xref: /openbmc/linux/drivers/md/md.c (revision 2bf071bf)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85 
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88 
89 static struct ctl_table_header *raid_table_header;
90 
91 static ctl_table raid_table[] = {
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
94 		.procname	= "speed_limit_min",
95 		.data		= &sysctl_speed_limit_min,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
102 		.procname	= "speed_limit_max",
103 		.data		= &sysctl_speed_limit_max,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{ .ctl_name = 0 }
109 };
110 
111 static ctl_table raid_dir_table[] = {
112 	{
113 		.ctl_name	= DEV_RAID,
114 		.procname	= "raid",
115 		.maxlen		= 0,
116 		.mode		= 0555,
117 		.child		= raid_table,
118 	},
119 	{ .ctl_name = 0 }
120 };
121 
122 static ctl_table raid_root_table[] = {
123 	{
124 		.ctl_name	= CTL_DEV,
125 		.procname	= "dev",
126 		.maxlen		= 0,
127 		.mode		= 0555,
128 		.child		= raid_dir_table,
129 	},
130 	{ .ctl_name = 0 }
131 };
132 
133 static struct block_device_operations md_fops;
134 
135 static int start_readonly;
136 
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 static void md_new_event(mddev_t *mddev)
150 {
151 	atomic_inc(&md_event_count);
152 	wake_up(&md_event_waiters);
153 }
154 
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161 
162 
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)					\
171 									\
172 	for (({ spin_lock(&all_mddevs_lock); 				\
173 		tmp = all_mddevs.next;					\
174 		mddev = NULL;});					\
175 	     ({ if (tmp != &all_mddevs)					\
176 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177 		spin_unlock(&all_mddevs_lock);				\
178 		if (mddev) mddev_put(mddev);				\
179 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
180 		tmp != &all_mddevs;});					\
181 	     ({ spin_lock(&all_mddevs_lock);				\
182 		tmp = tmp->next;})					\
183 		)
184 
185 
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188 	bio_io_error(bio, bio->bi_size);
189 	return 0;
190 }
191 
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194 	atomic_inc(&mddev->active);
195 	return mddev;
196 }
197 
198 static void mddev_put(mddev_t *mddev)
199 {
200 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201 		return;
202 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203 		list_del(&mddev->all_mddevs);
204 		blk_put_queue(mddev->queue);
205 		kobject_unregister(&mddev->kobj);
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 }
209 
210 static mddev_t * mddev_find(dev_t unit)
211 {
212 	mddev_t *mddev, *new = NULL;
213 
214  retry:
215 	spin_lock(&all_mddevs_lock);
216 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217 		if (mddev->unit == unit) {
218 			mddev_get(mddev);
219 			spin_unlock(&all_mddevs_lock);
220 			kfree(new);
221 			return mddev;
222 		}
223 
224 	if (new) {
225 		list_add(&new->all_mddevs, &all_mddevs);
226 		spin_unlock(&all_mddevs_lock);
227 		return new;
228 	}
229 	spin_unlock(&all_mddevs_lock);
230 
231 	new = kzalloc(sizeof(*new), GFP_KERNEL);
232 	if (!new)
233 		return NULL;
234 
235 	new->unit = unit;
236 	if (MAJOR(unit) == MD_MAJOR)
237 		new->md_minor = MINOR(unit);
238 	else
239 		new->md_minor = MINOR(unit) >> MdpMinorShift;
240 
241 	init_MUTEX(&new->reconfig_sem);
242 	INIT_LIST_HEAD(&new->disks);
243 	INIT_LIST_HEAD(&new->all_mddevs);
244 	init_timer(&new->safemode_timer);
245 	atomic_set(&new->active, 1);
246 	spin_lock_init(&new->write_lock);
247 	init_waitqueue_head(&new->sb_wait);
248 
249 	new->queue = blk_alloc_queue(GFP_KERNEL);
250 	if (!new->queue) {
251 		kfree(new);
252 		return NULL;
253 	}
254 
255 	blk_queue_make_request(new->queue, md_fail_request);
256 
257 	goto retry;
258 }
259 
260 static inline int mddev_lock(mddev_t * mddev)
261 {
262 	return down_interruptible(&mddev->reconfig_sem);
263 }
264 
265 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
266 {
267 	down(&mddev->reconfig_sem);
268 }
269 
270 static inline int mddev_trylock(mddev_t * mddev)
271 {
272 	return down_trylock(&mddev->reconfig_sem);
273 }
274 
275 static inline void mddev_unlock(mddev_t * mddev)
276 {
277 	up(&mddev->reconfig_sem);
278 
279 	md_wakeup_thread(mddev->thread);
280 }
281 
282 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
283 {
284 	mdk_rdev_t * rdev;
285 	struct list_head *tmp;
286 
287 	ITERATE_RDEV(mddev,rdev,tmp) {
288 		if (rdev->desc_nr == nr)
289 			return rdev;
290 	}
291 	return NULL;
292 }
293 
294 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
295 {
296 	struct list_head *tmp;
297 	mdk_rdev_t *rdev;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->bdev->bd_dev == dev)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static struct mdk_personality *find_pers(int level, char *clevel)
307 {
308 	struct mdk_personality *pers;
309 	list_for_each_entry(pers, &pers_list, list) {
310 		if (level != LEVEL_NONE && pers->level == level)
311 			return pers;
312 		if (strcmp(pers->name, clevel)==0)
313 			return pers;
314 	}
315 	return NULL;
316 }
317 
318 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
319 {
320 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
321 	return MD_NEW_SIZE_BLOCKS(size);
322 }
323 
324 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
325 {
326 	sector_t size;
327 
328 	size = rdev->sb_offset;
329 
330 	if (chunk_size)
331 		size &= ~((sector_t)chunk_size/1024 - 1);
332 	return size;
333 }
334 
335 static int alloc_disk_sb(mdk_rdev_t * rdev)
336 {
337 	if (rdev->sb_page)
338 		MD_BUG();
339 
340 	rdev->sb_page = alloc_page(GFP_KERNEL);
341 	if (!rdev->sb_page) {
342 		printk(KERN_ALERT "md: out of memory.\n");
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 static void free_disk_sb(mdk_rdev_t * rdev)
350 {
351 	if (rdev->sb_page) {
352 		put_page(rdev->sb_page);
353 		rdev->sb_loaded = 0;
354 		rdev->sb_page = NULL;
355 		rdev->sb_offset = 0;
356 		rdev->size = 0;
357 	}
358 }
359 
360 
361 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
362 {
363 	mdk_rdev_t *rdev = bio->bi_private;
364 	mddev_t *mddev = rdev->mddev;
365 	if (bio->bi_size)
366 		return 1;
367 
368 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
369 		md_error(mddev, rdev);
370 
371 	if (atomic_dec_and_test(&mddev->pending_writes))
372 		wake_up(&mddev->sb_wait);
373 	bio_put(bio);
374 	return 0;
375 }
376 
377 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
378 {
379 	struct bio *bio2 = bio->bi_private;
380 	mdk_rdev_t *rdev = bio2->bi_private;
381 	mddev_t *mddev = rdev->mddev;
382 	if (bio->bi_size)
383 		return 1;
384 
385 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
386 	    error == -EOPNOTSUPP) {
387 		unsigned long flags;
388 		/* barriers don't appear to be supported :-( */
389 		set_bit(BarriersNotsupp, &rdev->flags);
390 		mddev->barriers_work = 0;
391 		spin_lock_irqsave(&mddev->write_lock, flags);
392 		bio2->bi_next = mddev->biolist;
393 		mddev->biolist = bio2;
394 		spin_unlock_irqrestore(&mddev->write_lock, flags);
395 		wake_up(&mddev->sb_wait);
396 		bio_put(bio);
397 		return 0;
398 	}
399 	bio_put(bio2);
400 	bio->bi_private = rdev;
401 	return super_written(bio, bytes_done, error);
402 }
403 
404 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
405 		   sector_t sector, int size, struct page *page)
406 {
407 	/* write first size bytes of page to sector of rdev
408 	 * Increment mddev->pending_writes before returning
409 	 * and decrement it on completion, waking up sb_wait
410 	 * if zero is reached.
411 	 * If an error occurred, call md_error
412 	 *
413 	 * As we might need to resubmit the request if BIO_RW_BARRIER
414 	 * causes ENOTSUPP, we allocate a spare bio...
415 	 */
416 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
417 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
418 
419 	bio->bi_bdev = rdev->bdev;
420 	bio->bi_sector = sector;
421 	bio_add_page(bio, page, size, 0);
422 	bio->bi_private = rdev;
423 	bio->bi_end_io = super_written;
424 	bio->bi_rw = rw;
425 
426 	atomic_inc(&mddev->pending_writes);
427 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
428 		struct bio *rbio;
429 		rw |= (1<<BIO_RW_BARRIER);
430 		rbio = bio_clone(bio, GFP_NOIO);
431 		rbio->bi_private = bio;
432 		rbio->bi_end_io = super_written_barrier;
433 		submit_bio(rw, rbio);
434 	} else
435 		submit_bio(rw, bio);
436 }
437 
438 void md_super_wait(mddev_t *mddev)
439 {
440 	/* wait for all superblock writes that were scheduled to complete.
441 	 * if any had to be retried (due to BARRIER problems), retry them
442 	 */
443 	DEFINE_WAIT(wq);
444 	for(;;) {
445 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
446 		if (atomic_read(&mddev->pending_writes)==0)
447 			break;
448 		while (mddev->biolist) {
449 			struct bio *bio;
450 			spin_lock_irq(&mddev->write_lock);
451 			bio = mddev->biolist;
452 			mddev->biolist = bio->bi_next ;
453 			bio->bi_next = NULL;
454 			spin_unlock_irq(&mddev->write_lock);
455 			submit_bio(bio->bi_rw, bio);
456 		}
457 		schedule();
458 	}
459 	finish_wait(&mddev->sb_wait, &wq);
460 }
461 
462 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
463 {
464 	if (bio->bi_size)
465 		return 1;
466 
467 	complete((struct completion*)bio->bi_private);
468 	return 0;
469 }
470 
471 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
472 		   struct page *page, int rw)
473 {
474 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
475 	struct completion event;
476 	int ret;
477 
478 	rw |= (1 << BIO_RW_SYNC);
479 
480 	bio->bi_bdev = bdev;
481 	bio->bi_sector = sector;
482 	bio_add_page(bio, page, size, 0);
483 	init_completion(&event);
484 	bio->bi_private = &event;
485 	bio->bi_end_io = bi_complete;
486 	submit_bio(rw, bio);
487 	wait_for_completion(&event);
488 
489 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
490 	bio_put(bio);
491 	return ret;
492 }
493 EXPORT_SYMBOL_GPL(sync_page_io);
494 
495 static int read_disk_sb(mdk_rdev_t * rdev, int size)
496 {
497 	char b[BDEVNAME_SIZE];
498 	if (!rdev->sb_page) {
499 		MD_BUG();
500 		return -EINVAL;
501 	}
502 	if (rdev->sb_loaded)
503 		return 0;
504 
505 
506 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
507 		goto fail;
508 	rdev->sb_loaded = 1;
509 	return 0;
510 
511 fail:
512 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
513 		bdevname(rdev->bdev,b));
514 	return -EINVAL;
515 }
516 
517 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
518 {
519 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
520 		(sb1->set_uuid1 == sb2->set_uuid1) &&
521 		(sb1->set_uuid2 == sb2->set_uuid2) &&
522 		(sb1->set_uuid3 == sb2->set_uuid3))
523 
524 		return 1;
525 
526 	return 0;
527 }
528 
529 
530 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
531 {
532 	int ret;
533 	mdp_super_t *tmp1, *tmp2;
534 
535 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
536 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
537 
538 	if (!tmp1 || !tmp2) {
539 		ret = 0;
540 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
541 		goto abort;
542 	}
543 
544 	*tmp1 = *sb1;
545 	*tmp2 = *sb2;
546 
547 	/*
548 	 * nr_disks is not constant
549 	 */
550 	tmp1->nr_disks = 0;
551 	tmp2->nr_disks = 0;
552 
553 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
554 		ret = 0;
555 	else
556 		ret = 1;
557 
558 abort:
559 	kfree(tmp1);
560 	kfree(tmp2);
561 	return ret;
562 }
563 
564 static unsigned int calc_sb_csum(mdp_super_t * sb)
565 {
566 	unsigned int disk_csum, csum;
567 
568 	disk_csum = sb->sb_csum;
569 	sb->sb_csum = 0;
570 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
571 	sb->sb_csum = disk_csum;
572 	return csum;
573 }
574 
575 
576 /*
577  * Handle superblock details.
578  * We want to be able to handle multiple superblock formats
579  * so we have a common interface to them all, and an array of
580  * different handlers.
581  * We rely on user-space to write the initial superblock, and support
582  * reading and updating of superblocks.
583  * Interface methods are:
584  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
585  *      loads and validates a superblock on dev.
586  *      if refdev != NULL, compare superblocks on both devices
587  *    Return:
588  *      0 - dev has a superblock that is compatible with refdev
589  *      1 - dev has a superblock that is compatible and newer than refdev
590  *          so dev should be used as the refdev in future
591  *     -EINVAL superblock incompatible or invalid
592  *     -othererror e.g. -EIO
593  *
594  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
595  *      Verify that dev is acceptable into mddev.
596  *       The first time, mddev->raid_disks will be 0, and data from
597  *       dev should be merged in.  Subsequent calls check that dev
598  *       is new enough.  Return 0 or -EINVAL
599  *
600  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
601  *     Update the superblock for rdev with data in mddev
602  *     This does not write to disc.
603  *
604  */
605 
606 struct super_type  {
607 	char 		*name;
608 	struct module	*owner;
609 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
610 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
611 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
612 };
613 
614 /*
615  * load_super for 0.90.0
616  */
617 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
618 {
619 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
620 	mdp_super_t *sb;
621 	int ret;
622 	sector_t sb_offset;
623 
624 	/*
625 	 * Calculate the position of the superblock,
626 	 * it's at the end of the disk.
627 	 *
628 	 * It also happens to be a multiple of 4Kb.
629 	 */
630 	sb_offset = calc_dev_sboffset(rdev->bdev);
631 	rdev->sb_offset = sb_offset;
632 
633 	ret = read_disk_sb(rdev, MD_SB_BYTES);
634 	if (ret) return ret;
635 
636 	ret = -EINVAL;
637 
638 	bdevname(rdev->bdev, b);
639 	sb = (mdp_super_t*)page_address(rdev->sb_page);
640 
641 	if (sb->md_magic != MD_SB_MAGIC) {
642 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
643 		       b);
644 		goto abort;
645 	}
646 
647 	if (sb->major_version != 0 ||
648 	    sb->minor_version != 90) {
649 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
650 			sb->major_version, sb->minor_version,
651 			b);
652 		goto abort;
653 	}
654 
655 	if (sb->raid_disks <= 0)
656 		goto abort;
657 
658 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
659 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
660 			b);
661 		goto abort;
662 	}
663 
664 	rdev->preferred_minor = sb->md_minor;
665 	rdev->data_offset = 0;
666 	rdev->sb_size = MD_SB_BYTES;
667 
668 	if (sb->level == LEVEL_MULTIPATH)
669 		rdev->desc_nr = -1;
670 	else
671 		rdev->desc_nr = sb->this_disk.number;
672 
673 	if (refdev == 0)
674 		ret = 1;
675 	else {
676 		__u64 ev1, ev2;
677 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
678 		if (!uuid_equal(refsb, sb)) {
679 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
680 				b, bdevname(refdev->bdev,b2));
681 			goto abort;
682 		}
683 		if (!sb_equal(refsb, sb)) {
684 			printk(KERN_WARNING "md: %s has same UUID"
685 			       " but different superblock to %s\n",
686 			       b, bdevname(refdev->bdev, b2));
687 			goto abort;
688 		}
689 		ev1 = md_event(sb);
690 		ev2 = md_event(refsb);
691 		if (ev1 > ev2)
692 			ret = 1;
693 		else
694 			ret = 0;
695 	}
696 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
697 
698 	if (rdev->size < sb->size && sb->level > 1)
699 		/* "this cannot possibly happen" ... */
700 		ret = -EINVAL;
701 
702  abort:
703 	return ret;
704 }
705 
706 /*
707  * validate_super for 0.90.0
708  */
709 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
710 {
711 	mdp_disk_t *desc;
712 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
713 
714 	rdev->raid_disk = -1;
715 	rdev->flags = 0;
716 	if (mddev->raid_disks == 0) {
717 		mddev->major_version = 0;
718 		mddev->minor_version = sb->minor_version;
719 		mddev->patch_version = sb->patch_version;
720 		mddev->persistent = ! sb->not_persistent;
721 		mddev->chunk_size = sb->chunk_size;
722 		mddev->ctime = sb->ctime;
723 		mddev->utime = sb->utime;
724 		mddev->level = sb->level;
725 		mddev->clevel[0] = 0;
726 		mddev->layout = sb->layout;
727 		mddev->raid_disks = sb->raid_disks;
728 		mddev->size = sb->size;
729 		mddev->events = md_event(sb);
730 		mddev->bitmap_offset = 0;
731 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
732 
733 		if (sb->state & (1<<MD_SB_CLEAN))
734 			mddev->recovery_cp = MaxSector;
735 		else {
736 			if (sb->events_hi == sb->cp_events_hi &&
737 				sb->events_lo == sb->cp_events_lo) {
738 				mddev->recovery_cp = sb->recovery_cp;
739 			} else
740 				mddev->recovery_cp = 0;
741 		}
742 
743 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
744 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
745 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
746 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
747 
748 		mddev->max_disks = MD_SB_DISKS;
749 
750 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
751 		    mddev->bitmap_file == NULL) {
752 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
753 			    && mddev->level != 10) {
754 				/* FIXME use a better test */
755 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
756 				return -EINVAL;
757 			}
758 			mddev->bitmap_offset = mddev->default_bitmap_offset;
759 		}
760 
761 	} else if (mddev->pers == NULL) {
762 		/* Insist on good event counter while assembling */
763 		__u64 ev1 = md_event(sb);
764 		++ev1;
765 		if (ev1 < mddev->events)
766 			return -EINVAL;
767 	} else if (mddev->bitmap) {
768 		/* if adding to array with a bitmap, then we can accept an
769 		 * older device ... but not too old.
