1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 /* pers_list is a list of registered personalities protected 72 * by pers_lock. 73 * pers_lock does extra service to protect accesses to 74 * mddev->thread when the mutex cannot be held. 75 */ 76 static LIST_HEAD(pers_list); 77 static DEFINE_SPINLOCK(pers_lock); 78 79 static struct kobj_type md_ktype; 80 81 struct md_cluster_operations *md_cluster_ops; 82 EXPORT_SYMBOL(md_cluster_ops); 83 static struct module *md_cluster_mod; 84 85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 86 static struct workqueue_struct *md_wq; 87 static struct workqueue_struct *md_misc_wq; 88 static struct workqueue_struct *md_rdev_misc_wq; 89 90 static int remove_and_add_spares(struct mddev *mddev, 91 struct md_rdev *this); 92 static void mddev_detach(struct mddev *mddev); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static struct ctl_table raid_dir_table[] = { 312 { 313 .procname = "raid", 314 .maxlen = 0, 315 .mode = S_IRUGO|S_IXUGO, 316 .child = raid_table, 317 }, 318 { } 319 }; 320 321 static struct ctl_table raid_root_table[] = { 322 { 323 .procname = "dev", 324 .maxlen = 0, 325 .mode = 0555, 326 .child = raid_dir_table, 327 }, 328 { } 329 }; 330 331 static int start_readonly; 332 333 /* 334 * The original mechanism for creating an md device is to create 335 * a device node in /dev and to open it. This causes races with device-close. 336 * The preferred method is to write to the "new_array" module parameter. 337 * This can avoid races. 338 * Setting create_on_open to false disables the original mechanism 339 * so all the races disappear. 340 */ 341 static bool create_on_open = true; 342 343 /* 344 * We have a system wide 'event count' that is incremented 345 * on any 'interesting' event, and readers of /proc/mdstat 346 * can use 'poll' or 'select' to find out when the event 347 * count increases. 348 * 349 * Events are: 350 * start array, stop array, error, add device, remove device, 351 * start build, activate spare 352 */ 353 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 354 static atomic_t md_event_count; 355 void md_new_event(struct mddev *mddev) 356 { 357 atomic_inc(&md_event_count); 358 wake_up(&md_event_waiters); 359 } 360 EXPORT_SYMBOL_GPL(md_new_event); 361 362 /* 363 * Enables to iterate over all existing md arrays 364 * all_mddevs_lock protects this list. 365 */ 366 static LIST_HEAD(all_mddevs); 367 static DEFINE_SPINLOCK(all_mddevs_lock); 368 369 /* 370 * iterates through all used mddevs in the system. 371 * We take care to grab the all_mddevs_lock whenever navigating 372 * the list, and to always hold a refcount when unlocked. 373 * Any code which breaks out of this loop while own 374 * a reference to the current mddev and must mddev_put it. 375 */ 376 #define for_each_mddev(_mddev,_tmp) \ 377 \ 378 for (({ spin_lock(&all_mddevs_lock); \ 379 _tmp = all_mddevs.next; \ 380 _mddev = NULL;}); \ 381 ({ if (_tmp != &all_mddevs) \ 382 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 383 spin_unlock(&all_mddevs_lock); \ 384 if (_mddev) mddev_put(_mddev); \ 385 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 386 _tmp != &all_mddevs;}); \ 387 ({ spin_lock(&all_mddevs_lock); \ 388 _tmp = _tmp->next;}) \ 389 ) 390 391 /* Rather than calling directly into the personality make_request function, 392 * IO requests come here first so that we can check if the device is 393 * being suspended pending a reconfiguration. 394 * We hold a refcount over the call to ->make_request. By the time that 395 * call has finished, the bio has been linked into some internal structure 396 * and so is visible to ->quiesce(), so we don't need the refcount any more. 397 */ 398 static bool is_suspended(struct mddev *mddev, struct bio *bio) 399 { 400 if (mddev->suspended) 401 return true; 402 if (bio_data_dir(bio) != WRITE) 403 return false; 404 if (mddev->suspend_lo >= mddev->suspend_hi) 405 return false; 406 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 407 return false; 408 if (bio_end_sector(bio) < mddev->suspend_lo) 409 return false; 410 return true; 411 } 412 413 void md_handle_request(struct mddev *mddev, struct bio *bio) 414 { 415 check_suspended: 416 rcu_read_lock(); 417 if (is_suspended(mddev, bio)) { 418 DEFINE_WAIT(__wait); 419 for (;;) { 420 prepare_to_wait(&mddev->sb_wait, &__wait, 421 TASK_UNINTERRUPTIBLE); 422 if (!is_suspended(mddev, bio)) 423 break; 424 rcu_read_unlock(); 425 schedule(); 426 rcu_read_lock(); 427 } 428 finish_wait(&mddev->sb_wait, &__wait); 429 } 430 atomic_inc(&mddev->active_io); 431 rcu_read_unlock(); 432 433 if (!mddev->pers->make_request(mddev, bio)) { 434 atomic_dec(&mddev->active_io); 435 wake_up(&mddev->sb_wait); 436 goto check_suspended; 437 } 438 439 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 440 wake_up(&mddev->sb_wait); 441 } 442 EXPORT_SYMBOL(md_handle_request); 443 444 struct md_io { 445 struct mddev *mddev; 446 bio_end_io_t *orig_bi_end_io; 447 void *orig_bi_private; 448 struct block_device *orig_bi_bdev; 449 unsigned long start_time; 450 }; 451 452 static void md_end_io(struct bio *bio) 453 { 454 struct md_io *md_io = bio->bi_private; 455 struct mddev *mddev = md_io->mddev; 456 457 bio_end_io_acct_remapped(bio, md_io->start_time, md_io->orig_bi_bdev); 458 459 bio->bi_end_io = md_io->orig_bi_end_io; 460 bio->bi_private = md_io->orig_bi_private; 461 462 mempool_free(md_io, &mddev->md_io_pool); 463 464 if (bio->bi_end_io) 465 bio->bi_end_io(bio); 466 } 467 468 static blk_qc_t md_submit_bio(struct bio *bio) 469 { 470 const int rw = bio_data_dir(bio); 471 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 472 473 if (mddev == NULL || mddev->pers == NULL) { 474 bio_io_error(bio); 475 return BLK_QC_T_NONE; 476 } 477 478 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 479 bio_io_error(bio); 480 return BLK_QC_T_NONE; 481 } 482 483 blk_queue_split(&bio); 484 485 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 486 if (bio_sectors(bio) != 0) 487 bio->bi_status = BLK_STS_IOERR; 488 bio_endio(bio); 489 return BLK_QC_T_NONE; 490 } 491 492 if (bio->bi_end_io != md_end_io) { 493 struct md_io *md_io; 494 495 md_io = mempool_alloc(&mddev->md_io_pool, GFP_NOIO); 496 md_io->mddev = mddev; 497 md_io->orig_bi_end_io = bio->bi_end_io; 498 md_io->orig_bi_private = bio->bi_private; 499 md_io->orig_bi_bdev = bio->bi_bdev; 500 501 bio->bi_end_io = md_end_io; 502 bio->bi_private = md_io; 503 504 md_io->start_time = bio_start_io_acct(bio); 505 } 506 507 /* bio could be mergeable after passing to underlayer */ 508 bio->bi_opf &= ~REQ_NOMERGE; 509 510 md_handle_request(mddev, bio); 511 512 return BLK_QC_T_NONE; 513 } 514 515 /* mddev_suspend makes sure no new requests are submitted 516 * to the device, and that any requests that have been submitted 517 * are completely handled. 518 * Once mddev_detach() is called and completes, the module will be 519 * completely unused. 520 */ 521 void mddev_suspend(struct mddev *mddev) 522 { 523 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 524 lockdep_assert_held(&mddev->reconfig_mutex); 525 if (mddev->suspended++) 526 return; 527 synchronize_rcu(); 528 wake_up(&mddev->sb_wait); 529 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 530 smp_mb__after_atomic(); 531 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 532 mddev->pers->quiesce(mddev, 1); 533 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 534 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 535 536 del_timer_sync(&mddev->safemode_timer); 537 /* restrict memory reclaim I/O during raid array is suspend */ 538 mddev->noio_flag = memalloc_noio_save(); 539 } 540 EXPORT_SYMBOL_GPL(mddev_suspend); 541 542 void mddev_resume(struct mddev *mddev) 543 { 544 /* entred the memalloc scope from mddev_suspend() */ 545 memalloc_noio_restore(mddev->noio_flag); 546 lockdep_assert_held(&mddev->reconfig_mutex); 547 if (--mddev->suspended) 548 return; 549 wake_up(&mddev->sb_wait); 550 mddev->pers->quiesce(mddev, 0); 551 552 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 553 md_wakeup_thread(mddev->thread); 554 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 555 } 556 EXPORT_SYMBOL_GPL(mddev_resume); 557 558 /* 559 * Generic flush handling for md 560 */ 561 562 static void md_end_flush(struct bio *bio) 563 { 564 struct md_rdev *rdev = bio->bi_private; 565 struct mddev *mddev = rdev->mddev; 566 567 rdev_dec_pending(rdev, mddev); 568 569 if (atomic_dec_and_test(&mddev->flush_pending)) { 570 /* The pre-request flush has finished */ 571 queue_work(md_wq, &mddev->flush_work); 572 } 573 bio_put(bio); 574 } 575 576 static void md_submit_flush_data(struct work_struct *ws); 577 578 static void submit_flushes(struct work_struct *ws) 579 { 580 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 581 struct md_rdev *rdev; 582 583 mddev->start_flush = ktime_get_boottime(); 584 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 585 atomic_set(&mddev->flush_pending, 1); 586 rcu_read_lock(); 587 rdev_for_each_rcu(rdev, mddev) 588 if (rdev->raid_disk >= 0 && 589 !test_bit(Faulty, &rdev->flags)) { 590 /* Take two references, one is dropped 591 * when request finishes, one after 592 * we reclaim rcu_read_lock 593 */ 594 struct bio *bi; 595 atomic_inc(&rdev->nr_pending); 596 atomic_inc(&rdev->nr_pending); 597 rcu_read_unlock(); 598 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set); 599 bi->bi_end_io = md_end_flush; 600 bi->bi_private = rdev; 601 bio_set_dev(bi, rdev->bdev); 602 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 603 atomic_inc(&mddev->flush_pending); 604 submit_bio(bi); 605 rcu_read_lock(); 606 rdev_dec_pending(rdev, mddev); 607 } 608 rcu_read_unlock(); 609 if (atomic_dec_and_test(&mddev->flush_pending)) 610 queue_work(md_wq, &mddev->flush_work); 611 } 612 613 static void md_submit_flush_data(struct work_struct *ws) 614 { 615 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 616 struct bio *bio = mddev->flush_bio; 617 618 /* 619 * must reset flush_bio before calling into md_handle_request to avoid a 620 * deadlock, because other bios passed md_handle_request suspend check 621 * could wait for this and below md_handle_request could wait for those 622 * bios because of suspend check 623 */ 624 spin_lock_irq(&mddev->lock); 625 mddev->prev_flush_start = mddev->start_flush; 626 mddev->flush_bio = NULL; 627 spin_unlock_irq(&mddev->lock); 628 wake_up(&mddev->sb_wait); 629 630 if (bio->bi_iter.bi_size == 0) { 631 /* an empty barrier - all done */ 632 bio_endio(bio); 633 } else { 634 bio->bi_opf &= ~REQ_PREFLUSH; 635 md_handle_request(mddev, bio); 636 } 637 } 638 639 /* 640 * Manages consolidation of flushes and submitting any flushes needed for 641 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 642 * being finished in another context. Returns false if the flushing is 643 * complete but still needs the I/O portion of the bio to be processed. 644 */ 645 bool md_flush_request(struct mddev *mddev, struct bio *bio) 646 { 647 ktime_t req_start = ktime_get_boottime(); 648 spin_lock_irq(&mddev->lock); 649 /* flush requests wait until ongoing flush completes, 650 * hence coalescing all the pending requests. 651 */ 652 wait_event_lock_irq(mddev->sb_wait, 653 !mddev->flush_bio || 654 ktime_before(req_start, mddev->prev_flush_start), 655 mddev->lock); 656 /* new request after previous flush is completed */ 657 if (ktime_after(req_start, mddev->prev_flush_start)) { 658 WARN_ON(mddev->flush_bio); 659 mddev->flush_bio = bio; 660 bio = NULL; 661 } 662 spin_unlock_irq(&mddev->lock); 663 664 if (!bio) { 665 INIT_WORK(&mddev->flush_work, submit_flushes); 666 queue_work(md_wq, &mddev->flush_work); 667 } else { 668 /* flush was performed for some other bio while we waited. */ 669 if (bio->bi_iter.bi_size == 0) 670 /* an empty barrier - all done */ 671 bio_endio(bio); 672 else { 673 bio->bi_opf &= ~REQ_PREFLUSH; 674 return false; 675 } 676 } 677 return true; 678 } 679 EXPORT_SYMBOL(md_flush_request); 680 681 static inline struct mddev *mddev_get(struct mddev *mddev) 682 { 683 atomic_inc(&mddev->active); 684 return mddev; 685 } 686 687 static void mddev_delayed_delete(struct work_struct *ws); 688 689 static void mddev_put(struct mddev *mddev) 690 { 691 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 692 return; 693 if (!mddev->raid_disks && list_empty(&mddev->disks) && 694 mddev->ctime == 0 && !mddev->hold_active) { 695 /* Array is not configured at all, and not held active, 696 * so destroy it */ 697 list_del_init(&mddev->all_mddevs); 698 699 /* 700 * Call queue_work inside the spinlock so that 701 * flush_workqueue() after mddev_find will succeed in waiting 702 * for the work to be done. 703 */ 704 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 705 queue_work(md_misc_wq, &mddev->del_work); 706 } 707 spin_unlock(&all_mddevs_lock); 708 } 709 710 static void md_safemode_timeout(struct timer_list *t); 711 712 void mddev_init(struct mddev *mddev) 713 { 714 kobject_init(&mddev->kobj, &md_ktype); 715 mutex_init(&mddev->open_mutex); 716 mutex_init(&mddev->reconfig_mutex); 717 mutex_init(&mddev->bitmap_info.mutex); 718 INIT_LIST_HEAD(&mddev->disks); 719 INIT_LIST_HEAD(&mddev->all_mddevs); 720 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 721 atomic_set(&mddev->active, 1); 722 atomic_set(&mddev->openers, 0); 723 atomic_set(&mddev->active_io, 0); 724 spin_lock_init(&mddev->lock); 725 atomic_set(&mddev->flush_pending, 0); 726 init_waitqueue_head(&mddev->sb_wait); 727 init_waitqueue_head(&mddev->recovery_wait); 728 mddev->reshape_position = MaxSector; 729 mddev->reshape_backwards = 0; 730 mddev->last_sync_action = "none"; 731 mddev->resync_min = 0; 732 mddev->resync_max = MaxSector; 733 mddev->level = LEVEL_NONE; 734 } 735 EXPORT_SYMBOL_GPL(mddev_init); 736 737 static struct mddev *mddev_find_locked(dev_t unit) 738 { 739 struct mddev *mddev; 740 741 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 742 if (mddev->unit == unit) 743 return mddev; 744 745 return NULL; 746 } 747 748 /* find an unused unit number */ 749 static dev_t mddev_alloc_unit(void) 750 { 751 static int next_minor = 512; 752 int start = next_minor; 753 bool is_free = 0; 754 dev_t dev = 0; 755 756 while (!is_free) { 757 dev = MKDEV(MD_MAJOR, next_minor); 758 next_minor++; 759 if (next_minor > MINORMASK) 760 next_minor = 0; 761 if (next_minor == start) 762 return 0; /* Oh dear, all in use. */ 763 is_free = !mddev_find_locked(dev); 764 } 765 766 return dev; 767 } 768 769 static struct mddev *mddev_find(dev_t unit) 770 { 771 struct mddev *mddev; 772 773 if (MAJOR(unit) != MD_MAJOR) 774 unit &= ~((1 << MdpMinorShift) - 1); 775 776 spin_lock(&all_mddevs_lock); 777 mddev = mddev_find_locked(unit); 778 if (mddev) 779 mddev_get(mddev); 780 spin_unlock(&all_mddevs_lock); 781 782 return mddev; 783 } 784 785 static struct mddev *mddev_alloc(dev_t unit) 786 { 787 struct mddev *new; 788 int error; 789 790 if (unit && MAJOR(unit) != MD_MAJOR) 791 unit &= ~((1 << MdpMinorShift) - 1); 792 793 new = kzalloc(sizeof(*new), GFP_KERNEL); 794 if (!new) 795 return ERR_PTR(-ENOMEM); 796 mddev_init(new); 797 798 spin_lock(&all_mddevs_lock); 799 if (unit) { 800 error = -EEXIST; 801 if (mddev_find_locked(unit)) 802 goto out_free_new; 803 new->unit = unit; 804 if (MAJOR(unit) == MD_MAJOR) 805 new->md_minor = MINOR(unit); 806 else 807 new->md_minor = MINOR(unit) >> MdpMinorShift; 808 new->hold_active = UNTIL_IOCTL; 809 } else { 810 error = -ENODEV; 811 new->unit = mddev_alloc_unit(); 812 if (!new->unit) 813 goto out_free_new; 814 new->md_minor = MINOR(new->unit); 815 new->hold_active = UNTIL_STOP; 816 } 817 818 list_add(&new->all_mddevs, &all_mddevs); 819 spin_unlock(&all_mddevs_lock); 820 return new; 821 out_free_new: 822 spin_unlock(&all_mddevs_lock); 823 kfree(new); 824 return ERR_PTR(error); 825 } 826 827 static struct attribute_group md_redundancy_group; 828 829 void mddev_unlock(struct mddev *mddev) 830 { 831 if (mddev->to_remove) { 832 /* These cannot be removed under reconfig_mutex as 833 * an access to the files will try to take reconfig_mutex 834 * while holding the file unremovable, which leads to 835 * a deadlock. 836 * So hold set sysfs_active while the remove in happeing, 837 * and anything else which might set ->to_remove or my 838 * otherwise change the sysfs namespace will fail with 839 * -EBUSY if sysfs_active is still set. 840 * We set sysfs_active under reconfig_mutex and elsewhere 841 * test it under the same mutex to ensure its correct value 842 * is seen. 843 */ 844 struct attribute_group *to_remove = mddev->to_remove; 845 mddev->to_remove = NULL; 846 mddev->sysfs_active = 1; 847 mutex_unlock(&mddev->reconfig_mutex); 848 849 if (mddev->kobj.sd) { 850 if (to_remove != &md_redundancy_group) 851 sysfs_remove_group(&mddev->kobj, to_remove); 852 if (mddev->pers == NULL || 853 mddev->pers->sync_request == NULL) { 854 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 855 if (mddev->sysfs_action) 856 sysfs_put(mddev->sysfs_action); 857 if (mddev->sysfs_completed) 858 sysfs_put(mddev->sysfs_completed); 859 if (mddev->sysfs_degraded) 860 sysfs_put(mddev->sysfs_degraded); 861 mddev->sysfs_action = NULL; 862 mddev->sysfs_completed = NULL; 863 mddev->sysfs_degraded = NULL; 864 } 865 } 866 mddev->sysfs_active = 0; 867 } else 868 mutex_unlock(&mddev->reconfig_mutex); 869 870 /* As we've dropped the mutex we need a spinlock to 871 * make sure the thread doesn't disappear 872 */ 873 spin_lock(&pers_lock); 874 md_wakeup_thread(mddev->thread); 875 wake_up(&mddev->sb_wait); 876 spin_unlock(&pers_lock); 877 } 878 EXPORT_SYMBOL_GPL(mddev_unlock); 879 880 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 881 { 882 struct md_rdev *rdev; 883 884 rdev_for_each_rcu(rdev, mddev) 885 if (rdev->desc_nr == nr) 886 return rdev; 887 888 return NULL; 889 } 890 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 891 892 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 893 { 894 struct md_rdev *rdev; 895 896 rdev_for_each(rdev, mddev) 897 if (rdev->bdev->bd_dev == dev) 898 return rdev; 899 900 return NULL; 901 } 902 903 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 904 { 905 struct md_rdev *rdev; 906 907 rdev_for_each_rcu(rdev, mddev) 908 if (rdev->bdev->bd_dev == dev) 909 return rdev; 910 911 return NULL; 912 } 913 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 914 915 static struct md_personality *find_pers(int level, char *clevel) 916 { 917 struct md_personality *pers; 918 list_for_each_entry(pers, &pers_list, list) { 919 if (level != LEVEL_NONE && pers->level == level) 920 return pers; 921 if (strcmp(pers->name, clevel)==0) 922 return pers; 923 } 924 return NULL; 925 } 926 927 /* return the offset of the super block in 512byte sectors */ 928 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 929 { 930 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 931 return MD_NEW_SIZE_SECTORS(num_sectors); 932 } 933 934 static int alloc_disk_sb(struct md_rdev *rdev) 935 { 936 rdev->sb_page = alloc_page(GFP_KERNEL); 937 if (!rdev->sb_page) 938 return -ENOMEM; 939 return 0; 940 } 941 942 void md_rdev_clear(struct md_rdev *rdev) 943 { 944 if (rdev->sb_page) { 945 put_page(rdev->sb_page); 946 rdev->sb_loaded = 0; 947 rdev->sb_page = NULL; 948 rdev->sb_start = 0; 949 rdev->sectors = 0; 950 } 951 if (rdev->bb_page) { 952 put_page(rdev->bb_page); 953 rdev->bb_page = NULL; 954 } 955 badblocks_exit(&rdev->badblocks); 956 } 957 EXPORT_SYMBOL_GPL(md_rdev_clear); 958 959 static void super_written(struct bio *bio) 960 { 961 struct md_rdev *rdev = bio->bi_private; 962 struct mddev *mddev = rdev->mddev; 963 964 if (bio->bi_status) { 965 pr_err("md: %s gets error=%d\n", __func__, 966 blk_status_to_errno(bio->bi_status)); 967 md_error(mddev, rdev); 968 if (!test_bit(Faulty, &rdev->flags) 969 && (bio->bi_opf & MD_FAILFAST)) { 970 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 971 set_bit(LastDev, &rdev->flags); 972 } 973 } else 974 clear_bit(LastDev, &rdev->flags); 975 976 if (atomic_dec_and_test(&mddev->pending_writes)) 977 wake_up(&mddev->sb_wait); 978 rdev_dec_pending(rdev, mddev); 979 bio_put(bio); 980 } 981 982 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 983 sector_t sector, int size, struct page *page) 984 { 985 /* write first size bytes of page to sector of rdev 986 * Increment mddev->pending_writes before returning 987 * and decrement it on completion, waking up sb_wait 988 * if zero is reached. 989 * If an error occurred, call md_error 990 */ 991 struct bio *bio; 992 int ff = 0; 993 994 if (!page) 995 return; 996 997 if (test_bit(Faulty, &rdev->flags)) 998 return; 999 1000 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 1001 1002 atomic_inc(&rdev->nr_pending); 1003 1004 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 1005 bio->bi_iter.bi_sector = sector; 1006 bio_add_page(bio, page, size, 0); 1007 bio->bi_private = rdev; 1008 bio->bi_end_io = super_written; 1009 1010 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 1011 test_bit(FailFast, &rdev->flags) && 1012 !test_bit(LastDev, &rdev->flags)) 1013 ff = MD_FAILFAST; 1014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1015 1016 atomic_inc(&mddev->pending_writes); 1017 submit_bio(bio); 1018 } 1019 1020 int md_super_wait(struct mddev *mddev) 1021 { 1022 /* wait for all superblock writes that were scheduled to complete */ 1023 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1024 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1025 return -EAGAIN; 1026 return 0; 1027 } 1028 1029 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1030 struct page *page, int op, int op_flags, bool metadata_op) 1031 { 1032 struct bio bio; 1033 struct bio_vec bvec; 1034 1035 bio_init(&bio, &bvec, 1); 1036 1037 if (metadata_op && rdev->meta_bdev) 1038 bio_set_dev(&bio, rdev->meta_bdev); 1039 else 1040 bio_set_dev(&bio, rdev->bdev); 1041 bio.bi_opf = op | op_flags; 1042 if (metadata_op) 1043 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1044 else if (rdev->mddev->reshape_position != MaxSector && 1045 (rdev->mddev->reshape_backwards == 1046 (sector >= rdev->mddev->reshape_position))) 1047 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1048 else 1049 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1050 bio_add_page(&bio, page, size, 0); 1051 1052 submit_bio_wait(&bio); 1053 1054 return !bio.bi_status; 1055 } 1056 EXPORT_SYMBOL_GPL(sync_page_io); 1057 1058 static int read_disk_sb(struct md_rdev *rdev, int size) 1059 { 1060 char b[BDEVNAME_SIZE]; 1061 1062 if (rdev->sb_loaded) 1063 return 0; 1064 1065 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1066 goto fail; 1067 rdev->sb_loaded = 1; 1068 return 0; 1069 1070 fail: 1071 pr_err("md: disabled device %s, could not read superblock.\n", 1072 bdevname(rdev->bdev,b)); 1073 return -EINVAL; 1074 } 1075 1076 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1077 { 1078 return sb1->set_uuid0 == sb2->set_uuid0 && 1079 sb1->set_uuid1 == sb2->set_uuid1 && 1080 sb1->set_uuid2 == sb2->set_uuid2 && 1081 sb1->set_uuid3 == sb2->set_uuid3; 1082 } 1083 1084 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1085 { 1086 int ret; 1087 mdp_super_t *tmp1, *tmp2; 1088 1089 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1090 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1091 1092 if (!tmp1 || !tmp2) { 1093 ret = 0; 1094 goto abort; 1095 } 1096 1097 *tmp1 = *sb1; 1098 *tmp2 = *sb2; 1099 1100 /* 1101 * nr_disks is not constant 1102 */ 1103 tmp1->nr_disks = 0; 1104 tmp2->nr_disks = 0; 1105 1106 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1107 abort: 1108 kfree(tmp1); 1109 kfree(tmp2); 1110 return ret; 1111 } 1112 1113 static u32 md_csum_fold(u32 csum) 1114 { 1115 csum = (csum & 0xffff) + (csum >> 16); 1116 return (csum & 0xffff) + (csum >> 16); 1117 } 1118 1119 static unsigned int calc_sb_csum(mdp_super_t *sb) 1120 { 1121 u64 newcsum = 0; 1122 u32 *sb32 = (u32*)sb; 1123 int i; 1124 unsigned int disk_csum, csum; 1125 1126 disk_csum = sb->sb_csum; 1127 sb->sb_csum = 0; 1128 1129 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1130 newcsum += sb32[i]; 1131 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1132 1133 #ifdef CONFIG_ALPHA 1134 /* This used to use csum_partial, which was wrong for several 1135 * reasons including that different results are returned on 1136 * different architectures. It isn't critical that we get exactly 1137 * the same return value as before (we always csum_fold before 1138 * testing, and that removes any differences). However as we 1139 * know that csum_partial always returned a 16bit value on 1140 * alphas, do a fold to maximise conformity to previous behaviour. 1141 */ 1142 sb->sb_csum = md_csum_fold(disk_csum); 1143 #else 1144 sb->sb_csum = disk_csum; 1145 #endif 1146 return csum; 1147 } 1148 1149 /* 1150 * Handle superblock details. 1151 * We want to be able to handle multiple superblock formats 1152 * so we have a common interface to them all, and an array of 1153 * different handlers. 1154 * We rely on user-space to write the initial superblock, and support 1155 * reading and updating of superblocks. 1156 * Interface methods are: 1157 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1158 * loads and validates a superblock on dev. 1159 * if refdev != NULL, compare superblocks on both devices 1160 * Return: 1161 * 0 - dev has a superblock that is compatible with refdev 1162 * 1 - dev has a superblock that is compatible and newer than refdev 1163 * so dev should be used as the refdev in future 1164 * -EINVAL superblock incompatible or invalid 1165 * -othererror e.g. -EIO 1166 * 1167 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1168 * Verify that dev is acceptable into mddev. 1169 * The first time, mddev->raid_disks will be 0, and data from 1170 * dev should be merged in. Subsequent calls check that dev 1171 * is new enough. Return 0 or -EINVAL 1172 * 1173 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1174 * Update the superblock for rdev with data in mddev 1175 * This does not write to disc. 1176 * 1177 */ 1178 1179 struct super_type { 1180 char *name; 1181 struct module *owner; 1182 int (*load_super)(struct md_rdev *rdev, 1183 struct md_rdev *refdev, 1184 int minor_version); 1185 int (*validate_super)(struct mddev *mddev, 1186 struct md_rdev *rdev); 1187 void (*sync_super)(struct mddev *mddev, 1188 struct md_rdev *rdev); 1189 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1190 sector_t num_sectors); 1191 int (*allow_new_offset)(struct md_rdev *rdev, 1192 unsigned long long new_offset); 1193 }; 1194 1195 /* 1196 * Check that the given mddev has no bitmap. 1197 * 1198 * This function is called from the run method of all personalities that do not 1199 * support bitmaps. It prints an error message and returns non-zero if mddev 1200 * has a bitmap. Otherwise, it returns 0. 1201 * 1202 */ 1203 int md_check_no_bitmap(struct mddev *mddev) 1204 { 1205 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1206 return 0; 1207 pr_warn("%s: bitmaps are not supported for %s\n", 1208 mdname(mddev), mddev->pers->name); 1209 return 1; 1210 } 1211 EXPORT_SYMBOL(md_check_no_bitmap); 1212 1213 /* 1214 * load_super for 0.90.0 1215 */ 1216 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1217 { 1218 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1219 mdp_super_t *sb; 1220 int ret; 1221 bool spare_disk = true; 1222 1223 /* 1224 * Calculate the position of the superblock (512byte sectors), 1225 * it's at the end of the disk. 1226 * 1227 * It also happens to be a multiple of 4Kb. 1228 */ 1229 rdev->sb_start = calc_dev_sboffset(rdev); 1230 1231 ret = read_disk_sb(rdev, MD_SB_BYTES); 1232 if (ret) 1233 return ret; 1234 1235 ret = -EINVAL; 1236 1237 bdevname(rdev->bdev, b); 1238 sb = page_address(rdev->sb_page); 1239 1240 if (sb->md_magic != MD_SB_MAGIC) { 1241 pr_warn("md: invalid raid superblock magic on %s\n", b); 1242 goto abort; 1243 } 1244 1245 if (sb->major_version != 0 || 1246 sb->minor_version < 90 || 1247 sb->minor_version > 91) { 1248 pr_warn("Bad version number %d.%d on %s\n", 1249 sb->major_version, sb->minor_version, b); 1250 goto abort; 1251 } 1252 1253 if (sb->raid_disks <= 0) 1254 goto abort; 1255 1256 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1257 pr_warn("md: invalid superblock checksum on %s\n", b); 1258 goto abort; 1259 } 1260 1261 rdev->preferred_minor = sb->md_minor; 1262 rdev->data_offset = 0; 1263 rdev->new_data_offset = 0; 1264 rdev->sb_size = MD_SB_BYTES; 1265 rdev->badblocks.shift = -1; 1266 1267 if (sb->level == LEVEL_MULTIPATH) 1268 rdev->desc_nr = -1; 1269 else 1270 rdev->desc_nr = sb->this_disk.number; 1271 1272 /* not spare disk, or LEVEL_MULTIPATH */ 1273 if (sb->level == LEVEL_MULTIPATH || 1274 (rdev->desc_nr >= 0 && 1275 rdev->desc_nr < MD_SB_DISKS && 1276 sb->disks[rdev->desc_nr].state & 1277 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1278 spare_disk = false; 1279 1280 if (!refdev) { 1281 if (!spare_disk) 1282 ret = 1; 1283 else 1284 ret = 0; 1285 } else { 1286 __u64 ev1, ev2; 1287 mdp_super_t *refsb = page_address(refdev->sb_page); 1288 if (!md_uuid_equal(refsb, sb)) { 1289 pr_warn("md: %s has different UUID to %s\n", 1290 b, bdevname(refdev->bdev,b2)); 1291 goto abort; 1292 } 1293 if (!md_sb_equal(refsb, sb)) { 1294 pr_warn("md: %s has same UUID but different superblock to %s\n", 1295 b, bdevname(refdev->bdev, b2)); 1296 goto abort; 1297 } 1298 ev1 = md_event(sb); 1299 ev2 = md_event(refsb); 1300 1301 if (!spare_disk && ev1 > ev2) 1302 ret = 1; 1303 else 1304 ret = 0; 1305 } 1306 rdev->sectors = rdev->sb_start; 1307 /* Limit to 4TB as metadata cannot record more than that. 1308 * (not needed for Linear and RAID0 as metadata doesn't 1309 * record this size) 1310 */ 1311 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1312 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1313 1314 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1315 /* "this cannot possibly happen" ... */ 1316 ret = -EINVAL; 1317 1318 abort: 1319 return ret; 1320 } 1321 1322 /* 1323 * validate_super for 0.90.0 1324 */ 1325 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1326 { 1327 mdp_disk_t *desc; 1328 mdp_super_t *sb = page_address(rdev->sb_page); 1329 __u64 ev1 = md_event(sb); 1330 1331 rdev->raid_disk = -1; 1332 clear_bit(Faulty, &rdev->flags); 1333 clear_bit(In_sync, &rdev->flags); 1334 clear_bit(Bitmap_sync, &rdev->flags); 1335 clear_bit(WriteMostly, &rdev->flags); 1336 1337 if (mddev->raid_disks == 0) { 1338 mddev->major_version = 0; 1339 mddev->minor_version = sb->minor_version; 1340 mddev->patch_version = sb->patch_version; 1341 mddev->external = 0; 1342 mddev->chunk_sectors = sb->chunk_size >> 9; 1343 mddev->ctime = sb->ctime; 1344 mddev->utime = sb->utime; 1345 mddev->level = sb->level; 1346 mddev->clevel[0] = 0; 1347 mddev->layout = sb->layout; 1348 mddev->raid_disks = sb->raid_disks; 1349 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1350 mddev->events = ev1; 1351 mddev->bitmap_info.offset = 0; 1352 mddev->bitmap_info.space = 0; 1353 /* bitmap can use 60 K after the 4K superblocks */ 1354 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1355 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1356 mddev->reshape_backwards = 0; 1357 1358 if (mddev->minor_version >= 91) { 1359 mddev->reshape_position = sb->reshape_position; 1360 mddev->delta_disks = sb->delta_disks; 1361 mddev->new_level = sb->new_level; 1362 mddev->new_layout = sb->new_layout; 1363 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1364 if (mddev->delta_disks < 0) 1365 mddev->reshape_backwards = 1; 1366 } else { 1367 mddev->reshape_position = MaxSector; 1368 mddev->delta_disks = 0; 1369 mddev->new_level = mddev->level; 1370 mddev->new_layout = mddev->layout; 1371 mddev->new_chunk_sectors = mddev->chunk_sectors; 1372 } 1373 if (mddev->level == 0) 1374 mddev->layout = -1; 1375 1376 if (sb->state & (1<<MD_SB_CLEAN)) 1377 mddev->recovery_cp = MaxSector; 1378 else { 1379 if (sb->events_hi == sb->cp_events_hi && 1380 sb->events_lo == sb->cp_events_lo) { 1381 mddev->recovery_cp = sb->recovery_cp; 1382 } else 1383 mddev->recovery_cp = 0; 1384 } 1385 1386 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1387 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1388 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1389 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1390 1391 mddev->max_disks = MD_SB_DISKS; 1392 1393 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1394 mddev->bitmap_info.file == NULL) { 1395 mddev->bitmap_info.offset = 1396 mddev->bitmap_info.default_offset; 1397 mddev->bitmap_info.space = 1398 mddev->bitmap_info.default_space; 1399 } 1400 1401 } else if (mddev->pers == NULL) { 1402 /* Insist on good event counter while assembling, except 1403 * for spares (which don't need an event count) */ 1404 ++ev1; 1405 if (sb->disks[rdev->desc_nr].state & ( 1406 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1407 if (ev1 < mddev->events) 1408 return -EINVAL; 1409 } else if (mddev->bitmap) { 1410 /* if adding to array with a bitmap, then we can accept an 1411 * older device ... but not too old. 1412 */ 1413 if (ev1 < mddev->bitmap->events_cleared) 1414 return 0; 1415 if (ev1 < mddev->events) 1416 set_bit(Bitmap_sync, &rdev->flags); 1417 } else { 1418 if (ev1 < mddev->events) 1419 /* just a hot-add of a new device, leave raid_disk at -1 */ 1420 return 0; 1421 } 1422 1423 if (mddev->level != LEVEL_MULTIPATH) { 1424 desc = sb->disks + rdev->desc_nr; 1425 1426 if (desc->state & (1<<MD_DISK_FAULTY)) 1427 set_bit(Faulty, &rdev->flags); 1428 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1429 desc->raid_disk < mddev->raid_disks */) { 1430 set_bit(In_sync, &rdev->flags); 1431 rdev->raid_disk = desc->raid_disk; 1432 rdev->saved_raid_disk = desc->raid_disk; 1433 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1434 /* active but not in sync implies recovery up to 1435 * reshape position. We don't know exactly where 1436 * that is, so set to zero for now */ 1437 if (mddev->minor_version >= 91) { 1438 rdev->recovery_offset = 0; 1439 rdev->raid_disk = desc->raid_disk; 1440 } 1441 } 1442 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1443 set_bit(WriteMostly, &rdev->flags); 1444 if (desc->state & (1<<MD_DISK_FAILFAST)) 1445 set_bit(FailFast, &rdev->flags); 1446 } else /* MULTIPATH are always insync */ 1447 set_bit(In_sync, &rdev->flags); 1448 return 0; 1449 } 1450 1451 /* 1452 * sync_super for 0.90.0 1453 */ 1454 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1455 { 1456 mdp_super_t *sb; 1457 struct md_rdev *rdev2; 1458 int next_spare = mddev->raid_disks; 1459 1460 /* make rdev->sb match mddev data.. 1461 * 1462 * 1/ zero out disks 1463 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1464 * 3/ any empty disks < next_spare become removed 1465 * 1466 * disks[0] gets initialised to REMOVED because 1467 * we cannot be sure from other fields if it has 1468 * been initialised or not. 1469 */ 1470 int i; 1471 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1472 1473 rdev->sb_size = MD_SB_BYTES; 1474 1475 sb = page_address(rdev->sb_page); 1476 1477 memset(sb, 0, sizeof(*sb)); 1478 1479 sb->md_magic = MD_SB_MAGIC; 1480 sb->major_version = mddev->major_version; 1481 sb->patch_version = mddev->patch_version; 1482 sb->gvalid_words = 0; /* ignored */ 1483 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1484 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1485 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1486 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1487 1488 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1489 sb->level = mddev->level; 1490 sb->size = mddev->dev_sectors / 2; 1491 sb->raid_disks = mddev->raid_disks; 1492 sb->md_minor = mddev->md_minor; 1493 sb->not_persistent = 0; 1494 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1495 sb->state = 0; 1496 sb->events_hi = (mddev->events>>32); 1497 sb->events_lo = (u32)mddev->events; 1498 1499 if (mddev->reshape_position == MaxSector) 1500 sb->minor_version = 90; 1501 else { 1502 sb->minor_version = 91; 1503 sb->reshape_position = mddev->reshape_position; 1504 sb->new_level = mddev->new_level; 1505 sb->delta_disks = mddev->delta_disks; 1506 sb->new_layout = mddev->new_layout; 1507 sb->new_chunk = mddev->new_chunk_sectors << 9; 1508 } 1509 mddev->minor_version = sb->minor_version; 1510 if (mddev->in_sync) 1511 { 1512 sb->recovery_cp = mddev->recovery_cp; 1513 sb->cp_events_hi = (mddev->events>>32); 1514 sb->cp_events_lo = (u32)mddev->events; 1515 if (mddev->recovery_cp == MaxSector) 1516 sb->state = (1<< MD_SB_CLEAN); 1517 } else 1518 sb->recovery_cp = 0; 1519 1520 sb->layout = mddev->layout; 1521 sb->chunk_size = mddev->chunk_sectors << 9; 1522 1523 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1524 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1525 1526 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1527 rdev_for_each(rdev2, mddev) { 1528 mdp_disk_t *d; 1529 int desc_nr; 1530 int is_active = test_bit(In_sync, &rdev2->flags); 1531 1532 if (rdev2->raid_disk >= 0 && 1533 sb->minor_version >= 91) 1534 /* we have nowhere to store the recovery_offset, 1535 * but if it is not below the reshape_position, 1536 * we can piggy-back on that. 1537 */ 1538 is_active = 1; 1539 if (rdev2->raid_disk < 0 || 1540 test_bit(Faulty, &rdev2->flags)) 1541 is_active = 0; 1542 if (is_active) 1543 desc_nr = rdev2->raid_disk; 1544 else 1545 desc_nr = next_spare++; 1546 rdev2->desc_nr = desc_nr; 1547 d = &sb->disks[rdev2->desc_nr]; 1548 nr_disks++; 1549 d->number = rdev2->desc_nr; 1550 d->major = MAJOR(rdev2->bdev->bd_dev); 1551 d->minor = MINOR(rdev2->bdev->bd_dev); 1552 if (is_active) 1553 d->raid_disk = rdev2->raid_disk; 1554 else 1555 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1556 if (test_bit(Faulty, &rdev2->flags)) 1557 d->state = (1<<MD_DISK_FAULTY); 1558 else if (is_active) { 1559 d->state = (1<<MD_DISK_ACTIVE); 1560 if (test_bit(In_sync, &rdev2->flags)) 1561 d->state |= (1<<MD_DISK_SYNC); 1562 active++; 1563 working++; 1564 } else { 1565 d->state = 0; 1566 spare++; 1567 working++; 1568 } 1569 if (test_bit(WriteMostly, &rdev2->flags)) 1570 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1571 if (test_bit(FailFast, &rdev2->flags)) 1572 d->state |= (1<<MD_DISK_FAILFAST); 1573 } 1574 /* now set the "removed" and "faulty" bits on any missing devices */ 1575 for (i=0 ; i < mddev->raid_disks ; i++) { 1576 mdp_disk_t *d = &sb->disks[i]; 1577 if (d->state == 0 && d->number == 0) { 1578 d->number = i; 1579 d->raid_disk = i; 1580 d->state = (1<<MD_DISK_REMOVED); 1581 d->state |= (1<<MD_DISK_FAULTY); 1582 failed++; 1583 } 1584 } 1585 sb->nr_disks = nr_disks; 1586 sb->active_disks = active; 1587 sb->working_disks = working; 1588 sb->failed_disks = failed; 1589 sb->spare_disks = spare; 1590 1591 sb->this_disk = sb->disks[rdev->desc_nr]; 1592 sb->sb_csum = calc_sb_csum(sb); 1593 } 1594 1595 /* 1596 * rdev_size_change for 0.90.0 1597 */ 1598 static unsigned long long 1599 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1600 { 1601 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1602 return 0; /* component must fit device */ 1603 if (rdev->mddev->bitmap_info.offset) 1604 return 0; /* can't move bitmap */ 1605 rdev->sb_start = calc_dev_sboffset(rdev); 1606 if (!num_sectors || num_sectors > rdev->sb_start) 1607 num_sectors = rdev->sb_start; 1608 /* Limit to 4TB as metadata cannot record more than that. 1609 * 4TB == 2^32 KB, or 2*2^32 sectors. 