xref: /openbmc/linux/drivers/md/md.c (revision 4800cd83)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59 
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63 
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66 
67 static void md_print_devices(void);
68 
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72 
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74 
75 /*
76  * Default number of read corrections we'll attempt on an rdev
77  * before ejecting it from the array. We divide the read error
78  * count by 2 for every hour elapsed between read errors.
79  */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83  * is 1000 KB/sec, so the extra system load does not show up that much.
84  * Increase it if you want to have more _guaranteed_ speed. Note that
85  * the RAID driver will use the maximum available bandwidth if the IO
86  * subsystem is idle. There is also an 'absolute maximum' reconstruction
87  * speed limit - in case reconstruction slows down your system despite
88  * idle IO detection.
89  *
90  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91  * or /sys/block/mdX/md/sync_speed_{min,max}
92  */
93 
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 	return mddev->sync_speed_min ?
99 		mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101 
102 static inline int speed_max(mddev_t *mddev)
103 {
104 	return mddev->sync_speed_max ?
105 		mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107 
108 static struct ctl_table_header *raid_table_header;
109 
110 static ctl_table raid_table[] = {
111 	{
112 		.procname	= "speed_limit_min",
113 		.data		= &sysctl_speed_limit_min,
114 		.maxlen		= sizeof(int),
115 		.mode		= S_IRUGO|S_IWUSR,
116 		.proc_handler	= proc_dointvec,
117 	},
118 	{
119 		.procname	= "speed_limit_max",
120 		.data		= &sysctl_speed_limit_max,
121 		.maxlen		= sizeof(int),
122 		.mode		= S_IRUGO|S_IWUSR,
123 		.proc_handler	= proc_dointvec,
124 	},
125 	{ }
126 };
127 
128 static ctl_table raid_dir_table[] = {
129 	{
130 		.procname	= "raid",
131 		.maxlen		= 0,
132 		.mode		= S_IRUGO|S_IXUGO,
133 		.child		= raid_table,
134 	},
135 	{ }
136 };
137 
138 static ctl_table raid_root_table[] = {
139 	{
140 		.procname	= "dev",
141 		.maxlen		= 0,
142 		.mode		= 0555,
143 		.child		= raid_dir_table,
144 	},
145 	{  }
146 };
147 
148 static const struct block_device_operations md_fops;
149 
150 static int start_readonly;
151 
152 /* bio_clone_mddev
153  * like bio_clone, but with a local bio set
154  */
155 
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 	mddev_t *mddev, **mddevp;
159 
160 	mddevp = (void*)bio;
161 	mddev = mddevp[-1];
162 
163 	bio_free(bio, mddev->bio_set);
164 }
165 
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 			    mddev_t *mddev)
168 {
169 	struct bio *b;
170 	mddev_t **mddevp;
171 
172 	if (!mddev || !mddev->bio_set)
173 		return bio_alloc(gfp_mask, nr_iovecs);
174 
175 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 			     mddev->bio_set);
177 	if (!b)
178 		return NULL;
179 	mddevp = (void*)b;
180 	mddevp[-1] = mddev;
181 	b->bi_destructor = mddev_bio_destructor;
182 	return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185 
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 			    mddev_t *mddev)
188 {
189 	struct bio *b;
190 	mddev_t **mddevp;
191 
192 	if (!mddev || !mddev->bio_set)
193 		return bio_clone(bio, gfp_mask);
194 
195 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 			     mddev->bio_set);
197 	if (!b)
198 		return NULL;
199 	mddevp = (void*)b;
200 	mddevp[-1] = mddev;
201 	b->bi_destructor = mddev_bio_destructor;
202 	__bio_clone(b, bio);
203 	if (bio_integrity(bio)) {
204 		int ret;
205 
206 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207 
208 		if (ret < 0) {
209 			bio_put(b);
210 			return NULL;
211 		}
212 	}
213 
214 	return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217 
218 /*
219  * We have a system wide 'event count' that is incremented
220  * on any 'interesting' event, and readers of /proc/mdstat
221  * can use 'poll' or 'select' to find out when the event
222  * count increases.
223  *
224  * Events are:
225  *  start array, stop array, error, add device, remove device,
226  *  start build, activate spare
227  */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 	atomic_inc(&md_event_count);
233 	wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236 
237 /* Alternate version that can be called from interrupts
238  * when calling sysfs_notify isn't needed.
239  */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 	atomic_inc(&md_event_count);
243 	wake_up(&md_event_waiters);
244 }
245 
246 /*
247  * Enables to iterate over all existing md arrays
248  * all_mddevs_lock protects this list.
249  */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252 
253 
254 /*
255  * iterates through all used mddevs in the system.
256  * We take care to grab the all_mddevs_lock whenever navigating
257  * the list, and to always hold a refcount when unlocked.
258  * Any code which breaks out of this loop while own
259  * a reference to the current mddev and must mddev_put it.
260  */
261 #define for_each_mddev(mddev,tmp)					\
262 									\
263 	for (({ spin_lock(&all_mddevs_lock); 				\
264 		tmp = all_mddevs.next;					\
265 		mddev = NULL;});					\
266 	     ({ if (tmp != &all_mddevs)					\
267 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 		spin_unlock(&all_mddevs_lock);				\
269 		if (mddev) mddev_put(mddev);				\
270 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
271 		tmp != &all_mddevs;});					\
272 	     ({ spin_lock(&all_mddevs_lock);				\
273 		tmp = tmp->next;})					\
274 		)
275 
276 
277 /* Rather than calling directly into the personality make_request function,
278  * IO requests come here first so that we can check if the device is
279  * being suspended pending a reconfiguration.
280  * We hold a refcount over the call to ->make_request.  By the time that
281  * call has finished, the bio has been linked into some internal structure
282  * and so is visible to ->quiesce(), so we don't need the refcount any more.
283  */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 	const int rw = bio_data_dir(bio);
287 	mddev_t *mddev = q->queuedata;
288 	int rv;
289 	int cpu;
290 	unsigned int sectors;
291 
292 	if (mddev == NULL || mddev->pers == NULL
293 	    || !mddev->ready) {
294 		bio_io_error(bio);
295 		return 0;
296 	}
297 	smp_rmb(); /* Ensure implications of  'active' are visible */
298 	rcu_read_lock();
299 	if (mddev->suspended) {
300 		DEFINE_WAIT(__wait);
301 		for (;;) {
302 			prepare_to_wait(&mddev->sb_wait, &__wait,
303 					TASK_UNINTERRUPTIBLE);
304 			if (!mddev->suspended)
305 				break;
306 			rcu_read_unlock();
307 			schedule();
308 			rcu_read_lock();
309 		}
310 		finish_wait(&mddev->sb_wait, &__wait);
311 	}
312 	atomic_inc(&mddev->active_io);
313 	rcu_read_unlock();
314 
315 	/*
316 	 * save the sectors now since our bio can
317 	 * go away inside make_request
318 	 */
319 	sectors = bio_sectors(bio);
320 	rv = mddev->pers->make_request(mddev, bio);
321 
322 	cpu = part_stat_lock();
323 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
324 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
325 	part_stat_unlock();
326 
327 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
328 		wake_up(&mddev->sb_wait);
329 
330 	return rv;
331 }
332 
333 /* mddev_suspend makes sure no new requests are submitted
334  * to the device, and that any requests that have been submitted
335  * are completely handled.
336  * Once ->stop is called and completes, the module will be completely
337  * unused.
338  */
339 void mddev_suspend(mddev_t *mddev)
340 {
341 	BUG_ON(mddev->suspended);
342 	mddev->suspended = 1;
343 	synchronize_rcu();
344 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
345 	mddev->pers->quiesce(mddev, 1);
346 }
347 EXPORT_SYMBOL_GPL(mddev_suspend);
348 
349 void mddev_resume(mddev_t *mddev)
350 {
351 	mddev->suspended = 0;
352 	wake_up(&mddev->sb_wait);
353 	mddev->pers->quiesce(mddev, 0);
354 }
355 EXPORT_SYMBOL_GPL(mddev_resume);
356 
357 int mddev_congested(mddev_t *mddev, int bits)
358 {
359 	return mddev->suspended;
360 }
361 EXPORT_SYMBOL(mddev_congested);
362 
363 /*
364  * Generic flush handling for md
365  */
366 
367 static void md_end_flush(struct bio *bio, int err)
368 {
369 	mdk_rdev_t *rdev = bio->bi_private;
370 	mddev_t *mddev = rdev->mddev;
371 
372 	rdev_dec_pending(rdev, mddev);
373 
374 	if (atomic_dec_and_test(&mddev->flush_pending)) {
375 		/* The pre-request flush has finished */
376 		queue_work(md_wq, &mddev->flush_work);
377 	}
378 	bio_put(bio);
379 }
380 
381 static void md_submit_flush_data(struct work_struct *ws);
382 
383 static void submit_flushes(struct work_struct *ws)
384 {
385 	mddev_t *mddev = container_of(ws, mddev_t, flush_work);
386 	mdk_rdev_t *rdev;
387 
388 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
389 	atomic_set(&mddev->flush_pending, 1);
390 	rcu_read_lock();
391 	list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
392 		if (rdev->raid_disk >= 0 &&
393 		    !test_bit(Faulty, &rdev->flags)) {
394 			/* Take two references, one is dropped
395 			 * when request finishes, one after
396 			 * we reclaim rcu_read_lock
397 			 */
398 			struct bio *bi;
399 			atomic_inc(&rdev->nr_pending);
400 			atomic_inc(&rdev->nr_pending);
401 			rcu_read_unlock();
402 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
403 			bi->bi_end_io = md_end_flush;
404 			bi->bi_private = rdev;
405 			bi->bi_bdev = rdev->bdev;
406 			atomic_inc(&mddev->flush_pending);
407 			submit_bio(WRITE_FLUSH, bi);
408 			rcu_read_lock();
409 			rdev_dec_pending(rdev, mddev);
410 		}
411 	rcu_read_unlock();
412 	if (atomic_dec_and_test(&mddev->flush_pending))
413 		queue_work(md_wq, &mddev->flush_work);
414 }
415 
416 static void md_submit_flush_data(struct work_struct *ws)
417 {
418 	mddev_t *mddev = container_of(ws, mddev_t, flush_work);
419 	struct bio *bio = mddev->flush_bio;
420 
421 	if (bio->bi_size == 0)
422 		/* an empty barrier - all done */
423 		bio_endio(bio, 0);
424 	else {
425 		bio->bi_rw &= ~REQ_FLUSH;
426 		if (mddev->pers->make_request(mddev, bio))
427 			generic_make_request(bio);
428 	}
429 
430 	mddev->flush_bio = NULL;
431 	wake_up(&mddev->sb_wait);
432 }
433 
434 void md_flush_request(mddev_t *mddev, struct bio *bio)
435 {
436 	spin_lock_irq(&mddev->write_lock);
437 	wait_event_lock_irq(mddev->sb_wait,
438 			    !mddev->flush_bio,
439 			    mddev->write_lock, /*nothing*/);
440 	mddev->flush_bio = bio;
441 	spin_unlock_irq(&mddev->write_lock);
442 
443 	INIT_WORK(&mddev->flush_work, submit_flushes);
444 	queue_work(md_wq, &mddev->flush_work);
445 }
446 EXPORT_SYMBOL(md_flush_request);
447 
448 /* Support for plugging.
449  * This mirrors the plugging support in request_queue, but does not
450  * require having a whole queue
451  */
452 static void plugger_work(struct work_struct *work)
453 {
454 	struct plug_handle *plug =
455 		container_of(work, struct plug_handle, unplug_work);
456 	plug->unplug_fn(plug);
457 }
458 static void plugger_timeout(unsigned long data)
459 {
460 	struct plug_handle *plug = (void *)data;
461 	kblockd_schedule_work(NULL, &plug->unplug_work);
462 }
463 void plugger_init(struct plug_handle *plug,
464 		  void (*unplug_fn)(struct plug_handle *))
465 {
466 	plug->unplug_flag = 0;
467 	plug->unplug_fn = unplug_fn;
468 	init_timer(&plug->unplug_timer);
469 	plug->unplug_timer.function = plugger_timeout;
470 	plug->unplug_timer.data = (unsigned long)plug;
471 	INIT_WORK(&plug->unplug_work, plugger_work);
472 }
473 EXPORT_SYMBOL_GPL(plugger_init);
474 
475 void plugger_set_plug(struct plug_handle *plug)
476 {
477 	if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
478 		mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
479 }
480 EXPORT_SYMBOL_GPL(plugger_set_plug);
481 
482 int plugger_remove_plug(struct plug_handle *plug)
483 {
484 	if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
485 		del_timer(&plug->unplug_timer);
486 		return 1;
487 	} else
488 		return 0;
489 }
490 EXPORT_SYMBOL_GPL(plugger_remove_plug);
491 
492 
493 static inline mddev_t *mddev_get(mddev_t *mddev)
494 {
495 	atomic_inc(&mddev->active);
496 	return mddev;
497 }
498 
499 static void mddev_delayed_delete(struct work_struct *ws);
500 
501 static void mddev_put(mddev_t *mddev)
502 {
503 	struct bio_set *bs = NULL;
504 
505 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
506 		return;
507 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
508 	    mddev->ctime == 0 && !mddev->hold_active) {
509 		/* Array is not configured at all, and not held active,
510 		 * so destroy it */
511 		list_del(&mddev->all_mddevs);
512 		bs = mddev->bio_set;
513 		mddev->bio_set = NULL;
514 		if (mddev->gendisk) {
515 			/* We did a probe so need to clean up.  Call
516 			 * queue_work inside the spinlock so that
517 			 * flush_workqueue() after mddev_find will
518 			 * succeed in waiting for the work to be done.
519 			 */
520 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
521 			queue_work(md_misc_wq, &mddev->del_work);
522 		} else
523 			kfree(mddev);
524 	}
525 	spin_unlock(&all_mddevs_lock);
526 	if (bs)
527 		bioset_free(bs);
528 }
529 
530 void mddev_init(mddev_t *mddev)
531 {
532 	mutex_init(&mddev->open_mutex);
533 	mutex_init(&mddev->reconfig_mutex);
534 	mutex_init(&mddev->bitmap_info.mutex);
535 	INIT_LIST_HEAD(&mddev->disks);
536 	INIT_LIST_HEAD(&mddev->all_mddevs);
537 	init_timer(&mddev->safemode_timer);
538 	atomic_set(&mddev->active, 1);
539 	atomic_set(&mddev->openers, 0);
540 	atomic_set(&mddev->active_io, 0);
541 	spin_lock_init(&mddev->write_lock);
542 	atomic_set(&mddev->flush_pending, 0);
543 	init_waitqueue_head(&mddev->sb_wait);
544 	init_waitqueue_head(&mddev->recovery_wait);
545 	mddev->reshape_position = MaxSector;
546 	mddev->resync_min = 0;
547 	mddev->resync_max = MaxSector;
548 	mddev->level = LEVEL_NONE;
549 }
550 EXPORT_SYMBOL_GPL(mddev_init);
551 
552 static mddev_t * mddev_find(dev_t unit)
553 {
554 	mddev_t *mddev, *new = NULL;
555 
556 	if (unit && MAJOR(unit) != MD_MAJOR)
557 		unit &= ~((1<<MdpMinorShift)-1);
558 
559  retry:
560 	spin_lock(&all_mddevs_lock);
561 
562 	if (unit) {
563 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 			if (mddev->unit == unit) {
565 				mddev_get(mddev);
566 				spin_unlock(&all_mddevs_lock);
567 				kfree(new);
568 				return mddev;
569 			}
570 
571 		if (new) {
572 			list_add(&new->all_mddevs, &all_mddevs);
573 			spin_unlock(&all_mddevs_lock);
574 			new->hold_active = UNTIL_IOCTL;
575 			return new;
576 		}
577 	} else if (new) {
578 		/* find an unused unit number */
579 		static int next_minor = 512;
580 		int start = next_minor;
581 		int is_free = 0;
582 		int dev = 0;
583 		while (!is_free) {
584 			dev = MKDEV(MD_MAJOR, next_minor);
585 			next_minor++;
586 			if (next_minor > MINORMASK)
587 				next_minor = 0;
588 			if (next_minor == start) {
589 				/* Oh dear, all in use. */
590 				spin_unlock(&all_mddevs_lock);
591 				kfree(new);
592 				return NULL;
593 			}
594 
595 			is_free = 1;
596 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
597 				if (mddev->unit == dev) {
598 					is_free = 0;
599 					break;
600 				}
601 		}
602 		new->unit = dev;
603 		new->md_minor = MINOR(dev);
604 		new->hold_active = UNTIL_STOP;
605 		list_add(&new->all_mddevs, &all_mddevs);
606 		spin_unlock(&all_mddevs_lock);
607 		return new;
608 	}
609 	spin_unlock(&all_mddevs_lock);
610 
611 	new = kzalloc(sizeof(*new), GFP_KERNEL);
612 	if (!new)
613 		return NULL;
614 
615 	new->unit = unit;
616 	if (MAJOR(unit) == MD_MAJOR)
617 		new->md_minor = MINOR(unit);
618 	else
619 		new->md_minor = MINOR(unit) >> MdpMinorShift;
620 
621 	mddev_init(new);
622 
623 	goto retry;
624 }
625 
626 static inline int mddev_lock(mddev_t * mddev)
627 {
628 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
629 }
630 
631 static inline int mddev_is_locked(mddev_t *mddev)
632 {
633 	return mutex_is_locked(&mddev->reconfig_mutex);
634 }
635 
636 static inline int mddev_trylock(mddev_t * mddev)
637 {
638 	return mutex_trylock(&mddev->reconfig_mutex);
639 }
640 
641 static struct attribute_group md_redundancy_group;
642 
643 static void mddev_unlock(mddev_t * mddev)
644 {
645 	if (mddev->to_remove) {
646 		/* These cannot be removed under reconfig_mutex as
647 		 * an access to the files will try to take reconfig_mutex
648 		 * while holding the file unremovable, which leads to
649 		 * a deadlock.
650 		 * So hold set sysfs_active while the remove in happeing,
651 		 * and anything else which might set ->to_remove or my
652 		 * otherwise change the sysfs namespace will fail with
653 		 * -EBUSY if sysfs_active is still set.
654 		 * We set sysfs_active under reconfig_mutex and elsewhere
655 		 * test it under the same mutex to ensure its correct value
656 		 * is seen.
657 		 */
658 		struct attribute_group *to_remove = mddev->to_remove;
659 		mddev->to_remove = NULL;
660 		mddev->sysfs_active = 1;
661 		mutex_unlock(&mddev->reconfig_mutex);
662 
663 		if (mddev->kobj.sd) {
664 			if (to_remove != &md_redundancy_group)
665 				sysfs_remove_group(&mddev->kobj, to_remove);
666 			if (mddev->pers == NULL ||
667 			    mddev->pers->sync_request == NULL) {
668 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
669 				if (mddev->sysfs_action)
670 					sysfs_put(mddev->sysfs_action);
671 				mddev->sysfs_action = NULL;
672 			}
673 		}
674 		mddev->sysfs_active = 0;
675 	} else
676 		mutex_unlock(&mddev->reconfig_mutex);
677 
678 	md_wakeup_thread(mddev->thread);
679 }
680 
681 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
682 {
683 	mdk_rdev_t *rdev;
684 
685 	list_for_each_entry(rdev, &mddev->disks, same_set)
686 		if (rdev->desc_nr == nr)
687 			return rdev;
688 
689 	return NULL;
690 }
691 
692 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
693 {
694 	mdk_rdev_t *rdev;
695 
696 	list_for_each_entry(rdev, &mddev->disks, same_set)
697 		if (rdev->bdev->bd_dev == dev)
698 			return rdev;
699 
700 	return NULL;
701 }
702 
703 static struct mdk_personality *find_pers(int level, char *clevel)
704 {
705 	struct mdk_personality *pers;
706 	list_for_each_entry(pers, &pers_list, list) {
707 		if (level != LEVEL_NONE && pers->level == level)
708 			return pers;
709 		if (strcmp(pers->name, clevel)==0)
710 			return pers;
711 	}
712 	return NULL;
713 }
714 
715 /* return the offset of the super block in 512byte sectors */
716 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
717 {
718 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
719 	return MD_NEW_SIZE_SECTORS(num_sectors);
720 }
721 
722 static int alloc_disk_sb(mdk_rdev_t * rdev)
723 {
724 	if (rdev->sb_page)
725 		MD_BUG();
726 
727 	rdev->sb_page = alloc_page(GFP_KERNEL);
728 	if (!rdev->sb_page) {
729 		printk(KERN_ALERT "md: out of memory.\n");
730 		return -ENOMEM;
731 	}
732 
733 	return 0;
734 }
735 
736 static void free_disk_sb(mdk_rdev_t * rdev)
737 {
738 	if (rdev->sb_page) {
739 		put_page(rdev->sb_page);
740 		rdev->sb_loaded = 0;
741 		rdev->sb_page = NULL;
742 		rdev->sb_start = 0;
743 		rdev->sectors = 0;
744 	}
745 }
746 
747 
748 static void super_written(struct bio *bio, int error)
749 {
750 	mdk_rdev_t *rdev = bio->bi_private;
751 	mddev_t *mddev = rdev->mddev;
752 
753 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
754 		printk("md: super_written gets error=%d, uptodate=%d\n",
755 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
756 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
757 		md_error(mddev, rdev);
758 	}
759 
760 	if (atomic_dec_and_test(&mddev->pending_writes))
761 		wake_up(&mddev->sb_wait);
762 	bio_put(bio);
763 }
764 
765 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
766 		   sector_t sector, int size, struct page *page)
767 {
768 	/* write first size bytes of page to sector of rdev
769 	 * Increment mddev->pending_writes before returning
770 	 * and decrement it on completion, waking up sb_wait
771 	 * if zero is reached.
772 	 * If an error occurred, call md_error
773 	 */
774 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
775 
776 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
777 	bio->bi_sector = sector;
778 	bio_add_page(bio, page, size, 0);
779 	bio->bi_private = rdev;
780 	bio->bi_end_io = super_written;
781 
782 	atomic_inc(&mddev->pending_writes);
783 	submit_bio(REQ_WRITE | REQ_SYNC | REQ_UNPLUG | REQ_FLUSH | REQ_FUA,
784 		   bio);
785 }
786 
787 void md_super_wait(mddev_t *mddev)
788 {
789 	/* wait for all superblock writes that were scheduled to complete */
790 	DEFINE_WAIT(wq);
791 	for(;;) {
792 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
793 		if (atomic_read(&mddev->pending_writes)==0)
794 			break;
795 		schedule();
796 	}
797 	finish_wait(&mddev->sb_wait, &wq);
798 }
799 
800 static void bi_complete(struct bio *bio, int error)
801 {
802 	complete((struct completion*)bio->bi_private);
803 }
804 
805 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
806 		 struct page *page, int rw, bool metadata_op)
807 {
808 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
809 	struct completion event;
810 	int ret;
811 
812 	rw |= REQ_SYNC | REQ_UNPLUG;
813 
814 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
815 		rdev->meta_bdev : rdev->bdev;
816 	if (metadata_op)
817 		bio->bi_sector = sector + rdev->sb_start;
818 	else
819 		bio->bi_sector = sector + rdev->data_offset;
820 	bio_add_page(bio, page, size, 0);
821 	init_completion(&event);
822 	bio->bi_private = &event;
823 	bio->bi_end_io = bi_complete;
824 	submit_bio(rw, bio);
825 	wait_for_completion(&event);
826 
827 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
828 	bio_put(bio);
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(sync_page_io);
832 
833 static int read_disk_sb(mdk_rdev_t * rdev, int size)
834 {
835 	char b[BDEVNAME_SIZE];
836 	if (!rdev->sb_page) {
837 		MD_BUG();
838 		return -EINVAL;
839 	}
840 	if (rdev->sb_loaded)
841 		return 0;
842 
843 
844 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
845 		goto fail;
846 	rdev->sb_loaded = 1;
847 	return 0;
848 
849 fail:
850 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
851 		bdevname(rdev->bdev,b));
852 	return -EINVAL;
853 }
854 
855 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
856 {
857 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
858 		sb1->set_uuid1 == sb2->set_uuid1 &&
859 		sb1->set_uuid2 == sb2->set_uuid2 &&
860 		sb1->set_uuid3 == sb2->set_uuid3;
861 }
862 
863 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
864 {
865 	int ret;
866 	mdp_super_t *tmp1, *tmp2;
867 
868 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
869 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
870 
871 	if (!tmp1 || !tmp2) {
872 		ret = 0;
873 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
874 		goto abort;
875 	}
876 
877 	*tmp1 = *sb1;
878 	*tmp2 = *sb2;
879 
880 	/*
881 	 * nr_disks is not constant
882 	 */
883 	tmp1->nr_disks = 0;
884 	tmp2->nr_disks = 0;
885 
886 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
887 abort:
888 	kfree(tmp1);
889 	kfree(tmp2);
890 	return ret;
891 }
892 
893 
894 static u32 md_csum_fold(u32 csum)
895 {
896 	csum = (csum & 0xffff) + (csum >> 16);
897 	return (csum & 0xffff) + (csum >> 16);
898 }
899 
900 static unsigned int calc_sb_csum(mdp_super_t * sb)
901 {
902 	u64 newcsum = 0;
903 	u32 *sb32 = (u32*)sb;
904 	int i;
905 	unsigned int disk_csum, csum;
906 
907 	disk_csum = sb->sb_csum;
908 	sb->sb_csum = 0;
909 
910 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
911 		newcsum += sb32[i];
912 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
913 
914 
915 #ifdef CONFIG_ALPHA
916 	/* This used to use csum_partial, which was wrong for several
917 	 * reasons including that different results are returned on
918 	 * different architectures.  It isn't critical that we get exactly
919 	 * the same return value as before (we always csum_fold before
920 	 * testing, and that removes any differences).  However as we
921 	 * know that csum_partial always returned a 16bit value on
922 	 * alphas, do a fold to maximise conformity to previous behaviour.
923 	 */
924 	sb->sb_csum = md_csum_fold(disk_csum);
925 #else
926 	sb->sb_csum = disk_csum;
927 #endif
928 	return csum;
929 }
930 
931 
932 /*
933  * Handle superblock details.
934  * We want to be able to handle multiple superblock formats
935  * so we have a common interface to them all, and an array of
936  * different handlers.
937  * We rely on user-space to write the initial superblock, and support
938  * reading and updating of superblocks.
939  * Interface methods are:
940  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
941  *      loads and validates a superblock on dev.
942  *      if refdev != NULL, compare superblocks on both devices
943  *    Return:
944  *      0 - dev has a superblock that is compatible with refdev
945  *      1 - dev has a superblock that is compatible and newer than refdev
946  *          so dev should be used as the refdev in future
947  *     -EINVAL superblock incompatible or invalid
948  *     -othererror e.g. -EIO
949  *
950  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
951  *      Verify that dev is acceptable into mddev.
952  *       The first time, mddev->raid_disks will be 0, and data from
953  *       dev should be merged in.  Subsequent calls check that dev
954  *       is new enough.  Return 0 or -EINVAL
955  *
956  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
957  *     Update the superblock for rdev with data in mddev
958  *     This does not write to disc.
959  *
960  */
961 
962 struct super_type  {
963 	char		    *name;
964 	struct module	    *owner;
965 	int		    (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
966 					  int minor_version);
967 	int		    (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
968 	void		    (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
969 	unsigned long long  (*rdev_size_change)(mdk_rdev_t *rdev,
970 						sector_t num_sectors);
971 };
972 
973 /*
974  * Check that the given mddev has no bitmap.
975  *
976  * This function is called from the run method of all personalities that do not
977  * support bitmaps. It prints an error message and returns non-zero if mddev
978  * has a bitmap. Otherwise, it returns 0.
979  *
980  */
981 int md_check_no_bitmap(mddev_t *mddev)
982 {
983 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
984 		return 0;
985 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
986 		mdname(mddev), mddev->pers->name);
987 	return 1;
988 }
989 EXPORT_SYMBOL(md_check_no_bitmap);
990 
991 /*
992  * load_super for 0.90.0
993  */
994 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
995 {
996 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
997 	mdp_super_t *sb;
998 	int ret;
999 
1000 	/*
1001 	 * Calculate the position of the superblock (512byte sectors),
1002 	 * it's at the end of the disk.
1003 	 *
1004 	 * It also happens to be a multiple of 4Kb.
