xref: /openbmc/linux/drivers/md/md.c (revision 3b34380a)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85 
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88 
89 static struct ctl_table_header *raid_table_header;
90 
91 static ctl_table raid_table[] = {
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
94 		.procname	= "speed_limit_min",
95 		.data		= &sysctl_speed_limit_min,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
102 		.procname	= "speed_limit_max",
103 		.data		= &sysctl_speed_limit_max,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{ .ctl_name = 0 }
109 };
110 
111 static ctl_table raid_dir_table[] = {
112 	{
113 		.ctl_name	= DEV_RAID,
114 		.procname	= "raid",
115 		.maxlen		= 0,
116 		.mode		= 0555,
117 		.child		= raid_table,
118 	},
119 	{ .ctl_name = 0 }
120 };
121 
122 static ctl_table raid_root_table[] = {
123 	{
124 		.ctl_name	= CTL_DEV,
125 		.procname	= "dev",
126 		.maxlen		= 0,
127 		.mode		= 0555,
128 		.child		= raid_dir_table,
129 	},
130 	{ .ctl_name = 0 }
131 };
132 
133 static struct block_device_operations md_fops;
134 
135 static int start_readonly;
136 
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 static void md_new_event(mddev_t *mddev)
150 {
151 	atomic_inc(&md_event_count);
152 	wake_up(&md_event_waiters);
153 }
154 
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161 
162 
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)					\
171 									\
172 	for (({ spin_lock(&all_mddevs_lock); 				\
173 		tmp = all_mddevs.next;					\
174 		mddev = NULL;});					\
175 	     ({ if (tmp != &all_mddevs)					\
176 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177 		spin_unlock(&all_mddevs_lock);				\
178 		if (mddev) mddev_put(mddev);				\
179 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
180 		tmp != &all_mddevs;});					\
181 	     ({ spin_lock(&all_mddevs_lock);				\
182 		tmp = tmp->next;})					\
183 		)
184 
185 
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188 	bio_io_error(bio, bio->bi_size);
189 	return 0;
190 }
191 
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194 	atomic_inc(&mddev->active);
195 	return mddev;
196 }
197 
198 static void mddev_put(mddev_t *mddev)
199 {
200 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201 		return;
202 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203 		list_del(&mddev->all_mddevs);
204 		blk_put_queue(mddev->queue);
205 		kobject_unregister(&mddev->kobj);
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 }
209 
210 static mddev_t * mddev_find(dev_t unit)
211 {
212 	mddev_t *mddev, *new = NULL;
213 
214  retry:
215 	spin_lock(&all_mddevs_lock);
216 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217 		if (mddev->unit == unit) {
218 			mddev_get(mddev);
219 			spin_unlock(&all_mddevs_lock);
220 			kfree(new);
221 			return mddev;
222 		}
223 
224 	if (new) {
225 		list_add(&new->all_mddevs, &all_mddevs);
226 		spin_unlock(&all_mddevs_lock);
227 		return new;
228 	}
229 	spin_unlock(&all_mddevs_lock);
230 
231 	new = kzalloc(sizeof(*new), GFP_KERNEL);
232 	if (!new)
233 		return NULL;
234 
235 	new->unit = unit;
236 	if (MAJOR(unit) == MD_MAJOR)
237 		new->md_minor = MINOR(unit);
238 	else
239 		new->md_minor = MINOR(unit) >> MdpMinorShift;
240 
241 	init_MUTEX(&new->reconfig_sem);
242 	INIT_LIST_HEAD(&new->disks);
243 	INIT_LIST_HEAD(&new->all_mddevs);
244 	init_timer(&new->safemode_timer);
245 	atomic_set(&new->active, 1);
246 	spin_lock_init(&new->write_lock);
247 	init_waitqueue_head(&new->sb_wait);
248 
249 	new->queue = blk_alloc_queue(GFP_KERNEL);
250 	if (!new->queue) {
251 		kfree(new);
252 		return NULL;
253 	}
254 
255 	blk_queue_make_request(new->queue, md_fail_request);
256 
257 	goto retry;
258 }
259 
260 static inline int mddev_lock(mddev_t * mddev)
261 {
262 	return down_interruptible(&mddev->reconfig_sem);
263 }
264 
265 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
266 {
267 	down(&mddev->reconfig_sem);
268 }
269 
270 static inline int mddev_trylock(mddev_t * mddev)
271 {
272 	return down_trylock(&mddev->reconfig_sem);
273 }
274 
275 static inline void mddev_unlock(mddev_t * mddev)
276 {
277 	up(&mddev->reconfig_sem);
278 
279 	md_wakeup_thread(mddev->thread);
280 }
281 
282 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
283 {
284 	mdk_rdev_t * rdev;
285 	struct list_head *tmp;
286 
287 	ITERATE_RDEV(mddev,rdev,tmp) {
288 		if (rdev->desc_nr == nr)
289 			return rdev;
290 	}
291 	return NULL;
292 }
293 
294 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
295 {
296 	struct list_head *tmp;
297 	mdk_rdev_t *rdev;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->bdev->bd_dev == dev)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static struct mdk_personality *find_pers(int level)
307 {
308 	struct mdk_personality *pers;
309 	list_for_each_entry(pers, &pers_list, list)
310 		if (pers->level == level)
311 			return pers;
312 	return NULL;
313 }
314 
315 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
316 {
317 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
318 	return MD_NEW_SIZE_BLOCKS(size);
319 }
320 
321 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
322 {
323 	sector_t size;
324 
325 	size = rdev->sb_offset;
326 
327 	if (chunk_size)
328 		size &= ~((sector_t)chunk_size/1024 - 1);
329 	return size;
330 }
331 
332 static int alloc_disk_sb(mdk_rdev_t * rdev)
333 {
334 	if (rdev->sb_page)
335 		MD_BUG();
336 
337 	rdev->sb_page = alloc_page(GFP_KERNEL);
338 	if (!rdev->sb_page) {
339 		printk(KERN_ALERT "md: out of memory.\n");
340 		return -EINVAL;
341 	}
342 
343 	return 0;
344 }
345 
346 static void free_disk_sb(mdk_rdev_t * rdev)
347 {
348 	if (rdev->sb_page) {
349 		put_page(rdev->sb_page);
350 		rdev->sb_loaded = 0;
351 		rdev->sb_page = NULL;
352 		rdev->sb_offset = 0;
353 		rdev->size = 0;
354 	}
355 }
356 
357 
358 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
359 {
360 	mdk_rdev_t *rdev = bio->bi_private;
361 	mddev_t *mddev = rdev->mddev;
362 	if (bio->bi_size)
363 		return 1;
364 
365 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
366 		md_error(mddev, rdev);
367 
368 	if (atomic_dec_and_test(&mddev->pending_writes))
369 		wake_up(&mddev->sb_wait);
370 	bio_put(bio);
371 	return 0;
372 }
373 
374 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
375 {
376 	struct bio *bio2 = bio->bi_private;
377 	mdk_rdev_t *rdev = bio2->bi_private;
378 	mddev_t *mddev = rdev->mddev;
379 	if (bio->bi_size)
380 		return 1;
381 
382 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
383 	    error == -EOPNOTSUPP) {
384 		unsigned long flags;
385 		/* barriers don't appear to be supported :-( */
386 		set_bit(BarriersNotsupp, &rdev->flags);
387 		mddev->barriers_work = 0;
388 		spin_lock_irqsave(&mddev->write_lock, flags);
389 		bio2->bi_next = mddev->biolist;
390 		mddev->biolist = bio2;
391 		spin_unlock_irqrestore(&mddev->write_lock, flags);
392 		wake_up(&mddev->sb_wait);
393 		bio_put(bio);
394 		return 0;
395 	}
396 	bio_put(bio2);
397 	bio->bi_private = rdev;
398 	return super_written(bio, bytes_done, error);
399 }
400 
401 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
402 		   sector_t sector, int size, struct page *page)
403 {
404 	/* write first size bytes of page to sector of rdev
405 	 * Increment mddev->pending_writes before returning
406 	 * and decrement it on completion, waking up sb_wait
407 	 * if zero is reached.
408 	 * If an error occurred, call md_error
409 	 *
410 	 * As we might need to resubmit the request if BIO_RW_BARRIER
411 	 * causes ENOTSUPP, we allocate a spare bio...
412 	 */
413 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
414 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
415 
416 	bio->bi_bdev = rdev->bdev;
417 	bio->bi_sector = sector;
418 	bio_add_page(bio, page, size, 0);
419 	bio->bi_private = rdev;
420 	bio->bi_end_io = super_written;
421 	bio->bi_rw = rw;
422 
423 	atomic_inc(&mddev->pending_writes);
424 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
425 		struct bio *rbio;
426 		rw |= (1<<BIO_RW_BARRIER);
427 		rbio = bio_clone(bio, GFP_NOIO);
428 		rbio->bi_private = bio;
429 		rbio->bi_end_io = super_written_barrier;
430 		submit_bio(rw, rbio);
431 	} else
432 		submit_bio(rw, bio);
433 }
434 
435 void md_super_wait(mddev_t *mddev)
436 {
437 	/* wait for all superblock writes that were scheduled to complete.
438 	 * if any had to be retried (due to BARRIER problems), retry them
439 	 */
440 	DEFINE_WAIT(wq);
441 	for(;;) {
442 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
443 		if (atomic_read(&mddev->pending_writes)==0)
444 			break;
445 		while (mddev->biolist) {
446 			struct bio *bio;
447 			spin_lock_irq(&mddev->write_lock);
448 			bio = mddev->biolist;
449 			mddev->biolist = bio->bi_next ;
450 			bio->bi_next = NULL;
451 			spin_unlock_irq(&mddev->write_lock);
452 			submit_bio(bio->bi_rw, bio);
453 		}
454 		schedule();
455 	}
456 	finish_wait(&mddev->sb_wait, &wq);
457 }
458 
459 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
460 {
461 	if (bio->bi_size)
462 		return 1;
463 
464 	complete((struct completion*)bio->bi_private);
465 	return 0;
466 }
467 
468 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
469 		   struct page *page, int rw)
470 {
471 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
472 	struct completion event;
473 	int ret;
474 
475 	rw |= (1 << BIO_RW_SYNC);
476 
477 	bio->bi_bdev = bdev;
478 	bio->bi_sector = sector;
479 	bio_add_page(bio, page, size, 0);
480 	init_completion(&event);
481 	bio->bi_private = &event;
482 	bio->bi_end_io = bi_complete;
483 	submit_bio(rw, bio);
484 	wait_for_completion(&event);
485 
486 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
487 	bio_put(bio);
488 	return ret;
489 }
490 EXPORT_SYMBOL_GPL(sync_page_io);
491 
492 static int read_disk_sb(mdk_rdev_t * rdev, int size)
493 {
494 	char b[BDEVNAME_SIZE];
495 	if (!rdev->sb_page) {
496 		MD_BUG();
497 		return -EINVAL;
498 	}
499 	if (rdev->sb_loaded)
500 		return 0;
501 
502 
503 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
504 		goto fail;
505 	rdev->sb_loaded = 1;
506 	return 0;
507 
508 fail:
509 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
510 		bdevname(rdev->bdev,b));
511 	return -EINVAL;
512 }
513 
514 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
515 {
516 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
517 		(sb1->set_uuid1 == sb2->set_uuid1) &&
518 		(sb1->set_uuid2 == sb2->set_uuid2) &&
519 		(sb1->set_uuid3 == sb2->set_uuid3))
520 
521 		return 1;
522 
523 	return 0;
524 }
525 
526 
527 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
528 {
529 	int ret;
530 	mdp_super_t *tmp1, *tmp2;
531 
532 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
533 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
534 
535 	if (!tmp1 || !tmp2) {
536 		ret = 0;
537 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
538 		goto abort;
539 	}
540 
541 	*tmp1 = *sb1;
542 	*tmp2 = *sb2;
543 
544 	/*
545 	 * nr_disks is not constant
546 	 */
547 	tmp1->nr_disks = 0;
548 	tmp2->nr_disks = 0;
549 
550 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
551 		ret = 0;
552 	else
553 		ret = 1;
554 
555 abort:
556 	kfree(tmp1);
557 	kfree(tmp2);
558 	return ret;
559 }
560 
561 static unsigned int calc_sb_csum(mdp_super_t * sb)
562 {
563 	unsigned int disk_csum, csum;
564 
565 	disk_csum = sb->sb_csum;
566 	sb->sb_csum = 0;
567 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
568 	sb->sb_csum = disk_csum;
569 	return csum;
570 }
571 
572 
573 /*
574  * Handle superblock details.
575  * We want to be able to handle multiple superblock formats
576  * so we have a common interface to them all, and an array of
577  * different handlers.
578  * We rely on user-space to write the initial superblock, and support
579  * reading and updating of superblocks.
580  * Interface methods are:
581  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
582  *      loads and validates a superblock on dev.
583  *      if refdev != NULL, compare superblocks on both devices
584  *    Return:
585  *      0 - dev has a superblock that is compatible with refdev
586  *      1 - dev has a superblock that is compatible and newer than refdev
587  *          so dev should be used as the refdev in future
588  *     -EINVAL superblock incompatible or invalid
589  *     -othererror e.g. -EIO
590  *
591  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
592  *      Verify that dev is acceptable into mddev.
593  *       The first time, mddev->raid_disks will be 0, and data from
594  *       dev should be merged in.  Subsequent calls check that dev
595  *       is new enough.  Return 0 or -EINVAL
596  *
597  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
598  *     Update the superblock for rdev with data in mddev
599  *     This does not write to disc.
600  *
601  */
602 
603 struct super_type  {
604 	char 		*name;
605 	struct module	*owner;
606 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
607 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
608 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
609 };
610 
611 /*
612  * load_super for 0.90.0
613  */
614 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
615 {
616 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
617 	mdp_super_t *sb;
618 	int ret;
619 	sector_t sb_offset;
620 
621 	/*
622 	 * Calculate the position of the superblock,
623 	 * it's at the end of the disk.
624 	 *
625 	 * It also happens to be a multiple of 4Kb.
626 	 */
627 	sb_offset = calc_dev_sboffset(rdev->bdev);
628 	rdev->sb_offset = sb_offset;
629 
630 	ret = read_disk_sb(rdev, MD_SB_BYTES);
631 	if (ret) return ret;
632 
633 	ret = -EINVAL;
634 
635 	bdevname(rdev->bdev, b);
636 	sb = (mdp_super_t*)page_address(rdev->sb_page);
637 
638 	if (sb->md_magic != MD_SB_MAGIC) {
639 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
640 		       b);
641 		goto abort;
642 	}
643 
644 	if (sb->major_version != 0 ||
645 	    sb->minor_version != 90) {
646 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
647 			sb->major_version, sb->minor_version,
648 			b);
649 		goto abort;
650 	}
651 
652 	if (sb->raid_disks <= 0)
653 		goto abort;
654 
655 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
656 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
657 			b);
658 		goto abort;
659 	}
660 
661 	rdev->preferred_minor = sb->md_minor;
662 	rdev->data_offset = 0;
663 	rdev->sb_size = MD_SB_BYTES;
664 
665 	if (sb->level == LEVEL_MULTIPATH)
666 		rdev->desc_nr = -1;
667 	else
668 		rdev->desc_nr = sb->this_disk.number;
669 
670 	if (refdev == 0)
671 		ret = 1;
672 	else {
673 		__u64 ev1, ev2;
674 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
675 		if (!uuid_equal(refsb, sb)) {
676 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
677 				b, bdevname(refdev->bdev,b2));
678 			goto abort;
679 		}
680 		if (!sb_equal(refsb, sb)) {
681 			printk(KERN_WARNING "md: %s has same UUID"
682 			       " but different superblock to %s\n",
683 			       b, bdevname(refdev->bdev, b2));
684 			goto abort;
685 		}
686 		ev1 = md_event(sb);
687 		ev2 = md_event(refsb);
688 		if (ev1 > ev2)
689 			ret = 1;
690 		else
691 			ret = 0;
692 	}
693 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
694 
695  abort:
696 	return ret;
697 }
698 
699 /*
700  * validate_super for 0.90.0
701  */
702 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
703 {
704 	mdp_disk_t *desc;
705 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
706 
707 	rdev->raid_disk = -1;
708 	rdev->flags = 0;
709 	if (mddev->raid_disks == 0) {
710 		mddev->major_version = 0;
711 		mddev->minor_version = sb->minor_version;
712 		mddev->patch_version = sb->patch_version;
713 		mddev->persistent = ! sb->not_persistent;
714 		mddev->chunk_size = sb->chunk_size;
715 		mddev->ctime = sb->ctime;
716 		mddev->utime = sb->utime;
717 		mddev->level = sb->level;
718 		mddev->layout = sb->layout;
719 		mddev->raid_disks = sb->raid_disks;
720 		mddev->size = sb->size;
721 		mddev->events = md_event(sb);
722 		mddev->bitmap_offset = 0;
723 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
724 
725 		if (sb->state & (1<<MD_SB_CLEAN))
726 			mddev->recovery_cp = MaxSector;
727 		else {
728 			if (sb->events_hi == sb->cp_events_hi &&
729 				sb->events_lo == sb->cp_events_lo) {
730 				mddev->recovery_cp = sb->recovery_cp;
731 			} else
732 				mddev->recovery_cp = 0;
733 		}
734 
735 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
736 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
737 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
738 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
739 
740 		mddev->max_disks = MD_SB_DISKS;
741 
742 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
743 		    mddev->bitmap_file == NULL) {
744 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
745 			    && mddev->level != 10) {
746 				/* FIXME use a better test */
747 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
748 				return -EINVAL;
749 			}
750 			mddev->bitmap_offset = mddev->default_bitmap_offset;
751 		}
752 
753 	} else if (mddev->pers == NULL) {
754 		/* Insist on good event counter while assembling */
755 		__u64 ev1 = md_event(sb);
756 		++ev1;
757 		if (ev1 < mddev->events)
758 			return -EINVAL;
759 	} else if (mddev->bitmap) {
760 		/* if adding to array with a bitmap, then we can accept an
761 		 * older device ... but not too old.
