1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 mddev->pers->quiesce(mddev, 1); 457 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 458 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 459 460 del_timer_sync(&mddev->safemode_timer); 461 /* restrict memory reclaim I/O during raid array is suspend */ 462 mddev->noio_flag = memalloc_noio_save(); 463 } 464 EXPORT_SYMBOL_GPL(mddev_suspend); 465 466 void mddev_resume(struct mddev *mddev) 467 { 468 /* entred the memalloc scope from mddev_suspend() */ 469 memalloc_noio_restore(mddev->noio_flag); 470 lockdep_assert_held(&mddev->reconfig_mutex); 471 if (--mddev->suspended) 472 return; 473 percpu_ref_resurrect(&mddev->active_io); 474 wake_up(&mddev->sb_wait); 475 mddev->pers->quiesce(mddev, 0); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pre-request flush has finished */ 498 queue_work(md_wq, &mddev->flush_work); 499 } 500 } 501 502 static void md_submit_flush_data(struct work_struct *ws); 503 504 static void submit_flushes(struct work_struct *ws) 505 { 506 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 507 struct md_rdev *rdev; 508 509 mddev->start_flush = ktime_get_boottime(); 510 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 511 atomic_set(&mddev->flush_pending, 1); 512 rcu_read_lock(); 513 rdev_for_each_rcu(rdev, mddev) 514 if (rdev->raid_disk >= 0 && 515 !test_bit(Faulty, &rdev->flags)) { 516 /* Take two references, one is dropped 517 * when request finishes, one after 518 * we reclaim rcu_read_lock 519 */ 520 struct bio *bi; 521 atomic_inc(&rdev->nr_pending); 522 atomic_inc(&rdev->nr_pending); 523 rcu_read_unlock(); 524 bi = bio_alloc_bioset(rdev->bdev, 0, 525 REQ_OP_WRITE | REQ_PREFLUSH, 526 GFP_NOIO, &mddev->bio_set); 527 bi->bi_end_io = md_end_flush; 528 bi->bi_private = rdev; 529 atomic_inc(&mddev->flush_pending); 530 submit_bio(bi); 531 rcu_read_lock(); 532 rdev_dec_pending(rdev, mddev); 533 } 534 rcu_read_unlock(); 535 if (atomic_dec_and_test(&mddev->flush_pending)) 536 queue_work(md_wq, &mddev->flush_work); 537 } 538 539 static void md_submit_flush_data(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct bio *bio = mddev->flush_bio; 543 544 /* 545 * must reset flush_bio before calling into md_handle_request to avoid a 546 * deadlock, because other bios passed md_handle_request suspend check 547 * could wait for this and below md_handle_request could wait for those 548 * bios because of suspend check 549 */ 550 spin_lock_irq(&mddev->lock); 551 mddev->prev_flush_start = mddev->start_flush; 552 mddev->flush_bio = NULL; 553 spin_unlock_irq(&mddev->lock); 554 wake_up(&mddev->sb_wait); 555 556 if (bio->bi_iter.bi_size == 0) { 557 /* an empty barrier - all done */ 558 bio_endio(bio); 559 } else { 560 bio->bi_opf &= ~REQ_PREFLUSH; 561 md_handle_request(mddev, bio); 562 } 563 } 564 565 /* 566 * Manages consolidation of flushes and submitting any flushes needed for 567 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 568 * being finished in another context. Returns false if the flushing is 569 * complete but still needs the I/O portion of the bio to be processed. 570 */ 571 bool md_flush_request(struct mddev *mddev, struct bio *bio) 572 { 573 ktime_t req_start = ktime_get_boottime(); 574 spin_lock_irq(&mddev->lock); 575 /* flush requests wait until ongoing flush completes, 576 * hence coalescing all the pending requests. 577 */ 578 wait_event_lock_irq(mddev->sb_wait, 579 !mddev->flush_bio || 580 ktime_before(req_start, mddev->prev_flush_start), 581 mddev->lock); 582 /* new request after previous flush is completed */ 583 if (ktime_after(req_start, mddev->prev_flush_start)) { 584 WARN_ON(mddev->flush_bio); 585 mddev->flush_bio = bio; 586 bio = NULL; 587 } 588 spin_unlock_irq(&mddev->lock); 589 590 if (!bio) { 591 INIT_WORK(&mddev->flush_work, submit_flushes); 592 queue_work(md_wq, &mddev->flush_work); 593 } else { 594 /* flush was performed for some other bio while we waited. */ 595 if (bio->bi_iter.bi_size == 0) 596 /* an empty barrier - all done */ 597 bio_endio(bio); 598 else { 599 bio->bi_opf &= ~REQ_PREFLUSH; 600 return false; 601 } 602 } 603 return true; 604 } 605 EXPORT_SYMBOL(md_flush_request); 606 607 static inline struct mddev *mddev_get(struct mddev *mddev) 608 { 609 lockdep_assert_held(&all_mddevs_lock); 610 611 if (test_bit(MD_DELETED, &mddev->flags)) 612 return NULL; 613 atomic_inc(&mddev->active); 614 return mddev; 615 } 616 617 static void mddev_delayed_delete(struct work_struct *ws); 618 619 void mddev_put(struct mddev *mddev) 620 { 621 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 622 return; 623 if (!mddev->raid_disks && list_empty(&mddev->disks) && 624 mddev->ctime == 0 && !mddev->hold_active) { 625 /* Array is not configured at all, and not held active, 626 * so destroy it */ 627 set_bit(MD_DELETED, &mddev->flags); 628 629 /* 630 * Call queue_work inside the spinlock so that 631 * flush_workqueue() after mddev_find will succeed in waiting 632 * for the work to be done. 633 */ 634 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 635 queue_work(md_misc_wq, &mddev->del_work); 636 } 637 spin_unlock(&all_mddevs_lock); 638 } 639 640 static void md_safemode_timeout(struct timer_list *t); 641 642 void mddev_init(struct mddev *mddev) 643 { 644 mutex_init(&mddev->open_mutex); 645 mutex_init(&mddev->reconfig_mutex); 646 mutex_init(&mddev->bitmap_info.mutex); 647 INIT_LIST_HEAD(&mddev->disks); 648 INIT_LIST_HEAD(&mddev->all_mddevs); 649 INIT_LIST_HEAD(&mddev->deleting); 650 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 651 atomic_set(&mddev->active, 1); 652 atomic_set(&mddev->openers, 0); 653 spin_lock_init(&mddev->lock); 654 atomic_set(&mddev->flush_pending, 0); 655 init_waitqueue_head(&mddev->sb_wait); 656 init_waitqueue_head(&mddev->recovery_wait); 657 mddev->reshape_position = MaxSector; 658 mddev->reshape_backwards = 0; 659 mddev->last_sync_action = "none"; 660 mddev->resync_min = 0; 661 mddev->resync_max = MaxSector; 662 mddev->level = LEVEL_NONE; 663 } 664 EXPORT_SYMBOL_GPL(mddev_init); 665 666 static struct mddev *mddev_find_locked(dev_t unit) 667 { 668 struct mddev *mddev; 669 670 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 671 if (mddev->unit == unit) 672 return mddev; 673 674 return NULL; 675 } 676 677 /* find an unused unit number */ 678 static dev_t mddev_alloc_unit(void) 679 { 680 static int next_minor = 512; 681 int start = next_minor; 682 bool is_free = 0; 683 dev_t dev = 0; 684 685 while (!is_free) { 686 dev = MKDEV(MD_MAJOR, next_minor); 687 next_minor++; 688 if (next_minor > MINORMASK) 689 next_minor = 0; 690 if (next_minor == start) 691 return 0; /* Oh dear, all in use. */ 692 is_free = !mddev_find_locked(dev); 693 } 694 695 return dev; 696 } 697 698 static struct mddev *mddev_alloc(dev_t unit) 699 { 700 struct mddev *new; 701 int error; 702 703 if (unit && MAJOR(unit) != MD_MAJOR) 704 unit &= ~((1 << MdpMinorShift) - 1); 705 706 new = kzalloc(sizeof(*new), GFP_KERNEL); 707 if (!new) 708 return ERR_PTR(-ENOMEM); 709 mddev_init(new); 710 711 spin_lock(&all_mddevs_lock); 712 if (unit) { 713 error = -EEXIST; 714 if (mddev_find_locked(unit)) 715 goto out_free_new; 716 new->unit = unit; 717 if (MAJOR(unit) == MD_MAJOR) 718 new->md_minor = MINOR(unit); 719 else 720 new->md_minor = MINOR(unit) >> MdpMinorShift; 721 new->hold_active = UNTIL_IOCTL; 722 } else { 723 error = -ENODEV; 724 new->unit = mddev_alloc_unit(); 725 if (!new->unit) 726 goto out_free_new; 727 new->md_minor = MINOR(new->unit); 728 new->hold_active = UNTIL_STOP; 729 } 730 731 list_add(&new->all_mddevs, &all_mddevs); 732 spin_unlock(&all_mddevs_lock); 733 return new; 734 out_free_new: 735 spin_unlock(&all_mddevs_lock); 736 kfree(new); 737 return ERR_PTR(error); 738 } 739 740 static void mddev_free(struct mddev *mddev) 741 { 742 spin_lock(&all_mddevs_lock); 743 list_del(&mddev->all_mddevs); 744 spin_unlock(&all_mddevs_lock); 745 746 kfree(mddev); 747 } 748 749 static const struct attribute_group md_redundancy_group; 750 751 void mddev_unlock(struct mddev *mddev) 752 { 753 struct md_rdev *rdev; 754 struct md_rdev *tmp; 755 LIST_HEAD(delete); 756 757 if (!list_empty(&mddev->deleting)) 758 list_splice_init(&mddev->deleting, &delete); 759 760 if (mddev->to_remove) { 761 /* These cannot be removed under reconfig_mutex as 762 * an access to the files will try to take reconfig_mutex 763 * while holding the file unremovable, which leads to 764 * a deadlock. 765 * So hold set sysfs_active while the remove in happeing, 766 * and anything else which might set ->to_remove or my 767 * otherwise change the sysfs namespace will fail with 768 * -EBUSY if sysfs_active is still set. 769 * We set sysfs_active under reconfig_mutex and elsewhere 770 * test it under the same mutex to ensure its correct value 771 * is seen. 772 */ 773 const struct attribute_group *to_remove = mddev->to_remove; 774 mddev->to_remove = NULL; 775 mddev->sysfs_active = 1; 776 mutex_unlock(&mddev->reconfig_mutex); 777 778 if (mddev->kobj.sd) { 779 if (to_remove != &md_redundancy_group) 780 sysfs_remove_group(&mddev->kobj, to_remove); 781 if (mddev->pers == NULL || 782 mddev->pers->sync_request == NULL) { 783 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 784 if (mddev->sysfs_action) 785 sysfs_put(mddev->sysfs_action); 786 if (mddev->sysfs_completed) 787 sysfs_put(mddev->sysfs_completed); 788 if (mddev->sysfs_degraded) 789 sysfs_put(mddev->sysfs_degraded); 790 mddev->sysfs_action = NULL; 791 mddev->sysfs_completed = NULL; 792 mddev->sysfs_degraded = NULL; 793 } 794 } 795 mddev->sysfs_active = 0; 796 } else 797 mutex_unlock(&mddev->reconfig_mutex); 798 799 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 800 list_del_init(&rdev->same_set); 801 kobject_del(&rdev->kobj); 802 export_rdev(rdev, mddev); 803 } 804 805 md_wakeup_thread(mddev->thread); 806 wake_up(&mddev->sb_wait); 807 } 808 EXPORT_SYMBOL_GPL(mddev_unlock); 809 810 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 811 { 812 struct md_rdev *rdev; 813 814 rdev_for_each_rcu(rdev, mddev) 815 if (rdev->desc_nr == nr) 816 return rdev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 821 822 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 823 { 824 struct md_rdev *rdev; 825 826 rdev_for_each(rdev, mddev) 827 if (rdev->bdev->bd_dev == dev) 828 return rdev; 829 830 return NULL; 831 } 832 833 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 834 { 835 struct md_rdev *rdev; 836 837 rdev_for_each_rcu(rdev, mddev) 838 if (rdev->bdev->bd_dev == dev) 839 return rdev; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 844 845 static struct md_personality *find_pers(int level, char *clevel) 846 { 847 struct md_personality *pers; 848 list_for_each_entry(pers, &pers_list, list) { 849 if (level != LEVEL_NONE && pers->level == level) 850 return pers; 851 if (strcmp(pers->name, clevel)==0) 852 return pers; 853 } 854 return NULL; 855 } 856 857 /* return the offset of the super block in 512byte sectors */ 858 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 859 { 860 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 861 } 862 863 static int alloc_disk_sb(struct md_rdev *rdev) 864 { 865 rdev->sb_page = alloc_page(GFP_KERNEL); 866 if (!rdev->sb_page) 867 return -ENOMEM; 868 return 0; 869 } 870 871 void md_rdev_clear(struct md_rdev *rdev) 872 { 873 if (rdev->sb_page) { 874 put_page(rdev->sb_page); 875 rdev->sb_loaded = 0; 876 rdev->sb_page = NULL; 877 rdev->sb_start = 0; 878 rdev->sectors = 0; 879 } 880 if (rdev->bb_page) { 881 put_page(rdev->bb_page); 882 rdev->bb_page = NULL; 883 } 884 badblocks_exit(&rdev->badblocks); 885 } 886 EXPORT_SYMBOL_GPL(md_rdev_clear); 887 888 static void super_written(struct bio *bio) 889 { 890 struct md_rdev *rdev = bio->bi_private; 891 struct mddev *mddev = rdev->mddev; 892 893 if (bio->bi_status) { 894 pr_err("md: %s gets error=%d\n", __func__, 895 blk_status_to_errno(bio->bi_status)); 896 md_error(mddev, rdev); 897 if (!test_bit(Faulty, &rdev->flags) 898 && (bio->bi_opf & MD_FAILFAST)) { 899 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 900 set_bit(LastDev, &rdev->flags); 901 } 902 } else 903 clear_bit(LastDev, &rdev->flags); 904 905 bio_put(bio); 906 907 rdev_dec_pending(rdev, mddev); 908 909 if (atomic_dec_and_test(&mddev->pending_writes)) 910 wake_up(&mddev->sb_wait); 911 } 912 913 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 914 sector_t sector, int size, struct page *page) 915 { 916 /* write first size bytes of page to sector of rdev 917 * Increment mddev->pending_writes before returning 918 * and decrement it on completion, waking up sb_wait 919 * if zero is reached. 920 * If an error occurred, call md_error 921 */ 922 struct bio *bio; 923 924 if (!page) 925 return; 926 927 if (test_bit(Faulty, &rdev->flags)) 928 return; 929 930 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 931 1, 932 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 933 GFP_NOIO, &mddev->sync_set); 934 935 atomic_inc(&rdev->nr_pending); 936 937 bio->bi_iter.bi_sector = sector; 938 __bio_add_page(bio, page, size, 0); 939 bio->bi_private = rdev; 940 bio->bi_end_io = super_written; 941 942 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 943 test_bit(FailFast, &rdev->flags) && 944 !test_bit(LastDev, &rdev->flags)) 945 bio->bi_opf |= MD_FAILFAST; 946 947 atomic_inc(&mddev->pending_writes); 948 submit_bio(bio); 949 } 950 951 int md_super_wait(struct mddev *mddev) 952 { 953 /* wait for all superblock writes that were scheduled to complete */ 954 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 955 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 956 return -EAGAIN; 957 return 0; 958 } 959 960 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 961 struct page *page, blk_opf_t opf, bool metadata_op) 962 { 963 struct bio bio; 964 struct bio_vec bvec; 965 966 if (metadata_op && rdev->meta_bdev) 967 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 968 else 969 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 970 971 if (metadata_op) 972 bio.bi_iter.bi_sector = sector + rdev->sb_start; 973 else if (rdev->mddev->reshape_position != MaxSector && 974 (rdev->mddev->reshape_backwards == 975 (sector >= rdev->mddev->reshape_position))) 976 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 977 else 978 bio.bi_iter.bi_sector = sector + rdev->data_offset; 979 __bio_add_page(&bio, page, size, 0); 980 981 submit_bio_wait(&bio); 982 983 return !bio.bi_status; 984 } 985 EXPORT_SYMBOL_GPL(sync_page_io); 986 987 static int read_disk_sb(struct md_rdev *rdev, int size) 988 { 989 if (rdev->sb_loaded) 990 return 0; 991 992 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 993 goto fail; 994 rdev->sb_loaded = 1; 995 return 0; 996 997 fail: 998 pr_err("md: disabled device %pg, could not read superblock.\n", 999 rdev->bdev); 1000 return -EINVAL; 1001 } 1002 1003 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1004 { 1005 return sb1->set_uuid0 == sb2->set_uuid0 && 1006 sb1->set_uuid1 == sb2->set_uuid1 && 1007 sb1->set_uuid2 == sb2->set_uuid2 && 1008 sb1->set_uuid3 == sb2->set_uuid3; 1009 } 1010 1011 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1012 { 1013 int ret; 1014 mdp_super_t *tmp1, *tmp2; 1015 1016 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1017 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1018 1019 if (!tmp1 || !tmp2) { 1020 ret = 0; 1021 goto abort; 1022 } 1023 1024 *tmp1 = *sb1; 1025 *tmp2 = *sb2; 1026 1027 /* 1028 * nr_disks is not constant 1029 */ 1030 tmp1->nr_disks = 0; 1031 tmp2->nr_disks = 0; 1032 1033 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1034 abort: 1035 kfree(tmp1); 1036 kfree(tmp2); 1037 return ret; 1038 } 1039 1040 static u32 md_csum_fold(u32 csum) 1041 { 1042 csum = (csum & 0xffff) + (csum >> 16); 1043 return (csum & 0xffff) + (csum >> 16); 1044 } 1045 1046 static unsigned int calc_sb_csum(mdp_super_t *sb) 1047 { 1048 u64 newcsum = 0; 1049 u32 *sb32 = (u32*)sb; 1050 int i; 1051 unsigned int disk_csum, csum; 1052 1053 disk_csum = sb->sb_csum; 1054 sb->sb_csum = 0; 1055 1056 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1057 newcsum += sb32[i]; 1058 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1059 1060 #ifdef CONFIG_ALPHA 1061 /* This used to use csum_partial, which was wrong for several 1062 * reasons including that different results are returned on 1063 * different architectures. It isn't critical that we get exactly 1064 * the same return value as before (we always csum_fold before 1065 * testing, and that removes any differences). However as we 1066 * know that csum_partial always returned a 16bit value on 1067 * alphas, do a fold to maximise conformity to previous behaviour. 1068 */ 1069 sb->sb_csum = md_csum_fold(disk_csum); 1070 #else 1071 sb->sb_csum = disk_csum; 1072 #endif 1073 return csum; 1074 } 1075 1076 /* 1077 * Handle superblock details. 1078 * We want to be able to handle multiple superblock formats 1079 * so we have a common interface to them all, and an array of 1080 * different handlers. 1081 * We rely on user-space to write the initial superblock, and support 1082 * reading and updating of superblocks. 1083 * Interface methods are: 1084 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1085 * loads and validates a superblock on dev. 1086 * if refdev != NULL, compare superblocks on both devices 1087 * Return: 1088 * 0 - dev has a superblock that is compatible with refdev 1089 * 1 - dev has a superblock that is compatible and newer than refdev 1090 * so dev should be used as the refdev in future 1091 * -EINVAL superblock incompatible or invalid 1092 * -othererror e.g. -EIO 1093 * 1094 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1095 * Verify that dev is acceptable into mddev. 1096 * The first time, mddev->raid_disks will be 0, and data from 1097 * dev should be merged in. Subsequent calls check that dev 1098 * is new enough. Return 0 or -EINVAL 1099 * 1100 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1101 * Update the superblock for rdev with data in mddev 1102 * This does not write to disc. 1103 * 1104 */ 1105 1106 struct super_type { 1107 char *name; 1108 struct module *owner; 1109 int (*load_super)(struct md_rdev *rdev, 1110 struct md_rdev *refdev, 1111 int minor_version); 1112 int (*validate_super)(struct mddev *mddev, 1113 struct md_rdev *rdev); 1114 void (*sync_super)(struct mddev *mddev, 1115 struct md_rdev *rdev); 1116 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1117 sector_t num_sectors); 1118 int (*allow_new_offset)(struct md_rdev *rdev, 1119 unsigned long long new_offset); 1120 }; 1121 1122 /* 1123 * Check that the given mddev has no bitmap. 1124 * 1125 * This function is called from the run method of all personalities that do not 1126 * support bitmaps. It prints an error message and returns non-zero if mddev 1127 * has a bitmap. Otherwise, it returns 0. 1128 * 1129 */ 1130 int md_check_no_bitmap(struct mddev *mddev) 1131 { 1132 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1133 return 0; 1134 pr_warn("%s: bitmaps are not supported for %s\n", 1135 mdname(mddev), mddev->pers->name); 1136 return 1; 1137 } 1138 EXPORT_SYMBOL(md_check_no_bitmap); 1139 1140 /* 1141 * load_super for 0.90.0 1142 */ 1143 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1144 { 1145 mdp_super_t *sb; 1146 int ret; 1147 bool spare_disk = true; 1148 1149 /* 1150 * Calculate the position of the superblock (512byte sectors), 1151 * it's at the end of the disk. 1152 * 1153 * It also happens to be a multiple of 4Kb. 1154 */ 1155 rdev->sb_start = calc_dev_sboffset(rdev); 1156 1157 ret = read_disk_sb(rdev, MD_SB_BYTES); 1158 if (ret) 1159 return ret; 1160 1161 ret = -EINVAL; 1162 1163 sb = page_address(rdev->sb_page); 1164 1165 if (sb->md_magic != MD_SB_MAGIC) { 1166 pr_warn("md: invalid raid superblock magic on %pg\n", 1167 rdev->bdev); 1168 goto abort; 1169 } 1170 1171 if (sb->major_version != 0 || 1172 sb->minor_version < 90 || 1173 sb->minor_version > 91) { 1174 pr_warn("Bad version number %d.%d on %pg\n", 1175 sb->major_version, sb->minor_version, rdev->bdev); 1176 goto abort; 1177 } 1178 1179 if (sb->raid_disks <= 0) 1180 goto abort; 1181 1182 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1183 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1184 goto abort; 1185 } 1186 1187 rdev->preferred_minor = sb->md_minor; 1188 rdev->data_offset = 0; 1189 rdev->new_data_offset = 0; 1190 rdev->sb_size = MD_SB_BYTES; 1191 rdev->badblocks.shift = -1; 1192 1193 if (sb->level == LEVEL_MULTIPATH) 1194 rdev->desc_nr = -1; 1195 else 1196 rdev->desc_nr = sb->this_disk.number; 1197 1198 /* not spare disk, or LEVEL_MULTIPATH */ 1199 if (sb->level == LEVEL_MULTIPATH || 1200 (rdev->desc_nr >= 0 && 1201 rdev->desc_nr < MD_SB_DISKS && 1202 sb->disks[rdev->desc_nr].state & 1203 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1204 spare_disk = false; 1205 1206 if (!refdev) { 1207 if (!spare_disk) 1208 ret = 1; 1209 else 1210 ret = 0; 1211 } else { 1212 __u64 ev1, ev2; 1213 mdp_super_t *refsb = page_address(refdev->sb_page); 1214 if (!md_uuid_equal(refsb, sb)) { 1215 pr_warn("md: %pg has different UUID to %pg\n", 1216 rdev->bdev, refdev->bdev); 1217 goto abort; 1218 } 1219 if (!md_sb_equal(refsb, sb)) { 1220 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1221 rdev->bdev, refdev->bdev); 1222 goto abort; 1223 } 1224 ev1 = md_event(sb); 1225 ev2 = md_event(refsb); 1226 1227 if (!spare_disk && ev1 > ev2) 1228 ret = 1; 1229 else 1230 ret = 0; 1231 } 1232 rdev->sectors = rdev->sb_start; 1233 /* Limit to 4TB as metadata cannot record more than that. 1234 * (not needed for Linear and RAID0 as metadata doesn't 1235 * record this size) 1236 */ 1237 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1238 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1239 1240 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1241 /* "this cannot possibly happen" ... */ 1242 ret = -EINVAL; 1243 1244 abort: 1245 return ret; 1246 } 1247 1248 /* 1249 * validate_super for 0.90.0 1250 */ 1251 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1252 { 1253 mdp_disk_t *desc; 1254 mdp_super_t *sb = page_address(rdev->sb_page); 1255 __u64 ev1 = md_event(sb); 1256 1257 rdev->raid_disk = -1; 1258 clear_bit(Faulty, &rdev->flags); 1259 clear_bit(In_sync, &rdev->flags); 1260 clear_bit(Bitmap_sync, &rdev->flags); 1261 clear_bit(WriteMostly, &rdev->flags); 1262 1263 if (mddev->raid_disks == 0) { 1264 mddev->major_version = 0; 1265 mddev->minor_version = sb->minor_version; 1266 mddev->patch_version = sb->patch_version; 1267 mddev->external = 0; 1268 mddev->chunk_sectors = sb->chunk_size >> 9; 1269 mddev->ctime = sb->ctime; 1270 mddev->utime = sb->utime; 1271 mddev->level = sb->level; 1272 mddev->clevel[0] = 0; 1273 mddev->layout = sb->layout; 1274 mddev->raid_disks = sb->raid_disks; 1275 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1276 mddev->events = ev1; 1277 mddev->bitmap_info.offset = 0; 1278 mddev->bitmap_info.space = 0; 1279 /* bitmap can use 60 K after the 4K superblocks */ 1280 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1281 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1282 mddev->reshape_backwards = 0; 1283 1284 if (mddev->minor_version >= 91) { 1285 mddev->reshape_position = sb->reshape_position; 1286 mddev->delta_disks = sb->delta_disks; 1287 mddev->new_level = sb->new_level; 1288 mddev->new_layout = sb->new_layout; 1289 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1290 if (mddev->delta_disks < 0) 1291 mddev->reshape_backwards = 1; 1292 } else { 1293 mddev->reshape_position = MaxSector; 1294 mddev->delta_disks = 0; 1295 mddev->new_level = mddev->level; 1296 mddev->new_layout = mddev->layout; 1297 mddev->new_chunk_sectors = mddev->chunk_sectors; 1298 } 1299 if (mddev->level == 0) 1300 mddev->layout = -1; 1301 1302 if (sb->state & (1<<MD_SB_CLEAN)) 1303 mddev->recovery_cp = MaxSector; 1304 else { 1305 if (sb->events_hi == sb->cp_events_hi && 1306 sb->events_lo == sb->cp_events_lo) { 1307 mddev->recovery_cp = sb->recovery_cp; 1308 } else 1309 mddev->recovery_cp = 0; 1310 } 1311 1312 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1313 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1314 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1315 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1316 1317 mddev->max_disks = MD_SB_DISKS; 1318 1319 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1320 mddev->bitmap_info.file == NULL) { 1321 mddev->bitmap_info.offset = 1322 mddev->bitmap_info.default_offset; 1323 mddev->bitmap_info.space = 1324 mddev->bitmap_info.default_space; 1325 } 1326 1327 } else if (mddev->pers == NULL) { 1328 /* Insist on good event counter while assembling, except 1329 * for spares (which don't need an event count) */ 1330 ++ev1; 1331 if (sb->disks[rdev->desc_nr].state & ( 1332 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1333 if (ev1 < mddev->events) 1334 return -EINVAL; 1335 } else if (mddev->bitmap) { 1336 /* if adding to array with a bitmap, then we can accept an 1337 * older device ... but not too old. 1338 */ 1339 if (ev1 < mddev->bitmap->events_cleared) 1340 return 0; 1341 if (ev1 < mddev->events) 1342 set_bit(Bitmap_sync, &rdev->flags); 1343 } else { 1344 if (ev1 < mddev->events) 1345 /* just a hot-add of a new device, leave raid_disk at -1 */ 1346 return 0; 1347 } 1348 1349 if (mddev->level != LEVEL_MULTIPATH) { 1350 desc = sb->disks + rdev->desc_nr; 1351 1352 if (desc->state & (1<<MD_DISK_FAULTY)) 1353 set_bit(Faulty, &rdev->flags); 1354 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1355 desc->raid_disk < mddev->raid_disks */) { 1356 set_bit(In_sync, &rdev->flags); 1357 rdev->raid_disk = desc->raid_disk; 1358 rdev->saved_raid_disk = desc->raid_disk; 1359 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1360 /* active but not in sync implies recovery up to 1361 * reshape position. We don't know exactly where 1362 * that is, so set to zero for now */ 1363 if (mddev->minor_version >= 91) { 1364 rdev->recovery_offset = 0; 1365 rdev->raid_disk = desc->raid_disk; 1366 } 1367 } 1368 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1369 set_bit(WriteMostly, &rdev->flags); 1370 if (desc->state & (1<<MD_DISK_FAILFAST)) 1371 set_bit(FailFast, &rdev->flags); 1372 } else /* MULTIPATH are always insync */ 1373 set_bit(In_sync, &rdev->flags); 1374 return 0; 1375 } 1376 1377 /* 1378 * sync_super for 0.90.0 1379 */ 1380 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1381 { 1382 mdp_super_t *sb; 1383 struct md_rdev *rdev2; 1384 int next_spare = mddev->raid_disks; 1385 1386 /* make rdev->sb match mddev data.. 1387 * 1388 * 1/ zero out disks 1389 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1390 * 3/ any empty disks < next_spare become removed 1391 * 1392 * disks[0] gets initialised to REMOVED because 1393 * we cannot be sure from other fields if it has 1394 * been initialised or not. 1395 */ 1396 int i; 1397 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1398 1399 rdev->sb_size = MD_SB_BYTES; 1400 1401 sb = page_address(rdev->sb_page); 1402 1403 memset(sb, 0, sizeof(*sb)); 1404 1405 sb->md_magic = MD_SB_MAGIC; 1406 sb->major_version = mddev->major_version; 1407 sb->patch_version = mddev->patch_version; 1408 sb->gvalid_words = 0; /* ignored */ 1409 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1410 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1411 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1412 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1413 1414 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1415 sb->level = mddev->level; 1416 sb->size = mddev->dev_sectors / 2; 1417 sb->raid_disks = mddev->raid_disks; 1418 sb->md_minor = mddev->md_minor; 1419 sb->not_persistent = 0; 1420 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1421 sb->state = 0; 1422 sb->events_hi = (mddev->events>>32); 1423 sb->events_lo = (u32)mddev->events; 1424 1425 if (mddev->reshape_position == MaxSector) 1426 sb->minor_version = 90; 1427 else { 1428 sb->minor_version = 91; 1429 sb->reshape_position = mddev->reshape_position; 1430 sb->new_level = mddev->new_level; 1431 sb->delta_disks = mddev->delta_disks; 1432 sb->new_layout = mddev->new_layout; 1433 sb->new_chunk = mddev->new_chunk_sectors << 9; 1434 } 1435 mddev->minor_version = sb->minor_version; 1436 if (mddev->in_sync) 1437 { 1438 sb->recovery_cp = mddev->recovery_cp; 1439 sb->cp_events_hi = (mddev->events>>32); 1440 sb->cp_events_lo = (u32)mddev->events; 1441 if (mddev->recovery_cp == MaxSector) 1442 sb->state = (1<< MD_SB_CLEAN); 1443 } else 1444 sb->recovery_cp = 0; 1445 1446 sb->layout = mddev->layout; 1447 sb->chunk_size = mddev->chunk_sectors << 9; 1448 1449 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1450 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1451 1452 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1453 rdev_for_each(rdev2, mddev) { 1454 mdp_disk_t *d; 1455 int desc_nr; 1456 int is_active = test_bit(In_sync, &rdev2->flags); 1457 1458 if (rdev2->raid_disk >= 0 && 1459 sb->minor_version >= 91) 1460 /* we have nowhere to store the recovery_offset, 1461 * but if it is not below the reshape_position, 1462 * we can piggy-back on that. 1463 */ 1464 is_active = 1; 1465 if (rdev2->raid_disk < 0 || 1466 test_bit(Faulty, &rdev2->flags)) 1467 is_active = 0; 1468 if (is_active) 1469 desc_nr = rdev2->raid_disk; 1470 else 1471 desc_nr = next_spare++; 1472 rdev2->desc_nr = desc_nr; 1473 d = &sb->disks[rdev2->desc_nr]; 1474 nr_disks++; 1475 d->number = rdev2->desc_nr; 1476 d->major = MAJOR(rdev2->bdev->bd_dev); 1477 d->minor = MINOR(rdev2->bdev->bd_dev); 1478 if (is_active) 1479 d->raid_disk = rdev2->raid_disk; 1480 else 1481 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1482 if (test_bit(Faulty, &rdev2->flags)) 1483 d->state = (1<<MD_DISK_FAULTY); 1484 else if (is_active) { 1485 d->state = (1<<MD_DISK_ACTIVE); 1486 if (test_bit(In_sync, &rdev2->flags)) 1487 d->state |= (1<<MD_DISK_SYNC); 1488 active++; 1489 working++; 1490 } else { 1491 d->state = 0; 1492 spare++; 1493 working++; 1494 } 1495 if (test_bit(WriteMostly, &rdev2->flags)) 1496 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1497 if (test_bit(FailFast, &rdev2->flags)) 1498 d->state |= (1<<MD_DISK_FAILFAST); 1499 } 1500 /* now set the "removed" and "faulty" bits on any missing devices */ 1501 for (i=0 ; i < mddev->raid_disks ; i++) { 1502 mdp_disk_t *d = &sb->disks[i]; 1503 if (d->state == 0 && d->number == 0) { 1504 d->number = i; 1505 d->raid_disk = i; 1506 d->state = (1<<MD_DISK_REMOVED); 1507 d->state |= (1<<MD_DISK_FAULTY); 1508 failed++; 1509 } 1510 } 1511 sb->nr_disks = nr_disks; 1512 sb->active_disks = active; 1513 sb->working_disks = working; 1514 sb->failed_disks = failed; 1515 sb->spare_disks = spare; 1516 1517 sb->this_disk = sb->disks[rdev->desc_nr]; 1518 sb->sb_csum = calc_sb_csum(sb); 1519 } 1520 1521 /* 1522 * rdev_size_change for 0.90.0 1523 */ 1524 static unsigned long long 1525 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1526 { 1527 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1528 return 0; /* component must fit device */ 1529 if (rdev->mddev->bitmap_info.offset) 1530 return 0; /* can't move bitmap */ 1531 rdev->sb_start = calc_dev_sboffset(rdev); 1532 if (!num_sectors || num_sectors > rdev->sb_start) 1533 num_sectors = rdev->sb_start; 1534 /* Limit to 4TB as metadata cannot record more than that. 1535 * 4TB == 2^32 KB, or 2*2^32 sectors. 1536 */ 1537 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1538 num_sectors = (sector_t)(2ULL << 32) - 2; 1539 do { 1540 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1541 rdev->sb_page); 1542 } while (md_super_wait(rdev->mddev) < 0); 1543 return num_sectors; 1544 } 1545 1546 static int 1547 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1548 { 1549 /* non-zero offset changes not possible with v0.90 */ 1550 return new_offset == 0; 1551 } 1552 1553 /* 1554 * version 1 superblock 1555 */ 1556 1557 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1558 { 1559 __le32 disk_csum; 1560 u32 csum; 1561 unsigned long long newcsum; 1562 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1563 __le32 *isuper = (__le32*)sb; 1564 1565 disk_csum = sb->sb_csum; 1566 sb->sb_csum = 0; 1567 newcsum = 0; 1568 for (; size >= 4; size -= 4) 1569 newcsum += le32_to_cpu(*isuper++); 1570 1571 if (size == 2) 1572 newcsum += le16_to_cpu(*(__le16*) isuper); 1573 1574 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1575 sb->sb_csum = disk_csum; 1576 return cpu_to_le32(csum); 1577 } 1578 1579 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1580 { 1581 struct mdp_superblock_1 *sb; 1582 int ret; 1583 sector_t sb_start; 1584 sector_t sectors; 1585 int bmask; 1586 bool spare_disk = true; 1587 1588 /* 1589 * Calculate the position of the superblock in 512byte sectors. 1590 * It is always aligned to a 4K boundary and 1591 * depeding on minor_version, it can be: 1592 * 0: At least 8K, but less than 12K, from end of device 1593 * 1: At start of device 1594 * 2: 4K from start of device. 