1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 static int remove_and_add_spares(struct mddev *mddev, 76 struct md_rdev *this); 77 78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 79 80 /* 81 * Default number of read corrections we'll attempt on an rdev 82 * before ejecting it from the array. We divide the read error 83 * count by 2 for every hour elapsed between read errors. 84 */ 85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 86 /* 87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 88 * is 1000 KB/sec, so the extra system load does not show up that much. 89 * Increase it if you want to have more _guaranteed_ speed. Note that 90 * the RAID driver will use the maximum available bandwidth if the IO 91 * subsystem is idle. There is also an 'absolute maximum' reconstruction 92 * speed limit - in case reconstruction slows down your system despite 93 * idle IO detection. 94 * 95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 96 * or /sys/block/mdX/md/sync_speed_{min,max} 97 */ 98 99 static int sysctl_speed_limit_min = 1000; 100 static int sysctl_speed_limit_max = 200000; 101 static inline int speed_min(struct mddev *mddev) 102 { 103 return mddev->sync_speed_min ? 104 mddev->sync_speed_min : sysctl_speed_limit_min; 105 } 106 107 static inline int speed_max(struct mddev *mddev) 108 { 109 return mddev->sync_speed_max ? 110 mddev->sync_speed_max : sysctl_speed_limit_max; 111 } 112 113 static struct ctl_table_header *raid_table_header; 114 115 static struct ctl_table raid_table[] = { 116 { 117 .procname = "speed_limit_min", 118 .data = &sysctl_speed_limit_min, 119 .maxlen = sizeof(int), 120 .mode = S_IRUGO|S_IWUSR, 121 .proc_handler = proc_dointvec, 122 }, 123 { 124 .procname = "speed_limit_max", 125 .data = &sysctl_speed_limit_max, 126 .maxlen = sizeof(int), 127 .mode = S_IRUGO|S_IWUSR, 128 .proc_handler = proc_dointvec, 129 }, 130 { } 131 }; 132 133 static struct ctl_table raid_dir_table[] = { 134 { 135 .procname = "raid", 136 .maxlen = 0, 137 .mode = S_IRUGO|S_IXUGO, 138 .child = raid_table, 139 }, 140 { } 141 }; 142 143 static struct ctl_table raid_root_table[] = { 144 { 145 .procname = "dev", 146 .maxlen = 0, 147 .mode = 0555, 148 .child = raid_dir_table, 149 }, 150 { } 151 }; 152 153 static const struct block_device_operations md_fops; 154 155 static int start_readonly; 156 157 /* bio_clone_mddev 158 * like bio_clone, but with a local bio set 159 */ 160 161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 162 struct mddev *mddev) 163 { 164 struct bio *b; 165 166 if (!mddev || !mddev->bio_set) 167 return bio_alloc(gfp_mask, nr_iovecs); 168 169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 170 if (!b) 171 return NULL; 172 return b; 173 } 174 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 175 176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 177 struct mddev *mddev) 178 { 179 if (!mddev || !mddev->bio_set) 180 return bio_clone(bio, gfp_mask); 181 182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 183 } 184 EXPORT_SYMBOL_GPL(bio_clone_mddev); 185 186 /* 187 * We have a system wide 'event count' that is incremented 188 * on any 'interesting' event, and readers of /proc/mdstat 189 * can use 'poll' or 'select' to find out when the event 190 * count increases. 191 * 192 * Events are: 193 * start array, stop array, error, add device, remove device, 194 * start build, activate spare 195 */ 196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 197 static atomic_t md_event_count; 198 void md_new_event(struct mddev *mddev) 199 { 200 atomic_inc(&md_event_count); 201 wake_up(&md_event_waiters); 202 } 203 EXPORT_SYMBOL_GPL(md_new_event); 204 205 /* Alternate version that can be called from interrupts 206 * when calling sysfs_notify isn't needed. 207 */ 208 static void md_new_event_inintr(struct mddev *mddev) 209 { 210 atomic_inc(&md_event_count); 211 wake_up(&md_event_waiters); 212 } 213 214 /* 215 * Enables to iterate over all existing md arrays 216 * all_mddevs_lock protects this list. 217 */ 218 static LIST_HEAD(all_mddevs); 219 static DEFINE_SPINLOCK(all_mddevs_lock); 220 221 222 /* 223 * iterates through all used mddevs in the system. 224 * We take care to grab the all_mddevs_lock whenever navigating 225 * the list, and to always hold a refcount when unlocked. 226 * Any code which breaks out of this loop while own 227 * a reference to the current mddev and must mddev_put it. 228 */ 229 #define for_each_mddev(_mddev,_tmp) \ 230 \ 231 for (({ spin_lock(&all_mddevs_lock); \ 232 _tmp = all_mddevs.next; \ 233 _mddev = NULL;}); \ 234 ({ if (_tmp != &all_mddevs) \ 235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 236 spin_unlock(&all_mddevs_lock); \ 237 if (_mddev) mddev_put(_mddev); \ 238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 239 _tmp != &all_mddevs;}); \ 240 ({ spin_lock(&all_mddevs_lock); \ 241 _tmp = _tmp->next;}) \ 242 ) 243 244 245 /* Rather than calling directly into the personality make_request function, 246 * IO requests come here first so that we can check if the device is 247 * being suspended pending a reconfiguration. 248 * We hold a refcount over the call to ->make_request. By the time that 249 * call has finished, the bio has been linked into some internal structure 250 * and so is visible to ->quiesce(), so we don't need the refcount any more. 251 */ 252 static void md_make_request(struct request_queue *q, struct bio *bio) 253 { 254 const int rw = bio_data_dir(bio); 255 struct mddev *mddev = q->queuedata; 256 int cpu; 257 unsigned int sectors; 258 259 if (mddev == NULL || mddev->pers == NULL 260 || !mddev->ready) { 261 bio_io_error(bio); 262 return; 263 } 264 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS); 266 return; 267 } 268 smp_rmb(); /* Ensure implications of 'active' are visible */ 269 rcu_read_lock(); 270 if (mddev->suspended) { 271 DEFINE_WAIT(__wait); 272 for (;;) { 273 prepare_to_wait(&mddev->sb_wait, &__wait, 274 TASK_UNINTERRUPTIBLE); 275 if (!mddev->suspended) 276 break; 277 rcu_read_unlock(); 278 schedule(); 279 rcu_read_lock(); 280 } 281 finish_wait(&mddev->sb_wait, &__wait); 282 } 283 atomic_inc(&mddev->active_io); 284 rcu_read_unlock(); 285 286 /* 287 * save the sectors now since our bio can 288 * go away inside make_request 289 */ 290 sectors = bio_sectors(bio); 291 mddev->pers->make_request(mddev, bio); 292 293 cpu = part_stat_lock(); 294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 296 part_stat_unlock(); 297 298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 299 wake_up(&mddev->sb_wait); 300 } 301 302 /* mddev_suspend makes sure no new requests are submitted 303 * to the device, and that any requests that have been submitted 304 * are completely handled. 305 * Once ->stop is called and completes, the module will be completely 306 * unused. 307 */ 308 void mddev_suspend(struct mddev *mddev) 309 { 310 BUG_ON(mddev->suspended); 311 mddev->suspended = 1; 312 synchronize_rcu(); 313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 314 mddev->pers->quiesce(mddev, 1); 315 316 del_timer_sync(&mddev->safemode_timer); 317 } 318 EXPORT_SYMBOL_GPL(mddev_suspend); 319 320 void mddev_resume(struct mddev *mddev) 321 { 322 mddev->suspended = 0; 323 wake_up(&mddev->sb_wait); 324 mddev->pers->quiesce(mddev, 0); 325 326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 327 md_wakeup_thread(mddev->thread); 328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 329 } 330 EXPORT_SYMBOL_GPL(mddev_resume); 331 332 int mddev_congested(struct mddev *mddev, int bits) 333 { 334 return mddev->suspended; 335 } 336 EXPORT_SYMBOL(mddev_congested); 337 338 /* 339 * Generic flush handling for md 340 */ 341 342 static void md_end_flush(struct bio *bio, int err) 343 { 344 struct md_rdev *rdev = bio->bi_private; 345 struct mddev *mddev = rdev->mddev; 346 347 rdev_dec_pending(rdev, mddev); 348 349 if (atomic_dec_and_test(&mddev->flush_pending)) { 350 /* The pre-request flush has finished */ 351 queue_work(md_wq, &mddev->flush_work); 352 } 353 bio_put(bio); 354 } 355 356 static void md_submit_flush_data(struct work_struct *ws); 357 358 static void submit_flushes(struct work_struct *ws) 359 { 360 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 361 struct md_rdev *rdev; 362 363 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 364 atomic_set(&mddev->flush_pending, 1); 365 rcu_read_lock(); 366 rdev_for_each_rcu(rdev, mddev) 367 if (rdev->raid_disk >= 0 && 368 !test_bit(Faulty, &rdev->flags)) { 369 /* Take two references, one is dropped 370 * when request finishes, one after 371 * we reclaim rcu_read_lock 372 */ 373 struct bio *bi; 374 atomic_inc(&rdev->nr_pending); 375 atomic_inc(&rdev->nr_pending); 376 rcu_read_unlock(); 377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 378 bi->bi_end_io = md_end_flush; 379 bi->bi_private = rdev; 380 bi->bi_bdev = rdev->bdev; 381 atomic_inc(&mddev->flush_pending); 382 submit_bio(WRITE_FLUSH, bi); 383 rcu_read_lock(); 384 rdev_dec_pending(rdev, mddev); 385 } 386 rcu_read_unlock(); 387 if (atomic_dec_and_test(&mddev->flush_pending)) 388 queue_work(md_wq, &mddev->flush_work); 389 } 390 391 static void md_submit_flush_data(struct work_struct *ws) 392 { 393 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 394 struct bio *bio = mddev->flush_bio; 395 396 if (bio->bi_iter.bi_size == 0) 397 /* an empty barrier - all done */ 398 bio_endio(bio, 0); 399 else { 400 bio->bi_rw &= ~REQ_FLUSH; 401 mddev->pers->make_request(mddev, bio); 402 } 403 404 mddev->flush_bio = NULL; 405 wake_up(&mddev->sb_wait); 406 } 407 408 void md_flush_request(struct mddev *mddev, struct bio *bio) 409 { 410 spin_lock_irq(&mddev->write_lock); 411 wait_event_lock_irq(mddev->sb_wait, 412 !mddev->flush_bio, 413 mddev->write_lock); 414 mddev->flush_bio = bio; 415 spin_unlock_irq(&mddev->write_lock); 416 417 INIT_WORK(&mddev->flush_work, submit_flushes); 418 queue_work(md_wq, &mddev->flush_work); 419 } 420 EXPORT_SYMBOL(md_flush_request); 421 422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 423 { 424 struct mddev *mddev = cb->data; 425 md_wakeup_thread(mddev->thread); 426 kfree(cb); 427 } 428 EXPORT_SYMBOL(md_unplug); 429 430 static inline struct mddev *mddev_get(struct mddev *mddev) 431 { 432 atomic_inc(&mddev->active); 433 return mddev; 434 } 435 436 static void mddev_delayed_delete(struct work_struct *ws); 437 438 static void mddev_put(struct mddev *mddev) 439 { 440 struct bio_set *bs = NULL; 441 442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 443 return; 444 if (!mddev->raid_disks && list_empty(&mddev->disks) && 445 mddev->ctime == 0 && !mddev->hold_active) { 446 /* Array is not configured at all, and not held active, 447 * so destroy it */ 448 list_del_init(&mddev->all_mddevs); 449 bs = mddev->bio_set; 450 mddev->bio_set = NULL; 451 if (mddev->gendisk) { 452 /* We did a probe so need to clean up. Call 453 * queue_work inside the spinlock so that 454 * flush_workqueue() after mddev_find will 455 * succeed in waiting for the work to be done. 456 */ 457 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 458 queue_work(md_misc_wq, &mddev->del_work); 459 } else 460 kfree(mddev); 461 } 462 spin_unlock(&all_mddevs_lock); 463 if (bs) 464 bioset_free(bs); 465 } 466 467 void mddev_init(struct mddev *mddev) 468 { 469 mutex_init(&mddev->open_mutex); 470 mutex_init(&mddev->reconfig_mutex); 471 mutex_init(&mddev->bitmap_info.mutex); 472 INIT_LIST_HEAD(&mddev->disks); 473 INIT_LIST_HEAD(&mddev->all_mddevs); 474 init_timer(&mddev->safemode_timer); 475 atomic_set(&mddev->active, 1); 476 atomic_set(&mddev->openers, 0); 477 atomic_set(&mddev->active_io, 0); 478 spin_lock_init(&mddev->write_lock); 479 atomic_set(&mddev->flush_pending, 0); 480 init_waitqueue_head(&mddev->sb_wait); 481 init_waitqueue_head(&mddev->recovery_wait); 482 mddev->reshape_position = MaxSector; 483 mddev->reshape_backwards = 0; 484 mddev->last_sync_action = "none"; 485 mddev->resync_min = 0; 486 mddev->resync_max = MaxSector; 487 mddev->level = LEVEL_NONE; 488 } 489 EXPORT_SYMBOL_GPL(mddev_init); 490 491 static struct mddev * mddev_find(dev_t unit) 492 { 493 struct mddev *mddev, *new = NULL; 494 495 if (unit && MAJOR(unit) != MD_MAJOR) 496 unit &= ~((1<<MdpMinorShift)-1); 497 498 retry: 499 spin_lock(&all_mddevs_lock); 500 501 if (unit) { 502 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 503 if (mddev->unit == unit) { 504 mddev_get(mddev); 505 spin_unlock(&all_mddevs_lock); 506 kfree(new); 507 return mddev; 508 } 509 510 if (new) { 511 list_add(&new->all_mddevs, &all_mddevs); 512 spin_unlock(&all_mddevs_lock); 513 new->hold_active = UNTIL_IOCTL; 514 return new; 515 } 516 } else if (new) { 517 /* find an unused unit number */ 518 static int next_minor = 512; 519 int start = next_minor; 520 int is_free = 0; 521 int dev = 0; 522 while (!is_free) { 523 dev = MKDEV(MD_MAJOR, next_minor); 524 next_minor++; 525 if (next_minor > MINORMASK) 526 next_minor = 0; 527 if (next_minor == start) { 528 /* Oh dear, all in use. */ 529 spin_unlock(&all_mddevs_lock); 530 kfree(new); 531 return NULL; 532 } 533 534 is_free = 1; 535 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 536 if (mddev->unit == dev) { 537 is_free = 0; 538 break; 539 } 540 } 541 new->unit = dev; 542 new->md_minor = MINOR(dev); 543 new->hold_active = UNTIL_STOP; 544 list_add(&new->all_mddevs, &all_mddevs); 545 spin_unlock(&all_mddevs_lock); 546 return new; 547 } 548 spin_unlock(&all_mddevs_lock); 549 550 new = kzalloc(sizeof(*new), GFP_KERNEL); 551 if (!new) 552 return NULL; 553 554 new->unit = unit; 555 if (MAJOR(unit) == MD_MAJOR) 556 new->md_minor = MINOR(unit); 557 else 558 new->md_minor = MINOR(unit) >> MdpMinorShift; 559 560 mddev_init(new); 561 562 goto retry; 563 } 564 565 static inline int __must_check mddev_lock(struct mddev * mddev) 566 { 567 return mutex_lock_interruptible(&mddev->reconfig_mutex); 568 } 569 570 /* Sometimes we need to take the lock in a situation where 571 * failure due to interrupts is not acceptable. 572 */ 573 static inline void mddev_lock_nointr(struct mddev * mddev) 574 { 575 mutex_lock(&mddev->reconfig_mutex); 576 } 577 578 static inline int mddev_is_locked(struct mddev *mddev) 579 { 580 return mutex_is_locked(&mddev->reconfig_mutex); 581 } 582 583 static inline int mddev_trylock(struct mddev * mddev) 584 { 585 return mutex_trylock(&mddev->reconfig_mutex); 586 } 587 588 static struct attribute_group md_redundancy_group; 589 590 static void mddev_unlock(struct mddev * mddev) 591 { 592 if (mddev->to_remove) { 593 /* These cannot be removed under reconfig_mutex as 594 * an access to the files will try to take reconfig_mutex 595 * while holding the file unremovable, which leads to 596 * a deadlock. 597 * So hold set sysfs_active while the remove in happeing, 598 * and anything else which might set ->to_remove or my 599 * otherwise change the sysfs namespace will fail with 600 * -EBUSY if sysfs_active is still set. 601 * We set sysfs_active under reconfig_mutex and elsewhere 602 * test it under the same mutex to ensure its correct value 603 * is seen. 604 */ 605 struct attribute_group *to_remove = mddev->to_remove; 606 mddev->to_remove = NULL; 607 mddev->sysfs_active = 1; 608 mutex_unlock(&mddev->reconfig_mutex); 609 610 if (mddev->kobj.sd) { 611 if (to_remove != &md_redundancy_group) 612 sysfs_remove_group(&mddev->kobj, to_remove); 613 if (mddev->pers == NULL || 614 mddev->pers->sync_request == NULL) { 615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 616 if (mddev->sysfs_action) 617 sysfs_put(mddev->sysfs_action); 618 mddev->sysfs_action = NULL; 619 } 620 } 621 mddev->sysfs_active = 0; 622 } else 623 mutex_unlock(&mddev->reconfig_mutex); 624 625 /* As we've dropped the mutex we need a spinlock to 626 * make sure the thread doesn't disappear 627 */ 628 spin_lock(&pers_lock); 629 md_wakeup_thread(mddev->thread); 630 spin_unlock(&pers_lock); 631 } 632 633 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 634 { 635 struct md_rdev *rdev; 636 637 rdev_for_each(rdev, mddev) 638 if (rdev->desc_nr == nr) 639 return rdev; 640 641 return NULL; 642 } 643 644 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 645 { 646 struct md_rdev *rdev; 647 648 rdev_for_each_rcu(rdev, mddev) 649 if (rdev->desc_nr == nr) 650 return rdev; 651 652 return NULL; 653 } 654 655 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 656 { 657 struct md_rdev *rdev; 658 659 rdev_for_each(rdev, mddev) 660 if (rdev->bdev->bd_dev == dev) 661 return rdev; 662 663 return NULL; 664 } 665 666 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each_rcu(rdev, mddev) 671 if (rdev->bdev->bd_dev == dev) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_personality *find_pers(int level, char *clevel) 678 { 679 struct md_personality *pers; 680 list_for_each_entry(pers, &pers_list, list) { 681 if (level != LEVEL_NONE && pers->level == level) 682 return pers; 683 if (strcmp(pers->name, clevel)==0) 684 return pers; 685 } 686 return NULL; 687 } 688 689 /* return the offset of the super block in 512byte sectors */ 690 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 691 { 692 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 693 return MD_NEW_SIZE_SECTORS(num_sectors); 694 } 695 696 static int alloc_disk_sb(struct md_rdev * rdev) 697 { 698 if (rdev->sb_page) 699 MD_BUG(); 700 701 rdev->sb_page = alloc_page(GFP_KERNEL); 702 if (!rdev->sb_page) { 703 printk(KERN_ALERT "md: out of memory.\n"); 704 return -ENOMEM; 705 } 706 707 return 0; 708 } 709 710 void md_rdev_clear(struct md_rdev *rdev) 711 { 712 if (rdev->sb_page) { 713 put_page(rdev->sb_page); 714 rdev->sb_loaded = 0; 715 rdev->sb_page = NULL; 716 rdev->sb_start = 0; 717 rdev->sectors = 0; 718 } 719 if (rdev->bb_page) { 720 put_page(rdev->bb_page); 721 rdev->bb_page = NULL; 722 } 723 kfree(rdev->badblocks.page); 724 rdev->badblocks.page = NULL; 725 } 726 EXPORT_SYMBOL_GPL(md_rdev_clear); 727 728 static void super_written(struct bio *bio, int error) 729 { 730 struct md_rdev *rdev = bio->bi_private; 731 struct mddev *mddev = rdev->mddev; 732 733 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 734 printk("md: super_written gets error=%d, uptodate=%d\n", 735 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 736 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 737 md_error(mddev, rdev); 738 } 739 740 if (atomic_dec_and_test(&mddev->pending_writes)) 741 wake_up(&mddev->sb_wait); 742 bio_put(bio); 743 } 744 745 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 746 sector_t sector, int size, struct page *page) 747 { 748 /* write first size bytes of page to sector of rdev 749 * Increment mddev->pending_writes before returning 750 * and decrement it on completion, waking up sb_wait 751 * if zero is reached. 752 * If an error occurred, call md_error 753 */ 754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 755 756 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 757 bio->bi_iter.bi_sector = sector; 758 bio_add_page(bio, page, size, 0); 759 bio->bi_private = rdev; 760 bio->bi_end_io = super_written; 761 762 atomic_inc(&mddev->pending_writes); 763 submit_bio(WRITE_FLUSH_FUA, bio); 764 } 765 766 void md_super_wait(struct mddev *mddev) 767 { 768 /* wait for all superblock writes that were scheduled to complete */ 769 DEFINE_WAIT(wq); 770 for(;;) { 771 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 772 if (atomic_read(&mddev->pending_writes)==0) 773 break; 774 schedule(); 775 } 776 finish_wait(&mddev->sb_wait, &wq); 777 } 778 779 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 780 struct page *page, int rw, bool metadata_op) 781 { 782 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 783 int ret; 784 785 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 786 rdev->meta_bdev : rdev->bdev; 787 if (metadata_op) 788 bio->bi_iter.bi_sector = sector + rdev->sb_start; 789 else if (rdev->mddev->reshape_position != MaxSector && 790 (rdev->mddev->reshape_backwards == 791 (sector >= rdev->mddev->reshape_position))) 792 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 793 else 794 bio->bi_iter.bi_sector = sector + rdev->data_offset; 795 bio_add_page(bio, page, size, 0); 796 submit_bio_wait(rw, bio); 797 798 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 799 bio_put(bio); 800 return ret; 801 } 802 EXPORT_SYMBOL_GPL(sync_page_io); 803 804 static int read_disk_sb(struct md_rdev * rdev, int size) 805 { 806 char b[BDEVNAME_SIZE]; 807 if (!rdev->sb_page) { 808 MD_BUG(); 809 return -EINVAL; 810 } 811 if (rdev->sb_loaded) 812 return 0; 813 814 815 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 816 goto fail; 817 rdev->sb_loaded = 1; 818 return 0; 819 820 fail: 821 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 822 bdevname(rdev->bdev,b)); 823 return -EINVAL; 824 } 825 826 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 827 { 828 return sb1->set_uuid0 == sb2->set_uuid0 && 829 sb1->set_uuid1 == sb2->set_uuid1 && 830 sb1->set_uuid2 == sb2->set_uuid2 && 831 sb1->set_uuid3 == sb2->set_uuid3; 832 } 833 834 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 835 { 836 int ret; 837 mdp_super_t *tmp1, *tmp2; 838 839 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 840 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 841 842 if (!tmp1 || !tmp2) { 843 ret = 0; 844 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 845 goto abort; 846 } 847 848 *tmp1 = *sb1; 849 *tmp2 = *sb2; 850 851 /* 852 * nr_disks is not constant 853 */ 854 tmp1->nr_disks = 0; 855 tmp2->nr_disks = 0; 856 857 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 858 abort: 859 kfree(tmp1); 860 kfree(tmp2); 861 return ret; 862 } 863 864 865 static u32 md_csum_fold(u32 csum) 866 { 867 csum = (csum & 0xffff) + (csum >> 16); 868 return (csum & 0xffff) + (csum >> 16); 869 } 870 871 static unsigned int calc_sb_csum(mdp_super_t * sb) 872 { 873 u64 newcsum = 0; 874 u32 *sb32 = (u32*)sb; 875 int i; 876 unsigned int disk_csum, csum; 877 878 disk_csum = sb->sb_csum; 879 sb->sb_csum = 0; 880 881 for (i = 0; i < MD_SB_BYTES/4 ; i++) 882 newcsum += sb32[i]; 883 csum = (newcsum & 0xffffffff) + (newcsum>>32); 884 885 886 #ifdef CONFIG_ALPHA 887 /* This used to use csum_partial, which was wrong for several 888 * reasons including that different results are returned on 889 * different architectures. It isn't critical that we get exactly 890 * the same return value as before (we always csum_fold before 891 * testing, and that removes any differences). However as we 892 * know that csum_partial always returned a 16bit value on 893 * alphas, do a fold to maximise conformity to previous behaviour. 894 */ 895 sb->sb_csum = md_csum_fold(disk_csum); 896 #else 897 sb->sb_csum = disk_csum; 898 #endif 899 return csum; 900 } 901 902 903 /* 904 * Handle superblock details. 905 * We want to be able to handle multiple superblock formats 906 * so we have a common interface to them all, and an array of 907 * different handlers. 908 * We rely on user-space to write the initial superblock, and support 909 * reading and updating of superblocks. 910 * Interface methods are: 911 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 912 * loads and validates a superblock on dev. 913 * if refdev != NULL, compare superblocks on both devices 914 * Return: 915 * 0 - dev has a superblock that is compatible with refdev 916 * 1 - dev has a superblock that is compatible and newer than refdev 917 * so dev should be used as the refdev in future 918 * -EINVAL superblock incompatible or invalid 919 * -othererror e.g. -EIO 920 * 921 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 922 * Verify that dev is acceptable into mddev. 923 * The first time, mddev->raid_disks will be 0, and data from 924 * dev should be merged in. Subsequent calls check that dev 925 * is new enough. Return 0 or -EINVAL 926 * 927 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 928 * Update the superblock for rdev with data in mddev 929 * This does not write to disc. 930 * 931 */ 932 933 struct super_type { 934 char *name; 935 struct module *owner; 936 int (*load_super)(struct md_rdev *rdev, 937 struct md_rdev *refdev, 938 int minor_version); 939 int (*validate_super)(struct mddev *mddev, 940 struct md_rdev *rdev); 941 void (*sync_super)(struct mddev *mddev, 942 struct md_rdev *rdev); 943 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 944 sector_t num_sectors); 945 int (*allow_new_offset)(struct md_rdev *rdev, 946 unsigned long long new_offset); 947 }; 948 949 /* 950 * Check that the given mddev has no bitmap. 951 * 952 * This function is called from the run method of all personalities that do not 953 * support bitmaps. It prints an error message and returns non-zero if mddev 954 * has a bitmap. Otherwise, it returns 0. 955 * 956 */ 957 int md_check_no_bitmap(struct mddev *mddev) 958 { 959 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 960 return 0; 961 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 962 mdname(mddev), mddev->pers->name); 963 return 1; 964 } 965 EXPORT_SYMBOL(md_check_no_bitmap); 966 967 /* 968 * load_super for 0.90.0 969 */ 970 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 971 { 972 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 973 mdp_super_t *sb; 974 int ret; 975 976 /* 977 * Calculate the position of the superblock (512byte sectors), 978 * it's at the end of the disk. 979 * 980 * It also happens to be a multiple of 4Kb. 981 */ 982 rdev->sb_start = calc_dev_sboffset(rdev); 983 984 ret = read_disk_sb(rdev, MD_SB_BYTES); 985 if (ret) return ret; 986 987 ret = -EINVAL; 988 989 bdevname(rdev->bdev, b); 990 sb = page_address(rdev->sb_page); 991 992 if (sb->md_magic != MD_SB_MAGIC) { 993 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 994 b); 995 goto abort; 996 } 997 998 if (sb->major_version != 0 || 999 sb->minor_version < 90 || 1000 sb->minor_version > 91) { 1001 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1002 sb->major_version, sb->minor_version, 1003 b); 1004 goto abort; 1005 } 1006 1007 if (sb->raid_disks <= 0) 1008 goto abort; 1009 1010 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1011 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1012 b); 1013 goto abort; 1014 } 1015 1016 rdev->preferred_minor = sb->md_minor; 1017 rdev->data_offset = 0; 1018 rdev->new_data_offset = 0; 1019 rdev->sb_size = MD_SB_BYTES; 1020 rdev->badblocks.shift = -1; 1021 1022 if (sb->level == LEVEL_MULTIPATH) 1023 rdev->desc_nr = -1; 1024 else 1025 rdev->desc_nr = sb->this_disk.number; 1026 1027 if (!refdev) { 1028 ret = 1; 1029 } else { 1030 __u64 ev1, ev2; 1031 mdp_super_t *refsb = page_address(refdev->sb_page); 1032 if (!uuid_equal(refsb, sb)) { 1033 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1034 b, bdevname(refdev->bdev,b2)); 1035 goto abort; 1036 } 1037 if (!sb_equal(refsb, sb)) { 1038 printk(KERN_WARNING "md: %s has same UUID" 1039 " but different superblock to %s\n", 1040 b, bdevname(refdev->bdev, b2)); 1041 goto abort; 1042 } 1043 ev1 = md_event(sb); 1044 ev2 = md_event(refsb); 1045 if (ev1 > ev2) 1046 ret = 1; 1047 else 1048 ret = 0; 1049 } 1050 rdev->sectors = rdev->sb_start; 1051 /* Limit to 4TB as metadata cannot record more than that. 1052 * (not needed for Linear and RAID0 as metadata doesn't 1053 * record this size) 1054 */ 1055 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1056 rdev->sectors = (2ULL << 32) - 2; 1057 1058 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1059 /* "this cannot possibly happen" ... */ 1060 ret = -EINVAL; 1061 1062 abort: 1063 return ret; 1064 } 1065 1066 /* 1067 * validate_super for 0.90.0 1068 */ 1069 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1070 { 1071 mdp_disk_t *desc; 1072 mdp_super_t *sb = page_address(rdev->sb_page); 1073 __u64 ev1 = md_event(sb); 1074 1075 rdev->raid_disk = -1; 1076 clear_bit(Faulty, &rdev->flags); 1077 clear_bit(In_sync, &rdev->flags); 1078 clear_bit(Bitmap_sync, &rdev->flags); 1079 clear_bit(WriteMostly, &rdev->flags); 1080 1081 if (mddev->raid_disks == 0) { 1082 mddev->major_version = 0; 1083 mddev->minor_version = sb->minor_version; 1084 mddev->patch_version = sb->patch_version; 1085 mddev->external = 0; 1086 mddev->chunk_sectors = sb->chunk_size >> 9; 1087 mddev->ctime = sb->ctime; 1088 mddev->utime = sb->utime; 1089 mddev->level = sb->level; 1090 mddev->clevel[0] = 0; 1091 mddev->layout = sb->layout; 1092 mddev->raid_disks = sb->raid_disks; 1093 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1094 mddev->events = ev1; 1095 mddev->bitmap_info.offset = 0; 1096 mddev->bitmap_info.space = 0; 1097 /* bitmap can use 60 K after the 4K superblocks */ 1098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1100 mddev->reshape_backwards = 0; 1101 1102 if (mddev->minor_version >= 91) { 1103 mddev->reshape_position = sb->reshape_position; 1104 mddev->delta_disks = sb->delta_disks; 1105 mddev->new_level = sb->new_level; 1106 mddev->new_layout = sb->new_layout; 1107 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1108 if (mddev->delta_disks < 0) 1109 mddev->reshape_backwards = 1; 1110 } else { 1111 mddev->reshape_position = MaxSector; 1112 mddev->delta_disks = 0; 1113 mddev->new_level = mddev->level; 1114 mddev->new_layout = mddev->layout; 1115 mddev->new_chunk_sectors = mddev->chunk_sectors; 1116 } 1117 1118 if (sb->state & (1<<MD_SB_CLEAN)) 1119 mddev->recovery_cp = MaxSector; 1120 else { 1121 if (sb->events_hi == sb->cp_events_hi && 1122 sb->events_lo == sb->cp_events_lo) { 1123 mddev->recovery_cp = sb->recovery_cp; 1124 } else 1125 mddev->recovery_cp = 0; 1126 } 1127 1128 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1129 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1130 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1131 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1132 1133 mddev->max_disks = MD_SB_DISKS; 1134 1135 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1136 mddev->bitmap_info.file == NULL) { 1137 mddev->bitmap_info.offset = 1138 mddev->bitmap_info.default_offset; 1139 mddev->bitmap_info.space = 1140 mddev->bitmap_info.default_space; 1141 } 1142 1143 } else if (mddev->pers == NULL) { 1144 /* Insist on good event counter while assembling, except 1145 * for spares (which don't need an event count) */ 1146 ++ev1; 1147 if (sb->disks[rdev->desc_nr].state & ( 1148 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1149 if (ev1 < mddev->events) 1150 return -EINVAL; 1151 } else if (mddev->bitmap) { 1152 /* if adding to array with a bitmap, then we can accept an 1153 * older device ... but not too old. 1154 */ 1155 if (ev1 < mddev->bitmap->events_cleared) 1156 return 0; 1157 if (ev1 < mddev->events) 1158 set_bit(Bitmap_sync, &rdev->flags); 1159 } else { 1160 if (ev1 < mddev->events) 1161 /* just a hot-add of a new device, leave raid_disk at -1 */ 1162 return 0; 1163 } 1164 1165 if (mddev->level != LEVEL_MULTIPATH) { 1166 desc = sb->disks + rdev->desc_nr; 1167 1168 if (desc->state & (1<<MD_DISK_FAULTY)) 1169 set_bit(Faulty, &rdev->flags); 1170 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1171 desc->raid_disk < mddev->raid_disks */) { 1172 set_bit(In_sync, &rdev->flags); 1173 rdev->raid_disk = desc->raid_disk; 1174 rdev->saved_raid_disk = desc->raid_disk; 1175 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1176 /* active but not in sync implies recovery up to 1177 * reshape position. We don't know exactly where 1178 * that is, so set to zero for now */ 1179 if (mddev->minor_version >= 91) { 1180 rdev->recovery_offset = 0; 1181 rdev->raid_disk = desc->raid_disk; 1182 } 1183 } 1184 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1185 set_bit(WriteMostly, &rdev->flags); 1186 } else /* MULTIPATH are always insync */ 1187 set_bit(In_sync, &rdev->flags); 1188 return 0; 1189 } 1190 1191 /* 1192 * sync_super for 0.90.0 1193 */ 1194 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1195 { 1196 mdp_super_t *sb; 1197 struct md_rdev *rdev2; 1198 int next_spare = mddev->raid_disks; 1199 1200 1201 /* make rdev->sb match mddev data.. 1202 * 1203 * 1/ zero out disks 1204 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1205 * 3/ any empty disks < next_spare become removed 1206 * 1207 * disks[0] gets initialised to REMOVED because 1208 * we cannot be sure from other fields if it has 1209 * been initialised or not. 1210 */ 1211 int i; 1212 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1213 1214 rdev->sb_size = MD_SB_BYTES; 1215 1216 sb = page_address(rdev->sb_page); 1217 1218 memset(sb, 0, sizeof(*sb)); 1219 1220 sb->md_magic = MD_SB_MAGIC; 1221 sb->major_version = mddev->major_version; 1222 sb->patch_version = mddev->patch_version; 1223 sb->gvalid_words = 0; /* ignored */ 1224 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1225 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1226 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1227 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1228 1229 sb->ctime = mddev->ctime; 1230 sb->level = mddev->level; 1231 sb->size = mddev->dev_sectors / 2; 1232 sb->raid_disks = mddev->raid_disks; 1233 sb->md_minor = mddev->md_minor; 1234 sb->not_persistent = 0; 1235 sb->utime = mddev->utime; 1236 sb->state = 0; 1237 sb->events_hi = (mddev->events>>32); 1238 sb->events_lo = (u32)mddev->events; 1239 1240 if (mddev->reshape_position == MaxSector) 1241 sb->minor_version = 90; 1242 else { 1243 sb->minor_version = 91; 1244 sb->reshape_position = mddev->reshape_position; 1245 sb->new_level = mddev->new_level; 1246 sb->delta_disks = mddev->delta_disks; 1247 sb->new_layout = mddev->new_layout; 1248 sb->new_chunk = mddev->new_chunk_sectors << 9; 1249 } 1250 mddev->minor_version = sb->minor_version; 1251 if (mddev->in_sync) 1252 { 1253 sb->recovery_cp = mddev->recovery_cp; 1254 sb->cp_events_hi = (mddev->events>>32); 1255 sb->cp_events_lo = (u32)mddev->events; 1256 if (mddev->recovery_cp == MaxSector) 1257 sb->state = (1<< MD_SB_CLEAN); 1258 } else 1259 sb->recovery_cp = 0; 1260 1261 sb->layout = mddev->layout; 1262 sb->chunk_size = mddev->chunk_sectors << 9; 1263 1264 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1265 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1266 1267 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1268 rdev_for_each(rdev2, mddev) { 1269 mdp_disk_t *d; 1270 int desc_nr; 1271 int is_active = test_bit(In_sync, &rdev2->flags); 1272 1273 if (rdev2->raid_disk >= 0 && 1274 sb->minor_version >= 91) 1275 /* we have nowhere to store the recovery_offset, 1276 * but if it is not below the reshape_position, 1277 * we can piggy-back on that. 1278 */ 1279 is_active = 1; 1280 if (rdev2->raid_disk < 0 || 1281 test_bit(Faulty, &rdev2->flags)) 1282 is_active = 0; 1283 if (is_active) 1284 desc_nr = rdev2->raid_disk; 1285 else 1286 desc_nr = next_spare++; 1287 rdev2->desc_nr = desc_nr; 1288 d = &sb->disks[rdev2->desc_nr]; 1289 nr_disks++; 1290 d->number = rdev2->desc_nr; 1291 d->major = MAJOR(rdev2->bdev->bd_dev); 1292 d->minor = MINOR(rdev2->bdev->bd_dev); 1293 if (is_active) 1294 d->raid_disk = rdev2->raid_disk; 1295 else 1296 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1297 if (test_bit(Faulty, &rdev2->flags)) 1298 d->state = (1<<MD_DISK_FAULTY); 1299 else if (is_active) { 1300 d->state = (1<<MD_DISK_ACTIVE); 1301 if (test_bit(In_sync, &rdev2->flags)) 1302 d->state |= (1<<MD_DISK_SYNC); 1303 active++; 1304 working++; 1305 } else { 1306 d->state = 0; 1307 spare++; 1308 working++; 1309 } 1310 if (test_bit(WriteMostly, &rdev2->flags)) 1311 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1312 } 1313 /* now set the "removed" and "faulty" bits on any missing devices */ 1314 for (i=0 ; i < mddev->raid_disks ; i++) { 1315 mdp_disk_t *d = &sb->disks[i]; 1316 if (d->state == 0 && d->number == 0) { 1317 d->number = i; 1318 d->raid_disk = i; 1319 d->state = (1<<MD_DISK_REMOVED); 1320 d->state |= (1<<MD_DISK_FAULTY); 1321 failed++; 1322 } 1323 } 1324 sb->nr_disks = nr_disks; 1325 sb->active_disks = active; 1326 sb->working_disks = working; 1327 sb->failed_disks = failed; 1328 sb->spare_disks = spare; 1329 1330 sb->this_disk = sb->disks[rdev->desc_nr]; 1331 sb->sb_csum = calc_sb_csum(sb); 1332 } 1333 1334 /* 1335 * rdev_size_change for 0.90.0 1336 */ 1337 static unsigned long long 1338 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1339 { 1340 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1341 return 0; /* component must fit device */ 1342 if (rdev->mddev->bitmap_info.offset) 1343 return 0; /* can't move bitmap */ 1344 rdev->sb_start = calc_dev_sboffset(rdev); 1345 if (!num_sectors || num_sectors > rdev->sb_start) 1346 num_sectors = rdev->sb_start; 1347 /* Limit to 4TB as metadata cannot record more than that. 1348 * 4TB == 2^32 KB, or 2*2^32 sectors. 1349 */ 1350 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1351 num_sectors = (2ULL << 32) - 2; 1352 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1353 rdev->sb_page); 1354 md_super_wait(rdev->mddev); 1355 return num_sectors; 1356 } 1357 1358 static int 1359 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1360 { 1361 /* non-zero offset changes not possible with v0.90 */ 1362 return new_offset == 0; 1363 } 1364 1365 /* 1366 * version 1 superblock 1367 */ 1368 1369 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1370 { 1371 __le32 disk_csum; 1372 u32 csum; 1373 unsigned long long newcsum; 1374 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1375 __le32 *isuper = (__le32*)sb; 1376 1377 disk_csum = sb->sb_csum; 1378 sb->sb_csum = 0; 1379 newcsum = 0; 1380 for (; size >= 4; size -= 4) 1381 newcsum += le32_to_cpu(*isuper++); 1382 1383 if (size == 2) 1384 newcsum += le16_to_cpu(*(__le16*) isuper); 1385 1386 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1387 sb->sb_csum = disk_csum; 1388 return cpu_to_le32(csum); 1389 } 1390 1391 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1392 int acknowledged); 1393 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1394 { 1395 struct mdp_superblock_1 *sb; 1396 int ret; 1397 sector_t sb_start; 1398 sector_t sectors; 1399 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1400 int bmask; 1401 1402 /* 1403 * Calculate the position of the superblock in 512byte sectors. 1404 * It is always aligned to a 4K boundary and 1405 * depeding on minor_version, it can be: 1406 * 0: At least 8K, but less than 12K, from end of device 1407 * 1: At start of device 1408 * 2: 4K from start of device. 1409 */ 1410 switch(minor_version) { 1411 case 0: 1412 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1413 sb_start -= 8*2; 1414 sb_start &= ~(sector_t)(4*2-1); 1415 break; 1416 case 1: 1417 sb_start = 0; 1418 break; 1419 case 2: 1420 sb_start = 8; 1421 break; 1422 default: 1423 return -EINVAL; 1424 } 1425 rdev->sb_start = sb_start; 1426 1427 /* superblock is rarely larger than 1K, but it can be larger, 1428 * and it is safe to read 4k, so we do that 1429 */ 1430 ret = read_disk_sb(rdev, 4096); 1431 if (ret) return ret; 1432 1433 1434 sb = page_address(rdev->sb_page); 1435 1436 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1437 sb->major_version != cpu_to_le32(1) || 1438 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1439 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1440 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1441 return -EINVAL; 1442 1443 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1444 printk("md: invalid superblock checksum on %s\n", 1445 bdevname(rdev->bdev,b)); 1446 return -EINVAL; 1447 } 1448 if (le64_to_cpu(sb->data_size) < 10) { 1449 printk("md: data_size too small on %s\n", 1450 bdevname(rdev->bdev,b)); 1451 return -EINVAL; 1452 } 1453 if (sb->pad0 || 1454 sb->pad3[0] || 1455 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1456 /* Some padding is non-zero, might be a new feature */ 1457 return -EINVAL; 1458 1459 rdev->preferred_minor = 0xffff; 1460 rdev->data_offset = le64_to_cpu(sb->data_offset); 1461 rdev->new_data_offset = rdev->data_offset; 1462 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1463 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1464 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1465 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1466 1467 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1468 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1469 if (rdev->sb_size & bmask) 1470 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1471 1472 if (minor_version 1473 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1474 return -EINVAL; 1475 if (minor_version 1476 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1477 return -EINVAL; 1478 1479 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1480 rdev->desc_nr = -1; 1481 else 1482 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1483 1484 if (!rdev->bb_page) { 1485 rdev->bb_page = alloc_page(GFP_KERNEL); 1486 if (!rdev->bb_page) 1487 return -ENOMEM; 1488 } 1489 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1490 rdev->badblocks.count == 0) { 1491 /* need to load the bad block list. 1492 * Currently we limit it to one page. 1493 */ 1494 s32 offset; 1495 sector_t bb_sector; 1496 u64 *bbp; 1497 int i; 1498 int sectors = le16_to_cpu(sb->bblog_size); 1499 if (sectors > (PAGE_SIZE / 512)) 1500 return -EINVAL; 1501 offset = le32_to_cpu(sb->bblog_offset); 1502 if (offset == 0) 1503 return -EINVAL; 1504 bb_sector = (long long)offset; 1505 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1506 rdev->bb_page, READ, true)) 1507 return -EIO; 1508 bbp = (u64 *)page_address(rdev->bb_page); 1509 rdev->badblocks.shift = sb->bblog_shift; 1510 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1511 u64 bb = le64_to_cpu(*bbp); 1512 int count = bb & (0x3ff); 1513 u64 sector = bb >> 10; 1514 sector <<= sb->bblog_shift; 1515 count <<= sb->bblog_shift; 1516 if (bb + 1 == 0) 1517 break; 1518 if (md_set_badblocks(&rdev->badblocks, 1519 sector, count, 1) == 0) 1520 return -EINVAL; 1521 } 1522 } else if (sb->bblog_offset != 0) 1523 rdev->badblocks.shift = 0; 1524 1525 if (!refdev) { 1526 ret = 1; 1527 } else { 1528 __u64 ev1, ev2; 1529 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1530 1531 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1532 sb->level != refsb->level || 1533 sb->layout != refsb->layout || 1534 sb->chunksize != refsb->chunksize) { 1535 printk(KERN_WARNING "md: %s has strangely different" 1536 " superblock to %s\n", 1537 bdevname(rdev->bdev,b), 1538 bdevname(refdev->bdev,b2)); 1539 return -EINVAL; 1540 } 1541 ev1 = le64_to_cpu(sb->events); 1542 ev2 = le64_to_cpu(refsb->events); 1543 1544 if (ev1 > ev2) 1545 ret = 1; 1546 else 1547 ret = 0; 1548 } 1549 if (minor_version) { 1550 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1551 sectors -= rdev->data_offset; 1552 } else 1553 sectors = rdev->sb_start; 1554 if (sectors < le64_to_cpu(sb->data_size)) 1555 return -EINVAL; 1556 rdev->sectors = le64_to_cpu(sb->data_size); 1557 return ret; 1558 } 1559 1560 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1561 { 1562 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1563 __u64 ev1 = le64_to_cpu(sb->events); 1564 1565 rdev->raid_disk = -1; 1566 clear_bit(Faulty, &rdev->flags); 1567 clear_bit(In_sync, &rdev->flags); 1568 clear_bit(Bitmap_sync, &rdev->flags); 1569 clear_bit(WriteMostly, &rdev->flags); 1570 1571 if (mddev->raid_disks == 0) { 1572 mddev->major_version = 1; 1573 mddev->patch_version = 0; 1574 mddev->external = 0; 1575 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1576 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1577 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1578 mddev->level = le32_to_cpu(sb->level); 1579 mddev->clevel[0] = 0; 1580 mddev->layout = le32_to_cpu(sb->layout); 1581 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1582 mddev->dev_sectors = le64_to_cpu(sb->size); 1583 mddev->events = ev1; 1584 mddev->bitmap_info.offset = 0; 1585 mddev->bitmap_info.space = 0; 1586 /* Default location for bitmap is 1K after superblock 1587 * using 3K - total of 4K 1588 */ 1589 mddev->bitmap_info.default_offset = 1024 >> 9; 1590 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1591 mddev->reshape_backwards = 0; 1592 1593 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1594 memcpy(mddev->uuid, sb->set_uuid, 16); 1595 1596 mddev->max_disks = (4096-256)/2; 1597 1598 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1599 mddev->bitmap_info.file == NULL) { 1600 mddev->bitmap_info.offset = 1601 (__s32)le32_to_cpu(sb->bitmap_offset); 1602 /* Metadata doesn't record how much space is available. 1603 * For 1.0, we assume we can use up to the superblock 1604 * if before, else to 4K beyond superblock. 1605 * For others, assume no change is possible. 1606 */ 1607 if (mddev->minor_version > 0) 1608 mddev->bitmap_info.space = 0; 1609 else if (mddev->bitmap_info.offset > 0) 1610 mddev->bitmap_info.space = 1611 8 - mddev->bitmap_info.offset; 1612 else 1613 mddev->bitmap_info.space = 1614 -mddev->bitmap_info.offset; 1615 } 1616 1617 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1618 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1619 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1620 mddev->new_level = le32_to_cpu(sb->new_level); 1621 mddev->new_layout = le32_to_cpu(sb->new_layout); 1622 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1623 if (mddev->delta_disks < 0 || 1624 (mddev->delta_disks == 0 && 1625 (le32_to_cpu(sb->feature_map) 1626 & MD_FEATURE_RESHAPE_BACKWARDS))) 1627 mddev->reshape_backwards = 1; 1628 } else { 1629 mddev->reshape_position = MaxSector; 1630 mddev->delta_disks = 0; 1631 mddev->new_level = mddev->level; 1632 mddev->new_layout = mddev->layout; 1633 mddev->new_chunk_sectors = mddev->chunk_sectors; 1634 } 1635 1636 } else if (mddev->pers == NULL) { 1637 /* Insist of good event counter while assembling, except for 1638 * spares (which don't need an event count) */ 1639 ++ev1; 1640 if (rdev->desc_nr >= 0 && 1641 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1642 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1643 if (ev1 < mddev->events) 1644 return -EINVAL; 1645 } else if (mddev->bitmap) { 1646 /* If adding to array with a bitmap, then we can accept an 1647 * older device, but not too old. 1648 */ 1649 if (ev1 < mddev->bitmap->events_cleared) 1650 return 0; 1651 if (ev1 < mddev->events) 1652 set_bit(Bitmap_sync, &rdev->flags); 1653 } else { 1654 if (ev1 < mddev->events) 1655 /* just a hot-add of a new device, leave raid_disk at -1 */ 1656 return 0; 1657 } 1658 if (mddev->level != LEVEL_MULTIPATH) { 1659 int role; 1660 if (rdev->desc_nr < 0 || 1661 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1662 role = 0xffff; 1663 rdev->desc_nr = -1; 1664 } else 1665 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1666 switch(role) { 1667 case 0xffff: /* spare */ 1668 break; 1669 case 0xfffe: /* faulty */ 1670 set_bit(Faulty, &rdev->flags); 1671 break; 1672 default: 1673 rdev->saved_raid_disk = role; 1674 if ((le32_to_cpu(sb->feature_map) & 1675 MD_FEATURE_RECOVERY_OFFSET)) { 1676 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1677 if (!(le32_to_cpu(sb->feature_map) & 1678 MD_FEATURE_RECOVERY_BITMAP)) 1679 rdev->saved_raid_disk = -1; 1680 } else 1681 set_bit(In_sync, &rdev->flags); 1682 rdev->raid_disk = role; 1683 break; 1684 } 1685 if (sb->devflags & WriteMostly1) 1686 set_bit(WriteMostly, &rdev->flags); 1687 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1688 set_bit(Replacement, &rdev->flags); 1689 } else /* MULTIPATH are always insync */ 1690 set_bit(In_sync, &rdev->flags); 1691 1692 return 0; 1693 } 1694 1695 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1696 { 1697 struct mdp_superblock_1 *sb; 1698 struct md_rdev *rdev2; 1699 int max_dev, i; 1700 /* make rdev->sb match mddev and rdev data. */ 1701 1702 sb = page_address(rdev->sb_page); 1703 1704 sb->feature_map = 0; 1705 sb->pad0 = 0; 1706 sb->recovery_offset = cpu_to_le64(0); 1707 memset(sb->pad3, 0, sizeof(sb->pad3)); 1708 1709 sb->utime = cpu_to_le64((__u64)mddev->utime); 1710 sb->events = cpu_to_le64(mddev->events); 1711 if (mddev->in_sync) 1712 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1713 else 1714 sb->resync_offset = cpu_to_le64(0); 1715 1716 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1717 1718 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1719 sb->size = cpu_to_le64(mddev->dev_sectors); 1720 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1721 sb->level = cpu_to_le32(mddev->level); 1722 sb->layout = cpu_to_le32(mddev->layout); 1723 1724 if (test_bit(WriteMostly, &rdev->flags)) 1725 sb->devflags |= WriteMostly1; 1726 else 1727 sb->devflags &= ~WriteMostly1; 1728 sb->data_offset = cpu_to_le64(rdev->data_offset); 1729 sb->data_size = cpu_to_le64(rdev->sectors); 1730 1731 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1732 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1733 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1734 } 1735 1736 if (rdev->raid_disk >= 0 && 1737 !test_bit(In_sync, &rdev->flags)) { 1738 sb->feature_map |= 1739 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1740 sb->recovery_offset = 1741 cpu_to_le64(rdev->recovery_offset); 1742 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1743 sb->feature_map |= 1744 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1745 } 1746 if (test_bit(Replacement, &rdev->flags)) 1747 sb->feature_map |= 1748 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1749 1750 if (mddev->reshape_position != MaxSector) { 1751 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1752 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1753 sb->new_layout = cpu_to_le32(mddev->new_layout); 1754 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1755 sb->new_level = cpu_to_le32(mddev->new_level); 1756 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1757 if (mddev->delta_disks == 0 && 1758 mddev->reshape_backwards) 1759 sb->feature_map 1760 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1761 if (rdev->new_data_offset != rdev->data_offset) { 1762 sb->feature_map 1763 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1764 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1765 - rdev->data_offset)); 1766 } 1767 } 1768 1769 if (rdev->badblocks.count == 0) 1770 /* Nothing to do for bad blocks*/ ; 1771 else if (sb->bblog_offset == 0) 1772 /* Cannot record bad blocks on this device */ 1773 md_error(mddev, rdev); 1774 else { 1775 struct badblocks *bb = &rdev->badblocks; 1776 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1777 u64 *p = bb->page; 1778 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1779 if (bb->changed) { 1780 unsigned seq; 1781 1782 retry: 1783 seq = read_seqbegin(&bb->lock); 1784 1785 memset(bbp, 0xff, PAGE_SIZE); 1786 1787 for (i = 0 ; i < bb->count ; i++) { 1788 u64 internal_bb = p[i]; 1789 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1790 | BB_LEN(internal_bb)); 1791 bbp[i] = cpu_to_le64(store_bb); 1792 } 1793 bb->changed = 0; 1794 if (read_seqretry(&bb->lock, seq)) 1795 goto retry; 1796 1797 bb->sector = (rdev->sb_start + 1798 (int)le32_to_cpu(sb->bblog_offset)); 1799 bb->size = le16_to_cpu(sb->bblog_size); 1800 } 1801 } 1802 1803 max_dev = 0; 1804 rdev_for_each(rdev2, mddev) 1805 if (rdev2->desc_nr+1 > max_dev) 1806 max_dev = rdev2->desc_nr+1; 1807 1808 if (max_dev > le32_to_cpu(sb->max_dev)) { 1809 int bmask; 1810 sb->max_dev = cpu_to_le32(max_dev); 1811 rdev->sb_size = max_dev * 2 + 256; 1812 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1813 if (rdev->sb_size & bmask) 1814 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1815 } else 1816 max_dev = le32_to_cpu(sb->max_dev); 1817 1818 for (i=0; i<max_dev;i++) 1819 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1820 1821 rdev_for_each(rdev2, mddev) { 1822 i = rdev2->desc_nr; 1823 if (test_bit(Faulty, &rdev2->flags)) 1824 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1825 else if (test_bit(In_sync, &rdev2->flags)) 1826 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1827 else if (rdev2->raid_disk >= 0) 1828 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1829 else 1830 sb->dev_roles[i] = cpu_to_le16(0xffff); 1831 } 1832 1833 sb->sb_csum = calc_sb_1_csum(sb); 1834 } 1835 1836 static unsigned long long 1837 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1838 { 1839 struct mdp_superblock_1 *sb; 1840 sector_t max_sectors; 1841 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1842 return 0; /* component must fit device */ 1843 if (rdev->data_offset != rdev->new_data_offset) 1844 return 0; /* too confusing */ 1845 if (rdev->sb_start < rdev->data_offset) { 1846 /* minor versions 1 and 2; superblock before data */ 1847 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1848 max_sectors -= rdev->data_offset; 1849 if (!num_sectors || num_sectors > max_sectors) 1850 num_sectors = max_sectors; 1851 } else if (rdev->mddev->bitmap_info.offset) { 1852 /* minor version 0 with bitmap we can't move */ 1853 return 0; 1854 } else { 1855 /* minor version 0; superblock after data */ 1856 sector_t sb_start; 1857 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1858 sb_start &= ~(sector_t)(4*2 - 1); 1859 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1860 if (!num_sectors || num_sectors > max_sectors) 1861 num_sectors = max_sectors; 1862 rdev->sb_start = sb_start; 1863 } 1864 sb = page_address(rdev->sb_page); 1865 sb->data_size = cpu_to_le64(num_sectors); 1866 sb->super_offset = rdev->sb_start; 1867 sb->sb_csum = calc_sb_1_csum(sb); 1868 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1869 rdev->sb_page); 1870 md_super_wait(rdev->mddev); 1871 return num_sectors; 1872 1873 } 1874 1875 static int 1876 super_1_allow_new_offset(struct md_rdev *rdev, 1877 unsigned long long new_offset) 1878 { 1879 /* All necessary checks on new >= old have been done */ 1880 struct bitmap *bitmap; 1881 if (new_offset >= rdev->data_offset) 1882 return 1; 1883 1884 /* with 1.0 metadata, there is no metadata to tread on 1885 * so we can always move back */ 1886 if (rdev->mddev->minor_version == 0) 1887 return 1; 1888 1889 /* otherwise we must be sure not to step on 1890 * any metadata, so stay: 1891 * 36K beyond start of superblock 1892 * beyond end of badblocks 1893 * beyond write-intent bitmap 1894 */ 1895 if (rdev->sb_start + (32+4)*2 > new_offset) 1896 return 0; 1897 bitmap = rdev->mddev->bitmap; 1898 if (bitmap && !rdev->mddev->bitmap_info.file && 1899 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1900 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1901 return 0; 1902 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1903 return 0; 1904 1905 return 1; 1906 } 1907 1908 static struct super_type super_types[] = { 1909 [0] = { 1910 .name = "0.90.0", 1911 .owner = THIS_MODULE, 1912 .load_super = super_90_load, 1913 .validate_super = super_90_validate, 1914 .sync_super = super_90_sync, 1915 .rdev_size_change = super_90_rdev_size_change, 1916 .allow_new_offset = super_90_allow_new_offset, 1917 }, 1918 [1] = { 1919 .name = "md-1", 1920 .owner = THIS_MODULE, 1921 .load_super = super_1_load, 1922 .validate_super = super_1_validate, 1923 .sync_super = super_1_sync, 1924 .rdev_size_change = super_1_rdev_size_change, 1925 .allow_new_offset = super_1_allow_new_offset, 1926 }, 1927 }; 1928 1929 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1930 { 1931 if (mddev->sync_super) { 1932 mddev->sync_super(mddev, rdev); 1933 return; 1934 } 1935 1936 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1937 1938 super_types[mddev->major_version].sync_super(mddev, rdev); 1939 } 1940 1941 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1942 { 1943 struct md_rdev *rdev, *rdev2; 1944 1945 rcu_read_lock(); 1946 rdev_for_each_rcu(rdev, mddev1) 1947 rdev_for_each_rcu(rdev2, mddev2) 1948 if (rdev->bdev->bd_contains == 1949 rdev2->bdev->bd_contains) { 1950 rcu_read_unlock(); 1951 return 1; 1952 } 1953 rcu_read_unlock(); 1954 return 0; 1955 } 1956 1957 static LIST_HEAD(pending_raid_disks); 1958 1959 /* 1960 * Try to register data integrity profile for an mddev 1961 * 1962 * This is called when an array is started and after a disk has been kicked 1963 * from the array. It only succeeds if all working and active component devices 1964 * are integrity capable with matching profiles. 1965 */ 1966 int md_integrity_register(struct mddev *mddev) 1967 { 1968 struct md_rdev *rdev, *reference = NULL; 1969 1970 if (list_empty(&mddev->disks)) 1971 return 0; /* nothing to do */ 1972 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 1973 return 0; /* shouldn't register, or already is */ 1974 rdev_for_each(rdev, mddev) { 1975 /* skip spares and non-functional disks */ 1976 if (test_bit(Faulty, &rdev->flags)) 1977 continue; 1978 if (rdev->raid_disk < 0) 1979 continue; 1980 if (!reference) { 1981 /* Use the first rdev as the reference */ 1982 reference = rdev; 1983 continue; 1984 } 1985 /* does this rdev's profile match the reference profile? */ 1986 if (blk_integrity_compare(reference->bdev->bd_disk, 1987 rdev->bdev->bd_disk) < 0) 1988 return -EINVAL; 1989 } 1990 if (!reference || !bdev_get_integrity(reference->bdev)) 1991 return 0; 1992 /* 1993 * All component devices are integrity capable and have matching 1994 * profiles, register the common profile for the md device. 1995 */ 1996 if (blk_integrity_register(mddev->gendisk, 1997 bdev_get_integrity(reference->bdev)) != 0) { 1998 printk(KERN_ERR "md: failed to register integrity for %s\n", 1999 mdname(mddev)); 2000 return -EINVAL; 2001 } 2002 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2003 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2004 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2005 mdname(mddev)); 2006 return -EINVAL; 2007 } 2008 return 0; 2009 } 2010 EXPORT_SYMBOL(md_integrity_register); 2011 2012 /* Disable data integrity if non-capable/non-matching disk is being added */ 2013 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2014 { 2015 struct blk_integrity *bi_rdev; 2016 struct blk_integrity *bi_mddev; 2017 2018 if (!mddev->gendisk) 2019 return; 2020 2021 bi_rdev = bdev_get_integrity(rdev->bdev); 2022 bi_mddev = blk_get_integrity(mddev->gendisk); 2023 2024 if (!bi_mddev) /* nothing to do */ 2025 return; 2026 if (rdev->raid_disk < 0) /* skip spares */ 2027 return; 2028 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2029 rdev->bdev->bd_disk) >= 0) 2030 return; 2031 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2032 blk_integrity_unregister(mddev->gendisk); 2033 } 2034 EXPORT_SYMBOL(md_integrity_add_rdev); 2035 2036 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2037 { 2038 char b[BDEVNAME_SIZE]; 2039 struct kobject *ko; 2040 char *s; 2041 int err; 2042 2043 if (rdev->mddev) { 2044 MD_BUG(); 2045 return -EINVAL; 2046 } 2047 2048 /* prevent duplicates */ 2049 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2050 return -EEXIST; 2051 2052 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2053 if (rdev->sectors && (mddev->dev_sectors == 0 || 2054 rdev->sectors < mddev->dev_sectors)) { 2055 if (mddev->pers) { 2056 /* Cannot change size, so fail 2057 * If mddev->level <= 0, then we don't care 2058 * about aligning sizes (e.g. linear) 2059 */ 2060 if (mddev->level > 0) 2061 return -ENOSPC; 2062 } else 2063 mddev->dev_sectors = rdev->sectors; 2064 } 2065 2066 /* Verify rdev->desc_nr is unique. 2067 * If it is -1, assign a free number, else 2068 * check number is not in use 2069 */ 2070 if (rdev->desc_nr < 0) { 2071 int choice = 0; 2072 if (mddev->pers) choice = mddev->raid_disks; 2073 while (find_rdev_nr(mddev, choice)) 2074 choice++; 2075 rdev->desc_nr = choice; 2076 } else { 2077 if (find_rdev_nr(mddev, rdev->desc_nr)) 2078 return -EBUSY; 2079 } 2080 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2081 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2082 mdname(mddev), mddev->max_disks); 2083 return -EBUSY; 2084 } 2085 bdevname(rdev->bdev,b); 2086 while ( (s=strchr(b, '/')) != NULL) 2087 *s = '!'; 2088 2089 rdev->mddev = mddev; 2090 printk(KERN_INFO "md: bind<%s>\n", b); 2091 2092 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2093 goto fail; 2094 2095 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2096 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2097 /* failure here is OK */; 2098 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2099 2100 list_add_rcu(&rdev->same_set, &mddev->disks); 2101 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2102 2103 /* May as well allow recovery to be retried once */ 2104 mddev->recovery_disabled++; 2105 2106 return 0; 2107 2108 fail: 2109 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2110 b, mdname(mddev)); 2111 return err; 2112 } 2113 2114 static void md_delayed_delete(struct work_struct *ws) 2115 { 2116 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2117 kobject_del(&rdev->kobj); 2118 kobject_put(&rdev->kobj); 2119 } 2120 2121 static void unbind_rdev_from_array(struct md_rdev * rdev) 2122 { 2123 char b[BDEVNAME_SIZE]; 2124 if (!rdev->mddev) { 2125 MD_BUG(); 2126 return; 2127 } 2128 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2129 list_del_rcu(&rdev->same_set); 2130 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2131 rdev->mddev = NULL; 2132 sysfs_remove_link(&rdev->kobj, "block"); 2133 sysfs_put(rdev->sysfs_state); 2134 rdev->sysfs_state = NULL; 2135 rdev->badblocks.count = 0; 2136 /* We need to delay this, otherwise we can deadlock when 2137 * writing to 'remove' to "dev/state". We also need 2138 * to delay it due to rcu usage. 2139 */ 2140 synchronize_rcu(); 2141 INIT_WORK(&rdev->del_work, md_delayed_delete); 2142 kobject_get(&rdev->kobj); 2143 queue_work(md_misc_wq, &rdev->del_work); 2144 } 2145 2146 /* 2147 * prevent the device from being mounted, repartitioned or 2148 * otherwise reused by a RAID array (or any other kernel 2149 * subsystem), by bd_claiming the device. 2150 */ 2151 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2152 { 2153 int err = 0; 2154 struct block_device *bdev; 2155 char b[BDEVNAME_SIZE]; 2156 2157 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2158 shared ? (struct md_rdev *)lock_rdev : rdev); 2159 if (IS_ERR(bdev)) { 2160 printk(KERN_ERR "md: could not open %s.