xref: /openbmc/linux/drivers/md/md.c (revision 179dd8c0)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	if (mddev == NULL || mddev->pers == NULL
261 	    || !mddev->ready) {
262 		bio_io_error(bio);
263 		return;
264 	}
265 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 		return;
268 	}
269 	smp_rmb(); /* Ensure implications of  'active' are visible */
270 	rcu_read_lock();
271 	if (mddev->suspended) {
272 		DEFINE_WAIT(__wait);
273 		for (;;) {
274 			prepare_to_wait(&mddev->sb_wait, &__wait,
275 					TASK_UNINTERRUPTIBLE);
276 			if (!mddev->suspended)
277 				break;
278 			rcu_read_unlock();
279 			schedule();
280 			rcu_read_lock();
281 		}
282 		finish_wait(&mddev->sb_wait, &__wait);
283 	}
284 	atomic_inc(&mddev->active_io);
285 	rcu_read_unlock();
286 
287 	/*
288 	 * save the sectors now since our bio can
289 	 * go away inside make_request
290 	 */
291 	sectors = bio_sectors(bio);
292 	mddev->pers->make_request(mddev, bio);
293 
294 	cpu = part_stat_lock();
295 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 	part_stat_unlock();
298 
299 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 		wake_up(&mddev->sb_wait);
301 }
302 
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 	BUG_ON(mddev->suspended);
312 	mddev->suspended = 1;
313 	synchronize_rcu();
314 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 	mddev->pers->quiesce(mddev, 1);
316 
317 	del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320 
321 void mddev_resume(struct mddev *mddev)
322 {
323 	mddev->suspended = 0;
324 	wake_up(&mddev->sb_wait);
325 	mddev->pers->quiesce(mddev, 0);
326 
327 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 	md_wakeup_thread(mddev->thread);
329 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332 
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 	struct md_personality *pers = mddev->pers;
336 	int ret = 0;
337 
338 	rcu_read_lock();
339 	if (mddev->suspended)
340 		ret = 1;
341 	else if (pers && pers->congested)
342 		ret = pers->congested(mddev, bits);
343 	rcu_read_unlock();
344 	return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 	struct mddev *mddev = data;
350 	return mddev_congested(mddev, bits);
351 }
352 
353 static int md_mergeable_bvec(struct request_queue *q,
354 			     struct bvec_merge_data *bvm,
355 			     struct bio_vec *biovec)
356 {
357 	struct mddev *mddev = q->queuedata;
358 	int ret;
359 	rcu_read_lock();
360 	if (mddev->suspended) {
361 		/* Must always allow one vec */
362 		if (bvm->bi_size == 0)
363 			ret = biovec->bv_len;
364 		else
365 			ret = 0;
366 	} else {
367 		struct md_personality *pers = mddev->pers;
368 		if (pers && pers->mergeable_bvec)
369 			ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 		else
371 			ret = biovec->bv_len;
372 	}
373 	rcu_read_unlock();
374 	return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379 
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 	struct md_rdev *rdev = bio->bi_private;
383 	struct mddev *mddev = rdev->mddev;
384 
385 	rdev_dec_pending(rdev, mddev);
386 
387 	if (atomic_dec_and_test(&mddev->flush_pending)) {
388 		/* The pre-request flush has finished */
389 		queue_work(md_wq, &mddev->flush_work);
390 	}
391 	bio_put(bio);
392 }
393 
394 static void md_submit_flush_data(struct work_struct *ws);
395 
396 static void submit_flushes(struct work_struct *ws)
397 {
398 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 	struct md_rdev *rdev;
400 
401 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 	atomic_set(&mddev->flush_pending, 1);
403 	rcu_read_lock();
404 	rdev_for_each_rcu(rdev, mddev)
405 		if (rdev->raid_disk >= 0 &&
406 		    !test_bit(Faulty, &rdev->flags)) {
407 			/* Take two references, one is dropped
408 			 * when request finishes, one after
409 			 * we reclaim rcu_read_lock
410 			 */
411 			struct bio *bi;
412 			atomic_inc(&rdev->nr_pending);
413 			atomic_inc(&rdev->nr_pending);
414 			rcu_read_unlock();
415 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 			bi->bi_end_io = md_end_flush;
417 			bi->bi_private = rdev;
418 			bi->bi_bdev = rdev->bdev;
419 			atomic_inc(&mddev->flush_pending);
420 			submit_bio(WRITE_FLUSH, bi);
421 			rcu_read_lock();
422 			rdev_dec_pending(rdev, mddev);
423 		}
424 	rcu_read_unlock();
425 	if (atomic_dec_and_test(&mddev->flush_pending))
426 		queue_work(md_wq, &mddev->flush_work);
427 }
428 
