1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 */ 34 35 #include <linux/kthread.h> 36 #include <linux/blkdev.h> 37 #include <linux/sysctl.h> 38 #include <linux/seq_file.h> 39 #include <linux/fs.h> 40 #include <linux/poll.h> 41 #include <linux/ctype.h> 42 #include <linux/string.h> 43 #include <linux/hdreg.h> 44 #include <linux/proc_fs.h> 45 #include <linux/random.h> 46 #include <linux/module.h> 47 #include <linux/reboot.h> 48 #include <linux/file.h> 49 #include <linux/compat.h> 50 #include <linux/delay.h> 51 #include <linux/raid/md_p.h> 52 #include <linux/raid/md_u.h> 53 #include <linux/slab.h> 54 #include "md.h" 55 #include "bitmap.h" 56 57 #ifndef MODULE 58 static void autostart_arrays(int part); 59 #endif 60 61 /* pers_list is a list of registered personalities protected 62 * by pers_lock. 63 * pers_lock does extra service to protect accesses to 64 * mddev->thread when the mutex cannot be held. 65 */ 66 static LIST_HEAD(pers_list); 67 static DEFINE_SPINLOCK(pers_lock); 68 69 static void md_print_devices(void); 70 71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 72 static struct workqueue_struct *md_wq; 73 static struct workqueue_struct *md_misc_wq; 74 75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); } 76 77 /* 78 * Default number of read corrections we'll attempt on an rdev 79 * before ejecting it from the array. We divide the read error 80 * count by 2 for every hour elapsed between read errors. 81 */ 82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 83 /* 84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 85 * is 1000 KB/sec, so the extra system load does not show up that much. 86 * Increase it if you want to have more _guaranteed_ speed. Note that 87 * the RAID driver will use the maximum available bandwidth if the IO 88 * subsystem is idle. There is also an 'absolute maximum' reconstruction 89 * speed limit - in case reconstruction slows down your system despite 90 * idle IO detection. 91 * 92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 93 * or /sys/block/mdX/md/sync_speed_{min,max} 94 */ 95 96 static int sysctl_speed_limit_min = 1000; 97 static int sysctl_speed_limit_max = 200000; 98 static inline int speed_min(struct mddev *mddev) 99 { 100 return mddev->sync_speed_min ? 101 mddev->sync_speed_min : sysctl_speed_limit_min; 102 } 103 104 static inline int speed_max(struct mddev *mddev) 105 { 106 return mddev->sync_speed_max ? 107 mddev->sync_speed_max : sysctl_speed_limit_max; 108 } 109 110 static struct ctl_table_header *raid_table_header; 111 112 static ctl_table raid_table[] = { 113 { 114 .procname = "speed_limit_min", 115 .data = &sysctl_speed_limit_min, 116 .maxlen = sizeof(int), 117 .mode = S_IRUGO|S_IWUSR, 118 .proc_handler = proc_dointvec, 119 }, 120 { 121 .procname = "speed_limit_max", 122 .data = &sysctl_speed_limit_max, 123 .maxlen = sizeof(int), 124 .mode = S_IRUGO|S_IWUSR, 125 .proc_handler = proc_dointvec, 126 }, 127 { } 128 }; 129 130 static ctl_table raid_dir_table[] = { 131 { 132 .procname = "raid", 133 .maxlen = 0, 134 .mode = S_IRUGO|S_IXUGO, 135 .child = raid_table, 136 }, 137 { } 138 }; 139 140 static ctl_table raid_root_table[] = { 141 { 142 .procname = "dev", 143 .maxlen = 0, 144 .mode = 0555, 145 .child = raid_dir_table, 146 }, 147 { } 148 }; 149 150 static const struct block_device_operations md_fops; 151 152 static int start_readonly; 153 154 /* bio_clone_mddev 155 * like bio_clone, but with a local bio set 156 */ 157 158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 159 struct mddev *mddev) 160 { 161 struct bio *b; 162 163 if (!mddev || !mddev->bio_set) 164 return bio_alloc(gfp_mask, nr_iovecs); 165 166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 167 if (!b) 168 return NULL; 169 return b; 170 } 171 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 172 173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask, 174 struct mddev *mddev) 175 { 176 if (!mddev || !mddev->bio_set) 177 return bio_clone(bio, gfp_mask); 178 179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set); 180 } 181 EXPORT_SYMBOL_GPL(bio_clone_mddev); 182 183 void md_trim_bio(struct bio *bio, int offset, int size) 184 { 185 /* 'bio' is a cloned bio which we need to trim to match 186 * the given offset and size. 187 * This requires adjusting bi_sector, bi_size, and bi_io_vec 188 */ 189 int i; 190 struct bio_vec *bvec; 191 int sofar = 0; 192 193 size <<= 9; 194 if (offset == 0 && size == bio->bi_size) 195 return; 196 197 bio->bi_sector += offset; 198 bio->bi_size = size; 199 offset <<= 9; 200 clear_bit(BIO_SEG_VALID, &bio->bi_flags); 201 202 while (bio->bi_idx < bio->bi_vcnt && 203 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) { 204 /* remove this whole bio_vec */ 205 offset -= bio->bi_io_vec[bio->bi_idx].bv_len; 206 bio->bi_idx++; 207 } 208 if (bio->bi_idx < bio->bi_vcnt) { 209 bio->bi_io_vec[bio->bi_idx].bv_offset += offset; 210 bio->bi_io_vec[bio->bi_idx].bv_len -= offset; 211 } 212 /* avoid any complications with bi_idx being non-zero*/ 213 if (bio->bi_idx) { 214 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx, 215 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec)); 216 bio->bi_vcnt -= bio->bi_idx; 217 bio->bi_idx = 0; 218 } 219 /* Make sure vcnt and last bv are not too big */ 220 bio_for_each_segment(bvec, bio, i) { 221 if (sofar + bvec->bv_len > size) 222 bvec->bv_len = size - sofar; 223 if (bvec->bv_len == 0) { 224 bio->bi_vcnt = i; 225 break; 226 } 227 sofar += bvec->bv_len; 228 } 229 } 230 EXPORT_SYMBOL_GPL(md_trim_bio); 231 232 /* 233 * We have a system wide 'event count' that is incremented 234 * on any 'interesting' event, and readers of /proc/mdstat 235 * can use 'poll' or 'select' to find out when the event 236 * count increases. 237 * 238 * Events are: 239 * start array, stop array, error, add device, remove device, 240 * start build, activate spare 241 */ 242 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 243 static atomic_t md_event_count; 244 void md_new_event(struct mddev *mddev) 245 { 246 atomic_inc(&md_event_count); 247 wake_up(&md_event_waiters); 248 } 249 EXPORT_SYMBOL_GPL(md_new_event); 250 251 /* Alternate version that can be called from interrupts 252 * when calling sysfs_notify isn't needed. 253 */ 254 static void md_new_event_inintr(struct mddev *mddev) 255 { 256 atomic_inc(&md_event_count); 257 wake_up(&md_event_waiters); 258 } 259 260 /* 261 * Enables to iterate over all existing md arrays 262 * all_mddevs_lock protects this list. 263 */ 264 static LIST_HEAD(all_mddevs); 265 static DEFINE_SPINLOCK(all_mddevs_lock); 266 267 268 /* 269 * iterates through all used mddevs in the system. 270 * We take care to grab the all_mddevs_lock whenever navigating 271 * the list, and to always hold a refcount when unlocked. 272 * Any code which breaks out of this loop while own 273 * a reference to the current mddev and must mddev_put it. 274 */ 275 #define for_each_mddev(_mddev,_tmp) \ 276 \ 277 for (({ spin_lock(&all_mddevs_lock); \ 278 _tmp = all_mddevs.next; \ 279 _mddev = NULL;}); \ 280 ({ if (_tmp != &all_mddevs) \ 281 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 282 spin_unlock(&all_mddevs_lock); \ 283 if (_mddev) mddev_put(_mddev); \ 284 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 285 _tmp != &all_mddevs;}); \ 286 ({ spin_lock(&all_mddevs_lock); \ 287 _tmp = _tmp->next;}) \ 288 ) 289 290 291 /* Rather than calling directly into the personality make_request function, 292 * IO requests come here first so that we can check if the device is 293 * being suspended pending a reconfiguration. 294 * We hold a refcount over the call to ->make_request. By the time that 295 * call has finished, the bio has been linked into some internal structure 296 * and so is visible to ->quiesce(), so we don't need the refcount any more. 297 */ 298 static void md_make_request(struct request_queue *q, struct bio *bio) 299 { 300 const int rw = bio_data_dir(bio); 301 struct mddev *mddev = q->queuedata; 302 int cpu; 303 unsigned int sectors; 304 305 if (mddev == NULL || mddev->pers == NULL 306 || !mddev->ready) { 307 bio_io_error(bio); 308 return; 309 } 310 smp_rmb(); /* Ensure implications of 'active' are visible */ 311 rcu_read_lock(); 312 if (mddev->suspended) { 313 DEFINE_WAIT(__wait); 314 for (;;) { 315 prepare_to_wait(&mddev->sb_wait, &__wait, 316 TASK_UNINTERRUPTIBLE); 317 if (!mddev->suspended) 318 break; 319 rcu_read_unlock(); 320 schedule(); 321 rcu_read_lock(); 322 } 323 finish_wait(&mddev->sb_wait, &__wait); 324 } 325 atomic_inc(&mddev->active_io); 326 rcu_read_unlock(); 327 328 /* 329 * save the sectors now since our bio can 330 * go away inside make_request 331 */ 332 sectors = bio_sectors(bio); 333 mddev->pers->make_request(mddev, bio); 334 335 cpu = part_stat_lock(); 336 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 337 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 338 part_stat_unlock(); 339 340 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 341 wake_up(&mddev->sb_wait); 342 } 343 344 /* mddev_suspend makes sure no new requests are submitted 345 * to the device, and that any requests that have been submitted 346 * are completely handled. 347 * Once ->stop is called and completes, the module will be completely 348 * unused. 349 */ 350 void mddev_suspend(struct mddev *mddev) 351 { 352 BUG_ON(mddev->suspended); 353 mddev->suspended = 1; 354 synchronize_rcu(); 355 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 356 mddev->pers->quiesce(mddev, 1); 357 358 del_timer_sync(&mddev->safemode_timer); 359 } 360 EXPORT_SYMBOL_GPL(mddev_suspend); 361 362 void mddev_resume(struct mddev *mddev) 363 { 364 mddev->suspended = 0; 365 wake_up(&mddev->sb_wait); 366 mddev->pers->quiesce(mddev, 0); 367 368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 369 md_wakeup_thread(mddev->thread); 370 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 371 } 372 EXPORT_SYMBOL_GPL(mddev_resume); 373 374 int mddev_congested(struct mddev *mddev, int bits) 375 { 376 return mddev->suspended; 377 } 378 EXPORT_SYMBOL(mddev_congested); 379 380 /* 381 * Generic flush handling for md 382 */ 383 384 static void md_end_flush(struct bio *bio, int err) 385 { 386 struct md_rdev *rdev = bio->bi_private; 387 struct mddev *mddev = rdev->mddev; 388 389 rdev_dec_pending(rdev, mddev); 390 391 if (atomic_dec_and_test(&mddev->flush_pending)) { 392 /* The pre-request flush has finished */ 393 queue_work(md_wq, &mddev->flush_work); 394 } 395 bio_put(bio); 396 } 397 398 static void md_submit_flush_data(struct work_struct *ws); 399 400 static void submit_flushes(struct work_struct *ws) 401 { 402 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 403 struct md_rdev *rdev; 404 405 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 406 atomic_set(&mddev->flush_pending, 1); 407 rcu_read_lock(); 408 rdev_for_each_rcu(rdev, mddev) 409 if (rdev->raid_disk >= 0 && 410 !test_bit(Faulty, &rdev->flags)) { 411 /* Take two references, one is dropped 412 * when request finishes, one after 413 * we reclaim rcu_read_lock 414 */ 415 struct bio *bi; 416 atomic_inc(&rdev->nr_pending); 417 atomic_inc(&rdev->nr_pending); 418 rcu_read_unlock(); 419 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 420 bi->bi_end_io = md_end_flush; 421 bi->bi_private = rdev; 422 bi->bi_bdev = rdev->bdev; 423 atomic_inc(&mddev->flush_pending); 424 submit_bio(WRITE_FLUSH, bi); 425 rcu_read_lock(); 426 rdev_dec_pending(rdev, mddev); 427 } 428 rcu_read_unlock(); 429 if (atomic_dec_and_test(&mddev->flush_pending)) 430 queue_work(md_wq, &mddev->flush_work); 431 } 432 433 static void md_submit_flush_data(struct work_struct *ws) 434 { 435 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 436 struct bio *bio = mddev->flush_bio; 437 438 if (bio->bi_size == 0) 439 /* an empty barrier - all done */ 440 bio_endio(bio, 0); 441 else { 442 bio->bi_rw &= ~REQ_FLUSH; 443 mddev->pers->make_request(mddev, bio); 444 } 445 446 mddev->flush_bio = NULL; 447 wake_up(&mddev->sb_wait); 448 } 449 450 void md_flush_request(struct mddev *mddev, struct bio *bio) 451 { 452 spin_lock_irq(&mddev->write_lock); 453 wait_event_lock_irq(mddev->sb_wait, 454 !mddev->flush_bio, 455 mddev->write_lock, /*nothing*/); 456 mddev->flush_bio = bio; 457 spin_unlock_irq(&mddev->write_lock); 458 459 INIT_WORK(&mddev->flush_work, submit_flushes); 460 queue_work(md_wq, &mddev->flush_work); 461 } 462 EXPORT_SYMBOL(md_flush_request); 463 464 void md_unplug(struct blk_plug_cb *cb, bool from_schedule) 465 { 466 struct mddev *mddev = cb->data; 467 md_wakeup_thread(mddev->thread); 468 kfree(cb); 469 } 470 EXPORT_SYMBOL(md_unplug); 471 472 static inline struct mddev *mddev_get(struct mddev *mddev) 473 { 474 atomic_inc(&mddev->active); 475 return mddev; 476 } 477 478 static void mddev_delayed_delete(struct work_struct *ws); 479 480 static void mddev_put(struct mddev *mddev) 481 { 482 struct bio_set *bs = NULL; 483 484 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 485 return; 486 if (!mddev->raid_disks && list_empty(&mddev->disks) && 487 mddev->ctime == 0 && !mddev->hold_active) { 488 /* Array is not configured at all, and not held active, 489 * so destroy it */ 490 list_del_init(&mddev->all_mddevs); 491 bs = mddev->bio_set; 492 mddev->bio_set = NULL; 493 if (mddev->gendisk) { 494 /* We did a probe so need to clean up. Call 495 * queue_work inside the spinlock so that 496 * flush_workqueue() after mddev_find will 497 * succeed in waiting for the work to be done. 498 */ 499 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 500 queue_work(md_misc_wq, &mddev->del_work); 501 } else 502 kfree(mddev); 503 } 504 spin_unlock(&all_mddevs_lock); 505 if (bs) 506 bioset_free(bs); 507 } 508 509 void mddev_init(struct mddev *mddev) 510 { 511 mutex_init(&mddev->open_mutex); 512 mutex_init(&mddev->reconfig_mutex); 513 mutex_init(&mddev->bitmap_info.mutex); 514 INIT_LIST_HEAD(&mddev->disks); 515 INIT_LIST_HEAD(&mddev->all_mddevs); 516 init_timer(&mddev->safemode_timer); 517 atomic_set(&mddev->active, 1); 518 atomic_set(&mddev->openers, 0); 519 atomic_set(&mddev->active_io, 0); 520 spin_lock_init(&mddev->write_lock); 521 atomic_set(&mddev->flush_pending, 0); 522 init_waitqueue_head(&mddev->sb_wait); 523 init_waitqueue_head(&mddev->recovery_wait); 524 mddev->reshape_position = MaxSector; 525 mddev->reshape_backwards = 0; 526 mddev->resync_min = 0; 527 mddev->resync_max = MaxSector; 528 mddev->level = LEVEL_NONE; 529 } 530 EXPORT_SYMBOL_GPL(mddev_init); 531 532 static struct mddev * mddev_find(dev_t unit) 533 { 534 struct mddev *mddev, *new = NULL; 535 536 if (unit && MAJOR(unit) != MD_MAJOR) 537 unit &= ~((1<<MdpMinorShift)-1); 538 539 retry: 540 spin_lock(&all_mddevs_lock); 541 542 if (unit) { 543 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 544 if (mddev->unit == unit) { 545 mddev_get(mddev); 546 spin_unlock(&all_mddevs_lock); 547 kfree(new); 548 return mddev; 549 } 550 551 if (new) { 552 list_add(&new->all_mddevs, &all_mddevs); 553 spin_unlock(&all_mddevs_lock); 554 new->hold_active = UNTIL_IOCTL; 555 return new; 556 } 557 } else if (new) { 558 /* find an unused unit number */ 559 static int next_minor = 512; 560 int start = next_minor; 561 int is_free = 0; 562 int dev = 0; 563 while (!is_free) { 564 dev = MKDEV(MD_MAJOR, next_minor); 565 next_minor++; 566 if (next_minor > MINORMASK) 567 next_minor = 0; 568 if (next_minor == start) { 569 /* Oh dear, all in use. */ 570 spin_unlock(&all_mddevs_lock); 571 kfree(new); 572 return NULL; 573 } 574 575 is_free = 1; 576 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 577 if (mddev->unit == dev) { 578 is_free = 0; 579 break; 580 } 581 } 582 new->unit = dev; 583 new->md_minor = MINOR(dev); 584 new->hold_active = UNTIL_STOP; 585 list_add(&new->all_mddevs, &all_mddevs); 586 spin_unlock(&all_mddevs_lock); 587 return new; 588 } 589 spin_unlock(&all_mddevs_lock); 590 591 new = kzalloc(sizeof(*new), GFP_KERNEL); 592 if (!new) 593 return NULL; 594 595 new->unit = unit; 596 if (MAJOR(unit) == MD_MAJOR) 597 new->md_minor = MINOR(unit); 598 else 599 new->md_minor = MINOR(unit) >> MdpMinorShift; 600 601 mddev_init(new); 602 603 goto retry; 604 } 605 606 static inline int mddev_lock(struct mddev * mddev) 607 { 608 return mutex_lock_interruptible(&mddev->reconfig_mutex); 609 } 610 611 static inline int mddev_is_locked(struct mddev *mddev) 612 { 613 return mutex_is_locked(&mddev->reconfig_mutex); 614 } 615 616 static inline int mddev_trylock(struct mddev * mddev) 617 { 618 return mutex_trylock(&mddev->reconfig_mutex); 619 } 620 621 static struct attribute_group md_redundancy_group; 622 623 static void mddev_unlock(struct mddev * mddev) 624 { 625 if (mddev->to_remove) { 626 /* These cannot be removed under reconfig_mutex as 627 * an access to the files will try to take reconfig_mutex 628 * while holding the file unremovable, which leads to 629 * a deadlock. 630 * So hold set sysfs_active while the remove in happeing, 631 * and anything else which might set ->to_remove or my 632 * otherwise change the sysfs namespace will fail with 633 * -EBUSY if sysfs_active is still set. 634 * We set sysfs_active under reconfig_mutex and elsewhere 635 * test it under the same mutex to ensure its correct value 636 * is seen. 637 */ 638 struct attribute_group *to_remove = mddev->to_remove; 639 mddev->to_remove = NULL; 640 mddev->sysfs_active = 1; 641 mutex_unlock(&mddev->reconfig_mutex); 642 643 if (mddev->kobj.sd) { 644 if (to_remove != &md_redundancy_group) 645 sysfs_remove_group(&mddev->kobj, to_remove); 646 if (mddev->pers == NULL || 647 mddev->pers->sync_request == NULL) { 648 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 649 if (mddev->sysfs_action) 650 sysfs_put(mddev->sysfs_action); 651 mddev->sysfs_action = NULL; 652 } 653 } 654 mddev->sysfs_active = 0; 655 } else 656 mutex_unlock(&mddev->reconfig_mutex); 657 658 /* As we've dropped the mutex we need a spinlock to 659 * make sure the thread doesn't disappear 660 */ 661 spin_lock(&pers_lock); 662 md_wakeup_thread(mddev->thread); 663 spin_unlock(&pers_lock); 664 } 665 666 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr) 667 { 668 struct md_rdev *rdev; 669 670 rdev_for_each(rdev, mddev) 671 if (rdev->desc_nr == nr) 672 return rdev; 673 674 return NULL; 675 } 676 677 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr) 678 { 679 struct md_rdev *rdev; 680 681 rdev_for_each_rcu(rdev, mddev) 682 if (rdev->desc_nr == nr) 683 return rdev; 684 685 return NULL; 686 } 687 688 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 689 { 690 struct md_rdev *rdev; 691 692 rdev_for_each(rdev, mddev) 693 if (rdev->bdev->bd_dev == dev) 694 return rdev; 695 696 return NULL; 697 } 698 699 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev) 700 { 701 struct md_rdev *rdev; 702 703 rdev_for_each_rcu(rdev, mddev) 704 if (rdev->bdev->bd_dev == dev) 705 return rdev; 706 707 return NULL; 708 } 709 710 static struct md_personality *find_pers(int level, char *clevel) 711 { 712 struct md_personality *pers; 713 list_for_each_entry(pers, &pers_list, list) { 714 if (level != LEVEL_NONE && pers->level == level) 715 return pers; 716 if (strcmp(pers->name, clevel)==0) 717 return pers; 718 } 719 return NULL; 720 } 721 722 /* return the offset of the super block in 512byte sectors */ 723 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 724 { 725 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 726 return MD_NEW_SIZE_SECTORS(num_sectors); 727 } 728 729 static int alloc_disk_sb(struct md_rdev * rdev) 730 { 731 if (rdev->sb_page) 732 MD_BUG(); 733 734 rdev->sb_page = alloc_page(GFP_KERNEL); 735 if (!rdev->sb_page) { 736 printk(KERN_ALERT "md: out of memory.\n"); 737 return -ENOMEM; 738 } 739 740 return 0; 741 } 742 743 void md_rdev_clear(struct md_rdev *rdev) 744 { 745 if (rdev->sb_page) { 746 put_page(rdev->sb_page); 747 rdev->sb_loaded = 0; 748 rdev->sb_page = NULL; 749 rdev->sb_start = 0; 750 rdev->sectors = 0; 751 } 752 if (rdev->bb_page) { 753 put_page(rdev->bb_page); 754 rdev->bb_page = NULL; 755 } 756 kfree(rdev->badblocks.page); 757 rdev->badblocks.page = NULL; 758 } 759 EXPORT_SYMBOL_GPL(md_rdev_clear); 760 761 static void super_written(struct bio *bio, int error) 762 { 763 struct md_rdev *rdev = bio->bi_private; 764 struct mddev *mddev = rdev->mddev; 765 766 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) { 767 printk("md: super_written gets error=%d, uptodate=%d\n", 768 error, test_bit(BIO_UPTODATE, &bio->bi_flags)); 769 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags)); 770 md_error(mddev, rdev); 771 } 772 773 if (atomic_dec_and_test(&mddev->pending_writes)) 774 wake_up(&mddev->sb_wait); 775 bio_put(bio); 776 } 777 778 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 779 sector_t sector, int size, struct page *page) 780 { 781 /* write first size bytes of page to sector of rdev 782 * Increment mddev->pending_writes before returning 783 * and decrement it on completion, waking up sb_wait 784 * if zero is reached. 785 * If an error occurred, call md_error 786 */ 787 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev); 788 789 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev; 790 bio->bi_sector = sector; 791 bio_add_page(bio, page, size, 0); 792 bio->bi_private = rdev; 793 bio->bi_end_io = super_written; 794 795 atomic_inc(&mddev->pending_writes); 796 submit_bio(WRITE_FLUSH_FUA, bio); 797 } 798 799 void md_super_wait(struct mddev *mddev) 800 { 801 /* wait for all superblock writes that were scheduled to complete */ 802 DEFINE_WAIT(wq); 803 for(;;) { 804 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE); 805 if (atomic_read(&mddev->pending_writes)==0) 806 break; 807 schedule(); 808 } 809 finish_wait(&mddev->sb_wait, &wq); 810 } 811 812 static void bi_complete(struct bio *bio, int error) 813 { 814 complete((struct completion*)bio->bi_private); 815 } 816 817 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 818 struct page *page, int rw, bool metadata_op) 819 { 820 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev); 821 struct completion event; 822 int ret; 823 824 rw |= REQ_SYNC; 825 826 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ? 827 rdev->meta_bdev : rdev->bdev; 828 if (metadata_op) 829 bio->bi_sector = sector + rdev->sb_start; 830 else if (rdev->mddev->reshape_position != MaxSector && 831 (rdev->mddev->reshape_backwards == 832 (sector >= rdev->mddev->reshape_position))) 833 bio->bi_sector = sector + rdev->new_data_offset; 834 else 835 bio->bi_sector = sector + rdev->data_offset; 836 bio_add_page(bio, page, size, 0); 837 init_completion(&event); 838 bio->bi_private = &event; 839 bio->bi_end_io = bi_complete; 840 submit_bio(rw, bio); 841 wait_for_completion(&event); 842 843 ret = test_bit(BIO_UPTODATE, &bio->bi_flags); 844 bio_put(bio); 845 return ret; 846 } 847 EXPORT_SYMBOL_GPL(sync_page_io); 848 849 static int read_disk_sb(struct md_rdev * rdev, int size) 850 { 851 char b[BDEVNAME_SIZE]; 852 if (!rdev->sb_page) { 853 MD_BUG(); 854 return -EINVAL; 855 } 856 if (rdev->sb_loaded) 857 return 0; 858 859 860 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true)) 861 goto fail; 862 rdev->sb_loaded = 1; 863 return 0; 864 865 fail: 866 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n", 867 bdevname(rdev->bdev,b)); 868 return -EINVAL; 869 } 870 871 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 872 { 873 return sb1->set_uuid0 == sb2->set_uuid0 && 874 sb1->set_uuid1 == sb2->set_uuid1 && 875 sb1->set_uuid2 == sb2->set_uuid2 && 876 sb1->set_uuid3 == sb2->set_uuid3; 877 } 878 879 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 880 { 881 int ret; 882 mdp_super_t *tmp1, *tmp2; 883 884 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 885 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 886 887 if (!tmp1 || !tmp2) { 888 ret = 0; 889 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n"); 890 goto abort; 891 } 892 893 *tmp1 = *sb1; 894 *tmp2 = *sb2; 895 896 /* 897 * nr_disks is not constant 898 */ 899 tmp1->nr_disks = 0; 900 tmp2->nr_disks = 0; 901 902 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 903 abort: 904 kfree(tmp1); 905 kfree(tmp2); 906 return ret; 907 } 908 909 910 static u32 md_csum_fold(u32 csum) 911 { 912 csum = (csum & 0xffff) + (csum >> 16); 913 return (csum & 0xffff) + (csum >> 16); 914 } 915 916 static unsigned int calc_sb_csum(mdp_super_t * sb) 917 { 918 u64 newcsum = 0; 919 u32 *sb32 = (u32*)sb; 920 int i; 921 unsigned int disk_csum, csum; 922 923 disk_csum = sb->sb_csum; 924 sb->sb_csum = 0; 925 926 for (i = 0; i < MD_SB_BYTES/4 ; i++) 927 newcsum += sb32[i]; 928 csum = (newcsum & 0xffffffff) + (newcsum>>32); 929 930 931 #ifdef CONFIG_ALPHA 932 /* This used to use csum_partial, which was wrong for several 933 * reasons including that different results are returned on 934 * different architectures. It isn't critical that we get exactly 935 * the same return value as before (we always csum_fold before 936 * testing, and that removes any differences). However as we 937 * know that csum_partial always returned a 16bit value on 938 * alphas, do a fold to maximise conformity to previous behaviour. 939 */ 940 sb->sb_csum = md_csum_fold(disk_csum); 941 #else 942 sb->sb_csum = disk_csum; 943 #endif 944 return csum; 945 } 946 947 948 /* 949 * Handle superblock details. 950 * We want to be able to handle multiple superblock formats 951 * so we have a common interface to them all, and an array of 952 * different handlers. 953 * We rely on user-space to write the initial superblock, and support 954 * reading and updating of superblocks. 955 * Interface methods are: 956 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 957 * loads and validates a superblock on dev. 958 * if refdev != NULL, compare superblocks on both devices 959 * Return: 960 * 0 - dev has a superblock that is compatible with refdev 961 * 1 - dev has a superblock that is compatible and newer than refdev 962 * so dev should be used as the refdev in future 963 * -EINVAL superblock incompatible or invalid 964 * -othererror e.g. -EIO 965 * 966 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 967 * Verify that dev is acceptable into mddev. 968 * The first time, mddev->raid_disks will be 0, and data from 969 * dev should be merged in. Subsequent calls check that dev 970 * is new enough. Return 0 or -EINVAL 971 * 972 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 973 * Update the superblock for rdev with data in mddev 974 * This does not write to disc. 975 * 976 */ 977 978 struct super_type { 979 char *name; 980 struct module *owner; 981 int (*load_super)(struct md_rdev *rdev, 982 struct md_rdev *refdev, 983 int minor_version); 984 int (*validate_super)(struct mddev *mddev, 985 struct md_rdev *rdev); 986 void (*sync_super)(struct mddev *mddev, 987 struct md_rdev *rdev); 988 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 989 sector_t num_sectors); 990 int (*allow_new_offset)(struct md_rdev *rdev, 991 unsigned long long new_offset); 992 }; 993 994 /* 995 * Check that the given mddev has no bitmap. 996 * 997 * This function is called from the run method of all personalities that do not 998 * support bitmaps. It prints an error message and returns non-zero if mddev 999 * has a bitmap. Otherwise, it returns 0. 1000 * 1001 */ 1002 int md_check_no_bitmap(struct mddev *mddev) 1003 { 1004 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1005 return 0; 1006 printk(KERN_ERR "%s: bitmaps are not supported for %s\n", 1007 mdname(mddev), mddev->pers->name); 1008 return 1; 1009 } 1010 EXPORT_SYMBOL(md_check_no_bitmap); 1011 1012 /* 1013 * load_super for 0.90.0 1014 */ 1015 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1016 { 1017 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1018 mdp_super_t *sb; 1019 int ret; 1020 1021 /* 1022 * Calculate the position of the superblock (512byte sectors), 1023 * it's at the end of the disk. 1024 * 1025 * It also happens to be a multiple of 4Kb. 1026 */ 1027 rdev->sb_start = calc_dev_sboffset(rdev); 1028 1029 ret = read_disk_sb(rdev, MD_SB_BYTES); 1030 if (ret) return ret; 1031 1032 ret = -EINVAL; 1033 1034 bdevname(rdev->bdev, b); 1035 sb = page_address(rdev->sb_page); 1036 1037 if (sb->md_magic != MD_SB_MAGIC) { 1038 printk(KERN_ERR "md: invalid raid superblock magic on %s\n", 1039 b); 1040 goto abort; 1041 } 1042 1043 if (sb->major_version != 0 || 1044 sb->minor_version < 90 || 1045 sb->minor_version > 91) { 1046 printk(KERN_WARNING "Bad version number %d.