1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 static struct kobj_type md_ktype; 88 89 struct md_cluster_operations *md_cluster_ops; 90 EXPORT_SYMBOL(md_cluster_ops); 91 struct module *md_cluster_mod; 92 EXPORT_SYMBOL(md_cluster_mod); 93 94 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 95 static struct workqueue_struct *md_wq; 96 static struct workqueue_struct *md_misc_wq; 97 98 static int remove_and_add_spares(struct mddev *mddev, 99 struct md_rdev *this); 100 static void mddev_detach(struct mddev *mddev); 101 102 /* 103 * Default number of read corrections we'll attempt on an rdev 104 * before ejecting it from the array. We divide the read error 105 * count by 2 for every hour elapsed between read errors. 106 */ 107 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 108 /* 109 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 110 * is 1000 KB/sec, so the extra system load does not show up that much. 111 * Increase it if you want to have more _guaranteed_ speed. Note that 112 * the RAID driver will use the maximum available bandwidth if the IO 113 * subsystem is idle. There is also an 'absolute maximum' reconstruction 114 * speed limit - in case reconstruction slows down your system despite 115 * idle IO detection. 116 * 117 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 118 * or /sys/block/mdX/md/sync_speed_{min,max} 119 */ 120 121 static int sysctl_speed_limit_min = 1000; 122 static int sysctl_speed_limit_max = 200000; 123 static inline int speed_min(struct mddev *mddev) 124 { 125 return mddev->sync_speed_min ? 126 mddev->sync_speed_min : sysctl_speed_limit_min; 127 } 128 129 static inline int speed_max(struct mddev *mddev) 130 { 131 return mddev->sync_speed_max ? 132 mddev->sync_speed_max : sysctl_speed_limit_max; 133 } 134 135 static void * flush_info_alloc(gfp_t gfp_flags, void *data) 136 { 137 return kzalloc(sizeof(struct flush_info), gfp_flags); 138 } 139 static void flush_info_free(void *flush_info, void *data) 140 { 141 kfree(flush_info); 142 } 143 144 static void * flush_bio_alloc(gfp_t gfp_flags, void *data) 145 { 146 return kzalloc(sizeof(struct flush_bio), gfp_flags); 147 } 148 static void flush_bio_free(void *flush_bio, void *data) 149 { 150 kfree(flush_bio); 151 } 152 153 static struct ctl_table_header *raid_table_header; 154 155 static struct ctl_table raid_table[] = { 156 { 157 .procname = "speed_limit_min", 158 .data = &sysctl_speed_limit_min, 159 .maxlen = sizeof(int), 160 .mode = S_IRUGO|S_IWUSR, 161 .proc_handler = proc_dointvec, 162 }, 163 { 164 .procname = "speed_limit_max", 165 .data = &sysctl_speed_limit_max, 166 .maxlen = sizeof(int), 167 .mode = S_IRUGO|S_IWUSR, 168 .proc_handler = proc_dointvec, 169 }, 170 { } 171 }; 172 173 static struct ctl_table raid_dir_table[] = { 174 { 175 .procname = "raid", 176 .maxlen = 0, 177 .mode = S_IRUGO|S_IXUGO, 178 .child = raid_table, 179 }, 180 { } 181 }; 182 183 static struct ctl_table raid_root_table[] = { 184 { 185 .procname = "dev", 186 .maxlen = 0, 187 .mode = 0555, 188 .child = raid_dir_table, 189 }, 190 { } 191 }; 192 193 static const struct block_device_operations md_fops; 194 195 static int start_readonly; 196 197 /* 198 * The original mechanism for creating an md device is to create 199 * a device node in /dev and to open it. This causes races with device-close. 200 * The preferred method is to write to the "new_array" module parameter. 201 * This can avoid races. 202 * Setting create_on_open to false disables the original mechanism 203 * so all the races disappear. 204 */ 205 static bool create_on_open = true; 206 207 /* bio_clone_mddev 208 * like bio_clone_bioset, but with a local bio set 209 */ 210 211 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 212 struct mddev *mddev) 213 { 214 struct bio *b; 215 216 if (!mddev || !bioset_initialized(&mddev->bio_set)) 217 return bio_alloc(gfp_mask, nr_iovecs); 218 219 b = bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 220 if (!b) 221 return NULL; 222 return b; 223 } 224 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 225 226 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 227 { 228 if (!mddev || !bioset_initialized(&mddev->sync_set)) 229 return bio_alloc(GFP_NOIO, 1); 230 231 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 232 } 233 234 /* 235 * We have a system wide 'event count' that is incremented 236 * on any 'interesting' event, and readers of /proc/mdstat 237 * can use 'poll' or 'select' to find out when the event 238 * count increases. 239 * 240 * Events are: 241 * start array, stop array, error, add device, remove device, 242 * start build, activate spare 243 */ 244 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 245 static atomic_t md_event_count; 246 void md_new_event(struct mddev *mddev) 247 { 248 atomic_inc(&md_event_count); 249 wake_up(&md_event_waiters); 250 } 251 EXPORT_SYMBOL_GPL(md_new_event); 252 253 /* 254 * Enables to iterate over all existing md arrays 255 * all_mddevs_lock protects this list. 256 */ 257 static LIST_HEAD(all_mddevs); 258 static DEFINE_SPINLOCK(all_mddevs_lock); 259 260 /* 261 * iterates through all used mddevs in the system. 262 * We take care to grab the all_mddevs_lock whenever navigating 263 * the list, and to always hold a refcount when unlocked. 264 * Any code which breaks out of this loop while own 265 * a reference to the current mddev and must mddev_put it. 266 */ 267 #define for_each_mddev(_mddev,_tmp) \ 268 \ 269 for (({ spin_lock(&all_mddevs_lock); \ 270 _tmp = all_mddevs.next; \ 271 _mddev = NULL;}); \ 272 ({ if (_tmp != &all_mddevs) \ 273 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 274 spin_unlock(&all_mddevs_lock); \ 275 if (_mddev) mddev_put(_mddev); \ 276 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 277 _tmp != &all_mddevs;}); \ 278 ({ spin_lock(&all_mddevs_lock); \ 279 _tmp = _tmp->next;}) \ 280 ) 281 282 /* Rather than calling directly into the personality make_request function, 283 * IO requests come here first so that we can check if the device is 284 * being suspended pending a reconfiguration. 285 * We hold a refcount over the call to ->make_request. By the time that 286 * call has finished, the bio has been linked into some internal structure 287 * and so is visible to ->quiesce(), so we don't need the refcount any more. 288 */ 289 static bool is_suspended(struct mddev *mddev, struct bio *bio) 290 { 291 if (mddev->suspended) 292 return true; 293 if (bio_data_dir(bio) != WRITE) 294 return false; 295 if (mddev->suspend_lo >= mddev->suspend_hi) 296 return false; 297 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 298 return false; 299 if (bio_end_sector(bio) < mddev->suspend_lo) 300 return false; 301 return true; 302 } 303 304 void md_handle_request(struct mddev *mddev, struct bio *bio) 305 { 306 check_suspended: 307 rcu_read_lock(); 308 if (is_suspended(mddev, bio)) { 309 DEFINE_WAIT(__wait); 310 for (;;) { 311 prepare_to_wait(&mddev->sb_wait, &__wait, 312 TASK_UNINTERRUPTIBLE); 313 if (!is_suspended(mddev, bio)) 314 break; 315 rcu_read_unlock(); 316 schedule(); 317 rcu_read_lock(); 318 } 319 finish_wait(&mddev->sb_wait, &__wait); 320 } 321 atomic_inc(&mddev->active_io); 322 rcu_read_unlock(); 323 324 if (!mddev->pers->make_request(mddev, bio)) { 325 atomic_dec(&mddev->active_io); 326 wake_up(&mddev->sb_wait); 327 goto check_suspended; 328 } 329 330 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 331 wake_up(&mddev->sb_wait); 332 } 333 EXPORT_SYMBOL(md_handle_request); 334 335 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 336 { 337 const int rw = bio_data_dir(bio); 338 struct mddev *mddev = q->queuedata; 339 unsigned int sectors; 340 int cpu; 341 342 blk_queue_split(q, &bio); 343 344 if (mddev == NULL || mddev->pers == NULL) { 345 bio_io_error(bio); 346 return BLK_QC_T_NONE; 347 } 348 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 349 if (bio_sectors(bio) != 0) 350 bio->bi_status = BLK_STS_IOERR; 351 bio_endio(bio); 352 return BLK_QC_T_NONE; 353 } 354 355 /* 356 * save the sectors now since our bio can 357 * go away inside make_request 358 */ 359 sectors = bio_sectors(bio); 360 /* bio could be mergeable after passing to underlayer */ 361 bio->bi_opf &= ~REQ_NOMERGE; 362 363 md_handle_request(mddev, bio); 364 365 cpu = part_stat_lock(); 366 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 367 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 368 part_stat_unlock(); 369 370 return BLK_QC_T_NONE; 371 } 372 373 /* mddev_suspend makes sure no new requests are submitted 374 * to the device, and that any requests that have been submitted 375 * are completely handled. 376 * Once mddev_detach() is called and completes, the module will be 377 * completely unused. 378 */ 379 void mddev_suspend(struct mddev *mddev) 380 { 381 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 382 lockdep_assert_held(&mddev->reconfig_mutex); 383 if (mddev->suspended++) 384 return; 385 synchronize_rcu(); 386 wake_up(&mddev->sb_wait); 387 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 388 smp_mb__after_atomic(); 389 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 390 mddev->pers->quiesce(mddev, 1); 391 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 392 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 393 394 del_timer_sync(&mddev->safemode_timer); 395 } 396 EXPORT_SYMBOL_GPL(mddev_suspend); 397 398 void mddev_resume(struct mddev *mddev) 399 { 400 lockdep_assert_held(&mddev->reconfig_mutex); 401 if (--mddev->suspended) 402 return; 403 wake_up(&mddev->sb_wait); 404 mddev->pers->quiesce(mddev, 0); 405 406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 407 md_wakeup_thread(mddev->thread); 408 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 409 } 410 EXPORT_SYMBOL_GPL(mddev_resume); 411 412 int mddev_congested(struct mddev *mddev, int bits) 413 { 414 struct md_personality *pers = mddev->pers; 415 int ret = 0; 416 417 rcu_read_lock(); 418 if (mddev->suspended) 419 ret = 1; 420 else if (pers && pers->congested) 421 ret = pers->congested(mddev, bits); 422 rcu_read_unlock(); 423 return ret; 424 } 425 EXPORT_SYMBOL_GPL(mddev_congested); 426 static int md_congested(void *data, int bits) 427 { 428 struct mddev *mddev = data; 429 return mddev_congested(mddev, bits); 430 } 431 432 /* 433 * Generic flush handling for md 434 */ 435 static void submit_flushes(struct work_struct *ws) 436 { 437 struct flush_info *fi = container_of(ws, struct flush_info, flush_work); 438 struct mddev *mddev = fi->mddev; 439 struct bio *bio = fi->bio; 440 441 bio->bi_opf &= ~REQ_PREFLUSH; 442 md_handle_request(mddev, bio); 443 444 mempool_free(fi, mddev->flush_pool); 445 } 446 447 static void md_end_flush(struct bio *fbio) 448 { 449 struct flush_bio *fb = fbio->bi_private; 450 struct md_rdev *rdev = fb->rdev; 451 struct flush_info *fi = fb->fi; 452 struct bio *bio = fi->bio; 453 struct mddev *mddev = fi->mddev; 454 455 rdev_dec_pending(rdev, mddev); 456 457 if (atomic_dec_and_test(&fi->flush_pending)) { 458 if (bio->bi_iter.bi_size == 0) 459 /* an empty barrier - all done */ 460 bio_endio(bio); 461 else { 462 INIT_WORK(&fi->flush_work, submit_flushes); 463 queue_work(md_wq, &fi->flush_work); 464 } 465 } 466 467 mempool_free(fb, mddev->flush_bio_pool); 468 bio_put(fbio); 469 } 470 471 void md_flush_request(struct mddev *mddev, struct bio *bio) 472 { 473 struct md_rdev *rdev; 474 struct flush_info *fi; 475 476 fi = mempool_alloc(mddev->flush_pool, GFP_NOIO); 477 478 fi->bio = bio; 479 fi->mddev = mddev; 480 atomic_set(&fi->flush_pending, 1); 481 482 rcu_read_lock(); 483 rdev_for_each_rcu(rdev, mddev) 484 if (rdev->raid_disk >= 0 && 485 !test_bit(Faulty, &rdev->flags)) { 486 /* Take two references, one is dropped 487 * when request finishes, one after 488 * we reclaim rcu_read_lock 489 */ 490 struct bio *bi; 491 struct flush_bio *fb; 492 atomic_inc(&rdev->nr_pending); 493 atomic_inc(&rdev->nr_pending); 494 rcu_read_unlock(); 495 496 fb = mempool_alloc(mddev->flush_bio_pool, GFP_NOIO); 497 fb->fi = fi; 498 fb->rdev = rdev; 499 500 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 501 bio_set_dev(bi, rdev->bdev); 502 bi->bi_end_io = md_end_flush; 503 bi->bi_private = fb; 504 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 505 506 atomic_inc(&fi->flush_pending); 507 submit_bio(bi); 508 509 rcu_read_lock(); 510 rdev_dec_pending(rdev, mddev); 511 } 512 rcu_read_unlock(); 513 514 if (atomic_dec_and_test(&fi->flush_pending)) { 515 if (bio->bi_iter.bi_size == 0) 516 /* an empty barrier - all done */ 517 bio_endio(bio); 518 else { 519 INIT_WORK(&fi->flush_work, submit_flushes); 520 queue_work(md_wq, &fi->flush_work); 521 } 522 } 523 } 524 EXPORT_SYMBOL(md_flush_request); 525 526 static inline struct mddev *mddev_get(struct mddev *mddev) 527 { 528 atomic_inc(&mddev->active); 529 return mddev; 530 } 531 532 static void mddev_delayed_delete(struct work_struct *ws); 533 534 static void mddev_put(struct mddev *mddev) 535 { 536 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 537 return; 538 if (!mddev->raid_disks && list_empty(&mddev->disks) && 539 mddev->ctime == 0 && !mddev->hold_active) { 540 /* Array is not configured at all, and not held active, 541 * so destroy it */ 542 list_del_init(&mddev->all_mddevs); 543 544 /* 545 * Call queue_work inside the spinlock so that 546 * flush_workqueue() after mddev_find will succeed in waiting 547 * for the work to be done. 548 */ 549 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 550 queue_work(md_misc_wq, &mddev->del_work); 551 } 552 spin_unlock(&all_mddevs_lock); 553 } 554 555 static void md_safemode_timeout(struct timer_list *t); 556 557 void mddev_init(struct mddev *mddev) 558 { 559 kobject_init(&mddev->kobj, &md_ktype); 560 mutex_init(&mddev->open_mutex); 561 mutex_init(&mddev->reconfig_mutex); 562 mutex_init(&mddev->bitmap_info.mutex); 563 INIT_LIST_HEAD(&mddev->disks); 564 INIT_LIST_HEAD(&mddev->all_mddevs); 565 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 566 atomic_set(&mddev->active, 1); 567 atomic_set(&mddev->openers, 0); 568 atomic_set(&mddev->active_io, 0); 569 spin_lock_init(&mddev->lock); 570 init_waitqueue_head(&mddev->sb_wait); 571 init_waitqueue_head(&mddev->recovery_wait); 572 mddev->reshape_position = MaxSector; 573 mddev->reshape_backwards = 0; 574 mddev->last_sync_action = "none"; 575 mddev->resync_min = 0; 576 mddev->resync_max = MaxSector; 577 mddev->level = LEVEL_NONE; 578 } 579 EXPORT_SYMBOL_GPL(mddev_init); 580 581 static struct mddev *mddev_find(dev_t unit) 582 { 583 struct mddev *mddev, *new = NULL; 584 585 if (unit && MAJOR(unit) != MD_MAJOR) 586 unit &= ~((1<<MdpMinorShift)-1); 587 588 retry: 589 spin_lock(&all_mddevs_lock); 590 591 if (unit) { 592 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 593 if (mddev->unit == unit) { 594 mddev_get(mddev); 595 spin_unlock(&all_mddevs_lock); 596 kfree(new); 597 return mddev; 598 } 599 600 if (new) { 601 list_add(&new->all_mddevs, &all_mddevs); 602 spin_unlock(&all_mddevs_lock); 603 new->hold_active = UNTIL_IOCTL; 604 return new; 605 } 606 } else if (new) { 607 /* find an unused unit number */ 608 static int next_minor = 512; 609 int start = next_minor; 610 int is_free = 0; 611 int dev = 0; 612 while (!is_free) { 613 dev = MKDEV(MD_MAJOR, next_minor); 614 next_minor++; 615 if (next_minor > MINORMASK) 616 next_minor = 0; 617 if (next_minor == start) { 618 /* Oh dear, all in use. */ 619 spin_unlock(&all_mddevs_lock); 620 kfree(new); 621 return NULL; 622 } 623 624 is_free = 1; 625 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 626 if (mddev->unit == dev) { 627 is_free = 0; 628 break; 629 } 630 } 631 new->unit = dev; 632 new->md_minor = MINOR(dev); 633 new->hold_active = UNTIL_STOP; 634 list_add(&new->all_mddevs, &all_mddevs); 635 spin_unlock(&all_mddevs_lock); 636 return new; 637 } 638 spin_unlock(&all_mddevs_lock); 639 640 new = kzalloc(sizeof(*new), GFP_KERNEL); 641 if (!new) 642 return NULL; 643 644 new->unit = unit; 645 if (MAJOR(unit) == MD_MAJOR) 646 new->md_minor = MINOR(unit); 647 else 648 new->md_minor = MINOR(unit) >> MdpMinorShift; 649 650 mddev_init(new); 651 652 goto retry; 653 } 654 655 static struct attribute_group md_redundancy_group; 656 657 void mddev_unlock(struct mddev *mddev) 658 { 659 if (mddev->to_remove) { 660 /* These cannot be removed under reconfig_mutex as 661 * an access to the files will try to take reconfig_mutex 662 * while holding the file unremovable, which leads to 663 * a deadlock. 664 * So hold set sysfs_active while the remove in happeing, 665 * and anything else which might set ->to_remove or my 666 * otherwise change the sysfs namespace will fail with 667 * -EBUSY if sysfs_active is still set. 668 * We set sysfs_active under reconfig_mutex and elsewhere 669 * test it under the same mutex to ensure its correct value 670 * is seen. 671 */ 672 struct attribute_group *to_remove = mddev->to_remove; 673 mddev->to_remove = NULL; 674 mddev->sysfs_active = 1; 675 mutex_unlock(&mddev->reconfig_mutex); 676 677 if (mddev->kobj.sd) { 678 if (to_remove != &md_redundancy_group) 679 sysfs_remove_group(&mddev->kobj, to_remove); 680 if (mddev->pers == NULL || 681 mddev->pers->sync_request == NULL) { 682 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 683 if (mddev->sysfs_action) 684 sysfs_put(mddev->sysfs_action); 685 mddev->sysfs_action = NULL; 686 } 687 } 688 mddev->sysfs_active = 0; 689 } else 690 mutex_unlock(&mddev->reconfig_mutex); 691 692 /* As we've dropped the mutex we need a spinlock to 693 * make sure the thread doesn't disappear 694 */ 695 spin_lock(&pers_lock); 696 md_wakeup_thread(mddev->thread); 697 wake_up(&mddev->sb_wait); 698 spin_unlock(&pers_lock); 699 } 700 EXPORT_SYMBOL_GPL(mddev_unlock); 701 702 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 703 { 704 struct md_rdev *rdev; 705 706 rdev_for_each_rcu(rdev, mddev) 707 if (rdev->desc_nr == nr) 708 return rdev; 709 710 return NULL; 711 } 712 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 713 714 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 725 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 726 { 727 struct md_rdev *rdev; 728 729 rdev_for_each_rcu(rdev, mddev) 730 if (rdev->bdev->bd_dev == dev) 731 return rdev; 732 733 return NULL; 734 } 735 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 736 737 static struct md_personality *find_pers(int level, char *clevel) 738 { 739 struct md_personality *pers; 740 list_for_each_entry(pers, &pers_list, list) { 741 if (level != LEVEL_NONE && pers->level == level) 742 return pers; 743 if (strcmp(pers->name, clevel)==0) 744 return pers; 745 } 746 return NULL; 747 } 748 749 /* return the offset of the super block in 512byte sectors */ 750 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 751 { 752 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 753 return MD_NEW_SIZE_SECTORS(num_sectors); 754 } 755 756 static int alloc_disk_sb(struct md_rdev *rdev) 757 { 758 rdev->sb_page = alloc_page(GFP_KERNEL); 759 if (!rdev->sb_page) 760 return -ENOMEM; 761 return 0; 762 } 763 764 void md_rdev_clear(struct md_rdev *rdev) 765 { 766 if (rdev->sb_page) { 767 put_page(rdev->sb_page); 768 rdev->sb_loaded = 0; 769 rdev->sb_page = NULL; 770 rdev->sb_start = 0; 771 rdev->sectors = 0; 772 } 773 if (rdev->bb_page) { 774 put_page(rdev->bb_page); 775 rdev->bb_page = NULL; 776 } 777 badblocks_exit(&rdev->badblocks); 778 } 779 EXPORT_SYMBOL_GPL(md_rdev_clear); 780 781 static void super_written(struct bio *bio) 782 { 783 struct md_rdev *rdev = bio->bi_private; 784 struct mddev *mddev = rdev->mddev; 785 786 if (bio->bi_status) { 787 pr_err("md: super_written gets error=%d\n", bio->bi_status); 788 md_error(mddev, rdev); 789 if (!test_bit(Faulty, &rdev->flags) 790 && (bio->bi_opf & MD_FAILFAST)) { 791 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 792 set_bit(LastDev, &rdev->flags); 793 } 794 } else 795 clear_bit(LastDev, &rdev->flags); 796 797 if (atomic_dec_and_test(&mddev->pending_writes)) 798 wake_up(&mddev->sb_wait); 799 rdev_dec_pending(rdev, mddev); 800 bio_put(bio); 801 } 802 803 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 804 sector_t sector, int size, struct page *page) 805 { 806 /* write first size bytes of page to sector of rdev 807 * Increment mddev->pending_writes before returning 808 * and decrement it on completion, waking up sb_wait 809 * if zero is reached. 810 * If an error occurred, call md_error 811 */ 812 struct bio *bio; 813 int ff = 0; 814 815 if (!page) 816 return; 817 818 if (test_bit(Faulty, &rdev->flags)) 819 return; 820 821 bio = md_bio_alloc_sync(mddev); 822 823 atomic_inc(&rdev->nr_pending); 824 825 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 826 bio->bi_iter.bi_sector = sector; 827 bio_add_page(bio, page, size, 0); 828 bio->bi_private = rdev; 829 bio->bi_end_io = super_written; 830 831 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 832 test_bit(FailFast, &rdev->flags) && 833 !test_bit(LastDev, &rdev->flags)) 834 ff = MD_FAILFAST; 835 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 836 837 atomic_inc(&mddev->pending_writes); 838 submit_bio(bio); 839 } 840 841 int md_super_wait(struct mddev *mddev) 842 { 843 /* wait for all superblock writes that were scheduled to complete */ 844 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 845 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 846 return -EAGAIN; 847 return 0; 848 } 849 850 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 851 struct page *page, int op, int op_flags, bool metadata_op) 852 { 853 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 854 int ret; 855 856 if (metadata_op && rdev->meta_bdev) 857 bio_set_dev(bio, rdev->meta_bdev); 858 else 859 bio_set_dev(bio, rdev->bdev); 860 bio_set_op_attrs(bio, op, op_flags); 861 if (metadata_op) 862 bio->bi_iter.bi_sector = sector + rdev->sb_start; 863 else if (rdev->mddev->reshape_position != MaxSector && 864 (rdev->mddev->reshape_backwards == 865 (sector >= rdev->mddev->reshape_position))) 866 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 867 else 868 bio->bi_iter.bi_sector = sector + rdev->data_offset; 869 bio_add_page(bio, page, size, 0); 870 871 submit_bio_wait(bio); 872 873 ret = !bio->bi_status; 874 bio_put(bio); 875 return ret; 876 } 877 EXPORT_SYMBOL_GPL(sync_page_io); 878 879 static int read_disk_sb(struct md_rdev *rdev, int size) 880 { 881 char b[BDEVNAME_SIZE]; 882 883 if (rdev->sb_loaded) 884 return 0; 885 886 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 887 goto fail; 888 rdev->sb_loaded = 1; 889 return 0; 890 891 fail: 892 pr_err("md: disabled device %s, could not read superblock.\n", 893 bdevname(rdev->bdev,b)); 894 return -EINVAL; 895 } 896 897 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 898 { 899 return sb1->set_uuid0 == sb2->set_uuid0 && 900 sb1->set_uuid1 == sb2->set_uuid1 && 901 sb1->set_uuid2 == sb2->set_uuid2 && 902 sb1->set_uuid3 == sb2->set_uuid3; 903 } 904 905 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 906 { 907 int ret; 908 mdp_super_t *tmp1, *tmp2; 909 910 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 911 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 912 913 if (!tmp1 || !tmp2) { 914 ret = 0; 915 goto abort; 916 } 917 918 *tmp1 = *sb1; 919 *tmp2 = *sb2; 920 921 /* 922 * nr_disks is not constant 923 */ 924 tmp1->nr_disks = 0; 925 tmp2->nr_disks = 0; 926 927 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 928 abort: 929 kfree(tmp1); 930 kfree(tmp2); 931 return ret; 932 } 933 934 static u32 md_csum_fold(u32 csum) 935 { 936 csum = (csum & 0xffff) + (csum >> 16); 937 return (csum & 0xffff) + (csum >> 16); 938 } 939 940 static unsigned int calc_sb_csum(mdp_super_t *sb) 941 { 942 u64 newcsum = 0; 943 u32 *sb32 = (u32*)sb; 944 int i; 945 unsigned int disk_csum, csum; 946 947 disk_csum = sb->sb_csum; 948 sb->sb_csum = 0; 949 950 for (i = 0; i < MD_SB_BYTES/4 ; i++) 951 newcsum += sb32[i]; 952 csum = (newcsum & 0xffffffff) + (newcsum>>32); 953 954 #ifdef CONFIG_ALPHA 955 /* This used to use csum_partial, which was wrong for several 956 * reasons including that different results are returned on 957 * different architectures. It isn't critical that we get exactly 958 * the same return value as before (we always csum_fold before 959 * testing, and that removes any differences). However as we 960 * know that csum_partial always returned a 16bit value on 961 * alphas, do a fold to maximise conformity to previous behaviour. 962 */ 963 sb->sb_csum = md_csum_fold(disk_csum); 964 #else 965 sb->sb_csum = disk_csum; 966 #endif 967 return csum; 968 } 969 970 /* 971 * Handle superblock details. 972 * We want to be able to handle multiple superblock formats 973 * so we have a common interface to them all, and an array of 974 * different handlers. 975 * We rely on user-space to write the initial superblock, and support 976 * reading and updating of superblocks. 977 * Interface methods are: 978 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 979 * loads and validates a superblock on dev. 980 * if refdev != NULL, compare superblocks on both devices 981 * Return: 982 * 0 - dev has a superblock that is compatible with refdev 983 * 1 - dev has a superblock that is compatible and newer than refdev 984 * so dev should be used as the refdev in future 985 * -EINVAL superblock incompatible or invalid 986 * -othererror e.g. -EIO 987 * 988 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 989 * Verify that dev is acceptable into mddev. 990 * The first time, mddev->raid_disks will be 0, and data from 991 * dev should be merged in. Subsequent calls check that dev 992 * is new enough. Return 0 or -EINVAL 993 * 994 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 995 * Update the superblock for rdev with data in mddev 996 * This does not write to disc. 997 * 998 */ 999 1000 struct super_type { 1001 char *name; 1002 struct module *owner; 1003 int (*load_super)(struct md_rdev *rdev, 1004 struct md_rdev *refdev, 1005 int minor_version); 1006 int (*validate_super)(struct mddev *mddev, 1007 struct md_rdev *rdev); 1008 void (*sync_super)(struct mddev *mddev, 1009 struct md_rdev *rdev); 1010 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1011 sector_t num_sectors); 1012 int (*allow_new_offset)(struct md_rdev *rdev, 1013 unsigned long long new_offset); 1014 }; 1015 1016 /* 1017 * Check that the given mddev has no bitmap. 1018 * 1019 * This function is called from the run method of all personalities that do not 1020 * support bitmaps. It prints an error message and returns non-zero if mddev 1021 * has a bitmap. Otherwise, it returns 0. 1022 * 1023 */ 1024 int md_check_no_bitmap(struct mddev *mddev) 1025 { 1026 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1027 return 0; 1028 pr_warn("%s: bitmaps are not supported for %s\n", 1029 mdname(mddev), mddev->pers->name); 1030 return 1; 1031 } 1032 EXPORT_SYMBOL(md_check_no_bitmap); 1033 1034 /* 1035 * load_super for 0.90.0 1036 */ 1037 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1038 { 1039 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1040 mdp_super_t *sb; 1041 int ret; 1042 1043 /* 1044 * Calculate the position of the superblock (512byte sectors), 1045 * it's at the end of the disk. 1046 * 1047 * It also happens to be a multiple of 4Kb. 1048 */ 1049 rdev->sb_start = calc_dev_sboffset(rdev); 1050 1051 ret = read_disk_sb(rdev, MD_SB_BYTES); 1052 if (ret) 1053 return ret; 1054 1055 ret = -EINVAL; 1056 1057 bdevname(rdev->bdev, b); 1058 sb = page_address(rdev->sb_page); 1059 1060 if (sb->md_magic != MD_SB_MAGIC) { 1061 pr_warn("md: invalid raid superblock magic on %s\n", b); 1062 goto abort; 1063 } 1064 1065 if (sb->major_version != 0 || 1066 sb->minor_version < 90 || 1067 sb->minor_version > 91) { 1068 pr_warn("Bad version number %d.%d on %s\n", 1069 sb->major_version, sb->minor_version, b); 1070 goto abort; 1071 } 1072 1073 if (sb->raid_disks <= 0) 1074 goto abort; 1075 1076 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1077 pr_warn("md: invalid superblock checksum on %s\n", b); 1078 goto abort; 1079 } 1080 1081 rdev->preferred_minor = sb->md_minor; 1082 rdev->data_offset = 0; 1083 rdev->new_data_offset = 0; 1084 rdev->sb_size = MD_SB_BYTES; 1085 rdev->badblocks.shift = -1; 1086 1087 if (sb->level == LEVEL_MULTIPATH) 1088 rdev->desc_nr = -1; 1089 else 1090 rdev->desc_nr = sb->this_disk.number; 1091 1092 if (!refdev) { 1093 ret = 1; 1094 } else { 1095 __u64 ev1, ev2; 1096 mdp_super_t *refsb = page_address(refdev->sb_page); 1097 if (!md_uuid_equal(refsb, sb)) { 1098 pr_warn("md: %s has different UUID to %s\n", 1099 b, bdevname(refdev->bdev,b2)); 1100 goto abort; 1101 } 1102 if (!md_sb_equal(refsb, sb)) { 1103 pr_warn("md: %s has same UUID but different superblock to %s\n", 1104 b, bdevname(refdev->bdev, b2)); 1105 goto abort; 1106 } 1107 ev1 = md_event(sb); 1108 ev2 = md_event(refsb); 1109 if (ev1 > ev2) 1110 ret = 1; 1111 else 1112 ret = 0; 1113 } 1114 rdev->sectors = rdev->sb_start; 1115 /* Limit to 4TB as metadata cannot record more than that. 1116 * (not needed for Linear and RAID0 as metadata doesn't 1117 * record this size) 1118 */ 1119 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1120 sb->level >= 1) 1121 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1122 1123 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1124 /* "this cannot possibly happen" ... */ 1125 ret = -EINVAL; 1126 1127 abort: 1128 return ret; 1129 } 1130 1131 /* 1132 * validate_super for 0.90.0 1133 */ 1134 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1135 { 1136 mdp_disk_t *desc; 1137 mdp_super_t *sb = page_address(rdev->sb_page); 1138 __u64 ev1 = md_event(sb); 1139 1140 rdev->raid_disk = -1; 1141 clear_bit(Faulty, &rdev->flags); 1142 clear_bit(In_sync, &rdev->flags); 1143 clear_bit(Bitmap_sync, &rdev->flags); 1144 clear_bit(WriteMostly, &rdev->flags); 1145 1146 if (mddev->raid_disks == 0) { 1147 mddev->major_version = 0; 1148 mddev->minor_version = sb->minor_version; 1149 mddev->patch_version = sb->patch_version; 1150 mddev->external = 0; 1151 mddev->chunk_sectors = sb->chunk_size >> 9; 1152 mddev->ctime = sb->ctime; 1153 mddev->utime = sb->utime; 1154 mddev->level = sb->level; 1155 mddev->clevel[0] = 0; 1156 mddev->layout = sb->layout; 1157 mddev->raid_disks = sb->raid_disks; 1158 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1159 mddev->events = ev1; 1160 mddev->bitmap_info.offset = 0; 1161 mddev->bitmap_info.space = 0; 1162 /* bitmap can use 60 K after the 4K superblocks */ 1163 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1164 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1165 mddev->reshape_backwards = 0; 1166 1167 if (mddev->minor_version >= 91) { 1168 mddev->reshape_position = sb->reshape_position; 1169 mddev->delta_disks = sb->delta_disks; 1170 mddev->new_level = sb->new_level; 1171 mddev->new_layout = sb->new_layout; 1172 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1173 if (mddev->delta_disks < 0) 1174 mddev->reshape_backwards = 1; 1175 } else { 1176 mddev->reshape_position = MaxSector; 1177 mddev->delta_disks = 0; 1178 mddev->new_level = mddev->level; 1179 mddev->new_layout = mddev->layout; 1180 mddev->new_chunk_sectors = mddev->chunk_sectors; 1181 } 1182 1183 if (sb->state & (1<<MD_SB_CLEAN)) 1184 mddev->recovery_cp = MaxSector; 1185 else { 1186 if (sb->events_hi == sb->cp_events_hi && 1187 sb->events_lo == sb->cp_events_lo) { 1188 mddev->recovery_cp = sb->recovery_cp; 1189 } else 1190 mddev->recovery_cp = 0; 1191 } 1192 1193 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1194 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1195 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1196 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1197 1198 mddev->max_disks = MD_SB_DISKS; 1199 1200 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1201 mddev->bitmap_info.file == NULL) { 1202 mddev->bitmap_info.offset = 1203 mddev->bitmap_info.default_offset; 1204 mddev->bitmap_info.space = 1205 mddev->bitmap_info.default_space; 1206 } 1207 1208 } else if (mddev->pers == NULL) { 1209 /* Insist on good event counter while assembling, except 1210 * for spares (which don't need an event count) */ 1211 ++ev1; 1212 if (sb->disks[rdev->desc_nr].state & ( 1213 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1214 if (ev1 < mddev->events) 1215 return -EINVAL; 1216 } else if (mddev->bitmap) { 1217 /* if adding to array with a bitmap, then we can accept an 1218 * older device ... but not too old. 1219 */ 1220 if (ev1 < mddev->bitmap->events_cleared) 1221 return 0; 1222 if (ev1 < mddev->events) 1223 set_bit(Bitmap_sync, &rdev->flags); 1224 } else { 1225 if (ev1 < mddev->events) 1226 /* just a hot-add of a new device, leave raid_disk at -1 */ 1227 return 0; 1228 } 1229 1230 if (mddev->level != LEVEL_MULTIPATH) { 1231 desc = sb->disks + rdev->desc_nr; 1232 1233 if (desc->state & (1<<MD_DISK_FAULTY)) 1234 set_bit(Faulty, &rdev->flags); 1235 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1236 desc->raid_disk < mddev->raid_disks */) { 1237 set_bit(In_sync, &rdev->flags); 1238 rdev->raid_disk = desc->raid_disk; 1239 rdev->saved_raid_disk = desc->raid_disk; 1240 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1241 /* active but not in sync implies recovery up to 1242 * reshape position. We don't know exactly where 1243 * that is, so set to zero for now */ 1244 if (mddev->minor_version >= 91) { 1245 rdev->recovery_offset = 0; 1246 rdev->raid_disk = desc->raid_disk; 1247 } 1248 } 1249 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1250 set_bit(WriteMostly, &rdev->flags); 1251 if (desc->state & (1<<MD_DISK_FAILFAST)) 1252 set_bit(FailFast, &rdev->flags); 1253 } else /* MULTIPATH are always insync */ 1254 set_bit(In_sync, &rdev->flags); 1255 return 0; 1256 } 1257 1258 /* 1259 * sync_super for 0.90.0 1260 */ 1261 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1262 { 1263 mdp_super_t *sb; 1264 struct md_rdev *rdev2; 1265 int next_spare = mddev->raid_disks; 1266 1267 /* make rdev->sb match mddev data.. 1268 * 1269 * 1/ zero out disks 1270 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1271 * 3/ any empty disks < next_spare become removed 1272 * 1273 * disks[0] gets initialised to REMOVED because 1274 * we cannot be sure from other fields if it has 1275 * been initialised or not. 1276 */ 1277 int i; 1278 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1279 1280 rdev->sb_size = MD_SB_BYTES; 1281 1282 sb = page_address(rdev->sb_page); 1283 1284 memset(sb, 0, sizeof(*sb)); 1285 1286 sb->md_magic = MD_SB_MAGIC; 1287 sb->major_version = mddev->major_version; 1288 sb->patch_version = mddev->patch_version; 1289 sb->gvalid_words = 0; /* ignored */ 1290 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1291 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1292 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1293 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1294 1295 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1296 sb->level = mddev->level; 1297 sb->size = mddev->dev_sectors / 2; 1298 sb->raid_disks = mddev->raid_disks; 1299 sb->md_minor = mddev->md_minor; 1300 sb->not_persistent = 0; 1301 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1302 sb->state = 0; 1303 sb->events_hi = (mddev->events>>32); 1304 sb->events_lo = (u32)mddev->events; 1305 1306 if (mddev->reshape_position == MaxSector) 1307 sb->minor_version = 90; 1308 else { 1309 sb->minor_version = 91; 1310 sb->reshape_position = mddev->reshape_position; 1311 sb->new_level = mddev->new_level; 1312 sb->delta_disks = mddev->delta_disks; 1313 sb->new_layout = mddev->new_layout; 1314 sb->new_chunk = mddev->new_chunk_sectors << 9; 1315 } 1316 mddev->minor_version = sb->minor_version; 1317 if (mddev->in_sync) 1318 { 1319 sb->recovery_cp = mddev->recovery_cp; 1320 sb->cp_events_hi = (mddev->events>>32); 1321 sb->cp_events_lo = (u32)mddev->events; 1322 if (mddev->recovery_cp == MaxSector) 1323 sb->state = (1<< MD_SB_CLEAN); 1324 } else 1325 sb->recovery_cp = 0; 1326 1327 sb->layout = mddev->layout; 1328 sb->chunk_size = mddev->chunk_sectors << 9; 1329 1330 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1331 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1332 1333 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1334 rdev_for_each(rdev2, mddev) { 1335 mdp_disk_t *d; 1336 int desc_nr; 1337 int is_active = test_bit(In_sync, &rdev2->flags); 1338 1339 if (rdev2->raid_disk >= 0 && 1340 sb->minor_version >= 91) 1341 /* we have nowhere to store the recovery_offset, 1342 * but if it is not below the reshape_position, 1343 * we can piggy-back on that. 1344 */ 1345 is_active = 1; 1346 if (rdev2->raid_disk < 0 || 1347 test_bit(Faulty, &rdev2->flags)) 1348 is_active = 0; 1349 if (is_active) 1350 desc_nr = rdev2->raid_disk; 1351 else 1352 desc_nr = next_spare++; 1353 rdev2->desc_nr = desc_nr; 1354 d = &sb->disks[rdev2->desc_nr]; 1355 nr_disks++; 1356 d->number = rdev2->desc_nr; 1357 d->major = MAJOR(rdev2->bdev->bd_dev); 1358 d->minor = MINOR(rdev2->bdev->bd_dev); 1359 if (is_active) 1360 d->raid_disk = rdev2->raid_disk; 1361 else 1362 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1363 if (test_bit(Faulty, &rdev2->flags)) 1364 d->state = (1<<MD_DISK_FAULTY); 1365 else if (is_active) { 1366 d->state = (1<<MD_DISK_ACTIVE); 1367 if (test_bit(In_sync, &rdev2->flags)) 1368 d->state |= (1<<MD_DISK_SYNC); 1369 active++; 1370 working++; 1371 } else { 1372 d->state = 0; 1373 spare++; 1374 working++; 1375 } 1376 if (test_bit(WriteMostly, &rdev2->flags)) 1377 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1378 if (test_bit(FailFast, &rdev2->flags)) 1379 d->state |= (1<<MD_DISK_FAILFAST); 1380 } 1381 /* now set the "removed" and "faulty" bits on any missing devices */ 1382 for (i=0 ; i < mddev->raid_disks ; i++) { 1383 mdp_disk_t *d = &sb->disks[i]; 1384 if (d->state == 0 && d->number == 0) { 1385 d->number = i; 1386 d->raid_disk = i; 1387 d->state = (1<<MD_DISK_REMOVED); 1388 d->state |= (1<<MD_DISK_FAULTY); 1389 failed++; 1390 } 1391 } 1392 sb->nr_disks = nr_disks; 1393 sb->active_disks = active; 1394 sb->working_disks = working; 1395 sb->failed_disks = failed; 1396 sb->spare_disks = spare; 1397 1398 sb->this_disk = sb->disks[rdev->desc_nr]; 1399 sb->sb_csum = calc_sb_csum(sb); 1400 } 1401 1402 /* 1403 * rdev_size_change for 0.90.0 1404 */ 1405 static unsigned long long 1406 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1407 { 1408 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1409 return 0; /* component must fit device */ 1410 if (rdev->mddev->bitmap_info.offset) 1411 return 0; /* can't move bitmap */ 1412 rdev->sb_start = calc_dev_sboffset(rdev); 1413 if (!num_sectors || num_sectors > rdev->sb_start) 1414 num_sectors = rdev->sb_start; 1415 /* Limit to 4TB as metadata cannot record more than that. 1416 * 4TB == 2^32 KB, or 2*2^32 sectors. 