1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* 372 * iterates through all used mddevs in the system. 373 * We take care to grab the all_mddevs_lock whenever navigating 374 * the list, and to always hold a refcount when unlocked. 375 * Any code which breaks out of this loop while own 376 * a reference to the current mddev and must mddev_put it. 377 */ 378 #define for_each_mddev(_mddev,_tmp) \ 379 \ 380 for (({ spin_lock(&all_mddevs_lock); \ 381 _tmp = all_mddevs.next; \ 382 _mddev = NULL;}); \ 383 ({ if (_tmp != &all_mddevs) \ 384 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 385 spin_unlock(&all_mddevs_lock); \ 386 if (_mddev) mddev_put(_mddev); \ 387 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 388 _tmp != &all_mddevs;}); \ 389 ({ spin_lock(&all_mddevs_lock); \ 390 _tmp = _tmp->next;}) \ 391 ) 392 393 /* Rather than calling directly into the personality make_request function, 394 * IO requests come here first so that we can check if the device is 395 * being suspended pending a reconfiguration. 396 * We hold a refcount over the call to ->make_request. By the time that 397 * call has finished, the bio has been linked into some internal structure 398 * and so is visible to ->quiesce(), so we don't need the refcount any more. 399 */ 400 static bool is_suspended(struct mddev *mddev, struct bio *bio) 401 { 402 if (mddev->suspended) 403 return true; 404 if (bio_data_dir(bio) != WRITE) 405 return false; 406 if (mddev->suspend_lo >= mddev->suspend_hi) 407 return false; 408 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 409 return false; 410 if (bio_end_sector(bio) < mddev->suspend_lo) 411 return false; 412 return true; 413 } 414 415 void md_handle_request(struct mddev *mddev, struct bio *bio) 416 { 417 check_suspended: 418 rcu_read_lock(); 419 if (is_suspended(mddev, bio)) { 420 DEFINE_WAIT(__wait); 421 for (;;) { 422 prepare_to_wait(&mddev->sb_wait, &__wait, 423 TASK_UNINTERRUPTIBLE); 424 if (!is_suspended(mddev, bio)) 425 break; 426 rcu_read_unlock(); 427 schedule(); 428 rcu_read_lock(); 429 } 430 finish_wait(&mddev->sb_wait, &__wait); 431 } 432 atomic_inc(&mddev->active_io); 433 rcu_read_unlock(); 434 435 if (!mddev->pers->make_request(mddev, bio)) { 436 atomic_dec(&mddev->active_io); 437 wake_up(&mddev->sb_wait); 438 goto check_suspended; 439 } 440 441 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 442 wake_up(&mddev->sb_wait); 443 } 444 EXPORT_SYMBOL(md_handle_request); 445 446 static void md_submit_bio(struct bio *bio) 447 { 448 const int rw = bio_data_dir(bio); 449 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 450 451 if (mddev == NULL || mddev->pers == NULL) { 452 bio_io_error(bio); 453 return; 454 } 455 456 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 457 bio_io_error(bio); 458 return; 459 } 460 461 blk_queue_split(&bio); 462 463 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 464 if (bio_sectors(bio) != 0) 465 bio->bi_status = BLK_STS_IOERR; 466 bio_endio(bio); 467 return; 468 } 469 470 /* bio could be mergeable after passing to underlayer */ 471 bio->bi_opf &= ~REQ_NOMERGE; 472 473 md_handle_request(mddev, bio); 474 } 475 476 /* mddev_suspend makes sure no new requests are submitted 477 * to the device, and that any requests that have been submitted 478 * are completely handled. 479 * Once mddev_detach() is called and completes, the module will be 480 * completely unused. 481 */ 482 void mddev_suspend(struct mddev *mddev) 483 { 484 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 485 lockdep_assert_held(&mddev->reconfig_mutex); 486 if (mddev->suspended++) 487 return; 488 synchronize_rcu(); 489 wake_up(&mddev->sb_wait); 490 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 491 smp_mb__after_atomic(); 492 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 493 mddev->pers->quiesce(mddev, 1); 494 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 495 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 496 497 del_timer_sync(&mddev->safemode_timer); 498 /* restrict memory reclaim I/O during raid array is suspend */ 499 mddev->noio_flag = memalloc_noio_save(); 500 } 501 EXPORT_SYMBOL_GPL(mddev_suspend); 502 503 void mddev_resume(struct mddev *mddev) 504 { 505 /* entred the memalloc scope from mddev_suspend() */ 506 memalloc_noio_restore(mddev->noio_flag); 507 lockdep_assert_held(&mddev->reconfig_mutex); 508 if (--mddev->suspended) 509 return; 510 wake_up(&mddev->sb_wait); 511 mddev->pers->quiesce(mddev, 0); 512 513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 514 md_wakeup_thread(mddev->thread); 515 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 516 } 517 EXPORT_SYMBOL_GPL(mddev_resume); 518 519 /* 520 * Generic flush handling for md 521 */ 522 523 static void md_end_flush(struct bio *bio) 524 { 525 struct md_rdev *rdev = bio->bi_private; 526 struct mddev *mddev = rdev->mddev; 527 528 rdev_dec_pending(rdev, mddev); 529 530 if (atomic_dec_and_test(&mddev->flush_pending)) { 531 /* The pre-request flush has finished */ 532 queue_work(md_wq, &mddev->flush_work); 533 } 534 bio_put(bio); 535 } 536 537 static void md_submit_flush_data(struct work_struct *ws); 538 539 static void submit_flushes(struct work_struct *ws) 540 { 541 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 542 struct md_rdev *rdev; 543 544 mddev->start_flush = ktime_get_boottime(); 545 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 546 atomic_set(&mddev->flush_pending, 1); 547 rcu_read_lock(); 548 rdev_for_each_rcu(rdev, mddev) 549 if (rdev->raid_disk >= 0 && 550 !test_bit(Faulty, &rdev->flags)) { 551 /* Take two references, one is dropped 552 * when request finishes, one after 553 * we reclaim rcu_read_lock 554 */ 555 struct bio *bi; 556 atomic_inc(&rdev->nr_pending); 557 atomic_inc(&rdev->nr_pending); 558 rcu_read_unlock(); 559 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set); 560 bi->bi_end_io = md_end_flush; 561 bi->bi_private = rdev; 562 bio_set_dev(bi, rdev->bdev); 563 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 564 atomic_inc(&mddev->flush_pending); 565 submit_bio(bi); 566 rcu_read_lock(); 567 rdev_dec_pending(rdev, mddev); 568 } 569 rcu_read_unlock(); 570 if (atomic_dec_and_test(&mddev->flush_pending)) 571 queue_work(md_wq, &mddev->flush_work); 572 } 573 574 static void md_submit_flush_data(struct work_struct *ws) 575 { 576 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 577 struct bio *bio = mddev->flush_bio; 578 579 /* 580 * must reset flush_bio before calling into md_handle_request to avoid a 581 * deadlock, because other bios passed md_handle_request suspend check 582 * could wait for this and below md_handle_request could wait for those 583 * bios because of suspend check 584 */ 585 spin_lock_irq(&mddev->lock); 586 mddev->prev_flush_start = mddev->start_flush; 587 mddev->flush_bio = NULL; 588 spin_unlock_irq(&mddev->lock); 589 wake_up(&mddev->sb_wait); 590 591 if (bio->bi_iter.bi_size == 0) { 592 /* an empty barrier - all done */ 593 bio_endio(bio); 594 } else { 595 bio->bi_opf &= ~REQ_PREFLUSH; 596 md_handle_request(mddev, bio); 597 } 598 } 599 600 /* 601 * Manages consolidation of flushes and submitting any flushes needed for 602 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 603 * being finished in another context. Returns false if the flushing is 604 * complete but still needs the I/O portion of the bio to be processed. 605 */ 606 bool md_flush_request(struct mddev *mddev, struct bio *bio) 607 { 608 ktime_t req_start = ktime_get_boottime(); 609 spin_lock_irq(&mddev->lock); 610 /* flush requests wait until ongoing flush completes, 611 * hence coalescing all the pending requests. 612 */ 613 wait_event_lock_irq(mddev->sb_wait, 614 !mddev->flush_bio || 615 ktime_before(req_start, mddev->prev_flush_start), 616 mddev->lock); 617 /* new request after previous flush is completed */ 618 if (ktime_after(req_start, mddev->prev_flush_start)) { 619 WARN_ON(mddev->flush_bio); 620 mddev->flush_bio = bio; 621 bio = NULL; 622 } 623 spin_unlock_irq(&mddev->lock); 624 625 if (!bio) { 626 INIT_WORK(&mddev->flush_work, submit_flushes); 627 queue_work(md_wq, &mddev->flush_work); 628 } else { 629 /* flush was performed for some other bio while we waited. */ 630 if (bio->bi_iter.bi_size == 0) 631 /* an empty barrier - all done */ 632 bio_endio(bio); 633 else { 634 bio->bi_opf &= ~REQ_PREFLUSH; 635 return false; 636 } 637 } 638 return true; 639 } 640 EXPORT_SYMBOL(md_flush_request); 641 642 static inline struct mddev *mddev_get(struct mddev *mddev) 643 { 644 atomic_inc(&mddev->active); 645 return mddev; 646 } 647 648 static void mddev_delayed_delete(struct work_struct *ws); 649 650 static void mddev_put(struct mddev *mddev) 651 { 652 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 653 return; 654 if (!mddev->raid_disks && list_empty(&mddev->disks) && 655 mddev->ctime == 0 && !mddev->hold_active) { 656 /* Array is not configured at all, and not held active, 657 * so destroy it */ 658 list_del_init(&mddev->all_mddevs); 659 660 /* 661 * Call queue_work inside the spinlock so that 662 * flush_workqueue() after mddev_find will succeed in waiting 663 * for the work to be done. 664 */ 665 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 666 queue_work(md_misc_wq, &mddev->del_work); 667 } 668 spin_unlock(&all_mddevs_lock); 669 } 670 671 static void md_safemode_timeout(struct timer_list *t); 672 673 void mddev_init(struct mddev *mddev) 674 { 675 kobject_init(&mddev->kobj, &md_ktype); 676 mutex_init(&mddev->open_mutex); 677 mutex_init(&mddev->reconfig_mutex); 678 mutex_init(&mddev->bitmap_info.mutex); 679 INIT_LIST_HEAD(&mddev->disks); 680 INIT_LIST_HEAD(&mddev->all_mddevs); 681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 682 atomic_set(&mddev->active, 1); 683 atomic_set(&mddev->openers, 0); 684 atomic_set(&mddev->active_io, 0); 685 spin_lock_init(&mddev->lock); 686 atomic_set(&mddev->flush_pending, 0); 687 init_waitqueue_head(&mddev->sb_wait); 688 init_waitqueue_head(&mddev->recovery_wait); 689 mddev->reshape_position = MaxSector; 690 mddev->reshape_backwards = 0; 691 mddev->last_sync_action = "none"; 692 mddev->resync_min = 0; 693 mddev->resync_max = MaxSector; 694 mddev->level = LEVEL_NONE; 695 } 696 EXPORT_SYMBOL_GPL(mddev_init); 697 698 static struct mddev *mddev_find_locked(dev_t unit) 699 { 700 struct mddev *mddev; 701 702 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 703 if (mddev->unit == unit) 704 return mddev; 705 706 return NULL; 707 } 708 709 /* find an unused unit number */ 710 static dev_t mddev_alloc_unit(void) 711 { 712 static int next_minor = 512; 713 int start = next_minor; 714 bool is_free = 0; 715 dev_t dev = 0; 716 717 while (!is_free) { 718 dev = MKDEV(MD_MAJOR, next_minor); 719 next_minor++; 720 if (next_minor > MINORMASK) 721 next_minor = 0; 722 if (next_minor == start) 723 return 0; /* Oh dear, all in use. */ 724 is_free = !mddev_find_locked(dev); 725 } 726 727 return dev; 728 } 729 730 static struct mddev *mddev_find(dev_t unit) 731 { 732 struct mddev *mddev; 733 734 if (MAJOR(unit) != MD_MAJOR) 735 unit &= ~((1 << MdpMinorShift) - 1); 736 737 spin_lock(&all_mddevs_lock); 738 mddev = mddev_find_locked(unit); 739 if (mddev) 740 mddev_get(mddev); 741 spin_unlock(&all_mddevs_lock); 742 743 return mddev; 744 } 745 746 static struct mddev *mddev_alloc(dev_t unit) 747 { 748 struct mddev *new; 749 int error; 750 751 if (unit && MAJOR(unit) != MD_MAJOR) 752 unit &= ~((1 << MdpMinorShift) - 1); 753 754 new = kzalloc(sizeof(*new), GFP_KERNEL); 755 if (!new) 756 return ERR_PTR(-ENOMEM); 757 mddev_init(new); 758 759 spin_lock(&all_mddevs_lock); 760 if (unit) { 761 error = -EEXIST; 762 if (mddev_find_locked(unit)) 763 goto out_free_new; 764 new->unit = unit; 765 if (MAJOR(unit) == MD_MAJOR) 766 new->md_minor = MINOR(unit); 767 else 768 new->md_minor = MINOR(unit) >> MdpMinorShift; 769 new->hold_active = UNTIL_IOCTL; 770 } else { 771 error = -ENODEV; 772 new->unit = mddev_alloc_unit(); 773 if (!new->unit) 774 goto out_free_new; 775 new->md_minor = MINOR(new->unit); 776 new->hold_active = UNTIL_STOP; 777 } 778 779 list_add(&new->all_mddevs, &all_mddevs); 780 spin_unlock(&all_mddevs_lock); 781 return new; 782 out_free_new: 783 spin_unlock(&all_mddevs_lock); 784 kfree(new); 785 return ERR_PTR(error); 786 } 787 788 static const struct attribute_group md_redundancy_group; 789 790 void mddev_unlock(struct mddev *mddev) 791 { 792 if (mddev->to_remove) { 793 /* These cannot be removed under reconfig_mutex as 794 * an access to the files will try to take reconfig_mutex 795 * while holding the file unremovable, which leads to 796 * a deadlock. 797 * So hold set sysfs_active while the remove in happeing, 798 * and anything else which might set ->to_remove or my 799 * otherwise change the sysfs namespace will fail with 800 * -EBUSY if sysfs_active is still set. 801 * We set sysfs_active under reconfig_mutex and elsewhere 802 * test it under the same mutex to ensure its correct value 803 * is seen. 804 */ 805 const struct attribute_group *to_remove = mddev->to_remove; 806 mddev->to_remove = NULL; 807 mddev->sysfs_active = 1; 808 mutex_unlock(&mddev->reconfig_mutex); 809 810 if (mddev->kobj.sd) { 811 if (to_remove != &md_redundancy_group) 812 sysfs_remove_group(&mddev->kobj, to_remove); 813 if (mddev->pers == NULL || 814 mddev->pers->sync_request == NULL) { 815 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 816 if (mddev->sysfs_action) 817 sysfs_put(mddev->sysfs_action); 818 if (mddev->sysfs_completed) 819 sysfs_put(mddev->sysfs_completed); 820 if (mddev->sysfs_degraded) 821 sysfs_put(mddev->sysfs_degraded); 822 mddev->sysfs_action = NULL; 823 mddev->sysfs_completed = NULL; 824 mddev->sysfs_degraded = NULL; 825 } 826 } 827 mddev->sysfs_active = 0; 828 } else 829 mutex_unlock(&mddev->reconfig_mutex); 830 831 /* As we've dropped the mutex we need a spinlock to 832 * make sure the thread doesn't disappear 833 */ 834 spin_lock(&pers_lock); 835 md_wakeup_thread(mddev->thread); 836 wake_up(&mddev->sb_wait); 837 spin_unlock(&pers_lock); 838 } 839 EXPORT_SYMBOL_GPL(mddev_unlock); 840 841 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 842 { 843 struct md_rdev *rdev; 844 845 rdev_for_each_rcu(rdev, mddev) 846 if (rdev->desc_nr == nr) 847 return rdev; 848 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 852 853 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 854 { 855 struct md_rdev *rdev; 856 857 rdev_for_each(rdev, mddev) 858 if (rdev->bdev->bd_dev == dev) 859 return rdev; 860 861 return NULL; 862 } 863 864 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 865 { 866 struct md_rdev *rdev; 867 868 rdev_for_each_rcu(rdev, mddev) 869 if (rdev->bdev->bd_dev == dev) 870 return rdev; 871 872 return NULL; 873 } 874 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 875 876 static struct md_personality *find_pers(int level, char *clevel) 877 { 878 struct md_personality *pers; 879 list_for_each_entry(pers, &pers_list, list) { 880 if (level != LEVEL_NONE && pers->level == level) 881 return pers; 882 if (strcmp(pers->name, clevel)==0) 883 return pers; 884 } 885 return NULL; 886 } 887 888 /* return the offset of the super block in 512byte sectors */ 889 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 890 { 891 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 892 } 893 894 static int alloc_disk_sb(struct md_rdev *rdev) 895 { 896 rdev->sb_page = alloc_page(GFP_KERNEL); 897 if (!rdev->sb_page) 898 return -ENOMEM; 899 return 0; 900 } 901 902 void md_rdev_clear(struct md_rdev *rdev) 903 { 904 if (rdev->sb_page) { 905 put_page(rdev->sb_page); 906 rdev->sb_loaded = 0; 907 rdev->sb_page = NULL; 908 rdev->sb_start = 0; 909 rdev->sectors = 0; 910 } 911 if (rdev->bb_page) { 912 put_page(rdev->bb_page); 913 rdev->bb_page = NULL; 914 } 915 badblocks_exit(&rdev->badblocks); 916 } 917 EXPORT_SYMBOL_GPL(md_rdev_clear); 918 919 static void super_written(struct bio *bio) 920 { 921 struct md_rdev *rdev = bio->bi_private; 922 struct mddev *mddev = rdev->mddev; 923 924 if (bio->bi_status) { 925 pr_err("md: %s gets error=%d\n", __func__, 926 blk_status_to_errno(bio->bi_status)); 927 md_error(mddev, rdev); 928 if (!test_bit(Faulty, &rdev->flags) 929 && (bio->bi_opf & MD_FAILFAST)) { 930 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 931 set_bit(LastDev, &rdev->flags); 932 } 933 } else 934 clear_bit(LastDev, &rdev->flags); 935 936 if (atomic_dec_and_test(&mddev->pending_writes)) 937 wake_up(&mddev->sb_wait); 938 rdev_dec_pending(rdev, mddev); 939 bio_put(bio); 940 } 941 942 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 943 sector_t sector, int size, struct page *page) 944 { 945 /* write first size bytes of page to sector of rdev 946 * Increment mddev->pending_writes before returning 947 * and decrement it on completion, waking up sb_wait 948 * if zero is reached. 949 * If an error occurred, call md_error 950 */ 951 struct bio *bio; 952 int ff = 0; 953 954 if (!page) 955 return; 956 957 if (test_bit(Faulty, &rdev->flags)) 958 return; 959 960 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 961 962 atomic_inc(&rdev->nr_pending); 963 964 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 965 bio->bi_iter.bi_sector = sector; 966 bio_add_page(bio, page, size, 0); 967 bio->bi_private = rdev; 968 bio->bi_end_io = super_written; 969 970 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 971 test_bit(FailFast, &rdev->flags) && 972 !test_bit(LastDev, &rdev->flags)) 973 ff = MD_FAILFAST; 974 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 975 976 atomic_inc(&mddev->pending_writes); 977 submit_bio(bio); 978 } 979 980 int md_super_wait(struct mddev *mddev) 981 { 982 /* wait for all superblock writes that were scheduled to complete */ 983 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 984 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 985 return -EAGAIN; 986 return 0; 987 } 988 989 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 990 struct page *page, int op, int op_flags, bool metadata_op) 991 { 992 struct bio bio; 993 struct bio_vec bvec; 994 995 bio_init(&bio, &bvec, 1); 996 997 if (metadata_op && rdev->meta_bdev) 998 bio_set_dev(&bio, rdev->meta_bdev); 999 else 1000 bio_set_dev(&bio, rdev->bdev); 1001 bio.bi_opf = op | op_flags; 1002 if (metadata_op) 1003 bio.bi_iter.bi_sector = sector + rdev->sb_start; 1004 else if (rdev->mddev->reshape_position != MaxSector && 1005 (rdev->mddev->reshape_backwards == 1006 (sector >= rdev->mddev->reshape_position))) 1007 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 1008 else 1009 bio.bi_iter.bi_sector = sector + rdev->data_offset; 1010 bio_add_page(&bio, page, size, 0); 1011 1012 submit_bio_wait(&bio); 1013 1014 return !bio.bi_status; 1015 } 1016 EXPORT_SYMBOL_GPL(sync_page_io); 1017 1018 static int read_disk_sb(struct md_rdev *rdev, int size) 1019 { 1020 char b[BDEVNAME_SIZE]; 1021 1022 if (rdev->sb_loaded) 1023 return 0; 1024 1025 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1026 goto fail; 1027 rdev->sb_loaded = 1; 1028 return 0; 1029 1030 fail: 1031 pr_err("md: disabled device %s, could not read superblock.\n", 1032 bdevname(rdev->bdev,b)); 1033 return -EINVAL; 1034 } 1035 1036 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1037 { 1038 return sb1->set_uuid0 == sb2->set_uuid0 && 1039 sb1->set_uuid1 == sb2->set_uuid1 && 1040 sb1->set_uuid2 == sb2->set_uuid2 && 1041 sb1->set_uuid3 == sb2->set_uuid3; 1042 } 1043 1044 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1045 { 1046 int ret; 1047 mdp_super_t *tmp1, *tmp2; 1048 1049 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1050 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1051 1052 if (!tmp1 || !tmp2) { 1053 ret = 0; 1054 goto abort; 1055 } 1056 1057 *tmp1 = *sb1; 1058 *tmp2 = *sb2; 1059 1060 /* 1061 * nr_disks is not constant 1062 */ 1063 tmp1->nr_disks = 0; 1064 tmp2->nr_disks = 0; 1065 1066 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1067 abort: 1068 kfree(tmp1); 1069 kfree(tmp2); 1070 return ret; 1071 } 1072 1073 static u32 md_csum_fold(u32 csum) 1074 { 1075 csum = (csum & 0xffff) + (csum >> 16); 1076 return (csum & 0xffff) + (csum >> 16); 1077 } 1078 1079 static unsigned int calc_sb_csum(mdp_super_t *sb) 1080 { 1081 u64 newcsum = 0; 1082 u32 *sb32 = (u32*)sb; 1083 int i; 1084 unsigned int disk_csum, csum; 1085 1086 disk_csum = sb->sb_csum; 1087 sb->sb_csum = 0; 1088 1089 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1090 newcsum += sb32[i]; 1091 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1092 1093 #ifdef CONFIG_ALPHA 1094 /* This used to use csum_partial, which was wrong for several 1095 * reasons including that different results are returned on 1096 * different architectures. It isn't critical that we get exactly 1097 * the same return value as before (we always csum_fold before 1098 * testing, and that removes any differences). However as we 1099 * know that csum_partial always returned a 16bit value on 1100 * alphas, do a fold to maximise conformity to previous behaviour. 1101 */ 1102 sb->sb_csum = md_csum_fold(disk_csum); 1103 #else 1104 sb->sb_csum = disk_csum; 1105 #endif 1106 return csum; 1107 } 1108 1109 /* 1110 * Handle superblock details. 1111 * We want to be able to handle multiple superblock formats 1112 * so we have a common interface to them all, and an array of 1113 * different handlers. 1114 * We rely on user-space to write the initial superblock, and support 1115 * reading and updating of superblocks. 1116 * Interface methods are: 1117 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1118 * loads and validates a superblock on dev. 1119 * if refdev != NULL, compare superblocks on both devices 1120 * Return: 1121 * 0 - dev has a superblock that is compatible with refdev 1122 * 1 - dev has a superblock that is compatible and newer than refdev 1123 * so dev should be used as the refdev in future 1124 * -EINVAL superblock incompatible or invalid 1125 * -othererror e.g. -EIO 1126 * 1127 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1128 * Verify that dev is acceptable into mddev. 1129 * The first time, mddev->raid_disks will be 0, and data from 1130 * dev should be merged in. Subsequent calls check that dev 1131 * is new enough. Return 0 or -EINVAL 1132 * 1133 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1134 * Update the superblock for rdev with data in mddev 1135 * This does not write to disc. 1136 * 1137 */ 1138 1139 struct super_type { 1140 char *name; 1141 struct module *owner; 1142 int (*load_super)(struct md_rdev *rdev, 1143 struct md_rdev *refdev, 1144 int minor_version); 1145 int (*validate_super)(struct mddev *mddev, 1146 struct md_rdev *rdev); 1147 void (*sync_super)(struct mddev *mddev, 1148 struct md_rdev *rdev); 1149 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1150 sector_t num_sectors); 1151 int (*allow_new_offset)(struct md_rdev *rdev, 1152 unsigned long long new_offset); 1153 }; 1154 1155 /* 1156 * Check that the given mddev has no bitmap. 1157 * 1158 * This function is called from the run method of all personalities that do not 1159 * support bitmaps. It prints an error message and returns non-zero if mddev 1160 * has a bitmap. Otherwise, it returns 0. 1161 * 1162 */ 1163 int md_check_no_bitmap(struct mddev *mddev) 1164 { 1165 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1166 return 0; 1167 pr_warn("%s: bitmaps are not supported for %s\n", 1168 mdname(mddev), mddev->pers->name); 1169 return 1; 1170 } 1171 EXPORT_SYMBOL(md_check_no_bitmap); 1172 1173 /* 1174 * load_super for 0.90.0 1175 */ 1176 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1177 { 1178 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1179 mdp_super_t *sb; 1180 int ret; 1181 bool spare_disk = true; 1182 1183 /* 1184 * Calculate the position of the superblock (512byte sectors), 1185 * it's at the end of the disk. 1186 * 1187 * It also happens to be a multiple of 4Kb. 1188 */ 1189 rdev->sb_start = calc_dev_sboffset(rdev); 1190 1191 ret = read_disk_sb(rdev, MD_SB_BYTES); 1192 if (ret) 1193 return ret; 1194 1195 ret = -EINVAL; 1196 1197 bdevname(rdev->bdev, b); 1198 sb = page_address(rdev->sb_page); 1199 1200 if (sb->md_magic != MD_SB_MAGIC) { 1201 pr_warn("md: invalid raid superblock magic on %s\n", b); 1202 goto abort; 1203 } 1204 1205 if (sb->major_version != 0 || 1206 sb->minor_version < 90 || 1207 sb->minor_version > 91) { 1208 pr_warn("Bad version number %d.%d on %s\n", 1209 sb->major_version, sb->minor_version, b); 1210 goto abort; 1211 } 1212 1213 if (sb->raid_disks <= 0) 1214 goto abort; 1215 1216 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1217 pr_warn("md: invalid superblock checksum on %s\n", b); 1218 goto abort; 1219 } 1220 1221 rdev->preferred_minor = sb->md_minor; 1222 rdev->data_offset = 0; 1223 rdev->new_data_offset = 0; 1224 rdev->sb_size = MD_SB_BYTES; 1225 rdev->badblocks.shift = -1; 1226 1227 if (sb->level == LEVEL_MULTIPATH) 1228 rdev->desc_nr = -1; 1229 else 1230 rdev->desc_nr = sb->this_disk.number; 1231 1232 /* not spare disk, or LEVEL_MULTIPATH */ 1233 if (sb->level == LEVEL_MULTIPATH || 1234 (rdev->desc_nr >= 0 && 1235 rdev->desc_nr < MD_SB_DISKS && 1236 sb->disks[rdev->desc_nr].state & 1237 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1238 spare_disk = false; 1239 1240 if (!refdev) { 1241 if (!spare_disk) 1242 ret = 1; 1243 else 1244 ret = 0; 1245 } else { 1246 __u64 ev1, ev2; 1247 mdp_super_t *refsb = page_address(refdev->sb_page); 1248 if (!md_uuid_equal(refsb, sb)) { 1249 pr_warn("md: %s has different UUID to %s\n", 1250 b, bdevname(refdev->bdev,b2)); 1251 goto abort; 1252 } 1253 if (!md_sb_equal(refsb, sb)) { 1254 pr_warn("md: %s has same UUID but different superblock to %s\n", 1255 b, bdevname(refdev->bdev, b2)); 1256 goto abort; 1257 } 1258 ev1 = md_event(sb); 1259 ev2 = md_event(refsb); 1260 1261 if (!spare_disk && ev1 > ev2) 1262 ret = 1; 1263 else 1264 ret = 0; 1265 } 1266 rdev->sectors = rdev->sb_start; 1267 /* Limit to 4TB as metadata cannot record more than that. 1268 * (not needed for Linear and RAID0 as metadata doesn't 1269 * record this size) 1270 */ 1271 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1272 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1273 1274 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1275 /* "this cannot possibly happen" ... */ 1276 ret = -EINVAL; 1277 1278 abort: 1279 return ret; 1280 } 1281 1282 /* 1283 * validate_super for 0.90.0 1284 */ 1285 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1286 { 1287 mdp_disk_t *desc; 1288 mdp_super_t *sb = page_address(rdev->sb_page); 1289 __u64 ev1 = md_event(sb); 1290 1291 rdev->raid_disk = -1; 1292 clear_bit(Faulty, &rdev->flags); 1293 clear_bit(In_sync, &rdev->flags); 1294 clear_bit(Bitmap_sync, &rdev->flags); 1295 clear_bit(WriteMostly, &rdev->flags); 1296 1297 if (mddev->raid_disks == 0) { 1298 mddev->major_version = 0; 1299 mddev->minor_version = sb->minor_version; 1300 mddev->patch_version = sb->patch_version; 1301 mddev->external = 0; 1302 mddev->chunk_sectors = sb->chunk_size >> 9; 1303 mddev->ctime = sb->ctime; 1304 mddev->utime = sb->utime; 1305 mddev->level = sb->level; 1306 mddev->clevel[0] = 0; 1307 mddev->layout = sb->layout; 1308 mddev->raid_disks = sb->raid_disks; 1309 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1310 mddev->events = ev1; 1311 mddev->bitmap_info.offset = 0; 1312 mddev->bitmap_info.space = 0; 1313 /* bitmap can use 60 K after the 4K superblocks */ 1314 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1315 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1316 mddev->reshape_backwards = 0; 1317 1318 if (mddev->minor_version >= 91) { 1319 mddev->reshape_position = sb->reshape_position; 1320 mddev->delta_disks = sb->delta_disks; 1321 mddev->new_level = sb->new_level; 1322 mddev->new_layout = sb->new_layout; 1323 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1324 if (mddev->delta_disks < 0) 1325 mddev->reshape_backwards = 1; 1326 } else { 1327 mddev->reshape_position = MaxSector; 1328 mddev->delta_disks = 0; 1329 mddev->new_level = mddev->level; 1330 mddev->new_layout = mddev->layout; 1331 mddev->new_chunk_sectors = mddev->chunk_sectors; 1332 } 1333 if (mddev->level == 0) 1334 mddev->layout = -1; 1335 1336 if (sb->state & (1<<MD_SB_CLEAN)) 1337 mddev->recovery_cp = MaxSector; 1338 else { 1339 if (sb->events_hi == sb->cp_events_hi && 1340 sb->events_lo == sb->cp_events_lo) { 1341 mddev->recovery_cp = sb->recovery_cp; 1342 } else 1343 mddev->recovery_cp = 0; 1344 } 1345 1346 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1347 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1348 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1349 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1350 1351 mddev->max_disks = MD_SB_DISKS; 1352 1353 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1354 mddev->bitmap_info.file == NULL) { 1355 mddev->bitmap_info.offset = 1356 mddev->bitmap_info.default_offset; 1357 mddev->bitmap_info.space = 1358 mddev->bitmap_info.default_space; 1359 } 1360 1361 } else if (mddev->pers == NULL) { 1362 /* Insist on good event counter while assembling, except 1363 * for spares (which don't need an event count) */ 1364 ++ev1; 1365 if (sb->disks[rdev->desc_nr].state & ( 1366 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1367 if (ev1 < mddev->events) 1368 return -EINVAL; 1369 } else if (mddev->bitmap) { 1370 /* if adding to array with a bitmap, then we can accept an 1371 * older device ... but not too old. 1372 */ 1373 if (ev1 < mddev->bitmap->events_cleared) 1374 return 0; 1375 if (ev1 < mddev->events) 1376 set_bit(Bitmap_sync, &rdev->flags); 1377 } else { 1378 if (ev1 < mddev->events) 1379 /* just a hot-add of a new device, leave raid_disk at -1 */ 1380 return 0; 1381 } 1382 1383 if (mddev->level != LEVEL_MULTIPATH) { 1384 desc = sb->disks + rdev->desc_nr; 1385 1386 if (desc->state & (1<<MD_DISK_FAULTY)) 1387 set_bit(Faulty, &rdev->flags); 1388 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1389 desc->raid_disk < mddev->raid_disks */) { 1390 set_bit(In_sync, &rdev->flags); 1391 rdev->raid_disk = desc->raid_disk; 1392 rdev->saved_raid_disk = desc->raid_disk; 1393 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1394 /* active but not in sync implies recovery up to 1395 * reshape position. We don't know exactly where 1396 * that is, so set to zero for now */ 1397 if (mddev->minor_version >= 91) { 1398 rdev->recovery_offset = 0; 1399 rdev->raid_disk = desc->raid_disk; 1400 } 1401 } 1402 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1403 set_bit(WriteMostly, &rdev->flags); 1404 if (desc->state & (1<<MD_DISK_FAILFAST)) 1405 set_bit(FailFast, &rdev->flags); 1406 } else /* MULTIPATH are always insync */ 1407 set_bit(In_sync, &rdev->flags); 1408 return 0; 1409 } 1410 1411 /* 1412 * sync_super for 0.90.0 1413 */ 1414 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1415 { 1416 mdp_super_t *sb; 1417 struct md_rdev *rdev2; 1418 int next_spare = mddev->raid_disks; 1419 1420 /* make rdev->sb match mddev data.. 1421 * 1422 * 1/ zero out disks 1423 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1424 * 3/ any empty disks < next_spare become removed 1425 * 1426 * disks[0] gets initialised to REMOVED because 1427 * we cannot be sure from other fields if it has 1428 * been initialised or not. 1429 */ 1430 int i; 1431 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1432 1433 rdev->sb_size = MD_SB_BYTES; 1434 1435 sb = page_address(rdev->sb_page); 1436 1437 memset(sb, 0, sizeof(*sb)); 1438 1439 sb->md_magic = MD_SB_MAGIC; 1440 sb->major_version = mddev->major_version; 1441 sb->patch_version = mddev->patch_version; 1442 sb->gvalid_words = 0; /* ignored */ 1443 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1444 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1445 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1446 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1447 1448 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1449 sb->level = mddev->level; 1450 sb->size = mddev->dev_sectors / 2; 1451 sb->raid_disks = mddev->raid_disks; 1452 sb->md_minor = mddev->md_minor; 1453 sb->not_persistent = 0; 1454 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1455 sb->state = 0; 1456 sb->events_hi = (mddev->events>>32); 1457 sb->events_lo = (u32)mddev->events; 1458 1459 if (mddev->reshape_position == MaxSector) 1460 sb->minor_version = 90; 1461 else { 1462 sb->minor_version = 91; 1463 sb->reshape_position = mddev->reshape_position; 1464 sb->new_level = mddev->new_level; 1465 sb->delta_disks = mddev->delta_disks; 1466 sb->new_layout = mddev->new_layout; 1467 sb->new_chunk = mddev->new_chunk_sectors << 9; 1468 } 1469 mddev->minor_version = sb->minor_version; 1470 if (mddev->in_sync) 1471 { 1472 sb->recovery_cp = mddev->recovery_cp; 1473 sb->cp_events_hi = (mddev->events>>32); 1474 sb->cp_events_lo = (u32)mddev->events; 1475 if (mddev->recovery_cp == MaxSector) 1476 sb->state = (1<< MD_SB_CLEAN); 1477 } else 1478 sb->recovery_cp = 0; 1479 1480 sb->layout = mddev->layout; 1481 sb->chunk_size = mddev->chunk_sectors << 9; 1482 1483 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1484 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1485 1486 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1487 rdev_for_each(rdev2, mddev) { 1488 mdp_disk_t *d; 1489 int desc_nr; 1490 int is_active = test_bit(In_sync, &rdev2->flags); 1491 1492 if (rdev2->raid_disk >= 0 && 1493 sb->minor_version >= 91) 1494 /* we have nowhere to store the recovery_offset, 1495 * but if it is not below the reshape_position, 1496 * we can piggy-back on that. 1497 */ 1498 is_active = 1; 1499 if (rdev2->raid_disk < 0 || 1500 test_bit(Faulty, &rdev2->flags)) 1501 is_active = 0; 1502 if (is_active) 1503 desc_nr = rdev2->raid_disk; 1504 else 1505 desc_nr = next_spare++; 1506 rdev2->desc_nr = desc_nr; 1507 d = &sb->disks[rdev2->desc_nr]; 1508 nr_disks++; 1509 d->number = rdev2->desc_nr; 1510 d->major = MAJOR(rdev2->bdev->bd_dev); 1511 d->minor = MINOR(rdev2->bdev->bd_dev); 1512 if (is_active) 1513 d->raid_disk = rdev2->raid_disk; 1514 else 1515 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1516 if (test_bit(Faulty, &rdev2->flags)) 1517 d->state = (1<<MD_DISK_FAULTY); 1518 else if (is_active) { 1519 d->state = (1<<MD_DISK_ACTIVE); 1520 if (test_bit(In_sync, &rdev2->flags)) 1521 d->state |= (1<<MD_DISK_SYNC); 1522 active++; 1523 working++; 1524 } else { 1525 d->state = 0; 1526 spare++; 1527 working++; 1528 } 1529 if (test_bit(WriteMostly, &rdev2->flags)) 1530 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1531 if (test_bit(FailFast, &rdev2->flags)) 1532 d->state |= (1<<MD_DISK_FAILFAST); 1533 } 1534 /* now set the "removed" and "faulty" bits on any missing devices */ 1535 for (i=0 ; i < mddev->raid_disks ; i++) { 1536 mdp_disk_t *d = &sb->disks[i]; 1537 if (d->state == 0 && d->number == 0) { 1538 d->number = i; 1539 d->raid_disk = i; 1540 d->state = (1<<MD_DISK_REMOVED); 1541 d->state |= (1<<MD_DISK_FAULTY); 1542 failed++; 1543 } 1544 } 1545 sb->nr_disks = nr_disks; 1546 sb->active_disks = active; 1547 sb->working_disks = working; 1548 sb->failed_disks = failed; 1549 sb->spare_disks = spare; 1550 1551 sb->this_disk = sb->disks[rdev->desc_nr]; 1552 sb->sb_csum = calc_sb_csum(sb); 1553 } 1554 1555 /* 1556 * rdev_size_change for 0.90.0 1557 */ 1558 static unsigned long long 1559 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1560 { 1561 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1562 return 0; /* component must fit device */ 1563 if (rdev->mddev->bitmap_info.offset) 1564 return 0; /* can't move bitmap */ 1565 rdev->sb_start = calc_dev_sboffset(rdev); 1566 if (!num_sectors || num_sectors > rdev->sb_start) 1567 num_sectors = rdev->sb_start; 1568 /* Limit to 4TB as metadata cannot record more than that. 1569 * 4TB == 2^32 KB, or 2*2^32 sectors. 