%d on %s\n", 1047 sb->major_version, sb->minor_version, 1048 b); 1049 goto abort; 1050 } 1051 1052 if (sb->raid_disks <= 0) 1053 goto abort; 1054 1055 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1056 printk(KERN_WARNING "md: invalid superblock checksum on %s\n", 1057 b); 1058 goto abort; 1059 } 1060 1061 rdev->preferred_minor = sb->md_minor; 1062 rdev->data_offset = 0; 1063 rdev->new_data_offset = 0; 1064 rdev->sb_size = MD_SB_BYTES; 1065 rdev->badblocks.shift = -1; 1066 1067 if (sb->level == LEVEL_MULTIPATH) 1068 rdev->desc_nr = -1; 1069 else 1070 rdev->desc_nr = sb->this_disk.number; 1071 1072 if (!refdev) { 1073 ret = 1; 1074 } else { 1075 __u64 ev1, ev2; 1076 mdp_super_t *refsb = page_address(refdev->sb_page); 1077 if (!uuid_equal(refsb, sb)) { 1078 printk(KERN_WARNING "md: %s has different UUID to %s\n", 1079 b, bdevname(refdev->bdev,b2)); 1080 goto abort; 1081 } 1082 if (!sb_equal(refsb, sb)) { 1083 printk(KERN_WARNING "md: %s has same UUID" 1084 " but different superblock to %s\n", 1085 b, bdevname(refdev->bdev, b2)); 1086 goto abort; 1087 } 1088 ev1 = md_event(sb); 1089 ev2 = md_event(refsb); 1090 if (ev1 > ev2) 1091 ret = 1; 1092 else 1093 ret = 0; 1094 } 1095 rdev->sectors = rdev->sb_start; 1096 /* Limit to 4TB as metadata cannot record more than that. 1097 * (not needed for Linear and RAID0 as metadata doesn't 1098 * record this size) 1099 */ 1100 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1101 rdev->sectors = (2ULL << 32) - 2; 1102 1103 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1104 /* "this cannot possibly happen" ... */ 1105 ret = -EINVAL; 1106 1107 abort: 1108 return ret; 1109 } 1110 1111 /* 1112 * validate_super for 0.90.0 1113 */ 1114 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1115 { 1116 mdp_disk_t *desc; 1117 mdp_super_t *sb = page_address(rdev->sb_page); 1118 __u64 ev1 = md_event(sb); 1119 1120 rdev->raid_disk = -1; 1121 clear_bit(Faulty, &rdev->flags); 1122 clear_bit(In_sync, &rdev->flags); 1123 clear_bit(WriteMostly, &rdev->flags); 1124 1125 if (mddev->raid_disks == 0) { 1126 mddev->major_version = 0; 1127 mddev->minor_version = sb->minor_version; 1128 mddev->patch_version = sb->patch_version; 1129 mddev->external = 0; 1130 mddev->chunk_sectors = sb->chunk_size >> 9; 1131 mddev->ctime = sb->ctime; 1132 mddev->utime = sb->utime; 1133 mddev->level = sb->level; 1134 mddev->clevel[0] = 0; 1135 mddev->layout = sb->layout; 1136 mddev->raid_disks = sb->raid_disks; 1137 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1138 mddev->events = ev1; 1139 mddev->bitmap_info.offset = 0; 1140 mddev->bitmap_info.space = 0; 1141 /* bitmap can use 60 K after the 4K superblocks */ 1142 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1143 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1144 mddev->reshape_backwards = 0; 1145 1146 if (mddev->minor_version >= 91) { 1147 mddev->reshape_position = sb->reshape_position; 1148 mddev->delta_disks = sb->delta_disks; 1149 mddev->new_level = sb->new_level; 1150 mddev->new_layout = sb->new_layout; 1151 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1152 if (mddev->delta_disks < 0) 1153 mddev->reshape_backwards = 1; 1154 } else { 1155 mddev->reshape_position = MaxSector; 1156 mddev->delta_disks = 0; 1157 mddev->new_level = mddev->level; 1158 mddev->new_layout = mddev->layout; 1159 mddev->new_chunk_sectors = mddev->chunk_sectors; 1160 } 1161 1162 if (sb->state & (1<<MD_SB_CLEAN)) 1163 mddev->recovery_cp = MaxSector; 1164 else { 1165 if (sb->events_hi == sb->cp_events_hi && 1166 sb->events_lo == sb->cp_events_lo) { 1167 mddev->recovery_cp = sb->recovery_cp; 1168 } else 1169 mddev->recovery_cp = 0; 1170 } 1171 1172 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1173 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1174 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1175 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1176 1177 mddev->max_disks = MD_SB_DISKS; 1178 1179 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1180 mddev->bitmap_info.file == NULL) { 1181 mddev->bitmap_info.offset = 1182 mddev->bitmap_info.default_offset; 1183 mddev->bitmap_info.space = 1184 mddev->bitmap_info.space; 1185 } 1186 1187 } else if (mddev->pers == NULL) { 1188 /* Insist on good event counter while assembling, except 1189 * for spares (which don't need an event count) */ 1190 ++ev1; 1191 if (sb->disks[rdev->desc_nr].state & ( 1192 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1193 if (ev1 < mddev->events) 1194 return -EINVAL; 1195 } else if (mddev->bitmap) { 1196 /* if adding to array with a bitmap, then we can accept an 1197 * older device ... but not too old. 1198 */ 1199 if (ev1 < mddev->bitmap->events_cleared) 1200 return 0; 1201 } else { 1202 if (ev1 < mddev->events) 1203 /* just a hot-add of a new device, leave raid_disk at -1 */ 1204 return 0; 1205 } 1206 1207 if (mddev->level != LEVEL_MULTIPATH) { 1208 desc = sb->disks + rdev->desc_nr; 1209 1210 if (desc->state & (1<<MD_DISK_FAULTY)) 1211 set_bit(Faulty, &rdev->flags); 1212 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1213 desc->raid_disk < mddev->raid_disks */) { 1214 set_bit(In_sync, &rdev->flags); 1215 rdev->raid_disk = desc->raid_disk; 1216 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1217 /* active but not in sync implies recovery up to 1218 * reshape position. We don't know exactly where 1219 * that is, so set to zero for now */ 1220 if (mddev->minor_version >= 91) { 1221 rdev->recovery_offset = 0; 1222 rdev->raid_disk = desc->raid_disk; 1223 } 1224 } 1225 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1226 set_bit(WriteMostly, &rdev->flags); 1227 } else /* MULTIPATH are always insync */ 1228 set_bit(In_sync, &rdev->flags); 1229 return 0; 1230 } 1231 1232 /* 1233 * sync_super for 0.90.0 1234 */ 1235 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1236 { 1237 mdp_super_t *sb; 1238 struct md_rdev *rdev2; 1239 int next_spare = mddev->raid_disks; 1240 1241 1242 /* make rdev->sb match mddev data.. 1243 * 1244 * 1/ zero out disks 1245 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1246 * 3/ any empty disks < next_spare become removed 1247 * 1248 * disks[0] gets initialised to REMOVED because 1249 * we cannot be sure from other fields if it has 1250 * been initialised or not. 1251 */ 1252 int i; 1253 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1254 1255 rdev->sb_size = MD_SB_BYTES; 1256 1257 sb = page_address(rdev->sb_page); 1258 1259 memset(sb, 0, sizeof(*sb)); 1260 1261 sb->md_magic = MD_SB_MAGIC; 1262 sb->major_version = mddev->major_version; 1263 sb->patch_version = mddev->patch_version; 1264 sb->gvalid_words = 0; /* ignored */ 1265 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1266 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1267 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1268 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1269 1270 sb->ctime = mddev->ctime; 1271 sb->level = mddev->level; 1272 sb->size = mddev->dev_sectors / 2; 1273 sb->raid_disks = mddev->raid_disks; 1274 sb->md_minor = mddev->md_minor; 1275 sb->not_persistent = 0; 1276 sb->utime = mddev->utime; 1277 sb->state = 0; 1278 sb->events_hi = (mddev->events>>32); 1279 sb->events_lo = (u32)mddev->events; 1280 1281 if (mddev->reshape_position == MaxSector) 1282 sb->minor_version = 90; 1283 else { 1284 sb->minor_version = 91; 1285 sb->reshape_position = mddev->reshape_position; 1286 sb->new_level = mddev->new_level; 1287 sb->delta_disks = mddev->delta_disks; 1288 sb->new_layout = mddev->new_layout; 1289 sb->new_chunk = mddev->new_chunk_sectors << 9; 1290 } 1291 mddev->minor_version = sb->minor_version; 1292 if (mddev->in_sync) 1293 { 1294 sb->recovery_cp = mddev->recovery_cp; 1295 sb->cp_events_hi = (mddev->events>>32); 1296 sb->cp_events_lo = (u32)mddev->events; 1297 if (mddev->recovery_cp == MaxSector) 1298 sb->state = (1<< MD_SB_CLEAN); 1299 } else 1300 sb->recovery_cp = 0; 1301 1302 sb->layout = mddev->layout; 1303 sb->chunk_size = mddev->chunk_sectors << 9; 1304 1305 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1306 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1307 1308 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1309 rdev_for_each(rdev2, mddev) { 1310 mdp_disk_t *d; 1311 int desc_nr; 1312 int is_active = test_bit(In_sync, &rdev2->flags); 1313 1314 if (rdev2->raid_disk >= 0 && 1315 sb->minor_version >= 91) 1316 /* we have nowhere to store the recovery_offset, 1317 * but if it is not below the reshape_position, 1318 * we can piggy-back on that. 1319 */ 1320 is_active = 1; 1321 if (rdev2->raid_disk < 0 || 1322 test_bit(Faulty, &rdev2->flags)) 1323 is_active = 0; 1324 if (is_active) 1325 desc_nr = rdev2->raid_disk; 1326 else 1327 desc_nr = next_spare++; 1328 rdev2->desc_nr = desc_nr; 1329 d = &sb->disks[rdev2->desc_nr]; 1330 nr_disks++; 1331 d->number = rdev2->desc_nr; 1332 d->major = MAJOR(rdev2->bdev->bd_dev); 1333 d->minor = MINOR(rdev2->bdev->bd_dev); 1334 if (is_active) 1335 d->raid_disk = rdev2->raid_disk; 1336 else 1337 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1338 if (test_bit(Faulty, &rdev2->flags)) 1339 d->state = (1<<MD_DISK_FAULTY); 1340 else if (is_active) { 1341 d->state = (1<<MD_DISK_ACTIVE); 1342 if (test_bit(In_sync, &rdev2->flags)) 1343 d->state |= (1<<MD_DISK_SYNC); 1344 active++; 1345 working++; 1346 } else { 1347 d->state = 0; 1348 spare++; 1349 working++; 1350 } 1351 if (test_bit(WriteMostly, &rdev2->flags)) 1352 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1353 } 1354 /* now set the "removed" and "faulty" bits on any missing devices */ 1355 for (i=0 ; i < mddev->raid_disks ; i++) { 1356 mdp_disk_t *d = &sb->disks[i]; 1357 if (d->state == 0 && d->number == 0) { 1358 d->number = i; 1359 d->raid_disk = i; 1360 d->state = (1<<MD_DISK_REMOVED); 1361 d->state |= (1<<MD_DISK_FAULTY); 1362 failed++; 1363 } 1364 } 1365 sb->nr_disks = nr_disks; 1366 sb->active_disks = active; 1367 sb->working_disks = working; 1368 sb->failed_disks = failed; 1369 sb->spare_disks = spare; 1370 1371 sb->this_disk = sb->disks[rdev->desc_nr]; 1372 sb->sb_csum = calc_sb_csum(sb); 1373 } 1374 1375 /* 1376 * rdev_size_change for 0.90.0 1377 */ 1378 static unsigned long long 1379 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1380 { 1381 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1382 return 0; /* component must fit device */ 1383 if (rdev->mddev->bitmap_info.offset) 1384 return 0; /* can't move bitmap */ 1385 rdev->sb_start = calc_dev_sboffset(rdev); 1386 if (!num_sectors || num_sectors > rdev->sb_start) 1387 num_sectors = rdev->sb_start; 1388 /* Limit to 4TB as metadata cannot record more than that. 1389 * 4TB == 2^32 KB, or 2*2^32 sectors. 1390 */ 1391 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1392 num_sectors = (2ULL << 32) - 2; 1393 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1394 rdev->sb_page); 1395 md_super_wait(rdev->mddev); 1396 return num_sectors; 1397 } 1398 1399 static int 1400 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1401 { 1402 /* non-zero offset changes not possible with v0.90 */ 1403 return new_offset == 0; 1404 } 1405 1406 /* 1407 * version 1 superblock 1408 */ 1409 1410 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb) 1411 { 1412 __le32 disk_csum; 1413 u32 csum; 1414 unsigned long long newcsum; 1415 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1416 __le32 *isuper = (__le32*)sb; 1417 int i; 1418 1419 disk_csum = sb->sb_csum; 1420 sb->sb_csum = 0; 1421 newcsum = 0; 1422 for (i=0; size>=4; size -= 4 ) 1423 newcsum += le32_to_cpu(*isuper++); 1424 1425 if (size == 2) 1426 newcsum += le16_to_cpu(*(__le16*) isuper); 1427 1428 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1429 sb->sb_csum = disk_csum; 1430 return cpu_to_le32(csum); 1431 } 1432 1433 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 1434 int acknowledged); 1435 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1436 { 1437 struct mdp_superblock_1 *sb; 1438 int ret; 1439 sector_t sb_start; 1440 sector_t sectors; 1441 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1442 int bmask; 1443 1444 /* 1445 * Calculate the position of the superblock in 512byte sectors. 1446 * It is always aligned to a 4K boundary and 1447 * depeding on minor_version, it can be: 1448 * 0: At least 8K, but less than 12K, from end of device 1449 * 1: At start of device 1450 * 2: 4K from start of device. 1451 */ 1452 switch(minor_version) { 1453 case 0: 1454 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1455 sb_start -= 8*2; 1456 sb_start &= ~(sector_t)(4*2-1); 1457 break; 1458 case 1: 1459 sb_start = 0; 1460 break; 1461 case 2: 1462 sb_start = 8; 1463 break; 1464 default: 1465 return -EINVAL; 1466 } 1467 rdev->sb_start = sb_start; 1468 1469 /* superblock is rarely larger than 1K, but it can be larger, 1470 * and it is safe to read 4k, so we do that 1471 */ 1472 ret = read_disk_sb(rdev, 4096); 1473 if (ret) return ret; 1474 1475 1476 sb = page_address(rdev->sb_page); 1477 1478 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1479 sb->major_version != cpu_to_le32(1) || 1480 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1481 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1482 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1483 return -EINVAL; 1484 1485 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1486 printk("md: invalid superblock checksum on %s\n", 1487 bdevname(rdev->bdev,b)); 1488 return -EINVAL; 1489 } 1490 if (le64_to_cpu(sb->data_size) < 10) { 1491 printk("md: data_size too small on %s\n", 1492 bdevname(rdev->bdev,b)); 1493 return -EINVAL; 1494 } 1495 if (sb->pad0 || 1496 sb->pad3[0] || 1497 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1498 /* Some padding is non-zero, might be a new feature */ 1499 return -EINVAL; 1500 1501 rdev->preferred_minor = 0xffff; 1502 rdev->data_offset = le64_to_cpu(sb->data_offset); 1503 rdev->new_data_offset = rdev->data_offset; 1504 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1505 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1506 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1507 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1508 1509 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1510 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1511 if (rdev->sb_size & bmask) 1512 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1513 1514 if (minor_version 1515 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1516 return -EINVAL; 1517 if (minor_version 1518 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1519 return -EINVAL; 1520 1521 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1522 rdev->desc_nr = -1; 1523 else 1524 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1525 1526 if (!rdev->bb_page) { 1527 rdev->bb_page = alloc_page(GFP_KERNEL); 1528 if (!rdev->bb_page) 1529 return -ENOMEM; 1530 } 1531 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1532 rdev->badblocks.count == 0) { 1533 /* need to load the bad block list. 1534 * Currently we limit it to one page. 1535 */ 1536 s32 offset; 1537 sector_t bb_sector; 1538 u64 *bbp; 1539 int i; 1540 int sectors = le16_to_cpu(sb->bblog_size); 1541 if (sectors > (PAGE_SIZE / 512)) 1542 return -EINVAL; 1543 offset = le32_to_cpu(sb->bblog_offset); 1544 if (offset == 0) 1545 return -EINVAL; 1546 bb_sector = (long long)offset; 1547 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1548 rdev->bb_page, READ, true)) 1549 return -EIO; 1550 bbp = (u64 *)page_address(rdev->bb_page); 1551 rdev->badblocks.shift = sb->bblog_shift; 1552 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1553 u64 bb = le64_to_cpu(*bbp); 1554 int count = bb & (0x3ff); 1555 u64 sector = bb >> 10; 1556 sector <<= sb->bblog_shift; 1557 count <<= sb->bblog_shift; 1558 if (bb + 1 == 0) 1559 break; 1560 if (md_set_badblocks(&rdev->badblocks, 1561 sector, count, 1) == 0) 1562 return -EINVAL; 1563 } 1564 } else if (sb->bblog_offset == 0) 1565 rdev->badblocks.shift = -1; 1566 1567 if (!refdev) { 1568 ret = 1; 1569 } else { 1570 __u64 ev1, ev2; 1571 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1572 1573 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1574 sb->level != refsb->level || 1575 sb->layout != refsb->layout || 1576 sb->chunksize != refsb->chunksize) { 1577 printk(KERN_WARNING "md: %s has strangely different" 1578 " superblock to %s\n", 1579 bdevname(rdev->bdev,b), 1580 bdevname(refdev->bdev,b2)); 1581 return -EINVAL; 1582 } 1583 ev1 = le64_to_cpu(sb->events); 1584 ev2 = le64_to_cpu(refsb->events); 1585 1586 if (ev1 > ev2) 1587 ret = 1; 1588 else 1589 ret = 0; 1590 } 1591 if (minor_version) { 1592 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1593 sectors -= rdev->data_offset; 1594 } else 1595 sectors = rdev->sb_start; 1596 if (sectors < le64_to_cpu(sb->data_size)) 1597 return -EINVAL; 1598 rdev->sectors = le64_to_cpu(sb->data_size); 1599 return ret; 1600 } 1601 1602 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1603 { 1604 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1605 __u64 ev1 = le64_to_cpu(sb->events); 1606 1607 rdev->raid_disk = -1; 1608 clear_bit(Faulty, &rdev->flags); 1609 clear_bit(In_sync, &rdev->flags); 1610 clear_bit(WriteMostly, &rdev->flags); 1611 1612 if (mddev->raid_disks == 0) { 1613 mddev->major_version = 1; 1614 mddev->patch_version = 0; 1615 mddev->external = 0; 1616 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1617 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1); 1618 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1); 1619 mddev->level = le32_to_cpu(sb->level); 1620 mddev->clevel[0] = 0; 1621 mddev->layout = le32_to_cpu(sb->layout); 1622 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1623 mddev->dev_sectors = le64_to_cpu(sb->size); 1624 mddev->events = ev1; 1625 mddev->bitmap_info.offset = 0; 1626 mddev->bitmap_info.space = 0; 1627 /* Default location for bitmap is 1K after superblock 1628 * using 3K - total of 4K 1629 */ 1630 mddev->bitmap_info.default_offset = 1024 >> 9; 1631 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1632 mddev->reshape_backwards = 0; 1633 1634 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1635 memcpy(mddev->uuid, sb->set_uuid, 16); 1636 1637 mddev->max_disks = (4096-256)/2; 1638 1639 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1640 mddev->bitmap_info.file == NULL) { 1641 mddev->bitmap_info.offset = 1642 (__s32)le32_to_cpu(sb->bitmap_offset); 1643 /* Metadata doesn't record how much space is available. 1644 * For 1.0, we assume we can use up to the superblock 1645 * if before, else to 4K beyond superblock. 1646 * For others, assume no change is possible. 1647 */ 1648 if (mddev->minor_version > 0) 1649 mddev->bitmap_info.space = 0; 1650 else if (mddev->bitmap_info.offset > 0) 1651 mddev->bitmap_info.space = 1652 8 - mddev->bitmap_info.offset; 1653 else 1654 mddev->bitmap_info.space = 1655 -mddev->bitmap_info.offset; 1656 } 1657 1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1661 mddev->new_level = le32_to_cpu(sb->new_level); 1662 mddev->new_layout = le32_to_cpu(sb->new_layout); 1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1664 if (mddev->delta_disks < 0 || 1665 (mddev->delta_disks == 0 && 1666 (le32_to_cpu(sb->feature_map) 1667 & MD_FEATURE_RESHAPE_BACKWARDS))) 1668 mddev->reshape_backwards = 1; 1669 } else { 1670 mddev->reshape_position = MaxSector; 1671 mddev->delta_disks = 0; 1672 mddev->new_level = mddev->level; 1673 mddev->new_layout = mddev->layout; 1674 mddev->new_chunk_sectors = mddev->chunk_sectors; 1675 } 1676 1677 } else if (mddev->pers == NULL) { 1678 /* Insist of good event counter while assembling, except for 1679 * spares (which don't need an event count) */ 1680 ++ev1; 1681 if (rdev->desc_nr >= 0 && 1682 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1683 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe) 1684 if (ev1 < mddev->events) 1685 return -EINVAL; 1686 } else if (mddev->bitmap) { 1687 /* If adding to array with a bitmap, then we can accept an 1688 * older device, but not too old. 1689 */ 1690 if (ev1 < mddev->bitmap->events_cleared) 1691 return 0; 1692 } else { 1693 if (ev1 < mddev->events) 1694 /* just a hot-add of a new device, leave raid_disk at -1 */ 1695 return 0; 1696 } 1697 if (mddev->level != LEVEL_MULTIPATH) { 1698 int role; 1699 if (rdev->desc_nr < 0 || 1700 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1701 role = 0xffff; 1702 rdev->desc_nr = -1; 1703 } else 1704 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1705 switch(role) { 1706 case 0xffff: /* spare */ 1707 break; 1708 case 0xfffe: /* faulty */ 1709 set_bit(Faulty, &rdev->flags); 1710 break; 1711 default: 1712 if ((le32_to_cpu(sb->feature_map) & 1713 MD_FEATURE_RECOVERY_OFFSET)) 1714 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1715 else 1716 set_bit(In_sync, &rdev->flags); 1717 rdev->raid_disk = role; 1718 break; 1719 } 1720 if (sb->devflags & WriteMostly1) 1721 set_bit(WriteMostly, &rdev->flags); 1722 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1723 set_bit(Replacement, &rdev->flags); 1724 } else /* MULTIPATH are always insync */ 1725 set_bit(In_sync, &rdev->flags); 1726 1727 return 0; 1728 } 1729 1730 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1731 { 1732 struct mdp_superblock_1 *sb; 1733 struct md_rdev *rdev2; 1734 int max_dev, i; 1735 /* make rdev->sb match mddev and rdev data. */ 1736 1737 sb = page_address(rdev->sb_page); 1738 1739 sb->feature_map = 0; 1740 sb->pad0 = 0; 1741 sb->recovery_offset = cpu_to_le64(0); 1742 memset(sb->pad3, 0, sizeof(sb->pad3)); 1743 1744 sb->utime = cpu_to_le64((__u64)mddev->utime); 1745 sb->events = cpu_to_le64(mddev->events); 1746 if (mddev->in_sync) 1747 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1748 else 1749 sb->resync_offset = cpu_to_le64(0); 1750 1751 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1752 1753 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1754 sb->size = cpu_to_le64(mddev->dev_sectors); 1755 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1756 sb->level = cpu_to_le32(mddev->level); 1757 sb->layout = cpu_to_le32(mddev->layout); 1758 1759 if (test_bit(WriteMostly, &rdev->flags)) 1760 sb->devflags |= WriteMostly1; 1761 else 1762 sb->devflags &= ~WriteMostly1; 1763 sb->data_offset = cpu_to_le64(rdev->data_offset); 1764 sb->data_size = cpu_to_le64(rdev->sectors); 1765 1766 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1767 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1768 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1769 } 1770 1771 if (rdev->raid_disk >= 0 && 1772 !test_bit(In_sync, &rdev->flags)) { 1773 sb->feature_map |= 1774 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1775 sb->recovery_offset = 1776 cpu_to_le64(rdev->recovery_offset); 1777 } 1778 if (test_bit(Replacement, &rdev->flags)) 1779 sb->feature_map |= 1780 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1781 1782 if (mddev->reshape_position != MaxSector) { 1783 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1784 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1785 sb->new_layout = cpu_to_le32(mddev->new_layout); 1786 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1787 sb->new_level = cpu_to_le32(mddev->new_level); 1788 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1789 if (mddev->delta_disks == 0 && 1790 mddev->reshape_backwards) 1791 sb->feature_map 1792 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1793 if (rdev->new_data_offset != rdev->data_offset) { 1794 sb->feature_map 1795 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1796 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1797 - rdev->data_offset)); 1798 } 1799 } 1800 1801 if (rdev->badblocks.count == 0) 1802 /* Nothing to do for bad blocks*/ ; 1803 else if (sb->bblog_offset == 0) 1804 /* Cannot record bad blocks on this device */ 1805 md_error(mddev, rdev); 1806 else { 1807 struct badblocks *bb = &rdev->badblocks; 1808 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1809 u64 *p = bb->page; 1810 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1811 if (bb->changed) { 1812 unsigned seq; 1813 1814 retry: 1815 seq = read_seqbegin(&bb->lock); 1816 1817 memset(bbp, 0xff, PAGE_SIZE); 1818 1819 for (i = 0 ; i < bb->count ; i++) { 1820 u64 internal_bb = *p++; 1821 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1822 | BB_LEN(internal_bb)); 1823 *bbp++ = cpu_to_le64(store_bb); 1824 } 1825 bb->changed = 0; 1826 if (read_seqretry(&bb->lock, seq)) 1827 goto retry; 1828 1829 bb->sector = (rdev->sb_start + 1830 (int)le32_to_cpu(sb->bblog_offset)); 1831 bb->size = le16_to_cpu(sb->bblog_size); 1832 } 1833 } 1834 1835 max_dev = 0; 1836 rdev_for_each(rdev2, mddev) 1837 if (rdev2->desc_nr+1 > max_dev) 1838 max_dev = rdev2->desc_nr+1; 1839 1840 if (max_dev > le32_to_cpu(sb->max_dev)) { 1841 int bmask; 1842 sb->max_dev = cpu_to_le32(max_dev); 1843 rdev->sb_size = max_dev * 2 + 256; 1844 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1845 if (rdev->sb_size & bmask) 1846 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1847 } else 1848 max_dev = le32_to_cpu(sb->max_dev); 1849 1850 for (i=0; i<max_dev;i++) 1851 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1852 1853 rdev_for_each(rdev2, mddev) { 1854 i = rdev2->desc_nr; 1855 if (test_bit(Faulty, &rdev2->flags)) 1856 sb->dev_roles[i] = cpu_to_le16(0xfffe); 1857 else if (test_bit(In_sync, &rdev2->flags)) 1858 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1859 else if (rdev2->raid_disk >= 0) 1860 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1861 else 1862 sb->dev_roles[i] = cpu_to_le16(0xffff); 1863 } 1864 1865 sb->sb_csum = calc_sb_1_csum(sb); 1866 } 1867 1868 static unsigned long long 1869 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1870 { 1871 struct mdp_superblock_1 *sb; 1872 sector_t max_sectors; 1873 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1874 return 0; /* component must fit device */ 1875 if (rdev->data_offset != rdev->new_data_offset) 1876 return 0; /* too confusing */ 1877 if (rdev->sb_start < rdev->data_offset) { 1878 /* minor versions 1 and 2; superblock before data */ 1879 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1880 max_sectors -= rdev->data_offset; 1881 if (!num_sectors || num_sectors > max_sectors) 1882 num_sectors = max_sectors; 1883 } else if (rdev->mddev->bitmap_info.offset) { 1884 /* minor version 0 with bitmap we can't move */ 1885 return 0; 1886 } else { 1887 /* minor version 0; superblock after data */ 1888 sector_t sb_start; 1889 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1890 sb_start &= ~(sector_t)(4*2 - 1); 1891 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1892 if (!num_sectors || num_sectors > max_sectors) 1893 num_sectors = max_sectors; 1894 rdev->sb_start = sb_start; 1895 } 1896 sb = page_address(rdev->sb_page); 1897 sb->data_size = cpu_to_le64(num_sectors); 1898 sb->super_offset = rdev->sb_start; 1899 sb->sb_csum = calc_sb_1_csum(sb); 1900 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1901 rdev->sb_page); 1902 md_super_wait(rdev->mddev); 1903 return num_sectors; 1904 1905 } 1906 1907 static int 1908 super_1_allow_new_offset(struct md_rdev *rdev, 1909 unsigned long long new_offset) 1910 { 1911 /* All necessary checks on new >= old have been done */ 1912 struct bitmap *bitmap; 1913 if (new_offset >= rdev->data_offset) 1914 return 1; 1915 1916 /* with 1.0 metadata, there is no metadata to tread on 1917 * so we can always move back */ 1918 if (rdev->mddev->minor_version == 0) 1919 return 1; 1920 1921 /* otherwise we must be sure not to step on 1922 * any metadata, so stay: 1923 * 36K beyond start of superblock 1924 * beyond end of badblocks 1925 * beyond write-intent bitmap 1926 */ 1927 if (rdev->sb_start + (32+4)*2 > new_offset) 1928 return 0; 1929 bitmap = rdev->mddev->bitmap; 1930 if (bitmap && !rdev->mddev->bitmap_info.file && 1931 rdev->sb_start + rdev->mddev->bitmap_info.offset + 1932 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 1933 return 0; 1934 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 1935 return 0; 1936 1937 return 1; 1938 } 1939 1940 static struct super_type super_types[] = { 1941 [0] = { 1942 .name = "0.90.0", 1943 .owner = THIS_MODULE, 1944 .load_super = super_90_load, 1945 .validate_super = super_90_validate, 1946 .sync_super = super_90_sync, 1947 .rdev_size_change = super_90_rdev_size_change, 1948 .allow_new_offset = super_90_allow_new_offset, 1949 }, 1950 [1] = { 1951 .name = "md-1", 1952 .owner = THIS_MODULE, 1953 .load_super = super_1_load, 1954 .validate_super = super_1_validate, 1955 .sync_super = super_1_sync, 1956 .rdev_size_change = super_1_rdev_size_change, 1957 .allow_new_offset = super_1_allow_new_offset, 1958 }, 1959 }; 1960 1961 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 1962 { 1963 if (mddev->sync_super) { 1964 mddev->sync_super(mddev, rdev); 1965 return; 1966 } 1967 1968 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 1969 1970 super_types[mddev->major_version].sync_super(mddev, rdev); 1971 } 1972 1973 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 1974 { 1975 struct md_rdev *rdev, *rdev2; 1976 1977 rcu_read_lock(); 1978 rdev_for_each_rcu(rdev, mddev1) 1979 rdev_for_each_rcu(rdev2, mddev2) 1980 if (rdev->bdev->bd_contains == 1981 rdev2->bdev->bd_contains) { 1982 rcu_read_unlock(); 1983 return 1; 1984 } 1985 rcu_read_unlock(); 1986 return 0; 1987 } 1988 1989 static LIST_HEAD(pending_raid_disks); 1990 1991 /* 1992 * Try to register data integrity profile for an mddev 1993 * 1994 * This is called when an array is started and after a disk has been kicked 1995 * from the array. It only succeeds if all working and active component devices 1996 * are integrity capable with matching profiles. 1997 */ 1998 int md_integrity_register(struct mddev *mddev) 1999 { 2000 struct md_rdev *rdev, *reference = NULL; 2001 2002 if (list_empty(&mddev->disks)) 2003 return 0; /* nothing to do */ 2004 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2005 return 0; /* shouldn't register, or already is */ 2006 rdev_for_each(rdev, mddev) { 2007 /* skip spares and non-functional disks */ 2008 if (test_bit(Faulty, &rdev->flags)) 2009 continue; 2010 if (rdev->raid_disk < 0) 2011 continue; 2012 if (!reference) { 2013 /* Use the first rdev as the reference */ 2014 reference = rdev; 2015 continue; 2016 } 2017 /* does this rdev's profile match the reference profile? */ 2018 if (blk_integrity_compare(reference->bdev->bd_disk, 2019 rdev->bdev->bd_disk) < 0) 2020 return -EINVAL; 2021 } 2022 if (!reference || !bdev_get_integrity(reference->bdev)) 2023 return 0; 2024 /* 2025 * All component devices are integrity capable and have matching 2026 * profiles, register the common profile for the md device. 2027 */ 2028 if (blk_integrity_register(mddev->gendisk, 2029 bdev_get_integrity(reference->bdev)) != 0) { 2030 printk(KERN_ERR "md: failed to register integrity for %s\n", 2031 mdname(mddev)); 2032 return -EINVAL; 2033 } 2034 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev)); 2035 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2036 printk(KERN_ERR "md: failed to create integrity pool for %s\n", 2037 mdname(mddev)); 2038 return -EINVAL; 2039 } 2040 return 0; 2041 } 2042 EXPORT_SYMBOL(md_integrity_register); 2043 2044 /* Disable data integrity if non-capable/non-matching disk is being added */ 2045 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2046 { 2047 struct blk_integrity *bi_rdev; 2048 struct blk_integrity *bi_mddev; 2049 2050 if (!mddev->gendisk) 2051 return; 2052 2053 bi_rdev = bdev_get_integrity(rdev->bdev); 2054 bi_mddev = blk_get_integrity(mddev->gendisk); 2055 2056 if (!bi_mddev) /* nothing to do */ 2057 return; 2058 if (rdev->raid_disk < 0) /* skip spares */ 2059 return; 2060 if (bi_rdev && blk_integrity_compare(mddev->gendisk, 2061 rdev->bdev->bd_disk) >= 0) 2062 return; 2063 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev)); 2064 blk_integrity_unregister(mddev->gendisk); 2065 } 2066 EXPORT_SYMBOL(md_integrity_add_rdev); 2067 2068 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev) 2069 { 2070 char b[BDEVNAME_SIZE]; 2071 struct kobject *ko; 2072 char *s; 2073 int err; 2074 2075 if (rdev->mddev) { 2076 MD_BUG(); 2077 return -EINVAL; 2078 } 2079 2080 /* prevent duplicates */ 2081 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2082 return -EEXIST; 2083 2084 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2085 if (rdev->sectors && (mddev->dev_sectors == 0 || 2086 rdev->sectors < mddev->dev_sectors)) { 2087 if (mddev->pers) { 2088 /* Cannot change size, so fail 2089 * If mddev->level <= 0, then we don't care 2090 * about aligning sizes (e.g. linear) 2091 */ 2092 if (mddev->level > 0) 2093 return -ENOSPC; 2094 } else 2095 mddev->dev_sectors = rdev->sectors; 2096 } 2097 2098 /* Verify rdev->desc_nr is unique. 