1005 	 */
1006 	rdev->sb_start = calc_dev_sboffset(rdev);
1007 
1008 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1009 	if (ret) return ret;
1010 
1011 	ret = -EINVAL;
1012 
1013 	bdevname(rdev->bdev, b);
1014 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1015 
1016 	if (sb->md_magic != MD_SB_MAGIC) {
1017 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1018 		       b);
1019 		goto abort;
1020 	}
1021 
1022 	if (sb->major_version != 0 ||
1023 	    sb->minor_version < 90 ||
1024 	    sb->minor_version > 91) {
1025 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1026 			sb->major_version, sb->minor_version,
1027 			b);
1028 		goto abort;
1029 	}
1030 
1031 	if (sb->raid_disks <= 0)
1032 		goto abort;
1033 
1034 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1035 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1036 			b);
1037 		goto abort;
1038 	}
1039 
1040 	rdev->preferred_minor = sb->md_minor;
1041 	rdev->data_offset = 0;
1042 	rdev->sb_size = MD_SB_BYTES;
1043 
1044 	if (sb->level == LEVEL_MULTIPATH)
1045 		rdev->desc_nr = -1;
1046 	else
1047 		rdev->desc_nr = sb->this_disk.number;
1048 
1049 	if (!refdev) {
1050 		ret = 1;
1051 	} else {
1052 		__u64 ev1, ev2;
1053 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1054 		if (!uuid_equal(refsb, sb)) {
1055 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1056 				b, bdevname(refdev->bdev,b2));
1057 			goto abort;
1058 		}
1059 		if (!sb_equal(refsb, sb)) {
1060 			printk(KERN_WARNING "md: %s has same UUID"
1061 			       " but different superblock to %s\n",
1062 			       b, bdevname(refdev->bdev, b2));
1063 			goto abort;
1064 		}
1065 		ev1 = md_event(sb);
1066 		ev2 = md_event(refsb);
1067 		if (ev1 > ev2)
1068 			ret = 1;
1069 		else
1070 			ret = 0;
1071 	}
1072 	rdev->sectors = rdev->sb_start;
1073 
1074 	if (rdev->sectors < sb->size * 2 && sb->level > 1)
1075 		/* "this cannot possibly happen" ... */
1076 		ret = -EINVAL;
1077 
1078  abort:
1079 	return ret;
1080 }
1081 
1082 /*
1083  * validate_super for 0.90.0
1084  */
1085 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1086 {
1087 	mdp_disk_t *desc;
1088 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1089 	__u64 ev1 = md_event(sb);
1090 
1091 	rdev->raid_disk = -1;
1092 	clear_bit(Faulty, &rdev->flags);
1093 	clear_bit(In_sync, &rdev->flags);
1094 	clear_bit(WriteMostly, &rdev->flags);
1095 
1096 	if (mddev->raid_disks == 0) {
1097 		mddev->major_version = 0;
1098 		mddev->minor_version = sb->minor_version;
1099 		mddev->patch_version = sb->patch_version;
1100 		mddev->external = 0;
1101 		mddev->chunk_sectors = sb->chunk_size >> 9;
1102 		mddev->ctime = sb->ctime;
1103 		mddev->utime = sb->utime;
1104 		mddev->level = sb->level;
1105 		mddev->clevel[0] = 0;
1106 		mddev->layout = sb->layout;
1107 		mddev->raid_disks = sb->raid_disks;
1108 		mddev->dev_sectors = sb->size * 2;
1109 		mddev->events = ev1;
1110 		mddev->bitmap_info.offset = 0;
1111 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1112 
1113 		if (mddev->minor_version >= 91) {
1114 			mddev->reshape_position = sb->reshape_position;
1115 			mddev->delta_disks = sb->delta_disks;
1116 			mddev->new_level = sb->new_level;
1117 			mddev->new_layout = sb->new_layout;
1118 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1119 		} else {
1120 			mddev->reshape_position = MaxSector;
1121 			mddev->delta_disks = 0;
1122 			mddev->new_level = mddev->level;
1123 			mddev->new_layout = mddev->layout;
1124 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1125 		}
1126 
1127 		if (sb->state & (1<<MD_SB_CLEAN))
1128 			mddev->recovery_cp = MaxSector;
1129 		else {
1130 			if (sb->events_hi == sb->cp_events_hi &&
1131 				sb->events_lo == sb->cp_events_lo) {
1132 				mddev->recovery_cp = sb->recovery_cp;
1133 			} else
1134 				mddev->recovery_cp = 0;
1135 		}
1136 
1137 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1138 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1139 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1140 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1141 
1142 		mddev->max_disks = MD_SB_DISKS;
1143 
1144 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1145 		    mddev->bitmap_info.file == NULL)
1146 			mddev->bitmap_info.offset =
1147 				mddev->bitmap_info.default_offset;
1148 
1149 	} else if (mddev->pers == NULL) {
1150 		/* Insist on good event counter while assembling, except
1151 		 * for spares (which don't need an event count) */
1152 		++ev1;
1153 		if (sb->disks[rdev->desc_nr].state & (
1154 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1155 			if (ev1 < mddev->events)
1156 				return -EINVAL;
1157 	} else if (mddev->bitmap) {
1158 		/* if adding to array with a bitmap, then we can accept an
1159 		 * older device ... but not too old.
1160 		 */
1161 		if (ev1 < mddev->bitmap->events_cleared)
1162 			return 0;
1163 	} else {
1164 		if (ev1 < mddev->events)
1165 			/* just a hot-add of a new device, leave raid_disk at -1 */
1166 			return 0;
1167 	}
1168 
1169 	if (mddev->level != LEVEL_MULTIPATH) {
1170 		desc = sb->disks + rdev->desc_nr;
1171 
1172 		if (desc->state & (1<<MD_DISK_FAULTY))
1173 			set_bit(Faulty, &rdev->flags);
1174 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1175 			    desc->raid_disk < mddev->raid_disks */) {
1176 			set_bit(In_sync, &rdev->flags);
1177 			rdev->raid_disk = desc->raid_disk;
1178 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1179 			/* active but not in sync implies recovery up to
1180 			 * reshape position.  We don't know exactly where
1181 			 * that is, so set to zero for now */
1182 			if (mddev->minor_version >= 91) {
1183 				rdev->recovery_offset = 0;
1184 				rdev->raid_disk = desc->raid_disk;
1185 			}
1186 		}
1187 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1188 			set_bit(WriteMostly, &rdev->flags);
1189 	} else /* MULTIPATH are always insync */
1190 		set_bit(In_sync, &rdev->flags);
1191 	return 0;
1192 }
1193 
1194 /*
1195  * sync_super for 0.90.0
1196  */
1197 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1198 {
1199 	mdp_super_t *sb;
1200 	mdk_rdev_t *rdev2;
1201 	int next_spare = mddev->raid_disks;
1202 
1203 
1204 	/* make rdev->sb match mddev data..
1205 	 *
1206 	 * 1/ zero out disks
1207 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1208 	 * 3/ any empty disks < next_spare become removed
1209 	 *
1210 	 * disks[0] gets initialised to REMOVED because
1211 	 * we cannot be sure from other fields if it has
1212 	 * been initialised or not.
1213 	 */
1214 	int i;
1215 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1216 
1217 	rdev->sb_size = MD_SB_BYTES;
1218 
1219 	sb = (mdp_super_t*)page_address(rdev->sb_page);
1220 
1221 	memset(sb, 0, sizeof(*sb));
1222 
1223 	sb->md_magic = MD_SB_MAGIC;
1224 	sb->major_version = mddev->major_version;
1225 	sb->patch_version = mddev->patch_version;
1226 	sb->gvalid_words  = 0; /* ignored */
1227 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1228 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1229 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1230 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1231 
1232 	sb->ctime = mddev->ctime;
1233 	sb->level = mddev->level;
1234 	sb->size = mddev->dev_sectors / 2;
1235 	sb->raid_disks = mddev->raid_disks;
1236 	sb->md_minor = mddev->md_minor;
1237 	sb->not_persistent = 0;
1238 	sb->utime = mddev->utime;
1239 	sb->state = 0;
1240 	sb->events_hi = (mddev->events>>32);
1241 	sb->events_lo = (u32)mddev->events;
1242 
1243 	if (mddev->reshape_position == MaxSector)
1244 		sb->minor_version = 90;
1245 	else {
1246 		sb->minor_version = 91;
1247 		sb->reshape_position = mddev->reshape_position;
1248 		sb->new_level = mddev->new_level;
1249 		sb->delta_disks = mddev->delta_disks;
1250 		sb->new_layout = mddev->new_layout;
1251 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1252 	}
1253 	mddev->minor_version = sb->minor_version;
1254 	if (mddev->in_sync)
1255 	{
1256 		sb->recovery_cp = mddev->recovery_cp;
1257 		sb->cp_events_hi = (mddev->events>>32);
1258 		sb->cp_events_lo = (u32)mddev->events;
1259 		if (mddev->recovery_cp == MaxSector)
1260 			sb->state = (1<< MD_SB_CLEAN);
1261 	} else
1262 		sb->recovery_cp = 0;
1263 
1264 	sb->layout = mddev->layout;
1265 	sb->chunk_size = mddev->chunk_sectors << 9;
1266 
1267 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1268 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1269 
1270 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1271 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1272 		mdp_disk_t *d;
1273 		int desc_nr;
1274 		int is_active = test_bit(In_sync, &rdev2->flags);
1275 
1276 		if (rdev2->raid_disk >= 0 &&
1277 		    sb->minor_version >= 91)
1278 			/* we have nowhere to store the recovery_offset,
1279 			 * but if it is not below the reshape_position,
1280 			 * we can piggy-back on that.
1281 			 */
1282 			is_active = 1;
1283 		if (rdev2->raid_disk < 0 ||
1284 		    test_bit(Faulty, &rdev2->flags))
1285 			is_active = 0;
1286 		if (is_active)
1287 			desc_nr = rdev2->raid_disk;
1288 		else
1289 			desc_nr = next_spare++;
1290 		rdev2->desc_nr = desc_nr;
1291 		d = &sb->disks[rdev2->desc_nr];
1292 		nr_disks++;
1293 		d->number = rdev2->desc_nr;
1294 		d->major = MAJOR(rdev2->bdev->bd_dev);
1295 		d->minor = MINOR(rdev2->bdev->bd_dev);
1296 		if (is_active)
1297 			d->raid_disk = rdev2->raid_disk;
1298 		else
1299 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1300 		if (test_bit(Faulty, &rdev2->flags))
1301 			d->state = (1<<MD_DISK_FAULTY);
1302 		else if (is_active) {
1303 			d->state = (1<<MD_DISK_ACTIVE);
1304 			if (test_bit(In_sync, &rdev2->flags))
1305 				d->state |= (1<<MD_DISK_SYNC);
1306 			active++;
1307 			working++;
1308 		} else {
1309 			d->state = 0;
1310 			spare++;
1311 			working++;
1312 		}
1313 		if (test_bit(WriteMostly, &rdev2->flags))
1314 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1315 	}
1316 	/* now set the "removed" and "faulty" bits on any missing devices */
1317 	for (i=0 ; i < mddev->raid_disks ; i++) {
1318 		mdp_disk_t *d = &sb->disks[i];
1319 		if (d->state == 0 && d->number == 0) {
1320 			d->number = i;
1321 			d->raid_disk = i;
1322 			d->state = (1<<MD_DISK_REMOVED);
1323 			d->state |= (1<<MD_DISK_FAULTY);
1324 			failed++;
1325 		}
1326 	}
1327 	sb->nr_disks = nr_disks;
1328 	sb->active_disks = active;
1329 	sb->working_disks = working;
1330 	sb->failed_disks = failed;
1331 	sb->spare_disks = spare;
1332 
1333 	sb->this_disk = sb->disks[rdev->desc_nr];
1334 	sb->sb_csum = calc_sb_csum(sb);
1335 }
1336 
1337 /*
1338  * rdev_size_change for 0.90.0
1339  */
1340 static unsigned long long
1341 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1342 {
1343 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1344 		return 0; /* component must fit device */
1345 	if (rdev->mddev->bitmap_info.offset)
1346 		return 0; /* can't move bitmap */
1347 	rdev->sb_start = calc_dev_sboffset(rdev);
1348 	if (!num_sectors || num_sectors > rdev->sb_start)
1349 		num_sectors = rdev->sb_start;
1350 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1351 		       rdev->sb_page);
1352 	md_super_wait(rdev->mddev);
1353 	return num_sectors;
1354 }
1355 
1356 
1357 /*
1358  * version 1 superblock
1359  */
1360 
1361 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1362 {
1363 	__le32 disk_csum;
1364 	u32 csum;
1365 	unsigned long long newcsum;
1366 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1367 	__le32 *isuper = (__le32*)sb;
1368 	int i;
1369 
1370 	disk_csum = sb->sb_csum;
1371 	sb->sb_csum = 0;
1372 	newcsum = 0;
1373 	for (i=0; size>=4; size -= 4 )
1374 		newcsum += le32_to_cpu(*isuper++);
1375 
1376 	if (size == 2)
1377 		newcsum += le16_to_cpu(*(__le16*) isuper);
1378 
1379 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1380 	sb->sb_csum = disk_csum;
1381 	return cpu_to_le32(csum);
1382 }
1383 
1384 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1385 {
1386 	struct mdp_superblock_1 *sb;
1387 	int ret;
1388 	sector_t sb_start;
1389 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1390 	int bmask;
1391 
1392 	/*
1393 	 * Calculate the position of the superblock in 512byte sectors.
1394 	 * It is always aligned to a 4K boundary and
1395 	 * depeding on minor_version, it can be:
1396 	 * 0: At least 8K, but less than 12K, from end of device
1397 	 * 1: At start of device
1398 	 * 2: 4K from start of device.
1399 	 */
1400 	switch(minor_version) {
1401 	case 0:
1402 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1403 		sb_start -= 8*2;
1404 		sb_start &= ~(sector_t)(4*2-1);
1405 		break;
1406 	case 1:
1407 		sb_start = 0;
1408 		break;
1409 	case 2:
1410 		sb_start = 8;
1411 		break;
1412 	default:
1413 		return -EINVAL;
1414 	}
1415 	rdev->sb_start = sb_start;
1416 
1417 	/* superblock is rarely larger than 1K, but it can be larger,
1418 	 * and it is safe to read 4k, so we do that
1419 	 */
1420 	ret = read_disk_sb(rdev, 4096);
1421 	if (ret) return ret;
1422 
1423 
1424 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1425 
1426 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1427 	    sb->major_version != cpu_to_le32(1) ||
1428 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1429 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1430 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1431 		return -EINVAL;
1432 
1433 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1434 		printk("md: invalid superblock checksum on %s\n",
1435 			bdevname(rdev->bdev,b));
1436 		return -EINVAL;
1437 	}
1438 	if (le64_to_cpu(sb->data_size) < 10) {
1439 		printk("md: data_size too small on %s\n",
1440 		       bdevname(rdev->bdev,b));
1441 		return -EINVAL;
1442 	}
1443 
1444 	rdev->preferred_minor = 0xffff;
1445 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1446 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1447 
1448 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1449 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1450 	if (rdev->sb_size & bmask)
1451 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1452 
1453 	if (minor_version
1454 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1455 		return -EINVAL;
1456 
1457 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1458 		rdev->desc_nr = -1;
1459 	else
1460 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1461 
1462 	if (!refdev) {
1463 		ret = 1;
1464 	} else {
1465 		__u64 ev1, ev2;
1466 		struct mdp_superblock_1 *refsb =
1467 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1468 
1469 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1470 		    sb->level != refsb->level ||
1471 		    sb->layout != refsb->layout ||
1472 		    sb->chunksize != refsb->chunksize) {
1473 			printk(KERN_WARNING "md: %s has strangely different"
1474 				" superblock to %s\n",
1475 				bdevname(rdev->bdev,b),
1476 				bdevname(refdev->bdev,b2));
1477 			return -EINVAL;
1478 		}
1479 		ev1 = le64_to_cpu(sb->events);
1480 		ev2 = le64_to_cpu(refsb->events);
1481 
1482 		if (ev1 > ev2)
1483 			ret = 1;
1484 		else
1485 			ret = 0;
1486 	}
1487 	if (minor_version)
1488 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1489 			le64_to_cpu(sb->data_offset);
1490 	else
1491 		rdev->sectors = rdev->sb_start;
1492 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1493 		return -EINVAL;
1494 	rdev->sectors = le64_to_cpu(sb->data_size);
1495 	if (le64_to_cpu(sb->size) > rdev->sectors)
1496 		return -EINVAL;
1497 	return ret;
1498 }
1499 
1500 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1501 {
1502 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1503 	__u64 ev1 = le64_to_cpu(sb->events);
1504 
1505 	rdev->raid_disk = -1;
1506 	clear_bit(Faulty, &rdev->flags);
1507 	clear_bit(In_sync, &rdev->flags);
1508 	clear_bit(WriteMostly, &rdev->flags);
1509 
1510 	if (mddev->raid_disks == 0) {
1511 		mddev->major_version = 1;
1512 		mddev->patch_version = 0;
1513 		mddev->external = 0;
1514 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1515 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1516 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1517 		mddev->level = le32_to_cpu(sb->level);
1518 		mddev->clevel[0] = 0;
1519 		mddev->layout = le32_to_cpu(sb->layout);
1520 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1521 		mddev->dev_sectors = le64_to_cpu(sb->size);
1522 		mddev->events = ev1;
1523 		mddev->bitmap_info.offset = 0;
1524 		mddev->bitmap_info.default_offset = 1024 >> 9;
1525 
1526 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1527 		memcpy(mddev->uuid, sb->set_uuid, 16);
1528 
1529 		mddev->max_disks =  (4096-256)/2;
1530 
1531 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1532 		    mddev->bitmap_info.file == NULL )
1533 			mddev->bitmap_info.offset =
1534 				(__s32)le32_to_cpu(sb->bitmap_offset);
1535 
1536 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1537 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1538 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1539 			mddev->new_level = le32_to_cpu(sb->new_level);
1540 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1541 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1542 		} else {
1543 			mddev->reshape_position = MaxSector;
1544 			mddev->delta_disks = 0;
1545 			mddev->new_level = mddev->level;
1546 			mddev->new_layout = mddev->layout;
1547 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1548 		}
1549 
1550 	} else if (mddev->pers == NULL) {
1551 		/* Insist of good event counter while assembling, except for
1552 		 * spares (which don't need an event count) */
1553 		++ev1;
1554 		if (rdev->desc_nr >= 0 &&
1555 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1556 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1557 			if (ev1 < mddev->events)
1558 				return -EINVAL;
1559 	} else if (mddev->bitmap) {
1560 		/* If adding to array with a bitmap, then we can accept an
1561 		 * older device, but not too old.
1562 		 */
1563 		if (ev1 < mddev->bitmap->events_cleared)
1564 			return 0;
1565 	} else {
1566 		if (ev1 < mddev->events)
1567 			/* just a hot-add of a new device, leave raid_disk at -1 */
1568 			return 0;
1569 	}
1570 	if (mddev->level != LEVEL_MULTIPATH) {
1571 		int role;
1572 		if (rdev->desc_nr < 0 ||
1573 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1574 			role = 0xffff;
1575 			rdev->desc_nr = -1;
1576 		} else
1577 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1578 		switch(role) {
1579 		case 0xffff: /* spare */
1580 			break;
1581 		case 0xfffe: /* faulty */
1582 			set_bit(Faulty, &rdev->flags);
1583 			break;
1584 		default:
1585 			if ((le32_to_cpu(sb->feature_map) &
1586 			     MD_FEATURE_RECOVERY_OFFSET))
1587 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1588 			else
1589 				set_bit(In_sync, &rdev->flags);
1590 			rdev->raid_disk = role;
1591 			break;
1592 		}
1593 		if (sb->devflags & WriteMostly1)
1594 			set_bit(WriteMostly, &rdev->flags);
1595 	} else /* MULTIPATH are always insync */
1596 		set_bit(In_sync, &rdev->flags);
1597 
1598 	return 0;
1599 }
1600 
1601 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1602 {
1603 	struct mdp_superblock_1 *sb;
1604 	mdk_rdev_t *rdev2;
1605 	int max_dev, i;
1606 	/* make rdev->sb match mddev and rdev data. */
1607 
1608 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1609 
1610 	sb->feature_map = 0;
1611 	sb->pad0 = 0;
1612 	sb->recovery_offset = cpu_to_le64(0);
1613 	memset(sb->pad1, 0, sizeof(sb->pad1));
1614 	memset(sb->pad2, 0, sizeof(sb->pad2));
1615 	memset(sb->pad3, 0, sizeof(sb->pad3));
1616 
1617 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1618 	sb->events = cpu_to_le64(mddev->events);
1619 	if (mddev->in_sync)
1620 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1621 	else
1622 		sb->resync_offset = cpu_to_le64(0);
1623 
1624 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1625 
1626 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1627 	sb->size = cpu_to_le64(mddev->dev_sectors);
1628 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1629 	sb->level = cpu_to_le32(mddev->level);
1630 	sb->layout = cpu_to_le32(mddev->layout);
1631 
1632 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1633 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1634 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1635 	}
1636 
1637 	if (rdev->raid_disk >= 0 &&
1638 	    !test_bit(In_sync, &rdev->flags)) {
1639 		sb->feature_map |=
1640 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1641 		sb->recovery_offset =
1642 			cpu_to_le64(rdev->recovery_offset);
1643 	}
1644 
1645 	if (mddev->reshape_position != MaxSector) {
1646 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1647 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1648 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1649 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1650 		sb->new_level = cpu_to_le32(mddev->new_level);
1651 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1652 	}
1653 
1654 	max_dev = 0;
1655 	list_for_each_entry(rdev2, &mddev->disks, same_set)
1656 		if (rdev2->desc_nr+1 > max_dev)
1657 			max_dev = rdev2->desc_nr+1;
1658 
1659 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1660 		int bmask;
1661 		sb->max_dev = cpu_to_le32(max_dev);
1662 		rdev->sb_size = max_dev * 2 + 256;
1663 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1664 		if (rdev->sb_size & bmask)
1665 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1666 	} else
1667 		max_dev = le32_to_cpu(sb->max_dev);
1668 
1669 	for (i=0; i<max_dev;i++)
1670 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1671 
1672 	list_for_each_entry(rdev2, &mddev->disks, same_set) {
1673 		i = rdev2->desc_nr;
1674 		if (test_bit(Faulty, &rdev2->flags))
1675 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1676 		else if (test_bit(In_sync, &rdev2->flags))
1677 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1678 		else if (rdev2->raid_disk >= 0)
1679 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1680 		else
1681 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1682 	}
1683 
1684 	sb->sb_csum = calc_sb_1_csum(sb);
1685 }
1686 
1687 static unsigned long long
1688 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1689 {
1690 	struct mdp_superblock_1 *sb;
1691 	sector_t max_sectors;
1692 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1693 		return 0; /* component must fit device */
1694 	if (rdev->sb_start < rdev->data_offset) {
1695 		/* minor versions 1 and 2; superblock before data */
1696 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1697 		max_sectors -= rdev->data_offset;
1698 		if (!num_sectors || num_sectors > max_sectors)
1699 			num_sectors = max_sectors;
1700 	} else if (rdev->mddev->bitmap_info.offset) {
1701 		/* minor version 0 with bitmap we can't move */
1702 		return 0;
1703 	} else {
1704 		/* minor version 0; superblock after data */
1705 		sector_t sb_start;
1706 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1707 		sb_start &= ~(sector_t)(4*2 - 1);
1708 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1709 		if (!num_sectors || num_sectors > max_sectors)
1710 			num_sectors = max_sectors;
1711 		rdev->sb_start = sb_start;
1712 	}
1713 	sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1714 	sb->data_size = cpu_to_le64(num_sectors);
1715 	sb->super_offset = rdev->sb_start;
1716 	sb->sb_csum = calc_sb_1_csum(sb);
1717 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1718 		       rdev->sb_page);
1719 	md_super_wait(rdev->mddev);
1720 	return num_sectors;
1721 }
1722 
1723 static struct super_type super_types[] = {
1724 	[0] = {
1725 		.name	= "0.90.0",
1726 		.owner	= THIS_MODULE,
1727 		.load_super	    = super_90_load,
1728 		.validate_super	    = super_90_validate,
1729 		.sync_super	    = super_90_sync,
1730 		.rdev_size_change   = super_90_rdev_size_change,
1731 	},
1732 	[1] = {
1733 		.name	= "md-1",
1734 		.owner	= THIS_MODULE,
1735 		.load_super	    = super_1_load,
1736 		.validate_super	    = super_1_validate,
1737 		.sync_super	    = super_1_sync,
1738 		.rdev_size_change   = super_1_rdev_size_change,
1739 	},
1740 };
1741 
1742 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1743 {
1744 	mdk_rdev_t *rdev, *rdev2;
1745 
1746 	rcu_read_lock();
1747 	rdev_for_each_rcu(rdev, mddev1)
1748 		rdev_for_each_rcu(rdev2, mddev2)
1749 			if (rdev->bdev->bd_contains ==
1750 			    rdev2->bdev->bd_contains) {
1751 				rcu_read_unlock();
1752 				return 1;
1753 			}
1754 	rcu_read_unlock();
1755 	return 0;
1756 }
1757 
1758 static LIST_HEAD(pending_raid_disks);
1759 
1760 /*
1761  * Try to register data integrity profile for an mddev
1762  *
1763  * This is called when an array is started and after a disk has been kicked
1764  * from the array. It only succeeds if all working and active component devices
1765  * are integrity capable with matching profiles.
1766  */
1767 int md_integrity_register(mddev_t *mddev)
1768 {
1769 	mdk_rdev_t *rdev, *reference = NULL;
1770 
1771 	if (list_empty(&mddev->disks))
1772 		return 0; /* nothing to do */
1773 	if (blk_get_integrity(mddev->gendisk))
1774 		return 0; /* already registered */
1775 	list_for_each_entry(rdev, &mddev->disks, same_set) {
1776 		/* skip spares and non-functional disks */
1777 		if (test_bit(Faulty, &rdev->flags))
1778 			continue;
1779 		if (rdev->raid_disk < 0)
1780 			continue;
1781 		/*
1782 		 * If at least one rdev is not integrity capable, we can not
1783 		 * enable data integrity for the md device.
1784 		 */
1785 		if (!bdev_get_integrity(rdev->bdev))
1786 			return -EINVAL;
1787 		if (!reference) {
1788 			/* Use the first rdev as the reference */
1789 			reference = rdev;
1790 			continue;
1791 		}
1792 		/* does this rdev's profile match the reference profile? */
1793 		if (blk_integrity_compare(reference->bdev->bd_disk,
1794 				rdev->bdev->bd_disk) < 0)
1795 			return -EINVAL;
1796 	}
1797 	/*
1798 	 * All component devices are integrity capable and have matching
1799 	 * profiles, register the common profile for the md device.
1800 	 */
1801 	if (blk_integrity_register(mddev->gendisk,
1802 			bdev_get_integrity(reference->bdev)) != 0) {
1803 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1804 			mdname(mddev));
1805 		return -EINVAL;
1806 	}
1807 	printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1808 		mdname(mddev));
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL(md_integrity_register);
1812 
1813 /* Disable data integrity if non-capable/non-matching disk is being added */
1814 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1815 {
1816 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1817 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1818 
1819 	if (!bi_mddev) /* nothing to do */
1820 		return;
1821 	if (rdev->raid_disk < 0) /* skip spares */
1822 		return;
1823 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1824 					     rdev->bdev->bd_disk) >= 0)
1825 		return;
1826 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1827 	blk_integrity_unregister(mddev->gendisk);
1828 }
1829 EXPORT_SYMBOL(md_integrity_add_rdev);
1830 
1831 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1832 {
1833 	char b[BDEVNAME_SIZE];
1834 	struct kobject *ko;
1835 	char *s;
1836 	int err;
1837 
1838 	if (rdev->mddev) {
1839 		MD_BUG();
1840 		return -EINVAL;
1841 	}
1842 
1843 	/* prevent duplicates */
1844 	if (find_rdev(mddev, rdev->bdev->bd_dev))
1845 		return -EEXIST;
1846 
1847 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
1848 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
1849 			rdev->sectors < mddev->dev_sectors)) {
1850 		if (mddev->pers) {
1851 			/* Cannot change size, so fail
1852 			 * If mddev->level <= 0, then we don't care
1853 			 * about aligning sizes (e.g. linear)
1854 			 */
1855 			if (mddev->level > 0)
1856 				return -ENOSPC;
1857 		} else
1858 			mddev->dev_sectors = rdev->sectors;
1859 	}
1860 
1861 	/* Verify rdev->desc_nr is unique.
1862 	 * If it is -1, assign a free number, else
1863 	 * check number is not in use
1864 	 */
1865 	if (rdev->desc_nr < 0) {
1866 		int choice = 0;
1867 		if (mddev->pers) choice = mddev->raid_disks;
1868 		while (find_rdev_nr(mddev, choice))
1869 			choice++;
1870 		rdev->desc_nr = choice;
1871 	} else {
1872 		if (find_rdev_nr(mddev, rdev->desc_nr))
1873 			return -EBUSY;
1874 	}
1875 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1876 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1877 		       mdname(mddev), mddev->max_disks);
1878 		return -EBUSY;
1879 	}
1880 	bdevname(rdev->bdev,b);
1881 	while ( (s=strchr(b, '/')) != NULL)
1882 		*s = '!';
1883 
1884 	rdev->mddev = mddev;
1885 	printk(KERN_INFO "md: bind<%s>\n", b);
1886 
1887 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1888 		goto fail;
1889 
1890 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1891 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
1892 		/* failure here is OK */;
1893 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1894 
1895 	list_add_rcu(&rdev->same_set, &mddev->disks);
1896 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
1897 
1898 	/* May as well allow recovery to be retried once */
1899 	mddev->recovery_disabled = 0;
1900 
1901 	return 0;
1902 
1903  fail:
1904 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1905 	       b, mdname(mddev));
1906 	return err;
1907 }
1908 
1909 static void md_delayed_delete(struct work_struct *ws)
1910 {
1911 	mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1912 	kobject_del(&rdev->kobj);
1913 	kobject_put(&rdev->kobj);
1914 }
1915 
1916 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1917 {
1918 	char b[BDEVNAME_SIZE];
1919 	if (!rdev->mddev) {
1920 		MD_BUG();
1921 		return;
1922 	}
1923 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
1924 	list_del_rcu(&rdev->same_set);
1925 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1926 	rdev->mddev = NULL;
1927 	sysfs_remove_link(&rdev->kobj, "block");
1928 	sysfs_put(rdev->sysfs_state);
1929 	rdev->sysfs_state = NULL;
1930 	/* We need to delay this, otherwise we can deadlock when
1931 	 * writing to 'remove' to "dev/state".  We also need
1932 	 * to delay it due to rcu usage.
1933 	 */
1934 	synchronize_rcu();
1935 	INIT_WORK(&rdev->del_work, md_delayed_delete);
1936 	kobject_get(&rdev->kobj);
1937 	queue_work(md_misc_wq, &rdev->del_work);
1938 }
1939 
1940 /*
1941  * prevent the device from being mounted, repartitioned or
1942  * otherwise reused by a RAID array (or any other kernel
1943  * subsystem), by bd_claiming the device.
