1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 344 struct mddev *mddev) 345 { 346 if (!mddev || !bioset_initialized(&mddev->bio_set)) 347 return bio_alloc(gfp_mask, nr_iovecs); 348 349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 350 } 351 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 352 353 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 354 { 355 if (!mddev || !bioset_initialized(&mddev->sync_set)) 356 return bio_alloc(GFP_NOIO, 1); 357 358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 359 } 360 361 /* 362 * We have a system wide 'event count' that is incremented 363 * on any 'interesting' event, and readers of /proc/mdstat 364 * can use 'poll' or 'select' to find out when the event 365 * count increases. 366 * 367 * Events are: 368 * start array, stop array, error, add device, remove device, 369 * start build, activate spare 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 372 static atomic_t md_event_count; 373 void md_new_event(struct mddev *mddev) 374 { 375 atomic_inc(&md_event_count); 376 wake_up(&md_event_waiters); 377 } 378 EXPORT_SYMBOL_GPL(md_new_event); 379 380 /* 381 * Enables to iterate over all existing md arrays 382 * all_mddevs_lock protects this list. 383 */ 384 static LIST_HEAD(all_mddevs); 385 static DEFINE_SPINLOCK(all_mddevs_lock); 386 387 /* 388 * iterates through all used mddevs in the system. 389 * We take care to grab the all_mddevs_lock whenever navigating 390 * the list, and to always hold a refcount when unlocked. 391 * Any code which breaks out of this loop while own 392 * a reference to the current mddev and must mddev_put it. 393 */ 394 #define for_each_mddev(_mddev,_tmp) \ 395 \ 396 for (({ spin_lock(&all_mddevs_lock); \ 397 _tmp = all_mddevs.next; \ 398 _mddev = NULL;}); \ 399 ({ if (_tmp != &all_mddevs) \ 400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 401 spin_unlock(&all_mddevs_lock); \ 402 if (_mddev) mddev_put(_mddev); \ 403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 404 _tmp != &all_mddevs;}); \ 405 ({ spin_lock(&all_mddevs_lock); \ 406 _tmp = _tmp->next;}) \ 407 ) 408 409 /* Rather than calling directly into the personality make_request function, 410 * IO requests come here first so that we can check if the device is 411 * being suspended pending a reconfiguration. 412 * We hold a refcount over the call to ->make_request. By the time that 413 * call has finished, the bio has been linked into some internal structure 414 * and so is visible to ->quiesce(), so we don't need the refcount any more. 415 */ 416 static bool is_suspended(struct mddev *mddev, struct bio *bio) 417 { 418 if (mddev->suspended) 419 return true; 420 if (bio_data_dir(bio) != WRITE) 421 return false; 422 if (mddev->suspend_lo >= mddev->suspend_hi) 423 return false; 424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 425 return false; 426 if (bio_end_sector(bio) < mddev->suspend_lo) 427 return false; 428 return true; 429 } 430 431 void md_handle_request(struct mddev *mddev, struct bio *bio) 432 { 433 check_suspended: 434 rcu_read_lock(); 435 if (is_suspended(mddev, bio)) { 436 DEFINE_WAIT(__wait); 437 for (;;) { 438 prepare_to_wait(&mddev->sb_wait, &__wait, 439 TASK_UNINTERRUPTIBLE); 440 if (!is_suspended(mddev, bio)) 441 break; 442 rcu_read_unlock(); 443 schedule(); 444 rcu_read_lock(); 445 } 446 finish_wait(&mddev->sb_wait, &__wait); 447 } 448 atomic_inc(&mddev->active_io); 449 rcu_read_unlock(); 450 451 if (!mddev->pers->make_request(mddev, bio)) { 452 atomic_dec(&mddev->active_io); 453 wake_up(&mddev->sb_wait); 454 goto check_suspended; 455 } 456 457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 458 wake_up(&mddev->sb_wait); 459 } 460 EXPORT_SYMBOL(md_handle_request); 461 462 struct md_io { 463 struct mddev *mddev; 464 bio_end_io_t *orig_bi_end_io; 465 void *orig_bi_private; 466 unsigned long start_time; 467 }; 468 469 static void md_end_io(struct bio *bio) 470 { 471 struct md_io *md_io = bio->bi_private; 472 struct mddev *mddev = md_io->mddev; 473 474 disk_end_io_acct(mddev->gendisk, bio_op(bio), md_io->start_time); 475 476 bio->bi_end_io = md_io->orig_bi_end_io; 477 bio->bi_private = md_io->orig_bi_private; 478 479 mempool_free(md_io, &mddev->md_io_pool); 480 481 if (bio->bi_end_io) 482 bio->bi_end_io(bio); 483 } 484 485 static blk_qc_t md_submit_bio(struct bio *bio) 486 { 487 const int rw = bio_data_dir(bio); 488 struct mddev *mddev = bio->bi_disk->private_data; 489 490 if (mddev == NULL || mddev->pers == NULL) { 491 bio_io_error(bio); 492 return BLK_QC_T_NONE; 493 } 494 495 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 496 bio_io_error(bio); 497 return BLK_QC_T_NONE; 498 } 499 500 blk_queue_split(&bio); 501 502 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 503 if (bio_sectors(bio) != 0) 504 bio->bi_status = BLK_STS_IOERR; 505 bio_endio(bio); 506 return BLK_QC_T_NONE; 507 } 508 509 if (bio->bi_end_io != md_end_io) { 510 struct md_io *md_io; 511 512 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 513 md_io->mddev = mddev; 514 md_io->orig_bi_end_io = bio->bi_end_io; 515 md_io->orig_bi_private = bio->bi_private; 516 517 bio->bi_end_io = md_end_io; 518 bio->bi_private = md_io; 519 520 md_io->start_time = disk_start_io_acct(mddev->gendisk, 521 bio_sectors(bio), 522 bio_op(bio)); 523 } 524 525 /* bio could be mergeable after passing to underlayer */ 526 bio->bi_opf &= ~REQ_NOMERGE; 527 528 md_handle_request(mddev, bio); 529 530 return BLK_QC_T_NONE; 531 } 532 533 /* mddev_suspend makes sure no new requests are submitted 534 * to the device, and that any requests that have been submitted 535 * are completely handled. 536 * Once mddev_detach() is called and completes, the module will be 537 * completely unused. 538 */ 539 void mddev_suspend(struct mddev *mddev) 540 { 541 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 542 lockdep_assert_held(&mddev->reconfig_mutex); 543 if (mddev->suspended++) 544 return; 545 synchronize_rcu(); 546 wake_up(&mddev->sb_wait); 547 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 548 smp_mb__after_atomic(); 549 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 550 mddev->pers->quiesce(mddev, 1); 551 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 552 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 553 554 del_timer_sync(&mddev->safemode_timer); 555 /* restrict memory reclaim I/O during raid array is suspend */ 556 mddev->noio_flag = memalloc_noio_save(); 557 } 558 EXPORT_SYMBOL_GPL(mddev_suspend); 559 560 void mddev_resume(struct mddev *mddev) 561 { 562 /* entred the memalloc scope from mddev_suspend() */ 563 memalloc_noio_restore(mddev->noio_flag); 564 lockdep_assert_held(&mddev->reconfig_mutex); 565 if (--mddev->suspended) 566 return; 567 wake_up(&mddev->sb_wait); 568 mddev->pers->quiesce(mddev, 0); 569 570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 571 md_wakeup_thread(mddev->thread); 572 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 573 } 574 EXPORT_SYMBOL_GPL(mddev_resume); 575 576 /* 577 * Generic flush handling for md 578 */ 579 580 static void md_end_flush(struct bio *bio) 581 { 582 struct md_rdev *rdev = bio->bi_private; 583 struct mddev *mddev = rdev->mddev; 584 585 rdev_dec_pending(rdev, mddev); 586 587 if (atomic_dec_and_test(&mddev->flush_pending)) { 588 /* The pre-request flush has finished */ 589 queue_work(md_wq, &mddev->flush_work); 590 } 591 bio_put(bio); 592 } 593 594 static void md_submit_flush_data(struct work_struct *ws); 595 596 static void submit_flushes(struct work_struct *ws) 597 { 598 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 599 struct md_rdev *rdev; 600 601 mddev->start_flush = ktime_get_boottime(); 602 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 603 atomic_set(&mddev->flush_pending, 1); 604 rcu_read_lock(); 605 rdev_for_each_rcu(rdev, mddev) 606 if (rdev->raid_disk >= 0 && 607 !test_bit(Faulty, &rdev->flags)) { 608 /* Take two references, one is dropped 609 * when request finishes, one after 610 * we reclaim rcu_read_lock 611 */ 612 struct bio *bi; 613 atomic_inc(&rdev->nr_pending); 614 atomic_inc(&rdev->nr_pending); 615 rcu_read_unlock(); 616 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 617 bi->bi_end_io = md_end_flush; 618 bi->bi_private = rdev; 619 bio_set_dev(bi, rdev->bdev); 620 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 621 atomic_inc(&mddev->flush_pending); 622 submit_bio(bi); 623 rcu_read_lock(); 624 rdev_dec_pending(rdev, mddev); 625 } 626 rcu_read_unlock(); 627 if (atomic_dec_and_test(&mddev->flush_pending)) 628 queue_work(md_wq, &mddev->flush_work); 629 } 630 631 static void md_submit_flush_data(struct work_struct *ws) 632 { 633 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 634 struct bio *bio = mddev->flush_bio; 635 636 /* 637 * must reset flush_bio before calling into md_handle_request to avoid a 638 * deadlock, because other bios passed md_handle_request suspend check 639 * could wait for this and below md_handle_request could wait for those 640 * bios because of suspend check 641 */ 642 mddev->last_flush = mddev->start_flush; 643 mddev->flush_bio = NULL; 644 wake_up(&mddev->sb_wait); 645 646 if (bio->bi_iter.bi_size == 0) { 647 /* an empty barrier - all done */ 648 bio_endio(bio); 649 } else { 650 bio->bi_opf &= ~REQ_PREFLUSH; 651 md_handle_request(mddev, bio); 652 } 653 } 654 655 /* 656 * Manages consolidation of flushes and submitting any flushes needed for 657 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 658 * being finished in another context. Returns false if the flushing is 659 * complete but still needs the I/O portion of the bio to be processed. 660 */ 661 bool md_flush_request(struct mddev *mddev, struct bio *bio) 662 { 663 ktime_t start = ktime_get_boottime(); 664 spin_lock_irq(&mddev->lock); 665 wait_event_lock_irq(mddev->sb_wait, 666 !mddev->flush_bio || 667 ktime_after(mddev->last_flush, start), 668 mddev->lock); 669 if (!ktime_after(mddev->last_flush, start)) { 670 WARN_ON(mddev->flush_bio); 671 mddev->flush_bio = bio; 672 bio = NULL; 673 } 674 spin_unlock_irq(&mddev->lock); 675 676 if (!bio) { 677 INIT_WORK(&mddev->flush_work, submit_flushes); 678 queue_work(md_wq, &mddev->flush_work); 679 } else { 680 /* flush was performed for some other bio while we waited. */ 681 if (bio->bi_iter.bi_size == 0) 682 /* an empty barrier - all done */ 683 bio_endio(bio); 684 else { 685 bio->bi_opf &= ~REQ_PREFLUSH; 686 return false; 687 } 688 } 689 return true; 690 } 691 EXPORT_SYMBOL(md_flush_request); 692 693 static inline struct mddev *mddev_get(struct mddev *mddev) 694 { 695 atomic_inc(&mddev->active); 696 return mddev; 697 } 698 699 static void mddev_delayed_delete(struct work_struct *ws); 700 701 static void mddev_put(struct mddev *mddev) 702 { 703 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 704 return; 705 if (!mddev->raid_disks && list_empty(&mddev->disks) && 706 mddev->ctime == 0 && !mddev->hold_active) { 707 /* Array is not configured at all, and not held active, 708 * so destroy it */ 709 list_del_init(&mddev->all_mddevs); 710 711 /* 712 * Call queue_work inside the spinlock so that 713 * flush_workqueue() after mddev_find will succeed in waiting 714 * for the work to be done. 715 */ 716 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 717 queue_work(md_misc_wq, &mddev->del_work); 718 } 719 spin_unlock(&all_mddevs_lock); 720 } 721 722 static void md_safemode_timeout(struct timer_list *t); 723 724 void mddev_init(struct mddev *mddev) 725 { 726 kobject_init(&mddev->kobj, &md_ktype); 727 mutex_init(&mddev->open_mutex); 728 mutex_init(&mddev->reconfig_mutex); 729 mutex_init(&mddev->bitmap_info.mutex); 730 INIT_LIST_HEAD(&mddev->disks); 731 INIT_LIST_HEAD(&mddev->all_mddevs); 732 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 733 atomic_set(&mddev->active, 1); 734 atomic_set(&mddev->openers, 0); 735 atomic_set(&mddev->active_io, 0); 736 spin_lock_init(&mddev->lock); 737 atomic_set(&mddev->flush_pending, 0); 738 init_waitqueue_head(&mddev->sb_wait); 739 init_waitqueue_head(&mddev->recovery_wait); 740 mddev->reshape_position = MaxSector; 741 mddev->reshape_backwards = 0; 742 mddev->last_sync_action = "none"; 743 mddev->resync_min = 0; 744 mddev->resync_max = MaxSector; 745 mddev->level = LEVEL_NONE; 746 } 747 EXPORT_SYMBOL_GPL(mddev_init); 748 749 static struct mddev *mddev_find(dev_t unit) 750 { 751 struct mddev *mddev, *new = NULL; 752 753 if (unit && MAJOR(unit) != MD_MAJOR) 754 unit &= ~((1<<MdpMinorShift)-1); 755 756 retry: 757 spin_lock(&all_mddevs_lock); 758 759 if (unit) { 760 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 761 if (mddev->unit == unit) { 762 mddev_get(mddev); 763 spin_unlock(&all_mddevs_lock); 764 kfree(new); 765 return mddev; 766 } 767 768 if (new) { 769 list_add(&new->all_mddevs, &all_mddevs); 770 spin_unlock(&all_mddevs_lock); 771 new->hold_active = UNTIL_IOCTL; 772 return new; 773 } 774 } else if (new) { 775 /* find an unused unit number */ 776 static int next_minor = 512; 777 int start = next_minor; 778 int is_free = 0; 779 int dev = 0; 780 while (!is_free) { 781 dev = MKDEV(MD_MAJOR, next_minor); 782 next_minor++; 783 if (next_minor > MINORMASK) 784 next_minor = 0; 785 if (next_minor == start) { 786 /* Oh dear, all in use. */ 787 spin_unlock(&all_mddevs_lock); 788 kfree(new); 789 return NULL; 790 } 791 792 is_free = 1; 793 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 794 if (mddev->unit == dev) { 795 is_free = 0; 796 break; 797 } 798 } 799 new->unit = dev; 800 new->md_minor = MINOR(dev); 801 new->hold_active = UNTIL_STOP; 802 list_add(&new->all_mddevs, &all_mddevs); 803 spin_unlock(&all_mddevs_lock); 804 return new; 805 } 806 spin_unlock(&all_mddevs_lock); 807 808 new = kzalloc(sizeof(*new), GFP_KERNEL); 809 if (!new) 810 return NULL; 811 812 new->unit = unit; 813 if (MAJOR(unit) == MD_MAJOR) 814 new->md_minor = MINOR(unit); 815 else 816 new->md_minor = MINOR(unit) >> MdpMinorShift; 817 818 mddev_init(new); 819 820 goto retry; 821 } 822 823 static struct attribute_group md_redundancy_group; 824 825 void mddev_unlock(struct mddev *mddev) 826 { 827 if (mddev->to_remove) { 828 /* These cannot be removed under reconfig_mutex as 829 * an access to the files will try to take reconfig_mutex 830 * while holding the file unremovable, which leads to 831 * a deadlock. 832 * So hold set sysfs_active while the remove in happeing, 833 * and anything else which might set ->to_remove or my 834 * otherwise change the sysfs namespace will fail with 835 * -EBUSY if sysfs_active is still set. 836 * We set sysfs_active under reconfig_mutex and elsewhere 837 * test it under the same mutex to ensure its correct value 838 * is seen. 839 */ 840 struct attribute_group *to_remove = mddev->to_remove; 841 mddev->to_remove = NULL; 842 mddev->sysfs_active = 1; 843 mutex_unlock(&mddev->reconfig_mutex); 844 845 if (mddev->kobj.sd) { 846 if (to_remove != &md_redundancy_group) 847 sysfs_remove_group(&mddev->kobj, to_remove); 848 if (mddev->pers == NULL || 849 mddev->pers->sync_request == NULL) { 850 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 851 if (mddev->sysfs_action) 852 sysfs_put(mddev->sysfs_action); 853 if (mddev->sysfs_completed) 854 sysfs_put(mddev->sysfs_completed); 855 if (mddev->sysfs_degraded) 856 sysfs_put(mddev->sysfs_degraded); 857 mddev->sysfs_action = NULL; 858 mddev->sysfs_completed = NULL; 859 mddev->sysfs_degraded = NULL; 860 } 861 } 862 mddev->sysfs_active = 0; 863 } else 864 mutex_unlock(&mddev->reconfig_mutex); 865 866 /* As we've dropped the mutex we need a spinlock to 867 * make sure the thread doesn't disappear 868 */ 869 spin_lock(&pers_lock); 870 md_wakeup_thread(mddev->thread); 871 wake_up(&mddev->sb_wait); 872 spin_unlock(&pers_lock); 873 } 874 EXPORT_SYMBOL_GPL(mddev_unlock); 875 876 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 877 { 878 struct md_rdev *rdev; 879 880 rdev_for_each_rcu(rdev, mddev) 881 if (rdev->desc_nr == nr) 882 return rdev; 883 884 return NULL; 885 } 886 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 887 888 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 889 { 890 struct md_rdev *rdev; 891 892 rdev_for_each(rdev, mddev) 893 if (rdev->bdev->bd_dev == dev) 894 return rdev; 895 896 return NULL; 897 } 898 899 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 900 { 901 struct md_rdev *rdev; 902 903 rdev_for_each_rcu(rdev, mddev) 904 if (rdev->bdev->bd_dev == dev) 905 return rdev; 906 907 return NULL; 908 } 909 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 910 911 static struct md_personality *find_pers(int level, char *clevel) 912 { 913 struct md_personality *pers; 914 list_for_each_entry(pers, &pers_list, list) { 915 if (level != LEVEL_NONE && pers->level == level) 916 return pers; 917 if (strcmp(pers->name, clevel)==0) 918 return pers; 919 } 920 return NULL; 921 } 922 923 /* return the offset of the super block in 512byte sectors */ 924 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 925 { 926 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 927 return MD_NEW_SIZE_SECTORS(num_sectors); 928 } 929 930 static int alloc_disk_sb(struct md_rdev *rdev) 931 { 932 rdev->sb_page = alloc_page(GFP_KERNEL); 933 if (!rdev->sb_page) 934 return -ENOMEM; 935 return 0; 936 } 937 938 void md_rdev_clear(struct md_rdev *rdev) 939 { 940 if (rdev->sb_page) { 941 put_page(rdev->sb_page); 942 rdev->sb_loaded = 0; 943 rdev->sb_page = NULL; 944 rdev->sb_start = 0; 945 rdev->sectors = 0; 946 } 947 if (rdev->bb_page) { 948 put_page(rdev->bb_page); 949 rdev->bb_page = NULL; 950 } 951 badblocks_exit(&rdev->badblocks); 952 } 953 EXPORT_SYMBOL_GPL(md_rdev_clear); 954 955 static void super_written(struct bio *bio) 956 { 957 struct md_rdev *rdev = bio->bi_private; 958 struct mddev *mddev = rdev->mddev; 959 960 if (bio->bi_status) { 961 pr_err("md: %s gets error=%d\n", __func__, 962 blk_status_to_errno(bio->bi_status)); 963 md_error(mddev, rdev); 964 if (!test_bit(Faulty, &rdev->flags) 965 && (bio->bi_opf & MD_FAILFAST)) { 966 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 967 set_bit(LastDev, &rdev->flags); 968 } 969 } else 970 clear_bit(LastDev, &rdev->flags); 971 972 if (atomic_dec_and_test(&mddev->pending_writes)) 973 wake_up(&mddev->sb_wait); 974 rdev_dec_pending(rdev, mddev); 975 bio_put(bio); 976 } 977 978 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 979 sector_t sector, int size, struct page *page) 980 { 981 /* write first size bytes of page to sector of rdev 982 * Increment mddev->pending_writes before returning 983 * and decrement it on completion, waking up sb_wait 984 * if zero is reached. 985 * If an error occurred, call md_error 986 */ 987 struct bio *bio; 988 int ff = 0; 989 990 if (!page) 991 return; 992 993 if (test_bit(Faulty, &rdev->flags)) 994 return; 995 996 bio = md_bio_alloc_sync(mddev); 997 998 atomic_inc(&rdev->nr_pending); 999 1000 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 1001 bio->bi_iter.bi_sector = sector; 1002 bio_add_page(bio, page, size, 0); 1003 bio->bi_private = rdev; 1004 bio->bi_end_io = super_written; 1005 1006 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1007 test_bit(FailFast, &rdev->flags) && 1008 !test_bit(LastDev, &rdev->flags)) 1009 ff = MD_FAILFAST; 1010 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1011 1012 atomic_inc(&mddev->pending_writes); 1013 submit_bio(bio); 1014 } 1015 1016 int md_super_wait(struct mddev *mddev) 1017 { 1018 /* wait for all superblock writes that were scheduled to complete */ 1019 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1020 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1021 return -EAGAIN; 1022 return 0; 1023 } 1024 1025 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1026 struct page *page, int op, int op_flags, bool metadata_op) 1027 { 1028 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1029 int ret; 1030 1031 if (metadata_op && rdev->meta_bdev) 1032 bio_set_dev(bio, rdev->meta_bdev); 1033 else 1034 bio_set_dev(bio, rdev->bdev); 1035 bio_set_op_attrs(bio, op, op_flags); 1036 if (metadata_op) 1037 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1038 else if (rdev->mddev->reshape_position != MaxSector && 1039 (rdev->mddev->reshape_backwards == 1040 (sector >= rdev->mddev->reshape_position))) 1041 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1042 else 1043 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1044 bio_add_page(bio, page, size, 0); 1045 1046 submit_bio_wait(bio); 1047 1048 ret = !bio->bi_status; 1049 bio_put(bio); 1050 return ret; 1051 } 1052 EXPORT_SYMBOL_GPL(sync_page_io); 1053 1054 static int read_disk_sb(struct md_rdev *rdev, int size) 1055 { 1056 char b[BDEVNAME_SIZE]; 1057 1058 if (rdev->sb_loaded) 1059 return 0; 1060 1061 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1062 goto fail; 1063 rdev->sb_loaded = 1; 1064 return 0; 1065 1066 fail: 1067 pr_err("md: disabled device %s, could not read superblock.\n", 1068 bdevname(rdev->bdev,b)); 1069 return -EINVAL; 1070 } 1071 1072 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1073 { 1074 return sb1->set_uuid0 == sb2->set_uuid0 && 1075 sb1->set_uuid1 == sb2->set_uuid1 && 1076 sb1->set_uuid2 == sb2->set_uuid2 && 1077 sb1->set_uuid3 == sb2->set_uuid3; 1078 } 1079 1080 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1081 { 1082 int ret; 1083 mdp_super_t *tmp1, *tmp2; 1084 1085 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1086 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1087 1088 if (!tmp1 || !tmp2) { 1089 ret = 0; 1090 goto abort; 1091 } 1092 1093 *tmp1 = *sb1; 1094 *tmp2 = *sb2; 1095 1096 /* 1097 * nr_disks is not constant 1098 */ 1099 tmp1->nr_disks = 0; 1100 tmp2->nr_disks = 0; 1101 1102 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1103 abort: 1104 kfree(tmp1); 1105 kfree(tmp2); 1106 return ret; 1107 } 1108 1109 static u32 md_csum_fold(u32 csum) 1110 { 1111 csum = (csum & 0xffff) + (csum >> 16); 1112 return (csum & 0xffff) + (csum >> 16); 1113 } 1114 1115 static unsigned int calc_sb_csum(mdp_super_t *sb) 1116 { 1117 u64 newcsum = 0; 1118 u32 *sb32 = (u32*)sb; 1119 int i; 1120 unsigned int disk_csum, csum; 1121 1122 disk_csum = sb->sb_csum; 1123 sb->sb_csum = 0; 1124 1125 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1126 newcsum += sb32[i]; 1127 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1128 1129 #ifdef CONFIG_ALPHA 1130 /* This used to use csum_partial, which was wrong for several 1131 * reasons including that different results are returned on 1132 * different architectures. It isn't critical that we get exactly 1133 * the same return value as before (we always csum_fold before 1134 * testing, and that removes any differences). However as we 1135 * know that csum_partial always returned a 16bit value on 1136 * alphas, do a fold to maximise conformity to previous behaviour. 1137 */ 1138 sb->sb_csum = md_csum_fold(disk_csum); 1139 #else 1140 sb->sb_csum = disk_csum; 1141 #endif 1142 return csum; 1143 } 1144 1145 /* 1146 * Handle superblock details. 1147 * We want to be able to handle multiple superblock formats 1148 * so we have a common interface to them all, and an array of 1149 * different handlers. 1150 * We rely on user-space to write the initial superblock, and support 1151 * reading and updating of superblocks. 1152 * Interface methods are: 1153 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1154 * loads and validates a superblock on dev. 1155 * if refdev != NULL, compare superblocks on both devices 1156 * Return: 1157 * 0 - dev has a superblock that is compatible with refdev 1158 * 1 - dev has a superblock that is compatible and newer than refdev 1159 * so dev should be used as the refdev in future 1160 * -EINVAL superblock incompatible or invalid 1161 * -othererror e.g. -EIO 1162 * 1163 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1164 * Verify that dev is acceptable into mddev. 1165 * The first time, mddev->raid_disks will be 0, and data from 1166 * dev should be merged in. Subsequent calls check that dev 1167 * is new enough. Return 0 or -EINVAL 1168 * 1169 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1170 * Update the superblock for rdev with data in mddev 1171 * This does not write to disc. 1172 * 1173 */ 1174 1175 struct super_type { 1176 char *name; 1177 struct module *owner; 1178 int (*load_super)(struct md_rdev *rdev, 1179 struct md_rdev *refdev, 1180 int minor_version); 1181 int (*validate_super)(struct mddev *mddev, 1182 struct md_rdev *rdev); 1183 void (*sync_super)(struct mddev *mddev, 1184 struct md_rdev *rdev); 1185 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1186 sector_t num_sectors); 1187 int (*allow_new_offset)(struct md_rdev *rdev, 1188 unsigned long long new_offset); 1189 }; 1190 1191 /* 1192 * Check that the given mddev has no bitmap. 1193 * 1194 * This function is called from the run method of all personalities that do not 1195 * support bitmaps. It prints an error message and returns non-zero if mddev 1196 * has a bitmap. Otherwise, it returns 0. 1197 * 1198 */ 1199 int md_check_no_bitmap(struct mddev *mddev) 1200 { 1201 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1202 return 0; 1203 pr_warn("%s: bitmaps are not supported for %s\n", 1204 mdname(mddev), mddev->pers->name); 1205 return 1; 1206 } 1207 EXPORT_SYMBOL(md_check_no_bitmap); 1208 1209 /* 1210 * load_super for 0.90.0 1211 */ 1212 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1213 { 1214 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1215 mdp_super_t *sb; 1216 int ret; 1217 bool spare_disk = true; 1218 1219 /* 1220 * Calculate the position of the superblock (512byte sectors), 1221 * it's at the end of the disk. 1222 * 1223 * It also happens to be a multiple of 4Kb. 1224 */ 1225 rdev->sb_start = calc_dev_sboffset(rdev); 1226 1227 ret = read_disk_sb(rdev, MD_SB_BYTES); 1228 if (ret) 1229 return ret; 1230 1231 ret = -EINVAL; 1232 1233 bdevname(rdev->bdev, b); 1234 sb = page_address(rdev->sb_page); 1235 1236 if (sb->md_magic != MD_SB_MAGIC) { 1237 pr_warn("md: invalid raid superblock magic on %s\n", b); 1238 goto abort; 1239 } 1240 1241 if (sb->major_version != 0 || 1242 sb->minor_version < 90 || 1243 sb->minor_version > 91) { 1244 pr_warn("Bad version number %d.%d on %s\n", 1245 sb->major_version, sb->minor_version, b); 1246 goto abort; 1247 } 1248 1249 if (sb->raid_disks <= 0) 1250 goto abort; 1251 1252 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1253 pr_warn("md: invalid superblock checksum on %s\n", b); 1254 goto abort; 1255 } 1256 1257 rdev->preferred_minor = sb->md_minor; 1258 rdev->data_offset = 0; 1259 rdev->new_data_offset = 0; 1260 rdev->sb_size = MD_SB_BYTES; 1261 rdev->badblocks.shift = -1; 1262 1263 if (sb->level == LEVEL_MULTIPATH) 1264 rdev->desc_nr = -1; 1265 else 1266 rdev->desc_nr = sb->this_disk.number; 1267 1268 /* not spare disk, or LEVEL_MULTIPATH */ 1269 if (sb->level == LEVEL_MULTIPATH || 1270 (rdev->desc_nr >= 0 && 1271 rdev->desc_nr < MD_SB_DISKS && 1272 sb->disks[rdev->desc_nr].state & 1273 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1274 spare_disk = false; 1275 1276 if (!refdev) { 1277 if (!spare_disk) 1278 ret = 1; 1279 else 1280 ret = 0; 1281 } else { 1282 __u64 ev1, ev2; 1283 mdp_super_t *refsb = page_address(refdev->sb_page); 1284 if (!md_uuid_equal(refsb, sb)) { 1285 pr_warn("md: %s has different UUID to %s\n", 1286 b, bdevname(refdev->bdev,b2)); 1287 goto abort; 1288 } 1289 if (!md_sb_equal(refsb, sb)) { 1290 pr_warn("md: %s has same UUID but different superblock to %s\n", 1291 b, bdevname(refdev->bdev, b2)); 1292 goto abort; 1293 } 1294 ev1 = md_event(sb); 1295 ev2 = md_event(refsb); 1296 1297 if (!spare_disk && ev1 > ev2) 1298 ret = 1; 1299 else 1300 ret = 0; 1301 } 1302 rdev->sectors = rdev->sb_start; 1303 /* Limit to 4TB as metadata cannot record more than that. 1304 * (not needed for Linear and RAID0 as metadata doesn't 1305 * record this size) 1306 */ 1307 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1308 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1309 1310 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1311 /* "this cannot possibly happen" ... */ 1312 ret = -EINVAL; 1313 1314 abort: 1315 return ret; 1316 } 1317 1318 /* 1319 * validate_super for 0.90.0 1320 */ 1321 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1322 { 1323 mdp_disk_t *desc; 1324 mdp_super_t *sb = page_address(rdev->sb_page); 1325 __u64 ev1 = md_event(sb); 1326 1327 rdev->raid_disk = -1; 1328 clear_bit(Faulty, &rdev->flags); 1329 clear_bit(In_sync, &rdev->flags); 1330 clear_bit(Bitmap_sync, &rdev->flags); 1331 clear_bit(WriteMostly, &rdev->flags); 1332 1333 if (mddev->raid_disks == 0) { 1334 mddev->major_version = 0; 1335 mddev->minor_version = sb->minor_version; 1336 mddev->patch_version = sb->patch_version; 1337 mddev->external = 0; 1338 mddev->chunk_sectors = sb->chunk_size >> 9; 1339 mddev->ctime = sb->ctime; 1340 mddev->utime = sb->utime; 1341 mddev->level = sb->level; 1342 mddev->clevel[0] = 0; 1343 mddev->layout = sb->layout; 1344 mddev->raid_disks = sb->raid_disks; 1345 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1346 mddev->events = ev1; 1347 mddev->bitmap_info.offset = 0; 1348 mddev->bitmap_info.space = 0; 1349 /* bitmap can use 60 K after the 4K superblocks */ 1350 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1351 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1352 mddev->reshape_backwards = 0; 1353 1354 if (mddev->minor_version >= 91) { 1355 mddev->reshape_position = sb->reshape_position; 1356 mddev->delta_disks = sb->delta_disks; 1357 mddev->new_level = sb->new_level; 1358 mddev->new_layout = sb->new_layout; 1359 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1360 if (mddev->delta_disks < 0) 1361 mddev->reshape_backwards = 1; 1362 } else { 1363 mddev->reshape_position = MaxSector; 1364 mddev->delta_disks = 0; 1365 mddev->new_level = mddev->level; 1366 mddev->new_layout = mddev->layout; 1367 mddev->new_chunk_sectors = mddev->chunk_sectors; 1368 } 1369 if (mddev->level == 0) 1370 mddev->layout = -1; 1371 1372 if (sb->state & (1<<MD_SB_CLEAN)) 1373 mddev->recovery_cp = MaxSector; 1374 else { 1375 if (sb->events_hi == sb->cp_events_hi && 1376 sb->events_lo == sb->cp_events_lo) { 1377 mddev->recovery_cp = sb->recovery_cp; 1378 } else 1379 mddev->recovery_cp = 0; 1380 } 1381 1382 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1383 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1384 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1385 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1386 1387 mddev->max_disks = MD_SB_DISKS; 1388 1389 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1390 mddev->bitmap_info.file == NULL) { 1391 mddev->bitmap_info.offset = 1392 mddev->bitmap_info.default_offset; 1393 mddev->bitmap_info.space = 1394 mddev->bitmap_info.default_space; 1395 } 1396 1397 } else if (mddev->pers == NULL) { 1398 /* Insist on good event counter while assembling, except 1399 * for spares (which don't need an event count) */ 1400 ++ev1; 1401 if (sb->disks[rdev->desc_nr].state & ( 1402 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1403 if (ev1 < mddev->events) 1404 return -EINVAL; 1405 } else if (mddev->bitmap) { 1406 /* if adding to array with a bitmap, then we can accept an 1407 * older device ... but not too old. 1408 */ 1409 if (ev1 < mddev->bitmap->events_cleared) 1410 return 0; 1411 if (ev1 < mddev->events) 1412 set_bit(Bitmap_sync, &rdev->flags); 1413 } else { 1414 if (ev1 < mddev->events) 1415 /* just a hot-add of a new device, leave raid_disk at -1 */ 1416 return 0; 1417 } 1418 1419 if (mddev->level != LEVEL_MULTIPATH) { 1420 desc = sb->disks + rdev->desc_nr; 1421 1422 if (desc->state & (1<<MD_DISK_FAULTY)) 1423 set_bit(Faulty, &rdev->flags); 1424 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1425 desc->raid_disk < mddev->raid_disks */) { 1426 set_bit(In_sync, &rdev->flags); 1427 rdev->raid_disk = desc->raid_disk; 1428 rdev->saved_raid_disk = desc->raid_disk; 1429 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1430 /* active but not in sync implies recovery up to 1431 * reshape position. We don't know exactly where 1432 * that is, so set to zero for now */ 1433 if (mddev->minor_version >= 91) { 1434 rdev->recovery_offset = 0; 1435 rdev->raid_disk = desc->raid_disk; 1436 } 1437 } 1438 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1439 set_bit(WriteMostly, &rdev->flags); 1440 if (desc->state & (1<<MD_DISK_FAILFAST)) 1441 set_bit(FailFast, &rdev->flags); 1442 } else /* MULTIPATH are always insync */ 1443 set_bit(In_sync, &rdev->flags); 1444 return 0; 1445 } 1446 1447 /* 1448 * sync_super for 0.90.0 1449 */ 1450 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1451 { 1452 mdp_super_t *sb; 1453 struct md_rdev *rdev2; 1454 int next_spare = mddev->raid_disks; 1455 1456 /* make rdev->sb match mddev data.. 1457 * 1458 * 1/ zero out disks 1459 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1460 * 3/ any empty disks < next_spare become removed 1461 * 1462 * disks[0] gets initialised to REMOVED because 1463 * we cannot be sure from other fields if it has 1464 * been initialised or not. 1465 */ 1466 int i; 1467 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1468 1469 rdev->sb_size = MD_SB_BYTES; 1470 1471 sb = page_address(rdev->sb_page); 1472 1473 memset(sb, 0, sizeof(*sb)); 1474 1475 sb->md_magic = MD_SB_MAGIC; 1476 sb->major_version = mddev->major_version; 1477 sb->patch_version = mddev->patch_version; 1478 sb->gvalid_words = 0; /* ignored */ 1479 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1480 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1481 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1482 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1483 1484 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1485 sb->level = mddev->level; 1486 sb->size = mddev->dev_sectors / 2; 1487 sb->raid_disks = mddev->raid_disks; 1488 sb->md_minor = mddev->md_minor; 1489 sb->not_persistent = 0; 1490 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1491 sb->state = 0; 1492 sb->events_hi = (mddev->events>>32); 1493 sb->events_lo = (u32)mddev->events; 1494 1495 if (mddev->reshape_position == MaxSector) 1496 sb->minor_version = 90; 1497 else { 1498 sb->minor_version = 91; 1499 sb->reshape_position = mddev->reshape_position; 1500 sb->new_level = mddev->new_level; 1501 sb->delta_disks = mddev->delta_disks; 1502 sb->new_layout = mddev->new_layout; 1503 sb->new_chunk = mddev->new_chunk_sectors << 9; 1504 } 1505 mddev->minor_version = sb->minor_version; 1506 if (mddev->in_sync) 1507 { 1508 sb->recovery_cp = mddev->recovery_cp; 1509 sb->cp_events_hi = (mddev->events>>32); 1510 sb->cp_events_lo = (u32)mddev->events; 1511 if (mddev->recovery_cp == MaxSector) 1512 sb->state = (1<< MD_SB_CLEAN); 1513 } else 1514 sb->recovery_cp = 0; 1515 1516 sb->layout = mddev->layout; 1517 sb->chunk_size = mddev->chunk_sectors << 9; 1518 1519 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1520 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1521 1522 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1523 rdev_for_each(rdev2, mddev) { 1524 mdp_disk_t *d; 1525 int desc_nr; 1526 int is_active = test_bit(In_sync, &rdev2->flags); 1527 1528 if (rdev2->raid_disk >= 0 && 1529 sb->minor_version >= 91) 1530 /* we have nowhere to store the recovery_offset, 1531 * but if it is not below the reshape_position, 1532 * we can piggy-back on that. 1533 */ 1534 is_active = 1; 1535 if (rdev2->raid_disk < 0 || 1536 test_bit(Faulty, &rdev2->flags)) 1537 is_active = 0; 1538 if (is_active) 1539 desc_nr = rdev2->raid_disk; 1540 else 1541 desc_nr = next_spare++; 1542 rdev2->desc_nr = desc_nr; 1543 d = &sb->disks[rdev2->desc_nr]; 1544 nr_disks++; 1545 d->number = rdev2->desc_nr; 1546 d->major = MAJOR(rdev2->bdev->bd_dev); 1547 d->minor = MINOR(rdev2->bdev->bd_dev); 1548 if (is_active) 1549 d->raid_disk = rdev2->raid_disk; 1550 else 1551 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1552 if (test_bit(Faulty, &rdev2->flags)) 1553 d->state = (1<<MD_DISK_FAULTY); 1554 else if (is_active) { 1555 d->state = (1<<MD_DISK_ACTIVE); 1556 if (test_bit(In_sync, &rdev2->flags)) 1557 d->state |= (1<<MD_DISK_SYNC); 1558 active++; 1559 working++; 1560 } else { 1561 d->state = 0; 1562 spare++; 1563 working++; 1564 } 1565 if (test_bit(WriteMostly, &rdev2->flags)) 1566 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1567 if (test_bit(FailFast, &rdev2->flags)) 1568 d->state |= (1<<MD_DISK_FAILFAST); 1569 } 1570 /* now set the "removed" and "faulty" bits on any missing devices */ 1571 for (i=0 ; i < mddev->raid_disks ; i++) { 1572 mdp_disk_t *d = &sb->disks[i]; 1573 if (d->state == 0 && d->number == 0) { 1574 d->number = i; 1575 d->raid_disk = i; 1576 d->state = (1<<MD_DISK_REMOVED); 1577 d->state |= (1<<MD_DISK_FAULTY); 1578 failed++; 1579 } 1580 } 1581 sb->nr_disks = nr_disks; 1582 sb->active_disks = active; 1583 sb->working_disks = working; 1584 sb->failed_disks = failed; 1585 sb->spare_disks = spare; 1586 1587 sb->this_disk = sb->disks[rdev->desc_nr]; 1588 sb->sb_csum = calc_sb_csum(sb); 1589 } 1590 1591 /* 1592 * rdev_size_change for 0.90.0 1593 */ 1594 static unsigned long long 1595 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1596 { 1597 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1598 return 0; /* component must fit device */ 1599 if (rdev->mddev->bitmap_info.offset) 1600 return 0; /* can't move bitmap */ 1601 rdev->sb_start = calc_dev_sboffset(rdev); 1602 if (!num_sectors || num_sectors > rdev->sb_start) 1603 num_sectors = rdev->sb_start; 1604 /* Limit to 4TB as metadata cannot record more than that. 1605 * 4TB == 2^32 KB, or 2*2^32 sectors. 