\n", 2161 __bdevname(dev, b)); 2162 return PTR_ERR(bdev); 2163 } 2164 rdev->bdev = bdev; 2165 return err; 2166 } 2167 2168 static void unlock_rdev(struct md_rdev *rdev) 2169 { 2170 struct block_device *bdev = rdev->bdev; 2171 rdev->bdev = NULL; 2172 if (!bdev) 2173 MD_BUG(); 2174 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2175 } 2176 2177 void md_autodetect_dev(dev_t dev); 2178 2179 static void export_rdev(struct md_rdev * rdev) 2180 { 2181 char b[BDEVNAME_SIZE]; 2182 printk(KERN_INFO "md: export_rdev(%s)\n", 2183 bdevname(rdev->bdev,b)); 2184 if (rdev->mddev) 2185 MD_BUG(); 2186 md_rdev_clear(rdev); 2187 #ifndef MODULE 2188 if (test_bit(AutoDetected, &rdev->flags)) 2189 md_autodetect_dev(rdev->bdev->bd_dev); 2190 #endif 2191 unlock_rdev(rdev); 2192 kobject_put(&rdev->kobj); 2193 } 2194 2195 static void kick_rdev_from_array(struct md_rdev * rdev) 2196 { 2197 unbind_rdev_from_array(rdev); 2198 export_rdev(rdev); 2199 } 2200 2201 static void export_array(struct mddev *mddev) 2202 { 2203 struct md_rdev *rdev, *tmp; 2204 2205 rdev_for_each_safe(rdev, tmp, mddev) { 2206 if (!rdev->mddev) { 2207 MD_BUG(); 2208 continue; 2209 } 2210 kick_rdev_from_array(rdev); 2211 } 2212 if (!list_empty(&mddev->disks)) 2213 MD_BUG(); 2214 mddev->raid_disks = 0; 2215 mddev->major_version = 0; 2216 } 2217 2218 static void print_desc(mdp_disk_t *desc) 2219 { 2220 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2221 desc->major,desc->minor,desc->raid_disk,desc->state); 2222 } 2223 2224 static void print_sb_90(mdp_super_t *sb) 2225 { 2226 int i; 2227 2228 printk(KERN_INFO 2229 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2230 sb->major_version, sb->minor_version, sb->patch_version, 2231 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2232 sb->ctime); 2233 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2234 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2235 sb->md_minor, sb->layout, sb->chunk_size); 2236 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2237 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2238 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2239 sb->failed_disks, sb->spare_disks, 2240 sb->sb_csum, (unsigned long)sb->events_lo); 2241 2242 printk(KERN_INFO); 2243 for (i = 0; i < MD_SB_DISKS; i++) { 2244 mdp_disk_t *desc; 2245 2246 desc = sb->disks + i; 2247 if (desc->number || desc->major || desc->minor || 2248 desc->raid_disk || (desc->state && (desc->state != 4))) { 2249 printk(" D %2d: ", i); 2250 print_desc(desc); 2251 } 2252 } 2253 printk(KERN_INFO "md: THIS: "); 2254 print_desc(&sb->this_disk); 2255 } 2256 2257 static void print_sb_1(struct mdp_superblock_1 *sb) 2258 { 2259 __u8 *uuid; 2260 2261 uuid = sb->set_uuid; 2262 printk(KERN_INFO 2263 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2264 "md: Name: \"%s\" CT:%llu\n", 2265 le32_to_cpu(sb->major_version), 2266 le32_to_cpu(sb->feature_map), 2267 uuid, 2268 sb->set_name, 2269 (unsigned long long)le64_to_cpu(sb->ctime) 2270 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2271 2272 uuid = sb->device_uuid; 2273 printk(KERN_INFO 2274 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2275 " RO:%llu\n" 2276 "md: Dev:%08x UUID: %pU\n" 2277 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2278 "md: (MaxDev:%u) \n", 2279 le32_to_cpu(sb->level), 2280 (unsigned long long)le64_to_cpu(sb->size), 2281 le32_to_cpu(sb->raid_disks), 2282 le32_to_cpu(sb->layout), 2283 le32_to_cpu(sb->chunksize), 2284 (unsigned long long)le64_to_cpu(sb->data_offset), 2285 (unsigned long long)le64_to_cpu(sb->data_size), 2286 (unsigned long long)le64_to_cpu(sb->super_offset), 2287 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2288 le32_to_cpu(sb->dev_number), 2289 uuid, 2290 sb->devflags, 2291 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2292 (unsigned long long)le64_to_cpu(sb->events), 2293 (unsigned long long)le64_to_cpu(sb->resync_offset), 2294 le32_to_cpu(sb->sb_csum), 2295 le32_to_cpu(sb->max_dev) 2296 ); 2297 } 2298 2299 static void print_rdev(struct md_rdev *rdev, int major_version) 2300 { 2301 char b[BDEVNAME_SIZE]; 2302 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2303 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2304 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2305 rdev->desc_nr); 2306 if (rdev->sb_loaded) { 2307 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2308 switch (major_version) { 2309 case 0: 2310 print_sb_90(page_address(rdev->sb_page)); 2311 break; 2312 case 1: 2313 print_sb_1(page_address(rdev->sb_page)); 2314 break; 2315 } 2316 } else 2317 printk(KERN_INFO "md: no rdev superblock!\n"); 2318 } 2319 2320 static void md_print_devices(void) 2321 { 2322 struct list_head *tmp; 2323 struct md_rdev *rdev; 2324 struct mddev *mddev; 2325 char b[BDEVNAME_SIZE]; 2326 2327 printk("\n"); 2328 printk("md: **********************************\n"); 2329 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2330 printk("md: **********************************\n"); 2331 for_each_mddev(mddev, tmp) { 2332 2333 if (mddev->bitmap) 2334 bitmap_print_sb(mddev->bitmap); 2335 else 2336 printk("%s: ", mdname(mddev)); 2337 rdev_for_each(rdev, mddev) 2338 printk("<%s>", bdevname(rdev->bdev,b)); 2339 printk("\n"); 2340 2341 rdev_for_each(rdev, mddev) 2342 print_rdev(rdev, mddev->major_version); 2343 } 2344 printk("md: **********************************\n"); 2345 printk("\n"); 2346 } 2347 2348 2349 static void sync_sbs(struct mddev * mddev, int nospares) 2350 { 2351 /* Update each superblock (in-memory image), but 2352 * if we are allowed to, skip spares which already 2353 * have the right event counter, or have one earlier 2354 * (which would mean they aren't being marked as dirty 2355 * with the rest of the array) 2356 */ 2357 struct md_rdev *rdev; 2358 rdev_for_each(rdev, mddev) { 2359 if (rdev->sb_events == mddev->events || 2360 (nospares && 2361 rdev->raid_disk < 0 && 2362 rdev->sb_events+1 == mddev->events)) { 2363 /* Don't update this superblock */ 2364 rdev->sb_loaded = 2; 2365 } else { 2366 sync_super(mddev, rdev); 2367 rdev->sb_loaded = 1; 2368 } 2369 } 2370 } 2371 2372 static void md_update_sb(struct mddev * mddev, int force_change) 2373 { 2374 struct md_rdev *rdev; 2375 int sync_req; 2376 int nospares = 0; 2377 int any_badblocks_changed = 0; 2378 2379 if (mddev->ro) { 2380 if (force_change) 2381 set_bit(MD_CHANGE_DEVS, &mddev->flags); 2382 return; 2383 } 2384 repeat: 2385 /* First make sure individual recovery_offsets are correct */ 2386 rdev_for_each(rdev, mddev) { 2387 if (rdev->raid_disk >= 0 && 2388 mddev->delta_disks >= 0 && 2389 !test_bit(In_sync, &rdev->flags) && 2390 mddev->curr_resync_completed > rdev->recovery_offset) 2391 rdev->recovery_offset = mddev->curr_resync_completed; 2392 2393 } 2394 if (!mddev->persistent) { 2395 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2396 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2397 if (!mddev->external) { 2398 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2399 rdev_for_each(rdev, mddev) { 2400 if (rdev->badblocks.changed) { 2401 rdev->badblocks.changed = 0; 2402 md_ack_all_badblocks(&rdev->badblocks); 2403 md_error(mddev, rdev); 2404 } 2405 clear_bit(Blocked, &rdev->flags); 2406 clear_bit(BlockedBadBlocks, &rdev->flags); 2407 wake_up(&rdev->blocked_wait); 2408 } 2409 } 2410 wake_up(&mddev->sb_wait); 2411 return; 2412 } 2413 2414 spin_lock_irq(&mddev->write_lock); 2415 2416 mddev->utime = get_seconds(); 2417 2418 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2419 force_change = 1; 2420 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2421 /* just a clean<-> dirty transition, possibly leave spares alone, 2422 * though if events isn't the right even/odd, we will have to do 2423 * spares after all 2424 */ 2425 nospares = 1; 2426 if (force_change) 2427 nospares = 0; 2428 if (mddev->degraded) 2429 /* If the array is degraded, then skipping spares is both 2430 * dangerous and fairly pointless. 2431 * Dangerous because a device that was removed from the array 2432 * might have a event_count that still looks up-to-date, 2433 * so it can be re-added without a resync. 2434 * Pointless because if there are any spares to skip, 2435 * then a recovery will happen and soon that array won't 2436 * be degraded any more and the spare can go back to sleep then. 2437 */ 2438 nospares = 0; 2439 2440 sync_req = mddev->in_sync; 2441 2442 /* If this is just a dirty<->clean transition, and the array is clean 2443 * and 'events' is odd, we can roll back to the previous clean state */ 2444 if (nospares 2445 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2446 && mddev->can_decrease_events 2447 && mddev->events != 1) { 2448 mddev->events--; 2449 mddev->can_decrease_events = 0; 2450 } else { 2451 /* otherwise we have to go forward and ... */ 2452 mddev->events ++; 2453 mddev->can_decrease_events = nospares; 2454 } 2455 2456 if (!mddev->events) { 2457 /* 2458 * oops, this 64-bit counter should never wrap. 2459 * Either we are in around ~1 trillion A.C., assuming 2460 * 1 reboot per second, or we have a bug: 2461 */ 2462 MD_BUG(); 2463 mddev->events --; 2464 } 2465 2466 rdev_for_each(rdev, mddev) { 2467 if (rdev->badblocks.changed) 2468 any_badblocks_changed++; 2469 if (test_bit(Faulty, &rdev->flags)) 2470 set_bit(FaultRecorded, &rdev->flags); 2471 } 2472 2473 sync_sbs(mddev, nospares); 2474 spin_unlock_irq(&mddev->write_lock); 2475 2476 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2477 mdname(mddev), mddev->in_sync); 2478 2479 bitmap_update_sb(mddev->bitmap); 2480 rdev_for_each(rdev, mddev) { 2481 char b[BDEVNAME_SIZE]; 2482 2483 if (rdev->sb_loaded != 1) 2484 continue; /* no noise on spare devices */ 2485 2486 if (!test_bit(Faulty, &rdev->flags)) { 2487 md_super_write(mddev,rdev, 2488 rdev->sb_start, rdev->sb_size, 2489 rdev->sb_page); 2490 pr_debug("md: (write) %s's sb offset: %llu\n", 2491 bdevname(rdev->bdev, b), 2492 (unsigned long long)rdev->sb_start); 2493 rdev->sb_events = mddev->events; 2494 if (rdev->badblocks.size) { 2495 md_super_write(mddev, rdev, 2496 rdev->badblocks.sector, 2497 rdev->badblocks.size << 9, 2498 rdev->bb_page); 2499 rdev->badblocks.size = 0; 2500 } 2501 2502 } else 2503 pr_debug("md: %s (skipping faulty)\n", 2504 bdevname(rdev->bdev, b)); 2505 2506 if (mddev->level == LEVEL_MULTIPATH) 2507 /* only need to write one superblock... */ 2508 break; 2509 } 2510 md_super_wait(mddev); 2511 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2512 2513 spin_lock_irq(&mddev->write_lock); 2514 if (mddev->in_sync != sync_req || 2515 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2516 /* have to write it out again */ 2517 spin_unlock_irq(&mddev->write_lock); 2518 goto repeat; 2519 } 2520 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2521 spin_unlock_irq(&mddev->write_lock); 2522 wake_up(&mddev->sb_wait); 2523 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2524 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2525 2526 rdev_for_each(rdev, mddev) { 2527 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2528 clear_bit(Blocked, &rdev->flags); 2529 2530 if (any_badblocks_changed) 2531 md_ack_all_badblocks(&rdev->badblocks); 2532 clear_bit(BlockedBadBlocks, &rdev->flags); 2533 wake_up(&rdev->blocked_wait); 2534 } 2535 } 2536 2537 /* words written to sysfs files may, or may not, be \n terminated. 2538 * We want to accept with case. For this we use cmd_match. 2539 */ 2540 static int cmd_match(const char *cmd, const char *str) 2541 { 2542 /* See if cmd, written into a sysfs file, matches 2543 * str. They must either be the same, or cmd can 2544 * have a trailing newline 2545 */ 2546 while (*cmd && *str && *cmd == *str) { 2547 cmd++; 2548 str++; 2549 } 2550 if (*cmd == '\n') 2551 cmd++; 2552 if (*str || *cmd) 2553 return 0; 2554 return 1; 2555 } 2556 2557 struct rdev_sysfs_entry { 2558 struct attribute attr; 2559 ssize_t (*show)(struct md_rdev *, char *); 2560 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2561 }; 2562 2563 static ssize_t 2564 state_show(struct md_rdev *rdev, char *page) 2565 { 2566 char *sep = ""; 2567 size_t len = 0; 2568 2569 if (test_bit(Faulty, &rdev->flags) || 2570 rdev->badblocks.unacked_exist) { 2571 len+= sprintf(page+len, "%sfaulty",sep); 2572 sep = ","; 2573 } 2574 if (test_bit(In_sync, &rdev->flags)) { 2575 len += sprintf(page+len, "%sin_sync",sep); 2576 sep = ","; 2577 } 2578 if (test_bit(WriteMostly, &rdev->flags)) { 2579 len += sprintf(page+len, "%swrite_mostly",sep); 2580 sep = ","; 2581 } 2582 if (test_bit(Blocked, &rdev->flags) || 2583 (rdev->badblocks.unacked_exist 2584 && !test_bit(Faulty, &rdev->flags))) { 2585 len += sprintf(page+len, "%sblocked", sep); 2586 sep = ","; 2587 } 2588 if (!test_bit(Faulty, &rdev->flags) && 2589 !test_bit(In_sync, &rdev->flags)) { 2590 len += sprintf(page+len, "%sspare", sep); 2591 sep = ","; 2592 } 2593 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2594 len += sprintf(page+len, "%swrite_error", sep); 2595 sep = ","; 2596 } 2597 if (test_bit(WantReplacement, &rdev->flags)) { 2598 len += sprintf(page+len, "%swant_replacement", sep); 2599 sep = ","; 2600 } 2601 if (test_bit(Replacement, &rdev->flags)) { 2602 len += sprintf(page+len, "%sreplacement", sep); 2603 sep = ","; 2604 } 2605 2606 return len+sprintf(page+len, "\n"); 2607 } 2608 2609 static ssize_t 2610 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2611 { 2612 /* can write 2613 * faulty - simulates an error 2614 * remove - disconnects the device 2615 * writemostly - sets write_mostly 2616 * -writemostly - clears write_mostly 2617 * blocked - sets the Blocked flags 2618 * -blocked - clears the Blocked and possibly simulates an error 2619 * insync - sets Insync providing device isn't active 2620 * -insync - clear Insync for a device with a slot assigned, 2621 * so that it gets rebuilt based on bitmap 2622 * write_error - sets WriteErrorSeen 2623 * -write_error - clears WriteErrorSeen 2624 */ 2625 int err = -EINVAL; 2626 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2627 md_error(rdev->mddev, rdev); 2628 if (test_bit(Faulty, &rdev->flags)) 2629 err = 0; 2630 else 2631 err = -EBUSY; 2632 } else if (cmd_match(buf, "remove")) { 2633 if (rdev->raid_disk >= 0) 2634 err = -EBUSY; 2635 else { 2636 struct mddev *mddev = rdev->mddev; 2637 kick_rdev_from_array(rdev); 2638 if (mddev->pers) 2639 md_update_sb(mddev, 1); 2640 md_new_event(mddev); 2641 err = 0; 2642 } 2643 } else if (cmd_match(buf, "writemostly")) { 2644 set_bit(WriteMostly, &rdev->flags); 2645 err = 0; 2646 } else if (cmd_match(buf, "-writemostly")) { 2647 clear_bit(WriteMostly, &rdev->flags); 2648 err = 0; 2649 } else if (cmd_match(buf, "blocked")) { 2650 set_bit(Blocked, &rdev->flags); 2651 err = 0; 2652 } else if (cmd_match(buf, "-blocked")) { 2653 if (!test_bit(Faulty, &rdev->flags) && 2654 rdev->badblocks.unacked_exist) { 2655 /* metadata handler doesn't understand badblocks, 2656 * so we need to fail the device 2657 */ 2658 md_error(rdev->mddev, rdev); 2659 } 2660 clear_bit(Blocked, &rdev->flags); 2661 clear_bit(BlockedBadBlocks, &rdev->flags); 2662 wake_up(&rdev->blocked_wait); 2663 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2664 md_wakeup_thread(rdev->mddev->thread); 2665 2666 err = 0; 2667 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2668 set_bit(In_sync, &rdev->flags); 2669 err = 0; 2670 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) { 2671 clear_bit(In_sync, &rdev->flags); 2672 rdev->saved_raid_disk = rdev->raid_disk; 2673 rdev->raid_disk = -1; 2674 err = 0; 2675 } else if (cmd_match(buf, "write_error")) { 2676 set_bit(WriteErrorSeen, &rdev->flags); 2677 err = 0; 2678 } else if (cmd_match(buf, "-write_error")) { 2679 clear_bit(WriteErrorSeen, &rdev->flags); 2680 err = 0; 2681 } else if (cmd_match(buf, "want_replacement")) { 2682 /* Any non-spare device that is not a replacement can 2683 * become want_replacement at any time, but we then need to 2684 * check if recovery is needed. 2685 */ 2686 if (rdev->raid_disk >= 0 && 2687 !test_bit(Replacement, &rdev->flags)) 2688 set_bit(WantReplacement, &rdev->flags); 2689 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2690 md_wakeup_thread(rdev->mddev->thread); 2691 err = 0; 2692 } else if (cmd_match(buf, "-want_replacement")) { 2693 /* Clearing 'want_replacement' is always allowed. 2694 * Once replacements starts it is too late though. 2695 */ 2696 err = 0; 2697 clear_bit(WantReplacement, &rdev->flags); 2698 } else if (cmd_match(buf, "replacement")) { 2699 /* Can only set a device as a replacement when array has not 2700 * yet been started. Once running, replacement is automatic 2701 * from spares, or by assigning 'slot'. 2702 */ 2703 if (rdev->mddev->pers) 2704 err = -EBUSY; 2705 else { 2706 set_bit(Replacement, &rdev->flags); 2707 err = 0; 2708 } 2709 } else if (cmd_match(buf, "-replacement")) { 2710 /* Similarly, can only clear Replacement before start */ 2711 if (rdev->mddev->pers) 2712 err = -EBUSY; 2713 else { 2714 clear_bit(Replacement, &rdev->flags); 2715 err = 0; 2716 } 2717 } 2718 if (!err) 2719 sysfs_notify_dirent_safe(rdev->sysfs_state); 2720 return err ? err : len; 2721 } 2722 static struct rdev_sysfs_entry rdev_state = 2723 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2724 2725 static ssize_t 2726 errors_show(struct md_rdev *rdev, char *page) 2727 { 2728 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2729 } 2730 2731 static ssize_t 2732 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2733 { 2734 char *e; 2735 unsigned long n = simple_strtoul(buf, &e, 10); 2736 if (*buf && (*e == 0 || *e == '\n')) { 2737 atomic_set(&rdev->corrected_errors, n); 2738 return len; 2739 } 2740 return -EINVAL; 2741 } 2742 static struct rdev_sysfs_entry rdev_errors = 2743 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2744 2745 static ssize_t 2746 slot_show(struct md_rdev *rdev, char *page) 2747 { 2748 if (rdev->raid_disk < 0) 2749 return sprintf(page, "none\n"); 2750 else 2751 return sprintf(page, "%d\n", rdev->raid_disk); 2752 } 2753 2754 static ssize_t 2755 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2756 { 2757 char *e; 2758 int err; 2759 int slot = simple_strtoul(buf, &e, 10); 2760 if (strncmp(buf, "none", 4)==0) 2761 slot = -1; 2762 else if (e==buf || (*e && *e!= '\n')) 2763 return -EINVAL; 2764 if (rdev->mddev->pers && slot == -1) { 2765 /* Setting 'slot' on an active array requires also 2766 * updating the 'rd%d' link, and communicating 2767 * with the personality with ->hot_*_disk. 2768 * For now we only support removing 2769 * failed/spare devices. This normally happens automatically, 2770 * but not when the metadata is externally managed. 2771 */ 2772 if (rdev->raid_disk == -1) 2773 return -EEXIST; 2774 /* personality does all needed checks */ 2775 if (rdev->mddev->pers->hot_remove_disk == NULL) 2776 return -EINVAL; 2777 clear_bit(Blocked, &rdev->flags); 2778 remove_and_add_spares(rdev->mddev, rdev); 2779 if (rdev->raid_disk >= 0) 2780 return -EBUSY; 2781 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2782 md_wakeup_thread(rdev->mddev->thread); 2783 } else if (rdev->mddev->pers) { 2784 /* Activating a spare .. or possibly reactivating 2785 * if we ever get bitmaps working here. 2786 */ 2787 2788 if (rdev->raid_disk != -1) 2789 return -EBUSY; 2790 2791 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2792 return -EBUSY; 2793 2794 if (rdev->mddev->pers->hot_add_disk == NULL) 2795 return -EINVAL; 2796 2797 if (slot >= rdev->mddev->raid_disks && 2798 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2799 return -ENOSPC; 2800 2801 rdev->raid_disk = slot; 2802 if (test_bit(In_sync, &rdev->flags)) 2803 rdev->saved_raid_disk = slot; 2804 else 2805 rdev->saved_raid_disk = -1; 2806 clear_bit(In_sync, &rdev->flags); 2807 clear_bit(Bitmap_sync, &rdev->flags); 2808 err = rdev->mddev->pers-> 2809 hot_add_disk(rdev->mddev, rdev); 2810 if (err) { 2811 rdev->raid_disk = -1; 2812 return err; 2813 } else 2814 sysfs_notify_dirent_safe(rdev->sysfs_state); 2815 if (sysfs_link_rdev(rdev->mddev, rdev)) 2816 /* failure here is OK */; 2817 /* don't wakeup anyone, leave that to userspace. */ 2818 } else { 2819 if (slot >= rdev->mddev->raid_disks && 2820 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2821 return -ENOSPC; 2822 rdev->raid_disk = slot; 2823 /* assume it is working */ 2824 clear_bit(Faulty, &rdev->flags); 2825 clear_bit(WriteMostly, &rdev->flags); 2826 set_bit(In_sync, &rdev->flags); 2827 sysfs_notify_dirent_safe(rdev->sysfs_state); 2828 } 2829 return len; 2830 } 2831 2832 2833 static struct rdev_sysfs_entry rdev_slot = 2834 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2835 2836 static ssize_t 2837 offset_show(struct md_rdev *rdev, char *page) 2838 { 2839 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2840 } 2841 2842 static ssize_t 2843 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2844 { 2845 unsigned long long offset; 2846 if (kstrtoull(buf, 10, &offset) < 0) 2847 return -EINVAL; 2848 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2849 return -EBUSY; 2850 if (rdev->sectors && rdev->mddev->external) 2851 /* Must set offset before size, so overlap checks 2852 * can be sane */ 2853 return -EBUSY; 2854 rdev->data_offset = offset; 2855 rdev->new_data_offset = offset; 2856 return len; 2857 } 2858 2859 static struct rdev_sysfs_entry rdev_offset = 2860 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2861 2862 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2863 { 2864 return sprintf(page, "%llu\n", 2865 (unsigned long long)rdev->new_data_offset); 2866 } 2867 2868 static ssize_t new_offset_store(struct md_rdev *rdev, 2869 const char *buf, size_t len) 2870 { 2871 unsigned long long new_offset; 2872 struct mddev *mddev = rdev->mddev; 2873 2874 if (kstrtoull(buf, 10, &new_offset) < 0) 2875 return -EINVAL; 2876 2877 if (mddev->sync_thread) 2878 return -EBUSY; 2879 if (new_offset == rdev->data_offset) 2880 /* reset is always permitted */ 2881 ; 2882 else if (new_offset > rdev->data_offset) { 2883 /* must not push array size beyond rdev_sectors */ 2884 if (new_offset - rdev->data_offset 2885 + mddev->dev_sectors > rdev->sectors) 2886 return -E2BIG; 2887 } 2888 /* Metadata worries about other space details. */ 2889 2890 /* decreasing the offset is inconsistent with a backwards 2891 * reshape. 2892 */ 2893 if (new_offset < rdev->data_offset && 2894 mddev->reshape_backwards) 2895 return -EINVAL; 2896 /* Increasing offset is inconsistent with forwards 2897 * reshape. reshape_direction should be set to 2898 * 'backwards' first. 2899 */ 2900 if (new_offset > rdev->data_offset && 2901 !mddev->reshape_backwards) 2902 return -EINVAL; 2903 2904 if (mddev->pers && mddev->persistent && 2905 !super_types[mddev->major_version] 2906 .allow_new_offset(rdev, new_offset)) 2907 return -E2BIG; 2908 rdev->new_data_offset = new_offset; 2909 if (new_offset > rdev->data_offset) 2910 mddev->reshape_backwards = 1; 2911 else if (new_offset < rdev->data_offset) 2912 mddev->reshape_backwards = 0; 2913 2914 return len; 2915 } 2916 static struct rdev_sysfs_entry rdev_new_offset = 2917 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2918 2919 static ssize_t 2920 rdev_size_show(struct md_rdev *rdev, char *page) 2921 { 2922 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2923 } 2924 2925 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2926 { 2927 /* check if two start/length pairs overlap */ 2928 if (s1+l1 <= s2) 2929 return 0; 2930 if (s2+l2 <= s1) 2931 return 0; 2932 return 1; 2933 } 2934 2935 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2936 { 2937 unsigned long long blocks; 2938 sector_t new; 2939 2940 if (kstrtoull(buf, 10, &blocks) < 0) 2941 return -EINVAL; 2942 2943 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2944 return -EINVAL; /* sector conversion overflow */ 2945 2946 new = blocks * 2; 2947 if (new != blocks * 2) 2948 return -EINVAL; /* unsigned long long to sector_t overflow */ 2949 2950 *sectors = new; 2951 return 0; 2952 } 2953 2954 static ssize_t 2955 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2956 { 2957 struct mddev *my_mddev = rdev->mddev; 2958 sector_t oldsectors = rdev->sectors; 2959 sector_t sectors; 2960 2961 if (strict_blocks_to_sectors(buf, §ors) < 0) 2962 return -EINVAL; 2963 if (rdev->data_offset != rdev->new_data_offset) 2964 return -EINVAL; /* too confusing */ 2965 if (my_mddev->pers && rdev->raid_disk >= 0) { 2966 if (my_mddev->persistent) { 2967 sectors = super_types[my_mddev->major_version]. 2968 rdev_size_change(rdev, sectors); 2969 if (!sectors) 2970 return -EBUSY; 2971 } else if (!sectors) 2972 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2973 rdev->data_offset; 2974 if (!my_mddev->pers->resize) 2975 /* Cannot change size for RAID0 or Linear etc */ 2976 return -EINVAL; 2977 } 2978 if (sectors < my_mddev->dev_sectors) 2979 return -EINVAL; /* component must fit device */ 2980 2981 rdev->sectors = sectors; 2982 if (sectors > oldsectors && my_mddev->external) { 2983 /* need to check that all other rdevs with the same ->bdev 2984 * do not overlap. We need to unlock the mddev to avoid 2985 * a deadlock. We have already changed rdev->sectors, and if 2986 * we have to change it back, we will have the lock again. 2987 */ 2988 struct mddev *mddev; 2989 int overlap = 0; 2990 struct list_head *tmp; 2991 2992 mddev_unlock(my_mddev); 2993 for_each_mddev(mddev, tmp) { 2994 struct md_rdev *rdev2; 2995 2996 mddev_lock_nointr(mddev); 2997 rdev_for_each(rdev2, mddev) 2998 if (rdev->bdev == rdev2->bdev && 2999 rdev != rdev2 && 3000 overlaps(rdev->data_offset, rdev->sectors, 3001 rdev2->data_offset, 3002 rdev2->sectors)) { 3003 overlap = 1; 3004 break; 3005 } 3006 mddev_unlock(mddev); 3007 if (overlap) { 3008 mddev_put(mddev); 3009 break; 3010 } 3011 } 3012 mddev_lock_nointr(my_mddev); 3013 if (overlap) { 3014 /* Someone else could have slipped in a size 3015 * change here, but doing so is just silly. 3016 * We put oldsectors back because we *know* it is 3017 * safe, and trust userspace not to race with 3018 * itself 3019 */ 3020 rdev->sectors = oldsectors; 3021 return -EBUSY; 3022 } 3023 } 3024 return len; 3025 } 3026 3027 static struct rdev_sysfs_entry rdev_size = 3028 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3029 3030 3031 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3032 { 3033 unsigned long long recovery_start = rdev->recovery_offset; 3034 3035 if (test_bit(In_sync, &rdev->flags) || 3036 recovery_start == MaxSector) 3037 return sprintf(page, "none\n"); 3038 3039 return sprintf(page, "%llu\n", recovery_start); 3040 } 3041 3042 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3043 { 3044 unsigned long long recovery_start; 3045 3046 if (cmd_match(buf, "none")) 3047 recovery_start = MaxSector; 3048 else if (kstrtoull(buf, 10, &recovery_start)) 3049 return -EINVAL; 3050 3051 if (rdev->mddev->pers && 3052 rdev->raid_disk >= 0) 3053 return -EBUSY; 3054 3055 rdev->recovery_offset = recovery_start; 3056 if (recovery_start == MaxSector) 3057 set_bit(In_sync, &rdev->flags); 3058 else 3059 clear_bit(In_sync, &rdev->flags); 3060 return len; 3061 } 3062 3063 static struct rdev_sysfs_entry rdev_recovery_start = 3064 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3065 3066 3067 static ssize_t 3068 badblocks_show(struct badblocks *bb, char *page, int unack); 3069 static ssize_t 3070 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3071 3072 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3073 { 3074 return badblocks_show(&rdev->badblocks, page, 0); 3075 } 3076 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3077 { 3078 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3079 /* Maybe that ack was all we needed */ 3080 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3081 wake_up(&rdev->blocked_wait); 3082 return rv; 3083 } 3084 static struct rdev_sysfs_entry rdev_bad_blocks = 3085 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3086 3087 3088 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3089 { 3090 return badblocks_show(&rdev->badblocks, page, 1); 3091 } 3092 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3093 { 3094 return badblocks_store(&rdev->badblocks, page, len, 1); 3095 } 3096 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3097 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3098 3099 static struct attribute *rdev_default_attrs[] = { 3100 &rdev_state.attr, 3101 &rdev_errors.attr, 3102 &rdev_slot.attr, 3103 &rdev_offset.attr, 3104 &rdev_new_offset.attr, 3105 &rdev_size.attr, 3106 &rdev_recovery_start.attr, 3107 &rdev_bad_blocks.attr, 3108 &rdev_unack_bad_blocks.attr, 3109 NULL, 3110 }; 3111 static ssize_t 3112 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3113 { 3114 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3115 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3116 struct mddev *mddev = rdev->mddev; 3117 ssize_t rv; 3118 3119 if (!entry->show) 3120 return -EIO; 3121 3122 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3123 if (!rv) { 3124 if (rdev->mddev == NULL) 3125 rv = -EBUSY; 3126 else 3127 rv = entry->show(rdev, page); 3128 mddev_unlock(mddev); 3129 } 3130 return rv; 3131 } 3132 3133 static ssize_t 3134 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3135 const char *page, size_t length) 3136 { 3137 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3138 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3139 ssize_t rv; 3140 struct mddev *mddev = rdev->mddev; 3141 3142 if (!entry->store) 3143 return -EIO; 3144 if (!capable(CAP_SYS_ADMIN)) 3145 return -EACCES; 3146 rv = mddev ? mddev_lock(mddev): -EBUSY; 3147 if (!rv) { 3148 if (rdev->mddev == NULL) 3149 rv = -EBUSY; 3150 else 3151 rv = entry->store(rdev, page, length); 3152 mddev_unlock(mddev); 3153 } 3154 return rv; 3155 } 3156 3157 static void rdev_free(struct kobject *ko) 3158 { 3159 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3160 kfree(rdev); 3161 } 3162 static const struct sysfs_ops rdev_sysfs_ops = { 3163 .show = rdev_attr_show, 3164 .store = rdev_attr_store, 3165 }; 3166 static struct kobj_type rdev_ktype = { 3167 .release = rdev_free, 3168 .sysfs_ops = &rdev_sysfs_ops, 3169 .default_attrs = rdev_default_attrs, 3170 }; 3171 3172 int md_rdev_init(struct md_rdev *rdev) 3173 { 3174 rdev->desc_nr = -1; 3175 rdev->saved_raid_disk = -1; 3176 rdev->raid_disk = -1; 3177 rdev->flags = 0; 3178 rdev->data_offset = 0; 3179 rdev->new_data_offset = 0; 3180 rdev->sb_events = 0; 3181 rdev->last_read_error.tv_sec = 0; 3182 rdev->last_read_error.tv_nsec = 0; 3183 rdev->sb_loaded = 0; 3184 rdev->bb_page = NULL; 3185 atomic_set(&rdev->nr_pending, 0); 3186 atomic_set(&rdev->read_errors, 0); 3187 atomic_set(&rdev->corrected_errors, 0); 3188 3189 INIT_LIST_HEAD(&rdev->same_set); 3190 init_waitqueue_head(&rdev->blocked_wait); 3191 3192 /* Add space to store bad block list. 3193 * This reserves the space even on arrays where it cannot 3194 * be used - I wonder if that matters 3195 */ 3196 rdev->badblocks.count = 0; 3197 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */ 3198 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3199 seqlock_init(&rdev->badblocks.lock); 3200 if (rdev->badblocks.page == NULL) 3201 return -ENOMEM; 3202 3203 return 0; 3204 } 3205 EXPORT_SYMBOL_GPL(md_rdev_init); 3206 /* 3207 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3208 * 3209 * mark the device faulty if: 3210 * 3211 * - the device is nonexistent (zero size) 3212 * - the device has no valid superblock 3213 * 3214 * a faulty rdev _never_ has rdev->sb set. 3215 */ 3216 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3217 { 3218 char b[BDEVNAME_SIZE]; 3219 int err; 3220 struct md_rdev *rdev; 3221 sector_t size; 3222 3223 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3224 if (!rdev) { 3225 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3226 return ERR_PTR(-ENOMEM); 3227 } 3228 3229 err = md_rdev_init(rdev); 3230 if (err) 3231 goto abort_free; 3232 err = alloc_disk_sb(rdev); 3233 if (err) 3234 goto abort_free; 3235 3236 err = lock_rdev(rdev, newdev, super_format == -2); 3237 if (err) 3238 goto abort_free; 3239 3240 kobject_init(&rdev->kobj, &rdev_ktype); 3241 3242 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3243 if (!size) { 3244 printk(KERN_WARNING 3245 "md: %s has zero or unknown size, marking faulty!