xref: /openbmc/linux/drivers/md/md.c (revision 400c2a45)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3    md.c : Multiple Devices driver for Linux
4      Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 
6      completely rewritten, based on the MD driver code from Marc Zyngier
7 
8    Changes:
9 
10    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14    - kmod support by: Cyrus Durgin
15    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 
18    - lots of fixes and improvements to the RAID1/RAID5 and generic
19      RAID code (such as request based resynchronization):
20 
21      Neil Brown <neilb@cse.unsw.edu.au>.
22 
23    - persistent bitmap code
24      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 
26 
27    Errors, Warnings, etc.
28    Please use:
29      pr_crit() for error conditions that risk data loss
30      pr_err() for error conditions that are unexpected, like an IO error
31          or internal inconsistency
32      pr_warn() for error conditions that could have been predicated, like
33          adding a device to an array when it has incompatible metadata
34      pr_info() for every interesting, very rare events, like an array starting
35          or stopping, or resync starting or stopping
36      pr_debug() for everything else.
37 
38 */
39 
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65 
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70 
71 /* pers_list is a list of registered personalities protected
72  * by pers_lock.
73  * pers_lock does extra service to protect accesses to
74  * mddev->thread when the mutex cannot be held.
75  */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78 
79 static struct kobj_type md_ktype;
80 
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84 
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89 
90 static int remove_and_add_spares(struct mddev *mddev,
91 				 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93 
94 /*
95  * Default number of read corrections we'll attempt on an rdev
96  * before ejecting it from the array. We divide the read error
97  * count by 2 for every hour elapsed between read errors.
98  */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104  * is 1000 KB/sec, so the extra system load does not show up that much.
105  * Increase it if you want to have more _guaranteed_ speed. Note that
106  * the RAID driver will use the maximum available bandwidth if the IO
107  * subsystem is idle. There is also an 'absolute maximum' reconstruction
108  * speed limit - in case reconstruction slows down your system despite
109  * idle IO detection.
110  *
111  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112  * or /sys/block/mdX/md/sync_speed_{min,max}
113  */
114 
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
117 static inline int speed_min(struct mddev *mddev)
118 {
119 	return mddev->sync_speed_min ?
120 		mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122 
123 static inline int speed_max(struct mddev *mddev)
124 {
125 	return mddev->sync_speed_max ?
126 		mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128 
129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 	if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 		return;
133 
134 	kvfree(rdev->serial);
135 	rdev->serial = NULL;
136 }
137 
138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 	struct md_rdev *rdev;
141 
142 	rdev_for_each(rdev, mddev)
143 		rdev_uninit_serial(rdev);
144 }
145 
146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 	/* serial_nums equals with BARRIER_BUCKETS_NR */
149 	int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 	struct serial_in_rdev *serial = NULL;
151 
152 	if (test_bit(CollisionCheck, &rdev->flags))
153 		return 0;
154 
155 	serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 			  GFP_KERNEL);
157 	if (!serial)
158 		return -ENOMEM;
159 
160 	for (i = 0; i < serial_nums; i++) {
161 		struct serial_in_rdev *serial_tmp = &serial[i];
162 
163 		spin_lock_init(&serial_tmp->serial_lock);
164 		serial_tmp->serial_rb = RB_ROOT_CACHED;
165 		init_waitqueue_head(&serial_tmp->serial_io_wait);
166 	}
167 
168 	rdev->serial = serial;
169 	set_bit(CollisionCheck, &rdev->flags);
170 
171 	return 0;
172 }
173 
174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 	struct md_rdev *rdev;
177 	int ret = 0;
178 
179 	rdev_for_each(rdev, mddev) {
180 		ret = rdev_init_serial(rdev);
181 		if (ret)
182 			break;
183 	}
184 
185 	/* Free all resources if pool is not existed */
186 	if (ret && !mddev->serial_info_pool)
187 		rdevs_uninit_serial(mddev);
188 
189 	return ret;
190 }
191 
192 /*
193  * rdev needs to enable serial stuffs if it meets the conditions:
194  * 1. it is multi-queue device flaged with writemostly.
195  * 2. the write-behind mode is enabled.
196  */
197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 	return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 		rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 		test_bit(WriteMostly, &rdev->flags));
202 }
203 
204 /*
205  * Init resource for rdev(s), then create serial_info_pool if:
206  * 1. rdev is the first device which return true from rdev_enable_serial.
207  * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208  */
209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 			      bool is_suspend)
211 {
212 	int ret = 0;
213 
214 	if (rdev && !rdev_need_serial(rdev) &&
215 	    !test_bit(CollisionCheck, &rdev->flags))
216 		return;
217 
218 	if (!is_suspend)
219 		mddev_suspend(mddev);
220 
221 	if (!rdev)
222 		ret = rdevs_init_serial(mddev);
223 	else
224 		ret = rdev_init_serial(rdev);
225 	if (ret)
226 		goto abort;
227 
228 	if (mddev->serial_info_pool == NULL) {
229 		/*
230 		 * already in memalloc noio context by
231 		 * mddev_suspend()
232 		 */
233 		mddev->serial_info_pool =
234 			mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 						sizeof(struct serial_info));
236 		if (!mddev->serial_info_pool) {
237 			rdevs_uninit_serial(mddev);
238 			pr_err("can't alloc memory pool for serialization\n");
239 		}
240 	}
241 
242 abort:
243 	if (!is_suspend)
244 		mddev_resume(mddev);
245 }
246 
247 /*
248  * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249  * 1. rdev is the last device flaged with CollisionCheck.
250  * 2. when bitmap is destroyed while policy is not enabled.
251  * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252  */
253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 			       bool is_suspend)
255 {
256 	if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 		return;
258 
259 	if (mddev->serial_info_pool) {
260 		struct md_rdev *temp;
261 		int num = 0; /* used to track if other rdevs need the pool */
262 
263 		if (!is_suspend)
264 			mddev_suspend(mddev);
265 		rdev_for_each(temp, mddev) {
266 			if (!rdev) {
267 				if (!mddev->serialize_policy ||
268 				    !rdev_need_serial(temp))
269 					rdev_uninit_serial(temp);
270 				else
271 					num++;
272 			} else if (temp != rdev &&
273 				   test_bit(CollisionCheck, &temp->flags))
274 				num++;
275 		}
276 
277 		if (rdev)
278 			rdev_uninit_serial(rdev);
279 
280 		if (num)
281 			pr_info("The mempool could be used by other devices\n");
282 		else {
283 			mempool_destroy(mddev->serial_info_pool);
284 			mddev->serial_info_pool = NULL;
285 		}
286 		if (!is_suspend)
287 			mddev_resume(mddev);
288 	}
289 }
290 
291 static struct ctl_table_header *raid_table_header;
292 
293 static struct ctl_table raid_table[] = {
294 	{
295 		.procname	= "speed_limit_min",
296 		.data		= &sysctl_speed_limit_min,
297 		.maxlen		= sizeof(int),
298 		.mode		= S_IRUGO|S_IWUSR,
299 		.proc_handler	= proc_dointvec,
300 	},
301 	{
302 		.procname	= "speed_limit_max",
303 		.data		= &sysctl_speed_limit_max,
304 		.maxlen		= sizeof(int),
305 		.mode		= S_IRUGO|S_IWUSR,
306 		.proc_handler	= proc_dointvec,
307 	},
308 	{ }
309 };
310 
311 static struct ctl_table raid_dir_table[] = {
312 	{
313 		.procname	= "raid",
314 		.maxlen		= 0,
315 		.mode		= S_IRUGO|S_IXUGO,
316 		.child		= raid_table,
317 	},
318 	{ }
319 };
320 
321 static struct ctl_table raid_root_table[] = {
322 	{
323 		.procname	= "dev",
324 		.maxlen		= 0,
325 		.mode		= 0555,
326 		.child		= raid_dir_table,
327 	},
328 	{  }
329 };
330 
331 static int start_readonly;
332 
333 /*
334  * The original mechanism for creating an md device is to create
335  * a device node in /dev and to open it.  This causes races with device-close.
336  * The preferred method is to write to the "new_array" module parameter.
337  * This can avoid races.
338  * Setting create_on_open to false disables the original mechanism
339  * so all the races disappear.
340  */
341 static bool create_on_open = true;
342 
343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 			    struct mddev *mddev)
345 {
346 	if (!mddev || !bioset_initialized(&mddev->bio_set))
347 		return bio_alloc(gfp_mask, nr_iovecs);
348 
349 	return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352 
353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 	if (!mddev || !bioset_initialized(&mddev->sync_set))
356 		return bio_alloc(GFP_NOIO, 1);
357 
358 	return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360 
361 /*
362  * We have a system wide 'event count' that is incremented
363  * on any 'interesting' event, and readers of /proc/mdstat
364  * can use 'poll' or 'select' to find out when the event
365  * count increases.
366  *
367  * Events are:
368  *  start array, stop array, error, add device, remove device,
369  *  start build, activate spare
370  */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
373 void md_new_event(struct mddev *mddev)
374 {
375 	atomic_inc(&md_event_count);
376 	wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379 
380 /*
381  * Enables to iterate over all existing md arrays
382  * all_mddevs_lock protects this list.
383  */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386 
387 /*
388  * iterates through all used mddevs in the system.
389  * We take care to grab the all_mddevs_lock whenever navigating
390  * the list, and to always hold a refcount when unlocked.
391  * Any code which breaks out of this loop while own
392  * a reference to the current mddev and must mddev_put it.
393  */
394 #define for_each_mddev(_mddev,_tmp)					\
395 									\
396 	for (({ spin_lock(&all_mddevs_lock);				\
397 		_tmp = all_mddevs.next;					\
398 		_mddev = NULL;});					\
399 	     ({ if (_tmp != &all_mddevs)				\
400 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 		spin_unlock(&all_mddevs_lock);				\
402 		if (_mddev) mddev_put(_mddev);				\
403 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
404 		_tmp != &all_mddevs;});					\
405 	     ({ spin_lock(&all_mddevs_lock);				\
406 		_tmp = _tmp->next;})					\
407 		)
408 
409 /* Rather than calling directly into the personality make_request function,
410  * IO requests come here first so that we can check if the device is
411  * being suspended pending a reconfiguration.
412  * We hold a refcount over the call to ->make_request.  By the time that
413  * call has finished, the bio has been linked into some internal structure
414  * and so is visible to ->quiesce(), so we don't need the refcount any more.
415  */
416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 	if (mddev->suspended)
419 		return true;
420 	if (bio_data_dir(bio) != WRITE)
421 		return false;
422 	if (mddev->suspend_lo >= mddev->suspend_hi)
423 		return false;
424 	if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 		return false;
426 	if (bio_end_sector(bio) < mddev->suspend_lo)
427 		return false;
428 	return true;
429 }
430 
431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 	rcu_read_lock();
435 	if (is_suspended(mddev, bio)) {
436 		DEFINE_WAIT(__wait);
437 		for (;;) {
438 			prepare_to_wait(&mddev->sb_wait, &__wait,
439 					TASK_UNINTERRUPTIBLE);
440 			if (!is_suspended(mddev, bio))
441 				break;
442 			rcu_read_unlock();
443 			schedule();
444 			rcu_read_lock();
445 		}
446 		finish_wait(&mddev->sb_wait, &__wait);
447 	}
448 	atomic_inc(&mddev->active_io);
449 	rcu_read_unlock();
450 
451 	if (!mddev->pers->make_request(mddev, bio)) {
452 		atomic_dec(&mddev->active_io);
453 		wake_up(&mddev->sb_wait);
454 		goto check_suspended;
455 	}
456 
457 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 		wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461 
462 struct md_io {
463 	struct mddev *mddev;
464 	bio_end_io_t *orig_bi_end_io;
465 	void *orig_bi_private;
466 	unsigned long start_time;
467 	struct block_device *part;
468 };
469 
470 static void md_end_io(struct bio *bio)
471 {
472 	struct md_io *md_io = bio->bi_private;
473 	struct mddev *mddev = md_io->mddev;
474 
475 	part_end_io_acct(md_io->part, bio, md_io->start_time);
476 
477 	bio->bi_end_io = md_io->orig_bi_end_io;
478 	bio->bi_private = md_io->orig_bi_private;
479 
480 	mempool_free(md_io, &mddev->md_io_pool);
481 
482 	if (bio->bi_end_io)
483 		bio->bi_end_io(bio);
484 }
485 
486 static blk_qc_t md_submit_bio(struct bio *bio)
487 {
488 	const int rw = bio_data_dir(bio);
489 	struct mddev *mddev = bio->bi_disk->private_data;
490 
491 	if (mddev == NULL || mddev->pers == NULL) {
492 		bio_io_error(bio);
493 		return BLK_QC_T_NONE;
494 	}
495 
496 	if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
497 		bio_io_error(bio);
498 		return BLK_QC_T_NONE;
499 	}
500 
501 	blk_queue_split(&bio);
502 
503 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
504 		if (bio_sectors(bio) != 0)
505 			bio->bi_status = BLK_STS_IOERR;
506 		bio_endio(bio);
507 		return BLK_QC_T_NONE;
508 	}
509 
510 	if (bio->bi_end_io != md_end_io) {
511 		struct md_io *md_io;
512 
513 		md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO);
514 		md_io->mddev = mddev;
515 		md_io->orig_bi_end_io = bio->bi_end_io;
516 		md_io->orig_bi_private = bio->bi_private;
517 
518 		bio->bi_end_io = md_end_io;
519 		bio->bi_private = md_io;
520 
521 		md_io->start_time = part_start_io_acct(mddev->gendisk,
522 						       &md_io->part, bio);
523 	}
524 
525 	/* bio could be mergeable after passing to underlayer */
526 	bio->bi_opf &= ~REQ_NOMERGE;
527 
528 	md_handle_request(mddev, bio);
529 
530 	return BLK_QC_T_NONE;
531 }
532 
533 /* mddev_suspend makes sure no new requests are submitted
534  * to the device, and that any requests that have been submitted
535  * are completely handled.
536  * Once mddev_detach() is called and completes, the module will be
537  * completely unused.
538  */
539 void mddev_suspend(struct mddev *mddev)
540 {
541 	WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
542 	lockdep_assert_held(&mddev->reconfig_mutex);
543 	if (mddev->suspended++)
544 		return;
545 	synchronize_rcu();
546 	wake_up(&mddev->sb_wait);
547 	set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
548 	smp_mb__after_atomic();
549 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
550 	mddev->pers->quiesce(mddev, 1);
551 	clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
552 	wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
553 
554 	del_timer_sync(&mddev->safemode_timer);
555 	/* restrict memory reclaim I/O during raid array is suspend */
556 	mddev->noio_flag = memalloc_noio_save();
557 }
558 EXPORT_SYMBOL_GPL(mddev_suspend);
559 
560 void mddev_resume(struct mddev *mddev)
561 {
562 	/* entred the memalloc scope from mddev_suspend() */
563 	memalloc_noio_restore(mddev->noio_flag);
564 	lockdep_assert_held(&mddev->reconfig_mutex);
565 	if (--mddev->suspended)
566 		return;
567 	wake_up(&mddev->sb_wait);
568 	mddev->pers->quiesce(mddev, 0);
569 
570 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
571 	md_wakeup_thread(mddev->thread);
572 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
573 }
574 EXPORT_SYMBOL_GPL(mddev_resume);
575 
576 /*
577  * Generic flush handling for md
578  */
579 
580 static void md_end_flush(struct bio *bio)
581 {
582 	struct md_rdev *rdev = bio->bi_private;
583 	struct mddev *mddev = rdev->mddev;
584 
585 	rdev_dec_pending(rdev, mddev);
586 
587 	if (atomic_dec_and_test(&mddev->flush_pending)) {
588 		/* The pre-request flush has finished */
589 		queue_work(md_wq, &mddev->flush_work);
590 	}
591 	bio_put(bio);
592 }
593 
594 static void md_submit_flush_data(struct work_struct *ws);
595 
596 static void submit_flushes(struct work_struct *ws)
597 {
598 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
599 	struct md_rdev *rdev;
600 
601 	mddev->start_flush = ktime_get_boottime();
602 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
603 	atomic_set(&mddev->flush_pending, 1);
604 	rcu_read_lock();
605 	rdev_for_each_rcu(rdev, mddev)
606 		if (rdev->raid_disk >= 0 &&
607 		    !test_bit(Faulty, &rdev->flags)) {
608 			/* Take two references, one is dropped
609 			 * when request finishes, one after
610 			 * we reclaim rcu_read_lock
611 			 */
612 			struct bio *bi;
613 			atomic_inc(&rdev->nr_pending);
614 			atomic_inc(&rdev->nr_pending);
615 			rcu_read_unlock();
616 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
617 			bi->bi_end_io = md_end_flush;
618 			bi->bi_private = rdev;
619 			bio_set_dev(bi, rdev->bdev);
620 			bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
621 			atomic_inc(&mddev->flush_pending);
622 			submit_bio(bi);
623 			rcu_read_lock();
624 			rdev_dec_pending(rdev, mddev);
625 		}
626 	rcu_read_unlock();
627 	if (atomic_dec_and_test(&mddev->flush_pending))
628 		queue_work(md_wq, &mddev->flush_work);
629 }
630 
631 static void md_submit_flush_data(struct work_struct *ws)
632 {
633 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
634 	struct bio *bio = mddev->flush_bio;
635 
636 	/*
637 	 * must reset flush_bio before calling into md_handle_request to avoid a
638 	 * deadlock, because other bios passed md_handle_request suspend check
639 	 * could wait for this and below md_handle_request could wait for those
640 	 * bios because of suspend check
641 	 */
642 	spin_lock_irq(&mddev->lock);
643 	mddev->prev_flush_start = mddev->start_flush;
644 	mddev->flush_bio = NULL;
645 	spin_unlock_irq(&mddev->lock);
646 	wake_up(&mddev->sb_wait);
647 
648 	if (bio->bi_iter.bi_size == 0) {
649 		/* an empty barrier - all done */
650 		bio_endio(bio);
651 	} else {
652 		bio->bi_opf &= ~REQ_PREFLUSH;
653 		md_handle_request(mddev, bio);
654 	}
655 }
656 
657 /*
658  * Manages consolidation of flushes and submitting any flushes needed for
659  * a bio with REQ_PREFLUSH.  Returns true if the bio is finished or is
660  * being finished in another context.  Returns false if the flushing is
661  * complete but still needs the I/O portion of the bio to be processed.
662  */
663 bool md_flush_request(struct mddev *mddev, struct bio *bio)
664 {
665 	ktime_t req_start = ktime_get_boottime();
666 	spin_lock_irq(&mddev->lock);
667 	/* flush requests wait until ongoing flush completes,
668 	 * hence coalescing all the pending requests.
669 	 */
670 	wait_event_lock_irq(mddev->sb_wait,
671 			    !mddev->flush_bio ||
672 			    ktime_before(req_start, mddev->prev_flush_start),
673 			    mddev->lock);
674 	/* new request after previous flush is completed */
675 	if (ktime_after(req_start, mddev->prev_flush_start)) {
676 		WARN_ON(mddev->flush_bio);
677 		mddev->flush_bio = bio;
678 		bio = NULL;
679 	}
680 	spin_unlock_irq(&mddev->lock);
681 
682 	if (!bio) {
683 		INIT_WORK(&mddev->flush_work, submit_flushes);
684 		queue_work(md_wq, &mddev->flush_work);
685 	} else {
686 		/* flush was performed for some other bio while we waited. */
687 		if (bio->bi_iter.bi_size == 0)
688 			/* an empty barrier - all done */
689 			bio_endio(bio);
690 		else {
691 			bio->bi_opf &= ~REQ_PREFLUSH;
692 			return false;
693 		}
694 	}
695 	return true;
696 }
697 EXPORT_SYMBOL(md_flush_request);
698 
699 static inline struct mddev *mddev_get(struct mddev *mddev)
700 {
701 	atomic_inc(&mddev->active);
702 	return mddev;
703 }
704 
705 static void mddev_delayed_delete(struct work_struct *ws);
706 
707 static void mddev_put(struct mddev *mddev)
708 {
709 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
710 		return;
711 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
712 	    mddev->ctime == 0 && !mddev->hold_active) {
713 		/* Array is not configured at all, and not held active,
714 		 * so destroy it */
715 		list_del_init(&mddev->all_mddevs);
716 
717 		/*
718 		 * Call queue_work inside the spinlock so that
719 		 * flush_workqueue() after mddev_find will succeed in waiting
720 		 * for the work to be done.
721 		 */
722 		INIT_WORK(&mddev->del_work, mddev_delayed_delete);
723 		queue_work(md_misc_wq, &mddev->del_work);
724 	}
725 	spin_unlock(&all_mddevs_lock);
726 }
727 
728 static void md_safemode_timeout(struct timer_list *t);
729 
730 void mddev_init(struct mddev *mddev)
731 {
732 	kobject_init(&mddev->kobj, &md_ktype);
733 	mutex_init(&mddev->open_mutex);
734 	mutex_init(&mddev->reconfig_mutex);
735 	mutex_init(&mddev->bitmap_info.mutex);
736 	INIT_LIST_HEAD(&mddev->disks);
737 	INIT_LIST_HEAD(&mddev->all_mddevs);
738 	timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
739 	atomic_set(&mddev->active, 1);
740 	atomic_set(&mddev->openers, 0);
741 	atomic_set(&mddev->active_io, 0);
742 	spin_lock_init(&mddev->lock);
743 	atomic_set(&mddev->flush_pending, 0);
744 	init_waitqueue_head(&mddev->sb_wait);
745 	init_waitqueue_head(&mddev->recovery_wait);
746 	mddev->reshape_position = MaxSector;
747 	mddev->reshape_backwards = 0;
748 	mddev->last_sync_action = "none";
749 	mddev->resync_min = 0;
750 	mddev->resync_max = MaxSector;
751 	mddev->level = LEVEL_NONE;
752 }
753 EXPORT_SYMBOL_GPL(mddev_init);
754 
755 static struct mddev *mddev_find(dev_t unit)
756 {
757 	struct mddev *mddev, *new = NULL;
758 
759 	if (unit && MAJOR(unit) != MD_MAJOR)
760 		unit &= ~((1<<MdpMinorShift)-1);
761 
762  retry:
763 	spin_lock(&all_mddevs_lock);
764 
765 	if (unit) {
766 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
767 			if (mddev->unit == unit) {
768 				mddev_get(mddev);
769 				spin_unlock(&all_mddevs_lock);
770 				kfree(new);
771 				return mddev;
772 			}
773 
774 		if (new) {
775 			list_add(&new->all_mddevs, &all_mddevs);
776 			spin_unlock(&all_mddevs_lock);
777 			new->hold_active = UNTIL_IOCTL;
778 			return new;
779 		}
780 	} else if (new) {
781 		/* find an unused unit number */
782 		static int next_minor = 512;
783 		int start = next_minor;
784 		int is_free = 0;
785 		int dev = 0;
786 		while (!is_free) {
787 			dev = MKDEV(MD_MAJOR, next_minor);
788 			next_minor++;
789 			if (next_minor > MINORMASK)
790 				next_minor = 0;
791 			if (next_minor == start) {
792 				/* Oh dear, all in use. */
793 				spin_unlock(&all_mddevs_lock);
794 				kfree(new);
795 				return NULL;
796 			}
797 
798 			is_free = 1;
799 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
800 				if (mddev->unit == dev) {
801 					is_free = 0;
802 					break;
803 				}
804 		}
805 		new->unit = dev;
806 		new->md_minor = MINOR(dev);
807 		new->hold_active = UNTIL_STOP;
808 		list_add(&new->all_mddevs, &all_mddevs);
809 		spin_unlock(&all_mddevs_lock);
810 		return new;
811 	}
812 	spin_unlock(&all_mddevs_lock);
813 
814 	new = kzalloc(sizeof(*new), GFP_KERNEL);
815 	if (!new)
816 		return NULL;
817 
818 	new->unit = unit;
819 	if (MAJOR(unit) == MD_MAJOR)
820 		new->md_minor = MINOR(unit);
821 	else
822 		new->md_minor = MINOR(unit) >> MdpMinorShift;
823 
824 	mddev_init(new);
825 
826 	goto retry;
827 }
828 
829 static struct attribute_group md_redundancy_group;
830 
831 void mddev_unlock(struct mddev *mddev)
832 {
833 	if (mddev->to_remove) {
834 		/* These cannot be removed under reconfig_mutex as
835 		 * an access to the files will try to take reconfig_mutex
836 		 * while holding the file unremovable, which leads to
837 		 * a deadlock.
838 		 * So hold set sysfs_active while the remove in happeing,
839 		 * and anything else which might set ->to_remove or my
840 		 * otherwise change the sysfs namespace will fail with
841 		 * -EBUSY if sysfs_active is still set.
842 		 * We set sysfs_active under reconfig_mutex and elsewhere
843 		 * test it under the same mutex to ensure its correct value
844 		 * is seen.
845 		 */
846 		struct attribute_group *to_remove = mddev->to_remove;
847 		mddev->to_remove = NULL;
848 		mddev->sysfs_active = 1;
849 		mutex_unlock(&mddev->reconfig_mutex);
850 
851 		if (mddev->kobj.sd) {
852 			if (to_remove != &md_redundancy_group)
853 				sysfs_remove_group(&mddev->kobj, to_remove);
854 			if (mddev->pers == NULL ||
855 			    mddev->pers->sync_request == NULL) {
856 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
857 				if (mddev->sysfs_action)
858 					sysfs_put(mddev->sysfs_action);
859 				if (mddev->sysfs_completed)
860 					sysfs_put(mddev->sysfs_completed);
861 				if (mddev->sysfs_degraded)
862 					sysfs_put(mddev->sysfs_degraded);
863 				mddev->sysfs_action = NULL;
864 				mddev->sysfs_completed = NULL;
865 				mddev->sysfs_degraded = NULL;
866 			}
867 		}
868 		mddev->sysfs_active = 0;
869 	} else
870 		mutex_unlock(&mddev->reconfig_mutex);
871 
872 	/* As we've dropped the mutex we need a spinlock to
873 	 * make sure the thread doesn't disappear
874 	 */
875 	spin_lock(&pers_lock);
876 	md_wakeup_thread(mddev->thread);
877 	wake_up(&mddev->sb_wait);
878 	spin_unlock(&pers_lock);
879 }
880 EXPORT_SYMBOL_GPL(mddev_unlock);
881 
882 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
883 {
884 	struct md_rdev *rdev;
885 
886 	rdev_for_each_rcu(rdev, mddev)
887 		if (rdev->desc_nr == nr)
888 			return rdev;
889 
890 	return NULL;
891 }
892 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
893 
894 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
895 {
896 	struct md_rdev *rdev;
897 
898 	rdev_for_each(rdev, mddev)
899 		if (rdev->bdev->bd_dev == dev)
900 			return rdev;
901 
902 	return NULL;
903 }
904 
905 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
906 {
907 	struct md_rdev *rdev;
908 
909 	rdev_for_each_rcu(rdev, mddev)
910 		if (rdev->bdev->bd_dev == dev)
911 			return rdev;
912 
913 	return NULL;
914 }
915 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
916 
917 static struct md_personality *find_pers(int level, char *clevel)
918 {
919 	struct md_personality *pers;
920 	list_for_each_entry(pers, &pers_list, list) {
921 		if (level != LEVEL_NONE && pers->level == level)
922 			return pers;
923 		if (strcmp(pers->name, clevel)==0)
924 			return pers;
925 	}
926 	return NULL;
927 }
928 
929 /* return the offset of the super block in 512byte sectors */
930 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
931 {
932 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
933 	return MD_NEW_SIZE_SECTORS(num_sectors);
934 }
935 
936 static int alloc_disk_sb(struct md_rdev *rdev)
937 {
938 	rdev->sb_page = alloc_page(GFP_KERNEL);
939 	if (!rdev->sb_page)
940 		return -ENOMEM;
941 	return 0;
942 }
943 
944 void md_rdev_clear(struct md_rdev *rdev)
945 {
946 	if (rdev->sb_page) {
947 		put_page(rdev->sb_page);
948 		rdev->sb_loaded = 0;
949 		rdev->sb_page = NULL;
950 		rdev->sb_start = 0;
951 		rdev->sectors = 0;
952 	}
953 	if (rdev->bb_page) {
954 		put_page(rdev->bb_page);
955 		rdev->bb_page = NULL;
956 	}
957 	badblocks_exit(&rdev->badblocks);
958 }
959 EXPORT_SYMBOL_GPL(md_rdev_clear);
960 
961 static void super_written(struct bio *bio)
962 {
963 	struct md_rdev *rdev = bio->bi_private;
964 	struct mddev *mddev = rdev->mddev;
965 
966 	if (bio->bi_status) {
967 		pr_err("md: %s gets error=%d\n", __func__,
968 		       blk_status_to_errno(bio->bi_status));
969 		md_error(mddev, rdev);
970 		if (!test_bit(Faulty, &rdev->flags)
971 		    && (bio->bi_opf & MD_FAILFAST)) {
972 			set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
973 			set_bit(LastDev, &rdev->flags);
974 		}
975 	} else
976 		clear_bit(LastDev, &rdev->flags);
977 
978 	if (atomic_dec_and_test(&mddev->pending_writes))
979 		wake_up(&mddev->sb_wait);
980 	rdev_dec_pending(rdev, mddev);
981 	bio_put(bio);
982 }
983 
984 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
985 		   sector_t sector, int size, struct page *page)
986 {
987 	/* write first size bytes of page to sector of rdev
988 	 * Increment mddev->pending_writes before returning
989 	 * and decrement it on completion, waking up sb_wait
990 	 * if zero is reached.
991 	 * If an error occurred, call md_error
992 	 */
993 	struct bio *bio;
994 	int ff = 0;
995 
996 	if (!page)
997 		return;
998 
999 	if (test_bit(Faulty, &rdev->flags))
1000 		return;
1001 
1002 	bio = md_bio_alloc_sync(mddev);
1003 
1004 	atomic_inc(&rdev->nr_pending);
1005 
1006 	bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
1007 	bio->bi_iter.bi_sector = sector;
1008 	bio_add_page(bio, page, size, 0);
1009 	bio->bi_private = rdev;
1010 	bio->bi_end_io = super_written;
1011 
1012 	if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
1013 	    test_bit(FailFast, &rdev->flags) &&
1014 	    !test_bit(LastDev, &rdev->flags))
1015 		ff = MD_FAILFAST;
1016 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
1017 
1018 	atomic_inc(&mddev->pending_writes);
1019 	submit_bio(bio);
1020 }
1021 
1022 int md_super_wait(struct mddev *mddev)
1023 {
1024 	/* wait for all superblock writes that were scheduled to complete */
1025 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1026 	if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1027 		return -EAGAIN;
1028 	return 0;
1029 }
1030 
1031 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1032 		 struct page *page, int op, int op_flags, bool metadata_op)
1033 {
1034 	struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1035 	int ret;
1036 
1037 	if (metadata_op && rdev->meta_bdev)
1038 		bio_set_dev(bio, rdev->meta_bdev);
1039 	else
1040 		bio_set_dev(bio, rdev->bdev);
1041 	bio_set_op_attrs(bio, op, op_flags);
1042 	if (metadata_op)
1043 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
1044 	else if (rdev->mddev->reshape_position != MaxSector &&
1045 		 (rdev->mddev->reshape_backwards ==
1046 		  (sector >= rdev->mddev->reshape_position)))
1047 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1048 	else
1049 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
1050 	bio_add_page(bio, page, size, 0);
1051 
1052 	submit_bio_wait(bio);
1053 
1054 	ret = !bio->bi_status;
1055 	bio_put(bio);
1056 	return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(sync_page_io);
1059 
1060 static int read_disk_sb(struct md_rdev *rdev, int size)
1061 {
1062 	char b[BDEVNAME_SIZE];
1063 
1064 	if (rdev->sb_loaded)
1065 		return 0;
1066 
1067 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1068 		goto fail;
1069 	rdev->sb_loaded = 1;
1070 	return 0;
1071 
1072 fail:
1073 	pr_err("md: disabled device %s, could not read superblock.\n",
1074 	       bdevname(rdev->bdev,b));
1075 	return -EINVAL;
1076 }
1077 
1078 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1079 {
1080 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
1081 		sb1->set_uuid1 == sb2->set_uuid1 &&
1082 		sb1->set_uuid2 == sb2->set_uuid2 &&
1083 		sb1->set_uuid3 == sb2->set_uuid3;
1084 }
1085 
1086 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1087 {
1088 	int ret;
1089 	mdp_super_t *tmp1, *tmp2;
1090 
1091 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1092 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1093 
1094 	if (!tmp1 || !tmp2) {
1095 		ret = 0;
1096 		goto abort;
1097 	}
1098 
1099 	*tmp1 = *sb1;
1100 	*tmp2 = *sb2;
1101 
1102 	/*
1103 	 * nr_disks is not constant
1104 	 */
1105 	tmp1->nr_disks = 0;
1106 	tmp2->nr_disks = 0;
1107 
1108 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1109 abort:
1110 	kfree(tmp1);
1111 	kfree(tmp2);
1112 	return ret;
1113 }
1114 
1115 static u32 md_csum_fold(u32 csum)
1116 {
1117 	csum = (csum & 0xffff) + (csum >> 16);
1118 	return (csum & 0xffff) + (csum >> 16);
1119 }
1120 
1121 static unsigned int calc_sb_csum(mdp_super_t *sb)
1122 {
1123 	u64 newcsum = 0;
1124 	u32 *sb32 = (u32*)sb;
1125 	int i;
1126 	unsigned int disk_csum, csum;
1127 
1128 	disk_csum = sb->sb_csum;
1129 	sb->sb_csum = 0;
1130 
1131 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
1132 		newcsum += sb32[i];
1133 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
1134 
1135 #ifdef CONFIG_ALPHA
1136 	/* This used to use csum_partial, which was wrong for several
1137 	 * reasons including that different results are returned on
1138 	 * different architectures.  It isn't critical that we get exactly
1139 	 * the same return value as before (we always csum_fold before
1140 	 * testing, and that removes any differences).  However as we
1141 	 * know that csum_partial always returned a 16bit value on
1142 	 * alphas, do a fold to maximise conformity to previous behaviour.
1143 	 */
1144 	sb->sb_csum = md_csum_fold(disk_csum);
1145 #else
1146 	sb->sb_csum = disk_csum;
1147 #endif
1148 	return csum;
1149 }
1150 
1151 /*
1152  * Handle superblock details.
1153  * We want to be able to handle multiple superblock formats
1154  * so we have a common interface to them all, and an array of
1155  * different handlers.
1156  * We rely on user-space to write the initial superblock, and support
1157  * reading and updating of superblocks.
1158  * Interface methods are:
1159  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1160  *      loads and validates a superblock on dev.
1161  *      if refdev != NULL, compare superblocks on both devices
1162  *    Return:
1163  *      0 - dev has a superblock that is compatible with refdev
1164  *      1 - dev has a superblock that is compatible and newer than refdev
1165  *          so dev should be used as the refdev in future
1166  *     -EINVAL superblock incompatible or invalid
1167  *     -othererror e.g. -EIO
1168  *
1169  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1170  *      Verify that dev is acceptable into mddev.
1171  *       The first time, mddev->raid_disks will be 0, and data from
1172  *       dev should be merged in.  Subsequent calls check that dev
1173  *       is new enough.  Return 0 or -EINVAL
1174  *
1175  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1176  *     Update the superblock for rdev with data in mddev
1177  *     This does not write to disc.
1178  *
1179  */
1180 
1181 struct super_type  {
1182 	char		    *name;
1183 	struct module	    *owner;
1184 	int		    (*load_super)(struct md_rdev *rdev,
1185 					  struct md_rdev *refdev,
1186 					  int minor_version);
1187 	int		    (*validate_super)(struct mddev *mddev,
1188 					      struct md_rdev *rdev);
1189 	void		    (*sync_super)(struct mddev *mddev,
1190 					  struct md_rdev *rdev);
1191 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1192 						sector_t num_sectors);
1193 	int		    (*allow_new_offset)(struct md_rdev *rdev,
1194 						unsigned long long new_offset);
1195 };
1196 
1197 /*
1198  * Check that the given mddev has no bitmap.
1199  *
1200  * This function is called from the run method of all personalities that do not
1201  * support bitmaps. It prints an error message and returns non-zero if mddev
1202  * has a bitmap. Otherwise, it returns 0.
1203  *
1204  */
1205 int md_check_no_bitmap(struct mddev *mddev)
1206 {
1207 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1208 		return 0;
1209 	pr_warn("%s: bitmaps are not supported for %s\n",
1210 		mdname(mddev), mddev->pers->name);
1211 	return 1;
1212 }
1213 EXPORT_SYMBOL(md_check_no_bitmap);
1214 
1215 /*
1216  * load_super for 0.90.0
1217  */
1218 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1219 {
1220 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1221 	mdp_super_t *sb;
1222 	int ret;
1223 	bool spare_disk = true;
1224 
1225 	/*
1226 	 * Calculate the position of the superblock (512byte sectors),
1227 	 * it's at the end of the disk.
1228 	 *
1229 	 * It also happens to be a multiple of 4Kb.
1230 	 */
1231 	rdev->sb_start = calc_dev_sboffset(rdev);
1232 
1233 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1234 	if (ret)
1235 		return ret;
1236 
1237 	ret = -EINVAL;
1238 
1239 	bdevname(rdev->bdev, b);
1240 	sb = page_address(rdev->sb_page);
1241 
1242 	if (sb->md_magic != MD_SB_MAGIC) {
1243 		pr_warn("md: invalid raid superblock magic on %s\n", b);
1244 		goto abort;
1245 	}
1246 
1247 	if (sb->major_version != 0 ||
1248 	    sb->minor_version < 90 ||
1249 	    sb->minor_version > 91) {
1250 		pr_warn("Bad version number %d.%d on %s\n",
1251 			sb->major_version, sb->minor_version, b);
1252 		goto abort;
1253 	}
1254 
1255 	if (sb->raid_disks <= 0)
1256 		goto abort;
1257 
1258 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1259 		pr_warn("md: invalid superblock checksum on %s\n", b);
1260 		goto abort;
1261 	}
1262 
1263 	rdev->preferred_minor = sb->md_minor;
1264 	rdev->data_offset = 0;
1265 	rdev->new_data_offset = 0;
1266 	rdev->sb_size = MD_SB_BYTES;
1267 	rdev->badblocks.shift = -1;
1268 
1269 	if (sb->level == LEVEL_MULTIPATH)
1270 		rdev->desc_nr = -1;
1271 	else
1272 		rdev->desc_nr = sb->this_disk.number;
1273 
1274 	/* not spare disk, or LEVEL_MULTIPATH */
1275 	if (sb->level == LEVEL_MULTIPATH ||
1276 		(rdev->desc_nr >= 0 &&
1277 		 rdev->desc_nr < MD_SB_DISKS &&
1278 		 sb->disks[rdev->desc_nr].state &
1279 		 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1280 		spare_disk = false;
1281 
1282 	if (!refdev) {
1283 		if (!spare_disk)
1284 			ret = 1;
1285 		else
1286 			ret = 0;
1287 	} else {
1288 		__u64 ev1, ev2;
1289 		mdp_super_t *refsb = page_address(refdev->sb_page);
1290 		if (!md_uuid_equal(refsb, sb)) {
1291 			pr_warn("md: %s has different UUID to %s\n",
1292 				b, bdevname(refdev->bdev,b2));
1293 			goto abort;
1294 		}
1295 		if (!md_sb_equal(refsb, sb)) {
1296 			pr_warn("md: %s has same UUID but different superblock to %s\n",
1297 				b, bdevname(refdev->bdev, b2));
1298 			goto abort;
1299 		}
1300 		ev1 = md_event(sb);
1301 		ev2 = md_event(refsb);
1302 
1303 		if (!spare_disk && ev1 > ev2)
1304 			ret = 1;
1305 		else
1306 			ret = 0;
1307 	}
1308 	rdev->sectors = rdev->sb_start;
1309 	/* Limit to 4TB as metadata cannot record more than that.