1570 */ 1571 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1572 num_sectors = (sector_t)(2ULL << 32) - 2; 1573 do { 1574 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1575 rdev->sb_page); 1576 } while (md_super_wait(rdev->mddev) < 0); 1577 return num_sectors; 1578 } 1579 1580 static int 1581 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1582 { 1583 /* non-zero offset changes not possible with v0.90 */ 1584 return new_offset == 0; 1585 } 1586 1587 /* 1588 * version 1 superblock 1589 */ 1590 1591 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1592 { 1593 __le32 disk_csum; 1594 u32 csum; 1595 unsigned long long newcsum; 1596 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1597 __le32 *isuper = (__le32*)sb; 1598 1599 disk_csum = sb->sb_csum; 1600 sb->sb_csum = 0; 1601 newcsum = 0; 1602 for (; size >= 4; size -= 4) 1603 newcsum += le32_to_cpu(*isuper++); 1604 1605 if (size == 2) 1606 newcsum += le16_to_cpu(*(__le16*) isuper); 1607 1608 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1609 sb->sb_csum = disk_csum; 1610 return cpu_to_le32(csum); 1611 } 1612 1613 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1614 { 1615 struct mdp_superblock_1 *sb; 1616 int ret; 1617 sector_t sb_start; 1618 sector_t sectors; 1619 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1620 int bmask; 1621 bool spare_disk = true; 1622 1623 /* 1624 * Calculate the position of the superblock in 512byte sectors. 1625 * It is always aligned to a 4K boundary and 1626 * depeding on minor_version, it can be: 1627 * 0: At least 8K, but less than 12K, from end of device 1628 * 1: At start of device 1629 * 2: 4K from start of device. 1630 */ 1631 switch(minor_version) { 1632 case 0: 1633 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1634 sb_start &= ~(sector_t)(4*2-1); 1635 break; 1636 case 1: 1637 sb_start = 0; 1638 break; 1639 case 2: 1640 sb_start = 8; 1641 break; 1642 default: 1643 return -EINVAL; 1644 } 1645 rdev->sb_start = sb_start; 1646 1647 /* superblock is rarely larger than 1K, but it can be larger, 1648 * and it is safe to read 4k, so we do that 1649 */ 1650 ret = read_disk_sb(rdev, 4096); 1651 if (ret) return ret; 1652 1653 sb = page_address(rdev->sb_page); 1654 1655 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1656 sb->major_version != cpu_to_le32(1) || 1657 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1658 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1659 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1660 return -EINVAL; 1661 1662 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1663 pr_warn("md: invalid superblock checksum on %s\n", 1664 bdevname(rdev->bdev,b)); 1665 return -EINVAL; 1666 } 1667 if (le64_to_cpu(sb->data_size) < 10) { 1668 pr_warn("md: data_size too small on %s\n", 1669 bdevname(rdev->bdev,b)); 1670 return -EINVAL; 1671 } 1672 if (sb->pad0 || 1673 sb->pad3[0] || 1674 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1675 /* Some padding is non-zero, might be a new feature */ 1676 return -EINVAL; 1677 1678 rdev->preferred_minor = 0xffff; 1679 rdev->data_offset = le64_to_cpu(sb->data_offset); 1680 rdev->new_data_offset = rdev->data_offset; 1681 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1682 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1683 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1684 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1685 1686 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1687 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1688 if (rdev->sb_size & bmask) 1689 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1690 1691 if (minor_version 1692 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1693 return -EINVAL; 1694 if (minor_version 1695 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1696 return -EINVAL; 1697 1698 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1699 rdev->desc_nr = -1; 1700 else 1701 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1702 1703 if (!rdev->bb_page) { 1704 rdev->bb_page = alloc_page(GFP_KERNEL); 1705 if (!rdev->bb_page) 1706 return -ENOMEM; 1707 } 1708 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1709 rdev->badblocks.count == 0) { 1710 /* need to load the bad block list. 1711 * Currently we limit it to one page. 1712 */ 1713 s32 offset; 1714 sector_t bb_sector; 1715 __le64 *bbp; 1716 int i; 1717 int sectors = le16_to_cpu(sb->bblog_size); 1718 if (sectors > (PAGE_SIZE / 512)) 1719 return -EINVAL; 1720 offset = le32_to_cpu(sb->bblog_offset); 1721 if (offset == 0) 1722 return -EINVAL; 1723 bb_sector = (long long)offset; 1724 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1725 rdev->bb_page, REQ_OP_READ, 0, true)) 1726 return -EIO; 1727 bbp = (__le64 *)page_address(rdev->bb_page); 1728 rdev->badblocks.shift = sb->bblog_shift; 1729 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1730 u64 bb = le64_to_cpu(*bbp); 1731 int count = bb & (0x3ff); 1732 u64 sector = bb >> 10; 1733 sector <<= sb->bblog_shift; 1734 count <<= sb->bblog_shift; 1735 if (bb + 1 == 0) 1736 break; 1737 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1738 return -EINVAL; 1739 } 1740 } else if (sb->bblog_offset != 0) 1741 rdev->badblocks.shift = 0; 1742 1743 if ((le32_to_cpu(sb->feature_map) & 1744 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1745 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1746 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1747 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1748 } 1749 1750 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1751 sb->level != 0) 1752 return -EINVAL; 1753 1754 /* not spare disk, or LEVEL_MULTIPATH */ 1755 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1756 (rdev->desc_nr >= 0 && 1757 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1758 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1759 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1760 spare_disk = false; 1761 1762 if (!refdev) { 1763 if (!spare_disk) 1764 ret = 1; 1765 else 1766 ret = 0; 1767 } else { 1768 __u64 ev1, ev2; 1769 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1770 1771 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1772 sb->level != refsb->level || 1773 sb->layout != refsb->layout || 1774 sb->chunksize != refsb->chunksize) { 1775 pr_warn("md: %s has strangely different superblock to %s\n", 1776 bdevname(rdev->bdev,b), 1777 bdevname(refdev->bdev,b2)); 1778 return -EINVAL; 1779 } 1780 ev1 = le64_to_cpu(sb->events); 1781 ev2 = le64_to_cpu(refsb->events); 1782 1783 if (!spare_disk && ev1 > ev2) 1784 ret = 1; 1785 else 1786 ret = 0; 1787 } 1788 if (minor_version) 1789 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1790 else 1791 sectors = rdev->sb_start; 1792 if (sectors < le64_to_cpu(sb->data_size)) 1793 return -EINVAL; 1794 rdev->sectors = le64_to_cpu(sb->data_size); 1795 return ret; 1796 } 1797 1798 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1799 { 1800 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1801 __u64 ev1 = le64_to_cpu(sb->events); 1802 1803 rdev->raid_disk = -1; 1804 clear_bit(Faulty, &rdev->flags); 1805 clear_bit(In_sync, &rdev->flags); 1806 clear_bit(Bitmap_sync, &rdev->flags); 1807 clear_bit(WriteMostly, &rdev->flags); 1808 1809 if (mddev->raid_disks == 0) { 1810 mddev->major_version = 1; 1811 mddev->patch_version = 0; 1812 mddev->external = 0; 1813 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1814 mddev->ctime = le64_to_cpu(sb->ctime); 1815 mddev->utime = le64_to_cpu(sb->utime); 1816 mddev->level = le32_to_cpu(sb->level); 1817 mddev->clevel[0] = 0; 1818 mddev->layout = le32_to_cpu(sb->layout); 1819 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1820 mddev->dev_sectors = le64_to_cpu(sb->size); 1821 mddev->events = ev1; 1822 mddev->bitmap_info.offset = 0; 1823 mddev->bitmap_info.space = 0; 1824 /* Default location for bitmap is 1K after superblock 1825 * using 3K - total of 4K 1826 */ 1827 mddev->bitmap_info.default_offset = 1024 >> 9; 1828 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1829 mddev->reshape_backwards = 0; 1830 1831 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1832 memcpy(mddev->uuid, sb->set_uuid, 16); 1833 1834 mddev->max_disks = (4096-256)/2; 1835 1836 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1837 mddev->bitmap_info.file == NULL) { 1838 mddev->bitmap_info.offset = 1839 (__s32)le32_to_cpu(sb->bitmap_offset); 1840 /* Metadata doesn't record how much space is available. 1841 * For 1.0, we assume we can use up to the superblock 1842 * if before, else to 4K beyond superblock. 1843 * For others, assume no change is possible. 1844 */ 1845 if (mddev->minor_version > 0) 1846 mddev->bitmap_info.space = 0; 1847 else if (mddev->bitmap_info.offset > 0) 1848 mddev->bitmap_info.space = 1849 8 - mddev->bitmap_info.offset; 1850 else 1851 mddev->bitmap_info.space = 1852 -mddev->bitmap_info.offset; 1853 } 1854 1855 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1856 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1857 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1858 mddev->new_level = le32_to_cpu(sb->new_level); 1859 mddev->new_layout = le32_to_cpu(sb->new_layout); 1860 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1861 if (mddev->delta_disks < 0 || 1862 (mddev->delta_disks == 0 && 1863 (le32_to_cpu(sb->feature_map) 1864 & MD_FEATURE_RESHAPE_BACKWARDS))) 1865 mddev->reshape_backwards = 1; 1866 } else { 1867 mddev->reshape_position = MaxSector; 1868 mddev->delta_disks = 0; 1869 mddev->new_level = mddev->level; 1870 mddev->new_layout = mddev->layout; 1871 mddev->new_chunk_sectors = mddev->chunk_sectors; 1872 } 1873 1874 if (mddev->level == 0 && 1875 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1876 mddev->layout = -1; 1877 1878 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1879 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1880 1881 if (le32_to_cpu(sb->feature_map) & 1882 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1883 if (le32_to_cpu(sb->feature_map) & 1884 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1885 return -EINVAL; 1886 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1887 (le32_to_cpu(sb->feature_map) & 1888 MD_FEATURE_MULTIPLE_PPLS)) 1889 return -EINVAL; 1890 set_bit(MD_HAS_PPL, &mddev->flags); 1891 } 1892 } else if (mddev->pers == NULL) { 1893 /* Insist of good event counter while assembling, except for 1894 * spares (which don't need an event count) */ 1895 ++ev1; 1896 if (rdev->desc_nr >= 0 && 1897 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1898 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1899 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1900 if (ev1 < mddev->events) 1901 return -EINVAL; 1902 } else if (mddev->bitmap) { 1903 /* If adding to array with a bitmap, then we can accept an 1904 * older device, but not too old. 1905 */ 1906 if (ev1 < mddev->bitmap->events_cleared) 1907 return 0; 1908 if (ev1 < mddev->events) 1909 set_bit(Bitmap_sync, &rdev->flags); 1910 } else { 1911 if (ev1 < mddev->events) 1912 /* just a hot-add of a new device, leave raid_disk at -1 */ 1913 return 0; 1914 } 1915 if (mddev->level != LEVEL_MULTIPATH) { 1916 int role; 1917 if (rdev->desc_nr < 0 || 1918 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1919 role = MD_DISK_ROLE_SPARE; 1920 rdev->desc_nr = -1; 1921 } else 1922 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1923 switch(role) { 1924 case MD_DISK_ROLE_SPARE: /* spare */ 1925 break; 1926 case MD_DISK_ROLE_FAULTY: /* faulty */ 1927 set_bit(Faulty, &rdev->flags); 1928 break; 1929 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1930 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1931 /* journal device without journal feature */ 1932 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1933 return -EINVAL; 1934 } 1935 set_bit(Journal, &rdev->flags); 1936 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1937 rdev->raid_disk = 0; 1938 break; 1939 default: 1940 rdev->saved_raid_disk = role; 1941 if ((le32_to_cpu(sb->feature_map) & 1942 MD_FEATURE_RECOVERY_OFFSET)) { 1943 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1944 if (!(le32_to_cpu(sb->feature_map) & 1945 MD_FEATURE_RECOVERY_BITMAP)) 1946 rdev->saved_raid_disk = -1; 1947 } else { 1948 /* 1949 * If the array is FROZEN, then the device can't 1950 * be in_sync with rest of array. 1951 */ 1952 if (!test_bit(MD_RECOVERY_FROZEN, 1953 &mddev->recovery)) 1954 set_bit(In_sync, &rdev->flags); 1955 } 1956 rdev->raid_disk = role; 1957 break; 1958 } 1959 if (sb->devflags & WriteMostly1) 1960 set_bit(WriteMostly, &rdev->flags); 1961 if (sb->devflags & FailFast1) 1962 set_bit(FailFast, &rdev->flags); 1963 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1964 set_bit(Replacement, &rdev->flags); 1965 } else /* MULTIPATH are always insync */ 1966 set_bit(In_sync, &rdev->flags); 1967 1968 return 0; 1969 } 1970 1971 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1972 { 1973 struct mdp_superblock_1 *sb; 1974 struct md_rdev *rdev2; 1975 int max_dev, i; 1976 /* make rdev->sb match mddev and rdev data. */ 1977 1978 sb = page_address(rdev->sb_page); 1979 1980 sb->feature_map = 0; 1981 sb->pad0 = 0; 1982 sb->recovery_offset = cpu_to_le64(0); 1983 memset(sb->pad3, 0, sizeof(sb->pad3)); 1984 1985 sb->utime = cpu_to_le64((__u64)mddev->utime); 1986 sb->events = cpu_to_le64(mddev->events); 1987 if (mddev->in_sync) 1988 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1989 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1990 sb->resync_offset = cpu_to_le64(MaxSector); 1991 else 1992 sb->resync_offset = cpu_to_le64(0); 1993 1994 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1995 1996 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1997 sb->size = cpu_to_le64(mddev->dev_sectors); 1998 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1999 sb->level = cpu_to_le32(mddev->level); 2000 sb->layout = cpu_to_le32(mddev->layout); 2001 if (test_bit(FailFast, &rdev->flags)) 2002 sb->devflags |= FailFast1; 2003 else 2004 sb->devflags &= ~FailFast1; 2005 2006 if (test_bit(WriteMostly, &rdev->flags)) 2007 sb->devflags |= WriteMostly1; 2008 else 2009 sb->devflags &= ~WriteMostly1; 2010 sb->data_offset = cpu_to_le64(rdev->data_offset); 2011 sb->data_size = cpu_to_le64(rdev->sectors); 2012 2013 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2014 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2015 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2016 } 2017 2018 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2019 !test_bit(In_sync, &rdev->flags)) { 2020 sb->feature_map |= 2021 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2022 sb->recovery_offset = 2023 cpu_to_le64(rdev->recovery_offset); 2024 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2025 sb->feature_map |= 2026 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2027 } 2028 /* Note: recovery_offset and journal_tail share space */ 2029 if (test_bit(Journal, &rdev->flags)) 2030 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2031 if (test_bit(Replacement, &rdev->flags)) 2032 sb->feature_map |= 2033 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2034 2035 if (mddev->reshape_position != MaxSector) { 2036 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2037 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2038 sb->new_layout = cpu_to_le32(mddev->new_layout); 2039 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2040 sb->new_level = cpu_to_le32(mddev->new_level); 2041 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2042 if (mddev->delta_disks == 0 && 2043 mddev->reshape_backwards) 2044 sb->feature_map 2045 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2046 if (rdev->new_data_offset != rdev->data_offset) { 2047 sb->feature_map 2048 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2049 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2050 - rdev->data_offset)); 2051 } 2052 } 2053 2054 if (mddev_is_clustered(mddev)) 2055 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2056 2057 if (rdev->badblocks.count == 0) 2058 /* Nothing to do for bad blocks*/ ; 2059 else if (sb->bblog_offset == 0) 2060 /* Cannot record bad blocks on this device */ 2061 md_error(mddev, rdev); 2062 else { 2063 struct badblocks *bb = &rdev->badblocks; 2064 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2065 u64 *p = bb->page; 2066 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2067 if (bb->changed) { 2068 unsigned seq; 2069 2070 retry: 2071 seq = read_seqbegin(&bb->lock); 2072 2073 memset(bbp, 0xff, PAGE_SIZE); 2074 2075 for (i = 0 ; i < bb->count ; i++) { 2076 u64 internal_bb = p[i]; 2077 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2078 | BB_LEN(internal_bb)); 2079 bbp[i] = cpu_to_le64(store_bb); 2080 } 2081 bb->changed = 0; 2082 if (read_seqretry(&bb->lock, seq)) 2083 goto retry; 2084 2085 bb->sector = (rdev->sb_start + 2086 (int)le32_to_cpu(sb->bblog_offset)); 2087 bb->size = le16_to_cpu(sb->bblog_size); 2088 } 2089 } 2090 2091 max_dev = 0; 2092 rdev_for_each(rdev2, mddev) 2093 if (rdev2->desc_nr+1 > max_dev) 2094 max_dev = rdev2->desc_nr+1; 2095 2096 if (max_dev > le32_to_cpu(sb->max_dev)) { 2097 int bmask; 2098 sb->max_dev = cpu_to_le32(max_dev); 2099 rdev->sb_size = max_dev * 2 + 256; 2100 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2101 if (rdev->sb_size & bmask) 2102 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2103 } else 2104 max_dev = le32_to_cpu(sb->max_dev); 2105 2106 for (i=0; i<max_dev;i++) 2107 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2108 2109 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2110 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2111 2112 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2113 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2114 sb->feature_map |= 2115 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2116 else 2117 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2118 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2119 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2120 } 2121 2122 rdev_for_each(rdev2, mddev) { 2123 i = rdev2->desc_nr; 2124 if (test_bit(Faulty, &rdev2->flags)) 2125 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2126 else if (test_bit(In_sync, &rdev2->flags)) 2127 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2128 else if (test_bit(Journal, &rdev2->flags)) 2129 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2130 else if (rdev2->raid_disk >= 0) 2131 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2132 else 2133 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2134 } 2135 2136 sb->sb_csum = calc_sb_1_csum(sb); 2137 } 2138 2139 static sector_t super_1_choose_bm_space(sector_t dev_size) 2140 { 2141 sector_t bm_space; 2142 2143 /* if the device is bigger than 8Gig, save 64k for bitmap 2144 * usage, if bigger than 200Gig, save 128k 2145 */ 2146 if (dev_size < 64*2) 2147 bm_space = 0; 2148 else if (dev_size - 64*2 >= 200*1024*1024*2) 2149 bm_space = 128*2; 2150 else if (dev_size - 4*2 > 8*1024*1024*2) 2151 bm_space = 64*2; 2152 else 2153 bm_space = 4*2; 2154 return bm_space; 2155 } 2156 2157 static unsigned long long 2158 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2159 { 2160 struct mdp_superblock_1 *sb; 2161 sector_t max_sectors; 2162 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2163 return 0; /* component must fit device */ 2164 if (rdev->data_offset != rdev->new_data_offset) 2165 return 0; /* too confusing */ 2166 if (rdev->sb_start < rdev->data_offset) { 2167 /* minor versions 1 and 2; superblock before data */ 2168 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2169 if (!num_sectors || num_sectors > max_sectors) 2170 num_sectors = max_sectors; 2171 } else if (rdev->mddev->bitmap_info.offset) { 2172 /* minor version 0 with bitmap we can't move */ 2173 return 0; 2174 } else { 2175 /* minor version 0; superblock after data */ 2176 sector_t sb_start, bm_space; 2177 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2178 2179 /* 8K is for superblock */ 2180 sb_start = dev_size - 8*2; 2181 sb_start &= ~(sector_t)(4*2 - 1); 2182 2183 bm_space = super_1_choose_bm_space(dev_size); 2184 2185 /* Space that can be used to store date needs to decrease 2186 * superblock bitmap space and bad block space(4K) 2187 */ 2188 max_sectors = sb_start - bm_space - 4*2; 2189 2190 if (!num_sectors || num_sectors > max_sectors) 2191 num_sectors = max_sectors; 2192 rdev->sb_start = sb_start; 2193 } 2194 sb = page_address(rdev->sb_page); 2195 sb->data_size = cpu_to_le64(num_sectors); 2196 sb->super_offset = cpu_to_le64(rdev->sb_start); 2197 sb->sb_csum = calc_sb_1_csum(sb); 2198 do { 2199 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2200 rdev->sb_page); 2201 } while (md_super_wait(rdev->mddev) < 0); 2202 return num_sectors; 2203 2204 } 2205 2206 static int 2207 super_1_allow_new_offset(struct md_rdev *rdev, 2208 unsigned long long new_offset) 2209 { 2210 /* All necessary checks on new >= old have been done */ 2211 struct bitmap *bitmap; 2212 if (new_offset >= rdev->data_offset) 2213 return 1; 2214 2215 /* with 1.0 metadata, there is no metadata to tread on 2216 * so we can always move back */ 2217 if (rdev->mddev->minor_version == 0) 2218 return 1; 2219 2220 /* otherwise we must be sure not to step on 2221 * any metadata, so stay: 2222 * 36K beyond start of superblock 2223 * beyond end of badblocks 2224 * beyond write-intent bitmap 2225 */ 2226 if (rdev->sb_start + (32+4)*2 > new_offset) 2227 return 0; 2228 bitmap = rdev->mddev->bitmap; 2229 if (bitmap && !rdev->mddev->bitmap_info.file && 2230 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2231 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2232 return 0; 2233 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2234 return 0; 2235 2236 return 1; 2237 } 2238 2239 static struct super_type super_types[] = { 2240 [0] = { 2241 .name = "0.90.0", 2242 .owner = THIS_MODULE, 2243 .load_super = super_90_load, 2244 .validate_super = super_90_validate, 2245 .sync_super = super_90_sync, 2246 .rdev_size_change = super_90_rdev_size_change, 2247 .allow_new_offset = super_90_allow_new_offset, 2248 }, 2249 [1] = { 2250 .name = "md-1", 2251 .owner = THIS_MODULE, 2252 .load_super = super_1_load, 2253 .validate_super = super_1_validate, 2254 .sync_super = super_1_sync, 2255 .rdev_size_change = super_1_rdev_size_change, 2256 .allow_new_offset = super_1_allow_new_offset, 2257 }, 2258 }; 2259 2260 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2261 { 2262 if (mddev->sync_super) { 2263 mddev->sync_super(mddev, rdev); 2264 return; 2265 } 2266 2267 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2268 2269 super_types[mddev->major_version].sync_super(mddev, rdev); 2270 } 2271 2272 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2273 { 2274 struct md_rdev *rdev, *rdev2; 2275 2276 rcu_read_lock(); 2277 rdev_for_each_rcu(rdev, mddev1) { 2278 if (test_bit(Faulty, &rdev->flags) || 2279 test_bit(Journal, &rdev->flags) || 2280 rdev->raid_disk == -1) 2281 continue; 2282 rdev_for_each_rcu(rdev2, mddev2) { 2283 if (test_bit(Faulty, &rdev2->flags) || 2284 test_bit(Journal, &rdev2->flags) || 2285 rdev2->raid_disk == -1) 2286 continue; 2287 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2288 rcu_read_unlock(); 2289 return 1; 2290 } 2291 } 2292 } 2293 rcu_read_unlock(); 2294 return 0; 2295 } 2296 2297 static LIST_HEAD(pending_raid_disks); 2298 2299 /* 2300 * Try to register data integrity profile for an mddev 2301 * 2302 * This is called when an array is started and after a disk has been kicked 2303 * from the array. It only succeeds if all working and active component devices 2304 * are integrity capable with matching profiles. 2305 */ 2306 int md_integrity_register(struct mddev *mddev) 2307 { 2308 struct md_rdev *rdev, *reference = NULL; 2309 2310 if (list_empty(&mddev->disks)) 2311 return 0; /* nothing to do */ 2312 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2313 return 0; /* shouldn't register, or already is */ 2314 rdev_for_each(rdev, mddev) { 2315 /* skip spares and non-functional disks */ 2316 if (test_bit(Faulty, &rdev->flags)) 2317 continue; 2318 if (rdev->raid_disk < 0) 2319 continue; 2320 if (!reference) { 2321 /* Use the first rdev as the reference */ 2322 reference = rdev; 2323 continue; 2324 } 2325 /* does this rdev's profile match the reference profile? */ 2326 if (blk_integrity_compare(reference->bdev->bd_disk, 2327 rdev->bdev->bd_disk) < 0) 2328 return -EINVAL; 2329 } 2330 if (!reference || !bdev_get_integrity(reference->bdev)) 2331 return 0; 2332 /* 2333 * All component devices are integrity capable and have matching 2334 * profiles, register the common profile for the md device. 2335 */ 2336 blk_integrity_register(mddev->gendisk, 2337 bdev_get_integrity(reference->bdev)); 2338 2339 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2340 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2341 (mddev->level != 1 && mddev->level != 10 && 2342 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2343 /* 2344 * No need to handle the failure of bioset_integrity_create, 2345 * because the function is called by md_run() -> pers->run(), 2346 * md_run calls bioset_exit -> bioset_integrity_free in case 2347 * of failure case. 2348 */ 2349 pr_err("md: failed to create integrity pool for %s\n", 2350 mdname(mddev)); 2351 return -EINVAL; 2352 } 2353 return 0; 2354 } 2355 EXPORT_SYMBOL(md_integrity_register); 2356 2357 /* 2358 * Attempt to add an rdev, but only if it is consistent with the current 2359 * integrity profile 2360 */ 2361 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2362 { 2363 struct blk_integrity *bi_mddev; 2364 char name[BDEVNAME_SIZE]; 2365 2366 if (!mddev->gendisk) 2367 return 0; 2368 2369 bi_mddev = blk_get_integrity(mddev->gendisk); 2370 2371 if (!bi_mddev) /* nothing to do */ 2372 return 0; 2373 2374 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2375 pr_err("%s: incompatible integrity profile for %s\n", 2376 mdname(mddev), bdevname(rdev->bdev, name)); 2377 return -ENXIO; 2378 } 2379 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(md_integrity_add_rdev); 2383 2384 static bool rdev_read_only(struct md_rdev *rdev) 2385 { 2386 return bdev_read_only(rdev->bdev) || 2387 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2388 } 2389 2390 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2391 { 2392 char b[BDEVNAME_SIZE]; 2393 int err; 2394 2395 /* prevent duplicates */ 2396 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2397 return -EEXIST; 2398 2399 if (rdev_read_only(rdev) && mddev->pers) 2400 return -EROFS; 2401 2402 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2403 if (!test_bit(Journal, &rdev->flags) && 2404 rdev->sectors && 2405 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2406 if (mddev->pers) { 2407 /* Cannot change size, so fail 2408 * If mddev->level <= 0, then we don't care 2409 * about aligning sizes (e.g. linear) 2410 */ 2411 if (mddev->level > 0) 2412 return -ENOSPC; 2413 } else 2414 mddev->dev_sectors = rdev->sectors; 2415 } 2416 2417 /* Verify rdev->desc_nr is unique. 2418 * If it is -1, assign a free number, else 2419 * check number is not in use 2420 */ 2421 rcu_read_lock(); 2422 if (rdev->desc_nr < 0) { 2423 int choice = 0; 2424 if (mddev->pers) 2425 choice = mddev->raid_disks; 2426 while (md_find_rdev_nr_rcu(mddev, choice)) 2427 choice++; 2428 rdev->desc_nr = choice; 2429 } else { 2430 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2431 rcu_read_unlock(); 2432 return -EBUSY; 2433 } 2434 } 2435 rcu_read_unlock(); 2436 if (!test_bit(Journal, &rdev->flags) && 2437 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2438 pr_warn("md: %s: array is limited to %d devices\n", 2439 mdname(mddev), mddev->max_disks); 2440 return -EBUSY; 2441 } 2442 bdevname(rdev->bdev,b); 2443 strreplace(b, '/', '!'); 2444 2445 rdev->mddev = mddev; 2446 pr_debug("md: bind<%s>\n", b); 2447 2448 if (mddev->raid_disks) 2449 mddev_create_serial_pool(mddev, rdev, false); 2450 2451 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2452 goto fail; 2453 2454 /* failure here is OK */ 2455 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2456 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2457 rdev->sysfs_unack_badblocks = 2458 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2459 rdev->sysfs_badblocks = 2460 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2461 2462 list_add_rcu(&rdev->same_set, &mddev->disks); 2463 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2464 2465 /* May as well allow recovery to be retried once */ 2466 mddev->recovery_disabled++; 2467 2468 return 0; 2469 2470 fail: 2471 pr_warn("md: failed to register dev-%s for %s\n", 2472 b, mdname(mddev)); 2473 return err; 2474 } 2475 2476 static void rdev_delayed_delete(struct work_struct *ws) 2477 { 2478 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2479 kobject_del(&rdev->kobj); 2480 kobject_put(&rdev->kobj); 2481 } 2482 2483 static void unbind_rdev_from_array(struct md_rdev *rdev) 2484 { 2485 char b[BDEVNAME_SIZE]; 2486 2487 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2488 list_del_rcu(&rdev->same_set); 2489 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2490 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2491 rdev->mddev = NULL; 2492 sysfs_remove_link(&rdev->kobj, "block"); 2493 sysfs_put(rdev->sysfs_state); 2494 sysfs_put(rdev->sysfs_unack_badblocks); 2495 sysfs_put(rdev->sysfs_badblocks); 2496 rdev->sysfs_state = NULL; 2497 rdev->sysfs_unack_badblocks = NULL; 2498 rdev->sysfs_badblocks = NULL; 2499 rdev->badblocks.count = 0; 2500 /* We need to delay this, otherwise we can deadlock when 2501 * writing to 'remove' to "dev/state". We also need 2502 * to delay it due to rcu usage. 2503 */ 2504 synchronize_rcu(); 2505 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2506 kobject_get(&rdev->kobj); 2507 queue_work(md_rdev_misc_wq, &rdev->del_work); 2508 } 2509 2510 /* 2511 * prevent the device from being mounted, repartitioned or 2512 * otherwise reused by a RAID array (or any other kernel 2513 * subsystem), by bd_claiming the device. 2514 */ 2515 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2516 { 2517 int err = 0; 2518 struct block_device *bdev; 2519 2520 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2521 shared ? (struct md_rdev *)lock_rdev : rdev); 2522 if (IS_ERR(bdev)) { 2523 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2524 MAJOR(dev), MINOR(dev)); 2525 return PTR_ERR(bdev); 2526 } 2527 rdev->bdev = bdev; 2528 return err; 2529 } 2530 2531 static void unlock_rdev(struct md_rdev *rdev) 2532 { 2533 struct block_device *bdev = rdev->bdev; 2534 rdev->bdev = NULL; 2535 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2536 } 2537 2538 void md_autodetect_dev(dev_t dev); 2539 2540 static void export_rdev(struct md_rdev *rdev) 2541 { 2542 char b[BDEVNAME_SIZE]; 2543 2544 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2545 md_rdev_clear(rdev); 2546 #ifndef MODULE 2547 if (test_bit(AutoDetected, &rdev->flags)) 2548 md_autodetect_dev(rdev->bdev->bd_dev); 2549 #endif 2550 unlock_rdev(rdev); 2551 kobject_put(&rdev->kobj); 2552 } 2553 2554 void md_kick_rdev_from_array(struct md_rdev *rdev) 2555 { 2556 unbind_rdev_from_array(rdev); 2557 export_rdev(rdev); 2558 } 2559 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2560 2561 static void export_array(struct mddev *mddev) 2562 { 2563 struct md_rdev *rdev; 2564 2565 while (!list_empty(&mddev->disks)) { 2566 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2567 same_set); 2568 md_kick_rdev_from_array(rdev); 2569 } 2570 mddev->raid_disks = 0; 2571 mddev->major_version = 0; 2572 } 2573 2574 static bool set_in_sync(struct mddev *mddev) 2575 { 2576 lockdep_assert_held(&mddev->lock); 2577 if (!mddev->in_sync) { 2578 mddev->sync_checkers++; 2579 spin_unlock(&mddev->lock); 2580 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2581 spin_lock(&mddev->lock); 2582 if (!mddev->in_sync && 2583 percpu_ref_is_zero(&mddev->writes_pending)) { 2584 mddev->in_sync = 1; 2585 /* 2586 * Ensure ->in_sync is visible before we clear 2587 * ->sync_checkers. 2588 */ 2589 smp_mb(); 2590 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2591 sysfs_notify_dirent_safe(mddev->sysfs_state); 2592 } 2593 if (--mddev->sync_checkers == 0) 2594 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2595 } 2596 if (mddev->safemode == 1) 2597 mddev->safemode = 0; 2598 return mddev->in_sync; 2599 } 2600 2601 static void sync_sbs(struct mddev *mddev, int nospares) 2602 { 2603 /* Update each superblock (in-memory image), but 2604 * if we are allowed to, skip spares which already 2605 * have the right event counter, or have one earlier 2606 * (which would mean they aren't being marked as dirty 2607 * with the rest of the array) 2608 */ 2609 struct md_rdev *rdev; 2610 rdev_for_each(rdev, mddev) { 2611 if (rdev->sb_events == mddev->events || 2612 (nospares && 2613 rdev->raid_disk < 0 && 2614 rdev->sb_events+1 == mddev->events)) { 2615 /* Don't update this superblock */ 2616 rdev->sb_loaded = 2; 2617 } else { 2618 sync_super(mddev, rdev); 2619 rdev->sb_loaded = 1; 2620 } 2621 } 2622 } 2623 2624 static bool does_sb_need_changing(struct mddev *mddev) 2625 { 2626 struct md_rdev *rdev; 2627 struct mdp_superblock_1 *sb; 2628 int role; 2629 2630 /* Find a good rdev */ 2631 rdev_for_each(rdev, mddev) 2632 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2633 break; 2634 2635 /* No good device found. */ 2636 if (!rdev) 2637 return false; 2638 2639 sb = page_address(rdev->sb_page); 2640 /* Check if a device has become faulty or a spare become active */ 2641 rdev_for_each(rdev, mddev) { 2642 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2643 /* Device activated? */ 2644 if (role == 0xffff && rdev->raid_disk >=0 && 2645 !test_bit(Faulty, &rdev->flags)) 2646 return true; 2647 /* Device turned faulty? */ 2648 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2649 return true; 2650 } 2651 2652 /* Check if any mddev parameters have changed */ 2653 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2654 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2655 (mddev->layout != le32_to_cpu(sb->layout)) || 2656 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2657 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2658 return true; 2659 2660 return false; 2661 } 2662 2663 void md_update_sb(struct mddev *mddev, int force_change) 2664 { 2665 struct md_rdev *rdev; 2666 int sync_req; 2667 int nospares = 0; 2668 int any_badblocks_changed = 0; 2669 int ret = -1; 2670 2671 if (mddev->ro) { 2672 if (force_change) 2673 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2674 return; 2675 } 2676 2677 repeat: 2678 if (mddev_is_clustered(mddev)) { 2679 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2680 force_change = 1; 2681 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2682 nospares = 1; 2683 ret = md_cluster_ops->metadata_update_start(mddev); 2684 /* Has someone else has updated the sb */ 2685 if (!does_sb_need_changing(mddev)) { 2686 if (ret == 0) 2687 md_cluster_ops->metadata_update_cancel(mddev); 2688 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2689 BIT(MD_SB_CHANGE_DEVS) | 2690 BIT(MD_SB_CHANGE_CLEAN)); 2691 return; 2692 } 2693 } 2694 2695 /* 2696 * First make sure individual recovery_offsets are correct 2697 * curr_resync_completed can only be used during recovery. 