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 	struct bio *bio = mddev->flush_bio;
433 
434 	if (bio->bi_iter.bi_size == 0)
435 		/* an empty barrier - all done */
436 		bio_endio(bio, 0);
437 	else {
438 		bio->bi_rw &= ~REQ_FLUSH;
439 		mddev->pers->make_request(mddev, bio);
440 	}
441 
442 	mddev->flush_bio = NULL;
443 	wake_up(&mddev->sb_wait);
444 }
445 
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 	spin_lock_irq(&mddev->lock);
449 	wait_event_lock_irq(mddev->sb_wait,
450 			    !mddev->flush_bio,
451 			    mddev->lock);
452 	mddev->flush_bio = bio;
453 	spin_unlock_irq(&mddev->lock);
454 
455 	INIT_WORK(&mddev->flush_work, submit_flushes);
456 	queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459 
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 	struct mddev *mddev = cb->data;
463 	md_wakeup_thread(mddev->thread);
464 	kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467 
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 	atomic_inc(&mddev->active);
471 	return mddev;
472 }
473 
474 static void mddev_delayed_delete(struct work_struct *ws);
475 
476 static void mddev_put(struct mddev *mddev)
477 {
478 	struct bio_set *bs = NULL;
479 
480 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 		return;
482 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 	    mddev->ctime == 0 && !mddev->hold_active) {
484 		/* Array is not configured at all, and not held active,
485 		 * so destroy it */
486 		list_del_init(&mddev->all_mddevs);
487 		bs = mddev->bio_set;
488 		mddev->bio_set = NULL;
489 		if (mddev->gendisk) {
490 			/* We did a probe so need to clean up.  Call
491 			 * queue_work inside the spinlock so that
492 			 * flush_workqueue() after mddev_find will
493 			 * succeed in waiting for the work to be done.
494 			 */
495 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 			queue_work(md_misc_wq, &mddev->del_work);
497 		} else
498 			kfree(mddev);
499 	}
500 	spin_unlock(&all_mddevs_lock);
501 	if (bs)
502 		bioset_free(bs);
503 }
504 
505 void mddev_init(struct mddev *mddev)
506 {
507 	mutex_init(&mddev->open_mutex);
508 	mutex_init(&mddev->reconfig_mutex);
509 	mutex_init(&mddev->bitmap_info.mutex);
510 	INIT_LIST_HEAD(&mddev->disks);
511 	INIT_LIST_HEAD(&mddev->all_mddevs);
512 	init_timer(&mddev->safemode_timer);
513 	atomic_set(&mddev->active, 1);
514 	atomic_set(&mddev->openers, 0);
515 	atomic_set(&mddev->active_io, 0);
516 	spin_lock_init(&mddev->lock);
517 	atomic_set(&mddev->flush_pending, 0);
518 	init_waitqueue_head(&mddev->sb_wait);
519 	init_waitqueue_head(&mddev->recovery_wait);
520 	mddev->reshape_position = MaxSector;
521 	mddev->reshape_backwards = 0;
522 	mddev->last_sync_action = "none";
523 	mddev->resync_min = 0;
524 	mddev->resync_max = MaxSector;
525 	mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528 
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 	struct mddev *mddev, *new = NULL;
532 
533 	if (unit && MAJOR(unit) != MD_MAJOR)
534 		unit &= ~((1<<MdpMinorShift)-1);
535 
536  retry:
537 	spin_lock(&all_mddevs_lock);
538 
539 	if (unit) {
540 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 			if (mddev->unit == unit) {
542 				mddev_get(mddev);
543 				spin_unlock(&all_mddevs_lock);
544 				kfree(new);
545 				return mddev;
546 			}
547 
548 		if (new) {
549 			list_add(&new->all_mddevs, &all_mddevs);
550 			spin_unlock(&all_mddevs_lock);
551 			new->hold_active = UNTIL_IOCTL;
552 			return new;
553 		}
554 	} else if (new) {
555 		/* find an unused unit number */
556 		static int next_minor = 512;
557 		int start = next_minor;
558 		int is_free = 0;
559 		int dev = 0;
560 		while (!is_free) {
561 			dev = MKDEV(MD_MAJOR, next_minor);
562 			next_minor++;
563 			if (next_minor > MINORMASK)
564 				next_minor = 0;
565 			if (next_minor == start) {
566 				/* Oh dear, all in use. */
567 				spin_unlock(&all_mddevs_lock);
568 				kfree(new);
569 				return NULL;
570 			}
571 
572 			is_free = 1;
573 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 				if (mddev->unit == dev) {
575 					is_free = 0;
576 					break;
577 				}
578 		}
579 		new->unit = dev;
580 		new->md_minor = MINOR(dev);
581 		new->hold_active = UNTIL_STOP;
582 		list_add(&new->all_mddevs, &all_mddevs);
583 		spin_unlock(&all_mddevs_lock);
584 		return new;
585 	}
586 	spin_unlock(&all_mddevs_lock);
587 
588 	new = kzalloc(sizeof(*new), GFP_KERNEL);