\n", 3246 bdevname(rdev->bdev,b)); 3247 err = -EINVAL; 3248 goto abort_free; 3249 } 3250 3251 if (super_format >= 0) { 3252 err = super_types[super_format]. 3253 load_super(rdev, NULL, super_minor); 3254 if (err == -EINVAL) { 3255 printk(KERN_WARNING 3256 "md: %s does not have a valid v%d.%d " 3257 "superblock, not importing!\n", 3258 bdevname(rdev->bdev,b), 3259 super_format, super_minor); 3260 goto abort_free; 3261 } 3262 if (err < 0) { 3263 printk(KERN_WARNING 3264 "md: could not read %s's sb, not importing!\n", 3265 bdevname(rdev->bdev,b)); 3266 goto abort_free; 3267 } 3268 } 3269 3270 return rdev; 3271 3272 abort_free: 3273 if (rdev->bdev) 3274 unlock_rdev(rdev); 3275 md_rdev_clear(rdev); 3276 kfree(rdev); 3277 return ERR_PTR(err); 3278 } 3279 3280 /* 3281 * Check a full RAID array for plausibility 3282 */ 3283 3284 3285 static void analyze_sbs(struct mddev * mddev) 3286 { 3287 int i; 3288 struct md_rdev *rdev, *freshest, *tmp; 3289 char b[BDEVNAME_SIZE]; 3290 3291 freshest = NULL; 3292 rdev_for_each_safe(rdev, tmp, mddev) 3293 switch (super_types[mddev->major_version]. 3294 load_super(rdev, freshest, mddev->minor_version)) { 3295 case 1: 3296 freshest = rdev; 3297 break; 3298 case 0: 3299 break; 3300 default: 3301 printk( KERN_ERR \ 3302 "md: fatal superblock inconsistency in %s" 3303 " -- removing from array\n", 3304 bdevname(rdev->bdev,b)); 3305 kick_rdev_from_array(rdev); 3306 } 3307 3308 3309 super_types[mddev->major_version]. 3310 validate_super(mddev, freshest); 3311 3312 i = 0; 3313 rdev_for_each_safe(rdev, tmp, mddev) { 3314 if (mddev->max_disks && 3315 (rdev->desc_nr >= mddev->max_disks || 3316 i > mddev->max_disks)) { 3317 printk(KERN_WARNING 3318 "md: %s: %s: only %d devices permitted\n", 3319 mdname(mddev), bdevname(rdev->bdev, b), 3320 mddev->max_disks); 3321 kick_rdev_from_array(rdev); 3322 continue; 3323 } 3324 if (rdev != freshest) 3325 if (super_types[mddev->major_version]. 3326 validate_super(mddev, rdev)) { 3327 printk(KERN_WARNING "md: kicking non-fresh %s" 3328 " from array!\n", 3329 bdevname(rdev->bdev,b)); 3330 kick_rdev_from_array(rdev); 3331 continue; 3332 } 3333 if (mddev->level == LEVEL_MULTIPATH) { 3334 rdev->desc_nr = i++; 3335 rdev->raid_disk = rdev->desc_nr; 3336 set_bit(In_sync, &rdev->flags); 3337 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3338 rdev->raid_disk = -1; 3339 clear_bit(In_sync, &rdev->flags); 3340 } 3341 } 3342 } 3343 3344 /* Read a fixed-point number. 3345 * Numbers in sysfs attributes should be in "standard" units where 3346 * possible, so time should be in seconds. 3347 * However we internally use a a much smaller unit such as 3348 * milliseconds or jiffies. 3349 * This function takes a decimal number with a possible fractional 3350 * component, and produces an integer which is the result of 3351 * multiplying that number by 10^'scale'. 3352 * all without any floating-point arithmetic. 3353 */ 3354 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3355 { 3356 unsigned long result = 0; 3357 long decimals = -1; 3358 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3359 if (*cp == '.') 3360 decimals = 0; 3361 else if (decimals < scale) { 3362 unsigned int value; 3363 value = *cp - '0'; 3364 result = result * 10 + value; 3365 if (decimals >= 0) 3366 decimals++; 3367 } 3368 cp++; 3369 } 3370 if (*cp == '\n') 3371 cp++; 3372 if (*cp) 3373 return -EINVAL; 3374 if (decimals < 0) 3375 decimals = 0; 3376 while (decimals < scale) { 3377 result *= 10; 3378 decimals ++; 3379 } 3380 *res = result; 3381 return 0; 3382 } 3383 3384 3385 static void md_safemode_timeout(unsigned long data); 3386 3387 static ssize_t 3388 safe_delay_show(struct mddev *mddev, char *page) 3389 { 3390 int msec = (mddev->safemode_delay*1000)/HZ; 3391 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3392 } 3393 static ssize_t 3394 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3395 { 3396 unsigned long msec; 3397 3398 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3399 return -EINVAL; 3400 if (msec == 0) 3401 mddev->safemode_delay = 0; 3402 else { 3403 unsigned long old_delay = mddev->safemode_delay; 3404 mddev->safemode_delay = (msec*HZ)/1000; 3405 if (mddev->safemode_delay == 0) 3406 mddev->safemode_delay = 1; 3407 if (mddev->safemode_delay < old_delay || old_delay == 0) 3408 md_safemode_timeout((unsigned long)mddev); 3409 } 3410 return len; 3411 } 3412 static struct md_sysfs_entry md_safe_delay = 3413 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3414 3415 static ssize_t 3416 level_show(struct mddev *mddev, char *page) 3417 { 3418 struct md_personality *p = mddev->pers; 3419 if (p) 3420 return sprintf(page, "%s\n", p->name); 3421 else if (mddev->clevel[0]) 3422 return sprintf(page, "%s\n", mddev->clevel); 3423 else if (mddev->level != LEVEL_NONE) 3424 return sprintf(page, "%d\n", mddev->level); 3425 else 3426 return 0; 3427 } 3428 3429 static ssize_t 3430 level_store(struct mddev *mddev, const char *buf, size_t len) 3431 { 3432 char clevel[16]; 3433 ssize_t rv = len; 3434 struct md_personality *pers; 3435 long level; 3436 void *priv; 3437 struct md_rdev *rdev; 3438 3439 if (mddev->pers == NULL) { 3440 if (len == 0) 3441 return 0; 3442 if (len >= sizeof(mddev->clevel)) 3443 return -ENOSPC; 3444 strncpy(mddev->clevel, buf, len); 3445 if (mddev->clevel[len-1] == '\n') 3446 len--; 3447 mddev->clevel[len] = 0; 3448 mddev->level = LEVEL_NONE; 3449 return rv; 3450 } 3451 3452 /* request to change the personality. Need to ensure: 3453 * - array is not engaged in resync/recovery/reshape 3454 * - old personality can be suspended 3455 * - new personality will access other array. 3456 */ 3457 3458 if (mddev->sync_thread || 3459 mddev->reshape_position != MaxSector || 3460 mddev->sysfs_active) 3461 return -EBUSY; 3462 3463 if (!mddev->pers->quiesce) { 3464 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3465 mdname(mddev), mddev->pers->name); 3466 return -EINVAL; 3467 } 3468 3469 /* Now find the new personality */ 3470 if (len == 0 || len >= sizeof(clevel)) 3471 return -EINVAL; 3472 strncpy(clevel, buf, len); 3473 if (clevel[len-1] == '\n') 3474 len--; 3475 clevel[len] = 0; 3476 if (kstrtol(clevel, 10, &level)) 3477 level = LEVEL_NONE; 3478 3479 if (request_module("md-%s", clevel) != 0) 3480 request_module("md-level-%s", clevel); 3481 spin_lock(&pers_lock); 3482 pers = find_pers(level, clevel); 3483 if (!pers || !try_module_get(pers->owner)) { 3484 spin_unlock(&pers_lock); 3485 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3486 return -EINVAL; 3487 } 3488 spin_unlock(&pers_lock); 3489 3490 if (pers == mddev->pers) { 3491 /* Nothing to do! */ 3492 module_put(pers->owner); 3493 return rv; 3494 } 3495 if (!pers->takeover) { 3496 module_put(pers->owner); 3497 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3498 mdname(mddev), clevel); 3499 return -EINVAL; 3500 } 3501 3502 rdev_for_each(rdev, mddev) 3503 rdev->new_raid_disk = rdev->raid_disk; 3504 3505 /* ->takeover must set new_* and/or delta_disks 3506 * if it succeeds, and may set them when it fails. 3507 */ 3508 priv = pers->takeover(mddev); 3509 if (IS_ERR(priv)) { 3510 mddev->new_level = mddev->level; 3511 mddev->new_layout = mddev->layout; 3512 mddev->new_chunk_sectors = mddev->chunk_sectors; 3513 mddev->raid_disks -= mddev->delta_disks; 3514 mddev->delta_disks = 0; 3515 mddev->reshape_backwards = 0; 3516 module_put(pers->owner); 3517 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3518 mdname(mddev), clevel); 3519 return PTR_ERR(priv); 3520 } 3521 3522 /* Looks like we have a winner */ 3523 mddev_suspend(mddev); 3524 mddev->pers->stop(mddev); 3525 3526 if (mddev->pers->sync_request == NULL && 3527 pers->sync_request != NULL) { 3528 /* need to add the md_redundancy_group */ 3529 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3530 printk(KERN_WARNING 3531 "md: cannot register extra attributes for %s\n", 3532 mdname(mddev)); 3533 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3534 } 3535 if (mddev->pers->sync_request != NULL && 3536 pers->sync_request == NULL) { 3537 /* need to remove the md_redundancy_group */ 3538 if (mddev->to_remove == NULL) 3539 mddev->to_remove = &md_redundancy_group; 3540 } 3541 3542 if (mddev->pers->sync_request == NULL && 3543 mddev->external) { 3544 /* We are converting from a no-redundancy array 3545 * to a redundancy array and metadata is managed 3546 * externally so we need to be sure that writes 3547 * won't block due to a need to transition 3548 * clean->dirty 3549 * until external management is started. 3550 */ 3551 mddev->in_sync = 0; 3552 mddev->safemode_delay = 0; 3553 mddev->safemode = 0; 3554 } 3555 3556 rdev_for_each(rdev, mddev) { 3557 if (rdev->raid_disk < 0) 3558 continue; 3559 if (rdev->new_raid_disk >= mddev->raid_disks) 3560 rdev->new_raid_disk = -1; 3561 if (rdev->new_raid_disk == rdev->raid_disk) 3562 continue; 3563 sysfs_unlink_rdev(mddev, rdev); 3564 } 3565 rdev_for_each(rdev, mddev) { 3566 if (rdev->raid_disk < 0) 3567 continue; 3568 if (rdev->new_raid_disk == rdev->raid_disk) 3569 continue; 3570 rdev->raid_disk = rdev->new_raid_disk; 3571 if (rdev->raid_disk < 0) 3572 clear_bit(In_sync, &rdev->flags); 3573 else { 3574 if (sysfs_link_rdev(mddev, rdev)) 3575 printk(KERN_WARNING "md: cannot register rd%d" 3576 " for %s after level change\n", 3577 rdev->raid_disk, mdname(mddev)); 3578 } 3579 } 3580 3581 module_put(mddev->pers->owner); 3582 mddev->pers = pers; 3583 mddev->private = priv; 3584 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3585 mddev->level = mddev->new_level; 3586 mddev->layout = mddev->new_layout; 3587 mddev->chunk_sectors = mddev->new_chunk_sectors; 3588 mddev->delta_disks = 0; 3589 mddev->reshape_backwards = 0; 3590 mddev->degraded = 0; 3591 if (mddev->pers->sync_request == NULL) { 3592 /* this is now an array without redundancy, so 3593 * it must always be in_sync 3594 */ 3595 mddev->in_sync = 1; 3596 del_timer_sync(&mddev->safemode_timer); 3597 } 3598 blk_set_stacking_limits(&mddev->queue->limits); 3599 pers->run(mddev); 3600 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3601 mddev_resume(mddev); 3602 if (!mddev->thread) 3603 md_update_sb(mddev, 1); 3604 sysfs_notify(&mddev->kobj, NULL, "level"); 3605 md_new_event(mddev); 3606 return rv; 3607 } 3608 3609 static struct md_sysfs_entry md_level = 3610 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3611 3612 3613 static ssize_t 3614 layout_show(struct mddev *mddev, char *page) 3615 { 3616 /* just a number, not meaningful for all levels */ 3617 if (mddev->reshape_position != MaxSector && 3618 mddev->layout != mddev->new_layout) 3619 return sprintf(page, "%d (%d)\n", 3620 mddev->new_layout, mddev->layout); 3621 return sprintf(page, "%d\n", mddev->layout); 3622 } 3623 3624 static ssize_t 3625 layout_store(struct mddev *mddev, const char *buf, size_t len) 3626 { 3627 char *e; 3628 unsigned long n = simple_strtoul(buf, &e, 10); 3629 3630 if (!*buf || (*e && *e != '\n')) 3631 return -EINVAL; 3632 3633 if (mddev->pers) { 3634 int err; 3635 if (mddev->pers->check_reshape == NULL) 3636 return -EBUSY; 3637 mddev->new_layout = n; 3638 err = mddev->pers->check_reshape(mddev); 3639 if (err) { 3640 mddev->new_layout = mddev->layout; 3641 return err; 3642 } 3643 } else { 3644 mddev->new_layout = n; 3645 if (mddev->reshape_position == MaxSector) 3646 mddev->layout = n; 3647 } 3648 return len; 3649 } 3650 static struct md_sysfs_entry md_layout = 3651 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3652 3653 3654 static ssize_t 3655 raid_disks_show(struct mddev *mddev, char *page) 3656 { 3657 if (mddev->raid_disks == 0) 3658 return 0; 3659 if (mddev->reshape_position != MaxSector && 3660 mddev->delta_disks != 0) 3661 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3662 mddev->raid_disks - mddev->delta_disks); 3663 return sprintf(page, "%d\n", mddev->raid_disks); 3664 } 3665 3666 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3667 3668 static ssize_t 3669 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3670 { 3671 char *e; 3672 int rv = 0; 3673 unsigned long n = simple_strtoul(buf, &e, 10); 3674 3675 if (!*buf || (*e && *e != '\n')) 3676 return -EINVAL; 3677 3678 if (mddev->pers) 3679 rv = update_raid_disks(mddev, n); 3680 else if (mddev->reshape_position != MaxSector) { 3681 struct md_rdev *rdev; 3682 int olddisks = mddev->raid_disks - mddev->delta_disks; 3683 3684 rdev_for_each(rdev, mddev) { 3685 if (olddisks < n && 3686 rdev->data_offset < rdev->new_data_offset) 3687 return -EINVAL; 3688 if (olddisks > n && 3689 rdev->data_offset > rdev->new_data_offset) 3690 return -EINVAL; 3691 } 3692 mddev->delta_disks = n - olddisks; 3693 mddev->raid_disks = n; 3694 mddev->reshape_backwards = (mddev->delta_disks < 0); 3695 } else 3696 mddev->raid_disks = n; 3697 return rv ? rv : len; 3698 } 3699 static struct md_sysfs_entry md_raid_disks = 3700 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3701 3702 static ssize_t 3703 chunk_size_show(struct mddev *mddev, char *page) 3704 { 3705 if (mddev->reshape_position != MaxSector && 3706 mddev->chunk_sectors != mddev->new_chunk_sectors) 3707 return sprintf(page, "%d (%d)\n", 3708 mddev->new_chunk_sectors << 9, 3709 mddev->chunk_sectors << 9); 3710 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3711 } 3712 3713 static ssize_t 3714 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3715 { 3716 char *e; 3717 unsigned long n = simple_strtoul(buf, &e, 10); 3718 3719 if (!*buf || (*e && *e != '\n')) 3720 return -EINVAL; 3721 3722 if (mddev->pers) { 3723 int err; 3724 if (mddev->pers->check_reshape == NULL) 3725 return -EBUSY; 3726 mddev->new_chunk_sectors = n >> 9; 3727 err = mddev->pers->check_reshape(mddev); 3728 if (err) { 3729 mddev->new_chunk_sectors = mddev->chunk_sectors; 3730 return err; 3731 } 3732 } else { 3733 mddev->new_chunk_sectors = n >> 9; 3734 if (mddev->reshape_position == MaxSector) 3735 mddev->chunk_sectors = n >> 9; 3736 } 3737 return len; 3738 } 3739 static struct md_sysfs_entry md_chunk_size = 3740 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3741 3742 static ssize_t 3743 resync_start_show(struct mddev *mddev, char *page) 3744 { 3745 if (mddev->recovery_cp == MaxSector) 3746 return sprintf(page, "none\n"); 3747 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3748 } 3749 3750 static ssize_t 3751 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3752 { 3753 char *e; 3754 unsigned long long n = simple_strtoull(buf, &e, 10); 3755 3756 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3757 return -EBUSY; 3758 if (cmd_match(buf, "none")) 3759 n = MaxSector; 3760 else if (!*buf || (*e && *e != '\n')) 3761 return -EINVAL; 3762 3763 mddev->recovery_cp = n; 3764 if (mddev->pers) 3765 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3766 return len; 3767 } 3768 static struct md_sysfs_entry md_resync_start = 3769 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3770 3771 /* 3772 * The array state can be: 3773 * 3774 * clear 3775 * No devices, no size, no level 3776 * Equivalent to STOP_ARRAY ioctl 3777 * inactive 3778 * May have some settings, but array is not active 3779 * all IO results in error 3780 * When written, doesn't tear down array, but just stops it 3781 * suspended (not supported yet) 3782 * All IO requests will block. The array can be reconfigured. 3783 * Writing this, if accepted, will block until array is quiescent 3784 * readonly 3785 * no resync can happen. no superblocks get written. 3786 * write requests fail 3787 * read-auto 3788 * like readonly, but behaves like 'clean' on a write request. 3789 * 3790 * clean - no pending writes, but otherwise active. 3791 * When written to inactive array, starts without resync 3792 * If a write request arrives then 3793 * if metadata is known, mark 'dirty' and switch to 'active'. 3794 * if not known, block and switch to write-pending 3795 * If written to an active array that has pending writes, then fails. 3796 * active 3797 * fully active: IO and resync can be happening. 3798 * When written to inactive array, starts with resync 3799 * 3800 * write-pending 3801 * clean, but writes are blocked waiting for 'active' to be written. 3802 * 3803 * active-idle 3804 * like active, but no writes have been seen for a while (100msec). 3805 * 3806 */ 3807 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3808 write_pending, active_idle, bad_word}; 3809 static char *array_states[] = { 3810 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3811 "write-pending", "active-idle", NULL }; 3812 3813 static int match_word(const char *word, char **list) 3814 { 3815 int n; 3816 for (n=0; list[n]; n++) 3817 if (cmd_match(word, list[n])) 3818 break; 3819 return n; 3820 } 3821 3822 static ssize_t 3823 array_state_show(struct mddev *mddev, char *page) 3824 { 3825 enum array_state st = inactive; 3826 3827 if (mddev->pers) 3828 switch(mddev->ro) { 3829 case 1: 3830 st = readonly; 3831 break; 3832 case 2: 3833 st = read_auto; 3834 break; 3835 case 0: 3836 if (mddev->in_sync) 3837 st = clean; 3838 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3839 st = write_pending; 3840 else if (mddev->safemode) 3841 st = active_idle; 3842 else 3843 st = active; 3844 } 3845 else { 3846 if (list_empty(&mddev->disks) && 3847 mddev->raid_disks == 0 && 3848 mddev->dev_sectors == 0) 3849 st = clear; 3850 else 3851 st = inactive; 3852 } 3853 return sprintf(page, "%s\n", array_states[st]); 3854 } 3855 3856 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3857 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3858 static int do_md_run(struct mddev * mddev); 3859 static int restart_array(struct mddev *mddev); 3860 3861 static ssize_t 3862 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3863 { 3864 int err = -EINVAL; 3865 enum array_state st = match_word(buf, array_states); 3866 switch(st) { 3867 case bad_word: 3868 break; 3869 case clear: 3870 /* stopping an active array */ 3871 err = do_md_stop(mddev, 0, NULL); 3872 break; 3873 case inactive: 3874 /* stopping an active array */ 3875 if (mddev->pers) 3876 err = do_md_stop(mddev, 2, NULL); 3877 else 3878 err = 0; /* already inactive */ 3879 break; 3880 case suspended: 3881 break; /* not supported yet */ 3882 case readonly: 3883 if (mddev->pers) 3884 err = md_set_readonly(mddev, NULL); 3885 else { 3886 mddev->ro = 1; 3887 set_disk_ro(mddev->gendisk, 1); 3888 err = do_md_run(mddev); 3889 } 3890 break; 3891 case read_auto: 3892 if (mddev->pers) { 3893 if (mddev->ro == 0) 3894 err = md_set_readonly(mddev, NULL); 3895 else if (mddev->ro == 1) 3896 err = restart_array(mddev); 3897 if (err == 0) { 3898 mddev->ro = 2; 3899 set_disk_ro(mddev->gendisk, 0); 3900 } 3901 } else { 3902 mddev->ro = 2; 3903 err = do_md_run(mddev); 3904 } 3905 break; 3906 case clean: 3907 if (mddev->pers) { 3908 restart_array(mddev); 3909 spin_lock_irq(&mddev->write_lock); 3910 if (atomic_read(&mddev->writes_pending) == 0) { 3911 if (mddev->in_sync == 0) { 3912 mddev->in_sync = 1; 3913 if (mddev->safemode == 1) 3914 mddev->safemode = 0; 3915 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3916 } 3917 err = 0; 3918 } else 3919 err = -EBUSY; 3920 spin_unlock_irq(&mddev->write_lock); 3921 } else 3922 err = -EINVAL; 3923 break; 3924 case active: 3925 if (mddev->pers) { 3926 restart_array(mddev); 3927 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3928 wake_up(&mddev->sb_wait); 3929 err = 0; 3930 } else { 3931 mddev->ro = 0; 3932 set_disk_ro(mddev->gendisk, 0); 3933 err = do_md_run(mddev); 3934 } 3935 break; 3936 case write_pending: 3937 case active_idle: 3938 /* these cannot be set */ 3939 break; 3940 } 3941 if (err) 3942 return err; 3943 else { 3944 if (mddev->hold_active == UNTIL_IOCTL) 3945 mddev->hold_active = 0; 3946 sysfs_notify_dirent_safe(mddev->sysfs_state); 3947 return len; 3948 } 3949 } 3950 static struct md_sysfs_entry md_array_state = 3951 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3952 3953 static ssize_t 3954 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3955 return sprintf(page, "%d\n", 3956 atomic_read(&mddev->max_corr_read_errors)); 3957 } 3958 3959 static ssize_t 3960 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3961 { 3962 char *e; 3963 unsigned long n = simple_strtoul(buf, &e, 10); 3964 3965 if (*buf && (*e == 0 || *e == '\n')) { 3966 atomic_set(&mddev->max_corr_read_errors, n); 3967 return len; 3968 } 3969 return -EINVAL; 3970 } 3971 3972 static struct md_sysfs_entry max_corr_read_errors = 3973 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3974 max_corrected_read_errors_store); 3975 3976 static ssize_t 3977 null_show(struct mddev *mddev, char *page) 3978 { 3979 return -EINVAL; 3980 } 3981 3982 static ssize_t 3983 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 3984 { 3985 /* buf must be %d:%d\n? giving major and minor numbers */ 3986 /* The new device is added to the array. 3987 * If the array has a persistent superblock, we read the 3988 * superblock to initialise info and check validity. 3989 * Otherwise, only checking done is that in bind_rdev_to_array, 3990 * which mainly checks size. 3991 */ 3992 char *e; 3993 int major = simple_strtoul(buf, &e, 10); 3994 int minor; 3995 dev_t dev; 3996 struct md_rdev *rdev; 3997 int err; 3998 3999 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4000 return -EINVAL; 4001 minor = simple_strtoul(e+1, &e, 10); 4002 if (*e && *e != '\n') 4003 return -EINVAL; 4004 dev = MKDEV(major, minor); 4005 if (major != MAJOR(dev) || 4006 minor != MINOR(dev)) 4007 return -EOVERFLOW; 4008 4009 4010 if (mddev->persistent) { 4011 rdev = md_import_device(dev, mddev->major_version, 4012 mddev->minor_version); 4013 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4014 struct md_rdev *rdev0 4015 = list_entry(mddev->disks.next, 4016 struct md_rdev, same_set); 4017 err = super_types[mddev->major_version] 4018 .load_super(rdev, rdev0, mddev->minor_version); 4019 if (err < 0) 4020 goto out; 4021 } 4022 } else if (mddev->external) 4023 rdev = md_import_device(dev, -2, -1); 4024 else 4025 rdev = md_import_device(dev, -1, -1); 4026 4027 if (IS_ERR(rdev)) 4028 return PTR_ERR(rdev); 4029 err = bind_rdev_to_array(rdev, mddev); 4030 out: 4031 if (err) 4032 export_rdev(rdev); 4033 return err ? err : len; 4034 } 4035 4036 static struct md_sysfs_entry md_new_device = 4037 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4038 4039 static ssize_t 4040 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4041 { 4042 char *end; 4043 unsigned long chunk, end_chunk; 4044 4045 if (!mddev->bitmap) 4046 goto out; 4047 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4048 while (*buf) { 4049 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4050 if (buf == end) break; 4051 if (*end == '-') { /* range */ 4052 buf = end + 1; 4053 end_chunk = simple_strtoul(buf, &end, 0); 4054 if (buf == end) break; 4055 } 4056 if (*end && !isspace(*end)) break; 4057 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4058 buf = skip_spaces(end); 4059 } 4060 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4061 out: 4062 return len; 4063 } 4064 4065 static struct md_sysfs_entry md_bitmap = 4066 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4067 4068 static ssize_t 4069 size_show(struct mddev *mddev, char *page) 4070 { 4071 return sprintf(page, "%llu\n", 4072 (unsigned long long)mddev->dev_sectors / 2); 4073 } 4074 4075 static int update_size(struct mddev *mddev, sector_t num_sectors); 4076 4077 static ssize_t 4078 size_store(struct mddev *mddev, const char *buf, size_t len) 4079 { 4080 /* If array is inactive, we can reduce the component size, but 4081 * not increase it (except from 0). 4082 * If array is active, we can try an on-line resize 4083 */ 4084 sector_t sectors; 4085 int err = strict_blocks_to_sectors(buf, §ors); 4086 4087 if (err < 0) 4088 return err; 4089 if (mddev->pers) { 4090 err = update_size(mddev, sectors); 4091 md_update_sb(mddev, 1); 4092 } else { 4093 if (mddev->dev_sectors == 0 || 4094 mddev->dev_sectors > sectors) 4095 mddev->dev_sectors = sectors; 4096 else 4097 err = -ENOSPC; 4098 } 4099 return err ? err : len; 4100 } 4101 4102 static struct md_sysfs_entry md_size = 4103 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4104 4105 4106 /* Metadata version. 4107 * This is one of 4108 * 'none' for arrays with no metadata (good luck...) 4109 * 'external' for arrays with externally managed metadata, 4110 * or N.M for internally known formats 4111 */ 4112 static ssize_t 4113 metadata_show(struct mddev *mddev, char *page) 4114 { 4115 if (mddev->persistent) 4116 return sprintf(page, "%d.%d\n", 4117 mddev->major_version, mddev->minor_version); 4118 else if (mddev->external) 4119 return sprintf(page, "external:%s\n", mddev->metadata_type); 4120 else 4121 return sprintf(page, "none\n"); 4122 } 4123 4124 static ssize_t 4125 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4126 { 4127 int major, minor; 4128 char *e; 4129 /* Changing the details of 'external' metadata is 4130 * always permitted. Otherwise there must be 4131 * no devices attached to the array. 4132 */ 4133 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4134 ; 4135 else if (!list_empty(&mddev->disks)) 4136 return -EBUSY; 4137 4138 if (cmd_match(buf, "none")) { 4139 mddev->persistent = 0; 4140 mddev->external = 0; 4141 mddev->major_version = 0; 4142 mddev->minor_version = 90; 4143 return len; 4144 } 4145 if (strncmp(buf, "external:", 9) == 0) { 4146 size_t namelen = len-9; 4147 if (namelen >= sizeof(mddev->metadata_type)) 4148 namelen = sizeof(mddev->metadata_type)-1; 4149 strncpy(mddev->metadata_type, buf+9, namelen); 4150 mddev->metadata_type[namelen] = 0; 4151 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4152 mddev->metadata_type[--namelen] = 0; 4153 mddev->persistent = 0; 4154 mddev->external = 1; 4155 mddev->major_version = 0; 4156 mddev->minor_version = 90; 4157 return len; 4158 } 4159 major = simple_strtoul(buf, &e, 10); 4160 if (e==buf || *e != '.') 4161 return -EINVAL; 4162 buf = e+1; 4163 minor = simple_strtoul(buf, &e, 10); 4164 if (e==buf || (*e && *e != '\n') ) 4165 return -EINVAL; 4166 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4167 return -ENOENT; 4168 mddev->major_version = major; 4169 mddev->minor_version = minor; 4170 mddev->persistent = 1; 4171 mddev->external = 0; 4172 return len; 4173 } 4174 4175 static struct md_sysfs_entry md_metadata = 4176 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4177 4178 static ssize_t 4179 action_show(struct mddev *mddev, char *page) 4180 { 4181 char *type = "idle"; 4182 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4183 type = "frozen"; 4184 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4185 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4186 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4187 type = "reshape"; 4188 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4189 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4190 type = "resync"; 4191 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4192 type = "check"; 4193 else 4194 type = "repair"; 4195 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4196 type = "recover"; 4197 } 4198 return sprintf(page, "%s\n", type); 4199 } 4200 4201 static ssize_t 4202 action_store(struct mddev *mddev, const char *page, size_t len) 4203 { 4204 if (!mddev->pers || !mddev->pers->sync_request) 4205 return -EINVAL; 4206 4207 if (cmd_match(page, "frozen")) 4208 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4209 else 4210 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4211 4212 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4213 if (mddev->sync_thread) { 4214 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4215 md_reap_sync_thread(mddev); 4216 } 4217 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4218 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4219 return -EBUSY; 4220 else if (cmd_match(page, "resync")) 4221 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4222 else if (cmd_match(page, "recover")) { 4223 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4224 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4225 } else if (cmd_match(page, "reshape")) { 4226 int err; 4227 if (mddev->pers->start_reshape == NULL) 4228 return -EINVAL; 4229 err = mddev->pers->start_reshape(mddev); 4230 if (err) 4231 return err; 4232 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4233 } else { 4234 if (cmd_match(page, "check")) 4235 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4236 else if (!cmd_match(page, "repair")) 4237 return -EINVAL; 4238 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4239 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4240 } 4241 if (mddev->ro == 2) { 4242 /* A write to sync_action is enough to justify 4243 * canceling read-auto mode 4244 */ 4245 mddev->ro = 0; 4246 md_wakeup_thread(mddev->sync_thread); 4247 } 4248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4249 md_wakeup_thread(mddev->thread); 4250 sysfs_notify_dirent_safe(mddev->sysfs_action); 4251 return len; 4252 } 4253 4254 static struct md_sysfs_entry md_scan_mode = 4255 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4256 4257 static ssize_t 4258 last_sync_action_show(struct mddev *mddev, char *page) 4259 { 4260 return sprintf(page, "%s\n", mddev->last_sync_action); 4261 } 4262 4263 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4264 4265 static ssize_t 4266 mismatch_cnt_show(struct mddev *mddev, char *page) 4267 { 4268 return sprintf(page, "%llu\n", 4269 (unsigned long long) 4270 atomic64_read(&mddev->resync_mismatches)); 4271 } 4272 4273 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4274 4275 static ssize_t 4276 sync_min_show(struct mddev *mddev, char *page) 4277 { 4278 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4279 mddev->sync_speed_min ? "local": "system"); 4280 } 4281 4282 static ssize_t 4283 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4284 { 4285 int min; 4286 char *e; 4287 if (strncmp(buf, "system", 6)==0) { 4288 mddev->sync_speed_min = 0; 4289 return len; 4290 } 4291 min = simple_strtoul(buf, &e, 10); 4292 if (buf == e || (*e && *e != '\n') || min <= 0) 4293 return -EINVAL; 4294 mddev->sync_speed_min = min; 4295 return len; 4296 } 4297 4298 static struct md_sysfs_entry md_sync_min = 4299 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4300 4301 static ssize_t 4302 sync_max_show(struct mddev *mddev, char *page) 4303 { 4304 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4305 mddev->sync_speed_max ? "local": "system"); 4306 } 4307 4308 static ssize_t 4309 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4310 { 4311 int max; 4312 char *e; 4313 if (strncmp(buf, "system", 6)==0) { 4314 mddev->sync_speed_max = 0; 4315 return len; 4316 } 4317 max = simple_strtoul(buf, &e, 10); 4318 if (buf == e || (*e && *e != '\n') || max <= 0) 4319 return -EINVAL; 4320 mddev->sync_speed_max = max; 4321 return len; 4322 } 4323 4324 static struct md_sysfs_entry md_sync_max = 4325 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4326 4327 static ssize_t 4328 degraded_show(struct mddev *mddev, char *page) 4329 { 4330 return sprintf(page, "%d\n", mddev->degraded); 4331 } 4332 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4333 4334 static ssize_t 4335 sync_force_parallel_show(struct mddev *mddev, char *page) 4336 { 4337 return sprintf(page, "%d\n", mddev->parallel_resync); 4338 } 4339 4340 static ssize_t 4341 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4342 { 4343 long n; 4344 4345 if (kstrtol(buf, 10, &n)) 4346 return -EINVAL; 4347 4348 if (n != 0 && n != 1) 4349 return -EINVAL; 4350 4351 mddev->parallel_resync = n; 4352 4353 if (mddev->sync_thread) 4354 wake_up(&resync_wait); 4355 4356 return len; 4357 } 4358 4359 /* force parallel resync, even with shared block devices */ 4360 static struct md_sysfs_entry md_sync_force_parallel = 4361 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4362 sync_force_parallel_show, sync_force_parallel_store); 4363 4364 static ssize_t 4365 sync_speed_show(struct mddev *mddev, char *page) 4366 { 4367 unsigned long resync, dt, db; 4368 if (mddev->curr_resync == 0) 4369 return sprintf(page, "none\n"); 4370 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4371 dt = (jiffies - mddev->resync_mark) / HZ; 4372 if (!dt) dt++; 4373 db = resync - mddev->resync_mark_cnt; 4374 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4375 } 4376 4377 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4378 4379 static ssize_t 4380 sync_completed_show(struct mddev *mddev, char *page) 4381 { 4382 unsigned long long max_sectors, resync; 4383 4384 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4385 return sprintf(page, "none\n"); 4386 4387 if (mddev->curr_resync == 1 || 4388 mddev->curr_resync == 2) 4389 return sprintf(page, "delayed\n"); 4390 4391 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4392 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4393 max_sectors = mddev->resync_max_sectors; 4394 else 4395 max_sectors = mddev->dev_sectors; 4396 4397 resync = mddev->curr_resync_completed; 4398 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4399 } 4400 4401 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4402 4403 static ssize_t 4404 min_sync_show(struct mddev *mddev, char *page) 4405 { 4406 return sprintf(page, "%llu\n", 4407 (unsigned long long)mddev->resync_min); 4408 } 4409 static ssize_t 4410 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4411 { 4412 unsigned long long min; 4413 if (kstrtoull(buf, 10, &min)) 4414 return -EINVAL; 4415 if (min > mddev->resync_max) 4416 return -EINVAL; 4417 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4418 return -EBUSY; 4419 4420 /* Must be a multiple of chunk_size */ 4421 if (mddev->chunk_sectors) { 4422 sector_t temp = min; 4423 if (sector_div(temp, mddev->chunk_sectors)) 4424 return -EINVAL; 4425 } 4426 mddev->resync_min = min; 4427 4428 return len; 4429 } 4430 4431 static struct md_sysfs_entry md_min_sync = 4432 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4433 4434 static ssize_t 4435 max_sync_show(struct mddev *mddev, char *page) 4436 { 4437 if (mddev->resync_max == MaxSector) 4438 return sprintf(page, "max\n"); 4439 else 4440 return sprintf(page, "%llu\n", 4441 (unsigned long long)mddev->resync_max); 4442 } 4443 static ssize_t 4444 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4445 { 4446 if (strncmp(buf, "max", 3) == 0) 4447 mddev->resync_max = MaxSector; 4448 else { 4449 unsigned long long max; 4450 if (kstrtoull(buf, 10, &max)) 4451 return -EINVAL; 4452 if (max < mddev->resync_min) 4453 return -EINVAL; 4454 if (max < mddev->resync_max && 4455 mddev->ro == 0 && 4456 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4457 return -EBUSY; 4458 4459 /* Must be a multiple of chunk_size */ 4460 if (mddev->chunk_sectors) { 4461 sector_t temp = max; 4462 if (sector_div(temp, mddev->chunk_sectors)) 4463 return -EINVAL; 4464 } 4465 mddev->resync_max = max; 4466 } 4467 wake_up(&mddev->recovery_wait); 4468 return len; 4469 } 4470 4471 static struct md_sysfs_entry md_max_sync = 4472 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4473 4474 static ssize_t 4475 suspend_lo_show(struct mddev *mddev, char *page) 4476 { 4477 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4478 } 4479 4480 static ssize_t 4481 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4482 { 4483 char *e; 4484 unsigned long long new = simple_strtoull(buf, &e, 10); 4485 unsigned long long old = mddev->suspend_lo; 4486 4487 if (mddev->pers == NULL || 4488 mddev->pers->quiesce == NULL) 4489 return -EINVAL; 4490 if (buf == e || (*e && *e != '\n')) 4491 return -EINVAL; 4492 4493 mddev->suspend_lo = new; 4494 if (new >= old) 4495 /* Shrinking suspended region */ 4496 mddev->pers->quiesce(mddev, 2); 4497 else { 4498 /* Expanding suspended region - need to wait */ 4499 mddev->pers->quiesce(mddev, 1); 4500 mddev->pers->quiesce(mddev, 0); 4501 } 4502 return len; 4503 } 4504 static struct md_sysfs_entry md_suspend_lo = 4505 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4506 4507 4508 static ssize_t 4509 suspend_hi_show(struct mddev *mddev, char *page) 4510 { 4511 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4512 } 4513 4514 static ssize_t 4515 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4516 { 4517 char *e; 4518 unsigned long long new = simple_strtoull(buf, &e, 10); 4519 unsigned long long old = mddev->suspend_hi; 4520 4521 if (mddev->pers == NULL || 4522 mddev->pers->quiesce == NULL) 4523 return -EINVAL; 4524 if (buf == e || (*e && *e != '\n')) 4525 return -EINVAL; 4526 4527 mddev->suspend_hi = new; 4528 if (new <= old) 4529 /* Shrinking suspended region */ 4530 mddev->pers->quiesce(mddev, 2); 4531 else { 4532 /* Expanding suspended region - need to wait */ 4533 mddev->pers->quiesce(mddev, 1); 4534 mddev->pers->quiesce(mddev, 0); 4535 } 4536 return len; 4537 } 4538 static struct md_sysfs_entry md_suspend_hi = 4539 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4540 4541 static ssize_t 4542 reshape_position_show(struct mddev *mddev, char *page) 4543 { 4544 if (mddev->reshape_position != MaxSector) 4545 return sprintf(page, "%llu\n", 4546 (unsigned long long)mddev->reshape_position); 4547 strcpy(page, "none\n"); 4548 return 5; 4549 } 4550 4551 static ssize_t 4552 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4553 { 4554 struct md_rdev *rdev; 4555 char *e; 4556 unsigned long long new = simple_strtoull(buf, &e, 10); 4557 if (mddev->pers) 4558 return -EBUSY; 4559 if (buf == e || (*e && *e != '\n')) 4560 return -EINVAL; 4561 mddev->reshape_position = new; 4562 mddev->delta_disks = 0; 4563 mddev->reshape_backwards = 0; 4564 mddev->new_level = mddev->level; 4565 mddev->new_layout = mddev->layout; 4566 mddev->new_chunk_sectors = mddev->chunk_sectors; 4567 rdev_for_each(rdev, mddev) 4568 rdev->new_data_offset = rdev->data_offset; 4569 return len; 4570 } 4571 4572 static struct md_sysfs_entry md_reshape_position = 4573 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4574 reshape_position_store); 4575 4576 static ssize_t 4577 reshape_direction_show(struct mddev *mddev, char *page) 4578 { 4579 return sprintf(page, "%s\n", 4580 mddev->reshape_backwards ? "backwards" : "forwards"); 4581 } 4582 4583 static ssize_t 4584 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4585 { 4586 int backwards = 0; 4587 if (cmd_match(buf, "forwards")) 4588 backwards = 0; 4589 else if (cmd_match(buf, "backwards")) 4590 backwards = 1; 4591 else 4592 return -EINVAL; 4593 if (mddev->reshape_backwards == backwards) 4594 return len; 4595 4596 /* check if we are allowed to change */ 4597 if (mddev->delta_disks) 4598 return -EBUSY; 4599 4600 if (mddev->persistent && 4601 mddev->major_version == 0) 4602 return -EINVAL; 4603 4604 mddev->reshape_backwards = backwards; 4605 return len; 4606 } 4607 4608 static struct md_sysfs_entry md_reshape_direction = 4609 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4610 reshape_direction_store); 4611 4612 static ssize_t 4613 array_size_show(struct mddev *mddev, char *page) 4614 { 4615 if (mddev->external_size) 4616 return sprintf(page, "%llu\n", 4617 (unsigned long long)mddev->array_sectors/2); 4618 else 4619 return sprintf(page, "default\n"); 4620 } 4621 4622 static ssize_t 4623 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4624 { 4625 sector_t sectors; 4626 4627 if (strncmp(buf, "default", 7) == 0) { 4628 if (mddev->pers) 4629 sectors = mddev->pers->size(mddev, 0, 0); 4630 else 4631 sectors = mddev->array_sectors; 4632 4633 mddev->external_size = 0; 4634 } else { 4635 if (strict_blocks_to_sectors(buf, §ors) < 0) 4636 return -EINVAL; 4637 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4638 return -E2BIG; 4639 4640 mddev->external_size = 1; 4641 } 4642 4643 mddev->array_sectors = sectors; 4644 if (mddev->pers) { 4645 set_capacity(mddev->gendisk, mddev->array_sectors); 4646 revalidate_disk(mddev->gendisk); 4647 } 4648 return len; 4649 } 4650 4651 static struct md_sysfs_entry md_array_size = 4652 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4653 array_size_store); 4654 4655 static struct attribute *md_default_attrs[] = { 4656 &md_level.attr, 4657 &md_layout.attr, 4658 &md_raid_disks.attr, 4659 &md_chunk_size.attr, 4660 &md_size.attr, 4661 &md_resync_start.attr, 4662 &md_metadata.attr, 4663 &md_new_device.attr, 4664 &md_safe_delay.attr, 4665 &md_array_state.attr, 4666 &md_reshape_position.attr, 4667 &md_reshape_direction.attr, 4668 &md_array_size.attr, 4669 &max_corr_read_errors.attr, 4670 NULL, 4671 }; 4672 4673 static struct attribute *md_redundancy_attrs[] = { 4674 &md_scan_mode.attr, 4675 &md_last_scan_mode.attr, 4676 &md_mismatches.attr, 4677 &md_sync_min.attr, 4678 &md_sync_max.attr, 4679 &md_sync_speed.attr, 4680 &md_sync_force_parallel.attr, 4681 &md_sync_completed.attr, 4682 &md_min_sync.attr, 4683 &md_max_sync.attr, 4684 &md_suspend_lo.attr, 4685 &md_suspend_hi.attr, 4686 &md_bitmap.attr, 4687 &md_degraded.attr, 4688 NULL, 4689 }; 4690 static struct attribute_group md_redundancy_group = { 4691 .name = NULL, 4692 .attrs = md_redundancy_attrs, 4693 }; 4694 4695 4696 static ssize_t 4697 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4698 { 4699 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4700 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4701 ssize_t rv; 4702 4703 if (!entry->show) 4704 return -EIO; 4705 spin_lock(&all_mddevs_lock); 4706 if (list_empty(&mddev->all_mddevs)) { 4707 spin_unlock(&all_mddevs_lock); 4708 return -EBUSY; 4709 } 4710 mddev_get(mddev); 4711 spin_unlock(&all_mddevs_lock); 4712 4713 rv = mddev_lock(mddev); 4714 if (!rv) { 4715 rv = entry->show(mddev, page); 4716 mddev_unlock(mddev); 4717 } 4718 mddev_put(mddev); 4719 return rv; 4720 } 4721 4722 static ssize_t 4723 md_attr_store(struct kobject *kobj, struct attribute *attr, 4724 const char *page, size_t length) 4725 { 4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4728 ssize_t rv; 4729 4730 if (!entry->store) 4731 return -EIO; 4732 if (!capable(CAP_SYS_ADMIN)) 4733 return -EACCES; 4734 spin_lock(&all_mddevs_lock); 4735 if (list_empty(&mddev->all_mddevs)) { 4736 spin_unlock(&all_mddevs_lock); 4737 return -EBUSY; 4738 } 4739 mddev_get(mddev); 4740 spin_unlock(&all_mddevs_lock); 4741 if (entry->store == new_dev_store) 4742 flush_workqueue(md_misc_wq); 4743 rv = mddev_lock(mddev); 4744 if (!rv) { 4745 rv = entry->store(mddev, page, length); 4746 mddev_unlock(mddev); 4747 } 4748 mddev_put(mddev); 4749 return rv; 4750 } 4751 4752 static void md_free(struct kobject *ko) 4753 { 4754 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4755 4756 if (mddev->sysfs_state) 4757 sysfs_put(mddev->sysfs_state); 4758 4759 if (mddev->gendisk) { 4760 del_gendisk(mddev->gendisk); 4761 put_disk(mddev->gendisk); 4762 } 4763 if (mddev->queue) 4764 blk_cleanup_queue(mddev->queue); 4765 4766 kfree(mddev); 4767 } 4768 4769 static const struct sysfs_ops md_sysfs_ops = { 4770 .show = md_attr_show, 4771 .store = md_attr_store, 4772 }; 4773 static struct kobj_type md_ktype = { 4774 .release = md_free, 4775 .sysfs_ops = &md_sysfs_ops, 4776 .default_attrs = md_default_attrs, 4777 }; 4778 4779 int mdp_major = 0; 4780 4781 static void mddev_delayed_delete(struct work_struct *ws) 4782 { 4783 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4784 4785 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4786 kobject_del(&mddev->kobj); 4787 kobject_put(&mddev->kobj); 4788 } 4789 4790 static int md_alloc(dev_t dev, char *name) 4791 { 4792 static DEFINE_MUTEX(disks_mutex); 4793 struct mddev *mddev = mddev_find(dev); 4794 struct gendisk *disk; 4795 int partitioned; 4796 int shift; 4797 int unit; 4798 int error; 4799 4800 if (!mddev) 4801 return -ENODEV; 4802 4803 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4804 shift = partitioned ? MdpMinorShift : 0; 4805 unit = MINOR(mddev->unit) >> shift; 4806 4807 /* wait for any previous instance of this device to be 4808 * completely removed (mddev_delayed_delete). 4809 */ 4810 flush_workqueue(md_misc_wq); 4811 4812 mutex_lock(&disks_mutex); 4813 error = -EEXIST; 4814 if (mddev->gendisk) 4815 goto abort; 4816 4817 if (name) { 4818 /* Need to ensure that 'name' is not a duplicate. 4819 */ 4820 struct mddev *mddev2; 4821 spin_lock(&all_mddevs_lock); 4822 4823 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4824 if (mddev2->gendisk && 4825 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4826 spin_unlock(&all_mddevs_lock); 4827 goto abort; 4828 } 4829 spin_unlock(&all_mddevs_lock); 4830 } 4831 4832 error = -ENOMEM; 4833 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4834 if (!mddev->queue) 4835 goto abort; 4836 mddev->queue->queuedata = mddev; 4837 4838 blk_queue_make_request(mddev->queue, md_make_request); 4839 blk_set_stacking_limits(&mddev->queue->limits); 4840 4841 disk = alloc_disk(1 << shift); 4842 if (!disk) { 4843 blk_cleanup_queue(mddev->queue); 4844 mddev->queue = NULL; 4845 goto abort; 4846 } 4847 disk->major = MAJOR(mddev->unit); 4848 disk->first_minor = unit << shift; 4849 if (name) 4850 strcpy(disk->disk_name, name); 4851 else if (partitioned) 4852 sprintf(disk->disk_name, "md_d%d", unit); 4853 else 4854 sprintf(disk->disk_name, "md%d", unit); 4855 disk->fops = &md_fops; 4856 disk->private_data = mddev; 4857 disk->queue = mddev->queue; 4858 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4859 /* Allow extended partitions. This makes the 4860 * 'mdp' device redundant, but we can't really 4861 * remove it now. 4862 */ 4863 disk->flags |= GENHD_FL_EXT_DEVT; 4864 mddev->gendisk = disk; 4865 /* As soon as we call add_disk(), another thread could get 4866 * through to md_open, so make sure it doesn't get too far 4867 */ 4868 mutex_lock(&mddev->open_mutex); 4869 add_disk(disk); 4870 4871 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4872 &disk_to_dev(disk)->kobj, "%s", "md"); 4873 if (error) { 4874 /* This isn't possible, but as kobject_init_and_add is marked 4875 * __must_check, we must do something with the result 4876 */ 4877 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4878 disk->disk_name); 4879 error = 0; 4880 } 4881 if (mddev->kobj.sd && 4882 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4883 printk(KERN_DEBUG "pointless warning\n"); 4884 mutex_unlock(&mddev->open_mutex); 4885 abort: 4886 mutex_unlock(&disks_mutex); 4887 if (!error && mddev->kobj.sd) { 4888 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4889 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4890 } 4891 mddev_put(mddev); 4892 return error; 4893 } 4894 4895 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4896 { 4897 md_alloc(dev, NULL); 4898 return NULL; 4899 } 4900 4901 static int add_named_array(const char *val, struct kernel_param *kp) 4902 { 4903 /* val must be "md_*" where * is not all digits. 4904 * We allocate an array with a large free minor number, and 4905 * set the name to val. val must not already be an active name. 4906 */ 4907 int len = strlen(val); 4908 char buf[DISK_NAME_LEN]; 4909 4910 while (len && val[len-1] == '\n') 4911 len--; 4912 if (len >= DISK_NAME_LEN) 4913 return -E2BIG; 4914 strlcpy(buf, val, len+1); 4915 if (strncmp(buf, "md_", 3) != 0) 4916 return -EINVAL; 4917 return md_alloc(0, buf); 4918 } 4919 4920 static void md_safemode_timeout(unsigned long data) 4921 { 4922 struct mddev *mddev = (struct mddev *) data; 4923 4924 if (!atomic_read(&mddev->writes_pending)) { 4925 mddev->safemode = 1; 4926 if (mddev->external) 4927 sysfs_notify_dirent_safe(mddev->sysfs_state); 4928 } 4929 md_wakeup_thread(mddev->thread); 4930 } 4931 4932 static int start_dirty_degraded; 4933 4934 int md_run(struct mddev *mddev) 4935 { 4936 int err; 4937 struct md_rdev *rdev; 4938 struct md_personality *pers; 4939 4940 if (list_empty(&mddev->disks)) 4941 /* cannot run an array with no devices.. */ 4942 return -EINVAL; 4943 4944 if (mddev->pers) 4945 return -EBUSY; 4946 /* Cannot run until previous stop completes properly */ 4947 if (mddev->sysfs_active) 4948 return -EBUSY; 4949 4950 /* 4951 * Analyze all RAID superblock(s) 4952 */ 4953 if (!mddev->raid_disks) { 4954 if (!mddev->persistent) 4955 return -EINVAL; 4956 analyze_sbs(mddev); 4957 } 4958 4959 if (mddev->level != LEVEL_NONE) 4960 request_module("md-level-%d", mddev->level); 4961 else if (mddev->clevel[0]) 4962 request_module("md-%s", mddev->clevel); 4963 4964 /* 4965 * Drop all container device buffers, from now on 4966 * the only valid external interface is through the md 4967 * device. 4968 */ 4969 rdev_for_each(rdev, mddev) { 4970 if (test_bit(Faulty, &rdev->flags)) 4971 continue; 4972 sync_blockdev(rdev->bdev); 4973 invalidate_bdev(rdev->bdev); 4974 4975 /* perform some consistency tests on the device. 4976 * We don't want the data to overlap the metadata, 4977 * Internal Bitmap issues have been handled elsewhere. 4978 */ 4979 if (rdev->meta_bdev) { 4980 /* Nothing to check */; 4981 } else if (rdev->data_offset < rdev->sb_start) { 4982 if (mddev->dev_sectors && 4983 rdev->data_offset + mddev->dev_sectors 4984 > rdev->sb_start) { 4985 printk("md: %s: data overlaps metadata\n", 4986 mdname(mddev)); 4987 return -EINVAL; 4988 } 4989 } else { 4990 if (rdev->sb_start + rdev->sb_size/512 4991 > rdev->data_offset) { 4992 printk("md: %s: metadata overlaps data\n", 4993 mdname(mddev)); 4994 return -EINVAL; 4995 } 4996 } 4997 sysfs_notify_dirent_safe(rdev->sysfs_state); 4998 } 4999 5000 if (mddev->bio_set == NULL) 5001 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5002 5003 spin_lock(&pers_lock); 5004 pers = find_pers(mddev->level, mddev->clevel); 5005 if (!pers || !try_module_get(pers->owner)) { 5006 spin_unlock(&pers_lock); 5007 if (mddev->level != LEVEL_NONE) 5008 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5009 mddev->level); 5010 else 5011 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5012 mddev->clevel); 5013 return -EINVAL; 5014 } 5015 mddev->pers = pers; 5016 spin_unlock(&pers_lock); 5017 if (mddev->level != pers->level) { 5018 mddev->level = pers->level; 5019 mddev->new_level = pers->level; 5020 } 5021 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5022 5023 if (mddev->reshape_position != MaxSector && 5024 pers->start_reshape == NULL) { 5025 /* This personality cannot handle reshaping... */ 5026 mddev->pers = NULL; 5027 module_put(pers->owner); 5028 return -EINVAL; 5029 } 5030 5031 if (pers->sync_request) { 5032 /* Warn if this is a potentially silly 5033 * configuration. 5034 */ 5035 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5036 struct md_rdev *rdev2; 5037 int warned = 0; 5038 5039 rdev_for_each(rdev, mddev) 5040 rdev_for_each(rdev2, mddev) { 5041 if (rdev < rdev2 && 5042 rdev->bdev->bd_contains == 5043 rdev2->bdev->bd_contains) { 5044 printk(KERN_WARNING 5045 "%s: WARNING: %s appears to be" 5046 " on the same physical disk as" 5047 " %s.\n", 5048 mdname(mddev), 5049 bdevname(rdev->bdev,b), 5050 bdevname(rdev2->bdev,b2)); 5051 warned = 1; 5052 } 5053 } 5054 5055 if (warned) 5056 printk(KERN_WARNING 5057 "True protection against single-disk" 5058 " failure might be compromised.\n"); 5059 } 5060 5061 mddev->recovery = 0; 5062 /* may be over-ridden by personality */ 5063 mddev->resync_max_sectors = mddev->dev_sectors; 5064 5065 mddev->ok_start_degraded = start_dirty_degraded; 5066 5067 if (start_readonly && mddev->ro == 0) 5068 mddev->ro = 2; /* read-only, but switch on first write */ 5069 5070 err = mddev->pers->run(mddev); 5071 if (err) 5072 printk(KERN_ERR "md: pers->run() failed ...\n"); 5073 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5074 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5075 " but 'external_size' not in effect?\n", __func__); 5076 printk(KERN_ERR 5077 "md: invalid array_size %llu > default size %llu\n", 5078 (unsigned long long)mddev->array_sectors / 2, 5079 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5080 err = -EINVAL; 5081 mddev->pers->stop(mddev); 5082 } 5083 if (err == 0 && mddev->pers->sync_request && 5084 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5085 err = bitmap_create(mddev); 5086 if (err) { 5087 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5088 mdname(mddev), err); 5089 mddev->pers->stop(mddev); 5090 } 5091 } 5092 if (err) { 5093 module_put(mddev->pers->owner); 5094 mddev->pers = NULL; 5095 bitmap_destroy(mddev); 5096 return err; 5097 } 5098 if (mddev->pers->sync_request) { 5099 if (mddev->kobj.sd && 5100 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5101 printk(KERN_WARNING 5102 "md: cannot register extra attributes for %s\n", 5103 mdname(mddev)); 5104 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5105 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5106 mddev->ro = 0; 5107 5108 atomic_set(&mddev->writes_pending,0); 5109 atomic_set(&mddev->max_corr_read_errors, 5110 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5111 mddev->safemode = 0; 5112 mddev->safemode_timer.function = md_safemode_timeout; 5113 mddev->safemode_timer.data = (unsigned long) mddev; 5114 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5115 mddev->in_sync = 1; 5116 smp_wmb(); 5117 mddev->ready = 1; 5118 rdev_for_each(rdev, mddev) 5119 if (rdev->raid_disk >= 0) 5120 if (sysfs_link_rdev(mddev, rdev)) 5121 /* failure here is OK */; 5122 5123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5124 5125 if (mddev->flags & MD_UPDATE_SB_FLAGS) 5126 md_update_sb(mddev, 0); 5127 5128 md_new_event(mddev); 5129 sysfs_notify_dirent_safe(mddev->sysfs_state); 5130 sysfs_notify_dirent_safe(mddev->sysfs_action); 5131 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5132 return 0; 5133 } 5134 EXPORT_SYMBOL_GPL(md_run); 5135 5136 static int do_md_run(struct mddev *mddev) 5137 { 5138 int err; 5139 5140 err = md_run(mddev); 5141 if (err) 5142 goto out; 5143 err = bitmap_load(mddev); 5144 if (err) { 5145 bitmap_destroy(mddev); 5146 goto out; 5147 } 5148 5149 md_wakeup_thread(mddev->thread); 5150 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5151 5152 set_capacity(mddev->gendisk, mddev->array_sectors); 5153 revalidate_disk(mddev->gendisk); 5154 mddev->changed = 1; 5155 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5156 out: 5157 return err; 5158 } 5159 5160 static int restart_array(struct mddev *mddev) 5161 { 5162 struct gendisk *disk = mddev->gendisk; 5163 5164 /* Complain if it has no devices */ 5165 if (list_empty(&mddev->disks)) 5166 return -ENXIO; 5167 if (!mddev->pers) 5168 return -EINVAL; 5169 if (!mddev->ro) 5170 return -EBUSY; 5171 mddev->safemode = 0; 5172 mddev->ro = 0; 5173 set_disk_ro(disk, 0); 5174 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5175 mdname(mddev)); 5176 /* Kick recovery or resync if necessary */ 5177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5178 md_wakeup_thread(mddev->thread); 5179 md_wakeup_thread(mddev->sync_thread); 5180 sysfs_notify_dirent_safe(mddev->sysfs_state); 5181 return 0; 5182 } 5183 5184 /* similar to deny_write_access, but accounts for our holding a reference 5185 * to the file ourselves */ 5186 static int deny_bitmap_write_access(struct file * file) 5187 { 5188 struct inode *inode = file->f_mapping->host; 5189 5190 spin_lock(&inode->i_lock); 5191 if (atomic_read(&inode->i_writecount) > 1) { 5192 spin_unlock(&inode->i_lock); 5193 return -ETXTBSY; 5194 } 5195 atomic_set(&inode->i_writecount, -1); 5196 spin_unlock(&inode->i_lock); 5197 5198 return 0; 5199 } 5200 5201 void restore_bitmap_write_access(struct file *file) 5202 { 5203 struct inode *inode = file->f_mapping->host; 5204 5205 spin_lock(&inode->i_lock); 5206 atomic_set(&inode->i_writecount, 1); 5207 spin_unlock(&inode->i_lock); 5208 } 5209 5210 static void md_clean(struct mddev *mddev) 5211 { 5212 mddev->array_sectors = 0; 5213 mddev->external_size = 0; 5214 mddev->dev_sectors = 0; 5215 mddev->raid_disks = 0; 5216 mddev->recovery_cp = 0; 5217 mddev->resync_min = 0; 5218 mddev->resync_max = MaxSector; 5219 mddev->reshape_position = MaxSector; 5220 mddev->external = 0; 5221 mddev->persistent = 0; 5222 mddev->level = LEVEL_NONE; 5223 mddev->clevel[0] = 0; 5224 mddev->flags = 0; 5225 mddev->ro = 0; 5226 mddev->metadata_type[0] = 0; 5227 mddev->chunk_sectors = 0; 5228 mddev->ctime = mddev->utime = 0; 5229 mddev->layout = 0; 5230 mddev->max_disks = 0; 5231 mddev->events = 0; 5232 mddev->can_decrease_events = 0; 5233 mddev->delta_disks = 0; 5234 mddev->reshape_backwards = 0; 5235 mddev->new_level = LEVEL_NONE; 5236 mddev->new_layout = 0; 5237 mddev->new_chunk_sectors = 0; 5238 mddev->curr_resync = 0; 5239 atomic64_set(&mddev->resync_mismatches, 0); 5240 mddev->suspend_lo = mddev->suspend_hi = 0; 5241 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5242 mddev->recovery = 0; 5243 mddev->in_sync = 0; 5244 mddev->changed = 0; 5245 mddev->degraded = 0; 5246 mddev->safemode = 0; 5247 mddev->merge_check_needed = 0; 5248 mddev->bitmap_info.offset = 0; 5249 mddev->bitmap_info.default_offset = 0; 5250 mddev->bitmap_info.default_space = 0; 5251 mddev->bitmap_info.chunksize = 0; 5252 mddev->bitmap_info.daemon_sleep = 0; 5253 mddev->bitmap_info.max_write_behind = 0; 5254 } 5255 5256 static void __md_stop_writes(struct mddev *mddev) 5257 { 5258 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5259 if (mddev->sync_thread) { 5260 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5261 md_reap_sync_thread(mddev); 5262 } 5263 5264 del_timer_sync(&mddev->safemode_timer); 5265 5266 bitmap_flush(mddev); 5267 md_super_wait(mddev); 5268 5269 if (mddev->ro == 0 && 5270 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) { 5271 /* mark array as shutdown cleanly */ 5272 mddev->in_sync = 1; 5273 md_update_sb(mddev, 1); 5274 } 5275 } 5276 5277 void md_stop_writes(struct mddev *mddev) 5278 { 5279 mddev_lock_nointr(mddev); 5280 __md_stop_writes(mddev); 5281 mddev_unlock(mddev); 5282 } 5283 EXPORT_SYMBOL_GPL(md_stop_writes); 5284 5285 static void __md_stop(struct mddev *mddev) 5286 { 5287 mddev->ready = 0; 5288 mddev->pers->stop(mddev); 5289 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5290 mddev->to_remove = &md_redundancy_group; 5291 module_put(mddev->pers->owner); 5292 mddev->pers = NULL; 5293 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5294 } 5295 5296 void md_stop(struct mddev *mddev) 5297 { 5298 /* stop the array and free an attached data structures. 5299 * This is called from dm-raid 5300 */ 5301 __md_stop(mddev); 5302 bitmap_destroy(mddev); 5303 if (mddev->bio_set) 5304 bioset_free(mddev->bio_set); 5305 } 5306 5307 EXPORT_SYMBOL_GPL(md_stop); 5308 5309 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5310 { 5311 int err = 0; 5312 int did_freeze = 0; 5313 5314 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5315 did_freeze = 1; 5316 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5317 md_wakeup_thread(mddev->thread); 5318 } 5319 if (mddev->sync_thread) { 5320 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5321 /* Thread might be blocked waiting for metadata update 5322 * which will now never happen */ 5323 wake_up_process(mddev->sync_thread->tsk); 5324 } 5325 mddev_unlock(mddev); 5326 wait_event(resync_wait, mddev->sync_thread == NULL); 5327 mddev_lock_nointr(mddev); 5328 5329 mutex_lock(&mddev->open_mutex); 5330 if (atomic_read(&mddev->openers) > !!bdev || 5331 mddev->sync_thread || 5332 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5333 printk("md: %s still in use.\n",mdname(mddev)); 5334 if (did_freeze) { 5335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5336 md_wakeup_thread(mddev->thread); 5337 } 5338 err = -EBUSY; 5339 goto out; 5340 } 5341 if (mddev->pers) { 5342 __md_stop_writes(mddev); 5343 5344 err = -ENXIO; 5345 if (mddev->ro==1) 5346 goto out; 5347 mddev->ro = 1; 5348 set_disk_ro(mddev->gendisk, 1); 5349 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5350 sysfs_notify_dirent_safe(mddev->sysfs_state); 5351 err = 0; 5352 } 5353 out: 5354 mutex_unlock(&mddev->open_mutex); 5355 return err; 5356 } 5357 5358 /* mode: 5359 * 0 - completely stop and dis-assemble array 5360 * 2 - stop but do not disassemble array 5361 */ 5362 static int do_md_stop(struct mddev * mddev, int mode, 5363 struct block_device *bdev) 5364 { 5365 struct gendisk *disk = mddev->gendisk; 5366 struct md_rdev *rdev; 5367 int did_freeze = 0; 5368 5369 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5370 did_freeze = 1; 5371 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5372 md_wakeup_thread(mddev->thread); 5373 } 5374 if (mddev->sync_thread) { 5375 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5376 /* Thread might be blocked waiting for metadata update 5377 * which will now never happen */ 5378 wake_up_process(mddev->sync_thread->tsk); 5379 } 5380 mddev_unlock(mddev); 5381 wait_event(resync_wait, mddev->sync_thread == NULL); 5382 mddev_lock_nointr(mddev); 5383 5384 mutex_lock(&mddev->open_mutex); 5385 if (atomic_read(&mddev->openers) > !!bdev || 5386 mddev->sysfs_active || 5387 mddev->sync_thread || 5388 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) { 5389 printk("md: %s still in use.\n",mdname(mddev)); 5390 mutex_unlock(&mddev->open_mutex); 5391 if (did_freeze) { 5392 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5393 md_wakeup_thread(mddev->thread); 5394 } 5395 return -EBUSY; 5396 } 5397 if (mddev->pers) { 5398 if (mddev->ro) 5399 set_disk_ro(disk, 0); 5400 5401 __md_stop_writes(mddev); 5402 __md_stop(mddev); 5403 mddev->queue->merge_bvec_fn = NULL; 5404 mddev->queue->backing_dev_info.congested_fn = NULL; 5405 5406 /* tell userspace to handle 'inactive' */ 5407 sysfs_notify_dirent_safe(mddev->sysfs_state); 5408 5409 rdev_for_each(rdev, mddev) 5410 if (rdev->raid_disk >= 0) 5411 sysfs_unlink_rdev(mddev, rdev); 5412 5413 set_capacity(disk, 0); 5414 mutex_unlock(&mddev->open_mutex); 5415 mddev->changed = 1; 5416 revalidate_disk(disk); 5417 5418 if (mddev->ro) 5419 mddev->ro = 0; 5420 } else 5421 mutex_unlock(&mddev->open_mutex); 5422 /* 5423 * Free resources if final stop 5424 */ 5425 if (mode == 0) { 5426 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5427 5428 bitmap_destroy(mddev); 5429 if (mddev->bitmap_info.file) { 5430 restore_bitmap_write_access(mddev->bitmap_info.file); 5431 fput(mddev->bitmap_info.file); 5432 mddev->bitmap_info.file = NULL; 5433 } 5434 mddev->bitmap_info.offset = 0; 5435 5436 export_array(mddev); 5437 5438 md_clean(mddev); 5439 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5440 if (mddev->hold_active == UNTIL_STOP) 5441 mddev->hold_active = 0; 5442 } 5443 blk_integrity_unregister(disk); 5444 md_new_event(mddev); 5445 sysfs_notify_dirent_safe(mddev->sysfs_state); 5446 return 0; 5447 } 5448 5449 #ifndef MODULE 5450 static void autorun_array(struct mddev *mddev) 5451 { 5452 struct md_rdev *rdev; 5453 int err; 5454 5455 if (list_empty(&mddev->disks)) 5456 return; 5457 5458 printk(KERN_INFO "md: running: "); 5459 5460 rdev_for_each(rdev, mddev) { 5461 char b[BDEVNAME_SIZE]; 5462 printk("<%s>", bdevname(rdev->bdev,b)); 5463 } 5464 printk("\n"); 5465 5466 err = do_md_run(mddev); 5467 if (err) { 5468 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5469 do_md_stop(mddev, 0, NULL); 5470 } 5471 } 5472 5473 /* 5474 * lets try to run arrays based on all disks that have arrived 5475 * until now. (those are in pending_raid_disks) 5476 * 5477 * the method: pick the first pending disk, collect all disks with 5478 * the same UUID, remove all from the pending list and put them into 5479 * the 'same_array' list. Then order this list based on superblock 5480 * update time (freshest comes first), kick out 'old' disks and 5481 * compare superblocks. If everything's fine then run it. 5482 * 5483 * If "unit" is allocated, then bump its reference count 5484 */ 5485 static void autorun_devices(int part) 5486 { 5487 struct md_rdev *rdev0, *rdev, *tmp; 5488 struct mddev *mddev; 5489 char b[BDEVNAME_SIZE]; 5490 5491 printk(KERN_INFO "md: autorun ...