2698 * During reshape/resync it might use array-addresses rather 2699 * that device addresses. 2700 */ 2701 rdev_for_each(rdev, mddev) { 2702 if (rdev->raid_disk >= 0 && 2703 mddev->delta_disks >= 0 && 2704 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2705 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2706 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2707 !test_bit(Journal, &rdev->flags) && 2708 !test_bit(In_sync, &rdev->flags) && 2709 mddev->curr_resync_completed > rdev->recovery_offset) 2710 rdev->recovery_offset = mddev->curr_resync_completed; 2711 2712 } 2713 if (!mddev->persistent) { 2714 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2715 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2716 if (!mddev->external) { 2717 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2718 rdev_for_each(rdev, mddev) { 2719 if (rdev->badblocks.changed) { 2720 rdev->badblocks.changed = 0; 2721 ack_all_badblocks(&rdev->badblocks); 2722 md_error(mddev, rdev); 2723 } 2724 clear_bit(Blocked, &rdev->flags); 2725 clear_bit(BlockedBadBlocks, &rdev->flags); 2726 wake_up(&rdev->blocked_wait); 2727 } 2728 } 2729 wake_up(&mddev->sb_wait); 2730 return; 2731 } 2732 2733 spin_lock(&mddev->lock); 2734 2735 mddev->utime = ktime_get_real_seconds(); 2736 2737 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2738 force_change = 1; 2739 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2740 /* just a clean<-> dirty transition, possibly leave spares alone, 2741 * though if events isn't the right even/odd, we will have to do 2742 * spares after all 2743 */ 2744 nospares = 1; 2745 if (force_change) 2746 nospares = 0; 2747 if (mddev->degraded) 2748 /* If the array is degraded, then skipping spares is both 2749 * dangerous and fairly pointless. 2750 * Dangerous because a device that was removed from the array 2751 * might have a event_count that still looks up-to-date, 2752 * so it can be re-added without a resync. 2753 * Pointless because if there are any spares to skip, 2754 * then a recovery will happen and soon that array won't 2755 * be degraded any more and the spare can go back to sleep then. 2756 */ 2757 nospares = 0; 2758 2759 sync_req = mddev->in_sync; 2760 2761 /* If this is just a dirty<->clean transition, and the array is clean 2762 * and 'events' is odd, we can roll back to the previous clean state */ 2763 if (nospares 2764 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2765 && mddev->can_decrease_events 2766 && mddev->events != 1) { 2767 mddev->events--; 2768 mddev->can_decrease_events = 0; 2769 } else { 2770 /* otherwise we have to go forward and ... */ 2771 mddev->events ++; 2772 mddev->can_decrease_events = nospares; 2773 } 2774 2775 /* 2776 * This 64-bit counter should never wrap. 2777 * Either we are in around ~1 trillion A.C., assuming 2778 * 1 reboot per second, or we have a bug... 2779 */ 2780 WARN_ON(mddev->events == 0); 2781 2782 rdev_for_each(rdev, mddev) { 2783 if (rdev->badblocks.changed) 2784 any_badblocks_changed++; 2785 if (test_bit(Faulty, &rdev->flags)) 2786 set_bit(FaultRecorded, &rdev->flags); 2787 } 2788 2789 sync_sbs(mddev, nospares); 2790 spin_unlock(&mddev->lock); 2791 2792 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2793 mdname(mddev), mddev->in_sync); 2794 2795 if (mddev->queue) 2796 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2797 rewrite: 2798 md_bitmap_update_sb(mddev->bitmap); 2799 rdev_for_each(rdev, mddev) { 2800 char b[BDEVNAME_SIZE]; 2801 2802 if (rdev->sb_loaded != 1) 2803 continue; /* no noise on spare devices */ 2804 2805 if (!test_bit(Faulty, &rdev->flags)) { 2806 md_super_write(mddev,rdev, 2807 rdev->sb_start, rdev->sb_size, 2808 rdev->sb_page); 2809 pr_debug("md: (write) %s's sb offset: %llu\n", 2810 bdevname(rdev->bdev, b), 2811 (unsigned long long)rdev->sb_start); 2812 rdev->sb_events = mddev->events; 2813 if (rdev->badblocks.size) { 2814 md_super_write(mddev, rdev, 2815 rdev->badblocks.sector, 2816 rdev->badblocks.size << 9, 2817 rdev->bb_page); 2818 rdev->badblocks.size = 0; 2819 } 2820 2821 } else 2822 pr_debug("md: %s (skipping faulty)\n", 2823 bdevname(rdev->bdev, b)); 2824 2825 if (mddev->level == LEVEL_MULTIPATH) 2826 /* only need to write one superblock... */ 2827 break; 2828 } 2829 if (md_super_wait(mddev) < 0) 2830 goto rewrite; 2831 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2832 2833 if (mddev_is_clustered(mddev) && ret == 0) 2834 md_cluster_ops->metadata_update_finish(mddev); 2835 2836 if (mddev->in_sync != sync_req || 2837 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2838 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2839 /* have to write it out again */ 2840 goto repeat; 2841 wake_up(&mddev->sb_wait); 2842 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2843 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2844 2845 rdev_for_each(rdev, mddev) { 2846 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2847 clear_bit(Blocked, &rdev->flags); 2848 2849 if (any_badblocks_changed) 2850 ack_all_badblocks(&rdev->badblocks); 2851 clear_bit(BlockedBadBlocks, &rdev->flags); 2852 wake_up(&rdev->blocked_wait); 2853 } 2854 } 2855 EXPORT_SYMBOL(md_update_sb); 2856 2857 static int add_bound_rdev(struct md_rdev *rdev) 2858 { 2859 struct mddev *mddev = rdev->mddev; 2860 int err = 0; 2861 bool add_journal = test_bit(Journal, &rdev->flags); 2862 2863 if (!mddev->pers->hot_remove_disk || add_journal) { 2864 /* If there is hot_add_disk but no hot_remove_disk 2865 * then added disks for geometry changes, 2866 * and should be added immediately. 2867 */ 2868 super_types[mddev->major_version]. 2869 validate_super(mddev, rdev); 2870 if (add_journal) 2871 mddev_suspend(mddev); 2872 err = mddev->pers->hot_add_disk(mddev, rdev); 2873 if (add_journal) 2874 mddev_resume(mddev); 2875 if (err) { 2876 md_kick_rdev_from_array(rdev); 2877 return err; 2878 } 2879 } 2880 sysfs_notify_dirent_safe(rdev->sysfs_state); 2881 2882 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2883 if (mddev->degraded) 2884 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2885 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2886 md_new_event(); 2887 md_wakeup_thread(mddev->thread); 2888 return 0; 2889 } 2890 2891 /* words written to sysfs files may, or may not, be \n terminated. 2892 * We want to accept with case. For this we use cmd_match. 2893 */ 2894 static int cmd_match(const char *cmd, const char *str) 2895 { 2896 /* See if cmd, written into a sysfs file, matches 2897 * str. They must either be the same, or cmd can 2898 * have a trailing newline 2899 */ 2900 while (*cmd && *str && *cmd == *str) { 2901 cmd++; 2902 str++; 2903 } 2904 if (*cmd == '\n') 2905 cmd++; 2906 if (*str || *cmd) 2907 return 0; 2908 return 1; 2909 } 2910 2911 struct rdev_sysfs_entry { 2912 struct attribute attr; 2913 ssize_t (*show)(struct md_rdev *, char *); 2914 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2915 }; 2916 2917 static ssize_t 2918 state_show(struct md_rdev *rdev, char *page) 2919 { 2920 char *sep = ","; 2921 size_t len = 0; 2922 unsigned long flags = READ_ONCE(rdev->flags); 2923 2924 if (test_bit(Faulty, &flags) || 2925 (!test_bit(ExternalBbl, &flags) && 2926 rdev->badblocks.unacked_exist)) 2927 len += sprintf(page+len, "faulty%s", sep); 2928 if (test_bit(In_sync, &flags)) 2929 len += sprintf(page+len, "in_sync%s", sep); 2930 if (test_bit(Journal, &flags)) 2931 len += sprintf(page+len, "journal%s", sep); 2932 if (test_bit(WriteMostly, &flags)) 2933 len += sprintf(page+len, "write_mostly%s", sep); 2934 if (test_bit(Blocked, &flags) || 2935 (rdev->badblocks.unacked_exist 2936 && !test_bit(Faulty, &flags))) 2937 len += sprintf(page+len, "blocked%s", sep); 2938 if (!test_bit(Faulty, &flags) && 2939 !test_bit(Journal, &flags) && 2940 !test_bit(In_sync, &flags)) 2941 len += sprintf(page+len, "spare%s", sep); 2942 if (test_bit(WriteErrorSeen, &flags)) 2943 len += sprintf(page+len, "write_error%s", sep); 2944 if (test_bit(WantReplacement, &flags)) 2945 len += sprintf(page+len, "want_replacement%s", sep); 2946 if (test_bit(Replacement, &flags)) 2947 len += sprintf(page+len, "replacement%s", sep); 2948 if (test_bit(ExternalBbl, &flags)) 2949 len += sprintf(page+len, "external_bbl%s", sep); 2950 if (test_bit(FailFast, &flags)) 2951 len += sprintf(page+len, "failfast%s", sep); 2952 2953 if (len) 2954 len -= strlen(sep); 2955 2956 return len+sprintf(page+len, "\n"); 2957 } 2958 2959 static ssize_t 2960 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2961 { 2962 /* can write 2963 * faulty - simulates an error 2964 * remove - disconnects the device 2965 * writemostly - sets write_mostly 2966 * -writemostly - clears write_mostly 2967 * blocked - sets the Blocked flags 2968 * -blocked - clears the Blocked and possibly simulates an error 2969 * insync - sets Insync providing device isn't active 2970 * -insync - clear Insync for a device with a slot assigned, 2971 * so that it gets rebuilt based on bitmap 2972 * write_error - sets WriteErrorSeen 2973 * -write_error - clears WriteErrorSeen 2974 * {,-}failfast - set/clear FailFast 2975 */ 2976 2977 struct mddev *mddev = rdev->mddev; 2978 int err = -EINVAL; 2979 bool need_update_sb = false; 2980 2981 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2982 md_error(rdev->mddev, rdev); 2983 if (test_bit(Faulty, &rdev->flags)) 2984 err = 0; 2985 else 2986 err = -EBUSY; 2987 } else if (cmd_match(buf, "remove")) { 2988 if (rdev->mddev->pers) { 2989 clear_bit(Blocked, &rdev->flags); 2990 remove_and_add_spares(rdev->mddev, rdev); 2991 } 2992 if (rdev->raid_disk >= 0) 2993 err = -EBUSY; 2994 else { 2995 err = 0; 2996 if (mddev_is_clustered(mddev)) 2997 err = md_cluster_ops->remove_disk(mddev, rdev); 2998 2999 if (err == 0) { 3000 md_kick_rdev_from_array(rdev); 3001 if (mddev->pers) { 3002 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3003 md_wakeup_thread(mddev->thread); 3004 } 3005 md_new_event(); 3006 } 3007 } 3008 } else if (cmd_match(buf, "writemostly")) { 3009 set_bit(WriteMostly, &rdev->flags); 3010 mddev_create_serial_pool(rdev->mddev, rdev, false); 3011 need_update_sb = true; 3012 err = 0; 3013 } else if (cmd_match(buf, "-writemostly")) { 3014 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 3015 clear_bit(WriteMostly, &rdev->flags); 3016 need_update_sb = true; 3017 err = 0; 3018 } else if (cmd_match(buf, "blocked")) { 3019 set_bit(Blocked, &rdev->flags); 3020 err = 0; 3021 } else if (cmd_match(buf, "-blocked")) { 3022 if (!test_bit(Faulty, &rdev->flags) && 3023 !test_bit(ExternalBbl, &rdev->flags) && 3024 rdev->badblocks.unacked_exist) { 3025 /* metadata handler doesn't understand badblocks, 3026 * so we need to fail the device 3027 */ 3028 md_error(rdev->mddev, rdev); 3029 } 3030 clear_bit(Blocked, &rdev->flags); 3031 clear_bit(BlockedBadBlocks, &rdev->flags); 3032 wake_up(&rdev->blocked_wait); 3033 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3034 md_wakeup_thread(rdev->mddev->thread); 3035 3036 err = 0; 3037 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3038 set_bit(In_sync, &rdev->flags); 3039 err = 0; 3040 } else if (cmd_match(buf, "failfast")) { 3041 set_bit(FailFast, &rdev->flags); 3042 need_update_sb = true; 3043 err = 0; 3044 } else if (cmd_match(buf, "-failfast")) { 3045 clear_bit(FailFast, &rdev->flags); 3046 need_update_sb = true; 3047 err = 0; 3048 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3049 !test_bit(Journal, &rdev->flags)) { 3050 if (rdev->mddev->pers == NULL) { 3051 clear_bit(In_sync, &rdev->flags); 3052 rdev->saved_raid_disk = rdev->raid_disk; 3053 rdev->raid_disk = -1; 3054 err = 0; 3055 } 3056 } else if (cmd_match(buf, "write_error")) { 3057 set_bit(WriteErrorSeen, &rdev->flags); 3058 err = 0; 3059 } else if (cmd_match(buf, "-write_error")) { 3060 clear_bit(WriteErrorSeen, &rdev->flags); 3061 err = 0; 3062 } else if (cmd_match(buf, "want_replacement")) { 3063 /* Any non-spare device that is not a replacement can 3064 * become want_replacement at any time, but we then need to 3065 * check if recovery is needed. 3066 */ 3067 if (rdev->raid_disk >= 0 && 3068 !test_bit(Journal, &rdev->flags) && 3069 !test_bit(Replacement, &rdev->flags)) 3070 set_bit(WantReplacement, &rdev->flags); 3071 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3072 md_wakeup_thread(rdev->mddev->thread); 3073 err = 0; 3074 } else if (cmd_match(buf, "-want_replacement")) { 3075 /* Clearing 'want_replacement' is always allowed. 3076 * Once replacements starts it is too late though. 3077 */ 3078 err = 0; 3079 clear_bit(WantReplacement, &rdev->flags); 3080 } else if (cmd_match(buf, "replacement")) { 3081 /* Can only set a device as a replacement when array has not 3082 * yet been started. Once running, replacement is automatic 3083 * from spares, or by assigning 'slot'. 3084 */ 3085 if (rdev->mddev->pers) 3086 err = -EBUSY; 3087 else { 3088 set_bit(Replacement, &rdev->flags); 3089 err = 0; 3090 } 3091 } else if (cmd_match(buf, "-replacement")) { 3092 /* Similarly, can only clear Replacement before start */ 3093 if (rdev->mddev->pers) 3094 err = -EBUSY; 3095 else { 3096 clear_bit(Replacement, &rdev->flags); 3097 err = 0; 3098 } 3099 } else if (cmd_match(buf, "re-add")) { 3100 if (!rdev->mddev->pers) 3101 err = -EINVAL; 3102 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3103 rdev->saved_raid_disk >= 0) { 3104 /* clear_bit is performed _after_ all the devices 3105 * have their local Faulty bit cleared. If any writes 3106 * happen in the meantime in the local node, they 3107 * will land in the local bitmap, which will be synced 3108 * by this node eventually 3109 */ 3110 if (!mddev_is_clustered(rdev->mddev) || 3111 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3112 clear_bit(Faulty, &rdev->flags); 3113 err = add_bound_rdev(rdev); 3114 } 3115 } else 3116 err = -EBUSY; 3117 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3118 set_bit(ExternalBbl, &rdev->flags); 3119 rdev->badblocks.shift = 0; 3120 err = 0; 3121 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3122 clear_bit(ExternalBbl, &rdev->flags); 3123 err = 0; 3124 } 3125 if (need_update_sb) 3126 md_update_sb(mddev, 1); 3127 if (!err) 3128 sysfs_notify_dirent_safe(rdev->sysfs_state); 3129 return err ? err : len; 3130 } 3131 static struct rdev_sysfs_entry rdev_state = 3132 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3133 3134 static ssize_t 3135 errors_show(struct md_rdev *rdev, char *page) 3136 { 3137 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3138 } 3139 3140 static ssize_t 3141 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3142 { 3143 unsigned int n; 3144 int rv; 3145 3146 rv = kstrtouint(buf, 10, &n); 3147 if (rv < 0) 3148 return rv; 3149 atomic_set(&rdev->corrected_errors, n); 3150 return len; 3151 } 3152 static struct rdev_sysfs_entry rdev_errors = 3153 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3154 3155 static ssize_t 3156 slot_show(struct md_rdev *rdev, char *page) 3157 { 3158 if (test_bit(Journal, &rdev->flags)) 3159 return sprintf(page, "journal\n"); 3160 else if (rdev->raid_disk < 0) 3161 return sprintf(page, "none\n"); 3162 else 3163 return sprintf(page, "%d\n", rdev->raid_disk); 3164 } 3165 3166 static ssize_t 3167 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3168 { 3169 int slot; 3170 int err; 3171 3172 if (test_bit(Journal, &rdev->flags)) 3173 return -EBUSY; 3174 if (strncmp(buf, "none", 4)==0) 3175 slot = -1; 3176 else { 3177 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3178 if (err < 0) 3179 return err; 3180 } 3181 if (rdev->mddev->pers && slot == -1) { 3182 /* Setting 'slot' on an active array requires also 3183 * updating the 'rd%d' link, and communicating 3184 * with the personality with ->hot_*_disk. 3185 * For now we only support removing 3186 * failed/spare devices. This normally happens automatically, 3187 * but not when the metadata is externally managed. 3188 */ 3189 if (rdev->raid_disk == -1) 3190 return -EEXIST; 3191 /* personality does all needed checks */ 3192 if (rdev->mddev->pers->hot_remove_disk == NULL) 3193 return -EINVAL; 3194 clear_bit(Blocked, &rdev->flags); 3195 remove_and_add_spares(rdev->mddev, rdev); 3196 if (rdev->raid_disk >= 0) 3197 return -EBUSY; 3198 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3199 md_wakeup_thread(rdev->mddev->thread); 3200 } else if (rdev->mddev->pers) { 3201 /* Activating a spare .. or possibly reactivating 3202 * if we ever get bitmaps working here. 3203 */ 3204 int err; 3205 3206 if (rdev->raid_disk != -1) 3207 return -EBUSY; 3208 3209 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3210 return -EBUSY; 3211 3212 if (rdev->mddev->pers->hot_add_disk == NULL) 3213 return -EINVAL; 3214 3215 if (slot >= rdev->mddev->raid_disks && 3216 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3217 return -ENOSPC; 3218 3219 rdev->raid_disk = slot; 3220 if (test_bit(In_sync, &rdev->flags)) 3221 rdev->saved_raid_disk = slot; 3222 else 3223 rdev->saved_raid_disk = -1; 3224 clear_bit(In_sync, &rdev->flags); 3225 clear_bit(Bitmap_sync, &rdev->flags); 3226 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3227 if (err) { 3228 rdev->raid_disk = -1; 3229 return err; 3230 } else 3231 sysfs_notify_dirent_safe(rdev->sysfs_state); 3232 /* failure here is OK */; 3233 sysfs_link_rdev(rdev->mddev, rdev); 3234 /* don't wakeup anyone, leave that to userspace. */ 3235 } else { 3236 if (slot >= rdev->mddev->raid_disks && 3237 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3238 return -ENOSPC; 3239 rdev->raid_disk = slot; 3240 /* assume it is working */ 3241 clear_bit(Faulty, &rdev->flags); 3242 clear_bit(WriteMostly, &rdev->flags); 3243 set_bit(In_sync, &rdev->flags); 3244 sysfs_notify_dirent_safe(rdev->sysfs_state); 3245 } 3246 return len; 3247 } 3248 3249 static struct rdev_sysfs_entry rdev_slot = 3250 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3251 3252 static ssize_t 3253 offset_show(struct md_rdev *rdev, char *page) 3254 { 3255 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3256 } 3257 3258 static ssize_t 3259 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3260 { 3261 unsigned long long offset; 3262 if (kstrtoull(buf, 10, &offset) < 0) 3263 return -EINVAL; 3264 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3265 return -EBUSY; 3266 if (rdev->sectors && rdev->mddev->external) 3267 /* Must set offset before size, so overlap checks 3268 * can be sane */ 3269 return -EBUSY; 3270 rdev->data_offset = offset; 3271 rdev->new_data_offset = offset; 3272 return len; 3273 } 3274 3275 static struct rdev_sysfs_entry rdev_offset = 3276 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3277 3278 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3279 { 3280 return sprintf(page, "%llu\n", 3281 (unsigned long long)rdev->new_data_offset); 3282 } 3283 3284 static ssize_t new_offset_store(struct md_rdev *rdev, 3285 const char *buf, size_t len) 3286 { 3287 unsigned long long new_offset; 3288 struct mddev *mddev = rdev->mddev; 3289 3290 if (kstrtoull(buf, 10, &new_offset) < 0) 3291 return -EINVAL; 3292 3293 if (mddev->sync_thread || 3294 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3295 return -EBUSY; 3296 if (new_offset == rdev->data_offset) 3297 /* reset is always permitted */ 3298 ; 3299 else if (new_offset > rdev->data_offset) { 3300 /* must not push array size beyond rdev_sectors */ 3301 if (new_offset - rdev->data_offset 3302 + mddev->dev_sectors > rdev->sectors) 3303 return -E2BIG; 3304 } 3305 /* Metadata worries about other space details. */ 3306 3307 /* decreasing the offset is inconsistent with a backwards 3308 * reshape. 3309 */ 3310 if (new_offset < rdev->data_offset && 3311 mddev->reshape_backwards) 3312 return -EINVAL; 3313 /* Increasing offset is inconsistent with forwards 3314 * reshape. reshape_direction should be set to 3315 * 'backwards' first. 3316 */ 3317 if (new_offset > rdev->data_offset && 3318 !mddev->reshape_backwards) 3319 return -EINVAL; 3320 3321 if (mddev->pers && mddev->persistent && 3322 !super_types[mddev->major_version] 3323 .allow_new_offset(rdev, new_offset)) 3324 return -E2BIG; 3325 rdev->new_data_offset = new_offset; 3326 if (new_offset > rdev->data_offset) 3327 mddev->reshape_backwards = 1; 3328 else if (new_offset < rdev->data_offset) 3329 mddev->reshape_backwards = 0; 3330 3331 return len; 3332 } 3333 static struct rdev_sysfs_entry rdev_new_offset = 3334 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3335 3336 static ssize_t 3337 rdev_size_show(struct md_rdev *rdev, char *page) 3338 { 3339 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3340 } 3341 3342 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3343 { 3344 /* check if two start/length pairs overlap */ 3345 if (s1+l1 <= s2) 3346 return 0; 3347 if (s2+l2 <= s1) 3348 return 0; 3349 return 1; 3350 } 3351 3352 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3353 { 3354 unsigned long long blocks; 3355 sector_t new; 3356 3357 if (kstrtoull(buf, 10, &blocks) < 0) 3358 return -EINVAL; 3359 3360 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3361 return -EINVAL; /* sector conversion overflow */ 3362 3363 new = blocks * 2; 3364 if (new != blocks * 2) 3365 return -EINVAL; /* unsigned long long to sector_t overflow */ 3366 3367 *sectors = new; 3368 return 0; 3369 } 3370 3371 static ssize_t 3372 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3373 { 3374 struct mddev *my_mddev = rdev->mddev; 3375 sector_t oldsectors = rdev->sectors; 3376 sector_t sectors; 3377 3378 if (test_bit(Journal, &rdev->flags)) 3379 return -EBUSY; 3380 if (strict_blocks_to_sectors(buf, §ors) < 0) 3381 return -EINVAL; 3382 if (rdev->data_offset != rdev->new_data_offset) 3383 return -EINVAL; /* too confusing */ 3384 if (my_mddev->pers && rdev->raid_disk >= 0) { 3385 if (my_mddev->persistent) { 3386 sectors = super_types[my_mddev->major_version]. 3387 rdev_size_change(rdev, sectors); 3388 if (!sectors) 3389 return -EBUSY; 3390 } else if (!sectors) 3391 sectors = bdev_nr_sectors(rdev->bdev) - 3392 rdev->data_offset; 3393 if (!my_mddev->pers->resize) 3394 /* Cannot change size for RAID0 or Linear etc */ 3395 return -EINVAL; 3396 } 3397 if (sectors < my_mddev->dev_sectors) 3398 return -EINVAL; /* component must fit device */ 3399 3400 rdev->sectors = sectors; 3401 if (sectors > oldsectors && my_mddev->external) { 3402 /* Need to check that all other rdevs with the same 3403 * ->bdev do not overlap. 'rcu' is sufficient to walk 3404 * the rdev lists safely. 3405 * This check does not provide a hard guarantee, it 3406 * just helps avoid dangerous mistakes. 3407 */ 3408 struct mddev *mddev; 3409 int overlap = 0; 3410 struct list_head *tmp; 3411 3412 rcu_read_lock(); 3413 for_each_mddev(mddev, tmp) { 3414 struct md_rdev *rdev2; 3415 3416 rdev_for_each(rdev2, mddev) 3417 if (rdev->bdev == rdev2->bdev && 3418 rdev != rdev2 && 3419 overlaps(rdev->data_offset, rdev->sectors, 3420 rdev2->data_offset, 3421 rdev2->sectors)) { 3422 overlap = 1; 3423 break; 3424 } 3425 if (overlap) { 3426 mddev_put(mddev); 3427 break; 3428 } 3429 } 3430 rcu_read_unlock(); 3431 if (overlap) { 3432 /* Someone else could have slipped in a size 3433 * change here, but doing so is just silly. 3434 * We put oldsectors back because we *know* it is 3435 * safe, and trust userspace not to race with 3436 * itself 3437 */ 3438 rdev->sectors = oldsectors; 3439 return -EBUSY; 3440 } 3441 } 3442 return len; 3443 } 3444 3445 static struct rdev_sysfs_entry rdev_size = 3446 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3447 3448 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3449 { 3450 unsigned long long recovery_start = rdev->recovery_offset; 3451 3452 if (test_bit(In_sync, &rdev->flags) || 3453 recovery_start == MaxSector) 3454 return sprintf(page, "none\n"); 3455 3456 return sprintf(page, "%llu\n", recovery_start); 3457 } 3458 3459 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3460 { 3461 unsigned long long recovery_start; 3462 3463 if (cmd_match(buf, "none")) 3464 recovery_start = MaxSector; 3465 else if (kstrtoull(buf, 10, &recovery_start)) 3466 return -EINVAL; 3467 3468 if (rdev->mddev->pers && 3469 rdev->raid_disk >= 0) 3470 return -EBUSY; 3471 3472 rdev->recovery_offset = recovery_start; 3473 if (recovery_start == MaxSector) 3474 set_bit(In_sync, &rdev->flags); 3475 else 3476 clear_bit(In_sync, &rdev->flags); 3477 return len; 3478 } 3479 3480 static struct rdev_sysfs_entry rdev_recovery_start = 3481 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3482 3483 /* sysfs access to bad-blocks list. 3484 * We present two files. 3485 * 'bad-blocks' lists sector numbers and lengths of ranges that 3486 * are recorded as bad. The list is truncated to fit within 3487 * the one-page limit of sysfs. 3488 * Writing "sector length" to this file adds an acknowledged 3489 * bad block list. 3490 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3491 * been acknowledged. Writing to this file adds bad blocks 3492 * without acknowledging them. This is largely for testing. 3493 */ 3494 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3495 { 3496 return badblocks_show(&rdev->badblocks, page, 0); 3497 } 3498 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3499 { 3500 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3501 /* Maybe that ack was all we needed */ 3502 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3503 wake_up(&rdev->blocked_wait); 3504 return rv; 3505 } 3506 static struct rdev_sysfs_entry rdev_bad_blocks = 3507 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3508 3509 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3510 { 3511 return badblocks_show(&rdev->badblocks, page, 1); 3512 } 3513 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3514 { 3515 return badblocks_store(&rdev->badblocks, page, len, 1); 3516 } 3517 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3518 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3519 3520 static ssize_t 3521 ppl_sector_show(struct md_rdev *rdev, char *page) 3522 { 3523 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3524 } 3525 3526 static ssize_t 3527 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3528 { 3529 unsigned long long sector; 3530 3531 if (kstrtoull(buf, 10, §or) < 0) 3532 return -EINVAL; 3533 if (sector != (sector_t)sector) 3534 return -EINVAL; 3535 3536 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3537 rdev->raid_disk >= 0) 3538 return -EBUSY; 3539 3540 if (rdev->mddev->persistent) { 3541 if (rdev->mddev->major_version == 0) 3542 return -EINVAL; 3543 if ((sector > rdev->sb_start && 3544 sector - rdev->sb_start > S16_MAX) || 3545 (sector < rdev->sb_start && 3546 rdev->sb_start - sector > -S16_MIN)) 3547 return -EINVAL; 3548 rdev->ppl.offset = sector - rdev->sb_start; 3549 } else if (!rdev->mddev->external) { 3550 return -EBUSY; 3551 } 3552 rdev->ppl.sector = sector; 3553 return len; 3554 } 3555 3556 static struct rdev_sysfs_entry rdev_ppl_sector = 3557 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3558 3559 static ssize_t 3560 ppl_size_show(struct md_rdev *rdev, char *page) 3561 { 3562 return sprintf(page, "%u\n", rdev->ppl.size); 3563 } 3564 3565 static ssize_t 3566 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3567 { 3568 unsigned int size; 3569 3570 if (kstrtouint(buf, 10, &size) < 0) 3571 return -EINVAL; 3572 3573 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3574 rdev->raid_disk >= 0) 3575 return -EBUSY; 3576 3577 if (rdev->mddev->persistent) { 3578 if (rdev->mddev->major_version == 0) 3579 return -EINVAL; 3580 if (size > U16_MAX) 3581 return -EINVAL; 3582 } else if (!rdev->mddev->external) { 3583 return -EBUSY; 3584 } 3585 rdev->ppl.size = size; 3586 return len; 3587 } 3588 3589 static struct rdev_sysfs_entry rdev_ppl_size = 3590 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3591 3592 static struct attribute *rdev_default_attrs[] = { 3593 &rdev_state.attr, 3594 &rdev_errors.attr, 3595 &rdev_slot.attr, 3596 &rdev_offset.attr, 3597 &rdev_new_offset.attr, 3598 &rdev_size.attr, 3599 &rdev_recovery_start.attr, 3600 &rdev_bad_blocks.attr, 3601 &rdev_unack_bad_blocks.attr, 3602 &rdev_ppl_sector.attr, 3603 &rdev_ppl_size.attr, 3604 NULL, 3605 }; 3606 static ssize_t 3607 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3608 { 3609 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3610 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3611 3612 if (!entry->show) 3613 return -EIO; 3614 if (!rdev->mddev) 3615 return -ENODEV; 3616 return entry->show(rdev, page); 3617 } 3618 3619 static ssize_t 3620 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3621 const char *page, size_t length) 3622 { 3623 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3624 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3625 ssize_t rv; 3626 struct mddev *mddev = rdev->mddev; 3627 3628 if (!entry->store) 3629 return -EIO; 3630 if (!capable(CAP_SYS_ADMIN)) 3631 return -EACCES; 3632 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3633 if (!rv) { 3634 if (rdev->mddev == NULL) 3635 rv = -ENODEV; 3636 else 3637 rv = entry->store(rdev, page, length); 3638 mddev_unlock(mddev); 3639 } 3640 return rv; 3641 } 3642 3643 static void rdev_free(struct kobject *ko) 3644 { 3645 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3646 kfree(rdev); 3647 } 3648 static const struct sysfs_ops rdev_sysfs_ops = { 3649 .show = rdev_attr_show, 3650 .store = rdev_attr_store, 3651 }; 3652 static struct kobj_type rdev_ktype = { 3653 .release = rdev_free, 3654 .sysfs_ops = &rdev_sysfs_ops, 3655 .default_attrs = rdev_default_attrs, 3656 }; 3657 3658 int md_rdev_init(struct md_rdev *rdev) 3659 { 3660 rdev->desc_nr = -1; 3661 rdev->saved_raid_disk = -1; 3662 rdev->raid_disk = -1; 3663 rdev->flags = 0; 3664 rdev->data_offset = 0; 3665 rdev->new_data_offset = 0; 3666 rdev->sb_events = 0; 3667 rdev->last_read_error = 0; 3668 rdev->sb_loaded = 0; 3669 rdev->bb_page = NULL; 3670 atomic_set(&rdev->nr_pending, 0); 3671 atomic_set(&rdev->read_errors, 0); 3672 atomic_set(&rdev->corrected_errors, 0); 3673 3674 INIT_LIST_HEAD(&rdev->same_set); 3675 init_waitqueue_head(&rdev->blocked_wait); 3676 3677 /* Add space to store bad block list. 3678 * This reserves the space even on arrays where it cannot 3679 * be used - I wonder if that matters 3680 */ 3681 return badblocks_init(&rdev->badblocks, 0); 3682 } 3683 EXPORT_SYMBOL_GPL(md_rdev_init); 3684 /* 3685 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3686 * 3687 * mark the device faulty if: 3688 * 3689 * - the device is nonexistent (zero size) 3690 * - the device has no valid superblock 3691 * 3692 * a faulty rdev _never_ has rdev->sb set. 3693 */ 3694 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3695 { 3696 char b[BDEVNAME_SIZE]; 3697 int err; 3698 struct md_rdev *rdev; 3699 sector_t size; 3700 3701 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3702 if (!rdev) 3703 return ERR_PTR(-ENOMEM); 3704 3705 err = md_rdev_init(rdev); 3706 if (err) 3707 goto abort_free; 3708 err = alloc_disk_sb(rdev); 3709 if (err) 3710 goto abort_free; 3711 3712 err = lock_rdev(rdev, newdev, super_format == -2); 3713 if (err) 3714 goto abort_free; 3715 3716 kobject_init(&rdev->kobj, &rdev_ktype); 3717 3718 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3719 if (!size) { 3720 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3721 bdevname(rdev->bdev,b)); 3722 err = -EINVAL; 3723 goto abort_free; 3724 } 3725 3726 if (super_format >= 0) { 3727 err = super_types[super_format]. 3728 load_super(rdev, NULL, super_minor); 3729 if (err == -EINVAL) { 3730 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3731 bdevname(rdev->bdev,b), 3732 super_format, super_minor); 3733 goto abort_free; 3734 } 3735 if (err < 0) { 3736 pr_warn("md: could not read %s's sb, not importing!\n", 3737 bdevname(rdev->bdev,b)); 3738 goto abort_free; 3739 } 3740 } 3741 3742 return rdev; 3743 3744 abort_free: 3745 if (rdev->bdev) 3746 unlock_rdev(rdev); 3747 md_rdev_clear(rdev); 3748 kfree(rdev); 3749 return ERR_PTR(err); 3750 } 3751 3752 /* 3753 * Check a full RAID array for plausibility 3754 */ 3755 3756 static int analyze_sbs(struct mddev *mddev) 3757 { 3758 int i; 3759 struct md_rdev *rdev, *freshest, *tmp; 3760 char b[BDEVNAME_SIZE]; 3761 3762 freshest = NULL; 3763 rdev_for_each_safe(rdev, tmp, mddev) 3764 switch (super_types[mddev->major_version]. 3765 load_super(rdev, freshest, mddev->minor_version)) { 3766 case 1: 3767 freshest = rdev; 3768 break; 3769 case 0: 3770 break; 3771 default: 3772 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3773 bdevname(rdev->bdev,b)); 3774 md_kick_rdev_from_array(rdev); 3775 } 3776 3777 /* Cannot find a valid fresh disk */ 3778 if (!freshest) { 3779 pr_warn("md: cannot find a valid disk\n"); 3780 return -EINVAL; 3781 } 3782 3783 super_types[mddev->major_version]. 3784 validate_super(mddev, freshest); 3785 3786 i = 0; 3787 rdev_for_each_safe(rdev, tmp, mddev) { 3788 if (mddev->max_disks && 3789 (rdev->desc_nr >= mddev->max_disks || 3790 i > mddev->max_disks)) { 3791 pr_warn("md: %s: %s: only %d devices permitted\n", 3792 mdname(mddev), bdevname(rdev->bdev, b), 3793 mddev->max_disks); 3794 md_kick_rdev_from_array(rdev); 3795 continue; 3796 } 3797 if (rdev != freshest) { 3798 if (super_types[mddev->major_version]. 3799 validate_super(mddev, rdev)) { 3800 pr_warn("md: kicking non-fresh %s from array!\n", 3801 bdevname(rdev->bdev,b)); 3802 md_kick_rdev_from_array(rdev); 3803 continue; 3804 } 3805 } 3806 if (mddev->level == LEVEL_MULTIPATH) { 3807 rdev->desc_nr = i++; 3808 rdev->raid_disk = rdev->desc_nr; 3809 set_bit(In_sync, &rdev->flags); 3810 } else if (rdev->raid_disk >= 3811 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3812 !test_bit(Journal, &rdev->flags)) { 3813 rdev->raid_disk = -1; 3814 clear_bit(In_sync, &rdev->flags); 3815 } 3816 } 3817 3818 return 0; 3819 } 3820 3821 /* Read a fixed-point number. 3822 * Numbers in sysfs attributes should be in "standard" units where 3823 * possible, so time should be in seconds. 3824 * However we internally use a a much smaller unit such as 3825 * milliseconds or jiffies. 3826 * This function takes a decimal number with a possible fractional 3827 * component, and produces an integer which is the result of 3828 * multiplying that number by 10^'scale'. 