1310 	 * (not needed for Linear and RAID0 as metadata doesn't
1311 	 * record this size)
1312 	 */
1313 	if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1314 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1315 
1316 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1317 		/* "this cannot possibly happen" ... */
1318 		ret = -EINVAL;
1319 
1320  abort:
1321 	return ret;
1322 }
1323 
1324 /*
1325  * validate_super for 0.90.0
1326  */
1327 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1328 {
1329 	mdp_disk_t *desc;
1330 	mdp_super_t *sb = page_address(rdev->sb_page);
1331 	__u64 ev1 = md_event(sb);
1332 
1333 	rdev->raid_disk = -1;
1334 	clear_bit(Faulty, &rdev->flags);
1335 	clear_bit(In_sync, &rdev->flags);
1336 	clear_bit(Bitmap_sync, &rdev->flags);
1337 	clear_bit(WriteMostly, &rdev->flags);
1338 
1339 	if (mddev->raid_disks == 0) {
1340 		mddev->major_version = 0;
1341 		mddev->minor_version = sb->minor_version;
1342 		mddev->patch_version = sb->patch_version;
1343 		mddev->external = 0;
1344 		mddev->chunk_sectors = sb->chunk_size >> 9;
1345 		mddev->ctime = sb->ctime;
1346 		mddev->utime = sb->utime;
1347 		mddev->level = sb->level;
1348 		mddev->clevel[0] = 0;
1349 		mddev->layout = sb->layout;
1350 		mddev->raid_disks = sb->raid_disks;
1351 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1352 		mddev->events = ev1;
1353 		mddev->bitmap_info.offset = 0;
1354 		mddev->bitmap_info.space = 0;
1355 		/* bitmap can use 60 K after the 4K superblocks */
1356 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1357 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1358 		mddev->reshape_backwards = 0;
1359 
1360 		if (mddev->minor_version >= 91) {
1361 			mddev->reshape_position = sb->reshape_position;
1362 			mddev->delta_disks = sb->delta_disks;
1363 			mddev->new_level = sb->new_level;
1364 			mddev->new_layout = sb->new_layout;
1365 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1366 			if (mddev->delta_disks < 0)
1367 				mddev->reshape_backwards = 1;
1368 		} else {
1369 			mddev->reshape_position = MaxSector;
1370 			mddev->delta_disks = 0;
1371 			mddev->new_level = mddev->level;
1372 			mddev->new_layout = mddev->layout;
1373 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1374 		}
1375 		if (mddev->level == 0)
1376 			mddev->layout = -1;
1377 
1378 		if (sb->state & (1<<MD_SB_CLEAN))
1379 			mddev->recovery_cp = MaxSector;
1380 		else {
1381 			if (sb->events_hi == sb->cp_events_hi &&
1382 				sb->events_lo == sb->cp_events_lo) {
1383 				mddev->recovery_cp = sb->recovery_cp;
1384 			} else
1385 				mddev->recovery_cp = 0;
1386 		}
1387 
1388 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1389 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1390 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1391 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1392 
1393 		mddev->max_disks = MD_SB_DISKS;
1394 
1395 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1396 		    mddev->bitmap_info.file == NULL) {
1397 			mddev->bitmap_info.offset =
1398 				mddev->bitmap_info.default_offset;
1399 			mddev->bitmap_info.space =
1400 				mddev->bitmap_info.default_space;
1401 		}
1402 
1403 	} else if (mddev->pers == NULL) {
1404 		/* Insist on good event counter while assembling, except
1405 		 * for spares (which don't need an event count) */
1406 		++ev1;
1407 		if (sb->disks[rdev->desc_nr].state & (
1408 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1409 			if (ev1 < mddev->events)
1410 				return -EINVAL;
1411 	} else if (mddev->bitmap) {
1412 		/* if adding to array with a bitmap, then we can accept an
1413 		 * older device ... but not too old.
1414 		 */
1415 		if (ev1 < mddev->bitmap->events_cleared)
1416 			return 0;
1417 		if (ev1 < mddev->events)
1418 			set_bit(Bitmap_sync, &rdev->flags);
1419 	} else {
1420 		if (ev1 < mddev->events)
1421 			/* just a hot-add of a new device, leave raid_disk at -1 */
1422 			return 0;
1423 	}
1424 
1425 	if (mddev->level != LEVEL_MULTIPATH) {
1426 		desc = sb->disks + rdev->desc_nr;
1427 
1428 		if (desc->state & (1<<MD_DISK_FAULTY))
1429 			set_bit(Faulty, &rdev->flags);
1430 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1431 			    desc->raid_disk < mddev->raid_disks */) {
1432 			set_bit(In_sync, &rdev->flags);
1433 			rdev->raid_disk = desc->raid_disk;
1434 			rdev->saved_raid_disk = desc->raid_disk;
1435 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1436 			/* active but not in sync implies recovery up to
1437 			 * reshape position.  We don't know exactly where
1438 			 * that is, so set to zero for now */
1439 			if (mddev->minor_version >= 91) {
1440 				rdev->recovery_offset = 0;
1441 				rdev->raid_disk = desc->raid_disk;
1442 			}
1443 		}
1444 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1445 			set_bit(WriteMostly, &rdev->flags);
1446 		if (desc->state & (1<<MD_DISK_FAILFAST))
1447 			set_bit(FailFast, &rdev->flags);
1448 	} else /* MULTIPATH are always insync */
1449 		set_bit(In_sync, &rdev->flags);
1450 	return 0;
1451 }
1452 
1453 /*
1454  * sync_super for 0.90.0
1455  */
1456 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1457 {
1458 	mdp_super_t *sb;
1459 	struct md_rdev *rdev2;
1460 	int next_spare = mddev->raid_disks;
1461 
1462 	/* make rdev->sb match mddev data..
1463 	 *
1464 	 * 1/ zero out disks
1465 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1466 	 * 3/ any empty disks < next_spare become removed
1467 	 *
1468 	 * disks[0] gets initialised to REMOVED because
1469 	 * we cannot be sure from other fields if it has
1470 	 * been initialised or not.
1471 	 */
1472 	int i;
1473 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1474 
1475 	rdev->sb_size = MD_SB_BYTES;
1476 
1477 	sb = page_address(rdev->sb_page);
1478 
1479 	memset(sb, 0, sizeof(*sb));
1480 
1481 	sb->md_magic = MD_SB_MAGIC;
1482 	sb->major_version = mddev->major_version;
1483 	sb->patch_version = mddev->patch_version;
1484 	sb->gvalid_words  = 0; /* ignored */
1485 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1486 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1487 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1488 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1489 
1490 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1491 	sb->level = mddev->level;
1492 	sb->size = mddev->dev_sectors / 2;
1493 	sb->raid_disks = mddev->raid_disks;
1494 	sb->md_minor = mddev->md_minor;
1495 	sb->not_persistent = 0;
1496 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1497 	sb->state = 0;
1498 	sb->events_hi = (mddev->events>>32);
1499 	sb->events_lo = (u32)mddev->events;
1500 
1501 	if (mddev->reshape_position == MaxSector)
1502 		sb->minor_version = 90;
1503 	else {
1504 		sb->minor_version = 91;
1505 		sb->reshape_position = mddev->reshape_position;
1506 		sb->new_level = mddev->new_level;
1507 		sb->delta_disks = mddev->delta_disks;
1508 		sb->new_layout = mddev->new_layout;
1509 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1510 	}
1511 	mddev->minor_version = sb->minor_version;
1512 	if (mddev->in_sync)
1513 	{
1514 		sb->recovery_cp = mddev->recovery_cp;
1515 		sb->cp_events_hi = (mddev->events>>32);
1516 		sb->cp_events_lo = (u32)mddev->events;
1517 		if (mddev->recovery_cp == MaxSector)
1518 			sb->state = (1<< MD_SB_CLEAN);
1519 	} else
1520 		sb->recovery_cp = 0;
1521 
1522 	sb->layout = mddev->layout;
1523 	sb->chunk_size = mddev->chunk_sectors << 9;
1524 
1525 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1526 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1527 
1528 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1529 	rdev_for_each(rdev2, mddev) {
1530 		mdp_disk_t *d;
1531 		int desc_nr;
1532 		int is_active = test_bit(In_sync, &rdev2->flags);
1533 
1534 		if (rdev2->raid_disk >= 0 &&
1535 		    sb->minor_version >= 91)
1536 			/* we have nowhere to store the recovery_offset,
1537 			 * but if it is not below the reshape_position,
1538 			 * we can piggy-back on that.
1539 			 */
1540 			is_active = 1;
1541 		if (rdev2->raid_disk < 0 ||
1542 		    test_bit(Faulty, &rdev2->flags))
1543 			is_active = 0;
1544 		if (is_active)
1545 			desc_nr = rdev2->raid_disk;
1546 		else
1547 			desc_nr = next_spare++;
1548 		rdev2->desc_nr = desc_nr;
1549 		d = &sb->disks[rdev2->desc_nr];
1550 		nr_disks++;
1551 		d->number = rdev2->desc_nr;
1552 		d->major = MAJOR(rdev2->bdev->bd_dev);
1553 		d->minor = MINOR(rdev2->bdev->bd_dev);
1554 		if (is_active)
1555 			d->raid_disk = rdev2->raid_disk;
1556 		else
1557 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1558 		if (test_bit(Faulty, &rdev2->flags))
1559 			d->state = (1<<MD_DISK_FAULTY);
1560 		else if (is_active) {
1561 			d->state = (1<<MD_DISK_ACTIVE);
1562 			if (test_bit(In_sync, &rdev2->flags))
1563 				d->state |= (1<<MD_DISK_SYNC);
1564 			active++;
1565 			working++;
1566 		} else {
1567 			d->state = 0;
1568 			spare++;
1569 			working++;
1570 		}
1571 		if (test_bit(WriteMostly, &rdev2->flags))
1572 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1573 		if (test_bit(FailFast, &rdev2->flags))
1574 			d->state |= (1<<MD_DISK_FAILFAST);
1575 	}
1576 	/* now set the "removed" and "faulty" bits on any missing devices */
1577 	for (i=0 ; i < mddev->raid_disks ; i++) {
1578 		mdp_disk_t *d = &sb->disks[i];
1579 		if (d->state == 0 && d->number == 0) {
1580 			d->number = i;
1581 			d->raid_disk = i;
1582 			d->state = (1<<MD_DISK_REMOVED);
1583 			d->state |= (1<<MD_DISK_FAULTY);
1584 			failed++;
1585 		}
1586 	}
1587 	sb->nr_disks = nr_disks;
1588 	sb->active_disks = active;
1589 	sb->working_disks = working;
1590 	sb->failed_disks = failed;
1591 	sb->spare_disks = spare;
1592 
1593 	sb->this_disk = sb->disks[rdev->desc_nr];
1594 	sb->sb_csum = calc_sb_csum(sb);
1595 }
1596 
1597 /*
1598  * rdev_size_change for 0.90.0
1599  */
1600 static unsigned long long
1601 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1602 {
1603 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1604 		return 0; /* component must fit device */
1605 	if (rdev->mddev->bitmap_info.offset)
1606 		return 0; /* can't move bitmap */
1607 	rdev->sb_start = calc_dev_sboffset(rdev);
1608 	if (!num_sectors || num_sectors > rdev->sb_start)
1609 		num_sectors = rdev->sb_start;
1610 	/* Limit to 4TB as metadata cannot record more than that.
1611 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1612 	 */
1613 	if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1614 		num_sectors = (sector_t)(2ULL << 32) - 2;
1615 	do {
1616 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1617 		       rdev->sb_page);
1618 	} while (md_super_wait(rdev->mddev) < 0);
1619 	return num_sectors;
1620 }
1621 
1622 static int
1623 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1624 {
1625 	/* non-zero offset changes not possible with v0.90 */
1626 	return new_offset == 0;
1627 }
1628 
1629 /*
1630  * version 1 superblock
1631  */
1632 
1633 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1634 {
1635 	__le32 disk_csum;
1636 	u32 csum;
1637 	unsigned long long newcsum;
1638 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1639 	__le32 *isuper = (__le32*)sb;
1640 
1641 	disk_csum = sb->sb_csum;
1642 	sb->sb_csum = 0;
1643 	newcsum = 0;
1644 	for (; size >= 4; size -= 4)
1645 		newcsum += le32_to_cpu(*isuper++);
1646 
1647 	if (size == 2)
1648 		newcsum += le16_to_cpu(*(__le16*) isuper);
1649 
1650 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1651 	sb->sb_csum = disk_csum;
1652 	return cpu_to_le32(csum);
1653 }
1654 
1655 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1656 {
1657 	struct mdp_superblock_1 *sb;
1658 	int ret;
1659 	sector_t sb_start;
1660 	sector_t sectors;
1661 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1662 	int bmask;
1663 	bool spare_disk = true;
1664 
1665 	/*
1666 	 * Calculate the position of the superblock in 512byte sectors.
1667 	 * It is always aligned to a 4K boundary and
1668 	 * depeding on minor_version, it can be:
1669 	 * 0: At least 8K, but less than 12K, from end of device
1670 	 * 1: At start of device
1671 	 * 2: 4K from start of device.
1672 	 */
1673 	switch(minor_version) {
1674 	case 0:
1675 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1676 		sb_start -= 8*2;
1677 		sb_start &= ~(sector_t)(4*2-1);
1678 		break;
1679 	case 1:
1680 		sb_start = 0;
1681 		break;
1682 	case 2:
1683 		sb_start = 8;
1684 		break;
1685 	default:
1686 		return -EINVAL;
1687 	}
1688 	rdev->sb_start = sb_start;
1689 
1690 	/* superblock is rarely larger than 1K, but it can be larger,
1691 	 * and it is safe to read 4k, so we do that
1692 	 */
1693 	ret = read_disk_sb(rdev, 4096);
1694 	if (ret) return ret;
1695 
1696 	sb = page_address(rdev->sb_page);
1697 
1698 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1699 	    sb->major_version != cpu_to_le32(1) ||
1700 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1701 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1702 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1703 		return -EINVAL;
1704 
1705 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1706 		pr_warn("md: invalid superblock checksum on %s\n",
1707 			bdevname(rdev->bdev,b));
1708 		return -EINVAL;
1709 	}
1710 	if (le64_to_cpu(sb->data_size) < 10) {
1711 		pr_warn("md: data_size too small on %s\n",
1712 			bdevname(rdev->bdev,b));
1713 		return -EINVAL;
1714 	}
1715 	if (sb->pad0 ||
1716 	    sb->pad3[0] ||
1717 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1718 		/* Some padding is non-zero, might be a new feature */
1719 		return -EINVAL;
1720 
1721 	rdev->preferred_minor = 0xffff;
1722 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1723 	rdev->new_data_offset = rdev->data_offset;
1724 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1725 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1726 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1727 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1728 
1729 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1730 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1731 	if (rdev->sb_size & bmask)
1732 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1733 
1734 	if (minor_version
1735 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1736 		return -EINVAL;
1737 	if (minor_version
1738 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1739 		return -EINVAL;
1740 
1741 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1742 		rdev->desc_nr = -1;
1743 	else
1744 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1745 
1746 	if (!rdev->bb_page) {
1747 		rdev->bb_page = alloc_page(GFP_KERNEL);
1748 		if (!rdev->bb_page)
1749 			return -ENOMEM;
1750 	}
1751 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1752 	    rdev->badblocks.count == 0) {
1753 		/* need to load the bad block list.
1754 		 * Currently we limit it to one page.
1755 		 */
1756 		s32 offset;
1757 		sector_t bb_sector;
1758 		__le64 *bbp;
1759 		int i;
1760 		int sectors = le16_to_cpu(sb->bblog_size);
1761 		if (sectors > (PAGE_SIZE / 512))
1762 			return -EINVAL;
1763 		offset = le32_to_cpu(sb->bblog_offset);
1764 		if (offset == 0)
1765 			return -EINVAL;
1766 		bb_sector = (long long)offset;
1767 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1768 				  rdev->bb_page, REQ_OP_READ, 0, true))
1769 			return -EIO;
1770 		bbp = (__le64 *)page_address(rdev->bb_page);
1771 		rdev->badblocks.shift = sb->bblog_shift;
1772 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1773 			u64 bb = le64_to_cpu(*bbp);
1774 			int count = bb & (0x3ff);
1775 			u64 sector = bb >> 10;
1776 			sector <<= sb->bblog_shift;
1777 			count <<= sb->bblog_shift;
1778 			if (bb + 1 == 0)
1779 				break;
1780 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1781 				return -EINVAL;
1782 		}
1783 	} else if (sb->bblog_offset != 0)
1784 		rdev->badblocks.shift = 0;
1785 
1786 	if ((le32_to_cpu(sb->feature_map) &
1787 	    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1788 		rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1789 		rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1790 		rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1791 	}
1792 
1793 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1794 	    sb->level != 0)
1795 		return -EINVAL;
1796 
1797 	/* not spare disk, or LEVEL_MULTIPATH */
1798 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1799 		(rdev->desc_nr >= 0 &&
1800 		rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1801 		(le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1802 		 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1803 		spare_disk = false;
1804 
1805 	if (!refdev) {
1806 		if (!spare_disk)
1807 			ret = 1;
1808 		else
1809 			ret = 0;
1810 	} else {
1811 		__u64 ev1, ev2;
1812 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1813 
1814 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1815 		    sb->level != refsb->level ||
1816 		    sb->layout != refsb->layout ||
1817 		    sb->chunksize != refsb->chunksize) {
1818 			pr_warn("md: %s has strangely different superblock to %s\n",
1819 				bdevname(rdev->bdev,b),
1820 				bdevname(refdev->bdev,b2));
1821 			return -EINVAL;
1822 		}
1823 		ev1 = le64_to_cpu(sb->events);
1824 		ev2 = le64_to_cpu(refsb->events);
1825 
1826 		if (!spare_disk && ev1 > ev2)
1827 			ret = 1;
1828 		else
1829 			ret = 0;
1830 	}
1831 	if (minor_version) {
1832 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1833 		sectors -= rdev->data_offset;
1834 	} else
1835 		sectors = rdev->sb_start;
1836 	if (sectors < le64_to_cpu(sb->data_size))
1837 		return -EINVAL;
1838 	rdev->sectors = le64_to_cpu(sb->data_size);
1839 	return ret;
1840 }
1841 
1842 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1843 {
1844 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1845 	__u64 ev1 = le64_to_cpu(sb->events);
1846 
1847 	rdev->raid_disk = -1;
1848 	clear_bit(Faulty, &rdev->flags);
1849 	clear_bit(In_sync, &rdev->flags);
1850 	clear_bit(Bitmap_sync, &rdev->flags);
1851 	clear_bit(WriteMostly, &rdev->flags);
1852 
1853 	if (mddev->raid_disks == 0) {
1854 		mddev->major_version = 1;
1855 		mddev->patch_version = 0;
1856 		mddev->external = 0;
1857 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1858 		mddev->ctime = le64_to_cpu(sb->ctime);
1859 		mddev->utime = le64_to_cpu(sb->utime);
1860 		mddev->level = le32_to_cpu(sb->level);
1861 		mddev->clevel[0] = 0;
1862 		mddev->layout = le32_to_cpu(sb->layout);
1863 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1864 		mddev->dev_sectors = le64_to_cpu(sb->size);
1865 		mddev->events = ev1;
1866 		mddev->bitmap_info.offset = 0;
1867 		mddev->bitmap_info.space = 0;
1868 		/* Default location for bitmap is 1K after superblock
1869 		 * using 3K - total of 4K
1870 		 */
1871 		mddev->bitmap_info.default_offset = 1024 >> 9;
1872 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1873 		mddev->reshape_backwards = 0;
1874 
1875 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1876 		memcpy(mddev->uuid, sb->set_uuid, 16);
1877 
1878 		mddev->max_disks =  (4096-256)/2;
1879 
1880 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1881 		    mddev->bitmap_info.file == NULL) {
1882 			mddev->bitmap_info.offset =
1883 				(__s32)le32_to_cpu(sb->bitmap_offset);
1884 			/* Metadata doesn't record how much space is available.
1885 			 * For 1.0, we assume we can use up to the superblock
1886 			 * if before, else to 4K beyond superblock.
1887 			 * For others, assume no change is possible.
1888 			 */
1889 			if (mddev->minor_version > 0)
1890 				mddev->bitmap_info.space = 0;
1891 			else if (mddev->bitmap_info.offset > 0)
1892 				mddev->bitmap_info.space =
1893 					8 - mddev->bitmap_info.offset;
1894 			else
1895 				mddev->bitmap_info.space =
1896 					-mddev->bitmap_info.offset;
1897 		}
1898 
1899 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1900 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1901 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1902 			mddev->new_level = le32_to_cpu(sb->new_level);
1903 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1904 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1905 			if (mddev->delta_disks < 0 ||
1906 			    (mddev->delta_disks == 0 &&
1907 			     (le32_to_cpu(sb->feature_map)
1908 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1909 				mddev->reshape_backwards = 1;
1910 		} else {
1911 			mddev->reshape_position = MaxSector;
1912 			mddev->delta_disks = 0;
1913 			mddev->new_level = mddev->level;
1914 			mddev->new_layout = mddev->layout;
1915 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1916 		}
1917 
1918 		if (mddev->level == 0 &&
1919 		    !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1920 			mddev->layout = -1;
1921 
1922 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1923 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1924 
1925 		if (le32_to_cpu(sb->feature_map) &
1926 		    (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1927 			if (le32_to_cpu(sb->feature_map) &
1928 			    (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1929 				return -EINVAL;
1930 			if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1931 			    (le32_to_cpu(sb->feature_map) &
1932 					    MD_FEATURE_MULTIPLE_PPLS))
1933 				return -EINVAL;
1934 			set_bit(MD_HAS_PPL, &mddev->flags);
1935 		}
1936 	} else if (mddev->pers == NULL) {
1937 		/* Insist of good event counter while assembling, except for
1938 		 * spares (which don't need an event count) */
1939 		++ev1;
1940 		if (rdev->desc_nr >= 0 &&
1941 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1942 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1943 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1944 			if (ev1 < mddev->events)
1945 				return -EINVAL;
1946 	} else if (mddev->bitmap) {
1947 		/* If adding to array with a bitmap, then we can accept an
1948 		 * older device, but not too old.
1949 		 */
1950 		if (ev1 < mddev->bitmap->events_cleared)
1951 			return 0;
1952 		if (ev1 < mddev->events)
1953 			set_bit(Bitmap_sync, &rdev->flags);
1954 	} else {
1955 		if (ev1 < mddev->events)
1956 			/* just a hot-add of a new device, leave raid_disk at -1 */
1957 			return 0;
1958 	}
1959 	if (mddev->level != LEVEL_MULTIPATH) {
1960 		int role;
1961 		if (rdev->desc_nr < 0 ||
1962 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1963 			role = MD_DISK_ROLE_SPARE;
1964 			rdev->desc_nr = -1;
1965 		} else
1966 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1967 		switch(role) {
1968 		case MD_DISK_ROLE_SPARE: /* spare */
1969 			break;
1970 		case MD_DISK_ROLE_FAULTY: /* faulty */
1971 			set_bit(Faulty, &rdev->flags);
1972 			break;
1973 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1974 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1975 				/* journal device without journal feature */
1976 				pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1977 				return -EINVAL;
1978 			}
1979 			set_bit(Journal, &rdev->flags);
1980 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1981 			rdev->raid_disk = 0;
1982 			break;
1983 		default:
1984 			rdev->saved_raid_disk = role;
1985 			if ((le32_to_cpu(sb->feature_map) &
1986 			     MD_FEATURE_RECOVERY_OFFSET)) {
1987 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1988 				if (!(le32_to_cpu(sb->feature_map) &
1989 				      MD_FEATURE_RECOVERY_BITMAP))
1990 					rdev->saved_raid_disk = -1;
1991 			} else {
1992 				/*
1993 				 * If the array is FROZEN, then the device can't
1994 				 * be in_sync with rest of array.
1995 				 */
1996 				if (!test_bit(MD_RECOVERY_FROZEN,
1997 					      &mddev->recovery))
1998 					set_bit(In_sync, &rdev->flags);
1999 			}
2000 			rdev->raid_disk = role;
2001 			break;
2002 		}
2003 		if (sb->devflags & WriteMostly1)
2004 			set_bit(WriteMostly, &rdev->flags);
2005 		if (sb->devflags & FailFast1)
2006 			set_bit(FailFast, &rdev->flags);
2007 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2008 			set_bit(Replacement, &rdev->flags);
2009 	} else /* MULTIPATH are always insync */
2010 		set_bit(In_sync, &rdev->flags);
2011 
2012 	return 0;
2013 }
2014 
2015 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2016 {
2017 	struct mdp_superblock_1 *sb;
2018 	struct md_rdev *rdev2;
2019 	int max_dev, i;
2020 	/* make rdev->sb match mddev and rdev data. */
2021 
2022 	sb = page_address(rdev->sb_page);
2023 
2024 	sb->feature_map = 0;
2025 	sb->pad0 = 0;
2026 	sb->recovery_offset = cpu_to_le64(0);
2027 	memset(sb->pad3, 0, sizeof(sb->pad3));
2028 
2029 	sb->utime = cpu_to_le64((__u64)mddev->utime);
2030 	sb->events = cpu_to_le64(mddev->events);
2031 	if (mddev->in_sync)
2032 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2033 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2034 		sb->resync_offset = cpu_to_le64(MaxSector);
2035 	else
2036 		sb->resync_offset = cpu_to_le64(0);
2037 
2038 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2039 
2040 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2041 	sb->size = cpu_to_le64(mddev->dev_sectors);
2042 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2043 	sb->level = cpu_to_le32(mddev->level);
2044 	sb->layout = cpu_to_le32(mddev->layout);
2045 	if (test_bit(FailFast, &rdev->flags))
2046 		sb->devflags |= FailFast1;
2047 	else
2048 		sb->devflags &= ~FailFast1;
2049 
2050 	if (test_bit(WriteMostly, &rdev->flags))
2051 		sb->devflags |= WriteMostly1;
2052 	else
2053 		sb->devflags &= ~WriteMostly1;
2054 	sb->data_offset = cpu_to_le64(rdev->data_offset);
2055 	sb->data_size = cpu_to_le64(rdev->sectors);
2056 
2057 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2058 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2059 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2060 	}
2061 
2062 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2063 	    !test_bit(In_sync, &rdev->flags)) {
2064 		sb->feature_map |=
2065 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2066 		sb->recovery_offset =
2067 			cpu_to_le64(rdev->recovery_offset);
2068 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2069 			sb->feature_map |=
2070 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2071 	}
2072 	/* Note: recovery_offset and journal_tail share space  */
2073 	if (test_bit(Journal, &rdev->flags))
2074 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2075 	if (test_bit(Replacement, &rdev->flags))
2076 		sb->feature_map |=
2077 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
2078 
2079 	if (mddev->reshape_position != MaxSector) {
2080 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2081 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2082 		sb->new_layout = cpu_to_le32(mddev->new_layout);
2083 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2084 		sb->new_level = cpu_to_le32(mddev->new_level);
2085 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2086 		if (mddev->delta_disks == 0 &&
2087 		    mddev->reshape_backwards)
2088 			sb->feature_map
2089 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2090 		if (rdev->new_data_offset != rdev->data_offset) {
2091 			sb->feature_map
2092 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2093 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2094 							     - rdev->data_offset));
2095 		}
2096 	}
2097 
2098 	if (mddev_is_clustered(mddev))
2099 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2100 
2101 	if (rdev->badblocks.count == 0)
2102 		/* Nothing to do for bad blocks*/ ;
2103 	else if (sb->bblog_offset == 0)
2104 		/* Cannot record bad blocks on this device */
2105 		md_error(mddev, rdev);
2106 	else {
2107 		struct badblocks *bb = &rdev->badblocks;
2108 		__le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2109 		u64 *p = bb->page;
2110 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2111 		if (bb->changed) {
2112 			unsigned seq;
2113 
2114 retry:
2115 			seq = read_seqbegin(&bb->lock);
2116 
2117 			memset(bbp, 0xff, PAGE_SIZE);
2118 
2119 			for (i = 0 ; i < bb->count ; i++) {
2120 				u64 internal_bb = p[i];
2121 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2122 						| BB_LEN(internal_bb));
2123 				bbp[i] = cpu_to_le64(store_bb);
2124 			}
2125 			bb->changed = 0;
2126 			if (read_seqretry(&bb->lock, seq))
2127 				goto retry;
2128 
2129 			bb->sector = (rdev->sb_start +
2130 				      (int)le32_to_cpu(sb->bblog_offset));
2131 			bb->size = le16_to_cpu(sb->bblog_size);
2132 		}
2133 	}
2134 
2135 	max_dev = 0;
2136 	rdev_for_each(rdev2, mddev)
2137 		if (rdev2->desc_nr+1 > max_dev)
2138 			max_dev = rdev2->desc_nr+1;
2139 
2140 	if (max_dev > le32_to_cpu(sb->max_dev)) {
2141 		int bmask;
2142 		sb->max_dev = cpu_to_le32(max_dev);
2143 		rdev->sb_size = max_dev * 2 + 256;
2144 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2145 		if (rdev->sb_size & bmask)
2146 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
2147 	} else
2148 		max_dev = le32_to_cpu(sb->max_dev);
2149 
2150 	for (i=0; i<max_dev;i++)
2151 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2152 
2153 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2154 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2155 
2156 	if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2157 		if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2158 			sb->feature_map |=
2159 			    cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2160 		else
2161 			sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2162 		sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2163 		sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2164 	}
2165 
2166 	rdev_for_each(rdev2, mddev) {
2167 		i = rdev2->desc_nr;
2168 		if (test_bit(Faulty, &rdev2->flags))
2169 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2170 		else if (test_bit(In_sync, &rdev2->flags))
2171 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2172 		else if (test_bit(Journal, &rdev2->flags))
2173 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2174 		else if (rdev2->raid_disk >= 0)
2175 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2176 		else
2177 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2178 	}
2179 
2180 	sb->sb_csum = calc_sb_1_csum(sb);
2181 }
2182 
2183 static sector_t super_1_choose_bm_space(sector_t dev_size)
2184 {
2185 	sector_t bm_space;
2186 
2187 	/* if the device is bigger than 8Gig, save 64k for bitmap
2188 	 * usage, if bigger than 200Gig, save 128k
2189 	 */
2190 	if (dev_size < 64*2)
2191 		bm_space = 0;
2192 	else if (dev_size - 64*2 >= 200*1024*1024*2)
2193 		bm_space = 128*2;
2194 	else if (dev_size - 4*2 > 8*1024*1024*2)
2195 		bm_space = 64*2;
2196 	else
2197 		bm_space = 4*2;
2198 	return bm_space;
2199 }
2200 
2201 static unsigned long long
2202 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2203 {
2204 	struct mdp_superblock_1 *sb;
2205 	sector_t max_sectors;
2206 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2207 		return 0; /* component must fit device */
2208 	if (rdev->data_offset != rdev->new_data_offset)
2209 		return 0; /* too confusing */
2210 	if (rdev->sb_start < rdev->data_offset) {
2211 		/* minor versions 1 and 2; superblock before data */
2212 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2213 		max_sectors -= rdev->data_offset;
2214 		if (!num_sectors || num_sectors > max_sectors)
2215 			num_sectors = max_sectors;
2216 	} else if (rdev->mddev->bitmap_info.offset) {
2217 		/* minor version 0 with bitmap we can't move */
2218 		return 0;
2219 	} else {
2220 		/* minor version 0; superblock after data */
2221 		sector_t sb_start, bm_space;
2222 		sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2223 
2224 		/* 8K is for superblock */
2225 		sb_start = dev_size - 8*2;
2226 		sb_start &= ~(sector_t)(4*2 - 1);
2227 
2228 		bm_space = super_1_choose_bm_space(dev_size);
2229 
2230 		/* Space that can be used to store date needs to decrease
2231 		 * superblock bitmap space and bad block space(4K)
2232 		 */
2233 		max_sectors = sb_start - bm_space - 4*2;
2234 
2235 		if (!num_sectors || num_sectors > max_sectors)
2236 			num_sectors = max_sectors;
2237 	}
2238 	sb = page_address(rdev->sb_page);
2239 	sb->data_size = cpu_to_le64(num_sectors);
2240 	sb->super_offset = cpu_to_le64(rdev->sb_start);
2241 	sb->sb_csum = calc_sb_1_csum(sb);
2242 	do {
2243 		md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2244 			       rdev->sb_page);
2245 	} while (md_super_wait(rdev->mddev) < 0);
2246 	return num_sectors;
2247 
2248 }
2249 
2250 static int
2251 super_1_allow_new_offset(struct md_rdev *rdev,
2252 			 unsigned long long new_offset)
2253 {
2254 	/* All necessary checks on new >= old have been done */
2255 	struct bitmap *bitmap;
2256 	if (new_offset >= rdev->data_offset)
2257 		return 1;
2258 
2259 	/* with 1.0 metadata, there is no metadata to tread on
2260 	 * so we can always move back */
2261 	if (rdev->mddev->minor_version == 0)
2262 		return 1;
2263 
2264 	/* otherwise we must be sure not to step on
2265 	 * any metadata, so stay:
2266 	 * 36K beyond start of superblock
2267 	 * beyond end of badblocks
2268 	 * beyond write-intent bitmap
2269 	 */
2270 	if (rdev->sb_start + (32+4)*2 > new_offset)
2271 		return 0;
2272 	bitmap = rdev->mddev->bitmap;
2273 	if (bitmap && !rdev->mddev->bitmap_info.file &&
2274 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
2275 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2276 		return 0;
2277 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2278 		return 0;
2279 
2280 	return 1;
2281 }
2282 
2283 static struct super_type super_types[] = {
2284 	[0] = {
2285 		.name	= "0.90.0",
2286 		.owner	= THIS_MODULE,
2287 		.load_super	    = super_90_load,
2288 		.validate_super	    = super_90_validate,
2289 		.sync_super	    = super_90_sync,
2290 		.rdev_size_change   = super_90_rdev_size_change,
2291 		.allow_new_offset   = super_90_allow_new_offset,
2292 	},
2293 	[1] = {
2294 		.name	= "md-1",
2295 		.owner	= THIS_MODULE,
2296 		.load_super	    = super_1_load,
2297 		.validate_super	    = super_1_validate,
2298 		.sync_super	    = super_1_sync,
2299 		.rdev_size_change   = super_1_rdev_size_change,
2300 		.allow_new_offset   = super_1_allow_new_offset,
2301 	},
2302 };
2303 
2304 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2305 {
2306 	if (mddev->sync_super) {
2307 		mddev->sync_super(mddev, rdev);
2308 		return;
2309 	}
2310 
2311 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2312 
2313 	super_types[mddev->major_version].sync_super(mddev, rdev);
2314 }
2315 
2316 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2317 {
2318 	struct md_rdev *rdev, *rdev2;
2319 
2320 	rcu_read_lock();
2321 	rdev_for_each_rcu(rdev, mddev1) {
2322 		if (test_bit(Faulty, &rdev->flags) ||
2323 		    test_bit(Journal, &rdev->flags) ||
2324 		    rdev->raid_disk == -1)
2325 			continue;
2326 		rdev_for_each_rcu(rdev2, mddev2) {
2327 			if (test_bit(Faulty, &rdev2->flags) ||
2328 			    test_bit(Journal, &rdev2->flags) ||
2329 			    rdev2->raid_disk == -1)
2330 				continue;
2331 			if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2332 				rcu_read_unlock();
2333 				return 1;
2334 			}
2335 		}
2336 	}
2337 	rcu_read_unlock();
2338 	return 0;
2339 }
2340 
2341 static LIST_HEAD(pending_raid_disks);
2342 
2343 /*
2344  * Try to register data integrity profile for an mddev
2345  *
2346  * This is called when an array is started and after a disk has been kicked
2347  * from the array. It only succeeds if all working and active component devices
2348  * are integrity capable with matching profiles.
2349  */
2350 int md_integrity_register(struct mddev *mddev)
2351 {
2352 	struct md_rdev *rdev, *reference = NULL;
2353 
2354 	if (list_empty(&mddev->disks))
2355 		return 0; /* nothing to do */
2356 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2357 		return 0; /* shouldn't register, or already is */
2358 	rdev_for_each(rdev, mddev) {
2359 		/* skip spares and non-functional disks */
2360 		if (test_bit(Faulty, &rdev->flags))
2361 			continue;
2362 		if (rdev->raid_disk < 0)
2363 			continue;
2364 		if (!reference) {
2365 			/* Use the first rdev as the reference */
2366 			reference = rdev;
2367 			continue;
2368 		}
2369 		/* does this rdev's profile match the reference profile? */
2370 		if (blk_integrity_compare(reference->bdev->bd_disk,
2371 				rdev->bdev->bd_disk) < 0)
2372 			return -EINVAL;
2373 	}
2374 	if (!reference || !bdev_get_integrity(reference->bdev))
2375 		return 0;
2376 	/*
2377 	 * All component devices are integrity capable and have matching
2378 	 * profiles, register the common profile for the md device.
2379 	 */
2380 	blk_integrity_register(mddev->gendisk,
2381 			       bdev_get_integrity(reference->bdev));
2382 
2383 	pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2384 	if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2385 		pr_err("md: failed to create integrity pool for %s\n",
2386 		       mdname(mddev));
2387 		return -EINVAL;
2388 	}
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL(md_integrity_register);
2392 
2393 /*
2394  * Attempt to add an rdev, but only if it is consistent with the current
2395  * integrity profile
2396  */
2397 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2398 {
2399 	struct blk_integrity *bi_mddev;
2400 	char name[BDEVNAME_SIZE];
2401 
2402 	if (!mddev->gendisk)
2403 		return 0;
2404 
2405 	bi_mddev = blk_get_integrity(mddev->gendisk);
2406 
2407 	if (!bi_mddev) /* nothing to do */
2408 		return 0;
2409 
2410 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2411 		pr_err("%s: incompatible integrity profile for %s\n",
2412 		       mdname(mddev), bdevname(rdev->bdev, name));
2413 		return -ENXIO;
2414 	}
2415 
2416 	return 0;
2417 }
2418 EXPORT_SYMBOL(md_integrity_add_rdev);
2419 
2420 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2421 {
2422 	char b[BDEVNAME_SIZE];
2423 	int err;
2424 
2425 	/* prevent duplicates */
2426 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2427 		return -EEXIST;
2428 
2429 	if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2430 	    mddev->pers)
2431 		return -EROFS;
2432 
2433 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2434 	if (!test_bit(Journal, &rdev->flags) &&
2435 	    rdev->sectors &&
2436 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2437 		if (mddev->pers) {
2438 			/* Cannot change size, so fail
2439 			 * If mddev->level <= 0, then we don't care
2440 			 * about aligning sizes (e.g. linear)
2441 			 */
2442 			if (mddev->level > 0)
2443 				return -ENOSPC;
2444 		} else
2445 			mddev->dev_sectors = rdev->sectors;
2446 	}
2447 
2448 	/* Verify rdev->desc_nr is unique.
2449 	 * If it is -1, assign a free number, else
2450 	 * check number is not in use
2451 	 */
2452 	rcu_read_lock();
2453 	if (rdev->desc_nr < 0) {
2454 		int choice = 0;
2455 		if (mddev->pers)
2456 			choice = mddev->raid_disks;
2457 		while (md_find_rdev_nr_rcu(mddev, choice))
2458 			choice++;
2459 		rdev->desc_nr = choice;
2460 	} else {
2461 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2462 			rcu_read_unlock();
2463 			return -EBUSY;
2464 		}
2465 	}
2466 	rcu_read_unlock();
2467 	if (!test_bit(Journal, &rdev->flags) &&
2468 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2469 		pr_warn("md: %s: array is limited to %d devices\n",
2470 			mdname(mddev), mddev->max_disks);
2471 		return -EBUSY;
2472 	}
2473 	bdevname(rdev->bdev,b);
2474 	strreplace(b, '/', '!');
2475 
2476 	rdev->mddev = mddev;
2477 	pr_debug("md: bind<%s>\n", b);
2478 
2479 	if (mddev->raid_disks)
2480 		mddev_create_serial_pool(mddev, rdev, false);
2481 
2482 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2483 		goto fail;
2484 
2485 	/* failure here is OK */
2486 	err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2487 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2488 	rdev->sysfs_unack_badblocks =
2489 		sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2490 	rdev->sysfs_badblocks =
2491 		sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2492 
2493 	list_add_rcu(&rdev->same_set, &mddev->disks);
2494 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2495 
2496 	/* May as well allow recovery to be retried once */
2497 	mddev->recovery_disabled++;
2498 
2499 	return 0;
2500 
2501  fail:
2502 	pr_warn("md: failed to register dev-%s for %s\n",
2503 		b, mdname(mddev));
2504 	return err;
2505 }
2506 
2507 static void rdev_delayed_delete(struct work_struct *ws)
2508 {
2509 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2510 	kobject_del(&rdev->kobj);
2511 	kobject_put(&rdev->kobj);
2512 }
2513 
2514 static void unbind_rdev_from_array(struct md_rdev *rdev)
2515 {
2516 	char b[BDEVNAME_SIZE];
2517 
2518 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2519 	list_del_rcu(&rdev->same_set);
2520 	pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2521 	mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2522 	rdev->mddev = NULL;
2523 	sysfs_remove_link(&rdev->kobj, "block");
2524 	sysfs_put(rdev->sysfs_state);
2525 	sysfs_put(rdev->sysfs_unack_badblocks);
2526 	sysfs_put(rdev->sysfs_badblocks);
2527 	rdev->sysfs_state = NULL;
2528 	rdev->sysfs_unack_badblocks = NULL;
2529 	rdev->sysfs_badblocks = NULL;
2530 	rdev->badblocks.count = 0;
2531 	/* We need to delay this, otherwise we can deadlock when
2532 	 * writing to 'remove' to "dev/state".  We also need
2533 	 * to delay it due to rcu usage.