2099 * If it is -1, assign a free number, else 2100 * check number is not in use 2101 */ 2102 if (rdev->desc_nr < 0) { 2103 int choice = 0; 2104 if (mddev->pers) choice = mddev->raid_disks; 2105 while (find_rdev_nr(mddev, choice)) 2106 choice++; 2107 rdev->desc_nr = choice; 2108 } else { 2109 if (find_rdev_nr(mddev, rdev->desc_nr)) 2110 return -EBUSY; 2111 } 2112 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2113 printk(KERN_WARNING "md: %s: array is limited to %d devices\n", 2114 mdname(mddev), mddev->max_disks); 2115 return -EBUSY; 2116 } 2117 bdevname(rdev->bdev,b); 2118 while ( (s=strchr(b, '/')) != NULL) 2119 *s = '!'; 2120 2121 rdev->mddev = mddev; 2122 printk(KERN_INFO "md: bind<%s>\n", b); 2123 2124 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2125 goto fail; 2126 2127 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2128 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2129 /* failure here is OK */; 2130 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2131 2132 list_add_rcu(&rdev->same_set, &mddev->disks); 2133 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2134 2135 /* May as well allow recovery to be retried once */ 2136 mddev->recovery_disabled++; 2137 2138 return 0; 2139 2140 fail: 2141 printk(KERN_WARNING "md: failed to register dev-%s for %s\n", 2142 b, mdname(mddev)); 2143 return err; 2144 } 2145 2146 static void md_delayed_delete(struct work_struct *ws) 2147 { 2148 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2149 kobject_del(&rdev->kobj); 2150 kobject_put(&rdev->kobj); 2151 } 2152 2153 static void unbind_rdev_from_array(struct md_rdev * rdev) 2154 { 2155 char b[BDEVNAME_SIZE]; 2156 if (!rdev->mddev) { 2157 MD_BUG(); 2158 return; 2159 } 2160 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2161 list_del_rcu(&rdev->same_set); 2162 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2163 rdev->mddev = NULL; 2164 sysfs_remove_link(&rdev->kobj, "block"); 2165 sysfs_put(rdev->sysfs_state); 2166 rdev->sysfs_state = NULL; 2167 rdev->badblocks.count = 0; 2168 /* We need to delay this, otherwise we can deadlock when 2169 * writing to 'remove' to "dev/state". We also need 2170 * to delay it due to rcu usage. 2171 */ 2172 synchronize_rcu(); 2173 INIT_WORK(&rdev->del_work, md_delayed_delete); 2174 kobject_get(&rdev->kobj); 2175 queue_work(md_misc_wq, &rdev->del_work); 2176 } 2177 2178 /* 2179 * prevent the device from being mounted, repartitioned or 2180 * otherwise reused by a RAID array (or any other kernel 2181 * subsystem), by bd_claiming the device. 2182 */ 2183 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2184 { 2185 int err = 0; 2186 struct block_device *bdev; 2187 char b[BDEVNAME_SIZE]; 2188 2189 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2190 shared ? (struct md_rdev *)lock_rdev : rdev); 2191 if (IS_ERR(bdev)) { 2192 printk(KERN_ERR "md: could not open %s.\n", 2193 __bdevname(dev, b)); 2194 return PTR_ERR(bdev); 2195 } 2196 rdev->bdev = bdev; 2197 return err; 2198 } 2199 2200 static void unlock_rdev(struct md_rdev *rdev) 2201 { 2202 struct block_device *bdev = rdev->bdev; 2203 rdev->bdev = NULL; 2204 if (!bdev) 2205 MD_BUG(); 2206 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2207 } 2208 2209 void md_autodetect_dev(dev_t dev); 2210 2211 static void export_rdev(struct md_rdev * rdev) 2212 { 2213 char b[BDEVNAME_SIZE]; 2214 printk(KERN_INFO "md: export_rdev(%s)\n", 2215 bdevname(rdev->bdev,b)); 2216 if (rdev->mddev) 2217 MD_BUG(); 2218 md_rdev_clear(rdev); 2219 #ifndef MODULE 2220 if (test_bit(AutoDetected, &rdev->flags)) 2221 md_autodetect_dev(rdev->bdev->bd_dev); 2222 #endif 2223 unlock_rdev(rdev); 2224 kobject_put(&rdev->kobj); 2225 } 2226 2227 static void kick_rdev_from_array(struct md_rdev * rdev) 2228 { 2229 unbind_rdev_from_array(rdev); 2230 export_rdev(rdev); 2231 } 2232 2233 static void export_array(struct mddev *mddev) 2234 { 2235 struct md_rdev *rdev, *tmp; 2236 2237 rdev_for_each_safe(rdev, tmp, mddev) { 2238 if (!rdev->mddev) { 2239 MD_BUG(); 2240 continue; 2241 } 2242 kick_rdev_from_array(rdev); 2243 } 2244 if (!list_empty(&mddev->disks)) 2245 MD_BUG(); 2246 mddev->raid_disks = 0; 2247 mddev->major_version = 0; 2248 } 2249 2250 static void print_desc(mdp_disk_t *desc) 2251 { 2252 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number, 2253 desc->major,desc->minor,desc->raid_disk,desc->state); 2254 } 2255 2256 static void print_sb_90(mdp_super_t *sb) 2257 { 2258 int i; 2259 2260 printk(KERN_INFO 2261 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n", 2262 sb->major_version, sb->minor_version, sb->patch_version, 2263 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3, 2264 sb->ctime); 2265 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n", 2266 sb->level, sb->size, sb->nr_disks, sb->raid_disks, 2267 sb->md_minor, sb->layout, sb->chunk_size); 2268 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d" 2269 " FD:%d SD:%d CSUM:%08x E:%08lx\n", 2270 sb->utime, sb->state, sb->active_disks, sb->working_disks, 2271 sb->failed_disks, sb->spare_disks, 2272 sb->sb_csum, (unsigned long)sb->events_lo); 2273 2274 printk(KERN_INFO); 2275 for (i = 0; i < MD_SB_DISKS; i++) { 2276 mdp_disk_t *desc; 2277 2278 desc = sb->disks + i; 2279 if (desc->number || desc->major || desc->minor || 2280 desc->raid_disk || (desc->state && (desc->state != 4))) { 2281 printk(" D %2d: ", i); 2282 print_desc(desc); 2283 } 2284 } 2285 printk(KERN_INFO "md: THIS: "); 2286 print_desc(&sb->this_disk); 2287 } 2288 2289 static void print_sb_1(struct mdp_superblock_1 *sb) 2290 { 2291 __u8 *uuid; 2292 2293 uuid = sb->set_uuid; 2294 printk(KERN_INFO 2295 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n" 2296 "md: Name: \"%s\" CT:%llu\n", 2297 le32_to_cpu(sb->major_version), 2298 le32_to_cpu(sb->feature_map), 2299 uuid, 2300 sb->set_name, 2301 (unsigned long long)le64_to_cpu(sb->ctime) 2302 & MD_SUPERBLOCK_1_TIME_SEC_MASK); 2303 2304 uuid = sb->device_uuid; 2305 printk(KERN_INFO 2306 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu" 2307 " RO:%llu\n" 2308 "md: Dev:%08x UUID: %pU\n" 2309 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n" 2310 "md: (MaxDev:%u) \n", 2311 le32_to_cpu(sb->level), 2312 (unsigned long long)le64_to_cpu(sb->size), 2313 le32_to_cpu(sb->raid_disks), 2314 le32_to_cpu(sb->layout), 2315 le32_to_cpu(sb->chunksize), 2316 (unsigned long long)le64_to_cpu(sb->data_offset), 2317 (unsigned long long)le64_to_cpu(sb->data_size), 2318 (unsigned long long)le64_to_cpu(sb->super_offset), 2319 (unsigned long long)le64_to_cpu(sb->recovery_offset), 2320 le32_to_cpu(sb->dev_number), 2321 uuid, 2322 sb->devflags, 2323 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK, 2324 (unsigned long long)le64_to_cpu(sb->events), 2325 (unsigned long long)le64_to_cpu(sb->resync_offset), 2326 le32_to_cpu(sb->sb_csum), 2327 le32_to_cpu(sb->max_dev) 2328 ); 2329 } 2330 2331 static void print_rdev(struct md_rdev *rdev, int major_version) 2332 { 2333 char b[BDEVNAME_SIZE]; 2334 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n", 2335 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors, 2336 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags), 2337 rdev->desc_nr); 2338 if (rdev->sb_loaded) { 2339 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version); 2340 switch (major_version) { 2341 case 0: 2342 print_sb_90(page_address(rdev->sb_page)); 2343 break; 2344 case 1: 2345 print_sb_1(page_address(rdev->sb_page)); 2346 break; 2347 } 2348 } else 2349 printk(KERN_INFO "md: no rdev superblock!\n"); 2350 } 2351 2352 static void md_print_devices(void) 2353 { 2354 struct list_head *tmp; 2355 struct md_rdev *rdev; 2356 struct mddev *mddev; 2357 char b[BDEVNAME_SIZE]; 2358 2359 printk("\n"); 2360 printk("md: **********************************\n"); 2361 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n"); 2362 printk("md: **********************************\n"); 2363 for_each_mddev(mddev, tmp) { 2364 2365 if (mddev->bitmap) 2366 bitmap_print_sb(mddev->bitmap); 2367 else 2368 printk("%s: ", mdname(mddev)); 2369 rdev_for_each(rdev, mddev) 2370 printk("<%s>", bdevname(rdev->bdev,b)); 2371 printk("\n"); 2372 2373 rdev_for_each(rdev, mddev) 2374 print_rdev(rdev, mddev->major_version); 2375 } 2376 printk("md: **********************************\n"); 2377 printk("\n"); 2378 } 2379 2380 2381 static void sync_sbs(struct mddev * mddev, int nospares) 2382 { 2383 /* Update each superblock (in-memory image), but 2384 * if we are allowed to, skip spares which already 2385 * have the right event counter, or have one earlier 2386 * (which would mean they aren't being marked as dirty 2387 * with the rest of the array) 2388 */ 2389 struct md_rdev *rdev; 2390 rdev_for_each(rdev, mddev) { 2391 if (rdev->sb_events == mddev->events || 2392 (nospares && 2393 rdev->raid_disk < 0 && 2394 rdev->sb_events+1 == mddev->events)) { 2395 /* Don't update this superblock */ 2396 rdev->sb_loaded = 2; 2397 } else { 2398 sync_super(mddev, rdev); 2399 rdev->sb_loaded = 1; 2400 } 2401 } 2402 } 2403 2404 static void md_update_sb(struct mddev * mddev, int force_change) 2405 { 2406 struct md_rdev *rdev; 2407 int sync_req; 2408 int nospares = 0; 2409 int any_badblocks_changed = 0; 2410 2411 repeat: 2412 /* First make sure individual recovery_offsets are correct */ 2413 rdev_for_each(rdev, mddev) { 2414 if (rdev->raid_disk >= 0 && 2415 mddev->delta_disks >= 0 && 2416 !test_bit(In_sync, &rdev->flags) && 2417 mddev->curr_resync_completed > rdev->recovery_offset) 2418 rdev->recovery_offset = mddev->curr_resync_completed; 2419 2420 } 2421 if (!mddev->persistent) { 2422 clear_bit(MD_CHANGE_CLEAN, &mddev->flags); 2423 clear_bit(MD_CHANGE_DEVS, &mddev->flags); 2424 if (!mddev->external) { 2425 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2426 rdev_for_each(rdev, mddev) { 2427 if (rdev->badblocks.changed) { 2428 rdev->badblocks.changed = 0; 2429 md_ack_all_badblocks(&rdev->badblocks); 2430 md_error(mddev, rdev); 2431 } 2432 clear_bit(Blocked, &rdev->flags); 2433 clear_bit(BlockedBadBlocks, &rdev->flags); 2434 wake_up(&rdev->blocked_wait); 2435 } 2436 } 2437 wake_up(&mddev->sb_wait); 2438 return; 2439 } 2440 2441 spin_lock_irq(&mddev->write_lock); 2442 2443 mddev->utime = get_seconds(); 2444 2445 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags)) 2446 force_change = 1; 2447 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags)) 2448 /* just a clean<-> dirty transition, possibly leave spares alone, 2449 * though if events isn't the right even/odd, we will have to do 2450 * spares after all 2451 */ 2452 nospares = 1; 2453 if (force_change) 2454 nospares = 0; 2455 if (mddev->degraded) 2456 /* If the array is degraded, then skipping spares is both 2457 * dangerous and fairly pointless. 2458 * Dangerous because a device that was removed from the array 2459 * might have a event_count that still looks up-to-date, 2460 * so it can be re-added without a resync. 2461 * Pointless because if there are any spares to skip, 2462 * then a recovery will happen and soon that array won't 2463 * be degraded any more and the spare can go back to sleep then. 2464 */ 2465 nospares = 0; 2466 2467 sync_req = mddev->in_sync; 2468 2469 /* If this is just a dirty<->clean transition, and the array is clean 2470 * and 'events' is odd, we can roll back to the previous clean state */ 2471 if (nospares 2472 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2473 && mddev->can_decrease_events 2474 && mddev->events != 1) { 2475 mddev->events--; 2476 mddev->can_decrease_events = 0; 2477 } else { 2478 /* otherwise we have to go forward and ... */ 2479 mddev->events ++; 2480 mddev->can_decrease_events = nospares; 2481 } 2482 2483 if (!mddev->events) { 2484 /* 2485 * oops, this 64-bit counter should never wrap. 2486 * Either we are in around ~1 trillion A.C., assuming 2487 * 1 reboot per second, or we have a bug: 2488 */ 2489 MD_BUG(); 2490 mddev->events --; 2491 } 2492 2493 rdev_for_each(rdev, mddev) { 2494 if (rdev->badblocks.changed) 2495 any_badblocks_changed++; 2496 if (test_bit(Faulty, &rdev->flags)) 2497 set_bit(FaultRecorded, &rdev->flags); 2498 } 2499 2500 sync_sbs(mddev, nospares); 2501 spin_unlock_irq(&mddev->write_lock); 2502 2503 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2504 mdname(mddev), mddev->in_sync); 2505 2506 bitmap_update_sb(mddev->bitmap); 2507 rdev_for_each(rdev, mddev) { 2508 char b[BDEVNAME_SIZE]; 2509 2510 if (rdev->sb_loaded != 1) 2511 continue; /* no noise on spare devices */ 2512 2513 if (!test_bit(Faulty, &rdev->flags) && 2514 rdev->saved_raid_disk == -1) { 2515 md_super_write(mddev,rdev, 2516 rdev->sb_start, rdev->sb_size, 2517 rdev->sb_page); 2518 pr_debug("md: (write) %s's sb offset: %llu\n", 2519 bdevname(rdev->bdev, b), 2520 (unsigned long long)rdev->sb_start); 2521 rdev->sb_events = mddev->events; 2522 if (rdev->badblocks.size) { 2523 md_super_write(mddev, rdev, 2524 rdev->badblocks.sector, 2525 rdev->badblocks.size << 9, 2526 rdev->bb_page); 2527 rdev->badblocks.size = 0; 2528 } 2529 2530 } else if (test_bit(Faulty, &rdev->flags)) 2531 pr_debug("md: %s (skipping faulty)\n", 2532 bdevname(rdev->bdev, b)); 2533 else 2534 pr_debug("(skipping incremental s/r "); 2535 2536 if (mddev->level == LEVEL_MULTIPATH) 2537 /* only need to write one superblock... */ 2538 break; 2539 } 2540 md_super_wait(mddev); 2541 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */ 2542 2543 spin_lock_irq(&mddev->write_lock); 2544 if (mddev->in_sync != sync_req || 2545 test_bit(MD_CHANGE_DEVS, &mddev->flags)) { 2546 /* have to write it out again */ 2547 spin_unlock_irq(&mddev->write_lock); 2548 goto repeat; 2549 } 2550 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 2551 spin_unlock_irq(&mddev->write_lock); 2552 wake_up(&mddev->sb_wait); 2553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2554 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2555 2556 rdev_for_each(rdev, mddev) { 2557 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2558 clear_bit(Blocked, &rdev->flags); 2559 2560 if (any_badblocks_changed) 2561 md_ack_all_badblocks(&rdev->badblocks); 2562 clear_bit(BlockedBadBlocks, &rdev->flags); 2563 wake_up(&rdev->blocked_wait); 2564 } 2565 } 2566 2567 /* words written to sysfs files may, or may not, be \n terminated. 2568 * We want to accept with case. For this we use cmd_match. 2569 */ 2570 static int cmd_match(const char *cmd, const char *str) 2571 { 2572 /* See if cmd, written into a sysfs file, matches 2573 * str. They must either be the same, or cmd can 2574 * have a trailing newline 2575 */ 2576 while (*cmd && *str && *cmd == *str) { 2577 cmd++; 2578 str++; 2579 } 2580 if (*cmd == '\n') 2581 cmd++; 2582 if (*str || *cmd) 2583 return 0; 2584 return 1; 2585 } 2586 2587 struct rdev_sysfs_entry { 2588 struct attribute attr; 2589 ssize_t (*show)(struct md_rdev *, char *); 2590 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2591 }; 2592 2593 static ssize_t 2594 state_show(struct md_rdev *rdev, char *page) 2595 { 2596 char *sep = ""; 2597 size_t len = 0; 2598 2599 if (test_bit(Faulty, &rdev->flags) || 2600 rdev->badblocks.unacked_exist) { 2601 len+= sprintf(page+len, "%sfaulty",sep); 2602 sep = ","; 2603 } 2604 if (test_bit(In_sync, &rdev->flags)) { 2605 len += sprintf(page+len, "%sin_sync",sep); 2606 sep = ","; 2607 } 2608 if (test_bit(WriteMostly, &rdev->flags)) { 2609 len += sprintf(page+len, "%swrite_mostly",sep); 2610 sep = ","; 2611 } 2612 if (test_bit(Blocked, &rdev->flags) || 2613 (rdev->badblocks.unacked_exist 2614 && !test_bit(Faulty, &rdev->flags))) { 2615 len += sprintf(page+len, "%sblocked", sep); 2616 sep = ","; 2617 } 2618 if (!test_bit(Faulty, &rdev->flags) && 2619 !test_bit(In_sync, &rdev->flags)) { 2620 len += sprintf(page+len, "%sspare", sep); 2621 sep = ","; 2622 } 2623 if (test_bit(WriteErrorSeen, &rdev->flags)) { 2624 len += sprintf(page+len, "%swrite_error", sep); 2625 sep = ","; 2626 } 2627 if (test_bit(WantReplacement, &rdev->flags)) { 2628 len += sprintf(page+len, "%swant_replacement", sep); 2629 sep = ","; 2630 } 2631 if (test_bit(Replacement, &rdev->flags)) { 2632 len += sprintf(page+len, "%sreplacement", sep); 2633 sep = ","; 2634 } 2635 2636 return len+sprintf(page+len, "\n"); 2637 } 2638 2639 static ssize_t 2640 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2641 { 2642 /* can write 2643 * faulty - simulates an error 2644 * remove - disconnects the device 2645 * writemostly - sets write_mostly 2646 * -writemostly - clears write_mostly 2647 * blocked - sets the Blocked flags 2648 * -blocked - clears the Blocked and possibly simulates an error 2649 * insync - sets Insync providing device isn't active 2650 * write_error - sets WriteErrorSeen 2651 * -write_error - clears WriteErrorSeen 2652 */ 2653 int err = -EINVAL; 2654 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2655 md_error(rdev->mddev, rdev); 2656 if (test_bit(Faulty, &rdev->flags)) 2657 err = 0; 2658 else 2659 err = -EBUSY; 2660 } else if (cmd_match(buf, "remove")) { 2661 if (rdev->raid_disk >= 0) 2662 err = -EBUSY; 2663 else { 2664 struct mddev *mddev = rdev->mddev; 2665 kick_rdev_from_array(rdev); 2666 if (mddev->pers) 2667 md_update_sb(mddev, 1); 2668 md_new_event(mddev); 2669 err = 0; 2670 } 2671 } else if (cmd_match(buf, "writemostly")) { 2672 set_bit(WriteMostly, &rdev->flags); 2673 err = 0; 2674 } else if (cmd_match(buf, "-writemostly")) { 2675 clear_bit(WriteMostly, &rdev->flags); 2676 err = 0; 2677 } else if (cmd_match(buf, "blocked")) { 2678 set_bit(Blocked, &rdev->flags); 2679 err = 0; 2680 } else if (cmd_match(buf, "-blocked")) { 2681 if (!test_bit(Faulty, &rdev->flags) && 2682 rdev->badblocks.unacked_exist) { 2683 /* metadata handler doesn't understand badblocks, 2684 * so we need to fail the device 2685 */ 2686 md_error(rdev->mddev, rdev); 2687 } 2688 clear_bit(Blocked, &rdev->flags); 2689 clear_bit(BlockedBadBlocks, &rdev->flags); 2690 wake_up(&rdev->blocked_wait); 2691 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2692 md_wakeup_thread(rdev->mddev->thread); 2693 2694 err = 0; 2695 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2696 set_bit(In_sync, &rdev->flags); 2697 err = 0; 2698 } else if (cmd_match(buf, "write_error")) { 2699 set_bit(WriteErrorSeen, &rdev->flags); 2700 err = 0; 2701 } else if (cmd_match(buf, "-write_error")) { 2702 clear_bit(WriteErrorSeen, &rdev->flags); 2703 err = 0; 2704 } else if (cmd_match(buf, "want_replacement")) { 2705 /* Any non-spare device that is not a replacement can 2706 * become want_replacement at any time, but we then need to 2707 * check if recovery is needed. 2708 */ 2709 if (rdev->raid_disk >= 0 && 2710 !test_bit(Replacement, &rdev->flags)) 2711 set_bit(WantReplacement, &rdev->flags); 2712 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2713 md_wakeup_thread(rdev->mddev->thread); 2714 err = 0; 2715 } else if (cmd_match(buf, "-want_replacement")) { 2716 /* Clearing 'want_replacement' is always allowed. 2717 * Once replacements starts it is too late though. 2718 */ 2719 err = 0; 2720 clear_bit(WantReplacement, &rdev->flags); 2721 } else if (cmd_match(buf, "replacement")) { 2722 /* Can only set a device as a replacement when array has not 2723 * yet been started. Once running, replacement is automatic 2724 * from spares, or by assigning 'slot'. 2725 */ 2726 if (rdev->mddev->pers) 2727 err = -EBUSY; 2728 else { 2729 set_bit(Replacement, &rdev->flags); 2730 err = 0; 2731 } 2732 } else if (cmd_match(buf, "-replacement")) { 2733 /* Similarly, can only clear Replacement before start */ 2734 if (rdev->mddev->pers) 2735 err = -EBUSY; 2736 else { 2737 clear_bit(Replacement, &rdev->flags); 2738 err = 0; 2739 } 2740 } 2741 if (!err) 2742 sysfs_notify_dirent_safe(rdev->sysfs_state); 2743 return err ? err : len; 2744 } 2745 static struct rdev_sysfs_entry rdev_state = 2746 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store); 2747 2748 static ssize_t 2749 errors_show(struct md_rdev *rdev, char *page) 2750 { 2751 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2752 } 2753 2754 static ssize_t 2755 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2756 { 2757 char *e; 2758 unsigned long n = simple_strtoul(buf, &e, 10); 2759 if (*buf && (*e == 0 || *e == '\n')) { 2760 atomic_set(&rdev->corrected_errors, n); 2761 return len; 2762 } 2763 return -EINVAL; 2764 } 2765 static struct rdev_sysfs_entry rdev_errors = 2766 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2767 2768 static ssize_t 2769 slot_show(struct md_rdev *rdev, char *page) 2770 { 2771 if (rdev->raid_disk < 0) 2772 return sprintf(page, "none\n"); 2773 else 2774 return sprintf(page, "%d\n", rdev->raid_disk); 2775 } 2776 2777 static ssize_t 2778 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2779 { 2780 char *e; 2781 int err; 2782 int slot = simple_strtoul(buf, &e, 10); 2783 if (strncmp(buf, "none", 4)==0) 2784 slot = -1; 2785 else if (e==buf || (*e && *e!= '\n')) 2786 return -EINVAL; 2787 if (rdev->mddev->pers && slot == -1) { 2788 /* Setting 'slot' on an active array requires also 2789 * updating the 'rd%d' link, and communicating 2790 * with the personality with ->hot_*_disk. 2791 * For now we only support removing 2792 * failed/spare devices. This normally happens automatically, 2793 * but not when the metadata is externally managed. 2794 */ 2795 if (rdev->raid_disk == -1) 2796 return -EEXIST; 2797 /* personality does all needed checks */ 2798 if (rdev->mddev->pers->hot_remove_disk == NULL) 2799 return -EINVAL; 2800 err = rdev->mddev->pers-> 2801 hot_remove_disk(rdev->mddev, rdev); 2802 if (err) 2803 return err; 2804 sysfs_unlink_rdev(rdev->mddev, rdev); 2805 rdev->raid_disk = -1; 2806 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2807 md_wakeup_thread(rdev->mddev->thread); 2808 } else if (rdev->mddev->pers) { 2809 /* Activating a spare .. or possibly reactivating 2810 * if we ever get bitmaps working here. 2811 */ 2812 2813 if (rdev->raid_disk != -1) 2814 return -EBUSY; 2815 2816 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2817 return -EBUSY; 2818 2819 if (rdev->mddev->pers->hot_add_disk == NULL) 2820 return -EINVAL; 2821 2822 if (slot >= rdev->mddev->raid_disks && 2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2824 return -ENOSPC; 2825 2826 rdev->raid_disk = slot; 2827 if (test_bit(In_sync, &rdev->flags)) 2828 rdev->saved_raid_disk = slot; 2829 else 2830 rdev->saved_raid_disk = -1; 2831 clear_bit(In_sync, &rdev->flags); 2832 err = rdev->mddev->pers-> 2833 hot_add_disk(rdev->mddev, rdev); 2834 if (err) { 2835 rdev->raid_disk = -1; 2836 return err; 2837 } else 2838 sysfs_notify_dirent_safe(rdev->sysfs_state); 2839 if (sysfs_link_rdev(rdev->mddev, rdev)) 2840 /* failure here is OK */; 2841 /* don't wakeup anyone, leave that to userspace. */ 2842 } else { 2843 if (slot >= rdev->mddev->raid_disks && 2844 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2845 return -ENOSPC; 2846 rdev->raid_disk = slot; 2847 /* assume it is working */ 2848 clear_bit(Faulty, &rdev->flags); 2849 clear_bit(WriteMostly, &rdev->flags); 2850 set_bit(In_sync, &rdev->flags); 2851 sysfs_notify_dirent_safe(rdev->sysfs_state); 2852 } 2853 return len; 2854 } 2855 2856 2857 static struct rdev_sysfs_entry rdev_slot = 2858 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 2859 2860 static ssize_t 2861 offset_show(struct md_rdev *rdev, char *page) 2862 { 2863 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 2864 } 2865 2866 static ssize_t 2867 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 2868 { 2869 unsigned long long offset; 2870 if (strict_strtoull(buf, 10, &offset) < 0) 2871 return -EINVAL; 2872 if (rdev->mddev->pers && rdev->raid_disk >= 0) 2873 return -EBUSY; 2874 if (rdev->sectors && rdev->mddev->external) 2875 /* Must set offset before size, so overlap checks 2876 * can be sane */ 2877 return -EBUSY; 2878 rdev->data_offset = offset; 2879 rdev->new_data_offset = offset; 2880 return len; 2881 } 2882 2883 static struct rdev_sysfs_entry rdev_offset = 2884 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 2885 2886 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 2887 { 2888 return sprintf(page, "%llu\n", 2889 (unsigned long long)rdev->new_data_offset); 2890 } 2891 2892 static ssize_t new_offset_store(struct md_rdev *rdev, 2893 const char *buf, size_t len) 2894 { 2895 unsigned long long new_offset; 2896 struct mddev *mddev = rdev->mddev; 2897 2898 if (strict_strtoull(buf, 10, &new_offset) < 0) 2899 return -EINVAL; 2900 2901 if (mddev->sync_thread) 2902 return -EBUSY; 2903 if (new_offset == rdev->data_offset) 2904 /* reset is always permitted */ 2905 ; 2906 else if (new_offset > rdev->data_offset) { 2907 /* must not push array size beyond rdev_sectors */ 2908 if (new_offset - rdev->data_offset 2909 + mddev->dev_sectors > rdev->sectors) 2910 return -E2BIG; 2911 } 2912 /* Metadata worries about other space details. */ 2913 2914 /* decreasing the offset is inconsistent with a backwards 2915 * reshape. 2916 */ 2917 if (new_offset < rdev->data_offset && 2918 mddev->reshape_backwards) 2919 return -EINVAL; 2920 /* Increasing offset is inconsistent with forwards 2921 * reshape. reshape_direction should be set to 2922 * 'backwards' first. 2923 */ 2924 if (new_offset > rdev->data_offset && 2925 !mddev->reshape_backwards) 2926 return -EINVAL; 2927 2928 if (mddev->pers && mddev->persistent && 2929 !super_types[mddev->major_version] 2930 .allow_new_offset(rdev, new_offset)) 2931 return -E2BIG; 2932 rdev->new_data_offset = new_offset; 2933 if (new_offset > rdev->data_offset) 2934 mddev->reshape_backwards = 1; 2935 else if (new_offset < rdev->data_offset) 2936 mddev->reshape_backwards = 0; 2937 2938 return len; 2939 } 2940 static struct rdev_sysfs_entry rdev_new_offset = 2941 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 2942 2943 static ssize_t 2944 rdev_size_show(struct md_rdev *rdev, char *page) 2945 { 2946 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 2947 } 2948 2949 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 2950 { 2951 /* check if two start/length pairs overlap */ 2952 if (s1+l1 <= s2) 2953 return 0; 2954 if (s2+l2 <= s1) 2955 return 0; 2956 return 1; 2957 } 2958 2959 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 2960 { 2961 unsigned long long blocks; 2962 sector_t new; 2963 2964 if (strict_strtoull(buf, 10, &blocks) < 0) 2965 return -EINVAL; 2966 2967 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 2968 return -EINVAL; /* sector conversion overflow */ 2969 2970 new = blocks * 2; 2971 if (new != blocks * 2) 2972 return -EINVAL; /* unsigned long long to sector_t overflow */ 2973 2974 *sectors = new; 2975 return 0; 2976 } 2977 2978 static ssize_t 2979 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 2980 { 2981 struct mddev *my_mddev = rdev->mddev; 2982 sector_t oldsectors = rdev->sectors; 2983 sector_t sectors; 2984 2985 if (strict_blocks_to_sectors(buf, §ors) < 0) 2986 return -EINVAL; 2987 if (rdev->data_offset != rdev->new_data_offset) 2988 return -EINVAL; /* too confusing */ 2989 if (my_mddev->pers && rdev->raid_disk >= 0) { 2990 if (my_mddev->persistent) { 2991 sectors = super_types[my_mddev->major_version]. 2992 rdev_size_change(rdev, sectors); 2993 if (!sectors) 2994 return -EBUSY; 2995 } else if (!sectors) 2996 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 2997 rdev->data_offset; 2998 } 2999 if (sectors < my_mddev->dev_sectors) 3000 return -EINVAL; /* component must fit device */ 3001 3002 rdev->sectors = sectors; 3003 if (sectors > oldsectors && my_mddev->external) { 3004 /* need to check that all other rdevs with the same ->bdev 3005 * do not overlap. We need to unlock the mddev to avoid 3006 * a deadlock. We have already changed rdev->sectors, and if 3007 * we have to change it back, we will have the lock again. 3008 */ 3009 struct mddev *mddev; 3010 int overlap = 0; 3011 struct list_head *tmp; 3012 3013 mddev_unlock(my_mddev); 3014 for_each_mddev(mddev, tmp) { 3015 struct md_rdev *rdev2; 3016 3017 mddev_lock(mddev); 3018 rdev_for_each(rdev2, mddev) 3019 if (rdev->bdev == rdev2->bdev && 3020 rdev != rdev2 && 3021 overlaps(rdev->data_offset, rdev->sectors, 3022 rdev2->data_offset, 3023 rdev2->sectors)) { 3024 overlap = 1; 3025 break; 3026 } 3027 mddev_unlock(mddev); 3028 if (overlap) { 3029 mddev_put(mddev); 3030 break; 3031 } 3032 } 3033 mddev_lock(my_mddev); 3034 if (overlap) { 3035 /* Someone else could have slipped in a size 3036 * change here, but doing so is just silly. 3037 * We put oldsectors back because we *know* it is 3038 * safe, and trust userspace not to race with 3039 * itself 3040 */ 3041 rdev->sectors = oldsectors; 3042 return -EBUSY; 3043 } 3044 } 3045 return len; 3046 } 3047 3048 static struct rdev_sysfs_entry rdev_size = 3049 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3050 3051 3052 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3053 { 3054 unsigned long long recovery_start = rdev->recovery_offset; 3055 3056 if (test_bit(In_sync, &rdev->flags) || 3057 recovery_start == MaxSector) 3058 return sprintf(page, "none\n"); 3059 3060 return sprintf(page, "%llu\n", recovery_start); 3061 } 3062 3063 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3064 { 3065 unsigned long long recovery_start; 3066 3067 if (cmd_match(buf, "none")) 3068 recovery_start = MaxSector; 3069 else if (strict_strtoull(buf, 10, &recovery_start)) 3070 return -EINVAL; 3071 3072 if (rdev->mddev->pers && 3073 rdev->raid_disk >= 0) 3074 return -EBUSY; 3075 3076 rdev->recovery_offset = recovery_start; 3077 if (recovery_start == MaxSector) 3078 set_bit(In_sync, &rdev->flags); 3079 else 3080 clear_bit(In_sync, &rdev->flags); 3081 return len; 3082 } 3083 3084 static struct rdev_sysfs_entry rdev_recovery_start = 3085 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3086 3087 3088 static ssize_t 3089 badblocks_show(struct badblocks *bb, char *page, int unack); 3090 static ssize_t 3091 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack); 3092 3093 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3094 { 3095 return badblocks_show(&rdev->badblocks, page, 0); 3096 } 3097 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3098 { 3099 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3100 /* Maybe that ack was all we needed */ 3101 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3102 wake_up(&rdev->blocked_wait); 3103 return rv; 3104 } 3105 static struct rdev_sysfs_entry rdev_bad_blocks = 3106 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3107 3108 3109 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3110 { 3111 return badblocks_show(&rdev->badblocks, page, 1); 3112 } 3113 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3114 { 3115 return badblocks_store(&rdev->badblocks, page, len, 1); 3116 } 3117 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3118 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3119 3120 static struct attribute *rdev_default_attrs[] = { 3121 &rdev_state.attr, 3122 &rdev_errors.attr, 3123 &rdev_slot.attr, 3124 &rdev_offset.attr, 3125 &rdev_new_offset.attr, 3126 &rdev_size.attr, 3127 &rdev_recovery_start.attr, 3128 &rdev_bad_blocks.attr, 3129 &rdev_unack_bad_blocks.attr, 3130 NULL, 3131 }; 3132 static ssize_t 3133 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3134 { 3135 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3136 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3137 struct mddev *mddev = rdev->mddev; 3138 ssize_t rv; 3139 3140 if (!entry->show) 3141 return -EIO; 3142 3143 rv = mddev ? mddev_lock(mddev) : -EBUSY; 3144 if (!rv) { 3145 if (rdev->mddev == NULL) 3146 rv = -EBUSY; 3147 else 3148 rv = entry->show(rdev, page); 3149 mddev_unlock(mddev); 3150 } 3151 return rv; 3152 } 3153 3154 static ssize_t 3155 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3156 const char *page, size_t length) 3157 { 3158 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3159 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3160 ssize_t rv; 3161 struct mddev *mddev = rdev->mddev; 3162 3163 if (!entry->store) 3164 return -EIO; 3165 if (!capable(CAP_SYS_ADMIN)) 3166 return -EACCES; 3167 rv = mddev ? mddev_lock(mddev): -EBUSY; 3168 if (!rv) { 3169 if (rdev->mddev == NULL) 3170 rv = -EBUSY; 3171 else 3172 rv = entry->store(rdev, page, length); 3173 mddev_unlock(mddev); 3174 } 3175 return rv; 3176 } 3177 3178 static void rdev_free(struct kobject *ko) 3179 { 3180 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3181 kfree(rdev); 3182 } 3183 static const struct sysfs_ops rdev_sysfs_ops = { 3184 .show = rdev_attr_show, 3185 .store = rdev_attr_store, 3186 }; 3187 static struct kobj_type rdev_ktype = { 3188 .release = rdev_free, 3189 .sysfs_ops = &rdev_sysfs_ops, 3190 .default_attrs = rdev_default_attrs, 3191 }; 3192 3193 int md_rdev_init(struct md_rdev *rdev) 3194 { 3195 rdev->desc_nr = -1; 3196 rdev->saved_raid_disk = -1; 3197 rdev->raid_disk = -1; 3198 rdev->flags = 0; 3199 rdev->data_offset = 0; 3200 rdev->new_data_offset = 0; 3201 rdev->sb_events = 0; 3202 rdev->last_read_error.tv_sec = 0; 3203 rdev->last_read_error.tv_nsec = 0; 3204 rdev->sb_loaded = 0; 3205 rdev->bb_page = NULL; 3206 atomic_set(&rdev->nr_pending, 0); 3207 atomic_set(&rdev->read_errors, 0); 3208 atomic_set(&rdev->corrected_errors, 0); 3209 3210 INIT_LIST_HEAD(&rdev->same_set); 3211 init_waitqueue_head(&rdev->blocked_wait); 3212 3213 /* Add space to store bad block list. 3214 * This reserves the space even on arrays where it cannot 3215 * be used - I wonder if that matters 3216 */ 3217 rdev->badblocks.count = 0; 3218 rdev->badblocks.shift = 0; 3219 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL); 3220 seqlock_init(&rdev->badblocks.lock); 3221 if (rdev->badblocks.page == NULL) 3222 return -ENOMEM; 3223 3224 return 0; 3225 } 3226 EXPORT_SYMBOL_GPL(md_rdev_init); 3227 /* 3228 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3229 * 3230 * mark the device faulty if: 3231 * 3232 * - the device is nonexistent (zero size) 3233 * - the device has no valid superblock 3234 * 3235 * a faulty rdev _never_ has rdev->sb set. 3236 */ 3237 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3238 { 3239 char b[BDEVNAME_SIZE]; 3240 int err; 3241 struct md_rdev *rdev; 3242 sector_t size; 3243 3244 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3245 if (!rdev) { 3246 printk(KERN_ERR "md: could not alloc mem for new device!