3829 * all without any floating-point arithmetic. 3830 */ 3831 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3832 { 3833 unsigned long result = 0; 3834 long decimals = -1; 3835 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3836 if (*cp == '.') 3837 decimals = 0; 3838 else if (decimals < scale) { 3839 unsigned int value; 3840 value = *cp - '0'; 3841 result = result * 10 + value; 3842 if (decimals >= 0) 3843 decimals++; 3844 } 3845 cp++; 3846 } 3847 if (*cp == '\n') 3848 cp++; 3849 if (*cp) 3850 return -EINVAL; 3851 if (decimals < 0) 3852 decimals = 0; 3853 *res = result * int_pow(10, scale - decimals); 3854 return 0; 3855 } 3856 3857 static ssize_t 3858 safe_delay_show(struct mddev *mddev, char *page) 3859 { 3860 int msec = (mddev->safemode_delay*1000)/HZ; 3861 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3862 } 3863 static ssize_t 3864 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3865 { 3866 unsigned long msec; 3867 3868 if (mddev_is_clustered(mddev)) { 3869 pr_warn("md: Safemode is disabled for clustered mode\n"); 3870 return -EINVAL; 3871 } 3872 3873 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3874 return -EINVAL; 3875 if (msec == 0) 3876 mddev->safemode_delay = 0; 3877 else { 3878 unsigned long old_delay = mddev->safemode_delay; 3879 unsigned long new_delay = (msec*HZ)/1000; 3880 3881 if (new_delay == 0) 3882 new_delay = 1; 3883 mddev->safemode_delay = new_delay; 3884 if (new_delay < old_delay || old_delay == 0) 3885 mod_timer(&mddev->safemode_timer, jiffies+1); 3886 } 3887 return len; 3888 } 3889 static struct md_sysfs_entry md_safe_delay = 3890 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3891 3892 static ssize_t 3893 level_show(struct mddev *mddev, char *page) 3894 { 3895 struct md_personality *p; 3896 int ret; 3897 spin_lock(&mddev->lock); 3898 p = mddev->pers; 3899 if (p) 3900 ret = sprintf(page, "%s\n", p->name); 3901 else if (mddev->clevel[0]) 3902 ret = sprintf(page, "%s\n", mddev->clevel); 3903 else if (mddev->level != LEVEL_NONE) 3904 ret = sprintf(page, "%d\n", mddev->level); 3905 else 3906 ret = 0; 3907 spin_unlock(&mddev->lock); 3908 return ret; 3909 } 3910 3911 static ssize_t 3912 level_store(struct mddev *mddev, const char *buf, size_t len) 3913 { 3914 char clevel[16]; 3915 ssize_t rv; 3916 size_t slen = len; 3917 struct md_personality *pers, *oldpers; 3918 long level; 3919 void *priv, *oldpriv; 3920 struct md_rdev *rdev; 3921 3922 if (slen == 0 || slen >= sizeof(clevel)) 3923 return -EINVAL; 3924 3925 rv = mddev_lock(mddev); 3926 if (rv) 3927 return rv; 3928 3929 if (mddev->pers == NULL) { 3930 strncpy(mddev->clevel, buf, slen); 3931 if (mddev->clevel[slen-1] == '\n') 3932 slen--; 3933 mddev->clevel[slen] = 0; 3934 mddev->level = LEVEL_NONE; 3935 rv = len; 3936 goto out_unlock; 3937 } 3938 rv = -EROFS; 3939 if (mddev->ro) 3940 goto out_unlock; 3941 3942 /* request to change the personality. Need to ensure: 3943 * - array is not engaged in resync/recovery/reshape 3944 * - old personality can be suspended 3945 * - new personality will access other array. 3946 */ 3947 3948 rv = -EBUSY; 3949 if (mddev->sync_thread || 3950 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3951 mddev->reshape_position != MaxSector || 3952 mddev->sysfs_active) 3953 goto out_unlock; 3954 3955 rv = -EINVAL; 3956 if (!mddev->pers->quiesce) { 3957 pr_warn("md: %s: %s does not support online personality change\n", 3958 mdname(mddev), mddev->pers->name); 3959 goto out_unlock; 3960 } 3961 3962 /* Now find the new personality */ 3963 strncpy(clevel, buf, slen); 3964 if (clevel[slen-1] == '\n') 3965 slen--; 3966 clevel[slen] = 0; 3967 if (kstrtol(clevel, 10, &level)) 3968 level = LEVEL_NONE; 3969 3970 if (request_module("md-%s", clevel) != 0) 3971 request_module("md-level-%s", clevel); 3972 spin_lock(&pers_lock); 3973 pers = find_pers(level, clevel); 3974 if (!pers || !try_module_get(pers->owner)) { 3975 spin_unlock(&pers_lock); 3976 pr_warn("md: personality %s not loaded\n", clevel); 3977 rv = -EINVAL; 3978 goto out_unlock; 3979 } 3980 spin_unlock(&pers_lock); 3981 3982 if (pers == mddev->pers) { 3983 /* Nothing to do! */ 3984 module_put(pers->owner); 3985 rv = len; 3986 goto out_unlock; 3987 } 3988 if (!pers->takeover) { 3989 module_put(pers->owner); 3990 pr_warn("md: %s: %s does not support personality takeover\n", 3991 mdname(mddev), clevel); 3992 rv = -EINVAL; 3993 goto out_unlock; 3994 } 3995 3996 rdev_for_each(rdev, mddev) 3997 rdev->new_raid_disk = rdev->raid_disk; 3998 3999 /* ->takeover must set new_* and/or delta_disks 4000 * if it succeeds, and may set them when it fails. 4001 */ 4002 priv = pers->takeover(mddev); 4003 if (IS_ERR(priv)) { 4004 mddev->new_level = mddev->level; 4005 mddev->new_layout = mddev->layout; 4006 mddev->new_chunk_sectors = mddev->chunk_sectors; 4007 mddev->raid_disks -= mddev->delta_disks; 4008 mddev->delta_disks = 0; 4009 mddev->reshape_backwards = 0; 4010 module_put(pers->owner); 4011 pr_warn("md: %s: %s would not accept array\n", 4012 mdname(mddev), clevel); 4013 rv = PTR_ERR(priv); 4014 goto out_unlock; 4015 } 4016 4017 /* Looks like we have a winner */ 4018 mddev_suspend(mddev); 4019 mddev_detach(mddev); 4020 4021 spin_lock(&mddev->lock); 4022 oldpers = mddev->pers; 4023 oldpriv = mddev->private; 4024 mddev->pers = pers; 4025 mddev->private = priv; 4026 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4027 mddev->level = mddev->new_level; 4028 mddev->layout = mddev->new_layout; 4029 mddev->chunk_sectors = mddev->new_chunk_sectors; 4030 mddev->delta_disks = 0; 4031 mddev->reshape_backwards = 0; 4032 mddev->degraded = 0; 4033 spin_unlock(&mddev->lock); 4034 4035 if (oldpers->sync_request == NULL && 4036 mddev->external) { 4037 /* We are converting from a no-redundancy array 4038 * to a redundancy array and metadata is managed 4039 * externally so we need to be sure that writes 4040 * won't block due to a need to transition 4041 * clean->dirty 4042 * until external management is started. 4043 */ 4044 mddev->in_sync = 0; 4045 mddev->safemode_delay = 0; 4046 mddev->safemode = 0; 4047 } 4048 4049 oldpers->free(mddev, oldpriv); 4050 4051 if (oldpers->sync_request == NULL && 4052 pers->sync_request != NULL) { 4053 /* need to add the md_redundancy_group */ 4054 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4055 pr_warn("md: cannot register extra attributes for %s\n", 4056 mdname(mddev)); 4057 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4058 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4059 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4060 } 4061 if (oldpers->sync_request != NULL && 4062 pers->sync_request == NULL) { 4063 /* need to remove the md_redundancy_group */ 4064 if (mddev->to_remove == NULL) 4065 mddev->to_remove = &md_redundancy_group; 4066 } 4067 4068 module_put(oldpers->owner); 4069 4070 rdev_for_each(rdev, mddev) { 4071 if (rdev->raid_disk < 0) 4072 continue; 4073 if (rdev->new_raid_disk >= mddev->raid_disks) 4074 rdev->new_raid_disk = -1; 4075 if (rdev->new_raid_disk == rdev->raid_disk) 4076 continue; 4077 sysfs_unlink_rdev(mddev, rdev); 4078 } 4079 rdev_for_each(rdev, mddev) { 4080 if (rdev->raid_disk < 0) 4081 continue; 4082 if (rdev->new_raid_disk == rdev->raid_disk) 4083 continue; 4084 rdev->raid_disk = rdev->new_raid_disk; 4085 if (rdev->raid_disk < 0) 4086 clear_bit(In_sync, &rdev->flags); 4087 else { 4088 if (sysfs_link_rdev(mddev, rdev)) 4089 pr_warn("md: cannot register rd%d for %s after level change\n", 4090 rdev->raid_disk, mdname(mddev)); 4091 } 4092 } 4093 4094 if (pers->sync_request == NULL) { 4095 /* this is now an array without redundancy, so 4096 * it must always be in_sync 4097 */ 4098 mddev->in_sync = 1; 4099 del_timer_sync(&mddev->safemode_timer); 4100 } 4101 blk_set_stacking_limits(&mddev->queue->limits); 4102 pers->run(mddev); 4103 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4104 mddev_resume(mddev); 4105 if (!mddev->thread) 4106 md_update_sb(mddev, 1); 4107 sysfs_notify_dirent_safe(mddev->sysfs_level); 4108 md_new_event(); 4109 rv = len; 4110 out_unlock: 4111 mddev_unlock(mddev); 4112 return rv; 4113 } 4114 4115 static struct md_sysfs_entry md_level = 4116 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4117 4118 static ssize_t 4119 layout_show(struct mddev *mddev, char *page) 4120 { 4121 /* just a number, not meaningful for all levels */ 4122 if (mddev->reshape_position != MaxSector && 4123 mddev->layout != mddev->new_layout) 4124 return sprintf(page, "%d (%d)\n", 4125 mddev->new_layout, mddev->layout); 4126 return sprintf(page, "%d\n", mddev->layout); 4127 } 4128 4129 static ssize_t 4130 layout_store(struct mddev *mddev, const char *buf, size_t len) 4131 { 4132 unsigned int n; 4133 int err; 4134 4135 err = kstrtouint(buf, 10, &n); 4136 if (err < 0) 4137 return err; 4138 err = mddev_lock(mddev); 4139 if (err) 4140 return err; 4141 4142 if (mddev->pers) { 4143 if (mddev->pers->check_reshape == NULL) 4144 err = -EBUSY; 4145 else if (mddev->ro) 4146 err = -EROFS; 4147 else { 4148 mddev->new_layout = n; 4149 err = mddev->pers->check_reshape(mddev); 4150 if (err) 4151 mddev->new_layout = mddev->layout; 4152 } 4153 } else { 4154 mddev->new_layout = n; 4155 if (mddev->reshape_position == MaxSector) 4156 mddev->layout = n; 4157 } 4158 mddev_unlock(mddev); 4159 return err ?: len; 4160 } 4161 static struct md_sysfs_entry md_layout = 4162 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4163 4164 static ssize_t 4165 raid_disks_show(struct mddev *mddev, char *page) 4166 { 4167 if (mddev->raid_disks == 0) 4168 return 0; 4169 if (mddev->reshape_position != MaxSector && 4170 mddev->delta_disks != 0) 4171 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4172 mddev->raid_disks - mddev->delta_disks); 4173 return sprintf(page, "%d\n", mddev->raid_disks); 4174 } 4175 4176 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4177 4178 static ssize_t 4179 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4180 { 4181 unsigned int n; 4182 int err; 4183 4184 err = kstrtouint(buf, 10, &n); 4185 if (err < 0) 4186 return err; 4187 4188 err = mddev_lock(mddev); 4189 if (err) 4190 return err; 4191 if (mddev->pers) 4192 err = update_raid_disks(mddev, n); 4193 else if (mddev->reshape_position != MaxSector) { 4194 struct md_rdev *rdev; 4195 int olddisks = mddev->raid_disks - mddev->delta_disks; 4196 4197 err = -EINVAL; 4198 rdev_for_each(rdev, mddev) { 4199 if (olddisks < n && 4200 rdev->data_offset < rdev->new_data_offset) 4201 goto out_unlock; 4202 if (olddisks > n && 4203 rdev->data_offset > rdev->new_data_offset) 4204 goto out_unlock; 4205 } 4206 err = 0; 4207 mddev->delta_disks = n - olddisks; 4208 mddev->raid_disks = n; 4209 mddev->reshape_backwards = (mddev->delta_disks < 0); 4210 } else 4211 mddev->raid_disks = n; 4212 out_unlock: 4213 mddev_unlock(mddev); 4214 return err ? err : len; 4215 } 4216 static struct md_sysfs_entry md_raid_disks = 4217 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4218 4219 static ssize_t 4220 uuid_show(struct mddev *mddev, char *page) 4221 { 4222 return sprintf(page, "%pU\n", mddev->uuid); 4223 } 4224 static struct md_sysfs_entry md_uuid = 4225 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4226 4227 static ssize_t 4228 chunk_size_show(struct mddev *mddev, char *page) 4229 { 4230 if (mddev->reshape_position != MaxSector && 4231 mddev->chunk_sectors != mddev->new_chunk_sectors) 4232 return sprintf(page, "%d (%d)\n", 4233 mddev->new_chunk_sectors << 9, 4234 mddev->chunk_sectors << 9); 4235 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4236 } 4237 4238 static ssize_t 4239 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4240 { 4241 unsigned long n; 4242 int err; 4243 4244 err = kstrtoul(buf, 10, &n); 4245 if (err < 0) 4246 return err; 4247 4248 err = mddev_lock(mddev); 4249 if (err) 4250 return err; 4251 if (mddev->pers) { 4252 if (mddev->pers->check_reshape == NULL) 4253 err = -EBUSY; 4254 else if (mddev->ro) 4255 err = -EROFS; 4256 else { 4257 mddev->new_chunk_sectors = n >> 9; 4258 err = mddev->pers->check_reshape(mddev); 4259 if (err) 4260 mddev->new_chunk_sectors = mddev->chunk_sectors; 4261 } 4262 } else { 4263 mddev->new_chunk_sectors = n >> 9; 4264 if (mddev->reshape_position == MaxSector) 4265 mddev->chunk_sectors = n >> 9; 4266 } 4267 mddev_unlock(mddev); 4268 return err ?: len; 4269 } 4270 static struct md_sysfs_entry md_chunk_size = 4271 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4272 4273 static ssize_t 4274 resync_start_show(struct mddev *mddev, char *page) 4275 { 4276 if (mddev->recovery_cp == MaxSector) 4277 return sprintf(page, "none\n"); 4278 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4279 } 4280 4281 static ssize_t 4282 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4283 { 4284 unsigned long long n; 4285 int err; 4286 4287 if (cmd_match(buf, "none")) 4288 n = MaxSector; 4289 else { 4290 err = kstrtoull(buf, 10, &n); 4291 if (err < 0) 4292 return err; 4293 if (n != (sector_t)n) 4294 return -EINVAL; 4295 } 4296 4297 err = mddev_lock(mddev); 4298 if (err) 4299 return err; 4300 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4301 err = -EBUSY; 4302 4303 if (!err) { 4304 mddev->recovery_cp = n; 4305 if (mddev->pers) 4306 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4307 } 4308 mddev_unlock(mddev); 4309 return err ?: len; 4310 } 4311 static struct md_sysfs_entry md_resync_start = 4312 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4313 resync_start_show, resync_start_store); 4314 4315 /* 4316 * The array state can be: 4317 * 4318 * clear 4319 * No devices, no size, no level 4320 * Equivalent to STOP_ARRAY ioctl 4321 * inactive 4322 * May have some settings, but array is not active 4323 * all IO results in error 4324 * When written, doesn't tear down array, but just stops it 4325 * suspended (not supported yet) 4326 * All IO requests will block. The array can be reconfigured. 4327 * Writing this, if accepted, will block until array is quiescent 4328 * readonly 4329 * no resync can happen. no superblocks get written. 4330 * write requests fail 4331 * read-auto 4332 * like readonly, but behaves like 'clean' on a write request. 4333 * 4334 * clean - no pending writes, but otherwise active. 4335 * When written to inactive array, starts without resync 4336 * If a write request arrives then 4337 * if metadata is known, mark 'dirty' and switch to 'active'. 4338 * if not known, block and switch to write-pending 4339 * If written to an active array that has pending writes, then fails. 4340 * active 4341 * fully active: IO and resync can be happening. 4342 * When written to inactive array, starts with resync 4343 * 4344 * write-pending 4345 * clean, but writes are blocked waiting for 'active' to be written. 4346 * 4347 * active-idle 4348 * like active, but no writes have been seen for a while (100msec). 4349 * 4350 * broken 4351 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4352 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4353 * when a member is gone, so this state will at least alert the 4354 * user that something is wrong. 4355 */ 4356 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4357 write_pending, active_idle, broken, bad_word}; 4358 static char *array_states[] = { 4359 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4360 "write-pending", "active-idle", "broken", NULL }; 4361 4362 static int match_word(const char *word, char **list) 4363 { 4364 int n; 4365 for (n=0; list[n]; n++) 4366 if (cmd_match(word, list[n])) 4367 break; 4368 return n; 4369 } 4370 4371 static ssize_t 4372 array_state_show(struct mddev *mddev, char *page) 4373 { 4374 enum array_state st = inactive; 4375 4376 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4377 switch(mddev->ro) { 4378 case 1: 4379 st = readonly; 4380 break; 4381 case 2: 4382 st = read_auto; 4383 break; 4384 case 0: 4385 spin_lock(&mddev->lock); 4386 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4387 st = write_pending; 4388 else if (mddev->in_sync) 4389 st = clean; 4390 else if (mddev->safemode) 4391 st = active_idle; 4392 else 4393 st = active; 4394 spin_unlock(&mddev->lock); 4395 } 4396 4397 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4398 st = broken; 4399 } else { 4400 if (list_empty(&mddev->disks) && 4401 mddev->raid_disks == 0 && 4402 mddev->dev_sectors == 0) 4403 st = clear; 4404 else 4405 st = inactive; 4406 } 4407 return sprintf(page, "%s\n", array_states[st]); 4408 } 4409 4410 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4411 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4412 static int restart_array(struct mddev *mddev); 4413 4414 static ssize_t 4415 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4416 { 4417 int err = 0; 4418 enum array_state st = match_word(buf, array_states); 4419 4420 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4421 /* don't take reconfig_mutex when toggling between 4422 * clean and active 4423 */ 4424 spin_lock(&mddev->lock); 4425 if (st == active) { 4426 restart_array(mddev); 4427 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4428 md_wakeup_thread(mddev->thread); 4429 wake_up(&mddev->sb_wait); 4430 } else /* st == clean */ { 4431 restart_array(mddev); 4432 if (!set_in_sync(mddev)) 4433 err = -EBUSY; 4434 } 4435 if (!err) 4436 sysfs_notify_dirent_safe(mddev->sysfs_state); 4437 spin_unlock(&mddev->lock); 4438 return err ?: len; 4439 } 4440 err = mddev_lock(mddev); 4441 if (err) 4442 return err; 4443 err = -EINVAL; 4444 switch(st) { 4445 case bad_word: 4446 break; 4447 case clear: 4448 /* stopping an active array */ 4449 err = do_md_stop(mddev, 0, NULL); 4450 break; 4451 case inactive: 4452 /* stopping an active array */ 4453 if (mddev->pers) 4454 err = do_md_stop(mddev, 2, NULL); 4455 else 4456 err = 0; /* already inactive */ 4457 break; 4458 case suspended: 4459 break; /* not supported yet */ 4460 case readonly: 4461 if (mddev->pers) 4462 err = md_set_readonly(mddev, NULL); 4463 else { 4464 mddev->ro = 1; 4465 set_disk_ro(mddev->gendisk, 1); 4466 err = do_md_run(mddev); 4467 } 4468 break; 4469 case read_auto: 4470 if (mddev->pers) { 4471 if (mddev->ro == 0) 4472 err = md_set_readonly(mddev, NULL); 4473 else if (mddev->ro == 1) 4474 err = restart_array(mddev); 4475 if (err == 0) { 4476 mddev->ro = 2; 4477 set_disk_ro(mddev->gendisk, 0); 4478 } 4479 } else { 4480 mddev->ro = 2; 4481 err = do_md_run(mddev); 4482 } 4483 break; 4484 case clean: 4485 if (mddev->pers) { 4486 err = restart_array(mddev); 4487 if (err) 4488 break; 4489 spin_lock(&mddev->lock); 4490 if (!set_in_sync(mddev)) 4491 err = -EBUSY; 4492 spin_unlock(&mddev->lock); 4493 } else 4494 err = -EINVAL; 4495 break; 4496 case active: 4497 if (mddev->pers) { 4498 err = restart_array(mddev); 4499 if (err) 4500 break; 4501 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4502 wake_up(&mddev->sb_wait); 4503 err = 0; 4504 } else { 4505 mddev->ro = 0; 4506 set_disk_ro(mddev->gendisk, 0); 4507 err = do_md_run(mddev); 4508 } 4509 break; 4510 case write_pending: 4511 case active_idle: 4512 case broken: 4513 /* these cannot be set */ 4514 break; 4515 } 4516 4517 if (!err) { 4518 if (mddev->hold_active == UNTIL_IOCTL) 4519 mddev->hold_active = 0; 4520 sysfs_notify_dirent_safe(mddev->sysfs_state); 4521 } 4522 mddev_unlock(mddev); 4523 return err ?: len; 4524 } 4525 static struct md_sysfs_entry md_array_state = 4526 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4527 4528 static ssize_t 4529 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4530 return sprintf(page, "%d\n", 4531 atomic_read(&mddev->max_corr_read_errors)); 4532 } 4533 4534 static ssize_t 4535 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4536 { 4537 unsigned int n; 4538 int rv; 4539 4540 rv = kstrtouint(buf, 10, &n); 4541 if (rv < 0) 4542 return rv; 4543 atomic_set(&mddev->max_corr_read_errors, n); 4544 return len; 4545 } 4546 4547 static struct md_sysfs_entry max_corr_read_errors = 4548 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4549 max_corrected_read_errors_store); 4550 4551 static ssize_t 4552 null_show(struct mddev *mddev, char *page) 4553 { 4554 return -EINVAL; 4555 } 4556 4557 /* need to ensure rdev_delayed_delete() has completed */ 4558 static void flush_rdev_wq(struct mddev *mddev) 4559 { 4560 struct md_rdev *rdev; 4561 4562 rcu_read_lock(); 4563 rdev_for_each_rcu(rdev, mddev) 4564 if (work_pending(&rdev->del_work)) { 4565 flush_workqueue(md_rdev_misc_wq); 4566 break; 4567 } 4568 rcu_read_unlock(); 4569 } 4570 4571 static ssize_t 4572 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4573 { 4574 /* buf must be %d:%d\n? giving major and minor numbers */ 4575 /* The new device is added to the array. 4576 * If the array has a persistent superblock, we read the 4577 * superblock to initialise info and check validity. 4578 * Otherwise, only checking done is that in bind_rdev_to_array, 4579 * which mainly checks size. 4580 */ 4581 char *e; 4582 int major = simple_strtoul(buf, &e, 10); 4583 int minor; 4584 dev_t dev; 4585 struct md_rdev *rdev; 4586 int err; 4587 4588 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4589 return -EINVAL; 4590 minor = simple_strtoul(e+1, &e, 10); 4591 if (*e && *e != '\n') 4592 return -EINVAL; 4593 dev = MKDEV(major, minor); 4594 if (major != MAJOR(dev) || 4595 minor != MINOR(dev)) 4596 return -EOVERFLOW; 4597 4598 flush_rdev_wq(mddev); 4599 err = mddev_lock(mddev); 4600 if (err) 4601 return err; 4602 if (mddev->persistent) { 4603 rdev = md_import_device(dev, mddev->major_version, 4604 mddev->minor_version); 4605 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4606 struct md_rdev *rdev0 4607 = list_entry(mddev->disks.next, 4608 struct md_rdev, same_set); 4609 err = super_types[mddev->major_version] 4610 .load_super(rdev, rdev0, mddev->minor_version); 4611 if (err < 0) 4612 goto out; 4613 } 4614 } else if (mddev->external) 4615 rdev = md_import_device(dev, -2, -1); 4616 else 4617 rdev = md_import_device(dev, -1, -1); 4618 4619 if (IS_ERR(rdev)) { 4620 mddev_unlock(mddev); 4621 return PTR_ERR(rdev); 4622 } 4623 err = bind_rdev_to_array(rdev, mddev); 4624 out: 4625 if (err) 4626 export_rdev(rdev); 4627 mddev_unlock(mddev); 4628 if (!err) 4629 md_new_event(); 4630 return err ? err : len; 4631 } 4632 4633 static struct md_sysfs_entry md_new_device = 4634 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4635 4636 static ssize_t 4637 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4638 { 4639 char *end; 4640 unsigned long chunk, end_chunk; 4641 int err; 4642 4643 err = mddev_lock(mddev); 4644 if (err) 4645 return err; 4646 if (!mddev->bitmap) 4647 goto out; 4648 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4649 while (*buf) { 4650 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4651 if (buf == end) break; 4652 if (*end == '-') { /* range */ 4653 buf = end + 1; 4654 end_chunk = simple_strtoul(buf, &end, 0); 4655 if (buf == end) break; 4656 } 4657 if (*end && !isspace(*end)) break; 4658 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4659 buf = skip_spaces(end); 4660 } 4661 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4662 out: 4663 mddev_unlock(mddev); 4664 return len; 4665 } 4666 4667 static struct md_sysfs_entry md_bitmap = 4668 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4669 4670 static ssize_t 4671 size_show(struct mddev *mddev, char *page) 4672 { 4673 return sprintf(page, "%llu\n", 4674 (unsigned long long)mddev->dev_sectors / 2); 4675 } 4676 4677 static int update_size(struct mddev *mddev, sector_t num_sectors); 4678 4679 static ssize_t 4680 size_store(struct mddev *mddev, const char *buf, size_t len) 4681 { 4682 /* If array is inactive, we can reduce the component size, but 4683 * not increase it (except from 0). 4684 * If array is active, we can try an on-line resize 4685 */ 4686 sector_t sectors; 4687 int err = strict_blocks_to_sectors(buf, §ors); 4688 4689 if (err < 0) 4690 return err; 4691 err = mddev_lock(mddev); 4692 if (err) 4693 return err; 4694 if (mddev->pers) { 4695 err = update_size(mddev, sectors); 4696 if (err == 0) 4697 md_update_sb(mddev, 1); 4698 } else { 4699 if (mddev->dev_sectors == 0 || 4700 mddev->dev_sectors > sectors) 4701 mddev->dev_sectors = sectors; 4702 else 4703 err = -ENOSPC; 4704 } 4705 mddev_unlock(mddev); 4706 return err ? err : len; 4707 } 4708 4709 static struct md_sysfs_entry md_size = 4710 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4711 4712 /* Metadata version. 4713 * This is one of 4714 * 'none' for arrays with no metadata (good luck...) 4715 * 'external' for arrays with externally managed metadata, 4716 * or N.M for internally known formats 4717 */ 4718 static ssize_t 4719 metadata_show(struct mddev *mddev, char *page) 4720 { 4721 if (mddev->persistent) 4722 return sprintf(page, "%d.%d\n", 4723 mddev->major_version, mddev->minor_version); 4724 else if (mddev->external) 4725 return sprintf(page, "external:%s\n", mddev->metadata_type); 4726 else 4727 return sprintf(page, "none\n"); 4728 } 4729 4730 static ssize_t 4731 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4732 { 4733 int major, minor; 4734 char *e; 4735 int err; 4736 /* Changing the details of 'external' metadata is 4737 * always permitted. Otherwise there must be 4738 * no devices attached to the array. 4739 */ 4740 4741 err = mddev_lock(mddev); 4742 if (err) 4743 return err; 4744 err = -EBUSY; 4745 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4746 ; 4747 else if (!list_empty(&mddev->disks)) 4748 goto out_unlock; 4749 4750 err = 0; 4751 if (cmd_match(buf, "none")) { 4752 mddev->persistent = 0; 4753 mddev->external = 0; 4754 mddev->major_version = 0; 4755 mddev->minor_version = 90; 4756 goto out_unlock; 4757 } 4758 if (strncmp(buf, "external:", 9) == 0) { 4759 size_t namelen = len-9; 4760 if (namelen >= sizeof(mddev->metadata_type)) 4761 namelen = sizeof(mddev->metadata_type)-1; 4762 strncpy(mddev->metadata_type, buf+9, namelen); 4763 mddev->metadata_type[namelen] = 0; 4764 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4765 mddev->metadata_type[--namelen] = 0; 4766 mddev->persistent = 0; 4767 mddev->external = 1; 4768 mddev->major_version = 0; 4769 mddev->minor_version = 90; 4770 goto out_unlock; 4771 } 4772 major = simple_strtoul(buf, &e, 10); 4773 err = -EINVAL; 4774 if (e==buf || *e != '.') 4775 goto out_unlock; 4776 buf = e+1; 4777 minor = simple_strtoul(buf, &e, 10); 4778 if (e==buf || (*e && *e != '\n') ) 4779 goto out_unlock; 4780 err = -ENOENT; 4781 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4782 goto out_unlock; 4783 mddev->major_version = major; 4784 mddev->minor_version = minor; 4785 mddev->persistent = 1; 4786 mddev->external = 0; 4787 err = 0; 4788 out_unlock: 4789 mddev_unlock(mddev); 4790 return err ?: len; 4791 } 4792 4793 static struct md_sysfs_entry md_metadata = 4794 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4795 4796 static ssize_t 4797 action_show(struct mddev *mddev, char *page) 4798 { 4799 char *type = "idle"; 4800 unsigned long recovery = mddev->recovery; 4801 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4802 type = "frozen"; 4803 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4804 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4805 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4806 type = "reshape"; 4807 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4808 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4809 type = "resync"; 4810 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4811 type = "check"; 4812 else 4813 type = "repair"; 4814 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4815 type = "recover"; 4816 else if (mddev->reshape_position != MaxSector) 4817 type = "reshape"; 4818 } 4819 return sprintf(page, "%s\n", type); 4820 } 4821 4822 static ssize_t 4823 action_store(struct mddev *mddev, const char *page, size_t len) 4824 { 4825 if (!mddev->pers || !mddev->pers->sync_request) 4826 return -EINVAL; 4827 4828 4829 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4830 if (cmd_match(page, "frozen")) 4831 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4832 else 4833 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4835 mddev_lock(mddev) == 0) { 4836 if (work_pending(&mddev->del_work)) 4837 flush_workqueue(md_misc_wq); 4838 if (mddev->sync_thread) { 4839 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4840 md_reap_sync_thread(mddev); 4841 } 4842 mddev_unlock(mddev); 4843 } 4844 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4845 return -EBUSY; 4846 else if (cmd_match(page, "resync")) 4847 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4848 else if (cmd_match(page, "recover")) { 4849 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4850 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4851 } else if (cmd_match(page, "reshape")) { 4852 int err; 4853 if (mddev->pers->start_reshape == NULL) 4854 return -EINVAL; 4855 err = mddev_lock(mddev); 4856 if (!err) { 4857 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4858 err = -EBUSY; 4859 else { 4860 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4861 err = mddev->pers->start_reshape(mddev); 4862 } 4863 mddev_unlock(mddev); 4864 } 4865 if (err) 4866 return err; 4867 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4868 } else { 4869 if (cmd_match(page, "check")) 4870 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4871 else if (!cmd_match(page, "repair")) 4872 return -EINVAL; 4873 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4874 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4875 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4876 } 4877 if (mddev->ro == 2) { 4878 /* A write to sync_action is enough to justify 4879 * canceling read-auto mode 4880 */ 4881 mddev->ro = 0; 4882 md_wakeup_thread(mddev->sync_thread); 4883 } 4884 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4885 md_wakeup_thread(mddev->thread); 4886 sysfs_notify_dirent_safe(mddev->sysfs_action); 4887 return len; 4888 } 4889 4890 static struct md_sysfs_entry md_scan_mode = 4891 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4892 4893 static ssize_t 4894 last_sync_action_show(struct mddev *mddev, char *page) 4895 { 4896 return sprintf(page, "%s\n", mddev->last_sync_action); 4897 } 4898 4899 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4900 4901 static ssize_t 4902 mismatch_cnt_show(struct mddev *mddev, char *page) 4903 { 4904 return sprintf(page, "%llu\n", 4905 (unsigned long long) 4906 atomic64_read(&mddev->resync_mismatches)); 4907 } 4908 4909 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4910 4911 static ssize_t 4912 sync_min_show(struct mddev *mddev, char *page) 4913 { 4914 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4915 mddev->sync_speed_min ? "local": "system"); 4916 } 4917 4918 static ssize_t 4919 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4920 { 4921 unsigned int min; 4922 int rv; 4923 4924 if (strncmp(buf, "system", 6)==0) { 4925 min = 0; 4926 } else { 4927 rv = kstrtouint(buf, 10, &min); 4928 if (rv < 0) 4929 return rv; 4930 if (min == 0) 4931 return -EINVAL; 4932 } 4933 mddev->sync_speed_min = min; 4934 return len; 4935 } 4936 4937 static struct md_sysfs_entry md_sync_min = 4938 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4939 4940 static ssize_t 4941 sync_max_show(struct mddev *mddev, char *page) 4942 { 4943 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4944 mddev->sync_speed_max ? "local": "system"); 4945 } 4946 4947 static ssize_t 4948 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4949 { 4950 unsigned int max; 4951 int rv; 4952 4953 if (strncmp(buf, "system", 6)==0) { 4954 max = 0; 4955 } else { 4956 rv = kstrtouint(buf, 10, &max); 4957 if (rv < 0) 4958 return rv; 4959 if (max == 0) 4960 return -EINVAL; 4961 } 4962 mddev->sync_speed_max = max; 4963 return len; 4964 } 4965 4966 static struct md_sysfs_entry md_sync_max = 4967 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4968 4969 static ssize_t 4970 degraded_show(struct mddev *mddev, char *page) 4971 { 4972 return sprintf(page, "%d\n", mddev->degraded); 4973 } 4974 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4975 4976 static ssize_t 4977 sync_force_parallel_show(struct mddev *mddev, char *page) 4978 { 4979 return sprintf(page, "%d\n", mddev->parallel_resync); 4980 } 4981 4982 static ssize_t 4983 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4984 { 4985 long n; 4986 4987 if (kstrtol(buf, 10, &n)) 4988 return -EINVAL; 4989 4990 if (n != 0 && n != 1) 4991 return -EINVAL; 4992 4993 mddev->parallel_resync = n; 4994 4995 if (mddev->sync_thread) 4996 wake_up(&resync_wait); 4997 4998 return len; 4999 } 5000 5001 /* force parallel resync, even with shared block devices */ 5002 static struct md_sysfs_entry md_sync_force_parallel = 5003 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5004 sync_force_parallel_show, sync_force_parallel_store); 5005 5006 static ssize_t 5007 sync_speed_show(struct mddev *mddev, char *page) 5008 { 5009 unsigned long resync, dt, db; 5010 if (mddev->curr_resync == 0) 5011 return sprintf(page, "none\n"); 5012 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5013 dt = (jiffies - mddev->resync_mark) / HZ; 5014 if (!dt) dt++; 5015 db = resync - mddev->resync_mark_cnt; 5016 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5017 } 5018 5019 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5020 5021 static ssize_t 5022 sync_completed_show(struct mddev *mddev, char *page) 5023 { 5024 unsigned long long max_sectors, resync; 5025 5026 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5027 return sprintf(page, "none\n"); 5028 5029 if (mddev->curr_resync == 1 || 5030 mddev->curr_resync == 2) 5031 return sprintf(page, "delayed\n"); 5032 5033 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5034 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5035 max_sectors = mddev->resync_max_sectors; 5036 else 5037 max_sectors = mddev->dev_sectors; 5038 5039 resync = mddev->curr_resync_completed; 5040 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5041 } 5042 5043 static struct md_sysfs_entry md_sync_completed = 5044 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5045 5046 static ssize_t 5047 min_sync_show(struct mddev *mddev, char *page) 5048 { 5049 return sprintf(page, "%llu\n", 5050 (unsigned long long)mddev->resync_min); 5051 } 5052 static ssize_t 5053 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5054 { 5055 unsigned long long min; 5056 int err; 5057 5058 if (kstrtoull(buf, 10, &min)) 5059 return -EINVAL; 5060 5061 spin_lock(&mddev->lock); 5062 err = -EINVAL; 5063 if (min > mddev->resync_max) 5064 goto out_unlock; 5065 5066 err = -EBUSY; 5067 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5068 goto out_unlock; 5069 5070 /* Round down to multiple of 4K for safety */ 5071 mddev->resync_min = round_down(min, 8); 5072 err = 0; 5073 5074 out_unlock: 5075 spin_unlock(&mddev->lock); 5076 return err ?: len; 5077 } 5078 5079 static struct md_sysfs_entry md_min_sync = 5080 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5081 5082 static ssize_t 5083 max_sync_show(struct mddev *mddev, char *page) 5084 { 5085 if (mddev->resync_max == MaxSector) 5086 return sprintf(page, "max\n"); 5087 else 5088 return sprintf(page, "%llu\n", 5089 (unsigned long long)mddev->resync_max); 5090 } 5091 static ssize_t 5092 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5093 { 5094 int err; 5095 spin_lock(&mddev->lock); 5096 if (strncmp(buf, "max", 3) == 0) 5097 mddev->resync_max = MaxSector; 5098 else { 5099 unsigned long long max; 5100 int chunk; 5101 5102 err = -EINVAL; 5103 if (kstrtoull(buf, 10, &max)) 5104 goto out_unlock; 5105 if (max < mddev->resync_min) 5106 goto out_unlock; 5107 5108 err = -EBUSY; 5109 if (max < mddev->resync_max && 5110 mddev->ro == 0 && 5111 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5112 goto out_unlock; 5113 5114 /* Must be a multiple of chunk_size */ 5115 chunk = mddev->chunk_sectors; 5116 if (chunk) { 5117 sector_t temp = max; 5118 5119 err = -EINVAL; 5120 if (sector_div(temp, chunk)) 5121 goto out_unlock; 5122 } 5123 mddev->resync_max = max; 5124 } 5125 wake_up(&mddev->recovery_wait); 5126 err = 0; 5127 out_unlock: 5128 spin_unlock(&mddev->lock); 5129 return err ?: len; 5130 } 5131 5132 static struct md_sysfs_entry md_max_sync = 5133 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5134 5135 static ssize_t 5136 suspend_lo_show(struct mddev *mddev, char *page) 5137 { 5138 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5139 } 5140 5141 static ssize_t 5142 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5143 { 5144 unsigned long long new; 5145 int err; 5146 5147 err = kstrtoull(buf, 10, &new); 5148 if (err < 0) 5149 return err; 5150 if (new != (sector_t)new) 5151 return -EINVAL; 5152 5153 err = mddev_lock(mddev); 5154 if (err) 5155 return err; 5156 err = -EINVAL; 5157 if (mddev->pers == NULL || 5158 mddev->pers->quiesce == NULL) 5159 goto unlock; 5160 mddev_suspend(mddev); 5161 mddev->suspend_lo = new; 5162 mddev_resume(mddev); 5163 5164 err = 0; 5165 unlock: 5166 mddev_unlock(mddev); 5167 return err ?: len; 5168 } 5169 static struct md_sysfs_entry md_suspend_lo = 5170 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5171 5172 static ssize_t 5173 suspend_hi_show(struct mddev *mddev, char *page) 5174 { 5175 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5176 } 5177 5178 static ssize_t 5179 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5180 { 5181 unsigned long long new; 5182 int err; 5183 5184 err = kstrtoull(buf, 10, &new); 5185 if (err < 0) 5186 return err; 5187 if (new != (sector_t)new) 5188 return -EINVAL; 5189 5190 err = mddev_lock(mddev); 5191 if (err) 5192 return err; 5193 err = -EINVAL; 5194 if (mddev->pers == NULL) 5195 goto unlock; 5196 5197 mddev_suspend(mddev); 5198 mddev->suspend_hi = new; 5199 mddev_resume(mddev); 5200 5201 err = 0; 5202 unlock: 5203 mddev_unlock(mddev); 5204 return err ?: len; 5205 } 5206 static struct md_sysfs_entry md_suspend_hi = 5207 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5208 5209 static ssize_t 5210 reshape_position_show(struct mddev *mddev, char *page) 5211 { 5212 if (mddev->reshape_position != MaxSector) 5213 return sprintf(page, "%llu\n", 5214 (unsigned long long)mddev->reshape_position); 5215 strcpy(page, "none\n"); 5216 return 5; 5217 } 5218 5219 static ssize_t 5220 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5221 { 5222 struct md_rdev *rdev; 5223 unsigned long long new; 5224 int err; 5225 5226 err = kstrtoull(buf, 10, &new); 5227 if (err < 0) 5228 return err; 5229 if (new != (sector_t)new) 5230 return -EINVAL; 5231 err = mddev_lock(mddev); 5232 if (err) 5233 return err; 5234 err = -EBUSY; 5235 if (mddev->pers) 5236 goto unlock; 5237 mddev->reshape_position = new; 5238 mddev->delta_disks = 0; 5239 mddev->reshape_backwards = 0; 5240 mddev->new_level = mddev->level; 5241 mddev->new_layout = mddev->layout; 5242 mddev->new_chunk_sectors = mddev->chunk_sectors; 5243 rdev_for_each(rdev, mddev) 5244 rdev->new_data_offset = rdev->data_offset; 5245 err = 0; 5246 unlock: 5247 mddev_unlock(mddev); 5248 return err ?: len; 5249 } 5250 5251 static struct md_sysfs_entry md_reshape_position = 5252 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5253 reshape_position_store); 5254 5255 static ssize_t 5256 reshape_direction_show(struct mddev *mddev, char *page) 5257 { 5258 return sprintf(page, "%s\n", 5259 mddev->reshape_backwards ? "backwards" : "forwards"); 5260 } 5261 5262 static ssize_t 5263 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5264 { 5265 int backwards = 0; 5266 int err; 5267 5268 if (cmd_match(buf, "forwards")) 5269 backwards = 0; 5270 else if (cmd_match(buf, "backwards")) 5271 backwards = 1; 5272 else 5273 return -EINVAL; 5274 if (mddev->reshape_backwards == backwards) 5275 return len; 5276 5277 err = mddev_lock(mddev); 5278 if (err) 5279 return err; 5280 /* check if we are allowed to change */ 5281 if (mddev->delta_disks) 5282 err = -EBUSY; 5283 else if (mddev->persistent && 5284 mddev->major_version == 0) 5285 err = -EINVAL; 5286 else 5287 mddev->reshape_backwards = backwards; 5288 mddev_unlock(mddev); 5289 return err ?: len; 5290 } 5291 5292 static struct md_sysfs_entry md_reshape_direction = 5293 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5294 reshape_direction_store); 5295 5296 static ssize_t 5297 array_size_show(struct mddev *mddev, char *page) 5298 { 5299 if (mddev->external_size) 5300 return sprintf(page, "%llu\n", 5301 (unsigned long long)mddev->array_sectors/2); 5302 else 5303 return sprintf(page, "default\n"); 5304 } 5305 5306 static ssize_t 5307 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5308 { 5309 sector_t sectors; 5310 int err; 5311 5312 err = mddev_lock(mddev); 5313 if (err) 5314 return err; 5315 5316 /* cluster raid doesn't support change array_sectors */ 5317 if (mddev_is_clustered(mddev)) { 5318 mddev_unlock(mddev); 5319 return -EINVAL; 5320 } 5321 5322 if (strncmp(buf, "default", 7) == 0) { 5323 if (mddev->pers) 5324 sectors = mddev->pers->size(mddev, 0, 0); 5325 else 5326 sectors = mddev->array_sectors; 5327 5328 mddev->external_size = 0; 5329 } else { 5330 if (strict_blocks_to_sectors(buf, §ors) < 0) 5331 err = -EINVAL; 5332 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5333 err = -E2BIG; 5334 else 5335 mddev->external_size = 1; 5336 } 5337 5338 if (!err) { 5339 mddev->array_sectors = sectors; 5340 if (mddev->pers) 5341 set_capacity_and_notify(mddev->gendisk, 5342 mddev->array_sectors); 5343 } 5344 mddev_unlock(mddev); 5345 return err ?: len; 5346 } 5347 5348 static struct md_sysfs_entry md_array_size = 5349 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5350 array_size_store); 5351 5352 static ssize_t 5353 consistency_policy_show(struct mddev *mddev, char *page) 5354 { 5355 int ret; 5356 5357 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5358 ret = sprintf(page, "journal\n"); 5359 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5360 ret = sprintf(page, "ppl\n"); 5361 } else if (mddev->bitmap) { 5362 ret = sprintf(page, "bitmap\n"); 5363 } else if (mddev->pers) { 5364 if (mddev->pers->sync_request) 5365 ret = sprintf(page, "resync\n"); 5366 else 5367 ret = sprintf(page, "none\n"); 5368 } else { 5369 ret = sprintf(page, "unknown\n"); 5370 } 5371 5372 return ret; 5373 } 5374 5375 static ssize_t 5376 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5377 { 5378 int err = 0; 5379 5380 if (mddev->pers) { 5381 if (mddev->pers->change_consistency_policy) 5382 err = mddev->pers->change_consistency_policy(mddev, buf); 5383 else 5384 err = -EBUSY; 5385 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5386 set_bit(MD_HAS_PPL, &mddev->flags); 5387 } else { 5388 err = -EINVAL; 5389 } 5390 5391 return err ? err : len; 5392 } 5393 5394 static struct md_sysfs_entry md_consistency_policy = 5395 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5396 consistency_policy_store); 5397 5398 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5399 { 5400 return sprintf(page, "%d\n", mddev->fail_last_dev); 5401 } 5402 5403 /* 5404 * Setting fail_last_dev to true to allow last device to be forcibly removed 5405 * from RAID1/RAID10. 5406 */ 5407 static ssize_t 5408 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5409 { 5410 int ret; 5411 bool value; 5412 5413 ret = kstrtobool(buf, &value); 5414 if (ret) 5415 return ret; 5416 5417 if (value != mddev->fail_last_dev) 5418 mddev->fail_last_dev = value; 5419 5420 return len; 5421 } 5422 static struct md_sysfs_entry md_fail_last_dev = 5423 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5424 fail_last_dev_store); 5425 5426 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5427 { 5428 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5429 return sprintf(page, "n/a\n"); 5430 else 5431 return sprintf(page, "%d\n", mddev->serialize_policy); 5432 } 5433 5434 /* 5435 * Setting serialize_policy to true to enforce write IO is not reordered 5436 * for raid1. 5437 */ 5438 static ssize_t 5439 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5440 { 5441 int err; 5442 bool value; 5443 5444 err = kstrtobool(buf, &value); 5445 if (err) 5446 return err; 5447 5448 if (value == mddev->serialize_policy) 5449 return len; 5450 5451 err = mddev_lock(mddev); 5452 if (err) 5453 return err; 5454 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5455 pr_err("md: serialize_policy is only effective for raid1\n"); 5456 err = -EINVAL; 5457 goto unlock; 5458 } 5459 5460 mddev_suspend(mddev); 5461 if (value) 5462 mddev_create_serial_pool(mddev, NULL, true); 5463 else 5464 mddev_destroy_serial_pool(mddev, NULL, true); 5465 mddev->serialize_policy = value; 5466 mddev_resume(mddev); 5467 unlock: 5468 mddev_unlock(mddev); 5469 return err ?: len; 5470 } 5471 5472 static struct md_sysfs_entry md_serialize_policy = 5473 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5474 serialize_policy_store); 5475 5476 5477 static struct attribute *md_default_attrs[] = { 5478 &md_level.attr, 5479 &md_layout.attr, 5480 &md_raid_disks.attr, 5481 &md_uuid.attr, 5482 &md_chunk_size.attr, 5483 &md_size.attr, 5484 &md_resync_start.attr, 5485 &md_metadata.attr, 5486 &md_new_device.attr, 5487 &md_safe_delay.attr, 5488 &md_array_state.attr, 5489 &md_reshape_position.attr, 5490 &md_reshape_direction.attr, 5491 &md_array_size.attr, 5492 &max_corr_read_errors.attr, 5493 &md_consistency_policy.attr, 5494 &md_fail_last_dev.attr, 5495 &md_serialize_policy.attr, 5496 NULL, 5497 }; 5498 5499 static const struct attribute_group md_default_group = { 5500 .attrs = md_default_attrs, 5501 }; 5502 5503 static struct attribute *md_redundancy_attrs[] = { 5504 &md_scan_mode.attr, 5505 &md_last_scan_mode.attr, 5506 &md_mismatches.attr, 5507 &md_sync_min.attr, 5508 &md_sync_max.attr, 5509 &md_sync_speed.attr, 5510 &md_sync_force_parallel.attr, 5511 &md_sync_completed.attr, 5512 &md_min_sync.attr, 5513 &md_max_sync.attr, 5514 &md_suspend_lo.attr, 5515 &md_suspend_hi.attr, 5516 &md_bitmap.attr, 5517 &md_degraded.attr, 5518 NULL, 5519 }; 5520 static const struct attribute_group md_redundancy_group = { 5521 .name = NULL, 5522 .attrs = md_redundancy_attrs, 5523 }; 5524 5525 static const struct attribute_group *md_attr_groups[] = { 5526 &md_default_group, 5527 &md_bitmap_group, 5528 NULL, 5529 }; 5530 5531 static ssize_t 5532 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5533 { 5534 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5535 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5536 ssize_t rv; 5537 5538 if (!entry->show) 5539 return -EIO; 5540 spin_lock(&all_mddevs_lock); 5541 if (list_empty(&mddev->all_mddevs)) { 5542 spin_unlock(&all_mddevs_lock); 5543 return -EBUSY; 5544 } 5545 mddev_get(mddev); 5546 spin_unlock(&all_mddevs_lock); 5547 5548 rv = entry->show(mddev, page); 5549 mddev_put(mddev); 5550 return rv; 5551 } 5552 5553 static ssize_t 5554 md_attr_store(struct kobject *kobj, struct attribute *attr, 5555 const char *page, size_t length) 5556 { 5557 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5558 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5559 ssize_t rv; 5560 5561 if (!entry->store) 5562 return -EIO; 5563 if (!capable(CAP_SYS_ADMIN)) 5564 return -EACCES; 5565 spin_lock(&all_mddevs_lock); 5566 if (list_empty(&mddev->all_mddevs)) { 5567 spin_unlock(&all_mddevs_lock); 5568 return -EBUSY; 5569 } 5570 mddev_get(mddev); 5571 spin_unlock(&all_mddevs_lock); 5572 rv = entry->store(mddev, page, length); 5573 mddev_put(mddev); 5574 return rv; 5575 } 5576 5577 static void md_free(struct kobject *ko) 5578 { 5579 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5580 5581 if (mddev->sysfs_state) 5582 sysfs_put(mddev->sysfs_state); 5583 if (mddev->sysfs_level) 5584 sysfs_put(mddev->sysfs_level); 5585 5586 if (mddev->gendisk) { 5587 del_gendisk(mddev->gendisk); 5588 blk_cleanup_disk(mddev->gendisk); 5589 } 5590 percpu_ref_exit(&mddev->writes_pending); 5591 5592 bioset_exit(&mddev->bio_set); 5593 bioset_exit(&mddev->sync_set); 5594 if (mddev->level != 1 && mddev->level != 10) 5595 bioset_exit(&mddev->io_acct_set); 5596 kfree(mddev); 5597 } 5598 5599 static const struct sysfs_ops md_sysfs_ops = { 5600 .show = md_attr_show, 5601 .store = md_attr_store, 5602 }; 5603 static struct kobj_type md_ktype = { 5604 .release = md_free, 5605 .sysfs_ops = &md_sysfs_ops, 5606 .default_groups = md_attr_groups, 5607 }; 5608 5609 int mdp_major = 0; 5610 5611 static void mddev_delayed_delete(struct work_struct *ws) 5612 { 5613 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5614 5615 kobject_del(&mddev->kobj); 5616 kobject_put(&mddev->kobj); 5617 } 5618 5619 static void no_op(struct percpu_ref *r) {} 5620 5621 int mddev_init_writes_pending(struct mddev *mddev) 5622 { 5623 if (mddev->writes_pending.percpu_count_ptr) 5624 return 0; 5625 if (percpu_ref_init(&mddev->writes_pending, no_op, 5626 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5627 return -ENOMEM; 5628 /* We want to start with the refcount at zero */ 5629 percpu_ref_put(&mddev->writes_pending); 5630 return 0; 5631 } 5632 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5633 5634 static int md_alloc(dev_t dev, char *name) 5635 { 5636 /* 5637 * If dev is zero, name is the name of a device to allocate with 5638 * an arbitrary minor number. It will be "md_???" 5639 * If dev is non-zero it must be a device number with a MAJOR of 5640 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5641 * the device is being created by opening a node in /dev. 5642 * If "name" is not NULL, the device is being created by 5643 * writing to /sys/module/md_mod/parameters/new_array. 5644 */ 5645 static DEFINE_MUTEX(disks_mutex); 5646 struct mddev *mddev; 5647 struct gendisk *disk; 5648 int partitioned; 5649 int shift; 5650 int unit; 5651 int error ; 5652 5653 /* 5654 * Wait for any previous instance of this device to be completely 5655 * removed (mddev_delayed_delete). 5656 */ 5657 flush_workqueue(md_misc_wq); 5658 5659 mutex_lock(&disks_mutex); 5660 mddev = mddev_alloc(dev); 5661 if (IS_ERR(mddev)) { 5662 mutex_unlock(&disks_mutex); 5663 return PTR_ERR(mddev); 5664 } 5665 5666 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5667 shift = partitioned ? MdpMinorShift : 0; 5668 unit = MINOR(mddev->unit) >> shift; 5669 5670 if (name && !dev) { 5671 /* Need to ensure that 'name' is not a duplicate. 5672 */ 5673 struct mddev *mddev2; 5674 spin_lock(&all_mddevs_lock); 5675 5676 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5677 if (mddev2->gendisk && 5678 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5679 spin_unlock(&all_mddevs_lock); 5680 error = -EEXIST; 5681 goto out_unlock_disks_mutex; 5682 } 5683 spin_unlock(&all_mddevs_lock); 5684 } 5685 if (name && dev) 5686 /* 5687 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5688 */ 5689 mddev->hold_active = UNTIL_STOP; 5690 5691 error = -ENOMEM; 5692 disk = blk_alloc_disk(NUMA_NO_NODE); 5693 if (!disk) 5694 goto out_unlock_disks_mutex; 5695 5696 disk->major = MAJOR(mddev->unit); 5697 disk->first_minor = unit << shift; 5698 disk->minors = 1 << shift; 5699 if (name) 5700 strcpy(disk->disk_name, name); 5701 else if (partitioned) 5702 sprintf(disk->disk_name, "md_d%d", unit); 5703 else 5704 sprintf(disk->disk_name, "md%d", unit); 5705 disk->fops = &md_fops; 5706 disk->private_data = mddev; 5707 5708 mddev->queue = disk->queue; 5709 blk_set_stacking_limits(&mddev->queue->limits); 5710 blk_queue_write_cache(mddev->queue, true, true); 5711 /* Allow extended partitions. This makes the 5712 * 'mdp' device redundant, but we can't really 5713 * remove it now. 5714 */ 5715 disk->flags |= GENHD_FL_EXT_DEVT; 5716 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5717 mddev->gendisk = disk; 5718 error = add_disk(disk); 5719 if (error) 5720 goto out_cleanup_disk; 5721 5722 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5723 if (error) 5724 goto out_del_gendisk; 5725 5726 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5727 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5728 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5729 goto out_unlock_disks_mutex; 5730 5731 out_del_gendisk: 5732 del_gendisk(disk); 5733 out_cleanup_disk: 5734 blk_cleanup_disk(disk); 5735 out_unlock_disks_mutex: 5736 mutex_unlock(&disks_mutex); 5737 mddev_put(mddev); 5738 return error; 5739 } 5740 5741 static void md_probe(dev_t dev) 5742 { 5743 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5744 return; 5745 if (create_on_open) 5746 md_alloc(dev, NULL); 5747 } 5748 5749 static int add_named_array(const char *val, const struct kernel_param *kp) 5750 { 5751 /* 5752 * val must be "md_*" or "mdNNN". 5753 * For "md_*" we allocate an array with a large free minor number, and 5754 * set the name to val. val must not already be an active name. 5755 * For "mdNNN" we allocate an array with the minor number NNN 5756 * which must not already be in use. 5757 */ 5758 int len = strlen(val); 5759 char buf[DISK_NAME_LEN]; 5760 unsigned long devnum; 5761 5762 while (len && val[len-1] == '\n') 5763 len--; 5764 if (len >= DISK_NAME_LEN) 5765 return -E2BIG; 5766 strlcpy(buf, val, len+1); 5767 if (strncmp(buf, "md_", 3) == 0) 5768 return md_alloc(0, buf); 5769 if (strncmp(buf, "md", 2) == 0 && 5770 isdigit(buf[2]) && 5771 kstrtoul(buf+2, 10, &devnum) == 0 && 5772 devnum <= MINORMASK) 5773 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5774 5775 return -EINVAL; 5776 } 5777 5778 static void md_safemode_timeout(struct timer_list *t) 5779 { 5780 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5781 5782 mddev->safemode = 1; 5783 if (mddev->external) 5784 sysfs_notify_dirent_safe(mddev->sysfs_state); 5785 5786 md_wakeup_thread(mddev->thread); 5787 } 5788 5789 static int start_dirty_degraded; 5790 5791 int md_run(struct mddev *mddev) 5792 { 5793 int err; 5794 struct md_rdev *rdev; 5795 struct md_personality *pers; 5796 5797 if (list_empty(&mddev->disks)) 5798 /* cannot run an array with no devices.. */ 5799 return -EINVAL; 5800 5801 if (mddev->pers) 5802 return -EBUSY; 5803 /* Cannot run until previous stop completes properly */ 5804 if (mddev->sysfs_active) 5805 return -EBUSY; 5806 5807 /* 5808 * Analyze all RAID superblock(s) 5809 */ 5810 if (!mddev->raid_disks) { 5811 if (!mddev->persistent) 5812 return -EINVAL; 5813 err = analyze_sbs(mddev); 5814 if (err) 5815 return -EINVAL; 5816 } 5817 5818 if (mddev->level != LEVEL_NONE) 5819 request_module("md-level-%d", mddev->level); 5820 else if (mddev->clevel[0]) 5821 request_module("md-%s", mddev->clevel); 5822 5823 /* 5824 * Drop all container device buffers, from now on 5825 * the only valid external interface is through the md 5826 * device. 5827 */ 5828 mddev->has_superblocks = false; 5829 rdev_for_each(rdev, mddev) { 5830 if (test_bit(Faulty, &rdev->flags)) 5831 continue; 5832 sync_blockdev(rdev->bdev); 5833 invalidate_bdev(rdev->bdev); 5834 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5835 mddev->ro = 1; 5836 if (mddev->gendisk) 5837 set_disk_ro(mddev->gendisk, 1); 5838 } 5839 5840 if (rdev->sb_page) 5841 mddev->has_superblocks = true; 5842 5843 /* perform some consistency tests on the device. 5844 * We don't want the data to overlap the metadata, 5845 * Internal Bitmap issues have been handled elsewhere. 5846 */ 5847 if (rdev->meta_bdev) { 5848 /* Nothing to check */; 5849 } else if (rdev->data_offset < rdev->sb_start) { 5850 if (mddev->dev_sectors && 5851 rdev->data_offset + mddev->dev_sectors 5852 > rdev->sb_start) { 5853 pr_warn("md: %s: data overlaps metadata\n", 5854 mdname(mddev)); 5855 return -EINVAL; 5856 } 5857 } else { 5858 if (rdev->sb_start + rdev->sb_size/512 5859 > rdev->data_offset) { 5860 pr_warn("md: %s: metadata overlaps data\n", 5861 mdname(mddev)); 5862 return -EINVAL; 5863 } 5864 } 5865 sysfs_notify_dirent_safe(rdev->sysfs_state); 5866 } 5867 5868 if (!bioset_initialized(&mddev->bio_set)) { 5869 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5870 if (err) 5871 return err; 5872 } 5873 if (!bioset_initialized(&mddev->sync_set)) { 5874 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5875 if (err) 5876 goto exit_bio_set; 5877 } 5878 if (mddev->level != 1 && mddev->level != 10 && 5879 !bioset_initialized(&mddev->io_acct_set)) { 5880 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 5881 offsetof(struct md_io_acct, bio_clone), 0); 5882 if (err) 5883 goto exit_sync_set; 5884 } 5885 5886 spin_lock(&pers_lock); 5887 pers = find_pers(mddev->level, mddev->clevel); 5888 if (!pers || !try_module_get(pers->owner)) { 5889 spin_unlock(&pers_lock); 5890 if (mddev->level != LEVEL_NONE) 5891 pr_warn("md: personality for level %d is not loaded!\n", 5892 mddev->level); 5893 else 5894 pr_warn("md: personality for level %s is not loaded!\n", 5895 mddev->clevel); 5896 err = -EINVAL; 5897 goto abort; 5898 } 5899 spin_unlock(&pers_lock); 5900 if (mddev->level != pers->level) { 5901 mddev->level = pers->level; 5902 mddev->new_level = pers->level; 5903 } 5904 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5905 5906 if (mddev->reshape_position != MaxSector && 5907 pers->start_reshape == NULL) { 5908 /* This personality cannot handle reshaping... */ 5909 module_put(pers->owner); 5910 err = -EINVAL; 5911 goto abort; 5912 } 5913 5914 if (pers->sync_request) { 5915 /* Warn if this is a potentially silly 5916 * configuration. 5917 */ 5918 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5919 struct md_rdev *rdev2; 5920 int warned = 0; 5921 5922 rdev_for_each(rdev, mddev) 5923 rdev_for_each(rdev2, mddev) { 5924 if (rdev < rdev2 && 5925 rdev->bdev->bd_disk == 5926 rdev2->bdev->bd_disk) { 5927 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5928 mdname(mddev), 5929 bdevname(rdev->bdev,b), 5930 bdevname(rdev2->bdev,b2)); 5931 warned = 1; 5932 } 5933 } 5934 5935 if (warned) 5936 pr_warn("True protection against single-disk failure might be compromised.\n"); 5937 } 5938 5939 mddev->recovery = 0; 5940 /* may be over-ridden by personality */ 5941 mddev->resync_max_sectors = mddev->dev_sectors; 5942 5943 mddev->ok_start_degraded = start_dirty_degraded; 5944 5945 if (start_readonly && mddev->ro == 0) 5946 mddev->ro = 2; /* read-only, but switch on first write */ 5947 5948 err = pers->run(mddev); 5949 if (err) 5950 pr_warn("md: pers->run() failed ...\n"); 5951 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5952 WARN_ONCE(!mddev->external_size, 5953 "%s: default size too small, but 'external_size' not in effect?\n", 5954 __func__); 5955 pr_warn("md: invalid array_size %llu > default size %llu\n", 5956 (unsigned long long)mddev->array_sectors / 2, 5957 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5958 err = -EINVAL; 5959 } 5960 if (err == 0 && pers->sync_request && 5961 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5962 struct bitmap *bitmap; 5963 5964 bitmap = md_bitmap_create(mddev, -1); 5965 if (IS_ERR(bitmap)) { 5966 err = PTR_ERR(bitmap); 5967 pr_warn("%s: failed to create bitmap (%d)\n", 5968 mdname(mddev), err); 5969 } else 5970 mddev->bitmap = bitmap; 5971 5972 } 5973 if (err) 5974 goto bitmap_abort; 5975 5976 if (mddev->bitmap_info.max_write_behind > 0) { 5977 bool create_pool = false; 5978 5979 rdev_for_each(rdev, mddev) { 5980 if (test_bit(WriteMostly, &rdev->flags) && 5981 rdev_init_serial(rdev)) 5982 create_pool = true; 5983 } 5984 if (create_pool && mddev->serial_info_pool == NULL) { 5985 mddev->serial_info_pool = 5986 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5987 sizeof(struct serial_info)); 5988 if (!mddev->serial_info_pool) { 5989 err = -ENOMEM; 5990 goto bitmap_abort; 5991 } 5992 } 5993 } 5994 5995 if (mddev->queue) { 5996 bool nonrot = true; 5997 5998 rdev_for_each(rdev, mddev) { 5999 if (rdev->raid_disk >= 0 && 6000 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 6001 nonrot = false; 6002 break; 6003 } 6004 } 6005 if (mddev->degraded) 6006 nonrot = false; 6007 if (nonrot) 6008 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6009 else 6010 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6011 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6012 } 6013 if (pers->sync_request) { 6014 if (mddev->kobj.sd && 6015 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6016 pr_warn("md: cannot register extra attributes for %s\n", 6017 mdname(mddev)); 6018 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6019 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6020 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6021 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6022 mddev->ro = 0; 6023 6024 atomic_set(&mddev->max_corr_read_errors, 6025 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6026 mddev->safemode = 0; 6027 if (mddev_is_clustered(mddev)) 6028 mddev->safemode_delay = 0; 6029 else 6030 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6031 mddev->in_sync = 1; 6032 smp_wmb(); 6033 spin_lock(&mddev->lock); 6034 mddev->pers = pers; 6035 spin_unlock(&mddev->lock); 6036 rdev_for_each(rdev, mddev) 6037 if (rdev->raid_disk >= 0) 6038 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6039 6040 if (mddev->degraded && !mddev->ro) 6041 /* This ensures that recovering status is reported immediately 6042 * via sysfs - until a lack of spares is confirmed. 6043 */ 6044 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6045 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6046 6047 if (mddev->sb_flags) 6048 md_update_sb(mddev, 0); 6049 6050 md_new_event(); 6051 return 0; 6052 6053 bitmap_abort: 6054 mddev_detach(mddev); 6055 if (mddev->private) 6056 pers->free(mddev, mddev->private); 6057 mddev->private = NULL; 6058 module_put(pers->owner); 6059 md_bitmap_destroy(mddev); 6060 abort: 6061 if (mddev->level != 1 && mddev->level != 10) 6062 bioset_exit(&mddev->io_acct_set); 6063 exit_sync_set: 6064 bioset_exit(&mddev->sync_set); 6065 exit_bio_set: 6066 bioset_exit(&mddev->bio_set); 6067 return err; 6068 } 6069 EXPORT_SYMBOL_GPL(md_run); 6070 6071 int do_md_run(struct mddev *mddev) 6072 { 6073 int err; 6074 6075 set_bit(MD_NOT_READY, &mddev->flags); 6076 err = md_run(mddev); 6077 if (err) 6078 goto out; 6079 err = md_bitmap_load(mddev); 6080 if (err) { 6081 md_bitmap_destroy(mddev); 6082 goto out; 6083 } 6084 6085 if (mddev_is_clustered(mddev)) 6086 md_allow_write(mddev); 6087 6088 /* run start up tasks that require md_thread */ 6089 md_start(mddev); 6090 6091 md_wakeup_thread(mddev->thread); 6092 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6093 6094 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6095 clear_bit(MD_NOT_READY, &mddev->flags); 6096 mddev->changed = 1; 6097 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6098 sysfs_notify_dirent_safe(mddev->sysfs_state); 6099 sysfs_notify_dirent_safe(mddev->sysfs_action); 6100 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6101 out: 6102 clear_bit(MD_NOT_READY, &mddev->flags); 6103 return err; 6104 } 6105 6106 int md_start(struct mddev *mddev) 6107 { 6108 int ret = 0; 6109 6110 if (mddev->pers->start) { 6111 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6112 md_wakeup_thread(mddev->thread); 6113 ret = mddev->pers->start(mddev); 6114 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6115 md_wakeup_thread(mddev->sync_thread); 6116 } 6117 return ret; 6118 } 6119 EXPORT_SYMBOL_GPL(md_start); 6120 6121 static int restart_array(struct mddev *mddev) 6122 { 6123 struct gendisk *disk = mddev->gendisk; 6124 struct md_rdev *rdev; 6125 bool has_journal = false; 6126 bool has_readonly = false; 6127 6128 /* Complain if it has no devices */ 6129 if (list_empty(&mddev->disks)) 6130 return -ENXIO; 6131 if (!mddev->pers) 6132 return -EINVAL; 6133 if (!mddev->ro) 6134 return -EBUSY; 6135 6136 rcu_read_lock(); 6137 rdev_for_each_rcu(rdev, mddev) { 6138 if (test_bit(Journal, &rdev->flags) && 6139 !test_bit(Faulty, &rdev->flags)) 6140 has_journal = true; 6141 if (rdev_read_only(rdev)) 6142 has_readonly = true; 6143 } 6144 rcu_read_unlock(); 6145 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6146 /* Don't restart rw with journal missing/faulty */ 6147 return -EINVAL; 6148 if (has_readonly) 6149 return -EROFS; 6150 6151 mddev->safemode = 0; 6152 mddev->ro = 0; 6153 set_disk_ro(disk, 0); 6154 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6155 /* Kick recovery or resync if necessary */ 6156 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6157 md_wakeup_thread(mddev->thread); 6158 md_wakeup_thread(mddev->sync_thread); 6159 sysfs_notify_dirent_safe(mddev->sysfs_state); 6160 return 0; 6161 } 6162 6163 static void md_clean(struct mddev *mddev) 6164 { 6165 mddev->array_sectors = 0; 6166 mddev->external_size = 0; 6167 mddev->dev_sectors = 0; 6168 mddev->raid_disks = 0; 6169 mddev->recovery_cp = 0; 6170 mddev->resync_min = 0; 6171 mddev->resync_max = MaxSector; 6172 mddev->reshape_position = MaxSector; 6173 mddev->external = 0; 6174 mddev->persistent = 0; 6175 mddev->level = LEVEL_NONE; 6176 mddev->clevel[0] = 0; 6177 mddev->flags = 0; 6178 mddev->sb_flags = 0; 6179 mddev->ro = 0; 6180 mddev->metadata_type[0] = 0; 6181 mddev->chunk_sectors = 0; 6182 mddev->ctime = mddev->utime = 0; 6183 mddev->layout = 0; 6184 mddev->max_disks = 0; 6185 mddev->events = 0; 6186 mddev->can_decrease_events = 0; 6187 mddev->delta_disks = 0; 6188 mddev->reshape_backwards = 0; 6189 mddev->new_level = LEVEL_NONE; 6190 mddev->new_layout = 0; 6191 mddev->new_chunk_sectors = 0; 6192 mddev->curr_resync = 0; 6193 atomic64_set(&mddev->resync_mismatches, 0); 6194 mddev->suspend_lo = mddev->suspend_hi = 0; 6195 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6196 mddev->recovery = 0; 6197 mddev->in_sync = 0; 6198 mddev->changed = 0; 6199 mddev->degraded = 0; 6200 mddev->safemode = 0; 6201 mddev->private = NULL; 6202 mddev->cluster_info = NULL; 6203 mddev->bitmap_info.offset = 0; 6204 mddev->bitmap_info.default_offset = 0; 6205 mddev->bitmap_info.default_space = 0; 6206 mddev->bitmap_info.chunksize = 0; 6207 mddev->bitmap_info.daemon_sleep = 0; 6208 mddev->bitmap_info.max_write_behind = 0; 6209 mddev->bitmap_info.nodes = 0; 6210 } 6211 6212 static void __md_stop_writes(struct mddev *mddev) 6213 { 6214 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6215 if (work_pending(&mddev->del_work)) 6216 flush_workqueue(md_misc_wq); 6217 if (mddev->sync_thread) { 6218 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6219 md_reap_sync_thread(mddev); 6220 } 6221 6222 del_timer_sync(&mddev->safemode_timer); 6223 6224 if (mddev->pers && mddev->pers->quiesce) { 6225 mddev->pers->quiesce(mddev, 1); 6226 mddev->pers->quiesce(mddev, 0); 6227 } 6228 md_bitmap_flush(mddev); 6229 6230 if (mddev->ro == 0 && 6231 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6232 mddev->sb_flags)) { 6233 /* mark array as shutdown cleanly */ 6234 if (!mddev_is_clustered(mddev)) 6235 mddev->in_sync = 1; 6236 md_update_sb(mddev, 1); 6237 } 6238 /* disable policy to guarantee rdevs free resources for serialization */ 6239 mddev->serialize_policy = 0; 6240 mddev_destroy_serial_pool(mddev, NULL, true); 6241 } 6242 6243 void md_stop_writes(struct mddev *mddev) 6244 { 6245 mddev_lock_nointr(mddev); 6246 __md_stop_writes(mddev); 6247 mddev_unlock(mddev); 6248 } 6249 EXPORT_SYMBOL_GPL(md_stop_writes); 6250 6251 static void mddev_detach(struct mddev *mddev) 6252 { 6253 md_bitmap_wait_behind_writes(mddev); 6254 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6255 mddev->pers->quiesce(mddev, 1); 6256 mddev->pers->quiesce(mddev, 0); 6257 } 6258 md_unregister_thread(&mddev->thread); 6259 if (mddev->queue) 6260 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6261 } 6262 6263 static void __md_stop(struct mddev *mddev) 6264 { 6265 struct md_personality *pers = mddev->pers; 6266 md_bitmap_destroy(mddev); 6267 mddev_detach(mddev); 6268 /* Ensure ->event_work is done */ 6269 if (mddev->event_work.func) 6270 flush_workqueue(md_misc_wq); 6271 spin_lock(&mddev->lock); 6272 mddev->pers = NULL; 6273 spin_unlock(&mddev->lock); 6274 if (mddev->private) 6275 pers->free(mddev, mddev->private); 6276 mddev->private = NULL; 6277 if (pers->sync_request && mddev->to_remove == NULL) 6278 mddev->to_remove = &md_redundancy_group; 6279 module_put(pers->owner); 6280 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6281 } 6282 6283 void md_stop(struct mddev *mddev) 6284 { 6285 /* stop the array and free an attached data structures. 6286 * This is called from dm-raid 6287 */ 6288 __md_stop(mddev); 6289 bioset_exit(&mddev->bio_set); 6290 bioset_exit(&mddev->sync_set); 6291 if (mddev->level != 1 && mddev->level != 10) 6292 bioset_exit(&mddev->io_acct_set); 6293 } 6294 6295 EXPORT_SYMBOL_GPL(md_stop); 6296 6297 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6298 { 6299 int err = 0; 6300 int did_freeze = 0; 6301 6302 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6303 did_freeze = 1; 6304 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6305 md_wakeup_thread(mddev->thread); 6306 } 6307 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6308 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6309 if (mddev->sync_thread) 6310 /* Thread might be blocked waiting for metadata update 6311 * which will now never happen */ 6312 wake_up_process(mddev->sync_thread->tsk); 6313 6314 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6315 return -EBUSY; 6316 mddev_unlock(mddev); 6317 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6318 &mddev->recovery)); 6319 wait_event(mddev->sb_wait, 6320 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6321 mddev_lock_nointr(mddev); 6322 6323 mutex_lock(&mddev->open_mutex); 6324 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6325 mddev->sync_thread || 6326 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6327 pr_warn("md: %s still in use.