1606 */ 1607 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1608 num_sectors = (sector_t)(2ULL << 32) - 2; 1609 do { 1610 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1611 rdev->sb_page); 1612 } while (md_super_wait(rdev->mddev) < 0); 1613 return num_sectors; 1614 } 1615 1616 static int 1617 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1618 { 1619 /* non-zero offset changes not possible with v0.90 */ 1620 return new_offset == 0; 1621 } 1622 1623 /* 1624 * version 1 superblock 1625 */ 1626 1627 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1628 { 1629 __le32 disk_csum; 1630 u32 csum; 1631 unsigned long long newcsum; 1632 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1633 __le32 *isuper = (__le32*)sb; 1634 1635 disk_csum = sb->sb_csum; 1636 sb->sb_csum = 0; 1637 newcsum = 0; 1638 for (; size >= 4; size -= 4) 1639 newcsum += le32_to_cpu(*isuper++); 1640 1641 if (size == 2) 1642 newcsum += le16_to_cpu(*(__le16*) isuper); 1643 1644 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1645 sb->sb_csum = disk_csum; 1646 return cpu_to_le32(csum); 1647 } 1648 1649 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1650 { 1651 struct mdp_superblock_1 *sb; 1652 int ret; 1653 sector_t sb_start; 1654 sector_t sectors; 1655 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1656 int bmask; 1657 bool spare_disk = true; 1658 1659 /* 1660 * Calculate the position of the superblock in 512byte sectors. 1661 * It is always aligned to a 4K boundary and 1662 * depeding on minor_version, it can be: 1663 * 0: At least 8K, but less than 12K, from end of device 1664 * 1: At start of device 1665 * 2: 4K from start of device. 1666 */ 1667 switch(minor_version) { 1668 case 0: 1669 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1670 sb_start -= 8*2; 1671 sb_start &= ~(sector_t)(4*2-1); 1672 break; 1673 case 1: 1674 sb_start = 0; 1675 break; 1676 case 2: 1677 sb_start = 8; 1678 break; 1679 default: 1680 return -EINVAL; 1681 } 1682 rdev->sb_start = sb_start; 1683 1684 /* superblock is rarely larger than 1K, but it can be larger, 1685 * and it is safe to read 4k, so we do that 1686 */ 1687 ret = read_disk_sb(rdev, 4096); 1688 if (ret) return ret; 1689 1690 sb = page_address(rdev->sb_page); 1691 1692 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1693 sb->major_version != cpu_to_le32(1) || 1694 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1695 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1696 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1697 return -EINVAL; 1698 1699 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1700 pr_warn("md: invalid superblock checksum on %s\n", 1701 bdevname(rdev->bdev,b)); 1702 return -EINVAL; 1703 } 1704 if (le64_to_cpu(sb->data_size) < 10) { 1705 pr_warn("md: data_size too small on %s\n", 1706 bdevname(rdev->bdev,b)); 1707 return -EINVAL; 1708 } 1709 if (sb->pad0 || 1710 sb->pad3[0] || 1711 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1712 /* Some padding is non-zero, might be a new feature */ 1713 return -EINVAL; 1714 1715 rdev->preferred_minor = 0xffff; 1716 rdev->data_offset = le64_to_cpu(sb->data_offset); 1717 rdev->new_data_offset = rdev->data_offset; 1718 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1719 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1720 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1721 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1722 1723 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1724 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1725 if (rdev->sb_size & bmask) 1726 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1727 1728 if (minor_version 1729 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1730 return -EINVAL; 1731 if (minor_version 1732 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1733 return -EINVAL; 1734 1735 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1736 rdev->desc_nr = -1; 1737 else 1738 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1739 1740 if (!rdev->bb_page) { 1741 rdev->bb_page = alloc_page(GFP_KERNEL); 1742 if (!rdev->bb_page) 1743 return -ENOMEM; 1744 } 1745 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1746 rdev->badblocks.count == 0) { 1747 /* need to load the bad block list. 1748 * Currently we limit it to one page. 1749 */ 1750 s32 offset; 1751 sector_t bb_sector; 1752 __le64 *bbp; 1753 int i; 1754 int sectors = le16_to_cpu(sb->bblog_size); 1755 if (sectors > (PAGE_SIZE / 512)) 1756 return -EINVAL; 1757 offset = le32_to_cpu(sb->bblog_offset); 1758 if (offset == 0) 1759 return -EINVAL; 1760 bb_sector = (long long)offset; 1761 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1762 rdev->bb_page, REQ_OP_READ, 0, true)) 1763 return -EIO; 1764 bbp = (__le64 *)page_address(rdev->bb_page); 1765 rdev->badblocks.shift = sb->bblog_shift; 1766 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1767 u64 bb = le64_to_cpu(*bbp); 1768 int count = bb & (0x3ff); 1769 u64 sector = bb >> 10; 1770 sector <<= sb->bblog_shift; 1771 count <<= sb->bblog_shift; 1772 if (bb + 1 == 0) 1773 break; 1774 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1775 return -EINVAL; 1776 } 1777 } else if (sb->bblog_offset != 0) 1778 rdev->badblocks.shift = 0; 1779 1780 if ((le32_to_cpu(sb->feature_map) & 1781 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1782 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1783 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1784 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1785 } 1786 1787 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1788 sb->level != 0) 1789 return -EINVAL; 1790 1791 /* not spare disk, or LEVEL_MULTIPATH */ 1792 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1793 (rdev->desc_nr >= 0 && 1794 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1795 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1796 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1797 spare_disk = false; 1798 1799 if (!refdev) { 1800 if (!spare_disk) 1801 ret = 1; 1802 else 1803 ret = 0; 1804 } else { 1805 __u64 ev1, ev2; 1806 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1807 1808 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1809 sb->level != refsb->level || 1810 sb->layout != refsb->layout || 1811 sb->chunksize != refsb->chunksize) { 1812 pr_warn("md: %s has strangely different superblock to %s\n", 1813 bdevname(rdev->bdev,b), 1814 bdevname(refdev->bdev,b2)); 1815 return -EINVAL; 1816 } 1817 ev1 = le64_to_cpu(sb->events); 1818 ev2 = le64_to_cpu(refsb->events); 1819 1820 if (!spare_disk && ev1 > ev2) 1821 ret = 1; 1822 else 1823 ret = 0; 1824 } 1825 if (minor_version) { 1826 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1827 sectors -= rdev->data_offset; 1828 } else 1829 sectors = rdev->sb_start; 1830 if (sectors < le64_to_cpu(sb->data_size)) 1831 return -EINVAL; 1832 rdev->sectors = le64_to_cpu(sb->data_size); 1833 return ret; 1834 } 1835 1836 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1837 { 1838 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1839 __u64 ev1 = le64_to_cpu(sb->events); 1840 1841 rdev->raid_disk = -1; 1842 clear_bit(Faulty, &rdev->flags); 1843 clear_bit(In_sync, &rdev->flags); 1844 clear_bit(Bitmap_sync, &rdev->flags); 1845 clear_bit(WriteMostly, &rdev->flags); 1846 1847 if (mddev->raid_disks == 0) { 1848 mddev->major_version = 1; 1849 mddev->patch_version = 0; 1850 mddev->external = 0; 1851 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1852 mddev->ctime = le64_to_cpu(sb->ctime); 1853 mddev->utime = le64_to_cpu(sb->utime); 1854 mddev->level = le32_to_cpu(sb->level); 1855 mddev->clevel[0] = 0; 1856 mddev->layout = le32_to_cpu(sb->layout); 1857 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1858 mddev->dev_sectors = le64_to_cpu(sb->size); 1859 mddev->events = ev1; 1860 mddev->bitmap_info.offset = 0; 1861 mddev->bitmap_info.space = 0; 1862 /* Default location for bitmap is 1K after superblock 1863 * using 3K - total of 4K 1864 */ 1865 mddev->bitmap_info.default_offset = 1024 >> 9; 1866 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1867 mddev->reshape_backwards = 0; 1868 1869 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1870 memcpy(mddev->uuid, sb->set_uuid, 16); 1871 1872 mddev->max_disks = (4096-256)/2; 1873 1874 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1875 mddev->bitmap_info.file == NULL) { 1876 mddev->bitmap_info.offset = 1877 (__s32)le32_to_cpu(sb->bitmap_offset); 1878 /* Metadata doesn't record how much space is available. 1879 * For 1.0, we assume we can use up to the superblock 1880 * if before, else to 4K beyond superblock. 1881 * For others, assume no change is possible. 1882 */ 1883 if (mddev->minor_version > 0) 1884 mddev->bitmap_info.space = 0; 1885 else if (mddev->bitmap_info.offset > 0) 1886 mddev->bitmap_info.space = 1887 8 - mddev->bitmap_info.offset; 1888 else 1889 mddev->bitmap_info.space = 1890 -mddev->bitmap_info.offset; 1891 } 1892 1893 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1894 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1895 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1896 mddev->new_level = le32_to_cpu(sb->new_level); 1897 mddev->new_layout = le32_to_cpu(sb->new_layout); 1898 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1899 if (mddev->delta_disks < 0 || 1900 (mddev->delta_disks == 0 && 1901 (le32_to_cpu(sb->feature_map) 1902 & MD_FEATURE_RESHAPE_BACKWARDS))) 1903 mddev->reshape_backwards = 1; 1904 } else { 1905 mddev->reshape_position = MaxSector; 1906 mddev->delta_disks = 0; 1907 mddev->new_level = mddev->level; 1908 mddev->new_layout = mddev->layout; 1909 mddev->new_chunk_sectors = mddev->chunk_sectors; 1910 } 1911 1912 if (mddev->level == 0 && 1913 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1914 mddev->layout = -1; 1915 1916 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1917 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1918 1919 if (le32_to_cpu(sb->feature_map) & 1920 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1921 if (le32_to_cpu(sb->feature_map) & 1922 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1923 return -EINVAL; 1924 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1925 (le32_to_cpu(sb->feature_map) & 1926 MD_FEATURE_MULTIPLE_PPLS)) 1927 return -EINVAL; 1928 set_bit(MD_HAS_PPL, &mddev->flags); 1929 } 1930 } else if (mddev->pers == NULL) { 1931 /* Insist of good event counter while assembling, except for 1932 * spares (which don't need an event count) */ 1933 ++ev1; 1934 if (rdev->desc_nr >= 0 && 1935 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1936 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1937 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1938 if (ev1 < mddev->events) 1939 return -EINVAL; 1940 } else if (mddev->bitmap) { 1941 /* If adding to array with a bitmap, then we can accept an 1942 * older device, but not too old. 1943 */ 1944 if (ev1 < mddev->bitmap->events_cleared) 1945 return 0; 1946 if (ev1 < mddev->events) 1947 set_bit(Bitmap_sync, &rdev->flags); 1948 } else { 1949 if (ev1 < mddev->events) 1950 /* just a hot-add of a new device, leave raid_disk at -1 */ 1951 return 0; 1952 } 1953 if (mddev->level != LEVEL_MULTIPATH) { 1954 int role; 1955 if (rdev->desc_nr < 0 || 1956 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1957 role = MD_DISK_ROLE_SPARE; 1958 rdev->desc_nr = -1; 1959 } else 1960 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1961 switch(role) { 1962 case MD_DISK_ROLE_SPARE: /* spare */ 1963 break; 1964 case MD_DISK_ROLE_FAULTY: /* faulty */ 1965 set_bit(Faulty, &rdev->flags); 1966 break; 1967 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1968 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1969 /* journal device without journal feature */ 1970 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1971 return -EINVAL; 1972 } 1973 set_bit(Journal, &rdev->flags); 1974 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1975 rdev->raid_disk = 0; 1976 break; 1977 default: 1978 rdev->saved_raid_disk = role; 1979 if ((le32_to_cpu(sb->feature_map) & 1980 MD_FEATURE_RECOVERY_OFFSET)) { 1981 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1982 if (!(le32_to_cpu(sb->feature_map) & 1983 MD_FEATURE_RECOVERY_BITMAP)) 1984 rdev->saved_raid_disk = -1; 1985 } else { 1986 /* 1987 * If the array is FROZEN, then the device can't 1988 * be in_sync with rest of array. 1989 */ 1990 if (!test_bit(MD_RECOVERY_FROZEN, 1991 &mddev->recovery)) 1992 set_bit(In_sync, &rdev->flags); 1993 } 1994 rdev->raid_disk = role; 1995 break; 1996 } 1997 if (sb->devflags & WriteMostly1) 1998 set_bit(WriteMostly, &rdev->flags); 1999 if (sb->devflags & FailFast1) 2000 set_bit(FailFast, &rdev->flags); 2001 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2002 set_bit(Replacement, &rdev->flags); 2003 } else /* MULTIPATH are always insync */ 2004 set_bit(In_sync, &rdev->flags); 2005 2006 return 0; 2007 } 2008 2009 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2010 { 2011 struct mdp_superblock_1 *sb; 2012 struct md_rdev *rdev2; 2013 int max_dev, i; 2014 /* make rdev->sb match mddev and rdev data. */ 2015 2016 sb = page_address(rdev->sb_page); 2017 2018 sb->feature_map = 0; 2019 sb->pad0 = 0; 2020 sb->recovery_offset = cpu_to_le64(0); 2021 memset(sb->pad3, 0, sizeof(sb->pad3)); 2022 2023 sb->utime = cpu_to_le64((__u64)mddev->utime); 2024 sb->events = cpu_to_le64(mddev->events); 2025 if (mddev->in_sync) 2026 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2027 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2028 sb->resync_offset = cpu_to_le64(MaxSector); 2029 else 2030 sb->resync_offset = cpu_to_le64(0); 2031 2032 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2033 2034 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2035 sb->size = cpu_to_le64(mddev->dev_sectors); 2036 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2037 sb->level = cpu_to_le32(mddev->level); 2038 sb->layout = cpu_to_le32(mddev->layout); 2039 if (test_bit(FailFast, &rdev->flags)) 2040 sb->devflags |= FailFast1; 2041 else 2042 sb->devflags &= ~FailFast1; 2043 2044 if (test_bit(WriteMostly, &rdev->flags)) 2045 sb->devflags |= WriteMostly1; 2046 else 2047 sb->devflags &= ~WriteMostly1; 2048 sb->data_offset = cpu_to_le64(rdev->data_offset); 2049 sb->data_size = cpu_to_le64(rdev->sectors); 2050 2051 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2052 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2053 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2054 } 2055 2056 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2057 !test_bit(In_sync, &rdev->flags)) { 2058 sb->feature_map |= 2059 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2060 sb->recovery_offset = 2061 cpu_to_le64(rdev->recovery_offset); 2062 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2063 sb->feature_map |= 2064 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2065 } 2066 /* Note: recovery_offset and journal_tail share space */ 2067 if (test_bit(Journal, &rdev->flags)) 2068 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2069 if (test_bit(Replacement, &rdev->flags)) 2070 sb->feature_map |= 2071 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2072 2073 if (mddev->reshape_position != MaxSector) { 2074 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2075 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2076 sb->new_layout = cpu_to_le32(mddev->new_layout); 2077 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2078 sb->new_level = cpu_to_le32(mddev->new_level); 2079 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2080 if (mddev->delta_disks == 0 && 2081 mddev->reshape_backwards) 2082 sb->feature_map 2083 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2084 if (rdev->new_data_offset != rdev->data_offset) { 2085 sb->feature_map 2086 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2087 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2088 - rdev->data_offset)); 2089 } 2090 } 2091 2092 if (mddev_is_clustered(mddev)) 2093 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2094 2095 if (rdev->badblocks.count == 0) 2096 /* Nothing to do for bad blocks*/ ; 2097 else if (sb->bblog_offset == 0) 2098 /* Cannot record bad blocks on this device */ 2099 md_error(mddev, rdev); 2100 else { 2101 struct badblocks *bb = &rdev->badblocks; 2102 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2103 u64 *p = bb->page; 2104 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2105 if (bb->changed) { 2106 unsigned seq; 2107 2108 retry: 2109 seq = read_seqbegin(&bb->lock); 2110 2111 memset(bbp, 0xff, PAGE_SIZE); 2112 2113 for (i = 0 ; i < bb->count ; i++) { 2114 u64 internal_bb = p[i]; 2115 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2116 | BB_LEN(internal_bb)); 2117 bbp[i] = cpu_to_le64(store_bb); 2118 } 2119 bb->changed = 0; 2120 if (read_seqretry(&bb->lock, seq)) 2121 goto retry; 2122 2123 bb->sector = (rdev->sb_start + 2124 (int)le32_to_cpu(sb->bblog_offset)); 2125 bb->size = le16_to_cpu(sb->bblog_size); 2126 } 2127 } 2128 2129 max_dev = 0; 2130 rdev_for_each(rdev2, mddev) 2131 if (rdev2->desc_nr+1 > max_dev) 2132 max_dev = rdev2->desc_nr+1; 2133 2134 if (max_dev > le32_to_cpu(sb->max_dev)) { 2135 int bmask; 2136 sb->max_dev = cpu_to_le32(max_dev); 2137 rdev->sb_size = max_dev * 2 + 256; 2138 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2139 if (rdev->sb_size & bmask) 2140 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2141 } else 2142 max_dev = le32_to_cpu(sb->max_dev); 2143 2144 for (i=0; i<max_dev;i++) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2146 2147 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2148 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2149 2150 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2151 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2152 sb->feature_map |= 2153 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2154 else 2155 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2156 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2157 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2158 } 2159 2160 rdev_for_each(rdev2, mddev) { 2161 i = rdev2->desc_nr; 2162 if (test_bit(Faulty, &rdev2->flags)) 2163 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2164 else if (test_bit(In_sync, &rdev2->flags)) 2165 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2166 else if (test_bit(Journal, &rdev2->flags)) 2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2168 else if (rdev2->raid_disk >= 0) 2169 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2170 else 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2172 } 2173 2174 sb->sb_csum = calc_sb_1_csum(sb); 2175 } 2176 2177 static sector_t super_1_choose_bm_space(sector_t dev_size) 2178 { 2179 sector_t bm_space; 2180 2181 /* if the device is bigger than 8Gig, save 64k for bitmap 2182 * usage, if bigger than 200Gig, save 128k 2183 */ 2184 if (dev_size < 64*2) 2185 bm_space = 0; 2186 else if (dev_size - 64*2 >= 200*1024*1024*2) 2187 bm_space = 128*2; 2188 else if (dev_size - 4*2 > 8*1024*1024*2) 2189 bm_space = 64*2; 2190 else 2191 bm_space = 4*2; 2192 return bm_space; 2193 } 2194 2195 static unsigned long long 2196 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2197 { 2198 struct mdp_superblock_1 *sb; 2199 sector_t max_sectors; 2200 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2201 return 0; /* component must fit device */ 2202 if (rdev->data_offset != rdev->new_data_offset) 2203 return 0; /* too confusing */ 2204 if (rdev->sb_start < rdev->data_offset) { 2205 /* minor versions 1 and 2; superblock before data */ 2206 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2207 max_sectors -= rdev->data_offset; 2208 if (!num_sectors || num_sectors > max_sectors) 2209 num_sectors = max_sectors; 2210 } else if (rdev->mddev->bitmap_info.offset) { 2211 /* minor version 0 with bitmap we can't move */ 2212 return 0; 2213 } else { 2214 /* minor version 0; superblock after data */ 2215 sector_t sb_start, bm_space; 2216 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2217 2218 /* 8K is for superblock */ 2219 sb_start = dev_size - 8*2; 2220 sb_start &= ~(sector_t)(4*2 - 1); 2221 2222 bm_space = super_1_choose_bm_space(dev_size); 2223 2224 /* Space that can be used to store date needs to decrease 2225 * superblock bitmap space and bad block space(4K) 2226 */ 2227 max_sectors = sb_start - bm_space - 4*2; 2228 2229 if (!num_sectors || num_sectors > max_sectors) 2230 num_sectors = max_sectors; 2231 } 2232 sb = page_address(rdev->sb_page); 2233 sb->data_size = cpu_to_le64(num_sectors); 2234 sb->super_offset = cpu_to_le64(rdev->sb_start); 2235 sb->sb_csum = calc_sb_1_csum(sb); 2236 do { 2237 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2238 rdev->sb_page); 2239 } while (md_super_wait(rdev->mddev) < 0); 2240 return num_sectors; 2241 2242 } 2243 2244 static int 2245 super_1_allow_new_offset(struct md_rdev *rdev, 2246 unsigned long long new_offset) 2247 { 2248 /* All necessary checks on new >= old have been done */ 2249 struct bitmap *bitmap; 2250 if (new_offset >= rdev->data_offset) 2251 return 1; 2252 2253 /* with 1.0 metadata, there is no metadata to tread on 2254 * so we can always move back */ 2255 if (rdev->mddev->minor_version == 0) 2256 return 1; 2257 2258 /* otherwise we must be sure not to step on 2259 * any metadata, so stay: 2260 * 36K beyond start of superblock 2261 * beyond end of badblocks 2262 * beyond write-intent bitmap 2263 */ 2264 if (rdev->sb_start + (32+4)*2 > new_offset) 2265 return 0; 2266 bitmap = rdev->mddev->bitmap; 2267 if (bitmap && !rdev->mddev->bitmap_info.file && 2268 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2269 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2270 return 0; 2271 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2272 return 0; 2273 2274 return 1; 2275 } 2276 2277 static struct super_type super_types[] = { 2278 [0] = { 2279 .name = "0.90.0", 2280 .owner = THIS_MODULE, 2281 .load_super = super_90_load, 2282 .validate_super = super_90_validate, 2283 .sync_super = super_90_sync, 2284 .rdev_size_change = super_90_rdev_size_change, 2285 .allow_new_offset = super_90_allow_new_offset, 2286 }, 2287 [1] = { 2288 .name = "md-1", 2289 .owner = THIS_MODULE, 2290 .load_super = super_1_load, 2291 .validate_super = super_1_validate, 2292 .sync_super = super_1_sync, 2293 .rdev_size_change = super_1_rdev_size_change, 2294 .allow_new_offset = super_1_allow_new_offset, 2295 }, 2296 }; 2297 2298 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2299 { 2300 if (mddev->sync_super) { 2301 mddev->sync_super(mddev, rdev); 2302 return; 2303 } 2304 2305 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2306 2307 super_types[mddev->major_version].sync_super(mddev, rdev); 2308 } 2309 2310 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2311 { 2312 struct md_rdev *rdev, *rdev2; 2313 2314 rcu_read_lock(); 2315 rdev_for_each_rcu(rdev, mddev1) { 2316 if (test_bit(Faulty, &rdev->flags) || 2317 test_bit(Journal, &rdev->flags) || 2318 rdev->raid_disk == -1) 2319 continue; 2320 rdev_for_each_rcu(rdev2, mddev2) { 2321 if (test_bit(Faulty, &rdev2->flags) || 2322 test_bit(Journal, &rdev2->flags) || 2323 rdev2->raid_disk == -1) 2324 continue; 2325 if (rdev->bdev->bd_contains == 2326 rdev2->bdev->bd_contains) { 2327 rcu_read_unlock(); 2328 return 1; 2329 } 2330 } 2331 } 2332 rcu_read_unlock(); 2333 return 0; 2334 } 2335 2336 static LIST_HEAD(pending_raid_disks); 2337 2338 /* 2339 * Try to register data integrity profile for an mddev 2340 * 2341 * This is called when an array is started and after a disk has been kicked 2342 * from the array. It only succeeds if all working and active component devices 2343 * are integrity capable with matching profiles. 2344 */ 2345 int md_integrity_register(struct mddev *mddev) 2346 { 2347 struct md_rdev *rdev, *reference = NULL; 2348 2349 if (list_empty(&mddev->disks)) 2350 return 0; /* nothing to do */ 2351 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2352 return 0; /* shouldn't register, or already is */ 2353 rdev_for_each(rdev, mddev) { 2354 /* skip spares and non-functional disks */ 2355 if (test_bit(Faulty, &rdev->flags)) 2356 continue; 2357 if (rdev->raid_disk < 0) 2358 continue; 2359 if (!reference) { 2360 /* Use the first rdev as the reference */ 2361 reference = rdev; 2362 continue; 2363 } 2364 /* does this rdev's profile match the reference profile? */ 2365 if (blk_integrity_compare(reference->bdev->bd_disk, 2366 rdev->bdev->bd_disk) < 0) 2367 return -EINVAL; 2368 } 2369 if (!reference || !bdev_get_integrity(reference->bdev)) 2370 return 0; 2371 /* 2372 * All component devices are integrity capable and have matching 2373 * profiles, register the common profile for the md device. 2374 */ 2375 blk_integrity_register(mddev->gendisk, 2376 bdev_get_integrity(reference->bdev)); 2377 2378 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2379 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2380 pr_err("md: failed to create integrity pool for %s\n", 2381 mdname(mddev)); 2382 return -EINVAL; 2383 } 2384 return 0; 2385 } 2386 EXPORT_SYMBOL(md_integrity_register); 2387 2388 /* 2389 * Attempt to add an rdev, but only if it is consistent with the current 2390 * integrity profile 2391 */ 2392 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2393 { 2394 struct blk_integrity *bi_mddev; 2395 char name[BDEVNAME_SIZE]; 2396 2397 if (!mddev->gendisk) 2398 return 0; 2399 2400 bi_mddev = blk_get_integrity(mddev->gendisk); 2401 2402 if (!bi_mddev) /* nothing to do */ 2403 return 0; 2404 2405 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2406 pr_err("%s: incompatible integrity profile for %s\n", 2407 mdname(mddev), bdevname(rdev->bdev, name)); 2408 return -ENXIO; 2409 } 2410 2411 return 0; 2412 } 2413 EXPORT_SYMBOL(md_integrity_add_rdev); 2414 2415 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2416 { 2417 char b[BDEVNAME_SIZE]; 2418 struct kobject *ko; 2419 int err; 2420 2421 /* prevent duplicates */ 2422 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2423 return -EEXIST; 2424 2425 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2426 mddev->pers) 2427 return -EROFS; 2428 2429 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2430 if (!test_bit(Journal, &rdev->flags) && 2431 rdev->sectors && 2432 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2433 if (mddev->pers) { 2434 /* Cannot change size, so fail 2435 * If mddev->level <= 0, then we don't care 2436 * about aligning sizes (e.g. linear) 2437 */ 2438 if (mddev->level > 0) 2439 return -ENOSPC; 2440 } else 2441 mddev->dev_sectors = rdev->sectors; 2442 } 2443 2444 /* Verify rdev->desc_nr is unique. 2445 * If it is -1, assign a free number, else 2446 * check number is not in use 2447 */ 2448 rcu_read_lock(); 2449 if (rdev->desc_nr < 0) { 2450 int choice = 0; 2451 if (mddev->pers) 2452 choice = mddev->raid_disks; 2453 while (md_find_rdev_nr_rcu(mddev, choice)) 2454 choice++; 2455 rdev->desc_nr = choice; 2456 } else { 2457 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2458 rcu_read_unlock(); 2459 return -EBUSY; 2460 } 2461 } 2462 rcu_read_unlock(); 2463 if (!test_bit(Journal, &rdev->flags) && 2464 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2465 pr_warn("md: %s: array is limited to %d devices\n", 2466 mdname(mddev), mddev->max_disks); 2467 return -EBUSY; 2468 } 2469 bdevname(rdev->bdev,b); 2470 strreplace(b, '/', '!'); 2471 2472 rdev->mddev = mddev; 2473 pr_debug("md: bind<%s>\n", b); 2474 2475 if (mddev->raid_disks) 2476 mddev_create_serial_pool(mddev, rdev, false); 2477 2478 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2479 goto fail; 2480 2481 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2482 /* failure here is OK */ 2483 err = sysfs_create_link(&rdev->kobj, ko, "block"); 2484 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2485 rdev->sysfs_unack_badblocks = 2486 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2487 rdev->sysfs_badblocks = 2488 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2489 2490 list_add_rcu(&rdev->same_set, &mddev->disks); 2491 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2492 2493 /* May as well allow recovery to be retried once */ 2494 mddev->recovery_disabled++; 2495 2496 return 0; 2497 2498 fail: 2499 pr_warn("md: failed to register dev-%s for %s\n", 2500 b, mdname(mddev)); 2501 return err; 2502 } 2503 2504 static void rdev_delayed_delete(struct work_struct *ws) 2505 { 2506 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2507 kobject_del(&rdev->kobj); 2508 kobject_put(&rdev->kobj); 2509 } 2510 2511 static void unbind_rdev_from_array(struct md_rdev *rdev) 2512 { 2513 char b[BDEVNAME_SIZE]; 2514 2515 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2516 list_del_rcu(&rdev->same_set); 2517 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2518 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2519 rdev->mddev = NULL; 2520 sysfs_remove_link(&rdev->kobj, "block"); 2521 sysfs_put(rdev->sysfs_state); 2522 sysfs_put(rdev->sysfs_unack_badblocks); 2523 sysfs_put(rdev->sysfs_badblocks); 2524 rdev->sysfs_state = NULL; 2525 rdev->sysfs_unack_badblocks = NULL; 2526 rdev->sysfs_badblocks = NULL; 2527 rdev->badblocks.count = 0; 2528 /* We need to delay this, otherwise we can deadlock when 2529 * writing to 'remove' to "dev/state". We also need 2530 * to delay it due to rcu usage. 2531 */ 2532 synchronize_rcu(); 2533 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2534 kobject_get(&rdev->kobj); 2535 queue_work(md_rdev_misc_wq, &rdev->del_work); 2536 } 2537 2538 /* 2539 * prevent the device from being mounted, repartitioned or 2540 * otherwise reused by a RAID array (or any other kernel 2541 * subsystem), by bd_claiming the device. 2542 */ 2543 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2544 { 2545 int err = 0; 2546 struct block_device *bdev; 2547 2548 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2549 shared ? (struct md_rdev *)lock_rdev : rdev); 2550 if (IS_ERR(bdev)) { 2551 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2552 MAJOR(dev), MINOR(dev)); 2553 return PTR_ERR(bdev); 2554 } 2555 rdev->bdev = bdev; 2556 return err; 2557 } 2558 2559 static void unlock_rdev(struct md_rdev *rdev) 2560 { 2561 struct block_device *bdev = rdev->bdev; 2562 rdev->bdev = NULL; 2563 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2564 } 2565 2566 void md_autodetect_dev(dev_t dev); 2567 2568 static void export_rdev(struct md_rdev *rdev) 2569 { 2570 char b[BDEVNAME_SIZE]; 2571 2572 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2573 md_rdev_clear(rdev); 2574 #ifndef MODULE 2575 if (test_bit(AutoDetected, &rdev->flags)) 2576 md_autodetect_dev(rdev->bdev->bd_dev); 2577 #endif 2578 unlock_rdev(rdev); 2579 kobject_put(&rdev->kobj); 2580 } 2581 2582 void md_kick_rdev_from_array(struct md_rdev *rdev) 2583 { 2584 unbind_rdev_from_array(rdev); 2585 export_rdev(rdev); 2586 } 2587 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2588 2589 static void export_array(struct mddev *mddev) 2590 { 2591 struct md_rdev *rdev; 2592 2593 while (!list_empty(&mddev->disks)) { 2594 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2595 same_set); 2596 md_kick_rdev_from_array(rdev); 2597 } 2598 mddev->raid_disks = 0; 2599 mddev->major_version = 0; 2600 } 2601 2602 static bool set_in_sync(struct mddev *mddev) 2603 { 2604 lockdep_assert_held(&mddev->lock); 2605 if (!mddev->in_sync) { 2606 mddev->sync_checkers++; 2607 spin_unlock(&mddev->lock); 2608 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2609 spin_lock(&mddev->lock); 2610 if (!mddev->in_sync && 2611 percpu_ref_is_zero(&mddev->writes_pending)) { 2612 mddev->in_sync = 1; 2613 /* 2614 * Ensure ->in_sync is visible before we clear 2615 * ->sync_checkers. 