1595 */ 1596 switch(minor_version) { 1597 case 0: 1598 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1599 sb_start &= ~(sector_t)(4*2-1); 1600 break; 1601 case 1: 1602 sb_start = 0; 1603 break; 1604 case 2: 1605 sb_start = 8; 1606 break; 1607 default: 1608 return -EINVAL; 1609 } 1610 rdev->sb_start = sb_start; 1611 1612 /* superblock is rarely larger than 1K, but it can be larger, 1613 * and it is safe to read 4k, so we do that 1614 */ 1615 ret = read_disk_sb(rdev, 4096); 1616 if (ret) return ret; 1617 1618 sb = page_address(rdev->sb_page); 1619 1620 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1621 sb->major_version != cpu_to_le32(1) || 1622 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1623 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1624 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1625 return -EINVAL; 1626 1627 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1628 pr_warn("md: invalid superblock checksum on %pg\n", 1629 rdev->bdev); 1630 return -EINVAL; 1631 } 1632 if (le64_to_cpu(sb->data_size) < 10) { 1633 pr_warn("md: data_size too small on %pg\n", 1634 rdev->bdev); 1635 return -EINVAL; 1636 } 1637 if (sb->pad0 || 1638 sb->pad3[0] || 1639 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1640 /* Some padding is non-zero, might be a new feature */ 1641 return -EINVAL; 1642 1643 rdev->preferred_minor = 0xffff; 1644 rdev->data_offset = le64_to_cpu(sb->data_offset); 1645 rdev->new_data_offset = rdev->data_offset; 1646 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1647 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1648 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1649 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1650 1651 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1652 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1653 if (rdev->sb_size & bmask) 1654 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1655 1656 if (minor_version 1657 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1658 return -EINVAL; 1659 if (minor_version 1660 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1661 return -EINVAL; 1662 1663 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1664 rdev->desc_nr = -1; 1665 else 1666 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1667 1668 if (!rdev->bb_page) { 1669 rdev->bb_page = alloc_page(GFP_KERNEL); 1670 if (!rdev->bb_page) 1671 return -ENOMEM; 1672 } 1673 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1674 rdev->badblocks.count == 0) { 1675 /* need to load the bad block list. 1676 * Currently we limit it to one page. 1677 */ 1678 s32 offset; 1679 sector_t bb_sector; 1680 __le64 *bbp; 1681 int i; 1682 int sectors = le16_to_cpu(sb->bblog_size); 1683 if (sectors > (PAGE_SIZE / 512)) 1684 return -EINVAL; 1685 offset = le32_to_cpu(sb->bblog_offset); 1686 if (offset == 0) 1687 return -EINVAL; 1688 bb_sector = (long long)offset; 1689 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1690 rdev->bb_page, REQ_OP_READ, true)) 1691 return -EIO; 1692 bbp = (__le64 *)page_address(rdev->bb_page); 1693 rdev->badblocks.shift = sb->bblog_shift; 1694 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1695 u64 bb = le64_to_cpu(*bbp); 1696 int count = bb & (0x3ff); 1697 u64 sector = bb >> 10; 1698 sector <<= sb->bblog_shift; 1699 count <<= sb->bblog_shift; 1700 if (bb + 1 == 0) 1701 break; 1702 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1703 return -EINVAL; 1704 } 1705 } else if (sb->bblog_offset != 0) 1706 rdev->badblocks.shift = 0; 1707 1708 if ((le32_to_cpu(sb->feature_map) & 1709 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1710 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1711 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1712 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1713 } 1714 1715 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1716 sb->level != 0) 1717 return -EINVAL; 1718 1719 /* not spare disk, or LEVEL_MULTIPATH */ 1720 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1721 (rdev->desc_nr >= 0 && 1722 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1723 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1724 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1725 spare_disk = false; 1726 1727 if (!refdev) { 1728 if (!spare_disk) 1729 ret = 1; 1730 else 1731 ret = 0; 1732 } else { 1733 __u64 ev1, ev2; 1734 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1735 1736 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1737 sb->level != refsb->level || 1738 sb->layout != refsb->layout || 1739 sb->chunksize != refsb->chunksize) { 1740 pr_warn("md: %pg has strangely different superblock to %pg\n", 1741 rdev->bdev, 1742 refdev->bdev); 1743 return -EINVAL; 1744 } 1745 ev1 = le64_to_cpu(sb->events); 1746 ev2 = le64_to_cpu(refsb->events); 1747 1748 if (!spare_disk && ev1 > ev2) 1749 ret = 1; 1750 else 1751 ret = 0; 1752 } 1753 if (minor_version) 1754 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1755 else 1756 sectors = rdev->sb_start; 1757 if (sectors < le64_to_cpu(sb->data_size)) 1758 return -EINVAL; 1759 rdev->sectors = le64_to_cpu(sb->data_size); 1760 return ret; 1761 } 1762 1763 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1764 { 1765 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1766 __u64 ev1 = le64_to_cpu(sb->events); 1767 1768 rdev->raid_disk = -1; 1769 clear_bit(Faulty, &rdev->flags); 1770 clear_bit(In_sync, &rdev->flags); 1771 clear_bit(Bitmap_sync, &rdev->flags); 1772 clear_bit(WriteMostly, &rdev->flags); 1773 1774 if (mddev->raid_disks == 0) { 1775 mddev->major_version = 1; 1776 mddev->patch_version = 0; 1777 mddev->external = 0; 1778 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1779 mddev->ctime = le64_to_cpu(sb->ctime); 1780 mddev->utime = le64_to_cpu(sb->utime); 1781 mddev->level = le32_to_cpu(sb->level); 1782 mddev->clevel[0] = 0; 1783 mddev->layout = le32_to_cpu(sb->layout); 1784 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1785 mddev->dev_sectors = le64_to_cpu(sb->size); 1786 mddev->events = ev1; 1787 mddev->bitmap_info.offset = 0; 1788 mddev->bitmap_info.space = 0; 1789 /* Default location for bitmap is 1K after superblock 1790 * using 3K - total of 4K 1791 */ 1792 mddev->bitmap_info.default_offset = 1024 >> 9; 1793 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1794 mddev->reshape_backwards = 0; 1795 1796 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1797 memcpy(mddev->uuid, sb->set_uuid, 16); 1798 1799 mddev->max_disks = (4096-256)/2; 1800 1801 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1802 mddev->bitmap_info.file == NULL) { 1803 mddev->bitmap_info.offset = 1804 (__s32)le32_to_cpu(sb->bitmap_offset); 1805 /* Metadata doesn't record how much space is available. 1806 * For 1.0, we assume we can use up to the superblock 1807 * if before, else to 4K beyond superblock. 1808 * For others, assume no change is possible. 1809 */ 1810 if (mddev->minor_version > 0) 1811 mddev->bitmap_info.space = 0; 1812 else if (mddev->bitmap_info.offset > 0) 1813 mddev->bitmap_info.space = 1814 8 - mddev->bitmap_info.offset; 1815 else 1816 mddev->bitmap_info.space = 1817 -mddev->bitmap_info.offset; 1818 } 1819 1820 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1821 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1822 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1823 mddev->new_level = le32_to_cpu(sb->new_level); 1824 mddev->new_layout = le32_to_cpu(sb->new_layout); 1825 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1826 if (mddev->delta_disks < 0 || 1827 (mddev->delta_disks == 0 && 1828 (le32_to_cpu(sb->feature_map) 1829 & MD_FEATURE_RESHAPE_BACKWARDS))) 1830 mddev->reshape_backwards = 1; 1831 } else { 1832 mddev->reshape_position = MaxSector; 1833 mddev->delta_disks = 0; 1834 mddev->new_level = mddev->level; 1835 mddev->new_layout = mddev->layout; 1836 mddev->new_chunk_sectors = mddev->chunk_sectors; 1837 } 1838 1839 if (mddev->level == 0 && 1840 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1841 mddev->layout = -1; 1842 1843 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1844 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1845 1846 if (le32_to_cpu(sb->feature_map) & 1847 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1848 if (le32_to_cpu(sb->feature_map) & 1849 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1850 return -EINVAL; 1851 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1852 (le32_to_cpu(sb->feature_map) & 1853 MD_FEATURE_MULTIPLE_PPLS)) 1854 return -EINVAL; 1855 set_bit(MD_HAS_PPL, &mddev->flags); 1856 } 1857 } else if (mddev->pers == NULL) { 1858 /* Insist of good event counter while assembling, except for 1859 * spares (which don't need an event count) */ 1860 ++ev1; 1861 if (rdev->desc_nr >= 0 && 1862 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1863 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1864 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1865 if (ev1 < mddev->events) 1866 return -EINVAL; 1867 } else if (mddev->bitmap) { 1868 /* If adding to array with a bitmap, then we can accept an 1869 * older device, but not too old. 1870 */ 1871 if (ev1 < mddev->bitmap->events_cleared) 1872 return 0; 1873 if (ev1 < mddev->events) 1874 set_bit(Bitmap_sync, &rdev->flags); 1875 } else { 1876 if (ev1 < mddev->events) 1877 /* just a hot-add of a new device, leave raid_disk at -1 */ 1878 return 0; 1879 } 1880 if (mddev->level != LEVEL_MULTIPATH) { 1881 int role; 1882 if (rdev->desc_nr < 0 || 1883 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1884 role = MD_DISK_ROLE_SPARE; 1885 rdev->desc_nr = -1; 1886 } else 1887 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1888 switch(role) { 1889 case MD_DISK_ROLE_SPARE: /* spare */ 1890 break; 1891 case MD_DISK_ROLE_FAULTY: /* faulty */ 1892 set_bit(Faulty, &rdev->flags); 1893 break; 1894 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1895 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1896 /* journal device without journal feature */ 1897 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1898 return -EINVAL; 1899 } 1900 set_bit(Journal, &rdev->flags); 1901 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1902 rdev->raid_disk = 0; 1903 break; 1904 default: 1905 rdev->saved_raid_disk = role; 1906 if ((le32_to_cpu(sb->feature_map) & 1907 MD_FEATURE_RECOVERY_OFFSET)) { 1908 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1909 if (!(le32_to_cpu(sb->feature_map) & 1910 MD_FEATURE_RECOVERY_BITMAP)) 1911 rdev->saved_raid_disk = -1; 1912 } else { 1913 /* 1914 * If the array is FROZEN, then the device can't 1915 * be in_sync with rest of array. 1916 */ 1917 if (!test_bit(MD_RECOVERY_FROZEN, 1918 &mddev->recovery)) 1919 set_bit(In_sync, &rdev->flags); 1920 } 1921 rdev->raid_disk = role; 1922 break; 1923 } 1924 if (sb->devflags & WriteMostly1) 1925 set_bit(WriteMostly, &rdev->flags); 1926 if (sb->devflags & FailFast1) 1927 set_bit(FailFast, &rdev->flags); 1928 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1929 set_bit(Replacement, &rdev->flags); 1930 } else /* MULTIPATH are always insync */ 1931 set_bit(In_sync, &rdev->flags); 1932 1933 return 0; 1934 } 1935 1936 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1937 { 1938 struct mdp_superblock_1 *sb; 1939 struct md_rdev *rdev2; 1940 int max_dev, i; 1941 /* make rdev->sb match mddev and rdev data. */ 1942 1943 sb = page_address(rdev->sb_page); 1944 1945 sb->feature_map = 0; 1946 sb->pad0 = 0; 1947 sb->recovery_offset = cpu_to_le64(0); 1948 memset(sb->pad3, 0, sizeof(sb->pad3)); 1949 1950 sb->utime = cpu_to_le64((__u64)mddev->utime); 1951 sb->events = cpu_to_le64(mddev->events); 1952 if (mddev->in_sync) 1953 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1954 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1955 sb->resync_offset = cpu_to_le64(MaxSector); 1956 else 1957 sb->resync_offset = cpu_to_le64(0); 1958 1959 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1960 1961 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1962 sb->size = cpu_to_le64(mddev->dev_sectors); 1963 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1964 sb->level = cpu_to_le32(mddev->level); 1965 sb->layout = cpu_to_le32(mddev->layout); 1966 if (test_bit(FailFast, &rdev->flags)) 1967 sb->devflags |= FailFast1; 1968 else 1969 sb->devflags &= ~FailFast1; 1970 1971 if (test_bit(WriteMostly, &rdev->flags)) 1972 sb->devflags |= WriteMostly1; 1973 else 1974 sb->devflags &= ~WriteMostly1; 1975 sb->data_offset = cpu_to_le64(rdev->data_offset); 1976 sb->data_size = cpu_to_le64(rdev->sectors); 1977 1978 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1979 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1980 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1981 } 1982 1983 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1984 !test_bit(In_sync, &rdev->flags)) { 1985 sb->feature_map |= 1986 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1987 sb->recovery_offset = 1988 cpu_to_le64(rdev->recovery_offset); 1989 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1990 sb->feature_map |= 1991 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1992 } 1993 /* Note: recovery_offset and journal_tail share space */ 1994 if (test_bit(Journal, &rdev->flags)) 1995 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1996 if (test_bit(Replacement, &rdev->flags)) 1997 sb->feature_map |= 1998 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1999 2000 if (mddev->reshape_position != MaxSector) { 2001 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2002 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2003 sb->new_layout = cpu_to_le32(mddev->new_layout); 2004 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2005 sb->new_level = cpu_to_le32(mddev->new_level); 2006 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2007 if (mddev->delta_disks == 0 && 2008 mddev->reshape_backwards) 2009 sb->feature_map 2010 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2011 if (rdev->new_data_offset != rdev->data_offset) { 2012 sb->feature_map 2013 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2014 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2015 - rdev->data_offset)); 2016 } 2017 } 2018 2019 if (mddev_is_clustered(mddev)) 2020 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2021 2022 if (rdev->badblocks.count == 0) 2023 /* Nothing to do for bad blocks*/ ; 2024 else if (sb->bblog_offset == 0) 2025 /* Cannot record bad blocks on this device */ 2026 md_error(mddev, rdev); 2027 else { 2028 struct badblocks *bb = &rdev->badblocks; 2029 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2030 u64 *p = bb->page; 2031 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2032 if (bb->changed) { 2033 unsigned seq; 2034 2035 retry: 2036 seq = read_seqbegin(&bb->lock); 2037 2038 memset(bbp, 0xff, PAGE_SIZE); 2039 2040 for (i = 0 ; i < bb->count ; i++) { 2041 u64 internal_bb = p[i]; 2042 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2043 | BB_LEN(internal_bb)); 2044 bbp[i] = cpu_to_le64(store_bb); 2045 } 2046 bb->changed = 0; 2047 if (read_seqretry(&bb->lock, seq)) 2048 goto retry; 2049 2050 bb->sector = (rdev->sb_start + 2051 (int)le32_to_cpu(sb->bblog_offset)); 2052 bb->size = le16_to_cpu(sb->bblog_size); 2053 } 2054 } 2055 2056 max_dev = 0; 2057 rdev_for_each(rdev2, mddev) 2058 if (rdev2->desc_nr+1 > max_dev) 2059 max_dev = rdev2->desc_nr+1; 2060 2061 if (max_dev > le32_to_cpu(sb->max_dev)) { 2062 int bmask; 2063 sb->max_dev = cpu_to_le32(max_dev); 2064 rdev->sb_size = max_dev * 2 + 256; 2065 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2066 if (rdev->sb_size & bmask) 2067 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2068 } else 2069 max_dev = le32_to_cpu(sb->max_dev); 2070 2071 for (i=0; i<max_dev;i++) 2072 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2073 2074 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2075 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2076 2077 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2078 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2079 sb->feature_map |= 2080 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2081 else 2082 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2083 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2084 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2085 } 2086 2087 rdev_for_each(rdev2, mddev) { 2088 i = rdev2->desc_nr; 2089 if (test_bit(Faulty, &rdev2->flags)) 2090 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2091 else if (test_bit(In_sync, &rdev2->flags)) 2092 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2093 else if (test_bit(Journal, &rdev2->flags)) 2094 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2095 else if (rdev2->raid_disk >= 0) 2096 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2097 else 2098 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2099 } 2100 2101 sb->sb_csum = calc_sb_1_csum(sb); 2102 } 2103 2104 static sector_t super_1_choose_bm_space(sector_t dev_size) 2105 { 2106 sector_t bm_space; 2107 2108 /* if the device is bigger than 8Gig, save 64k for bitmap 2109 * usage, if bigger than 200Gig, save 128k 2110 */ 2111 if (dev_size < 64*2) 2112 bm_space = 0; 2113 else if (dev_size - 64*2 >= 200*1024*1024*2) 2114 bm_space = 128*2; 2115 else if (dev_size - 4*2 > 8*1024*1024*2) 2116 bm_space = 64*2; 2117 else 2118 bm_space = 4*2; 2119 return bm_space; 2120 } 2121 2122 static unsigned long long 2123 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2124 { 2125 struct mdp_superblock_1 *sb; 2126 sector_t max_sectors; 2127 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2128 return 0; /* component must fit device */ 2129 if (rdev->data_offset != rdev->new_data_offset) 2130 return 0; /* too confusing */ 2131 if (rdev->sb_start < rdev->data_offset) { 2132 /* minor versions 1 and 2; superblock before data */ 2133 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2134 if (!num_sectors || num_sectors > max_sectors) 2135 num_sectors = max_sectors; 2136 } else if (rdev->mddev->bitmap_info.offset) { 2137 /* minor version 0 with bitmap we can't move */ 2138 return 0; 2139 } else { 2140 /* minor version 0; superblock after data */ 2141 sector_t sb_start, bm_space; 2142 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2143 2144 /* 8K is for superblock */ 2145 sb_start = dev_size - 8*2; 2146 sb_start &= ~(sector_t)(4*2 - 1); 2147 2148 bm_space = super_1_choose_bm_space(dev_size); 2149 2150 /* Space that can be used to store date needs to decrease 2151 * superblock bitmap space and bad block space(4K) 2152 */ 2153 max_sectors = sb_start - bm_space - 4*2; 2154 2155 if (!num_sectors || num_sectors > max_sectors) 2156 num_sectors = max_sectors; 2157 rdev->sb_start = sb_start; 2158 } 2159 sb = page_address(rdev->sb_page); 2160 sb->data_size = cpu_to_le64(num_sectors); 2161 sb->super_offset = cpu_to_le64(rdev->sb_start); 2162 sb->sb_csum = calc_sb_1_csum(sb); 2163 do { 2164 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2165 rdev->sb_page); 2166 } while (md_super_wait(rdev->mddev) < 0); 2167 return num_sectors; 2168 2169 } 2170 2171 static int 2172 super_1_allow_new_offset(struct md_rdev *rdev, 2173 unsigned long long new_offset) 2174 { 2175 /* All necessary checks on new >= old have been done */ 2176 struct bitmap *bitmap; 2177 if (new_offset >= rdev->data_offset) 2178 return 1; 2179 2180 /* with 1.0 metadata, there is no metadata to tread on 2181 * so we can always move back */ 2182 if (rdev->mddev->minor_version == 0) 2183 return 1; 2184 2185 /* otherwise we must be sure not to step on 2186 * any metadata, so stay: 2187 * 36K beyond start of superblock 2188 * beyond end of badblocks 2189 * beyond write-intent bitmap 2190 */ 2191 if (rdev->sb_start + (32+4)*2 > new_offset) 2192 return 0; 2193 bitmap = rdev->mddev->bitmap; 2194 if (bitmap && !rdev->mddev->bitmap_info.file && 2195 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2196 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2197 return 0; 2198 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2199 return 0; 2200 2201 return 1; 2202 } 2203 2204 static struct super_type super_types[] = { 2205 [0] = { 2206 .name = "0.90.0", 2207 .owner = THIS_MODULE, 2208 .load_super = super_90_load, 2209 .validate_super = super_90_validate, 2210 .sync_super = super_90_sync, 2211 .rdev_size_change = super_90_rdev_size_change, 2212 .allow_new_offset = super_90_allow_new_offset, 2213 }, 2214 [1] = { 2215 .name = "md-1", 2216 .owner = THIS_MODULE, 2217 .load_super = super_1_load, 2218 .validate_super = super_1_validate, 2219 .sync_super = super_1_sync, 2220 .rdev_size_change = super_1_rdev_size_change, 2221 .allow_new_offset = super_1_allow_new_offset, 2222 }, 2223 }; 2224 2225 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2226 { 2227 if (mddev->sync_super) { 2228 mddev->sync_super(mddev, rdev); 2229 return; 2230 } 2231 2232 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2233 2234 super_types[mddev->major_version].sync_super(mddev, rdev); 2235 } 2236 2237 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2238 { 2239 struct md_rdev *rdev, *rdev2; 2240 2241 rcu_read_lock(); 2242 rdev_for_each_rcu(rdev, mddev1) { 2243 if (test_bit(Faulty, &rdev->flags) || 2244 test_bit(Journal, &rdev->flags) || 2245 rdev->raid_disk == -1) 2246 continue; 2247 rdev_for_each_rcu(rdev2, mddev2) { 2248 if (test_bit(Faulty, &rdev2->flags) || 2249 test_bit(Journal, &rdev2->flags) || 2250 rdev2->raid_disk == -1) 2251 continue; 2252 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2253 rcu_read_unlock(); 2254 return 1; 2255 } 2256 } 2257 } 2258 rcu_read_unlock(); 2259 return 0; 2260 } 2261 2262 static LIST_HEAD(pending_raid_disks); 2263 2264 /* 2265 * Try to register data integrity profile for an mddev 2266 * 2267 * This is called when an array is started and after a disk has been kicked 2268 * from the array. It only succeeds if all working and active component devices 2269 * are integrity capable with matching profiles. 2270 */ 2271 int md_integrity_register(struct mddev *mddev) 2272 { 2273 struct md_rdev *rdev, *reference = NULL; 2274 2275 if (list_empty(&mddev->disks)) 2276 return 0; /* nothing to do */ 2277 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2278 return 0; /* shouldn't register, or already is */ 2279 rdev_for_each(rdev, mddev) { 2280 /* skip spares and non-functional disks */ 2281 if (test_bit(Faulty, &rdev->flags)) 2282 continue; 2283 if (rdev->raid_disk < 0) 2284 continue; 2285 if (!reference) { 2286 /* Use the first rdev as the reference */ 2287 reference = rdev; 2288 continue; 2289 } 2290 /* does this rdev's profile match the reference profile? */ 2291 if (blk_integrity_compare(reference->bdev->bd_disk, 2292 rdev->bdev->bd_disk) < 0) 2293 return -EINVAL; 2294 } 2295 if (!reference || !bdev_get_integrity(reference->bdev)) 2296 return 0; 2297 /* 2298 * All component devices are integrity capable and have matching 2299 * profiles, register the common profile for the md device. 2300 */ 2301 blk_integrity_register(mddev->gendisk, 2302 bdev_get_integrity(reference->bdev)); 2303 2304 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2305 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2306 (mddev->level != 1 && mddev->level != 10 && 2307 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2308 /* 2309 * No need to handle the failure of bioset_integrity_create, 2310 * because the function is called by md_run() -> pers->run(), 2311 * md_run calls bioset_exit -> bioset_integrity_free in case 2312 * of failure case. 2313 */ 2314 pr_err("md: failed to create integrity pool for %s\n", 2315 mdname(mddev)); 2316 return -EINVAL; 2317 } 2318 return 0; 2319 } 2320 EXPORT_SYMBOL(md_integrity_register); 2321 2322 /* 2323 * Attempt to add an rdev, but only if it is consistent with the current 2324 * integrity profile 2325 */ 2326 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2327 { 2328 struct blk_integrity *bi_mddev; 2329 2330 if (!mddev->gendisk) 2331 return 0; 2332 2333 bi_mddev = blk_get_integrity(mddev->gendisk); 2334 2335 if (!bi_mddev) /* nothing to do */ 2336 return 0; 2337 2338 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2339 pr_err("%s: incompatible integrity profile for %pg\n", 2340 mdname(mddev), rdev->bdev); 2341 return -ENXIO; 2342 } 2343 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(md_integrity_add_rdev); 2347 2348 static bool rdev_read_only(struct md_rdev *rdev) 2349 { 2350 return bdev_read_only(rdev->bdev) || 2351 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2352 } 2353 2354 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2355 { 2356 char b[BDEVNAME_SIZE]; 2357 int err; 2358 2359 /* prevent duplicates */ 2360 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2361 return -EEXIST; 2362 2363 if (rdev_read_only(rdev) && mddev->pers) 2364 return -EROFS; 2365 2366 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2367 if (!test_bit(Journal, &rdev->flags) && 2368 rdev->sectors && 2369 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2370 if (mddev->pers) { 2371 /* Cannot change size, so fail 2372 * If mddev->level <= 0, then we don't care 2373 * about aligning sizes (e.g. linear) 2374 */ 2375 if (mddev->level > 0) 2376 return -ENOSPC; 2377 } else 2378 mddev->dev_sectors = rdev->sectors; 2379 } 2380 2381 /* Verify rdev->desc_nr is unique. 2382 * If it is -1, assign a free number, else 2383 * check number is not in use 2384 */ 2385 rcu_read_lock(); 2386 if (rdev->desc_nr < 0) { 2387 int choice = 0; 2388 if (mddev->pers) 2389 choice = mddev->raid_disks; 2390 while (md_find_rdev_nr_rcu(mddev, choice)) 2391 choice++; 2392 rdev->desc_nr = choice; 2393 } else { 2394 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2395 rcu_read_unlock(); 2396 return -EBUSY; 2397 } 2398 } 2399 rcu_read_unlock(); 2400 if (!test_bit(Journal, &rdev->flags) && 2401 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2402 pr_warn("md: %s: array is limited to %d devices\n", 2403 mdname(mddev), mddev->max_disks); 2404 return -EBUSY; 2405 } 2406 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2407 strreplace(b, '/', '!'); 2408 2409 rdev->mddev = mddev; 2410 pr_debug("md: bind<%s>\n", b); 2411 2412 if (mddev->raid_disks) 2413 mddev_create_serial_pool(mddev, rdev, false); 2414 2415 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2416 goto fail; 2417 2418 /* failure here is OK */ 2419 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2420 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2421 rdev->sysfs_unack_badblocks = 2422 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2423 rdev->sysfs_badblocks = 2424 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2425 2426 list_add_rcu(&rdev->same_set, &mddev->disks); 2427 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2428 2429 /* May as well allow recovery to be retried once */ 2430 mddev->recovery_disabled++; 2431 2432 return 0; 2433 2434 fail: 2435 pr_warn("md: failed to register dev-%s for %s\n", 2436 b, mdname(mddev)); 2437 return err; 2438 } 2439 2440 void md_autodetect_dev(dev_t dev); 2441 2442 /* just for claiming the bdev */ 2443 static struct md_rdev claim_rdev; 2444 2445 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2446 { 2447 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2448 md_rdev_clear(rdev); 2449 #ifndef MODULE 2450 if (test_bit(AutoDetected, &rdev->flags)) 2451 md_autodetect_dev(rdev->bdev->bd_dev); 2452 #endif 2453 blkdev_put(rdev->bdev, mddev->external ? &claim_rdev : rdev); 2454 rdev->bdev = NULL; 2455 kobject_put(&rdev->kobj); 2456 } 2457 2458 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2459 { 2460 struct mddev *mddev = rdev->mddev; 2461 2462 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2463 list_del_rcu(&rdev->same_set); 2464 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2465 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2466 rdev->mddev = NULL; 2467 sysfs_remove_link(&rdev->kobj, "block"); 2468 sysfs_put(rdev->sysfs_state); 2469 sysfs_put(rdev->sysfs_unack_badblocks); 2470 sysfs_put(rdev->sysfs_badblocks); 2471 rdev->sysfs_state = NULL; 2472 rdev->sysfs_unack_badblocks = NULL; 2473 rdev->sysfs_badblocks = NULL; 2474 rdev->badblocks.count = 0; 2475 2476 synchronize_rcu(); 2477 2478 /* 2479 * kobject_del() will wait for all in progress writers to be done, where 2480 * reconfig_mutex is held, hence it can't be called under 2481 * reconfig_mutex and it's delayed to mddev_unlock(). 2482 */ 2483 list_add(&rdev->same_set, &mddev->deleting); 2484 } 2485 2486 static void export_array(struct mddev *mddev) 2487 { 2488 struct md_rdev *rdev; 2489 2490 while (!list_empty(&mddev->disks)) { 2491 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2492 same_set); 2493 md_kick_rdev_from_array(rdev); 2494 } 2495 mddev->raid_disks = 0; 2496 mddev->major_version = 0; 2497 } 2498 2499 static bool set_in_sync(struct mddev *mddev) 2500 { 2501 lockdep_assert_held(&mddev->lock); 2502 if (!mddev->in_sync) { 2503 mddev->sync_checkers++; 2504 spin_unlock(&mddev->lock); 2505 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2506 spin_lock(&mddev->lock); 2507 if (!mddev->in_sync && 2508 percpu_ref_is_zero(&mddev->writes_pending)) { 2509 mddev->in_sync = 1; 2510 /* 2511 * Ensure ->in_sync is visible before we clear 2512 * ->sync_checkers. 2513 */ 2514 smp_mb(); 2515 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2516 sysfs_notify_dirent_safe(mddev->sysfs_state); 2517 } 2518 if (--mddev->sync_checkers == 0) 2519 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2520 } 2521 if (mddev->safemode == 1) 2522 mddev->safemode = 0; 2523 return mddev->in_sync; 2524 } 2525 2526 static void sync_sbs(struct mddev *mddev, int nospares) 2527 { 2528 /* Update each superblock (in-memory image), but 2529 * if we are allowed to, skip spares which already 2530 * have the right event counter, or have one earlier 2531 * (which would mean they aren't being marked as dirty 2532 * with the rest of the array) 2533 */ 2534 struct md_rdev *rdev; 2535 rdev_for_each(rdev, mddev) { 2536 if (rdev->sb_events == mddev->events || 2537 (nospares && 2538 rdev->raid_disk < 0 && 2539 rdev->sb_events+1 == mddev->events)) { 2540 /* Don't update this superblock */ 2541 rdev->sb_loaded = 2; 2542 } else { 2543 sync_super(mddev, rdev); 2544 rdev->sb_loaded = 1; 2545 } 2546 } 2547 } 2548 2549 static bool does_sb_need_changing(struct mddev *mddev) 2550 { 2551 struct md_rdev *rdev = NULL, *iter; 2552 struct mdp_superblock_1 *sb; 2553 int role; 2554 2555 /* Find a good rdev */ 2556 rdev_for_each(iter, mddev) 2557 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2558 rdev = iter; 2559 break; 2560 } 2561 2562 /* No good device found. */ 2563 if (!rdev) 2564 return false; 2565 2566 sb = page_address(rdev->sb_page); 2567 /* Check if a device has become faulty or a spare become active */ 2568 rdev_for_each(rdev, mddev) { 2569 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2570 /* Device activated? */ 2571 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2572 !test_bit(Faulty, &rdev->flags)) 2573 return true; 2574 /* Device turned faulty? */ 2575 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2576 return true; 2577 } 2578 2579 /* Check if any mddev parameters have changed */ 2580 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2581 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2582 (mddev->layout != le32_to_cpu(sb->layout)) || 2583 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2584 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2585 return true; 2586 2587 return false; 2588 } 2589 2590 void md_update_sb(struct mddev *mddev, int force_change) 2591 { 2592 struct md_rdev *rdev; 2593 int sync_req; 2594 int nospares = 0; 2595 int any_badblocks_changed = 0; 2596 int ret = -1; 2597 2598 if (!md_is_rdwr(mddev)) { 2599 if (force_change) 2600 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2601 return; 2602 } 2603 2604 repeat: 2605 if (mddev_is_clustered(mddev)) { 2606 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2607 force_change = 1; 2608 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2609 nospares = 1; 2610 ret = md_cluster_ops->metadata_update_start(mddev); 2611 /* Has someone else has updated the sb */ 2612 if (!does_sb_need_changing(mddev)) { 2613 if (ret == 0) 2614 md_cluster_ops->metadata_update_cancel(mddev); 2615 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2616 BIT(MD_SB_CHANGE_DEVS) | 2617 BIT(MD_SB_CHANGE_CLEAN)); 2618 return; 2619 } 2620 } 2621 2622 /* 2623 * First make sure individual recovery_offsets are correct 2624 * curr_resync_completed can only be used during recovery. 2625 * During reshape/resync it might use array-addresses rather 2626 * that device addresses. 2627 */ 2628 rdev_for_each(rdev, mddev) { 2629 if (rdev->raid_disk >= 0 && 2630 mddev->delta_disks >= 0 && 2631 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2632 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2633 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2634 !test_bit(Journal, &rdev->flags) && 2635 !test_bit(In_sync, &rdev->flags) && 2636 mddev->curr_resync_completed > rdev->recovery_offset) 2637 rdev->recovery_offset = mddev->curr_resync_completed; 2638 2639 } 2640 if (!mddev->persistent) { 2641 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2642 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2643 if (!mddev->external) { 2644 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2645 rdev_for_each(rdev, mddev) { 2646 if (rdev->badblocks.changed) { 2647 rdev->badblocks.changed = 0; 2648 ack_all_badblocks(&rdev->badblocks); 2649 md_error(mddev, rdev); 2650 } 2651 clear_bit(Blocked, &rdev->flags); 2652 clear_bit(BlockedBadBlocks, &rdev->flags); 2653 wake_up(&rdev->blocked_wait); 2654 } 2655 } 2656 wake_up(&mddev->sb_wait); 2657 return; 2658 } 2659 2660 spin_lock(&mddev->lock); 2661 2662 mddev->utime = ktime_get_real_seconds(); 2663 2664 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2665 force_change = 1; 2666 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2667 /* just a clean<-> dirty transition, possibly leave spares alone, 2668 * though if events isn't the right even/odd, we will have to do 2669 * spares after all 2670 */ 2671 nospares = 1; 2672 if (force_change) 2673 nospares = 0; 2674 if (mddev->degraded) 2675 /* If the array is degraded, then skipping spares is both 2676 * dangerous and fairly pointless. 2677 * Dangerous because a device that was removed from the array 2678 * might have a event_count that still looks up-to-date, 2679 * so it can be re-added without a resync. 2680 * Pointless because if there are any spares to skip, 2681 * then a recovery will happen and soon that array won't 2682 * be degraded any more and the spare can go back to sleep then. 2683 */ 2684 nospares = 0; 2685 2686 sync_req = mddev->in_sync; 2687 2688 /* If this is just a dirty<->clean transition, and the array is clean 2689 * and 'events' is odd, we can roll back to the previous clean state */ 2690 if (nospares 2691 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2692 && mddev->can_decrease_events 2693 && mddev->events != 1) { 2694 mddev->events--; 2695 mddev->can_decrease_events = 0; 2696 } else { 2697 /* otherwise we have to go forward and ... */ 2698 mddev->events ++; 2699 mddev->can_decrease_events = nospares; 2700 } 2701 2702 /* 2703 * This 64-bit counter should never wrap. 2704 * Either we are in around ~1 trillion A.C., assuming 2705 * 1 reboot per second, or we have a bug... 2706 */ 2707 WARN_ON(mddev->events == 0); 2708 2709 rdev_for_each(rdev, mddev) { 2710 if (rdev->badblocks.changed) 2711 any_badblocks_changed++; 2712 if (test_bit(Faulty, &rdev->flags)) 2713 set_bit(FaultRecorded, &rdev->flags); 2714 } 2715 2716 sync_sbs(mddev, nospares); 2717 spin_unlock(&mddev->lock); 2718 2719 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2720 mdname(mddev), mddev->in_sync); 2721 2722 if (mddev->queue) 2723 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2724 rewrite: 2725 md_bitmap_update_sb(mddev->bitmap); 2726 rdev_for_each(rdev, mddev) { 2727 if (rdev->sb_loaded != 1) 2728 continue; /* no noise on spare devices */ 2729 2730 if (!test_bit(Faulty, &rdev->flags)) { 2731 md_super_write(mddev,rdev, 2732 rdev->sb_start, rdev->sb_size, 2733 rdev->sb_page); 2734 pr_debug("md: (write) %pg's sb offset: %llu\n", 2735 rdev->bdev, 2736 (unsigned long long)rdev->sb_start); 2737 rdev->sb_events = mddev->events; 2738 if (rdev->badblocks.size) { 2739 md_super_write(mddev, rdev, 2740 rdev->badblocks.sector, 2741 rdev->badblocks.size << 9, 2742 rdev->bb_page); 2743 rdev->badblocks.size = 0; 2744 } 2745 2746 } else 2747 pr_debug("md: %pg (skipping faulty)\n", 2748 rdev->bdev); 2749 2750 if (mddev->level == LEVEL_MULTIPATH) 2751 /* only need to write one superblock... */ 2752 break; 2753 } 2754 if (md_super_wait(mddev) < 0) 2755 goto rewrite; 2756 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2757 2758 if (mddev_is_clustered(mddev) && ret == 0) 2759 md_cluster_ops->metadata_update_finish(mddev); 2760 2761 if (mddev->in_sync != sync_req || 2762 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2763 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2764 /* have to write it out again */ 2765 goto repeat; 2766 wake_up(&mddev->sb_wait); 2767 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2768 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2769 2770 rdev_for_each(rdev, mddev) { 2771 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2772 clear_bit(Blocked, &rdev->flags); 2773 2774 if (any_badblocks_changed) 2775 ack_all_badblocks(&rdev->badblocks); 2776 clear_bit(BlockedBadBlocks, &rdev->flags); 2777 wake_up(&rdev->blocked_wait); 2778 } 2779 } 2780 EXPORT_SYMBOL(md_update_sb); 2781 2782 static int add_bound_rdev(struct md_rdev *rdev) 2783 { 2784 struct mddev *mddev = rdev->mddev; 2785 int err = 0; 2786 bool add_journal = test_bit(Journal, &rdev->flags); 2787 2788 if (!mddev->pers->hot_remove_disk || add_journal) { 2789 /* If there is hot_add_disk but no hot_remove_disk 2790 * then added disks for geometry changes, 2791 * and should be added immediately. 