\n"); 3247 return ERR_PTR(-ENOMEM); 3248 } 3249 3250 err = md_rdev_init(rdev); 3251 if (err) 3252 goto abort_free; 3253 err = alloc_disk_sb(rdev); 3254 if (err) 3255 goto abort_free; 3256 3257 err = lock_rdev(rdev, newdev, super_format == -2); 3258 if (err) 3259 goto abort_free; 3260 3261 kobject_init(&rdev->kobj, &rdev_ktype); 3262 3263 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3264 if (!size) { 3265 printk(KERN_WARNING 3266 "md: %s has zero or unknown size, marking faulty!\n", 3267 bdevname(rdev->bdev,b)); 3268 err = -EINVAL; 3269 goto abort_free; 3270 } 3271 3272 if (super_format >= 0) { 3273 err = super_types[super_format]. 3274 load_super(rdev, NULL, super_minor); 3275 if (err == -EINVAL) { 3276 printk(KERN_WARNING 3277 "md: %s does not have a valid v%d.%d " 3278 "superblock, not importing!\n", 3279 bdevname(rdev->bdev,b), 3280 super_format, super_minor); 3281 goto abort_free; 3282 } 3283 if (err < 0) { 3284 printk(KERN_WARNING 3285 "md: could not read %s's sb, not importing!\n", 3286 bdevname(rdev->bdev,b)); 3287 goto abort_free; 3288 } 3289 } 3290 if (super_format == -1) 3291 /* hot-add for 0.90, or non-persistent: so no badblocks */ 3292 rdev->badblocks.shift = -1; 3293 3294 return rdev; 3295 3296 abort_free: 3297 if (rdev->bdev) 3298 unlock_rdev(rdev); 3299 md_rdev_clear(rdev); 3300 kfree(rdev); 3301 return ERR_PTR(err); 3302 } 3303 3304 /* 3305 * Check a full RAID array for plausibility 3306 */ 3307 3308 3309 static void analyze_sbs(struct mddev * mddev) 3310 { 3311 int i; 3312 struct md_rdev *rdev, *freshest, *tmp; 3313 char b[BDEVNAME_SIZE]; 3314 3315 freshest = NULL; 3316 rdev_for_each_safe(rdev, tmp, mddev) 3317 switch (super_types[mddev->major_version]. 3318 load_super(rdev, freshest, mddev->minor_version)) { 3319 case 1: 3320 freshest = rdev; 3321 break; 3322 case 0: 3323 break; 3324 default: 3325 printk( KERN_ERR \ 3326 "md: fatal superblock inconsistency in %s" 3327 " -- removing from array\n", 3328 bdevname(rdev->bdev,b)); 3329 kick_rdev_from_array(rdev); 3330 } 3331 3332 3333 super_types[mddev->major_version]. 3334 validate_super(mddev, freshest); 3335 3336 i = 0; 3337 rdev_for_each_safe(rdev, tmp, mddev) { 3338 if (mddev->max_disks && 3339 (rdev->desc_nr >= mddev->max_disks || 3340 i > mddev->max_disks)) { 3341 printk(KERN_WARNING 3342 "md: %s: %s: only %d devices permitted\n", 3343 mdname(mddev), bdevname(rdev->bdev, b), 3344 mddev->max_disks); 3345 kick_rdev_from_array(rdev); 3346 continue; 3347 } 3348 if (rdev != freshest) 3349 if (super_types[mddev->major_version]. 3350 validate_super(mddev, rdev)) { 3351 printk(KERN_WARNING "md: kicking non-fresh %s" 3352 " from array!\n", 3353 bdevname(rdev->bdev,b)); 3354 kick_rdev_from_array(rdev); 3355 continue; 3356 } 3357 if (mddev->level == LEVEL_MULTIPATH) { 3358 rdev->desc_nr = i++; 3359 rdev->raid_disk = rdev->desc_nr; 3360 set_bit(In_sync, &rdev->flags); 3361 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) { 3362 rdev->raid_disk = -1; 3363 clear_bit(In_sync, &rdev->flags); 3364 } 3365 } 3366 } 3367 3368 /* Read a fixed-point number. 3369 * Numbers in sysfs attributes should be in "standard" units where 3370 * possible, so time should be in seconds. 3371 * However we internally use a a much smaller unit such as 3372 * milliseconds or jiffies. 3373 * This function takes a decimal number with a possible fractional 3374 * component, and produces an integer which is the result of 3375 * multiplying that number by 10^'scale'. 3376 * all without any floating-point arithmetic. 3377 */ 3378 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3379 { 3380 unsigned long result = 0; 3381 long decimals = -1; 3382 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3383 if (*cp == '.') 3384 decimals = 0; 3385 else if (decimals < scale) { 3386 unsigned int value; 3387 value = *cp - '0'; 3388 result = result * 10 + value; 3389 if (decimals >= 0) 3390 decimals++; 3391 } 3392 cp++; 3393 } 3394 if (*cp == '\n') 3395 cp++; 3396 if (*cp) 3397 return -EINVAL; 3398 if (decimals < 0) 3399 decimals = 0; 3400 while (decimals < scale) { 3401 result *= 10; 3402 decimals ++; 3403 } 3404 *res = result; 3405 return 0; 3406 } 3407 3408 3409 static void md_safemode_timeout(unsigned long data); 3410 3411 static ssize_t 3412 safe_delay_show(struct mddev *mddev, char *page) 3413 { 3414 int msec = (mddev->safemode_delay*1000)/HZ; 3415 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3416 } 3417 static ssize_t 3418 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3419 { 3420 unsigned long msec; 3421 3422 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3423 return -EINVAL; 3424 if (msec == 0) 3425 mddev->safemode_delay = 0; 3426 else { 3427 unsigned long old_delay = mddev->safemode_delay; 3428 mddev->safemode_delay = (msec*HZ)/1000; 3429 if (mddev->safemode_delay == 0) 3430 mddev->safemode_delay = 1; 3431 if (mddev->safemode_delay < old_delay) 3432 md_safemode_timeout((unsigned long)mddev); 3433 } 3434 return len; 3435 } 3436 static struct md_sysfs_entry md_safe_delay = 3437 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3438 3439 static ssize_t 3440 level_show(struct mddev *mddev, char *page) 3441 { 3442 struct md_personality *p = mddev->pers; 3443 if (p) 3444 return sprintf(page, "%s\n", p->name); 3445 else if (mddev->clevel[0]) 3446 return sprintf(page, "%s\n", mddev->clevel); 3447 else if (mddev->level != LEVEL_NONE) 3448 return sprintf(page, "%d\n", mddev->level); 3449 else 3450 return 0; 3451 } 3452 3453 static ssize_t 3454 level_store(struct mddev *mddev, const char *buf, size_t len) 3455 { 3456 char clevel[16]; 3457 ssize_t rv = len; 3458 struct md_personality *pers; 3459 long level; 3460 void *priv; 3461 struct md_rdev *rdev; 3462 3463 if (mddev->pers == NULL) { 3464 if (len == 0) 3465 return 0; 3466 if (len >= sizeof(mddev->clevel)) 3467 return -ENOSPC; 3468 strncpy(mddev->clevel, buf, len); 3469 if (mddev->clevel[len-1] == '\n') 3470 len--; 3471 mddev->clevel[len] = 0; 3472 mddev->level = LEVEL_NONE; 3473 return rv; 3474 } 3475 3476 /* request to change the personality. Need to ensure: 3477 * - array is not engaged in resync/recovery/reshape 3478 * - old personality can be suspended 3479 * - new personality will access other array. 3480 */ 3481 3482 if (mddev->sync_thread || 3483 mddev->reshape_position != MaxSector || 3484 mddev->sysfs_active) 3485 return -EBUSY; 3486 3487 if (!mddev->pers->quiesce) { 3488 printk(KERN_WARNING "md: %s: %s does not support online personality change\n", 3489 mdname(mddev), mddev->pers->name); 3490 return -EINVAL; 3491 } 3492 3493 /* Now find the new personality */ 3494 if (len == 0 || len >= sizeof(clevel)) 3495 return -EINVAL; 3496 strncpy(clevel, buf, len); 3497 if (clevel[len-1] == '\n') 3498 len--; 3499 clevel[len] = 0; 3500 if (strict_strtol(clevel, 10, &level)) 3501 level = LEVEL_NONE; 3502 3503 if (request_module("md-%s", clevel) != 0) 3504 request_module("md-level-%s", clevel); 3505 spin_lock(&pers_lock); 3506 pers = find_pers(level, clevel); 3507 if (!pers || !try_module_get(pers->owner)) { 3508 spin_unlock(&pers_lock); 3509 printk(KERN_WARNING "md: personality %s not loaded\n", clevel); 3510 return -EINVAL; 3511 } 3512 spin_unlock(&pers_lock); 3513 3514 if (pers == mddev->pers) { 3515 /* Nothing to do! */ 3516 module_put(pers->owner); 3517 return rv; 3518 } 3519 if (!pers->takeover) { 3520 module_put(pers->owner); 3521 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n", 3522 mdname(mddev), clevel); 3523 return -EINVAL; 3524 } 3525 3526 rdev_for_each(rdev, mddev) 3527 rdev->new_raid_disk = rdev->raid_disk; 3528 3529 /* ->takeover must set new_* and/or delta_disks 3530 * if it succeeds, and may set them when it fails. 3531 */ 3532 priv = pers->takeover(mddev); 3533 if (IS_ERR(priv)) { 3534 mddev->new_level = mddev->level; 3535 mddev->new_layout = mddev->layout; 3536 mddev->new_chunk_sectors = mddev->chunk_sectors; 3537 mddev->raid_disks -= mddev->delta_disks; 3538 mddev->delta_disks = 0; 3539 mddev->reshape_backwards = 0; 3540 module_put(pers->owner); 3541 printk(KERN_WARNING "md: %s: %s would not accept array\n", 3542 mdname(mddev), clevel); 3543 return PTR_ERR(priv); 3544 } 3545 3546 /* Looks like we have a winner */ 3547 mddev_suspend(mddev); 3548 mddev->pers->stop(mddev); 3549 3550 if (mddev->pers->sync_request == NULL && 3551 pers->sync_request != NULL) { 3552 /* need to add the md_redundancy_group */ 3553 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3554 printk(KERN_WARNING 3555 "md: cannot register extra attributes for %s\n", 3556 mdname(mddev)); 3557 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action"); 3558 } 3559 if (mddev->pers->sync_request != NULL && 3560 pers->sync_request == NULL) { 3561 /* need to remove the md_redundancy_group */ 3562 if (mddev->to_remove == NULL) 3563 mddev->to_remove = &md_redundancy_group; 3564 } 3565 3566 if (mddev->pers->sync_request == NULL && 3567 mddev->external) { 3568 /* We are converting from a no-redundancy array 3569 * to a redundancy array and metadata is managed 3570 * externally so we need to be sure that writes 3571 * won't block due to a need to transition 3572 * clean->dirty 3573 * until external management is started. 3574 */ 3575 mddev->in_sync = 0; 3576 mddev->safemode_delay = 0; 3577 mddev->safemode = 0; 3578 } 3579 3580 rdev_for_each(rdev, mddev) { 3581 if (rdev->raid_disk < 0) 3582 continue; 3583 if (rdev->new_raid_disk >= mddev->raid_disks) 3584 rdev->new_raid_disk = -1; 3585 if (rdev->new_raid_disk == rdev->raid_disk) 3586 continue; 3587 sysfs_unlink_rdev(mddev, rdev); 3588 } 3589 rdev_for_each(rdev, mddev) { 3590 if (rdev->raid_disk < 0) 3591 continue; 3592 if (rdev->new_raid_disk == rdev->raid_disk) 3593 continue; 3594 rdev->raid_disk = rdev->new_raid_disk; 3595 if (rdev->raid_disk < 0) 3596 clear_bit(In_sync, &rdev->flags); 3597 else { 3598 if (sysfs_link_rdev(mddev, rdev)) 3599 printk(KERN_WARNING "md: cannot register rd%d" 3600 " for %s after level change\n", 3601 rdev->raid_disk, mdname(mddev)); 3602 } 3603 } 3604 3605 module_put(mddev->pers->owner); 3606 mddev->pers = pers; 3607 mddev->private = priv; 3608 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3609 mddev->level = mddev->new_level; 3610 mddev->layout = mddev->new_layout; 3611 mddev->chunk_sectors = mddev->new_chunk_sectors; 3612 mddev->delta_disks = 0; 3613 mddev->reshape_backwards = 0; 3614 mddev->degraded = 0; 3615 if (mddev->pers->sync_request == NULL) { 3616 /* this is now an array without redundancy, so 3617 * it must always be in_sync 3618 */ 3619 mddev->in_sync = 1; 3620 del_timer_sync(&mddev->safemode_timer); 3621 } 3622 pers->run(mddev); 3623 set_bit(MD_CHANGE_DEVS, &mddev->flags); 3624 mddev_resume(mddev); 3625 sysfs_notify(&mddev->kobj, NULL, "level"); 3626 md_new_event(mddev); 3627 return rv; 3628 } 3629 3630 static struct md_sysfs_entry md_level = 3631 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3632 3633 3634 static ssize_t 3635 layout_show(struct mddev *mddev, char *page) 3636 { 3637 /* just a number, not meaningful for all levels */ 3638 if (mddev->reshape_position != MaxSector && 3639 mddev->layout != mddev->new_layout) 3640 return sprintf(page, "%d (%d)\n", 3641 mddev->new_layout, mddev->layout); 3642 return sprintf(page, "%d\n", mddev->layout); 3643 } 3644 3645 static ssize_t 3646 layout_store(struct mddev *mddev, const char *buf, size_t len) 3647 { 3648 char *e; 3649 unsigned long n = simple_strtoul(buf, &e, 10); 3650 3651 if (!*buf || (*e && *e != '\n')) 3652 return -EINVAL; 3653 3654 if (mddev->pers) { 3655 int err; 3656 if (mddev->pers->check_reshape == NULL) 3657 return -EBUSY; 3658 mddev->new_layout = n; 3659 err = mddev->pers->check_reshape(mddev); 3660 if (err) { 3661 mddev->new_layout = mddev->layout; 3662 return err; 3663 } 3664 } else { 3665 mddev->new_layout = n; 3666 if (mddev->reshape_position == MaxSector) 3667 mddev->layout = n; 3668 } 3669 return len; 3670 } 3671 static struct md_sysfs_entry md_layout = 3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3673 3674 3675 static ssize_t 3676 raid_disks_show(struct mddev *mddev, char *page) 3677 { 3678 if (mddev->raid_disks == 0) 3679 return 0; 3680 if (mddev->reshape_position != MaxSector && 3681 mddev->delta_disks != 0) 3682 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3683 mddev->raid_disks - mddev->delta_disks); 3684 return sprintf(page, "%d\n", mddev->raid_disks); 3685 } 3686 3687 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3688 3689 static ssize_t 3690 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3691 { 3692 char *e; 3693 int rv = 0; 3694 unsigned long n = simple_strtoul(buf, &e, 10); 3695 3696 if (!*buf || (*e && *e != '\n')) 3697 return -EINVAL; 3698 3699 if (mddev->pers) 3700 rv = update_raid_disks(mddev, n); 3701 else if (mddev->reshape_position != MaxSector) { 3702 struct md_rdev *rdev; 3703 int olddisks = mddev->raid_disks - mddev->delta_disks; 3704 3705 rdev_for_each(rdev, mddev) { 3706 if (olddisks < n && 3707 rdev->data_offset < rdev->new_data_offset) 3708 return -EINVAL; 3709 if (olddisks > n && 3710 rdev->data_offset > rdev->new_data_offset) 3711 return -EINVAL; 3712 } 3713 mddev->delta_disks = n - olddisks; 3714 mddev->raid_disks = n; 3715 mddev->reshape_backwards = (mddev->delta_disks < 0); 3716 } else 3717 mddev->raid_disks = n; 3718 return rv ? rv : len; 3719 } 3720 static struct md_sysfs_entry md_raid_disks = 3721 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3722 3723 static ssize_t 3724 chunk_size_show(struct mddev *mddev, char *page) 3725 { 3726 if (mddev->reshape_position != MaxSector && 3727 mddev->chunk_sectors != mddev->new_chunk_sectors) 3728 return sprintf(page, "%d (%d)\n", 3729 mddev->new_chunk_sectors << 9, 3730 mddev->chunk_sectors << 9); 3731 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3732 } 3733 3734 static ssize_t 3735 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3736 { 3737 char *e; 3738 unsigned long n = simple_strtoul(buf, &e, 10); 3739 3740 if (!*buf || (*e && *e != '\n')) 3741 return -EINVAL; 3742 3743 if (mddev->pers) { 3744 int err; 3745 if (mddev->pers->check_reshape == NULL) 3746 return -EBUSY; 3747 mddev->new_chunk_sectors = n >> 9; 3748 err = mddev->pers->check_reshape(mddev); 3749 if (err) { 3750 mddev->new_chunk_sectors = mddev->chunk_sectors; 3751 return err; 3752 } 3753 } else { 3754 mddev->new_chunk_sectors = n >> 9; 3755 if (mddev->reshape_position == MaxSector) 3756 mddev->chunk_sectors = n >> 9; 3757 } 3758 return len; 3759 } 3760 static struct md_sysfs_entry md_chunk_size = 3761 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 3762 3763 static ssize_t 3764 resync_start_show(struct mddev *mddev, char *page) 3765 { 3766 if (mddev->recovery_cp == MaxSector) 3767 return sprintf(page, "none\n"); 3768 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 3769 } 3770 3771 static ssize_t 3772 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 3773 { 3774 char *e; 3775 unsigned long long n = simple_strtoull(buf, &e, 10); 3776 3777 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 3778 return -EBUSY; 3779 if (cmd_match(buf, "none")) 3780 n = MaxSector; 3781 else if (!*buf || (*e && *e != '\n')) 3782 return -EINVAL; 3783 3784 mddev->recovery_cp = n; 3785 if (mddev->pers) 3786 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3787 return len; 3788 } 3789 static struct md_sysfs_entry md_resync_start = 3790 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store); 3791 3792 /* 3793 * The array state can be: 3794 * 3795 * clear 3796 * No devices, no size, no level 3797 * Equivalent to STOP_ARRAY ioctl 3798 * inactive 3799 * May have some settings, but array is not active 3800 * all IO results in error 3801 * When written, doesn't tear down array, but just stops it 3802 * suspended (not supported yet) 3803 * All IO requests will block. The array can be reconfigured. 3804 * Writing this, if accepted, will block until array is quiescent 3805 * readonly 3806 * no resync can happen. no superblocks get written. 3807 * write requests fail 3808 * read-auto 3809 * like readonly, but behaves like 'clean' on a write request. 3810 * 3811 * clean - no pending writes, but otherwise active. 3812 * When written to inactive array, starts without resync 3813 * If a write request arrives then 3814 * if metadata is known, mark 'dirty' and switch to 'active'. 3815 * if not known, block and switch to write-pending 3816 * If written to an active array that has pending writes, then fails. 3817 * active 3818 * fully active: IO and resync can be happening. 3819 * When written to inactive array, starts with resync 3820 * 3821 * write-pending 3822 * clean, but writes are blocked waiting for 'active' to be written. 3823 * 3824 * active-idle 3825 * like active, but no writes have been seen for a while (100msec). 3826 * 3827 */ 3828 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 3829 write_pending, active_idle, bad_word}; 3830 static char *array_states[] = { 3831 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 3832 "write-pending", "active-idle", NULL }; 3833 3834 static int match_word(const char *word, char **list) 3835 { 3836 int n; 3837 for (n=0; list[n]; n++) 3838 if (cmd_match(word, list[n])) 3839 break; 3840 return n; 3841 } 3842 3843 static ssize_t 3844 array_state_show(struct mddev *mddev, char *page) 3845 { 3846 enum array_state st = inactive; 3847 3848 if (mddev->pers) 3849 switch(mddev->ro) { 3850 case 1: 3851 st = readonly; 3852 break; 3853 case 2: 3854 st = read_auto; 3855 break; 3856 case 0: 3857 if (mddev->in_sync) 3858 st = clean; 3859 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 3860 st = write_pending; 3861 else if (mddev->safemode) 3862 st = active_idle; 3863 else 3864 st = active; 3865 } 3866 else { 3867 if (list_empty(&mddev->disks) && 3868 mddev->raid_disks == 0 && 3869 mddev->dev_sectors == 0) 3870 st = clear; 3871 else 3872 st = inactive; 3873 } 3874 return sprintf(page, "%s\n", array_states[st]); 3875 } 3876 3877 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev); 3878 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev); 3879 static int do_md_run(struct mddev * mddev); 3880 static int restart_array(struct mddev *mddev); 3881 3882 static ssize_t 3883 array_state_store(struct mddev *mddev, const char *buf, size_t len) 3884 { 3885 int err = -EINVAL; 3886 enum array_state st = match_word(buf, array_states); 3887 switch(st) { 3888 case bad_word: 3889 break; 3890 case clear: 3891 /* stopping an active array */ 3892 err = do_md_stop(mddev, 0, NULL); 3893 break; 3894 case inactive: 3895 /* stopping an active array */ 3896 if (mddev->pers) 3897 err = do_md_stop(mddev, 2, NULL); 3898 else 3899 err = 0; /* already inactive */ 3900 break; 3901 case suspended: 3902 break; /* not supported yet */ 3903 case readonly: 3904 if (mddev->pers) 3905 err = md_set_readonly(mddev, NULL); 3906 else { 3907 mddev->ro = 1; 3908 set_disk_ro(mddev->gendisk, 1); 3909 err = do_md_run(mddev); 3910 } 3911 break; 3912 case read_auto: 3913 if (mddev->pers) { 3914 if (mddev->ro == 0) 3915 err = md_set_readonly(mddev, NULL); 3916 else if (mddev->ro == 1) 3917 err = restart_array(mddev); 3918 if (err == 0) { 3919 mddev->ro = 2; 3920 set_disk_ro(mddev->gendisk, 0); 3921 } 3922 } else { 3923 mddev->ro = 2; 3924 err = do_md_run(mddev); 3925 } 3926 break; 3927 case clean: 3928 if (mddev->pers) { 3929 restart_array(mddev); 3930 spin_lock_irq(&mddev->write_lock); 3931 if (atomic_read(&mddev->writes_pending) == 0) { 3932 if (mddev->in_sync == 0) { 3933 mddev->in_sync = 1; 3934 if (mddev->safemode == 1) 3935 mddev->safemode = 0; 3936 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 3937 } 3938 err = 0; 3939 } else 3940 err = -EBUSY; 3941 spin_unlock_irq(&mddev->write_lock); 3942 } else 3943 err = -EINVAL; 3944 break; 3945 case active: 3946 if (mddev->pers) { 3947 restart_array(mddev); 3948 clear_bit(MD_CHANGE_PENDING, &mddev->flags); 3949 wake_up(&mddev->sb_wait); 3950 err = 0; 3951 } else { 3952 mddev->ro = 0; 3953 set_disk_ro(mddev->gendisk, 0); 3954 err = do_md_run(mddev); 3955 } 3956 break; 3957 case write_pending: 3958 case active_idle: 3959 /* these cannot be set */ 3960 break; 3961 } 3962 if (err) 3963 return err; 3964 else { 3965 if (mddev->hold_active == UNTIL_IOCTL) 3966 mddev->hold_active = 0; 3967 sysfs_notify_dirent_safe(mddev->sysfs_state); 3968 return len; 3969 } 3970 } 3971 static struct md_sysfs_entry md_array_state = 3972 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 3973 3974 static ssize_t 3975 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 3976 return sprintf(page, "%d\n", 3977 atomic_read(&mddev->max_corr_read_errors)); 3978 } 3979 3980 static ssize_t 3981 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 3982 { 3983 char *e; 3984 unsigned long n = simple_strtoul(buf, &e, 10); 3985 3986 if (*buf && (*e == 0 || *e == '\n')) { 3987 atomic_set(&mddev->max_corr_read_errors, n); 3988 return len; 3989 } 3990 return -EINVAL; 3991 } 3992 3993 static struct md_sysfs_entry max_corr_read_errors = 3994 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 3995 max_corrected_read_errors_store); 3996 3997 static ssize_t 3998 null_show(struct mddev *mddev, char *page) 3999 { 4000 return -EINVAL; 4001 } 4002 4003 static ssize_t 4004 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4005 { 4006 /* buf must be %d:%d\n? giving major and minor numbers */ 4007 /* The new device is added to the array. 4008 * If the array has a persistent superblock, we read the 4009 * superblock to initialise info and check validity. 4010 * Otherwise, only checking done is that in bind_rdev_to_array, 4011 * which mainly checks size. 4012 */ 4013 char *e; 4014 int major = simple_strtoul(buf, &e, 10); 4015 int minor; 4016 dev_t dev; 4017 struct md_rdev *rdev; 4018 int err; 4019 4020 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4021 return -EINVAL; 4022 minor = simple_strtoul(e+1, &e, 10); 4023 if (*e && *e != '\n') 4024 return -EINVAL; 4025 dev = MKDEV(major, minor); 4026 if (major != MAJOR(dev) || 4027 minor != MINOR(dev)) 4028 return -EOVERFLOW; 4029 4030 4031 if (mddev->persistent) { 4032 rdev = md_import_device(dev, mddev->major_version, 4033 mddev->minor_version); 4034 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4035 struct md_rdev *rdev0 4036 = list_entry(mddev->disks.next, 4037 struct md_rdev, same_set); 4038 err = super_types[mddev->major_version] 4039 .load_super(rdev, rdev0, mddev->minor_version); 4040 if (err < 0) 4041 goto out; 4042 } 4043 } else if (mddev->external) 4044 rdev = md_import_device(dev, -2, -1); 4045 else 4046 rdev = md_import_device(dev, -1, -1); 4047 4048 if (IS_ERR(rdev)) 4049 return PTR_ERR(rdev); 4050 err = bind_rdev_to_array(rdev, mddev); 4051 out: 4052 if (err) 4053 export_rdev(rdev); 4054 return err ? err : len; 4055 } 4056 4057 static struct md_sysfs_entry md_new_device = 4058 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4059 4060 static ssize_t 4061 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4062 { 4063 char *end; 4064 unsigned long chunk, end_chunk; 4065 4066 if (!mddev->bitmap) 4067 goto out; 4068 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4069 while (*buf) { 4070 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4071 if (buf == end) break; 4072 if (*end == '-') { /* range */ 4073 buf = end + 1; 4074 end_chunk = simple_strtoul(buf, &end, 0); 4075 if (buf == end) break; 4076 } 4077 if (*end && !isspace(*end)) break; 4078 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4079 buf = skip_spaces(end); 4080 } 4081 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4082 out: 4083 return len; 4084 } 4085 4086 static struct md_sysfs_entry md_bitmap = 4087 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4088 4089 static ssize_t 4090 size_show(struct mddev *mddev, char *page) 4091 { 4092 return sprintf(page, "%llu\n", 4093 (unsigned long long)mddev->dev_sectors / 2); 4094 } 4095 4096 static int update_size(struct mddev *mddev, sector_t num_sectors); 4097 4098 static ssize_t 4099 size_store(struct mddev *mddev, const char *buf, size_t len) 4100 { 4101 /* If array is inactive, we can reduce the component size, but 4102 * not increase it (except from 0). 4103 * If array is active, we can try an on-line resize 4104 */ 4105 sector_t sectors; 4106 int err = strict_blocks_to_sectors(buf, §ors); 4107 4108 if (err < 0) 4109 return err; 4110 if (mddev->pers) { 4111 err = update_size(mddev, sectors); 4112 md_update_sb(mddev, 1); 4113 } else { 4114 if (mddev->dev_sectors == 0 || 4115 mddev->dev_sectors > sectors) 4116 mddev->dev_sectors = sectors; 4117 else 4118 err = -ENOSPC; 4119 } 4120 return err ? err : len; 4121 } 4122 4123 static struct md_sysfs_entry md_size = 4124 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4125 4126 4127 /* Metdata version. 4128 * This is one of 4129 * 'none' for arrays with no metadata (good luck...) 4130 * 'external' for arrays with externally managed metadata, 4131 * or N.M for internally known formats 4132 */ 4133 static ssize_t 4134 metadata_show(struct mddev *mddev, char *page) 4135 { 4136 if (mddev->persistent) 4137 return sprintf(page, "%d.%d\n", 4138 mddev->major_version, mddev->minor_version); 4139 else if (mddev->external) 4140 return sprintf(page, "external:%s\n", mddev->metadata_type); 4141 else 4142 return sprintf(page, "none\n"); 4143 } 4144 4145 static ssize_t 4146 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4147 { 4148 int major, minor; 4149 char *e; 4150 /* Changing the details of 'external' metadata is 4151 * always permitted. Otherwise there must be 4152 * no devices attached to the array. 4153 */ 4154 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4155 ; 4156 else if (!list_empty(&mddev->disks)) 4157 return -EBUSY; 4158 4159 if (cmd_match(buf, "none")) { 4160 mddev->persistent = 0; 4161 mddev->external = 0; 4162 mddev->major_version = 0; 4163 mddev->minor_version = 90; 4164 return len; 4165 } 4166 if (strncmp(buf, "external:", 9) == 0) { 4167 size_t namelen = len-9; 4168 if (namelen >= sizeof(mddev->metadata_type)) 4169 namelen = sizeof(mddev->metadata_type)-1; 4170 strncpy(mddev->metadata_type, buf+9, namelen); 4171 mddev->metadata_type[namelen] = 0; 4172 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4173 mddev->metadata_type[--namelen] = 0; 4174 mddev->persistent = 0; 4175 mddev->external = 1; 4176 mddev->major_version = 0; 4177 mddev->minor_version = 90; 4178 return len; 4179 } 4180 major = simple_strtoul(buf, &e, 10); 4181 if (e==buf || *e != '.') 