762 		 */
763 		__u64 ev1 = md_event(sb);
764 		if (ev1 < mddev->bitmap->events_cleared)
765 			return 0;
766 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
767 		return 0;
768 
769 	if (mddev->level != LEVEL_MULTIPATH) {
770 		desc = sb->disks + rdev->desc_nr;
771 
772 		if (desc->state & (1<<MD_DISK_FAULTY))
773 			set_bit(Faulty, &rdev->flags);
774 		else if (desc->state & (1<<MD_DISK_SYNC) &&
775 			 desc->raid_disk < mddev->raid_disks) {
776 			set_bit(In_sync, &rdev->flags);
777 			rdev->raid_disk = desc->raid_disk;
778 		}
779 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
780 			set_bit(WriteMostly, &rdev->flags);
781 	} else /* MULTIPATH are always insync */
782 		set_bit(In_sync, &rdev->flags);
783 	return 0;
784 }
785 
786 /*
787  * sync_super for 0.90.0
788  */
789 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
790 {
791 	mdp_super_t *sb;
792 	struct list_head *tmp;
793 	mdk_rdev_t *rdev2;
794 	int next_spare = mddev->raid_disks;
795 
796 
797 	/* make rdev->sb match mddev data..
798 	 *
799 	 * 1/ zero out disks
800 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
801 	 * 3/ any empty disks < next_spare become removed
802 	 *
803 	 * disks[0] gets initialised to REMOVED because
804 	 * we cannot be sure from other fields if it has
805 	 * been initialised or not.
806 	 */
807 	int i;
808 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
809 
810 	rdev->sb_size = MD_SB_BYTES;
811 
812 	sb = (mdp_super_t*)page_address(rdev->sb_page);
813 
814 	memset(sb, 0, sizeof(*sb));
815 
816 	sb->md_magic = MD_SB_MAGIC;
817 	sb->major_version = mddev->major_version;
818 	sb->minor_version = mddev->minor_version;
819 	sb->patch_version = mddev->patch_version;
820 	sb->gvalid_words  = 0; /* ignored */
821 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
822 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
823 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
824 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
825 
826 	sb->ctime = mddev->ctime;
827 	sb->level = mddev->level;
828 	sb->size  = mddev->size;
829 	sb->raid_disks = mddev->raid_disks;
830 	sb->md_minor = mddev->md_minor;
831 	sb->not_persistent = !mddev->persistent;
832 	sb->utime = mddev->utime;
833 	sb->state = 0;
834 	sb->events_hi = (mddev->events>>32);
835 	sb->events_lo = (u32)mddev->events;
836 
837 	if (mddev->in_sync)
838 	{
839 		sb->recovery_cp = mddev->recovery_cp;
840 		sb->cp_events_hi = (mddev->events>>32);
841 		sb->cp_events_lo = (u32)mddev->events;
842 		if (mddev->recovery_cp == MaxSector)
843 			sb->state = (1<< MD_SB_CLEAN);
844 	} else
845 		sb->recovery_cp = 0;
846 
847 	sb->layout = mddev->layout;
848 	sb->chunk_size = mddev->chunk_size;
849 
850 	if (mddev->bitmap && mddev->bitmap_file == NULL)
851 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
852 
853 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
854 	ITERATE_RDEV(mddev,rdev2,tmp) {
855 		mdp_disk_t *d;
856 		int desc_nr;
857 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
858 		    && !test_bit(Faulty, &rdev2->flags))
859 			desc_nr = rdev2->raid_disk;
860 		else
861 			desc_nr = next_spare++;
862 		rdev2->desc_nr = desc_nr;
863 		d = &sb->disks[rdev2->desc_nr];
864 		nr_disks++;
865 		d->number = rdev2->desc_nr;
866 		d->major = MAJOR(rdev2->bdev->bd_dev);
867 		d->minor = MINOR(rdev2->bdev->bd_dev);
868 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
869 		    && !test_bit(Faulty, &rdev2->flags))
870 			d->raid_disk = rdev2->raid_disk;
871 		else
872 			d->raid_disk = rdev2->desc_nr; /* compatibility */
873 		if (test_bit(Faulty, &rdev2->flags)) {
874 			d->state = (1<<MD_DISK_FAULTY);
875 			failed++;
876 		} else if (test_bit(In_sync, &rdev2->flags)) {
877 			d->state = (1<<MD_DISK_ACTIVE);
878 			d->state |= (1<<MD_DISK_SYNC);
879 			active++;
880 			working++;
881 		} else {
882 			d->state = 0;
883 			spare++;
884 			working++;
885 		}
886 		if (test_bit(WriteMostly, &rdev2->flags))
887 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
888 	}
889 	/* now set the "removed" and "faulty" bits on any missing devices */
890 	for (i=0 ; i < mddev->raid_disks ; i++) {
891 		mdp_disk_t *d = &sb->disks[i];
892 		if (d->state == 0 && d->number == 0) {
893 			d->number = i;
894 			d->raid_disk = i;
895 			d->state = (1<<MD_DISK_REMOVED);
896 			d->state |= (1<<MD_DISK_FAULTY);
897 			failed++;
898 		}
899 	}
900 	sb->nr_disks = nr_disks;
901 	sb->active_disks = active;
902 	sb->working_disks = working;
903 	sb->failed_disks = failed;
904 	sb->spare_disks = spare;
905 
906 	sb->this_disk = sb->disks[rdev->desc_nr];
907 	sb->sb_csum = calc_sb_csum(sb);
908 }
909 
910 /*
911  * version 1 superblock
912  */
913 
914 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
915 {
916 	unsigned int disk_csum, csum;
917 	unsigned long long newcsum;
918 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
919 	unsigned int *isuper = (unsigned int*)sb;
920 	int i;
921 
922 	disk_csum = sb->sb_csum;
923 	sb->sb_csum = 0;
924 	newcsum = 0;
925 	for (i=0; size>=4; size -= 4 )
926 		newcsum += le32_to_cpu(*isuper++);
927 
928 	if (size == 2)
929 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
930 
931 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
932 	sb->sb_csum = disk_csum;
933 	return cpu_to_le32(csum);
934 }
935 
936 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
937 {
938 	struct mdp_superblock_1 *sb;
939 	int ret;
940 	sector_t sb_offset;
941 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
942 	int bmask;
943 
944 	/*
945 	 * Calculate the position of the superblock.
946 	 * It is always aligned to a 4K boundary and
947 	 * depeding on minor_version, it can be:
948 	 * 0: At least 8K, but less than 12K, from end of device
949 	 * 1: At start of device
950 	 * 2: 4K from start of device.
951 	 */
952 	switch(minor_version) {
953 	case 0:
954 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
955 		sb_offset -= 8*2;
956 		sb_offset &= ~(sector_t)(4*2-1);
957 		/* convert from sectors to K */
958 		sb_offset /= 2;
959 		break;
960 	case 1:
961 		sb_offset = 0;
962 		break;
963 	case 2:
964 		sb_offset = 4;
965 		break;
966 	default:
967 		return -EINVAL;
968 	}
969 	rdev->sb_offset = sb_offset;
970 
971 	/* superblock is rarely larger than 1K, but it can be larger,
972 	 * and it is safe to read 4k, so we do that
973 	 */
974 	ret = read_disk_sb(rdev, 4096);
975 	if (ret) return ret;
976 
977 
978 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
979 
980 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
981 	    sb->major_version != cpu_to_le32(1) ||
982 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
983 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
984 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
985 		return -EINVAL;
986 
987 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
988 		printk("md: invalid superblock checksum on %s\n",
989 			bdevname(rdev->bdev,b));
990 		return -EINVAL;
991 	}
992 	if (le64_to_cpu(sb->data_size) < 10) {
993 		printk("md: data_size too small on %s\n",
994 		       bdevname(rdev->bdev,b));
995 		return -EINVAL;
996 	}
997 	rdev->preferred_minor = 0xffff;
998 	rdev->data_offset = le64_to_cpu(sb->data_offset);
999 
1000 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1001 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1002 	if (rdev->sb_size & bmask)
1003 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1004 
1005 	if (refdev == 0)
1006 		return 1;
1007 	else {
1008 		__u64 ev1, ev2;
1009 		struct mdp_superblock_1 *refsb =
1010 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1011 
1012 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1013 		    sb->level != refsb->level ||
1014 		    sb->layout != refsb->layout ||
1015 		    sb->chunksize != refsb->chunksize) {
1016 			printk(KERN_WARNING "md: %s has strangely different"
1017 				" superblock to %s\n",
1018 				bdevname(rdev->bdev,b),
1019 				bdevname(refdev->bdev,b2));
1020 			return -EINVAL;
1021 		}
1022 		ev1 = le64_to_cpu(sb->events);
1023 		ev2 = le64_to_cpu(refsb->events);
1024 
1025 		if (ev1 > ev2)
1026 			return 1;
1027 	}
1028 	if (minor_version)
1029 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1030 	else
1031 		rdev->size = rdev->sb_offset;
1032 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1033 		return -EINVAL;
1034 	rdev->size = le64_to_cpu(sb->data_size)/2;
1035 	if (le32_to_cpu(sb->chunksize))
1036 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1037 	return 0;
1038 }
1039 
1040 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1041 {
1042 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043 
1044 	rdev->raid_disk = -1;
1045 	rdev->flags = 0;
1046 	if (mddev->raid_disks == 0) {
1047 		mddev->major_version = 1;
1048 		mddev->patch_version = 0;
1049 		mddev->persistent = 1;
1050 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1051 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1052 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1053 		mddev->level = le32_to_cpu(sb->level);
1054 		mddev->layout = le32_to_cpu(sb->layout);
1055 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1056 		mddev->size = le64_to_cpu(sb->size)/2;
1057 		mddev->events = le64_to_cpu(sb->events);
1058 		mddev->bitmap_offset = 0;
1059 		mddev->default_bitmap_offset = 1024;
1060 
1061 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1062 		memcpy(mddev->uuid, sb->set_uuid, 16);
1063 
1064 		mddev->max_disks =  (4096-256)/2;
1065 
1066 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1067 		    mddev->bitmap_file == NULL ) {
1068 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1069 			    && mddev->level != 10) {
1070 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1071 				return -EINVAL;
1072 			}
1073 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1074 		}
1075 	} else if (mddev->pers == NULL) {
1076 		/* Insist of good event counter while assembling */
1077 		__u64 ev1 = le64_to_cpu(sb->events);
1078 		++ev1;
1079 		if (ev1 < mddev->events)
1080 			return -EINVAL;
1081 	} else if (mddev->bitmap) {
1082 		/* If adding to array with a bitmap, then we can accept an
1083 		 * older device, but not too old.
1084 		 */
1085 		__u64 ev1 = le64_to_cpu(sb->events);
1086 		if (ev1 < mddev->bitmap->events_cleared)
1087 			return 0;
1088 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1089 		return 0;
1090 
1091 	if (mddev->level != LEVEL_MULTIPATH) {
1092 		int role;
1093 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1094 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1095 		switch(role) {
1096 		case 0xffff: /* spare */
1097 			break;
1098 		case 0xfffe: /* faulty */
1099 			set_bit(Faulty, &rdev->flags);
1100 			break;
1101 		default:
1102 			set_bit(In_sync, &rdev->flags);
1103 			rdev->raid_disk = role;
1104 			break;
1105 		}
1106 		if (sb->devflags & WriteMostly1)
1107 			set_bit(WriteMostly, &rdev->flags);
1108 	} else /* MULTIPATH are always insync */
1109 		set_bit(In_sync, &rdev->flags);
1110 
1111 	return 0;
1112 }
1113 
1114 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1115 {
1116 	struct mdp_superblock_1 *sb;
1117 	struct list_head *tmp;
1118 	mdk_rdev_t *rdev2;
1119 	int max_dev, i;
1120 	/* make rdev->sb match mddev and rdev data. */
1121 
1122 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1123 
1124 	sb->feature_map = 0;
1125 	sb->pad0 = 0;
1126 	memset(sb->pad1, 0, sizeof(sb->pad1));
1127 	memset(sb->pad2, 0, sizeof(sb->pad2));
1128 	memset(sb->pad3, 0, sizeof(sb->pad3));
1129 
1130 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1131 	sb->events = cpu_to_le64(mddev->events);
1132 	if (mddev->in_sync)
1133 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1134 	else
1135 		sb->resync_offset = cpu_to_le64(0);
1136 
1137 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1138 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1139 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1140 	}
1141 
1142 	max_dev = 0;
1143 	ITERATE_RDEV(mddev,rdev2,tmp)
1144 		if (rdev2->desc_nr+1 > max_dev)
1145 			max_dev = rdev2->desc_nr+1;
1146 
1147 	sb->max_dev = cpu_to_le32(max_dev);
1148 	for (i=0; i<max_dev;i++)
1149 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1150 
1151 	ITERATE_RDEV(mddev,rdev2,tmp) {
1152 		i = rdev2->desc_nr;
1153 		if (test_bit(Faulty, &rdev2->flags))
1154 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1155 		else if (test_bit(In_sync, &rdev2->flags))
1156 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1157 		else
1158 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1159 	}
1160 
1161 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1162 	sb->sb_csum = calc_sb_1_csum(sb);
1163 }
1164 
1165 
1166 static struct super_type super_types[] = {
1167 	[0] = {
1168 		.name	= "0.90.0",
1169 		.owner	= THIS_MODULE,
1170 		.load_super	= super_90_load,
1171 		.validate_super	= super_90_validate,
1172 		.sync_super	= super_90_sync,
1173 	},
1174 	[1] = {
1175 		.name	= "md-1",
1176 		.owner	= THIS_MODULE,
1177 		.load_super	= super_1_load,
1178 		.validate_super	= super_1_validate,
1179 		.sync_super	= super_1_sync,
1180 	},
1181 };
1182 
1183 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1184 {
1185 	struct list_head *tmp;
1186 	mdk_rdev_t *rdev;
1187 
1188 	ITERATE_RDEV(mddev,rdev,tmp)
1189 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1190 			return rdev;
1191 
1192 	return NULL;
1193 }
1194 
1195 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1196 {
1197 	struct list_head *tmp;
1198 	mdk_rdev_t *rdev;
1199 
1200 	ITERATE_RDEV(mddev1,rdev,tmp)
1201 		if (match_dev_unit(mddev2, rdev))
1202 			return 1;
1203 
1204 	return 0;
1205 }
1206 
1207 static LIST_HEAD(pending_raid_disks);
1208 
1209 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1210 {
1211 	mdk_rdev_t *same_pdev;
1212 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1213 	struct kobject *ko;
1214 
1215 	if (rdev->mddev) {
1216 		MD_BUG();
1217 		return -EINVAL;
1218 	}
1219 	same_pdev = match_dev_unit(mddev, rdev);
1220 	if (same_pdev)
1221 		printk(KERN_WARNING
1222 			"%s: WARNING: %s appears to be on the same physical"
1223 	 		" disk as %s. True\n     protection against single-disk"
1224 			" failure might be compromised.\n",
1225 			mdname(mddev), bdevname(rdev->bdev,b),
1226 			bdevname(same_pdev->bdev,b2));
1227 
1228 	/* Verify rdev->desc_nr is unique.
1229 	 * If it is -1, assign a free number, else
1230 	 * check number is not in use
1231 	 */
1232 	if (rdev->desc_nr < 0) {
1233 		int choice = 0;
1234 		if (mddev->pers) choice = mddev->raid_disks;
1235 		while (find_rdev_nr(mddev, choice))
1236 			choice++;
1237 		rdev->desc_nr = choice;
1238 	} else {
1239 		if (find_rdev_nr(mddev, rdev->desc_nr))
1240 			return -EBUSY;
1241 	}
1242 	bdevname(rdev->bdev,b);
1243 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1244 		return -ENOMEM;
1245 
1246 	list_add(&rdev->same_set, &mddev->disks);
1247 	rdev->mddev = mddev;
1248 	printk(KERN_INFO "md: bind<%s>\n", b);
1249 
1250 	rdev->kobj.parent = &mddev->kobj;
1251 	kobject_add(&rdev->kobj);
1252 
1253 	if (rdev->bdev->bd_part)
1254 		ko = &rdev->bdev->bd_part->kobj;
1255 	else
1256 		ko = &rdev->bdev->bd_disk->kobj;
1257 	sysfs_create_link(&rdev->kobj, ko, "block");
1258 	return 0;
1259 }
1260 
1261 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1262 {
1263 	char b[BDEVNAME_SIZE];
1264 	if (!rdev->mddev) {
1265 		MD_BUG();
1266 		return;
1267 	}
1268 	list_del_init(&rdev->same_set);
1269 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1270 	rdev->mddev = NULL;
1271 	sysfs_remove_link(&rdev->kobj, "block");
1272 	kobject_del(&rdev->kobj);
1273 }
1274 
1275 /*
1276  * prevent the device from being mounted, repartitioned or
1277  * otherwise reused by a RAID array (or any other kernel
1278  * subsystem), by bd_claiming the device.