2792 */ 2793 super_types[mddev->major_version]. 2794 validate_super(mddev, rdev); 2795 if (add_journal) 2796 mddev_suspend(mddev); 2797 err = mddev->pers->hot_add_disk(mddev, rdev); 2798 if (add_journal) 2799 mddev_resume(mddev); 2800 if (err) { 2801 md_kick_rdev_from_array(rdev); 2802 return err; 2803 } 2804 } 2805 sysfs_notify_dirent_safe(rdev->sysfs_state); 2806 2807 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2808 if (mddev->degraded) 2809 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2810 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2811 md_new_event(); 2812 md_wakeup_thread(mddev->thread); 2813 return 0; 2814 } 2815 2816 /* words written to sysfs files may, or may not, be \n terminated. 2817 * We want to accept with case. For this we use cmd_match. 2818 */ 2819 static int cmd_match(const char *cmd, const char *str) 2820 { 2821 /* See if cmd, written into a sysfs file, matches 2822 * str. They must either be the same, or cmd can 2823 * have a trailing newline 2824 */ 2825 while (*cmd && *str && *cmd == *str) { 2826 cmd++; 2827 str++; 2828 } 2829 if (*cmd == '\n') 2830 cmd++; 2831 if (*str || *cmd) 2832 return 0; 2833 return 1; 2834 } 2835 2836 struct rdev_sysfs_entry { 2837 struct attribute attr; 2838 ssize_t (*show)(struct md_rdev *, char *); 2839 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2840 }; 2841 2842 static ssize_t 2843 state_show(struct md_rdev *rdev, char *page) 2844 { 2845 char *sep = ","; 2846 size_t len = 0; 2847 unsigned long flags = READ_ONCE(rdev->flags); 2848 2849 if (test_bit(Faulty, &flags) || 2850 (!test_bit(ExternalBbl, &flags) && 2851 rdev->badblocks.unacked_exist)) 2852 len += sprintf(page+len, "faulty%s", sep); 2853 if (test_bit(In_sync, &flags)) 2854 len += sprintf(page+len, "in_sync%s", sep); 2855 if (test_bit(Journal, &flags)) 2856 len += sprintf(page+len, "journal%s", sep); 2857 if (test_bit(WriteMostly, &flags)) 2858 len += sprintf(page+len, "write_mostly%s", sep); 2859 if (test_bit(Blocked, &flags) || 2860 (rdev->badblocks.unacked_exist 2861 && !test_bit(Faulty, &flags))) 2862 len += sprintf(page+len, "blocked%s", sep); 2863 if (!test_bit(Faulty, &flags) && 2864 !test_bit(Journal, &flags) && 2865 !test_bit(In_sync, &flags)) 2866 len += sprintf(page+len, "spare%s", sep); 2867 if (test_bit(WriteErrorSeen, &flags)) 2868 len += sprintf(page+len, "write_error%s", sep); 2869 if (test_bit(WantReplacement, &flags)) 2870 len += sprintf(page+len, "want_replacement%s", sep); 2871 if (test_bit(Replacement, &flags)) 2872 len += sprintf(page+len, "replacement%s", sep); 2873 if (test_bit(ExternalBbl, &flags)) 2874 len += sprintf(page+len, "external_bbl%s", sep); 2875 if (test_bit(FailFast, &flags)) 2876 len += sprintf(page+len, "failfast%s", sep); 2877 2878 if (len) 2879 len -= strlen(sep); 2880 2881 return len+sprintf(page+len, "\n"); 2882 } 2883 2884 static ssize_t 2885 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2886 { 2887 /* can write 2888 * faulty - simulates an error 2889 * remove - disconnects the device 2890 * writemostly - sets write_mostly 2891 * -writemostly - clears write_mostly 2892 * blocked - sets the Blocked flags 2893 * -blocked - clears the Blocked and possibly simulates an error 2894 * insync - sets Insync providing device isn't active 2895 * -insync - clear Insync for a device with a slot assigned, 2896 * so that it gets rebuilt based on bitmap 2897 * write_error - sets WriteErrorSeen 2898 * -write_error - clears WriteErrorSeen 2899 * {,-}failfast - set/clear FailFast 2900 */ 2901 2902 struct mddev *mddev = rdev->mddev; 2903 int err = -EINVAL; 2904 bool need_update_sb = false; 2905 2906 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2907 md_error(rdev->mddev, rdev); 2908 2909 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2910 err = -EBUSY; 2911 else 2912 err = 0; 2913 } else if (cmd_match(buf, "remove")) { 2914 if (rdev->mddev->pers) { 2915 clear_bit(Blocked, &rdev->flags); 2916 remove_and_add_spares(rdev->mddev, rdev); 2917 } 2918 if (rdev->raid_disk >= 0) 2919 err = -EBUSY; 2920 else { 2921 err = 0; 2922 if (mddev_is_clustered(mddev)) 2923 err = md_cluster_ops->remove_disk(mddev, rdev); 2924 2925 if (err == 0) { 2926 md_kick_rdev_from_array(rdev); 2927 if (mddev->pers) { 2928 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2929 md_wakeup_thread(mddev->thread); 2930 } 2931 md_new_event(); 2932 } 2933 } 2934 } else if (cmd_match(buf, "writemostly")) { 2935 set_bit(WriteMostly, &rdev->flags); 2936 mddev_create_serial_pool(rdev->mddev, rdev, false); 2937 need_update_sb = true; 2938 err = 0; 2939 } else if (cmd_match(buf, "-writemostly")) { 2940 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2941 clear_bit(WriteMostly, &rdev->flags); 2942 need_update_sb = true; 2943 err = 0; 2944 } else if (cmd_match(buf, "blocked")) { 2945 set_bit(Blocked, &rdev->flags); 2946 err = 0; 2947 } else if (cmd_match(buf, "-blocked")) { 2948 if (!test_bit(Faulty, &rdev->flags) && 2949 !test_bit(ExternalBbl, &rdev->flags) && 2950 rdev->badblocks.unacked_exist) { 2951 /* metadata handler doesn't understand badblocks, 2952 * so we need to fail the device 2953 */ 2954 md_error(rdev->mddev, rdev); 2955 } 2956 clear_bit(Blocked, &rdev->flags); 2957 clear_bit(BlockedBadBlocks, &rdev->flags); 2958 wake_up(&rdev->blocked_wait); 2959 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2960 md_wakeup_thread(rdev->mddev->thread); 2961 2962 err = 0; 2963 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2964 set_bit(In_sync, &rdev->flags); 2965 err = 0; 2966 } else if (cmd_match(buf, "failfast")) { 2967 set_bit(FailFast, &rdev->flags); 2968 need_update_sb = true; 2969 err = 0; 2970 } else if (cmd_match(buf, "-failfast")) { 2971 clear_bit(FailFast, &rdev->flags); 2972 need_update_sb = true; 2973 err = 0; 2974 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2975 !test_bit(Journal, &rdev->flags)) { 2976 if (rdev->mddev->pers == NULL) { 2977 clear_bit(In_sync, &rdev->flags); 2978 rdev->saved_raid_disk = rdev->raid_disk; 2979 rdev->raid_disk = -1; 2980 err = 0; 2981 } 2982 } else if (cmd_match(buf, "write_error")) { 2983 set_bit(WriteErrorSeen, &rdev->flags); 2984 err = 0; 2985 } else if (cmd_match(buf, "-write_error")) { 2986 clear_bit(WriteErrorSeen, &rdev->flags); 2987 err = 0; 2988 } else if (cmd_match(buf, "want_replacement")) { 2989 /* Any non-spare device that is not a replacement can 2990 * become want_replacement at any time, but we then need to 2991 * check if recovery is needed. 2992 */ 2993 if (rdev->raid_disk >= 0 && 2994 !test_bit(Journal, &rdev->flags) && 2995 !test_bit(Replacement, &rdev->flags)) 2996 set_bit(WantReplacement, &rdev->flags); 2997 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2998 md_wakeup_thread(rdev->mddev->thread); 2999 err = 0; 3000 } else if (cmd_match(buf, "-want_replacement")) { 3001 /* Clearing 'want_replacement' is always allowed. 3002 * Once replacements starts it is too late though. 3003 */ 3004 err = 0; 3005 clear_bit(WantReplacement, &rdev->flags); 3006 } else if (cmd_match(buf, "replacement")) { 3007 /* Can only set a device as a replacement when array has not 3008 * yet been started. Once running, replacement is automatic 3009 * from spares, or by assigning 'slot'. 3010 */ 3011 if (rdev->mddev->pers) 3012 err = -EBUSY; 3013 else { 3014 set_bit(Replacement, &rdev->flags); 3015 err = 0; 3016 } 3017 } else if (cmd_match(buf, "-replacement")) { 3018 /* Similarly, can only clear Replacement before start */ 3019 if (rdev->mddev->pers) 3020 err = -EBUSY; 3021 else { 3022 clear_bit(Replacement, &rdev->flags); 3023 err = 0; 3024 } 3025 } else if (cmd_match(buf, "re-add")) { 3026 if (!rdev->mddev->pers) 3027 err = -EINVAL; 3028 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3029 rdev->saved_raid_disk >= 0) { 3030 /* clear_bit is performed _after_ all the devices 3031 * have their local Faulty bit cleared. If any writes 3032 * happen in the meantime in the local node, they 3033 * will land in the local bitmap, which will be synced 3034 * by this node eventually 3035 */ 3036 if (!mddev_is_clustered(rdev->mddev) || 3037 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3038 clear_bit(Faulty, &rdev->flags); 3039 err = add_bound_rdev(rdev); 3040 } 3041 } else 3042 err = -EBUSY; 3043 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3044 set_bit(ExternalBbl, &rdev->flags); 3045 rdev->badblocks.shift = 0; 3046 err = 0; 3047 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3048 clear_bit(ExternalBbl, &rdev->flags); 3049 err = 0; 3050 } 3051 if (need_update_sb) 3052 md_update_sb(mddev, 1); 3053 if (!err) 3054 sysfs_notify_dirent_safe(rdev->sysfs_state); 3055 return err ? err : len; 3056 } 3057 static struct rdev_sysfs_entry rdev_state = 3058 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3059 3060 static ssize_t 3061 errors_show(struct md_rdev *rdev, char *page) 3062 { 3063 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3064 } 3065 3066 static ssize_t 3067 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3068 { 3069 unsigned int n; 3070 int rv; 3071 3072 rv = kstrtouint(buf, 10, &n); 3073 if (rv < 0) 3074 return rv; 3075 atomic_set(&rdev->corrected_errors, n); 3076 return len; 3077 } 3078 static struct rdev_sysfs_entry rdev_errors = 3079 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3080 3081 static ssize_t 3082 slot_show(struct md_rdev *rdev, char *page) 3083 { 3084 if (test_bit(Journal, &rdev->flags)) 3085 return sprintf(page, "journal\n"); 3086 else if (rdev->raid_disk < 0) 3087 return sprintf(page, "none\n"); 3088 else 3089 return sprintf(page, "%d\n", rdev->raid_disk); 3090 } 3091 3092 static ssize_t 3093 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3094 { 3095 int slot; 3096 int err; 3097 3098 if (test_bit(Journal, &rdev->flags)) 3099 return -EBUSY; 3100 if (strncmp(buf, "none", 4)==0) 3101 slot = -1; 3102 else { 3103 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3104 if (err < 0) 3105 return err; 3106 if (slot < 0) 3107 /* overflow */ 3108 return -ENOSPC; 3109 } 3110 if (rdev->mddev->pers && slot == -1) { 3111 /* Setting 'slot' on an active array requires also 3112 * updating the 'rd%d' link, and communicating 3113 * with the personality with ->hot_*_disk. 3114 * For now we only support removing 3115 * failed/spare devices. This normally happens automatically, 3116 * but not when the metadata is externally managed. 3117 */ 3118 if (rdev->raid_disk == -1) 3119 return -EEXIST; 3120 /* personality does all needed checks */ 3121 if (rdev->mddev->pers->hot_remove_disk == NULL) 3122 return -EINVAL; 3123 clear_bit(Blocked, &rdev->flags); 3124 remove_and_add_spares(rdev->mddev, rdev); 3125 if (rdev->raid_disk >= 0) 3126 return -EBUSY; 3127 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3128 md_wakeup_thread(rdev->mddev->thread); 3129 } else if (rdev->mddev->pers) { 3130 /* Activating a spare .. or possibly reactivating 3131 * if we ever get bitmaps working here. 3132 */ 3133 int err; 3134 3135 if (rdev->raid_disk != -1) 3136 return -EBUSY; 3137 3138 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3139 return -EBUSY; 3140 3141 if (rdev->mddev->pers->hot_add_disk == NULL) 3142 return -EINVAL; 3143 3144 if (slot >= rdev->mddev->raid_disks && 3145 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3146 return -ENOSPC; 3147 3148 rdev->raid_disk = slot; 3149 if (test_bit(In_sync, &rdev->flags)) 3150 rdev->saved_raid_disk = slot; 3151 else 3152 rdev->saved_raid_disk = -1; 3153 clear_bit(In_sync, &rdev->flags); 3154 clear_bit(Bitmap_sync, &rdev->flags); 3155 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3156 if (err) { 3157 rdev->raid_disk = -1; 3158 return err; 3159 } else 3160 sysfs_notify_dirent_safe(rdev->sysfs_state); 3161 /* failure here is OK */; 3162 sysfs_link_rdev(rdev->mddev, rdev); 3163 /* don't wakeup anyone, leave that to userspace. */ 3164 } else { 3165 if (slot >= rdev->mddev->raid_disks && 3166 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3167 return -ENOSPC; 3168 rdev->raid_disk = slot; 3169 /* assume it is working */ 3170 clear_bit(Faulty, &rdev->flags); 3171 clear_bit(WriteMostly, &rdev->flags); 3172 set_bit(In_sync, &rdev->flags); 3173 sysfs_notify_dirent_safe(rdev->sysfs_state); 3174 } 3175 return len; 3176 } 3177 3178 static struct rdev_sysfs_entry rdev_slot = 3179 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3180 3181 static ssize_t 3182 offset_show(struct md_rdev *rdev, char *page) 3183 { 3184 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3185 } 3186 3187 static ssize_t 3188 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3189 { 3190 unsigned long long offset; 3191 if (kstrtoull(buf, 10, &offset) < 0) 3192 return -EINVAL; 3193 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3194 return -EBUSY; 3195 if (rdev->sectors && rdev->mddev->external) 3196 /* Must set offset before size, so overlap checks 3197 * can be sane */ 3198 return -EBUSY; 3199 rdev->data_offset = offset; 3200 rdev->new_data_offset = offset; 3201 return len; 3202 } 3203 3204 static struct rdev_sysfs_entry rdev_offset = 3205 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3206 3207 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3208 { 3209 return sprintf(page, "%llu\n", 3210 (unsigned long long)rdev->new_data_offset); 3211 } 3212 3213 static ssize_t new_offset_store(struct md_rdev *rdev, 3214 const char *buf, size_t len) 3215 { 3216 unsigned long long new_offset; 3217 struct mddev *mddev = rdev->mddev; 3218 3219 if (kstrtoull(buf, 10, &new_offset) < 0) 3220 return -EINVAL; 3221 3222 if (mddev->sync_thread || 3223 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3224 return -EBUSY; 3225 if (new_offset == rdev->data_offset) 3226 /* reset is always permitted */ 3227 ; 3228 else if (new_offset > rdev->data_offset) { 3229 /* must not push array size beyond rdev_sectors */ 3230 if (new_offset - rdev->data_offset 3231 + mddev->dev_sectors > rdev->sectors) 3232 return -E2BIG; 3233 } 3234 /* Metadata worries about other space details. */ 3235 3236 /* decreasing the offset is inconsistent with a backwards 3237 * reshape. 3238 */ 3239 if (new_offset < rdev->data_offset && 3240 mddev->reshape_backwards) 3241 return -EINVAL; 3242 /* Increasing offset is inconsistent with forwards 3243 * reshape. reshape_direction should be set to 3244 * 'backwards' first. 3245 */ 3246 if (new_offset > rdev->data_offset && 3247 !mddev->reshape_backwards) 3248 return -EINVAL; 3249 3250 if (mddev->pers && mddev->persistent && 3251 !super_types[mddev->major_version] 3252 .allow_new_offset(rdev, new_offset)) 3253 return -E2BIG; 3254 rdev->new_data_offset = new_offset; 3255 if (new_offset > rdev->data_offset) 3256 mddev->reshape_backwards = 1; 3257 else if (new_offset < rdev->data_offset) 3258 mddev->reshape_backwards = 0; 3259 3260 return len; 3261 } 3262 static struct rdev_sysfs_entry rdev_new_offset = 3263 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3264 3265 static ssize_t 3266 rdev_size_show(struct md_rdev *rdev, char *page) 3267 { 3268 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3269 } 3270 3271 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3272 { 3273 /* check if two start/length pairs overlap */ 3274 if (a->data_offset + a->sectors <= b->data_offset) 3275 return false; 3276 if (b->data_offset + b->sectors <= a->data_offset) 3277 return false; 3278 return true; 3279 } 3280 3281 static bool md_rdev_overlaps(struct md_rdev *rdev) 3282 { 3283 struct mddev *mddev; 3284 struct md_rdev *rdev2; 3285 3286 spin_lock(&all_mddevs_lock); 3287 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3288 if (test_bit(MD_DELETED, &mddev->flags)) 3289 continue; 3290 rdev_for_each(rdev2, mddev) { 3291 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3292 md_rdevs_overlap(rdev, rdev2)) { 3293 spin_unlock(&all_mddevs_lock); 3294 return true; 3295 } 3296 } 3297 } 3298 spin_unlock(&all_mddevs_lock); 3299 return false; 3300 } 3301 3302 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3303 { 3304 unsigned long long blocks; 3305 sector_t new; 3306 3307 if (kstrtoull(buf, 10, &blocks) < 0) 3308 return -EINVAL; 3309 3310 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3311 return -EINVAL; /* sector conversion overflow */ 3312 3313 new = blocks * 2; 3314 if (new != blocks * 2) 3315 return -EINVAL; /* unsigned long long to sector_t overflow */ 3316 3317 *sectors = new; 3318 return 0; 3319 } 3320 3321 static ssize_t 3322 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3323 { 3324 struct mddev *my_mddev = rdev->mddev; 3325 sector_t oldsectors = rdev->sectors; 3326 sector_t sectors; 3327 3328 if (test_bit(Journal, &rdev->flags)) 3329 return -EBUSY; 3330 if (strict_blocks_to_sectors(buf, §ors) < 0) 3331 return -EINVAL; 3332 if (rdev->data_offset != rdev->new_data_offset) 3333 return -EINVAL; /* too confusing */ 3334 if (my_mddev->pers && rdev->raid_disk >= 0) { 3335 if (my_mddev->persistent) { 3336 sectors = super_types[my_mddev->major_version]. 3337 rdev_size_change(rdev, sectors); 3338 if (!sectors) 3339 return -EBUSY; 3340 } else if (!sectors) 3341 sectors = bdev_nr_sectors(rdev->bdev) - 3342 rdev->data_offset; 3343 if (!my_mddev->pers->resize) 3344 /* Cannot change size for RAID0 or Linear etc */ 3345 return -EINVAL; 3346 } 3347 if (sectors < my_mddev->dev_sectors) 3348 return -EINVAL; /* component must fit device */ 3349 3350 rdev->sectors = sectors; 3351 3352 /* 3353 * Check that all other rdevs with the same bdev do not overlap. This 3354 * check does not provide a hard guarantee, it just helps avoid 3355 * dangerous mistakes. 3356 */ 3357 if (sectors > oldsectors && my_mddev->external && 3358 md_rdev_overlaps(rdev)) { 3359 /* 3360 * Someone else could have slipped in a size change here, but 3361 * doing so is just silly. We put oldsectors back because we 3362 * know it is safe, and trust userspace not to race with itself. 3363 */ 3364 rdev->sectors = oldsectors; 3365 return -EBUSY; 3366 } 3367 return len; 3368 } 3369 3370 static struct rdev_sysfs_entry rdev_size = 3371 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3372 3373 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3374 { 3375 unsigned long long recovery_start = rdev->recovery_offset; 3376 3377 if (test_bit(In_sync, &rdev->flags) || 3378 recovery_start == MaxSector) 3379 return sprintf(page, "none\n"); 3380 3381 return sprintf(page, "%llu\n", recovery_start); 3382 } 3383 3384 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3385 { 3386 unsigned long long recovery_start; 3387 3388 if (cmd_match(buf, "none")) 3389 recovery_start = MaxSector; 3390 else if (kstrtoull(buf, 10, &recovery_start)) 3391 return -EINVAL; 3392 3393 if (rdev->mddev->pers && 3394 rdev->raid_disk >= 0) 3395 return -EBUSY; 3396 3397 rdev->recovery_offset = recovery_start; 3398 if (recovery_start == MaxSector) 3399 set_bit(In_sync, &rdev->flags); 3400 else 3401 clear_bit(In_sync, &rdev->flags); 3402 return len; 3403 } 3404 3405 static struct rdev_sysfs_entry rdev_recovery_start = 3406 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3407 3408 /* sysfs access to bad-blocks list. 3409 * We present two files. 3410 * 'bad-blocks' lists sector numbers and lengths of ranges that 3411 * are recorded as bad. The list is truncated to fit within 3412 * the one-page limit of sysfs. 3413 * Writing "sector length" to this file adds an acknowledged 3414 * bad block list. 3415 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3416 * been acknowledged. Writing to this file adds bad blocks 3417 * without acknowledging them. This is largely for testing. 3418 */ 3419 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3420 { 3421 return badblocks_show(&rdev->badblocks, page, 0); 3422 } 3423 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3424 { 3425 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3426 /* Maybe that ack was all we needed */ 3427 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3428 wake_up(&rdev->blocked_wait); 3429 return rv; 3430 } 3431 static struct rdev_sysfs_entry rdev_bad_blocks = 3432 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3433 3434 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3435 { 3436 return badblocks_show(&rdev->badblocks, page, 1); 3437 } 3438 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3439 { 3440 return badblocks_store(&rdev->badblocks, page, len, 1); 3441 } 3442 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3443 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3444 3445 static ssize_t 3446 ppl_sector_show(struct md_rdev *rdev, char *page) 3447 { 3448 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3449 } 3450 3451 static ssize_t 3452 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3453 { 3454 unsigned long long sector; 3455 3456 if (kstrtoull(buf, 10, §or) < 0) 3457 return -EINVAL; 3458 if (sector != (sector_t)sector) 3459 return -EINVAL; 3460 3461 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3462 rdev->raid_disk >= 0) 3463 return -EBUSY; 3464 3465 if (rdev->mddev->persistent) { 3466 if (rdev->mddev->major_version == 0) 3467 return -EINVAL; 3468 if ((sector > rdev->sb_start && 3469 sector - rdev->sb_start > S16_MAX) || 3470 (sector < rdev->sb_start && 3471 rdev->sb_start - sector > -S16_MIN)) 3472 return -EINVAL; 3473 rdev->ppl.offset = sector - rdev->sb_start; 3474 } else if (!rdev->mddev->external) { 3475 return -EBUSY; 3476 } 3477 rdev->ppl.sector = sector; 3478 return len; 3479 } 3480 3481 static struct rdev_sysfs_entry rdev_ppl_sector = 3482 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3483 3484 static ssize_t 3485 ppl_size_show(struct md_rdev *rdev, char *page) 3486 { 3487 return sprintf(page, "%u\n", rdev->ppl.size); 3488 } 3489 3490 static ssize_t 3491 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3492 { 3493 unsigned int size; 3494 3495 if (kstrtouint(buf, 10, &size) < 0) 3496 return -EINVAL; 3497 3498 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3499 rdev->raid_disk >= 0) 3500 return -EBUSY; 3501 3502 if (rdev->mddev->persistent) { 3503 if (rdev->mddev->major_version == 0) 3504 return -EINVAL; 3505 if (size > U16_MAX) 3506 return -EINVAL; 3507 } else if (!rdev->mddev->external) { 3508 return -EBUSY; 3509 } 3510 rdev->ppl.size = size; 3511 return len; 3512 } 3513 3514 static struct rdev_sysfs_entry rdev_ppl_size = 3515 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3516 3517 static struct attribute *rdev_default_attrs[] = { 3518 &rdev_state.attr, 3519 &rdev_errors.attr, 3520 &rdev_slot.attr, 3521 &rdev_offset.attr, 3522 &rdev_new_offset.attr, 3523 &rdev_size.attr, 3524 &rdev_recovery_start.attr, 3525 &rdev_bad_blocks.attr, 3526 &rdev_unack_bad_blocks.attr, 3527 &rdev_ppl_sector.attr, 3528 &rdev_ppl_size.attr, 3529 NULL, 3530 }; 3531 ATTRIBUTE_GROUPS(rdev_default); 3532 static ssize_t 3533 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3534 { 3535 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3536 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3537 3538 if (!entry->show) 3539 return -EIO; 3540 if (!rdev->mddev) 3541 return -ENODEV; 3542 return entry->show(rdev, page); 3543 } 3544 3545 static ssize_t 3546 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3547 const char *page, size_t length) 3548 { 3549 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3550 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3551 struct kernfs_node *kn = NULL; 3552 ssize_t rv; 3553 struct mddev *mddev = rdev->mddev; 3554 3555 if (!entry->store) 3556 return -EIO; 3557 if (!capable(CAP_SYS_ADMIN)) 3558 return -EACCES; 3559 3560 if (entry->store == state_store && cmd_match(page, "remove")) 3561 kn = sysfs_break_active_protection(kobj, attr); 3562 3563 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3564 if (!rv) { 3565 if (rdev->mddev == NULL) 3566 rv = -ENODEV; 3567 else 3568 rv = entry->store(rdev, page, length); 3569 mddev_unlock(mddev); 3570 } 3571 3572 if (kn) 3573 sysfs_unbreak_active_protection(kn); 3574 3575 return rv; 3576 } 3577 3578 static void rdev_free(struct kobject *ko) 3579 { 3580 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3581 kfree(rdev); 3582 } 3583 static const struct sysfs_ops rdev_sysfs_ops = { 3584 .show = rdev_attr_show, 3585 .store = rdev_attr_store, 3586 }; 3587 static const struct kobj_type rdev_ktype = { 3588 .release = rdev_free, 3589 .sysfs_ops = &rdev_sysfs_ops, 3590 .default_groups = rdev_default_groups, 3591 }; 3592 3593 int md_rdev_init(struct md_rdev *rdev) 3594 { 3595 rdev->desc_nr = -1; 3596 rdev->saved_raid_disk = -1; 3597 rdev->raid_disk = -1; 3598 rdev->flags = 0; 3599 rdev->data_offset = 0; 3600 rdev->new_data_offset = 0; 3601 rdev->sb_events = 0; 3602 rdev->last_read_error = 0; 3603 rdev->sb_loaded = 0; 3604 rdev->bb_page = NULL; 3605 atomic_set(&rdev->nr_pending, 0); 3606 atomic_set(&rdev->read_errors, 0); 3607 atomic_set(&rdev->corrected_errors, 0); 3608 3609 INIT_LIST_HEAD(&rdev->same_set); 3610 init_waitqueue_head(&rdev->blocked_wait); 3611 3612 /* Add space to store bad block list. 3613 * This reserves the space even on arrays where it cannot 3614 * be used - I wonder if that matters 3615 */ 3616 return badblocks_init(&rdev->badblocks, 0); 3617 } 3618 EXPORT_SYMBOL_GPL(md_rdev_init); 3619 3620 /* 3621 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3622 * 3623 * mark the device faulty if: 3624 * 3625 * - the device is nonexistent (zero size) 3626 * - the device has no valid superblock 3627 * 3628 * a faulty rdev _never_ has rdev->sb set. 3629 */ 3630 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3631 { 3632 struct md_rdev *rdev; 3633 sector_t size; 3634 int err; 3635 3636 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3637 if (!rdev) 3638 return ERR_PTR(-ENOMEM); 3639 3640 err = md_rdev_init(rdev); 3641 if (err) 3642 goto out_free_rdev; 3643 err = alloc_disk_sb(rdev); 3644 if (err) 3645 goto out_clear_rdev; 3646 3647 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3648 super_format == -2 ? &claim_rdev : rdev, NULL); 3649 if (IS_ERR(rdev->bdev)) { 3650 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3651 MAJOR(newdev), MINOR(newdev)); 3652 err = PTR_ERR(rdev->bdev); 3653 goto out_clear_rdev; 3654 } 3655 3656 kobject_init(&rdev->kobj, &rdev_ktype); 3657 3658 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3659 if (!size) { 3660 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3661 rdev->bdev); 3662 err = -EINVAL; 3663 goto out_blkdev_put; 3664 } 3665 3666 if (super_format >= 0) { 3667 err = super_types[super_format]. 3668 load_super(rdev, NULL, super_minor); 3669 if (err == -EINVAL) { 3670 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3671 rdev->bdev, 3672 super_format, super_minor); 3673 goto out_blkdev_put; 3674 } 3675 if (err < 0) { 3676 pr_warn("md: could not read %pg's sb, not importing!\n", 3677 rdev->bdev); 3678 goto out_blkdev_put; 3679 } 3680 } 3681 3682 return rdev; 3683 3684 out_blkdev_put: 3685 blkdev_put(rdev->bdev, super_format == -2 ? &claim_rdev : rdev); 3686 out_clear_rdev: 3687 md_rdev_clear(rdev); 3688 out_free_rdev: 3689 kfree(rdev); 3690 return ERR_PTR(err); 3691 } 3692 3693 /* 3694 * Check a full RAID array for plausibility 3695 */ 3696 3697 static int analyze_sbs(struct mddev *mddev) 3698 { 3699 int i; 3700 struct md_rdev *rdev, *freshest, *tmp; 3701 3702 freshest = NULL; 3703 rdev_for_each_safe(rdev, tmp, mddev) 3704 switch (super_types[mddev->major_version]. 3705 load_super(rdev, freshest, mddev->minor_version)) { 3706 case 1: 3707 freshest = rdev; 3708 break; 3709 case 0: 3710 break; 3711 default: 3712 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3713 rdev->bdev); 3714 md_kick_rdev_from_array(rdev); 3715 } 3716 3717 /* Cannot find a valid fresh disk */ 3718 if (!freshest) { 3719 pr_warn("md: cannot find a valid disk\n"); 3720 return -EINVAL; 3721 } 3722 3723 super_types[mddev->major_version]. 3724 validate_super(mddev, freshest); 3725 3726 i = 0; 3727 rdev_for_each_safe(rdev, tmp, mddev) { 3728 if (mddev->max_disks && 3729 (rdev->desc_nr >= mddev->max_disks || 3730 i > mddev->max_disks)) { 3731 pr_warn("md: %s: %pg: only %d devices permitted\n", 3732 mdname(mddev), rdev->bdev, 3733 mddev->max_disks); 3734 md_kick_rdev_from_array(rdev); 3735 continue; 3736 } 3737 if (rdev != freshest) { 3738 if (super_types[mddev->major_version]. 3739 validate_super(mddev, rdev)) { 3740 pr_warn("md: kicking non-fresh %pg from array!\n", 3741 rdev->bdev); 3742 md_kick_rdev_from_array(rdev); 3743 continue; 3744 } 3745 } 3746 if (mddev->level == LEVEL_MULTIPATH) { 3747 rdev->desc_nr = i++; 3748 rdev->raid_disk = rdev->desc_nr; 3749 set_bit(In_sync, &rdev->flags); 3750 } else if (rdev->raid_disk >= 3751 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3752 !test_bit(Journal, &rdev->flags)) { 3753 rdev->raid_disk = -1; 3754 clear_bit(In_sync, &rdev->flags); 3755 } 3756 } 3757 3758 return 0; 3759 } 3760 3761 /* Read a fixed-point number. 3762 * Numbers in sysfs attributes should be in "standard" units where 3763 * possible, so time should be in seconds. 3764 * However we internally use a a much smaller unit such as 3765 * milliseconds or jiffies. 3766 * This function takes a decimal number with a possible fractional 3767 * component, and produces an integer which is the result of 3768 * multiplying that number by 10^'scale'. 3769 * all without any floating-point arithmetic. 3770 */ 3771 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3772 { 3773 unsigned long result = 0; 3774 long decimals = -1; 3775 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3776 if (*cp == '.') 3777 decimals = 0; 3778 else if (decimals < scale) { 3779 unsigned int value; 3780 value = *cp - '0'; 3781 result = result * 10 + value; 3782 if (decimals >= 0) 3783 decimals++; 3784 } 3785 cp++; 3786 } 3787 if (*cp == '\n') 3788 cp++; 3789 if (*cp) 3790 return -EINVAL; 3791 if (decimals < 0) 3792 decimals = 0; 3793 *res = result * int_pow(10, scale - decimals); 3794 return 0; 3795 } 3796 3797 static ssize_t 3798 safe_delay_show(struct mddev *mddev, char *page) 3799 { 3800 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3801 3802 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3803 } 3804 static ssize_t 3805 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3806 { 3807 unsigned long msec; 3808 3809 if (mddev_is_clustered(mddev)) { 3810 pr_warn("md: Safemode is disabled for clustered mode\n"); 3811 return -EINVAL; 3812 } 3813 3814 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3815 return -EINVAL; 3816 if (msec == 0) 3817 mddev->safemode_delay = 0; 3818 else { 3819 unsigned long old_delay = mddev->safemode_delay; 3820 unsigned long new_delay = (msec*HZ)/1000; 3821 3822 if (new_delay == 0) 3823 new_delay = 1; 3824 mddev->safemode_delay = new_delay; 3825 if (new_delay < old_delay || old_delay == 0) 3826 mod_timer(&mddev->safemode_timer, jiffies+1); 3827 } 3828 return len; 3829 } 3830 static struct md_sysfs_entry md_safe_delay = 3831 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3832 3833 static ssize_t 3834 level_show(struct mddev *mddev, char *page) 3835 { 3836 struct md_personality *p; 3837 int ret; 3838 spin_lock(&mddev->lock); 3839 p = mddev->pers; 3840 if (p) 3841 ret = sprintf(page, "%s\n", p->name); 3842 else if (mddev->clevel[0]) 3843 ret = sprintf(page, "%s\n", mddev->clevel); 3844 else if (mddev->level != LEVEL_NONE) 3845 ret = sprintf(page, "%d\n", mddev->level); 3846 else 3847 ret = 0; 3848 spin_unlock(&mddev->lock); 3849 return ret; 3850 } 3851 3852 static ssize_t 3853 level_store(struct mddev *mddev, const char *buf, size_t len) 3854 { 3855 char clevel[16]; 3856 ssize_t rv; 3857 size_t slen = len; 3858 struct md_personality *pers, *oldpers; 3859 long level; 3860 void *priv, *oldpriv; 3861 struct md_rdev *rdev; 3862 3863 if (slen == 0 || slen >= sizeof(clevel)) 3864 return -EINVAL; 3865 3866 rv = mddev_lock(mddev); 3867 if (rv) 3868 return rv; 3869 3870 if (mddev->pers == NULL) { 3871 strncpy(mddev->clevel, buf, slen); 3872 if (mddev->clevel[slen-1] == '\n') 3873 slen--; 3874 mddev->clevel[slen] = 0; 3875 mddev->level = LEVEL_NONE; 3876 rv = len; 3877 goto out_unlock; 3878 } 3879 rv = -EROFS; 3880 if (!md_is_rdwr(mddev)) 3881 goto out_unlock; 3882 3883 /* request to change the personality. Need to ensure: 3884 * - array is not engaged in resync/recovery/reshape 3885 * - old personality can be suspended 3886 * - new personality will access other array. 3887 */ 3888 3889 rv = -EBUSY; 3890 if (mddev->sync_thread || 3891 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3892 mddev->reshape_position != MaxSector || 3893 mddev->sysfs_active) 3894 goto out_unlock; 3895 3896 rv = -EINVAL; 3897 if (!mddev->pers->quiesce) { 3898 pr_warn("md: %s: %s does not support online personality change\n", 3899 mdname(mddev), mddev->pers->name); 3900 goto out_unlock; 3901 } 3902 3903 /* Now find the new personality */ 3904 strncpy(clevel, buf, slen); 3905 if (clevel[slen-1] == '\n') 3906 slen--; 3907 clevel[slen] = 0; 3908 if (kstrtol(clevel, 10, &level)) 3909 level = LEVEL_NONE; 3910 3911 if (request_module("md-%s", clevel) != 0) 3912 request_module("md-level-%s", clevel); 3913 spin_lock(&pers_lock); 3914 pers = find_pers(level, clevel); 3915 if (!pers || !try_module_get(pers->owner)) { 3916 spin_unlock(&pers_lock); 3917 pr_warn("md: personality %s not loaded\n", clevel); 3918 rv = -EINVAL; 3919 goto out_unlock; 3920 } 3921 spin_unlock(&pers_lock); 3922 3923 if (pers == mddev->pers) { 3924 /* Nothing to do! */ 3925 module_put(pers->owner); 3926 rv = len; 3927 goto out_unlock; 3928 } 3929 if (!pers->takeover) { 3930 module_put(pers->owner); 3931 pr_warn("md: %s: %s does not support personality takeover\n", 3932 mdname(mddev), clevel); 3933 rv = -EINVAL; 3934 goto out_unlock; 3935 } 3936 3937 rdev_for_each(rdev, mddev) 3938 rdev->new_raid_disk = rdev->raid_disk; 3939 3940 /* ->takeover must set new_* and/or delta_disks 3941 * if it succeeds, and may set them when it fails. 