 7790 /* just incase thread restarts... */ 7791 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7792 return; 7793 if (mddev->ro) {/* never try to sync a read-only array */ 7794 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7795 return; 7796 } 7797 7798 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7799 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7800 desc = "data-check"; 7801 action = "check"; 7802 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7803 desc = "requested-resync"; 7804 action = "repair"; 7805 } else 7806 desc = "resync"; 7807 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7808 desc = "reshape"; 7809 else 7810 desc = "recovery"; 7811 7812 mddev->last_sync_action = action ?: desc; 7813 7814 /* we overload curr_resync somewhat here. 7815 * 0 == not engaged in resync at all 7816 * 2 == checking that there is no conflict with another sync 7817 * 1 == like 2, but have yielded to allow conflicting resync to 7818 * commense 7819 * other == active in resync - this many blocks 7820 * 7821 * Before starting a resync we must have set curr_resync to 7822 * 2, and then checked that every "conflicting" array has curr_resync 7823 * less than ours. When we find one that is the same or higher 7824 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7825 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7826 * This will mean we have to start checking from the beginning again. 7827 * 7828 */ 7829 7830 do { 7831 mddev->curr_resync = 2; 7832 7833 try_again: 7834 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7835 goto skip; 7836 for_each_mddev(mddev2, tmp) { 7837 if (mddev2 == mddev) 7838 continue; 7839 if (!mddev->parallel_resync 7840 && mddev2->curr_resync 7841 && match_mddev_units(mddev, mddev2)) { 7842 DEFINE_WAIT(wq); 7843 if (mddev < mddev2 && mddev->curr_resync == 2) { 7844 /* arbitrarily yield */ 7845 mddev->curr_resync = 1; 7846 wake_up(&resync_wait); 7847 } 7848 if (mddev > mddev2 && mddev->curr_resync == 1) 7849 /* no need to wait here, we can wait the next 7850 * time 'round when curr_resync == 2 7851 */ 7852 continue; 7853 /* We need to wait 'interruptible' so as not to 7854 * contribute to the load average, and not to 7855 * be caught by 'softlockup' 7856 */ 7857 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7858 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7859 mddev2->curr_resync >= mddev->curr_resync) { 7860 printk(KERN_INFO "md: delaying %s of %s" 7861 " until %s has finished (they" 7862 " share one or more physical units)\n", 7863 desc, mdname(mddev), mdname(mddev2)); 7864 mddev_put(mddev2); 7865 if (signal_pending(current)) 7866 flush_signals(current); 7867 schedule(); 7868 finish_wait(&resync_wait, &wq); 7869 goto try_again; 7870 } 7871 finish_wait(&resync_wait, &wq); 7872 } 7873 } 7874 } while (mddev->curr_resync < 2); 7875 7876 j = 0; 7877 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7878 /* resync follows the size requested by the personality, 7879 * which defaults to physical size, but can be virtual size 7880 */ 7881 max_sectors = mddev->resync_max_sectors; 7882 atomic64_set(&mddev->resync_mismatches, 0); 7883 /* we don't use the checkpoint if there's a bitmap */ 7884 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7885 j = mddev->resync_min; 7886 else if (!mddev->bitmap) 7887 j = mddev->recovery_cp; 7888 7889 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7890 max_sectors = mddev->resync_max_sectors; 7891 else { 7892 /* recovery follows the physical size of devices */ 7893 max_sectors = mddev->dev_sectors; 7894 j = MaxSector; 7895 rcu_read_lock(); 7896 rdev_for_each_rcu(rdev, mddev) 7897 if (rdev->raid_disk >= 0 && 7898 !test_bit(Journal, &rdev->flags) && 7899 !test_bit(Faulty, &rdev->flags) && 7900 !test_bit(In_sync, &rdev->flags) && 7901 rdev->recovery_offset < j) 7902 j = rdev->recovery_offset; 7903 rcu_read_unlock(); 7904 7905 /* If there is a bitmap, we need to make sure all 7906 * writes that started before we added a spare 7907 * complete before we start doing a recovery. 7908 * Otherwise the write might complete and (via 7909 * bitmap_endwrite) set a bit in the bitmap after the 7910 * recovery has checked that bit and skipped that 7911 * region. 