1279  */
1280 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1281 {
1282 	int err = 0;
1283 	struct block_device *bdev;
1284 	char b[BDEVNAME_SIZE];
1285 
1286 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1287 	if (IS_ERR(bdev)) {
1288 		printk(KERN_ERR "md: could not open %s.\n",
1289 			__bdevname(dev, b));
1290 		return PTR_ERR(bdev);
1291 	}
1292 	err = bd_claim(bdev, rdev);
1293 	if (err) {
1294 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1295 			bdevname(bdev, b));
1296 		blkdev_put(bdev);
1297 		return err;
1298 	}
1299 	rdev->bdev = bdev;
1300 	return err;
1301 }
1302 
1303 static void unlock_rdev(mdk_rdev_t *rdev)
1304 {
1305 	struct block_device *bdev = rdev->bdev;
1306 	rdev->bdev = NULL;
1307 	if (!bdev)
1308 		MD_BUG();
1309 	bd_release(bdev);
1310 	blkdev_put(bdev);
1311 }
1312 
1313 void md_autodetect_dev(dev_t dev);
1314 
1315 static void export_rdev(mdk_rdev_t * rdev)
1316 {
1317 	char b[BDEVNAME_SIZE];
1318 	printk(KERN_INFO "md: export_rdev(%s)\n",
1319 		bdevname(rdev->bdev,b));
1320 	if (rdev->mddev)
1321 		MD_BUG();
1322 	free_disk_sb(rdev);
1323 	list_del_init(&rdev->same_set);
1324 #ifndef MODULE
1325 	md_autodetect_dev(rdev->bdev->bd_dev);
1326 #endif
1327 	unlock_rdev(rdev);
1328 	kobject_put(&rdev->kobj);
1329 }
1330 
1331 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1332 {
1333 	unbind_rdev_from_array(rdev);
1334 	export_rdev(rdev);
1335 }
1336 
1337 static void export_array(mddev_t *mddev)
1338 {
1339 	struct list_head *tmp;
1340 	mdk_rdev_t *rdev;
1341 
1342 	ITERATE_RDEV(mddev,rdev,tmp) {
1343 		if (!rdev->mddev) {
1344 			MD_BUG();
1345 			continue;
1346 		}
1347 		kick_rdev_from_array(rdev);
1348 	}
1349 	if (!list_empty(&mddev->disks))
1350 		MD_BUG();
1351 	mddev->raid_disks = 0;
1352 	mddev->major_version = 0;
1353 }
1354 
1355 static void print_desc(mdp_disk_t *desc)
1356 {
1357 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1358 		desc->major,desc->minor,desc->raid_disk,desc->state);
1359 }
1360 
1361 static void print_sb(mdp_super_t *sb)
1362 {
1363 	int i;
1364 
1365 	printk(KERN_INFO
1366 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1367 		sb->major_version, sb->minor_version, sb->patch_version,
1368 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1369 		sb->ctime);
1370 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1371 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1372 		sb->md_minor, sb->layout, sb->chunk_size);
1373 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1374 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1375 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1376 		sb->failed_disks, sb->spare_disks,
1377 		sb->sb_csum, (unsigned long)sb->events_lo);
1378 
1379 	printk(KERN_INFO);
1380 	for (i = 0; i < MD_SB_DISKS; i++) {
1381 		mdp_disk_t *desc;
1382 
1383 		desc = sb->disks + i;
1384 		if (desc->number || desc->major || desc->minor ||
1385 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1386 			printk("     D %2d: ", i);
1387 			print_desc(desc);
1388 		}
1389 	}
1390 	printk(KERN_INFO "md:     THIS: ");
1391 	print_desc(&sb->this_disk);
1392 
1393 }
1394 
1395 static void print_rdev(mdk_rdev_t *rdev)
1396 {
1397 	char b[BDEVNAME_SIZE];
1398 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1399 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1400 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1401 	        rdev->desc_nr);
1402 	if (rdev->sb_loaded) {
1403 		printk(KERN_INFO "md: rdev superblock:\n");
1404 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1405 	} else
1406 		printk(KERN_INFO "md: no rdev superblock!\n");
1407 }
1408 
1409 void md_print_devices(void)
1410 {
1411 	struct list_head *tmp, *tmp2;
1412 	mdk_rdev_t *rdev;
1413 	mddev_t *mddev;
1414 	char b[BDEVNAME_SIZE];
1415 
1416 	printk("\n");
1417 	printk("md:	**********************************\n");
1418 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1419 	printk("md:	**********************************\n");
1420 	ITERATE_MDDEV(mddev,tmp) {
1421 
1422 		if (mddev->bitmap)
1423 			bitmap_print_sb(mddev->bitmap);
1424 		else
1425 			printk("%s: ", mdname(mddev));
1426 		ITERATE_RDEV(mddev,rdev,tmp2)
1427 			printk("<%s>", bdevname(rdev->bdev,b));
1428 		printk("\n");
1429 
1430 		ITERATE_RDEV(mddev,rdev,tmp2)
1431 			print_rdev(rdev);
1432 	}
1433 	printk("md:	**********************************\n");
1434 	printk("\n");
1435 }
1436 
1437 
1438 static void sync_sbs(mddev_t * mddev)
1439 {
1440 	mdk_rdev_t *rdev;
1441 	struct list_head *tmp;
1442 
1443 	ITERATE_RDEV(mddev,rdev,tmp) {
1444 		super_types[mddev->major_version].
1445 			sync_super(mddev, rdev);
1446 		rdev->sb_loaded = 1;
1447 	}
1448 }
1449 
1450 static void md_update_sb(mddev_t * mddev)
1451 {
1452 	int err;
1453 	struct list_head *tmp;
1454 	mdk_rdev_t *rdev;
1455 	int sync_req;
1456 
1457 repeat:
1458 	spin_lock_irq(&mddev->write_lock);
1459 	sync_req = mddev->in_sync;
1460 	mddev->utime = get_seconds();
1461 	mddev->events ++;
1462 
1463 	if (!mddev->events) {
1464 		/*
1465 		 * oops, this 64-bit counter should never wrap.
1466 		 * Either we are in around ~1 trillion A.C., assuming
1467 		 * 1 reboot per second, or we have a bug:
1468 		 */
1469 		MD_BUG();
1470 		mddev->events --;
1471 	}
1472 	mddev->sb_dirty = 2;
1473 	sync_sbs(mddev);
1474 
1475 	/*
1476 	 * do not write anything to disk if using
1477 	 * nonpersistent superblocks
1478 	 */
1479 	if (!mddev->persistent) {
1480 		mddev->sb_dirty = 0;
1481 		spin_unlock_irq(&mddev->write_lock);
1482 		wake_up(&mddev->sb_wait);
1483 		return;
1484 	}
1485 	spin_unlock_irq(&mddev->write_lock);
1486 
1487 	dprintk(KERN_INFO
1488 		"md: updating %s RAID superblock on device (in sync %d)\n",
1489 		mdname(mddev),mddev->in_sync);
1490 
1491 	err = bitmap_update_sb(mddev->bitmap);
1492 	ITERATE_RDEV(mddev,rdev,tmp) {
1493 		char b[BDEVNAME_SIZE];
1494 		dprintk(KERN_INFO "md: ");
1495 		if (test_bit(Faulty, &rdev->flags))
1496 			dprintk("(skipping faulty ");
1497 
1498 		dprintk("%s ", bdevname(rdev->bdev,b));
1499 		if (!test_bit(Faulty, &rdev->flags)) {
1500 			md_super_write(mddev,rdev,
1501 				       rdev->sb_offset<<1, rdev->sb_size,
1502 				       rdev->sb_page);
1503 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1504 				bdevname(rdev->bdev,b),
1505 				(unsigned long long)rdev->sb_offset);
1506 
1507 		} else
1508 			dprintk(")\n");
1509 		if (mddev->level == LEVEL_MULTIPATH)
1510 			/* only need to write one superblock... */
1511 			break;
1512 	}
1513 	md_super_wait(mddev);
1514 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1515 
1516 	spin_lock_irq(&mddev->write_lock);
1517 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1518 		/* have to write it out again */
1519 		spin_unlock_irq(&mddev->write_lock);
1520 		goto repeat;
1521 	}
1522 	mddev->sb_dirty = 0;
1523 	spin_unlock_irq(&mddev->write_lock);
1524 	wake_up(&mddev->sb_wait);
1525 
1526 }
1527 
1528 /* words written to sysfs files may, or my not, be \n terminated.
1529  * We want to accept with case. For this we use cmd_match.
1530  */
1531 static int cmd_match(const char *cmd, const char *str)
1532 {
1533 	/* See if cmd, written into a sysfs file, matches
1534 	 * str.  They must either be the same, or cmd can
1535 	 * have a trailing newline
1536 	 */
1537 	while (*cmd && *str && *cmd == *str) {
1538 		cmd++;
1539 		str++;
1540 	}
1541 	if (*cmd == '\n')
1542 		cmd++;
1543 	if (*str || *cmd)
1544 		return 0;
1545 	return 1;
1546 }
1547 
1548 struct rdev_sysfs_entry {
1549 	struct attribute attr;
1550 	ssize_t (*show)(mdk_rdev_t *, char *);
1551 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1552 };
1553 
1554 static ssize_t
1555 state_show(mdk_rdev_t *rdev, char *page)
1556 {
1557 	char *sep = "";
1558 	int len=0;
1559 
1560 	if (test_bit(Faulty, &rdev->flags)) {
1561 		len+= sprintf(page+len, "%sfaulty",sep);
1562 		sep = ",";
1563 	}
1564 	if (test_bit(In_sync, &rdev->flags)) {
1565 		len += sprintf(page+len, "%sin_sync",sep);
1566 		sep = ",";
1567 	}
1568 	if (!test_bit(Faulty, &rdev->flags) &&
1569 	    !test_bit(In_sync, &rdev->flags)) {
1570 		len += sprintf(page+len, "%sspare", sep);
1571 		sep = ",";
1572 	}
1573 	return len+sprintf(page+len, "\n");
1574 }
1575 
1576 static struct rdev_sysfs_entry
1577 rdev_state = __ATTR_RO(state);
1578 
1579 static ssize_t
1580 super_show(mdk_rdev_t *rdev, char *page)
1581 {
1582 	if (rdev->sb_loaded && rdev->sb_size) {
1583 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1584 		return rdev->sb_size;
1585 	} else
1586 		return 0;
1587 }
1588 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1589 
1590 static struct attribute *rdev_default_attrs[] = {
1591 	&rdev_state.attr,
1592 	&rdev_super.attr,
1593 	NULL,
1594 };
1595 static ssize_t
1596 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1597 {
1598 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1599 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1600 
1601 	if (!entry->show)
1602 		return -EIO;
1603 	return entry->show(rdev, page);
1604 }
1605 
1606 static ssize_t
1607 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1608 	      const char *page, size_t length)
1609 {
1610 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1611 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1612 
1613 	if (!entry->store)
1614 		return -EIO;
1615 	return entry->store(rdev, page, length);
1616 }
1617 
1618 static void rdev_free(struct kobject *ko)
1619 {
1620 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1621 	kfree(rdev);
1622 }
1623 static struct sysfs_ops rdev_sysfs_ops = {
1624 	.show		= rdev_attr_show,
1625 	.store		= rdev_attr_store,
1626 };
1627 static struct kobj_type rdev_ktype = {
1628 	.release	= rdev_free,
1629 	.sysfs_ops	= &rdev_sysfs_ops,
1630 	.default_attrs	= rdev_default_attrs,
1631 };
1632 
1633 /*
1634  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1635  *
1636  * mark the device faulty if:
1637  *
1638  *   - the device is nonexistent (zero size)
1639  *   - the device has no valid superblock
1640  *
1641  * a faulty rdev _never_ has rdev->sb set.
1642  */
1643 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1644 {
1645 	char b[BDEVNAME_SIZE];
1646 	int err;
1647 	mdk_rdev_t *rdev;
1648 	sector_t size;
1649 
1650 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1651 	if (!rdev) {
1652 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1653 		return ERR_PTR(-ENOMEM);
1654 	}
1655 
1656 	if ((err = alloc_disk_sb(rdev)))
1657 		goto abort_free;
1658 
1659 	err = lock_rdev(rdev, newdev);
1660 	if (err)
1661 		goto abort_free;
1662 
1663 	rdev->kobj.parent = NULL;
1664 	rdev->kobj.ktype = &rdev_ktype;
1665 	kobject_init(&rdev->kobj);
1666 
1667 	rdev->desc_nr = -1;
1668 	rdev->flags = 0;
1669 	rdev->data_offset = 0;
1670 	atomic_set(&rdev->nr_pending, 0);
1671 	atomic_set(&rdev->read_errors, 0);
1672 
1673 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1674 	if (!size) {
1675 		printk(KERN_WARNING
1676 			"md: %s has zero or unknown size, marking faulty!\n",
1677 			bdevname(rdev->bdev,b));
1678 		err = -EINVAL;
1679 		goto abort_free;
1680 	}
1681 
1682 	if (super_format >= 0) {
1683 		err = super_types[super_format].
1684 			load_super(rdev, NULL, super_minor);
1685 		if (err == -EINVAL) {
1686 			printk(KERN_WARNING
1687 				"md: %s has invalid sb, not importing!\n",
1688 				bdevname(rdev->bdev,b));
1689 			goto abort_free;
1690 		}
1691 		if (err < 0) {
1692 			printk(KERN_WARNING
1693 				"md: could not read %s's sb, not importing!\n",
1694 				bdevname(rdev->bdev,b));
1695 			goto abort_free;
1696 		}
1697 	}
1698 	INIT_LIST_HEAD(&rdev->same_set);
1699 
1700 	return rdev;
1701 
1702 abort_free:
1703 	if (rdev->sb_page) {
1704 		if (rdev->bdev)
1705 			unlock_rdev(rdev);
1706 		free_disk_sb(rdev);
1707 	}
1708 	kfree(rdev);
1709 	return ERR_PTR(err);
1710 }
1711 
1712 /*
1713  * Check a full RAID array for plausibility
1714  */
1715 
1716 
1717 static void analyze_sbs(mddev_t * mddev)
1718 {
1719 	int i;
1720 	struct list_head *tmp;
1721 	mdk_rdev_t *rdev, *freshest;
1722 	char b[BDEVNAME_SIZE];
1723 
1724 	freshest = NULL;
1725 	ITERATE_RDEV(mddev,rdev,tmp)
1726 		switch (super_types[mddev->major_version].
1727 			load_super(rdev, freshest, mddev->minor_version)) {
1728 		case 1:
1729 			freshest = rdev;
1730 			break;
1731 		case 0:
1732 			break;
1733 		default:
1734 			printk( KERN_ERR \
1735 				"md: fatal superblock inconsistency in %s"
1736 				" -- removing from array\n",
1737 				bdevname(rdev->bdev,b));
1738 			kick_rdev_from_array(rdev);
1739 		}
1740 
1741 
1742 	super_types[mddev->major_version].
1743 		validate_super(mddev, freshest);
1744 
1745 	i = 0;
1746 	ITERATE_RDEV(mddev,rdev,tmp) {
1747 		if (rdev != freshest)
1748 			if (super_types[mddev->major_version].