3942 */ 3943 priv = pers->takeover(mddev); 3944 if (IS_ERR(priv)) { 3945 mddev->new_level = mddev->level; 3946 mddev->new_layout = mddev->layout; 3947 mddev->new_chunk_sectors = mddev->chunk_sectors; 3948 mddev->raid_disks -= mddev->delta_disks; 3949 mddev->delta_disks = 0; 3950 mddev->reshape_backwards = 0; 3951 module_put(pers->owner); 3952 pr_warn("md: %s: %s would not accept array\n", 3953 mdname(mddev), clevel); 3954 rv = PTR_ERR(priv); 3955 goto out_unlock; 3956 } 3957 3958 /* Looks like we have a winner */ 3959 mddev_suspend(mddev); 3960 mddev_detach(mddev); 3961 3962 spin_lock(&mddev->lock); 3963 oldpers = mddev->pers; 3964 oldpriv = mddev->private; 3965 mddev->pers = pers; 3966 mddev->private = priv; 3967 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3968 mddev->level = mddev->new_level; 3969 mddev->layout = mddev->new_layout; 3970 mddev->chunk_sectors = mddev->new_chunk_sectors; 3971 mddev->delta_disks = 0; 3972 mddev->reshape_backwards = 0; 3973 mddev->degraded = 0; 3974 spin_unlock(&mddev->lock); 3975 3976 if (oldpers->sync_request == NULL && 3977 mddev->external) { 3978 /* We are converting from a no-redundancy array 3979 * to a redundancy array and metadata is managed 3980 * externally so we need to be sure that writes 3981 * won't block due to a need to transition 3982 * clean->dirty 3983 * until external management is started. 3984 */ 3985 mddev->in_sync = 0; 3986 mddev->safemode_delay = 0; 3987 mddev->safemode = 0; 3988 } 3989 3990 oldpers->free(mddev, oldpriv); 3991 3992 if (oldpers->sync_request == NULL && 3993 pers->sync_request != NULL) { 3994 /* need to add the md_redundancy_group */ 3995 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3996 pr_warn("md: cannot register extra attributes for %s\n", 3997 mdname(mddev)); 3998 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3999 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4000 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4001 } 4002 if (oldpers->sync_request != NULL && 4003 pers->sync_request == NULL) { 4004 /* need to remove the md_redundancy_group */ 4005 if (mddev->to_remove == NULL) 4006 mddev->to_remove = &md_redundancy_group; 4007 } 4008 4009 module_put(oldpers->owner); 4010 4011 rdev_for_each(rdev, mddev) { 4012 if (rdev->raid_disk < 0) 4013 continue; 4014 if (rdev->new_raid_disk >= mddev->raid_disks) 4015 rdev->new_raid_disk = -1; 4016 if (rdev->new_raid_disk == rdev->raid_disk) 4017 continue; 4018 sysfs_unlink_rdev(mddev, rdev); 4019 } 4020 rdev_for_each(rdev, mddev) { 4021 if (rdev->raid_disk < 0) 4022 continue; 4023 if (rdev->new_raid_disk == rdev->raid_disk) 4024 continue; 4025 rdev->raid_disk = rdev->new_raid_disk; 4026 if (rdev->raid_disk < 0) 4027 clear_bit(In_sync, &rdev->flags); 4028 else { 4029 if (sysfs_link_rdev(mddev, rdev)) 4030 pr_warn("md: cannot register rd%d for %s after level change\n", 4031 rdev->raid_disk, mdname(mddev)); 4032 } 4033 } 4034 4035 if (pers->sync_request == NULL) { 4036 /* this is now an array without redundancy, so 4037 * it must always be in_sync 4038 */ 4039 mddev->in_sync = 1; 4040 del_timer_sync(&mddev->safemode_timer); 4041 } 4042 blk_set_stacking_limits(&mddev->queue->limits); 4043 pers->run(mddev); 4044 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4045 mddev_resume(mddev); 4046 if (!mddev->thread) 4047 md_update_sb(mddev, 1); 4048 sysfs_notify_dirent_safe(mddev->sysfs_level); 4049 md_new_event(); 4050 rv = len; 4051 out_unlock: 4052 mddev_unlock(mddev); 4053 return rv; 4054 } 4055 4056 static struct md_sysfs_entry md_level = 4057 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4058 4059 static ssize_t 4060 layout_show(struct mddev *mddev, char *page) 4061 { 4062 /* just a number, not meaningful for all levels */ 4063 if (mddev->reshape_position != MaxSector && 4064 mddev->layout != mddev->new_layout) 4065 return sprintf(page, "%d (%d)\n", 4066 mddev->new_layout, mddev->layout); 4067 return sprintf(page, "%d\n", mddev->layout); 4068 } 4069 4070 static ssize_t 4071 layout_store(struct mddev *mddev, const char *buf, size_t len) 4072 { 4073 unsigned int n; 4074 int err; 4075 4076 err = kstrtouint(buf, 10, &n); 4077 if (err < 0) 4078 return err; 4079 err = mddev_lock(mddev); 4080 if (err) 4081 return err; 4082 4083 if (mddev->pers) { 4084 if (mddev->pers->check_reshape == NULL) 4085 err = -EBUSY; 4086 else if (!md_is_rdwr(mddev)) 4087 err = -EROFS; 4088 else { 4089 mddev->new_layout = n; 4090 err = mddev->pers->check_reshape(mddev); 4091 if (err) 4092 mddev->new_layout = mddev->layout; 4093 } 4094 } else { 4095 mddev->new_layout = n; 4096 if (mddev->reshape_position == MaxSector) 4097 mddev->layout = n; 4098 } 4099 mddev_unlock(mddev); 4100 return err ?: len; 4101 } 4102 static struct md_sysfs_entry md_layout = 4103 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4104 4105 static ssize_t 4106 raid_disks_show(struct mddev *mddev, char *page) 4107 { 4108 if (mddev->raid_disks == 0) 4109 return 0; 4110 if (mddev->reshape_position != MaxSector && 4111 mddev->delta_disks != 0) 4112 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4113 mddev->raid_disks - mddev->delta_disks); 4114 return sprintf(page, "%d\n", mddev->raid_disks); 4115 } 4116 4117 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4118 4119 static ssize_t 4120 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4121 { 4122 unsigned int n; 4123 int err; 4124 4125 err = kstrtouint(buf, 10, &n); 4126 if (err < 0) 4127 return err; 4128 4129 err = mddev_lock(mddev); 4130 if (err) 4131 return err; 4132 if (mddev->pers) 4133 err = update_raid_disks(mddev, n); 4134 else if (mddev->reshape_position != MaxSector) { 4135 struct md_rdev *rdev; 4136 int olddisks = mddev->raid_disks - mddev->delta_disks; 4137 4138 err = -EINVAL; 4139 rdev_for_each(rdev, mddev) { 4140 if (olddisks < n && 4141 rdev->data_offset < rdev->new_data_offset) 4142 goto out_unlock; 4143 if (olddisks > n && 4144 rdev->data_offset > rdev->new_data_offset) 4145 goto out_unlock; 4146 } 4147 err = 0; 4148 mddev->delta_disks = n - olddisks; 4149 mddev->raid_disks = n; 4150 mddev->reshape_backwards = (mddev->delta_disks < 0); 4151 } else 4152 mddev->raid_disks = n; 4153 out_unlock: 4154 mddev_unlock(mddev); 4155 return err ? err : len; 4156 } 4157 static struct md_sysfs_entry md_raid_disks = 4158 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4159 4160 static ssize_t 4161 uuid_show(struct mddev *mddev, char *page) 4162 { 4163 return sprintf(page, "%pU\n", mddev->uuid); 4164 } 4165 static struct md_sysfs_entry md_uuid = 4166 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4167 4168 static ssize_t 4169 chunk_size_show(struct mddev *mddev, char *page) 4170 { 4171 if (mddev->reshape_position != MaxSector && 4172 mddev->chunk_sectors != mddev->new_chunk_sectors) 4173 return sprintf(page, "%d (%d)\n", 4174 mddev->new_chunk_sectors << 9, 4175 mddev->chunk_sectors << 9); 4176 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4177 } 4178 4179 static ssize_t 4180 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4181 { 4182 unsigned long n; 4183 int err; 4184 4185 err = kstrtoul(buf, 10, &n); 4186 if (err < 0) 4187 return err; 4188 4189 err = mddev_lock(mddev); 4190 if (err) 4191 return err; 4192 if (mddev->pers) { 4193 if (mddev->pers->check_reshape == NULL) 4194 err = -EBUSY; 4195 else if (!md_is_rdwr(mddev)) 4196 err = -EROFS; 4197 else { 4198 mddev->new_chunk_sectors = n >> 9; 4199 err = mddev->pers->check_reshape(mddev); 4200 if (err) 4201 mddev->new_chunk_sectors = mddev->chunk_sectors; 4202 } 4203 } else { 4204 mddev->new_chunk_sectors = n >> 9; 4205 if (mddev->reshape_position == MaxSector) 4206 mddev->chunk_sectors = n >> 9; 4207 } 4208 mddev_unlock(mddev); 4209 return err ?: len; 4210 } 4211 static struct md_sysfs_entry md_chunk_size = 4212 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4213 4214 static ssize_t 4215 resync_start_show(struct mddev *mddev, char *page) 4216 { 4217 if (mddev->recovery_cp == MaxSector) 4218 return sprintf(page, "none\n"); 4219 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4220 } 4221 4222 static ssize_t 4223 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4224 { 4225 unsigned long long n; 4226 int err; 4227 4228 if (cmd_match(buf, "none")) 4229 n = MaxSector; 4230 else { 4231 err = kstrtoull(buf, 10, &n); 4232 if (err < 0) 4233 return err; 4234 if (n != (sector_t)n) 4235 return -EINVAL; 4236 } 4237 4238 err = mddev_lock(mddev); 4239 if (err) 4240 return err; 4241 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4242 err = -EBUSY; 4243 4244 if (!err) { 4245 mddev->recovery_cp = n; 4246 if (mddev->pers) 4247 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4248 } 4249 mddev_unlock(mddev); 4250 return err ?: len; 4251 } 4252 static struct md_sysfs_entry md_resync_start = 4253 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4254 resync_start_show, resync_start_store); 4255 4256 /* 4257 * The array state can be: 4258 * 4259 * clear 4260 * No devices, no size, no level 4261 * Equivalent to STOP_ARRAY ioctl 4262 * inactive 4263 * May have some settings, but array is not active 4264 * all IO results in error 4265 * When written, doesn't tear down array, but just stops it 4266 * suspended (not supported yet) 4267 * All IO requests will block. The array can be reconfigured. 4268 * Writing this, if accepted, will block until array is quiescent 4269 * readonly 4270 * no resync can happen. no superblocks get written. 4271 * write requests fail 4272 * read-auto 4273 * like readonly, but behaves like 'clean' on a write request. 4274 * 4275 * clean - no pending writes, but otherwise active. 4276 * When written to inactive array, starts without resync 4277 * If a write request arrives then 4278 * if metadata is known, mark 'dirty' and switch to 'active'. 4279 * if not known, block and switch to write-pending 4280 * If written to an active array that has pending writes, then fails. 4281 * active 4282 * fully active: IO and resync can be happening. 4283 * When written to inactive array, starts with resync 4284 * 4285 * write-pending 4286 * clean, but writes are blocked waiting for 'active' to be written. 4287 * 4288 * active-idle 4289 * like active, but no writes have been seen for a while (100msec). 4290 * 4291 * broken 4292 * Array is failed. It's useful because mounted-arrays aren't stopped 4293 * when array is failed, so this state will at least alert the user that 4294 * something is wrong. 4295 */ 4296 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4297 write_pending, active_idle, broken, bad_word}; 4298 static char *array_states[] = { 4299 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4300 "write-pending", "active-idle", "broken", NULL }; 4301 4302 static int match_word(const char *word, char **list) 4303 { 4304 int n; 4305 for (n=0; list[n]; n++) 4306 if (cmd_match(word, list[n])) 4307 break; 4308 return n; 4309 } 4310 4311 static ssize_t 4312 array_state_show(struct mddev *mddev, char *page) 4313 { 4314 enum array_state st = inactive; 4315 4316 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4317 switch(mddev->ro) { 4318 case MD_RDONLY: 4319 st = readonly; 4320 break; 4321 case MD_AUTO_READ: 4322 st = read_auto; 4323 break; 4324 case MD_RDWR: 4325 spin_lock(&mddev->lock); 4326 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4327 st = write_pending; 4328 else if (mddev->in_sync) 4329 st = clean; 4330 else if (mddev->safemode) 4331 st = active_idle; 4332 else 4333 st = active; 4334 spin_unlock(&mddev->lock); 4335 } 4336 4337 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4338 st = broken; 4339 } else { 4340 if (list_empty(&mddev->disks) && 4341 mddev->raid_disks == 0 && 4342 mddev->dev_sectors == 0) 4343 st = clear; 4344 else 4345 st = inactive; 4346 } 4347 return sprintf(page, "%s\n", array_states[st]); 4348 } 4349 4350 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4351 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4352 static int restart_array(struct mddev *mddev); 4353 4354 static ssize_t 4355 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4356 { 4357 int err = 0; 4358 enum array_state st = match_word(buf, array_states); 4359 4360 if (mddev->pers && (st == active || st == clean) && 4361 mddev->ro != MD_RDONLY) { 4362 /* don't take reconfig_mutex when toggling between 4363 * clean and active 4364 */ 4365 spin_lock(&mddev->lock); 4366 if (st == active) { 4367 restart_array(mddev); 4368 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4369 md_wakeup_thread(mddev->thread); 4370 wake_up(&mddev->sb_wait); 4371 } else /* st == clean */ { 4372 restart_array(mddev); 4373 if (!set_in_sync(mddev)) 4374 err = -EBUSY; 4375 } 4376 if (!err) 4377 sysfs_notify_dirent_safe(mddev->sysfs_state); 4378 spin_unlock(&mddev->lock); 4379 return err ?: len; 4380 } 4381 err = mddev_lock(mddev); 4382 if (err) 4383 return err; 4384 err = -EINVAL; 4385 switch(st) { 4386 case bad_word: 4387 break; 4388 case clear: 4389 /* stopping an active array */ 4390 err = do_md_stop(mddev, 0, NULL); 4391 break; 4392 case inactive: 4393 /* stopping an active array */ 4394 if (mddev->pers) 4395 err = do_md_stop(mddev, 2, NULL); 4396 else 4397 err = 0; /* already inactive */ 4398 break; 4399 case suspended: 4400 break; /* not supported yet */ 4401 case readonly: 4402 if (mddev->pers) 4403 err = md_set_readonly(mddev, NULL); 4404 else { 4405 mddev->ro = MD_RDONLY; 4406 set_disk_ro(mddev->gendisk, 1); 4407 err = do_md_run(mddev); 4408 } 4409 break; 4410 case read_auto: 4411 if (mddev->pers) { 4412 if (md_is_rdwr(mddev)) 4413 err = md_set_readonly(mddev, NULL); 4414 else if (mddev->ro == MD_RDONLY) 4415 err = restart_array(mddev); 4416 if (err == 0) { 4417 mddev->ro = MD_AUTO_READ; 4418 set_disk_ro(mddev->gendisk, 0); 4419 } 4420 } else { 4421 mddev->ro = MD_AUTO_READ; 4422 err = do_md_run(mddev); 4423 } 4424 break; 4425 case clean: 4426 if (mddev->pers) { 4427 err = restart_array(mddev); 4428 if (err) 4429 break; 4430 spin_lock(&mddev->lock); 4431 if (!set_in_sync(mddev)) 4432 err = -EBUSY; 4433 spin_unlock(&mddev->lock); 4434 } else 4435 err = -EINVAL; 4436 break; 4437 case active: 4438 if (mddev->pers) { 4439 err = restart_array(mddev); 4440 if (err) 4441 break; 4442 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4443 wake_up(&mddev->sb_wait); 4444 err = 0; 4445 } else { 4446 mddev->ro = MD_RDWR; 4447 set_disk_ro(mddev->gendisk, 0); 4448 err = do_md_run(mddev); 4449 } 4450 break; 4451 case write_pending: 4452 case active_idle: 4453 case broken: 4454 /* these cannot be set */ 4455 break; 4456 } 4457 4458 if (!err) { 4459 if (mddev->hold_active == UNTIL_IOCTL) 4460 mddev->hold_active = 0; 4461 sysfs_notify_dirent_safe(mddev->sysfs_state); 4462 } 4463 mddev_unlock(mddev); 4464 return err ?: len; 4465 } 4466 static struct md_sysfs_entry md_array_state = 4467 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4468 4469 static ssize_t 4470 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4471 return sprintf(page, "%d\n", 4472 atomic_read(&mddev->max_corr_read_errors)); 4473 } 4474 4475 static ssize_t 4476 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4477 { 4478 unsigned int n; 4479 int rv; 4480 4481 rv = kstrtouint(buf, 10, &n); 4482 if (rv < 0) 4483 return rv; 4484 if (n > INT_MAX) 4485 return -EINVAL; 4486 atomic_set(&mddev->max_corr_read_errors, n); 4487 return len; 4488 } 4489 4490 static struct md_sysfs_entry max_corr_read_errors = 4491 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4492 max_corrected_read_errors_store); 4493 4494 static ssize_t 4495 null_show(struct mddev *mddev, char *page) 4496 { 4497 return -EINVAL; 4498 } 4499 4500 static ssize_t 4501 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4502 { 4503 /* buf must be %d:%d\n? giving major and minor numbers */ 4504 /* The new device is added to the array. 4505 * If the array has a persistent superblock, we read the 4506 * superblock to initialise info and check validity. 4507 * Otherwise, only checking done is that in bind_rdev_to_array, 4508 * which mainly checks size. 4509 */ 4510 char *e; 4511 int major = simple_strtoul(buf, &e, 10); 4512 int minor; 4513 dev_t dev; 4514 struct md_rdev *rdev; 4515 int err; 4516 4517 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4518 return -EINVAL; 4519 minor = simple_strtoul(e+1, &e, 10); 4520 if (*e && *e != '\n') 4521 return -EINVAL; 4522 dev = MKDEV(major, minor); 4523 if (major != MAJOR(dev) || 4524 minor != MINOR(dev)) 4525 return -EOVERFLOW; 4526 4527 err = mddev_lock(mddev); 4528 if (err) 4529 return err; 4530 if (mddev->persistent) { 4531 rdev = md_import_device(dev, mddev->major_version, 4532 mddev->minor_version); 4533 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4534 struct md_rdev *rdev0 4535 = list_entry(mddev->disks.next, 4536 struct md_rdev, same_set); 4537 err = super_types[mddev->major_version] 4538 .load_super(rdev, rdev0, mddev->minor_version); 4539 if (err < 0) 4540 goto out; 4541 } 4542 } else if (mddev->external) 4543 rdev = md_import_device(dev, -2, -1); 4544 else 4545 rdev = md_import_device(dev, -1, -1); 4546 4547 if (IS_ERR(rdev)) { 4548 mddev_unlock(mddev); 4549 return PTR_ERR(rdev); 4550 } 4551 err = bind_rdev_to_array(rdev, mddev); 4552 out: 4553 if (err) 4554 export_rdev(rdev, mddev); 4555 mddev_unlock(mddev); 4556 if (!err) 4557 md_new_event(); 4558 return err ? err : len; 4559 } 4560 4561 static struct md_sysfs_entry md_new_device = 4562 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4563 4564 static ssize_t 4565 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4566 { 4567 char *end; 4568 unsigned long chunk, end_chunk; 4569 int err; 4570 4571 err = mddev_lock(mddev); 4572 if (err) 4573 return err; 4574 if (!mddev->bitmap) 4575 goto out; 4576 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4577 while (*buf) { 4578 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4579 if (buf == end) break; 4580 if (*end == '-') { /* range */ 4581 buf = end + 1; 4582 end_chunk = simple_strtoul(buf, &end, 0); 4583 if (buf == end) break; 4584 } 4585 if (*end && !isspace(*end)) break; 4586 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4587 buf = skip_spaces(end); 4588 } 4589 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4590 out: 4591 mddev_unlock(mddev); 4592 return len; 4593 } 4594 4595 static struct md_sysfs_entry md_bitmap = 4596 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4597 4598 static ssize_t 4599 size_show(struct mddev *mddev, char *page) 4600 { 4601 return sprintf(page, "%llu\n", 4602 (unsigned long long)mddev->dev_sectors / 2); 4603 } 4604 4605 static int update_size(struct mddev *mddev, sector_t num_sectors); 4606 4607 static ssize_t 4608 size_store(struct mddev *mddev, const char *buf, size_t len) 4609 { 4610 /* If array is inactive, we can reduce the component size, but 4611 * not increase it (except from 0). 4612 * If array is active, we can try an on-line resize 4613 */ 4614 sector_t sectors; 4615 int err = strict_blocks_to_sectors(buf, §ors); 4616 4617 if (err < 0) 4618 return err; 4619 err = mddev_lock(mddev); 4620 if (err) 4621 return err; 4622 if (mddev->pers) { 4623 err = update_size(mddev, sectors); 4624 if (err == 0) 4625 md_update_sb(mddev, 1); 4626 } else { 4627 if (mddev->dev_sectors == 0 || 4628 mddev->dev_sectors > sectors) 4629 mddev->dev_sectors = sectors; 4630 else 4631 err = -ENOSPC; 4632 } 4633 mddev_unlock(mddev); 4634 return err ? err : len; 4635 } 4636 4637 static struct md_sysfs_entry md_size = 4638 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4639 4640 /* Metadata version. 4641 * This is one of 4642 * 'none' for arrays with no metadata (good luck...) 4643 * 'external' for arrays with externally managed metadata, 4644 * or N.M for internally known formats 4645 */ 4646 static ssize_t 4647 metadata_show(struct mddev *mddev, char *page) 4648 { 4649 if (mddev->persistent) 4650 return sprintf(page, "%d.%d\n", 4651 mddev->major_version, mddev->minor_version); 4652 else if (mddev->external) 4653 return sprintf(page, "external:%s\n", mddev->metadata_type); 4654 else 4655 return sprintf(page, "none\n"); 4656 } 4657 4658 static ssize_t 4659 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4660 { 4661 int major, minor; 4662 char *e; 4663 int err; 4664 /* Changing the details of 'external' metadata is 4665 * always permitted. Otherwise there must be 4666 * no devices attached to the array. 4667 */ 4668 4669 err = mddev_lock(mddev); 4670 if (err) 4671 return err; 4672 err = -EBUSY; 4673 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4674 ; 4675 else if (!list_empty(&mddev->disks)) 4676 goto out_unlock; 4677 4678 err = 0; 4679 if (cmd_match(buf, "none")) { 4680 mddev->persistent = 0; 4681 mddev->external = 0; 4682 mddev->major_version = 0; 4683 mddev->minor_version = 90; 4684 goto out_unlock; 4685 } 4686 if (strncmp(buf, "external:", 9) == 0) { 4687 size_t namelen = len-9; 4688 if (namelen >= sizeof(mddev->metadata_type)) 4689 namelen = sizeof(mddev->metadata_type)-1; 4690 strncpy(mddev->metadata_type, buf+9, namelen); 4691 mddev->metadata_type[namelen] = 0; 4692 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4693 mddev->metadata_type[--namelen] = 0; 4694 mddev->persistent = 0; 4695 mddev->external = 1; 4696 mddev->major_version = 0; 4697 mddev->minor_version = 90; 4698 goto out_unlock; 4699 } 4700 major = simple_strtoul(buf, &e, 10); 4701 err = -EINVAL; 4702 if (e==buf || *e != '.') 4703 goto out_unlock; 4704 buf = e+1; 4705 minor = simple_strtoul(buf, &e, 10); 4706 if (e==buf || (*e && *e != '\n') ) 4707 goto out_unlock; 4708 err = -ENOENT; 4709 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4710 goto out_unlock; 4711 mddev->major_version = major; 4712 mddev->minor_version = minor; 4713 mddev->persistent = 1; 4714 mddev->external = 0; 4715 err = 0; 4716 out_unlock: 4717 mddev_unlock(mddev); 4718 return err ?: len; 4719 } 4720 4721 static struct md_sysfs_entry md_metadata = 4722 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4723 4724 static ssize_t 4725 action_show(struct mddev *mddev, char *page) 4726 { 4727 char *type = "idle"; 4728 unsigned long recovery = mddev->recovery; 4729 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4730 type = "frozen"; 4731 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4732 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4733 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4734 type = "reshape"; 4735 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4736 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4737 type = "resync"; 4738 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4739 type = "check"; 4740 else 4741 type = "repair"; 4742 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4743 type = "recover"; 4744 else if (mddev->reshape_position != MaxSector) 4745 type = "reshape"; 4746 } 4747 return sprintf(page, "%s\n", type); 4748 } 4749 4750 static ssize_t 4751 action_store(struct mddev *mddev, const char *page, size_t len) 4752 { 4753 if (!mddev->pers || !mddev->pers->sync_request) 4754 return -EINVAL; 4755 4756 4757 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4758 if (cmd_match(page, "frozen")) 4759 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4760 else 4761 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4762 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4763 mddev_lock(mddev) == 0) { 4764 if (work_pending(&mddev->del_work)) 4765 flush_workqueue(md_misc_wq); 4766 if (mddev->sync_thread) { 4767 sector_t save_rp = mddev->reshape_position; 4768 4769 mddev_unlock(mddev); 4770 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4771 md_unregister_thread(&mddev->sync_thread); 4772 mddev_lock_nointr(mddev); 4773 /* 4774 * set RECOVERY_INTR again and restore reshape 4775 * position in case others changed them after 4776 * got lock, eg, reshape_position_store and 4777 * md_check_recovery. 4778 */ 4779 mddev->reshape_position = save_rp; 4780 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4781 md_reap_sync_thread(mddev); 4782 } 4783 mddev_unlock(mddev); 4784 } 4785 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4786 return -EBUSY; 4787 else if (cmd_match(page, "resync")) 4788 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4789 else if (cmd_match(page, "recover")) { 4790 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4791 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4792 } else if (cmd_match(page, "reshape")) { 4793 int err; 4794 if (mddev->pers->start_reshape == NULL) 4795 return -EINVAL; 4796 err = mddev_lock(mddev); 4797 if (!err) { 4798 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4799 err = -EBUSY; 4800 } else if (mddev->reshape_position == MaxSector || 4801 mddev->pers->check_reshape == NULL || 4802 mddev->pers->check_reshape(mddev)) { 4803 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4804 err = mddev->pers->start_reshape(mddev); 4805 } else { 4806 /* 4807 * If reshape is still in progress, and 4808 * md_check_recovery() can continue to reshape, 4809 * don't restart reshape because data can be 4810 * corrupted for raid456. 4811 */ 4812 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4813 } 4814 mddev_unlock(mddev); 4815 } 4816 if (err) 4817 return err; 4818 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4819 } else { 4820 if (cmd_match(page, "check")) 4821 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4822 else if (!cmd_match(page, "repair")) 4823 return -EINVAL; 4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4825 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4826 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4827 } 4828 if (mddev->ro == MD_AUTO_READ) { 4829 /* A write to sync_action is enough to justify 4830 * canceling read-auto mode 4831 */ 4832 mddev->ro = MD_RDWR; 4833 md_wakeup_thread(mddev->sync_thread); 4834 } 4835 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4836 md_wakeup_thread(mddev->thread); 4837 sysfs_notify_dirent_safe(mddev->sysfs_action); 4838 return len; 4839 } 4840 4841 static struct md_sysfs_entry md_scan_mode = 4842 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4843 4844 static ssize_t 4845 last_sync_action_show(struct mddev *mddev, char *page) 4846 { 4847 return sprintf(page, "%s\n", mddev->last_sync_action); 4848 } 4849 4850 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4851 4852 static ssize_t 4853 mismatch_cnt_show(struct mddev *mddev, char *page) 4854 { 4855 return sprintf(page, "%llu\n", 4856 (unsigned long long) 4857 atomic64_read(&mddev->resync_mismatches)); 4858 } 4859 4860 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4861 4862 static ssize_t 4863 sync_min_show(struct mddev *mddev, char *page) 4864 { 4865 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4866 mddev->sync_speed_min ? "local": "system"); 4867 } 4868 4869 static ssize_t 4870 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4871 { 4872 unsigned int min; 4873 int rv; 4874 4875 if (strncmp(buf, "system", 6)==0) { 4876 min = 0; 4877 } else { 4878 rv = kstrtouint(buf, 10, &min); 4879 if (rv < 0) 4880 return rv; 4881 if (min == 0) 4882 return -EINVAL; 4883 } 4884 mddev->sync_speed_min = min; 4885 return len; 4886 } 4887 4888 static struct md_sysfs_entry md_sync_min = 4889 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4890 4891 static ssize_t 4892 sync_max_show(struct mddev *mddev, char *page) 4893 { 4894 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4895 mddev->sync_speed_max ? "local": "system"); 4896 } 4897 4898 static ssize_t 4899 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4900 { 4901 unsigned int max; 4902 int rv; 4903 4904 if (strncmp(buf, "system", 6)==0) { 4905 max = 0; 4906 } else { 4907 rv = kstrtouint(buf, 10, &max); 4908 if (rv < 0) 4909 return rv; 4910 if (max == 0) 4911 return -EINVAL; 4912 } 4913 mddev->sync_speed_max = max; 4914 return len; 4915 } 4916 4917 static struct md_sysfs_entry md_sync_max = 4918 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4919 4920 static ssize_t 4921 degraded_show(struct mddev *mddev, char *page) 4922 { 4923 return sprintf(page, "%d\n", mddev->degraded); 4924 } 4925 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4926 4927 static ssize_t 4928 sync_force_parallel_show(struct mddev *mddev, char *page) 4929 { 4930 return sprintf(page, "%d\n", mddev->parallel_resync); 4931 } 4932 4933 static ssize_t 4934 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4935 { 4936 long n; 4937 4938 if (kstrtol(buf, 10, &n)) 4939 return -EINVAL; 4940 4941 if (n != 0 && n != 1) 4942 return -EINVAL; 4943 4944 mddev->parallel_resync = n; 4945 4946 if (mddev->sync_thread) 4947 wake_up(&resync_wait); 4948 4949 return len; 4950 } 4951 4952 /* force parallel resync, even with shared block devices */ 4953 static struct md_sysfs_entry md_sync_force_parallel = 4954 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4955 sync_force_parallel_show, sync_force_parallel_store); 4956 4957 static ssize_t 4958 sync_speed_show(struct mddev *mddev, char *page) 4959 { 4960 unsigned long resync, dt, db; 4961 if (mddev->curr_resync == MD_RESYNC_NONE) 4962 return sprintf(page, "none\n"); 4963 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4964 dt = (jiffies - mddev->resync_mark) / HZ; 4965 if (!dt) dt++; 4966 db = resync - mddev->resync_mark_cnt; 4967 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4968 } 4969 4970 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4971 4972 static ssize_t 4973 sync_completed_show(struct mddev *mddev, char *page) 4974 { 4975 unsigned long long max_sectors, resync; 4976 4977 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4978 return sprintf(page, "none\n"); 4979 4980 if (mddev->curr_resync == MD_RESYNC_YIELDED || 4981 mddev->curr_resync == MD_RESYNC_DELAYED) 4982 return sprintf(page, "delayed\n"); 4983 4984 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4985 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4986 max_sectors = mddev->resync_max_sectors; 4987 else 4988 max_sectors = mddev->dev_sectors; 4989 4990 resync = mddev->curr_resync_completed; 4991 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4992 } 4993 4994 static struct md_sysfs_entry md_sync_completed = 4995 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4996 4997 static ssize_t 4998 min_sync_show(struct mddev *mddev, char *page) 4999 { 5000 return sprintf(page, "%llu\n", 5001 (unsigned long long)mddev->resync_min); 5002 } 5003 static ssize_t 5004 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5005 { 5006 unsigned long long min; 5007 int err; 5008 5009 if (kstrtoull(buf, 10, &min)) 5010 return -EINVAL; 5011 5012 spin_lock(&mddev->lock); 5013 err = -EINVAL; 5014 if (min > mddev->resync_max) 5015 goto out_unlock; 5016 5017 err = -EBUSY; 5018 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5019 goto out_unlock; 5020 5021 /* Round down to multiple of 4K for safety */ 5022 mddev->resync_min = round_down(min, 8); 5023 err = 0; 5024 5025 out_unlock: 5026 spin_unlock(&mddev->lock); 5027 return err ?: len; 5028 } 5029 5030 static struct md_sysfs_entry md_min_sync = 5031 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5032 5033 static ssize_t 5034 max_sync_show(struct mddev *mddev, char *page) 5035 { 5036 if (mddev->resync_max == MaxSector) 5037 return sprintf(page, "max\n"); 5038 else 5039 return sprintf(page, "%llu\n", 5040 (unsigned long long)mddev->resync_max); 5041 } 5042 static ssize_t 5043 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5044 { 5045 int err; 5046 spin_lock(&mddev->lock); 5047 if (strncmp(buf, "max", 3) == 0) 5048 mddev->resync_max = MaxSector; 5049 else { 5050 unsigned long long max; 5051 int chunk; 5052 5053 err = -EINVAL; 5054 if (kstrtoull(buf, 10, &max)) 5055 goto out_unlock; 5056 if (max < mddev->resync_min) 5057 goto out_unlock; 5058 5059 err = -EBUSY; 5060 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5061 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5062 goto out_unlock; 5063 5064 /* Must be a multiple of chunk_size */ 5065 chunk = mddev->chunk_sectors; 5066 if (chunk) { 5067 sector_t temp = max; 5068 5069 err = -EINVAL; 5070 if (sector_div(temp, chunk)) 5071 goto out_unlock; 5072 } 5073 mddev->resync_max = max; 5074 } 5075 wake_up(&mddev->recovery_wait); 5076 err = 0; 5077 out_unlock: 5078 spin_unlock(&mddev->lock); 5079 return err ?: len; 5080 } 5081 5082 static struct md_sysfs_entry md_max_sync = 5083 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5084 5085 static ssize_t 5086 suspend_lo_show(struct mddev *mddev, char *page) 5087 { 5088 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5089 } 5090 5091 static ssize_t 5092 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5093 { 5094 unsigned long long new; 5095 int err; 5096 5097 err = kstrtoull(buf, 10, &new); 5098 if (err < 0) 5099 return err; 5100 if (new != (sector_t)new) 5101 return -EINVAL; 5102 5103 err = mddev_lock(mddev); 5104 if (err) 5105 return err; 5106 err = -EINVAL; 5107 if (mddev->pers == NULL || 5108 mddev->pers->quiesce == NULL) 5109 goto unlock; 5110 mddev_suspend(mddev); 5111 mddev->suspend_lo = new; 5112 mddev_resume(mddev); 5113 5114 err = 0; 5115 unlock: 5116 mddev_unlock(mddev); 5117 return err ?: len; 5118 } 5119 static struct md_sysfs_entry md_suspend_lo = 5120 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5121 5122 static ssize_t 5123 suspend_hi_show(struct mddev *mddev, char *page) 5124 { 5125 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5126 } 5127 5128 static ssize_t 5129 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5130 { 5131 unsigned long long new; 5132 int err; 5133 5134 err = kstrtoull(buf, 10, &new); 5135 if (err < 0) 5136 return err; 5137 if (new != (sector_t)new) 5138 return -EINVAL; 5139 5140 err = mddev_lock(mddev); 5141 if (err) 5142 return err; 5143 err = -EINVAL; 5144 if (mddev->pers == NULL) 5145 goto unlock; 5146 5147 mddev_suspend(mddev); 5148 mddev->suspend_hi = new; 5149 mddev_resume(mddev); 5150 5151 err = 0; 5152 unlock: 5153 mddev_unlock(mddev); 5154 return err ?: len; 5155 } 5156 static struct md_sysfs_entry md_suspend_hi = 5157 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5158 5159 static ssize_t 5160 reshape_position_show(struct mddev *mddev, char *page) 5161 { 5162 if (mddev->reshape_position != MaxSector) 5163 return sprintf(page, "%llu\n", 5164 (unsigned long long)mddev->reshape_position); 5165 strcpy(page, "none\n"); 5166 return 5; 5167 } 5168 5169 static ssize_t 5170 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5171 { 5172 struct md_rdev *rdev; 5173 unsigned long long new; 5174 int err; 5175 5176 err = kstrtoull(buf, 10, &new); 5177 if (err < 0) 5178 return err; 5179 if (new != (sector_t)new) 5180 return -EINVAL; 5181 err = mddev_lock(mddev); 5182 if (err) 5183 return err; 5184 err = -EBUSY; 5185 if (mddev->pers) 5186 goto unlock; 5187 mddev->reshape_position = new; 5188 mddev->delta_disks = 0; 5189 mddev->reshape_backwards = 0; 5190 mddev->new_level = mddev->level; 5191 mddev->new_layout = mddev->layout; 5192 mddev->new_chunk_sectors = mddev->chunk_sectors; 5193 rdev_for_each(rdev, mddev) 5194 rdev->new_data_offset = rdev->data_offset; 5195 err = 0; 5196 unlock: 5197 mddev_unlock(mddev); 5198 return err ?: len; 5199 } 5200 5201 static struct md_sysfs_entry md_reshape_position = 5202 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5203 reshape_position_store); 5204 5205 static ssize_t 5206 reshape_direction_show(struct mddev *mddev, char *page) 5207 { 5208 return sprintf(page, "%s\n", 5209 mddev->reshape_backwards ? "backwards" : "forwards"); 5210 } 5211 5212 static ssize_t 5213 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5214 { 5215 int backwards = 0; 5216 int err; 5217 5218 if (cmd_match(buf, "forwards")) 5219 backwards = 0; 5220 else if (cmd_match(buf, "backwards")) 5221 backwards = 1; 5222 else 5223 return -EINVAL; 5224 if (mddev->reshape_backwards == backwards) 5225 return len; 5226 5227 err = mddev_lock(mddev); 5228 if (err) 5229 return err; 5230 /* check if we are allowed to change */ 5231 if (mddev->delta_disks) 5232 err = -EBUSY; 5233 else if (mddev->persistent && 5234 mddev->major_version == 0) 5235 err = -EINVAL; 5236 else 5237 mddev->reshape_backwards = backwards; 5238 mddev_unlock(mddev); 5239 return err ?: len; 5240 } 5241 5242 static struct md_sysfs_entry md_reshape_direction = 5243 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5244 reshape_direction_store); 5245 5246 static ssize_t 5247 array_size_show(struct mddev *mddev, char *page) 5248 { 5249 if (mddev->external_size) 5250 return sprintf(page, "%llu\n", 5251 (unsigned long long)mddev->array_sectors/2); 5252 else 5253 return sprintf(page, "default\n"); 5254 } 5255 5256 static ssize_t 5257 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5258 { 5259 sector_t sectors; 5260 int err; 5261 5262 err = mddev_lock(mddev); 5263 if (err) 5264 return err; 5265 5266 /* cluster raid doesn't support change array_sectors */ 5267 if (mddev_is_clustered(mddev)) { 5268 mddev_unlock(mddev); 5269 return -EINVAL; 5270 } 5271 5272 if (strncmp(buf, "default", 7) == 0) { 5273 if (mddev->pers) 5274 sectors = mddev->pers->size(mddev, 0, 0); 5275 else 5276 sectors = mddev->array_sectors; 5277 5278 mddev->external_size = 0; 5279 } else { 5280 if (strict_blocks_to_sectors(buf, §ors) < 0) 5281 err = -EINVAL; 5282 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5283 err = -E2BIG; 5284 else 5285 mddev->external_size = 1; 5286 } 5287 5288 if (!err) { 5289 mddev->array_sectors = sectors; 5290 if (mddev->pers) 5291 set_capacity_and_notify(mddev->gendisk, 5292 mddev->array_sectors); 5293 } 5294 mddev_unlock(mddev); 5295 return err ?: len; 5296 } 5297 5298 static struct md_sysfs_entry md_array_size = 5299 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5300 array_size_store); 5301 5302 static ssize_t 5303 consistency_policy_show(struct mddev *mddev, char *page) 5304 { 5305 int ret; 5306 5307 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5308 ret = sprintf(page, "journal\n"); 5309 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5310 ret = sprintf(page, "ppl\n"); 5311 } else if (mddev->bitmap) { 5312 ret = sprintf(page, "bitmap\n"); 5313 } else if (mddev->pers) { 5314 if (mddev->pers->sync_request) 5315 ret = sprintf(page, "resync\n"); 5316 else 5317 ret = sprintf(page, "none\n"); 5318 } else { 5319 ret = sprintf(page, "unknown\n"); 5320 } 5321 5322 return ret; 5323 } 5324 5325 static ssize_t 5326 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5327 { 5328 int err = 0; 5329 5330 if (mddev->pers) { 5331 if (mddev->pers->change_consistency_policy) 5332 err = mddev->pers->change_consistency_policy(mddev, buf); 5333 else 5334 err = -EBUSY; 5335 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5336 set_bit(MD_HAS_PPL, &mddev->flags); 5337 } else { 5338 err = -EINVAL; 5339 } 5340 5341 return err ? err : len; 5342 } 5343 5344 static struct md_sysfs_entry md_consistency_policy = 5345 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5346 consistency_policy_store); 5347 5348 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5349 { 5350 return sprintf(page, "%d\n", mddev->fail_last_dev); 5351 } 5352 5353 /* 5354 * Setting fail_last_dev to true to allow last device to be forcibly removed 5355 * from RAID1/RAID10. 