7912 */ 7913 if (mddev->bitmap) { 7914 mddev->pers->quiesce(mddev, 1); 7915 mddev->pers->quiesce(mddev, 0); 7916 } 7917 } 7918 7919 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7920 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7921 " %d KB/sec/disk.\n", speed_min(mddev)); 7922 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7923 "(but not more than %d KB/sec) for %s.\n", 7924 speed_max(mddev), desc); 7925 7926 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7927 7928 io_sectors = 0; 7929 for (m = 0; m < SYNC_MARKS; m++) { 7930 mark[m] = jiffies; 7931 mark_cnt[m] = io_sectors; 7932 } 7933 last_mark = 0; 7934 mddev->resync_mark = mark[last_mark]; 7935 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7936 7937 /* 7938 * Tune reconstruction: 7939 */ 7940 window = 32*(PAGE_SIZE/512); 7941 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7942 window/2, (unsigned long long)max_sectors/2); 7943 7944 atomic_set(&mddev->recovery_active, 0); 7945 last_check = 0; 7946 7947 if (j>2) { 7948 printk(KERN_INFO 7949 "md: resuming %s of %s from checkpoint.\n", 7950 desc, mdname(mddev)); 7951 mddev->curr_resync = j; 7952 } else 7953 mddev->curr_resync = 3; /* no longer delayed */ 7954 mddev->curr_resync_completed = j; 7955 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7956 md_new_event(mddev); 7957 update_time = jiffies; 7958 7959 blk_start_plug(&plug); 7960 while (j < max_sectors) { 7961 sector_t sectors; 7962 7963 skipped = 0; 7964 7965 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7966 ((mddev->curr_resync > mddev->curr_resync_completed && 7967 (mddev->curr_resync - mddev->curr_resync_completed) 7968 > (max_sectors >> 4)) || 7969 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7970 (j - mddev->curr_resync_completed)*2 7971 >= mddev->resync_max - mddev->curr_resync_completed || 7972 mddev->curr_resync_completed > mddev->resync_max 7973 )) { 7974 /* time to update curr_resync_completed */ 7975 wait_event(mddev->recovery_wait, 7976 atomic_read(&mddev->recovery_active) == 0); 7977 mddev->curr_resync_completed = j; 7978 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7979 j > mddev->recovery_cp) 7980 mddev->recovery_cp = j; 7981 update_time = jiffies; 7982 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7983 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7984 } 7985 7986 while (j >= mddev->resync_max && 7987 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7988 /* As this condition is controlled by user-space, 7989 * we can block indefinitely, so use '_interruptible' 7990 * to avoid triggering warnings. 7991 */ 7992 flush_signals(current); /* just in case */ 7993 wait_event_interruptible(mddev->recovery_wait, 7994 mddev->resync_max > j 7995 || test_bit(MD_RECOVERY_INTR, 7996 &mddev->recovery)); 7997 } 7998 7999 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8000 break; 8001 8002 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8003 if (sectors == 0) { 8004 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8005 break; 8006 } 8007 8008 if (!skipped) { /* actual IO requested */ 8009 io_sectors += sectors; 8010 atomic_add(sectors, &mddev->recovery_active); 8011 } 8012 8013 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8014 break; 8015 8016 j += sectors; 8017 if (j > max_sectors) 8018 /* when skipping, extra large numbers can be returned. */ 8019 j = max_sectors; 8020 if (j > 2) 8021 mddev->curr_resync = j; 8022 mddev->curr_mark_cnt = io_sectors; 8023 if (last_check == 0) 8024 /* this is the earliest that rebuild will be 8025 * visible in /proc/mdstat 8026 */ 8027 md_new_event(mddev); 8028 8029 if (last_check + window > io_sectors || j == max_sectors) 8030 continue; 8031 8032 last_check = io_sectors; 8033 repeat: 8034 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8035 /* step marks */ 8036 int next = (last_mark+1) % SYNC_MARKS; 8037 8038 mddev->resync_mark = mark[next]; 8039 mddev->resync_mark_cnt = mark_cnt[next]; 8040 mark[next] = jiffies; 8041 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8042 last_mark = next; 8043 } 8044 8045 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8046 break; 8047 8048 /* 8049 * this loop exits only if either when we are slower than 8050 * the 'hard' speed limit, or the system was IO-idle for 8051 * a jiffy. 