770 		 */
771 		__u64 ev1 = md_event(sb);
772 		if (ev1 < mddev->bitmap->events_cleared)
773 			return 0;
774 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
775 		return 0;
776 
777 	if (mddev->level != LEVEL_MULTIPATH) {
778 		desc = sb->disks + rdev->desc_nr;
779 
780 		if (desc->state & (1<<MD_DISK_FAULTY))
781 			set_bit(Faulty, &rdev->flags);
782 		else if (desc->state & (1<<MD_DISK_SYNC) &&
783 			 desc->raid_disk < mddev->raid_disks) {
784 			set_bit(In_sync, &rdev->flags);
785 			rdev->raid_disk = desc->raid_disk;
786 		}
787 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
788 			set_bit(WriteMostly, &rdev->flags);
789 	} else /* MULTIPATH are always insync */
790 		set_bit(In_sync, &rdev->flags);
791 	return 0;
792 }
793 
794 /*
795  * sync_super for 0.90.0
796  */
797 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
798 {
799 	mdp_super_t *sb;
800 	struct list_head *tmp;
801 	mdk_rdev_t *rdev2;
802 	int next_spare = mddev->raid_disks;
803 
804 
805 	/* make rdev->sb match mddev data..
806 	 *
807 	 * 1/ zero out disks
808 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
809 	 * 3/ any empty disks < next_spare become removed
810 	 *
811 	 * disks[0] gets initialised to REMOVED because
812 	 * we cannot be sure from other fields if it has
813 	 * been initialised or not.
814 	 */
815 	int i;
816 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
817 
818 	rdev->sb_size = MD_SB_BYTES;
819 
820 	sb = (mdp_super_t*)page_address(rdev->sb_page);
821 
822 	memset(sb, 0, sizeof(*sb));
823 
824 	sb->md_magic = MD_SB_MAGIC;
825 	sb->major_version = mddev->major_version;
826 	sb->minor_version = mddev->minor_version;
827 	sb->patch_version = mddev->patch_version;
828 	sb->gvalid_words  = 0; /* ignored */
829 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
830 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
831 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
832 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
833 
834 	sb->ctime = mddev->ctime;
835 	sb->level = mddev->level;
836 	sb->size  = mddev->size;
837 	sb->raid_disks = mddev->raid_disks;
838 	sb->md_minor = mddev->md_minor;
839 	sb->not_persistent = !mddev->persistent;
840 	sb->utime = mddev->utime;
841 	sb->state = 0;
842 	sb->events_hi = (mddev->events>>32);
843 	sb->events_lo = (u32)mddev->events;
844 
845 	if (mddev->in_sync)
846 	{
847 		sb->recovery_cp = mddev->recovery_cp;
848 		sb->cp_events_hi = (mddev->events>>32);
849 		sb->cp_events_lo = (u32)mddev->events;
850 		if (mddev->recovery_cp == MaxSector)
851 			sb->state = (1<< MD_SB_CLEAN);
852 	} else
853 		sb->recovery_cp = 0;
854 
855 	sb->layout = mddev->layout;
856 	sb->chunk_size = mddev->chunk_size;
857 
858 	if (mddev->bitmap && mddev->bitmap_file == NULL)
859 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
860 
861 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
862 	ITERATE_RDEV(mddev,rdev2,tmp) {
863 		mdp_disk_t *d;
864 		int desc_nr;
865 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
866 		    && !test_bit(Faulty, &rdev2->flags))
867 			desc_nr = rdev2->raid_disk;
868 		else
869 			desc_nr = next_spare++;
870 		rdev2->desc_nr = desc_nr;
871 		d = &sb->disks[rdev2->desc_nr];
872 		nr_disks++;
873 		d->number = rdev2->desc_nr;
874 		d->major = MAJOR(rdev2->bdev->bd_dev);
875 		d->minor = MINOR(rdev2->bdev->bd_dev);
876 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
877 		    && !test_bit(Faulty, &rdev2->flags))
878 			d->raid_disk = rdev2->raid_disk;
879 		else
880 			d->raid_disk = rdev2->desc_nr; /* compatibility */
881 		if (test_bit(Faulty, &rdev2->flags)) {
882 			d->state = (1<<MD_DISK_FAULTY);
883 			failed++;
884 		} else if (test_bit(In_sync, &rdev2->flags)) {
885 			d->state = (1<<MD_DISK_ACTIVE);
886 			d->state |= (1<<MD_DISK_SYNC);
887 			active++;
888 			working++;
889 		} else {
890 			d->state = 0;
891 			spare++;
892 			working++;
893 		}
894 		if (test_bit(WriteMostly, &rdev2->flags))
895 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
896 	}
897 	/* now set the "removed" and "faulty" bits on any missing devices */
898 	for (i=0 ; i < mddev->raid_disks ; i++) {
899 		mdp_disk_t *d = &sb->disks[i];
900 		if (d->state == 0 && d->number == 0) {
901 			d->number = i;
902 			d->raid_disk = i;
903 			d->state = (1<<MD_DISK_REMOVED);
904 			d->state |= (1<<MD_DISK_FAULTY);
905 			failed++;
906 		}
907 	}
908 	sb->nr_disks = nr_disks;
909 	sb->active_disks = active;
910 	sb->working_disks = working;
911 	sb->failed_disks = failed;
912 	sb->spare_disks = spare;
913 
914 	sb->this_disk = sb->disks[rdev->desc_nr];
915 	sb->sb_csum = calc_sb_csum(sb);
916 }
917 
918 /*
919  * version 1 superblock
920  */
921 
922 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
923 {
924 	unsigned int disk_csum, csum;
925 	unsigned long long newcsum;
926 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
927 	unsigned int *isuper = (unsigned int*)sb;
928 	int i;
929 
930 	disk_csum = sb->sb_csum;
931 	sb->sb_csum = 0;
932 	newcsum = 0;
933 	for (i=0; size>=4; size -= 4 )
934 		newcsum += le32_to_cpu(*isuper++);
935 
936 	if (size == 2)
937 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
938 
939 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
940 	sb->sb_csum = disk_csum;
941 	return cpu_to_le32(csum);
942 }
943 
944 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
945 {
946 	struct mdp_superblock_1 *sb;
947 	int ret;
948 	sector_t sb_offset;
949 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
950 	int bmask;
951 
952 	/*
953 	 * Calculate the position of the superblock.
954 	 * It is always aligned to a 4K boundary and
955 	 * depeding on minor_version, it can be:
956 	 * 0: At least 8K, but less than 12K, from end of device
957 	 * 1: At start of device
958 	 * 2: 4K from start of device.
959 	 */
960 	switch(minor_version) {
961 	case 0:
962 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
963 		sb_offset -= 8*2;
964 		sb_offset &= ~(sector_t)(4*2-1);
965 		/* convert from sectors to K */
966 		sb_offset /= 2;
967 		break;
968 	case 1:
969 		sb_offset = 0;
970 		break;
971 	case 2:
972 		sb_offset = 4;
973 		break;
974 	default:
975 		return -EINVAL;
976 	}
977 	rdev->sb_offset = sb_offset;
978 
979 	/* superblock is rarely larger than 1K, but it can be larger,
980 	 * and it is safe to read 4k, so we do that
981 	 */
982 	ret = read_disk_sb(rdev, 4096);
983 	if (ret) return ret;
984 
985 
986 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
987 
988 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
989 	    sb->major_version != cpu_to_le32(1) ||
990 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
991 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
992 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
993 		return -EINVAL;
994 
995 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
996 		printk("md: invalid superblock checksum on %s\n",
997 			bdevname(rdev->bdev,b));
998 		return -EINVAL;
999 	}
1000 	if (le64_to_cpu(sb->data_size) < 10) {
1001 		printk("md: data_size too small on %s\n",
1002 		       bdevname(rdev->bdev,b));
1003 		return -EINVAL;
1004 	}
1005 	rdev->preferred_minor = 0xffff;
1006 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1007 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1008 
1009 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1010 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1011 	if (rdev->sb_size & bmask)
1012 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1013 
1014 	if (refdev == 0)
1015 		return 1;
1016 	else {
1017 		__u64 ev1, ev2;
1018 		struct mdp_superblock_1 *refsb =
1019 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1020 
1021 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1022 		    sb->level != refsb->level ||
1023 		    sb->layout != refsb->layout ||
1024 		    sb->chunksize != refsb->chunksize) {
1025 			printk(KERN_WARNING "md: %s has strangely different"
1026 				" superblock to %s\n",
1027 				bdevname(rdev->bdev,b),
1028 				bdevname(refdev->bdev,b2));
1029 			return -EINVAL;
1030 		}
1031 		ev1 = le64_to_cpu(sb->events);
1032 		ev2 = le64_to_cpu(refsb->events);
1033 
1034 		if (ev1 > ev2)
1035 			return 1;
1036 	}
1037 	if (minor_version)
1038 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1039 	else
1040 		rdev->size = rdev->sb_offset;
1041 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1042 		return -EINVAL;
1043 	rdev->size = le64_to_cpu(sb->data_size)/2;
1044 	if (le32_to_cpu(sb->chunksize))
1045 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1046 
1047 	if (le32_to_cpu(sb->size) > rdev->size*2)
1048 		return -EINVAL;
1049 	return 0;
1050 }
1051 
1052 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1053 {
1054 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1055 
1056 	rdev->raid_disk = -1;
1057 	rdev->flags = 0;
1058 	if (mddev->raid_disks == 0) {
1059 		mddev->major_version = 1;
1060 		mddev->patch_version = 0;
1061 		mddev->persistent = 1;
1062 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1063 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1064 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1065 		mddev->level = le32_to_cpu(sb->level);
1066 		mddev->clevel[0] = 0;
1067 		mddev->layout = le32_to_cpu(sb->layout);
1068 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1069 		mddev->size = le64_to_cpu(sb->size)/2;
1070 		mddev->events = le64_to_cpu(sb->events);
1071 		mddev->bitmap_offset = 0;
1072 		mddev->default_bitmap_offset = 1024;
1073 
1074 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1075 		memcpy(mddev->uuid, sb->set_uuid, 16);
1076 
1077 		mddev->max_disks =  (4096-256)/2;
1078 
1079 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1080 		    mddev->bitmap_file == NULL ) {
1081 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1082 			    && mddev->level != 10) {
1083 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1084 				return -EINVAL;
1085 			}
1086 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1087 		}
1088 	} else if (mddev->pers == NULL) {
1089 		/* Insist of good event counter while assembling */
1090 		__u64 ev1 = le64_to_cpu(sb->events);
1091 		++ev1;
1092 		if (ev1 < mddev->events)
1093 			return -EINVAL;
1094 	} else if (mddev->bitmap) {
1095 		/* If adding to array with a bitmap, then we can accept an
1096 		 * older device, but not too old.
1097 		 */
1098 		__u64 ev1 = le64_to_cpu(sb->events);
1099 		if (ev1 < mddev->bitmap->events_cleared)
1100 			return 0;
1101 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1102 		return 0;
1103 
1104 	if (mddev->level != LEVEL_MULTIPATH) {
1105 		int role;
1106 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1107 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1108 		switch(role) {
1109 		case 0xffff: /* spare */
1110 			break;
1111 		case 0xfffe: /* faulty */
1112 			set_bit(Faulty, &rdev->flags);
1113 			break;
1114 		default:
1115 			set_bit(In_sync, &rdev->flags);
1116 			rdev->raid_disk = role;
1117 			break;
1118 		}
1119 		if (sb->devflags & WriteMostly1)
1120 			set_bit(WriteMostly, &rdev->flags);
1121 	} else /* MULTIPATH are always insync */
1122 		set_bit(In_sync, &rdev->flags);
1123 
1124 	return 0;
1125 }
1126 
1127 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1128 {
1129 	struct mdp_superblock_1 *sb;
1130 	struct list_head *tmp;
1131 	mdk_rdev_t *rdev2;
1132 	int max_dev, i;
1133 	/* make rdev->sb match mddev and rdev data. */
1134 
1135 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1136 
1137 	sb->feature_map = 0;
1138 	sb->pad0 = 0;
1139 	memset(sb->pad1, 0, sizeof(sb->pad1));
1140 	memset(sb->pad2, 0, sizeof(sb->pad2));
1141 	memset(sb->pad3, 0, sizeof(sb->pad3));
1142 
1143 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1144 	sb->events = cpu_to_le64(mddev->events);
1145 	if (mddev->in_sync)
1146 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1147 	else
1148 		sb->resync_offset = cpu_to_le64(0);
1149 
1150 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1151 
1152 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1153 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1154 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1155 	}
1156 
1157 	max_dev = 0;
1158 	ITERATE_RDEV(mddev,rdev2,tmp)
1159 		if (rdev2->desc_nr+1 > max_dev)
1160 			max_dev = rdev2->desc_nr+1;
1161 
1162 	sb->max_dev = cpu_to_le32(max_dev);
1163 	for (i=0; i<max_dev;i++)
1164 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1165 
1166 	ITERATE_RDEV(mddev,rdev2,tmp) {
1167 		i = rdev2->desc_nr;
1168 		if (test_bit(Faulty, &rdev2->flags))
1169 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1170 		else if (test_bit(In_sync, &rdev2->flags))
1171 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1172 		else
1173 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1174 	}
1175 
1176 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1177 	sb->sb_csum = calc_sb_1_csum(sb);
1178 }
1179 
1180 
1181 static struct super_type super_types[] = {
1182 	[0] = {
1183 		.name	= "0.90.0",
1184 		.owner	= THIS_MODULE,
1185 		.load_super	= super_90_load,
1186 		.validate_super	= super_90_validate,
1187 		.sync_super	= super_90_sync,
1188 	},
1189 	[1] = {
1190 		.name	= "md-1",
1191 		.owner	= THIS_MODULE,
1192 		.load_super	= super_1_load,
1193 		.validate_super	= super_1_validate,
1194 		.sync_super	= super_1_sync,
1195 	},
1196 };
1197 
1198 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1199 {
1200 	struct list_head *tmp;
1201 	mdk_rdev_t *rdev;
1202 
1203 	ITERATE_RDEV(mddev,rdev,tmp)
1204 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1205 			return rdev;
1206 
1207 	return NULL;
1208 }
1209 
1210 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1211 {
1212 	struct list_head *tmp;
1213 	mdk_rdev_t *rdev;
1214 
1215 	ITERATE_RDEV(mddev1,rdev,tmp)
1216 		if (match_dev_unit(mddev2, rdev))
1217 			return 1;
1218 
1219 	return 0;
1220 }
1221 
1222 static LIST_HEAD(pending_raid_disks);
1223 
1224 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1225 {
1226 	mdk_rdev_t *same_pdev;
1227 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1228 	struct kobject *ko;
1229 
1230 	if (rdev->mddev) {
1231 		MD_BUG();
1232 		return -EINVAL;
1233 	}
1234 	/* make sure rdev->size exceeds mddev->size */
1235 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1236 		if (mddev->pers)
1237 			/* Cannot change size, so fail */
1238 			return -ENOSPC;
1239 		else
1240 			mddev->size = rdev->size;
1241 	}
1242 	same_pdev = match_dev_unit(mddev, rdev);
1243 	if (same_pdev)
1244 		printk(KERN_WARNING
1245 			"%s: WARNING: %s appears to be on the same physical"
1246 	 		" disk as %s. True\n     protection against single-disk"
1247 			" failure might be compromised.\n",
1248 			mdname(mddev), bdevname(rdev->bdev,b),
1249 			bdevname(same_pdev->bdev,b2));
1250 
1251 	/* Verify rdev->desc_nr is unique.
1252 	 * If it is -1, assign a free number, else
1253 	 * check number is not in use
1254 	 */
1255 	if (rdev->desc_nr < 0) {
1256 		int choice = 0;
1257 		if (mddev->pers) choice = mddev->raid_disks;
1258 		while (find_rdev_nr(mddev, choice))
1259 			choice++;
1260 		rdev->desc_nr = choice;
1261 	} else {
1262 		if (find_rdev_nr(mddev, rdev->desc_nr))
1263 			return -EBUSY;
1264 	}
1265 	bdevname(rdev->bdev,b);
1266 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1267 		return -ENOMEM;
1268 
1269 	list_add(&rdev->same_set, &mddev->disks);
1270 	rdev->mddev = mddev;
1271 	printk(KERN_INFO "md: bind<%s>\n", b);
1272 
1273 	rdev->kobj.parent = &mddev->kobj;
1274 	kobject_add(&rdev->kobj);
1275 
1276 	if (rdev->bdev->bd_part)
1277 		ko = &rdev->bdev->bd_part->kobj;
1278 	else
1279 		ko = &rdev->bdev->bd_disk->kobj;
1280 	sysfs_create_link(&rdev->kobj, ko, "block");
1281 	return 0;
1282 }
1283 
1284 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1285 {
1286 	char b[BDEVNAME_SIZE];
1287 	if (!rdev->mddev) {
1288 		MD_BUG();
1289 		return;
1290 	}
1291 	list_del_init(&rdev->same_set);
1292 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1293 	rdev->mddev = NULL;
1294 	sysfs_remove_link(&rdev->kobj, "block");
1295 	kobject_del(&rdev->kobj);
1296 }
1297 
1298 /*
1299  * prevent the device from being mounted, repartitioned or
1300  * otherwise reused by a RAID array (or any other kernel
1301  * subsystem), by bd_claiming the device.