5356 */ 5357 static ssize_t 5358 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5359 { 5360 int ret; 5361 bool value; 5362 5363 ret = kstrtobool(buf, &value); 5364 if (ret) 5365 return ret; 5366 5367 if (value != mddev->fail_last_dev) 5368 mddev->fail_last_dev = value; 5369 5370 return len; 5371 } 5372 static struct md_sysfs_entry md_fail_last_dev = 5373 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5374 fail_last_dev_store); 5375 5376 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5377 { 5378 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5379 return sprintf(page, "n/a\n"); 5380 else 5381 return sprintf(page, "%d\n", mddev->serialize_policy); 5382 } 5383 5384 /* 5385 * Setting serialize_policy to true to enforce write IO is not reordered 5386 * for raid1. 5387 */ 5388 static ssize_t 5389 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5390 { 5391 int err; 5392 bool value; 5393 5394 err = kstrtobool(buf, &value); 5395 if (err) 5396 return err; 5397 5398 if (value == mddev->serialize_policy) 5399 return len; 5400 5401 err = mddev_lock(mddev); 5402 if (err) 5403 return err; 5404 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5405 pr_err("md: serialize_policy is only effective for raid1\n"); 5406 err = -EINVAL; 5407 goto unlock; 5408 } 5409 5410 mddev_suspend(mddev); 5411 if (value) 5412 mddev_create_serial_pool(mddev, NULL, true); 5413 else 5414 mddev_destroy_serial_pool(mddev, NULL, true); 5415 mddev->serialize_policy = value; 5416 mddev_resume(mddev); 5417 unlock: 5418 mddev_unlock(mddev); 5419 return err ?: len; 5420 } 5421 5422 static struct md_sysfs_entry md_serialize_policy = 5423 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5424 serialize_policy_store); 5425 5426 5427 static struct attribute *md_default_attrs[] = { 5428 &md_level.attr, 5429 &md_layout.attr, 5430 &md_raid_disks.attr, 5431 &md_uuid.attr, 5432 &md_chunk_size.attr, 5433 &md_size.attr, 5434 &md_resync_start.attr, 5435 &md_metadata.attr, 5436 &md_new_device.attr, 5437 &md_safe_delay.attr, 5438 &md_array_state.attr, 5439 &md_reshape_position.attr, 5440 &md_reshape_direction.attr, 5441 &md_array_size.attr, 5442 &max_corr_read_errors.attr, 5443 &md_consistency_policy.attr, 5444 &md_fail_last_dev.attr, 5445 &md_serialize_policy.attr, 5446 NULL, 5447 }; 5448 5449 static const struct attribute_group md_default_group = { 5450 .attrs = md_default_attrs, 5451 }; 5452 5453 static struct attribute *md_redundancy_attrs[] = { 5454 &md_scan_mode.attr, 5455 &md_last_scan_mode.attr, 5456 &md_mismatches.attr, 5457 &md_sync_min.attr, 5458 &md_sync_max.attr, 5459 &md_sync_speed.attr, 5460 &md_sync_force_parallel.attr, 5461 &md_sync_completed.attr, 5462 &md_min_sync.attr, 5463 &md_max_sync.attr, 5464 &md_suspend_lo.attr, 5465 &md_suspend_hi.attr, 5466 &md_bitmap.attr, 5467 &md_degraded.attr, 5468 NULL, 5469 }; 5470 static const struct attribute_group md_redundancy_group = { 5471 .name = NULL, 5472 .attrs = md_redundancy_attrs, 5473 }; 5474 5475 static const struct attribute_group *md_attr_groups[] = { 5476 &md_default_group, 5477 &md_bitmap_group, 5478 NULL, 5479 }; 5480 5481 static ssize_t 5482 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5483 { 5484 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5485 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5486 ssize_t rv; 5487 5488 if (!entry->show) 5489 return -EIO; 5490 spin_lock(&all_mddevs_lock); 5491 if (!mddev_get(mddev)) { 5492 spin_unlock(&all_mddevs_lock); 5493 return -EBUSY; 5494 } 5495 spin_unlock(&all_mddevs_lock); 5496 5497 rv = entry->show(mddev, page); 5498 mddev_put(mddev); 5499 return rv; 5500 } 5501 5502 static ssize_t 5503 md_attr_store(struct kobject *kobj, struct attribute *attr, 5504 const char *page, size_t length) 5505 { 5506 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5507 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5508 ssize_t rv; 5509 5510 if (!entry->store) 5511 return -EIO; 5512 if (!capable(CAP_SYS_ADMIN)) 5513 return -EACCES; 5514 spin_lock(&all_mddevs_lock); 5515 if (!mddev_get(mddev)) { 5516 spin_unlock(&all_mddevs_lock); 5517 return -EBUSY; 5518 } 5519 spin_unlock(&all_mddevs_lock); 5520 rv = entry->store(mddev, page, length); 5521 mddev_put(mddev); 5522 return rv; 5523 } 5524 5525 static void md_kobj_release(struct kobject *ko) 5526 { 5527 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5528 5529 if (mddev->sysfs_state) 5530 sysfs_put(mddev->sysfs_state); 5531 if (mddev->sysfs_level) 5532 sysfs_put(mddev->sysfs_level); 5533 5534 del_gendisk(mddev->gendisk); 5535 put_disk(mddev->gendisk); 5536 } 5537 5538 static const struct sysfs_ops md_sysfs_ops = { 5539 .show = md_attr_show, 5540 .store = md_attr_store, 5541 }; 5542 static const struct kobj_type md_ktype = { 5543 .release = md_kobj_release, 5544 .sysfs_ops = &md_sysfs_ops, 5545 .default_groups = md_attr_groups, 5546 }; 5547 5548 int mdp_major = 0; 5549 5550 static void mddev_delayed_delete(struct work_struct *ws) 5551 { 5552 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5553 5554 kobject_put(&mddev->kobj); 5555 } 5556 5557 static void no_op(struct percpu_ref *r) {} 5558 5559 int mddev_init_writes_pending(struct mddev *mddev) 5560 { 5561 if (mddev->writes_pending.percpu_count_ptr) 5562 return 0; 5563 if (percpu_ref_init(&mddev->writes_pending, no_op, 5564 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5565 return -ENOMEM; 5566 /* We want to start with the refcount at zero */ 5567 percpu_ref_put(&mddev->writes_pending); 5568 return 0; 5569 } 5570 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5571 5572 struct mddev *md_alloc(dev_t dev, char *name) 5573 { 5574 /* 5575 * If dev is zero, name is the name of a device to allocate with 5576 * an arbitrary minor number. It will be "md_???" 5577 * If dev is non-zero it must be a device number with a MAJOR of 5578 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5579 * the device is being created by opening a node in /dev. 5580 * If "name" is not NULL, the device is being created by 5581 * writing to /sys/module/md_mod/parameters/new_array. 5582 */ 5583 static DEFINE_MUTEX(disks_mutex); 5584 struct mddev *mddev; 5585 struct gendisk *disk; 5586 int partitioned; 5587 int shift; 5588 int unit; 5589 int error ; 5590 5591 /* 5592 * Wait for any previous instance of this device to be completely 5593 * removed (mddev_delayed_delete). 5594 */ 5595 flush_workqueue(md_misc_wq); 5596 5597 mutex_lock(&disks_mutex); 5598 mddev = mddev_alloc(dev); 5599 if (IS_ERR(mddev)) { 5600 error = PTR_ERR(mddev); 5601 goto out_unlock; 5602 } 5603 5604 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5605 shift = partitioned ? MdpMinorShift : 0; 5606 unit = MINOR(mddev->unit) >> shift; 5607 5608 if (name && !dev) { 5609 /* Need to ensure that 'name' is not a duplicate. 5610 */ 5611 struct mddev *mddev2; 5612 spin_lock(&all_mddevs_lock); 5613 5614 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5615 if (mddev2->gendisk && 5616 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5617 spin_unlock(&all_mddevs_lock); 5618 error = -EEXIST; 5619 goto out_free_mddev; 5620 } 5621 spin_unlock(&all_mddevs_lock); 5622 } 5623 if (name && dev) 5624 /* 5625 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5626 */ 5627 mddev->hold_active = UNTIL_STOP; 5628 5629 error = -ENOMEM; 5630 disk = blk_alloc_disk(NUMA_NO_NODE); 5631 if (!disk) 5632 goto out_free_mddev; 5633 5634 disk->major = MAJOR(mddev->unit); 5635 disk->first_minor = unit << shift; 5636 disk->minors = 1 << shift; 5637 if (name) 5638 strcpy(disk->disk_name, name); 5639 else if (partitioned) 5640 sprintf(disk->disk_name, "md_d%d", unit); 5641 else 5642 sprintf(disk->disk_name, "md%d", unit); 5643 disk->fops = &md_fops; 5644 disk->private_data = mddev; 5645 5646 mddev->queue = disk->queue; 5647 blk_set_stacking_limits(&mddev->queue->limits); 5648 blk_queue_write_cache(mddev->queue, true, true); 5649 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5650 mddev->gendisk = disk; 5651 error = add_disk(disk); 5652 if (error) 5653 goto out_put_disk; 5654 5655 kobject_init(&mddev->kobj, &md_ktype); 5656 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5657 if (error) { 5658 /* 5659 * The disk is already live at this point. Clear the hold flag 5660 * and let mddev_put take care of the deletion, as it isn't any 5661 * different from a normal close on last release now. 5662 */ 5663 mddev->hold_active = 0; 5664 mutex_unlock(&disks_mutex); 5665 mddev_put(mddev); 5666 return ERR_PTR(error); 5667 } 5668 5669 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5670 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5671 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5672 mutex_unlock(&disks_mutex); 5673 return mddev; 5674 5675 out_put_disk: 5676 put_disk(disk); 5677 out_free_mddev: 5678 mddev_free(mddev); 5679 out_unlock: 5680 mutex_unlock(&disks_mutex); 5681 return ERR_PTR(error); 5682 } 5683 5684 static int md_alloc_and_put(dev_t dev, char *name) 5685 { 5686 struct mddev *mddev = md_alloc(dev, name); 5687 5688 if (IS_ERR(mddev)) 5689 return PTR_ERR(mddev); 5690 mddev_put(mddev); 5691 return 0; 5692 } 5693 5694 static void md_probe(dev_t dev) 5695 { 5696 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5697 return; 5698 if (create_on_open) 5699 md_alloc_and_put(dev, NULL); 5700 } 5701 5702 static int add_named_array(const char *val, const struct kernel_param *kp) 5703 { 5704 /* 5705 * val must be "md_*" or "mdNNN". 5706 * For "md_*" we allocate an array with a large free minor number, and 5707 * set the name to val. val must not already be an active name. 5708 * For "mdNNN" we allocate an array with the minor number NNN 5709 * which must not already be in use. 5710 */ 5711 int len = strlen(val); 5712 char buf[DISK_NAME_LEN]; 5713 unsigned long devnum; 5714 5715 while (len && val[len-1] == '\n') 5716 len--; 5717 if (len >= DISK_NAME_LEN) 5718 return -E2BIG; 5719 strscpy(buf, val, len+1); 5720 if (strncmp(buf, "md_", 3) == 0) 5721 return md_alloc_and_put(0, buf); 5722 if (strncmp(buf, "md", 2) == 0 && 5723 isdigit(buf[2]) && 5724 kstrtoul(buf+2, 10, &devnum) == 0 && 5725 devnum <= MINORMASK) 5726 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5727 5728 return -EINVAL; 5729 } 5730 5731 static void md_safemode_timeout(struct timer_list *t) 5732 { 5733 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5734 5735 mddev->safemode = 1; 5736 if (mddev->external) 5737 sysfs_notify_dirent_safe(mddev->sysfs_state); 5738 5739 md_wakeup_thread(mddev->thread); 5740 } 5741 5742 static int start_dirty_degraded; 5743 static void active_io_release(struct percpu_ref *ref) 5744 { 5745 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5746 5747 wake_up(&mddev->sb_wait); 5748 } 5749 5750 int md_run(struct mddev *mddev) 5751 { 5752 int err; 5753 struct md_rdev *rdev; 5754 struct md_personality *pers; 5755 bool nowait = true; 5756 5757 if (list_empty(&mddev->disks)) 5758 /* cannot run an array with no devices.. */ 5759 return -EINVAL; 5760 5761 if (mddev->pers) 5762 return -EBUSY; 5763 /* Cannot run until previous stop completes properly */ 5764 if (mddev->sysfs_active) 5765 return -EBUSY; 5766 5767 /* 5768 * Analyze all RAID superblock(s) 5769 */ 5770 if (!mddev->raid_disks) { 5771 if (!mddev->persistent) 5772 return -EINVAL; 5773 err = analyze_sbs(mddev); 5774 if (err) 5775 return -EINVAL; 5776 } 5777 5778 if (mddev->level != LEVEL_NONE) 5779 request_module("md-level-%d", mddev->level); 5780 else if (mddev->clevel[0]) 5781 request_module("md-%s", mddev->clevel); 5782 5783 /* 5784 * Drop all container device buffers, from now on 5785 * the only valid external interface is through the md 5786 * device. 5787 */ 5788 mddev->has_superblocks = false; 5789 rdev_for_each(rdev, mddev) { 5790 if (test_bit(Faulty, &rdev->flags)) 5791 continue; 5792 sync_blockdev(rdev->bdev); 5793 invalidate_bdev(rdev->bdev); 5794 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5795 mddev->ro = MD_RDONLY; 5796 if (mddev->gendisk) 5797 set_disk_ro(mddev->gendisk, 1); 5798 } 5799 5800 if (rdev->sb_page) 5801 mddev->has_superblocks = true; 5802 5803 /* perform some consistency tests on the device. 5804 * We don't want the data to overlap the metadata, 5805 * Internal Bitmap issues have been handled elsewhere. 5806 */ 5807 if (rdev->meta_bdev) { 5808 /* Nothing to check */; 5809 } else if (rdev->data_offset < rdev->sb_start) { 5810 if (mddev->dev_sectors && 5811 rdev->data_offset + mddev->dev_sectors 5812 > rdev->sb_start) { 5813 pr_warn("md: %s: data overlaps metadata\n", 5814 mdname(mddev)); 5815 return -EINVAL; 5816 } 5817 } else { 5818 if (rdev->sb_start + rdev->sb_size/512 5819 > rdev->data_offset) { 5820 pr_warn("md: %s: metadata overlaps data\n", 5821 mdname(mddev)); 5822 return -EINVAL; 5823 } 5824 } 5825 sysfs_notify_dirent_safe(rdev->sysfs_state); 5826 nowait = nowait && bdev_nowait(rdev->bdev); 5827 } 5828 5829 err = percpu_ref_init(&mddev->active_io, active_io_release, 5830 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5831 if (err) 5832 return err; 5833 5834 if (!bioset_initialized(&mddev->bio_set)) { 5835 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5836 if (err) 5837 goto exit_active_io; 5838 } 5839 if (!bioset_initialized(&mddev->sync_set)) { 5840 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5841 if (err) 5842 goto exit_bio_set; 5843 } 5844 5845 spin_lock(&pers_lock); 5846 pers = find_pers(mddev->level, mddev->clevel); 5847 if (!pers || !try_module_get(pers->owner)) { 5848 spin_unlock(&pers_lock); 5849 if (mddev->level != LEVEL_NONE) 5850 pr_warn("md: personality for level %d is not loaded!\n", 5851 mddev->level); 5852 else 5853 pr_warn("md: personality for level %s is not loaded!\n", 5854 mddev->clevel); 5855 err = -EINVAL; 5856 goto abort; 5857 } 5858 spin_unlock(&pers_lock); 5859 if (mddev->level != pers->level) { 5860 mddev->level = pers->level; 5861 mddev->new_level = pers->level; 5862 } 5863 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5864 5865 if (mddev->reshape_position != MaxSector && 5866 pers->start_reshape == NULL) { 5867 /* This personality cannot handle reshaping... */ 5868 module_put(pers->owner); 5869 err = -EINVAL; 5870 goto abort; 5871 } 5872 5873 if (pers->sync_request) { 5874 /* Warn if this is a potentially silly 5875 * configuration. 5876 */ 5877 struct md_rdev *rdev2; 5878 int warned = 0; 5879 5880 rdev_for_each(rdev, mddev) 5881 rdev_for_each(rdev2, mddev) { 5882 if (rdev < rdev2 && 5883 rdev->bdev->bd_disk == 5884 rdev2->bdev->bd_disk) { 5885 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5886 mdname(mddev), 5887 rdev->bdev, 5888 rdev2->bdev); 5889 warned = 1; 5890 } 5891 } 5892 5893 if (warned) 5894 pr_warn("True protection against single-disk failure might be compromised.\n"); 5895 } 5896 5897 mddev->recovery = 0; 5898 /* may be over-ridden by personality */ 5899 mddev->resync_max_sectors = mddev->dev_sectors; 5900 5901 mddev->ok_start_degraded = start_dirty_degraded; 5902 5903 if (start_readonly && md_is_rdwr(mddev)) 5904 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 5905 5906 err = pers->run(mddev); 5907 if (err) 5908 pr_warn("md: pers->run() failed ...\n"); 5909 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5910 WARN_ONCE(!mddev->external_size, 5911 "%s: default size too small, but 'external_size' not in effect?\n", 5912 __func__); 5913 pr_warn("md: invalid array_size %llu > default size %llu\n", 5914 (unsigned long long)mddev->array_sectors / 2, 5915 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5916 err = -EINVAL; 5917 } 5918 if (err == 0 && pers->sync_request && 5919 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5920 struct bitmap *bitmap; 5921 5922 bitmap = md_bitmap_create(mddev, -1); 5923 if (IS_ERR(bitmap)) { 5924 err = PTR_ERR(bitmap); 5925 pr_warn("%s: failed to create bitmap (%d)\n", 5926 mdname(mddev), err); 5927 } else 5928 mddev->bitmap = bitmap; 5929 5930 } 5931 if (err) 5932 goto bitmap_abort; 5933 5934 if (mddev->bitmap_info.max_write_behind > 0) { 5935 bool create_pool = false; 5936 5937 rdev_for_each(rdev, mddev) { 5938 if (test_bit(WriteMostly, &rdev->flags) && 5939 rdev_init_serial(rdev)) 5940 create_pool = true; 5941 } 5942 if (create_pool && mddev->serial_info_pool == NULL) { 5943 mddev->serial_info_pool = 5944 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5945 sizeof(struct serial_info)); 5946 if (!mddev->serial_info_pool) { 5947 err = -ENOMEM; 5948 goto bitmap_abort; 5949 } 5950 } 5951 } 5952 5953 if (mddev->queue) { 5954 bool nonrot = true; 5955 5956 rdev_for_each(rdev, mddev) { 5957 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5958 nonrot = false; 5959 break; 5960 } 5961 } 5962 if (mddev->degraded) 5963 nonrot = false; 5964 if (nonrot) 5965 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5966 else 5967 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5968 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5969 5970 /* Set the NOWAIT flags if all underlying devices support it */ 5971 if (nowait) 5972 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5973 } 5974 if (pers->sync_request) { 5975 if (mddev->kobj.sd && 5976 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5977 pr_warn("md: cannot register extra attributes for %s\n", 5978 mdname(mddev)); 5979 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5980 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5981 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5982 } else if (mddev->ro == MD_AUTO_READ) 5983 mddev->ro = MD_RDWR; 5984 5985 atomic_set(&mddev->max_corr_read_errors, 5986 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5987 mddev->safemode = 0; 5988 if (mddev_is_clustered(mddev)) 5989 mddev->safemode_delay = 0; 5990 else 5991 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 5992 mddev->in_sync = 1; 5993 smp_wmb(); 5994 spin_lock(&mddev->lock); 5995 mddev->pers = pers; 5996 spin_unlock(&mddev->lock); 5997 rdev_for_each(rdev, mddev) 5998 if (rdev->raid_disk >= 0) 5999 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6000 6001 if (mddev->degraded && md_is_rdwr(mddev)) 6002 /* This ensures that recovering status is reported immediately 6003 * via sysfs - until a lack of spares is confirmed. 6004 */ 6005 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6006 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6007 6008 if (mddev->sb_flags) 6009 md_update_sb(mddev, 0); 6010 6011 md_new_event(); 6012 return 0; 6013 6014 bitmap_abort: 6015 mddev_detach(mddev); 6016 if (mddev->private) 6017 pers->free(mddev, mddev->private); 6018 mddev->private = NULL; 6019 module_put(pers->owner); 6020 md_bitmap_destroy(mddev); 6021 abort: 6022 bioset_exit(&mddev->sync_set); 6023 exit_bio_set: 6024 bioset_exit(&mddev->bio_set); 6025 exit_active_io: 6026 percpu_ref_exit(&mddev->active_io); 6027 return err; 6028 } 6029 EXPORT_SYMBOL_GPL(md_run); 6030 6031 int do_md_run(struct mddev *mddev) 6032 { 6033 int err; 6034 6035 set_bit(MD_NOT_READY, &mddev->flags); 6036 err = md_run(mddev); 6037 if (err) 6038 goto out; 6039 err = md_bitmap_load(mddev); 6040 if (err) { 6041 md_bitmap_destroy(mddev); 6042 goto out; 6043 } 6044 6045 if (mddev_is_clustered(mddev)) 6046 md_allow_write(mddev); 6047 6048 /* run start up tasks that require md_thread */ 6049 md_start(mddev); 6050 6051 md_wakeup_thread(mddev->thread); 6052 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6053 6054 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6055 clear_bit(MD_NOT_READY, &mddev->flags); 6056 mddev->changed = 1; 6057 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6058 sysfs_notify_dirent_safe(mddev->sysfs_state); 6059 sysfs_notify_dirent_safe(mddev->sysfs_action); 6060 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6061 out: 6062 clear_bit(MD_NOT_READY, &mddev->flags); 6063 return err; 6064 } 6065 6066 int md_start(struct mddev *mddev) 6067 { 6068 int ret = 0; 6069 6070 if (mddev->pers->start) { 6071 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6072 md_wakeup_thread(mddev->thread); 6073 ret = mddev->pers->start(mddev); 6074 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6075 md_wakeup_thread(mddev->sync_thread); 6076 } 6077 return ret; 6078 } 6079 EXPORT_SYMBOL_GPL(md_start); 6080 6081 static int restart_array(struct mddev *mddev) 6082 { 6083 struct gendisk *disk = mddev->gendisk; 6084 struct md_rdev *rdev; 6085 bool has_journal = false; 6086 bool has_readonly = false; 6087 6088 /* Complain if it has no devices */ 6089 if (list_empty(&mddev->disks)) 6090 return -ENXIO; 6091 if (!mddev->pers) 6092 return -EINVAL; 6093 if (md_is_rdwr(mddev)) 6094 return -EBUSY; 6095 6096 rcu_read_lock(); 6097 rdev_for_each_rcu(rdev, mddev) { 6098 if (test_bit(Journal, &rdev->flags) && 6099 !test_bit(Faulty, &rdev->flags)) 6100 has_journal = true; 6101 if (rdev_read_only(rdev)) 6102 has_readonly = true; 6103 } 6104 rcu_read_unlock(); 6105 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6106 /* Don't restart rw with journal missing/faulty */ 6107 return -EINVAL; 6108 if (has_readonly) 6109 return -EROFS; 6110 6111 mddev->safemode = 0; 6112 mddev->ro = MD_RDWR; 6113 set_disk_ro(disk, 0); 6114 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6115 /* Kick recovery or resync if necessary */ 6116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6117 md_wakeup_thread(mddev->thread); 6118 md_wakeup_thread(mddev->sync_thread); 6119 sysfs_notify_dirent_safe(mddev->sysfs_state); 6120 return 0; 6121 } 6122 6123 static void md_clean(struct mddev *mddev) 6124 { 6125 mddev->array_sectors = 0; 6126 mddev->external_size = 0; 6127 mddev->dev_sectors = 0; 6128 mddev->raid_disks = 0; 6129 mddev->recovery_cp = 0; 6130 mddev->resync_min = 0; 6131 mddev->resync_max = MaxSector; 6132 mddev->reshape_position = MaxSector; 6133 /* we still need mddev->external in export_rdev, do not clear it yet */ 6134 mddev->persistent = 0; 6135 mddev->level = LEVEL_NONE; 6136 mddev->clevel[0] = 0; 6137 mddev->flags = 0; 6138 mddev->sb_flags = 0; 6139 mddev->ro = MD_RDWR; 6140 mddev->metadata_type[0] = 0; 6141 mddev->chunk_sectors = 0; 6142 mddev->ctime = mddev->utime = 0; 6143 mddev->layout = 0; 6144 mddev->max_disks = 0; 6145 mddev->events = 0; 6146 mddev->can_decrease_events = 0; 6147 mddev->delta_disks = 0; 6148 mddev->reshape_backwards = 0; 6149 mddev->new_level = LEVEL_NONE; 6150 mddev->new_layout = 0; 6151 mddev->new_chunk_sectors = 0; 6152 mddev->curr_resync = MD_RESYNC_NONE; 6153 atomic64_set(&mddev->resync_mismatches, 0); 6154 mddev->suspend_lo = mddev->suspend_hi = 0; 6155 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6156 mddev->recovery = 0; 6157 mddev->in_sync = 0; 6158 mddev->changed = 0; 6159 mddev->degraded = 0; 6160 mddev->safemode = 0; 6161 mddev->private = NULL; 6162 mddev->cluster_info = NULL; 6163 mddev->bitmap_info.offset = 0; 6164 mddev->bitmap_info.default_offset = 0; 6165 mddev->bitmap_info.default_space = 0; 6166 mddev->bitmap_info.chunksize = 0; 6167 mddev->bitmap_info.daemon_sleep = 0; 6168 mddev->bitmap_info.max_write_behind = 0; 6169 mddev->bitmap_info.nodes = 0; 6170 } 6171 6172 static void __md_stop_writes(struct mddev *mddev) 6173 { 6174 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6175 if (work_pending(&mddev->del_work)) 6176 flush_workqueue(md_misc_wq); 6177 if (mddev->sync_thread) { 6178 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6179 md_unregister_thread(&mddev->sync_thread); 6180 md_reap_sync_thread(mddev); 6181 } 6182 6183 del_timer_sync(&mddev->safemode_timer); 6184 6185 if (mddev->pers && mddev->pers->quiesce) { 6186 mddev->pers->quiesce(mddev, 1); 6187 mddev->pers->quiesce(mddev, 0); 6188 } 6189 md_bitmap_flush(mddev); 6190 6191 if (md_is_rdwr(mddev) && 6192 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6193 mddev->sb_flags)) { 6194 /* mark array as shutdown cleanly */ 6195 if (!mddev_is_clustered(mddev)) 6196 mddev->in_sync = 1; 6197 md_update_sb(mddev, 1); 6198 } 6199 /* disable policy to guarantee rdevs free resources for serialization */ 6200 mddev->serialize_policy = 0; 6201 mddev_destroy_serial_pool(mddev, NULL, true); 6202 } 6203 6204 void md_stop_writes(struct mddev *mddev) 6205 { 6206 mddev_lock_nointr(mddev); 6207 __md_stop_writes(mddev); 6208 mddev_unlock(mddev); 6209 } 6210 EXPORT_SYMBOL_GPL(md_stop_writes); 6211 6212 static void mddev_detach(struct mddev *mddev) 6213 { 6214 md_bitmap_wait_behind_writes(mddev); 6215 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6216 mddev->pers->quiesce(mddev, 1); 6217 mddev->pers->quiesce(mddev, 0); 6218 } 6219 md_unregister_thread(&mddev->thread); 6220 if (mddev->queue) 6221 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6222 } 6223 6224 static void __md_stop(struct mddev *mddev) 6225 { 6226 struct md_personality *pers = mddev->pers; 6227 md_bitmap_destroy(mddev); 6228 mddev_detach(mddev); 6229 /* Ensure ->event_work is done */ 6230 if (mddev->event_work.func) 6231 flush_workqueue(md_misc_wq); 6232 spin_lock(&mddev->lock); 6233 mddev->pers = NULL; 6234 spin_unlock(&mddev->lock); 6235 if (mddev->private) 6236 pers->free(mddev, mddev->private); 6237 mddev->private = NULL; 6238 if (pers->sync_request && mddev->to_remove == NULL) 6239 mddev->to_remove = &md_redundancy_group; 6240 module_put(pers->owner); 6241 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6242 6243 percpu_ref_exit(&mddev->active_io); 6244 bioset_exit(&mddev->bio_set); 6245 bioset_exit(&mddev->sync_set); 6246 } 6247 6248 void md_stop(struct mddev *mddev) 6249 { 6250 lockdep_assert_held(&mddev->reconfig_mutex); 6251 6252 /* stop the array and free an attached data structures. 6253 * This is called from dm-raid 6254 */ 6255 __md_stop_writes(mddev); 6256 __md_stop(mddev); 6257 percpu_ref_exit(&mddev->writes_pending); 6258 } 6259 6260 EXPORT_SYMBOL_GPL(md_stop); 6261 6262 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6263 { 6264 int err = 0; 6265 int did_freeze = 0; 6266 6267 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6268 did_freeze = 1; 6269 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6270 md_wakeup_thread(mddev->thread); 6271 } 6272 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6274 6275 /* 6276 * Thread might be blocked waiting for metadata update which will now 6277 * never happen 6278 */ 6279 md_wakeup_thread_directly(mddev->sync_thread); 6280 6281 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6282 return -EBUSY; 6283 mddev_unlock(mddev); 6284 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6285 &mddev->recovery)); 6286 wait_event(mddev->sb_wait, 6287 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6288 mddev_lock_nointr(mddev); 6289 6290 mutex_lock(&mddev->open_mutex); 6291 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6292 mddev->sync_thread || 6293 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6294 pr_warn("md: %s still in use.\n",mdname(mddev)); 6295 if (did_freeze) { 6296 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6297 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6298 md_wakeup_thread(mddev->thread); 6299 } 6300 err = -EBUSY; 6301 goto out; 6302 } 6303 if (mddev->pers) { 6304 __md_stop_writes(mddev); 6305 6306 err = -ENXIO; 6307 if (mddev->ro == MD_RDONLY) 6308 goto out; 6309 mddev->ro = MD_RDONLY; 6310 set_disk_ro(mddev->gendisk, 1); 6311 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6312 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6313 md_wakeup_thread(mddev->thread); 6314 sysfs_notify_dirent_safe(mddev->sysfs_state); 6315 err = 0; 6316 } 6317 out: 6318 mutex_unlock(&mddev->open_mutex); 6319 return err; 6320 } 6321 6322 /* mode: 6323 * 0 - completely stop and dis-assemble array 6324 * 2 - stop but do not disassemble array 6325 */ 6326 static int do_md_stop(struct mddev *mddev, int mode, 6327 struct block_device *bdev) 6328 { 6329 struct gendisk *disk = mddev->gendisk; 6330 struct md_rdev *rdev; 6331 int did_freeze = 0; 6332 6333 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6334 did_freeze = 1; 6335 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6336 md_wakeup_thread(mddev->thread); 6337 } 6338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6339 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6340 6341 /* 6342 * Thread might be blocked waiting for metadata update which will now 6343 * never happen 6344 */ 6345 md_wakeup_thread_directly(mddev->sync_thread); 6346 6347 mddev_unlock(mddev); 6348 wait_event(resync_wait, (mddev->sync_thread == NULL && 6349 !test_bit(MD_RECOVERY_RUNNING, 6350 &mddev->recovery))); 6351 mddev_lock_nointr(mddev); 6352 6353 mutex_lock(&mddev->open_mutex); 6354 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6355 mddev->sysfs_active || 6356 mddev->sync_thread || 6357 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6358 pr_warn("md: %s still in use.\n",mdname(mddev)); 6359 mutex_unlock(&mddev->open_mutex); 6360 if (did_freeze) { 6361 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6363 md_wakeup_thread(mddev->thread); 6364 } 6365 return -EBUSY; 6366 } 6367 if (mddev->pers) { 6368 if (!md_is_rdwr(mddev)) 6369 set_disk_ro(disk, 0); 6370 6371 __md_stop_writes(mddev); 6372 __md_stop(mddev); 6373 6374 /* tell userspace to handle 'inactive' */ 6375 sysfs_notify_dirent_safe(mddev->sysfs_state); 6376 6377 rdev_for_each(rdev, mddev) 6378 if (rdev->raid_disk >= 0) 6379 sysfs_unlink_rdev(mddev, rdev); 6380 6381 set_capacity_and_notify(disk, 0); 6382 mutex_unlock(&mddev->open_mutex); 6383 mddev->changed = 1; 6384 6385 if (!md_is_rdwr(mddev)) 6386 mddev->ro = MD_RDWR; 6387 } else 6388 mutex_unlock(&mddev->open_mutex); 6389 /* 6390 * Free resources if final stop 6391 */ 6392 if (mode == 0) { 6393 pr_info("md: %s stopped.