8052 * the system might be non-idle CPU-wise, but we only care 8053 * about not overloading the IO subsystem. (things like an 8054 * e2fsck being done on the RAID array should execute fast) 8055 */ 8056 cond_resched(); 8057 8058 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8059 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8060 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8061 8062 if (currspeed > speed_min(mddev)) { 8063 if (currspeed > speed_max(mddev)) { 8064 msleep(500); 8065 goto repeat; 8066 } 8067 if (!is_mddev_idle(mddev, 0)) { 8068 /* 8069 * Give other IO more of a chance. 8070 * The faster the devices, the less we wait. 8071 */ 8072 wait_event(mddev->recovery_wait, 8073 !atomic_read(&mddev->recovery_active)); 8074 } 8075 } 8076 } 8077 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 8078 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8079 ? "interrupted" : "done"); 8080 /* 8081 * this also signals 'finished resyncing' to md_stop 8082 */ 8083 blk_finish_plug(&plug); 8084 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8085 8086 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8087 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8088 mddev->curr_resync > 2) { 8089 mddev->curr_resync_completed = mddev->curr_resync; 8090 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8091 } 8092 /* tell personality and other nodes that we are finished */ 8093 if (mddev_is_clustered(mddev)) { 8094 md_cluster_ops->resync_finish(mddev); 8095 cluster_resync_finished = true; 8096 } 8097 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8098 8099 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8100 mddev->curr_resync > 2) { 8101 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8102 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8103 if (mddev->curr_resync >= mddev->recovery_cp) { 8104 printk(KERN_INFO 8105 "md: checkpointing %s of %s.\n", 8106 desc, mdname(mddev)); 8107 if (test_bit(MD_RECOVERY_ERROR, 8108 &mddev->recovery)) 8109 mddev->recovery_cp = 8110 mddev->curr_resync_completed; 8111 else 8112 mddev->recovery_cp = 8113 mddev->curr_resync; 8114 } 8115 } else 8116 mddev->recovery_cp = MaxSector; 8117 } else { 8118 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8119 mddev->curr_resync = MaxSector; 8120 rcu_read_lock(); 8121 rdev_for_each_rcu(rdev, mddev) 8122 if (rdev->raid_disk >= 0 && 8123 mddev->delta_disks >= 0 && 8124 !test_bit(Journal, &rdev->flags) && 8125 !test_bit(Faulty, &rdev->flags) && 8126 !test_bit(In_sync, &rdev->flags) && 8127 rdev->recovery_offset < mddev->curr_resync) 8128 rdev->recovery_offset = mddev->curr_resync; 8129 rcu_read_unlock(); 8130 } 8131 } 8132 skip: 8133 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8134 8135 if (mddev_is_clustered(mddev) && 8136 test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8137 !cluster_resync_finished) 8138 md_cluster_ops->resync_finish(mddev); 8139 8140 spin_lock(&mddev->lock); 8141 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8142 /* We completed so min/max setting can be forgotten if used. */ 8143 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8144 mddev->resync_min = 0; 8145 mddev->resync_max = MaxSector; 8146 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8147 mddev->resync_min = mddev->curr_resync_completed; 8148 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8149 mddev->curr_resync = 0; 8150 spin_unlock(&mddev->lock); 8151 8152 wake_up(&resync_wait); 8153 md_wakeup_thread(mddev->thread); 8154 return; 8155 } 8156 EXPORT_SYMBOL_GPL(md_do_sync); 8157 8158 static int remove_and_add_spares(struct mddev *mddev, 8159 struct md_rdev *this) 8160 { 8161 struct md_rdev *rdev; 8162 int spares = 0; 8163 int removed = 0; 8164 8165 rdev_for_each(rdev, mddev) 8166 if ((this == NULL || rdev == this) && 8167 rdev->raid_disk >= 0 && 8168 !test_bit(Blocked, &rdev->flags) && 8169 (test_bit(Faulty, &rdev->flags) || 8170 (!test_bit(In_sync, &rdev->flags) && 8171 !test_bit(Journal, &rdev->flags))) && 8172 atomic_read(&rdev->nr_pending)==0) { 8173 if (mddev->pers->hot_remove_disk( 8174 mddev, rdev) == 0) { 8175 sysfs_unlink_rdev(mddev, rdev); 8176 rdev->raid_disk = -1; 8177 removed++; 8178 } 8179 } 8180 if (removed && mddev->kobj.sd) 8181 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8182 8183 if (this && removed) 8184 goto no_add; 8185 8186 rdev_for_each(rdev, mddev) { 8187 if (this && this != rdev) 8188 continue; 8189 if (test_bit(Candidate, &rdev->flags)) 8190 continue; 8191 if (rdev->raid_disk >= 0 && 8192 !test_bit(In_sync, &rdev->flags) && 8193 !test_bit(Journal, &rdev->flags) && 8194 !test_bit(Faulty, &rdev->flags)) 8195 spares++; 8196 if (rdev->raid_disk >= 0) 8197 continue; 8198 if (test_bit(Faulty, &rdev->flags)) 8199 continue; 8200 if (!test_bit(Journal, &rdev->flags)) { 8201 if (mddev->ro && 8202 ! (rdev->saved_raid_disk >= 0 && 8203 !test_bit(Bitmap_sync, &rdev->flags))) 8204 continue; 8205 8206 rdev->recovery_offset = 0; 8207 } 8208 if (mddev->pers-> 8209 hot_add_disk(mddev, rdev) == 0) { 8210 if (sysfs_link_rdev(mddev, rdev)) 8211 /* failure here is OK */; 8212 if (!test_bit(Journal, &rdev->flags)) 8213 spares++; 8214 md_new_event(mddev); 8215 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8216 } 8217 } 8218 no_add: 8219 if (removed) 8220 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8221 return spares; 8222 } 8223 8224 static void md_start_sync(struct work_struct *ws) 8225 { 8226 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8227 int ret = 0; 8228 8229 if (mddev_is_clustered(mddev)) { 8230 ret = md_cluster_ops->resync_start(mddev); 8231 if (ret) { 8232 mddev->sync_thread = NULL; 8233 goto out; 8234 } 8235 } 8236 8237 mddev->sync_thread = md_register_thread(md_do_sync, 8238 mddev, 8239 "resync"); 8240 out: 8241 if (!mddev->sync_thread) { 8242 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN)) 8243 printk(KERN_ERR "%s: could not start resync" 8244 " thread...\n", 8245 mdname(mddev)); 8246 /* leave the spares where they are, it shouldn't hurt */ 8247 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8248 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8249 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8250 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8251 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8252 wake_up(&resync_wait); 8253 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8254 &mddev->recovery)) 8255 if (mddev->sysfs_action) 8256 sysfs_notify_dirent_safe(mddev->sysfs_action); 8257 } else 8258 md_wakeup_thread(mddev->sync_thread); 8259 sysfs_notify_dirent_safe(mddev->sysfs_action); 8260 md_new_event(mddev); 8261 } 8262 8263 /* 8264 * This routine is regularly called by all per-raid-array threads to 8265 * deal with generic issues like resync and super-block update. 8266 * Raid personalities that don't have a thread (linear/raid0) do not 8267 * need this as they never do any recovery or update the superblock. 8268 * 8269 * It does not do any resync itself, but rather "forks" off other threads 8270 * to do that as needed. 8271 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8272 * "->recovery" and create a thread at ->sync_thread. 8273 * When the thread finishes it sets MD_RECOVERY_DONE 8274 * and wakeups up this thread which will reap the thread and finish up. 8275 * This thread also removes any faulty devices (with nr_pending == 0). 8276 * 8277 * The overall approach is: 8278 * 1/ if the superblock needs updating, update it. 8279 * 2/ If a recovery thread is running, don't do anything else. 8280 * 3/ If recovery has finished, clean up, possibly marking spares active. 8281 * 4/ If there are any faulty devices, remove them. 8282 * 5/ If array is degraded, try to add spares devices 8283 * 6/ If array has spares or is not in-sync, start a resync thread. 8284 */ 8285 void md_check_recovery(struct mddev *mddev) 8286 { 8287 if (mddev->suspended) 8288 return; 8289 8290 if (mddev->bitmap) 8291 bitmap_daemon_work(mddev); 8292 8293 if (signal_pending(current)) { 8294 if (mddev->pers->sync_request && !mddev->external) { 8295 printk(KERN_INFO "md: %s in immediate safe mode\n", 8296 mdname(mddev)); 8297 mddev->safemode = 2; 8298 } 8299 flush_signals(current); 8300 } 8301 8302 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8303 return; 8304 if ( ! ( 8305 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 8306 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8307 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8308 test_bit(MD_RELOAD_SB, &mddev->flags) || 8309 (mddev->external == 0 && mddev->safemode == 1) || 8310 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 8311 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8312 )) 8313 return; 8314 8315 if (mddev_trylock(mddev)) { 8316 int spares = 0; 8317 8318 if (mddev->ro) { 8319 struct md_rdev *rdev; 8320 if (!mddev->external && mddev->in_sync) 8321 /* 'Blocked' flag not needed as failed devices 8322 * will be recorded if array switched to read/write. 