1944  */
1945 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1946 {
1947 	int err = 0;
1948 	struct block_device *bdev;
1949 	char b[BDEVNAME_SIZE];
1950 
1951 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1952 				 shared ? (mdk_rdev_t *)lock_rdev : rdev);
1953 	if (IS_ERR(bdev)) {
1954 		printk(KERN_ERR "md: could not open %s.\n",
1955 			__bdevname(dev, b));
1956 		return PTR_ERR(bdev);
1957 	}
1958 	rdev->bdev = bdev;
1959 	return err;
1960 }
1961 
1962 static void unlock_rdev(mdk_rdev_t *rdev)
1963 {
1964 	struct block_device *bdev = rdev->bdev;
1965 	rdev->bdev = NULL;
1966 	if (!bdev)
1967 		MD_BUG();
1968 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1969 }
1970 
1971 void md_autodetect_dev(dev_t dev);
1972 
1973 static void export_rdev(mdk_rdev_t * rdev)
1974 {
1975 	char b[BDEVNAME_SIZE];
1976 	printk(KERN_INFO "md: export_rdev(%s)\n",
1977 		bdevname(rdev->bdev,b));
1978 	if (rdev->mddev)
1979 		MD_BUG();
1980 	free_disk_sb(rdev);
1981 #ifndef MODULE
1982 	if (test_bit(AutoDetected, &rdev->flags))
1983 		md_autodetect_dev(rdev->bdev->bd_dev);
1984 #endif
1985 	unlock_rdev(rdev);
1986 	kobject_put(&rdev->kobj);
1987 }
1988 
1989 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1990 {
1991 	unbind_rdev_from_array(rdev);
1992 	export_rdev(rdev);
1993 }
1994 
1995 static void export_array(mddev_t *mddev)
1996 {
1997 	mdk_rdev_t *rdev, *tmp;
1998 
1999 	rdev_for_each(rdev, tmp, mddev) {
2000 		if (!rdev->mddev) {
2001 			MD_BUG();
2002 			continue;
2003 		}
2004 		kick_rdev_from_array(rdev);
2005 	}
2006 	if (!list_empty(&mddev->disks))
2007 		MD_BUG();
2008 	mddev->raid_disks = 0;
2009 	mddev->major_version = 0;
2010 }
2011 
2012 static void print_desc(mdp_disk_t *desc)
2013 {
2014 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2015 		desc->major,desc->minor,desc->raid_disk,desc->state);
2016 }
2017 
2018 static void print_sb_90(mdp_super_t *sb)
2019 {
2020 	int i;
2021 
2022 	printk(KERN_INFO
2023 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2024 		sb->major_version, sb->minor_version, sb->patch_version,
2025 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2026 		sb->ctime);
2027 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2028 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2029 		sb->md_minor, sb->layout, sb->chunk_size);
2030 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2031 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2032 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2033 		sb->failed_disks, sb->spare_disks,
2034 		sb->sb_csum, (unsigned long)sb->events_lo);
2035 
2036 	printk(KERN_INFO);
2037 	for (i = 0; i < MD_SB_DISKS; i++) {
2038 		mdp_disk_t *desc;
2039 
2040 		desc = sb->disks + i;
2041 		if (desc->number || desc->major || desc->minor ||
2042 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2043 			printk("     D %2d: ", i);
2044 			print_desc(desc);
2045 		}
2046 	}
2047 	printk(KERN_INFO "md:     THIS: ");
2048 	print_desc(&sb->this_disk);
2049 }
2050 
2051 static void print_sb_1(struct mdp_superblock_1 *sb)
2052 {
2053 	__u8 *uuid;
2054 
2055 	uuid = sb->set_uuid;
2056 	printk(KERN_INFO
2057 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2058 	       "md:    Name: \"%s\" CT:%llu\n",
2059 		le32_to_cpu(sb->major_version),
2060 		le32_to_cpu(sb->feature_map),
2061 		uuid,
2062 		sb->set_name,
2063 		(unsigned long long)le64_to_cpu(sb->ctime)
2064 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2065 
2066 	uuid = sb->device_uuid;
2067 	printk(KERN_INFO
2068 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2069 			" RO:%llu\n"
2070 	       "md:     Dev:%08x UUID: %pU\n"
2071 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2072 	       "md:         (MaxDev:%u) \n",
2073 		le32_to_cpu(sb->level),
2074 		(unsigned long long)le64_to_cpu(sb->size),
2075 		le32_to_cpu(sb->raid_disks),
2076 		le32_to_cpu(sb->layout),
2077 		le32_to_cpu(sb->chunksize),
2078 		(unsigned long long)le64_to_cpu(sb->data_offset),
2079 		(unsigned long long)le64_to_cpu(sb->data_size),
2080 		(unsigned long long)le64_to_cpu(sb->super_offset),
2081 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2082 		le32_to_cpu(sb->dev_number),
2083 		uuid,
2084 		sb->devflags,
2085 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2086 		(unsigned long long)le64_to_cpu(sb->events),
2087 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2088 		le32_to_cpu(sb->sb_csum),
2089 		le32_to_cpu(sb->max_dev)
2090 		);
2091 }
2092 
2093 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2094 {
2095 	char b[BDEVNAME_SIZE];
2096 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2097 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2098 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2099 	        rdev->desc_nr);
2100 	if (rdev->sb_loaded) {
2101 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2102 		switch (major_version) {
2103 		case 0:
2104 			print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2105 			break;
2106 		case 1:
2107 			print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2108 			break;
2109 		}
2110 	} else
2111 		printk(KERN_INFO "md: no rdev superblock!\n");
2112 }
2113 
2114 static void md_print_devices(void)
2115 {
2116 	struct list_head *tmp;
2117 	mdk_rdev_t *rdev;
2118 	mddev_t *mddev;
2119 	char b[BDEVNAME_SIZE];
2120 
2121 	printk("\n");
2122 	printk("md:	**********************************\n");
2123 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2124 	printk("md:	**********************************\n");
2125 	for_each_mddev(mddev, tmp) {
2126 
2127 		if (mddev->bitmap)
2128 			bitmap_print_sb(mddev->bitmap);
2129 		else
2130 			printk("%s: ", mdname(mddev));
2131 		list_for_each_entry(rdev, &mddev->disks, same_set)
2132 			printk("<%s>", bdevname(rdev->bdev,b));
2133 		printk("\n");
2134 
2135 		list_for_each_entry(rdev, &mddev->disks, same_set)
2136 			print_rdev(rdev, mddev->major_version);
2137 	}
2138 	printk("md:	**********************************\n");
2139 	printk("\n");
2140 }
2141 
2142 
2143 static void sync_sbs(mddev_t * mddev, int nospares)
2144 {
2145 	/* Update each superblock (in-memory image), but
2146 	 * if we are allowed to, skip spares which already
2147 	 * have the right event counter, or have one earlier
2148 	 * (which would mean they aren't being marked as dirty
2149 	 * with the rest of the array)
2150 	 */
2151 	mdk_rdev_t *rdev;
2152 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2153 		if (rdev->sb_events == mddev->events ||
2154 		    (nospares &&
2155 		     rdev->raid_disk < 0 &&
2156 		     rdev->sb_events+1 == mddev->events)) {
2157 			/* Don't update this superblock */
2158 			rdev->sb_loaded = 2;
2159 		} else {
2160 			super_types[mddev->major_version].
2161 				sync_super(mddev, rdev);
2162 			rdev->sb_loaded = 1;
2163 		}
2164 	}
2165 }
2166 
2167 static void md_update_sb(mddev_t * mddev, int force_change)
2168 {
2169 	mdk_rdev_t *rdev;
2170 	int sync_req;
2171 	int nospares = 0;
2172 
2173 repeat:
2174 	/* First make sure individual recovery_offsets are correct */
2175 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2176 		if (rdev->raid_disk >= 0 &&
2177 		    mddev->delta_disks >= 0 &&
2178 		    !test_bit(In_sync, &rdev->flags) &&
2179 		    mddev->curr_resync_completed > rdev->recovery_offset)
2180 				rdev->recovery_offset = mddev->curr_resync_completed;
2181 
2182 	}
2183 	if (!mddev->persistent) {
2184 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2185 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2186 		if (!mddev->external)
2187 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2188 		wake_up(&mddev->sb_wait);
2189 		return;
2190 	}
2191 
2192 	spin_lock_irq(&mddev->write_lock);
2193 
2194 	mddev->utime = get_seconds();
2195 
2196 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2197 		force_change = 1;
2198 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2199 		/* just a clean<-> dirty transition, possibly leave spares alone,
2200 		 * though if events isn't the right even/odd, we will have to do
2201 		 * spares after all
2202 		 */
2203 		nospares = 1;
2204 	if (force_change)
2205 		nospares = 0;
2206 	if (mddev->degraded)
2207 		/* If the array is degraded, then skipping spares is both
2208 		 * dangerous and fairly pointless.
2209 		 * Dangerous because a device that was removed from the array
2210 		 * might have a event_count that still looks up-to-date,
2211 		 * so it can be re-added without a resync.
2212 		 * Pointless because if there are any spares to skip,
2213 		 * then a recovery will happen and soon that array won't
2214 		 * be degraded any more and the spare can go back to sleep then.
2215 		 */
2216 		nospares = 0;
2217 
2218 	sync_req = mddev->in_sync;
2219 
2220 	/* If this is just a dirty<->clean transition, and the array is clean
2221 	 * and 'events' is odd, we can roll back to the previous clean state */
2222 	if (nospares
2223 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2224 	    && mddev->can_decrease_events
2225 	    && mddev->events != 1) {
2226 		mddev->events--;
2227 		mddev->can_decrease_events = 0;
2228 	} else {
2229 		/* otherwise we have to go forward and ... */
2230 		mddev->events ++;
2231 		mddev->can_decrease_events = nospares;
2232 	}
2233 
2234 	if (!mddev->events) {
2235 		/*
2236 		 * oops, this 64-bit counter should never wrap.
2237 		 * Either we are in around ~1 trillion A.C., assuming
2238 		 * 1 reboot per second, or we have a bug:
2239 		 */
2240 		MD_BUG();
2241 		mddev->events --;
2242 	}
2243 	sync_sbs(mddev, nospares);
2244 	spin_unlock_irq(&mddev->write_lock);
2245 
2246 	dprintk(KERN_INFO
2247 		"md: updating %s RAID superblock on device (in sync %d)\n",
2248 		mdname(mddev),mddev->in_sync);
2249 
2250 	bitmap_update_sb(mddev->bitmap);
2251 	list_for_each_entry(rdev, &mddev->disks, same_set) {
2252 		char b[BDEVNAME_SIZE];
2253 		dprintk(KERN_INFO "md: ");
2254 		if (rdev->sb_loaded != 1)
2255 			continue; /* no noise on spare devices */
2256 		if (test_bit(Faulty, &rdev->flags))
2257 			dprintk("(skipping faulty ");
2258 
2259 		dprintk("%s ", bdevname(rdev->bdev,b));
2260 		if (!test_bit(Faulty, &rdev->flags)) {
2261 			md_super_write(mddev,rdev,
2262 				       rdev->sb_start, rdev->sb_size,
2263 				       rdev->sb_page);
2264 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2265 				bdevname(rdev->bdev,b),
2266 				(unsigned long long)rdev->sb_start);
2267 			rdev->sb_events = mddev->events;
2268 
2269 		} else
2270 			dprintk(")\n");
2271 		if (mddev->level == LEVEL_MULTIPATH)
2272 			/* only need to write one superblock... */
2273 			break;
2274 	}
2275 	md_super_wait(mddev);
2276 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2277 
2278 	spin_lock_irq(&mddev->write_lock);
2279 	if (mddev->in_sync != sync_req ||
2280 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2281 		/* have to write it out again */
2282 		spin_unlock_irq(&mddev->write_lock);
2283 		goto repeat;
2284 	}
2285 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2286 	spin_unlock_irq(&mddev->write_lock);
2287 	wake_up(&mddev->sb_wait);
2288 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2289 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2290 
2291 }
2292 
2293 /* words written to sysfs files may, or may not, be \n terminated.
2294  * We want to accept with case. For this we use cmd_match.
2295  */
2296 static int cmd_match(const char *cmd, const char *str)
2297 {
2298 	/* See if cmd, written into a sysfs file, matches
2299 	 * str.  They must either be the same, or cmd can
2300 	 * have a trailing newline
2301 	 */
2302 	while (*cmd && *str && *cmd == *str) {
2303 		cmd++;
2304 		str++;
2305 	}
2306 	if (*cmd == '\n')
2307 		cmd++;
2308 	if (*str || *cmd)
2309 		return 0;
2310 	return 1;
2311 }
2312 
2313 struct rdev_sysfs_entry {
2314 	struct attribute attr;
2315 	ssize_t (*show)(mdk_rdev_t *, char *);
2316 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2317 };
2318 
2319 static ssize_t
2320 state_show(mdk_rdev_t *rdev, char *page)
2321 {
2322 	char *sep = "";
2323 	size_t len = 0;
2324 
2325 	if (test_bit(Faulty, &rdev->flags)) {
2326 		len+= sprintf(page+len, "%sfaulty",sep);
2327 		sep = ",";
2328 	}
2329 	if (test_bit(In_sync, &rdev->flags)) {
2330 		len += sprintf(page+len, "%sin_sync",sep);
2331 		sep = ",";
2332 	}
2333 	if (test_bit(WriteMostly, &rdev->flags)) {
2334 		len += sprintf(page+len, "%swrite_mostly",sep);
2335 		sep = ",";
2336 	}
2337 	if (test_bit(Blocked, &rdev->flags)) {
2338 		len += sprintf(page+len, "%sblocked", sep);
2339 		sep = ",";
2340 	}
2341 	if (!test_bit(Faulty, &rdev->flags) &&
2342 	    !test_bit(In_sync, &rdev->flags)) {
2343 		len += sprintf(page+len, "%sspare", sep);
2344 		sep = ",";
2345 	}
2346 	return len+sprintf(page+len, "\n");
2347 }
2348 
2349 static ssize_t
2350 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2351 {
2352 	/* can write
2353 	 *  faulty  - simulates and error
2354 	 *  remove  - disconnects the device
2355 	 *  writemostly - sets write_mostly
2356 	 *  -writemostly - clears write_mostly
2357 	 *  blocked - sets the Blocked flag
2358 	 *  -blocked - clears the Blocked flag
2359 	 *  insync - sets Insync providing device isn't active
2360 	 */
2361 	int err = -EINVAL;
2362 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2363 		md_error(rdev->mddev, rdev);
2364 		err = 0;
2365 	} else if (cmd_match(buf, "remove")) {
2366 		if (rdev->raid_disk >= 0)
2367 			err = -EBUSY;
2368 		else {
2369 			mddev_t *mddev = rdev->mddev;
2370 			kick_rdev_from_array(rdev);
2371 			if (mddev->pers)
2372 				md_update_sb(mddev, 1);
2373 			md_new_event(mddev);
2374 			err = 0;
2375 		}
2376 	} else if (cmd_match(buf, "writemostly")) {
2377 		set_bit(WriteMostly, &rdev->flags);
2378 		err = 0;
2379 	} else if (cmd_match(buf, "-writemostly")) {
2380 		clear_bit(WriteMostly, &rdev->flags);
2381 		err = 0;
2382 	} else if (cmd_match(buf, "blocked")) {
2383 		set_bit(Blocked, &rdev->flags);
2384 		err = 0;
2385 	} else if (cmd_match(buf, "-blocked")) {
2386 		clear_bit(Blocked, &rdev->flags);
2387 		wake_up(&rdev->blocked_wait);
2388 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2389 		md_wakeup_thread(rdev->mddev->thread);
2390 
2391 		err = 0;
2392 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2393 		set_bit(In_sync, &rdev->flags);
2394 		err = 0;
2395 	}
2396 	if (!err)
2397 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2398 	return err ? err : len;
2399 }
2400 static struct rdev_sysfs_entry rdev_state =
2401 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2402 
2403 static ssize_t
2404 errors_show(mdk_rdev_t *rdev, char *page)
2405 {
2406 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2407 }
2408 
2409 static ssize_t
2410 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2411 {
2412 	char *e;
2413 	unsigned long n = simple_strtoul(buf, &e, 10);
2414 	if (*buf && (*e == 0 || *e == '\n')) {
2415 		atomic_set(&rdev->corrected_errors, n);
2416 		return len;
2417 	}
2418 	return -EINVAL;
2419 }
2420 static struct rdev_sysfs_entry rdev_errors =
2421 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2422 
2423 static ssize_t
2424 slot_show(mdk_rdev_t *rdev, char *page)
2425 {
2426 	if (rdev->raid_disk < 0)
2427 		return sprintf(page, "none\n");
2428 	else
2429 		return sprintf(page, "%d\n", rdev->raid_disk);
2430 }
2431 
2432 static ssize_t
2433 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2434 {
2435 	char *e;
2436 	int err;
2437 	char nm[20];
2438 	int slot = simple_strtoul(buf, &e, 10);
2439 	if (strncmp(buf, "none", 4)==0)
2440 		slot = -1;
2441 	else if (e==buf || (*e && *e!= '\n'))
2442 		return -EINVAL;
2443 	if (rdev->mddev->pers && slot == -1) {
2444 		/* Setting 'slot' on an active array requires also
2445 		 * updating the 'rd%d' link, and communicating
2446 		 * with the personality with ->hot_*_disk.
2447 		 * For now we only support removing
2448 		 * failed/spare devices.  This normally happens automatically,
2449 		 * but not when the metadata is externally managed.
2450 		 */
2451 		if (rdev->raid_disk == -1)
2452 			return -EEXIST;
2453 		/* personality does all needed checks */
2454 		if (rdev->mddev->pers->hot_add_disk == NULL)
2455 			return -EINVAL;
2456 		err = rdev->mddev->pers->
2457 			hot_remove_disk(rdev->mddev, rdev->raid_disk);
2458 		if (err)
2459 			return err;
2460 		sprintf(nm, "rd%d", rdev->raid_disk);
2461 		sysfs_remove_link(&rdev->mddev->kobj, nm);
2462 		rdev->raid_disk = -1;
2463 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2464 		md_wakeup_thread(rdev->mddev->thread);
2465 	} else if (rdev->mddev->pers) {
2466 		mdk_rdev_t *rdev2;
2467 		/* Activating a spare .. or possibly reactivating
2468 		 * if we ever get bitmaps working here.
2469 		 */
2470 
2471 		if (rdev->raid_disk != -1)
2472 			return -EBUSY;
2473 
2474 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2475 			return -EBUSY;
2476 
2477 		if (rdev->mddev->pers->hot_add_disk == NULL)
2478 			return -EINVAL;
2479 
2480 		list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2481 			if (rdev2->raid_disk == slot)
2482 				return -EEXIST;
2483 
2484 		if (slot >= rdev->mddev->raid_disks &&
2485 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2486 			return -ENOSPC;
2487 
2488 		rdev->raid_disk = slot;
2489 		if (test_bit(In_sync, &rdev->flags))
2490 			rdev->saved_raid_disk = slot;
2491 		else
2492 			rdev->saved_raid_disk = -1;
2493 		err = rdev->mddev->pers->
2494 			hot_add_disk(rdev->mddev, rdev);
2495 		if (err) {
2496 			rdev->raid_disk = -1;
2497 			return err;
2498 		} else
2499 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2500 		sprintf(nm, "rd%d", rdev->raid_disk);
2501 		if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2502 			/* failure here is OK */;
2503 		/* don't wakeup anyone, leave that to userspace. */
2504 	} else {
2505 		if (slot >= rdev->mddev->raid_disks &&
2506 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2507 			return -ENOSPC;
2508 		rdev->raid_disk = slot;
2509 		/* assume it is working */
2510 		clear_bit(Faulty, &rdev->flags);
2511 		clear_bit(WriteMostly, &rdev->flags);
2512 		set_bit(In_sync, &rdev->flags);
2513 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2514 	}
2515 	return len;
2516 }
2517 
2518 
2519 static struct rdev_sysfs_entry rdev_slot =
2520 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2521 
2522 static ssize_t
2523 offset_show(mdk_rdev_t *rdev, char *page)
2524 {
2525 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2526 }
2527 
2528 static ssize_t
2529 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2530 {
2531 	char *e;
2532 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2533 	if (e==buf || (*e && *e != '\n'))
2534 		return -EINVAL;
2535 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2536 		return -EBUSY;
2537 	if (rdev->sectors && rdev->mddev->external)
2538 		/* Must set offset before size, so overlap checks
2539 		 * can be sane */
2540 		return -EBUSY;
2541 	rdev->data_offset = offset;
2542 	return len;
2543 }
2544 
2545 static struct rdev_sysfs_entry rdev_offset =
2546 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2547 
2548 static ssize_t
2549 rdev_size_show(mdk_rdev_t *rdev, char *page)
2550 {
2551 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2552 }
2553 
2554 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2555 {
2556 	/* check if two start/length pairs overlap */
2557 	if (s1+l1 <= s2)
2558 		return 0;
2559 	if (s2+l2 <= s1)
2560 		return 0;
2561 	return 1;
2562 }
2563 
2564 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2565 {
2566 	unsigned long long blocks;
2567 	sector_t new;
2568 
2569 	if (strict_strtoull(buf, 10, &blocks) < 0)
2570 		return -EINVAL;
2571 
2572 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2573 		return -EINVAL; /* sector conversion overflow */
2574 
2575 	new = blocks * 2;
2576 	if (new != blocks * 2)
2577 		return -EINVAL; /* unsigned long long to sector_t overflow */
2578 
2579 	*sectors = new;
2580 	return 0;
2581 }
2582 
2583 static ssize_t
2584 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2585 {
2586 	mddev_t *my_mddev = rdev->mddev;
2587 	sector_t oldsectors = rdev->sectors;
2588 	sector_t sectors;
2589 
2590 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2591 		return -EINVAL;
2592 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2593 		if (my_mddev->persistent) {
2594 			sectors = super_types[my_mddev->major_version].
2595 				rdev_size_change(rdev, sectors);
2596 			if (!sectors)
2597 				return -EBUSY;
2598 		} else if (!sectors)
2599 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2600 				rdev->data_offset;
2601 	}
2602 	if (sectors < my_mddev->dev_sectors)
2603 		return -EINVAL; /* component must fit device */
2604 
2605 	rdev->sectors = sectors;
2606 	if (sectors > oldsectors && my_mddev->external) {
2607 		/* need to check that all other rdevs with the same ->bdev
2608 		 * do not overlap.  We need to unlock the mddev to avoid
2609 		 * a deadlock.  We have already changed rdev->sectors, and if
2610 		 * we have to change it back, we will have the lock again.
2611 		 */
2612 		mddev_t *mddev;
2613 		int overlap = 0;
2614 		struct list_head *tmp;
2615 
2616 		mddev_unlock(my_mddev);
2617 		for_each_mddev(mddev, tmp) {
2618 			mdk_rdev_t *rdev2;
2619 
2620 			mddev_lock(mddev);
2621 			list_for_each_entry(rdev2, &mddev->disks, same_set)
2622 				if (rdev->bdev == rdev2->bdev &&
2623 				    rdev != rdev2 &&
2624 				    overlaps(rdev->data_offset, rdev->sectors,
2625 					     rdev2->data_offset,
2626 					     rdev2->sectors)) {
2627 					overlap = 1;
2628 					break;
2629 				}
2630 			mddev_unlock(mddev);
2631 			if (overlap) {
2632 				mddev_put(mddev);
2633 				break;
2634 			}
2635 		}
2636 		mddev_lock(my_mddev);
2637 		if (overlap) {
2638 			/* Someone else could have slipped in a size
2639 			 * change here, but doing so is just silly.
2640 			 * We put oldsectors back because we *know* it is
2641 			 * safe, and trust userspace not to race with
2642 			 * itself
2643 			 */
2644 			rdev->sectors = oldsectors;
2645 			return -EBUSY;
2646 		}
2647 	}
2648 	return len;
2649 }
2650 
2651 static struct rdev_sysfs_entry rdev_size =
2652 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2653 
2654 
2655 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2656 {
2657 	unsigned long long recovery_start = rdev->recovery_offset;
2658 
2659 	if (test_bit(In_sync, &rdev->flags) ||
2660 	    recovery_start == MaxSector)
2661 		return sprintf(page, "none\n");
2662 
2663 	return sprintf(page, "%llu\n", recovery_start);
2664 }
2665 
2666 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2667 {
2668 	unsigned long long recovery_start;
2669 
2670 	if (cmd_match(buf, "none"))
2671 		recovery_start = MaxSector;
2672 	else if (strict_strtoull(buf, 10, &recovery_start))
2673 		return -EINVAL;
2674 
2675 	if (rdev->mddev->pers &&
2676 	    rdev->raid_disk >= 0)
2677 		return -EBUSY;
2678 
2679 	rdev->recovery_offset = recovery_start;
2680 	if (recovery_start == MaxSector)
2681 		set_bit(In_sync, &rdev->flags);
2682 	else
2683 		clear_bit(In_sync, &rdev->flags);
2684 	return len;
2685 }
2686 
2687 static struct rdev_sysfs_entry rdev_recovery_start =
2688 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2689 
2690 static struct attribute *rdev_default_attrs[] = {
2691 	&rdev_state.attr,
2692 	&rdev_errors.attr,
2693 	&rdev_slot.attr,
2694 	&rdev_offset.attr,
2695 	&rdev_size.attr,
2696 	&rdev_recovery_start.attr,
2697 	NULL,
2698 };
2699 static ssize_t
2700 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2701 {
2702 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2703 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2704 	mddev_t *mddev = rdev->mddev;
2705 	ssize_t rv;
2706 
2707 	if (!entry->show)
2708 		return -EIO;
2709 
2710 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
2711 	if (!rv) {
2712 		if (rdev->mddev == NULL)
2713 			rv = -EBUSY;
2714 		else
2715 			rv = entry->show(rdev, page);
2716 		mddev_unlock(mddev);
2717 	}
2718 	return rv;
2719 }
2720 
2721 static ssize_t
2722 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2723 	      const char *page, size_t length)
2724 {
2725 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2726 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2727 	ssize_t rv;
2728 	mddev_t *mddev = rdev->mddev;
2729 
2730 	if (!entry->store)
2731 		return -EIO;
2732 	if (!capable(CAP_SYS_ADMIN))
2733 		return -EACCES;
2734 	rv = mddev ? mddev_lock(mddev): -EBUSY;
2735 	if (!rv) {
2736 		if (rdev->mddev == NULL)
2737 			rv = -EBUSY;
2738 		else
2739 			rv = entry->store(rdev, page, length);
2740 		mddev_unlock(mddev);
2741 	}
2742 	return rv;
2743 }
2744 
2745 static void rdev_free(struct kobject *ko)
2746 {
2747 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2748 	kfree(rdev);
2749 }
2750 static const struct sysfs_ops rdev_sysfs_ops = {
2751 	.show		= rdev_attr_show,
2752 	.store		= rdev_attr_store,
2753 };
2754 static struct kobj_type rdev_ktype = {
2755 	.release	= rdev_free,
2756 	.sysfs_ops	= &rdev_sysfs_ops,
2757 	.default_attrs	= rdev_default_attrs,
2758 };
2759 
2760 void md_rdev_init(mdk_rdev_t *rdev)
2761 {
2762 	rdev->desc_nr = -1;
2763 	rdev->saved_raid_disk = -1;
2764 	rdev->raid_disk = -1;
2765 	rdev->flags = 0;
2766 	rdev->data_offset = 0;
2767 	rdev->sb_events = 0;
2768 	rdev->last_read_error.tv_sec  = 0;
2769 	rdev->last_read_error.tv_nsec = 0;
2770 	atomic_set(&rdev->nr_pending, 0);
2771 	atomic_set(&rdev->read_errors, 0);
2772 	atomic_set(&rdev->corrected_errors, 0);
2773 
2774 	INIT_LIST_HEAD(&rdev->same_set);
2775 	init_waitqueue_head(&rdev->blocked_wait);
2776 }
2777 EXPORT_SYMBOL_GPL(md_rdev_init);
2778 /*
2779  * Import a device. If 'super_format' >= 0, then sanity check the superblock
2780  *
2781  * mark the device faulty if:
2782  *
2783  *   - the device is nonexistent (zero size)
2784  *   - the device has no valid superblock
2785  *
2786  * a faulty rdev _never_ has rdev->sb set.
2787  */
2788 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2789 {
2790 	char b[BDEVNAME_SIZE];
2791 	int err;
2792 	mdk_rdev_t *rdev;
2793 	sector_t size;
2794 
2795 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2796 	if (!rdev) {
2797 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
2798 		return ERR_PTR(-ENOMEM);
2799 	}
2800 
2801 	md_rdev_init(rdev);
2802 	if ((err = alloc_disk_sb(rdev)))
2803 		goto abort_free;
2804 
2805 	err = lock_rdev(rdev, newdev, super_format == -2);
2806 	if (err)
2807 		goto abort_free;
2808 
2809 	kobject_init(&rdev->kobj, &rdev_ktype);
2810 
2811 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2812 	if (!size) {
2813 		printk(KERN_WARNING
2814 			"md: %s has zero or unknown size, marking faulty!\n",
2815 			bdevname(rdev->bdev,b));
2816 		err = -EINVAL;
2817 		goto abort_free;
2818 	}
2819 
2820 	if (super_format >= 0) {
2821 		err = super_types[super_format].
2822 			load_super(rdev, NULL, super_minor);
2823 		if (err == -EINVAL) {
2824 			printk(KERN_WARNING
2825 				"md: %s does not have a valid v%d.%d "
2826 			       "superblock, not importing!\n",
2827 				bdevname(rdev->bdev,b),
2828 			       super_format, super_minor);
2829 			goto abort_free;
2830 		}
2831 		if (err < 0) {
2832 			printk(KERN_WARNING
2833 				"md: could not read %s's sb, not importing!\n",
2834 				bdevname(rdev->bdev,b));
2835 			goto abort_free;
2836 		}
2837 	}
2838 
2839 	return rdev;
2840 
2841 abort_free:
2842 	if (rdev->sb_page) {
2843 		if (rdev->bdev)
2844 			unlock_rdev(rdev);
2845 		free_disk_sb(rdev);
2846 	}
2847 	kfree(rdev);
2848 	return ERR_PTR(err);
2849 }
2850 
2851 /*
2852  * Check a full RAID array for plausibility
2853  */
2854 
2855 
2856 static void analyze_sbs(mddev_t * mddev)
2857 {
2858 	int i;
2859 	mdk_rdev_t *rdev, *freshest, *tmp;
2860 	char b[BDEVNAME_SIZE];
2861 
2862 	freshest = NULL;
2863 	rdev_for_each(rdev, tmp, mddev)
2864 		switch (super_types[mddev->major_version].
2865 			load_super(rdev, freshest, mddev->minor_version)) {
2866 		case 1:
2867 			freshest = rdev;
2868 			break;
2869 		case 0:
2870 			break;
2871 		default:
2872 			printk( KERN_ERR \
2873 				"md: fatal superblock inconsistency in %s"
2874 				" -- removing from array\n",
2875 				bdevname(rdev->bdev,b));
2876 			kick_rdev_from_array(rdev);
2877 		}
2878 
2879 
2880 	super_types[mddev->major_version].