\n",mdname(mddev)); 6328 if (did_freeze) { 6329 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6330 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6331 md_wakeup_thread(mddev->thread); 6332 } 6333 err = -EBUSY; 6334 goto out; 6335 } 6336 if (mddev->pers) { 6337 __md_stop_writes(mddev); 6338 6339 err = -ENXIO; 6340 if (mddev->ro==1) 6341 goto out; 6342 mddev->ro = 1; 6343 set_disk_ro(mddev->gendisk, 1); 6344 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6345 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6346 md_wakeup_thread(mddev->thread); 6347 sysfs_notify_dirent_safe(mddev->sysfs_state); 6348 err = 0; 6349 } 6350 out: 6351 mutex_unlock(&mddev->open_mutex); 6352 return err; 6353 } 6354 6355 /* mode: 6356 * 0 - completely stop and dis-assemble array 6357 * 2 - stop but do not disassemble array 6358 */ 6359 static int do_md_stop(struct mddev *mddev, int mode, 6360 struct block_device *bdev) 6361 { 6362 struct gendisk *disk = mddev->gendisk; 6363 struct md_rdev *rdev; 6364 int did_freeze = 0; 6365 6366 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6367 did_freeze = 1; 6368 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6369 md_wakeup_thread(mddev->thread); 6370 } 6371 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6372 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6373 if (mddev->sync_thread) 6374 /* Thread might be blocked waiting for metadata update 6375 * which will now never happen */ 6376 wake_up_process(mddev->sync_thread->tsk); 6377 6378 mddev_unlock(mddev); 6379 wait_event(resync_wait, (mddev->sync_thread == NULL && 6380 !test_bit(MD_RECOVERY_RUNNING, 6381 &mddev->recovery))); 6382 mddev_lock_nointr(mddev); 6383 6384 mutex_lock(&mddev->open_mutex); 6385 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6386 mddev->sysfs_active || 6387 mddev->sync_thread || 6388 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6389 pr_warn("md: %s still in use.\n",mdname(mddev)); 6390 mutex_unlock(&mddev->open_mutex); 6391 if (did_freeze) { 6392 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6393 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6394 md_wakeup_thread(mddev->thread); 6395 } 6396 return -EBUSY; 6397 } 6398 if (mddev->pers) { 6399 if (mddev->ro) 6400 set_disk_ro(disk, 0); 6401 6402 __md_stop_writes(mddev); 6403 __md_stop(mddev); 6404 6405 /* tell userspace to handle 'inactive' */ 6406 sysfs_notify_dirent_safe(mddev->sysfs_state); 6407 6408 rdev_for_each(rdev, mddev) 6409 if (rdev->raid_disk >= 0) 6410 sysfs_unlink_rdev(mddev, rdev); 6411 6412 set_capacity_and_notify(disk, 0); 6413 mutex_unlock(&mddev->open_mutex); 6414 mddev->changed = 1; 6415 6416 if (mddev->ro) 6417 mddev->ro = 0; 6418 } else 6419 mutex_unlock(&mddev->open_mutex); 6420 /* 6421 * Free resources if final stop 6422 */ 6423 if (mode == 0) { 6424 pr_info("md: %s stopped.\n", mdname(mddev)); 6425 6426 if (mddev->bitmap_info.file) { 6427 struct file *f = mddev->bitmap_info.file; 6428 spin_lock(&mddev->lock); 6429 mddev->bitmap_info.file = NULL; 6430 spin_unlock(&mddev->lock); 6431 fput(f); 6432 } 6433 mddev->bitmap_info.offset = 0; 6434 6435 export_array(mddev); 6436 6437 md_clean(mddev); 6438 if (mddev->hold_active == UNTIL_STOP) 6439 mddev->hold_active = 0; 6440 } 6441 md_new_event(); 6442 sysfs_notify_dirent_safe(mddev->sysfs_state); 6443 return 0; 6444 } 6445 6446 #ifndef MODULE 6447 static void autorun_array(struct mddev *mddev) 6448 { 6449 struct md_rdev *rdev; 6450 int err; 6451 6452 if (list_empty(&mddev->disks)) 6453 return; 6454 6455 pr_info("md: running: "); 6456 6457 rdev_for_each(rdev, mddev) { 6458 char b[BDEVNAME_SIZE]; 6459 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6460 } 6461 pr_cont("\n"); 6462 6463 err = do_md_run(mddev); 6464 if (err) { 6465 pr_warn("md: do_md_run() returned %d\n", err); 6466 do_md_stop(mddev, 0, NULL); 6467 } 6468 } 6469 6470 /* 6471 * lets try to run arrays based on all disks that have arrived 6472 * until now. (those are in pending_raid_disks) 6473 * 6474 * the method: pick the first pending disk, collect all disks with 6475 * the same UUID, remove all from the pending list and put them into 6476 * the 'same_array' list. Then order this list based on superblock 6477 * update time (freshest comes first), kick out 'old' disks and 6478 * compare superblocks. If everything's fine then run it. 6479 * 6480 * If "unit" is allocated, then bump its reference count 6481 */ 6482 static void autorun_devices(int part) 6483 { 6484 struct md_rdev *rdev0, *rdev, *tmp; 6485 struct mddev *mddev; 6486 char b[BDEVNAME_SIZE]; 6487 6488 pr_info("md: autorun ...\n"); 6489 while (!list_empty(&pending_raid_disks)) { 6490 int unit; 6491 dev_t dev; 6492 LIST_HEAD(candidates); 6493 rdev0 = list_entry(pending_raid_disks.next, 6494 struct md_rdev, same_set); 6495 6496 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6497 INIT_LIST_HEAD(&candidates); 6498 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6499 if (super_90_load(rdev, rdev0, 0) >= 0) { 6500 pr_debug("md: adding %s ...\n", 6501 bdevname(rdev->bdev,b)); 6502 list_move(&rdev->same_set, &candidates); 6503 } 6504 /* 6505 * now we have a set of devices, with all of them having 6506 * mostly sane superblocks. It's time to allocate the 6507 * mddev. 6508 */ 6509 if (part) { 6510 dev = MKDEV(mdp_major, 6511 rdev0->preferred_minor << MdpMinorShift); 6512 unit = MINOR(dev) >> MdpMinorShift; 6513 } else { 6514 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6515 unit = MINOR(dev); 6516 } 6517 if (rdev0->preferred_minor != unit) { 6518 pr_warn("md: unit number in %s is bad: %d\n", 6519 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6520 break; 6521 } 6522 6523 md_probe(dev); 6524 mddev = mddev_find(dev); 6525 if (!mddev) 6526 break; 6527 6528 if (mddev_lock(mddev)) 6529 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6530 else if (mddev->raid_disks || mddev->major_version 6531 || !list_empty(&mddev->disks)) { 6532 pr_warn("md: %s already running, cannot run %s\n", 6533 mdname(mddev), bdevname(rdev0->bdev,b)); 6534 mddev_unlock(mddev); 6535 } else { 6536 pr_debug("md: created %s\n", mdname(mddev)); 6537 mddev->persistent = 1; 6538 rdev_for_each_list(rdev, tmp, &candidates) { 6539 list_del_init(&rdev->same_set); 6540 if (bind_rdev_to_array(rdev, mddev)) 6541 export_rdev(rdev); 6542 } 6543 autorun_array(mddev); 6544 mddev_unlock(mddev); 6545 } 6546 /* on success, candidates will be empty, on error 6547 * it won't... 6548 */ 6549 rdev_for_each_list(rdev, tmp, &candidates) { 6550 list_del_init(&rdev->same_set); 6551 export_rdev(rdev); 6552 } 6553 mddev_put(mddev); 6554 } 6555 pr_info("md: ... autorun DONE.\n"); 6556 } 6557 #endif /* !MODULE */ 6558 6559 static int get_version(void __user *arg) 6560 { 6561 mdu_version_t ver; 6562 6563 ver.major = MD_MAJOR_VERSION; 6564 ver.minor = MD_MINOR_VERSION; 6565 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6566 6567 if (copy_to_user(arg, &ver, sizeof(ver))) 6568 return -EFAULT; 6569 6570 return 0; 6571 } 6572 6573 static int get_array_info(struct mddev *mddev, void __user *arg) 6574 { 6575 mdu_array_info_t info; 6576 int nr,working,insync,failed,spare; 6577 struct md_rdev *rdev; 6578 6579 nr = working = insync = failed = spare = 0; 6580 rcu_read_lock(); 6581 rdev_for_each_rcu(rdev, mddev) { 6582 nr++; 6583 if (test_bit(Faulty, &rdev->flags)) 6584 failed++; 6585 else { 6586 working++; 6587 if (test_bit(In_sync, &rdev->flags)) 6588 insync++; 6589 else if (test_bit(Journal, &rdev->flags)) 6590 /* TODO: add journal count to md_u.h */ 6591 ; 6592 else 6593 spare++; 6594 } 6595 } 6596 rcu_read_unlock(); 6597 6598 info.major_version = mddev->major_version; 6599 info.minor_version = mddev->minor_version; 6600 info.patch_version = MD_PATCHLEVEL_VERSION; 6601 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6602 info.level = mddev->level; 6603 info.size = mddev->dev_sectors / 2; 6604 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6605 info.size = -1; 6606 info.nr_disks = nr; 6607 info.raid_disks = mddev->raid_disks; 6608 info.md_minor = mddev->md_minor; 6609 info.not_persistent= !mddev->persistent; 6610 6611 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6612 info.state = 0; 6613 if (mddev->in_sync) 6614 info.state = (1<<MD_SB_CLEAN); 6615 if (mddev->bitmap && mddev->bitmap_info.offset) 6616 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6617 if (mddev_is_clustered(mddev)) 6618 info.state |= (1<<MD_SB_CLUSTERED); 6619 info.active_disks = insync; 6620 info.working_disks = working; 6621 info.failed_disks = failed; 6622 info.spare_disks = spare; 6623 6624 info.layout = mddev->layout; 6625 info.chunk_size = mddev->chunk_sectors << 9; 6626 6627 if (copy_to_user(arg, &info, sizeof(info))) 6628 return -EFAULT; 6629 6630 return 0; 6631 } 6632 6633 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6634 { 6635 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6636 char *ptr; 6637 int err; 6638 6639 file = kzalloc(sizeof(*file), GFP_NOIO); 6640 if (!file) 6641 return -ENOMEM; 6642 6643 err = 0; 6644 spin_lock(&mddev->lock); 6645 /* bitmap enabled */ 6646 if (mddev->bitmap_info.file) { 6647 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6648 sizeof(file->pathname)); 6649 if (IS_ERR(ptr)) 6650 err = PTR_ERR(ptr); 6651 else 6652 memmove(file->pathname, ptr, 6653 sizeof(file->pathname)-(ptr-file->pathname)); 6654 } 6655 spin_unlock(&mddev->lock); 6656 6657 if (err == 0 && 6658 copy_to_user(arg, file, sizeof(*file))) 6659 err = -EFAULT; 6660 6661 kfree(file); 6662 return err; 6663 } 6664 6665 static int get_disk_info(struct mddev *mddev, void __user * arg) 6666 { 6667 mdu_disk_info_t info; 6668 struct md_rdev *rdev; 6669 6670 if (copy_from_user(&info, arg, sizeof(info))) 6671 return -EFAULT; 6672 6673 rcu_read_lock(); 6674 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6675 if (rdev) { 6676 info.major = MAJOR(rdev->bdev->bd_dev); 6677 info.minor = MINOR(rdev->bdev->bd_dev); 6678 info.raid_disk = rdev->raid_disk; 6679 info.state = 0; 6680 if (test_bit(Faulty, &rdev->flags)) 6681 info.state |= (1<<MD_DISK_FAULTY); 6682 else if (test_bit(In_sync, &rdev->flags)) { 6683 info.state |= (1<<MD_DISK_ACTIVE); 6684 info.state |= (1<<MD_DISK_SYNC); 6685 } 6686 if (test_bit(Journal, &rdev->flags)) 6687 info.state |= (1<<MD_DISK_JOURNAL); 6688 if (test_bit(WriteMostly, &rdev->flags)) 6689 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6690 if (test_bit(FailFast, &rdev->flags)) 6691 info.state |= (1<<MD_DISK_FAILFAST); 6692 } else { 6693 info.major = info.minor = 0; 6694 info.raid_disk = -1; 6695 info.state = (1<<MD_DISK_REMOVED); 6696 } 6697 rcu_read_unlock(); 6698 6699 if (copy_to_user(arg, &info, sizeof(info))) 6700 return -EFAULT; 6701 6702 return 0; 6703 } 6704 6705 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6706 { 6707 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6708 struct md_rdev *rdev; 6709 dev_t dev = MKDEV(info->major,info->minor); 6710 6711 if (mddev_is_clustered(mddev) && 6712 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6713 pr_warn("%s: Cannot add to clustered mddev.\n", 6714 mdname(mddev)); 6715 return -EINVAL; 6716 } 6717 6718 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6719 return -EOVERFLOW; 6720 6721 if (!mddev->raid_disks) { 6722 int err; 6723 /* expecting a device which has a superblock */ 6724 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6725 if (IS_ERR(rdev)) { 6726 pr_warn("md: md_import_device returned %ld\n", 6727 PTR_ERR(rdev)); 6728 return PTR_ERR(rdev); 6729 } 6730 if (!list_empty(&mddev->disks)) { 6731 struct md_rdev *rdev0 6732 = list_entry(mddev->disks.next, 6733 struct md_rdev, same_set); 6734 err = super_types[mddev->major_version] 6735 .load_super(rdev, rdev0, mddev->minor_version); 6736 if (err < 0) { 6737 pr_warn("md: %s has different UUID to %s\n", 6738 bdevname(rdev->bdev,b), 6739 bdevname(rdev0->bdev,b2)); 6740 export_rdev(rdev); 6741 return -EINVAL; 6742 } 6743 } 6744 err = bind_rdev_to_array(rdev, mddev); 6745 if (err) 6746 export_rdev(rdev); 6747 return err; 6748 } 6749 6750 /* 6751 * md_add_new_disk can be used once the array is assembled 6752 * to add "hot spares". They must already have a superblock 6753 * written 6754 */ 6755 if (mddev->pers) { 6756 int err; 6757 if (!mddev->pers->hot_add_disk) { 6758 pr_warn("%s: personality does not support diskops!\n", 6759 mdname(mddev)); 6760 return -EINVAL; 6761 } 6762 if (mddev->persistent) 6763 rdev = md_import_device(dev, mddev->major_version, 6764 mddev->minor_version); 6765 else 6766 rdev = md_import_device(dev, -1, -1); 6767 if (IS_ERR(rdev)) { 6768 pr_warn("md: md_import_device returned %ld\n", 6769 PTR_ERR(rdev)); 6770 return PTR_ERR(rdev); 6771 } 6772 /* set saved_raid_disk if appropriate */ 6773 if (!mddev->persistent) { 6774 if (info->state & (1<<MD_DISK_SYNC) && 6775 info->raid_disk < mddev->raid_disks) { 6776 rdev->raid_disk = info->raid_disk; 6777 set_bit(In_sync, &rdev->flags); 6778 clear_bit(Bitmap_sync, &rdev->flags); 6779 } else 6780 rdev->raid_disk = -1; 6781 rdev->saved_raid_disk = rdev->raid_disk; 6782 } else 6783 super_types[mddev->major_version]. 6784 validate_super(mddev, rdev); 6785 if ((info->state & (1<<MD_DISK_SYNC)) && 6786 rdev->raid_disk != info->raid_disk) { 6787 /* This was a hot-add request, but events doesn't 6788 * match, so reject it. 6789 */ 6790 export_rdev(rdev); 6791 return -EINVAL; 6792 } 6793 6794 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6795 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6796 set_bit(WriteMostly, &rdev->flags); 6797 else 6798 clear_bit(WriteMostly, &rdev->flags); 6799 if (info->state & (1<<MD_DISK_FAILFAST)) 6800 set_bit(FailFast, &rdev->flags); 6801 else 6802 clear_bit(FailFast, &rdev->flags); 6803 6804 if (info->state & (1<<MD_DISK_JOURNAL)) { 6805 struct md_rdev *rdev2; 6806 bool has_journal = false; 6807 6808 /* make sure no existing journal disk */ 6809 rdev_for_each(rdev2, mddev) { 6810 if (test_bit(Journal, &rdev2->flags)) { 6811 has_journal = true; 6812 break; 6813 } 6814 } 6815 if (has_journal || mddev->bitmap) { 6816 export_rdev(rdev); 6817 return -EBUSY; 6818 } 6819 set_bit(Journal, &rdev->flags); 6820 } 6821 /* 6822 * check whether the device shows up in other nodes 6823 */ 6824 if (mddev_is_clustered(mddev)) { 6825 if (info->state & (1 << MD_DISK_CANDIDATE)) 6826 set_bit(Candidate, &rdev->flags); 6827 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6828 /* --add initiated by this node */ 6829 err = md_cluster_ops->add_new_disk(mddev, rdev); 6830 if (err) { 6831 export_rdev(rdev); 6832 return err; 6833 } 6834 } 6835 } 6836 6837 rdev->raid_disk = -1; 6838 err = bind_rdev_to_array(rdev, mddev); 6839 6840 if (err) 6841 export_rdev(rdev); 6842 6843 if (mddev_is_clustered(mddev)) { 6844 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6845 if (!err) { 6846 err = md_cluster_ops->new_disk_ack(mddev, 6847 err == 0); 6848 if (err) 6849 md_kick_rdev_from_array(rdev); 6850 } 6851 } else { 6852 if (err) 6853 md_cluster_ops->add_new_disk_cancel(mddev); 6854 else 6855 err = add_bound_rdev(rdev); 6856 } 6857 6858 } else if (!err) 6859 err = add_bound_rdev(rdev); 6860 6861 return err; 6862 } 6863 6864 /* otherwise, md_add_new_disk is only allowed 6865 * for major_version==0 superblocks 6866 */ 6867 if (mddev->major_version != 0) { 6868 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6869 return -EINVAL; 6870 } 6871 6872 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6873 int err; 6874 rdev = md_import_device(dev, -1, 0); 6875 if (IS_ERR(rdev)) { 6876 pr_warn("md: error, md_import_device() returned %ld\n", 6877 PTR_ERR(rdev)); 6878 return PTR_ERR(rdev); 6879 } 6880 rdev->desc_nr = info->number; 6881 if (info->raid_disk < mddev->raid_disks) 6882 rdev->raid_disk = info->raid_disk; 6883 else 6884 rdev->raid_disk = -1; 6885 6886 if (rdev->raid_disk < mddev->raid_disks) 6887 if (info->state & (1<<MD_DISK_SYNC)) 6888 set_bit(In_sync, &rdev->flags); 6889 6890 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6891 set_bit(WriteMostly, &rdev->flags); 6892 if (info->state & (1<<MD_DISK_FAILFAST)) 6893 set_bit(FailFast, &rdev->flags); 6894 6895 if (!mddev->persistent) { 6896 pr_debug("md: nonpersistent superblock ...\n"); 6897 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6898 } else 6899 rdev->sb_start = calc_dev_sboffset(rdev); 6900 rdev->sectors = rdev->sb_start; 6901 6902 err = bind_rdev_to_array(rdev, mddev); 6903 if (err) { 6904 export_rdev(rdev); 6905 return err; 6906 } 6907 } 6908 6909 return 0; 6910 } 6911 6912 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6913 { 6914 char b[BDEVNAME_SIZE]; 6915 struct md_rdev *rdev; 6916 6917 if (!mddev->pers) 6918 return -ENODEV; 6919 6920 rdev = find_rdev(mddev, dev); 6921 if (!rdev) 6922 return -ENXIO; 6923 6924 if (rdev->raid_disk < 0) 6925 goto kick_rdev; 6926 6927 clear_bit(Blocked, &rdev->flags); 6928 remove_and_add_spares(mddev, rdev); 6929 6930 if (rdev->raid_disk >= 0) 6931 goto busy; 6932 6933 kick_rdev: 6934 if (mddev_is_clustered(mddev)) { 6935 if (md_cluster_ops->remove_disk(mddev, rdev)) 6936 goto busy; 6937 } 6938 6939 md_kick_rdev_from_array(rdev); 6940 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6941 if (mddev->thread) 6942 md_wakeup_thread(mddev->thread); 6943 else 6944 md_update_sb(mddev, 1); 6945 md_new_event(); 6946 6947 return 0; 6948 busy: 6949 pr_debug("md: cannot remove active disk %s from %s ...\n", 6950 bdevname(rdev->bdev,b), mdname(mddev)); 6951 return -EBUSY; 6952 } 6953 6954 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6955 { 6956 char b[BDEVNAME_SIZE]; 6957 int err; 6958 struct md_rdev *rdev; 6959 6960 if (!mddev->pers) 6961 return -ENODEV; 6962 6963 if (mddev->major_version != 0) { 6964 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6965 mdname(mddev)); 6966 return -EINVAL; 6967 } 6968 if (!mddev->pers->hot_add_disk) { 6969 pr_warn("%s: personality does not support diskops!\n", 6970 mdname(mddev)); 6971 return -EINVAL; 6972 } 6973 6974 rdev = md_import_device(dev, -1, 0); 6975 if (IS_ERR(rdev)) { 6976 pr_warn("md: error, md_import_device() returned %ld\n", 6977 PTR_ERR(rdev)); 6978 return -EINVAL; 6979 } 6980 6981 if (mddev->persistent) 6982 rdev->sb_start = calc_dev_sboffset(rdev); 6983 else 6984 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6985 6986 rdev->sectors = rdev->sb_start; 6987 6988 if (test_bit(Faulty, &rdev->flags)) { 6989 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6990 bdevname(rdev->bdev,b), mdname(mddev)); 6991 err = -EINVAL; 6992 goto abort_export; 6993 } 6994 6995 clear_bit(In_sync, &rdev->flags); 6996 rdev->desc_nr = -1; 6997 rdev->saved_raid_disk = -1; 6998 err = bind_rdev_to_array(rdev, mddev); 6999 if (err) 7000 goto abort_export; 7001 7002 /* 7003 * The rest should better be atomic, we can have disk failures 7004 * noticed in interrupt contexts ... 7005 */ 7006 7007 rdev->raid_disk = -1; 7008 7009 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7010 if (!mddev->thread) 7011 md_update_sb(mddev, 1); 7012 /* 7013 * Kick recovery, maybe this spare has to be added to the 7014 * array immediately. 7015 */ 7016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7017 md_wakeup_thread(mddev->thread); 7018 md_new_event(); 7019 return 0; 7020 7021 abort_export: 7022 export_rdev(rdev); 7023 return err; 7024 } 7025 7026 static int set_bitmap_file(struct mddev *mddev, int fd) 7027 { 7028 int err = 0; 7029 7030 if (mddev->pers) { 7031 if (!mddev->pers->quiesce || !mddev->thread) 7032 return -EBUSY; 7033 if (mddev->recovery || mddev->sync_thread) 7034 return -EBUSY; 7035 /* we should be able to change the bitmap.. */ 7036 } 7037 7038 if (fd >= 0) { 7039 struct inode *inode; 7040 struct file *f; 7041 7042 if (mddev->bitmap || mddev->bitmap_info.file) 7043 return -EEXIST; /* cannot add when bitmap is present */ 7044 f = fget(fd); 7045 7046 if (f == NULL) { 7047 pr_warn("%s: error: failed to get bitmap file\n", 7048 mdname(mddev)); 7049 return -EBADF; 7050 } 7051 7052 inode = f->f_mapping->host; 7053 if (!S_ISREG(inode->i_mode)) { 7054 pr_warn("%s: error: bitmap file must be a regular file\n", 7055 mdname(mddev)); 7056 err = -EBADF; 7057 } else if (!(f->f_mode & FMODE_WRITE)) { 7058 pr_warn("%s: error: bitmap file must open for write\n", 7059 mdname(mddev)); 7060 err = -EBADF; 7061 } else if (atomic_read(&inode->i_writecount) != 1) { 7062 pr_warn("%s: error: bitmap file is already in use\n", 7063 mdname(mddev)); 7064 err = -EBUSY; 7065 } 7066 if (err) { 7067 fput(f); 7068 return err; 7069 } 7070 mddev->bitmap_info.file = f; 7071 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7072 } else if (mddev->bitmap == NULL) 7073 return -ENOENT; /* cannot remove what isn't there */ 7074 err = 0; 7075 if (mddev->pers) { 7076 if (fd >= 0) { 7077 struct bitmap *bitmap; 7078 7079 bitmap = md_bitmap_create(mddev, -1); 7080 mddev_suspend(mddev); 7081 if (!IS_ERR(bitmap)) { 7082 mddev->bitmap = bitmap; 7083 err = md_bitmap_load(mddev); 7084 } else 7085 err = PTR_ERR(bitmap); 7086 if (err) { 7087 md_bitmap_destroy(mddev); 7088 fd = -1; 7089 } 7090 mddev_resume(mddev); 7091 } else if (fd < 0) { 7092 mddev_suspend(mddev); 7093 md_bitmap_destroy(mddev); 7094 mddev_resume(mddev); 7095 } 7096 } 7097 if (fd < 0) { 7098 struct file *f = mddev->bitmap_info.file; 7099 if (f) { 7100 spin_lock(&mddev->lock); 7101 mddev->bitmap_info.file = NULL; 7102 spin_unlock(&mddev->lock); 7103 fput(f); 7104 } 7105 } 7106 7107 return err; 7108 } 7109 7110 /* 7111 * md_set_array_info is used two different ways 7112 * The original usage is when creating a new array. 7113 * In this usage, raid_disks is > 0 and it together with 7114 * level, size, not_persistent,layout,chunksize determine the 7115 * shape of the array. 7116 * This will always create an array with a type-0.90.0 superblock. 7117 * The newer usage is when assembling an array. 7118 * In this case raid_disks will be 0, and the major_version field is 7119 * use to determine which style super-blocks are to be found on the devices. 7120 * The minor and patch _version numbers are also kept incase the 7121 * super_block handler wishes to interpret them. 7122 */ 7123 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7124 { 7125 if (info->raid_disks == 0) { 7126 /* just setting version number for superblock loading */ 7127 if (info->major_version < 0 || 7128 info->major_version >= ARRAY_SIZE(super_types) || 7129 super_types[info->major_version].name == NULL) { 7130 /* maybe try to auto-load a module? */ 7131 pr_warn("md: superblock version %d not known\n", 7132 info->major_version); 7133 return -EINVAL; 7134 } 7135 mddev->major_version = info->major_version; 7136 mddev->minor_version = info->minor_version; 7137 mddev->patch_version = info->patch_version; 7138 mddev->persistent = !info->not_persistent; 7139 /* ensure mddev_put doesn't delete this now that there 7140 * is some minimal configuration. 7141 */ 7142 mddev->ctime = ktime_get_real_seconds(); 7143 return 0; 7144 } 7145 mddev->major_version = MD_MAJOR_VERSION; 7146 mddev->minor_version = MD_MINOR_VERSION; 7147 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7148 mddev->ctime = ktime_get_real_seconds(); 7149 7150 mddev->level = info->level; 7151 mddev->clevel[0] = 0; 7152 mddev->dev_sectors = 2 * (sector_t)info->size; 7153 mddev->raid_disks = info->raid_disks; 7154 /* don't set md_minor, it is determined by which /dev/md* was 7155 * openned 7156 */ 7157 if (info->state & (1<<MD_SB_CLEAN)) 7158 mddev->recovery_cp = MaxSector; 7159 else 7160 mddev->recovery_cp = 0; 7161 mddev->persistent = ! info->not_persistent; 7162 mddev->external = 0; 7163 7164 mddev->layout = info->layout; 7165 if (mddev->level == 0) 7166 /* Cannot trust RAID0 layout info here */ 7167 mddev->layout = -1; 7168 mddev->chunk_sectors = info->chunk_size >> 9; 7169 7170 if (mddev->persistent) { 7171 mddev->max_disks = MD_SB_DISKS; 7172 mddev->flags = 0; 7173 mddev->sb_flags = 0; 7174 } 7175 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7176 7177 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7178 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7179 mddev->bitmap_info.offset = 0; 7180 7181 mddev->reshape_position = MaxSector; 7182 7183 /* 7184 * Generate a 128 bit UUID 7185 */ 7186 get_random_bytes(mddev->uuid, 16); 7187 7188 mddev->new_level = mddev->level; 7189 mddev->new_chunk_sectors = mddev->chunk_sectors; 7190 mddev->new_layout = mddev->layout; 7191 mddev->delta_disks = 0; 7192 mddev->reshape_backwards = 0; 7193 7194 return 0; 7195 } 7196 7197 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7198 { 7199 lockdep_assert_held(&mddev->reconfig_mutex); 7200 7201 if (mddev->external_size) 7202 return; 7203 7204 mddev->array_sectors = array_sectors; 7205 } 7206 EXPORT_SYMBOL(md_set_array_sectors); 7207 7208 static int update_size(struct mddev *mddev, sector_t num_sectors) 7209 { 7210 struct md_rdev *rdev; 7211 int rv; 7212 int fit = (num_sectors == 0); 7213 sector_t old_dev_sectors = mddev->dev_sectors; 7214 7215 if (mddev->pers->resize == NULL) 7216 return -EINVAL; 7217 /* The "num_sectors" is the number of sectors of each device that 7218 * is used. This can only make sense for arrays with redundancy. 7219 * linear and raid0 always use whatever space is available. We can only 7220 * consider changing this number if no resync or reconstruction is 7221 * happening, and if the new size is acceptable. It must fit before the 7222 * sb_start or, if that is <data_offset, it must fit before the size 7223 * of each device. If num_sectors is zero, we find the largest size 7224 * that fits. 7225 */ 7226 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7227 mddev->sync_thread) 7228 return -EBUSY; 7229 if (mddev->ro) 7230 return -EROFS; 7231 7232 rdev_for_each(rdev, mddev) { 7233 sector_t avail = rdev->sectors; 7234 7235 if (fit && (num_sectors == 0 || num_sectors > avail)) 7236 num_sectors = avail; 7237 if (avail < num_sectors) 7238 return -ENOSPC; 7239 } 7240 rv = mddev->pers->resize(mddev, num_sectors); 7241 if (!rv) { 7242 if (mddev_is_clustered(mddev)) 7243 md_cluster_ops->update_size(mddev, old_dev_sectors); 7244 else if (mddev->queue) { 7245 set_capacity_and_notify(mddev->gendisk, 7246 mddev->array_sectors); 7247 } 7248 } 7249 return rv; 7250 } 7251 7252 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7253 { 7254 int rv; 7255 struct md_rdev *rdev; 7256 /* change the number of raid disks */ 7257 if (mddev->pers->check_reshape == NULL) 7258 return -EINVAL; 7259 if (mddev->ro) 7260 return -EROFS; 7261 if (raid_disks <= 0 || 7262 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7263 return -EINVAL; 7264 if (mddev->sync_thread || 7265 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7266 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7267 mddev->reshape_position != MaxSector) 7268 return -EBUSY; 7269 7270 rdev_for_each(rdev, mddev) { 7271 if (mddev->raid_disks < raid_disks && 7272 rdev->data_offset < rdev->new_data_offset) 7273 return -EINVAL; 7274 if (mddev->raid_disks > raid_disks && 7275 rdev->data_offset > rdev->new_data_offset) 7276 return -EINVAL; 7277 } 7278 7279 mddev->delta_disks = raid_disks - mddev->raid_disks; 7280 if (mddev->delta_disks < 0) 7281 mddev->reshape_backwards = 1; 7282 else if (mddev->delta_disks > 0) 7283 mddev->reshape_backwards = 0; 7284 7285 rv = mddev->pers->check_reshape(mddev); 7286 if (rv < 0) { 7287 mddev->delta_disks = 0; 7288 mddev->reshape_backwards = 0; 7289 } 7290 return rv; 7291 } 7292 7293 /* 7294 * update_array_info is used to change the configuration of an 7295 * on-line array. 7296 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7297 * fields in the info are checked against the array. 7298 * Any differences that cannot be handled will cause an error. 7299 * Normally, only one change can be managed at a time. 7300 */ 7301 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7302 { 7303 int rv = 0; 7304 int cnt = 0; 7305 int state = 0; 7306 7307 /* calculate expected state,ignoring low bits */ 7308 if (mddev->bitmap && mddev->bitmap_info.offset) 7309 state |= (1 << MD_SB_BITMAP_PRESENT); 7310 7311 if (mddev->major_version != info->major_version || 7312 mddev->minor_version != info->minor_version || 7313 /* mddev->patch_version != info->patch_version || */ 7314 mddev->ctime != info->ctime || 7315 mddev->level != info->level || 7316 /* mddev->layout != info->layout || */ 7317 mddev->persistent != !info->not_persistent || 7318 mddev->chunk_sectors != info->chunk_size >> 9 || 7319 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7320 ((state^info->state) & 0xfffffe00) 7321 ) 7322 return -EINVAL; 7323 /* Check there is only one change */ 7324 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7325 cnt++; 7326 if (mddev->raid_disks != info->raid_disks) 7327 cnt++; 7328 if (mddev->layout != info->layout) 7329 cnt++; 7330 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7331 cnt++; 7332 if (cnt == 0) 7333 return 0; 7334 if (cnt > 1) 7335 return -EINVAL; 7336 7337 if (mddev->layout != info->layout) { 7338 /* Change layout 7339 * we don't need to do anything at the md level, the 7340 * personality will take care of it all. 7341 */ 7342 if (mddev->pers->check_reshape == NULL) 7343 return -EINVAL; 7344 else { 7345 mddev->new_layout = info->layout; 7346 rv = mddev->pers->check_reshape(mddev); 7347 if (rv) 7348 mddev->new_layout = mddev->layout; 7349 return rv; 7350 } 7351 } 7352 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7353 rv = update_size(mddev, (sector_t)info->size * 2); 7354 7355 if (mddev->raid_disks != info->raid_disks) 7356 rv = update_raid_disks(mddev, info->raid_disks); 7357 7358 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7359 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7360 rv = -EINVAL; 7361 goto err; 7362 } 7363 if (mddev->recovery || mddev->sync_thread) { 7364 rv = -EBUSY; 7365 goto err; 7366 } 7367 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7368 struct bitmap *bitmap; 7369 /* add the bitmap */ 7370 if (mddev->bitmap) { 7371 rv = -EEXIST; 7372 goto err; 7373 } 7374 if (mddev->bitmap_info.default_offset == 0) { 7375 rv = -EINVAL; 7376 goto err; 7377 } 7378 mddev->bitmap_info.offset = 7379 mddev->bitmap_info.default_offset; 7380 mddev->bitmap_info.space = 7381 mddev->bitmap_info.default_space; 7382 bitmap = md_bitmap_create(mddev, -1); 7383 mddev_suspend(mddev); 7384 if (!IS_ERR(bitmap)) { 7385 mddev->bitmap = bitmap; 7386 rv = md_bitmap_load(mddev); 7387 } else 7388 rv = PTR_ERR(bitmap); 7389 if (rv) 7390 md_bitmap_destroy(mddev); 7391 mddev_resume(mddev); 7392 } else { 7393 /* remove the bitmap */ 7394 if (!mddev->bitmap) { 7395 rv = -ENOENT; 7396 goto err; 7397 } 7398 if (mddev->bitmap->storage.file) { 7399 rv = -EINVAL; 7400 goto err; 7401 } 7402 if (mddev->bitmap_info.nodes) { 7403 /* hold PW on all the bitmap lock */ 7404 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7405 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7406 rv = -EPERM; 7407 md_cluster_ops->unlock_all_bitmaps(mddev); 7408 goto err; 7409 } 7410 7411 mddev->bitmap_info.nodes = 0; 7412 md_cluster_ops->leave(mddev); 7413 module_put(md_cluster_mod); 7414 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7415 } 7416 mddev_suspend(mddev); 7417 md_bitmap_destroy(mddev); 7418 mddev_resume(mddev); 7419 mddev->bitmap_info.offset = 0; 7420 } 7421 } 7422 md_update_sb(mddev, 1); 7423 return rv; 7424 err: 7425 return rv; 7426 } 7427 7428 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7429 { 7430 struct md_rdev *rdev; 7431 int err = 0; 7432 7433 if (mddev->pers == NULL) 7434 return -ENODEV; 7435 7436 rcu_read_lock(); 7437 rdev = md_find_rdev_rcu(mddev, dev); 7438 if (!rdev) 7439 err = -ENODEV; 7440 else { 7441 md_error(mddev, rdev); 7442 if (!test_bit(Faulty, &rdev->flags)) 7443 err = -EBUSY; 7444 } 7445 rcu_read_unlock(); 7446 return err; 7447 } 7448 7449 /* 7450 * We have a problem here : there is no easy way to give a CHS 7451 * virtual geometry. We currently pretend that we have a 2 heads 7452 * 4 sectors (with a BIG number of cylinders...). This drives 7453 * dosfs just mad... ;-) 7454 */ 7455 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7456 { 7457 struct mddev *mddev = bdev->bd_disk->private_data; 7458 7459 geo->heads = 2; 7460 geo->sectors = 4; 7461 geo->cylinders = mddev->array_sectors / 8; 7462 return 0; 7463 } 7464 7465 static inline bool md_ioctl_valid(unsigned int cmd) 7466 { 7467 switch (cmd) { 7468 case ADD_NEW_DISK: 7469 case GET_ARRAY_INFO: 7470 case GET_BITMAP_FILE: 7471 case GET_DISK_INFO: 7472 case HOT_ADD_DISK: 7473 case HOT_REMOVE_DISK: 7474 case RAID_VERSION: 7475 case RESTART_ARRAY_RW: 7476 case RUN_ARRAY: 7477 case SET_ARRAY_INFO: 7478 case SET_BITMAP_FILE: 7479 case SET_DISK_FAULTY: 7480 case STOP_ARRAY: 7481 case STOP_ARRAY_RO: 7482 case CLUSTERED_DISK_NACK: 7483 return true; 7484 default: 7485 return false; 7486 } 7487 } 7488 7489 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7490 unsigned int cmd, unsigned long arg) 7491 { 7492 int err = 0; 7493 void __user *argp = (void __user *)arg; 7494 struct mddev *mddev = NULL; 7495 bool did_set_md_closing = false; 7496 7497 if (!md_ioctl_valid(cmd)) 7498 return -ENOTTY; 7499 7500 switch (cmd) { 7501 case RAID_VERSION: 7502 case GET_ARRAY_INFO: 7503 case GET_DISK_INFO: 7504 break; 7505 default: 7506 if (!capable(CAP_SYS_ADMIN)) 7507 return -EACCES; 7508 } 7509 7510 /* 7511 * Commands dealing with the RAID driver but not any 7512 * particular array: 7513 */ 7514 switch (cmd) { 7515 case RAID_VERSION: 7516 err = get_version(argp); 7517 goto out; 7518 default:; 7519 } 7520 7521 /* 7522 * Commands creating/starting a new array: 7523 */ 7524 7525 mddev = bdev->bd_disk->private_data; 7526 7527 if (!mddev) { 7528 BUG(); 7529 goto out; 7530 } 7531 7532 /* Some actions do not requires the mutex */ 7533 switch (cmd) { 7534 case GET_ARRAY_INFO: 7535 if (!mddev->raid_disks && !mddev->external) 7536 err = -ENODEV; 7537 else 7538 err = get_array_info(mddev, argp); 7539 goto out; 7540 7541 case GET_DISK_INFO: 7542 if (!mddev->raid_disks && !mddev->external) 7543 err = -ENODEV; 7544 else 7545 err = get_disk_info(mddev, argp); 7546 goto out; 7547 7548 case SET_DISK_FAULTY: 7549 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7550 goto out; 7551 7552 case GET_BITMAP_FILE: 7553 err = get_bitmap_file(mddev, argp); 7554 goto out; 7555 7556 } 7557 7558 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7559 flush_rdev_wq(mddev); 7560 7561 if (cmd == HOT_REMOVE_DISK) 7562 /* need to ensure recovery thread has run */ 7563 wait_event_interruptible_timeout(mddev->sb_wait, 7564 !test_bit(MD_RECOVERY_NEEDED, 7565 &mddev->recovery), 7566 msecs_to_jiffies(5000)); 7567 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7568 /* Need to flush page cache, and ensure no-one else opens 7569 * and writes 7570 */ 7571 mutex_lock(&mddev->open_mutex); 7572 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7573 mutex_unlock(&mddev->open_mutex); 7574 err = -EBUSY; 7575 goto out; 7576 } 7577 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7578 mutex_unlock(&mddev->open_mutex); 7579 err = -EBUSY; 7580 goto out; 7581 } 7582 did_set_md_closing = true; 7583 mutex_unlock(&mddev->open_mutex); 7584 sync_blockdev(bdev); 7585 } 7586 err = mddev_lock(mddev); 7587 if (err) { 7588 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7589 err, cmd); 7590 goto out; 7591 } 7592 7593 if (cmd == SET_ARRAY_INFO) { 7594 mdu_array_info_t info; 7595 if (!arg) 7596 memset(&info, 0, sizeof(info)); 7597 else if (copy_from_user(&info, argp, sizeof(info))) { 7598 err = -EFAULT; 7599 goto unlock; 7600 } 7601 if (mddev->pers) { 7602 err = update_array_info(mddev, &info); 7603 if (err) { 7604 pr_warn("md: couldn't update array info. %d\n", err); 7605 goto unlock; 7606 } 7607 goto unlock; 7608 } 7609 if (!list_empty(&mddev->disks)) { 7610 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7611 err = -EBUSY; 7612 goto unlock; 7613 } 7614 if (mddev->raid_disks) { 7615 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7616 err = -EBUSY; 7617 goto unlock; 7618 } 7619 err = md_set_array_info(mddev, &info); 7620 if (err) { 7621 pr_warn("md: couldn't set array info. %d\n", err); 7622 goto unlock; 7623 } 7624 goto unlock; 7625 } 7626 7627 /* 7628 * Commands querying/configuring an existing array: 7629 */ 7630 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7631 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7632 if ((!mddev->raid_disks && !mddev->external) 7633 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7634 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7635 && cmd != GET_BITMAP_FILE) { 7636 err = -ENODEV; 7637 goto unlock; 7638 } 7639 7640 /* 7641 * Commands even a read-only array can execute: 7642 */ 7643 switch (cmd) { 7644 case RESTART_ARRAY_RW: 7645 err = restart_array(mddev); 7646 goto unlock; 7647 7648 case STOP_ARRAY: 7649 err = do_md_stop(mddev, 0, bdev); 7650 goto unlock; 7651 7652 case STOP_ARRAY_RO: 7653 err = md_set_readonly(mddev, bdev); 7654 goto unlock; 7655 7656 case HOT_REMOVE_DISK: 7657 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7658 goto unlock; 7659 7660 case ADD_NEW_DISK: 7661 /* We can support ADD_NEW_DISK on read-only arrays 7662 * only if we are re-adding a preexisting device. 