1749 			    validate_super(mddev, rdev)) {
1750 				printk(KERN_WARNING "md: kicking non-fresh %s"
1751 					" from array!\n",
1752 					bdevname(rdev->bdev,b));
1753 				kick_rdev_from_array(rdev);
1754 				continue;
1755 			}
1756 		if (mddev->level == LEVEL_MULTIPATH) {
1757 			rdev->desc_nr = i++;
1758 			rdev->raid_disk = rdev->desc_nr;
1759 			set_bit(In_sync, &rdev->flags);
1760 		}
1761 	}
1762 
1763 
1764 
1765 	if (mddev->recovery_cp != MaxSector &&
1766 	    mddev->level >= 1)
1767 		printk(KERN_ERR "md: %s: raid array is not clean"
1768 		       " -- starting background reconstruction\n",
1769 		       mdname(mddev));
1770 
1771 }
1772 
1773 static ssize_t
1774 level_show(mddev_t *mddev, char *page)
1775 {
1776 	struct mdk_personality *p = mddev->pers;
1777 	if (p == NULL && mddev->raid_disks == 0)
1778 		return 0;
1779 	if (mddev->level >= 0)
1780 		return sprintf(page, "raid%d\n", mddev->level);
1781 	else
1782 		return sprintf(page, "%s\n", p->name);
1783 }
1784 
1785 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1786 
1787 static ssize_t
1788 raid_disks_show(mddev_t *mddev, char *page)
1789 {
1790 	if (mddev->raid_disks == 0)
1791 		return 0;
1792 	return sprintf(page, "%d\n", mddev->raid_disks);
1793 }
1794 
1795 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1796 
1797 static ssize_t
1798 chunk_size_show(mddev_t *mddev, char *page)
1799 {
1800 	return sprintf(page, "%d\n", mddev->chunk_size);
1801 }
1802 
1803 static ssize_t
1804 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1805 {
1806 	/* can only set chunk_size if array is not yet active */
1807 	char *e;
1808 	unsigned long n = simple_strtoul(buf, &e, 10);
1809 
1810 	if (mddev->pers)
1811 		return -EBUSY;
1812 	if (!*buf || (*e && *e != '\n'))
1813 		return -EINVAL;
1814 
1815 	mddev->chunk_size = n;
1816 	return len;
1817 }
1818 static struct md_sysfs_entry md_chunk_size =
1819 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
1820 
1821 
1822 static ssize_t
1823 action_show(mddev_t *mddev, char *page)
1824 {
1825 	char *type = "idle";
1826 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1827 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1828 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1829 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1830 				type = "resync";
1831 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1832 				type = "check";
1833 			else
1834 				type = "repair";
1835 		} else
1836 			type = "recover";
1837 	}
1838 	return sprintf(page, "%s\n", type);
1839 }
1840 
1841 static ssize_t
1842 action_store(mddev_t *mddev, const char *page, size_t len)
1843 {
1844 	if (!mddev->pers || !mddev->pers->sync_request)
1845 		return -EINVAL;
1846 
1847 	if (cmd_match(page, "idle")) {
1848 		if (mddev->sync_thread) {
1849 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1850 			md_unregister_thread(mddev->sync_thread);
1851 			mddev->sync_thread = NULL;
1852 			mddev->recovery = 0;
1853 		}
1854 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1855 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1856 		return -EBUSY;
1857 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
1858 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1859 	else {
1860 		if (cmd_match(page, "check"))
1861 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1862 		else if (cmd_match(page, "repair"))
1863 			return -EINVAL;
1864 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1865 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1866 	}
1867 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1868 	md_wakeup_thread(mddev->thread);
1869 	return len;
1870 }
1871 
1872 static ssize_t
1873 mismatch_cnt_show(mddev_t *mddev, char *page)
1874 {
1875 	return sprintf(page, "%llu\n",
1876 		       (unsigned long long) mddev->resync_mismatches);
1877 }
1878 
1879 static struct md_sysfs_entry
1880 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1881 
1882 
1883 static struct md_sysfs_entry
1884 md_mismatches = __ATTR_RO(mismatch_cnt);
1885 
1886 static struct attribute *md_default_attrs[] = {
1887 	&md_level.attr,
1888 	&md_raid_disks.attr,
1889 	&md_chunk_size.attr,
1890 	NULL,
1891 };
1892 
1893 static struct attribute *md_redundancy_attrs[] = {
1894 	&md_scan_mode.attr,
1895 	&md_mismatches.attr,
1896 	NULL,
1897 };
1898 static struct attribute_group md_redundancy_group = {
1899 	.name = NULL,
1900 	.attrs = md_redundancy_attrs,
1901 };
1902 
1903 
1904 static ssize_t
1905 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1906 {
1907 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1908 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1909 	ssize_t rv;
1910 
1911 	if (!entry->show)
1912 		return -EIO;
1913 	mddev_lock(mddev);
1914 	rv = entry->show(mddev, page);
1915 	mddev_unlock(mddev);
1916 	return rv;
1917 }
1918 
1919 static ssize_t
1920 md_attr_store(struct kobject *kobj, struct attribute *attr,
1921 	      const char *page, size_t length)
1922 {
1923 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1924 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1925 	ssize_t rv;
1926 
1927 	if (!entry->store)
1928 		return -EIO;
1929 	mddev_lock(mddev);
1930 	rv = entry->store(mddev, page, length);
1931 	mddev_unlock(mddev);
1932 	return rv;
1933 }
1934 
1935 static void md_free(struct kobject *ko)
1936 {
1937 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1938 	kfree(mddev);
1939 }
1940 
1941 static struct sysfs_ops md_sysfs_ops = {
1942 	.show	= md_attr_show,
1943 	.store	= md_attr_store,
1944 };
1945 static struct kobj_type md_ktype = {
1946 	.release	= md_free,
1947 	.sysfs_ops	= &md_sysfs_ops,
1948 	.default_attrs	= md_default_attrs,
1949 };
1950 
1951 int mdp_major = 0;
1952 
1953 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1954 {
1955 	static DECLARE_MUTEX(disks_sem);
1956 	mddev_t *mddev = mddev_find(dev);
1957 	struct gendisk *disk;
1958 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1959 	int shift = partitioned ? MdpMinorShift : 0;
1960 	int unit = MINOR(dev) >> shift;
1961 
1962 	if (!mddev)
1963 		return NULL;
1964 
1965 	down(&disks_sem);
1966 	if (mddev->gendisk) {
1967 		up(&disks_sem);
1968 		mddev_put(mddev);
1969 		return NULL;
1970 	}
1971 	disk = alloc_disk(1 << shift);
1972 	if (!disk) {
1973 		up(&disks_sem);
1974 		mddev_put(mddev);
1975 		return NULL;
1976 	}
1977 	disk->major = MAJOR(dev);
1978 	disk->first_minor = unit << shift;
1979 	if (partitioned) {
1980 		sprintf(disk->disk_name, "md_d%d", unit);
1981 		sprintf(disk->devfs_name, "md/d%d", unit);
1982 	} else {
1983 		sprintf(disk->disk_name, "md%d", unit);
1984 		sprintf(disk->devfs_name, "md/%d", unit);
1985 	}
1986 	disk->fops = &md_fops;
1987 	disk->private_data = mddev;
1988 	disk->queue = mddev->queue;
1989 	add_disk(disk);
1990 	mddev->gendisk = disk;
1991 	up(&disks_sem);
1992 	mddev->kobj.parent = &disk->kobj;
1993 	mddev->kobj.k_name = NULL;
1994 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1995 	mddev->kobj.ktype = &md_ktype;
1996 	kobject_register(&mddev->kobj);
1997 	return NULL;
1998 }
1999 
2000 void md_wakeup_thread(mdk_thread_t *thread);
2001 
2002 static void md_safemode_timeout(unsigned long data)
2003 {
2004 	mddev_t *mddev = (mddev_t *) data;
2005 
2006 	mddev->safemode = 1;
2007 	md_wakeup_thread(mddev->thread);
2008 }
2009 
2010 static int start_dirty_degraded;
2011 
2012 static int do_md_run(mddev_t * mddev)
2013 {
2014 	int err;
2015 	int chunk_size;
2016 	struct list_head *tmp;
2017 	mdk_rdev_t *rdev;
2018 	struct gendisk *disk;
2019 	struct mdk_personality *pers;
2020 	char b[BDEVNAME_SIZE];
2021 
2022 	if (list_empty(&mddev->disks))
2023 		/* cannot run an array with no devices.. */
2024 		return -EINVAL;
2025 
2026 	if (mddev->pers)
2027 		return -EBUSY;
2028 
2029 	/*
2030 	 * Analyze all RAID superblock(s)
2031 	 */
2032 	if (!mddev->raid_disks)
2033 		analyze_sbs(mddev);
2034 
2035 	chunk_size = mddev->chunk_size;
2036 
2037 	if (chunk_size) {
2038 		if (chunk_size > MAX_CHUNK_SIZE) {
2039 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2040 				chunk_size, MAX_CHUNK_SIZE);
2041 			return -EINVAL;
2042 		}
2043 		/*
2044 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2045 		 */
2046 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2047 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2048 			return -EINVAL;
2049 		}
2050 		if (chunk_size < PAGE_SIZE) {
2051 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2052 				chunk_size, PAGE_SIZE);
2053 			return -EINVAL;
2054 		}
2055 
2056 		/* devices must have minimum size of one chunk */
2057 		ITERATE_RDEV(mddev,rdev,tmp) {
2058 			if (test_bit(Faulty, &rdev->flags))
2059 				continue;
2060 			if (rdev->size < chunk_size / 1024) {
2061 				printk(KERN_WARNING
2062 					"md: Dev %s smaller than chunk_size:"
2063 					" %lluk < %dk\n",
2064 					bdevname(rdev->bdev,b),
2065 					(unsigned long long)rdev->size,
2066 					chunk_size / 1024);
2067 				return -EINVAL;
2068 			}
2069 		}
2070 	}
2071 
2072 #ifdef CONFIG_KMOD
2073 	request_module("md-level-%d", mddev->level);
2074 #endif
2075 
2076 	/*
2077 	 * Drop all container device buffers, from now on
2078 	 * the only valid external interface is through the md
2079 	 * device.
2080 	 * Also find largest hardsector size
2081 	 */
2082 	ITERATE_RDEV(mddev,rdev,tmp) {
2083 		if (test_bit(Faulty, &rdev->flags))
2084 			continue;
2085 		sync_blockdev(rdev->bdev);
2086 		invalidate_bdev(rdev->bdev, 0);
2087 	}
2088 
2089 	md_probe(mddev->unit, NULL, NULL);
2090 	disk = mddev->gendisk;
2091 	if (!disk)
2092 		return -ENOMEM;
2093 
2094 	spin_lock(&pers_lock);
2095 	pers = find_pers(mddev->level);
2096 	if (!pers || !try_module_get(pers->owner)) {
2097 		spin_unlock(&pers_lock);
2098 		printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2099 		       mddev->level);
2100 		return -EINVAL;
2101 	}
2102 	mddev->pers = pers;
2103 	spin_unlock(&pers_lock);
2104 
2105 	mddev->recovery = 0;
2106 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2107 	mddev->barriers_work = 1;
2108 	mddev->ok_start_degraded = start_dirty_degraded;
2109 
2110 	if (start_readonly)
2111 		mddev->ro = 2; /* read-only, but switch on first write */
2112 
2113 	err = mddev->pers->run(mddev);
2114 	if (!err && mddev->pers->sync_request) {
2115 		err = bitmap_create(mddev);
2116 		if (err) {
2117 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2118 			       mdname(mddev), err);
2119 			mddev->pers->stop(mddev);
2120 		}
2121 	}
2122 	if (err) {
2123 		printk(KERN_ERR "md: pers->run() failed ...\n");
2124 		module_put(mddev->pers->owner);
2125 		mddev->pers = NULL;
2126 		bitmap_destroy(mddev);
2127 		return err;
2128 	}
2129 	if (mddev->pers->sync_request)
2130 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2131 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2132 		mddev->ro = 0;
2133 
2134  	atomic_set(&mddev->writes_pending,0);
2135 	mddev->safemode = 0;
2136 	mddev->safemode_timer.function = md_safemode_timeout;
2137 	mddev->safemode_timer.data = (unsigned long) mddev;
2138 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2139 	mddev->in_sync = 1;
2140 
2141 	ITERATE_RDEV(mddev,rdev,tmp)
2142 		if (rdev->raid_disk >= 0) {
2143 			char nm[20];
2144 			sprintf(nm, "rd%d", rdev->raid_disk);
2145 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2146 		}
2147 
2148 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2149 	md_wakeup_thread(mddev->thread);
2150 
2151 	if (mddev->sb_dirty)
2152 		md_update_sb(mddev);
2153 
2154 	set_capacity(disk, mddev->array_size<<1);
2155 
2156 	/* If we call blk_queue_make_request here, it will
2157 	 * re-initialise max_sectors etc which may have been
2158 	 * refined inside -> run.  So just set the bits we need to set.
2159 	 * Most initialisation happended when we called
2160 	 * blk_queue_make_request(..., md_fail_request)
2161 	 * earlier.
2162 	 */
2163 	mddev->queue->queuedata = mddev;
2164 	mddev->queue->make_request_fn = mddev->pers->make_request;
2165 
2166 	mddev->changed = 1;
2167 	md_new_event(mddev);
2168 	return 0;
2169 }
2170 
2171 static int restart_array(mddev_t *mddev)
2172 {
2173 	struct gendisk *disk = mddev->gendisk;
2174 	int err;
2175 
2176 	/*
2177 	 * Complain if it has no devices
2178 	 */
2179 	err = -ENXIO;
2180 	if (list_empty(&mddev->disks))
2181 		goto out;
2182 
2183 	if (mddev->pers) {
2184 		err = -EBUSY;
2185 		if (!mddev->ro)
2186 			goto out;
2187 
2188 		mddev->safemode = 0;
2189 		mddev->ro = 0;
2190 		set_disk_ro(disk, 0);
2191 
2192 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2193 			mdname(mddev));
2194 		/*
2195 		 * Kick recovery or resync if necessary
2196 		 */
2197 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2198 		md_wakeup_thread(mddev->thread);
2199 		err = 0;
2200 	} else {
2201 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2202 			mdname(mddev));
2203 		err = -EINVAL;
2204 	}
2205 
2206 out:
2207 	return err;
2208 }
2209 
2210 static int do_md_stop(mddev_t * mddev, int ro)
2211 {
2212 	int err = 0;
2213 	struct gendisk *disk = mddev->gendisk;
2214 
2215 	if (mddev->pers) {
2216 		if (atomic_read(&mddev->active)>2) {
2217 			printk("md: %s still in use.\n",mdname(mddev));
2218 			return -EBUSY;
2219 		}
2220 
2221 		if (mddev->sync_thread) {
2222 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2223 			md_unregister_thread(mddev->sync_thread);
2224 			mddev->sync_thread = NULL;
2225 		}
2226 
2227 		del_timer_sync(&mddev->safemode_timer);
2228 
2229 		invalidate_partition(disk, 0);
2230 
2231 		if (ro) {
2232 			err  = -ENXIO;
2233 			if (mddev->ro==1)
2234 				goto out;
2235 			mddev->ro = 1;
2236 		} else {
2237 			bitmap_flush(mddev);
2238 			md_super_wait(mddev);
2239 			if (mddev->ro)
2240 				set_disk_ro(disk, 0);
2241 			blk_queue_make_request(mddev->queue, md_fail_request);
2242 			mddev->pers->stop(mddev);
2243 			if (mddev->pers->sync_request)
2244 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2245 
2246 			module_put(mddev->pers->owner);
2247 			mddev->pers = NULL;
2248 			if (mddev->ro)
2249 				mddev->ro = 0;
2250 		}
2251 		if (!mddev->in_sync) {
2252 			/* mark array as shutdown cleanly */
2253 			mddev->in_sync = 1;
2254 			md_update_sb(mddev);
2255 		}
2256 		if (ro)
2257 			set_disk_ro(disk, 1);
2258 	}
2259 
2260 	bitmap_destroy(mddev);
2261 	if (mddev->bitmap_file) {
2262 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2263 		fput(mddev->bitmap_file);
2264 		mddev->bitmap_file = NULL;
2265 	}
2266 	mddev->bitmap_offset = 0;
2267 
2268 	/*
2269 	 * Free resources if final stop
2270 	 */
2271 	if (!ro) {
2272 		mdk_rdev_t *rdev;
2273 		struct list_head *tmp;
2274 		struct gendisk *disk;
2275 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2276 
2277 		ITERATE_RDEV(mddev,rdev,tmp)
2278 			if (rdev->raid_disk >= 0) {
2279 				char nm[20];
2280 				sprintf(nm, "rd%d", rdev->raid_disk);
2281 				sysfs_remove_link(&mddev->kobj, nm);
2282 			}
2283 
2284 		export_array(mddev);
2285 
2286 		mddev->array_size = 0;
2287 		disk = mddev->gendisk;
2288 		if (disk)
2289 			set_capacity(disk, 0);
2290 		mddev->changed = 1;
2291 	} else
2292 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2293 			mdname(mddev));
2294 	err = 0;
2295 	md_new_event(mddev);
2296 out:
2297 	return err;
2298 }
2299 
2300 static void autorun_array(mddev_t *mddev)
2301 {
2302 	mdk_rdev_t *rdev;
2303 	struct list_head *tmp;
2304 	int err;
2305 
2306 	if (list_empty(&mddev->disks))
2307 		return;
2308 
2309 	printk(KERN_INFO "md: running: ");
2310 
2311 	ITERATE_RDEV(mddev,rdev,tmp) {
2312 		char b[BDEVNAME_SIZE];
2313 		printk("<%s>", bdevname(rdev->bdev,b));
2314 	}
2315 	printk("\n");
2316 
2317 	err = do_md_run (mddev);
2318 	if (err) {
2319 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2320 		do_md_stop (mddev, 0);
2321 	}
2322 }
2323 
2324 /*
2325  * lets try to run arrays based on all disks that have arrived
2326  * until now. (those are in pending_raid_disks)
2327  *
2328  * the method: pick the first pending disk, collect all disks with
2329  * the same UUID, remove all from the pending list and put them into
2330  * the 'same_array' list. Then order this list based on superblock
2331  * update time (freshest comes first), kick out 'old' disks and
2332  * compare superblocks. If everything's fine then run it.
2333  *
2334  * If "unit" is allocated, then bump its reference count
2335  */
2336 static void autorun_devices(int part)
2337 {
2338 	struct list_head candidates;
2339 	struct list_head *tmp;
2340 	mdk_rdev_t *rdev0, *rdev;
2341 	mddev_t *mddev;
2342 	char b[BDEVNAME_SIZE];
2343 
2344 	printk(KERN_INFO "md: autorun ...\n");
2345 	while (!list_empty(&pending_raid_disks)) {
2346 		dev_t dev;
2347 		rdev0 = list_entry(pending_raid_disks.next,
2348 					 mdk_rdev_t, same_set);
2349 
2350 		printk(KERN_INFO "md: considering %s ...\n",
2351 			bdevname(rdev0->bdev,b));
2352 		INIT_LIST_HEAD(&candidates);
2353 		ITERATE_RDEV_PENDING(rdev,tmp)
2354 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2355 				printk(KERN_INFO "md:  adding %s ...\n",
2356 					bdevname(rdev->bdev,b));
2357 				list_move(&rdev->same_set, &candidates);
2358 			}
2359 		/*
2360 		 * now we have a set of devices, with all of them having
2361 		 * mostly sane superblocks. It's time to allocate the
2362 		 * mddev.
2363 		 */
2364 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2365 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2366 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2367 			break;
2368 		}
2369 		if (part)
2370 			dev = MKDEV(mdp_major,
2371 				    rdev0->preferred_minor << MdpMinorShift);
2372 		else
2373 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2374 
2375 		md_probe(dev, NULL, NULL);
2376 		mddev = mddev_find(dev);
2377 		if (!mddev) {
2378 			printk(KERN_ERR
2379 				"md: cannot allocate memory for md drive.\n");
2380 			break;
2381 		}
2382 		if (mddev_lock(mddev))
2383 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2384 			       mdname(mddev));
2385 		else if (mddev->raid_disks || mddev->major_version
2386 			 || !list_empty(&mddev->disks)) {
2387 			printk(KERN_WARNING
2388 				"md: %s already running, cannot run %s\n",
2389 				mdname(mddev), bdevname(rdev0->bdev,b));
2390 			mddev_unlock(mddev);
2391 		} else {
2392 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2393 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2394 				list_del_init(&rdev->same_set);
2395 				if (bind_rdev_to_array(rdev, mddev))
2396 					export_rdev(rdev);
2397 			}
2398 			autorun_array(mddev);
2399 			mddev_unlock(mddev);
2400 		}
2401 		/* on success, candidates will be empty, on error
2402 		 * it won't...
2403 		 */
2404 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2405 			export_rdev(rdev);
2406 		mddev_put(mddev);
2407 	}
2408 	printk(KERN_INFO "md: ... autorun DONE.\n");
2409 }
2410 
2411 /*
2412  * import RAID devices based on one partition
2413  * if possible, the array gets run as well.