1610 */ 1611 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1612 num_sectors = (sector_t)(2ULL << 32) - 2; 1613 do { 1614 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1615 rdev->sb_page); 1616 } while (md_super_wait(rdev->mddev) < 0); 1617 return num_sectors; 1618 } 1619 1620 static int 1621 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1622 { 1623 /* non-zero offset changes not possible with v0.90 */ 1624 return new_offset == 0; 1625 } 1626 1627 /* 1628 * version 1 superblock 1629 */ 1630 1631 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1632 { 1633 __le32 disk_csum; 1634 u32 csum; 1635 unsigned long long newcsum; 1636 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1637 __le32 *isuper = (__le32*)sb; 1638 1639 disk_csum = sb->sb_csum; 1640 sb->sb_csum = 0; 1641 newcsum = 0; 1642 for (; size >= 4; size -= 4) 1643 newcsum += le32_to_cpu(*isuper++); 1644 1645 if (size == 2) 1646 newcsum += le16_to_cpu(*(__le16*) isuper); 1647 1648 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1649 sb->sb_csum = disk_csum; 1650 return cpu_to_le32(csum); 1651 } 1652 1653 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1654 { 1655 struct mdp_superblock_1 *sb; 1656 int ret; 1657 sector_t sb_start; 1658 sector_t sectors; 1659 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1660 int bmask; 1661 bool spare_disk = true; 1662 1663 /* 1664 * Calculate the position of the superblock in 512byte sectors. 1665 * It is always aligned to a 4K boundary and 1666 * depeding on minor_version, it can be: 1667 * 0: At least 8K, but less than 12K, from end of device 1668 * 1: At start of device 1669 * 2: 4K from start of device. 1670 */ 1671 switch(minor_version) { 1672 case 0: 1673 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1674 sb_start -= 8*2; 1675 sb_start &= ~(sector_t)(4*2-1); 1676 break; 1677 case 1: 1678 sb_start = 0; 1679 break; 1680 case 2: 1681 sb_start = 8; 1682 break; 1683 default: 1684 return -EINVAL; 1685 } 1686 rdev->sb_start = sb_start; 1687 1688 /* superblock is rarely larger than 1K, but it can be larger, 1689 * and it is safe to read 4k, so we do that 1690 */ 1691 ret = read_disk_sb(rdev, 4096); 1692 if (ret) return ret; 1693 1694 sb = page_address(rdev->sb_page); 1695 1696 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1697 sb->major_version != cpu_to_le32(1) || 1698 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1699 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1700 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1701 return -EINVAL; 1702 1703 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1704 pr_warn("md: invalid superblock checksum on %s\n", 1705 bdevname(rdev->bdev,b)); 1706 return -EINVAL; 1707 } 1708 if (le64_to_cpu(sb->data_size) < 10) { 1709 pr_warn("md: data_size too small on %s\n", 1710 bdevname(rdev->bdev,b)); 1711 return -EINVAL; 1712 } 1713 if (sb->pad0 || 1714 sb->pad3[0] || 1715 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1716 /* Some padding is non-zero, might be a new feature */ 1717 return -EINVAL; 1718 1719 rdev->preferred_minor = 0xffff; 1720 rdev->data_offset = le64_to_cpu(sb->data_offset); 1721 rdev->new_data_offset = rdev->data_offset; 1722 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1723 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1724 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1725 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1726 1727 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1728 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1729 if (rdev->sb_size & bmask) 1730 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1731 1732 if (minor_version 1733 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1734 return -EINVAL; 1735 if (minor_version 1736 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1737 return -EINVAL; 1738 1739 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1740 rdev->desc_nr = -1; 1741 else 1742 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1743 1744 if (!rdev->bb_page) { 1745 rdev->bb_page = alloc_page(GFP_KERNEL); 1746 if (!rdev->bb_page) 1747 return -ENOMEM; 1748 } 1749 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1750 rdev->badblocks.count == 0) { 1751 /* need to load the bad block list. 1752 * Currently we limit it to one page. 1753 */ 1754 s32 offset; 1755 sector_t bb_sector; 1756 __le64 *bbp; 1757 int i; 1758 int sectors = le16_to_cpu(sb->bblog_size); 1759 if (sectors > (PAGE_SIZE / 512)) 1760 return -EINVAL; 1761 offset = le32_to_cpu(sb->bblog_offset); 1762 if (offset == 0) 1763 return -EINVAL; 1764 bb_sector = (long long)offset; 1765 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1766 rdev->bb_page, REQ_OP_READ, 0, true)) 1767 return -EIO; 1768 bbp = (__le64 *)page_address(rdev->bb_page); 1769 rdev->badblocks.shift = sb->bblog_shift; 1770 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1771 u64 bb = le64_to_cpu(*bbp); 1772 int count = bb & (0x3ff); 1773 u64 sector = bb >> 10; 1774 sector <<= sb->bblog_shift; 1775 count <<= sb->bblog_shift; 1776 if (bb + 1 == 0) 1777 break; 1778 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1779 return -EINVAL; 1780 } 1781 } else if (sb->bblog_offset != 0) 1782 rdev->badblocks.shift = 0; 1783 1784 if ((le32_to_cpu(sb->feature_map) & 1785 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1786 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1787 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1788 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1789 } 1790 1791 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1792 sb->level != 0) 1793 return -EINVAL; 1794 1795 /* not spare disk, or LEVEL_MULTIPATH */ 1796 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1797 (rdev->desc_nr >= 0 && 1798 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1799 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1800 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1801 spare_disk = false; 1802 1803 if (!refdev) { 1804 if (!spare_disk) 1805 ret = 1; 1806 else 1807 ret = 0; 1808 } else { 1809 __u64 ev1, ev2; 1810 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1811 1812 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1813 sb->level != refsb->level || 1814 sb->layout != refsb->layout || 1815 sb->chunksize != refsb->chunksize) { 1816 pr_warn("md: %s has strangely different superblock to %s\n", 1817 bdevname(rdev->bdev,b), 1818 bdevname(refdev->bdev,b2)); 1819 return -EINVAL; 1820 } 1821 ev1 = le64_to_cpu(sb->events); 1822 ev2 = le64_to_cpu(refsb->events); 1823 1824 if (!spare_disk && ev1 > ev2) 1825 ret = 1; 1826 else 1827 ret = 0; 1828 } 1829 if (minor_version) { 1830 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1831 sectors -= rdev->data_offset; 1832 } else 1833 sectors = rdev->sb_start; 1834 if (sectors < le64_to_cpu(sb->data_size)) 1835 return -EINVAL; 1836 rdev->sectors = le64_to_cpu(sb->data_size); 1837 return ret; 1838 } 1839 1840 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1841 { 1842 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1843 __u64 ev1 = le64_to_cpu(sb->events); 1844 1845 rdev->raid_disk = -1; 1846 clear_bit(Faulty, &rdev->flags); 1847 clear_bit(In_sync, &rdev->flags); 1848 clear_bit(Bitmap_sync, &rdev->flags); 1849 clear_bit(WriteMostly, &rdev->flags); 1850 1851 if (mddev->raid_disks == 0) { 1852 mddev->major_version = 1; 1853 mddev->patch_version = 0; 1854 mddev->external = 0; 1855 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1856 mddev->ctime = le64_to_cpu(sb->ctime); 1857 mddev->utime = le64_to_cpu(sb->utime); 1858 mddev->level = le32_to_cpu(sb->level); 1859 mddev->clevel[0] = 0; 1860 mddev->layout = le32_to_cpu(sb->layout); 1861 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1862 mddev->dev_sectors = le64_to_cpu(sb->size); 1863 mddev->events = ev1; 1864 mddev->bitmap_info.offset = 0; 1865 mddev->bitmap_info.space = 0; 1866 /* Default location for bitmap is 1K after superblock 1867 * using 3K - total of 4K 1868 */ 1869 mddev->bitmap_info.default_offset = 1024 >> 9; 1870 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1871 mddev->reshape_backwards = 0; 1872 1873 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1874 memcpy(mddev->uuid, sb->set_uuid, 16); 1875 1876 mddev->max_disks = (4096-256)/2; 1877 1878 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1879 mddev->bitmap_info.file == NULL) { 1880 mddev->bitmap_info.offset = 1881 (__s32)le32_to_cpu(sb->bitmap_offset); 1882 /* Metadata doesn't record how much space is available. 1883 * For 1.0, we assume we can use up to the superblock 1884 * if before, else to 4K beyond superblock. 1885 * For others, assume no change is possible. 1886 */ 1887 if (mddev->minor_version > 0) 1888 mddev->bitmap_info.space = 0; 1889 else if (mddev->bitmap_info.offset > 0) 1890 mddev->bitmap_info.space = 1891 8 - mddev->bitmap_info.offset; 1892 else 1893 mddev->bitmap_info.space = 1894 -mddev->bitmap_info.offset; 1895 } 1896 1897 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1898 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1899 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1900 mddev->new_level = le32_to_cpu(sb->new_level); 1901 mddev->new_layout = le32_to_cpu(sb->new_layout); 1902 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1903 if (mddev->delta_disks < 0 || 1904 (mddev->delta_disks == 0 && 1905 (le32_to_cpu(sb->feature_map) 1906 & MD_FEATURE_RESHAPE_BACKWARDS))) 1907 mddev->reshape_backwards = 1; 1908 } else { 1909 mddev->reshape_position = MaxSector; 1910 mddev->delta_disks = 0; 1911 mddev->new_level = mddev->level; 1912 mddev->new_layout = mddev->layout; 1913 mddev->new_chunk_sectors = mddev->chunk_sectors; 1914 } 1915 1916 if (mddev->level == 0 && 1917 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1918 mddev->layout = -1; 1919 1920 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1921 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1922 1923 if (le32_to_cpu(sb->feature_map) & 1924 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1925 if (le32_to_cpu(sb->feature_map) & 1926 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1927 return -EINVAL; 1928 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1929 (le32_to_cpu(sb->feature_map) & 1930 MD_FEATURE_MULTIPLE_PPLS)) 1931 return -EINVAL; 1932 set_bit(MD_HAS_PPL, &mddev->flags); 1933 } 1934 } else if (mddev->pers == NULL) { 1935 /* Insist of good event counter while assembling, except for 1936 * spares (which don't need an event count) */ 1937 ++ev1; 1938 if (rdev->desc_nr >= 0 && 1939 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1940 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1941 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1942 if (ev1 < mddev->events) 1943 return -EINVAL; 1944 } else if (mddev->bitmap) { 1945 /* If adding to array with a bitmap, then we can accept an 1946 * older device, but not too old. 1947 */ 1948 if (ev1 < mddev->bitmap->events_cleared) 1949 return 0; 1950 if (ev1 < mddev->events) 1951 set_bit(Bitmap_sync, &rdev->flags); 1952 } else { 1953 if (ev1 < mddev->events) 1954 /* just a hot-add of a new device, leave raid_disk at -1 */ 1955 return 0; 1956 } 1957 if (mddev->level != LEVEL_MULTIPATH) { 1958 int role; 1959 if (rdev->desc_nr < 0 || 1960 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1961 role = MD_DISK_ROLE_SPARE; 1962 rdev->desc_nr = -1; 1963 } else 1964 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1965 switch(role) { 1966 case MD_DISK_ROLE_SPARE: /* spare */ 1967 break; 1968 case MD_DISK_ROLE_FAULTY: /* faulty */ 1969 set_bit(Faulty, &rdev->flags); 1970 break; 1971 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1972 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1973 /* journal device without journal feature */ 1974 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1975 return -EINVAL; 1976 } 1977 set_bit(Journal, &rdev->flags); 1978 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1979 rdev->raid_disk = 0; 1980 break; 1981 default: 1982 rdev->saved_raid_disk = role; 1983 if ((le32_to_cpu(sb->feature_map) & 1984 MD_FEATURE_RECOVERY_OFFSET)) { 1985 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1986 if (!(le32_to_cpu(sb->feature_map) & 1987 MD_FEATURE_RECOVERY_BITMAP)) 1988 rdev->saved_raid_disk = -1; 1989 } else { 1990 /* 1991 * If the array is FROZEN, then the device can't 1992 * be in_sync with rest of array. 1993 */ 1994 if (!test_bit(MD_RECOVERY_FROZEN, 1995 &mddev->recovery)) 1996 set_bit(In_sync, &rdev->flags); 1997 } 1998 rdev->raid_disk = role; 1999 break; 2000 } 2001 if (sb->devflags & WriteMostly1) 2002 set_bit(WriteMostly, &rdev->flags); 2003 if (sb->devflags & FailFast1) 2004 set_bit(FailFast, &rdev->flags); 2005 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 2006 set_bit(Replacement, &rdev->flags); 2007 } else /* MULTIPATH are always insync */ 2008 set_bit(In_sync, &rdev->flags); 2009 2010 return 0; 2011 } 2012 2013 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 2014 { 2015 struct mdp_superblock_1 *sb; 2016 struct md_rdev *rdev2; 2017 int max_dev, i; 2018 /* make rdev->sb match mddev and rdev data. */ 2019 2020 sb = page_address(rdev->sb_page); 2021 2022 sb->feature_map = 0; 2023 sb->pad0 = 0; 2024 sb->recovery_offset = cpu_to_le64(0); 2025 memset(sb->pad3, 0, sizeof(sb->pad3)); 2026 2027 sb->utime = cpu_to_le64((__u64)mddev->utime); 2028 sb->events = cpu_to_le64(mddev->events); 2029 if (mddev->in_sync) 2030 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2031 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2032 sb->resync_offset = cpu_to_le64(MaxSector); 2033 else 2034 sb->resync_offset = cpu_to_le64(0); 2035 2036 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2037 2038 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2039 sb->size = cpu_to_le64(mddev->dev_sectors); 2040 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2041 sb->level = cpu_to_le32(mddev->level); 2042 sb->layout = cpu_to_le32(mddev->layout); 2043 if (test_bit(FailFast, &rdev->flags)) 2044 sb->devflags |= FailFast1; 2045 else 2046 sb->devflags &= ~FailFast1; 2047 2048 if (test_bit(WriteMostly, &rdev->flags)) 2049 sb->devflags |= WriteMostly1; 2050 else 2051 sb->devflags &= ~WriteMostly1; 2052 sb->data_offset = cpu_to_le64(rdev->data_offset); 2053 sb->data_size = cpu_to_le64(rdev->sectors); 2054 2055 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2056 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2057 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2058 } 2059 2060 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2061 !test_bit(In_sync, &rdev->flags)) { 2062 sb->feature_map |= 2063 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2064 sb->recovery_offset = 2065 cpu_to_le64(rdev->recovery_offset); 2066 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2067 sb->feature_map |= 2068 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2069 } 2070 /* Note: recovery_offset and journal_tail share space */ 2071 if (test_bit(Journal, &rdev->flags)) 2072 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2073 if (test_bit(Replacement, &rdev->flags)) 2074 sb->feature_map |= 2075 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2076 2077 if (mddev->reshape_position != MaxSector) { 2078 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2079 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2080 sb->new_layout = cpu_to_le32(mddev->new_layout); 2081 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2082 sb->new_level = cpu_to_le32(mddev->new_level); 2083 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2084 if (mddev->delta_disks == 0 && 2085 mddev->reshape_backwards) 2086 sb->feature_map 2087 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2088 if (rdev->new_data_offset != rdev->data_offset) { 2089 sb->feature_map 2090 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2091 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2092 - rdev->data_offset)); 2093 } 2094 } 2095 2096 if (mddev_is_clustered(mddev)) 2097 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2098 2099 if (rdev->badblocks.count == 0) 2100 /* Nothing to do for bad blocks*/ ; 2101 else if (sb->bblog_offset == 0) 2102 /* Cannot record bad blocks on this device */ 2103 md_error(mddev, rdev); 2104 else { 2105 struct badblocks *bb = &rdev->badblocks; 2106 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2107 u64 *p = bb->page; 2108 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2109 if (bb->changed) { 2110 unsigned seq; 2111 2112 retry: 2113 seq = read_seqbegin(&bb->lock); 2114 2115 memset(bbp, 0xff, PAGE_SIZE); 2116 2117 for (i = 0 ; i < bb->count ; i++) { 2118 u64 internal_bb = p[i]; 2119 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2120 | BB_LEN(internal_bb)); 2121 bbp[i] = cpu_to_le64(store_bb); 2122 } 2123 bb->changed = 0; 2124 if (read_seqretry(&bb->lock, seq)) 2125 goto retry; 2126 2127 bb->sector = (rdev->sb_start + 2128 (int)le32_to_cpu(sb->bblog_offset)); 2129 bb->size = le16_to_cpu(sb->bblog_size); 2130 } 2131 } 2132 2133 max_dev = 0; 2134 rdev_for_each(rdev2, mddev) 2135 if (rdev2->desc_nr+1 > max_dev) 2136 max_dev = rdev2->desc_nr+1; 2137 2138 if (max_dev > le32_to_cpu(sb->max_dev)) { 2139 int bmask; 2140 sb->max_dev = cpu_to_le32(max_dev); 2141 rdev->sb_size = max_dev * 2 + 256; 2142 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2143 if (rdev->sb_size & bmask) 2144 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2145 } else 2146 max_dev = le32_to_cpu(sb->max_dev); 2147 2148 for (i=0; i<max_dev;i++) 2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2150 2151 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2152 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2153 2154 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2155 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2156 sb->feature_map |= 2157 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2158 else 2159 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2160 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2161 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2162 } 2163 2164 rdev_for_each(rdev2, mddev) { 2165 i = rdev2->desc_nr; 2166 if (test_bit(Faulty, &rdev2->flags)) 2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2168 else if (test_bit(In_sync, &rdev2->flags)) 2169 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2170 else if (test_bit(Journal, &rdev2->flags)) 2171 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2172 else if (rdev2->raid_disk >= 0) 2173 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2174 else 2175 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2176 } 2177 2178 sb->sb_csum = calc_sb_1_csum(sb); 2179 } 2180 2181 static sector_t super_1_choose_bm_space(sector_t dev_size) 2182 { 2183 sector_t bm_space; 2184 2185 /* if the device is bigger than 8Gig, save 64k for bitmap 2186 * usage, if bigger than 200Gig, save 128k 2187 */ 2188 if (dev_size < 64*2) 2189 bm_space = 0; 2190 else if (dev_size - 64*2 >= 200*1024*1024*2) 2191 bm_space = 128*2; 2192 else if (dev_size - 4*2 > 8*1024*1024*2) 2193 bm_space = 64*2; 2194 else 2195 bm_space = 4*2; 2196 return bm_space; 2197 } 2198 2199 static unsigned long long 2200 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2201 { 2202 struct mdp_superblock_1 *sb; 2203 sector_t max_sectors; 2204 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2205 return 0; /* component must fit device */ 2206 if (rdev->data_offset != rdev->new_data_offset) 2207 return 0; /* too confusing */ 2208 if (rdev->sb_start < rdev->data_offset) { 2209 /* minor versions 1 and 2; superblock before data */ 2210 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2211 max_sectors -= rdev->data_offset; 2212 if (!num_sectors || num_sectors > max_sectors) 2213 num_sectors = max_sectors; 2214 } else if (rdev->mddev->bitmap_info.offset) { 2215 /* minor version 0 with bitmap we can't move */ 2216 return 0; 2217 } else { 2218 /* minor version 0; superblock after data */ 2219 sector_t sb_start, bm_space; 2220 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9; 2221 2222 /* 8K is for superblock */ 2223 sb_start = dev_size - 8*2; 2224 sb_start &= ~(sector_t)(4*2 - 1); 2225 2226 bm_space = super_1_choose_bm_space(dev_size); 2227 2228 /* Space that can be used to store date needs to decrease 2229 * superblock bitmap space and bad block space(4K) 2230 */ 2231 max_sectors = sb_start - bm_space - 4*2; 2232 2233 if (!num_sectors || num_sectors > max_sectors) 2234 num_sectors = max_sectors; 2235 } 2236 sb = page_address(rdev->sb_page); 2237 sb->data_size = cpu_to_le64(num_sectors); 2238 sb->super_offset = cpu_to_le64(rdev->sb_start); 2239 sb->sb_csum = calc_sb_1_csum(sb); 2240 do { 2241 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2242 rdev->sb_page); 2243 } while (md_super_wait(rdev->mddev) < 0); 2244 return num_sectors; 2245 2246 } 2247 2248 static int 2249 super_1_allow_new_offset(struct md_rdev *rdev, 2250 unsigned long long new_offset) 2251 { 2252 /* All necessary checks on new >= old have been done */ 2253 struct bitmap *bitmap; 2254 if (new_offset >= rdev->data_offset) 2255 return 1; 2256 2257 /* with 1.0 metadata, there is no metadata to tread on 2258 * so we can always move back */ 2259 if (rdev->mddev->minor_version == 0) 2260 return 1; 2261 2262 /* otherwise we must be sure not to step on 2263 * any metadata, so stay: 2264 * 36K beyond start of superblock 2265 * beyond end of badblocks 2266 * beyond write-intent bitmap 2267 */ 2268 if (rdev->sb_start + (32+4)*2 > new_offset) 2269 return 0; 2270 bitmap = rdev->mddev->bitmap; 2271 if (bitmap && !rdev->mddev->bitmap_info.file && 2272 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2273 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2274 return 0; 2275 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2276 return 0; 2277 2278 return 1; 2279 } 2280 2281 static struct super_type super_types[] = { 2282 [0] = { 2283 .name = "0.90.0", 2284 .owner = THIS_MODULE, 2285 .load_super = super_90_load, 2286 .validate_super = super_90_validate, 2287 .sync_super = super_90_sync, 2288 .rdev_size_change = super_90_rdev_size_change, 2289 .allow_new_offset = super_90_allow_new_offset, 2290 }, 2291 [1] = { 2292 .name = "md-1", 2293 .owner = THIS_MODULE, 2294 .load_super = super_1_load, 2295 .validate_super = super_1_validate, 2296 .sync_super = super_1_sync, 2297 .rdev_size_change = super_1_rdev_size_change, 2298 .allow_new_offset = super_1_allow_new_offset, 2299 }, 2300 }; 2301 2302 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2303 { 2304 if (mddev->sync_super) { 2305 mddev->sync_super(mddev, rdev); 2306 return; 2307 } 2308 2309 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2310 2311 super_types[mddev->major_version].sync_super(mddev, rdev); 2312 } 2313 2314 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2315 { 2316 struct md_rdev *rdev, *rdev2; 2317 2318 rcu_read_lock(); 2319 rdev_for_each_rcu(rdev, mddev1) { 2320 if (test_bit(Faulty, &rdev->flags) || 2321 test_bit(Journal, &rdev->flags) || 2322 rdev->raid_disk == -1) 2323 continue; 2324 rdev_for_each_rcu(rdev2, mddev2) { 2325 if (test_bit(Faulty, &rdev2->flags) || 2326 test_bit(Journal, &rdev2->flags) || 2327 rdev2->raid_disk == -1) 2328 continue; 2329 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2330 rcu_read_unlock(); 2331 return 1; 2332 } 2333 } 2334 } 2335 rcu_read_unlock(); 2336 return 0; 2337 } 2338 2339 static LIST_HEAD(pending_raid_disks); 2340 2341 /* 2342 * Try to register data integrity profile for an mddev 2343 * 2344 * This is called when an array is started and after a disk has been kicked 2345 * from the array. It only succeeds if all working and active component devices 2346 * are integrity capable with matching profiles. 2347 */ 2348 int md_integrity_register(struct mddev *mddev) 2349 { 2350 struct md_rdev *rdev, *reference = NULL; 2351 2352 if (list_empty(&mddev->disks)) 2353 return 0; /* nothing to do */ 2354 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2355 return 0; /* shouldn't register, or already is */ 2356 rdev_for_each(rdev, mddev) { 2357 /* skip spares and non-functional disks */ 2358 if (test_bit(Faulty, &rdev->flags)) 2359 continue; 2360 if (rdev->raid_disk < 0) 2361 continue; 2362 if (!reference) { 2363 /* Use the first rdev as the reference */ 2364 reference = rdev; 2365 continue; 2366 } 2367 /* does this rdev's profile match the reference profile? */ 2368 if (blk_integrity_compare(reference->bdev->bd_disk, 2369 rdev->bdev->bd_disk) < 0) 2370 return -EINVAL; 2371 } 2372 if (!reference || !bdev_get_integrity(reference->bdev)) 2373 return 0; 2374 /* 2375 * All component devices are integrity capable and have matching 2376 * profiles, register the common profile for the md device. 2377 */ 2378 blk_integrity_register(mddev->gendisk, 2379 bdev_get_integrity(reference->bdev)); 2380 2381 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2382 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2383 pr_err("md: failed to create integrity pool for %s\n", 2384 mdname(mddev)); 2385 return -EINVAL; 2386 } 2387 return 0; 2388 } 2389 EXPORT_SYMBOL(md_integrity_register); 2390 2391 /* 2392 * Attempt to add an rdev, but only if it is consistent with the current 2393 * integrity profile 2394 */ 2395 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2396 { 2397 struct blk_integrity *bi_mddev; 2398 char name[BDEVNAME_SIZE]; 2399 2400 if (!mddev->gendisk) 2401 return 0; 2402 2403 bi_mddev = blk_get_integrity(mddev->gendisk); 2404 2405 if (!bi_mddev) /* nothing to do */ 2406 return 0; 2407 2408 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2409 pr_err("%s: incompatible integrity profile for %s\n", 2410 mdname(mddev), bdevname(rdev->bdev, name)); 2411 return -ENXIO; 2412 } 2413 2414 return 0; 2415 } 2416 EXPORT_SYMBOL(md_integrity_add_rdev); 2417 2418 static bool rdev_read_only(struct md_rdev *rdev) 2419 { 2420 return bdev_read_only(rdev->bdev) || 2421 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2422 } 2423 2424 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2425 { 2426 char b[BDEVNAME_SIZE]; 2427 int err; 2428 2429 /* prevent duplicates */ 2430 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2431 return -EEXIST; 2432 2433 if (rdev_read_only(rdev) && mddev->pers) 2434 return -EROFS; 2435 2436 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2437 if (!test_bit(Journal, &rdev->flags) && 2438 rdev->sectors && 2439 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2440 if (mddev->pers) { 2441 /* Cannot change size, so fail 2442 * If mddev->level <= 0, then we don't care 2443 * about aligning sizes (e.g. linear) 2444 */ 2445 if (mddev->level > 0) 2446 return -ENOSPC; 2447 } else 2448 mddev->dev_sectors = rdev->sectors; 2449 } 2450 2451 /* Verify rdev->desc_nr is unique. 2452 * If it is -1, assign a free number, else 2453 * check number is not in use 2454 */ 2455 rcu_read_lock(); 2456 if (rdev->desc_nr < 0) { 2457 int choice = 0; 2458 if (mddev->pers) 2459 choice = mddev->raid_disks; 2460 while (md_find_rdev_nr_rcu(mddev, choice)) 2461 choice++; 2462 rdev->desc_nr = choice; 2463 } else { 2464 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2465 rcu_read_unlock(); 2466 return -EBUSY; 2467 } 2468 } 2469 rcu_read_unlock(); 2470 if (!test_bit(Journal, &rdev->flags) && 2471 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2472 pr_warn("md: %s: array is limited to %d devices\n", 2473 mdname(mddev), mddev->max_disks); 2474 return -EBUSY; 2475 } 2476 bdevname(rdev->bdev,b); 2477 strreplace(b, '/', '!'); 2478 2479 rdev->mddev = mddev; 2480 pr_debug("md: bind<%s>\n", b); 2481 2482 if (mddev->raid_disks) 2483 mddev_create_serial_pool(mddev, rdev, false); 2484 2485 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2486 goto fail; 2487 2488 /* failure here is OK */ 2489 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2490 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2491 rdev->sysfs_unack_badblocks = 2492 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2493 rdev->sysfs_badblocks = 2494 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2495 2496 list_add_rcu(&rdev->same_set, &mddev->disks); 2497 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2498 2499 /* May as well allow recovery to be retried once */ 2500 mddev->recovery_disabled++; 2501 2502 return 0; 2503 2504 fail: 2505 pr_warn("md: failed to register dev-%s for %s\n", 2506 b, mdname(mddev)); 2507 return err; 2508 } 2509 2510 static void rdev_delayed_delete(struct work_struct *ws) 2511 { 2512 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2513 kobject_del(&rdev->kobj); 2514 kobject_put(&rdev->kobj); 2515 } 2516 2517 static void unbind_rdev_from_array(struct md_rdev *rdev) 2518 { 2519 char b[BDEVNAME_SIZE]; 2520 2521 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2522 list_del_rcu(&rdev->same_set); 2523 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2524 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2525 rdev->mddev = NULL; 2526 sysfs_remove_link(&rdev->kobj, "block"); 2527 sysfs_put(rdev->sysfs_state); 2528 sysfs_put(rdev->sysfs_unack_badblocks); 2529 sysfs_put(rdev->sysfs_badblocks); 2530 rdev->sysfs_state = NULL; 2531 rdev->sysfs_unack_badblocks = NULL; 2532 rdev->sysfs_badblocks = NULL; 2533 rdev->badblocks.count = 0; 2534 /* We need to delay this, otherwise we can deadlock when 2535 * writing to 'remove' to "dev/state". We also need 2536 * to delay it due to rcu usage. 2537 */ 2538 synchronize_rcu(); 2539 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2540 kobject_get(&rdev->kobj); 2541 queue_work(md_rdev_misc_wq, &rdev->del_work); 2542 } 2543 2544 /* 2545 * prevent the device from being mounted, repartitioned or 2546 * otherwise reused by a RAID array (or any other kernel 2547 * subsystem), by bd_claiming the device. 2548 */ 2549 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2550 { 2551 int err = 0; 2552 struct block_device *bdev; 2553 2554 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2555 shared ? (struct md_rdev *)lock_rdev : rdev); 2556 if (IS_ERR(bdev)) { 2557 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2558 MAJOR(dev), MINOR(dev)); 2559 return PTR_ERR(bdev); 2560 } 2561 rdev->bdev = bdev; 2562 return err; 2563 } 2564 2565 static void unlock_rdev(struct md_rdev *rdev) 2566 { 2567 struct block_device *bdev = rdev->bdev; 2568 rdev->bdev = NULL; 2569 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2570 } 2571 2572 void md_autodetect_dev(dev_t dev); 2573 2574 static void export_rdev(struct md_rdev *rdev) 2575 { 2576 char b[BDEVNAME_SIZE]; 2577 2578 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2579 md_rdev_clear(rdev); 2580 #ifndef MODULE 2581 if (test_bit(AutoDetected, &rdev->flags)) 2582 md_autodetect_dev(rdev->bdev->bd_dev); 2583 #endif 2584 unlock_rdev(rdev); 2585 kobject_put(&rdev->kobj); 2586 } 2587 2588 void md_kick_rdev_from_array(struct md_rdev *rdev) 2589 { 2590 unbind_rdev_from_array(rdev); 2591 export_rdev(rdev); 2592 } 2593 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2594 2595 static void export_array(struct mddev *mddev) 2596 { 2597 struct md_rdev *rdev; 2598 2599 while (!list_empty(&mddev->disks)) { 2600 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2601 same_set); 2602 md_kick_rdev_from_array(rdev); 2603 } 2604 mddev->raid_disks = 0; 2605 mddev->major_version = 0; 2606 } 2607 2608 static bool set_in_sync(struct mddev *mddev) 2609 { 2610 lockdep_assert_held(&mddev->lock); 2611 if (!mddev->in_sync) { 2612 mddev->sync_checkers++; 2613 spin_unlock(&mddev->lock); 2614 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2615 spin_lock(&mddev->lock); 2616 if (!mddev->in_sync && 2617 percpu_ref_is_zero(&mddev->writes_pending)) { 2618 mddev->in_sync = 1; 2619 /* 2620 * Ensure ->in_sync is visible before we clear 2621 * ->sync_checkers. 