8323 * Leaving it set will prevent the device 8324 * from being removed. 8325 */ 8326 rdev_for_each(rdev, mddev) 8327 clear_bit(Blocked, &rdev->flags); 8328 /* On a read-only array we can: 8329 * - remove failed devices 8330 * - add already-in_sync devices if the array itself 8331 * is in-sync. 8332 * As we only add devices that are already in-sync, 8333 * we can activate the spares immediately. 8334 */ 8335 remove_and_add_spares(mddev, NULL); 8336 /* There is no thread, but we need to call 8337 * ->spare_active and clear saved_raid_disk 8338 */ 8339 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8340 md_reap_sync_thread(mddev); 8341 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8342 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8343 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 8344 goto unlock; 8345 } 8346 8347 if (mddev_is_clustered(mddev)) { 8348 struct md_rdev *rdev; 8349 /* kick the device if another node issued a 8350 * remove disk. 8351 */ 8352 rdev_for_each(rdev, mddev) { 8353 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8354 rdev->raid_disk < 0) 8355 md_kick_rdev_from_array(rdev); 8356 } 8357 8358 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags)) 8359 md_reload_sb(mddev, mddev->good_device_nr); 8360 } 8361 8362 if (!mddev->external) { 8363 int did_change = 0; 8364 spin_lock(&mddev->lock); 8365 if (mddev->safemode && 8366 !atomic_read(&mddev->writes_pending) && 8367 !mddev->in_sync && 8368 mddev->recovery_cp == MaxSector) { 8369 mddev->in_sync = 1; 8370 did_change = 1; 8371 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 8372 } 8373 if (mddev->safemode == 1) 8374 mddev->safemode = 0; 8375 spin_unlock(&mddev->lock); 8376 if (did_change) 8377 sysfs_notify_dirent_safe(mddev->sysfs_state); 8378 } 8379 8380 if (mddev->flags & MD_UPDATE_SB_FLAGS) 8381 md_update_sb(mddev, 0); 8382 8383 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8384 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8385 /* resync/recovery still happening */ 8386 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8387 goto unlock; 8388 } 8389 if (mddev->sync_thread) { 8390 md_reap_sync_thread(mddev); 8391 goto unlock; 8392 } 8393 /* Set RUNNING before clearing NEEDED to avoid 8394 * any transients in the value of "sync_action". 8395 */ 8396 mddev->curr_resync_completed = 0; 8397 spin_lock(&mddev->lock); 8398 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8399 spin_unlock(&mddev->lock); 8400 /* Clear some bits that don't mean anything, but 8401 * might be left set 8402 */ 8403 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8404 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8405 8406 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8407 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8408 goto not_running; 8409 /* no recovery is running. 8410 * remove any failed drives, then 8411 * add spares if possible. 8412 * Spares are also removed and re-added, to allow 8413 * the personality to fail the re-add. 8414 */ 8415 8416 if (mddev->reshape_position != MaxSector) { 8417 if (mddev->pers->check_reshape == NULL || 8418 mddev->pers->check_reshape(mddev) != 0) 8419 /* Cannot proceed */ 8420 goto not_running; 8421 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8422 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8423 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8424 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8425 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8426 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8427 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8428 } else if (mddev->recovery_cp < MaxSector) { 8429 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8430 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8431 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8432 /* nothing to be done ... */ 8433 goto not_running; 8434 8435 if (mddev->pers->sync_request) { 8436 if (spares) { 8437 /* We are adding a device or devices to an array 8438 * which has the bitmap stored on all devices. 