1417 */ 1418 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1419 rdev->mddev->level >= 1) 1420 num_sectors = (sector_t)(2ULL << 32) - 2; 1421 do { 1422 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1423 rdev->sb_page); 1424 } while (md_super_wait(rdev->mddev) < 0); 1425 return num_sectors; 1426 } 1427 1428 static int 1429 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1430 { 1431 /* non-zero offset changes not possible with v0.90 */ 1432 return new_offset == 0; 1433 } 1434 1435 /* 1436 * version 1 superblock 1437 */ 1438 1439 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1440 { 1441 __le32 disk_csum; 1442 u32 csum; 1443 unsigned long long newcsum; 1444 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1445 __le32 *isuper = (__le32*)sb; 1446 1447 disk_csum = sb->sb_csum; 1448 sb->sb_csum = 0; 1449 newcsum = 0; 1450 for (; size >= 4; size -= 4) 1451 newcsum += le32_to_cpu(*isuper++); 1452 1453 if (size == 2) 1454 newcsum += le16_to_cpu(*(__le16*) isuper); 1455 1456 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1457 sb->sb_csum = disk_csum; 1458 return cpu_to_le32(csum); 1459 } 1460 1461 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1462 { 1463 struct mdp_superblock_1 *sb; 1464 int ret; 1465 sector_t sb_start; 1466 sector_t sectors; 1467 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1468 int bmask; 1469 1470 /* 1471 * Calculate the position of the superblock in 512byte sectors. 1472 * It is always aligned to a 4K boundary and 1473 * depeding on minor_version, it can be: 1474 * 0: At least 8K, but less than 12K, from end of device 1475 * 1: At start of device 1476 * 2: 4K from start of device. 1477 */ 1478 switch(minor_version) { 1479 case 0: 1480 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1481 sb_start -= 8*2; 1482 sb_start &= ~(sector_t)(4*2-1); 1483 break; 1484 case 1: 1485 sb_start = 0; 1486 break; 1487 case 2: 1488 sb_start = 8; 1489 break; 1490 default: 1491 return -EINVAL; 1492 } 1493 rdev->sb_start = sb_start; 1494 1495 /* superblock is rarely larger than 1K, but it can be larger, 1496 * and it is safe to read 4k, so we do that 1497 */ 1498 ret = read_disk_sb(rdev, 4096); 1499 if (ret) return ret; 1500 1501 sb = page_address(rdev->sb_page); 1502 1503 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1504 sb->major_version != cpu_to_le32(1) || 1505 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1506 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1507 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1508 return -EINVAL; 1509 1510 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1511 pr_warn("md: invalid superblock checksum on %s\n", 1512 bdevname(rdev->bdev,b)); 1513 return -EINVAL; 1514 } 1515 if (le64_to_cpu(sb->data_size) < 10) { 1516 pr_warn("md: data_size too small on %s\n", 1517 bdevname(rdev->bdev,b)); 1518 return -EINVAL; 1519 } 1520 if (sb->pad0 || 1521 sb->pad3[0] || 1522 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1523 /* Some padding is non-zero, might be a new feature */ 1524 return -EINVAL; 1525 1526 rdev->preferred_minor = 0xffff; 1527 rdev->data_offset = le64_to_cpu(sb->data_offset); 1528 rdev->new_data_offset = rdev->data_offset; 1529 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1530 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1531 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1532 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1533 1534 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1535 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1536 if (rdev->sb_size & bmask) 1537 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1538 1539 if (minor_version 1540 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1541 return -EINVAL; 1542 if (minor_version 1543 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1544 return -EINVAL; 1545 1546 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1547 rdev->desc_nr = -1; 1548 else 1549 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1550 1551 if (!rdev->bb_page) { 1552 rdev->bb_page = alloc_page(GFP_KERNEL); 1553 if (!rdev->bb_page) 1554 return -ENOMEM; 1555 } 1556 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1557 rdev->badblocks.count == 0) { 1558 /* need to load the bad block list. 1559 * Currently we limit it to one page. 1560 */ 1561 s32 offset; 1562 sector_t bb_sector; 1563 u64 *bbp; 1564 int i; 1565 int sectors = le16_to_cpu(sb->bblog_size); 1566 if (sectors > (PAGE_SIZE / 512)) 1567 return -EINVAL; 1568 offset = le32_to_cpu(sb->bblog_offset); 1569 if (offset == 0) 1570 return -EINVAL; 1571 bb_sector = (long long)offset; 1572 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1573 rdev->bb_page, REQ_OP_READ, 0, true)) 1574 return -EIO; 1575 bbp = (u64 *)page_address(rdev->bb_page); 1576 rdev->badblocks.shift = sb->bblog_shift; 1577 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1578 u64 bb = le64_to_cpu(*bbp); 1579 int count = bb & (0x3ff); 1580 u64 sector = bb >> 10; 1581 sector <<= sb->bblog_shift; 1582 count <<= sb->bblog_shift; 1583 if (bb + 1 == 0) 1584 break; 1585 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1586 return -EINVAL; 1587 } 1588 } else if (sb->bblog_offset != 0) 1589 rdev->badblocks.shift = 0; 1590 1591 if ((le32_to_cpu(sb->feature_map) & 1592 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1593 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1594 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1595 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1596 } 1597 1598 if (!refdev) { 1599 ret = 1; 1600 } else { 1601 __u64 ev1, ev2; 1602 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1603 1604 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1605 sb->level != refsb->level || 1606 sb->layout != refsb->layout || 1607 sb->chunksize != refsb->chunksize) { 1608 pr_warn("md: %s has strangely different superblock to %s\n", 1609 bdevname(rdev->bdev,b), 1610 bdevname(refdev->bdev,b2)); 1611 return -EINVAL; 1612 } 1613 ev1 = le64_to_cpu(sb->events); 1614 ev2 = le64_to_cpu(refsb->events); 1615 1616 if (ev1 > ev2) 1617 ret = 1; 1618 else 1619 ret = 0; 1620 } 1621 if (minor_version) { 1622 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1623 sectors -= rdev->data_offset; 1624 } else 1625 sectors = rdev->sb_start; 1626 if (sectors < le64_to_cpu(sb->data_size)) 1627 return -EINVAL; 1628 rdev->sectors = le64_to_cpu(sb->data_size); 1629 return ret; 1630 } 1631 1632 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1633 { 1634 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1635 __u64 ev1 = le64_to_cpu(sb->events); 1636 1637 rdev->raid_disk = -1; 1638 clear_bit(Faulty, &rdev->flags); 1639 clear_bit(In_sync, &rdev->flags); 1640 clear_bit(Bitmap_sync, &rdev->flags); 1641 clear_bit(WriteMostly, &rdev->flags); 1642 1643 if (mddev->raid_disks == 0) { 1644 mddev->major_version = 1; 1645 mddev->patch_version = 0; 1646 mddev->external = 0; 1647 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1648 mddev->ctime = le64_to_cpu(sb->ctime); 1649 mddev->utime = le64_to_cpu(sb->utime); 1650 mddev->level = le32_to_cpu(sb->level); 1651 mddev->clevel[0] = 0; 1652 mddev->layout = le32_to_cpu(sb->layout); 1653 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1654 mddev->dev_sectors = le64_to_cpu(sb->size); 1655 mddev->events = ev1; 1656 mddev->bitmap_info.offset = 0; 1657 mddev->bitmap_info.space = 0; 1658 /* Default location for bitmap is 1K after superblock 1659 * using 3K - total of 4K 1660 */ 1661 mddev->bitmap_info.default_offset = 1024 >> 9; 1662 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1663 mddev->reshape_backwards = 0; 1664 1665 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1666 memcpy(mddev->uuid, sb->set_uuid, 16); 1667 1668 mddev->max_disks = (4096-256)/2; 1669 1670 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1671 mddev->bitmap_info.file == NULL) { 1672 mddev->bitmap_info.offset = 1673 (__s32)le32_to_cpu(sb->bitmap_offset); 1674 /* Metadata doesn't record how much space is available. 1675 * For 1.0, we assume we can use up to the superblock 1676 * if before, else to 4K beyond superblock. 1677 * For others, assume no change is possible. 1678 */ 1679 if (mddev->minor_version > 0) 1680 mddev->bitmap_info.space = 0; 1681 else if (mddev->bitmap_info.offset > 0) 1682 mddev->bitmap_info.space = 1683 8 - mddev->bitmap_info.offset; 1684 else 1685 mddev->bitmap_info.space = 1686 -mddev->bitmap_info.offset; 1687 } 1688 1689 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1690 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1691 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1692 mddev->new_level = le32_to_cpu(sb->new_level); 1693 mddev->new_layout = le32_to_cpu(sb->new_layout); 1694 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1695 if (mddev->delta_disks < 0 || 1696 (mddev->delta_disks == 0 && 1697 (le32_to_cpu(sb->feature_map) 1698 & MD_FEATURE_RESHAPE_BACKWARDS))) 1699 mddev->reshape_backwards = 1; 1700 } else { 1701 mddev->reshape_position = MaxSector; 1702 mddev->delta_disks = 0; 1703 mddev->new_level = mddev->level; 1704 mddev->new_layout = mddev->layout; 1705 mddev->new_chunk_sectors = mddev->chunk_sectors; 1706 } 1707 1708 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1709 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1710 1711 if (le32_to_cpu(sb->feature_map) & 1712 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1713 if (le32_to_cpu(sb->feature_map) & 1714 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1715 return -EINVAL; 1716 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1717 (le32_to_cpu(sb->feature_map) & 1718 MD_FEATURE_MULTIPLE_PPLS)) 1719 return -EINVAL; 1720 set_bit(MD_HAS_PPL, &mddev->flags); 1721 } 1722 } else if (mddev->pers == NULL) { 1723 /* Insist of good event counter while assembling, except for 1724 * spares (which don't need an event count) */ 1725 ++ev1; 1726 if (rdev->desc_nr >= 0 && 1727 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1728 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1729 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1730 if (ev1 < mddev->events) 1731 return -EINVAL; 1732 } else if (mddev->bitmap) { 1733 /* If adding to array with a bitmap, then we can accept an 1734 * older device, but not too old. 1735 */ 1736 if (ev1 < mddev->bitmap->events_cleared) 1737 return 0; 1738 if (ev1 < mddev->events) 1739 set_bit(Bitmap_sync, &rdev->flags); 1740 } else { 1741 if (ev1 < mddev->events) 1742 /* just a hot-add of a new device, leave raid_disk at -1 */ 1743 return 0; 1744 } 1745 if (mddev->level != LEVEL_MULTIPATH) { 1746 int role; 1747 if (rdev->desc_nr < 0 || 1748 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1749 role = MD_DISK_ROLE_SPARE; 1750 rdev->desc_nr = -1; 1751 } else 1752 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1753 switch(role) { 1754 case MD_DISK_ROLE_SPARE: /* spare */ 1755 break; 1756 case MD_DISK_ROLE_FAULTY: /* faulty */ 1757 set_bit(Faulty, &rdev->flags); 1758 break; 1759 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1760 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1761 /* journal device without journal feature */ 1762 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1763 return -EINVAL; 1764 } 1765 set_bit(Journal, &rdev->flags); 1766 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1767 rdev->raid_disk = 0; 1768 break; 1769 default: 1770 rdev->saved_raid_disk = role; 1771 if ((le32_to_cpu(sb->feature_map) & 1772 MD_FEATURE_RECOVERY_OFFSET)) { 1773 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1774 if (!(le32_to_cpu(sb->feature_map) & 1775 MD_FEATURE_RECOVERY_BITMAP)) 1776 rdev->saved_raid_disk = -1; 1777 } else 1778 set_bit(In_sync, &rdev->flags); 1779 rdev->raid_disk = role; 1780 break; 1781 } 1782 if (sb->devflags & WriteMostly1) 1783 set_bit(WriteMostly, &rdev->flags); 1784 if (sb->devflags & FailFast1) 1785 set_bit(FailFast, &rdev->flags); 1786 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1787 set_bit(Replacement, &rdev->flags); 1788 } else /* MULTIPATH are always insync */ 1789 set_bit(In_sync, &rdev->flags); 1790 1791 return 0; 1792 } 1793 1794 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1795 { 1796 struct mdp_superblock_1 *sb; 1797 struct md_rdev *rdev2; 1798 int max_dev, i; 1799 /* make rdev->sb match mddev and rdev data. */ 1800 1801 sb = page_address(rdev->sb_page); 1802 1803 sb->feature_map = 0; 1804 sb->pad0 = 0; 1805 sb->recovery_offset = cpu_to_le64(0); 1806 memset(sb->pad3, 0, sizeof(sb->pad3)); 1807 1808 sb->utime = cpu_to_le64((__u64)mddev->utime); 1809 sb->events = cpu_to_le64(mddev->events); 1810 if (mddev->in_sync) 1811 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1812 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1813 sb->resync_offset = cpu_to_le64(MaxSector); 1814 else 1815 sb->resync_offset = cpu_to_le64(0); 1816 1817 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1818 1819 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1820 sb->size = cpu_to_le64(mddev->dev_sectors); 1821 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1822 sb->level = cpu_to_le32(mddev->level); 1823 sb->layout = cpu_to_le32(mddev->layout); 1824 if (test_bit(FailFast, &rdev->flags)) 1825 sb->devflags |= FailFast1; 1826 else 1827 sb->devflags &= ~FailFast1; 1828 1829 if (test_bit(WriteMostly, &rdev->flags)) 1830 sb->devflags |= WriteMostly1; 1831 else 1832 sb->devflags &= ~WriteMostly1; 1833 sb->data_offset = cpu_to_le64(rdev->data_offset); 1834 sb->data_size = cpu_to_le64(rdev->sectors); 1835 1836 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1837 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1838 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1839 } 1840 1841 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1842 !test_bit(In_sync, &rdev->flags)) { 1843 sb->feature_map |= 1844 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1845 sb->recovery_offset = 1846 cpu_to_le64(rdev->recovery_offset); 1847 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1848 sb->feature_map |= 1849 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1850 } 1851 /* Note: recovery_offset and journal_tail share space */ 1852 if (test_bit(Journal, &rdev->flags)) 1853 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1854 if (test_bit(Replacement, &rdev->flags)) 1855 sb->feature_map |= 1856 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1857 1858 if (mddev->reshape_position != MaxSector) { 1859 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1860 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1861 sb->new_layout = cpu_to_le32(mddev->new_layout); 1862 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1863 sb->new_level = cpu_to_le32(mddev->new_level); 1864 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1865 if (mddev->delta_disks == 0 && 1866 mddev->reshape_backwards) 1867 sb->feature_map 1868 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1869 if (rdev->new_data_offset != rdev->data_offset) { 1870 sb->feature_map 1871 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1872 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1873 - rdev->data_offset)); 1874 } 1875 } 1876 1877 if (mddev_is_clustered(mddev)) 1878 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1879 1880 if (rdev->badblocks.count == 0) 1881 /* Nothing to do for bad blocks*/ ; 1882 else if (sb->bblog_offset == 0) 1883 /* Cannot record bad blocks on this device */ 1884 md_error(mddev, rdev); 1885 else { 1886 struct badblocks *bb = &rdev->badblocks; 1887 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1888 u64 *p = bb->page; 1889 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1890 if (bb->changed) { 1891 unsigned seq; 1892 1893 retry: 1894 seq = read_seqbegin(&bb->lock); 1895 1896 memset(bbp, 0xff, PAGE_SIZE); 1897 1898 for (i = 0 ; i < bb->count ; i++) { 1899 u64 internal_bb = p[i]; 1900 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1901 | BB_LEN(internal_bb)); 1902 bbp[i] = cpu_to_le64(store_bb); 1903 } 1904 bb->changed = 0; 1905 if (read_seqretry(&bb->lock, seq)) 1906 goto retry; 1907 1908 bb->sector = (rdev->sb_start + 1909 (int)le32_to_cpu(sb->bblog_offset)); 1910 bb->size = le16_to_cpu(sb->bblog_size); 1911 } 1912 } 1913 1914 max_dev = 0; 1915 rdev_for_each(rdev2, mddev) 1916 if (rdev2->desc_nr+1 > max_dev) 1917 max_dev = rdev2->desc_nr+1; 1918 1919 if (max_dev > le32_to_cpu(sb->max_dev)) { 1920 int bmask; 1921 sb->max_dev = cpu_to_le32(max_dev); 1922 rdev->sb_size = max_dev * 2 + 256; 1923 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1924 if (rdev->sb_size & bmask) 1925 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1926 } else 1927 max_dev = le32_to_cpu(sb->max_dev); 1928 1929 for (i=0; i<max_dev;i++) 1930 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1931 1932 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1933 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1934 1935 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1936 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1937 sb->feature_map |= 1938 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1939 else 1940 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1941 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1942 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1943 } 1944 1945 rdev_for_each(rdev2, mddev) { 1946 i = rdev2->desc_nr; 1947 if (test_bit(Faulty, &rdev2->flags)) 1948 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1949 else if (test_bit(In_sync, &rdev2->flags)) 1950 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1951 else if (test_bit(Journal, &rdev2->flags)) 1952 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1953 else if (rdev2->raid_disk >= 0) 1954 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1955 else 1956 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1957 } 1958 1959 sb->sb_csum = calc_sb_1_csum(sb); 1960 } 1961 1962 static unsigned long long 1963 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1964 { 1965 struct mdp_superblock_1 *sb; 1966 sector_t max_sectors; 1967 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1968 return 0; /* component must fit device */ 1969 if (rdev->data_offset != rdev->new_data_offset) 1970 return 0; /* too confusing */ 1971 if (rdev->sb_start < rdev->data_offset) { 1972 /* minor versions 1 and 2; superblock before data */ 1973 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1974 max_sectors -= rdev->data_offset; 1975 if (!num_sectors || num_sectors > max_sectors) 1976 num_sectors = max_sectors; 1977 } else if (rdev->mddev->bitmap_info.offset) { 1978 /* minor version 0 with bitmap we can't move */ 1979 return 0; 1980 } else { 1981 /* minor version 0; superblock after data */ 1982 sector_t sb_start; 1983 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1984 sb_start &= ~(sector_t)(4*2 - 1); 1985 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1986 if (!num_sectors || num_sectors > max_sectors) 1987 num_sectors = max_sectors; 1988 rdev->sb_start = sb_start; 1989 } 1990 sb = page_address(rdev->sb_page); 1991 sb->data_size = cpu_to_le64(num_sectors); 1992 sb->super_offset = cpu_to_le64(rdev->sb_start); 1993 sb->sb_csum = calc_sb_1_csum(sb); 1994 do { 1995 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1996 rdev->sb_page); 1997 } while (md_super_wait(rdev->mddev) < 0); 1998 return num_sectors; 1999 2000 } 2001 2002 static int 2003 super_1_allow_new_offset(struct md_rdev *rdev, 2004 unsigned long long new_offset) 2005 { 2006 /* All necessary checks on new >= old have been done */ 2007 struct bitmap *bitmap; 2008 if (new_offset >= rdev->data_offset) 2009 return 1; 2010 2011 /* with 1.0 metadata, there is no metadata to tread on 2012 * so we can always move back */ 2013 if (rdev->mddev->minor_version == 0) 2014 return 1; 2015 2016 /* otherwise we must be sure not to step on 2017 * any metadata, so stay: 2018 * 36K beyond start of superblock 2019 * beyond end of badblocks 2020 * beyond write-intent bitmap 2021 */ 2022 if (rdev->sb_start + (32+4)*2 > new_offset) 2023 return 0; 2024 bitmap = rdev->mddev->bitmap; 2025 if (bitmap && !rdev->mddev->bitmap_info.file && 2026 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2027 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2028 return 0; 2029 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2030 return 0; 2031 2032 return 1; 2033 } 2034 2035 static struct super_type super_types[] = { 2036 [0] = { 2037 .name = "0.90.0", 2038 .owner = THIS_MODULE, 2039 .load_super = super_90_load, 2040 .validate_super = super_90_validate, 2041 .sync_super = super_90_sync, 2042 .rdev_size_change = super_90_rdev_size_change, 2043 .allow_new_offset = super_90_allow_new_offset, 2044 }, 2045 [1] = { 2046 .name = "md-1", 2047 .owner = THIS_MODULE, 2048 .load_super = super_1_load, 2049 .validate_super = super_1_validate, 2050 .sync_super = super_1_sync, 2051 .rdev_size_change = super_1_rdev_size_change, 2052 .allow_new_offset = super_1_allow_new_offset, 2053 }, 2054 }; 2055 2056 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2057 { 2058 if (mddev->sync_super) { 2059 mddev->sync_super(mddev, rdev); 2060 return; 2061 } 2062 2063 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2064 2065 super_types[mddev->major_version].sync_super(mddev, rdev); 2066 } 2067 2068 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2069 { 2070 struct md_rdev *rdev, *rdev2; 2071 2072 rcu_read_lock(); 2073 rdev_for_each_rcu(rdev, mddev1) { 2074 if (test_bit(Faulty, &rdev->flags) || 2075 test_bit(Journal, &rdev->flags) || 2076 rdev->raid_disk == -1) 2077 continue; 2078 rdev_for_each_rcu(rdev2, mddev2) { 2079 if (test_bit(Faulty, &rdev2->flags) || 2080 test_bit(Journal, &rdev2->flags) || 2081 rdev2->raid_disk == -1) 2082 continue; 2083 if (rdev->bdev->bd_contains == 2084 rdev2->bdev->bd_contains) { 2085 rcu_read_unlock(); 2086 return 1; 2087 } 2088 } 2089 } 2090 rcu_read_unlock(); 2091 return 0; 2092 } 2093 2094 static LIST_HEAD(pending_raid_disks); 2095 2096 /* 2097 * Try to register data integrity profile for an mddev 2098 * 2099 * This is called when an array is started and after a disk has been kicked 2100 * from the array. It only succeeds if all working and active component devices 2101 * are integrity capable with matching profiles. 2102 */ 2103 int md_integrity_register(struct mddev *mddev) 2104 { 2105 struct md_rdev *rdev, *reference = NULL; 2106 2107 if (list_empty(&mddev->disks)) 2108 return 0; /* nothing to do */ 2109 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2110 return 0; /* shouldn't register, or already is */ 2111 rdev_for_each(rdev, mddev) { 2112 /* skip spares and non-functional disks */ 2113 if (test_bit(Faulty, &rdev->flags)) 2114 continue; 2115 if (rdev->raid_disk < 0) 2116 continue; 2117 if (!reference) { 2118 /* Use the first rdev as the reference */ 2119 reference = rdev; 2120 continue; 2121 } 2122 /* does this rdev's profile match the reference profile? */ 2123 if (blk_integrity_compare(reference->bdev->bd_disk, 2124 rdev->bdev->bd_disk) < 0) 2125 return -EINVAL; 2126 } 2127 if (!reference || !bdev_get_integrity(reference->bdev)) 2128 return 0; 2129 /* 2130 * All component devices are integrity capable and have matching 2131 * profiles, register the common profile for the md device. 2132 */ 2133 blk_integrity_register(mddev->gendisk, 2134 bdev_get_integrity(reference->bdev)); 2135 2136 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2137 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2138 pr_err("md: failed to create integrity pool for %s\n", 2139 mdname(mddev)); 2140 return -EINVAL; 2141 } 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(md_integrity_register); 2145 2146 /* 2147 * Attempt to add an rdev, but only if it is consistent with the current 2148 * integrity profile 2149 */ 2150 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2151 { 2152 struct blk_integrity *bi_rdev; 2153 struct blk_integrity *bi_mddev; 2154 char name[BDEVNAME_SIZE]; 2155 2156 if (!mddev->gendisk) 2157 return 0; 2158 2159 bi_rdev = bdev_get_integrity(rdev->bdev); 2160 bi_mddev = blk_get_integrity(mddev->gendisk); 2161 2162 if (!bi_mddev) /* nothing to do */ 2163 return 0; 2164 2165 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2166 pr_err("%s: incompatible integrity profile for %s\n", 2167 mdname(mddev), bdevname(rdev->bdev, name)); 2168 return -ENXIO; 2169 } 2170 2171 return 0; 2172 } 2173 EXPORT_SYMBOL(md_integrity_add_rdev); 2174 2175 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2176 { 2177 char b[BDEVNAME_SIZE]; 2178 struct kobject *ko; 2179 int err; 2180 2181 /* prevent duplicates */ 2182 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2183 return -EEXIST; 2184 2185 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2186 mddev->pers) 2187 return -EROFS; 2188 2189 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2190 if (!test_bit(Journal, &rdev->flags) && 2191 rdev->sectors && 2192 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2193 if (mddev->pers) { 2194 /* Cannot change size, so fail 2195 * If mddev->level <= 0, then we don't care 2196 * about aligning sizes (e.g. linear) 2197 */ 2198 if (mddev->level > 0) 2199 return -ENOSPC; 2200 } else 2201 mddev->dev_sectors = rdev->sectors; 2202 } 2203 2204 /* Verify rdev->desc_nr is unique. 2205 * If it is -1, assign a free number, else 2206 * check number is not in use 2207 */ 2208 rcu_read_lock(); 2209 if (rdev->desc_nr < 0) { 2210 int choice = 0; 2211 if (mddev->pers) 2212 choice = mddev->raid_disks; 2213 while (md_find_rdev_nr_rcu(mddev, choice)) 2214 choice++; 2215 rdev->desc_nr = choice; 2216 } else { 2217 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2218 rcu_read_unlock(); 2219 return -EBUSY; 2220 } 2221 } 2222 rcu_read_unlock(); 2223 if (!test_bit(Journal, &rdev->flags) && 2224 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2225 pr_warn("md: %s: array is limited to %d devices\n", 2226 mdname(mddev), mddev->max_disks); 2227 return -EBUSY; 2228 } 2229 bdevname(rdev->bdev,b); 2230 strreplace(b, '/', '!'); 2231 2232 rdev->mddev = mddev; 2233 pr_debug("md: bind<%s>\n", b); 2234 2235 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2236 goto fail; 2237 2238 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2239 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2240 /* failure here is OK */; 2241 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2242 2243 list_add_rcu(&rdev->same_set, &mddev->disks); 2244 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2245 2246 /* May as well allow recovery to be retried once */ 2247 mddev->recovery_disabled++; 2248 2249 return 0; 2250 2251 fail: 2252 pr_warn("md: failed to register dev-%s for %s\n", 2253 b, mdname(mddev)); 2254 return err; 2255 } 2256 2257 static void md_delayed_delete(struct work_struct *ws) 2258 { 2259 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2260 kobject_del(&rdev->kobj); 2261 kobject_put(&rdev->kobj); 2262 } 2263 2264 static void unbind_rdev_from_array(struct md_rdev *rdev) 2265 { 2266 char b[BDEVNAME_SIZE]; 2267 2268 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2269 list_del_rcu(&rdev->same_set); 2270 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2271 rdev->mddev = NULL; 2272 sysfs_remove_link(&rdev->kobj, "block"); 2273 sysfs_put(rdev->sysfs_state); 2274 rdev->sysfs_state = NULL; 2275 rdev->badblocks.count = 0; 2276 /* We need to delay this, otherwise we can deadlock when 2277 * writing to 'remove' to "dev/state". We also need 2278 * to delay it due to rcu usage. 2279 */ 2280 synchronize_rcu(); 2281 INIT_WORK(&rdev->del_work, md_delayed_delete); 2282 kobject_get(&rdev->kobj); 2283 queue_work(md_misc_wq, &rdev->del_work); 2284 } 2285 2286 /* 2287 * prevent the device from being mounted, repartitioned or 2288 * otherwise reused by a RAID array (or any other kernel 2289 * subsystem), by bd_claiming the device. 2290 */ 2291 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2292 { 2293 int err = 0; 2294 struct block_device *bdev; 2295 char b[BDEVNAME_SIZE]; 2296 2297 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2298 shared ? (struct md_rdev *)lock_rdev : rdev); 2299 if (IS_ERR(bdev)) { 2300 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2301 return PTR_ERR(bdev); 2302 } 2303 rdev->bdev = bdev; 2304 return err; 2305 } 2306 2307 static void unlock_rdev(struct md_rdev *rdev) 2308 { 2309 struct block_device *bdev = rdev->bdev; 2310 rdev->bdev = NULL; 2311 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2312 } 2313 2314 void md_autodetect_dev(dev_t dev); 2315 2316 static void export_rdev(struct md_rdev *rdev) 2317 { 2318 char b[BDEVNAME_SIZE]; 2319 2320 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2321 md_rdev_clear(rdev); 2322 #ifndef MODULE 2323 if (test_bit(AutoDetected, &rdev->flags)) 2324 md_autodetect_dev(rdev->bdev->bd_dev); 2325 #endif 2326 unlock_rdev(rdev); 2327 kobject_put(&rdev->kobj); 2328 } 2329 2330 void md_kick_rdev_from_array(struct md_rdev *rdev) 2331 { 2332 unbind_rdev_from_array(rdev); 2333 export_rdev(rdev); 2334 } 2335 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2336 2337 static void export_array(struct mddev *mddev) 2338 { 2339 struct md_rdev *rdev; 2340 2341 while (!list_empty(&mddev->disks)) { 2342 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2343 same_set); 2344 md_kick_rdev_from_array(rdev); 2345 } 2346 mddev->raid_disks = 0; 2347 mddev->major_version = 0; 2348 } 2349 2350 static bool set_in_sync(struct mddev *mddev) 2351 { 2352 lockdep_assert_held(&mddev->lock); 2353 if (!mddev->in_sync) { 2354 mddev->sync_checkers++; 2355 spin_unlock(&mddev->lock); 2356 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2357 spin_lock(&mddev->lock); 2358 if (!mddev->in_sync && 2359 percpu_ref_is_zero(&mddev->writes_pending)) { 2360 mddev->in_sync = 1; 2361 /* 2362 * Ensure ->in_sync is visible before we clear 2363 * ->sync_checkers. 