2622 */ 2623 smp_mb(); 2624 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2625 sysfs_notify_dirent_safe(mddev->sysfs_state); 2626 } 2627 if (--mddev->sync_checkers == 0) 2628 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2629 } 2630 if (mddev->safemode == 1) 2631 mddev->safemode = 0; 2632 return mddev->in_sync; 2633 } 2634 2635 static void sync_sbs(struct mddev *mddev, int nospares) 2636 { 2637 /* Update each superblock (in-memory image), but 2638 * if we are allowed to, skip spares which already 2639 * have the right event counter, or have one earlier 2640 * (which would mean they aren't being marked as dirty 2641 * with the rest of the array) 2642 */ 2643 struct md_rdev *rdev; 2644 rdev_for_each(rdev, mddev) { 2645 if (rdev->sb_events == mddev->events || 2646 (nospares && 2647 rdev->raid_disk < 0 && 2648 rdev->sb_events+1 == mddev->events)) { 2649 /* Don't update this superblock */ 2650 rdev->sb_loaded = 2; 2651 } else { 2652 sync_super(mddev, rdev); 2653 rdev->sb_loaded = 1; 2654 } 2655 } 2656 } 2657 2658 static bool does_sb_need_changing(struct mddev *mddev) 2659 { 2660 struct md_rdev *rdev; 2661 struct mdp_superblock_1 *sb; 2662 int role; 2663 2664 /* Find a good rdev */ 2665 rdev_for_each(rdev, mddev) 2666 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2667 break; 2668 2669 /* No good device found. */ 2670 if (!rdev) 2671 return false; 2672 2673 sb = page_address(rdev->sb_page); 2674 /* Check if a device has become faulty or a spare become active */ 2675 rdev_for_each(rdev, mddev) { 2676 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2677 /* Device activated? */ 2678 if (role == 0xffff && rdev->raid_disk >=0 && 2679 !test_bit(Faulty, &rdev->flags)) 2680 return true; 2681 /* Device turned faulty? */ 2682 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2683 return true; 2684 } 2685 2686 /* Check if any mddev parameters have changed */ 2687 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2688 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2689 (mddev->layout != le32_to_cpu(sb->layout)) || 2690 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2691 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2692 return true; 2693 2694 return false; 2695 } 2696 2697 void md_update_sb(struct mddev *mddev, int force_change) 2698 { 2699 struct md_rdev *rdev; 2700 int sync_req; 2701 int nospares = 0; 2702 int any_badblocks_changed = 0; 2703 int ret = -1; 2704 2705 if (mddev->ro) { 2706 if (force_change) 2707 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2708 return; 2709 } 2710 2711 repeat: 2712 if (mddev_is_clustered(mddev)) { 2713 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2714 force_change = 1; 2715 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2716 nospares = 1; 2717 ret = md_cluster_ops->metadata_update_start(mddev); 2718 /* Has someone else has updated the sb */ 2719 if (!does_sb_need_changing(mddev)) { 2720 if (ret == 0) 2721 md_cluster_ops->metadata_update_cancel(mddev); 2722 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2723 BIT(MD_SB_CHANGE_DEVS) | 2724 BIT(MD_SB_CHANGE_CLEAN)); 2725 return; 2726 } 2727 } 2728 2729 /* 2730 * First make sure individual recovery_offsets are correct 2731 * curr_resync_completed can only be used during recovery. 2732 * During reshape/resync it might use array-addresses rather 2733 * that device addresses. 2734 */ 2735 rdev_for_each(rdev, mddev) { 2736 if (rdev->raid_disk >= 0 && 2737 mddev->delta_disks >= 0 && 2738 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2739 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2740 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2741 !test_bit(Journal, &rdev->flags) && 2742 !test_bit(In_sync, &rdev->flags) && 2743 mddev->curr_resync_completed > rdev->recovery_offset) 2744 rdev->recovery_offset = mddev->curr_resync_completed; 2745 2746 } 2747 if (!mddev->persistent) { 2748 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2749 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2750 if (!mddev->external) { 2751 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2752 rdev_for_each(rdev, mddev) { 2753 if (rdev->badblocks.changed) { 2754 rdev->badblocks.changed = 0; 2755 ack_all_badblocks(&rdev->badblocks); 2756 md_error(mddev, rdev); 2757 } 2758 clear_bit(Blocked, &rdev->flags); 2759 clear_bit(BlockedBadBlocks, &rdev->flags); 2760 wake_up(&rdev->blocked_wait); 2761 } 2762 } 2763 wake_up(&mddev->sb_wait); 2764 return; 2765 } 2766 2767 spin_lock(&mddev->lock); 2768 2769 mddev->utime = ktime_get_real_seconds(); 2770 2771 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2772 force_change = 1; 2773 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2774 /* just a clean<-> dirty transition, possibly leave spares alone, 2775 * though if events isn't the right even/odd, we will have to do 2776 * spares after all 2777 */ 2778 nospares = 1; 2779 if (force_change) 2780 nospares = 0; 2781 if (mddev->degraded) 2782 /* If the array is degraded, then skipping spares is both 2783 * dangerous and fairly pointless. 2784 * Dangerous because a device that was removed from the array 2785 * might have a event_count that still looks up-to-date, 2786 * so it can be re-added without a resync. 2787 * Pointless because if there are any spares to skip, 2788 * then a recovery will happen and soon that array won't 2789 * be degraded any more and the spare can go back to sleep then. 2790 */ 2791 nospares = 0; 2792 2793 sync_req = mddev->in_sync; 2794 2795 /* If this is just a dirty<->clean transition, and the array is clean 2796 * and 'events' is odd, we can roll back to the previous clean state */ 2797 if (nospares 2798 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2799 && mddev->can_decrease_events 2800 && mddev->events != 1) { 2801 mddev->events--; 2802 mddev->can_decrease_events = 0; 2803 } else { 2804 /* otherwise we have to go forward and ... */ 2805 mddev->events ++; 2806 mddev->can_decrease_events = nospares; 2807 } 2808 2809 /* 2810 * This 64-bit counter should never wrap. 2811 * Either we are in around ~1 trillion A.C., assuming 2812 * 1 reboot per second, or we have a bug... 2813 */ 2814 WARN_ON(mddev->events == 0); 2815 2816 rdev_for_each(rdev, mddev) { 2817 if (rdev->badblocks.changed) 2818 any_badblocks_changed++; 2819 if (test_bit(Faulty, &rdev->flags)) 2820 set_bit(FaultRecorded, &rdev->flags); 2821 } 2822 2823 sync_sbs(mddev, nospares); 2824 spin_unlock(&mddev->lock); 2825 2826 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2827 mdname(mddev), mddev->in_sync); 2828 2829 if (mddev->queue) 2830 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2831 rewrite: 2832 md_bitmap_update_sb(mddev->bitmap); 2833 rdev_for_each(rdev, mddev) { 2834 char b[BDEVNAME_SIZE]; 2835 2836 if (rdev->sb_loaded != 1) 2837 continue; /* no noise on spare devices */ 2838 2839 if (!test_bit(Faulty, &rdev->flags)) { 2840 md_super_write(mddev,rdev, 2841 rdev->sb_start, rdev->sb_size, 2842 rdev->sb_page); 2843 pr_debug("md: (write) %s's sb offset: %llu\n", 2844 bdevname(rdev->bdev, b), 2845 (unsigned long long)rdev->sb_start); 2846 rdev->sb_events = mddev->events; 2847 if (rdev->badblocks.size) { 2848 md_super_write(mddev, rdev, 2849 rdev->badblocks.sector, 2850 rdev->badblocks.size << 9, 2851 rdev->bb_page); 2852 rdev->badblocks.size = 0; 2853 } 2854 2855 } else 2856 pr_debug("md: %s (skipping faulty)\n", 2857 bdevname(rdev->bdev, b)); 2858 2859 if (mddev->level == LEVEL_MULTIPATH) 2860 /* only need to write one superblock... */ 2861 break; 2862 } 2863 if (md_super_wait(mddev) < 0) 2864 goto rewrite; 2865 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2866 2867 if (mddev_is_clustered(mddev) && ret == 0) 2868 md_cluster_ops->metadata_update_finish(mddev); 2869 2870 if (mddev->in_sync != sync_req || 2871 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2872 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2873 /* have to write it out again */ 2874 goto repeat; 2875 wake_up(&mddev->sb_wait); 2876 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2877 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2878 2879 rdev_for_each(rdev, mddev) { 2880 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2881 clear_bit(Blocked, &rdev->flags); 2882 2883 if (any_badblocks_changed) 2884 ack_all_badblocks(&rdev->badblocks); 2885 clear_bit(BlockedBadBlocks, &rdev->flags); 2886 wake_up(&rdev->blocked_wait); 2887 } 2888 } 2889 EXPORT_SYMBOL(md_update_sb); 2890 2891 static int add_bound_rdev(struct md_rdev *rdev) 2892 { 2893 struct mddev *mddev = rdev->mddev; 2894 int err = 0; 2895 bool add_journal = test_bit(Journal, &rdev->flags); 2896 2897 if (!mddev->pers->hot_remove_disk || add_journal) { 2898 /* If there is hot_add_disk but no hot_remove_disk 2899 * then added disks for geometry changes, 2900 * and should be added immediately. 2901 */ 2902 super_types[mddev->major_version]. 2903 validate_super(mddev, rdev); 2904 if (add_journal) 2905 mddev_suspend(mddev); 2906 err = mddev->pers->hot_add_disk(mddev, rdev); 2907 if (add_journal) 2908 mddev_resume(mddev); 2909 if (err) { 2910 md_kick_rdev_from_array(rdev); 2911 return err; 2912 } 2913 } 2914 sysfs_notify_dirent_safe(rdev->sysfs_state); 2915 2916 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2917 if (mddev->degraded) 2918 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2919 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2920 md_new_event(mddev); 2921 md_wakeup_thread(mddev->thread); 2922 return 0; 2923 } 2924 2925 /* words written to sysfs files may, or may not, be \n terminated. 2926 * We want to accept with case. For this we use cmd_match. 2927 */ 2928 static int cmd_match(const char *cmd, const char *str) 2929 { 2930 /* See if cmd, written into a sysfs file, matches 2931 * str. They must either be the same, or cmd can 2932 * have a trailing newline 2933 */ 2934 while (*cmd && *str && *cmd == *str) { 2935 cmd++; 2936 str++; 2937 } 2938 if (*cmd == '\n') 2939 cmd++; 2940 if (*str || *cmd) 2941 return 0; 2942 return 1; 2943 } 2944 2945 struct rdev_sysfs_entry { 2946 struct attribute attr; 2947 ssize_t (*show)(struct md_rdev *, char *); 2948 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2949 }; 2950 2951 static ssize_t 2952 state_show(struct md_rdev *rdev, char *page) 2953 { 2954 char *sep = ","; 2955 size_t len = 0; 2956 unsigned long flags = READ_ONCE(rdev->flags); 2957 2958 if (test_bit(Faulty, &flags) || 2959 (!test_bit(ExternalBbl, &flags) && 2960 rdev->badblocks.unacked_exist)) 2961 len += sprintf(page+len, "faulty%s", sep); 2962 if (test_bit(In_sync, &flags)) 2963 len += sprintf(page+len, "in_sync%s", sep); 2964 if (test_bit(Journal, &flags)) 2965 len += sprintf(page+len, "journal%s", sep); 2966 if (test_bit(WriteMostly, &flags)) 2967 len += sprintf(page+len, "write_mostly%s", sep); 2968 if (test_bit(Blocked, &flags) || 2969 (rdev->badblocks.unacked_exist 2970 && !test_bit(Faulty, &flags))) 2971 len += sprintf(page+len, "blocked%s", sep); 2972 if (!test_bit(Faulty, &flags) && 2973 !test_bit(Journal, &flags) && 2974 !test_bit(In_sync, &flags)) 2975 len += sprintf(page+len, "spare%s", sep); 2976 if (test_bit(WriteErrorSeen, &flags)) 2977 len += sprintf(page+len, "write_error%s", sep); 2978 if (test_bit(WantReplacement, &flags)) 2979 len += sprintf(page+len, "want_replacement%s", sep); 2980 if (test_bit(Replacement, &flags)) 2981 len += sprintf(page+len, "replacement%s", sep); 2982 if (test_bit(ExternalBbl, &flags)) 2983 len += sprintf(page+len, "external_bbl%s", sep); 2984 if (test_bit(FailFast, &flags)) 2985 len += sprintf(page+len, "failfast%s", sep); 2986 2987 if (len) 2988 len -= strlen(sep); 2989 2990 return len+sprintf(page+len, "\n"); 2991 } 2992 2993 static ssize_t 2994 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2995 { 2996 /* can write 2997 * faulty - simulates an error 2998 * remove - disconnects the device 2999 * writemostly - sets write_mostly 3000 * -writemostly - clears write_mostly 3001 * blocked - sets the Blocked flags 3002 * -blocked - clears the Blocked and possibly simulates an error 3003 * insync - sets Insync providing device isn't active 3004 * -insync - clear Insync for a device with a slot assigned, 3005 * so that it gets rebuilt based on bitmap 3006 * write_error - sets WriteErrorSeen 3007 * -write_error - clears WriteErrorSeen 3008 * {,-}failfast - set/clear FailFast 3009 */ 3010 int err = -EINVAL; 3011 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 3012 md_error(rdev->mddev, rdev); 3013 if (test_bit(Faulty, &rdev->flags)) 3014 err = 0; 3015 else 3016 err = -EBUSY; 3017 } else if (cmd_match(buf, "remove")) { 3018 if (rdev->mddev->pers) { 3019 clear_bit(Blocked, &rdev->flags); 3020 remove_and_add_spares(rdev->mddev, rdev); 3021 } 3022 if (rdev->raid_disk >= 0) 3023 err = -EBUSY; 3024 else { 3025 struct mddev *mddev = rdev->mddev; 3026 err = 0; 3027 if (mddev_is_clustered(mddev)) 3028 err = md_cluster_ops->remove_disk(mddev, rdev); 3029 3030 if (err == 0) { 3031 md_kick_rdev_from_array(rdev); 3032 if (mddev->pers) { 3033 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3034 md_wakeup_thread(mddev->thread); 3035 } 3036 md_new_event(mddev); 3037 } 3038 } 3039 } else if (cmd_match(buf, "writemostly")) { 3040 set_bit(WriteMostly, &rdev->flags); 3041 mddev_create_serial_pool(rdev->mddev, rdev, false); 3042 err = 0; 3043 } else if (cmd_match(buf, "-writemostly")) { 3044 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3045 clear_bit(WriteMostly, &rdev->flags); 3046 err = 0; 3047 } else if (cmd_match(buf, "blocked")) { 3048 set_bit(Blocked, &rdev->flags); 3049 err = 0; 3050 } else if (cmd_match(buf, "-blocked")) { 3051 if (!test_bit(Faulty, &rdev->flags) && 3052 !test_bit(ExternalBbl, &rdev->flags) && 3053 rdev->badblocks.unacked_exist) { 3054 /* metadata handler doesn't understand badblocks, 3055 * so we need to fail the device 3056 */ 3057 md_error(rdev->mddev, rdev); 3058 } 3059 clear_bit(Blocked, &rdev->flags); 3060 clear_bit(BlockedBadBlocks, &rdev->flags); 3061 wake_up(&rdev->blocked_wait); 3062 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3063 md_wakeup_thread(rdev->mddev->thread); 3064 3065 err = 0; 3066 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3067 set_bit(In_sync, &rdev->flags); 3068 err = 0; 3069 } else if (cmd_match(buf, "failfast")) { 3070 set_bit(FailFast, &rdev->flags); 3071 err = 0; 3072 } else if (cmd_match(buf, "-failfast")) { 3073 clear_bit(FailFast, &rdev->flags); 3074 err = 0; 3075 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3076 !test_bit(Journal, &rdev->flags)) { 3077 if (rdev->mddev->pers == NULL) { 3078 clear_bit(In_sync, &rdev->flags); 3079 rdev->saved_raid_disk = rdev->raid_disk; 3080 rdev->raid_disk = -1; 3081 err = 0; 3082 } 3083 } else if (cmd_match(buf, "write_error")) { 3084 set_bit(WriteErrorSeen, &rdev->flags); 3085 err = 0; 3086 } else if (cmd_match(buf, "-write_error")) { 3087 clear_bit(WriteErrorSeen, &rdev->flags); 3088 err = 0; 3089 } else if (cmd_match(buf, "want_replacement")) { 3090 /* Any non-spare device that is not a replacement can 3091 * become want_replacement at any time, but we then need to 3092 * check if recovery is needed. 3093 */ 3094 if (rdev->raid_disk >= 0 && 3095 !test_bit(Journal, &rdev->flags) && 3096 !test_bit(Replacement, &rdev->flags)) 3097 set_bit(WantReplacement, &rdev->flags); 3098 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3099 md_wakeup_thread(rdev->mddev->thread); 3100 err = 0; 3101 } else if (cmd_match(buf, "-want_replacement")) { 3102 /* Clearing 'want_replacement' is always allowed. 3103 * Once replacements starts it is too late though. 3104 */ 3105 err = 0; 3106 clear_bit(WantReplacement, &rdev->flags); 3107 } else if (cmd_match(buf, "replacement")) { 3108 /* Can only set a device as a replacement when array has not 3109 * yet been started. Once running, replacement is automatic 3110 * from spares, or by assigning 'slot'. 3111 */ 3112 if (rdev->mddev->pers) 3113 err = -EBUSY; 3114 else { 3115 set_bit(Replacement, &rdev->flags); 3116 err = 0; 3117 } 3118 } else if (cmd_match(buf, "-replacement")) { 3119 /* Similarly, can only clear Replacement before start */ 3120 if (rdev->mddev->pers) 3121 err = -EBUSY; 3122 else { 3123 clear_bit(Replacement, &rdev->flags); 3124 err = 0; 3125 } 3126 } else if (cmd_match(buf, "re-add")) { 3127 if (!rdev->mddev->pers) 3128 err = -EINVAL; 3129 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3130 rdev->saved_raid_disk >= 0) { 3131 /* clear_bit is performed _after_ all the devices 3132 * have their local Faulty bit cleared. If any writes 3133 * happen in the meantime in the local node, they 3134 * will land in the local bitmap, which will be synced 3135 * by this node eventually 3136 */ 3137 if (!mddev_is_clustered(rdev->mddev) || 3138 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3139 clear_bit(Faulty, &rdev->flags); 3140 err = add_bound_rdev(rdev); 3141 } 3142 } else 3143 err = -EBUSY; 3144 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3145 set_bit(ExternalBbl, &rdev->flags); 3146 rdev->badblocks.shift = 0; 3147 err = 0; 3148 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3149 clear_bit(ExternalBbl, &rdev->flags); 3150 err = 0; 3151 } 3152 if (!err) 3153 sysfs_notify_dirent_safe(rdev->sysfs_state); 3154 return err ? err : len; 3155 } 3156 static struct rdev_sysfs_entry rdev_state = 3157 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3158 3159 static ssize_t 3160 errors_show(struct md_rdev *rdev, char *page) 3161 { 3162 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3163 } 3164 3165 static ssize_t 3166 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3167 { 3168 unsigned int n; 3169 int rv; 3170 3171 rv = kstrtouint(buf, 10, &n); 3172 if (rv < 0) 3173 return rv; 3174 atomic_set(&rdev->corrected_errors, n); 3175 return len; 3176 } 3177 static struct rdev_sysfs_entry rdev_errors = 3178 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3179 3180 static ssize_t 3181 slot_show(struct md_rdev *rdev, char *page) 3182 { 3183 if (test_bit(Journal, &rdev->flags)) 3184 return sprintf(page, "journal\n"); 3185 else if (rdev->raid_disk < 0) 3186 return sprintf(page, "none\n"); 3187 else 3188 return sprintf(page, "%d\n", rdev->raid_disk); 3189 } 3190 3191 static ssize_t 3192 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3193 { 3194 int slot; 3195 int err; 3196 3197 if (test_bit(Journal, &rdev->flags)) 3198 return -EBUSY; 3199 if (strncmp(buf, "none", 4)==0) 3200 slot = -1; 3201 else { 3202 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3203 if (err < 0) 3204 return err; 3205 } 3206 if (rdev->mddev->pers && slot == -1) { 3207 /* Setting 'slot' on an active array requires also 3208 * updating the 'rd%d' link, and communicating 3209 * with the personality with ->hot_*_disk. 3210 * For now we only support removing 3211 * failed/spare devices. This normally happens automatically, 3212 * but not when the metadata is externally managed. 3213 */ 3214 if (rdev->raid_disk == -1) 3215 return -EEXIST; 3216 /* personality does all needed checks */ 3217 if (rdev->mddev->pers->hot_remove_disk == NULL) 3218 return -EINVAL; 3219 clear_bit(Blocked, &rdev->flags); 3220 remove_and_add_spares(rdev->mddev, rdev); 3221 if (rdev->raid_disk >= 0) 3222 return -EBUSY; 3223 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3224 md_wakeup_thread(rdev->mddev->thread); 3225 } else if (rdev->mddev->pers) { 3226 /* Activating a spare .. or possibly reactivating 3227 * if we ever get bitmaps working here. 3228 */ 3229 int err; 3230 3231 if (rdev->raid_disk != -1) 3232 return -EBUSY; 3233 3234 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3235 return -EBUSY; 3236 3237 if (rdev->mddev->pers->hot_add_disk == NULL) 3238 return -EINVAL; 3239 3240 if (slot >= rdev->mddev->raid_disks && 3241 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3242 return -ENOSPC; 3243 3244 rdev->raid_disk = slot; 3245 if (test_bit(In_sync, &rdev->flags)) 3246 rdev->saved_raid_disk = slot; 3247 else 3248 rdev->saved_raid_disk = -1; 3249 clear_bit(In_sync, &rdev->flags); 3250 clear_bit(Bitmap_sync, &rdev->flags); 3251 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3252 if (err) { 3253 rdev->raid_disk = -1; 3254 return err; 3255 } else 3256 sysfs_notify_dirent_safe(rdev->sysfs_state); 3257 /* failure here is OK */; 3258 sysfs_link_rdev(rdev->mddev, rdev); 3259 /* don't wakeup anyone, leave that to userspace. */ 3260 } else { 3261 if (slot >= rdev->mddev->raid_disks && 3262 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3263 return -ENOSPC; 3264 rdev->raid_disk = slot; 3265 /* assume it is working */ 3266 clear_bit(Faulty, &rdev->flags); 3267 clear_bit(WriteMostly, &rdev->flags); 3268 set_bit(In_sync, &rdev->flags); 3269 sysfs_notify_dirent_safe(rdev->sysfs_state); 3270 } 3271 return len; 3272 } 3273 3274 static struct rdev_sysfs_entry rdev_slot = 3275 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3276 3277 static ssize_t 3278 offset_show(struct md_rdev *rdev, char *page) 3279 { 3280 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3281 } 3282 3283 static ssize_t 3284 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3285 { 3286 unsigned long long offset; 3287 if (kstrtoull(buf, 10, &offset) < 0) 3288 return -EINVAL; 3289 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3290 return -EBUSY; 3291 if (rdev->sectors && rdev->mddev->external) 3292 /* Must set offset before size, so overlap checks 3293 * can be sane */ 3294 return -EBUSY; 3295 rdev->data_offset = offset; 3296 rdev->new_data_offset = offset; 3297 return len; 3298 } 3299 3300 static struct rdev_sysfs_entry rdev_offset = 3301 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3302 3303 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3304 { 3305 return sprintf(page, "%llu\n", 3306 (unsigned long long)rdev->new_data_offset); 3307 } 3308 3309 static ssize_t new_offset_store(struct md_rdev *rdev, 3310 const char *buf, size_t len) 3311 { 3312 unsigned long long new_offset; 3313 struct mddev *mddev = rdev->mddev; 3314 3315 if (kstrtoull(buf, 10, &new_offset) < 0) 3316 return -EINVAL; 3317 3318 if (mddev->sync_thread || 3319 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3320 return -EBUSY; 3321 if (new_offset == rdev->data_offset) 3322 /* reset is always permitted */ 3323 ; 3324 else if (new_offset > rdev->data_offset) { 3325 /* must not push array size beyond rdev_sectors */ 3326 if (new_offset - rdev->data_offset 3327 + mddev->dev_sectors > rdev->sectors) 3328 return -E2BIG; 3329 } 3330 /* Metadata worries about other space details. */ 3331 3332 /* decreasing the offset is inconsistent with a backwards 3333 * reshape. 3334 */ 3335 if (new_offset < rdev->data_offset && 3336 mddev->reshape_backwards) 3337 return -EINVAL; 3338 /* Increasing offset is inconsistent with forwards 3339 * reshape. reshape_direction should be set to 3340 * 'backwards' first. 3341 */ 3342 if (new_offset > rdev->data_offset && 3343 !mddev->reshape_backwards) 3344 return -EINVAL; 3345 3346 if (mddev->pers && mddev->persistent && 3347 !super_types[mddev->major_version] 3348 .allow_new_offset(rdev, new_offset)) 3349 return -E2BIG; 3350 rdev->new_data_offset = new_offset; 3351 if (new_offset > rdev->data_offset) 3352 mddev->reshape_backwards = 1; 3353 else if (new_offset < rdev->data_offset) 3354 mddev->reshape_backwards = 0; 3355 3356 return len; 3357 } 3358 static struct rdev_sysfs_entry rdev_new_offset = 3359 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3360 3361 static ssize_t 3362 rdev_size_show(struct md_rdev *rdev, char *page) 3363 { 3364 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3365 } 3366 3367 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3368 { 3369 /* check if two start/length pairs overlap */ 3370 if (s1+l1 <= s2) 3371 return 0; 3372 if (s2+l2 <= s1) 3373 return 0; 3374 return 1; 3375 } 3376 3377 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3378 { 3379 unsigned long long blocks; 3380 sector_t new; 3381 3382 if (kstrtoull(buf, 10, &blocks) < 0) 3383 return -EINVAL; 3384 3385 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3386 return -EINVAL; /* sector conversion overflow */ 3387 3388 new = blocks * 2; 3389 if (new != blocks * 2) 3390 return -EINVAL; /* unsigned long long to sector_t overflow */ 3391 3392 *sectors = new; 3393 return 0; 3394 } 3395 3396 static ssize_t 3397 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3398 { 3399 struct mddev *my_mddev = rdev->mddev; 3400 sector_t oldsectors = rdev->sectors; 3401 sector_t sectors; 3402 3403 if (test_bit(Journal, &rdev->flags)) 3404 return -EBUSY; 3405 if (strict_blocks_to_sectors(buf, §ors) < 0) 3406 return -EINVAL; 3407 if (rdev->data_offset != rdev->new_data_offset) 3408 return -EINVAL; /* too confusing */ 3409 if (my_mddev->pers && rdev->raid_disk >= 0) { 3410 if (my_mddev->persistent) { 3411 sectors = super_types[my_mddev->major_version]. 3412 rdev_size_change(rdev, sectors); 3413 if (!sectors) 3414 return -EBUSY; 3415 } else if (!sectors) 3416 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3417 rdev->data_offset; 3418 if (!my_mddev->pers->resize) 3419 /* Cannot change size for RAID0 or Linear etc */ 3420 return -EINVAL; 3421 } 3422 if (sectors < my_mddev->dev_sectors) 3423 return -EINVAL; /* component must fit device */ 3424 3425 rdev->sectors = sectors; 3426 if (sectors > oldsectors && my_mddev->external) { 3427 /* Need to check that all other rdevs with the same 3428 * ->bdev do not overlap. 'rcu' is sufficient to walk 3429 * the rdev lists safely. 3430 * This check does not provide a hard guarantee, it 3431 * just helps avoid dangerous mistakes. 3432 */ 3433 struct mddev *mddev; 3434 int overlap = 0; 3435 struct list_head *tmp; 3436 3437 rcu_read_lock(); 3438 for_each_mddev(mddev, tmp) { 3439 struct md_rdev *rdev2; 3440 3441 rdev_for_each(rdev2, mddev) 3442 if (rdev->bdev == rdev2->bdev && 3443 rdev != rdev2 && 3444 overlaps(rdev->data_offset, rdev->sectors, 3445 rdev2->data_offset, 3446 rdev2->sectors)) { 3447 overlap = 1; 3448 break; 3449 } 3450 if (overlap) { 3451 mddev_put(mddev); 3452 break; 3453 } 3454 } 3455 rcu_read_unlock(); 3456 if (overlap) { 3457 /* Someone else could have slipped in a size 3458 * change here, but doing so is just silly. 3459 * We put oldsectors back because we *know* it is 3460 * safe, and trust userspace not to race with 3461 * itself 3462 */ 3463 rdev->sectors = oldsectors; 3464 return -EBUSY; 3465 } 3466 } 3467 return len; 3468 } 3469 3470 static struct rdev_sysfs_entry rdev_size = 3471 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3472 3473 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3474 { 3475 unsigned long long recovery_start = rdev->recovery_offset; 3476 3477 if (test_bit(In_sync, &rdev->flags) || 3478 recovery_start == MaxSector) 3479 return sprintf(page, "none\n"); 3480 3481 return sprintf(page, "%llu\n", recovery_start); 3482 } 3483 3484 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3485 { 3486 unsigned long long recovery_start; 3487 3488 if (cmd_match(buf, "none")) 3489 recovery_start = MaxSector; 3490 else if (kstrtoull(buf, 10, &recovery_start)) 3491 return -EINVAL; 3492 3493 if (rdev->mddev->pers && 3494 rdev->raid_disk >= 0) 3495 return -EBUSY; 3496 3497 rdev->recovery_offset = recovery_start; 3498 if (recovery_start == MaxSector) 3499 set_bit(In_sync, &rdev->flags); 3500 else 3501 clear_bit(In_sync, &rdev->flags); 3502 return len; 3503 } 3504 3505 static struct rdev_sysfs_entry rdev_recovery_start = 3506 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3507 3508 /* sysfs access to bad-blocks list. 3509 * We present two files. 3510 * 'bad-blocks' lists sector numbers and lengths of ranges that 3511 * are recorded as bad. The list is truncated to fit within 3512 * the one-page limit of sysfs. 3513 * Writing "sector length" to this file adds an acknowledged 3514 * bad block list. 3515 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3516 * been acknowledged. Writing to this file adds bad blocks 3517 * without acknowledging them. This is largely for testing. 3518 */ 3519 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3520 { 3521 return badblocks_show(&rdev->badblocks, page, 0); 3522 } 3523 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3524 { 3525 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3526 /* Maybe that ack was all we needed */ 3527 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3528 wake_up(&rdev->blocked_wait); 3529 return rv; 3530 } 3531 static struct rdev_sysfs_entry rdev_bad_blocks = 3532 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3533 3534 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3535 { 3536 return badblocks_show(&rdev->badblocks, page, 1); 3537 } 3538 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3539 { 3540 return badblocks_store(&rdev->badblocks, page, len, 1); 3541 } 3542 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3543 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3544 3545 static ssize_t 3546 ppl_sector_show(struct md_rdev *rdev, char *page) 3547 { 3548 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3549 } 3550 3551 static ssize_t 3552 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3553 { 3554 unsigned long long sector; 3555 3556 if (kstrtoull(buf, 10, §or) < 0) 3557 return -EINVAL; 3558 if (sector != (sector_t)sector) 3559 return -EINVAL; 3560 3561 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3562 rdev->raid_disk >= 0) 3563 return -EBUSY; 3564 3565 if (rdev->mddev->persistent) { 3566 if (rdev->mddev->major_version == 0) 3567 return -EINVAL; 3568 if ((sector > rdev->sb_start && 3569 sector - rdev->sb_start > S16_MAX) || 3570 (sector < rdev->sb_start && 3571 rdev->sb_start - sector > -S16_MIN)) 3572 return -EINVAL; 3573 rdev->ppl.offset = sector - rdev->sb_start; 3574 } else if (!rdev->mddev->external) { 3575 return -EBUSY; 3576 } 3577 rdev->ppl.sector = sector; 3578 return len; 3579 } 3580 3581 static struct rdev_sysfs_entry rdev_ppl_sector = 3582 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3583 3584 static ssize_t 3585 ppl_size_show(struct md_rdev *rdev, char *page) 3586 { 3587 return sprintf(page, "%u\n", rdev->ppl.size); 3588 } 3589 3590 static ssize_t 3591 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3592 { 3593 unsigned int size; 3594 3595 if (kstrtouint(buf, 10, &size) < 0) 3596 return -EINVAL; 3597 3598 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3599 rdev->raid_disk >= 0) 3600 return -EBUSY; 3601 3602 if (rdev->mddev->persistent) { 3603 if (rdev->mddev->major_version == 0) 3604 return -EINVAL; 3605 if (size > U16_MAX) 3606 return -EINVAL; 3607 } else if (!rdev->mddev->external) { 3608 return -EBUSY; 3609 } 3610 rdev->ppl.size = size; 3611 return len; 3612 } 3613 3614 static struct rdev_sysfs_entry rdev_ppl_size = 3615 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3616 3617 static struct attribute *rdev_default_attrs[] = { 3618 &rdev_state.attr, 3619 &rdev_errors.attr, 3620 &rdev_slot.attr, 3621 &rdev_offset.attr, 3622 &rdev_new_offset.attr, 3623 &rdev_size.attr, 3624 &rdev_recovery_start.attr, 3625 &rdev_bad_blocks.attr, 3626 &rdev_unack_bad_blocks.attr, 3627 &rdev_ppl_sector.attr, 3628 &rdev_ppl_size.attr, 3629 NULL, 3630 }; 3631 static ssize_t 3632 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3633 { 3634 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3635 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3636 3637 if (!entry->show) 3638 return -EIO; 3639 if (!rdev->mddev) 3640 return -ENODEV; 3641 return entry->show(rdev, page); 3642 } 3643 3644 static ssize_t 3645 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3646 const char *page, size_t length) 3647 { 3648 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3649 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3650 ssize_t rv; 3651 struct mddev *mddev = rdev->mddev; 3652 3653 if (!entry->store) 3654 return -EIO; 3655 if (!capable(CAP_SYS_ADMIN)) 3656 return -EACCES; 3657 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3658 if (!rv) { 3659 if (rdev->mddev == NULL) 3660 rv = -ENODEV; 3661 else 3662 rv = entry->store(rdev, page, length); 3663 mddev_unlock(mddev); 3664 } 3665 return rv; 3666 } 3667 3668 static void rdev_free(struct kobject *ko) 3669 { 3670 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3671 kfree(rdev); 3672 } 3673 static const struct sysfs_ops rdev_sysfs_ops = { 3674 .show = rdev_attr_show, 3675 .store = rdev_attr_store, 3676 }; 3677 static struct kobj_type rdev_ktype = { 3678 .release = rdev_free, 3679 .sysfs_ops = &rdev_sysfs_ops, 3680 .default_attrs = rdev_default_attrs, 3681 }; 3682 3683 int md_rdev_init(struct md_rdev *rdev) 3684 { 3685 rdev->desc_nr = -1; 3686 rdev->saved_raid_disk = -1; 3687 rdev->raid_disk = -1; 3688 rdev->flags = 0; 3689 rdev->data_offset = 0; 3690 rdev->new_data_offset = 0; 3691 rdev->sb_events = 0; 3692 rdev->last_read_error = 0; 3693 rdev->sb_loaded = 0; 3694 rdev->bb_page = NULL; 3695 atomic_set(&rdev->nr_pending, 0); 3696 atomic_set(&rdev->read_errors, 0); 3697 atomic_set(&rdev->corrected_errors, 0); 3698 3699 INIT_LIST_HEAD(&rdev->same_set); 3700 init_waitqueue_head(&rdev->blocked_wait); 3701 3702 /* Add space to store bad block list. 3703 * This reserves the space even on arrays where it cannot 3704 * be used - I wonder if that matters 3705 */ 3706 return badblocks_init(&rdev->badblocks, 0); 3707 } 3708 EXPORT_SYMBOL_GPL(md_rdev_init); 3709 /* 3710 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3711 * 3712 * mark the device faulty if: 3713 * 3714 * - the device is nonexistent (zero size) 3715 * - the device has no valid superblock 3716 * 3717 * a faulty rdev _never_ has rdev->sb set. 3718 */ 3719 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3720 { 3721 char b[BDEVNAME_SIZE]; 3722 int err; 3723 struct md_rdev *rdev; 3724 sector_t size; 3725 3726 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3727 if (!rdev) 3728 return ERR_PTR(-ENOMEM); 3729 3730 err = md_rdev_init(rdev); 3731 if (err) 3732 goto abort_free; 3733 err = alloc_disk_sb(rdev); 3734 if (err) 3735 goto abort_free; 3736 3737 err = lock_rdev(rdev, newdev, super_format == -2); 3738 if (err) 3739 goto abort_free; 3740 3741 kobject_init(&rdev->kobj, &rdev_ktype); 3742 3743 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3744 if (!size) { 3745 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3746 bdevname(rdev->bdev,b)); 3747 err = -EINVAL; 3748 goto abort_free; 3749 } 3750 3751 if (super_format >= 0) { 3752 err = super_types[super_format]. 3753 load_super(rdev, NULL, super_minor); 3754 if (err == -EINVAL) { 3755 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3756 bdevname(rdev->bdev,b), 3757 super_format, super_minor); 3758 goto abort_free; 3759 } 3760 if (err < 0) { 3761 pr_warn("md: could not read %s's sb, not importing!