2534 	 */
2535 	synchronize_rcu();
2536 	INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2537 	kobject_get(&rdev->kobj);
2538 	queue_work(md_rdev_misc_wq, &rdev->del_work);
2539 }
2540 
2541 /*
2542  * prevent the device from being mounted, repartitioned or
2543  * otherwise reused by a RAID array (or any other kernel
2544  * subsystem), by bd_claiming the device.
2545  */
2546 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2547 {
2548 	int err = 0;
2549 	struct block_device *bdev;
2550 
2551 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2552 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2553 	if (IS_ERR(bdev)) {
2554 		pr_warn("md: could not open device unknown-block(%u,%u).\n",
2555 			MAJOR(dev), MINOR(dev));
2556 		return PTR_ERR(bdev);
2557 	}
2558 	rdev->bdev = bdev;
2559 	return err;
2560 }
2561 
2562 static void unlock_rdev(struct md_rdev *rdev)
2563 {
2564 	struct block_device *bdev = rdev->bdev;
2565 	rdev->bdev = NULL;
2566 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2567 }
2568 
2569 void md_autodetect_dev(dev_t dev);
2570 
2571 static void export_rdev(struct md_rdev *rdev)
2572 {
2573 	char b[BDEVNAME_SIZE];
2574 
2575 	pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2576 	md_rdev_clear(rdev);
2577 #ifndef MODULE
2578 	if (test_bit(AutoDetected, &rdev->flags))
2579 		md_autodetect_dev(rdev->bdev->bd_dev);
2580 #endif
2581 	unlock_rdev(rdev);
2582 	kobject_put(&rdev->kobj);
2583 }
2584 
2585 void md_kick_rdev_from_array(struct md_rdev *rdev)
2586 {
2587 	unbind_rdev_from_array(rdev);
2588 	export_rdev(rdev);
2589 }
2590 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2591 
2592 static void export_array(struct mddev *mddev)
2593 {
2594 	struct md_rdev *rdev;
2595 
2596 	while (!list_empty(&mddev->disks)) {
2597 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2598 					same_set);
2599 		md_kick_rdev_from_array(rdev);
2600 	}
2601 	mddev->raid_disks = 0;
2602 	mddev->major_version = 0;
2603 }
2604 
2605 static bool set_in_sync(struct mddev *mddev)
2606 {
2607 	lockdep_assert_held(&mddev->lock);
2608 	if (!mddev->in_sync) {
2609 		mddev->sync_checkers++;
2610 		spin_unlock(&mddev->lock);
2611 		percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2612 		spin_lock(&mddev->lock);
2613 		if (!mddev->in_sync &&
2614 		    percpu_ref_is_zero(&mddev->writes_pending)) {
2615 			mddev->in_sync = 1;
2616 			/*
2617 			 * Ensure ->in_sync is visible before we clear
2618 			 * ->sync_checkers.
2619 			 */
2620 			smp_mb();
2621 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2622 			sysfs_notify_dirent_safe(mddev->sysfs_state);
2623 		}
2624 		if (--mddev->sync_checkers == 0)
2625 			percpu_ref_switch_to_percpu(&mddev->writes_pending);
2626 	}
2627 	if (mddev->safemode == 1)
2628 		mddev->safemode = 0;
2629 	return mddev->in_sync;
2630 }
2631 
2632 static void sync_sbs(struct mddev *mddev, int nospares)
2633 {
2634 	/* Update each superblock (in-memory image), but
2635 	 * if we are allowed to, skip spares which already
2636 	 * have the right event counter, or have one earlier
2637 	 * (which would mean they aren't being marked as dirty
2638 	 * with the rest of the array)
2639 	 */
2640 	struct md_rdev *rdev;
2641 	rdev_for_each(rdev, mddev) {
2642 		if (rdev->sb_events == mddev->events ||
2643 		    (nospares &&
2644 		     rdev->raid_disk < 0 &&
2645 		     rdev->sb_events+1 == mddev->events)) {
2646 			/* Don't update this superblock */
2647 			rdev->sb_loaded = 2;
2648 		} else {
2649 			sync_super(mddev, rdev);
2650 			rdev->sb_loaded = 1;
2651 		}
2652 	}
2653 }
2654 
2655 static bool does_sb_need_changing(struct mddev *mddev)
2656 {
2657 	struct md_rdev *rdev;
2658 	struct mdp_superblock_1 *sb;
2659 	int role;
2660 
2661 	/* Find a good rdev */
2662 	rdev_for_each(rdev, mddev)
2663 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2664 			break;
2665 
2666 	/* No good device found. */
2667 	if (!rdev)
2668 		return false;
2669 
2670 	sb = page_address(rdev->sb_page);
2671 	/* Check if a device has become faulty or a spare become active */
2672 	rdev_for_each(rdev, mddev) {
2673 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2674 		/* Device activated? */
2675 		if (role == 0xffff && rdev->raid_disk >=0 &&
2676 		    !test_bit(Faulty, &rdev->flags))
2677 			return true;
2678 		/* Device turned faulty? */
2679 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2680 			return true;
2681 	}
2682 
2683 	/* Check if any mddev parameters have changed */
2684 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2685 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2686 	    (mddev->layout != le32_to_cpu(sb->layout)) ||
2687 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2688 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2689 		return true;
2690 
2691 	return false;
2692 }
2693 
2694 void md_update_sb(struct mddev *mddev, int force_change)
2695 {
2696 	struct md_rdev *rdev;
2697 	int sync_req;
2698 	int nospares = 0;
2699 	int any_badblocks_changed = 0;
2700 	int ret = -1;
2701 
2702 	if (mddev->ro) {
2703 		if (force_change)
2704 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2705 		return;
2706 	}
2707 
2708 repeat:
2709 	if (mddev_is_clustered(mddev)) {
2710 		if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2711 			force_change = 1;
2712 		if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2713 			nospares = 1;
2714 		ret = md_cluster_ops->metadata_update_start(mddev);
2715 		/* Has someone else has updated the sb */
2716 		if (!does_sb_need_changing(mddev)) {
2717 			if (ret == 0)
2718 				md_cluster_ops->metadata_update_cancel(mddev);
2719 			bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2720 							 BIT(MD_SB_CHANGE_DEVS) |
2721 							 BIT(MD_SB_CHANGE_CLEAN));
2722 			return;
2723 		}
2724 	}
2725 
2726 	/*
2727 	 * First make sure individual recovery_offsets are correct
2728 	 * curr_resync_completed can only be used during recovery.
2729 	 * During reshape/resync it might use array-addresses rather
2730 	 * that device addresses.
2731 	 */
2732 	rdev_for_each(rdev, mddev) {
2733 		if (rdev->raid_disk >= 0 &&
2734 		    mddev->delta_disks >= 0 &&
2735 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2736 		    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2737 		    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2738 		    !test_bit(Journal, &rdev->flags) &&
2739 		    !test_bit(In_sync, &rdev->flags) &&
2740 		    mddev->curr_resync_completed > rdev->recovery_offset)
2741 				rdev->recovery_offset = mddev->curr_resync_completed;
2742 
2743 	}
2744 	if (!mddev->persistent) {
2745 		clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2746 		clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2747 		if (!mddev->external) {
2748 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2749 			rdev_for_each(rdev, mddev) {
2750 				if (rdev->badblocks.changed) {
2751 					rdev->badblocks.changed = 0;
2752 					ack_all_badblocks(&rdev->badblocks);
2753 					md_error(mddev, rdev);
2754 				}
2755 				clear_bit(Blocked, &rdev->flags);
2756 				clear_bit(BlockedBadBlocks, &rdev->flags);
2757 				wake_up(&rdev->blocked_wait);
2758 			}
2759 		}
2760 		wake_up(&mddev->sb_wait);
2761 		return;
2762 	}
2763 
2764 	spin_lock(&mddev->lock);
2765 
2766 	mddev->utime = ktime_get_real_seconds();
2767 
2768 	if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2769 		force_change = 1;
2770 	if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2771 		/* just a clean<-> dirty transition, possibly leave spares alone,
2772 		 * though if events isn't the right even/odd, we will have to do
2773 		 * spares after all
2774 		 */
2775 		nospares = 1;
2776 	if (force_change)
2777 		nospares = 0;
2778 	if (mddev->degraded)
2779 		/* If the array is degraded, then skipping spares is both
2780 		 * dangerous and fairly pointless.
2781 		 * Dangerous because a device that was removed from the array
2782 		 * might have a event_count that still looks up-to-date,
2783 		 * so it can be re-added without a resync.
2784 		 * Pointless because if there are any spares to skip,
2785 		 * then a recovery will happen and soon that array won't
2786 		 * be degraded any more and the spare can go back to sleep then.
2787 		 */
2788 		nospares = 0;
2789 
2790 	sync_req = mddev->in_sync;
2791 
2792 	/* If this is just a dirty<->clean transition, and the array is clean
2793 	 * and 'events' is odd, we can roll back to the previous clean state */
2794 	if (nospares
2795 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2796 	    && mddev->can_decrease_events
2797 	    && mddev->events != 1) {
2798 		mddev->events--;
2799 		mddev->can_decrease_events = 0;
2800 	} else {
2801 		/* otherwise we have to go forward and ... */
2802 		mddev->events ++;
2803 		mddev->can_decrease_events = nospares;
2804 	}
2805 
2806 	/*
2807 	 * This 64-bit counter should never wrap.
2808 	 * Either we are in around ~1 trillion A.C., assuming
2809 	 * 1 reboot per second, or we have a bug...
2810 	 */
2811 	WARN_ON(mddev->events == 0);
2812 
2813 	rdev_for_each(rdev, mddev) {
2814 		if (rdev->badblocks.changed)
2815 			any_badblocks_changed++;
2816 		if (test_bit(Faulty, &rdev->flags))
2817 			set_bit(FaultRecorded, &rdev->flags);
2818 	}
2819 
2820 	sync_sbs(mddev, nospares);
2821 	spin_unlock(&mddev->lock);
2822 
2823 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2824 		 mdname(mddev), mddev->in_sync);
2825 
2826 	if (mddev->queue)
2827 		blk_add_trace_msg(mddev->queue, "md md_update_sb");
2828 rewrite:
2829 	md_bitmap_update_sb(mddev->bitmap);
2830 	rdev_for_each(rdev, mddev) {
2831 		char b[BDEVNAME_SIZE];
2832 
2833 		if (rdev->sb_loaded != 1)
2834 			continue; /* no noise on spare devices */
2835 
2836 		if (!test_bit(Faulty, &rdev->flags)) {
2837 			md_super_write(mddev,rdev,
2838 				       rdev->sb_start, rdev->sb_size,
2839 				       rdev->sb_page);
2840 			pr_debug("md: (write) %s's sb offset: %llu\n",
2841 				 bdevname(rdev->bdev, b),
2842 				 (unsigned long long)rdev->sb_start);
2843 			rdev->sb_events = mddev->events;
2844 			if (rdev->badblocks.size) {
2845 				md_super_write(mddev, rdev,
2846 					       rdev->badblocks.sector,
2847 					       rdev->badblocks.size << 9,
2848 					       rdev->bb_page);
2849 				rdev->badblocks.size = 0;
2850 			}
2851 
2852 		} else
2853 			pr_debug("md: %s (skipping faulty)\n",
2854 				 bdevname(rdev->bdev, b));
2855 
2856 		if (mddev->level == LEVEL_MULTIPATH)
2857 			/* only need to write one superblock... */
2858 			break;
2859 	}
2860 	if (md_super_wait(mddev) < 0)
2861 		goto rewrite;
2862 	/* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2863 
2864 	if (mddev_is_clustered(mddev) && ret == 0)
2865 		md_cluster_ops->metadata_update_finish(mddev);
2866 
2867 	if (mddev->in_sync != sync_req ||
2868 	    !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2869 			       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2870 		/* have to write it out again */
2871 		goto repeat;
2872 	wake_up(&mddev->sb_wait);
2873 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2874 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
2875 
2876 	rdev_for_each(rdev, mddev) {
2877 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2878 			clear_bit(Blocked, &rdev->flags);
2879 
2880 		if (any_badblocks_changed)
2881 			ack_all_badblocks(&rdev->badblocks);
2882 		clear_bit(BlockedBadBlocks, &rdev->flags);
2883 		wake_up(&rdev->blocked_wait);
2884 	}
2885 }
2886 EXPORT_SYMBOL(md_update_sb);
2887 
2888 static int add_bound_rdev(struct md_rdev *rdev)
2889 {
2890 	struct mddev *mddev = rdev->mddev;
2891 	int err = 0;
2892 	bool add_journal = test_bit(Journal, &rdev->flags);
2893 
2894 	if (!mddev->pers->hot_remove_disk || add_journal) {
2895 		/* If there is hot_add_disk but no hot_remove_disk
2896 		 * then added disks for geometry changes,
2897 		 * and should be added immediately.
2898 		 */
2899 		super_types[mddev->major_version].
2900 			validate_super(mddev, rdev);
2901 		if (add_journal)
2902 			mddev_suspend(mddev);
2903 		err = mddev->pers->hot_add_disk(mddev, rdev);
2904 		if (add_journal)
2905 			mddev_resume(mddev);
2906 		if (err) {
2907 			md_kick_rdev_from_array(rdev);
2908 			return err;
2909 		}
2910 	}
2911 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2912 
2913 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2914 	if (mddev->degraded)
2915 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2916 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2917 	md_new_event(mddev);
2918 	md_wakeup_thread(mddev->thread);
2919 	return 0;
2920 }
2921 
2922 /* words written to sysfs files may, or may not, be \n terminated.
2923  * We want to accept with case. For this we use cmd_match.
2924  */
2925 static int cmd_match(const char *cmd, const char *str)
2926 {
2927 	/* See if cmd, written into a sysfs file, matches
2928 	 * str.  They must either be the same, or cmd can
2929 	 * have a trailing newline
2930 	 */
2931 	while (*cmd && *str && *cmd == *str) {
2932 		cmd++;
2933 		str++;
2934 	}
2935 	if (*cmd == '\n')
2936 		cmd++;
2937 	if (*str || *cmd)
2938 		return 0;
2939 	return 1;
2940 }
2941 
2942 struct rdev_sysfs_entry {
2943 	struct attribute attr;
2944 	ssize_t (*show)(struct md_rdev *, char *);
2945 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2946 };
2947 
2948 static ssize_t
2949 state_show(struct md_rdev *rdev, char *page)
2950 {
2951 	char *sep = ",";
2952 	size_t len = 0;
2953 	unsigned long flags = READ_ONCE(rdev->flags);
2954 
2955 	if (test_bit(Faulty, &flags) ||
2956 	    (!test_bit(ExternalBbl, &flags) &&
2957 	    rdev->badblocks.unacked_exist))
2958 		len += sprintf(page+len, "faulty%s", sep);
2959 	if (test_bit(In_sync, &flags))
2960 		len += sprintf(page+len, "in_sync%s", sep);
2961 	if (test_bit(Journal, &flags))
2962 		len += sprintf(page+len, "journal%s", sep);
2963 	if (test_bit(WriteMostly, &flags))
2964 		len += sprintf(page+len, "write_mostly%s", sep);
2965 	if (test_bit(Blocked, &flags) ||
2966 	    (rdev->badblocks.unacked_exist
2967 	     && !test_bit(Faulty, &flags)))
2968 		len += sprintf(page+len, "blocked%s", sep);
2969 	if (!test_bit(Faulty, &flags) &&
2970 	    !test_bit(Journal, &flags) &&
2971 	    !test_bit(In_sync, &flags))
2972 		len += sprintf(page+len, "spare%s", sep);
2973 	if (test_bit(WriteErrorSeen, &flags))
2974 		len += sprintf(page+len, "write_error%s", sep);
2975 	if (test_bit(WantReplacement, &flags))
2976 		len += sprintf(page+len, "want_replacement%s", sep);
2977 	if (test_bit(Replacement, &flags))
2978 		len += sprintf(page+len, "replacement%s", sep);
2979 	if (test_bit(ExternalBbl, &flags))
2980 		len += sprintf(page+len, "external_bbl%s", sep);
2981 	if (test_bit(FailFast, &flags))
2982 		len += sprintf(page+len, "failfast%s", sep);
2983 
2984 	if (len)
2985 		len -= strlen(sep);
2986 
2987 	return len+sprintf(page+len, "\n");
2988 }
2989 
2990 static ssize_t
2991 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2992 {
2993 	/* can write
2994 	 *  faulty  - simulates an error
2995 	 *  remove  - disconnects the device
2996 	 *  writemostly - sets write_mostly
2997 	 *  -writemostly - clears write_mostly
2998 	 *  blocked - sets the Blocked flags
2999 	 *  -blocked - clears the Blocked and possibly simulates an error
3000 	 *  insync - sets Insync providing device isn't active
3001 	 *  -insync - clear Insync for a device with a slot assigned,
3002 	 *            so that it gets rebuilt based on bitmap
3003 	 *  write_error - sets WriteErrorSeen
3004 	 *  -write_error - clears WriteErrorSeen
3005 	 *  {,-}failfast - set/clear FailFast
3006 	 */
3007 	int err = -EINVAL;
3008 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3009 		md_error(rdev->mddev, rdev);
3010 		if (test_bit(Faulty, &rdev->flags))
3011 			err = 0;
3012 		else
3013 			err = -EBUSY;
3014 	} else if (cmd_match(buf, "remove")) {
3015 		if (rdev->mddev->pers) {
3016 			clear_bit(Blocked, &rdev->flags);
3017 			remove_and_add_spares(rdev->mddev, rdev);
3018 		}
3019 		if (rdev->raid_disk >= 0)
3020 			err = -EBUSY;
3021 		else {
3022 			struct mddev *mddev = rdev->mddev;
3023 			err = 0;
3024 			if (mddev_is_clustered(mddev))
3025 				err = md_cluster_ops->remove_disk(mddev, rdev);
3026 
3027 			if (err == 0) {
3028 				md_kick_rdev_from_array(rdev);
3029 				if (mddev->pers) {
3030 					set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3031 					md_wakeup_thread(mddev->thread);
3032 				}
3033 				md_new_event(mddev);
3034 			}
3035 		}
3036 	} else if (cmd_match(buf, "writemostly")) {
3037 		set_bit(WriteMostly, &rdev->flags);
3038 		mddev_create_serial_pool(rdev->mddev, rdev, false);
3039 		err = 0;
3040 	} else if (cmd_match(buf, "-writemostly")) {
3041 		mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3042 		clear_bit(WriteMostly, &rdev->flags);
3043 		err = 0;
3044 	} else if (cmd_match(buf, "blocked")) {
3045 		set_bit(Blocked, &rdev->flags);
3046 		err = 0;
3047 	} else if (cmd_match(buf, "-blocked")) {
3048 		if (!test_bit(Faulty, &rdev->flags) &&
3049 		    !test_bit(ExternalBbl, &rdev->flags) &&
3050 		    rdev->badblocks.unacked_exist) {
3051 			/* metadata handler doesn't understand badblocks,
3052 			 * so we need to fail the device
3053 			 */
3054 			md_error(rdev->mddev, rdev);
3055 		}
3056 		clear_bit(Blocked, &rdev->flags);
3057 		clear_bit(BlockedBadBlocks, &rdev->flags);
3058 		wake_up(&rdev->blocked_wait);
3059 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3060 		md_wakeup_thread(rdev->mddev->thread);
3061 
3062 		err = 0;
3063 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3064 		set_bit(In_sync, &rdev->flags);
3065 		err = 0;
3066 	} else if (cmd_match(buf, "failfast")) {
3067 		set_bit(FailFast, &rdev->flags);
3068 		err = 0;
3069 	} else if (cmd_match(buf, "-failfast")) {
3070 		clear_bit(FailFast, &rdev->flags);
3071 		err = 0;
3072 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3073 		   !test_bit(Journal, &rdev->flags)) {
3074 		if (rdev->mddev->pers == NULL) {
3075 			clear_bit(In_sync, &rdev->flags);
3076 			rdev->saved_raid_disk = rdev->raid_disk;
3077 			rdev->raid_disk = -1;
3078 			err = 0;
3079 		}
3080 	} else if (cmd_match(buf, "write_error")) {
3081 		set_bit(WriteErrorSeen, &rdev->flags);
3082 		err = 0;
3083 	} else if (cmd_match(buf, "-write_error")) {
3084 		clear_bit(WriteErrorSeen, &rdev->flags);
3085 		err = 0;
3086 	} else if (cmd_match(buf, "want_replacement")) {
3087 		/* Any non-spare device that is not a replacement can
3088 		 * become want_replacement at any time, but we then need to
3089 		 * check if recovery is needed.
3090 		 */
3091 		if (rdev->raid_disk >= 0 &&
3092 		    !test_bit(Journal, &rdev->flags) &&
3093 		    !test_bit(Replacement, &rdev->flags))
3094 			set_bit(WantReplacement, &rdev->flags);
3095 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3096 		md_wakeup_thread(rdev->mddev->thread);
3097 		err = 0;
3098 	} else if (cmd_match(buf, "-want_replacement")) {
3099 		/* Clearing 'want_replacement' is always allowed.
3100 		 * Once replacements starts it is too late though.
3101 		 */
3102 		err = 0;
3103 		clear_bit(WantReplacement, &rdev->flags);
3104 	} else if (cmd_match(buf, "replacement")) {
3105 		/* Can only set a device as a replacement when array has not
3106 		 * yet been started.  Once running, replacement is automatic
3107 		 * from spares, or by assigning 'slot'.
3108 		 */
3109 		if (rdev->mddev->pers)
3110 			err = -EBUSY;
3111 		else {
3112 			set_bit(Replacement, &rdev->flags);
3113 			err = 0;
3114 		}
3115 	} else if (cmd_match(buf, "-replacement")) {
3116 		/* Similarly, can only clear Replacement before start */
3117 		if (rdev->mddev->pers)
3118 			err = -EBUSY;
3119 		else {
3120 			clear_bit(Replacement, &rdev->flags);
3121 			err = 0;
3122 		}
3123 	} else if (cmd_match(buf, "re-add")) {
3124 		if (!rdev->mddev->pers)
3125 			err = -EINVAL;
3126 		else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3127 				rdev->saved_raid_disk >= 0) {
3128 			/* clear_bit is performed _after_ all the devices
3129 			 * have their local Faulty bit cleared. If any writes
3130 			 * happen in the meantime in the local node, they
3131 			 * will land in the local bitmap, which will be synced
3132 			 * by this node eventually
3133 			 */
3134 			if (!mddev_is_clustered(rdev->mddev) ||
3135 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3136 				clear_bit(Faulty, &rdev->flags);
3137 				err = add_bound_rdev(rdev);
3138 			}
3139 		} else
3140 			err = -EBUSY;
3141 	} else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3142 		set_bit(ExternalBbl, &rdev->flags);
3143 		rdev->badblocks.shift = 0;
3144 		err = 0;
3145 	} else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3146 		clear_bit(ExternalBbl, &rdev->flags);
3147 		err = 0;
3148 	}
3149 	if (!err)
3150 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3151 	return err ? err : len;
3152 }
3153 static struct rdev_sysfs_entry rdev_state =
3154 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3155 
3156 static ssize_t
3157 errors_show(struct md_rdev *rdev, char *page)
3158 {
3159 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3160 }
3161 
3162 static ssize_t
3163 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3164 {
3165 	unsigned int n;
3166 	int rv;
3167 
3168 	rv = kstrtouint(buf, 10, &n);
3169 	if (rv < 0)
3170 		return rv;
3171 	atomic_set(&rdev->corrected_errors, n);
3172 	return len;
3173 }
3174 static struct rdev_sysfs_entry rdev_errors =
3175 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3176 
3177 static ssize_t
3178 slot_show(struct md_rdev *rdev, char *page)
3179 {
3180 	if (test_bit(Journal, &rdev->flags))
3181 		return sprintf(page, "journal\n");
3182 	else if (rdev->raid_disk < 0)
3183 		return sprintf(page, "none\n");
3184 	else
3185 		return sprintf(page, "%d\n", rdev->raid_disk);
3186 }
3187 
3188 static ssize_t
3189 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3190 {
3191 	int slot;
3192 	int err;
3193 
3194 	if (test_bit(Journal, &rdev->flags))
3195 		return -EBUSY;
3196 	if (strncmp(buf, "none", 4)==0)
3197 		slot = -1;
3198 	else {
3199 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
3200 		if (err < 0)
3201 			return err;
3202 	}
3203 	if (rdev->mddev->pers && slot == -1) {
3204 		/* Setting 'slot' on an active array requires also
3205 		 * updating the 'rd%d' link, and communicating
3206 		 * with the personality with ->hot_*_disk.
3207 		 * For now we only support removing
3208 		 * failed/spare devices.  This normally happens automatically,
3209 		 * but not when the metadata is externally managed.
3210 		 */
3211 		if (rdev->raid_disk == -1)
3212 			return -EEXIST;
3213 		/* personality does all needed checks */
3214 		if (rdev->mddev->pers->hot_remove_disk == NULL)
3215 			return -EINVAL;
3216 		clear_bit(Blocked, &rdev->flags);
3217 		remove_and_add_spares(rdev->mddev, rdev);
3218 		if (rdev->raid_disk >= 0)
3219 			return -EBUSY;
3220 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3221 		md_wakeup_thread(rdev->mddev->thread);
3222 	} else if (rdev->mddev->pers) {
3223 		/* Activating a spare .. or possibly reactivating
3224 		 * if we ever get bitmaps working here.
3225 		 */
3226 		int err;
3227 
3228 		if (rdev->raid_disk != -1)
3229 			return -EBUSY;
3230 
3231 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3232 			return -EBUSY;
3233 
3234 		if (rdev->mddev->pers->hot_add_disk == NULL)
3235 			return -EINVAL;
3236 
3237 		if (slot >= rdev->mddev->raid_disks &&
3238 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3239 			return -ENOSPC;
3240 
3241 		rdev->raid_disk = slot;
3242 		if (test_bit(In_sync, &rdev->flags))
3243 			rdev->saved_raid_disk = slot;
3244 		else
3245 			rdev->saved_raid_disk = -1;
3246 		clear_bit(In_sync, &rdev->flags);
3247 		clear_bit(Bitmap_sync, &rdev->flags);
3248 		err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3249 		if (err) {
3250 			rdev->raid_disk = -1;
3251 			return err;
3252 		} else
3253 			sysfs_notify_dirent_safe(rdev->sysfs_state);
3254 		/* failure here is OK */;
3255 		sysfs_link_rdev(rdev->mddev, rdev);
3256 		/* don't wakeup anyone, leave that to userspace. */
3257 	} else {
3258 		if (slot >= rdev->mddev->raid_disks &&
3259 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3260 			return -ENOSPC;
3261 		rdev->raid_disk = slot;
3262 		/* assume it is working */
3263 		clear_bit(Faulty, &rdev->flags);
3264 		clear_bit(WriteMostly, &rdev->flags);
3265 		set_bit(In_sync, &rdev->flags);
3266 		sysfs_notify_dirent_safe(rdev->sysfs_state);
3267 	}
3268 	return len;
3269 }
3270 
3271 static struct rdev_sysfs_entry rdev_slot =
3272 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3273 
3274 static ssize_t
3275 offset_show(struct md_rdev *rdev, char *page)
3276 {
3277 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3278 }
3279 
3280 static ssize_t
3281 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3282 {
3283 	unsigned long long offset;
3284 	if (kstrtoull(buf, 10, &offset) < 0)
3285 		return -EINVAL;
3286 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
3287 		return -EBUSY;
3288 	if (rdev->sectors && rdev->mddev->external)
3289 		/* Must set offset before size, so overlap checks
3290 		 * can be sane */
3291 		return -EBUSY;
3292 	rdev->data_offset = offset;
3293 	rdev->new_data_offset = offset;
3294 	return len;
3295 }
3296 
3297 static struct rdev_sysfs_entry rdev_offset =
3298 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3299 
3300 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3301 {
3302 	return sprintf(page, "%llu\n",
3303 		       (unsigned long long)rdev->new_data_offset);
3304 }
3305 
3306 static ssize_t new_offset_store(struct md_rdev *rdev,
3307 				const char *buf, size_t len)
3308 {
3309 	unsigned long long new_offset;
3310 	struct mddev *mddev = rdev->mddev;
3311 
3312 	if (kstrtoull(buf, 10, &new_offset) < 0)
3313 		return -EINVAL;
3314 
3315 	if (mddev->sync_thread ||
3316 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3317 		return -EBUSY;
3318 	if (new_offset == rdev->data_offset)
3319 		/* reset is always permitted */
3320 		;
3321 	else if (new_offset > rdev->data_offset) {
3322 		/* must not push array size beyond rdev_sectors */
3323 		if (new_offset - rdev->data_offset
3324 		    + mddev->dev_sectors > rdev->sectors)
3325 				return -E2BIG;
3326 	}
3327 	/* Metadata worries about other space details. */
3328 
3329 	/* decreasing the offset is inconsistent with a backwards
3330 	 * reshape.
3331 	 */
3332 	if (new_offset < rdev->data_offset &&
3333 	    mddev->reshape_backwards)
3334 		return -EINVAL;
3335 	/* Increasing offset is inconsistent with forwards
3336 	 * reshape.  reshape_direction should be set to
3337 	 * 'backwards' first.
3338 	 */
3339 	if (new_offset > rdev->data_offset &&
3340 	    !mddev->reshape_backwards)
3341 		return -EINVAL;
3342 
3343 	if (mddev->pers && mddev->persistent &&
3344 	    !super_types[mddev->major_version]
3345 	    .allow_new_offset(rdev, new_offset))
3346 		return -E2BIG;
3347 	rdev->new_data_offset = new_offset;
3348 	if (new_offset > rdev->data_offset)
3349 		mddev->reshape_backwards = 1;
3350 	else if (new_offset < rdev->data_offset)
3351 		mddev->reshape_backwards = 0;
3352 
3353 	return len;
3354 }
3355 static struct rdev_sysfs_entry rdev_new_offset =
3356 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3357 
3358 static ssize_t
3359 rdev_size_show(struct md_rdev *rdev, char *page)
3360 {
3361 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3362 }
3363 
3364 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3365 {
3366 	/* check if two start/length pairs overlap */
3367 	if (s1+l1 <= s2)
3368 		return 0;
3369 	if (s2+l2 <= s1)
3370 		return 0;
3371 	return 1;
3372 }
3373 
3374 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3375 {
3376 	unsigned long long blocks;
3377 	sector_t new;
3378 
3379 	if (kstrtoull(buf, 10, &blocks) < 0)
3380 		return -EINVAL;
3381 
3382 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3383 		return -EINVAL; /* sector conversion overflow */
3384 
3385 	new = blocks * 2;
3386 	if (new != blocks * 2)
3387 		return -EINVAL; /* unsigned long long to sector_t overflow */
3388 
3389 	*sectors = new;
3390 	return 0;
3391 }
3392 
3393 static ssize_t
3394 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3395 {
3396 	struct mddev *my_mddev = rdev->mddev;
3397 	sector_t oldsectors = rdev->sectors;
3398 	sector_t sectors;
3399 
3400 	if (test_bit(Journal, &rdev->flags))
3401 		return -EBUSY;
3402 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
3403 		return -EINVAL;
3404 	if (rdev->data_offset != rdev->new_data_offset)
3405 		return -EINVAL; /* too confusing */
3406 	if (my_mddev->pers && rdev->raid_disk >= 0) {
3407 		if (my_mddev->persistent) {
3408 			sectors = super_types[my_mddev->major_version].
3409 				rdev_size_change(rdev, sectors);
3410 			if (!sectors)
3411 				return -EBUSY;
3412 		} else if (!sectors)
3413 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3414 				rdev->data_offset;
3415 		if (!my_mddev->pers->resize)
3416 			/* Cannot change size for RAID0 or Linear etc */
3417 			return -EINVAL;
3418 	}
3419 	if (sectors < my_mddev->dev_sectors)
3420 		return -EINVAL; /* component must fit device */
3421 
3422 	rdev->sectors = sectors;
3423 	if (sectors > oldsectors && my_mddev->external) {
3424 		/* Need to check that all other rdevs with the same
3425 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
3426 		 * the rdev lists safely.
3427 		 * This check does not provide a hard guarantee, it
3428 		 * just helps avoid dangerous mistakes.
3429 		 */
3430 		struct mddev *mddev;
3431 		int overlap = 0;
3432 		struct list_head *tmp;
3433 
3434 		rcu_read_lock();
3435 		for_each_mddev(mddev, tmp) {
3436 			struct md_rdev *rdev2;
3437 
3438 			rdev_for_each(rdev2, mddev)
3439 				if (rdev->bdev == rdev2->bdev &&
3440 				    rdev != rdev2 &&
3441 				    overlaps(rdev->data_offset, rdev->sectors,
3442 					     rdev2->data_offset,
3443 					     rdev2->sectors)) {
3444 					overlap = 1;
3445 					break;
3446 				}
3447 			if (overlap) {
3448 				mddev_put(mddev);
3449 				break;
3450 			}
3451 		}
3452 		rcu_read_unlock();
3453 		if (overlap) {
3454 			/* Someone else could have slipped in a size
3455 			 * change here, but doing so is just silly.
3456 			 * We put oldsectors back because we *know* it is
3457 			 * safe, and trust userspace not to race with
3458 			 * itself
3459 			 */
3460 			rdev->sectors = oldsectors;
3461 			return -EBUSY;
3462 		}
3463 	}
3464 	return len;
3465 }
3466 
3467 static struct rdev_sysfs_entry rdev_size =
3468 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3469 
3470 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3471 {
3472 	unsigned long long recovery_start = rdev->recovery_offset;
3473 
3474 	if (test_bit(In_sync, &rdev->flags) ||
3475 	    recovery_start == MaxSector)
3476 		return sprintf(page, "none\n");
3477 
3478 	return sprintf(page, "%llu\n", recovery_start);
3479 }
3480 
3481 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3482 {
3483 	unsigned long long recovery_start;
3484 
3485 	if (cmd_match(buf, "none"))
3486 		recovery_start = MaxSector;
3487 	else if (kstrtoull(buf, 10, &recovery_start))
3488 		return -EINVAL;
3489 
3490 	if (rdev->mddev->pers &&
3491 	    rdev->raid_disk >= 0)
3492 		return -EBUSY;
3493 
3494 	rdev->recovery_offset = recovery_start;
3495 	if (recovery_start == MaxSector)
3496 		set_bit(In_sync, &rdev->flags);
3497 	else
3498 		clear_bit(In_sync, &rdev->flags);
3499 	return len;
3500 }
3501 
3502 static struct rdev_sysfs_entry rdev_recovery_start =
3503 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3504 
3505 /* sysfs access to bad-blocks list.
3506  * We present two files.
3507  * 'bad-blocks' lists sector numbers and lengths of ranges that
3508  *    are recorded as bad.  The list is truncated to fit within
3509  *    the one-page limit of sysfs.
3510  *    Writing "sector length" to this file adds an acknowledged
3511  *    bad block list.
3512  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3513  *    been acknowledged.  Writing to this file adds bad blocks
3514  *    without acknowledging them.  This is largely for testing.
3515  */
3516 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3517 {
3518 	return badblocks_show(&rdev->badblocks, page, 0);
3519 }
3520 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3521 {
3522 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3523 	/* Maybe that ack was all we needed */
3524 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3525 		wake_up(&rdev->blocked_wait);
3526 	return rv;
3527 }
3528 static struct rdev_sysfs_entry rdev_bad_blocks =
3529 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3530 
3531 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3532 {
3533 	return badblocks_show(&rdev->badblocks, page, 1);
3534 }
3535 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3536 {
3537 	return badblocks_store(&rdev->badblocks, page, len, 1);
3538 }
3539 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3540 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3541 
3542 static ssize_t
3543 ppl_sector_show(struct md_rdev *rdev, char *page)
3544 {
3545 	return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3546 }
3547 
3548 static ssize_t
3549 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3550 {
3551 	unsigned long long sector;
3552 
3553 	if (kstrtoull(buf, 10, &sector) < 0)
3554 		return -EINVAL;
3555 	if (sector != (sector_t)sector)
3556 		return -EINVAL;
3557 
3558 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3559 	    rdev->raid_disk >= 0)
3560 		return -EBUSY;
3561 
3562 	if (rdev->mddev->persistent) {
3563 		if (rdev->mddev->major_version == 0)
3564 			return -EINVAL;
3565 		if ((sector > rdev->sb_start &&
3566 		     sector - rdev->sb_start > S16_MAX) ||
3567 		    (sector < rdev->sb_start &&
3568 		     rdev->sb_start - sector > -S16_MIN))
3569 			return -EINVAL;
3570 		rdev->ppl.offset = sector - rdev->sb_start;
3571 	} else if (!rdev->mddev->external) {
3572 		return -EBUSY;
3573 	}
3574 	rdev->ppl.sector = sector;
3575 	return len;
3576 }
3577 
3578 static struct rdev_sysfs_entry rdev_ppl_sector =
3579 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3580 
3581 static ssize_t
3582 ppl_size_show(struct md_rdev *rdev, char *page)
3583 {
3584 	return sprintf(page, "%u\n", rdev->ppl.size);
3585 }
3586 
3587 static ssize_t
3588 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3589 {
3590 	unsigned int size;
3591 
3592 	if (kstrtouint(buf, 10, &size) < 0)
3593 		return -EINVAL;
3594 
3595 	if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3596 	    rdev->raid_disk >= 0)
3597 		return -EBUSY;
3598 
3599 	if (rdev->mddev->persistent) {
3600 		if (rdev->mddev->major_version == 0)
3601 			return -EINVAL;
3602 		if (size > U16_MAX)
3603 			return -EINVAL;
3604 	} else if (!rdev->mddev->external) {
3605 		return -EBUSY;
3606 	}
3607 	rdev->ppl.size = size;
3608 	return len;
3609 }
3610 
3611 static struct rdev_sysfs_entry rdev_ppl_size =
3612 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3613 
3614 static struct attribute *rdev_default_attrs[] = {
3615 	&rdev_state.attr,
3616 	&rdev_errors.attr,
3617 	&rdev_slot.attr,
3618 	&rdev_offset.attr,
3619 	&rdev_new_offset.attr,
3620 	&rdev_size.attr,
3621 	&rdev_recovery_start.attr,
3622 	&rdev_bad_blocks.attr,
3623 	&rdev_unack_bad_blocks.attr,
3624 	&rdev_ppl_sector.attr,
3625 	&rdev_ppl_size.attr,
3626 	NULL,
3627 };
3628 static ssize_t
3629 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3630 {
3631 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3632 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3633 
3634 	if (!entry->show)
3635 		return -EIO;
3636 	if (!rdev->mddev)
3637 		return -ENODEV;
3638 	return entry->show(rdev, page);
3639 }
3640 
3641 static ssize_t
3642 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3643 	      const char *page, size_t length)
3644 {
3645 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3646 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3647 	ssize_t rv;
3648 	struct mddev *mddev = rdev->mddev;
3649 
3650 	if (!entry->store)
3651 		return -EIO;
3652 	if (!capable(CAP_SYS_ADMIN))
3653 		return -EACCES;
3654 	rv = mddev ? mddev_lock(mddev) : -ENODEV;
3655 	if (!rv) {
3656 		if (rdev->mddev == NULL)
3657 			rv = -ENODEV;
3658 		else
3659 			rv = entry->store(rdev, page, length);
3660 		mddev_unlock(mddev);
3661 	}
3662 	return rv;
3663 }
3664 
3665 static void rdev_free(struct kobject *ko)
3666 {
3667 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3668 	kfree(rdev);
3669 }
3670 static const struct sysfs_ops rdev_sysfs_ops = {
3671 	.show		= rdev_attr_show,
3672 	.store		= rdev_attr_store,
3673 };
3674 static struct kobj_type rdev_ktype = {
3675 	.release	= rdev_free,
3676 	.sysfs_ops	= &rdev_sysfs_ops,
3677 	.default_attrs	= rdev_default_attrs,
3678 };
3679 
3680 int md_rdev_init(struct md_rdev *rdev)
3681 {
3682 	rdev->desc_nr = -1;
3683 	rdev->saved_raid_disk = -1;
3684 	rdev->raid_disk = -1;
3685 	rdev->flags = 0;
3686 	rdev->data_offset = 0;
3687 	rdev->new_data_offset = 0;
3688 	rdev->sb_events = 0;
3689 	rdev->last_read_error = 0;
3690 	rdev->sb_loaded = 0;
3691 	rdev->bb_page = NULL;
3692 	atomic_set(&rdev->nr_pending, 0);
3693 	atomic_set(&rdev->read_errors, 0);
3694 	atomic_set(&rdev->corrected_errors, 0);
3695 
3696 	INIT_LIST_HEAD(&rdev->same_set);
3697 	init_waitqueue_head(&rdev->blocked_wait);
3698 
3699 	/* Add space to store bad block list.
3700 	 * This reserves the space even on arrays where it cannot
3701 	 * be used - I wonder if that matters
3702 	 */
3703 	return badblocks_init(&rdev->badblocks, 0);
3704 }
3705 EXPORT_SYMBOL_GPL(md_rdev_init);
3706 /*
3707  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3708  *
3709  * mark the device faulty if:
3710  *
3711  *   - the device is nonexistent (zero size)
3712  *   - the device has no valid superblock
3713  *
3714  * a faulty rdev _never_ has rdev->sb set.