8439 * So make sure all bitmap pages get written 8440 */ 8441 bitmap_write_all(mddev->bitmap); 8442 } 8443 INIT_WORK(&mddev->del_work, md_start_sync); 8444 queue_work(md_misc_wq, &mddev->del_work); 8445 goto unlock; 8446 } 8447 not_running: 8448 if (!mddev->sync_thread) { 8449 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8450 wake_up(&resync_wait); 8451 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8452 &mddev->recovery)) 8453 if (mddev->sysfs_action) 8454 sysfs_notify_dirent_safe(mddev->sysfs_action); 8455 } 8456 unlock: 8457 wake_up(&mddev->sb_wait); 8458 mddev_unlock(mddev); 8459 } 8460 } 8461 EXPORT_SYMBOL(md_check_recovery); 8462 8463 void md_reap_sync_thread(struct mddev *mddev) 8464 { 8465 struct md_rdev *rdev; 8466 8467 /* resync has finished, collect result */ 8468 md_unregister_thread(&mddev->sync_thread); 8469 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8470 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8471 /* success...*/ 8472 /* activate any spares */ 8473 if (mddev->pers->spare_active(mddev)) { 8474 sysfs_notify(&mddev->kobj, NULL, 8475 "degraded"); 8476 set_bit(MD_CHANGE_DEVS, &mddev->flags); 8477 } 8478 } 8479 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8480 mddev->pers->finish_reshape) 8481 mddev->pers->finish_reshape(mddev); 8482 8483 /* If array is no-longer degraded, then any saved_raid_disk 8484 * information must be scrapped. 8485 */ 8486 if (!mddev->degraded) 8487 rdev_for_each(rdev, mddev) 8488 rdev->saved_raid_disk = -1; 8489 8490 md_update_sb(mddev, 1); 8491 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8492 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8493 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8494 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8495 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8496 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8497 wake_up(&resync_wait); 8498 /* flag recovery needed just to double check */ 8499 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8500 sysfs_notify_dirent_safe(mddev->sysfs_action); 8501 md_new_event(mddev); 8502 if (mddev->event_work.func) 8503 queue_work(md_misc_wq, &mddev->event_work); 8504 } 8505 EXPORT_SYMBOL(md_reap_sync_thread); 8506 8507 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8508 { 8509 sysfs_notify_dirent_safe(rdev->sysfs_state); 8510 wait_event_timeout(rdev->blocked_wait, 8511 !test_bit(Blocked, &rdev->flags) && 8512 !test_bit(BlockedBadBlocks, &rdev->flags), 8513 msecs_to_jiffies(5000)); 8514 rdev_dec_pending(rdev, mddev); 8515 } 8516 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8517 8518 void md_finish_reshape(struct mddev *mddev) 8519 { 8520 /* called be personality module when reshape completes. */ 8521 struct md_rdev *rdev; 8522 8523 rdev_for_each(rdev, mddev) { 8524 if (rdev->data_offset > rdev->new_data_offset) 8525 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8526 else 8527 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8528 rdev->data_offset = rdev->new_data_offset; 8529 } 8530 } 8531 EXPORT_SYMBOL(md_finish_reshape); 8532 8533 /* Bad block management */ 8534 8535 /* Returns 1 on success, 0 on failure */ 8536 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8537 int is_new) 8538 { 8539 int rv; 8540 if (is_new) 8541 s += rdev->new_data_offset; 8542 else 8543 s += rdev->data_offset; 8544 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8545 if (rv == 0) { 8546 /* Make sure they get written out promptly */ 8547 sysfs_notify_dirent_safe(rdev->sysfs_state); 8548 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8549 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags); 8550 md_wakeup_thread(rdev->mddev->thread); 8551 return 1; 8552 } else 8553 return 0; 8554 } 8555 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8556 8557 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8558 int is_new) 8559 { 8560 if (is_new) 8561 s += rdev->new_data_offset; 8562 else 8563 s += rdev->data_offset; 8564 return badblocks_clear(&rdev->badblocks, 8565 s, sectors); 8566 } 8567 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8568 8569 static int md_notify_reboot(struct notifier_block *this, 8570 unsigned long code, void *x) 8571 { 8572 struct list_head *tmp; 8573 struct mddev *mddev; 8574 int need_delay = 0; 8575 8576 for_each_mddev(mddev, tmp) { 8577 if (mddev_trylock(mddev)) { 8578 if (mddev->pers) 8579 __md_stop_writes(mddev); 8580 if (mddev->persistent) 8581 mddev->safemode = 2; 8582 mddev_unlock(mddev); 8583 } 8584 need_delay = 1; 8585 } 8586 /* 8587 * certain more exotic SCSI devices are known to be 8588 * volatile wrt too early system reboots. While the 8589 * right place to handle this issue is the given 8590 * driver, we do want to have a safe RAID driver ... 