\n"); 5492 while (!list_empty(&pending_raid_disks)) { 5493 int unit; 5494 dev_t dev; 5495 LIST_HEAD(candidates); 5496 rdev0 = list_entry(pending_raid_disks.next, 5497 struct md_rdev, same_set); 5498 5499 printk(KERN_INFO "md: considering %s ...\n", 5500 bdevname(rdev0->bdev,b)); 5501 INIT_LIST_HEAD(&candidates); 5502 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5503 if (super_90_load(rdev, rdev0, 0) >= 0) { 5504 printk(KERN_INFO "md: adding %s ...\n", 5505 bdevname(rdev->bdev,b)); 5506 list_move(&rdev->same_set, &candidates); 5507 } 5508 /* 5509 * now we have a set of devices, with all of them having 5510 * mostly sane superblocks. It's time to allocate the 5511 * mddev. 5512 */ 5513 if (part) { 5514 dev = MKDEV(mdp_major, 5515 rdev0->preferred_minor << MdpMinorShift); 5516 unit = MINOR(dev) >> MdpMinorShift; 5517 } else { 5518 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5519 unit = MINOR(dev); 5520 } 5521 if (rdev0->preferred_minor != unit) { 5522 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5523 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5524 break; 5525 } 5526 5527 md_probe(dev, NULL, NULL); 5528 mddev = mddev_find(dev); 5529 if (!mddev || !mddev->gendisk) { 5530 if (mddev) 5531 mddev_put(mddev); 5532 printk(KERN_ERR 5533 "md: cannot allocate memory for md drive.\n"); 5534 break; 5535 } 5536 if (mddev_lock(mddev)) 5537 printk(KERN_WARNING "md: %s locked, cannot run\n", 5538 mdname(mddev)); 5539 else if (mddev->raid_disks || mddev->major_version 5540 || !list_empty(&mddev->disks)) { 5541 printk(KERN_WARNING 5542 "md: %s already running, cannot run %s\n", 5543 mdname(mddev), bdevname(rdev0->bdev,b)); 5544 mddev_unlock(mddev); 5545 } else { 5546 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5547 mddev->persistent = 1; 5548 rdev_for_each_list(rdev, tmp, &candidates) { 5549 list_del_init(&rdev->same_set); 5550 if (bind_rdev_to_array(rdev, mddev)) 5551 export_rdev(rdev); 5552 } 5553 autorun_array(mddev); 5554 mddev_unlock(mddev); 5555 } 5556 /* on success, candidates will be empty, on error 5557 * it won't... 5558 */ 5559 rdev_for_each_list(rdev, tmp, &candidates) { 5560 list_del_init(&rdev->same_set); 5561 export_rdev(rdev); 5562 } 5563 mddev_put(mddev); 5564 } 5565 printk(KERN_INFO "md: ... autorun DONE.\n"); 5566 } 5567 #endif /* !MODULE */ 5568 5569 static int get_version(void __user * arg) 5570 { 5571 mdu_version_t ver; 5572 5573 ver.major = MD_MAJOR_VERSION; 5574 ver.minor = MD_MINOR_VERSION; 5575 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5576 5577 if (copy_to_user(arg, &ver, sizeof(ver))) 5578 return -EFAULT; 5579 5580 return 0; 5581 } 5582 5583 static int get_array_info(struct mddev * mddev, void __user * arg) 5584 { 5585 mdu_array_info_t info; 5586 int nr,working,insync,failed,spare; 5587 struct md_rdev *rdev; 5588 5589 nr = working = insync = failed = spare = 0; 5590 rcu_read_lock(); 5591 rdev_for_each_rcu(rdev, mddev) { 5592 nr++; 5593 if (test_bit(Faulty, &rdev->flags)) 5594 failed++; 5595 else { 5596 working++; 5597 if (test_bit(In_sync, &rdev->flags)) 5598 insync++; 5599 else 5600 spare++; 5601 } 5602 } 5603 rcu_read_unlock(); 5604 5605 info.major_version = mddev->major_version; 5606 info.minor_version = mddev->minor_version; 5607 info.patch_version = MD_PATCHLEVEL_VERSION; 5608 info.ctime = mddev->ctime; 5609 info.level = mddev->level; 5610 info.size = mddev->dev_sectors / 2; 5611 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5612 info.size = -1; 5613 info.nr_disks = nr; 5614 info.raid_disks = mddev->raid_disks; 5615 info.md_minor = mddev->md_minor; 5616 info.not_persistent= !mddev->persistent; 5617 5618 info.utime = mddev->utime; 5619 info.state = 0; 5620 if (mddev->in_sync) 5621 info.state = (1<<MD_SB_CLEAN); 5622 if (mddev->bitmap && mddev->bitmap_info.offset) 5623 info.state = (1<<MD_SB_BITMAP_PRESENT); 5624 info.active_disks = insync; 5625 info.working_disks = working; 5626 info.failed_disks = failed; 5627 info.spare_disks = spare; 5628 5629 info.layout = mddev->layout; 5630 info.chunk_size = mddev->chunk_sectors << 9; 5631 5632 if (copy_to_user(arg, &info, sizeof(info))) 5633 return -EFAULT; 5634 5635 return 0; 5636 } 5637 5638 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5639 { 5640 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5641 char *ptr, *buf = NULL; 5642 int err = -ENOMEM; 5643 5644 file = kmalloc(sizeof(*file), GFP_NOIO); 5645 5646 if (!file) 5647 goto out; 5648 5649 /* bitmap disabled, zero the first byte and copy out */ 5650 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5651 file->pathname[0] = '\0'; 5652 goto copy_out; 5653 } 5654 5655 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5656 if (!buf) 5657 goto out; 5658 5659 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5660 buf, sizeof(file->pathname)); 5661 if (IS_ERR(ptr)) 5662 goto out; 5663 5664 strcpy(file->pathname, ptr); 5665 5666 copy_out: 5667 err = 0; 5668 if (copy_to_user(arg, file, sizeof(*file))) 5669 err = -EFAULT; 5670 out: 5671 kfree(buf); 5672 kfree(file); 5673 return err; 5674 } 5675 5676 static int get_disk_info(struct mddev * mddev, void __user * arg) 5677 { 5678 mdu_disk_info_t info; 5679 struct md_rdev *rdev; 5680 5681 if (copy_from_user(&info, arg, sizeof(info))) 5682 return -EFAULT; 5683 5684 rcu_read_lock(); 5685 rdev = find_rdev_nr_rcu(mddev, info.number); 5686 if (rdev) { 5687 info.major = MAJOR(rdev->bdev->bd_dev); 5688 info.minor = MINOR(rdev->bdev->bd_dev); 5689 info.raid_disk = rdev->raid_disk; 5690 info.state = 0; 5691 if (test_bit(Faulty, &rdev->flags)) 5692 info.state |= (1<<MD_DISK_FAULTY); 5693 else if (test_bit(In_sync, &rdev->flags)) { 5694 info.state |= (1<<MD_DISK_ACTIVE); 5695 info.state |= (1<<MD_DISK_SYNC); 5696 } 5697 if (test_bit(WriteMostly, &rdev->flags)) 5698 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5699 } else { 5700 info.major = info.minor = 0; 5701 info.raid_disk = -1; 5702 info.state = (1<<MD_DISK_REMOVED); 5703 } 5704 rcu_read_unlock(); 5705 5706 if (copy_to_user(arg, &info, sizeof(info))) 5707 return -EFAULT; 5708 5709 return 0; 5710 } 5711 5712 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5713 { 5714 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5715 struct md_rdev *rdev; 5716 dev_t dev = MKDEV(info->major,info->minor); 5717 5718 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5719 return -EOVERFLOW; 5720 5721 if (!mddev->raid_disks) { 5722 int err; 5723 /* expecting a device which has a superblock */ 5724 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5725 if (IS_ERR(rdev)) { 5726 printk(KERN_WARNING 5727 "md: md_import_device returned %ld\n", 5728 PTR_ERR(rdev)); 5729 return PTR_ERR(rdev); 5730 } 5731 if (!list_empty(&mddev->disks)) { 5732 struct md_rdev *rdev0 5733 = list_entry(mddev->disks.next, 5734 struct md_rdev, same_set); 5735 err = super_types[mddev->major_version] 5736 .load_super(rdev, rdev0, mddev->minor_version); 5737 if (err < 0) { 5738 printk(KERN_WARNING 5739 "md: %s has different UUID to %s\n", 5740 bdevname(rdev->bdev,b), 5741 bdevname(rdev0->bdev,b2)); 5742 export_rdev(rdev); 5743 return -EINVAL; 5744 } 5745 } 5746 err = bind_rdev_to_array(rdev, mddev); 5747 if (err) 5748 export_rdev(rdev); 5749 return err; 5750 } 5751 5752 /* 5753 * add_new_disk can be used once the array is assembled 5754 * to add "hot spares". They must already have a superblock 5755 * written 5756 */ 5757 if (mddev->pers) { 5758 int err; 5759 if (!mddev->pers->hot_add_disk) { 5760 printk(KERN_WARNING 5761 "%s: personality does not support diskops!\n", 5762 mdname(mddev)); 5763 return -EINVAL; 5764 } 5765 if (mddev->persistent) 5766 rdev = md_import_device(dev, mddev->major_version, 5767 mddev->minor_version); 5768 else 5769 rdev = md_import_device(dev, -1, -1); 5770 if (IS_ERR(rdev)) { 5771 printk(KERN_WARNING 5772 "md: md_import_device returned %ld\n", 5773 PTR_ERR(rdev)); 5774 return PTR_ERR(rdev); 5775 } 5776 /* set saved_raid_disk if appropriate */ 5777 if (!mddev->persistent) { 5778 if (info->state & (1<<MD_DISK_SYNC) && 5779 info->raid_disk < mddev->raid_disks) { 5780 rdev->raid_disk = info->raid_disk; 5781 set_bit(In_sync, &rdev->flags); 5782 clear_bit(Bitmap_sync, &rdev->flags); 5783 } else 5784 rdev->raid_disk = -1; 5785 rdev->saved_raid_disk = rdev->raid_disk; 5786 } else 5787 super_types[mddev->major_version]. 5788 validate_super(mddev, rdev); 5789 if ((info->state & (1<<MD_DISK_SYNC)) && 5790 rdev->raid_disk != info->raid_disk) { 5791 /* This was a hot-add request, but events doesn't 5792 * match, so reject it. 5793 */ 5794 export_rdev(rdev); 5795 return -EINVAL; 5796 } 5797 5798 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5799 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5800 set_bit(WriteMostly, &rdev->flags); 5801 else 5802 clear_bit(WriteMostly, &rdev->flags); 5803 5804 rdev->raid_disk = -1; 5805 err = bind_rdev_to_array(rdev, mddev); 5806 if (!err && !mddev->pers->hot_remove_disk) { 5807 /* If there is hot_add_disk but no hot_remove_disk 5808 * then added disks for geometry changes, 5809 * and should be added immediately. 5810 */ 5811 super_types[mddev->major_version]. 5812 validate_super(mddev, rdev); 5813 err = mddev->pers->hot_add_disk(mddev, rdev); 5814 if (err) 5815 unbind_rdev_from_array(rdev); 5816 } 5817 if (err) 5818 export_rdev(rdev); 5819 else 5820 sysfs_notify_dirent_safe(rdev->sysfs_state); 5821 5822 set_bit(MD_CHANGE_DEVS, &mddev->flags); 5823 if (mddev->degraded) 5824 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5825 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5826 if (!err) 5827 md_new_event(mddev); 5828 md_wakeup_thread(mddev->thread); 5829 return err; 5830 } 5831 5832 /* otherwise, add_new_disk is only allowed 5833 * for major_version==0 superblocks 5834 */ 5835 if (mddev->major_version != 0) { 5836 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5837 mdname(mddev)); 5838 return -EINVAL; 5839 } 5840 5841 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5842 int err; 5843 rdev = md_import_device(dev, -1, 0); 5844 if (IS_ERR(rdev)) { 5845 printk(KERN_WARNING 5846 "md: error, md_import_device() returned %ld\n", 5847 PTR_ERR(rdev)); 5848 return PTR_ERR(rdev); 5849 } 5850 rdev->desc_nr = info->number; 5851 if (info->raid_disk < mddev->raid_disks) 5852 rdev->raid_disk = info->raid_disk; 5853 else 5854 rdev->raid_disk = -1; 5855 5856 if (rdev->raid_disk < mddev->raid_disks) 5857 if (info->state & (1<<MD_DISK_SYNC)) 5858 set_bit(In_sync, &rdev->flags); 5859 5860 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5861 set_bit(WriteMostly, &rdev->flags); 5862 5863 if (!mddev->persistent) { 5864 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5865 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5866 } else 5867 rdev->sb_start = calc_dev_sboffset(rdev); 5868 rdev->sectors = rdev->sb_start; 5869 5870 err = bind_rdev_to_array(rdev, mddev); 5871 if (err) { 5872 export_rdev(rdev); 5873 return err; 5874 } 5875 } 5876 5877 return 0; 5878 } 5879 5880 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5881 { 5882 char b[BDEVNAME_SIZE]; 5883 struct md_rdev *rdev; 5884 5885 rdev = find_rdev(mddev, dev); 5886 if (!rdev) 5887 return -ENXIO; 5888 5889 clear_bit(Blocked, &rdev->flags); 5890 remove_and_add_spares(mddev, rdev); 5891 5892 if (rdev->raid_disk >= 0) 5893 goto busy; 5894 5895 kick_rdev_from_array(rdev); 5896 md_update_sb(mddev, 1); 5897 md_new_event(mddev); 5898 5899 return 0; 5900 busy: 5901 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5902 bdevname(rdev->bdev,b), mdname(mddev)); 5903 return -EBUSY; 5904 } 5905 5906 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5907 { 5908 char b[BDEVNAME_SIZE]; 5909 int err; 5910 struct md_rdev *rdev; 5911 5912 if (!mddev->pers) 5913 return -ENODEV; 5914 5915 if (mddev->major_version != 0) { 5916 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5917 " version-0 superblocks.\n", 5918 mdname(mddev)); 5919 return -EINVAL; 5920 } 5921 if (!mddev->pers->hot_add_disk) { 5922 printk(KERN_WARNING 5923 "%s: personality does not support diskops!\n", 5924 mdname(mddev)); 5925 return -EINVAL; 5926 } 5927 5928 rdev = md_import_device(dev, -1, 0); 5929 if (IS_ERR(rdev)) { 5930 printk(KERN_WARNING 5931 "md: error, md_import_device() returned %ld\n", 5932 PTR_ERR(rdev)); 5933 return -EINVAL; 5934 } 5935 5936 if (mddev->persistent) 5937 rdev->sb_start = calc_dev_sboffset(rdev); 5938 else 5939 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5940 5941 rdev->sectors = rdev->sb_start; 5942 5943 if (test_bit(Faulty, &rdev->flags)) { 5944 printk(KERN_WARNING 5945 "md: can not hot-add faulty %s disk to %s!\n", 5946 bdevname(rdev->bdev,b), mdname(mddev)); 5947 err = -EINVAL; 5948 goto abort_export; 5949 } 5950 clear_bit(In_sync, &rdev->flags); 5951 rdev->desc_nr = -1; 5952 rdev->saved_raid_disk = -1; 5953 err = bind_rdev_to_array(rdev, mddev); 5954 if (err) 5955 goto abort_export; 5956 5957 /* 5958 * The rest should better be atomic, we can have disk failures 5959 * noticed in interrupt contexts ... 5960 */ 5961 5962 rdev->raid_disk = -1; 5963 5964 md_update_sb(mddev, 1); 5965 5966 /* 5967 * Kick recovery, maybe this spare has to be added to the 5968 * array immediately. 5969 */ 5970 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5971 md_wakeup_thread(mddev->thread); 5972 md_new_event(mddev); 5973 return 0; 5974 5975 abort_export: 5976 export_rdev(rdev); 5977 return err; 5978 } 5979 5980 static int set_bitmap_file(struct mddev *mddev, int fd) 5981 { 5982 int err; 5983 5984 if (mddev->pers) { 5985 if (!mddev->pers->quiesce) 5986 return -EBUSY; 5987 if (mddev->recovery || mddev->sync_thread) 5988 return -EBUSY; 5989 /* we should be able to change the bitmap.. */ 5990 } 5991 5992 5993 if (fd >= 0) { 5994 if (mddev->bitmap) 5995 return -EEXIST; /* cannot add when bitmap is present */ 5996 mddev->bitmap_info.file = fget(fd); 5997 5998 if (mddev->bitmap_info.file == NULL) { 5999 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 6000 mdname(mddev)); 6001 return -EBADF; 6002 } 6003 6004 err = deny_bitmap_write_access(mddev->bitmap_info.file); 6005 if (err) { 6006 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 6007 mdname(mddev)); 6008 fput(mddev->bitmap_info.file); 6009 mddev->bitmap_info.file = NULL; 6010 return err; 6011 } 6012 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6013 } else if (mddev->bitmap == NULL) 6014 return -ENOENT; /* cannot remove what isn't there */ 6015 err = 0; 6016 if (mddev->pers) { 6017 mddev->pers->quiesce(mddev, 1); 6018 if (fd >= 0) { 6019 err = bitmap_create(mddev); 6020 if (!err) 6021 err = bitmap_load(mddev); 6022 } 6023 if (fd < 0 || err) { 6024 bitmap_destroy(mddev); 6025 fd = -1; /* make sure to put the file */ 6026 } 6027 mddev->pers->quiesce(mddev, 0); 6028 } 6029 if (fd < 0) { 6030 if (mddev->bitmap_info.file) { 6031 restore_bitmap_write_access(mddev->bitmap_info.file); 6032 fput(mddev->bitmap_info.file); 6033 } 6034 mddev->bitmap_info.file = NULL; 6035 } 6036 6037 return err; 6038 } 6039 6040 /* 6041 * set_array_info is used two different ways 6042 * The original usage is when creating a new array. 6043 * In this usage, raid_disks is > 0 and it together with 6044 * level, size, not_persistent,layout,chunksize determine the 6045 * shape of the array. 6046 * This will always create an array with a type-0.90.0 superblock. 6047 * The newer usage is when assembling an array. 6048 * In this case raid_disks will be 0, and the major_version field is 6049 * use to determine which style super-blocks are to be found on the devices. 6050 * The minor and patch _version numbers are also kept incase the 6051 * super_block handler wishes to interpret them. 6052 */ 6053 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6054 { 6055 6056 if (info->raid_disks == 0) { 6057 /* just setting version number for superblock loading */ 6058 if (info->major_version < 0 || 6059 info->major_version >= ARRAY_SIZE(super_types) || 6060 super_types[info->major_version].name == NULL) { 6061 /* maybe try to auto-load a module? */ 6062 printk(KERN_INFO 6063 "md: superblock version %d not known\n", 6064 info->major_version); 6065 return -EINVAL; 6066 } 6067 mddev->major_version = info->major_version; 6068 mddev->minor_version = info->minor_version; 6069 mddev->patch_version = info->patch_version; 6070 mddev->persistent = !info->not_persistent; 6071 /* ensure mddev_put doesn't delete this now that there 6072 * is some minimal configuration. 6073 */ 6074 mddev->ctime = get_seconds(); 6075 return 0; 6076 } 6077 mddev->major_version = MD_MAJOR_VERSION; 6078 mddev->minor_version = MD_MINOR_VERSION; 6079 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6080 mddev->ctime = get_seconds(); 6081 6082 mddev->level = info->level; 6083 mddev->clevel[0] = 0; 6084 mddev->dev_sectors = 2 * (sector_t)info->size; 6085 mddev->raid_disks = info->raid_disks; 6086 /* don't set md_minor, it is determined by which /dev/md* was 6087 * openned 6088 */ 6089 if (info->state & (1<<MD_SB_CLEAN)) 6090 mddev->recovery_cp = MaxSector; 6091 else 6092 mddev->recovery_cp = 0; 6093 mddev->persistent = ! info->not_persistent; 6094 mddev->external = 0; 6095 6096 mddev->layout = info->layout; 6097 mddev->chunk_sectors = info->chunk_size >> 9; 6098 6099 mddev->max_disks = MD_SB_DISKS; 6100 6101 if (mddev->persistent) 6102 mddev->flags = 0; 6103 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6104 6105 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6106 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6107 mddev->bitmap_info.offset = 0; 6108 6109 mddev->reshape_position = MaxSector; 6110 6111 /* 6112 * Generate a 128 bit UUID 6113 */ 6114 get_random_bytes(mddev->uuid, 16); 6115 6116 mddev->new_level = mddev->level; 6117 mddev->new_chunk_sectors = mddev->chunk_sectors; 6118 mddev->new_layout = mddev->layout; 6119 mddev->delta_disks = 0; 6120 mddev->reshape_backwards = 0; 6121 6122 return 0; 6123 } 6124 6125 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6126 { 6127 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6128 6129 if (mddev->external_size) 6130 return; 6131 6132 mddev->array_sectors = array_sectors; 6133 } 6134 EXPORT_SYMBOL(md_set_array_sectors); 6135 6136 static int update_size(struct mddev *mddev, sector_t num_sectors) 6137 { 6138 struct md_rdev *rdev; 6139 int rv; 6140 int fit = (num_sectors == 0); 6141 6142 if (mddev->pers->resize == NULL) 6143 return -EINVAL; 6144 /* The "num_sectors" is the number of sectors of each device that 6145 * is used. This can only make sense for arrays with redundancy. 6146 * linear and raid0 always use whatever space is available. We can only 6147 * consider changing this number if no resync or reconstruction is 6148 * happening, and if the new size is acceptable. It must fit before the 6149 * sb_start or, if that is <data_offset, it must fit before the size 6150 * of each device. If num_sectors is zero, we find the largest size 6151 * that fits. 6152 */ 6153 if (mddev->sync_thread) 6154 return -EBUSY; 6155 6156 rdev_for_each(rdev, mddev) { 6157 sector_t avail = rdev->sectors; 6158 6159 if (fit && (num_sectors == 0 || num_sectors > avail)) 6160 num_sectors = avail; 6161 if (avail < num_sectors) 6162 return -ENOSPC; 6163 } 6164 rv = mddev->pers->resize(mddev, num_sectors); 6165 if (!rv) 6166 revalidate_disk(mddev->gendisk); 6167 return rv; 6168 } 6169 6170 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6171 { 6172 int rv; 6173 struct md_rdev *rdev; 6174 /* change the number of raid disks */ 6175 if (mddev->pers->check_reshape == NULL) 6176 return -EINVAL; 6177 if (raid_disks <= 0 || 6178 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6179 return -EINVAL; 6180 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6181 return -EBUSY; 6182 6183 rdev_for_each(rdev, mddev) { 6184 if (mddev->raid_disks < raid_disks && 6185 rdev->data_offset < rdev->new_data_offset) 6186 return -EINVAL; 6187 if (mddev->raid_disks > raid_disks && 6188 rdev->data_offset > rdev->new_data_offset) 6189 return -EINVAL; 6190 } 6191 6192 mddev->delta_disks = raid_disks - mddev->raid_disks; 6193 if (mddev->delta_disks < 0) 6194 mddev->reshape_backwards = 1; 6195 else if (mddev->delta_disks > 0) 6196 mddev->reshape_backwards = 0; 6197 6198 rv = mddev->pers->check_reshape(mddev); 6199 if (rv < 0) { 6200 mddev->delta_disks = 0; 6201 mddev->reshape_backwards = 0; 6202 } 6203 return rv; 6204 } 6205 6206 6207 /* 6208 * update_array_info is used to change the configuration of an 6209 * on-line array. 6210 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6211 * fields in the info are checked against the array. 6212 * Any differences that cannot be handled will cause an error. 6213 * Normally, only one change can be managed at a time. 6214 */ 6215 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6216 { 6217 int rv = 0; 6218 int cnt = 0; 6219 int state = 0; 6220 6221 /* calculate expected state,ignoring low bits */ 6222 if (mddev->bitmap && mddev->bitmap_info.offset) 6223 state |= (1 << MD_SB_BITMAP_PRESENT); 6224 6225 if (mddev->major_version != info->major_version || 6226 mddev->minor_version != info->minor_version || 6227 /* mddev->patch_version != info->patch_version || */ 6228 mddev->ctime != info->ctime || 6229 mddev->level != info->level || 6230 /* mddev->layout != info->layout || */ 6231 !mddev->persistent != info->not_persistent|| 6232 mddev->chunk_sectors != info->chunk_size >> 9 || 6233 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6234 ((state^info->state) & 0xfffffe00) 6235 ) 6236 return -EINVAL; 6237 /* Check there is only one change */ 6238 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6239 cnt++; 6240 if (mddev->raid_disks != info->raid_disks) 6241 cnt++; 6242 if (mddev->layout != info->layout) 6243 cnt++; 6244 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6245 cnt++; 6246 if (cnt == 0) 6247 return 0; 6248 if (cnt > 1) 6249 return -EINVAL; 6250 6251 if (mddev->layout != info->layout) { 6252 /* Change layout 6253 * we don't need to do anything at the md level, the 6254 * personality will take care of it all. 6255 */ 6256 if (mddev->pers->check_reshape == NULL) 6257 return -EINVAL; 6258 else { 6259 mddev->new_layout = info->layout; 6260 rv = mddev->pers->check_reshape(mddev); 6261 if (rv) 6262 mddev->new_layout = mddev->layout; 6263 return rv; 6264 } 6265 } 6266 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6267 rv = update_size(mddev, (sector_t)info->size * 2); 6268 6269 if (mddev->raid_disks != info->raid_disks) 6270 rv = update_raid_disks(mddev, info->raid_disks); 6271 6272 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6273 if (mddev->pers->quiesce == NULL) 6274 return -EINVAL; 6275 if (mddev->recovery || mddev->sync_thread) 6276 return -EBUSY; 6277 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6278 /* add the bitmap */ 6279 if (mddev->bitmap) 6280 return -EEXIST; 6281 if (mddev->bitmap_info.default_offset == 0) 6282 return -EINVAL; 6283 mddev->bitmap_info.offset = 6284 mddev->bitmap_info.default_offset; 6285 mddev->bitmap_info.space = 6286 mddev->bitmap_info.default_space; 6287 mddev->pers->quiesce(mddev, 1); 6288 rv = bitmap_create(mddev); 6289 if (!rv) 6290 rv = bitmap_load(mddev); 6291 if (rv) 6292 bitmap_destroy(mddev); 6293 mddev->pers->quiesce(mddev, 0); 6294 } else { 6295 /* remove the bitmap */ 6296 if (!mddev->bitmap) 6297 return -ENOENT; 6298 if (mddev->bitmap->storage.file) 6299 return -EINVAL; 6300 mddev->pers->quiesce(mddev, 1); 6301 bitmap_destroy(mddev); 6302 mddev->pers->quiesce(mddev, 0); 6303 mddev->bitmap_info.offset = 0; 6304 } 6305 } 6306 md_update_sb(mddev, 1); 6307 return rv; 6308 } 6309 6310 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6311 { 6312 struct md_rdev *rdev; 6313 int err = 0; 6314 6315 if (mddev->pers == NULL) 6316 return -ENODEV; 6317 6318 rcu_read_lock(); 6319 rdev = find_rdev_rcu(mddev, dev); 6320 if (!rdev) 6321 err = -ENODEV; 6322 else { 6323 md_error(mddev, rdev); 6324 if (!test_bit(Faulty, &rdev->flags)) 6325 err = -EBUSY; 6326 } 6327 rcu_read_unlock(); 6328 return err; 6329 } 6330 6331 /* 6332 * We have a problem here : there is no easy way to give a CHS 6333 * virtual geometry. We currently pretend that we have a 2 heads 6334 * 4 sectors (with a BIG number of cylinders...). This drives 6335 * dosfs just mad... ;-) 6336 */ 6337 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6338 { 6339 struct mddev *mddev = bdev->bd_disk->private_data; 6340 6341 geo->heads = 2; 6342 geo->sectors = 4; 6343 geo->cylinders = mddev->array_sectors / 8; 6344 return 0; 6345 } 6346 6347 static inline bool md_ioctl_valid(unsigned int cmd) 6348 { 6349 switch (cmd) { 6350 case ADD_NEW_DISK: 6351 case BLKROSET: 6352 case GET_ARRAY_INFO: 6353 case GET_BITMAP_FILE: 6354 case GET_DISK_INFO: 6355 case HOT_ADD_DISK: 6356 case HOT_REMOVE_DISK: 6357 case PRINT_RAID_DEBUG: 6358 case RAID_AUTORUN: 6359 case RAID_VERSION: 6360 case RESTART_ARRAY_RW: 6361 case RUN_ARRAY: 6362 case SET_ARRAY_INFO: 6363 case SET_BITMAP_FILE: 6364 case SET_DISK_FAULTY: 6365 case STOP_ARRAY: 6366 case STOP_ARRAY_RO: 6367 return true; 6368 default: 6369 return false; 6370 } 6371 } 6372 6373 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6374 unsigned int cmd, unsigned long arg) 6375 { 6376 int err = 0; 6377 void __user *argp = (void __user *)arg; 6378 struct mddev *mddev = NULL; 6379 int ro; 6380 6381 if (!md_ioctl_valid(cmd)) 6382 return -ENOTTY; 6383 6384 switch (cmd) { 6385 case RAID_VERSION: 6386 case GET_ARRAY_INFO: 6387 case GET_DISK_INFO: 6388 break; 6389 default: 6390 if (!capable(CAP_SYS_ADMIN)) 6391 return -EACCES; 6392 } 6393 6394 /* 6395 * Commands dealing with the RAID driver but not any 6396 * particular array: 6397 */ 6398 switch (cmd) { 6399 case RAID_VERSION: 6400 err = get_version(argp); 6401 goto done; 6402 6403 case PRINT_RAID_DEBUG: 6404 err = 0; 6405 md_print_devices(); 6406 goto done; 6407 6408 #ifndef MODULE 6409 case RAID_AUTORUN: 6410 err = 0; 6411 autostart_arrays(arg); 6412 goto done; 6413 #endif 6414 default:; 6415 } 6416 6417 /* 6418 * Commands creating/starting a new array: 6419 */ 6420 6421 mddev = bdev->bd_disk->private_data; 6422 6423 if (!mddev) { 6424 BUG(); 6425 goto abort; 6426 } 6427 6428 /* Some actions do not requires the mutex */ 6429 switch (cmd) { 6430 case GET_ARRAY_INFO: 6431 if (!mddev->raid_disks && !mddev->external) 6432 err = -ENODEV; 6433 else 6434 err = get_array_info(mddev, argp); 6435 goto abort; 6436 6437 case GET_DISK_INFO: 6438 if (!mddev->raid_disks && !mddev->external) 6439 err = -ENODEV; 6440 else 6441 err = get_disk_info(mddev, argp); 6442 goto abort; 6443 6444 case SET_DISK_FAULTY: 6445 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6446 goto abort; 6447 } 6448 6449 if (cmd == ADD_NEW_DISK) 6450 /* need to ensure md_delayed_delete() has completed */ 6451 flush_workqueue(md_misc_wq); 6452 6453 if (cmd == HOT_REMOVE_DISK) 6454 /* need to ensure recovery thread has run */ 6455 wait_event_interruptible_timeout(mddev->sb_wait, 6456 !test_bit(MD_RECOVERY_NEEDED, 6457 &mddev->flags), 6458 msecs_to_jiffies(5000)); 6459 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 6460 /* Need to flush page cache, and ensure no-one else opens 6461 * and writes 6462 */ 6463 mutex_lock(&mddev->open_mutex); 6464 if (atomic_read(&mddev->openers) > 1) { 6465 mutex_unlock(&mddev->open_mutex); 6466 err = -EBUSY; 6467 goto abort; 6468 } 6469 set_bit(MD_STILL_CLOSED, &mddev->flags); 6470 mutex_unlock(&mddev->open_mutex); 6471 sync_blockdev(bdev); 6472 } 6473 err = mddev_lock(mddev); 6474 if (err) { 6475 printk(KERN_INFO 6476 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6477 err, cmd); 6478 goto abort; 6479 } 6480 6481 if (cmd == SET_ARRAY_INFO) { 6482 mdu_array_info_t info; 6483 if (!arg) 6484 memset(&info, 0, sizeof(info)); 6485 else if (copy_from_user(&info, argp, sizeof(info))) { 6486 err = -EFAULT; 6487 goto abort_unlock; 6488 } 6489 if (mddev->pers) { 6490 err = update_array_info(mddev, &info); 6491 if (err) { 6492 printk(KERN_WARNING "md: couldn't update" 6493 " array info. %d\n", err); 6494 goto abort_unlock; 6495 } 6496 goto done_unlock; 6497 } 6498 if (!list_empty(&mddev->disks)) { 6499 printk(KERN_WARNING 6500 "md: array %s already has disks!\n", 6501 mdname(mddev)); 6502 err = -EBUSY; 6503 goto abort_unlock; 6504 } 6505 if (mddev->raid_disks) { 6506 printk(KERN_WARNING 6507 "md: array %s already initialised!\n", 6508 mdname(mddev)); 6509 err = -EBUSY; 6510 goto abort_unlock; 6511 } 6512 err = set_array_info(mddev, &info); 6513 if (err) { 6514 printk(KERN_WARNING "md: couldn't set" 6515 " array info. %d\n", err); 6516 goto abort_unlock; 6517 } 6518 goto done_unlock; 6519 } 6520 6521 /* 6522 * Commands querying/configuring an existing array: 6523 */ 6524 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6525 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6526 if ((!mddev->raid_disks && !mddev->external) 6527 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6528 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6529 && cmd != GET_BITMAP_FILE) { 6530 err = -ENODEV; 6531 goto abort_unlock; 6532 } 6533 6534 /* 6535 * Commands even a read-only array can execute: 6536 */ 6537 switch (cmd) { 6538 case GET_BITMAP_FILE: 6539 err = get_bitmap_file(mddev, argp); 6540 goto done_unlock; 6541 6542 case RESTART_ARRAY_RW: 6543 err = restart_array(mddev); 6544 goto done_unlock; 6545 6546 case STOP_ARRAY: 6547 err = do_md_stop(mddev, 0, bdev); 6548 goto done_unlock; 6549 6550 case STOP_ARRAY_RO: 6551 err = md_set_readonly(mddev, bdev); 6552 goto done_unlock; 6553 6554 case HOT_REMOVE_DISK: 6555 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6556 goto done_unlock; 6557 6558 case ADD_NEW_DISK: 6559 /* We can support ADD_NEW_DISK on read-only arrays 6560 * on if we are re-adding a preexisting device. 6561 * So require mddev->pers and MD_DISK_SYNC. 6562 */ 6563 if (mddev->pers) { 6564 mdu_disk_info_t info; 6565 if (copy_from_user(&info, argp, sizeof(info))) 6566 err = -EFAULT; 6567 else if (!