3715  */
3716 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3717 {
3718 	char b[BDEVNAME_SIZE];
3719 	int err;
3720 	struct md_rdev *rdev;
3721 	sector_t size;
3722 
3723 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3724 	if (!rdev)
3725 		return ERR_PTR(-ENOMEM);
3726 
3727 	err = md_rdev_init(rdev);
3728 	if (err)
3729 		goto abort_free;
3730 	err = alloc_disk_sb(rdev);
3731 	if (err)
3732 		goto abort_free;
3733 
3734 	err = lock_rdev(rdev, newdev, super_format == -2);
3735 	if (err)
3736 		goto abort_free;
3737 
3738 	kobject_init(&rdev->kobj, &rdev_ktype);
3739 
3740 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3741 	if (!size) {
3742 		pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3743 			bdevname(rdev->bdev,b));
3744 		err = -EINVAL;
3745 		goto abort_free;
3746 	}
3747 
3748 	if (super_format >= 0) {
3749 		err = super_types[super_format].
3750 			load_super(rdev, NULL, super_minor);
3751 		if (err == -EINVAL) {
3752 			pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3753 				bdevname(rdev->bdev,b),
3754 				super_format, super_minor);
3755 			goto abort_free;
3756 		}
3757 		if (err < 0) {
3758 			pr_warn("md: could not read %s's sb, not importing!\n",
3759 				bdevname(rdev->bdev,b));
3760 			goto abort_free;
3761 		}
3762 	}
3763 
3764 	return rdev;
3765 
3766 abort_free:
3767 	if (rdev->bdev)
3768 		unlock_rdev(rdev);
3769 	md_rdev_clear(rdev);
3770 	kfree(rdev);
3771 	return ERR_PTR(err);
3772 }
3773 
3774 /*
3775  * Check a full RAID array for plausibility
3776  */
3777 
3778 static int analyze_sbs(struct mddev *mddev)
3779 {
3780 	int i;
3781 	struct md_rdev *rdev, *freshest, *tmp;
3782 	char b[BDEVNAME_SIZE];
3783 
3784 	freshest = NULL;
3785 	rdev_for_each_safe(rdev, tmp, mddev)
3786 		switch (super_types[mddev->major_version].
3787 			load_super(rdev, freshest, mddev->minor_version)) {
3788 		case 1:
3789 			freshest = rdev;
3790 			break;
3791 		case 0:
3792 			break;
3793 		default:
3794 			pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3795 				bdevname(rdev->bdev,b));
3796 			md_kick_rdev_from_array(rdev);
3797 		}
3798 
3799 	/* Cannot find a valid fresh disk */
3800 	if (!freshest) {
3801 		pr_warn("md: cannot find a valid disk\n");
3802 		return -EINVAL;
3803 	}
3804 
3805 	super_types[mddev->major_version].
3806 		validate_super(mddev, freshest);
3807 
3808 	i = 0;
3809 	rdev_for_each_safe(rdev, tmp, mddev) {
3810 		if (mddev->max_disks &&
3811 		    (rdev->desc_nr >= mddev->max_disks ||
3812 		     i > mddev->max_disks)) {
3813 			pr_warn("md: %s: %s: only %d devices permitted\n",
3814 				mdname(mddev), bdevname(rdev->bdev, b),
3815 				mddev->max_disks);
3816 			md_kick_rdev_from_array(rdev);
3817 			continue;
3818 		}
3819 		if (rdev != freshest) {
3820 			if (super_types[mddev->major_version].
3821 			    validate_super(mddev, rdev)) {
3822 				pr_warn("md: kicking non-fresh %s from array!\n",
3823 					bdevname(rdev->bdev,b));
3824 				md_kick_rdev_from_array(rdev);
3825 				continue;
3826 			}
3827 		}
3828 		if (mddev->level == LEVEL_MULTIPATH) {
3829 			rdev->desc_nr = i++;
3830 			rdev->raid_disk = rdev->desc_nr;
3831 			set_bit(In_sync, &rdev->flags);
3832 		} else if (rdev->raid_disk >=
3833 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3834 			   !test_bit(Journal, &rdev->flags)) {
3835 			rdev->raid_disk = -1;
3836 			clear_bit(In_sync, &rdev->flags);
3837 		}
3838 	}
3839 
3840 	return 0;
3841 }
3842 
3843 /* Read a fixed-point number.
3844  * Numbers in sysfs attributes should be in "standard" units where
3845  * possible, so time should be in seconds.
3846  * However we internally use a a much smaller unit such as
3847  * milliseconds or jiffies.
3848  * This function takes a decimal number with a possible fractional
3849  * component, and produces an integer which is the result of
3850  * multiplying that number by 10^'scale'.
3851  * all without any floating-point arithmetic.
3852  */
3853 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3854 {
3855 	unsigned long result = 0;
3856 	long decimals = -1;
3857 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3858 		if (*cp == '.')
3859 			decimals = 0;
3860 		else if (decimals < scale) {
3861 			unsigned int value;
3862 			value = *cp - '0';
3863 			result = result * 10 + value;
3864 			if (decimals >= 0)
3865 				decimals++;
3866 		}
3867 		cp++;
3868 	}
3869 	if (*cp == '\n')
3870 		cp++;
3871 	if (*cp)
3872 		return -EINVAL;
3873 	if (decimals < 0)
3874 		decimals = 0;
3875 	*res = result * int_pow(10, scale - decimals);
3876 	return 0;
3877 }
3878 
3879 static ssize_t
3880 safe_delay_show(struct mddev *mddev, char *page)
3881 {
3882 	int msec = (mddev->safemode_delay*1000)/HZ;
3883 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3884 }
3885 static ssize_t
3886 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3887 {
3888 	unsigned long msec;
3889 
3890 	if (mddev_is_clustered(mddev)) {
3891 		pr_warn("md: Safemode is disabled for clustered mode\n");
3892 		return -EINVAL;
3893 	}
3894 
3895 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3896 		return -EINVAL;
3897 	if (msec == 0)
3898 		mddev->safemode_delay = 0;
3899 	else {
3900 		unsigned long old_delay = mddev->safemode_delay;
3901 		unsigned long new_delay = (msec*HZ)/1000;
3902 
3903 		if (new_delay == 0)
3904 			new_delay = 1;
3905 		mddev->safemode_delay = new_delay;
3906 		if (new_delay < old_delay || old_delay == 0)
3907 			mod_timer(&mddev->safemode_timer, jiffies+1);
3908 	}
3909 	return len;
3910 }
3911 static struct md_sysfs_entry md_safe_delay =
3912 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3913 
3914 static ssize_t
3915 level_show(struct mddev *mddev, char *page)
3916 {
3917 	struct md_personality *p;
3918 	int ret;
3919 	spin_lock(&mddev->lock);
3920 	p = mddev->pers;
3921 	if (p)
3922 		ret = sprintf(page, "%s\n", p->name);
3923 	else if (mddev->clevel[0])
3924 		ret = sprintf(page, "%s\n", mddev->clevel);
3925 	else if (mddev->level != LEVEL_NONE)
3926 		ret = sprintf(page, "%d\n", mddev->level);
3927 	else
3928 		ret = 0;
3929 	spin_unlock(&mddev->lock);
3930 	return ret;
3931 }
3932 
3933 static ssize_t
3934 level_store(struct mddev *mddev, const char *buf, size_t len)
3935 {
3936 	char clevel[16];
3937 	ssize_t rv;
3938 	size_t slen = len;
3939 	struct md_personality *pers, *oldpers;
3940 	long level;
3941 	void *priv, *oldpriv;
3942 	struct md_rdev *rdev;
3943 
3944 	if (slen == 0 || slen >= sizeof(clevel))
3945 		return -EINVAL;
3946 
3947 	rv = mddev_lock(mddev);
3948 	if (rv)
3949 		return rv;
3950 
3951 	if (mddev->pers == NULL) {
3952 		strncpy(mddev->clevel, buf, slen);
3953 		if (mddev->clevel[slen-1] == '\n')
3954 			slen--;
3955 		mddev->clevel[slen] = 0;
3956 		mddev->level = LEVEL_NONE;
3957 		rv = len;
3958 		goto out_unlock;
3959 	}
3960 	rv = -EROFS;
3961 	if (mddev->ro)
3962 		goto out_unlock;
3963 
3964 	/* request to change the personality.  Need to ensure:
3965 	 *  - array is not engaged in resync/recovery/reshape
3966 	 *  - old personality can be suspended
3967 	 *  - new personality will access other array.
3968 	 */
3969 
3970 	rv = -EBUSY;
3971 	if (mddev->sync_thread ||
3972 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3973 	    mddev->reshape_position != MaxSector ||
3974 	    mddev->sysfs_active)
3975 		goto out_unlock;
3976 
3977 	rv = -EINVAL;
3978 	if (!mddev->pers->quiesce) {
3979 		pr_warn("md: %s: %s does not support online personality change\n",
3980 			mdname(mddev), mddev->pers->name);
3981 		goto out_unlock;
3982 	}
3983 
3984 	/* Now find the new personality */
3985 	strncpy(clevel, buf, slen);
3986 	if (clevel[slen-1] == '\n')
3987 		slen--;
3988 	clevel[slen] = 0;
3989 	if (kstrtol(clevel, 10, &level))
3990 		level = LEVEL_NONE;
3991 
3992 	if (request_module("md-%s", clevel) != 0)
3993 		request_module("md-level-%s", clevel);
3994 	spin_lock(&pers_lock);
3995 	pers = find_pers(level, clevel);
3996 	if (!pers || !try_module_get(pers->owner)) {
3997 		spin_unlock(&pers_lock);
3998 		pr_warn("md: personality %s not loaded\n", clevel);
3999 		rv = -EINVAL;
4000 		goto out_unlock;
4001 	}
4002 	spin_unlock(&pers_lock);
4003 
4004 	if (pers == mddev->pers) {
4005 		/* Nothing to do! */
4006 		module_put(pers->owner);
4007 		rv = len;
4008 		goto out_unlock;
4009 	}
4010 	if (!pers->takeover) {
4011 		module_put(pers->owner);
4012 		pr_warn("md: %s: %s does not support personality takeover\n",
4013 			mdname(mddev), clevel);
4014 		rv = -EINVAL;
4015 		goto out_unlock;
4016 	}
4017 
4018 	rdev_for_each(rdev, mddev)
4019 		rdev->new_raid_disk = rdev->raid_disk;
4020 
4021 	/* ->takeover must set new_* and/or delta_disks
4022 	 * if it succeeds, and may set them when it fails.
4023 	 */
4024 	priv = pers->takeover(mddev);
4025 	if (IS_ERR(priv)) {
4026 		mddev->new_level = mddev->level;
4027 		mddev->new_layout = mddev->layout;
4028 		mddev->new_chunk_sectors = mddev->chunk_sectors;
4029 		mddev->raid_disks -= mddev->delta_disks;
4030 		mddev->delta_disks = 0;
4031 		mddev->reshape_backwards = 0;
4032 		module_put(pers->owner);
4033 		pr_warn("md: %s: %s would not accept array\n",
4034 			mdname(mddev), clevel);
4035 		rv = PTR_ERR(priv);
4036 		goto out_unlock;
4037 	}
4038 
4039 	/* Looks like we have a winner */
4040 	mddev_suspend(mddev);
4041 	mddev_detach(mddev);
4042 
4043 	spin_lock(&mddev->lock);
4044 	oldpers = mddev->pers;
4045 	oldpriv = mddev->private;
4046 	mddev->pers = pers;
4047 	mddev->private = priv;
4048 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4049 	mddev->level = mddev->new_level;
4050 	mddev->layout = mddev->new_layout;
4051 	mddev->chunk_sectors = mddev->new_chunk_sectors;
4052 	mddev->delta_disks = 0;
4053 	mddev->reshape_backwards = 0;
4054 	mddev->degraded = 0;
4055 	spin_unlock(&mddev->lock);
4056 
4057 	if (oldpers->sync_request == NULL &&
4058 	    mddev->external) {
4059 		/* We are converting from a no-redundancy array
4060 		 * to a redundancy array and metadata is managed
4061 		 * externally so we need to be sure that writes
4062 		 * won't block due to a need to transition
4063 		 *      clean->dirty
4064 		 * until external management is started.
4065 		 */
4066 		mddev->in_sync = 0;
4067 		mddev->safemode_delay = 0;
4068 		mddev->safemode = 0;
4069 	}
4070 
4071 	oldpers->free(mddev, oldpriv);
4072 
4073 	if (oldpers->sync_request == NULL &&
4074 	    pers->sync_request != NULL) {
4075 		/* need to add the md_redundancy_group */
4076 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4077 			pr_warn("md: cannot register extra attributes for %s\n",
4078 				mdname(mddev));
4079 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4080 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4081 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4082 	}
4083 	if (oldpers->sync_request != NULL &&
4084 	    pers->sync_request == NULL) {
4085 		/* need to remove the md_redundancy_group */
4086 		if (mddev->to_remove == NULL)
4087 			mddev->to_remove = &md_redundancy_group;
4088 	}
4089 
4090 	module_put(oldpers->owner);
4091 
4092 	rdev_for_each(rdev, mddev) {
4093 		if (rdev->raid_disk < 0)
4094 			continue;
4095 		if (rdev->new_raid_disk >= mddev->raid_disks)
4096 			rdev->new_raid_disk = -1;
4097 		if (rdev->new_raid_disk == rdev->raid_disk)
4098 			continue;
4099 		sysfs_unlink_rdev(mddev, rdev);
4100 	}
4101 	rdev_for_each(rdev, mddev) {
4102 		if (rdev->raid_disk < 0)
4103 			continue;
4104 		if (rdev->new_raid_disk == rdev->raid_disk)
4105 			continue;
4106 		rdev->raid_disk = rdev->new_raid_disk;
4107 		if (rdev->raid_disk < 0)
4108 			clear_bit(In_sync, &rdev->flags);
4109 		else {
4110 			if (sysfs_link_rdev(mddev, rdev))
4111 				pr_warn("md: cannot register rd%d for %s after level change\n",
4112 					rdev->raid_disk, mdname(mddev));
4113 		}
4114 	}
4115 
4116 	if (pers->sync_request == NULL) {
4117 		/* this is now an array without redundancy, so
4118 		 * it must always be in_sync
4119 		 */
4120 		mddev->in_sync = 1;
4121 		del_timer_sync(&mddev->safemode_timer);
4122 	}
4123 	blk_set_stacking_limits(&mddev->queue->limits);
4124 	pers->run(mddev);
4125 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4126 	mddev_resume(mddev);
4127 	if (!mddev->thread)
4128 		md_update_sb(mddev, 1);
4129 	sysfs_notify_dirent_safe(mddev->sysfs_level);
4130 	md_new_event(mddev);
4131 	rv = len;
4132 out_unlock:
4133 	mddev_unlock(mddev);
4134 	return rv;
4135 }
4136 
4137 static struct md_sysfs_entry md_level =
4138 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4139 
4140 static ssize_t
4141 layout_show(struct mddev *mddev, char *page)
4142 {
4143 	/* just a number, not meaningful for all levels */
4144 	if (mddev->reshape_position != MaxSector &&
4145 	    mddev->layout != mddev->new_layout)
4146 		return sprintf(page, "%d (%d)\n",
4147 			       mddev->new_layout, mddev->layout);
4148 	return sprintf(page, "%d\n", mddev->layout);
4149 }
4150 
4151 static ssize_t
4152 layout_store(struct mddev *mddev, const char *buf, size_t len)
4153 {
4154 	unsigned int n;
4155 	int err;
4156 
4157 	err = kstrtouint(buf, 10, &n);
4158 	if (err < 0)
4159 		return err;
4160 	err = mddev_lock(mddev);
4161 	if (err)
4162 		return err;
4163 
4164 	if (mddev->pers) {
4165 		if (mddev->pers->check_reshape == NULL)
4166 			err = -EBUSY;
4167 		else if (mddev->ro)
4168 			err = -EROFS;
4169 		else {
4170 			mddev->new_layout = n;
4171 			err = mddev->pers->check_reshape(mddev);
4172 			if (err)
4173 				mddev->new_layout = mddev->layout;
4174 		}
4175 	} else {
4176 		mddev->new_layout = n;
4177 		if (mddev->reshape_position == MaxSector)
4178 			mddev->layout = n;
4179 	}
4180 	mddev_unlock(mddev);
4181 	return err ?: len;
4182 }
4183 static struct md_sysfs_entry md_layout =
4184 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4185 
4186 static ssize_t
4187 raid_disks_show(struct mddev *mddev, char *page)
4188 {
4189 	if (mddev->raid_disks == 0)
4190 		return 0;
4191 	if (mddev->reshape_position != MaxSector &&
4192 	    mddev->delta_disks != 0)
4193 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4194 			       mddev->raid_disks - mddev->delta_disks);
4195 	return sprintf(page, "%d\n", mddev->raid_disks);
4196 }
4197 
4198 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4199 
4200 static ssize_t
4201 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4202 {
4203 	unsigned int n;
4204 	int err;
4205 
4206 	err = kstrtouint(buf, 10, &n);
4207 	if (err < 0)
4208 		return err;
4209 
4210 	err = mddev_lock(mddev);
4211 	if (err)
4212 		return err;
4213 	if (mddev->pers)
4214 		err = update_raid_disks(mddev, n);
4215 	else if (mddev->reshape_position != MaxSector) {
4216 		struct md_rdev *rdev;
4217 		int olddisks = mddev->raid_disks - mddev->delta_disks;
4218 
4219 		err = -EINVAL;
4220 		rdev_for_each(rdev, mddev) {
4221 			if (olddisks < n &&
4222 			    rdev->data_offset < rdev->new_data_offset)
4223 				goto out_unlock;
4224 			if (olddisks > n &&
4225 			    rdev->data_offset > rdev->new_data_offset)
4226 				goto out_unlock;
4227 		}
4228 		err = 0;
4229 		mddev->delta_disks = n - olddisks;
4230 		mddev->raid_disks = n;
4231 		mddev->reshape_backwards = (mddev->delta_disks < 0);
4232 	} else
4233 		mddev->raid_disks = n;
4234 out_unlock:
4235 	mddev_unlock(mddev);
4236 	return err ? err : len;
4237 }
4238 static struct md_sysfs_entry md_raid_disks =
4239 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4240 
4241 static ssize_t
4242 uuid_show(struct mddev *mddev, char *page)
4243 {
4244 	return sprintf(page, "%pU\n", mddev->uuid);
4245 }
4246 static struct md_sysfs_entry md_uuid =
4247 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4248 
4249 static ssize_t
4250 chunk_size_show(struct mddev *mddev, char *page)
4251 {
4252 	if (mddev->reshape_position != MaxSector &&
4253 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
4254 		return sprintf(page, "%d (%d)\n",
4255 			       mddev->new_chunk_sectors << 9,
4256 			       mddev->chunk_sectors << 9);
4257 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4258 }
4259 
4260 static ssize_t
4261 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4262 {
4263 	unsigned long n;
4264 	int err;
4265 
4266 	err = kstrtoul(buf, 10, &n);
4267 	if (err < 0)
4268 		return err;
4269 
4270 	err = mddev_lock(mddev);
4271 	if (err)
4272 		return err;
4273 	if (mddev->pers) {
4274 		if (mddev->pers->check_reshape == NULL)
4275 			err = -EBUSY;
4276 		else if (mddev->ro)
4277 			err = -EROFS;
4278 		else {
4279 			mddev->new_chunk_sectors = n >> 9;
4280 			err = mddev->pers->check_reshape(mddev);
4281 			if (err)
4282 				mddev->new_chunk_sectors = mddev->chunk_sectors;
4283 		}
4284 	} else {
4285 		mddev->new_chunk_sectors = n >> 9;
4286 		if (mddev->reshape_position == MaxSector)
4287 			mddev->chunk_sectors = n >> 9;
4288 	}
4289 	mddev_unlock(mddev);
4290 	return err ?: len;
4291 }
4292 static struct md_sysfs_entry md_chunk_size =
4293 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4294 
4295 static ssize_t
4296 resync_start_show(struct mddev *mddev, char *page)
4297 {
4298 	if (mddev->recovery_cp == MaxSector)
4299 		return sprintf(page, "none\n");
4300 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4301 }
4302 
4303 static ssize_t
4304 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4305 {
4306 	unsigned long long n;
4307 	int err;
4308 
4309 	if (cmd_match(buf, "none"))
4310 		n = MaxSector;
4311 	else {
4312 		err = kstrtoull(buf, 10, &n);
4313 		if (err < 0)
4314 			return err;
4315 		if (n != (sector_t)n)
4316 			return -EINVAL;
4317 	}
4318 
4319 	err = mddev_lock(mddev);
4320 	if (err)
4321 		return err;
4322 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4323 		err = -EBUSY;
4324 
4325 	if (!err) {
4326 		mddev->recovery_cp = n;
4327 		if (mddev->pers)
4328 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4329 	}
4330 	mddev_unlock(mddev);
4331 	return err ?: len;
4332 }
4333 static struct md_sysfs_entry md_resync_start =
4334 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4335 		resync_start_show, resync_start_store);
4336 
4337 /*
4338  * The array state can be:
4339  *
4340  * clear
4341  *     No devices, no size, no level
4342  *     Equivalent to STOP_ARRAY ioctl
4343  * inactive
4344  *     May have some settings, but array is not active
4345  *        all IO results in error
4346  *     When written, doesn't tear down array, but just stops it
4347  * suspended (not supported yet)
4348  *     All IO requests will block. The array can be reconfigured.
4349  *     Writing this, if accepted, will block until array is quiescent
4350  * readonly
4351  *     no resync can happen.  no superblocks get written.
4352  *     write requests fail
4353  * read-auto
4354  *     like readonly, but behaves like 'clean' on a write request.
4355  *
4356  * clean - no pending writes, but otherwise active.
4357  *     When written to inactive array, starts without resync
4358  *     If a write request arrives then
4359  *       if metadata is known, mark 'dirty' and switch to 'active'.
4360  *       if not known, block and switch to write-pending
4361  *     If written to an active array that has pending writes, then fails.
4362  * active
4363  *     fully active: IO and resync can be happening.
4364  *     When written to inactive array, starts with resync
4365  *
4366  * write-pending
4367  *     clean, but writes are blocked waiting for 'active' to be written.
4368  *
4369  * active-idle
4370  *     like active, but no writes have been seen for a while (100msec).
4371  *
4372  * broken
4373  *     RAID0/LINEAR-only: same as clean, but array is missing a member.
4374  *     It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4375  *     when a member is gone, so this state will at least alert the
4376  *     user that something is wrong.
4377  */
4378 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4379 		   write_pending, active_idle, broken, bad_word};
4380 static char *array_states[] = {
4381 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4382 	"write-pending", "active-idle", "broken", NULL };
4383 
4384 static int match_word(const char *word, char **list)
4385 {
4386 	int n;
4387 	for (n=0; list[n]; n++)
4388 		if (cmd_match(word, list[n]))
4389 			break;
4390 	return n;
4391 }
4392 
4393 static ssize_t
4394 array_state_show(struct mddev *mddev, char *page)
4395 {
4396 	enum array_state st = inactive;
4397 
4398 	if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4399 		switch(mddev->ro) {
4400 		case 1:
4401 			st = readonly;
4402 			break;
4403 		case 2:
4404 			st = read_auto;
4405 			break;
4406 		case 0:
4407 			spin_lock(&mddev->lock);
4408 			if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4409 				st = write_pending;
4410 			else if (mddev->in_sync)
4411 				st = clean;
4412 			else if (mddev->safemode)
4413 				st = active_idle;
4414 			else
4415 				st = active;
4416 			spin_unlock(&mddev->lock);
4417 		}
4418 
4419 		if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4420 			st = broken;
4421 	} else {
4422 		if (list_empty(&mddev->disks) &&
4423 		    mddev->raid_disks == 0 &&
4424 		    mddev->dev_sectors == 0)
4425 			st = clear;
4426 		else
4427 			st = inactive;
4428 	}
4429 	return sprintf(page, "%s\n", array_states[st]);
4430 }
4431 
4432 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4433 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4434 static int restart_array(struct mddev *mddev);
4435 
4436 static ssize_t
4437 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 	int err = 0;
4440 	enum array_state st = match_word(buf, array_states);
4441 
4442 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4443 		/* don't take reconfig_mutex when toggling between
4444 		 * clean and active
4445 		 */
4446 		spin_lock(&mddev->lock);
4447 		if (st == active) {
4448 			restart_array(mddev);
4449 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4450 			md_wakeup_thread(mddev->thread);
4451 			wake_up(&mddev->sb_wait);
4452 		} else /* st == clean */ {
4453 			restart_array(mddev);
4454 			if (!set_in_sync(mddev))
4455 				err = -EBUSY;
4456 		}
4457 		if (!err)
4458 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4459 		spin_unlock(&mddev->lock);
4460 		return err ?: len;
4461 	}
4462 	err = mddev_lock(mddev);
4463 	if (err)
4464 		return err;
4465 	err = -EINVAL;
4466 	switch(st) {
4467 	case bad_word:
4468 		break;
4469 	case clear:
4470 		/* stopping an active array */
4471 		err = do_md_stop(mddev, 0, NULL);
4472 		break;
4473 	case inactive:
4474 		/* stopping an active array */
4475 		if (mddev->pers)
4476 			err = do_md_stop(mddev, 2, NULL);
4477 		else
4478 			err = 0; /* already inactive */
4479 		break;
4480 	case suspended:
4481 		break; /* not supported yet */
4482 	case readonly:
4483 		if (mddev->pers)
4484 			err = md_set_readonly(mddev, NULL);
4485 		else {
4486 			mddev->ro = 1;
4487 			set_disk_ro(mddev->gendisk, 1);
4488 			err = do_md_run(mddev);
4489 		}
4490 		break;
4491 	case read_auto:
4492 		if (mddev->pers) {
4493 			if (mddev->ro == 0)
4494 				err = md_set_readonly(mddev, NULL);
4495 			else if (mddev->ro == 1)
4496 				err = restart_array(mddev);
4497 			if (err == 0) {
4498 				mddev->ro = 2;
4499 				set_disk_ro(mddev->gendisk, 0);
4500 			}
4501 		} else {
4502 			mddev->ro = 2;
4503 			err = do_md_run(mddev);
4504 		}
4505 		break;
4506 	case clean:
4507 		if (mddev->pers) {
4508 			err = restart_array(mddev);
4509 			if (err)
4510 				break;
4511 			spin_lock(&mddev->lock);
4512 			if (!set_in_sync(mddev))
4513 				err = -EBUSY;
4514 			spin_unlock(&mddev->lock);
4515 		} else
4516 			err = -EINVAL;
4517 		break;
4518 	case active:
4519 		if (mddev->pers) {
4520 			err = restart_array(mddev);
4521 			if (err)
4522 				break;
4523 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4524 			wake_up(&mddev->sb_wait);
4525 			err = 0;
4526 		} else {
4527 			mddev->ro = 0;
4528 			set_disk_ro(mddev->gendisk, 0);
4529 			err = do_md_run(mddev);
4530 		}
4531 		break;
4532 	case write_pending:
4533 	case active_idle:
4534 	case broken:
4535 		/* these cannot be set */
4536 		break;
4537 	}
4538 
4539 	if (!err) {
4540 		if (mddev->hold_active == UNTIL_IOCTL)
4541 			mddev->hold_active = 0;
4542 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4543 	}
4544 	mddev_unlock(mddev);
4545 	return err ?: len;
4546 }
4547 static struct md_sysfs_entry md_array_state =
4548 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4549 
4550 static ssize_t
4551 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4552 	return sprintf(page, "%d\n",
4553 		       atomic_read(&mddev->max_corr_read_errors));
4554 }
4555 
4556 static ssize_t
4557 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4558 {
4559 	unsigned int n;
4560 	int rv;
4561 
4562 	rv = kstrtouint(buf, 10, &n);
4563 	if (rv < 0)
4564 		return rv;
4565 	atomic_set(&mddev->max_corr_read_errors, n);
4566 	return len;
4567 }
4568 
4569 static struct md_sysfs_entry max_corr_read_errors =
4570 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4571 	max_corrected_read_errors_store);
4572 
4573 static ssize_t
4574 null_show(struct mddev *mddev, char *page)
4575 {
4576 	return -EINVAL;
4577 }
4578 
4579 /* need to ensure rdev_delayed_delete() has completed */
4580 static void flush_rdev_wq(struct mddev *mddev)
4581 {
4582 	struct md_rdev *rdev;
4583 
4584 	rcu_read_lock();
4585 	rdev_for_each_rcu(rdev, mddev)
4586 		if (work_pending(&rdev->del_work)) {
4587 			flush_workqueue(md_rdev_misc_wq);
4588 			break;
4589 		}
4590 	rcu_read_unlock();
4591 }
4592 
4593 static ssize_t
4594 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4595 {
4596 	/* buf must be %d:%d\n? giving major and minor numbers */
4597 	/* The new device is added to the array.
4598 	 * If the array has a persistent superblock, we read the
4599 	 * superblock to initialise info and check validity.
4600 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4601 	 * which mainly checks size.
4602 	 */
4603 	char *e;
4604 	int major = simple_strtoul(buf, &e, 10);
4605 	int minor;
4606 	dev_t dev;
4607 	struct md_rdev *rdev;
4608 	int err;
4609 
4610 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4611 		return -EINVAL;
4612 	minor = simple_strtoul(e+1, &e, 10);
4613 	if (*e && *e != '\n')
4614 		return -EINVAL;
4615 	dev = MKDEV(major, minor);
4616 	if (major != MAJOR(dev) ||
4617 	    minor != MINOR(dev))
4618 		return -EOVERFLOW;
4619 
4620 	flush_rdev_wq(mddev);
4621 	err = mddev_lock(mddev);
4622 	if (err)
4623 		return err;
4624 	if (mddev->persistent) {
4625 		rdev = md_import_device(dev, mddev->major_version,
4626 					mddev->minor_version);
4627 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4628 			struct md_rdev *rdev0
4629 				= list_entry(mddev->disks.next,
4630 					     struct md_rdev, same_set);
4631 			err = super_types[mddev->major_version]
4632 				.load_super(rdev, rdev0, mddev->minor_version);
4633 			if (err < 0)
4634 				goto out;
4635 		}
4636 	} else if (mddev->external)
4637 		rdev = md_import_device(dev, -2, -1);
4638 	else
4639 		rdev = md_import_device(dev, -1, -1);
4640 
4641 	if (IS_ERR(rdev)) {
4642 		mddev_unlock(mddev);
4643 		return PTR_ERR(rdev);
4644 	}
4645 	err = bind_rdev_to_array(rdev, mddev);
4646  out:
4647 	if (err)
4648 		export_rdev(rdev);
4649 	mddev_unlock(mddev);
4650 	if (!err)
4651 		md_new_event(mddev);
4652 	return err ? err : len;
4653 }
4654 
4655 static struct md_sysfs_entry md_new_device =
4656 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4657 
4658 static ssize_t
4659 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4660 {
4661 	char *end;
4662 	unsigned long chunk, end_chunk;
4663 	int err;
4664 
4665 	err = mddev_lock(mddev);
4666 	if (err)
4667 		return err;
4668 	if (!mddev->bitmap)
4669 		goto out;
4670 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4671 	while (*buf) {
4672 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4673 		if (buf == end) break;
4674 		if (*end == '-') { /* range */
4675 			buf = end + 1;
4676 			end_chunk = simple_strtoul(buf, &end, 0);
4677 			if (buf == end) break;
4678 		}
4679 		if (*end && !isspace(*end)) break;
4680 		md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4681 		buf = skip_spaces(end);
4682 	}
4683 	md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4684 out:
4685 	mddev_unlock(mddev);
4686 	return len;
4687 }
4688 
4689 static struct md_sysfs_entry md_bitmap =
4690 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4691 
4692 static ssize_t
4693 size_show(struct mddev *mddev, char *page)
4694 {
4695 	return sprintf(page, "%llu\n",
4696 		(unsigned long long)mddev->dev_sectors / 2);
4697 }
4698 
4699 static int update_size(struct mddev *mddev, sector_t num_sectors);
4700 
4701 static ssize_t
4702 size_store(struct mddev *mddev, const char *buf, size_t len)
4703 {
4704 	/* If array is inactive, we can reduce the component size, but
4705 	 * not increase it (except from 0).
4706 	 * If array is active, we can try an on-line resize
4707 	 */
4708 	sector_t sectors;
4709 	int err = strict_blocks_to_sectors(buf, &sectors);
4710 
4711 	if (err < 0)
4712 		return err;
4713 	err = mddev_lock(mddev);
4714 	if (err)
4715 		return err;
4716 	if (mddev->pers) {
4717 		err = update_size(mddev, sectors);
4718 		if (err == 0)
4719 			md_update_sb(mddev, 1);
4720 	} else {
4721 		if (mddev->dev_sectors == 0 ||
4722 		    mddev->dev_sectors > sectors)
4723 			mddev->dev_sectors = sectors;
4724 		else
4725 			err = -ENOSPC;
4726 	}
4727 	mddev_unlock(mddev);
4728 	return err ? err : len;
4729 }
4730 
4731 static struct md_sysfs_entry md_size =
4732 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4733 
4734 /* Metadata version.
4735  * This is one of
4736  *   'none' for arrays with no metadata (good luck...)
4737  *   'external' for arrays with externally managed metadata,
4738  * or N.M for internally known formats
4739  */
4740 static ssize_t
4741 metadata_show(struct mddev *mddev, char *page)
4742 {
4743 	if (mddev->persistent)
4744 		return sprintf(page, "%d.%d\n",
4745 			       mddev->major_version, mddev->minor_version);
4746 	else if (mddev->external)
4747 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4748 	else
4749 		return sprintf(page, "none\n");
4750 }
4751 
4752 static ssize_t
4753 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4754 {
4755 	int major, minor;
4756 	char *e;
4757 	int err;
4758 	/* Changing the details of 'external' metadata is
4759 	 * always permitted.  Otherwise there must be
4760 	 * no devices attached to the array.
4761 	 */
4762 
4763 	err = mddev_lock(mddev);
4764 	if (err)
4765 		return err;
4766 	err = -EBUSY;
4767 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4768 		;
4769 	else if (!list_empty(&mddev->disks))
4770 		goto out_unlock;
4771 
4772 	err = 0;
4773 	if (cmd_match(buf, "none")) {
4774 		mddev->persistent = 0;
4775 		mddev->external = 0;
4776 		mddev->major_version = 0;
4777 		mddev->minor_version = 90;
4778 		goto out_unlock;
4779 	}
4780 	if (strncmp(buf, "external:", 9) == 0) {
4781 		size_t namelen = len-9;
4782 		if (namelen >= sizeof(mddev->metadata_type))
4783 			namelen = sizeof(mddev->metadata_type)-1;
4784 		strncpy(mddev->metadata_type, buf+9, namelen);
4785 		mddev->metadata_type[namelen] = 0;
4786 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4787 			mddev->metadata_type[--namelen] = 0;
4788 		mddev->persistent = 0;
4789 		mddev->external = 1;
4790 		mddev->major_version = 0;
4791 		mddev->minor_version = 90;
4792 		goto out_unlock;
4793 	}
4794 	major = simple_strtoul(buf, &e, 10);
4795 	err = -EINVAL;
4796 	if (e==buf || *e != '.')