8591 */ 8592 if (need_delay) 8593 mdelay(1000*1); 8594 8595 return NOTIFY_DONE; 8596 } 8597 8598 static struct notifier_block md_notifier = { 8599 .notifier_call = md_notify_reboot, 8600 .next = NULL, 8601 .priority = INT_MAX, /* before any real devices */ 8602 }; 8603 8604 static void md_geninit(void) 8605 { 8606 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8607 8608 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8609 } 8610 8611 static int __init md_init(void) 8612 { 8613 int ret = -ENOMEM; 8614 8615 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8616 if (!md_wq) 8617 goto err_wq; 8618 8619 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8620 if (!md_misc_wq) 8621 goto err_misc_wq; 8622 8623 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8624 goto err_md; 8625 8626 if ((ret = register_blkdev(0, "mdp")) < 0) 8627 goto err_mdp; 8628 mdp_major = ret; 8629 8630 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 8631 md_probe, NULL, NULL); 8632 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8633 md_probe, NULL, NULL); 8634 8635 register_reboot_notifier(&md_notifier); 8636 raid_table_header = register_sysctl_table(raid_root_table); 8637 8638 md_geninit(); 8639 return 0; 8640 8641 err_mdp: 8642 unregister_blkdev(MD_MAJOR, "md"); 8643 err_md: 8644 destroy_workqueue(md_misc_wq); 8645 err_misc_wq: 8646 destroy_workqueue(md_wq); 8647 err_wq: 8648 return ret; 8649 } 8650 8651 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 8652 { 8653 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 8654 struct md_rdev *rdev2; 8655 int role, ret; 8656 char b[BDEVNAME_SIZE]; 8657 8658 /* Check for change of roles in the active devices */ 8659 rdev_for_each(rdev2, mddev) { 8660 if (test_bit(Faulty, &rdev2->flags)) 8661 continue; 8662 8663 /* Check if the roles changed */ 8664 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 8665 8666 if (test_bit(Candidate, &rdev2->flags)) { 8667 if (role == 0xfffe) { 8668 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 8669 md_kick_rdev_from_array(rdev2); 8670 continue; 8671 } 8672 else 8673 clear_bit(Candidate, &rdev2->flags); 8674 } 8675 8676 if (role != rdev2->raid_disk) { 8677 /* got activated */ 8678 if (rdev2->raid_disk == -1 && role != 0xffff) { 8679 rdev2->saved_raid_disk = role; 8680 ret = remove_and_add_spares(mddev, rdev2); 8681 pr_info("Activated spare: %s\n", 8682 bdevname(rdev2->bdev,b)); 8683 } 8684 /* device faulty 8685 * We just want to do the minimum to mark the disk 8686 * as faulty. The recovery is performed by the 8687 * one who initiated the error. 8688 */ 8689 if ((role == 0xfffe) || (role == 0xfffd)) { 8690 md_error(mddev, rdev2); 8691 clear_bit(Blocked, &rdev2->flags); 8692 } 8693 } 8694 } 8695 8696 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 8697 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 8698 8699 /* Finally set the event to be up to date */ 8700 mddev->events = le64_to_cpu(sb->events); 8701 } 8702 8703 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 8704 { 8705 int err; 8706 struct page *swapout = rdev->sb_page; 8707 struct mdp_superblock_1 *sb; 8708 8709 /* Store the sb page of the rdev in the swapout temporary 8710 * variable in case we err in the future 8711 */ 8712 rdev->sb_page = NULL; 8713 alloc_disk_sb(rdev); 8714 ClearPageUptodate(rdev->sb_page); 8715 rdev->sb_loaded = 0; 8716 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version); 8717 8718 if (err < 0) { 8719 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 8720 __func__, __LINE__, rdev->desc_nr, err); 8721 put_page(rdev->sb_page); 8722 rdev->sb_page = swapout; 8723 rdev->sb_loaded = 1; 8724 return err; 8725 } 8726 8727 sb = page_address(rdev->sb_page); 8728 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 8729 * is not set 8730 */ 8731 8732 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 8733 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 8734 