2364 */ 2365 smp_mb(); 2366 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2367 sysfs_notify_dirent_safe(mddev->sysfs_state); 2368 } 2369 if (--mddev->sync_checkers == 0) 2370 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2371 } 2372 if (mddev->safemode == 1) 2373 mddev->safemode = 0; 2374 return mddev->in_sync; 2375 } 2376 2377 static void sync_sbs(struct mddev *mddev, int nospares) 2378 { 2379 /* Update each superblock (in-memory image), but 2380 * if we are allowed to, skip spares which already 2381 * have the right event counter, or have one earlier 2382 * (which would mean they aren't being marked as dirty 2383 * with the rest of the array) 2384 */ 2385 struct md_rdev *rdev; 2386 rdev_for_each(rdev, mddev) { 2387 if (rdev->sb_events == mddev->events || 2388 (nospares && 2389 rdev->raid_disk < 0 && 2390 rdev->sb_events+1 == mddev->events)) { 2391 /* Don't update this superblock */ 2392 rdev->sb_loaded = 2; 2393 } else { 2394 sync_super(mddev, rdev); 2395 rdev->sb_loaded = 1; 2396 } 2397 } 2398 } 2399 2400 static bool does_sb_need_changing(struct mddev *mddev) 2401 { 2402 struct md_rdev *rdev; 2403 struct mdp_superblock_1 *sb; 2404 int role; 2405 2406 /* Find a good rdev */ 2407 rdev_for_each(rdev, mddev) 2408 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2409 break; 2410 2411 /* No good device found. */ 2412 if (!rdev) 2413 return false; 2414 2415 sb = page_address(rdev->sb_page); 2416 /* Check if a device has become faulty or a spare become active */ 2417 rdev_for_each(rdev, mddev) { 2418 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2419 /* Device activated? */ 2420 if (role == 0xffff && rdev->raid_disk >=0 && 2421 !test_bit(Faulty, &rdev->flags)) 2422 return true; 2423 /* Device turned faulty? */ 2424 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2425 return true; 2426 } 2427 2428 /* Check if any mddev parameters have changed */ 2429 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2430 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2431 (mddev->layout != le32_to_cpu(sb->layout)) || 2432 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2433 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2434 return true; 2435 2436 return false; 2437 } 2438 2439 void md_update_sb(struct mddev *mddev, int force_change) 2440 { 2441 struct md_rdev *rdev; 2442 int sync_req; 2443 int nospares = 0; 2444 int any_badblocks_changed = 0; 2445 int ret = -1; 2446 2447 if (mddev->ro) { 2448 if (force_change) 2449 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2450 return; 2451 } 2452 2453 repeat: 2454 if (mddev_is_clustered(mddev)) { 2455 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2456 force_change = 1; 2457 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2458 nospares = 1; 2459 ret = md_cluster_ops->metadata_update_start(mddev); 2460 /* Has someone else has updated the sb */ 2461 if (!does_sb_need_changing(mddev)) { 2462 if (ret == 0) 2463 md_cluster_ops->metadata_update_cancel(mddev); 2464 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2465 BIT(MD_SB_CHANGE_DEVS) | 2466 BIT(MD_SB_CHANGE_CLEAN)); 2467 return; 2468 } 2469 } 2470 2471 /* 2472 * First make sure individual recovery_offsets are correct 2473 * curr_resync_completed can only be used during recovery. 2474 * During reshape/resync it might use array-addresses rather 2475 * that device addresses. 2476 */ 2477 rdev_for_each(rdev, mddev) { 2478 if (rdev->raid_disk >= 0 && 2479 mddev->delta_disks >= 0 && 2480 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2481 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2482 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2483 !test_bit(Journal, &rdev->flags) && 2484 !test_bit(In_sync, &rdev->flags) && 2485 mddev->curr_resync_completed > rdev->recovery_offset) 2486 rdev->recovery_offset = mddev->curr_resync_completed; 2487 2488 } 2489 if (!mddev->persistent) { 2490 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2491 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2492 if (!mddev->external) { 2493 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2494 rdev_for_each(rdev, mddev) { 2495 if (rdev->badblocks.changed) { 2496 rdev->badblocks.changed = 0; 2497 ack_all_badblocks(&rdev->badblocks); 2498 md_error(mddev, rdev); 2499 } 2500 clear_bit(Blocked, &rdev->flags); 2501 clear_bit(BlockedBadBlocks, &rdev->flags); 2502 wake_up(&rdev->blocked_wait); 2503 } 2504 } 2505 wake_up(&mddev->sb_wait); 2506 return; 2507 } 2508 2509 spin_lock(&mddev->lock); 2510 2511 mddev->utime = ktime_get_real_seconds(); 2512 2513 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2514 force_change = 1; 2515 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2516 /* just a clean<-> dirty transition, possibly leave spares alone, 2517 * though if events isn't the right even/odd, we will have to do 2518 * spares after all 2519 */ 2520 nospares = 1; 2521 if (force_change) 2522 nospares = 0; 2523 if (mddev->degraded) 2524 /* If the array is degraded, then skipping spares is both 2525 * dangerous and fairly pointless. 2526 * Dangerous because a device that was removed from the array 2527 * might have a event_count that still looks up-to-date, 2528 * so it can be re-added without a resync. 2529 * Pointless because if there are any spares to skip, 2530 * then a recovery will happen and soon that array won't 2531 * be degraded any more and the spare can go back to sleep then. 2532 */ 2533 nospares = 0; 2534 2535 sync_req = mddev->in_sync; 2536 2537 /* If this is just a dirty<->clean transition, and the array is clean 2538 * and 'events' is odd, we can roll back to the previous clean state */ 2539 if (nospares 2540 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2541 && mddev->can_decrease_events 2542 && mddev->events != 1) { 2543 mddev->events--; 2544 mddev->can_decrease_events = 0; 2545 } else { 2546 /* otherwise we have to go forward and ... */ 2547 mddev->events ++; 2548 mddev->can_decrease_events = nospares; 2549 } 2550 2551 /* 2552 * This 64-bit counter should never wrap. 2553 * Either we are in around ~1 trillion A.C., assuming 2554 * 1 reboot per second, or we have a bug... 2555 */ 2556 WARN_ON(mddev->events == 0); 2557 2558 rdev_for_each(rdev, mddev) { 2559 if (rdev->badblocks.changed) 2560 any_badblocks_changed++; 2561 if (test_bit(Faulty, &rdev->flags)) 2562 set_bit(FaultRecorded, &rdev->flags); 2563 } 2564 2565 sync_sbs(mddev, nospares); 2566 spin_unlock(&mddev->lock); 2567 2568 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2569 mdname(mddev), mddev->in_sync); 2570 2571 if (mddev->queue) 2572 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2573 rewrite: 2574 bitmap_update_sb(mddev->bitmap); 2575 rdev_for_each(rdev, mddev) { 2576 char b[BDEVNAME_SIZE]; 2577 2578 if (rdev->sb_loaded != 1) 2579 continue; /* no noise on spare devices */ 2580 2581 if (!test_bit(Faulty, &rdev->flags)) { 2582 md_super_write(mddev,rdev, 2583 rdev->sb_start, rdev->sb_size, 2584 rdev->sb_page); 2585 pr_debug("md: (write) %s's sb offset: %llu\n", 2586 bdevname(rdev->bdev, b), 2587 (unsigned long long)rdev->sb_start); 2588 rdev->sb_events = mddev->events; 2589 if (rdev->badblocks.size) { 2590 md_super_write(mddev, rdev, 2591 rdev->badblocks.sector, 2592 rdev->badblocks.size << 9, 2593 rdev->bb_page); 2594 rdev->badblocks.size = 0; 2595 } 2596 2597 } else 2598 pr_debug("md: %s (skipping faulty)\n", 2599 bdevname(rdev->bdev, b)); 2600 2601 if (mddev->level == LEVEL_MULTIPATH) 2602 /* only need to write one superblock... */ 2603 break; 2604 } 2605 if (md_super_wait(mddev) < 0) 2606 goto rewrite; 2607 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2608 2609 if (mddev_is_clustered(mddev) && ret == 0) 2610 md_cluster_ops->metadata_update_finish(mddev); 2611 2612 if (mddev->in_sync != sync_req || 2613 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2614 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2615 /* have to write it out again */ 2616 goto repeat; 2617 wake_up(&mddev->sb_wait); 2618 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2619 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2620 2621 rdev_for_each(rdev, mddev) { 2622 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2623 clear_bit(Blocked, &rdev->flags); 2624 2625 if (any_badblocks_changed) 2626 ack_all_badblocks(&rdev->badblocks); 2627 clear_bit(BlockedBadBlocks, &rdev->flags); 2628 wake_up(&rdev->blocked_wait); 2629 } 2630 } 2631 EXPORT_SYMBOL(md_update_sb); 2632 2633 static int add_bound_rdev(struct md_rdev *rdev) 2634 { 2635 struct mddev *mddev = rdev->mddev; 2636 int err = 0; 2637 bool add_journal = test_bit(Journal, &rdev->flags); 2638 2639 if (!mddev->pers->hot_remove_disk || add_journal) { 2640 /* If there is hot_add_disk but no hot_remove_disk 2641 * then added disks for geometry changes, 2642 * and should be added immediately. 2643 */ 2644 super_types[mddev->major_version]. 2645 validate_super(mddev, rdev); 2646 if (add_journal) 2647 mddev_suspend(mddev); 2648 err = mddev->pers->hot_add_disk(mddev, rdev); 2649 if (add_journal) 2650 mddev_resume(mddev); 2651 if (err) { 2652 md_kick_rdev_from_array(rdev); 2653 return err; 2654 } 2655 } 2656 sysfs_notify_dirent_safe(rdev->sysfs_state); 2657 2658 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2659 if (mddev->degraded) 2660 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2662 md_new_event(mddev); 2663 md_wakeup_thread(mddev->thread); 2664 return 0; 2665 } 2666 2667 /* words written to sysfs files may, or may not, be \n terminated. 2668 * We want to accept with case. For this we use cmd_match. 2669 */ 2670 static int cmd_match(const char *cmd, const char *str) 2671 { 2672 /* See if cmd, written into a sysfs file, matches 2673 * str. They must either be the same, or cmd can 2674 * have a trailing newline 2675 */ 2676 while (*cmd && *str && *cmd == *str) { 2677 cmd++; 2678 str++; 2679 } 2680 if (*cmd == '\n') 2681 cmd++; 2682 if (*str || *cmd) 2683 return 0; 2684 return 1; 2685 } 2686 2687 struct rdev_sysfs_entry { 2688 struct attribute attr; 2689 ssize_t (*show)(struct md_rdev *, char *); 2690 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2691 }; 2692 2693 static ssize_t 2694 state_show(struct md_rdev *rdev, char *page) 2695 { 2696 char *sep = ","; 2697 size_t len = 0; 2698 unsigned long flags = READ_ONCE(rdev->flags); 2699 2700 if (test_bit(Faulty, &flags) || 2701 (!test_bit(ExternalBbl, &flags) && 2702 rdev->badblocks.unacked_exist)) 2703 len += sprintf(page+len, "faulty%s", sep); 2704 if (test_bit(In_sync, &flags)) 2705 len += sprintf(page+len, "in_sync%s", sep); 2706 if (test_bit(Journal, &flags)) 2707 len += sprintf(page+len, "journal%s", sep); 2708 if (test_bit(WriteMostly, &flags)) 2709 len += sprintf(page+len, "write_mostly%s", sep); 2710 if (test_bit(Blocked, &flags) || 2711 (rdev->badblocks.unacked_exist 2712 && !test_bit(Faulty, &flags))) 2713 len += sprintf(page+len, "blocked%s", sep); 2714 if (!test_bit(Faulty, &flags) && 2715 !test_bit(Journal, &flags) && 2716 !test_bit(In_sync, &flags)) 2717 len += sprintf(page+len, "spare%s", sep); 2718 if (test_bit(WriteErrorSeen, &flags)) 2719 len += sprintf(page+len, "write_error%s", sep); 2720 if (test_bit(WantReplacement, &flags)) 2721 len += sprintf(page+len, "want_replacement%s", sep); 2722 if (test_bit(Replacement, &flags)) 2723 len += sprintf(page+len, "replacement%s", sep); 2724 if (test_bit(ExternalBbl, &flags)) 2725 len += sprintf(page+len, "external_bbl%s", sep); 2726 if (test_bit(FailFast, &flags)) 2727 len += sprintf(page+len, "failfast%s", sep); 2728 2729 if (len) 2730 len -= strlen(sep); 2731 2732 return len+sprintf(page+len, "\n"); 2733 } 2734 2735 static ssize_t 2736 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2737 { 2738 /* can write 2739 * faulty - simulates an error 2740 * remove - disconnects the device 2741 * writemostly - sets write_mostly 2742 * -writemostly - clears write_mostly 2743 * blocked - sets the Blocked flags 2744 * -blocked - clears the Blocked and possibly simulates an error 2745 * insync - sets Insync providing device isn't active 2746 * -insync - clear Insync for a device with a slot assigned, 2747 * so that it gets rebuilt based on bitmap 2748 * write_error - sets WriteErrorSeen 2749 * -write_error - clears WriteErrorSeen 2750 * {,-}failfast - set/clear FailFast 2751 */ 2752 int err = -EINVAL; 2753 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2754 md_error(rdev->mddev, rdev); 2755 if (test_bit(Faulty, &rdev->flags)) 2756 err = 0; 2757 else 2758 err = -EBUSY; 2759 } else if (cmd_match(buf, "remove")) { 2760 if (rdev->mddev->pers) { 2761 clear_bit(Blocked, &rdev->flags); 2762 remove_and_add_spares(rdev->mddev, rdev); 2763 } 2764 if (rdev->raid_disk >= 0) 2765 err = -EBUSY; 2766 else { 2767 struct mddev *mddev = rdev->mddev; 2768 err = 0; 2769 if (mddev_is_clustered(mddev)) 2770 err = md_cluster_ops->remove_disk(mddev, rdev); 2771 2772 if (err == 0) { 2773 md_kick_rdev_from_array(rdev); 2774 if (mddev->pers) { 2775 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2776 md_wakeup_thread(mddev->thread); 2777 } 2778 md_new_event(mddev); 2779 } 2780 } 2781 } else if (cmd_match(buf, "writemostly")) { 2782 set_bit(WriteMostly, &rdev->flags); 2783 err = 0; 2784 } else if (cmd_match(buf, "-writemostly")) { 2785 clear_bit(WriteMostly, &rdev->flags); 2786 err = 0; 2787 } else if (cmd_match(buf, "blocked")) { 2788 set_bit(Blocked, &rdev->flags); 2789 err = 0; 2790 } else if (cmd_match(buf, "-blocked")) { 2791 if (!test_bit(Faulty, &rdev->flags) && 2792 !test_bit(ExternalBbl, &rdev->flags) && 2793 rdev->badblocks.unacked_exist) { 2794 /* metadata handler doesn't understand badblocks, 2795 * so we need to fail the device 2796 */ 2797 md_error(rdev->mddev, rdev); 2798 } 2799 clear_bit(Blocked, &rdev->flags); 2800 clear_bit(BlockedBadBlocks, &rdev->flags); 2801 wake_up(&rdev->blocked_wait); 2802 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2803 md_wakeup_thread(rdev->mddev->thread); 2804 2805 err = 0; 2806 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2807 set_bit(In_sync, &rdev->flags); 2808 err = 0; 2809 } else if (cmd_match(buf, "failfast")) { 2810 set_bit(FailFast, &rdev->flags); 2811 err = 0; 2812 } else if (cmd_match(buf, "-failfast")) { 2813 clear_bit(FailFast, &rdev->flags); 2814 err = 0; 2815 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2816 !test_bit(Journal, &rdev->flags)) { 2817 if (rdev->mddev->pers == NULL) { 2818 clear_bit(In_sync, &rdev->flags); 2819 rdev->saved_raid_disk = rdev->raid_disk; 2820 rdev->raid_disk = -1; 2821 err = 0; 2822 } 2823 } else if (cmd_match(buf, "write_error")) { 2824 set_bit(WriteErrorSeen, &rdev->flags); 2825 err = 0; 2826 } else if (cmd_match(buf, "-write_error")) { 2827 clear_bit(WriteErrorSeen, &rdev->flags); 2828 err = 0; 2829 } else if (cmd_match(buf, "want_replacement")) { 2830 /* Any non-spare device that is not a replacement can 2831 * become want_replacement at any time, but we then need to 2832 * check if recovery is needed. 2833 */ 2834 if (rdev->raid_disk >= 0 && 2835 !test_bit(Journal, &rdev->flags) && 2836 !test_bit(Replacement, &rdev->flags)) 2837 set_bit(WantReplacement, &rdev->flags); 2838 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2839 md_wakeup_thread(rdev->mddev->thread); 2840 err = 0; 2841 } else if (cmd_match(buf, "-want_replacement")) { 2842 /* Clearing 'want_replacement' is always allowed. 2843 * Once replacements starts it is too late though. 2844 */ 2845 err = 0; 2846 clear_bit(WantReplacement, &rdev->flags); 2847 } else if (cmd_match(buf, "replacement")) { 2848 /* Can only set a device as a replacement when array has not 2849 * yet been started. Once running, replacement is automatic 2850 * from spares, or by assigning 'slot'. 2851 */ 2852 if (rdev->mddev->pers) 2853 err = -EBUSY; 2854 else { 2855 set_bit(Replacement, &rdev->flags); 2856 err = 0; 2857 } 2858 } else if (cmd_match(buf, "-replacement")) { 2859 /* Similarly, can only clear Replacement before start */ 2860 if (rdev->mddev->pers) 2861 err = -EBUSY; 2862 else { 2863 clear_bit(Replacement, &rdev->flags); 2864 err = 0; 2865 } 2866 } else if (cmd_match(buf, "re-add")) { 2867 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 2868 rdev->saved_raid_disk >= 0) { 2869 /* clear_bit is performed _after_ all the devices 2870 * have their local Faulty bit cleared. If any writes 2871 * happen in the meantime in the local node, they 2872 * will land in the local bitmap, which will be synced 2873 * by this node eventually 2874 */ 2875 if (!mddev_is_clustered(rdev->mddev) || 2876 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2877 clear_bit(Faulty, &rdev->flags); 2878 err = add_bound_rdev(rdev); 2879 } 2880 } else 2881 err = -EBUSY; 2882 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2883 set_bit(ExternalBbl, &rdev->flags); 2884 rdev->badblocks.shift = 0; 2885 err = 0; 2886 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2887 clear_bit(ExternalBbl, &rdev->flags); 2888 err = 0; 2889 } 2890 if (!err) 2891 sysfs_notify_dirent_safe(rdev->sysfs_state); 2892 return err ? err : len; 2893 } 2894 static struct rdev_sysfs_entry rdev_state = 2895 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2896 2897 static ssize_t 2898 errors_show(struct md_rdev *rdev, char *page) 2899 { 2900 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2901 } 2902 2903 static ssize_t 2904 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2905 { 2906 unsigned int n; 2907 int rv; 2908 2909 rv = kstrtouint(buf, 10, &n); 2910 if (rv < 0) 2911 return rv; 2912 atomic_set(&rdev->corrected_errors, n); 2913 return len; 2914 } 2915 static struct rdev_sysfs_entry rdev_errors = 2916 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2917 2918 static ssize_t 2919 slot_show(struct md_rdev *rdev, char *page) 2920 { 2921 if (test_bit(Journal, &rdev->flags)) 2922 return sprintf(page, "journal\n"); 2923 else if (rdev->raid_disk < 0) 2924 return sprintf(page, "none\n"); 2925 else 2926 return sprintf(page, "%d\n", rdev->raid_disk); 2927 } 2928 2929 static ssize_t 2930 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2931 { 2932 int slot; 2933 int err; 2934 2935 if (test_bit(Journal, &rdev->flags)) 2936 return -EBUSY; 2937 if (strncmp(buf, "none", 4)==0) 2938 slot = -1; 2939 else { 2940 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2941 if (err < 0) 2942 return err; 2943 } 2944 if (rdev->mddev->pers && slot == -1) { 2945 /* Setting 'slot' on an active array requires also 2946 * updating the 'rd%d' link, and communicating 2947 * with the personality with ->hot_*_disk. 2948 * For now we only support removing 2949 * failed/spare devices. This normally happens automatically, 2950 * but not when the metadata is externally managed. 2951 */ 2952 if (rdev->raid_disk == -1) 2953 return -EEXIST; 2954 /* personality does all needed checks */ 2955 if (rdev->mddev->pers->hot_remove_disk == NULL) 2956 return -EINVAL; 2957 clear_bit(Blocked, &rdev->flags); 2958 remove_and_add_spares(rdev->mddev, rdev); 2959 if (rdev->raid_disk >= 0) 2960 return -EBUSY; 2961 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2962 md_wakeup_thread(rdev->mddev->thread); 2963 } else if (rdev->mddev->pers) { 2964 /* Activating a spare .. or possibly reactivating 2965 * if we ever get bitmaps working here. 2966 */ 2967 int err; 2968 2969 if (rdev->raid_disk != -1) 2970 return -EBUSY; 2971 2972 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2973 return -EBUSY; 2974 2975 if (rdev->mddev->pers->hot_add_disk == NULL) 2976 return -EINVAL; 2977 2978 if (slot >= rdev->mddev->raid_disks && 2979 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2980 return -ENOSPC; 2981 2982 rdev->raid_disk = slot; 2983 if (test_bit(In_sync, &rdev->flags)) 2984 rdev->saved_raid_disk = slot; 2985 else 2986 rdev->saved_raid_disk = -1; 2987 clear_bit(In_sync, &rdev->flags); 2988 clear_bit(Bitmap_sync, &rdev->flags); 2989 err = rdev->mddev->pers-> 2990 hot_add_disk(rdev->mddev, rdev); 2991 if (err) { 2992 rdev->raid_disk = -1; 2993 return err; 2994 } else 2995 sysfs_notify_dirent_safe(rdev->sysfs_state); 2996 if (sysfs_link_rdev(rdev->mddev, rdev)) 2997 /* failure here is OK */; 2998 /* don't wakeup anyone, leave that to userspace. */ 2999 } else { 3000 if (slot >= rdev->mddev->raid_disks && 3001 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3002 return -ENOSPC; 3003 rdev->raid_disk = slot; 3004 /* assume it is working */ 3005 clear_bit(Faulty, &rdev->flags); 3006 clear_bit(WriteMostly, &rdev->flags); 3007 set_bit(In_sync, &rdev->flags); 3008 sysfs_notify_dirent_safe(rdev->sysfs_state); 3009 } 3010 return len; 3011 } 3012 3013 static struct rdev_sysfs_entry rdev_slot = 3014 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3015 3016 static ssize_t 3017 offset_show(struct md_rdev *rdev, char *page) 3018 { 3019 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3020 } 3021 3022 static ssize_t 3023 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3024 { 3025 unsigned long long offset; 3026 if (kstrtoull(buf, 10, &offset) < 0) 3027 return -EINVAL; 3028 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3029 return -EBUSY; 3030 if (rdev->sectors && rdev->mddev->external) 3031 /* Must set offset before size, so overlap checks 3032 * can be sane */ 3033 return -EBUSY; 3034 rdev->data_offset = offset; 3035 rdev->new_data_offset = offset; 3036 return len; 3037 } 3038 3039 static struct rdev_sysfs_entry rdev_offset = 3040 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3041 3042 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3043 { 3044 return sprintf(page, "%llu\n", 3045 (unsigned long long)rdev->new_data_offset); 3046 } 3047 3048 static ssize_t new_offset_store(struct md_rdev *rdev, 3049 const char *buf, size_t len) 3050 { 3051 unsigned long long new_offset; 3052 struct mddev *mddev = rdev->mddev; 3053 3054 if (kstrtoull(buf, 10, &new_offset) < 0) 3055 return -EINVAL; 3056 3057 if (mddev->sync_thread || 3058 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3059 return -EBUSY; 3060 if (new_offset == rdev->data_offset) 3061 /* reset is always permitted */ 3062 ; 3063 else if (new_offset > rdev->data_offset) { 3064 /* must not push array size beyond rdev_sectors */ 3065 if (new_offset - rdev->data_offset 3066 + mddev->dev_sectors > rdev->sectors) 3067 return -E2BIG; 3068 } 3069 /* Metadata worries about other space details. */ 3070 3071 /* decreasing the offset is inconsistent with a backwards 3072 * reshape. 3073 */ 3074 if (new_offset < rdev->data_offset && 3075 mddev->reshape_backwards) 3076 return -EINVAL; 3077 /* Increasing offset is inconsistent with forwards 3078 * reshape. reshape_direction should be set to 3079 * 'backwards' first. 3080 */ 3081 if (new_offset > rdev->data_offset && 3082 !mddev->reshape_backwards) 3083 return -EINVAL; 3084 3085 if (mddev->pers && mddev->persistent && 3086 !super_types[mddev->major_version] 3087 .allow_new_offset(rdev, new_offset)) 3088 return -E2BIG; 3089 rdev->new_data_offset = new_offset; 3090 if (new_offset > rdev->data_offset) 3091 mddev->reshape_backwards = 1; 3092 else if (new_offset < rdev->data_offset) 3093 mddev->reshape_backwards = 0; 3094 3095 return len; 3096 } 3097 static struct rdev_sysfs_entry rdev_new_offset = 3098 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3099 3100 static ssize_t 3101 rdev_size_show(struct md_rdev *rdev, char *page) 3102 { 3103 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3104 } 3105 3106 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3107 { 3108 /* check if two start/length pairs overlap */ 3109 if (s1+l1 <= s2) 3110 return 0; 3111 if (s2+l2 <= s1) 3112 return 0; 3113 return 1; 3114 } 3115 3116 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3117 { 3118 unsigned long long blocks; 3119 sector_t new; 3120 3121 if (kstrtoull(buf, 10, &blocks) < 0) 3122 return -EINVAL; 3123 3124 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3125 return -EINVAL; /* sector conversion overflow */ 3126 3127 new = blocks * 2; 3128 if (new != blocks * 2) 3129 return -EINVAL; /* unsigned long long to sector_t overflow */ 3130 3131 *sectors = new; 3132 return 0; 3133 } 3134 3135 static ssize_t 3136 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3137 { 3138 struct mddev *my_mddev = rdev->mddev; 3139 sector_t oldsectors = rdev->sectors; 3140 sector_t sectors; 3141 3142 if (test_bit(Journal, &rdev->flags)) 3143 return -EBUSY; 3144 if (strict_blocks_to_sectors(buf, §ors) < 0) 3145 return -EINVAL; 3146 if (rdev->data_offset != rdev->new_data_offset) 3147 return -EINVAL; /* too confusing */ 3148 if (my_mddev->pers && rdev->raid_disk >= 0) { 3149 if (my_mddev->persistent) { 3150 sectors = super_types[my_mddev->major_version]. 3151 rdev_size_change(rdev, sectors); 3152 if (!sectors) 3153 return -EBUSY; 3154 } else if (!sectors) 3155 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3156 rdev->data_offset; 3157 if (!my_mddev->pers->resize) 3158 /* Cannot change size for RAID0 or Linear etc */ 3159 return -EINVAL; 3160 } 3161 if (sectors < my_mddev->dev_sectors) 3162 return -EINVAL; /* component must fit device */ 3163 3164 rdev->sectors = sectors; 3165 if (sectors > oldsectors && my_mddev->external) { 3166 /* Need to check that all other rdevs with the same 3167 * ->bdev do not overlap. 'rcu' is sufficient to walk 3168 * the rdev lists safely. 3169 * This check does not provide a hard guarantee, it 3170 * just helps avoid dangerous mistakes. 3171 */ 3172 struct mddev *mddev; 3173 int overlap = 0; 3174 struct list_head *tmp; 3175 3176 rcu_read_lock(); 3177 for_each_mddev(mddev, tmp) { 3178 struct md_rdev *rdev2; 3179 3180 rdev_for_each(rdev2, mddev) 3181 if (rdev->bdev == rdev2->bdev && 3182 rdev != rdev2 && 3183 overlaps(rdev->data_offset, rdev->sectors, 3184 rdev2->data_offset, 3185 rdev2->sectors)) { 3186 overlap = 1; 3187 break; 3188 } 3189 if (overlap) { 3190 mddev_put(mddev); 3191 break; 3192 } 3193 } 3194 rcu_read_unlock(); 3195 if (overlap) { 3196 /* Someone else could have slipped in a size 3197 * change here, but doing so is just silly. 3198 * We put oldsectors back because we *know* it is 3199 * safe, and trust userspace not to race with 3200 * itself 3201 */ 3202 rdev->sectors = oldsectors; 3203 return -EBUSY; 3204 } 3205 } 3206 return len; 3207 } 3208 3209 static struct rdev_sysfs_entry rdev_size = 3210 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3211 3212 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3213 { 3214 unsigned long long recovery_start = rdev->recovery_offset; 3215 3216 if (test_bit(In_sync, &rdev->flags) || 3217 recovery_start == MaxSector) 3218 return sprintf(page, "none\n"); 3219 3220 return sprintf(page, "%llu\n", recovery_start); 3221 } 3222 3223 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3224 { 3225 unsigned long long recovery_start; 3226 3227 if (cmd_match(buf, "none")) 3228 recovery_start = MaxSector; 3229 else if (kstrtoull(buf, 10, &recovery_start)) 3230 return -EINVAL; 3231 3232 if (rdev->mddev->pers && 3233 rdev->raid_disk >= 0) 3234 return -EBUSY; 3235 3236 rdev->recovery_offset = recovery_start; 3237 if (recovery_start == MaxSector) 3238 set_bit(In_sync, &rdev->flags); 3239 else 3240 clear_bit(In_sync, &rdev->flags); 3241 return len; 3242 } 3243 3244 static struct rdev_sysfs_entry rdev_recovery_start = 3245 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3246 3247 /* sysfs access to bad-blocks list. 3248 * We present two files. 3249 * 'bad-blocks' lists sector numbers and lengths of ranges that 3250 * are recorded as bad. The list is truncated to fit within 3251 * the one-page limit of sysfs. 3252 * Writing "sector length" to this file adds an acknowledged 3253 * bad block list. 3254 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3255 * been acknowledged. Writing to this file adds bad blocks 3256 * without acknowledging them. This is largely for testing. 3257 */ 3258 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3259 { 3260 return badblocks_show(&rdev->badblocks, page, 0); 3261 } 3262 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3263 { 3264 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3265 /* Maybe that ack was all we needed */ 3266 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3267 wake_up(&rdev->blocked_wait); 3268 return rv; 3269 } 3270 static struct rdev_sysfs_entry rdev_bad_blocks = 3271 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3272 3273 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3274 { 3275 return badblocks_show(&rdev->badblocks, page, 1); 3276 } 3277 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3278 { 3279 return badblocks_store(&rdev->badblocks, page, len, 1); 3280 } 3281 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3282 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3283 3284 static ssize_t 3285 ppl_sector_show(struct md_rdev *rdev, char *page) 3286 { 3287 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3288 } 3289 3290 static ssize_t 3291 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3292 { 3293 unsigned long long sector; 3294 3295 if (kstrtoull(buf, 10, §or) < 0) 3296 return -EINVAL; 3297 if (sector != (sector_t)sector) 3298 return -EINVAL; 3299 3300 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3301 rdev->raid_disk >= 0) 3302 return -EBUSY; 3303 3304 if (rdev->mddev->persistent) { 3305 if (rdev->mddev->major_version == 0) 3306 return -EINVAL; 3307 if ((sector > rdev->sb_start && 3308 sector - rdev->sb_start > S16_MAX) || 3309 (sector < rdev->sb_start && 3310 rdev->sb_start - sector > -S16_MIN)) 3311 return -EINVAL; 3312 rdev->ppl.offset = sector - rdev->sb_start; 3313 } else if (!rdev->mddev->external) { 3314 return -EBUSY; 3315 } 3316 rdev->ppl.sector = sector; 3317 return len; 3318 } 3319 3320 static struct rdev_sysfs_entry rdev_ppl_sector = 3321 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3322 3323 static ssize_t 3324 ppl_size_show(struct md_rdev *rdev, char *page) 3325 { 3326 return sprintf(page, "%u\n", rdev->ppl.size); 3327 } 3328 3329 static ssize_t 3330 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3331 { 3332 unsigned int size; 3333 3334 if (kstrtouint(buf, 10, &size) < 0) 3335 return -EINVAL; 3336 3337 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3338 rdev->raid_disk >= 0) 3339 return -EBUSY; 3340 3341 if (rdev->mddev->persistent) { 3342 if (rdev->mddev->major_version == 0) 3343 return -EINVAL; 3344 if (size > U16_MAX) 3345 return -EINVAL; 3346 } else if (!rdev->mddev->external) { 3347 return -EBUSY; 3348 } 3349 rdev->ppl.size = size; 3350 return len; 3351 } 3352 3353 static struct rdev_sysfs_entry rdev_ppl_size = 3354 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3355 3356 static struct attribute *rdev_default_attrs[] = { 3357 &rdev_state.attr, 3358 &rdev_errors.attr, 3359 &rdev_slot.attr, 3360 &rdev_offset.attr, 3361 &rdev_new_offset.attr, 3362 &rdev_size.attr, 3363 &rdev_recovery_start.attr, 3364 &rdev_bad_blocks.attr, 3365 &rdev_unack_bad_blocks.attr, 3366 &rdev_ppl_sector.attr, 3367 &rdev_ppl_size.attr, 3368 NULL, 3369 }; 3370 static ssize_t 3371 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3372 { 3373 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3374 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3375 3376 if (!entry->show) 3377 return -EIO; 3378 if (!rdev->mddev) 3379 return -EBUSY; 3380 return entry->show(rdev, page); 3381 } 3382 3383 static ssize_t 3384 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3385 const char *page, size_t length) 3386 { 3387 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3388 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3389 ssize_t rv; 3390 struct mddev *mddev = rdev->mddev; 3391 3392 if (!entry->store) 3393 return -EIO; 3394 if (!capable(CAP_SYS_ADMIN)) 3395 return -EACCES; 3396 rv = mddev ? mddev_lock(mddev): -EBUSY; 3397 if (!rv) { 3398 if (rdev->mddev == NULL) 3399 rv = -EBUSY; 3400 else 3401 rv = entry->store(rdev, page, length); 3402 mddev_unlock(mddev); 3403 } 3404 return rv; 3405 } 3406 3407 static void rdev_free(struct kobject *ko) 3408 { 3409 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3410 kfree(rdev); 3411 } 3412 static const struct sysfs_ops rdev_sysfs_ops = { 3413 .show = rdev_attr_show, 3414 .store = rdev_attr_store, 3415 }; 3416 static struct kobj_type rdev_ktype = { 3417 .release = rdev_free, 3418 .sysfs_ops = &rdev_sysfs_ops, 3419 .default_attrs = rdev_default_attrs, 3420 }; 3421 3422 int md_rdev_init(struct md_rdev *rdev) 3423 { 3424 rdev->desc_nr = -1; 3425 rdev->saved_raid_disk = -1; 3426 rdev->raid_disk = -1; 3427 rdev->flags = 0; 3428 rdev->data_offset = 0; 3429 rdev->new_data_offset = 0; 3430 rdev->sb_events = 0; 3431 rdev->last_read_error = 0; 3432 rdev->sb_loaded = 0; 3433 rdev->bb_page = NULL; 3434 atomic_set(&rdev->nr_pending, 0); 3435 atomic_set(&rdev->read_errors, 0); 3436 atomic_set(&rdev->corrected_errors, 0); 3437 3438 INIT_LIST_HEAD(&rdev->same_set); 3439 init_waitqueue_head(&rdev->blocked_wait); 3440 3441 /* Add space to store bad block list. 3442 * This reserves the space even on arrays where it cannot 3443 * be used - I wonder if that matters 3444 */ 3445 return badblocks_init(&rdev->badblocks, 0); 3446 } 3447 EXPORT_SYMBOL_GPL(md_rdev_init); 3448 /* 3449 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3450 * 3451 * mark the device faulty if: 3452 * 3453 * - the device is nonexistent (zero size) 3454 * - the device has no valid superblock 3455 * 3456 * a faulty rdev _never_ has rdev->sb set. 3457 */ 3458 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3459 { 3460 char b[BDEVNAME_SIZE]; 3461 int err; 3462 struct md_rdev *rdev; 3463 sector_t size; 3464 3465 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3466 if (!rdev) 3467 return ERR_PTR(-ENOMEM); 3468 3469 err = md_rdev_init(rdev); 3470 if (err) 3471 goto abort_free; 3472 err = alloc_disk_sb(rdev); 3473 if (err) 3474 goto abort_free; 3475 3476 err = lock_rdev(rdev, newdev, super_format == -2); 3477 if (err) 3478 goto abort_free; 3479 3480 kobject_init(&rdev->kobj, &rdev_ktype); 3481 3482 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3483 if (!size) { 3484 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3485 bdevname(rdev->bdev,b)); 3486 err = -EINVAL; 3487 goto abort_free; 3488 } 3489 3490 if (super_format >= 0) { 3491 err = super_types[super_format]. 