(info.state & (1<<MD_DISK_SYNC))) 6568 /* Need to clear read-only for this */ 6569 break; 6570 else 6571 err = add_new_disk(mddev, &info); 6572 goto done_unlock; 6573 } 6574 break; 6575 6576 case BLKROSET: 6577 if (get_user(ro, (int __user *)(arg))) { 6578 err = -EFAULT; 6579 goto done_unlock; 6580 } 6581 err = -EINVAL; 6582 6583 /* if the bdev is going readonly the value of mddev->ro 6584 * does not matter, no writes are coming 6585 */ 6586 if (ro) 6587 goto done_unlock; 6588 6589 /* are we are already prepared for writes? */ 6590 if (mddev->ro != 1) 6591 goto done_unlock; 6592 6593 /* transitioning to readauto need only happen for 6594 * arrays that call md_write_start 6595 */ 6596 if (mddev->pers) { 6597 err = restart_array(mddev); 6598 if (err == 0) { 6599 mddev->ro = 2; 6600 set_disk_ro(mddev->gendisk, 0); 6601 } 6602 } 6603 goto done_unlock; 6604 } 6605 6606 /* 6607 * The remaining ioctls are changing the state of the 6608 * superblock, so we do not allow them on read-only arrays. 6609 * However non-MD ioctls (e.g. get-size) will still come through 6610 * here and hit the 'default' below, so only disallow 6611 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6612 */ 6613 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6614 if (mddev->ro == 2) { 6615 mddev->ro = 0; 6616 sysfs_notify_dirent_safe(mddev->sysfs_state); 6617 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6618 /* mddev_unlock will wake thread */ 6619 /* If a device failed while we were read-only, we 6620 * need to make sure the metadata is updated now. 6621 */ 6622 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 6623 mddev_unlock(mddev); 6624 wait_event(mddev->sb_wait, 6625 !test_bit(MD_CHANGE_DEVS, &mddev->flags) && 6626 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 6627 mddev_lock_nointr(mddev); 6628 } 6629 } else { 6630 err = -EROFS; 6631 goto abort_unlock; 6632 } 6633 } 6634 6635 switch (cmd) { 6636 case ADD_NEW_DISK: 6637 { 6638 mdu_disk_info_t info; 6639 if (copy_from_user(&info, argp, sizeof(info))) 6640 err = -EFAULT; 6641 else 6642 err = add_new_disk(mddev, &info); 6643 goto done_unlock; 6644 } 6645 6646 case HOT_ADD_DISK: 6647 err = hot_add_disk(mddev, new_decode_dev(arg)); 6648 goto done_unlock; 6649 6650 case RUN_ARRAY: 6651 err = do_md_run(mddev); 6652 goto done_unlock; 6653 6654 case SET_BITMAP_FILE: 6655 err = set_bitmap_file(mddev, (int)arg); 6656 goto done_unlock; 6657 6658 default: 6659 err = -EINVAL; 6660 goto abort_unlock; 6661 } 6662 6663 done_unlock: 6664 abort_unlock: 6665 if (mddev->hold_active == UNTIL_IOCTL && 6666 err != -EINVAL) 6667 mddev->hold_active = 0; 6668 mddev_unlock(mddev); 6669 6670 return err; 6671 done: 6672 if (err) 6673 MD_BUG(); 6674 abort: 6675 return err; 6676 } 6677 #ifdef CONFIG_COMPAT 6678 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6679 unsigned int cmd, unsigned long arg) 6680 { 6681 switch (cmd) { 6682 case HOT_REMOVE_DISK: 6683 case HOT_ADD_DISK: 6684 case SET_DISK_FAULTY: 6685 case SET_BITMAP_FILE: 6686 /* These take in integer arg, do not convert */ 6687 break; 6688 default: 6689 arg = (unsigned long)compat_ptr(arg); 6690 break; 6691 } 6692 6693 return md_ioctl(bdev, mode, cmd, arg); 6694 } 6695 #endif /* CONFIG_COMPAT */ 6696 6697 static int md_open(struct block_device *bdev, fmode_t mode) 6698 { 6699 /* 6700 * Succeed if we can lock the mddev, which confirms that 6701 * it isn't being stopped right now. 6702 */ 6703 struct mddev *mddev = mddev_find(bdev->bd_dev); 6704 int err; 6705 6706 if (!mddev) 6707 return -ENODEV; 6708 6709 if (mddev->gendisk != bdev->bd_disk) { 6710 /* we are racing with mddev_put which is discarding this 6711 * bd_disk. 6712 */ 6713 mddev_put(mddev); 6714 /* Wait until bdev->bd_disk is definitely gone */ 6715 flush_workqueue(md_misc_wq); 6716 /* Then retry the open from the top */ 6717 return -ERESTARTSYS; 6718 } 6719 BUG_ON(mddev != bdev->bd_disk->private_data); 6720 6721 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6722 goto out; 6723 6724 err = 0; 6725 atomic_inc(&mddev->openers); 6726 clear_bit(MD_STILL_CLOSED, &mddev->flags); 6727 mutex_unlock(&mddev->open_mutex); 6728 6729 check_disk_change(bdev); 6730 out: 6731 return err; 6732 } 6733 6734 static void md_release(struct gendisk *disk, fmode_t mode) 6735 { 6736 struct mddev *mddev = disk->private_data; 6737 6738 BUG_ON(!mddev); 6739 atomic_dec(&mddev->openers); 6740 mddev_put(mddev); 6741 } 6742 6743 static int md_media_changed(struct gendisk *disk) 6744 { 6745 struct mddev *mddev = disk->private_data; 6746 6747 return mddev->changed; 6748 } 6749 6750 static int md_revalidate(struct gendisk *disk) 6751 { 6752 struct mddev *mddev = disk->private_data; 6753 6754 mddev->changed = 0; 6755 return 0; 6756 } 6757 static const struct block_device_operations md_fops = 6758 { 6759 .owner = THIS_MODULE, 6760 .open = md_open, 6761 .release = md_release, 6762 .ioctl = md_ioctl, 6763 #ifdef CONFIG_COMPAT 6764 .compat_ioctl = md_compat_ioctl, 6765 #endif 6766 .getgeo = md_getgeo, 6767 .media_changed = md_media_changed, 6768 .revalidate_disk= md_revalidate, 6769 }; 6770 6771 static int md_thread(void * arg) 6772 { 6773 struct md_thread *thread = arg; 6774 6775 /* 6776 * md_thread is a 'system-thread', it's priority should be very 6777 * high. We avoid resource deadlocks individually in each 6778 * raid personality. (RAID5 does preallocation) We also use RR and 6779 * the very same RT priority as kswapd, thus we will never get 6780 * into a priority inversion deadlock. 6781 * 6782 * we definitely have to have equal or higher priority than 6783 * bdflush, otherwise bdflush will deadlock if there are too 6784 * many dirty RAID5 blocks. 6785 */ 6786 6787 allow_signal(SIGKILL); 6788 while (!kthread_should_stop()) { 6789 6790 /* We need to wait INTERRUPTIBLE so that 6791 * we don't add to the load-average. 6792 * That means we need to be sure no signals are 6793 * pending 6794 */ 6795 if (signal_pending(current)) 6796 flush_signals(current); 6797 6798 wait_event_interruptible_timeout 6799 (thread->wqueue, 6800 test_bit(THREAD_WAKEUP, &thread->flags) 6801 || kthread_should_stop(), 6802 thread->timeout); 6803 6804 clear_bit(THREAD_WAKEUP, &thread->flags); 6805 if (!kthread_should_stop()) 6806 thread->run(thread); 6807 } 6808 6809 return 0; 6810 } 6811 6812 void md_wakeup_thread(struct md_thread *thread) 6813 { 6814 if (thread) { 6815 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6816 set_bit(THREAD_WAKEUP, &thread->flags); 6817 wake_up(&thread->wqueue); 6818 } 6819 } 6820 6821 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6822 struct mddev *mddev, const char *name) 6823 { 6824 struct md_thread *thread; 6825 6826 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6827 if (!thread) 6828 return NULL; 6829 6830 init_waitqueue_head(&thread->wqueue); 6831 6832 thread->run = run; 6833 thread->mddev = mddev; 6834 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6835 thread->tsk = kthread_run(md_thread, thread, 6836 "%s_%s", 6837 mdname(thread->mddev), 6838 name); 6839 if (IS_ERR(thread->tsk)) { 6840 kfree(thread); 6841 return NULL; 6842 } 6843 return thread; 6844 } 6845 6846 void md_unregister_thread(struct md_thread **threadp) 6847 { 6848 struct md_thread *thread = *threadp; 6849 if (!thread) 6850 return; 6851 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6852 /* Locking ensures that mddev_unlock does not wake_up a 6853 * non-existent thread 6854 */ 6855 spin_lock(&pers_lock); 6856 *threadp = NULL; 6857 spin_unlock(&pers_lock); 6858 6859 kthread_stop(thread->tsk); 6860 kfree(thread); 6861 } 6862 6863 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6864 { 6865 if (!mddev) { 6866 MD_BUG(); 6867 return; 6868 } 6869 6870 if (!rdev || test_bit(Faulty, &rdev->flags)) 6871 return; 6872 6873 if (!mddev->pers || !mddev->pers->error_handler) 6874 return; 6875 mddev->pers->error_handler(mddev,rdev); 6876 if (mddev->degraded) 6877 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6878 sysfs_notify_dirent_safe(rdev->sysfs_state); 6879 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6880 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6881 md_wakeup_thread(mddev->thread); 6882 if (mddev->event_work.func) 6883 queue_work(md_misc_wq, &mddev->event_work); 6884 md_new_event_inintr(mddev); 6885 } 6886 6887 /* seq_file implementation /proc/mdstat */ 6888 6889 static void status_unused(struct seq_file *seq) 6890 { 6891 int i = 0; 6892 struct md_rdev *rdev; 6893 6894 seq_printf(seq, "unused devices: "); 6895 6896 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6897 char b[BDEVNAME_SIZE]; 6898 i++; 6899 seq_printf(seq, "%s ", 6900 bdevname(rdev->bdev,b)); 6901 } 6902 if (!i) 6903 seq_printf(seq, "<none>"); 6904 6905 seq_printf(seq, "\n"); 6906 } 6907 6908 6909 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6910 { 6911 sector_t max_sectors, resync, res; 6912 unsigned long dt, db; 6913 sector_t rt; 6914 int scale; 6915 unsigned int per_milli; 6916 6917 if (mddev->curr_resync <= 3) 6918 resync = 0; 6919 else 6920 resync = mddev->curr_resync 6921 - atomic_read(&mddev->recovery_active); 6922 6923 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6924 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6925 max_sectors = mddev->resync_max_sectors; 6926 else 6927 max_sectors = mddev->dev_sectors; 6928 6929 /* 6930 * Should not happen. 6931 */ 6932 if (!max_sectors) { 6933 MD_BUG(); 6934 return; 6935 } 6936 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6937 * in a sector_t, and (max_sectors>>scale) will fit in a 6938 * u32, as those are the requirements for sector_div. 6939 * Thus 'scale' must be at least 10 6940 */ 6941 scale = 10; 6942 if (sizeof(sector_t) > sizeof(unsigned long)) { 6943 while ( max_sectors/2 > (1ULL<<(scale+32))) 6944 scale++; 6945 } 6946 res = (resync>>scale)*1000; 6947 sector_div(res, (u32)((max_sectors>>scale)+1)); 6948 6949 per_milli = res; 6950 { 6951 int i, x = per_milli/50, y = 20-x; 6952 seq_printf(seq, "["); 6953 for (i = 0; i < x; i++) 6954 seq_printf(seq, "="); 6955 seq_printf(seq, ">"); 6956 for (i = 0; i < y; i++) 6957 seq_printf(seq, "."); 6958 seq_printf(seq, "] "); 6959 } 6960 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6961 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6962 "reshape" : 6963 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6964 "check" : 6965 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6966 "resync" : "recovery"))), 6967 per_milli/10, per_milli % 10, 6968 (unsigned long long) resync/2, 6969 (unsigned long long) max_sectors/2); 6970 6971 /* 6972 * dt: time from mark until now 6973 * db: blocks written from mark until now 6974 * rt: remaining time 6975 * 6976 * rt is a sector_t, so could be 32bit or 64bit. 6977 * So we divide before multiply in case it is 32bit and close 6978 * to the limit. 6979 * We scale the divisor (db) by 32 to avoid losing precision 6980 * near the end of resync when the number of remaining sectors 6981 * is close to 'db'. 6982 * We then divide rt by 32 after multiplying by db to compensate. 6983 * The '+1' avoids division by zero if db is very small. 6984 */ 6985 dt = ((jiffies - mddev->resync_mark) / HZ); 6986 if (!dt) dt++; 6987 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6988 - mddev->resync_mark_cnt; 6989 6990 rt = max_sectors - resync; /* number of remaining sectors */ 6991 sector_div(rt, db/32+1); 6992 rt *= dt; 6993 rt >>= 5; 6994 6995 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6996 ((unsigned long)rt % 60)/6); 6997 6998 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6999 } 7000 7001 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7002 { 7003 struct list_head *tmp; 7004 loff_t l = *pos; 7005 struct mddev *mddev; 7006 7007 if (l >= 0x10000) 7008 return NULL; 7009 if (!l--) 7010 /* header */ 7011 return (void*)1; 7012 7013 spin_lock(&all_mddevs_lock); 7014 list_for_each(tmp,&all_mddevs) 7015 if (!l--) { 7016 mddev = list_entry(tmp, struct mddev, all_mddevs); 7017 mddev_get(mddev); 7018 spin_unlock(&all_mddevs_lock); 7019 return mddev; 7020 } 7021 spin_unlock(&all_mddevs_lock); 7022 if (!l--) 7023 return (void*)2;/* tail */ 7024 return NULL; 7025 } 7026 7027 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7028 { 7029 struct list_head *tmp; 7030 struct mddev *next_mddev, *mddev = v; 7031 7032 ++*pos; 7033 if (v == (void*)2) 7034 return NULL; 7035 7036 spin_lock(&all_mddevs_lock); 7037 if (v == (void*)1) 7038 tmp = all_mddevs.next; 7039 else 7040 tmp = mddev->all_mddevs.next; 7041 if (tmp != &all_mddevs) 7042 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7043 else { 7044 next_mddev = (void*)2; 7045 *pos = 0x10000; 7046 } 7047 spin_unlock(&all_mddevs_lock); 7048 7049 if (v != (void*)1) 7050 mddev_put(mddev); 7051 return next_mddev; 7052 7053 } 7054 7055 static void md_seq_stop(struct seq_file *seq, void *v) 7056 { 7057 struct mddev *mddev = v; 7058 7059 if (mddev && v != (void*)1 && v != (void*)2) 7060 mddev_put(mddev); 7061 } 7062 7063 static int md_seq_show(struct seq_file *seq, void *v) 7064 { 7065 struct mddev *mddev = v; 7066 sector_t sectors; 7067 struct md_rdev *rdev; 7068 7069 if (v == (void*)1) { 7070 struct md_personality *pers; 7071 seq_printf(seq, "Personalities : "); 7072 spin_lock(&pers_lock); 7073 list_for_each_entry(pers, &pers_list, list) 7074 seq_printf(seq, "[%s] ", pers->name); 7075 7076 spin_unlock(&pers_lock); 7077 seq_printf(seq, "\n"); 7078 seq->poll_event = atomic_read(&md_event_count); 7079 return 0; 7080 } 7081 if (v == (void*)2) { 7082 status_unused(seq); 7083 return 0; 7084 } 7085 7086 if (mddev_lock(mddev) < 0) 7087 return -EINTR; 7088 7089 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7090 seq_printf(seq, "%s : %sactive", mdname(mddev), 7091 mddev->pers ? "" : "in"); 7092 if (mddev->pers) { 7093 if (mddev->ro==1) 7094 seq_printf(seq, " (read-only)"); 7095 if (mddev->ro==2) 7096 seq_printf(seq, " (auto-read-only)"); 7097 seq_printf(seq, " %s", mddev->pers->name); 7098 } 7099 7100 sectors = 0; 7101 rdev_for_each(rdev, mddev) { 7102 char b[BDEVNAME_SIZE]; 7103 seq_printf(seq, " %s[%d]", 7104 bdevname(rdev->bdev,b), rdev->desc_nr); 7105 if (test_bit(WriteMostly, &rdev->flags)) 7106 seq_printf(seq, "(W)"); 7107 if (test_bit(Faulty, &rdev->flags)) { 7108 seq_printf(seq, "(F)"); 7109 continue; 7110 } 7111 if (rdev->raid_disk < 0) 7112 seq_printf(seq, "(S)"); /* spare */ 7113 if (test_bit(Replacement, &rdev->flags)) 7114 seq_printf(seq, "(R)"); 7115 sectors += rdev->sectors; 7116 } 7117 7118 if (!list_empty(&mddev->disks)) { 7119 if (mddev->pers) 7120 seq_printf(seq, "\n %llu blocks", 7121 (unsigned long long) 7122 mddev->array_sectors / 2); 7123 else 7124 seq_printf(seq, "\n %llu blocks", 7125 (unsigned long long)sectors / 2); 7126 } 7127 if (mddev->persistent) { 7128 if (mddev->major_version != 0 || 7129 mddev->minor_version != 90) { 7130 seq_printf(seq," super %d.%d", 7131 mddev->major_version, 7132 mddev->minor_version); 7133 } 7134 } else if (mddev->external) 7135 seq_printf(seq, " super external:%s", 7136 mddev->metadata_type); 7137 else 7138 seq_printf(seq, " super non-persistent"); 7139 7140 if (mddev->pers) { 7141 mddev->pers->status(seq, mddev); 7142 seq_printf(seq, "\n "); 7143 if (mddev->pers->sync_request) { 7144 if (mddev->curr_resync > 2) { 7145 status_resync(seq, mddev); 7146 seq_printf(seq, "\n "); 7147 } else if (mddev->curr_resync >= 1) 7148 seq_printf(seq, "\tresync=DELAYED\n "); 7149 else if (mddev->recovery_cp < MaxSector) 7150 seq_printf(seq, "\tresync=PENDING\n "); 7151 } 7152 } else 7153 seq_printf(seq, "\n "); 7154 7155 bitmap_status(seq, mddev->bitmap); 7156 7157 seq_printf(seq, "\n"); 7158 } 7159 mddev_unlock(mddev); 7160 7161 return 0; 7162 } 7163 7164 static const struct seq_operations md_seq_ops = { 7165 .start = md_seq_start, 7166 .next = md_seq_next, 7167 .stop = md_seq_stop, 7168 .show = md_seq_show, 7169 }; 7170 7171 static int md_seq_open(struct inode *inode, struct file *file) 7172 { 7173 struct seq_file *seq; 7174 int error; 7175 7176 error = seq_open(file, &md_seq_ops); 7177 if (error) 7178 return error; 7179 7180 seq = file->private_data; 7181 seq->poll_event = atomic_read(&md_event_count); 7182 return error; 7183 } 7184 7185 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7186 { 7187 struct seq_file *seq = filp->private_data; 7188 int mask; 7189 7190 poll_wait(filp, &md_event_waiters, wait); 7191 7192 /* always allow read */ 7193 mask = POLLIN | POLLRDNORM; 7194 7195 if (seq->poll_event != atomic_read(&md_event_count)) 7196 mask |= POLLERR | POLLPRI; 7197 return mask; 7198 } 7199 7200 static const struct file_operations md_seq_fops = { 7201 .owner = THIS_MODULE, 7202 .open = md_seq_open, 7203 .read = seq_read, 7204 .llseek = seq_lseek, 7205 .release = seq_release_private, 7206 .poll = mdstat_poll, 7207 }; 7208 7209 int register_md_personality(struct md_personality *p) 7210 { 7211 spin_lock(&pers_lock); 7212 list_add_tail(&p->list, &pers_list); 7213 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7214 spin_unlock(&pers_lock); 7215 return 0; 7216 } 7217 7218 int unregister_md_personality(struct md_personality *p) 7219 { 7220 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7221 spin_lock(&pers_lock); 7222 list_del_init(&p->list); 7223 spin_unlock(&pers_lock); 7224 return 0; 7225 } 7226 7227 static int is_mddev_idle(struct mddev *mddev, int init) 7228 { 7229 struct md_rdev * rdev; 7230 int idle; 7231 int curr_events; 7232 7233 idle = 1; 7234 rcu_read_lock(); 7235 rdev_for_each_rcu(rdev, mddev) { 7236 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7237 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7238 (int)part_stat_read(&disk->part0, sectors[1]) - 7239 atomic_read(&disk->sync_io); 7240 /* sync IO will cause sync_io to increase before the disk_stats 7241 * as sync_io is counted when a request starts, and 7242 * disk_stats is counted when it completes. 7243 * So resync activity will cause curr_events to be smaller than 7244 * when there was no such activity. 7245 * non-sync IO will cause disk_stat to increase without 7246 * increasing sync_io so curr_events will (eventually) 7247 * be larger than it was before. Once it becomes 7248 * substantially larger, the test below will cause 7249 * the array to appear non-idle, and resync will slow 7250 * down. 7251 * If there is a lot of outstanding resync activity when 7252 * we set last_event to curr_events, then all that activity 7253 * completing might cause the array to appear non-idle 7254 * and resync will be slowed down even though there might 7255 * not have been non-resync activity. This will only 7256 * happen once though. 'last_events' will soon reflect 7257 * the state where there is little or no outstanding 7258 * resync requests, and further resync activity will 7259 * always make curr_events less than last_events. 7260 * 7261 */ 7262 if (init || curr_events - rdev->last_events > 64) { 7263 rdev->last_events = curr_events; 7264 idle = 0; 7265 } 7266 } 7267 rcu_read_unlock(); 7268 return idle; 7269 } 7270 7271 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7272 { 7273 /* another "blocks" (512byte) blocks have been synced */ 7274 atomic_sub(blocks, &mddev->recovery_active); 7275 wake_up(&mddev->recovery_wait); 7276 if (!ok) { 7277 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7278 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 7279 md_wakeup_thread(mddev->thread); 7280 // stop recovery, signal do_sync .... 7281 } 7282 } 7283 7284 7285 /* md_write_start(mddev, bi) 7286 * If we need to update some array metadata (e.g. 'active' flag 7287 * in superblock) before writing, schedule a superblock update 7288 * and wait for it to complete. 7289 */ 7290 void md_write_start(struct mddev *mddev, struct bio *bi) 7291 { 7292 int did_change = 0; 7293 if (bio_data_dir(bi) != WRITE) 7294 return; 7295 7296 BUG_ON(mddev->ro == 1); 7297 if (mddev->ro == 2) { 7298 /* need to switch to read/write */ 7299 mddev->ro = 0; 7300 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7301 md_wakeup_thread(mddev->thread); 7302 md_wakeup_thread(mddev->sync_thread); 7303 did_change = 1; 7304 } 7305 atomic_inc(&mddev->writes_pending); 7306 if (mddev->safemode == 1) 7307 mddev->safemode = 0; 7308 if (mddev->in_sync) { 7309 spin_lock_irq(&mddev->write_lock); 7310 if (mddev->in_sync) { 7311 mddev->in_sync = 0; 7312 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7313 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7314 md_wakeup_thread(mddev->thread); 7315 did_change = 1; 7316 } 7317 spin_unlock_irq(&mddev->write_lock); 7318 } 7319 if (did_change) 7320 sysfs_notify_dirent_safe(mddev->sysfs_state); 7321 wait_event(mddev->sb_wait, 7322 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7323 } 7324 7325 void md_write_end(struct mddev *mddev) 7326 { 7327 if (atomic_dec_and_test(&mddev->writes_pending)) { 7328 if (mddev->safemode == 2) 7329 md_wakeup_thread(mddev->thread); 7330 else if (mddev->safemode_delay) 7331 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7332 } 7333 } 7334 7335 /* md_allow_write(mddev) 7336 * Calling this ensures that the array is marked 'active' so that writes 7337 * may proceed without blocking. It is important to call this before 7338 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7339 * Must be called with mddev_lock held. 7340 * 7341 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7342 * is dropped, so return -EAGAIN after notifying userspace. 7343 */ 7344 int md_allow_write(struct mddev *mddev) 7345 { 7346 if (!mddev->pers) 7347 return 0; 7348 if (mddev->ro) 7349 return 0; 7350 if (!mddev->pers->sync_request) 7351 return 0; 7352 7353 spin_lock_irq(&mddev->write_lock); 7354 if (mddev->in_sync) { 7355 mddev->in_sync = 0; 7356 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7357 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7358 if (mddev->safemode_delay && 7359 mddev->safemode == 0) 7360 mddev->safemode = 1; 7361 spin_unlock_irq(&mddev->write_lock); 7362 md_update_sb(mddev, 0); 7363 sysfs_notify_dirent_safe(mddev->sysfs_state); 7364 } else 7365 spin_unlock_irq(&mddev->write_lock); 7366 7367 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7368 return -EAGAIN; 7369 else 7370 return 0; 7371 } 7372 EXPORT_SYMBOL_GPL(md_allow_write); 7373 7374 #define SYNC_MARKS 10 7375 #define SYNC_MARK_STEP (3*HZ) 7376 #define UPDATE_FREQUENCY (5*60*HZ) 7377 void md_do_sync(struct md_thread *thread) 7378 { 7379 struct mddev *mddev = thread->mddev; 7380 struct mddev *mddev2; 7381 unsigned int currspeed = 0, 7382 window; 7383 sector_t max_sectors,j, io_sectors; 7384 unsigned long mark[SYNC_MARKS]; 7385 unsigned long update_time; 7386 sector_t mark_cnt[SYNC_MARKS]; 7387 int last_mark,m; 7388 struct list_head *tmp; 7389 sector_t last_check; 7390 int skipped = 0; 7391 struct md_rdev *rdev; 7392 char *desc, *action = NULL; 7393 struct blk_plug plug; 7394 7395 /* just incase thread restarts... */ 7396 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7397 return; 7398 if (mddev->ro) /* never try to sync a read-only array */ 7399 return; 7400 7401 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7402 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 7403 desc = "data-check"; 7404 action = "check"; 7405 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7406 desc = "requested-resync"; 7407 action = "repair"; 7408 } else 7409 desc = "resync"; 7410 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7411 desc = "reshape"; 7412 else 7413 desc = "recovery"; 7414 7415 mddev->last_sync_action = action ?: desc; 7416 7417 /* we overload curr_resync somewhat here. 7418 * 0 == not engaged in resync at all 7419 * 2 == checking that there is no conflict with another sync 7420 * 1 == like 2, but have yielded to allow conflicting resync to 7421 * commense 7422 * other == active in resync - this many blocks 7423 * 7424 * Before starting a resync we must have set curr_resync to 7425 * 2, and then checked that every "conflicting" array has curr_resync 7426 * less than ours. When we find one that is the same or higher 7427 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7428 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7429 * This will mean we have to start checking from the beginning again. 7430 * 7431 */ 7432 7433 do { 7434 mddev->curr_resync = 2; 7435 7436 try_again: 7437 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7438 goto skip; 7439 for_each_mddev(mddev2, tmp) { 7440 if (mddev2 == mddev) 7441 continue; 7442 if (!mddev->parallel_resync 7443 && mddev2->curr_resync 7444 && match_mddev_units(mddev, mddev2)) { 7445 DEFINE_WAIT(wq); 7446 if (mddev < mddev2 && mddev->curr_resync == 2) { 7447 /* arbitrarily yield */ 7448 mddev->curr_resync = 1; 7449 wake_up(&resync_wait); 7450 } 7451 if (mddev > mddev2 && mddev->curr_resync == 1) 7452 /* no need to wait here, we can wait the next 7453 * time 'round when curr_resync == 2 7454 */ 7455 continue; 7456 /* We need to wait 'interruptible' so as not to 7457 * contribute to the load average, and not to 7458 * be caught by 'softlockup' 7459 */ 7460 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7461 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7462 mddev2->curr_resync >= mddev->curr_resync) { 7463 printk(KERN_INFO "md: delaying %s of %s" 7464 " until %s has finished (they" 7465 " share one or more physical units)\n", 7466 desc, mdname(mddev), mdname(mddev2)); 7467 mddev_put(mddev2); 7468 if (signal_pending(current)) 7469 flush_signals(current); 7470 schedule(); 7471 finish_wait(&resync_wait, &wq); 7472 goto try_again; 7473 } 7474 finish_wait(&resync_wait, &wq); 7475 } 7476 } 7477 } while (mddev->curr_resync < 2); 7478 7479 j = 0; 7480 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7481 /* resync follows the size requested by the personality, 7482 * which defaults to physical size, but can be virtual size 7483 */ 7484 max_sectors = mddev->resync_max_sectors; 7485 atomic64_set(&mddev->resync_mismatches, 0); 7486 /* we don't use the checkpoint if there's a bitmap */ 7487 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7488 j = mddev->resync_min; 7489 else if (!mddev->bitmap) 7490 j = mddev->recovery_cp; 7491 7492 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7493 max_sectors = mddev->resync_max_sectors; 7494 else { 7495 /* recovery follows the physical size of devices */ 7496 max_sectors = mddev->dev_sectors; 7497 j = MaxSector; 7498 rcu_read_lock(); 7499 rdev_for_each_rcu(rdev, mddev) 7500 if (rdev->raid_disk >= 0 && 7501 !test_bit(Faulty, &rdev->flags) && 7502 !test_bit(In_sync, &rdev->flags) && 7503 rdev->recovery_offset < j) 7504 j = rdev->recovery_offset; 7505 rcu_read_unlock(); 7506 } 7507 7508 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7509 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7510 " %d KB/sec/disk.\n", speed_min(mddev)); 7511 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7512 "(but not more than %d KB/sec) for %s.\n", 7513 speed_max(mddev), desc); 7514 7515 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7516 7517 io_sectors = 0; 7518 for (m = 0; m < SYNC_MARKS; m++) { 7519 mark[m] = jiffies; 7520 mark_cnt[m] = io_sectors; 7521 } 7522 last_mark = 0; 7523 mddev->resync_mark = mark[last_mark]; 7524 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7525 7526 /* 7527 * Tune reconstruction: 7528 */ 7529 window = 32*(PAGE_SIZE/512); 7530 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7531 window/2, (unsigned long long)max_sectors/2); 7532 7533 atomic_set(&mddev->recovery_active, 0); 7534 last_check = 0; 7535 7536 if (j>2) { 7537 printk(KERN_INFO 7538 "md: resuming %s of %s from checkpoint.\n", 7539 desc, mdname(mddev)); 7540 mddev->curr_resync = j; 7541 } else 7542 mddev->curr_resync = 3; /* no longer delayed */ 7543 mddev->curr_resync_completed = j; 7544 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7545 md_new_event(mddev); 7546 update_time = jiffies; 7547 7548 blk_start_plug(&plug); 7549 while (j < max_sectors) { 7550 sector_t sectors; 7551 7552 skipped = 0; 7553 7554 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7555 ((mddev->curr_resync > mddev->curr_resync_completed && 7556 (mddev->curr_resync - mddev->curr_resync_completed) 7557 > (max_sectors >> 4)) || 7558 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 7559 (j - mddev->curr_resync_completed)*2 7560 >= mddev->resync_max - mddev->curr_resync_completed 7561 )) { 7562 /* time to update curr_resync_completed */ 7563 wait_event(mddev->recovery_wait, 7564 atomic_read(&mddev->recovery_active) == 0); 7565 mddev->curr_resync_completed = j; 7566 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 7567 j > mddev->recovery_cp) 7568 mddev->recovery_cp = j; 7569 update_time = jiffies; 7570 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7571 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7572 } 7573 7574 while (j >= mddev->resync_max && 7575 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7576 /* As this condition is controlled by user-space, 7577 * we can block indefinitely, so use '_interruptible' 7578 * to avoid triggering warnings. 7579 */ 7580 flush_signals(current); /* just in case */ 7581 wait_event_interruptible(mddev->recovery_wait, 7582 mddev->resync_max > j 7583 || test_bit(MD_RECOVERY_INTR, 7584 &mddev->recovery)); 7585 } 7586 7587 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7588 break; 7589 7590 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7591 currspeed < speed_min(mddev)); 7592 if (sectors == 0) { 7593 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7594 break; 7595 } 7596 7597 if (!skipped) { /* actual IO requested */ 7598 io_sectors += sectors; 7599 atomic_add(sectors, &mddev->recovery_active); 7600 } 7601 7602 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7603 break; 7604 7605 j += sectors; 7606 if (j > 2) 7607 mddev->curr_resync = j; 7608 mddev->curr_mark_cnt = io_sectors; 7609 if (last_check == 0) 7610 /* this is the earliest that rebuild will be 7611 * visible in /proc/mdstat 7612 */ 7613 md_new_event(mddev); 7614 7615 if (last_check + window > io_sectors || j == max_sectors) 7616 continue; 7617 7618 last_check = io_sectors; 7619 repeat: 7620 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7621 /* step marks */ 7622 int next = (last_mark+1) % SYNC_MARKS; 7623 7624 mddev->resync_mark = mark[next]; 7625 mddev->resync_mark_cnt = mark_cnt[next]; 7626 mark[next] = jiffies; 7627 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7628 last_mark = next; 7629 } 7630 7631 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7632 break; 7633 7634 /* 7635 * this loop exits only if either when we are slower than 7636 * the 'hard' speed limit, or the system was IO-idle for 7637 * a jiffy. 7638 * the system might be non-idle CPU-wise, but we only care 7639 * about not overloading the IO subsystem. (things like an 7640 * e2fsck being done on the RAID array should execute fast) 7641 */ 7642 cond_resched(); 7643 7644 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7645 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7646 7647 if (currspeed > speed_min(mddev)) { 7648 if ((currspeed > speed_max(mddev)) || 7649 !is_mddev_idle(mddev, 0)) { 7650 msleep(500); 7651 goto repeat; 7652 } 7653 } 7654 } 7655 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc, 7656 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 7657 ? "interrupted" : "done"); 7658 /* 7659 * this also signals 'finished resyncing' to md_stop 7660 */ 7661 blk_finish_plug(&plug); 7662 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7663 7664 /* tell personality that we are finished */ 7665 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7666 7667 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7668 mddev->curr_resync > 2) { 7669 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7670 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7671 if (mddev->curr_resync >= mddev->recovery_cp) { 7672 printk(KERN_INFO 7673 "md: checkpointing %s of %s.