2616 */ 2617 smp_mb(); 2618 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2619 sysfs_notify_dirent_safe(mddev->sysfs_state); 2620 } 2621 if (--mddev->sync_checkers == 0) 2622 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2623 } 2624 if (mddev->safemode == 1) 2625 mddev->safemode = 0; 2626 return mddev->in_sync; 2627 } 2628 2629 static void sync_sbs(struct mddev *mddev, int nospares) 2630 { 2631 /* Update each superblock (in-memory image), but 2632 * if we are allowed to, skip spares which already 2633 * have the right event counter, or have one earlier 2634 * (which would mean they aren't being marked as dirty 2635 * with the rest of the array) 2636 */ 2637 struct md_rdev *rdev; 2638 rdev_for_each(rdev, mddev) { 2639 if (rdev->sb_events == mddev->events || 2640 (nospares && 2641 rdev->raid_disk < 0 && 2642 rdev->sb_events+1 == mddev->events)) { 2643 /* Don't update this superblock */ 2644 rdev->sb_loaded = 2; 2645 } else { 2646 sync_super(mddev, rdev); 2647 rdev->sb_loaded = 1; 2648 } 2649 } 2650 } 2651 2652 static bool does_sb_need_changing(struct mddev *mddev) 2653 { 2654 struct md_rdev *rdev; 2655 struct mdp_superblock_1 *sb; 2656 int role; 2657 2658 /* Find a good rdev */ 2659 rdev_for_each(rdev, mddev) 2660 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2661 break; 2662 2663 /* No good device found. */ 2664 if (!rdev) 2665 return false; 2666 2667 sb = page_address(rdev->sb_page); 2668 /* Check if a device has become faulty or a spare become active */ 2669 rdev_for_each(rdev, mddev) { 2670 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2671 /* Device activated? */ 2672 if (role == 0xffff && rdev->raid_disk >=0 && 2673 !test_bit(Faulty, &rdev->flags)) 2674 return true; 2675 /* Device turned faulty? */ 2676 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2677 return true; 2678 } 2679 2680 /* Check if any mddev parameters have changed */ 2681 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2682 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2683 (mddev->layout != le32_to_cpu(sb->layout)) || 2684 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2685 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2686 return true; 2687 2688 return false; 2689 } 2690 2691 void md_update_sb(struct mddev *mddev, int force_change) 2692 { 2693 struct md_rdev *rdev; 2694 int sync_req; 2695 int nospares = 0; 2696 int any_badblocks_changed = 0; 2697 int ret = -1; 2698 2699 if (mddev->ro) { 2700 if (force_change) 2701 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2702 return; 2703 } 2704 2705 repeat: 2706 if (mddev_is_clustered(mddev)) { 2707 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2708 force_change = 1; 2709 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2710 nospares = 1; 2711 ret = md_cluster_ops->metadata_update_start(mddev); 2712 /* Has someone else has updated the sb */ 2713 if (!does_sb_need_changing(mddev)) { 2714 if (ret == 0) 2715 md_cluster_ops->metadata_update_cancel(mddev); 2716 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2717 BIT(MD_SB_CHANGE_DEVS) | 2718 BIT(MD_SB_CHANGE_CLEAN)); 2719 return; 2720 } 2721 } 2722 2723 /* 2724 * First make sure individual recovery_offsets are correct 2725 * curr_resync_completed can only be used during recovery. 2726 * During reshape/resync it might use array-addresses rather 2727 * that device addresses. 2728 */ 2729 rdev_for_each(rdev, mddev) { 2730 if (rdev->raid_disk >= 0 && 2731 mddev->delta_disks >= 0 && 2732 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2733 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2734 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2735 !test_bit(Journal, &rdev->flags) && 2736 !test_bit(In_sync, &rdev->flags) && 2737 mddev->curr_resync_completed > rdev->recovery_offset) 2738 rdev->recovery_offset = mddev->curr_resync_completed; 2739 2740 } 2741 if (!mddev->persistent) { 2742 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2743 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2744 if (!mddev->external) { 2745 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2746 rdev_for_each(rdev, mddev) { 2747 if (rdev->badblocks.changed) { 2748 rdev->badblocks.changed = 0; 2749 ack_all_badblocks(&rdev->badblocks); 2750 md_error(mddev, rdev); 2751 } 2752 clear_bit(Blocked, &rdev->flags); 2753 clear_bit(BlockedBadBlocks, &rdev->flags); 2754 wake_up(&rdev->blocked_wait); 2755 } 2756 } 2757 wake_up(&mddev->sb_wait); 2758 return; 2759 } 2760 2761 spin_lock(&mddev->lock); 2762 2763 mddev->utime = ktime_get_real_seconds(); 2764 2765 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2766 force_change = 1; 2767 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2768 /* just a clean<-> dirty transition, possibly leave spares alone, 2769 * though if events isn't the right even/odd, we will have to do 2770 * spares after all 2771 */ 2772 nospares = 1; 2773 if (force_change) 2774 nospares = 0; 2775 if (mddev->degraded) 2776 /* If the array is degraded, then skipping spares is both 2777 * dangerous and fairly pointless. 2778 * Dangerous because a device that was removed from the array 2779 * might have a event_count that still looks up-to-date, 2780 * so it can be re-added without a resync. 2781 * Pointless because if there are any spares to skip, 2782 * then a recovery will happen and soon that array won't 2783 * be degraded any more and the spare can go back to sleep then. 2784 */ 2785 nospares = 0; 2786 2787 sync_req = mddev->in_sync; 2788 2789 /* If this is just a dirty<->clean transition, and the array is clean 2790 * and 'events' is odd, we can roll back to the previous clean state */ 2791 if (nospares 2792 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2793 && mddev->can_decrease_events 2794 && mddev->events != 1) { 2795 mddev->events--; 2796 mddev->can_decrease_events = 0; 2797 } else { 2798 /* otherwise we have to go forward and ... */ 2799 mddev->events ++; 2800 mddev->can_decrease_events = nospares; 2801 } 2802 2803 /* 2804 * This 64-bit counter should never wrap. 2805 * Either we are in around ~1 trillion A.C., assuming 2806 * 1 reboot per second, or we have a bug... 2807 */ 2808 WARN_ON(mddev->events == 0); 2809 2810 rdev_for_each(rdev, mddev) { 2811 if (rdev->badblocks.changed) 2812 any_badblocks_changed++; 2813 if (test_bit(Faulty, &rdev->flags)) 2814 set_bit(FaultRecorded, &rdev->flags); 2815 } 2816 2817 sync_sbs(mddev, nospares); 2818 spin_unlock(&mddev->lock); 2819 2820 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2821 mdname(mddev), mddev->in_sync); 2822 2823 if (mddev->queue) 2824 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2825 rewrite: 2826 md_bitmap_update_sb(mddev->bitmap); 2827 rdev_for_each(rdev, mddev) { 2828 char b[BDEVNAME_SIZE]; 2829 2830 if (rdev->sb_loaded != 1) 2831 continue; /* no noise on spare devices */ 2832 2833 if (!test_bit(Faulty, &rdev->flags)) { 2834 md_super_write(mddev,rdev, 2835 rdev->sb_start, rdev->sb_size, 2836 rdev->sb_page); 2837 pr_debug("md: (write) %s's sb offset: %llu\n", 2838 bdevname(rdev->bdev, b), 2839 (unsigned long long)rdev->sb_start); 2840 rdev->sb_events = mddev->events; 2841 if (rdev->badblocks.size) { 2842 md_super_write(mddev, rdev, 2843 rdev->badblocks.sector, 2844 rdev->badblocks.size << 9, 2845 rdev->bb_page); 2846 rdev->badblocks.size = 0; 2847 } 2848 2849 } else 2850 pr_debug("md: %s (skipping faulty)\n", 2851 bdevname(rdev->bdev, b)); 2852 2853 if (mddev->level == LEVEL_MULTIPATH) 2854 /* only need to write one superblock... */ 2855 break; 2856 } 2857 if (md_super_wait(mddev) < 0) 2858 goto rewrite; 2859 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2860 2861 if (mddev_is_clustered(mddev) && ret == 0) 2862 md_cluster_ops->metadata_update_finish(mddev); 2863 2864 if (mddev->in_sync != sync_req || 2865 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2866 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2867 /* have to write it out again */ 2868 goto repeat; 2869 wake_up(&mddev->sb_wait); 2870 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2871 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2872 2873 rdev_for_each(rdev, mddev) { 2874 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2875 clear_bit(Blocked, &rdev->flags); 2876 2877 if (any_badblocks_changed) 2878 ack_all_badblocks(&rdev->badblocks); 2879 clear_bit(BlockedBadBlocks, &rdev->flags); 2880 wake_up(&rdev->blocked_wait); 2881 } 2882 } 2883 EXPORT_SYMBOL(md_update_sb); 2884 2885 static int add_bound_rdev(struct md_rdev *rdev) 2886 { 2887 struct mddev *mddev = rdev->mddev; 2888 int err = 0; 2889 bool add_journal = test_bit(Journal, &rdev->flags); 2890 2891 if (!mddev->pers->hot_remove_disk || add_journal) { 2892 /* If there is hot_add_disk but no hot_remove_disk 2893 * then added disks for geometry changes, 2894 * and should be added immediately. 2895 */ 2896 super_types[mddev->major_version]. 2897 validate_super(mddev, rdev); 2898 if (add_journal) 2899 mddev_suspend(mddev); 2900 err = mddev->pers->hot_add_disk(mddev, rdev); 2901 if (add_journal) 2902 mddev_resume(mddev); 2903 if (err) { 2904 md_kick_rdev_from_array(rdev); 2905 return err; 2906 } 2907 } 2908 sysfs_notify_dirent_safe(rdev->sysfs_state); 2909 2910 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2911 if (mddev->degraded) 2912 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2913 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2914 md_new_event(mddev); 2915 md_wakeup_thread(mddev->thread); 2916 return 0; 2917 } 2918 2919 /* words written to sysfs files may, or may not, be \n terminated. 2920 * We want to accept with case. For this we use cmd_match. 2921 */ 2922 static int cmd_match(const char *cmd, const char *str) 2923 { 2924 /* See if cmd, written into a sysfs file, matches 2925 * str. They must either be the same, or cmd can 2926 * have a trailing newline 2927 */ 2928 while (*cmd && *str && *cmd == *str) { 2929 cmd++; 2930 str++; 2931 } 2932 if (*cmd == '\n') 2933 cmd++; 2934 if (*str || *cmd) 2935 return 0; 2936 return 1; 2937 } 2938 2939 struct rdev_sysfs_entry { 2940 struct attribute attr; 2941 ssize_t (*show)(struct md_rdev *, char *); 2942 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2943 }; 2944 2945 static ssize_t 2946 state_show(struct md_rdev *rdev, char *page) 2947 { 2948 char *sep = ","; 2949 size_t len = 0; 2950 unsigned long flags = READ_ONCE(rdev->flags); 2951 2952 if (test_bit(Faulty, &flags) || 2953 (!test_bit(ExternalBbl, &flags) && 2954 rdev->badblocks.unacked_exist)) 2955 len += sprintf(page+len, "faulty%s", sep); 2956 if (test_bit(In_sync, &flags)) 2957 len += sprintf(page+len, "in_sync%s", sep); 2958 if (test_bit(Journal, &flags)) 2959 len += sprintf(page+len, "journal%s", sep); 2960 if (test_bit(WriteMostly, &flags)) 2961 len += sprintf(page+len, "write_mostly%s", sep); 2962 if (test_bit(Blocked, &flags) || 2963 (rdev->badblocks.unacked_exist 2964 && !test_bit(Faulty, &flags))) 2965 len += sprintf(page+len, "blocked%s", sep); 2966 if (!test_bit(Faulty, &flags) && 2967 !test_bit(Journal, &flags) && 2968 !test_bit(In_sync, &flags)) 2969 len += sprintf(page+len, "spare%s", sep); 2970 if (test_bit(WriteErrorSeen, &flags)) 2971 len += sprintf(page+len, "write_error%s", sep); 2972 if (test_bit(WantReplacement, &flags)) 2973 len += sprintf(page+len, "want_replacement%s", sep); 2974 if (test_bit(Replacement, &flags)) 2975 len += sprintf(page+len, "replacement%s", sep); 2976 if (test_bit(ExternalBbl, &flags)) 2977 len += sprintf(page+len, "external_bbl%s", sep); 2978 if (test_bit(FailFast, &flags)) 2979 len += sprintf(page+len, "failfast%s", sep); 2980 2981 if (len) 2982 len -= strlen(sep); 2983 2984 return len+sprintf(page+len, "\n"); 2985 } 2986 2987 static ssize_t 2988 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2989 { 2990 /* can write 2991 * faulty - simulates an error 2992 * remove - disconnects the device 2993 * writemostly - sets write_mostly 2994 * -writemostly - clears write_mostly 2995 * blocked - sets the Blocked flags 2996 * -blocked - clears the Blocked and possibly simulates an error 2997 * insync - sets Insync providing device isn't active 2998 * -insync - clear Insync for a device with a slot assigned, 2999 * so that it gets rebuilt based on bitmap 3000 * write_error - sets WriteErrorSeen 3001 * -write_error - clears WriteErrorSeen 3002 * {,-}failfast - set/clear FailFast 3003 */ 3004 int err = -EINVAL; 3005 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3006 md_error(rdev->mddev, rdev); 3007 if (test_bit(Faulty, &rdev->flags)) 3008 err = 0; 3009 else 3010 err = -EBUSY; 3011 } else if (cmd_match(buf, "remove")) { 3012 if (rdev->mddev->pers) { 3013 clear_bit(Blocked, &rdev->flags); 3014 remove_and_add_spares(rdev->mddev, rdev); 3015 } 3016 if (rdev->raid_disk >= 0) 3017 err = -EBUSY; 3018 else { 3019 struct mddev *mddev = rdev->mddev; 3020 err = 0; 3021 if (mddev_is_clustered(mddev)) 3022 err = md_cluster_ops->remove_disk(mddev, rdev); 3023 3024 if (err == 0) { 3025 md_kick_rdev_from_array(rdev); 3026 if (mddev->pers) { 3027 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3028 md_wakeup_thread(mddev->thread); 3029 } 3030 md_new_event(mddev); 3031 } 3032 } 3033 } else if (cmd_match(buf, "writemostly")) { 3034 set_bit(WriteMostly, &rdev->flags); 3035 mddev_create_serial_pool(rdev->mddev, rdev, false); 3036 err = 0; 3037 } else if (cmd_match(buf, "-writemostly")) { 3038 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3039 clear_bit(WriteMostly, &rdev->flags); 3040 err = 0; 3041 } else if (cmd_match(buf, "blocked")) { 3042 set_bit(Blocked, &rdev->flags); 3043 err = 0; 3044 } else if (cmd_match(buf, "-blocked")) { 3045 if (!test_bit(Faulty, &rdev->flags) && 3046 !test_bit(ExternalBbl, &rdev->flags) && 3047 rdev->badblocks.unacked_exist) { 3048 /* metadata handler doesn't understand badblocks, 3049 * so we need to fail the device 3050 */ 3051 md_error(rdev->mddev, rdev); 3052 } 3053 clear_bit(Blocked, &rdev->flags); 3054 clear_bit(BlockedBadBlocks, &rdev->flags); 3055 wake_up(&rdev->blocked_wait); 3056 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3057 md_wakeup_thread(rdev->mddev->thread); 3058 3059 err = 0; 3060 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3061 set_bit(In_sync, &rdev->flags); 3062 err = 0; 3063 } else if (cmd_match(buf, "failfast")) { 3064 set_bit(FailFast, &rdev->flags); 3065 err = 0; 3066 } else if (cmd_match(buf, "-failfast")) { 3067 clear_bit(FailFast, &rdev->flags); 3068 err = 0; 3069 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3070 !test_bit(Journal, &rdev->flags)) { 3071 if (rdev->mddev->pers == NULL) { 3072 clear_bit(In_sync, &rdev->flags); 3073 rdev->saved_raid_disk = rdev->raid_disk; 3074 rdev->raid_disk = -1; 3075 err = 0; 3076 } 3077 } else if (cmd_match(buf, "write_error")) { 3078 set_bit(WriteErrorSeen, &rdev->flags); 3079 err = 0; 3080 } else if (cmd_match(buf, "-write_error")) { 3081 clear_bit(WriteErrorSeen, &rdev->flags); 3082 err = 0; 3083 } else if (cmd_match(buf, "want_replacement")) { 3084 /* Any non-spare device that is not a replacement can 3085 * become want_replacement at any time, but we then need to 3086 * check if recovery is needed. 3087 */ 3088 if (rdev->raid_disk >= 0 && 3089 !test_bit(Journal, &rdev->flags) && 3090 !test_bit(Replacement, &rdev->flags)) 3091 set_bit(WantReplacement, &rdev->flags); 3092 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3093 md_wakeup_thread(rdev->mddev->thread); 3094 err = 0; 3095 } else if (cmd_match(buf, "-want_replacement")) { 3096 /* Clearing 'want_replacement' is always allowed. 3097 * Once replacements starts it is too late though. 3098 */ 3099 err = 0; 3100 clear_bit(WantReplacement, &rdev->flags); 3101 } else if (cmd_match(buf, "replacement")) { 3102 /* Can only set a device as a replacement when array has not 3103 * yet been started. Once running, replacement is automatic 3104 * from spares, or by assigning 'slot'. 3105 */ 3106 if (rdev->mddev->pers) 3107 err = -EBUSY; 3108 else { 3109 set_bit(Replacement, &rdev->flags); 3110 err = 0; 3111 } 3112 } else if (cmd_match(buf, "-replacement")) { 3113 /* Similarly, can only clear Replacement before start */ 3114 if (rdev->mddev->pers) 3115 err = -EBUSY; 3116 else { 3117 clear_bit(Replacement, &rdev->flags); 3118 err = 0; 3119 } 3120 } else if (cmd_match(buf, "re-add")) { 3121 if (!rdev->mddev->pers) 3122 err = -EINVAL; 3123 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3124 rdev->saved_raid_disk >= 0) { 3125 /* clear_bit is performed _after_ all the devices 3126 * have their local Faulty bit cleared. If any writes 3127 * happen in the meantime in the local node, they 3128 * will land in the local bitmap, which will be synced 3129 * by this node eventually 3130 */ 3131 if (!mddev_is_clustered(rdev->mddev) || 3132 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3133 clear_bit(Faulty, &rdev->flags); 3134 err = add_bound_rdev(rdev); 3135 } 3136 } else 3137 err = -EBUSY; 3138 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3139 set_bit(ExternalBbl, &rdev->flags); 3140 rdev->badblocks.shift = 0; 3141 err = 0; 3142 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3143 clear_bit(ExternalBbl, &rdev->flags); 3144 err = 0; 3145 } 3146 if (!err) 3147 sysfs_notify_dirent_safe(rdev->sysfs_state); 3148 return err ? err : len; 3149 } 3150 static struct rdev_sysfs_entry rdev_state = 3151 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3152 3153 static ssize_t 3154 errors_show(struct md_rdev *rdev, char *page) 3155 { 3156 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3157 } 3158 3159 static ssize_t 3160 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3161 { 3162 unsigned int n; 3163 int rv; 3164 3165 rv = kstrtouint(buf, 10, &n); 3166 if (rv < 0) 3167 return rv; 3168 atomic_set(&rdev->corrected_errors, n); 3169 return len; 3170 } 3171 static struct rdev_sysfs_entry rdev_errors = 3172 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3173 3174 static ssize_t 3175 slot_show(struct md_rdev *rdev, char *page) 3176 { 3177 if (test_bit(Journal, &rdev->flags)) 3178 return sprintf(page, "journal\n"); 3179 else if (rdev->raid_disk < 0) 3180 return sprintf(page, "none\n"); 3181 else 3182 return sprintf(page, "%d\n", rdev->raid_disk); 3183 } 3184 3185 static ssize_t 3186 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3187 { 3188 int slot; 3189 int err; 3190 3191 if (test_bit(Journal, &rdev->flags)) 3192 return -EBUSY; 3193 if (strncmp(buf, "none", 4)==0) 3194 slot = -1; 3195 else { 3196 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3197 if (err < 0) 3198 return err; 3199 } 3200 if (rdev->mddev->pers && slot == -1) { 3201 /* Setting 'slot' on an active array requires also 3202 * updating the 'rd%d' link, and communicating 3203 * with the personality with ->hot_*_disk. 3204 * For now we only support removing 3205 * failed/spare devices. This normally happens automatically, 3206 * but not when the metadata is externally managed. 3207 */ 3208 if (rdev->raid_disk == -1) 3209 return -EEXIST; 3210 /* personality does all needed checks */ 3211 if (rdev->mddev->pers->hot_remove_disk == NULL) 3212 return -EINVAL; 3213 clear_bit(Blocked, &rdev->flags); 3214 remove_and_add_spares(rdev->mddev, rdev); 3215 if (rdev->raid_disk >= 0) 3216 return -EBUSY; 3217 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3218 md_wakeup_thread(rdev->mddev->thread); 3219 } else if (rdev->mddev->pers) { 3220 /* Activating a spare .. or possibly reactivating 3221 * if we ever get bitmaps working here. 3222 */ 3223 int err; 3224 3225 if (rdev->raid_disk != -1) 3226 return -EBUSY; 3227 3228 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3229 return -EBUSY; 3230 3231 if (rdev->mddev->pers->hot_add_disk == NULL) 3232 return -EINVAL; 3233 3234 if (slot >= rdev->mddev->raid_disks && 3235 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3236 return -ENOSPC; 3237 3238 rdev->raid_disk = slot; 3239 if (test_bit(In_sync, &rdev->flags)) 3240 rdev->saved_raid_disk = slot; 3241 else 3242 rdev->saved_raid_disk = -1; 3243 clear_bit(In_sync, &rdev->flags); 3244 clear_bit(Bitmap_sync, &rdev->flags); 3245 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3246 if (err) { 3247 rdev->raid_disk = -1; 3248 return err; 3249 } else 3250 sysfs_notify_dirent_safe(rdev->sysfs_state); 3251 /* failure here is OK */; 3252 sysfs_link_rdev(rdev->mddev, rdev); 3253 /* don't wakeup anyone, leave that to userspace. */ 3254 } else { 3255 if (slot >= rdev->mddev->raid_disks && 3256 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3257 return -ENOSPC; 3258 rdev->raid_disk = slot; 3259 /* assume it is working */ 3260 clear_bit(Faulty, &rdev->flags); 3261 clear_bit(WriteMostly, &rdev->flags); 3262 set_bit(In_sync, &rdev->flags); 3263 sysfs_notify_dirent_safe(rdev->sysfs_state); 3264 } 3265 return len; 3266 } 3267 3268 static struct rdev_sysfs_entry rdev_slot = 3269 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3270 3271 static ssize_t 3272 offset_show(struct md_rdev *rdev, char *page) 3273 { 3274 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3275 } 3276 3277 static ssize_t 3278 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3279 { 3280 unsigned long long offset; 3281 if (kstrtoull(buf, 10, &offset) < 0) 3282 return -EINVAL; 3283 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3284 return -EBUSY; 3285 if (rdev->sectors && rdev->mddev->external) 3286 /* Must set offset before size, so overlap checks 3287 * can be sane */ 3288 return -EBUSY; 3289 rdev->data_offset = offset; 3290 rdev->new_data_offset = offset; 3291 return len; 3292 } 3293 3294 static struct rdev_sysfs_entry rdev_offset = 3295 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3296 3297 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3298 { 3299 return sprintf(page, "%llu\n", 3300 (unsigned long long)rdev->new_data_offset); 3301 } 3302 3303 static ssize_t new_offset_store(struct md_rdev *rdev, 3304 const char *buf, size_t len) 3305 { 3306 unsigned long long new_offset; 3307 struct mddev *mddev = rdev->mddev; 3308 3309 if (kstrtoull(buf, 10, &new_offset) < 0) 3310 return -EINVAL; 3311 3312 if (mddev->sync_thread || 3313 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3314 return -EBUSY; 3315 if (new_offset == rdev->data_offset) 3316 /* reset is always permitted */ 3317 ; 3318 else if (new_offset > rdev->data_offset) { 3319 /* must not push array size beyond rdev_sectors */ 3320 if (new_offset - rdev->data_offset 3321 + mddev->dev_sectors > rdev->sectors) 3322 return -E2BIG; 3323 } 3324 /* Metadata worries about other space details. */ 3325 3326 /* decreasing the offset is inconsistent with a backwards 3327 * reshape. 3328 */ 3329 if (new_offset < rdev->data_offset && 3330 mddev->reshape_backwards) 3331 return -EINVAL; 3332 /* Increasing offset is inconsistent with forwards 3333 * reshape. reshape_direction should be set to 3334 * 'backwards' first. 3335 */ 3336 if (new_offset > rdev->data_offset && 3337 !mddev->reshape_backwards) 3338 return -EINVAL; 3339 3340 if (mddev->pers && mddev->persistent && 3341 !super_types[mddev->major_version] 3342 .allow_new_offset(rdev, new_offset)) 3343 return -E2BIG; 3344 rdev->new_data_offset = new_offset; 3345 if (new_offset > rdev->data_offset) 3346 mddev->reshape_backwards = 1; 3347 else if (new_offset < rdev->data_offset) 3348 mddev->reshape_backwards = 0; 3349 3350 return len; 3351 } 3352 static struct rdev_sysfs_entry rdev_new_offset = 3353 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3354 3355 static ssize_t 3356 rdev_size_show(struct md_rdev *rdev, char *page) 3357 { 3358 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3359 } 3360 3361 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3362 { 3363 /* check if two start/length pairs overlap */ 3364 if (s1+l1 <= s2) 3365 return 0; 3366 if (s2+l2 <= s1) 3367 return 0; 3368 return 1; 3369 } 3370 3371 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3372 { 3373 unsigned long long blocks; 3374 sector_t new; 3375 3376 if (kstrtoull(buf, 10, &blocks) < 0) 3377 return -EINVAL; 3378 3379 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3380 return -EINVAL; /* sector conversion overflow */ 3381 3382 new = blocks * 2; 3383 if (new != blocks * 2) 3384 return -EINVAL; /* unsigned long long to sector_t overflow */ 3385 3386 *sectors = new; 3387 return 0; 3388 } 3389 3390 static ssize_t 3391 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3392 { 3393 struct mddev *my_mddev = rdev->mddev; 3394 sector_t oldsectors = rdev->sectors; 3395 sector_t sectors; 3396 3397 if (test_bit(Journal, &rdev->flags)) 3398 return -EBUSY; 3399 if (strict_blocks_to_sectors(buf, §ors) < 0) 3400 return -EINVAL; 3401 if (rdev->data_offset != rdev->new_data_offset) 3402 return -EINVAL; /* too confusing */ 3403 if (my_mddev->pers && rdev->raid_disk >= 0) { 3404 if (my_mddev->persistent) { 3405 sectors = super_types[my_mddev->major_version]. 3406 rdev_size_change(rdev, sectors); 3407 if (!sectors) 3408 return -EBUSY; 3409 } else if (!sectors) 3410 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3411 rdev->data_offset; 3412 if (!my_mddev->pers->resize) 3413 /* Cannot change size for RAID0 or Linear etc */ 3414 return -EINVAL; 3415 } 3416 if (sectors < my_mddev->dev_sectors) 3417 return -EINVAL; /* component must fit device */ 3418 3419 rdev->sectors = sectors; 3420 if (sectors > oldsectors && my_mddev->external) { 3421 /* Need to check that all other rdevs with the same 3422 * ->bdev do not overlap. 'rcu' is sufficient to walk 3423 * the rdev lists safely. 3424 * This check does not provide a hard guarantee, it 3425 * just helps avoid dangerous mistakes. 3426 */ 3427 struct mddev *mddev; 3428 int overlap = 0; 3429 struct list_head *tmp; 3430 3431 rcu_read_lock(); 3432 for_each_mddev(mddev, tmp) { 3433 struct md_rdev *rdev2; 3434 3435 rdev_for_each(rdev2, mddev) 3436 if (rdev->bdev == rdev2->bdev && 3437 rdev != rdev2 && 3438 overlaps(rdev->data_offset, rdev->sectors, 3439 rdev2->data_offset, 3440 rdev2->sectors)) { 3441 overlap = 1; 3442 break; 3443 } 3444 if (overlap) { 3445 mddev_put(mddev); 3446 break; 3447 } 3448 } 3449 rcu_read_unlock(); 3450 if (overlap) { 3451 /* Someone else could have slipped in a size 3452 * change here, but doing so is just silly. 3453 * We put oldsectors back because we *know* it is 3454 * safe, and trust userspace not to race with 3455 * itself 3456 */ 3457 rdev->sectors = oldsectors; 3458 return -EBUSY; 3459 } 3460 } 3461 return len; 3462 } 3463 3464 static struct rdev_sysfs_entry rdev_size = 3465 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3466 3467 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3468 { 3469 unsigned long long recovery_start = rdev->recovery_offset; 3470 3471 if (test_bit(In_sync, &rdev->flags) || 3472 recovery_start == MaxSector) 3473 return sprintf(page, "none\n"); 3474 3475 return sprintf(page, "%llu\n", recovery_start); 3476 } 3477 3478 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3479 { 3480 unsigned long long recovery_start; 3481 3482 if (cmd_match(buf, "none")) 3483 recovery_start = MaxSector; 3484 else if (kstrtoull(buf, 10, &recovery_start)) 3485 return -EINVAL; 3486 3487 if (rdev->mddev->pers && 3488 rdev->raid_disk >= 0) 3489 return -EBUSY; 3490 3491 rdev->recovery_offset = recovery_start; 3492 if (recovery_start == MaxSector) 3493 set_bit(In_sync, &rdev->flags); 3494 else 3495 clear_bit(In_sync, &rdev->flags); 3496 return len; 3497 } 3498 3499 static struct rdev_sysfs_entry rdev_recovery_start = 3500 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3501 3502 /* sysfs access to bad-blocks list. 3503 * We present two files. 3504 * 'bad-blocks' lists sector numbers and lengths of ranges that 3505 * are recorded as bad. The list is truncated to fit within 3506 * the one-page limit of sysfs. 3507 * Writing "sector length" to this file adds an acknowledged 3508 * bad block list. 3509 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3510 * been acknowledged. Writing to this file adds bad blocks 3511 * without acknowledging them. This is largely for testing. 3512 */ 3513 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3514 { 3515 return badblocks_show(&rdev->badblocks, page, 0); 3516 } 3517 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3518 { 3519 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3520 /* Maybe that ack was all we needed */ 3521 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3522 wake_up(&rdev->blocked_wait); 3523 return rv; 3524 } 3525 static struct rdev_sysfs_entry rdev_bad_blocks = 3526 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3527 3528 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3529 { 3530 return badblocks_show(&rdev->badblocks, page, 1); 3531 } 3532 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3533 { 3534 return badblocks_store(&rdev->badblocks, page, len, 1); 3535 } 3536 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3537 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3538 3539 static ssize_t 3540 ppl_sector_show(struct md_rdev *rdev, char *page) 3541 { 3542 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3543 } 3544 3545 static ssize_t 3546 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3547 { 3548 unsigned long long sector; 3549 3550 if (kstrtoull(buf, 10, §or) < 0) 3551 return -EINVAL; 3552 if (sector != (sector_t)sector) 3553 return -EINVAL; 3554 3555 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3556 rdev->raid_disk >= 0) 3557 return -EBUSY; 3558 3559 if (rdev->mddev->persistent) { 3560 if (rdev->mddev->major_version == 0) 3561 return -EINVAL; 3562 if ((sector > rdev->sb_start && 3563 sector - rdev->sb_start > S16_MAX) || 3564 (sector < rdev->sb_start && 3565 rdev->sb_start - sector > -S16_MIN)) 3566 return -EINVAL; 3567 rdev->ppl.offset = sector - rdev->sb_start; 3568 } else if (!rdev->mddev->external) { 3569 return -EBUSY; 3570 } 3571 rdev->ppl.sector = sector; 3572 return len; 3573 } 3574 3575 static struct rdev_sysfs_entry rdev_ppl_sector = 3576 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3577 3578 static ssize_t 3579 ppl_size_show(struct md_rdev *rdev, char *page) 3580 { 3581 return sprintf(page, "%u\n", rdev->ppl.size); 3582 } 3583 3584 static ssize_t 3585 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3586 { 3587 unsigned int size; 3588 3589 if (kstrtouint(buf, 10, &size) < 0) 3590 return -EINVAL; 3591 3592 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3593 rdev->raid_disk >= 0) 3594 return -EBUSY; 3595 3596 if (rdev->mddev->persistent) { 3597 if (rdev->mddev->major_version == 0) 3598 return -EINVAL; 3599 if (size > U16_MAX) 3600 return -EINVAL; 3601 } else if (!rdev->mddev->external) { 3602 return -EBUSY; 3603 } 3604 rdev->ppl.size = size; 3605 return len; 3606 } 3607 3608 static struct rdev_sysfs_entry rdev_ppl_size = 3609 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3610 3611 static struct attribute *rdev_default_attrs[] = { 3612 &rdev_state.attr, 3613 &rdev_errors.attr, 3614 &rdev_slot.attr, 3615 &rdev_offset.attr, 3616 &rdev_new_offset.attr, 3617 &rdev_size.attr, 3618 &rdev_recovery_start.attr, 3619 &rdev_bad_blocks.attr, 3620 &rdev_unack_bad_blocks.attr, 3621 &rdev_ppl_sector.attr, 3622 &rdev_ppl_size.attr, 3623 NULL, 3624 }; 3625 static ssize_t 3626 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3627 { 3628 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3629 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3630 3631 if (!entry->show) 3632 return -EIO; 3633 if (!rdev->mddev) 3634 return -ENODEV; 3635 return entry->show(rdev, page); 3636 } 3637 3638 static ssize_t 3639 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3640 const char *page, size_t length) 3641 { 3642 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3643 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3644 ssize_t rv; 3645 struct mddev *mddev = rdev->mddev; 3646 3647 if (!entry->store) 3648 return -EIO; 3649 if (!capable(CAP_SYS_ADMIN)) 3650 return -EACCES; 3651 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3652 if (!rv) { 3653 if (rdev->mddev == NULL) 3654 rv = -ENODEV; 3655 else 3656 rv = entry->store(rdev, page, length); 3657 mddev_unlock(mddev); 3658 } 3659 return rv; 3660 } 3661 3662 static void rdev_free(struct kobject *ko) 3663 { 3664 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3665 kfree(rdev); 3666 } 3667 static const struct sysfs_ops rdev_sysfs_ops = { 3668 .show = rdev_attr_show, 3669 .store = rdev_attr_store, 3670 }; 3671 static struct kobj_type rdev_ktype = { 3672 .release = rdev_free, 3673 .sysfs_ops = &rdev_sysfs_ops, 3674 .default_attrs = rdev_default_attrs, 3675 }; 3676 3677 int md_rdev_init(struct md_rdev *rdev) 3678 { 3679 rdev->desc_nr = -1; 3680 rdev->saved_raid_disk = -1; 3681 rdev->raid_disk = -1; 3682 rdev->flags = 0; 3683 rdev->data_offset = 0; 3684 rdev->new_data_offset = 0; 3685 rdev->sb_events = 0; 3686 rdev->last_read_error = 0; 3687 rdev->sb_loaded = 0; 3688 rdev->bb_page = NULL; 3689 atomic_set(&rdev->nr_pending, 0); 3690 atomic_set(&rdev->read_errors, 0); 3691 atomic_set(&rdev->corrected_errors, 0); 3692 3693 INIT_LIST_HEAD(&rdev->same_set); 3694 init_waitqueue_head(&rdev->blocked_wait); 3695 3696 /* Add space to store bad block list. 3697 * This reserves the space even on arrays where it cannot 3698 * be used - I wonder if that matters 3699 */ 3700 return badblocks_init(&rdev->badblocks, 0); 3701 } 3702 EXPORT_SYMBOL_GPL(md_rdev_init); 3703 /* 3704 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3705 * 3706 * mark the device faulty if: 3707 * 3708 * - the device is nonexistent (zero size) 3709 * - the device has no valid superblock 3710 * 3711 * a faulty rdev _never_ has rdev->sb set. 3712 */ 3713 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3714 { 3715 char b[BDEVNAME_SIZE]; 3716 int err; 3717 struct md_rdev *rdev; 3718 sector_t size; 3719 3720 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3721 if (!rdev) 3722 return ERR_PTR(-ENOMEM); 3723 3724 err = md_rdev_init(rdev); 3725 if (err) 3726 goto abort_free; 3727 err = alloc_disk_sb(rdev); 3728 if (err) 3729 goto abort_free; 3730 3731 err = lock_rdev(rdev, newdev, super_format == -2); 3732 if (err) 3733 goto abort_free; 3734 3735 kobject_init(&rdev->kobj, &rdev_ktype); 3736 3737 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3738 if (!size) { 3739 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3740 bdevname(rdev->bdev,b)); 3741 err = -EINVAL; 3742 goto abort_free; 3743 } 3744 3745 if (super_format >= 0) { 3746 err = super_types[super_format]. 3747 load_super(rdev, NULL, super_minor); 3748 if (err == -EINVAL) { 3749 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3750 bdevname(rdev->bdev,b), 3751 super_format, super_minor); 3752 goto abort_free; 3753 } 3754 if (err < 0) { 3755 pr_warn("md: could not read %s's sb, not importing!\n", 3756 bdevname(rdev->bdev,b)); 3757 goto abort_free; 3758 } 3759 } 3760 3761 return rdev; 3762 3763 abort_free: 3764 if (rdev->bdev) 3765 unlock_rdev(rdev); 3766 md_rdev_clear(rdev); 3767 kfree(rdev); 3768 return ERR_PTR(err); 3769 } 3770 3771 /* 3772 * Check a full RAID array for plausibility 3773 */ 3774 3775 static int analyze_sbs(struct mddev *mddev) 3776 { 3777 int i; 3778 struct md_rdev *rdev, *freshest, *tmp; 3779 char b[BDEVNAME_SIZE]; 3780 3781 freshest = NULL; 3782 rdev_for_each_safe(rdev, tmp, mddev) 3783 switch (super_types[mddev->major_version]. 3784 load_super(rdev, freshest, mddev->minor_version)) { 3785 case 1: 3786 freshest = rdev; 3787 break; 3788 case 0: 3789 break; 3790 default: 3791 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3792 bdevname(rdev->bdev,b)); 3793 md_kick_rdev_from_array(rdev); 3794 } 3795 3796 /* Cannot find a valid fresh disk */ 3797 if (!freshest) { 3798 pr_warn("md: cannot find a valid disk\n"); 3799 return -EINVAL; 3800 } 3801 3802 super_types[mddev->major_version]. 