\n", 3762 bdevname(rdev->bdev,b)); 3763 goto abort_free; 3764 } 3765 } 3766 3767 return rdev; 3768 3769 abort_free: 3770 if (rdev->bdev) 3771 unlock_rdev(rdev); 3772 md_rdev_clear(rdev); 3773 kfree(rdev); 3774 return ERR_PTR(err); 3775 } 3776 3777 /* 3778 * Check a full RAID array for plausibility 3779 */ 3780 3781 static int analyze_sbs(struct mddev *mddev) 3782 { 3783 int i; 3784 struct md_rdev *rdev, *freshest, *tmp; 3785 char b[BDEVNAME_SIZE]; 3786 3787 freshest = NULL; 3788 rdev_for_each_safe(rdev, tmp, mddev) 3789 switch (super_types[mddev->major_version]. 3790 load_super(rdev, freshest, mddev->minor_version)) { 3791 case 1: 3792 freshest = rdev; 3793 break; 3794 case 0: 3795 break; 3796 default: 3797 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3798 bdevname(rdev->bdev,b)); 3799 md_kick_rdev_from_array(rdev); 3800 } 3801 3802 /* Cannot find a valid fresh disk */ 3803 if (!freshest) { 3804 pr_warn("md: cannot find a valid disk\n"); 3805 return -EINVAL; 3806 } 3807 3808 super_types[mddev->major_version]. 3809 validate_super(mddev, freshest); 3810 3811 i = 0; 3812 rdev_for_each_safe(rdev, tmp, mddev) { 3813 if (mddev->max_disks && 3814 (rdev->desc_nr >= mddev->max_disks || 3815 i > mddev->max_disks)) { 3816 pr_warn("md: %s: %s: only %d devices permitted\n", 3817 mdname(mddev), bdevname(rdev->bdev, b), 3818 mddev->max_disks); 3819 md_kick_rdev_from_array(rdev); 3820 continue; 3821 } 3822 if (rdev != freshest) { 3823 if (super_types[mddev->major_version]. 3824 validate_super(mddev, rdev)) { 3825 pr_warn("md: kicking non-fresh %s from array!\n", 3826 bdevname(rdev->bdev,b)); 3827 md_kick_rdev_from_array(rdev); 3828 continue; 3829 } 3830 } 3831 if (mddev->level == LEVEL_MULTIPATH) { 3832 rdev->desc_nr = i++; 3833 rdev->raid_disk = rdev->desc_nr; 3834 set_bit(In_sync, &rdev->flags); 3835 } else if (rdev->raid_disk >= 3836 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3837 !test_bit(Journal, &rdev->flags)) { 3838 rdev->raid_disk = -1; 3839 clear_bit(In_sync, &rdev->flags); 3840 } 3841 } 3842 3843 return 0; 3844 } 3845 3846 /* Read a fixed-point number. 3847 * Numbers in sysfs attributes should be in "standard" units where 3848 * possible, so time should be in seconds. 3849 * However we internally use a a much smaller unit such as 3850 * milliseconds or jiffies. 3851 * This function takes a decimal number with a possible fractional 3852 * component, and produces an integer which is the result of 3853 * multiplying that number by 10^'scale'. 3854 * all without any floating-point arithmetic. 3855 */ 3856 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3857 { 3858 unsigned long result = 0; 3859 long decimals = -1; 3860 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3861 if (*cp == '.') 3862 decimals = 0; 3863 else if (decimals < scale) { 3864 unsigned int value; 3865 value = *cp - '0'; 3866 result = result * 10 + value; 3867 if (decimals >= 0) 3868 decimals++; 3869 } 3870 cp++; 3871 } 3872 if (*cp == '\n') 3873 cp++; 3874 if (*cp) 3875 return -EINVAL; 3876 if (decimals < 0) 3877 decimals = 0; 3878 *res = result * int_pow(10, scale - decimals); 3879 return 0; 3880 } 3881 3882 static ssize_t 3883 safe_delay_show(struct mddev *mddev, char *page) 3884 { 3885 int msec = (mddev->safemode_delay*1000)/HZ; 3886 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3887 } 3888 static ssize_t 3889 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3890 { 3891 unsigned long msec; 3892 3893 if (mddev_is_clustered(mddev)) { 3894 pr_warn("md: Safemode is disabled for clustered mode\n"); 3895 return -EINVAL; 3896 } 3897 3898 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3899 return -EINVAL; 3900 if (msec == 0) 3901 mddev->safemode_delay = 0; 3902 else { 3903 unsigned long old_delay = mddev->safemode_delay; 3904 unsigned long new_delay = (msec*HZ)/1000; 3905 3906 if (new_delay == 0) 3907 new_delay = 1; 3908 mddev->safemode_delay = new_delay; 3909 if (new_delay < old_delay || old_delay == 0) 3910 mod_timer(&mddev->safemode_timer, jiffies+1); 3911 } 3912 return len; 3913 } 3914 static struct md_sysfs_entry md_safe_delay = 3915 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3916 3917 static ssize_t 3918 level_show(struct mddev *mddev, char *page) 3919 { 3920 struct md_personality *p; 3921 int ret; 3922 spin_lock(&mddev->lock); 3923 p = mddev->pers; 3924 if (p) 3925 ret = sprintf(page, "%s\n", p->name); 3926 else if (mddev->clevel[0]) 3927 ret = sprintf(page, "%s\n", mddev->clevel); 3928 else if (mddev->level != LEVEL_NONE) 3929 ret = sprintf(page, "%d\n", mddev->level); 3930 else 3931 ret = 0; 3932 spin_unlock(&mddev->lock); 3933 return ret; 3934 } 3935 3936 static ssize_t 3937 level_store(struct mddev *mddev, const char *buf, size_t len) 3938 { 3939 char clevel[16]; 3940 ssize_t rv; 3941 size_t slen = len; 3942 struct md_personality *pers, *oldpers; 3943 long level; 3944 void *priv, *oldpriv; 3945 struct md_rdev *rdev; 3946 3947 if (slen == 0 || slen >= sizeof(clevel)) 3948 return -EINVAL; 3949 3950 rv = mddev_lock(mddev); 3951 if (rv) 3952 return rv; 3953 3954 if (mddev->pers == NULL) { 3955 strncpy(mddev->clevel, buf, slen); 3956 if (mddev->clevel[slen-1] == '\n') 3957 slen--; 3958 mddev->clevel[slen] = 0; 3959 mddev->level = LEVEL_NONE; 3960 rv = len; 3961 goto out_unlock; 3962 } 3963 rv = -EROFS; 3964 if (mddev->ro) 3965 goto out_unlock; 3966 3967 /* request to change the personality. Need to ensure: 3968 * - array is not engaged in resync/recovery/reshape 3969 * - old personality can be suspended 3970 * - new personality will access other array. 3971 */ 3972 3973 rv = -EBUSY; 3974 if (mddev->sync_thread || 3975 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3976 mddev->reshape_position != MaxSector || 3977 mddev->sysfs_active) 3978 goto out_unlock; 3979 3980 rv = -EINVAL; 3981 if (!mddev->pers->quiesce) { 3982 pr_warn("md: %s: %s does not support online personality change\n", 3983 mdname(mddev), mddev->pers->name); 3984 goto out_unlock; 3985 } 3986 3987 /* Now find the new personality */ 3988 strncpy(clevel, buf, slen); 3989 if (clevel[slen-1] == '\n') 3990 slen--; 3991 clevel[slen] = 0; 3992 if (kstrtol(clevel, 10, &level)) 3993 level = LEVEL_NONE; 3994 3995 if (request_module("md-%s", clevel) != 0) 3996 request_module("md-level-%s", clevel); 3997 spin_lock(&pers_lock); 3998 pers = find_pers(level, clevel); 3999 if (!pers || !try_module_get(pers->owner)) { 4000 spin_unlock(&pers_lock); 4001 pr_warn("md: personality %s not loaded\n", clevel); 4002 rv = -EINVAL; 4003 goto out_unlock; 4004 } 4005 spin_unlock(&pers_lock); 4006 4007 if (pers == mddev->pers) { 4008 /* Nothing to do! */ 4009 module_put(pers->owner); 4010 rv = len; 4011 goto out_unlock; 4012 } 4013 if (!pers->takeover) { 4014 module_put(pers->owner); 4015 pr_warn("md: %s: %s does not support personality takeover\n", 4016 mdname(mddev), clevel); 4017 rv = -EINVAL; 4018 goto out_unlock; 4019 } 4020 4021 rdev_for_each(rdev, mddev) 4022 rdev->new_raid_disk = rdev->raid_disk; 4023 4024 /* ->takeover must set new_* and/or delta_disks 4025 * if it succeeds, and may set them when it fails. 4026 */ 4027 priv = pers->takeover(mddev); 4028 if (IS_ERR(priv)) { 4029 mddev->new_level = mddev->level; 4030 mddev->new_layout = mddev->layout; 4031 mddev->new_chunk_sectors = mddev->chunk_sectors; 4032 mddev->raid_disks -= mddev->delta_disks; 4033 mddev->delta_disks = 0; 4034 mddev->reshape_backwards = 0; 4035 module_put(pers->owner); 4036 pr_warn("md: %s: %s would not accept array\n", 4037 mdname(mddev), clevel); 4038 rv = PTR_ERR(priv); 4039 goto out_unlock; 4040 } 4041 4042 /* Looks like we have a winner */ 4043 mddev_suspend(mddev); 4044 mddev_detach(mddev); 4045 4046 spin_lock(&mddev->lock); 4047 oldpers = mddev->pers; 4048 oldpriv = mddev->private; 4049 mddev->pers = pers; 4050 mddev->private = priv; 4051 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4052 mddev->level = mddev->new_level; 4053 mddev->layout = mddev->new_layout; 4054 mddev->chunk_sectors = mddev->new_chunk_sectors; 4055 mddev->delta_disks = 0; 4056 mddev->reshape_backwards = 0; 4057 mddev->degraded = 0; 4058 spin_unlock(&mddev->lock); 4059 4060 if (oldpers->sync_request == NULL && 4061 mddev->external) { 4062 /* We are converting from a no-redundancy array 4063 * to a redundancy array and metadata is managed 4064 * externally so we need to be sure that writes 4065 * won't block due to a need to transition 4066 * clean->dirty 4067 * until external management is started. 4068 */ 4069 mddev->in_sync = 0; 4070 mddev->safemode_delay = 0; 4071 mddev->safemode = 0; 4072 } 4073 4074 oldpers->free(mddev, oldpriv); 4075 4076 if (oldpers->sync_request == NULL && 4077 pers->sync_request != NULL) { 4078 /* need to add the md_redundancy_group */ 4079 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4080 pr_warn("md: cannot register extra attributes for %s\n", 4081 mdname(mddev)); 4082 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4083 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4084 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4085 } 4086 if (oldpers->sync_request != NULL && 4087 pers->sync_request == NULL) { 4088 /* need to remove the md_redundancy_group */ 4089 if (mddev->to_remove == NULL) 4090 mddev->to_remove = &md_redundancy_group; 4091 } 4092 4093 module_put(oldpers->owner); 4094 4095 rdev_for_each(rdev, mddev) { 4096 if (rdev->raid_disk < 0) 4097 continue; 4098 if (rdev->new_raid_disk >= mddev->raid_disks) 4099 rdev->new_raid_disk = -1; 4100 if (rdev->new_raid_disk == rdev->raid_disk) 4101 continue; 4102 sysfs_unlink_rdev(mddev, rdev); 4103 } 4104 rdev_for_each(rdev, mddev) { 4105 if (rdev->raid_disk < 0) 4106 continue; 4107 if (rdev->new_raid_disk == rdev->raid_disk) 4108 continue; 4109 rdev->raid_disk = rdev->new_raid_disk; 4110 if (rdev->raid_disk < 0) 4111 clear_bit(In_sync, &rdev->flags); 4112 else { 4113 if (sysfs_link_rdev(mddev, rdev)) 4114 pr_warn("md: cannot register rd%d for %s after level change\n", 4115 rdev->raid_disk, mdname(mddev)); 4116 } 4117 } 4118 4119 if (pers->sync_request == NULL) { 4120 /* this is now an array without redundancy, so 4121 * it must always be in_sync 4122 */ 4123 mddev->in_sync = 1; 4124 del_timer_sync(&mddev->safemode_timer); 4125 } 4126 blk_set_stacking_limits(&mddev->queue->limits); 4127 pers->run(mddev); 4128 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4129 mddev_resume(mddev); 4130 if (!mddev->thread) 4131 md_update_sb(mddev, 1); 4132 sysfs_notify_dirent_safe(mddev->sysfs_level); 4133 md_new_event(mddev); 4134 rv = len; 4135 out_unlock: 4136 mddev_unlock(mddev); 4137 return rv; 4138 } 4139 4140 static struct md_sysfs_entry md_level = 4141 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4142 4143 static ssize_t 4144 layout_show(struct mddev *mddev, char *page) 4145 { 4146 /* just a number, not meaningful for all levels */ 4147 if (mddev->reshape_position != MaxSector && 4148 mddev->layout != mddev->new_layout) 4149 return sprintf(page, "%d (%d)\n", 4150 mddev->new_layout, mddev->layout); 4151 return sprintf(page, "%d\n", mddev->layout); 4152 } 4153 4154 static ssize_t 4155 layout_store(struct mddev *mddev, const char *buf, size_t len) 4156 { 4157 unsigned int n; 4158 int err; 4159 4160 err = kstrtouint(buf, 10, &n); 4161 if (err < 0) 4162 return err; 4163 err = mddev_lock(mddev); 4164 if (err) 4165 return err; 4166 4167 if (mddev->pers) { 4168 if (mddev->pers->check_reshape == NULL) 4169 err = -EBUSY; 4170 else if (mddev->ro) 4171 err = -EROFS; 4172 else { 4173 mddev->new_layout = n; 4174 err = mddev->pers->check_reshape(mddev); 4175 if (err) 4176 mddev->new_layout = mddev->layout; 4177 } 4178 } else { 4179 mddev->new_layout = n; 4180 if (mddev->reshape_position == MaxSector) 4181 mddev->layout = n; 4182 } 4183 mddev_unlock(mddev); 4184 return err ?: len; 4185 } 4186 static struct md_sysfs_entry md_layout = 4187 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4188 4189 static ssize_t 4190 raid_disks_show(struct mddev *mddev, char *page) 4191 { 4192 if (mddev->raid_disks == 0) 4193 return 0; 4194 if (mddev->reshape_position != MaxSector && 4195 mddev->delta_disks != 0) 4196 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4197 mddev->raid_disks - mddev->delta_disks); 4198 return sprintf(page, "%d\n", mddev->raid_disks); 4199 } 4200 4201 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4202 4203 static ssize_t 4204 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4205 { 4206 unsigned int n; 4207 int err; 4208 4209 err = kstrtouint(buf, 10, &n); 4210 if (err < 0) 4211 return err; 4212 4213 err = mddev_lock(mddev); 4214 if (err) 4215 return err; 4216 if (mddev->pers) 4217 err = update_raid_disks(mddev, n); 4218 else if (mddev->reshape_position != MaxSector) { 4219 struct md_rdev *rdev; 4220 int olddisks = mddev->raid_disks - mddev->delta_disks; 4221 4222 err = -EINVAL; 4223 rdev_for_each(rdev, mddev) { 4224 if (olddisks < n && 4225 rdev->data_offset < rdev->new_data_offset) 4226 goto out_unlock; 4227 if (olddisks > n && 4228 rdev->data_offset > rdev->new_data_offset) 4229 goto out_unlock; 4230 } 4231 err = 0; 4232 mddev->delta_disks = n - olddisks; 4233 mddev->raid_disks = n; 4234 mddev->reshape_backwards = (mddev->delta_disks < 0); 4235 } else 4236 mddev->raid_disks = n; 4237 out_unlock: 4238 mddev_unlock(mddev); 4239 return err ? err : len; 4240 } 4241 static struct md_sysfs_entry md_raid_disks = 4242 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4243 4244 static ssize_t 4245 uuid_show(struct mddev *mddev, char *page) 4246 { 4247 return sprintf(page, "%pU\n", mddev->uuid); 4248 } 4249 static struct md_sysfs_entry md_uuid = 4250 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4251 4252 static ssize_t 4253 chunk_size_show(struct mddev *mddev, char *page) 4254 { 4255 if (mddev->reshape_position != MaxSector && 4256 mddev->chunk_sectors != mddev->new_chunk_sectors) 4257 return sprintf(page, "%d (%d)\n", 4258 mddev->new_chunk_sectors << 9, 4259 mddev->chunk_sectors << 9); 4260 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4261 } 4262 4263 static ssize_t 4264 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4265 { 4266 unsigned long n; 4267 int err; 4268 4269 err = kstrtoul(buf, 10, &n); 4270 if (err < 0) 4271 return err; 4272 4273 err = mddev_lock(mddev); 4274 if (err) 4275 return err; 4276 if (mddev->pers) { 4277 if (mddev->pers->check_reshape == NULL) 4278 err = -EBUSY; 4279 else if (mddev->ro) 4280 err = -EROFS; 4281 else { 4282 mddev->new_chunk_sectors = n >> 9; 4283 err = mddev->pers->check_reshape(mddev); 4284 if (err) 4285 mddev->new_chunk_sectors = mddev->chunk_sectors; 4286 } 4287 } else { 4288 mddev->new_chunk_sectors = n >> 9; 4289 if (mddev->reshape_position == MaxSector) 4290 mddev->chunk_sectors = n >> 9; 4291 } 4292 mddev_unlock(mddev); 4293 return err ?: len; 4294 } 4295 static struct md_sysfs_entry md_chunk_size = 4296 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4297 4298 static ssize_t 4299 resync_start_show(struct mddev *mddev, char *page) 4300 { 4301 if (mddev->recovery_cp == MaxSector) 4302 return sprintf(page, "none\n"); 4303 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4304 } 4305 4306 static ssize_t 4307 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4308 { 4309 unsigned long long n; 4310 int err; 4311 4312 if (cmd_match(buf, "none")) 4313 n = MaxSector; 4314 else { 4315 err = kstrtoull(buf, 10, &n); 4316 if (err < 0) 4317 return err; 4318 if (n != (sector_t)n) 4319 return -EINVAL; 4320 } 4321 4322 err = mddev_lock(mddev); 4323 if (err) 4324 return err; 4325 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4326 err = -EBUSY; 4327 4328 if (!err) { 4329 mddev->recovery_cp = n; 4330 if (mddev->pers) 4331 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4332 } 4333 mddev_unlock(mddev); 4334 return err ?: len; 4335 } 4336 static struct md_sysfs_entry md_resync_start = 4337 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4338 resync_start_show, resync_start_store); 4339 4340 /* 4341 * The array state can be: 4342 * 4343 * clear 4344 * No devices, no size, no level 4345 * Equivalent to STOP_ARRAY ioctl 4346 * inactive 4347 * May have some settings, but array is not active 4348 * all IO results in error 4349 * When written, doesn't tear down array, but just stops it 4350 * suspended (not supported yet) 4351 * All IO requests will block. The array can be reconfigured. 4352 * Writing this, if accepted, will block until array is quiescent 4353 * readonly 4354 * no resync can happen. no superblocks get written. 4355 * write requests fail 4356 * read-auto 4357 * like readonly, but behaves like 'clean' on a write request. 4358 * 4359 * clean - no pending writes, but otherwise active. 4360 * When written to inactive array, starts without resync 4361 * If a write request arrives then 4362 * if metadata is known, mark 'dirty' and switch to 'active'. 4363 * if not known, block and switch to write-pending 4364 * If written to an active array that has pending writes, then fails. 4365 * active 4366 * fully active: IO and resync can be happening. 4367 * When written to inactive array, starts with resync 4368 * 4369 * write-pending 4370 * clean, but writes are blocked waiting for 'active' to be written. 4371 * 4372 * active-idle 4373 * like active, but no writes have been seen for a while (100msec). 4374 * 4375 * broken 4376 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4377 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4378 * when a member is gone, so this state will at least alert the 4379 * user that something is wrong. 4380 */ 4381 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4382 write_pending, active_idle, broken, bad_word}; 4383 static char *array_states[] = { 4384 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4385 "write-pending", "active-idle", "broken", NULL }; 4386 4387 static int match_word(const char *word, char **list) 4388 { 4389 int n; 4390 for (n=0; list[n]; n++) 4391 if (cmd_match(word, list[n])) 4392 break; 4393 return n; 4394 } 4395 4396 static ssize_t 4397 array_state_show(struct mddev *mddev, char *page) 4398 { 4399 enum array_state st = inactive; 4400 4401 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4402 switch(mddev->ro) { 4403 case 1: 4404 st = readonly; 4405 break; 4406 case 2: 4407 st = read_auto; 4408 break; 4409 case 0: 4410 spin_lock(&mddev->lock); 4411 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4412 st = write_pending; 4413 else if (mddev->in_sync) 4414 st = clean; 4415 else if (mddev->safemode) 4416 st = active_idle; 4417 else 4418 st = active; 4419 spin_unlock(&mddev->lock); 4420 } 4421 4422 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4423 st = broken; 4424 } else { 4425 if (list_empty(&mddev->disks) && 4426 mddev->raid_disks == 0 && 4427 mddev->dev_sectors == 0) 4428 st = clear; 4429 else 4430 st = inactive; 4431 } 4432 return sprintf(page, "%s\n", array_states[st]); 4433 } 4434 4435 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4436 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4437 static int restart_array(struct mddev *mddev); 4438 4439 static ssize_t 4440 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4441 { 4442 int err = 0; 4443 enum array_state st = match_word(buf, array_states); 4444 4445 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4446 /* don't take reconfig_mutex when toggling between 4447 * clean and active 4448 */ 4449 spin_lock(&mddev->lock); 4450 if (st == active) { 4451 restart_array(mddev); 4452 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4453 md_wakeup_thread(mddev->thread); 4454 wake_up(&mddev->sb_wait); 4455 } else /* st == clean */ { 4456 restart_array(mddev); 4457 if (!set_in_sync(mddev)) 4458 err = -EBUSY; 4459 } 4460 if (!err) 4461 sysfs_notify_dirent_safe(mddev->sysfs_state); 4462 spin_unlock(&mddev->lock); 4463 return err ?: len; 4464 } 4465 err = mddev_lock(mddev); 4466 if (err) 4467 return err; 4468 err = -EINVAL; 4469 switch(st) { 4470 case bad_word: 4471 break; 4472 case clear: 4473 /* stopping an active array */ 4474 err = do_md_stop(mddev, 0, NULL); 4475 break; 4476 case inactive: 4477 /* stopping an active array */ 4478 if (mddev->pers) 4479 err = do_md_stop(mddev, 2, NULL); 4480 else 4481 err = 0; /* already inactive */ 4482 break; 4483 case suspended: 4484 break; /* not supported yet */ 4485 case readonly: 4486 if (mddev->pers) 4487 err = md_set_readonly(mddev, NULL); 4488 else { 4489 mddev->ro = 1; 4490 set_disk_ro(mddev->gendisk, 1); 4491 err = do_md_run(mddev); 4492 } 4493 break; 4494 case read_auto: 4495 if (mddev->pers) { 4496 if (mddev->ro == 0) 4497 err = md_set_readonly(mddev, NULL); 4498 else if (mddev->ro == 1) 4499 err = restart_array(mddev); 4500 if (err == 0) { 4501 mddev->ro = 2; 4502 set_disk_ro(mddev->gendisk, 0); 4503 } 4504 } else { 4505 mddev->ro = 2; 4506 err = do_md_run(mddev); 4507 } 4508 break; 4509 case clean: 4510 if (mddev->pers) { 4511 err = restart_array(mddev); 4512 if (err) 4513 break; 4514 spin_lock(&mddev->lock); 4515 if (!set_in_sync(mddev)) 4516 err = -EBUSY; 4517 spin_unlock(&mddev->lock); 4518 } else 4519 err = -EINVAL; 4520 break; 4521 case active: 4522 if (mddev->pers) { 4523 err = restart_array(mddev); 4524 if (err) 4525 break; 4526 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4527 wake_up(&mddev->sb_wait); 4528 err = 0; 4529 } else { 4530 mddev->ro = 0; 4531 set_disk_ro(mddev->gendisk, 0); 4532 err = do_md_run(mddev); 4533 } 4534 break; 4535 case write_pending: 4536 case active_idle: 4537 case broken: 4538 /* these cannot be set */ 4539 break; 4540 } 4541 4542 if (!err) { 4543 if (mddev->hold_active == UNTIL_IOCTL) 4544 mddev->hold_active = 0; 4545 sysfs_notify_dirent_safe(mddev->sysfs_state); 4546 } 4547 mddev_unlock(mddev); 4548 return err ?: len; 4549 } 4550 static struct md_sysfs_entry md_array_state = 4551 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4552 4553 static ssize_t 4554 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4555 return sprintf(page, "%d\n", 4556 atomic_read(&mddev->max_corr_read_errors)); 4557 } 4558 4559 static ssize_t 4560 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4561 { 4562 unsigned int n; 4563 int rv; 4564 4565 rv = kstrtouint(buf, 10, &n); 4566 if (rv < 0) 4567 return rv; 4568 atomic_set(&mddev->max_corr_read_errors, n); 4569 return len; 4570 } 4571 4572 static struct md_sysfs_entry max_corr_read_errors = 4573 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4574 max_corrected_read_errors_store); 4575 4576 static ssize_t 4577 null_show(struct mddev *mddev, char *page) 4578 { 4579 return -EINVAL; 4580 } 4581 4582 /* need to ensure rdev_delayed_delete() has completed */ 4583 static void flush_rdev_wq(struct mddev *mddev) 4584 { 4585 struct md_rdev *rdev; 4586 4587 rcu_read_lock(); 4588 rdev_for_each_rcu(rdev, mddev) 4589 if (work_pending(&rdev->del_work)) { 4590 flush_workqueue(md_rdev_misc_wq); 4591 break; 4592 } 4593 rcu_read_unlock(); 4594 } 4595 4596 static ssize_t 4597 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4598 { 4599 /* buf must be %d:%d\n? giving major and minor numbers */ 4600 /* The new device is added to the array. 4601 * If the array has a persistent superblock, we read the 4602 * superblock to initialise info and check validity. 4603 * Otherwise, only checking done is that in bind_rdev_to_array, 4604 * which mainly checks size. 4605 */ 4606 char *e; 4607 int major = simple_strtoul(buf, &e, 10); 4608 int minor; 4609 dev_t dev; 4610 struct md_rdev *rdev; 4611 int err; 4612 4613 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4614 return -EINVAL; 4615 minor = simple_strtoul(e+1, &e, 10); 4616 if (*e && *e != '\n') 4617 return -EINVAL; 4618 dev = MKDEV(major, minor); 4619 if (major != MAJOR(dev) || 4620 minor != MINOR(dev)) 4621 return -EOVERFLOW; 4622 4623 flush_rdev_wq(mddev); 4624 err = mddev_lock(mddev); 4625 if (err) 4626 return err; 4627 if (mddev->persistent) { 4628 rdev = md_import_device(dev, mddev->major_version, 4629 mddev->minor_version); 4630 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4631 struct md_rdev *rdev0 4632 = list_entry(mddev->disks.next, 4633 struct md_rdev, same_set); 4634 err = super_types[mddev->major_version] 4635 .load_super(rdev, rdev0, mddev->minor_version); 4636 if (err < 0) 4637 goto out; 4638 } 4639 } else if (mddev->external) 4640 rdev = md_import_device(dev, -2, -1); 4641 else 4642 rdev = md_import_device(dev, -1, -1); 4643 4644 if (IS_ERR(rdev)) { 4645 mddev_unlock(mddev); 4646 return PTR_ERR(rdev); 4647 } 4648 err = bind_rdev_to_array(rdev, mddev); 4649 out: 4650 if (err) 4651 export_rdev(rdev); 4652 mddev_unlock(mddev); 4653 if (!err) 4654 md_new_event(mddev); 4655 return err ? err : len; 4656 } 4657 4658 static struct md_sysfs_entry md_new_device = 4659 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4660 4661 static ssize_t 4662 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4663 { 4664 char *end; 4665 unsigned long chunk, end_chunk; 4666 int err; 4667 4668 err = mddev_lock(mddev); 4669 if (err) 4670 return err; 4671 if (!mddev->bitmap) 4672 goto out; 4673 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4674 while (*buf) { 4675 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4676 if (buf == end) break; 4677 if (*end == '-') { /* range */ 4678 buf = end + 1; 4679 end_chunk = simple_strtoul(buf, &end, 0); 4680 if (buf == end) break; 4681 } 4682 if (*end && !isspace(*end)) break; 4683 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4684 buf = skip_spaces(end); 4685 } 4686 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4687 out: 4688 mddev_unlock(mddev); 4689 return len; 4690 } 4691 4692 static struct md_sysfs_entry md_bitmap = 4693 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4694 4695 static ssize_t 4696 size_show(struct mddev *mddev, char *page) 4697 { 4698 return sprintf(page, "%llu\n", 4699 (unsigned long long)mddev->dev_sectors / 2); 4700 } 4701 4702 static int update_size(struct mddev *mddev, sector_t num_sectors); 4703 4704 static ssize_t 4705 size_store(struct mddev *mddev, const char *buf, size_t len) 4706 { 4707 /* If array is inactive, we can reduce the component size, but 4708 * not increase it (except from 0). 4709 * If array is active, we can try an on-line resize 4710 */ 4711 sector_t sectors; 4712 int err = strict_blocks_to_sectors(buf, §ors); 4713 4714 if (err < 0) 4715 return err; 4716 err = mddev_lock(mddev); 4717 if (err) 4718 return err; 4719 if (mddev->pers) { 4720 err = update_size(mddev, sectors); 4721 if (err == 0) 4722 md_update_sb(mddev, 1); 4723 } else { 4724 if (mddev->dev_sectors == 0 || 4725 mddev->dev_sectors > sectors) 4726 mddev->dev_sectors = sectors; 4727 else 4728 err = -ENOSPC; 4729 } 4730 mddev_unlock(mddev); 4731 return err ? err : len; 4732 } 4733 4734 static struct md_sysfs_entry md_size = 4735 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4736 4737 /* Metadata version. 4738 * This is one of 4739 * 'none' for arrays with no metadata (good luck...) 4740 * 'external' for arrays with externally managed metadata, 4741 * or N.M for internally known formats 4742 */ 4743 static ssize_t 4744 metadata_show(struct mddev *mddev, char *page) 4745 { 4746 if (mddev->persistent) 4747 return sprintf(page, "%d.%d\n", 4748 mddev->major_version, mddev->minor_version); 4749 else if (mddev->external) 4750 return sprintf(page, "external:%s\n", mddev->metadata_type); 4751 else 4752 return sprintf(page, "none\n"); 4753 } 4754 4755 static ssize_t 4756 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4757 { 4758 int major, minor; 4759 char *e; 4760 int err; 4761 /* Changing the details of 'external' metadata is 4762 * always permitted. Otherwise there must be 4763 * no devices attached to the array. 4764 */ 4765 4766 err = mddev_lock(mddev); 4767 if (err) 4768 return err; 4769 err = -EBUSY; 4770 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4771 ; 4772 else if (!list_empty(&mddev->disks)) 4773 goto out_unlock; 4774 4775 err = 0; 4776 if (cmd_match(buf, "none")) { 4777 mddev->persistent = 0; 4778 mddev->external = 0; 4779 mddev->major_version = 0; 4780 mddev->minor_version = 90; 4781 goto out_unlock; 4782 } 4783 if (strncmp(buf, "external:", 9) == 0) { 4784 size_t namelen = len-9; 4785 if (namelen >= sizeof(mddev->metadata_type)) 4786 namelen = sizeof(mddev->metadata_type)-1; 4787 strncpy(mddev->metadata_type, buf+9, namelen); 4788 mddev->metadata_type[namelen] = 0; 4789 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4790 mddev->metadata_type[--namelen] = 0; 4791 mddev->persistent = 0; 4792 mddev->external = 1; 4793 mddev->major_version = 0; 4794 mddev->minor_version = 90; 4795 goto out_unlock; 4796 } 4797 major = simple_strtoul(buf, &e, 10); 4798 err = -EINVAL; 4799 if (e==buf || *e != '.') 4800 goto out_unlock; 4801 buf = e+1; 4802 minor = simple_strtoul(buf, &e, 10); 4803 if (e==buf || (*e && *e != '\n') ) 4804 goto out_unlock; 4805 err = -ENOENT; 4806 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4807 goto out_unlock; 4808 mddev->major_version = major; 4809 mddev->minor_version = minor; 4810 mddev->persistent = 1; 4811 mddev->external = 0; 4812 err = 0; 4813 out_unlock: 4814 mddev_unlock(mddev); 4815 return err ?: len; 4816 } 4817 4818 static struct md_sysfs_entry md_metadata = 4819 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4820 4821 static ssize_t 4822 action_show(struct mddev *mddev, char *page) 4823 { 4824 char *type = "idle"; 4825 unsigned long recovery = mddev->recovery; 4826 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4827 type = "frozen"; 4828 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4829 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4830 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4831 type = "reshape"; 4832 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4833 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4834 type = "resync"; 4835 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4836 type = "check"; 4837 else 4838 type = "repair"; 4839 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4840 type = "recover"; 4841 else if (mddev->reshape_position != MaxSector) 4842 type = "reshape"; 4843 } 4844 return sprintf(page, "%s\n", type); 4845 } 4846 4847 static ssize_t 4848 action_store(struct mddev *mddev, const char *page, size_t len) 4849 { 4850 if (!mddev->pers || !mddev->pers->sync_request) 4851 return -EINVAL; 4852 4853 4854 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4855 if (cmd_match(page, "frozen")) 4856 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4857 else 4858 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4859 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4860 mddev_lock(mddev) == 0) { 4861 if (work_pending(&mddev->del_work)) 4862 flush_workqueue(md_misc_wq); 4863 if (mddev->sync_thread) { 4864 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4865 md_reap_sync_thread(mddev); 4866 } 4867 mddev_unlock(mddev); 4868 } 4869 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4870 return -EBUSY; 4871 else if (cmd_match(page, "resync")) 4872 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4873 else if (cmd_match(page, "recover")) { 4874 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4875 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4876 } else if (cmd_match(page, "reshape")) { 4877 int err; 4878 if (mddev->pers->start_reshape == NULL) 4879 return -EINVAL; 4880 err = mddev_lock(mddev); 4881 if (!err) { 4882 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4883 err = -EBUSY; 4884 else { 4885 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4886 err = mddev->pers->start_reshape(mddev); 4887 } 4888 mddev_unlock(mddev); 4889 } 4890 if (err) 4891 return err; 4892 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4893 } else { 4894 if (cmd_match(page, "check")) 4895 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4896 else if (!cmd_match(page, "repair")) 4897 return -EINVAL; 4898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4899 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4900 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4901 } 4902 if (mddev->ro == 2) { 4903 /* A write to sync_action is enough to justify 4904 * canceling read-auto mode 4905 */ 4906 mddev->ro = 0; 4907 md_wakeup_thread(mddev->sync_thread); 4908 } 4909 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4910 md_wakeup_thread(mddev->thread); 4911 sysfs_notify_dirent_safe(mddev->sysfs_action); 4912 return len; 4913 } 4914 4915 static struct md_sysfs_entry md_scan_mode = 4916 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4917 4918 static ssize_t 4919 last_sync_action_show(struct mddev *mddev, char *page) 4920 { 4921 return sprintf(page, "%s\n", mddev->last_sync_action); 4922 } 4923 4924 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4925 4926 static ssize_t 4927 mismatch_cnt_show(struct mddev *mddev, char *page) 4928 { 4929 return sprintf(page, "%llu\n", 4930 (unsigned long long) 4931 atomic64_read(&mddev->resync_mismatches)); 4932 } 4933 4934 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4935 4936 static ssize_t 4937 sync_min_show(struct mddev *mddev, char *page) 4938 { 4939 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4940 mddev->sync_speed_min ? "local": "system"); 4941 } 4942 4943 static ssize_t 4944 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4945 { 4946 unsigned int min; 4947 int rv; 4948 4949 if (strncmp(buf, "system", 6)==0) { 4950 min = 0; 4951 } else { 4952 rv = kstrtouint(buf, 10, &min); 4953 if (rv < 0) 4954 return rv; 4955 if (min == 0) 4956 return -EINVAL; 4957 } 4958 mddev->sync_speed_min = min; 4959 return len; 4960 } 4961 4962 static struct md_sysfs_entry md_sync_min = 4963 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4964 4965 static ssize_t 4966 sync_max_show(struct mddev *mddev, char *page) 4967 { 4968 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4969 mddev->sync_speed_max ? "local": "system"); 4970 } 4971 4972 static ssize_t 4973 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4974 { 4975 unsigned int max; 4976 int rv; 4977 4978 if (strncmp(buf, "system", 6)==0) { 4979 max = 0; 4980 } else { 4981 rv = kstrtouint(buf, 10, &max); 4982 if (rv < 0) 4983 return rv; 4984 if (max == 0) 4985 return -EINVAL; 4986 } 4987 mddev->sync_speed_max = max; 4988 return len; 4989 } 4990 4991 static struct md_sysfs_entry md_sync_max = 4992 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4993 4994 static ssize_t 4995 degraded_show(struct mddev *mddev, char *page) 4996 { 4997 return sprintf(page, "%d\n", mddev->degraded); 4998 } 4999 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5000 5001 static ssize_t 5002 sync_force_parallel_show(struct mddev *mddev, char *page) 5003 { 5004 return sprintf(page, "%d\n", mddev->parallel_resync); 5005 } 5006 5007 static ssize_t 5008 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5009 { 5010 long n; 5011 5012 if (kstrtol(buf, 10, &n)) 5013 return -EINVAL; 5014 5015 if (n != 0 && n != 1) 5016 return -EINVAL; 5017 5018 mddev->parallel_resync = n; 5019 5020 if (mddev->sync_thread) 5021 wake_up(&resync_wait); 5022 5023 return len; 5024 } 5025 5026 /* force parallel resync, even with shared block devices */ 5027 static struct md_sysfs_entry md_sync_force_parallel = 5028 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5029 sync_force_parallel_show, sync_force_parallel_store); 5030 5031 static ssize_t 5032 sync_speed_show(struct mddev *mddev, char *page) 5033 { 5034 unsigned