1302  */
1303 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1304 {
1305 	int err = 0;
1306 	struct block_device *bdev;
1307 	char b[BDEVNAME_SIZE];
1308 
1309 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1310 	if (IS_ERR(bdev)) {
1311 		printk(KERN_ERR "md: could not open %s.\n",
1312 			__bdevname(dev, b));
1313 		return PTR_ERR(bdev);
1314 	}
1315 	err = bd_claim(bdev, rdev);
1316 	if (err) {
1317 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1318 			bdevname(bdev, b));
1319 		blkdev_put(bdev);
1320 		return err;
1321 	}
1322 	rdev->bdev = bdev;
1323 	return err;
1324 }
1325 
1326 static void unlock_rdev(mdk_rdev_t *rdev)
1327 {
1328 	struct block_device *bdev = rdev->bdev;
1329 	rdev->bdev = NULL;
1330 	if (!bdev)
1331 		MD_BUG();
1332 	bd_release(bdev);
1333 	blkdev_put(bdev);
1334 }
1335 
1336 void md_autodetect_dev(dev_t dev);
1337 
1338 static void export_rdev(mdk_rdev_t * rdev)
1339 {
1340 	char b[BDEVNAME_SIZE];
1341 	printk(KERN_INFO "md: export_rdev(%s)\n",
1342 		bdevname(rdev->bdev,b));
1343 	if (rdev->mddev)
1344 		MD_BUG();
1345 	free_disk_sb(rdev);
1346 	list_del_init(&rdev->same_set);
1347 #ifndef MODULE
1348 	md_autodetect_dev(rdev->bdev->bd_dev);
1349 #endif
1350 	unlock_rdev(rdev);
1351 	kobject_put(&rdev->kobj);
1352 }
1353 
1354 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1355 {
1356 	unbind_rdev_from_array(rdev);
1357 	export_rdev(rdev);
1358 }
1359 
1360 static void export_array(mddev_t *mddev)
1361 {
1362 	struct list_head *tmp;
1363 	mdk_rdev_t *rdev;
1364 
1365 	ITERATE_RDEV(mddev,rdev,tmp) {
1366 		if (!rdev->mddev) {
1367 			MD_BUG();
1368 			continue;
1369 		}
1370 		kick_rdev_from_array(rdev);
1371 	}
1372 	if (!list_empty(&mddev->disks))
1373 		MD_BUG();
1374 	mddev->raid_disks = 0;
1375 	mddev->major_version = 0;
1376 }
1377 
1378 static void print_desc(mdp_disk_t *desc)
1379 {
1380 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1381 		desc->major,desc->minor,desc->raid_disk,desc->state);
1382 }
1383 
1384 static void print_sb(mdp_super_t *sb)
1385 {
1386 	int i;
1387 
1388 	printk(KERN_INFO
1389 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1390 		sb->major_version, sb->minor_version, sb->patch_version,
1391 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1392 		sb->ctime);
1393 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1394 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1395 		sb->md_minor, sb->layout, sb->chunk_size);
1396 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1397 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1398 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1399 		sb->failed_disks, sb->spare_disks,
1400 		sb->sb_csum, (unsigned long)sb->events_lo);
1401 
1402 	printk(KERN_INFO);
1403 	for (i = 0; i < MD_SB_DISKS; i++) {
1404 		mdp_disk_t *desc;
1405 
1406 		desc = sb->disks + i;
1407 		if (desc->number || desc->major || desc->minor ||
1408 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1409 			printk("     D %2d: ", i);
1410 			print_desc(desc);
1411 		}
1412 	}
1413 	printk(KERN_INFO "md:     THIS: ");
1414 	print_desc(&sb->this_disk);
1415 
1416 }
1417 
1418 static void print_rdev(mdk_rdev_t *rdev)
1419 {
1420 	char b[BDEVNAME_SIZE];
1421 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1422 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1423 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1424 	        rdev->desc_nr);
1425 	if (rdev->sb_loaded) {
1426 		printk(KERN_INFO "md: rdev superblock:\n");
1427 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1428 	} else
1429 		printk(KERN_INFO "md: no rdev superblock!\n");
1430 }
1431 
1432 void md_print_devices(void)
1433 {
1434 	struct list_head *tmp, *tmp2;
1435 	mdk_rdev_t *rdev;
1436 	mddev_t *mddev;
1437 	char b[BDEVNAME_SIZE];
1438 
1439 	printk("\n");
1440 	printk("md:	**********************************\n");
1441 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1442 	printk("md:	**********************************\n");
1443 	ITERATE_MDDEV(mddev,tmp) {
1444 
1445 		if (mddev->bitmap)
1446 			bitmap_print_sb(mddev->bitmap);
1447 		else
1448 			printk("%s: ", mdname(mddev));
1449 		ITERATE_RDEV(mddev,rdev,tmp2)
1450 			printk("<%s>", bdevname(rdev->bdev,b));
1451 		printk("\n");
1452 
1453 		ITERATE_RDEV(mddev,rdev,tmp2)
1454 			print_rdev(rdev);
1455 	}
1456 	printk("md:	**********************************\n");
1457 	printk("\n");
1458 }
1459 
1460 
1461 static void sync_sbs(mddev_t * mddev)
1462 {
1463 	mdk_rdev_t *rdev;
1464 	struct list_head *tmp;
1465 
1466 	ITERATE_RDEV(mddev,rdev,tmp) {
1467 		super_types[mddev->major_version].
1468 			sync_super(mddev, rdev);
1469 		rdev->sb_loaded = 1;
1470 	}
1471 }
1472 
1473 static void md_update_sb(mddev_t * mddev)
1474 {
1475 	int err;
1476 	struct list_head *tmp;
1477 	mdk_rdev_t *rdev;
1478 	int sync_req;
1479 
1480 repeat:
1481 	spin_lock_irq(&mddev->write_lock);
1482 	sync_req = mddev->in_sync;
1483 	mddev->utime = get_seconds();
1484 	mddev->events ++;
1485 
1486 	if (!mddev->events) {
1487 		/*
1488 		 * oops, this 64-bit counter should never wrap.
1489 		 * Either we are in around ~1 trillion A.C., assuming
1490 		 * 1 reboot per second, or we have a bug:
1491 		 */
1492 		MD_BUG();
1493 		mddev->events --;
1494 	}
1495 	mddev->sb_dirty = 2;
1496 	sync_sbs(mddev);
1497 
1498 	/*
1499 	 * do not write anything to disk if using
1500 	 * nonpersistent superblocks
1501 	 */
1502 	if (!mddev->persistent) {
1503 		mddev->sb_dirty = 0;
1504 		spin_unlock_irq(&mddev->write_lock);
1505 		wake_up(&mddev->sb_wait);
1506 		return;
1507 	}
1508 	spin_unlock_irq(&mddev->write_lock);
1509 
1510 	dprintk(KERN_INFO
1511 		"md: updating %s RAID superblock on device (in sync %d)\n",
1512 		mdname(mddev),mddev->in_sync);
1513 
1514 	err = bitmap_update_sb(mddev->bitmap);
1515 	ITERATE_RDEV(mddev,rdev,tmp) {
1516 		char b[BDEVNAME_SIZE];
1517 		dprintk(KERN_INFO "md: ");
1518 		if (test_bit(Faulty, &rdev->flags))
1519 			dprintk("(skipping faulty ");
1520 
1521 		dprintk("%s ", bdevname(rdev->bdev,b));
1522 		if (!test_bit(Faulty, &rdev->flags)) {
1523 			md_super_write(mddev,rdev,
1524 				       rdev->sb_offset<<1, rdev->sb_size,
1525 				       rdev->sb_page);
1526 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1527 				bdevname(rdev->bdev,b),
1528 				(unsigned long long)rdev->sb_offset);
1529 
1530 		} else
1531 			dprintk(")\n");
1532 		if (mddev->level == LEVEL_MULTIPATH)
1533 			/* only need to write one superblock... */
1534 			break;
1535 	}
1536 	md_super_wait(mddev);
1537 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1538 
1539 	spin_lock_irq(&mddev->write_lock);
1540 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1541 		/* have to write it out again */
1542 		spin_unlock_irq(&mddev->write_lock);
1543 		goto repeat;
1544 	}
1545 	mddev->sb_dirty = 0;
1546 	spin_unlock_irq(&mddev->write_lock);
1547 	wake_up(&mddev->sb_wait);
1548 
1549 }
1550 
1551 /* words written to sysfs files may, or my not, be \n terminated.
1552  * We want to accept with case. For this we use cmd_match.
1553  */
1554 static int cmd_match(const char *cmd, const char *str)
1555 {
1556 	/* See if cmd, written into a sysfs file, matches
1557 	 * str.  They must either be the same, or cmd can
1558 	 * have a trailing newline
1559 	 */
1560 	while (*cmd && *str && *cmd == *str) {
1561 		cmd++;
1562 		str++;
1563 	}
1564 	if (*cmd == '\n')
1565 		cmd++;
1566 	if (*str || *cmd)
1567 		return 0;
1568 	return 1;
1569 }
1570 
1571 struct rdev_sysfs_entry {
1572 	struct attribute attr;
1573 	ssize_t (*show)(mdk_rdev_t *, char *);
1574 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1575 };
1576 
1577 static ssize_t
1578 state_show(mdk_rdev_t *rdev, char *page)
1579 {
1580 	char *sep = "";
1581 	int len=0;
1582 
1583 	if (test_bit(Faulty, &rdev->flags)) {
1584 		len+= sprintf(page+len, "%sfaulty",sep);
1585 		sep = ",";
1586 	}
1587 	if (test_bit(In_sync, &rdev->flags)) {
1588 		len += sprintf(page+len, "%sin_sync",sep);
1589 		sep = ",";
1590 	}
1591 	if (!test_bit(Faulty, &rdev->flags) &&
1592 	    !test_bit(In_sync, &rdev->flags)) {
1593 		len += sprintf(page+len, "%sspare", sep);
1594 		sep = ",";
1595 	}
1596 	return len+sprintf(page+len, "\n");
1597 }
1598 
1599 static struct rdev_sysfs_entry
1600 rdev_state = __ATTR_RO(state);
1601 
1602 static ssize_t
1603 super_show(mdk_rdev_t *rdev, char *page)
1604 {
1605 	if (rdev->sb_loaded && rdev->sb_size) {
1606 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1607 		return rdev->sb_size;
1608 	} else
1609 		return 0;
1610 }
1611 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1612 
1613 static ssize_t
1614 errors_show(mdk_rdev_t *rdev, char *page)
1615 {
1616 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1617 }
1618 
1619 static ssize_t
1620 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1621 {
1622 	char *e;
1623 	unsigned long n = simple_strtoul(buf, &e, 10);
1624 	if (*buf && (*e == 0 || *e == '\n')) {
1625 		atomic_set(&rdev->corrected_errors, n);
1626 		return len;
1627 	}
1628 	return -EINVAL;
1629 }
1630 static struct rdev_sysfs_entry rdev_errors =
1631 __ATTR(errors, 0644, errors_show, errors_store);
1632 
1633 static struct attribute *rdev_default_attrs[] = {
1634 	&rdev_state.attr,
1635 	&rdev_super.attr,
1636 	&rdev_errors.attr,
1637 	NULL,
1638 };
1639 static ssize_t
1640 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1641 {
1642 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1643 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1644 
1645 	if (!entry->show)
1646 		return -EIO;
1647 	return entry->show(rdev, page);
1648 }
1649 
1650 static ssize_t
1651 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1652 	      const char *page, size_t length)
1653 {
1654 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1655 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1656 
1657 	if (!entry->store)
1658 		return -EIO;
1659 	return entry->store(rdev, page, length);
1660 }
1661 
1662 static void rdev_free(struct kobject *ko)
1663 {
1664 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1665 	kfree(rdev);
1666 }
1667 static struct sysfs_ops rdev_sysfs_ops = {
1668 	.show		= rdev_attr_show,
1669 	.store		= rdev_attr_store,
1670 };
1671 static struct kobj_type rdev_ktype = {
1672 	.release	= rdev_free,
1673 	.sysfs_ops	= &rdev_sysfs_ops,
1674 	.default_attrs	= rdev_default_attrs,
1675 };
1676 
1677 /*
1678  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1679  *
1680  * mark the device faulty if:
1681  *
1682  *   - the device is nonexistent (zero size)
1683  *   - the device has no valid superblock
1684  *
1685  * a faulty rdev _never_ has rdev->sb set.
1686  */
1687 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1688 {
1689 	char b[BDEVNAME_SIZE];
1690 	int err;
1691 	mdk_rdev_t *rdev;
1692 	sector_t size;
1693 
1694 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1695 	if (!rdev) {
1696 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1697 		return ERR_PTR(-ENOMEM);
1698 	}
1699 
1700 	if ((err = alloc_disk_sb(rdev)))
1701 		goto abort_free;
1702 
1703 	err = lock_rdev(rdev, newdev);
1704 	if (err)
1705 		goto abort_free;
1706 
1707 	rdev->kobj.parent = NULL;
1708 	rdev->kobj.ktype = &rdev_ktype;
1709 	kobject_init(&rdev->kobj);
1710 
1711 	rdev->desc_nr = -1;
1712 	rdev->flags = 0;
1713 	rdev->data_offset = 0;
1714 	atomic_set(&rdev->nr_pending, 0);
1715 	atomic_set(&rdev->read_errors, 0);
1716 	atomic_set(&rdev->corrected_errors, 0);
1717 
1718 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1719 	if (!size) {
1720 		printk(KERN_WARNING
1721 			"md: %s has zero or unknown size, marking faulty!\n",
1722 			bdevname(rdev->bdev,b));
1723 		err = -EINVAL;
1724 		goto abort_free;
1725 	}
1726 
1727 	if (super_format >= 0) {
1728 		err = super_types[super_format].
1729 			load_super(rdev, NULL, super_minor);
1730 		if (err == -EINVAL) {
1731 			printk(KERN_WARNING
1732 				"md: %s has invalid sb, not importing!\n",
1733 				bdevname(rdev->bdev,b));
1734 			goto abort_free;
1735 		}
1736 		if (err < 0) {
1737 			printk(KERN_WARNING
1738 				"md: could not read %s's sb, not importing!\n",
1739 				bdevname(rdev->bdev,b));
1740 			goto abort_free;
1741 		}
1742 	}
1743 	INIT_LIST_HEAD(&rdev->same_set);
1744 
1745 	return rdev;
1746 
1747 abort_free:
1748 	if (rdev->sb_page) {
1749 		if (rdev->bdev)
1750 			unlock_rdev(rdev);
1751 		free_disk_sb(rdev);
1752 	}
1753 	kfree(rdev);
1754 	return ERR_PTR(err);
1755 }
1756 
1757 /*
1758  * Check a full RAID array for plausibility
1759  */
1760 
1761 
1762 static void analyze_sbs(mddev_t * mddev)
1763 {
1764 	int i;
1765 	struct list_head *tmp;
1766 	mdk_rdev_t *rdev, *freshest;
1767 	char b[BDEVNAME_SIZE];
1768 
1769 	freshest = NULL;
1770 	ITERATE_RDEV(mddev,rdev,tmp)
1771 		switch (super_types[mddev->major_version].
1772 			load_super(rdev, freshest, mddev->minor_version)) {
1773 		case 1:
1774 			freshest = rdev;
1775 			break;
1776 		case 0:
1777 			break;
1778 		default:
1779 			printk( KERN_ERR \
1780 				"md: fatal superblock inconsistency in %s"
1781 				" -- removing from array\n",
1782 				bdevname(rdev->bdev,b));
1783 			kick_rdev_from_array(rdev);
1784 		}
1785 
1786 
1787 	super_types[mddev->major_version].
1788 		validate_super(mddev, freshest);
1789 
1790 	i = 0;
1791 	ITERATE_RDEV(mddev,rdev,tmp) {
1792 		if (rdev != freshest)
1793 			if (super_types[mddev->major_version].
1794 			    validate_super(mddev, rdev)) {
1795 				printk(KERN_WARNING "md: kicking non-fresh %s"
1796 					" from array!\n",
1797 					bdevname(rdev->bdev,b));
1798 				kick_rdev_from_array(rdev);
1799 				continue;
1800 			}
1801 		if (mddev->level == LEVEL_MULTIPATH) {
1802 			rdev->desc_nr = i++;
1803 			rdev->raid_disk = rdev->desc_nr;
1804 			set_bit(In_sync, &rdev->flags);
1805 		}
1806 	}
1807 
1808 
1809 
1810 	if (mddev->recovery_cp != MaxSector &&
1811 	    mddev->level >= 1)
1812 		printk(KERN_ERR "md: %s: raid array is not clean"
1813 		       " -- starting background reconstruction\n",
1814 		       mdname(mddev));
1815 
1816 }
1817 
1818 static ssize_t
1819 level_show(mddev_t *mddev, char *page)
1820 {
1821 	struct mdk_personality *p = mddev->pers;
1822 	if (p)
1823 		return sprintf(page, "%s\n", p->name);
1824 	else if (mddev->clevel[0])
1825 		return sprintf(page, "%s\n", mddev->clevel);
1826 	else if (mddev->level != LEVEL_NONE)
1827 		return sprintf(page, "%d\n", mddev->level);
1828 	else
1829 		return 0;
1830 }
1831 
1832 static ssize_t
1833 level_store(mddev_t *mddev, const char *buf, size_t len)
1834 {
1835 	int rv = len;
1836 	if (mddev->pers)
1837 		return -EBUSY;
1838 	if (len == 0)
1839 		return 0;
1840 	if (len >= sizeof(mddev->clevel))
1841 		return -ENOSPC;
1842 	strncpy(mddev->clevel, buf, len);
1843 	if (mddev->clevel[len-1] == '\n')
1844 		len--;
1845 	mddev->clevel[len] = 0;
1846 	mddev->level = LEVEL_NONE;
1847 	return rv;
1848 }
1849 
1850 static struct md_sysfs_entry md_level =
1851 __ATTR(level, 0644, level_show, level_store);
1852 
1853 static ssize_t
1854 raid_disks_show(mddev_t *mddev, char *page)
1855 {
1856 	if (mddev->raid_disks == 0)
1857 		return 0;
1858 	return sprintf(page, "%d\n", mddev->raid_disks);
1859 }
1860 
1861 static int update_raid_disks(mddev_t *mddev, int raid_disks);
1862 
1863 static ssize_t
1864 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
1865 {
1866 	/* can only set raid_disks if array is not yet active */
1867 	char *e;
1868 	int rv = 0;
1869 	unsigned long n = simple_strtoul(buf, &e, 10);
1870 
1871 	if (!*buf || (*e && *e != '\n'))
1872 		return -EINVAL;
1873 
1874 	if (mddev->pers)
1875 		rv = update_raid_disks(mddev, n);
1876 	else
1877 		mddev->raid_disks = n;
1878 	return rv ? rv : len;
1879 }
1880 static struct md_sysfs_entry md_raid_disks =
1881 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
1882 
1883 static ssize_t
1884 chunk_size_show(mddev_t *mddev, char *page)
1885 {
1886 	return sprintf(page, "%d\n", mddev->chunk_size);
1887 }
1888 
1889 static ssize_t
1890 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1891 {
1892 	/* can only set chunk_size if array is not yet active */
1893 	char *e;
1894 	unsigned long n = simple_strtoul(buf, &e, 10);
1895 
1896 	if (mddev->pers)
1897 		return -EBUSY;
1898 	if (!*buf || (*e && *e != '\n'))
1899 		return -EINVAL;
1900 
1901 	mddev->chunk_size = n;
1902 	return len;
1903 }
1904 static struct md_sysfs_entry md_chunk_size =
1905 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
1906 
1907 
1908 static ssize_t
1909 size_show(mddev_t *mddev, char *page)
1910 {
1911 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
1912 }
1913 
1914 static int update_size(mddev_t *mddev, unsigned long size);
1915 
1916 static ssize_t
1917 size_store(mddev_t *mddev, const char *buf, size_t len)
1918 {
1919 	/* If array is inactive, we can reduce the component size, but
1920 	 * not increase it (except from 0).