4797 		goto out_unlock;
4798 	buf = e+1;
4799 	minor = simple_strtoul(buf, &e, 10);
4800 	if (e==buf || (*e && *e != '\n') )
4801 		goto out_unlock;
4802 	err = -ENOENT;
4803 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4804 		goto out_unlock;
4805 	mddev->major_version = major;
4806 	mddev->minor_version = minor;
4807 	mddev->persistent = 1;
4808 	mddev->external = 0;
4809 	err = 0;
4810 out_unlock:
4811 	mddev_unlock(mddev);
4812 	return err ?: len;
4813 }
4814 
4815 static struct md_sysfs_entry md_metadata =
4816 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4817 
4818 static ssize_t
4819 action_show(struct mddev *mddev, char *page)
4820 {
4821 	char *type = "idle";
4822 	unsigned long recovery = mddev->recovery;
4823 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4824 		type = "frozen";
4825 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4826 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4827 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4828 			type = "reshape";
4829 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4830 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4831 				type = "resync";
4832 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4833 				type = "check";
4834 			else
4835 				type = "repair";
4836 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4837 			type = "recover";
4838 		else if (mddev->reshape_position != MaxSector)
4839 			type = "reshape";
4840 	}
4841 	return sprintf(page, "%s\n", type);
4842 }
4843 
4844 static ssize_t
4845 action_store(struct mddev *mddev, const char *page, size_t len)
4846 {
4847 	if (!mddev->pers || !mddev->pers->sync_request)
4848 		return -EINVAL;
4849 
4850 
4851 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4852 		if (cmd_match(page, "frozen"))
4853 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4854 		else
4855 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4856 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4857 		    mddev_lock(mddev) == 0) {
4858 			if (work_pending(&mddev->del_work))
4859 				flush_workqueue(md_misc_wq);
4860 			if (mddev->sync_thread) {
4861 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4862 				md_reap_sync_thread(mddev);
4863 			}
4864 			mddev_unlock(mddev);
4865 		}
4866 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4867 		return -EBUSY;
4868 	else if (cmd_match(page, "resync"))
4869 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4870 	else if (cmd_match(page, "recover")) {
4871 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4872 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4873 	} else if (cmd_match(page, "reshape")) {
4874 		int err;
4875 		if (mddev->pers->start_reshape == NULL)
4876 			return -EINVAL;
4877 		err = mddev_lock(mddev);
4878 		if (!err) {
4879 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4880 				err =  -EBUSY;
4881 			else {
4882 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4883 				err = mddev->pers->start_reshape(mddev);
4884 			}
4885 			mddev_unlock(mddev);
4886 		}
4887 		if (err)
4888 			return err;
4889 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4890 	} else {
4891 		if (cmd_match(page, "check"))
4892 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4893 		else if (!cmd_match(page, "repair"))
4894 			return -EINVAL;
4895 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4896 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4897 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4898 	}
4899 	if (mddev->ro == 2) {
4900 		/* A write to sync_action is enough to justify
4901 		 * canceling read-auto mode
4902 		 */
4903 		mddev->ro = 0;
4904 		md_wakeup_thread(mddev->sync_thread);
4905 	}
4906 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4907 	md_wakeup_thread(mddev->thread);
4908 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4909 	return len;
4910 }
4911 
4912 static struct md_sysfs_entry md_scan_mode =
4913 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4914 
4915 static ssize_t
4916 last_sync_action_show(struct mddev *mddev, char *page)
4917 {
4918 	return sprintf(page, "%s\n", mddev->last_sync_action);
4919 }
4920 
4921 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4922 
4923 static ssize_t
4924 mismatch_cnt_show(struct mddev *mddev, char *page)
4925 {
4926 	return sprintf(page, "%llu\n",
4927 		       (unsigned long long)
4928 		       atomic64_read(&mddev->resync_mismatches));
4929 }
4930 
4931 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4932 
4933 static ssize_t
4934 sync_min_show(struct mddev *mddev, char *page)
4935 {
4936 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4937 		       mddev->sync_speed_min ? "local": "system");
4938 }
4939 
4940 static ssize_t
4941 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4942 {
4943 	unsigned int min;
4944 	int rv;
4945 
4946 	if (strncmp(buf, "system", 6)==0) {
4947 		min = 0;
4948 	} else {
4949 		rv = kstrtouint(buf, 10, &min);
4950 		if (rv < 0)
4951 			return rv;
4952 		if (min == 0)
4953 			return -EINVAL;
4954 	}
4955 	mddev->sync_speed_min = min;
4956 	return len;
4957 }
4958 
4959 static struct md_sysfs_entry md_sync_min =
4960 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4961 
4962 static ssize_t
4963 sync_max_show(struct mddev *mddev, char *page)
4964 {
4965 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4966 		       mddev->sync_speed_max ? "local": "system");
4967 }
4968 
4969 static ssize_t
4970 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4971 {
4972 	unsigned int max;
4973 	int rv;
4974 
4975 	if (strncmp(buf, "system", 6)==0) {
4976 		max = 0;
4977 	} else {
4978 		rv = kstrtouint(buf, 10, &max);
4979 		if (rv < 0)
4980 			return rv;
4981 		if (max == 0)
4982 			return -EINVAL;
4983 	}
4984 	mddev->sync_speed_max = max;
4985 	return len;
4986 }
4987 
4988 static struct md_sysfs_entry md_sync_max =
4989 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4990 
4991 static ssize_t
4992 degraded_show(struct mddev *mddev, char *page)
4993 {
4994 	return sprintf(page, "%d\n", mddev->degraded);
4995 }
4996 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4997 
4998 static ssize_t
4999 sync_force_parallel_show(struct mddev *mddev, char *page)
5000 {
5001 	return sprintf(page, "%d\n", mddev->parallel_resync);
5002 }
5003 
5004 static ssize_t
5005 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5006 {
5007 	long n;
5008 
5009 	if (kstrtol(buf, 10, &n))
5010 		return -EINVAL;
5011 
5012 	if (n != 0 && n != 1)
5013 		return -EINVAL;
5014 
5015 	mddev->parallel_resync = n;
5016 
5017 	if (mddev->sync_thread)
5018 		wake_up(&resync_wait);
5019 
5020 	return len;
5021 }
5022 
5023 /* force parallel resync, even with shared block devices */
5024 static struct md_sysfs_entry md_sync_force_parallel =
5025 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5026        sync_force_parallel_show, sync_force_parallel_store);
5027 
5028 static ssize_t
5029 sync_speed_show(struct mddev *mddev, char *page)
5030 {
5031 	unsigned long resync, dt, db;
5032 	if (mddev->curr_resync == 0)
5033 		return sprintf(page, "none\n");
5034 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5035 	dt = (jiffies - mddev->resync_mark) / HZ;
5036 	if (!dt) dt++;
5037 	db = resync - mddev->resync_mark_cnt;
5038 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5039 }
5040 
5041 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5042 
5043 static ssize_t
5044 sync_completed_show(struct mddev *mddev, char *page)
5045 {
5046 	unsigned long long max_sectors, resync;
5047 
5048 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5049 		return sprintf(page, "none\n");
5050 
5051 	if (mddev->curr_resync == 1 ||
5052 	    mddev->curr_resync == 2)
5053 		return sprintf(page, "delayed\n");
5054 
5055 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5056 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5057 		max_sectors = mddev->resync_max_sectors;
5058 	else
5059 		max_sectors = mddev->dev_sectors;
5060 
5061 	resync = mddev->curr_resync_completed;
5062 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5063 }
5064 
5065 static struct md_sysfs_entry md_sync_completed =
5066 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5067 
5068 static ssize_t
5069 min_sync_show(struct mddev *mddev, char *page)
5070 {
5071 	return sprintf(page, "%llu\n",
5072 		       (unsigned long long)mddev->resync_min);
5073 }
5074 static ssize_t
5075 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5076 {
5077 	unsigned long long min;
5078 	int err;
5079 
5080 	if (kstrtoull(buf, 10, &min))
5081 		return -EINVAL;
5082 
5083 	spin_lock(&mddev->lock);
5084 	err = -EINVAL;
5085 	if (min > mddev->resync_max)
5086 		goto out_unlock;
5087 
5088 	err = -EBUSY;
5089 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5090 		goto out_unlock;
5091 
5092 	/* Round down to multiple of 4K for safety */
5093 	mddev->resync_min = round_down(min, 8);
5094 	err = 0;
5095 
5096 out_unlock:
5097 	spin_unlock(&mddev->lock);
5098 	return err ?: len;
5099 }
5100 
5101 static struct md_sysfs_entry md_min_sync =
5102 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5103 
5104 static ssize_t
5105 max_sync_show(struct mddev *mddev, char *page)
5106 {
5107 	if (mddev->resync_max == MaxSector)
5108 		return sprintf(page, "max\n");
5109 	else
5110 		return sprintf(page, "%llu\n",
5111 			       (unsigned long long)mddev->resync_max);
5112 }
5113 static ssize_t
5114 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5115 {
5116 	int err;
5117 	spin_lock(&mddev->lock);
5118 	if (strncmp(buf, "max", 3) == 0)
5119 		mddev->resync_max = MaxSector;
5120 	else {
5121 		unsigned long long max;
5122 		int chunk;
5123 
5124 		err = -EINVAL;
5125 		if (kstrtoull(buf, 10, &max))
5126 			goto out_unlock;
5127 		if (max < mddev->resync_min)
5128 			goto out_unlock;
5129 
5130 		err = -EBUSY;
5131 		if (max < mddev->resync_max &&
5132 		    mddev->ro == 0 &&
5133 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5134 			goto out_unlock;
5135 
5136 		/* Must be a multiple of chunk_size */
5137 		chunk = mddev->chunk_sectors;
5138 		if (chunk) {
5139 			sector_t temp = max;
5140 
5141 			err = -EINVAL;
5142 			if (sector_div(temp, chunk))
5143 				goto out_unlock;
5144 		}
5145 		mddev->resync_max = max;
5146 	}
5147 	wake_up(&mddev->recovery_wait);
5148 	err = 0;
5149 out_unlock:
5150 	spin_unlock(&mddev->lock);
5151 	return err ?: len;
5152 }
5153 
5154 static struct md_sysfs_entry md_max_sync =
5155 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5156 
5157 static ssize_t
5158 suspend_lo_show(struct mddev *mddev, char *page)
5159 {
5160 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5161 }
5162 
5163 static ssize_t
5164 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5165 {
5166 	unsigned long long new;
5167 	int err;
5168 
5169 	err = kstrtoull(buf, 10, &new);
5170 	if (err < 0)
5171 		return err;
5172 	if (new != (sector_t)new)
5173 		return -EINVAL;
5174 
5175 	err = mddev_lock(mddev);
5176 	if (err)
5177 		return err;
5178 	err = -EINVAL;
5179 	if (mddev->pers == NULL ||
5180 	    mddev->pers->quiesce == NULL)
5181 		goto unlock;
5182 	mddev_suspend(mddev);
5183 	mddev->suspend_lo = new;
5184 	mddev_resume(mddev);
5185 
5186 	err = 0;
5187 unlock:
5188 	mddev_unlock(mddev);
5189 	return err ?: len;
5190 }
5191 static struct md_sysfs_entry md_suspend_lo =
5192 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5193 
5194 static ssize_t
5195 suspend_hi_show(struct mddev *mddev, char *page)
5196 {
5197 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5198 }
5199 
5200 static ssize_t
5201 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5202 {
5203 	unsigned long long new;
5204 	int err;
5205 
5206 	err = kstrtoull(buf, 10, &new);
5207 	if (err < 0)
5208 		return err;
5209 	if (new != (sector_t)new)
5210 		return -EINVAL;
5211 
5212 	err = mddev_lock(mddev);
5213 	if (err)
5214 		return err;
5215 	err = -EINVAL;
5216 	if (mddev->pers == NULL)
5217 		goto unlock;
5218 
5219 	mddev_suspend(mddev);
5220 	mddev->suspend_hi = new;
5221 	mddev_resume(mddev);
5222 
5223 	err = 0;
5224 unlock:
5225 	mddev_unlock(mddev);
5226 	return err ?: len;
5227 }
5228 static struct md_sysfs_entry md_suspend_hi =
5229 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5230 
5231 static ssize_t
5232 reshape_position_show(struct mddev *mddev, char *page)
5233 {
5234 	if (mddev->reshape_position != MaxSector)
5235 		return sprintf(page, "%llu\n",
5236 			       (unsigned long long)mddev->reshape_position);
5237 	strcpy(page, "none\n");
5238 	return 5;
5239 }
5240 
5241 static ssize_t
5242 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5243 {
5244 	struct md_rdev *rdev;
5245 	unsigned long long new;
5246 	int err;
5247 
5248 	err = kstrtoull(buf, 10, &new);
5249 	if (err < 0)
5250 		return err;
5251 	if (new != (sector_t)new)
5252 		return -EINVAL;
5253 	err = mddev_lock(mddev);
5254 	if (err)
5255 		return err;
5256 	err = -EBUSY;
5257 	if (mddev->pers)
5258 		goto unlock;
5259 	mddev->reshape_position = new;
5260 	mddev->delta_disks = 0;
5261 	mddev->reshape_backwards = 0;
5262 	mddev->new_level = mddev->level;
5263 	mddev->new_layout = mddev->layout;
5264 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5265 	rdev_for_each(rdev, mddev)
5266 		rdev->new_data_offset = rdev->data_offset;
5267 	err = 0;
5268 unlock:
5269 	mddev_unlock(mddev);
5270 	return err ?: len;
5271 }
5272 
5273 static struct md_sysfs_entry md_reshape_position =
5274 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5275        reshape_position_store);
5276 
5277 static ssize_t
5278 reshape_direction_show(struct mddev *mddev, char *page)
5279 {
5280 	return sprintf(page, "%s\n",
5281 		       mddev->reshape_backwards ? "backwards" : "forwards");
5282 }
5283 
5284 static ssize_t
5285 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5286 {
5287 	int backwards = 0;
5288 	int err;
5289 
5290 	if (cmd_match(buf, "forwards"))
5291 		backwards = 0;
5292 	else if (cmd_match(buf, "backwards"))
5293 		backwards = 1;
5294 	else
5295 		return -EINVAL;
5296 	if (mddev->reshape_backwards == backwards)
5297 		return len;
5298 
5299 	err = mddev_lock(mddev);
5300 	if (err)
5301 		return err;
5302 	/* check if we are allowed to change */
5303 	if (mddev->delta_disks)
5304 		err = -EBUSY;
5305 	else if (mddev->persistent &&
5306 	    mddev->major_version == 0)
5307 		err =  -EINVAL;
5308 	else
5309 		mddev->reshape_backwards = backwards;
5310 	mddev_unlock(mddev);
5311 	return err ?: len;
5312 }
5313 
5314 static struct md_sysfs_entry md_reshape_direction =
5315 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5316        reshape_direction_store);
5317 
5318 static ssize_t
5319 array_size_show(struct mddev *mddev, char *page)
5320 {
5321 	if (mddev->external_size)
5322 		return sprintf(page, "%llu\n",
5323 			       (unsigned long long)mddev->array_sectors/2);
5324 	else
5325 		return sprintf(page, "default\n");
5326 }
5327 
5328 static ssize_t
5329 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5330 {
5331 	sector_t sectors;
5332 	int err;
5333 
5334 	err = mddev_lock(mddev);
5335 	if (err)
5336 		return err;
5337 
5338 	/* cluster raid doesn't support change array_sectors */
5339 	if (mddev_is_clustered(mddev)) {
5340 		mddev_unlock(mddev);
5341 		return -EINVAL;
5342 	}
5343 
5344 	if (strncmp(buf, "default", 7) == 0) {
5345 		if (mddev->pers)
5346 			sectors = mddev->pers->size(mddev, 0, 0);
5347 		else
5348 			sectors = mddev->array_sectors;
5349 
5350 		mddev->external_size = 0;
5351 	} else {
5352 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
5353 			err = -EINVAL;
5354 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5355 			err = -E2BIG;
5356 		else
5357 			mddev->external_size = 1;
5358 	}
5359 
5360 	if (!err) {
5361 		mddev->array_sectors = sectors;
5362 		if (mddev->pers)
5363 			set_capacity_and_notify(mddev->gendisk,
5364 						mddev->array_sectors);
5365 	}
5366 	mddev_unlock(mddev);
5367 	return err ?: len;
5368 }
5369 
5370 static struct md_sysfs_entry md_array_size =
5371 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5372        array_size_store);
5373 
5374 static ssize_t
5375 consistency_policy_show(struct mddev *mddev, char *page)
5376 {
5377 	int ret;
5378 
5379 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5380 		ret = sprintf(page, "journal\n");
5381 	} else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5382 		ret = sprintf(page, "ppl\n");
5383 	} else if (mddev->bitmap) {
5384 		ret = sprintf(page, "bitmap\n");
5385 	} else if (mddev->pers) {
5386 		if (mddev->pers->sync_request)
5387 			ret = sprintf(page, "resync\n");
5388 		else
5389 			ret = sprintf(page, "none\n");
5390 	} else {
5391 		ret = sprintf(page, "unknown\n");
5392 	}
5393 
5394 	return ret;
5395 }
5396 
5397 static ssize_t
5398 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5399 {
5400 	int err = 0;
5401 
5402 	if (mddev->pers) {
5403 		if (mddev->pers->change_consistency_policy)
5404 			err = mddev->pers->change_consistency_policy(mddev, buf);
5405 		else
5406 			err = -EBUSY;
5407 	} else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5408 		set_bit(MD_HAS_PPL, &mddev->flags);
5409 	} else {
5410 		err = -EINVAL;
5411 	}
5412 
5413 	return err ? err : len;
5414 }
5415 
5416 static struct md_sysfs_entry md_consistency_policy =
5417 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5418        consistency_policy_store);
5419 
5420 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5421 {
5422 	return sprintf(page, "%d\n", mddev->fail_last_dev);
5423 }
5424 
5425 /*
5426  * Setting fail_last_dev to true to allow last device to be forcibly removed
5427  * from RAID1/RAID10.
5428  */
5429 static ssize_t
5430 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5431 {
5432 	int ret;
5433 	bool value;
5434 
5435 	ret = kstrtobool(buf, &value);
5436 	if (ret)
5437 		return ret;
5438 
5439 	if (value != mddev->fail_last_dev)
5440 		mddev->fail_last_dev = value;
5441 
5442 	return len;
5443 }
5444 static struct md_sysfs_entry md_fail_last_dev =
5445 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5446        fail_last_dev_store);
5447 
5448 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5449 {
5450 	if (mddev->pers == NULL || (mddev->pers->level != 1))
5451 		return sprintf(page, "n/a\n");
5452 	else
5453 		return sprintf(page, "%d\n", mddev->serialize_policy);
5454 }
5455 
5456 /*
5457  * Setting serialize_policy to true to enforce write IO is not reordered
5458  * for raid1.
5459  */
5460 static ssize_t
5461 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5462 {
5463 	int err;
5464 	bool value;
5465 
5466 	err = kstrtobool(buf, &value);
5467 	if (err)
5468 		return err;
5469 
5470 	if (value == mddev->serialize_policy)
5471 		return len;
5472 
5473 	err = mddev_lock(mddev);
5474 	if (err)
5475 		return err;
5476 	if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5477 		pr_err("md: serialize_policy is only effective for raid1\n");
5478 		err = -EINVAL;
5479 		goto unlock;
5480 	}
5481 
5482 	mddev_suspend(mddev);
5483 	if (value)
5484 		mddev_create_serial_pool(mddev, NULL, true);
5485 	else
5486 		mddev_destroy_serial_pool(mddev, NULL, true);
5487 	mddev->serialize_policy = value;
5488 	mddev_resume(mddev);
5489 unlock:
5490 	mddev_unlock(mddev);
5491 	return err ?: len;
5492 }
5493 
5494 static struct md_sysfs_entry md_serialize_policy =
5495 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5496        serialize_policy_store);
5497 
5498 
5499 static struct attribute *md_default_attrs[] = {
5500 	&md_level.attr,
5501 	&md_layout.attr,
5502 	&md_raid_disks.attr,
5503 	&md_uuid.attr,
5504 	&md_chunk_size.attr,
5505 	&md_size.attr,
5506 	&md_resync_start.attr,
5507 	&md_metadata.attr,
5508 	&md_new_device.attr,
5509 	&md_safe_delay.attr,
5510 	&md_array_state.attr,
5511 	&md_reshape_position.attr,
5512 	&md_reshape_direction.attr,
5513 	&md_array_size.attr,
5514 	&max_corr_read_errors.attr,
5515 	&md_consistency_policy.attr,
5516 	&md_fail_last_dev.attr,
5517 	&md_serialize_policy.attr,
5518 	NULL,
5519 };
5520 
5521 static struct attribute *md_redundancy_attrs[] = {
5522 	&md_scan_mode.attr,
5523 	&md_last_scan_mode.attr,
5524 	&md_mismatches.attr,
5525 	&md_sync_min.attr,
5526 	&md_sync_max.attr,
5527 	&md_sync_speed.attr,
5528 	&md_sync_force_parallel.attr,
5529 	&md_sync_completed.attr,
5530 	&md_min_sync.attr,
5531 	&md_max_sync.attr,
5532 	&md_suspend_lo.attr,
5533 	&md_suspend_hi.attr,
5534 	&md_bitmap.attr,
5535 	&md_degraded.attr,
5536 	NULL,
5537 };
5538 static struct attribute_group md_redundancy_group = {
5539 	.name = NULL,
5540 	.attrs = md_redundancy_attrs,
5541 };
5542 
5543 static ssize_t
5544 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5545 {
5546 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5547 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5548 	ssize_t rv;
5549 
5550 	if (!entry->show)
5551 		return -EIO;
5552 	spin_lock(&all_mddevs_lock);
5553 	if (list_empty(&mddev->all_mddevs)) {
5554 		spin_unlock(&all_mddevs_lock);
5555 		return -EBUSY;
5556 	}
5557 	mddev_get(mddev);
5558 	spin_unlock(&all_mddevs_lock);
5559 
5560 	rv = entry->show(mddev, page);
5561 	mddev_put(mddev);
5562 	return rv;
5563 }
5564 
5565 static ssize_t
5566 md_attr_store(struct kobject *kobj, struct attribute *attr,
5567 	      const char *page, size_t length)
5568 {
5569 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5570 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5571 	ssize_t rv;
5572 
5573 	if (!entry->store)
5574 		return -EIO;
5575 	if (!capable(CAP_SYS_ADMIN))
5576 		return -EACCES;
5577 	spin_lock(&all_mddevs_lock);
5578 	if (list_empty(&mddev->all_mddevs)) {
5579 		spin_unlock(&all_mddevs_lock);
5580 		return -EBUSY;
5581 	}
5582 	mddev_get(mddev);
5583 	spin_unlock(&all_mddevs_lock);
5584 	rv = entry->store(mddev, page, length);
5585 	mddev_put(mddev);
5586 	return rv;
5587 }
5588 
5589 static void md_free(struct kobject *ko)
5590 {
5591 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
5592 
5593 	if (mddev->sysfs_state)
5594 		sysfs_put(mddev->sysfs_state);
5595 	if (mddev->sysfs_level)
5596 		sysfs_put(mddev->sysfs_level);
5597 
5598 	if (mddev->gendisk)
5599 		del_gendisk(mddev->gendisk);
5600 	if (mddev->queue)
5601 		blk_cleanup_queue(mddev->queue);
5602 	if (mddev->gendisk)
5603 		put_disk(mddev->gendisk);
5604 	percpu_ref_exit(&mddev->writes_pending);
5605 
5606 	bioset_exit(&mddev->bio_set);
5607 	bioset_exit(&mddev->sync_set);
5608 	mempool_exit(&mddev->md_io_pool);
5609 	kfree(mddev);
5610 }
5611 
5612 static const struct sysfs_ops md_sysfs_ops = {
5613 	.show	= md_attr_show,
5614 	.store	= md_attr_store,
5615 };
5616 static struct kobj_type md_ktype = {
5617 	.release	= md_free,
5618 	.sysfs_ops	= &md_sysfs_ops,
5619 	.default_attrs	= md_default_attrs,
5620 };
5621 
5622 int mdp_major = 0;
5623 
5624 static void mddev_delayed_delete(struct work_struct *ws)
5625 {
5626 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
5627 
5628 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5629 	kobject_del(&mddev->kobj);
5630 	kobject_put(&mddev->kobj);
5631 }
5632 
5633 static void no_op(struct percpu_ref *r) {}
5634 
5635 int mddev_init_writes_pending(struct mddev *mddev)
5636 {
5637 	if (mddev->writes_pending.percpu_count_ptr)
5638 		return 0;
5639 	if (percpu_ref_init(&mddev->writes_pending, no_op,
5640 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5641 		return -ENOMEM;
5642 	/* We want to start with the refcount at zero */
5643 	percpu_ref_put(&mddev->writes_pending);
5644 	return 0;
5645 }
5646 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5647 
5648 static int md_alloc(dev_t dev, char *name)
5649 {
5650 	/*
5651 	 * If dev is zero, name is the name of a device to allocate with
5652 	 * an arbitrary minor number.  It will be "md_???"
5653 	 * If dev is non-zero it must be a device number with a MAJOR of
5654 	 * MD_MAJOR or mdp_major.  In this case, if "name" is NULL, then
5655 	 * the device is being created by opening a node in /dev.
5656 	 * If "name" is not NULL, the device is being created by
5657 	 * writing to /sys/module/md_mod/parameters/new_array.
5658 	 */
5659 	static DEFINE_MUTEX(disks_mutex);
5660 	struct mddev *mddev = mddev_find(dev);
5661 	struct gendisk *disk;
5662 	int partitioned;
5663 	int shift;
5664 	int unit;
5665 	int error;
5666 
5667 	if (!mddev)
5668 		return -ENODEV;
5669 
5670 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5671 	shift = partitioned ? MdpMinorShift : 0;
5672 	unit = MINOR(mddev->unit) >> shift;
5673 
5674 	/* wait for any previous instance of this device to be
5675 	 * completely removed (mddev_delayed_delete).
5676 	 */
5677 	flush_workqueue(md_misc_wq);
5678 
5679 	mutex_lock(&disks_mutex);
5680 	error = -EEXIST;
5681 	if (mddev->gendisk)
5682 		goto abort;
5683 
5684 	if (name && !dev) {
5685 		/* Need to ensure that 'name' is not a duplicate.
5686 		 */
5687 		struct mddev *mddev2;
5688 		spin_lock(&all_mddevs_lock);
5689 
5690 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5691 			if (mddev2->gendisk &&
5692 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5693 				spin_unlock(&all_mddevs_lock);
5694 				goto abort;
5695 			}
5696 		spin_unlock(&all_mddevs_lock);
5697 	}
5698 	if (name && dev)
5699 		/*
5700 		 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5701 		 */
5702 		mddev->hold_active = UNTIL_STOP;
5703 
5704 	error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE,
5705 					  sizeof(struct md_io));
5706 	if (error)
5707 		goto abort;
5708 
5709 	error = -ENOMEM;
5710 	mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5711 	if (!mddev->queue)
5712 		goto abort;
5713 
5714 	blk_set_stacking_limits(&mddev->queue->limits);
5715 
5716 	disk = alloc_disk(1 << shift);
5717 	if (!disk) {
5718 		blk_cleanup_queue(mddev->queue);
5719 		mddev->queue = NULL;
5720 		goto abort;
5721 	}
5722 	disk->major = MAJOR(mddev->unit);
5723 	disk->first_minor = unit << shift;
5724 	if (name)
5725 		strcpy(disk->disk_name, name);
5726 	else if (partitioned)
5727 		sprintf(disk->disk_name, "md_d%d", unit);
5728 	else
5729 		sprintf(disk->disk_name, "md%d", unit);
5730 	disk->fops = &md_fops;
5731 	disk->private_data = mddev;
5732 	disk->queue = mddev->queue;
5733 	blk_queue_write_cache(mddev->queue, true, true);
5734 	/* Allow extended partitions.  This makes the
5735 	 * 'mdp' device redundant, but we can't really
5736 	 * remove it now.
5737 	 */
5738 	disk->flags |= GENHD_FL_EXT_DEVT;
5739 	disk->events |= DISK_EVENT_MEDIA_CHANGE;
5740 	mddev->gendisk = disk;
5741 	/* As soon as we call add_disk(), another thread could get
5742 	 * through to md_open, so make sure it doesn't get too far
5743 	 */
5744 	mutex_lock(&mddev->open_mutex);
5745 	add_disk(disk);
5746 
5747 	error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5748 	if (error) {
5749 		/* This isn't possible, but as kobject_init_and_add is marked
5750 		 * __must_check, we must do something with the result
5751 		 */
5752 		pr_debug("md: cannot register %s/md - name in use\n",
5753 			 disk->disk_name);
5754 		error = 0;
5755 	}
5756 	if (mddev->kobj.sd &&
5757 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5758 		pr_debug("pointless warning\n");
5759 	mutex_unlock(&mddev->open_mutex);
5760  abort:
5761 	mutex_unlock(&disks_mutex);
5762 	if (!error && mddev->kobj.sd) {
5763 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5764 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5765 		mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5766 	}
5767 	mddev_put(mddev);
5768 	return error;
5769 }
5770 
5771 static void md_probe(dev_t dev)
5772 {
5773 	if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5774 		return;
5775 	if (create_on_open)
5776 		md_alloc(dev, NULL);
5777 }
5778 
5779 static int add_named_array(const char *val, const struct kernel_param *kp)
5780 {
5781 	/*
5782 	 * val must be "md_*" or "mdNNN".
5783 	 * For "md_*" we allocate an array with a large free minor number, and
5784 	 * set the name to val.  val must not already be an active name.
5785 	 * For "mdNNN" we allocate an array with the minor number NNN
5786 	 * which must not already be in use.
5787 	 */
5788 	int len = strlen(val);
5789 	char buf[DISK_NAME_LEN];
5790 	unsigned long devnum;
5791 
5792 	while (len && val[len-1] == '\n')
5793 		len--;
5794 	if (len >= DISK_NAME_LEN)
5795 		return -E2BIG;
5796 	strlcpy(buf, val, len+1);
5797 	if (strncmp(buf, "md_", 3) == 0)
5798 		return md_alloc(0, buf);
5799 	if (strncmp(buf, "md", 2) == 0 &&
5800 	    isdigit(buf[2]) &&
5801 	    kstrtoul(buf+2, 10, &devnum) == 0 &&
5802 	    devnum <= MINORMASK)
5803 		return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5804 
5805 	return -EINVAL;
5806 }
5807 
5808 static void md_safemode_timeout(struct timer_list *t)
5809 {
5810 	struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5811 
5812 	mddev->safemode = 1;
5813 	if (mddev->external)
5814 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5815 
5816 	md_wakeup_thread(mddev->thread);
5817 }
5818 
5819 static int start_dirty_degraded;
5820 
5821 int md_run(struct mddev *mddev)
5822 {
5823 	int err;
5824 	struct md_rdev *rdev;
5825 	struct md_personality *pers;
5826 
5827 	if (list_empty(&mddev->disks))
5828 		/* cannot run an array with no devices.. */
5829 		return -EINVAL;
5830 
5831 	if (mddev->pers)
5832 		return -EBUSY;
5833 	/* Cannot run until previous stop completes properly */
5834 	if (mddev->sysfs_active)
5835 		return -EBUSY;
5836 
5837 	/*
5838 	 * Analyze all RAID superblock(s)
5839 	 */
5840 	if (!mddev->raid_disks) {
5841 		if (!mddev->persistent)
5842 			return -EINVAL;
5843 		err = analyze_sbs(mddev);
5844 		if (err)
5845 			return -EINVAL;
5846 	}
5847 
5848 	if (mddev->level != LEVEL_NONE)
5849 		request_module("md-level-%d", mddev->level);
5850 	else if (mddev->clevel[0])
5851 		request_module("md-%s", mddev->clevel);
5852 
5853 	/*
5854 	 * Drop all container device buffers, from now on
5855 	 * the only valid external interface is through the md
5856 	 * device.
5857 	 */
5858 	mddev->has_superblocks = false;
5859 	rdev_for_each(rdev, mddev) {
5860 		if (test_bit(Faulty, &rdev->flags))
5861 			continue;
5862 		sync_blockdev(rdev->bdev);
5863 		invalidate_bdev(rdev->bdev);
5864 		if (mddev->ro != 1 &&
5865 		    (bdev_read_only(rdev->bdev) ||
5866 		     bdev_read_only(rdev->meta_bdev))) {
5867 			mddev->ro = 1;
5868 			if (mddev->gendisk)
5869 				set_disk_ro(mddev->gendisk, 1);
5870 		}
5871 
5872 		if (rdev->sb_page)
5873 			mddev->has_superblocks = true;
5874 
5875 		/* perform some consistency tests on the device.
5876 		 * We don't want the data to overlap the metadata,
5877 		 * Internal Bitmap issues have been handled elsewhere.
5878 		 */
5879 		if (rdev->meta_bdev) {
5880 			/* Nothing to check */;
5881 		} else if (rdev->data_offset < rdev->sb_start) {
5882 			if (mddev->dev_sectors &&
5883 			    rdev->data_offset + mddev->dev_sectors
5884 			    > rdev->sb_start) {
5885 				pr_warn("md: %s: data overlaps metadata\n",
5886 					mdname(mddev));
5887 				return -EINVAL;
5888 			}
5889 		} else {
5890 			if (rdev->sb_start + rdev->sb_size/512
5891 			    > rdev->data_offset) {
5892 				pr_warn("md: %s: metadata overlaps data\n",
5893 					mdname(mddev));
5894 				return -EINVAL;
5895 			}
5896 		}
5897 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5898 	}
5899 
5900 	if (!bioset_initialized(&mddev->bio_set)) {
5901 		err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5902 		if (err)
5903 			return err;
5904 	}
5905 	if (!bioset_initialized(&mddev->sync_set)) {
5906 		err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5907 		if (err)
5908 			return err;
5909 	}
5910 
5911 	spin_lock(&pers_lock);
5912 	pers = find_pers(mddev->level, mddev->clevel);
5913 	if (!pers || !try_module_get(pers->owner)) {
5914 		spin_unlock(&pers_lock);
5915 		if (mddev->level != LEVEL_NONE)
5916 			pr_warn("md: personality for level %d is not loaded!\n",
5917 				mddev->level);
5918 		else
5919 			pr_warn("md: personality for level %s is not loaded!\n",
5920 				mddev->clevel);
5921 		err = -EINVAL;
5922 		goto abort;
5923 	}
5924 	spin_unlock(&pers_lock);
5925 	if (mddev->level != pers->level) {
5926 		mddev->level = pers->level;
5927 		mddev->new_level = pers->level;
5928 	}
5929 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5930 
5931 	if (mddev->reshape_position != MaxSector &&
5932 	    pers->start_reshape == NULL) {
5933 		/* This personality cannot handle reshaping... */
5934 		module_put(pers->owner);
5935 		err = -EINVAL;
5936 		goto abort;
5937 	}
5938 
5939 	if (pers->sync_request) {
5940 		/* Warn if this is a potentially silly
5941 		 * configuration.
5942 		 */
5943 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5944 		struct md_rdev *rdev2;
5945 		int warned = 0;
5946 
5947 		rdev_for_each(rdev, mddev)
5948 			rdev_for_each(rdev2, mddev) {
5949 				if (rdev < rdev2 &&
5950 				    rdev->bdev->bd_disk ==
5951 				    rdev2->bdev->bd_disk) {
5952 					pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5953 						mdname(mddev),
5954 						bdevname(rdev->bdev,b),
5955 						bdevname(rdev2->bdev,b2));
5956 					warned = 1;
5957 				}
5958 			}
5959 
5960 		if (warned)
5961 			pr_warn("True protection against single-disk failure might be compromised.\n");
5962 	}
5963 
5964 	mddev->recovery = 0;
5965 	/* may be over-ridden by personality */
5966 	mddev->resync_max_sectors = mddev->dev_sectors;
5967 
5968 	mddev->ok_start_degraded = start_dirty_degraded;
5969 
5970 	if (start_readonly && mddev->ro == 0)
5971 		mddev->ro = 2; /* read-only, but switch on first write */
5972 
5973 	err = pers->run(mddev);
5974 	if (err)
5975 		pr_warn("md: pers->run() failed ...\n");
5976 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5977 		WARN_ONCE(!mddev->external_size,
5978 			  "%s: default size too small, but 'external_size' not in effect?\n",
5979 			  __func__);
5980 		pr_warn("md: invalid array_size %llu > default size %llu\n",
5981 			(unsigned long long)mddev->array_sectors / 2,
5982 			(unsigned long long)pers->size(mddev, 0, 0) / 2);
5983 		err = -EINVAL;
5984 	}
5985 	if (err == 0 && pers->sync_request &&
5986 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5987 		struct bitmap *bitmap;
5988 
5989 		bitmap = md_bitmap_create(mddev, -1);
5990 		if (IS_ERR(bitmap)) {
5991 			err = PTR_ERR(bitmap);
5992 			pr_warn("%s: failed to create bitmap (%d)\n",
5993 				mdname(mddev), err);
5994 		} else
5995 			mddev->bitmap = bitmap;
5996 
5997 	}
5998 	if (err)
5999 		goto bitmap_abort;
6000 
6001 	if (mddev->bitmap_info.max_write_behind > 0) {
6002 		bool create_pool = false;
6003 
6004 		rdev_for_each(rdev, mddev) {
6005 			if (test_bit(WriteMostly, &rdev->flags) &&
6006 			    rdev_init_serial(rdev))
6007 				create_pool = true;
6008 		}
6009 		if (create_pool && mddev->serial_info_pool == NULL) {
6010 			mddev->serial_info_pool =
6011 				mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6012 						    sizeof(struct serial_info));
6013 			if (!mddev->serial_info_pool) {
6014 				err = -ENOMEM;
6015 				goto bitmap_abort;
6016 			}
6017 		}
6018 	}
6019 
6020 	if (mddev->queue) {
6021 		bool nonrot = true;
6022 
6023 		rdev_for_each(rdev, mddev) {
6024 			if (rdev->raid_disk >= 0 &&
6025 			    !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6026 				nonrot = false;
6027 				break;
6028 			}
6029 		}
6030 		if (mddev->degraded)
6031 			nonrot = false;
6032 		if (nonrot)
6033 			blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6034 		else
6035 			blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6036 	}
6037 	if (pers->sync_request) {
6038 		if (mddev->kobj.sd &&
6039 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6040 			pr_warn("md: cannot register extra attributes for %s\n",
6041 				mdname(mddev));
6042 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6043 		mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6044 		mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6045 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
6046 		mddev->ro = 0;
6047 
6048 	atomic_set(&mddev->max_corr_read_errors,
6049 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6050 	mddev->safemode = 0;
6051 	if (mddev_is_clustered(mddev))
6052 		mddev->safemode_delay = 0;
6053 	else
6054 		mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6055 	mddev->in_sync = 1;
6056 	smp_wmb();
6057 	spin_lock(&mddev->lock);
6058 	mddev->pers = pers;
6059 	spin_unlock(&mddev->lock);
6060 	rdev_for_each(rdev, mddev)
6061 		if (rdev->raid_disk >= 0)
6062 			sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6063 
6064 	if (mddev->degraded && !mddev->ro)
6065 		/* This ensures that recovering status is reported immediately
6066 		 * via sysfs - until a lack of spares is confirmed.
6067 		 */
6068 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6069 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6070 
6071 	if (mddev->sb_flags)
6072 		md_update_sb(mddev, 0);
6073 
6074 	md_new_event(mddev);
6075 	return 0;
6076 
6077 bitmap_abort:
6078 	mddev_detach(mddev);
6079 	if (mddev->private)
6080 		pers->free(mddev, mddev->private);
6081 	mddev->private = NULL;
6082 	module_put(pers->owner);
6083 	md_bitmap_destroy(mddev);
6084 abort:
6085 	bioset_exit(&mddev->bio_set);
6086 	bioset_exit(&mddev->sync_set);
6087 	return err;
6088 }
6089 EXPORT_SYMBOL_GPL(md_run);
6090 
6091 int do_md_run(struct mddev *mddev)
6092 {
6093 	int err;
6094 
6095 	set_bit(MD_NOT_READY, &mddev->flags);
6096 	err = md_run(mddev);
6097 	if (err)
6098 		goto out;
6099 	err = md_bitmap_load(mddev);
6100 	if (err) {
6101 		md_bitmap_destroy(mddev);
6102 		goto out;
6103 	}
6104 
6105 	if (mddev_is_clustered(mddev))
6106 		md_allow_write(mddev);
6107 
6108 	/* run start up tasks that require md_thread */
6109 	md_start(mddev);
6110 
6111 	md_wakeup_thread(mddev->thread);
6112 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6113 
6114 	set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6115 	clear_bit(MD_NOT_READY, &mddev->flags);
6116 	mddev->changed = 1;
6117 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6118 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6119 	sysfs_notify_dirent_safe(mddev->sysfs_action);
6120 	sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6121 out:
6122 	clear_bit(MD_NOT_READY, &mddev->flags);
6123 	return err;
6124 }
6125 
6126 int md_start(struct mddev *mddev)
6127 {
6128 	int ret = 0;
6129 
6130 	if (mddev->pers->start) {
6131 		set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6132 		md_wakeup_thread(mddev->thread);
6133 		ret = mddev->pers->start(mddev);
6134 		clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6135 		md_wakeup_thread(mddev->sync_thread);
6136 	}
6137 	return ret;
6138 }
6139 EXPORT_SYMBOL_GPL(md_start);
6140 
6141 static int restart_array(struct mddev *mddev)
6142 {
6143 	struct gendisk *disk = mddev->gendisk;
6144 	struct md_rdev *rdev;
6145 	bool has_journal = false;
6146 	bool has_readonly = false;
6147 
6148 	/* Complain if it has no devices */
6149 	if (list_empty(&mddev->disks))
6150 		return -ENXIO;
6151 	if (!mddev->pers)
6152 		return -EINVAL;
6153 	if (!mddev->ro)
6154 		return -EBUSY;
6155 
6156 	rcu_read_lock();
6157 	rdev_for_each_rcu(rdev, mddev) {
6158 		if (test_bit(Journal, &rdev->flags) &&
6159 		    !test_bit(Faulty, &rdev->flags))
6160 			has_journal = true;
6161 		if (bdev_read_only(rdev->bdev))
6162 			has_readonly = true;
6163 	}
6164 	rcu_read_unlock();
6165 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6166 		/* Don't restart rw with journal missing/faulty */
6167 			return -EINVAL;
6168 	if (has_readonly)
6169 		return -EROFS;
6170 
6171 	mddev->safemode = 0;
6172 	mddev->ro = 0;
6173 	set_disk_ro(disk, 0);
6174 	pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6175 	/* Kick recovery or resync if necessary */
6176 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6177 	md_wakeup_thread(mddev->thread);
6178 	md_wakeup_thread(mddev->sync_thread);
6179 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6180 	return 0;
6181 }
6182 
6183 static void md_clean(struct mddev *mddev)
6184 {
6185 	mddev->array_sectors = 0;
6186 	mddev->external_size = 0;
6187 	mddev->dev_sectors = 0;
6188 	mddev->raid_disks = 0;
6189 	mddev->recovery_cp = 0;
6190 	mddev->resync_min = 0;
6191 	mddev->resync_max = MaxSector;
6192 	mddev->reshape_position = MaxSector;
6193 	mddev->external = 0;
6194 	mddev->persistent = 0;
6195 	mddev->level = LEVEL_NONE;
6196 	mddev->clevel[0] = 0;
6197 	mddev->flags = 0;
6198 	mddev->sb_flags = 0;
6199 	mddev->ro = 0;
6200 	mddev->metadata_type[0] = 0;
6201 	mddev->chunk_sectors = 0;
6202 	mddev->ctime = mddev->utime = 0;
6203 	mddev->layout = 0;
6204 	mddev->max_disks = 0;
6205 	mddev->events = 0;
6206 	mddev->can_decrease_events = 0;
6207 	mddev->delta_disks = 0;
6208 	mddev->reshape_backwards = 0;
6209 	mddev->new_level = LEVEL_NONE;
6210 	mddev->new_layout = 0;
6211 	mddev->new_chunk_sectors = 0;
6212 	mddev->curr_resync = 0;
6213 	atomic64_set(&mddev->resync_mismatches, 0);
6214 	mddev->suspend_lo = mddev->suspend_hi = 0;
6215 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
6216 	mddev->recovery = 0;
6217 	mddev->in_sync = 0;
6218 	mddev->changed = 0;
6219 	mddev->degraded = 0;
6220 	mddev->safemode = 0;
6221 	mddev->private = NULL;
6222 	mddev->cluster_info = NULL;
6223 	mddev->bitmap_info.offset = 0;
6224 	mddev->bitmap_info.default_offset = 0;
6225 	mddev->bitmap_info.default_space = 0;
6226 	mddev->bitmap_info.chunksize = 0;
6227 	mddev->bitmap_info.daemon_sleep = 0;
6228 	mddev->bitmap_info.max_write_behind = 0;
6229 	mddev->bitmap_info.nodes = 0;
6230 }
6231 
6232 static void __md_stop_writes(struct mddev *mddev)
6233 {
6234 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6235 	if (work_pending(&mddev->del_work))
6236 		flush_workqueue(md_misc_wq);
6237 	if (mddev->sync_thread) {
6238 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6239 		md_reap_sync_thread(mddev);
6240 	}
6241 
6242 	del_timer_sync(&mddev->safemode_timer);
6243 
6244 	if (mddev->pers && mddev->pers->quiesce) {
6245 		mddev->pers->quiesce(mddev, 1);
6246 		mddev->pers->quiesce(mddev, 0);
6247 	}
6248 	md_bitmap_flush(mddev);
6249 
6250 	if (mddev->ro == 0 &&
6251 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6252 	     mddev->sb_flags)) {
6253 		/* mark array as shutdown cleanly */
6254 		if (!mddev_is_clustered(mddev))
6255 			mddev->in_sync = 1;
6256 		md_update_sb(mddev, 1);
6257 	}
6258 	/* disable policy to guarantee rdevs free resources for serialization */
6259 	mddev->serialize_policy = 0;
6260 	mddev_destroy_serial_pool(mddev, NULL, true);
6261 }
6262 
6263 void md_stop_writes(struct mddev *mddev)
6264 {
6265 	mddev_lock_nointr(mddev);
6266 	__md_stop_writes(mddev);
6267 	mddev_unlock(mddev);
6268 }
6269 EXPORT_SYMBOL_GPL(md_stop_writes);
6270 
6271 static void mddev_detach(struct mddev *mddev)
6272 {
6273 	md_bitmap_wait_behind_writes(mddev);
6274 	if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6275 		mddev->pers->quiesce(mddev, 1);
6276 		mddev->pers->quiesce(mddev, 0);
6277 	}
6278 	md_unregister_thread(&mddev->thread);
6279 	if (mddev->queue)
6280 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6281 }
6282 
6283 static void __md_stop(struct mddev *mddev)
6284 {
6285 	struct md_personality *pers = mddev->pers;
6286 	md_bitmap_destroy(mddev);
6287 	mddev_detach(mddev);
6288 	/* Ensure ->event_work is done */
6289 	if (mddev->event_work.func)
6290 		flush_workqueue(md_misc_wq);
6291 	spin_lock(&mddev->lock);
6292 	mddev->pers = NULL;
6293 	spin_unlock(&mddev->lock);
6294 	pers->free(mddev, mddev->private);
6295 	mddev->private = NULL;
6296 	if (pers->sync_request && mddev->to_remove == NULL)
6297 		mddev->to_remove = &md_redundancy_group;
6298 	module_put(pers->owner);
6299 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6300 }
6301 
6302 void md_stop(struct mddev *mddev)
6303 {
6304 	/* stop the array and free an attached data structures.