2881 		validate_super(mddev, freshest);
2882 
2883 	i = 0;
2884 	rdev_for_each(rdev, tmp, mddev) {
2885 		if (mddev->max_disks &&
2886 		    (rdev->desc_nr >= mddev->max_disks ||
2887 		     i > mddev->max_disks)) {
2888 			printk(KERN_WARNING
2889 			       "md: %s: %s: only %d devices permitted\n",
2890 			       mdname(mddev), bdevname(rdev->bdev, b),
2891 			       mddev->max_disks);
2892 			kick_rdev_from_array(rdev);
2893 			continue;
2894 		}
2895 		if (rdev != freshest)
2896 			if (super_types[mddev->major_version].
2897 			    validate_super(mddev, rdev)) {
2898 				printk(KERN_WARNING "md: kicking non-fresh %s"
2899 					" from array!\n",
2900 					bdevname(rdev->bdev,b));
2901 				kick_rdev_from_array(rdev);
2902 				continue;
2903 			}
2904 		if (mddev->level == LEVEL_MULTIPATH) {
2905 			rdev->desc_nr = i++;
2906 			rdev->raid_disk = rdev->desc_nr;
2907 			set_bit(In_sync, &rdev->flags);
2908 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2909 			rdev->raid_disk = -1;
2910 			clear_bit(In_sync, &rdev->flags);
2911 		}
2912 	}
2913 }
2914 
2915 /* Read a fixed-point number.
2916  * Numbers in sysfs attributes should be in "standard" units where
2917  * possible, so time should be in seconds.
2918  * However we internally use a a much smaller unit such as
2919  * milliseconds or jiffies.
2920  * This function takes a decimal number with a possible fractional
2921  * component, and produces an integer which is the result of
2922  * multiplying that number by 10^'scale'.
2923  * all without any floating-point arithmetic.
2924  */
2925 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2926 {
2927 	unsigned long result = 0;
2928 	long decimals = -1;
2929 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2930 		if (*cp == '.')
2931 			decimals = 0;
2932 		else if (decimals < scale) {
2933 			unsigned int value;
2934 			value = *cp - '0';
2935 			result = result * 10 + value;
2936 			if (decimals >= 0)
2937 				decimals++;
2938 		}
2939 		cp++;
2940 	}
2941 	if (*cp == '\n')
2942 		cp++;
2943 	if (*cp)
2944 		return -EINVAL;
2945 	if (decimals < 0)
2946 		decimals = 0;
2947 	while (decimals < scale) {
2948 		result *= 10;
2949 		decimals ++;
2950 	}
2951 	*res = result;
2952 	return 0;
2953 }
2954 
2955 
2956 static void md_safemode_timeout(unsigned long data);
2957 
2958 static ssize_t
2959 safe_delay_show(mddev_t *mddev, char *page)
2960 {
2961 	int msec = (mddev->safemode_delay*1000)/HZ;
2962 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2963 }
2964 static ssize_t
2965 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2966 {
2967 	unsigned long msec;
2968 
2969 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2970 		return -EINVAL;
2971 	if (msec == 0)
2972 		mddev->safemode_delay = 0;
2973 	else {
2974 		unsigned long old_delay = mddev->safemode_delay;
2975 		mddev->safemode_delay = (msec*HZ)/1000;
2976 		if (mddev->safemode_delay == 0)
2977 			mddev->safemode_delay = 1;
2978 		if (mddev->safemode_delay < old_delay)
2979 			md_safemode_timeout((unsigned long)mddev);
2980 	}
2981 	return len;
2982 }
2983 static struct md_sysfs_entry md_safe_delay =
2984 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2985 
2986 static ssize_t
2987 level_show(mddev_t *mddev, char *page)
2988 {
2989 	struct mdk_personality *p = mddev->pers;
2990 	if (p)
2991 		return sprintf(page, "%s\n", p->name);
2992 	else if (mddev->clevel[0])
2993 		return sprintf(page, "%s\n", mddev->clevel);
2994 	else if (mddev->level != LEVEL_NONE)
2995 		return sprintf(page, "%d\n", mddev->level);
2996 	else
2997 		return 0;
2998 }
2999 
3000 static ssize_t
3001 level_store(mddev_t *mddev, const char *buf, size_t len)
3002 {
3003 	char clevel[16];
3004 	ssize_t rv = len;
3005 	struct mdk_personality *pers;
3006 	long level;
3007 	void *priv;
3008 	mdk_rdev_t *rdev;
3009 
3010 	if (mddev->pers == NULL) {
3011 		if (len == 0)
3012 			return 0;
3013 		if (len >= sizeof(mddev->clevel))
3014 			return -ENOSPC;
3015 		strncpy(mddev->clevel, buf, len);
3016 		if (mddev->clevel[len-1] == '\n')
3017 			len--;
3018 		mddev->clevel[len] = 0;
3019 		mddev->level = LEVEL_NONE;
3020 		return rv;
3021 	}
3022 
3023 	/* request to change the personality.  Need to ensure:
3024 	 *  - array is not engaged in resync/recovery/reshape
3025 	 *  - old personality can be suspended
3026 	 *  - new personality will access other array.
3027 	 */
3028 
3029 	if (mddev->sync_thread ||
3030 	    mddev->reshape_position != MaxSector ||
3031 	    mddev->sysfs_active)
3032 		return -EBUSY;
3033 
3034 	if (!mddev->pers->quiesce) {
3035 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3036 		       mdname(mddev), mddev->pers->name);
3037 		return -EINVAL;
3038 	}
3039 
3040 	/* Now find the new personality */
3041 	if (len == 0 || len >= sizeof(clevel))
3042 		return -EINVAL;
3043 	strncpy(clevel, buf, len);
3044 	if (clevel[len-1] == '\n')
3045 		len--;
3046 	clevel[len] = 0;
3047 	if (strict_strtol(clevel, 10, &level))
3048 		level = LEVEL_NONE;
3049 
3050 	if (request_module("md-%s", clevel) != 0)
3051 		request_module("md-level-%s", clevel);
3052 	spin_lock(&pers_lock);
3053 	pers = find_pers(level, clevel);
3054 	if (!pers || !try_module_get(pers->owner)) {
3055 		spin_unlock(&pers_lock);
3056 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3057 		return -EINVAL;
3058 	}
3059 	spin_unlock(&pers_lock);
3060 
3061 	if (pers == mddev->pers) {
3062 		/* Nothing to do! */
3063 		module_put(pers->owner);
3064 		return rv;
3065 	}
3066 	if (!pers->takeover) {
3067 		module_put(pers->owner);
3068 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3069 		       mdname(mddev), clevel);
3070 		return -EINVAL;
3071 	}
3072 
3073 	list_for_each_entry(rdev, &mddev->disks, same_set)
3074 		rdev->new_raid_disk = rdev->raid_disk;
3075 
3076 	/* ->takeover must set new_* and/or delta_disks
3077 	 * if it succeeds, and may set them when it fails.
3078 	 */
3079 	priv = pers->takeover(mddev);
3080 	if (IS_ERR(priv)) {
3081 		mddev->new_level = mddev->level;
3082 		mddev->new_layout = mddev->layout;
3083 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3084 		mddev->raid_disks -= mddev->delta_disks;
3085 		mddev->delta_disks = 0;
3086 		module_put(pers->owner);
3087 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3088 		       mdname(mddev), clevel);
3089 		return PTR_ERR(priv);
3090 	}
3091 
3092 	/* Looks like we have a winner */
3093 	mddev_suspend(mddev);
3094 	mddev->pers->stop(mddev);
3095 
3096 	if (mddev->pers->sync_request == NULL &&
3097 	    pers->sync_request != NULL) {
3098 		/* need to add the md_redundancy_group */
3099 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3100 			printk(KERN_WARNING
3101 			       "md: cannot register extra attributes for %s\n",
3102 			       mdname(mddev));
3103 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3104 	}
3105 	if (mddev->pers->sync_request != NULL &&
3106 	    pers->sync_request == NULL) {
3107 		/* need to remove the md_redundancy_group */
3108 		if (mddev->to_remove == NULL)
3109 			mddev->to_remove = &md_redundancy_group;
3110 	}
3111 
3112 	if (mddev->pers->sync_request == NULL &&
3113 	    mddev->external) {
3114 		/* We are converting from a no-redundancy array
3115 		 * to a redundancy array and metadata is managed
3116 		 * externally so we need to be sure that writes
3117 		 * won't block due to a need to transition
3118 		 *      clean->dirty
3119 		 * until external management is started.
3120 		 */
3121 		mddev->in_sync = 0;
3122 		mddev->safemode_delay = 0;
3123 		mddev->safemode = 0;
3124 	}
3125 
3126 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3127 		char nm[20];
3128 		if (rdev->raid_disk < 0)
3129 			continue;
3130 		if (rdev->new_raid_disk >= mddev->raid_disks)
3131 			rdev->new_raid_disk = -1;
3132 		if (rdev->new_raid_disk == rdev->raid_disk)
3133 			continue;
3134 		sprintf(nm, "rd%d", rdev->raid_disk);
3135 		sysfs_remove_link(&mddev->kobj, nm);
3136 	}
3137 	list_for_each_entry(rdev, &mddev->disks, same_set) {
3138 		if (rdev->raid_disk < 0)
3139 			continue;
3140 		if (rdev->new_raid_disk == rdev->raid_disk)
3141 			continue;
3142 		rdev->raid_disk = rdev->new_raid_disk;
3143 		if (rdev->raid_disk < 0)
3144 			clear_bit(In_sync, &rdev->flags);
3145 		else {
3146 			char nm[20];
3147 			sprintf(nm, "rd%d", rdev->raid_disk);
3148 			if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3149 				printk("md: cannot register %s for %s after level change\n",
3150 				       nm, mdname(mddev));
3151 		}
3152 	}
3153 
3154 	module_put(mddev->pers->owner);
3155 	mddev->pers = pers;
3156 	mddev->private = priv;
3157 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3158 	mddev->level = mddev->new_level;
3159 	mddev->layout = mddev->new_layout;
3160 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3161 	mddev->delta_disks = 0;
3162 	if (mddev->pers->sync_request == NULL) {
3163 		/* this is now an array without redundancy, so
3164 		 * it must always be in_sync
3165 		 */
3166 		mddev->in_sync = 1;
3167 		del_timer_sync(&mddev->safemode_timer);
3168 	}
3169 	pers->run(mddev);
3170 	mddev_resume(mddev);
3171 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3172 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3173 	md_wakeup_thread(mddev->thread);
3174 	sysfs_notify(&mddev->kobj, NULL, "level");
3175 	md_new_event(mddev);
3176 	return rv;
3177 }
3178 
3179 static struct md_sysfs_entry md_level =
3180 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3181 
3182 
3183 static ssize_t
3184 layout_show(mddev_t *mddev, char *page)
3185 {
3186 	/* just a number, not meaningful for all levels */
3187 	if (mddev->reshape_position != MaxSector &&
3188 	    mddev->layout != mddev->new_layout)
3189 		return sprintf(page, "%d (%d)\n",
3190 			       mddev->new_layout, mddev->layout);
3191 	return sprintf(page, "%d\n", mddev->layout);
3192 }
3193 
3194 static ssize_t
3195 layout_store(mddev_t *mddev, const char *buf, size_t len)
3196 {
3197 	char *e;
3198 	unsigned long n = simple_strtoul(buf, &e, 10);
3199 
3200 	if (!*buf || (*e && *e != '\n'))
3201 		return -EINVAL;
3202 
3203 	if (mddev->pers) {
3204 		int err;
3205 		if (mddev->pers->check_reshape == NULL)
3206 			return -EBUSY;
3207 		mddev->new_layout = n;
3208 		err = mddev->pers->check_reshape(mddev);
3209 		if (err) {
3210 			mddev->new_layout = mddev->layout;
3211 			return err;
3212 		}
3213 	} else {
3214 		mddev->new_layout = n;
3215 		if (mddev->reshape_position == MaxSector)
3216 			mddev->layout = n;
3217 	}
3218 	return len;
3219 }
3220 static struct md_sysfs_entry md_layout =
3221 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3222 
3223 
3224 static ssize_t
3225 raid_disks_show(mddev_t *mddev, char *page)
3226 {
3227 	if (mddev->raid_disks == 0)
3228 		return 0;
3229 	if (mddev->reshape_position != MaxSector &&
3230 	    mddev->delta_disks != 0)
3231 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3232 			       mddev->raid_disks - mddev->delta_disks);
3233 	return sprintf(page, "%d\n", mddev->raid_disks);
3234 }
3235 
3236 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3237 
3238 static ssize_t
3239 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3240 {
3241 	char *e;
3242 	int rv = 0;
3243 	unsigned long n = simple_strtoul(buf, &e, 10);
3244 
3245 	if (!*buf || (*e && *e != '\n'))
3246 		return -EINVAL;
3247 
3248 	if (mddev->pers)
3249 		rv = update_raid_disks(mddev, n);
3250 	else if (mddev->reshape_position != MaxSector) {
3251 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3252 		mddev->delta_disks = n - olddisks;
3253 		mddev->raid_disks = n;
3254 	} else
3255 		mddev->raid_disks = n;
3256 	return rv ? rv : len;
3257 }
3258 static struct md_sysfs_entry md_raid_disks =
3259 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3260 
3261 static ssize_t
3262 chunk_size_show(mddev_t *mddev, char *page)
3263 {
3264 	if (mddev->reshape_position != MaxSector &&
3265 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3266 		return sprintf(page, "%d (%d)\n",
3267 			       mddev->new_chunk_sectors << 9,
3268 			       mddev->chunk_sectors << 9);
3269 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3270 }
3271 
3272 static ssize_t
3273 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3274 {
3275 	char *e;
3276 	unsigned long n = simple_strtoul(buf, &e, 10);
3277 
3278 	if (!*buf || (*e && *e != '\n'))
3279 		return -EINVAL;
3280 
3281 	if (mddev->pers) {
3282 		int err;
3283 		if (mddev->pers->check_reshape == NULL)
3284 			return -EBUSY;
3285 		mddev->new_chunk_sectors = n >> 9;
3286 		err = mddev->pers->check_reshape(mddev);
3287 		if (err) {
3288 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3289 			return err;
3290 		}
3291 	} else {
3292 		mddev->new_chunk_sectors = n >> 9;
3293 		if (mddev->reshape_position == MaxSector)
3294 			mddev->chunk_sectors = n >> 9;
3295 	}
3296 	return len;
3297 }
3298 static struct md_sysfs_entry md_chunk_size =
3299 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3300 
3301 static ssize_t
3302 resync_start_show(mddev_t *mddev, char *page)
3303 {
3304 	if (mddev->recovery_cp == MaxSector)
3305 		return sprintf(page, "none\n");
3306 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3307 }
3308 
3309 static ssize_t
3310 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3311 {
3312 	char *e;
3313 	unsigned long long n = simple_strtoull(buf, &e, 10);
3314 
3315 	if (mddev->pers)
3316 		return -EBUSY;
3317 	if (cmd_match(buf, "none"))
3318 		n = MaxSector;
3319 	else if (!*buf || (*e && *e != '\n'))
3320 		return -EINVAL;
3321 
3322 	mddev->recovery_cp = n;
3323 	return len;
3324 }
3325 static struct md_sysfs_entry md_resync_start =
3326 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3327 
3328 /*
3329  * The array state can be:
3330  *
3331  * clear
3332  *     No devices, no size, no level
3333  *     Equivalent to STOP_ARRAY ioctl
3334  * inactive
3335  *     May have some settings, but array is not active
3336  *        all IO results in error
3337  *     When written, doesn't tear down array, but just stops it
3338  * suspended (not supported yet)
3339  *     All IO requests will block. The array can be reconfigured.
3340  *     Writing this, if accepted, will block until array is quiescent
3341  * readonly
3342  *     no resync can happen.  no superblocks get written.
3343  *     write requests fail
3344  * read-auto
3345  *     like readonly, but behaves like 'clean' on a write request.
3346  *
3347  * clean - no pending writes, but otherwise active.
3348  *     When written to inactive array, starts without resync
3349  *     If a write request arrives then
3350  *       if metadata is known, mark 'dirty' and switch to 'active'.
3351  *       if not known, block and switch to write-pending
3352  *     If written to an active array that has pending writes, then fails.
3353  * active
3354  *     fully active: IO and resync can be happening.
3355  *     When written to inactive array, starts with resync
3356  *
3357  * write-pending
3358  *     clean, but writes are blocked waiting for 'active' to be written.
3359  *
3360  * active-idle
3361  *     like active, but no writes have been seen for a while (100msec).
3362  *
3363  */
3364 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3365 		   write_pending, active_idle, bad_word};
3366 static char *array_states[] = {
3367 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3368 	"write-pending", "active-idle", NULL };
3369 
3370 static int match_word(const char *word, char **list)
3371 {
3372 	int n;
3373 	for (n=0; list[n]; n++)
3374 		if (cmd_match(word, list[n]))
3375 			break;
3376 	return n;
3377 }
3378 
3379 static ssize_t
3380 array_state_show(mddev_t *mddev, char *page)
3381 {
3382 	enum array_state st = inactive;
3383 
3384 	if (mddev->pers)
3385 		switch(mddev->ro) {
3386 		case 1:
3387 			st = readonly;
3388 			break;
3389 		case 2:
3390 			st = read_auto;
3391 			break;
3392 		case 0:
3393 			if (mddev->in_sync)
3394 				st = clean;
3395 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3396 				st = write_pending;
3397 			else if (mddev->safemode)
3398 				st = active_idle;
3399 			else
3400 				st = active;
3401 		}
3402 	else {
3403 		if (list_empty(&mddev->disks) &&
3404 		    mddev->raid_disks == 0 &&
3405 		    mddev->dev_sectors == 0)
3406 			st = clear;
3407 		else
3408 			st = inactive;
3409 	}
3410 	return sprintf(page, "%s\n", array_states[st]);
3411 }
3412 
3413 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3414 static int md_set_readonly(mddev_t * mddev, int is_open);
3415 static int do_md_run(mddev_t * mddev);
3416 static int restart_array(mddev_t *mddev);
3417 
3418 static ssize_t
3419 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3420 {
3421 	int err = -EINVAL;
3422 	enum array_state st = match_word(buf, array_states);
3423 	switch(st) {
3424 	case bad_word:
3425 		break;
3426 	case clear:
3427 		/* stopping an active array */
3428 		if (atomic_read(&mddev->openers) > 0)
3429 			return -EBUSY;
3430 		err = do_md_stop(mddev, 0, 0);
3431 		break;
3432 	case inactive:
3433 		/* stopping an active array */
3434 		if (mddev->pers) {
3435 			if (atomic_read(&mddev->openers) > 0)
3436 				return -EBUSY;
3437 			err = do_md_stop(mddev, 2, 0);
3438 		} else
3439 			err = 0; /* already inactive */
3440 		break;
3441 	case suspended:
3442 		break; /* not supported yet */
3443 	case readonly:
3444 		if (mddev->pers)
3445 			err = md_set_readonly(mddev, 0);
3446 		else {
3447 			mddev->ro = 1;
3448 			set_disk_ro(mddev->gendisk, 1);
3449 			err = do_md_run(mddev);
3450 		}
3451 		break;
3452 	case read_auto:
3453 		if (mddev->pers) {
3454 			if (mddev->ro == 0)
3455 				err = md_set_readonly(mddev, 0);
3456 			else if (mddev->ro == 1)
3457 				err = restart_array(mddev);
3458 			if (err == 0) {
3459 				mddev->ro = 2;
3460 				set_disk_ro(mddev->gendisk, 0);
3461 			}
3462 		} else {
3463 			mddev->ro = 2;
3464 			err = do_md_run(mddev);
3465 		}
3466 		break;
3467 	case clean:
3468 		if (mddev->pers) {
3469 			restart_array(mddev);
3470 			spin_lock_irq(&mddev->write_lock);
3471 			if (atomic_read(&mddev->writes_pending) == 0) {
3472 				if (mddev->in_sync == 0) {
3473 					mddev->in_sync = 1;
3474 					if (mddev->safemode == 1)
3475 						mddev->safemode = 0;
3476 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3477 				}
3478 				err = 0;
3479 			} else
3480 				err = -EBUSY;
3481 			spin_unlock_irq(&mddev->write_lock);
3482 		} else
3483 			err = -EINVAL;
3484 		break;
3485 	case active:
3486 		if (mddev->pers) {
3487 			restart_array(mddev);
3488 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3489 			wake_up(&mddev->sb_wait);
3490 			err = 0;
3491 		} else {
3492 			mddev->ro = 0;
3493 			set_disk_ro(mddev->gendisk, 0);
3494 			err = do_md_run(mddev);
3495 		}
3496 		break;
3497 	case write_pending:
3498 	case active_idle:
3499 		/* these cannot be set */
3500 		break;
3501 	}
3502 	if (err)
3503 		return err;
3504 	else {
3505 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3506 		return len;
3507 	}
3508 }
3509 static struct md_sysfs_entry md_array_state =
3510 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3511 
3512 static ssize_t
3513 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3514 	return sprintf(page, "%d\n",
3515 		       atomic_read(&mddev->max_corr_read_errors));
3516 }
3517 
3518 static ssize_t
3519 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3520 {
3521 	char *e;
3522 	unsigned long n = simple_strtoul(buf, &e, 10);
3523 
3524 	if (*buf && (*e == 0 || *e == '\n')) {
3525 		atomic_set(&mddev->max_corr_read_errors, n);
3526 		return len;
3527 	}
3528 	return -EINVAL;
3529 }
3530 
3531 static struct md_sysfs_entry max_corr_read_errors =
3532 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3533 	max_corrected_read_errors_store);
3534 
3535 static ssize_t
3536 null_show(mddev_t *mddev, char *page)
3537 {
3538 	return -EINVAL;
3539 }
3540 
3541 static ssize_t
3542 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3543 {
3544 	/* buf must be %d:%d\n? giving major and minor numbers */
3545 	/* The new device is added to the array.
3546 	 * If the array has a persistent superblock, we read the
3547 	 * superblock to initialise info and check validity.
3548 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3549 	 * which mainly checks size.
3550 	 */
3551 	char *e;
3552 	int major = simple_strtoul(buf, &e, 10);
3553 	int minor;
3554 	dev_t dev;
3555 	mdk_rdev_t *rdev;
3556 	int err;
3557 
3558 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3559 		return -EINVAL;
3560 	minor = simple_strtoul(e+1, &e, 10);
3561 	if (*e && *e != '\n')
3562 		return -EINVAL;
3563 	dev = MKDEV(major, minor);
3564 	if (major != MAJOR(dev) ||
3565 	    minor != MINOR(dev))
3566 		return -EOVERFLOW;
3567 
3568 
3569 	if (mddev->persistent) {
3570 		rdev = md_import_device(dev, mddev->major_version,
3571 					mddev->minor_version);
3572 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3573 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3574 						       mdk_rdev_t, same_set);
3575 			err = super_types[mddev->major_version]
3576 				.load_super(rdev, rdev0, mddev->minor_version);
3577 			if (err < 0)
3578 				goto out;
3579 		}
3580 	} else if (mddev->external)
3581 		rdev = md_import_device(dev, -2, -1);
3582 	else
3583 		rdev = md_import_device(dev, -1, -1);
3584 
3585 	if (IS_ERR(rdev))
3586 		return PTR_ERR(rdev);
3587 	err = bind_rdev_to_array(rdev, mddev);
3588  out:
3589 	if (err)
3590 		export_rdev(rdev);
3591 	return err ? err : len;
3592 }
3593 
3594 static struct md_sysfs_entry md_new_device =
3595 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3596 
3597 static ssize_t
3598 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3599 {
3600 	char *end;
3601 	unsigned long chunk, end_chunk;
3602 
3603 	if (!mddev->bitmap)
3604 		goto out;
3605 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3606 	while (*buf) {
3607 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3608 		if (buf == end) break;
3609 		if (*end == '-') { /* range */
3610 			buf = end + 1;
3611 			end_chunk = simple_strtoul(buf, &end, 0);
3612 			if (buf == end) break;
3613 		}
3614 		if (*end && !isspace(*end)) break;
3615 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3616 		buf = skip_spaces(end);
3617 	}
3618 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3619 out:
3620 	return len;
3621 }
3622 
3623 static struct md_sysfs_entry md_bitmap =
3624 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3625 
3626 static ssize_t
3627 size_show(mddev_t *mddev, char *page)
3628 {
3629 	return sprintf(page, "%llu\n",
3630 		(unsigned long long)mddev->dev_sectors / 2);
3631 }
3632 
3633 static int update_size(mddev_t *mddev, sector_t num_sectors);
3634 
3635 static ssize_t
3636 size_store(mddev_t *mddev, const char *buf, size_t len)
3637 {
3638 	/* If array is inactive, we can reduce the component size, but
3639 	 * not increase it (except from 0).
3640 	 * If array is active, we can try an on-line resize
3641 	 */
3642 	sector_t sectors;
3643 	int err = strict_blocks_to_sectors(buf, &sectors);
3644 
3645 	if (err < 0)
3646 		return err;
3647 	if (mddev->pers) {
3648 		err = update_size(mddev, sectors);
3649 		md_update_sb(mddev, 1);
3650 	} else {
3651 		if (mddev->dev_sectors == 0 ||
3652 		    mddev->dev_sectors > sectors)
3653 			mddev->dev_sectors = sectors;
3654 		else
3655 			err = -ENOSPC;
3656 	}
3657 	return err ? err : len;
3658 }
3659 
3660 static struct md_sysfs_entry md_size =
3661 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3662 
3663 
3664 /* Metdata version.
3665  * This is one of
3666  *   'none' for arrays with no metadata (good luck...)
3667  *   'external' for arrays with externally managed metadata,
3668  * or N.M for internally known formats
3669  */
3670 static ssize_t
3671 metadata_show(mddev_t *mddev, char *page)
3672 {
3673 	if (mddev->persistent)
3674 		return sprintf(page, "%d.%d\n",
3675 			       mddev->major_version, mddev->minor_version);
3676 	else if (mddev->external)
3677 		return sprintf(page, "external:%s\n", mddev->metadata_type);
3678 	else
3679 		return sprintf(page, "none\n");
3680 }
3681 
3682 static ssize_t
3683 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3684 {
3685 	int major, minor;
3686 	char *e;
3687 	/* Changing the details of 'external' metadata is
3688 	 * always permitted.  Otherwise there must be
3689 	 * no devices attached to the array.
3690 	 */
3691 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
3692 		;
3693 	else if (!list_empty(&mddev->disks))
3694 		return -EBUSY;
3695 
3696 	if (cmd_match(buf, "none")) {
3697 		mddev->persistent = 0;
3698 		mddev->external = 0;
3699 		mddev->major_version = 0;
3700 		mddev->minor_version = 90;
3701 		return len;
3702 	}
3703 	if (strncmp(buf, "external:", 9) == 0) {
3704 		size_t namelen = len-9;
3705 		if (namelen >= sizeof(mddev->metadata_type))
3706 			namelen = sizeof(mddev->metadata_type)-1;
3707 		strncpy(mddev->metadata_type, buf+9, namelen);
3708 		mddev->metadata_type[namelen] = 0;
3709 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
3710 			mddev->metadata_type[--namelen] = 0;
3711 		mddev->persistent = 0;
3712 		mddev->external = 1;
3713 		mddev->major_version = 0;
3714 		mddev->minor_version = 90;
3715 		return len;
3716 	}
3717 	major = simple_strtoul(buf, &e, 10);
3718 	if (e==buf || *e != '.')