4182 return -EINVAL; 4183 buf = e+1; 4184 minor = simple_strtoul(buf, &e, 10); 4185 if (e==buf || (*e && *e != '\n') ) 4186 return -EINVAL; 4187 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4188 return -ENOENT; 4189 mddev->major_version = major; 4190 mddev->minor_version = minor; 4191 mddev->persistent = 1; 4192 mddev->external = 0; 4193 return len; 4194 } 4195 4196 static struct md_sysfs_entry md_metadata = 4197 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4198 4199 static ssize_t 4200 action_show(struct mddev *mddev, char *page) 4201 { 4202 char *type = "idle"; 4203 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4204 type = "frozen"; 4205 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4206 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) { 4207 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4208 type = "reshape"; 4209 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 4210 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 4211 type = "resync"; 4212 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 4213 type = "check"; 4214 else 4215 type = "repair"; 4216 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 4217 type = "recover"; 4218 } 4219 return sprintf(page, "%s\n", type); 4220 } 4221 4222 static void reap_sync_thread(struct mddev *mddev); 4223 4224 static ssize_t 4225 action_store(struct mddev *mddev, const char *page, size_t len) 4226 { 4227 if (!mddev->pers || !mddev->pers->sync_request) 4228 return -EINVAL; 4229 4230 if (cmd_match(page, "frozen")) 4231 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4232 else 4233 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4234 4235 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4236 if (mddev->sync_thread) { 4237 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4238 reap_sync_thread(mddev); 4239 } 4240 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 4241 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 4242 return -EBUSY; 4243 else if (cmd_match(page, "resync")) 4244 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4245 else if (cmd_match(page, "recover")) { 4246 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4247 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4248 } else if (cmd_match(page, "reshape")) { 4249 int err; 4250 if (mddev->pers->start_reshape == NULL) 4251 return -EINVAL; 4252 err = mddev->pers->start_reshape(mddev); 4253 if (err) 4254 return err; 4255 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4256 } else { 4257 if (cmd_match(page, "check")) 4258 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4259 else if (!cmd_match(page, "repair")) 4260 return -EINVAL; 4261 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4262 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4263 } 4264 if (mddev->ro == 2) { 4265 /* A write to sync_action is enough to justify 4266 * canceling read-auto mode 4267 */ 4268 mddev->ro = 0; 4269 md_wakeup_thread(mddev->sync_thread); 4270 } 4271 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4272 md_wakeup_thread(mddev->thread); 4273 sysfs_notify_dirent_safe(mddev->sysfs_action); 4274 return len; 4275 } 4276 4277 static ssize_t 4278 mismatch_cnt_show(struct mddev *mddev, char *page) 4279 { 4280 return sprintf(page, "%llu\n", 4281 (unsigned long long) 4282 atomic64_read(&mddev->resync_mismatches)); 4283 } 4284 4285 static struct md_sysfs_entry md_scan_mode = 4286 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4287 4288 4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4290 4291 static ssize_t 4292 sync_min_show(struct mddev *mddev, char *page) 4293 { 4294 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4295 mddev->sync_speed_min ? "local": "system"); 4296 } 4297 4298 static ssize_t 4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4300 { 4301 int min; 4302 char *e; 4303 if (strncmp(buf, "system", 6)==0) { 4304 mddev->sync_speed_min = 0; 4305 return len; 4306 } 4307 min = simple_strtoul(buf, &e, 10); 4308 if (buf == e || (*e && *e != '\n') || min <= 0) 4309 return -EINVAL; 4310 mddev->sync_speed_min = min; 4311 return len; 4312 } 4313 4314 static struct md_sysfs_entry md_sync_min = 4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4316 4317 static ssize_t 4318 sync_max_show(struct mddev *mddev, char *page) 4319 { 4320 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4321 mddev->sync_speed_max ? "local": "system"); 4322 } 4323 4324 static ssize_t 4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4326 { 4327 int max; 4328 char *e; 4329 if (strncmp(buf, "system", 6)==0) { 4330 mddev->sync_speed_max = 0; 4331 return len; 4332 } 4333 max = simple_strtoul(buf, &e, 10); 4334 if (buf == e || (*e && *e != '\n') || max <= 0) 4335 return -EINVAL; 4336 mddev->sync_speed_max = max; 4337 return len; 4338 } 4339 4340 static struct md_sysfs_entry md_sync_max = 4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4342 4343 static ssize_t 4344 degraded_show(struct mddev *mddev, char *page) 4345 { 4346 return sprintf(page, "%d\n", mddev->degraded); 4347 } 4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4349 4350 static ssize_t 4351 sync_force_parallel_show(struct mddev *mddev, char *page) 4352 { 4353 return sprintf(page, "%d\n", mddev->parallel_resync); 4354 } 4355 4356 static ssize_t 4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4358 { 4359 long n; 4360 4361 if (strict_strtol(buf, 10, &n)) 4362 return -EINVAL; 4363 4364 if (n != 0 && n != 1) 4365 return -EINVAL; 4366 4367 mddev->parallel_resync = n; 4368 4369 if (mddev->sync_thread) 4370 wake_up(&resync_wait); 4371 4372 return len; 4373 } 4374 4375 /* force parallel resync, even with shared block devices */ 4376 static struct md_sysfs_entry md_sync_force_parallel = 4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4378 sync_force_parallel_show, sync_force_parallel_store); 4379 4380 static ssize_t 4381 sync_speed_show(struct mddev *mddev, char *page) 4382 { 4383 unsigned long resync, dt, db; 4384 if (mddev->curr_resync == 0) 4385 return sprintf(page, "none\n"); 4386 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4387 dt = (jiffies - mddev->resync_mark) / HZ; 4388 if (!dt) dt++; 4389 db = resync - mddev->resync_mark_cnt; 4390 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4391 } 4392 4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4394 4395 static ssize_t 4396 sync_completed_show(struct mddev *mddev, char *page) 4397 { 4398 unsigned long long max_sectors, resync; 4399 4400 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4401 return sprintf(page, "none\n"); 4402 4403 if (mddev->curr_resync == 1 || 4404 mddev->curr_resync == 2) 4405 return sprintf(page, "delayed\n"); 4406 4407 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4408 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4409 max_sectors = mddev->resync_max_sectors; 4410 else 4411 max_sectors = mddev->dev_sectors; 4412 4413 resync = mddev->curr_resync_completed; 4414 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4415 } 4416 4417 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed); 4418 4419 static ssize_t 4420 min_sync_show(struct mddev *mddev, char *page) 4421 { 4422 return sprintf(page, "%llu\n", 4423 (unsigned long long)mddev->resync_min); 4424 } 4425 static ssize_t 4426 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4427 { 4428 unsigned long long min; 4429 if (strict_strtoull(buf, 10, &min)) 4430 return -EINVAL; 4431 if (min > mddev->resync_max) 4432 return -EINVAL; 4433 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4434 return -EBUSY; 4435 4436 /* Must be a multiple of chunk_size */ 4437 if (mddev->chunk_sectors) { 4438 sector_t temp = min; 4439 if (sector_div(temp, mddev->chunk_sectors)) 4440 return -EINVAL; 4441 } 4442 mddev->resync_min = min; 4443 4444 return len; 4445 } 4446 4447 static struct md_sysfs_entry md_min_sync = 4448 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4449 4450 static ssize_t 4451 max_sync_show(struct mddev *mddev, char *page) 4452 { 4453 if (mddev->resync_max == MaxSector) 4454 return sprintf(page, "max\n"); 4455 else 4456 return sprintf(page, "%llu\n", 4457 (unsigned long long)mddev->resync_max); 4458 } 4459 static ssize_t 4460 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4461 { 4462 if (strncmp(buf, "max", 3) == 0) 4463 mddev->resync_max = MaxSector; 4464 else { 4465 unsigned long long max; 4466 if (strict_strtoull(buf, 10, &max)) 4467 return -EINVAL; 4468 if (max < mddev->resync_min) 4469 return -EINVAL; 4470 if (max < mddev->resync_max && 4471 mddev->ro == 0 && 4472 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4473 return -EBUSY; 4474 4475 /* Must be a multiple of chunk_size */ 4476 if (mddev->chunk_sectors) { 4477 sector_t temp = max; 4478 if (sector_div(temp, mddev->chunk_sectors)) 4479 return -EINVAL; 4480 } 4481 mddev->resync_max = max; 4482 } 4483 wake_up(&mddev->recovery_wait); 4484 return len; 4485 } 4486 4487 static struct md_sysfs_entry md_max_sync = 4488 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4489 4490 static ssize_t 4491 suspend_lo_show(struct mddev *mddev, char *page) 4492 { 4493 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4494 } 4495 4496 static ssize_t 4497 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4498 { 4499 char *e; 4500 unsigned long long new = simple_strtoull(buf, &e, 10); 4501 unsigned long long old = mddev->suspend_lo; 4502 4503 if (mddev->pers == NULL || 4504 mddev->pers->quiesce == NULL) 4505 return -EINVAL; 4506 if (buf == e || (*e && *e != '\n')) 4507 return -EINVAL; 4508 4509 mddev->suspend_lo = new; 4510 if (new >= old) 4511 /* Shrinking suspended region */ 4512 mddev->pers->quiesce(mddev, 2); 4513 else { 4514 /* Expanding suspended region - need to wait */ 4515 mddev->pers->quiesce(mddev, 1); 4516 mddev->pers->quiesce(mddev, 0); 4517 } 4518 return len; 4519 } 4520 static struct md_sysfs_entry md_suspend_lo = 4521 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4522 4523 4524 static ssize_t 4525 suspend_hi_show(struct mddev *mddev, char *page) 4526 { 4527 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4528 } 4529 4530 static ssize_t 4531 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4532 { 4533 char *e; 4534 unsigned long long new = simple_strtoull(buf, &e, 10); 4535 unsigned long long old = mddev->suspend_hi; 4536 4537 if (mddev->pers == NULL || 4538 mddev->pers->quiesce == NULL) 4539 return -EINVAL; 4540 if (buf == e || (*e && *e != '\n')) 4541 return -EINVAL; 4542 4543 mddev->suspend_hi = new; 4544 if (new <= old) 4545 /* Shrinking suspended region */ 4546 mddev->pers->quiesce(mddev, 2); 4547 else { 4548 /* Expanding suspended region - need to wait */ 4549 mddev->pers->quiesce(mddev, 1); 4550 mddev->pers->quiesce(mddev, 0); 4551 } 4552 return len; 4553 } 4554 static struct md_sysfs_entry md_suspend_hi = 4555 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4556 4557 static ssize_t 4558 reshape_position_show(struct mddev *mddev, char *page) 4559 { 4560 if (mddev->reshape_position != MaxSector) 4561 return sprintf(page, "%llu\n", 4562 (unsigned long long)mddev->reshape_position); 4563 strcpy(page, "none\n"); 4564 return 5; 4565 } 4566 4567 static ssize_t 4568 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4569 { 4570 struct md_rdev *rdev; 4571 char *e; 4572 unsigned long long new = simple_strtoull(buf, &e, 10); 4573 if (mddev->pers) 4574 return -EBUSY; 4575 if (buf == e || (*e && *e != '\n')) 4576 return -EINVAL; 4577 mddev->reshape_position = new; 4578 mddev->delta_disks = 0; 4579 mddev->reshape_backwards = 0; 4580 mddev->new_level = mddev->level; 4581 mddev->new_layout = mddev->layout; 4582 mddev->new_chunk_sectors = mddev->chunk_sectors; 4583 rdev_for_each(rdev, mddev) 4584 rdev->new_data_offset = rdev->data_offset; 4585 return len; 4586 } 4587 4588 static struct md_sysfs_entry md_reshape_position = 4589 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4590 reshape_position_store); 4591 4592 static ssize_t 4593 reshape_direction_show(struct mddev *mddev, char *page) 4594 { 4595 return sprintf(page, "%s\n", 4596 mddev->reshape_backwards ? "backwards" : "forwards"); 4597 } 4598 4599 static ssize_t 4600 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4601 { 4602 int backwards = 0; 4603 if (cmd_match(buf, "forwards")) 4604 backwards = 0; 4605 else if (cmd_match(buf, "backwards")) 4606 backwards = 1; 4607 else 4608 return -EINVAL; 4609 if (mddev->reshape_backwards == backwards) 4610 return len; 4611 4612 /* check if we are allowed to change */ 4613 if (mddev->delta_disks) 4614 return -EBUSY; 4615 4616 if (mddev->persistent && 4617 mddev->major_version == 0) 4618 return -EINVAL; 4619 4620 mddev->reshape_backwards = backwards; 4621 return len; 4622 } 4623 4624 static struct md_sysfs_entry md_reshape_direction = 4625 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 4626 reshape_direction_store); 4627 4628 static ssize_t 4629 array_size_show(struct mddev *mddev, char *page) 4630 { 4631 if (mddev->external_size) 4632 return sprintf(page, "%llu\n", 4633 (unsigned long long)mddev->array_sectors/2); 4634 else 4635 return sprintf(page, "default\n"); 4636 } 4637 4638 static ssize_t 4639 array_size_store(struct mddev *mddev, const char *buf, size_t len) 4640 { 4641 sector_t sectors; 4642 4643 if (strncmp(buf, "default", 7) == 0) { 4644 if (mddev->pers) 4645 sectors = mddev->pers->size(mddev, 0, 0); 4646 else 4647 sectors = mddev->array_sectors; 4648 4649 mddev->external_size = 0; 4650 } else { 4651 if (strict_blocks_to_sectors(buf, §ors) < 0) 4652 return -EINVAL; 4653 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 4654 return -E2BIG; 4655 4656 mddev->external_size = 1; 4657 } 4658 4659 mddev->array_sectors = sectors; 4660 if (mddev->pers) { 4661 set_capacity(mddev->gendisk, mddev->array_sectors); 4662 revalidate_disk(mddev->gendisk); 4663 } 4664 return len; 4665 } 4666 4667 static struct md_sysfs_entry md_array_size = 4668 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 4669 array_size_store); 4670 4671 static struct attribute *md_default_attrs[] = { 4672 &md_level.attr, 4673 &md_layout.attr, 4674 &md_raid_disks.attr, 4675 &md_chunk_size.attr, 4676 &md_size.attr, 4677 &md_resync_start.attr, 4678 &md_metadata.attr, 4679 &md_new_device.attr, 4680 &md_safe_delay.attr, 4681 &md_array_state.attr, 4682 &md_reshape_position.attr, 4683 &md_reshape_direction.attr, 4684 &md_array_size.attr, 4685 &max_corr_read_errors.attr, 4686 NULL, 4687 }; 4688 4689 static struct attribute *md_redundancy_attrs[] = { 4690 &md_scan_mode.attr, 4691 &md_mismatches.attr, 4692 &md_sync_min.attr, 4693 &md_sync_max.attr, 4694 &md_sync_speed.attr, 4695 &md_sync_force_parallel.attr, 4696 &md_sync_completed.attr, 4697 &md_min_sync.attr, 4698 &md_max_sync.attr, 4699 &md_suspend_lo.attr, 4700 &md_suspend_hi.attr, 4701 &md_bitmap.attr, 4702 &md_degraded.attr, 4703 NULL, 4704 }; 4705 static struct attribute_group md_redundancy_group = { 4706 .name = NULL, 4707 .attrs = md_redundancy_attrs, 4708 }; 4709 4710 4711 static ssize_t 4712 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 4713 { 4714 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4715 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4716 ssize_t rv; 4717 4718 if (!entry->show) 4719 return -EIO; 4720 spin_lock(&all_mddevs_lock); 4721 if (list_empty(&mddev->all_mddevs)) { 4722 spin_unlock(&all_mddevs_lock); 4723 return -EBUSY; 4724 } 4725 mddev_get(mddev); 4726 spin_unlock(&all_mddevs_lock); 4727 4728 rv = mddev_lock(mddev); 4729 if (!rv) { 4730 rv = entry->show(mddev, page); 4731 mddev_unlock(mddev); 4732 } 4733 mddev_put(mddev); 4734 return rv; 4735 } 4736 4737 static ssize_t 4738 md_attr_store(struct kobject *kobj, struct attribute *attr, 4739 const char *page, size_t length) 4740 { 4741 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 4742 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 4743 ssize_t rv; 4744 4745 if (!entry->store) 4746 return -EIO; 4747 if (!capable(CAP_SYS_ADMIN)) 4748 return -EACCES; 4749 spin_lock(&all_mddevs_lock); 4750 if (list_empty(&mddev->all_mddevs)) { 4751 spin_unlock(&all_mddevs_lock); 4752 return -EBUSY; 4753 } 4754 mddev_get(mddev); 4755 spin_unlock(&all_mddevs_lock); 4756 rv = mddev_lock(mddev); 4757 if (!rv) { 4758 rv = entry->store(mddev, page, length); 4759 mddev_unlock(mddev); 4760 } 4761 mddev_put(mddev); 4762 return rv; 4763 } 4764 4765 static void md_free(struct kobject *ko) 4766 { 4767 struct mddev *mddev = container_of(ko, struct mddev, kobj); 4768 4769 if (mddev->sysfs_state) 4770 sysfs_put(mddev->sysfs_state); 4771 4772 if (mddev->gendisk) { 4773 del_gendisk(mddev->gendisk); 4774 put_disk(mddev->gendisk); 4775 } 4776 if (mddev->queue) 4777 blk_cleanup_queue(mddev->queue); 4778 4779 kfree(mddev); 4780 } 4781 4782 static const struct sysfs_ops md_sysfs_ops = { 4783 .show = md_attr_show, 4784 .store = md_attr_store, 4785 }; 4786 static struct kobj_type md_ktype = { 4787 .release = md_free, 4788 .sysfs_ops = &md_sysfs_ops, 4789 .default_attrs = md_default_attrs, 4790 }; 4791 4792 int mdp_major = 0; 4793 4794 static void mddev_delayed_delete(struct work_struct *ws) 4795 { 4796 struct mddev *mddev = container_of(ws, struct mddev, del_work); 4797 4798 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 4799 kobject_del(&mddev->kobj); 4800 kobject_put(&mddev->kobj); 4801 } 4802 4803 static int md_alloc(dev_t dev, char *name) 4804 { 4805 static DEFINE_MUTEX(disks_mutex); 4806 struct mddev *mddev = mddev_find(dev); 4807 struct gendisk *disk; 4808 int partitioned; 4809 int shift; 4810 int unit; 4811 int error; 4812 4813 if (!mddev) 4814 return -ENODEV; 4815 4816 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 4817 shift = partitioned ? MdpMinorShift : 0; 4818 unit = MINOR(mddev->unit) >> shift; 4819 4820 /* wait for any previous instance of this device to be 4821 * completely removed (mddev_delayed_delete). 4822 */ 4823 flush_workqueue(md_misc_wq); 4824 4825 mutex_lock(&disks_mutex); 4826 error = -EEXIST; 4827 if (mddev->gendisk) 4828 goto abort; 4829 4830 if (name) { 4831 /* Need to ensure that 'name' is not a duplicate. 4832 */ 4833 struct mddev *mddev2; 4834 spin_lock(&all_mddevs_lock); 4835 4836 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 4837 if (mddev2->gendisk && 4838 strcmp(mddev2->gendisk->disk_name, name) == 0) { 4839 spin_unlock(&all_mddevs_lock); 4840 goto abort; 4841 } 4842 spin_unlock(&all_mddevs_lock); 4843 } 4844 4845 error = -ENOMEM; 4846 mddev->queue = blk_alloc_queue(GFP_KERNEL); 4847 if (!mddev->queue) 4848 goto abort; 4849 mddev->queue->queuedata = mddev; 4850 4851 blk_queue_make_request(mddev->queue, md_make_request); 4852 blk_set_stacking_limits(&mddev->queue->limits); 4853 4854 disk = alloc_disk(1 << shift); 4855 if (!disk) { 4856 blk_cleanup_queue(mddev->queue); 4857 mddev->queue = NULL; 4858 goto abort; 4859 } 4860 disk->major = MAJOR(mddev->unit); 4861 disk->first_minor = unit << shift; 4862 if (name) 4863 strcpy(disk->disk_name, name); 4864 else if (partitioned) 4865 sprintf(disk->disk_name, "md_d%d", unit); 4866 else 4867 sprintf(disk->disk_name, "md%d", unit); 4868 disk->fops = &md_fops; 4869 disk->private_data = mddev; 4870 disk->queue = mddev->queue; 4871 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA); 4872 /* Allow extended partitions. This makes the 4873 * 'mdp' device redundant, but we can't really 4874 * remove it now. 4875 */ 4876 disk->flags |= GENHD_FL_EXT_DEVT; 4877 mddev->gendisk = disk; 4878 /* As soon as we call add_disk(), another thread could get 4879 * through to md_open, so make sure it doesn't get too far 4880 */ 4881 mutex_lock(&mddev->open_mutex); 4882 add_disk(disk); 4883 4884 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 4885 &disk_to_dev(disk)->kobj, "%s", "md"); 4886 if (error) { 4887 /* This isn't possible, but as kobject_init_and_add is marked 4888 * __must_check, we must do something with the result 4889 */ 4890 printk(KERN_WARNING "md: cannot register %s/md - name in use\n", 4891 disk->disk_name); 4892 error = 0; 4893 } 4894 if (mddev->kobj.sd && 4895 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 4896 printk(KERN_DEBUG "pointless warning\n"); 4897 mutex_unlock(&mddev->open_mutex); 4898 abort: 4899 mutex_unlock(&disks_mutex); 4900 if (!error && mddev->kobj.sd) { 4901 kobject_uevent(&mddev->kobj, KOBJ_ADD); 4902 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 4903 } 4904 mddev_put(mddev); 4905 return error; 4906 } 4907 4908 static struct kobject *md_probe(dev_t dev, int *part, void *data) 4909 { 4910 md_alloc(dev, NULL); 4911 return NULL; 4912 } 4913 4914 static int add_named_array(const char *val, struct kernel_param *kp) 4915 { 4916 /* val must be "md_*" where * is not all digits. 4917 * We allocate an array with a large free minor number, and 4918 * set the name to val. val must not already be an active name. 4919 */ 4920 int len = strlen(val); 4921 char buf[DISK_NAME_LEN]; 4922 4923 while (len && val[len-1] == '\n') 4924 len--; 4925 if (len >= DISK_NAME_LEN) 4926 return -E2BIG; 4927 strlcpy(buf, val, len+1); 4928 if (strncmp(buf, "md_", 3) != 0) 4929 return -EINVAL; 4930 return md_alloc(0, buf); 4931 } 4932 4933 static void md_safemode_timeout(unsigned long data) 4934 { 4935 struct mddev *mddev = (struct mddev *) data; 4936 4937 if (!atomic_read(&mddev->writes_pending)) { 4938 mddev->safemode = 1; 4939 if (mddev->external) 4940 sysfs_notify_dirent_safe(mddev->sysfs_state); 4941 } 4942 md_wakeup_thread(mddev->thread); 4943 } 4944 4945 static int start_dirty_degraded; 4946 4947 int md_run(struct mddev *mddev) 4948 { 4949 int err; 4950 struct md_rdev *rdev; 4951 struct md_personality *pers; 4952 4953 if (list_empty(&mddev->disks)) 4954 /* cannot run an array with no devices.. */ 4955 return -EINVAL; 4956 4957 if (mddev->pers) 4958 return -EBUSY; 4959 /* Cannot run until previous stop completes properly */ 4960 if (mddev->sysfs_active) 4961 return -EBUSY; 4962 4963 /* 4964 * Analyze all RAID superblock(s) 4965 */ 4966 if (!mddev->raid_disks) { 4967 if (!mddev->persistent) 4968 return -EINVAL; 4969 analyze_sbs(mddev); 4970 } 4971 4972 if (mddev->level != LEVEL_NONE) 4973 request_module("md-level-%d", mddev->level); 4974 else if (mddev->clevel[0]) 4975 request_module("md-%s", mddev->clevel); 4976 4977 /* 4978 * Drop all container device buffers, from now on 4979 * the only valid external interface is through the md 4980 * device. 4981 */ 4982 rdev_for_each(rdev, mddev) { 4983 if (test_bit(Faulty, &rdev->flags)) 4984 continue; 4985 sync_blockdev(rdev->bdev); 4986 invalidate_bdev(rdev->bdev); 4987 4988 /* perform some consistency tests on the device. 4989 * We don't want the data to overlap the metadata, 4990 * Internal Bitmap issues have been handled elsewhere. 4991 */ 4992 if (rdev->meta_bdev) { 4993 /* Nothing to check */; 4994 } else if (rdev->data_offset < rdev->sb_start) { 4995 if (mddev->dev_sectors && 4996 rdev->data_offset + mddev->dev_sectors 4997 > rdev->sb_start) { 4998 printk("md: %s: data overlaps metadata\n", 4999 mdname(mddev)); 5000 return -EINVAL; 5001 } 5002 } else { 5003 if (rdev->sb_start + rdev->sb_size/512 5004 > rdev->data_offset) { 5005 printk("md: %s: metadata overlaps data\n", 5006 mdname(mddev)); 5007 return -EINVAL; 5008 } 5009 } 5010 sysfs_notify_dirent_safe(rdev->sysfs_state); 5011 } 5012 5013 if (mddev->bio_set == NULL) 5014 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0); 5015 5016 spin_lock(&pers_lock); 5017 pers = find_pers(mddev->level, mddev->clevel); 5018 if (!pers || !try_module_get(pers->owner)) { 5019 spin_unlock(&pers_lock); 5020 if (mddev->level != LEVEL_NONE) 5021 printk(KERN_WARNING "md: personality for level %d is not loaded!\n", 5022 mddev->level); 5023 else 5024 printk(KERN_WARNING "md: personality for level %s is not loaded!\n", 5025 mddev->clevel); 5026 return -EINVAL; 5027 } 5028 mddev->pers = pers; 5029 spin_unlock(&pers_lock); 5030 if (mddev->level != pers->level) { 5031 mddev->level = pers->level; 5032 mddev->new_level = pers->level; 5033 } 5034 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5035 5036 if (mddev->reshape_position != MaxSector && 5037 pers->start_reshape == NULL) { 5038 /* This personality cannot handle reshaping... */ 5039 mddev->pers = NULL; 5040 module_put(pers->owner); 5041 return -EINVAL; 5042 } 5043 5044 if (pers->sync_request) { 5045 /* Warn if this is a potentially silly 5046 * configuration. 5047 */ 5048 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5049 struct md_rdev *rdev2; 5050 int warned = 0; 5051 5052 rdev_for_each(rdev, mddev) 5053 rdev_for_each(rdev2, mddev) { 5054 if (rdev < rdev2 && 5055 rdev->bdev->bd_contains == 5056 rdev2->bdev->bd_contains) { 5057 printk(KERN_WARNING 5058 "%s: WARNING: %s appears to be" 5059 " on the same physical disk as" 5060 " %s.\n", 5061 mdname(mddev), 5062 bdevname(rdev->bdev,b), 5063 bdevname(rdev2->bdev,b2)); 5064 warned = 1; 5065 } 5066 } 5067 5068 if (warned) 5069 printk(KERN_WARNING 5070 "True protection against single-disk" 5071 " failure might be compromised.\n"); 5072 } 5073 5074 mddev->recovery = 0; 5075 /* may be over-ridden by personality */ 5076 mddev->resync_max_sectors = mddev->dev_sectors; 5077 5078 mddev->ok_start_degraded = start_dirty_degraded; 5079 5080 if (start_readonly && mddev->ro == 0) 5081 mddev->ro = 2; /* read-only, but switch on first write */ 5082 5083 err = mddev->pers->run(mddev); 5084 if (err) 5085 printk(KERN_ERR "md: pers->run() failed ...\n"); 5086 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) { 5087 WARN_ONCE(!mddev->external_size, "%s: default size too small," 5088 " but 'external_size' not in effect?\n", __func__); 5089 printk(KERN_ERR 5090 "md: invalid array_size %llu > default size %llu\n", 5091 (unsigned long long)mddev->array_sectors / 2, 5092 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2); 5093 err = -EINVAL; 5094 mddev->pers->stop(mddev); 5095 } 5096 if (err == 0 && mddev->pers->sync_request && 5097 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5098 err = bitmap_create(mddev); 5099 if (err) { 5100 printk(KERN_ERR "%s: failed to create bitmap (%d)\n", 5101 mdname(mddev), err); 5102 mddev->pers->stop(mddev); 5103 } 5104 } 5105 if (err) { 5106 module_put(mddev->pers->owner); 5107 mddev->pers = NULL; 5108 bitmap_destroy(mddev); 5109 return err; 5110 } 5111 if (mddev->pers->sync_request) { 5112 if (mddev->kobj.sd && 5113 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5114 printk(KERN_WARNING 5115 "md: cannot register extra attributes for %s\n", 5116 mdname(mddev)); 5117 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5118 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5119 mddev->ro = 0; 5120 5121 atomic_set(&mddev->writes_pending,0); 5122 atomic_set(&mddev->max_corr_read_errors, 5123 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5124 mddev->safemode = 0; 5125 mddev->safemode_timer.function = md_safemode_timeout; 5126 mddev->safemode_timer.data = (unsigned long) mddev; 5127 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5128 mddev->in_sync = 1; 5129 smp_wmb(); 5130 mddev->ready = 1; 5131 rdev_for_each(rdev, mddev) 5132 if (rdev->raid_disk >= 0) 5133 if (sysfs_link_rdev(mddev, rdev)) 5134 /* failure here is OK */; 5135 5136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5137 5138 if (mddev->flags) 5139 md_update_sb(mddev, 0); 5140 5141 md_new_event(mddev); 5142 sysfs_notify_dirent_safe(mddev->sysfs_state); 5143 sysfs_notify_dirent_safe(mddev->sysfs_action); 5144 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5145 return 0; 5146 } 5147 EXPORT_SYMBOL_GPL(md_run); 5148 5149 static int do_md_run(struct mddev *mddev) 5150 { 5151 int err; 5152 5153 err = md_run(mddev); 5154 if (err) 5155 goto out; 5156 err = bitmap_load(mddev); 5157 if (err) { 5158 bitmap_destroy(mddev); 5159 goto out; 5160 } 5161 5162 md_wakeup_thread(mddev->thread); 5163 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5164 5165 set_capacity(mddev->gendisk, mddev->array_sectors); 5166 revalidate_disk(mddev->gendisk); 5167 mddev->changed = 1; 5168 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5169 out: 5170 return err; 5171 } 5172 5173 static int restart_array(struct mddev *mddev) 5174 { 5175 struct gendisk *disk = mddev->gendisk; 5176 5177 /* Complain if it has no devices */ 5178 if (list_empty(&mddev->disks)) 5179 return -ENXIO; 5180 if (!mddev->pers) 5181 return -EINVAL; 5182 if (!mddev->ro) 5183 return -EBUSY; 5184 mddev->safemode = 0; 5185 mddev->ro = 0; 5186 set_disk_ro(disk, 0); 5187 printk(KERN_INFO "md: %s switched to read-write mode.\n", 5188 mdname(mddev)); 5189 /* Kick recovery or resync if necessary */ 5190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5191 md_wakeup_thread(mddev->thread); 5192 md_wakeup_thread(mddev->sync_thread); 5193 sysfs_notify_dirent_safe(mddev->sysfs_state); 5194 return 0; 5195 } 5196 5197 /* similar to deny_write_access, but accounts for our holding a reference 5198 * to the file ourselves */ 5199 static int deny_bitmap_write_access(struct file * file) 5200 { 5201 struct inode *inode = file->f_mapping->host; 5202 5203 spin_lock(&inode->i_lock); 5204 if (atomic_read(&inode->i_writecount) > 1) { 5205 spin_unlock(&inode->i_lock); 5206 return -ETXTBSY; 5207 } 5208 atomic_set(&inode->i_writecount, -1); 5209 spin_unlock(&inode->i_lock); 5210 5211 return 0; 5212 } 5213 5214 void restore_bitmap_write_access(struct file *file) 5215 { 5216 struct inode *inode = file->f_mapping->host; 5217 5218 spin_lock(&inode->i_lock); 5219 atomic_set(&inode->i_writecount, 1); 5220 spin_unlock(&inode->i_lock); 5221 } 5222 5223 static void md_clean(struct mddev *mddev) 5224 { 5225 mddev->array_sectors = 0; 5226 mddev->external_size = 0; 5227 mddev->dev_sectors = 0; 5228 mddev->raid_disks = 0; 5229 mddev->recovery_cp = 0; 5230 mddev->resync_min = 0; 5231 mddev->resync_max = MaxSector; 5232 mddev->reshape_position = MaxSector; 5233 mddev->external = 0; 5234 mddev->persistent = 0; 5235 mddev->level = LEVEL_NONE; 5236 mddev->clevel[0] = 0; 5237 mddev->flags = 0; 5238 mddev->ro = 0; 5239 mddev->metadata_type[0] = 0; 5240 mddev->chunk_sectors = 0; 5241 mddev->ctime = mddev->utime = 0; 5242 mddev->layout = 0; 5243 mddev->max_disks = 0; 5244 mddev->events = 0; 5245 mddev->can_decrease_events = 0; 5246 mddev->delta_disks = 0; 5247 mddev->reshape_backwards = 0; 5248 mddev->new_level = LEVEL_NONE; 5249 mddev->new_layout = 0; 5250 mddev->new_chunk_sectors = 0; 5251 mddev->curr_resync = 0; 5252 atomic64_set(&mddev->resync_mismatches, 0); 5253 mddev->suspend_lo = mddev->suspend_hi = 0; 5254 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5255 mddev->recovery = 0; 5256 mddev->in_sync = 0; 5257 mddev->changed = 0; 5258 mddev->degraded = 0; 5259 mddev->safemode = 0; 5260 mddev->merge_check_needed = 0; 5261 mddev->bitmap_info.offset = 0; 5262 mddev->bitmap_info.default_offset = 0; 5263 mddev->bitmap_info.default_space = 0; 5264 mddev->bitmap_info.chunksize = 0; 5265 mddev->bitmap_info.daemon_sleep = 0; 5266 mddev->bitmap_info.max_write_behind = 0; 5267 } 5268 5269 static void __md_stop_writes(struct mddev *mddev) 5270 { 5271 if (mddev->sync_thread) { 5272 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5273 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5274 reap_sync_thread(mddev); 5275 } 5276 5277 del_timer_sync(&mddev->safemode_timer); 5278 5279 bitmap_flush(mddev); 5280 md_super_wait(mddev); 5281 5282 if (!mddev->in_sync || mddev->flags) { 5283 /* mark array as shutdown cleanly */ 5284 mddev->in_sync = 1; 5285 md_update_sb(mddev, 1); 5286 } 5287 } 5288 5289 void md_stop_writes(struct mddev *mddev) 5290 { 5291 mddev_lock(mddev); 5292 __md_stop_writes(mddev); 5293 mddev_unlock(mddev); 5294 } 5295 EXPORT_SYMBOL_GPL(md_stop_writes); 5296 5297 void md_stop(struct mddev *mddev) 5298 { 5299 mddev->ready = 0; 5300 mddev->pers->stop(mddev); 5301 if (mddev->pers->sync_request && mddev->to_remove == NULL) 5302 mddev->to_remove = &md_redundancy_group; 5303 module_put(mddev->pers->owner); 5304 mddev->pers = NULL; 5305 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5306 } 5307 EXPORT_SYMBOL_GPL(md_stop); 5308 5309 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5310 { 5311 int err = 0; 5312 mutex_lock(&mddev->open_mutex); 5313 if (atomic_read(&mddev->openers) > !!bdev) { 5314 printk("md: %s still in use.\n",mdname(mddev)); 5315 err = -EBUSY; 5316 goto out; 5317 } 5318 if (bdev) 5319 sync_blockdev(bdev); 5320 if (mddev->pers) { 5321 __md_stop_writes(mddev); 5322 5323 err = -ENXIO; 5324 if (mddev->ro==1) 5325 goto out; 5326 mddev->ro = 1; 5327 set_disk_ro(mddev->gendisk, 1); 5328 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5329 sysfs_notify_dirent_safe(mddev->sysfs_state); 5330 err = 0; 5331 } 5332 out: 5333 mutex_unlock(&mddev->open_mutex); 5334 return err; 5335 } 5336 5337 /* mode: 5338 * 0 - completely stop and dis-assemble array 5339 * 2 - stop but do not disassemble array 5340 */ 5341 static int do_md_stop(struct mddev * mddev, int mode, 5342 struct block_device *bdev) 5343 { 5344 struct gendisk *disk = mddev->gendisk; 5345 struct md_rdev *rdev; 5346 5347 mutex_lock(&mddev->open_mutex); 5348 if (atomic_read(&mddev->openers) > !!bdev || 5349 mddev->sysfs_active) { 5350 printk("md: %s still in use.\n",mdname(mddev)); 5351 mutex_unlock(&mddev->open_mutex); 5352 return -EBUSY; 5353 } 5354 if (bdev) 5355 /* It is possible IO was issued on some other 5356 * open file which was closed before we took ->open_mutex. 