6305 	 * This is called from dm-raid
6306 	 */
6307 	__md_stop(mddev);
6308 	bioset_exit(&mddev->bio_set);
6309 	bioset_exit(&mddev->sync_set);
6310 }
6311 
6312 EXPORT_SYMBOL_GPL(md_stop);
6313 
6314 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6315 {
6316 	int err = 0;
6317 	int did_freeze = 0;
6318 
6319 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6320 		did_freeze = 1;
6321 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6322 		md_wakeup_thread(mddev->thread);
6323 	}
6324 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6325 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6326 	if (mddev->sync_thread)
6327 		/* Thread might be blocked waiting for metadata update
6328 		 * which will now never happen */
6329 		wake_up_process(mddev->sync_thread->tsk);
6330 
6331 	if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6332 		return -EBUSY;
6333 	mddev_unlock(mddev);
6334 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6335 					  &mddev->recovery));
6336 	wait_event(mddev->sb_wait,
6337 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6338 	mddev_lock_nointr(mddev);
6339 
6340 	mutex_lock(&mddev->open_mutex);
6341 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6342 	    mddev->sync_thread ||
6343 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6344 		pr_warn("md: %s still in use.\n",mdname(mddev));
6345 		if (did_freeze) {
6346 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6347 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6348 			md_wakeup_thread(mddev->thread);
6349 		}
6350 		err = -EBUSY;
6351 		goto out;
6352 	}
6353 	if (mddev->pers) {
6354 		__md_stop_writes(mddev);
6355 
6356 		err  = -ENXIO;
6357 		if (mddev->ro==1)
6358 			goto out;
6359 		mddev->ro = 1;
6360 		set_disk_ro(mddev->gendisk, 1);
6361 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6362 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6363 		md_wakeup_thread(mddev->thread);
6364 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6365 		err = 0;
6366 	}
6367 out:
6368 	mutex_unlock(&mddev->open_mutex);
6369 	return err;
6370 }
6371 
6372 /* mode:
6373  *   0 - completely stop and dis-assemble array
6374  *   2 - stop but do not disassemble array
6375  */
6376 static int do_md_stop(struct mddev *mddev, int mode,
6377 		      struct block_device *bdev)
6378 {
6379 	struct gendisk *disk = mddev->gendisk;
6380 	struct md_rdev *rdev;
6381 	int did_freeze = 0;
6382 
6383 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6384 		did_freeze = 1;
6385 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6386 		md_wakeup_thread(mddev->thread);
6387 	}
6388 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6389 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6390 	if (mddev->sync_thread)
6391 		/* Thread might be blocked waiting for metadata update
6392 		 * which will now never happen */
6393 		wake_up_process(mddev->sync_thread->tsk);
6394 
6395 	mddev_unlock(mddev);
6396 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
6397 				 !test_bit(MD_RECOVERY_RUNNING,
6398 					   &mddev->recovery)));
6399 	mddev_lock_nointr(mddev);
6400 
6401 	mutex_lock(&mddev->open_mutex);
6402 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6403 	    mddev->sysfs_active ||
6404 	    mddev->sync_thread ||
6405 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6406 		pr_warn("md: %s still in use.\n",mdname(mddev));
6407 		mutex_unlock(&mddev->open_mutex);
6408 		if (did_freeze) {
6409 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6410 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6411 			md_wakeup_thread(mddev->thread);
6412 		}
6413 		return -EBUSY;
6414 	}
6415 	if (mddev->pers) {
6416 		if (mddev->ro)
6417 			set_disk_ro(disk, 0);
6418 
6419 		__md_stop_writes(mddev);
6420 		__md_stop(mddev);
6421 
6422 		/* tell userspace to handle 'inactive' */
6423 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6424 
6425 		rdev_for_each(rdev, mddev)
6426 			if (rdev->raid_disk >= 0)
6427 				sysfs_unlink_rdev(mddev, rdev);
6428 
6429 		set_capacity_and_notify(disk, 0);
6430 		mutex_unlock(&mddev->open_mutex);
6431 		mddev->changed = 1;
6432 
6433 		if (mddev->ro)
6434 			mddev->ro = 0;
6435 	} else
6436 		mutex_unlock(&mddev->open_mutex);
6437 	/*
6438 	 * Free resources if final stop
6439 	 */
6440 	if (mode == 0) {
6441 		pr_info("md: %s stopped.\n", mdname(mddev));
6442 
6443 		if (mddev->bitmap_info.file) {
6444 			struct file *f = mddev->bitmap_info.file;
6445 			spin_lock(&mddev->lock);
6446 			mddev->bitmap_info.file = NULL;
6447 			spin_unlock(&mddev->lock);
6448 			fput(f);
6449 		}
6450 		mddev->bitmap_info.offset = 0;
6451 
6452 		export_array(mddev);
6453 
6454 		md_clean(mddev);
6455 		if (mddev->hold_active == UNTIL_STOP)
6456 			mddev->hold_active = 0;
6457 	}
6458 	md_new_event(mddev);
6459 	sysfs_notify_dirent_safe(mddev->sysfs_state);
6460 	return 0;
6461 }
6462 
6463 #ifndef MODULE
6464 static void autorun_array(struct mddev *mddev)
6465 {
6466 	struct md_rdev *rdev;
6467 	int err;
6468 
6469 	if (list_empty(&mddev->disks))
6470 		return;
6471 
6472 	pr_info("md: running: ");
6473 
6474 	rdev_for_each(rdev, mddev) {
6475 		char b[BDEVNAME_SIZE];
6476 		pr_cont("<%s>", bdevname(rdev->bdev,b));
6477 	}
6478 	pr_cont("\n");
6479 
6480 	err = do_md_run(mddev);
6481 	if (err) {
6482 		pr_warn("md: do_md_run() returned %d\n", err);
6483 		do_md_stop(mddev, 0, NULL);
6484 	}
6485 }
6486 
6487 /*
6488  * lets try to run arrays based on all disks that have arrived
6489  * until now. (those are in pending_raid_disks)
6490  *
6491  * the method: pick the first pending disk, collect all disks with
6492  * the same UUID, remove all from the pending list and put them into
6493  * the 'same_array' list. Then order this list based on superblock
6494  * update time (freshest comes first), kick out 'old' disks and
6495  * compare superblocks. If everything's fine then run it.
6496  *
6497  * If "unit" is allocated, then bump its reference count
6498  */
6499 static void autorun_devices(int part)
6500 {
6501 	struct md_rdev *rdev0, *rdev, *tmp;
6502 	struct mddev *mddev;
6503 	char b[BDEVNAME_SIZE];
6504 
6505 	pr_info("md: autorun ...\n");
6506 	while (!list_empty(&pending_raid_disks)) {
6507 		int unit;
6508 		dev_t dev;
6509 		LIST_HEAD(candidates);
6510 		rdev0 = list_entry(pending_raid_disks.next,
6511 					 struct md_rdev, same_set);
6512 
6513 		pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6514 		INIT_LIST_HEAD(&candidates);
6515 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6516 			if (super_90_load(rdev, rdev0, 0) >= 0) {
6517 				pr_debug("md:  adding %s ...\n",
6518 					 bdevname(rdev->bdev,b));
6519 				list_move(&rdev->same_set, &candidates);
6520 			}
6521 		/*
6522 		 * now we have a set of devices, with all of them having
6523 		 * mostly sane superblocks. It's time to allocate the
6524 		 * mddev.
6525 		 */
6526 		if (part) {
6527 			dev = MKDEV(mdp_major,
6528 				    rdev0->preferred_minor << MdpMinorShift);
6529 			unit = MINOR(dev) >> MdpMinorShift;
6530 		} else {
6531 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6532 			unit = MINOR(dev);
6533 		}
6534 		if (rdev0->preferred_minor != unit) {
6535 			pr_warn("md: unit number in %s is bad: %d\n",
6536 				bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6537 			break;
6538 		}
6539 
6540 		md_probe(dev);
6541 		mddev = mddev_find(dev);
6542 		if (!mddev || !mddev->gendisk) {
6543 			if (mddev)
6544 				mddev_put(mddev);
6545 			break;
6546 		}
6547 		if (mddev_lock(mddev))
6548 			pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6549 		else if (mddev->raid_disks || mddev->major_version
6550 			 || !list_empty(&mddev->disks)) {
6551 			pr_warn("md: %s already running, cannot run %s\n",
6552 				mdname(mddev), bdevname(rdev0->bdev,b));
6553 			mddev_unlock(mddev);
6554 		} else {
6555 			pr_debug("md: created %s\n", mdname(mddev));
6556 			mddev->persistent = 1;
6557 			rdev_for_each_list(rdev, tmp, &candidates) {
6558 				list_del_init(&rdev->same_set);
6559 				if (bind_rdev_to_array(rdev, mddev))
6560 					export_rdev(rdev);
6561 			}
6562 			autorun_array(mddev);
6563 			mddev_unlock(mddev);
6564 		}
6565 		/* on success, candidates will be empty, on error
6566 		 * it won't...
6567 		 */
6568 		rdev_for_each_list(rdev, tmp, &candidates) {
6569 			list_del_init(&rdev->same_set);
6570 			export_rdev(rdev);
6571 		}
6572 		mddev_put(mddev);
6573 	}
6574 	pr_info("md: ... autorun DONE.\n");
6575 }
6576 #endif /* !MODULE */
6577 
6578 static int get_version(void __user *arg)
6579 {
6580 	mdu_version_t ver;
6581 
6582 	ver.major = MD_MAJOR_VERSION;
6583 	ver.minor = MD_MINOR_VERSION;
6584 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
6585 
6586 	if (copy_to_user(arg, &ver, sizeof(ver)))
6587 		return -EFAULT;
6588 
6589 	return 0;
6590 }
6591 
6592 static int get_array_info(struct mddev *mddev, void __user *arg)
6593 {
6594 	mdu_array_info_t info;
6595 	int nr,working,insync,failed,spare;
6596 	struct md_rdev *rdev;
6597 
6598 	nr = working = insync = failed = spare = 0;
6599 	rcu_read_lock();
6600 	rdev_for_each_rcu(rdev, mddev) {
6601 		nr++;
6602 		if (test_bit(Faulty, &rdev->flags))
6603 			failed++;
6604 		else {
6605 			working++;
6606 			if (test_bit(In_sync, &rdev->flags))
6607 				insync++;
6608 			else if (test_bit(Journal, &rdev->flags))
6609 				/* TODO: add journal count to md_u.h */
6610 				;
6611 			else
6612 				spare++;
6613 		}
6614 	}
6615 	rcu_read_unlock();
6616 
6617 	info.major_version = mddev->major_version;
6618 	info.minor_version = mddev->minor_version;
6619 	info.patch_version = MD_PATCHLEVEL_VERSION;
6620 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6621 	info.level         = mddev->level;
6622 	info.size          = mddev->dev_sectors / 2;
6623 	if (info.size != mddev->dev_sectors / 2) /* overflow */
6624 		info.size = -1;
6625 	info.nr_disks      = nr;
6626 	info.raid_disks    = mddev->raid_disks;
6627 	info.md_minor      = mddev->md_minor;
6628 	info.not_persistent= !mddev->persistent;
6629 
6630 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6631 	info.state         = 0;
6632 	if (mddev->in_sync)
6633 		info.state = (1<<MD_SB_CLEAN);
6634 	if (mddev->bitmap && mddev->bitmap_info.offset)
6635 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
6636 	if (mddev_is_clustered(mddev))
6637 		info.state |= (1<<MD_SB_CLUSTERED);
6638 	info.active_disks  = insync;
6639 	info.working_disks = working;
6640 	info.failed_disks  = failed;
6641 	info.spare_disks   = spare;
6642 
6643 	info.layout        = mddev->layout;
6644 	info.chunk_size    = mddev->chunk_sectors << 9;
6645 
6646 	if (copy_to_user(arg, &info, sizeof(info)))
6647 		return -EFAULT;
6648 
6649 	return 0;
6650 }
6651 
6652 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6653 {
6654 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6655 	char *ptr;
6656 	int err;
6657 
6658 	file = kzalloc(sizeof(*file), GFP_NOIO);
6659 	if (!file)
6660 		return -ENOMEM;
6661 
6662 	err = 0;
6663 	spin_lock(&mddev->lock);
6664 	/* bitmap enabled */
6665 	if (mddev->bitmap_info.file) {
6666 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
6667 				sizeof(file->pathname));
6668 		if (IS_ERR(ptr))
6669 			err = PTR_ERR(ptr);
6670 		else
6671 			memmove(file->pathname, ptr,
6672 				sizeof(file->pathname)-(ptr-file->pathname));
6673 	}
6674 	spin_unlock(&mddev->lock);
6675 
6676 	if (err == 0 &&
6677 	    copy_to_user(arg, file, sizeof(*file)))
6678 		err = -EFAULT;
6679 
6680 	kfree(file);
6681 	return err;
6682 }
6683 
6684 static int get_disk_info(struct mddev *mddev, void __user * arg)
6685 {
6686 	mdu_disk_info_t info;
6687 	struct md_rdev *rdev;
6688 
6689 	if (copy_from_user(&info, arg, sizeof(info)))
6690 		return -EFAULT;
6691 
6692 	rcu_read_lock();
6693 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
6694 	if (rdev) {
6695 		info.major = MAJOR(rdev->bdev->bd_dev);
6696 		info.minor = MINOR(rdev->bdev->bd_dev);
6697 		info.raid_disk = rdev->raid_disk;
6698 		info.state = 0;
6699 		if (test_bit(Faulty, &rdev->flags))
6700 			info.state |= (1<<MD_DISK_FAULTY);
6701 		else if (test_bit(In_sync, &rdev->flags)) {
6702 			info.state |= (1<<MD_DISK_ACTIVE);
6703 			info.state |= (1<<MD_DISK_SYNC);
6704 		}
6705 		if (test_bit(Journal, &rdev->flags))
6706 			info.state |= (1<<MD_DISK_JOURNAL);
6707 		if (test_bit(WriteMostly, &rdev->flags))
6708 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
6709 		if (test_bit(FailFast, &rdev->flags))
6710 			info.state |= (1<<MD_DISK_FAILFAST);
6711 	} else {
6712 		info.major = info.minor = 0;
6713 		info.raid_disk = -1;
6714 		info.state = (1<<MD_DISK_REMOVED);
6715 	}
6716 	rcu_read_unlock();
6717 
6718 	if (copy_to_user(arg, &info, sizeof(info)))
6719 		return -EFAULT;
6720 
6721 	return 0;
6722 }
6723 
6724 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6725 {
6726 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6727 	struct md_rdev *rdev;
6728 	dev_t dev = MKDEV(info->major,info->minor);
6729 
6730 	if (mddev_is_clustered(mddev) &&
6731 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6732 		pr_warn("%s: Cannot add to clustered mddev.\n",
6733 			mdname(mddev));
6734 		return -EINVAL;
6735 	}
6736 
6737 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6738 		return -EOVERFLOW;
6739 
6740 	if (!mddev->raid_disks) {
6741 		int err;
6742 		/* expecting a device which has a superblock */
6743 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6744 		if (IS_ERR(rdev)) {
6745 			pr_warn("md: md_import_device returned %ld\n",
6746 				PTR_ERR(rdev));
6747 			return PTR_ERR(rdev);
6748 		}
6749 		if (!list_empty(&mddev->disks)) {
6750 			struct md_rdev *rdev0
6751 				= list_entry(mddev->disks.next,
6752 					     struct md_rdev, same_set);
6753 			err = super_types[mddev->major_version]
6754 				.load_super(rdev, rdev0, mddev->minor_version);
6755 			if (err < 0) {
6756 				pr_warn("md: %s has different UUID to %s\n",
6757 					bdevname(rdev->bdev,b),
6758 					bdevname(rdev0->bdev,b2));
6759 				export_rdev(rdev);
6760 				return -EINVAL;
6761 			}
6762 		}
6763 		err = bind_rdev_to_array(rdev, mddev);
6764 		if (err)
6765 			export_rdev(rdev);
6766 		return err;
6767 	}
6768 
6769 	/*
6770 	 * md_add_new_disk can be used once the array is assembled
6771 	 * to add "hot spares".  They must already have a superblock
6772 	 * written
6773 	 */
6774 	if (mddev->pers) {
6775 		int err;
6776 		if (!mddev->pers->hot_add_disk) {
6777 			pr_warn("%s: personality does not support diskops!\n",
6778 				mdname(mddev));
6779 			return -EINVAL;
6780 		}
6781 		if (mddev->persistent)
6782 			rdev = md_import_device(dev, mddev->major_version,
6783 						mddev->minor_version);
6784 		else
6785 			rdev = md_import_device(dev, -1, -1);
6786 		if (IS_ERR(rdev)) {
6787 			pr_warn("md: md_import_device returned %ld\n",
6788 				PTR_ERR(rdev));
6789 			return PTR_ERR(rdev);
6790 		}
6791 		/* set saved_raid_disk if appropriate */
6792 		if (!mddev->persistent) {
6793 			if (info->state & (1<<MD_DISK_SYNC)  &&
6794 			    info->raid_disk < mddev->raid_disks) {
6795 				rdev->raid_disk = info->raid_disk;
6796 				set_bit(In_sync, &rdev->flags);
6797 				clear_bit(Bitmap_sync, &rdev->flags);
6798 			} else
6799 				rdev->raid_disk = -1;
6800 			rdev->saved_raid_disk = rdev->raid_disk;
6801 		} else
6802 			super_types[mddev->major_version].
6803 				validate_super(mddev, rdev);
6804 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6805 		     rdev->raid_disk != info->raid_disk) {
6806 			/* This was a hot-add request, but events doesn't
6807 			 * match, so reject it.
6808 			 */
6809 			export_rdev(rdev);
6810 			return -EINVAL;
6811 		}
6812 
6813 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6814 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6815 			set_bit(WriteMostly, &rdev->flags);
6816 		else
6817 			clear_bit(WriteMostly, &rdev->flags);
6818 		if (info->state & (1<<MD_DISK_FAILFAST))
6819 			set_bit(FailFast, &rdev->flags);
6820 		else
6821 			clear_bit(FailFast, &rdev->flags);
6822 
6823 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6824 			struct md_rdev *rdev2;
6825 			bool has_journal = false;
6826 
6827 			/* make sure no existing journal disk */
6828 			rdev_for_each(rdev2, mddev) {
6829 				if (test_bit(Journal, &rdev2->flags)) {
6830 					has_journal = true;
6831 					break;
6832 				}
6833 			}
6834 			if (has_journal || mddev->bitmap) {
6835 				export_rdev(rdev);
6836 				return -EBUSY;
6837 			}
6838 			set_bit(Journal, &rdev->flags);
6839 		}
6840 		/*
6841 		 * check whether the device shows up in other nodes
6842 		 */
6843 		if (mddev_is_clustered(mddev)) {
6844 			if (info->state & (1 << MD_DISK_CANDIDATE))
6845 				set_bit(Candidate, &rdev->flags);
6846 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6847 				/* --add initiated by this node */
6848 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6849 				if (err) {
6850 					export_rdev(rdev);
6851 					return err;
6852 				}
6853 			}
6854 		}
6855 
6856 		rdev->raid_disk = -1;
6857 		err = bind_rdev_to_array(rdev, mddev);
6858 
6859 		if (err)
6860 			export_rdev(rdev);
6861 
6862 		if (mddev_is_clustered(mddev)) {
6863 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
6864 				if (!err) {
6865 					err = md_cluster_ops->new_disk_ack(mddev,
6866 						err == 0);
6867 					if (err)
6868 						md_kick_rdev_from_array(rdev);
6869 				}
6870 			} else {
6871 				if (err)
6872 					md_cluster_ops->add_new_disk_cancel(mddev);
6873 				else
6874 					err = add_bound_rdev(rdev);
6875 			}
6876 
6877 		} else if (!err)
6878 			err = add_bound_rdev(rdev);
6879 
6880 		return err;
6881 	}
6882 
6883 	/* otherwise, md_add_new_disk is only allowed
6884 	 * for major_version==0 superblocks
6885 	 */
6886 	if (mddev->major_version != 0) {
6887 		pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6888 		return -EINVAL;
6889 	}
6890 
6891 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6892 		int err;
6893 		rdev = md_import_device(dev, -1, 0);
6894 		if (IS_ERR(rdev)) {
6895 			pr_warn("md: error, md_import_device() returned %ld\n",
6896 				PTR_ERR(rdev));
6897 			return PTR_ERR(rdev);
6898 		}
6899 		rdev->desc_nr = info->number;
6900 		if (info->raid_disk < mddev->raid_disks)
6901 			rdev->raid_disk = info->raid_disk;
6902 		else
6903 			rdev->raid_disk = -1;
6904 
6905 		if (rdev->raid_disk < mddev->raid_disks)
6906 			if (info->state & (1<<MD_DISK_SYNC))
6907 				set_bit(In_sync, &rdev->flags);
6908 
6909 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6910 			set_bit(WriteMostly, &rdev->flags);
6911 		if (info->state & (1<<MD_DISK_FAILFAST))
6912 			set_bit(FailFast, &rdev->flags);
6913 
6914 		if (!mddev->persistent) {
6915 			pr_debug("md: nonpersistent superblock ...\n");
6916 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6917 		} else
6918 			rdev->sb_start = calc_dev_sboffset(rdev);
6919 		rdev->sectors = rdev->sb_start;
6920 
6921 		err = bind_rdev_to_array(rdev, mddev);
6922 		if (err) {
6923 			export_rdev(rdev);
6924 			return err;
6925 		}
6926 	}
6927 
6928 	return 0;
6929 }
6930 
6931 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6932 {
6933 	char b[BDEVNAME_SIZE];
6934 	struct md_rdev *rdev;
6935 
6936 	if (!mddev->pers)
6937 		return -ENODEV;
6938 
6939 	rdev = find_rdev(mddev, dev);
6940 	if (!rdev)
6941 		return -ENXIO;
6942 
6943 	if (rdev->raid_disk < 0)
6944 		goto kick_rdev;
6945 
6946 	clear_bit(Blocked, &rdev->flags);
6947 	remove_and_add_spares(mddev, rdev);
6948 
6949 	if (rdev->raid_disk >= 0)
6950 		goto busy;
6951 
6952 kick_rdev:
6953 	if (mddev_is_clustered(mddev)) {
6954 		if (md_cluster_ops->remove_disk(mddev, rdev))
6955 			goto busy;
6956 	}
6957 
6958 	md_kick_rdev_from_array(rdev);
6959 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6960 	if (mddev->thread)
6961 		md_wakeup_thread(mddev->thread);
6962 	else
6963 		md_update_sb(mddev, 1);
6964 	md_new_event(mddev);
6965 
6966 	return 0;
6967 busy:
6968 	pr_debug("md: cannot remove active disk %s from %s ...\n",
6969 		 bdevname(rdev->bdev,b), mdname(mddev));
6970 	return -EBUSY;
6971 }
6972 
6973 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6974 {
6975 	char b[BDEVNAME_SIZE];
6976 	int err;
6977 	struct md_rdev *rdev;
6978 
6979 	if (!mddev->pers)
6980 		return -ENODEV;
6981 
6982 	if (mddev->major_version != 0) {
6983 		pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6984 			mdname(mddev));
6985 		return -EINVAL;
6986 	}
6987 	if (!mddev->pers->hot_add_disk) {
6988 		pr_warn("%s: personality does not support diskops!\n",
6989 			mdname(mddev));
6990 		return -EINVAL;
6991 	}
6992 
6993 	rdev = md_import_device(dev, -1, 0);
6994 	if (IS_ERR(rdev)) {
6995 		pr_warn("md: error, md_import_device() returned %ld\n",
6996 			PTR_ERR(rdev));
6997 		return -EINVAL;
6998 	}
6999 
7000 	if (mddev->persistent)
7001 		rdev->sb_start = calc_dev_sboffset(rdev);
7002 	else
7003 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7004 
7005 	rdev->sectors = rdev->sb_start;
7006 
7007 	if (test_bit(Faulty, &rdev->flags)) {
7008 		pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7009 			bdevname(rdev->bdev,b), mdname(mddev));
7010 		err = -EINVAL;
7011 		goto abort_export;
7012 	}
7013 
7014 	clear_bit(In_sync, &rdev->flags);
7015 	rdev->desc_nr = -1;
7016 	rdev->saved_raid_disk = -1;
7017 	err = bind_rdev_to_array(rdev, mddev);
7018 	if (err)
7019 		goto abort_export;
7020 
7021 	/*
7022 	 * The rest should better be atomic, we can have disk failures
7023 	 * noticed in interrupt contexts ...
7024 	 */
7025 
7026 	rdev->raid_disk = -1;
7027 
7028 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7029 	if (!mddev->thread)
7030 		md_update_sb(mddev, 1);
7031 	/*
7032 	 * Kick recovery, maybe this spare has to be added to the
7033 	 * array immediately.
7034 	 */
7035 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7036 	md_wakeup_thread(mddev->thread);
7037 	md_new_event(mddev);
7038 	return 0;
7039 
7040 abort_export:
7041 	export_rdev(rdev);
7042 	return err;
7043 }
7044 
7045 static int set_bitmap_file(struct mddev *mddev, int fd)
7046 {
7047 	int err = 0;
7048 
7049 	if (mddev->pers) {
7050 		if (!mddev->pers->quiesce || !mddev->thread)
7051 			return -EBUSY;
7052 		if (mddev->recovery || mddev->sync_thread)
7053 			return -EBUSY;
7054 		/* we should be able to change the bitmap.. */
7055 	}
7056 
7057 	if (fd >= 0) {
7058 		struct inode *inode;
7059 		struct file *f;
7060 
7061 		if (mddev->bitmap || mddev->bitmap_info.file)
7062 			return -EEXIST; /* cannot add when bitmap is present */
7063 		f = fget(fd);
7064 
7065 		if (f == NULL) {
7066 			pr_warn("%s: error: failed to get bitmap file\n",
7067 				mdname(mddev));
7068 			return -EBADF;
7069 		}
7070 
7071 		inode = f->f_mapping->host;
7072 		if (!S_ISREG(inode->i_mode)) {
7073 			pr_warn("%s: error: bitmap file must be a regular file\n",
7074 				mdname(mddev));
7075 			err = -EBADF;
7076 		} else if (!(f->f_mode & FMODE_WRITE)) {
7077 			pr_warn("%s: error: bitmap file must open for write\n",
7078 				mdname(mddev));
7079 			err = -EBADF;
7080 		} else if (atomic_read(&inode->i_writecount) != 1) {
7081 			pr_warn("%s: error: bitmap file is already in use\n",
7082 				mdname(mddev));
7083 			err = -EBUSY;
7084 		}
7085 		if (err) {
7086 			fput(f);
7087 			return err;
7088 		}
7089 		mddev->bitmap_info.file = f;
7090 		mddev->bitmap_info.offset = 0; /* file overrides offset */
7091 	} else if (mddev->bitmap == NULL)
7092 		return -ENOENT; /* cannot remove what isn't there */
7093 	err = 0;
7094 	if (mddev->pers) {
7095 		if (fd >= 0) {
7096 			struct bitmap *bitmap;
7097 
7098 			bitmap = md_bitmap_create(mddev, -1);
7099 			mddev_suspend(mddev);
7100 			if (!IS_ERR(bitmap)) {
7101 				mddev->bitmap = bitmap;
7102 				err = md_bitmap_load(mddev);
7103 			} else
7104 				err = PTR_ERR(bitmap);
7105 			if (err) {
7106 				md_bitmap_destroy(mddev);
7107 				fd = -1;
7108 			}
7109 			mddev_resume(mddev);
7110 		} else if (fd < 0) {
7111 			mddev_suspend(mddev);
7112 			md_bitmap_destroy(mddev);
7113 			mddev_resume(mddev);
7114 		}
7115 	}
7116 	if (fd < 0) {
7117 		struct file *f = mddev->bitmap_info.file;
7118 		if (f) {
7119 			spin_lock(&mddev->lock);
7120 			mddev->bitmap_info.file = NULL;
7121 			spin_unlock(&mddev->lock);
7122 			fput(f);
7123 		}
7124 	}
7125 
7126 	return err;
7127 }
7128 
7129 /*
7130  * md_set_array_info is used two different ways
7131  * The original usage is when creating a new array.
7132  * In this usage, raid_disks is > 0 and it together with
7133  *  level, size, not_persistent,layout,chunksize determine the
7134  *  shape of the array.
7135  *  This will always create an array with a type-0.90.0 superblock.
7136  * The newer usage is when assembling an array.
7137  *  In this case raid_disks will be 0, and the major_version field is
7138  *  use to determine which style super-blocks are to be found on the devices.
7139  *  The minor and patch _version numbers are also kept incase the
7140  *  super_block handler wishes to interpret them.
7141  */
7142 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7143 {
7144 	if (info->raid_disks == 0) {
7145 		/* just setting version number for superblock loading */
7146 		if (info->major_version < 0 ||
7147 		    info->major_version >= ARRAY_SIZE(super_types) ||
7148 		    super_types[info->major_version].name == NULL) {
7149 			/* maybe try to auto-load a module? */
7150 			pr_warn("md: superblock version %d not known\n",
7151 				info->major_version);
7152 			return -EINVAL;
7153 		}
7154 		mddev->major_version = info->major_version;
7155 		mddev->minor_version = info->minor_version;
7156 		mddev->patch_version = info->patch_version;
7157 		mddev->persistent = !info->not_persistent;
7158 		/* ensure mddev_put doesn't delete this now that there
7159 		 * is some minimal configuration.
7160 		 */
7161 		mddev->ctime         = ktime_get_real_seconds();
7162 		return 0;
7163 	}
7164 	mddev->major_version = MD_MAJOR_VERSION;
7165 	mddev->minor_version = MD_MINOR_VERSION;
7166 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
7167 	mddev->ctime         = ktime_get_real_seconds();
7168 
7169 	mddev->level         = info->level;
7170 	mddev->clevel[0]     = 0;
7171 	mddev->dev_sectors   = 2 * (sector_t)info->size;
7172 	mddev->raid_disks    = info->raid_disks;
7173 	/* don't set md_minor, it is determined by which /dev/md* was
7174 	 * openned
7175 	 */
7176 	if (info->state & (1<<MD_SB_CLEAN))
7177 		mddev->recovery_cp = MaxSector;
7178 	else
7179 		mddev->recovery_cp = 0;
7180 	mddev->persistent    = ! info->not_persistent;
7181 	mddev->external	     = 0;
7182 
7183 	mddev->layout        = info->layout;
7184 	if (mddev->level == 0)
7185 		/* Cannot trust RAID0 layout info here */
7186 		mddev->layout = -1;
7187 	mddev->chunk_sectors = info->chunk_size >> 9;
7188 
7189 	if (mddev->persistent) {
7190 		mddev->max_disks = MD_SB_DISKS;
7191 		mddev->flags = 0;
7192 		mddev->sb_flags = 0;
7193 	}
7194 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7195 
7196 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7197 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7198 	mddev->bitmap_info.offset = 0;
7199 
7200 	mddev->reshape_position = MaxSector;
7201 
7202 	/*
7203 	 * Generate a 128 bit UUID
7204 	 */
7205 	get_random_bytes(mddev->uuid, 16);
7206 
7207 	mddev->new_level = mddev->level;
7208 	mddev->new_chunk_sectors = mddev->chunk_sectors;
7209 	mddev->new_layout = mddev->layout;
7210 	mddev->delta_disks = 0;
7211 	mddev->reshape_backwards = 0;
7212 
7213 	return 0;
7214 }
7215 
7216 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7217 {
7218 	lockdep_assert_held(&mddev->reconfig_mutex);
7219 
7220 	if (mddev->external_size)
7221 		return;
7222 
7223 	mddev->array_sectors = array_sectors;
7224 }
7225 EXPORT_SYMBOL(md_set_array_sectors);
7226 
7227 static int update_size(struct mddev *mddev, sector_t num_sectors)
7228 {
7229 	struct md_rdev *rdev;
7230 	int rv;
7231 	int fit = (num_sectors == 0);
7232 	sector_t old_dev_sectors = mddev->dev_sectors;
7233 
7234 	if (mddev->pers->resize == NULL)
7235 		return -EINVAL;
7236 	/* The "num_sectors" is the number of sectors of each device that
7237 	 * is used.  This can only make sense for arrays with redundancy.
7238 	 * linear and raid0 always use whatever space is available. We can only
7239 	 * consider changing this number if no resync or reconstruction is
7240 	 * happening, and if the new size is acceptable. It must fit before the
7241 	 * sb_start or, if that is <data_offset, it must fit before the size
7242 	 * of each device.  If num_sectors is zero, we find the largest size
7243 	 * that fits.
7244 	 */
7245 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7246 	    mddev->sync_thread)
7247 		return -EBUSY;
7248 	if (mddev->ro)
7249 		return -EROFS;
7250 
7251 	rdev_for_each(rdev, mddev) {
7252 		sector_t avail = rdev->sectors;
7253 
7254 		if (fit && (num_sectors == 0 || num_sectors > avail))
7255 			num_sectors = avail;
7256 		if (avail < num_sectors)
7257 			return -ENOSPC;
7258 	}
7259 	rv = mddev->pers->resize(mddev, num_sectors);
7260 	if (!rv) {
7261 		if (mddev_is_clustered(mddev))
7262 			md_cluster_ops->update_size(mddev, old_dev_sectors);
7263 		else if (mddev->queue) {
7264 			set_capacity_and_notify(mddev->gendisk,
7265 						mddev->array_sectors);
7266 		}
7267 	}
7268 	return rv;
7269 }
7270 
7271 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7272 {
7273 	int rv;
7274 	struct md_rdev *rdev;
7275 	/* change the number of raid disks */
7276 	if (mddev->pers->check_reshape == NULL)
7277 		return -EINVAL;
7278 	if (mddev->ro)
7279 		return -EROFS;
7280 	if (raid_disks <= 0 ||
7281 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
7282 		return -EINVAL;
7283 	if (mddev->sync_thread ||
7284 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7285 	    test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7286 	    mddev->reshape_position != MaxSector)
7287 		return -EBUSY;
7288 
7289 	rdev_for_each(rdev, mddev) {
7290 		if (mddev->raid_disks < raid_disks &&
7291 		    rdev->data_offset < rdev->new_data_offset)
7292 			return -EINVAL;
7293 		if (mddev->raid_disks > raid_disks &&
7294 		    rdev->data_offset > rdev->new_data_offset)
7295 			return -EINVAL;
7296 	}
7297 
7298 	mddev->delta_disks = raid_disks - mddev->raid_disks;
7299 	if (mddev->delta_disks < 0)
7300 		mddev->reshape_backwards = 1;
7301 	else if (mddev->delta_disks > 0)
7302 		mddev->reshape_backwards = 0;
7303 
7304 	rv = mddev->pers->check_reshape(mddev);
7305 	if (rv < 0) {
7306 		mddev->delta_disks = 0;
7307 		mddev->reshape_backwards = 0;
7308 	}
7309 	return rv;
7310 }
7311 
7312 /*
7313  * update_array_info is used to change the configuration of an
7314  * on-line array.
7315  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7316  * fields in the info are checked against the array.
7317  * Any differences that cannot be handled will cause an error.
7318  * Normally, only one change can be managed at a time.
7319  */
7320 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7321 {
7322 	int rv = 0;
7323 	int cnt = 0;
7324 	int state = 0;
7325 
7326 	/* calculate expected state,ignoring low bits */
7327 	if (mddev->bitmap && mddev->bitmap_info.offset)
7328 		state |= (1 << MD_SB_BITMAP_PRESENT);
7329 
7330 	if (mddev->major_version != info->major_version ||
7331 	    mddev->minor_version != info->minor_version ||
7332 /*	    mddev->patch_version != info->patch_version || */
7333 	    mddev->ctime         != info->ctime         ||
7334 	    mddev->level         != info->level         ||
7335 /*	    mddev->layout        != info->layout        || */
7336 	    mddev->persistent	 != !info->not_persistent ||
7337 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
7338 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7339 	    ((state^info->state) & 0xfffffe00)
7340 		)
7341 		return -EINVAL;
7342 	/* Check there is only one change */
7343 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7344 		cnt++;
7345 	if (mddev->raid_disks != info->raid_disks)
7346 		cnt++;
7347 	if (mddev->layout != info->layout)
7348 		cnt++;
7349 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7350 		cnt++;
7351 	if (cnt == 0)
7352 		return 0;
7353 	if (cnt > 1)
7354 		return -EINVAL;
7355 
7356 	if (mddev->layout != info->layout) {
7357 		/* Change layout
7358 		 * we don't need to do anything at the md level, the
7359 		 * personality will take care of it all.