589 	if (!new)
590 		return NULL;
591 
592 	new->unit = unit;
593 	if (MAJOR(unit) == MD_MAJOR)
594 		new->md_minor = MINOR(unit);
595 	else
596 		new->md_minor = MINOR(unit) >> MdpMinorShift;
597 
598 	mddev_init(new);
599 
600 	goto retry;
601 }
602 
603 static struct attribute_group md_redundancy_group;
604 
605 void mddev_unlock(struct mddev *mddev)
606 {
607 	if (mddev->to_remove) {
608 		/* These cannot be removed under reconfig_mutex as
609 		 * an access to the files will try to take reconfig_mutex
610 		 * while holding the file unremovable, which leads to
611 		 * a deadlock.
612 		 * So hold set sysfs_active while the remove in happeing,
613 		 * and anything else which might set ->to_remove or my
614 		 * otherwise change the sysfs namespace will fail with
615 		 * -EBUSY if sysfs_active is still set.
616 		 * We set sysfs_active under reconfig_mutex and elsewhere
617 		 * test it under the same mutex to ensure its correct value
618 		 * is seen.
619 		 */
620 		struct attribute_group *to_remove = mddev->to_remove;
621 		mddev->to_remove = NULL;
622 		mddev->sysfs_active = 1;
623 		mutex_unlock(&mddev->reconfig_mutex);
624 
625 		if (mddev->kobj.sd) {
626 			if (to_remove != &md_redundancy_group)
627 				sysfs_remove_group(&mddev->kobj, to_remove);
628 			if (mddev->pers == NULL ||
629 			    mddev->pers->sync_request == NULL) {
630 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 				if (mddev->sysfs_action)
632 					sysfs_put(mddev->sysfs_action);
633 				mddev->sysfs_action = NULL;
634 			}
635 		}
636 		mddev->sysfs_active = 0;
637 	} else
638 		mutex_unlock(&mddev->reconfig_mutex);
639 
640 	/* As we've dropped the mutex we need a spinlock to
641 	 * make sure the thread doesn't disappear
642 	 */
643 	spin_lock(&pers_lock);
644 	md_wakeup_thread(mddev->thread);
645 	spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648 
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 	struct md_rdev *rdev;
652 
653 	rdev_for_each_rcu(rdev, mddev)
654 		if (rdev->desc_nr == nr)
655 			return rdev;
656 
657 	return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660 
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 	struct md_rdev *rdev;
664 
665 	rdev_for_each(rdev, mddev)
666 		if (rdev->bdev->bd_dev == dev)
667 			return rdev;
668 
669 	return NULL;
670 }
671 
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 	struct md_rdev *rdev;
675 
676 	rdev_for_each_rcu(rdev, mddev)
677 		if (rdev->bdev->bd_dev == dev)
678 			return rdev;
679 
680 	return NULL;
681 }
682 
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 	struct md_personality *pers;
686 	list_for_each_entry(pers, &pers_list, list) {
687 		if (level != LEVEL_NONE && pers->level == level)
688 			return pers;
689 		if (strcmp(pers->name, clevel)==0)
690 			return pers;
691 	}
692 	return NULL;
693 }
694 
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 	return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701 
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 	rdev->sb_page = alloc_page(GFP_KERNEL);
705 	if (!rdev->sb_page) {
706 		printk(KERN_ALERT "md: out of memory.\n");
707 		return -ENOMEM;
708 	}
709 
710 	return 0;
711 }
712 
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 	if (rdev->sb_page) {
716 		put_page(rdev->sb_page);
717 		rdev->sb_loaded = 0;
718 		rdev->sb_page = NULL;
719 		rdev->sb_start = 0;
720 		rdev->sectors = 0;
721 	}
722 	if (rdev->bb_page) {
723 		put_page(rdev->bb_page);
724 		rdev->bb_page = NULL;
725 	}
726 	kfree(rdev->badblocks.page);
727 	rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730 
731 static void super_written(struct bio *bio, int error)
732 {
733 	struct md_rdev *rdev = bio->bi_private;
734 	struct mddev *mddev = rdev->mddev;
735 
736 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 		printk("md: super_written gets error=%d, uptodate=%d\n",
738 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 		md_error(mddev, rdev);
741 	}
742 
743 	if (atomic_dec_and_test(&mddev->pending_writes))
744 		wake_up(&mddev->sb_wait);
745 	bio_put(bio);
746 }
747 
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 		   sector_t sector, int size, struct page *page)
750 {
751 	/* write first size bytes of page to sector of rdev
752 	 * Increment mddev->pending_writes before returning
753 	 * and decrement it on completion, waking up sb_wait
754 	 * if zero is reached.