5357 * As that was not the last close __blkdev_put will not 5358 * have called sync_blockdev, so we must. 5359 */ 5360 sync_blockdev(bdev); 5361 5362 if (mddev->pers) { 5363 if (mddev->ro) 5364 set_disk_ro(disk, 0); 5365 5366 __md_stop_writes(mddev); 5367 md_stop(mddev); 5368 mddev->queue->merge_bvec_fn = NULL; 5369 mddev->queue->backing_dev_info.congested_fn = NULL; 5370 5371 /* tell userspace to handle 'inactive' */ 5372 sysfs_notify_dirent_safe(mddev->sysfs_state); 5373 5374 rdev_for_each(rdev, mddev) 5375 if (rdev->raid_disk >= 0) 5376 sysfs_unlink_rdev(mddev, rdev); 5377 5378 set_capacity(disk, 0); 5379 mutex_unlock(&mddev->open_mutex); 5380 mddev->changed = 1; 5381 revalidate_disk(disk); 5382 5383 if (mddev->ro) 5384 mddev->ro = 0; 5385 } else 5386 mutex_unlock(&mddev->open_mutex); 5387 /* 5388 * Free resources if final stop 5389 */ 5390 if (mode == 0) { 5391 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev)); 5392 5393 bitmap_destroy(mddev); 5394 if (mddev->bitmap_info.file) { 5395 restore_bitmap_write_access(mddev->bitmap_info.file); 5396 fput(mddev->bitmap_info.file); 5397 mddev->bitmap_info.file = NULL; 5398 } 5399 mddev->bitmap_info.offset = 0; 5400 5401 export_array(mddev); 5402 5403 md_clean(mddev); 5404 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5405 if (mddev->hold_active == UNTIL_STOP) 5406 mddev->hold_active = 0; 5407 } 5408 blk_integrity_unregister(disk); 5409 md_new_event(mddev); 5410 sysfs_notify_dirent_safe(mddev->sysfs_state); 5411 return 0; 5412 } 5413 5414 #ifndef MODULE 5415 static void autorun_array(struct mddev *mddev) 5416 { 5417 struct md_rdev *rdev; 5418 int err; 5419 5420 if (list_empty(&mddev->disks)) 5421 return; 5422 5423 printk(KERN_INFO "md: running: "); 5424 5425 rdev_for_each(rdev, mddev) { 5426 char b[BDEVNAME_SIZE]; 5427 printk("<%s>", bdevname(rdev->bdev,b)); 5428 } 5429 printk("\n"); 5430 5431 err = do_md_run(mddev); 5432 if (err) { 5433 printk(KERN_WARNING "md: do_md_run() returned %d\n", err); 5434 do_md_stop(mddev, 0, NULL); 5435 } 5436 } 5437 5438 /* 5439 * lets try to run arrays based on all disks that have arrived 5440 * until now. (those are in pending_raid_disks) 5441 * 5442 * the method: pick the first pending disk, collect all disks with 5443 * the same UUID, remove all from the pending list and put them into 5444 * the 'same_array' list. Then order this list based on superblock 5445 * update time (freshest comes first), kick out 'old' disks and 5446 * compare superblocks. If everything's fine then run it. 5447 * 5448 * If "unit" is allocated, then bump its reference count 5449 */ 5450 static void autorun_devices(int part) 5451 { 5452 struct md_rdev *rdev0, *rdev, *tmp; 5453 struct mddev *mddev; 5454 char b[BDEVNAME_SIZE]; 5455 5456 printk(KERN_INFO "md: autorun ...\n"); 5457 while (!list_empty(&pending_raid_disks)) { 5458 int unit; 5459 dev_t dev; 5460 LIST_HEAD(candidates); 5461 rdev0 = list_entry(pending_raid_disks.next, 5462 struct md_rdev, same_set); 5463 5464 printk(KERN_INFO "md: considering %s ...\n", 5465 bdevname(rdev0->bdev,b)); 5466 INIT_LIST_HEAD(&candidates); 5467 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 5468 if (super_90_load(rdev, rdev0, 0) >= 0) { 5469 printk(KERN_INFO "md: adding %s ...\n", 5470 bdevname(rdev->bdev,b)); 5471 list_move(&rdev->same_set, &candidates); 5472 } 5473 /* 5474 * now we have a set of devices, with all of them having 5475 * mostly sane superblocks. It's time to allocate the 5476 * mddev. 5477 */ 5478 if (part) { 5479 dev = MKDEV(mdp_major, 5480 rdev0->preferred_minor << MdpMinorShift); 5481 unit = MINOR(dev) >> MdpMinorShift; 5482 } else { 5483 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 5484 unit = MINOR(dev); 5485 } 5486 if (rdev0->preferred_minor != unit) { 5487 printk(KERN_INFO "md: unit number in %s is bad: %d\n", 5488 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 5489 break; 5490 } 5491 5492 md_probe(dev, NULL, NULL); 5493 mddev = mddev_find(dev); 5494 if (!mddev || !mddev->gendisk) { 5495 if (mddev) 5496 mddev_put(mddev); 5497 printk(KERN_ERR 5498 "md: cannot allocate memory for md drive.\n"); 5499 break; 5500 } 5501 if (mddev_lock(mddev)) 5502 printk(KERN_WARNING "md: %s locked, cannot run\n", 5503 mdname(mddev)); 5504 else if (mddev->raid_disks || mddev->major_version 5505 || !list_empty(&mddev->disks)) { 5506 printk(KERN_WARNING 5507 "md: %s already running, cannot run %s\n", 5508 mdname(mddev), bdevname(rdev0->bdev,b)); 5509 mddev_unlock(mddev); 5510 } else { 5511 printk(KERN_INFO "md: created %s\n", mdname(mddev)); 5512 mddev->persistent = 1; 5513 rdev_for_each_list(rdev, tmp, &candidates) { 5514 list_del_init(&rdev->same_set); 5515 if (bind_rdev_to_array(rdev, mddev)) 5516 export_rdev(rdev); 5517 } 5518 autorun_array(mddev); 5519 mddev_unlock(mddev); 5520 } 5521 /* on success, candidates will be empty, on error 5522 * it won't... 5523 */ 5524 rdev_for_each_list(rdev, tmp, &candidates) { 5525 list_del_init(&rdev->same_set); 5526 export_rdev(rdev); 5527 } 5528 mddev_put(mddev); 5529 } 5530 printk(KERN_INFO "md: ... autorun DONE.\n"); 5531 } 5532 #endif /* !MODULE */ 5533 5534 static int get_version(void __user * arg) 5535 { 5536 mdu_version_t ver; 5537 5538 ver.major = MD_MAJOR_VERSION; 5539 ver.minor = MD_MINOR_VERSION; 5540 ver.patchlevel = MD_PATCHLEVEL_VERSION; 5541 5542 if (copy_to_user(arg, &ver, sizeof(ver))) 5543 return -EFAULT; 5544 5545 return 0; 5546 } 5547 5548 static int get_array_info(struct mddev * mddev, void __user * arg) 5549 { 5550 mdu_array_info_t info; 5551 int nr,working,insync,failed,spare; 5552 struct md_rdev *rdev; 5553 5554 nr = working = insync = failed = spare = 0; 5555 rcu_read_lock(); 5556 rdev_for_each_rcu(rdev, mddev) { 5557 nr++; 5558 if (test_bit(Faulty, &rdev->flags)) 5559 failed++; 5560 else { 5561 working++; 5562 if (test_bit(In_sync, &rdev->flags)) 5563 insync++; 5564 else 5565 spare++; 5566 } 5567 } 5568 rcu_read_unlock(); 5569 5570 info.major_version = mddev->major_version; 5571 info.minor_version = mddev->minor_version; 5572 info.patch_version = MD_PATCHLEVEL_VERSION; 5573 info.ctime = mddev->ctime; 5574 info.level = mddev->level; 5575 info.size = mddev->dev_sectors / 2; 5576 if (info.size != mddev->dev_sectors / 2) /* overflow */ 5577 info.size = -1; 5578 info.nr_disks = nr; 5579 info.raid_disks = mddev->raid_disks; 5580 info.md_minor = mddev->md_minor; 5581 info.not_persistent= !mddev->persistent; 5582 5583 info.utime = mddev->utime; 5584 info.state = 0; 5585 if (mddev->in_sync) 5586 info.state = (1<<MD_SB_CLEAN); 5587 if (mddev->bitmap && mddev->bitmap_info.offset) 5588 info.state = (1<<MD_SB_BITMAP_PRESENT); 5589 info.active_disks = insync; 5590 info.working_disks = working; 5591 info.failed_disks = failed; 5592 info.spare_disks = spare; 5593 5594 info.layout = mddev->layout; 5595 info.chunk_size = mddev->chunk_sectors << 9; 5596 5597 if (copy_to_user(arg, &info, sizeof(info))) 5598 return -EFAULT; 5599 5600 return 0; 5601 } 5602 5603 static int get_bitmap_file(struct mddev * mddev, void __user * arg) 5604 { 5605 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 5606 char *ptr, *buf = NULL; 5607 int err = -ENOMEM; 5608 5609 if (md_allow_write(mddev)) 5610 file = kmalloc(sizeof(*file), GFP_NOIO); 5611 else 5612 file = kmalloc(sizeof(*file), GFP_KERNEL); 5613 5614 if (!file) 5615 goto out; 5616 5617 /* bitmap disabled, zero the first byte and copy out */ 5618 if (!mddev->bitmap || !mddev->bitmap->storage.file) { 5619 file->pathname[0] = '\0'; 5620 goto copy_out; 5621 } 5622 5623 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL); 5624 if (!buf) 5625 goto out; 5626 5627 ptr = d_path(&mddev->bitmap->storage.file->f_path, 5628 buf, sizeof(file->pathname)); 5629 if (IS_ERR(ptr)) 5630 goto out; 5631 5632 strcpy(file->pathname, ptr); 5633 5634 copy_out: 5635 err = 0; 5636 if (copy_to_user(arg, file, sizeof(*file))) 5637 err = -EFAULT; 5638 out: 5639 kfree(buf); 5640 kfree(file); 5641 return err; 5642 } 5643 5644 static int get_disk_info(struct mddev * mddev, void __user * arg) 5645 { 5646 mdu_disk_info_t info; 5647 struct md_rdev *rdev; 5648 5649 if (copy_from_user(&info, arg, sizeof(info))) 5650 return -EFAULT; 5651 5652 rcu_read_lock(); 5653 rdev = find_rdev_nr_rcu(mddev, info.number); 5654 if (rdev) { 5655 info.major = MAJOR(rdev->bdev->bd_dev); 5656 info.minor = MINOR(rdev->bdev->bd_dev); 5657 info.raid_disk = rdev->raid_disk; 5658 info.state = 0; 5659 if (test_bit(Faulty, &rdev->flags)) 5660 info.state |= (1<<MD_DISK_FAULTY); 5661 else if (test_bit(In_sync, &rdev->flags)) { 5662 info.state |= (1<<MD_DISK_ACTIVE); 5663 info.state |= (1<<MD_DISK_SYNC); 5664 } 5665 if (test_bit(WriteMostly, &rdev->flags)) 5666 info.state |= (1<<MD_DISK_WRITEMOSTLY); 5667 } else { 5668 info.major = info.minor = 0; 5669 info.raid_disk = -1; 5670 info.state = (1<<MD_DISK_REMOVED); 5671 } 5672 rcu_read_unlock(); 5673 5674 if (copy_to_user(arg, &info, sizeof(info))) 5675 return -EFAULT; 5676 5677 return 0; 5678 } 5679 5680 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info) 5681 { 5682 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5683 struct md_rdev *rdev; 5684 dev_t dev = MKDEV(info->major,info->minor); 5685 5686 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 5687 return -EOVERFLOW; 5688 5689 if (!mddev->raid_disks) { 5690 int err; 5691 /* expecting a device which has a superblock */ 5692 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 5693 if (IS_ERR(rdev)) { 5694 printk(KERN_WARNING 5695 "md: md_import_device returned %ld\n", 5696 PTR_ERR(rdev)); 5697 return PTR_ERR(rdev); 5698 } 5699 if (!list_empty(&mddev->disks)) { 5700 struct md_rdev *rdev0 5701 = list_entry(mddev->disks.next, 5702 struct md_rdev, same_set); 5703 err = super_types[mddev->major_version] 5704 .load_super(rdev, rdev0, mddev->minor_version); 5705 if (err < 0) { 5706 printk(KERN_WARNING 5707 "md: %s has different UUID to %s\n", 5708 bdevname(rdev->bdev,b), 5709 bdevname(rdev0->bdev,b2)); 5710 export_rdev(rdev); 5711 return -EINVAL; 5712 } 5713 } 5714 err = bind_rdev_to_array(rdev, mddev); 5715 if (err) 5716 export_rdev(rdev); 5717 return err; 5718 } 5719 5720 /* 5721 * add_new_disk can be used once the array is assembled 5722 * to add "hot spares". They must already have a superblock 5723 * written 5724 */ 5725 if (mddev->pers) { 5726 int err; 5727 if (!mddev->pers->hot_add_disk) { 5728 printk(KERN_WARNING 5729 "%s: personality does not support diskops!\n", 5730 mdname(mddev)); 5731 return -EINVAL; 5732 } 5733 if (mddev->persistent) 5734 rdev = md_import_device(dev, mddev->major_version, 5735 mddev->minor_version); 5736 else 5737 rdev = md_import_device(dev, -1, -1); 5738 if (IS_ERR(rdev)) { 5739 printk(KERN_WARNING 5740 "md: md_import_device returned %ld\n", 5741 PTR_ERR(rdev)); 5742 return PTR_ERR(rdev); 5743 } 5744 /* set saved_raid_disk if appropriate */ 5745 if (!mddev->persistent) { 5746 if (info->state & (1<<MD_DISK_SYNC) && 5747 info->raid_disk < mddev->raid_disks) { 5748 rdev->raid_disk = info->raid_disk; 5749 set_bit(In_sync, &rdev->flags); 5750 } else 5751 rdev->raid_disk = -1; 5752 } else 5753 super_types[mddev->major_version]. 5754 validate_super(mddev, rdev); 5755 if ((info->state & (1<<MD_DISK_SYNC)) && 5756 rdev->raid_disk != info->raid_disk) { 5757 /* This was a hot-add request, but events doesn't 5758 * match, so reject it. 5759 */ 5760 export_rdev(rdev); 5761 return -EINVAL; 5762 } 5763 5764 if (test_bit(In_sync, &rdev->flags)) 5765 rdev->saved_raid_disk = rdev->raid_disk; 5766 else 5767 rdev->saved_raid_disk = -1; 5768 5769 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 5770 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5771 set_bit(WriteMostly, &rdev->flags); 5772 else 5773 clear_bit(WriteMostly, &rdev->flags); 5774 5775 rdev->raid_disk = -1; 5776 err = bind_rdev_to_array(rdev, mddev); 5777 if (!err && !mddev->pers->hot_remove_disk) { 5778 /* If there is hot_add_disk but no hot_remove_disk 5779 * then added disks for geometry changes, 5780 * and should be added immediately. 5781 */ 5782 super_types[mddev->major_version]. 5783 validate_super(mddev, rdev); 5784 err = mddev->pers->hot_add_disk(mddev, rdev); 5785 if (err) 5786 unbind_rdev_from_array(rdev); 5787 } 5788 if (err) 5789 export_rdev(rdev); 5790 else 5791 sysfs_notify_dirent_safe(rdev->sysfs_state); 5792 5793 md_update_sb(mddev, 1); 5794 if (mddev->degraded) 5795 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5796 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5797 if (!err) 5798 md_new_event(mddev); 5799 md_wakeup_thread(mddev->thread); 5800 return err; 5801 } 5802 5803 /* otherwise, add_new_disk is only allowed 5804 * for major_version==0 superblocks 5805 */ 5806 if (mddev->major_version != 0) { 5807 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n", 5808 mdname(mddev)); 5809 return -EINVAL; 5810 } 5811 5812 if (!(info->state & (1<<MD_DISK_FAULTY))) { 5813 int err; 5814 rdev = md_import_device(dev, -1, 0); 5815 if (IS_ERR(rdev)) { 5816 printk(KERN_WARNING 5817 "md: error, md_import_device() returned %ld\n", 5818 PTR_ERR(rdev)); 5819 return PTR_ERR(rdev); 5820 } 5821 rdev->desc_nr = info->number; 5822 if (info->raid_disk < mddev->raid_disks) 5823 rdev->raid_disk = info->raid_disk; 5824 else 5825 rdev->raid_disk = -1; 5826 5827 if (rdev->raid_disk < mddev->raid_disks) 5828 if (info->state & (1<<MD_DISK_SYNC)) 5829 set_bit(In_sync, &rdev->flags); 5830 5831 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 5832 set_bit(WriteMostly, &rdev->flags); 5833 5834 if (!mddev->persistent) { 5835 printk(KERN_INFO "md: nonpersistent superblock ...\n"); 5836 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5837 } else 5838 rdev->sb_start = calc_dev_sboffset(rdev); 5839 rdev->sectors = rdev->sb_start; 5840 5841 err = bind_rdev_to_array(rdev, mddev); 5842 if (err) { 5843 export_rdev(rdev); 5844 return err; 5845 } 5846 } 5847 5848 return 0; 5849 } 5850 5851 static int hot_remove_disk(struct mddev * mddev, dev_t dev) 5852 { 5853 char b[BDEVNAME_SIZE]; 5854 struct md_rdev *rdev; 5855 5856 rdev = find_rdev(mddev, dev); 5857 if (!rdev) 5858 return -ENXIO; 5859 5860 if (rdev->raid_disk >= 0) 5861 goto busy; 5862 5863 kick_rdev_from_array(rdev); 5864 md_update_sb(mddev, 1); 5865 md_new_event(mddev); 5866 5867 return 0; 5868 busy: 5869 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n", 5870 bdevname(rdev->bdev,b), mdname(mddev)); 5871 return -EBUSY; 5872 } 5873 5874 static int hot_add_disk(struct mddev * mddev, dev_t dev) 5875 { 5876 char b[BDEVNAME_SIZE]; 5877 int err; 5878 struct md_rdev *rdev; 5879 5880 if (!mddev->pers) 5881 return -ENODEV; 5882 5883 if (mddev->major_version != 0) { 5884 printk(KERN_WARNING "%s: HOT_ADD may only be used with" 5885 " version-0 superblocks.\n", 5886 mdname(mddev)); 5887 return -EINVAL; 5888 } 5889 if (!mddev->pers->hot_add_disk) { 5890 printk(KERN_WARNING 5891 "%s: personality does not support diskops!\n", 5892 mdname(mddev)); 5893 return -EINVAL; 5894 } 5895 5896 rdev = md_import_device(dev, -1, 0); 5897 if (IS_ERR(rdev)) { 5898 printk(KERN_WARNING 5899 "md: error, md_import_device() returned %ld\n", 5900 PTR_ERR(rdev)); 5901 return -EINVAL; 5902 } 5903 5904 if (mddev->persistent) 5905 rdev->sb_start = calc_dev_sboffset(rdev); 5906 else 5907 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 5908 5909 rdev->sectors = rdev->sb_start; 5910 5911 if (test_bit(Faulty, &rdev->flags)) { 5912 printk(KERN_WARNING 5913 "md: can not hot-add faulty %s disk to %s!\n", 5914 bdevname(rdev->bdev,b), mdname(mddev)); 5915 err = -EINVAL; 5916 goto abort_export; 5917 } 5918 clear_bit(In_sync, &rdev->flags); 5919 rdev->desc_nr = -1; 5920 rdev->saved_raid_disk = -1; 5921 err = bind_rdev_to_array(rdev, mddev); 5922 if (err) 5923 goto abort_export; 5924 5925 /* 5926 * The rest should better be atomic, we can have disk failures 5927 * noticed in interrupt contexts ... 5928 */ 5929 5930 rdev->raid_disk = -1; 5931 5932 md_update_sb(mddev, 1); 5933 5934 /* 5935 * Kick recovery, maybe this spare has to be added to the 5936 * array immediately. 5937 */ 5938 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5939 md_wakeup_thread(mddev->thread); 5940 md_new_event(mddev); 5941 return 0; 5942 5943 abort_export: 5944 export_rdev(rdev); 5945 return err; 5946 } 5947 5948 static int set_bitmap_file(struct mddev *mddev, int fd) 5949 { 5950 int err; 5951 5952 if (mddev->pers) { 5953 if (!mddev->pers->quiesce) 5954 return -EBUSY; 5955 if (mddev->recovery || mddev->sync_thread) 5956 return -EBUSY; 5957 /* we should be able to change the bitmap.. */ 5958 } 5959 5960 5961 if (fd >= 0) { 5962 if (mddev->bitmap) 5963 return -EEXIST; /* cannot add when bitmap is present */ 5964 mddev->bitmap_info.file = fget(fd); 5965 5966 if (mddev->bitmap_info.file == NULL) { 5967 printk(KERN_ERR "%s: error: failed to get bitmap file\n", 5968 mdname(mddev)); 5969 return -EBADF; 5970 } 5971 5972 err = deny_bitmap_write_access(mddev->bitmap_info.file); 5973 if (err) { 5974 printk(KERN_ERR "%s: error: bitmap file is already in use\n", 5975 mdname(mddev)); 5976 fput(mddev->bitmap_info.file); 5977 mddev->bitmap_info.file = NULL; 5978 return err; 5979 } 5980 mddev->bitmap_info.offset = 0; /* file overrides offset */ 5981 } else if (mddev->bitmap == NULL) 5982 return -ENOENT; /* cannot remove what isn't there */ 5983 err = 0; 5984 if (mddev->pers) { 5985 mddev->pers->quiesce(mddev, 1); 5986 if (fd >= 0) { 5987 err = bitmap_create(mddev); 5988 if (!err) 5989 err = bitmap_load(mddev); 5990 } 5991 if (fd < 0 || err) { 5992 bitmap_destroy(mddev); 5993 fd = -1; /* make sure to put the file */ 5994 } 5995 mddev->pers->quiesce(mddev, 0); 5996 } 5997 if (fd < 0) { 5998 if (mddev->bitmap_info.file) { 5999 restore_bitmap_write_access(mddev->bitmap_info.file); 6000 fput(mddev->bitmap_info.file); 6001 } 6002 mddev->bitmap_info.file = NULL; 6003 } 6004 6005 return err; 6006 } 6007 6008 /* 6009 * set_array_info is used two different ways 6010 * The original usage is when creating a new array. 6011 * In this usage, raid_disks is > 0 and it together with 6012 * level, size, not_persistent,layout,chunksize determine the 6013 * shape of the array. 6014 * This will always create an array with a type-0.90.0 superblock. 6015 * The newer usage is when assembling an array. 6016 * In this case raid_disks will be 0, and the major_version field is 6017 * use to determine which style super-blocks are to be found on the devices. 6018 * The minor and patch _version numbers are also kept incase the 6019 * super_block handler wishes to interpret them. 6020 */ 6021 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info) 6022 { 6023 6024 if (info->raid_disks == 0) { 6025 /* just setting version number for superblock loading */ 6026 if (info->major_version < 0 || 6027 info->major_version >= ARRAY_SIZE(super_types) || 6028 super_types[info->major_version].name == NULL) { 6029 /* maybe try to auto-load a module? */ 6030 printk(KERN_INFO 6031 "md: superblock version %d not known\n", 6032 info->major_version); 6033 return -EINVAL; 6034 } 6035 mddev->major_version = info->major_version; 6036 mddev->minor_version = info->minor_version; 6037 mddev->patch_version = info->patch_version; 6038 mddev->persistent = !info->not_persistent; 6039 /* ensure mddev_put doesn't delete this now that there 6040 * is some minimal configuration. 6041 */ 6042 mddev->ctime = get_seconds(); 6043 return 0; 6044 } 6045 mddev->major_version = MD_MAJOR_VERSION; 6046 mddev->minor_version = MD_MINOR_VERSION; 6047 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6048 mddev->ctime = get_seconds(); 6049 6050 mddev->level = info->level; 6051 mddev->clevel[0] = 0; 6052 mddev->dev_sectors = 2 * (sector_t)info->size; 6053 mddev->raid_disks = info->raid_disks; 6054 /* don't set md_minor, it is determined by which /dev/md* was 6055 * openned 6056 */ 6057 if (info->state & (1<<MD_SB_CLEAN)) 6058 mddev->recovery_cp = MaxSector; 6059 else 6060 mddev->recovery_cp = 0; 6061 mddev->persistent = ! info->not_persistent; 6062 mddev->external = 0; 6063 6064 mddev->layout = info->layout; 6065 mddev->chunk_sectors = info->chunk_size >> 9; 6066 6067 mddev->max_disks = MD_SB_DISKS; 6068 6069 if (mddev->persistent) 6070 mddev->flags = 0; 6071 set_bit(MD_CHANGE_DEVS, &mddev->flags); 6072 6073 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6074 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6075 mddev->bitmap_info.offset = 0; 6076 6077 mddev->reshape_position = MaxSector; 6078 6079 /* 6080 * Generate a 128 bit UUID 6081 */ 6082 get_random_bytes(mddev->uuid, 16); 6083 6084 mddev->new_level = mddev->level; 6085 mddev->new_chunk_sectors = mddev->chunk_sectors; 6086 mddev->new_layout = mddev->layout; 6087 mddev->delta_disks = 0; 6088 mddev->reshape_backwards = 0; 6089 6090 return 0; 6091 } 6092 6093 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6094 { 6095 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__); 6096 6097 if (mddev->external_size) 6098 return; 6099 6100 mddev->array_sectors = array_sectors; 6101 } 6102 EXPORT_SYMBOL(md_set_array_sectors); 6103 6104 static int update_size(struct mddev *mddev, sector_t num_sectors) 6105 { 6106 struct md_rdev *rdev; 6107 int rv; 6108 int fit = (num_sectors == 0); 6109 6110 if (mddev->pers->resize == NULL) 6111 return -EINVAL; 6112 /* The "num_sectors" is the number of sectors of each device that 6113 * is used. This can only make sense for arrays with redundancy. 6114 * linear and raid0 always use whatever space is available. We can only 6115 * consider changing this number if no resync or reconstruction is 6116 * happening, and if the new size is acceptable. It must fit before the 6117 * sb_start or, if that is <data_offset, it must fit before the size 6118 * of each device. If num_sectors is zero, we find the largest size 6119 * that fits. 6120 */ 6121 if (mddev->sync_thread) 6122 return -EBUSY; 6123 6124 rdev_for_each(rdev, mddev) { 6125 sector_t avail = rdev->sectors; 6126 6127 if (fit && (num_sectors == 0 || num_sectors > avail)) 6128 num_sectors = avail; 6129 if (avail < num_sectors) 6130 return -ENOSPC; 6131 } 6132 rv = mddev->pers->resize(mddev, num_sectors); 6133 if (!rv) 6134 revalidate_disk(mddev->gendisk); 6135 return rv; 6136 } 6137 6138 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6139 { 6140 int rv; 6141 struct md_rdev *rdev; 6142 /* change the number of raid disks */ 6143 if (mddev->pers->check_reshape == NULL) 6144 return -EINVAL; 6145 if (raid_disks <= 0 || 6146 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6147 return -EINVAL; 6148 if (mddev->sync_thread || mddev->reshape_position != MaxSector) 6149 return -EBUSY; 6150 6151 rdev_for_each(rdev, mddev) { 6152 if (mddev->raid_disks < raid_disks && 6153 rdev->data_offset < rdev->new_data_offset) 6154 return -EINVAL; 6155 if (mddev->raid_disks > raid_disks && 6156 rdev->data_offset > rdev->new_data_offset) 6157 return -EINVAL; 6158 } 6159 6160 mddev->delta_disks = raid_disks - mddev->raid_disks; 6161 if (mddev->delta_disks < 0) 6162 mddev->reshape_backwards = 1; 6163 else if (mddev->delta_disks > 0) 6164 mddev->reshape_backwards = 0; 6165 6166 rv = mddev->pers->check_reshape(mddev); 6167 if (rv < 0) { 6168 mddev->delta_disks = 0; 6169 mddev->reshape_backwards = 0; 6170 } 6171 return rv; 6172 } 6173 6174 6175 /* 6176 * update_array_info is used to change the configuration of an 6177 * on-line array. 6178 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6179 * fields in the info are checked against the array. 6180 * Any differences that cannot be handled will cause an error. 6181 * Normally, only one change can be managed at a time. 6182 */ 6183 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6184 { 6185 int rv = 0; 6186 int cnt = 0; 6187 int state = 0; 6188 6189 /* calculate expected state,ignoring low bits */ 6190 if (mddev->bitmap && mddev->bitmap_info.offset) 6191 state |= (1 << MD_SB_BITMAP_PRESENT); 6192 6193 if (mddev->major_version != info->major_version || 6194 mddev->minor_version != info->minor_version || 6195 /* mddev->patch_version != info->patch_version || */ 6196 mddev->ctime != info->ctime || 6197 mddev->level != info->level || 6198 /* mddev->layout != info->layout || */ 6199 !mddev->persistent != info->not_persistent|| 6200 mddev->chunk_sectors != info->chunk_size >> 9 || 6201 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6202 ((state^info->state) & 0xfffffe00) 6203 ) 6204 return -EINVAL; 6205 /* Check there is only one change */ 6206 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6207 cnt++; 6208 if (mddev->raid_disks != info->raid_disks) 6209 cnt++; 6210 if (mddev->layout != info->layout) 6211 cnt++; 6212 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6213 cnt++; 6214 if (cnt == 0) 6215 return 0; 6216 if (cnt > 1) 6217 return -EINVAL; 6218 6219 if (mddev->layout != info->layout) { 6220 /* Change layout 6221 * we don't need to do anything at the md level, the 6222 * personality will take care of it all. 6223 */ 6224 if (mddev->pers->check_reshape == NULL) 6225 return -EINVAL; 6226 else { 6227 mddev->new_layout = info->layout; 6228 rv = mddev->pers->check_reshape(mddev); 6229 if (rv) 6230 mddev->new_layout = mddev->layout; 6231 return rv; 6232 } 6233 } 6234 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6235 rv = update_size(mddev, (sector_t)info->size * 2); 6236 6237 if (mddev->raid_disks != info->raid_disks) 6238 rv = update_raid_disks(mddev, info->raid_disks); 6239 6240 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6241 if (mddev->pers->quiesce == NULL) 6242 return -EINVAL; 6243 if (mddev->recovery || mddev->sync_thread) 6244 return -EBUSY; 6245 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6246 /* add the bitmap */ 6247 if (mddev->bitmap) 6248 return -EEXIST; 6249 if (mddev->bitmap_info.default_offset == 0) 6250 return -EINVAL; 6251 mddev->bitmap_info.offset = 6252 mddev->bitmap_info.default_offset; 6253 mddev->bitmap_info.space = 6254 mddev->bitmap_info.default_space; 6255 mddev->pers->quiesce(mddev, 1); 6256 rv = bitmap_create(mddev); 6257 if (!rv) 6258 rv = bitmap_load(mddev); 6259 if (rv) 6260 bitmap_destroy(mddev); 6261 mddev->pers->quiesce(mddev, 0); 6262 } else { 6263 /* remove the bitmap */ 6264 if (!mddev->bitmap) 6265 return -ENOENT; 6266 if (mddev->bitmap->storage.file) 6267 return -EINVAL; 6268 mddev->pers->quiesce(mddev, 1); 6269 bitmap_destroy(mddev); 6270 mddev->pers->quiesce(mddev, 0); 6271 mddev->bitmap_info.offset = 0; 6272 } 6273 } 6274 md_update_sb(mddev, 1); 6275 return rv; 6276 } 6277 6278 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 6279 { 6280 struct md_rdev *rdev; 6281 int err = 0; 6282 6283 if (mddev->pers == NULL) 6284 return -ENODEV; 6285 6286 rcu_read_lock(); 6287 rdev = find_rdev_rcu(mddev, dev); 6288 if (!rdev) 6289 err = -ENODEV; 6290 else { 6291 md_error(mddev, rdev); 6292 if (!test_bit(Faulty, &rdev->flags)) 6293 err = -EBUSY; 6294 } 6295 rcu_read_unlock(); 6296 return err; 6297 } 6298 6299 /* 6300 * We have a problem here : there is no easy way to give a CHS 6301 * virtual geometry. We currently pretend that we have a 2 heads 6302 * 4 sectors (with a BIG number of cylinders...). This drives 6303 * dosfs just mad... ;-) 6304 */ 6305 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 6306 { 6307 struct mddev *mddev = bdev->bd_disk->private_data; 6308 6309 geo->heads = 2; 6310 geo->sectors = 4; 6311 geo->cylinders = mddev->array_sectors / 8; 6312 return 0; 6313 } 6314 6315 static int md_ioctl(struct block_device *bdev, fmode_t mode, 6316 unsigned int cmd, unsigned long arg) 6317 { 6318 int err = 0; 6319 void __user *argp = (void __user *)arg; 6320 struct mddev *mddev = NULL; 6321 int ro; 6322 6323 switch (cmd) { 6324 case RAID_VERSION: 6325 case GET_ARRAY_INFO: 6326 case GET_DISK_INFO: 6327 break; 6328 default: 6329 if (!capable(CAP_SYS_ADMIN)) 6330 return -EACCES; 6331 } 6332 6333 /* 6334 * Commands dealing with the RAID driver but not any 6335 * particular array: 6336 */ 6337 switch (cmd) 6338 { 6339 case RAID_VERSION: 6340 err = get_version(argp); 6341 goto done; 6342 6343 case PRINT_RAID_DEBUG: 6344 err = 0; 6345 md_print_devices(); 6346 goto done; 6347 6348 #ifndef MODULE 6349 case RAID_AUTORUN: 6350 err = 0; 6351 autostart_arrays(arg); 6352 goto done; 6353 #endif 6354 default:; 6355 } 6356 6357 /* 6358 * Commands creating/starting a new array: 6359 */ 6360 6361 mddev = bdev->bd_disk->private_data; 6362 6363 if (!mddev) { 6364 BUG(); 6365 goto abort; 6366 } 6367 6368 /* Some actions do not requires the mutex */ 6369 switch (cmd) { 6370 case GET_ARRAY_INFO: 6371 if (!mddev->raid_disks && !mddev->external) 6372 err = -ENODEV; 6373 else 6374 err = get_array_info(mddev, argp); 6375 goto abort; 6376 6377 case GET_DISK_INFO: 6378 if (!mddev->raid_disks && !mddev->external) 6379 err = -ENODEV; 6380 else 6381 err = get_disk_info(mddev, argp); 6382 goto abort; 6383 6384 case SET_DISK_FAULTY: 6385 err = set_disk_faulty(mddev, new_decode_dev(arg)); 6386 goto abort; 6387 } 6388 6389 err = mddev_lock(mddev); 6390 if (err) { 6391 printk(KERN_INFO 6392 "md: ioctl lock interrupted, reason %d, cmd %d\n", 6393 err, cmd); 6394 goto abort; 6395 } 6396 6397 switch (cmd) 6398 { 6399 case SET_ARRAY_INFO: 6400 { 6401 mdu_array_info_t info; 6402 if (!arg) 6403 memset(&info, 0, sizeof(info)); 6404 else if (copy_from_user(&info, argp, sizeof(info))) { 6405 err = -EFAULT; 6406 goto abort_unlock; 6407 } 6408 if (mddev->pers) { 6409 err = update_array_info(mddev, &info); 6410 if (err) { 6411 printk(KERN_WARNING "md: couldn't update" 6412 " array info. %d\n", err); 6413 goto abort_unlock; 6414 } 6415 goto done_unlock; 6416 } 6417 if (!list_empty(&mddev->disks)) { 6418 printk(KERN_WARNING 6419 "md: array %s already has disks!\n", 6420 mdname(mddev)); 6421 err = -EBUSY; 6422 goto abort_unlock; 6423 } 6424 if (mddev->raid_disks) { 6425 printk(KERN_WARNING 6426 "md: array %s already initialised!\n", 6427 mdname(mddev)); 6428 err = -EBUSY; 6429 goto abort_unlock; 6430 } 6431 err = set_array_info(mddev, &info); 6432 if (err) { 6433 printk(KERN_WARNING "md: couldn't set" 6434 " array info. %d\n", err); 6435 goto abort_unlock; 6436 } 6437 } 6438 goto done_unlock; 6439 6440 default:; 6441 } 6442 6443 /* 6444 * Commands querying/configuring an existing array: 6445 */ 6446 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 6447 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 6448 if ((!mddev->raid_disks && !mddev->external) 6449 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 6450 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 6451 && cmd != GET_BITMAP_FILE) { 6452 err = -ENODEV; 6453 goto abort_unlock; 6454 } 6455 6456 /* 6457 * Commands even a read-only array can execute: 6458 */ 6459 switch (cmd) 6460 { 6461 case GET_BITMAP_FILE: 6462 err = get_bitmap_file(mddev, argp); 6463 goto done_unlock; 6464 6465 case RESTART_ARRAY_RW: 6466 err = restart_array(mddev); 6467 goto done_unlock; 6468 6469 case STOP_ARRAY: 6470 err = do_md_stop(mddev, 0, bdev); 6471 goto done_unlock; 6472 6473 case STOP_ARRAY_RO: 6474 err = md_set_readonly(mddev, bdev); 6475 goto done_unlock; 6476 6477 case BLKROSET: 6478 if (get_user(ro, (int __user *)(arg))) { 6479 err = -EFAULT; 6480 goto done_unlock; 6481 } 6482 err = -EINVAL; 6483 6484 /* if the bdev is going readonly the value of mddev->ro 6485 * does not matter, no writes are coming 6486 */ 6487 if (ro) 6488 goto done_unlock; 6489 6490 /* are we are already prepared for writes? */ 6491 if (mddev->ro != 1) 6492 goto done_unlock; 6493 6494 /* transitioning to readauto need only happen for 6495 * arrays that call md_write_start 6496 */ 6497 if (mddev->pers) { 6498 err = restart_array(mddev); 6499 if (err == 0) { 6500 mddev->ro = 2; 6501 set_disk_ro(mddev->gendisk, 0); 6502 } 6503 } 6504 goto done_unlock; 6505 } 6506 6507 /* 6508 * The remaining ioctls are changing the state of the 6509 * superblock, so we do not allow them on read-only arrays. 