3803 validate_super(mddev, freshest); 3804 3805 i = 0; 3806 rdev_for_each_safe(rdev, tmp, mddev) { 3807 if (mddev->max_disks && 3808 (rdev->desc_nr >= mddev->max_disks || 3809 i > mddev->max_disks)) { 3810 pr_warn("md: %s: %s: only %d devices permitted\n", 3811 mdname(mddev), bdevname(rdev->bdev, b), 3812 mddev->max_disks); 3813 md_kick_rdev_from_array(rdev); 3814 continue; 3815 } 3816 if (rdev != freshest) { 3817 if (super_types[mddev->major_version]. 3818 validate_super(mddev, rdev)) { 3819 pr_warn("md: kicking non-fresh %s from array!\n", 3820 bdevname(rdev->bdev,b)); 3821 md_kick_rdev_from_array(rdev); 3822 continue; 3823 } 3824 } 3825 if (mddev->level == LEVEL_MULTIPATH) { 3826 rdev->desc_nr = i++; 3827 rdev->raid_disk = rdev->desc_nr; 3828 set_bit(In_sync, &rdev->flags); 3829 } else if (rdev->raid_disk >= 3830 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3831 !test_bit(Journal, &rdev->flags)) { 3832 rdev->raid_disk = -1; 3833 clear_bit(In_sync, &rdev->flags); 3834 } 3835 } 3836 3837 return 0; 3838 } 3839 3840 /* Read a fixed-point number. 3841 * Numbers in sysfs attributes should be in "standard" units where 3842 * possible, so time should be in seconds. 3843 * However we internally use a a much smaller unit such as 3844 * milliseconds or jiffies. 3845 * This function takes a decimal number with a possible fractional 3846 * component, and produces an integer which is the result of 3847 * multiplying that number by 10^'scale'. 3848 * all without any floating-point arithmetic. 3849 */ 3850 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3851 { 3852 unsigned long result = 0; 3853 long decimals = -1; 3854 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3855 if (*cp == '.') 3856 decimals = 0; 3857 else if (decimals < scale) { 3858 unsigned int value; 3859 value = *cp - '0'; 3860 result = result * 10 + value; 3861 if (decimals >= 0) 3862 decimals++; 3863 } 3864 cp++; 3865 } 3866 if (*cp == '\n') 3867 cp++; 3868 if (*cp) 3869 return -EINVAL; 3870 if (decimals < 0) 3871 decimals = 0; 3872 *res = result * int_pow(10, scale - decimals); 3873 return 0; 3874 } 3875 3876 static ssize_t 3877 safe_delay_show(struct mddev *mddev, char *page) 3878 { 3879 int msec = (mddev->safemode_delay*1000)/HZ; 3880 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3881 } 3882 static ssize_t 3883 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3884 { 3885 unsigned long msec; 3886 3887 if (mddev_is_clustered(mddev)) { 3888 pr_warn("md: Safemode is disabled for clustered mode\n"); 3889 return -EINVAL; 3890 } 3891 3892 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3893 return -EINVAL; 3894 if (msec == 0) 3895 mddev->safemode_delay = 0; 3896 else { 3897 unsigned long old_delay = mddev->safemode_delay; 3898 unsigned long new_delay = (msec*HZ)/1000; 3899 3900 if (new_delay == 0) 3901 new_delay = 1; 3902 mddev->safemode_delay = new_delay; 3903 if (new_delay < old_delay || old_delay == 0) 3904 mod_timer(&mddev->safemode_timer, jiffies+1); 3905 } 3906 return len; 3907 } 3908 static struct md_sysfs_entry md_safe_delay = 3909 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3910 3911 static ssize_t 3912 level_show(struct mddev *mddev, char *page) 3913 { 3914 struct md_personality *p; 3915 int ret; 3916 spin_lock(&mddev->lock); 3917 p = mddev->pers; 3918 if (p) 3919 ret = sprintf(page, "%s\n", p->name); 3920 else if (mddev->clevel[0]) 3921 ret = sprintf(page, "%s\n", mddev->clevel); 3922 else if (mddev->level != LEVEL_NONE) 3923 ret = sprintf(page, "%d\n", mddev->level); 3924 else 3925 ret = 0; 3926 spin_unlock(&mddev->lock); 3927 return ret; 3928 } 3929 3930 static ssize_t 3931 level_store(struct mddev *mddev, const char *buf, size_t len) 3932 { 3933 char clevel[16]; 3934 ssize_t rv; 3935 size_t slen = len; 3936 struct md_personality *pers, *oldpers; 3937 long level; 3938 void *priv, *oldpriv; 3939 struct md_rdev *rdev; 3940 3941 if (slen == 0 || slen >= sizeof(clevel)) 3942 return -EINVAL; 3943 3944 rv = mddev_lock(mddev); 3945 if (rv) 3946 return rv; 3947 3948 if (mddev->pers == NULL) { 3949 strncpy(mddev->clevel, buf, slen); 3950 if (mddev->clevel[slen-1] == '\n') 3951 slen--; 3952 mddev->clevel[slen] = 0; 3953 mddev->level = LEVEL_NONE; 3954 rv = len; 3955 goto out_unlock; 3956 } 3957 rv = -EROFS; 3958 if (mddev->ro) 3959 goto out_unlock; 3960 3961 /* request to change the personality. Need to ensure: 3962 * - array is not engaged in resync/recovery/reshape 3963 * - old personality can be suspended 3964 * - new personality will access other array. 3965 */ 3966 3967 rv = -EBUSY; 3968 if (mddev->sync_thread || 3969 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3970 mddev->reshape_position != MaxSector || 3971 mddev->sysfs_active) 3972 goto out_unlock; 3973 3974 rv = -EINVAL; 3975 if (!mddev->pers->quiesce) { 3976 pr_warn("md: %s: %s does not support online personality change\n", 3977 mdname(mddev), mddev->pers->name); 3978 goto out_unlock; 3979 } 3980 3981 /* Now find the new personality */ 3982 strncpy(clevel, buf, slen); 3983 if (clevel[slen-1] == '\n') 3984 slen--; 3985 clevel[slen] = 0; 3986 if (kstrtol(clevel, 10, &level)) 3987 level = LEVEL_NONE; 3988 3989 if (request_module("md-%s", clevel) != 0) 3990 request_module("md-level-%s", clevel); 3991 spin_lock(&pers_lock); 3992 pers = find_pers(level, clevel); 3993 if (!pers || !try_module_get(pers->owner)) { 3994 spin_unlock(&pers_lock); 3995 pr_warn("md: personality %s not loaded\n", clevel); 3996 rv = -EINVAL; 3997 goto out_unlock; 3998 } 3999 spin_unlock(&pers_lock); 4000 4001 if (pers == mddev->pers) { 4002 /* Nothing to do! */ 4003 module_put(pers->owner); 4004 rv = len; 4005 goto out_unlock; 4006 } 4007 if (!pers->takeover) { 4008 module_put(pers->owner); 4009 pr_warn("md: %s: %s does not support personality takeover\n", 4010 mdname(mddev), clevel); 4011 rv = -EINVAL; 4012 goto out_unlock; 4013 } 4014 4015 rdev_for_each(rdev, mddev) 4016 rdev->new_raid_disk = rdev->raid_disk; 4017 4018 /* ->takeover must set new_* and/or delta_disks 4019 * if it succeeds, and may set them when it fails. 4020 */ 4021 priv = pers->takeover(mddev); 4022 if (IS_ERR(priv)) { 4023 mddev->new_level = mddev->level; 4024 mddev->new_layout = mddev->layout; 4025 mddev->new_chunk_sectors = mddev->chunk_sectors; 4026 mddev->raid_disks -= mddev->delta_disks; 4027 mddev->delta_disks = 0; 4028 mddev->reshape_backwards = 0; 4029 module_put(pers->owner); 4030 pr_warn("md: %s: %s would not accept array\n", 4031 mdname(mddev), clevel); 4032 rv = PTR_ERR(priv); 4033 goto out_unlock; 4034 } 4035 4036 /* Looks like we have a winner */ 4037 mddev_suspend(mddev); 4038 mddev_detach(mddev); 4039 4040 spin_lock(&mddev->lock); 4041 oldpers = mddev->pers; 4042 oldpriv = mddev->private; 4043 mddev->pers = pers; 4044 mddev->private = priv; 4045 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4046 mddev->level = mddev->new_level; 4047 mddev->layout = mddev->new_layout; 4048 mddev->chunk_sectors = mddev->new_chunk_sectors; 4049 mddev->delta_disks = 0; 4050 mddev->reshape_backwards = 0; 4051 mddev->degraded = 0; 4052 spin_unlock(&mddev->lock); 4053 4054 if (oldpers->sync_request == NULL && 4055 mddev->external) { 4056 /* We are converting from a no-redundancy array 4057 * to a redundancy array and metadata is managed 4058 * externally so we need to be sure that writes 4059 * won't block due to a need to transition 4060 * clean->dirty 4061 * until external management is started. 4062 */ 4063 mddev->in_sync = 0; 4064 mddev->safemode_delay = 0; 4065 mddev->safemode = 0; 4066 } 4067 4068 oldpers->free(mddev, oldpriv); 4069 4070 if (oldpers->sync_request == NULL && 4071 pers->sync_request != NULL) { 4072 /* need to add the md_redundancy_group */ 4073 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4074 pr_warn("md: cannot register extra attributes for %s\n", 4075 mdname(mddev)); 4076 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4077 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4078 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4079 } 4080 if (oldpers->sync_request != NULL && 4081 pers->sync_request == NULL) { 4082 /* need to remove the md_redundancy_group */ 4083 if (mddev->to_remove == NULL) 4084 mddev->to_remove = &md_redundancy_group; 4085 } 4086 4087 module_put(oldpers->owner); 4088 4089 rdev_for_each(rdev, mddev) { 4090 if (rdev->raid_disk < 0) 4091 continue; 4092 if (rdev->new_raid_disk >= mddev->raid_disks) 4093 rdev->new_raid_disk = -1; 4094 if (rdev->new_raid_disk == rdev->raid_disk) 4095 continue; 4096 sysfs_unlink_rdev(mddev, rdev); 4097 } 4098 rdev_for_each(rdev, mddev) { 4099 if (rdev->raid_disk < 0) 4100 continue; 4101 if (rdev->new_raid_disk == rdev->raid_disk) 4102 continue; 4103 rdev->raid_disk = rdev->new_raid_disk; 4104 if (rdev->raid_disk < 0) 4105 clear_bit(In_sync, &rdev->flags); 4106 else { 4107 if (sysfs_link_rdev(mddev, rdev)) 4108 pr_warn("md: cannot register rd%d for %s after level change\n", 4109 rdev->raid_disk, mdname(mddev)); 4110 } 4111 } 4112 4113 if (pers->sync_request == NULL) { 4114 /* this is now an array without redundancy, so 4115 * it must always be in_sync 4116 */ 4117 mddev->in_sync = 1; 4118 del_timer_sync(&mddev->safemode_timer); 4119 } 4120 blk_set_stacking_limits(&mddev->queue->limits); 4121 pers->run(mddev); 4122 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4123 mddev_resume(mddev); 4124 if (!mddev->thread) 4125 md_update_sb(mddev, 1); 4126 sysfs_notify_dirent_safe(mddev->sysfs_level); 4127 md_new_event(mddev); 4128 rv = len; 4129 out_unlock: 4130 mddev_unlock(mddev); 4131 return rv; 4132 } 4133 4134 static struct md_sysfs_entry md_level = 4135 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4136 4137 static ssize_t 4138 layout_show(struct mddev *mddev, char *page) 4139 { 4140 /* just a number, not meaningful for all levels */ 4141 if (mddev->reshape_position != MaxSector && 4142 mddev->layout != mddev->new_layout) 4143 return sprintf(page, "%d (%d)\n", 4144 mddev->new_layout, mddev->layout); 4145 return sprintf(page, "%d\n", mddev->layout); 4146 } 4147 4148 static ssize_t 4149 layout_store(struct mddev *mddev, const char *buf, size_t len) 4150 { 4151 unsigned int n; 4152 int err; 4153 4154 err = kstrtouint(buf, 10, &n); 4155 if (err < 0) 4156 return err; 4157 err = mddev_lock(mddev); 4158 if (err) 4159 return err; 4160 4161 if (mddev->pers) { 4162 if (mddev->pers->check_reshape == NULL) 4163 err = -EBUSY; 4164 else if (mddev->ro) 4165 err = -EROFS; 4166 else { 4167 mddev->new_layout = n; 4168 err = mddev->pers->check_reshape(mddev); 4169 if (err) 4170 mddev->new_layout = mddev->layout; 4171 } 4172 } else { 4173 mddev->new_layout = n; 4174 if (mddev->reshape_position == MaxSector) 4175 mddev->layout = n; 4176 } 4177 mddev_unlock(mddev); 4178 return err ?: len; 4179 } 4180 static struct md_sysfs_entry md_layout = 4181 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4182 4183 static ssize_t 4184 raid_disks_show(struct mddev *mddev, char *page) 4185 { 4186 if (mddev->raid_disks == 0) 4187 return 0; 4188 if (mddev->reshape_position != MaxSector && 4189 mddev->delta_disks != 0) 4190 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4191 mddev->raid_disks - mddev->delta_disks); 4192 return sprintf(page, "%d\n", mddev->raid_disks); 4193 } 4194 4195 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4196 4197 static ssize_t 4198 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4199 { 4200 unsigned int n; 4201 int err; 4202 4203 err = kstrtouint(buf, 10, &n); 4204 if (err < 0) 4205 return err; 4206 4207 err = mddev_lock(mddev); 4208 if (err) 4209 return err; 4210 if (mddev->pers) 4211 err = update_raid_disks(mddev, n); 4212 else if (mddev->reshape_position != MaxSector) { 4213 struct md_rdev *rdev; 4214 int olddisks = mddev->raid_disks - mddev->delta_disks; 4215 4216 err = -EINVAL; 4217 rdev_for_each(rdev, mddev) { 4218 if (olddisks < n && 4219 rdev->data_offset < rdev->new_data_offset) 4220 goto out_unlock; 4221 if (olddisks > n && 4222 rdev->data_offset > rdev->new_data_offset) 4223 goto out_unlock; 4224 } 4225 err = 0; 4226 mddev->delta_disks = n - olddisks; 4227 mddev->raid_disks = n; 4228 mddev->reshape_backwards = (mddev->delta_disks < 0); 4229 } else 4230 mddev->raid_disks = n; 4231 out_unlock: 4232 mddev_unlock(mddev); 4233 return err ? err : len; 4234 } 4235 static struct md_sysfs_entry md_raid_disks = 4236 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4237 4238 static ssize_t 4239 uuid_show(struct mddev *mddev, char *page) 4240 { 4241 return sprintf(page, "%pU\n", mddev->uuid); 4242 } 4243 static struct md_sysfs_entry md_uuid = 4244 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4245 4246 static ssize_t 4247 chunk_size_show(struct mddev *mddev, char *page) 4248 { 4249 if (mddev->reshape_position != MaxSector && 4250 mddev->chunk_sectors != mddev->new_chunk_sectors) 4251 return sprintf(page, "%d (%d)\n", 4252 mddev->new_chunk_sectors << 9, 4253 mddev->chunk_sectors << 9); 4254 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4255 } 4256 4257 static ssize_t 4258 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4259 { 4260 unsigned long n; 4261 int err; 4262 4263 err = kstrtoul(buf, 10, &n); 4264 if (err < 0) 4265 return err; 4266 4267 err = mddev_lock(mddev); 4268 if (err) 4269 return err; 4270 if (mddev->pers) { 4271 if (mddev->pers->check_reshape == NULL) 4272 err = -EBUSY; 4273 else if (mddev->ro) 4274 err = -EROFS; 4275 else { 4276 mddev->new_chunk_sectors = n >> 9; 4277 err = mddev->pers->check_reshape(mddev); 4278 if (err) 4279 mddev->new_chunk_sectors = mddev->chunk_sectors; 4280 } 4281 } else { 4282 mddev->new_chunk_sectors = n >> 9; 4283 if (mddev->reshape_position == MaxSector) 4284 mddev->chunk_sectors = n >> 9; 4285 } 4286 mddev_unlock(mddev); 4287 return err ?: len; 4288 } 4289 static struct md_sysfs_entry md_chunk_size = 4290 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4291 4292 static ssize_t 4293 resync_start_show(struct mddev *mddev, char *page) 4294 { 4295 if (mddev->recovery_cp == MaxSector) 4296 return sprintf(page, "none\n"); 4297 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4298 } 4299 4300 static ssize_t 4301 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4302 { 4303 unsigned long long n; 4304 int err; 4305 4306 if (cmd_match(buf, "none")) 4307 n = MaxSector; 4308 else { 4309 err = kstrtoull(buf, 10, &n); 4310 if (err < 0) 4311 return err; 4312 if (n != (sector_t)n) 4313 return -EINVAL; 4314 } 4315 4316 err = mddev_lock(mddev); 4317 if (err) 4318 return err; 4319 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4320 err = -EBUSY; 4321 4322 if (!err) { 4323 mddev->recovery_cp = n; 4324 if (mddev->pers) 4325 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4326 } 4327 mddev_unlock(mddev); 4328 return err ?: len; 4329 } 4330 static struct md_sysfs_entry md_resync_start = 4331 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4332 resync_start_show, resync_start_store); 4333 4334 /* 4335 * The array state can be: 4336 * 4337 * clear 4338 * No devices, no size, no level 4339 * Equivalent to STOP_ARRAY ioctl 4340 * inactive 4341 * May have some settings, but array is not active 4342 * all IO results in error 4343 * When written, doesn't tear down array, but just stops it 4344 * suspended (not supported yet) 4345 * All IO requests will block. The array can be reconfigured. 4346 * Writing this, if accepted, will block until array is quiescent 4347 * readonly 4348 * no resync can happen. no superblocks get written. 4349 * write requests fail 4350 * read-auto 4351 * like readonly, but behaves like 'clean' on a write request. 4352 * 4353 * clean - no pending writes, but otherwise active. 4354 * When written to inactive array, starts without resync 4355 * If a write request arrives then 4356 * if metadata is known, mark 'dirty' and switch to 'active'. 4357 * if not known, block and switch to write-pending 4358 * If written to an active array that has pending writes, then fails. 4359 * active 4360 * fully active: IO and resync can be happening. 4361 * When written to inactive array, starts with resync 4362 * 4363 * write-pending 4364 * clean, but writes are blocked waiting for 'active' to be written. 4365 * 4366 * active-idle 4367 * like active, but no writes have been seen for a while (100msec). 4368 * 4369 * broken 4370 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4371 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4372 * when a member is gone, so this state will at least alert the 4373 * user that something is wrong. 4374 */ 4375 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4376 write_pending, active_idle, broken, bad_word}; 4377 static char *array_states[] = { 4378 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4379 "write-pending", "active-idle", "broken", NULL }; 4380 4381 static int match_word(const char *word, char **list) 4382 { 4383 int n; 4384 for (n=0; list[n]; n++) 4385 if (cmd_match(word, list[n])) 4386 break; 4387 return n; 4388 } 4389 4390 static ssize_t 4391 array_state_show(struct mddev *mddev, char *page) 4392 { 4393 enum array_state st = inactive; 4394 4395 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4396 switch(mddev->ro) { 4397 case 1: 4398 st = readonly; 4399 break; 4400 case 2: 4401 st = read_auto; 4402 break; 4403 case 0: 4404 spin_lock(&mddev->lock); 4405 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4406 st = write_pending; 4407 else if (mddev->in_sync) 4408 st = clean; 4409 else if (mddev->safemode) 4410 st = active_idle; 4411 else 4412 st = active; 4413 spin_unlock(&mddev->lock); 4414 } 4415 4416 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4417 st = broken; 4418 } else { 4419 if (list_empty(&mddev->disks) && 4420 mddev->raid_disks == 0 && 4421 mddev->dev_sectors == 0) 4422 st = clear; 4423 else 4424 st = inactive; 4425 } 4426 return sprintf(page, "%s\n", array_states[st]); 4427 } 4428 4429 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4430 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4431 static int restart_array(struct mddev *mddev); 4432 4433 static ssize_t 4434 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4435 { 4436 int err = 0; 4437 enum array_state st = match_word(buf, array_states); 4438 4439 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4440 /* don't take reconfig_mutex when toggling between 4441 * clean and active 4442 */ 4443 spin_lock(&mddev->lock); 4444 if (st == active) { 4445 restart_array(mddev); 4446 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4447 md_wakeup_thread(mddev->thread); 4448 wake_up(&mddev->sb_wait); 4449 } else /* st == clean */ { 4450 restart_array(mddev); 4451 if (!set_in_sync(mddev)) 4452 err = -EBUSY; 4453 } 4454 if (!err) 4455 sysfs_notify_dirent_safe(mddev->sysfs_state); 4456 spin_unlock(&mddev->lock); 4457 return err ?: len; 4458 } 4459 err = mddev_lock(mddev); 4460 if (err) 4461 return err; 4462 err = -EINVAL; 4463 switch(st) { 4464 case bad_word: 4465 break; 4466 case clear: 4467 /* stopping an active array */ 4468 err = do_md_stop(mddev, 0, NULL); 4469 break; 4470 case inactive: 4471 /* stopping an active array */ 4472 if (mddev->pers) 4473 err = do_md_stop(mddev, 2, NULL); 4474 else 4475 err = 0; /* already inactive */ 4476 break; 4477 case suspended: 4478 break; /* not supported yet */ 4479 case readonly: 4480 if (mddev->pers) 4481 err = md_set_readonly(mddev, NULL); 4482 else { 4483 mddev->ro = 1; 4484 set_disk_ro(mddev->gendisk, 1); 4485 err = do_md_run(mddev); 4486 } 4487 break; 4488 case read_auto: 4489 if (mddev->pers) { 4490 if (mddev->ro == 0) 4491 err = md_set_readonly(mddev, NULL); 4492 else if (mddev->ro == 1) 4493 err = restart_array(mddev); 4494 if (err == 0) { 4495 mddev->ro = 2; 4496 set_disk_ro(mddev->gendisk, 0); 4497 } 4498 } else { 4499 mddev->ro = 2; 4500 err = do_md_run(mddev); 4501 } 4502 break; 4503 case clean: 4504 if (mddev->pers) { 4505 err = restart_array(mddev); 4506 if (err) 4507 break; 4508 spin_lock(&mddev->lock); 4509 if (!set_in_sync(mddev)) 4510 err = -EBUSY; 4511 spin_unlock(&mddev->lock); 4512 } else 4513 err = -EINVAL; 4514 break; 4515 case active: 4516 if (mddev->pers) { 4517 err = restart_array(mddev); 4518 if (err) 4519 break; 4520 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4521 wake_up(&mddev->sb_wait); 4522 err = 0; 4523 } else { 4524 mddev->ro = 0; 4525 set_disk_ro(mddev->gendisk, 0); 4526 err = do_md_run(mddev); 4527 } 4528 break; 4529 case write_pending: 4530 case active_idle: 4531 case broken: 4532 /* these cannot be set */ 4533 break; 4534 } 4535 4536 if (!err) { 4537 if (mddev->hold_active == UNTIL_IOCTL) 4538 mddev->hold_active = 0; 4539 sysfs_notify_dirent_safe(mddev->sysfs_state); 4540 } 4541 mddev_unlock(mddev); 4542 return err ?: len; 4543 } 4544 static struct md_sysfs_entry md_array_state = 4545 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4546 4547 static ssize_t 4548 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4549 return sprintf(page, "%d\n", 4550 atomic_read(&mddev->max_corr_read_errors)); 4551 } 4552 4553 static ssize_t 4554 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4555 { 4556 unsigned int n; 4557 int rv; 4558 4559 rv = kstrtouint(buf, 10, &n); 4560 if (rv < 0) 4561 return rv; 4562 atomic_set(&mddev->max_corr_read_errors, n); 4563 return len; 4564 } 4565 4566 static struct md_sysfs_entry max_corr_read_errors = 4567 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4568 max_corrected_read_errors_store); 4569 4570 static ssize_t 4571 null_show(struct mddev *mddev, char *page) 4572 { 4573 return -EINVAL; 4574 } 4575 4576 /* need to ensure rdev_delayed_delete() has completed */ 4577 static void flush_rdev_wq(struct mddev *mddev) 4578 { 4579 struct md_rdev *rdev; 4580 4581 rcu_read_lock(); 4582 rdev_for_each_rcu(rdev, mddev) 4583 if (work_pending(&rdev->del_work)) { 4584 flush_workqueue(md_rdev_misc_wq); 4585 break; 4586 } 4587 rcu_read_unlock(); 4588 } 4589 4590 static ssize_t 4591 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4592 { 4593 /* buf must be %d:%d\n? giving major and minor numbers */ 4594 /* The new device is added to the array. 4595 * If the array has a persistent superblock, we read the 4596 * superblock to initialise info and check validity. 4597 * Otherwise, only checking done is that in bind_rdev_to_array, 4598 * which mainly checks size. 4599 */ 4600 char *e; 4601 int major = simple_strtoul(buf, &e, 10); 4602 int minor; 4603 dev_t dev; 4604 struct md_rdev *rdev; 4605 int err; 4606 4607 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4608 return -EINVAL; 4609 minor = simple_strtoul(e+1, &e, 10); 4610 if (*e && *e != '\n') 4611 return -EINVAL; 4612 dev = MKDEV(major, minor); 4613 if (major != MAJOR(dev) || 4614 minor != MINOR(dev)) 4615 return -EOVERFLOW; 4616 4617 flush_rdev_wq(mddev); 4618 err = mddev_lock(mddev); 4619 if (err) 4620 return err; 4621 if (mddev->persistent) { 4622 rdev = md_import_device(dev, mddev->major_version, 4623 mddev->minor_version); 4624 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4625 struct md_rdev *rdev0 4626 = list_entry(mddev->disks.next, 4627 struct md_rdev, same_set); 4628 err = super_types[mddev->major_version] 4629 .load_super(rdev, rdev0, mddev->minor_version); 4630 if (err < 0) 4631 goto out; 4632 } 4633 } else if (mddev->external) 4634 rdev = md_import_device(dev, -2, -1); 4635 else 4636 rdev = md_import_device(dev, -1, -1); 4637 4638 if (IS_ERR(rdev)) { 4639 mddev_unlock(mddev); 4640 return PTR_ERR(rdev); 4641 } 4642 err = bind_rdev_to_array(rdev, mddev); 4643 out: 4644 if (err) 4645 export_rdev(rdev); 4646 mddev_unlock(mddev); 4647 if (!err) 4648 md_new_event(mddev); 4649 return err ? err : len; 4650 } 4651 4652 static struct md_sysfs_entry md_new_device = 4653 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4654 4655 static ssize_t 4656 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4657 { 4658 char *end; 4659 unsigned long chunk, end_chunk; 4660 int err; 4661 4662 err = mddev_lock(mddev); 4663 if (err) 4664 return err; 4665 if (!mddev->bitmap) 4666 goto out; 4667 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4668 while (*buf) { 4669 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4670 if (buf == end) break; 4671 if (*end == '-') { /* range */ 4672 buf = end + 1; 4673 end_chunk = simple_strtoul(buf, &end, 0); 4674 if (buf == end) break; 4675 } 4676 if (*end && !isspace(*end)) break; 4677 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4678 buf = skip_spaces(end); 4679 } 4680 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4681 out: 4682 mddev_unlock(mddev); 4683 return len; 4684 } 4685 4686 static struct md_sysfs_entry md_bitmap = 4687 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4688 4689 static ssize_t 4690 size_show(struct mddev *mddev, char *page) 4691 { 4692 return sprintf(page, "%llu\n", 4693 (unsigned long long)mddev->dev_sectors / 2); 4694 } 4695 4696 static int update_size(struct mddev *mddev, sector_t num_sectors); 4697 4698 static ssize_t 4699 size_store(struct mddev *mddev, const char *buf, size_t len) 4700 { 4701 /* If array is inactive, we can reduce the component size, but 4702 * not increase it (except from 0). 4703 * If array is active, we can try an on-line resize 4704 */ 4705 sector_t sectors; 4706 int err = strict_blocks_to_sectors(buf, §ors); 4707 4708 if (err < 0) 4709 return err; 4710 err = mddev_lock(mddev); 4711 if (err) 4712 return err; 4713 if (mddev->pers) { 4714 err = update_size(mddev, sectors); 4715 if (err == 0) 4716 md_update_sb(mddev, 1); 4717 } else { 4718 if (mddev->dev_sectors == 0 || 4719 mddev->dev_sectors > sectors) 4720 mddev->dev_sectors = sectors; 4721 else 4722 err = -ENOSPC; 4723 } 4724 mddev_unlock(mddev); 4725 return err ? err : len; 4726 } 4727 4728 static struct md_sysfs_entry md_size = 4729 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4730 4731 /* Metadata version. 4732 * This is one of 4733 * 'none' for arrays with no metadata (good luck...) 4734 * 'external' for arrays with externally managed metadata, 4735 * or N.M for internally known formats 4736 */ 4737 static ssize_t 4738 metadata_show(struct mddev *mddev, char *page) 4739 { 4740 if (mddev->persistent) 4741 return sprintf(page, "%d.%d\n", 4742 mddev->major_version, mddev->minor_version); 4743 else if (mddev->external) 4744 return sprintf(page, "external:%s\n", mddev->metadata_type); 4745 else 4746 return sprintf(page, "none\n"); 4747 } 4748 4749 static ssize_t 4750 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4751 { 4752 int major, minor; 4753 char *e; 4754 int err; 4755 /* Changing the details of 'external' metadata is 4756 * always permitted. Otherwise there must be 4757 * no devices attached to the array. 4758 */ 4759 4760 err = mddev_lock(mddev); 4761 if (err) 4762 return err; 4763 err = -EBUSY; 4764 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4765 ; 4766 else if (!list_empty(&mddev->disks)) 4767 goto out_unlock; 4768 4769 err = 0; 4770 if (cmd_match(buf, "none")) { 4771 mddev->persistent = 0; 4772 mddev->external = 0; 4773 mddev->major_version = 0; 4774 mddev->minor_version = 90; 4775 goto out_unlock; 4776 } 4777 if (strncmp(buf, "external:", 9) == 0) { 4778 size_t namelen = len-9; 4779 if (namelen >= sizeof(mddev->metadata_type)) 4780 namelen = sizeof(mddev->metadata_type)-1; 4781 strncpy(mddev->metadata_type, buf+9, namelen); 4782 mddev->metadata_type[namelen] = 0; 4783 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4784 mddev->metadata_type[--namelen] = 0; 4785 mddev->persistent = 0; 4786 mddev->external = 1; 4787 mddev->major_version = 0; 4788 mddev->minor_version = 90; 4789 goto out_unlock; 4790 } 4791 major = simple_strtoul(buf, &e, 10); 4792 err = -EINVAL; 4793 if (e==buf || *e != '.') 4794 goto out_unlock; 4795 buf = e+1; 4796 minor = simple_strtoul(buf, &e, 10); 4797 if (e==buf || (*e && *e != '\n') ) 4798 goto out_unlock; 4799 err = -ENOENT; 4800 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4801 goto out_unlock; 4802 mddev->major_version = major; 4803 mddev->minor_version = minor; 4804 mddev->persistent = 1; 4805 mddev->external = 0; 4806 err = 0; 4807 out_unlock: 4808 mddev_unlock(mddev); 4809 return err ?: len; 4810 } 4811 4812 static struct md_sysfs_entry md_metadata = 4813 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4814 4815 static ssize_t 4816 action_show(struct mddev *mddev, char *page) 4817 { 4818 char *type = "idle"; 4819 unsigned long recovery = mddev->recovery; 4820 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4821 type = "frozen"; 4822 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4823 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4824 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4825 type = "reshape"; 4826 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4827 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4828 type = "resync"; 4829 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4830 type = "check"; 4831 else 4832 type = "repair"; 4833 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4834 type = "recover"; 4835 else if (mddev->reshape_position != MaxSector) 4836 type = "reshape"; 4837 } 4838 return sprintf(page, "%s\n", type); 4839 } 4840 4841 static ssize_t 4842 action_store(struct mddev *mddev, const char *page, size_t len) 4843 { 4844 if (!mddev->pers || !mddev->pers->sync_request) 4845 return -EINVAL; 4846 4847 4848 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4849 if (cmd_match(page, "frozen")) 4850 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4851 else 4852 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4853 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4854 mddev_lock(mddev) == 0) { 4855 if (work_pending(&mddev->del_work)) 4856 flush_workqueue(md_misc_wq); 4857 if (mddev->sync_thread) { 4858 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4859 md_reap_sync_thread(mddev); 4860 } 4861 mddev_unlock(mddev); 4862 } 4863 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4864 return -EBUSY; 4865 else if (cmd_match(page, "resync")) 4866 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4867 else if (cmd_match(page, "recover")) { 4868 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4869 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4870 } else if (cmd_match(page, "reshape")) { 4871 int err; 4872 if (mddev->pers->start_reshape == NULL) 4873 return -EINVAL; 4874 err = mddev_lock(mddev); 4875 if (!err) { 4876 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4877 err = -EBUSY; 4878 else { 4879 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4880 err = mddev->pers->start_reshape(mddev); 4881 } 4882 mddev_unlock(mddev); 4883 } 4884 if (err) 4885 return err; 4886 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4887 } else { 4888 if (cmd_match(page, "check")) 4889 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4890 else if (!cmd_match(page, "repair")) 4891 return -EINVAL; 4892 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4893 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4894 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4895 } 4896 if (mddev->ro == 2) { 4897 /* A write to sync_action is enough to justify 4898 * canceling read-auto mode 4899 */ 4900 mddev->ro = 0; 4901 md_wakeup_thread(mddev->sync_thread); 4902 } 4903 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4904 md_wakeup_thread(mddev->thread); 4905 sysfs_notify_dirent_safe(mddev->sysfs_action); 4906 return len; 4907 } 4908 4909 static struct md_sysfs_entry md_scan_mode = 4910 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4911 4912 static ssize_t 4913 last_sync_action_show(struct mddev *mddev, char *page) 4914 { 4915 return sprintf(page, "%s\n", mddev->last_sync_action); 4916 } 4917 4918 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4919 4920 static ssize_t 4921 mismatch_cnt_show(struct mddev *mddev, char *page) 4922 { 4923 return sprintf(page, "%llu\n", 4924 (unsigned long long) 4925 atomic64_read(&mddev->resync_mismatches)); 4926 } 4927 4928 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4929 4930 static ssize_t 4931 sync_min_show(struct mddev *mddev, char *page) 4932 { 4933 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4934 mddev->sync_speed_min ? "local": "system"); 4935 } 4936 4937 static ssize_t 4938 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4939 { 4940 unsigned int min; 4941 int rv; 4942 4943 if (strncmp(buf, "system", 6)==0) { 4944 min = 0; 4945 } else { 4946 rv = kstrtouint(buf, 10, &min); 4947 if (rv < 0) 4948 return rv; 4949 if (min == 0) 4950 return -EINVAL; 4951 } 4952 mddev->sync_speed_min = min; 4953 return len; 4954 } 4955 4956 static struct md_sysfs_entry md_sync_min = 4957 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4958 4959 static ssize_t 4960 sync_max_show(struct mddev *mddev, char *page) 4961 { 4962 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4963 mddev->sync_speed_max ? "local": "system"); 4964 } 4965 4966 static ssize_t 4967 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4968 { 4969 unsigned int max; 4970 int rv; 4971 4972 if (strncmp(buf, "system", 6)==0) { 4973 max = 0; 4974 } else { 4975 rv = kstrtouint(buf, 10, &max); 4976 if (rv < 0) 4977 return rv; 4978 if (max == 0) 4979 return -EINVAL; 4980 } 4981 mddev->sync_speed_max = max; 4982 return len; 4983 } 4984 4985 static struct md_sysfs_entry md_sync_max = 4986 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4987 4988 static ssize_t 4989 degraded_show(struct mddev *mddev, char *page) 4990 { 4991 return sprintf(page, "%d\n", mddev->degraded); 4992 } 4993 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4994 4995 static ssize_t 4996 sync_force_parallel_show(struct mddev *mddev, char *page) 4997 { 4998 return sprintf(page, "%d\n", mddev->parallel_resync); 4999 } 5000 5001 static ssize_t 5002 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5003 { 5004 long n; 5005 5006 if (kstrtol(buf, 10, &n)) 5007 return -EINVAL; 5008 5009 if (n != 0 && n != 1) 5010 return -EINVAL; 5011 5012 mddev->parallel_resync = n; 5013 5014 if (mddev->sync_thread) 5015 wake_up(&resync_wait); 5016 5017 return len; 5018 } 5019 5020 /* force parallel resync, even with shared block devices */ 5021 static struct md_sysfs_entry md_sync_force_parallel = 5022 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5023 sync_force_parallel_show, sync_force_parallel_store); 5024 5025 static ssize_t 5026 sync_speed_show(struct mddev *mddev, char *page) 5027 { 5028 unsigned long resync, dt, db; 5029 if (mddev->curr_resync == 0) 5030 return sprintf(page, "none\n"); 5031 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5032 dt = (jiffies - mddev->resync_mark) / HZ; 5033 if (!dt) dt++; 5034 db = resync - mddev->resync_mark_cnt; 5035 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5036 } 5037 5038 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5039 5040 static ssize_t 5041 sync_completed_show(struct mddev *mddev, char *page) 5042 { 5043 unsigned long long max_sectors, resync; 5044 5045 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5046 return sprintf(page, "none\n"); 5047 5048 