2414  */
2415 
2416 static int autostart_array(dev_t startdev)
2417 {
2418 	char b[BDEVNAME_SIZE];
2419 	int err = -EINVAL, i;
2420 	mdp_super_t *sb = NULL;
2421 	mdk_rdev_t *start_rdev = NULL, *rdev;
2422 
2423 	start_rdev = md_import_device(startdev, 0, 0);
2424 	if (IS_ERR(start_rdev))
2425 		return err;
2426 
2427 
2428 	/* NOTE: this can only work for 0.90.0 superblocks */
2429 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2430 	if (sb->major_version != 0 ||
2431 	    sb->minor_version != 90 ) {
2432 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2433 		export_rdev(start_rdev);
2434 		return err;
2435 	}
2436 
2437 	if (test_bit(Faulty, &start_rdev->flags)) {
2438 		printk(KERN_WARNING
2439 			"md: can not autostart based on faulty %s!\n",
2440 			bdevname(start_rdev->bdev,b));
2441 		export_rdev(start_rdev);
2442 		return err;
2443 	}
2444 	list_add(&start_rdev->same_set, &pending_raid_disks);
2445 
2446 	for (i = 0; i < MD_SB_DISKS; i++) {
2447 		mdp_disk_t *desc = sb->disks + i;
2448 		dev_t dev = MKDEV(desc->major, desc->minor);
2449 
2450 		if (!dev)
2451 			continue;
2452 		if (dev == startdev)
2453 			continue;
2454 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2455 			continue;
2456 		rdev = md_import_device(dev, 0, 0);
2457 		if (IS_ERR(rdev))
2458 			continue;
2459 
2460 		list_add(&rdev->same_set, &pending_raid_disks);
2461 	}
2462 
2463 	/*
2464 	 * possibly return codes
2465 	 */
2466 	autorun_devices(0);
2467 	return 0;
2468 
2469 }
2470 
2471 
2472 static int get_version(void __user * arg)
2473 {
2474 	mdu_version_t ver;
2475 
2476 	ver.major = MD_MAJOR_VERSION;
2477 	ver.minor = MD_MINOR_VERSION;
2478 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2479 
2480 	if (copy_to_user(arg, &ver, sizeof(ver)))
2481 		return -EFAULT;
2482 
2483 	return 0;
2484 }
2485 
2486 static int get_array_info(mddev_t * mddev, void __user * arg)
2487 {
2488 	mdu_array_info_t info;
2489 	int nr,working,active,failed,spare;
2490 	mdk_rdev_t *rdev;
2491 	struct list_head *tmp;
2492 
2493 	nr=working=active=failed=spare=0;
2494 	ITERATE_RDEV(mddev,rdev,tmp) {
2495 		nr++;
2496 		if (test_bit(Faulty, &rdev->flags))
2497 			failed++;
2498 		else {
2499 			working++;
2500 			if (test_bit(In_sync, &rdev->flags))
2501 				active++;
2502 			else
2503 				spare++;
2504 		}
2505 	}
2506 
2507 	info.major_version = mddev->major_version;
2508 	info.minor_version = mddev->minor_version;
2509 	info.patch_version = MD_PATCHLEVEL_VERSION;
2510 	info.ctime         = mddev->ctime;
2511 	info.level         = mddev->level;
2512 	info.size          = mddev->size;
2513 	info.nr_disks      = nr;
2514 	info.raid_disks    = mddev->raid_disks;
2515 	info.md_minor      = mddev->md_minor;
2516 	info.not_persistent= !mddev->persistent;
2517 
2518 	info.utime         = mddev->utime;
2519 	info.state         = 0;
2520 	if (mddev->in_sync)
2521 		info.state = (1<<MD_SB_CLEAN);
2522 	if (mddev->bitmap && mddev->bitmap_offset)
2523 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2524 	info.active_disks  = active;
2525 	info.working_disks = working;
2526 	info.failed_disks  = failed;
2527 	info.spare_disks   = spare;
2528 
2529 	info.layout        = mddev->layout;
2530 	info.chunk_size    = mddev->chunk_size;
2531 
2532 	if (copy_to_user(arg, &info, sizeof(info)))
2533 		return -EFAULT;
2534 
2535 	return 0;
2536 }
2537 
2538 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2539 {
2540 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2541 	char *ptr, *buf = NULL;
2542 	int err = -ENOMEM;
2543 
2544 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2545 	if (!file)
2546 		goto out;
2547 
2548 	/* bitmap disabled, zero the first byte and copy out */
2549 	if (!mddev->bitmap || !mddev->bitmap->file) {
2550 		file->pathname[0] = '\0';
2551 		goto copy_out;
2552 	}
2553 
2554 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2555 	if (!buf)
2556 		goto out;
2557 
2558 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2559 	if (!ptr)
2560 		goto out;
2561 
2562 	strcpy(file->pathname, ptr);
2563 
2564 copy_out:
2565 	err = 0;
2566 	if (copy_to_user(arg, file, sizeof(*file)))
2567 		err = -EFAULT;
2568 out:
2569 	kfree(buf);
2570 	kfree(file);
2571 	return err;
2572 }
2573 
2574 static int get_disk_info(mddev_t * mddev, void __user * arg)
2575 {
2576 	mdu_disk_info_t info;
2577 	unsigned int nr;
2578 	mdk_rdev_t *rdev;
2579 
2580 	if (copy_from_user(&info, arg, sizeof(info)))
2581 		return -EFAULT;
2582 
2583 	nr = info.number;
2584 
2585 	rdev = find_rdev_nr(mddev, nr);
2586 	if (rdev) {
2587 		info.major = MAJOR(rdev->bdev->bd_dev);
2588 		info.minor = MINOR(rdev->bdev->bd_dev);
2589 		info.raid_disk = rdev->raid_disk;
2590 		info.state = 0;
2591 		if (test_bit(Faulty, &rdev->flags))
2592 			info.state |= (1<<MD_DISK_FAULTY);
2593 		else if (test_bit(In_sync, &rdev->flags)) {
2594 			info.state |= (1<<MD_DISK_ACTIVE);
2595 			info.state |= (1<<MD_DISK_SYNC);
2596 		}
2597 		if (test_bit(WriteMostly, &rdev->flags))
2598 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2599 	} else {
2600 		info.major = info.minor = 0;
2601 		info.raid_disk = -1;
2602 		info.state = (1<<MD_DISK_REMOVED);
2603 	}
2604 
2605 	if (copy_to_user(arg, &info, sizeof(info)))
2606 		return -EFAULT;
2607 
2608 	return 0;
2609 }
2610 
2611 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2612 {
2613 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2614 	mdk_rdev_t *rdev;
2615 	dev_t dev = MKDEV(info->major,info->minor);
2616 
2617 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2618 		return -EOVERFLOW;
2619 
2620 	if (!mddev->raid_disks) {
2621 		int err;
2622 		/* expecting a device which has a superblock */
2623 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2624 		if (IS_ERR(rdev)) {
2625 			printk(KERN_WARNING
2626 				"md: md_import_device returned %ld\n",
2627 				PTR_ERR(rdev));
2628 			return PTR_ERR(rdev);
2629 		}
2630 		if (!list_empty(&mddev->disks)) {
2631 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2632 							mdk_rdev_t, same_set);
2633 			int err = super_types[mddev->major_version]
2634 				.load_super(rdev, rdev0, mddev->minor_version);
2635 			if (err < 0) {
2636 				printk(KERN_WARNING
2637 					"md: %s has different UUID to %s\n",
2638 					bdevname(rdev->bdev,b),
2639 					bdevname(rdev0->bdev,b2));
2640 				export_rdev(rdev);
2641 				return -EINVAL;
2642 			}
2643 		}
2644 		err = bind_rdev_to_array(rdev, mddev);
2645 		if (err)
2646 			export_rdev(rdev);
2647 		return err;
2648 	}
2649 
2650 	/*
2651 	 * add_new_disk can be used once the array is assembled
2652 	 * to add "hot spares".  They must already have a superblock
2653 	 * written
2654 	 */
2655 	if (mddev->pers) {
2656 		int err;
2657 		if (!mddev->pers->hot_add_disk) {
2658 			printk(KERN_WARNING
2659 				"%s: personality does not support diskops!\n",
2660 			       mdname(mddev));
2661 			return -EINVAL;
2662 		}
2663 		if (mddev->persistent)
2664 			rdev = md_import_device(dev, mddev->major_version,
2665 						mddev->minor_version);
2666 		else
2667 			rdev = md_import_device(dev, -1, -1);
2668 		if (IS_ERR(rdev)) {
2669 			printk(KERN_WARNING
2670 				"md: md_import_device returned %ld\n",
2671 				PTR_ERR(rdev));
2672 			return PTR_ERR(rdev);
2673 		}
2674 		/* set save_raid_disk if appropriate */
2675 		if (!mddev->persistent) {
2676 			if (info->state & (1<<MD_DISK_SYNC)  &&
2677 			    info->raid_disk < mddev->raid_disks)
2678 				rdev->raid_disk = info->raid_disk;
2679 			else
2680 				rdev->raid_disk = -1;
2681 		} else
2682 			super_types[mddev->major_version].
2683 				validate_super(mddev, rdev);
2684 		rdev->saved_raid_disk = rdev->raid_disk;
2685 
2686 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2687 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2688 			set_bit(WriteMostly, &rdev->flags);
2689 
2690 		rdev->raid_disk = -1;
2691 		err = bind_rdev_to_array(rdev, mddev);
2692 		if (err)
2693 			export_rdev(rdev);
2694 
2695 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2696 		md_wakeup_thread(mddev->thread);
2697 		return err;
2698 	}
2699 
2700 	/* otherwise, add_new_disk is only allowed
2701 	 * for major_version==0 superblocks
2702 	 */
2703 	if (mddev->major_version != 0) {
2704 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2705 		       mdname(mddev));
2706 		return -EINVAL;
2707 	}
2708 
2709 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2710 		int err;
2711 		rdev = md_import_device (dev, -1, 0);
2712 		if (IS_ERR(rdev)) {
2713 			printk(KERN_WARNING
2714 				"md: error, md_import_device() returned %ld\n",
2715 				PTR_ERR(rdev));
2716 			return PTR_ERR(rdev);
2717 		}
2718 		rdev->desc_nr = info->number;
2719 		if (info->raid_disk < mddev->raid_disks)
2720 			rdev->raid_disk = info->raid_disk;
2721 		else
2722 			rdev->raid_disk = -1;
2723 
2724 		rdev->flags = 0;
2725 
2726 		if (rdev->raid_disk < mddev->raid_disks)
2727 			if (info->state & (1<<MD_DISK_SYNC))
2728 				set_bit(In_sync, &rdev->flags);
2729 
2730 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2731 			set_bit(WriteMostly, &rdev->flags);
2732 
2733 		err = bind_rdev_to_array(rdev, mddev);
2734 		if (err) {
2735 			export_rdev(rdev);
2736 			return err;
2737 		}
2738 
2739 		if (!mddev->persistent) {
2740 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2741 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2742 		} else
2743 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2744 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2745 
2746 		if (!mddev->size || (mddev->size > rdev->size))
2747 			mddev->size = rdev->size;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2754 {
2755 	char b[BDEVNAME_SIZE];
2756 	mdk_rdev_t *rdev;
2757 
2758 	if (!mddev->pers)
2759 		return -ENODEV;
2760 
2761 	rdev = find_rdev(mddev, dev);
2762 	if (!rdev)
2763 		return -ENXIO;
2764 
2765 	if (rdev->raid_disk >= 0)
2766 		goto busy;
2767 
2768 	kick_rdev_from_array(rdev);
2769 	md_update_sb(mddev);
2770 	md_new_event(mddev);
2771 
2772 	return 0;
2773 busy:
2774 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2775 		bdevname(rdev->bdev,b), mdname(mddev));
2776 	return -EBUSY;
2777 }
2778 
2779 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2780 {
2781 	char b[BDEVNAME_SIZE];
2782 	int err;
2783 	unsigned int size;
2784 	mdk_rdev_t *rdev;
2785 
2786 	if (!mddev->pers)
2787 		return -ENODEV;
2788 
2789 	if (mddev->major_version != 0) {
2790 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2791 			" version-0 superblocks.\n",
2792 			mdname(mddev));
2793 		return -EINVAL;
2794 	}
2795 	if (!mddev->pers->hot_add_disk) {
2796 		printk(KERN_WARNING
2797 			"%s: personality does not support diskops!\n",
2798 			mdname(mddev));
2799 		return -EINVAL;
2800 	}
2801 
2802 	rdev = md_import_device (dev, -1, 0);
2803 	if (IS_ERR(rdev)) {
2804 		printk(KERN_WARNING
2805 			"md: error, md_import_device() returned %ld\n",
2806 			PTR_ERR(rdev));
2807 		return -EINVAL;
2808 	}
2809 
2810 	if (mddev->persistent)
2811 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2812 	else
2813 		rdev->sb_offset =
2814 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2815 
2816 	size = calc_dev_size(rdev, mddev->chunk_size);
2817 	rdev->size = size;
2818 
2819 	if (size < mddev->size) {
2820 		printk(KERN_WARNING
2821 			"%s: disk size %llu blocks < array size %llu\n",
2822 			mdname(mddev), (unsigned long long)size,
2823 			(unsigned long long)mddev->size);
2824 		err = -ENOSPC;
2825 		goto abort_export;
2826 	}
2827 
2828 	if (test_bit(Faulty, &rdev->flags)) {
2829 		printk(KERN_WARNING
2830 			"md: can not hot-add faulty %s disk to %s!\n",
2831 			bdevname(rdev->bdev,b), mdname(mddev));
2832 		err = -EINVAL;
2833 		goto abort_export;
2834 	}
2835 	clear_bit(In_sync, &rdev->flags);
2836 	rdev->desc_nr = -1;
2837 	bind_rdev_to_array(rdev, mddev);
2838 
2839 	/*
2840 	 * The rest should better be atomic, we can have disk failures
2841 	 * noticed in interrupt contexts ...
2842 	 */
2843 
2844 	if (rdev->desc_nr == mddev->max_disks) {
2845 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2846 			mdname(mddev));
2847 		err = -EBUSY;
2848 		goto abort_unbind_export;
2849 	}
2850 
2851 	rdev->raid_disk = -1;
2852 
2853 	md_update_sb(mddev);
2854 
2855 	/*
2856 	 * Kick recovery, maybe this spare has to be added to the
2857 	 * array immediately.
2858 	 */
2859 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2860 	md_wakeup_thread(mddev->thread);
2861 	md_new_event(mddev);
2862 	return 0;
2863 
2864 abort_unbind_export:
2865 	unbind_rdev_from_array(rdev);
2866 
2867 abort_export:
2868 	export_rdev(rdev);
2869 	return err;
2870 }
2871 
2872 /* similar to deny_write_access, but accounts for our holding a reference
2873  * to the file ourselves */
2874 static int deny_bitmap_write_access(struct file * file)
2875 {
2876 	struct inode *inode = file->f_mapping->host;
2877 
2878 	spin_lock(&inode->i_lock);
2879 	if (atomic_read(&inode->i_writecount) > 1) {
2880 		spin_unlock(&inode->i_lock);
2881 		return -ETXTBSY;
2882 	}
2883 	atomic_set(&inode->i_writecount, -1);
2884 	spin_unlock(&inode->i_lock);
2885 
2886 	return 0;
2887 }
2888 
2889 static int set_bitmap_file(mddev_t *mddev, int fd)
2890 {
2891 	int err;
2892 
2893 	if (mddev->pers) {
2894 		if (!mddev->pers->quiesce)
2895 			return -EBUSY;
2896 		if (mddev->recovery || mddev->sync_thread)
2897 			return -EBUSY;
2898 		/* we should be able to change the bitmap.. */
2899 	}
2900 
2901 
2902 	if (fd >= 0) {
2903 		if (mddev->bitmap)
2904 			return -EEXIST; /* cannot add when bitmap is present */
2905 		mddev->bitmap_file = fget(fd);
2906 
2907 		if (mddev->bitmap_file == NULL) {
2908 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2909 			       mdname(mddev));
2910 			return -EBADF;
2911 		}
2912 
2913 		err = deny_bitmap_write_access(mddev->bitmap_file);
2914 		if (err) {
2915 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2916 			       mdname(mddev));
2917 			fput(mddev->bitmap_file);
2918 			mddev->bitmap_file = NULL;
2919 			return err;
2920 		}
2921 		mddev->bitmap_offset = 0; /* file overrides offset */
2922 	} else if (mddev->bitmap == NULL)
2923 		return -ENOENT; /* cannot remove what isn't there */
2924 	err = 0;
2925 	if (mddev->pers) {
2926 		mddev->pers->quiesce(mddev, 1);
2927 		if (fd >= 0)
2928 			err = bitmap_create(mddev);
2929 		if (fd < 0 || err)
2930 			bitmap_destroy(mddev);
2931 		mddev->pers->quiesce(mddev, 0);
2932 	} else if (fd < 0) {
2933 		if (mddev->bitmap_file)
2934 			fput(mddev->bitmap_file);
2935 		mddev->bitmap_file = NULL;
2936 	}
2937 
2938 	return err;
2939 }
2940 
2941 /*
2942  * set_array_info is used two different ways
2943  * The original usage is when creating a new array.
2944  * In this usage, raid_disks is > 0 and it together with
2945  *  level, size, not_persistent,layout,chunksize determine the
2946  *  shape of the array.
2947  *  This will always create an array with a type-0.90.0 superblock.
2948  * The newer usage is when assembling an array.
2949  *  In this case raid_disks will be 0, and the major_version field is
2950  *  use to determine which style super-blocks are to be found on the devices.
2951  *  The minor and patch _version numbers are also kept incase the
2952  *  super_block handler wishes to interpret them.