3492 load_super(rdev, NULL, super_minor); 3493 if (err == -EINVAL) { 3494 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3495 bdevname(rdev->bdev,b), 3496 super_format, super_minor); 3497 goto abort_free; 3498 } 3499 if (err < 0) { 3500 pr_warn("md: could not read %s's sb, not importing!\n", 3501 bdevname(rdev->bdev,b)); 3502 goto abort_free; 3503 } 3504 } 3505 3506 return rdev; 3507 3508 abort_free: 3509 if (rdev->bdev) 3510 unlock_rdev(rdev); 3511 md_rdev_clear(rdev); 3512 kfree(rdev); 3513 return ERR_PTR(err); 3514 } 3515 3516 /* 3517 * Check a full RAID array for plausibility 3518 */ 3519 3520 static void analyze_sbs(struct mddev *mddev) 3521 { 3522 int i; 3523 struct md_rdev *rdev, *freshest, *tmp; 3524 char b[BDEVNAME_SIZE]; 3525 3526 freshest = NULL; 3527 rdev_for_each_safe(rdev, tmp, mddev) 3528 switch (super_types[mddev->major_version]. 3529 load_super(rdev, freshest, mddev->minor_version)) { 3530 case 1: 3531 freshest = rdev; 3532 break; 3533 case 0: 3534 break; 3535 default: 3536 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3537 bdevname(rdev->bdev,b)); 3538 md_kick_rdev_from_array(rdev); 3539 } 3540 3541 super_types[mddev->major_version]. 3542 validate_super(mddev, freshest); 3543 3544 i = 0; 3545 rdev_for_each_safe(rdev, tmp, mddev) { 3546 if (mddev->max_disks && 3547 (rdev->desc_nr >= mddev->max_disks || 3548 i > mddev->max_disks)) { 3549 pr_warn("md: %s: %s: only %d devices permitted\n", 3550 mdname(mddev), bdevname(rdev->bdev, b), 3551 mddev->max_disks); 3552 md_kick_rdev_from_array(rdev); 3553 continue; 3554 } 3555 if (rdev != freshest) { 3556 if (super_types[mddev->major_version]. 3557 validate_super(mddev, rdev)) { 3558 pr_warn("md: kicking non-fresh %s from array!\n", 3559 bdevname(rdev->bdev,b)); 3560 md_kick_rdev_from_array(rdev); 3561 continue; 3562 } 3563 } 3564 if (mddev->level == LEVEL_MULTIPATH) { 3565 rdev->desc_nr = i++; 3566 rdev->raid_disk = rdev->desc_nr; 3567 set_bit(In_sync, &rdev->flags); 3568 } else if (rdev->raid_disk >= 3569 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3570 !test_bit(Journal, &rdev->flags)) { 3571 rdev->raid_disk = -1; 3572 clear_bit(In_sync, &rdev->flags); 3573 } 3574 } 3575 } 3576 3577 /* Read a fixed-point number. 3578 * Numbers in sysfs attributes should be in "standard" units where 3579 * possible, so time should be in seconds. 3580 * However we internally use a a much smaller unit such as 3581 * milliseconds or jiffies. 3582 * This function takes a decimal number with a possible fractional 3583 * component, and produces an integer which is the result of 3584 * multiplying that number by 10^'scale'. 3585 * all without any floating-point arithmetic. 3586 */ 3587 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3588 { 3589 unsigned long result = 0; 3590 long decimals = -1; 3591 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3592 if (*cp == '.') 3593 decimals = 0; 3594 else if (decimals < scale) { 3595 unsigned int value; 3596 value = *cp - '0'; 3597 result = result * 10 + value; 3598 if (decimals >= 0) 3599 decimals++; 3600 } 3601 cp++; 3602 } 3603 if (*cp == '\n') 3604 cp++; 3605 if (*cp) 3606 return -EINVAL; 3607 if (decimals < 0) 3608 decimals = 0; 3609 while (decimals < scale) { 3610 result *= 10; 3611 decimals ++; 3612 } 3613 *res = result; 3614 return 0; 3615 } 3616 3617 static ssize_t 3618 safe_delay_show(struct mddev *mddev, char *page) 3619 { 3620 int msec = (mddev->safemode_delay*1000)/HZ; 3621 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3622 } 3623 static ssize_t 3624 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3625 { 3626 unsigned long msec; 3627 3628 if (mddev_is_clustered(mddev)) { 3629 pr_warn("md: Safemode is disabled for clustered mode\n"); 3630 return -EINVAL; 3631 } 3632 3633 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3634 return -EINVAL; 3635 if (msec == 0) 3636 mddev->safemode_delay = 0; 3637 else { 3638 unsigned long old_delay = mddev->safemode_delay; 3639 unsigned long new_delay = (msec*HZ)/1000; 3640 3641 if (new_delay == 0) 3642 new_delay = 1; 3643 mddev->safemode_delay = new_delay; 3644 if (new_delay < old_delay || old_delay == 0) 3645 mod_timer(&mddev->safemode_timer, jiffies+1); 3646 } 3647 return len; 3648 } 3649 static struct md_sysfs_entry md_safe_delay = 3650 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3651 3652 static ssize_t 3653 level_show(struct mddev *mddev, char *page) 3654 { 3655 struct md_personality *p; 3656 int ret; 3657 spin_lock(&mddev->lock); 3658 p = mddev->pers; 3659 if (p) 3660 ret = sprintf(page, "%s\n", p->name); 3661 else if (mddev->clevel[0]) 3662 ret = sprintf(page, "%s\n", mddev->clevel); 3663 else if (mddev->level != LEVEL_NONE) 3664 ret = sprintf(page, "%d\n", mddev->level); 3665 else 3666 ret = 0; 3667 spin_unlock(&mddev->lock); 3668 return ret; 3669 } 3670 3671 static ssize_t 3672 level_store(struct mddev *mddev, const char *buf, size_t len) 3673 { 3674 char clevel[16]; 3675 ssize_t rv; 3676 size_t slen = len; 3677 struct md_personality *pers, *oldpers; 3678 long level; 3679 void *priv, *oldpriv; 3680 struct md_rdev *rdev; 3681 3682 if (slen == 0 || slen >= sizeof(clevel)) 3683 return -EINVAL; 3684 3685 rv = mddev_lock(mddev); 3686 if (rv) 3687 return rv; 3688 3689 if (mddev->pers == NULL) { 3690 strncpy(mddev->clevel, buf, slen); 3691 if (mddev->clevel[slen-1] == '\n') 3692 slen--; 3693 mddev->clevel[slen] = 0; 3694 mddev->level = LEVEL_NONE; 3695 rv = len; 3696 goto out_unlock; 3697 } 3698 rv = -EROFS; 3699 if (mddev->ro) 3700 goto out_unlock; 3701 3702 /* request to change the personality. Need to ensure: 3703 * - array is not engaged in resync/recovery/reshape 3704 * - old personality can be suspended 3705 * - new personality will access other array. 3706 */ 3707 3708 rv = -EBUSY; 3709 if (mddev->sync_thread || 3710 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3711 mddev->reshape_position != MaxSector || 3712 mddev->sysfs_active) 3713 goto out_unlock; 3714 3715 rv = -EINVAL; 3716 if (!mddev->pers->quiesce) { 3717 pr_warn("md: %s: %s does not support online personality change\n", 3718 mdname(mddev), mddev->pers->name); 3719 goto out_unlock; 3720 } 3721 3722 /* Now find the new personality */ 3723 strncpy(clevel, buf, slen); 3724 if (clevel[slen-1] == '\n') 3725 slen--; 3726 clevel[slen] = 0; 3727 if (kstrtol(clevel, 10, &level)) 3728 level = LEVEL_NONE; 3729 3730 if (request_module("md-%s", clevel) != 0) 3731 request_module("md-level-%s", clevel); 3732 spin_lock(&pers_lock); 3733 pers = find_pers(level, clevel); 3734 if (!pers || !try_module_get(pers->owner)) { 3735 spin_unlock(&pers_lock); 3736 pr_warn("md: personality %s not loaded\n", clevel); 3737 rv = -EINVAL; 3738 goto out_unlock; 3739 } 3740 spin_unlock(&pers_lock); 3741 3742 if (pers == mddev->pers) { 3743 /* Nothing to do! */ 3744 module_put(pers->owner); 3745 rv = len; 3746 goto out_unlock; 3747 } 3748 if (!pers->takeover) { 3749 module_put(pers->owner); 3750 pr_warn("md: %s: %s does not support personality takeover\n", 3751 mdname(mddev), clevel); 3752 rv = -EINVAL; 3753 goto out_unlock; 3754 } 3755 3756 rdev_for_each(rdev, mddev) 3757 rdev->new_raid_disk = rdev->raid_disk; 3758 3759 /* ->takeover must set new_* and/or delta_disks 3760 * if it succeeds, and may set them when it fails. 3761 */ 3762 priv = pers->takeover(mddev); 3763 if (IS_ERR(priv)) { 3764 mddev->new_level = mddev->level; 3765 mddev->new_layout = mddev->layout; 3766 mddev->new_chunk_sectors = mddev->chunk_sectors; 3767 mddev->raid_disks -= mddev->delta_disks; 3768 mddev->delta_disks = 0; 3769 mddev->reshape_backwards = 0; 3770 module_put(pers->owner); 3771 pr_warn("md: %s: %s would not accept array\n", 3772 mdname(mddev), clevel); 3773 rv = PTR_ERR(priv); 3774 goto out_unlock; 3775 } 3776 3777 /* Looks like we have a winner */ 3778 mddev_suspend(mddev); 3779 mddev_detach(mddev); 3780 3781 spin_lock(&mddev->lock); 3782 oldpers = mddev->pers; 3783 oldpriv = mddev->private; 3784 mddev->pers = pers; 3785 mddev->private = priv; 3786 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3787 mddev->level = mddev->new_level; 3788 mddev->layout = mddev->new_layout; 3789 mddev->chunk_sectors = mddev->new_chunk_sectors; 3790 mddev->delta_disks = 0; 3791 mddev->reshape_backwards = 0; 3792 mddev->degraded = 0; 3793 spin_unlock(&mddev->lock); 3794 3795 if (oldpers->sync_request == NULL && 3796 mddev->external) { 3797 /* We are converting from a no-redundancy array 3798 * to a redundancy array and metadata is managed 3799 * externally so we need to be sure that writes 3800 * won't block due to a need to transition 3801 * clean->dirty 3802 * until external management is started. 3803 */ 3804 mddev->in_sync = 0; 3805 mddev->safemode_delay = 0; 3806 mddev->safemode = 0; 3807 } 3808 3809 oldpers->free(mddev, oldpriv); 3810 3811 if (oldpers->sync_request == NULL && 3812 pers->sync_request != NULL) { 3813 /* need to add the md_redundancy_group */ 3814 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3815 pr_warn("md: cannot register extra attributes for %s\n", 3816 mdname(mddev)); 3817 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3818 } 3819 if (oldpers->sync_request != NULL && 3820 pers->sync_request == NULL) { 3821 /* need to remove the md_redundancy_group */ 3822 if (mddev->to_remove == NULL) 3823 mddev->to_remove = &md_redundancy_group; 3824 } 3825 3826 module_put(oldpers->owner); 3827 3828 rdev_for_each(rdev, mddev) { 3829 if (rdev->raid_disk < 0) 3830 continue; 3831 if (rdev->new_raid_disk >= mddev->raid_disks) 3832 rdev->new_raid_disk = -1; 3833 if (rdev->new_raid_disk == rdev->raid_disk) 3834 continue; 3835 sysfs_unlink_rdev(mddev, rdev); 3836 } 3837 rdev_for_each(rdev, mddev) { 3838 if (rdev->raid_disk < 0) 3839 continue; 3840 if (rdev->new_raid_disk == rdev->raid_disk) 3841 continue; 3842 rdev->raid_disk = rdev->new_raid_disk; 3843 if (rdev->raid_disk < 0) 3844 clear_bit(In_sync, &rdev->flags); 3845 else { 3846 if (sysfs_link_rdev(mddev, rdev)) 3847 pr_warn("md: cannot register rd%d for %s after level change\n", 3848 rdev->raid_disk, mdname(mddev)); 3849 } 3850 } 3851 3852 if (pers->sync_request == NULL) { 3853 /* this is now an array without redundancy, so 3854 * it must always be in_sync 3855 */ 3856 mddev->in_sync = 1; 3857 del_timer_sync(&mddev->safemode_timer); 3858 } 3859 blk_set_stacking_limits(&mddev->queue->limits); 3860 pers->run(mddev); 3861 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3862 mddev_resume(mddev); 3863 if (!mddev->thread) 3864 md_update_sb(mddev, 1); 3865 sysfs_notify(&mddev->kobj, NULL, "level"); 3866 md_new_event(mddev); 3867 rv = len; 3868 out_unlock: 3869 mddev_unlock(mddev); 3870 return rv; 3871 } 3872 3873 static struct md_sysfs_entry md_level = 3874 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3875 3876 static ssize_t 3877 layout_show(struct mddev *mddev, char *page) 3878 { 3879 /* just a number, not meaningful for all levels */ 3880 if (mddev->reshape_position != MaxSector && 3881 mddev->layout != mddev->new_layout) 3882 return sprintf(page, "%d (%d)\n", 3883 mddev->new_layout, mddev->layout); 3884 return sprintf(page, "%d\n", mddev->layout); 3885 } 3886 3887 static ssize_t 3888 layout_store(struct mddev *mddev, const char *buf, size_t len) 3889 { 3890 unsigned int n; 3891 int err; 3892 3893 err = kstrtouint(buf, 10, &n); 3894 if (err < 0) 3895 return err; 3896 err = mddev_lock(mddev); 3897 if (err) 3898 return err; 3899 3900 if (mddev->pers) { 3901 if (mddev->pers->check_reshape == NULL) 3902 err = -EBUSY; 3903 else if (mddev->ro) 3904 err = -EROFS; 3905 else { 3906 mddev->new_layout = n; 3907 err = mddev->pers->check_reshape(mddev); 3908 if (err) 3909 mddev->new_layout = mddev->layout; 3910 } 3911 } else { 3912 mddev->new_layout = n; 3913 if (mddev->reshape_position == MaxSector) 3914 mddev->layout = n; 3915 } 3916 mddev_unlock(mddev); 3917 return err ?: len; 3918 } 3919 static struct md_sysfs_entry md_layout = 3920 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3921 3922 static ssize_t 3923 raid_disks_show(struct mddev *mddev, char *page) 3924 { 3925 if (mddev->raid_disks == 0) 3926 return 0; 3927 if (mddev->reshape_position != MaxSector && 3928 mddev->delta_disks != 0) 3929 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3930 mddev->raid_disks - mddev->delta_disks); 3931 return sprintf(page, "%d\n", mddev->raid_disks); 3932 } 3933 3934 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3935 3936 static ssize_t 3937 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3938 { 3939 unsigned int n; 3940 int err; 3941 3942 err = kstrtouint(buf, 10, &n); 3943 if (err < 0) 3944 return err; 3945 3946 err = mddev_lock(mddev); 3947 if (err) 3948 return err; 3949 if (mddev->pers) 3950 err = update_raid_disks(mddev, n); 3951 else if (mddev->reshape_position != MaxSector) { 3952 struct md_rdev *rdev; 3953 int olddisks = mddev->raid_disks - mddev->delta_disks; 3954 3955 err = -EINVAL; 3956 rdev_for_each(rdev, mddev) { 3957 if (olddisks < n && 3958 rdev->data_offset < rdev->new_data_offset) 3959 goto out_unlock; 3960 if (olddisks > n && 3961 rdev->data_offset > rdev->new_data_offset) 3962 goto out_unlock; 3963 } 3964 err = 0; 3965 mddev->delta_disks = n - olddisks; 3966 mddev->raid_disks = n; 3967 mddev->reshape_backwards = (mddev->delta_disks < 0); 3968 } else 3969 mddev->raid_disks = n; 3970 out_unlock: 3971 mddev_unlock(mddev); 3972 return err ? err : len; 3973 } 3974 static struct md_sysfs_entry md_raid_disks = 3975 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3976 3977 static ssize_t 3978 chunk_size_show(struct mddev *mddev, char *page) 3979 { 3980 if (mddev->reshape_position != MaxSector && 3981 mddev->chunk_sectors != mddev->new_chunk_sectors) 3982 return sprintf(page, "%d (%d)\n", 3983 mddev->new_chunk_sectors << 9, 3984 mddev->chunk_sectors << 9); 3985 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3986 } 3987 3988 static ssize_t 3989 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3990 { 3991 unsigned long n; 3992 int err; 3993 3994 err = kstrtoul(buf, 10, &n); 3995 if (err < 0) 3996 return err; 3997 3998 err = mddev_lock(mddev); 3999 if (err) 4000 return err; 4001 if (mddev->pers) { 4002 if (mddev->pers->check_reshape == NULL) 4003 err = -EBUSY; 4004 else if (mddev->ro) 4005 err = -EROFS; 4006 else { 4007 mddev->new_chunk_sectors = n >> 9; 4008 err = mddev->pers->check_reshape(mddev); 4009 if (err) 4010 mddev->new_chunk_sectors = mddev->chunk_sectors; 4011 } 4012 } else { 4013 mddev->new_chunk_sectors = n >> 9; 4014 if (mddev->reshape_position == MaxSector) 4015 mddev->chunk_sectors = n >> 9; 4016 } 4017 mddev_unlock(mddev); 4018 return err ?: len; 4019 } 4020 static struct md_sysfs_entry md_chunk_size = 4021 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4022 4023 static ssize_t 4024 resync_start_show(struct mddev *mddev, char *page) 4025 { 4026 if (mddev->recovery_cp == MaxSector) 4027 return sprintf(page, "none\n"); 4028 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4029 } 4030 4031 static ssize_t 4032 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4033 { 4034 unsigned long long n; 4035 int err; 4036 4037 if (cmd_match(buf, "none")) 4038 n = MaxSector; 4039 else { 4040 err = kstrtoull(buf, 10, &n); 4041 if (err < 0) 4042 return err; 4043 if (n != (sector_t)n) 4044 return -EINVAL; 4045 } 4046 4047 err = mddev_lock(mddev); 4048 if (err) 4049 return err; 4050 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4051 err = -EBUSY; 4052 4053 if (!err) { 4054 mddev->recovery_cp = n; 4055 if (mddev->pers) 4056 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4057 } 4058 mddev_unlock(mddev); 4059 return err ?: len; 4060 } 4061 static struct md_sysfs_entry md_resync_start = 4062 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4063 resync_start_show, resync_start_store); 4064 4065 /* 4066 * The array state can be: 4067 * 4068 * clear 4069 * No devices, no size, no level 4070 * Equivalent to STOP_ARRAY ioctl 4071 * inactive 4072 * May have some settings, but array is not active 4073 * all IO results in error 4074 * When written, doesn't tear down array, but just stops it 4075 * suspended (not supported yet) 4076 * All IO requests will block. The array can be reconfigured. 4077 * Writing this, if accepted, will block until array is quiescent 4078 * readonly 4079 * no resync can happen. no superblocks get written. 4080 * write requests fail 4081 * read-auto 4082 * like readonly, but behaves like 'clean' on a write request. 4083 * 4084 * clean - no pending writes, but otherwise active. 4085 * When written to inactive array, starts without resync 4086 * If a write request arrives then 4087 * if metadata is known, mark 'dirty' and switch to 'active'. 4088 * if not known, block and switch to write-pending 4089 * If written to an active array that has pending writes, then fails. 4090 * active 4091 * fully active: IO and resync can be happening. 4092 * When written to inactive array, starts with resync 4093 * 4094 * write-pending 4095 * clean, but writes are blocked waiting for 'active' to be written. 4096 * 4097 * active-idle 4098 * like active, but no writes have been seen for a while (100msec). 4099 * 4100 */ 4101 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4102 write_pending, active_idle, bad_word}; 4103 static char *array_states[] = { 4104 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4105 "write-pending", "active-idle", NULL }; 4106 4107 static int match_word(const char *word, char **list) 4108 { 4109 int n; 4110 for (n=0; list[n]; n++) 4111 if (cmd_match(word, list[n])) 4112 break; 4113 return n; 4114 } 4115 4116 static ssize_t 4117 array_state_show(struct mddev *mddev, char *page) 4118 { 4119 enum array_state st = inactive; 4120 4121 if (mddev->pers) 4122 switch(mddev->ro) { 4123 case 1: 4124 st = readonly; 4125 break; 4126 case 2: 4127 st = read_auto; 4128 break; 4129 case 0: 4130 spin_lock(&mddev->lock); 4131 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4132 st = write_pending; 4133 else if (mddev->in_sync) 4134 st = clean; 4135 else if (mddev->safemode) 4136 st = active_idle; 4137 else 4138 st = active; 4139 spin_unlock(&mddev->lock); 4140 } 4141 else { 4142 if (list_empty(&mddev->disks) && 4143 mddev->raid_disks == 0 && 4144 mddev->dev_sectors == 0) 4145 st = clear; 4146 else 4147 st = inactive; 4148 } 4149 return sprintf(page, "%s\n", array_states[st]); 4150 } 4151 4152 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4153 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4154 static int do_md_run(struct mddev *mddev); 4155 static int restart_array(struct mddev *mddev); 4156 4157 static ssize_t 4158 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4159 { 4160 int err = 0; 4161 enum array_state st = match_word(buf, array_states); 4162 4163 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4164 /* don't take reconfig_mutex when toggling between 4165 * clean and active 4166 */ 4167 spin_lock(&mddev->lock); 4168 if (st == active) { 4169 restart_array(mddev); 4170 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4171 md_wakeup_thread(mddev->thread); 4172 wake_up(&mddev->sb_wait); 4173 } else /* st == clean */ { 4174 restart_array(mddev); 4175 if (!set_in_sync(mddev)) 4176 err = -EBUSY; 4177 } 4178 if (!err) 4179 sysfs_notify_dirent_safe(mddev->sysfs_state); 4180 spin_unlock(&mddev->lock); 4181 return err ?: len; 4182 } 4183 err = mddev_lock(mddev); 4184 if (err) 4185 return err; 4186 err = -EINVAL; 4187 switch(st) { 4188 case bad_word: 4189 break; 4190 case clear: 4191 /* stopping an active array */ 4192 err = do_md_stop(mddev, 0, NULL); 4193 break; 4194 case inactive: 4195 /* stopping an active array */ 4196 if (mddev->pers) 4197 err = do_md_stop(mddev, 2, NULL); 4198 else 4199 err = 0; /* already inactive */ 4200 break; 4201 case suspended: 4202 break; /* not supported yet */ 4203 case readonly: 4204 if (mddev->pers) 4205 err = md_set_readonly(mddev, NULL); 4206 else { 4207 mddev->ro = 1; 4208 set_disk_ro(mddev->gendisk, 1); 4209 err = do_md_run(mddev); 4210 } 4211 break; 4212 case read_auto: 4213 if (mddev->pers) { 4214 if (mddev->ro == 0) 4215 err = md_set_readonly(mddev, NULL); 4216 else if (mddev->ro == 1) 4217 err = restart_array(mddev); 4218 if (err == 0) { 4219 mddev->ro = 2; 4220 set_disk_ro(mddev->gendisk, 0); 4221 } 4222 } else { 4223 mddev->ro = 2; 4224 err = do_md_run(mddev); 4225 } 4226 break; 4227 case clean: 4228 if (mddev->pers) { 4229 err = restart_array(mddev); 4230 if (err) 4231 break; 4232 spin_lock(&mddev->lock); 4233 if (!set_in_sync(mddev)) 4234 err = -EBUSY; 4235 spin_unlock(&mddev->lock); 4236 } else 4237 err = -EINVAL; 4238 break; 4239 case active: 4240 if (mddev->pers) { 4241 err = restart_array(mddev); 4242 if (err) 4243 break; 4244 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4245 wake_up(&mddev->sb_wait); 4246 err = 0; 4247 } else { 4248 mddev->ro = 0; 4249 set_disk_ro(mddev->gendisk, 0); 4250 err = do_md_run(mddev); 4251 } 4252 break; 4253 case write_pending: 4254 case active_idle: 4255 /* these cannot be set */ 4256 break; 4257 } 4258 4259 if (!err) { 4260 if (mddev->hold_active == UNTIL_IOCTL) 4261 mddev->hold_active = 0; 4262 sysfs_notify_dirent_safe(mddev->sysfs_state); 4263 } 4264 mddev_unlock(mddev); 4265 return err ?: len; 4266 } 4267 static struct md_sysfs_entry md_array_state = 4268 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4269 4270 static ssize_t 4271 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4272 return sprintf(page, "%d\n", 4273 atomic_read(&mddev->max_corr_read_errors)); 4274 } 4275 4276 static ssize_t 4277 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4278 { 4279 unsigned int n; 4280 int rv; 4281 4282 rv = kstrtouint(buf, 10, &n); 4283 if (rv < 0) 4284 return rv; 4285 atomic_set(&mddev->max_corr_read_errors, n); 4286 return len; 4287 } 4288 4289 static struct md_sysfs_entry max_corr_read_errors = 4290 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4291 max_corrected_read_errors_store); 4292 4293 static ssize_t 4294 null_show(struct mddev *mddev, char *page) 4295 { 4296 return -EINVAL; 4297 } 4298 4299 static ssize_t 4300 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4301 { 4302 /* buf must be %d:%d\n? giving major and minor numbers */ 4303 /* The new device is added to the array. 4304 * If the array has a persistent superblock, we read the 4305 * superblock to initialise info and check validity. 4306 * Otherwise, only checking done is that in bind_rdev_to_array, 4307 * which mainly checks size. 4308 */ 4309 char *e; 4310 int major = simple_strtoul(buf, &e, 10); 4311 int minor; 4312 dev_t dev; 4313 struct md_rdev *rdev; 4314 int err; 4315 4316 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4317 return -EINVAL; 4318 minor = simple_strtoul(e+1, &e, 10); 4319 if (*e && *e != '\n') 4320 return -EINVAL; 4321 dev = MKDEV(major, minor); 4322 if (major != MAJOR(dev) || 4323 minor != MINOR(dev)) 4324 return -EOVERFLOW; 4325 4326 flush_workqueue(md_misc_wq); 4327 4328 err = mddev_lock(mddev); 4329 if (err) 4330 return err; 4331 if (mddev->persistent) { 4332 rdev = md_import_device(dev, mddev->major_version, 4333 mddev->minor_version); 4334 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4335 struct md_rdev *rdev0 4336 = list_entry(mddev->disks.next, 4337 struct md_rdev, same_set); 4338 err = super_types[mddev->major_version] 4339 .load_super(rdev, rdev0, mddev->minor_version); 4340 if (err < 0) 4341 goto out; 4342 } 4343 } else if (mddev->external) 4344 rdev = md_import_device(dev, -2, -1); 4345 else 4346 rdev = md_import_device(dev, -1, -1); 4347 4348 if (IS_ERR(rdev)) { 4349 mddev_unlock(mddev); 4350 return PTR_ERR(rdev); 4351 } 4352 err = bind_rdev_to_array(rdev, mddev); 4353 out: 4354 if (err) 4355 export_rdev(rdev); 4356 mddev_unlock(mddev); 4357 if (!err) 4358 md_new_event(mddev); 4359 return err ? err : len; 4360 } 4361 4362 static struct md_sysfs_entry md_new_device = 4363 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4364 4365 static ssize_t 4366 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4367 { 4368 char *end; 4369 unsigned long chunk, end_chunk; 4370 int err; 4371 4372 err = mddev_lock(mddev); 4373 if (err) 4374 return err; 4375 if (!mddev->bitmap) 4376 goto out; 4377 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4378 while (*buf) { 4379 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4380 if (buf == end) break; 4381 if (*end == '-') { /* range */ 4382 buf = end + 1; 4383 end_chunk = simple_strtoul(buf, &end, 0); 4384 if (buf == end) break; 4385 } 4386 if (*end && !isspace(*end)) break; 4387 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4388 buf = skip_spaces(end); 4389 } 4390 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4391 out: 4392 mddev_unlock(mddev); 4393 return len; 4394 } 4395 4396 static struct md_sysfs_entry md_bitmap = 4397 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4398 4399 static ssize_t 4400 size_show(struct mddev *mddev, char *page) 4401 { 4402 return sprintf(page, "%llu\n", 4403 (unsigned long long)mddev->dev_sectors / 2); 4404 } 4405 4406 static int update_size(struct mddev *mddev, sector_t num_sectors); 4407 4408 static ssize_t 4409 size_store(struct mddev *mddev, const char *buf, size_t len) 4410 { 4411 /* If array is inactive, we can reduce the component size, but 4412 * not increase it (except from 0). 4413 * If array is active, we can try an on-line resize 4414 */ 4415 sector_t sectors; 4416 int err = strict_blocks_to_sectors(buf, §ors); 4417 4418 if (err < 0) 4419 return err; 4420 err = mddev_lock(mddev); 4421 if (err) 4422 return err; 4423 if (mddev->pers) { 4424 err = update_size(mddev, sectors); 4425 if (err == 0) 4426 md_update_sb(mddev, 1); 4427 } else { 4428 if (mddev->dev_sectors == 0 || 4429 mddev->dev_sectors > sectors) 4430 mddev->dev_sectors = sectors; 4431 else 4432 err = -ENOSPC; 4433 } 4434 mddev_unlock(mddev); 4435 return err ? err : len; 4436 } 4437 4438 static struct md_sysfs_entry md_size = 4439 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4440 4441 /* Metadata version. 4442 * This is one of 4443 * 'none' for arrays with no metadata (good luck...) 4444 * 'external' for arrays with externally managed metadata, 4445 * or N.M for internally known formats 4446 */ 4447 static ssize_t 4448 metadata_show(struct mddev *mddev, char *page) 4449 { 4450 if (mddev->persistent) 4451 return sprintf(page, "%d.%d\n", 4452 mddev->major_version, mddev->minor_version); 4453 else if (mddev->external) 4454 return sprintf(page, "external:%s\n", mddev->metadata_type); 4455 else 4456 return sprintf(page, "none\n"); 4457 } 4458 4459 static ssize_t 4460 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4461 { 4462 int major, minor; 4463 char *e; 4464 int err; 4465 /* Changing the details of 'external' metadata is 4466 * always permitted. Otherwise there must be 4467 * no devices attached to the array. 4468 */ 4469 4470 err = mddev_lock(mddev); 4471 if (err) 4472 return err; 4473 err = -EBUSY; 4474 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4475 ; 4476 else if (!list_empty(&mddev->disks)) 4477 goto out_unlock; 4478 4479 err = 0; 4480 if (cmd_match(buf, "none")) { 4481 mddev->persistent = 0; 4482 mddev->external = 0; 4483 mddev->major_version = 0; 4484 mddev->minor_version = 90; 4485 goto out_unlock; 4486 } 4487 if (strncmp(buf, "external:", 9) == 0) { 4488 size_t namelen = len-9; 4489 if (namelen >= sizeof(mddev->metadata_type)) 4490 namelen = sizeof(mddev->metadata_type)-1; 4491 strncpy(mddev->metadata_type, buf+9, namelen); 4492 mddev->metadata_type[namelen] = 0; 4493 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4494 mddev->metadata_type[--namelen] = 0; 4495 mddev->persistent = 0; 4496 mddev->external = 1; 4497 mddev->major_version = 0; 4498 mddev->minor_version = 90; 4499 goto out_unlock; 4500 } 4501 major = simple_strtoul(buf, &e, 10); 4502 err = -EINVAL; 4503 if (e==buf || *e != '.') 4504 goto out_unlock; 4505 buf = e+1; 4506 minor = simple_strtoul(buf, &e, 10); 4507 if (e==buf || (*e && *e != '\n') ) 4508 goto out_unlock; 4509 err = -ENOENT; 4510 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4511 goto out_unlock; 4512 mddev->major_version = major; 4513 mddev->minor_version = minor; 4514 mddev->persistent = 1; 4515 mddev->external = 0; 4516 err = 0; 4517 out_unlock: 4518 mddev_unlock(mddev); 4519 return err ?: len; 4520 } 4521 4522 static struct md_sysfs_entry md_metadata = 4523 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4524 4525 static ssize_t 4526 action_show(struct mddev *mddev, char *page) 4527 { 4528 char *type = "idle"; 4529 unsigned long recovery = mddev->recovery; 4530 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4531 type = "frozen"; 4532 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4533 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4534 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4535 type = "reshape"; 4536 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4537 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4538 type = "resync"; 4539 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4540 type = "check"; 4541 else 4542 type = "repair"; 4543 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4544 type = "recover"; 4545 else if (mddev->reshape_position != MaxSector) 4546 type = "reshape"; 4547 } 4548 return sprintf(page, "%s\n", type); 4549 } 4550 4551 static ssize_t 4552 action_store(struct mddev *mddev, const char *page, size_t len) 4553 { 4554 if (!mddev->pers || !mddev->pers->sync_request) 4555 return -EINVAL; 4556 4557 4558 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4559 if (cmd_match(page, "frozen")) 4560 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4561 else 4562 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4563 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4564 mddev_lock(mddev) == 0) { 4565 flush_workqueue(md_misc_wq); 4566 if (mddev->sync_thread) { 4567 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4568 md_reap_sync_thread(mddev); 4569 } 4570 mddev_unlock(mddev); 4571 } 4572 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4573 return -EBUSY; 4574 else if (cmd_match(page, "resync")) 4575 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4576 else if (cmd_match(page, "recover")) { 4577 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4578 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4579 } else if (cmd_match(page, "reshape")) { 4580 int err; 4581 if (mddev->pers->start_reshape == NULL) 4582 return -EINVAL; 4583 err = mddev_lock(mddev); 4584 if (!err) { 4585 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4586 err = -EBUSY; 4587 else { 4588 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4589 err = mddev->pers->start_reshape(mddev); 4590 } 4591 mddev_unlock(mddev); 4592 } 4593 if (err) 4594 return err; 4595 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4596 } else { 4597 if (cmd_match(page, "check")) 4598 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4599 else if (!cmd_match(page, "repair")) 4600 return -EINVAL; 4601 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4602 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4603 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4604 } 4605 if (mddev->ro == 2) { 4606 /* A write to sync_action is enough to justify 4607 * canceling read-auto mode 4608 */ 4609 mddev->ro = 0; 4610 md_wakeup_thread(mddev->sync_thread); 4611 } 4612 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4613 md_wakeup_thread(mddev->thread); 4614 sysfs_notify_dirent_safe(mddev->sysfs_action); 4615 return len; 4616 } 4617 4618 static struct md_sysfs_entry md_scan_mode = 4619 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4620 4621 static ssize_t 4622 last_sync_action_show(struct mddev *mddev, char *page) 4623 { 4624 return sprintf(page, "%s\n", mddev->last_sync_action); 4625 } 4626 4627 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4628 4629 static ssize_t 4630 mismatch_cnt_show(struct mddev *mddev, char *page) 4631 { 4632 return sprintf(page, "%llu\n", 4633 (unsigned long long) 4634 atomic64_read(&mddev->resync_mismatches)); 4635 } 4636 4637 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4638 4639 static ssize_t 4640 sync_min_show(struct mddev *mddev, char *page) 4641 { 4642 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4643 mddev->sync_speed_min ? "local": "system"); 4644 } 4645 4646 static ssize_t 4647 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4648 { 4649 unsigned int min; 4650 int rv; 4651 4652 if (strncmp(buf, "system", 6)==0) { 4653 min = 0; 4654 } else { 4655 rv = kstrtouint(buf, 10, &min); 4656 if (rv < 0) 4657 return rv; 4658 if (min == 0) 4659 return -EINVAL; 4660 } 4661 mddev->sync_speed_min = min; 4662 return len; 4663 } 4664 4665 static struct md_sysfs_entry md_sync_min = 4666 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4667 4668 static ssize_t 4669 sync_max_show(struct mddev *mddev, char *page) 4670 { 4671 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4672 mddev->sync_speed_max ? "local": "system"); 4673 } 4674 4675 static ssize_t 4676 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4677 { 4678 unsigned int max; 4679 int rv; 4680 4681 if (strncmp(buf, "system", 6)==0) { 4682 max = 0; 4683 } else { 4684 rv = kstrtouint(buf, 10, &max); 4685 if (rv < 0) 4686 return rv; 4687 if (max == 0) 4688 return -EINVAL; 4689 } 4690 mddev->sync_speed_max = max; 4691 return len; 4692 } 4693 4694 static struct md_sysfs_entry md_sync_max = 4695 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4696 