3719 		return -EINVAL;
3720 	buf = e+1;
3721 	minor = simple_strtoul(buf, &e, 10);
3722 	if (e==buf || (*e && *e != '\n') )
3723 		return -EINVAL;
3724 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3725 		return -ENOENT;
3726 	mddev->major_version = major;
3727 	mddev->minor_version = minor;
3728 	mddev->persistent = 1;
3729 	mddev->external = 0;
3730 	return len;
3731 }
3732 
3733 static struct md_sysfs_entry md_metadata =
3734 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3735 
3736 static ssize_t
3737 action_show(mddev_t *mddev, char *page)
3738 {
3739 	char *type = "idle";
3740 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3741 		type = "frozen";
3742 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3743 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3744 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3745 			type = "reshape";
3746 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3747 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3748 				type = "resync";
3749 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3750 				type = "check";
3751 			else
3752 				type = "repair";
3753 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3754 			type = "recover";
3755 	}
3756 	return sprintf(page, "%s\n", type);
3757 }
3758 
3759 static void reap_sync_thread(mddev_t *mddev);
3760 
3761 static ssize_t
3762 action_store(mddev_t *mddev, const char *page, size_t len)
3763 {
3764 	if (!mddev->pers || !mddev->pers->sync_request)
3765 		return -EINVAL;
3766 
3767 	if (cmd_match(page, "frozen"))
3768 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3769 	else
3770 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3771 
3772 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3773 		if (mddev->sync_thread) {
3774 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3775 			reap_sync_thread(mddev);
3776 		}
3777 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3778 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3779 		return -EBUSY;
3780 	else if (cmd_match(page, "resync"))
3781 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3782 	else if (cmd_match(page, "recover")) {
3783 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3784 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3785 	} else if (cmd_match(page, "reshape")) {
3786 		int err;
3787 		if (mddev->pers->start_reshape == NULL)
3788 			return -EINVAL;
3789 		err = mddev->pers->start_reshape(mddev);
3790 		if (err)
3791 			return err;
3792 		sysfs_notify(&mddev->kobj, NULL, "degraded");
3793 	} else {
3794 		if (cmd_match(page, "check"))
3795 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3796 		else if (!cmd_match(page, "repair"))
3797 			return -EINVAL;
3798 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3799 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3800 	}
3801 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3802 	md_wakeup_thread(mddev->thread);
3803 	sysfs_notify_dirent_safe(mddev->sysfs_action);
3804 	return len;
3805 }
3806 
3807 static ssize_t
3808 mismatch_cnt_show(mddev_t *mddev, char *page)
3809 {
3810 	return sprintf(page, "%llu\n",
3811 		       (unsigned long long) mddev->resync_mismatches);
3812 }
3813 
3814 static struct md_sysfs_entry md_scan_mode =
3815 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3816 
3817 
3818 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3819 
3820 static ssize_t
3821 sync_min_show(mddev_t *mddev, char *page)
3822 {
3823 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
3824 		       mddev->sync_speed_min ? "local": "system");
3825 }
3826 
3827 static ssize_t
3828 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3829 {
3830 	int min;
3831 	char *e;
3832 	if (strncmp(buf, "system", 6)==0) {
3833 		mddev->sync_speed_min = 0;
3834 		return len;
3835 	}
3836 	min = simple_strtoul(buf, &e, 10);
3837 	if (buf == e || (*e && *e != '\n') || min <= 0)
3838 		return -EINVAL;
3839 	mddev->sync_speed_min = min;
3840 	return len;
3841 }
3842 
3843 static struct md_sysfs_entry md_sync_min =
3844 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3845 
3846 static ssize_t
3847 sync_max_show(mddev_t *mddev, char *page)
3848 {
3849 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
3850 		       mddev->sync_speed_max ? "local": "system");
3851 }
3852 
3853 static ssize_t
3854 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3855 {
3856 	int max;
3857 	char *e;
3858 	if (strncmp(buf, "system", 6)==0) {
3859 		mddev->sync_speed_max = 0;
3860 		return len;
3861 	}
3862 	max = simple_strtoul(buf, &e, 10);
3863 	if (buf == e || (*e && *e != '\n') || max <= 0)
3864 		return -EINVAL;
3865 	mddev->sync_speed_max = max;
3866 	return len;
3867 }
3868 
3869 static struct md_sysfs_entry md_sync_max =
3870 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3871 
3872 static ssize_t
3873 degraded_show(mddev_t *mddev, char *page)
3874 {
3875 	return sprintf(page, "%d\n", mddev->degraded);
3876 }
3877 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3878 
3879 static ssize_t
3880 sync_force_parallel_show(mddev_t *mddev, char *page)
3881 {
3882 	return sprintf(page, "%d\n", mddev->parallel_resync);
3883 }
3884 
3885 static ssize_t
3886 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3887 {
3888 	long n;
3889 
3890 	if (strict_strtol(buf, 10, &n))
3891 		return -EINVAL;
3892 
3893 	if (n != 0 && n != 1)
3894 		return -EINVAL;
3895 
3896 	mddev->parallel_resync = n;
3897 
3898 	if (mddev->sync_thread)
3899 		wake_up(&resync_wait);
3900 
3901 	return len;
3902 }
3903 
3904 /* force parallel resync, even with shared block devices */
3905 static struct md_sysfs_entry md_sync_force_parallel =
3906 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3907        sync_force_parallel_show, sync_force_parallel_store);
3908 
3909 static ssize_t
3910 sync_speed_show(mddev_t *mddev, char *page)
3911 {
3912 	unsigned long resync, dt, db;
3913 	if (mddev->curr_resync == 0)
3914 		return sprintf(page, "none\n");
3915 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3916 	dt = (jiffies - mddev->resync_mark) / HZ;
3917 	if (!dt) dt++;
3918 	db = resync - mddev->resync_mark_cnt;
3919 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3920 }
3921 
3922 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3923 
3924 static ssize_t
3925 sync_completed_show(mddev_t *mddev, char *page)
3926 {
3927 	unsigned long long max_sectors, resync;
3928 
3929 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3930 		return sprintf(page, "none\n");
3931 
3932 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3933 		max_sectors = mddev->resync_max_sectors;
3934 	else
3935 		max_sectors = mddev->dev_sectors;
3936 
3937 	resync = mddev->curr_resync_completed;
3938 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
3939 }
3940 
3941 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3942 
3943 static ssize_t
3944 min_sync_show(mddev_t *mddev, char *page)
3945 {
3946 	return sprintf(page, "%llu\n",
3947 		       (unsigned long long)mddev->resync_min);
3948 }
3949 static ssize_t
3950 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3951 {
3952 	unsigned long long min;
3953 	if (strict_strtoull(buf, 10, &min))
3954 		return -EINVAL;
3955 	if (min > mddev->resync_max)
3956 		return -EINVAL;
3957 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3958 		return -EBUSY;
3959 
3960 	/* Must be a multiple of chunk_size */
3961 	if (mddev->chunk_sectors) {
3962 		sector_t temp = min;
3963 		if (sector_div(temp, mddev->chunk_sectors))
3964 			return -EINVAL;
3965 	}
3966 	mddev->resync_min = min;
3967 
3968 	return len;
3969 }
3970 
3971 static struct md_sysfs_entry md_min_sync =
3972 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3973 
3974 static ssize_t
3975 max_sync_show(mddev_t *mddev, char *page)
3976 {
3977 	if (mddev->resync_max == MaxSector)
3978 		return sprintf(page, "max\n");
3979 	else
3980 		return sprintf(page, "%llu\n",
3981 			       (unsigned long long)mddev->resync_max);
3982 }
3983 static ssize_t
3984 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3985 {
3986 	if (strncmp(buf, "max", 3) == 0)
3987 		mddev->resync_max = MaxSector;
3988 	else {
3989 		unsigned long long max;
3990 		if (strict_strtoull(buf, 10, &max))
3991 			return -EINVAL;
3992 		if (max < mddev->resync_min)
3993 			return -EINVAL;
3994 		if (max < mddev->resync_max &&
3995 		    mddev->ro == 0 &&
3996 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3997 			return -EBUSY;
3998 
3999 		/* Must be a multiple of chunk_size */
4000 		if (mddev->chunk_sectors) {
4001 			sector_t temp = max;
4002 			if (sector_div(temp, mddev->chunk_sectors))
4003 				return -EINVAL;
4004 		}
4005 		mddev->resync_max = max;
4006 	}
4007 	wake_up(&mddev->recovery_wait);
4008 	return len;
4009 }
4010 
4011 static struct md_sysfs_entry md_max_sync =
4012 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4013 
4014 static ssize_t
4015 suspend_lo_show(mddev_t *mddev, char *page)
4016 {
4017 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4018 }
4019 
4020 static ssize_t
4021 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4022 {
4023 	char *e;
4024 	unsigned long long new = simple_strtoull(buf, &e, 10);
4025 	unsigned long long old = mddev->suspend_lo;
4026 
4027 	if (mddev->pers == NULL ||
4028 	    mddev->pers->quiesce == NULL)
4029 		return -EINVAL;
4030 	if (buf == e || (*e && *e != '\n'))
4031 		return -EINVAL;
4032 
4033 	mddev->suspend_lo = new;
4034 	if (new >= old)
4035 		/* Shrinking suspended region */
4036 		mddev->pers->quiesce(mddev, 2);
4037 	else {
4038 		/* Expanding suspended region - need to wait */
4039 		mddev->pers->quiesce(mddev, 1);
4040 		mddev->pers->quiesce(mddev, 0);
4041 	}
4042 	return len;
4043 }
4044 static struct md_sysfs_entry md_suspend_lo =
4045 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4046 
4047 
4048 static ssize_t
4049 suspend_hi_show(mddev_t *mddev, char *page)
4050 {
4051 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4052 }
4053 
4054 static ssize_t
4055 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4056 {
4057 	char *e;
4058 	unsigned long long new = simple_strtoull(buf, &e, 10);
4059 	unsigned long long old = mddev->suspend_hi;
4060 
4061 	if (mddev->pers == NULL ||
4062 	    mddev->pers->quiesce == NULL)
4063 		return -EINVAL;
4064 	if (buf == e || (*e && *e != '\n'))
4065 		return -EINVAL;
4066 
4067 	mddev->suspend_hi = new;
4068 	if (new <= old)
4069 		/* Shrinking suspended region */
4070 		mddev->pers->quiesce(mddev, 2);
4071 	else {
4072 		/* Expanding suspended region - need to wait */
4073 		mddev->pers->quiesce(mddev, 1);
4074 		mddev->pers->quiesce(mddev, 0);
4075 	}
4076 	return len;
4077 }
4078 static struct md_sysfs_entry md_suspend_hi =
4079 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4080 
4081 static ssize_t
4082 reshape_position_show(mddev_t *mddev, char *page)
4083 {
4084 	if (mddev->reshape_position != MaxSector)
4085 		return sprintf(page, "%llu\n",
4086 			       (unsigned long long)mddev->reshape_position);
4087 	strcpy(page, "none\n");
4088 	return 5;
4089 }
4090 
4091 static ssize_t
4092 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4093 {
4094 	char *e;
4095 	unsigned long long new = simple_strtoull(buf, &e, 10);
4096 	if (mddev->pers)
4097 		return -EBUSY;
4098 	if (buf == e || (*e && *e != '\n'))
4099 		return -EINVAL;
4100 	mddev->reshape_position = new;
4101 	mddev->delta_disks = 0;
4102 	mddev->new_level = mddev->level;
4103 	mddev->new_layout = mddev->layout;
4104 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4105 	return len;
4106 }
4107 
4108 static struct md_sysfs_entry md_reshape_position =
4109 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4110        reshape_position_store);
4111 
4112 static ssize_t
4113 array_size_show(mddev_t *mddev, char *page)
4114 {
4115 	if (mddev->external_size)
4116 		return sprintf(page, "%llu\n",
4117 			       (unsigned long long)mddev->array_sectors/2);
4118 	else
4119 		return sprintf(page, "default\n");
4120 }
4121 
4122 static ssize_t
4123 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4124 {
4125 	sector_t sectors;
4126 
4127 	if (strncmp(buf, "default", 7) == 0) {
4128 		if (mddev->pers)
4129 			sectors = mddev->pers->size(mddev, 0, 0);
4130 		else
4131 			sectors = mddev->array_sectors;
4132 
4133 		mddev->external_size = 0;
4134 	} else {
4135 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4136 			return -EINVAL;
4137 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4138 			return -E2BIG;
4139 
4140 		mddev->external_size = 1;
4141 	}
4142 
4143 	mddev->array_sectors = sectors;
4144 	if (mddev->pers) {
4145 		set_capacity(mddev->gendisk, mddev->array_sectors);
4146 		revalidate_disk(mddev->gendisk);
4147 	}
4148 	return len;
4149 }
4150 
4151 static struct md_sysfs_entry md_array_size =
4152 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4153        array_size_store);
4154 
4155 static struct attribute *md_default_attrs[] = {
4156 	&md_level.attr,
4157 	&md_layout.attr,
4158 	&md_raid_disks.attr,
4159 	&md_chunk_size.attr,
4160 	&md_size.attr,
4161 	&md_resync_start.attr,
4162 	&md_metadata.attr,
4163 	&md_new_device.attr,
4164 	&md_safe_delay.attr,
4165 	&md_array_state.attr,
4166 	&md_reshape_position.attr,
4167 	&md_array_size.attr,
4168 	&max_corr_read_errors.attr,
4169 	NULL,
4170 };
4171 
4172 static struct attribute *md_redundancy_attrs[] = {
4173 	&md_scan_mode.attr,
4174 	&md_mismatches.attr,
4175 	&md_sync_min.attr,
4176 	&md_sync_max.attr,
4177 	&md_sync_speed.attr,
4178 	&md_sync_force_parallel.attr,
4179 	&md_sync_completed.attr,
4180 	&md_min_sync.attr,
4181 	&md_max_sync.attr,
4182 	&md_suspend_lo.attr,
4183 	&md_suspend_hi.attr,
4184 	&md_bitmap.attr,
4185 	&md_degraded.attr,
4186 	NULL,
4187 };
4188 static struct attribute_group md_redundancy_group = {
4189 	.name = NULL,
4190 	.attrs = md_redundancy_attrs,
4191 };
4192 
4193 
4194 static ssize_t
4195 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4196 {
4197 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4198 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4199 	ssize_t rv;
4200 
4201 	if (!entry->show)
4202 		return -EIO;
4203 	rv = mddev_lock(mddev);
4204 	if (!rv) {
4205 		rv = entry->show(mddev, page);
4206 		mddev_unlock(mddev);
4207 	}
4208 	return rv;
4209 }
4210 
4211 static ssize_t
4212 md_attr_store(struct kobject *kobj, struct attribute *attr,
4213 	      const char *page, size_t length)
4214 {
4215 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4216 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4217 	ssize_t rv;
4218 
4219 	if (!entry->store)
4220 		return -EIO;
4221 	if (!capable(CAP_SYS_ADMIN))
4222 		return -EACCES;
4223 	rv = mddev_lock(mddev);
4224 	if (mddev->hold_active == UNTIL_IOCTL)
4225 		mddev->hold_active = 0;
4226 	if (!rv) {
4227 		rv = entry->store(mddev, page, length);
4228 		mddev_unlock(mddev);
4229 	}
4230 	return rv;
4231 }
4232 
4233 static void md_free(struct kobject *ko)
4234 {
4235 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
4236 
4237 	if (mddev->sysfs_state)
4238 		sysfs_put(mddev->sysfs_state);
4239 
4240 	if (mddev->gendisk) {
4241 		del_gendisk(mddev->gendisk);
4242 		put_disk(mddev->gendisk);
4243 	}
4244 	if (mddev->queue)
4245 		blk_cleanup_queue(mddev->queue);
4246 
4247 	kfree(mddev);
4248 }
4249 
4250 static const struct sysfs_ops md_sysfs_ops = {
4251 	.show	= md_attr_show,
4252 	.store	= md_attr_store,
4253 };
4254 static struct kobj_type md_ktype = {
4255 	.release	= md_free,
4256 	.sysfs_ops	= &md_sysfs_ops,
4257 	.default_attrs	= md_default_attrs,
4258 };
4259 
4260 int mdp_major = 0;
4261 
4262 static void mddev_delayed_delete(struct work_struct *ws)
4263 {
4264 	mddev_t *mddev = container_of(ws, mddev_t, del_work);
4265 
4266 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4267 	kobject_del(&mddev->kobj);
4268 	kobject_put(&mddev->kobj);
4269 }
4270 
4271 static int md_alloc(dev_t dev, char *name)
4272 {
4273 	static DEFINE_MUTEX(disks_mutex);
4274 	mddev_t *mddev = mddev_find(dev);
4275 	struct gendisk *disk;
4276 	int partitioned;
4277 	int shift;
4278 	int unit;
4279 	int error;
4280 
4281 	if (!mddev)
4282 		return -ENODEV;
4283 
4284 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4285 	shift = partitioned ? MdpMinorShift : 0;
4286 	unit = MINOR(mddev->unit) >> shift;
4287 
4288 	/* wait for any previous instance of this device to be
4289 	 * completely removed (mddev_delayed_delete).
4290 	 */
4291 	flush_workqueue(md_misc_wq);
4292 
4293 	mutex_lock(&disks_mutex);
4294 	error = -EEXIST;
4295 	if (mddev->gendisk)
4296 		goto abort;
4297 
4298 	if (name) {
4299 		/* Need to ensure that 'name' is not a duplicate.
4300 		 */
4301 		mddev_t *mddev2;
4302 		spin_lock(&all_mddevs_lock);
4303 
4304 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4305 			if (mddev2->gendisk &&
4306 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4307 				spin_unlock(&all_mddevs_lock);
4308 				goto abort;
4309 			}
4310 		spin_unlock(&all_mddevs_lock);
4311 	}
4312 
4313 	error = -ENOMEM;
4314 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4315 	if (!mddev->queue)
4316 		goto abort;
4317 	mddev->queue->queuedata = mddev;
4318 
4319 	blk_queue_make_request(mddev->queue, md_make_request);
4320 
4321 	disk = alloc_disk(1 << shift);
4322 	if (!disk) {
4323 		blk_cleanup_queue(mddev->queue);
4324 		mddev->queue = NULL;
4325 		goto abort;
4326 	}
4327 	disk->major = MAJOR(mddev->unit);
4328 	disk->first_minor = unit << shift;
4329 	if (name)
4330 		strcpy(disk->disk_name, name);
4331 	else if (partitioned)
4332 		sprintf(disk->disk_name, "md_d%d", unit);
4333 	else
4334 		sprintf(disk->disk_name, "md%d", unit);
4335 	disk->fops = &md_fops;
4336 	disk->private_data = mddev;
4337 	disk->queue = mddev->queue;
4338 	/* Allow extended partitions.  This makes the
4339 	 * 'mdp' device redundant, but we can't really
4340 	 * remove it now.
4341 	 */
4342 	disk->flags |= GENHD_FL_EXT_DEVT;
4343 	add_disk(disk);
4344 	mddev->gendisk = disk;
4345 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4346 				     &disk_to_dev(disk)->kobj, "%s", "md");
4347 	if (error) {
4348 		/* This isn't possible, but as kobject_init_and_add is marked
4349 		 * __must_check, we must do something with the result
4350 		 */
4351 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4352 		       disk->disk_name);
4353 		error = 0;
4354 	}
4355 	if (mddev->kobj.sd &&
4356 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4357 		printk(KERN_DEBUG "pointless warning\n");
4358 
4359 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4360  abort:
4361 	mutex_unlock(&disks_mutex);
4362 	if (!error && mddev->kobj.sd) {
4363 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4364 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4365 	}
4366 	mddev_put(mddev);
4367 	return error;
4368 }
4369 
4370 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4371 {
4372 	md_alloc(dev, NULL);
4373 	return NULL;
4374 }
4375 
4376 static int add_named_array(const char *val, struct kernel_param *kp)
4377 {
4378 	/* val must be "md_*" where * is not all digits.
4379 	 * We allocate an array with a large free minor number, and
4380 	 * set the name to val.  val must not already be an active name.
4381 	 */
4382 	int len = strlen(val);
4383 	char buf[DISK_NAME_LEN];
4384 
4385 	while (len && val[len-1] == '\n')
4386 		len--;
4387 	if (len >= DISK_NAME_LEN)
4388 		return -E2BIG;
4389 	strlcpy(buf, val, len+1);
4390 	if (strncmp(buf, "md_", 3) != 0)
4391 		return -EINVAL;
4392 	return md_alloc(0, buf);
4393 }
4394 
4395 static void md_safemode_timeout(unsigned long data)
4396 {
4397 	mddev_t *mddev = (mddev_t *) data;
4398 
4399 	if (!atomic_read(&mddev->writes_pending)) {
4400 		mddev->safemode = 1;
4401 		if (mddev->external)
4402 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4403 	}
4404 	md_wakeup_thread(mddev->thread);
4405 }
4406 
4407 static int start_dirty_degraded;
4408 
4409 int md_run(mddev_t *mddev)
4410 {
4411 	int err;
4412 	mdk_rdev_t *rdev;
4413 	struct mdk_personality *pers;
4414 
4415 	if (list_empty(&mddev->disks))
4416 		/* cannot run an array with no devices.. */
4417 		return -EINVAL;
4418 
4419 	if (mddev->pers)
4420 		return -EBUSY;
4421 	/* Cannot run until previous stop completes properly */
4422 	if (mddev->sysfs_active)
4423 		return -EBUSY;
4424 
4425 	/*
4426 	 * Analyze all RAID superblock(s)
4427 	 */
4428 	if (!mddev->raid_disks) {
4429 		if (!mddev->persistent)
4430 			return -EINVAL;
4431 		analyze_sbs(mddev);
4432 	}
4433 
4434 	if (mddev->level != LEVEL_NONE)
4435 		request_module("md-level-%d", mddev->level);
4436 	else if (mddev->clevel[0])
4437 		request_module("md-%s", mddev->clevel);
4438 
4439 	/*
4440 	 * Drop all container device buffers, from now on
4441 	 * the only valid external interface is through the md
4442 	 * device.
4443 	 */
4444 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4445 		if (test_bit(Faulty, &rdev->flags))
4446 			continue;
4447 		sync_blockdev(rdev->bdev);
4448 		invalidate_bdev(rdev->bdev);
4449 
4450 		/* perform some consistency tests on the device.
4451 		 * We don't want the data to overlap the metadata,
4452 		 * Internal Bitmap issues have been handled elsewhere.
4453 		 */
4454 		if (rdev->meta_bdev) {
4455 			/* Nothing to check */;
4456 		} else if (rdev->data_offset < rdev->sb_start) {
4457 			if (mddev->dev_sectors &&
4458 			    rdev->data_offset + mddev->dev_sectors
4459 			    > rdev->sb_start) {
4460 				printk("md: %s: data overlaps metadata\n",
4461 				       mdname(mddev));
4462 				return -EINVAL;
4463 			}
4464 		} else {
4465 			if (rdev->sb_start + rdev->sb_size/512
4466 			    > rdev->data_offset) {
4467 				printk("md: %s: metadata overlaps data\n",
4468 				       mdname(mddev));
4469 				return -EINVAL;
4470 			}
4471 		}
4472 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4473 	}
4474 
4475 	if (mddev->bio_set == NULL)
4476 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, sizeof(mddev));
4477 
4478 	spin_lock(&pers_lock);
4479 	pers = find_pers(mddev->level, mddev->clevel);
4480 	if (!pers || !try_module_get(pers->owner)) {
4481 		spin_unlock(&pers_lock);
4482 		if (mddev->level != LEVEL_NONE)
4483 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4484 			       mddev->level);
4485 		else
4486 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4487 			       mddev->clevel);
4488 		return -EINVAL;
4489 	}
4490 	mddev->pers = pers;
4491 	spin_unlock(&pers_lock);
4492 	if (mddev->level != pers->level) {
4493 		mddev->level = pers->level;
4494 		mddev->new_level = pers->level;
4495 	}
4496 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4497 
4498 	if (mddev->reshape_position != MaxSector &&
4499 	    pers->start_reshape == NULL) {
4500 		/* This personality cannot handle reshaping... */
4501 		mddev->pers = NULL;
4502 		module_put(pers->owner);
4503 		return -EINVAL;
4504 	}
4505 
4506 	if (pers->sync_request) {
4507 		/* Warn if this is a potentially silly
4508 		 * configuration.
4509 		 */
4510 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4511 		mdk_rdev_t *rdev2;
4512 		int warned = 0;
4513 
4514 		list_for_each_entry(rdev, &mddev->disks, same_set)
4515 			list_for_each_entry(rdev2, &mddev->disks, same_set) {
4516 				if (rdev < rdev2 &&
4517 				    rdev->bdev->bd_contains ==
4518 				    rdev2->bdev->bd_contains) {
4519 					printk(KERN_WARNING
4520 					       "%s: WARNING: %s appears to be"
4521 					       " on the same physical disk as"
4522 					       " %s.\n",
4523 					       mdname(mddev),
4524 					       bdevname(rdev->bdev,b),
4525 					       bdevname(rdev2->bdev,b2));
4526 					warned = 1;
4527 				}
4528 			}
4529 
4530 		if (warned)
4531 			printk(KERN_WARNING
4532 			       "True protection against single-disk"
4533 			       " failure might be compromised.\n");
4534 	}
4535 
4536 	mddev->recovery = 0;
4537 	/* may be over-ridden by personality */
4538 	mddev->resync_max_sectors = mddev->dev_sectors;
4539 
4540 	mddev->ok_start_degraded = start_dirty_degraded;
4541 
4542 	if (start_readonly && mddev->ro == 0)
4543 		mddev->ro = 2; /* read-only, but switch on first write */
4544 
4545 	err = mddev->pers->run(mddev);
4546 	if (err)
4547 		printk(KERN_ERR "md: pers->run() failed ...\n");
4548 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4549 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4550 			  " but 'external_size' not in effect?\n", __func__);
4551 		printk(KERN_ERR
4552 		       "md: invalid array_size %llu > default size %llu\n",
4553 		       (unsigned long long)mddev->array_sectors / 2,
4554 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4555 		err = -EINVAL;
4556 		mddev->pers->stop(mddev);
4557 	}
4558 	if (err == 0 && mddev->pers->sync_request) {
4559 		err = bitmap_create(mddev);
4560 		if (err) {
4561 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4562 			       mdname(mddev), err);
4563 			mddev->pers->stop(mddev);
4564 		}
4565 	}
4566 	if (err) {
4567 		module_put(mddev->pers->owner);
4568 		mddev->pers = NULL;
4569 		bitmap_destroy(mddev);
4570 		return err;
4571 	}
4572 	if (mddev->pers->sync_request) {
4573 		if (mddev->kobj.sd &&
4574 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4575 			printk(KERN_WARNING
4576 			       "md: cannot register extra attributes for %s\n",
4577 			       mdname(mddev));
4578 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4579 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4580 		mddev->ro = 0;
4581 
4582  	atomic_set(&mddev->writes_pending,0);
4583 	atomic_set(&mddev->max_corr_read_errors,
4584 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4585 	mddev->safemode = 0;
4586 	mddev->safemode_timer.function = md_safemode_timeout;
4587 	mddev->safemode_timer.data = (unsigned long) mddev;
4588 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4589 	mddev->in_sync = 1;
4590 	smp_wmb();
4591 	mddev->ready = 1;
4592 	list_for_each_entry(rdev, &mddev->disks, same_set)
4593 		if (rdev->raid_disk >= 0) {
4594 			char nm[20];
4595 			sprintf(nm, "rd%d", rdev->raid_disk);
4596 			if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4597 				/* failure here is OK */;
4598 		}
4599 
4600 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4601 
4602 	if (mddev->flags)
4603 		md_update_sb(mddev, 0);
4604 
4605 	md_wakeup_thread(mddev->thread);
4606 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4607 
4608 	md_new_event(mddev);
4609 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4610 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4611 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4612 	return 0;
4613 }
4614 EXPORT_SYMBOL_GPL(md_run);
4615 
4616 static int do_md_run(mddev_t *mddev)
4617 {
4618 	int err;
4619 
4620 	err = md_run(mddev);
4621 	if (err)
4622 		goto out;
4623 	err = bitmap_load(mddev);
4624 	if (err) {
4625 		bitmap_destroy(mddev);
4626 		goto out;
4627 	}
4628 	set_capacity(mddev->gendisk, mddev->array_sectors);
4629 	revalidate_disk(mddev->gendisk);
4630 	mddev->changed = 1;
4631 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4632 out:
4633 	return err;
4634 }
4635 
4636 static int restart_array(mddev_t *mddev)
4637 {
4638 	struct gendisk *disk = mddev->gendisk;
4639 
4640 	/* Complain if it has no devices */
4641 	if (list_empty(&mddev->disks))
4642 		return -ENXIO;
4643 	if (!mddev->pers)
4644 		return -EINVAL;
4645 	if (!mddev->ro)
4646 		return -EBUSY;
4647 	mddev->safemode = 0;
4648 	mddev->ro = 0;
4649 	set_disk_ro(disk, 0);
4650 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
4651 		mdname(mddev));
4652 	/* Kick recovery or resync if necessary */
4653 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4654 	md_wakeup_thread(mddev->thread);
4655 	md_wakeup_thread(mddev->sync_thread);
4656 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4657 	return 0;
4658 }
4659 
4660 /* similar to deny_write_access, but accounts for our holding a reference
4661  * to the file ourselves */
4662 static int deny_bitmap_write_access(struct file * file)
4663 {
4664 	struct inode *inode = file->f_mapping->host;
4665 
4666 	spin_lock(&inode->i_lock);
4667 	if (atomic_read(&inode->i_writecount) > 1) {
4668 		spin_unlock(&inode->i_lock);
4669 		return -ETXTBSY;
4670 	}
4671 	atomic_set(&inode->i_writecount, -1);
4672 	spin_unlock(&inode->i_lock);
4673 
4674 	return 0;
4675 }
4676 
4677 void restore_bitmap_write_access(struct file *file)
4678 {
4679 	struct inode *inode = file->f_mapping->host;
4680 
4681 	spin_lock(&inode->i_lock);
4682 	atomic_set(&inode->i_writecount, 1);
4683 	spin_unlock(&inode->i_lock);
4684 }
4685 
4686 static void md_clean(mddev_t *mddev)
4687 {
4688 	mddev->array_sectors = 0;
4689 	mddev->external_size = 0;
4690 	mddev->dev_sectors = 0;
4691 	mddev->raid_disks = 0;
4692 	mddev->recovery_cp = 0;
4693 	mddev->resync_min = 0;
4694 	mddev->resync_max = MaxSector;
4695 	mddev->reshape_position = MaxSector;
4696 	mddev->external = 0;
4697 	mddev->persistent = 0;
4698 	mddev->level = LEVEL_NONE;
4699 	mddev->clevel[0] = 0;
4700 	mddev->flags = 0;
4701 	mddev->ro = 0;
4702 	mddev->metadata_type[0] = 0;
4703 	mddev->chunk_sectors = 0;
4704 	mddev->ctime = mddev->utime = 0;
4705 	mddev->layout = 0;
4706 	mddev->max_disks = 0;
4707 	mddev->events = 0;
4708 	mddev->can_decrease_events = 0;
4709 	mddev->delta_disks = 0;
4710 	mddev->new_level = LEVEL_NONE;
4711 	mddev->new_layout = 0;
4712 	mddev->new_chunk_sectors = 0;
4713 	mddev->curr_resync = 0;
4714 	mddev->resync_mismatches = 0;
4715 	mddev->suspend_lo = mddev->suspend_hi = 0;
4716 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
4717 	mddev->recovery = 0;
4718 	mddev->in_sync = 0;
4719 	mddev->changed = 0;
4720 	mddev->degraded = 0;
4721 	mddev->safemode = 0;
4722 	mddev->bitmap_info.offset = 0;
4723 	mddev->bitmap_info.default_offset = 0;
4724 	mddev->bitmap_info.chunksize = 0;
4725 	mddev->bitmap_info.daemon_sleep = 0;
4726 	mddev->bitmap_info.max_write_behind = 0;
4727 	mddev->plug = NULL;
4728 }
4729 
4730 static void __md_stop_writes(mddev_t *mddev)
4731 {
4732 	if (mddev->sync_thread) {
4733 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4734 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4735 		reap_sync_thread(mddev);
4736 	}
4737 
4738 	del_timer_sync(&mddev->safemode_timer);
4739 
4740 	bitmap_flush(mddev);
4741 	md_super_wait(mddev);
4742 
4743 	if (!mddev->in_sync || mddev->flags) {
4744 		/* mark array as shutdown cleanly */
4745 		mddev->in_sync = 1;
4746 		md_update_sb(mddev, 1);
4747 	}
4748 }
4749 
4750 void md_stop_writes(mddev_t *mddev)
4751 {
4752 	mddev_lock(mddev);
4753 	__md_stop_writes(mddev);
4754 	mddev_unlock(mddev);
4755 }
4756 EXPORT_SYMBOL_GPL(md_stop_writes);
4757 
4758 void md_stop(mddev_t *mddev)
4759 {
4760 	mddev->ready = 0;
4761 	mddev->pers->stop(mddev);
4762 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
4763 		mddev->to_remove = &md_redundancy_group;
4764 	module_put(mddev->pers->owner);
4765 	mddev->pers = NULL;
4766 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4767 }
4768 EXPORT_SYMBOL_GPL(md_stop);
4769 
4770 static int md_set_readonly(mddev_t *mddev, int is_open)
4771 {
4772 	int err = 0;
4773 	mutex_lock(&mddev->open_mutex);
4774 	if (atomic_read(&mddev->openers) > is_open) {
4775 		printk("md: %s still in use.\n",mdname(mddev));
4776 		err = -EBUSY;
4777 		goto out;
4778 	}
4779 	if (mddev->pers) {
4780 		__md_stop_writes(mddev);
4781 
4782 		err  = -ENXIO;
4783 		if (mddev->ro==1)
4784 			goto out;
4785 		mddev->ro = 1;
4786 		set_disk_ro(mddev->gendisk, 1);
4787 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4788 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4789 		err = 0;
4790 	}
4791 out:
4792 	mutex_unlock(&mddev->open_mutex);
4793 	return err;
4794 }
4795 
4796 /* mode:
4797  *   0 - completely stop and dis-assemble array
4798  *   2 - stop but do not disassemble array
4799  */
4800 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4801 {
4802 	struct gendisk *disk = mddev->gendisk;
4803 	mdk_rdev_t *rdev;
4804 
4805 	mutex_lock(&mddev->open_mutex);
4806 	if (atomic_read(&mddev->openers) > is_open ||
4807 	    mddev->sysfs_active) {
4808 		printk("md: %s still in use.\n",mdname(mddev));
4809 		mutex_unlock(&mddev->open_mutex);
4810 		return -EBUSY;
4811 	}
4812 
4813 	if (mddev->pers) {
4814 		if (mddev->ro)
4815 			set_disk_ro(disk, 0);
4816 
4817 		__md_stop_writes(mddev);
4818 		md_stop(mddev);
4819 		mddev->queue->merge_bvec_fn = NULL;
4820 		mddev->queue->unplug_fn = NULL;
4821 		mddev->queue->backing_dev_info.congested_fn = NULL;
4822 
4823 		/* tell userspace to handle 'inactive' */
4824 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4825 
4826 		list_for_each_entry(rdev, &mddev->disks, same_set)
4827 			if (rdev->raid_disk >= 0) {
4828 				char nm[20];
4829 				sprintf(nm, "rd%d", rdev->raid_disk);
4830 				sysfs_remove_link(&mddev->kobj, nm);
4831 			}
4832 
4833 		set_capacity(disk, 0);
4834 		mutex_unlock(&mddev->open_mutex);
4835 		mddev->changed = 1;
4836 		revalidate_disk(disk);
4837 
4838 		if (mddev->ro)
4839 			mddev->ro = 0;
4840 	} else
4841 		mutex_unlock(&mddev->open_mutex);
4842 	/*
4843 	 * Free resources if final stop
4844 	 */
4845 	if (mode == 0) {
4846 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4847 
4848 		bitmap_destroy(mddev);
4849 		if (mddev->bitmap_info.file) {
4850 			restore_bitmap_write_access(mddev->bitmap_info.file);
4851 			fput(mddev->bitmap_info.file);
4852 			mddev->bitmap_info.file = NULL;
4853 		}
4854 		mddev->bitmap_info.offset = 0;
4855 
4856 		export_array(mddev);
4857 
4858 		md_clean(mddev);
4859 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4860 		if (mddev->hold_active == UNTIL_STOP)
4861 			mddev->hold_active = 0;
4862 	}
4863 	blk_integrity_unregister(disk);
4864 	md_new_event(mddev);
4865 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4866 	return 0;
4867 }
4868 
4869 #ifndef MODULE
4870 static void autorun_array(mddev_t *mddev)
4871 {
4872 	mdk_rdev_t *rdev;
4873 	int err;
4874 
4875 	if (list_empty(&mddev->disks))
4876 		return;
4877 
4878 	printk(KERN_INFO "md: running: ");
4879 
4880 	list_for_each_entry(rdev, &mddev->disks, same_set) {
4881 		char b[BDEVNAME_SIZE];
4882 		printk("<%s>", bdevname(rdev->bdev,b));
4883 	}
4884 	printk("\n");
4885 
4886 	err = do_md_run(mddev);
4887 	if (err) {
4888 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4889 		do_md_stop(mddev, 0, 0);
4890 	}
4891 }
4892 
4893 /*
4894  * lets try to run arrays based on all disks that have arrived
4895  * until now. (those are in pending_raid_disks)
4896  *
4897  * the method: pick the first pending disk, collect all disks with
4898  * the same UUID, remove all from the pending list and put them into
4899  * the 'same_array' list. Then order this list based on superblock
4900  * update time (freshest comes first), kick out 'old' disks and
4901  * compare superblocks. If everything's fine then run it.