7360 		 */
7361 		if (mddev->pers->check_reshape == NULL)
7362 			return -EINVAL;
7363 		else {
7364 			mddev->new_layout = info->layout;
7365 			rv = mddev->pers->check_reshape(mddev);
7366 			if (rv)
7367 				mddev->new_layout = mddev->layout;
7368 			return rv;
7369 		}
7370 	}
7371 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7372 		rv = update_size(mddev, (sector_t)info->size * 2);
7373 
7374 	if (mddev->raid_disks    != info->raid_disks)
7375 		rv = update_raid_disks(mddev, info->raid_disks);
7376 
7377 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7378 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7379 			rv = -EINVAL;
7380 			goto err;
7381 		}
7382 		if (mddev->recovery || mddev->sync_thread) {
7383 			rv = -EBUSY;
7384 			goto err;
7385 		}
7386 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7387 			struct bitmap *bitmap;
7388 			/* add the bitmap */
7389 			if (mddev->bitmap) {
7390 				rv = -EEXIST;
7391 				goto err;
7392 			}
7393 			if (mddev->bitmap_info.default_offset == 0) {
7394 				rv = -EINVAL;
7395 				goto err;
7396 			}
7397 			mddev->bitmap_info.offset =
7398 				mddev->bitmap_info.default_offset;
7399 			mddev->bitmap_info.space =
7400 				mddev->bitmap_info.default_space;
7401 			bitmap = md_bitmap_create(mddev, -1);
7402 			mddev_suspend(mddev);
7403 			if (!IS_ERR(bitmap)) {
7404 				mddev->bitmap = bitmap;
7405 				rv = md_bitmap_load(mddev);
7406 			} else
7407 				rv = PTR_ERR(bitmap);
7408 			if (rv)
7409 				md_bitmap_destroy(mddev);
7410 			mddev_resume(mddev);
7411 		} else {
7412 			/* remove the bitmap */
7413 			if (!mddev->bitmap) {
7414 				rv = -ENOENT;
7415 				goto err;
7416 			}
7417 			if (mddev->bitmap->storage.file) {
7418 				rv = -EINVAL;
7419 				goto err;
7420 			}
7421 			if (mddev->bitmap_info.nodes) {
7422 				/* hold PW on all the bitmap lock */
7423 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7424 					pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7425 					rv = -EPERM;
7426 					md_cluster_ops->unlock_all_bitmaps(mddev);
7427 					goto err;
7428 				}
7429 
7430 				mddev->bitmap_info.nodes = 0;
7431 				md_cluster_ops->leave(mddev);
7432 				module_put(md_cluster_mod);
7433 				mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7434 			}
7435 			mddev_suspend(mddev);
7436 			md_bitmap_destroy(mddev);
7437 			mddev_resume(mddev);
7438 			mddev->bitmap_info.offset = 0;
7439 		}
7440 	}
7441 	md_update_sb(mddev, 1);
7442 	return rv;
7443 err:
7444 	return rv;
7445 }
7446 
7447 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7448 {
7449 	struct md_rdev *rdev;
7450 	int err = 0;
7451 
7452 	if (mddev->pers == NULL)
7453 		return -ENODEV;
7454 
7455 	rcu_read_lock();
7456 	rdev = md_find_rdev_rcu(mddev, dev);
7457 	if (!rdev)
7458 		err =  -ENODEV;
7459 	else {
7460 		md_error(mddev, rdev);
7461 		if (!test_bit(Faulty, &rdev->flags))
7462 			err = -EBUSY;
7463 	}
7464 	rcu_read_unlock();
7465 	return err;
7466 }
7467 
7468 /*
7469  * We have a problem here : there is no easy way to give a CHS
7470  * virtual geometry. We currently pretend that we have a 2 heads
7471  * 4 sectors (with a BIG number of cylinders...). This drives
7472  * dosfs just mad... ;-)
7473  */
7474 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7475 {
7476 	struct mddev *mddev = bdev->bd_disk->private_data;
7477 
7478 	geo->heads = 2;
7479 	geo->sectors = 4;
7480 	geo->cylinders = mddev->array_sectors / 8;
7481 	return 0;
7482 }
7483 
7484 static inline bool md_ioctl_valid(unsigned int cmd)
7485 {
7486 	switch (cmd) {
7487 	case ADD_NEW_DISK:
7488 	case GET_ARRAY_INFO:
7489 	case GET_BITMAP_FILE:
7490 	case GET_DISK_INFO:
7491 	case HOT_ADD_DISK:
7492 	case HOT_REMOVE_DISK:
7493 	case RAID_VERSION:
7494 	case RESTART_ARRAY_RW:
7495 	case RUN_ARRAY:
7496 	case SET_ARRAY_INFO:
7497 	case SET_BITMAP_FILE:
7498 	case SET_DISK_FAULTY:
7499 	case STOP_ARRAY:
7500 	case STOP_ARRAY_RO:
7501 	case CLUSTERED_DISK_NACK:
7502 		return true;
7503 	default:
7504 		return false;
7505 	}
7506 }
7507 
7508 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7509 			unsigned int cmd, unsigned long arg)
7510 {
7511 	int err = 0;
7512 	void __user *argp = (void __user *)arg;
7513 	struct mddev *mddev = NULL;
7514 	bool did_set_md_closing = false;
7515 
7516 	if (!md_ioctl_valid(cmd))
7517 		return -ENOTTY;
7518 
7519 	switch (cmd) {
7520 	case RAID_VERSION:
7521 	case GET_ARRAY_INFO:
7522 	case GET_DISK_INFO:
7523 		break;
7524 	default:
7525 		if (!capable(CAP_SYS_ADMIN))
7526 			return -EACCES;
7527 	}
7528 
7529 	/*
7530 	 * Commands dealing with the RAID driver but not any
7531 	 * particular array:
7532 	 */
7533 	switch (cmd) {
7534 	case RAID_VERSION:
7535 		err = get_version(argp);
7536 		goto out;
7537 	default:;
7538 	}
7539 
7540 	/*
7541 	 * Commands creating/starting a new array:
7542 	 */
7543 
7544 	mddev = bdev->bd_disk->private_data;
7545 
7546 	if (!mddev) {
7547 		BUG();
7548 		goto out;
7549 	}
7550 
7551 	/* Some actions do not requires the mutex */
7552 	switch (cmd) {
7553 	case GET_ARRAY_INFO:
7554 		if (!mddev->raid_disks && !mddev->external)
7555 			err = -ENODEV;
7556 		else
7557 			err = get_array_info(mddev, argp);
7558 		goto out;
7559 
7560 	case GET_DISK_INFO:
7561 		if (!mddev->raid_disks && !mddev->external)
7562 			err = -ENODEV;
7563 		else
7564 			err = get_disk_info(mddev, argp);
7565 		goto out;
7566 
7567 	case SET_DISK_FAULTY:
7568 		err = set_disk_faulty(mddev, new_decode_dev(arg));
7569 		goto out;
7570 
7571 	case GET_BITMAP_FILE:
7572 		err = get_bitmap_file(mddev, argp);
7573 		goto out;
7574 
7575 	}
7576 
7577 	if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7578 		flush_rdev_wq(mddev);
7579 
7580 	if (cmd == HOT_REMOVE_DISK)
7581 		/* need to ensure recovery thread has run */
7582 		wait_event_interruptible_timeout(mddev->sb_wait,
7583 						 !test_bit(MD_RECOVERY_NEEDED,
7584 							   &mddev->recovery),
7585 						 msecs_to_jiffies(5000));
7586 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7587 		/* Need to flush page cache, and ensure no-one else opens
7588 		 * and writes
7589 		 */
7590 		mutex_lock(&mddev->open_mutex);
7591 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7592 			mutex_unlock(&mddev->open_mutex);
7593 			err = -EBUSY;
7594 			goto out;
7595 		}
7596 		if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7597 			mutex_unlock(&mddev->open_mutex);
7598 			err = -EBUSY;
7599 			goto out;
7600 		}
7601 		did_set_md_closing = true;
7602 		mutex_unlock(&mddev->open_mutex);
7603 		sync_blockdev(bdev);
7604 	}
7605 	err = mddev_lock(mddev);
7606 	if (err) {
7607 		pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7608 			 err, cmd);
7609 		goto out;
7610 	}
7611 
7612 	if (cmd == SET_ARRAY_INFO) {
7613 		mdu_array_info_t info;
7614 		if (!arg)
7615 			memset(&info, 0, sizeof(info));
7616 		else if (copy_from_user(&info, argp, sizeof(info))) {
7617 			err = -EFAULT;
7618 			goto unlock;
7619 		}
7620 		if (mddev->pers) {
7621 			err = update_array_info(mddev, &info);
7622 			if (err) {
7623 				pr_warn("md: couldn't update array info. %d\n", err);
7624 				goto unlock;
7625 			}
7626 			goto unlock;
7627 		}
7628 		if (!list_empty(&mddev->disks)) {
7629 			pr_warn("md: array %s already has disks!\n", mdname(mddev));
7630 			err = -EBUSY;
7631 			goto unlock;
7632 		}
7633 		if (mddev->raid_disks) {
7634 			pr_warn("md: array %s already initialised!\n", mdname(mddev));
7635 			err = -EBUSY;
7636 			goto unlock;
7637 		}
7638 		err = md_set_array_info(mddev, &info);
7639 		if (err) {
7640 			pr_warn("md: couldn't set array info. %d\n", err);
7641 			goto unlock;
7642 		}
7643 		goto unlock;
7644 	}
7645 
7646 	/*
7647 	 * Commands querying/configuring an existing array:
7648 	 */
7649 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7650 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7651 	if ((!mddev->raid_disks && !mddev->external)
7652 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7653 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7654 	    && cmd != GET_BITMAP_FILE) {
7655 		err = -ENODEV;
7656 		goto unlock;
7657 	}
7658 
7659 	/*
7660 	 * Commands even a read-only array can execute:
7661 	 */
7662 	switch (cmd) {
7663 	case RESTART_ARRAY_RW:
7664 		err = restart_array(mddev);
7665 		goto unlock;
7666 
7667 	case STOP_ARRAY:
7668 		err = do_md_stop(mddev, 0, bdev);
7669 		goto unlock;
7670 
7671 	case STOP_ARRAY_RO:
7672 		err = md_set_readonly(mddev, bdev);
7673 		goto unlock;
7674 
7675 	case HOT_REMOVE_DISK:
7676 		err = hot_remove_disk(mddev, new_decode_dev(arg));
7677 		goto unlock;
7678 
7679 	case ADD_NEW_DISK:
7680 		/* We can support ADD_NEW_DISK on read-only arrays
7681 		 * only if we are re-adding a preexisting device.
7682 		 * So require mddev->pers and MD_DISK_SYNC.
7683 		 */
7684 		if (mddev->pers) {
7685 			mdu_disk_info_t info;
7686 			if (copy_from_user(&info, argp, sizeof(info)))
7687 				err = -EFAULT;
7688 			else if (!(info.state & (1<<MD_DISK_SYNC)))
7689 				/* Need to clear read-only for this */
7690 				break;
7691 			else
7692 				err = md_add_new_disk(mddev, &info);
7693 			goto unlock;
7694 		}
7695 		break;
7696 	}
7697 
7698 	/*
7699 	 * The remaining ioctls are changing the state of the
7700 	 * superblock, so we do not allow them on read-only arrays.
7701 	 */
7702 	if (mddev->ro && mddev->pers) {
7703 		if (mddev->ro == 2) {
7704 			mddev->ro = 0;
7705 			sysfs_notify_dirent_safe(mddev->sysfs_state);
7706 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7707 			/* mddev_unlock will wake thread */
7708 			/* If a device failed while we were read-only, we
7709 			 * need to make sure the metadata is updated now.
7710 			 */
7711 			if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7712 				mddev_unlock(mddev);
7713 				wait_event(mddev->sb_wait,
7714 					   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7715 					   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7716 				mddev_lock_nointr(mddev);
7717 			}
7718 		} else {
7719 			err = -EROFS;
7720 			goto unlock;
7721 		}
7722 	}
7723 
7724 	switch (cmd) {
7725 	case ADD_NEW_DISK:
7726 	{
7727 		mdu_disk_info_t info;
7728 		if (copy_from_user(&info, argp, sizeof(info)))
7729 			err = -EFAULT;
7730 		else
7731 			err = md_add_new_disk(mddev, &info);
7732 		goto unlock;
7733 	}
7734 
7735 	case CLUSTERED_DISK_NACK:
7736 		if (mddev_is_clustered(mddev))
7737 			md_cluster_ops->new_disk_ack(mddev, false);
7738 		else
7739 			err = -EINVAL;
7740 		goto unlock;
7741 
7742 	case HOT_ADD_DISK:
7743 		err = hot_add_disk(mddev, new_decode_dev(arg));
7744 		goto unlock;
7745 
7746 	case RUN_ARRAY:
7747 		err = do_md_run(mddev);
7748 		goto unlock;
7749 
7750 	case SET_BITMAP_FILE:
7751 		err = set_bitmap_file(mddev, (int)arg);
7752 		goto unlock;
7753 
7754 	default:
7755 		err = -EINVAL;
7756 		goto unlock;
7757 	}
7758 
7759 unlock:
7760 	if (mddev->hold_active == UNTIL_IOCTL &&
7761 	    err != -EINVAL)
7762 		mddev->hold_active = 0;
7763 	mddev_unlock(mddev);
7764 out:
7765 	if(did_set_md_closing)
7766 		clear_bit(MD_CLOSING, &mddev->flags);
7767 	return err;
7768 }
7769 #ifdef CONFIG_COMPAT
7770 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7771 		    unsigned int cmd, unsigned long arg)
7772 {
7773 	switch (cmd) {
7774 	case HOT_REMOVE_DISK:
7775 	case HOT_ADD_DISK:
7776 	case SET_DISK_FAULTY:
7777 	case SET_BITMAP_FILE:
7778 		/* These take in integer arg, do not convert */
7779 		break;
7780 	default:
7781 		arg = (unsigned long)compat_ptr(arg);
7782 		break;
7783 	}
7784 
7785 	return md_ioctl(bdev, mode, cmd, arg);
7786 }
7787 #endif /* CONFIG_COMPAT */
7788 
7789 static int md_set_read_only(struct block_device *bdev, bool ro)
7790 {
7791 	struct mddev *mddev = bdev->bd_disk->private_data;
7792 	int err;
7793 
7794 	err = mddev_lock(mddev);
7795 	if (err)
7796 		return err;
7797 
7798 	if (!mddev->raid_disks && !mddev->external) {
7799 		err = -ENODEV;
7800 		goto out_unlock;
7801 	}
7802 
7803 	/*
7804 	 * Transitioning to read-auto need only happen for arrays that call
7805 	 * md_write_start and which are not ready for writes yet.
7806 	 */
7807 	if (!ro && mddev->ro == 1 && mddev->pers) {
7808 		err = restart_array(mddev);
7809 		if (err)
7810 			goto out_unlock;
7811 		mddev->ro = 2;
7812 	}
7813 
7814 out_unlock:
7815 	mddev_unlock(mddev);
7816 	return err;
7817 }
7818 
7819 static int md_open(struct block_device *bdev, fmode_t mode)
7820 {
7821 	/*
7822 	 * Succeed if we can lock the mddev, which confirms that
7823 	 * it isn't being stopped right now.
7824 	 */
7825 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7826 	int err;
7827 
7828 	if (!mddev)
7829 		return -ENODEV;
7830 
7831 	if (mddev->gendisk != bdev->bd_disk) {
7832 		/* we are racing with mddev_put which is discarding this
7833 		 * bd_disk.
7834 		 */
7835 		mddev_put(mddev);
7836 		/* Wait until bdev->bd_disk is definitely gone */
7837 		if (work_pending(&mddev->del_work))
7838 			flush_workqueue(md_misc_wq);
7839 		/* Then retry the open from the top */
7840 		return -ERESTARTSYS;
7841 	}
7842 	BUG_ON(mddev != bdev->bd_disk->private_data);
7843 
7844 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7845 		goto out;
7846 
7847 	if (test_bit(MD_CLOSING, &mddev->flags)) {
7848 		mutex_unlock(&mddev->open_mutex);
7849 		err = -ENODEV;
7850 		goto out;
7851 	}
7852 
7853 	err = 0;
7854 	atomic_inc(&mddev->openers);
7855 	mutex_unlock(&mddev->open_mutex);
7856 
7857 	bdev_check_media_change(bdev);
7858  out:
7859 	if (err)
7860 		mddev_put(mddev);
7861 	return err;
7862 }
7863 
7864 static void md_release(struct gendisk *disk, fmode_t mode)
7865 {
7866 	struct mddev *mddev = disk->private_data;
7867 
7868 	BUG_ON(!mddev);
7869 	atomic_dec(&mddev->openers);
7870 	mddev_put(mddev);
7871 }
7872 
7873 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7874 {
7875 	struct mddev *mddev = disk->private_data;
7876 	unsigned int ret = 0;
7877 
7878 	if (mddev->changed)
7879 		ret = DISK_EVENT_MEDIA_CHANGE;
7880 	mddev->changed = 0;
7881 	return ret;
7882 }
7883 
7884 const struct block_device_operations md_fops =
7885 {
7886 	.owner		= THIS_MODULE,
7887 	.submit_bio	= md_submit_bio,
7888 	.open		= md_open,
7889 	.release	= md_release,
7890 	.ioctl		= md_ioctl,
7891 #ifdef CONFIG_COMPAT
7892 	.compat_ioctl	= md_compat_ioctl,
7893 #endif
7894 	.getgeo		= md_getgeo,
7895 	.check_events	= md_check_events,
7896 	.set_read_only	= md_set_read_only,
7897 };
7898 
7899 static int md_thread(void *arg)
7900 {
7901 	struct md_thread *thread = arg;
7902 
7903 	/*
7904 	 * md_thread is a 'system-thread', it's priority should be very
7905 	 * high. We avoid resource deadlocks individually in each
7906 	 * raid personality. (RAID5 does preallocation) We also use RR and
7907 	 * the very same RT priority as kswapd, thus we will never get
7908 	 * into a priority inversion deadlock.
7909 	 *
7910 	 * we definitely have to have equal or higher priority than
7911 	 * bdflush, otherwise bdflush will deadlock if there are too
7912 	 * many dirty RAID5 blocks.
7913 	 */
7914 
7915 	allow_signal(SIGKILL);
7916 	while (!kthread_should_stop()) {
7917 
7918 		/* We need to wait INTERRUPTIBLE so that
7919 		 * we don't add to the load-average.
7920 		 * That means we need to be sure no signals are
7921 		 * pending
7922 		 */
7923 		if (signal_pending(current))
7924 			flush_signals(current);
7925 
7926 		wait_event_interruptible_timeout
7927 			(thread->wqueue,
7928 			 test_bit(THREAD_WAKEUP, &thread->flags)
7929 			 || kthread_should_stop() || kthread_should_park(),
7930 			 thread->timeout);
7931 
7932 		clear_bit(THREAD_WAKEUP, &thread->flags);
7933 		if (kthread_should_park())
7934 			kthread_parkme();
7935 		if (!kthread_should_stop())
7936 			thread->run(thread);
7937 	}
7938 
7939 	return 0;
7940 }
7941 
7942 void md_wakeup_thread(struct md_thread *thread)
7943 {
7944 	if (thread) {
7945 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7946 		set_bit(THREAD_WAKEUP, &thread->flags);
7947 		wake_up(&thread->wqueue);
7948 	}
7949 }
7950 EXPORT_SYMBOL(md_wakeup_thread);
7951 
7952 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7953 		struct mddev *mddev, const char *name)
7954 {
7955 	struct md_thread *thread;
7956 
7957 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7958 	if (!thread)
7959 		return NULL;
7960 
7961 	init_waitqueue_head(&thread->wqueue);
7962 
7963 	thread->run = run;
7964 	thread->mddev = mddev;
7965 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7966 	thread->tsk = kthread_run(md_thread, thread,
7967 				  "%s_%s",
7968 				  mdname(thread->mddev),
7969 				  name);
7970 	if (IS_ERR(thread->tsk)) {
7971 		kfree(thread);
7972 		return NULL;
7973 	}
7974 	return thread;
7975 }
7976 EXPORT_SYMBOL(md_register_thread);
7977 
7978 void md_unregister_thread(struct md_thread **threadp)
7979 {
7980 	struct md_thread *thread = *threadp;
7981 	if (!thread)
7982 		return;
7983 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7984 	/* Locking ensures that mddev_unlock does not wake_up a
7985 	 * non-existent thread
7986 	 */
7987 	spin_lock(&pers_lock);
7988 	*threadp = NULL;
7989 	spin_unlock(&pers_lock);
7990 
7991 	kthread_stop(thread->tsk);
7992 	kfree(thread);
7993 }
7994 EXPORT_SYMBOL(md_unregister_thread);
7995 
7996 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7997 {
7998 	if (!rdev || test_bit(Faulty, &rdev->flags))
7999 		return;
8000 
8001 	if (!mddev->pers || !mddev->pers->error_handler)
8002 		return;
8003 	mddev->pers->error_handler(mddev,rdev);
8004 	if (mddev->degraded)
8005 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8006 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8007 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8008 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8009 	md_wakeup_thread(mddev->thread);
8010 	if (mddev->event_work.func)
8011 		queue_work(md_misc_wq, &mddev->event_work);
8012 	md_new_event(mddev);
8013 }
8014 EXPORT_SYMBOL(md_error);
8015 
8016 /* seq_file implementation /proc/mdstat */
8017 
8018 static void status_unused(struct seq_file *seq)
8019 {
8020 	int i = 0;
8021 	struct md_rdev *rdev;
8022 
8023 	seq_printf(seq, "unused devices: ");
8024 
8025 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8026 		char b[BDEVNAME_SIZE];
8027 		i++;
8028 		seq_printf(seq, "%s ",
8029 			      bdevname(rdev->bdev,b));
8030 	}
8031 	if (!i)
8032 		seq_printf(seq, "<none>");
8033 
8034 	seq_printf(seq, "\n");
8035 }
8036 
8037 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8038 {
8039 	sector_t max_sectors, resync, res;
8040 	unsigned long dt, db = 0;
8041 	sector_t rt, curr_mark_cnt, resync_mark_cnt;
8042 	int scale, recovery_active;
8043 	unsigned int per_milli;
8044 
8045 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8046 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8047 		max_sectors = mddev->resync_max_sectors;
8048 	else
8049 		max_sectors = mddev->dev_sectors;
8050 
8051 	resync = mddev->curr_resync;
8052 	if (resync <= 3) {
8053 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8054 			/* Still cleaning up */
8055 			resync = max_sectors;
8056 	} else if (resync > max_sectors)
8057 		resync = max_sectors;
8058 	else
8059 		resync -= atomic_read(&mddev->recovery_active);
8060 
8061 	if (resync == 0) {
8062 		if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8063 			struct md_rdev *rdev;
8064 
8065 			rdev_for_each(rdev, mddev)
8066 				if (rdev->raid_disk >= 0 &&
8067 				    !test_bit(Faulty, &rdev->flags) &&
8068 				    rdev->recovery_offset != MaxSector &&
8069 				    rdev->recovery_offset) {
8070 					seq_printf(seq, "\trecover=REMOTE");
8071 					return 1;
8072 				}
8073 			if (mddev->reshape_position != MaxSector)
8074 				seq_printf(seq, "\treshape=REMOTE");
8075 			else
8076 				seq_printf(seq, "\tresync=REMOTE");
8077 			return 1;
8078 		}
8079 		if (mddev->recovery_cp < MaxSector) {
8080 			seq_printf(seq, "\tresync=PENDING");
8081 			return 1;
8082 		}
8083 		return 0;
8084 	}
8085 	if (resync < 3) {
8086 		seq_printf(seq, "\tresync=DELAYED");
8087 		return 1;
8088 	}
8089 
8090 	WARN_ON(max_sectors == 0);
8091 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
8092 	 * in a sector_t, and (max_sectors>>scale) will fit in a
8093 	 * u32, as those are the requirements for sector_div.
8094 	 * Thus 'scale' must be at least 10
8095 	 */
8096 	scale = 10;
8097 	if (sizeof(sector_t) > sizeof(unsigned long)) {
8098 		while ( max_sectors/2 > (1ULL<<(scale+32)))
8099 			scale++;
8100 	}
8101 	res = (resync>>scale)*1000;
8102 	sector_div(res, (u32)((max_sectors>>scale)+1));
8103 
8104 	per_milli = res;
8105 	{
8106 		int i, x = per_milli/50, y = 20-x;
8107 		seq_printf(seq, "[");
8108 		for (i = 0; i < x; i++)
8109 			seq_printf(seq, "=");
8110 		seq_printf(seq, ">");
8111 		for (i = 0; i < y; i++)
8112 			seq_printf(seq, ".");
8113 		seq_printf(seq, "] ");
8114 	}
8115 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8116 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8117 		    "reshape" :
8118 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8119 		     "check" :
8120 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8121 		      "resync" : "recovery"))),
8122 		   per_milli/10, per_milli % 10,
8123 		   (unsigned long long) resync/2,
8124 		   (unsigned long long) max_sectors/2);
8125 
8126 	/*
8127 	 * dt: time from mark until now
8128 	 * db: blocks written from mark until now
8129 	 * rt: remaining time
8130 	 *
8131 	 * rt is a sector_t, which is always 64bit now. We are keeping
8132 	 * the original algorithm, but it is not really necessary.
8133 	 *
8134 	 * Original algorithm:
8135 	 *   So we divide before multiply in case it is 32bit and close
8136 	 *   to the limit.
8137 	 *   We scale the divisor (db) by 32 to avoid losing precision
8138 	 *   near the end of resync when the number of remaining sectors
8139 	 *   is close to 'db'.
8140 	 *   We then divide rt by 32 after multiplying by db to compensate.
8141 	 *   The '+1' avoids division by zero if db is very small.
8142 	 */
8143 	dt = ((jiffies - mddev->resync_mark) / HZ);
8144 	if (!dt) dt++;
8145 
8146 	curr_mark_cnt = mddev->curr_mark_cnt;
8147 	recovery_active = atomic_read(&mddev->recovery_active);
8148 	resync_mark_cnt = mddev->resync_mark_cnt;
8149 
8150 	if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8151 		db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8152 
8153 	rt = max_sectors - resync;    /* number of remaining sectors */
8154 	rt = div64_u64(rt, db/32+1);
8155 	rt *= dt;
8156 	rt >>= 5;
8157 
8158 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8159 		   ((unsigned long)rt % 60)/6);
8160 
8161 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8162 	return 1;
8163 }
8164 
8165 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8166 {
8167 	struct list_head *tmp;
8168 	loff_t l = *pos;
8169 	struct mddev *mddev;
8170 
8171 	if (l >= 0x10000)
8172 		return NULL;
8173 	if (!l--)
8174 		/* header */
8175 		return (void*)1;
8176 
8177 	spin_lock(&all_mddevs_lock);
8178 	list_for_each(tmp,&all_mddevs)
8179 		if (!l--) {
8180 			mddev = list_entry(tmp, struct mddev, all_mddevs);
8181 			mddev_get(mddev);
8182 			spin_unlock(&all_mddevs_lock);
8183 			return mddev;
8184 		}
8185 	spin_unlock(&all_mddevs_lock);
8186 	if (!l--)
8187 		return (void*)2;/* tail */
8188 	return NULL;
8189 }
8190 
8191 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8192 {
8193 	struct list_head *tmp;
8194 	struct mddev *next_mddev, *mddev = v;
8195 
8196 	++*pos;
8197 	if (v == (void*)2)
8198 		return NULL;
8199 
8200 	spin_lock(&all_mddevs_lock);
8201 	if (v == (void*)1)
8202 		tmp = all_mddevs.next;
8203 	else
8204 		tmp = mddev->all_mddevs.next;
8205 	if (tmp != &all_mddevs)
8206 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8207 	else {
8208 		next_mddev = (void*)2;
8209 		*pos = 0x10000;
8210 	}
8211 	spin_unlock(&all_mddevs_lock);
8212 
8213 	if (v != (void*)1)
8214 		mddev_put(mddev);
8215 	return next_mddev;
8216 
8217 }
8218 
8219 static void md_seq_stop(struct seq_file *seq, void *v)
8220 {
8221 	struct mddev *mddev = v;
8222 
8223 	if (mddev && v != (void*)1 && v != (void*)2)
8224 		mddev_put(mddev);
8225 }
8226 
8227 static int md_seq_show(struct seq_file *seq, void *v)
8228 {
8229 	struct mddev *mddev = v;
8230 	sector_t sectors;
8231 	struct md_rdev *rdev;
8232 
8233 	if (v == (void*)1) {
8234 		struct md_personality *pers;
8235 		seq_printf(seq, "Personalities : ");
8236 		spin_lock(&pers_lock);
8237 		list_for_each_entry(pers, &pers_list, list)
8238 			seq_printf(seq, "[%s] ", pers->name);
8239 
8240 		spin_unlock(&pers_lock);
8241 		seq_printf(seq, "\n");
8242 		seq->poll_event = atomic_read(&md_event_count);
8243 		return 0;
8244 	}
8245 	if (v == (void*)2) {
8246 		status_unused(seq);
8247 		return 0;
8248 	}
8249 
8250 	spin_lock(&mddev->lock);
8251 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8252 		seq_printf(seq, "%s : %sactive", mdname(mddev),
8253 						mddev->pers ? "" : "in");
8254 		if (mddev->pers) {
8255 			if (mddev->ro==1)
8256 				seq_printf(seq, " (read-only)");
8257 			if (mddev->ro==2)
8258 				seq_printf(seq, " (auto-read-only)");
8259 			seq_printf(seq, " %s", mddev->pers->name);
8260 		}
8261 
8262 		sectors = 0;
8263 		rcu_read_lock();
8264 		rdev_for_each_rcu(rdev, mddev) {
8265 			char b[BDEVNAME_SIZE];
8266 			seq_printf(seq, " %s[%d]",
8267 				bdevname(rdev->bdev,b), rdev->desc_nr);
8268 			if (test_bit(WriteMostly, &rdev->flags))
8269 				seq_printf(seq, "(W)");
8270 			if (test_bit(Journal, &rdev->flags))
8271 				seq_printf(seq, "(J)");
8272 			if (test_bit(Faulty, &rdev->flags)) {
8273 				seq_printf(seq, "(F)");
8274 				continue;
8275 			}
8276 			if (rdev->raid_disk < 0)
8277 				seq_printf(seq, "(S)"); /* spare */
8278 			if (test_bit(Replacement, &rdev->flags))
8279 				seq_printf(seq, "(R)");
8280 			sectors += rdev->sectors;
8281 		}
8282 		rcu_read_unlock();
8283 
8284 		if (!list_empty(&mddev->disks)) {
8285 			if (mddev->pers)
8286 				seq_printf(seq, "\n      %llu blocks",
8287 					   (unsigned long long)
8288 					   mddev->array_sectors / 2);
8289 			else
8290 				seq_printf(seq, "\n      %llu blocks",
8291 					   (unsigned long long)sectors / 2);
8292 		}
8293 		if (mddev->persistent) {
8294 			if (mddev->major_version != 0 ||
8295 			    mddev->minor_version != 90) {
8296 				seq_printf(seq," super %d.%d",
8297 					   mddev->major_version,
8298 					   mddev->minor_version);
8299 			}
8300 		} else if (mddev->external)
8301 			seq_printf(seq, " super external:%s",
8302 				   mddev->metadata_type);
8303 		else
8304 			seq_printf(seq, " super non-persistent");
8305 
8306 		if (mddev->pers) {
8307 			mddev->pers->status(seq, mddev);
8308 			seq_printf(seq, "\n      ");
8309 			if (mddev->pers->sync_request) {
8310 				if (status_resync(seq, mddev))
8311 					seq_printf(seq, "\n      ");
8312 			}
8313 		} else
8314 			seq_printf(seq, "\n       ");
8315 
8316 		md_bitmap_status(seq, mddev->bitmap);
8317 
8318 		seq_printf(seq, "\n");
8319 	}
8320 	spin_unlock(&mddev->lock);
8321 
8322 	return 0;
8323 }
8324 
8325 static const struct seq_operations md_seq_ops = {
8326 	.start  = md_seq_start,
8327 	.next   = md_seq_next,
8328 	.stop   = md_seq_stop,
8329 	.show   = md_seq_show,
8330 };
8331 
8332 static int md_seq_open(struct inode *inode, struct file *file)
8333 {
8334 	struct seq_file *seq;
8335 	int error;
8336 
8337 	error = seq_open(file, &md_seq_ops);
8338 	if (error)
8339 		return error;
8340 
8341 	seq = file->private_data;
8342 	seq->poll_event = atomic_read(&md_event_count);
8343 	return error;
8344 }
8345 
8346 static int md_unloading;
8347 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8348 {
8349 	struct seq_file *seq = filp->private_data;
8350 	__poll_t mask;
8351 
8352 	if (md_unloading)
8353 		return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8354 	poll_wait(filp, &md_event_waiters, wait);
8355 
8356 	/* always allow read */
8357 	mask = EPOLLIN | EPOLLRDNORM;
8358 
8359 	if (seq->poll_event != atomic_read(&md_event_count))
8360 		mask |= EPOLLERR | EPOLLPRI;
8361 	return mask;
8362 }
8363 
8364 static const struct proc_ops mdstat_proc_ops = {
8365 	.proc_open	= md_seq_open,
8366 	.proc_read	= seq_read,
8367 	.proc_lseek	= seq_lseek,
8368 	.proc_release	= seq_release,
8369 	.proc_poll	= mdstat_poll,
8370 };
8371 
8372 int register_md_personality(struct md_personality *p)
8373 {
8374 	pr_debug("md: %s personality registered for level %d\n",
8375 		 p->name, p->level);
8376 	spin_lock(&pers_lock);
8377 	list_add_tail(&p->list, &pers_list);
8378 	spin_unlock(&pers_lock);
8379 	return 0;
8380 }
8381 EXPORT_SYMBOL(register_md_personality);
8382 
8383 int unregister_md_personality(struct md_personality *p)
8384 {
8385 	pr_debug("md: %s personality unregistered\n", p->name);
8386 	spin_lock(&pers_lock);
8387 	list_del_init(&p->list);
8388 	spin_unlock(&pers_lock);
8389 	return 0;
8390 }
8391 EXPORT_SYMBOL(unregister_md_personality);
8392 
8393 int register_md_cluster_operations(struct md_cluster_operations *ops,
8394 				   struct module *module)
8395 {
8396 	int ret = 0;
8397 	spin_lock(&pers_lock);
8398 	if (md_cluster_ops != NULL)
8399 		ret = -EALREADY;
8400 	else {
8401 		md_cluster_ops = ops;
8402 		md_cluster_mod = module;
8403 	}
8404 	spin_unlock(&pers_lock);
8405 	return ret;
8406 }
8407 EXPORT_SYMBOL(register_md_cluster_operations);
8408 
8409 int unregister_md_cluster_operations(void)
8410 {
8411 	spin_lock(&pers_lock);
8412 	md_cluster_ops = NULL;
8413 	spin_unlock(&pers_lock);
8414 	return 0;
8415 }
8416 EXPORT_SYMBOL(unregister_md_cluster_operations);
8417 
8418 int md_setup_cluster(struct mddev *mddev, int nodes)
8419 {
8420 	int ret;
8421 	if (!md_cluster_ops)
8422 		request_module("md-cluster");
8423 	spin_lock(&pers_lock);
8424 	/* ensure module won't be unloaded */
8425 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8426 		pr_warn("can't find md-cluster module or get it's reference.\n");
8427 		spin_unlock(&pers_lock);
8428 		return -ENOENT;
8429 	}
8430 	spin_unlock(&pers_lock);
8431 
8432 	ret = md_cluster_ops->join(mddev, nodes);
8433 	if (!ret)
8434 		mddev->safemode_delay = 0;
8435 	return ret;
8436 }
8437 
8438 void md_cluster_stop(struct mddev *mddev)
8439 {
8440 	if (!md_cluster_ops)
8441 		return;
8442 	md_cluster_ops->leave(mddev);
8443 	module_put(md_cluster_mod);
8444 }
8445 
8446 static int is_mddev_idle(struct mddev *mddev, int init)
8447 {
8448 	struct md_rdev *rdev;
8449 	int idle;
8450 	int curr_events;
8451 
8452 	idle = 1;
8453 	rcu_read_lock();
8454 	rdev_for_each_rcu(rdev, mddev) {
8455 		struct gendisk *disk = rdev->bdev->bd_disk;
8456 		curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8457 			      atomic_read(&disk->sync_io);
8458 		/* sync IO will cause sync_io to increase before the disk_stats
8459 		 * as sync_io is counted when a request starts, and
8460 		 * disk_stats is counted when it completes.
8461 		 * So resync activity will cause curr_events to be smaller than
8462 		 * when there was no such activity.
8463 		 * non-sync IO will cause disk_stat to increase without
8464 		 * increasing sync_io so curr_events will (eventually)
8465 		 * be larger than it was before.  Once it becomes
8466 		 * substantially larger, the test below will cause
8467 		 * the array to appear non-idle, and resync will slow
8468 		 * down.
8469 		 * If there is a lot of outstanding resync activity when
8470 		 * we set last_event to curr_events, then all that activity
8471 		 * completing might cause the array to appear non-idle
8472 		 * and resync will be slowed down even though there might
8473 		 * not have been non-resync activity.  This will only
8474 		 * happen once though.  'last_events' will soon reflect
8475 		 * the state where there is little or no outstanding
8476 		 * resync requests, and further resync activity will
8477 		 * always make curr_events less than last_events.
8478 		 *
8479 		 */
8480 		if (init || curr_events - rdev->last_events > 64) {
8481 			rdev->last_events = curr_events;
8482 			idle = 0;
8483 		}
8484 	}
8485 	rcu_read_unlock();
8486 	return idle;
8487 }
8488 
8489 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8490 {
8491 	/* another "blocks" (512byte) blocks have been synced */
8492 	atomic_sub(blocks, &mddev->recovery_active);
8493 	wake_up(&mddev->recovery_wait);
8494 	if (!ok) {
8495 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8496 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8497 		md_wakeup_thread(mddev->thread);
8498 		// stop recovery, signal do_sync ....
8499 	}
8500 }
8501 EXPORT_SYMBOL(md_done_sync);
8502 
8503 /* md_write_start(mddev, bi)
8504  * If we need to update some array metadata (e.g. 'active' flag
8505  * in superblock) before writing, schedule a superblock update
8506  * and wait for it to complete.
8507  * A return value of 'false' means that the write wasn't recorded
8508  * and cannot proceed as the array is being suspend.
8509  */
8510 bool md_write_start(struct mddev *mddev, struct bio *bi)
8511 {
8512 	int did_change = 0;
8513 
8514 	if (bio_data_dir(bi) != WRITE)
8515 		return true;
8516 
8517 	BUG_ON(mddev->ro == 1);
8518 	if (mddev->ro == 2) {
8519 		/* need to switch to read/write */
8520 		mddev->ro = 0;
8521 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8522 		md_wakeup_thread(mddev->thread);
8523 		md_wakeup_thread(mddev->sync_thread);
8524 		did_change = 1;
8525 	}
8526 	rcu_read_lock();
8527 	percpu_ref_get(&mddev->writes_pending);
8528 	smp_mb(); /* Match smp_mb in set_in_sync() */
8529 	if (mddev->safemode == 1)
8530 		mddev->safemode = 0;
8531 	/* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8532 	if (mddev->in_sync || mddev->sync_checkers) {
8533 		spin_lock(&mddev->lock);
8534 		if (mddev->in_sync) {
8535 			mddev->in_sync = 0;
8536 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8537 			set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8538 			md_wakeup_thread(mddev->thread);
8539 			did_change = 1;
8540 		}
8541 		spin_unlock(&mddev->lock);
8542 	}
8543 	rcu_read_unlock();
8544 	if (did_change)
8545 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8546 	if (!mddev->has_superblocks)
8547 		return true;
8548 	wait_event(mddev->sb_wait,
8549 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8550 		   mddev->suspended);
8551 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8552 		percpu_ref_put(&mddev->writes_pending);
8553 		return false;
8554 	}
8555 	return true;
8556 }
8557 EXPORT_SYMBOL(md_write_start);
8558 
8559 /* md_write_inc can only be called when md_write_start() has
8560  * already been called at least once of the current request.
8561  * It increments the counter and is useful when a single request
8562  * is split into several parts.  Each part causes an increment and
8563  * so needs a matching md_write_end().
8564  * Unlike md_write_start(), it is safe to call md_write_inc() inside
8565  * a spinlocked region.
8566  */
8567 void md_write_inc(struct mddev *mddev, struct bio *bi)
8568 {
8569 	if (bio_data_dir(bi) != WRITE)
8570 		return;
8571 	WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8572 	percpu_ref_get(&mddev->writes_pending);
8573 }
8574 EXPORT_SYMBOL(md_write_inc);
8575 
8576 void md_write_end(struct mddev *mddev)
8577 {
8578 	percpu_ref_put(&mddev->writes_pending);
8579 
8580 	if (mddev->safemode == 2)
8581 		md_wakeup_thread(mddev->thread);
8582 	else if (mddev->safemode_delay)
8583 		/* The roundup() ensures this only performs locking once
8584 		 * every ->safemode_delay jiffies
8585 		 */
8586 		mod_timer(&mddev->safemode_timer,
8587 			  roundup(jiffies, mddev->safemode_delay) +
8588 			  mddev->safemode_delay);
8589 }
8590 
8591 EXPORT_SYMBOL(md_write_end);
8592 
8593 /* md_allow_write(mddev)
8594  * Calling this ensures that the array is marked 'active' so that writes
8595  * may proceed without blocking.  It is important to call this before
8596  * attempting a GFP_KERNEL allocation while holding the mddev lock.
8597  * Must be called with mddev_lock held.
8598  */
8599 void md_allow_write(struct mddev *mddev)
8600 {
8601 	if (!mddev->pers)
8602 		return;
8603 	if (mddev->ro)
8604 		return;
8605 	if (!mddev->pers->sync_request)
8606 		return;
8607 
8608 	spin_lock(&mddev->lock);
8609 	if (mddev->in_sync) {
8610 		mddev->in_sync = 0;
8611 		set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8612 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8613 		if (mddev->safemode_delay &&
8614 		    mddev->safemode == 0)
8615 			mddev->safemode = 1;
8616 		spin_unlock(&mddev->lock);
8617 		md_update_sb(mddev, 0);
8618 		sysfs_notify_dirent_safe(mddev->sysfs_state);
8619 		/* wait for the dirty state to be recorded in the metadata */
8620 		wait_event(mddev->sb_wait,
8621 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8622 	} else
8623 		spin_unlock(&mddev->lock);
8624 }
8625 EXPORT_SYMBOL_GPL(md_allow_write);
8626 
8627 #define SYNC_MARKS	10
8628 #define	SYNC_MARK_STEP	(3*HZ)
8629 #define UPDATE_FREQUENCY (5*60*HZ)
8630 void md_do_sync(struct md_thread *thread)
8631 {
8632 	struct mddev *mddev = thread->mddev;
8633 	struct mddev *mddev2;
8634 	unsigned int currspeed = 0, window;
8635 	sector_t max_sectors,j, io_sectors, recovery_done;
8636 	unsigned long mark[SYNC_MARKS];
8637 	unsigned long update_time;
8638 	sector_t mark_cnt[SYNC_MARKS];
8639 	int last_mark,m;
8640 	struct list_head *tmp;
8641 	sector_t last_check;
8642 	int skipped = 0;
8643 	struct md_rdev *rdev;
8644 	char *desc, *action = NULL;
8645 	struct blk_plug plug;
8646 	int ret;
8647 
8648 	/* just incase thread restarts... */
8649 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8650 	    test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8651 		return;
8652 	if (mddev->ro) {/* never try to sync a read-only array */
8653 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8654 		return;
8655 	}
8656 
8657 	if (mddev_is_clustered(mddev)) {
8658 		ret = md_cluster_ops->resync_start(mddev);
8659 		if (ret)
8660 			goto skip;
8661 
8662 		set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8663 		if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8664 			test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8665 			test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8666 		     && ((unsigned long long)mddev->curr_resync_completed
8667 			 < (unsigned long long)mddev->resync_max_sectors))
8668 			goto skip;
8669 	}
8670 
8671 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8672 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8673 			desc = "data-check";
8674 			action = "check";
8675 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8676 			desc = "requested-resync";
8677 			action = "repair";
8678 		} else
8679 			desc = "resync";
8680 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8681 		desc = "reshape";
8682 	else
8683 		desc = "recovery";
8684 
8685 	mddev->last_sync_action = action ?: desc;
8686 
8687 	/* we overload curr_resync somewhat here.