1921 	 * If array is active, we can try an on-line resize
1922 	 */
1923 	char *e;
1924 	int err = 0;
1925 	unsigned long long size = simple_strtoull(buf, &e, 10);
1926 	if (!*buf || *buf == '\n' ||
1927 	    (*e && *e != '\n'))
1928 		return -EINVAL;
1929 
1930 	if (mddev->pers) {
1931 		err = update_size(mddev, size);
1932 		md_update_sb(mddev);
1933 	} else {
1934 		if (mddev->size == 0 ||
1935 		    mddev->size > size)
1936 			mddev->size = size;
1937 		else
1938 			err = -ENOSPC;
1939 	}
1940 	return err ? err : len;
1941 }
1942 
1943 static struct md_sysfs_entry md_size =
1944 __ATTR(component_size, 0644, size_show, size_store);
1945 
1946 
1947 /* Metdata version.
1948  * This is either 'none' for arrays with externally managed metadata,
1949  * or N.M for internally known formats
1950  */
1951 static ssize_t
1952 metadata_show(mddev_t *mddev, char *page)
1953 {
1954 	if (mddev->persistent)
1955 		return sprintf(page, "%d.%d\n",
1956 			       mddev->major_version, mddev->minor_version);
1957 	else
1958 		return sprintf(page, "none\n");
1959 }
1960 
1961 static ssize_t
1962 metadata_store(mddev_t *mddev, const char *buf, size_t len)
1963 {
1964 	int major, minor;
1965 	char *e;
1966 	if (!list_empty(&mddev->disks))
1967 		return -EBUSY;
1968 
1969 	if (cmd_match(buf, "none")) {
1970 		mddev->persistent = 0;
1971 		mddev->major_version = 0;
1972 		mddev->minor_version = 90;
1973 		return len;
1974 	}
1975 	major = simple_strtoul(buf, &e, 10);
1976 	if (e==buf || *e != '.')
1977 		return -EINVAL;
1978 	buf = e+1;
1979 	minor = simple_strtoul(buf, &e, 10);
1980 	if (e==buf || *e != '\n')
1981 		return -EINVAL;
1982 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
1983 	    super_types[major].name == NULL)
1984 		return -ENOENT;
1985 	mddev->major_version = major;
1986 	mddev->minor_version = minor;
1987 	mddev->persistent = 1;
1988 	return len;
1989 }
1990 
1991 static struct md_sysfs_entry md_metadata =
1992 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
1993 
1994 static ssize_t
1995 action_show(mddev_t *mddev, char *page)
1996 {
1997 	char *type = "idle";
1998 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1999 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2000 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2001 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2002 				type = "resync";
2003 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2004 				type = "check";
2005 			else
2006 				type = "repair";
2007 		} else
2008 			type = "recover";
2009 	}
2010 	return sprintf(page, "%s\n", type);
2011 }
2012 
2013 static ssize_t
2014 action_store(mddev_t *mddev, const char *page, size_t len)
2015 {
2016 	if (!mddev->pers || !mddev->pers->sync_request)
2017 		return -EINVAL;
2018 
2019 	if (cmd_match(page, "idle")) {
2020 		if (mddev->sync_thread) {
2021 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2022 			md_unregister_thread(mddev->sync_thread);
2023 			mddev->sync_thread = NULL;
2024 			mddev->recovery = 0;
2025 		}
2026 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2027 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2028 		return -EBUSY;
2029 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2030 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2031 	else {
2032 		if (cmd_match(page, "check"))
2033 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2034 		else if (cmd_match(page, "repair"))
2035 			return -EINVAL;
2036 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2037 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2038 	}
2039 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2040 	md_wakeup_thread(mddev->thread);
2041 	return len;
2042 }
2043 
2044 static ssize_t
2045 mismatch_cnt_show(mddev_t *mddev, char *page)
2046 {
2047 	return sprintf(page, "%llu\n",
2048 		       (unsigned long long) mddev->resync_mismatches);
2049 }
2050 
2051 static struct md_sysfs_entry
2052 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2053 
2054 
2055 static struct md_sysfs_entry
2056 md_mismatches = __ATTR_RO(mismatch_cnt);
2057 
2058 static struct attribute *md_default_attrs[] = {
2059 	&md_level.attr,
2060 	&md_raid_disks.attr,
2061 	&md_chunk_size.attr,
2062 	&md_size.attr,
2063 	&md_metadata.attr,
2064 	NULL,
2065 };
2066 
2067 static struct attribute *md_redundancy_attrs[] = {
2068 	&md_scan_mode.attr,
2069 	&md_mismatches.attr,
2070 	NULL,
2071 };
2072 static struct attribute_group md_redundancy_group = {
2073 	.name = NULL,
2074 	.attrs = md_redundancy_attrs,
2075 };
2076 
2077 
2078 static ssize_t
2079 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2080 {
2081 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2082 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2083 	ssize_t rv;
2084 
2085 	if (!entry->show)
2086 		return -EIO;
2087 	mddev_lock(mddev);
2088 	rv = entry->show(mddev, page);
2089 	mddev_unlock(mddev);
2090 	return rv;
2091 }
2092 
2093 static ssize_t
2094 md_attr_store(struct kobject *kobj, struct attribute *attr,
2095 	      const char *page, size_t length)
2096 {
2097 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2098 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2099 	ssize_t rv;
2100 
2101 	if (!entry->store)
2102 		return -EIO;
2103 	mddev_lock(mddev);
2104 	rv = entry->store(mddev, page, length);
2105 	mddev_unlock(mddev);
2106 	return rv;
2107 }
2108 
2109 static void md_free(struct kobject *ko)
2110 {
2111 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2112 	kfree(mddev);
2113 }
2114 
2115 static struct sysfs_ops md_sysfs_ops = {
2116 	.show	= md_attr_show,
2117 	.store	= md_attr_store,
2118 };
2119 static struct kobj_type md_ktype = {
2120 	.release	= md_free,
2121 	.sysfs_ops	= &md_sysfs_ops,
2122 	.default_attrs	= md_default_attrs,
2123 };
2124 
2125 int mdp_major = 0;
2126 
2127 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2128 {
2129 	static DECLARE_MUTEX(disks_sem);
2130 	mddev_t *mddev = mddev_find(dev);
2131 	struct gendisk *disk;
2132 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2133 	int shift = partitioned ? MdpMinorShift : 0;
2134 	int unit = MINOR(dev) >> shift;
2135 
2136 	if (!mddev)
2137 		return NULL;
2138 
2139 	down(&disks_sem);
2140 	if (mddev->gendisk) {
2141 		up(&disks_sem);
2142 		mddev_put(mddev);
2143 		return NULL;
2144 	}
2145 	disk = alloc_disk(1 << shift);
2146 	if (!disk) {
2147 		up(&disks_sem);
2148 		mddev_put(mddev);
2149 		return NULL;
2150 	}
2151 	disk->major = MAJOR(dev);
2152 	disk->first_minor = unit << shift;
2153 	if (partitioned) {
2154 		sprintf(disk->disk_name, "md_d%d", unit);
2155 		sprintf(disk->devfs_name, "md/d%d", unit);
2156 	} else {
2157 		sprintf(disk->disk_name, "md%d", unit);
2158 		sprintf(disk->devfs_name, "md/%d", unit);
2159 	}
2160 	disk->fops = &md_fops;
2161 	disk->private_data = mddev;
2162 	disk->queue = mddev->queue;
2163 	add_disk(disk);
2164 	mddev->gendisk = disk;
2165 	up(&disks_sem);
2166 	mddev->kobj.parent = &disk->kobj;
2167 	mddev->kobj.k_name = NULL;
2168 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2169 	mddev->kobj.ktype = &md_ktype;
2170 	kobject_register(&mddev->kobj);
2171 	return NULL;
2172 }
2173 
2174 void md_wakeup_thread(mdk_thread_t *thread);
2175 
2176 static void md_safemode_timeout(unsigned long data)
2177 {
2178 	mddev_t *mddev = (mddev_t *) data;
2179 
2180 	mddev->safemode = 1;
2181 	md_wakeup_thread(mddev->thread);
2182 }
2183 
2184 static int start_dirty_degraded;
2185 
2186 static int do_md_run(mddev_t * mddev)
2187 {
2188 	int err;
2189 	int chunk_size;
2190 	struct list_head *tmp;
2191 	mdk_rdev_t *rdev;
2192 	struct gendisk *disk;
2193 	struct mdk_personality *pers;
2194 	char b[BDEVNAME_SIZE];
2195 
2196 	if (list_empty(&mddev->disks))
2197 		/* cannot run an array with no devices.. */
2198 		return -EINVAL;
2199 
2200 	if (mddev->pers)
2201 		return -EBUSY;
2202 
2203 	/*
2204 	 * Analyze all RAID superblock(s)
2205 	 */
2206 	if (!mddev->raid_disks)
2207 		analyze_sbs(mddev);
2208 
2209 	chunk_size = mddev->chunk_size;
2210 
2211 	if (chunk_size) {
2212 		if (chunk_size > MAX_CHUNK_SIZE) {
2213 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2214 				chunk_size, MAX_CHUNK_SIZE);
2215 			return -EINVAL;
2216 		}
2217 		/*
2218 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2219 		 */
2220 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2221 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2222 			return -EINVAL;
2223 		}
2224 		if (chunk_size < PAGE_SIZE) {
2225 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2226 				chunk_size, PAGE_SIZE);
2227 			return -EINVAL;
2228 		}
2229 
2230 		/* devices must have minimum size of one chunk */
2231 		ITERATE_RDEV(mddev,rdev,tmp) {
2232 			if (test_bit(Faulty, &rdev->flags))
2233 				continue;
2234 			if (rdev->size < chunk_size / 1024) {
2235 				printk(KERN_WARNING
2236 					"md: Dev %s smaller than chunk_size:"
2237 					" %lluk < %dk\n",
2238 					bdevname(rdev->bdev,b),
2239 					(unsigned long long)rdev->size,
2240 					chunk_size / 1024);
2241 				return -EINVAL;
2242 			}
2243 		}
2244 	}
2245 
2246 #ifdef CONFIG_KMOD
2247 	if (mddev->level != LEVEL_NONE)
2248 		request_module("md-level-%d", mddev->level);
2249 	else if (mddev->clevel[0])
2250 		request_module("md-%s", mddev->clevel);
2251 #endif
2252 
2253 	/*
2254 	 * Drop all container device buffers, from now on
2255 	 * the only valid external interface is through the md
2256 	 * device.
2257 	 * Also find largest hardsector size
2258 	 */
2259 	ITERATE_RDEV(mddev,rdev,tmp) {
2260 		if (test_bit(Faulty, &rdev->flags))
2261 			continue;
2262 		sync_blockdev(rdev->bdev);
2263 		invalidate_bdev(rdev->bdev, 0);
2264 	}
2265 
2266 	md_probe(mddev->unit, NULL, NULL);
2267 	disk = mddev->gendisk;
2268 	if (!disk)
2269 		return -ENOMEM;
2270 
2271 	spin_lock(&pers_lock);
2272 	pers = find_pers(mddev->level, mddev->clevel);
2273 	if (!pers || !try_module_get(pers->owner)) {
2274 		spin_unlock(&pers_lock);
2275 		if (mddev->level != LEVEL_NONE)
2276 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2277 			       mddev->level);
2278 		else
2279 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2280 			       mddev->clevel);
2281 		return -EINVAL;
2282 	}
2283 	mddev->pers = pers;
2284 	spin_unlock(&pers_lock);
2285 	mddev->level = pers->level;
2286 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2287 
2288 	mddev->recovery = 0;
2289 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2290 	mddev->barriers_work = 1;
2291 	mddev->ok_start_degraded = start_dirty_degraded;
2292 
2293 	if (start_readonly)
2294 		mddev->ro = 2; /* read-only, but switch on first write */
2295 
2296 	err = mddev->pers->run(mddev);
2297 	if (!err && mddev->pers->sync_request) {
2298 		err = bitmap_create(mddev);
2299 		if (err) {
2300 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2301 			       mdname(mddev), err);
2302 			mddev->pers->stop(mddev);
2303 		}
2304 	}
2305 	if (err) {
2306 		printk(KERN_ERR "md: pers->run() failed ...\n");
2307 		module_put(mddev->pers->owner);
2308 		mddev->pers = NULL;
2309 		bitmap_destroy(mddev);
2310 		return err;
2311 	}
2312 	if (mddev->pers->sync_request)
2313 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2314 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2315 		mddev->ro = 0;
2316 
2317  	atomic_set(&mddev->writes_pending,0);
2318 	mddev->safemode = 0;
2319 	mddev->safemode_timer.function = md_safemode_timeout;
2320 	mddev->safemode_timer.data = (unsigned long) mddev;
2321 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2322 	mddev->in_sync = 1;
2323 
2324 	ITERATE_RDEV(mddev,rdev,tmp)
2325 		if (rdev->raid_disk >= 0) {
2326 			char nm[20];
2327 			sprintf(nm, "rd%d", rdev->raid_disk);
2328 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2329 		}
2330 
2331 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2332 	md_wakeup_thread(mddev->thread);
2333 
2334 	if (mddev->sb_dirty)
2335 		md_update_sb(mddev);
2336 
2337 	set_capacity(disk, mddev->array_size<<1);
2338 
2339 	/* If we call blk_queue_make_request here, it will
2340 	 * re-initialise max_sectors etc which may have been
2341 	 * refined inside -> run.  So just set the bits we need to set.
2342 	 * Most initialisation happended when we called
2343 	 * blk_queue_make_request(..., md_fail_request)
2344 	 * earlier.
2345 	 */
2346 	mddev->queue->queuedata = mddev;
2347 	mddev->queue->make_request_fn = mddev->pers->make_request;
2348 
2349 	mddev->changed = 1;
2350 	md_new_event(mddev);
2351 	return 0;
2352 }
2353 
2354 static int restart_array(mddev_t *mddev)
2355 {
2356 	struct gendisk *disk = mddev->gendisk;
2357 	int err;
2358 
2359 	/*
2360 	 * Complain if it has no devices
2361 	 */
2362 	err = -ENXIO;
2363 	if (list_empty(&mddev->disks))
2364 		goto out;
2365 
2366 	if (mddev->pers) {
2367 		err = -EBUSY;
2368 		if (!mddev->ro)
2369 			goto out;
2370 
2371 		mddev->safemode = 0;
2372 		mddev->ro = 0;
2373 		set_disk_ro(disk, 0);
2374 
2375 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2376 			mdname(mddev));
2377 		/*
2378 		 * Kick recovery or resync if necessary
2379 		 */
2380 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2381 		md_wakeup_thread(mddev->thread);
2382 		err = 0;
2383 	} else {
2384 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2385 			mdname(mddev));
2386 		err = -EINVAL;
2387 	}
2388 
2389 out:
2390 	return err;
2391 }
2392 
2393 static int do_md_stop(mddev_t * mddev, int ro)
2394 {
2395 	int err = 0;
2396 	struct gendisk *disk = mddev->gendisk;
2397 
2398 	if (mddev->pers) {
2399 		if (atomic_read(&mddev->active)>2) {
2400 			printk("md: %s still in use.\n",mdname(mddev));
2401 			return -EBUSY;
2402 		}
2403 
2404 		if (mddev->sync_thread) {
2405 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2406 			md_unregister_thread(mddev->sync_thread);
2407 			mddev->sync_thread = NULL;
2408 		}
2409 
2410 		del_timer_sync(&mddev->safemode_timer);
2411 
2412 		invalidate_partition(disk, 0);
2413 
2414 		if (ro) {
2415 			err  = -ENXIO;
2416 			if (mddev->ro==1)
2417 				goto out;
2418 			mddev->ro = 1;
2419 		} else {
2420 			bitmap_flush(mddev);
2421 			md_super_wait(mddev);
2422 			if (mddev->ro)
2423 				set_disk_ro(disk, 0);
2424 			blk_queue_make_request(mddev->queue, md_fail_request);
2425 			mddev->pers->stop(mddev);
2426 			if (mddev->pers->sync_request)
2427 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2428 
2429 			module_put(mddev->pers->owner);
2430 			mddev->pers = NULL;
2431 			if (mddev->ro)
2432 				mddev->ro = 0;
2433 		}
2434 		if (!mddev->in_sync) {
2435 			/* mark array as shutdown cleanly */
2436 			mddev->in_sync = 1;
2437 			md_update_sb(mddev);
2438 		}
2439 		if (ro)
2440 			set_disk_ro(disk, 1);
2441 	}
2442 
2443 	bitmap_destroy(mddev);
2444 	if (mddev->bitmap_file) {
2445 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2446 		fput(mddev->bitmap_file);
2447 		mddev->bitmap_file = NULL;
2448 	}
2449 	mddev->bitmap_offset = 0;
2450 
2451 	/*
2452 	 * Free resources if final stop
2453 	 */
2454 	if (!ro) {
2455 		mdk_rdev_t *rdev;
2456 		struct list_head *tmp;
2457 		struct gendisk *disk;
2458 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2459 
2460 		ITERATE_RDEV(mddev,rdev,tmp)
2461 			if (rdev->raid_disk >= 0) {
2462 				char nm[20];
2463 				sprintf(nm, "rd%d", rdev->raid_disk);
2464 				sysfs_remove_link(&mddev->kobj, nm);
2465 			}
2466 
2467 		export_array(mddev);
2468 
2469 		mddev->array_size = 0;
2470 		disk = mddev->gendisk;
2471 		if (disk)
2472 			set_capacity(disk, 0);
2473 		mddev->changed = 1;
2474 	} else
2475 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2476 			mdname(mddev));
2477 	err = 0;
2478 	md_new_event(mddev);
2479 out:
2480 	return err;
2481 }
2482 
2483 static void autorun_array(mddev_t *mddev)
2484 {
2485 	mdk_rdev_t *rdev;
2486 	struct list_head *tmp;
2487 	int err;
2488 
2489 	if (list_empty(&mddev->disks))
2490 		return;
2491 
2492 	printk(KERN_INFO "md: running: ");
2493 
2494 	ITERATE_RDEV(mddev,rdev,tmp) {
2495 		char b[BDEVNAME_SIZE];
2496 		printk("<%s>", bdevname(rdev->bdev,b));
2497 	}
2498 	printk("\n");
2499 
2500 	err = do_md_run (mddev);
2501 	if (err) {
2502 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2503 		do_md_stop (mddev, 0);
2504 	}
2505 }
2506 
2507 /*
2508  * lets try to run arrays based on all disks that have arrived
2509  * until now. (those are in pending_raid_disks)
2510  *
2511  * the method: pick the first pending disk, collect all disks with
2512  * the same UUID, remove all from the pending list and put them into
2513  * the 'same_array' list. Then order this list based on superblock
2514  * update time (freshest comes first), kick out 'old' disks and
2515  * compare superblocks. If everything's fine then run it.