\n", mdname(mddev)); 6394 6395 if (mddev->bitmap_info.file) { 6396 struct file *f = mddev->bitmap_info.file; 6397 spin_lock(&mddev->lock); 6398 mddev->bitmap_info.file = NULL; 6399 spin_unlock(&mddev->lock); 6400 fput(f); 6401 } 6402 mddev->bitmap_info.offset = 0; 6403 6404 export_array(mddev); 6405 6406 md_clean(mddev); 6407 if (mddev->hold_active == UNTIL_STOP) 6408 mddev->hold_active = 0; 6409 } 6410 md_new_event(); 6411 sysfs_notify_dirent_safe(mddev->sysfs_state); 6412 return 0; 6413 } 6414 6415 #ifndef MODULE 6416 static void autorun_array(struct mddev *mddev) 6417 { 6418 struct md_rdev *rdev; 6419 int err; 6420 6421 if (list_empty(&mddev->disks)) 6422 return; 6423 6424 pr_info("md: running: "); 6425 6426 rdev_for_each(rdev, mddev) { 6427 pr_cont("<%pg>", rdev->bdev); 6428 } 6429 pr_cont("\n"); 6430 6431 err = do_md_run(mddev); 6432 if (err) { 6433 pr_warn("md: do_md_run() returned %d\n", err); 6434 do_md_stop(mddev, 0, NULL); 6435 } 6436 } 6437 6438 /* 6439 * lets try to run arrays based on all disks that have arrived 6440 * until now. (those are in pending_raid_disks) 6441 * 6442 * the method: pick the first pending disk, collect all disks with 6443 * the same UUID, remove all from the pending list and put them into 6444 * the 'same_array' list. Then order this list based on superblock 6445 * update time (freshest comes first), kick out 'old' disks and 6446 * compare superblocks. If everything's fine then run it. 6447 * 6448 * If "unit" is allocated, then bump its reference count 6449 */ 6450 static void autorun_devices(int part) 6451 { 6452 struct md_rdev *rdev0, *rdev, *tmp; 6453 struct mddev *mddev; 6454 6455 pr_info("md: autorun ...\n"); 6456 while (!list_empty(&pending_raid_disks)) { 6457 int unit; 6458 dev_t dev; 6459 LIST_HEAD(candidates); 6460 rdev0 = list_entry(pending_raid_disks.next, 6461 struct md_rdev, same_set); 6462 6463 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6464 INIT_LIST_HEAD(&candidates); 6465 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6466 if (super_90_load(rdev, rdev0, 0) >= 0) { 6467 pr_debug("md: adding %pg ...\n", 6468 rdev->bdev); 6469 list_move(&rdev->same_set, &candidates); 6470 } 6471 /* 6472 * now we have a set of devices, with all of them having 6473 * mostly sane superblocks. It's time to allocate the 6474 * mddev. 6475 */ 6476 if (part) { 6477 dev = MKDEV(mdp_major, 6478 rdev0->preferred_minor << MdpMinorShift); 6479 unit = MINOR(dev) >> MdpMinorShift; 6480 } else { 6481 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6482 unit = MINOR(dev); 6483 } 6484 if (rdev0->preferred_minor != unit) { 6485 pr_warn("md: unit number in %pg is bad: %d\n", 6486 rdev0->bdev, rdev0->preferred_minor); 6487 break; 6488 } 6489 6490 mddev = md_alloc(dev, NULL); 6491 if (IS_ERR(mddev)) 6492 break; 6493 6494 if (mddev_lock(mddev)) 6495 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6496 else if (mddev->raid_disks || mddev->major_version 6497 || !list_empty(&mddev->disks)) { 6498 pr_warn("md: %s already running, cannot run %pg\n", 6499 mdname(mddev), rdev0->bdev); 6500 mddev_unlock(mddev); 6501 } else { 6502 pr_debug("md: created %s\n", mdname(mddev)); 6503 mddev->persistent = 1; 6504 rdev_for_each_list(rdev, tmp, &candidates) { 6505 list_del_init(&rdev->same_set); 6506 if (bind_rdev_to_array(rdev, mddev)) 6507 export_rdev(rdev, mddev); 6508 } 6509 autorun_array(mddev); 6510 mddev_unlock(mddev); 6511 } 6512 /* on success, candidates will be empty, on error 6513 * it won't... 6514 */ 6515 rdev_for_each_list(rdev, tmp, &candidates) { 6516 list_del_init(&rdev->same_set); 6517 export_rdev(rdev, mddev); 6518 } 6519 mddev_put(mddev); 6520 } 6521 pr_info("md: ... autorun DONE.\n"); 6522 } 6523 #endif /* !MODULE */ 6524 6525 static int get_version(void __user *arg) 6526 { 6527 mdu_version_t ver; 6528 6529 ver.major = MD_MAJOR_VERSION; 6530 ver.minor = MD_MINOR_VERSION; 6531 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6532 6533 if (copy_to_user(arg, &ver, sizeof(ver))) 6534 return -EFAULT; 6535 6536 return 0; 6537 } 6538 6539 static int get_array_info(struct mddev *mddev, void __user *arg) 6540 { 6541 mdu_array_info_t info; 6542 int nr,working,insync,failed,spare; 6543 struct md_rdev *rdev; 6544 6545 nr = working = insync = failed = spare = 0; 6546 rcu_read_lock(); 6547 rdev_for_each_rcu(rdev, mddev) { 6548 nr++; 6549 if (test_bit(Faulty, &rdev->flags)) 6550 failed++; 6551 else { 6552 working++; 6553 if (test_bit(In_sync, &rdev->flags)) 6554 insync++; 6555 else if (test_bit(Journal, &rdev->flags)) 6556 /* TODO: add journal count to md_u.h */ 6557 ; 6558 else 6559 spare++; 6560 } 6561 } 6562 rcu_read_unlock(); 6563 6564 info.major_version = mddev->major_version; 6565 info.minor_version = mddev->minor_version; 6566 info.patch_version = MD_PATCHLEVEL_VERSION; 6567 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6568 info.level = mddev->level; 6569 info.size = mddev->dev_sectors / 2; 6570 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6571 info.size = -1; 6572 info.nr_disks = nr; 6573 info.raid_disks = mddev->raid_disks; 6574 info.md_minor = mddev->md_minor; 6575 info.not_persistent= !mddev->persistent; 6576 6577 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6578 info.state = 0; 6579 if (mddev->in_sync) 6580 info.state = (1<<MD_SB_CLEAN); 6581 if (mddev->bitmap && mddev->bitmap_info.offset) 6582 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6583 if (mddev_is_clustered(mddev)) 6584 info.state |= (1<<MD_SB_CLUSTERED); 6585 info.active_disks = insync; 6586 info.working_disks = working; 6587 info.failed_disks = failed; 6588 info.spare_disks = spare; 6589 6590 info.layout = mddev->layout; 6591 info.chunk_size = mddev->chunk_sectors << 9; 6592 6593 if (copy_to_user(arg, &info, sizeof(info))) 6594 return -EFAULT; 6595 6596 return 0; 6597 } 6598 6599 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6600 { 6601 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6602 char *ptr; 6603 int err; 6604 6605 file = kzalloc(sizeof(*file), GFP_NOIO); 6606 if (!file) 6607 return -ENOMEM; 6608 6609 err = 0; 6610 spin_lock(&mddev->lock); 6611 /* bitmap enabled */ 6612 if (mddev->bitmap_info.file) { 6613 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6614 sizeof(file->pathname)); 6615 if (IS_ERR(ptr)) 6616 err = PTR_ERR(ptr); 6617 else 6618 memmove(file->pathname, ptr, 6619 sizeof(file->pathname)-(ptr-file->pathname)); 6620 } 6621 spin_unlock(&mddev->lock); 6622 6623 if (err == 0 && 6624 copy_to_user(arg, file, sizeof(*file))) 6625 err = -EFAULT; 6626 6627 kfree(file); 6628 return err; 6629 } 6630 6631 static int get_disk_info(struct mddev *mddev, void __user * arg) 6632 { 6633 mdu_disk_info_t info; 6634 struct md_rdev *rdev; 6635 6636 if (copy_from_user(&info, arg, sizeof(info))) 6637 return -EFAULT; 6638 6639 rcu_read_lock(); 6640 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6641 if (rdev) { 6642 info.major = MAJOR(rdev->bdev->bd_dev); 6643 info.minor = MINOR(rdev->bdev->bd_dev); 6644 info.raid_disk = rdev->raid_disk; 6645 info.state = 0; 6646 if (test_bit(Faulty, &rdev->flags)) 6647 info.state |= (1<<MD_DISK_FAULTY); 6648 else if (test_bit(In_sync, &rdev->flags)) { 6649 info.state |= (1<<MD_DISK_ACTIVE); 6650 info.state |= (1<<MD_DISK_SYNC); 6651 } 6652 if (test_bit(Journal, &rdev->flags)) 6653 info.state |= (1<<MD_DISK_JOURNAL); 6654 if (test_bit(WriteMostly, &rdev->flags)) 6655 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6656 if (test_bit(FailFast, &rdev->flags)) 6657 info.state |= (1<<MD_DISK_FAILFAST); 6658 } else { 6659 info.major = info.minor = 0; 6660 info.raid_disk = -1; 6661 info.state = (1<<MD_DISK_REMOVED); 6662 } 6663 rcu_read_unlock(); 6664 6665 if (copy_to_user(arg, &info, sizeof(info))) 6666 return -EFAULT; 6667 6668 return 0; 6669 } 6670 6671 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6672 { 6673 struct md_rdev *rdev; 6674 dev_t dev = MKDEV(info->major,info->minor); 6675 6676 if (mddev_is_clustered(mddev) && 6677 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6678 pr_warn("%s: Cannot add to clustered mddev.\n", 6679 mdname(mddev)); 6680 return -EINVAL; 6681 } 6682 6683 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6684 return -EOVERFLOW; 6685 6686 if (!mddev->raid_disks) { 6687 int err; 6688 /* expecting a device which has a superblock */ 6689 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6690 if (IS_ERR(rdev)) { 6691 pr_warn("md: md_import_device returned %ld\n", 6692 PTR_ERR(rdev)); 6693 return PTR_ERR(rdev); 6694 } 6695 if (!list_empty(&mddev->disks)) { 6696 struct md_rdev *rdev0 6697 = list_entry(mddev->disks.next, 6698 struct md_rdev, same_set); 6699 err = super_types[mddev->major_version] 6700 .load_super(rdev, rdev0, mddev->minor_version); 6701 if (err < 0) { 6702 pr_warn("md: %pg has different UUID to %pg\n", 6703 rdev->bdev, 6704 rdev0->bdev); 6705 export_rdev(rdev, mddev); 6706 return -EINVAL; 6707 } 6708 } 6709 err = bind_rdev_to_array(rdev, mddev); 6710 if (err) 6711 export_rdev(rdev, mddev); 6712 return err; 6713 } 6714 6715 /* 6716 * md_add_new_disk can be used once the array is assembled 6717 * to add "hot spares". They must already have a superblock 6718 * written 6719 */ 6720 if (mddev->pers) { 6721 int err; 6722 if (!mddev->pers->hot_add_disk) { 6723 pr_warn("%s: personality does not support diskops!\n", 6724 mdname(mddev)); 6725 return -EINVAL; 6726 } 6727 if (mddev->persistent) 6728 rdev = md_import_device(dev, mddev->major_version, 6729 mddev->minor_version); 6730 else 6731 rdev = md_import_device(dev, -1, -1); 6732 if (IS_ERR(rdev)) { 6733 pr_warn("md: md_import_device returned %ld\n", 6734 PTR_ERR(rdev)); 6735 return PTR_ERR(rdev); 6736 } 6737 /* set saved_raid_disk if appropriate */ 6738 if (!mddev->persistent) { 6739 if (info->state & (1<<MD_DISK_SYNC) && 6740 info->raid_disk < mddev->raid_disks) { 6741 rdev->raid_disk = info->raid_disk; 6742 clear_bit(Bitmap_sync, &rdev->flags); 6743 } else 6744 rdev->raid_disk = -1; 6745 rdev->saved_raid_disk = rdev->raid_disk; 6746 } else 6747 super_types[mddev->major_version]. 6748 validate_super(mddev, rdev); 6749 if ((info->state & (1<<MD_DISK_SYNC)) && 6750 rdev->raid_disk != info->raid_disk) { 6751 /* This was a hot-add request, but events doesn't 6752 * match, so reject it. 6753 */ 6754 export_rdev(rdev, mddev); 6755 return -EINVAL; 6756 } 6757 6758 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6759 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6760 set_bit(WriteMostly, &rdev->flags); 6761 else 6762 clear_bit(WriteMostly, &rdev->flags); 6763 if (info->state & (1<<MD_DISK_FAILFAST)) 6764 set_bit(FailFast, &rdev->flags); 6765 else 6766 clear_bit(FailFast, &rdev->flags); 6767 6768 if (info->state & (1<<MD_DISK_JOURNAL)) { 6769 struct md_rdev *rdev2; 6770 bool has_journal = false; 6771 6772 /* make sure no existing journal disk */ 6773 rdev_for_each(rdev2, mddev) { 6774 if (test_bit(Journal, &rdev2->flags)) { 6775 has_journal = true; 6776 break; 6777 } 6778 } 6779 if (has_journal || mddev->bitmap) { 6780 export_rdev(rdev, mddev); 6781 return -EBUSY; 6782 } 6783 set_bit(Journal, &rdev->flags); 6784 } 6785 /* 6786 * check whether the device shows up in other nodes 6787 */ 6788 if (mddev_is_clustered(mddev)) { 6789 if (info->state & (1 << MD_DISK_CANDIDATE)) 6790 set_bit(Candidate, &rdev->flags); 6791 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6792 /* --add initiated by this node */ 6793 err = md_cluster_ops->add_new_disk(mddev, rdev); 6794 if (err) { 6795 export_rdev(rdev, mddev); 6796 return err; 6797 } 6798 } 6799 } 6800 6801 rdev->raid_disk = -1; 6802 err = bind_rdev_to_array(rdev, mddev); 6803 6804 if (err) 6805 export_rdev(rdev, mddev); 6806 6807 if (mddev_is_clustered(mddev)) { 6808 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6809 if (!err) { 6810 err = md_cluster_ops->new_disk_ack(mddev, 6811 err == 0); 6812 if (err) 6813 md_kick_rdev_from_array(rdev); 6814 } 6815 } else { 6816 if (err) 6817 md_cluster_ops->add_new_disk_cancel(mddev); 6818 else 6819 err = add_bound_rdev(rdev); 6820 } 6821 6822 } else if (!err) 6823 err = add_bound_rdev(rdev); 6824 6825 return err; 6826 } 6827 6828 /* otherwise, md_add_new_disk is only allowed 6829 * for major_version==0 superblocks 6830 */ 6831 if (mddev->major_version != 0) { 6832 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6833 return -EINVAL; 6834 } 6835 6836 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6837 int err; 6838 rdev = md_import_device(dev, -1, 0); 6839 if (IS_ERR(rdev)) { 6840 pr_warn("md: error, md_import_device() returned %ld\n", 6841 PTR_ERR(rdev)); 6842 return PTR_ERR(rdev); 6843 } 6844 rdev->desc_nr = info->number; 6845 if (info->raid_disk < mddev->raid_disks) 6846 rdev->raid_disk = info->raid_disk; 6847 else 6848 rdev->raid_disk = -1; 6849 6850 if (rdev->raid_disk < mddev->raid_disks) 6851 if (info->state & (1<<MD_DISK_SYNC)) 6852 set_bit(In_sync, &rdev->flags); 6853 6854 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6855 set_bit(WriteMostly, &rdev->flags); 6856 if (info->state & (1<<MD_DISK_FAILFAST)) 6857 set_bit(FailFast, &rdev->flags); 6858 6859 if (!mddev->persistent) { 6860 pr_debug("md: nonpersistent superblock ...\n"); 6861 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6862 } else 6863 rdev->sb_start = calc_dev_sboffset(rdev); 6864 rdev->sectors = rdev->sb_start; 6865 6866 err = bind_rdev_to_array(rdev, mddev); 6867 if (err) { 6868 export_rdev(rdev, mddev); 6869 return err; 6870 } 6871 } 6872 6873 return 0; 6874 } 6875 6876 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6877 { 6878 struct md_rdev *rdev; 6879 6880 if (!mddev->pers) 6881 return -ENODEV; 6882 6883 rdev = find_rdev(mddev, dev); 6884 if (!rdev) 6885 return -ENXIO; 6886 6887 if (rdev->raid_disk < 0) 6888 goto kick_rdev; 6889 6890 clear_bit(Blocked, &rdev->flags); 6891 remove_and_add_spares(mddev, rdev); 6892 6893 if (rdev->raid_disk >= 0) 6894 goto busy; 6895 6896 kick_rdev: 6897 if (mddev_is_clustered(mddev)) { 6898 if (md_cluster_ops->remove_disk(mddev, rdev)) 6899 goto busy; 6900 } 6901 6902 md_kick_rdev_from_array(rdev); 6903 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6904 if (mddev->thread) 6905 md_wakeup_thread(mddev->thread); 6906 else 6907 md_update_sb(mddev, 1); 6908 md_new_event(); 6909 6910 return 0; 6911 busy: 6912 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6913 rdev->bdev, mdname(mddev)); 6914 return -EBUSY; 6915 } 6916 6917 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6918 { 6919 int err; 6920 struct md_rdev *rdev; 6921 6922 if (!mddev->pers) 6923 return -ENODEV; 6924 6925 if (mddev->major_version != 0) { 6926 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6927 mdname(mddev)); 6928 return -EINVAL; 6929 } 6930 if (!mddev->pers->hot_add_disk) { 6931 pr_warn("%s: personality does not support diskops!\n", 6932 mdname(mddev)); 6933 return -EINVAL; 6934 } 6935 6936 rdev = md_import_device(dev, -1, 0); 6937 if (IS_ERR(rdev)) { 6938 pr_warn("md: error, md_import_device() returned %ld\n", 6939 PTR_ERR(rdev)); 6940 return -EINVAL; 6941 } 6942 6943 if (mddev->persistent) 6944 rdev->sb_start = calc_dev_sboffset(rdev); 6945 else 6946 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6947 6948 rdev->sectors = rdev->sb_start; 6949 6950 if (test_bit(Faulty, &rdev->flags)) { 6951 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6952 rdev->bdev, mdname(mddev)); 6953 err = -EINVAL; 6954 goto abort_export; 6955 } 6956 6957 clear_bit(In_sync, &rdev->flags); 6958 rdev->desc_nr = -1; 6959 rdev->saved_raid_disk = -1; 6960 err = bind_rdev_to_array(rdev, mddev); 6961 if (err) 6962 goto abort_export; 6963 6964 /* 6965 * The rest should better be atomic, we can have disk failures 6966 * noticed in interrupt contexts ... 6967 */ 6968 6969 rdev->raid_disk = -1; 6970 6971 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6972 if (!mddev->thread) 6973 md_update_sb(mddev, 1); 6974 /* 6975 * If the new disk does not support REQ_NOWAIT, 6976 * disable on the whole MD. 6977 */ 6978 if (!bdev_nowait(rdev->bdev)) { 6979 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6980 mdname(mddev), rdev->bdev); 6981 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6982 } 6983 /* 6984 * Kick recovery, maybe this spare has to be added to the 6985 * array immediately. 6986 */ 6987 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6988 md_wakeup_thread(mddev->thread); 6989 md_new_event(); 6990 return 0; 6991 6992 abort_export: 6993 export_rdev(rdev, mddev); 6994 return err; 6995 } 6996 6997 static int set_bitmap_file(struct mddev *mddev, int fd) 6998 { 6999 int err = 0; 7000 7001 if (mddev->pers) { 7002 if (!mddev->pers->quiesce || !mddev->thread) 7003 return -EBUSY; 7004 if (mddev->recovery || mddev->sync_thread) 7005 return -EBUSY; 7006 /* we should be able to change the bitmap.. */ 7007 } 7008 7009 if (fd >= 0) { 7010 struct inode *inode; 7011 struct file *f; 7012 7013 if (mddev->bitmap || mddev->bitmap_info.file) 7014 return -EEXIST; /* cannot add when bitmap is present */ 7015 f = fget(fd); 7016 7017 if (f == NULL) { 7018 pr_warn("%s: error: failed to get bitmap file\n", 7019 mdname(mddev)); 7020 return -EBADF; 7021 } 7022 7023 inode = f->f_mapping->host; 7024 if (!S_ISREG(inode->i_mode)) { 7025 pr_warn("%s: error: bitmap file must be a regular file\n", 7026 mdname(mddev)); 7027 err = -EBADF; 7028 } else if (!(f->f_mode & FMODE_WRITE)) { 7029 pr_warn("%s: error: bitmap file must open for write\n", 7030 mdname(mddev)); 7031 err = -EBADF; 7032 } else if (atomic_read(&inode->i_writecount) != 1) { 7033 pr_warn("%s: error: bitmap file is already in use\n", 7034 mdname(mddev)); 7035 err = -EBUSY; 7036 } 7037 if (err) { 7038 fput(f); 7039 return err; 7040 } 7041 mddev->bitmap_info.file = f; 7042 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7043 } else if (mddev->bitmap == NULL) 7044 return -ENOENT; /* cannot remove what isn't there */ 7045 err = 0; 7046 if (mddev->pers) { 7047 if (fd >= 0) { 7048 struct bitmap *bitmap; 7049 7050 bitmap = md_bitmap_create(mddev, -1); 7051 mddev_suspend(mddev); 7052 if (!IS_ERR(bitmap)) { 7053 mddev->bitmap = bitmap; 7054 err = md_bitmap_load(mddev); 7055 } else 7056 err = PTR_ERR(bitmap); 7057 if (err) { 7058 md_bitmap_destroy(mddev); 7059 fd = -1; 7060 } 7061 mddev_resume(mddev); 7062 } else if (fd < 0) { 7063 mddev_suspend(mddev); 7064 md_bitmap_destroy(mddev); 7065 mddev_resume(mddev); 7066 } 7067 } 7068 if (fd < 0) { 7069 struct file *f = mddev->bitmap_info.file; 7070 if (f) { 7071 spin_lock(&mddev->lock); 7072 mddev->bitmap_info.file = NULL; 7073 spin_unlock(&mddev->lock); 7074 fput(f); 7075 } 7076 } 7077 7078 return err; 7079 } 7080 7081 /* 7082 * md_set_array_info is used two different ways 7083 * The original usage is when creating a new array. 7084 * In this usage, raid_disks is > 0 and it together with 7085 * level, size, not_persistent,layout,chunksize determine the 7086 * shape of the array. 7087 * This will always create an array with a type-0.90.0 superblock. 7088 * The newer usage is when assembling an array. 7089 * In this case raid_disks will be 0, and the major_version field is 7090 * use to determine which style super-blocks are to be found on the devices. 7091 * The minor and patch _version numbers are also kept incase the 7092 * super_block handler wishes to interpret them. 7093 */ 7094 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7095 { 7096 if (info->raid_disks == 0) { 7097 /* just setting version number for superblock loading */ 7098 if (info->major_version < 0 || 7099 info->major_version >= ARRAY_SIZE(super_types) || 7100 super_types[info->major_version].name == NULL) { 7101 /* maybe try to auto-load a module? */ 7102 pr_warn("md: superblock version %d not known\n", 7103 info->major_version); 7104 return -EINVAL; 7105 } 7106 mddev->major_version = info->major_version; 7107 mddev->minor_version = info->minor_version; 7108 mddev->patch_version = info->patch_version; 7109 mddev->persistent = !info->not_persistent; 7110 /* ensure mddev_put doesn't delete this now that there 7111 * is some minimal configuration. 7112 */ 7113 mddev->ctime = ktime_get_real_seconds(); 7114 return 0; 7115 } 7116 mddev->major_version = MD_MAJOR_VERSION; 7117 mddev->minor_version = MD_MINOR_VERSION; 7118 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7119 mddev->ctime = ktime_get_real_seconds(); 7120 7121 mddev->level = info->level; 7122 mddev->clevel[0] = 0; 7123 mddev->dev_sectors = 2 * (sector_t)info->size; 7124 mddev->raid_disks = info->raid_disks; 7125 /* don't set md_minor, it is determined by which /dev/md* was 7126 * openned 7127 */ 7128 if (info->state & (1<<MD_SB_CLEAN)) 7129 mddev->recovery_cp = MaxSector; 7130 else 7131 mddev->recovery_cp = 0; 7132 mddev->persistent = ! info->not_persistent; 7133 mddev->external = 0; 7134 7135 mddev->layout = info->layout; 7136 if (mddev->level == 0) 7137 /* Cannot trust RAID0 layout info here */ 7138 mddev->layout = -1; 7139 mddev->chunk_sectors = info->chunk_size >> 9; 7140 7141 if (mddev->persistent) { 7142 mddev->max_disks = MD_SB_DISKS; 7143 mddev->flags = 0; 7144 mddev->sb_flags = 0; 7145 } 7146 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7147 7148 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7149 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7150 mddev->bitmap_info.offset = 0; 7151 7152 mddev->reshape_position = MaxSector; 7153 7154 /* 7155 * Generate a 128 bit UUID 7156 */ 7157 get_random_bytes(mddev->uuid, 16); 7158 7159 mddev->new_level = mddev->level; 7160 mddev->new_chunk_sectors = mddev->chunk_sectors; 7161 mddev->new_layout = mddev->layout; 7162 mddev->delta_disks = 0; 7163 mddev->reshape_backwards = 0; 7164 7165 return 0; 7166 } 7167 7168 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7169 { 7170 lockdep_assert_held(&mddev->reconfig_mutex); 7171 7172 if (mddev->external_size) 7173 return; 7174 7175 mddev->array_sectors = array_sectors; 7176 } 7177 EXPORT_SYMBOL(md_set_array_sectors); 7178 7179 static int update_size(struct mddev *mddev, sector_t num_sectors) 7180 { 7181 struct md_rdev *rdev; 7182 int rv; 7183 int fit = (num_sectors == 0); 7184 sector_t old_dev_sectors = mddev->dev_sectors; 7185 7186 if (mddev->pers->resize == NULL) 7187 return -EINVAL; 7188 /* The "num_sectors" is the number of sectors of each device that 7189 * is used. This can only make sense for arrays with redundancy. 7190 * linear and raid0 always use whatever space is available. We can only 7191 * consider changing this number if no resync or reconstruction is 7192 * happening, and if the new size is acceptable. It must fit before the 7193 * sb_start or, if that is <data_offset, it must fit before the size 7194 * of each device. If num_sectors is zero, we find the largest size 7195 * that fits. 7196 */ 7197 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7198 mddev->sync_thread) 7199 return -EBUSY; 7200 if (!md_is_rdwr(mddev)) 7201 return -EROFS; 7202 7203 rdev_for_each(rdev, mddev) { 7204 sector_t avail = rdev->sectors; 7205 7206 if (fit && (num_sectors == 0 || num_sectors > avail)) 7207 num_sectors = avail; 7208 if (avail < num_sectors) 7209 return -ENOSPC; 7210 } 7211 rv = mddev->pers->resize(mddev, num_sectors); 7212 if (!rv) { 7213 if (mddev_is_clustered(mddev)) 7214 md_cluster_ops->update_size(mddev, old_dev_sectors); 7215 else if (mddev->queue) { 7216 set_capacity_and_notify(mddev->gendisk, 7217 mddev->array_sectors); 7218 } 7219 } 7220 return rv; 7221 } 7222 7223 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7224 { 7225 int rv; 7226 struct md_rdev *rdev; 7227 /* change the number of raid disks */ 7228 if (mddev->pers->check_reshape == NULL) 7229 return -EINVAL; 7230 if (!md_is_rdwr(mddev)) 7231 return -EROFS; 7232 if (raid_disks <= 0 || 7233 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7234 return -EINVAL; 7235 if (mddev->sync_thread || 7236 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7237 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7238 mddev->reshape_position != MaxSector) 7239 return -EBUSY; 7240 7241 rdev_for_each(rdev, mddev) { 7242 if (mddev->raid_disks < raid_disks && 7243 rdev->data_offset < rdev->new_data_offset) 7244 return -EINVAL; 7245 if (mddev->raid_disks > raid_disks && 7246 rdev->data_offset > rdev->new_data_offset) 7247 return -EINVAL; 7248 } 7249 7250 mddev->delta_disks = raid_disks - mddev->raid_disks; 7251 if (mddev->delta_disks < 0) 7252 mddev->reshape_backwards = 1; 7253 else if (mddev->delta_disks > 0) 7254 mddev->reshape_backwards = 0; 7255 7256 rv = mddev->pers->check_reshape(mddev); 7257 if (rv < 0) { 7258 mddev->delta_disks = 0; 7259 mddev->reshape_backwards = 0; 7260 } 7261 return rv; 7262 } 7263 7264 /* 7265 * update_array_info is used to change the configuration of an 7266 * on-line array. 7267 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7268 * fields in the info are checked against the array. 7269 * Any differences that cannot be handled will cause an error. 7270 * Normally, only one change can be managed at a time. 7271 */ 7272 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7273 { 7274 int rv = 0; 7275 int cnt = 0; 7276 int state = 0; 7277 7278 /* calculate expected state,ignoring low bits */ 7279 if (mddev->bitmap && mddev->bitmap_info.offset) 7280 state |= (1 << MD_SB_BITMAP_PRESENT); 7281 7282 if (mddev->major_version != info->major_version || 7283 mddev->minor_version != info->minor_version || 7284 /* mddev->patch_version != info->patch_version || */ 7285 mddev->ctime != info->ctime || 7286 mddev->level != info->level || 7287 /* mddev->layout != info->layout || */ 7288 mddev->persistent != !info->not_persistent || 7289 mddev->chunk_sectors != info->chunk_size >> 9 || 7290 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7291 ((state^info->state) & 0xfffffe00) 7292 ) 7293 return -EINVAL; 7294 /* Check there is only one change */ 7295 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7296 cnt++; 7297 if (mddev->raid_disks != info->raid_disks) 7298 cnt++; 7299 if (mddev->layout != info->layout) 7300 cnt++; 7301 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7302 cnt++; 7303 if (cnt == 0) 7304 return 0; 7305 if (cnt > 1) 7306 return -EINVAL; 7307 7308 if (mddev->layout != info->layout) { 7309 /* Change layout 7310 * we don't need to do anything at the md level, the 7311 * personality will take care of it all. 7312 */ 7313 if (mddev->pers->check_reshape == NULL) 7314 return -EINVAL; 7315 else { 7316 mddev->new_layout = info->layout; 7317 rv = mddev->pers->check_reshape(mddev); 7318 if (rv) 7319 mddev->new_layout = mddev->layout; 7320 return rv; 7321 } 7322 } 7323 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7324 rv = update_size(mddev, (sector_t)info->size * 2); 7325 7326 if (mddev->raid_disks != info->raid_disks) 7327 rv = update_raid_disks(mddev, info->raid_disks); 7328 7329 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7330 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7331 rv = -EINVAL; 7332 goto err; 7333 } 7334 if (mddev->recovery || mddev->sync_thread) { 7335 rv = -EBUSY; 7336 goto err; 7337 } 7338 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7339 struct bitmap *bitmap; 7340 /* add the bitmap */ 7341 if (mddev->bitmap) { 7342 rv = -EEXIST; 7343 goto err; 7344 } 7345 if (mddev->bitmap_info.default_offset == 0) { 7346 rv = -EINVAL; 7347 goto err; 7348 } 7349 mddev->bitmap_info.offset = 7350 mddev->bitmap_info.default_offset; 7351 mddev->bitmap_info.space = 7352 mddev->bitmap_info.default_space; 7353 bitmap = md_bitmap_create(mddev, -1); 7354 mddev_suspend(mddev); 7355 if (!IS_ERR(bitmap)) { 7356 mddev->bitmap = bitmap; 7357 rv = md_bitmap_load(mddev); 7358 } else 7359 rv = PTR_ERR(bitmap); 7360 if (rv) 7361 md_bitmap_destroy(mddev); 7362 mddev_resume(mddev); 7363 } else { 7364 /* remove the bitmap */ 7365 if (!mddev->bitmap) { 7366 rv = -ENOENT; 7367 goto err; 7368 } 7369 if (mddev->bitmap->storage.file) { 7370 rv = -EINVAL; 7371 goto err; 7372 } 7373 if (mddev->bitmap_info.nodes) { 7374 /* hold PW on all the bitmap lock */ 7375 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7376 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7377 rv = -EPERM; 7378 md_cluster_ops->unlock_all_bitmaps(mddev); 7379 goto err; 7380 } 7381 7382 mddev->bitmap_info.nodes = 0; 7383 md_cluster_ops->leave(mddev); 7384 module_put(md_cluster_mod); 7385 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7386 } 7387 mddev_suspend(mddev); 7388 md_bitmap_destroy(mddev); 7389 mddev_resume(mddev); 7390 mddev->bitmap_info.offset = 0; 7391 } 7392 } 7393 md_update_sb(mddev, 1); 7394 return rv; 7395 err: 7396 return rv; 7397 } 7398 7399 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7400 { 7401 struct md_rdev *rdev; 7402 int err = 0; 7403 7404 if (mddev->pers == NULL) 7405 return -ENODEV; 7406 7407 rcu_read_lock(); 7408 rdev = md_find_rdev_rcu(mddev, dev); 7409 if (!rdev) 7410 err = -ENODEV; 7411 else { 7412 md_error(mddev, rdev); 7413 if (test_bit(MD_BROKEN, &mddev->flags)) 7414 err = -EBUSY; 7415 } 7416 rcu_read_unlock(); 7417 return err; 7418 } 7419 7420 /* 7421 * We have a problem here : there is no easy way to give a CHS 7422 * virtual geometry. We currently pretend that we have a 2 heads 7423 * 4 sectors (with a BIG number of cylinders...). This drives 7424 * dosfs just mad... ;-) 7425 */ 7426 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7427 { 7428 struct mddev *mddev = bdev->bd_disk->private_data; 7429 7430 geo->heads = 2; 7431 geo->sectors = 4; 7432 geo->cylinders = mddev->array_sectors / 8; 7433 return 0; 7434 } 7435 7436 static inline bool md_ioctl_valid(unsigned int cmd) 7437 { 7438 switch (cmd) { 7439 case ADD_NEW_DISK: 7440 case GET_ARRAY_INFO: 7441 case GET_BITMAP_FILE: 7442 case GET_DISK_INFO: 7443 case HOT_ADD_DISK: 7444 case HOT_REMOVE_DISK: 7445 case RAID_VERSION: 7446 case RESTART_ARRAY_RW: 7447 case RUN_ARRAY: 7448 case SET_ARRAY_INFO: 7449 case SET_BITMAP_FILE: 7450 case SET_DISK_FAULTY: 7451 case STOP_ARRAY: 7452 case STOP_ARRAY_RO: 7453 case CLUSTERED_DISK_NACK: 7454 return true; 7455 default: 7456 return false; 7457 } 7458 } 7459 7460 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7461 { 7462 mdu_array_info_t info; 7463 int err; 7464 7465 if (!argp) 7466 memset(&info, 0, sizeof(info)); 7467 else if (copy_from_user(&info, argp, sizeof(info))) 7468 return -EFAULT; 7469 7470 if (mddev->pers) { 7471 err = update_array_info(mddev, &info); 7472 if (err) 7473 pr_warn("md: couldn't update array info. %d\n", err); 7474 return err; 7475 } 7476 7477 if (!list_empty(&mddev->disks)) { 7478 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7479 return -EBUSY; 7480 } 7481 7482 if (mddev->raid_disks) { 7483 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7484 return -EBUSY; 7485 } 7486 7487 err = md_set_array_info(mddev, &info); 7488 if (err) 7489 pr_warn("md: couldn't set array info. %d\n", err); 7490 7491 return err; 7492 } 7493 7494 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7495 unsigned int cmd, unsigned long arg) 7496 { 7497 int err = 0; 7498 void __user *argp = (void __user *)arg; 7499 struct mddev *mddev = NULL; 7500 bool did_set_md_closing = false; 7501 7502 if (!md_ioctl_valid(cmd)) 7503 return -ENOTTY; 7504 7505 switch (cmd) { 7506 case RAID_VERSION: 7507 case GET_ARRAY_INFO: 7508 case GET_DISK_INFO: 7509 break; 7510 default: 7511 if (!capable(CAP_SYS_ADMIN)) 7512 return -EACCES; 7513 } 7514 7515 /* 7516 * Commands dealing with the RAID driver but not any 7517 * particular array: 7518 */ 7519 switch (cmd) { 7520 case RAID_VERSION: 7521 err = get_version(argp); 7522 goto out; 7523 default:; 7524 } 7525 7526 /* 7527 * Commands creating/starting a new array: 7528 */ 7529 7530 mddev = bdev->bd_disk->private_data; 7531 7532 if (!mddev) { 7533 BUG(); 7534 goto out; 7535 } 7536 7537 /* Some actions do not requires the mutex */ 7538 switch (cmd) { 7539 case GET_ARRAY_INFO: 7540 if (!mddev->raid_disks && !mddev->external) 7541 err = -ENODEV; 7542 else 7543 err = get_array_info(mddev, argp); 7544 goto out; 7545 7546 case GET_DISK_INFO: 7547 if (!mddev->raid_disks && !mddev->external) 7548 err = -ENODEV; 7549 else 7550 err = get_disk_info(mddev, argp); 7551 goto out; 7552 7553 case SET_DISK_FAULTY: 7554 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7555 goto out; 7556 7557 case GET_BITMAP_FILE: 7558 err = get_bitmap_file(mddev, argp); 7559 goto out; 7560 7561 } 7562 7563 if (cmd == HOT_REMOVE_DISK) 7564 /* need to ensure recovery thread has run */ 7565 wait_event_interruptible_timeout(mddev->sb_wait, 7566 !test_bit(MD_RECOVERY_NEEDED, 7567 &mddev->recovery), 7568 msecs_to_jiffies(5000)); 7569 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7570 /* Need to flush page cache, and ensure no-one else opens 7571 * and writes 7572 */ 7573 mutex_lock(&mddev->open_mutex); 7574 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7575 mutex_unlock(&mddev->open_mutex); 7576 err = -EBUSY; 7577 goto out; 7578 } 7579 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7580 mutex_unlock(&mddev->open_mutex); 7581 err = -EBUSY; 7582 goto out; 7583 } 7584 did_set_md_closing = true; 7585 mutex_unlock(&mddev->open_mutex); 7586 sync_blockdev(bdev); 7587 } 7588 err = mddev_lock(mddev); 7589 if (err) { 7590 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7591 err, cmd); 7592 goto out; 7593 } 7594 7595 if (cmd == SET_ARRAY_INFO) { 7596 err = __md_set_array_info(mddev, argp); 7597 goto unlock; 7598 } 7599 7600 /* 7601 * Commands querying/configuring an existing array: 7602 */ 7603 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7604 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7605 if ((!mddev->raid_disks && !mddev->external) 7606 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7607 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7608 && cmd != GET_BITMAP_FILE) { 7609 err = -ENODEV; 7610 goto unlock; 7611 } 7612 7613 /* 7614 * Commands even a read-only array can execute: 7615 */ 7616 switch (cmd) { 7617 case RESTART_ARRAY_RW: 7618 err = restart_array(mddev); 7619 goto unlock; 7620 7621 case STOP_ARRAY: 7622 err = do_md_stop(mddev, 0, bdev); 7623 goto unlock; 7624 7625 case STOP_ARRAY_RO: 7626 err = md_set_readonly(mddev, bdev); 7627 goto unlock; 7628 7629 case HOT_REMOVE_DISK: 7630 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7631 goto unlock; 7632 7633 case ADD_NEW_DISK: 7634 /* We can support ADD_NEW_DISK on read-only arrays 7635 * only if we are re-adding a preexisting device. 7636 * So require mddev->pers and MD_DISK_SYNC. 7637 */ 7638 if (mddev->pers) { 7639 mdu_disk_info_t info; 7640 if (copy_from_user(&info, argp, sizeof(info))) 7641 err = -EFAULT; 7642 else if (!(info.state & (1<<MD_DISK_SYNC))) 7643 /* Need to clear read-only for this */ 7644 break; 7645 else 7646 err = md_add_new_disk(mddev, &info); 7647 goto unlock; 7648 } 7649 break; 7650 } 7651 7652 /* 7653 * The remaining ioctls are changing the state of the 7654 * superblock, so we do not allow them on read-only arrays. 