long resync, dt, db; 5035 if (mddev->curr_resync == 0) 5036 return sprintf(page, "none\n"); 5037 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5038 dt = (jiffies - mddev->resync_mark) / HZ; 5039 if (!dt) dt++; 5040 db = resync - mddev->resync_mark_cnt; 5041 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5042 } 5043 5044 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5045 5046 static ssize_t 5047 sync_completed_show(struct mddev *mddev, char *page) 5048 { 5049 unsigned long long max_sectors, resync; 5050 5051 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5052 return sprintf(page, "none\n"); 5053 5054 if (mddev->curr_resync == 1 || 5055 mddev->curr_resync == 2) 5056 return sprintf(page, "delayed\n"); 5057 5058 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5059 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5060 max_sectors = mddev->resync_max_sectors; 5061 else 5062 max_sectors = mddev->dev_sectors; 5063 5064 resync = mddev->curr_resync_completed; 5065 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5066 } 5067 5068 static struct md_sysfs_entry md_sync_completed = 5069 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5070 5071 static ssize_t 5072 min_sync_show(struct mddev *mddev, char *page) 5073 { 5074 return sprintf(page, "%llu\n", 5075 (unsigned long long)mddev->resync_min); 5076 } 5077 static ssize_t 5078 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5079 { 5080 unsigned long long min; 5081 int err; 5082 5083 if (kstrtoull(buf, 10, &min)) 5084 return -EINVAL; 5085 5086 spin_lock(&mddev->lock); 5087 err = -EINVAL; 5088 if (min > mddev->resync_max) 5089 goto out_unlock; 5090 5091 err = -EBUSY; 5092 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5093 goto out_unlock; 5094 5095 /* Round down to multiple of 4K for safety */ 5096 mddev->resync_min = round_down(min, 8); 5097 err = 0; 5098 5099 out_unlock: 5100 spin_unlock(&mddev->lock); 5101 return err ?: len; 5102 } 5103 5104 static struct md_sysfs_entry md_min_sync = 5105 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5106 5107 static ssize_t 5108 max_sync_show(struct mddev *mddev, char *page) 5109 { 5110 if (mddev->resync_max == MaxSector) 5111 return sprintf(page, "max\n"); 5112 else 5113 return sprintf(page, "%llu\n", 5114 (unsigned long long)mddev->resync_max); 5115 } 5116 static ssize_t 5117 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5118 { 5119 int err; 5120 spin_lock(&mddev->lock); 5121 if (strncmp(buf, "max", 3) == 0) 5122 mddev->resync_max = MaxSector; 5123 else { 5124 unsigned long long max; 5125 int chunk; 5126 5127 err = -EINVAL; 5128 if (kstrtoull(buf, 10, &max)) 5129 goto out_unlock; 5130 if (max < mddev->resync_min) 5131 goto out_unlock; 5132 5133 err = -EBUSY; 5134 if (max < mddev->resync_max && 5135 mddev->ro == 0 && 5136 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5137 goto out_unlock; 5138 5139 /* Must be a multiple of chunk_size */ 5140 chunk = mddev->chunk_sectors; 5141 if (chunk) { 5142 sector_t temp = max; 5143 5144 err = -EINVAL; 5145 if (sector_div(temp, chunk)) 5146 goto out_unlock; 5147 } 5148 mddev->resync_max = max; 5149 } 5150 wake_up(&mddev->recovery_wait); 5151 err = 0; 5152 out_unlock: 5153 spin_unlock(&mddev->lock); 5154 return err ?: len; 5155 } 5156 5157 static struct md_sysfs_entry md_max_sync = 5158 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5159 5160 static ssize_t 5161 suspend_lo_show(struct mddev *mddev, char *page) 5162 { 5163 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5164 } 5165 5166 static ssize_t 5167 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5168 { 5169 unsigned long long new; 5170 int err; 5171 5172 err = kstrtoull(buf, 10, &new); 5173 if (err < 0) 5174 return err; 5175 if (new != (sector_t)new) 5176 return -EINVAL; 5177 5178 err = mddev_lock(mddev); 5179 if (err) 5180 return err; 5181 err = -EINVAL; 5182 if (mddev->pers == NULL || 5183 mddev->pers->quiesce == NULL) 5184 goto unlock; 5185 mddev_suspend(mddev); 5186 mddev->suspend_lo = new; 5187 mddev_resume(mddev); 5188 5189 err = 0; 5190 unlock: 5191 mddev_unlock(mddev); 5192 return err ?: len; 5193 } 5194 static struct md_sysfs_entry md_suspend_lo = 5195 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5196 5197 static ssize_t 5198 suspend_hi_show(struct mddev *mddev, char *page) 5199 { 5200 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5201 } 5202 5203 static ssize_t 5204 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5205 { 5206 unsigned long long new; 5207 int err; 5208 5209 err = kstrtoull(buf, 10, &new); 5210 if (err < 0) 5211 return err; 5212 if (new != (sector_t)new) 5213 return -EINVAL; 5214 5215 err = mddev_lock(mddev); 5216 if (err) 5217 return err; 5218 err = -EINVAL; 5219 if (mddev->pers == NULL) 5220 goto unlock; 5221 5222 mddev_suspend(mddev); 5223 mddev->suspend_hi = new; 5224 mddev_resume(mddev); 5225 5226 err = 0; 5227 unlock: 5228 mddev_unlock(mddev); 5229 return err ?: len; 5230 } 5231 static struct md_sysfs_entry md_suspend_hi = 5232 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5233 5234 static ssize_t 5235 reshape_position_show(struct mddev *mddev, char *page) 5236 { 5237 if (mddev->reshape_position != MaxSector) 5238 return sprintf(page, "%llu\n", 5239 (unsigned long long)mddev->reshape_position); 5240 strcpy(page, "none\n"); 5241 return 5; 5242 } 5243 5244 static ssize_t 5245 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5246 { 5247 struct md_rdev *rdev; 5248 unsigned long long new; 5249 int err; 5250 5251 err = kstrtoull(buf, 10, &new); 5252 if (err < 0) 5253 return err; 5254 if (new != (sector_t)new) 5255 return -EINVAL; 5256 err = mddev_lock(mddev); 5257 if (err) 5258 return err; 5259 err = -EBUSY; 5260 if (mddev->pers) 5261 goto unlock; 5262 mddev->reshape_position = new; 5263 mddev->delta_disks = 0; 5264 mddev->reshape_backwards = 0; 5265 mddev->new_level = mddev->level; 5266 mddev->new_layout = mddev->layout; 5267 mddev->new_chunk_sectors = mddev->chunk_sectors; 5268 rdev_for_each(rdev, mddev) 5269 rdev->new_data_offset = rdev->data_offset; 5270 err = 0; 5271 unlock: 5272 mddev_unlock(mddev); 5273 return err ?: len; 5274 } 5275 5276 static struct md_sysfs_entry md_reshape_position = 5277 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5278 reshape_position_store); 5279 5280 static ssize_t 5281 reshape_direction_show(struct mddev *mddev, char *page) 5282 { 5283 return sprintf(page, "%s\n", 5284 mddev->reshape_backwards ? "backwards" : "forwards"); 5285 } 5286 5287 static ssize_t 5288 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5289 { 5290 int backwards = 0; 5291 int err; 5292 5293 if (cmd_match(buf, "forwards")) 5294 backwards = 0; 5295 else if (cmd_match(buf, "backwards")) 5296 backwards = 1; 5297 else 5298 return -EINVAL; 5299 if (mddev->reshape_backwards == backwards) 5300 return len; 5301 5302 err = mddev_lock(mddev); 5303 if (err) 5304 return err; 5305 /* check if we are allowed to change */ 5306 if (mddev->delta_disks) 5307 err = -EBUSY; 5308 else if (mddev->persistent && 5309 mddev->major_version == 0) 5310 err = -EINVAL; 5311 else 5312 mddev->reshape_backwards = backwards; 5313 mddev_unlock(mddev); 5314 return err ?: len; 5315 } 5316 5317 static struct md_sysfs_entry md_reshape_direction = 5318 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5319 reshape_direction_store); 5320 5321 static ssize_t 5322 array_size_show(struct mddev *mddev, char *page) 5323 { 5324 if (mddev->external_size) 5325 return sprintf(page, "%llu\n", 5326 (unsigned long long)mddev->array_sectors/2); 5327 else 5328 return sprintf(page, "default\n"); 5329 } 5330 5331 static ssize_t 5332 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5333 { 5334 sector_t sectors; 5335 int err; 5336 5337 err = mddev_lock(mddev); 5338 if (err) 5339 return err; 5340 5341 /* cluster raid doesn't support change array_sectors */ 5342 if (mddev_is_clustered(mddev)) { 5343 mddev_unlock(mddev); 5344 return -EINVAL; 5345 } 5346 5347 if (strncmp(buf, "default", 7) == 0) { 5348 if (mddev->pers) 5349 sectors = mddev->pers->size(mddev, 0, 0); 5350 else 5351 sectors = mddev->array_sectors; 5352 5353 mddev->external_size = 0; 5354 } else { 5355 if (strict_blocks_to_sectors(buf, §ors) < 0) 5356 err = -EINVAL; 5357 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5358 err = -E2BIG; 5359 else 5360 mddev->external_size = 1; 5361 } 5362 5363 if (!err) { 5364 mddev->array_sectors = sectors; 5365 if (mddev->pers) 5366 set_capacity_and_notify(mddev->gendisk, 5367 mddev->array_sectors); 5368 } 5369 mddev_unlock(mddev); 5370 return err ?: len; 5371 } 5372 5373 static struct md_sysfs_entry md_array_size = 5374 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5375 array_size_store); 5376 5377 static ssize_t 5378 consistency_policy_show(struct mddev *mddev, char *page) 5379 { 5380 int ret; 5381 5382 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5383 ret = sprintf(page, "journal\n"); 5384 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5385 ret = sprintf(page, "ppl\n"); 5386 } else if (mddev->bitmap) { 5387 ret = sprintf(page, "bitmap\n"); 5388 } else if (mddev->pers) { 5389 if (mddev->pers->sync_request) 5390 ret = sprintf(page, "resync\n"); 5391 else 5392 ret = sprintf(page, "none\n"); 5393 } else { 5394 ret = sprintf(page, "unknown\n"); 5395 } 5396 5397 return ret; 5398 } 5399 5400 static ssize_t 5401 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5402 { 5403 int err = 0; 5404 5405 if (mddev->pers) { 5406 if (mddev->pers->change_consistency_policy) 5407 err = mddev->pers->change_consistency_policy(mddev, buf); 5408 else 5409 err = -EBUSY; 5410 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5411 set_bit(MD_HAS_PPL, &mddev->flags); 5412 } else { 5413 err = -EINVAL; 5414 } 5415 5416 return err ? err : len; 5417 } 5418 5419 static struct md_sysfs_entry md_consistency_policy = 5420 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5421 consistency_policy_store); 5422 5423 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5424 { 5425 return sprintf(page, "%d\n", mddev->fail_last_dev); 5426 } 5427 5428 /* 5429 * Setting fail_last_dev to true to allow last device to be forcibly removed 5430 * from RAID1/RAID10. 5431 */ 5432 static ssize_t 5433 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5434 { 5435 int ret; 5436 bool value; 5437 5438 ret = kstrtobool(buf, &value); 5439 if (ret) 5440 return ret; 5441 5442 if (value != mddev->fail_last_dev) 5443 mddev->fail_last_dev = value; 5444 5445 return len; 5446 } 5447 static struct md_sysfs_entry md_fail_last_dev = 5448 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5449 fail_last_dev_store); 5450 5451 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5452 { 5453 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5454 return sprintf(page, "n/a\n"); 5455 else 5456 return sprintf(page, "%d\n", mddev->serialize_policy); 5457 } 5458 5459 /* 5460 * Setting serialize_policy to true to enforce write IO is not reordered 5461 * for raid1. 5462 */ 5463 static ssize_t 5464 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5465 { 5466 int err; 5467 bool value; 5468 5469 err = kstrtobool(buf, &value); 5470 if (err) 5471 return err; 5472 5473 if (value == mddev->serialize_policy) 5474 return len; 5475 5476 err = mddev_lock(mddev); 5477 if (err) 5478 return err; 5479 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5480 pr_err("md: serialize_policy is only effective for raid1\n"); 5481 err = -EINVAL; 5482 goto unlock; 5483 } 5484 5485 mddev_suspend(mddev); 5486 if (value) 5487 mddev_create_serial_pool(mddev, NULL, true); 5488 else 5489 mddev_destroy_serial_pool(mddev, NULL, true); 5490 mddev->serialize_policy = value; 5491 mddev_resume(mddev); 5492 unlock: 5493 mddev_unlock(mddev); 5494 return err ?: len; 5495 } 5496 5497 static struct md_sysfs_entry md_serialize_policy = 5498 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5499 serialize_policy_store); 5500 5501 5502 static struct attribute *md_default_attrs[] = { 5503 &md_level.attr, 5504 &md_layout.attr, 5505 &md_raid_disks.attr, 5506 &md_uuid.attr, 5507 &md_chunk_size.attr, 5508 &md_size.attr, 5509 &md_resync_start.attr, 5510 &md_metadata.attr, 5511 &md_new_device.attr, 5512 &md_safe_delay.attr, 5513 &md_array_state.attr, 5514 &md_reshape_position.attr, 5515 &md_reshape_direction.attr, 5516 &md_array_size.attr, 5517 &max_corr_read_errors.attr, 5518 &md_consistency_policy.attr, 5519 &md_fail_last_dev.attr, 5520 &md_serialize_policy.attr, 5521 NULL, 5522 }; 5523 5524 static struct attribute *md_redundancy_attrs[] = { 5525 &md_scan_mode.attr, 5526 &md_last_scan_mode.attr, 5527 &md_mismatches.attr, 5528 &md_sync_min.attr, 5529 &md_sync_max.attr, 5530 &md_sync_speed.attr, 5531 &md_sync_force_parallel.attr, 5532 &md_sync_completed.attr, 5533 &md_min_sync.attr, 5534 &md_max_sync.attr, 5535 &md_suspend_lo.attr, 5536 &md_suspend_hi.attr, 5537 &md_bitmap.attr, 5538 &md_degraded.attr, 5539 NULL, 5540 }; 5541 static struct attribute_group md_redundancy_group = { 5542 .name = NULL, 5543 .attrs = md_redundancy_attrs, 5544 }; 5545 5546 static ssize_t 5547 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5548 { 5549 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5550 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5551 ssize_t rv; 5552 5553 if (!entry->show) 5554 return -EIO; 5555 spin_lock(&all_mddevs_lock); 5556 if (list_empty(&mddev->all_mddevs)) { 5557 spin_unlock(&all_mddevs_lock); 5558 return -EBUSY; 5559 } 5560 mddev_get(mddev); 5561 spin_unlock(&all_mddevs_lock); 5562 5563 rv = entry->show(mddev, page); 5564 mddev_put(mddev); 5565 return rv; 5566 } 5567 5568 static ssize_t 5569 md_attr_store(struct kobject *kobj, struct attribute *attr, 5570 const char *page, size_t length) 5571 { 5572 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5573 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5574 ssize_t rv; 5575 5576 if (!entry->store) 5577 return -EIO; 5578 if (!capable(CAP_SYS_ADMIN)) 5579 return -EACCES; 5580 spin_lock(&all_mddevs_lock); 5581 if (list_empty(&mddev->all_mddevs)) { 5582 spin_unlock(&all_mddevs_lock); 5583 return -EBUSY; 5584 } 5585 mddev_get(mddev); 5586 spin_unlock(&all_mddevs_lock); 5587 rv = entry->store(mddev, page, length); 5588 mddev_put(mddev); 5589 return rv; 5590 } 5591 5592 static void md_free(struct kobject *ko) 5593 { 5594 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5595 5596 if (mddev->sysfs_state) 5597 sysfs_put(mddev->sysfs_state); 5598 if (mddev->sysfs_level) 5599 sysfs_put(mddev->sysfs_level); 5600 5601 if (mddev->gendisk) 5602 del_gendisk(mddev->gendisk); 5603 if (mddev->queue) 5604 blk_cleanup_queue(mddev->queue); 5605 if (mddev->gendisk) 5606 put_disk(mddev->gendisk); 5607 percpu_ref_exit(&mddev->writes_pending); 5608 5609 bioset_exit(&mddev->bio_set); 5610 bioset_exit(&mddev->sync_set); 5611 mempool_exit(&mddev->md_io_pool); 5612 kfree(mddev); 5613 } 5614 5615 static const struct sysfs_ops md_sysfs_ops = { 5616 .show = md_attr_show, 5617 .store = md_attr_store, 5618 }; 5619 static struct kobj_type md_ktype = { 5620 .release = md_free, 5621 .sysfs_ops = &md_sysfs_ops, 5622 .default_attrs = md_default_attrs, 5623 }; 5624 5625 int mdp_major = 0; 5626 5627 static void mddev_delayed_delete(struct work_struct *ws) 5628 { 5629 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5630 5631 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5632 kobject_del(&mddev->kobj); 5633 kobject_put(&mddev->kobj); 5634 } 5635 5636 static void no_op(struct percpu_ref *r) {} 5637 5638 int mddev_init_writes_pending(struct mddev *mddev) 5639 { 5640 if (mddev->writes_pending.percpu_count_ptr) 5641 return 0; 5642 if (percpu_ref_init(&mddev->writes_pending, no_op, 5643 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5644 return -ENOMEM; 5645 /* We want to start with the refcount at zero */ 5646 percpu_ref_put(&mddev->writes_pending); 5647 return 0; 5648 } 5649 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5650 5651 static int md_alloc(dev_t dev, char *name) 5652 { 5653 /* 5654 * If dev is zero, name is the name of a device to allocate with 5655 * an arbitrary minor number. It will be "md_???" 5656 * If dev is non-zero it must be a device number with a MAJOR of 5657 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5658 * the device is being created by opening a node in /dev. 5659 * If "name" is not NULL, the device is being created by 5660 * writing to /sys/module/md_mod/parameters/new_array. 5661 */ 5662 static DEFINE_MUTEX(disks_mutex); 5663 struct mddev *mddev; 5664 struct gendisk *disk; 5665 int partitioned; 5666 int shift; 5667 int unit; 5668 int error ; 5669 5670 /* 5671 * Wait for any previous instance of this device to be completely 5672 * removed (mddev_delayed_delete). 5673 */ 5674 flush_workqueue(md_misc_wq); 5675 5676 mutex_lock(&disks_mutex); 5677 mddev = mddev_alloc(dev); 5678 if (IS_ERR(mddev)) { 5679 mutex_unlock(&disks_mutex); 5680 return PTR_ERR(mddev); 5681 } 5682 5683 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5684 shift = partitioned ? MdpMinorShift : 0; 5685 unit = MINOR(mddev->unit) >> shift; 5686 5687 if (name && !dev) { 5688 /* Need to ensure that 'name' is not a duplicate. 5689 */ 5690 struct mddev *mddev2; 5691 spin_lock(&all_mddevs_lock); 5692 5693 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5694 if (mddev2->gendisk && 5695 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5696 spin_unlock(&all_mddevs_lock); 5697 error = -EEXIST; 5698 goto abort; 5699 } 5700 spin_unlock(&all_mddevs_lock); 5701 } 5702 if (name && dev) 5703 /* 5704 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5705 */ 5706 mddev->hold_active = UNTIL_STOP; 5707 5708 error = mempool_init_kmalloc_pool(&mddev->md_io_pool, BIO_POOL_SIZE, 5709 sizeof(struct md_io)); 5710 if (error) 5711 goto abort; 5712 5713 error = -ENOMEM; 5714 mddev->queue = blk_alloc_queue(NUMA_NO_NODE); 5715 if (!mddev->queue) 5716 goto abort; 5717 5718 blk_set_stacking_limits(&mddev->queue->limits); 5719 5720 disk = alloc_disk(1 << shift); 5721 if (!disk) { 5722 blk_cleanup_queue(mddev->queue); 5723 mddev->queue = NULL; 5724 goto abort; 5725 } 5726 disk->major = MAJOR(mddev->unit); 5727 disk->first_minor = unit << shift; 5728 if (name) 5729 strcpy(disk->disk_name, name); 5730 else if (partitioned) 5731 sprintf(disk->disk_name, "md_d%d", unit); 5732 else 5733 sprintf(disk->disk_name, "md%d", unit); 5734 disk->fops = &md_fops; 5735 disk->private_data = mddev; 5736 disk->queue = mddev->queue; 5737 blk_queue_write_cache(mddev->queue, true, true); 5738 /* Allow extended partitions. This makes the 5739 * 'mdp' device redundant, but we can't really 5740 * remove it now. 5741 */ 5742 disk->flags |= GENHD_FL_EXT_DEVT; 5743 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5744 mddev->gendisk = disk; 5745 /* As soon as we call add_disk(), another thread could get 5746 * through to md_open, so make sure it doesn't get too far 5747 */ 5748 mutex_lock(&mddev->open_mutex); 5749 add_disk(disk); 5750 5751 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5752 if (error) { 5753 /* This isn't possible, but as kobject_init_and_add is marked 5754 * __must_check, we must do something with the result 5755 */ 5756 pr_debug("md: cannot register %s/md - name in use\n", 5757 disk->disk_name); 5758 error = 0; 5759 } 5760 if (mddev->kobj.sd && 5761 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5762 pr_debug("pointless warning\n"); 5763 mutex_unlock(&mddev->open_mutex); 5764 abort: 5765 mutex_unlock(&disks_mutex); 5766 if (!error && mddev->kobj.sd) { 5767 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5768 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5769 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5770 } 5771 mddev_put(mddev); 5772 return error; 5773 } 5774 5775 static void md_probe(dev_t dev) 5776 { 5777 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5778 return; 5779 if (create_on_open) 5780 md_alloc(dev, NULL); 5781 } 5782 5783 static int add_named_array(const char *val, const struct kernel_param *kp) 5784 { 5785 /* 5786 * val must be "md_*" or "mdNNN". 5787 * For "md_*" we allocate an array with a large free minor number, and 5788 * set the name to val. val must not already be an active name. 5789 * For "mdNNN" we allocate an array with the minor number NNN 5790 * which must not already be in use. 5791 */ 5792 int len = strlen(val); 5793 char buf[DISK_NAME_LEN]; 5794 unsigned long devnum; 5795 5796 while (len && val[len-1] == '\n') 5797 len--; 5798 if (len >= DISK_NAME_LEN) 5799 return -E2BIG; 5800 strlcpy(buf, val, len+1); 5801 if (strncmp(buf, "md_", 3) == 0) 5802 return md_alloc(0, buf); 5803 if (strncmp(buf, "md", 2) == 0 && 5804 isdigit(buf[2]) && 5805 kstrtoul(buf+2, 10, &devnum) == 0 && 5806 devnum <= MINORMASK) 5807 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5808 5809 return -EINVAL; 5810 } 5811 5812 static void md_safemode_timeout(struct timer_list *t) 5813 { 5814 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5815 5816 mddev->safemode = 1; 5817 if (mddev->external) 5818 sysfs_notify_dirent_safe(mddev->sysfs_state); 5819 5820 md_wakeup_thread(mddev->thread); 5821 } 5822 5823 static int start_dirty_degraded; 5824 5825 int md_run(struct mddev *mddev) 5826 { 5827 int err; 5828 struct md_rdev *rdev; 5829 struct md_personality *pers; 5830 5831 if (list_empty(&mddev->disks)) 5832 /* cannot run an array with no devices.. */ 5833 return -EINVAL; 5834 5835 if (mddev->pers) 5836 return -EBUSY; 5837 /* Cannot run until previous stop completes properly */ 5838 if (mddev->sysfs_active) 5839 return -EBUSY; 5840 5841 /* 5842 * Analyze all RAID superblock(s) 5843 */ 5844 if (!mddev->raid_disks) { 5845 if (!mddev->persistent) 5846 return -EINVAL; 5847 err = analyze_sbs(mddev); 5848 if (err) 5849 return -EINVAL; 5850 } 5851 5852 if (mddev->level != LEVEL_NONE) 5853 request_module("md-level-%d", mddev->level); 5854 else if (mddev->clevel[0]) 5855 request_module("md-%s", mddev->clevel); 5856 5857 /* 5858 * Drop all container device buffers, from now on 5859 * the only valid external interface is through the md 5860 * device. 5861 */ 5862 mddev->has_superblocks = false; 5863 rdev_for_each(rdev, mddev) { 5864 if (test_bit(Faulty, &rdev->flags)) 5865 continue; 5866 sync_blockdev(rdev->bdev); 5867 invalidate_bdev(rdev->bdev); 5868 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5869 mddev->ro = 1; 5870 if (mddev->gendisk) 5871 set_disk_ro(mddev->gendisk, 1); 5872 } 5873 5874 if (rdev->sb_page) 5875 mddev->has_superblocks = true; 5876 5877 /* perform some consistency tests on the device. 5878 * We don't want the data to overlap the metadata, 5879 * Internal Bitmap issues have been handled elsewhere. 5880 */ 5881 if (rdev->meta_bdev) { 5882 /* Nothing to check */; 5883 } else if (rdev->data_offset < rdev->sb_start) { 5884 if (mddev->dev_sectors && 5885 rdev->data_offset + mddev->dev_sectors 5886 > rdev->sb_start) { 5887 pr_warn("md: %s: data overlaps metadata\n", 5888 mdname(mddev)); 5889 return -EINVAL; 5890 } 5891 } else { 5892 if (rdev->sb_start + rdev->sb_size/512 5893 > rdev->data_offset) { 5894 pr_warn("md: %s: metadata overlaps data\n", 5895 mdname(mddev)); 5896 return -EINVAL; 5897 } 5898 } 5899 sysfs_notify_dirent_safe(rdev->sysfs_state); 5900 } 5901 5902 if (!bioset_initialized(&mddev->bio_set)) { 5903 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5904 if (err) 5905 return err; 5906 } 5907 if (!bioset_initialized(&mddev->sync_set)) { 5908 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5909 if (err) 5910 return err; 5911 } 5912 5913 spin_lock(&pers_lock); 5914 pers = find_pers(mddev->level, mddev->clevel); 5915 if (!pers || !try_module_get(pers->owner)) { 5916 spin_unlock(&pers_lock); 5917 if (mddev->level != LEVEL_NONE) 5918 pr_warn("md: personality for level %d is not loaded!\n", 5919 mddev->level); 5920 else 5921 pr_warn("md: personality for level %s is not loaded!\n", 5922 mddev->clevel); 5923 err = -EINVAL; 5924 goto abort; 5925 } 5926 spin_unlock(&pers_lock); 5927 if (mddev->level != pers->level) { 5928 mddev->level = pers->level; 5929 mddev->new_level = pers->level; 5930 } 5931 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5932 5933 if (mddev->reshape_position != MaxSector && 5934 pers->start_reshape == NULL) { 5935 /* This personality cannot handle reshaping... */ 5936 module_put(pers->owner); 5937 err = -EINVAL; 5938 goto abort; 5939 } 5940 5941 if (pers->sync_request) { 5942 /* Warn if this is a potentially silly 5943 * configuration. 5944 */ 5945 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5946 struct md_rdev *rdev2; 5947 int warned = 0; 5948 5949 rdev_for_each(rdev, mddev) 5950 rdev_for_each(rdev2, mddev) { 5951 if (rdev < rdev2 && 5952 rdev->bdev->bd_disk == 5953 rdev2->bdev->bd_disk) { 5954 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5955 mdname(mddev), 5956 bdevname(rdev->bdev,b), 5957 bdevname(rdev2->bdev,b2)); 5958 warned = 1; 5959 } 5960 } 5961 5962 if (warned) 5963 pr_warn("True protection against single-disk failure might be compromised.\n"); 5964 } 5965 5966 mddev->recovery = 0; 5967 /* may be over-ridden by personality */ 5968 mddev->resync_max_sectors = mddev->dev_sectors; 5969 5970 mddev->ok_start_degraded = start_dirty_degraded; 5971 5972 if (start_readonly && mddev->ro == 0) 5973 mddev->ro = 2; /* read-only, but switch on first write */ 5974 5975 err = pers->run(mddev); 5976 if (err) 5977 pr_warn("md: pers->run() failed ...\n"); 5978 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5979 WARN_ONCE(!mddev->external_size, 5980 "%s: default size too small, but 'external_size' not in effect?\n", 5981 __func__); 5982 pr_warn("md: invalid array_size %llu > default size %llu\n", 5983 (unsigned long long)mddev->array_sectors / 2, 5984 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5985 err = -EINVAL; 5986 } 5987 if (err == 0 && pers->sync_request && 5988 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5989 struct bitmap *bitmap; 5990 5991 bitmap = md_bitmap_create(mddev, -1); 5992 if (IS_ERR(bitmap)) { 5993 err = PTR_ERR(bitmap); 5994 pr_warn("%s: failed to create bitmap (%d)\n", 5995 mdname(mddev), err); 5996 } else 5997 mddev->bitmap = bitmap; 5998 5999 } 6000 if (err) 6001 goto bitmap_abort; 6002 6003 if (mddev->bitmap_info.max_write_behind > 0) { 6004 bool create_pool = false; 6005 6006 rdev_for_each(rdev, mddev) { 6007 if (test_bit(WriteMostly, &rdev->flags) && 6008 rdev_init_serial(rdev)) 6009 create_pool = true; 6010 } 6011 if (create_pool && mddev->serial_info_pool == NULL) { 6012 mddev->serial_info_pool = 6013 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6014 sizeof(struct serial_info)); 6015 if (!mddev->serial_info_pool) { 6016 err = -ENOMEM; 6017 goto bitmap_abort; 6018 } 6019 } 6020 } 6021 6022 if (mddev->queue) { 6023 bool nonrot = true; 6024 6025 rdev_for_each(rdev, mddev) { 6026 if (rdev->raid_disk >= 0 && 6027 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6028 nonrot = false; 6029 break; 6030 } 6031 } 6032 if (mddev->degraded) 6033 nonrot = false; 6034 if (nonrot) 6035 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6036 else 6037 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6038 } 6039 if (pers->sync_request) { 6040 if (mddev->kobj.sd && 6041 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6042 pr_warn("md: cannot register extra attributes for %s\n", 6043 mdname(mddev)); 6044 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6045 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6046 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6047 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6048 mddev->ro = 0; 6049 6050 atomic_set(&mddev->max_corr_read_errors, 6051 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6052 mddev->safemode = 0; 6053 if (mddev_is_clustered(mddev)) 6054 mddev->safemode_delay = 0; 6055 else 6056 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6057 mddev->in_sync = 1; 6058 smp_wmb(); 6059 spin_lock(&mddev->lock); 6060 mddev->pers = pers; 6061 spin_unlock(&mddev->lock); 6062 rdev_for_each(rdev, mddev) 6063 if (rdev->raid_disk >= 0) 6064 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6065 6066 if (mddev->degraded && !mddev->ro) 6067 /* This ensures that recovering status is reported immediately 6068 * via sysfs - until a lack of spares is confirmed. 6069 */ 6070 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6072 6073 if (mddev->sb_flags) 6074 md_update_sb(mddev, 0); 6075 6076 md_new_event(mddev); 6077 return 0; 6078 6079 bitmap_abort: 6080 mddev_detach(mddev); 6081 if (mddev->private) 6082 pers->free(mddev, mddev->private); 6083 mddev->private = NULL; 6084 module_put(pers->owner); 6085 md_bitmap_destroy(mddev); 6086 abort: 6087 bioset_exit(&mddev->bio_set); 6088 bioset_exit(&mddev->sync_set); 6089 return err; 6090 } 6091 EXPORT_SYMBOL_GPL(md_run); 6092 6093 int do_md_run(struct mddev *mddev) 6094 { 6095 int err; 6096 6097 set_bit(MD_NOT_READY, &mddev->flags); 6098 err = md_run(mddev); 6099 if (err) 6100 goto out; 6101 err = md_bitmap_load(mddev); 6102 if (err) { 6103 md_bitmap_destroy(mddev); 6104 goto out; 6105 } 6106 6107 if (mddev_is_clustered(mddev)) 6108 md_allow_write(mddev); 6109 6110 /* run start up tasks that require md_thread */ 6111 md_start(mddev); 6112 6113 md_wakeup_thread(mddev->thread); 6114 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6115 6116 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6117 clear_bit(MD_NOT_READY, &mddev->flags); 6118 mddev->changed = 1; 6119 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6120 sysfs_notify_dirent_safe(mddev->sysfs_state); 6121 sysfs_notify_dirent_safe(mddev->sysfs_action); 6122 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6123 out: 6124 clear_bit(MD_NOT_READY, &mddev->flags); 6125 return err; 6126 } 6127 6128 int md_start(struct mddev *mddev) 6129 { 6130 int ret = 0; 6131 6132 if (mddev->pers->start) { 6133 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6134 md_wakeup_thread(mddev->thread); 6135 ret = mddev->pers->start(mddev); 6136 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6137 md_wakeup_thread(mddev->sync_thread); 6138 } 6139 return ret; 6140 } 6141 EXPORT_SYMBOL_GPL(md_start); 6142 6143 static int restart_array(struct mddev *mddev) 6144 { 6145 struct gendisk *disk = mddev->gendisk; 6146 struct md_rdev *rdev; 6147 bool has_journal = false; 6148 bool has_readonly = false; 6149 6150 /* Complain if it has no devices */ 6151 if (list_empty(&mddev->disks)) 6152 return -ENXIO; 6153 if (!mddev->pers) 6154 return -EINVAL; 6155 if (!mddev->ro) 6156 return -EBUSY; 6157 6158 rcu_read_lock(); 6159 rdev_for_each_rcu(rdev, mddev) { 6160 if (test_bit(Journal, &rdev->flags) && 6161 !test_bit(Faulty, &rdev->flags)) 6162 has_journal = true; 6163 if (rdev_read_only(rdev)) 6164 has_readonly = true; 6165 } 6166 rcu_read_unlock(); 6167 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6168 /* Don't restart rw with journal missing/faulty */ 6169 return -EINVAL; 6170 if (has_readonly) 6171 return -EROFS; 6172 6173 mddev->safemode = 0; 6174 mddev->ro = 0; 6175 set_disk_ro(disk, 0); 6176 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6177 /* Kick recovery or resync if necessary */ 6178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6179 md_wakeup_thread(mddev->thread); 6180 md_wakeup_thread(mddev->sync_thread); 6181 sysfs_notify_dirent_safe(mddev->sysfs_state); 6182 return 0; 6183 } 6184 6185 static void md_clean(struct mddev *mddev) 6186 { 6187 mddev->array_sectors = 0; 6188 mddev->external_size = 0; 6189 mddev->dev_sectors = 0; 6190 mddev->raid_disks = 0; 6191 mddev->recovery_cp = 0; 6192 mddev->resync_min = 0; 6193 mddev->resync_max = MaxSector; 6194 mddev->reshape_position = MaxSector; 6195 mddev->external = 0; 6196 mddev->persistent = 0; 6197 mddev->level = LEVEL_NONE; 6198 mddev->clevel[0] = 0; 6199 mddev->flags = 0; 6200 mddev->sb_flags = 0; 6201 mddev->ro = 0; 6202 mddev->metadata_type[0] = 0; 6203 mddev->chunk_sectors = 0; 6204 mddev->ctime = mddev->utime = 0; 6205 mddev->layout = 0; 6206 mddev->max_disks = 0; 6207 mddev->events = 0; 6208 mddev->can_decrease_events = 0; 6209 mddev->delta_disks = 0; 6210 mddev->reshape_backwards = 0; 6211 mddev->new_level = LEVEL_NONE; 6212 mddev->new_layout = 0; 6213 mddev->new_chunk_sectors = 0; 6214 mddev->curr_resync = 0; 6215 atomic64_set(&mddev->resync_mismatches, 0); 6216 mddev->suspend_lo = mddev->suspend_hi = 0; 6217 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6218 mddev->recovery = 0; 6219 mddev->in_sync = 0; 6220 mddev->changed = 0; 6221 mddev->degraded = 0; 6222 mddev->safemode = 0; 6223 mddev->private = NULL; 6224 mddev->cluster_info = NULL; 6225 mddev->bitmap_info.offset = 0; 6226 mddev->bitmap_info.default_offset = 0; 6227 mddev->bitmap_info.default_space = 0; 6228 mddev->bitmap_info.chunksize = 0; 6229 mddev->bitmap_info.daemon_sleep = 0; 6230 mddev->bitmap_info.max_write_behind = 0; 6231 mddev->bitmap_info.nodes = 0; 6232 } 6233 6234 static void __md_stop_writes(struct mddev *mddev) 6235 { 6236 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6237 if (work_pending(&mddev->del_work)) 6238 flush_workqueue(md_misc_wq); 6239 if (mddev->sync_thread) { 6240 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6241 md_reap_sync_thread(mddev); 6242 } 6243 6244 del_timer_sync(&mddev->safemode_timer); 6245 6246 if (mddev->pers && mddev->pers->quiesce) { 6247 mddev->pers->quiesce(mddev, 1); 6248 mddev->pers->quiesce(mddev, 0); 6249 } 6250 md_bitmap_flush(mddev); 6251 6252 if (mddev->ro == 0 && 6253 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6254 mddev->sb_flags)) { 6255 /* mark array as shutdown cleanly */ 6256 if (!mddev_is_clustered(mddev)) 6257 mddev->in_sync = 1; 6258 md_update_sb(mddev, 1); 6259 } 6260 /* disable policy to guarantee rdevs free resources for serialization */ 6261 mddev->serialize_policy = 0; 6262 mddev_destroy_serial_pool(mddev, NULL, true); 6263 } 6264 6265 void md_stop_writes(struct mddev *mddev) 6266 { 6267 mddev_lock_nointr(mddev); 6268 __md_stop_writes(mddev); 6269 mddev_unlock(mddev); 6270 } 6271 EXPORT_SYMBOL_GPL(md_stop_writes); 6272 6273 static void mddev_detach(struct mddev *mddev) 6274 { 6275 md_bitmap_wait_behind_writes(mddev); 6276 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6277 mddev->pers->quiesce(mddev, 1); 6278 mddev->pers->quiesce(mddev, 0); 6279 } 6280 md_unregister_thread(&mddev->thread); 6281 if (mddev->queue) 6282 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6283 } 6284 6285 static void __md_stop(struct mddev *mddev) 6286 { 6287 struct md_personality *pers = mddev->pers; 6288 md_bitmap_destroy(mddev); 6289 mddev_detach(mddev); 6290 /* Ensure ->event_work is done */ 6291 if (mddev->event_work.func) 6292 flush_workqueue(md_misc_wq); 6293 spin_lock(&mddev->lock); 6294 mddev->pers = NULL; 6295 spin_unlock(&mddev->lock); 6296 pers->free(mddev, mddev->private); 6297 mddev->private = NULL; 6298 if (pers->sync_request && mddev->to_remove == NULL) 6299 mddev->to_remove = &md_redundancy_group; 6300 module_put(pers->owner); 6301 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6302 } 6303 6304 void md_stop(struct mddev *mddev) 6305 { 6306 /* stop the array and free an attached data structures. 