2516  *
2517  * If "unit" is allocated, then bump its reference count
2518  */
2519 static void autorun_devices(int part)
2520 {
2521 	struct list_head candidates;
2522 	struct list_head *tmp;
2523 	mdk_rdev_t *rdev0, *rdev;
2524 	mddev_t *mddev;
2525 	char b[BDEVNAME_SIZE];
2526 
2527 	printk(KERN_INFO "md: autorun ...\n");
2528 	while (!list_empty(&pending_raid_disks)) {
2529 		dev_t dev;
2530 		rdev0 = list_entry(pending_raid_disks.next,
2531 					 mdk_rdev_t, same_set);
2532 
2533 		printk(KERN_INFO "md: considering %s ...\n",
2534 			bdevname(rdev0->bdev,b));
2535 		INIT_LIST_HEAD(&candidates);
2536 		ITERATE_RDEV_PENDING(rdev,tmp)
2537 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2538 				printk(KERN_INFO "md:  adding %s ...\n",
2539 					bdevname(rdev->bdev,b));
2540 				list_move(&rdev->same_set, &candidates);
2541 			}
2542 		/*
2543 		 * now we have a set of devices, with all of them having
2544 		 * mostly sane superblocks. It's time to allocate the
2545 		 * mddev.
2546 		 */
2547 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2548 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2549 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2550 			break;
2551 		}
2552 		if (part)
2553 			dev = MKDEV(mdp_major,
2554 				    rdev0->preferred_minor << MdpMinorShift);
2555 		else
2556 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2557 
2558 		md_probe(dev, NULL, NULL);
2559 		mddev = mddev_find(dev);
2560 		if (!mddev) {
2561 			printk(KERN_ERR
2562 				"md: cannot allocate memory for md drive.\n");
2563 			break;
2564 		}
2565 		if (mddev_lock(mddev))
2566 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2567 			       mdname(mddev));
2568 		else if (mddev->raid_disks || mddev->major_version
2569 			 || !list_empty(&mddev->disks)) {
2570 			printk(KERN_WARNING
2571 				"md: %s already running, cannot run %s\n",
2572 				mdname(mddev), bdevname(rdev0->bdev,b));
2573 			mddev_unlock(mddev);
2574 		} else {
2575 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2576 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2577 				list_del_init(&rdev->same_set);
2578 				if (bind_rdev_to_array(rdev, mddev))
2579 					export_rdev(rdev);
2580 			}
2581 			autorun_array(mddev);
2582 			mddev_unlock(mddev);
2583 		}
2584 		/* on success, candidates will be empty, on error
2585 		 * it won't...
2586 		 */
2587 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2588 			export_rdev(rdev);
2589 		mddev_put(mddev);
2590 	}
2591 	printk(KERN_INFO "md: ... autorun DONE.\n");
2592 }
2593 
2594 /*
2595  * import RAID devices based on one partition
2596  * if possible, the array gets run as well.
2597  */
2598 
2599 static int autostart_array(dev_t startdev)
2600 {
2601 	char b[BDEVNAME_SIZE];
2602 	int err = -EINVAL, i;
2603 	mdp_super_t *sb = NULL;
2604 	mdk_rdev_t *start_rdev = NULL, *rdev;
2605 
2606 	start_rdev = md_import_device(startdev, 0, 0);
2607 	if (IS_ERR(start_rdev))
2608 		return err;
2609 
2610 
2611 	/* NOTE: this can only work for 0.90.0 superblocks */
2612 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2613 	if (sb->major_version != 0 ||
2614 	    sb->minor_version != 90 ) {
2615 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2616 		export_rdev(start_rdev);
2617 		return err;
2618 	}
2619 
2620 	if (test_bit(Faulty, &start_rdev->flags)) {
2621 		printk(KERN_WARNING
2622 			"md: can not autostart based on faulty %s!\n",
2623 			bdevname(start_rdev->bdev,b));
2624 		export_rdev(start_rdev);
2625 		return err;
2626 	}
2627 	list_add(&start_rdev->same_set, &pending_raid_disks);
2628 
2629 	for (i = 0; i < MD_SB_DISKS; i++) {
2630 		mdp_disk_t *desc = sb->disks + i;
2631 		dev_t dev = MKDEV(desc->major, desc->minor);
2632 
2633 		if (!dev)
2634 			continue;
2635 		if (dev == startdev)
2636 			continue;
2637 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2638 			continue;
2639 		rdev = md_import_device(dev, 0, 0);
2640 		if (IS_ERR(rdev))
2641 			continue;
2642 
2643 		list_add(&rdev->same_set, &pending_raid_disks);
2644 	}
2645 
2646 	/*
2647 	 * possibly return codes
2648 	 */
2649 	autorun_devices(0);
2650 	return 0;
2651 
2652 }
2653 
2654 
2655 static int get_version(void __user * arg)
2656 {
2657 	mdu_version_t ver;
2658 
2659 	ver.major = MD_MAJOR_VERSION;
2660 	ver.minor = MD_MINOR_VERSION;
2661 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2662 
2663 	if (copy_to_user(arg, &ver, sizeof(ver)))
2664 		return -EFAULT;
2665 
2666 	return 0;
2667 }
2668 
2669 static int get_array_info(mddev_t * mddev, void __user * arg)
2670 {
2671 	mdu_array_info_t info;
2672 	int nr,working,active,failed,spare;
2673 	mdk_rdev_t *rdev;
2674 	struct list_head *tmp;
2675 
2676 	nr=working=active=failed=spare=0;
2677 	ITERATE_RDEV(mddev,rdev,tmp) {
2678 		nr++;
2679 		if (test_bit(Faulty, &rdev->flags))
2680 			failed++;
2681 		else {
2682 			working++;
2683 			if (test_bit(In_sync, &rdev->flags))
2684 				active++;
2685 			else
2686 				spare++;
2687 		}
2688 	}
2689 
2690 	info.major_version = mddev->major_version;
2691 	info.minor_version = mddev->minor_version;
2692 	info.patch_version = MD_PATCHLEVEL_VERSION;
2693 	info.ctime         = mddev->ctime;
2694 	info.level         = mddev->level;
2695 	info.size          = mddev->size;
2696 	info.nr_disks      = nr;
2697 	info.raid_disks    = mddev->raid_disks;
2698 	info.md_minor      = mddev->md_minor;
2699 	info.not_persistent= !mddev->persistent;
2700 
2701 	info.utime         = mddev->utime;
2702 	info.state         = 0;
2703 	if (mddev->in_sync)
2704 		info.state = (1<<MD_SB_CLEAN);
2705 	if (mddev->bitmap && mddev->bitmap_offset)
2706 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2707 	info.active_disks  = active;
2708 	info.working_disks = working;
2709 	info.failed_disks  = failed;
2710 	info.spare_disks   = spare;
2711 
2712 	info.layout        = mddev->layout;
2713 	info.chunk_size    = mddev->chunk_size;
2714 
2715 	if (copy_to_user(arg, &info, sizeof(info)))
2716 		return -EFAULT;
2717 
2718 	return 0;
2719 }
2720 
2721 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2722 {
2723 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2724 	char *ptr, *buf = NULL;
2725 	int err = -ENOMEM;
2726 
2727 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2728 	if (!file)
2729 		goto out;
2730 
2731 	/* bitmap disabled, zero the first byte and copy out */
2732 	if (!mddev->bitmap || !mddev->bitmap->file) {
2733 		file->pathname[0] = '\0';
2734 		goto copy_out;
2735 	}
2736 
2737 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2738 	if (!buf)
2739 		goto out;
2740 
2741 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2742 	if (!ptr)
2743 		goto out;
2744 
2745 	strcpy(file->pathname, ptr);
2746 
2747 copy_out:
2748 	err = 0;
2749 	if (copy_to_user(arg, file, sizeof(*file)))
2750 		err = -EFAULT;
2751 out:
2752 	kfree(buf);
2753 	kfree(file);
2754 	return err;
2755 }
2756 
2757 static int get_disk_info(mddev_t * mddev, void __user * arg)
2758 {
2759 	mdu_disk_info_t info;
2760 	unsigned int nr;
2761 	mdk_rdev_t *rdev;
2762 
2763 	if (copy_from_user(&info, arg, sizeof(info)))
2764 		return -EFAULT;
2765 
2766 	nr = info.number;
2767 
2768 	rdev = find_rdev_nr(mddev, nr);
2769 	if (rdev) {
2770 		info.major = MAJOR(rdev->bdev->bd_dev);
2771 		info.minor = MINOR(rdev->bdev->bd_dev);
2772 		info.raid_disk = rdev->raid_disk;
2773 		info.state = 0;
2774 		if (test_bit(Faulty, &rdev->flags))
2775 			info.state |= (1<<MD_DISK_FAULTY);
2776 		else if (test_bit(In_sync, &rdev->flags)) {
2777 			info.state |= (1<<MD_DISK_ACTIVE);
2778 			info.state |= (1<<MD_DISK_SYNC);
2779 		}
2780 		if (test_bit(WriteMostly, &rdev->flags))
2781 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2782 	} else {
2783 		info.major = info.minor = 0;
2784 		info.raid_disk = -1;
2785 		info.state = (1<<MD_DISK_REMOVED);
2786 	}
2787 
2788 	if (copy_to_user(arg, &info, sizeof(info)))
2789 		return -EFAULT;
2790 
2791 	return 0;
2792 }
2793 
2794 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2795 {
2796 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2797 	mdk_rdev_t *rdev;
2798 	dev_t dev = MKDEV(info->major,info->minor);
2799 
2800 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2801 		return -EOVERFLOW;
2802 
2803 	if (!mddev->raid_disks) {
2804 		int err;
2805 		/* expecting a device which has a superblock */
2806 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2807 		if (IS_ERR(rdev)) {
2808 			printk(KERN_WARNING
2809 				"md: md_import_device returned %ld\n",
2810 				PTR_ERR(rdev));
2811 			return PTR_ERR(rdev);
2812 		}
2813 		if (!list_empty(&mddev->disks)) {
2814 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2815 							mdk_rdev_t, same_set);
2816 			int err = super_types[mddev->major_version]
2817 				.load_super(rdev, rdev0, mddev->minor_version);
2818 			if (err < 0) {
2819 				printk(KERN_WARNING
2820 					"md: %s has different UUID to %s\n",
2821 					bdevname(rdev->bdev,b),
2822 					bdevname(rdev0->bdev,b2));
2823 				export_rdev(rdev);
2824 				return -EINVAL;
2825 			}
2826 		}
2827 		err = bind_rdev_to_array(rdev, mddev);
2828 		if (err)
2829 			export_rdev(rdev);
2830 		return err;
2831 	}
2832 
2833 	/*
2834 	 * add_new_disk can be used once the array is assembled
2835 	 * to add "hot spares".  They must already have a superblock
2836 	 * written
2837 	 */
2838 	if (mddev->pers) {
2839 		int err;
2840 		if (!mddev->pers->hot_add_disk) {
2841 			printk(KERN_WARNING
2842 				"%s: personality does not support diskops!\n",
2843 			       mdname(mddev));
2844 			return -EINVAL;
2845 		}
2846 		if (mddev->persistent)
2847 			rdev = md_import_device(dev, mddev->major_version,
2848 						mddev->minor_version);
2849 		else
2850 			rdev = md_import_device(dev, -1, -1);
2851 		if (IS_ERR(rdev)) {
2852 			printk(KERN_WARNING
2853 				"md: md_import_device returned %ld\n",
2854 				PTR_ERR(rdev));
2855 			return PTR_ERR(rdev);
2856 		}
2857 		/* set save_raid_disk if appropriate */
2858 		if (!mddev->persistent) {
2859 			if (info->state & (1<<MD_DISK_SYNC)  &&
2860 			    info->raid_disk < mddev->raid_disks)
2861 				rdev->raid_disk = info->raid_disk;
2862 			else
2863 				rdev->raid_disk = -1;
2864 		} else
2865 			super_types[mddev->major_version].
2866 				validate_super(mddev, rdev);
2867 		rdev->saved_raid_disk = rdev->raid_disk;
2868 
2869 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2870 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2871 			set_bit(WriteMostly, &rdev->flags);
2872 
2873 		rdev->raid_disk = -1;
2874 		err = bind_rdev_to_array(rdev, mddev);
2875 		if (err)
2876 			export_rdev(rdev);
2877 
2878 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2879 		md_wakeup_thread(mddev->thread);
2880 		return err;
2881 	}
2882 
2883 	/* otherwise, add_new_disk is only allowed
2884 	 * for major_version==0 superblocks
2885 	 */
2886 	if (mddev->major_version != 0) {
2887 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2888 		       mdname(mddev));
2889 		return -EINVAL;
2890 	}
2891 
2892 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2893 		int err;
2894 		rdev = md_import_device (dev, -1, 0);
2895 		if (IS_ERR(rdev)) {
2896 			printk(KERN_WARNING
2897 				"md: error, md_import_device() returned %ld\n",
2898 				PTR_ERR(rdev));
2899 			return PTR_ERR(rdev);
2900 		}
2901 		rdev->desc_nr = info->number;
2902 		if (info->raid_disk < mddev->raid_disks)
2903 			rdev->raid_disk = info->raid_disk;
2904 		else
2905 			rdev->raid_disk = -1;
2906 
2907 		rdev->flags = 0;
2908 
2909 		if (rdev->raid_disk < mddev->raid_disks)
2910 			if (info->state & (1<<MD_DISK_SYNC))
2911 				set_bit(In_sync, &rdev->flags);
2912 
2913 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2914 			set_bit(WriteMostly, &rdev->flags);
2915 
2916 		if (!mddev->persistent) {
2917 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2918 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2919 		} else
2920 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2921 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2922 
2923 		err = bind_rdev_to_array(rdev, mddev);
2924 		if (err) {
2925 			export_rdev(rdev);
2926 			return err;
2927 		}
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2934 {
2935 	char b[BDEVNAME_SIZE];
2936 	mdk_rdev_t *rdev;
2937 
2938 	if (!mddev->pers)
2939 		return -ENODEV;
2940 
2941 	rdev = find_rdev(mddev, dev);
2942 	if (!rdev)
2943 		return -ENXIO;
2944 
2945 	if (rdev->raid_disk >= 0)
2946 		goto busy;
2947 
2948 	kick_rdev_from_array(rdev);
2949 	md_update_sb(mddev);
2950 	md_new_event(mddev);
2951 
2952 	return 0;
2953 busy:
2954 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2955 		bdevname(rdev->bdev,b), mdname(mddev));
2956 	return -EBUSY;
2957 }
2958 
2959 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2960 {
2961 	char b[BDEVNAME_SIZE];
2962 	int err;
2963 	unsigned int size;
2964 	mdk_rdev_t *rdev;
2965 
2966 	if (!mddev->pers)
2967 		return -ENODEV;
2968 
2969 	if (mddev->major_version != 0) {
2970 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2971 			" version-0 superblocks.\n",
2972 			mdname(mddev));
2973 		return -EINVAL;
2974 	}
2975 	if (!mddev->pers->hot_add_disk) {
2976 		printk(KERN_WARNING
2977 			"%s: personality does not support diskops!\n",
2978 			mdname(mddev));
2979 		return -EINVAL;
2980 	}
2981 
2982 	rdev = md_import_device (dev, -1, 0);
2983 	if (IS_ERR(rdev)) {
2984 		printk(KERN_WARNING
2985 			"md: error, md_import_device() returned %ld\n",
2986 			PTR_ERR(rdev));
2987 		return -EINVAL;
2988 	}
2989 
2990 	if (mddev->persistent)
2991 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2992 	else
2993 		rdev->sb_offset =
2994 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2995 
2996 	size = calc_dev_size(rdev, mddev->chunk_size);
2997 	rdev->size = size;
2998 
2999 	if (test_bit(Faulty, &rdev->flags)) {
3000 		printk(KERN_WARNING
3001 			"md: can not hot-add faulty %s disk to %s!\n",
3002 			bdevname(rdev->bdev,b), mdname(mddev));
3003 		err = -EINVAL;
3004 		goto abort_export;
3005 	}
3006 	clear_bit(In_sync, &rdev->flags);
3007 	rdev->desc_nr = -1;
3008 	err = bind_rdev_to_array(rdev, mddev);
3009 	if (err)
3010 		goto abort_export;
3011 
3012 	/*
3013 	 * The rest should better be atomic, we can have disk failures
3014 	 * noticed in interrupt contexts ...
3015 	 */
3016 
3017 	if (rdev->desc_nr == mddev->max_disks) {
3018 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3019 			mdname(mddev));
3020 		err = -EBUSY;
3021 		goto abort_unbind_export;
3022 	}
3023 
3024 	rdev->raid_disk = -1;
3025 
3026 	md_update_sb(mddev);
3027 
3028 	/*
3029 	 * Kick recovery, maybe this spare has to be added to the
3030 	 * array immediately.
3031 	 */
3032 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3033 	md_wakeup_thread(mddev->thread);
3034 	md_new_event(mddev);
3035 	return 0;
3036 
3037 abort_unbind_export:
3038 	unbind_rdev_from_array(rdev);
3039 
3040 abort_export:
3041 	export_rdev(rdev);
3042 	return err;
3043 }
3044 
3045 /* similar to deny_write_access, but accounts for our holding a reference
3046  * to the file ourselves */
3047 static int deny_bitmap_write_access(struct file * file)
3048 {
3049 	struct inode *inode = file->f_mapping->host;
3050 
3051 	spin_lock(&inode->i_lock);
3052 	if (atomic_read(&inode->i_writecount) > 1) {
3053 		spin_unlock(&inode->i_lock);
3054 		return -ETXTBSY;
3055 	}
3056 	atomic_set(&inode->i_writecount, -1);
3057 	spin_unlock(&inode->i_lock);
3058 
3059 	return 0;
3060 }
3061 
3062 static int set_bitmap_file(mddev_t *mddev, int fd)
3063 {
3064 	int err;
3065 
3066 	if (mddev->pers) {
3067 		if (!mddev->pers->quiesce)
3068 			return -EBUSY;
3069 		if (mddev->recovery || mddev->sync_thread)
3070 			return -EBUSY;
3071 		/* we should be able to change the bitmap.. */
3072 	}
3073 
3074 
3075 	if (fd >= 0) {
3076 		if (mddev->bitmap)
3077 			return -EEXIST; /* cannot add when bitmap is present */
3078 		mddev->bitmap_file = fget(fd);
3079 
3080 		if (mddev->bitmap_file == NULL) {
3081 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3082 			       mdname(mddev));
3083 			return -EBADF;
3084 		}
3085 
3086 		err = deny_bitmap_write_access(mddev->bitmap_file);
3087 		if (err) {
3088 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3089 			       mdname(mddev));
3090 			fput(mddev->bitmap_file);
3091 			mddev->bitmap_file = NULL;
3092 			return err;
3093 		}
3094 		mddev->bitmap_offset = 0; /* file overrides offset */
3095 	} else if (mddev->bitmap == NULL)
3096 		return -ENOENT; /* cannot remove what isn't there */
3097 	err = 0;
3098 	if (mddev->pers) {
3099 		mddev->pers->quiesce(mddev, 1);
3100 		if (fd >= 0)
3101 			err = bitmap_create(mddev);
3102 		if (fd < 0 || err)
3103 			bitmap_destroy(mddev);
3104 		mddev->pers->quiesce(mddev, 0);
3105 	} else if (fd < 0) {
3106 		if (mddev->bitmap_file)
3107 			fput(mddev->bitmap_file);
3108 		mddev->bitmap_file = NULL;
3109 	}
3110 
3111 	return err;
3112 }
3113 
3114 /*
3115  * set_array_info is used two different ways
3116  * The original usage is when creating a new array.