4697 static ssize_t 4698 degraded_show(struct mddev *mddev, char *page) 4699 { 4700 return sprintf(page, "%d\n", mddev->degraded); 4701 } 4702 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4703 4704 static ssize_t 4705 sync_force_parallel_show(struct mddev *mddev, char *page) 4706 { 4707 return sprintf(page, "%d\n", mddev->parallel_resync); 4708 } 4709 4710 static ssize_t 4711 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4712 { 4713 long n; 4714 4715 if (kstrtol(buf, 10, &n)) 4716 return -EINVAL; 4717 4718 if (n != 0 && n != 1) 4719 return -EINVAL; 4720 4721 mddev->parallel_resync = n; 4722 4723 if (mddev->sync_thread) 4724 wake_up(&resync_wait); 4725 4726 return len; 4727 } 4728 4729 /* force parallel resync, even with shared block devices */ 4730 static struct md_sysfs_entry md_sync_force_parallel = 4731 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4732 sync_force_parallel_show, sync_force_parallel_store); 4733 4734 static ssize_t 4735 sync_speed_show(struct mddev *mddev, char *page) 4736 { 4737 unsigned long resync, dt, db; 4738 if (mddev->curr_resync == 0) 4739 return sprintf(page, "none\n"); 4740 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4741 dt = (jiffies - mddev->resync_mark) / HZ; 4742 if (!dt) dt++; 4743 db = resync - mddev->resync_mark_cnt; 4744 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4745 } 4746 4747 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4748 4749 static ssize_t 4750 sync_completed_show(struct mddev *mddev, char *page) 4751 { 4752 unsigned long long max_sectors, resync; 4753 4754 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4755 return sprintf(page, "none\n"); 4756 4757 if (mddev->curr_resync == 1 || 4758 mddev->curr_resync == 2) 4759 return sprintf(page, "delayed\n"); 4760 4761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4762 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4763 max_sectors = mddev->resync_max_sectors; 4764 else 4765 max_sectors = mddev->dev_sectors; 4766 4767 resync = mddev->curr_resync_completed; 4768 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4769 } 4770 4771 static struct md_sysfs_entry md_sync_completed = 4772 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4773 4774 static ssize_t 4775 min_sync_show(struct mddev *mddev, char *page) 4776 { 4777 return sprintf(page, "%llu\n", 4778 (unsigned long long)mddev->resync_min); 4779 } 4780 static ssize_t 4781 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4782 { 4783 unsigned long long min; 4784 int err; 4785 4786 if (kstrtoull(buf, 10, &min)) 4787 return -EINVAL; 4788 4789 spin_lock(&mddev->lock); 4790 err = -EINVAL; 4791 if (min > mddev->resync_max) 4792 goto out_unlock; 4793 4794 err = -EBUSY; 4795 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4796 goto out_unlock; 4797 4798 /* Round down to multiple of 4K for safety */ 4799 mddev->resync_min = round_down(min, 8); 4800 err = 0; 4801 4802 out_unlock: 4803 spin_unlock(&mddev->lock); 4804 return err ?: len; 4805 } 4806 4807 static struct md_sysfs_entry md_min_sync = 4808 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4809 4810 static ssize_t 4811 max_sync_show(struct mddev *mddev, char *page) 4812 { 4813 if (mddev->resync_max == MaxSector) 4814 return sprintf(page, "max\n"); 4815 else 4816 return sprintf(page, "%llu\n", 4817 (unsigned long long)mddev->resync_max); 4818 } 4819 static ssize_t 4820 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4821 { 4822 int err; 4823 spin_lock(&mddev->lock); 4824 if (strncmp(buf, "max", 3) == 0) 4825 mddev->resync_max = MaxSector; 4826 else { 4827 unsigned long long max; 4828 int chunk; 4829 4830 err = -EINVAL; 4831 if (kstrtoull(buf, 10, &max)) 4832 goto out_unlock; 4833 if (max < mddev->resync_min) 4834 goto out_unlock; 4835 4836 err = -EBUSY; 4837 if (max < mddev->resync_max && 4838 mddev->ro == 0 && 4839 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4840 goto out_unlock; 4841 4842 /* Must be a multiple of chunk_size */ 4843 chunk = mddev->chunk_sectors; 4844 if (chunk) { 4845 sector_t temp = max; 4846 4847 err = -EINVAL; 4848 if (sector_div(temp, chunk)) 4849 goto out_unlock; 4850 } 4851 mddev->resync_max = max; 4852 } 4853 wake_up(&mddev->recovery_wait); 4854 err = 0; 4855 out_unlock: 4856 spin_unlock(&mddev->lock); 4857 return err ?: len; 4858 } 4859 4860 static struct md_sysfs_entry md_max_sync = 4861 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4862 4863 static ssize_t 4864 suspend_lo_show(struct mddev *mddev, char *page) 4865 { 4866 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4867 } 4868 4869 static ssize_t 4870 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4871 { 4872 unsigned long long new; 4873 int err; 4874 4875 err = kstrtoull(buf, 10, &new); 4876 if (err < 0) 4877 return err; 4878 if (new != (sector_t)new) 4879 return -EINVAL; 4880 4881 err = mddev_lock(mddev); 4882 if (err) 4883 return err; 4884 err = -EINVAL; 4885 if (mddev->pers == NULL || 4886 mddev->pers->quiesce == NULL) 4887 goto unlock; 4888 mddev_suspend(mddev); 4889 mddev->suspend_lo = new; 4890 mddev_resume(mddev); 4891 4892 err = 0; 4893 unlock: 4894 mddev_unlock(mddev); 4895 return err ?: len; 4896 } 4897 static struct md_sysfs_entry md_suspend_lo = 4898 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4899 4900 static ssize_t 4901 suspend_hi_show(struct mddev *mddev, char *page) 4902 { 4903 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4904 } 4905 4906 static ssize_t 4907 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4908 { 4909 unsigned long long new; 4910 int err; 4911 4912 err = kstrtoull(buf, 10, &new); 4913 if (err < 0) 4914 return err; 4915 if (new != (sector_t)new) 4916 return -EINVAL; 4917 4918 err = mddev_lock(mddev); 4919 if (err) 4920 return err; 4921 err = -EINVAL; 4922 if (mddev->pers == NULL) 4923 goto unlock; 4924 4925 mddev_suspend(mddev); 4926 mddev->suspend_hi = new; 4927 mddev_resume(mddev); 4928 4929 err = 0; 4930 unlock: 4931 mddev_unlock(mddev); 4932 return err ?: len; 4933 } 4934 static struct md_sysfs_entry md_suspend_hi = 4935 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4936 4937 static ssize_t 4938 reshape_position_show(struct mddev *mddev, char *page) 4939 { 4940 if (mddev->reshape_position != MaxSector) 4941 return sprintf(page, "%llu\n", 4942 (unsigned long long)mddev->reshape_position); 4943 strcpy(page, "none\n"); 4944 return 5; 4945 } 4946 4947 static ssize_t 4948 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4949 { 4950 struct md_rdev *rdev; 4951 unsigned long long new; 4952 int err; 4953 4954 err = kstrtoull(buf, 10, &new); 4955 if (err < 0) 4956 return err; 4957 if (new != (sector_t)new) 4958 return -EINVAL; 4959 err = mddev_lock(mddev); 4960 if (err) 4961 return err; 4962 err = -EBUSY; 4963 if (mddev->pers) 4964 goto unlock; 4965 mddev->reshape_position = new; 4966 mddev->delta_disks = 0; 4967 mddev->reshape_backwards = 0; 4968 mddev->new_level = mddev->level; 4969 mddev->new_layout = mddev->layout; 4970 mddev->new_chunk_sectors = mddev->chunk_sectors; 4971 rdev_for_each(rdev, mddev) 4972 rdev->new_data_offset = rdev->data_offset; 4973 err = 0; 4974 unlock: 4975 mddev_unlock(mddev); 4976 return err ?: len; 4977 } 4978 4979 static struct md_sysfs_entry md_reshape_position = 4980 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4981 reshape_position_store); 4982 4983 static ssize_t 4984 reshape_direction_show(struct mddev *mddev, char *page) 4985 { 4986 return sprintf(page, "%s\n", 4987 mddev->reshape_backwards ? "backwards" : "forwards"); 4988 } 4989 4990 static ssize_t 4991 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4992 { 4993 int backwards = 0; 4994 int err; 4995 4996 if (cmd_match(buf, "forwards")) 4997 backwards = 0; 4998 else if (cmd_match(buf, "backwards")) 4999 backwards = 1; 5000 else 5001 return -EINVAL; 5002 if (mddev->reshape_backwards == backwards) 5003 return len; 5004 5005 err = mddev_lock(mddev); 5006 if (err) 5007 return err; 5008 /* check if we are allowed to change */ 5009 if (mddev->delta_disks) 5010 err = -EBUSY; 5011 else if (mddev->persistent && 5012 mddev->major_version == 0) 5013 err = -EINVAL; 5014 else 5015 mddev->reshape_backwards = backwards; 5016 mddev_unlock(mddev); 5017 return err ?: len; 5018 } 5019 5020 static struct md_sysfs_entry md_reshape_direction = 5021 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5022 reshape_direction_store); 5023 5024 static ssize_t 5025 array_size_show(struct mddev *mddev, char *page) 5026 { 5027 if (mddev->external_size) 5028 return sprintf(page, "%llu\n", 5029 (unsigned long long)mddev->array_sectors/2); 5030 else 5031 return sprintf(page, "default\n"); 5032 } 5033 5034 static ssize_t 5035 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5036 { 5037 sector_t sectors; 5038 int err; 5039 5040 err = mddev_lock(mddev); 5041 if (err) 5042 return err; 5043 5044 /* cluster raid doesn't support change array_sectors */ 5045 if (mddev_is_clustered(mddev)) { 5046 mddev_unlock(mddev); 5047 return -EINVAL; 5048 } 5049 5050 if (strncmp(buf, "default", 7) == 0) { 5051 if (mddev->pers) 5052 sectors = mddev->pers->size(mddev, 0, 0); 5053 else 5054 sectors = mddev->array_sectors; 5055 5056 mddev->external_size = 0; 5057 } else { 5058 if (strict_blocks_to_sectors(buf, §ors) < 0) 5059 err = -EINVAL; 5060 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5061 err = -E2BIG; 5062 else 5063 mddev->external_size = 1; 5064 } 5065 5066 if (!err) { 5067 mddev->array_sectors = sectors; 5068 if (mddev->pers) { 5069 set_capacity(mddev->gendisk, mddev->array_sectors); 5070 revalidate_disk(mddev->gendisk); 5071 } 5072 } 5073 mddev_unlock(mddev); 5074 return err ?: len; 5075 } 5076 5077 static struct md_sysfs_entry md_array_size = 5078 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5079 array_size_store); 5080 5081 static ssize_t 5082 consistency_policy_show(struct mddev *mddev, char *page) 5083 { 5084 int ret; 5085 5086 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5087 ret = sprintf(page, "journal\n"); 5088 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5089 ret = sprintf(page, "ppl\n"); 5090 } else if (mddev->bitmap) { 5091 ret = sprintf(page, "bitmap\n"); 5092 } else if (mddev->pers) { 5093 if (mddev->pers->sync_request) 5094 ret = sprintf(page, "resync\n"); 5095 else 5096 ret = sprintf(page, "none\n"); 5097 } else { 5098 ret = sprintf(page, "unknown\n"); 5099 } 5100 5101 return ret; 5102 } 5103 5104 static ssize_t 5105 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5106 { 5107 int err = 0; 5108 5109 if (mddev->pers) { 5110 if (mddev->pers->change_consistency_policy) 5111 err = mddev->pers->change_consistency_policy(mddev, buf); 5112 else 5113 err = -EBUSY; 5114 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5115 set_bit(MD_HAS_PPL, &mddev->flags); 5116 } else { 5117 err = -EINVAL; 5118 } 5119 5120 return err ? err : len; 5121 } 5122 5123 static struct md_sysfs_entry md_consistency_policy = 5124 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5125 consistency_policy_store); 5126 5127 static struct attribute *md_default_attrs[] = { 5128 &md_level.attr, 5129 &md_layout.attr, 5130 &md_raid_disks.attr, 5131 &md_chunk_size.attr, 5132 &md_size.attr, 5133 &md_resync_start.attr, 5134 &md_metadata.attr, 5135 &md_new_device.attr, 5136 &md_safe_delay.attr, 5137 &md_array_state.attr, 5138 &md_reshape_position.attr, 5139 &md_reshape_direction.attr, 5140 &md_array_size.attr, 5141 &max_corr_read_errors.attr, 5142 &md_consistency_policy.attr, 5143 NULL, 5144 }; 5145 5146 static struct attribute *md_redundancy_attrs[] = { 5147 &md_scan_mode.attr, 5148 &md_last_scan_mode.attr, 5149 &md_mismatches.attr, 5150 &md_sync_min.attr, 5151 &md_sync_max.attr, 5152 &md_sync_speed.attr, 5153 &md_sync_force_parallel.attr, 5154 &md_sync_completed.attr, 5155 &md_min_sync.attr, 5156 &md_max_sync.attr, 5157 &md_suspend_lo.attr, 5158 &md_suspend_hi.attr, 5159 &md_bitmap.attr, 5160 &md_degraded.attr, 5161 NULL, 5162 }; 5163 static struct attribute_group md_redundancy_group = { 5164 .name = NULL, 5165 .attrs = md_redundancy_attrs, 5166 }; 5167 5168 static ssize_t 5169 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5170 { 5171 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5172 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5173 ssize_t rv; 5174 5175 if (!entry->show) 5176 return -EIO; 5177 spin_lock(&all_mddevs_lock); 5178 if (list_empty(&mddev->all_mddevs)) { 5179 spin_unlock(&all_mddevs_lock); 5180 return -EBUSY; 5181 } 5182 mddev_get(mddev); 5183 spin_unlock(&all_mddevs_lock); 5184 5185 rv = entry->show(mddev, page); 5186 mddev_put(mddev); 5187 return rv; 5188 } 5189 5190 static ssize_t 5191 md_attr_store(struct kobject *kobj, struct attribute *attr, 5192 const char *page, size_t length) 5193 { 5194 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5195 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5196 ssize_t rv; 5197 5198 if (!entry->store) 5199 return -EIO; 5200 if (!capable(CAP_SYS_ADMIN)) 5201 return -EACCES; 5202 spin_lock(&all_mddevs_lock); 5203 if (list_empty(&mddev->all_mddevs)) { 5204 spin_unlock(&all_mddevs_lock); 5205 return -EBUSY; 5206 } 5207 mddev_get(mddev); 5208 spin_unlock(&all_mddevs_lock); 5209 rv = entry->store(mddev, page, length); 5210 mddev_put(mddev); 5211 return rv; 5212 } 5213 5214 static void md_free(struct kobject *ko) 5215 { 5216 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5217 5218 if (mddev->sysfs_state) 5219 sysfs_put(mddev->sysfs_state); 5220 5221 if (mddev->gendisk) 5222 del_gendisk(mddev->gendisk); 5223 if (mddev->queue) 5224 blk_cleanup_queue(mddev->queue); 5225 if (mddev->gendisk) 5226 put_disk(mddev->gendisk); 5227 percpu_ref_exit(&mddev->writes_pending); 5228 5229 bioset_exit(&mddev->bio_set); 5230 bioset_exit(&mddev->sync_set); 5231 kfree(mddev); 5232 } 5233 5234 static const struct sysfs_ops md_sysfs_ops = { 5235 .show = md_attr_show, 5236 .store = md_attr_store, 5237 }; 5238 static struct kobj_type md_ktype = { 5239 .release = md_free, 5240 .sysfs_ops = &md_sysfs_ops, 5241 .default_attrs = md_default_attrs, 5242 }; 5243 5244 int mdp_major = 0; 5245 5246 static void mddev_delayed_delete(struct work_struct *ws) 5247 { 5248 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5249 5250 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5251 kobject_del(&mddev->kobj); 5252 kobject_put(&mddev->kobj); 5253 } 5254 5255 static void no_op(struct percpu_ref *r) {} 5256 5257 int mddev_init_writes_pending(struct mddev *mddev) 5258 { 5259 if (mddev->writes_pending.percpu_count_ptr) 5260 return 0; 5261 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5262 return -ENOMEM; 5263 /* We want to start with the refcount at zero */ 5264 percpu_ref_put(&mddev->writes_pending); 5265 return 0; 5266 } 5267 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5268 5269 static int md_alloc(dev_t dev, char *name) 5270 { 5271 /* 5272 * If dev is zero, name is the name of a device to allocate with 5273 * an arbitrary minor number. It will be "md_???" 5274 * If dev is non-zero it must be a device number with a MAJOR of 5275 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5276 * the device is being created by opening a node in /dev. 5277 * If "name" is not NULL, the device is being created by 5278 * writing to /sys/module/md_mod/parameters/new_array. 5279 */ 5280 static DEFINE_MUTEX(disks_mutex); 5281 struct mddev *mddev = mddev_find(dev); 5282 struct gendisk *disk; 5283 int partitioned; 5284 int shift; 5285 int unit; 5286 int error; 5287 5288 if (!mddev) 5289 return -ENODEV; 5290 5291 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5292 shift = partitioned ? MdpMinorShift : 0; 5293 unit = MINOR(mddev->unit) >> shift; 5294 5295 /* wait for any previous instance of this device to be 5296 * completely removed (mddev_delayed_delete). 5297 */ 5298 flush_workqueue(md_misc_wq); 5299 5300 mutex_lock(&disks_mutex); 5301 error = -EEXIST; 5302 if (mddev->gendisk) 5303 goto abort; 5304 5305 if (name && !dev) { 5306 /* Need to ensure that 'name' is not a duplicate. 5307 */ 5308 struct mddev *mddev2; 5309 spin_lock(&all_mddevs_lock); 5310 5311 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5312 if (mddev2->gendisk && 5313 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5314 spin_unlock(&all_mddevs_lock); 5315 goto abort; 5316 } 5317 spin_unlock(&all_mddevs_lock); 5318 } 5319 if (name && dev) 5320 /* 5321 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5322 */ 5323 mddev->hold_active = UNTIL_STOP; 5324 5325 error = -ENOMEM; 5326 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5327 if (!mddev->queue) 5328 goto abort; 5329 mddev->queue->queuedata = mddev; 5330 5331 blk_queue_make_request(mddev->queue, md_make_request); 5332 blk_set_stacking_limits(&mddev->queue->limits); 5333 5334 disk = alloc_disk(1 << shift); 5335 if (!disk) { 5336 blk_cleanup_queue(mddev->queue); 5337 mddev->queue = NULL; 5338 goto abort; 5339 } 5340 disk->major = MAJOR(mddev->unit); 5341 disk->first_minor = unit << shift; 5342 if (name) 5343 strcpy(disk->disk_name, name); 5344 else if (partitioned) 5345 sprintf(disk->disk_name, "md_d%d", unit); 5346 else 5347 sprintf(disk->disk_name, "md%d", unit); 5348 disk->fops = &md_fops; 5349 disk->private_data = mddev; 5350 disk->queue = mddev->queue; 5351 blk_queue_write_cache(mddev->queue, true, true); 5352 /* Allow extended partitions. This makes the 5353 * 'mdp' device redundant, but we can't really 5354 * remove it now. 5355 */ 5356 disk->flags |= GENHD_FL_EXT_DEVT; 5357 mddev->gendisk = disk; 5358 /* As soon as we call add_disk(), another thread could get 5359 * through to md_open, so make sure it doesn't get too far 5360 */ 5361 mutex_lock(&mddev->open_mutex); 5362 add_disk(disk); 5363 5364 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5365 if (error) { 5366 /* This isn't possible, but as kobject_init_and_add is marked 5367 * __must_check, we must do something with the result 5368 */ 5369 pr_debug("md: cannot register %s/md - name in use\n", 5370 disk->disk_name); 5371 error = 0; 5372 } 5373 if (mddev->kobj.sd && 5374 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5375 pr_debug("pointless warning\n"); 5376 mutex_unlock(&mddev->open_mutex); 5377 abort: 5378 mutex_unlock(&disks_mutex); 5379 if (!error && mddev->kobj.sd) { 5380 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5381 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5382 } 5383 mddev_put(mddev); 5384 return error; 5385 } 5386 5387 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5388 { 5389 if (create_on_open) 5390 md_alloc(dev, NULL); 5391 return NULL; 5392 } 5393 5394 static int add_named_array(const char *val, const struct kernel_param *kp) 5395 { 5396 /* 5397 * val must be "md_*" or "mdNNN". 5398 * For "md_*" we allocate an array with a large free minor number, and 5399 * set the name to val. val must not already be an active name. 5400 * For "mdNNN" we allocate an array with the minor number NNN 5401 * which must not already be in use. 5402 */ 5403 int len = strlen(val); 5404 char buf[DISK_NAME_LEN]; 5405 unsigned long devnum; 5406 5407 while (len && val[len-1] == '\n') 5408 len--; 5409 if (len >= DISK_NAME_LEN) 5410 return -E2BIG; 5411 strlcpy(buf, val, len+1); 5412 if (strncmp(buf, "md_", 3) == 0) 5413 return md_alloc(0, buf); 5414 if (strncmp(buf, "md", 2) == 0 && 5415 isdigit(buf[2]) && 5416 kstrtoul(buf+2, 10, &devnum) == 0 && 5417 devnum <= MINORMASK) 5418 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5419 5420 return -EINVAL; 5421 } 5422 5423 static void md_safemode_timeout(struct timer_list *t) 5424 { 5425 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5426 5427 mddev->safemode = 1; 5428 if (mddev->external) 5429 sysfs_notify_dirent_safe(mddev->sysfs_state); 5430 5431 md_wakeup_thread(mddev->thread); 5432 } 5433 5434 static int start_dirty_degraded; 5435 5436 int md_run(struct mddev *mddev) 5437 { 5438 int err; 5439 struct md_rdev *rdev; 5440 struct md_personality *pers; 5441 5442 if (list_empty(&mddev->disks)) 5443 /* cannot run an array with no devices.. */ 5444 return -EINVAL; 5445 5446 if (mddev->pers) 5447 return -EBUSY; 5448 /* Cannot run until previous stop completes properly */ 5449 if (mddev->sysfs_active) 5450 return -EBUSY; 5451 5452 /* 5453 * Analyze all RAID superblock(s) 5454 */ 5455 if (!mddev->raid_disks) { 5456 if (!mddev->persistent) 5457 return -EINVAL; 5458 analyze_sbs(mddev); 5459 } 5460 5461 if (mddev->level != LEVEL_NONE) 5462 request_module("md-level-%d", mddev->level); 5463 else if (mddev->clevel[0]) 5464 request_module("md-%s", mddev->clevel); 5465 5466 /* 5467 * Drop all container device buffers, from now on 5468 * the only valid external interface is through the md 5469 * device. 5470 */ 5471 mddev->has_superblocks = false; 5472 rdev_for_each(rdev, mddev) { 5473 if (test_bit(Faulty, &rdev->flags)) 5474 continue; 5475 sync_blockdev(rdev->bdev); 5476 invalidate_bdev(rdev->bdev); 5477 if (mddev->ro != 1 && 5478 (bdev_read_only(rdev->bdev) || 5479 bdev_read_only(rdev->meta_bdev))) { 5480 mddev->ro = 1; 5481 if (mddev->gendisk) 5482 set_disk_ro(mddev->gendisk, 1); 5483 } 5484 5485 if (rdev->sb_page) 5486 mddev->has_superblocks = true; 5487 5488 /* perform some consistency tests on the device. 5489 * We don't want the data to overlap the metadata, 5490 * Internal Bitmap issues have been handled elsewhere. 5491 */ 5492 if (rdev->meta_bdev) { 5493 /* Nothing to check */; 5494 } else if (rdev->data_offset < rdev->sb_start) { 5495 if (mddev->dev_sectors && 5496 rdev->data_offset + mddev->dev_sectors 5497 > rdev->sb_start) { 5498 pr_warn("md: %s: data overlaps metadata\n", 5499 mdname(mddev)); 5500 return -EINVAL; 5501 } 5502 } else { 5503 if (rdev->sb_start + rdev->sb_size/512 5504 > rdev->data_offset) { 5505 pr_warn("md: %s: metadata overlaps data\n", 5506 mdname(mddev)); 5507 return -EINVAL; 5508 } 5509 } 5510 sysfs_notify_dirent_safe(rdev->sysfs_state); 5511 } 5512 5513 if (!bioset_initialized(&mddev->bio_set)) { 5514 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5515 if (err) 5516 return err; 5517 } 5518 if (!bioset_initialized(&mddev->sync_set)) { 5519 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5520 if (err) 5521 return err; 5522 } 5523 if (mddev->flush_pool == NULL) { 5524 mddev->flush_pool = mempool_create(NR_FLUSH_INFOS, flush_info_alloc, 5525 flush_info_free, mddev); 5526 if (!mddev->flush_pool) { 5527 err = -ENOMEM; 5528 goto abort; 5529 } 5530 } 5531 if (mddev->flush_bio_pool == NULL) { 5532 mddev->flush_bio_pool = mempool_create(NR_FLUSH_BIOS, flush_bio_alloc, 5533 flush_bio_free, mddev); 5534 if (!mddev->flush_bio_pool) { 5535 err = -ENOMEM; 5536 goto abort; 5537 } 5538 } 5539 5540 spin_lock(&pers_lock); 5541 pers = find_pers(mddev->level, mddev->clevel); 5542 if (!pers || !try_module_get(pers->owner)) { 5543 spin_unlock(&pers_lock); 5544 if (mddev->level != LEVEL_NONE) 5545 pr_warn("md: personality for level %d is not loaded!\n", 5546 mddev->level); 5547 else 5548 pr_warn("md: personality for level %s is not loaded!\n", 5549 mddev->clevel); 5550 return -EINVAL; 5551 } 5552 spin_unlock(&pers_lock); 5553 if (mddev->level != pers->level) { 5554 mddev->level = pers->level; 5555 mddev->new_level = pers->level; 5556 } 5557 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5558 5559 if (mddev->reshape_position != MaxSector && 5560 pers->start_reshape == NULL) { 5561 /* This personality cannot handle reshaping... */ 5562 module_put(pers->owner); 5563 return -EINVAL; 5564 } 5565 5566 if (pers->sync_request) { 5567 /* Warn if this is a potentially silly 5568 * configuration. 5569 */ 5570 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5571 struct md_rdev *rdev2; 5572 int warned = 0; 5573 5574 rdev_for_each(rdev, mddev) 5575 rdev_for_each(rdev2, mddev) { 5576 if (rdev < rdev2 && 5577 rdev->bdev->bd_contains == 5578 rdev2->bdev->bd_contains) { 5579 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5580 mdname(mddev), 5581 bdevname(rdev->bdev,b), 5582 bdevname(rdev2->bdev,b2)); 5583 warned = 1; 5584 } 5585 } 5586 5587 if (warned) 5588 pr_warn("True protection against single-disk failure might be compromised.\n"); 5589 } 5590 5591 mddev->recovery = 0; 5592 /* may be over-ridden by personality */ 5593 mddev->resync_max_sectors = mddev->dev_sectors; 5594 5595 mddev->ok_start_degraded = start_dirty_degraded; 5596 5597 if (start_readonly && mddev->ro == 0) 5598 mddev->ro = 2; /* read-only, but switch on first write */ 5599 5600 err = pers->run(mddev); 5601 if (err) 5602 pr_warn("md: pers->run() failed ...\n"); 5603 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5604 WARN_ONCE(!mddev->external_size, 5605 "%s: default size too small, but 'external_size' not in effect?\n", 5606 __func__); 5607 pr_warn("md: invalid array_size %llu > default size %llu\n", 5608 (unsigned long long)mddev->array_sectors / 2, 5609 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5610 err = -EINVAL; 5611 } 5612 if (err == 0 && pers->sync_request && 5613 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5614 struct bitmap *bitmap; 5615 5616 bitmap = bitmap_create(mddev, -1); 5617 if (IS_ERR(bitmap)) { 5618 err = PTR_ERR(bitmap); 5619 pr_warn("%s: failed to create bitmap (%d)\n", 5620 mdname(mddev), err); 5621 } else 5622 mddev->bitmap = bitmap; 5623 5624 } 5625 if (err) { 5626 mddev_detach(mddev); 5627 if (mddev->private) 5628 pers->free(mddev, mddev->private); 5629 mddev->private = NULL; 5630 module_put(pers->owner); 5631 bitmap_destroy(mddev); 5632 return err; 5633 } 5634 if (mddev->queue) { 5635 bool nonrot = true; 5636 5637 rdev_for_each(rdev, mddev) { 5638 if (rdev->raid_disk >= 0 && 5639 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5640 nonrot = false; 5641 break; 5642 } 5643 } 5644 if (mddev->degraded) 5645 nonrot = false; 5646 if (nonrot) 5647 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5648 else 5649 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5650 mddev->queue->backing_dev_info->congested_data = mddev; 5651 mddev->queue->backing_dev_info->congested_fn = md_congested; 5652 } 5653 if (pers->sync_request) { 5654 if (mddev->kobj.sd && 5655 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5656 pr_warn("md: cannot register extra attributes for %s\n", 5657 mdname(mddev)); 5658 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5659 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5660 mddev->ro = 0; 5661 5662 atomic_set(&mddev->max_corr_read_errors, 5663 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5664 mddev->safemode = 0; 5665 if (mddev_is_clustered(mddev)) 5666 mddev->safemode_delay = 0; 5667 else 5668 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5669 mddev->in_sync = 1; 5670 smp_wmb(); 5671 spin_lock(&mddev->lock); 5672 mddev->pers = pers; 5673 spin_unlock(&mddev->lock); 5674 rdev_for_each(rdev, mddev) 5675 if (rdev->raid_disk >= 0) 5676 if (sysfs_link_rdev(mddev, rdev)) 5677 /* failure here is OK */; 5678 5679 if (mddev->degraded && !mddev->ro) 5680 /* This ensures that recovering status is reported immediately 5681 * via sysfs - until a lack of spares is confirmed. 5682 */ 5683 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5684 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5685 5686 if (mddev->sb_flags) 5687 md_update_sb(mddev, 0); 5688 5689 md_new_event(mddev); 5690 sysfs_notify_dirent_safe(mddev->sysfs_state); 5691 sysfs_notify_dirent_safe(mddev->sysfs_action); 5692 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5693 return 0; 5694 5695 abort: 5696 if (mddev->flush_bio_pool) { 5697 mempool_destroy(mddev->flush_bio_pool); 5698 mddev->flush_bio_pool = NULL; 5699 } 5700 if (mddev->flush_pool){ 5701 mempool_destroy(mddev->flush_pool); 5702 mddev->flush_pool = NULL; 5703 } 5704 5705 return err; 5706 } 5707 EXPORT_SYMBOL_GPL(md_run); 5708 5709 static int do_md_run(struct mddev *mddev) 5710 { 5711 int err; 5712 5713 err = md_run(mddev); 5714 if (err) 5715 goto out; 5716 err = bitmap_load(mddev); 5717 if (err) { 5718 bitmap_destroy(mddev); 5719 goto out; 5720 } 5721 5722 if (mddev_is_clustered(mddev)) 5723 md_allow_write(mddev); 5724 5725 /* run start up tasks that require md_thread */ 5726 md_start(mddev); 5727 5728 md_wakeup_thread(mddev->thread); 5729 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5730 5731 set_capacity(mddev->gendisk, mddev->array_sectors); 5732 revalidate_disk(mddev->gendisk); 5733 mddev->changed = 1; 5734 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5735 out: 5736 return err; 5737 } 5738 5739 int md_start(struct mddev *mddev) 5740 { 5741 int ret = 0; 5742 5743 if (mddev->pers->start) { 5744 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5745 md_wakeup_thread(mddev->thread); 5746 ret = mddev->pers->start(mddev); 5747 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5748 md_wakeup_thread(mddev->sync_thread); 5749 } 5750 return ret; 5751 } 5752 EXPORT_SYMBOL_GPL(md_start); 5753 5754 static int restart_array(struct mddev *mddev) 5755 { 5756 struct gendisk *disk = mddev->gendisk; 5757 struct md_rdev *rdev; 5758 bool has_journal = false; 5759 bool has_readonly = false; 5760 5761 /* Complain if it has no devices */ 5762 if (list_empty(&mddev->disks)) 5763 return -ENXIO; 5764 if (!mddev->pers) 5765 return -EINVAL; 5766 if (!mddev->ro) 5767 return -EBUSY; 5768 5769 rcu_read_lock(); 5770 rdev_for_each_rcu(rdev, mddev) { 5771 if (test_bit(Journal, &rdev->flags) && 5772 !test_bit(Faulty, &rdev->flags)) 5773 has_journal = true; 5774 if (bdev_read_only(rdev->bdev)) 5775 has_readonly = true; 5776 } 5777 rcu_read_unlock(); 5778 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5779 /* Don't restart rw with journal missing/faulty */ 5780 return -EINVAL; 5781 if (has_readonly) 5782 return -EROFS; 5783 5784 mddev->safemode = 0; 5785 mddev->ro = 0; 5786 set_disk_ro(disk, 0); 5787 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5788 /* Kick recovery or resync if necessary */ 5789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5790 md_wakeup_thread(mddev->thread); 5791 md_wakeup_thread(mddev->sync_thread); 5792 sysfs_notify_dirent_safe(mddev->sysfs_state); 5793 return 0; 5794 } 5795 5796 static void md_clean(struct mddev *mddev) 5797 { 5798 mddev->array_sectors = 0; 5799 mddev->external_size = 0; 5800 mddev->dev_sectors = 0; 5801 mddev->raid_disks = 0; 5802 mddev->recovery_cp = 0; 5803 mddev->resync_min = 0; 5804 mddev->resync_max = MaxSector; 5805 mddev->reshape_position = MaxSector; 5806 mddev->external = 0; 5807 mddev->persistent = 0; 5808 mddev->level = LEVEL_NONE; 5809 mddev->clevel[0] = 0; 5810 mddev->flags = 0; 5811 mddev->sb_flags = 0; 5812 mddev->ro = 0; 5813 mddev->metadata_type[0] = 0; 5814 mddev->chunk_sectors = 0; 5815 mddev->ctime = mddev->utime = 0; 5816 mddev->layout = 0; 5817 mddev->max_disks = 0; 5818 mddev->events = 0; 5819 mddev->can_decrease_events = 0; 5820 mddev->delta_disks = 0; 5821 mddev->reshape_backwards = 0; 5822 mddev->new_level = LEVEL_NONE; 5823 mddev->new_layout = 0; 5824 mddev->new_chunk_sectors = 0; 5825 mddev->curr_resync = 0; 5826 atomic64_set(&mddev->resync_mismatches, 0); 5827 mddev->suspend_lo = mddev->suspend_hi = 0; 5828 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5829 mddev->recovery = 0; 5830 mddev->in_sync = 0; 5831 mddev->changed = 0; 5832 mddev->degraded = 0; 5833 mddev->safemode = 0; 5834 mddev->private = NULL; 5835 mddev->cluster_info = NULL; 5836 mddev->bitmap_info.offset = 0; 5837 mddev->bitmap_info.default_offset = 0; 5838 mddev->bitmap_info.default_space = 0; 5839 mddev->bitmap_info.chunksize = 0; 5840 mddev->bitmap_info.daemon_sleep = 0; 5841 mddev->bitmap_info.max_write_behind = 0; 5842 mddev->bitmap_info.nodes = 0; 5843 } 5844 5845 static void __md_stop_writes(struct mddev *mddev) 5846 { 5847 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5848 flush_workqueue(md_misc_wq); 5849 if (mddev->sync_thread) { 5850 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5851 md_reap_sync_thread(mddev); 5852 } 5853 5854 del_timer_sync(&mddev->safemode_timer); 5855 5856 if (mddev->pers && mddev->pers->quiesce) { 5857 mddev->pers->quiesce(mddev, 1); 5858 mddev->pers->quiesce(mddev, 0); 5859 } 5860 bitmap_flush(mddev); 5861 5862 if (mddev->ro == 0 && 5863 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5864 mddev->sb_flags)) { 5865 /* mark array as shutdown cleanly */ 5866 if (!mddev_is_clustered(mddev)) 5867 mddev->in_sync = 1; 5868 md_update_sb(mddev, 1); 5869 } 5870 } 5871 5872 void md_stop_writes(struct mddev *mddev) 5873 { 5874 mddev_lock_nointr(mddev); 5875 __md_stop_writes(mddev); 5876 mddev_unlock(mddev); 5877 } 5878 EXPORT_SYMBOL_GPL(md_stop_writes); 5879 5880 static void mddev_detach(struct mddev *mddev) 5881 { 5882 bitmap_wait_behind_writes(mddev); 5883 if (mddev->pers && mddev->pers->quiesce) { 5884 mddev->pers->quiesce(mddev, 1); 5885 mddev->pers->quiesce(mddev, 0); 5886 } 5887 md_unregister_thread(&mddev->thread); 5888 if (mddev->queue) 5889 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5890 } 5891 5892 static void __md_stop(struct mddev *mddev) 5893 { 5894 struct md_personality *pers = mddev->pers; 5895 bitmap_destroy(mddev); 5896 mddev_detach(mddev); 5897 /* Ensure ->event_work is done */ 5898 flush_workqueue(md_misc_wq); 5899 spin_lock(&mddev->lock); 5900 mddev->pers = NULL; 5901 spin_unlock(&mddev->lock); 5902 pers->free(mddev, mddev->private); 5903 mddev->private = NULL; 5904 if (pers->sync_request && mddev->to_remove == NULL) 5905 mddev->to_remove = &md_redundancy_group; 5906 module_put(pers->owner); 5907 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5908 } 5909 5910 void md_stop(struct mddev *mddev) 5911 { 5912 /* stop the array and free an attached data structures. 