7655 */ 7656 if (!md_is_rdwr(mddev) && mddev->pers) { 7657 if (mddev->ro != MD_AUTO_READ) { 7658 err = -EROFS; 7659 goto unlock; 7660 } 7661 mddev->ro = MD_RDWR; 7662 sysfs_notify_dirent_safe(mddev->sysfs_state); 7663 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7664 /* mddev_unlock will wake thread */ 7665 /* If a device failed while we were read-only, we 7666 * need to make sure the metadata is updated now. 7667 */ 7668 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7669 mddev_unlock(mddev); 7670 wait_event(mddev->sb_wait, 7671 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7672 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7673 mddev_lock_nointr(mddev); 7674 } 7675 } 7676 7677 switch (cmd) { 7678 case ADD_NEW_DISK: 7679 { 7680 mdu_disk_info_t info; 7681 if (copy_from_user(&info, argp, sizeof(info))) 7682 err = -EFAULT; 7683 else 7684 err = md_add_new_disk(mddev, &info); 7685 goto unlock; 7686 } 7687 7688 case CLUSTERED_DISK_NACK: 7689 if (mddev_is_clustered(mddev)) 7690 md_cluster_ops->new_disk_ack(mddev, false); 7691 else 7692 err = -EINVAL; 7693 goto unlock; 7694 7695 case HOT_ADD_DISK: 7696 err = hot_add_disk(mddev, new_decode_dev(arg)); 7697 goto unlock; 7698 7699 case RUN_ARRAY: 7700 err = do_md_run(mddev); 7701 goto unlock; 7702 7703 case SET_BITMAP_FILE: 7704 err = set_bitmap_file(mddev, (int)arg); 7705 goto unlock; 7706 7707 default: 7708 err = -EINVAL; 7709 goto unlock; 7710 } 7711 7712 unlock: 7713 if (mddev->hold_active == UNTIL_IOCTL && 7714 err != -EINVAL) 7715 mddev->hold_active = 0; 7716 mddev_unlock(mddev); 7717 out: 7718 if(did_set_md_closing) 7719 clear_bit(MD_CLOSING, &mddev->flags); 7720 return err; 7721 } 7722 #ifdef CONFIG_COMPAT 7723 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7724 unsigned int cmd, unsigned long arg) 7725 { 7726 switch (cmd) { 7727 case HOT_REMOVE_DISK: 7728 case HOT_ADD_DISK: 7729 case SET_DISK_FAULTY: 7730 case SET_BITMAP_FILE: 7731 /* These take in integer arg, do not convert */ 7732 break; 7733 default: 7734 arg = (unsigned long)compat_ptr(arg); 7735 break; 7736 } 7737 7738 return md_ioctl(bdev, mode, cmd, arg); 7739 } 7740 #endif /* CONFIG_COMPAT */ 7741 7742 static int md_set_read_only(struct block_device *bdev, bool ro) 7743 { 7744 struct mddev *mddev = bdev->bd_disk->private_data; 7745 int err; 7746 7747 err = mddev_lock(mddev); 7748 if (err) 7749 return err; 7750 7751 if (!mddev->raid_disks && !mddev->external) { 7752 err = -ENODEV; 7753 goto out_unlock; 7754 } 7755 7756 /* 7757 * Transitioning to read-auto need only happen for arrays that call 7758 * md_write_start and which are not ready for writes yet. 7759 */ 7760 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7761 err = restart_array(mddev); 7762 if (err) 7763 goto out_unlock; 7764 mddev->ro = MD_AUTO_READ; 7765 } 7766 7767 out_unlock: 7768 mddev_unlock(mddev); 7769 return err; 7770 } 7771 7772 static int md_open(struct gendisk *disk, blk_mode_t mode) 7773 { 7774 struct mddev *mddev; 7775 int err; 7776 7777 spin_lock(&all_mddevs_lock); 7778 mddev = mddev_get(disk->private_data); 7779 spin_unlock(&all_mddevs_lock); 7780 if (!mddev) 7781 return -ENODEV; 7782 7783 err = mutex_lock_interruptible(&mddev->open_mutex); 7784 if (err) 7785 goto out; 7786 7787 err = -ENODEV; 7788 if (test_bit(MD_CLOSING, &mddev->flags)) 7789 goto out_unlock; 7790 7791 atomic_inc(&mddev->openers); 7792 mutex_unlock(&mddev->open_mutex); 7793 7794 disk_check_media_change(disk); 7795 return 0; 7796 7797 out_unlock: 7798 mutex_unlock(&mddev->open_mutex); 7799 out: 7800 mddev_put(mddev); 7801 return err; 7802 } 7803 7804 static void md_release(struct gendisk *disk) 7805 { 7806 struct mddev *mddev = disk->private_data; 7807 7808 BUG_ON(!mddev); 7809 atomic_dec(&mddev->openers); 7810 mddev_put(mddev); 7811 } 7812 7813 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7814 { 7815 struct mddev *mddev = disk->private_data; 7816 unsigned int ret = 0; 7817 7818 if (mddev->changed) 7819 ret = DISK_EVENT_MEDIA_CHANGE; 7820 mddev->changed = 0; 7821 return ret; 7822 } 7823 7824 static void md_free_disk(struct gendisk *disk) 7825 { 7826 struct mddev *mddev = disk->private_data; 7827 7828 percpu_ref_exit(&mddev->writes_pending); 7829 mddev_free(mddev); 7830 } 7831 7832 const struct block_device_operations md_fops = 7833 { 7834 .owner = THIS_MODULE, 7835 .submit_bio = md_submit_bio, 7836 .open = md_open, 7837 .release = md_release, 7838 .ioctl = md_ioctl, 7839 #ifdef CONFIG_COMPAT 7840 .compat_ioctl = md_compat_ioctl, 7841 #endif 7842 .getgeo = md_getgeo, 7843 .check_events = md_check_events, 7844 .set_read_only = md_set_read_only, 7845 .free_disk = md_free_disk, 7846 }; 7847 7848 static int md_thread(void *arg) 7849 { 7850 struct md_thread *thread = arg; 7851 7852 /* 7853 * md_thread is a 'system-thread', it's priority should be very 7854 * high. We avoid resource deadlocks individually in each 7855 * raid personality. (RAID5 does preallocation) We also use RR and 7856 * the very same RT priority as kswapd, thus we will never get 7857 * into a priority inversion deadlock. 7858 * 7859 * we definitely have to have equal or higher priority than 7860 * bdflush, otherwise bdflush will deadlock if there are too 7861 * many dirty RAID5 blocks. 7862 */ 7863 7864 allow_signal(SIGKILL); 7865 while (!kthread_should_stop()) { 7866 7867 /* We need to wait INTERRUPTIBLE so that 7868 * we don't add to the load-average. 7869 * That means we need to be sure no signals are 7870 * pending 7871 */ 7872 if (signal_pending(current)) 7873 flush_signals(current); 7874 7875 wait_event_interruptible_timeout 7876 (thread->wqueue, 7877 test_bit(THREAD_WAKEUP, &thread->flags) 7878 || kthread_should_stop() || kthread_should_park(), 7879 thread->timeout); 7880 7881 clear_bit(THREAD_WAKEUP, &thread->flags); 7882 if (kthread_should_park()) 7883 kthread_parkme(); 7884 if (!kthread_should_stop()) 7885 thread->run(thread); 7886 } 7887 7888 return 0; 7889 } 7890 7891 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 7892 { 7893 struct md_thread *t; 7894 7895 rcu_read_lock(); 7896 t = rcu_dereference(thread); 7897 if (t) 7898 wake_up_process(t->tsk); 7899 rcu_read_unlock(); 7900 } 7901 7902 void md_wakeup_thread(struct md_thread __rcu *thread) 7903 { 7904 struct md_thread *t; 7905 7906 rcu_read_lock(); 7907 t = rcu_dereference(thread); 7908 if (t) { 7909 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 7910 set_bit(THREAD_WAKEUP, &t->flags); 7911 wake_up(&t->wqueue); 7912 } 7913 rcu_read_unlock(); 7914 } 7915 EXPORT_SYMBOL(md_wakeup_thread); 7916 7917 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7918 struct mddev *mddev, const char *name) 7919 { 7920 struct md_thread *thread; 7921 7922 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7923 if (!thread) 7924 return NULL; 7925 7926 init_waitqueue_head(&thread->wqueue); 7927 7928 thread->run = run; 7929 thread->mddev = mddev; 7930 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7931 thread->tsk = kthread_run(md_thread, thread, 7932 "%s_%s", 7933 mdname(thread->mddev), 7934 name); 7935 if (IS_ERR(thread->tsk)) { 7936 kfree(thread); 7937 return NULL; 7938 } 7939 return thread; 7940 } 7941 EXPORT_SYMBOL(md_register_thread); 7942 7943 void md_unregister_thread(struct md_thread __rcu **threadp) 7944 { 7945 struct md_thread *thread = rcu_dereference_protected(*threadp, true); 7946 7947 if (!thread) 7948 return; 7949 7950 rcu_assign_pointer(*threadp, NULL); 7951 synchronize_rcu(); 7952 7953 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7954 kthread_stop(thread->tsk); 7955 kfree(thread); 7956 } 7957 EXPORT_SYMBOL(md_unregister_thread); 7958 7959 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7960 { 7961 if (!rdev || test_bit(Faulty, &rdev->flags)) 7962 return; 7963 7964 if (!mddev->pers || !mddev->pers->error_handler) 7965 return; 7966 mddev->pers->error_handler(mddev, rdev); 7967 7968 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 7969 return; 7970 7971 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7972 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7973 sysfs_notify_dirent_safe(rdev->sysfs_state); 7974 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7975 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7977 md_wakeup_thread(mddev->thread); 7978 } 7979 if (mddev->event_work.func) 7980 queue_work(md_misc_wq, &mddev->event_work); 7981 md_new_event(); 7982 } 7983 EXPORT_SYMBOL(md_error); 7984 7985 /* seq_file implementation /proc/mdstat */ 7986 7987 static void status_unused(struct seq_file *seq) 7988 { 7989 int i = 0; 7990 struct md_rdev *rdev; 7991 7992 seq_printf(seq, "unused devices: "); 7993 7994 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7995 i++; 7996 seq_printf(seq, "%pg ", rdev->bdev); 7997 } 7998 if (!i) 7999 seq_printf(seq, "<none>"); 8000 8001 seq_printf(seq, "\n"); 8002 } 8003 8004 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8005 { 8006 sector_t max_sectors, resync, res; 8007 unsigned long dt, db = 0; 8008 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8009 int scale, recovery_active; 8010 unsigned int per_milli; 8011 8012 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8013 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8014 max_sectors = mddev->resync_max_sectors; 8015 else 8016 max_sectors = mddev->dev_sectors; 8017 8018 resync = mddev->curr_resync; 8019 if (resync < MD_RESYNC_ACTIVE) { 8020 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8021 /* Still cleaning up */ 8022 resync = max_sectors; 8023 } else if (resync > max_sectors) { 8024 resync = max_sectors; 8025 } else { 8026 res = atomic_read(&mddev->recovery_active); 8027 /* 8028 * Resync has started, but the subtraction has overflowed or 8029 * yielded one of the special values. Force it to active to 8030 * ensure the status reports an active resync. 8031 */ 8032 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8033 resync = MD_RESYNC_ACTIVE; 8034 else 8035 resync -= res; 8036 } 8037 8038 if (resync == MD_RESYNC_NONE) { 8039 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8040 struct md_rdev *rdev; 8041 8042 rdev_for_each(rdev, mddev) 8043 if (rdev->raid_disk >= 0 && 8044 !test_bit(Faulty, &rdev->flags) && 8045 rdev->recovery_offset != MaxSector && 8046 rdev->recovery_offset) { 8047 seq_printf(seq, "\trecover=REMOTE"); 8048 return 1; 8049 } 8050 if (mddev->reshape_position != MaxSector) 8051 seq_printf(seq, "\treshape=REMOTE"); 8052 else 8053 seq_printf(seq, "\tresync=REMOTE"); 8054 return 1; 8055 } 8056 if (mddev->recovery_cp < MaxSector) { 8057 seq_printf(seq, "\tresync=PENDING"); 8058 return 1; 8059 } 8060 return 0; 8061 } 8062 if (resync < MD_RESYNC_ACTIVE) { 8063 seq_printf(seq, "\tresync=DELAYED"); 8064 return 1; 8065 } 8066 8067 WARN_ON(max_sectors == 0); 8068 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8069 * in a sector_t, and (max_sectors>>scale) will fit in a 8070 * u32, as those are the requirements for sector_div. 8071 * Thus 'scale' must be at least 10 8072 */ 8073 scale = 10; 8074 if (sizeof(sector_t) > sizeof(unsigned long)) { 8075 while ( max_sectors/2 > (1ULL<<(scale+32))) 8076 scale++; 8077 } 8078 res = (resync>>scale)*1000; 8079 sector_div(res, (u32)((max_sectors>>scale)+1)); 8080 8081 per_milli = res; 8082 { 8083 int i, x = per_milli/50, y = 20-x; 8084 seq_printf(seq, "["); 8085 for (i = 0; i < x; i++) 8086 seq_printf(seq, "="); 8087 seq_printf(seq, ">"); 8088 for (i = 0; i < y; i++) 8089 seq_printf(seq, "."); 8090 seq_printf(seq, "] "); 8091 } 8092 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8093 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8094 "reshape" : 8095 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8096 "check" : 8097 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8098 "resync" : "recovery"))), 8099 per_milli/10, per_milli % 10, 8100 (unsigned long long) resync/2, 8101 (unsigned long long) max_sectors/2); 8102 8103 /* 8104 * dt: time from mark until now 8105 * db: blocks written from mark until now 8106 * rt: remaining time 8107 * 8108 * rt is a sector_t, which is always 64bit now. We are keeping 8109 * the original algorithm, but it is not really necessary. 8110 * 8111 * Original algorithm: 8112 * So we divide before multiply in case it is 32bit and close 8113 * to the limit. 8114 * We scale the divisor (db) by 32 to avoid losing precision 8115 * near the end of resync when the number of remaining sectors 8116 * is close to 'db'. 8117 * We then divide rt by 32 after multiplying by db to compensate. 8118 * The '+1' avoids division by zero if db is very small. 8119 */ 8120 dt = ((jiffies - mddev->resync_mark) / HZ); 8121 if (!dt) dt++; 8122 8123 curr_mark_cnt = mddev->curr_mark_cnt; 8124 recovery_active = atomic_read(&mddev->recovery_active); 8125 resync_mark_cnt = mddev->resync_mark_cnt; 8126 8127 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8128 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8129 8130 rt = max_sectors - resync; /* number of remaining sectors */ 8131 rt = div64_u64(rt, db/32+1); 8132 rt *= dt; 8133 rt >>= 5; 8134 8135 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8136 ((unsigned long)rt % 60)/6); 8137 8138 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8139 return 1; 8140 } 8141 8142 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8143 { 8144 struct list_head *tmp; 8145 loff_t l = *pos; 8146 struct mddev *mddev; 8147 8148 if (l == 0x10000) { 8149 ++*pos; 8150 return (void *)2; 8151 } 8152 if (l > 0x10000) 8153 return NULL; 8154 if (!l--) 8155 /* header */ 8156 return (void*)1; 8157 8158 spin_lock(&all_mddevs_lock); 8159 list_for_each(tmp,&all_mddevs) 8160 if (!l--) { 8161 mddev = list_entry(tmp, struct mddev, all_mddevs); 8162 if (!mddev_get(mddev)) 8163 continue; 8164 spin_unlock(&all_mddevs_lock); 8165 return mddev; 8166 } 8167 spin_unlock(&all_mddevs_lock); 8168 if (!l--) 8169 return (void*)2;/* tail */ 8170 return NULL; 8171 } 8172 8173 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8174 { 8175 struct list_head *tmp; 8176 struct mddev *next_mddev, *mddev = v; 8177 struct mddev *to_put = NULL; 8178 8179 ++*pos; 8180 if (v == (void*)2) 8181 return NULL; 8182 8183 spin_lock(&all_mddevs_lock); 8184 if (v == (void*)1) { 8185 tmp = all_mddevs.next; 8186 } else { 8187 to_put = mddev; 8188 tmp = mddev->all_mddevs.next; 8189 } 8190 8191 for (;;) { 8192 if (tmp == &all_mddevs) { 8193 next_mddev = (void*)2; 8194 *pos = 0x10000; 8195 break; 8196 } 8197 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8198 if (mddev_get(next_mddev)) 8199 break; 8200 mddev = next_mddev; 8201 tmp = mddev->all_mddevs.next; 8202 } 8203 spin_unlock(&all_mddevs_lock); 8204 8205 if (to_put) 8206 mddev_put(mddev); 8207 return next_mddev; 8208 8209 } 8210 8211 static void md_seq_stop(struct seq_file *seq, void *v) 8212 { 8213 struct mddev *mddev = v; 8214 8215 if (mddev && v != (void*)1 && v != (void*)2) 8216 mddev_put(mddev); 8217 } 8218 8219 static int md_seq_show(struct seq_file *seq, void *v) 8220 { 8221 struct mddev *mddev = v; 8222 sector_t sectors; 8223 struct md_rdev *rdev; 8224 8225 if (v == (void*)1) { 8226 struct md_personality *pers; 8227 seq_printf(seq, "Personalities : "); 8228 spin_lock(&pers_lock); 8229 list_for_each_entry(pers, &pers_list, list) 8230 seq_printf(seq, "[%s] ", pers->name); 8231 8232 spin_unlock(&pers_lock); 8233 seq_printf(seq, "\n"); 8234 seq->poll_event = atomic_read(&md_event_count); 8235 return 0; 8236 } 8237 if (v == (void*)2) { 8238 status_unused(seq); 8239 return 0; 8240 } 8241 8242 spin_lock(&mddev->lock); 8243 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8244 seq_printf(seq, "%s : %sactive", mdname(mddev), 8245 mddev->pers ? "" : "in"); 8246 if (mddev->pers) { 8247 if (mddev->ro == MD_RDONLY) 8248 seq_printf(seq, " (read-only)"); 8249 if (mddev->ro == MD_AUTO_READ) 8250 seq_printf(seq, " (auto-read-only)"); 8251 seq_printf(seq, " %s", mddev->pers->name); 8252 } 8253 8254 sectors = 0; 8255 rcu_read_lock(); 8256 rdev_for_each_rcu(rdev, mddev) { 8257 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8258 8259 if (test_bit(WriteMostly, &rdev->flags)) 8260 seq_printf(seq, "(W)"); 8261 if (test_bit(Journal, &rdev->flags)) 8262 seq_printf(seq, "(J)"); 8263 if (test_bit(Faulty, &rdev->flags)) { 8264 seq_printf(seq, "(F)"); 8265 continue; 8266 } 8267 if (rdev->raid_disk < 0) 8268 seq_printf(seq, "(S)"); /* spare */ 8269 if (test_bit(Replacement, &rdev->flags)) 8270 seq_printf(seq, "(R)"); 8271 sectors += rdev->sectors; 8272 } 8273 rcu_read_unlock(); 8274 8275 if (!list_empty(&mddev->disks)) { 8276 if (mddev->pers) 8277 seq_printf(seq, "\n %llu blocks", 8278 (unsigned long long) 8279 mddev->array_sectors / 2); 8280 else 8281 seq_printf(seq, "\n %llu blocks", 8282 (unsigned long long)sectors / 2); 8283 } 8284 if (mddev->persistent) { 8285 if (mddev->major_version != 0 || 8286 mddev->minor_version != 90) { 8287 seq_printf(seq," super %d.%d", 8288 mddev->major_version, 8289 mddev->minor_version); 8290 } 8291 } else if (mddev->external) 8292 seq_printf(seq, " super external:%s", 8293 mddev->metadata_type); 8294 else 8295 seq_printf(seq, " super non-persistent"); 8296 8297 if (mddev->pers) { 8298 mddev->pers->status(seq, mddev); 8299 seq_printf(seq, "\n "); 8300 if (mddev->pers->sync_request) { 8301 if (status_resync(seq, mddev)) 8302 seq_printf(seq, "\n "); 8303 } 8304 } else 8305 seq_printf(seq, "\n "); 8306 8307 md_bitmap_status(seq, mddev->bitmap); 8308 8309 seq_printf(seq, "\n"); 8310 } 8311 spin_unlock(&mddev->lock); 8312 8313 return 0; 8314 } 8315 8316 static const struct seq_operations md_seq_ops = { 8317 .start = md_seq_start, 8318 .next = md_seq_next, 8319 .stop = md_seq_stop, 8320 .show = md_seq_show, 8321 }; 8322 8323 static int md_seq_open(struct inode *inode, struct file *file) 8324 { 8325 struct seq_file *seq; 8326 int error; 8327 8328 error = seq_open(file, &md_seq_ops); 8329 if (error) 8330 return error; 8331 8332 seq = file->private_data; 8333 seq->poll_event = atomic_read(&md_event_count); 8334 return error; 8335 } 8336 8337 static int md_unloading; 8338 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8339 { 8340 struct seq_file *seq = filp->private_data; 8341 __poll_t mask; 8342 8343 if (md_unloading) 8344 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8345 poll_wait(filp, &md_event_waiters, wait); 8346 8347 /* always allow read */ 8348 mask = EPOLLIN | EPOLLRDNORM; 8349 8350 if (seq->poll_event != atomic_read(&md_event_count)) 8351 mask |= EPOLLERR | EPOLLPRI; 8352 return mask; 8353 } 8354 8355 static const struct proc_ops mdstat_proc_ops = { 8356 .proc_open = md_seq_open, 8357 .proc_read = seq_read, 8358 .proc_lseek = seq_lseek, 8359 .proc_release = seq_release, 8360 .proc_poll = mdstat_poll, 8361 }; 8362 8363 int register_md_personality(struct md_personality *p) 8364 { 8365 pr_debug("md: %s personality registered for level %d\n", 8366 p->name, p->level); 8367 spin_lock(&pers_lock); 8368 list_add_tail(&p->list, &pers_list); 8369 spin_unlock(&pers_lock); 8370 return 0; 8371 } 8372 EXPORT_SYMBOL(register_md_personality); 8373 8374 int unregister_md_personality(struct md_personality *p) 8375 { 8376 pr_debug("md: %s personality unregistered\n", p->name); 8377 spin_lock(&pers_lock); 8378 list_del_init(&p->list); 8379 spin_unlock(&pers_lock); 8380 return 0; 8381 } 8382 EXPORT_SYMBOL(unregister_md_personality); 8383 8384 int register_md_cluster_operations(struct md_cluster_operations *ops, 8385 struct module *module) 8386 { 8387 int ret = 0; 8388 spin_lock(&pers_lock); 8389 if (md_cluster_ops != NULL) 8390 ret = -EALREADY; 8391 else { 8392 md_cluster_ops = ops; 8393 md_cluster_mod = module; 8394 } 8395 spin_unlock(&pers_lock); 8396 return ret; 8397 } 8398 EXPORT_SYMBOL(register_md_cluster_operations); 8399 8400 int unregister_md_cluster_operations(void) 8401 { 8402 spin_lock(&pers_lock); 8403 md_cluster_ops = NULL; 8404 spin_unlock(&pers_lock); 8405 return 0; 8406 } 8407 EXPORT_SYMBOL(unregister_md_cluster_operations); 8408 8409 int md_setup_cluster(struct mddev *mddev, int nodes) 8410 { 8411 int ret; 8412 if (!md_cluster_ops) 8413 request_module("md-cluster"); 8414 spin_lock(&pers_lock); 8415 /* ensure module won't be unloaded */ 8416 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8417 pr_warn("can't find md-cluster module or get its reference.\n"); 8418 spin_unlock(&pers_lock); 8419 return -ENOENT; 8420 } 8421 spin_unlock(&pers_lock); 8422 8423 ret = md_cluster_ops->join(mddev, nodes); 8424 if (!ret) 8425 mddev->safemode_delay = 0; 8426 return ret; 8427 } 8428 8429 void md_cluster_stop(struct mddev *mddev) 8430 { 8431 if (!md_cluster_ops) 8432 return; 8433 md_cluster_ops->leave(mddev); 8434 module_put(md_cluster_mod); 8435 } 8436 8437 static int is_mddev_idle(struct mddev *mddev, int init) 8438 { 8439 struct md_rdev *rdev; 8440 int idle; 8441 int curr_events; 8442 8443 idle = 1; 8444 rcu_read_lock(); 8445 rdev_for_each_rcu(rdev, mddev) { 8446 struct gendisk *disk = rdev->bdev->bd_disk; 8447 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8448 atomic_read(&disk->sync_io); 8449 /* sync IO will cause sync_io to increase before the disk_stats 8450 * as sync_io is counted when a request starts, and 8451 * disk_stats is counted when it completes. 8452 * So resync activity will cause curr_events to be smaller than 8453 * when there was no such activity. 8454 * non-sync IO will cause disk_stat to increase without 8455 * increasing sync_io so curr_events will (eventually) 8456 * be larger than it was before. Once it becomes 8457 * substantially larger, the test below will cause 8458 * the array to appear non-idle, and resync will slow 8459 * down. 8460 * If there is a lot of outstanding resync activity when 8461 * we set last_event to curr_events, then all that activity 8462 * completing might cause the array to appear non-idle 8463 * and resync will be slowed down even though there might 8464 * not have been non-resync activity. This will only 8465 * happen once though. 'last_events' will soon reflect 8466 * the state where there is little or no outstanding 8467 * resync requests, and further resync activity will 8468 * always make curr_events less than last_events. 8469 * 8470 */ 8471 if (init || curr_events - rdev->last_events > 64) { 8472 rdev->last_events = curr_events; 8473 idle = 0; 8474 } 8475 } 8476 rcu_read_unlock(); 8477 return idle; 8478 } 8479 8480 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8481 { 8482 /* another "blocks" (512byte) blocks have been synced */ 8483 atomic_sub(blocks, &mddev->recovery_active); 8484 wake_up(&mddev->recovery_wait); 8485 if (!ok) { 8486 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8487 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8488 md_wakeup_thread(mddev->thread); 8489 // stop recovery, signal do_sync .... 8490 } 8491 } 8492 EXPORT_SYMBOL(md_done_sync); 8493 8494 /* md_write_start(mddev, bi) 8495 * If we need to update some array metadata (e.g. 'active' flag 8496 * in superblock) before writing, schedule a superblock update 8497 * and wait for it to complete. 8498 * A return value of 'false' means that the write wasn't recorded 8499 * and cannot proceed as the array is being suspend. 8500 */ 8501 bool md_write_start(struct mddev *mddev, struct bio *bi) 8502 { 8503 int did_change = 0; 8504 8505 if (bio_data_dir(bi) != WRITE) 8506 return true; 8507 8508 BUG_ON(mddev->ro == MD_RDONLY); 8509 if (mddev->ro == MD_AUTO_READ) { 8510 /* need to switch to read/write */ 8511 mddev->ro = MD_RDWR; 8512 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8513 md_wakeup_thread(mddev->thread); 8514 md_wakeup_thread(mddev->sync_thread); 8515 did_change = 1; 8516 } 8517 rcu_read_lock(); 8518 percpu_ref_get(&mddev->writes_pending); 8519 smp_mb(); /* Match smp_mb in set_in_sync() */ 8520 if (mddev->safemode == 1) 8521 mddev->safemode = 0; 8522 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8523 if (mddev->in_sync || mddev->sync_checkers) { 8524 spin_lock(&mddev->lock); 8525 if (mddev->in_sync) { 8526 mddev->in_sync = 0; 8527 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8528 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8529 md_wakeup_thread(mddev->thread); 8530 did_change = 1; 8531 } 8532 spin_unlock(&mddev->lock); 8533 } 8534 rcu_read_unlock(); 8535 if (did_change) 8536 sysfs_notify_dirent_safe(mddev->sysfs_state); 8537 if (!mddev->has_superblocks) 8538 return true; 8539 wait_event(mddev->sb_wait, 8540 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8541 is_md_suspended(mddev)); 8542 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8543 percpu_ref_put(&mddev->writes_pending); 8544 return false; 8545 } 8546 return true; 8547 } 8548 EXPORT_SYMBOL(md_write_start); 8549 8550 /* md_write_inc can only be called when md_write_start() has 8551 * already been called at least once of the current request. 8552 * It increments the counter and is useful when a single request 8553 * is split into several parts. Each part causes an increment and 8554 * so needs a matching md_write_end(). 8555 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8556 * a spinlocked region. 8557 */ 8558 void md_write_inc(struct mddev *mddev, struct bio *bi) 8559 { 8560 if (bio_data_dir(bi) != WRITE) 8561 return; 8562 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8563 percpu_ref_get(&mddev->writes_pending); 8564 } 8565 EXPORT_SYMBOL(md_write_inc); 8566 8567 void md_write_end(struct mddev *mddev) 8568 { 8569 percpu_ref_put(&mddev->writes_pending); 8570 8571 if (mddev->safemode == 2) 8572 md_wakeup_thread(mddev->thread); 8573 else if (mddev->safemode_delay) 8574 /* The roundup() ensures this only performs locking once 8575 * every ->safemode_delay jiffies 8576 */ 8577 mod_timer(&mddev->safemode_timer, 8578 roundup(jiffies, mddev->safemode_delay) + 8579 mddev->safemode_delay); 8580 } 8581 8582 EXPORT_SYMBOL(md_write_end); 8583 8584 /* This is used by raid0 and raid10 */ 8585 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8586 struct bio *bio, sector_t start, sector_t size) 8587 { 8588 struct bio *discard_bio = NULL; 8589 8590 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8591 &discard_bio) || !discard_bio) 8592 return; 8593 8594 bio_chain(discard_bio, bio); 8595 bio_clone_blkg_association(discard_bio, bio); 8596 if (mddev->gendisk) 8597 trace_block_bio_remap(discard_bio, 8598 disk_devt(mddev->gendisk), 8599 bio->bi_iter.bi_sector); 8600 submit_bio_noacct(discard_bio); 8601 } 8602 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8603 8604 int acct_bioset_init(struct mddev *mddev) 8605 { 8606 int err = 0; 8607 8608 if (!bioset_initialized(&mddev->io_acct_set)) 8609 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8610 offsetof(struct md_io_acct, bio_clone), 0); 8611 return err; 8612 } 8613 EXPORT_SYMBOL_GPL(acct_bioset_init); 8614 8615 void acct_bioset_exit(struct mddev *mddev) 8616 { 8617 bioset_exit(&mddev->io_acct_set); 8618 } 8619 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8620 8621 static void md_end_io_acct(struct bio *bio) 8622 { 8623 struct md_io_acct *md_io_acct = bio->bi_private; 8624 struct bio *orig_bio = md_io_acct->orig_bio; 8625 struct mddev *mddev = md_io_acct->mddev; 8626 8627 orig_bio->bi_status = bio->bi_status; 8628 8629 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8630 bio_put(bio); 8631 bio_endio(orig_bio); 8632 8633 percpu_ref_put(&mddev->active_io); 8634 } 8635 8636 /* 8637 * Used by personalities that don't already clone the bio and thus can't 8638 * easily add the timestamp to their extended bio structure. 8639 */ 8640 void md_account_bio(struct mddev *mddev, struct bio **bio) 8641 { 8642 struct block_device *bdev = (*bio)->bi_bdev; 8643 struct md_io_acct *md_io_acct; 8644 struct bio *clone; 8645 8646 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8647 return; 8648 8649 percpu_ref_get(&mddev->active_io); 8650 8651 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8652 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8653 md_io_acct->orig_bio = *bio; 8654 md_io_acct->start_time = bio_start_io_acct(*bio); 8655 md_io_acct->mddev = mddev; 8656 8657 clone->bi_end_io = md_end_io_acct; 8658 clone->bi_private = md_io_acct; 8659 *bio = clone; 8660 } 8661 EXPORT_SYMBOL_GPL(md_account_bio); 8662 8663 /* md_allow_write(mddev) 8664 * Calling this ensures that the array is marked 'active' so that writes 8665 * may proceed without blocking. It is important to call this before 8666 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8667 * Must be called with mddev_lock held. 8668 */ 8669 void md_allow_write(struct mddev *mddev) 8670 { 8671 if (!mddev->pers) 8672 return; 8673 if (!md_is_rdwr(mddev)) 8674 return; 8675 if (!mddev->pers->sync_request) 8676 return; 8677 8678 spin_lock(&mddev->lock); 8679 if (mddev->in_sync) { 8680 mddev->in_sync = 0; 8681 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8682 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8683 if (mddev->safemode_delay && 8684 mddev->safemode == 0) 8685 mddev->safemode = 1; 8686 spin_unlock(&mddev->lock); 8687 md_update_sb(mddev, 0); 8688 sysfs_notify_dirent_safe(mddev->sysfs_state); 8689 /* wait for the dirty state to be recorded in the metadata */ 8690 wait_event(mddev->sb_wait, 8691 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8692 } else 8693 spin_unlock(&mddev->lock); 8694 } 8695 EXPORT_SYMBOL_GPL(md_allow_write); 8696 8697 #define SYNC_MARKS 10 8698 #define SYNC_MARK_STEP (3*HZ) 8699 #define UPDATE_FREQUENCY (5*60*HZ) 8700 void md_do_sync(struct md_thread *thread) 8701 { 8702 struct mddev *mddev = thread->mddev; 8703 struct mddev *mddev2; 8704 unsigned int currspeed = 0, window; 8705 sector_t max_sectors,j, io_sectors, recovery_done; 8706 unsigned long mark[SYNC_MARKS]; 8707 unsigned long update_time; 8708 sector_t mark_cnt[SYNC_MARKS]; 8709 int last_mark,m; 8710 sector_t last_check; 8711 int skipped = 0; 8712 struct md_rdev *rdev; 8713 char *desc, *action = NULL; 8714 struct blk_plug plug; 8715 int ret; 8716 8717 /* just incase thread restarts... */ 8718 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8719 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8720 return; 8721 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8722 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8723 return; 8724 } 8725 8726 if (mddev_is_clustered(mddev)) { 8727 ret = md_cluster_ops->resync_start(mddev); 8728 if (ret) 8729 goto skip; 8730 8731 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8732 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8733 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8734 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8735 && ((unsigned long long)mddev->curr_resync_completed 8736 < (unsigned long long)mddev->resync_max_sectors)) 8737 goto skip; 8738 } 8739 8740 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8741 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8742 desc = "data-check"; 8743 action = "check"; 8744 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8745 desc = "requested-resync"; 8746 action = "repair"; 8747 } else 8748 desc = "resync"; 8749 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8750 desc = "reshape"; 8751 else 8752 desc = "recovery"; 8753 8754 mddev->last_sync_action = action ?: desc; 8755 8756 /* 8757 * Before starting a resync we must have set curr_resync to 8758 * 2, and then checked that every "conflicting" array has curr_resync 8759 * less than ours. When we find one that is the same or higher 8760 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8761 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8762 * This will mean we have to start checking from the beginning again. 8763 * 8764 */ 8765 8766 do { 8767 int mddev2_minor = -1; 8768 mddev->curr_resync = MD_RESYNC_DELAYED; 8769 8770 try_again: 8771 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8772 goto skip; 8773 spin_lock(&all_mddevs_lock); 8774 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8775 if (test_bit(MD_DELETED, &mddev2->flags)) 8776 continue; 8777 if (mddev2 == mddev) 8778 continue; 8779 if (!mddev->parallel_resync 8780 && mddev2->curr_resync 8781 && match_mddev_units(mddev, mddev2)) { 8782 DEFINE_WAIT(wq); 8783 if (mddev < mddev2 && 8784 mddev->curr_resync == MD_RESYNC_DELAYED) { 8785 /* arbitrarily yield */ 8786 mddev->curr_resync = MD_RESYNC_YIELDED; 8787 wake_up(&resync_wait); 8788 } 8789 if (mddev > mddev2 && 8790 mddev->curr_resync == MD_RESYNC_YIELDED) 8791 /* no need to wait here, we can wait the next 8792 * time 'round when curr_resync == 2 8793 */ 8794 continue; 8795 /* We need to wait 'interruptible' so as not to 8796 * contribute to the load average, and not to 8797 * be caught by 'softlockup' 8798 */ 8799 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8800 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8801 mddev2->curr_resync >= mddev->curr_resync) { 8802 if (mddev2_minor != mddev2->md_minor) { 8803 mddev2_minor = mddev2->md_minor; 8804 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8805 desc, mdname(mddev), 8806 mdname(mddev2)); 8807 } 8808 spin_unlock(&all_mddevs_lock); 8809 8810 if (signal_pending(current)) 8811 flush_signals(current); 8812 schedule(); 8813 finish_wait(&resync_wait, &wq); 8814 goto try_again; 8815 } 8816 finish_wait(&resync_wait, &wq); 8817 } 8818 } 8819 spin_unlock(&all_mddevs_lock); 8820 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8821 8822 j = 0; 8823 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8824 /* resync follows the size requested by the personality, 8825 * which defaults to physical size, but can be virtual size 8826 */ 8827 max_sectors = mddev->resync_max_sectors; 8828 atomic64_set(&mddev->resync_mismatches, 0); 8829 /* we don't use the checkpoint if there's a bitmap */ 8830 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8831 j = mddev->resync_min; 8832 else if (!mddev->bitmap) 8833 j = mddev->recovery_cp; 8834 8835 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8836 max_sectors = mddev->resync_max_sectors; 8837 /* 8838 * If the original node aborts reshaping then we continue the 8839 * reshaping, so set j again to avoid restart reshape from the 8840 * first beginning 8841 */ 8842 if (mddev_is_clustered(mddev) && 8843 mddev->reshape_position != MaxSector) 8844 j = mddev->reshape_position; 8845 } else { 8846 /* recovery follows the physical size of devices */ 8847 max_sectors = mddev->dev_sectors; 8848 j = MaxSector; 8849 rcu_read_lock(); 8850 rdev_for_each_rcu(rdev, mddev) 8851 if (rdev->raid_disk >= 0 && 8852 !test_bit(Journal, &rdev->flags) && 8853 !test_bit(Faulty, &rdev->flags) && 8854 !test_bit(In_sync, &rdev->flags) && 8855 rdev->recovery_offset < j) 8856 j = rdev->recovery_offset; 8857 rcu_read_unlock(); 8858 8859 /* If there is a bitmap, we need to make sure all 8860 * writes that started before we added a spare 8861 * complete before we start doing a recovery. 8862 * Otherwise the write might complete and (via 8863 * bitmap_endwrite) set a bit in the bitmap after the 8864 * recovery has checked that bit and skipped that 8865 * region. 8866 */ 8867 if (mddev->bitmap) { 8868 mddev->pers->quiesce(mddev, 1); 8869 mddev->pers->quiesce(mddev, 0); 8870 } 8871 } 8872 8873 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8874 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8875 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8876 speed_max(mddev), desc); 8877 8878 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8879 8880 io_sectors = 0; 8881 for (m = 0; m < SYNC_MARKS; m++) { 8882 mark[m] = jiffies; 8883 mark_cnt[m] = io_sectors; 8884 } 8885 last_mark = 0; 8886 mddev->resync_mark = mark[last_mark]; 8887 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8888 8889 /* 8890 * Tune reconstruction: 8891 */ 8892 window = 32 * (PAGE_SIZE / 512); 8893 pr_debug("md: using %dk window, over a total of %lluk.