6307 * This is called from dm-raid 6308 */ 6309 __md_stop(mddev); 6310 bioset_exit(&mddev->bio_set); 6311 bioset_exit(&mddev->sync_set); 6312 } 6313 6314 EXPORT_SYMBOL_GPL(md_stop); 6315 6316 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6317 { 6318 int err = 0; 6319 int did_freeze = 0; 6320 6321 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6322 did_freeze = 1; 6323 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6324 md_wakeup_thread(mddev->thread); 6325 } 6326 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6327 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6328 if (mddev->sync_thread) 6329 /* Thread might be blocked waiting for metadata update 6330 * which will now never happen */ 6331 wake_up_process(mddev->sync_thread->tsk); 6332 6333 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6334 return -EBUSY; 6335 mddev_unlock(mddev); 6336 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6337 &mddev->recovery)); 6338 wait_event(mddev->sb_wait, 6339 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6340 mddev_lock_nointr(mddev); 6341 6342 mutex_lock(&mddev->open_mutex); 6343 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6344 mddev->sync_thread || 6345 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6346 pr_warn("md: %s still in use.\n",mdname(mddev)); 6347 if (did_freeze) { 6348 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6349 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6350 md_wakeup_thread(mddev->thread); 6351 } 6352 err = -EBUSY; 6353 goto out; 6354 } 6355 if (mddev->pers) { 6356 __md_stop_writes(mddev); 6357 6358 err = -ENXIO; 6359 if (mddev->ro==1) 6360 goto out; 6361 mddev->ro = 1; 6362 set_disk_ro(mddev->gendisk, 1); 6363 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6364 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6365 md_wakeup_thread(mddev->thread); 6366 sysfs_notify_dirent_safe(mddev->sysfs_state); 6367 err = 0; 6368 } 6369 out: 6370 mutex_unlock(&mddev->open_mutex); 6371 return err; 6372 } 6373 6374 /* mode: 6375 * 0 - completely stop and dis-assemble array 6376 * 2 - stop but do not disassemble array 6377 */ 6378 static int do_md_stop(struct mddev *mddev, int mode, 6379 struct block_device *bdev) 6380 { 6381 struct gendisk *disk = mddev->gendisk; 6382 struct md_rdev *rdev; 6383 int did_freeze = 0; 6384 6385 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6386 did_freeze = 1; 6387 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6388 md_wakeup_thread(mddev->thread); 6389 } 6390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6391 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6392 if (mddev->sync_thread) 6393 /* Thread might be blocked waiting for metadata update 6394 * which will now never happen */ 6395 wake_up_process(mddev->sync_thread->tsk); 6396 6397 mddev_unlock(mddev); 6398 wait_event(resync_wait, (mddev->sync_thread == NULL && 6399 !test_bit(MD_RECOVERY_RUNNING, 6400 &mddev->recovery))); 6401 mddev_lock_nointr(mddev); 6402 6403 mutex_lock(&mddev->open_mutex); 6404 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6405 mddev->sysfs_active || 6406 mddev->sync_thread || 6407 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6408 pr_warn("md: %s still in use.\n",mdname(mddev)); 6409 mutex_unlock(&mddev->open_mutex); 6410 if (did_freeze) { 6411 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6412 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6413 md_wakeup_thread(mddev->thread); 6414 } 6415 return -EBUSY; 6416 } 6417 if (mddev->pers) { 6418 if (mddev->ro) 6419 set_disk_ro(disk, 0); 6420 6421 __md_stop_writes(mddev); 6422 __md_stop(mddev); 6423 6424 /* tell userspace to handle 'inactive' */ 6425 sysfs_notify_dirent_safe(mddev->sysfs_state); 6426 6427 rdev_for_each(rdev, mddev) 6428 if (rdev->raid_disk >= 0) 6429 sysfs_unlink_rdev(mddev, rdev); 6430 6431 set_capacity_and_notify(disk, 0); 6432 mutex_unlock(&mddev->open_mutex); 6433 mddev->changed = 1; 6434 6435 if (mddev->ro) 6436 mddev->ro = 0; 6437 } else 6438 mutex_unlock(&mddev->open_mutex); 6439 /* 6440 * Free resources if final stop 6441 */ 6442 if (mode == 0) { 6443 pr_info("md: %s stopped.\n", mdname(mddev)); 6444 6445 if (mddev->bitmap_info.file) { 6446 struct file *f = mddev->bitmap_info.file; 6447 spin_lock(&mddev->lock); 6448 mddev->bitmap_info.file = NULL; 6449 spin_unlock(&mddev->lock); 6450 fput(f); 6451 } 6452 mddev->bitmap_info.offset = 0; 6453 6454 export_array(mddev); 6455 6456 md_clean(mddev); 6457 if (mddev->hold_active == UNTIL_STOP) 6458 mddev->hold_active = 0; 6459 } 6460 md_new_event(mddev); 6461 sysfs_notify_dirent_safe(mddev->sysfs_state); 6462 return 0; 6463 } 6464 6465 #ifndef MODULE 6466 static void autorun_array(struct mddev *mddev) 6467 { 6468 struct md_rdev *rdev; 6469 int err; 6470 6471 if (list_empty(&mddev->disks)) 6472 return; 6473 6474 pr_info("md: running: "); 6475 6476 rdev_for_each(rdev, mddev) { 6477 char b[BDEVNAME_SIZE]; 6478 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6479 } 6480 pr_cont("\n"); 6481 6482 err = do_md_run(mddev); 6483 if (err) { 6484 pr_warn("md: do_md_run() returned %d\n", err); 6485 do_md_stop(mddev, 0, NULL); 6486 } 6487 } 6488 6489 /* 6490 * lets try to run arrays based on all disks that have arrived 6491 * until now. (those are in pending_raid_disks) 6492 * 6493 * the method: pick the first pending disk, collect all disks with 6494 * the same UUID, remove all from the pending list and put them into 6495 * the 'same_array' list. Then order this list based on superblock 6496 * update time (freshest comes first), kick out 'old' disks and 6497 * compare superblocks. If everything's fine then run it. 6498 * 6499 * If "unit" is allocated, then bump its reference count 6500 */ 6501 static void autorun_devices(int part) 6502 { 6503 struct md_rdev *rdev0, *rdev, *tmp; 6504 struct mddev *mddev; 6505 char b[BDEVNAME_SIZE]; 6506 6507 pr_info("md: autorun ...\n"); 6508 while (!list_empty(&pending_raid_disks)) { 6509 int unit; 6510 dev_t dev; 6511 LIST_HEAD(candidates); 6512 rdev0 = list_entry(pending_raid_disks.next, 6513 struct md_rdev, same_set); 6514 6515 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6516 INIT_LIST_HEAD(&candidates); 6517 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6518 if (super_90_load(rdev, rdev0, 0) >= 0) { 6519 pr_debug("md: adding %s ...\n", 6520 bdevname(rdev->bdev,b)); 6521 list_move(&rdev->same_set, &candidates); 6522 } 6523 /* 6524 * now we have a set of devices, with all of them having 6525 * mostly sane superblocks. It's time to allocate the 6526 * mddev. 6527 */ 6528 if (part) { 6529 dev = MKDEV(mdp_major, 6530 rdev0->preferred_minor << MdpMinorShift); 6531 unit = MINOR(dev) >> MdpMinorShift; 6532 } else { 6533 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6534 unit = MINOR(dev); 6535 } 6536 if (rdev0->preferred_minor != unit) { 6537 pr_warn("md: unit number in %s is bad: %d\n", 6538 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6539 break; 6540 } 6541 6542 md_probe(dev); 6543 mddev = mddev_find(dev); 6544 if (!mddev) 6545 break; 6546 6547 if (mddev_lock(mddev)) 6548 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6549 else if (mddev->raid_disks || mddev->major_version 6550 || !list_empty(&mddev->disks)) { 6551 pr_warn("md: %s already running, cannot run %s\n", 6552 mdname(mddev), bdevname(rdev0->bdev,b)); 6553 mddev_unlock(mddev); 6554 } else { 6555 pr_debug("md: created %s\n", mdname(mddev)); 6556 mddev->persistent = 1; 6557 rdev_for_each_list(rdev, tmp, &candidates) { 6558 list_del_init(&rdev->same_set); 6559 if (bind_rdev_to_array(rdev, mddev)) 6560 export_rdev(rdev); 6561 } 6562 autorun_array(mddev); 6563 mddev_unlock(mddev); 6564 } 6565 /* on success, candidates will be empty, on error 6566 * it won't... 6567 */ 6568 rdev_for_each_list(rdev, tmp, &candidates) { 6569 list_del_init(&rdev->same_set); 6570 export_rdev(rdev); 6571 } 6572 mddev_put(mddev); 6573 } 6574 pr_info("md: ... autorun DONE.\n"); 6575 } 6576 #endif /* !MODULE */ 6577 6578 static int get_version(void __user *arg) 6579 { 6580 mdu_version_t ver; 6581 6582 ver.major = MD_MAJOR_VERSION; 6583 ver.minor = MD_MINOR_VERSION; 6584 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6585 6586 if (copy_to_user(arg, &ver, sizeof(ver))) 6587 return -EFAULT; 6588 6589 return 0; 6590 } 6591 6592 static int get_array_info(struct mddev *mddev, void __user *arg) 6593 { 6594 mdu_array_info_t info; 6595 int nr,working,insync,failed,spare; 6596 struct md_rdev *rdev; 6597 6598 nr = working = insync = failed = spare = 0; 6599 rcu_read_lock(); 6600 rdev_for_each_rcu(rdev, mddev) { 6601 nr++; 6602 if (test_bit(Faulty, &rdev->flags)) 6603 failed++; 6604 else { 6605 working++; 6606 if (test_bit(In_sync, &rdev->flags)) 6607 insync++; 6608 else if (test_bit(Journal, &rdev->flags)) 6609 /* TODO: add journal count to md_u.h */ 6610 ; 6611 else 6612 spare++; 6613 } 6614 } 6615 rcu_read_unlock(); 6616 6617 info.major_version = mddev->major_version; 6618 info.minor_version = mddev->minor_version; 6619 info.patch_version = MD_PATCHLEVEL_VERSION; 6620 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6621 info.level = mddev->level; 6622 info.size = mddev->dev_sectors / 2; 6623 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6624 info.size = -1; 6625 info.nr_disks = nr; 6626 info.raid_disks = mddev->raid_disks; 6627 info.md_minor = mddev->md_minor; 6628 info.not_persistent= !mddev->persistent; 6629 6630 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6631 info.state = 0; 6632 if (mddev->in_sync) 6633 info.state = (1<<MD_SB_CLEAN); 6634 if (mddev->bitmap && mddev->bitmap_info.offset) 6635 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6636 if (mddev_is_clustered(mddev)) 6637 info.state |= (1<<MD_SB_CLUSTERED); 6638 info.active_disks = insync; 6639 info.working_disks = working; 6640 info.failed_disks = failed; 6641 info.spare_disks = spare; 6642 6643 info.layout = mddev->layout; 6644 info.chunk_size = mddev->chunk_sectors << 9; 6645 6646 if (copy_to_user(arg, &info, sizeof(info))) 6647 return -EFAULT; 6648 6649 return 0; 6650 } 6651 6652 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6653 { 6654 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6655 char *ptr; 6656 int err; 6657 6658 file = kzalloc(sizeof(*file), GFP_NOIO); 6659 if (!file) 6660 return -ENOMEM; 6661 6662 err = 0; 6663 spin_lock(&mddev->lock); 6664 /* bitmap enabled */ 6665 if (mddev->bitmap_info.file) { 6666 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6667 sizeof(file->pathname)); 6668 if (IS_ERR(ptr)) 6669 err = PTR_ERR(ptr); 6670 else 6671 memmove(file->pathname, ptr, 6672 sizeof(file->pathname)-(ptr-file->pathname)); 6673 } 6674 spin_unlock(&mddev->lock); 6675 6676 if (err == 0 && 6677 copy_to_user(arg, file, sizeof(*file))) 6678 err = -EFAULT; 6679 6680 kfree(file); 6681 return err; 6682 } 6683 6684 static int get_disk_info(struct mddev *mddev, void __user * arg) 6685 { 6686 mdu_disk_info_t info; 6687 struct md_rdev *rdev; 6688 6689 if (copy_from_user(&info, arg, sizeof(info))) 6690 return -EFAULT; 6691 6692 rcu_read_lock(); 6693 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6694 if (rdev) { 6695 info.major = MAJOR(rdev->bdev->bd_dev); 6696 info.minor = MINOR(rdev->bdev->bd_dev); 6697 info.raid_disk = rdev->raid_disk; 6698 info.state = 0; 6699 if (test_bit(Faulty, &rdev->flags)) 6700 info.state |= (1<<MD_DISK_FAULTY); 6701 else if (test_bit(In_sync, &rdev->flags)) { 6702 info.state |= (1<<MD_DISK_ACTIVE); 6703 info.state |= (1<<MD_DISK_SYNC); 6704 } 6705 if (test_bit(Journal, &rdev->flags)) 6706 info.state |= (1<<MD_DISK_JOURNAL); 6707 if (test_bit(WriteMostly, &rdev->flags)) 6708 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6709 if (test_bit(FailFast, &rdev->flags)) 6710 info.state |= (1<<MD_DISK_FAILFAST); 6711 } else { 6712 info.major = info.minor = 0; 6713 info.raid_disk = -1; 6714 info.state = (1<<MD_DISK_REMOVED); 6715 } 6716 rcu_read_unlock(); 6717 6718 if (copy_to_user(arg, &info, sizeof(info))) 6719 return -EFAULT; 6720 6721 return 0; 6722 } 6723 6724 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6725 { 6726 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6727 struct md_rdev *rdev; 6728 dev_t dev = MKDEV(info->major,info->minor); 6729 6730 if (mddev_is_clustered(mddev) && 6731 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6732 pr_warn("%s: Cannot add to clustered mddev.\n", 6733 mdname(mddev)); 6734 return -EINVAL; 6735 } 6736 6737 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6738 return -EOVERFLOW; 6739 6740 if (!mddev->raid_disks) { 6741 int err; 6742 /* expecting a device which has a superblock */ 6743 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6744 if (IS_ERR(rdev)) { 6745 pr_warn("md: md_import_device returned %ld\n", 6746 PTR_ERR(rdev)); 6747 return PTR_ERR(rdev); 6748 } 6749 if (!list_empty(&mddev->disks)) { 6750 struct md_rdev *rdev0 6751 = list_entry(mddev->disks.next, 6752 struct md_rdev, same_set); 6753 err = super_types[mddev->major_version] 6754 .load_super(rdev, rdev0, mddev->minor_version); 6755 if (err < 0) { 6756 pr_warn("md: %s has different UUID to %s\n", 6757 bdevname(rdev->bdev,b), 6758 bdevname(rdev0->bdev,b2)); 6759 export_rdev(rdev); 6760 return -EINVAL; 6761 } 6762 } 6763 err = bind_rdev_to_array(rdev, mddev); 6764 if (err) 6765 export_rdev(rdev); 6766 return err; 6767 } 6768 6769 /* 6770 * md_add_new_disk can be used once the array is assembled 6771 * to add "hot spares". They must already have a superblock 6772 * written 6773 */ 6774 if (mddev->pers) { 6775 int err; 6776 if (!mddev->pers->hot_add_disk) { 6777 pr_warn("%s: personality does not support diskops!\n", 6778 mdname(mddev)); 6779 return -EINVAL; 6780 } 6781 if (mddev->persistent) 6782 rdev = md_import_device(dev, mddev->major_version, 6783 mddev->minor_version); 6784 else 6785 rdev = md_import_device(dev, -1, -1); 6786 if (IS_ERR(rdev)) { 6787 pr_warn("md: md_import_device returned %ld\n", 6788 PTR_ERR(rdev)); 6789 return PTR_ERR(rdev); 6790 } 6791 /* set saved_raid_disk if appropriate */ 6792 if (!mddev->persistent) { 6793 if (info->state & (1<<MD_DISK_SYNC) && 6794 info->raid_disk < mddev->raid_disks) { 6795 rdev->raid_disk = info->raid_disk; 6796 set_bit(In_sync, &rdev->flags); 6797 clear_bit(Bitmap_sync, &rdev->flags); 6798 } else 6799 rdev->raid_disk = -1; 6800 rdev->saved_raid_disk = rdev->raid_disk; 6801 } else 6802 super_types[mddev->major_version]. 6803 validate_super(mddev, rdev); 6804 if ((info->state & (1<<MD_DISK_SYNC)) && 6805 rdev->raid_disk != info->raid_disk) { 6806 /* This was a hot-add request, but events doesn't 6807 * match, so reject it. 6808 */ 6809 export_rdev(rdev); 6810 return -EINVAL; 6811 } 6812 6813 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6814 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6815 set_bit(WriteMostly, &rdev->flags); 6816 else 6817 clear_bit(WriteMostly, &rdev->flags); 6818 if (info->state & (1<<MD_DISK_FAILFAST)) 6819 set_bit(FailFast, &rdev->flags); 6820 else 6821 clear_bit(FailFast, &rdev->flags); 6822 6823 if (info->state & (1<<MD_DISK_JOURNAL)) { 6824 struct md_rdev *rdev2; 6825 bool has_journal = false; 6826 6827 /* make sure no existing journal disk */ 6828 rdev_for_each(rdev2, mddev) { 6829 if (test_bit(Journal, &rdev2->flags)) { 6830 has_journal = true; 6831 break; 6832 } 6833 } 6834 if (has_journal || mddev->bitmap) { 6835 export_rdev(rdev); 6836 return -EBUSY; 6837 } 6838 set_bit(Journal, &rdev->flags); 6839 } 6840 /* 6841 * check whether the device shows up in other nodes 6842 */ 6843 if (mddev_is_clustered(mddev)) { 6844 if (info->state & (1 << MD_DISK_CANDIDATE)) 6845 set_bit(Candidate, &rdev->flags); 6846 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6847 /* --add initiated by this node */ 6848 err = md_cluster_ops->add_new_disk(mddev, rdev); 6849 if (err) { 6850 export_rdev(rdev); 6851 return err; 6852 } 6853 } 6854 } 6855 6856 rdev->raid_disk = -1; 6857 err = bind_rdev_to_array(rdev, mddev); 6858 6859 if (err) 6860 export_rdev(rdev); 6861 6862 if (mddev_is_clustered(mddev)) { 6863 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6864 if (!err) { 6865 err = md_cluster_ops->new_disk_ack(mddev, 6866 err == 0); 6867 if (err) 6868 md_kick_rdev_from_array(rdev); 6869 } 6870 } else { 6871 if (err) 6872 md_cluster_ops->add_new_disk_cancel(mddev); 6873 else 6874 err = add_bound_rdev(rdev); 6875 } 6876 6877 } else if (!err) 6878 err = add_bound_rdev(rdev); 6879 6880 return err; 6881 } 6882 6883 /* otherwise, md_add_new_disk is only allowed 6884 * for major_version==0 superblocks 6885 */ 6886 if (mddev->major_version != 0) { 6887 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6888 return -EINVAL; 6889 } 6890 6891 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6892 int err; 6893 rdev = md_import_device(dev, -1, 0); 6894 if (IS_ERR(rdev)) { 6895 pr_warn("md: error, md_import_device() returned %ld\n", 6896 PTR_ERR(rdev)); 6897 return PTR_ERR(rdev); 6898 } 6899 rdev->desc_nr = info->number; 6900 if (info->raid_disk < mddev->raid_disks) 6901 rdev->raid_disk = info->raid_disk; 6902 else 6903 rdev->raid_disk = -1; 6904 6905 if (rdev->raid_disk < mddev->raid_disks) 6906 if (info->state & (1<<MD_DISK_SYNC)) 6907 set_bit(In_sync, &rdev->flags); 6908 6909 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6910 set_bit(WriteMostly, &rdev->flags); 6911 if (info->state & (1<<MD_DISK_FAILFAST)) 6912 set_bit(FailFast, &rdev->flags); 6913 6914 if (!mddev->persistent) { 6915 pr_debug("md: nonpersistent superblock ...\n"); 6916 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6917 } else 6918 rdev->sb_start = calc_dev_sboffset(rdev); 6919 rdev->sectors = rdev->sb_start; 6920 6921 err = bind_rdev_to_array(rdev, mddev); 6922 if (err) { 6923 export_rdev(rdev); 6924 return err; 6925 } 6926 } 6927 6928 return 0; 6929 } 6930 6931 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6932 { 6933 char b[BDEVNAME_SIZE]; 6934 struct md_rdev *rdev; 6935 6936 if (!mddev->pers) 6937 return -ENODEV; 6938 6939 rdev = find_rdev(mddev, dev); 6940 if (!rdev) 6941 return -ENXIO; 6942 6943 if (rdev->raid_disk < 0) 6944 goto kick_rdev; 6945 6946 clear_bit(Blocked, &rdev->flags); 6947 remove_and_add_spares(mddev, rdev); 6948 6949 if (rdev->raid_disk >= 0) 6950 goto busy; 6951 6952 kick_rdev: 6953 if (mddev_is_clustered(mddev)) { 6954 if (md_cluster_ops->remove_disk(mddev, rdev)) 6955 goto busy; 6956 } 6957 6958 md_kick_rdev_from_array(rdev); 6959 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6960 if (mddev->thread) 6961 md_wakeup_thread(mddev->thread); 6962 else 6963 md_update_sb(mddev, 1); 6964 md_new_event(mddev); 6965 6966 return 0; 6967 busy: 6968 pr_debug("md: cannot remove active disk %s from %s ...\n", 6969 bdevname(rdev->bdev,b), mdname(mddev)); 6970 return -EBUSY; 6971 } 6972 6973 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6974 { 6975 char b[BDEVNAME_SIZE]; 6976 int err; 6977 struct md_rdev *rdev; 6978 6979 if (!mddev->pers) 6980 return -ENODEV; 6981 6982 if (mddev->major_version != 0) { 6983 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6984 mdname(mddev)); 6985 return -EINVAL; 6986 } 6987 if (!mddev->pers->hot_add_disk) { 6988 pr_warn("%s: personality does not support diskops!\n", 6989 mdname(mddev)); 6990 return -EINVAL; 6991 } 6992 6993 rdev = md_import_device(dev, -1, 0); 6994 if (IS_ERR(rdev)) { 6995 pr_warn("md: error, md_import_device() returned %ld\n", 6996 PTR_ERR(rdev)); 6997 return -EINVAL; 6998 } 6999 7000 if (mddev->persistent) 7001 rdev->sb_start = calc_dev_sboffset(rdev); 7002 else 7003 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 7004 7005 rdev->sectors = rdev->sb_start; 7006 7007 if (test_bit(Faulty, &rdev->flags)) { 7008 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 7009 bdevname(rdev->bdev,b), mdname(mddev)); 7010 err = -EINVAL; 7011 goto abort_export; 7012 } 7013 7014 clear_bit(In_sync, &rdev->flags); 7015 rdev->desc_nr = -1; 7016 rdev->saved_raid_disk = -1; 7017 err = bind_rdev_to_array(rdev, mddev); 7018 if (err) 7019 goto abort_export; 7020 7021 /* 7022 * The rest should better be atomic, we can have disk failures 7023 * noticed in interrupt contexts ... 7024 */ 7025 7026 rdev->raid_disk = -1; 7027 7028 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7029 if (!mddev->thread) 7030 md_update_sb(mddev, 1); 7031 /* 7032 * Kick recovery, maybe this spare has to be added to the 7033 * array immediately. 7034 */ 7035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7036 md_wakeup_thread(mddev->thread); 7037 md_new_event(mddev); 7038 return 0; 7039 7040 abort_export: 7041 export_rdev(rdev); 7042 return err; 7043 } 7044 7045 static int set_bitmap_file(struct mddev *mddev, int fd) 7046 { 7047 int err = 0; 7048 7049 if (mddev->pers) { 7050 if (!mddev->pers->quiesce || !mddev->thread) 7051 return -EBUSY; 7052 if (mddev->recovery || mddev->sync_thread) 7053 return -EBUSY; 7054 /* we should be able to change the bitmap.. */ 7055 } 7056 7057 if (fd >= 0) { 7058 struct inode *inode; 7059 struct file *f; 7060 7061 if (mddev->bitmap || mddev->bitmap_info.file) 7062 return -EEXIST; /* cannot add when bitmap is present */ 7063 f = fget(fd); 7064 7065 if (f == NULL) { 7066 pr_warn("%s: error: failed to get bitmap file\n", 7067 mdname(mddev)); 7068 return -EBADF; 7069 } 7070 7071 inode = f->f_mapping->host; 7072 if (!S_ISREG(inode->i_mode)) { 7073 pr_warn("%s: error: bitmap file must be a regular file\n", 7074 mdname(mddev)); 7075 err = -EBADF; 7076 } else if (!(f->f_mode & FMODE_WRITE)) { 7077 pr_warn("%s: error: bitmap file must open for write\n", 7078 mdname(mddev)); 7079 err = -EBADF; 7080 } else if (atomic_read(&inode->i_writecount) != 1) { 7081 pr_warn("%s: error: bitmap file is already in use\n", 7082 mdname(mddev)); 7083 err = -EBUSY; 7084 } 7085 if (err) { 7086 fput(f); 7087 return err; 7088 } 7089 mddev->bitmap_info.file = f; 7090 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7091 } else if (mddev->bitmap == NULL) 7092 return -ENOENT; /* cannot remove what isn't there */ 7093 err = 0; 7094 if (mddev->pers) { 7095 if (fd >= 0) { 7096 struct bitmap *bitmap; 7097 7098 bitmap = md_bitmap_create(mddev, -1); 7099 mddev_suspend(mddev); 7100 if (!IS_ERR(bitmap)) { 7101 mddev->bitmap = bitmap; 7102 err = md_bitmap_load(mddev); 7103 } else 7104 err = PTR_ERR(bitmap); 7105 if (err) { 7106 md_bitmap_destroy(mddev); 7107 fd = -1; 7108 } 7109 mddev_resume(mddev); 7110 } else if (fd < 0) { 7111 mddev_suspend(mddev); 7112 md_bitmap_destroy(mddev); 7113 mddev_resume(mddev); 7114 } 7115 } 7116 if (fd < 0) { 7117 struct file *f = mddev->bitmap_info.file; 7118 if (f) { 7119 spin_lock(&mddev->lock); 7120 mddev->bitmap_info.file = NULL; 7121 spin_unlock(&mddev->lock); 7122 fput(f); 7123 } 7124 } 7125 7126 return err; 7127 } 7128 7129 /* 7130 * md_set_array_info is used two different ways 7131 * The original usage is when creating a new array. 7132 * In this usage, raid_disks is > 0 and it together with 7133 * level, size, not_persistent,layout,chunksize determine the 7134 * shape of the array. 7135 * This will always create an array with a type-0.90.0 superblock. 7136 * The newer usage is when assembling an array. 7137 * In this case raid_disks will be 0, and the major_version field is 7138 * use to determine which style super-blocks are to be found on the devices. 7139 * The minor and patch _version numbers are also kept incase the 7140 * super_block handler wishes to interpret them. 7141 */ 7142 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7143 { 7144 if (info->raid_disks == 0) { 7145 /* just setting version number for superblock loading */ 7146 if (info->major_version < 0 || 7147 info->major_version >= ARRAY_SIZE(super_types) || 7148 super_types[info->major_version].name == NULL) { 7149 /* maybe try to auto-load a module? */ 7150 pr_warn("md: superblock version %d not known\n", 7151 info->major_version); 7152 return -EINVAL; 7153 } 7154 mddev->major_version = info->major_version; 7155 mddev->minor_version = info->minor_version; 7156 mddev->patch_version = info->patch_version; 7157 mddev->persistent = !info->not_persistent; 7158 /* ensure mddev_put doesn't delete this now that there 7159 * is some minimal configuration. 7160 */ 7161 mddev->ctime = ktime_get_real_seconds(); 7162 return 0; 7163 } 7164 mddev->major_version = MD_MAJOR_VERSION; 7165 mddev->minor_version = MD_MINOR_VERSION; 7166 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7167 mddev->ctime = ktime_get_real_seconds(); 7168 7169 mddev->level = info->level; 7170 mddev->clevel[0] = 0; 7171 mddev->dev_sectors = 2 * (sector_t)info->size; 7172 mddev->raid_disks = info->raid_disks; 7173 /* don't set md_minor, it is determined by which /dev/md* was 7174 * openned 7175 */ 7176 if (info->state & (1<<MD_SB_CLEAN)) 7177 mddev->recovery_cp = MaxSector; 7178 else 7179 mddev->recovery_cp = 0; 7180 mddev->persistent = ! info->not_persistent; 7181 mddev->external = 0; 7182 7183 mddev->layout = info->layout; 7184 if (mddev->level == 0) 7185 /* Cannot trust RAID0 layout info here */ 7186 mddev->layout = -1; 7187 mddev->chunk_sectors = info->chunk_size >> 9; 7188 7189 if (mddev->persistent) { 7190 mddev->max_disks = MD_SB_DISKS; 7191 mddev->flags = 0; 7192 mddev->sb_flags = 0; 7193 } 7194 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7195 7196 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7197 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7198 mddev->bitmap_info.offset = 0; 7199 7200 mddev->reshape_position = MaxSector; 7201 7202 /* 7203 * Generate a 128 bit UUID 7204 */ 7205 get_random_bytes(mddev->uuid, 16); 7206 7207 mddev->new_level = mddev->level; 7208 mddev->new_chunk_sectors = mddev->chunk_sectors; 7209 mddev->new_layout = mddev->layout; 7210 mddev->delta_disks = 0; 7211 mddev->reshape_backwards = 0; 7212 7213 return 0; 7214 } 7215 7216 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7217 { 7218 lockdep_assert_held(&mddev->reconfig_mutex); 7219 7220 if (mddev->external_size) 7221 return; 7222 7223 mddev->array_sectors = array_sectors; 7224 } 7225 EXPORT_SYMBOL(md_set_array_sectors); 7226 7227 static int update_size(struct mddev *mddev, sector_t num_sectors) 7228 { 7229 struct md_rdev *rdev; 7230 int rv; 7231 int fit = (num_sectors == 0); 7232 sector_t old_dev_sectors = mddev->dev_sectors; 7233 7234 if (mddev->pers->resize == NULL) 7235 return -EINVAL; 7236 /* The "num_sectors" is the number of sectors of each device that 7237 * is used. This can only make sense for arrays with redundancy. 7238 * linear and raid0 always use whatever space is available. We can only 7239 * consider changing this number if no resync or reconstruction is 7240 * happening, and if the new size is acceptable. It must fit before the 7241 * sb_start or, if that is <data_offset, it must fit before the size 7242 * of each device. If num_sectors is zero, we find the largest size 7243 * that fits. 7244 */ 7245 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7246 mddev->sync_thread) 7247 return -EBUSY; 7248 if (mddev->ro) 7249 return -EROFS; 7250 7251 rdev_for_each(rdev, mddev) { 7252 sector_t avail = rdev->sectors; 7253 7254 if (fit && (num_sectors == 0 || num_sectors > avail)) 7255 num_sectors = avail; 7256 if (avail < num_sectors) 7257 return -ENOSPC; 7258 } 7259 rv = mddev->pers->resize(mddev, num_sectors); 7260 if (!rv) { 7261 if (mddev_is_clustered(mddev)) 7262 md_cluster_ops->update_size(mddev, old_dev_sectors); 7263 else if (mddev->queue) { 7264 set_capacity_and_notify(mddev->gendisk, 7265 mddev->array_sectors); 7266 } 7267 } 7268 return rv; 7269 } 7270 7271 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7272 { 7273 int rv; 7274 struct md_rdev *rdev; 7275 /* change the number of raid disks */ 7276 if (mddev->pers->check_reshape == NULL) 7277 return -EINVAL; 7278 if (mddev->ro) 7279 return -EROFS; 7280 if (raid_disks <= 0 || 7281 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7282 return -EINVAL; 7283 if (mddev->sync_thread || 7284 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7285 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7286 mddev->reshape_position != MaxSector) 7287 return -EBUSY; 7288 7289 rdev_for_each(rdev, mddev) { 7290 if (mddev->raid_disks < raid_disks && 7291 rdev->data_offset < rdev->new_data_offset) 7292 return -EINVAL; 7293 if (mddev->raid_disks > raid_disks && 7294 rdev->data_offset > rdev->new_data_offset) 7295 return -EINVAL; 7296 } 7297 7298 mddev->delta_disks = raid_disks - mddev->raid_disks; 7299 if (mddev->delta_disks < 0) 7300 mddev->reshape_backwards = 1; 7301 else if (mddev->delta_disks > 0) 7302 mddev->reshape_backwards = 0; 7303 7304 rv = mddev->pers->check_reshape(mddev); 7305 if (rv < 0) { 7306 mddev->delta_disks = 0; 7307 mddev->reshape_backwards = 0; 7308 } 7309 return rv; 7310 } 7311 7312 /* 7313 * update_array_info is used to change the configuration of an 7314 * on-line array. 7315 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7316 * fields in the info are checked against the array. 7317 * Any differences that cannot be handled will cause an error. 7318 * Normally, only one change can be managed at a time. 7319 */ 7320 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7321 { 7322 int rv = 0; 7323 int cnt = 0; 7324 int state = 0; 7325 7326 /* calculate expected state,ignoring low bits */ 7327 if (mddev->bitmap && mddev->bitmap_info.offset) 7328 state |= (1 << MD_SB_BITMAP_PRESENT); 7329 7330 if (mddev->major_version != info->major_version || 7331 mddev->minor_version != info->minor_version || 7332 /* mddev->patch_version != info->patch_version || */ 7333 mddev->ctime != info->ctime || 7334 mddev->level != info->level || 7335 /* mddev->layout != info->layout || */ 7336 mddev->persistent != !info->not_persistent || 7337 mddev->chunk_sectors != info->chunk_size >> 9 || 7338 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7339 ((state^info->state) & 0xfffffe00) 7340 ) 7341 return -EINVAL; 7342 /* Check there is only one change */ 7343 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7344 cnt++; 7345 if (mddev->raid_disks != info->raid_disks) 7346 cnt++; 7347 if (mddev->layout != info->layout) 7348 cnt++; 7349 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7350 cnt++; 7351 if (cnt == 0) 7352 return 0; 7353 if (cnt > 1) 7354 return -EINVAL; 7355 7356 if (mddev->layout != info->layout) { 7357 /* Change layout 7358 * we don't need to do anything at the md level, the 7359 * personality will take care of it all. 7360 */ 7361 if (mddev->pers->check_reshape == NULL) 7362 return -EINVAL; 7363 else { 7364 mddev->new_layout = info->layout; 7365 rv = mddev->pers->check_reshape(mddev); 7366 if (rv) 7367 mddev->new_layout = mddev->layout; 7368 return rv; 7369 } 7370 } 7371 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7372 rv = update_size(mddev, (sector_t)info->size * 2); 7373 7374 if (mddev->raid_disks != info->raid_disks) 7375 rv = update_raid_disks(mddev, info->raid_disks); 7376 7377 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7378 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7379 rv = -EINVAL; 7380 goto err; 7381 } 7382 if (mddev->recovery || mddev->sync_thread) { 7383 rv = -EBUSY; 7384 goto err; 7385 } 7386 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7387 struct bitmap *bitmap; 7388 /* add the bitmap */ 7389 if (mddev->bitmap) { 7390 rv = -EEXIST; 7391 goto err; 7392 } 7393 if (mddev->bitmap_info.default_offset == 0) { 7394 rv = -EINVAL; 7395 goto err; 7396 } 7397 mddev->bitmap_info.offset = 7398 mddev->bitmap_info.default_offset; 7399 mddev->bitmap_info.space = 7400 mddev->bitmap_info.default_space; 7401 bitmap = md_bitmap_create(mddev, -1); 7402 mddev_suspend(mddev); 7403 if (!IS_ERR(bitmap)) { 7404 mddev->bitmap = bitmap; 7405 rv = md_bitmap_load(mddev); 7406 } else 7407 rv = PTR_ERR(bitmap); 7408 if (rv) 7409 md_bitmap_destroy(mddev); 7410 mddev_resume(mddev); 7411 } else { 7412 /* remove the bitmap */ 7413 if (!mddev->bitmap) { 7414 rv = -ENOENT; 7415 goto err; 7416 } 7417 if (mddev->bitmap->storage.file) { 7418 rv = -EINVAL; 7419 goto err; 7420 } 7421 if (mddev->bitmap_info.nodes) { 7422 /* hold PW on all the bitmap lock */ 7423 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7424 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7425 rv = -EPERM; 7426 md_cluster_ops->unlock_all_bitmaps(mddev); 7427 goto err; 7428 } 7429 7430 mddev->bitmap_info.nodes = 0; 7431 md_cluster_ops->leave(mddev); 7432 module_put(md_cluster_mod); 7433 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7434 } 7435 mddev_suspend(mddev); 7436 md_bitmap_destroy(mddev); 7437 mddev_resume(mddev); 7438 mddev->bitmap_info.offset = 0; 7439 } 7440 } 7441 md_update_sb(mddev, 1); 7442 return rv; 7443 err: 7444 return rv; 7445 } 7446 7447 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7448 { 7449 struct md_rdev *rdev; 7450 int err = 0; 7451 7452 if (mddev->pers == NULL) 7453 return -ENODEV; 7454 7455 rcu_read_lock(); 7456 rdev = md_find_rdev_rcu(mddev, dev); 7457 if (!rdev) 7458 err = -ENODEV; 7459 else { 7460 md_error(mddev, rdev); 7461 if (!test_bit(Faulty, &rdev->flags)) 7462 err = -EBUSY; 7463 } 7464 rcu_read_unlock(); 7465 return err; 7466 } 7467 7468 /* 7469 * We have a problem here : there is no easy way to give a CHS 7470 * virtual geometry. We currently pretend that we have a 2 heads 7471 * 4 sectors (with a BIG number of cylinders...). This drives 7472 * dosfs just mad... ;-) 7473 */ 7474 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7475 { 7476 struct mddev *mddev = bdev->bd_disk->private_data; 7477 7478 geo->heads = 2; 7479 geo->sectors = 4; 7480 geo->cylinders = mddev->array_sectors / 8; 7481 return 0; 7482 } 7483 7484 static inline bool md_ioctl_valid(unsigned int cmd) 7485 { 7486 switch (cmd) { 7487 case ADD_NEW_DISK: 7488 case GET_ARRAY_INFO: 7489 case GET_BITMAP_FILE: 7490 case GET_DISK_INFO: 7491 case HOT_ADD_DISK: 7492 case HOT_REMOVE_DISK: 7493 case RAID_VERSION: 7494 case RESTART_ARRAY_RW: 7495 case RUN_ARRAY: 7496 case SET_ARRAY_INFO: 7497 case SET_BITMAP_FILE: 7498 case SET_DISK_FAULTY: 7499 case STOP_ARRAY: 7500 case STOP_ARRAY_RO: 7501 case CLUSTERED_DISK_NACK: 7502 return true; 7503 default: 7504 return false; 7505 } 7506 } 7507 7508 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7509 unsigned int cmd, unsigned long arg) 7510 { 7511 int err = 0; 7512 void __user *argp = (void __user *)arg; 7513 struct mddev *mddev = NULL; 7514 bool did_set_md_closing = false; 7515 7516 if (!md_ioctl_valid(cmd)) 7517 return -ENOTTY; 7518 7519 switch (cmd) { 7520 case RAID_VERSION: 7521 case GET_ARRAY_INFO: 7522 case GET_DISK_INFO: 7523 break; 7524 default: 7525 if (!capable(CAP_SYS_ADMIN)) 7526 return -EACCES; 7527 } 7528 7529 /* 7530 * Commands dealing with the RAID driver but not any 7531 * particular array: 7532 */ 7533 switch (cmd) { 7534 case RAID_VERSION: 7535 err = get_version(argp); 7536 goto out; 7537 default:; 7538 } 7539 7540 /* 7541 * Commands creating/starting a new array: 7542 */ 7543 7544 mddev = bdev->bd_disk->private_data; 7545 7546 if (!mddev) { 7547 BUG(); 7548 goto out; 7549 } 7550 7551 /* Some actions do not requires the mutex */ 7552 switch (cmd) { 7553 case GET_ARRAY_INFO: 7554 if (!mddev->raid_disks && !mddev->external) 7555 err = -ENODEV; 7556 else 7557 err = get_array_info(mddev, argp); 7558 goto out; 7559 7560 case GET_DISK_INFO: 7561 if (!mddev->raid_disks && !mddev->external) 7562 err = -ENODEV; 7563 else 7564 err = get_disk_info(mddev, argp); 7565 goto out; 7566 7567 case SET_DISK_FAULTY: 7568 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7569 goto out; 7570 7571 case GET_BITMAP_FILE: 7572 err = get_bitmap_file(mddev, argp); 7573 goto out; 7574 7575 } 7576 7577 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7578 flush_rdev_wq(mddev); 7579 7580 if (cmd == HOT_REMOVE_DISK) 7581 /* need to ensure recovery thread has run */ 7582 wait_event_interruptible_timeout(mddev->sb_wait, 7583 !test_bit(MD_RECOVERY_NEEDED, 7584 &mddev->recovery), 7585 msecs_to_jiffies(5000)); 7586 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7587 /* Need to flush page cache, and ensure no-one else opens 7588 * and writes 7589 */ 7590 mutex_lock(&mddev->open_mutex); 7591 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7592 mutex_unlock(&mddev->open_mutex); 7593 err = -EBUSY; 7594 goto out; 7595 } 7596 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7597 mutex_unlock(&mddev->open_mutex); 7598 err = -EBUSY; 7599 goto out; 7600 } 7601 did_set_md_closing = true; 7602 mutex_unlock(&mddev->open_mutex); 7603 sync_blockdev(bdev); 7604 } 7605 err = mddev_lock(mddev); 7606 if (err) { 7607 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7608 err, cmd); 7609 goto out; 7610 } 7611 7612 if (cmd == SET_ARRAY_INFO) { 7613 mdu_array_info_t info; 7614 if (!arg) 7615 memset(&info, 0, sizeof(info)); 7616 else if (copy_from_user(&info, argp, sizeof(info))) { 7617 err = -EFAULT; 7618 goto unlock; 7619 } 7620 if (mddev->pers) { 7621 err = update_array_info(mddev, &info); 7622 if (err) { 7623 pr_warn("md: couldn't update array info. %d\n", err); 7624 goto unlock; 7625 } 7626 goto unlock; 7627 } 7628 if (!list_empty(&mddev->disks)) { 7629 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7630 err = -EBUSY; 7631 goto unlock; 7632 } 7633 if (mddev->raid_disks) { 7634 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7635 err = -EBUSY; 7636 goto unlock; 7637 } 7638 err = md_set_array_info(mddev, &info); 7639 if (err) { 7640 pr_warn("md: couldn't set array info. %d\n", err); 7641 goto unlock; 7642 } 7643 goto unlock; 7644 } 7645 7646 /* 7647 * Commands querying/configuring an existing array: 7648 */ 7649 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7650 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7651 if ((!mddev->raid_disks && !mddev->external) 7652 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7653 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7654 && cmd != GET_BITMAP_FILE) { 7655 err = -ENODEV; 7656 goto unlock; 7657 } 7658 7659 /* 7660 * Commands even a read-only array can execute: 7661 */ 7662 switch (cmd) { 7663 case RESTART_ARRAY_RW: 7664 err = restart_array(mddev); 7665 goto unlock; 7666 7667 case STOP_ARRAY: 7668 err = do_md_stop(mddev, 0, bdev); 7669 goto unlock; 7670 7671 case STOP_ARRAY_RO: 7672 err = md_set_readonly(mddev, bdev); 7673 goto unlock; 7674 7675 case HOT_REMOVE_DISK: 7676 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7677 goto unlock; 7678 7679 case ADD_NEW_DISK: 7680 /* We can support ADD_NEW_DISK on read-only arrays 7681 * only if we are re-adding a preexisting device. 