5913 * This is called from dm-raid 5914 */ 5915 __md_stop(mddev); 5916 if (mddev->flush_bio_pool) { 5917 mempool_destroy(mddev->flush_bio_pool); 5918 mddev->flush_bio_pool = NULL; 5919 } 5920 if (mddev->flush_pool) { 5921 mempool_destroy(mddev->flush_pool); 5922 mddev->flush_pool = NULL; 5923 } 5924 bioset_exit(&mddev->bio_set); 5925 bioset_exit(&mddev->sync_set); 5926 } 5927 5928 EXPORT_SYMBOL_GPL(md_stop); 5929 5930 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5931 { 5932 int err = 0; 5933 int did_freeze = 0; 5934 5935 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5936 did_freeze = 1; 5937 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5938 md_wakeup_thread(mddev->thread); 5939 } 5940 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5941 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5942 if (mddev->sync_thread) 5943 /* Thread might be blocked waiting for metadata update 5944 * which will now never happen */ 5945 wake_up_process(mddev->sync_thread->tsk); 5946 5947 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5948 return -EBUSY; 5949 mddev_unlock(mddev); 5950 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5951 &mddev->recovery)); 5952 wait_event(mddev->sb_wait, 5953 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5954 mddev_lock_nointr(mddev); 5955 5956 mutex_lock(&mddev->open_mutex); 5957 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5958 mddev->sync_thread || 5959 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5960 pr_warn("md: %s still in use.\n",mdname(mddev)); 5961 if (did_freeze) { 5962 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5964 md_wakeup_thread(mddev->thread); 5965 } 5966 err = -EBUSY; 5967 goto out; 5968 } 5969 if (mddev->pers) { 5970 __md_stop_writes(mddev); 5971 5972 err = -ENXIO; 5973 if (mddev->ro==1) 5974 goto out; 5975 mddev->ro = 1; 5976 set_disk_ro(mddev->gendisk, 1); 5977 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5979 md_wakeup_thread(mddev->thread); 5980 sysfs_notify_dirent_safe(mddev->sysfs_state); 5981 err = 0; 5982 } 5983 out: 5984 mutex_unlock(&mddev->open_mutex); 5985 return err; 5986 } 5987 5988 /* mode: 5989 * 0 - completely stop and dis-assemble array 5990 * 2 - stop but do not disassemble array 5991 */ 5992 static int do_md_stop(struct mddev *mddev, int mode, 5993 struct block_device *bdev) 5994 { 5995 struct gendisk *disk = mddev->gendisk; 5996 struct md_rdev *rdev; 5997 int did_freeze = 0; 5998 5999 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6000 did_freeze = 1; 6001 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6002 md_wakeup_thread(mddev->thread); 6003 } 6004 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6005 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6006 if (mddev->sync_thread) 6007 /* Thread might be blocked waiting for metadata update 6008 * which will now never happen */ 6009 wake_up_process(mddev->sync_thread->tsk); 6010 6011 mddev_unlock(mddev); 6012 wait_event(resync_wait, (mddev->sync_thread == NULL && 6013 !test_bit(MD_RECOVERY_RUNNING, 6014 &mddev->recovery))); 6015 mddev_lock_nointr(mddev); 6016 6017 mutex_lock(&mddev->open_mutex); 6018 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6019 mddev->sysfs_active || 6020 mddev->sync_thread || 6021 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6022 pr_warn("md: %s still in use.\n",mdname(mddev)); 6023 mutex_unlock(&mddev->open_mutex); 6024 if (did_freeze) { 6025 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6026 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6027 md_wakeup_thread(mddev->thread); 6028 } 6029 return -EBUSY; 6030 } 6031 if (mddev->pers) { 6032 if (mddev->ro) 6033 set_disk_ro(disk, 0); 6034 6035 __md_stop_writes(mddev); 6036 __md_stop(mddev); 6037 mddev->queue->backing_dev_info->congested_fn = NULL; 6038 6039 /* tell userspace to handle 'inactive' */ 6040 sysfs_notify_dirent_safe(mddev->sysfs_state); 6041 6042 rdev_for_each(rdev, mddev) 6043 if (rdev->raid_disk >= 0) 6044 sysfs_unlink_rdev(mddev, rdev); 6045 6046 set_capacity(disk, 0); 6047 mutex_unlock(&mddev->open_mutex); 6048 mddev->changed = 1; 6049 revalidate_disk(disk); 6050 6051 if (mddev->ro) 6052 mddev->ro = 0; 6053 } else 6054 mutex_unlock(&mddev->open_mutex); 6055 /* 6056 * Free resources if final stop 6057 */ 6058 if (mode == 0) { 6059 pr_info("md: %s stopped.\n", mdname(mddev)); 6060 6061 if (mddev->bitmap_info.file) { 6062 struct file *f = mddev->bitmap_info.file; 6063 spin_lock(&mddev->lock); 6064 mddev->bitmap_info.file = NULL; 6065 spin_unlock(&mddev->lock); 6066 fput(f); 6067 } 6068 mddev->bitmap_info.offset = 0; 6069 6070 export_array(mddev); 6071 6072 md_clean(mddev); 6073 if (mddev->hold_active == UNTIL_STOP) 6074 mddev->hold_active = 0; 6075 } 6076 md_new_event(mddev); 6077 sysfs_notify_dirent_safe(mddev->sysfs_state); 6078 return 0; 6079 } 6080 6081 #ifndef MODULE 6082 static void autorun_array(struct mddev *mddev) 6083 { 6084 struct md_rdev *rdev; 6085 int err; 6086 6087 if (list_empty(&mddev->disks)) 6088 return; 6089 6090 pr_info("md: running: "); 6091 6092 rdev_for_each(rdev, mddev) { 6093 char b[BDEVNAME_SIZE]; 6094 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6095 } 6096 pr_cont("\n"); 6097 6098 err = do_md_run(mddev); 6099 if (err) { 6100 pr_warn("md: do_md_run() returned %d\n", err); 6101 do_md_stop(mddev, 0, NULL); 6102 } 6103 } 6104 6105 /* 6106 * lets try to run arrays based on all disks that have arrived 6107 * until now. (those are in pending_raid_disks) 6108 * 6109 * the method: pick the first pending disk, collect all disks with 6110 * the same UUID, remove all from the pending list and put them into 6111 * the 'same_array' list. Then order this list based on superblock 6112 * update time (freshest comes first), kick out 'old' disks and 6113 * compare superblocks. If everything's fine then run it. 6114 * 6115 * If "unit" is allocated, then bump its reference count 6116 */ 6117 static void autorun_devices(int part) 6118 { 6119 struct md_rdev *rdev0, *rdev, *tmp; 6120 struct mddev *mddev; 6121 char b[BDEVNAME_SIZE]; 6122 6123 pr_info("md: autorun ...\n"); 6124 while (!list_empty(&pending_raid_disks)) { 6125 int unit; 6126 dev_t dev; 6127 LIST_HEAD(candidates); 6128 rdev0 = list_entry(pending_raid_disks.next, 6129 struct md_rdev, same_set); 6130 6131 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6132 INIT_LIST_HEAD(&candidates); 6133 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6134 if (super_90_load(rdev, rdev0, 0) >= 0) { 6135 pr_debug("md: adding %s ...\n", 6136 bdevname(rdev->bdev,b)); 6137 list_move(&rdev->same_set, &candidates); 6138 } 6139 /* 6140 * now we have a set of devices, with all of them having 6141 * mostly sane superblocks. It's time to allocate the 6142 * mddev. 6143 */ 6144 if (part) { 6145 dev = MKDEV(mdp_major, 6146 rdev0->preferred_minor << MdpMinorShift); 6147 unit = MINOR(dev) >> MdpMinorShift; 6148 } else { 6149 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6150 unit = MINOR(dev); 6151 } 6152 if (rdev0->preferred_minor != unit) { 6153 pr_warn("md: unit number in %s is bad: %d\n", 6154 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6155 break; 6156 } 6157 6158 md_probe(dev, NULL, NULL); 6159 mddev = mddev_find(dev); 6160 if (!mddev || !mddev->gendisk) { 6161 if (mddev) 6162 mddev_put(mddev); 6163 break; 6164 } 6165 if (mddev_lock(mddev)) 6166 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6167 else if (mddev->raid_disks || mddev->major_version 6168 || !list_empty(&mddev->disks)) { 6169 pr_warn("md: %s already running, cannot run %s\n", 6170 mdname(mddev), bdevname(rdev0->bdev,b)); 6171 mddev_unlock(mddev); 6172 } else { 6173 pr_debug("md: created %s\n", mdname(mddev)); 6174 mddev->persistent = 1; 6175 rdev_for_each_list(rdev, tmp, &candidates) { 6176 list_del_init(&rdev->same_set); 6177 if (bind_rdev_to_array(rdev, mddev)) 6178 export_rdev(rdev); 6179 } 6180 autorun_array(mddev); 6181 mddev_unlock(mddev); 6182 } 6183 /* on success, candidates will be empty, on error 6184 * it won't... 6185 */ 6186 rdev_for_each_list(rdev, tmp, &candidates) { 6187 list_del_init(&rdev->same_set); 6188 export_rdev(rdev); 6189 } 6190 mddev_put(mddev); 6191 } 6192 pr_info("md: ... autorun DONE.\n"); 6193 } 6194 #endif /* !MODULE */ 6195 6196 static int get_version(void __user *arg) 6197 { 6198 mdu_version_t ver; 6199 6200 ver.major = MD_MAJOR_VERSION; 6201 ver.minor = MD_MINOR_VERSION; 6202 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6203 6204 if (copy_to_user(arg, &ver, sizeof(ver))) 6205 return -EFAULT; 6206 6207 return 0; 6208 } 6209 6210 static int get_array_info(struct mddev *mddev, void __user *arg) 6211 { 6212 mdu_array_info_t info; 6213 int nr,working,insync,failed,spare; 6214 struct md_rdev *rdev; 6215 6216 nr = working = insync = failed = spare = 0; 6217 rcu_read_lock(); 6218 rdev_for_each_rcu(rdev, mddev) { 6219 nr++; 6220 if (test_bit(Faulty, &rdev->flags)) 6221 failed++; 6222 else { 6223 working++; 6224 if (test_bit(In_sync, &rdev->flags)) 6225 insync++; 6226 else if (test_bit(Journal, &rdev->flags)) 6227 /* TODO: add journal count to md_u.h */ 6228 ; 6229 else 6230 spare++; 6231 } 6232 } 6233 rcu_read_unlock(); 6234 6235 info.major_version = mddev->major_version; 6236 info.minor_version = mddev->minor_version; 6237 info.patch_version = MD_PATCHLEVEL_VERSION; 6238 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6239 info.level = mddev->level; 6240 info.size = mddev->dev_sectors / 2; 6241 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6242 info.size = -1; 6243 info.nr_disks = nr; 6244 info.raid_disks = mddev->raid_disks; 6245 info.md_minor = mddev->md_minor; 6246 info.not_persistent= !mddev->persistent; 6247 6248 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6249 info.state = 0; 6250 if (mddev->in_sync) 6251 info.state = (1<<MD_SB_CLEAN); 6252 if (mddev->bitmap && mddev->bitmap_info.offset) 6253 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6254 if (mddev_is_clustered(mddev)) 6255 info.state |= (1<<MD_SB_CLUSTERED); 6256 info.active_disks = insync; 6257 info.working_disks = working; 6258 info.failed_disks = failed; 6259 info.spare_disks = spare; 6260 6261 info.layout = mddev->layout; 6262 info.chunk_size = mddev->chunk_sectors << 9; 6263 6264 if (copy_to_user(arg, &info, sizeof(info))) 6265 return -EFAULT; 6266 6267 return 0; 6268 } 6269 6270 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6271 { 6272 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6273 char *ptr; 6274 int err; 6275 6276 file = kzalloc(sizeof(*file), GFP_NOIO); 6277 if (!file) 6278 return -ENOMEM; 6279 6280 err = 0; 6281 spin_lock(&mddev->lock); 6282 /* bitmap enabled */ 6283 if (mddev->bitmap_info.file) { 6284 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6285 sizeof(file->pathname)); 6286 if (IS_ERR(ptr)) 6287 err = PTR_ERR(ptr); 6288 else 6289 memmove(file->pathname, ptr, 6290 sizeof(file->pathname)-(ptr-file->pathname)); 6291 } 6292 spin_unlock(&mddev->lock); 6293 6294 if (err == 0 && 6295 copy_to_user(arg, file, sizeof(*file))) 6296 err = -EFAULT; 6297 6298 kfree(file); 6299 return err; 6300 } 6301 6302 static int get_disk_info(struct mddev *mddev, void __user * arg) 6303 { 6304 mdu_disk_info_t info; 6305 struct md_rdev *rdev; 6306 6307 if (copy_from_user(&info, arg, sizeof(info))) 6308 return -EFAULT; 6309 6310 rcu_read_lock(); 6311 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6312 if (rdev) { 6313 info.major = MAJOR(rdev->bdev->bd_dev); 6314 info.minor = MINOR(rdev->bdev->bd_dev); 6315 info.raid_disk = rdev->raid_disk; 6316 info.state = 0; 6317 if (test_bit(Faulty, &rdev->flags)) 6318 info.state |= (1<<MD_DISK_FAULTY); 6319 else if (test_bit(In_sync, &rdev->flags)) { 6320 info.state |= (1<<MD_DISK_ACTIVE); 6321 info.state |= (1<<MD_DISK_SYNC); 6322 } 6323 if (test_bit(Journal, &rdev->flags)) 6324 info.state |= (1<<MD_DISK_JOURNAL); 6325 if (test_bit(WriteMostly, &rdev->flags)) 6326 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6327 if (test_bit(FailFast, &rdev->flags)) 6328 info.state |= (1<<MD_DISK_FAILFAST); 6329 } else { 6330 info.major = info.minor = 0; 6331 info.raid_disk = -1; 6332 info.state = (1<<MD_DISK_REMOVED); 6333 } 6334 rcu_read_unlock(); 6335 6336 if (copy_to_user(arg, &info, sizeof(info))) 6337 return -EFAULT; 6338 6339 return 0; 6340 } 6341 6342 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6343 { 6344 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6345 struct md_rdev *rdev; 6346 dev_t dev = MKDEV(info->major,info->minor); 6347 6348 if (mddev_is_clustered(mddev) && 6349 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6350 pr_warn("%s: Cannot add to clustered mddev.\n", 6351 mdname(mddev)); 6352 return -EINVAL; 6353 } 6354 6355 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6356 return -EOVERFLOW; 6357 6358 if (!mddev->raid_disks) { 6359 int err; 6360 /* expecting a device which has a superblock */ 6361 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6362 if (IS_ERR(rdev)) { 6363 pr_warn("md: md_import_device returned %ld\n", 6364 PTR_ERR(rdev)); 6365 return PTR_ERR(rdev); 6366 } 6367 if (!list_empty(&mddev->disks)) { 6368 struct md_rdev *rdev0 6369 = list_entry(mddev->disks.next, 6370 struct md_rdev, same_set); 6371 err = super_types[mddev->major_version] 6372 .load_super(rdev, rdev0, mddev->minor_version); 6373 if (err < 0) { 6374 pr_warn("md: %s has different UUID to %s\n", 6375 bdevname(rdev->bdev,b), 6376 bdevname(rdev0->bdev,b2)); 6377 export_rdev(rdev); 6378 return -EINVAL; 6379 } 6380 } 6381 err = bind_rdev_to_array(rdev, mddev); 6382 if (err) 6383 export_rdev(rdev); 6384 return err; 6385 } 6386 6387 /* 6388 * add_new_disk can be used once the array is assembled 6389 * to add "hot spares". They must already have a superblock 6390 * written 6391 */ 6392 if (mddev->pers) { 6393 int err; 6394 if (!mddev->pers->hot_add_disk) { 6395 pr_warn("%s: personality does not support diskops!\n", 6396 mdname(mddev)); 6397 return -EINVAL; 6398 } 6399 if (mddev->persistent) 6400 rdev = md_import_device(dev, mddev->major_version, 6401 mddev->minor_version); 6402 else 6403 rdev = md_import_device(dev, -1, -1); 6404 if (IS_ERR(rdev)) { 6405 pr_warn("md: md_import_device returned %ld\n", 6406 PTR_ERR(rdev)); 6407 return PTR_ERR(rdev); 6408 } 6409 /* set saved_raid_disk if appropriate */ 6410 if (!mddev->persistent) { 6411 if (info->state & (1<<MD_DISK_SYNC) && 6412 info->raid_disk < mddev->raid_disks) { 6413 rdev->raid_disk = info->raid_disk; 6414 set_bit(In_sync, &rdev->flags); 6415 clear_bit(Bitmap_sync, &rdev->flags); 6416 } else 6417 rdev->raid_disk = -1; 6418 rdev->saved_raid_disk = rdev->raid_disk; 6419 } else 6420 super_types[mddev->major_version]. 6421 validate_super(mddev, rdev); 6422 if ((info->state & (1<<MD_DISK_SYNC)) && 6423 rdev->raid_disk != info->raid_disk) { 6424 /* This was a hot-add request, but events doesn't 6425 * match, so reject it. 6426 */ 6427 export_rdev(rdev); 6428 return -EINVAL; 6429 } 6430 6431 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6432 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6433 set_bit(WriteMostly, &rdev->flags); 6434 else 6435 clear_bit(WriteMostly, &rdev->flags); 6436 if (info->state & (1<<MD_DISK_FAILFAST)) 6437 set_bit(FailFast, &rdev->flags); 6438 else 6439 clear_bit(FailFast, &rdev->flags); 6440 6441 if (info->state & (1<<MD_DISK_JOURNAL)) { 6442 struct md_rdev *rdev2; 6443 bool has_journal = false; 6444 6445 /* make sure no existing journal disk */ 6446 rdev_for_each(rdev2, mddev) { 6447 if (test_bit(Journal, &rdev2->flags)) { 6448 has_journal = true; 6449 break; 6450 } 6451 } 6452 if (has_journal || mddev->bitmap) { 6453 export_rdev(rdev); 6454 return -EBUSY; 6455 } 6456 set_bit(Journal, &rdev->flags); 6457 } 6458 /* 6459 * check whether the device shows up in other nodes 6460 */ 6461 if (mddev_is_clustered(mddev)) { 6462 if (info->state & (1 << MD_DISK_CANDIDATE)) 6463 set_bit(Candidate, &rdev->flags); 6464 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6465 /* --add initiated by this node */ 6466 err = md_cluster_ops->add_new_disk(mddev, rdev); 6467 if (err) { 6468 export_rdev(rdev); 6469 return err; 6470 } 6471 } 6472 } 6473 6474 rdev->raid_disk = -1; 6475 err = bind_rdev_to_array(rdev, mddev); 6476 6477 if (err) 6478 export_rdev(rdev); 6479 6480 if (mddev_is_clustered(mddev)) { 6481 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6482 if (!err) { 6483 err = md_cluster_ops->new_disk_ack(mddev, 6484 err == 0); 6485 if (err) 6486 md_kick_rdev_from_array(rdev); 6487 } 6488 } else { 6489 if (err) 6490 md_cluster_ops->add_new_disk_cancel(mddev); 6491 else 6492 err = add_bound_rdev(rdev); 6493 } 6494 6495 } else if (!err) 6496 err = add_bound_rdev(rdev); 6497 6498 return err; 6499 } 6500 6501 /* otherwise, add_new_disk is only allowed 6502 * for major_version==0 superblocks 6503 */ 6504 if (mddev->major_version != 0) { 6505 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6506 return -EINVAL; 6507 } 6508 6509 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6510 int err; 6511 rdev = md_import_device(dev, -1, 0); 6512 if (IS_ERR(rdev)) { 6513 pr_warn("md: error, md_import_device() returned %ld\n", 6514 PTR_ERR(rdev)); 6515 return PTR_ERR(rdev); 6516 } 6517 rdev->desc_nr = info->number; 6518 if (info->raid_disk < mddev->raid_disks) 6519 rdev->raid_disk = info->raid_disk; 6520 else 6521 rdev->raid_disk = -1; 6522 6523 if (rdev->raid_disk < mddev->raid_disks) 6524 if (info->state & (1<<MD_DISK_SYNC)) 6525 set_bit(In_sync, &rdev->flags); 6526 6527 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6528 set_bit(WriteMostly, &rdev->flags); 6529 if (info->state & (1<<MD_DISK_FAILFAST)) 6530 set_bit(FailFast, &rdev->flags); 6531 6532 if (!mddev->persistent) { 6533 pr_debug("md: nonpersistent superblock ...\n"); 6534 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6535 } else 6536 rdev->sb_start = calc_dev_sboffset(rdev); 6537 rdev->sectors = rdev->sb_start; 6538 6539 err = bind_rdev_to_array(rdev, mddev); 6540 if (err) { 6541 export_rdev(rdev); 6542 return err; 6543 } 6544 } 6545 6546 return 0; 6547 } 6548 6549 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6550 { 6551 char b[BDEVNAME_SIZE]; 6552 struct md_rdev *rdev; 6553 6554 if (!mddev->pers) 6555 return -ENODEV; 6556 6557 rdev = find_rdev(mddev, dev); 6558 if (!rdev) 6559 return -ENXIO; 6560 6561 if (rdev->raid_disk < 0) 6562 goto kick_rdev; 6563 6564 clear_bit(Blocked, &rdev->flags); 6565 remove_and_add_spares(mddev, rdev); 6566 6567 if (rdev->raid_disk >= 0) 6568 goto busy; 6569 6570 kick_rdev: 6571 if (mddev_is_clustered(mddev)) 6572 md_cluster_ops->remove_disk(mddev, rdev); 6573 6574 md_kick_rdev_from_array(rdev); 6575 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6576 if (mddev->thread) 6577 md_wakeup_thread(mddev->thread); 6578 else 6579 md_update_sb(mddev, 1); 6580 md_new_event(mddev); 6581 6582 return 0; 6583 busy: 6584 pr_debug("md: cannot remove active disk %s from %s ...\n", 6585 bdevname(rdev->bdev,b), mdname(mddev)); 6586 return -EBUSY; 6587 } 6588 6589 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6590 { 6591 char b[BDEVNAME_SIZE]; 6592 int err; 6593 struct md_rdev *rdev; 6594 6595 if (!mddev->pers) 6596 return -ENODEV; 6597 6598 if (mddev->major_version != 0) { 6599 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6600 mdname(mddev)); 6601 return -EINVAL; 6602 } 6603 if (!mddev->pers->hot_add_disk) { 6604 pr_warn("%s: personality does not support diskops!\n", 6605 mdname(mddev)); 6606 return -EINVAL; 6607 } 6608 6609 rdev = md_import_device(dev, -1, 0); 6610 if (IS_ERR(rdev)) { 6611 pr_warn("md: error, md_import_device() returned %ld\n", 6612 PTR_ERR(rdev)); 6613 return -EINVAL; 6614 } 6615 6616 if (mddev->persistent) 6617 rdev->sb_start = calc_dev_sboffset(rdev); 6618 else 6619 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6620 6621 rdev->sectors = rdev->sb_start; 6622 6623 if (test_bit(Faulty, &rdev->flags)) { 6624 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6625 bdevname(rdev->bdev,b), mdname(mddev)); 6626 err = -EINVAL; 6627 goto abort_export; 6628 } 6629 6630 clear_bit(In_sync, &rdev->flags); 6631 rdev->desc_nr = -1; 6632 rdev->saved_raid_disk = -1; 6633 err = bind_rdev_to_array(rdev, mddev); 6634 if (err) 6635 goto abort_export; 6636 6637 /* 6638 * The rest should better be atomic, we can have disk failures 6639 * noticed in interrupt contexts ... 6640 */ 6641 6642 rdev->raid_disk = -1; 6643 6644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6645 if (!mddev->thread) 6646 md_update_sb(mddev, 1); 6647 /* 6648 * Kick recovery, maybe this spare has to be added to the 6649 * array immediately. 6650 */ 6651 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6652 md_wakeup_thread(mddev->thread); 6653 md_new_event(mddev); 6654 return 0; 6655 6656 abort_export: 6657 export_rdev(rdev); 6658 return err; 6659 } 6660 6661 static int set_bitmap_file(struct mddev *mddev, int fd) 6662 { 6663 int err = 0; 6664 6665 if (mddev->pers) { 6666 if (!mddev->pers->quiesce || !mddev->thread) 6667 return -EBUSY; 6668 if (mddev->recovery || mddev->sync_thread) 6669 return -EBUSY; 6670 /* we should be able to change the bitmap.. */ 6671 } 6672 6673 if (fd >= 0) { 6674 struct inode *inode; 6675 struct file *f; 6676 6677 if (mddev->bitmap || mddev->bitmap_info.file) 6678 return -EEXIST; /* cannot add when bitmap is present */ 6679 f = fget(fd); 6680 6681 if (f == NULL) { 6682 pr_warn("%s: error: failed to get bitmap file\n", 6683 mdname(mddev)); 6684 return -EBADF; 6685 } 6686 6687 inode = f->f_mapping->host; 6688 if (!S_ISREG(inode->i_mode)) { 6689 pr_warn("%s: error: bitmap file must be a regular file\n", 6690 mdname(mddev)); 6691 err = -EBADF; 6692 } else if (!(f->f_mode & FMODE_WRITE)) { 6693 pr_warn("%s: error: bitmap file must open for write\n", 6694 mdname(mddev)); 6695 err = -EBADF; 6696 } else if (atomic_read(&inode->i_writecount) != 1) { 6697 pr_warn("%s: error: bitmap file is already in use\n", 6698 mdname(mddev)); 6699 err = -EBUSY; 6700 } 6701 if (err) { 6702 fput(f); 6703 return err; 6704 } 6705 mddev->bitmap_info.file = f; 6706 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6707 } else if (mddev->bitmap == NULL) 6708 return -ENOENT; /* cannot remove what isn't there */ 6709 err = 0; 6710 if (mddev->pers) { 6711 if (fd >= 0) { 6712 struct bitmap *bitmap; 6713 6714 bitmap = bitmap_create(mddev, -1); 6715 mddev_suspend(mddev); 6716 if (!IS_ERR(bitmap)) { 6717 mddev->bitmap = bitmap; 6718 err = bitmap_load(mddev); 6719 } else 6720 err = PTR_ERR(bitmap); 6721 if (err) { 6722 bitmap_destroy(mddev); 6723 fd = -1; 6724 } 6725 mddev_resume(mddev); 6726 } else if (fd < 0) { 6727 mddev_suspend(mddev); 6728 bitmap_destroy(mddev); 6729 mddev_resume(mddev); 6730 } 6731 } 6732 if (fd < 0) { 6733 struct file *f = mddev->bitmap_info.file; 6734 if (f) { 6735 spin_lock(&mddev->lock); 6736 mddev->bitmap_info.file = NULL; 6737 spin_unlock(&mddev->lock); 6738 fput(f); 6739 } 6740 } 6741 6742 return err; 6743 } 6744 6745 /* 6746 * set_array_info is used two different ways 6747 * The original usage is when creating a new array. 6748 * In this usage, raid_disks is > 0 and it together with 6749 * level, size, not_persistent,layout,chunksize determine the 6750 * shape of the array. 6751 * This will always create an array with a type-0.90.0 superblock. 6752 * The newer usage is when assembling an array. 6753 * In this case raid_disks will be 0, and the major_version field is 6754 * use to determine which style super-blocks are to be found on the devices. 6755 * The minor and patch _version numbers are also kept incase the 6756 * super_block handler wishes to interpret them. 6757 */ 6758 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6759 { 6760 6761 if (info->raid_disks == 0) { 6762 /* just setting version number for superblock loading */ 6763 if (info->major_version < 0 || 6764 info->major_version >= ARRAY_SIZE(super_types) || 6765 super_types[info->major_version].name == NULL) { 6766 /* maybe try to auto-load a module? */ 6767 pr_warn("md: superblock version %d not known\n", 6768 info->major_version); 6769 return -EINVAL; 6770 } 6771 mddev->major_version = info->major_version; 6772 mddev->minor_version = info->minor_version; 6773 mddev->patch_version = info->patch_version; 6774 mddev->persistent = !info->not_persistent; 6775 /* ensure mddev_put doesn't delete this now that there 6776 * is some minimal configuration. 6777 */ 6778 mddev->ctime = ktime_get_real_seconds(); 6779 return 0; 6780 } 6781 mddev->major_version = MD_MAJOR_VERSION; 6782 mddev->minor_version = MD_MINOR_VERSION; 6783 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6784 mddev->ctime = ktime_get_real_seconds(); 6785 6786 mddev->level = info->level; 6787 mddev->clevel[0] = 0; 6788 mddev->dev_sectors = 2 * (sector_t)info->size; 6789 mddev->raid_disks = info->raid_disks; 6790 /* don't set md_minor, it is determined by which /dev/md* was 6791 * openned 6792 */ 6793 if (info->state & (1<<MD_SB_CLEAN)) 6794 mddev->recovery_cp = MaxSector; 6795 else 6796 mddev->recovery_cp = 0; 6797 mddev->persistent = ! info->not_persistent; 6798 mddev->external = 0; 6799 6800 mddev->layout = info->layout; 6801 mddev->chunk_sectors = info->chunk_size >> 9; 6802 6803 if (mddev->persistent) { 6804 mddev->max_disks = MD_SB_DISKS; 6805 mddev->flags = 0; 6806 mddev->sb_flags = 0; 6807 } 6808 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6809 6810 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6811 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6812 mddev->bitmap_info.offset = 0; 6813 6814 mddev->reshape_position = MaxSector; 6815 6816 /* 6817 * Generate a 128 bit UUID 6818 */ 6819 get_random_bytes(mddev->uuid, 16); 6820 6821 mddev->new_level = mddev->level; 6822 mddev->new_chunk_sectors = mddev->chunk_sectors; 6823 mddev->new_layout = mddev->layout; 6824 mddev->delta_disks = 0; 6825 mddev->reshape_backwards = 0; 6826 6827 return 0; 6828 } 6829 6830 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6831 { 6832 lockdep_assert_held(&mddev->reconfig_mutex); 6833 6834 if (mddev->external_size) 6835 return; 6836 6837 mddev->array_sectors = array_sectors; 6838 } 6839 EXPORT_SYMBOL(md_set_array_sectors); 6840 6841 static int update_size(struct mddev *mddev, sector_t num_sectors) 6842 { 6843 struct md_rdev *rdev; 6844 int rv; 6845 int fit = (num_sectors == 0); 6846 sector_t old_dev_sectors = mddev->dev_sectors; 6847 6848 if (mddev->pers->resize == NULL) 6849 return -EINVAL; 6850 /* The "num_sectors" is the number of sectors of each device that 6851 * is used. This can only make sense for arrays with redundancy. 6852 * linear and raid0 always use whatever space is available. We can only 6853 * consider changing this number if no resync or reconstruction is 6854 * happening, and if the new size is acceptable. It must fit before the 6855 * sb_start or, if that is <data_offset, it must fit before the size 6856 * of each device. If num_sectors is zero, we find the largest size 6857 * that fits. 6858 */ 6859 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6860 mddev->sync_thread) 6861 return -EBUSY; 6862 if (mddev->ro) 6863 return -EROFS; 6864 6865 rdev_for_each(rdev, mddev) { 6866 sector_t avail = rdev->sectors; 6867 6868 if (fit && (num_sectors == 0 || num_sectors > avail)) 6869 num_sectors = avail; 6870 if (avail < num_sectors) 6871 return -ENOSPC; 6872 } 6873 rv = mddev->pers->resize(mddev, num_sectors); 6874 if (!rv) { 6875 if (mddev_is_clustered(mddev)) 6876 md_cluster_ops->update_size(mddev, old_dev_sectors); 6877 else if (mddev->queue) { 6878 set_capacity(mddev->gendisk, mddev->array_sectors); 6879 revalidate_disk(mddev->gendisk); 6880 } 6881 } 6882 return rv; 6883 } 6884 6885 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6886 { 6887 int rv; 6888 struct md_rdev *rdev; 6889 /* change the number of raid disks */ 6890 if (mddev->pers->check_reshape == NULL) 6891 return -EINVAL; 6892 if (mddev->ro) 6893 return -EROFS; 6894 if (raid_disks <= 0 || 6895 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6896 return -EINVAL; 6897 if (mddev->sync_thread || 6898 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6899 mddev->reshape_position != MaxSector) 6900 return -EBUSY; 6901 6902 rdev_for_each(rdev, mddev) { 6903 if (mddev->raid_disks < raid_disks && 6904 rdev->data_offset < rdev->new_data_offset) 6905 return -EINVAL; 6906 if (mddev->raid_disks > raid_disks && 6907 rdev->data_offset > rdev->new_data_offset) 6908 return -EINVAL; 6909 } 6910 6911 mddev->delta_disks = raid_disks - mddev->raid_disks; 6912 if (mddev->delta_disks < 0) 6913 mddev->reshape_backwards = 1; 6914 else if (mddev->delta_disks > 0) 6915 mddev->reshape_backwards = 0; 6916 6917 rv = mddev->pers->check_reshape(mddev); 6918 if (rv < 0) { 6919 mddev->delta_disks = 0; 6920 mddev->reshape_backwards = 0; 6921 } 6922 return rv; 6923 } 6924 6925 /* 6926 * update_array_info is used to change the configuration of an 6927 * on-line array. 6928 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6929 * fields in the info are checked against the array. 6930 * Any differences that cannot be handled will cause an error. 6931 * Normally, only one change can be managed at a time. 6932 */ 6933 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6934 { 6935 int rv = 0; 6936 int cnt = 0; 6937 int state = 0; 6938 6939 /* calculate expected state,ignoring low bits */ 6940 if (mddev->bitmap && mddev->bitmap_info.offset) 6941 state |= (1 << MD_SB_BITMAP_PRESENT); 6942 6943 if (mddev->major_version != info->major_version || 6944 mddev->minor_version != info->minor_version || 6945 /* mddev->patch_version != info->patch_version || */ 6946 mddev->ctime != info->ctime || 6947 mddev->level != info->level || 6948 /* mddev->layout != info->layout || */ 6949 mddev->persistent != !info->not_persistent || 6950 mddev->chunk_sectors != info->chunk_size >> 9 || 6951 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6952 ((state^info->state) & 0xfffffe00) 6953 ) 6954 return -EINVAL; 6955 /* Check there is only one change */ 6956 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6957 cnt++; 6958 if (mddev->raid_disks != info->raid_disks) 6959 cnt++; 6960 if (mddev->layout != info->layout) 6961 cnt++; 6962 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6963 cnt++; 6964 if (cnt == 0) 6965 return 0; 6966 if (cnt > 1) 6967 return -EINVAL; 6968 6969 if (mddev->layout != info->layout) { 6970 /* Change layout 6971 * we don't need to do anything at the md level, the 6972 * personality will take care of it all. 6973 */ 6974 if (mddev->pers->check_reshape == NULL) 6975 return -EINVAL; 6976 else { 6977 mddev->new_layout = info->layout; 6978 rv = mddev->pers->check_reshape(mddev); 6979 if (rv) 6980 mddev->new_layout = mddev->layout; 6981 return rv; 6982 } 6983 } 6984 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6985 rv = update_size(mddev, (sector_t)info->size * 2); 6986 6987 if (mddev->raid_disks != info->raid_disks) 6988 rv = update_raid_disks(mddev, info->raid_disks); 6989 6990 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6991 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6992 rv = -EINVAL; 6993 goto err; 6994 } 6995 if (mddev->recovery || mddev->sync_thread) { 6996 rv = -EBUSY; 6997 goto err; 6998 } 6999 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7000 struct bitmap *bitmap; 7001 /* add the bitmap */ 7002 if (mddev->bitmap) { 7003 rv = -EEXIST; 7004 goto err; 7005 } 7006 if (mddev->bitmap_info.default_offset == 0) { 7007 rv = -EINVAL; 7008 goto err; 7009 } 7010 mddev->bitmap_info.offset = 7011 mddev->bitmap_info.default_offset; 7012 mddev->bitmap_info.space = 7013 mddev->bitmap_info.default_space; 7014 bitmap = bitmap_create(mddev, -1); 7015 mddev_suspend(mddev); 7016 if (!IS_ERR(bitmap)) { 7017 mddev->bitmap = bitmap; 7018 rv = bitmap_load(mddev); 7019 } else 7020 rv = PTR_ERR(bitmap); 7021 if (rv) 7022 bitmap_destroy(mddev); 7023 mddev_resume(mddev); 7024 } else { 7025 /* remove the bitmap */ 7026 if (!mddev->bitmap) { 7027 rv = -ENOENT; 7028 goto err; 7029 } 7030 if (mddev->bitmap->storage.file) { 7031 rv = -EINVAL; 7032 goto err; 7033 } 7034 if (mddev->bitmap_info.nodes) { 7035 /* hold PW on all the bitmap lock */ 7036 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7037 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7038 rv = -EPERM; 7039 md_cluster_ops->unlock_all_bitmaps(mddev); 7040 goto err; 7041 } 7042 7043 mddev->bitmap_info.nodes = 0; 7044 md_cluster_ops->leave(mddev); 7045 } 7046 mddev_suspend(mddev); 7047 bitmap_destroy(mddev); 7048 mddev_resume(mddev); 7049 mddev->bitmap_info.offset = 0; 7050 } 7051 } 7052 md_update_sb(mddev, 1); 7053 return rv; 7054 err: 7055 return rv; 7056 } 7057 7058 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7059 { 7060 struct md_rdev *rdev; 7061 int err = 0; 7062 7063 if (mddev->pers == NULL) 7064 return -ENODEV; 7065 7066 rcu_read_lock(); 7067 rdev = md_find_rdev_rcu(mddev, dev); 7068 if (!rdev) 7069 err = -ENODEV; 7070 else { 7071 md_error(mddev, rdev); 7072 if (!test_bit(Faulty, &rdev->flags)) 7073 err = -EBUSY; 7074 } 7075 rcu_read_unlock(); 7076 return err; 7077 } 7078 7079 /* 7080 * We have a problem here : there is no easy way to give a CHS 7081 * virtual geometry. We currently pretend that we have a 2 heads 7082 * 4 sectors (with a BIG number of cylinders...). This drives 7083 * dosfs just mad... ;-) 7084 */ 7085 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7086 { 7087 struct mddev *mddev = bdev->bd_disk->private_data; 7088 7089 geo->heads = 2; 7090 geo->sectors = 4; 7091 geo->cylinders = mddev->array_sectors / 8; 7092 return 0; 7093 } 7094 7095 static inline bool md_ioctl_valid(unsigned int cmd) 7096 { 7097 switch (cmd) { 7098 case ADD_NEW_DISK: 7099 case BLKROSET: 7100 case GET_ARRAY_INFO: 7101 case GET_BITMAP_FILE: 7102 case GET_DISK_INFO: 7103 case HOT_ADD_DISK: 7104 case HOT_REMOVE_DISK: 7105 case RAID_AUTORUN: 7106 case RAID_VERSION: 7107 case RESTART_ARRAY_RW: 7108 case RUN_ARRAY: 7109 case SET_ARRAY_INFO: 7110 case SET_BITMAP_FILE: 7111 case SET_DISK_FAULTY: 7112 case STOP_ARRAY: 7113 case STOP_ARRAY_RO: 7114 case CLUSTERED_DISK_NACK: 7115 return true; 7116 default: 7117 return false; 7118 } 7119 } 7120 7121 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7122 unsigned int cmd, unsigned long arg) 7123 { 7124 int err = 0; 7125 void __user *argp = (void __user *)arg; 7126 struct mddev *mddev = NULL; 7127 int ro; 7128 bool did_set_md_closing = false; 7129 7130 if (!md_ioctl_valid(cmd)) 7131 return -ENOTTY; 7132 7133 switch (cmd) { 7134 case RAID_VERSION: 7135 case GET_ARRAY_INFO: 7136 case GET_DISK_INFO: 7137 break; 7138 default: 7139 if (!capable(CAP_SYS_ADMIN)) 7140 return -EACCES; 7141 } 7142 7143 /* 7144 * Commands dealing with the RAID driver but not any 7145 * particular array: 7146 */ 7147 switch (cmd) { 7148 case RAID_VERSION: 7149 err = get_version(argp); 7150 goto out; 7151 7152 #ifndef MODULE 7153 case RAID_AUTORUN: 7154 err = 0; 7155 autostart_arrays(arg); 7156 goto out; 7157 #endif 7158 default:; 7159 } 7160 7161 /* 7162 * Commands creating/starting a new array: 7163 */ 7164 7165 mddev = bdev->bd_disk->private_data; 7166 7167 if (!mddev) { 7168 BUG(); 7169 goto out; 7170 } 7171 7172 /* Some actions do not requires the mutex */ 7173 switch (cmd) { 7174 case GET_ARRAY_INFO: 7175 if (!mddev->raid_disks && !mddev->external) 7176 err = -ENODEV; 7177 else 7178 err = get_array_info(mddev, argp); 7179 goto out; 7180 7181 case GET_DISK_INFO: 7182 if (!mddev->raid_disks && !mddev->external) 7183 err = -ENODEV; 7184 else 7185 err = get_disk_info(mddev, argp); 7186 goto out; 7187 7188 case SET_DISK_FAULTY: 7189 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7190 goto out; 7191 7192 case GET_BITMAP_FILE: 7193 err = get_bitmap_file(mddev, argp); 7194 goto out; 7195 7196 } 7197 7198 if (cmd == ADD_NEW_DISK) 7199 /* need to ensure md_delayed_delete() has completed */ 7200 flush_workqueue(md_misc_wq); 7201 7202 if (cmd == HOT_REMOVE_DISK) 7203 /* need to ensure recovery thread has run */ 7204 wait_event_interruptible_timeout(mddev->sb_wait, 7205 !test_bit(MD_RECOVERY_NEEDED, 7206 &mddev->recovery), 7207 msecs_to_jiffies(5000)); 7208 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7209 /* Need to flush page cache, and ensure no-one else opens 7210 * and writes 7211 */ 7212 mutex_lock(&mddev->open_mutex); 7213 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7214 mutex_unlock(&mddev->open_mutex); 7215 err = -EBUSY; 7216 goto out; 7217 } 7218 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7219 set_bit(MD_CLOSING, &mddev->flags); 7220 did_set_md_closing = true; 7221 mutex_unlock(&mddev->open_mutex); 7222 sync_blockdev(bdev); 7223 } 7224 err = mddev_lock(mddev); 7225 if (err) { 7226 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7227 err, cmd); 7228 goto out; 7229 } 7230 7231 if (cmd == SET_ARRAY_INFO) { 7232 mdu_array_info_t info; 7233 if (!arg) 7234 memset(&info, 0, sizeof(info)); 7235 else if (copy_from_user(&info, argp, sizeof(info))) { 7236 err = -EFAULT; 7237 goto unlock; 7238 } 7239 if (mddev->pers) { 7240 err = update_array_info(mddev, &info); 7241 if (err) { 7242 pr_warn("md: couldn't update array info. %d\n", err); 7243 goto unlock; 7244 } 7245 goto unlock; 7246 } 7247 if (!list_empty(&mddev->disks)) { 7248 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7249 err = -EBUSY; 7250 goto unlock; 7251 } 7252 if (mddev->raid_disks) { 7253 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7254 err = -EBUSY; 7255 goto unlock; 7256 } 7257 err = set_array_info(mddev, &info); 7258 if (err) { 7259 pr_warn("md: couldn't set array info. %d\n", err); 7260 goto unlock; 7261 } 7262 goto unlock; 7263 } 7264 7265 /* 7266 * Commands querying/configuring an existing array: 7267 */ 7268 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7269 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7270 if ((!mddev->raid_disks && !mddev->external) 7271 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7272 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7273 && cmd != GET_BITMAP_FILE) { 7274 err = -ENODEV; 7275 goto unlock; 7276 } 7277 7278 /* 7279 * Commands even a read-only array can execute: 7280 */ 7281 switch (cmd) { 7282 case RESTART_ARRAY_RW: 7283 err = restart_array(mddev); 7284 goto unlock; 7285 7286 case STOP_ARRAY: 7287 err = do_md_stop(mddev, 0, bdev); 7288 goto unlock; 7289 7290 case STOP_ARRAY_RO: 7291 err = md_set_readonly(mddev, bdev); 7292 goto unlock; 7293 7294 case HOT_REMOVE_DISK: 7295 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7296 goto unlock; 7297 7298 case ADD_NEW_DISK: 7299 /* We can support ADD_NEW_DISK on read-only arrays 7300 * only if we are re-adding a preexisting device. 