8688 	 * 0 == not engaged in resync at all
8689 	 * 2 == checking that there is no conflict with another sync
8690 	 * 1 == like 2, but have yielded to allow conflicting resync to
8691 	 *		commence
8692 	 * other == active in resync - this many blocks
8693 	 *
8694 	 * Before starting a resync we must have set curr_resync to
8695 	 * 2, and then checked that every "conflicting" array has curr_resync
8696 	 * less than ours.  When we find one that is the same or higher
8697 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
8698 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8699 	 * This will mean we have to start checking from the beginning again.
8700 	 *
8701 	 */
8702 
8703 	do {
8704 		int mddev2_minor = -1;
8705 		mddev->curr_resync = 2;
8706 
8707 	try_again:
8708 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8709 			goto skip;
8710 		for_each_mddev(mddev2, tmp) {
8711 			if (mddev2 == mddev)
8712 				continue;
8713 			if (!mddev->parallel_resync
8714 			&&  mddev2->curr_resync
8715 			&&  match_mddev_units(mddev, mddev2)) {
8716 				DEFINE_WAIT(wq);
8717 				if (mddev < mddev2 && mddev->curr_resync == 2) {
8718 					/* arbitrarily yield */
8719 					mddev->curr_resync = 1;
8720 					wake_up(&resync_wait);
8721 				}
8722 				if (mddev > mddev2 && mddev->curr_resync == 1)
8723 					/* no need to wait here, we can wait the next
8724 					 * time 'round when curr_resync == 2
8725 					 */
8726 					continue;
8727 				/* We need to wait 'interruptible' so as not to
8728 				 * contribute to the load average, and not to
8729 				 * be caught by 'softlockup'
8730 				 */
8731 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8732 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8733 				    mddev2->curr_resync >= mddev->curr_resync) {
8734 					if (mddev2_minor != mddev2->md_minor) {
8735 						mddev2_minor = mddev2->md_minor;
8736 						pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8737 							desc, mdname(mddev),
8738 							mdname(mddev2));
8739 					}
8740 					mddev_put(mddev2);
8741 					if (signal_pending(current))
8742 						flush_signals(current);
8743 					schedule();
8744 					finish_wait(&resync_wait, &wq);
8745 					goto try_again;
8746 				}
8747 				finish_wait(&resync_wait, &wq);
8748 			}
8749 		}
8750 	} while (mddev->curr_resync < 2);
8751 
8752 	j = 0;
8753 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8754 		/* resync follows the size requested by the personality,
8755 		 * which defaults to physical size, but can be virtual size
8756 		 */
8757 		max_sectors = mddev->resync_max_sectors;
8758 		atomic64_set(&mddev->resync_mismatches, 0);
8759 		/* we don't use the checkpoint if there's a bitmap */
8760 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8761 			j = mddev->resync_min;
8762 		else if (!mddev->bitmap)
8763 			j = mddev->recovery_cp;
8764 
8765 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8766 		max_sectors = mddev->resync_max_sectors;
8767 		/*
8768 		 * If the original node aborts reshaping then we continue the
8769 		 * reshaping, so set j again to avoid restart reshape from the
8770 		 * first beginning
8771 		 */
8772 		if (mddev_is_clustered(mddev) &&
8773 		    mddev->reshape_position != MaxSector)
8774 			j = mddev->reshape_position;
8775 	} else {
8776 		/* recovery follows the physical size of devices */
8777 		max_sectors = mddev->dev_sectors;
8778 		j = MaxSector;
8779 		rcu_read_lock();
8780 		rdev_for_each_rcu(rdev, mddev)
8781 			if (rdev->raid_disk >= 0 &&
8782 			    !test_bit(Journal, &rdev->flags) &&
8783 			    !test_bit(Faulty, &rdev->flags) &&
8784 			    !test_bit(In_sync, &rdev->flags) &&
8785 			    rdev->recovery_offset < j)
8786 				j = rdev->recovery_offset;
8787 		rcu_read_unlock();
8788 
8789 		/* If there is a bitmap, we need to make sure all
8790 		 * writes that started before we added a spare
8791 		 * complete before we start doing a recovery.
8792 		 * Otherwise the write might complete and (via
8793 		 * bitmap_endwrite) set a bit in the bitmap after the
8794 		 * recovery has checked that bit and skipped that
8795 		 * region.
8796 		 */
8797 		if (mddev->bitmap) {
8798 			mddev->pers->quiesce(mddev, 1);
8799 			mddev->pers->quiesce(mddev, 0);
8800 		}
8801 	}
8802 
8803 	pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8804 	pr_debug("md: minimum _guaranteed_  speed: %d KB/sec/disk.\n", speed_min(mddev));
8805 	pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8806 		 speed_max(mddev), desc);
8807 
8808 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8809 
8810 	io_sectors = 0;
8811 	for (m = 0; m < SYNC_MARKS; m++) {
8812 		mark[m] = jiffies;
8813 		mark_cnt[m] = io_sectors;
8814 	}
8815 	last_mark = 0;
8816 	mddev->resync_mark = mark[last_mark];
8817 	mddev->resync_mark_cnt = mark_cnt[last_mark];
8818 
8819 	/*
8820 	 * Tune reconstruction:
8821 	 */
8822 	window = 32 * (PAGE_SIZE / 512);
8823 	pr_debug("md: using %dk window, over a total of %lluk.\n",
8824 		 window/2, (unsigned long long)max_sectors/2);
8825 
8826 	atomic_set(&mddev->recovery_active, 0);
8827 	last_check = 0;
8828 
8829 	if (j>2) {
8830 		pr_debug("md: resuming %s of %s from checkpoint.\n",
8831 			 desc, mdname(mddev));
8832 		mddev->curr_resync = j;
8833 	} else
8834 		mddev->curr_resync = 3; /* no longer delayed */
8835 	mddev->curr_resync_completed = j;
8836 	sysfs_notify_dirent_safe(mddev->sysfs_completed);
8837 	md_new_event(mddev);
8838 	update_time = jiffies;
8839 
8840 	blk_start_plug(&plug);
8841 	while (j < max_sectors) {
8842 		sector_t sectors;
8843 
8844 		skipped = 0;
8845 
8846 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8847 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
8848 		      (mddev->curr_resync - mddev->curr_resync_completed)
8849 		      > (max_sectors >> 4)) ||
8850 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8851 		     (j - mddev->curr_resync_completed)*2
8852 		     >= mddev->resync_max - mddev->curr_resync_completed ||
8853 		     mddev->curr_resync_completed > mddev->resync_max
8854 			    )) {
8855 			/* time to update curr_resync_completed */
8856 			wait_event(mddev->recovery_wait,
8857 				   atomic_read(&mddev->recovery_active) == 0);
8858 			mddev->curr_resync_completed = j;
8859 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8860 			    j > mddev->recovery_cp)
8861 				mddev->recovery_cp = j;
8862 			update_time = jiffies;
8863 			set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8864 			sysfs_notify_dirent_safe(mddev->sysfs_completed);
8865 		}
8866 
8867 		while (j >= mddev->resync_max &&
8868 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8869 			/* As this condition is controlled by user-space,
8870 			 * we can block indefinitely, so use '_interruptible'
8871 			 * to avoid triggering warnings.
8872 			 */
8873 			flush_signals(current); /* just in case */
8874 			wait_event_interruptible(mddev->recovery_wait,
8875 						 mddev->resync_max > j
8876 						 || test_bit(MD_RECOVERY_INTR,
8877 							     &mddev->recovery));
8878 		}
8879 
8880 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8881 			break;
8882 
8883 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8884 		if (sectors == 0) {
8885 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8886 			break;
8887 		}
8888 
8889 		if (!skipped) { /* actual IO requested */
8890 			io_sectors += sectors;
8891 			atomic_add(sectors, &mddev->recovery_active);
8892 		}
8893 
8894 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8895 			break;
8896 
8897 		j += sectors;
8898 		if (j > max_sectors)
8899 			/* when skipping, extra large numbers can be returned. */
8900 			j = max_sectors;
8901 		if (j > 2)
8902 			mddev->curr_resync = j;
8903 		mddev->curr_mark_cnt = io_sectors;
8904 		if (last_check == 0)
8905 			/* this is the earliest that rebuild will be
8906 			 * visible in /proc/mdstat
8907 			 */
8908 			md_new_event(mddev);
8909 
8910 		if (last_check + window > io_sectors || j == max_sectors)
8911 			continue;
8912 
8913 		last_check = io_sectors;
8914 	repeat:
8915 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8916 			/* step marks */
8917 			int next = (last_mark+1) % SYNC_MARKS;
8918 
8919 			mddev->resync_mark = mark[next];
8920 			mddev->resync_mark_cnt = mark_cnt[next];
8921 			mark[next] = jiffies;
8922 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8923 			last_mark = next;
8924 		}
8925 
8926 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8927 			break;
8928 
8929 		/*
8930 		 * this loop exits only if either when we are slower than
8931 		 * the 'hard' speed limit, or the system was IO-idle for
8932 		 * a jiffy.
8933 		 * the system might be non-idle CPU-wise, but we only care
8934 		 * about not overloading the IO subsystem. (things like an
8935 		 * e2fsck being done on the RAID array should execute fast)
8936 		 */
8937 		cond_resched();
8938 
8939 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8940 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8941 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8942 
8943 		if (currspeed > speed_min(mddev)) {
8944 			if (currspeed > speed_max(mddev)) {
8945 				msleep(500);
8946 				goto repeat;
8947 			}
8948 			if (!is_mddev_idle(mddev, 0)) {
8949 				/*
8950 				 * Give other IO more of a chance.
8951 				 * The faster the devices, the less we wait.
8952 				 */
8953 				wait_event(mddev->recovery_wait,
8954 					   !atomic_read(&mddev->recovery_active));
8955 			}
8956 		}
8957 	}
8958 	pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8959 		test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8960 		? "interrupted" : "done");
8961 	/*
8962 	 * this also signals 'finished resyncing' to md_stop
8963 	 */
8964 	blk_finish_plug(&plug);
8965 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8966 
8967 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8968 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8969 	    mddev->curr_resync > 3) {
8970 		mddev->curr_resync_completed = mddev->curr_resync;
8971 		sysfs_notify_dirent_safe(mddev->sysfs_completed);
8972 	}
8973 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8974 
8975 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8976 	    mddev->curr_resync > 3) {
8977 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8978 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8979 				if (mddev->curr_resync >= mddev->recovery_cp) {
8980 					pr_debug("md: checkpointing %s of %s.\n",
8981 						 desc, mdname(mddev));
8982 					if (test_bit(MD_RECOVERY_ERROR,
8983 						&mddev->recovery))
8984 						mddev->recovery_cp =
8985 							mddev->curr_resync_completed;
8986 					else
8987 						mddev->recovery_cp =
8988 							mddev->curr_resync;
8989 				}
8990 			} else
8991 				mddev->recovery_cp = MaxSector;
8992 		} else {
8993 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8994 				mddev->curr_resync = MaxSector;
8995 			if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8996 			    test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
8997 				rcu_read_lock();
8998 				rdev_for_each_rcu(rdev, mddev)
8999 					if (rdev->raid_disk >= 0 &&
9000 					    mddev->delta_disks >= 0 &&
9001 					    !test_bit(Journal, &rdev->flags) &&
9002 					    !test_bit(Faulty, &rdev->flags) &&
9003 					    !test_bit(In_sync, &rdev->flags) &&
9004 					    rdev->recovery_offset < mddev->curr_resync)
9005 						rdev->recovery_offset = mddev->curr_resync;
9006 				rcu_read_unlock();
9007 			}
9008 		}
9009 	}
9010  skip:
9011 	/* set CHANGE_PENDING here since maybe another update is needed,
9012 	 * so other nodes are informed. It should be harmless for normal
9013 	 * raid */
9014 	set_mask_bits(&mddev->sb_flags, 0,
9015 		      BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9016 
9017 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9018 			!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9019 			mddev->delta_disks > 0 &&
9020 			mddev->pers->finish_reshape &&
9021 			mddev->pers->size &&
9022 			mddev->queue) {
9023 		mddev_lock_nointr(mddev);
9024 		md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9025 		mddev_unlock(mddev);
9026 		if (!mddev_is_clustered(mddev))
9027 			set_capacity_and_notify(mddev->gendisk,
9028 						mddev->array_sectors);
9029 	}
9030 
9031 	spin_lock(&mddev->lock);
9032 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9033 		/* We completed so min/max setting can be forgotten if used. */
9034 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9035 			mddev->resync_min = 0;
9036 		mddev->resync_max = MaxSector;
9037 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9038 		mddev->resync_min = mddev->curr_resync_completed;
9039 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9040 	mddev->curr_resync = 0;
9041 	spin_unlock(&mddev->lock);
9042 
9043 	wake_up(&resync_wait);
9044 	md_wakeup_thread(mddev->thread);
9045 	return;
9046 }
9047 EXPORT_SYMBOL_GPL(md_do_sync);
9048 
9049 static int remove_and_add_spares(struct mddev *mddev,
9050 				 struct md_rdev *this)
9051 {
9052 	struct md_rdev *rdev;
9053 	int spares = 0;
9054 	int removed = 0;
9055 	bool remove_some = false;
9056 
9057 	if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9058 		/* Mustn't remove devices when resync thread is running */
9059 		return 0;
9060 
9061 	rdev_for_each(rdev, mddev) {
9062 		if ((this == NULL || rdev == this) &&
9063 		    rdev->raid_disk >= 0 &&
9064 		    !test_bit(Blocked, &rdev->flags) &&
9065 		    test_bit(Faulty, &rdev->flags) &&
9066 		    atomic_read(&rdev->nr_pending)==0) {
9067 			/* Faulty non-Blocked devices with nr_pending == 0
9068 			 * never get nr_pending incremented,
9069 			 * never get Faulty cleared, and never get Blocked set.
9070 			 * So we can synchronize_rcu now rather than once per device
9071 			 */
9072 			remove_some = true;
9073 			set_bit(RemoveSynchronized, &rdev->flags);
9074 		}
9075 	}
9076 
9077 	if (remove_some)
9078 		synchronize_rcu();
9079 	rdev_for_each(rdev, mddev) {
9080 		if ((this == NULL || rdev == this) &&
9081 		    rdev->raid_disk >= 0 &&
9082 		    !test_bit(Blocked, &rdev->flags) &&
9083 		    ((test_bit(RemoveSynchronized, &rdev->flags) ||
9084 		     (!test_bit(In_sync, &rdev->flags) &&
9085 		      !test_bit(Journal, &rdev->flags))) &&
9086 		    atomic_read(&rdev->nr_pending)==0)) {
9087 			if (mddev->pers->hot_remove_disk(
9088 				    mddev, rdev) == 0) {
9089 				sysfs_unlink_rdev(mddev, rdev);
9090 				rdev->saved_raid_disk = rdev->raid_disk;
9091 				rdev->raid_disk = -1;
9092 				removed++;
9093 			}
9094 		}
9095 		if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9096 			clear_bit(RemoveSynchronized, &rdev->flags);
9097 	}
9098 
9099 	if (removed && mddev->kobj.sd)
9100 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9101 
9102 	if (this && removed)
9103 		goto no_add;
9104 
9105 	rdev_for_each(rdev, mddev) {
9106 		if (this && this != rdev)
9107 			continue;
9108 		if (test_bit(Candidate, &rdev->flags))
9109 			continue;
9110 		if (rdev->raid_disk >= 0 &&
9111 		    !test_bit(In_sync, &rdev->flags) &&
9112 		    !test_bit(Journal, &rdev->flags) &&
9113 		    !test_bit(Faulty, &rdev->flags))
9114 			spares++;
9115 		if (rdev->raid_disk >= 0)
9116 			continue;
9117 		if (test_bit(Faulty, &rdev->flags))
9118 			continue;
9119 		if (!test_bit(Journal, &rdev->flags)) {
9120 			if (mddev->ro &&
9121 			    ! (rdev->saved_raid_disk >= 0 &&
9122 			       !test_bit(Bitmap_sync, &rdev->flags)))
9123 				continue;
9124 
9125 			rdev->recovery_offset = 0;
9126 		}
9127 		if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9128 			/* failure here is OK */
9129 			sysfs_link_rdev(mddev, rdev);
9130 			if (!test_bit(Journal, &rdev->flags))
9131 				spares++;
9132 			md_new_event(mddev);
9133 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9134 		}
9135 	}
9136 no_add:
9137 	if (removed)
9138 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9139 	return spares;
9140 }
9141 
9142 static void md_start_sync(struct work_struct *ws)
9143 {
9144 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
9145 
9146 	mddev->sync_thread = md_register_thread(md_do_sync,
9147 						mddev,
9148 						"resync");
9149 	if (!mddev->sync_thread) {
9150 		pr_warn("%s: could not start resync thread...\n",
9151 			mdname(mddev));
9152 		/* leave the spares where they are, it shouldn't hurt */
9153 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9154 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9155 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9156 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9157 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9158 		wake_up(&resync_wait);
9159 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9160 				       &mddev->recovery))
9161 			if (mddev->sysfs_action)
9162 				sysfs_notify_dirent_safe(mddev->sysfs_action);
9163 	} else
9164 		md_wakeup_thread(mddev->sync_thread);
9165 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9166 	md_new_event(mddev);
9167 }
9168 
9169 /*
9170  * This routine is regularly called by all per-raid-array threads to
9171  * deal with generic issues like resync and super-block update.
9172  * Raid personalities that don't have a thread (linear/raid0) do not
9173  * need this as they never do any recovery or update the superblock.
9174  *
9175  * It does not do any resync itself, but rather "forks" off other threads
9176  * to do that as needed.
9177  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9178  * "->recovery" and create a thread at ->sync_thread.
9179  * When the thread finishes it sets MD_RECOVERY_DONE
9180  * and wakeups up this thread which will reap the thread and finish up.
9181  * This thread also removes any faulty devices (with nr_pending == 0).
9182  *
9183  * The overall approach is:
9184  *  1/ if the superblock needs updating, update it.
9185  *  2/ If a recovery thread is running, don't do anything else.
9186  *  3/ If recovery has finished, clean up, possibly marking spares active.
9187  *  4/ If there are any faulty devices, remove them.
9188  *  5/ If array is degraded, try to add spares devices
9189  *  6/ If array has spares or is not in-sync, start a resync thread.
9190  */
9191 void md_check_recovery(struct mddev *mddev)
9192 {
9193 	if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9194 		/* Write superblock - thread that called mddev_suspend()
9195 		 * holds reconfig_mutex for us.
9196 		 */
9197 		set_bit(MD_UPDATING_SB, &mddev->flags);
9198 		smp_mb__after_atomic();
9199 		if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9200 			md_update_sb(mddev, 0);
9201 		clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9202 		wake_up(&mddev->sb_wait);
9203 	}
9204 
9205 	if (mddev->suspended)
9206 		return;
9207 
9208 	if (mddev->bitmap)
9209 		md_bitmap_daemon_work(mddev);
9210 
9211 	if (signal_pending(current)) {
9212 		if (mddev->pers->sync_request && !mddev->external) {
9213 			pr_debug("md: %s in immediate safe mode\n",
9214 				 mdname(mddev));
9215 			mddev->safemode = 2;
9216 		}
9217 		flush_signals(current);
9218 	}
9219 
9220 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9221 		return;
9222 	if ( ! (
9223 		(mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9224 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9225 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9226 		(mddev->external == 0 && mddev->safemode == 1) ||
9227 		(mddev->safemode == 2
9228 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9229 		))
9230 		return;
9231 
9232 	if (mddev_trylock(mddev)) {
9233 		int spares = 0;
9234 		bool try_set_sync = mddev->safemode != 0;
9235 
9236 		if (!mddev->external && mddev->safemode == 1)
9237 			mddev->safemode = 0;
9238 
9239 		if (mddev->ro) {
9240 			struct md_rdev *rdev;
9241 			if (!mddev->external && mddev->in_sync)
9242 				/* 'Blocked' flag not needed as failed devices
9243 				 * will be recorded if array switched to read/write.
9244 				 * Leaving it set will prevent the device
9245 				 * from being removed.
9246 				 */
9247 				rdev_for_each(rdev, mddev)
9248 					clear_bit(Blocked, &rdev->flags);
9249 			/* On a read-only array we can:
9250 			 * - remove failed devices
9251 			 * - add already-in_sync devices if the array itself
9252 			 *   is in-sync.
9253 			 * As we only add devices that are already in-sync,
9254 			 * we can activate the spares immediately.
9255 			 */
9256 			remove_and_add_spares(mddev, NULL);
9257 			/* There is no thread, but we need to call
9258 			 * ->spare_active and clear saved_raid_disk
9259 			 */
9260 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9261 			md_reap_sync_thread(mddev);
9262 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9263 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9264 			clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9265 			goto unlock;
9266 		}
9267 
9268 		if (mddev_is_clustered(mddev)) {
9269 			struct md_rdev *rdev;
9270 			/* kick the device if another node issued a
9271 			 * remove disk.
9272 			 */
9273 			rdev_for_each(rdev, mddev) {
9274 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9275 						rdev->raid_disk < 0)
9276 					md_kick_rdev_from_array(rdev);
9277 			}
9278 		}
9279 
9280 		if (try_set_sync && !mddev->external && !mddev->in_sync) {
9281 			spin_lock(&mddev->lock);
9282 			set_in_sync(mddev);
9283 			spin_unlock(&mddev->lock);
9284 		}
9285 
9286 		if (mddev->sb_flags)
9287 			md_update_sb(mddev, 0);
9288 
9289 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9290 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9291 			/* resync/recovery still happening */
9292 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9293 			goto unlock;
9294 		}
9295 		if (mddev->sync_thread) {
9296 			md_reap_sync_thread(mddev);
9297 			goto unlock;
9298 		}
9299 		/* Set RUNNING before clearing NEEDED to avoid
9300 		 * any transients in the value of "sync_action".
9301 		 */
9302 		mddev->curr_resync_completed = 0;
9303 		spin_lock(&mddev->lock);
9304 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9305 		spin_unlock(&mddev->lock);
9306 		/* Clear some bits that don't mean anything, but
9307 		 * might be left set
9308 		 */
9309 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9310 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9311 
9312 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9313 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9314 			goto not_running;
9315 		/* no recovery is running.
9316 		 * remove any failed drives, then
9317 		 * add spares if possible.
9318 		 * Spares are also removed and re-added, to allow
9319 		 * the personality to fail the re-add.
9320 		 */
9321 
9322 		if (mddev->reshape_position != MaxSector) {
9323 			if (mddev->pers->check_reshape == NULL ||
9324 			    mddev->pers->check_reshape(mddev) != 0)
9325 				/* Cannot proceed */
9326 				goto not_running;
9327 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9328 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9329 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
9330 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9331 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9332 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9333 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9334 		} else if (mddev->recovery_cp < MaxSector) {
9335 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9336 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9337 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9338 			/* nothing to be done ... */
9339 			goto not_running;
9340 
9341 		if (mddev->pers->sync_request) {
9342 			if (spares) {
9343 				/* We are adding a device or devices to an array
9344 				 * which has the bitmap stored on all devices.
9345 				 * So make sure all bitmap pages get written
9346 				 */
9347 				md_bitmap_write_all(mddev->bitmap);
9348 			}
9349 			INIT_WORK(&mddev->del_work, md_start_sync);
9350 			queue_work(md_misc_wq, &mddev->del_work);
9351 			goto unlock;
9352 		}
9353 	not_running:
9354 		if (!mddev->sync_thread) {
9355 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9356 			wake_up(&resync_wait);
9357 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9358 					       &mddev->recovery))
9359 				if (mddev->sysfs_action)
9360 					sysfs_notify_dirent_safe(mddev->sysfs_action);
9361 		}
9362 	unlock:
9363 		wake_up(&mddev->sb_wait);
9364 		mddev_unlock(mddev);
9365 	}
9366 }
9367 EXPORT_SYMBOL(md_check_recovery);
9368 
9369 void md_reap_sync_thread(struct mddev *mddev)
9370 {
9371 	struct md_rdev *rdev;
9372 	sector_t old_dev_sectors = mddev->dev_sectors;
9373 	bool is_reshaped = false;
9374 
9375 	/* resync has finished, collect result */
9376 	md_unregister_thread(&mddev->sync_thread);
9377 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9378 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9379 	    mddev->degraded != mddev->raid_disks) {
9380 		/* success...*/
9381 		/* activate any spares */
9382 		if (mddev->pers->spare_active(mddev)) {
9383 			sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9384 			set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9385 		}
9386 	}
9387 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9388 	    mddev->pers->finish_reshape) {
9389 		mddev->pers->finish_reshape(mddev);
9390 		if (mddev_is_clustered(mddev))
9391 			is_reshaped = true;
9392 	}
9393 
9394 	/* If array is no-longer degraded, then any saved_raid_disk
9395 	 * information must be scrapped.
9396 	 */
9397 	if (!mddev->degraded)
9398 		rdev_for_each(rdev, mddev)
9399 			rdev->saved_raid_disk = -1;
9400 
9401 	md_update_sb(mddev, 1);
9402 	/* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9403 	 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9404 	 * clustered raid */
9405 	if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9406 		md_cluster_ops->resync_finish(mddev);
9407 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9408 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9409 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9410 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9411 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9412 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9413 	/*
9414 	 * We call md_cluster_ops->update_size here because sync_size could
9415 	 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9416 	 * so it is time to update size across cluster.
9417 	 */
9418 	if (mddev_is_clustered(mddev) && is_reshaped
9419 				      && !test_bit(MD_CLOSING, &mddev->flags))
9420 		md_cluster_ops->update_size(mddev, old_dev_sectors);
9421 	wake_up(&resync_wait);
9422 	/* flag recovery needed just to double check */
9423 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9424 	sysfs_notify_dirent_safe(mddev->sysfs_action);
9425 	md_new_event(mddev);
9426 	if (mddev->event_work.func)
9427 		queue_work(md_misc_wq, &mddev->event_work);
9428 }
9429 EXPORT_SYMBOL(md_reap_sync_thread);
9430 
9431 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9432 {
9433 	sysfs_notify_dirent_safe(rdev->sysfs_state);
9434 	wait_event_timeout(rdev->blocked_wait,
9435 			   !test_bit(Blocked, &rdev->flags) &&
9436 			   !test_bit(BlockedBadBlocks, &rdev->flags),
9437 			   msecs_to_jiffies(5000));
9438 	rdev_dec_pending(rdev, mddev);
9439 }
9440 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9441 
9442 void md_finish_reshape(struct mddev *mddev)
9443 {
9444 	/* called be personality module when reshape completes. */
9445 	struct md_rdev *rdev;
9446 
9447 	rdev_for_each(rdev, mddev) {
9448 		if (rdev->data_offset > rdev->new_data_offset)
9449 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9450 		else
9451 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9452 		rdev->data_offset = rdev->new_data_offset;
9453 	}
9454 }
9455 EXPORT_SYMBOL(md_finish_reshape);
9456 
9457 /* Bad block management */
9458 
9459 /* Returns 1 on success, 0 on failure */
9460 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9461 		       int is_new)
9462 {
9463 	struct mddev *mddev = rdev->mddev;
9464 	int rv;
9465 	if (is_new)
9466 		s += rdev->new_data_offset;
9467 	else
9468 		s += rdev->data_offset;
9469 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9470 	if (rv == 0) {
9471 		/* Make sure they get written out promptly */
9472 		if (test_bit(ExternalBbl, &rdev->flags))
9473 			sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9474 		sysfs_notify_dirent_safe(rdev->sysfs_state);
9475 		set_mask_bits(&mddev->sb_flags, 0,
9476 			      BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9477 		md_wakeup_thread(rdev->mddev->thread);
9478 		return 1;
9479 	} else
9480 		return 0;
9481 }
9482 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9483 
9484 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9485 			 int is_new)
9486 {
9487 	int rv;
9488 	if (is_new)
9489 		s += rdev->new_data_offset;
9490 	else
9491 		s += rdev->data_offset;
9492 	rv = badblocks_clear(&rdev->badblocks, s, sectors);
9493 	if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9494 		sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9495 	return rv;
9496 }
9497 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9498 
9499 static int md_notify_reboot(struct notifier_block *this,
9500 			    unsigned long code, void *x)
9501 {
9502 	struct list_head *tmp;
9503 	struct mddev *mddev;
9504 	int need_delay = 0;
9505 
9506 	for_each_mddev(mddev, tmp) {
9507 		if (mddev_trylock(mddev)) {
9508 			if (mddev->pers)
9509 				__md_stop_writes(mddev);
9510 			if (mddev->persistent)
9511 				mddev->safemode = 2;
9512 			mddev_unlock(mddev);
9513 		}
9514 		need_delay = 1;
9515 	}
9516 	/*
9517 	 * certain more exotic SCSI devices are known to be
9518 	 * volatile wrt too early system reboots. While the
9519 	 * right place to handle this issue is the given
9520 	 * driver, we do want to have a safe RAID driver ...
9521 	 */
9522 	if (need_delay)
9523 		mdelay(1000*1);
9524 
9525 	return NOTIFY_DONE;
9526 }
9527 
9528 static struct notifier_block md_notifier = {
9529 	.notifier_call	= md_notify_reboot,
9530 	.next		= NULL,
9531 	.priority	= INT_MAX, /* before any real devices */
9532 };
9533 
9534 static void md_geninit(void)
9535 {
9536 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9537 
9538 	proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9539 }
9540 
9541 static int __init md_init(void)
9542 {
9543 	int ret = -ENOMEM;
9544 
9545 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9546 	if (!md_wq)
9547 		goto err_wq;
9548 
9549 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9550 	if (!md_misc_wq)
9551 		goto err_misc_wq;
9552 
9553 	md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9554 	if (!md_rdev_misc_wq)
9555 		goto err_rdev_misc_wq;
9556 
9557 	ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9558 	if (ret < 0)
9559 		goto err_md;
9560 
9561 	ret = __register_blkdev(0, "mdp", md_probe);
9562 	if (ret < 0)
9563 		goto err_mdp;
9564 	mdp_major = ret;
9565 
9566 	register_reboot_notifier(&md_notifier);
9567 	raid_table_header = register_sysctl_table(raid_root_table);
9568 
9569 	md_geninit();
9570 	return 0;
9571 
9572 err_mdp:
9573 	unregister_blkdev(MD_MAJOR, "md");
9574 err_md:
9575 	destroy_workqueue(md_rdev_misc_wq);
9576 err_rdev_misc_wq:
9577 	destroy_workqueue(md_misc_wq);
9578 err_misc_wq:
9579 	destroy_workqueue(md_wq);
9580 err_wq:
9581 	return ret;
9582 }
9583 
9584 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9585 {
9586 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9587 	struct md_rdev *rdev2;
9588 	int role, ret;
9589 	char b[BDEVNAME_SIZE];
9590 
9591 	/*
9592 	 * If size is changed in another node then we need to
9593 	 * do resize as well.
9594 	 */
9595 	if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9596 		ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9597 		if (ret)
9598 			pr_info("md-cluster: resize failed\n");
9599 		else
9600 			md_bitmap_update_sb(mddev->bitmap);
9601 	}
9602 
9603 	/* Check for change of roles in the active devices */
9604 	rdev_for_each(rdev2, mddev) {
9605 		if (test_bit(Faulty, &rdev2->flags))
9606 			continue;
9607 
9608 		/* Check if the roles changed */
9609 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9610 
9611 		if (test_bit(Candidate, &rdev2->flags)) {
9612 			if (role == 0xfffe) {
9613 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9614 				md_kick_rdev_from_array(rdev2);
9615 				continue;
9616 			}
9617 			else
9618 				clear_bit(Candidate, &rdev2->flags);
9619 		}
9620 
9621 		if (role != rdev2->raid_disk) {
9622 			/*
9623 			 * got activated except reshape is happening.
9624 			 */
9625 			if (rdev2->raid_disk == -1 && role != 0xffff &&
9626 			    !(le32_to_cpu(sb->feature_map) &
9627 			      MD_FEATURE_RESHAPE_ACTIVE)) {
9628 				rdev2->saved_raid_disk = role;
9629 				ret = remove_and_add_spares(mddev, rdev2);
9630 				pr_info("Activated spare: %s\n",
9631 					bdevname(rdev2->bdev,b));
9632 				/* wakeup mddev->thread here, so array could
9633 				 * perform resync with the new activated disk */
9634 				set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9635 				md_wakeup_thread(mddev->thread);
9636 			}
9637 			/* device faulty
9638 			 * We just want to do the minimum to mark the disk
9639 			 * as faulty. The recovery is performed by the
9640 			 * one who initiated the error.
9641 			 */
9642 			if ((role == 0xfffe) || (role == 0xfffd)) {
9643 				md_error(mddev, rdev2);
9644 				clear_bit(Blocked, &rdev2->flags);
9645 			}
9646 		}
9647 	}
9648 
9649 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9650 		ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9651 		if (ret)
9652 			pr_warn("md: updating array disks failed. %d\n", ret);
9653 	}
9654 
9655 	/*
9656 	 * Since mddev->delta_disks has already updated in update_raid_disks,
9657 	 * so it is time to check reshape.
9658 	 */
9659 	if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9660 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9661 		/*
9662 		 * reshape is happening in the remote node, we need to
9663 		 * update reshape_position and call start_reshape.
9664 		 */
9665 		mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9666 		if (mddev->pers->update_reshape_pos)
9667 			mddev->pers->update_reshape_pos(mddev);
9668 		if (mddev->pers->start_reshape)
9669 			mddev->pers->start_reshape(mddev);
9670 	} else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9671 		   mddev->reshape_position != MaxSector &&
9672 		   !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9673 		/* reshape is just done in another node. */
9674 		mddev->reshape_position = MaxSector;
9675 		if (mddev->pers->update_reshape_pos)
9676 			mddev->pers->update_reshape_pos(mddev);
9677 	}
9678 
9679 	/* Finally set the event to be up to date */
9680 	mddev->events = le64_to_cpu(sb->events);
9681 }
9682 
9683 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9684 {
9685 	int err;
9686 	struct page *swapout = rdev->sb_page;
9687 	struct mdp_superblock_1 *sb;
9688 
9689 	/* Store the sb page of the rdev in the swapout temporary
9690 	 * variable in case we err in the future
9691 	 */
9692 	rdev->sb_page = NULL;
9693 	err = alloc_disk_sb(rdev);
9694 	if (err == 0) {
9695 		ClearPageUptodate(rdev->sb_page);
9696 		rdev->sb_loaded = 0;
9697 		err = super_types[mddev->major_version].
9698 			load_super(rdev, NULL, mddev->minor_version);
9699 	}
9700 	if (err < 0) {
9701 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9702 				__func__, __LINE__, rdev->desc_nr, err);
9703 		if (rdev->sb_page)
9704 			put_page(rdev->sb_page);
9705 		rdev->sb_page = swapout;
9706 		rdev->sb_loaded = 1;
9707 		return err;
9708 	}
9709 
9710 	sb = page_address(rdev->sb_page);
9711 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9712 	 * is not set
9713 	 */
9714 
9715 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9716 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9717 
9718 	/* The other node finished recovery, call spare_active to set
9719 	 * device In_sync and mddev->degraded
9720 	 */
9721 	if (rdev->recovery_offset == MaxSector &&
9722 	    !test_bit(In_sync, &rdev->flags) &&
9723 	    mddev->pers->spare_active(mddev))
9724 		sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9725 
9726 	put_page(swapout);
9727 	return 0;
9728 }
9729 
9730 void md_reload_sb(struct mddev *mddev, int nr)
9731 {
9732 	struct md_rdev *rdev;
9733 	int err;
9734 
9735 	/* Find the rdev */
9736 	rdev_for_each_rcu(rdev, mddev) {
9737 		if (rdev->desc_nr == nr)
9738 			break;
9739 	}
9740 
9741 	if (!rdev || rdev->desc_nr != nr) {
9742 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9743 		return;
9744 	}
9745 
9746 	err = read_rdev(mddev, rdev);
9747 	if (err < 0)
9748 		return;
9749 
9750 	check_sb_changes(mddev, rdev);
9751 
9752 	/* Read all rdev's to update recovery_offset */
9753 	rdev_for_each_rcu(rdev, mddev) {
9754 		if (!test_bit(Faulty, &rdev->flags))
9755 			read_rdev(mddev, rdev);
9756 	}
9757 }
9758 EXPORT_SYMBOL(md_reload_sb);
9759 
9760 #ifndef MODULE
9761 
9762 /*
9763  * Searches all registered partitions for autorun RAID arrays
9764  * at boot time.
9765  */
9766 
9767 static DEFINE_MUTEX(detected_devices_mutex);
9768 static LIST_HEAD(all_detected_devices);
9769 struct detected_devices_node {
9770 	struct list_head list;
9771 	dev_t dev;
9772 };
9773 
9774 void md_autodetect_dev(dev_t dev)
9775 {
9776 	struct detected_devices_node *node_detected_dev;
9777 
9778 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9779 	if (node_detected_dev) {
9780 		node_detected_dev->dev = dev;
9781 		mutex_lock(&detected_devices_mutex);
9782 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9783 		mutex_unlock(&detected_devices_mutex);
9784 	}
9785 }
9786 
9787 void md_autostart_arrays(int part)
9788 {
9789 	struct md_rdev *rdev;
9790 	struct detected_devices_node *node_detected_dev;
9791 	dev_t dev;
9792 	int i_scanned, i_passed;
9793 
9794 	i_scanned = 0;
9795 	i_passed = 0;
9796 
9797 	pr_info("md: Autodetecting RAID arrays.\n");
9798 
9799 	mutex_lock(&detected_devices_mutex);
9800 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9801 		i_scanned++;
9802 		node_detected_dev = list_entry(all_detected_devices.next,
9803 					struct detected_devices_node, list);
9804 		list_del(&node_detected_dev->list);
9805 		dev = node_detected_dev->dev;
9806 		kfree(node_detected_dev);
9807 		mutex_unlock(&detected_devices_mutex);
9808 		rdev = md_import_device(dev,0, 90);
9809 		mutex_lock(&detected_devices_mutex);
9810 		if (IS_ERR(rdev))
9811 			continue;
9812 
9813 		if (test_bit(Faulty, &rdev->flags))
9814 			continue;
9815 
9816 		set_bit(AutoDetected, &rdev->flags);
9817 		list_add(&rdev->same_set, &pending_raid_disks);
9818 		i_passed++;
9819 	}
9820 	mutex_unlock(&detected_devices_mutex);
9821 
9822 	pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9823 
9824 	autorun_devices(part);
9825 }
9826 
9827 #endif /* !MODULE */
9828 
9829 static __exit void md_exit(void)
9830 {
9831 	struct mddev *mddev;
9832 	struct list_head *tmp;
9833 	int delay = 1;
9834 
9835 	unregister_blkdev(MD_MAJOR,"md");
9836 	unregister_blkdev(mdp_major, "mdp");
9837 	unregister_reboot_notifier(&md_notifier);
9838 	unregister_sysctl_table(raid_table_header);
9839 
9840 	/* We cannot unload the modules while some process is
9841 	 * waiting for us in select() or poll() - wake them up
9842 	 */
9843 	md_unloading = 1;
9844 	while (waitqueue_active(&md_event_waiters)) {
9845 		/* not safe to leave yet */
9846 		wake_up(&md_event_waiters);
9847 		msleep(delay);
9848 		delay += delay;
9849 	}
9850 	remove_proc_entry("mdstat", NULL);
9851 
9852 	for_each_mddev(mddev, tmp) {
9853 		export_array(mddev);
9854 		mddev->ctime = 0;
9855 		mddev->hold_active = 0;
9856 		/*
9857 		 * for_each_mddev() will call mddev_put() at the end of each
9858 		 * iteration.  As the mddev is now fully clear, this will
9859 		 * schedule the mddev for destruction by a workqueue, and the
9860 		 * destroy_workqueue() below will wait for that to complete.
9861 		 */
9862 	}
9863 	destroy_workqueue(md_rdev_misc_wq);
9864 	destroy_workqueue(md_misc_wq);
9865 	destroy_workqueue(md_wq);
9866 }
9867 
9868 subsys_initcall(md_init);
9869 module_exit(md_exit)
9870 
9871 static int get_ro(char *buffer, const struct kernel_param *kp)
9872 {
9873 	return sprintf(buffer, "%d\n", start_readonly);
9874 }
9875 static int set_ro(const char *val, const struct kernel_param *kp)
9876 {
9877 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9878 }
9879 
9880 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9881 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9882 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9883 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9884 
9885 MODULE_LICENSE("GPL");
9886 MODULE_DESCRIPTION("MD RAID framework");
9887 MODULE_ALIAS("md");
9888 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9889