2953  */
2954 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2955 {
2956 
2957 	if (info->raid_disks == 0) {
2958 		/* just setting version number for superblock loading */
2959 		if (info->major_version < 0 ||
2960 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2961 		    super_types[info->major_version].name == NULL) {
2962 			/* maybe try to auto-load a module? */
2963 			printk(KERN_INFO
2964 				"md: superblock version %d not known\n",
2965 				info->major_version);
2966 			return -EINVAL;
2967 		}
2968 		mddev->major_version = info->major_version;
2969 		mddev->minor_version = info->minor_version;
2970 		mddev->patch_version = info->patch_version;
2971 		return 0;
2972 	}
2973 	mddev->major_version = MD_MAJOR_VERSION;
2974 	mddev->minor_version = MD_MINOR_VERSION;
2975 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2976 	mddev->ctime         = get_seconds();
2977 
2978 	mddev->level         = info->level;
2979 	mddev->size          = info->size;
2980 	mddev->raid_disks    = info->raid_disks;
2981 	/* don't set md_minor, it is determined by which /dev/md* was
2982 	 * openned
2983 	 */
2984 	if (info->state & (1<<MD_SB_CLEAN))
2985 		mddev->recovery_cp = MaxSector;
2986 	else
2987 		mddev->recovery_cp = 0;
2988 	mddev->persistent    = ! info->not_persistent;
2989 
2990 	mddev->layout        = info->layout;
2991 	mddev->chunk_size    = info->chunk_size;
2992 
2993 	mddev->max_disks     = MD_SB_DISKS;
2994 
2995 	mddev->sb_dirty      = 1;
2996 
2997 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2998 	mddev->bitmap_offset = 0;
2999 
3000 	/*
3001 	 * Generate a 128 bit UUID
3002 	 */
3003 	get_random_bytes(mddev->uuid, 16);
3004 
3005 	return 0;
3006 }
3007 
3008 /*
3009  * update_array_info is used to change the configuration of an
3010  * on-line array.
3011  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3012  * fields in the info are checked against the array.
3013  * Any differences that cannot be handled will cause an error.
3014  * Normally, only one change can be managed at a time.
3015  */
3016 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3017 {
3018 	int rv = 0;
3019 	int cnt = 0;
3020 	int state = 0;
3021 
3022 	/* calculate expected state,ignoring low bits */
3023 	if (mddev->bitmap && mddev->bitmap_offset)
3024 		state |= (1 << MD_SB_BITMAP_PRESENT);
3025 
3026 	if (mddev->major_version != info->major_version ||
3027 	    mddev->minor_version != info->minor_version ||
3028 /*	    mddev->patch_version != info->patch_version || */
3029 	    mddev->ctime         != info->ctime         ||
3030 	    mddev->level         != info->level         ||
3031 /*	    mddev->layout        != info->layout        || */
3032 	    !mddev->persistent	 != info->not_persistent||
3033 	    mddev->chunk_size    != info->chunk_size    ||
3034 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3035 	    ((state^info->state) & 0xfffffe00)
3036 		)
3037 		return -EINVAL;
3038 	/* Check there is only one change */
3039 	if (mddev->size != info->size) cnt++;
3040 	if (mddev->raid_disks != info->raid_disks) cnt++;
3041 	if (mddev->layout != info->layout) cnt++;
3042 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3043 	if (cnt == 0) return 0;
3044 	if (cnt > 1) return -EINVAL;
3045 
3046 	if (mddev->layout != info->layout) {
3047 		/* Change layout
3048 		 * we don't need to do anything at the md level, the
3049 		 * personality will take care of it all.
3050 		 */
3051 		if (mddev->pers->reconfig == NULL)
3052 			return -EINVAL;
3053 		else
3054 			return mddev->pers->reconfig(mddev, info->layout, -1);
3055 	}
3056 	if (mddev->size != info->size) {
3057 		mdk_rdev_t * rdev;
3058 		struct list_head *tmp;
3059 		if (mddev->pers->resize == NULL)
3060 			return -EINVAL;
3061 		/* The "size" is the amount of each device that is used.
3062 		 * This can only make sense for arrays with redundancy.
3063 		 * linear and raid0 always use whatever space is available
3064 		 * We can only consider changing the size if no resync
3065 		 * or reconstruction is happening, and if the new size
3066 		 * is acceptable. It must fit before the sb_offset or,
3067 		 * if that is <data_offset, it must fit before the
3068 		 * size of each device.
3069 		 * If size is zero, we find the largest size that fits.
3070 		 */
3071 		if (mddev->sync_thread)
3072 			return -EBUSY;
3073 		ITERATE_RDEV(mddev,rdev,tmp) {
3074 			sector_t avail;
3075 			int fit = (info->size == 0);
3076 			if (rdev->sb_offset > rdev->data_offset)
3077 				avail = (rdev->sb_offset*2) - rdev->data_offset;
3078 			else
3079 				avail = get_capacity(rdev->bdev->bd_disk)
3080 					- rdev->data_offset;
3081 			if (fit && (info->size == 0 || info->size > avail/2))
3082 				info->size = avail/2;
3083 			if (avail < ((sector_t)info->size << 1))
3084 				return -ENOSPC;
3085 		}
3086 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3087 		if (!rv) {
3088 			struct block_device *bdev;
3089 
3090 			bdev = bdget_disk(mddev->gendisk, 0);
3091 			if (bdev) {
3092 				down(&bdev->bd_inode->i_sem);
3093 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3094 				up(&bdev->bd_inode->i_sem);
3095 				bdput(bdev);
3096 			}
3097 		}
3098 	}
3099 	if (mddev->raid_disks    != info->raid_disks) {
3100 		/* change the number of raid disks */
3101 		if (mddev->pers->reshape == NULL)
3102 			return -EINVAL;
3103 		if (info->raid_disks <= 0 ||
3104 		    info->raid_disks >= mddev->max_disks)
3105 			return -EINVAL;
3106 		if (mddev->sync_thread)
3107 			return -EBUSY;
3108 		rv = mddev->pers->reshape(mddev, info->raid_disks);
3109 		if (!rv) {
3110 			struct block_device *bdev;
3111 
3112 			bdev = bdget_disk(mddev->gendisk, 0);
3113 			if (bdev) {
3114 				down(&bdev->bd_inode->i_sem);
3115 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
3116 				up(&bdev->bd_inode->i_sem);
3117 				bdput(bdev);
3118 			}
3119 		}
3120 	}
3121 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3122 		if (mddev->pers->quiesce == NULL)
3123 			return -EINVAL;
3124 		if (mddev->recovery || mddev->sync_thread)
3125 			return -EBUSY;
3126 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3127 			/* add the bitmap */
3128 			if (mddev->bitmap)
3129 				return -EEXIST;
3130 			if (mddev->default_bitmap_offset == 0)
3131 				return -EINVAL;
3132 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3133 			mddev->pers->quiesce(mddev, 1);
3134 			rv = bitmap_create(mddev);
3135 			if (rv)
3136 				bitmap_destroy(mddev);
3137 			mddev->pers->quiesce(mddev, 0);
3138 		} else {
3139 			/* remove the bitmap */
3140 			if (!mddev->bitmap)
3141 				return -ENOENT;
3142 			if (mddev->bitmap->file)
3143 				return -EINVAL;
3144 			mddev->pers->quiesce(mddev, 1);
3145 			bitmap_destroy(mddev);
3146 			mddev->pers->quiesce(mddev, 0);
3147 			mddev->bitmap_offset = 0;
3148 		}
3149 	}
3150 	md_update_sb(mddev);
3151 	return rv;
3152 }
3153 
3154 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3155 {
3156 	mdk_rdev_t *rdev;
3157 
3158 	if (mddev->pers == NULL)
3159 		return -ENODEV;
3160 
3161 	rdev = find_rdev(mddev, dev);
3162 	if (!rdev)
3163 		return -ENODEV;
3164 
3165 	md_error(mddev, rdev);
3166 	return 0;
3167 }
3168 
3169 static int md_ioctl(struct inode *inode, struct file *file,
3170 			unsigned int cmd, unsigned long arg)
3171 {
3172 	int err = 0;
3173 	void __user *argp = (void __user *)arg;
3174 	struct hd_geometry __user *loc = argp;
3175 	mddev_t *mddev = NULL;
3176 
3177 	if (!capable(CAP_SYS_ADMIN))
3178 		return -EACCES;
3179 
3180 	/*
3181 	 * Commands dealing with the RAID driver but not any
3182 	 * particular array:
3183 	 */
3184 	switch (cmd)
3185 	{
3186 		case RAID_VERSION:
3187 			err = get_version(argp);
3188 			goto done;
3189 
3190 		case PRINT_RAID_DEBUG:
3191 			err = 0;
3192 			md_print_devices();
3193 			goto done;
3194 
3195 #ifndef MODULE
3196 		case RAID_AUTORUN:
3197 			err = 0;
3198 			autostart_arrays(arg);
3199 			goto done;
3200 #endif
3201 		default:;
3202 	}
3203 
3204 	/*
3205 	 * Commands creating/starting a new array:
3206 	 */
3207 
3208 	mddev = inode->i_bdev->bd_disk->private_data;
3209 
3210 	if (!mddev) {
3211 		BUG();
3212 		goto abort;
3213 	}
3214 
3215 
3216 	if (cmd == START_ARRAY) {
3217 		/* START_ARRAY doesn't need to lock the array as autostart_array
3218 		 * does the locking, and it could even be a different array
3219 		 */
3220 		static int cnt = 3;
3221 		if (cnt > 0 ) {
3222 			printk(KERN_WARNING
3223 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3224 			       "This will not be supported beyond July 2006\n",
3225 			       current->comm, current->pid);
3226 			cnt--;
3227 		}
3228 		err = autostart_array(new_decode_dev(arg));
3229 		if (err) {
3230 			printk(KERN_WARNING "md: autostart failed!\n");
3231 			goto abort;
3232 		}
3233 		goto done;
3234 	}
3235 
3236 	err = mddev_lock(mddev);
3237 	if (err) {
3238 		printk(KERN_INFO
3239 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3240 			err, cmd);
3241 		goto abort;
3242 	}
3243 
3244 	switch (cmd)
3245 	{
3246 		case SET_ARRAY_INFO:
3247 			{
3248 				mdu_array_info_t info;
3249 				if (!arg)
3250 					memset(&info, 0, sizeof(info));
3251 				else if (copy_from_user(&info, argp, sizeof(info))) {
3252 					err = -EFAULT;
3253 					goto abort_unlock;
3254 				}
3255 				if (mddev->pers) {
3256 					err = update_array_info(mddev, &info);
3257 					if (err) {
3258 						printk(KERN_WARNING "md: couldn't update"
3259 						       " array info. %d\n", err);
3260 						goto abort_unlock;
3261 					}
3262 					goto done_unlock;
3263 				}
3264 				if (!list_empty(&mddev->disks)) {
3265 					printk(KERN_WARNING
3266 					       "md: array %s already has disks!\n",
3267 					       mdname(mddev));
3268 					err = -EBUSY;
3269 					goto abort_unlock;
3270 				}
3271 				if (mddev->raid_disks) {
3272 					printk(KERN_WARNING
3273 					       "md: array %s already initialised!\n",
3274 					       mdname(mddev));
3275 					err = -EBUSY;
3276 					goto abort_unlock;
3277 				}
3278 				err = set_array_info(mddev, &info);
3279 				if (err) {
3280 					printk(KERN_WARNING "md: couldn't set"
3281 					       " array info. %d\n", err);
3282 					goto abort_unlock;
3283 				}
3284 			}
3285 			goto done_unlock;
3286 
3287 		default:;
3288 	}
3289 
3290 	/*
3291 	 * Commands querying/configuring an existing array:
3292 	 */
3293 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3294 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3295 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3296 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3297 		err = -ENODEV;
3298 		goto abort_unlock;
3299 	}
3300 
3301 	/*
3302 	 * Commands even a read-only array can execute:
3303 	 */
3304 	switch (cmd)
3305 	{
3306 		case GET_ARRAY_INFO:
3307 			err = get_array_info(mddev, argp);
3308 			goto done_unlock;
3309 
3310 		case GET_BITMAP_FILE:
3311 			err = get_bitmap_file(mddev, argp);
3312 			goto done_unlock;
3313 
3314 		case GET_DISK_INFO:
3315 			err = get_disk_info(mddev, argp);
3316 			goto done_unlock;
3317 
3318 		case RESTART_ARRAY_RW:
3319 			err = restart_array(mddev);
3320 			goto done_unlock;
3321 
3322 		case STOP_ARRAY:
3323 			err = do_md_stop (mddev, 0);
3324 			goto done_unlock;
3325 
3326 		case STOP_ARRAY_RO:
3327 			err = do_md_stop (mddev, 1);
3328 			goto done_unlock;
3329 
3330 	/*
3331 	 * We have a problem here : there is no easy way to give a CHS
3332 	 * virtual geometry. We currently pretend that we have a 2 heads
3333 	 * 4 sectors (with a BIG number of cylinders...). This drives
3334 	 * dosfs just mad... ;-)
3335 	 */
3336 		case HDIO_GETGEO:
3337 			if (!loc) {
3338 				err = -EINVAL;
3339 				goto abort_unlock;
3340 			}
3341 			err = put_user (2, (char __user *) &loc->heads);
3342 			if (err)
3343 				goto abort_unlock;
3344 			err = put_user (4, (char __user *) &loc->sectors);
3345 			if (err)
3346 				goto abort_unlock;
3347 			err = put_user(get_capacity(mddev->gendisk)/8,
3348 					(short __user *) &loc->cylinders);
3349 			if (err)
3350 				goto abort_unlock;
3351 			err = put_user (get_start_sect(inode->i_bdev),
3352 						(long __user *) &loc->start);
3353 			goto done_unlock;
3354 	}
3355 
3356 	/*
3357 	 * The remaining ioctls are changing the state of the
3358 	 * superblock, so we do not allow them on read-only arrays.
3359 	 * However non-MD ioctls (e.g. get-size) will still come through
3360 	 * here and hit the 'default' below, so only disallow
3361 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3362 	 */
3363 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3364 	    mddev->ro && mddev->pers) {
3365 		if (mddev->ro == 2) {
3366 			mddev->ro = 0;
3367 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3368 		md_wakeup_thread(mddev->thread);
3369 
3370 		} else {
3371 			err = -EROFS;
3372 			goto abort_unlock;
3373 		}
3374 	}
3375 
3376 	switch (cmd)
3377 	{
3378 		case ADD_NEW_DISK:
3379 		{
3380 			mdu_disk_info_t info;
3381 			if (copy_from_user(&info, argp, sizeof(info)))
3382 				err = -EFAULT;
3383 			else
3384 				err = add_new_disk(mddev, &info);
3385 			goto done_unlock;
3386 		}
3387 
3388 		case HOT_REMOVE_DISK:
3389 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3390 			goto done_unlock;
3391 
3392 		case HOT_ADD_DISK:
3393 			err = hot_add_disk(mddev, new_decode_dev(arg));
3394 			goto done_unlock;
3395 
3396 		case SET_DISK_FAULTY:
3397 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3398 			goto done_unlock;
3399 
3400 		case RUN_ARRAY:
3401 			err = do_md_run (mddev);
3402 			goto done_unlock;
3403 
3404 		case SET_BITMAP_FILE:
3405 			err = set_bitmap_file(mddev, (int)arg);
3406 			goto done_unlock;
3407 
3408 		default:
3409 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3410 				printk(KERN_WARNING "md: %s(pid %d) used"
3411 					" obsolete MD ioctl, upgrade your"
3412 					" software to use new ictls.\n",
3413 					current->comm, current->pid);
3414 			err = -EINVAL;
3415 			goto abort_unlock;
3416 	}
3417 
3418 done_unlock:
3419 abort_unlock:
3420 	mddev_unlock(mddev);
3421 
3422 	return err;
3423 done:
3424 	if (err)
3425 		MD_BUG();
3426 abort:
3427 	return err;
3428 }
3429 
3430 static int md_open(struct inode *inode, struct file *file)
3431 {
3432 	/*
3433 	 * Succeed if we can lock the mddev, which confirms that
3434 	 * it isn't being stopped right now.
3435 	 */
3436 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3437 	int err;
3438 
3439 	if ((err = mddev_lock(mddev)))
3440 		goto out;
3441 
3442 	err = 0;
3443 	mddev_get(mddev);
3444 	mddev_unlock(mddev);
3445 
3446 	check_disk_change(inode->i_bdev);
3447  out:
3448 	return err;
3449 }
3450 
3451 static int md_release(struct inode *inode, struct file * file)
3452 {
3453  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3454 
3455 	if (!mddev)
3456 		BUG();
3457 	mddev_put(mddev);
3458 
3459 	return 0;
3460 }
3461 
3462 static int md_media_changed(struct gendisk *disk)
3463 {
3464 	mddev_t *mddev = disk->private_data;
3465 
3466 	return mddev->changed;
3467 }
3468 
3469 static int md_revalidate(struct gendisk *disk)
3470 {
3471 	mddev_t *mddev = disk->private_data;
3472 
3473 	mddev->changed = 0;
3474 	return 0;
3475 }
3476 static struct block_device_operations md_fops =
3477 {
3478 	.owner		= THIS_MODULE,
3479 	.open		= md_open,
3480 	.release	= md_release,
3481 	.ioctl		= md_ioctl,
3482 	.media_changed	= md_media_changed,
3483 	.revalidate_disk= md_revalidate,
3484 };
3485 
3486 static int md_thread(void * arg)
3487 {
3488 	mdk_thread_t *thread = arg;
3489 
3490 	/*
3491 	 * md_thread is a 'system-thread', it's priority should be very
3492 	 * high. We avoid resource deadlocks individually in each
3493 	 * raid personality. (RAID5 does preallocation) We also use RR and
3494 	 * the very same RT priority as kswapd, thus we will never get
3495 	 * into a priority inversion deadlock.
3496 	 *
3497 	 * we definitely have to have equal or higher priority than
3498 	 * bdflush, otherwise bdflush will deadlock if there are too
3499 	 * many dirty RAID5 blocks.
3500 	 */
3501 
3502 	allow_signal(SIGKILL);
3503 	while (!kthread_should_stop()) {
3504 
3505 		/* We need to wait INTERRUPTIBLE so that
3506 		 * we don't add to the load-average.