755 	 * If an error occurred, call md_error
756 	 */
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758 
759 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 	bio->bi_iter.bi_sector = sector;
761 	bio_add_page(bio, page, size, 0);
762 	bio->bi_private = rdev;
763 	bio->bi_end_io = super_written;
764 
765 	atomic_inc(&mddev->pending_writes);
766 	submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768 
769 void md_super_wait(struct mddev *mddev)
770 {
771 	/* wait for all superblock writes that were scheduled to complete */
772 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774 
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 		 struct page *page, int rw, bool metadata_op)
777 {
778 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 	int ret;
780 
781 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 		rdev->meta_bdev : rdev->bdev;
783 	if (metadata_op)
784 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 	else if (rdev->mddev->reshape_position != MaxSector &&
786 		 (rdev->mddev->reshape_backwards ==
787 		  (sector >= rdev->mddev->reshape_position)))
788 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 	else
790 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 	bio_add_page(bio, page, size, 0);
792 	submit_bio_wait(rw, bio);
793 
794 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 	bio_put(bio);
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799 
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 	char b[BDEVNAME_SIZE];
803 
804 	if (rdev->sb_loaded)
805 		return 0;
806 
807 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 		goto fail;
809 	rdev->sb_loaded = 1;
810 	return 0;
811 
812 fail:
813 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 		bdevname(rdev->bdev,b));
815 	return -EINVAL;
816 }
817 
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
821 		sb1->set_uuid1 == sb2->set_uuid1 &&
822 		sb1->set_uuid2 == sb2->set_uuid2 &&
823 		sb1->set_uuid3 == sb2->set_uuid3;
824 }
825 
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 	int ret;
829 	mdp_super_t *tmp1, *tmp2;
830 
831 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833 
834 	if (!tmp1 || !tmp2) {
835 		ret = 0;
836 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 		goto abort;
838 	}
839 
840 	*tmp1 = *sb1;
841 	*tmp2 = *sb2;
842 
843 	/*
844 	 * nr_disks is not constant
845 	 */
846 	tmp1->nr_disks = 0;
847 	tmp2->nr_disks = 0;
848 
849 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 	kfree(tmp1);
852 	kfree(tmp2);
853 	return ret;
854 }
855 
856 static u32 md_csum_fold(u32 csum)
857 {
858 	csum = (csum & 0xffff) + (csum >> 16);
859 	return (csum & 0xffff) + (csum >> 16);
860 }
861 
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 	u64 newcsum = 0;
865 	u32 *sb32 = (u32*)sb;
866 	int i;
867 	unsigned int disk_csum, csum;
868 
869 	disk_csum = sb->sb_csum;
870 	sb->sb_csum = 0;
871 
872 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 		newcsum += sb32[i];
874 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
875 
876 #ifdef CONFIG_ALPHA
877 	/* This used to use csum_partial, which was wrong for several
878 	 * reasons including that different results are returned on
879 	 * different architectures.  It isn't critical that we get exactly
880 	 * the same return value as before (we always csum_fold before
881 	 * testing, and that removes any differences).  However as we
882 	 * know that csum_partial always returned a 16bit value on
883 	 * alphas, do a fold to maximise conformity to previous behaviour.
884 	 */
885 	sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 	sb->sb_csum = disk_csum;
888 #endif
889 	return csum;
890 }
891 
892 /*
893  * Handle superblock details.