6510 * However non-MD ioctls (e.g. get-size) will still come through 6511 * here and hit the 'default' below, so only disallow 6512 * 'md' ioctls, and switch to rw mode if started auto-readonly. 6513 */ 6514 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) { 6515 if (mddev->ro == 2) { 6516 mddev->ro = 0; 6517 sysfs_notify_dirent_safe(mddev->sysfs_state); 6518 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6519 md_wakeup_thread(mddev->thread); 6520 } else { 6521 err = -EROFS; 6522 goto abort_unlock; 6523 } 6524 } 6525 6526 switch (cmd) 6527 { 6528 case ADD_NEW_DISK: 6529 { 6530 mdu_disk_info_t info; 6531 if (copy_from_user(&info, argp, sizeof(info))) 6532 err = -EFAULT; 6533 else 6534 err = add_new_disk(mddev, &info); 6535 goto done_unlock; 6536 } 6537 6538 case HOT_REMOVE_DISK: 6539 err = hot_remove_disk(mddev, new_decode_dev(arg)); 6540 goto done_unlock; 6541 6542 case HOT_ADD_DISK: 6543 err = hot_add_disk(mddev, new_decode_dev(arg)); 6544 goto done_unlock; 6545 6546 case RUN_ARRAY: 6547 err = do_md_run(mddev); 6548 goto done_unlock; 6549 6550 case SET_BITMAP_FILE: 6551 err = set_bitmap_file(mddev, (int)arg); 6552 goto done_unlock; 6553 6554 default: 6555 err = -EINVAL; 6556 goto abort_unlock; 6557 } 6558 6559 done_unlock: 6560 abort_unlock: 6561 if (mddev->hold_active == UNTIL_IOCTL && 6562 err != -EINVAL) 6563 mddev->hold_active = 0; 6564 mddev_unlock(mddev); 6565 6566 return err; 6567 done: 6568 if (err) 6569 MD_BUG(); 6570 abort: 6571 return err; 6572 } 6573 #ifdef CONFIG_COMPAT 6574 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 6575 unsigned int cmd, unsigned long arg) 6576 { 6577 switch (cmd) { 6578 case HOT_REMOVE_DISK: 6579 case HOT_ADD_DISK: 6580 case SET_DISK_FAULTY: 6581 case SET_BITMAP_FILE: 6582 /* These take in integer arg, do not convert */ 6583 break; 6584 default: 6585 arg = (unsigned long)compat_ptr(arg); 6586 break; 6587 } 6588 6589 return md_ioctl(bdev, mode, cmd, arg); 6590 } 6591 #endif /* CONFIG_COMPAT */ 6592 6593 static int md_open(struct block_device *bdev, fmode_t mode) 6594 { 6595 /* 6596 * Succeed if we can lock the mddev, which confirms that 6597 * it isn't being stopped right now. 6598 */ 6599 struct mddev *mddev = mddev_find(bdev->bd_dev); 6600 int err; 6601 6602 if (!mddev) 6603 return -ENODEV; 6604 6605 if (mddev->gendisk != bdev->bd_disk) { 6606 /* we are racing with mddev_put which is discarding this 6607 * bd_disk. 6608 */ 6609 mddev_put(mddev); 6610 /* Wait until bdev->bd_disk is definitely gone */ 6611 flush_workqueue(md_misc_wq); 6612 /* Then retry the open from the top */ 6613 return -ERESTARTSYS; 6614 } 6615 BUG_ON(mddev != bdev->bd_disk->private_data); 6616 6617 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 6618 goto out; 6619 6620 err = 0; 6621 atomic_inc(&mddev->openers); 6622 mutex_unlock(&mddev->open_mutex); 6623 6624 check_disk_change(bdev); 6625 out: 6626 return err; 6627 } 6628 6629 static int md_release(struct gendisk *disk, fmode_t mode) 6630 { 6631 struct mddev *mddev = disk->private_data; 6632 6633 BUG_ON(!mddev); 6634 atomic_dec(&mddev->openers); 6635 mddev_put(mddev); 6636 6637 return 0; 6638 } 6639 6640 static int md_media_changed(struct gendisk *disk) 6641 { 6642 struct mddev *mddev = disk->private_data; 6643 6644 return mddev->changed; 6645 } 6646 6647 static int md_revalidate(struct gendisk *disk) 6648 { 6649 struct mddev *mddev = disk->private_data; 6650 6651 mddev->changed = 0; 6652 return 0; 6653 } 6654 static const struct block_device_operations md_fops = 6655 { 6656 .owner = THIS_MODULE, 6657 .open = md_open, 6658 .release = md_release, 6659 .ioctl = md_ioctl, 6660 #ifdef CONFIG_COMPAT 6661 .compat_ioctl = md_compat_ioctl, 6662 #endif 6663 .getgeo = md_getgeo, 6664 .media_changed = md_media_changed, 6665 .revalidate_disk= md_revalidate, 6666 }; 6667 6668 static int md_thread(void * arg) 6669 { 6670 struct md_thread *thread = arg; 6671 6672 /* 6673 * md_thread is a 'system-thread', it's priority should be very 6674 * high. We avoid resource deadlocks individually in each 6675 * raid personality. (RAID5 does preallocation) We also use RR and 6676 * the very same RT priority as kswapd, thus we will never get 6677 * into a priority inversion deadlock. 6678 * 6679 * we definitely have to have equal or higher priority than 6680 * bdflush, otherwise bdflush will deadlock if there are too 6681 * many dirty RAID5 blocks. 6682 */ 6683 6684 allow_signal(SIGKILL); 6685 while (!kthread_should_stop()) { 6686 6687 /* We need to wait INTERRUPTIBLE so that 6688 * we don't add to the load-average. 6689 * That means we need to be sure no signals are 6690 * pending 6691 */ 6692 if (signal_pending(current)) 6693 flush_signals(current); 6694 6695 wait_event_interruptible_timeout 6696 (thread->wqueue, 6697 test_bit(THREAD_WAKEUP, &thread->flags) 6698 || kthread_should_stop(), 6699 thread->timeout); 6700 6701 clear_bit(THREAD_WAKEUP, &thread->flags); 6702 if (!kthread_should_stop()) 6703 thread->run(thread); 6704 } 6705 6706 return 0; 6707 } 6708 6709 void md_wakeup_thread(struct md_thread *thread) 6710 { 6711 if (thread) { 6712 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 6713 set_bit(THREAD_WAKEUP, &thread->flags); 6714 wake_up(&thread->wqueue); 6715 } 6716 } 6717 6718 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 6719 struct mddev *mddev, const char *name) 6720 { 6721 struct md_thread *thread; 6722 6723 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 6724 if (!thread) 6725 return NULL; 6726 6727 init_waitqueue_head(&thread->wqueue); 6728 6729 thread->run = run; 6730 thread->mddev = mddev; 6731 thread->timeout = MAX_SCHEDULE_TIMEOUT; 6732 thread->tsk = kthread_run(md_thread, thread, 6733 "%s_%s", 6734 mdname(thread->mddev), 6735 name); 6736 if (IS_ERR(thread->tsk)) { 6737 kfree(thread); 6738 return NULL; 6739 } 6740 return thread; 6741 } 6742 6743 void md_unregister_thread(struct md_thread **threadp) 6744 { 6745 struct md_thread *thread = *threadp; 6746 if (!thread) 6747 return; 6748 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 6749 /* Locking ensures that mddev_unlock does not wake_up a 6750 * non-existent thread 6751 */ 6752 spin_lock(&pers_lock); 6753 *threadp = NULL; 6754 spin_unlock(&pers_lock); 6755 6756 kthread_stop(thread->tsk); 6757 kfree(thread); 6758 } 6759 6760 void md_error(struct mddev *mddev, struct md_rdev *rdev) 6761 { 6762 if (!mddev) { 6763 MD_BUG(); 6764 return; 6765 } 6766 6767 if (!rdev || test_bit(Faulty, &rdev->flags)) 6768 return; 6769 6770 if (!mddev->pers || !mddev->pers->error_handler) 6771 return; 6772 mddev->pers->error_handler(mddev,rdev); 6773 if (mddev->degraded) 6774 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6775 sysfs_notify_dirent_safe(rdev->sysfs_state); 6776 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6777 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6778 md_wakeup_thread(mddev->thread); 6779 if (mddev->event_work.func) 6780 queue_work(md_misc_wq, &mddev->event_work); 6781 md_new_event_inintr(mddev); 6782 } 6783 6784 /* seq_file implementation /proc/mdstat */ 6785 6786 static void status_unused(struct seq_file *seq) 6787 { 6788 int i = 0; 6789 struct md_rdev *rdev; 6790 6791 seq_printf(seq, "unused devices: "); 6792 6793 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 6794 char b[BDEVNAME_SIZE]; 6795 i++; 6796 seq_printf(seq, "%s ", 6797 bdevname(rdev->bdev,b)); 6798 } 6799 if (!i) 6800 seq_printf(seq, "<none>"); 6801 6802 seq_printf(seq, "\n"); 6803 } 6804 6805 6806 static void status_resync(struct seq_file *seq, struct mddev * mddev) 6807 { 6808 sector_t max_sectors, resync, res; 6809 unsigned long dt, db; 6810 sector_t rt; 6811 int scale; 6812 unsigned int per_milli; 6813 6814 if (mddev->curr_resync <= 3) 6815 resync = 0; 6816 else 6817 resync = mddev->curr_resync 6818 - atomic_read(&mddev->recovery_active); 6819 6820 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 6821 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 6822 max_sectors = mddev->resync_max_sectors; 6823 else 6824 max_sectors = mddev->dev_sectors; 6825 6826 /* 6827 * Should not happen. 6828 */ 6829 if (!max_sectors) { 6830 MD_BUG(); 6831 return; 6832 } 6833 /* Pick 'scale' such that (resync>>scale)*1000 will fit 6834 * in a sector_t, and (max_sectors>>scale) will fit in a 6835 * u32, as those are the requirements for sector_div. 6836 * Thus 'scale' must be at least 10 6837 */ 6838 scale = 10; 6839 if (sizeof(sector_t) > sizeof(unsigned long)) { 6840 while ( max_sectors/2 > (1ULL<<(scale+32))) 6841 scale++; 6842 } 6843 res = (resync>>scale)*1000; 6844 sector_div(res, (u32)((max_sectors>>scale)+1)); 6845 6846 per_milli = res; 6847 { 6848 int i, x = per_milli/50, y = 20-x; 6849 seq_printf(seq, "["); 6850 for (i = 0; i < x; i++) 6851 seq_printf(seq, "="); 6852 seq_printf(seq, ">"); 6853 for (i = 0; i < y; i++) 6854 seq_printf(seq, "."); 6855 seq_printf(seq, "] "); 6856 } 6857 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 6858 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 6859 "reshape" : 6860 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 6861 "check" : 6862 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 6863 "resync" : "recovery"))), 6864 per_milli/10, per_milli % 10, 6865 (unsigned long long) resync/2, 6866 (unsigned long long) max_sectors/2); 6867 6868 /* 6869 * dt: time from mark until now 6870 * db: blocks written from mark until now 6871 * rt: remaining time 6872 * 6873 * rt is a sector_t, so could be 32bit or 64bit. 6874 * So we divide before multiply in case it is 32bit and close 6875 * to the limit. 6876 * We scale the divisor (db) by 32 to avoid losing precision 6877 * near the end of resync when the number of remaining sectors 6878 * is close to 'db'. 6879 * We then divide rt by 32 after multiplying by db to compensate. 6880 * The '+1' avoids division by zero if db is very small. 6881 */ 6882 dt = ((jiffies - mddev->resync_mark) / HZ); 6883 if (!dt) dt++; 6884 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 6885 - mddev->resync_mark_cnt; 6886 6887 rt = max_sectors - resync; /* number of remaining sectors */ 6888 sector_div(rt, db/32+1); 6889 rt *= dt; 6890 rt >>= 5; 6891 6892 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 6893 ((unsigned long)rt % 60)/6); 6894 6895 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 6896 } 6897 6898 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 6899 { 6900 struct list_head *tmp; 6901 loff_t l = *pos; 6902 struct mddev *mddev; 6903 6904 if (l >= 0x10000) 6905 return NULL; 6906 if (!l--) 6907 /* header */ 6908 return (void*)1; 6909 6910 spin_lock(&all_mddevs_lock); 6911 list_for_each(tmp,&all_mddevs) 6912 if (!l--) { 6913 mddev = list_entry(tmp, struct mddev, all_mddevs); 6914 mddev_get(mddev); 6915 spin_unlock(&all_mddevs_lock); 6916 return mddev; 6917 } 6918 spin_unlock(&all_mddevs_lock); 6919 if (!l--) 6920 return (void*)2;/* tail */ 6921 return NULL; 6922 } 6923 6924 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 6925 { 6926 struct list_head *tmp; 6927 struct mddev *next_mddev, *mddev = v; 6928 6929 ++*pos; 6930 if (v == (void*)2) 6931 return NULL; 6932 6933 spin_lock(&all_mddevs_lock); 6934 if (v == (void*)1) 6935 tmp = all_mddevs.next; 6936 else 6937 tmp = mddev->all_mddevs.next; 6938 if (tmp != &all_mddevs) 6939 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 6940 else { 6941 next_mddev = (void*)2; 6942 *pos = 0x10000; 6943 } 6944 spin_unlock(&all_mddevs_lock); 6945 6946 if (v != (void*)1) 6947 mddev_put(mddev); 6948 return next_mddev; 6949 6950 } 6951 6952 static void md_seq_stop(struct seq_file *seq, void *v) 6953 { 6954 struct mddev *mddev = v; 6955 6956 if (mddev && v != (void*)1 && v != (void*)2) 6957 mddev_put(mddev); 6958 } 6959 6960 static int md_seq_show(struct seq_file *seq, void *v) 6961 { 6962 struct mddev *mddev = v; 6963 sector_t sectors; 6964 struct md_rdev *rdev; 6965 6966 if (v == (void*)1) { 6967 struct md_personality *pers; 6968 seq_printf(seq, "Personalities : "); 6969 spin_lock(&pers_lock); 6970 list_for_each_entry(pers, &pers_list, list) 6971 seq_printf(seq, "[%s] ", pers->name); 6972 6973 spin_unlock(&pers_lock); 6974 seq_printf(seq, "\n"); 6975 seq->poll_event = atomic_read(&md_event_count); 6976 return 0; 6977 } 6978 if (v == (void*)2) { 6979 status_unused(seq); 6980 return 0; 6981 } 6982 6983 if (mddev_lock(mddev) < 0) 6984 return -EINTR; 6985 6986 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 6987 seq_printf(seq, "%s : %sactive", mdname(mddev), 6988 mddev->pers ? "" : "in"); 6989 if (mddev->pers) { 6990 if (mddev->ro==1) 6991 seq_printf(seq, " (read-only)"); 6992 if (mddev->ro==2) 6993 seq_printf(seq, " (auto-read-only)"); 6994 seq_printf(seq, " %s", mddev->pers->name); 6995 } 6996 6997 sectors = 0; 6998 rdev_for_each(rdev, mddev) { 6999 char b[BDEVNAME_SIZE]; 7000 seq_printf(seq, " %s[%d]", 7001 bdevname(rdev->bdev,b), rdev->desc_nr); 7002 if (test_bit(WriteMostly, &rdev->flags)) 7003 seq_printf(seq, "(W)"); 7004 if (test_bit(Faulty, &rdev->flags)) { 7005 seq_printf(seq, "(F)"); 7006 continue; 7007 } 7008 if (rdev->raid_disk < 0) 7009 seq_printf(seq, "(S)"); /* spare */ 7010 if (test_bit(Replacement, &rdev->flags)) 7011 seq_printf(seq, "(R)"); 7012 sectors += rdev->sectors; 7013 } 7014 7015 if (!list_empty(&mddev->disks)) { 7016 if (mddev->pers) 7017 seq_printf(seq, "\n %llu blocks", 7018 (unsigned long long) 7019 mddev->array_sectors / 2); 7020 else 7021 seq_printf(seq, "\n %llu blocks", 7022 (unsigned long long)sectors / 2); 7023 } 7024 if (mddev->persistent) { 7025 if (mddev->major_version != 0 || 7026 mddev->minor_version != 90) { 7027 seq_printf(seq," super %d.%d", 7028 mddev->major_version, 7029 mddev->minor_version); 7030 } 7031 } else if (mddev->external) 7032 seq_printf(seq, " super external:%s", 7033 mddev->metadata_type); 7034 else 7035 seq_printf(seq, " super non-persistent"); 7036 7037 if (mddev->pers) { 7038 mddev->pers->status(seq, mddev); 7039 seq_printf(seq, "\n "); 7040 if (mddev->pers->sync_request) { 7041 if (mddev->curr_resync > 2) { 7042 status_resync(seq, mddev); 7043 seq_printf(seq, "\n "); 7044 } else if (mddev->curr_resync >= 1) 7045 seq_printf(seq, "\tresync=DELAYED\n "); 7046 else if (mddev->recovery_cp < MaxSector) 7047 seq_printf(seq, "\tresync=PENDING\n "); 7048 } 7049 } else 7050 seq_printf(seq, "\n "); 7051 7052 bitmap_status(seq, mddev->bitmap); 7053 7054 seq_printf(seq, "\n"); 7055 } 7056 mddev_unlock(mddev); 7057 7058 return 0; 7059 } 7060 7061 static const struct seq_operations md_seq_ops = { 7062 .start = md_seq_start, 7063 .next = md_seq_next, 7064 .stop = md_seq_stop, 7065 .show = md_seq_show, 7066 }; 7067 7068 static int md_seq_open(struct inode *inode, struct file *file) 7069 { 7070 struct seq_file *seq; 7071 int error; 7072 7073 error = seq_open(file, &md_seq_ops); 7074 if (error) 7075 return error; 7076 7077 seq = file->private_data; 7078 seq->poll_event = atomic_read(&md_event_count); 7079 return error; 7080 } 7081 7082 static unsigned int mdstat_poll(struct file *filp, poll_table *wait) 7083 { 7084 struct seq_file *seq = filp->private_data; 7085 int mask; 7086 7087 poll_wait(filp, &md_event_waiters, wait); 7088 7089 /* always allow read */ 7090 mask = POLLIN | POLLRDNORM; 7091 7092 if (seq->poll_event != atomic_read(&md_event_count)) 7093 mask |= POLLERR | POLLPRI; 7094 return mask; 7095 } 7096 7097 static const struct file_operations md_seq_fops = { 7098 .owner = THIS_MODULE, 7099 .open = md_seq_open, 7100 .read = seq_read, 7101 .llseek = seq_lseek, 7102 .release = seq_release_private, 7103 .poll = mdstat_poll, 7104 }; 7105 7106 int register_md_personality(struct md_personality *p) 7107 { 7108 spin_lock(&pers_lock); 7109 list_add_tail(&p->list, &pers_list); 7110 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level); 7111 spin_unlock(&pers_lock); 7112 return 0; 7113 } 7114 7115 int unregister_md_personality(struct md_personality *p) 7116 { 7117 printk(KERN_INFO "md: %s personality unregistered\n", p->name); 7118 spin_lock(&pers_lock); 7119 list_del_init(&p->list); 7120 spin_unlock(&pers_lock); 7121 return 0; 7122 } 7123 7124 static int is_mddev_idle(struct mddev *mddev, int init) 7125 { 7126 struct md_rdev * rdev; 7127 int idle; 7128 int curr_events; 7129 7130 idle = 1; 7131 rcu_read_lock(); 7132 rdev_for_each_rcu(rdev, mddev) { 7133 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7134 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7135 (int)part_stat_read(&disk->part0, sectors[1]) - 7136 atomic_read(&disk->sync_io); 7137 /* sync IO will cause sync_io to increase before the disk_stats 7138 * as sync_io is counted when a request starts, and 7139 * disk_stats is counted when it completes. 7140 * So resync activity will cause curr_events to be smaller than 7141 * when there was no such activity. 7142 * non-sync IO will cause disk_stat to increase without 7143 * increasing sync_io so curr_events will (eventually) 7144 * be larger than it was before. Once it becomes 7145 * substantially larger, the test below will cause 7146 * the array to appear non-idle, and resync will slow 7147 * down. 7148 * If there is a lot of outstanding resync activity when 7149 * we set last_event to curr_events, then all that activity 7150 * completing might cause the array to appear non-idle 7151 * and resync will be slowed down even though there might 7152 * not have been non-resync activity. This will only 7153 * happen once though. 'last_events' will soon reflect 7154 * the state where there is little or no outstanding 7155 * resync requests, and further resync activity will 7156 * always make curr_events less than last_events. 7157 * 7158 */ 7159 if (init || curr_events - rdev->last_events > 64) { 7160 rdev->last_events = curr_events; 7161 idle = 0; 7162 } 7163 } 7164 rcu_read_unlock(); 7165 return idle; 7166 } 7167 7168 void md_done_sync(struct mddev *mddev, int blocks, int ok) 7169 { 7170 /* another "blocks" (512byte) blocks have been synced */ 7171 atomic_sub(blocks, &mddev->recovery_active); 7172 wake_up(&mddev->recovery_wait); 7173 if (!ok) { 7174 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7175 md_wakeup_thread(mddev->thread); 7176 // stop recovery, signal do_sync .... 7177 } 7178 } 7179 7180 7181 /* md_write_start(mddev, bi) 7182 * If we need to update some array metadata (e.g. 'active' flag 7183 * in superblock) before writing, schedule a superblock update 7184 * and wait for it to complete. 7185 */ 7186 void md_write_start(struct mddev *mddev, struct bio *bi) 7187 { 7188 int did_change = 0; 7189 if (bio_data_dir(bi) != WRITE) 7190 return; 7191 7192 BUG_ON(mddev->ro == 1); 7193 if (mddev->ro == 2) { 7194 /* need to switch to read/write */ 7195 mddev->ro = 0; 7196 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7197 md_wakeup_thread(mddev->thread); 7198 md_wakeup_thread(mddev->sync_thread); 7199 did_change = 1; 7200 } 7201 atomic_inc(&mddev->writes_pending); 7202 if (mddev->safemode == 1) 7203 mddev->safemode = 0; 7204 if (mddev->in_sync) { 7205 spin_lock_irq(&mddev->write_lock); 7206 if (mddev->in_sync) { 7207 mddev->in_sync = 0; 7208 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7209 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7210 md_wakeup_thread(mddev->thread); 7211 did_change = 1; 7212 } 7213 spin_unlock_irq(&mddev->write_lock); 7214 } 7215 if (did_change) 7216 sysfs_notify_dirent_safe(mddev->sysfs_state); 7217 wait_event(mddev->sb_wait, 7218 !test_bit(MD_CHANGE_PENDING, &mddev->flags)); 7219 } 7220 7221 void md_write_end(struct mddev *mddev) 7222 { 7223 if (atomic_dec_and_test(&mddev->writes_pending)) { 7224 if (mddev->safemode == 2) 7225 md_wakeup_thread(mddev->thread); 7226 else if (mddev->safemode_delay) 7227 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay); 7228 } 7229 } 7230 7231 /* md_allow_write(mddev) 7232 * Calling this ensures that the array is marked 'active' so that writes 7233 * may proceed without blocking. It is important to call this before 7234 * attempting a GFP_KERNEL allocation while holding the mddev lock. 7235 * Must be called with mddev_lock held. 7236 * 7237 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock 7238 * is dropped, so return -EAGAIN after notifying userspace. 7239 */ 7240 int md_allow_write(struct mddev *mddev) 7241 { 7242 if (!mddev->pers) 7243 return 0; 7244 if (mddev->ro) 7245 return 0; 7246 if (!mddev->pers->sync_request) 7247 return 0; 7248 7249 spin_lock_irq(&mddev->write_lock); 7250 if (mddev->in_sync) { 7251 mddev->in_sync = 0; 7252 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7253 set_bit(MD_CHANGE_PENDING, &mddev->flags); 7254 if (mddev->safemode_delay && 7255 mddev->safemode == 0) 7256 mddev->safemode = 1; 7257 spin_unlock_irq(&mddev->write_lock); 7258 md_update_sb(mddev, 0); 7259 sysfs_notify_dirent_safe(mddev->sysfs_state); 7260 } else 7261 spin_unlock_irq(&mddev->write_lock); 7262 7263 if (test_bit(MD_CHANGE_PENDING, &mddev->flags)) 7264 return -EAGAIN; 7265 else 7266 return 0; 7267 } 7268 EXPORT_SYMBOL_GPL(md_allow_write); 7269 7270 #define SYNC_MARKS 10 7271 #define SYNC_MARK_STEP (3*HZ) 7272 void md_do_sync(struct md_thread *thread) 7273 { 7274 struct mddev *mddev = thread->mddev; 7275 struct mddev *mddev2; 7276 unsigned int currspeed = 0, 7277 window; 7278 sector_t max_sectors,j, io_sectors; 7279 unsigned long mark[SYNC_MARKS]; 7280 sector_t mark_cnt[SYNC_MARKS]; 7281 int last_mark,m; 7282 struct list_head *tmp; 7283 sector_t last_check; 7284 int skipped = 0; 7285 struct md_rdev *rdev; 7286 char *desc; 7287 struct blk_plug plug; 7288 7289 /* just incase thread restarts... */ 7290 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7291 return; 7292 if (mddev->ro) /* never try to sync a read-only array */ 7293 return; 7294 7295 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7296 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) 7297 desc = "data-check"; 7298 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7299 desc = "requested-resync"; 7300 else 7301 desc = "resync"; 7302 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7303 desc = "reshape"; 7304 else 7305 desc = "recovery"; 7306 7307 /* we overload curr_resync somewhat here. 7308 * 0 == not engaged in resync at all 7309 * 2 == checking that there is no conflict with another sync 7310 * 1 == like 2, but have yielded to allow conflicting resync to 7311 * commense 7312 * other == active in resync - this many blocks 7313 * 7314 * Before starting a resync we must have set curr_resync to 7315 * 2, and then checked that every "conflicting" array has curr_resync 7316 * less than ours. When we find one that is the same or higher 7317 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 7318 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 7319 * This will mean we have to start checking from the beginning again. 7320 * 7321 */ 7322 7323 do { 7324 mddev->curr_resync = 2; 7325 7326 try_again: 7327 if (kthread_should_stop()) 7328 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7329 7330 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7331 goto skip; 7332 for_each_mddev(mddev2, tmp) { 7333 if (mddev2 == mddev) 7334 continue; 7335 if (!mddev->parallel_resync 7336 && mddev2->curr_resync 7337 && match_mddev_units(mddev, mddev2)) { 7338 DEFINE_WAIT(wq); 7339 if (mddev < mddev2 && mddev->curr_resync == 2) { 7340 /* arbitrarily yield */ 7341 mddev->curr_resync = 1; 7342 wake_up(&resync_wait); 7343 } 7344 if (mddev > mddev2 && mddev->curr_resync == 1) 7345 /* no need to wait here, we can wait the next 7346 * time 'round when curr_resync == 2 7347 */ 7348 continue; 7349 /* We need to wait 'interruptible' so as not to 7350 * contribute to the load average, and not to 7351 * be caught by 'softlockup' 7352 */ 7353 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 7354 if (!kthread_should_stop() && 7355 mddev2->curr_resync >= mddev->curr_resync) { 7356 printk(KERN_INFO "md: delaying %s of %s" 7357 " until %s has finished (they" 7358 " share one or more physical units)\n", 7359 desc, mdname(mddev), mdname(mddev2)); 7360 mddev_put(mddev2); 7361 if (signal_pending(current)) 7362 flush_signals(current); 7363 schedule(); 7364 finish_wait(&resync_wait, &wq); 7365 goto try_again; 7366 } 7367 finish_wait(&resync_wait, &wq); 7368 } 7369 } 7370 } while (mddev->curr_resync < 2); 7371 7372 j = 0; 7373 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7374 /* resync follows the size requested by the personality, 7375 * which defaults to physical size, but can be virtual size 7376 */ 7377 max_sectors = mddev->resync_max_sectors; 7378 atomic64_set(&mddev->resync_mismatches, 0); 7379 /* we don't use the checkpoint if there's a bitmap */ 7380 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7381 j = mddev->resync_min; 7382 else if (!mddev->bitmap) 7383 j = mddev->recovery_cp; 7384 7385 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7386 max_sectors = mddev->resync_max_sectors; 7387 else { 7388 /* recovery follows the physical size of devices */ 7389 max_sectors = mddev->dev_sectors; 7390 j = MaxSector; 7391 rcu_read_lock(); 7392 rdev_for_each_rcu(rdev, mddev) 7393 if (rdev->raid_disk >= 0 && 7394 !test_bit(Faulty, &rdev->flags) && 7395 !test_bit(In_sync, &rdev->flags) && 7396 rdev->recovery_offset < j) 7397 j = rdev->recovery_offset; 7398 rcu_read_unlock(); 7399 } 7400 7401 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev)); 7402 printk(KERN_INFO "md: minimum _guaranteed_ speed:" 7403 " %d KB/sec/disk.\n", speed_min(mddev)); 7404 printk(KERN_INFO "md: using maximum available idle IO bandwidth " 7405 "(but not more than %d KB/sec) for %s.\n", 7406 speed_max(mddev), desc); 7407 7408 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 7409 7410 io_sectors = 0; 7411 for (m = 0; m < SYNC_MARKS; m++) { 7412 mark[m] = jiffies; 7413 mark_cnt[m] = io_sectors; 7414 } 7415 last_mark = 0; 7416 mddev->resync_mark = mark[last_mark]; 7417 mddev->resync_mark_cnt = mark_cnt[last_mark]; 7418 7419 /* 7420 * Tune reconstruction: 7421 */ 7422 window = 32*(PAGE_SIZE/512); 7423 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n", 7424 window/2, (unsigned long long)max_sectors/2); 7425 7426 atomic_set(&mddev->recovery_active, 0); 7427 last_check = 0; 7428 7429 if (j>2) { 7430 printk(KERN_INFO 7431 "md: resuming %s of %s from checkpoint.\n", 7432 desc, mdname(mddev)); 7433 mddev->curr_resync = j; 7434 } else 7435 mddev->curr_resync = 3; /* no longer delayed */ 7436 mddev->curr_resync_completed = j; 7437 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7438 md_new_event(mddev); 7439 7440 blk_start_plug(&plug); 7441 while (j < max_sectors) { 7442 sector_t sectors; 7443 7444 skipped = 0; 7445 7446 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7447 ((mddev->curr_resync > mddev->curr_resync_completed && 7448 (mddev->curr_resync - mddev->curr_resync_completed) 7449 > (max_sectors >> 4)) || 7450 (j - mddev->curr_resync_completed)*2 7451 >= mddev->resync_max - mddev->curr_resync_completed 7452 )) { 7453 /* time to update curr_resync_completed */ 7454 wait_event(mddev->recovery_wait, 7455 atomic_read(&mddev->recovery_active) == 0); 7456 mddev->curr_resync_completed = j; 7457 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7458 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 7459 } 7460 7461 while (j >= mddev->resync_max && !kthread_should_stop()) { 7462 /* As this condition is controlled by user-space, 7463 * we can block indefinitely, so use '_interruptible' 7464 * to avoid triggering warnings. 7465 */ 7466 flush_signals(current); /* just in case */ 7467 wait_event_interruptible(mddev->recovery_wait, 7468 mddev->resync_max > j 7469 || kthread_should_stop()); 7470 } 7471 7472 if (kthread_should_stop()) 7473 goto interrupted; 7474 7475 sectors = mddev->pers->sync_request(mddev, j, &skipped, 7476 currspeed < speed_min(mddev)); 7477 if (sectors == 0) { 7478 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7479 goto out; 7480 } 7481 7482 if (!skipped) { /* actual IO requested */ 7483 io_sectors += sectors; 7484 atomic_add(sectors, &mddev->recovery_active); 7485 } 7486 7487 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7488 break; 7489 7490 j += sectors; 7491 if (j > 2) 7492 mddev->curr_resync = j; 7493 mddev->curr_mark_cnt = io_sectors; 7494 if (last_check == 0) 7495 /* this is the earliest that rebuild will be 7496 * visible in /proc/mdstat 7497 */ 7498 md_new_event(mddev); 7499 7500 if (last_check + window > io_sectors || j == max_sectors) 7501 continue; 7502 7503 last_check = io_sectors; 7504 repeat: 7505 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 7506 /* step marks */ 7507 int next = (last_mark+1) % SYNC_MARKS; 7508 7509 mddev->resync_mark = mark[next]; 7510 mddev->resync_mark_cnt = mark_cnt[next]; 7511 mark[next] = jiffies; 7512 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 7513 last_mark = next; 7514 } 7515 7516 7517 if (kthread_should_stop()) 7518 goto interrupted; 7519 7520 7521 /* 7522 * this loop exits only if either when we are slower than 7523 * the 'hard' speed limit, or the system was IO-idle for 7524 * a jiffy. 7525 * the system might be non-idle CPU-wise, but we only care 7526 * about not overloading the IO subsystem. (things like an 7527 * e2fsck being done on the RAID array should execute fast) 7528 */ 7529 cond_resched(); 7530 7531 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2 7532 /((jiffies-mddev->resync_mark)/HZ +1) +1; 7533 7534 if (currspeed > speed_min(mddev)) { 7535 if ((currspeed > speed_max(mddev)) || 7536 !is_mddev_idle(mddev, 0)) { 7537 msleep(500); 7538 goto repeat; 7539 } 7540 } 7541 } 7542 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc); 7543 /* 7544 * this also signals 'finished resyncing' to md_stop 7545 */ 7546 out: 7547 blk_finish_plug(&plug); 7548 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 7549 7550 /* tell personality that we are finished */ 7551 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1); 7552 7553 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 7554 mddev->curr_resync > 2) { 7555 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 7556 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7557 if (mddev->curr_resync >= mddev->recovery_cp) { 7558 printk(KERN_INFO 7559 "md: checkpointing %s of %s.