3507 		 * That means we need to be sure no signals are
3508 		 * pending
3509 		 */
3510 		if (signal_pending(current))
3511 			flush_signals(current);
3512 
3513 		wait_event_interruptible_timeout
3514 			(thread->wqueue,
3515 			 test_bit(THREAD_WAKEUP, &thread->flags)
3516 			 || kthread_should_stop(),
3517 			 thread->timeout);
3518 		try_to_freeze();
3519 
3520 		clear_bit(THREAD_WAKEUP, &thread->flags);
3521 
3522 		thread->run(thread->mddev);
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 void md_wakeup_thread(mdk_thread_t *thread)
3529 {
3530 	if (thread) {
3531 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3532 		set_bit(THREAD_WAKEUP, &thread->flags);
3533 		wake_up(&thread->wqueue);
3534 	}
3535 }
3536 
3537 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3538 				 const char *name)
3539 {
3540 	mdk_thread_t *thread;
3541 
3542 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3543 	if (!thread)
3544 		return NULL;
3545 
3546 	init_waitqueue_head(&thread->wqueue);
3547 
3548 	thread->run = run;
3549 	thread->mddev = mddev;
3550 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3551 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3552 	if (IS_ERR(thread->tsk)) {
3553 		kfree(thread);
3554 		return NULL;
3555 	}
3556 	return thread;
3557 }
3558 
3559 void md_unregister_thread(mdk_thread_t *thread)
3560 {
3561 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3562 
3563 	kthread_stop(thread->tsk);
3564 	kfree(thread);
3565 }
3566 
3567 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3568 {
3569 	if (!mddev) {
3570 		MD_BUG();
3571 		return;
3572 	}
3573 
3574 	if (!rdev || test_bit(Faulty, &rdev->flags))
3575 		return;
3576 /*
3577 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3578 		mdname(mddev),
3579 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3580 		__builtin_return_address(0),__builtin_return_address(1),
3581 		__builtin_return_address(2),__builtin_return_address(3));
3582 */
3583 	if (!mddev->pers->error_handler)
3584 		return;
3585 	mddev->pers->error_handler(mddev,rdev);
3586 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3587 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3588 	md_wakeup_thread(mddev->thread);
3589 	md_new_event(mddev);
3590 }
3591 
3592 /* seq_file implementation /proc/mdstat */
3593 
3594 static void status_unused(struct seq_file *seq)
3595 {
3596 	int i = 0;
3597 	mdk_rdev_t *rdev;
3598 	struct list_head *tmp;
3599 
3600 	seq_printf(seq, "unused devices: ");
3601 
3602 	ITERATE_RDEV_PENDING(rdev,tmp) {
3603 		char b[BDEVNAME_SIZE];
3604 		i++;
3605 		seq_printf(seq, "%s ",
3606 			      bdevname(rdev->bdev,b));
3607 	}
3608 	if (!i)
3609 		seq_printf(seq, "<none>");
3610 
3611 	seq_printf(seq, "\n");
3612 }
3613 
3614 
3615 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3616 {
3617 	unsigned long max_blocks, resync, res, dt, db, rt;
3618 
3619 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3620 
3621 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3622 		max_blocks = mddev->resync_max_sectors >> 1;
3623 	else
3624 		max_blocks = mddev->size;
3625 
3626 	/*
3627 	 * Should not happen.
3628 	 */
3629 	if (!max_blocks) {
3630 		MD_BUG();
3631 		return;
3632 	}
3633 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3634 	{
3635 		int i, x = res/50, y = 20-x;
3636 		seq_printf(seq, "[");
3637 		for (i = 0; i < x; i++)
3638 			seq_printf(seq, "=");
3639 		seq_printf(seq, ">");
3640 		for (i = 0; i < y; i++)
3641 			seq_printf(seq, ".");
3642 		seq_printf(seq, "] ");
3643 	}
3644 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3645 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3646 		       "resync" : "recovery"),
3647 		      res/10, res % 10, resync, max_blocks);
3648 
3649 	/*
3650 	 * We do not want to overflow, so the order of operands and
3651 	 * the * 100 / 100 trick are important. We do a +1 to be
3652 	 * safe against division by zero. We only estimate anyway.
3653 	 *
3654 	 * dt: time from mark until now
3655 	 * db: blocks written from mark until now
3656 	 * rt: remaining time
3657 	 */
3658 	dt = ((jiffies - mddev->resync_mark) / HZ);
3659 	if (!dt) dt++;
3660 	db = resync - (mddev->resync_mark_cnt/2);
3661 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3662 
3663 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3664 
3665 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3666 }
3667 
3668 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3669 {
3670 	struct list_head *tmp;
3671 	loff_t l = *pos;
3672 	mddev_t *mddev;
3673 
3674 	if (l >= 0x10000)
3675 		return NULL;
3676 	if (!l--)
3677 		/* header */
3678 		return (void*)1;
3679 
3680 	spin_lock(&all_mddevs_lock);
3681 	list_for_each(tmp,&all_mddevs)
3682 		if (!l--) {
3683 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3684 			mddev_get(mddev);
3685 			spin_unlock(&all_mddevs_lock);
3686 			return mddev;
3687 		}
3688 	spin_unlock(&all_mddevs_lock);
3689 	if (!l--)
3690 		return (void*)2;/* tail */
3691 	return NULL;
3692 }
3693 
3694 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3695 {
3696 	struct list_head *tmp;
3697 	mddev_t *next_mddev, *mddev = v;
3698 
3699 	++*pos;
3700 	if (v == (void*)2)
3701 		return NULL;
3702 
3703 	spin_lock(&all_mddevs_lock);
3704 	if (v == (void*)1)
3705 		tmp = all_mddevs.next;
3706 	else
3707 		tmp = mddev->all_mddevs.next;
3708 	if (tmp != &all_mddevs)
3709 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3710 	else {
3711 		next_mddev = (void*)2;
3712 		*pos = 0x10000;
3713 	}
3714 	spin_unlock(&all_mddevs_lock);
3715 
3716 	if (v != (void*)1)
3717 		mddev_put(mddev);
3718 	return next_mddev;
3719 
3720 }
3721 
3722 static void md_seq_stop(struct seq_file *seq, void *v)
3723 {
3724 	mddev_t *mddev = v;
3725 
3726 	if (mddev && v != (void*)1 && v != (void*)2)
3727 		mddev_put(mddev);
3728 }
3729 
3730 struct mdstat_info {
3731 	int event;
3732 };
3733 
3734 static int md_seq_show(struct seq_file *seq, void *v)
3735 {
3736 	mddev_t *mddev = v;
3737 	sector_t size;
3738 	struct list_head *tmp2;
3739 	mdk_rdev_t *rdev;
3740 	struct mdstat_info *mi = seq->private;
3741 	struct bitmap *bitmap;
3742 
3743 	if (v == (void*)1) {
3744 		struct mdk_personality *pers;
3745 		seq_printf(seq, "Personalities : ");
3746 		spin_lock(&pers_lock);
3747 		list_for_each_entry(pers, &pers_list, list)
3748 			seq_printf(seq, "[%s] ", pers->name);
3749 
3750 		spin_unlock(&pers_lock);
3751 		seq_printf(seq, "\n");
3752 		mi->event = atomic_read(&md_event_count);
3753 		return 0;
3754 	}
3755 	if (v == (void*)2) {
3756 		status_unused(seq);
3757 		return 0;
3758 	}
3759 
3760 	if (mddev_lock(mddev)!=0)
3761 		return -EINTR;
3762 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3763 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3764 						mddev->pers ? "" : "in");
3765 		if (mddev->pers) {
3766 			if (mddev->ro==1)
3767 				seq_printf(seq, " (read-only)");
3768 			if (mddev->ro==2)
3769 				seq_printf(seq, "(auto-read-only)");
3770 			seq_printf(seq, " %s", mddev->pers->name);
3771 		}
3772 
3773 		size = 0;
3774 		ITERATE_RDEV(mddev,rdev,tmp2) {
3775 			char b[BDEVNAME_SIZE];
3776 			seq_printf(seq, " %s[%d]",
3777 				bdevname(rdev->bdev,b), rdev->desc_nr);
3778 			if (test_bit(WriteMostly, &rdev->flags))
3779 				seq_printf(seq, "(W)");
3780 			if (test_bit(Faulty, &rdev->flags)) {
3781 				seq_printf(seq, "(F)");
3782 				continue;
3783 			} else if (rdev->raid_disk < 0)
3784 				seq_printf(seq, "(S)"); /* spare */
3785 			size += rdev->size;
3786 		}
3787 
3788 		if (!list_empty(&mddev->disks)) {
3789 			if (mddev->pers)
3790 				seq_printf(seq, "\n      %llu blocks",
3791 					(unsigned long long)mddev->array_size);
3792 			else
3793 				seq_printf(seq, "\n      %llu blocks",
3794 					(unsigned long long)size);
3795 		}
3796 		if (mddev->persistent) {
3797 			if (mddev->major_version != 0 ||
3798 			    mddev->minor_version != 90) {
3799 				seq_printf(seq," super %d.%d",
3800 					   mddev->major_version,
3801 					   mddev->minor_version);
3802 			}
3803 		} else
3804 			seq_printf(seq, " super non-persistent");
3805 
3806 		if (mddev->pers) {
3807 			mddev->pers->status (seq, mddev);
3808 	 		seq_printf(seq, "\n      ");
3809 			if (mddev->pers->sync_request) {
3810 				if (mddev->curr_resync > 2) {
3811 					status_resync (seq, mddev);
3812 					seq_printf(seq, "\n      ");
3813 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3814 					seq_printf(seq, "\tresync=DELAYED\n      ");
3815 				else if (mddev->recovery_cp < MaxSector)
3816 					seq_printf(seq, "\tresync=PENDING\n      ");
3817 			}
3818 		} else
3819 			seq_printf(seq, "\n       ");
3820 
3821 		if ((bitmap = mddev->bitmap)) {
3822 			unsigned long chunk_kb;
3823 			unsigned long flags;
3824 			spin_lock_irqsave(&bitmap->lock, flags);
3825 			chunk_kb = bitmap->chunksize >> 10;
3826 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3827 				"%lu%s chunk",
3828 				bitmap->pages - bitmap->missing_pages,
3829 				bitmap->pages,
3830 				(bitmap->pages - bitmap->missing_pages)
3831 					<< (PAGE_SHIFT - 10),
3832 				chunk_kb ? chunk_kb : bitmap->chunksize,
3833 				chunk_kb ? "KB" : "B");
3834 			if (bitmap->file) {
3835 				seq_printf(seq, ", file: ");
3836 				seq_path(seq, bitmap->file->f_vfsmnt,
3837 					 bitmap->file->f_dentry," \t\n");
3838 			}
3839 
3840 			seq_printf(seq, "\n");
3841 			spin_unlock_irqrestore(&bitmap->lock, flags);
3842 		}
3843 
3844 		seq_printf(seq, "\n");
3845 	}
3846 	mddev_unlock(mddev);
3847 
3848 	return 0;
3849 }
3850 
3851 static struct seq_operations md_seq_ops = {
3852 	.start  = md_seq_start,
3853 	.next   = md_seq_next,
3854 	.stop   = md_seq_stop,
3855 	.show   = md_seq_show,
3856 };
3857 
3858 static int md_seq_open(struct inode *inode, struct file *file)
3859 {
3860 	int error;
3861 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
3862 	if (mi == NULL)
3863 		return -ENOMEM;
3864 
3865 	error = seq_open(file, &md_seq_ops);
3866 	if (error)
3867 		kfree(mi);
3868 	else {
3869 		struct seq_file *p = file->private_data;
3870 		p->private = mi;
3871 		mi->event = atomic_read(&md_event_count);
3872 	}
3873 	return error;
3874 }
3875 
3876 static int md_seq_release(struct inode *inode, struct file *file)
3877 {
3878 	struct seq_file *m = file->private_data;
3879 	struct mdstat_info *mi = m->private;
3880 	m->private = NULL;
3881 	kfree(mi);
3882 	return seq_release(inode, file);
3883 }
3884 
3885 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
3886 {
3887 	struct seq_file *m = filp->private_data;
3888 	struct mdstat_info *mi = m->private;
3889 	int mask;
3890 
3891 	poll_wait(filp, &md_event_waiters, wait);
3892 
3893 	/* always allow read */
3894 	mask = POLLIN | POLLRDNORM;
3895 
3896 	if (mi->event != atomic_read(&md_event_count))
3897 		mask |= POLLERR | POLLPRI;
3898 	return mask;
3899 }
3900 
3901 static struct file_operations md_seq_fops = {
3902 	.open           = md_seq_open,
3903 	.read           = seq_read,
3904 	.llseek         = seq_lseek,
3905 	.release	= md_seq_release,
3906 	.poll		= mdstat_poll,
3907 };
3908 
3909 int register_md_personality(struct mdk_personality *p)
3910 {
3911 	spin_lock(&pers_lock);
3912 	list_add_tail(&p->list, &pers_list);
3913 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
3914 	spin_unlock(&pers_lock);
3915 	return 0;
3916 }
3917 
3918 int unregister_md_personality(struct mdk_personality *p)
3919 {
3920 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
3921 	spin_lock(&pers_lock);
3922 	list_del_init(&p->list);
3923 	spin_unlock(&pers_lock);
3924 	return 0;
3925 }
3926 
3927 static int is_mddev_idle(mddev_t *mddev)
3928 {
3929 	mdk_rdev_t * rdev;
3930 	struct list_head *tmp;
3931 	int idle;
3932 	unsigned long curr_events;
3933 
3934 	idle = 1;
3935 	ITERATE_RDEV(mddev,rdev,tmp) {
3936 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3937 		curr_events = disk_stat_read(disk, sectors[0]) +
3938 				disk_stat_read(disk, sectors[1]) -
3939 				atomic_read(&disk->sync_io);
3940 		/* The difference between curr_events and last_events
3941 		 * will be affected by any new non-sync IO (making
3942 		 * curr_events bigger) and any difference in the amount of
3943 		 * in-flight syncio (making current_events bigger or smaller)
3944 		 * The amount in-flight is currently limited to
3945 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3946 		 * which is at most 4096 sectors.
3947 		 * These numbers are fairly fragile and should be made
3948 		 * more robust, probably by enforcing the
3949 		 * 'window size' that md_do_sync sort-of uses.
3950 		 *
3951 		 * Note: the following is an unsigned comparison.
3952 		 */
3953 		if ((curr_events - rdev->last_events + 4096) > 8192) {
3954 			rdev->last_events = curr_events;
3955 			idle = 0;
3956 		}
3957 	}
3958 	return idle;
3959 }
3960 
3961 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3962 {
3963 	/* another "blocks" (512byte) blocks have been synced */
3964 	atomic_sub(blocks, &mddev->recovery_active);
3965 	wake_up(&mddev->recovery_wait);
3966 	if (!ok) {
3967 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3968 		md_wakeup_thread(mddev->thread);
3969 		// stop recovery, signal do_sync ....
3970 	}
3971 }
3972 
3973 
3974 /* md_write_start(mddev, bi)
3975  * If we need to update some array metadata (e.g. 'active' flag
3976  * in superblock) before writing, schedule a superblock update
3977  * and wait for it to complete.
3978  */
3979 void md_write_start(mddev_t *mddev, struct bio *bi)
3980 {
3981 	if (bio_data_dir(bi) != WRITE)
3982 		return;
3983 
3984 	BUG_ON(mddev->ro == 1);
3985 	if (mddev->ro == 2) {
3986 		/* need to switch to read/write */
3987 		mddev->ro = 0;
3988 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3989 		md_wakeup_thread(mddev->thread);
3990 	}
3991 	atomic_inc(&mddev->writes_pending);
3992 	if (mddev->in_sync) {
3993 		spin_lock_irq(&mddev->write_lock);
3994 		if (mddev->in_sync) {
3995 			mddev->in_sync = 0;
3996 			mddev->sb_dirty = 1;
3997 			md_wakeup_thread(mddev->thread);
3998 		}
3999 		spin_unlock_irq(&mddev->write_lock);
4000 	}
4001 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4002 }
4003 
4004 void md_write_end(mddev_t *mddev)
4005 {
4006 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4007 		if (mddev->safemode == 2)
4008 			md_wakeup_thread(mddev->thread);
4009 		else
4010 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4011 	}
4012 }
4013 
4014 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4015 
4016 #define SYNC_MARKS	10
4017 #define	SYNC_MARK_STEP	(3*HZ)
4018 static void md_do_sync(mddev_t *mddev)
4019 {
4020 	mddev_t *mddev2;
4021 	unsigned int currspeed = 0,
4022 		 window;
4023 	sector_t max_sectors,j, io_sectors;
4024 	unsigned long mark[SYNC_MARKS];
4025 	sector_t mark_cnt[SYNC_MARKS];
4026 	int last_mark,m;
4027 	struct list_head *tmp;
4028 	sector_t last_check;
4029 	int skipped = 0;
4030 
4031 	/* just incase thread restarts... */
4032 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4033 		return;
4034 
4035 	/* we overload curr_resync somewhat here.
4036 	 * 0 == not engaged in resync at all
4037 	 * 2 == checking that there is no conflict with another sync
4038 	 * 1 == like 2, but have yielded to allow conflicting resync to
4039 	 *		commense
4040 	 * other == active in resync - this many blocks
4041 	 *
4042 	 * Before starting a resync we must have set curr_resync to
4043 	 * 2, and then checked that every "conflicting" array has curr_resync
4044 	 * less than ours.  When we find one that is the same or higher
4045 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4046 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4047 	 * This will mean we have to start checking from the beginning again.