4902  *
4903  * If "unit" is allocated, then bump its reference count
4904  */
4905 static void autorun_devices(int part)
4906 {
4907 	mdk_rdev_t *rdev0, *rdev, *tmp;
4908 	mddev_t *mddev;
4909 	char b[BDEVNAME_SIZE];
4910 
4911 	printk(KERN_INFO "md: autorun ...\n");
4912 	while (!list_empty(&pending_raid_disks)) {
4913 		int unit;
4914 		dev_t dev;
4915 		LIST_HEAD(candidates);
4916 		rdev0 = list_entry(pending_raid_disks.next,
4917 					 mdk_rdev_t, same_set);
4918 
4919 		printk(KERN_INFO "md: considering %s ...\n",
4920 			bdevname(rdev0->bdev,b));
4921 		INIT_LIST_HEAD(&candidates);
4922 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4923 			if (super_90_load(rdev, rdev0, 0) >= 0) {
4924 				printk(KERN_INFO "md:  adding %s ...\n",
4925 					bdevname(rdev->bdev,b));
4926 				list_move(&rdev->same_set, &candidates);
4927 			}
4928 		/*
4929 		 * now we have a set of devices, with all of them having
4930 		 * mostly sane superblocks. It's time to allocate the
4931 		 * mddev.
4932 		 */
4933 		if (part) {
4934 			dev = MKDEV(mdp_major,
4935 				    rdev0->preferred_minor << MdpMinorShift);
4936 			unit = MINOR(dev) >> MdpMinorShift;
4937 		} else {
4938 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4939 			unit = MINOR(dev);
4940 		}
4941 		if (rdev0->preferred_minor != unit) {
4942 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4943 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4944 			break;
4945 		}
4946 
4947 		md_probe(dev, NULL, NULL);
4948 		mddev = mddev_find(dev);
4949 		if (!mddev || !mddev->gendisk) {
4950 			if (mddev)
4951 				mddev_put(mddev);
4952 			printk(KERN_ERR
4953 				"md: cannot allocate memory for md drive.\n");
4954 			break;
4955 		}
4956 		if (mddev_lock(mddev))
4957 			printk(KERN_WARNING "md: %s locked, cannot run\n",
4958 			       mdname(mddev));
4959 		else if (mddev->raid_disks || mddev->major_version
4960 			 || !list_empty(&mddev->disks)) {
4961 			printk(KERN_WARNING
4962 				"md: %s already running, cannot run %s\n",
4963 				mdname(mddev), bdevname(rdev0->bdev,b));
4964 			mddev_unlock(mddev);
4965 		} else {
4966 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
4967 			mddev->persistent = 1;
4968 			rdev_for_each_list(rdev, tmp, &candidates) {
4969 				list_del_init(&rdev->same_set);
4970 				if (bind_rdev_to_array(rdev, mddev))
4971 					export_rdev(rdev);
4972 			}
4973 			autorun_array(mddev);
4974 			mddev_unlock(mddev);
4975 		}
4976 		/* on success, candidates will be empty, on error
4977 		 * it won't...
4978 		 */
4979 		rdev_for_each_list(rdev, tmp, &candidates) {
4980 			list_del_init(&rdev->same_set);
4981 			export_rdev(rdev);
4982 		}
4983 		mddev_put(mddev);
4984 	}
4985 	printk(KERN_INFO "md: ... autorun DONE.\n");
4986 }
4987 #endif /* !MODULE */
4988 
4989 static int get_version(void __user * arg)
4990 {
4991 	mdu_version_t ver;
4992 
4993 	ver.major = MD_MAJOR_VERSION;
4994 	ver.minor = MD_MINOR_VERSION;
4995 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
4996 
4997 	if (copy_to_user(arg, &ver, sizeof(ver)))
4998 		return -EFAULT;
4999 
5000 	return 0;
5001 }
5002 
5003 static int get_array_info(mddev_t * mddev, void __user * arg)
5004 {
5005 	mdu_array_info_t info;
5006 	int nr,working,insync,failed,spare;
5007 	mdk_rdev_t *rdev;
5008 
5009 	nr=working=insync=failed=spare=0;
5010 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5011 		nr++;
5012 		if (test_bit(Faulty, &rdev->flags))
5013 			failed++;
5014 		else {
5015 			working++;
5016 			if (test_bit(In_sync, &rdev->flags))
5017 				insync++;
5018 			else
5019 				spare++;
5020 		}
5021 	}
5022 
5023 	info.major_version = mddev->major_version;
5024 	info.minor_version = mddev->minor_version;
5025 	info.patch_version = MD_PATCHLEVEL_VERSION;
5026 	info.ctime         = mddev->ctime;
5027 	info.level         = mddev->level;
5028 	info.size          = mddev->dev_sectors / 2;
5029 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5030 		info.size = -1;
5031 	info.nr_disks      = nr;
5032 	info.raid_disks    = mddev->raid_disks;
5033 	info.md_minor      = mddev->md_minor;
5034 	info.not_persistent= !mddev->persistent;
5035 
5036 	info.utime         = mddev->utime;
5037 	info.state         = 0;
5038 	if (mddev->in_sync)
5039 		info.state = (1<<MD_SB_CLEAN);
5040 	if (mddev->bitmap && mddev->bitmap_info.offset)
5041 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5042 	info.active_disks  = insync;
5043 	info.working_disks = working;
5044 	info.failed_disks  = failed;
5045 	info.spare_disks   = spare;
5046 
5047 	info.layout        = mddev->layout;
5048 	info.chunk_size    = mddev->chunk_sectors << 9;
5049 
5050 	if (copy_to_user(arg, &info, sizeof(info)))
5051 		return -EFAULT;
5052 
5053 	return 0;
5054 }
5055 
5056 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5057 {
5058 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5059 	char *ptr, *buf = NULL;
5060 	int err = -ENOMEM;
5061 
5062 	if (md_allow_write(mddev))
5063 		file = kmalloc(sizeof(*file), GFP_NOIO);
5064 	else
5065 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5066 
5067 	if (!file)
5068 		goto out;
5069 
5070 	/* bitmap disabled, zero the first byte and copy out */
5071 	if (!mddev->bitmap || !mddev->bitmap->file) {
5072 		file->pathname[0] = '\0';
5073 		goto copy_out;
5074 	}
5075 
5076 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5077 	if (!buf)
5078 		goto out;
5079 
5080 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5081 	if (IS_ERR(ptr))
5082 		goto out;
5083 
5084 	strcpy(file->pathname, ptr);
5085 
5086 copy_out:
5087 	err = 0;
5088 	if (copy_to_user(arg, file, sizeof(*file)))
5089 		err = -EFAULT;
5090 out:
5091 	kfree(buf);
5092 	kfree(file);
5093 	return err;
5094 }
5095 
5096 static int get_disk_info(mddev_t * mddev, void __user * arg)
5097 {
5098 	mdu_disk_info_t info;
5099 	mdk_rdev_t *rdev;
5100 
5101 	if (copy_from_user(&info, arg, sizeof(info)))
5102 		return -EFAULT;
5103 
5104 	rdev = find_rdev_nr(mddev, info.number);
5105 	if (rdev) {
5106 		info.major = MAJOR(rdev->bdev->bd_dev);
5107 		info.minor = MINOR(rdev->bdev->bd_dev);
5108 		info.raid_disk = rdev->raid_disk;
5109 		info.state = 0;
5110 		if (test_bit(Faulty, &rdev->flags))
5111 			info.state |= (1<<MD_DISK_FAULTY);
5112 		else if (test_bit(In_sync, &rdev->flags)) {
5113 			info.state |= (1<<MD_DISK_ACTIVE);
5114 			info.state |= (1<<MD_DISK_SYNC);
5115 		}
5116 		if (test_bit(WriteMostly, &rdev->flags))
5117 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5118 	} else {
5119 		info.major = info.minor = 0;
5120 		info.raid_disk = -1;
5121 		info.state = (1<<MD_DISK_REMOVED);
5122 	}
5123 
5124 	if (copy_to_user(arg, &info, sizeof(info)))
5125 		return -EFAULT;
5126 
5127 	return 0;
5128 }
5129 
5130 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5131 {
5132 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5133 	mdk_rdev_t *rdev;
5134 	dev_t dev = MKDEV(info->major,info->minor);
5135 
5136 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5137 		return -EOVERFLOW;
5138 
5139 	if (!mddev->raid_disks) {
5140 		int err;
5141 		/* expecting a device which has a superblock */
5142 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5143 		if (IS_ERR(rdev)) {
5144 			printk(KERN_WARNING
5145 				"md: md_import_device returned %ld\n",
5146 				PTR_ERR(rdev));
5147 			return PTR_ERR(rdev);
5148 		}
5149 		if (!list_empty(&mddev->disks)) {
5150 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5151 							mdk_rdev_t, same_set);
5152 			err = super_types[mddev->major_version]
5153 				.load_super(rdev, rdev0, mddev->minor_version);
5154 			if (err < 0) {
5155 				printk(KERN_WARNING
5156 					"md: %s has different UUID to %s\n",
5157 					bdevname(rdev->bdev,b),
5158 					bdevname(rdev0->bdev,b2));
5159 				export_rdev(rdev);
5160 				return -EINVAL;
5161 			}
5162 		}
5163 		err = bind_rdev_to_array(rdev, mddev);
5164 		if (err)
5165 			export_rdev(rdev);
5166 		return err;
5167 	}
5168 
5169 	/*
5170 	 * add_new_disk can be used once the array is assembled
5171 	 * to add "hot spares".  They must already have a superblock
5172 	 * written
5173 	 */
5174 	if (mddev->pers) {
5175 		int err;
5176 		if (!mddev->pers->hot_add_disk) {
5177 			printk(KERN_WARNING
5178 				"%s: personality does not support diskops!\n",
5179 			       mdname(mddev));
5180 			return -EINVAL;
5181 		}
5182 		if (mddev->persistent)
5183 			rdev = md_import_device(dev, mddev->major_version,
5184 						mddev->minor_version);
5185 		else
5186 			rdev = md_import_device(dev, -1, -1);
5187 		if (IS_ERR(rdev)) {
5188 			printk(KERN_WARNING
5189 				"md: md_import_device returned %ld\n",
5190 				PTR_ERR(rdev));
5191 			return PTR_ERR(rdev);
5192 		}
5193 		/* set saved_raid_disk if appropriate */
5194 		if (!mddev->persistent) {
5195 			if (info->state & (1<<MD_DISK_SYNC)  &&
5196 			    info->raid_disk < mddev->raid_disks) {
5197 				rdev->raid_disk = info->raid_disk;
5198 				set_bit(In_sync, &rdev->flags);
5199 			} else
5200 				rdev->raid_disk = -1;
5201 		} else
5202 			super_types[mddev->major_version].
5203 				validate_super(mddev, rdev);
5204 		if (test_bit(In_sync, &rdev->flags))
5205 			rdev->saved_raid_disk = rdev->raid_disk;
5206 		else
5207 			rdev->saved_raid_disk = -1;
5208 
5209 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5210 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5211 			set_bit(WriteMostly, &rdev->flags);
5212 		else
5213 			clear_bit(WriteMostly, &rdev->flags);
5214 
5215 		rdev->raid_disk = -1;
5216 		err = bind_rdev_to_array(rdev, mddev);
5217 		if (!err && !mddev->pers->hot_remove_disk) {
5218 			/* If there is hot_add_disk but no hot_remove_disk
5219 			 * then added disks for geometry changes,
5220 			 * and should be added immediately.
5221 			 */
5222 			super_types[mddev->major_version].
5223 				validate_super(mddev, rdev);
5224 			err = mddev->pers->hot_add_disk(mddev, rdev);
5225 			if (err)
5226 				unbind_rdev_from_array(rdev);
5227 		}
5228 		if (err)
5229 			export_rdev(rdev);
5230 		else
5231 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5232 
5233 		md_update_sb(mddev, 1);
5234 		if (mddev->degraded)
5235 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5236 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5237 		md_wakeup_thread(mddev->thread);
5238 		return err;
5239 	}
5240 
5241 	/* otherwise, add_new_disk is only allowed
5242 	 * for major_version==0 superblocks
5243 	 */
5244 	if (mddev->major_version != 0) {
5245 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5246 		       mdname(mddev));
5247 		return -EINVAL;
5248 	}
5249 
5250 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5251 		int err;
5252 		rdev = md_import_device(dev, -1, 0);
5253 		if (IS_ERR(rdev)) {
5254 			printk(KERN_WARNING
5255 				"md: error, md_import_device() returned %ld\n",
5256 				PTR_ERR(rdev));
5257 			return PTR_ERR(rdev);
5258 		}
5259 		rdev->desc_nr = info->number;
5260 		if (info->raid_disk < mddev->raid_disks)
5261 			rdev->raid_disk = info->raid_disk;
5262 		else
5263 			rdev->raid_disk = -1;
5264 
5265 		if (rdev->raid_disk < mddev->raid_disks)
5266 			if (info->state & (1<<MD_DISK_SYNC))
5267 				set_bit(In_sync, &rdev->flags);
5268 
5269 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5270 			set_bit(WriteMostly, &rdev->flags);
5271 
5272 		if (!mddev->persistent) {
5273 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5274 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5275 		} else
5276 			rdev->sb_start = calc_dev_sboffset(rdev);
5277 		rdev->sectors = rdev->sb_start;
5278 
5279 		err = bind_rdev_to_array(rdev, mddev);
5280 		if (err) {
5281 			export_rdev(rdev);
5282 			return err;
5283 		}
5284 	}
5285 
5286 	return 0;
5287 }
5288 
5289 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5290 {
5291 	char b[BDEVNAME_SIZE];
5292 	mdk_rdev_t *rdev;
5293 
5294 	rdev = find_rdev(mddev, dev);
5295 	if (!rdev)
5296 		return -ENXIO;
5297 
5298 	if (rdev->raid_disk >= 0)
5299 		goto busy;
5300 
5301 	kick_rdev_from_array(rdev);
5302 	md_update_sb(mddev, 1);
5303 	md_new_event(mddev);
5304 
5305 	return 0;
5306 busy:
5307 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5308 		bdevname(rdev->bdev,b), mdname(mddev));
5309 	return -EBUSY;
5310 }
5311 
5312 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5313 {
5314 	char b[BDEVNAME_SIZE];
5315 	int err;
5316 	mdk_rdev_t *rdev;
5317 
5318 	if (!mddev->pers)
5319 		return -ENODEV;
5320 
5321 	if (mddev->major_version != 0) {
5322 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5323 			" version-0 superblocks.\n",
5324 			mdname(mddev));
5325 		return -EINVAL;
5326 	}
5327 	if (!mddev->pers->hot_add_disk) {
5328 		printk(KERN_WARNING
5329 			"%s: personality does not support diskops!\n",
5330 			mdname(mddev));
5331 		return -EINVAL;
5332 	}
5333 
5334 	rdev = md_import_device(dev, -1, 0);
5335 	if (IS_ERR(rdev)) {
5336 		printk(KERN_WARNING
5337 			"md: error, md_import_device() returned %ld\n",
5338 			PTR_ERR(rdev));
5339 		return -EINVAL;
5340 	}
5341 
5342 	if (mddev->persistent)
5343 		rdev->sb_start = calc_dev_sboffset(rdev);
5344 	else
5345 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5346 
5347 	rdev->sectors = rdev->sb_start;
5348 
5349 	if (test_bit(Faulty, &rdev->flags)) {
5350 		printk(KERN_WARNING
5351 			"md: can not hot-add faulty %s disk to %s!\n",
5352 			bdevname(rdev->bdev,b), mdname(mddev));
5353 		err = -EINVAL;
5354 		goto abort_export;
5355 	}
5356 	clear_bit(In_sync, &rdev->flags);
5357 	rdev->desc_nr = -1;
5358 	rdev->saved_raid_disk = -1;
5359 	err = bind_rdev_to_array(rdev, mddev);
5360 	if (err)
5361 		goto abort_export;
5362 
5363 	/*
5364 	 * The rest should better be atomic, we can have disk failures
5365 	 * noticed in interrupt contexts ...
5366 	 */
5367 
5368 	rdev->raid_disk = -1;
5369 
5370 	md_update_sb(mddev, 1);
5371 
5372 	/*
5373 	 * Kick recovery, maybe this spare has to be added to the
5374 	 * array immediately.
5375 	 */
5376 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5377 	md_wakeup_thread(mddev->thread);
5378 	md_new_event(mddev);
5379 	return 0;
5380 
5381 abort_export:
5382 	export_rdev(rdev);
5383 	return err;
5384 }
5385 
5386 static int set_bitmap_file(mddev_t *mddev, int fd)
5387 {
5388 	int err;
5389 
5390 	if (mddev->pers) {
5391 		if (!mddev->pers->quiesce)
5392 			return -EBUSY;
5393 		if (mddev->recovery || mddev->sync_thread)
5394 			return -EBUSY;
5395 		/* we should be able to change the bitmap.. */
5396 	}
5397 
5398 
5399 	if (fd >= 0) {
5400 		if (mddev->bitmap)
5401 			return -EEXIST; /* cannot add when bitmap is present */
5402 		mddev->bitmap_info.file = fget(fd);
5403 
5404 		if (mddev->bitmap_info.file == NULL) {
5405 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5406 			       mdname(mddev));
5407 			return -EBADF;
5408 		}
5409 
5410 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5411 		if (err) {
5412 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5413 			       mdname(mddev));
5414 			fput(mddev->bitmap_info.file);
5415 			mddev->bitmap_info.file = NULL;
5416 			return err;
5417 		}
5418 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5419 	} else if (mddev->bitmap == NULL)
5420 		return -ENOENT; /* cannot remove what isn't there */
5421 	err = 0;
5422 	if (mddev->pers) {
5423 		mddev->pers->quiesce(mddev, 1);
5424 		if (fd >= 0) {
5425 			err = bitmap_create(mddev);
5426 			if (!err)
5427 				err = bitmap_load(mddev);
5428 		}
5429 		if (fd < 0 || err) {
5430 			bitmap_destroy(mddev);
5431 			fd = -1; /* make sure to put the file */
5432 		}
5433 		mddev->pers->quiesce(mddev, 0);
5434 	}
5435 	if (fd < 0) {
5436 		if (mddev->bitmap_info.file) {
5437 			restore_bitmap_write_access(mddev->bitmap_info.file);
5438 			fput(mddev->bitmap_info.file);
5439 		}
5440 		mddev->bitmap_info.file = NULL;
5441 	}
5442 
5443 	return err;
5444 }
5445 
5446 /*
5447  * set_array_info is used two different ways
5448  * The original usage is when creating a new array.
5449  * In this usage, raid_disks is > 0 and it together with
5450  *  level, size, not_persistent,layout,chunksize determine the
5451  *  shape of the array.
5452  *  This will always create an array with a type-0.90.0 superblock.
5453  * The newer usage is when assembling an array.
5454  *  In this case raid_disks will be 0, and the major_version field is
5455  *  use to determine which style super-blocks are to be found on the devices.
5456  *  The minor and patch _version numbers are also kept incase the
5457  *  super_block handler wishes to interpret them.
5458  */
5459 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5460 {
5461 
5462 	if (info->raid_disks == 0) {
5463 		/* just setting version number for superblock loading */
5464 		if (info->major_version < 0 ||
5465 		    info->major_version >= ARRAY_SIZE(super_types) ||
5466 		    super_types[info->major_version].name == NULL) {
5467 			/* maybe try to auto-load a module? */
5468 			printk(KERN_INFO
5469 				"md: superblock version %d not known\n",
5470 				info->major_version);
5471 			return -EINVAL;
5472 		}
5473 		mddev->major_version = info->major_version;
5474 		mddev->minor_version = info->minor_version;
5475 		mddev->patch_version = info->patch_version;
5476 		mddev->persistent = !info->not_persistent;
5477 		/* ensure mddev_put doesn't delete this now that there
5478 		 * is some minimal configuration.
5479 		 */
5480 		mddev->ctime         = get_seconds();
5481 		return 0;
5482 	}
5483 	mddev->major_version = MD_MAJOR_VERSION;
5484 	mddev->minor_version = MD_MINOR_VERSION;
5485 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5486 	mddev->ctime         = get_seconds();
5487 
5488 	mddev->level         = info->level;
5489 	mddev->clevel[0]     = 0;
5490 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5491 	mddev->raid_disks    = info->raid_disks;
5492 	/* don't set md_minor, it is determined by which /dev/md* was
5493 	 * openned
5494 	 */
5495 	if (info->state & (1<<MD_SB_CLEAN))
5496 		mddev->recovery_cp = MaxSector;
5497 	else
5498 		mddev->recovery_cp = 0;
5499 	mddev->persistent    = ! info->not_persistent;
5500 	mddev->external	     = 0;
5501 
5502 	mddev->layout        = info->layout;
5503 	mddev->chunk_sectors = info->chunk_size >> 9;
5504 
5505 	mddev->max_disks     = MD_SB_DISKS;
5506 
5507 	if (mddev->persistent)
5508 		mddev->flags         = 0;
5509 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5510 
5511 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5512 	mddev->bitmap_info.offset = 0;
5513 
5514 	mddev->reshape_position = MaxSector;
5515 
5516 	/*
5517 	 * Generate a 128 bit UUID
5518 	 */
5519 	get_random_bytes(mddev->uuid, 16);
5520 
5521 	mddev->new_level = mddev->level;
5522 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5523 	mddev->new_layout = mddev->layout;
5524 	mddev->delta_disks = 0;
5525 
5526 	return 0;
5527 }
5528 
5529 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5530 {
5531 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5532 
5533 	if (mddev->external_size)
5534 		return;
5535 
5536 	mddev->array_sectors = array_sectors;
5537 }
5538 EXPORT_SYMBOL(md_set_array_sectors);
5539 
5540 static int update_size(mddev_t *mddev, sector_t num_sectors)
5541 {
5542 	mdk_rdev_t *rdev;
5543 	int rv;
5544 	int fit = (num_sectors == 0);
5545 
5546 	if (mddev->pers->resize == NULL)
5547 		return -EINVAL;
5548 	/* The "num_sectors" is the number of sectors of each device that
5549 	 * is used.  This can only make sense for arrays with redundancy.
5550 	 * linear and raid0 always use whatever space is available. We can only
5551 	 * consider changing this number if no resync or reconstruction is
5552 	 * happening, and if the new size is acceptable. It must fit before the
5553 	 * sb_start or, if that is <data_offset, it must fit before the size
5554 	 * of each device.  If num_sectors is zero, we find the largest size
5555 	 * that fits.
5556 	 */
5557 	if (mddev->sync_thread)
5558 		return -EBUSY;
5559 	if (mddev->bitmap)
5560 		/* Sorry, cannot grow a bitmap yet, just remove it,
5561 		 * grow, and re-add.
5562 		 */
5563 		return -EBUSY;
5564 	list_for_each_entry(rdev, &mddev->disks, same_set) {
5565 		sector_t avail = rdev->sectors;
5566 
5567 		if (fit && (num_sectors == 0 || num_sectors > avail))
5568 			num_sectors = avail;
5569 		if (avail < num_sectors)
5570 			return -ENOSPC;
5571 	}
5572 	rv = mddev->pers->resize(mddev, num_sectors);
5573 	if (!rv)
5574 		revalidate_disk(mddev->gendisk);
5575 	return rv;
5576 }
5577 
5578 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5579 {
5580 	int rv;
5581 	/* change the number of raid disks */
5582 	if (mddev->pers->check_reshape == NULL)
5583 		return -EINVAL;
5584 	if (raid_disks <= 0 ||
5585 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5586 		return -EINVAL;
5587 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5588 		return -EBUSY;
5589 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5590 
5591 	rv = mddev->pers->check_reshape(mddev);
5592 	if (rv < 0)
5593 		mddev->delta_disks = 0;
5594 	return rv;
5595 }
5596 
5597 
5598 /*
5599  * update_array_info is used to change the configuration of an
5600  * on-line array.
5601  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5602  * fields in the info are checked against the array.
5603  * Any differences that cannot be handled will cause an error.
5604  * Normally, only one change can be managed at a time.
5605  */
5606 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5607 {
5608 	int rv = 0;
5609 	int cnt = 0;
5610 	int state = 0;
5611 
5612 	/* calculate expected state,ignoring low bits */
5613 	if (mddev->bitmap && mddev->bitmap_info.offset)
5614 		state |= (1 << MD_SB_BITMAP_PRESENT);
5615 
5616 	if (mddev->major_version != info->major_version ||
5617 	    mddev->minor_version != info->minor_version ||
5618 /*	    mddev->patch_version != info->patch_version || */
5619 	    mddev->ctime         != info->ctime         ||
5620 	    mddev->level         != info->level         ||
5621 /*	    mddev->layout        != info->layout        || */
5622 	    !mddev->persistent	 != info->not_persistent||
5623 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5624 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5625 	    ((state^info->state) & 0xfffffe00)
5626 		)
5627 		return -EINVAL;
5628 	/* Check there is only one change */
5629 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5630 		cnt++;
5631 	if (mddev->raid_disks != info->raid_disks)
5632 		cnt++;
5633 	if (mddev->layout != info->layout)
5634 		cnt++;
5635 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5636 		cnt++;
5637 	if (cnt == 0)
5638 		return 0;
5639 	if (cnt > 1)
5640 		return -EINVAL;
5641 
5642 	if (mddev->layout != info->layout) {
5643 		/* Change layout
5644 		 * we don't need to do anything at the md level, the
5645 		 * personality will take care of it all.