if (mddev->curr_resync == 1 || 5049 mddev->curr_resync == 2) 5050 return sprintf(page, "delayed\n"); 5051 5052 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5053 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5054 max_sectors = mddev->resync_max_sectors; 5055 else 5056 max_sectors = mddev->dev_sectors; 5057 5058 resync = mddev->curr_resync_completed; 5059 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5060 } 5061 5062 static struct md_sysfs_entry md_sync_completed = 5063 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5064 5065 static ssize_t 5066 min_sync_show(struct mddev *mddev, char *page) 5067 { 5068 return sprintf(page, "%llu\n", 5069 (unsigned long long)mddev->resync_min); 5070 } 5071 static ssize_t 5072 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5073 { 5074 unsigned long long min; 5075 int err; 5076 5077 if (kstrtoull(buf, 10, &min)) 5078 return -EINVAL; 5079 5080 spin_lock(&mddev->lock); 5081 err = -EINVAL; 5082 if (min > mddev->resync_max) 5083 goto out_unlock; 5084 5085 err = -EBUSY; 5086 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5087 goto out_unlock; 5088 5089 /* Round down to multiple of 4K for safety */ 5090 mddev->resync_min = round_down(min, 8); 5091 err = 0; 5092 5093 out_unlock: 5094 spin_unlock(&mddev->lock); 5095 return err ?: len; 5096 } 5097 5098 static struct md_sysfs_entry md_min_sync = 5099 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5100 5101 static ssize_t 5102 max_sync_show(struct mddev *mddev, char *page) 5103 { 5104 if (mddev->resync_max == MaxSector) 5105 return sprintf(page, "max\n"); 5106 else 5107 return sprintf(page, "%llu\n", 5108 (unsigned long long)mddev->resync_max); 5109 } 5110 static ssize_t 5111 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5112 { 5113 int err; 5114 spin_lock(&mddev->lock); 5115 if (strncmp(buf, "max", 3) == 0) 5116 mddev->resync_max = MaxSector; 5117 else { 5118 unsigned long long max; 5119 int chunk; 5120 5121 err = -EINVAL; 5122 if (kstrtoull(buf, 10, &max)) 5123 goto out_unlock; 5124 if (max < mddev->resync_min) 5125 goto out_unlock; 5126 5127 err = -EBUSY; 5128 if (max < mddev->resync_max && 5129 mddev->ro == 0 && 5130 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5131 goto out_unlock; 5132 5133 /* Must be a multiple of chunk_size */ 5134 chunk = mddev->chunk_sectors; 5135 if (chunk) { 5136 sector_t temp = max; 5137 5138 err = -EINVAL; 5139 if (sector_div(temp, chunk)) 5140 goto out_unlock; 5141 } 5142 mddev->resync_max = max; 5143 } 5144 wake_up(&mddev->recovery_wait); 5145 err = 0; 5146 out_unlock: 5147 spin_unlock(&mddev->lock); 5148 return err ?: len; 5149 } 5150 5151 static struct md_sysfs_entry md_max_sync = 5152 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5153 5154 static ssize_t 5155 suspend_lo_show(struct mddev *mddev, char *page) 5156 { 5157 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5158 } 5159 5160 static ssize_t 5161 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5162 { 5163 unsigned long long new; 5164 int err; 5165 5166 err = kstrtoull(buf, 10, &new); 5167 if (err < 0) 5168 return err; 5169 if (new != (sector_t)new) 5170 return -EINVAL; 5171 5172 err = mddev_lock(mddev); 5173 if (err) 5174 return err; 5175 err = -EINVAL; 5176 if (mddev->pers == NULL || 5177 mddev->pers->quiesce == NULL) 5178 goto unlock; 5179 mddev_suspend(mddev); 5180 mddev->suspend_lo = new; 5181 mddev_resume(mddev); 5182 5183 err = 0; 5184 unlock: 5185 mddev_unlock(mddev); 5186 return err ?: len; 5187 } 5188 static struct md_sysfs_entry md_suspend_lo = 5189 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5190 5191 static ssize_t 5192 suspend_hi_show(struct mddev *mddev, char *page) 5193 { 5194 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5195 } 5196 5197 static ssize_t 5198 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5199 { 5200 unsigned long long new; 5201 int err; 5202 5203 err = kstrtoull(buf, 10, &new); 5204 if (err < 0) 5205 return err; 5206 if (new != (sector_t)new) 5207 return -EINVAL; 5208 5209 err = mddev_lock(mddev); 5210 if (err) 5211 return err; 5212 err = -EINVAL; 5213 if (mddev->pers == NULL) 5214 goto unlock; 5215 5216 mddev_suspend(mddev); 5217 mddev->suspend_hi = new; 5218 mddev_resume(mddev); 5219 5220 err = 0; 5221 unlock: 5222 mddev_unlock(mddev); 5223 return err ?: len; 5224 } 5225 static struct md_sysfs_entry md_suspend_hi = 5226 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5227 5228 static ssize_t 5229 reshape_position_show(struct mddev *mddev, char *page) 5230 { 5231 if (mddev->reshape_position != MaxSector) 5232 return sprintf(page, "%llu\n", 5233 (unsigned long long)mddev->reshape_position); 5234 strcpy(page, "none\n"); 5235 return 5; 5236 } 5237 5238 static ssize_t 5239 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5240 { 5241 struct md_rdev *rdev; 5242 unsigned long long new; 5243 int err; 5244 5245 err = kstrtoull(buf, 10, &new); 5246 if (err < 0) 5247 return err; 5248 if (new != (sector_t)new) 5249 return -EINVAL; 5250 err = mddev_lock(mddev); 5251 if (err) 5252 return err; 5253 err = -EBUSY; 5254 if (mddev->pers) 5255 goto unlock; 5256 mddev->reshape_position = new; 5257 mddev->delta_disks = 0; 5258 mddev->reshape_backwards = 0; 5259 mddev->new_level = mddev->level; 5260 mddev->new_layout = mddev->layout; 5261 mddev->new_chunk_sectors = mddev->chunk_sectors; 5262 rdev_for_each(rdev, mddev) 5263 rdev->new_data_offset = rdev->data_offset; 5264 err = 0; 5265 unlock: 5266 mddev_unlock(mddev); 5267 return err ?: len; 5268 } 5269 5270 static struct md_sysfs_entry md_reshape_position = 5271 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5272 reshape_position_store); 5273 5274 static ssize_t 5275 reshape_direction_show(struct mddev *mddev, char *page) 5276 { 5277 return sprintf(page, "%s\n", 5278 mddev->reshape_backwards ? "backwards" : "forwards"); 5279 } 5280 5281 static ssize_t 5282 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5283 { 5284 int backwards = 0; 5285 int err; 5286 5287 if (cmd_match(buf, "forwards")) 5288 backwards = 0; 5289 else if (cmd_match(buf, "backwards")) 5290 backwards = 1; 5291 else 5292 return -EINVAL; 5293 if (mddev->reshape_backwards == backwards) 5294 return len; 5295 5296 err = mddev_lock(mddev); 5297 if (err) 5298 return err; 5299 /* check if we are allowed to change */ 5300 if (mddev->delta_disks) 5301 err = -EBUSY; 5302 else if (mddev->persistent && 5303 mddev->major_version == 0) 5304 err = -EINVAL; 5305 else 5306 mddev->reshape_backwards = backwards; 5307 mddev_unlock(mddev); 5308 return err ?: len; 5309 } 5310 5311 static struct md_sysfs_entry md_reshape_direction = 5312 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5313 reshape_direction_store); 5314 5315 static ssize_t 5316 array_size_show(struct mddev *mddev, char *page) 5317 { 5318 if (mddev->external_size) 5319 return sprintf(page, "%llu\n", 5320 (unsigned long long)mddev->array_sectors/2); 5321 else 5322 return sprintf(page, "default\n"); 5323 } 5324 5325 static ssize_t 5326 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5327 { 5328 sector_t sectors; 5329 int err; 5330 5331 err = mddev_lock(mddev); 5332 if (err) 5333 return err; 5334 5335 /* cluster raid doesn't support change array_sectors */ 5336 if (mddev_is_clustered(mddev)) { 5337 mddev_unlock(mddev); 5338 return -EINVAL; 5339 } 5340 5341 if (strncmp(buf, "default", 7) == 0) { 5342 if (mddev->pers) 5343 sectors = mddev->pers->size(mddev, 0, 0); 5344 else 5345 sectors = mddev->array_sectors; 5346 5347 mddev->external_size = 0; 5348 } else { 5349 if (strict_blocks_to_sectors(buf, §ors) < 0) 5350 err = -EINVAL; 5351 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5352 err = -E2BIG; 5353 else 5354 mddev->external_size = 1; 5355 } 5356 5357 if (!err) { 5358 mddev->array_sectors = sectors; 5359 if (mddev->pers) { 5360 set_capacity(mddev->gendisk, mddev->array_sectors); 5361 revalidate_disk(mddev->gendisk); 5362 } 5363 } 5364 mddev_unlock(mddev); 5365 return err ?: len; 5366 } 5367 5368 static struct md_sysfs_entry md_array_size = 5369 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5370 array_size_store); 5371 5372 static ssize_t 5373 consistency_policy_show(struct mddev *mddev, char *page) 5374 { 5375 int ret; 5376 5377 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5378 ret = sprintf(page, "journal\n"); 5379 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5380 ret = sprintf(page, "ppl\n"); 5381 } else if (mddev->bitmap) { 5382 ret = sprintf(page, "bitmap\n"); 5383 } else if (mddev->pers) { 5384 if (mddev->pers->sync_request) 5385 ret = sprintf(page, "resync\n"); 5386 else 5387 ret = sprintf(page, "none\n"); 5388 } else { 5389 ret = sprintf(page, "unknown\n"); 5390 } 5391 5392 return ret; 5393 } 5394 5395 static ssize_t 5396 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5397 { 5398 int err = 0; 5399 5400 if (mddev->pers) { 5401 if (mddev->pers->change_consistency_policy) 5402 err = mddev->pers->change_consistency_policy(mddev, buf); 5403 else 5404 err = -EBUSY; 5405 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5406 set_bit(MD_HAS_PPL, &mddev->flags); 5407 } else { 5408 err = -EINVAL; 5409 } 5410 5411 return err ? err : len; 5412 } 5413 5414 static struct md_sysfs_entry md_consistency_policy = 5415 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5416 consistency_policy_store); 5417 5418 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5419 { 5420 return sprintf(page, "%d\n", mddev->fail_last_dev); 5421 } 5422 5423 /* 5424 * Setting fail_last_dev to true to allow last device to be forcibly removed 5425 * from RAID1/RAID10. 5426 */ 5427 static ssize_t 5428 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5429 { 5430 int ret; 5431 bool value; 5432 5433 ret = kstrtobool(buf, &value); 5434 if (ret) 5435 return ret; 5436 5437 if (value != mddev->fail_last_dev) 5438 mddev->fail_last_dev = value; 5439 5440 return len; 5441 } 5442 static struct md_sysfs_entry md_fail_last_dev = 5443 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5444 fail_last_dev_store); 5445 5446 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5447 { 5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5449 return sprintf(page, "n/a\n"); 5450 else 5451 return sprintf(page, "%d\n", mddev->serialize_policy); 5452 } 5453 5454 /* 5455 * Setting serialize_policy to true to enforce write IO is not reordered 5456 * for raid1. 5457 */ 5458 static ssize_t 5459 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5460 { 5461 int err; 5462 bool value; 5463 5464 err = kstrtobool(buf, &value); 5465 if (err) 5466 return err; 5467 5468 if (value == mddev->serialize_policy) 5469 return len; 5470 5471 err = mddev_lock(mddev); 5472 if (err) 5473 return err; 5474 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5475 pr_err("md: serialize_policy is only effective for raid1\n"); 5476 err = -EINVAL; 5477 goto unlock; 5478 } 5479 5480 mddev_suspend(mddev); 5481 if (value) 5482 mddev_create_serial_pool(mddev, NULL, true); 5483 else 5484 mddev_destroy_serial_pool(mddev, NULL, true); 5485 mddev->serialize_policy = value; 5486 mddev_resume(mddev); 5487 unlock: 5488 mddev_unlock(mddev); 5489 return err ?: len; 5490 } 5491 5492 static struct md_sysfs_entry md_serialize_policy = 5493 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5494 serialize_policy_store); 5495 5496 5497 static struct attribute *md_default_attrs[] = { 5498 &md_level.attr, 5499 &md_layout.attr, 5500 &md_raid_disks.attr, 5501 &md_uuid.attr, 5502 &md_chunk_size.attr, 5503 &md_size.attr, 5504 &md_resync_start.attr, 5505 &md_metadata.attr, 5506 &md_new_device.attr, 5507 &md_safe_delay.attr, 5508 &md_array_state.attr, 5509 &md_reshape_position.attr, 5510 &md_reshape_direction.attr, 5511 &md_array_size.attr, 5512 &max_corr_read_errors.attr, 5513 &md_consistency_policy.attr, 5514 &md_fail_last_dev.attr, 5515 &md_serialize_policy.attr, 5516 NULL, 5517 }; 5518 5519 static struct attribute *md_redundancy_attrs[] = { 5520 &md_scan_mode.attr, 5521 &md_last_scan_mode.attr, 5522 &md_mismatches.attr, 5523 &md_sync_min.attr, 5524 &md_sync_max.attr, 5525 &md_sync_speed.attr, 5526 &md_sync_force_parallel.attr, 5527 &md_sync_completed.attr, 5528 &md_min_sync.attr, 5529 &md_max_sync.attr, 5530 &md_suspend_lo.attr, 5531 &md_suspend_hi.attr, 5532 &md_bitmap.attr, 5533 &md_degraded.attr, 5534 NULL, 5535 }; 5536 static struct attribute_group md_redundancy_group = { 5537 .name = NULL, 5538 .attrs = md_redundancy_attrs, 5539 }; 5540 5541 static ssize_t 5542 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5543 { 5544 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5545 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5546 ssize_t rv; 5547 5548 if (!entry->show) 5549 return -EIO; 5550 spin_lock(&all_mddevs_lock); 5551 if (list_empty(&mddev->all_mddevs)) { 5552 spin_unlock(&all_mddevs_lock); 5553 return -EBUSY; 5554 } 5555 mddev_get(mddev); 5556 spin_unlock(&all_mddevs_lock); 5557 5558 rv = entry->show(mddev, page); 5559 mddev_put(mddev); 5560 return rv; 5561 } 5562 5563 static ssize_t 5564 md_attr_store(struct kobject *kobj, struct attribute *attr, 5565 const char *page, size_t length) 5566 { 5567 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5568 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5569 ssize_t rv; 5570 5571 if (!entry->store) 5572 return -EIO; 5573 if (!capable(CAP_SYS_ADMIN)) 5574 return -EACCES; 5575 spin_lock(&all_mddevs_lock); 5576 if (list_empty(&mddev->all_mddevs)) { 5577 spin_unlock(&all_mddevs_lock); 5578 return -EBUSY; 5579 } 5580 mddev_get(mddev); 5581 spin_unlock(&all_mddevs_lock); 5582 rv = entry->store(mddev, page, length); 5583 mddev_put(mddev); 5584 return rv; 5585 } 5586 5587 static void md_free(struct kobject *ko) 5588 { 5589 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5590 5591 if (mddev->sysfs_state) 5592 sysfs_put(mddev->sysfs_state); 5593 if (mddev->sysfs_level) 5594 sysfs_put(mddev->sysfs_level); 5595 5596 if (mddev->gendisk) 5597 del_gendisk(mddev->gendisk); 5598 if (mddev->queue) 5599 blk_cleanup_queue(mddev->queue); 5600 if (mddev->gendisk) 5601 put_disk(mddev->gendisk); 5602 percpu_ref_exit(&mddev->writes_pending); 5603 5604 bioset_exit(&mddev->bio_set); 5605 bioset_exit(&mddev->sync_set); 5606 mempool_exit(&mddev->md_io_pool); 5607 kfree(mddev); 5608 } 5609 5610 static const struct sysfs_ops md_sysfs_ops = { 5611 .show = md_attr_show, 5612 .store = md_attr_store, 5613 }; 5614 static struct kobj_type md_ktype = { 5615 .release = md_free, 5616 .sysfs_ops = &md_sysfs_ops, 5617 .default_attrs = md_default_attrs, 5618 }; 5619 5620 int mdp_major = 0; 5621 5622 static void mddev_delayed_delete(struct work_struct *ws) 5623 { 5624 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5625 5626 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5627 kobject_del(&mddev->kobj); 5628 kobject_put(&mddev->kobj); 5629 } 5630 5631 static void no_op(struct percpu_ref *r) {} 5632 5633 int mddev_init_writes_pending(struct mddev *mddev) 5634 { 5635 if (mddev->writes_pending.percpu_count_ptr) 5636 return 0; 5637 if (percpu_ref_init(&mddev->writes_pending, no_op, 5638 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5639 return -ENOMEM; 5640 /* We want to start with the refcount at zero */ 5641 percpu_ref_put(&mddev->writes_pending); 5642 return 0; 5643 } 5644 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5645 5646 static int md_alloc(dev_t dev, char *name) 5647 { 5648 /* 5649 * If dev is zero, name is the name of a device to allocate with 5650 * an arbitrary minor number. It will be "md_???" 5651 * If dev is non-zero it must be a device number with a MAJOR of 5652 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5653 * the device is being created by opening a node in /dev. 5654 * If "name" is not NULL, the device is being created by 5655 * writing to /sys/module/md_mod/parameters/new_array. 5656 */ 5657 static DEFINE_MUTEX(disks_mutex); 5658 struct mddev *mddev = mddev_find(dev); 5659 struct gendisk *disk; 5660 int partitioned; 5661 int shift; 5662 int unit; 5663 int error; 5664 5665 if (!mddev) 5666 return -ENODEV; 5667 5668 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5669 shift = partitioned ? MdpMinorShift : 0; 5670 unit = MINOR(mddev->unit) >> shift; 5671 5672 /* wait for any previous instance of this device to be 5673 * completely removed (mddev_delayed_delete). 5674 */ 5675 flush_workqueue(md_misc_wq); 5676 5677 mutex_lock(&disks_mutex); 5678 error = -EEXIST; 5679 if (mddev->gendisk) 5680 goto abort; 5681 5682 if (name && !dev) { 5683 /* Need to ensure that 'name' is not a duplicate. 5684 */ 5685 struct mddev *mddev2; 5686 spin_lock(&all_mddevs_lock); 5687 5688 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5689 if (mddev2->gendisk && 5690 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5691 spin_unlock(&all_mddevs_lock); 5692 goto abort; 5693 } 5694 spin_unlock(&all_mddevs_lock); 5695 } 5696 if (name && dev) 5697 /* 5698 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5699 */ 5700 mddev->hold_active = UNTIL_STOP; 5701 5702 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5703 sizeof(struct md_io)); 5704 if (error) 5705 goto abort; 5706 5707 error = -ENOMEM; 5708 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5709 if (!mddev->queue) 5710 goto abort; 5711 5712 blk_set_stacking_limits(&mddev->queue->limits); 5713 5714 disk = alloc_disk(1 << shift); 5715 if (!disk) { 5716 blk_cleanup_queue(mddev->queue); 5717 mddev->queue = NULL; 5718 goto abort; 5719 } 5720 disk->major = MAJOR(mddev->unit); 5721 disk->first_minor = unit << shift; 5722 if (name) 5723 strcpy(disk->disk_name, name); 5724 else if (partitioned) 5725 sprintf(disk->disk_name, "md_d%d", unit); 5726 else 5727 sprintf(disk->disk_name, "md%d", unit); 5728 disk->fops = &md_fops; 5729 disk->private_data = mddev; 5730 disk->queue = mddev->queue; 5731 blk_queue_write_cache(mddev->queue, true, true); 5732 /* Allow extended partitions. This makes the 5733 * 'mdp' device redundant, but we can't really 5734 * remove it now. 5735 */ 5736 disk->flags |= GENHD_FL_EXT_DEVT; 5737 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5738 mddev->gendisk = disk; 5739 /* As soon as we call add_disk(), another thread could get 5740 * through to md_open, so make sure it doesn't get too far 5741 */ 5742 mutex_lock(&mddev->open_mutex); 5743 add_disk(disk); 5744 5745 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5746 if (error) { 5747 /* This isn't possible, but as kobject_init_and_add is marked 5748 * __must_check, we must do something with the result 5749 */ 5750 pr_debug("md: cannot register %s/md - name in use\n", 5751 disk->disk_name); 5752 error = 0; 5753 } 5754 if (mddev->kobj.sd && 5755 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5756 pr_debug("pointless warning\n"); 5757 mutex_unlock(&mddev->open_mutex); 5758 abort: 5759 mutex_unlock(&disks_mutex); 5760 if (!error && mddev->kobj.sd) { 5761 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5762 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5763 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5764 } 5765 mddev_put(mddev); 5766 return error; 5767 } 5768 5769 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5770 { 5771 if (create_on_open) 5772 md_alloc(dev, NULL); 5773 return NULL; 5774 } 5775 5776 static int add_named_array(const char *val, const struct kernel_param *kp) 5777 { 5778 /* 5779 * val must be "md_*" or "mdNNN". 5780 * For "md_*" we allocate an array with a large free minor number, and 5781 * set the name to val. val must not already be an active name. 5782 * For "mdNNN" we allocate an array with the minor number NNN 5783 * which must not already be in use. 5784 */ 5785 int len = strlen(val); 5786 char buf[DISK_NAME_LEN]; 5787 unsigned long devnum; 5788 5789 while (len && val[len-1] == '\n') 5790 len--; 5791 if (len >= DISK_NAME_LEN) 5792 return -E2BIG; 5793 strlcpy(buf, val, len+1); 5794 if (strncmp(buf, "md_", 3) == 0) 5795 return md_alloc(0, buf); 5796 if (strncmp(buf, "md", 2) == 0 && 5797 isdigit(buf[2]) && 5798 kstrtoul(buf+2, 10, &devnum) == 0 && 5799 devnum <= MINORMASK) 5800 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5801 5802 return -EINVAL; 5803 } 5804 5805 static void md_safemode_timeout(struct timer_list *t) 5806 { 5807 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5808 5809 mddev->safemode = 1; 5810 if (mddev->external) 5811 sysfs_notify_dirent_safe(mddev->sysfs_state); 5812 5813 md_wakeup_thread(mddev->thread); 5814 } 5815 5816 static int start_dirty_degraded; 5817 5818 int md_run(struct mddev *mddev) 5819 { 5820 int err; 5821 struct md_rdev *rdev; 5822 struct md_personality *pers; 5823 5824 if (list_empty(&mddev->disks)) 5825 /* cannot run an array with no devices.. */ 5826 return -EINVAL; 5827 5828 if (mddev->pers) 5829 return -EBUSY; 5830 /* Cannot run until previous stop completes properly */ 5831 if (mddev->sysfs_active) 5832 return -EBUSY; 5833 5834 /* 5835 * Analyze all RAID superblock(s) 5836 */ 5837 if (!mddev->raid_disks) { 5838 if (!mddev->persistent) 5839 return -EINVAL; 5840 err = analyze_sbs(mddev); 5841 if (err) 5842 return -EINVAL; 5843 } 5844 5845 if (mddev->level != LEVEL_NONE) 5846 request_module("md-level-%d", mddev->level); 5847 else if (mddev->clevel[0]) 5848 request_module("md-%s", mddev->clevel); 5849 5850 /* 5851 * Drop all container device buffers, from now on 5852 * the only valid external interface is through the md 5853 * device. 5854 */ 5855 mddev->has_superblocks = false; 5856 rdev_for_each(rdev, mddev) { 5857 if (test_bit(Faulty, &rdev->flags)) 5858 continue; 5859 sync_blockdev(rdev->bdev); 5860 invalidate_bdev(rdev->bdev); 5861 if (mddev->ro != 1 && 5862 (bdev_read_only(rdev->bdev) || 5863 bdev_read_only(rdev->meta_bdev))) { 5864 mddev->ro = 1; 5865 if (mddev->gendisk) 5866 set_disk_ro(mddev->gendisk, 1); 5867 } 5868 5869 if (rdev->sb_page) 5870 mddev->has_superblocks = true; 5871 5872 /* perform some consistency tests on the device. 5873 * We don't want the data to overlap the metadata, 5874 * Internal Bitmap issues have been handled elsewhere. 5875 */ 5876 if (rdev->meta_bdev) { 5877 /* Nothing to check */; 5878 } else if (rdev->data_offset < rdev->sb_start) { 5879 if (mddev->dev_sectors && 5880 rdev->data_offset + mddev->dev_sectors 5881 > rdev->sb_start) { 5882 pr_warn("md: %s: data overlaps metadata\n", 5883 mdname(mddev)); 5884 return -EINVAL; 5885 } 5886 } else { 5887 if (rdev->sb_start + rdev->sb_size/512 5888 > rdev->data_offset) { 5889 pr_warn("md: %s: metadata overlaps data\n", 5890 mdname(mddev)); 5891 return -EINVAL; 5892 } 5893 } 5894 sysfs_notify_dirent_safe(rdev->sysfs_state); 5895 } 5896 5897 if (!bioset_initialized(&mddev->bio_set)) { 5898 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5899 if (err) 5900 return err; 5901 } 5902 if (!bioset_initialized(&mddev->sync_set)) { 5903 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5904 if (err) 5905 return err; 5906 } 5907 5908 spin_lock(&pers_lock); 5909 pers = find_pers(mddev->level, mddev->clevel); 5910 if (!pers || !try_module_get(pers->owner)) { 5911 spin_unlock(&pers_lock); 5912 if (mddev->level != LEVEL_NONE) 5913 pr_warn("md: personality for level %d is not loaded!\n", 5914 mddev->level); 5915 else 5916 pr_warn("md: personality for level %s is not loaded!\n", 5917 mddev->clevel); 5918 err = -EINVAL; 5919 goto abort; 5920 } 5921 spin_unlock(&pers_lock); 5922 if (mddev->level != pers->level) { 5923 mddev->level = pers->level; 5924 mddev->new_level = pers->level; 5925 } 5926 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5927 5928 if (mddev->reshape_position != MaxSector && 5929 pers->start_reshape == NULL) { 5930 /* This personality cannot handle reshaping... */ 5931 module_put(pers->owner); 5932 err = -EINVAL; 5933 goto abort; 5934 } 5935 5936 if (pers->sync_request) { 5937 /* Warn if this is a potentially silly 5938 * configuration. 5939 */ 5940 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5941 struct md_rdev *rdev2; 5942 int warned = 0; 5943 5944 rdev_for_each(rdev, mddev) 5945 rdev_for_each(rdev2, mddev) { 5946 if (rdev < rdev2 && 5947 rdev->bdev->bd_contains == 5948 rdev2->bdev->bd_contains) { 5949 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5950 mdname(mddev), 5951 bdevname(rdev->bdev,b), 5952 bdevname(rdev2->bdev,b2)); 5953 warned = 1; 5954 } 5955 } 5956 5957 if (warned) 5958 pr_warn("True protection against single-disk failure might be compromised.\n"); 5959 } 5960 5961 mddev->recovery = 0; 5962 /* may be over-ridden by personality */ 5963 mddev->resync_max_sectors = mddev->dev_sectors; 5964 5965 mddev->ok_start_degraded = start_dirty_degraded; 5966 5967 if (start_readonly && mddev->ro == 0) 5968 mddev->ro = 2; /* read-only, but switch on first write */ 5969 5970 err = pers->run(mddev); 5971 if (err) 5972 pr_warn("md: pers->run() failed ...\n"); 5973 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5974 WARN_ONCE(!mddev->external_size, 5975 "%s: default size too small, but 'external_size' not in effect?\n", 5976 __func__); 5977 pr_warn("md: invalid array_size %llu > default size %llu\n", 5978 (unsigned long long)mddev->array_sectors / 2, 5979 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5980 err = -EINVAL; 5981 } 5982 if (err == 0 && pers->sync_request && 5983 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5984 struct bitmap *bitmap; 5985 5986 bitmap = md_bitmap_create(mddev, -1); 5987 if (IS_ERR(bitmap)) { 5988 err = PTR_ERR(bitmap); 5989 pr_warn("%s: failed to create bitmap (%d)\n", 5990 mdname(mddev), err); 5991 } else 5992 mddev->bitmap = bitmap; 5993 5994 } 5995 if (err) 5996 goto bitmap_abort; 5997 5998 if (mddev->bitmap_info.max_write_behind > 0) { 5999 bool create_pool = false; 6000 6001 rdev_for_each(rdev, mddev) { 6002 if (test_bit(WriteMostly, &rdev->flags) && 6003 rdev_init_serial(rdev)) 6004 create_pool = true; 6005 } 6006 if (create_pool && mddev->serial_info_pool == NULL) { 6007 mddev->serial_info_pool = 6008 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6009 sizeof(struct serial_info)); 6010 if (!mddev->serial_info_pool) { 6011 err = -ENOMEM; 6012 goto bitmap_abort; 6013 } 6014 } 6015 } 6016 6017 if (mddev->queue) { 6018 bool nonrot = true; 6019 6020 rdev_for_each(rdev, mddev) { 6021 if (rdev->raid_disk >= 0 && 6022 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6023 nonrot = false; 6024 break; 6025 } 6026 } 6027 if (mddev->degraded) 6028 nonrot = false; 6029 if (nonrot) 6030 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6031 else 6032 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6033 } 6034 if (pers->sync_request) { 6035 if (mddev->kobj.sd && 6036 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6037 pr_warn("md: cannot register extra attributes for %s\n", 6038 mdname(mddev)); 6039 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6040 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6041 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6042 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6043 mddev->ro = 0; 6044 6045 atomic_set(&mddev->max_corr_read_errors, 6046 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6047 mddev->safemode = 0; 6048 if (mddev_is_clustered(mddev)) 6049 mddev->safemode_delay = 0; 6050 else 6051 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6052 mddev->in_sync = 1; 6053 smp_wmb(); 6054 spin_lock(&mddev->lock); 6055 mddev->pers = pers; 6056 spin_unlock(&mddev->lock); 6057 rdev_for_each(rdev, mddev) 6058 if (rdev->raid_disk >= 0) 6059 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6060 6061 if (mddev->degraded && !mddev->ro) 6062 /* This ensures that recovering status is reported immediately 6063 * via sysfs - until a lack of spares is confirmed. 6064 */ 6065 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6066 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6067 6068 if (mddev->sb_flags) 6069 md_update_sb(mddev, 0); 6070 6071 md_new_event(mddev); 6072 return 0; 6073 6074 bitmap_abort: 6075 mddev_detach(mddev); 6076 if (mddev->private) 6077 pers->free(mddev, mddev->private); 6078 mddev->private = NULL; 6079 module_put(pers->owner); 6080 md_bitmap_destroy(mddev); 6081 abort: 6082 bioset_exit(&mddev->bio_set); 6083 bioset_exit(&mddev->sync_set); 6084 return err; 6085 } 6086 EXPORT_SYMBOL_GPL(md_run); 6087 6088 int do_md_run(struct mddev *mddev) 6089 { 6090 int err; 6091 6092 set_bit(MD_NOT_READY, &mddev->flags); 6093 err = md_run(mddev); 6094 if (err) 6095 goto out; 6096 err = md_bitmap_load(mddev); 6097 if (err) { 6098 md_bitmap_destroy(mddev); 6099 goto out; 6100 } 6101 6102 if (mddev_is_clustered(mddev)) 6103 md_allow_write(mddev); 6104 6105 /* run start up tasks that require md_thread */ 6106 md_start(mddev); 6107 6108 md_wakeup_thread(mddev->thread); 6109 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6110 6111 set_capacity(mddev->gendisk, mddev->array_sectors); 6112 revalidate_disk(mddev->gendisk); 6113 clear_bit(MD_NOT_READY, &mddev->flags); 6114 mddev->changed = 1; 6115 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6116 sysfs_notify_dirent_safe(mddev->sysfs_state); 6117 sysfs_notify_dirent_safe(mddev->sysfs_action); 6118 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6119 out: 6120 clear_bit(MD_NOT_READY, &mddev->flags); 6121 return err; 6122 } 6123 6124 int md_start(struct mddev *mddev) 6125 { 6126 int ret = 0; 6127 6128 if (mddev->pers->start) { 6129 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6130 md_wakeup_thread(mddev->thread); 6131 ret = mddev->pers->start(mddev); 6132 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6133 md_wakeup_thread(mddev->sync_thread); 6134 } 6135 return ret; 6136 } 6137 EXPORT_SYMBOL_GPL(md_start); 6138 6139 static int restart_array(struct mddev *mddev) 6140 { 6141 struct gendisk *disk = mddev->gendisk; 6142 struct md_rdev *rdev; 6143 bool has_journal = false; 6144 bool has_readonly = false; 6145 6146 /* Complain if it has no devices */ 6147 if (list_empty(&mddev->disks)) 6148 return -ENXIO; 6149 if (!mddev->pers) 6150 return -EINVAL; 6151 if (!mddev->ro) 6152 return -EBUSY; 6153 6154 rcu_read_lock(); 6155 rdev_for_each_rcu(rdev, mddev) { 6156 if (test_bit(Journal, &rdev->flags) && 6157 !test_bit(Faulty, &rdev->flags)) 6158 has_journal = true; 6159 if (bdev_read_only(rdev->bdev)) 6160 has_readonly = true; 6161 } 6162 rcu_read_unlock(); 6163 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6164 /* Don't restart rw with journal missing/faulty */ 6165 return -EINVAL; 6166 if (has_readonly) 6167 return -EROFS; 6168 6169 mddev->safemode = 0; 6170 mddev->ro = 0; 6171 set_disk_ro(disk, 0); 6172 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6173 /* Kick recovery or resync if necessary */ 6174 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6175 md_wakeup_thread(mddev->thread); 6176 md_wakeup_thread(mddev->sync_thread); 6177 sysfs_notify_dirent_safe(mddev->sysfs_state); 6178 return 0; 6179 } 6180 6181 static void md_clean(struct mddev *mddev) 6182 { 6183 mddev->array_sectors = 0; 6184 mddev->external_size = 0; 6185 mddev->dev_sectors = 0; 6186 mddev->raid_disks = 0; 6187 mddev->recovery_cp = 0; 6188 mddev->resync_min = 0; 6189 mddev->resync_max = MaxSector; 6190 mddev->reshape_position = MaxSector; 6191 mddev->external = 0; 6192 mddev->persistent = 0; 6193 mddev->level = LEVEL_NONE; 6194 mddev->clevel[0] = 0; 6195 mddev->flags = 0; 6196 mddev->sb_flags = 0; 6197 mddev->ro = 0; 6198 mddev->metadata_type[0] = 0; 6199 mddev->chunk_sectors = 0; 6200 mddev->ctime = mddev->utime = 0; 6201 mddev->layout = 0; 6202 mddev->max_disks = 0; 6203 mddev->events = 0; 6204 mddev->can_decrease_events = 0; 6205 mddev->delta_disks = 0; 6206 mddev->reshape_backwards = 0; 6207 mddev->new_level = LEVEL_NONE; 6208 mddev->new_layout = 0; 6209 mddev->new_chunk_sectors = 0; 6210 mddev->curr_resync = 0; 6211 atomic64_set(&mddev->resync_mismatches, 0); 6212 mddev->suspend_lo = mddev->suspend_hi = 0; 6213 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6214 mddev->recovery = 0; 6215 mddev->in_sync = 0; 6216 mddev->changed = 0; 6217 mddev->degraded = 0; 6218 mddev->safemode = 0; 6219 mddev->private = NULL; 6220 mddev->cluster_info = NULL; 6221 mddev->bitmap_info.offset = 0; 6222 mddev->bitmap_info.default_offset = 0; 6223 mddev->bitmap_info.default_space = 0; 6224 mddev->bitmap_info.chunksize = 0; 6225 mddev->bitmap_info.daemon_sleep = 0; 6226 mddev->bitmap_info.max_write_behind = 0; 6227 mddev->bitmap_info.nodes = 0; 6228 } 6229 6230 static void __md_stop_writes(struct mddev *mddev) 6231 { 6232 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6233 if (work_pending(&mddev->del_work)) 6234 flush_workqueue(md_misc_wq); 6235 if (mddev->sync_thread) { 6236 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6237 md_reap_sync_thread(mddev); 6238 } 6239 6240 del_timer_sync(&mddev->safemode_timer); 6241 6242 if (mddev->pers && mddev->pers->quiesce) { 6243 mddev->pers->quiesce(mddev, 1); 6244 mddev->pers->quiesce(mddev, 0); 6245 } 6246 md_bitmap_flush(mddev); 6247 6248 if (mddev->ro == 0 && 6249 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6250 mddev->sb_flags)) { 6251 /* mark array as shutdown cleanly */ 6252 if (!mddev_is_clustered(mddev)) 6253 mddev->in_sync = 1; 6254 md_update_sb(mddev, 1); 6255 } 6256 /* disable policy to guarantee rdevs free resources for serialization */ 6257 mddev->serialize_policy = 0; 6258 mddev_destroy_serial_pool(mddev, NULL, true); 6259 } 6260 6261 void md_stop_writes(struct mddev *mddev) 6262 { 6263 mddev_lock_nointr(mddev); 6264 __md_stop_writes(mddev); 6265 mddev_unlock(mddev); 6266 } 6267 EXPORT_SYMBOL_GPL(md_stop_writes); 6268 6269 static void mddev_detach(struct mddev *mddev) 6270 { 6271 md_bitmap_wait_behind_writes(mddev); 6272 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6273 mddev->pers->quiesce(mddev, 1); 6274 mddev->pers->quiesce(mddev, 0); 6275 } 6276 md_unregister_thread(&mddev->thread); 6277 if (mddev->queue) 6278 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6279 } 6280 6281 static void __md_stop(struct mddev *mddev) 6282 { 6283 struct md_personality *pers = mddev->pers; 6284 md_bitmap_destroy(mddev); 6285 mddev_detach(mddev); 6286 /* Ensure ->event_work is done */ 6287 if (mddev->event_work.func) 6288 flush_workqueue(md_misc_wq); 6289 spin_lock(&mddev->lock); 6290 mddev->pers = NULL; 6291 spin_unlock(&mddev->lock); 6292 pers->free(mddev, mddev->private); 6293 mddev->private = NULL; 6294 if (pers->sync_request && mddev->to_remove == NULL) 6295 mddev->to_remove = &md_redundancy_group; 6296 module_put(pers->owner); 6297 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6298 } 6299 6300 void md_stop(struct mddev *mddev) 6301 { 6302 /* stop the array and free an attached data structures. 