7682 * So require mddev->pers and MD_DISK_SYNC. 7683 */ 7684 if (mddev->pers) { 7685 mdu_disk_info_t info; 7686 if (copy_from_user(&info, argp, sizeof(info))) 7687 err = -EFAULT; 7688 else if (!(info.state & (1<<MD_DISK_SYNC))) 7689 /* Need to clear read-only for this */ 7690 break; 7691 else 7692 err = md_add_new_disk(mddev, &info); 7693 goto unlock; 7694 } 7695 break; 7696 } 7697 7698 /* 7699 * The remaining ioctls are changing the state of the 7700 * superblock, so we do not allow them on read-only arrays. 7701 */ 7702 if (mddev->ro && mddev->pers) { 7703 if (mddev->ro == 2) { 7704 mddev->ro = 0; 7705 sysfs_notify_dirent_safe(mddev->sysfs_state); 7706 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7707 /* mddev_unlock will wake thread */ 7708 /* If a device failed while we were read-only, we 7709 * need to make sure the metadata is updated now. 7710 */ 7711 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7712 mddev_unlock(mddev); 7713 wait_event(mddev->sb_wait, 7714 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7715 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7716 mddev_lock_nointr(mddev); 7717 } 7718 } else { 7719 err = -EROFS; 7720 goto unlock; 7721 } 7722 } 7723 7724 switch (cmd) { 7725 case ADD_NEW_DISK: 7726 { 7727 mdu_disk_info_t info; 7728 if (copy_from_user(&info, argp, sizeof(info))) 7729 err = -EFAULT; 7730 else 7731 err = md_add_new_disk(mddev, &info); 7732 goto unlock; 7733 } 7734 7735 case CLUSTERED_DISK_NACK: 7736 if (mddev_is_clustered(mddev)) 7737 md_cluster_ops->new_disk_ack(mddev, false); 7738 else 7739 err = -EINVAL; 7740 goto unlock; 7741 7742 case HOT_ADD_DISK: 7743 err = hot_add_disk(mddev, new_decode_dev(arg)); 7744 goto unlock; 7745 7746 case RUN_ARRAY: 7747 err = do_md_run(mddev); 7748 goto unlock; 7749 7750 case SET_BITMAP_FILE: 7751 err = set_bitmap_file(mddev, (int)arg); 7752 goto unlock; 7753 7754 default: 7755 err = -EINVAL; 7756 goto unlock; 7757 } 7758 7759 unlock: 7760 if (mddev->hold_active == UNTIL_IOCTL && 7761 err != -EINVAL) 7762 mddev->hold_active = 0; 7763 mddev_unlock(mddev); 7764 out: 7765 if(did_set_md_closing) 7766 clear_bit(MD_CLOSING, &mddev->flags); 7767 return err; 7768 } 7769 #ifdef CONFIG_COMPAT 7770 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7771 unsigned int cmd, unsigned long arg) 7772 { 7773 switch (cmd) { 7774 case HOT_REMOVE_DISK: 7775 case HOT_ADD_DISK: 7776 case SET_DISK_FAULTY: 7777 case SET_BITMAP_FILE: 7778 /* These take in integer arg, do not convert */ 7779 break; 7780 default: 7781 arg = (unsigned long)compat_ptr(arg); 7782 break; 7783 } 7784 7785 return md_ioctl(bdev, mode, cmd, arg); 7786 } 7787 #endif /* CONFIG_COMPAT */ 7788 7789 static int md_set_read_only(struct block_device *bdev, bool ro) 7790 { 7791 struct mddev *mddev = bdev->bd_disk->private_data; 7792 int err; 7793 7794 err = mddev_lock(mddev); 7795 if (err) 7796 return err; 7797 7798 if (!mddev->raid_disks && !mddev->external) { 7799 err = -ENODEV; 7800 goto out_unlock; 7801 } 7802 7803 /* 7804 * Transitioning to read-auto need only happen for arrays that call 7805 * md_write_start and which are not ready for writes yet. 7806 */ 7807 if (!ro && mddev->ro == 1 && mddev->pers) { 7808 err = restart_array(mddev); 7809 if (err) 7810 goto out_unlock; 7811 mddev->ro = 2; 7812 } 7813 7814 out_unlock: 7815 mddev_unlock(mddev); 7816 return err; 7817 } 7818 7819 static int md_open(struct block_device *bdev, fmode_t mode) 7820 { 7821 /* 7822 * Succeed if we can lock the mddev, which confirms that 7823 * it isn't being stopped right now. 7824 */ 7825 struct mddev *mddev = mddev_find(bdev->bd_dev); 7826 int err; 7827 7828 if (!mddev) 7829 return -ENODEV; 7830 7831 if (mddev->gendisk != bdev->bd_disk) { 7832 /* we are racing with mddev_put which is discarding this 7833 * bd_disk. 7834 */ 7835 mddev_put(mddev); 7836 /* Wait until bdev->bd_disk is definitely gone */ 7837 if (work_pending(&mddev->del_work)) 7838 flush_workqueue(md_misc_wq); 7839 return -EBUSY; 7840 } 7841 BUG_ON(mddev != bdev->bd_disk->private_data); 7842 7843 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7844 goto out; 7845 7846 if (test_bit(MD_CLOSING, &mddev->flags)) { 7847 mutex_unlock(&mddev->open_mutex); 7848 err = -ENODEV; 7849 goto out; 7850 } 7851 7852 err = 0; 7853 atomic_inc(&mddev->openers); 7854 mutex_unlock(&mddev->open_mutex); 7855 7856 bdev_check_media_change(bdev); 7857 out: 7858 if (err) 7859 mddev_put(mddev); 7860 return err; 7861 } 7862 7863 static void md_release(struct gendisk *disk, fmode_t mode) 7864 { 7865 struct mddev *mddev = disk->private_data; 7866 7867 BUG_ON(!mddev); 7868 atomic_dec(&mddev->openers); 7869 mddev_put(mddev); 7870 } 7871 7872 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7873 { 7874 struct mddev *mddev = disk->private_data; 7875 unsigned int ret = 0; 7876 7877 if (mddev->changed) 7878 ret = DISK_EVENT_MEDIA_CHANGE; 7879 mddev->changed = 0; 7880 return ret; 7881 } 7882 7883 const struct block_device_operations md_fops = 7884 { 7885 .owner = THIS_MODULE, 7886 .submit_bio = md_submit_bio, 7887 .open = md_open, 7888 .release = md_release, 7889 .ioctl = md_ioctl, 7890 #ifdef CONFIG_COMPAT 7891 .compat_ioctl = md_compat_ioctl, 7892 #endif 7893 .getgeo = md_getgeo, 7894 .check_events = md_check_events, 7895 .set_read_only = md_set_read_only, 7896 }; 7897 7898 static int md_thread(void *arg) 7899 { 7900 struct md_thread *thread = arg; 7901 7902 /* 7903 * md_thread is a 'system-thread', it's priority should be very 7904 * high. We avoid resource deadlocks individually in each 7905 * raid personality. (RAID5 does preallocation) We also use RR and 7906 * the very same RT priority as kswapd, thus we will never get 7907 * into a priority inversion deadlock. 7908 * 7909 * we definitely have to have equal or higher priority than 7910 * bdflush, otherwise bdflush will deadlock if there are too 7911 * many dirty RAID5 blocks. 7912 */ 7913 7914 allow_signal(SIGKILL); 7915 while (!kthread_should_stop()) { 7916 7917 /* We need to wait INTERRUPTIBLE so that 7918 * we don't add to the load-average. 7919 * That means we need to be sure no signals are 7920 * pending 7921 */ 7922 if (signal_pending(current)) 7923 flush_signals(current); 7924 7925 wait_event_interruptible_timeout 7926 (thread->wqueue, 7927 test_bit(THREAD_WAKEUP, &thread->flags) 7928 || kthread_should_stop() || kthread_should_park(), 7929 thread->timeout); 7930 7931 clear_bit(THREAD_WAKEUP, &thread->flags); 7932 if (kthread_should_park()) 7933 kthread_parkme(); 7934 if (!kthread_should_stop()) 7935 thread->run(thread); 7936 } 7937 7938 return 0; 7939 } 7940 7941 void md_wakeup_thread(struct md_thread *thread) 7942 { 7943 if (thread) { 7944 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7945 set_bit(THREAD_WAKEUP, &thread->flags); 7946 wake_up(&thread->wqueue); 7947 } 7948 } 7949 EXPORT_SYMBOL(md_wakeup_thread); 7950 7951 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7952 struct mddev *mddev, const char *name) 7953 { 7954 struct md_thread *thread; 7955 7956 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7957 if (!thread) 7958 return NULL; 7959 7960 init_waitqueue_head(&thread->wqueue); 7961 7962 thread->run = run; 7963 thread->mddev = mddev; 7964 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7965 thread->tsk = kthread_run(md_thread, thread, 7966 "%s_%s", 7967 mdname(thread->mddev), 7968 name); 7969 if (IS_ERR(thread->tsk)) { 7970 kfree(thread); 7971 return NULL; 7972 } 7973 return thread; 7974 } 7975 EXPORT_SYMBOL(md_register_thread); 7976 7977 void md_unregister_thread(struct md_thread **threadp) 7978 { 7979 struct md_thread *thread = *threadp; 7980 if (!thread) 7981 return; 7982 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7983 /* Locking ensures that mddev_unlock does not wake_up a 7984 * non-existent thread 7985 */ 7986 spin_lock(&pers_lock); 7987 *threadp = NULL; 7988 spin_unlock(&pers_lock); 7989 7990 kthread_stop(thread->tsk); 7991 kfree(thread); 7992 } 7993 EXPORT_SYMBOL(md_unregister_thread); 7994 7995 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7996 { 7997 if (!rdev || test_bit(Faulty, &rdev->flags)) 7998 return; 7999 8000 if (!mddev->pers || !mddev->pers->error_handler) 8001 return; 8002 mddev->pers->error_handler(mddev,rdev); 8003 if (mddev->degraded) 8004 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8005 sysfs_notify_dirent_safe(rdev->sysfs_state); 8006 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8007 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8008 md_wakeup_thread(mddev->thread); 8009 if (mddev->event_work.func) 8010 queue_work(md_misc_wq, &mddev->event_work); 8011 md_new_event(mddev); 8012 } 8013 EXPORT_SYMBOL(md_error); 8014 8015 /* seq_file implementation /proc/mdstat */ 8016 8017 static void status_unused(struct seq_file *seq) 8018 { 8019 int i = 0; 8020 struct md_rdev *rdev; 8021 8022 seq_printf(seq, "unused devices: "); 8023 8024 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8025 char b[BDEVNAME_SIZE]; 8026 i++; 8027 seq_printf(seq, "%s ", 8028 bdevname(rdev->bdev,b)); 8029 } 8030 if (!i) 8031 seq_printf(seq, "<none>"); 8032 8033 seq_printf(seq, "\n"); 8034 } 8035 8036 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8037 { 8038 sector_t max_sectors, resync, res; 8039 unsigned long dt, db = 0; 8040 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8041 int scale, recovery_active; 8042 unsigned int per_milli; 8043 8044 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8045 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8046 max_sectors = mddev->resync_max_sectors; 8047 else 8048 max_sectors = mddev->dev_sectors; 8049 8050 resync = mddev->curr_resync; 8051 if (resync <= 3) { 8052 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8053 /* Still cleaning up */ 8054 resync = max_sectors; 8055 } else if (resync > max_sectors) 8056 resync = max_sectors; 8057 else 8058 resync -= atomic_read(&mddev->recovery_active); 8059 8060 if (resync == 0) { 8061 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8062 struct md_rdev *rdev; 8063 8064 rdev_for_each(rdev, mddev) 8065 if (rdev->raid_disk >= 0 && 8066 !test_bit(Faulty, &rdev->flags) && 8067 rdev->recovery_offset != MaxSector && 8068 rdev->recovery_offset) { 8069 seq_printf(seq, "\trecover=REMOTE"); 8070 return 1; 8071 } 8072 if (mddev->reshape_position != MaxSector) 8073 seq_printf(seq, "\treshape=REMOTE"); 8074 else 8075 seq_printf(seq, "\tresync=REMOTE"); 8076 return 1; 8077 } 8078 if (mddev->recovery_cp < MaxSector) { 8079 seq_printf(seq, "\tresync=PENDING"); 8080 return 1; 8081 } 8082 return 0; 8083 } 8084 if (resync < 3) { 8085 seq_printf(seq, "\tresync=DELAYED"); 8086 return 1; 8087 } 8088 8089 WARN_ON(max_sectors == 0); 8090 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8091 * in a sector_t, and (max_sectors>>scale) will fit in a 8092 * u32, as those are the requirements for sector_div. 8093 * Thus 'scale' must be at least 10 8094 */ 8095 scale = 10; 8096 if (sizeof(sector_t) > sizeof(unsigned long)) { 8097 while ( max_sectors/2 > (1ULL<<(scale+32))) 8098 scale++; 8099 } 8100 res = (resync>>scale)*1000; 8101 sector_div(res, (u32)((max_sectors>>scale)+1)); 8102 8103 per_milli = res; 8104 { 8105 int i, x = per_milli/50, y = 20-x; 8106 seq_printf(seq, "["); 8107 for (i = 0; i < x; i++) 8108 seq_printf(seq, "="); 8109 seq_printf(seq, ">"); 8110 for (i = 0; i < y; i++) 8111 seq_printf(seq, "."); 8112 seq_printf(seq, "] "); 8113 } 8114 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8115 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8116 "reshape" : 8117 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8118 "check" : 8119 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8120 "resync" : "recovery"))), 8121 per_milli/10, per_milli % 10, 8122 (unsigned long long) resync/2, 8123 (unsigned long long) max_sectors/2); 8124 8125 /* 8126 * dt: time from mark until now 8127 * db: blocks written from mark until now 8128 * rt: remaining time 8129 * 8130 * rt is a sector_t, which is always 64bit now. We are keeping 8131 * the original algorithm, but it is not really necessary. 8132 * 8133 * Original algorithm: 8134 * So we divide before multiply in case it is 32bit and close 8135 * to the limit. 8136 * We scale the divisor (db) by 32 to avoid losing precision 8137 * near the end of resync when the number of remaining sectors 8138 * is close to 'db'. 8139 * We then divide rt by 32 after multiplying by db to compensate. 8140 * The '+1' avoids division by zero if db is very small. 8141 */ 8142 dt = ((jiffies - mddev->resync_mark) / HZ); 8143 if (!dt) dt++; 8144 8145 curr_mark_cnt = mddev->curr_mark_cnt; 8146 recovery_active = atomic_read(&mddev->recovery_active); 8147 resync_mark_cnt = mddev->resync_mark_cnt; 8148 8149 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8150 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8151 8152 rt = max_sectors - resync; /* number of remaining sectors */ 8153 rt = div64_u64(rt, db/32+1); 8154 rt *= dt; 8155 rt >>= 5; 8156 8157 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8158 ((unsigned long)rt % 60)/6); 8159 8160 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8161 return 1; 8162 } 8163 8164 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8165 { 8166 struct list_head *tmp; 8167 loff_t l = *pos; 8168 struct mddev *mddev; 8169 8170 if (l == 0x10000) { 8171 ++*pos; 8172 return (void *)2; 8173 } 8174 if (l > 0x10000) 8175 return NULL; 8176 if (!l--) 8177 /* header */ 8178 return (void*)1; 8179 8180 spin_lock(&all_mddevs_lock); 8181 list_for_each(tmp,&all_mddevs) 8182 if (!l--) { 8183 mddev = list_entry(tmp, struct mddev, all_mddevs); 8184 mddev_get(mddev); 8185 spin_unlock(&all_mddevs_lock); 8186 return mddev; 8187 } 8188 spin_unlock(&all_mddevs_lock); 8189 if (!l--) 8190 return (void*)2;/* tail */ 8191 return NULL; 8192 } 8193 8194 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8195 { 8196 struct list_head *tmp; 8197 struct mddev *next_mddev, *mddev = v; 8198 8199 ++*pos; 8200 if (v == (void*)2) 8201 return NULL; 8202 8203 spin_lock(&all_mddevs_lock); 8204 if (v == (void*)1) 8205 tmp = all_mddevs.next; 8206 else 8207 tmp = mddev->all_mddevs.next; 8208 if (tmp != &all_mddevs) 8209 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8210 else { 8211 next_mddev = (void*)2; 8212 *pos = 0x10000; 8213 } 8214 spin_unlock(&all_mddevs_lock); 8215 8216 if (v != (void*)1) 8217 mddev_put(mddev); 8218 return next_mddev; 8219 8220 } 8221 8222 static void md_seq_stop(struct seq_file *seq, void *v) 8223 { 8224 struct mddev *mddev = v; 8225 8226 if (mddev && v != (void*)1 && v != (void*)2) 8227 mddev_put(mddev); 8228 } 8229 8230 static int md_seq_show(struct seq_file *seq, void *v) 8231 { 8232 struct mddev *mddev = v; 8233 sector_t sectors; 8234 struct md_rdev *rdev; 8235 8236 if (v == (void*)1) { 8237 struct md_personality *pers; 8238 seq_printf(seq, "Personalities : "); 8239 spin_lock(&pers_lock); 8240 list_for_each_entry(pers, &pers_list, list) 8241 seq_printf(seq, "[%s] ", pers->name); 8242 8243 spin_unlock(&pers_lock); 8244 seq_printf(seq, "\n"); 8245 seq->poll_event = atomic_read(&md_event_count); 8246 return 0; 8247 } 8248 if (v == (void*)2) { 8249 status_unused(seq); 8250 return 0; 8251 } 8252 8253 spin_lock(&mddev->lock); 8254 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8255 seq_printf(seq, "%s : %sactive", mdname(mddev), 8256 mddev->pers ? "" : "in"); 8257 if (mddev->pers) { 8258 if (mddev->ro==1) 8259 seq_printf(seq, " (read-only)"); 8260 if (mddev->ro==2) 8261 seq_printf(seq, " (auto-read-only)"); 8262 seq_printf(seq, " %s", mddev->pers->name); 8263 } 8264 8265 sectors = 0; 8266 rcu_read_lock(); 8267 rdev_for_each_rcu(rdev, mddev) { 8268 char b[BDEVNAME_SIZE]; 8269 seq_printf(seq, " %s[%d]", 8270 bdevname(rdev->bdev,b), rdev->desc_nr); 8271 if (test_bit(WriteMostly, &rdev->flags)) 8272 seq_printf(seq, "(W)"); 8273 if (test_bit(Journal, &rdev->flags)) 8274 seq_printf(seq, "(J)"); 8275 if (test_bit(Faulty, &rdev->flags)) { 8276 seq_printf(seq, "(F)"); 8277 continue; 8278 } 8279 if (rdev->raid_disk < 0) 8280 seq_printf(seq, "(S)"); /* spare */ 8281 if (test_bit(Replacement, &rdev->flags)) 8282 seq_printf(seq, "(R)"); 8283 sectors += rdev->sectors; 8284 } 8285 rcu_read_unlock(); 8286 8287 if (!list_empty(&mddev->disks)) { 8288 if (mddev->pers) 8289 seq_printf(seq, "\n %llu blocks", 8290 (unsigned long long) 8291 mddev->array_sectors / 2); 8292 else 8293 seq_printf(seq, "\n %llu blocks", 8294 (unsigned long long)sectors / 2); 8295 } 8296 if (mddev->persistent) { 8297 if (mddev->major_version != 0 || 8298 mddev->minor_version != 90) { 8299 seq_printf(seq," super %d.%d", 8300 mddev->major_version, 8301 mddev->minor_version); 8302 } 8303 } else if (mddev->external) 8304 seq_printf(seq, " super external:%s", 8305 mddev->metadata_type); 8306 else 8307 seq_printf(seq, " super non-persistent"); 8308 8309 if (mddev->pers) { 8310 mddev->pers->status(seq, mddev); 8311 seq_printf(seq, "\n "); 8312 if (mddev->pers->sync_request) { 8313 if (status_resync(seq, mddev)) 8314 seq_printf(seq, "\n "); 8315 } 8316 } else 8317 seq_printf(seq, "\n "); 8318 8319 md_bitmap_status(seq, mddev->bitmap); 8320 8321 seq_printf(seq, "\n"); 8322 } 8323 spin_unlock(&mddev->lock); 8324 8325 return 0; 8326 } 8327 8328 static const struct seq_operations md_seq_ops = { 8329 .start = md_seq_start, 8330 .next = md_seq_next, 8331 .stop = md_seq_stop, 8332 .show = md_seq_show, 8333 }; 8334 8335 static int md_seq_open(struct inode *inode, struct file *file) 8336 { 8337 struct seq_file *seq; 8338 int error; 8339 8340 error = seq_open(file, &md_seq_ops); 8341 if (error) 8342 return error; 8343 8344 seq = file->private_data; 8345 seq->poll_event = atomic_read(&md_event_count); 8346 return error; 8347 } 8348 8349 static int md_unloading; 8350 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8351 { 8352 struct seq_file *seq = filp->private_data; 8353 __poll_t mask; 8354 8355 if (md_unloading) 8356 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8357 poll_wait(filp, &md_event_waiters, wait); 8358 8359 /* always allow read */ 8360 mask = EPOLLIN | EPOLLRDNORM; 8361 8362 if (seq->poll_event != atomic_read(&md_event_count)) 8363 mask |= EPOLLERR | EPOLLPRI; 8364 return mask; 8365 } 8366 8367 static const struct proc_ops mdstat_proc_ops = { 8368 .proc_open = md_seq_open, 8369 .proc_read = seq_read, 8370 .proc_lseek = seq_lseek, 8371 .proc_release = seq_release, 8372 .proc_poll = mdstat_poll, 8373 }; 8374 8375 int register_md_personality(struct md_personality *p) 8376 { 8377 pr_debug("md: %s personality registered for level %d\n", 8378 p->name, p->level); 8379 spin_lock(&pers_lock); 8380 list_add_tail(&p->list, &pers_list); 8381 spin_unlock(&pers_lock); 8382 return 0; 8383 } 8384 EXPORT_SYMBOL(register_md_personality); 8385 8386 int unregister_md_personality(struct md_personality *p) 8387 { 8388 pr_debug("md: %s personality unregistered\n", p->name); 8389 spin_lock(&pers_lock); 8390 list_del_init(&p->list); 8391 spin_unlock(&pers_lock); 8392 return 0; 8393 } 8394 EXPORT_SYMBOL(unregister_md_personality); 8395 8396 int register_md_cluster_operations(struct md_cluster_operations *ops, 8397 struct module *module) 8398 { 8399 int ret = 0; 8400 spin_lock(&pers_lock); 8401 if (md_cluster_ops != NULL) 8402 ret = -EALREADY; 8403 else { 8404 md_cluster_ops = ops; 8405 md_cluster_mod = module; 8406 } 8407 spin_unlock(&pers_lock); 8408 return ret; 8409 } 8410 EXPORT_SYMBOL(register_md_cluster_operations); 8411 8412 int unregister_md_cluster_operations(void) 8413 { 8414 spin_lock(&pers_lock); 8415 md_cluster_ops = NULL; 8416 spin_unlock(&pers_lock); 8417 return 0; 8418 } 8419 EXPORT_SYMBOL(unregister_md_cluster_operations); 8420 8421 int md_setup_cluster(struct mddev *mddev, int nodes) 8422 { 8423 int ret; 8424 if (!md_cluster_ops) 8425 request_module("md-cluster"); 8426 spin_lock(&pers_lock); 8427 /* ensure module won't be unloaded */ 8428 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8429 pr_warn("can't find md-cluster module or get it's reference.\n"); 8430 spin_unlock(&pers_lock); 8431 return -ENOENT; 8432 } 8433 spin_unlock(&pers_lock); 8434 8435 ret = md_cluster_ops->join(mddev, nodes); 8436 if (!ret) 8437 mddev->safemode_delay = 0; 8438 return ret; 8439 } 8440 8441 void md_cluster_stop(struct mddev *mddev) 8442 { 8443 if (!md_cluster_ops) 8444 return; 8445 md_cluster_ops->leave(mddev); 8446 module_put(md_cluster_mod); 8447 } 8448 8449 static int is_mddev_idle(struct mddev *mddev, int init) 8450 { 8451 struct md_rdev *rdev; 8452 int idle; 8453 int curr_events; 8454 8455 idle = 1; 8456 rcu_read_lock(); 8457 rdev_for_each_rcu(rdev, mddev) { 8458 struct gendisk *disk = rdev->bdev->bd_disk; 8459 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8460 atomic_read(&disk->sync_io); 8461 /* sync IO will cause sync_io to increase before the disk_stats 8462 * as sync_io is counted when a request starts, and 8463 * disk_stats is counted when it completes. 8464 * So resync activity will cause curr_events to be smaller than 8465 * when there was no such activity. 8466 * non-sync IO will cause disk_stat to increase without 8467 * increasing sync_io so curr_events will (eventually) 8468 * be larger than it was before. Once it becomes 8469 * substantially larger, the test below will cause 8470 * the array to appear non-idle, and resync will slow 8471 * down. 8472 * If there is a lot of outstanding resync activity when 8473 * we set last_event to curr_events, then all that activity 8474 * completing might cause the array to appear non-idle 8475 * and resync will be slowed down even though there might 8476 * not have been non-resync activity. This will only 8477 * happen once though. 'last_events' will soon reflect 8478 * the state where there is little or no outstanding 8479 * resync requests, and further resync activity will 8480 * always make curr_events less than last_events. 8481 * 8482 */ 8483 if (init || curr_events - rdev->last_events > 64) { 8484 rdev->last_events = curr_events; 8485 idle = 0; 8486 } 8487 } 8488 rcu_read_unlock(); 8489 return idle; 8490 } 8491 8492 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8493 { 8494 /* another "blocks" (512byte) blocks have been synced */ 8495 atomic_sub(blocks, &mddev->recovery_active); 8496 wake_up(&mddev->recovery_wait); 8497 if (!ok) { 8498 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8499 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8500 md_wakeup_thread(mddev->thread); 8501 // stop recovery, signal do_sync .... 8502 } 8503 } 8504 EXPORT_SYMBOL(md_done_sync); 8505 8506 /* md_write_start(mddev, bi) 8507 * If we need to update some array metadata (e.g. 'active' flag 8508 * in superblock) before writing, schedule a superblock update 8509 * and wait for it to complete. 8510 * A return value of 'false' means that the write wasn't recorded 8511 * and cannot proceed as the array is being suspend. 8512 */ 8513 bool md_write_start(struct mddev *mddev, struct bio *bi) 8514 { 8515 int did_change = 0; 8516 8517 if (bio_data_dir(bi) != WRITE) 8518 return true; 8519 8520 BUG_ON(mddev->ro == 1); 8521 if (mddev->ro == 2) { 8522 /* need to switch to read/write */ 8523 mddev->ro = 0; 8524 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8525 md_wakeup_thread(mddev->thread); 8526 md_wakeup_thread(mddev->sync_thread); 8527 did_change = 1; 8528 } 8529 rcu_read_lock(); 8530 percpu_ref_get(&mddev->writes_pending); 8531 smp_mb(); /* Match smp_mb in set_in_sync() */ 8532 if (mddev->safemode == 1) 8533 mddev->safemode = 0; 8534 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8535 if (mddev->in_sync || mddev->sync_checkers) { 8536 spin_lock(&mddev->lock); 8537 if (mddev->in_sync) { 8538 mddev->in_sync = 0; 8539 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8540 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8541 md_wakeup_thread(mddev->thread); 8542 did_change = 1; 8543 } 8544 spin_unlock(&mddev->lock); 8545 } 8546 rcu_read_unlock(); 8547 if (did_change) 8548 sysfs_notify_dirent_safe(mddev->sysfs_state); 8549 if (!mddev->has_superblocks) 8550 return true; 8551 wait_event(mddev->sb_wait, 8552 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8553 mddev->suspended); 8554 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8555 percpu_ref_put(&mddev->writes_pending); 8556 return false; 8557 } 8558 return true; 8559 } 8560 EXPORT_SYMBOL(md_write_start); 8561 8562 /* md_write_inc can only be called when md_write_start() has 8563 * already been called at least once of the current request. 8564 * It increments the counter and is useful when a single request 8565 * is split into several parts. Each part causes an increment and 8566 * so needs a matching md_write_end(). 8567 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8568 * a spinlocked region. 8569 */ 8570 void md_write_inc(struct mddev *mddev, struct bio *bi) 8571 { 8572 if (bio_data_dir(bi) != WRITE) 8573 return; 8574 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8575 percpu_ref_get(&mddev->writes_pending); 8576 } 8577 EXPORT_SYMBOL(md_write_inc); 8578 8579 void md_write_end(struct mddev *mddev) 8580 { 8581 percpu_ref_put(&mddev->writes_pending); 8582 8583 if (mddev->safemode == 2) 8584 md_wakeup_thread(mddev->thread); 8585 else if (mddev->safemode_delay) 8586 /* The roundup() ensures this only performs locking once 8587 * every ->safemode_delay jiffies 8588 */ 8589 mod_timer(&mddev->safemode_timer, 8590 roundup(jiffies, mddev->safemode_delay) + 8591 mddev->safemode_delay); 8592 } 8593 8594 EXPORT_SYMBOL(md_write_end); 8595 8596 /* This is used by raid0 and raid10 */ 8597 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8598 struct bio *bio, sector_t start, sector_t size) 8599 { 8600 struct bio *discard_bio = NULL; 8601 8602 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0, 8603 &discard_bio) || !discard_bio) 8604 return; 8605 8606 bio_chain(discard_bio, bio); 8607 bio_clone_blkg_association(discard_bio, bio); 8608 if (mddev->gendisk) 8609 trace_block_bio_remap(discard_bio, 8610 disk_devt(mddev->gendisk), 8611 bio->bi_iter.bi_sector); 8612 submit_bio_noacct(discard_bio); 8613 } 8614 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8615 8616 /* md_allow_write(mddev) 8617 * Calling this ensures that the array is marked 'active' so that writes 8618 * may proceed without blocking. It is important to call this before 8619 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8620 * Must be called with mddev_lock held. 8621 */ 8622 void md_allow_write(struct mddev *mddev) 8623 { 8624 if (!mddev->pers) 8625 return; 8626 if (mddev->ro) 8627 return; 8628 if (!mddev->pers->sync_request) 8629 return; 8630 8631 spin_lock(&mddev->lock); 8632 if (mddev->in_sync) { 8633 mddev->in_sync = 0; 8634 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8635 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8636 if (mddev->safemode_delay && 8637 mddev->safemode == 0) 8638 mddev->safemode = 1; 8639 spin_unlock(&mddev->lock); 8640 md_update_sb(mddev, 0); 8641 sysfs_notify_dirent_safe(mddev->sysfs_state); 8642 /* wait for the dirty state to be recorded in the metadata */ 8643 wait_event(mddev->sb_wait, 8644 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8645 } else 8646 spin_unlock(&mddev->lock); 8647 } 8648 EXPORT_SYMBOL_GPL(md_allow_write); 8649 8650 #define SYNC_MARKS 10 8651 #define SYNC_MARK_STEP (3*HZ) 8652 #define UPDATE_FREQUENCY (5*60*HZ) 8653 void md_do_sync(struct md_thread *thread) 8654 { 8655 struct mddev *mddev = thread->mddev; 8656 struct mddev *mddev2; 8657 unsigned int currspeed = 0, window; 8658 sector_t max_sectors,j, io_sectors, recovery_done; 8659 unsigned long mark[SYNC_MARKS]; 8660 unsigned long update_time; 8661 sector_t mark_cnt[SYNC_MARKS]; 8662 int last_mark,m; 8663 struct list_head *tmp; 8664 sector_t last_check; 8665 int skipped = 0; 8666 struct md_rdev *rdev; 8667 char *desc, *action = NULL; 8668 struct blk_plug plug; 8669 int ret; 8670 8671 /* just incase thread restarts... */ 8672 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8673 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8674 return; 8675 if (mddev->ro) {/* never try to sync a read-only array */ 8676 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8677 return; 8678 } 8679 8680 if (mddev_is_clustered(mddev)) { 8681 ret = md_cluster_ops->resync_start(mddev); 8682 if (ret) 8683 goto skip; 8684 8685 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8686 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8687 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8688 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8689 && ((unsigned long long)mddev->curr_resync_completed 8690 < (unsigned long long)mddev->resync_max_sectors)) 8691 goto skip; 8692 } 8693 8694 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8695 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8696 desc = "data-check"; 8697 action = "check"; 8698 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8699 desc = "requested-resync"; 8700 action = "repair"; 8701 } else 8702 desc = "resync"; 8703 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8704 desc = "reshape"; 8705 else 8706 desc = "recovery"; 8707 8708 mddev->last_sync_action = action ?: desc; 8709 8710 /* we overload curr_resync somewhat here. 8711 * 0 == not engaged in resync at all 8712 * 2 == checking that there is no conflict with another sync 8713 * 1 == like 2, but have yielded to allow conflicting resync to 8714 * commence 8715 * other == active in resync - this many blocks 8716 * 8717 * Before starting a resync we must have set curr_resync to 8718 * 2, and then checked that every "conflicting" array has curr_resync 8719 * less than ours. When we find one that is the same or higher 8720 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8721 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8722 * This will mean we have to start checking from the beginning again. 8723 * 8724 */ 8725 8726 do { 8727 int mddev2_minor = -1; 8728 mddev->curr_resync = 2; 8729 8730 try_again: 8731 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8732 goto skip; 8733 for_each_mddev(mddev2, tmp) { 8734 if (mddev2 == mddev) 8735 continue; 8736 if (!mddev->parallel_resync 8737 && mddev2->curr_resync 8738 && match_mddev_units(mddev, mddev2)) { 8739 DEFINE_WAIT(wq); 8740 if (mddev < mddev2 && mddev->curr_resync == 2) { 8741 /* arbitrarily yield */ 8742 mddev->curr_resync = 1; 8743 wake_up(&resync_wait); 8744 } 8745 if (mddev > mddev2 && mddev->curr_resync == 1) 8746 /* no need to wait here, we can wait the next 8747 * time 'round when curr_resync == 2 8748 */ 8749 continue; 8750 /* We need to wait 'interruptible' so as not to 8751 * contribute to the load average, and not to 8752 * be caught by 'softlockup' 8753 */ 8754 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8755 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8756 mddev2->curr_resync >= mddev->curr_resync) { 8757 if (mddev2_minor != mddev2->md_minor) { 8758 mddev2_minor = mddev2->md_minor; 8759 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8760 desc, mdname(mddev), 8761 mdname(mddev2)); 8762 } 8763 mddev_put(mddev2); 8764 if (signal_pending(current)) 8765 flush_signals(current); 8766 schedule(); 8767 finish_wait(&resync_wait, &wq); 8768 goto try_again; 8769 } 8770 finish_wait(&resync_wait, &wq); 8771 } 8772 } 8773 } while (mddev->curr_resync < 2); 8774 8775 j = 0; 8776 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8777 /* resync follows the size requested by the personality, 8778 * which defaults to physical size, but can be virtual size 8779 */ 8780 max_sectors = mddev->resync_max_sectors; 8781 atomic64_set(&mddev->resync_mismatches, 0); 8782 /* we don't use the checkpoint if there's a bitmap */ 8783 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8784 j = mddev->resync_min; 8785 else if (!mddev->bitmap) 8786 j = mddev->recovery_cp; 8787 8788 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8789 max_sectors = mddev->resync_max_sectors; 8790 /* 8791 * If the original node aborts reshaping then we continue the 8792 * reshaping, so set j again to avoid restart reshape from the 8793 * first beginning 8794 */ 8795 if (mddev_is_clustered(mddev) && 8796 mddev->reshape_position != MaxSector) 8797 j = mddev->reshape_position; 8798 } else { 8799 /* recovery follows the physical size of devices */ 8800 max_sectors = mddev->dev_sectors; 8801 j = MaxSector; 8802 rcu_read_lock(); 8803 rdev_for_each_rcu(rdev, mddev) 8804 if (rdev->raid_disk >= 0 && 8805 !test_bit(Journal, &rdev->flags) && 8806 !test_bit(Faulty, &rdev->flags) && 8807 !test_bit(In_sync, &rdev->flags) && 8808 rdev->recovery_offset < j) 8809 j = rdev->recovery_offset; 8810 rcu_read_unlock(); 8811 8812 /* If there is a bitmap, we need to make sure all 8813 * writes that started before we added a spare 8814 * complete before we start doing a recovery. 