\n", 7674 desc, mdname(mddev)); 7675 if (test_bit(MD_RECOVERY_ERROR, 7676 &mddev->recovery)) 7677 mddev->recovery_cp = 7678 mddev->curr_resync_completed; 7679 else 7680 mddev->recovery_cp = 7681 mddev->curr_resync; 7682 } 7683 } else 7684 mddev->recovery_cp = MaxSector; 7685 } else { 7686 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7687 mddev->curr_resync = MaxSector; 7688 rcu_read_lock(); 7689 rdev_for_each_rcu(rdev, mddev) 7690 if (rdev->raid_disk >= 0 && 7691 mddev->delta_disks >= 0 && 7692 !test_bit(Faulty, &rdev->flags) && 7693 !test_bit(In_sync, &rdev->flags) && 7694 rdev->recovery_offset < mddev->curr_resync) 7695 rdev->recovery_offset = mddev->curr_resync; 7696 rcu_read_unlock(); 7697 } 7698 } 7699 skip: 7700 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7701 7702 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7703 /* We completed so min/max setting can be forgotten if used. */ 7704 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7705 mddev->resync_min = 0; 7706 mddev->resync_max = MaxSector; 7707 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7708 mddev->resync_min = mddev->curr_resync_completed; 7709 mddev->curr_resync = 0; 7710 wake_up(&resync_wait); 7711 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7712 md_wakeup_thread(mddev->thread); 7713 return; 7714 } 7715 EXPORT_SYMBOL_GPL(md_do_sync); 7716 7717 static int remove_and_add_spares(struct mddev *mddev, 7718 struct md_rdev *this) 7719 { 7720 struct md_rdev *rdev; 7721 int spares = 0; 7722 int removed = 0; 7723 7724 rdev_for_each(rdev, mddev) 7725 if ((this == NULL || rdev == this) && 7726 rdev->raid_disk >= 0 && 7727 !test_bit(Blocked, &rdev->flags) && 7728 (test_bit(Faulty, &rdev->flags) || 7729 ! test_bit(In_sync, &rdev->flags)) && 7730 atomic_read(&rdev->nr_pending)==0) { 7731 if (mddev->pers->hot_remove_disk( 7732 mddev, rdev) == 0) { 7733 sysfs_unlink_rdev(mddev, rdev); 7734 rdev->raid_disk = -1; 7735 removed++; 7736 } 7737 } 7738 if (removed && mddev->kobj.sd) 7739 sysfs_notify(&mddev->kobj, NULL, "degraded"); 7740 7741 if (this) 7742 goto no_add; 7743 7744 rdev_for_each(rdev, mddev) { 7745 if (rdev->raid_disk >= 0 && 7746 !test_bit(In_sync, &rdev->flags) && 7747 !test_bit(Faulty, &rdev->flags)) 7748 spares++; 7749 if (rdev->raid_disk >= 0) 7750 continue; 7751 if (test_bit(Faulty, &rdev->flags)) 7752 continue; 7753 if (mddev->ro && 7754 ! (rdev->saved_raid_disk >= 0 && 7755 !test_bit(Bitmap_sync, &rdev->flags))) 7756 continue; 7757 7758 if (rdev->saved_raid_disk < 0) 7759 rdev->recovery_offset = 0; 7760 if (mddev->pers-> 7761 hot_add_disk(mddev, rdev) == 0) { 7762 if (sysfs_link_rdev(mddev, rdev)) 7763 /* failure here is OK */; 7764 spares++; 7765 md_new_event(mddev); 7766 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7767 } 7768 } 7769 no_add: 7770 if (removed) 7771 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7772 return spares; 7773 } 7774 7775 /* 7776 * This routine is regularly called by all per-raid-array threads to 7777 * deal with generic issues like resync and super-block update. 7778 * Raid personalities that don't have a thread (linear/raid0) do not 7779 * need this as they never do any recovery or update the superblock. 7780 * 7781 * It does not do any resync itself, but rather "forks" off other threads 7782 * to do that as needed. 7783 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7784 * "->recovery" and create a thread at ->sync_thread. 7785 * When the thread finishes it sets MD_RECOVERY_DONE 7786 * and wakeups up this thread which will reap the thread and finish up. 7787 * This thread also removes any faulty devices (with nr_pending == 0). 7788 * 7789 * The overall approach is: 7790 * 1/ if the superblock needs updating, update it. 7791 * 2/ If a recovery thread is running, don't do anything else. 7792 * 3/ If recovery has finished, clean up, possibly marking spares active. 7793 * 4/ If there are any faulty devices, remove them. 7794 * 5/ If array is degraded, try to add spares devices 7795 * 6/ If array has spares or is not in-sync, start a resync thread. 7796 */ 7797 void md_check_recovery(struct mddev *mddev) 7798 { 7799 if (mddev->suspended) 7800 return; 7801 7802 if (mddev->bitmap) 7803 bitmap_daemon_work(mddev); 7804 7805 if (signal_pending(current)) { 7806 if (mddev->pers->sync_request && !mddev->external) { 7807 printk(KERN_INFO "md: %s in immediate safe mode\n", 7808 mdname(mddev)); 7809 mddev->safemode = 2; 7810 } 7811 flush_signals(current); 7812 } 7813 7814 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7815 return; 7816 if ( ! ( 7817 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) || 7818 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7819 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7820 (mddev->external == 0 && mddev->safemode == 1) || 7821 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7822 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7823 )) 7824 return; 7825 7826 if (mddev_trylock(mddev)) { 7827 int spares = 0; 7828 7829 if (mddev->ro) { 7830 /* On a read-only array we can: 7831 * - remove failed devices 7832 * - add already-in_sync devices if the array itself 7833 * is in-sync. 7834 * As we only add devices that are already in-sync, 7835 * we can activate the spares immediately. 7836 */ 7837 remove_and_add_spares(mddev, NULL); 7838 /* There is no thread, but we need to call 7839 * ->spare_active and clear saved_raid_disk 7840 */ 7841 md_reap_sync_thread(mddev); 7842 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7843 goto unlock; 7844 } 7845 7846 if (!mddev->external) { 7847 int did_change = 0; 7848 spin_lock_irq(&mddev->write_lock); 7849 if (mddev->safemode && 7850 !atomic_read(&mddev->writes_pending) && 7851 !mddev->in_sync && 7852 mddev->recovery_cp == MaxSector) { 7853 mddev->in_sync = 1; 7854 did_change = 1; 7855 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7856 } 7857 if (mddev->safemode == 1) 7858 mddev->safemode = 0; 7859 spin_unlock_irq(&mddev->write_lock); 7860 if (did_change) 7861 sysfs_notify_dirent_safe(mddev->sysfs_state); 7862 } 7863 7864 if (mddev->flags & MD_UPDATE_SB_FLAGS) 7865 md_update_sb(mddev, 0); 7866 7867 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7868 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7869 /* resync/recovery still happening */ 7870 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7871 goto unlock; 7872 } 7873 if (mddev->sync_thread) { 7874 md_reap_sync_thread(mddev); 7875 goto unlock; 7876 } 7877 /* Set RUNNING before clearing NEEDED to avoid 7878 * any transients in the value of "sync_action". 7879 */ 7880 mddev->curr_resync_completed = 0; 7881 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7882 /* Clear some bits that don't mean anything, but 7883 * might be left set 7884 */ 7885 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7886 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7887 7888 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7889 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7890 goto unlock; 7891 /* no recovery is running. 7892 * remove any failed drives, then 7893 * add spares if possible. 7894 * Spares are also removed and re-added, to allow 7895 * the personality to fail the re-add. 7896 */ 7897 7898 if (mddev->reshape_position != MaxSector) { 7899 if (mddev->pers->check_reshape == NULL || 7900 mddev->pers->check_reshape(mddev) != 0) 7901 /* Cannot proceed */ 7902 goto unlock; 7903 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7904 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7905 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 7906 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7907 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7908 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7909 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7910 } else if (mddev->recovery_cp < MaxSector) { 7911 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7912 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7913 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7914 /* nothing to be done ... */ 7915 goto unlock; 7916 7917 if (mddev->pers->sync_request) { 7918 if (spares) { 7919 /* We are adding a device or devices to an array 7920 * which has the bitmap stored on all devices. 7921 * So make sure all bitmap pages get written 7922 */ 7923 bitmap_write_all(mddev->bitmap); 7924 } 7925 mddev->sync_thread = md_register_thread(md_do_sync, 7926 mddev, 7927 "resync"); 7928 if (!mddev->sync_thread) { 7929 printk(KERN_ERR "%s: could not start resync" 7930 " thread...\n", 7931 mdname(mddev)); 7932 /* leave the spares where they are, it shouldn't hurt */ 7933 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7934 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7935 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7936 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7938 } else 7939 md_wakeup_thread(mddev->sync_thread); 7940 sysfs_notify_dirent_safe(mddev->sysfs_action); 7941 md_new_event(mddev); 7942 } 7943 unlock: 7944 wake_up(&mddev->sb_wait); 7945 7946 if (!mddev->sync_thread) { 7947 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7948 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7949 &mddev->recovery)) 7950 if (mddev->sysfs_action) 7951 sysfs_notify_dirent_safe(mddev->sysfs_action); 7952 } 7953 mddev_unlock(mddev); 7954 } 7955 } 7956 7957 void md_reap_sync_thread(struct mddev *mddev) 7958 { 7959 struct md_rdev *rdev; 7960 7961 /* resync has finished, collect result */ 7962 md_unregister_thread(&mddev->sync_thread); 7963 wake_up(&resync_wait); 7964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7965 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7966 /* success...*/ 7967 /* activate any spares */ 7968 if (mddev->pers->spare_active(mddev)) { 7969 sysfs_notify(&mddev->kobj, NULL, 7970 "degraded"); 7971 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7972 } 7973 } 7974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7975 mddev->pers->finish_reshape) 7976 mddev->pers->finish_reshape(mddev); 7977 7978 /* If array is no-longer degraded, then any saved_raid_disk 7979 * information must be scrapped. 7980 */ 7981 if (!mddev->degraded) 7982 rdev_for_each(rdev, mddev) 7983 rdev->saved_raid_disk = -1; 7984 7985 md_update_sb(mddev, 1); 7986 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7987 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7988 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7989 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7990 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7991 /* flag recovery needed just to double check */ 7992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7993 sysfs_notify_dirent_safe(mddev->sysfs_action); 7994 md_new_event(mddev); 7995 if (mddev->event_work.func) 7996 queue_work(md_misc_wq, &mddev->event_work); 7997 } 7998 7999 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8000 { 8001 sysfs_notify_dirent_safe(rdev->sysfs_state); 8002 wait_event_timeout(rdev->blocked_wait, 8003 !test_bit(Blocked, &rdev->flags) && 8004 !test_bit(BlockedBadBlocks, &rdev->flags), 8005 msecs_to_jiffies(5000)); 8006 rdev_dec_pending(rdev, mddev); 8007 } 8008 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8009 8010 void md_finish_reshape(struct mddev *mddev) 8011 { 8012 /* called be personality module when reshape completes. */ 8013 struct md_rdev *rdev; 8014 8015 rdev_for_each(rdev, mddev) { 8016 if (rdev->data_offset > rdev->new_data_offset) 8017 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8018 else 8019 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8020 rdev->data_offset = rdev->new_data_offset; 8021 } 8022 } 8023 EXPORT_SYMBOL(md_finish_reshape); 8024 8025 /* Bad block management. 8026 * We can record which blocks on each device are 'bad' and so just 8027 * fail those blocks, or that stripe, rather than the whole device. 8028 * Entries in the bad-block table are 64bits wide. This comprises: 8029 * Length of bad-range, in sectors: 0-511 for lengths 1-512 8030 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 8031 * A 'shift' can be set so that larger blocks are tracked and 8032 * consequently larger devices can be covered. 8033 * 'Acknowledged' flag - 1 bit. - the most significant bit. 8034 * 8035 * Locking of the bad-block table uses a seqlock so md_is_badblock 8036 * might need to retry if it is very unlucky. 8037 * We will sometimes want to check for bad blocks in a bi_end_io function, 8038 * so we use the write_seqlock_irq variant. 8039 * 8040 * When looking for a bad block we specify a range and want to 8041 * know if any block in the range is bad. So we binary-search 8042 * to the last range that starts at-or-before the given endpoint, 8043 * (or "before the sector after the target range") 8044 * then see if it ends after the given start. 8045 * We return 8046 * 0 if there are no known bad blocks in the range 8047 * 1 if there are known bad block which are all acknowledged 8048 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 8049 * plus the start/length of the first bad section we overlap. 8050 */ 8051 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 8052 sector_t *first_bad, int *bad_sectors) 8053 { 8054 int hi; 8055 int lo; 8056 u64 *p = bb->page; 8057 int rv; 8058 sector_t target = s + sectors; 8059 unsigned seq; 8060 8061 if (bb->shift > 0) { 8062 /* round the start down, and the end up */ 8063 s >>= bb->shift; 8064 target += (1<<bb->shift) - 1; 8065 target >>= bb->shift; 8066 sectors = target - s; 8067 } 8068 /* 'target' is now the first block after the bad range */ 8069 8070 retry: 8071 seq = read_seqbegin(&bb->lock); 8072 lo = 0; 8073 rv = 0; 8074 hi = bb->count; 8075 8076 /* Binary search between lo and hi for 'target' 8077 * i.e. for the last range that starts before 'target' 8078 */ 8079 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 8080 * are known not to be the last range before target. 8081 * VARIANT: hi-lo is the number of possible 8082 * ranges, and decreases until it reaches 1 8083 */ 8084 while (hi - lo > 1) { 8085 int mid = (lo + hi) / 2; 8086 sector_t a = BB_OFFSET(p[mid]); 8087 if (a < target) 8088 /* This could still be the one, earlier ranges 8089 * could not. */ 8090 lo = mid; 8091 else 8092 /* This and later ranges are definitely out. */ 8093 hi = mid; 8094 } 8095 /* 'lo' might be the last that started before target, but 'hi' isn't */ 8096 if (hi > lo) { 8097 /* need to check all range that end after 's' to see if 8098 * any are unacknowledged. 8099 */ 8100 while (lo >= 0 && 8101 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8102 if (BB_OFFSET(p[lo]) < target) { 8103 /* starts before the end, and finishes after 8104 * the start, so they must overlap 8105 */ 8106 if (rv != -1 && BB_ACK(p[lo])) 8107 rv = 1; 8108 else 8109 rv = -1; 8110 *first_bad = BB_OFFSET(p[lo]); 8111 *bad_sectors = BB_LEN(p[lo]); 8112 } 8113 lo--; 8114 } 8115 } 8116 8117 if (read_seqretry(&bb->lock, seq)) 8118 goto retry; 8119 8120 return rv; 8121 } 8122 EXPORT_SYMBOL_GPL(md_is_badblock); 8123 8124 /* 8125 * Add a range of bad blocks to the table. 8126 * This might extend the table, or might contract it 8127 * if two adjacent ranges can be merged. 8128 * We binary-search to find the 'insertion' point, then 8129 * decide how best to handle it. 8130 */ 8131 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8132 int acknowledged) 8133 { 8134 u64 *p; 8135 int lo, hi; 8136 int rv = 1; 8137 unsigned long flags; 8138 8139 if (bb->shift < 0) 8140 /* badblocks are disabled */ 8141 return 0; 8142 8143 if (bb->shift) { 8144 /* round the start down, and the end up */ 8145 sector_t next = s + sectors; 8146 s >>= bb->shift; 8147 next += (1<<bb->shift) - 1; 8148 next >>= bb->shift; 8149 sectors = next - s; 8150 } 8151 8152 write_seqlock_irqsave(&bb->lock, flags); 8153 8154 p = bb->page; 8155 lo = 0; 8156 hi = bb->count; 8157 /* Find the last range that starts at-or-before 's' */ 8158 while (hi - lo > 1) { 8159 int mid = (lo + hi) / 2; 8160 sector_t a = BB_OFFSET(p[mid]); 8161 if (a <= s) 8162 lo = mid; 8163 else 8164 hi = mid; 8165 } 8166 if (hi > lo && BB_OFFSET(p[lo]) > s) 8167 hi = lo; 8168 8169 if (hi > lo) { 8170 /* we found a range that might merge with the start 8171 * of our new range 8172 */ 8173 sector_t a = BB_OFFSET(p[lo]); 8174 sector_t e = a + BB_LEN(p[lo]); 8175 int ack = BB_ACK(p[lo]); 8176 if (e >= s) { 8177 /* Yes, we can merge with a previous range */ 8178 if (s == a && s + sectors >= e) 8179 /* new range covers old */ 8180 ack = acknowledged; 8181 else 8182 ack = ack && acknowledged; 8183 8184 if (e < s + sectors) 8185 e = s + sectors; 8186 if (e - a <= BB_MAX_LEN) { 8187 p[lo] = BB_MAKE(a, e-a, ack); 8188 s = e; 8189 } else { 8190 /* does not all fit in one range, 8191 * make p[lo] maximal 8192 */ 8193 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8194 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8195 s = a + BB_MAX_LEN; 8196 } 8197 sectors = e - s; 8198 } 8199 } 8200 if (sectors && hi < bb->count) { 8201 /* 'hi' points to the first range that starts after 's'. 8202 * Maybe we can merge with the start of that range */ 8203 sector_t a = BB_OFFSET(p[hi]); 8204 sector_t e = a + BB_LEN(p[hi]); 8205 int ack = BB_ACK(p[hi]); 8206 if (a <= s + sectors) { 8207 /* merging is possible */ 8208 if (e <= s + sectors) { 8209 /* full overlap */ 8210 e = s + sectors; 8211 ack = acknowledged; 8212 } else 8213 ack = ack && acknowledged; 8214 8215 a = s; 8216 if (e - a <= BB_MAX_LEN) { 8217 p[hi] = BB_MAKE(a, e-a, ack); 8218 s = e; 8219 } else { 8220 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8221 s = a + BB_MAX_LEN; 8222 } 8223 sectors = e - s; 8224 lo = hi; 8225 hi++; 8226 } 8227 } 8228 if (sectors == 0 && hi < bb->count) { 8229 /* we might be able to combine lo and hi */ 8230 /* Note: 's' is at the end of 'lo' */ 8231 sector_t a = BB_OFFSET(p[hi]); 8232 int lolen = BB_LEN(p[lo]); 8233 int hilen = BB_LEN(p[hi]); 8234 int newlen = lolen + hilen - (s - a); 8235 if (s >= a && newlen < BB_MAX_LEN) { 8236 /* yes, we can combine them */ 8237 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8238 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8239 memmove(p + hi, p + hi + 1, 8240 (bb->count - hi - 1) * 8); 8241 bb->count--; 8242 } 8243 } 8244 while (sectors) { 8245 /* didn't merge (it all). 8246 * Need to add a range just before 'hi' */ 8247 if (bb->count >= MD_MAX_BADBLOCKS) { 8248 /* No room for more */ 8249 rv = 0; 8250 break; 8251 } else { 8252 int this_sectors = sectors; 8253 memmove(p + hi + 1, p + hi, 8254 (bb->count - hi) * 8); 8255 bb->count++; 8256 8257 if (this_sectors > BB_MAX_LEN) 8258 this_sectors = BB_MAX_LEN; 8259 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8260 sectors -= this_sectors; 8261 s += this_sectors; 8262 } 8263 } 8264 8265 bb->changed = 1; 8266 if (!acknowledged) 8267 bb->unacked_exist = 1; 8268 write_sequnlock_irqrestore(&bb->lock, flags); 8269 8270 return rv; 8271 } 8272 8273 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8274 int is_new) 8275 { 8276 int rv; 8277 if (is_new) 8278 s += rdev->new_data_offset; 8279 else 8280 s += rdev->data_offset; 8281 rv = md_set_badblocks(&rdev->badblocks, 8282 s, sectors, 0); 8283 if (rv) { 8284 /* Make sure they get written out promptly */ 8285 sysfs_notify_dirent_safe(rdev->sysfs_state); 8286 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8287 md_wakeup_thread(rdev->mddev->thread); 8288 } 8289 return rv; 8290 } 8291 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8292 8293 /* 8294 * Remove a range of bad blocks from the table. 8295 * This may involve extending the table if we spilt a region, 8296 * but it must not fail. So if the table becomes full, we just 8297 * drop the remove request. 8298 */ 8299 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8300 { 8301 u64 *p; 8302 int lo, hi; 8303 sector_t target = s + sectors; 8304 int rv = 0; 8305 8306 if (bb->shift > 0) { 8307 /* When clearing we round the start up and the end down. 8308 * This should not matter as the shift should align with 8309 * the block size and no rounding should ever be needed. 8310 * However it is better the think a block is bad when it 8311 * isn't than to think a block is not bad when it is. 8312 */ 8313 s += (1<<bb->shift) - 1; 8314 s >>= bb->shift; 8315 target >>= bb->shift; 8316 sectors = target - s; 8317 } 8318 8319 write_seqlock_irq(&bb->lock); 8320 8321 p = bb->page; 8322 lo = 0; 8323 hi = bb->count; 8324 /* Find the last range that starts before 'target' */ 8325 while (hi - lo > 1) { 8326 int mid = (lo + hi) / 2; 8327 sector_t a = BB_OFFSET(p[mid]); 8328 if (a < target) 8329 lo = mid; 8330 else 8331 hi = mid; 8332 } 8333 if (hi > lo) { 8334 /* p[lo] is the last range that could overlap the 8335 * current range. Earlier ranges could also overlap, 8336 * but only this one can overlap the end of the range. 8337 */ 8338 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8339 /* Partial overlap, leave the tail of this range */ 8340 int ack = BB_ACK(p[lo]); 8341 sector_t a = BB_OFFSET(p[lo]); 8342 sector_t end = a + BB_LEN(p[lo]); 8343 8344 if (a < s) { 8345 /* we need to split this range */ 8346 if (bb->count >= MD_MAX_BADBLOCKS) { 8347 rv = 0; 8348 goto out; 8349 } 8350 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8351 bb->count++; 8352 p[lo] = BB_MAKE(a, s-a, ack); 8353 lo++; 8354 } 8355 p[lo] = BB_MAKE(target, end - target, ack); 8356 /* there is no longer an overlap */ 8357 hi = lo; 8358 lo--; 8359 } 8360 while (lo >= 0 && 8361 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8362 /* This range does overlap */ 8363 if (BB_OFFSET(p[lo]) < s) { 8364 /* Keep the early parts of this range. */ 8365 int ack = BB_ACK(p[lo]); 8366 sector_t start = BB_OFFSET(p[lo]); 8367 p[lo] = BB_MAKE(start, s - start, ack); 8368 /* now low doesn't overlap, so.. */ 8369 break; 8370 } 8371 lo--; 8372 } 8373 /* 'lo' is strictly before, 'hi' is strictly after, 8374 * anything between needs to be discarded 8375 */ 8376 if (hi - lo > 1) { 8377 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8378 bb->count -= (hi - lo - 1); 8379 } 8380 } 8381 8382 bb->changed = 1; 8383 out: 8384 write_sequnlock_irq(&bb->lock); 8385 return rv; 8386 } 8387 8388 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8389 int is_new) 8390 { 8391 if (is_new) 8392 s += rdev->new_data_offset; 8393 else 8394 s += rdev->data_offset; 8395 return md_clear_badblocks(&rdev->badblocks, 8396 s, sectors); 8397 } 8398 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8399 8400 /* 8401 * Acknowledge all bad blocks in a list. 8402 * This only succeeds if ->changed is clear. It is used by 8403 * in-kernel metadata updates 8404 */ 8405 void md_ack_all_badblocks(struct badblocks *bb) 8406 { 8407 if (bb->page == NULL || bb->changed) 8408 /* no point even trying */ 8409 return; 8410 write_seqlock_irq(&bb->lock); 8411 8412 if (bb->changed == 0 && bb->unacked_exist) { 8413 u64 *p = bb->page; 8414 int i; 8415 for (i = 0; i < bb->count ; i++) { 8416 if (!BB_ACK(p[i])) { 8417 sector_t start = BB_OFFSET(p[i]); 8418 int len = BB_LEN(p[i]); 8419 p[i] = BB_MAKE(start, len, 1); 8420 } 8421 } 8422 bb->unacked_exist = 0; 8423 } 8424 write_sequnlock_irq(&bb->lock); 8425 } 8426 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8427 8428 /* sysfs access to bad-blocks list. 8429 * We present two files. 8430 * 'bad-blocks' lists sector numbers and lengths of ranges that 8431 * are recorded as bad. The list is truncated to fit within 8432 * the one-page limit of sysfs. 8433 * Writing "sector length" to this file adds an acknowledged 8434 * bad block list. 8435 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8436 * been acknowledged. Writing to this file adds bad blocks 8437 * without acknowledging them. This is largely for testing. 8438 */ 8439 8440 static ssize_t 8441 badblocks_show(struct badblocks *bb, char *page, int unack) 8442 { 8443 size_t len; 8444 int i; 8445 u64 *p = bb->page; 8446 unsigned seq; 8447 8448 if (bb->shift < 0) 8449 return 0; 8450 8451 retry: 8452 seq = read_seqbegin(&bb->lock); 8453 8454 len = 0; 8455 i = 0; 8456 8457 while (len < PAGE_SIZE && i < bb->count) { 8458 sector_t s = BB_OFFSET(p[i]); 8459 unsigned int length = BB_LEN(p[i]); 8460 int ack = BB_ACK(p[i]); 8461 i++; 8462 8463 if (unack && ack) 8464 continue; 8465 8466 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8467 (unsigned long long)s << bb->shift, 8468 length << bb->shift); 8469 } 8470 if (unack && len == 0) 8471 bb->unacked_exist = 0; 8472 8473 if (read_seqretry(&bb->lock, seq)) 8474 goto retry; 8475 8476 return len; 8477 } 8478 8479 #define DO_DEBUG 1 8480 8481 static ssize_t 8482 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8483 { 8484 unsigned long long sector; 8485 int length; 8486 char newline; 8487 #ifdef DO_DEBUG 8488 /* Allow clearing via sysfs *only* for testing/debugging. 8489 * Normally only a successful write may clear a badblock 8490 */ 8491 int clear = 0; 8492 if (page[0] == '-') { 8493 clear = 1; 8494 page++; 8495 } 8496 #endif /* DO_DEBUG */ 8497 8498 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8499 case 3: 8500 if (newline != '\n') 8501 return -EINVAL; 8502 case 2: 8503 if (length <= 0) 8504 return -EINVAL; 8505 break; 8506 default: 8507 return -EINVAL; 8508 } 8509 8510 #ifdef DO_DEBUG 8511 if (clear) { 8512 md_clear_badblocks(bb, sector, length); 8513 return len; 8514 } 8515 #endif /* DO_DEBUG */ 8516 if (md_set_badblocks(bb, sector, length, !unack)) 8517 return len; 8518 else 8519 return -ENOSPC; 8520 } 8521 8522 static int md_notify_reboot(struct notifier_block *this, 8523 unsigned long code, void *x) 8524 { 8525 struct list_head *tmp; 8526 struct mddev *mddev; 8527 int need_delay = 0; 8528 8529 for_each_mddev(mddev, tmp) { 8530 if (mddev_trylock(mddev)) { 8531 if (mddev->pers) 8532 __md_stop_writes(mddev); 8533 mddev->safemode = 2; 8534 mddev_unlock(mddev); 8535 } 8536 need_delay = 1; 8537 } 8538 /* 8539 * certain more exotic SCSI devices are known to be 8540 * volatile wrt too early system reboots. While the 8541 * right place to handle this issue is the given 8542 * driver, we do want to have a safe RAID driver ... 8543 */ 8544 if (need_delay) 8545 mdelay(1000*1); 8546 8547 return NOTIFY_DONE; 8548 } 8549 8550 static struct notifier_block md_notifier = { 8551 .notifier_call = md_notify_reboot, 8552 .next = NULL, 8553 .priority = INT_MAX, /* before any real devices */ 8554 }; 8555 8556 static void md_geninit(void) 8557 { 8558 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8559 8560 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8561 } 8562 8563 static int __init md_init(void) 8564 { 8565 int ret = -ENOMEM; 8566 8567 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8568 if (!md_wq) 8569 goto err_wq; 8570 8571 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8572 if (!md_misc_wq) 8573 goto err_misc_wq; 8574 8575 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8576 goto err_md; 8577 8578 if ((ret = register_blkdev(0, "mdp")) < 0) 8579 goto err_mdp; 8580 mdp_major = ret; 8581 8582 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8583 md_probe, NULL, NULL); 8584 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8585 md_probe, NULL, NULL); 8586 8587 register_reboot_notifier(&md_notifier); 8588 raid_table_header = register_sysctl_table(raid_root_table); 8589 8590 md_geninit(); 8591 return 0; 8592 8593 err_mdp: 8594 unregister_blkdev(MD_MAJOR, "md"); 8595 err_md: 8596 destroy_workqueue(md_misc_wq); 8597 err_misc_wq: 8598 destroy_workqueue(md_wq); 8599 err_wq: 8600 return ret; 8601 } 8602 8603 #ifndef MODULE 8604 8605 /* 8606 * Searches all registered partitions for autorun RAID arrays 8607 * at boot time. 8608 */ 8609 8610 static LIST_HEAD(all_detected_devices); 8611 struct detected_devices_node { 8612 struct list_head list; 8613 dev_t dev; 8614 }; 8615 8616 void md_autodetect_dev(dev_t dev) 8617 { 8618 struct detected_devices_node *node_detected_dev; 8619 8620 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8621 if (node_detected_dev) { 8622 node_detected_dev->dev = dev; 8623 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8624 } else { 8625 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8626 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8627 } 8628 } 8629 8630 8631 static void autostart_arrays(int part) 8632 { 8633 struct md_rdev *rdev; 8634 struct detected_devices_node *node_detected_dev; 8635 dev_t dev; 8636 int i_scanned, i_passed; 8637 8638 i_scanned = 0; 8639 i_passed = 0; 8640 8641 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8642 8643 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8644 i_scanned++; 8645 node_detected_dev = list_entry(all_detected_devices.next, 8646 struct detected_devices_node, list); 8647 list_del(&node_detected_dev->list); 8648 dev = node_detected_dev->dev; 8649 kfree(node_detected_dev); 8650 rdev = md_import_device(dev,0, 90); 8651 if (IS_ERR(rdev)) 8652 continue; 8653 8654 if (test_bit(Faulty, &rdev->flags)) { 8655 MD_BUG(); 8656 continue; 8657 } 8658 set_bit(AutoDetected, &rdev->flags); 8659 list_add(&rdev->same_set, &pending_raid_disks); 8660 i_passed++; 8661 } 8662 8663 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8664 i_scanned, i_passed); 8665 8666 autorun_devices(part); 8667 } 8668 8669 #endif /* !MODULE */ 8670 8671 static __exit void md_exit(void) 8672 { 8673 struct mddev *mddev; 8674 struct list_head *tmp; 8675 8676 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8677 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8678 8679 unregister_blkdev(MD_MAJOR,"md"); 8680 unregister_blkdev(mdp_major, "mdp"); 8681 unregister_reboot_notifier(&md_notifier); 8682 unregister_sysctl_table(raid_table_header); 8683 remove_proc_entry("mdstat", NULL); 8684 for_each_mddev(mddev, tmp) { 8685 export_array(mddev); 8686 mddev->hold_active = 0; 8687 } 8688 destroy_workqueue(md_misc_wq); 8689 destroy_workqueue(md_wq); 8690 } 8691 8692 subsys_initcall(md_init); 8693 module_exit(md_exit) 8694 8695 static int get_ro(char *buffer, struct kernel_param *kp) 8696 { 8697 return sprintf(buffer, "%d", start_readonly); 8698 } 8699 static int set_ro(const char *val, struct kernel_param *kp) 8700 { 8701 char *e; 8702 int num = simple_strtoul(val, &e, 10); 8703 if (*val && (*e == '\0' || *e == '\n')) { 8704 start_readonly = num; 8705 return 0; 8706 } 8707 return -EINVAL; 8708 } 8709 8710 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8711 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8712 8713 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8714 8715 EXPORT_SYMBOL(register_md_personality); 8716 EXPORT_SYMBOL(unregister_md_personality); 8717 EXPORT_SYMBOL(md_error); 8718 EXPORT_SYMBOL(md_done_sync); 8719 EXPORT_SYMBOL(md_write_start); 8720 EXPORT_SYMBOL(md_write_end); 8721 EXPORT_SYMBOL(md_register_thread); 8722 EXPORT_SYMBOL(md_unregister_thread); 8723 EXPORT_SYMBOL(md_wakeup_thread); 8724 EXPORT_SYMBOL(md_check_recovery); 8725 EXPORT_SYMBOL(md_reap_sync_thread); 8726 MODULE_LICENSE("GPL"); 8727 MODULE_DESCRIPTION("MD RAID framework"); 8728 MODULE_ALIAS("md"); 8729 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8730