8735 /* The other node finished recovery, call spare_active to set 8736 * device In_sync and mddev->degraded 8737 */ 8738 if (rdev->recovery_offset == MaxSector && 8739 !test_bit(In_sync, &rdev->flags) && 8740 mddev->pers->spare_active(mddev)) 8741 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8742 8743 put_page(swapout); 8744 return 0; 8745 } 8746 8747 void md_reload_sb(struct mddev *mddev, int nr) 8748 { 8749 struct md_rdev *rdev; 8750 int err; 8751 8752 /* Find the rdev */ 8753 rdev_for_each_rcu(rdev, mddev) { 8754 if (rdev->desc_nr == nr) 8755 break; 8756 } 8757 8758 if (!rdev || rdev->desc_nr != nr) { 8759 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 8760 return; 8761 } 8762 8763 err = read_rdev(mddev, rdev); 8764 if (err < 0) 8765 return; 8766 8767 check_sb_changes(mddev, rdev); 8768 8769 /* Read all rdev's to update recovery_offset */ 8770 rdev_for_each_rcu(rdev, mddev) 8771 read_rdev(mddev, rdev); 8772 } 8773 EXPORT_SYMBOL(md_reload_sb); 8774 8775 #ifndef MODULE 8776 8777 /* 8778 * Searches all registered partitions for autorun RAID arrays 8779 * at boot time. 8780 */ 8781 8782 static LIST_HEAD(all_detected_devices); 8783 struct detected_devices_node { 8784 struct list_head list; 8785 dev_t dev; 8786 }; 8787 8788 void md_autodetect_dev(dev_t dev) 8789 { 8790 struct detected_devices_node *node_detected_dev; 8791 8792 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8793 if (node_detected_dev) { 8794 node_detected_dev->dev = dev; 8795 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8796 } else { 8797 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8798 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8799 } 8800 } 8801 8802 static void autostart_arrays(int part) 8803 { 8804 struct md_rdev *rdev; 8805 struct detected_devices_node *node_detected_dev; 8806 dev_t dev; 8807 int i_scanned, i_passed; 8808 8809 i_scanned = 0; 8810 i_passed = 0; 8811 8812 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8813 8814 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8815 i_scanned++; 8816 node_detected_dev = list_entry(all_detected_devices.next, 8817 struct detected_devices_node, list); 8818 list_del(&node_detected_dev->list); 8819 dev = node_detected_dev->dev; 8820 kfree(node_detected_dev); 8821 rdev = md_import_device(dev,0, 90); 8822 if (IS_ERR(rdev)) 8823 continue; 8824 8825 if (test_bit(Faulty, &rdev->flags)) 8826 continue; 8827 8828 set_bit(AutoDetected, &rdev->flags); 8829 list_add(&rdev->same_set, &pending_raid_disks); 8830 i_passed++; 8831 } 8832 8833 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8834 i_scanned, i_passed); 8835 8836 autorun_devices(part); 8837 } 8838 8839 #endif /* !MODULE */ 8840 8841 static __exit void md_exit(void) 8842 { 8843 struct mddev *mddev; 8844 struct list_head *tmp; 8845 int delay = 1; 8846 8847 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 8848 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8849 8850 unregister_blkdev(MD_MAJOR,"md"); 8851 unregister_blkdev(mdp_major, "mdp"); 8852 unregister_reboot_notifier(&md_notifier); 8853 unregister_sysctl_table(raid_table_header); 8854 8855 /* We cannot unload the modules while some process is 8856 * waiting for us in select() or poll() - wake them up 8857 */ 8858 md_unloading = 1; 8859 while (waitqueue_active(&md_event_waiters)) { 8860 /* not safe to leave yet */ 8861 wake_up(&md_event_waiters); 8862 msleep(delay); 8863 delay += delay; 8864 } 8865 remove_proc_entry("mdstat", NULL); 8866 8867 for_each_mddev(mddev, tmp) { 8868 export_array(mddev); 8869 mddev->hold_active = 0; 8870 } 8871 destroy_workqueue(md_misc_wq); 8872 destroy_workqueue(md_wq); 8873 } 8874 8875 subsys_initcall(md_init); 8876 module_exit(md_exit) 8877 8878 static int get_ro(char *buffer, struct kernel_param *kp) 8879 { 8880 return sprintf(buffer, "%d", start_readonly); 8881 } 8882 static int set_ro(const char *val, struct kernel_param *kp) 8883 { 8884 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 8885 } 8886 8887 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8888 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8889 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8890 8891 MODULE_LICENSE("GPL"); 8892 MODULE_DESCRIPTION("MD RAID framework"); 8893 MODULE_ALIAS("md"); 8894 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8895