5646 		 */
5647 		if (mddev->pers->check_reshape == NULL)
5648 			return -EINVAL;
5649 		else {
5650 			mddev->new_layout = info->layout;
5651 			rv = mddev->pers->check_reshape(mddev);
5652 			if (rv)
5653 				mddev->new_layout = mddev->layout;
5654 			return rv;
5655 		}
5656 	}
5657 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5658 		rv = update_size(mddev, (sector_t)info->size * 2);
5659 
5660 	if (mddev->raid_disks    != info->raid_disks)
5661 		rv = update_raid_disks(mddev, info->raid_disks);
5662 
5663 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5664 		if (mddev->pers->quiesce == NULL)
5665 			return -EINVAL;
5666 		if (mddev->recovery || mddev->sync_thread)
5667 			return -EBUSY;
5668 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5669 			/* add the bitmap */
5670 			if (mddev->bitmap)
5671 				return -EEXIST;
5672 			if (mddev->bitmap_info.default_offset == 0)
5673 				return -EINVAL;
5674 			mddev->bitmap_info.offset =
5675 				mddev->bitmap_info.default_offset;
5676 			mddev->pers->quiesce(mddev, 1);
5677 			rv = bitmap_create(mddev);
5678 			if (!rv)
5679 				rv = bitmap_load(mddev);
5680 			if (rv)
5681 				bitmap_destroy(mddev);
5682 			mddev->pers->quiesce(mddev, 0);
5683 		} else {
5684 			/* remove the bitmap */
5685 			if (!mddev->bitmap)
5686 				return -ENOENT;
5687 			if (mddev->bitmap->file)
5688 				return -EINVAL;
5689 			mddev->pers->quiesce(mddev, 1);
5690 			bitmap_destroy(mddev);
5691 			mddev->pers->quiesce(mddev, 0);
5692 			mddev->bitmap_info.offset = 0;
5693 		}
5694 	}
5695 	md_update_sb(mddev, 1);
5696 	return rv;
5697 }
5698 
5699 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5700 {
5701 	mdk_rdev_t *rdev;
5702 
5703 	if (mddev->pers == NULL)
5704 		return -ENODEV;
5705 
5706 	rdev = find_rdev(mddev, dev);
5707 	if (!rdev)
5708 		return -ENODEV;
5709 
5710 	md_error(mddev, rdev);
5711 	return 0;
5712 }
5713 
5714 /*
5715  * We have a problem here : there is no easy way to give a CHS
5716  * virtual geometry. We currently pretend that we have a 2 heads
5717  * 4 sectors (with a BIG number of cylinders...). This drives
5718  * dosfs just mad... ;-)
5719  */
5720 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5721 {
5722 	mddev_t *mddev = bdev->bd_disk->private_data;
5723 
5724 	geo->heads = 2;
5725 	geo->sectors = 4;
5726 	geo->cylinders = mddev->array_sectors / 8;
5727 	return 0;
5728 }
5729 
5730 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5731 			unsigned int cmd, unsigned long arg)
5732 {
5733 	int err = 0;
5734 	void __user *argp = (void __user *)arg;
5735 	mddev_t *mddev = NULL;
5736 	int ro;
5737 
5738 	if (!capable(CAP_SYS_ADMIN))
5739 		return -EACCES;
5740 
5741 	/*
5742 	 * Commands dealing with the RAID driver but not any
5743 	 * particular array:
5744 	 */
5745 	switch (cmd)
5746 	{
5747 		case RAID_VERSION:
5748 			err = get_version(argp);
5749 			goto done;
5750 
5751 		case PRINT_RAID_DEBUG:
5752 			err = 0;
5753 			md_print_devices();
5754 			goto done;
5755 
5756 #ifndef MODULE
5757 		case RAID_AUTORUN:
5758 			err = 0;
5759 			autostart_arrays(arg);
5760 			goto done;
5761 #endif
5762 		default:;
5763 	}
5764 
5765 	/*
5766 	 * Commands creating/starting a new array:
5767 	 */
5768 
5769 	mddev = bdev->bd_disk->private_data;
5770 
5771 	if (!mddev) {
5772 		BUG();
5773 		goto abort;
5774 	}
5775 
5776 	err = mddev_lock(mddev);
5777 	if (err) {
5778 		printk(KERN_INFO
5779 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
5780 			err, cmd);
5781 		goto abort;
5782 	}
5783 
5784 	switch (cmd)
5785 	{
5786 		case SET_ARRAY_INFO:
5787 			{
5788 				mdu_array_info_t info;
5789 				if (!arg)
5790 					memset(&info, 0, sizeof(info));
5791 				else if (copy_from_user(&info, argp, sizeof(info))) {
5792 					err = -EFAULT;
5793 					goto abort_unlock;
5794 				}
5795 				if (mddev->pers) {
5796 					err = update_array_info(mddev, &info);
5797 					if (err) {
5798 						printk(KERN_WARNING "md: couldn't update"
5799 						       " array info. %d\n", err);
5800 						goto abort_unlock;
5801 					}
5802 					goto done_unlock;
5803 				}
5804 				if (!list_empty(&mddev->disks)) {
5805 					printk(KERN_WARNING
5806 					       "md: array %s already has disks!\n",
5807 					       mdname(mddev));
5808 					err = -EBUSY;
5809 					goto abort_unlock;
5810 				}
5811 				if (mddev->raid_disks) {
5812 					printk(KERN_WARNING
5813 					       "md: array %s already initialised!\n",
5814 					       mdname(mddev));
5815 					err = -EBUSY;
5816 					goto abort_unlock;
5817 				}
5818 				err = set_array_info(mddev, &info);
5819 				if (err) {
5820 					printk(KERN_WARNING "md: couldn't set"
5821 					       " array info. %d\n", err);
5822 					goto abort_unlock;
5823 				}
5824 			}
5825 			goto done_unlock;
5826 
5827 		default:;
5828 	}
5829 
5830 	/*
5831 	 * Commands querying/configuring an existing array:
5832 	 */
5833 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5834 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5835 	if ((!mddev->raid_disks && !mddev->external)
5836 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5837 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5838 	    && cmd != GET_BITMAP_FILE) {
5839 		err = -ENODEV;
5840 		goto abort_unlock;
5841 	}
5842 
5843 	/*
5844 	 * Commands even a read-only array can execute:
5845 	 */
5846 	switch (cmd)
5847 	{
5848 		case GET_ARRAY_INFO:
5849 			err = get_array_info(mddev, argp);
5850 			goto done_unlock;
5851 
5852 		case GET_BITMAP_FILE:
5853 			err = get_bitmap_file(mddev, argp);
5854 			goto done_unlock;
5855 
5856 		case GET_DISK_INFO:
5857 			err = get_disk_info(mddev, argp);
5858 			goto done_unlock;
5859 
5860 		case RESTART_ARRAY_RW:
5861 			err = restart_array(mddev);
5862 			goto done_unlock;
5863 
5864 		case STOP_ARRAY:
5865 			err = do_md_stop(mddev, 0, 1);
5866 			goto done_unlock;
5867 
5868 		case STOP_ARRAY_RO:
5869 			err = md_set_readonly(mddev, 1);
5870 			goto done_unlock;
5871 
5872 		case BLKROSET:
5873 			if (get_user(ro, (int __user *)(arg))) {
5874 				err = -EFAULT;
5875 				goto done_unlock;
5876 			}
5877 			err = -EINVAL;
5878 
5879 			/* if the bdev is going readonly the value of mddev->ro
5880 			 * does not matter, no writes are coming
5881 			 */
5882 			if (ro)
5883 				goto done_unlock;
5884 
5885 			/* are we are already prepared for writes? */
5886 			if (mddev->ro != 1)
5887 				goto done_unlock;
5888 
5889 			/* transitioning to readauto need only happen for
5890 			 * arrays that call md_write_start
5891 			 */
5892 			if (mddev->pers) {
5893 				err = restart_array(mddev);
5894 				if (err == 0) {
5895 					mddev->ro = 2;
5896 					set_disk_ro(mddev->gendisk, 0);
5897 				}
5898 			}
5899 			goto done_unlock;
5900 	}
5901 
5902 	/*
5903 	 * The remaining ioctls are changing the state of the
5904 	 * superblock, so we do not allow them on read-only arrays.
5905 	 * However non-MD ioctls (e.g. get-size) will still come through
5906 	 * here and hit the 'default' below, so only disallow
5907 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5908 	 */
5909 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5910 		if (mddev->ro == 2) {
5911 			mddev->ro = 0;
5912 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5913 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5914 			md_wakeup_thread(mddev->thread);
5915 		} else {
5916 			err = -EROFS;
5917 			goto abort_unlock;
5918 		}
5919 	}
5920 
5921 	switch (cmd)
5922 	{
5923 		case ADD_NEW_DISK:
5924 		{
5925 			mdu_disk_info_t info;
5926 			if (copy_from_user(&info, argp, sizeof(info)))
5927 				err = -EFAULT;
5928 			else
5929 				err = add_new_disk(mddev, &info);
5930 			goto done_unlock;
5931 		}
5932 
5933 		case HOT_REMOVE_DISK:
5934 			err = hot_remove_disk(mddev, new_decode_dev(arg));
5935 			goto done_unlock;
5936 
5937 		case HOT_ADD_DISK:
5938 			err = hot_add_disk(mddev, new_decode_dev(arg));
5939 			goto done_unlock;
5940 
5941 		case SET_DISK_FAULTY:
5942 			err = set_disk_faulty(mddev, new_decode_dev(arg));
5943 			goto done_unlock;
5944 
5945 		case RUN_ARRAY:
5946 			err = do_md_run(mddev);
5947 			goto done_unlock;
5948 
5949 		case SET_BITMAP_FILE:
5950 			err = set_bitmap_file(mddev, (int)arg);
5951 			goto done_unlock;
5952 
5953 		default:
5954 			err = -EINVAL;
5955 			goto abort_unlock;
5956 	}
5957 
5958 done_unlock:
5959 abort_unlock:
5960 	if (mddev->hold_active == UNTIL_IOCTL &&
5961 	    err != -EINVAL)
5962 		mddev->hold_active = 0;
5963 	mddev_unlock(mddev);
5964 
5965 	return err;
5966 done:
5967 	if (err)
5968 		MD_BUG();
5969 abort:
5970 	return err;
5971 }
5972 #ifdef CONFIG_COMPAT
5973 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5974 		    unsigned int cmd, unsigned long arg)
5975 {
5976 	switch (cmd) {
5977 	case HOT_REMOVE_DISK:
5978 	case HOT_ADD_DISK:
5979 	case SET_DISK_FAULTY:
5980 	case SET_BITMAP_FILE:
5981 		/* These take in integer arg, do not convert */
5982 		break;
5983 	default:
5984 		arg = (unsigned long)compat_ptr(arg);
5985 		break;
5986 	}
5987 
5988 	return md_ioctl(bdev, mode, cmd, arg);
5989 }
5990 #endif /* CONFIG_COMPAT */
5991 
5992 static int md_open(struct block_device *bdev, fmode_t mode)
5993 {
5994 	/*
5995 	 * Succeed if we can lock the mddev, which confirms that
5996 	 * it isn't being stopped right now.
5997 	 */
5998 	mddev_t *mddev = mddev_find(bdev->bd_dev);
5999 	int err;
6000 
6001 	if (mddev->gendisk != bdev->bd_disk) {
6002 		/* we are racing with mddev_put which is discarding this
6003 		 * bd_disk.
6004 		 */
6005 		mddev_put(mddev);
6006 		/* Wait until bdev->bd_disk is definitely gone */
6007 		flush_workqueue(md_misc_wq);
6008 		/* Then retry the open from the top */
6009 		return -ERESTARTSYS;
6010 	}
6011 	BUG_ON(mddev != bdev->bd_disk->private_data);
6012 
6013 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6014 		goto out;
6015 
6016 	err = 0;
6017 	atomic_inc(&mddev->openers);
6018 	mutex_unlock(&mddev->open_mutex);
6019 
6020 	check_disk_change(bdev);
6021  out:
6022 	return err;
6023 }
6024 
6025 static int md_release(struct gendisk *disk, fmode_t mode)
6026 {
6027  	mddev_t *mddev = disk->private_data;
6028 
6029 	BUG_ON(!mddev);
6030 	atomic_dec(&mddev->openers);
6031 	mddev_put(mddev);
6032 
6033 	return 0;
6034 }
6035 
6036 static int md_media_changed(struct gendisk *disk)
6037 {
6038 	mddev_t *mddev = disk->private_data;
6039 
6040 	return mddev->changed;
6041 }
6042 
6043 static int md_revalidate(struct gendisk *disk)
6044 {
6045 	mddev_t *mddev = disk->private_data;
6046 
6047 	mddev->changed = 0;
6048 	return 0;
6049 }
6050 static const struct block_device_operations md_fops =
6051 {
6052 	.owner		= THIS_MODULE,
6053 	.open		= md_open,
6054 	.release	= md_release,
6055 	.ioctl		= md_ioctl,
6056 #ifdef CONFIG_COMPAT
6057 	.compat_ioctl	= md_compat_ioctl,
6058 #endif
6059 	.getgeo		= md_getgeo,
6060 	.media_changed  = md_media_changed,
6061 	.revalidate_disk= md_revalidate,
6062 };
6063 
6064 static int md_thread(void * arg)
6065 {
6066 	mdk_thread_t *thread = arg;
6067 
6068 	/*
6069 	 * md_thread is a 'system-thread', it's priority should be very
6070 	 * high. We avoid resource deadlocks individually in each
6071 	 * raid personality. (RAID5 does preallocation) We also use RR and
6072 	 * the very same RT priority as kswapd, thus we will never get
6073 	 * into a priority inversion deadlock.
6074 	 *
6075 	 * we definitely have to have equal or higher priority than
6076 	 * bdflush, otherwise bdflush will deadlock if there are too
6077 	 * many dirty RAID5 blocks.
6078 	 */
6079 
6080 	allow_signal(SIGKILL);
6081 	while (!kthread_should_stop()) {
6082 
6083 		/* We need to wait INTERRUPTIBLE so that
6084 		 * we don't add to the load-average.
6085 		 * That means we need to be sure no signals are
6086 		 * pending
6087 		 */
6088 		if (signal_pending(current))
6089 			flush_signals(current);
6090 
6091 		wait_event_interruptible_timeout
6092 			(thread->wqueue,
6093 			 test_bit(THREAD_WAKEUP, &thread->flags)
6094 			 || kthread_should_stop(),
6095 			 thread->timeout);
6096 
6097 		clear_bit(THREAD_WAKEUP, &thread->flags);
6098 		if (!kthread_should_stop())
6099 			thread->run(thread->mddev);
6100 	}
6101 
6102 	return 0;
6103 }
6104 
6105 void md_wakeup_thread(mdk_thread_t *thread)
6106 {
6107 	if (thread) {
6108 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6109 		set_bit(THREAD_WAKEUP, &thread->flags);
6110 		wake_up(&thread->wqueue);
6111 	}
6112 }
6113 
6114 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6115 				 const char *name)
6116 {
6117 	mdk_thread_t *thread;
6118 
6119 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6120 	if (!thread)
6121 		return NULL;
6122 
6123 	init_waitqueue_head(&thread->wqueue);
6124 
6125 	thread->run = run;
6126 	thread->mddev = mddev;
6127 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6128 	thread->tsk = kthread_run(md_thread, thread,
6129 				  "%s_%s",
6130 				  mdname(thread->mddev),
6131 				  name ?: mddev->pers->name);
6132 	if (IS_ERR(thread->tsk)) {
6133 		kfree(thread);
6134 		return NULL;
6135 	}
6136 	return thread;
6137 }
6138 
6139 void md_unregister_thread(mdk_thread_t *thread)
6140 {
6141 	if (!thread)
6142 		return;
6143 	dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6144 
6145 	kthread_stop(thread->tsk);
6146 	kfree(thread);
6147 }
6148 
6149 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6150 {
6151 	if (!mddev) {
6152 		MD_BUG();
6153 		return;
6154 	}
6155 
6156 	if (!rdev || test_bit(Faulty, &rdev->flags))
6157 		return;
6158 
6159 	if (mddev->external)
6160 		set_bit(Blocked, &rdev->flags);
6161 /*
6162 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6163 		mdname(mddev),
6164 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6165 		__builtin_return_address(0),__builtin_return_address(1),
6166 		__builtin_return_address(2),__builtin_return_address(3));
6167 */
6168 	if (!mddev->pers)
6169 		return;
6170 	if (!mddev->pers->error_handler)
6171 		return;
6172 	mddev->pers->error_handler(mddev,rdev);
6173 	if (mddev->degraded)
6174 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6175 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6176 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6177 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6178 	md_wakeup_thread(mddev->thread);
6179 	if (mddev->event_work.func)
6180 		queue_work(md_misc_wq, &mddev->event_work);
6181 	md_new_event_inintr(mddev);
6182 }
6183 
6184 /* seq_file implementation /proc/mdstat */
6185 
6186 static void status_unused(struct seq_file *seq)
6187 {
6188 	int i = 0;
6189 	mdk_rdev_t *rdev;
6190 
6191 	seq_printf(seq, "unused devices: ");
6192 
6193 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6194 		char b[BDEVNAME_SIZE];
6195 		i++;
6196 		seq_printf(seq, "%s ",
6197 			      bdevname(rdev->bdev,b));
6198 	}
6199 	if (!i)
6200 		seq_printf(seq, "<none>");
6201 
6202 	seq_printf(seq, "\n");
6203 }
6204 
6205 
6206 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6207 {
6208 	sector_t max_sectors, resync, res;
6209 	unsigned long dt, db;
6210 	sector_t rt;
6211 	int scale;
6212 	unsigned int per_milli;
6213 
6214 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6215 
6216 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6217 		max_sectors = mddev->resync_max_sectors;
6218 	else
6219 		max_sectors = mddev->dev_sectors;
6220 
6221 	/*
6222 	 * Should not happen.
6223 	 */
6224 	if (!max_sectors) {
6225 		MD_BUG();
6226 		return;
6227 	}
6228 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6229 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6230 	 * u32, as those are the requirements for sector_div.
6231 	 * Thus 'scale' must be at least 10
6232 	 */
6233 	scale = 10;
6234 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6235 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6236 			scale++;
6237 	}
6238 	res = (resync>>scale)*1000;
6239 	sector_div(res, (u32)((max_sectors>>scale)+1));
6240 
6241 	per_milli = res;
6242 	{
6243 		int i, x = per_milli/50, y = 20-x;
6244 		seq_printf(seq, "[");
6245 		for (i = 0; i < x; i++)
6246 			seq_printf(seq, "=");
6247 		seq_printf(seq, ">");
6248 		for (i = 0; i < y; i++)
6249 			seq_printf(seq, ".");
6250 		seq_printf(seq, "] ");
6251 	}
6252 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6253 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6254 		    "reshape" :
6255 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6256 		     "check" :
6257 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6258 		      "resync" : "recovery"))),
6259 		   per_milli/10, per_milli % 10,
6260 		   (unsigned long long) resync/2,
6261 		   (unsigned long long) max_sectors/2);
6262 
6263 	/*
6264 	 * dt: time from mark until now
6265 	 * db: blocks written from mark until now
6266 	 * rt: remaining time
6267 	 *
6268 	 * rt is a sector_t, so could be 32bit or 64bit.
6269 	 * So we divide before multiply in case it is 32bit and close
6270 	 * to the limit.
6271 	 * We scale the divisor (db) by 32 to avoid loosing precision
6272 	 * near the end of resync when the number of remaining sectors
6273 	 * is close to 'db'.
6274 	 * We then divide rt by 32 after multiplying by db to compensate.
6275 	 * The '+1' avoids division by zero if db is very small.
6276 	 */
6277 	dt = ((jiffies - mddev->resync_mark) / HZ);
6278 	if (!dt) dt++;
6279 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6280 		- mddev->resync_mark_cnt;
6281 
6282 	rt = max_sectors - resync;    /* number of remaining sectors */
6283 	sector_div(rt, db/32+1);
6284 	rt *= dt;
6285 	rt >>= 5;
6286 
6287 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6288 		   ((unsigned long)rt % 60)/6);
6289 
6290 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6291 }
6292 
6293 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6294 {
6295 	struct list_head *tmp;
6296 	loff_t l = *pos;
6297 	mddev_t *mddev;
6298 
6299 	if (l >= 0x10000)
6300 		return NULL;
6301 	if (!l--)
6302 		/* header */
6303 		return (void*)1;
6304 
6305 	spin_lock(&all_mddevs_lock);
6306 	list_for_each(tmp,&all_mddevs)
6307 		if (!l--) {
6308 			mddev = list_entry(tmp, mddev_t, all_mddevs);
6309 			mddev_get(mddev);
6310 			spin_unlock(&all_mddevs_lock);
6311 			return mddev;
6312 		}
6313 	spin_unlock(&all_mddevs_lock);
6314 	if (!l--)
6315 		return (void*)2;/* tail */
6316 	return NULL;
6317 }
6318 
6319 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6320 {
6321 	struct list_head *tmp;
6322 	mddev_t *next_mddev, *mddev = v;
6323 
6324 	++*pos;
6325 	if (v == (void*)2)
6326 		return NULL;
6327 
6328 	spin_lock(&all_mddevs_lock);
6329 	if (v == (void*)1)
6330 		tmp = all_mddevs.next;
6331 	else
6332 		tmp = mddev->all_mddevs.next;
6333 	if (tmp != &all_mddevs)
6334 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6335 	else {
6336 		next_mddev = (void*)2;
6337 		*pos = 0x10000;
6338 	}
6339 	spin_unlock(&all_mddevs_lock);
6340 
6341 	if (v != (void*)1)
6342 		mddev_put(mddev);
6343 	return next_mddev;
6344 
6345 }
6346 
6347 static void md_seq_stop(struct seq_file *seq, void *v)
6348 {
6349 	mddev_t *mddev = v;
6350 
6351 	if (mddev && v != (void*)1 && v != (void*)2)
6352 		mddev_put(mddev);
6353 }
6354 
6355 struct mdstat_info {
6356 	int event;
6357 };
6358 
6359 static int md_seq_show(struct seq_file *seq, void *v)
6360 {
6361 	mddev_t *mddev = v;
6362 	sector_t sectors;
6363 	mdk_rdev_t *rdev;
6364 	struct mdstat_info *mi = seq->private;
6365 	struct bitmap *bitmap;
6366 
6367 	if (v == (void*)1) {
6368 		struct mdk_personality *pers;
6369 		seq_printf(seq, "Personalities : ");
6370 		spin_lock(&pers_lock);
6371 		list_for_each_entry(pers, &pers_list, list)
6372 			seq_printf(seq, "[%s] ", pers->name);
6373 
6374 		spin_unlock(&pers_lock);
6375 		seq_printf(seq, "\n");
6376 		mi->event = atomic_read(&md_event_count);
6377 		return 0;
6378 	}
6379 	if (v == (void*)2) {
6380 		status_unused(seq);
6381 		return 0;
6382 	}
6383 
6384 	if (mddev_lock(mddev) < 0)
6385 		return -EINTR;
6386 
6387 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6388 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6389 						mddev->pers ? "" : "in");
6390 		if (mddev->pers) {
6391 			if (mddev->ro==1)
6392 				seq_printf(seq, " (read-only)");
6393 			if (mddev->ro==2)
6394 				seq_printf(seq, " (auto-read-only)");
6395 			seq_printf(seq, " %s", mddev->pers->name);
6396 		}
6397 
6398 		sectors = 0;
6399 		list_for_each_entry(rdev, &mddev->disks, same_set) {
6400 			char b[BDEVNAME_SIZE];
6401 			seq_printf(seq, " %s[%d]",
6402 				bdevname(rdev->bdev,b), rdev->desc_nr);
6403 			if (test_bit(WriteMostly, &rdev->flags))
6404 				seq_printf(seq, "(W)");
6405 			if (test_bit(Faulty, &rdev->flags)) {
6406 				seq_printf(seq, "(F)");
6407 				continue;
6408 			} else if (rdev->raid_disk < 0)
6409 				seq_printf(seq, "(S)"); /* spare */
6410 			sectors += rdev->sectors;
6411 		}
6412 
6413 		if (!list_empty(&mddev->disks)) {
6414 			if (mddev->pers)
6415 				seq_printf(seq, "\n      %llu blocks",
6416 					   (unsigned long long)
6417 					   mddev->array_sectors / 2);
6418 			else
6419 				seq_printf(seq, "\n      %llu blocks",
6420 					   (unsigned long long)sectors / 2);
6421 		}
6422 		if (mddev->persistent) {
6423 			if (mddev->major_version != 0 ||
6424 			    mddev->minor_version != 90) {
6425 				seq_printf(seq," super %d.%d",
6426 					   mddev->major_version,
6427 					   mddev->minor_version);
6428 			}
6429 		} else if (mddev->external)
6430 			seq_printf(seq, " super external:%s",
6431 				   mddev->metadata_type);
6432 		else
6433 			seq_printf(seq, " super non-persistent");
6434 
6435 		if (mddev->pers) {
6436 			mddev->pers->status(seq, mddev);
6437 	 		seq_printf(seq, "\n      ");
6438 			if (mddev->pers->sync_request) {
6439 				if (mddev->curr_resync > 2) {
6440 					status_resync(seq, mddev);
6441 					seq_printf(seq, "\n      ");
6442 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6443 					seq_printf(seq, "\tresync=DELAYED\n      ");
6444 				else if (mddev->recovery_cp < MaxSector)
6445 					seq_printf(seq, "\tresync=PENDING\n      ");
6446 			}
6447 		} else
6448 			seq_printf(seq, "\n       ");
6449 
6450 		if ((bitmap = mddev->bitmap)) {
6451 			unsigned long chunk_kb;
6452 			unsigned long flags;
6453 			spin_lock_irqsave(&bitmap->lock, flags);
6454 			chunk_kb = mddev->bitmap_info.chunksize >> 10;
6455 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6456 				"%lu%s chunk",
6457 				bitmap->pages - bitmap->missing_pages,
6458 				bitmap->pages,
6459 				(bitmap->pages - bitmap->missing_pages)
6460 					<< (PAGE_SHIFT - 10),
6461 				chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6462 				chunk_kb ? "KB" : "B");
6463 			if (bitmap->file) {
6464 				seq_printf(seq, ", file: ");
6465 				seq_path(seq, &bitmap->file->f_path, " \t\n");
6466 			}
6467 
6468 			seq_printf(seq, "\n");
6469 			spin_unlock_irqrestore(&bitmap->lock, flags);
6470 		}
6471 
6472 		seq_printf(seq, "\n");
6473 	}
6474 	mddev_unlock(mddev);
6475 
6476 	return 0;
6477 }
6478 
6479 static const struct seq_operations md_seq_ops = {
6480 	.start  = md_seq_start,
6481 	.next   = md_seq_next,
6482 	.stop   = md_seq_stop,
6483 	.show   = md_seq_show,
6484 };
6485 
6486 static int md_seq_open(struct inode *inode, struct file *file)
6487 {
6488 	int error;
6489 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6490 	if (mi == NULL)
6491 		return -ENOMEM;
6492 
6493 	error = seq_open(file, &md_seq_ops);
6494 	if (error)
6495 		kfree(mi);
6496 	else {
6497 		struct seq_file *p = file->private_data;
6498 		p->private = mi;
6499 		mi->event = atomic_read(&md_event_count);
6500 	}
6501 	return error;
6502 }
6503 
6504 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6505 {
6506 	struct seq_file *m = filp->private_data;
6507 	struct mdstat_info *mi = m->private;
6508 	int mask;
6509 
6510 	poll_wait(filp, &md_event_waiters, wait);
6511 
6512 	/* always allow read */
6513 	mask = POLLIN | POLLRDNORM;
6514 
6515 	if (mi->event != atomic_read(&md_event_count))
6516 		mask |= POLLERR | POLLPRI;
6517 	return mask;
6518 }
6519 
6520 static const struct file_operations md_seq_fops = {
6521 	.owner		= THIS_MODULE,
6522 	.open           = md_seq_open,
6523 	.read           = seq_read,
6524 	.llseek         = seq_lseek,
6525 	.release	= seq_release_private,
6526 	.poll		= mdstat_poll,
6527 };
6528 
6529 int register_md_personality(struct mdk_personality *p)
6530 {
6531 	spin_lock(&pers_lock);
6532 	list_add_tail(&p->list, &pers_list);
6533 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6534 	spin_unlock(&pers_lock);
6535 	return 0;
6536 }
6537 
6538 int unregister_md_personality(struct mdk_personality *p)
6539 {
6540 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6541 	spin_lock(&pers_lock);
6542 	list_del_init(&p->list);
6543 	spin_unlock(&pers_lock);
6544 	return 0;
6545 }
6546 
6547 static int is_mddev_idle(mddev_t *mddev, int init)
6548 {
6549 	mdk_rdev_t * rdev;
6550 	int idle;
6551 	int curr_events;
6552 
6553 	idle = 1;
6554 	rcu_read_lock();
6555 	rdev_for_each_rcu(rdev, mddev) {
6556 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6557 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6558 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6559 			      atomic_read(&disk->sync_io);
6560 		/* sync IO will cause sync_io to increase before the disk_stats
6561 		 * as sync_io is counted when a request starts, and
6562 		 * disk_stats is counted when it completes.
6563 		 * So resync activity will cause curr_events to be smaller than
6564 		 * when there was no such activity.
6565 		 * non-sync IO will cause disk_stat to increase without
6566 		 * increasing sync_io so curr_events will (eventually)
6567 		 * be larger than it was before.  Once it becomes
6568 		 * substantially larger, the test below will cause
6569 		 * the array to appear non-idle, and resync will slow
6570 		 * down.
6571 		 * If there is a lot of outstanding resync activity when
6572 		 * we set last_event to curr_events, then all that activity
6573 		 * completing might cause the array to appear non-idle
6574 		 * and resync will be slowed down even though there might
6575 		 * not have been non-resync activity.  This will only
6576 		 * happen once though.  'last_events' will soon reflect
6577 		 * the state where there is little or no outstanding
6578 		 * resync requests, and further resync activity will
6579 		 * always make curr_events less than last_events.
6580 		 *
6581 		 */
6582 		if (init || curr_events - rdev->last_events > 64) {
6583 			rdev->last_events = curr_events;
6584 			idle = 0;
6585 		}
6586 	}
6587 	rcu_read_unlock();
6588 	return idle;
6589 }
6590 
6591 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6592 {
6593 	/* another "blocks" (512byte) blocks have been synced */
6594 	atomic_sub(blocks, &mddev->recovery_active);
6595 	wake_up(&mddev->recovery_wait);
6596 	if (!ok) {
6597 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6598 		md_wakeup_thread(mddev->thread);
6599 		// stop recovery, signal do_sync ....