7301 * So require mddev->pers and MD_DISK_SYNC. 7302 */ 7303 if (mddev->pers) { 7304 mdu_disk_info_t info; 7305 if (copy_from_user(&info, argp, sizeof(info))) 7306 err = -EFAULT; 7307 else if (!(info.state & (1<<MD_DISK_SYNC))) 7308 /* Need to clear read-only for this */ 7309 break; 7310 else 7311 err = add_new_disk(mddev, &info); 7312 goto unlock; 7313 } 7314 break; 7315 7316 case BLKROSET: 7317 if (get_user(ro, (int __user *)(arg))) { 7318 err = -EFAULT; 7319 goto unlock; 7320 } 7321 err = -EINVAL; 7322 7323 /* if the bdev is going readonly the value of mddev->ro 7324 * does not matter, no writes are coming 7325 */ 7326 if (ro) 7327 goto unlock; 7328 7329 /* are we are already prepared for writes? */ 7330 if (mddev->ro != 1) 7331 goto unlock; 7332 7333 /* transitioning to readauto need only happen for 7334 * arrays that call md_write_start 7335 */ 7336 if (mddev->pers) { 7337 err = restart_array(mddev); 7338 if (err == 0) { 7339 mddev->ro = 2; 7340 set_disk_ro(mddev->gendisk, 0); 7341 } 7342 } 7343 goto unlock; 7344 } 7345 7346 /* 7347 * The remaining ioctls are changing the state of the 7348 * superblock, so we do not allow them on read-only arrays. 7349 */ 7350 if (mddev->ro && mddev->pers) { 7351 if (mddev->ro == 2) { 7352 mddev->ro = 0; 7353 sysfs_notify_dirent_safe(mddev->sysfs_state); 7354 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7355 /* mddev_unlock will wake thread */ 7356 /* If a device failed while we were read-only, we 7357 * need to make sure the metadata is updated now. 7358 */ 7359 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7360 mddev_unlock(mddev); 7361 wait_event(mddev->sb_wait, 7362 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7363 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7364 mddev_lock_nointr(mddev); 7365 } 7366 } else { 7367 err = -EROFS; 7368 goto unlock; 7369 } 7370 } 7371 7372 switch (cmd) { 7373 case ADD_NEW_DISK: 7374 { 7375 mdu_disk_info_t info; 7376 if (copy_from_user(&info, argp, sizeof(info))) 7377 err = -EFAULT; 7378 else 7379 err = add_new_disk(mddev, &info); 7380 goto unlock; 7381 } 7382 7383 case CLUSTERED_DISK_NACK: 7384 if (mddev_is_clustered(mddev)) 7385 md_cluster_ops->new_disk_ack(mddev, false); 7386 else 7387 err = -EINVAL; 7388 goto unlock; 7389 7390 case HOT_ADD_DISK: 7391 err = hot_add_disk(mddev, new_decode_dev(arg)); 7392 goto unlock; 7393 7394 case RUN_ARRAY: 7395 err = do_md_run(mddev); 7396 goto unlock; 7397 7398 case SET_BITMAP_FILE: 7399 err = set_bitmap_file(mddev, (int)arg); 7400 goto unlock; 7401 7402 default: 7403 err = -EINVAL; 7404 goto unlock; 7405 } 7406 7407 unlock: 7408 if (mddev->hold_active == UNTIL_IOCTL && 7409 err != -EINVAL) 7410 mddev->hold_active = 0; 7411 mddev_unlock(mddev); 7412 out: 7413 if(did_set_md_closing) 7414 clear_bit(MD_CLOSING, &mddev->flags); 7415 return err; 7416 } 7417 #ifdef CONFIG_COMPAT 7418 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7419 unsigned int cmd, unsigned long arg) 7420 { 7421 switch (cmd) { 7422 case HOT_REMOVE_DISK: 7423 case HOT_ADD_DISK: 7424 case SET_DISK_FAULTY: 7425 case SET_BITMAP_FILE: 7426 /* These take in integer arg, do not convert */ 7427 break; 7428 default: 7429 arg = (unsigned long)compat_ptr(arg); 7430 break; 7431 } 7432 7433 return md_ioctl(bdev, mode, cmd, arg); 7434 } 7435 #endif /* CONFIG_COMPAT */ 7436 7437 static int md_open(struct block_device *bdev, fmode_t mode) 7438 { 7439 /* 7440 * Succeed if we can lock the mddev, which confirms that 7441 * it isn't being stopped right now. 7442 */ 7443 struct mddev *mddev = mddev_find(bdev->bd_dev); 7444 int err; 7445 7446 if (!mddev) 7447 return -ENODEV; 7448 7449 if (mddev->gendisk != bdev->bd_disk) { 7450 /* we are racing with mddev_put which is discarding this 7451 * bd_disk. 7452 */ 7453 mddev_put(mddev); 7454 /* Wait until bdev->bd_disk is definitely gone */ 7455 flush_workqueue(md_misc_wq); 7456 /* Then retry the open from the top */ 7457 return -ERESTARTSYS; 7458 } 7459 BUG_ON(mddev != bdev->bd_disk->private_data); 7460 7461 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7462 goto out; 7463 7464 if (test_bit(MD_CLOSING, &mddev->flags)) { 7465 mutex_unlock(&mddev->open_mutex); 7466 err = -ENODEV; 7467 goto out; 7468 } 7469 7470 err = 0; 7471 atomic_inc(&mddev->openers); 7472 mutex_unlock(&mddev->open_mutex); 7473 7474 check_disk_change(bdev); 7475 out: 7476 if (err) 7477 mddev_put(mddev); 7478 return err; 7479 } 7480 7481 static void md_release(struct gendisk *disk, fmode_t mode) 7482 { 7483 struct mddev *mddev = disk->private_data; 7484 7485 BUG_ON(!mddev); 7486 atomic_dec(&mddev->openers); 7487 mddev_put(mddev); 7488 } 7489 7490 static int md_media_changed(struct gendisk *disk) 7491 { 7492 struct mddev *mddev = disk->private_data; 7493 7494 return mddev->changed; 7495 } 7496 7497 static int md_revalidate(struct gendisk *disk) 7498 { 7499 struct mddev *mddev = disk->private_data; 7500 7501 mddev->changed = 0; 7502 return 0; 7503 } 7504 static const struct block_device_operations md_fops = 7505 { 7506 .owner = THIS_MODULE, 7507 .open = md_open, 7508 .release = md_release, 7509 .ioctl = md_ioctl, 7510 #ifdef CONFIG_COMPAT 7511 .compat_ioctl = md_compat_ioctl, 7512 #endif 7513 .getgeo = md_getgeo, 7514 .media_changed = md_media_changed, 7515 .revalidate_disk= md_revalidate, 7516 }; 7517 7518 static int md_thread(void *arg) 7519 { 7520 struct md_thread *thread = arg; 7521 7522 /* 7523 * md_thread is a 'system-thread', it's priority should be very 7524 * high. We avoid resource deadlocks individually in each 7525 * raid personality. (RAID5 does preallocation) We also use RR and 7526 * the very same RT priority as kswapd, thus we will never get 7527 * into a priority inversion deadlock. 7528 * 7529 * we definitely have to have equal or higher priority than 7530 * bdflush, otherwise bdflush will deadlock if there are too 7531 * many dirty RAID5 blocks. 7532 */ 7533 7534 allow_signal(SIGKILL); 7535 while (!kthread_should_stop()) { 7536 7537 /* We need to wait INTERRUPTIBLE so that 7538 * we don't add to the load-average. 7539 * That means we need to be sure no signals are 7540 * pending 7541 */ 7542 if (signal_pending(current)) 7543 flush_signals(current); 7544 7545 wait_event_interruptible_timeout 7546 (thread->wqueue, 7547 test_bit(THREAD_WAKEUP, &thread->flags) 7548 || kthread_should_stop() || kthread_should_park(), 7549 thread->timeout); 7550 7551 clear_bit(THREAD_WAKEUP, &thread->flags); 7552 if (kthread_should_park()) 7553 kthread_parkme(); 7554 if (!kthread_should_stop()) 7555 thread->run(thread); 7556 } 7557 7558 return 0; 7559 } 7560 7561 void md_wakeup_thread(struct md_thread *thread) 7562 { 7563 if (thread) { 7564 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7565 set_bit(THREAD_WAKEUP, &thread->flags); 7566 wake_up(&thread->wqueue); 7567 } 7568 } 7569 EXPORT_SYMBOL(md_wakeup_thread); 7570 7571 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7572 struct mddev *mddev, const char *name) 7573 { 7574 struct md_thread *thread; 7575 7576 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7577 if (!thread) 7578 return NULL; 7579 7580 init_waitqueue_head(&thread->wqueue); 7581 7582 thread->run = run; 7583 thread->mddev = mddev; 7584 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7585 thread->tsk = kthread_run(md_thread, thread, 7586 "%s_%s", 7587 mdname(thread->mddev), 7588 name); 7589 if (IS_ERR(thread->tsk)) { 7590 kfree(thread); 7591 return NULL; 7592 } 7593 return thread; 7594 } 7595 EXPORT_SYMBOL(md_register_thread); 7596 7597 void md_unregister_thread(struct md_thread **threadp) 7598 { 7599 struct md_thread *thread = *threadp; 7600 if (!thread) 7601 return; 7602 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7603 /* Locking ensures that mddev_unlock does not wake_up a 7604 * non-existent thread 7605 */ 7606 spin_lock(&pers_lock); 7607 *threadp = NULL; 7608 spin_unlock(&pers_lock); 7609 7610 kthread_stop(thread->tsk); 7611 kfree(thread); 7612 } 7613 EXPORT_SYMBOL(md_unregister_thread); 7614 7615 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7616 { 7617 if (!rdev || test_bit(Faulty, &rdev->flags)) 7618 return; 7619 7620 if (!mddev->pers || !mddev->pers->error_handler) 7621 return; 7622 mddev->pers->error_handler(mddev,rdev); 7623 if (mddev->degraded) 7624 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7625 sysfs_notify_dirent_safe(rdev->sysfs_state); 7626 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7627 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7628 md_wakeup_thread(mddev->thread); 7629 if (mddev->event_work.func) 7630 queue_work(md_misc_wq, &mddev->event_work); 7631 md_new_event(mddev); 7632 } 7633 EXPORT_SYMBOL(md_error); 7634 7635 /* seq_file implementation /proc/mdstat */ 7636 7637 static void status_unused(struct seq_file *seq) 7638 { 7639 int i = 0; 7640 struct md_rdev *rdev; 7641 7642 seq_printf(seq, "unused devices: "); 7643 7644 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7645 char b[BDEVNAME_SIZE]; 7646 i++; 7647 seq_printf(seq, "%s ", 7648 bdevname(rdev->bdev,b)); 7649 } 7650 if (!i) 7651 seq_printf(seq, "<none>"); 7652 7653 seq_printf(seq, "\n"); 7654 } 7655 7656 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7657 { 7658 sector_t max_sectors, resync, res; 7659 unsigned long dt, db; 7660 sector_t rt; 7661 int scale; 7662 unsigned int per_milli; 7663 7664 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7665 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7666 max_sectors = mddev->resync_max_sectors; 7667 else 7668 max_sectors = mddev->dev_sectors; 7669 7670 resync = mddev->curr_resync; 7671 if (resync <= 3) { 7672 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7673 /* Still cleaning up */ 7674 resync = max_sectors; 7675 } else if (resync > max_sectors) 7676 resync = max_sectors; 7677 else 7678 resync -= atomic_read(&mddev->recovery_active); 7679 7680 if (resync == 0) { 7681 if (mddev->recovery_cp < MaxSector) { 7682 seq_printf(seq, "\tresync=PENDING"); 7683 return 1; 7684 } 7685 return 0; 7686 } 7687 if (resync < 3) { 7688 seq_printf(seq, "\tresync=DELAYED"); 7689 return 1; 7690 } 7691 7692 WARN_ON(max_sectors == 0); 7693 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7694 * in a sector_t, and (max_sectors>>scale) will fit in a 7695 * u32, as those are the requirements for sector_div. 7696 * Thus 'scale' must be at least 10 7697 */ 7698 scale = 10; 7699 if (sizeof(sector_t) > sizeof(unsigned long)) { 7700 while ( max_sectors/2 > (1ULL<<(scale+32))) 7701 scale++; 7702 } 7703 res = (resync>>scale)*1000; 7704 sector_div(res, (u32)((max_sectors>>scale)+1)); 7705 7706 per_milli = res; 7707 { 7708 int i, x = per_milli/50, y = 20-x; 7709 seq_printf(seq, "["); 7710 for (i = 0; i < x; i++) 7711 seq_printf(seq, "="); 7712 seq_printf(seq, ">"); 7713 for (i = 0; i < y; i++) 7714 seq_printf(seq, "."); 7715 seq_printf(seq, "] "); 7716 } 7717 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7718 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7719 "reshape" : 7720 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7721 "check" : 7722 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7723 "resync" : "recovery"))), 7724 per_milli/10, per_milli % 10, 7725 (unsigned long long) resync/2, 7726 (unsigned long long) max_sectors/2); 7727 7728 /* 7729 * dt: time from mark until now 7730 * db: blocks written from mark until now 7731 * rt: remaining time 7732 * 7733 * rt is a sector_t, so could be 32bit or 64bit. 7734 * So we divide before multiply in case it is 32bit and close 7735 * to the limit. 7736 * We scale the divisor (db) by 32 to avoid losing precision 7737 * near the end of resync when the number of remaining sectors 7738 * is close to 'db'. 7739 * We then divide rt by 32 after multiplying by db to compensate. 7740 * The '+1' avoids division by zero if db is very small. 7741 */ 7742 dt = ((jiffies - mddev->resync_mark) / HZ); 7743 if (!dt) dt++; 7744 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7745 - mddev->resync_mark_cnt; 7746 7747 rt = max_sectors - resync; /* number of remaining sectors */ 7748 sector_div(rt, db/32+1); 7749 rt *= dt; 7750 rt >>= 5; 7751 7752 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7753 ((unsigned long)rt % 60)/6); 7754 7755 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7756 return 1; 7757 } 7758 7759 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7760 { 7761 struct list_head *tmp; 7762 loff_t l = *pos; 7763 struct mddev *mddev; 7764 7765 if (l >= 0x10000) 7766 return NULL; 7767 if (!l--) 7768 /* header */ 7769 return (void*)1; 7770 7771 spin_lock(&all_mddevs_lock); 7772 list_for_each(tmp,&all_mddevs) 7773 if (!l--) { 7774 mddev = list_entry(tmp, struct mddev, all_mddevs); 7775 mddev_get(mddev); 7776 spin_unlock(&all_mddevs_lock); 7777 return mddev; 7778 } 7779 spin_unlock(&all_mddevs_lock); 7780 if (!l--) 7781 return (void*)2;/* tail */ 7782 return NULL; 7783 } 7784 7785 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7786 { 7787 struct list_head *tmp; 7788 struct mddev *next_mddev, *mddev = v; 7789 7790 ++*pos; 7791 if (v == (void*)2) 7792 return NULL; 7793 7794 spin_lock(&all_mddevs_lock); 7795 if (v == (void*)1) 7796 tmp = all_mddevs.next; 7797 else 7798 tmp = mddev->all_mddevs.next; 7799 if (tmp != &all_mddevs) 7800 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7801 else { 7802 next_mddev = (void*)2; 7803 *pos = 0x10000; 7804 } 7805 spin_unlock(&all_mddevs_lock); 7806 7807 if (v != (void*)1) 7808 mddev_put(mddev); 7809 return next_mddev; 7810 7811 } 7812 7813 static void md_seq_stop(struct seq_file *seq, void *v) 7814 { 7815 struct mddev *mddev = v; 7816 7817 if (mddev && v != (void*)1 && v != (void*)2) 7818 mddev_put(mddev); 7819 } 7820 7821 static int md_seq_show(struct seq_file *seq, void *v) 7822 { 7823 struct mddev *mddev = v; 7824 sector_t sectors; 7825 struct md_rdev *rdev; 7826 7827 if (v == (void*)1) { 7828 struct md_personality *pers; 7829 seq_printf(seq, "Personalities : "); 7830 spin_lock(&pers_lock); 7831 list_for_each_entry(pers, &pers_list, list) 7832 seq_printf(seq, "[%s] ", pers->name); 7833 7834 spin_unlock(&pers_lock); 7835 seq_printf(seq, "\n"); 7836 seq->poll_event = atomic_read(&md_event_count); 7837 return 0; 7838 } 7839 if (v == (void*)2) { 7840 status_unused(seq); 7841 return 0; 7842 } 7843 7844 spin_lock(&mddev->lock); 7845 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7846 seq_printf(seq, "%s : %sactive", mdname(mddev), 7847 mddev->pers ? "" : "in"); 7848 if (mddev->pers) { 7849 if (mddev->ro==1) 7850 seq_printf(seq, " (read-only)"); 7851 if (mddev->ro==2) 7852 seq_printf(seq, " (auto-read-only)"); 7853 seq_printf(seq, " %s", mddev->pers->name); 7854 } 7855 7856 sectors = 0; 7857 rcu_read_lock(); 7858 rdev_for_each_rcu(rdev, mddev) { 7859 char b[BDEVNAME_SIZE]; 7860 seq_printf(seq, " %s[%d]", 7861 bdevname(rdev->bdev,b), rdev->desc_nr); 7862 if (test_bit(WriteMostly, &rdev->flags)) 7863 seq_printf(seq, "(W)"); 7864 if (test_bit(Journal, &rdev->flags)) 7865 seq_printf(seq, "(J)"); 7866 if (test_bit(Faulty, &rdev->flags)) { 7867 seq_printf(seq, "(F)"); 7868 continue; 7869 } 7870 if (rdev->raid_disk < 0) 7871 seq_printf(seq, "(S)"); /* spare */ 7872 if (test_bit(Replacement, &rdev->flags)) 7873 seq_printf(seq, "(R)"); 7874 sectors += rdev->sectors; 7875 } 7876 rcu_read_unlock(); 7877 7878 if (!list_empty(&mddev->disks)) { 7879 if (mddev->pers) 7880 seq_printf(seq, "\n %llu blocks", 7881 (unsigned long long) 7882 mddev->array_sectors / 2); 7883 else 7884 seq_printf(seq, "\n %llu blocks", 7885 (unsigned long long)sectors / 2); 7886 } 7887 if (mddev->persistent) { 7888 if (mddev->major_version != 0 || 7889 mddev->minor_version != 90) { 7890 seq_printf(seq," super %d.%d", 7891 mddev->major_version, 7892 mddev->minor_version); 7893 } 7894 } else if (mddev->external) 7895 seq_printf(seq, " super external:%s", 7896 mddev->metadata_type); 7897 else 7898 seq_printf(seq, " super non-persistent"); 7899 7900 if (mddev->pers) { 7901 mddev->pers->status(seq, mddev); 7902 seq_printf(seq, "\n "); 7903 if (mddev->pers->sync_request) { 7904 if (status_resync(seq, mddev)) 7905 seq_printf(seq, "\n "); 7906 } 7907 } else 7908 seq_printf(seq, "\n "); 7909 7910 bitmap_status(seq, mddev->bitmap); 7911 7912 seq_printf(seq, "\n"); 7913 } 7914 spin_unlock(&mddev->lock); 7915 7916 return 0; 7917 } 7918 7919 static const struct seq_operations md_seq_ops = { 7920 .start = md_seq_start, 7921 .next = md_seq_next, 7922 .stop = md_seq_stop, 7923 .show = md_seq_show, 7924 }; 7925 7926 static int md_seq_open(struct inode *inode, struct file *file) 7927 { 7928 struct seq_file *seq; 7929 int error; 7930 7931 error = seq_open(file, &md_seq_ops); 7932 if (error) 7933 return error; 7934 7935 seq = file->private_data; 7936 seq->poll_event = atomic_read(&md_event_count); 7937 return error; 7938 } 7939 7940 static int md_unloading; 7941 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7942 { 7943 struct seq_file *seq = filp->private_data; 7944 __poll_t mask; 7945 7946 if (md_unloading) 7947 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7948 poll_wait(filp, &md_event_waiters, wait); 7949 7950 /* always allow read */ 7951 mask = EPOLLIN | EPOLLRDNORM; 7952 7953 if (seq->poll_event != atomic_read(&md_event_count)) 7954 mask |= EPOLLERR | EPOLLPRI; 7955 return mask; 7956 } 7957 7958 static const struct file_operations md_seq_fops = { 7959 .owner = THIS_MODULE, 7960 .open = md_seq_open, 7961 .read = seq_read, 7962 .llseek = seq_lseek, 7963 .release = seq_release, 7964 .poll = mdstat_poll, 7965 }; 7966 7967 int register_md_personality(struct md_personality *p) 7968 { 7969 pr_debug("md: %s personality registered for level %d\n", 7970 p->name, p->level); 7971 spin_lock(&pers_lock); 7972 list_add_tail(&p->list, &pers_list); 7973 spin_unlock(&pers_lock); 7974 return 0; 7975 } 7976 EXPORT_SYMBOL(register_md_personality); 7977 7978 int unregister_md_personality(struct md_personality *p) 7979 { 7980 pr_debug("md: %s personality unregistered\n", p->name); 7981 spin_lock(&pers_lock); 7982 list_del_init(&p->list); 7983 spin_unlock(&pers_lock); 7984 return 0; 7985 } 7986 EXPORT_SYMBOL(unregister_md_personality); 7987 7988 int register_md_cluster_operations(struct md_cluster_operations *ops, 7989 struct module *module) 7990 { 7991 int ret = 0; 7992 spin_lock(&pers_lock); 7993 if (md_cluster_ops != NULL) 7994 ret = -EALREADY; 7995 else { 7996 md_cluster_ops = ops; 7997 md_cluster_mod = module; 7998 } 7999 spin_unlock(&pers_lock); 8000 return ret; 8001 } 8002 EXPORT_SYMBOL(register_md_cluster_operations); 8003 8004 int unregister_md_cluster_operations(void) 8005 { 8006 spin_lock(&pers_lock); 8007 md_cluster_ops = NULL; 8008 spin_unlock(&pers_lock); 8009 return 0; 8010 } 8011 EXPORT_SYMBOL(unregister_md_cluster_operations); 8012 8013 int md_setup_cluster(struct mddev *mddev, int nodes) 8014 { 8015 if (!md_cluster_ops) 8016 request_module("md-cluster"); 8017 spin_lock(&pers_lock); 8018 /* ensure module won't be unloaded */ 8019 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8020 pr_warn("can't find md-cluster module or get it's reference.\n"); 8021 spin_unlock(&pers_lock); 8022 return -ENOENT; 8023 } 8024 spin_unlock(&pers_lock); 8025 8026 return md_cluster_ops->join(mddev, nodes); 8027 } 8028 8029 void md_cluster_stop(struct mddev *mddev) 8030 { 8031 if (!md_cluster_ops) 8032 return; 8033 md_cluster_ops->leave(mddev); 8034 module_put(md_cluster_mod); 8035 } 8036 8037 static int is_mddev_idle(struct mddev *mddev, int init) 8038 { 8039 struct md_rdev *rdev; 8040 int idle; 8041 int curr_events; 8042 8043 idle = 1; 8044 rcu_read_lock(); 8045 rdev_for_each_rcu(rdev, mddev) { 8046 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8047 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 8048 (int)part_stat_read(&disk->part0, sectors[1]) - 8049 atomic_read(&disk->sync_io); 8050 /* sync IO will cause sync_io to increase before the disk_stats 8051 * as sync_io is counted when a request starts, and 8052 * disk_stats is counted when it completes. 8053 * So resync activity will cause curr_events to be smaller than 8054 * when there was no such activity. 8055 * non-sync IO will cause disk_stat to increase without 8056 * increasing sync_io so curr_events will (eventually) 8057 * be larger than it was before. Once it becomes 8058 * substantially larger, the test below will cause 8059 * the array to appear non-idle, and resync will slow 8060 * down. 8061 * If there is a lot of outstanding resync activity when 8062 * we set last_event to curr_events, then all that activity 8063 * completing might cause the array to appear non-idle 8064 * and resync will be slowed down even though there might 8065 * not have been non-resync activity. This will only 8066 * happen once though. 'last_events' will soon reflect 8067 * the state where there is little or no outstanding 8068 * resync requests, and further resync activity will 8069 * always make curr_events less than last_events. 8070 * 8071 */ 8072 if (init || curr_events - rdev->last_events > 64) { 8073 rdev->last_events = curr_events; 8074 idle = 0; 8075 } 8076 } 8077 rcu_read_unlock(); 8078 return idle; 8079 } 8080 8081 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8082 { 8083 /* another "blocks" (512byte) blocks have been synced */ 8084 atomic_sub(blocks, &mddev->recovery_active); 8085 wake_up(&mddev->recovery_wait); 8086 if (!ok) { 8087 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8088 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8089 md_wakeup_thread(mddev->thread); 8090 // stop recovery, signal do_sync .... 8091 } 8092 } 8093 EXPORT_SYMBOL(md_done_sync); 8094 8095 /* md_write_start(mddev, bi) 8096 * If we need to update some array metadata (e.g. 'active' flag 8097 * in superblock) before writing, schedule a superblock update 8098 * and wait for it to complete. 8099 * A return value of 'false' means that the write wasn't recorded 8100 * and cannot proceed as the array is being suspend. 8101 */ 8102 bool md_write_start(struct mddev *mddev, struct bio *bi) 8103 { 8104 int did_change = 0; 8105 8106 if (bio_data_dir(bi) != WRITE) 8107 return true; 8108 8109 BUG_ON(mddev->ro == 1); 8110 if (mddev->ro == 2) { 8111 /* need to switch to read/write */ 8112 mddev->ro = 0; 8113 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8114 md_wakeup_thread(mddev->thread); 8115 md_wakeup_thread(mddev->sync_thread); 8116 did_change = 1; 8117 } 8118 rcu_read_lock(); 8119 percpu_ref_get(&mddev->writes_pending); 8120 smp_mb(); /* Match smp_mb in set_in_sync() */ 8121 if (mddev->safemode == 1) 8122 mddev->safemode = 0; 8123 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8124 if (mddev->in_sync || mddev->sync_checkers) { 8125 spin_lock(&mddev->lock); 8126 if (mddev->in_sync) { 8127 mddev->in_sync = 0; 8128 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8129 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8130 md_wakeup_thread(mddev->thread); 8131 did_change = 1; 8132 } 8133 spin_unlock(&mddev->lock); 8134 } 8135 rcu_read_unlock(); 8136 if (did_change) 8137 sysfs_notify_dirent_safe(mddev->sysfs_state); 8138 if (!mddev->has_superblocks) 8139 return true; 8140 wait_event(mddev->sb_wait, 8141 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8142 mddev->suspended); 8143 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8144 percpu_ref_put(&mddev->writes_pending); 8145 return false; 8146 } 8147 return true; 8148 } 8149 EXPORT_SYMBOL(md_write_start); 8150 8151 /* md_write_inc can only be called when md_write_start() has 8152 * already been called at least once of the current request. 8153 * It increments the counter and is useful when a single request 8154 * is split into several parts. Each part causes an increment and 8155 * so needs a matching md_write_end(). 8156 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8157 * a spinlocked region. 8158 */ 8159 void md_write_inc(struct mddev *mddev, struct bio *bi) 8160 { 8161 if (bio_data_dir(bi) != WRITE) 8162 return; 8163 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8164 percpu_ref_get(&mddev->writes_pending); 8165 } 8166 EXPORT_SYMBOL(md_write_inc); 8167 8168 void md_write_end(struct mddev *mddev) 8169 { 8170 percpu_ref_put(&mddev->writes_pending); 8171 8172 if (mddev->safemode == 2) 8173 md_wakeup_thread(mddev->thread); 8174 else if (mddev->safemode_delay) 8175 /* The roundup() ensures this only performs locking once 8176 * every ->safemode_delay jiffies 8177 */ 8178 mod_timer(&mddev->safemode_timer, 8179 roundup(jiffies, mddev->safemode_delay) + 8180 mddev->safemode_delay); 8181 } 8182 8183 EXPORT_SYMBOL(md_write_end); 8184 8185 /* md_allow_write(mddev) 8186 * Calling this ensures that the array is marked 'active' so that writes 8187 * may proceed without blocking. It is important to call this before 8188 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8189 * Must be called with mddev_lock held. 8190 */ 8191 void md_allow_write(struct mddev *mddev) 8192 { 8193 if (!mddev->pers) 8194 return; 8195 if (mddev->ro) 8196 return; 8197 if (!mddev->pers->sync_request) 8198 return; 8199 8200 spin_lock(&mddev->lock); 8201 if (mddev->in_sync) { 8202 mddev->in_sync = 0; 8203 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8204 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8205 if (mddev->safemode_delay && 8206 mddev->safemode == 0) 8207 mddev->safemode = 1; 8208 spin_unlock(&mddev->lock); 8209 md_update_sb(mddev, 0); 8210 sysfs_notify_dirent_safe(mddev->sysfs_state); 8211 /* wait for the dirty state to be recorded in the metadata */ 8212 wait_event(mddev->sb_wait, 8213 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8214 } else 8215 spin_unlock(&mddev->lock); 8216 } 8217 EXPORT_SYMBOL_GPL(md_allow_write); 8218 8219 #define SYNC_MARKS 10 8220 #define SYNC_MARK_STEP (3*HZ) 8221 #define UPDATE_FREQUENCY (5*60*HZ) 8222 void md_do_sync(struct md_thread *thread) 8223 { 8224 struct mddev *mddev = thread->mddev; 8225 struct mddev *mddev2; 8226 unsigned int currspeed = 0, 8227 window; 8228 sector_t max_sectors,j, io_sectors, recovery_done; 8229 unsigned long mark[SYNC_MARKS]; 8230 unsigned long update_time; 8231 sector_t mark_cnt[SYNC_MARKS]; 8232 int last_mark,m; 8233 struct list_head *tmp; 8234 sector_t last_check; 8235 int skipped = 0; 8236 struct md_rdev *rdev; 8237 char *desc, *action = NULL; 8238 struct blk_plug plug; 8239 int ret; 8240 8241 /* just incase thread restarts... */ 8242 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8243 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8244 return; 8245 if (mddev->ro) {/* never try to sync a read-only array */ 8246 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8247 return; 8248 } 8249 8250 if (mddev_is_clustered(mddev)) { 8251 ret = md_cluster_ops->resync_start(mddev); 8252 if (ret) 8253 goto skip; 8254 8255 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8256 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8257 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8258 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8259 && ((unsigned long long)mddev->curr_resync_completed 8260 < (unsigned long long)mddev->resync_max_sectors)) 8261 goto skip; 8262 } 8263 8264 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8265 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8266 desc = "data-check"; 8267 action = "check"; 8268 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8269 desc = "requested-resync"; 8270 action = "repair"; 8271 } else 8272 desc = "resync"; 8273 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8274 desc = "reshape"; 8275 else 8276 desc = "recovery"; 8277 8278 mddev->last_sync_action = action ?: desc; 8279 8280 /* we overload curr_resync somewhat here. 8281 * 0 == not engaged in resync at all 8282 * 2 == checking that there is no conflict with another sync 8283 * 1 == like 2, but have yielded to allow conflicting resync to 8284 * commense 8285 * other == active in resync - this many blocks 8286 * 8287 * Before starting a resync we must have set curr_resync to 8288 * 2, and then checked that every "conflicting" array has curr_resync 8289 * less than ours. When we find one that is the same or higher 8290 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8291 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8292 * This will mean we have to start checking from the beginning again. 8293 * 8294 */ 8295 8296 do { 8297 int mddev2_minor = -1; 8298 mddev->curr_resync = 2; 8299 8300 try_again: 8301 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8302 goto skip; 8303 for_each_mddev(mddev2, tmp) { 8304 if (mddev2 == mddev) 8305 continue; 8306 if (!mddev->parallel_resync 8307 && mddev2->curr_resync 8308 && match_mddev_units(mddev, mddev2)) { 8309 DEFINE_WAIT(wq); 8310 if (mddev < mddev2 && mddev->curr_resync == 2) { 8311 /* arbitrarily yield */ 8312 mddev->curr_resync = 1; 8313 wake_up(&resync_wait); 8314 } 8315 if (mddev > mddev2 && mddev->curr_resync == 1) 8316 /* no need to wait here, we can wait the next 8317 * time 'round when curr_resync == 2 8318 */ 8319 continue; 8320 /* We need to wait 'interruptible' so as not to 8321 * contribute to the load average, and not to 8322 * be caught by 'softlockup' 8323 */ 8324 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8325 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8326 mddev2->curr_resync >= mddev->curr_resync) { 8327 if (mddev2_minor != mddev2->md_minor) { 8328 mddev2_minor = mddev2->md_minor; 8329 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8330 desc, mdname(mddev), 8331 mdname(mddev2)); 8332 } 8333 mddev_put(mddev2); 8334 if (signal_pending(current)) 8335 flush_signals(current); 8336 schedule(); 8337 finish_wait(&resync_wait, &wq); 8338 goto try_again; 8339 } 8340 finish_wait(&resync_wait, &wq); 8341 } 8342 } 8343 } while (mddev->curr_resync < 2); 8344 8345 j = 0; 8346 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8347 /* resync follows the size requested by the personality, 8348 * which defaults to physical size, but can be virtual size 8349 */ 8350 max_sectors = mddev->resync_max_sectors; 8351 atomic64_set(&mddev->resync_mismatches, 0); 8352 /* we don't use the checkpoint if there's a bitmap */ 8353 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8354 j = mddev->resync_min; 8355 else if (!mddev->bitmap) 8356 j = mddev->recovery_cp; 8357 8358 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8359 max_sectors = mddev->resync_max_sectors; 8360 else { 8361 /* recovery follows the physical size of devices */ 8362 max_sectors = mddev->dev_sectors; 8363 j = MaxSector; 8364 rcu_read_lock(); 8365 rdev_for_each_rcu(rdev, mddev) 8366 if (rdev->raid_disk >= 0 && 8367 !test_bit(Journal, &rdev->flags) && 8368 !test_bit(Faulty, &rdev->flags) && 8369 !test_bit(In_sync, &rdev->flags) && 8370 rdev->recovery_offset < j) 8371 j = rdev->recovery_offset; 8372 rcu_read_unlock(); 8373 8374 /* If there is a bitmap, we need to make sure all 8375 * writes that started before we added a spare 8376 * complete before we start doing a recovery. 