894  * We want to be able to handle multiple superblock formats
895  * so we have a common interface to them all, and an array of
896  * different handlers.
897  * We rely on user-space to write the initial superblock, and support
898  * reading and updating of superblocks.
899  * Interface methods are:
900  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901  *      loads and validates a superblock on dev.
902  *      if refdev != NULL, compare superblocks on both devices
903  *    Return:
904  *      0 - dev has a superblock that is compatible with refdev
905  *      1 - dev has a superblock that is compatible and newer than refdev
906  *          so dev should be used as the refdev in future
907  *     -EINVAL superblock incompatible or invalid
908  *     -othererror e.g. -EIO
909  *
910  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
911  *      Verify that dev is acceptable into mddev.
912  *       The first time, mddev->raid_disks will be 0, and data from
913  *       dev should be merged in.  Subsequent calls check that dev
914  *       is new enough.  Return 0 or -EINVAL
915  *
916  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
917  *     Update the superblock for rdev with data in mddev
918  *     This does not write to disc.
919  *
920  */
921 
922 struct super_type  {
923 	char		    *name;
924 	struct module	    *owner;
925 	int		    (*load_super)(struct md_rdev *rdev,
926 					  struct md_rdev *refdev,
927 					  int minor_version);
928 	int		    (*validate_super)(struct mddev *mddev,
929 					      struct md_rdev *rdev);
930 	void		    (*sync_super)(struct mddev *mddev,
931 					  struct md_rdev *rdev);
932 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
933 						sector_t num_sectors);
934 	int		    (*allow_new_offset)(struct md_rdev *rdev,
935 						unsigned long long new_offset);
936 };
937 
938 /*
939  * Check that the given mddev has no bitmap.
940  *
941  * This function is called from the run method of all personalities that do not
942  * support bitmaps. It prints an error message and returns non-zero if mddev
943  * has a bitmap. Otherwise, it returns 0.
944  *
945  */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 		return 0;
950 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 		mdname(mddev), mddev->pers->name);
952 	return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955 
956 /*
957  * load_super for 0.90.0
958  */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 	mdp_super_t *sb;
963 	int ret;
964 
965 	/*
966 	 * Calculate the position of the superblock (512byte sectors),
967 	 * it's at the end of the disk.
968 	 *
969 	 * It also happens to be a multiple of 4Kb.
970 	 */
971 	rdev->sb_start = calc_dev_sboffset(rdev);
972 
973 	ret = read_disk_sb(rdev, MD_SB_BYTES);
974 	if (ret) return ret;
975 
976 	ret = -EINVAL;
977 
978 	bdevname(rdev->bdev, b);
979 	sb = page_address(rdev->sb_page);
980 
981 	if (sb->md_magic != MD_SB_MAGIC) {
982 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 		       b);
984 		goto abort;
985 	}
986 
987 	if (sb->major_version != 0 ||
988 	    sb->minor_version < 90 ||
989 	    sb->minor_version > 91) {
990 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 			sb->major_version, sb->minor_version,
992 			b);
993 		goto abort;
994 	}
995 
996 	if (sb->raid_disks <= 0)
997 		goto abort;
998 
999 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 			b);
1002 		goto abort;
1003 	}
1004 
1005 	rdev->preferred_minor = sb->md_minor;
1006 	rdev->data_offset = 0;
1007 	rdev->new_data_offset = 0;
1008 	rdev->sb_size = MD_SB_BYTES;
1009 	rdev->badblocks.shift = -1;
1010 
1011 	if (sb->level == LEVEL_MULTIPATH)
1012 		rdev->desc_nr = -1;
1013 	else
1014 		rdev->desc_nr = sb->this_disk.number;
1015 
1016 	if (!refdev) {
1017 		ret = 1;
1018 	} else {
1019 		__u64 ev1, ev2;
1020 		mdp_super_t *refsb = page_address(refdev->sb_page);
1021 		if (!uuid_equal(refsb, sb)) {
1022 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 				b, bdevname(refdev->bdev,b2));
1024 			goto abort;
1025 		}
1026 		if (!sb_equal(refsb, sb)) {
1027 			printk(KERN_WARNING "md: %s has same UUID"
1028 			       " but different superblock to %s\n",
1029 			       b, bdevname(refdev->bdev, b2));
1030 			goto abort;
1031 		}
1032 		ev1 = md_event(sb);
1033 		ev2 = md_event(refsb);
1034 		if (ev1 > ev2)
1035 			ret = 1;
1036 		else
1037 			ret = 0;
1038 	}
1039 	rdev->sectors = rdev->sb_start;
1040 	/* Limit to 4TB as metadata cannot record more than that.