\n", 8894 window/2, (unsigned long long)max_sectors/2); 8895 8896 atomic_set(&mddev->recovery_active, 0); 8897 last_check = 0; 8898 8899 if (j >= MD_RESYNC_ACTIVE) { 8900 pr_debug("md: resuming %s of %s from checkpoint.\n", 8901 desc, mdname(mddev)); 8902 mddev->curr_resync = j; 8903 } else 8904 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8905 mddev->curr_resync_completed = j; 8906 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8907 md_new_event(); 8908 update_time = jiffies; 8909 8910 blk_start_plug(&plug); 8911 while (j < max_sectors) { 8912 sector_t sectors; 8913 8914 skipped = 0; 8915 8916 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8917 ((mddev->curr_resync > mddev->curr_resync_completed && 8918 (mddev->curr_resync - mddev->curr_resync_completed) 8919 > (max_sectors >> 4)) || 8920 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8921 (j - mddev->curr_resync_completed)*2 8922 >= mddev->resync_max - mddev->curr_resync_completed || 8923 mddev->curr_resync_completed > mddev->resync_max 8924 )) { 8925 /* time to update curr_resync_completed */ 8926 wait_event(mddev->recovery_wait, 8927 atomic_read(&mddev->recovery_active) == 0); 8928 mddev->curr_resync_completed = j; 8929 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8930 j > mddev->recovery_cp) 8931 mddev->recovery_cp = j; 8932 update_time = jiffies; 8933 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8934 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8935 } 8936 8937 while (j >= mddev->resync_max && 8938 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8939 /* As this condition is controlled by user-space, 8940 * we can block indefinitely, so use '_interruptible' 8941 * to avoid triggering warnings. 8942 */ 8943 flush_signals(current); /* just in case */ 8944 wait_event_interruptible(mddev->recovery_wait, 8945 mddev->resync_max > j 8946 || test_bit(MD_RECOVERY_INTR, 8947 &mddev->recovery)); 8948 } 8949 8950 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8951 break; 8952 8953 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8954 if (sectors == 0) { 8955 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8956 break; 8957 } 8958 8959 if (!skipped) { /* actual IO requested */ 8960 io_sectors += sectors; 8961 atomic_add(sectors, &mddev->recovery_active); 8962 } 8963 8964 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8965 break; 8966 8967 j += sectors; 8968 if (j > max_sectors) 8969 /* when skipping, extra large numbers can be returned. */ 8970 j = max_sectors; 8971 if (j >= MD_RESYNC_ACTIVE) 8972 mddev->curr_resync = j; 8973 mddev->curr_mark_cnt = io_sectors; 8974 if (last_check == 0) 8975 /* this is the earliest that rebuild will be 8976 * visible in /proc/mdstat 8977 */ 8978 md_new_event(); 8979 8980 if (last_check + window > io_sectors || j == max_sectors) 8981 continue; 8982 8983 last_check = io_sectors; 8984 repeat: 8985 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8986 /* step marks */ 8987 int next = (last_mark+1) % SYNC_MARKS; 8988 8989 mddev->resync_mark = mark[next]; 8990 mddev->resync_mark_cnt = mark_cnt[next]; 8991 mark[next] = jiffies; 8992 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8993 last_mark = next; 8994 } 8995 8996 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8997 break; 8998 8999 /* 9000 * this loop exits only if either when we are slower than 9001 * the 'hard' speed limit, or the system was IO-idle for 9002 * a jiffy. 9003 * the system might be non-idle CPU-wise, but we only care 9004 * about not overloading the IO subsystem. (things like an 9005 * e2fsck being done on the RAID array should execute fast) 9006 */ 9007 cond_resched(); 9008 9009 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9010 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9011 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9012 9013 if (currspeed > speed_min(mddev)) { 9014 if (currspeed > speed_max(mddev)) { 9015 msleep(500); 9016 goto repeat; 9017 } 9018 if (!is_mddev_idle(mddev, 0)) { 9019 /* 9020 * Give other IO more of a chance. 9021 * The faster the devices, the less we wait. 9022 */ 9023 wait_event(mddev->recovery_wait, 9024 !atomic_read(&mddev->recovery_active)); 9025 } 9026 } 9027 } 9028 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9029 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9030 ? "interrupted" : "done"); 9031 /* 9032 * this also signals 'finished resyncing' to md_stop 9033 */ 9034 blk_finish_plug(&plug); 9035 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9036 9037 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9038 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9039 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9040 mddev->curr_resync_completed = mddev->curr_resync; 9041 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9042 } 9043 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9044 9045 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9046 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9047 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9048 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9049 if (mddev->curr_resync >= mddev->recovery_cp) { 9050 pr_debug("md: checkpointing %s of %s.\n", 9051 desc, mdname(mddev)); 9052 if (test_bit(MD_RECOVERY_ERROR, 9053 &mddev->recovery)) 9054 mddev->recovery_cp = 9055 mddev->curr_resync_completed; 9056 else 9057 mddev->recovery_cp = 9058 mddev->curr_resync; 9059 } 9060 } else 9061 mddev->recovery_cp = MaxSector; 9062 } else { 9063 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9064 mddev->curr_resync = MaxSector; 9065 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9066 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9067 rcu_read_lock(); 9068 rdev_for_each_rcu(rdev, mddev) 9069 if (rdev->raid_disk >= 0 && 9070 mddev->delta_disks >= 0 && 9071 !test_bit(Journal, &rdev->flags) && 9072 !test_bit(Faulty, &rdev->flags) && 9073 !test_bit(In_sync, &rdev->flags) && 9074 rdev->recovery_offset < mddev->curr_resync) 9075 rdev->recovery_offset = mddev->curr_resync; 9076 rcu_read_unlock(); 9077 } 9078 } 9079 } 9080 skip: 9081 /* set CHANGE_PENDING here since maybe another update is needed, 9082 * so other nodes are informed. It should be harmless for normal 9083 * raid */ 9084 set_mask_bits(&mddev->sb_flags, 0, 9085 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9086 9087 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9088 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9089 mddev->delta_disks > 0 && 9090 mddev->pers->finish_reshape && 9091 mddev->pers->size && 9092 mddev->queue) { 9093 mddev_lock_nointr(mddev); 9094 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9095 mddev_unlock(mddev); 9096 if (!mddev_is_clustered(mddev)) 9097 set_capacity_and_notify(mddev->gendisk, 9098 mddev->array_sectors); 9099 } 9100 9101 spin_lock(&mddev->lock); 9102 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9103 /* We completed so min/max setting can be forgotten if used. */ 9104 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9105 mddev->resync_min = 0; 9106 mddev->resync_max = MaxSector; 9107 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9108 mddev->resync_min = mddev->curr_resync_completed; 9109 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9110 mddev->curr_resync = MD_RESYNC_NONE; 9111 spin_unlock(&mddev->lock); 9112 9113 wake_up(&resync_wait); 9114 wake_up(&mddev->sb_wait); 9115 md_wakeup_thread(mddev->thread); 9116 return; 9117 } 9118 EXPORT_SYMBOL_GPL(md_do_sync); 9119 9120 static int remove_and_add_spares(struct mddev *mddev, 9121 struct md_rdev *this) 9122 { 9123 struct md_rdev *rdev; 9124 int spares = 0; 9125 int removed = 0; 9126 bool remove_some = false; 9127 9128 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9129 /* Mustn't remove devices when resync thread is running */ 9130 return 0; 9131 9132 rdev_for_each(rdev, mddev) { 9133 if ((this == NULL || rdev == this) && 9134 rdev->raid_disk >= 0 && 9135 !test_bit(Blocked, &rdev->flags) && 9136 test_bit(Faulty, &rdev->flags) && 9137 atomic_read(&rdev->nr_pending)==0) { 9138 /* Faulty non-Blocked devices with nr_pending == 0 9139 * never get nr_pending incremented, 9140 * never get Faulty cleared, and never get Blocked set. 9141 * So we can synchronize_rcu now rather than once per device 9142 */ 9143 remove_some = true; 9144 set_bit(RemoveSynchronized, &rdev->flags); 9145 } 9146 } 9147 9148 if (remove_some) 9149 synchronize_rcu(); 9150 rdev_for_each(rdev, mddev) { 9151 if ((this == NULL || rdev == this) && 9152 rdev->raid_disk >= 0 && 9153 !test_bit(Blocked, &rdev->flags) && 9154 ((test_bit(RemoveSynchronized, &rdev->flags) || 9155 (!test_bit(In_sync, &rdev->flags) && 9156 !test_bit(Journal, &rdev->flags))) && 9157 atomic_read(&rdev->nr_pending)==0)) { 9158 if (mddev->pers->hot_remove_disk( 9159 mddev, rdev) == 0) { 9160 sysfs_unlink_rdev(mddev, rdev); 9161 rdev->saved_raid_disk = rdev->raid_disk; 9162 rdev->raid_disk = -1; 9163 removed++; 9164 } 9165 } 9166 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9167 clear_bit(RemoveSynchronized, &rdev->flags); 9168 } 9169 9170 if (removed && mddev->kobj.sd) 9171 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9172 9173 if (this && removed) 9174 goto no_add; 9175 9176 rdev_for_each(rdev, mddev) { 9177 if (this && this != rdev) 9178 continue; 9179 if (test_bit(Candidate, &rdev->flags)) 9180 continue; 9181 if (rdev->raid_disk >= 0 && 9182 !test_bit(In_sync, &rdev->flags) && 9183 !test_bit(Journal, &rdev->flags) && 9184 !test_bit(Faulty, &rdev->flags)) 9185 spares++; 9186 if (rdev->raid_disk >= 0) 9187 continue; 9188 if (test_bit(Faulty, &rdev->flags)) 9189 continue; 9190 if (!test_bit(Journal, &rdev->flags)) { 9191 if (!md_is_rdwr(mddev) && 9192 !(rdev->saved_raid_disk >= 0 && 9193 !test_bit(Bitmap_sync, &rdev->flags))) 9194 continue; 9195 9196 rdev->recovery_offset = 0; 9197 } 9198 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9199 /* failure here is OK */ 9200 sysfs_link_rdev(mddev, rdev); 9201 if (!test_bit(Journal, &rdev->flags)) 9202 spares++; 9203 md_new_event(); 9204 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9205 } 9206 } 9207 no_add: 9208 if (removed) 9209 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9210 return spares; 9211 } 9212 9213 static void md_start_sync(struct work_struct *ws) 9214 { 9215 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9216 9217 rcu_assign_pointer(mddev->sync_thread, 9218 md_register_thread(md_do_sync, mddev, "resync")); 9219 if (!mddev->sync_thread) { 9220 pr_warn("%s: could not start resync thread...\n", 9221 mdname(mddev)); 9222 /* leave the spares where they are, it shouldn't hurt */ 9223 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9224 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9225 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9226 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9227 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9228 wake_up(&resync_wait); 9229 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9230 &mddev->recovery)) 9231 if (mddev->sysfs_action) 9232 sysfs_notify_dirent_safe(mddev->sysfs_action); 9233 } else 9234 md_wakeup_thread(mddev->sync_thread); 9235 sysfs_notify_dirent_safe(mddev->sysfs_action); 9236 md_new_event(); 9237 } 9238 9239 /* 9240 * This routine is regularly called by all per-raid-array threads to 9241 * deal with generic issues like resync and super-block update. 9242 * Raid personalities that don't have a thread (linear/raid0) do not 9243 * need this as they never do any recovery or update the superblock. 9244 * 9245 * It does not do any resync itself, but rather "forks" off other threads 9246 * to do that as needed. 9247 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9248 * "->recovery" and create a thread at ->sync_thread. 9249 * When the thread finishes it sets MD_RECOVERY_DONE 9250 * and wakeups up this thread which will reap the thread and finish up. 9251 * This thread also removes any faulty devices (with nr_pending == 0). 9252 * 9253 * The overall approach is: 9254 * 1/ if the superblock needs updating, update it. 9255 * 2/ If a recovery thread is running, don't do anything else. 9256 * 3/ If recovery has finished, clean up, possibly marking spares active. 9257 * 4/ If there are any faulty devices, remove them. 9258 * 5/ If array is degraded, try to add spares devices 9259 * 6/ If array has spares or is not in-sync, start a resync thread. 9260 */ 9261 void md_check_recovery(struct mddev *mddev) 9262 { 9263 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9264 /* Write superblock - thread that called mddev_suspend() 9265 * holds reconfig_mutex for us. 9266 */ 9267 set_bit(MD_UPDATING_SB, &mddev->flags); 9268 smp_mb__after_atomic(); 9269 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9270 md_update_sb(mddev, 0); 9271 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9272 wake_up(&mddev->sb_wait); 9273 } 9274 9275 if (is_md_suspended(mddev)) 9276 return; 9277 9278 if (mddev->bitmap) 9279 md_bitmap_daemon_work(mddev); 9280 9281 if (signal_pending(current)) { 9282 if (mddev->pers->sync_request && !mddev->external) { 9283 pr_debug("md: %s in immediate safe mode\n", 9284 mdname(mddev)); 9285 mddev->safemode = 2; 9286 } 9287 flush_signals(current); 9288 } 9289 9290 if (!md_is_rdwr(mddev) && 9291 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9292 return; 9293 if ( ! ( 9294 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9295 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9296 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9297 (mddev->external == 0 && mddev->safemode == 1) || 9298 (mddev->safemode == 2 9299 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9300 )) 9301 return; 9302 9303 if (mddev_trylock(mddev)) { 9304 int spares = 0; 9305 bool try_set_sync = mddev->safemode != 0; 9306 9307 if (!mddev->external && mddev->safemode == 1) 9308 mddev->safemode = 0; 9309 9310 if (!md_is_rdwr(mddev)) { 9311 struct md_rdev *rdev; 9312 if (!mddev->external && mddev->in_sync) 9313 /* 'Blocked' flag not needed as failed devices 9314 * will be recorded if array switched to read/write. 9315 * Leaving it set will prevent the device 9316 * from being removed. 9317 */ 9318 rdev_for_each(rdev, mddev) 9319 clear_bit(Blocked, &rdev->flags); 9320 /* On a read-only array we can: 9321 * - remove failed devices 9322 * - add already-in_sync devices if the array itself 9323 * is in-sync. 9324 * As we only add devices that are already in-sync, 9325 * we can activate the spares immediately. 9326 */ 9327 remove_and_add_spares(mddev, NULL); 9328 /* There is no thread, but we need to call 9329 * ->spare_active and clear saved_raid_disk 9330 */ 9331 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9332 md_unregister_thread(&mddev->sync_thread); 9333 md_reap_sync_thread(mddev); 9334 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9335 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9336 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9337 goto unlock; 9338 } 9339 9340 if (mddev_is_clustered(mddev)) { 9341 struct md_rdev *rdev, *tmp; 9342 /* kick the device if another node issued a 9343 * remove disk. 9344 */ 9345 rdev_for_each_safe(rdev, tmp, mddev) { 9346 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9347 rdev->raid_disk < 0) 9348 md_kick_rdev_from_array(rdev); 9349 } 9350 } 9351 9352 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9353 spin_lock(&mddev->lock); 9354 set_in_sync(mddev); 9355 spin_unlock(&mddev->lock); 9356 } 9357 9358 if (mddev->sb_flags) 9359 md_update_sb(mddev, 0); 9360 9361 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9362 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9363 /* resync/recovery still happening */ 9364 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9365 goto unlock; 9366 } 9367 if (mddev->sync_thread) { 9368 md_unregister_thread(&mddev->sync_thread); 9369 md_reap_sync_thread(mddev); 9370 goto unlock; 9371 } 9372 /* Set RUNNING before clearing NEEDED to avoid 9373 * any transients in the value of "sync_action". 9374 */ 9375 mddev->curr_resync_completed = 0; 9376 spin_lock(&mddev->lock); 9377 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9378 spin_unlock(&mddev->lock); 9379 /* Clear some bits that don't mean anything, but 9380 * might be left set 9381 */ 9382 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9383 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9384 9385 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9386 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9387 goto not_running; 9388 /* no recovery is running. 9389 * remove any failed drives, then 9390 * add spares if possible. 9391 * Spares are also removed and re-added, to allow 9392 * the personality to fail the re-add. 9393 */ 9394 9395 if (mddev->reshape_position != MaxSector) { 9396 if (mddev->pers->check_reshape == NULL || 9397 mddev->pers->check_reshape(mddev) != 0) 9398 /* Cannot proceed */ 9399 goto not_running; 9400 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9401 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9402 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9403 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9404 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9405 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9406 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9407 } else if (mddev->recovery_cp < MaxSector) { 9408 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9409 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9410 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9411 /* nothing to be done ... */ 9412 goto not_running; 9413 9414 if (mddev->pers->sync_request) { 9415 if (spares) { 9416 /* We are adding a device or devices to an array 9417 * which has the bitmap stored on all devices. 9418 * So make sure all bitmap pages get written 9419 */ 9420 md_bitmap_write_all(mddev->bitmap); 9421 } 9422 INIT_WORK(&mddev->del_work, md_start_sync); 9423 queue_work(md_misc_wq, &mddev->del_work); 9424 goto unlock; 9425 } 9426 not_running: 9427 if (!mddev->sync_thread) { 9428 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9429 wake_up(&resync_wait); 9430 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9431 &mddev->recovery)) 9432 if (mddev->sysfs_action) 9433 sysfs_notify_dirent_safe(mddev->sysfs_action); 9434 } 9435 unlock: 9436 wake_up(&mddev->sb_wait); 9437 mddev_unlock(mddev); 9438 } 9439 } 9440 EXPORT_SYMBOL(md_check_recovery); 9441 9442 void md_reap_sync_thread(struct mddev *mddev) 9443 { 9444 struct md_rdev *rdev; 9445 sector_t old_dev_sectors = mddev->dev_sectors; 9446 bool is_reshaped = false; 9447 9448 /* sync_thread should be unregistered, collect result */ 9449 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9450 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9451 mddev->degraded != mddev->raid_disks) { 9452 /* success...*/ 9453 /* activate any spares */ 9454 if (mddev->pers->spare_active(mddev)) { 9455 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9456 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9457 } 9458 } 9459 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9460 mddev->pers->finish_reshape) { 9461 mddev->pers->finish_reshape(mddev); 9462 if (mddev_is_clustered(mddev)) 9463 is_reshaped = true; 9464 } 9465 9466 /* If array is no-longer degraded, then any saved_raid_disk 9467 * information must be scrapped. 9468 */ 9469 if (!mddev->degraded) 9470 rdev_for_each(rdev, mddev) 9471 rdev->saved_raid_disk = -1; 9472 9473 md_update_sb(mddev, 1); 9474 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9475 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9476 * clustered raid */ 9477 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9478 md_cluster_ops->resync_finish(mddev); 9479 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9480 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9481 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9482 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9483 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9484 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9485 /* 9486 * We call md_cluster_ops->update_size here because sync_size could 9487 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9488 * so it is time to update size across cluster. 9489 */ 9490 if (mddev_is_clustered(mddev) && is_reshaped 9491 && !test_bit(MD_CLOSING, &mddev->flags)) 9492 md_cluster_ops->update_size(mddev, old_dev_sectors); 9493 wake_up(&resync_wait); 9494 /* flag recovery needed just to double check */ 9495 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9496 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9497 sysfs_notify_dirent_safe(mddev->sysfs_action); 9498 md_new_event(); 9499 if (mddev->event_work.func) 9500 queue_work(md_misc_wq, &mddev->event_work); 9501 } 9502 EXPORT_SYMBOL(md_reap_sync_thread); 9503 9504 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9505 { 9506 sysfs_notify_dirent_safe(rdev->sysfs_state); 9507 wait_event_timeout(rdev->blocked_wait, 9508 !test_bit(Blocked, &rdev->flags) && 9509 !test_bit(BlockedBadBlocks, &rdev->flags), 9510 msecs_to_jiffies(5000)); 9511 rdev_dec_pending(rdev, mddev); 9512 } 9513 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9514 9515 void md_finish_reshape(struct mddev *mddev) 9516 { 9517 /* called be personality module when reshape completes. */ 9518 struct md_rdev *rdev; 9519 9520 rdev_for_each(rdev, mddev) { 9521 if (rdev->data_offset > rdev->new_data_offset) 9522 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9523 else 9524 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9525 rdev->data_offset = rdev->new_data_offset; 9526 } 9527 } 9528 EXPORT_SYMBOL(md_finish_reshape); 9529 9530 /* Bad block management */ 9531 9532 /* Returns 1 on success, 0 on failure */ 9533 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9534 int is_new) 9535 { 9536 struct mddev *mddev = rdev->mddev; 9537 int rv; 9538 if (is_new) 9539 s += rdev->new_data_offset; 9540 else 9541 s += rdev->data_offset; 9542 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9543 if (rv == 0) { 9544 /* Make sure they get written out promptly */ 9545 if (test_bit(ExternalBbl, &rdev->flags)) 9546 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9547 sysfs_notify_dirent_safe(rdev->sysfs_state); 9548 set_mask_bits(&mddev->sb_flags, 0, 9549 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9550 md_wakeup_thread(rdev->mddev->thread); 9551 return 1; 9552 } else 9553 return 0; 9554 } 9555 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9556 9557 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9558 int is_new) 9559 { 9560 int rv; 9561 if (is_new) 9562 s += rdev->new_data_offset; 9563 else 9564 s += rdev->data_offset; 9565 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9566 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9567 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9568 return rv; 9569 } 9570 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9571 9572 static int md_notify_reboot(struct notifier_block *this, 9573 unsigned long code, void *x) 9574 { 9575 struct mddev *mddev, *n; 9576 int need_delay = 0; 9577 9578 spin_lock(&all_mddevs_lock); 9579 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9580 if (!mddev_get(mddev)) 9581 continue; 9582 spin_unlock(&all_mddevs_lock); 9583 if (mddev_trylock(mddev)) { 9584 if (mddev->pers) 9585 __md_stop_writes(mddev); 9586 if (mddev->persistent) 9587 mddev->safemode = 2; 9588 mddev_unlock(mddev); 9589 } 9590 need_delay = 1; 9591 mddev_put(mddev); 9592 spin_lock(&all_mddevs_lock); 9593 } 9594 spin_unlock(&all_mddevs_lock); 9595 9596 /* 9597 * certain more exotic SCSI devices are known to be 9598 * volatile wrt too early system reboots. While the 9599 * right place to handle this issue is the given 9600 * driver, we do want to have a safe RAID driver ... 9601 */ 9602 if (need_delay) 9603 msleep(1000); 9604 9605 return NOTIFY_DONE; 9606 } 9607 9608 static struct notifier_block md_notifier = { 9609 .notifier_call = md_notify_reboot, 9610 .next = NULL, 9611 .priority = INT_MAX, /* before any real devices */ 9612 }; 9613 9614 static void md_geninit(void) 9615 { 9616 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9617 9618 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9619 } 9620 9621 static int __init md_init(void) 9622 { 9623 int ret = -ENOMEM; 9624 9625 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9626 if (!md_wq) 9627 goto err_wq; 9628 9629 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9630 if (!md_misc_wq) 9631 goto err_misc_wq; 9632 9633 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9634 0); 9635 if (!md_bitmap_wq) 9636 goto err_bitmap_wq; 9637 9638 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9639 if (ret < 0) 9640 goto err_md; 9641 9642 ret = __register_blkdev(0, "mdp", md_probe); 9643 if (ret < 0) 9644 goto err_mdp; 9645 mdp_major = ret; 9646 9647 register_reboot_notifier(&md_notifier); 9648 raid_table_header = register_sysctl("dev/raid", raid_table); 9649 9650 md_geninit(); 9651 return 0; 9652 9653 err_mdp: 9654 unregister_blkdev(MD_MAJOR, "md"); 9655 err_md: 9656 destroy_workqueue(md_bitmap_wq); 9657 err_bitmap_wq: 9658 destroy_workqueue(md_misc_wq); 9659 err_misc_wq: 9660 destroy_workqueue(md_wq); 9661 err_wq: 9662 return ret; 9663 } 9664 9665 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9666 { 9667 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9668 struct md_rdev *rdev2, *tmp; 9669 int role, ret; 9670 9671 /* 9672 * If size is changed in another node then we need to 9673 * do resize as well. 9674 */ 9675 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9676 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9677 if (ret) 9678 pr_info("md-cluster: resize failed\n"); 9679 else 9680 md_bitmap_update_sb(mddev->bitmap); 9681 } 9682 9683 /* Check for change of roles in the active devices */ 9684 rdev_for_each_safe(rdev2, tmp, mddev) { 9685 if (test_bit(Faulty, &rdev2->flags)) 9686 continue; 9687 9688 /* Check if the roles changed */ 9689 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9690 9691 if (test_bit(Candidate, &rdev2->flags)) { 9692 if (role == MD_DISK_ROLE_FAULTY) { 9693 pr_info("md: Removing Candidate device %pg because add failed\n", 9694 rdev2->bdev); 9695 md_kick_rdev_from_array(rdev2); 9696 continue; 9697 } 9698 else 9699 clear_bit(Candidate, &rdev2->flags); 9700 } 9701 9702 if (role != rdev2->raid_disk) { 9703 /* 9704 * got activated except reshape is happening. 9705 */ 9706 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9707 !(le32_to_cpu(sb->feature_map) & 9708 MD_FEATURE_RESHAPE_ACTIVE)) { 9709 rdev2->saved_raid_disk = role; 9710 ret = remove_and_add_spares(mddev, rdev2); 9711 pr_info("Activated spare: %pg\n", 9712 rdev2->bdev); 9713 /* wakeup mddev->thread here, so array could 9714 * perform resync with the new activated disk */ 9715 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9716 md_wakeup_thread(mddev->thread); 9717 } 9718 /* device faulty 9719 * We just want to do the minimum to mark the disk 9720 * as faulty. The recovery is performed by the 9721 * one who initiated the error. 9722 */ 9723 if (role == MD_DISK_ROLE_FAULTY || 9724 role == MD_DISK_ROLE_JOURNAL) { 9725 md_error(mddev, rdev2); 9726 clear_bit(Blocked, &rdev2->flags); 9727 } 9728 } 9729 } 9730 9731 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9732 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9733 if (ret) 9734 pr_warn("md: updating array disks failed. %d\n", ret); 9735 } 9736 9737 /* 9738 * Since mddev->delta_disks has already updated in update_raid_disks, 9739 * so it is time to check reshape. 9740 */ 9741 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9742 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9743 /* 9744 * reshape is happening in the remote node, we need to 9745 * update reshape_position and call start_reshape. 9746 */ 9747 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9748 if (mddev->pers->update_reshape_pos) 9749 mddev->pers->update_reshape_pos(mddev); 9750 if (mddev->pers->start_reshape) 9751 mddev->pers->start_reshape(mddev); 9752 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9753 mddev->reshape_position != MaxSector && 9754 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9755 /* reshape is just done in another node. */ 9756 mddev->reshape_position = MaxSector; 9757 if (mddev->pers->update_reshape_pos) 9758 mddev->pers->update_reshape_pos(mddev); 9759 } 9760 9761 /* Finally set the event to be up to date */ 9762 mddev->events = le64_to_cpu(sb->events); 9763 } 9764 9765 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9766 { 9767 int err; 9768 struct page *swapout = rdev->sb_page; 9769 struct mdp_superblock_1 *sb; 9770 9771 /* Store the sb page of the rdev in the swapout temporary 9772 * variable in case we err in the future 9773 */ 9774 rdev->sb_page = NULL; 9775 err = alloc_disk_sb(rdev); 9776 if (err == 0) { 9777 ClearPageUptodate(rdev->sb_page); 9778 rdev->sb_loaded = 0; 9779 err = super_types[mddev->major_version]. 9780 load_super(rdev, NULL, mddev->minor_version); 9781 } 9782 if (err < 0) { 9783 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9784 __func__, __LINE__, rdev->desc_nr, err); 9785 if (rdev->sb_page) 9786 put_page(rdev->sb_page); 9787 rdev->sb_page = swapout; 9788 rdev->sb_loaded = 1; 9789 return err; 9790 } 9791 9792 sb = page_address(rdev->sb_page); 9793 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9794 * is not set 9795 */ 9796 9797 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9798 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9799 9800 /* The other node finished recovery, call spare_active to set 9801 * device In_sync and mddev->degraded 9802 */ 9803 if (rdev->recovery_offset == MaxSector && 9804 !test_bit(In_sync, &rdev->flags) && 9805 mddev->pers->spare_active(mddev)) 9806 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9807 9808 put_page(swapout); 9809 return 0; 9810 } 9811 9812 void md_reload_sb(struct mddev *mddev, int nr) 9813 { 9814 struct md_rdev *rdev = NULL, *iter; 9815 int err; 9816 9817 /* Find the rdev */ 9818 rdev_for_each_rcu(iter, mddev) { 9819 if (iter->desc_nr == nr) { 9820 rdev = iter; 9821 break; 9822 } 9823 } 9824 9825 if (!rdev) { 9826 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9827 return; 9828 } 9829 9830 err = read_rdev(mddev, rdev); 9831 if (err < 0) 9832 return; 9833 9834 check_sb_changes(mddev, rdev); 9835 9836 /* Read all rdev's to update recovery_offset */ 9837 rdev_for_each_rcu(rdev, mddev) { 9838 if (!test_bit(Faulty, &rdev->flags)) 9839 read_rdev(mddev, rdev); 9840 } 9841 } 9842 EXPORT_SYMBOL(md_reload_sb); 9843 9844 #ifndef MODULE 9845 9846 /* 9847 * Searches all registered partitions for autorun RAID arrays 9848 * at boot time. 9849 */ 9850 9851 static DEFINE_MUTEX(detected_devices_mutex); 9852 static LIST_HEAD(all_detected_devices); 9853 struct detected_devices_node { 9854 struct list_head list; 9855 dev_t dev; 9856 }; 9857 9858 void md_autodetect_dev(dev_t dev) 9859 { 9860 struct detected_devices_node *node_detected_dev; 9861 9862 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9863 if (node_detected_dev) { 9864 node_detected_dev->dev = dev; 9865 mutex_lock(&detected_devices_mutex); 9866 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9867 mutex_unlock(&detected_devices_mutex); 9868 } 9869 } 9870 9871 void md_autostart_arrays(int part) 9872 { 9873 struct md_rdev *rdev; 9874 struct detected_devices_node *node_detected_dev; 9875 dev_t dev; 9876 int i_scanned, i_passed; 9877 9878 i_scanned = 0; 9879 i_passed = 0; 9880 9881 pr_info("md: Autodetecting RAID arrays.\n"); 9882 9883 mutex_lock(&detected_devices_mutex); 9884 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9885 i_scanned++; 9886 node_detected_dev = list_entry(all_detected_devices.next, 9887 struct detected_devices_node, list); 9888 list_del(&node_detected_dev->list); 9889 dev = node_detected_dev->dev; 9890 kfree(node_detected_dev); 9891 mutex_unlock(&detected_devices_mutex); 9892 rdev = md_import_device(dev,0, 90); 9893 mutex_lock(&detected_devices_mutex); 9894 if (IS_ERR(rdev)) 9895 continue; 9896 9897 if (test_bit(Faulty, &rdev->flags)) 9898 continue; 9899 9900 set_bit(AutoDetected, &rdev->flags); 9901 list_add(&rdev->same_set, &pending_raid_disks); 9902 i_passed++; 9903 } 9904 mutex_unlock(&detected_devices_mutex); 9905 9906 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9907 9908 autorun_devices(part); 9909 } 9910 9911 #endif /* !MODULE */ 9912 9913 static __exit void md_exit(void) 9914 { 9915 struct mddev *mddev, *n; 9916 int delay = 1; 9917 9918 unregister_blkdev(MD_MAJOR,"md"); 9919 unregister_blkdev(mdp_major, "mdp"); 9920 unregister_reboot_notifier(&md_notifier); 9921 unregister_sysctl_table(raid_table_header); 9922 9923 /* We cannot unload the modules while some process is 9924 * waiting for us in select() or poll() - wake them up 9925 */ 9926 md_unloading = 1; 9927 while (waitqueue_active(&md_event_waiters)) { 9928 /* not safe to leave yet */ 9929 wake_up(&md_event_waiters); 9930 msleep(delay); 9931 delay += delay; 9932 } 9933 remove_proc_entry("mdstat", NULL); 9934 9935 spin_lock(&all_mddevs_lock); 9936 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9937 if (!mddev_get(mddev)) 9938 continue; 9939 spin_unlock(&all_mddevs_lock); 9940 export_array(mddev); 9941 mddev->ctime = 0; 9942 mddev->hold_active = 0; 9943 /* 9944 * As the mddev is now fully clear, mddev_put will schedule 9945 * the mddev for destruction by a workqueue, and the 9946 * destroy_workqueue() below will wait for that to complete. 9947 */ 9948 mddev_put(mddev); 9949 spin_lock(&all_mddevs_lock); 9950 } 9951 spin_unlock(&all_mddevs_lock); 9952 9953 destroy_workqueue(md_misc_wq); 9954 destroy_workqueue(md_bitmap_wq); 9955 destroy_workqueue(md_wq); 9956 } 9957 9958 subsys_initcall(md_init); 9959 module_exit(md_exit) 9960 9961 static int get_ro(char *buffer, const struct kernel_param *kp) 9962 { 9963 return sprintf(buffer, "%d\n", start_readonly); 9964 } 9965 static int set_ro(const char *val, const struct kernel_param *kp) 9966 { 9967 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9968 } 9969 9970 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9971 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9972 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9973 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9974 9975 MODULE_LICENSE("GPL"); 9976 MODULE_DESCRIPTION("MD RAID framework"); 9977 MODULE_ALIAS("md"); 9978 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9979