3117  * In this usage, raid_disks is > 0 and it together with
3118  *  level, size, not_persistent,layout,chunksize determine the
3119  *  shape of the array.
3120  *  This will always create an array with a type-0.90.0 superblock.
3121  * The newer usage is when assembling an array.
3122  *  In this case raid_disks will be 0, and the major_version field is
3123  *  use to determine which style super-blocks are to be found on the devices.
3124  *  The minor and patch _version numbers are also kept incase the
3125  *  super_block handler wishes to interpret them.
3126  */
3127 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3128 {
3129 
3130 	if (info->raid_disks == 0) {
3131 		/* just setting version number for superblock loading */
3132 		if (info->major_version < 0 ||
3133 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3134 		    super_types[info->major_version].name == NULL) {
3135 			/* maybe try to auto-load a module? */
3136 			printk(KERN_INFO
3137 				"md: superblock version %d not known\n",
3138 				info->major_version);
3139 			return -EINVAL;
3140 		}
3141 		mddev->major_version = info->major_version;
3142 		mddev->minor_version = info->minor_version;
3143 		mddev->patch_version = info->patch_version;
3144 		return 0;
3145 	}
3146 	mddev->major_version = MD_MAJOR_VERSION;
3147 	mddev->minor_version = MD_MINOR_VERSION;
3148 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3149 	mddev->ctime         = get_seconds();
3150 
3151 	mddev->level         = info->level;
3152 	mddev->size          = info->size;
3153 	mddev->raid_disks    = info->raid_disks;
3154 	/* don't set md_minor, it is determined by which /dev/md* was
3155 	 * openned
3156 	 */
3157 	if (info->state & (1<<MD_SB_CLEAN))
3158 		mddev->recovery_cp = MaxSector;
3159 	else
3160 		mddev->recovery_cp = 0;
3161 	mddev->persistent    = ! info->not_persistent;
3162 
3163 	mddev->layout        = info->layout;
3164 	mddev->chunk_size    = info->chunk_size;
3165 
3166 	mddev->max_disks     = MD_SB_DISKS;
3167 
3168 	mddev->sb_dirty      = 1;
3169 
3170 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3171 	mddev->bitmap_offset = 0;
3172 
3173 	/*
3174 	 * Generate a 128 bit UUID
3175 	 */
3176 	get_random_bytes(mddev->uuid, 16);
3177 
3178 	return 0;
3179 }
3180 
3181 static int update_size(mddev_t *mddev, unsigned long size)
3182 {
3183 	mdk_rdev_t * rdev;
3184 	int rv;
3185 	struct list_head *tmp;
3186 
3187 	if (mddev->pers->resize == NULL)
3188 		return -EINVAL;
3189 	/* The "size" is the amount of each device that is used.
3190 	 * This can only make sense for arrays with redundancy.
3191 	 * linear and raid0 always use whatever space is available
3192 	 * We can only consider changing the size if no resync
3193 	 * or reconstruction is happening, and if the new size
3194 	 * is acceptable. It must fit before the sb_offset or,
3195 	 * if that is <data_offset, it must fit before the
3196 	 * size of each device.
3197 	 * If size is zero, we find the largest size that fits.
3198 	 */
3199 	if (mddev->sync_thread)
3200 		return -EBUSY;
3201 	ITERATE_RDEV(mddev,rdev,tmp) {
3202 		sector_t avail;
3203 		int fit = (size == 0);
3204 		if (rdev->sb_offset > rdev->data_offset)
3205 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3206 		else
3207 			avail = get_capacity(rdev->bdev->bd_disk)
3208 				- rdev->data_offset;
3209 		if (fit && (size == 0 || size > avail/2))
3210 			size = avail/2;
3211 		if (avail < ((sector_t)size << 1))
3212 			return -ENOSPC;
3213 	}
3214 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3215 	if (!rv) {
3216 		struct block_device *bdev;
3217 
3218 		bdev = bdget_disk(mddev->gendisk, 0);
3219 		if (bdev) {
3220 			down(&bdev->bd_inode->i_sem);
3221 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3222 			up(&bdev->bd_inode->i_sem);
3223 			bdput(bdev);
3224 		}
3225 	}
3226 	return rv;
3227 }
3228 
3229 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3230 {
3231 	int rv;
3232 	/* change the number of raid disks */
3233 	if (mddev->pers->reshape == NULL)
3234 		return -EINVAL;
3235 	if (raid_disks <= 0 ||
3236 	    raid_disks >= mddev->max_disks)
3237 		return -EINVAL;
3238 	if (mddev->sync_thread)
3239 		return -EBUSY;
3240 	rv = mddev->pers->reshape(mddev, raid_disks);
3241 	if (!rv) {
3242 		struct block_device *bdev;
3243 
3244 		bdev = bdget_disk(mddev->gendisk, 0);
3245 		if (bdev) {
3246 			down(&bdev->bd_inode->i_sem);
3247 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3248 			up(&bdev->bd_inode->i_sem);
3249 			bdput(bdev);
3250 		}
3251 	}
3252 	return rv;
3253 }
3254 
3255 
3256 /*
3257  * update_array_info is used to change the configuration of an
3258  * on-line array.
3259  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3260  * fields in the info are checked against the array.
3261  * Any differences that cannot be handled will cause an error.
3262  * Normally, only one change can be managed at a time.
3263  */
3264 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3265 {
3266 	int rv = 0;
3267 	int cnt = 0;
3268 	int state = 0;
3269 
3270 	/* calculate expected state,ignoring low bits */
3271 	if (mddev->bitmap && mddev->bitmap_offset)
3272 		state |= (1 << MD_SB_BITMAP_PRESENT);
3273 
3274 	if (mddev->major_version != info->major_version ||
3275 	    mddev->minor_version != info->minor_version ||
3276 /*	    mddev->patch_version != info->patch_version || */
3277 	    mddev->ctime         != info->ctime         ||
3278 	    mddev->level         != info->level         ||
3279 /*	    mddev->layout        != info->layout        || */
3280 	    !mddev->persistent	 != info->not_persistent||
3281 	    mddev->chunk_size    != info->chunk_size    ||
3282 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3283 	    ((state^info->state) & 0xfffffe00)
3284 		)
3285 		return -EINVAL;
3286 	/* Check there is only one change */
3287 	if (mddev->size != info->size) cnt++;
3288 	if (mddev->raid_disks != info->raid_disks) cnt++;
3289 	if (mddev->layout != info->layout) cnt++;
3290 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3291 	if (cnt == 0) return 0;
3292 	if (cnt > 1) return -EINVAL;
3293 
3294 	if (mddev->layout != info->layout) {
3295 		/* Change layout
3296 		 * we don't need to do anything at the md level, the
3297 		 * personality will take care of it all.
3298 		 */
3299 		if (mddev->pers->reconfig == NULL)
3300 			return -EINVAL;
3301 		else
3302 			return mddev->pers->reconfig(mddev, info->layout, -1);
3303 	}
3304 	if (mddev->size != info->size)
3305 		rv = update_size(mddev, info->size);
3306 
3307 	if (mddev->raid_disks    != info->raid_disks)
3308 		rv = update_raid_disks(mddev, info->raid_disks);
3309 
3310 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3311 		if (mddev->pers->quiesce == NULL)
3312 			return -EINVAL;
3313 		if (mddev->recovery || mddev->sync_thread)
3314 			return -EBUSY;
3315 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3316 			/* add the bitmap */
3317 			if (mddev->bitmap)
3318 				return -EEXIST;
3319 			if (mddev->default_bitmap_offset == 0)
3320 				return -EINVAL;
3321 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3322 			mddev->pers->quiesce(mddev, 1);
3323 			rv = bitmap_create(mddev);
3324 			if (rv)
3325 				bitmap_destroy(mddev);
3326 			mddev->pers->quiesce(mddev, 0);
3327 		} else {
3328 			/* remove the bitmap */
3329 			if (!mddev->bitmap)
3330 				return -ENOENT;
3331 			if (mddev->bitmap->file)
3332 				return -EINVAL;
3333 			mddev->pers->quiesce(mddev, 1);
3334 			bitmap_destroy(mddev);
3335 			mddev->pers->quiesce(mddev, 0);
3336 			mddev->bitmap_offset = 0;
3337 		}
3338 	}
3339 	md_update_sb(mddev);
3340 	return rv;
3341 }
3342 
3343 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3344 {
3345 	mdk_rdev_t *rdev;
3346 
3347 	if (mddev->pers == NULL)
3348 		return -ENODEV;
3349 
3350 	rdev = find_rdev(mddev, dev);
3351 	if (!rdev)
3352 		return -ENODEV;
3353 
3354 	md_error(mddev, rdev);
3355 	return 0;
3356 }
3357 
3358 static int md_ioctl(struct inode *inode, struct file *file,
3359 			unsigned int cmd, unsigned long arg)
3360 {
3361 	int err = 0;
3362 	void __user *argp = (void __user *)arg;
3363 	struct hd_geometry __user *loc = argp;
3364 	mddev_t *mddev = NULL;
3365 
3366 	if (!capable(CAP_SYS_ADMIN))
3367 		return -EACCES;
3368 
3369 	/*
3370 	 * Commands dealing with the RAID driver but not any
3371 	 * particular array:
3372 	 */
3373 	switch (cmd)
3374 	{
3375 		case RAID_VERSION:
3376 			err = get_version(argp);
3377 			goto done;
3378 
3379 		case PRINT_RAID_DEBUG:
3380 			err = 0;
3381 			md_print_devices();
3382 			goto done;
3383 
3384 #ifndef MODULE
3385 		case RAID_AUTORUN:
3386 			err = 0;
3387 			autostart_arrays(arg);
3388 			goto done;
3389 #endif
3390 		default:;
3391 	}
3392 
3393 	/*
3394 	 * Commands creating/starting a new array:
3395 	 */
3396 
3397 	mddev = inode->i_bdev->bd_disk->private_data;
3398 
3399 	if (!mddev) {
3400 		BUG();
3401 		goto abort;
3402 	}
3403 
3404 
3405 	if (cmd == START_ARRAY) {
3406 		/* START_ARRAY doesn't need to lock the array as autostart_array
3407 		 * does the locking, and it could even be a different array
3408 		 */
3409 		static int cnt = 3;
3410 		if (cnt > 0 ) {
3411 			printk(KERN_WARNING
3412 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3413 			       "This will not be supported beyond July 2006\n",
3414 			       current->comm, current->pid);
3415 			cnt--;
3416 		}
3417 		err = autostart_array(new_decode_dev(arg));
3418 		if (err) {
3419 			printk(KERN_WARNING "md: autostart failed!\n");
3420 			goto abort;
3421 		}
3422 		goto done;
3423 	}
3424 
3425 	err = mddev_lock(mddev);
3426 	if (err) {
3427 		printk(KERN_INFO
3428 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3429 			err, cmd);
3430 		goto abort;
3431 	}
3432 
3433 	switch (cmd)
3434 	{
3435 		case SET_ARRAY_INFO:
3436 			{
3437 				mdu_array_info_t info;
3438 				if (!arg)
3439 					memset(&info, 0, sizeof(info));
3440 				else if (copy_from_user(&info, argp, sizeof(info))) {
3441 					err = -EFAULT;
3442 					goto abort_unlock;
3443 				}
3444 				if (mddev->pers) {
3445 					err = update_array_info(mddev, &info);
3446 					if (err) {
3447 						printk(KERN_WARNING "md: couldn't update"
3448 						       " array info. %d\n", err);
3449 						goto abort_unlock;
3450 					}
3451 					goto done_unlock;
3452 				}
3453 				if (!list_empty(&mddev->disks)) {
3454 					printk(KERN_WARNING
3455 					       "md: array %s already has disks!\n",
3456 					       mdname(mddev));
3457 					err = -EBUSY;
3458 					goto abort_unlock;
3459 				}
3460 				if (mddev->raid_disks) {
3461 					printk(KERN_WARNING
3462 					       "md: array %s already initialised!\n",
3463 					       mdname(mddev));
3464 					err = -EBUSY;
3465 					goto abort_unlock;
3466 				}
3467 				err = set_array_info(mddev, &info);
3468 				if (err) {
3469 					printk(KERN_WARNING "md: couldn't set"
3470 					       " array info. %d\n", err);
3471 					goto abort_unlock;
3472 				}
3473 			}
3474 			goto done_unlock;
3475 
3476 		default:;
3477 	}
3478 
3479 	/*
3480 	 * Commands querying/configuring an existing array:
3481 	 */
3482 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3483 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3484 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3485 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3486 		err = -ENODEV;
3487 		goto abort_unlock;
3488 	}
3489 
3490 	/*
3491 	 * Commands even a read-only array can execute:
3492 	 */
3493 	switch (cmd)
3494 	{
3495 		case GET_ARRAY_INFO:
3496 			err = get_array_info(mddev, argp);
3497 			goto done_unlock;
3498 
3499 		case GET_BITMAP_FILE:
3500 			err = get_bitmap_file(mddev, argp);
3501 			goto done_unlock;
3502 
3503 		case GET_DISK_INFO:
3504 			err = get_disk_info(mddev, argp);
3505 			goto done_unlock;
3506 
3507 		case RESTART_ARRAY_RW:
3508 			err = restart_array(mddev);
3509 			goto done_unlock;
3510 
3511 		case STOP_ARRAY:
3512 			err = do_md_stop (mddev, 0);
3513 			goto done_unlock;
3514 
3515 		case STOP_ARRAY_RO:
3516 			err = do_md_stop (mddev, 1);
3517 			goto done_unlock;
3518 
3519 	/*
3520 	 * We have a problem here : there is no easy way to give a CHS
3521 	 * virtual geometry. We currently pretend that we have a 2 heads
3522 	 * 4 sectors (with a BIG number of cylinders...). This drives
3523 	 * dosfs just mad... ;-)
3524 	 */
3525 		case HDIO_GETGEO:
3526 			if (!loc) {
3527 				err = -EINVAL;
3528 				goto abort_unlock;
3529 			}
3530 			err = put_user (2, (char __user *) &loc->heads);
3531 			if (err)
3532 				goto abort_unlock;
3533 			err = put_user (4, (char __user *) &loc->sectors);
3534 			if (err)
3535 				goto abort_unlock;
3536 			err = put_user(get_capacity(mddev->gendisk)/8,
3537 					(short __user *) &loc->cylinders);
3538 			if (err)
3539 				goto abort_unlock;
3540 			err = put_user (get_start_sect(inode->i_bdev),
3541 						(long __user *) &loc->start);
3542 			goto done_unlock;
3543 	}
3544 
3545 	/*
3546 	 * The remaining ioctls are changing the state of the
3547 	 * superblock, so we do not allow them on read-only arrays.
3548 	 * However non-MD ioctls (e.g. get-size) will still come through
3549 	 * here and hit the 'default' below, so only disallow
3550 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3551 	 */
3552 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3553 	    mddev->ro && mddev->pers) {
3554 		if (mddev->ro == 2) {
3555 			mddev->ro = 0;
3556 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3557 		md_wakeup_thread(mddev->thread);
3558 
3559 		} else {
3560 			err = -EROFS;
3561 			goto abort_unlock;
3562 		}
3563 	}
3564 
3565 	switch (cmd)
3566 	{
3567 		case ADD_NEW_DISK:
3568 		{
3569 			mdu_disk_info_t info;
3570 			if (copy_from_user(&info, argp, sizeof(info)))
3571 				err = -EFAULT;
3572 			else
3573 				err = add_new_disk(mddev, &info);
3574 			goto done_unlock;
3575 		}
3576 
3577 		case HOT_REMOVE_DISK:
3578 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3579 			goto done_unlock;
3580 
3581 		case HOT_ADD_DISK:
3582 			err = hot_add_disk(mddev, new_decode_dev(arg));
3583 			goto done_unlock;
3584 
3585 		case SET_DISK_FAULTY:
3586 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3587 			goto done_unlock;
3588 
3589 		case RUN_ARRAY:
3590 			err = do_md_run (mddev);
3591 			goto done_unlock;
3592 
3593 		case SET_BITMAP_FILE:
3594 			err = set_bitmap_file(mddev, (int)arg);
3595 			goto done_unlock;
3596 
3597 		default:
3598 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3599 				printk(KERN_WARNING "md: %s(pid %d) used"
3600 					" obsolete MD ioctl, upgrade your"
3601 					" software to use new ictls.\n",
3602 					current->comm, current->pid);
3603 			err = -EINVAL;
3604 			goto abort_unlock;
3605 	}
3606 
3607 done_unlock:
3608 abort_unlock:
3609 	mddev_unlock(mddev);
3610 
3611 	return err;
3612 done:
3613 	if (err)
3614 		MD_BUG();
3615 abort:
3616 	return err;
3617 }
3618 
3619 static int md_open(struct inode *inode, struct file *file)
3620 {
3621 	/*
3622 	 * Succeed if we can lock the mddev, which confirms that
3623 	 * it isn't being stopped right now.