7663 * So require mddev->pers and MD_DISK_SYNC. 7664 */ 7665 if (mddev->pers) { 7666 mdu_disk_info_t info; 7667 if (copy_from_user(&info, argp, sizeof(info))) 7668 err = -EFAULT; 7669 else if (!(info.state & (1<<MD_DISK_SYNC))) 7670 /* Need to clear read-only for this */ 7671 break; 7672 else 7673 err = md_add_new_disk(mddev, &info); 7674 goto unlock; 7675 } 7676 break; 7677 } 7678 7679 /* 7680 * The remaining ioctls are changing the state of the 7681 * superblock, so we do not allow them on read-only arrays. 7682 */ 7683 if (mddev->ro && mddev->pers) { 7684 if (mddev->ro == 2) { 7685 mddev->ro = 0; 7686 sysfs_notify_dirent_safe(mddev->sysfs_state); 7687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7688 /* mddev_unlock will wake thread */ 7689 /* If a device failed while we were read-only, we 7690 * need to make sure the metadata is updated now. 7691 */ 7692 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7693 mddev_unlock(mddev); 7694 wait_event(mddev->sb_wait, 7695 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7696 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7697 mddev_lock_nointr(mddev); 7698 } 7699 } else { 7700 err = -EROFS; 7701 goto unlock; 7702 } 7703 } 7704 7705 switch (cmd) { 7706 case ADD_NEW_DISK: 7707 { 7708 mdu_disk_info_t info; 7709 if (copy_from_user(&info, argp, sizeof(info))) 7710 err = -EFAULT; 7711 else 7712 err = md_add_new_disk(mddev, &info); 7713 goto unlock; 7714 } 7715 7716 case CLUSTERED_DISK_NACK: 7717 if (mddev_is_clustered(mddev)) 7718 md_cluster_ops->new_disk_ack(mddev, false); 7719 else 7720 err = -EINVAL; 7721 goto unlock; 7722 7723 case HOT_ADD_DISK: 7724 err = hot_add_disk(mddev, new_decode_dev(arg)); 7725 goto unlock; 7726 7727 case RUN_ARRAY: 7728 err = do_md_run(mddev); 7729 goto unlock; 7730 7731 case SET_BITMAP_FILE: 7732 err = set_bitmap_file(mddev, (int)arg); 7733 goto unlock; 7734 7735 default: 7736 err = -EINVAL; 7737 goto unlock; 7738 } 7739 7740 unlock: 7741 if (mddev->hold_active == UNTIL_IOCTL && 7742 err != -EINVAL) 7743 mddev->hold_active = 0; 7744 mddev_unlock(mddev); 7745 out: 7746 if(did_set_md_closing) 7747 clear_bit(MD_CLOSING, &mddev->flags); 7748 return err; 7749 } 7750 #ifdef CONFIG_COMPAT 7751 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7752 unsigned int cmd, unsigned long arg) 7753 { 7754 switch (cmd) { 7755 case HOT_REMOVE_DISK: 7756 case HOT_ADD_DISK: 7757 case SET_DISK_FAULTY: 7758 case SET_BITMAP_FILE: 7759 /* These take in integer arg, do not convert */ 7760 break; 7761 default: 7762 arg = (unsigned long)compat_ptr(arg); 7763 break; 7764 } 7765 7766 return md_ioctl(bdev, mode, cmd, arg); 7767 } 7768 #endif /* CONFIG_COMPAT */ 7769 7770 static int md_set_read_only(struct block_device *bdev, bool ro) 7771 { 7772 struct mddev *mddev = bdev->bd_disk->private_data; 7773 int err; 7774 7775 err = mddev_lock(mddev); 7776 if (err) 7777 return err; 7778 7779 if (!mddev->raid_disks && !mddev->external) { 7780 err = -ENODEV; 7781 goto out_unlock; 7782 } 7783 7784 /* 7785 * Transitioning to read-auto need only happen for arrays that call 7786 * md_write_start and which are not ready for writes yet. 7787 */ 7788 if (!ro && mddev->ro == 1 && mddev->pers) { 7789 err = restart_array(mddev); 7790 if (err) 7791 goto out_unlock; 7792 mddev->ro = 2; 7793 } 7794 7795 out_unlock: 7796 mddev_unlock(mddev); 7797 return err; 7798 } 7799 7800 static int md_open(struct block_device *bdev, fmode_t mode) 7801 { 7802 /* 7803 * Succeed if we can lock the mddev, which confirms that 7804 * it isn't being stopped right now. 7805 */ 7806 struct mddev *mddev = mddev_find(bdev->bd_dev); 7807 int err; 7808 7809 if (!mddev) 7810 return -ENODEV; 7811 7812 if (mddev->gendisk != bdev->bd_disk) { 7813 /* we are racing with mddev_put which is discarding this 7814 * bd_disk. 7815 */ 7816 mddev_put(mddev); 7817 /* Wait until bdev->bd_disk is definitely gone */ 7818 if (work_pending(&mddev->del_work)) 7819 flush_workqueue(md_misc_wq); 7820 return -EBUSY; 7821 } 7822 BUG_ON(mddev != bdev->bd_disk->private_data); 7823 7824 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7825 goto out; 7826 7827 if (test_bit(MD_CLOSING, &mddev->flags)) { 7828 mutex_unlock(&mddev->open_mutex); 7829 err = -ENODEV; 7830 goto out; 7831 } 7832 7833 err = 0; 7834 atomic_inc(&mddev->openers); 7835 mutex_unlock(&mddev->open_mutex); 7836 7837 bdev_check_media_change(bdev); 7838 out: 7839 if (err) 7840 mddev_put(mddev); 7841 return err; 7842 } 7843 7844 static void md_release(struct gendisk *disk, fmode_t mode) 7845 { 7846 struct mddev *mddev = disk->private_data; 7847 7848 BUG_ON(!mddev); 7849 atomic_dec(&mddev->openers); 7850 mddev_put(mddev); 7851 } 7852 7853 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7854 { 7855 struct mddev *mddev = disk->private_data; 7856 unsigned int ret = 0; 7857 7858 if (mddev->changed) 7859 ret = DISK_EVENT_MEDIA_CHANGE; 7860 mddev->changed = 0; 7861 return ret; 7862 } 7863 7864 const struct block_device_operations md_fops = 7865 { 7866 .owner = THIS_MODULE, 7867 .submit_bio = md_submit_bio, 7868 .open = md_open, 7869 .release = md_release, 7870 .ioctl = md_ioctl, 7871 #ifdef CONFIG_COMPAT 7872 .compat_ioctl = md_compat_ioctl, 7873 #endif 7874 .getgeo = md_getgeo, 7875 .check_events = md_check_events, 7876 .set_read_only = md_set_read_only, 7877 }; 7878 7879 static int md_thread(void *arg) 7880 { 7881 struct md_thread *thread = arg; 7882 7883 /* 7884 * md_thread is a 'system-thread', it's priority should be very 7885 * high. We avoid resource deadlocks individually in each 7886 * raid personality. (RAID5 does preallocation) We also use RR and 7887 * the very same RT priority as kswapd, thus we will never get 7888 * into a priority inversion deadlock. 7889 * 7890 * we definitely have to have equal or higher priority than 7891 * bdflush, otherwise bdflush will deadlock if there are too 7892 * many dirty RAID5 blocks. 7893 */ 7894 7895 allow_signal(SIGKILL); 7896 while (!kthread_should_stop()) { 7897 7898 /* We need to wait INTERRUPTIBLE so that 7899 * we don't add to the load-average. 7900 * That means we need to be sure no signals are 7901 * pending 7902 */ 7903 if (signal_pending(current)) 7904 flush_signals(current); 7905 7906 wait_event_interruptible_timeout 7907 (thread->wqueue, 7908 test_bit(THREAD_WAKEUP, &thread->flags) 7909 || kthread_should_stop() || kthread_should_park(), 7910 thread->timeout); 7911 7912 clear_bit(THREAD_WAKEUP, &thread->flags); 7913 if (kthread_should_park()) 7914 kthread_parkme(); 7915 if (!kthread_should_stop()) 7916 thread->run(thread); 7917 } 7918 7919 return 0; 7920 } 7921 7922 void md_wakeup_thread(struct md_thread *thread) 7923 { 7924 if (thread) { 7925 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7926 set_bit(THREAD_WAKEUP, &thread->flags); 7927 wake_up(&thread->wqueue); 7928 } 7929 } 7930 EXPORT_SYMBOL(md_wakeup_thread); 7931 7932 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7933 struct mddev *mddev, const char *name) 7934 { 7935 struct md_thread *thread; 7936 7937 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7938 if (!thread) 7939 return NULL; 7940 7941 init_waitqueue_head(&thread->wqueue); 7942 7943 thread->run = run; 7944 thread->mddev = mddev; 7945 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7946 thread->tsk = kthread_run(md_thread, thread, 7947 "%s_%s", 7948 mdname(thread->mddev), 7949 name); 7950 if (IS_ERR(thread->tsk)) { 7951 kfree(thread); 7952 return NULL; 7953 } 7954 return thread; 7955 } 7956 EXPORT_SYMBOL(md_register_thread); 7957 7958 void md_unregister_thread(struct md_thread **threadp) 7959 { 7960 struct md_thread *thread = *threadp; 7961 if (!thread) 7962 return; 7963 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7964 /* Locking ensures that mddev_unlock does not wake_up a 7965 * non-existent thread 7966 */ 7967 spin_lock(&pers_lock); 7968 *threadp = NULL; 7969 spin_unlock(&pers_lock); 7970 7971 kthread_stop(thread->tsk); 7972 kfree(thread); 7973 } 7974 EXPORT_SYMBOL(md_unregister_thread); 7975 7976 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7977 { 7978 if (!rdev || test_bit(Faulty, &rdev->flags)) 7979 return; 7980 7981 if (!mddev->pers || !mddev->pers->error_handler) 7982 return; 7983 mddev->pers->error_handler(mddev,rdev); 7984 if (mddev->degraded) 7985 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7986 sysfs_notify_dirent_safe(rdev->sysfs_state); 7987 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7988 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7989 md_wakeup_thread(mddev->thread); 7990 if (mddev->event_work.func) 7991 queue_work(md_misc_wq, &mddev->event_work); 7992 md_new_event(); 7993 } 7994 EXPORT_SYMBOL(md_error); 7995 7996 /* seq_file implementation /proc/mdstat */ 7997 7998 static void status_unused(struct seq_file *seq) 7999 { 8000 int i = 0; 8001 struct md_rdev *rdev; 8002 8003 seq_printf(seq, "unused devices: "); 8004 8005 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8006 char b[BDEVNAME_SIZE]; 8007 i++; 8008 seq_printf(seq, "%s ", 8009 bdevname(rdev->bdev,b)); 8010 } 8011 if (!i) 8012 seq_printf(seq, "<none>"); 8013 8014 seq_printf(seq, "\n"); 8015 } 8016 8017 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8018 { 8019 sector_t max_sectors, resync, res; 8020 unsigned long dt, db = 0; 8021 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8022 int scale, recovery_active; 8023 unsigned int per_milli; 8024 8025 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8026 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8027 max_sectors = mddev->resync_max_sectors; 8028 else 8029 max_sectors = mddev->dev_sectors; 8030 8031 resync = mddev->curr_resync; 8032 if (resync <= 3) { 8033 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8034 /* Still cleaning up */ 8035 resync = max_sectors; 8036 } else if (resync > max_sectors) 8037 resync = max_sectors; 8038 else 8039 resync -= atomic_read(&mddev->recovery_active); 8040 8041 if (resync == 0) { 8042 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8043 struct md_rdev *rdev; 8044 8045 rdev_for_each(rdev, mddev) 8046 if (rdev->raid_disk >= 0 && 8047 !test_bit(Faulty, &rdev->flags) && 8048 rdev->recovery_offset != MaxSector && 8049 rdev->recovery_offset) { 8050 seq_printf(seq, "\trecover=REMOTE"); 8051 return 1; 8052 } 8053 if (mddev->reshape_position != MaxSector) 8054 seq_printf(seq, "\treshape=REMOTE"); 8055 else 8056 seq_printf(seq, "\tresync=REMOTE"); 8057 return 1; 8058 } 8059 if (mddev->recovery_cp < MaxSector) { 8060 seq_printf(seq, "\tresync=PENDING"); 8061 return 1; 8062 } 8063 return 0; 8064 } 8065 if (resync < 3) { 8066 seq_printf(seq, "\tresync=DELAYED"); 8067 return 1; 8068 } 8069 8070 WARN_ON(max_sectors == 0); 8071 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8072 * in a sector_t, and (max_sectors>>scale) will fit in a 8073 * u32, as those are the requirements for sector_div. 8074 * Thus 'scale' must be at least 10 8075 */ 8076 scale = 10; 8077 if (sizeof(sector_t) > sizeof(unsigned long)) { 8078 while ( max_sectors/2 > (1ULL<<(scale+32))) 8079 scale++; 8080 } 8081 res = (resync>>scale)*1000; 8082 sector_div(res, (u32)((max_sectors>>scale)+1)); 8083 8084 per_milli = res; 8085 { 8086 int i, x = per_milli/50, y = 20-x; 8087 seq_printf(seq, "["); 8088 for (i = 0; i < x; i++) 8089 seq_printf(seq, "="); 8090 seq_printf(seq, ">"); 8091 for (i = 0; i < y; i++) 8092 seq_printf(seq, "."); 8093 seq_printf(seq, "] "); 8094 } 8095 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8096 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8097 "reshape" : 8098 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8099 "check" : 8100 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8101 "resync" : "recovery"))), 8102 per_milli/10, per_milli % 10, 8103 (unsigned long long) resync/2, 8104 (unsigned long long) max_sectors/2); 8105 8106 /* 8107 * dt: time from mark until now 8108 * db: blocks written from mark until now 8109 * rt: remaining time 8110 * 8111 * rt is a sector_t, which is always 64bit now. We are keeping 8112 * the original algorithm, but it is not really necessary. 8113 * 8114 * Original algorithm: 8115 * So we divide before multiply in case it is 32bit and close 8116 * to the limit. 8117 * We scale the divisor (db) by 32 to avoid losing precision 8118 * near the end of resync when the number of remaining sectors 8119 * is close to 'db'. 8120 * We then divide rt by 32 after multiplying by db to compensate. 8121 * The '+1' avoids division by zero if db is very small. 8122 */ 8123 dt = ((jiffies - mddev->resync_mark) / HZ); 8124 if (!dt) dt++; 8125 8126 curr_mark_cnt = mddev->curr_mark_cnt; 8127 recovery_active = atomic_read(&mddev->recovery_active); 8128 resync_mark_cnt = mddev->resync_mark_cnt; 8129 8130 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8131 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8132 8133 rt = max_sectors - resync; /* number of remaining sectors */ 8134 rt = div64_u64(rt, db/32+1); 8135 rt *= dt; 8136 rt >>= 5; 8137 8138 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8139 ((unsigned long)rt % 60)/6); 8140 8141 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8142 return 1; 8143 } 8144 8145 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8146 { 8147 struct list_head *tmp; 8148 loff_t l = *pos; 8149 struct mddev *mddev; 8150 8151 if (l == 0x10000) { 8152 ++*pos; 8153 return (void *)2; 8154 } 8155 if (l > 0x10000) 8156 return NULL; 8157 if (!l--) 8158 /* header */ 8159 return (void*)1; 8160 8161 spin_lock(&all_mddevs_lock); 8162 list_for_each(tmp,&all_mddevs) 8163 if (!l--) { 8164 mddev = list_entry(tmp, struct mddev, all_mddevs); 8165 mddev_get(mddev); 8166 spin_unlock(&all_mddevs_lock); 8167 return mddev; 8168 } 8169 spin_unlock(&all_mddevs_lock); 8170 if (!l--) 8171 return (void*)2;/* tail */ 8172 return NULL; 8173 } 8174 8175 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8176 { 8177 struct list_head *tmp; 8178 struct mddev *next_mddev, *mddev = v; 8179 8180 ++*pos; 8181 if (v == (void*)2) 8182 return NULL; 8183 8184 spin_lock(&all_mddevs_lock); 8185 if (v == (void*)1) 8186 tmp = all_mddevs.next; 8187 else 8188 tmp = mddev->all_mddevs.next; 8189 if (tmp != &all_mddevs) 8190 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8191 else { 8192 next_mddev = (void*)2; 8193 *pos = 0x10000; 8194 } 8195 spin_unlock(&all_mddevs_lock); 8196 8197 if (v != (void*)1) 8198 mddev_put(mddev); 8199 return next_mddev; 8200 8201 } 8202 8203 static void md_seq_stop(struct seq_file *seq, void *v) 8204 { 8205 struct mddev *mddev = v; 8206 8207 if (mddev && v != (void*)1 && v != (void*)2) 8208 mddev_put(mddev); 8209 } 8210 8211 static int md_seq_show(struct seq_file *seq, void *v) 8212 { 8213 struct mddev *mddev = v; 8214 sector_t sectors; 8215 struct md_rdev *rdev; 8216 8217 if (v == (void*)1) { 8218 struct md_personality *pers; 8219 seq_printf(seq, "Personalities : "); 8220 spin_lock(&pers_lock); 8221 list_for_each_entry(pers, &pers_list, list) 8222 seq_printf(seq, "[%s] ", pers->name); 8223 8224 spin_unlock(&pers_lock); 8225 seq_printf(seq, "\n"); 8226 seq->poll_event = atomic_read(&md_event_count); 8227 return 0; 8228 } 8229 if (v == (void*)2) { 8230 status_unused(seq); 8231 return 0; 8232 } 8233 8234 spin_lock(&mddev->lock); 8235 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8236 seq_printf(seq, "%s : %sactive", mdname(mddev), 8237 mddev->pers ? "" : "in"); 8238 if (mddev->pers) { 8239 if (mddev->ro==1) 8240 seq_printf(seq, " (read-only)"); 8241 if (mddev->ro==2) 8242 seq_printf(seq, " (auto-read-only)"); 8243 seq_printf(seq, " %s", mddev->pers->name); 8244 } 8245 8246 sectors = 0; 8247 rcu_read_lock(); 8248 rdev_for_each_rcu(rdev, mddev) { 8249 char b[BDEVNAME_SIZE]; 8250 seq_printf(seq, " %s[%d]", 8251 bdevname(rdev->bdev,b), rdev->desc_nr); 8252 if (test_bit(WriteMostly, &rdev->flags)) 8253 seq_printf(seq, "(W)"); 8254 if (test_bit(Journal, &rdev->flags)) 8255 seq_printf(seq, "(J)"); 8256 if (test_bit(Faulty, &rdev->flags)) { 8257 seq_printf(seq, "(F)"); 8258 continue; 8259 } 8260 if (rdev->raid_disk < 0) 8261 seq_printf(seq, "(S)"); /* spare */ 8262 if (test_bit(Replacement, &rdev->flags)) 8263 seq_printf(seq, "(R)"); 8264 sectors += rdev->sectors; 8265 } 8266 rcu_read_unlock(); 8267 8268 if (!list_empty(&mddev->disks)) { 8269 if (mddev->pers) 8270 seq_printf(seq, "\n %llu blocks", 8271 (unsigned long long) 8272 mddev->array_sectors / 2); 8273 else 8274 seq_printf(seq, "\n %llu blocks", 8275 (unsigned long long)sectors / 2); 8276 } 8277 if (mddev->persistent) { 8278 if (mddev->major_version != 0 || 8279 mddev->minor_version != 90) { 8280 seq_printf(seq," super %d.%d", 8281 mddev->major_version, 8282 mddev->minor_version); 8283 } 8284 } else if (mddev->external) 8285 seq_printf(seq, " super external:%s", 8286 mddev->metadata_type); 8287 else 8288 seq_printf(seq, " super non-persistent"); 8289 8290 if (mddev->pers) { 8291 mddev->pers->status(seq, mddev); 8292 seq_printf(seq, "\n "); 8293 if (mddev->pers->sync_request) { 8294 if (status_resync(seq, mddev)) 8295 seq_printf(seq, "\n "); 8296 } 8297 } else 8298 seq_printf(seq, "\n "); 8299 8300 md_bitmap_status(seq, mddev->bitmap); 8301 8302 seq_printf(seq, "\n"); 8303 } 8304 spin_unlock(&mddev->lock); 8305 8306 return 0; 8307 } 8308 8309 static const struct seq_operations md_seq_ops = { 8310 .start = md_seq_start, 8311 .next = md_seq_next, 8312 .stop = md_seq_stop, 8313 .show = md_seq_show, 8314 }; 8315 8316 static int md_seq_open(struct inode *inode, struct file *file) 8317 { 8318 struct seq_file *seq; 8319 int error; 8320 8321 error = seq_open(file, &md_seq_ops); 8322 if (error) 8323 return error; 8324 8325 seq = file->private_data; 8326 seq->poll_event = atomic_read(&md_event_count); 8327 return error; 8328 } 8329 8330 static int md_unloading; 8331 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8332 { 8333 struct seq_file *seq = filp->private_data; 8334 __poll_t mask; 8335 8336 if (md_unloading) 8337 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8338 poll_wait(filp, &md_event_waiters, wait); 8339 8340 /* always allow read */ 8341 mask = EPOLLIN | EPOLLRDNORM; 8342 8343 if (seq->poll_event != atomic_read(&md_event_count)) 8344 mask |= EPOLLERR | EPOLLPRI; 8345 return mask; 8346 } 8347 8348 static const struct proc_ops mdstat_proc_ops = { 8349 .proc_open = md_seq_open, 8350 .proc_read = seq_read, 8351 .proc_lseek = seq_lseek, 8352 .proc_release = seq_release, 8353 .proc_poll = mdstat_poll, 8354 }; 8355 8356 int register_md_personality(struct md_personality *p) 8357 { 8358 pr_debug("md: %s personality registered for level %d\n", 8359 p->name, p->level); 8360 spin_lock(&pers_lock); 8361 list_add_tail(&p->list, &pers_list); 8362 spin_unlock(&pers_lock); 8363 return 0; 8364 } 8365 EXPORT_SYMBOL(register_md_personality); 8366 8367 int unregister_md_personality(struct md_personality *p) 8368 { 8369 pr_debug("md: %s personality unregistered\n", p->name); 8370 spin_lock(&pers_lock); 8371 list_del_init(&p->list); 8372 spin_unlock(&pers_lock); 8373 return 0; 8374 } 8375 EXPORT_SYMBOL(unregister_md_personality); 8376 8377 int register_md_cluster_operations(struct md_cluster_operations *ops, 8378 struct module *module) 8379 { 8380 int ret = 0; 8381 spin_lock(&pers_lock); 8382 if (md_cluster_ops != NULL) 8383 ret = -EALREADY; 8384 else { 8385 md_cluster_ops = ops; 8386 md_cluster_mod = module; 8387 } 8388 spin_unlock(&pers_lock); 8389 return ret; 8390 } 8391 EXPORT_SYMBOL(register_md_cluster_operations); 8392 8393 int unregister_md_cluster_operations(void) 8394 { 8395 spin_lock(&pers_lock); 8396 md_cluster_ops = NULL; 8397 spin_unlock(&pers_lock); 8398 return 0; 8399 } 8400 EXPORT_SYMBOL(unregister_md_cluster_operations); 8401 8402 int md_setup_cluster(struct mddev *mddev, int nodes) 8403 { 8404 int ret; 8405 if (!md_cluster_ops) 8406 request_module("md-cluster"); 8407 spin_lock(&pers_lock); 8408 /* ensure module won't be unloaded */ 8409 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8410 pr_warn("can't find md-cluster module or get it's reference.\n"); 8411 spin_unlock(&pers_lock); 8412 return -ENOENT; 8413 } 8414 spin_unlock(&pers_lock); 8415 8416 ret = md_cluster_ops->join(mddev, nodes); 8417 if (!ret) 8418 mddev->safemode_delay = 0; 8419 return ret; 8420 } 8421 8422 void md_cluster_stop(struct mddev *mddev) 8423 { 8424 if (!md_cluster_ops) 8425 return; 8426 md_cluster_ops->leave(mddev); 8427 module_put(md_cluster_mod); 8428 } 8429 8430 static int is_mddev_idle(struct mddev *mddev, int init) 8431 { 8432 struct md_rdev *rdev; 8433 int idle; 8434 int curr_events; 8435 8436 idle = 1; 8437 rcu_read_lock(); 8438 rdev_for_each_rcu(rdev, mddev) { 8439 struct gendisk *disk = rdev->bdev->bd_disk; 8440 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8441 atomic_read(&disk->sync_io); 8442 /* sync IO will cause sync_io to increase before the disk_stats 8443 * as sync_io is counted when a request starts, and 8444 * disk_stats is counted when it completes. 8445 * So resync activity will cause curr_events to be smaller than 8446 * when there was no such activity. 8447 * non-sync IO will cause disk_stat to increase without 8448 * increasing sync_io so curr_events will (eventually) 8449 * be larger than it was before. Once it becomes 8450 * substantially larger, the test below will cause 8451 * the array to appear non-idle, and resync will slow 8452 * down. 8453 * If there is a lot of outstanding resync activity when 8454 * we set last_event to curr_events, then all that activity 8455 * completing might cause the array to appear non-idle 8456 * and resync will be slowed down even though there might 8457 * not have been non-resync activity. This will only 8458 * happen once though. 'last_events' will soon reflect 8459 * the state where there is little or no outstanding 8460 * resync requests, and further resync activity will 8461 * always make curr_events less than last_events. 8462 * 8463 */ 8464 if (init || curr_events - rdev->last_events > 64) { 8465 rdev->last_events = curr_events; 8466 idle = 0; 8467 } 8468 } 8469 rcu_read_unlock(); 8470 return idle; 8471 } 8472 8473 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8474 { 8475 /* another "blocks" (512byte) blocks have been synced */ 8476 atomic_sub(blocks, &mddev->recovery_active); 8477 wake_up(&mddev->recovery_wait); 8478 if (!ok) { 8479 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8480 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8481 md_wakeup_thread(mddev->thread); 8482 // stop recovery, signal do_sync .... 8483 } 8484 } 8485 EXPORT_SYMBOL(md_done_sync); 8486 8487 /* md_write_start(mddev, bi) 8488 * If we need to update some array metadata (e.g. 'active' flag 8489 * in superblock) before writing, schedule a superblock update 8490 * and wait for it to complete. 8491 * A return value of 'false' means that the write wasn't recorded 8492 * and cannot proceed as the array is being suspend. 8493 */ 8494 bool md_write_start(struct mddev *mddev, struct bio *bi) 8495 { 8496 int did_change = 0; 8497 8498 if (bio_data_dir(bi) != WRITE) 8499 return true; 8500 8501 BUG_ON(mddev->ro == 1); 8502 if (mddev->ro == 2) { 8503 /* need to switch to read/write */ 8504 mddev->ro = 0; 8505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8506 md_wakeup_thread(mddev->thread); 8507 md_wakeup_thread(mddev->sync_thread); 8508 did_change = 1; 8509 } 8510 rcu_read_lock(); 8511 percpu_ref_get(&mddev->writes_pending); 8512 smp_mb(); /* Match smp_mb in set_in_sync() */ 8513 if (mddev->safemode == 1) 8514 mddev->safemode = 0; 8515 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8516 if (mddev->in_sync || mddev->sync_checkers) { 8517 spin_lock(&mddev->lock); 8518 if (mddev->in_sync) { 8519 mddev->in_sync = 0; 8520 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8521 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8522 md_wakeup_thread(mddev->thread); 8523 did_change = 1; 8524 } 8525 spin_unlock(&mddev->lock); 8526 } 8527 rcu_read_unlock(); 8528 if (did_change) 8529 sysfs_notify_dirent_safe(mddev->sysfs_state); 8530 if (!mddev->has_superblocks) 8531 return true; 8532 wait_event(mddev->sb_wait, 8533 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8534 mddev->suspended); 8535 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8536 percpu_ref_put(&mddev->writes_pending); 8537 return false; 8538 } 8539 return true; 8540 } 8541 EXPORT_SYMBOL(md_write_start); 8542 8543 /* md_write_inc can only be called when md_write_start() has 8544 * already been called at least once of the current request. 8545 * It increments the counter and is useful when a single request 8546 * is split into several parts. Each part causes an increment and 8547 * so needs a matching md_write_end(). 8548 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8549 * a spinlocked region. 8550 */ 8551 void md_write_inc(struct mddev *mddev, struct bio *bi) 8552 { 8553 if (bio_data_dir(bi) != WRITE) 8554 return; 8555 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8556 percpu_ref_get(&mddev->writes_pending); 8557 } 8558 EXPORT_SYMBOL(md_write_inc); 8559 8560 void md_write_end(struct mddev *mddev) 8561 { 8562 percpu_ref_put(&mddev->writes_pending); 8563 8564 if (mddev->safemode == 2) 8565 md_wakeup_thread(mddev->thread); 8566 else if (mddev->safemode_delay) 8567 /* The roundup() ensures this only performs locking once 8568 * every ->safemode_delay jiffies 8569 */ 8570 mod_timer(&mddev->safemode_timer, 8571 roundup(jiffies, mddev->safemode_delay) + 8572 mddev->safemode_delay); 8573 } 8574 8575 EXPORT_SYMBOL(md_write_end); 8576 8577 /* This is used by raid0 and raid10 */ 8578 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8579 struct bio *bio, sector_t start, sector_t size) 8580 { 8581 struct bio *discard_bio = NULL; 8582 8583 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0, 8584 &discard_bio) || !discard_bio) 8585 return; 8586 8587 bio_chain(discard_bio, bio); 8588 bio_clone_blkg_association(discard_bio, bio); 8589 if (mddev->gendisk) 8590 trace_block_bio_remap(discard_bio, 8591 disk_devt(mddev->gendisk), 8592 bio->bi_iter.bi_sector); 8593 submit_bio_noacct(discard_bio); 8594 } 8595 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8596 8597 static void md_end_io_acct(struct bio *bio) 8598 { 8599 struct md_io_acct *md_io_acct = bio->bi_private; 8600 struct bio *orig_bio = md_io_acct->orig_bio; 8601 8602 orig_bio->bi_status = bio->bi_status; 8603 8604 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8605 bio_put(bio); 8606 bio_endio(orig_bio); 8607 } 8608 8609 /* 8610 * Used by personalities that don't already clone the bio and thus can't 8611 * easily add the timestamp to their extended bio structure. 8612 */ 8613 void md_account_bio(struct mddev *mddev, struct bio **bio) 8614 { 8615 struct md_io_acct *md_io_acct; 8616 struct bio *clone; 8617 8618 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue)) 8619 return; 8620 8621 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set); 8622 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8623 md_io_acct->orig_bio = *bio; 8624 md_io_acct->start_time = bio_start_io_acct(*bio); 8625 8626 clone->bi_end_io = md_end_io_acct; 8627 clone->bi_private = md_io_acct; 8628 *bio = clone; 8629 } 8630 EXPORT_SYMBOL_GPL(md_account_bio); 8631 8632 /* md_allow_write(mddev) 8633 * Calling this ensures that the array is marked 'active' so that writes 8634 * may proceed without blocking. It is important to call this before 8635 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8636 * Must be called with mddev_lock held. 8637 */ 8638 void md_allow_write(struct mddev *mddev) 8639 { 8640 if (!mddev->pers) 8641 return; 8642 if (mddev->ro) 8643 return; 8644 if (!mddev->pers->sync_request) 8645 return; 8646 8647 spin_lock(&mddev->lock); 8648 if (mddev->in_sync) { 8649 mddev->in_sync = 0; 8650 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8651 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8652 if (mddev->safemode_delay && 8653 mddev->safemode == 0) 8654 mddev->safemode = 1; 8655 spin_unlock(&mddev->lock); 8656 md_update_sb(mddev, 0); 8657 sysfs_notify_dirent_safe(mddev->sysfs_state); 8658 /* wait for the dirty state to be recorded in the metadata */ 8659 wait_event(mddev->sb_wait, 8660 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8661 } else 8662 spin_unlock(&mddev->lock); 8663 } 8664 EXPORT_SYMBOL_GPL(md_allow_write); 8665 8666 #define SYNC_MARKS 10 8667 #define SYNC_MARK_STEP (3*HZ) 8668 #define UPDATE_FREQUENCY (5*60*HZ) 8669 void md_do_sync(struct md_thread *thread) 8670 { 8671 struct mddev *mddev = thread->mddev; 8672 struct mddev *mddev2; 8673 unsigned int currspeed = 0, window; 8674 sector_t max_sectors,j, io_sectors, recovery_done; 8675 unsigned long mark[SYNC_MARKS]; 8676 unsigned long update_time; 8677 sector_t mark_cnt[SYNC_MARKS]; 8678 int last_mark,m; 8679 struct list_head *tmp; 8680 sector_t last_check; 8681 int skipped = 0; 8682 struct md_rdev *rdev; 8683 char *desc, *action = NULL; 8684 struct blk_plug plug; 8685 int ret; 8686 8687 /* just incase thread restarts... */ 8688 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8689 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8690 return; 8691 if (mddev->ro) {/* never try to sync a read-only array */ 8692 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8693 return; 8694 } 8695 8696 if (mddev_is_clustered(mddev)) { 8697 ret = md_cluster_ops->resync_start(mddev); 8698 if (ret) 8699 goto skip; 8700 8701 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8702 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8703 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8704 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8705 && ((unsigned long long)mddev->curr_resync_completed 8706 < (unsigned long long)mddev->resync_max_sectors)) 8707 goto skip; 8708 } 8709 8710 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8711 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8712 desc = "data-check"; 8713 action = "check"; 8714 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8715 desc = "requested-resync"; 8716 action = "repair"; 8717 } else 8718 desc = "resync"; 8719 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8720 desc = "reshape"; 8721 else 8722 desc = "recovery"; 8723 8724 mddev->last_sync_action = action ?: desc; 8725 8726 /* we overload curr_resync somewhat here. 8727 * 0 == not engaged in resync at all 8728 * 2 == checking that there is no conflict with another sync 8729 * 1 == like 2, but have yielded to allow conflicting resync to 8730 * commence 8731 * other == active in resync - this many blocks 8732 * 8733 * Before starting a resync we must have set curr_resync to 8734 * 2, and then checked that every "conflicting" array has curr_resync 8735 * less than ours. When we find one that is the same or higher 8736 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8737 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8738 * This will mean we have to start checking from the beginning again. 8739 * 8740 */ 8741 8742 do { 8743 int mddev2_minor = -1; 8744 mddev->curr_resync = 2; 8745 8746 try_again: 8747 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8748 goto skip; 8749 for_each_mddev(mddev2, tmp) { 8750 if (mddev2 == mddev) 8751 continue; 8752 if (!mddev->parallel_resync 8753 && mddev2->curr_resync 8754 && match_mddev_units(mddev, mddev2)) { 8755 DEFINE_WAIT(wq); 8756 if (mddev < mddev2 && mddev->curr_resync == 2) { 8757 /* arbitrarily yield */ 8758 mddev->curr_resync = 1; 8759 wake_up(&resync_wait); 8760 } 8761 if (mddev > mddev2 && mddev->curr_resync == 1) 8762 /* no need to wait here, we can wait the next 8763 * time 'round when curr_resync == 2 8764 */ 8765 continue; 8766 /* We need to wait 'interruptible' so as not to 8767 * contribute to the load average, and not to 8768 * be caught by 'softlockup' 8769 */ 8770 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8771 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8772 mddev2->curr_resync >= mddev->curr_resync) { 8773 if (mddev2_minor != mddev2->md_minor) { 8774 mddev2_minor = mddev2->md_minor; 8775 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8776 desc, mdname(mddev), 8777 mdname(mddev2)); 8778 } 8779 mddev_put(mddev2); 8780 if (signal_pending(current)) 8781 flush_signals(current); 8782 schedule(); 8783 finish_wait(&resync_wait, &wq); 8784 goto try_again; 8785 } 8786 finish_wait(&resync_wait, &wq); 8787 } 8788 } 8789 } while (mddev->curr_resync < 2); 8790 8791 j = 0; 8792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8793 /* resync follows the size requested by the personality, 8794 * which defaults to physical size, but can be virtual size 8795 */ 8796 max_sectors = mddev->resync_max_sectors; 8797 atomic64_set(&mddev->resync_mismatches, 0); 8798 /* we don't use the checkpoint if there's a bitmap */ 8799 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8800 j = mddev->resync_min; 8801 else if (!mddev->bitmap) 8802 j = mddev->recovery_cp; 8803 8804 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8805 max_sectors = mddev->resync_max_sectors; 8806 /* 8807 * If the original node aborts reshaping then we continue the 8808 * reshaping, so set j again to avoid restart reshape from the 8809 * first beginning 8810 */ 8811 if (mddev_is_clustered(mddev) && 8812 mddev->reshape_position != MaxSector) 8813 j = mddev->reshape_position; 8814 } else { 8815 /* recovery follows the physical size of devices */ 8816 max_sectors = mddev->dev_sectors; 8817 j = MaxSector; 8818 rcu_read_lock(); 8819 rdev_for_each_rcu(rdev, mddev) 8820 if (rdev->raid_disk >= 0 && 8821 !test_bit(Journal, &rdev->flags) && 8822 !test_bit(Faulty, &rdev->flags) && 8823 !test_bit(In_sync, &rdev->flags) && 8824 rdev->recovery_offset < j) 8825 j = rdev->recovery_offset; 8826 rcu_read_unlock(); 8827 8828 /* If there is a bitmap, we need to make sure all 8829 * writes that started before we added a spare 8830 * complete before we start doing a recovery. 