4048 	 *
4049 	 */
4050 
4051 	do {
4052 		mddev->curr_resync = 2;
4053 
4054 	try_again:
4055 		if (kthread_should_stop()) {
4056 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4057 			goto skip;
4058 		}
4059 		ITERATE_MDDEV(mddev2,tmp) {
4060 			if (mddev2 == mddev)
4061 				continue;
4062 			if (mddev2->curr_resync &&
4063 			    match_mddev_units(mddev,mddev2)) {
4064 				DEFINE_WAIT(wq);
4065 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4066 					/* arbitrarily yield */
4067 					mddev->curr_resync = 1;
4068 					wake_up(&resync_wait);
4069 				}
4070 				if (mddev > mddev2 && mddev->curr_resync == 1)
4071 					/* no need to wait here, we can wait the next
4072 					 * time 'round when curr_resync == 2
4073 					 */
4074 					continue;
4075 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4076 				if (!kthread_should_stop() &&
4077 				    mddev2->curr_resync >= mddev->curr_resync) {
4078 					printk(KERN_INFO "md: delaying resync of %s"
4079 					       " until %s has finished resync (they"
4080 					       " share one or more physical units)\n",
4081 					       mdname(mddev), mdname(mddev2));
4082 					mddev_put(mddev2);
4083 					schedule();
4084 					finish_wait(&resync_wait, &wq);
4085 					goto try_again;
4086 				}
4087 				finish_wait(&resync_wait, &wq);
4088 			}
4089 		}
4090 	} while (mddev->curr_resync < 2);
4091 
4092 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4093 		/* resync follows the size requested by the personality,
4094 		 * which defaults to physical size, but can be virtual size
4095 		 */
4096 		max_sectors = mddev->resync_max_sectors;
4097 		mddev->resync_mismatches = 0;
4098 	} else
4099 		/* recovery follows the physical size of devices */
4100 		max_sectors = mddev->size << 1;
4101 
4102 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4103 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4104 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4105 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4106 	       "(but not more than %d KB/sec) for reconstruction.\n",
4107 	       sysctl_speed_limit_max);
4108 
4109 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4110 	/* we don't use the checkpoint if there's a bitmap */
4111 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4112 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4113 		j = mddev->recovery_cp;
4114 	else
4115 		j = 0;
4116 	io_sectors = 0;
4117 	for (m = 0; m < SYNC_MARKS; m++) {
4118 		mark[m] = jiffies;
4119 		mark_cnt[m] = io_sectors;
4120 	}
4121 	last_mark = 0;
4122 	mddev->resync_mark = mark[last_mark];
4123 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4124 
4125 	/*
4126 	 * Tune reconstruction:
4127 	 */
4128 	window = 32*(PAGE_SIZE/512);
4129 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4130 		window/2,(unsigned long long) max_sectors/2);
4131 
4132 	atomic_set(&mddev->recovery_active, 0);
4133 	init_waitqueue_head(&mddev->recovery_wait);
4134 	last_check = 0;
4135 
4136 	if (j>2) {
4137 		printk(KERN_INFO
4138 			"md: resuming recovery of %s from checkpoint.\n",
4139 			mdname(mddev));
4140 		mddev->curr_resync = j;
4141 	}
4142 
4143 	while (j < max_sectors) {
4144 		sector_t sectors;
4145 
4146 		skipped = 0;
4147 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4148 					    currspeed < sysctl_speed_limit_min);
4149 		if (sectors == 0) {
4150 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4151 			goto out;
4152 		}
4153 
4154 		if (!skipped) { /* actual IO requested */
4155 			io_sectors += sectors;
4156 			atomic_add(sectors, &mddev->recovery_active);
4157 		}
4158 
4159 		j += sectors;
4160 		if (j>1) mddev->curr_resync = j;
4161 		if (last_check == 0)
4162 			/* this is the earliers that rebuilt will be
4163 			 * visible in /proc/mdstat
4164 			 */
4165 			md_new_event(mddev);
4166 
4167 		if (last_check + window > io_sectors || j == max_sectors)
4168 			continue;
4169 
4170 		last_check = io_sectors;
4171 
4172 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4173 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4174 			break;
4175 
4176 	repeat:
4177 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4178 			/* step marks */
4179 			int next = (last_mark+1) % SYNC_MARKS;
4180 
4181 			mddev->resync_mark = mark[next];
4182 			mddev->resync_mark_cnt = mark_cnt[next];
4183 			mark[next] = jiffies;
4184 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4185 			last_mark = next;
4186 		}
4187 
4188 
4189 		if (kthread_should_stop()) {
4190 			/*
4191 			 * got a signal, exit.
4192 			 */
4193 			printk(KERN_INFO
4194 				"md: md_do_sync() got signal ... exiting\n");
4195 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4196 			goto out;
4197 		}
4198 
4199 		/*
4200 		 * this loop exits only if either when we are slower than
4201 		 * the 'hard' speed limit, or the system was IO-idle for
4202 		 * a jiffy.
4203 		 * the system might be non-idle CPU-wise, but we only care
4204 		 * about not overloading the IO subsystem. (things like an
4205 		 * e2fsck being done on the RAID array should execute fast)
4206 		 */
4207 		mddev->queue->unplug_fn(mddev->queue);
4208 		cond_resched();
4209 
4210 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4211 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4212 
4213 		if (currspeed > sysctl_speed_limit_min) {
4214 			if ((currspeed > sysctl_speed_limit_max) ||
4215 					!is_mddev_idle(mddev)) {
4216 				msleep(500);
4217 				goto repeat;
4218 			}
4219 		}
4220 	}
4221 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4222 	/*
4223 	 * this also signals 'finished resyncing' to md_stop
4224 	 */
4225  out:
4226 	mddev->queue->unplug_fn(mddev->queue);
4227 
4228 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4229 
4230 	/* tell personality that we are finished */
4231 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4232 
4233 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4234 	    mddev->curr_resync > 2 &&
4235 	    mddev->curr_resync >= mddev->recovery_cp) {
4236 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4237 			printk(KERN_INFO
4238 				"md: checkpointing recovery of %s.\n",
4239 				mdname(mddev));
4240 			mddev->recovery_cp = mddev->curr_resync;
4241 		} else
4242 			mddev->recovery_cp = MaxSector;
4243 	}
4244 
4245  skip:
4246 	mddev->curr_resync = 0;
4247 	wake_up(&resync_wait);
4248 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4249 	md_wakeup_thread(mddev->thread);
4250 }
4251 
4252 
4253 /*
4254  * This routine is regularly called by all per-raid-array threads to
4255  * deal with generic issues like resync and super-block update.
4256  * Raid personalities that don't have a thread (linear/raid0) do not
4257  * need this as they never do any recovery or update the superblock.
4258  *
4259  * It does not do any resync itself, but rather "forks" off other threads
4260  * to do that as needed.
4261  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4262  * "->recovery" and create a thread at ->sync_thread.
4263  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4264  * and wakeups up this thread which will reap the thread and finish up.
4265  * This thread also removes any faulty devices (with nr_pending == 0).
4266  *
4267  * The overall approach is:
4268  *  1/ if the superblock needs updating, update it.
4269  *  2/ If a recovery thread is running, don't do anything else.
4270  *  3/ If recovery has finished, clean up, possibly marking spares active.
4271  *  4/ If there are any faulty devices, remove them.
4272  *  5/ If array is degraded, try to add spares devices
4273  *  6/ If array has spares or is not in-sync, start a resync thread.
4274  */
4275 void md_check_recovery(mddev_t *mddev)
4276 {
4277 	mdk_rdev_t *rdev;
4278 	struct list_head *rtmp;
4279 
4280 
4281 	if (mddev->bitmap)
4282 		bitmap_daemon_work(mddev->bitmap);
4283 
4284 	if (mddev->ro)
4285 		return;
4286 
4287 	if (signal_pending(current)) {
4288 		if (mddev->pers->sync_request) {
4289 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4290 			       mdname(mddev));
4291 			mddev->safemode = 2;
4292 		}
4293 		flush_signals(current);
4294 	}
4295 
4296 	if ( ! (
4297 		mddev->sb_dirty ||
4298 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4299 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4300 		(mddev->safemode == 1) ||
4301 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4302 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4303 		))
4304 		return;
4305 
4306 	if (mddev_trylock(mddev)==0) {
4307 		int spares =0;
4308 
4309 		spin_lock_irq(&mddev->write_lock);
4310 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4311 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4312 			mddev->in_sync = 1;
4313 			mddev->sb_dirty = 1;
4314 		}
4315 		if (mddev->safemode == 1)
4316 			mddev->safemode = 0;
4317 		spin_unlock_irq(&mddev->write_lock);
4318 
4319 		if (mddev->sb_dirty)
4320 			md_update_sb(mddev);
4321 
4322 
4323 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4324 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4325 			/* resync/recovery still happening */
4326 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4327 			goto unlock;
4328 		}
4329 		if (mddev->sync_thread) {
4330 			/* resync has finished, collect result */
4331 			md_unregister_thread(mddev->sync_thread);
4332 			mddev->sync_thread = NULL;
4333 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4334 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4335 				/* success...*/
4336 				/* activate any spares */
4337 				mddev->pers->spare_active(mddev);
4338 			}
4339 			md_update_sb(mddev);
4340 
4341 			/* if array is no-longer degraded, then any saved_raid_disk
4342 			 * information must be scrapped
4343 			 */
4344 			if (!mddev->degraded)
4345 				ITERATE_RDEV(mddev,rdev,rtmp)
4346 					rdev->saved_raid_disk = -1;
4347 
4348 			mddev->recovery = 0;
4349 			/* flag recovery needed just to double check */
4350 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4351 			md_new_event(mddev);
4352 			goto unlock;
4353 		}
4354 		/* Clear some bits that don't mean anything, but
4355 		 * might be left set
4356 		 */
4357 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4358 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4359 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4360 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4361 
4362 		/* no recovery is running.
4363 		 * remove any failed drives, then
4364 		 * add spares if possible.
4365 		 * Spare are also removed and re-added, to allow
4366 		 * the personality to fail the re-add.
4367 		 */
4368 		ITERATE_RDEV(mddev,rdev,rtmp)
4369 			if (rdev->raid_disk >= 0 &&
4370 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4371 			    atomic_read(&rdev->nr_pending)==0) {
4372 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4373 					char nm[20];
4374 					sprintf(nm,"rd%d", rdev->raid_disk);
4375 					sysfs_remove_link(&mddev->kobj, nm);
4376 					rdev->raid_disk = -1;
4377 				}
4378 			}
4379 
4380 		if (mddev->degraded) {
4381 			ITERATE_RDEV(mddev,rdev,rtmp)
4382 				if (rdev->raid_disk < 0
4383 				    && !test_bit(Faulty, &rdev->flags)) {
4384 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4385 						char nm[20];
4386 						sprintf(nm, "rd%d", rdev->raid_disk);
4387 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4388 						spares++;
4389 						md_new_event(mddev);
4390 					} else
4391 						break;
4392 				}
4393 		}
4394 
4395 		if (spares) {
4396 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4397 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4398 		} else if (mddev->recovery_cp < MaxSector) {
4399 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4400 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4401 			/* nothing to be done ... */
4402 			goto unlock;
4403 
4404 		if (mddev->pers->sync_request) {
4405 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4406 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4407 				/* We are adding a device or devices to an array
4408 				 * which has the bitmap stored on all devices.
4409 				 * So make sure all bitmap pages get written
4410 				 */
4411 				bitmap_write_all(mddev->bitmap);
4412 			}
4413 			mddev->sync_thread = md_register_thread(md_do_sync,
4414 								mddev,
4415 								"%s_resync");
4416 			if (!mddev->sync_thread) {
4417 				printk(KERN_ERR "%s: could not start resync"
4418 					" thread...\n",
4419 					mdname(mddev));
4420 				/* leave the spares where they are, it shouldn't hurt */
4421 				mddev->recovery = 0;
4422 			} else
4423 				md_wakeup_thread(mddev->sync_thread);
4424 			md_new_event(mddev);
4425 		}
4426 	unlock:
4427 		mddev_unlock(mddev);
4428 	}
4429 }
4430 
4431 static int md_notify_reboot(struct notifier_block *this,
4432 			    unsigned long code, void *x)
4433 {
4434 	struct list_head *tmp;
4435 	mddev_t *mddev;
4436 
4437 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4438 
4439 		printk(KERN_INFO "md: stopping all md devices.\n");
4440 
4441 		ITERATE_MDDEV(mddev,tmp)
4442 			if (mddev_trylock(mddev)==0)
4443 				do_md_stop (mddev, 1);
4444 		/*
4445 		 * certain more exotic SCSI devices are known to be
4446 		 * volatile wrt too early system reboots. While the
4447 		 * right place to handle this issue is the given
4448 		 * driver, we do want to have a safe RAID driver ...
4449 		 */
4450 		mdelay(1000*1);
4451 	}
4452 	return NOTIFY_DONE;
4453 }
4454 
4455 static struct notifier_block md_notifier = {
4456 	.notifier_call	= md_notify_reboot,
4457 	.next		= NULL,
4458 	.priority	= INT_MAX, /* before any real devices */
4459 };
4460 
4461 static void md_geninit(void)
4462 {
4463 	struct proc_dir_entry *p;
4464 
4465 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4466 
4467 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4468 	if (p)
4469 		p->proc_fops = &md_seq_fops;
4470 }
4471 
4472 static int __init md_init(void)
4473 {
4474 	int minor;
4475 
4476 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4477 			" MD_SB_DISKS=%d\n",
4478 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4479 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4480 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4481 			BITMAP_MINOR);
4482 
4483 	if (register_blkdev(MAJOR_NR, "md"))
4484 		return -1;
4485 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4486 		unregister_blkdev(MAJOR_NR, "md");
4487 		return -1;
4488 	}
4489 	devfs_mk_dir("md");
4490 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4491 				md_probe, NULL, NULL);
4492 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4493 			    md_probe, NULL, NULL);
4494 
4495 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4496 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4497 				S_IFBLK|S_IRUSR|S_IWUSR,
4498 				"md/%d", minor);
4499 
4500 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4501 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4502 			      S_IFBLK|S_IRUSR|S_IWUSR,
4503 			      "md/mdp%d", minor);
4504 
4505 
4506 	register_reboot_notifier(&md_notifier);
4507 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4508 
4509 	md_geninit();
4510 	return (0);
4511 }
4512 
4513 
4514 #ifndef MODULE
4515 
4516 /*
4517  * Searches all registered partitions for autorun RAID arrays
4518  * at boot time.
4519  */
4520 static dev_t detected_devices[128];
4521 static int dev_cnt;
4522 
4523 void md_autodetect_dev(dev_t dev)
4524 {
4525 	if (dev_cnt >= 0 && dev_cnt < 127)
4526 		detected_devices[dev_cnt++] = dev;
4527 }
4528 
4529 
4530 static void autostart_arrays(int part)
4531 {
4532 	mdk_rdev_t *rdev;
4533 	int i;
4534 
4535 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4536 
4537 	for (i = 0; i < dev_cnt; i++) {
4538 		dev_t dev = detected_devices[i];
4539 
4540 		rdev = md_import_device(dev,0, 0);
4541 		if (IS_ERR(rdev))
4542 			continue;
4543 
4544 		if (test_bit(Faulty, &rdev->flags)) {
4545 			MD_BUG();
4546 			continue;
4547 		}
4548 		list_add(&rdev->same_set, &pending_raid_disks);
4549 	}
4550 	dev_cnt = 0;
4551 
4552 	autorun_devices(part);
4553 }
4554 
4555 #endif
4556 
4557 static __exit void md_exit(void)
4558 {
4559 	mddev_t *mddev;
4560 	struct list_head *tmp;
4561 	int i;
4562 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4563 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4564 	for (i=0; i < MAX_MD_DEVS; i++)
4565 		devfs_remove("md/%d", i);
4566 	for (i=0; i < MAX_MD_DEVS; i++)
4567 		devfs_remove("md/d%d", i);
4568 
4569 	devfs_remove("md");
4570 
4571 	unregister_blkdev(MAJOR_NR,"md");
4572 	unregister_blkdev(mdp_major, "mdp");
4573 	unregister_reboot_notifier(&md_notifier);
4574 	unregister_sysctl_table(raid_table_header);
4575 	remove_proc_entry("mdstat", NULL);
4576 	ITERATE_MDDEV(mddev,tmp) {
4577 		struct gendisk *disk = mddev->gendisk;
4578 		if (!disk)
4579 			continue;
4580 		export_array(mddev);
4581 		del_gendisk(disk);
4582 		put_disk(disk);
4583 		mddev->gendisk = NULL;
4584 		mddev_put(mddev);
4585 	}
4586 }
4587 
4588 module_init(md_init)
4589 module_exit(md_exit)
4590 
4591 static int get_ro(char *buffer, struct kernel_param *kp)
4592 {
4593 	return sprintf(buffer, "%d", start_readonly);
4594 }
4595 static int set_ro(const char *val, struct kernel_param *kp)
4596 {
4597 	char *e;
4598 	int num = simple_strtoul(val, &e, 10);
4599 	if (*val && (*e == '\0' || *e == '\n')) {
4600 		start_readonly = num;
4601 		return 0;;
4602 	}
4603 	return -EINVAL;
4604 }
4605 
4606 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4607 module_param(start_dirty_degraded, int, 0644);
4608 
4609 
4610 EXPORT_SYMBOL(register_md_personality);
4611 EXPORT_SYMBOL(unregister_md_personality);
4612 EXPORT_SYMBOL(md_error);
4613 EXPORT_SYMBOL(md_done_sync);
4614 EXPORT_SYMBOL(md_write_start);
4615 EXPORT_SYMBOL(md_write_end);
4616 EXPORT_SYMBOL(md_register_thread);
4617 EXPORT_SYMBOL(md_unregister_thread);
4618 EXPORT_SYMBOL(md_wakeup_thread);
4619 EXPORT_SYMBOL(md_print_devices);
4620 EXPORT_SYMBOL(md_check_recovery);
4621 MODULE_LICENSE("GPL");
4622 MODULE_ALIAS("md");
4623 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4624