\n", 7560 desc, mdname(mddev)); 7561 mddev->recovery_cp = 7562 mddev->curr_resync_completed; 7563 } 7564 } else 7565 mddev->recovery_cp = MaxSector; 7566 } else { 7567 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 7568 mddev->curr_resync = MaxSector; 7569 rcu_read_lock(); 7570 rdev_for_each_rcu(rdev, mddev) 7571 if (rdev->raid_disk >= 0 && 7572 mddev->delta_disks >= 0 && 7573 !test_bit(Faulty, &rdev->flags) && 7574 !test_bit(In_sync, &rdev->flags) && 7575 rdev->recovery_offset < mddev->curr_resync) 7576 rdev->recovery_offset = mddev->curr_resync; 7577 rcu_read_unlock(); 7578 } 7579 } 7580 skip: 7581 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7582 7583 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 7584 /* We completed so min/max setting can be forgotten if used. */ 7585 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7586 mddev->resync_min = 0; 7587 mddev->resync_max = MaxSector; 7588 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 7589 mddev->resync_min = mddev->curr_resync_completed; 7590 mddev->curr_resync = 0; 7591 wake_up(&resync_wait); 7592 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 7593 md_wakeup_thread(mddev->thread); 7594 return; 7595 7596 interrupted: 7597 /* 7598 * got a signal, exit. 7599 */ 7600 printk(KERN_INFO 7601 "md: md_do_sync() got signal ... exiting\n"); 7602 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7603 goto out; 7604 7605 } 7606 EXPORT_SYMBOL_GPL(md_do_sync); 7607 7608 static int remove_and_add_spares(struct mddev *mddev) 7609 { 7610 struct md_rdev *rdev; 7611 int spares = 0; 7612 int removed = 0; 7613 7614 rdev_for_each(rdev, mddev) 7615 if (rdev->raid_disk >= 0 && 7616 !test_bit(Blocked, &rdev->flags) && 7617 (test_bit(Faulty, &rdev->flags) || 7618 ! test_bit(In_sync, &rdev->flags)) && 7619 atomic_read(&rdev->nr_pending)==0) { 7620 if (mddev->pers->hot_remove_disk( 7621 mddev, rdev) == 0) { 7622 sysfs_unlink_rdev(mddev, rdev); 7623 rdev->raid_disk = -1; 7624 removed++; 7625 } 7626 } 7627 if (removed) 7628 sysfs_notify(&mddev->kobj, NULL, 7629 "degraded"); 7630 7631 7632 rdev_for_each(rdev, mddev) { 7633 if (rdev->raid_disk >= 0 && 7634 !test_bit(In_sync, &rdev->flags) && 7635 !test_bit(Faulty, &rdev->flags)) 7636 spares++; 7637 if (rdev->raid_disk < 0 7638 && !test_bit(Faulty, &rdev->flags)) { 7639 rdev->recovery_offset = 0; 7640 if (mddev->pers-> 7641 hot_add_disk(mddev, rdev) == 0) { 7642 if (sysfs_link_rdev(mddev, rdev)) 7643 /* failure here is OK */; 7644 spares++; 7645 md_new_event(mddev); 7646 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7647 } 7648 } 7649 } 7650 if (removed) 7651 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7652 return spares; 7653 } 7654 7655 static void reap_sync_thread(struct mddev *mddev) 7656 { 7657 struct md_rdev *rdev; 7658 7659 /* resync has finished, collect result */ 7660 md_unregister_thread(&mddev->sync_thread); 7661 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 7662 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 7663 /* success...*/ 7664 /* activate any spares */ 7665 if (mddev->pers->spare_active(mddev)) { 7666 sysfs_notify(&mddev->kobj, NULL, 7667 "degraded"); 7668 set_bit(MD_CHANGE_DEVS, &mddev->flags); 7669 } 7670 } 7671 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 7672 mddev->pers->finish_reshape) 7673 mddev->pers->finish_reshape(mddev); 7674 7675 /* If array is no-longer degraded, then any saved_raid_disk 7676 * information must be scrapped. Also if any device is now 7677 * In_sync we must scrape the saved_raid_disk for that device 7678 * do the superblock for an incrementally recovered device 7679 * written out. 7680 */ 7681 rdev_for_each(rdev, mddev) 7682 if (!mddev->degraded || 7683 test_bit(In_sync, &rdev->flags)) 7684 rdev->saved_raid_disk = -1; 7685 7686 md_update_sb(mddev, 1); 7687 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7688 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7689 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7690 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7691 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7692 /* flag recovery needed just to double check */ 7693 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7694 sysfs_notify_dirent_safe(mddev->sysfs_action); 7695 md_new_event(mddev); 7696 if (mddev->event_work.func) 7697 queue_work(md_misc_wq, &mddev->event_work); 7698 } 7699 7700 /* 7701 * This routine is regularly called by all per-raid-array threads to 7702 * deal with generic issues like resync and super-block update. 7703 * Raid personalities that don't have a thread (linear/raid0) do not 7704 * need this as they never do any recovery or update the superblock. 7705 * 7706 * It does not do any resync itself, but rather "forks" off other threads 7707 * to do that as needed. 7708 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 7709 * "->recovery" and create a thread at ->sync_thread. 7710 * When the thread finishes it sets MD_RECOVERY_DONE 7711 * and wakeups up this thread which will reap the thread and finish up. 7712 * This thread also removes any faulty devices (with nr_pending == 0). 7713 * 7714 * The overall approach is: 7715 * 1/ if the superblock needs updating, update it. 7716 * 2/ If a recovery thread is running, don't do anything else. 7717 * 3/ If recovery has finished, clean up, possibly marking spares active. 7718 * 4/ If there are any faulty devices, remove them. 7719 * 5/ If array is degraded, try to add spares devices 7720 * 6/ If array has spares or is not in-sync, start a resync thread. 7721 */ 7722 void md_check_recovery(struct mddev *mddev) 7723 { 7724 if (mddev->suspended) 7725 return; 7726 7727 if (mddev->bitmap) 7728 bitmap_daemon_work(mddev); 7729 7730 if (signal_pending(current)) { 7731 if (mddev->pers->sync_request && !mddev->external) { 7732 printk(KERN_INFO "md: %s in immediate safe mode\n", 7733 mdname(mddev)); 7734 mddev->safemode = 2; 7735 } 7736 flush_signals(current); 7737 } 7738 7739 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 7740 return; 7741 if ( ! ( 7742 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) || 7743 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7744 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 7745 (mddev->external == 0 && mddev->safemode == 1) || 7746 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending) 7747 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 7748 )) 7749 return; 7750 7751 if (mddev_trylock(mddev)) { 7752 int spares = 0; 7753 7754 if (mddev->ro) { 7755 /* Only thing we do on a ro array is remove 7756 * failed devices. 7757 */ 7758 struct md_rdev *rdev; 7759 rdev_for_each(rdev, mddev) 7760 if (rdev->raid_disk >= 0 && 7761 !test_bit(Blocked, &rdev->flags) && 7762 test_bit(Faulty, &rdev->flags) && 7763 atomic_read(&rdev->nr_pending)==0) { 7764 if (mddev->pers->hot_remove_disk( 7765 mddev, rdev) == 0) { 7766 sysfs_unlink_rdev(mddev, rdev); 7767 rdev->raid_disk = -1; 7768 } 7769 } 7770 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7771 goto unlock; 7772 } 7773 7774 if (!mddev->external) { 7775 int did_change = 0; 7776 spin_lock_irq(&mddev->write_lock); 7777 if (mddev->safemode && 7778 !atomic_read(&mddev->writes_pending) && 7779 !mddev->in_sync && 7780 mddev->recovery_cp == MaxSector) { 7781 mddev->in_sync = 1; 7782 did_change = 1; 7783 set_bit(MD_CHANGE_CLEAN, &mddev->flags); 7784 } 7785 if (mddev->safemode == 1) 7786 mddev->safemode = 0; 7787 spin_unlock_irq(&mddev->write_lock); 7788 if (did_change) 7789 sysfs_notify_dirent_safe(mddev->sysfs_state); 7790 } 7791 7792 if (mddev->flags) 7793 md_update_sb(mddev, 0); 7794 7795 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 7796 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 7797 /* resync/recovery still happening */ 7798 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7799 goto unlock; 7800 } 7801 if (mddev->sync_thread) { 7802 reap_sync_thread(mddev); 7803 goto unlock; 7804 } 7805 /* Set RUNNING before clearing NEEDED to avoid 7806 * any transients in the value of "sync_action". 7807 */ 7808 mddev->curr_resync_completed = 0; 7809 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7810 /* Clear some bits that don't mean anything, but 7811 * might be left set 7812 */ 7813 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 7814 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 7815 7816 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 7817 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 7818 goto unlock; 7819 /* no recovery is running. 7820 * remove any failed drives, then 7821 * add spares if possible. 7822 * Spares are also removed and re-added, to allow 7823 * the personality to fail the re-add. 7824 */ 7825 7826 if (mddev->reshape_position != MaxSector) { 7827 if (mddev->pers->check_reshape == NULL || 7828 mddev->pers->check_reshape(mddev) != 0) 7829 /* Cannot proceed */ 7830 goto unlock; 7831 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7832 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7833 } else if ((spares = remove_and_add_spares(mddev))) { 7834 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7835 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7836 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7837 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7838 } else if (mddev->recovery_cp < MaxSector) { 7839 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7840 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7841 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 7842 /* nothing to be done ... */ 7843 goto unlock; 7844 7845 if (mddev->pers->sync_request) { 7846 if (spares) { 7847 /* We are adding a device or devices to an array 7848 * which has the bitmap stored on all devices. 7849 * So make sure all bitmap pages get written 7850 */ 7851 bitmap_write_all(mddev->bitmap); 7852 } 7853 mddev->sync_thread = md_register_thread(md_do_sync, 7854 mddev, 7855 "resync"); 7856 if (!mddev->sync_thread) { 7857 printk(KERN_ERR "%s: could not start resync" 7858 " thread...\n", 7859 mdname(mddev)); 7860 /* leave the spares where they are, it shouldn't hurt */ 7861 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7862 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 7863 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 7864 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 7865 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 7866 } else 7867 md_wakeup_thread(mddev->sync_thread); 7868 sysfs_notify_dirent_safe(mddev->sysfs_action); 7869 md_new_event(mddev); 7870 } 7871 unlock: 7872 if (!mddev->sync_thread) { 7873 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 7874 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 7875 &mddev->recovery)) 7876 if (mddev->sysfs_action) 7877 sysfs_notify_dirent_safe(mddev->sysfs_action); 7878 } 7879 mddev_unlock(mddev); 7880 } 7881 } 7882 7883 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 7884 { 7885 sysfs_notify_dirent_safe(rdev->sysfs_state); 7886 wait_event_timeout(rdev->blocked_wait, 7887 !test_bit(Blocked, &rdev->flags) && 7888 !test_bit(BlockedBadBlocks, &rdev->flags), 7889 msecs_to_jiffies(5000)); 7890 rdev_dec_pending(rdev, mddev); 7891 } 7892 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 7893 7894 void md_finish_reshape(struct mddev *mddev) 7895 { 7896 /* called be personality module when reshape completes. */ 7897 struct md_rdev *rdev; 7898 7899 rdev_for_each(rdev, mddev) { 7900 if (rdev->data_offset > rdev->new_data_offset) 7901 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 7902 else 7903 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 7904 rdev->data_offset = rdev->new_data_offset; 7905 } 7906 } 7907 EXPORT_SYMBOL(md_finish_reshape); 7908 7909 /* Bad block management. 7910 * We can record which blocks on each device are 'bad' and so just 7911 * fail those blocks, or that stripe, rather than the whole device. 7912 * Entries in the bad-block table are 64bits wide. This comprises: 7913 * Length of bad-range, in sectors: 0-511 for lengths 1-512 7914 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes) 7915 * A 'shift' can be set so that larger blocks are tracked and 7916 * consequently larger devices can be covered. 7917 * 'Acknowledged' flag - 1 bit. - the most significant bit. 7918 * 7919 * Locking of the bad-block table uses a seqlock so md_is_badblock 7920 * might need to retry if it is very unlucky. 7921 * We will sometimes want to check for bad blocks in a bi_end_io function, 7922 * so we use the write_seqlock_irq variant. 7923 * 7924 * When looking for a bad block we specify a range and want to 7925 * know if any block in the range is bad. So we binary-search 7926 * to the last range that starts at-or-before the given endpoint, 7927 * (or "before the sector after the target range") 7928 * then see if it ends after the given start. 7929 * We return 7930 * 0 if there are no known bad blocks in the range 7931 * 1 if there are known bad block which are all acknowledged 7932 * -1 if there are bad blocks which have not yet been acknowledged in metadata. 7933 * plus the start/length of the first bad section we overlap. 7934 */ 7935 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors, 7936 sector_t *first_bad, int *bad_sectors) 7937 { 7938 int hi; 7939 int lo = 0; 7940 u64 *p = bb->page; 7941 int rv = 0; 7942 sector_t target = s + sectors; 7943 unsigned seq; 7944 7945 if (bb->shift > 0) { 7946 /* round the start down, and the end up */ 7947 s >>= bb->shift; 7948 target += (1<<bb->shift) - 1; 7949 target >>= bb->shift; 7950 sectors = target - s; 7951 } 7952 /* 'target' is now the first block after the bad range */ 7953 7954 retry: 7955 seq = read_seqbegin(&bb->lock); 7956 7957 hi = bb->count; 7958 7959 /* Binary search between lo and hi for 'target' 7960 * i.e. for the last range that starts before 'target' 7961 */ 7962 /* INVARIANT: ranges before 'lo' and at-or-after 'hi' 7963 * are known not to be the last range before target. 7964 * VARIANT: hi-lo is the number of possible 7965 * ranges, and decreases until it reaches 1 7966 */ 7967 while (hi - lo > 1) { 7968 int mid = (lo + hi) / 2; 7969 sector_t a = BB_OFFSET(p[mid]); 7970 if (a < target) 7971 /* This could still be the one, earlier ranges 7972 * could not. */ 7973 lo = mid; 7974 else 7975 /* This and later ranges are definitely out. */ 7976 hi = mid; 7977 } 7978 /* 'lo' might be the last that started before target, but 'hi' isn't */ 7979 if (hi > lo) { 7980 /* need to check all range that end after 's' to see if 7981 * any are unacknowledged. 7982 */ 7983 while (lo >= 0 && 7984 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 7985 if (BB_OFFSET(p[lo]) < target) { 7986 /* starts before the end, and finishes after 7987 * the start, so they must overlap 7988 */ 7989 if (rv != -1 && BB_ACK(p[lo])) 7990 rv = 1; 7991 else 7992 rv = -1; 7993 *first_bad = BB_OFFSET(p[lo]); 7994 *bad_sectors = BB_LEN(p[lo]); 7995 } 7996 lo--; 7997 } 7998 } 7999 8000 if (read_seqretry(&bb->lock, seq)) 8001 goto retry; 8002 8003 return rv; 8004 } 8005 EXPORT_SYMBOL_GPL(md_is_badblock); 8006 8007 /* 8008 * Add a range of bad blocks to the table. 8009 * This might extend the table, or might contract it 8010 * if two adjacent ranges can be merged. 8011 * We binary-search to find the 'insertion' point, then 8012 * decide how best to handle it. 8013 */ 8014 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors, 8015 int acknowledged) 8016 { 8017 u64 *p; 8018 int lo, hi; 8019 int rv = 1; 8020 8021 if (bb->shift < 0) 8022 /* badblocks are disabled */ 8023 return 0; 8024 8025 if (bb->shift) { 8026 /* round the start down, and the end up */ 8027 sector_t next = s + sectors; 8028 s >>= bb->shift; 8029 next += (1<<bb->shift) - 1; 8030 next >>= bb->shift; 8031 sectors = next - s; 8032 } 8033 8034 write_seqlock_irq(&bb->lock); 8035 8036 p = bb->page; 8037 lo = 0; 8038 hi = bb->count; 8039 /* Find the last range that starts at-or-before 's' */ 8040 while (hi - lo > 1) { 8041 int mid = (lo + hi) / 2; 8042 sector_t a = BB_OFFSET(p[mid]); 8043 if (a <= s) 8044 lo = mid; 8045 else 8046 hi = mid; 8047 } 8048 if (hi > lo && BB_OFFSET(p[lo]) > s) 8049 hi = lo; 8050 8051 if (hi > lo) { 8052 /* we found a range that might merge with the start 8053 * of our new range 8054 */ 8055 sector_t a = BB_OFFSET(p[lo]); 8056 sector_t e = a + BB_LEN(p[lo]); 8057 int ack = BB_ACK(p[lo]); 8058 if (e >= s) { 8059 /* Yes, we can merge with a previous range */ 8060 if (s == a && s + sectors >= e) 8061 /* new range covers old */ 8062 ack = acknowledged; 8063 else 8064 ack = ack && acknowledged; 8065 8066 if (e < s + sectors) 8067 e = s + sectors; 8068 if (e - a <= BB_MAX_LEN) { 8069 p[lo] = BB_MAKE(a, e-a, ack); 8070 s = e; 8071 } else { 8072 /* does not all fit in one range, 8073 * make p[lo] maximal 8074 */ 8075 if (BB_LEN(p[lo]) != BB_MAX_LEN) 8076 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack); 8077 s = a + BB_MAX_LEN; 8078 } 8079 sectors = e - s; 8080 } 8081 } 8082 if (sectors && hi < bb->count) { 8083 /* 'hi' points to the first range that starts after 's'. 8084 * Maybe we can merge with the start of that range */ 8085 sector_t a = BB_OFFSET(p[hi]); 8086 sector_t e = a + BB_LEN(p[hi]); 8087 int ack = BB_ACK(p[hi]); 8088 if (a <= s + sectors) { 8089 /* merging is possible */ 8090 if (e <= s + sectors) { 8091 /* full overlap */ 8092 e = s + sectors; 8093 ack = acknowledged; 8094 } else 8095 ack = ack && acknowledged; 8096 8097 a = s; 8098 if (e - a <= BB_MAX_LEN) { 8099 p[hi] = BB_MAKE(a, e-a, ack); 8100 s = e; 8101 } else { 8102 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack); 8103 s = a + BB_MAX_LEN; 8104 } 8105 sectors = e - s; 8106 lo = hi; 8107 hi++; 8108 } 8109 } 8110 if (sectors == 0 && hi < bb->count) { 8111 /* we might be able to combine lo and hi */ 8112 /* Note: 's' is at the end of 'lo' */ 8113 sector_t a = BB_OFFSET(p[hi]); 8114 int lolen = BB_LEN(p[lo]); 8115 int hilen = BB_LEN(p[hi]); 8116 int newlen = lolen + hilen - (s - a); 8117 if (s >= a && newlen < BB_MAX_LEN) { 8118 /* yes, we can combine them */ 8119 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]); 8120 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack); 8121 memmove(p + hi, p + hi + 1, 8122 (bb->count - hi - 1) * 8); 8123 bb->count--; 8124 } 8125 } 8126 while (sectors) { 8127 /* didn't merge (it all). 8128 * Need to add a range just before 'hi' */ 8129 if (bb->count >= MD_MAX_BADBLOCKS) { 8130 /* No room for more */ 8131 rv = 0; 8132 break; 8133 } else { 8134 int this_sectors = sectors; 8135 memmove(p + hi + 1, p + hi, 8136 (bb->count - hi) * 8); 8137 bb->count++; 8138 8139 if (this_sectors > BB_MAX_LEN) 8140 this_sectors = BB_MAX_LEN; 8141 p[hi] = BB_MAKE(s, this_sectors, acknowledged); 8142 sectors -= this_sectors; 8143 s += this_sectors; 8144 } 8145 } 8146 8147 bb->changed = 1; 8148 if (!acknowledged) 8149 bb->unacked_exist = 1; 8150 write_sequnlock_irq(&bb->lock); 8151 8152 return rv; 8153 } 8154 8155 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8156 int is_new) 8157 { 8158 int rv; 8159 if (is_new) 8160 s += rdev->new_data_offset; 8161 else 8162 s += rdev->data_offset; 8163 rv = md_set_badblocks(&rdev->badblocks, 8164 s, sectors, 0); 8165 if (rv) { 8166 /* Make sure they get written out promptly */ 8167 sysfs_notify_dirent_safe(rdev->sysfs_state); 8168 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags); 8169 md_wakeup_thread(rdev->mddev->thread); 8170 } 8171 return rv; 8172 } 8173 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8174 8175 /* 8176 * Remove a range of bad blocks from the table. 8177 * This may involve extending the table if we spilt a region, 8178 * but it must not fail. So if the table becomes full, we just 8179 * drop the remove request. 8180 */ 8181 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors) 8182 { 8183 u64 *p; 8184 int lo, hi; 8185 sector_t target = s + sectors; 8186 int rv = 0; 8187 8188 if (bb->shift > 0) { 8189 /* When clearing we round the start up and the end down. 8190 * This should not matter as the shift should align with 8191 * the block size and no rounding should ever be needed. 8192 * However it is better the think a block is bad when it 8193 * isn't than to think a block is not bad when it is. 8194 */ 8195 s += (1<<bb->shift) - 1; 8196 s >>= bb->shift; 8197 target >>= bb->shift; 8198 sectors = target - s; 8199 } 8200 8201 write_seqlock_irq(&bb->lock); 8202 8203 p = bb->page; 8204 lo = 0; 8205 hi = bb->count; 8206 /* Find the last range that starts before 'target' */ 8207 while (hi - lo > 1) { 8208 int mid = (lo + hi) / 2; 8209 sector_t a = BB_OFFSET(p[mid]); 8210 if (a < target) 8211 lo = mid; 8212 else 8213 hi = mid; 8214 } 8215 if (hi > lo) { 8216 /* p[lo] is the last range that could overlap the 8217 * current range. Earlier ranges could also overlap, 8218 * but only this one can overlap the end of the range. 8219 */ 8220 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) { 8221 /* Partial overlap, leave the tail of this range */ 8222 int ack = BB_ACK(p[lo]); 8223 sector_t a = BB_OFFSET(p[lo]); 8224 sector_t end = a + BB_LEN(p[lo]); 8225 8226 if (a < s) { 8227 /* we need to split this range */ 8228 if (bb->count >= MD_MAX_BADBLOCKS) { 8229 rv = 0; 8230 goto out; 8231 } 8232 memmove(p+lo+1, p+lo, (bb->count - lo) * 8); 8233 bb->count++; 8234 p[lo] = BB_MAKE(a, s-a, ack); 8235 lo++; 8236 } 8237 p[lo] = BB_MAKE(target, end - target, ack); 8238 /* there is no longer an overlap */ 8239 hi = lo; 8240 lo--; 8241 } 8242 while (lo >= 0 && 8243 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) { 8244 /* This range does overlap */ 8245 if (BB_OFFSET(p[lo]) < s) { 8246 /* Keep the early parts of this range. */ 8247 int ack = BB_ACK(p[lo]); 8248 sector_t start = BB_OFFSET(p[lo]); 8249 p[lo] = BB_MAKE(start, s - start, ack); 8250 /* now low doesn't overlap, so.. */ 8251 break; 8252 } 8253 lo--; 8254 } 8255 /* 'lo' is strictly before, 'hi' is strictly after, 8256 * anything between needs to be discarded 8257 */ 8258 if (hi - lo > 1) { 8259 memmove(p+lo+1, p+hi, (bb->count - hi) * 8); 8260 bb->count -= (hi - lo - 1); 8261 } 8262 } 8263 8264 bb->changed = 1; 8265 out: 8266 write_sequnlock_irq(&bb->lock); 8267 return rv; 8268 } 8269 8270 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8271 int is_new) 8272 { 8273 if (is_new) 8274 s += rdev->new_data_offset; 8275 else 8276 s += rdev->data_offset; 8277 return md_clear_badblocks(&rdev->badblocks, 8278 s, sectors); 8279 } 8280 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8281 8282 /* 8283 * Acknowledge all bad blocks in a list. 8284 * This only succeeds if ->changed is clear. It is used by 8285 * in-kernel metadata updates 8286 */ 8287 void md_ack_all_badblocks(struct badblocks *bb) 8288 { 8289 if (bb->page == NULL || bb->changed) 8290 /* no point even trying */ 8291 return; 8292 write_seqlock_irq(&bb->lock); 8293 8294 if (bb->changed == 0 && bb->unacked_exist) { 8295 u64 *p = bb->page; 8296 int i; 8297 for (i = 0; i < bb->count ; i++) { 8298 if (!BB_ACK(p[i])) { 8299 sector_t start = BB_OFFSET(p[i]); 8300 int len = BB_LEN(p[i]); 8301 p[i] = BB_MAKE(start, len, 1); 8302 } 8303 } 8304 bb->unacked_exist = 0; 8305 } 8306 write_sequnlock_irq(&bb->lock); 8307 } 8308 EXPORT_SYMBOL_GPL(md_ack_all_badblocks); 8309 8310 /* sysfs access to bad-blocks list. 8311 * We present two files. 8312 * 'bad-blocks' lists sector numbers and lengths of ranges that 8313 * are recorded as bad. The list is truncated to fit within 8314 * the one-page limit of sysfs. 8315 * Writing "sector length" to this file adds an acknowledged 8316 * bad block list. 8317 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 8318 * been acknowledged. Writing to this file adds bad blocks 8319 * without acknowledging them. This is largely for testing. 8320 */ 8321 8322 static ssize_t 8323 badblocks_show(struct badblocks *bb, char *page, int unack) 8324 { 8325 size_t len; 8326 int i; 8327 u64 *p = bb->page; 8328 unsigned seq; 8329 8330 if (bb->shift < 0) 8331 return 0; 8332 8333 retry: 8334 seq = read_seqbegin(&bb->lock); 8335 8336 len = 0; 8337 i = 0; 8338 8339 while (len < PAGE_SIZE && i < bb->count) { 8340 sector_t s = BB_OFFSET(p[i]); 8341 unsigned int length = BB_LEN(p[i]); 8342 int ack = BB_ACK(p[i]); 8343 i++; 8344 8345 if (unack && ack) 8346 continue; 8347 8348 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n", 8349 (unsigned long long)s << bb->shift, 8350 length << bb->shift); 8351 } 8352 if (unack && len == 0) 8353 bb->unacked_exist = 0; 8354 8355 if (read_seqretry(&bb->lock, seq)) 8356 goto retry; 8357 8358 return len; 8359 } 8360 8361 #define DO_DEBUG 1 8362 8363 static ssize_t 8364 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack) 8365 { 8366 unsigned long long sector; 8367 int length; 8368 char newline; 8369 #ifdef DO_DEBUG 8370 /* Allow clearing via sysfs *only* for testing/debugging. 8371 * Normally only a successful write may clear a badblock 8372 */ 8373 int clear = 0; 8374 if (page[0] == '-') { 8375 clear = 1; 8376 page++; 8377 } 8378 #endif /* DO_DEBUG */ 8379 8380 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) { 8381 case 3: 8382 if (newline != '\n') 8383 return -EINVAL; 8384 case 2: 8385 if (length <= 0) 8386 return -EINVAL; 8387 break; 8388 default: 8389 return -EINVAL; 8390 } 8391 8392 #ifdef DO_DEBUG 8393 if (clear) { 8394 md_clear_badblocks(bb, sector, length); 8395 return len; 8396 } 8397 #endif /* DO_DEBUG */ 8398 if (md_set_badblocks(bb, sector, length, !unack)) 8399 return len; 8400 else 8401 return -ENOSPC; 8402 } 8403 8404 static int md_notify_reboot(struct notifier_block *this, 8405 unsigned long code, void *x) 8406 { 8407 struct list_head *tmp; 8408 struct mddev *mddev; 8409 int need_delay = 0; 8410 8411 for_each_mddev(mddev, tmp) { 8412 if (mddev_trylock(mddev)) { 8413 if (mddev->pers) 8414 __md_stop_writes(mddev); 8415 mddev->safemode = 2; 8416 mddev_unlock(mddev); 8417 } 8418 need_delay = 1; 8419 } 8420 /* 8421 * certain more exotic SCSI devices are known to be 8422 * volatile wrt too early system reboots. While the 8423 * right place to handle this issue is the given 8424 * driver, we do want to have a safe RAID driver ... 8425 */ 8426 if (need_delay) 8427 mdelay(1000*1); 8428 8429 return NOTIFY_DONE; 8430 } 8431 8432 static struct notifier_block md_notifier = { 8433 .notifier_call = md_notify_reboot, 8434 .next = NULL, 8435 .priority = INT_MAX, /* before any real devices */ 8436 }; 8437 8438 static void md_geninit(void) 8439 { 8440 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 8441 8442 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 8443 } 8444 8445 static int __init md_init(void) 8446 { 8447 int ret = -ENOMEM; 8448 8449 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 8450 if (!md_wq) 8451 goto err_wq; 8452 8453 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 8454 if (!md_misc_wq) 8455 goto err_misc_wq; 8456 8457 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 8458 goto err_md; 8459 8460 if ((ret = register_blkdev(0, "mdp")) < 0) 8461 goto err_mdp; 8462 mdp_major = ret; 8463 8464 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE, 8465 md_probe, NULL, NULL); 8466 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 8467 md_probe, NULL, NULL); 8468 8469 register_reboot_notifier(&md_notifier); 8470 raid_table_header = register_sysctl_table(raid_root_table); 8471 8472 md_geninit(); 8473 return 0; 8474 8475 err_mdp: 8476 unregister_blkdev(MD_MAJOR, "md"); 8477 err_md: 8478 destroy_workqueue(md_misc_wq); 8479 err_misc_wq: 8480 destroy_workqueue(md_wq); 8481 err_wq: 8482 return ret; 8483 } 8484 8485 #ifndef MODULE 8486 8487 /* 8488 * Searches all registered partitions for autorun RAID arrays 8489 * at boot time. 8490 */ 8491 8492 static LIST_HEAD(all_detected_devices); 8493 struct detected_devices_node { 8494 struct list_head list; 8495 dev_t dev; 8496 }; 8497 8498 void md_autodetect_dev(dev_t dev) 8499 { 8500 struct detected_devices_node *node_detected_dev; 8501 8502 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 8503 if (node_detected_dev) { 8504 node_detected_dev->dev = dev; 8505 list_add_tail(&node_detected_dev->list, &all_detected_devices); 8506 } else { 8507 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed" 8508 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev)); 8509 } 8510 } 8511 8512 8513 static void autostart_arrays(int part) 8514 { 8515 struct md_rdev *rdev; 8516 struct detected_devices_node *node_detected_dev; 8517 dev_t dev; 8518 int i_scanned, i_passed; 8519 8520 i_scanned = 0; 8521 i_passed = 0; 8522 8523 printk(KERN_INFO "md: Autodetecting RAID arrays.\n"); 8524 8525 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 8526 i_scanned++; 8527 node_detected_dev = list_entry(all_detected_devices.next, 8528 struct detected_devices_node, list); 8529 list_del(&node_detected_dev->list); 8530 dev = node_detected_dev->dev; 8531 kfree(node_detected_dev); 8532 rdev = md_import_device(dev,0, 90); 8533 if (IS_ERR(rdev)) 8534 continue; 8535 8536 if (test_bit(Faulty, &rdev->flags)) { 8537 MD_BUG(); 8538 continue; 8539 } 8540 set_bit(AutoDetected, &rdev->flags); 8541 list_add(&rdev->same_set, &pending_raid_disks); 8542 i_passed++; 8543 } 8544 8545 printk(KERN_INFO "md: Scanned %d and added %d devices.\n", 8546 i_scanned, i_passed); 8547 8548 autorun_devices(part); 8549 } 8550 8551 #endif /* !MODULE */ 8552 8553 static __exit void md_exit(void) 8554 { 8555 struct mddev *mddev; 8556 struct list_head *tmp; 8557 8558 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS); 8559 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 8560 8561 unregister_blkdev(MD_MAJOR,"md"); 8562 unregister_blkdev(mdp_major, "mdp"); 8563 unregister_reboot_notifier(&md_notifier); 8564 unregister_sysctl_table(raid_table_header); 8565 remove_proc_entry("mdstat", NULL); 8566 for_each_mddev(mddev, tmp) { 8567 export_array(mddev); 8568 mddev->hold_active = 0; 8569 } 8570 destroy_workqueue(md_misc_wq); 8571 destroy_workqueue(md_wq); 8572 } 8573 8574 subsys_initcall(md_init); 8575 module_exit(md_exit) 8576 8577 static int get_ro(char *buffer, struct kernel_param *kp) 8578 { 8579 return sprintf(buffer, "%d", start_readonly); 8580 } 8581 static int set_ro(const char *val, struct kernel_param *kp) 8582 { 8583 char *e; 8584 int num = simple_strtoul(val, &e, 10); 8585 if (*val && (*e == '\0' || *e == '\n')) { 8586 start_readonly = num; 8587 return 0; 8588 } 8589 return -EINVAL; 8590 } 8591 8592 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 8593 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 8594 8595 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 8596 8597 EXPORT_SYMBOL(register_md_personality); 8598 EXPORT_SYMBOL(unregister_md_personality); 8599 EXPORT_SYMBOL(md_error); 8600 EXPORT_SYMBOL(md_done_sync); 8601 EXPORT_SYMBOL(md_write_start); 8602 EXPORT_SYMBOL(md_write_end); 8603 EXPORT_SYMBOL(md_register_thread); 8604 EXPORT_SYMBOL(md_unregister_thread); 8605 EXPORT_SYMBOL(md_wakeup_thread); 8606 EXPORT_SYMBOL(md_check_recovery); 8607 MODULE_LICENSE("GPL"); 8608 MODULE_DESCRIPTION("MD RAID framework"); 8609 MODULE_ALIAS("md"); 8610 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 8611