3624 	 */
3625 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3626 	int err;
3627 
3628 	if ((err = mddev_lock(mddev)))
3629 		goto out;
3630 
3631 	err = 0;
3632 	mddev_get(mddev);
3633 	mddev_unlock(mddev);
3634 
3635 	check_disk_change(inode->i_bdev);
3636  out:
3637 	return err;
3638 }
3639 
3640 static int md_release(struct inode *inode, struct file * file)
3641 {
3642  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3643 
3644 	if (!mddev)
3645 		BUG();
3646 	mddev_put(mddev);
3647 
3648 	return 0;
3649 }
3650 
3651 static int md_media_changed(struct gendisk *disk)
3652 {
3653 	mddev_t *mddev = disk->private_data;
3654 
3655 	return mddev->changed;
3656 }
3657 
3658 static int md_revalidate(struct gendisk *disk)
3659 {
3660 	mddev_t *mddev = disk->private_data;
3661 
3662 	mddev->changed = 0;
3663 	return 0;
3664 }
3665 static struct block_device_operations md_fops =
3666 {
3667 	.owner		= THIS_MODULE,
3668 	.open		= md_open,
3669 	.release	= md_release,
3670 	.ioctl		= md_ioctl,
3671 	.media_changed	= md_media_changed,
3672 	.revalidate_disk= md_revalidate,
3673 };
3674 
3675 static int md_thread(void * arg)
3676 {
3677 	mdk_thread_t *thread = arg;
3678 
3679 	/*
3680 	 * md_thread is a 'system-thread', it's priority should be very
3681 	 * high. We avoid resource deadlocks individually in each
3682 	 * raid personality. (RAID5 does preallocation) We also use RR and
3683 	 * the very same RT priority as kswapd, thus we will never get
3684 	 * into a priority inversion deadlock.
3685 	 *
3686 	 * we definitely have to have equal or higher priority than
3687 	 * bdflush, otherwise bdflush will deadlock if there are too
3688 	 * many dirty RAID5 blocks.
3689 	 */
3690 
3691 	allow_signal(SIGKILL);
3692 	while (!kthread_should_stop()) {
3693 
3694 		/* We need to wait INTERRUPTIBLE so that
3695 		 * we don't add to the load-average.
3696 		 * That means we need to be sure no signals are
3697 		 * pending
3698 		 */
3699 		if (signal_pending(current))
3700 			flush_signals(current);
3701 
3702 		wait_event_interruptible_timeout
3703 			(thread->wqueue,
3704 			 test_bit(THREAD_WAKEUP, &thread->flags)
3705 			 || kthread_should_stop(),
3706 			 thread->timeout);
3707 		try_to_freeze();
3708 
3709 		clear_bit(THREAD_WAKEUP, &thread->flags);
3710 
3711 		thread->run(thread->mddev);
3712 	}
3713 
3714 	return 0;
3715 }
3716 
3717 void md_wakeup_thread(mdk_thread_t *thread)
3718 {
3719 	if (thread) {
3720 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3721 		set_bit(THREAD_WAKEUP, &thread->flags);
3722 		wake_up(&thread->wqueue);
3723 	}
3724 }
3725 
3726 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3727 				 const char *name)
3728 {
3729 	mdk_thread_t *thread;
3730 
3731 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3732 	if (!thread)
3733 		return NULL;
3734 
3735 	init_waitqueue_head(&thread->wqueue);
3736 
3737 	thread->run = run;
3738 	thread->mddev = mddev;
3739 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3740 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3741 	if (IS_ERR(thread->tsk)) {
3742 		kfree(thread);
3743 		return NULL;
3744 	}
3745 	return thread;
3746 }
3747 
3748 void md_unregister_thread(mdk_thread_t *thread)
3749 {
3750 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3751 
3752 	kthread_stop(thread->tsk);
3753 	kfree(thread);
3754 }
3755 
3756 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3757 {
3758 	if (!mddev) {
3759 		MD_BUG();
3760 		return;
3761 	}
3762 
3763 	if (!rdev || test_bit(Faulty, &rdev->flags))
3764 		return;
3765 /*
3766 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3767 		mdname(mddev),
3768 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3769 		__builtin_return_address(0),__builtin_return_address(1),
3770 		__builtin_return_address(2),__builtin_return_address(3));
3771 */
3772 	if (!mddev->pers->error_handler)
3773 		return;
3774 	mddev->pers->error_handler(mddev,rdev);
3775 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3776 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3777 	md_wakeup_thread(mddev->thread);
3778 	md_new_event(mddev);
3779 }
3780 
3781 /* seq_file implementation /proc/mdstat */
3782 
3783 static void status_unused(struct seq_file *seq)
3784 {
3785 	int i = 0;
3786 	mdk_rdev_t *rdev;
3787 	struct list_head *tmp;
3788 
3789 	seq_printf(seq, "unused devices: ");
3790 
3791 	ITERATE_RDEV_PENDING(rdev,tmp) {
3792 		char b[BDEVNAME_SIZE];
3793 		i++;
3794 		seq_printf(seq, "%s ",
3795 			      bdevname(rdev->bdev,b));
3796 	}
3797 	if (!i)
3798 		seq_printf(seq, "<none>");
3799 
3800 	seq_printf(seq, "\n");
3801 }
3802 
3803 
3804 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3805 {
3806 	unsigned long max_blocks, resync, res, dt, db, rt;
3807 
3808 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3809 
3810 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3811 		max_blocks = mddev->resync_max_sectors >> 1;
3812 	else
3813 		max_blocks = mddev->size;
3814 
3815 	/*
3816 	 * Should not happen.
3817 	 */
3818 	if (!max_blocks) {
3819 		MD_BUG();
3820 		return;
3821 	}
3822 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3823 	{
3824 		int i, x = res/50, y = 20-x;
3825 		seq_printf(seq, "[");
3826 		for (i = 0; i < x; i++)
3827 			seq_printf(seq, "=");
3828 		seq_printf(seq, ">");
3829 		for (i = 0; i < y; i++)
3830 			seq_printf(seq, ".");
3831 		seq_printf(seq, "] ");
3832 	}
3833 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3834 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3835 		       "resync" : "recovery"),
3836 		      res/10, res % 10, resync, max_blocks);
3837 
3838 	/*
3839 	 * We do not want to overflow, so the order of operands and
3840 	 * the * 100 / 100 trick are important. We do a +1 to be
3841 	 * safe against division by zero. We only estimate anyway.
3842 	 *
3843 	 * dt: time from mark until now
3844 	 * db: blocks written from mark until now
3845 	 * rt: remaining time
3846 	 */
3847 	dt = ((jiffies - mddev->resync_mark) / HZ);
3848 	if (!dt) dt++;
3849 	db = resync - (mddev->resync_mark_cnt/2);
3850 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3851 
3852 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3853 
3854 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3855 }
3856 
3857 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3858 {
3859 	struct list_head *tmp;
3860 	loff_t l = *pos;
3861 	mddev_t *mddev;
3862 
3863 	if (l >= 0x10000)
3864 		return NULL;
3865 	if (!l--)
3866 		/* header */
3867 		return (void*)1;
3868 
3869 	spin_lock(&all_mddevs_lock);
3870 	list_for_each(tmp,&all_mddevs)
3871 		if (!l--) {
3872 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3873 			mddev_get(mddev);
3874 			spin_unlock(&all_mddevs_lock);
3875 			return mddev;
3876 		}
3877 	spin_unlock(&all_mddevs_lock);
3878 	if (!l--)
3879 		return (void*)2;/* tail */
3880 	return NULL;
3881 }
3882 
3883 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3884 {
3885 	struct list_head *tmp;
3886 	mddev_t *next_mddev, *mddev = v;
3887 
3888 	++*pos;
3889 	if (v == (void*)2)
3890 		return NULL;
3891 
3892 	spin_lock(&all_mddevs_lock);
3893 	if (v == (void*)1)
3894 		tmp = all_mddevs.next;
3895 	else
3896 		tmp = mddev->all_mddevs.next;
3897 	if (tmp != &all_mddevs)
3898 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3899 	else {
3900 		next_mddev = (void*)2;
3901 		*pos = 0x10000;
3902 	}
3903 	spin_unlock(&all_mddevs_lock);
3904 
3905 	if (v != (void*)1)
3906 		mddev_put(mddev);
3907 	return next_mddev;
3908 
3909 }
3910 
3911 static void md_seq_stop(struct seq_file *seq, void *v)
3912 {
3913 	mddev_t *mddev = v;
3914 
3915 	if (mddev && v != (void*)1 && v != (void*)2)
3916 		mddev_put(mddev);
3917 }
3918 
3919 struct mdstat_info {
3920 	int event;
3921 };
3922 
3923 static int md_seq_show(struct seq_file *seq, void *v)
3924 {
3925 	mddev_t *mddev = v;
3926 	sector_t size;
3927 	struct list_head *tmp2;
3928 	mdk_rdev_t *rdev;
3929 	struct mdstat_info *mi = seq->private;
3930 	struct bitmap *bitmap;
3931 
3932 	if (v == (void*)1) {
3933 		struct mdk_personality *pers;
3934 		seq_printf(seq, "Personalities : ");
3935 		spin_lock(&pers_lock);
3936 		list_for_each_entry(pers, &pers_list, list)
3937 			seq_printf(seq, "[%s] ", pers->name);
3938 
3939 		spin_unlock(&pers_lock);
3940 		seq_printf(seq, "\n");
3941 		mi->event = atomic_read(&md_event_count);
3942 		return 0;
3943 	}
3944 	if (v == (void*)2) {
3945 		status_unused(seq);
3946 		return 0;
3947 	}
3948 
3949 	if (mddev_lock(mddev)!=0)
3950 		return -EINTR;
3951 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3952 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3953 						mddev->pers ? "" : "in");
3954 		if (mddev->pers) {
3955 			if (mddev->ro==1)
3956 				seq_printf(seq, " (read-only)");
3957 			if (mddev->ro==2)
3958 				seq_printf(seq, "(auto-read-only)");
3959 			seq_printf(seq, " %s", mddev->pers->name);
3960 		}
3961 
3962 		size = 0;
3963 		ITERATE_RDEV(mddev,rdev,tmp2) {
3964 			char b[BDEVNAME_SIZE];
3965 			seq_printf(seq, " %s[%d]",
3966 				bdevname(rdev->bdev,b), rdev->desc_nr);
3967 			if (test_bit(WriteMostly, &rdev->flags))
3968 				seq_printf(seq, "(W)");
3969 			if (test_bit(Faulty, &rdev->flags)) {
3970 				seq_printf(seq, "(F)");
3971 				continue;
3972 			} else if (rdev->raid_disk < 0)
3973 				seq_printf(seq, "(S)"); /* spare */
3974 			size += rdev->size;
3975 		}
3976 
3977 		if (!list_empty(&mddev->disks)) {
3978 			if (mddev->pers)
3979 				seq_printf(seq, "\n      %llu blocks",
3980 					(unsigned long long)mddev->array_size);
3981 			else
3982 				seq_printf(seq, "\n      %llu blocks",
3983 					(unsigned long long)size);
3984 		}
3985 		if (mddev->persistent) {
3986 			if (mddev->major_version != 0 ||
3987 			    mddev->minor_version != 90) {
3988 				seq_printf(seq," super %d.%d",
3989 					   mddev->major_version,
3990 					   mddev->minor_version);
3991 			}
3992 		} else
3993 			seq_printf(seq, " super non-persistent");
3994 
3995 		if (mddev->pers) {
3996 			mddev->pers->status (seq, mddev);
3997 	 		seq_printf(seq, "\n      ");
3998 			if (mddev->pers->sync_request) {
3999 				if (mddev->curr_resync > 2) {
4000 					status_resync (seq, mddev);
4001 					seq_printf(seq, "\n      ");
4002 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4003 					seq_printf(seq, "\tresync=DELAYED\n      ");
4004 				else if (mddev->recovery_cp < MaxSector)
4005 					seq_printf(seq, "\tresync=PENDING\n      ");
4006 			}
4007 		} else
4008 			seq_printf(seq, "\n       ");
4009 
4010 		if ((bitmap = mddev->bitmap)) {
4011 			unsigned long chunk_kb;
4012 			unsigned long flags;
4013 			spin_lock_irqsave(&bitmap->lock, flags);
4014 			chunk_kb = bitmap->chunksize >> 10;
4015 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4016 				"%lu%s chunk",
4017 				bitmap->pages - bitmap->missing_pages,
4018 				bitmap->pages,
4019 				(bitmap->pages - bitmap->missing_pages)
4020 					<< (PAGE_SHIFT - 10),
4021 				chunk_kb ? chunk_kb : bitmap->chunksize,
4022 				chunk_kb ? "KB" : "B");
4023 			if (bitmap->file) {
4024 				seq_printf(seq, ", file: ");
4025 				seq_path(seq, bitmap->file->f_vfsmnt,
4026 					 bitmap->file->f_dentry," \t\n");
4027 			}
4028 
4029 			seq_printf(seq, "\n");
4030 			spin_unlock_irqrestore(&bitmap->lock, flags);
4031 		}
4032 
4033 		seq_printf(seq, "\n");
4034 	}
4035 	mddev_unlock(mddev);
4036 
4037 	return 0;
4038 }
4039 
4040 static struct seq_operations md_seq_ops = {
4041 	.start  = md_seq_start,
4042 	.next   = md_seq_next,
4043 	.stop   = md_seq_stop,
4044 	.show   = md_seq_show,
4045 };
4046 
4047 static int md_seq_open(struct inode *inode, struct file *file)
4048 {
4049 	int error;
4050 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4051 	if (mi == NULL)
4052 		return -ENOMEM;
4053 
4054 	error = seq_open(file, &md_seq_ops);
4055 	if (error)
4056 		kfree(mi);
4057 	else {
4058 		struct seq_file *p = file->private_data;
4059 		p->private = mi;
4060 		mi->event = atomic_read(&md_event_count);
4061 	}
4062 	return error;
4063 }
4064 
4065 static int md_seq_release(struct inode *inode, struct file *file)
4066 {
4067 	struct seq_file *m = file->private_data;
4068 	struct mdstat_info *mi = m->private;
4069 	m->private = NULL;
4070 	kfree(mi);
4071 	return seq_release(inode, file);
4072 }
4073 
4074 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4075 {
4076 	struct seq_file *m = filp->private_data;
4077 	struct mdstat_info *mi = m->private;
4078 	int mask;
4079 
4080 	poll_wait(filp, &md_event_waiters, wait);
4081 
4082 	/* always allow read */
4083 	mask = POLLIN | POLLRDNORM;
4084 
4085 	if (mi->event != atomic_read(&md_event_count))
4086 		mask |= POLLERR | POLLPRI;
4087 	return mask;
4088 }
4089 
4090 static struct file_operations md_seq_fops = {
4091 	.open           = md_seq_open,
4092 	.read           = seq_read,
4093 	.llseek         = seq_lseek,
4094 	.release	= md_seq_release,
4095 	.poll		= mdstat_poll,
4096 };
4097 
4098 int register_md_personality(struct mdk_personality *p)
4099 {
4100 	spin_lock(&pers_lock);
4101 	list_add_tail(&p->list, &pers_list);
4102 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4103 	spin_unlock(&pers_lock);
4104 	return 0;
4105 }
4106 
4107 int unregister_md_personality(struct mdk_personality *p)
4108 {
4109 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4110 	spin_lock(&pers_lock);
4111 	list_del_init(&p->list);
4112 	spin_unlock(&pers_lock);
4113 	return 0;
4114 }
4115 
4116 static int is_mddev_idle(mddev_t *mddev)
4117 {
4118 	mdk_rdev_t * rdev;
4119 	struct list_head *tmp;
4120 	int idle;
4121 	unsigned long curr_events;
4122 
4123 	idle = 1;
4124 	ITERATE_RDEV(mddev,rdev,tmp) {
4125 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4126 		curr_events = disk_stat_read(disk, sectors[0]) +
4127 				disk_stat_read(disk, sectors[1]) -
4128 				atomic_read(&disk->sync_io);
4129 		/* The difference between curr_events and last_events
4130 		 * will be affected by any new non-sync IO (making
4131 		 * curr_events bigger) and any difference in the amount of
4132 		 * in-flight syncio (making current_events bigger or smaller)
4133 		 * The amount in-flight is currently limited to
4134 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4135 		 * which is at most 4096 sectors.
4136 		 * These numbers are fairly fragile and should be made
4137 		 * more robust, probably by enforcing the
4138 		 * 'window size' that md_do_sync sort-of uses.
4139 		 *
4140 		 * Note: the following is an unsigned comparison.
4141 		 */
4142 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4143 			rdev->last_events = curr_events;
4144 			idle = 0;
4145 		}
4146 	}
4147 	return idle;
4148 }
4149 
4150 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4151 {
4152 	/* another "blocks" (512byte) blocks have been synced */
4153 	atomic_sub(blocks, &mddev->recovery_active);
4154 	wake_up(&mddev->recovery_wait);
4155 	if (!ok) {
4156 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4157 		md_wakeup_thread(mddev->thread);
4158 		// stop recovery, signal do_sync ....
4159 	}
4160 }
4161 
4162 
4163 /* md_write_start(mddev, bi)
4164  * If we need to update some array metadata (e.g. 'active' flag
4165  * in superblock) before writing, schedule a superblock update
4166  * and wait for it to complete.
4167  */
4168 void md_write_start(mddev_t *mddev, struct bio *bi)
4169 {
4170 	if (bio_data_dir(bi) != WRITE)
4171 		return;
4172 
4173 	BUG_ON(mddev->ro == 1);
4174 	if (mddev->ro == 2) {
4175 		/* need to switch to read/write */
4176 		mddev->ro = 0;
4177 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4178 		md_wakeup_thread(mddev->thread);
4179 	}
4180 	atomic_inc(&mddev->writes_pending);
4181 	if (mddev->in_sync) {
4182 		spin_lock_irq(&mddev->write_lock);
4183 		if (mddev->in_sync) {
4184 			mddev->in_sync = 0;
4185 			mddev->sb_dirty = 1;
4186 			md_wakeup_thread(mddev->thread);
4187 		}
4188 		spin_unlock_irq(&mddev->write_lock);
4189 	}
4190 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4191 }
4192 
4193 void md_write_end(mddev_t *mddev)
4194 {
4195 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4196 		if (mddev->safemode == 2)
4197 			md_wakeup_thread(mddev->thread);
4198 		else
4199 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4200 	}
4201 }
4202 
4203 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4204 
4205 #define SYNC_MARKS	10
4206 #define	SYNC_MARK_STEP	(3*HZ)
4207 static void md_do_sync(mddev_t *mddev)
4208 {
4209 	mddev_t *mddev2;
4210 	unsigned int currspeed = 0,
4211 		 window;
4212 	sector_t max_sectors,j, io_sectors;
4213 	unsigned long mark[SYNC_MARKS];
4214 	sector_t mark_cnt[SYNC_MARKS];
4215 	int last_mark,m;
4216 	struct list_head *tmp;
4217 	sector_t last_check;
4218 	int skipped = 0;
4219 
4220 	/* just incase thread restarts... */
4221 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4222 		return;
4223 
4224 	/* we overload curr_resync somewhat here.