8831 * Otherwise the write might complete and (via 8832 * bitmap_endwrite) set a bit in the bitmap after the 8833 * recovery has checked that bit and skipped that 8834 * region. 8835 */ 8836 if (mddev->bitmap) { 8837 mddev->pers->quiesce(mddev, 1); 8838 mddev->pers->quiesce(mddev, 0); 8839 } 8840 } 8841 8842 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8843 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8844 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8845 speed_max(mddev), desc); 8846 8847 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8848 8849 io_sectors = 0; 8850 for (m = 0; m < SYNC_MARKS; m++) { 8851 mark[m] = jiffies; 8852 mark_cnt[m] = io_sectors; 8853 } 8854 last_mark = 0; 8855 mddev->resync_mark = mark[last_mark]; 8856 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8857 8858 /* 8859 * Tune reconstruction: 8860 */ 8861 window = 32 * (PAGE_SIZE / 512); 8862 pr_debug("md: using %dk window, over a total of %lluk.\n", 8863 window/2, (unsigned long long)max_sectors/2); 8864 8865 atomic_set(&mddev->recovery_active, 0); 8866 last_check = 0; 8867 8868 if (j>2) { 8869 pr_debug("md: resuming %s of %s from checkpoint.\n", 8870 desc, mdname(mddev)); 8871 mddev->curr_resync = j; 8872 } else 8873 mddev->curr_resync = 3; /* no longer delayed */ 8874 mddev->curr_resync_completed = j; 8875 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8876 md_new_event(); 8877 update_time = jiffies; 8878 8879 blk_start_plug(&plug); 8880 while (j < max_sectors) { 8881 sector_t sectors; 8882 8883 skipped = 0; 8884 8885 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8886 ((mddev->curr_resync > mddev->curr_resync_completed && 8887 (mddev->curr_resync - mddev->curr_resync_completed) 8888 > (max_sectors >> 4)) || 8889 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8890 (j - mddev->curr_resync_completed)*2 8891 >= mddev->resync_max - mddev->curr_resync_completed || 8892 mddev->curr_resync_completed > mddev->resync_max 8893 )) { 8894 /* time to update curr_resync_completed */ 8895 wait_event(mddev->recovery_wait, 8896 atomic_read(&mddev->recovery_active) == 0); 8897 mddev->curr_resync_completed = j; 8898 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8899 j > mddev->recovery_cp) 8900 mddev->recovery_cp = j; 8901 update_time = jiffies; 8902 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8903 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8904 } 8905 8906 while (j >= mddev->resync_max && 8907 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8908 /* As this condition is controlled by user-space, 8909 * we can block indefinitely, so use '_interruptible' 8910 * to avoid triggering warnings. 8911 */ 8912 flush_signals(current); /* just in case */ 8913 wait_event_interruptible(mddev->recovery_wait, 8914 mddev->resync_max > j 8915 || test_bit(MD_RECOVERY_INTR, 8916 &mddev->recovery)); 8917 } 8918 8919 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8920 break; 8921 8922 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8923 if (sectors == 0) { 8924 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8925 break; 8926 } 8927 8928 if (!skipped) { /* actual IO requested */ 8929 io_sectors += sectors; 8930 atomic_add(sectors, &mddev->recovery_active); 8931 } 8932 8933 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8934 break; 8935 8936 j += sectors; 8937 if (j > max_sectors) 8938 /* when skipping, extra large numbers can be returned. */ 8939 j = max_sectors; 8940 if (j > 2) 8941 mddev->curr_resync = j; 8942 mddev->curr_mark_cnt = io_sectors; 8943 if (last_check == 0) 8944 /* this is the earliest that rebuild will be 8945 * visible in /proc/mdstat 8946 */ 8947 md_new_event(); 8948 8949 if (last_check + window > io_sectors || j == max_sectors) 8950 continue; 8951 8952 last_check = io_sectors; 8953 repeat: 8954 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8955 /* step marks */ 8956 int next = (last_mark+1) % SYNC_MARKS; 8957 8958 mddev->resync_mark = mark[next]; 8959 mddev->resync_mark_cnt = mark_cnt[next]; 8960 mark[next] = jiffies; 8961 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8962 last_mark = next; 8963 } 8964 8965 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8966 break; 8967 8968 /* 8969 * this loop exits only if either when we are slower than 8970 * the 'hard' speed limit, or the system was IO-idle for 8971 * a jiffy. 8972 * the system might be non-idle CPU-wise, but we only care 8973 * about not overloading the IO subsystem. (things like an 8974 * e2fsck being done on the RAID array should execute fast) 8975 */ 8976 cond_resched(); 8977 8978 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8979 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8980 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8981 8982 if (currspeed > speed_min(mddev)) { 8983 if (currspeed > speed_max(mddev)) { 8984 msleep(500); 8985 goto repeat; 8986 } 8987 if (!is_mddev_idle(mddev, 0)) { 8988 /* 8989 * Give other IO more of a chance. 8990 * The faster the devices, the less we wait. 8991 */ 8992 wait_event(mddev->recovery_wait, 8993 !atomic_read(&mddev->recovery_active)); 8994 } 8995 } 8996 } 8997 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8998 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8999 ? "interrupted" : "done"); 9000 /* 9001 * this also signals 'finished resyncing' to md_stop 9002 */ 9003 blk_finish_plug(&plug); 9004 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9005 9006 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9007 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9008 mddev->curr_resync > 3) { 9009 mddev->curr_resync_completed = mddev->curr_resync; 9010 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9011 } 9012 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9013 9014 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9015 mddev->curr_resync > 3) { 9016 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9017 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9018 if (mddev->curr_resync >= mddev->recovery_cp) { 9019 pr_debug("md: checkpointing %s of %s.\n", 9020 desc, mdname(mddev)); 9021 if (test_bit(MD_RECOVERY_ERROR, 9022 &mddev->recovery)) 9023 mddev->recovery_cp = 9024 mddev->curr_resync_completed; 9025 else 9026 mddev->recovery_cp = 9027 mddev->curr_resync; 9028 } 9029 } else 9030 mddev->recovery_cp = MaxSector; 9031 } else { 9032 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9033 mddev->curr_resync = MaxSector; 9034 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9035 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9036 rcu_read_lock(); 9037 rdev_for_each_rcu(rdev, mddev) 9038 if (rdev->raid_disk >= 0 && 9039 mddev->delta_disks >= 0 && 9040 !test_bit(Journal, &rdev->flags) && 9041 !test_bit(Faulty, &rdev->flags) && 9042 !test_bit(In_sync, &rdev->flags) && 9043 rdev->recovery_offset < mddev->curr_resync) 9044 rdev->recovery_offset = mddev->curr_resync; 9045 rcu_read_unlock(); 9046 } 9047 } 9048 } 9049 skip: 9050 /* set CHANGE_PENDING here since maybe another update is needed, 9051 * so other nodes are informed. It should be harmless for normal 9052 * raid */ 9053 set_mask_bits(&mddev->sb_flags, 0, 9054 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9055 9056 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9057 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9058 mddev->delta_disks > 0 && 9059 mddev->pers->finish_reshape && 9060 mddev->pers->size && 9061 mddev->queue) { 9062 mddev_lock_nointr(mddev); 9063 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9064 mddev_unlock(mddev); 9065 if (!mddev_is_clustered(mddev)) 9066 set_capacity_and_notify(mddev->gendisk, 9067 mddev->array_sectors); 9068 } 9069 9070 spin_lock(&mddev->lock); 9071 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9072 /* We completed so min/max setting can be forgotten if used. */ 9073 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9074 mddev->resync_min = 0; 9075 mddev->resync_max = MaxSector; 9076 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9077 mddev->resync_min = mddev->curr_resync_completed; 9078 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9079 mddev->curr_resync = 0; 9080 spin_unlock(&mddev->lock); 9081 9082 wake_up(&resync_wait); 9083 md_wakeup_thread(mddev->thread); 9084 return; 9085 } 9086 EXPORT_SYMBOL_GPL(md_do_sync); 9087 9088 static int remove_and_add_spares(struct mddev *mddev, 9089 struct md_rdev *this) 9090 { 9091 struct md_rdev *rdev; 9092 int spares = 0; 9093 int removed = 0; 9094 bool remove_some = false; 9095 9096 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9097 /* Mustn't remove devices when resync thread is running */ 9098 return 0; 9099 9100 rdev_for_each(rdev, mddev) { 9101 if ((this == NULL || rdev == this) && 9102 rdev->raid_disk >= 0 && 9103 !test_bit(Blocked, &rdev->flags) && 9104 test_bit(Faulty, &rdev->flags) && 9105 atomic_read(&rdev->nr_pending)==0) { 9106 /* Faulty non-Blocked devices with nr_pending == 0 9107 * never get nr_pending incremented, 9108 * never get Faulty cleared, and never get Blocked set. 9109 * So we can synchronize_rcu now rather than once per device 9110 */ 9111 remove_some = true; 9112 set_bit(RemoveSynchronized, &rdev->flags); 9113 } 9114 } 9115 9116 if (remove_some) 9117 synchronize_rcu(); 9118 rdev_for_each(rdev, mddev) { 9119 if ((this == NULL || rdev == this) && 9120 rdev->raid_disk >= 0 && 9121 !test_bit(Blocked, &rdev->flags) && 9122 ((test_bit(RemoveSynchronized, &rdev->flags) || 9123 (!test_bit(In_sync, &rdev->flags) && 9124 !test_bit(Journal, &rdev->flags))) && 9125 atomic_read(&rdev->nr_pending)==0)) { 9126 if (mddev->pers->hot_remove_disk( 9127 mddev, rdev) == 0) { 9128 sysfs_unlink_rdev(mddev, rdev); 9129 rdev->saved_raid_disk = rdev->raid_disk; 9130 rdev->raid_disk = -1; 9131 removed++; 9132 } 9133 } 9134 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9135 clear_bit(RemoveSynchronized, &rdev->flags); 9136 } 9137 9138 if (removed && mddev->kobj.sd) 9139 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9140 9141 if (this && removed) 9142 goto no_add; 9143 9144 rdev_for_each(rdev, mddev) { 9145 if (this && this != rdev) 9146 continue; 9147 if (test_bit(Candidate, &rdev->flags)) 9148 continue; 9149 if (rdev->raid_disk >= 0 && 9150 !test_bit(In_sync, &rdev->flags) && 9151 !test_bit(Journal, &rdev->flags) && 9152 !test_bit(Faulty, &rdev->flags)) 9153 spares++; 9154 if (rdev->raid_disk >= 0) 9155 continue; 9156 if (test_bit(Faulty, &rdev->flags)) 9157 continue; 9158 if (!test_bit(Journal, &rdev->flags)) { 9159 if (mddev->ro && 9160 ! (rdev->saved_raid_disk >= 0 && 9161 !test_bit(Bitmap_sync, &rdev->flags))) 9162 continue; 9163 9164 rdev->recovery_offset = 0; 9165 } 9166 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9167 /* failure here is OK */ 9168 sysfs_link_rdev(mddev, rdev); 9169 if (!test_bit(Journal, &rdev->flags)) 9170 spares++; 9171 md_new_event(); 9172 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9173 } 9174 } 9175 no_add: 9176 if (removed) 9177 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9178 return spares; 9179 } 9180 9181 static void md_start_sync(struct work_struct *ws) 9182 { 9183 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9184 9185 mddev->sync_thread = md_register_thread(md_do_sync, 9186 mddev, 9187 "resync"); 9188 if (!mddev->sync_thread) { 9189 pr_warn("%s: could not start resync thread...\n", 9190 mdname(mddev)); 9191 /* leave the spares where they are, it shouldn't hurt */ 9192 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9193 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9194 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9195 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9196 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9197 wake_up(&resync_wait); 9198 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9199 &mddev->recovery)) 9200 if (mddev->sysfs_action) 9201 sysfs_notify_dirent_safe(mddev->sysfs_action); 9202 } else 9203 md_wakeup_thread(mddev->sync_thread); 9204 sysfs_notify_dirent_safe(mddev->sysfs_action); 9205 md_new_event(); 9206 } 9207 9208 /* 9209 * This routine is regularly called by all per-raid-array threads to 9210 * deal with generic issues like resync and super-block update. 9211 * Raid personalities that don't have a thread (linear/raid0) do not 9212 * need this as they never do any recovery or update the superblock. 9213 * 9214 * It does not do any resync itself, but rather "forks" off other threads 9215 * to do that as needed. 9216 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9217 * "->recovery" and create a thread at ->sync_thread. 9218 * When the thread finishes it sets MD_RECOVERY_DONE 9219 * and wakeups up this thread which will reap the thread and finish up. 9220 * This thread also removes any faulty devices (with nr_pending == 0). 9221 * 9222 * The overall approach is: 9223 * 1/ if the superblock needs updating, update it. 9224 * 2/ If a recovery thread is running, don't do anything else. 9225 * 3/ If recovery has finished, clean up, possibly marking spares active. 9226 * 4/ If there are any faulty devices, remove them. 9227 * 5/ If array is degraded, try to add spares devices 9228 * 6/ If array has spares or is not in-sync, start a resync thread. 9229 */ 9230 void md_check_recovery(struct mddev *mddev) 9231 { 9232 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9233 /* Write superblock - thread that called mddev_suspend() 9234 * holds reconfig_mutex for us. 9235 */ 9236 set_bit(MD_UPDATING_SB, &mddev->flags); 9237 smp_mb__after_atomic(); 9238 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9239 md_update_sb(mddev, 0); 9240 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9241 wake_up(&mddev->sb_wait); 9242 } 9243 9244 if (mddev->suspended) 9245 return; 9246 9247 if (mddev->bitmap) 9248 md_bitmap_daemon_work(mddev); 9249 9250 if (signal_pending(current)) { 9251 if (mddev->pers->sync_request && !mddev->external) { 9252 pr_debug("md: %s in immediate safe mode\n", 9253 mdname(mddev)); 9254 mddev->safemode = 2; 9255 } 9256 flush_signals(current); 9257 } 9258 9259 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9260 return; 9261 if ( ! ( 9262 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9263 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9264 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9265 (mddev->external == 0 && mddev->safemode == 1) || 9266 (mddev->safemode == 2 9267 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9268 )) 9269 return; 9270 9271 if (mddev_trylock(mddev)) { 9272 int spares = 0; 9273 bool try_set_sync = mddev->safemode != 0; 9274 9275 if (!mddev->external && mddev->safemode == 1) 9276 mddev->safemode = 0; 9277 9278 if (mddev->ro) { 9279 struct md_rdev *rdev; 9280 if (!mddev->external && mddev->in_sync) 9281 /* 'Blocked' flag not needed as failed devices 9282 * will be recorded if array switched to read/write. 9283 * Leaving it set will prevent the device 9284 * from being removed. 9285 */ 9286 rdev_for_each(rdev, mddev) 9287 clear_bit(Blocked, &rdev->flags); 9288 /* On a read-only array we can: 9289 * - remove failed devices 9290 * - add already-in_sync devices if the array itself 9291 * is in-sync. 9292 * As we only add devices that are already in-sync, 9293 * we can activate the spares immediately. 9294 */ 9295 remove_and_add_spares(mddev, NULL); 9296 /* There is no thread, but we need to call 9297 * ->spare_active and clear saved_raid_disk 9298 */ 9299 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9300 md_reap_sync_thread(mddev); 9301 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9302 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9303 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9304 goto unlock; 9305 } 9306 9307 if (mddev_is_clustered(mddev)) { 9308 struct md_rdev *rdev, *tmp; 9309 /* kick the device if another node issued a 9310 * remove disk. 9311 */ 9312 rdev_for_each_safe(rdev, tmp, mddev) { 9313 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9314 rdev->raid_disk < 0) 9315 md_kick_rdev_from_array(rdev); 9316 } 9317 } 9318 9319 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9320 spin_lock(&mddev->lock); 9321 set_in_sync(mddev); 9322 spin_unlock(&mddev->lock); 9323 } 9324 9325 if (mddev->sb_flags) 9326 md_update_sb(mddev, 0); 9327 9328 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9329 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9330 /* resync/recovery still happening */ 9331 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9332 goto unlock; 9333 } 9334 if (mddev->sync_thread) { 9335 md_reap_sync_thread(mddev); 9336 goto unlock; 9337 } 9338 /* Set RUNNING before clearing NEEDED to avoid 9339 * any transients in the value of "sync_action". 9340 */ 9341 mddev->curr_resync_completed = 0; 9342 spin_lock(&mddev->lock); 9343 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9344 spin_unlock(&mddev->lock); 9345 /* Clear some bits that don't mean anything, but 9346 * might be left set 9347 */ 9348 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9349 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9350 9351 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9352 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9353 goto not_running; 9354 /* no recovery is running. 9355 * remove any failed drives, then 9356 * add spares if possible. 9357 * Spares are also removed and re-added, to allow 9358 * the personality to fail the re-add. 9359 */ 9360 9361 if (mddev->reshape_position != MaxSector) { 9362 if (mddev->pers->check_reshape == NULL || 9363 mddev->pers->check_reshape(mddev) != 0) 9364 /* Cannot proceed */ 9365 goto not_running; 9366 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9367 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9368 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9369 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9370 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9371 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9372 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9373 } else if (mddev->recovery_cp < MaxSector) { 9374 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9375 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9376 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9377 /* nothing to be done ... */ 9378 goto not_running; 9379 9380 if (mddev->pers->sync_request) { 9381 if (spares) { 9382 /* We are adding a device or devices to an array 9383 * which has the bitmap stored on all devices. 9384 * So make sure all bitmap pages get written 9385 */ 9386 md_bitmap_write_all(mddev->bitmap); 9387 } 9388 INIT_WORK(&mddev->del_work, md_start_sync); 9389 queue_work(md_misc_wq, &mddev->del_work); 9390 goto unlock; 9391 } 9392 not_running: 9393 if (!mddev->sync_thread) { 9394 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9395 wake_up(&resync_wait); 9396 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9397 &mddev->recovery)) 9398 if (mddev->sysfs_action) 9399 sysfs_notify_dirent_safe(mddev->sysfs_action); 9400 } 9401 unlock: 9402 wake_up(&mddev->sb_wait); 9403 mddev_unlock(mddev); 9404 } 9405 } 9406 EXPORT_SYMBOL(md_check_recovery); 9407 9408 void md_reap_sync_thread(struct mddev *mddev) 9409 { 9410 struct md_rdev *rdev; 9411 sector_t old_dev_sectors = mddev->dev_sectors; 9412 bool is_reshaped = false; 9413 9414 /* resync has finished, collect result */ 9415 md_unregister_thread(&mddev->sync_thread); 9416 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9417 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9418 mddev->degraded != mddev->raid_disks) { 9419 /* success...*/ 9420 /* activate any spares */ 9421 if (mddev->pers->spare_active(mddev)) { 9422 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9423 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9424 } 9425 } 9426 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9427 mddev->pers->finish_reshape) { 9428 mddev->pers->finish_reshape(mddev); 9429 if (mddev_is_clustered(mddev)) 9430 is_reshaped = true; 9431 } 9432 9433 /* If array is no-longer degraded, then any saved_raid_disk 9434 * information must be scrapped. 9435 */ 9436 if (!mddev->degraded) 9437 rdev_for_each(rdev, mddev) 9438 rdev->saved_raid_disk = -1; 9439 9440 md_update_sb(mddev, 1); 9441 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9442 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9443 * clustered raid */ 9444 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9445 md_cluster_ops->resync_finish(mddev); 9446 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9447 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9448 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9449 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9450 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9451 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9452 /* 9453 * We call md_cluster_ops->update_size here because sync_size could 9454 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9455 * so it is time to update size across cluster. 9456 */ 9457 if (mddev_is_clustered(mddev) && is_reshaped 9458 && !test_bit(MD_CLOSING, &mddev->flags)) 9459 md_cluster_ops->update_size(mddev, old_dev_sectors); 9460 wake_up(&resync_wait); 9461 /* flag recovery needed just to double check */ 9462 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9463 sysfs_notify_dirent_safe(mddev->sysfs_action); 9464 md_new_event(); 9465 if (mddev->event_work.func) 9466 queue_work(md_misc_wq, &mddev->event_work); 9467 } 9468 EXPORT_SYMBOL(md_reap_sync_thread); 9469 9470 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9471 { 9472 sysfs_notify_dirent_safe(rdev->sysfs_state); 9473 wait_event_timeout(rdev->blocked_wait, 9474 !test_bit(Blocked, &rdev->flags) && 9475 !test_bit(BlockedBadBlocks, &rdev->flags), 9476 msecs_to_jiffies(5000)); 9477 rdev_dec_pending(rdev, mddev); 9478 } 9479 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9480 9481 void md_finish_reshape(struct mddev *mddev) 9482 { 9483 /* called be personality module when reshape completes. */ 9484 struct md_rdev *rdev; 9485 9486 rdev_for_each(rdev, mddev) { 9487 if (rdev->data_offset > rdev->new_data_offset) 9488 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9489 else 9490 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9491 rdev->data_offset = rdev->new_data_offset; 9492 } 9493 } 9494 EXPORT_SYMBOL(md_finish_reshape); 9495 9496 /* Bad block management */ 9497 9498 /* Returns 1 on success, 0 on failure */ 9499 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9500 int is_new) 9501 { 9502 struct mddev *mddev = rdev->mddev; 9503 int rv; 9504 if (is_new) 9505 s += rdev->new_data_offset; 9506 else 9507 s += rdev->data_offset; 9508 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9509 if (rv == 0) { 9510 /* Make sure they get written out promptly */ 9511 if (test_bit(ExternalBbl, &rdev->flags)) 9512 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9513 sysfs_notify_dirent_safe(rdev->sysfs_state); 9514 set_mask_bits(&mddev->sb_flags, 0, 9515 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9516 md_wakeup_thread(rdev->mddev->thread); 9517 return 1; 9518 } else 9519 return 0; 9520 } 9521 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9522 9523 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9524 int is_new) 9525 { 9526 int rv; 9527 if (is_new) 9528 s += rdev->new_data_offset; 9529 else 9530 s += rdev->data_offset; 9531 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9532 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9533 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9534 return rv; 9535 } 9536 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9537 9538 static int md_notify_reboot(struct notifier_block *this, 9539 unsigned long code, void *x) 9540 { 9541 struct list_head *tmp; 9542 struct mddev *mddev; 9543 int need_delay = 0; 9544 9545 for_each_mddev(mddev, tmp) { 9546 if (mddev_trylock(mddev)) { 9547 if (mddev->pers) 9548 __md_stop_writes(mddev); 9549 if (mddev->persistent) 9550 mddev->safemode = 2; 9551 mddev_unlock(mddev); 9552 } 9553 need_delay = 1; 9554 } 9555 /* 9556 * certain more exotic SCSI devices are known to be 9557 * volatile wrt too early system reboots. While the 9558 * right place to handle this issue is the given 9559 * driver, we do want to have a safe RAID driver ... 9560 */ 9561 if (need_delay) 9562 mdelay(1000*1); 9563 9564 return NOTIFY_DONE; 9565 } 9566 9567 static struct notifier_block md_notifier = { 9568 .notifier_call = md_notify_reboot, 9569 .next = NULL, 9570 .priority = INT_MAX, /* before any real devices */ 9571 }; 9572 9573 static void md_geninit(void) 9574 { 9575 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9576 9577 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9578 } 9579 9580 static int __init md_init(void) 9581 { 9582 int ret = -ENOMEM; 9583 9584 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9585 if (!md_wq) 9586 goto err_wq; 9587 9588 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9589 if (!md_misc_wq) 9590 goto err_misc_wq; 9591 9592 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9593 if (!md_rdev_misc_wq) 9594 goto err_rdev_misc_wq; 9595 9596 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9597 if (ret < 0) 9598 goto err_md; 9599 9600 ret = __register_blkdev(0, "mdp", md_probe); 9601 if (ret < 0) 9602 goto err_mdp; 9603 mdp_major = ret; 9604 9605 register_reboot_notifier(&md_notifier); 9606 raid_table_header = register_sysctl_table(raid_root_table); 9607 9608 md_geninit(); 9609 return 0; 9610 9611 err_mdp: 9612 unregister_blkdev(MD_MAJOR, "md"); 9613 err_md: 9614 destroy_workqueue(md_rdev_misc_wq); 9615 err_rdev_misc_wq: 9616 destroy_workqueue(md_misc_wq); 9617 err_misc_wq: 9618 destroy_workqueue(md_wq); 9619 err_wq: 9620 return ret; 9621 } 9622 9623 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9624 { 9625 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9626 struct md_rdev *rdev2, *tmp; 9627 int role, ret; 9628 char b[BDEVNAME_SIZE]; 9629 9630 /* 9631 * If size is changed in another node then we need to 9632 * do resize as well. 9633 */ 9634 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9635 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9636 if (ret) 9637 pr_info("md-cluster: resize failed\n"); 9638 else 9639 md_bitmap_update_sb(mddev->bitmap); 9640 } 9641 9642 /* Check for change of roles in the active devices */ 9643 rdev_for_each_safe(rdev2, tmp, mddev) { 9644 if (test_bit(Faulty, &rdev2->flags)) 9645 continue; 9646 9647 /* Check if the roles changed */ 9648 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9649 9650 if (test_bit(Candidate, &rdev2->flags)) { 9651 if (role == 0xfffe) { 9652 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9653 md_kick_rdev_from_array(rdev2); 9654 continue; 9655 } 9656 else 9657 clear_bit(Candidate, &rdev2->flags); 9658 } 9659 9660 if (role != rdev2->raid_disk) { 9661 /* 9662 * got activated except reshape is happening. 9663 */ 9664 if (rdev2->raid_disk == -1 && role != 0xffff && 9665 !(le32_to_cpu(sb->feature_map) & 9666 MD_FEATURE_RESHAPE_ACTIVE)) { 9667 rdev2->saved_raid_disk = role; 9668 ret = remove_and_add_spares(mddev, rdev2); 9669 pr_info("Activated spare: %s\n", 9670 bdevname(rdev2->bdev,b)); 9671 /* wakeup mddev->thread here, so array could 9672 * perform resync with the new activated disk */ 9673 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9674 md_wakeup_thread(mddev->thread); 9675 } 9676 /* device faulty 9677 * We just want to do the minimum to mark the disk 9678 * as faulty. The recovery is performed by the 9679 * one who initiated the error. 9680 */ 9681 if ((role == 0xfffe) || (role == 0xfffd)) { 9682 md_error(mddev, rdev2); 9683 clear_bit(Blocked, &rdev2->flags); 9684 } 9685 } 9686 } 9687 9688 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9689 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9690 if (ret) 9691 pr_warn("md: updating array disks failed. %d\n", ret); 9692 } 9693 9694 /* 9695 * Since mddev->delta_disks has already updated in update_raid_disks, 9696 * so it is time to check reshape. 9697 */ 9698 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9699 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9700 /* 9701 * reshape is happening in the remote node, we need to 9702 * update reshape_position and call start_reshape. 9703 */ 9704 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9705 if (mddev->pers->update_reshape_pos) 9706 mddev->pers->update_reshape_pos(mddev); 9707 if (mddev->pers->start_reshape) 9708 mddev->pers->start_reshape(mddev); 9709 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9710 mddev->reshape_position != MaxSector && 9711 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9712 /* reshape is just done in another node. */ 9713 mddev->reshape_position = MaxSector; 9714 if (mddev->pers->update_reshape_pos) 9715 mddev->pers->update_reshape_pos(mddev); 9716 } 9717 9718 /* Finally set the event to be up to date */ 9719 mddev->events = le64_to_cpu(sb->events); 9720 } 9721 9722 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9723 { 9724 int err; 9725 struct page *swapout = rdev->sb_page; 9726 struct mdp_superblock_1 *sb; 9727 9728 /* Store the sb page of the rdev in the swapout temporary 9729 * variable in case we err in the future 9730 */ 9731 rdev->sb_page = NULL; 9732 err = alloc_disk_sb(rdev); 9733 if (err == 0) { 9734 ClearPageUptodate(rdev->sb_page); 9735 rdev->sb_loaded = 0; 9736 err = super_types[mddev->major_version]. 9737 load_super(rdev, NULL, mddev->minor_version); 9738 } 9739 if (err < 0) { 9740 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9741 __func__, __LINE__, rdev->desc_nr, err); 9742 if (rdev->sb_page) 9743 put_page(rdev->sb_page); 9744 rdev->sb_page = swapout; 9745 rdev->sb_loaded = 1; 9746 return err; 9747 } 9748 9749 sb = page_address(rdev->sb_page); 9750 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9751 * is not set 9752 */ 9753 9754 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9755 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9756 9757 /* The other node finished recovery, call spare_active to set 9758 * device In_sync and mddev->degraded 9759 */ 9760 if (rdev->recovery_offset == MaxSector && 9761 !test_bit(In_sync, &rdev->flags) && 9762 mddev->pers->spare_active(mddev)) 9763 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9764 9765 put_page(swapout); 9766 return 0; 9767 } 9768 9769 void md_reload_sb(struct mddev *mddev, int nr) 9770 { 9771 struct md_rdev *rdev; 9772 int err; 9773 9774 /* Find the rdev */ 9775 rdev_for_each_rcu(rdev, mddev) { 9776 if (rdev->desc_nr == nr) 9777 break; 9778 } 9779 9780 if (!rdev || rdev->desc_nr != nr) { 9781 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9782 return; 9783 } 9784 9785 err = read_rdev(mddev, rdev); 9786 if (err < 0) 9787 return; 9788 9789 check_sb_changes(mddev, rdev); 9790 9791 /* Read all rdev's to update recovery_offset */ 9792 rdev_for_each_rcu(rdev, mddev) { 9793 if (!test_bit(Faulty, &rdev->flags)) 9794 read_rdev(mddev, rdev); 9795 } 9796 } 9797 EXPORT_SYMBOL(md_reload_sb); 9798 9799 #ifndef MODULE 9800 9801 /* 9802 * Searches all registered partitions for autorun RAID arrays 9803 * at boot time. 9804 */ 9805 9806 static DEFINE_MUTEX(detected_devices_mutex); 9807 static LIST_HEAD(all_detected_devices); 9808 struct detected_devices_node { 9809 struct list_head list; 9810 dev_t dev; 9811 }; 9812 9813 void md_autodetect_dev(dev_t dev) 9814 { 9815 struct detected_devices_node *node_detected_dev; 9816 9817 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9818 if (node_detected_dev) { 9819 node_detected_dev->dev = dev; 9820 mutex_lock(&detected_devices_mutex); 9821 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9822 mutex_unlock(&detected_devices_mutex); 9823 } 9824 } 9825 9826 void md_autostart_arrays(int part) 9827 { 9828 struct md_rdev *rdev; 9829 struct detected_devices_node *node_detected_dev; 9830 dev_t dev; 9831 int i_scanned, i_passed; 9832 9833 i_scanned = 0; 9834 i_passed = 0; 9835 9836 pr_info("md: Autodetecting RAID arrays.\n"); 9837 9838 mutex_lock(&detected_devices_mutex); 9839 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9840 i_scanned++; 9841 node_detected_dev = list_entry(all_detected_devices.next, 9842 struct detected_devices_node, list); 9843 list_del(&node_detected_dev->list); 9844 dev = node_detected_dev->dev; 9845 kfree(node_detected_dev); 9846 mutex_unlock(&detected_devices_mutex); 9847 rdev = md_import_device(dev,0, 90); 9848 mutex_lock(&detected_devices_mutex); 9849 if (IS_ERR(rdev)) 9850 continue; 9851 9852 if (test_bit(Faulty, &rdev->flags)) 9853 continue; 9854 9855 set_bit(AutoDetected, &rdev->flags); 9856 list_add(&rdev->same_set, &pending_raid_disks); 9857 i_passed++; 9858 } 9859 mutex_unlock(&detected_devices_mutex); 9860 9861 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9862 9863 autorun_devices(part); 9864 } 9865 9866 #endif /* !MODULE */ 9867 9868 static __exit void md_exit(void) 9869 { 9870 struct mddev *mddev; 9871 struct list_head *tmp; 9872 int delay = 1; 9873 9874 unregister_blkdev(MD_MAJOR,"md"); 9875 unregister_blkdev(mdp_major, "mdp"); 9876 unregister_reboot_notifier(&md_notifier); 9877 unregister_sysctl_table(raid_table_header); 9878 9879 /* We cannot unload the modules while some process is 9880 * waiting for us in select() or poll() - wake them up 9881 */ 9882 md_unloading = 1; 9883 while (waitqueue_active(&md_event_waiters)) { 9884 /* not safe to leave yet */ 9885 wake_up(&md_event_waiters); 9886 msleep(delay); 9887 delay += delay; 9888 } 9889 remove_proc_entry("mdstat", NULL); 9890 9891 for_each_mddev(mddev, tmp) { 9892 export_array(mddev); 9893 mddev->ctime = 0; 9894 mddev->hold_active = 0; 9895 /* 9896 * for_each_mddev() will call mddev_put() at the end of each 9897 * iteration. As the mddev is now fully clear, this will 9898 * schedule the mddev for destruction by a workqueue, and the 9899 * destroy_workqueue() below will wait for that to complete. 9900 */ 9901 } 9902 destroy_workqueue(md_rdev_misc_wq); 9903 destroy_workqueue(md_misc_wq); 9904 destroy_workqueue(md_wq); 9905 } 9906 9907 subsys_initcall(md_init); 9908 module_exit(md_exit) 9909 9910 static int get_ro(char *buffer, const struct kernel_param *kp) 9911 { 9912 return sprintf(buffer, "%d\n", start_readonly); 9913 } 9914 static int set_ro(const char *val, const struct kernel_param *kp) 9915 { 9916 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9917 } 9918 9919 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9920 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9921 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9922 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9923 9924 MODULE_LICENSE("GPL"); 9925 MODULE_DESCRIPTION("MD RAID framework"); 9926 MODULE_ALIAS("md"); 9927 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9928