6303 * This is called from dm-raid 6304 */ 6305 __md_stop(mddev); 6306 bioset_exit(&mddev->bio_set); 6307 bioset_exit(&mddev->sync_set); 6308 } 6309 6310 EXPORT_SYMBOL_GPL(md_stop); 6311 6312 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6313 { 6314 int err = 0; 6315 int did_freeze = 0; 6316 6317 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6318 did_freeze = 1; 6319 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6320 md_wakeup_thread(mddev->thread); 6321 } 6322 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6323 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6324 if (mddev->sync_thread) 6325 /* Thread might be blocked waiting for metadata update 6326 * which will now never happen */ 6327 wake_up_process(mddev->sync_thread->tsk); 6328 6329 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6330 return -EBUSY; 6331 mddev_unlock(mddev); 6332 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6333 &mddev->recovery)); 6334 wait_event(mddev->sb_wait, 6335 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6336 mddev_lock_nointr(mddev); 6337 6338 mutex_lock(&mddev->open_mutex); 6339 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6340 mddev->sync_thread || 6341 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6342 pr_warn("md: %s still in use.\n",mdname(mddev)); 6343 if (did_freeze) { 6344 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6346 md_wakeup_thread(mddev->thread); 6347 } 6348 err = -EBUSY; 6349 goto out; 6350 } 6351 if (mddev->pers) { 6352 __md_stop_writes(mddev); 6353 6354 err = -ENXIO; 6355 if (mddev->ro==1) 6356 goto out; 6357 mddev->ro = 1; 6358 set_disk_ro(mddev->gendisk, 1); 6359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6360 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6361 md_wakeup_thread(mddev->thread); 6362 sysfs_notify_dirent_safe(mddev->sysfs_state); 6363 err = 0; 6364 } 6365 out: 6366 mutex_unlock(&mddev->open_mutex); 6367 return err; 6368 } 6369 6370 /* mode: 6371 * 0 - completely stop and dis-assemble array 6372 * 2 - stop but do not disassemble array 6373 */ 6374 static int do_md_stop(struct mddev *mddev, int mode, 6375 struct block_device *bdev) 6376 { 6377 struct gendisk *disk = mddev->gendisk; 6378 struct md_rdev *rdev; 6379 int did_freeze = 0; 6380 6381 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6382 did_freeze = 1; 6383 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6384 md_wakeup_thread(mddev->thread); 6385 } 6386 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6387 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6388 if (mddev->sync_thread) 6389 /* Thread might be blocked waiting for metadata update 6390 * which will now never happen */ 6391 wake_up_process(mddev->sync_thread->tsk); 6392 6393 mddev_unlock(mddev); 6394 wait_event(resync_wait, (mddev->sync_thread == NULL && 6395 !test_bit(MD_RECOVERY_RUNNING, 6396 &mddev->recovery))); 6397 mddev_lock_nointr(mddev); 6398 6399 mutex_lock(&mddev->open_mutex); 6400 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6401 mddev->sysfs_active || 6402 mddev->sync_thread || 6403 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6404 pr_warn("md: %s still in use.\n",mdname(mddev)); 6405 mutex_unlock(&mddev->open_mutex); 6406 if (did_freeze) { 6407 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6409 md_wakeup_thread(mddev->thread); 6410 } 6411 return -EBUSY; 6412 } 6413 if (mddev->pers) { 6414 if (mddev->ro) 6415 set_disk_ro(disk, 0); 6416 6417 __md_stop_writes(mddev); 6418 __md_stop(mddev); 6419 6420 /* tell userspace to handle 'inactive' */ 6421 sysfs_notify_dirent_safe(mddev->sysfs_state); 6422 6423 rdev_for_each(rdev, mddev) 6424 if (rdev->raid_disk >= 0) 6425 sysfs_unlink_rdev(mddev, rdev); 6426 6427 set_capacity(disk, 0); 6428 mutex_unlock(&mddev->open_mutex); 6429 mddev->changed = 1; 6430 revalidate_disk(disk); 6431 6432 if (mddev->ro) 6433 mddev->ro = 0; 6434 } else 6435 mutex_unlock(&mddev->open_mutex); 6436 /* 6437 * Free resources if final stop 6438 */ 6439 if (mode == 0) { 6440 pr_info("md: %s stopped.\n", mdname(mddev)); 6441 6442 if (mddev->bitmap_info.file) { 6443 struct file *f = mddev->bitmap_info.file; 6444 spin_lock(&mddev->lock); 6445 mddev->bitmap_info.file = NULL; 6446 spin_unlock(&mddev->lock); 6447 fput(f); 6448 } 6449 mddev->bitmap_info.offset = 0; 6450 6451 export_array(mddev); 6452 6453 md_clean(mddev); 6454 if (mddev->hold_active == UNTIL_STOP) 6455 mddev->hold_active = 0; 6456 } 6457 md_new_event(mddev); 6458 sysfs_notify_dirent_safe(mddev->sysfs_state); 6459 return 0; 6460 } 6461 6462 #ifndef MODULE 6463 static void autorun_array(struct mddev *mddev) 6464 { 6465 struct md_rdev *rdev; 6466 int err; 6467 6468 if (list_empty(&mddev->disks)) 6469 return; 6470 6471 pr_info("md: running: "); 6472 6473 rdev_for_each(rdev, mddev) { 6474 char b[BDEVNAME_SIZE]; 6475 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6476 } 6477 pr_cont("\n"); 6478 6479 err = do_md_run(mddev); 6480 if (err) { 6481 pr_warn("md: do_md_run() returned %d\n", err); 6482 do_md_stop(mddev, 0, NULL); 6483 } 6484 } 6485 6486 /* 6487 * lets try to run arrays based on all disks that have arrived 6488 * until now. (those are in pending_raid_disks) 6489 * 6490 * the method: pick the first pending disk, collect all disks with 6491 * the same UUID, remove all from the pending list and put them into 6492 * the 'same_array' list. Then order this list based on superblock 6493 * update time (freshest comes first), kick out 'old' disks and 6494 * compare superblocks. If everything's fine then run it. 6495 * 6496 * If "unit" is allocated, then bump its reference count 6497 */ 6498 static void autorun_devices(int part) 6499 { 6500 struct md_rdev *rdev0, *rdev, *tmp; 6501 struct mddev *mddev; 6502 char b[BDEVNAME_SIZE]; 6503 6504 pr_info("md: autorun ...\n"); 6505 while (!list_empty(&pending_raid_disks)) { 6506 int unit; 6507 dev_t dev; 6508 LIST_HEAD(candidates); 6509 rdev0 = list_entry(pending_raid_disks.next, 6510 struct md_rdev, same_set); 6511 6512 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6513 INIT_LIST_HEAD(&candidates); 6514 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6515 if (super_90_load(rdev, rdev0, 0) >= 0) { 6516 pr_debug("md: adding %s ...\n", 6517 bdevname(rdev->bdev,b)); 6518 list_move(&rdev->same_set, &candidates); 6519 } 6520 /* 6521 * now we have a set of devices, with all of them having 6522 * mostly sane superblocks. It's time to allocate the 6523 * mddev. 6524 */ 6525 if (part) { 6526 dev = MKDEV(mdp_major, 6527 rdev0->preferred_minor << MdpMinorShift); 6528 unit = MINOR(dev) >> MdpMinorShift; 6529 } else { 6530 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6531 unit = MINOR(dev); 6532 } 6533 if (rdev0->preferred_minor != unit) { 6534 pr_warn("md: unit number in %s is bad: %d\n", 6535 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6536 break; 6537 } 6538 6539 md_probe(dev, NULL, NULL); 6540 mddev = mddev_find(dev); 6541 if (!mddev || !mddev->gendisk) { 6542 if (mddev) 6543 mddev_put(mddev); 6544 break; 6545 } 6546 if (mddev_lock(mddev)) 6547 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6548 else if (mddev->raid_disks || mddev->major_version 6549 || !list_empty(&mddev->disks)) { 6550 pr_warn("md: %s already running, cannot run %s\n", 6551 mdname(mddev), bdevname(rdev0->bdev,b)); 6552 mddev_unlock(mddev); 6553 } else { 6554 pr_debug("md: created %s\n", mdname(mddev)); 6555 mddev->persistent = 1; 6556 rdev_for_each_list(rdev, tmp, &candidates) { 6557 list_del_init(&rdev->same_set); 6558 if (bind_rdev_to_array(rdev, mddev)) 6559 export_rdev(rdev); 6560 } 6561 autorun_array(mddev); 6562 mddev_unlock(mddev); 6563 } 6564 /* on success, candidates will be empty, on error 6565 * it won't... 6566 */ 6567 rdev_for_each_list(rdev, tmp, &candidates) { 6568 list_del_init(&rdev->same_set); 6569 export_rdev(rdev); 6570 } 6571 mddev_put(mddev); 6572 } 6573 pr_info("md: ... autorun DONE.\n"); 6574 } 6575 #endif /* !MODULE */ 6576 6577 static int get_version(void __user *arg) 6578 { 6579 mdu_version_t ver; 6580 6581 ver.major = MD_MAJOR_VERSION; 6582 ver.minor = MD_MINOR_VERSION; 6583 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6584 6585 if (copy_to_user(arg, &ver, sizeof(ver))) 6586 return -EFAULT; 6587 6588 return 0; 6589 } 6590 6591 static int get_array_info(struct mddev *mddev, void __user *arg) 6592 { 6593 mdu_array_info_t info; 6594 int nr,working,insync,failed,spare; 6595 struct md_rdev *rdev; 6596 6597 nr = working = insync = failed = spare = 0; 6598 rcu_read_lock(); 6599 rdev_for_each_rcu(rdev, mddev) { 6600 nr++; 6601 if (test_bit(Faulty, &rdev->flags)) 6602 failed++; 6603 else { 6604 working++; 6605 if (test_bit(In_sync, &rdev->flags)) 6606 insync++; 6607 else if (test_bit(Journal, &rdev->flags)) 6608 /* TODO: add journal count to md_u.h */ 6609 ; 6610 else 6611 spare++; 6612 } 6613 } 6614 rcu_read_unlock(); 6615 6616 info.major_version = mddev->major_version; 6617 info.minor_version = mddev->minor_version; 6618 info.patch_version = MD_PATCHLEVEL_VERSION; 6619 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6620 info.level = mddev->level; 6621 info.size = mddev->dev_sectors / 2; 6622 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6623 info.size = -1; 6624 info.nr_disks = nr; 6625 info.raid_disks = mddev->raid_disks; 6626 info.md_minor = mddev->md_minor; 6627 info.not_persistent= !mddev->persistent; 6628 6629 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6630 info.state = 0; 6631 if (mddev->in_sync) 6632 info.state = (1<<MD_SB_CLEAN); 6633 if (mddev->bitmap && mddev->bitmap_info.offset) 6634 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6635 if (mddev_is_clustered(mddev)) 6636 info.state |= (1<<MD_SB_CLUSTERED); 6637 info.active_disks = insync; 6638 info.working_disks = working; 6639 info.failed_disks = failed; 6640 info.spare_disks = spare; 6641 6642 info.layout = mddev->layout; 6643 info.chunk_size = mddev->chunk_sectors << 9; 6644 6645 if (copy_to_user(arg, &info, sizeof(info))) 6646 return -EFAULT; 6647 6648 return 0; 6649 } 6650 6651 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6652 { 6653 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6654 char *ptr; 6655 int err; 6656 6657 file = kzalloc(sizeof(*file), GFP_NOIO); 6658 if (!file) 6659 return -ENOMEM; 6660 6661 err = 0; 6662 spin_lock(&mddev->lock); 6663 /* bitmap enabled */ 6664 if (mddev->bitmap_info.file) { 6665 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6666 sizeof(file->pathname)); 6667 if (IS_ERR(ptr)) 6668 err = PTR_ERR(ptr); 6669 else 6670 memmove(file->pathname, ptr, 6671 sizeof(file->pathname)-(ptr-file->pathname)); 6672 } 6673 spin_unlock(&mddev->lock); 6674 6675 if (err == 0 && 6676 copy_to_user(arg, file, sizeof(*file))) 6677 err = -EFAULT; 6678 6679 kfree(file); 6680 return err; 6681 } 6682 6683 static int get_disk_info(struct mddev *mddev, void __user * arg) 6684 { 6685 mdu_disk_info_t info; 6686 struct md_rdev *rdev; 6687 6688 if (copy_from_user(&info, arg, sizeof(info))) 6689 return -EFAULT; 6690 6691 rcu_read_lock(); 6692 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6693 if (rdev) { 6694 info.major = MAJOR(rdev->bdev->bd_dev); 6695 info.minor = MINOR(rdev->bdev->bd_dev); 6696 info.raid_disk = rdev->raid_disk; 6697 info.state = 0; 6698 if (test_bit(Faulty, &rdev->flags)) 6699 info.state |= (1<<MD_DISK_FAULTY); 6700 else if (test_bit(In_sync, &rdev->flags)) { 6701 info.state |= (1<<MD_DISK_ACTIVE); 6702 info.state |= (1<<MD_DISK_SYNC); 6703 } 6704 if (test_bit(Journal, &rdev->flags)) 6705 info.state |= (1<<MD_DISK_JOURNAL); 6706 if (test_bit(WriteMostly, &rdev->flags)) 6707 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6708 if (test_bit(FailFast, &rdev->flags)) 6709 info.state |= (1<<MD_DISK_FAILFAST); 6710 } else { 6711 info.major = info.minor = 0; 6712 info.raid_disk = -1; 6713 info.state = (1<<MD_DISK_REMOVED); 6714 } 6715 rcu_read_unlock(); 6716 6717 if (copy_to_user(arg, &info, sizeof(info))) 6718 return -EFAULT; 6719 6720 return 0; 6721 } 6722 6723 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6724 { 6725 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6726 struct md_rdev *rdev; 6727 dev_t dev = MKDEV(info->major,info->minor); 6728 6729 if (mddev_is_clustered(mddev) && 6730 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6731 pr_warn("%s: Cannot add to clustered mddev.\n", 6732 mdname(mddev)); 6733 return -EINVAL; 6734 } 6735 6736 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6737 return -EOVERFLOW; 6738 6739 if (!mddev->raid_disks) { 6740 int err; 6741 /* expecting a device which has a superblock */ 6742 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6743 if (IS_ERR(rdev)) { 6744 pr_warn("md: md_import_device returned %ld\n", 6745 PTR_ERR(rdev)); 6746 return PTR_ERR(rdev); 6747 } 6748 if (!list_empty(&mddev->disks)) { 6749 struct md_rdev *rdev0 6750 = list_entry(mddev->disks.next, 6751 struct md_rdev, same_set); 6752 err = super_types[mddev->major_version] 6753 .load_super(rdev, rdev0, mddev->minor_version); 6754 if (err < 0) { 6755 pr_warn("md: %s has different UUID to %s\n", 6756 bdevname(rdev->bdev,b), 6757 bdevname(rdev0->bdev,b2)); 6758 export_rdev(rdev); 6759 return -EINVAL; 6760 } 6761 } 6762 err = bind_rdev_to_array(rdev, mddev); 6763 if (err) 6764 export_rdev(rdev); 6765 return err; 6766 } 6767 6768 /* 6769 * md_add_new_disk can be used once the array is assembled 6770 * to add "hot spares". They must already have a superblock 6771 * written 6772 */ 6773 if (mddev->pers) { 6774 int err; 6775 if (!mddev->pers->hot_add_disk) { 6776 pr_warn("%s: personality does not support diskops!\n", 6777 mdname(mddev)); 6778 return -EINVAL; 6779 } 6780 if (mddev->persistent) 6781 rdev = md_import_device(dev, mddev->major_version, 6782 mddev->minor_version); 6783 else 6784 rdev = md_import_device(dev, -1, -1); 6785 if (IS_ERR(rdev)) { 6786 pr_warn("md: md_import_device returned %ld\n", 6787 PTR_ERR(rdev)); 6788 return PTR_ERR(rdev); 6789 } 6790 /* set saved_raid_disk if appropriate */ 6791 if (!mddev->persistent) { 6792 if (info->state & (1<<MD_DISK_SYNC) && 6793 info->raid_disk < mddev->raid_disks) { 6794 rdev->raid_disk = info->raid_disk; 6795 set_bit(In_sync, &rdev->flags); 6796 clear_bit(Bitmap_sync, &rdev->flags); 6797 } else 6798 rdev->raid_disk = -1; 6799 rdev->saved_raid_disk = rdev->raid_disk; 6800 } else 6801 super_types[mddev->major_version]. 6802 validate_super(mddev, rdev); 6803 if ((info->state & (1<<MD_DISK_SYNC)) && 6804 rdev->raid_disk != info->raid_disk) { 6805 /* This was a hot-add request, but events doesn't 6806 * match, so reject it. 6807 */ 6808 export_rdev(rdev); 6809 return -EINVAL; 6810 } 6811 6812 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6813 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6814 set_bit(WriteMostly, &rdev->flags); 6815 else 6816 clear_bit(WriteMostly, &rdev->flags); 6817 if (info->state & (1<<MD_DISK_FAILFAST)) 6818 set_bit(FailFast, &rdev->flags); 6819 else 6820 clear_bit(FailFast, &rdev->flags); 6821 6822 if (info->state & (1<<MD_DISK_JOURNAL)) { 6823 struct md_rdev *rdev2; 6824 bool has_journal = false; 6825 6826 /* make sure no existing journal disk */ 6827 rdev_for_each(rdev2, mddev) { 6828 if (test_bit(Journal, &rdev2->flags)) { 6829 has_journal = true; 6830 break; 6831 } 6832 } 6833 if (has_journal || mddev->bitmap) { 6834 export_rdev(rdev); 6835 return -EBUSY; 6836 } 6837 set_bit(Journal, &rdev->flags); 6838 } 6839 /* 6840 * check whether the device shows up in other nodes 6841 */ 6842 if (mddev_is_clustered(mddev)) { 6843 if (info->state & (1 << MD_DISK_CANDIDATE)) 6844 set_bit(Candidate, &rdev->flags); 6845 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6846 /* --add initiated by this node */ 6847 err = md_cluster_ops->add_new_disk(mddev, rdev); 6848 if (err) { 6849 export_rdev(rdev); 6850 return err; 6851 } 6852 } 6853 } 6854 6855 rdev->raid_disk = -1; 6856 err = bind_rdev_to_array(rdev, mddev); 6857 6858 if (err) 6859 export_rdev(rdev); 6860 6861 if (mddev_is_clustered(mddev)) { 6862 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6863 if (!err) { 6864 err = md_cluster_ops->new_disk_ack(mddev, 6865 err == 0); 6866 if (err) 6867 md_kick_rdev_from_array(rdev); 6868 } 6869 } else { 6870 if (err) 6871 md_cluster_ops->add_new_disk_cancel(mddev); 6872 else 6873 err = add_bound_rdev(rdev); 6874 } 6875 6876 } else if (!err) 6877 err = add_bound_rdev(rdev); 6878 6879 return err; 6880 } 6881 6882 /* otherwise, md_add_new_disk is only allowed 6883 * for major_version==0 superblocks 6884 */ 6885 if (mddev->major_version != 0) { 6886 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6887 return -EINVAL; 6888 } 6889 6890 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6891 int err; 6892 rdev = md_import_device(dev, -1, 0); 6893 if (IS_ERR(rdev)) { 6894 pr_warn("md: error, md_import_device() returned %ld\n", 6895 PTR_ERR(rdev)); 6896 return PTR_ERR(rdev); 6897 } 6898 rdev->desc_nr = info->number; 6899 if (info->raid_disk < mddev->raid_disks) 6900 rdev->raid_disk = info->raid_disk; 6901 else 6902 rdev->raid_disk = -1; 6903 6904 if (rdev->raid_disk < mddev->raid_disks) 6905 if (info->state & (1<<MD_DISK_SYNC)) 6906 set_bit(In_sync, &rdev->flags); 6907 6908 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6909 set_bit(WriteMostly, &rdev->flags); 6910 if (info->state & (1<<MD_DISK_FAILFAST)) 6911 set_bit(FailFast, &rdev->flags); 6912 6913 if (!mddev->persistent) { 6914 pr_debug("md: nonpersistent superblock ...\n"); 6915 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6916 } else 6917 rdev->sb_start = calc_dev_sboffset(rdev); 6918 rdev->sectors = rdev->sb_start; 6919 6920 err = bind_rdev_to_array(rdev, mddev); 6921 if (err) { 6922 export_rdev(rdev); 6923 return err; 6924 } 6925 } 6926 6927 return 0; 6928 } 6929 6930 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6931 { 6932 char b[BDEVNAME_SIZE]; 6933 struct md_rdev *rdev; 6934 6935 if (!mddev->pers) 6936 return -ENODEV; 6937 6938 rdev = find_rdev(mddev, dev); 6939 if (!rdev) 6940 return -ENXIO; 6941 6942 if (rdev->raid_disk < 0) 6943 goto kick_rdev; 6944 6945 clear_bit(Blocked, &rdev->flags); 6946 remove_and_add_spares(mddev, rdev); 6947 6948 if (rdev->raid_disk >= 0) 6949 goto busy; 6950 6951 kick_rdev: 6952 if (mddev_is_clustered(mddev)) 6953 md_cluster_ops->remove_disk(mddev, rdev); 6954 6955 md_kick_rdev_from_array(rdev); 6956 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6957 if (mddev->thread) 6958 md_wakeup_thread(mddev->thread); 6959 else 6960 md_update_sb(mddev, 1); 6961 md_new_event(mddev); 6962 6963 return 0; 6964 busy: 6965 pr_debug("md: cannot remove active disk %s from %s ...\n", 6966 bdevname(rdev->bdev,b), mdname(mddev)); 6967 return -EBUSY; 6968 } 6969 6970 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6971 { 6972 char b[BDEVNAME_SIZE]; 6973 int err; 6974 struct md_rdev *rdev; 6975 6976 if (!mddev->pers) 6977 return -ENODEV; 6978 6979 if (mddev->major_version != 0) { 6980 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6981 mdname(mddev)); 6982 return -EINVAL; 6983 } 6984 if (!mddev->pers->hot_add_disk) { 6985 pr_warn("%s: personality does not support diskops!\n", 6986 mdname(mddev)); 6987 return -EINVAL; 6988 } 6989 6990 rdev = md_import_device(dev, -1, 0); 6991 if (IS_ERR(rdev)) { 6992 pr_warn("md: error, md_import_device() returned %ld\n", 6993 PTR_ERR(rdev)); 6994 return -EINVAL; 6995 } 6996 6997 if (mddev->persistent) 6998 rdev->sb_start = calc_dev_sboffset(rdev); 6999 else 7000 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 7001 7002 rdev->sectors = rdev->sb_start; 7003 7004 if (test_bit(Faulty, &rdev->flags)) { 7005 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7006 bdevname(rdev->bdev,b), mdname(mddev)); 7007 err = -EINVAL; 7008 goto abort_export; 7009 } 7010 7011 clear_bit(In_sync, &rdev->flags); 7012 rdev->desc_nr = -1; 7013 rdev->saved_raid_disk = -1; 7014 err = bind_rdev_to_array(rdev, mddev); 7015 if (err) 7016 goto abort_export; 7017 7018 /* 7019 * The rest should better be atomic, we can have disk failures 7020 * noticed in interrupt contexts ... 7021 */ 7022 7023 rdev->raid_disk = -1; 7024 7025 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7026 if (!mddev->thread) 7027 md_update_sb(mddev, 1); 7028 /* 7029 * Kick recovery, maybe this spare has to be added to the 7030 * array immediately. 7031 */ 7032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7033 md_wakeup_thread(mddev->thread); 7034 md_new_event(mddev); 7035 return 0; 7036 7037 abort_export: 7038 export_rdev(rdev); 7039 return err; 7040 } 7041 7042 static int set_bitmap_file(struct mddev *mddev, int fd) 7043 { 7044 int err = 0; 7045 7046 if (mddev->pers) { 7047 if (!mddev->pers->quiesce || !mddev->thread) 7048 return -EBUSY; 7049 if (mddev->recovery || mddev->sync_thread) 7050 return -EBUSY; 7051 /* we should be able to change the bitmap.. */ 7052 } 7053 7054 if (fd >= 0) { 7055 struct inode *inode; 7056 struct file *f; 7057 7058 if (mddev->bitmap || mddev->bitmap_info.file) 7059 return -EEXIST; /* cannot add when bitmap is present */ 7060 f = fget(fd); 7061 7062 if (f == NULL) { 7063 pr_warn("%s: error: failed to get bitmap file\n", 7064 mdname(mddev)); 7065 return -EBADF; 7066 } 7067 7068 inode = f->f_mapping->host; 7069 if (!S_ISREG(inode->i_mode)) { 7070 pr_warn("%s: error: bitmap file must be a regular file\n", 7071 mdname(mddev)); 7072 err = -EBADF; 7073 } else if (!(f->f_mode & FMODE_WRITE)) { 7074 pr_warn("%s: error: bitmap file must open for write\n", 7075 mdname(mddev)); 7076 err = -EBADF; 7077 } else if (atomic_read(&inode->i_writecount) != 1) { 7078 pr_warn("%s: error: bitmap file is already in use\n", 7079 mdname(mddev)); 7080 err = -EBUSY; 7081 } 7082 if (err) { 7083 fput(f); 7084 return err; 7085 } 7086 mddev->bitmap_info.file = f; 7087 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7088 } else if (mddev->bitmap == NULL) 7089 return -ENOENT; /* cannot remove what isn't there */ 7090 err = 0; 7091 if (mddev->pers) { 7092 if (fd >= 0) { 7093 struct bitmap *bitmap; 7094 7095 bitmap = md_bitmap_create(mddev, -1); 7096 mddev_suspend(mddev); 7097 if (!IS_ERR(bitmap)) { 7098 mddev->bitmap = bitmap; 7099 err = md_bitmap_load(mddev); 7100 } else 7101 err = PTR_ERR(bitmap); 7102 if (err) { 7103 md_bitmap_destroy(mddev); 7104 fd = -1; 7105 } 7106 mddev_resume(mddev); 7107 } else if (fd < 0) { 7108 mddev_suspend(mddev); 7109 md_bitmap_destroy(mddev); 7110 mddev_resume(mddev); 7111 } 7112 } 7113 if (fd < 0) { 7114 struct file *f = mddev->bitmap_info.file; 7115 if (f) { 7116 spin_lock(&mddev->lock); 7117 mddev->bitmap_info.file = NULL; 7118 spin_unlock(&mddev->lock); 7119 fput(f); 7120 } 7121 } 7122 7123 return err; 7124 } 7125 7126 /* 7127 * md_set_array_info is used two different ways 7128 * The original usage is when creating a new array. 7129 * In this usage, raid_disks is > 0 and it together with 7130 * level, size, not_persistent,layout,chunksize determine the 7131 * shape of the array. 7132 * This will always create an array with a type-0.90.0 superblock. 7133 * The newer usage is when assembling an array. 7134 * In this case raid_disks will be 0, and the major_version field is 7135 * use to determine which style super-blocks are to be found on the devices. 7136 * The minor and patch _version numbers are also kept incase the 7137 * super_block handler wishes to interpret them. 7138 */ 7139 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7140 { 7141 if (info->raid_disks == 0) { 7142 /* just setting version number for superblock loading */ 7143 if (info->major_version < 0 || 7144 info->major_version >= ARRAY_SIZE(super_types) || 7145 super_types[info->major_version].name == NULL) { 7146 /* maybe try to auto-load a module? */ 7147 pr_warn("md: superblock version %d not known\n", 7148 info->major_version); 7149 return -EINVAL; 7150 } 7151 mddev->major_version = info->major_version; 7152 mddev->minor_version = info->minor_version; 7153 mddev->patch_version = info->patch_version; 7154 mddev->persistent = !info->not_persistent; 7155 /* ensure mddev_put doesn't delete this now that there 7156 * is some minimal configuration. 7157 */ 7158 mddev->ctime = ktime_get_real_seconds(); 7159 return 0; 7160 } 7161 mddev->major_version = MD_MAJOR_VERSION; 7162 mddev->minor_version = MD_MINOR_VERSION; 7163 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7164 mddev->ctime = ktime_get_real_seconds(); 7165 7166 mddev->level = info->level; 7167 mddev->clevel[0] = 0; 7168 mddev->dev_sectors = 2 * (sector_t)info->size; 7169 mddev->raid_disks = info->raid_disks; 7170 /* don't set md_minor, it is determined by which /dev/md* was 7171 * openned 7172 */ 7173 if (info->state & (1<<MD_SB_CLEAN)) 7174 mddev->recovery_cp = MaxSector; 7175 else 7176 mddev->recovery_cp = 0; 7177 mddev->persistent = ! info->not_persistent; 7178 mddev->external = 0; 7179 7180 mddev->layout = info->layout; 7181 if (mddev->level == 0) 7182 /* Cannot trust RAID0 layout info here */ 7183 mddev->layout = -1; 7184 mddev->chunk_sectors = info->chunk_size >> 9; 7185 7186 if (mddev->persistent) { 7187 mddev->max_disks = MD_SB_DISKS; 7188 mddev->flags = 0; 7189 mddev->sb_flags = 0; 7190 } 7191 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7192 7193 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7194 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7195 mddev->bitmap_info.offset = 0; 7196 7197 mddev->reshape_position = MaxSector; 7198 7199 /* 7200 * Generate a 128 bit UUID 7201 */ 7202 get_random_bytes(mddev->uuid, 16); 7203 7204 mddev->new_level = mddev->level; 7205 mddev->new_chunk_sectors = mddev->chunk_sectors; 7206 mddev->new_layout = mddev->layout; 7207 mddev->delta_disks = 0; 7208 mddev->reshape_backwards = 0; 7209 7210 return 0; 7211 } 7212 7213 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7214 { 7215 lockdep_assert_held(&mddev->reconfig_mutex); 7216 7217 if (mddev->external_size) 7218 return; 7219 7220 mddev->array_sectors = array_sectors; 7221 } 7222 EXPORT_SYMBOL(md_set_array_sectors); 7223 7224 static int update_size(struct mddev *mddev, sector_t num_sectors) 7225 { 7226 struct md_rdev *rdev; 7227 int rv; 7228 int fit = (num_sectors == 0); 7229 sector_t old_dev_sectors = mddev->dev_sectors; 7230 7231 if (mddev->pers->resize == NULL) 7232 return -EINVAL; 7233 /* The "num_sectors" is the number of sectors of each device that 7234 * is used. This can only make sense for arrays with redundancy. 7235 * linear and raid0 always use whatever space is available. We can only 7236 * consider changing this number if no resync or reconstruction is 7237 * happening, and if the new size is acceptable. It must fit before the 7238 * sb_start or, if that is <data_offset, it must fit before the size 7239 * of each device. If num_sectors is zero, we find the largest size 7240 * that fits. 7241 */ 7242 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7243 mddev->sync_thread) 7244 return -EBUSY; 7245 if (mddev->ro) 7246 return -EROFS; 7247 7248 rdev_for_each(rdev, mddev) { 7249 sector_t avail = rdev->sectors; 7250 7251 if (fit && (num_sectors == 0 || num_sectors > avail)) 7252 num_sectors = avail; 7253 if (avail < num_sectors) 7254 return -ENOSPC; 7255 } 7256 rv = mddev->pers->resize(mddev, num_sectors); 7257 if (!rv) { 7258 if (mddev_is_clustered(mddev)) 7259 md_cluster_ops->update_size(mddev, old_dev_sectors); 7260 else if (mddev->queue) { 7261 set_capacity(mddev->gendisk, mddev->array_sectors); 7262 revalidate_disk(mddev->gendisk); 7263 } 7264 } 7265 return rv; 7266 } 7267 7268 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7269 { 7270 int rv; 7271 struct md_rdev *rdev; 7272 /* change the number of raid disks */ 7273 if (mddev->pers->check_reshape == NULL) 7274 return -EINVAL; 7275 if (mddev->ro) 7276 return -EROFS; 7277 if (raid_disks <= 0 || 7278 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7279 return -EINVAL; 7280 if (mddev->sync_thread || 7281 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7282 mddev->reshape_position != MaxSector) 7283 return -EBUSY; 7284 7285 rdev_for_each(rdev, mddev) { 7286 if (mddev->raid_disks < raid_disks && 7287 rdev->data_offset < rdev->new_data_offset) 7288 return -EINVAL; 7289 if (mddev->raid_disks > raid_disks && 7290 rdev->data_offset > rdev->new_data_offset) 7291 return -EINVAL; 7292 } 7293 7294 mddev->delta_disks = raid_disks - mddev->raid_disks; 7295 if (mddev->delta_disks < 0) 7296 mddev->reshape_backwards = 1; 7297 else if (mddev->delta_disks > 0) 7298 mddev->reshape_backwards = 0; 7299 7300 rv = mddev->pers->check_reshape(mddev); 7301 if (rv < 0) { 7302 mddev->delta_disks = 0; 7303 mddev->reshape_backwards = 0; 7304 } 7305 return rv; 7306 } 7307 7308 /* 7309 * update_array_info is used to change the configuration of an 7310 * on-line array. 7311 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7312 * fields in the info are checked against the array. 7313 * Any differences that cannot be handled will cause an error. 7314 * Normally, only one change can be managed at a time. 7315 */ 7316 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7317 { 7318 int rv = 0; 7319 int cnt = 0; 7320 int state = 0; 7321 7322 /* calculate expected state,ignoring low bits */ 7323 if (mddev->bitmap && mddev->bitmap_info.offset) 7324 state |= (1 << MD_SB_BITMAP_PRESENT); 7325 7326 if (mddev->major_version != info->major_version || 7327 mddev->minor_version != info->minor_version || 7328 /* mddev->patch_version != info->patch_version || */ 7329 mddev->ctime != info->ctime || 7330 mddev->level != info->level || 7331 /* mddev->layout != info->layout || */ 7332 mddev->persistent != !info->not_persistent || 7333 mddev->chunk_sectors != info->chunk_size >> 9 || 7334 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7335 ((state^info->state) & 0xfffffe00) 7336 ) 7337 return -EINVAL; 7338 /* Check there is only one change */ 7339 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7340 cnt++; 7341 if (mddev->raid_disks != info->raid_disks) 7342 cnt++; 7343 if (mddev->layout != info->layout) 7344 cnt++; 7345 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7346 cnt++; 7347 if (cnt == 0) 7348 return 0; 7349 if (cnt > 1) 7350 return -EINVAL; 7351 7352 if (mddev->layout != info->layout) { 7353 /* Change layout 7354 * we don't need to do anything at the md level, the 7355 * personality will take care of it all. 7356 */ 7357 if (mddev->pers->check_reshape == NULL) 7358 return -EINVAL; 7359 else { 7360 mddev->new_layout = info->layout; 7361 rv = mddev->pers->check_reshape(mddev); 7362 if (rv) 7363 mddev->new_layout = mddev->layout; 7364 return rv; 7365 } 7366 } 7367 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7368 rv = update_size(mddev, (sector_t)info->size * 2); 7369 7370 if (mddev->raid_disks != info->raid_disks) 7371 rv = update_raid_disks(mddev, info->raid_disks); 7372 7373 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7374 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7375 rv = -EINVAL; 7376 goto err; 7377 } 7378 if (mddev->recovery || mddev->sync_thread) { 7379 rv = -EBUSY; 7380 goto err; 7381 } 7382 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7383 struct bitmap *bitmap; 7384 /* add the bitmap */ 7385 if (mddev->bitmap) { 7386 rv = -EEXIST; 7387 goto err; 7388 } 7389 if (mddev->bitmap_info.default_offset == 0) { 7390 rv = -EINVAL; 7391 goto err; 7392 } 7393 mddev->bitmap_info.offset = 7394 mddev->bitmap_info.default_offset; 7395 mddev->bitmap_info.space = 7396 mddev->bitmap_info.default_space; 7397 bitmap = md_bitmap_create(mddev, -1); 7398 mddev_suspend(mddev); 7399 if (!IS_ERR(bitmap)) { 7400 mddev->bitmap = bitmap; 7401 rv = md_bitmap_load(mddev); 7402 } else 7403 rv = PTR_ERR(bitmap); 7404 if (rv) 7405 md_bitmap_destroy(mddev); 7406 mddev_resume(mddev); 7407 } else { 7408 /* remove the bitmap */ 7409 if (!mddev->bitmap) { 7410 rv = -ENOENT; 7411 goto err; 7412 } 7413 if (mddev->bitmap->storage.file) { 7414 rv = -EINVAL; 7415 goto err; 7416 } 7417 if (mddev->bitmap_info.nodes) { 7418 /* hold PW on all the bitmap lock */ 7419 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7420 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7421 rv = -EPERM; 7422 md_cluster_ops->unlock_all_bitmaps(mddev); 7423 goto err; 7424 } 7425 7426 mddev->bitmap_info.nodes = 0; 7427 md_cluster_ops->leave(mddev); 7428 module_put(md_cluster_mod); 7429 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7430 } 7431 mddev_suspend(mddev); 7432 md_bitmap_destroy(mddev); 7433 mddev_resume(mddev); 7434 mddev->bitmap_info.offset = 0; 7435 } 7436 } 7437 md_update_sb(mddev, 1); 7438 return rv; 7439 err: 7440 return rv; 7441 } 7442 7443 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7444 { 7445 struct md_rdev *rdev; 7446 int err = 0; 7447 7448 if (mddev->pers == NULL) 7449 return -ENODEV; 7450 7451 rcu_read_lock(); 7452 rdev = md_find_rdev_rcu(mddev, dev); 7453 if (!rdev) 7454 err = -ENODEV; 7455 else { 7456 md_error(mddev, rdev); 7457 if (!test_bit(Faulty, &rdev->flags)) 7458 err = -EBUSY; 7459 } 7460 rcu_read_unlock(); 7461 return err; 7462 } 7463 7464 /* 7465 * We have a problem here : there is no easy way to give a CHS 7466 * virtual geometry. We currently pretend that we have a 2 heads 7467 * 4 sectors (with a BIG number of cylinders...). This drives 7468 * dosfs just mad... ;-) 7469 */ 7470 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7471 { 7472 struct mddev *mddev = bdev->bd_disk->private_data; 7473 7474 geo->heads = 2; 7475 geo->sectors = 4; 7476 geo->cylinders = mddev->array_sectors / 8; 7477 return 0; 7478 } 7479 7480 static inline bool md_ioctl_valid(unsigned int cmd) 7481 { 7482 switch (cmd) { 7483 case ADD_NEW_DISK: 7484 case BLKROSET: 7485 case GET_ARRAY_INFO: 7486 case GET_BITMAP_FILE: 7487 case GET_DISK_INFO: 7488 case HOT_ADD_DISK: 7489 case HOT_REMOVE_DISK: 7490 case RAID_VERSION: 7491 case RESTART_ARRAY_RW: 7492 case RUN_ARRAY: 7493 case SET_ARRAY_INFO: 7494 case SET_BITMAP_FILE: 7495 case SET_DISK_FAULTY: 7496 case STOP_ARRAY: 7497 case STOP_ARRAY_RO: 7498 case CLUSTERED_DISK_NACK: 7499 return true; 7500 default: 7501 return false; 7502 } 7503 } 7504 7505 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7506 unsigned int cmd, unsigned long arg) 7507 { 7508 int err = 0; 7509 void __user *argp = (void __user *)arg; 7510 struct mddev *mddev = NULL; 7511 int ro; 7512 bool did_set_md_closing = false; 7513 7514 if (!md_ioctl_valid(cmd)) 7515 return -ENOTTY; 7516 7517 switch (cmd) { 7518 case RAID_VERSION: 7519 case GET_ARRAY_INFO: 7520 case GET_DISK_INFO: 7521 break; 7522 default: 7523 if (!capable(CAP_SYS_ADMIN)) 7524 return -EACCES; 7525 } 7526 7527 /* 7528 * Commands dealing with the RAID driver but not any 7529 * particular array: 7530 */ 7531 switch (cmd) { 7532 case RAID_VERSION: 7533 err = get_version(argp); 7534 goto out; 7535 default:; 7536 } 7537 7538 /* 7539 * Commands creating/starting a new array: 7540 */ 7541 7542 mddev = bdev->bd_disk->private_data; 7543 7544 if (!mddev) { 7545 BUG(); 7546 goto out; 7547 } 7548 7549 /* Some actions do not requires the mutex */ 7550 switch (cmd) { 7551 case GET_ARRAY_INFO: 7552 if (!mddev->raid_disks && !mddev->external) 7553 err = -ENODEV; 7554 else 7555 err = get_array_info(mddev, argp); 7556 goto out; 7557 7558 case GET_DISK_INFO: 7559 if (!mddev->raid_disks && !mddev->external) 7560 err = -ENODEV; 7561 else 7562 err = get_disk_info(mddev, argp); 7563 goto out; 7564 7565 case SET_DISK_FAULTY: 7566 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7567 goto out; 7568 7569 case GET_BITMAP_FILE: 7570 err = get_bitmap_file(mddev, argp); 7571 goto out; 7572 7573 } 7574 7575 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7576 flush_rdev_wq(mddev); 7577 7578 if (cmd == HOT_REMOVE_DISK) 7579 /* need to ensure recovery thread has run */ 7580 wait_event_interruptible_timeout(mddev->sb_wait, 7581 !test_bit(MD_RECOVERY_NEEDED, 7582 &mddev->recovery), 7583 msecs_to_jiffies(5000)); 7584 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7585 /* Need to flush page cache, and ensure no-one else opens 7586 * and writes 7587 */ 7588 mutex_lock(&mddev->open_mutex); 7589 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7590 mutex_unlock(&mddev->open_mutex); 7591 err = -EBUSY; 7592 goto out; 7593 } 7594 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7595 set_bit(MD_CLOSING, &mddev->flags); 7596 did_set_md_closing = true; 7597 mutex_unlock(&mddev->open_mutex); 7598 sync_blockdev(bdev); 7599 } 7600 err = mddev_lock(mddev); 7601 if (err) { 7602 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7603 err, cmd); 7604 goto out; 7605 } 7606 7607 if (cmd == SET_ARRAY_INFO) { 7608 mdu_array_info_t info; 7609 if (!arg) 7610 memset(&info, 0, sizeof(info)); 7611 else if (copy_from_user(&info, argp, sizeof(info))) { 7612 err = -EFAULT; 7613 goto unlock; 7614 } 7615 if (mddev->pers) { 7616 err = update_array_info(mddev, &info); 7617 if (err) { 7618 pr_warn("md: couldn't update array info. %d\n", err); 7619 goto unlock; 7620 } 7621 goto unlock; 7622 } 7623 if (!list_empty(&mddev->disks)) { 7624 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7625 err = -EBUSY; 7626 goto unlock; 7627 } 7628 if (mddev->raid_disks) { 7629 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7630 err = -EBUSY; 7631 goto unlock; 7632 } 7633 err = md_set_array_info(mddev, &info); 7634 if (err) { 7635 pr_warn("md: couldn't set array info. %d\n", err); 7636 goto unlock; 7637 } 7638 goto unlock; 7639 } 7640 7641 /* 7642 * Commands querying/configuring an existing array: 7643 */ 7644 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7645 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7646 if ((!mddev->raid_disks && !mddev->external) 7647 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7648 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7649 && cmd != GET_BITMAP_FILE) { 7650 err = -ENODEV; 7651 goto unlock; 7652 } 7653 7654 /* 7655 * Commands even a read-only array can execute: 7656 */ 7657 switch (cmd) { 7658 case RESTART_ARRAY_RW: 7659 err = restart_array(mddev); 7660 goto unlock; 7661 7662 case STOP_ARRAY: 7663 err = do_md_stop(mddev, 0, bdev); 7664 goto unlock; 7665 7666 case STOP_ARRAY_RO: 7667 err = md_set_readonly(mddev, bdev); 7668 goto unlock; 7669 7670 case HOT_REMOVE_DISK: 7671 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7672 goto unlock; 7673 7674 case ADD_NEW_DISK: 7675 /* We can support ADD_NEW_DISK on read-only arrays 7676 * only if we are re-adding a preexisting device. 