4225 	 * 0 == not engaged in resync at all
4226 	 * 2 == checking that there is no conflict with another sync
4227 	 * 1 == like 2, but have yielded to allow conflicting resync to
4228 	 *		commense
4229 	 * other == active in resync - this many blocks
4230 	 *
4231 	 * Before starting a resync we must have set curr_resync to
4232 	 * 2, and then checked that every "conflicting" array has curr_resync
4233 	 * less than ours.  When we find one that is the same or higher
4234 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4235 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4236 	 * This will mean we have to start checking from the beginning again.
4237 	 *
4238 	 */
4239 
4240 	do {
4241 		mddev->curr_resync = 2;
4242 
4243 	try_again:
4244 		if (kthread_should_stop()) {
4245 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4246 			goto skip;
4247 		}
4248 		ITERATE_MDDEV(mddev2,tmp) {
4249 			if (mddev2 == mddev)
4250 				continue;
4251 			if (mddev2->curr_resync &&
4252 			    match_mddev_units(mddev,mddev2)) {
4253 				DEFINE_WAIT(wq);
4254 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4255 					/* arbitrarily yield */
4256 					mddev->curr_resync = 1;
4257 					wake_up(&resync_wait);
4258 				}
4259 				if (mddev > mddev2 && mddev->curr_resync == 1)
4260 					/* no need to wait here, we can wait the next
4261 					 * time 'round when curr_resync == 2
4262 					 */
4263 					continue;
4264 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4265 				if (!kthread_should_stop() &&
4266 				    mddev2->curr_resync >= mddev->curr_resync) {
4267 					printk(KERN_INFO "md: delaying resync of %s"
4268 					       " until %s has finished resync (they"
4269 					       " share one or more physical units)\n",
4270 					       mdname(mddev), mdname(mddev2));
4271 					mddev_put(mddev2);
4272 					schedule();
4273 					finish_wait(&resync_wait, &wq);
4274 					goto try_again;
4275 				}
4276 				finish_wait(&resync_wait, &wq);
4277 			}
4278 		}
4279 	} while (mddev->curr_resync < 2);
4280 
4281 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4282 		/* resync follows the size requested by the personality,
4283 		 * which defaults to physical size, but can be virtual size
4284 		 */
4285 		max_sectors = mddev->resync_max_sectors;
4286 		mddev->resync_mismatches = 0;
4287 	} else
4288 		/* recovery follows the physical size of devices */
4289 		max_sectors = mddev->size << 1;
4290 
4291 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4292 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4293 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4294 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4295 	       "(but not more than %d KB/sec) for reconstruction.\n",
4296 	       sysctl_speed_limit_max);
4297 
4298 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4299 	/* we don't use the checkpoint if there's a bitmap */
4300 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4301 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4302 		j = mddev->recovery_cp;
4303 	else
4304 		j = 0;
4305 	io_sectors = 0;
4306 	for (m = 0; m < SYNC_MARKS; m++) {
4307 		mark[m] = jiffies;
4308 		mark_cnt[m] = io_sectors;
4309 	}
4310 	last_mark = 0;
4311 	mddev->resync_mark = mark[last_mark];
4312 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4313 
4314 	/*
4315 	 * Tune reconstruction:
4316 	 */
4317 	window = 32*(PAGE_SIZE/512);
4318 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4319 		window/2,(unsigned long long) max_sectors/2);
4320 
4321 	atomic_set(&mddev->recovery_active, 0);
4322 	init_waitqueue_head(&mddev->recovery_wait);
4323 	last_check = 0;
4324 
4325 	if (j>2) {
4326 		printk(KERN_INFO
4327 			"md: resuming recovery of %s from checkpoint.\n",
4328 			mdname(mddev));
4329 		mddev->curr_resync = j;
4330 	}
4331 
4332 	while (j < max_sectors) {
4333 		sector_t sectors;
4334 
4335 		skipped = 0;
4336 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4337 					    currspeed < sysctl_speed_limit_min);
4338 		if (sectors == 0) {
4339 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4340 			goto out;
4341 		}
4342 
4343 		if (!skipped) { /* actual IO requested */
4344 			io_sectors += sectors;
4345 			atomic_add(sectors, &mddev->recovery_active);
4346 		}
4347 
4348 		j += sectors;
4349 		if (j>1) mddev->curr_resync = j;
4350 		if (last_check == 0)
4351 			/* this is the earliers that rebuilt will be
4352 			 * visible in /proc/mdstat
4353 			 */
4354 			md_new_event(mddev);
4355 
4356 		if (last_check + window > io_sectors || j == max_sectors)
4357 			continue;
4358 
4359 		last_check = io_sectors;
4360 
4361 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4362 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4363 			break;
4364 
4365 	repeat:
4366 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4367 			/* step marks */
4368 			int next = (last_mark+1) % SYNC_MARKS;
4369 
4370 			mddev->resync_mark = mark[next];
4371 			mddev->resync_mark_cnt = mark_cnt[next];
4372 			mark[next] = jiffies;
4373 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4374 			last_mark = next;
4375 		}
4376 
4377 
4378 		if (kthread_should_stop()) {
4379 			/*
4380 			 * got a signal, exit.
4381 			 */
4382 			printk(KERN_INFO
4383 				"md: md_do_sync() got signal ... exiting\n");
4384 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4385 			goto out;
4386 		}
4387 
4388 		/*
4389 		 * this loop exits only if either when we are slower than
4390 		 * the 'hard' speed limit, or the system was IO-idle for
4391 		 * a jiffy.
4392 		 * the system might be non-idle CPU-wise, but we only care
4393 		 * about not overloading the IO subsystem. (things like an
4394 		 * e2fsck being done on the RAID array should execute fast)
4395 		 */
4396 		mddev->queue->unplug_fn(mddev->queue);
4397 		cond_resched();
4398 
4399 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4400 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4401 
4402 		if (currspeed > sysctl_speed_limit_min) {
4403 			if ((currspeed > sysctl_speed_limit_max) ||
4404 					!is_mddev_idle(mddev)) {
4405 				msleep(500);
4406 				goto repeat;
4407 			}
4408 		}
4409 	}
4410 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4411 	/*
4412 	 * this also signals 'finished resyncing' to md_stop
4413 	 */
4414  out:
4415 	mddev->queue->unplug_fn(mddev->queue);
4416 
4417 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4418 
4419 	/* tell personality that we are finished */
4420 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4421 
4422 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4423 	    mddev->curr_resync > 2 &&
4424 	    mddev->curr_resync >= mddev->recovery_cp) {
4425 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4426 			printk(KERN_INFO
4427 				"md: checkpointing recovery of %s.\n",
4428 				mdname(mddev));
4429 			mddev->recovery_cp = mddev->curr_resync;
4430 		} else
4431 			mddev->recovery_cp = MaxSector;
4432 	}
4433 
4434  skip:
4435 	mddev->curr_resync = 0;
4436 	wake_up(&resync_wait);
4437 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4438 	md_wakeup_thread(mddev->thread);
4439 }
4440 
4441 
4442 /*
4443  * This routine is regularly called by all per-raid-array threads to
4444  * deal with generic issues like resync and super-block update.
4445  * Raid personalities that don't have a thread (linear/raid0) do not
4446  * need this as they never do any recovery or update the superblock.
4447  *
4448  * It does not do any resync itself, but rather "forks" off other threads
4449  * to do that as needed.
4450  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4451  * "->recovery" and create a thread at ->sync_thread.
4452  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4453  * and wakeups up this thread which will reap the thread and finish up.
4454  * This thread also removes any faulty devices (with nr_pending == 0).
4455  *
4456  * The overall approach is:
4457  *  1/ if the superblock needs updating, update it.
4458  *  2/ If a recovery thread is running, don't do anything else.
4459  *  3/ If recovery has finished, clean up, possibly marking spares active.
4460  *  4/ If there are any faulty devices, remove them.
4461  *  5/ If array is degraded, try to add spares devices
4462  *  6/ If array has spares or is not in-sync, start a resync thread.
4463  */
4464 void md_check_recovery(mddev_t *mddev)
4465 {
4466 	mdk_rdev_t *rdev;
4467 	struct list_head *rtmp;
4468 
4469 
4470 	if (mddev->bitmap)
4471 		bitmap_daemon_work(mddev->bitmap);
4472 
4473 	if (mddev->ro)
4474 		return;
4475 
4476 	if (signal_pending(current)) {
4477 		if (mddev->pers->sync_request) {
4478 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4479 			       mdname(mddev));
4480 			mddev->safemode = 2;
4481 		}
4482 		flush_signals(current);
4483 	}
4484 
4485 	if ( ! (
4486 		mddev->sb_dirty ||
4487 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4488 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4489 		(mddev->safemode == 1) ||
4490 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4491 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4492 		))
4493 		return;
4494 
4495 	if (mddev_trylock(mddev)==0) {
4496 		int spares =0;
4497 
4498 		spin_lock_irq(&mddev->write_lock);
4499 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4500 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4501 			mddev->in_sync = 1;
4502 			mddev->sb_dirty = 1;
4503 		}
4504 		if (mddev->safemode == 1)
4505 			mddev->safemode = 0;
4506 		spin_unlock_irq(&mddev->write_lock);
4507 
4508 		if (mddev->sb_dirty)
4509 			md_update_sb(mddev);
4510 
4511 
4512 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4513 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4514 			/* resync/recovery still happening */
4515 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4516 			goto unlock;
4517 		}
4518 		if (mddev->sync_thread) {
4519 			/* resync has finished, collect result */
4520 			md_unregister_thread(mddev->sync_thread);
4521 			mddev->sync_thread = NULL;
4522 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4523 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4524 				/* success...*/
4525 				/* activate any spares */
4526 				mddev->pers->spare_active(mddev);
4527 			}
4528 			md_update_sb(mddev);
4529 
4530 			/* if array is no-longer degraded, then any saved_raid_disk
4531 			 * information must be scrapped
4532 			 */
4533 			if (!mddev->degraded)
4534 				ITERATE_RDEV(mddev,rdev,rtmp)
4535 					rdev->saved_raid_disk = -1;
4536 
4537 			mddev->recovery = 0;
4538 			/* flag recovery needed just to double check */
4539 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4540 			md_new_event(mddev);
4541 			goto unlock;
4542 		}
4543 		/* Clear some bits that don't mean anything, but
4544 		 * might be left set
4545 		 */
4546 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4547 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4548 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4549 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4550 
4551 		/* no recovery is running.
4552 		 * remove any failed drives, then
4553 		 * add spares if possible.
4554 		 * Spare are also removed and re-added, to allow
4555 		 * the personality to fail the re-add.
4556 		 */
4557 		ITERATE_RDEV(mddev,rdev,rtmp)
4558 			if (rdev->raid_disk >= 0 &&
4559 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4560 			    atomic_read(&rdev->nr_pending)==0) {
4561 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4562 					char nm[20];
4563 					sprintf(nm,"rd%d", rdev->raid_disk);
4564 					sysfs_remove_link(&mddev->kobj, nm);
4565 					rdev->raid_disk = -1;
4566 				}
4567 			}
4568 
4569 		if (mddev->degraded) {
4570 			ITERATE_RDEV(mddev,rdev,rtmp)
4571 				if (rdev->raid_disk < 0
4572 				    && !test_bit(Faulty, &rdev->flags)) {
4573 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4574 						char nm[20];
4575 						sprintf(nm, "rd%d", rdev->raid_disk);
4576 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4577 						spares++;
4578 						md_new_event(mddev);
4579 					} else
4580 						break;
4581 				}
4582 		}
4583 
4584 		if (spares) {
4585 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4586 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4587 		} else if (mddev->recovery_cp < MaxSector) {
4588 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4589 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4590 			/* nothing to be done ... */
4591 			goto unlock;
4592 
4593 		if (mddev->pers->sync_request) {
4594 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4595 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4596 				/* We are adding a device or devices to an array
4597 				 * which has the bitmap stored on all devices.
4598 				 * So make sure all bitmap pages get written
4599 				 */
4600 				bitmap_write_all(mddev->bitmap);
4601 			}
4602 			mddev->sync_thread = md_register_thread(md_do_sync,
4603 								mddev,
4604 								"%s_resync");
4605 			if (!mddev->sync_thread) {
4606 				printk(KERN_ERR "%s: could not start resync"
4607 					" thread...\n",
4608 					mdname(mddev));
4609 				/* leave the spares where they are, it shouldn't hurt */
4610 				mddev->recovery = 0;
4611 			} else
4612 				md_wakeup_thread(mddev->sync_thread);
4613 			md_new_event(mddev);
4614 		}
4615 	unlock:
4616 		mddev_unlock(mddev);
4617 	}
4618 }
4619 
4620 static int md_notify_reboot(struct notifier_block *this,
4621 			    unsigned long code, void *x)
4622 {
4623 	struct list_head *tmp;
4624 	mddev_t *mddev;
4625 
4626 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4627 
4628 		printk(KERN_INFO "md: stopping all md devices.\n");
4629 
4630 		ITERATE_MDDEV(mddev,tmp)
4631 			if (mddev_trylock(mddev)==0)
4632 				do_md_stop (mddev, 1);
4633 		/*
4634 		 * certain more exotic SCSI devices are known to be
4635 		 * volatile wrt too early system reboots. While the
4636 		 * right place to handle this issue is the given
4637 		 * driver, we do want to have a safe RAID driver ...
4638 		 */
4639 		mdelay(1000*1);
4640 	}
4641 	return NOTIFY_DONE;
4642 }
4643 
4644 static struct notifier_block md_notifier = {
4645 	.notifier_call	= md_notify_reboot,
4646 	.next		= NULL,
4647 	.priority	= INT_MAX, /* before any real devices */
4648 };
4649 
4650 static void md_geninit(void)
4651 {
4652 	struct proc_dir_entry *p;
4653 
4654 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4655 
4656 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4657 	if (p)
4658 		p->proc_fops = &md_seq_fops;
4659 }
4660 
4661 static int __init md_init(void)
4662 {
4663 	int minor;
4664 
4665 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4666 			" MD_SB_DISKS=%d\n",
4667 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4668 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4669 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4670 			BITMAP_MINOR);
4671 
4672 	if (register_blkdev(MAJOR_NR, "md"))
4673 		return -1;
4674 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4675 		unregister_blkdev(MAJOR_NR, "md");
4676 		return -1;
4677 	}
4678 	devfs_mk_dir("md");
4679 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4680 				md_probe, NULL, NULL);
4681 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4682 			    md_probe, NULL, NULL);
4683 
4684 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4685 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4686 				S_IFBLK|S_IRUSR|S_IWUSR,
4687 				"md/%d", minor);
4688 
4689 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4690 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4691 			      S_IFBLK|S_IRUSR|S_IWUSR,
4692 			      "md/mdp%d", minor);
4693 
4694 
4695 	register_reboot_notifier(&md_notifier);
4696 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4697 
4698 	md_geninit();
4699 	return (0);
4700 }
4701 
4702 
4703 #ifndef MODULE
4704 
4705 /*
4706  * Searches all registered partitions for autorun RAID arrays
4707  * at boot time.
4708  */
4709 static dev_t detected_devices[128];
4710 static int dev_cnt;
4711 
4712 void md_autodetect_dev(dev_t dev)
4713 {
4714 	if (dev_cnt >= 0 && dev_cnt < 127)
4715 		detected_devices[dev_cnt++] = dev;
4716 }
4717 
4718 
4719 static void autostart_arrays(int part)
4720 {
4721 	mdk_rdev_t *rdev;
4722 	int i;
4723 
4724 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4725 
4726 	for (i = 0; i < dev_cnt; i++) {
4727 		dev_t dev = detected_devices[i];
4728 
4729 		rdev = md_import_device(dev,0, 0);
4730 		if (IS_ERR(rdev))
4731 			continue;
4732 
4733 		if (test_bit(Faulty, &rdev->flags)) {
4734 			MD_BUG();
4735 			continue;
4736 		}
4737 		list_add(&rdev->same_set, &pending_raid_disks);
4738 	}
4739 	dev_cnt = 0;
4740 
4741 	autorun_devices(part);
4742 }
4743 
4744 #endif
4745 
4746 static __exit void md_exit(void)
4747 {
4748 	mddev_t *mddev;
4749 	struct list_head *tmp;
4750 	int i;
4751 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4752 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4753 	for (i=0; i < MAX_MD_DEVS; i++)
4754 		devfs_remove("md/%d", i);
4755 	for (i=0; i < MAX_MD_DEVS; i++)
4756 		devfs_remove("md/d%d", i);
4757 
4758 	devfs_remove("md");
4759 
4760 	unregister_blkdev(MAJOR_NR,"md");
4761 	unregister_blkdev(mdp_major, "mdp");
4762 	unregister_reboot_notifier(&md_notifier);
4763 	unregister_sysctl_table(raid_table_header);
4764 	remove_proc_entry("mdstat", NULL);
4765 	ITERATE_MDDEV(mddev,tmp) {
4766 		struct gendisk *disk = mddev->gendisk;
4767 		if (!disk)
4768 			continue;
4769 		export_array(mddev);
4770 		del_gendisk(disk);
4771 		put_disk(disk);
4772 		mddev->gendisk = NULL;
4773 		mddev_put(mddev);
4774 	}
4775 }
4776 
4777 module_init(md_init)
4778 module_exit(md_exit)
4779 
4780 static int get_ro(char *buffer, struct kernel_param *kp)
4781 {
4782 	return sprintf(buffer, "%d", start_readonly);
4783 }
4784 static int set_ro(const char *val, struct kernel_param *kp)
4785 {
4786 	char *e;
4787 	int num = simple_strtoul(val, &e, 10);
4788 	if (*val && (*e == '\0' || *e == '\n')) {
4789 		start_readonly = num;
4790 		return 0;
4791 	}
4792 	return -EINVAL;
4793 }
4794 
4795 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4796 module_param(start_dirty_degraded, int, 0644);
4797 
4798 
4799 EXPORT_SYMBOL(register_md_personality);
4800 EXPORT_SYMBOL(unregister_md_personality);
4801 EXPORT_SYMBOL(md_error);
4802 EXPORT_SYMBOL(md_done_sync);
4803 EXPORT_SYMBOL(md_write_start);
4804 EXPORT_SYMBOL(md_write_end);
4805 EXPORT_SYMBOL(md_register_thread);
4806 EXPORT_SYMBOL(md_unregister_thread);
4807 EXPORT_SYMBOL(md_wakeup_thread);
4808 EXPORT_SYMBOL(md_print_devices);
4809 EXPORT_SYMBOL(md_check_recovery);
4810 MODULE_LICENSE("GPL");
4811 MODULE_ALIAS("md");
4812 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4813