6600 	}
6601 }
6602 
6603 
6604 /* md_write_start(mddev, bi)
6605  * If we need to update some array metadata (e.g. 'active' flag
6606  * in superblock) before writing, schedule a superblock update
6607  * and wait for it to complete.
6608  */
6609 void md_write_start(mddev_t *mddev, struct bio *bi)
6610 {
6611 	int did_change = 0;
6612 	if (bio_data_dir(bi) != WRITE)
6613 		return;
6614 
6615 	BUG_ON(mddev->ro == 1);
6616 	if (mddev->ro == 2) {
6617 		/* need to switch to read/write */
6618 		mddev->ro = 0;
6619 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6620 		md_wakeup_thread(mddev->thread);
6621 		md_wakeup_thread(mddev->sync_thread);
6622 		did_change = 1;
6623 	}
6624 	atomic_inc(&mddev->writes_pending);
6625 	if (mddev->safemode == 1)
6626 		mddev->safemode = 0;
6627 	if (mddev->in_sync) {
6628 		spin_lock_irq(&mddev->write_lock);
6629 		if (mddev->in_sync) {
6630 			mddev->in_sync = 0;
6631 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6632 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6633 			md_wakeup_thread(mddev->thread);
6634 			did_change = 1;
6635 		}
6636 		spin_unlock_irq(&mddev->write_lock);
6637 	}
6638 	if (did_change)
6639 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6640 	wait_event(mddev->sb_wait,
6641 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6642 }
6643 
6644 void md_write_end(mddev_t *mddev)
6645 {
6646 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6647 		if (mddev->safemode == 2)
6648 			md_wakeup_thread(mddev->thread);
6649 		else if (mddev->safemode_delay)
6650 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6651 	}
6652 }
6653 
6654 /* md_allow_write(mddev)
6655  * Calling this ensures that the array is marked 'active' so that writes
6656  * may proceed without blocking.  It is important to call this before
6657  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6658  * Must be called with mddev_lock held.
6659  *
6660  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6661  * is dropped, so return -EAGAIN after notifying userspace.
6662  */
6663 int md_allow_write(mddev_t *mddev)
6664 {
6665 	if (!mddev->pers)
6666 		return 0;
6667 	if (mddev->ro)
6668 		return 0;
6669 	if (!mddev->pers->sync_request)
6670 		return 0;
6671 
6672 	spin_lock_irq(&mddev->write_lock);
6673 	if (mddev->in_sync) {
6674 		mddev->in_sync = 0;
6675 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6676 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
6677 		if (mddev->safemode_delay &&
6678 		    mddev->safemode == 0)
6679 			mddev->safemode = 1;
6680 		spin_unlock_irq(&mddev->write_lock);
6681 		md_update_sb(mddev, 0);
6682 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6683 	} else
6684 		spin_unlock_irq(&mddev->write_lock);
6685 
6686 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6687 		return -EAGAIN;
6688 	else
6689 		return 0;
6690 }
6691 EXPORT_SYMBOL_GPL(md_allow_write);
6692 
6693 void md_unplug(mddev_t *mddev)
6694 {
6695 	if (mddev->queue)
6696 		blk_unplug(mddev->queue);
6697 	if (mddev->plug)
6698 		mddev->plug->unplug_fn(mddev->plug);
6699 }
6700 
6701 #define SYNC_MARKS	10
6702 #define	SYNC_MARK_STEP	(3*HZ)
6703 void md_do_sync(mddev_t *mddev)
6704 {
6705 	mddev_t *mddev2;
6706 	unsigned int currspeed = 0,
6707 		 window;
6708 	sector_t max_sectors,j, io_sectors;
6709 	unsigned long mark[SYNC_MARKS];
6710 	sector_t mark_cnt[SYNC_MARKS];
6711 	int last_mark,m;
6712 	struct list_head *tmp;
6713 	sector_t last_check;
6714 	int skipped = 0;
6715 	mdk_rdev_t *rdev;
6716 	char *desc;
6717 
6718 	/* just incase thread restarts... */
6719 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6720 		return;
6721 	if (mddev->ro) /* never try to sync a read-only array */
6722 		return;
6723 
6724 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6725 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6726 			desc = "data-check";
6727 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6728 			desc = "requested-resync";
6729 		else
6730 			desc = "resync";
6731 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6732 		desc = "reshape";
6733 	else
6734 		desc = "recovery";
6735 
6736 	/* we overload curr_resync somewhat here.
6737 	 * 0 == not engaged in resync at all
6738 	 * 2 == checking that there is no conflict with another sync
6739 	 * 1 == like 2, but have yielded to allow conflicting resync to
6740 	 *		commense
6741 	 * other == active in resync - this many blocks
6742 	 *
6743 	 * Before starting a resync we must have set curr_resync to
6744 	 * 2, and then checked that every "conflicting" array has curr_resync
6745 	 * less than ours.  When we find one that is the same or higher
6746 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
6747 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6748 	 * This will mean we have to start checking from the beginning again.
6749 	 *
6750 	 */
6751 
6752 	do {
6753 		mddev->curr_resync = 2;
6754 
6755 	try_again:
6756 		if (kthread_should_stop())
6757 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6758 
6759 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6760 			goto skip;
6761 		for_each_mddev(mddev2, tmp) {
6762 			if (mddev2 == mddev)
6763 				continue;
6764 			if (!mddev->parallel_resync
6765 			&&  mddev2->curr_resync
6766 			&&  match_mddev_units(mddev, mddev2)) {
6767 				DEFINE_WAIT(wq);
6768 				if (mddev < mddev2 && mddev->curr_resync == 2) {
6769 					/* arbitrarily yield */
6770 					mddev->curr_resync = 1;
6771 					wake_up(&resync_wait);
6772 				}
6773 				if (mddev > mddev2 && mddev->curr_resync == 1)
6774 					/* no need to wait here, we can wait the next
6775 					 * time 'round when curr_resync == 2
6776 					 */
6777 					continue;
6778 				/* We need to wait 'interruptible' so as not to
6779 				 * contribute to the load average, and not to
6780 				 * be caught by 'softlockup'
6781 				 */
6782 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6783 				if (!kthread_should_stop() &&
6784 				    mddev2->curr_resync >= mddev->curr_resync) {
6785 					printk(KERN_INFO "md: delaying %s of %s"
6786 					       " until %s has finished (they"
6787 					       " share one or more physical units)\n",
6788 					       desc, mdname(mddev), mdname(mddev2));
6789 					mddev_put(mddev2);
6790 					if (signal_pending(current))
6791 						flush_signals(current);
6792 					schedule();
6793 					finish_wait(&resync_wait, &wq);
6794 					goto try_again;
6795 				}
6796 				finish_wait(&resync_wait, &wq);
6797 			}
6798 		}
6799 	} while (mddev->curr_resync < 2);
6800 
6801 	j = 0;
6802 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6803 		/* resync follows the size requested by the personality,
6804 		 * which defaults to physical size, but can be virtual size
6805 		 */
6806 		max_sectors = mddev->resync_max_sectors;
6807 		mddev->resync_mismatches = 0;
6808 		/* we don't use the checkpoint if there's a bitmap */
6809 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6810 			j = mddev->resync_min;
6811 		else if (!mddev->bitmap)
6812 			j = mddev->recovery_cp;
6813 
6814 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6815 		max_sectors = mddev->dev_sectors;
6816 	else {
6817 		/* recovery follows the physical size of devices */
6818 		max_sectors = mddev->dev_sectors;
6819 		j = MaxSector;
6820 		rcu_read_lock();
6821 		list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6822 			if (rdev->raid_disk >= 0 &&
6823 			    !test_bit(Faulty, &rdev->flags) &&
6824 			    !test_bit(In_sync, &rdev->flags) &&
6825 			    rdev->recovery_offset < j)
6826 				j = rdev->recovery_offset;
6827 		rcu_read_unlock();
6828 	}
6829 
6830 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6831 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
6832 		" %d KB/sec/disk.\n", speed_min(mddev));
6833 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6834 	       "(but not more than %d KB/sec) for %s.\n",
6835 	       speed_max(mddev), desc);
6836 
6837 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6838 
6839 	io_sectors = 0;
6840 	for (m = 0; m < SYNC_MARKS; m++) {
6841 		mark[m] = jiffies;
6842 		mark_cnt[m] = io_sectors;
6843 	}
6844 	last_mark = 0;
6845 	mddev->resync_mark = mark[last_mark];
6846 	mddev->resync_mark_cnt = mark_cnt[last_mark];
6847 
6848 	/*
6849 	 * Tune reconstruction:
6850 	 */
6851 	window = 32*(PAGE_SIZE/512);
6852 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6853 		window/2,(unsigned long long) max_sectors/2);
6854 
6855 	atomic_set(&mddev->recovery_active, 0);
6856 	last_check = 0;
6857 
6858 	if (j>2) {
6859 		printk(KERN_INFO
6860 		       "md: resuming %s of %s from checkpoint.\n",
6861 		       desc, mdname(mddev));
6862 		mddev->curr_resync = j;
6863 	}
6864 	mddev->curr_resync_completed = j;
6865 
6866 	while (j < max_sectors) {
6867 		sector_t sectors;
6868 
6869 		skipped = 0;
6870 
6871 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6872 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
6873 		      (mddev->curr_resync - mddev->curr_resync_completed)
6874 		      > (max_sectors >> 4)) ||
6875 		     (j - mddev->curr_resync_completed)*2
6876 		     >= mddev->resync_max - mddev->curr_resync_completed
6877 			    )) {
6878 			/* time to update curr_resync_completed */
6879 			md_unplug(mddev);
6880 			wait_event(mddev->recovery_wait,
6881 				   atomic_read(&mddev->recovery_active) == 0);
6882 			mddev->curr_resync_completed = j;
6883 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6884 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6885 		}
6886 
6887 		while (j >= mddev->resync_max && !kthread_should_stop()) {
6888 			/* As this condition is controlled by user-space,
6889 			 * we can block indefinitely, so use '_interruptible'
6890 			 * to avoid triggering warnings.
6891 			 */
6892 			flush_signals(current); /* just in case */
6893 			wait_event_interruptible(mddev->recovery_wait,
6894 						 mddev->resync_max > j
6895 						 || kthread_should_stop());
6896 		}
6897 
6898 		if (kthread_should_stop())
6899 			goto interrupted;
6900 
6901 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
6902 						  currspeed < speed_min(mddev));
6903 		if (sectors == 0) {
6904 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6905 			goto out;
6906 		}
6907 
6908 		if (!skipped) { /* actual IO requested */
6909 			io_sectors += sectors;
6910 			atomic_add(sectors, &mddev->recovery_active);
6911 		}
6912 
6913 		j += sectors;
6914 		if (j>1) mddev->curr_resync = j;
6915 		mddev->curr_mark_cnt = io_sectors;
6916 		if (last_check == 0)
6917 			/* this is the earliers that rebuilt will be
6918 			 * visible in /proc/mdstat
6919 			 */
6920 			md_new_event(mddev);
6921 
6922 		if (last_check + window > io_sectors || j == max_sectors)
6923 			continue;
6924 
6925 		last_check = io_sectors;
6926 
6927 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6928 			break;
6929 
6930 	repeat:
6931 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6932 			/* step marks */
6933 			int next = (last_mark+1) % SYNC_MARKS;
6934 
6935 			mddev->resync_mark = mark[next];
6936 			mddev->resync_mark_cnt = mark_cnt[next];
6937 			mark[next] = jiffies;
6938 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6939 			last_mark = next;
6940 		}
6941 
6942 
6943 		if (kthread_should_stop())
6944 			goto interrupted;
6945 
6946 
6947 		/*
6948 		 * this loop exits only if either when we are slower than
6949 		 * the 'hard' speed limit, or the system was IO-idle for
6950 		 * a jiffy.
6951 		 * the system might be non-idle CPU-wise, but we only care
6952 		 * about not overloading the IO subsystem. (things like an
6953 		 * e2fsck being done on the RAID array should execute fast)
6954 		 */
6955 		md_unplug(mddev);
6956 		cond_resched();
6957 
6958 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6959 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
6960 
6961 		if (currspeed > speed_min(mddev)) {
6962 			if ((currspeed > speed_max(mddev)) ||
6963 					!is_mddev_idle(mddev, 0)) {
6964 				msleep(500);
6965 				goto repeat;
6966 			}
6967 		}
6968 	}
6969 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6970 	/*
6971 	 * this also signals 'finished resyncing' to md_stop
6972 	 */
6973  out:
6974 	md_unplug(mddev);
6975 
6976 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6977 
6978 	/* tell personality that we are finished */
6979 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6980 
6981 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6982 	    mddev->curr_resync > 2) {
6983 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6984 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6985 				if (mddev->curr_resync >= mddev->recovery_cp) {
6986 					printk(KERN_INFO
6987 					       "md: checkpointing %s of %s.\n",
6988 					       desc, mdname(mddev));
6989 					mddev->recovery_cp = mddev->curr_resync;
6990 				}
6991 			} else
6992 				mddev->recovery_cp = MaxSector;
6993 		} else {
6994 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6995 				mddev->curr_resync = MaxSector;
6996 			rcu_read_lock();
6997 			list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6998 				if (rdev->raid_disk >= 0 &&
6999 				    mddev->delta_disks >= 0 &&
7000 				    !test_bit(Faulty, &rdev->flags) &&
7001 				    !test_bit(In_sync, &rdev->flags) &&
7002 				    rdev->recovery_offset < mddev->curr_resync)
7003 					rdev->recovery_offset = mddev->curr_resync;
7004 			rcu_read_unlock();
7005 		}
7006 	}
7007 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7008 
7009  skip:
7010 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7011 		/* We completed so min/max setting can be forgotten if used. */
7012 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7013 			mddev->resync_min = 0;
7014 		mddev->resync_max = MaxSector;
7015 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7016 		mddev->resync_min = mddev->curr_resync_completed;
7017 	mddev->curr_resync = 0;
7018 	wake_up(&resync_wait);
7019 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7020 	md_wakeup_thread(mddev->thread);
7021 	return;
7022 
7023  interrupted:
7024 	/*
7025 	 * got a signal, exit.
7026 	 */
7027 	printk(KERN_INFO
7028 	       "md: md_do_sync() got signal ... exiting\n");
7029 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7030 	goto out;
7031 
7032 }
7033 EXPORT_SYMBOL_GPL(md_do_sync);
7034 
7035 
7036 static int remove_and_add_spares(mddev_t *mddev)
7037 {
7038 	mdk_rdev_t *rdev;
7039 	int spares = 0;
7040 
7041 	mddev->curr_resync_completed = 0;
7042 
7043 	list_for_each_entry(rdev, &mddev->disks, same_set)
7044 		if (rdev->raid_disk >= 0 &&
7045 		    !test_bit(Blocked, &rdev->flags) &&
7046 		    (test_bit(Faulty, &rdev->flags) ||
7047 		     ! test_bit(In_sync, &rdev->flags)) &&
7048 		    atomic_read(&rdev->nr_pending)==0) {
7049 			if (mddev->pers->hot_remove_disk(
7050 				    mddev, rdev->raid_disk)==0) {
7051 				char nm[20];
7052 				sprintf(nm,"rd%d", rdev->raid_disk);
7053 				sysfs_remove_link(&mddev->kobj, nm);
7054 				rdev->raid_disk = -1;
7055 			}
7056 		}
7057 
7058 	if (mddev->degraded && !mddev->recovery_disabled) {
7059 		list_for_each_entry(rdev, &mddev->disks, same_set) {
7060 			if (rdev->raid_disk >= 0 &&
7061 			    !test_bit(In_sync, &rdev->flags) &&
7062 			    !test_bit(Blocked, &rdev->flags))
7063 				spares++;
7064 			if (rdev->raid_disk < 0
7065 			    && !test_bit(Faulty, &rdev->flags)) {
7066 				rdev->recovery_offset = 0;
7067 				if (mddev->pers->
7068 				    hot_add_disk(mddev, rdev) == 0) {
7069 					char nm[20];
7070 					sprintf(nm, "rd%d", rdev->raid_disk);
7071 					if (sysfs_create_link(&mddev->kobj,
7072 							      &rdev->kobj, nm))
7073 						/* failure here is OK */;
7074 					spares++;
7075 					md_new_event(mddev);
7076 					set_bit(MD_CHANGE_DEVS, &mddev->flags);
7077 				} else
7078 					break;
7079 			}
7080 		}
7081 	}
7082 	return spares;
7083 }
7084 
7085 static void reap_sync_thread(mddev_t *mddev)
7086 {
7087 	mdk_rdev_t *rdev;
7088 
7089 	/* resync has finished, collect result */
7090 	md_unregister_thread(mddev->sync_thread);
7091 	mddev->sync_thread = NULL;
7092 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7093 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7094 		/* success...*/
7095 		/* activate any spares */
7096 		if (mddev->pers->spare_active(mddev))
7097 			sysfs_notify(&mddev->kobj, NULL,
7098 				     "degraded");
7099 	}
7100 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7101 	    mddev->pers->finish_reshape)
7102 		mddev->pers->finish_reshape(mddev);
7103 	md_update_sb(mddev, 1);
7104 
7105 	/* if array is no-longer degraded, then any saved_raid_disk
7106 	 * information must be scrapped
7107 	 */
7108 	if (!mddev->degraded)
7109 		list_for_each_entry(rdev, &mddev->disks, same_set)
7110 			rdev->saved_raid_disk = -1;
7111 
7112 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7113 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7114 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7115 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7116 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7117 	/* flag recovery needed just to double check */
7118 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7119 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7120 	md_new_event(mddev);
7121 }
7122 
7123 /*
7124  * This routine is regularly called by all per-raid-array threads to
7125  * deal with generic issues like resync and super-block update.
7126  * Raid personalities that don't have a thread (linear/raid0) do not
7127  * need this as they never do any recovery or update the superblock.
7128  *
7129  * It does not do any resync itself, but rather "forks" off other threads
7130  * to do that as needed.
7131  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7132  * "->recovery" and create a thread at ->sync_thread.
7133  * When the thread finishes it sets MD_RECOVERY_DONE
7134  * and wakeups up this thread which will reap the thread and finish up.
7135  * This thread also removes any faulty devices (with nr_pending == 0).
7136  *
7137  * The overall approach is:
7138  *  1/ if the superblock needs updating, update it.
7139  *  2/ If a recovery thread is running, don't do anything else.
7140  *  3/ If recovery has finished, clean up, possibly marking spares active.
7141  *  4/ If there are any faulty devices, remove them.
7142  *  5/ If array is degraded, try to add spares devices
7143  *  6/ If array has spares or is not in-sync, start a resync thread.
7144  */
7145 void md_check_recovery(mddev_t *mddev)
7146 {
7147 	if (mddev->bitmap)
7148 		bitmap_daemon_work(mddev);
7149 
7150 	if (mddev->ro)
7151 		return;
7152 
7153 	if (signal_pending(current)) {
7154 		if (mddev->pers->sync_request && !mddev->external) {
7155 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7156 			       mdname(mddev));
7157 			mddev->safemode = 2;
7158 		}
7159 		flush_signals(current);
7160 	}
7161 
7162 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7163 		return;
7164 	if ( ! (
7165 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7166 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7167 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7168 		(mddev->external == 0 && mddev->safemode == 1) ||
7169 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7170 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7171 		))
7172 		return;
7173 
7174 	if (mddev_trylock(mddev)) {
7175 		int spares = 0;
7176 
7177 		if (mddev->ro) {
7178 			/* Only thing we do on a ro array is remove
7179 			 * failed devices.
7180 			 */
7181 			mdk_rdev_t *rdev;
7182 			list_for_each_entry(rdev, &mddev->disks, same_set)
7183 				if (rdev->raid_disk >= 0 &&
7184 				    !test_bit(Blocked, &rdev->flags) &&
7185 				    test_bit(Faulty, &rdev->flags) &&
7186 				    atomic_read(&rdev->nr_pending)==0) {
7187 					if (mddev->pers->hot_remove_disk(
7188 						    mddev, rdev->raid_disk)==0) {
7189 						char nm[20];
7190 						sprintf(nm,"rd%d", rdev->raid_disk);
7191 						sysfs_remove_link(&mddev->kobj, nm);
7192 						rdev->raid_disk = -1;
7193 					}
7194 				}
7195 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7196 			goto unlock;
7197 		}
7198 
7199 		if (!mddev->external) {
7200 			int did_change = 0;
7201 			spin_lock_irq(&mddev->write_lock);
7202 			if (mddev->safemode &&
7203 			    !atomic_read(&mddev->writes_pending) &&
7204 			    !mddev->in_sync &&
7205 			    mddev->recovery_cp == MaxSector) {
7206 				mddev->in_sync = 1;
7207 				did_change = 1;
7208 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7209 			}
7210 			if (mddev->safemode == 1)
7211 				mddev->safemode = 0;
7212 			spin_unlock_irq(&mddev->write_lock);
7213 			if (did_change)
7214 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7215 		}
7216 
7217 		if (mddev->flags)
7218 			md_update_sb(mddev, 0);
7219 
7220 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7221 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7222 			/* resync/recovery still happening */
7223 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7224 			goto unlock;
7225 		}
7226 		if (mddev->sync_thread) {
7227 			reap_sync_thread(mddev);
7228 			goto unlock;
7229 		}
7230 		/* Set RUNNING before clearing NEEDED to avoid
7231 		 * any transients in the value of "sync_action".
7232 		 */
7233 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7234 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7235 		/* Clear some bits that don't mean anything, but
7236 		 * might be left set
7237 		 */
7238 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7239 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7240 
7241 		if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7242 			goto unlock;
7243 		/* no recovery is running.
7244 		 * remove any failed drives, then
7245 		 * add spares if possible.
7246 		 * Spare are also removed and re-added, to allow
7247 		 * the personality to fail the re-add.
7248 		 */
7249 
7250 		if (mddev->reshape_position != MaxSector) {
7251 			if (mddev->pers->check_reshape == NULL ||
7252 			    mddev->pers->check_reshape(mddev) != 0)
7253 				/* Cannot proceed */
7254 				goto unlock;
7255 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7256 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7257 		} else if ((spares = remove_and_add_spares(mddev))) {
7258 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7259 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7260 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7261 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7262 		} else if (mddev->recovery_cp < MaxSector) {
7263 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7264 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7265 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7266 			/* nothing to be done ... */
7267 			goto unlock;
7268 
7269 		if (mddev->pers->sync_request) {
7270 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7271 				/* We are adding a device or devices to an array
7272 				 * which has the bitmap stored on all devices.
7273 				 * So make sure all bitmap pages get written
7274 				 */
7275 				bitmap_write_all(mddev->bitmap);
7276 			}
7277 			mddev->sync_thread = md_register_thread(md_do_sync,
7278 								mddev,
7279 								"resync");
7280 			if (!mddev->sync_thread) {
7281 				printk(KERN_ERR "%s: could not start resync"
7282 					" thread...\n",
7283 					mdname(mddev));
7284 				/* leave the spares where they are, it shouldn't hurt */
7285 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7286 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7287 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7288 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7289 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7290 			} else
7291 				md_wakeup_thread(mddev->sync_thread);
7292 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7293 			md_new_event(mddev);
7294 		}
7295 	unlock:
7296 		if (!mddev->sync_thread) {
7297 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7298 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7299 					       &mddev->recovery))
7300 				if (mddev->sysfs_action)
7301 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7302 		}
7303 		mddev_unlock(mddev);
7304 	}
7305 }
7306 
7307 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7308 {
7309 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7310 	wait_event_timeout(rdev->blocked_wait,
7311 			   !test_bit(Blocked, &rdev->flags),
7312 			   msecs_to_jiffies(5000));
7313 	rdev_dec_pending(rdev, mddev);
7314 }
7315 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7316 
7317 static int md_notify_reboot(struct notifier_block *this,
7318 			    unsigned long code, void *x)
7319 {
7320 	struct list_head *tmp;
7321 	mddev_t *mddev;
7322 
7323 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7324 
7325 		printk(KERN_INFO "md: stopping all md devices.\n");
7326 
7327 		for_each_mddev(mddev, tmp)
7328 			if (mddev_trylock(mddev)) {
7329 				/* Force a switch to readonly even array
7330 				 * appears to still be in use.  Hence
7331 				 * the '100'.
7332 				 */
7333 				md_set_readonly(mddev, 100);
7334 				mddev_unlock(mddev);
7335 			}
7336 		/*
7337 		 * certain more exotic SCSI devices are known to be
7338 		 * volatile wrt too early system reboots. While the
7339 		 * right place to handle this issue is the given
7340 		 * driver, we do want to have a safe RAID driver ...
7341 		 */
7342 		mdelay(1000*1);
7343 	}
7344 	return NOTIFY_DONE;
7345 }
7346 
7347 static struct notifier_block md_notifier = {
7348 	.notifier_call	= md_notify_reboot,
7349 	.next		= NULL,
7350 	.priority	= INT_MAX, /* before any real devices */
7351 };
7352 
7353 static void md_geninit(void)
7354 {
7355 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7356 
7357 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7358 }
7359 
7360 static int __init md_init(void)
7361 {
7362 	int ret = -ENOMEM;
7363 
7364 	md_wq = alloc_workqueue("md", WQ_RESCUER, 0);
7365 	if (!md_wq)
7366 		goto err_wq;
7367 
7368 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7369 	if (!md_misc_wq)
7370 		goto err_misc_wq;
7371 
7372 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7373 		goto err_md;
7374 
7375 	if ((ret = register_blkdev(0, "mdp")) < 0)
7376 		goto err_mdp;
7377 	mdp_major = ret;
7378 
7379 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7380 			    md_probe, NULL, NULL);
7381 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7382 			    md_probe, NULL, NULL);
7383 
7384 	register_reboot_notifier(&md_notifier);
7385 	raid_table_header = register_sysctl_table(raid_root_table);
7386 
7387 	md_geninit();
7388 	return 0;
7389 
7390 err_mdp:
7391 	unregister_blkdev(MD_MAJOR, "md");
7392 err_md:
7393 	destroy_workqueue(md_misc_wq);
7394 err_misc_wq:
7395 	destroy_workqueue(md_wq);
7396 err_wq:
7397 	return ret;
7398 }
7399 
7400 #ifndef MODULE
7401 
7402 /*
7403  * Searches all registered partitions for autorun RAID arrays
7404  * at boot time.
7405  */
7406 
7407 static LIST_HEAD(all_detected_devices);
7408 struct detected_devices_node {
7409 	struct list_head list;
7410 	dev_t dev;
7411 };
7412 
7413 void md_autodetect_dev(dev_t dev)
7414 {
7415 	struct detected_devices_node *node_detected_dev;
7416 
7417 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7418 	if (node_detected_dev) {
7419 		node_detected_dev->dev = dev;
7420 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
7421 	} else {
7422 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7423 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7424 	}
7425 }
7426 
7427 
7428 static void autostart_arrays(int part)
7429 {
7430 	mdk_rdev_t *rdev;
7431 	struct detected_devices_node *node_detected_dev;
7432 	dev_t dev;
7433 	int i_scanned, i_passed;
7434 
7435 	i_scanned = 0;
7436 	i_passed = 0;
7437 
7438 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7439 
7440 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7441 		i_scanned++;
7442 		node_detected_dev = list_entry(all_detected_devices.next,
7443 					struct detected_devices_node, list);
7444 		list_del(&node_detected_dev->list);
7445 		dev = node_detected_dev->dev;
7446 		kfree(node_detected_dev);
7447 		rdev = md_import_device(dev,0, 90);
7448 		if (IS_ERR(rdev))
7449 			continue;
7450 
7451 		if (test_bit(Faulty, &rdev->flags)) {
7452 			MD_BUG();
7453 			continue;
7454 		}
7455 		set_bit(AutoDetected, &rdev->flags);
7456 		list_add(&rdev->same_set, &pending_raid_disks);
7457 		i_passed++;
7458 	}
7459 
7460 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7461 						i_scanned, i_passed);
7462 
7463 	autorun_devices(part);
7464 }
7465 
7466 #endif /* !MODULE */
7467 
7468 static __exit void md_exit(void)
7469 {
7470 	mddev_t *mddev;
7471 	struct list_head *tmp;
7472 
7473 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7474 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7475 
7476 	unregister_blkdev(MD_MAJOR,"md");
7477 	unregister_blkdev(mdp_major, "mdp");
7478 	unregister_reboot_notifier(&md_notifier);
7479 	unregister_sysctl_table(raid_table_header);
7480 	remove_proc_entry("mdstat", NULL);
7481 	for_each_mddev(mddev, tmp) {
7482 		export_array(mddev);
7483 		mddev->hold_active = 0;
7484 	}
7485 	destroy_workqueue(md_misc_wq);
7486 	destroy_workqueue(md_wq);
7487 }
7488 
7489 subsys_initcall(md_init);
7490 module_exit(md_exit)
7491 
7492 static int get_ro(char *buffer, struct kernel_param *kp)
7493 {
7494 	return sprintf(buffer, "%d", start_readonly);
7495 }
7496 static int set_ro(const char *val, struct kernel_param *kp)
7497 {
7498 	char *e;
7499 	int num = simple_strtoul(val, &e, 10);
7500 	if (*val && (*e == '\0' || *e == '\n')) {
7501 		start_readonly = num;
7502 		return 0;
7503 	}
7504 	return -EINVAL;
7505 }
7506 
7507 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7508 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7509 
7510 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7511 
7512 EXPORT_SYMBOL(register_md_personality);
7513 EXPORT_SYMBOL(unregister_md_personality);
7514 EXPORT_SYMBOL(md_error);
7515 EXPORT_SYMBOL(md_done_sync);
7516 EXPORT_SYMBOL(md_write_start);
7517 EXPORT_SYMBOL(md_write_end);
7518 EXPORT_SYMBOL(md_register_thread);
7519 EXPORT_SYMBOL(md_unregister_thread);
7520 EXPORT_SYMBOL(md_wakeup_thread);
7521 EXPORT_SYMBOL(md_check_recovery);
7522 MODULE_LICENSE("GPL");
7523 MODULE_DESCRIPTION("MD RAID framework");
7524 MODULE_ALIAS("md");
7525 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
7526