7677 * So require mddev->pers and MD_DISK_SYNC. 7678 */ 7679 if (mddev->pers) { 7680 mdu_disk_info_t info; 7681 if (copy_from_user(&info, argp, sizeof(info))) 7682 err = -EFAULT; 7683 else if (!(info.state & (1<<MD_DISK_SYNC))) 7684 /* Need to clear read-only for this */ 7685 break; 7686 else 7687 err = md_add_new_disk(mddev, &info); 7688 goto unlock; 7689 } 7690 break; 7691 7692 case BLKROSET: 7693 if (get_user(ro, (int __user *)(arg))) { 7694 err = -EFAULT; 7695 goto unlock; 7696 } 7697 err = -EINVAL; 7698 7699 /* if the bdev is going readonly the value of mddev->ro 7700 * does not matter, no writes are coming 7701 */ 7702 if (ro) 7703 goto unlock; 7704 7705 /* are we are already prepared for writes? */ 7706 if (mddev->ro != 1) 7707 goto unlock; 7708 7709 /* transitioning to readauto need only happen for 7710 * arrays that call md_write_start 7711 */ 7712 if (mddev->pers) { 7713 err = restart_array(mddev); 7714 if (err == 0) { 7715 mddev->ro = 2; 7716 set_disk_ro(mddev->gendisk, 0); 7717 } 7718 } 7719 goto unlock; 7720 } 7721 7722 /* 7723 * The remaining ioctls are changing the state of the 7724 * superblock, so we do not allow them on read-only arrays. 7725 */ 7726 if (mddev->ro && mddev->pers) { 7727 if (mddev->ro == 2) { 7728 mddev->ro = 0; 7729 sysfs_notify_dirent_safe(mddev->sysfs_state); 7730 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7731 /* mddev_unlock will wake thread */ 7732 /* If a device failed while we were read-only, we 7733 * need to make sure the metadata is updated now. 7734 */ 7735 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7736 mddev_unlock(mddev); 7737 wait_event(mddev->sb_wait, 7738 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7739 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7740 mddev_lock_nointr(mddev); 7741 } 7742 } else { 7743 err = -EROFS; 7744 goto unlock; 7745 } 7746 } 7747 7748 switch (cmd) { 7749 case ADD_NEW_DISK: 7750 { 7751 mdu_disk_info_t info; 7752 if (copy_from_user(&info, argp, sizeof(info))) 7753 err = -EFAULT; 7754 else 7755 err = md_add_new_disk(mddev, &info); 7756 goto unlock; 7757 } 7758 7759 case CLUSTERED_DISK_NACK: 7760 if (mddev_is_clustered(mddev)) 7761 md_cluster_ops->new_disk_ack(mddev, false); 7762 else 7763 err = -EINVAL; 7764 goto unlock; 7765 7766 case HOT_ADD_DISK: 7767 err = hot_add_disk(mddev, new_decode_dev(arg)); 7768 goto unlock; 7769 7770 case RUN_ARRAY: 7771 err = do_md_run(mddev); 7772 goto unlock; 7773 7774 case SET_BITMAP_FILE: 7775 err = set_bitmap_file(mddev, (int)arg); 7776 goto unlock; 7777 7778 default: 7779 err = -EINVAL; 7780 goto unlock; 7781 } 7782 7783 unlock: 7784 if (mddev->hold_active == UNTIL_IOCTL && 7785 err != -EINVAL) 7786 mddev->hold_active = 0; 7787 mddev_unlock(mddev); 7788 out: 7789 if(did_set_md_closing) 7790 clear_bit(MD_CLOSING, &mddev->flags); 7791 return err; 7792 } 7793 #ifdef CONFIG_COMPAT 7794 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7795 unsigned int cmd, unsigned long arg) 7796 { 7797 switch (cmd) { 7798 case HOT_REMOVE_DISK: 7799 case HOT_ADD_DISK: 7800 case SET_DISK_FAULTY: 7801 case SET_BITMAP_FILE: 7802 /* These take in integer arg, do not convert */ 7803 break; 7804 default: 7805 arg = (unsigned long)compat_ptr(arg); 7806 break; 7807 } 7808 7809 return md_ioctl(bdev, mode, cmd, arg); 7810 } 7811 #endif /* CONFIG_COMPAT */ 7812 7813 static int md_open(struct block_device *bdev, fmode_t mode) 7814 { 7815 /* 7816 * Succeed if we can lock the mddev, which confirms that 7817 * it isn't being stopped right now. 7818 */ 7819 struct mddev *mddev = mddev_find(bdev->bd_dev); 7820 int err; 7821 7822 if (!mddev) 7823 return -ENODEV; 7824 7825 if (mddev->gendisk != bdev->bd_disk) { 7826 /* we are racing with mddev_put which is discarding this 7827 * bd_disk. 7828 */ 7829 mddev_put(mddev); 7830 /* Wait until bdev->bd_disk is definitely gone */ 7831 if (work_pending(&mddev->del_work)) 7832 flush_workqueue(md_misc_wq); 7833 /* Then retry the open from the top */ 7834 return -ERESTARTSYS; 7835 } 7836 BUG_ON(mddev != bdev->bd_disk->private_data); 7837 7838 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7839 goto out; 7840 7841 if (test_bit(MD_CLOSING, &mddev->flags)) { 7842 mutex_unlock(&mddev->open_mutex); 7843 err = -ENODEV; 7844 goto out; 7845 } 7846 7847 err = 0; 7848 atomic_inc(&mddev->openers); 7849 mutex_unlock(&mddev->open_mutex); 7850 7851 check_disk_change(bdev); 7852 out: 7853 if (err) 7854 mddev_put(mddev); 7855 return err; 7856 } 7857 7858 static void md_release(struct gendisk *disk, fmode_t mode) 7859 { 7860 struct mddev *mddev = disk->private_data; 7861 7862 BUG_ON(!mddev); 7863 atomic_dec(&mddev->openers); 7864 mddev_put(mddev); 7865 } 7866 7867 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7868 { 7869 struct mddev *mddev = disk->private_data; 7870 unsigned int ret = 0; 7871 7872 if (mddev->changed) 7873 ret = DISK_EVENT_MEDIA_CHANGE; 7874 mddev->changed = 0; 7875 return ret; 7876 } 7877 7878 const struct block_device_operations md_fops = 7879 { 7880 .owner = THIS_MODULE, 7881 .submit_bio = md_submit_bio, 7882 .open = md_open, 7883 .release = md_release, 7884 .ioctl = md_ioctl, 7885 #ifdef CONFIG_COMPAT 7886 .compat_ioctl = md_compat_ioctl, 7887 #endif 7888 .getgeo = md_getgeo, 7889 .check_events = md_check_events, 7890 }; 7891 7892 static int md_thread(void *arg) 7893 { 7894 struct md_thread *thread = arg; 7895 7896 /* 7897 * md_thread is a 'system-thread', it's priority should be very 7898 * high. We avoid resource deadlocks individually in each 7899 * raid personality. (RAID5 does preallocation) We also use RR and 7900 * the very same RT priority as kswapd, thus we will never get 7901 * into a priority inversion deadlock. 7902 * 7903 * we definitely have to have equal or higher priority than 7904 * bdflush, otherwise bdflush will deadlock if there are too 7905 * many dirty RAID5 blocks. 7906 */ 7907 7908 allow_signal(SIGKILL); 7909 while (!kthread_should_stop()) { 7910 7911 /* We need to wait INTERRUPTIBLE so that 7912 * we don't add to the load-average. 7913 * That means we need to be sure no signals are 7914 * pending 7915 */ 7916 if (signal_pending(current)) 7917 flush_signals(current); 7918 7919 wait_event_interruptible_timeout 7920 (thread->wqueue, 7921 test_bit(THREAD_WAKEUP, &thread->flags) 7922 || kthread_should_stop() || kthread_should_park(), 7923 thread->timeout); 7924 7925 clear_bit(THREAD_WAKEUP, &thread->flags); 7926 if (kthread_should_park()) 7927 kthread_parkme(); 7928 if (!kthread_should_stop()) 7929 thread->run(thread); 7930 } 7931 7932 return 0; 7933 } 7934 7935 void md_wakeup_thread(struct md_thread *thread) 7936 { 7937 if (thread) { 7938 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7939 set_bit(THREAD_WAKEUP, &thread->flags); 7940 wake_up(&thread->wqueue); 7941 } 7942 } 7943 EXPORT_SYMBOL(md_wakeup_thread); 7944 7945 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7946 struct mddev *mddev, const char *name) 7947 { 7948 struct md_thread *thread; 7949 7950 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7951 if (!thread) 7952 return NULL; 7953 7954 init_waitqueue_head(&thread->wqueue); 7955 7956 thread->run = run; 7957 thread->mddev = mddev; 7958 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7959 thread->tsk = kthread_run(md_thread, thread, 7960 "%s_%s", 7961 mdname(thread->mddev), 7962 name); 7963 if (IS_ERR(thread->tsk)) { 7964 kfree(thread); 7965 return NULL; 7966 } 7967 return thread; 7968 } 7969 EXPORT_SYMBOL(md_register_thread); 7970 7971 void md_unregister_thread(struct md_thread **threadp) 7972 { 7973 struct md_thread *thread = *threadp; 7974 if (!thread) 7975 return; 7976 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7977 /* Locking ensures that mddev_unlock does not wake_up a 7978 * non-existent thread 7979 */ 7980 spin_lock(&pers_lock); 7981 *threadp = NULL; 7982 spin_unlock(&pers_lock); 7983 7984 kthread_stop(thread->tsk); 7985 kfree(thread); 7986 } 7987 EXPORT_SYMBOL(md_unregister_thread); 7988 7989 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7990 { 7991 if (!rdev || test_bit(Faulty, &rdev->flags)) 7992 return; 7993 7994 if (!mddev->pers || !mddev->pers->error_handler) 7995 return; 7996 mddev->pers->error_handler(mddev,rdev); 7997 if (mddev->degraded) 7998 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7999 sysfs_notify_dirent_safe(rdev->sysfs_state); 8000 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8001 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8002 md_wakeup_thread(mddev->thread); 8003 if (mddev->event_work.func) 8004 queue_work(md_misc_wq, &mddev->event_work); 8005 md_new_event(mddev); 8006 } 8007 EXPORT_SYMBOL(md_error); 8008 8009 /* seq_file implementation /proc/mdstat */ 8010 8011 static void status_unused(struct seq_file *seq) 8012 { 8013 int i = 0; 8014 struct md_rdev *rdev; 8015 8016 seq_printf(seq, "unused devices: "); 8017 8018 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8019 char b[BDEVNAME_SIZE]; 8020 i++; 8021 seq_printf(seq, "%s ", 8022 bdevname(rdev->bdev,b)); 8023 } 8024 if (!i) 8025 seq_printf(seq, "<none>"); 8026 8027 seq_printf(seq, "\n"); 8028 } 8029 8030 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8031 { 8032 sector_t max_sectors, resync, res; 8033 unsigned long dt, db = 0; 8034 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8035 int scale, recovery_active; 8036 unsigned int per_milli; 8037 8038 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8039 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8040 max_sectors = mddev->resync_max_sectors; 8041 else 8042 max_sectors = mddev->dev_sectors; 8043 8044 resync = mddev->curr_resync; 8045 if (resync <= 3) { 8046 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8047 /* Still cleaning up */ 8048 resync = max_sectors; 8049 } else if (resync > max_sectors) 8050 resync = max_sectors; 8051 else 8052 resync -= atomic_read(&mddev->recovery_active); 8053 8054 if (resync == 0) { 8055 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8056 struct md_rdev *rdev; 8057 8058 rdev_for_each(rdev, mddev) 8059 if (rdev->raid_disk >= 0 && 8060 !test_bit(Faulty, &rdev->flags) && 8061 rdev->recovery_offset != MaxSector && 8062 rdev->recovery_offset) { 8063 seq_printf(seq, "\trecover=REMOTE"); 8064 return 1; 8065 } 8066 if (mddev->reshape_position != MaxSector) 8067 seq_printf(seq, "\treshape=REMOTE"); 8068 else 8069 seq_printf(seq, "\tresync=REMOTE"); 8070 return 1; 8071 } 8072 if (mddev->recovery_cp < MaxSector) { 8073 seq_printf(seq, "\tresync=PENDING"); 8074 return 1; 8075 } 8076 return 0; 8077 } 8078 if (resync < 3) { 8079 seq_printf(seq, "\tresync=DELAYED"); 8080 return 1; 8081 } 8082 8083 WARN_ON(max_sectors == 0); 8084 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8085 * in a sector_t, and (max_sectors>>scale) will fit in a 8086 * u32, as those are the requirements for sector_div. 8087 * Thus 'scale' must be at least 10 8088 */ 8089 scale = 10; 8090 if (sizeof(sector_t) > sizeof(unsigned long)) { 8091 while ( max_sectors/2 > (1ULL<<(scale+32))) 8092 scale++; 8093 } 8094 res = (resync>>scale)*1000; 8095 sector_div(res, (u32)((max_sectors>>scale)+1)); 8096 8097 per_milli = res; 8098 { 8099 int i, x = per_milli/50, y = 20-x; 8100 seq_printf(seq, "["); 8101 for (i = 0; i < x; i++) 8102 seq_printf(seq, "="); 8103 seq_printf(seq, ">"); 8104 for (i = 0; i < y; i++) 8105 seq_printf(seq, "."); 8106 seq_printf(seq, "] "); 8107 } 8108 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8109 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8110 "reshape" : 8111 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8112 "check" : 8113 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8114 "resync" : "recovery"))), 8115 per_milli/10, per_milli % 10, 8116 (unsigned long long) resync/2, 8117 (unsigned long long) max_sectors/2); 8118 8119 /* 8120 * dt: time from mark until now 8121 * db: blocks written from mark until now 8122 * rt: remaining time 8123 * 8124 * rt is a sector_t, which is always 64bit now. We are keeping 8125 * the original algorithm, but it is not really necessary. 8126 * 8127 * Original algorithm: 8128 * So we divide before multiply in case it is 32bit and close 8129 * to the limit. 8130 * We scale the divisor (db) by 32 to avoid losing precision 8131 * near the end of resync when the number of remaining sectors 8132 * is close to 'db'. 8133 * We then divide rt by 32 after multiplying by db to compensate. 8134 * The '+1' avoids division by zero if db is very small. 8135 */ 8136 dt = ((jiffies - mddev->resync_mark) / HZ); 8137 if (!dt) dt++; 8138 8139 curr_mark_cnt = mddev->curr_mark_cnt; 8140 recovery_active = atomic_read(&mddev->recovery_active); 8141 resync_mark_cnt = mddev->resync_mark_cnt; 8142 8143 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8144 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8145 8146 rt = max_sectors - resync; /* number of remaining sectors */ 8147 rt = div64_u64(rt, db/32+1); 8148 rt *= dt; 8149 rt >>= 5; 8150 8151 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8152 ((unsigned long)rt % 60)/6); 8153 8154 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8155 return 1; 8156 } 8157 8158 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8159 { 8160 struct list_head *tmp; 8161 loff_t l = *pos; 8162 struct mddev *mddev; 8163 8164 if (l >= 0x10000) 8165 return NULL; 8166 if (!l--) 8167 /* header */ 8168 return (void*)1; 8169 8170 spin_lock(&all_mddevs_lock); 8171 list_for_each(tmp,&all_mddevs) 8172 if (!l--) { 8173 mddev = list_entry(tmp, struct mddev, all_mddevs); 8174 mddev_get(mddev); 8175 spin_unlock(&all_mddevs_lock); 8176 return mddev; 8177 } 8178 spin_unlock(&all_mddevs_lock); 8179 if (!l--) 8180 return (void*)2;/* tail */ 8181 return NULL; 8182 } 8183 8184 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8185 { 8186 struct list_head *tmp; 8187 struct mddev *next_mddev, *mddev = v; 8188 8189 ++*pos; 8190 if (v == (void*)2) 8191 return NULL; 8192 8193 spin_lock(&all_mddevs_lock); 8194 if (v == (void*)1) 8195 tmp = all_mddevs.next; 8196 else 8197 tmp = mddev->all_mddevs.next; 8198 if (tmp != &all_mddevs) 8199 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8200 else { 8201 next_mddev = (void*)2; 8202 *pos = 0x10000; 8203 } 8204 spin_unlock(&all_mddevs_lock); 8205 8206 if (v != (void*)1) 8207 mddev_put(mddev); 8208 return next_mddev; 8209 8210 } 8211 8212 static void md_seq_stop(struct seq_file *seq, void *v) 8213 { 8214 struct mddev *mddev = v; 8215 8216 if (mddev && v != (void*)1 && v != (void*)2) 8217 mddev_put(mddev); 8218 } 8219 8220 static int md_seq_show(struct seq_file *seq, void *v) 8221 { 8222 struct mddev *mddev = v; 8223 sector_t sectors; 8224 struct md_rdev *rdev; 8225 8226 if (v == (void*)1) { 8227 struct md_personality *pers; 8228 seq_printf(seq, "Personalities : "); 8229 spin_lock(&pers_lock); 8230 list_for_each_entry(pers, &pers_list, list) 8231 seq_printf(seq, "[%s] ", pers->name); 8232 8233 spin_unlock(&pers_lock); 8234 seq_printf(seq, "\n"); 8235 seq->poll_event = atomic_read(&md_event_count); 8236 return 0; 8237 } 8238 if (v == (void*)2) { 8239 status_unused(seq); 8240 return 0; 8241 } 8242 8243 spin_lock(&mddev->lock); 8244 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8245 seq_printf(seq, "%s : %sactive", mdname(mddev), 8246 mddev->pers ? "" : "in"); 8247 if (mddev->pers) { 8248 if (mddev->ro==1) 8249 seq_printf(seq, " (read-only)"); 8250 if (mddev->ro==2) 8251 seq_printf(seq, " (auto-read-only)"); 8252 seq_printf(seq, " %s", mddev->pers->name); 8253 } 8254 8255 sectors = 0; 8256 rcu_read_lock(); 8257 rdev_for_each_rcu(rdev, mddev) { 8258 char b[BDEVNAME_SIZE]; 8259 seq_printf(seq, " %s[%d]", 8260 bdevname(rdev->bdev,b), rdev->desc_nr); 8261 if (test_bit(WriteMostly, &rdev->flags)) 8262 seq_printf(seq, "(W)"); 8263 if (test_bit(Journal, &rdev->flags)) 8264 seq_printf(seq, "(J)"); 8265 if (test_bit(Faulty, &rdev->flags)) { 8266 seq_printf(seq, "(F)"); 8267 continue; 8268 } 8269 if (rdev->raid_disk < 0) 8270 seq_printf(seq, "(S)"); /* spare */ 8271 if (test_bit(Replacement, &rdev->flags)) 8272 seq_printf(seq, "(R)"); 8273 sectors += rdev->sectors; 8274 } 8275 rcu_read_unlock(); 8276 8277 if (!list_empty(&mddev->disks)) { 8278 if (mddev->pers) 8279 seq_printf(seq, "\n %llu blocks", 8280 (unsigned long long) 8281 mddev->array_sectors / 2); 8282 else 8283 seq_printf(seq, "\n %llu blocks", 8284 (unsigned long long)sectors / 2); 8285 } 8286 if (mddev->persistent) { 8287 if (mddev->major_version != 0 || 8288 mddev->minor_version != 90) { 8289 seq_printf(seq," super %d.%d", 8290 mddev->major_version, 8291 mddev->minor_version); 8292 } 8293 } else if (mddev->external) 8294 seq_printf(seq, " super external:%s", 8295 mddev->metadata_type); 8296 else 8297 seq_printf(seq, " super non-persistent"); 8298 8299 if (mddev->pers) { 8300 mddev->pers->status(seq, mddev); 8301 seq_printf(seq, "\n "); 8302 if (mddev->pers->sync_request) { 8303 if (status_resync(seq, mddev)) 8304 seq_printf(seq, "\n "); 8305 } 8306 } else 8307 seq_printf(seq, "\n "); 8308 8309 md_bitmap_status(seq, mddev->bitmap); 8310 8311 seq_printf(seq, "\n"); 8312 } 8313 spin_unlock(&mddev->lock); 8314 8315 return 0; 8316 } 8317 8318 static const struct seq_operations md_seq_ops = { 8319 .start = md_seq_start, 8320 .next = md_seq_next, 8321 .stop = md_seq_stop, 8322 .show = md_seq_show, 8323 }; 8324 8325 static int md_seq_open(struct inode *inode, struct file *file) 8326 { 8327 struct seq_file *seq; 8328 int error; 8329 8330 error = seq_open(file, &md_seq_ops); 8331 if (error) 8332 return error; 8333 8334 seq = file->private_data; 8335 seq->poll_event = atomic_read(&md_event_count); 8336 return error; 8337 } 8338 8339 static int md_unloading; 8340 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8341 { 8342 struct seq_file *seq = filp->private_data; 8343 __poll_t mask; 8344 8345 if (md_unloading) 8346 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8347 poll_wait(filp, &md_event_waiters, wait); 8348 8349 /* always allow read */ 8350 mask = EPOLLIN | EPOLLRDNORM; 8351 8352 if (seq->poll_event != atomic_read(&md_event_count)) 8353 mask |= EPOLLERR | EPOLLPRI; 8354 return mask; 8355 } 8356 8357 static const struct proc_ops mdstat_proc_ops = { 8358 .proc_open = md_seq_open, 8359 .proc_read = seq_read, 8360 .proc_lseek = seq_lseek, 8361 .proc_release = seq_release, 8362 .proc_poll = mdstat_poll, 8363 }; 8364 8365 int register_md_personality(struct md_personality *p) 8366 { 8367 pr_debug("md: %s personality registered for level %d\n", 8368 p->name, p->level); 8369 spin_lock(&pers_lock); 8370 list_add_tail(&p->list, &pers_list); 8371 spin_unlock(&pers_lock); 8372 return 0; 8373 } 8374 EXPORT_SYMBOL(register_md_personality); 8375 8376 int unregister_md_personality(struct md_personality *p) 8377 { 8378 pr_debug("md: %s personality unregistered\n", p->name); 8379 spin_lock(&pers_lock); 8380 list_del_init(&p->list); 8381 spin_unlock(&pers_lock); 8382 return 0; 8383 } 8384 EXPORT_SYMBOL(unregister_md_personality); 8385 8386 int register_md_cluster_operations(struct md_cluster_operations *ops, 8387 struct module *module) 8388 { 8389 int ret = 0; 8390 spin_lock(&pers_lock); 8391 if (md_cluster_ops != NULL) 8392 ret = -EALREADY; 8393 else { 8394 md_cluster_ops = ops; 8395 md_cluster_mod = module; 8396 } 8397 spin_unlock(&pers_lock); 8398 return ret; 8399 } 8400 EXPORT_SYMBOL(register_md_cluster_operations); 8401 8402 int unregister_md_cluster_operations(void) 8403 { 8404 spin_lock(&pers_lock); 8405 md_cluster_ops = NULL; 8406 spin_unlock(&pers_lock); 8407 return 0; 8408 } 8409 EXPORT_SYMBOL(unregister_md_cluster_operations); 8410 8411 int md_setup_cluster(struct mddev *mddev, int nodes) 8412 { 8413 int ret; 8414 if (!md_cluster_ops) 8415 request_module("md-cluster"); 8416 spin_lock(&pers_lock); 8417 /* ensure module won't be unloaded */ 8418 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8419 pr_warn("can't find md-cluster module or get it's reference.\n"); 8420 spin_unlock(&pers_lock); 8421 return -ENOENT; 8422 } 8423 spin_unlock(&pers_lock); 8424 8425 ret = md_cluster_ops->join(mddev, nodes); 8426 if (!ret) 8427 mddev->safemode_delay = 0; 8428 return ret; 8429 } 8430 8431 void md_cluster_stop(struct mddev *mddev) 8432 { 8433 if (!md_cluster_ops) 8434 return; 8435 md_cluster_ops->leave(mddev); 8436 module_put(md_cluster_mod); 8437 } 8438 8439 static int is_mddev_idle(struct mddev *mddev, int init) 8440 { 8441 struct md_rdev *rdev; 8442 int idle; 8443 int curr_events; 8444 8445 idle = 1; 8446 rcu_read_lock(); 8447 rdev_for_each_rcu(rdev, mddev) { 8448 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8449 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8450 atomic_read(&disk->sync_io); 8451 /* sync IO will cause sync_io to increase before the disk_stats 8452 * as sync_io is counted when a request starts, and 8453 * disk_stats is counted when it completes. 8454 * So resync activity will cause curr_events to be smaller than 8455 * when there was no such activity. 8456 * non-sync IO will cause disk_stat to increase without 8457 * increasing sync_io so curr_events will (eventually) 8458 * be larger than it was before. Once it becomes 8459 * substantially larger, the test below will cause 8460 * the array to appear non-idle, and resync will slow 8461 * down. 8462 * If there is a lot of outstanding resync activity when 8463 * we set last_event to curr_events, then all that activity 8464 * completing might cause the array to appear non-idle 8465 * and resync will be slowed down even though there might 8466 * not have been non-resync activity. This will only 8467 * happen once though. 'last_events' will soon reflect 8468 * the state where there is little or no outstanding 8469 * resync requests, and further resync activity will 8470 * always make curr_events less than last_events. 8471 * 8472 */ 8473 if (init || curr_events - rdev->last_events > 64) { 8474 rdev->last_events = curr_events; 8475 idle = 0; 8476 } 8477 } 8478 rcu_read_unlock(); 8479 return idle; 8480 } 8481 8482 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8483 { 8484 /* another "blocks" (512byte) blocks have been synced */ 8485 atomic_sub(blocks, &mddev->recovery_active); 8486 wake_up(&mddev->recovery_wait); 8487 if (!ok) { 8488 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8489 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8490 md_wakeup_thread(mddev->thread); 8491 // stop recovery, signal do_sync .... 8492 } 8493 } 8494 EXPORT_SYMBOL(md_done_sync); 8495 8496 /* md_write_start(mddev, bi) 8497 * If we need to update some array metadata (e.g. 'active' flag 8498 * in superblock) before writing, schedule a superblock update 8499 * and wait for it to complete. 8500 * A return value of 'false' means that the write wasn't recorded 8501 * and cannot proceed as the array is being suspend. 8502 */ 8503 bool md_write_start(struct mddev *mddev, struct bio *bi) 8504 { 8505 int did_change = 0; 8506 8507 if (bio_data_dir(bi) != WRITE) 8508 return true; 8509 8510 BUG_ON(mddev->ro == 1); 8511 if (mddev->ro == 2) { 8512 /* need to switch to read/write */ 8513 mddev->ro = 0; 8514 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8515 md_wakeup_thread(mddev->thread); 8516 md_wakeup_thread(mddev->sync_thread); 8517 did_change = 1; 8518 } 8519 rcu_read_lock(); 8520 percpu_ref_get(&mddev->writes_pending); 8521 smp_mb(); /* Match smp_mb in set_in_sync() */ 8522 if (mddev->safemode == 1) 8523 mddev->safemode = 0; 8524 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8525 if (mddev->in_sync || mddev->sync_checkers) { 8526 spin_lock(&mddev->lock); 8527 if (mddev->in_sync) { 8528 mddev->in_sync = 0; 8529 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8530 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8531 md_wakeup_thread(mddev->thread); 8532 did_change = 1; 8533 } 8534 spin_unlock(&mddev->lock); 8535 } 8536 rcu_read_unlock(); 8537 if (did_change) 8538 sysfs_notify_dirent_safe(mddev->sysfs_state); 8539 if (!mddev->has_superblocks) 8540 return true; 8541 wait_event(mddev->sb_wait, 8542 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8543 mddev->suspended); 8544 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8545 percpu_ref_put(&mddev->writes_pending); 8546 return false; 8547 } 8548 return true; 8549 } 8550 EXPORT_SYMBOL(md_write_start); 8551 8552 /* md_write_inc can only be called when md_write_start() has 8553 * already been called at least once of the current request. 8554 * It increments the counter and is useful when a single request 8555 * is split into several parts. Each part causes an increment and 8556 * so needs a matching md_write_end(). 8557 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8558 * a spinlocked region. 8559 */ 8560 void md_write_inc(struct mddev *mddev, struct bio *bi) 8561 { 8562 if (bio_data_dir(bi) != WRITE) 8563 return; 8564 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8565 percpu_ref_get(&mddev->writes_pending); 8566 } 8567 EXPORT_SYMBOL(md_write_inc); 8568 8569 void md_write_end(struct mddev *mddev) 8570 { 8571 percpu_ref_put(&mddev->writes_pending); 8572 8573 if (mddev->safemode == 2) 8574 md_wakeup_thread(mddev->thread); 8575 else if (mddev->safemode_delay) 8576 /* The roundup() ensures this only performs locking once 8577 * every ->safemode_delay jiffies 8578 */ 8579 mod_timer(&mddev->safemode_timer, 8580 roundup(jiffies, mddev->safemode_delay) + 8581 mddev->safemode_delay); 8582 } 8583 8584 EXPORT_SYMBOL(md_write_end); 8585 8586 /* md_allow_write(mddev) 8587 * Calling this ensures that the array is marked 'active' so that writes 8588 * may proceed without blocking. It is important to call this before 8589 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8590 * Must be called with mddev_lock held. 8591 */ 8592 void md_allow_write(struct mddev *mddev) 8593 { 8594 if (!mddev->pers) 8595 return; 8596 if (mddev->ro) 8597 return; 8598 if (!mddev->pers->sync_request) 8599 return; 8600 8601 spin_lock(&mddev->lock); 8602 if (mddev->in_sync) { 8603 mddev->in_sync = 0; 8604 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8605 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8606 if (mddev->safemode_delay && 8607 mddev->safemode == 0) 8608 mddev->safemode = 1; 8609 spin_unlock(&mddev->lock); 8610 md_update_sb(mddev, 0); 8611 sysfs_notify_dirent_safe(mddev->sysfs_state); 8612 /* wait for the dirty state to be recorded in the metadata */ 8613 wait_event(mddev->sb_wait, 8614 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8615 } else 8616 spin_unlock(&mddev->lock); 8617 } 8618 EXPORT_SYMBOL_GPL(md_allow_write); 8619 8620 #define SYNC_MARKS 10 8621 #define SYNC_MARK_STEP (3*HZ) 8622 #define UPDATE_FREQUENCY (5*60*HZ) 8623 void md_do_sync(struct md_thread *thread) 8624 { 8625 struct mddev *mddev = thread->mddev; 8626 struct mddev *mddev2; 8627 unsigned int currspeed = 0, window; 8628 sector_t max_sectors,j, io_sectors, recovery_done; 8629 unsigned long mark[SYNC_MARKS]; 8630 unsigned long update_time; 8631 sector_t mark_cnt[SYNC_MARKS]; 8632 int last_mark,m; 8633 struct list_head *tmp; 8634 sector_t last_check; 8635 int skipped = 0; 8636 struct md_rdev *rdev; 8637 char *desc, *action = NULL; 8638 struct blk_plug plug; 8639 int ret; 8640 8641 /* just incase thread restarts... */ 8642 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8643 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8644 return; 8645 if (mddev->ro) {/* never try to sync a read-only array */ 8646 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8647 return; 8648 } 8649 8650 if (mddev_is_clustered(mddev)) { 8651 ret = md_cluster_ops->resync_start(mddev); 8652 if (ret) 8653 goto skip; 8654 8655 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8656 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8657 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8658 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8659 && ((unsigned long long)mddev->curr_resync_completed 8660 < (unsigned long long)mddev->resync_max_sectors)) 8661 goto skip; 8662 } 8663 8664 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8665 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8666 desc = "data-check"; 8667 action = "check"; 8668 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8669 desc = "requested-resync"; 8670 action = "repair"; 8671 } else 8672 desc = "resync"; 8673 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8674 desc = "reshape"; 8675 else 8676 desc = "recovery"; 8677 8678 mddev->last_sync_action = action ?: desc; 8679 8680 /* we overload curr_resync somewhat here. 8681 * 0 == not engaged in resync at all 8682 * 2 == checking that there is no conflict with another sync 8683 * 1 == like 2, but have yielded to allow conflicting resync to 8684 * commence 8685 * other == active in resync - this many blocks 8686 * 8687 * Before starting a resync we must have set curr_resync to 8688 * 2, and then checked that every "conflicting" array has curr_resync 8689 * less than ours. When we find one that is the same or higher 8690 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8691 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8692 * This will mean we have to start checking from the beginning again. 8693 * 8694 */ 8695 8696 do { 8697 int mddev2_minor = -1; 8698 mddev->curr_resync = 2; 8699 8700 try_again: 8701 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8702 goto skip; 8703 for_each_mddev(mddev2, tmp) { 8704 if (mddev2 == mddev) 8705 continue; 8706 if (!mddev->parallel_resync 8707 && mddev2->curr_resync 8708 && match_mddev_units(mddev, mddev2)) { 8709 DEFINE_WAIT(wq); 8710 if (mddev < mddev2 && mddev->curr_resync == 2) { 8711 /* arbitrarily yield */ 8712 mddev->curr_resync = 1; 8713 wake_up(&resync_wait); 8714 } 8715 if (mddev > mddev2 && mddev->curr_resync == 1) 8716 /* no need to wait here, we can wait the next 8717 * time 'round when curr_resync == 2 8718 */ 8719 continue; 8720 /* We need to wait 'interruptible' so as not to 8721 * contribute to the load average, and not to 8722 * be caught by 'softlockup' 8723 */ 8724 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8725 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8726 mddev2->curr_resync >= mddev->curr_resync) { 8727 if (mddev2_minor != mddev2->md_minor) { 8728 mddev2_minor = mddev2->md_minor; 8729 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8730 desc, mdname(mddev), 8731 mdname(mddev2)); 8732 } 8733 mddev_put(mddev2); 8734 if (signal_pending(current)) 8735 flush_signals(current); 8736 schedule(); 8737 finish_wait(&resync_wait, &wq); 8738 goto try_again; 8739 } 8740 finish_wait(&resync_wait, &wq); 8741 } 8742 } 8743 } while (mddev->curr_resync < 2); 8744 8745 j = 0; 8746 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8747 /* resync follows the size requested by the personality, 8748 * which defaults to physical size, but can be virtual size 8749 */ 8750 max_sectors = mddev->resync_max_sectors; 8751 atomic64_set(&mddev->resync_mismatches, 0); 8752 /* we don't use the checkpoint if there's a bitmap */ 8753 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8754 j = mddev->resync_min; 8755 else if (!mddev->bitmap) 8756 j = mddev->recovery_cp; 8757 8758 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8759 max_sectors = mddev->resync_max_sectors; 8760 /* 8761 * If the original node aborts reshaping then we continue the 8762 * reshaping, so set j again to avoid restart reshape from the 8763 * first beginning 8764 */ 8765 if (mddev_is_clustered(mddev) && 8766 mddev->reshape_position != MaxSector) 8767 j = mddev->reshape_position; 8768 } else { 8769 /* recovery follows the physical size of devices */ 8770 max_sectors = mddev->dev_sectors; 8771 j = MaxSector; 8772 rcu_read_lock(); 8773 rdev_for_each_rcu(rdev, mddev) 8774 if (rdev->raid_disk >= 0 && 8775 !test_bit(Journal, &rdev->flags) && 8776 !test_bit(Faulty, &rdev->flags) && 8777 !test_bit(In_sync, &rdev->flags) && 8778 rdev->recovery_offset < j) 8779 j = rdev->recovery_offset; 8780 rcu_read_unlock(); 8781 8782 /* If there is a bitmap, we need to make sure all 8783 * writes that started before we added a spare 8784 * complete before we start doing a recovery. 