8377 * Otherwise the write might complete and (via 8378 * bitmap_endwrite) set a bit in the bitmap after the 8379 * recovery has checked that bit and skipped that 8380 * region. 8381 */ 8382 if (mddev->bitmap) { 8383 mddev->pers->quiesce(mddev, 1); 8384 mddev->pers->quiesce(mddev, 0); 8385 } 8386 } 8387 8388 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8389 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8390 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8391 speed_max(mddev), desc); 8392 8393 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8394 8395 io_sectors = 0; 8396 for (m = 0; m < SYNC_MARKS; m++) { 8397 mark[m] = jiffies; 8398 mark_cnt[m] = io_sectors; 8399 } 8400 last_mark = 0; 8401 mddev->resync_mark = mark[last_mark]; 8402 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8403 8404 /* 8405 * Tune reconstruction: 8406 */ 8407 window = 32*(PAGE_SIZE/512); 8408 pr_debug("md: using %dk window, over a total of %lluk.\n", 8409 window/2, (unsigned long long)max_sectors/2); 8410 8411 atomic_set(&mddev->recovery_active, 0); 8412 last_check = 0; 8413 8414 if (j>2) { 8415 pr_debug("md: resuming %s of %s from checkpoint.\n", 8416 desc, mdname(mddev)); 8417 mddev->curr_resync = j; 8418 } else 8419 mddev->curr_resync = 3; /* no longer delayed */ 8420 mddev->curr_resync_completed = j; 8421 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8422 md_new_event(mddev); 8423 update_time = jiffies; 8424 8425 blk_start_plug(&plug); 8426 while (j < max_sectors) { 8427 sector_t sectors; 8428 8429 skipped = 0; 8430 8431 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8432 ((mddev->curr_resync > mddev->curr_resync_completed && 8433 (mddev->curr_resync - mddev->curr_resync_completed) 8434 > (max_sectors >> 4)) || 8435 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8436 (j - mddev->curr_resync_completed)*2 8437 >= mddev->resync_max - mddev->curr_resync_completed || 8438 mddev->curr_resync_completed > mddev->resync_max 8439 )) { 8440 /* time to update curr_resync_completed */ 8441 wait_event(mddev->recovery_wait, 8442 atomic_read(&mddev->recovery_active) == 0); 8443 mddev->curr_resync_completed = j; 8444 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8445 j > mddev->recovery_cp) 8446 mddev->recovery_cp = j; 8447 update_time = jiffies; 8448 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8449 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8450 } 8451 8452 while (j >= mddev->resync_max && 8453 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8454 /* As this condition is controlled by user-space, 8455 * we can block indefinitely, so use '_interruptible' 8456 * to avoid triggering warnings. 8457 */ 8458 flush_signals(current); /* just in case */ 8459 wait_event_interruptible(mddev->recovery_wait, 8460 mddev->resync_max > j 8461 || test_bit(MD_RECOVERY_INTR, 8462 &mddev->recovery)); 8463 } 8464 8465 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8466 break; 8467 8468 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8469 if (sectors == 0) { 8470 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8471 break; 8472 } 8473 8474 if (!skipped) { /* actual IO requested */ 8475 io_sectors += sectors; 8476 atomic_add(sectors, &mddev->recovery_active); 8477 } 8478 8479 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8480 break; 8481 8482 j += sectors; 8483 if (j > max_sectors) 8484 /* when skipping, extra large numbers can be returned. */ 8485 j = max_sectors; 8486 if (j > 2) 8487 mddev->curr_resync = j; 8488 mddev->curr_mark_cnt = io_sectors; 8489 if (last_check == 0) 8490 /* this is the earliest that rebuild will be 8491 * visible in /proc/mdstat 8492 */ 8493 md_new_event(mddev); 8494 8495 if (last_check + window > io_sectors || j == max_sectors) 8496 continue; 8497 8498 last_check = io_sectors; 8499 repeat: 8500 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8501 /* step marks */ 8502 int next = (last_mark+1) % SYNC_MARKS; 8503 8504 mddev->resync_mark = mark[next]; 8505 mddev->resync_mark_cnt = mark_cnt[next]; 8506 mark[next] = jiffies; 8507 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8508 last_mark = next; 8509 } 8510 8511 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8512 break; 8513 8514 /* 8515 * this loop exits only if either when we are slower than 8516 * the 'hard' speed limit, or the system was IO-idle for 8517 * a jiffy. 8518 * the system might be non-idle CPU-wise, but we only care 8519 * about not overloading the IO subsystem. (things like an 8520 * e2fsck being done on the RAID array should execute fast) 8521 */ 8522 cond_resched(); 8523 8524 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8525 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8526 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8527 8528 if (currspeed > speed_min(mddev)) { 8529 if (currspeed > speed_max(mddev)) { 8530 msleep(500); 8531 goto repeat; 8532 } 8533 if (!is_mddev_idle(mddev, 0)) { 8534 /* 8535 * Give other IO more of a chance. 8536 * The faster the devices, the less we wait. 8537 */ 8538 wait_event(mddev->recovery_wait, 8539 !atomic_read(&mddev->recovery_active)); 8540 } 8541 } 8542 } 8543 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8544 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8545 ? "interrupted" : "done"); 8546 /* 8547 * this also signals 'finished resyncing' to md_stop 8548 */ 8549 blk_finish_plug(&plug); 8550 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8551 8552 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8553 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8554 mddev->curr_resync > 3) { 8555 mddev->curr_resync_completed = mddev->curr_resync; 8556 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8557 } 8558 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8559 8560 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8561 mddev->curr_resync > 3) { 8562 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8563 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8564 if (mddev->curr_resync >= mddev->recovery_cp) { 8565 pr_debug("md: checkpointing %s of %s.\n", 8566 desc, mdname(mddev)); 8567 if (test_bit(MD_RECOVERY_ERROR, 8568 &mddev->recovery)) 8569 mddev->recovery_cp = 8570 mddev->curr_resync_completed; 8571 else 8572 mddev->recovery_cp = 8573 mddev->curr_resync; 8574 } 8575 } else 8576 mddev->recovery_cp = MaxSector; 8577 } else { 8578 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8579 mddev->curr_resync = MaxSector; 8580 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8581 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8582 rcu_read_lock(); 8583 rdev_for_each_rcu(rdev, mddev) 8584 if (rdev->raid_disk >= 0 && 8585 mddev->delta_disks >= 0 && 8586 !test_bit(Journal, &rdev->flags) && 8587 !test_bit(Faulty, &rdev->flags) && 8588 !test_bit(In_sync, &rdev->flags) && 8589 rdev->recovery_offset < mddev->curr_resync) 8590 rdev->recovery_offset = mddev->curr_resync; 8591 rcu_read_unlock(); 8592 } 8593 } 8594 } 8595 skip: 8596 /* set CHANGE_PENDING here since maybe another update is needed, 8597 * so other nodes are informed. It should be harmless for normal 8598 * raid */ 8599 set_mask_bits(&mddev->sb_flags, 0, 8600 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8601 8602 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8603 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8604 mddev->delta_disks > 0 && 8605 mddev->pers->finish_reshape && 8606 mddev->pers->size && 8607 mddev->queue) { 8608 mddev_lock_nointr(mddev); 8609 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8610 mddev_unlock(mddev); 8611 set_capacity(mddev->gendisk, mddev->array_sectors); 8612 revalidate_disk(mddev->gendisk); 8613 } 8614 8615 spin_lock(&mddev->lock); 8616 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8617 /* We completed so min/max setting can be forgotten if used. */ 8618 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8619 mddev->resync_min = 0; 8620 mddev->resync_max = MaxSector; 8621 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8622 mddev->resync_min = mddev->curr_resync_completed; 8623 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8624 mddev->curr_resync = 0; 8625 spin_unlock(&mddev->lock); 8626 8627 wake_up(&resync_wait); 8628 md_wakeup_thread(mddev->thread); 8629 return; 8630 } 8631 EXPORT_SYMBOL_GPL(md_do_sync); 8632 8633 static int remove_and_add_spares(struct mddev *mddev, 8634 struct md_rdev *this) 8635 { 8636 struct md_rdev *rdev; 8637 int spares = 0; 8638 int removed = 0; 8639 bool remove_some = false; 8640 8641 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8642 /* Mustn't remove devices when resync thread is running */ 8643 return 0; 8644 8645 rdev_for_each(rdev, mddev) { 8646 if ((this == NULL || rdev == this) && 8647 rdev->raid_disk >= 0 && 8648 !test_bit(Blocked, &rdev->flags) && 8649 test_bit(Faulty, &rdev->flags) && 8650 atomic_read(&rdev->nr_pending)==0) { 8651 /* Faulty non-Blocked devices with nr_pending == 0 8652 * never get nr_pending incremented, 8653 * never get Faulty cleared, and never get Blocked set. 8654 * So we can synchronize_rcu now rather than once per device 8655 */ 8656 remove_some = true; 8657 set_bit(RemoveSynchronized, &rdev->flags); 8658 } 8659 } 8660 8661 if (remove_some) 8662 synchronize_rcu(); 8663 rdev_for_each(rdev, mddev) { 8664 if ((this == NULL || rdev == this) && 8665 rdev->raid_disk >= 0 && 8666 !test_bit(Blocked, &rdev->flags) && 8667 ((test_bit(RemoveSynchronized, &rdev->flags) || 8668 (!test_bit(In_sync, &rdev->flags) && 8669 !test_bit(Journal, &rdev->flags))) && 8670 atomic_read(&rdev->nr_pending)==0)) { 8671 if (mddev->pers->hot_remove_disk( 8672 mddev, rdev) == 0) { 8673 sysfs_unlink_rdev(mddev, rdev); 8674 rdev->saved_raid_disk = rdev->raid_disk; 8675 rdev->raid_disk = -1; 8676 removed++; 8677 } 8678 } 8679 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8680 clear_bit(RemoveSynchronized, &rdev->flags); 8681 } 8682 8683 if (removed && mddev->kobj.sd) 8684 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8685 8686 if (this && removed) 8687 goto no_add; 8688 8689 rdev_for_each(rdev, mddev) { 8690 if (this && this != rdev) 8691 continue; 8692 if (test_bit(Candidate, &rdev->flags)) 8693 continue; 8694 if (rdev->raid_disk >= 0 && 8695 !test_bit(In_sync, &rdev->flags) && 8696 !test_bit(Journal, &rdev->flags) && 8697 !test_bit(Faulty, &rdev->flags)) 8698 spares++; 8699 if (rdev->raid_disk >= 0) 8700 continue; 8701 if (test_bit(Faulty, &rdev->flags)) 8702 continue; 8703 if (!test_bit(Journal, &rdev->flags)) { 8704 if (mddev->ro && 8705 ! (rdev->saved_raid_disk >= 0 && 8706 !test_bit(Bitmap_sync, &rdev->flags))) 8707 continue; 8708 8709 rdev->recovery_offset = 0; 8710 } 8711 if (mddev->pers-> 8712 hot_add_disk(mddev, rdev) == 0) { 8713 if (sysfs_link_rdev(mddev, rdev)) 8714 /* failure here is OK */; 8715 if (!test_bit(Journal, &rdev->flags)) 8716 spares++; 8717 md_new_event(mddev); 8718 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8719 } 8720 } 8721 no_add: 8722 if (removed) 8723 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8724 return spares; 8725 } 8726 8727 static void md_start_sync(struct work_struct *ws) 8728 { 8729 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8730 8731 mddev->sync_thread = md_register_thread(md_do_sync, 8732 mddev, 8733 "resync"); 8734 if (!mddev->sync_thread) { 8735 pr_warn("%s: could not start resync thread...\n", 8736 mdname(mddev)); 8737 /* leave the spares where they are, it shouldn't hurt */ 8738 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8739 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8740 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8741 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8742 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8743 wake_up(&resync_wait); 8744 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8745 &mddev->recovery)) 8746 if (mddev->sysfs_action) 8747 sysfs_notify_dirent_safe(mddev->sysfs_action); 8748 } else 8749 md_wakeup_thread(mddev->sync_thread); 8750 sysfs_notify_dirent_safe(mddev->sysfs_action); 8751 md_new_event(mddev); 8752 } 8753 8754 /* 8755 * This routine is regularly called by all per-raid-array threads to 8756 * deal with generic issues like resync and super-block update. 8757 * Raid personalities that don't have a thread (linear/raid0) do not 8758 * need this as they never do any recovery or update the superblock. 8759 * 8760 * It does not do any resync itself, but rather "forks" off other threads 8761 * to do that as needed. 8762 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8763 * "->recovery" and create a thread at ->sync_thread. 8764 * When the thread finishes it sets MD_RECOVERY_DONE 8765 * and wakeups up this thread which will reap the thread and finish up. 8766 * This thread also removes any faulty devices (with nr_pending == 0). 8767 * 8768 * The overall approach is: 8769 * 1/ if the superblock needs updating, update it. 8770 * 2/ If a recovery thread is running, don't do anything else. 8771 * 3/ If recovery has finished, clean up, possibly marking spares active. 8772 * 4/ If there are any faulty devices, remove them. 8773 * 5/ If array is degraded, try to add spares devices 8774 * 6/ If array has spares or is not in-sync, start a resync thread. 8775 */ 8776 void md_check_recovery(struct mddev *mddev) 8777 { 8778 if (mddev->suspended) 8779 return; 8780 8781 if (mddev->bitmap) 8782 bitmap_daemon_work(mddev); 8783 8784 if (signal_pending(current)) { 8785 if (mddev->pers->sync_request && !mddev->external) { 8786 pr_debug("md: %s in immediate safe mode\n", 8787 mdname(mddev)); 8788 mddev->safemode = 2; 8789 } 8790 flush_signals(current); 8791 } 8792 8793 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8794 return; 8795 if ( ! ( 8796 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8797 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8798 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8799 (mddev->external == 0 && mddev->safemode == 1) || 8800 (mddev->safemode == 2 8801 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8802 )) 8803 return; 8804 8805 if (mddev_trylock(mddev)) { 8806 int spares = 0; 8807 8808 if (!mddev->external && mddev->safemode == 1) 8809 mddev->safemode = 0; 8810 8811 if (mddev->ro) { 8812 struct md_rdev *rdev; 8813 if (!mddev->external && mddev->in_sync) 8814 /* 'Blocked' flag not needed as failed devices 8815 * will be recorded if array switched to read/write. 8816 * Leaving it set will prevent the device 8817 * from being removed. 8818 */ 8819 rdev_for_each(rdev, mddev) 8820 clear_bit(Blocked, &rdev->flags); 8821 /* On a read-only array we can: 8822 * - remove failed devices 8823 * - add already-in_sync devices if the array itself 8824 * is in-sync. 8825 * As we only add devices that are already in-sync, 8826 * we can activate the spares immediately. 8827 */ 8828 remove_and_add_spares(mddev, NULL); 8829 /* There is no thread, but we need to call 8830 * ->spare_active and clear saved_raid_disk 8831 */ 8832 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8833 md_reap_sync_thread(mddev); 8834 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8835 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8836 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8837 goto unlock; 8838 } 8839 8840 if (mddev_is_clustered(mddev)) { 8841 struct md_rdev *rdev; 8842 /* kick the device if another node issued a 8843 * remove disk. 8844 */ 8845 rdev_for_each(rdev, mddev) { 8846 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8847 rdev->raid_disk < 0) 8848 md_kick_rdev_from_array(rdev); 8849 } 8850 } 8851 8852 if (!mddev->external && !mddev->in_sync) { 8853 spin_lock(&mddev->lock); 8854 set_in_sync(mddev); 8855 spin_unlock(&mddev->lock); 8856 } 8857 8858 if (mddev->sb_flags) 8859 md_update_sb(mddev, 0); 8860 8861 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8862 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8863 /* resync/recovery still happening */ 8864 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8865 goto unlock; 8866 } 8867 if (mddev->sync_thread) { 8868 md_reap_sync_thread(mddev); 8869 goto unlock; 8870 } 8871 /* Set RUNNING before clearing NEEDED to avoid 8872 * any transients in the value of "sync_action". 8873 */ 8874 mddev->curr_resync_completed = 0; 8875 spin_lock(&mddev->lock); 8876 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8877 spin_unlock(&mddev->lock); 8878 /* Clear some bits that don't mean anything, but 8879 * might be left set 8880 */ 8881 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8882 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8883 8884 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8885 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8886 goto not_running; 8887 /* no recovery is running. 8888 * remove any failed drives, then 8889 * add spares if possible. 8890 * Spares are also removed and re-added, to allow 8891 * the personality to fail the re-add. 8892 */ 8893 8894 if (mddev->reshape_position != MaxSector) { 8895 if (mddev->pers->check_reshape == NULL || 8896 mddev->pers->check_reshape(mddev) != 0) 8897 /* Cannot proceed */ 8898 goto not_running; 8899 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8900 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8901 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8902 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8903 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8904 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8905 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8906 } else if (mddev->recovery_cp < MaxSector) { 8907 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8908 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8909 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8910 /* nothing to be done ... */ 8911 goto not_running; 8912 8913 if (mddev->pers->sync_request) { 8914 if (spares) { 8915 /* We are adding a device or devices to an array 8916 * which has the bitmap stored on all devices. 8917 * So make sure all bitmap pages get written 8918 */ 8919 bitmap_write_all(mddev->bitmap); 8920 } 8921 INIT_WORK(&mddev->del_work, md_start_sync); 8922 queue_work(md_misc_wq, &mddev->del_work); 8923 goto unlock; 8924 } 8925 not_running: 8926 if (!mddev->sync_thread) { 8927 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8928 wake_up(&resync_wait); 8929 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8930 &mddev->recovery)) 8931 if (mddev->sysfs_action) 8932 sysfs_notify_dirent_safe(mddev->sysfs_action); 8933 } 8934 unlock: 8935 wake_up(&mddev->sb_wait); 8936 mddev_unlock(mddev); 8937 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8938 /* Write superblock - thread that called mddev_suspend() 8939 * holds reconfig_mutex for us. 8940 */ 8941 set_bit(MD_UPDATING_SB, &mddev->flags); 8942 smp_mb__after_atomic(); 8943 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8944 md_update_sb(mddev, 0); 8945 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8946 wake_up(&mddev->sb_wait); 8947 } 8948 } 8949 EXPORT_SYMBOL(md_check_recovery); 8950 8951 void md_reap_sync_thread(struct mddev *mddev) 8952 { 8953 struct md_rdev *rdev; 8954 8955 /* resync has finished, collect result */ 8956 md_unregister_thread(&mddev->sync_thread); 8957 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8958 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8959 /* success...*/ 8960 /* activate any spares */ 8961 if (mddev->pers->spare_active(mddev)) { 8962 sysfs_notify(&mddev->kobj, NULL, 8963 "degraded"); 8964 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8965 } 8966 } 8967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8968 mddev->pers->finish_reshape) 8969 mddev->pers->finish_reshape(mddev); 8970 8971 /* If array is no-longer degraded, then any saved_raid_disk 8972 * information must be scrapped. 8973 */ 8974 if (!mddev->degraded) 8975 rdev_for_each(rdev, mddev) 8976 rdev->saved_raid_disk = -1; 8977 8978 md_update_sb(mddev, 1); 8979 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8980 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8981 * clustered raid */ 8982 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8983 md_cluster_ops->resync_finish(mddev); 8984 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8985 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8986 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8987 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8988 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8989 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8990 wake_up(&resync_wait); 8991 /* flag recovery needed just to double check */ 8992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8993 sysfs_notify_dirent_safe(mddev->sysfs_action); 8994 md_new_event(mddev); 8995 if (mddev->event_work.func) 8996 queue_work(md_misc_wq, &mddev->event_work); 8997 } 8998 EXPORT_SYMBOL(md_reap_sync_thread); 8999 9000 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9001 { 9002 sysfs_notify_dirent_safe(rdev->sysfs_state); 9003 wait_event_timeout(rdev->blocked_wait, 9004 !test_bit(Blocked, &rdev->flags) && 9005 !test_bit(BlockedBadBlocks, &rdev->flags), 9006 msecs_to_jiffies(5000)); 9007 rdev_dec_pending(rdev, mddev); 9008 } 9009 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9010 9011 void md_finish_reshape(struct mddev *mddev) 9012 { 9013 /* called be personality module when reshape completes. */ 9014 struct md_rdev *rdev; 9015 9016 rdev_for_each(rdev, mddev) { 9017 if (rdev->data_offset > rdev->new_data_offset) 9018 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9019 else 9020 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9021 rdev->data_offset = rdev->new_data_offset; 9022 } 9023 } 9024 EXPORT_SYMBOL(md_finish_reshape); 9025 9026 /* Bad block management */ 9027 9028 /* Returns 1 on success, 0 on failure */ 9029 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9030 int is_new) 9031 { 9032 struct mddev *mddev = rdev->mddev; 9033 int rv; 9034 if (is_new) 9035 s += rdev->new_data_offset; 9036 else 9037 s += rdev->data_offset; 9038 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9039 if (rv == 0) { 9040 /* Make sure they get written out promptly */ 9041 if (test_bit(ExternalBbl, &rdev->flags)) 9042 sysfs_notify(&rdev->kobj, NULL, 9043 "unacknowledged_bad_blocks"); 9044 sysfs_notify_dirent_safe(rdev->sysfs_state); 9045 set_mask_bits(&mddev->sb_flags, 0, 9046 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9047 md_wakeup_thread(rdev->mddev->thread); 9048 return 1; 9049 } else 9050 return 0; 9051 } 9052 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9053 9054 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9055 int is_new) 9056 { 9057 int rv; 9058 if (is_new) 9059 s += rdev->new_data_offset; 9060 else 9061 s += rdev->data_offset; 9062 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9063 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9064 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9065 return rv; 9066 } 9067 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9068 9069 static int md_notify_reboot(struct notifier_block *this, 9070 unsigned long code, void *x) 9071 { 9072 struct list_head *tmp; 9073 struct mddev *mddev; 9074 int need_delay = 0; 9075 9076 for_each_mddev(mddev, tmp) { 9077 if (mddev_trylock(mddev)) { 9078 if (mddev->pers) 9079 __md_stop_writes(mddev); 9080 if (mddev->persistent) 9081 mddev->safemode = 2; 9082 mddev_unlock(mddev); 9083 } 9084 need_delay = 1; 9085 } 9086 /* 9087 * certain more exotic SCSI devices are known to be 9088 * volatile wrt too early system reboots. While the 9089 * right place to handle this issue is the given 9090 * driver, we do want to have a safe RAID driver ... 9091 */ 9092 if (need_delay) 9093 mdelay(1000*1); 9094 9095 return NOTIFY_DONE; 9096 } 9097 9098 static struct notifier_block md_notifier = { 9099 .notifier_call = md_notify_reboot, 9100 .next = NULL, 9101 .priority = INT_MAX, /* before any real devices */ 9102 }; 9103 9104 static void md_geninit(void) 9105 { 9106 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9107 9108 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9109 } 9110 9111 static int __init md_init(void) 9112 { 9113 int ret = -ENOMEM; 9114 9115 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9116 if (!md_wq) 9117 goto err_wq; 9118 9119 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9120 if (!md_misc_wq) 9121 goto err_misc_wq; 9122 9123 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9124 goto err_md; 9125 9126 if ((ret = register_blkdev(0, "mdp")) < 0) 9127 goto err_mdp; 9128 mdp_major = ret; 9129 9130 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9131 md_probe, NULL, NULL); 9132 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9133 md_probe, NULL, NULL); 9134 9135 register_reboot_notifier(&md_notifier); 9136 raid_table_header = register_sysctl_table(raid_root_table); 9137 9138 md_geninit(); 9139 return 0; 9140 9141 err_mdp: 9142 unregister_blkdev(MD_MAJOR, "md"); 9143 err_md: 9144 destroy_workqueue(md_misc_wq); 9145 err_misc_wq: 9146 destroy_workqueue(md_wq); 9147 err_wq: 9148 return ret; 9149 } 9150 9151 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9152 { 9153 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9154 struct md_rdev *rdev2; 9155 int role, ret; 9156 char b[BDEVNAME_SIZE]; 9157 9158 /* 9159 * If size is changed in another node then we need to 9160 * do resize as well. 9161 */ 9162 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9163 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9164 if (ret) 9165 pr_info("md-cluster: resize failed\n"); 9166 else 9167 bitmap_update_sb(mddev->bitmap); 9168 } 9169 9170 /* Check for change of roles in the active devices */ 9171 rdev_for_each(rdev2, mddev) { 9172 if (test_bit(Faulty, &rdev2->flags)) 9173 continue; 9174 9175 /* Check if the roles changed */ 9176 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9177 9178 if (test_bit(Candidate, &rdev2->flags)) { 9179 if (role == 0xfffe) { 9180 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9181 md_kick_rdev_from_array(rdev2); 9182 continue; 9183 } 9184 else 9185 clear_bit(Candidate, &rdev2->flags); 9186 } 9187 9188 if (role != rdev2->raid_disk) { 9189 /* got activated */ 9190 if (rdev2->raid_disk == -1 && role != 0xffff) { 9191 rdev2->saved_raid_disk = role; 9192 ret = remove_and_add_spares(mddev, rdev2); 9193 pr_info("Activated spare: %s\n", 9194 bdevname(rdev2->bdev,b)); 9195 /* wakeup mddev->thread here, so array could 9196 * perform resync with the new activated disk */ 9197 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9198 md_wakeup_thread(mddev->thread); 9199 9200 } 9201 /* device faulty 9202 * We just want to do the minimum to mark the disk 9203 * as faulty. The recovery is performed by the 9204 * one who initiated the error. 9205 */ 9206 if ((role == 0xfffe) || (role == 0xfffd)) { 9207 md_error(mddev, rdev2); 9208 clear_bit(Blocked, &rdev2->flags); 9209 } 9210 } 9211 } 9212 9213 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9214 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9215 9216 /* Finally set the event to be up to date */ 9217 mddev->events = le64_to_cpu(sb->events); 9218 } 9219 9220 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9221 { 9222 int err; 9223 struct page *swapout = rdev->sb_page; 9224 struct mdp_superblock_1 *sb; 9225 9226 /* Store the sb page of the rdev in the swapout temporary 9227 * variable in case we err in the future 9228 */ 9229 rdev->sb_page = NULL; 9230 err = alloc_disk_sb(rdev); 9231 if (err == 0) { 9232 ClearPageUptodate(rdev->sb_page); 9233 rdev->sb_loaded = 0; 9234 err = super_types[mddev->major_version]. 9235 load_super(rdev, NULL, mddev->minor_version); 9236 } 9237 if (err < 0) { 9238 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9239 __func__, __LINE__, rdev->desc_nr, err); 9240 if (rdev->sb_page) 9241 put_page(rdev->sb_page); 9242 rdev->sb_page = swapout; 9243 rdev->sb_loaded = 1; 9244 return err; 9245 } 9246 9247 sb = page_address(rdev->sb_page); 9248 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9249 * is not set 9250 */ 9251 9252 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9253 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9254 9255 /* The other node finished recovery, call spare_active to set 9256 * device In_sync and mddev->degraded 9257 */ 9258 if (rdev->recovery_offset == MaxSector && 9259 !test_bit(In_sync, &rdev->flags) && 9260 mddev->pers->spare_active(mddev)) 9261 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9262 9263 put_page(swapout); 9264 return 0; 9265 } 9266 9267 void md_reload_sb(struct mddev *mddev, int nr) 9268 { 9269 struct md_rdev *rdev; 9270 int err; 9271 9272 /* Find the rdev */ 9273 rdev_for_each_rcu(rdev, mddev) { 9274 if (rdev->desc_nr == nr) 9275 break; 9276 } 9277 9278 if (!rdev || rdev->desc_nr != nr) { 9279 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9280 return; 9281 } 9282 9283 err = read_rdev(mddev, rdev); 9284 if (err < 0) 9285 return; 9286 9287 check_sb_changes(mddev, rdev); 9288 9289 /* Read all rdev's to update recovery_offset */ 9290 rdev_for_each_rcu(rdev, mddev) { 9291 if (!test_bit(Faulty, &rdev->flags)) 9292 read_rdev(mddev, rdev); 9293 } 9294 } 9295 EXPORT_SYMBOL(md_reload_sb); 9296 9297 #ifndef MODULE 9298 9299 /* 9300 * Searches all registered partitions for autorun RAID arrays 9301 * at boot time. 9302 */ 9303 9304 static DEFINE_MUTEX(detected_devices_mutex); 9305 static LIST_HEAD(all_detected_devices); 9306 struct detected_devices_node { 9307 struct list_head list; 9308 dev_t dev; 9309 }; 9310 9311 void md_autodetect_dev(dev_t dev) 9312 { 9313 struct detected_devices_node *node_detected_dev; 9314 9315 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9316 if (node_detected_dev) { 9317 node_detected_dev->dev = dev; 9318 mutex_lock(&detected_devices_mutex); 9319 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9320 mutex_unlock(&detected_devices_mutex); 9321 } 9322 } 9323 9324 static void autostart_arrays(int part) 9325 { 9326 struct md_rdev *rdev; 9327 struct detected_devices_node *node_detected_dev; 9328 dev_t dev; 9329 int i_scanned, i_passed; 9330 9331 i_scanned = 0; 9332 i_passed = 0; 9333 9334 pr_info("md: Autodetecting RAID arrays.\n"); 9335 9336 mutex_lock(&detected_devices_mutex); 9337 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9338 i_scanned++; 9339 node_detected_dev = list_entry(all_detected_devices.next, 9340 struct detected_devices_node, list); 9341 list_del(&node_detected_dev->list); 9342 dev = node_detected_dev->dev; 9343 kfree(node_detected_dev); 9344 mutex_unlock(&detected_devices_mutex); 9345 rdev = md_import_device(dev,0, 90); 9346 mutex_lock(&detected_devices_mutex); 9347 if (IS_ERR(rdev)) 9348 continue; 9349 9350 if (test_bit(Faulty, &rdev->flags)) 9351 continue; 9352 9353 set_bit(AutoDetected, &rdev->flags); 9354 list_add(&rdev->same_set, &pending_raid_disks); 9355 i_passed++; 9356 } 9357 mutex_unlock(&detected_devices_mutex); 9358 9359 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9360 9361 autorun_devices(part); 9362 } 9363 9364 #endif /* !MODULE */ 9365 9366 static __exit void md_exit(void) 9367 { 9368 struct mddev *mddev; 9369 struct list_head *tmp; 9370 int delay = 1; 9371 9372 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9373 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9374 9375 unregister_blkdev(MD_MAJOR,"md"); 9376 unregister_blkdev(mdp_major, "mdp"); 9377 unregister_reboot_notifier(&md_notifier); 9378 unregister_sysctl_table(raid_table_header); 9379 9380 /* We cannot unload the modules while some process is 9381 * waiting for us in select() or poll() - wake them up 9382 */ 9383 md_unloading = 1; 9384 while (waitqueue_active(&md_event_waiters)) { 9385 /* not safe to leave yet */ 9386 wake_up(&md_event_waiters); 9387 msleep(delay); 9388 delay += delay; 9389 } 9390 remove_proc_entry("mdstat", NULL); 9391 9392 for_each_mddev(mddev, tmp) { 9393 export_array(mddev); 9394 mddev->ctime = 0; 9395 mddev->hold_active = 0; 9396 /* 9397 * for_each_mddev() will call mddev_put() at the end of each 9398 * iteration. As the mddev is now fully clear, this will 9399 * schedule the mddev for destruction by a workqueue, and the 9400 * destroy_workqueue() below will wait for that to complete. 9401 */ 9402 } 9403 destroy_workqueue(md_misc_wq); 9404 destroy_workqueue(md_wq); 9405 } 9406 9407 subsys_initcall(md_init); 9408 module_exit(md_exit) 9409 9410 static int get_ro(char *buffer, const struct kernel_param *kp) 9411 { 9412 return sprintf(buffer, "%d", start_readonly); 9413 } 9414 static int set_ro(const char *val, const struct kernel_param *kp) 9415 { 9416 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9417 } 9418 9419 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9420 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9421 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9422 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9423 9424 MODULE_LICENSE("GPL"); 9425 MODULE_DESCRIPTION("MD RAID framework"); 9426 MODULE_ALIAS("md"); 9427 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9428