8815 * Otherwise the write might complete and (via 8816 * bitmap_endwrite) set a bit in the bitmap after the 8817 * recovery has checked that bit and skipped that 8818 * region. 8819 */ 8820 if (mddev->bitmap) { 8821 mddev->pers->quiesce(mddev, 1); 8822 mddev->pers->quiesce(mddev, 0); 8823 } 8824 } 8825 8826 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8827 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8828 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8829 speed_max(mddev), desc); 8830 8831 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8832 8833 io_sectors = 0; 8834 for (m = 0; m < SYNC_MARKS; m++) { 8835 mark[m] = jiffies; 8836 mark_cnt[m] = io_sectors; 8837 } 8838 last_mark = 0; 8839 mddev->resync_mark = mark[last_mark]; 8840 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8841 8842 /* 8843 * Tune reconstruction: 8844 */ 8845 window = 32 * (PAGE_SIZE / 512); 8846 pr_debug("md: using %dk window, over a total of %lluk.\n", 8847 window/2, (unsigned long long)max_sectors/2); 8848 8849 atomic_set(&mddev->recovery_active, 0); 8850 last_check = 0; 8851 8852 if (j>2) { 8853 pr_debug("md: resuming %s of %s from checkpoint.\n", 8854 desc, mdname(mddev)); 8855 mddev->curr_resync = j; 8856 } else 8857 mddev->curr_resync = 3; /* no longer delayed */ 8858 mddev->curr_resync_completed = j; 8859 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8860 md_new_event(mddev); 8861 update_time = jiffies; 8862 8863 blk_start_plug(&plug); 8864 while (j < max_sectors) { 8865 sector_t sectors; 8866 8867 skipped = 0; 8868 8869 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8870 ((mddev->curr_resync > mddev->curr_resync_completed && 8871 (mddev->curr_resync - mddev->curr_resync_completed) 8872 > (max_sectors >> 4)) || 8873 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8874 (j - mddev->curr_resync_completed)*2 8875 >= mddev->resync_max - mddev->curr_resync_completed || 8876 mddev->curr_resync_completed > mddev->resync_max 8877 )) { 8878 /* time to update curr_resync_completed */ 8879 wait_event(mddev->recovery_wait, 8880 atomic_read(&mddev->recovery_active) == 0); 8881 mddev->curr_resync_completed = j; 8882 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8883 j > mddev->recovery_cp) 8884 mddev->recovery_cp = j; 8885 update_time = jiffies; 8886 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8887 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8888 } 8889 8890 while (j >= mddev->resync_max && 8891 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8892 /* As this condition is controlled by user-space, 8893 * we can block indefinitely, so use '_interruptible' 8894 * to avoid triggering warnings. 8895 */ 8896 flush_signals(current); /* just in case */ 8897 wait_event_interruptible(mddev->recovery_wait, 8898 mddev->resync_max > j 8899 || test_bit(MD_RECOVERY_INTR, 8900 &mddev->recovery)); 8901 } 8902 8903 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8904 break; 8905 8906 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8907 if (sectors == 0) { 8908 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8909 break; 8910 } 8911 8912 if (!skipped) { /* actual IO requested */ 8913 io_sectors += sectors; 8914 atomic_add(sectors, &mddev->recovery_active); 8915 } 8916 8917 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8918 break; 8919 8920 j += sectors; 8921 if (j > max_sectors) 8922 /* when skipping, extra large numbers can be returned. */ 8923 j = max_sectors; 8924 if (j > 2) 8925 mddev->curr_resync = j; 8926 mddev->curr_mark_cnt = io_sectors; 8927 if (last_check == 0) 8928 /* this is the earliest that rebuild will be 8929 * visible in /proc/mdstat 8930 */ 8931 md_new_event(mddev); 8932 8933 if (last_check + window > io_sectors || j == max_sectors) 8934 continue; 8935 8936 last_check = io_sectors; 8937 repeat: 8938 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8939 /* step marks */ 8940 int next = (last_mark+1) % SYNC_MARKS; 8941 8942 mddev->resync_mark = mark[next]; 8943 mddev->resync_mark_cnt = mark_cnt[next]; 8944 mark[next] = jiffies; 8945 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8946 last_mark = next; 8947 } 8948 8949 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8950 break; 8951 8952 /* 8953 * this loop exits only if either when we are slower than 8954 * the 'hard' speed limit, or the system was IO-idle for 8955 * a jiffy. 8956 * the system might be non-idle CPU-wise, but we only care 8957 * about not overloading the IO subsystem. (things like an 8958 * e2fsck being done on the RAID array should execute fast) 8959 */ 8960 cond_resched(); 8961 8962 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8963 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8964 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8965 8966 if (currspeed > speed_min(mddev)) { 8967 if (currspeed > speed_max(mddev)) { 8968 msleep(500); 8969 goto repeat; 8970 } 8971 if (!is_mddev_idle(mddev, 0)) { 8972 /* 8973 * Give other IO more of a chance. 8974 * The faster the devices, the less we wait. 8975 */ 8976 wait_event(mddev->recovery_wait, 8977 !atomic_read(&mddev->recovery_active)); 8978 } 8979 } 8980 } 8981 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8982 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8983 ? "interrupted" : "done"); 8984 /* 8985 * this also signals 'finished resyncing' to md_stop 8986 */ 8987 blk_finish_plug(&plug); 8988 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8989 8990 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8991 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8992 mddev->curr_resync > 3) { 8993 mddev->curr_resync_completed = mddev->curr_resync; 8994 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8995 } 8996 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8997 8998 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8999 mddev->curr_resync > 3) { 9000 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9001 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9002 if (mddev->curr_resync >= mddev->recovery_cp) { 9003 pr_debug("md: checkpointing %s of %s.\n", 9004 desc, mdname(mddev)); 9005 if (test_bit(MD_RECOVERY_ERROR, 9006 &mddev->recovery)) 9007 mddev->recovery_cp = 9008 mddev->curr_resync_completed; 9009 else 9010 mddev->recovery_cp = 9011 mddev->curr_resync; 9012 } 9013 } else 9014 mddev->recovery_cp = MaxSector; 9015 } else { 9016 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9017 mddev->curr_resync = MaxSector; 9018 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9019 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9020 rcu_read_lock(); 9021 rdev_for_each_rcu(rdev, mddev) 9022 if (rdev->raid_disk >= 0 && 9023 mddev->delta_disks >= 0 && 9024 !test_bit(Journal, &rdev->flags) && 9025 !test_bit(Faulty, &rdev->flags) && 9026 !test_bit(In_sync, &rdev->flags) && 9027 rdev->recovery_offset < mddev->curr_resync) 9028 rdev->recovery_offset = mddev->curr_resync; 9029 rcu_read_unlock(); 9030 } 9031 } 9032 } 9033 skip: 9034 /* set CHANGE_PENDING here since maybe another update is needed, 9035 * so other nodes are informed. It should be harmless for normal 9036 * raid */ 9037 set_mask_bits(&mddev->sb_flags, 0, 9038 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9039 9040 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9041 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9042 mddev->delta_disks > 0 && 9043 mddev->pers->finish_reshape && 9044 mddev->pers->size && 9045 mddev->queue) { 9046 mddev_lock_nointr(mddev); 9047 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9048 mddev_unlock(mddev); 9049 if (!mddev_is_clustered(mddev)) 9050 set_capacity_and_notify(mddev->gendisk, 9051 mddev->array_sectors); 9052 } 9053 9054 spin_lock(&mddev->lock); 9055 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9056 /* We completed so min/max setting can be forgotten if used. */ 9057 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9058 mddev->resync_min = 0; 9059 mddev->resync_max = MaxSector; 9060 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9061 mddev->resync_min = mddev->curr_resync_completed; 9062 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9063 mddev->curr_resync = 0; 9064 spin_unlock(&mddev->lock); 9065 9066 wake_up(&resync_wait); 9067 md_wakeup_thread(mddev->thread); 9068 return; 9069 } 9070 EXPORT_SYMBOL_GPL(md_do_sync); 9071 9072 static int remove_and_add_spares(struct mddev *mddev, 9073 struct md_rdev *this) 9074 { 9075 struct md_rdev *rdev; 9076 int spares = 0; 9077 int removed = 0; 9078 bool remove_some = false; 9079 9080 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9081 /* Mustn't remove devices when resync thread is running */ 9082 return 0; 9083 9084 rdev_for_each(rdev, mddev) { 9085 if ((this == NULL || rdev == this) && 9086 rdev->raid_disk >= 0 && 9087 !test_bit(Blocked, &rdev->flags) && 9088 test_bit(Faulty, &rdev->flags) && 9089 atomic_read(&rdev->nr_pending)==0) { 9090 /* Faulty non-Blocked devices with nr_pending == 0 9091 * never get nr_pending incremented, 9092 * never get Faulty cleared, and never get Blocked set. 9093 * So we can synchronize_rcu now rather than once per device 9094 */ 9095 remove_some = true; 9096 set_bit(RemoveSynchronized, &rdev->flags); 9097 } 9098 } 9099 9100 if (remove_some) 9101 synchronize_rcu(); 9102 rdev_for_each(rdev, mddev) { 9103 if ((this == NULL || rdev == this) && 9104 rdev->raid_disk >= 0 && 9105 !test_bit(Blocked, &rdev->flags) && 9106 ((test_bit(RemoveSynchronized, &rdev->flags) || 9107 (!test_bit(In_sync, &rdev->flags) && 9108 !test_bit(Journal, &rdev->flags))) && 9109 atomic_read(&rdev->nr_pending)==0)) { 9110 if (mddev->pers->hot_remove_disk( 9111 mddev, rdev) == 0) { 9112 sysfs_unlink_rdev(mddev, rdev); 9113 rdev->saved_raid_disk = rdev->raid_disk; 9114 rdev->raid_disk = -1; 9115 removed++; 9116 } 9117 } 9118 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9119 clear_bit(RemoveSynchronized, &rdev->flags); 9120 } 9121 9122 if (removed && mddev->kobj.sd) 9123 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9124 9125 if (this && removed) 9126 goto no_add; 9127 9128 rdev_for_each(rdev, mddev) { 9129 if (this && this != rdev) 9130 continue; 9131 if (test_bit(Candidate, &rdev->flags)) 9132 continue; 9133 if (rdev->raid_disk >= 0 && 9134 !test_bit(In_sync, &rdev->flags) && 9135 !test_bit(Journal, &rdev->flags) && 9136 !test_bit(Faulty, &rdev->flags)) 9137 spares++; 9138 if (rdev->raid_disk >= 0) 9139 continue; 9140 if (test_bit(Faulty, &rdev->flags)) 9141 continue; 9142 if (!test_bit(Journal, &rdev->flags)) { 9143 if (mddev->ro && 9144 ! (rdev->saved_raid_disk >= 0 && 9145 !test_bit(Bitmap_sync, &rdev->flags))) 9146 continue; 9147 9148 rdev->recovery_offset = 0; 9149 } 9150 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9151 /* failure here is OK */ 9152 sysfs_link_rdev(mddev, rdev); 9153 if (!test_bit(Journal, &rdev->flags)) 9154 spares++; 9155 md_new_event(mddev); 9156 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9157 } 9158 } 9159 no_add: 9160 if (removed) 9161 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9162 return spares; 9163 } 9164 9165 static void md_start_sync(struct work_struct *ws) 9166 { 9167 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9168 9169 mddev->sync_thread = md_register_thread(md_do_sync, 9170 mddev, 9171 "resync"); 9172 if (!mddev->sync_thread) { 9173 pr_warn("%s: could not start resync thread...\n", 9174 mdname(mddev)); 9175 /* leave the spares where they are, it shouldn't hurt */ 9176 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9177 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9178 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9179 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9180 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9181 wake_up(&resync_wait); 9182 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9183 &mddev->recovery)) 9184 if (mddev->sysfs_action) 9185 sysfs_notify_dirent_safe(mddev->sysfs_action); 9186 } else 9187 md_wakeup_thread(mddev->sync_thread); 9188 sysfs_notify_dirent_safe(mddev->sysfs_action); 9189 md_new_event(mddev); 9190 } 9191 9192 /* 9193 * This routine is regularly called by all per-raid-array threads to 9194 * deal with generic issues like resync and super-block update. 9195 * Raid personalities that don't have a thread (linear/raid0) do not 9196 * need this as they never do any recovery or update the superblock. 9197 * 9198 * It does not do any resync itself, but rather "forks" off other threads 9199 * to do that as needed. 9200 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9201 * "->recovery" and create a thread at ->sync_thread. 9202 * When the thread finishes it sets MD_RECOVERY_DONE 9203 * and wakeups up this thread which will reap the thread and finish up. 9204 * This thread also removes any faulty devices (with nr_pending == 0). 9205 * 9206 * The overall approach is: 9207 * 1/ if the superblock needs updating, update it. 9208 * 2/ If a recovery thread is running, don't do anything else. 9209 * 3/ If recovery has finished, clean up, possibly marking spares active. 9210 * 4/ If there are any faulty devices, remove them. 9211 * 5/ If array is degraded, try to add spares devices 9212 * 6/ If array has spares or is not in-sync, start a resync thread. 9213 */ 9214 void md_check_recovery(struct mddev *mddev) 9215 { 9216 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9217 /* Write superblock - thread that called mddev_suspend() 9218 * holds reconfig_mutex for us. 9219 */ 9220 set_bit(MD_UPDATING_SB, &mddev->flags); 9221 smp_mb__after_atomic(); 9222 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9223 md_update_sb(mddev, 0); 9224 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9225 wake_up(&mddev->sb_wait); 9226 } 9227 9228 if (mddev->suspended) 9229 return; 9230 9231 if (mddev->bitmap) 9232 md_bitmap_daemon_work(mddev); 9233 9234 if (signal_pending(current)) { 9235 if (mddev->pers->sync_request && !mddev->external) { 9236 pr_debug("md: %s in immediate safe mode\n", 9237 mdname(mddev)); 9238 mddev->safemode = 2; 9239 } 9240 flush_signals(current); 9241 } 9242 9243 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9244 return; 9245 if ( ! ( 9246 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9247 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9248 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9249 (mddev->external == 0 && mddev->safemode == 1) || 9250 (mddev->safemode == 2 9251 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9252 )) 9253 return; 9254 9255 if (mddev_trylock(mddev)) { 9256 int spares = 0; 9257 bool try_set_sync = mddev->safemode != 0; 9258 9259 if (!mddev->external && mddev->safemode == 1) 9260 mddev->safemode = 0; 9261 9262 if (mddev->ro) { 9263 struct md_rdev *rdev; 9264 if (!mddev->external && mddev->in_sync) 9265 /* 'Blocked' flag not needed as failed devices 9266 * will be recorded if array switched to read/write. 9267 * Leaving it set will prevent the device 9268 * from being removed. 9269 */ 9270 rdev_for_each(rdev, mddev) 9271 clear_bit(Blocked, &rdev->flags); 9272 /* On a read-only array we can: 9273 * - remove failed devices 9274 * - add already-in_sync devices if the array itself 9275 * is in-sync. 9276 * As we only add devices that are already in-sync, 9277 * we can activate the spares immediately. 9278 */ 9279 remove_and_add_spares(mddev, NULL); 9280 /* There is no thread, but we need to call 9281 * ->spare_active and clear saved_raid_disk 9282 */ 9283 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9284 md_reap_sync_thread(mddev); 9285 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9286 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9287 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9288 goto unlock; 9289 } 9290 9291 if (mddev_is_clustered(mddev)) { 9292 struct md_rdev *rdev, *tmp; 9293 /* kick the device if another node issued a 9294 * remove disk. 9295 */ 9296 rdev_for_each_safe(rdev, tmp, mddev) { 9297 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9298 rdev->raid_disk < 0) 9299 md_kick_rdev_from_array(rdev); 9300 } 9301 } 9302 9303 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9304 spin_lock(&mddev->lock); 9305 set_in_sync(mddev); 9306 spin_unlock(&mddev->lock); 9307 } 9308 9309 if (mddev->sb_flags) 9310 md_update_sb(mddev, 0); 9311 9312 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9313 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9314 /* resync/recovery still happening */ 9315 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9316 goto unlock; 9317 } 9318 if (mddev->sync_thread) { 9319 md_reap_sync_thread(mddev); 9320 goto unlock; 9321 } 9322 /* Set RUNNING before clearing NEEDED to avoid 9323 * any transients in the value of "sync_action". 9324 */ 9325 mddev->curr_resync_completed = 0; 9326 spin_lock(&mddev->lock); 9327 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9328 spin_unlock(&mddev->lock); 9329 /* Clear some bits that don't mean anything, but 9330 * might be left set 9331 */ 9332 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9333 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9334 9335 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9336 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9337 goto not_running; 9338 /* no recovery is running. 9339 * remove any failed drives, then 9340 * add spares if possible. 9341 * Spares are also removed and re-added, to allow 9342 * the personality to fail the re-add. 9343 */ 9344 9345 if (mddev->reshape_position != MaxSector) { 9346 if (mddev->pers->check_reshape == NULL || 9347 mddev->pers->check_reshape(mddev) != 0) 9348 /* Cannot proceed */ 9349 goto not_running; 9350 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9351 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9352 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9353 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9354 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9355 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9356 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9357 } else if (mddev->recovery_cp < MaxSector) { 9358 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9359 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9360 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9361 /* nothing to be done ... */ 9362 goto not_running; 9363 9364 if (mddev->pers->sync_request) { 9365 if (spares) { 9366 /* We are adding a device or devices to an array 9367 * which has the bitmap stored on all devices. 9368 * So make sure all bitmap pages get written 9369 */ 9370 md_bitmap_write_all(mddev->bitmap); 9371 } 9372 INIT_WORK(&mddev->del_work, md_start_sync); 9373 queue_work(md_misc_wq, &mddev->del_work); 9374 goto unlock; 9375 } 9376 not_running: 9377 if (!mddev->sync_thread) { 9378 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9379 wake_up(&resync_wait); 9380 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9381 &mddev->recovery)) 9382 if (mddev->sysfs_action) 9383 sysfs_notify_dirent_safe(mddev->sysfs_action); 9384 } 9385 unlock: 9386 wake_up(&mddev->sb_wait); 9387 mddev_unlock(mddev); 9388 } 9389 } 9390 EXPORT_SYMBOL(md_check_recovery); 9391 9392 void md_reap_sync_thread(struct mddev *mddev) 9393 { 9394 struct md_rdev *rdev; 9395 sector_t old_dev_sectors = mddev->dev_sectors; 9396 bool is_reshaped = false; 9397 9398 /* resync has finished, collect result */ 9399 md_unregister_thread(&mddev->sync_thread); 9400 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9401 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9402 mddev->degraded != mddev->raid_disks) { 9403 /* success...*/ 9404 /* activate any spares */ 9405 if (mddev->pers->spare_active(mddev)) { 9406 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9407 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9408 } 9409 } 9410 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9411 mddev->pers->finish_reshape) { 9412 mddev->pers->finish_reshape(mddev); 9413 if (mddev_is_clustered(mddev)) 9414 is_reshaped = true; 9415 } 9416 9417 /* If array is no-longer degraded, then any saved_raid_disk 9418 * information must be scrapped. 9419 */ 9420 if (!mddev->degraded) 9421 rdev_for_each(rdev, mddev) 9422 rdev->saved_raid_disk = -1; 9423 9424 md_update_sb(mddev, 1); 9425 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9426 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9427 * clustered raid */ 9428 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9429 md_cluster_ops->resync_finish(mddev); 9430 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9431 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9432 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9433 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9434 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9435 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9436 /* 9437 * We call md_cluster_ops->update_size here because sync_size could 9438 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9439 * so it is time to update size across cluster. 9440 */ 9441 if (mddev_is_clustered(mddev) && is_reshaped 9442 && !test_bit(MD_CLOSING, &mddev->flags)) 9443 md_cluster_ops->update_size(mddev, old_dev_sectors); 9444 wake_up(&resync_wait); 9445 /* flag recovery needed just to double check */ 9446 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9447 sysfs_notify_dirent_safe(mddev->sysfs_action); 9448 md_new_event(mddev); 9449 if (mddev->event_work.func) 9450 queue_work(md_misc_wq, &mddev->event_work); 9451 } 9452 EXPORT_SYMBOL(md_reap_sync_thread); 9453 9454 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9455 { 9456 sysfs_notify_dirent_safe(rdev->sysfs_state); 9457 wait_event_timeout(rdev->blocked_wait, 9458 !test_bit(Blocked, &rdev->flags) && 9459 !test_bit(BlockedBadBlocks, &rdev->flags), 9460 msecs_to_jiffies(5000)); 9461 rdev_dec_pending(rdev, mddev); 9462 } 9463 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9464 9465 void md_finish_reshape(struct mddev *mddev) 9466 { 9467 /* called be personality module when reshape completes. */ 9468 struct md_rdev *rdev; 9469 9470 rdev_for_each(rdev, mddev) { 9471 if (rdev->data_offset > rdev->new_data_offset) 9472 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9473 else 9474 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9475 rdev->data_offset = rdev->new_data_offset; 9476 } 9477 } 9478 EXPORT_SYMBOL(md_finish_reshape); 9479 9480 /* Bad block management */ 9481 9482 /* Returns 1 on success, 0 on failure */ 9483 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9484 int is_new) 9485 { 9486 struct mddev *mddev = rdev->mddev; 9487 int rv; 9488 if (is_new) 9489 s += rdev->new_data_offset; 9490 else 9491 s += rdev->data_offset; 9492 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9493 if (rv == 0) { 9494 /* Make sure they get written out promptly */ 9495 if (test_bit(ExternalBbl, &rdev->flags)) 9496 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9497 sysfs_notify_dirent_safe(rdev->sysfs_state); 9498 set_mask_bits(&mddev->sb_flags, 0, 9499 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9500 md_wakeup_thread(rdev->mddev->thread); 9501 return 1; 9502 } else 9503 return 0; 9504 } 9505 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9506 9507 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9508 int is_new) 9509 { 9510 int rv; 9511 if (is_new) 9512 s += rdev->new_data_offset; 9513 else 9514 s += rdev->data_offset; 9515 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9516 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9517 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9518 return rv; 9519 } 9520 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9521 9522 static int md_notify_reboot(struct notifier_block *this, 9523 unsigned long code, void *x) 9524 { 9525 struct list_head *tmp; 9526 struct mddev *mddev; 9527 int need_delay = 0; 9528 9529 for_each_mddev(mddev, tmp) { 9530 if (mddev_trylock(mddev)) { 9531 if (mddev->pers) 9532 __md_stop_writes(mddev); 9533 if (mddev->persistent) 9534 mddev->safemode = 2; 9535 mddev_unlock(mddev); 9536 } 9537 need_delay = 1; 9538 } 9539 /* 9540 * certain more exotic SCSI devices are known to be 9541 * volatile wrt too early system reboots. While the 9542 * right place to handle this issue is the given 9543 * driver, we do want to have a safe RAID driver ... 9544 */ 9545 if (need_delay) 9546 mdelay(1000*1); 9547 9548 return NOTIFY_DONE; 9549 } 9550 9551 static struct notifier_block md_notifier = { 9552 .notifier_call = md_notify_reboot, 9553 .next = NULL, 9554 .priority = INT_MAX, /* before any real devices */ 9555 }; 9556 9557 static void md_geninit(void) 9558 { 9559 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9560 9561 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9562 } 9563 9564 static int __init md_init(void) 9565 { 9566 int ret = -ENOMEM; 9567 9568 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9569 if (!md_wq) 9570 goto err_wq; 9571 9572 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9573 if (!md_misc_wq) 9574 goto err_misc_wq; 9575 9576 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9577 if (!md_rdev_misc_wq) 9578 goto err_rdev_misc_wq; 9579 9580 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9581 if (ret < 0) 9582 goto err_md; 9583 9584 ret = __register_blkdev(0, "mdp", md_probe); 9585 if (ret < 0) 9586 goto err_mdp; 9587 mdp_major = ret; 9588 9589 register_reboot_notifier(&md_notifier); 9590 raid_table_header = register_sysctl_table(raid_root_table); 9591 9592 md_geninit(); 9593 return 0; 9594 9595 err_mdp: 9596 unregister_blkdev(MD_MAJOR, "md"); 9597 err_md: 9598 destroy_workqueue(md_rdev_misc_wq); 9599 err_rdev_misc_wq: 9600 destroy_workqueue(md_misc_wq); 9601 err_misc_wq: 9602 destroy_workqueue(md_wq); 9603 err_wq: 9604 return ret; 9605 } 9606 9607 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9608 { 9609 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9610 struct md_rdev *rdev2, *tmp; 9611 int role, ret; 9612 char b[BDEVNAME_SIZE]; 9613 9614 /* 9615 * If size is changed in another node then we need to 9616 * do resize as well. 9617 */ 9618 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9619 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9620 if (ret) 9621 pr_info("md-cluster: resize failed\n"); 9622 else 9623 md_bitmap_update_sb(mddev->bitmap); 9624 } 9625 9626 /* Check for change of roles in the active devices */ 9627 rdev_for_each_safe(rdev2, tmp, mddev) { 9628 if (test_bit(Faulty, &rdev2->flags)) 9629 continue; 9630 9631 /* Check if the roles changed */ 9632 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9633 9634 if (test_bit(Candidate, &rdev2->flags)) { 9635 if (role == 0xfffe) { 9636 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9637 md_kick_rdev_from_array(rdev2); 9638 continue; 9639 } 9640 else 9641 clear_bit(Candidate, &rdev2->flags); 9642 } 9643 9644 if (role != rdev2->raid_disk) { 9645 /* 9646 * got activated except reshape is happening. 9647 */ 9648 if (rdev2->raid_disk == -1 && role != 0xffff && 9649 !(le32_to_cpu(sb->feature_map) & 9650 MD_FEATURE_RESHAPE_ACTIVE)) { 9651 rdev2->saved_raid_disk = role; 9652 ret = remove_and_add_spares(mddev, rdev2); 9653 pr_info("Activated spare: %s\n", 9654 bdevname(rdev2->bdev,b)); 9655 /* wakeup mddev->thread here, so array could 9656 * perform resync with the new activated disk */ 9657 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9658 md_wakeup_thread(mddev->thread); 9659 } 9660 /* device faulty 9661 * We just want to do the minimum to mark the disk 9662 * as faulty. The recovery is performed by the 9663 * one who initiated the error. 9664 */ 9665 if ((role == 0xfffe) || (role == 0xfffd)) { 9666 md_error(mddev, rdev2); 9667 clear_bit(Blocked, &rdev2->flags); 9668 } 9669 } 9670 } 9671 9672 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9673 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9674 if (ret) 9675 pr_warn("md: updating array disks failed. %d\n", ret); 9676 } 9677 9678 /* 9679 * Since mddev->delta_disks has already updated in update_raid_disks, 9680 * so it is time to check reshape. 9681 */ 9682 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9683 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9684 /* 9685 * reshape is happening in the remote node, we need to 9686 * update reshape_position and call start_reshape. 9687 */ 9688 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9689 if (mddev->pers->update_reshape_pos) 9690 mddev->pers->update_reshape_pos(mddev); 9691 if (mddev->pers->start_reshape) 9692 mddev->pers->start_reshape(mddev); 9693 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9694 mddev->reshape_position != MaxSector && 9695 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9696 /* reshape is just done in another node. */ 9697 mddev->reshape_position = MaxSector; 9698 if (mddev->pers->update_reshape_pos) 9699 mddev->pers->update_reshape_pos(mddev); 9700 } 9701 9702 /* Finally set the event to be up to date */ 9703 mddev->events = le64_to_cpu(sb->events); 9704 } 9705 9706 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9707 { 9708 int err; 9709 struct page *swapout = rdev->sb_page; 9710 struct mdp_superblock_1 *sb; 9711 9712 /* Store the sb page of the rdev in the swapout temporary 9713 * variable in case we err in the future 9714 */ 9715 rdev->sb_page = NULL; 9716 err = alloc_disk_sb(rdev); 9717 if (err == 0) { 9718 ClearPageUptodate(rdev->sb_page); 9719 rdev->sb_loaded = 0; 9720 err = super_types[mddev->major_version]. 9721 load_super(rdev, NULL, mddev->minor_version); 9722 } 9723 if (err < 0) { 9724 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9725 __func__, __LINE__, rdev->desc_nr, err); 9726 if (rdev->sb_page) 9727 put_page(rdev->sb_page); 9728 rdev->sb_page = swapout; 9729 rdev->sb_loaded = 1; 9730 return err; 9731 } 9732 9733 sb = page_address(rdev->sb_page); 9734 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9735 * is not set 9736 */ 9737 9738 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9739 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9740 9741 /* The other node finished recovery, call spare_active to set 9742 * device In_sync and mddev->degraded 9743 */ 9744 if (rdev->recovery_offset == MaxSector && 9745 !test_bit(In_sync, &rdev->flags) && 9746 mddev->pers->spare_active(mddev)) 9747 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9748 9749 put_page(swapout); 9750 return 0; 9751 } 9752 9753 void md_reload_sb(struct mddev *mddev, int nr) 9754 { 9755 struct md_rdev *rdev; 9756 int err; 9757 9758 /* Find the rdev */ 9759 rdev_for_each_rcu(rdev, mddev) { 9760 if (rdev->desc_nr == nr) 9761 break; 9762 } 9763 9764 if (!rdev || rdev->desc_nr != nr) { 9765 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9766 return; 9767 } 9768 9769 err = read_rdev(mddev, rdev); 9770 if (err < 0) 9771 return; 9772 9773 check_sb_changes(mddev, rdev); 9774 9775 /* Read all rdev's to update recovery_offset */ 9776 rdev_for_each_rcu(rdev, mddev) { 9777 if (!test_bit(Faulty, &rdev->flags)) 9778 read_rdev(mddev, rdev); 9779 } 9780 } 9781 EXPORT_SYMBOL(md_reload_sb); 9782 9783 #ifndef MODULE 9784 9785 /* 9786 * Searches all registered partitions for autorun RAID arrays 9787 * at boot time. 9788 */ 9789 9790 static DEFINE_MUTEX(detected_devices_mutex); 9791 static LIST_HEAD(all_detected_devices); 9792 struct detected_devices_node { 9793 struct list_head list; 9794 dev_t dev; 9795 }; 9796 9797 void md_autodetect_dev(dev_t dev) 9798 { 9799 struct detected_devices_node *node_detected_dev; 9800 9801 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9802 if (node_detected_dev) { 9803 node_detected_dev->dev = dev; 9804 mutex_lock(&detected_devices_mutex); 9805 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9806 mutex_unlock(&detected_devices_mutex); 9807 } 9808 } 9809 9810 void md_autostart_arrays(int part) 9811 { 9812 struct md_rdev *rdev; 9813 struct detected_devices_node *node_detected_dev; 9814 dev_t dev; 9815 int i_scanned, i_passed; 9816 9817 i_scanned = 0; 9818 i_passed = 0; 9819 9820 pr_info("md: Autodetecting RAID arrays.\n"); 9821 9822 mutex_lock(&detected_devices_mutex); 9823 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9824 i_scanned++; 9825 node_detected_dev = list_entry(all_detected_devices.next, 9826 struct detected_devices_node, list); 9827 list_del(&node_detected_dev->list); 9828 dev = node_detected_dev->dev; 9829 kfree(node_detected_dev); 9830 mutex_unlock(&detected_devices_mutex); 9831 rdev = md_import_device(dev,0, 90); 9832 mutex_lock(&detected_devices_mutex); 9833 if (IS_ERR(rdev)) 9834 continue; 9835 9836 if (test_bit(Faulty, &rdev->flags)) 9837 continue; 9838 9839 set_bit(AutoDetected, &rdev->flags); 9840 list_add(&rdev->same_set, &pending_raid_disks); 9841 i_passed++; 9842 } 9843 mutex_unlock(&detected_devices_mutex); 9844 9845 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9846 9847 autorun_devices(part); 9848 } 9849 9850 #endif /* !MODULE */ 9851 9852 static __exit void md_exit(void) 9853 { 9854 struct mddev *mddev; 9855 struct list_head *tmp; 9856 int delay = 1; 9857 9858 unregister_blkdev(MD_MAJOR,"md"); 9859 unregister_blkdev(mdp_major, "mdp"); 9860 unregister_reboot_notifier(&md_notifier); 9861 unregister_sysctl_table(raid_table_header); 9862 9863 /* We cannot unload the modules while some process is 9864 * waiting for us in select() or poll() - wake them up 9865 */ 9866 md_unloading = 1; 9867 while (waitqueue_active(&md_event_waiters)) { 9868 /* not safe to leave yet */ 9869 wake_up(&md_event_waiters); 9870 msleep(delay); 9871 delay += delay; 9872 } 9873 remove_proc_entry("mdstat", NULL); 9874 9875 for_each_mddev(mddev, tmp) { 9876 export_array(mddev); 9877 mddev->ctime = 0; 9878 mddev->hold_active = 0; 9879 /* 9880 * for_each_mddev() will call mddev_put() at the end of each 9881 * iteration. As the mddev is now fully clear, this will 9882 * schedule the mddev for destruction by a workqueue, and the 9883 * destroy_workqueue() below will wait for that to complete. 9884 */ 9885 } 9886 destroy_workqueue(md_rdev_misc_wq); 9887 destroy_workqueue(md_misc_wq); 9888 destroy_workqueue(md_wq); 9889 } 9890 9891 subsys_initcall(md_init); 9892 module_exit(md_exit) 9893 9894 static int get_ro(char *buffer, const struct kernel_param *kp) 9895 { 9896 return sprintf(buffer, "%d\n", start_readonly); 9897 } 9898 static int set_ro(const char *val, const struct kernel_param *kp) 9899 { 9900 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9901 } 9902 9903 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9904 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9905 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9906 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9907 9908 MODULE_LICENSE("GPL"); 9909 MODULE_DESCRIPTION("MD RAID framework"); 9910 MODULE_ALIAS("md"); 9911 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9912