8785 * Otherwise the write might complete and (via 8786 * bitmap_endwrite) set a bit in the bitmap after the 8787 * recovery has checked that bit and skipped that 8788 * region. 8789 */ 8790 if (mddev->bitmap) { 8791 mddev->pers->quiesce(mddev, 1); 8792 mddev->pers->quiesce(mddev, 0); 8793 } 8794 } 8795 8796 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8797 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8798 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8799 speed_max(mddev), desc); 8800 8801 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8802 8803 io_sectors = 0; 8804 for (m = 0; m < SYNC_MARKS; m++) { 8805 mark[m] = jiffies; 8806 mark_cnt[m] = io_sectors; 8807 } 8808 last_mark = 0; 8809 mddev->resync_mark = mark[last_mark]; 8810 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8811 8812 /* 8813 * Tune reconstruction: 8814 */ 8815 window = 32 * (PAGE_SIZE / 512); 8816 pr_debug("md: using %dk window, over a total of %lluk.\n", 8817 window/2, (unsigned long long)max_sectors/2); 8818 8819 atomic_set(&mddev->recovery_active, 0); 8820 last_check = 0; 8821 8822 if (j>2) { 8823 pr_debug("md: resuming %s of %s from checkpoint.\n", 8824 desc, mdname(mddev)); 8825 mddev->curr_resync = j; 8826 } else 8827 mddev->curr_resync = 3; /* no longer delayed */ 8828 mddev->curr_resync_completed = j; 8829 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8830 md_new_event(mddev); 8831 update_time = jiffies; 8832 8833 blk_start_plug(&plug); 8834 while (j < max_sectors) { 8835 sector_t sectors; 8836 8837 skipped = 0; 8838 8839 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8840 ((mddev->curr_resync > mddev->curr_resync_completed && 8841 (mddev->curr_resync - mddev->curr_resync_completed) 8842 > (max_sectors >> 4)) || 8843 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8844 (j - mddev->curr_resync_completed)*2 8845 >= mddev->resync_max - mddev->curr_resync_completed || 8846 mddev->curr_resync_completed > mddev->resync_max 8847 )) { 8848 /* time to update curr_resync_completed */ 8849 wait_event(mddev->recovery_wait, 8850 atomic_read(&mddev->recovery_active) == 0); 8851 mddev->curr_resync_completed = j; 8852 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8853 j > mddev->recovery_cp) 8854 mddev->recovery_cp = j; 8855 update_time = jiffies; 8856 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8857 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8858 } 8859 8860 while (j >= mddev->resync_max && 8861 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8862 /* As this condition is controlled by user-space, 8863 * we can block indefinitely, so use '_interruptible' 8864 * to avoid triggering warnings. 8865 */ 8866 flush_signals(current); /* just in case */ 8867 wait_event_interruptible(mddev->recovery_wait, 8868 mddev->resync_max > j 8869 || test_bit(MD_RECOVERY_INTR, 8870 &mddev->recovery)); 8871 } 8872 8873 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8874 break; 8875 8876 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8877 if (sectors == 0) { 8878 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8879 break; 8880 } 8881 8882 if (!skipped) { /* actual IO requested */ 8883 io_sectors += sectors; 8884 atomic_add(sectors, &mddev->recovery_active); 8885 } 8886 8887 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8888 break; 8889 8890 j += sectors; 8891 if (j > max_sectors) 8892 /* when skipping, extra large numbers can be returned. */ 8893 j = max_sectors; 8894 if (j > 2) 8895 mddev->curr_resync = j; 8896 mddev->curr_mark_cnt = io_sectors; 8897 if (last_check == 0) 8898 /* this is the earliest that rebuild will be 8899 * visible in /proc/mdstat 8900 */ 8901 md_new_event(mddev); 8902 8903 if (last_check + window > io_sectors || j == max_sectors) 8904 continue; 8905 8906 last_check = io_sectors; 8907 repeat: 8908 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8909 /* step marks */ 8910 int next = (last_mark+1) % SYNC_MARKS; 8911 8912 mddev->resync_mark = mark[next]; 8913 mddev->resync_mark_cnt = mark_cnt[next]; 8914 mark[next] = jiffies; 8915 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8916 last_mark = next; 8917 } 8918 8919 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8920 break; 8921 8922 /* 8923 * this loop exits only if either when we are slower than 8924 * the 'hard' speed limit, or the system was IO-idle for 8925 * a jiffy. 8926 * the system might be non-idle CPU-wise, but we only care 8927 * about not overloading the IO subsystem. (things like an 8928 * e2fsck being done on the RAID array should execute fast) 8929 */ 8930 cond_resched(); 8931 8932 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8933 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8934 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8935 8936 if (currspeed > speed_min(mddev)) { 8937 if (currspeed > speed_max(mddev)) { 8938 msleep(500); 8939 goto repeat; 8940 } 8941 if (!is_mddev_idle(mddev, 0)) { 8942 /* 8943 * Give other IO more of a chance. 8944 * The faster the devices, the less we wait. 8945 */ 8946 wait_event(mddev->recovery_wait, 8947 !atomic_read(&mddev->recovery_active)); 8948 } 8949 } 8950 } 8951 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8952 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8953 ? "interrupted" : "done"); 8954 /* 8955 * this also signals 'finished resyncing' to md_stop 8956 */ 8957 blk_finish_plug(&plug); 8958 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8959 8960 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8961 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8962 mddev->curr_resync > 3) { 8963 mddev->curr_resync_completed = mddev->curr_resync; 8964 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8965 } 8966 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8967 8968 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8969 mddev->curr_resync > 3) { 8970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8971 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8972 if (mddev->curr_resync >= mddev->recovery_cp) { 8973 pr_debug("md: checkpointing %s of %s.\n", 8974 desc, mdname(mddev)); 8975 if (test_bit(MD_RECOVERY_ERROR, 8976 &mddev->recovery)) 8977 mddev->recovery_cp = 8978 mddev->curr_resync_completed; 8979 else 8980 mddev->recovery_cp = 8981 mddev->curr_resync; 8982 } 8983 } else 8984 mddev->recovery_cp = MaxSector; 8985 } else { 8986 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8987 mddev->curr_resync = MaxSector; 8988 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8989 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8990 rcu_read_lock(); 8991 rdev_for_each_rcu(rdev, mddev) 8992 if (rdev->raid_disk >= 0 && 8993 mddev->delta_disks >= 0 && 8994 !test_bit(Journal, &rdev->flags) && 8995 !test_bit(Faulty, &rdev->flags) && 8996 !test_bit(In_sync, &rdev->flags) && 8997 rdev->recovery_offset < mddev->curr_resync) 8998 rdev->recovery_offset = mddev->curr_resync; 8999 rcu_read_unlock(); 9000 } 9001 } 9002 } 9003 skip: 9004 /* set CHANGE_PENDING here since maybe another update is needed, 9005 * so other nodes are informed. It should be harmless for normal 9006 * raid */ 9007 set_mask_bits(&mddev->sb_flags, 0, 9008 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9009 9010 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9011 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9012 mddev->delta_disks > 0 && 9013 mddev->pers->finish_reshape && 9014 mddev->pers->size && 9015 mddev->queue) { 9016 mddev_lock_nointr(mddev); 9017 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9018 mddev_unlock(mddev); 9019 if (!mddev_is_clustered(mddev)) { 9020 set_capacity(mddev->gendisk, mddev->array_sectors); 9021 revalidate_disk(mddev->gendisk); 9022 } 9023 } 9024 9025 spin_lock(&mddev->lock); 9026 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9027 /* We completed so min/max setting can be forgotten if used. */ 9028 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9029 mddev->resync_min = 0; 9030 mddev->resync_max = MaxSector; 9031 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9032 mddev->resync_min = mddev->curr_resync_completed; 9033 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9034 mddev->curr_resync = 0; 9035 spin_unlock(&mddev->lock); 9036 9037 wake_up(&resync_wait); 9038 md_wakeup_thread(mddev->thread); 9039 return; 9040 } 9041 EXPORT_SYMBOL_GPL(md_do_sync); 9042 9043 static int remove_and_add_spares(struct mddev *mddev, 9044 struct md_rdev *this) 9045 { 9046 struct md_rdev *rdev; 9047 int spares = 0; 9048 int removed = 0; 9049 bool remove_some = false; 9050 9051 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9052 /* Mustn't remove devices when resync thread is running */ 9053 return 0; 9054 9055 rdev_for_each(rdev, mddev) { 9056 if ((this == NULL || rdev == this) && 9057 rdev->raid_disk >= 0 && 9058 !test_bit(Blocked, &rdev->flags) && 9059 test_bit(Faulty, &rdev->flags) && 9060 atomic_read(&rdev->nr_pending)==0) { 9061 /* Faulty non-Blocked devices with nr_pending == 0 9062 * never get nr_pending incremented, 9063 * never get Faulty cleared, and never get Blocked set. 9064 * So we can synchronize_rcu now rather than once per device 9065 */ 9066 remove_some = true; 9067 set_bit(RemoveSynchronized, &rdev->flags); 9068 } 9069 } 9070 9071 if (remove_some) 9072 synchronize_rcu(); 9073 rdev_for_each(rdev, mddev) { 9074 if ((this == NULL || rdev == this) && 9075 rdev->raid_disk >= 0 && 9076 !test_bit(Blocked, &rdev->flags) && 9077 ((test_bit(RemoveSynchronized, &rdev->flags) || 9078 (!test_bit(In_sync, &rdev->flags) && 9079 !test_bit(Journal, &rdev->flags))) && 9080 atomic_read(&rdev->nr_pending)==0)) { 9081 if (mddev->pers->hot_remove_disk( 9082 mddev, rdev) == 0) { 9083 sysfs_unlink_rdev(mddev, rdev); 9084 rdev->saved_raid_disk = rdev->raid_disk; 9085 rdev->raid_disk = -1; 9086 removed++; 9087 } 9088 } 9089 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9090 clear_bit(RemoveSynchronized, &rdev->flags); 9091 } 9092 9093 if (removed && mddev->kobj.sd) 9094 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9095 9096 if (this && removed) 9097 goto no_add; 9098 9099 rdev_for_each(rdev, mddev) { 9100 if (this && this != rdev) 9101 continue; 9102 if (test_bit(Candidate, &rdev->flags)) 9103 continue; 9104 if (rdev->raid_disk >= 0 && 9105 !test_bit(In_sync, &rdev->flags) && 9106 !test_bit(Journal, &rdev->flags) && 9107 !test_bit(Faulty, &rdev->flags)) 9108 spares++; 9109 if (rdev->raid_disk >= 0) 9110 continue; 9111 if (test_bit(Faulty, &rdev->flags)) 9112 continue; 9113 if (!test_bit(Journal, &rdev->flags)) { 9114 if (mddev->ro && 9115 ! (rdev->saved_raid_disk >= 0 && 9116 !test_bit(Bitmap_sync, &rdev->flags))) 9117 continue; 9118 9119 rdev->recovery_offset = 0; 9120 } 9121 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9122 /* failure here is OK */ 9123 sysfs_link_rdev(mddev, rdev); 9124 if (!test_bit(Journal, &rdev->flags)) 9125 spares++; 9126 md_new_event(mddev); 9127 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9128 } 9129 } 9130 no_add: 9131 if (removed) 9132 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9133 return spares; 9134 } 9135 9136 static void md_start_sync(struct work_struct *ws) 9137 { 9138 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9139 9140 mddev->sync_thread = md_register_thread(md_do_sync, 9141 mddev, 9142 "resync"); 9143 if (!mddev->sync_thread) { 9144 pr_warn("%s: could not start resync thread...\n", 9145 mdname(mddev)); 9146 /* leave the spares where they are, it shouldn't hurt */ 9147 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9148 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9149 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9150 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9151 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9152 wake_up(&resync_wait); 9153 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9154 &mddev->recovery)) 9155 if (mddev->sysfs_action) 9156 sysfs_notify_dirent_safe(mddev->sysfs_action); 9157 } else 9158 md_wakeup_thread(mddev->sync_thread); 9159 sysfs_notify_dirent_safe(mddev->sysfs_action); 9160 md_new_event(mddev); 9161 } 9162 9163 /* 9164 * This routine is regularly called by all per-raid-array threads to 9165 * deal with generic issues like resync and super-block update. 9166 * Raid personalities that don't have a thread (linear/raid0) do not 9167 * need this as they never do any recovery or update the superblock. 9168 * 9169 * It does not do any resync itself, but rather "forks" off other threads 9170 * to do that as needed. 9171 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9172 * "->recovery" and create a thread at ->sync_thread. 9173 * When the thread finishes it sets MD_RECOVERY_DONE 9174 * and wakeups up this thread which will reap the thread and finish up. 9175 * This thread also removes any faulty devices (with nr_pending == 0). 9176 * 9177 * The overall approach is: 9178 * 1/ if the superblock needs updating, update it. 9179 * 2/ If a recovery thread is running, don't do anything else. 9180 * 3/ If recovery has finished, clean up, possibly marking spares active. 9181 * 4/ If there are any faulty devices, remove them. 9182 * 5/ If array is degraded, try to add spares devices 9183 * 6/ If array has spares or is not in-sync, start a resync thread. 9184 */ 9185 void md_check_recovery(struct mddev *mddev) 9186 { 9187 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9188 /* Write superblock - thread that called mddev_suspend() 9189 * holds reconfig_mutex for us. 9190 */ 9191 set_bit(MD_UPDATING_SB, &mddev->flags); 9192 smp_mb__after_atomic(); 9193 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9194 md_update_sb(mddev, 0); 9195 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9196 wake_up(&mddev->sb_wait); 9197 } 9198 9199 if (mddev->suspended) 9200 return; 9201 9202 if (mddev->bitmap) 9203 md_bitmap_daemon_work(mddev); 9204 9205 if (signal_pending(current)) { 9206 if (mddev->pers->sync_request && !mddev->external) { 9207 pr_debug("md: %s in immediate safe mode\n", 9208 mdname(mddev)); 9209 mddev->safemode = 2; 9210 } 9211 flush_signals(current); 9212 } 9213 9214 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9215 return; 9216 if ( ! ( 9217 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9218 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9219 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9220 (mddev->external == 0 && mddev->safemode == 1) || 9221 (mddev->safemode == 2 9222 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9223 )) 9224 return; 9225 9226 if (mddev_trylock(mddev)) { 9227 int spares = 0; 9228 bool try_set_sync = mddev->safemode != 0; 9229 9230 if (!mddev->external && mddev->safemode == 1) 9231 mddev->safemode = 0; 9232 9233 if (mddev->ro) { 9234 struct md_rdev *rdev; 9235 if (!mddev->external && mddev->in_sync) 9236 /* 'Blocked' flag not needed as failed devices 9237 * will be recorded if array switched to read/write. 9238 * Leaving it set will prevent the device 9239 * from being removed. 9240 */ 9241 rdev_for_each(rdev, mddev) 9242 clear_bit(Blocked, &rdev->flags); 9243 /* On a read-only array we can: 9244 * - remove failed devices 9245 * - add already-in_sync devices if the array itself 9246 * is in-sync. 9247 * As we only add devices that are already in-sync, 9248 * we can activate the spares immediately. 9249 */ 9250 remove_and_add_spares(mddev, NULL); 9251 /* There is no thread, but we need to call 9252 * ->spare_active and clear saved_raid_disk 9253 */ 9254 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9255 md_reap_sync_thread(mddev); 9256 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9257 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9258 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9259 goto unlock; 9260 } 9261 9262 if (mddev_is_clustered(mddev)) { 9263 struct md_rdev *rdev; 9264 /* kick the device if another node issued a 9265 * remove disk. 9266 */ 9267 rdev_for_each(rdev, mddev) { 9268 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9269 rdev->raid_disk < 0) 9270 md_kick_rdev_from_array(rdev); 9271 } 9272 } 9273 9274 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9275 spin_lock(&mddev->lock); 9276 set_in_sync(mddev); 9277 spin_unlock(&mddev->lock); 9278 } 9279 9280 if (mddev->sb_flags) 9281 md_update_sb(mddev, 0); 9282 9283 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9284 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9285 /* resync/recovery still happening */ 9286 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9287 goto unlock; 9288 } 9289 if (mddev->sync_thread) { 9290 md_reap_sync_thread(mddev); 9291 goto unlock; 9292 } 9293 /* Set RUNNING before clearing NEEDED to avoid 9294 * any transients in the value of "sync_action". 9295 */ 9296 mddev->curr_resync_completed = 0; 9297 spin_lock(&mddev->lock); 9298 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9299 spin_unlock(&mddev->lock); 9300 /* Clear some bits that don't mean anything, but 9301 * might be left set 9302 */ 9303 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9304 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9305 9306 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9307 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9308 goto not_running; 9309 /* no recovery is running. 9310 * remove any failed drives, then 9311 * add spares if possible. 9312 * Spares are also removed and re-added, to allow 9313 * the personality to fail the re-add. 9314 */ 9315 9316 if (mddev->reshape_position != MaxSector) { 9317 if (mddev->pers->check_reshape == NULL || 9318 mddev->pers->check_reshape(mddev) != 0) 9319 /* Cannot proceed */ 9320 goto not_running; 9321 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9322 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9323 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9324 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9325 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9327 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9328 } else if (mddev->recovery_cp < MaxSector) { 9329 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9330 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9331 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9332 /* nothing to be done ... */ 9333 goto not_running; 9334 9335 if (mddev->pers->sync_request) { 9336 if (spares) { 9337 /* We are adding a device or devices to an array 9338 * which has the bitmap stored on all devices. 9339 * So make sure all bitmap pages get written 9340 */ 9341 md_bitmap_write_all(mddev->bitmap); 9342 } 9343 INIT_WORK(&mddev->del_work, md_start_sync); 9344 queue_work(md_misc_wq, &mddev->del_work); 9345 goto unlock; 9346 } 9347 not_running: 9348 if (!mddev->sync_thread) { 9349 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9350 wake_up(&resync_wait); 9351 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9352 &mddev->recovery)) 9353 if (mddev->sysfs_action) 9354 sysfs_notify_dirent_safe(mddev->sysfs_action); 9355 } 9356 unlock: 9357 wake_up(&mddev->sb_wait); 9358 mddev_unlock(mddev); 9359 } 9360 } 9361 EXPORT_SYMBOL(md_check_recovery); 9362 9363 void md_reap_sync_thread(struct mddev *mddev) 9364 { 9365 struct md_rdev *rdev; 9366 sector_t old_dev_sectors = mddev->dev_sectors; 9367 bool is_reshaped = false; 9368 9369 /* resync has finished, collect result */ 9370 md_unregister_thread(&mddev->sync_thread); 9371 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9372 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9373 mddev->degraded != mddev->raid_disks) { 9374 /* success...*/ 9375 /* activate any spares */ 9376 if (mddev->pers->spare_active(mddev)) { 9377 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9378 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9379 } 9380 } 9381 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9382 mddev->pers->finish_reshape) { 9383 mddev->pers->finish_reshape(mddev); 9384 if (mddev_is_clustered(mddev)) 9385 is_reshaped = true; 9386 } 9387 9388 /* If array is no-longer degraded, then any saved_raid_disk 9389 * information must be scrapped. 9390 */ 9391 if (!mddev->degraded) 9392 rdev_for_each(rdev, mddev) 9393 rdev->saved_raid_disk = -1; 9394 9395 md_update_sb(mddev, 1); 9396 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9397 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9398 * clustered raid */ 9399 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9400 md_cluster_ops->resync_finish(mddev); 9401 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9402 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9403 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9404 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9405 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9406 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9407 /* 9408 * We call md_cluster_ops->update_size here because sync_size could 9409 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9410 * so it is time to update size across cluster. 9411 */ 9412 if (mddev_is_clustered(mddev) && is_reshaped 9413 && !test_bit(MD_CLOSING, &mddev->flags)) 9414 md_cluster_ops->update_size(mddev, old_dev_sectors); 9415 wake_up(&resync_wait); 9416 /* flag recovery needed just to double check */ 9417 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9418 sysfs_notify_dirent_safe(mddev->sysfs_action); 9419 md_new_event(mddev); 9420 if (mddev->event_work.func) 9421 queue_work(md_misc_wq, &mddev->event_work); 9422 } 9423 EXPORT_SYMBOL(md_reap_sync_thread); 9424 9425 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9426 { 9427 sysfs_notify_dirent_safe(rdev->sysfs_state); 9428 wait_event_timeout(rdev->blocked_wait, 9429 !test_bit(Blocked, &rdev->flags) && 9430 !test_bit(BlockedBadBlocks, &rdev->flags), 9431 msecs_to_jiffies(5000)); 9432 rdev_dec_pending(rdev, mddev); 9433 } 9434 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9435 9436 void md_finish_reshape(struct mddev *mddev) 9437 { 9438 /* called be personality module when reshape completes. */ 9439 struct md_rdev *rdev; 9440 9441 rdev_for_each(rdev, mddev) { 9442 if (rdev->data_offset > rdev->new_data_offset) 9443 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9444 else 9445 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9446 rdev->data_offset = rdev->new_data_offset; 9447 } 9448 } 9449 EXPORT_SYMBOL(md_finish_reshape); 9450 9451 /* Bad block management */ 9452 9453 /* Returns 1 on success, 0 on failure */ 9454 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9455 int is_new) 9456 { 9457 struct mddev *mddev = rdev->mddev; 9458 int rv; 9459 if (is_new) 9460 s += rdev->new_data_offset; 9461 else 9462 s += rdev->data_offset; 9463 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9464 if (rv == 0) { 9465 /* Make sure they get written out promptly */ 9466 if (test_bit(ExternalBbl, &rdev->flags)) 9467 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9468 sysfs_notify_dirent_safe(rdev->sysfs_state); 9469 set_mask_bits(&mddev->sb_flags, 0, 9470 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9471 md_wakeup_thread(rdev->mddev->thread); 9472 return 1; 9473 } else 9474 return 0; 9475 } 9476 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9477 9478 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9479 int is_new) 9480 { 9481 int rv; 9482 if (is_new) 9483 s += rdev->new_data_offset; 9484 else 9485 s += rdev->data_offset; 9486 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9487 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9488 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9489 return rv; 9490 } 9491 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9492 9493 static int md_notify_reboot(struct notifier_block *this, 9494 unsigned long code, void *x) 9495 { 9496 struct list_head *tmp; 9497 struct mddev *mddev; 9498 int need_delay = 0; 9499 9500 for_each_mddev(mddev, tmp) { 9501 if (mddev_trylock(mddev)) { 9502 if (mddev->pers) 9503 __md_stop_writes(mddev); 9504 if (mddev->persistent) 9505 mddev->safemode = 2; 9506 mddev_unlock(mddev); 9507 } 9508 need_delay = 1; 9509 } 9510 /* 9511 * certain more exotic SCSI devices are known to be 9512 * volatile wrt too early system reboots. While the 9513 * right place to handle this issue is the given 9514 * driver, we do want to have a safe RAID driver ... 9515 */ 9516 if (need_delay) 9517 mdelay(1000*1); 9518 9519 return NOTIFY_DONE; 9520 } 9521 9522 static struct notifier_block md_notifier = { 9523 .notifier_call = md_notify_reboot, 9524 .next = NULL, 9525 .priority = INT_MAX, /* before any real devices */ 9526 }; 9527 9528 static void md_geninit(void) 9529 { 9530 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9531 9532 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9533 } 9534 9535 static int __init md_init(void) 9536 { 9537 int ret = -ENOMEM; 9538 9539 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9540 if (!md_wq) 9541 goto err_wq; 9542 9543 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9544 if (!md_misc_wq) 9545 goto err_misc_wq; 9546 9547 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9548 if (!md_misc_wq) 9549 goto err_rdev_misc_wq; 9550 9551 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9552 goto err_md; 9553 9554 if ((ret = register_blkdev(0, "mdp")) < 0) 9555 goto err_mdp; 9556 mdp_major = ret; 9557 9558 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9559 md_probe, NULL, NULL); 9560 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9561 md_probe, NULL, NULL); 9562 9563 register_reboot_notifier(&md_notifier); 9564 raid_table_header = register_sysctl_table(raid_root_table); 9565 9566 md_geninit(); 9567 return 0; 9568 9569 err_mdp: 9570 unregister_blkdev(MD_MAJOR, "md"); 9571 err_md: 9572 destroy_workqueue(md_rdev_misc_wq); 9573 err_rdev_misc_wq: 9574 destroy_workqueue(md_misc_wq); 9575 err_misc_wq: 9576 destroy_workqueue(md_wq); 9577 err_wq: 9578 return ret; 9579 } 9580 9581 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9582 { 9583 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9584 struct md_rdev *rdev2; 9585 int role, ret; 9586 char b[BDEVNAME_SIZE]; 9587 9588 /* 9589 * If size is changed in another node then we need to 9590 * do resize as well. 9591 */ 9592 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9593 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9594 if (ret) 9595 pr_info("md-cluster: resize failed\n"); 9596 else 9597 md_bitmap_update_sb(mddev->bitmap); 9598 } 9599 9600 /* Check for change of roles in the active devices */ 9601 rdev_for_each(rdev2, mddev) { 9602 if (test_bit(Faulty, &rdev2->flags)) 9603 continue; 9604 9605 /* Check if the roles changed */ 9606 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9607 9608 if (test_bit(Candidate, &rdev2->flags)) { 9609 if (role == 0xfffe) { 9610 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9611 md_kick_rdev_from_array(rdev2); 9612 continue; 9613 } 9614 else 9615 clear_bit(Candidate, &rdev2->flags); 9616 } 9617 9618 if (role != rdev2->raid_disk) { 9619 /* 9620 * got activated except reshape is happening. 9621 */ 9622 if (rdev2->raid_disk == -1 && role != 0xffff && 9623 !(le32_to_cpu(sb->feature_map) & 9624 MD_FEATURE_RESHAPE_ACTIVE)) { 9625 rdev2->saved_raid_disk = role; 9626 ret = remove_and_add_spares(mddev, rdev2); 9627 pr_info("Activated spare: %s\n", 9628 bdevname(rdev2->bdev,b)); 9629 /* wakeup mddev->thread here, so array could 9630 * perform resync with the new activated disk */ 9631 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9632 md_wakeup_thread(mddev->thread); 9633 } 9634 /* device faulty 9635 * We just want to do the minimum to mark the disk 9636 * as faulty. The recovery is performed by the 9637 * one who initiated the error. 9638 */ 9639 if ((role == 0xfffe) || (role == 0xfffd)) { 9640 md_error(mddev, rdev2); 9641 clear_bit(Blocked, &rdev2->flags); 9642 } 9643 } 9644 } 9645 9646 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9647 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9648 9649 /* 9650 * Since mddev->delta_disks has already updated in update_raid_disks, 9651 * so it is time to check reshape. 9652 */ 9653 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9654 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9655 /* 9656 * reshape is happening in the remote node, we need to 9657 * update reshape_position and call start_reshape. 9658 */ 9659 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9660 if (mddev->pers->update_reshape_pos) 9661 mddev->pers->update_reshape_pos(mddev); 9662 if (mddev->pers->start_reshape) 9663 mddev->pers->start_reshape(mddev); 9664 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9665 mddev->reshape_position != MaxSector && 9666 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9667 /* reshape is just done in another node. */ 9668 mddev->reshape_position = MaxSector; 9669 if (mddev->pers->update_reshape_pos) 9670 mddev->pers->update_reshape_pos(mddev); 9671 } 9672 9673 /* Finally set the event to be up to date */ 9674 mddev->events = le64_to_cpu(sb->events); 9675 } 9676 9677 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9678 { 9679 int err; 9680 struct page *swapout = rdev->sb_page; 9681 struct mdp_superblock_1 *sb; 9682 9683 /* Store the sb page of the rdev in the swapout temporary 9684 * variable in case we err in the future 9685 */ 9686 rdev->sb_page = NULL; 9687 err = alloc_disk_sb(rdev); 9688 if (err == 0) { 9689 ClearPageUptodate(rdev->sb_page); 9690 rdev->sb_loaded = 0; 9691 err = super_types[mddev->major_version]. 9692 load_super(rdev, NULL, mddev->minor_version); 9693 } 9694 if (err < 0) { 9695 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9696 __func__, __LINE__, rdev->desc_nr, err); 9697 if (rdev->sb_page) 9698 put_page(rdev->sb_page); 9699 rdev->sb_page = swapout; 9700 rdev->sb_loaded = 1; 9701 return err; 9702 } 9703 9704 sb = page_address(rdev->sb_page); 9705 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9706 * is not set 9707 */ 9708 9709 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9710 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9711 9712 /* The other node finished recovery, call spare_active to set 9713 * device In_sync and mddev->degraded 9714 */ 9715 if (rdev->recovery_offset == MaxSector && 9716 !test_bit(In_sync, &rdev->flags) && 9717 mddev->pers->spare_active(mddev)) 9718 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9719 9720 put_page(swapout); 9721 return 0; 9722 } 9723 9724 void md_reload_sb(struct mddev *mddev, int nr) 9725 { 9726 struct md_rdev *rdev; 9727 int err; 9728 9729 /* Find the rdev */ 9730 rdev_for_each_rcu(rdev, mddev) { 9731 if (rdev->desc_nr == nr) 9732 break; 9733 } 9734 9735 if (!rdev || rdev->desc_nr != nr) { 9736 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9737 return; 9738 } 9739 9740 err = read_rdev(mddev, rdev); 9741 if (err < 0) 9742 return; 9743 9744 check_sb_changes(mddev, rdev); 9745 9746 /* Read all rdev's to update recovery_offset */ 9747 rdev_for_each_rcu(rdev, mddev) { 9748 if (!test_bit(Faulty, &rdev->flags)) 9749 read_rdev(mddev, rdev); 9750 } 9751 } 9752 EXPORT_SYMBOL(md_reload_sb); 9753 9754 #ifndef MODULE 9755 9756 /* 9757 * Searches all registered partitions for autorun RAID arrays 9758 * at boot time. 9759 */ 9760 9761 static DEFINE_MUTEX(detected_devices_mutex); 9762 static LIST_HEAD(all_detected_devices); 9763 struct detected_devices_node { 9764 struct list_head list; 9765 dev_t dev; 9766 }; 9767 9768 void md_autodetect_dev(dev_t dev) 9769 { 9770 struct detected_devices_node *node_detected_dev; 9771 9772 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9773 if (node_detected_dev) { 9774 node_detected_dev->dev = dev; 9775 mutex_lock(&detected_devices_mutex); 9776 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9777 mutex_unlock(&detected_devices_mutex); 9778 } 9779 } 9780 9781 void md_autostart_arrays(int part) 9782 { 9783 struct md_rdev *rdev; 9784 struct detected_devices_node *node_detected_dev; 9785 dev_t dev; 9786 int i_scanned, i_passed; 9787 9788 i_scanned = 0; 9789 i_passed = 0; 9790 9791 pr_info("md: Autodetecting RAID arrays.\n"); 9792 9793 mutex_lock(&detected_devices_mutex); 9794 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9795 i_scanned++; 9796 node_detected_dev = list_entry(all_detected_devices.next, 9797 struct detected_devices_node, list); 9798 list_del(&node_detected_dev->list); 9799 dev = node_detected_dev->dev; 9800 kfree(node_detected_dev); 9801 mutex_unlock(&detected_devices_mutex); 9802 rdev = md_import_device(dev,0, 90); 9803 mutex_lock(&detected_devices_mutex); 9804 if (IS_ERR(rdev)) 9805 continue; 9806 9807 if (test_bit(Faulty, &rdev->flags)) 9808 continue; 9809 9810 set_bit(AutoDetected, &rdev->flags); 9811 list_add(&rdev->same_set, &pending_raid_disks); 9812 i_passed++; 9813 } 9814 mutex_unlock(&detected_devices_mutex); 9815 9816 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9817 9818 autorun_devices(part); 9819 } 9820 9821 #endif /* !MODULE */ 9822 9823 static __exit void md_exit(void) 9824 { 9825 struct mddev *mddev; 9826 struct list_head *tmp; 9827 int delay = 1; 9828 9829 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9830 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9831 9832 unregister_blkdev(MD_MAJOR,"md"); 9833 unregister_blkdev(mdp_major, "mdp"); 9834 unregister_reboot_notifier(&md_notifier); 9835 unregister_sysctl_table(raid_table_header); 9836 9837 /* We cannot unload the modules while some process is 9838 * waiting for us in select() or poll() - wake them up 9839 */ 9840 md_unloading = 1; 9841 while (waitqueue_active(&md_event_waiters)) { 9842 /* not safe to leave yet */ 9843 wake_up(&md_event_waiters); 9844 msleep(delay); 9845 delay += delay; 9846 } 9847 remove_proc_entry("mdstat", NULL); 9848 9849 for_each_mddev(mddev, tmp) { 9850 export_array(mddev); 9851 mddev->ctime = 0; 9852 mddev->hold_active = 0; 9853 /* 9854 * for_each_mddev() will call mddev_put() at the end of each 9855 * iteration. As the mddev is now fully clear, this will 9856 * schedule the mddev for destruction by a workqueue, and the 9857 * destroy_workqueue() below will wait for that to complete. 9858 */ 9859 } 9860 destroy_workqueue(md_rdev_misc_wq); 9861 destroy_workqueue(md_misc_wq); 9862 destroy_workqueue(md_wq); 9863 } 9864 9865 subsys_initcall(md_init); 9866 module_exit(md_exit) 9867 9868 static int get_ro(char *buffer, const struct kernel_param *kp) 9869 { 9870 return sprintf(buffer, "%d\n", start_readonly); 9871 } 9872 static int set_ro(const char *val, const struct kernel_param *kp) 9873 { 9874 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9875 } 9876 9877 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9878 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9879 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9880 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9881 9882 MODULE_LICENSE("GPL"); 9883 MODULE_DESCRIPTION("MD RAID framework"); 9884 MODULE_ALIAS("md"); 9885 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9886