1041 	 * (not needed for Linear and RAID0 as metadata doesn't
1042 	 * record this size)
1043 	 */
1044 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 		rdev->sectors = (2ULL << 32) - 2;
1046 
1047 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 		/* "this cannot possibly happen" ... */
1049 		ret = -EINVAL;
1050 
1051  abort:
1052 	return ret;
1053 }
1054 
1055 /*
1056  * validate_super for 0.90.0
1057  */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 	mdp_disk_t *desc;
1061 	mdp_super_t *sb = page_address(rdev->sb_page);
1062 	__u64 ev1 = md_event(sb);
1063 
1064 	rdev->raid_disk = -1;
1065 	clear_bit(Faulty, &rdev->flags);
1066 	clear_bit(In_sync, &rdev->flags);
1067 	clear_bit(Bitmap_sync, &rdev->flags);
1068 	clear_bit(WriteMostly, &rdev->flags);
1069 
1070 	if (mddev->raid_disks == 0) {
1071 		mddev->major_version = 0;
1072 		mddev->minor_version = sb->minor_version;
1073 		mddev->patch_version = sb->patch_version;
1074 		mddev->external = 0;
1075 		mddev->chunk_sectors = sb->chunk_size >> 9;
1076 		mddev->ctime = sb->ctime;
1077 		mddev->utime = sb->utime;
1078 		mddev->level = sb->level;
1079 		mddev->clevel[0] = 0;
1080 		mddev->layout = sb->layout;
1081 		mddev->raid_disks = sb->raid_disks;
1082 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 		mddev->events = ev1;
1084 		mddev->bitmap_info.offset = 0;
1085 		mddev->bitmap_info.space = 0;
1086 		/* bitmap can use 60 K after the 4K superblocks */
1087 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 		mddev->reshape_backwards = 0;
1090 
1091 		if (mddev->minor_version >= 91) {
1092 			mddev->reshape_position = sb->reshape_position;
1093 			mddev->delta_disks = sb->delta_disks;
1094 			mddev->new_level = sb->new_level;
1095 			mddev->new_layout = sb->new_layout;
1096 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 			if (mddev->delta_disks < 0)
1098 				mddev->reshape_backwards = 1;
1099 		} else {
1100 			mddev->reshape_position = MaxSector;
1101 			mddev->delta_disks = 0;
1102 			mddev->new_level = mddev->level;
1103 			mddev->new_layout = mddev->layout;
1104 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 		}
1106 
1107 		if (sb->state & (1<<MD_SB_CLEAN))
1108 			mddev->recovery_cp = MaxSector;
1109 		else {
1110 			if (sb->events_hi == sb->cp_events_hi &&
1111 				sb->events_lo == sb->cp_events_lo) {
1112 				mddev->recovery_cp = sb->recovery_cp;
1113 			} else
1114 				mddev->recovery_cp = 0;
1115 		}
1116 
1117 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121 
1122 		mddev->max_disks = MD_SB_DISKS;
1123 
1124 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 		    mddev->bitmap_info.file == NULL) {
1126 			mddev->bitmap_info.offset =
1127 				mddev->bitmap_info.default_offset;
1128 			mddev->bitmap_info.space =
1129 				mddev->bitmap_info.default_space;
1130 		}
1131 
1132 	} else if (mddev->pers == NULL) {
1133 		/* Insist on good event counter while assembling, except
1134 		 * for spares (which don't need an event count) */
1135 		++ev1;
1136 		if (sb->disks[rdev->desc_nr].state & (
1137 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 			if (ev1 < mddev->events)
1139 				return -EINVAL;
1140 	} else if (mddev->bitmap) {
1141 		/* if adding to array with a bitmap, then we can accept an
1142 		 * older device ... but not too old.
1143 		 */
1144 		if (ev1 < mddev->bitmap->events_cleared)
1145 			return 0;
1146 		if (ev1 < mddev->events)
1147 			set_bit(Bitmap_sync, &rdev->flags);
1148 	} else {
1149 		if (ev1 < mddev->events)
1150 			/* just a hot-add of a new device, leave raid_disk at -1 */
1151 			return 0;
1152 	}
1153 
1154 	if (mddev->level != LEVEL_MULTIPATH) {
1155 		desc = sb->disks + rdev->desc_nr;
1156 
1157 		if (desc->state & (1<<MD_DISK_FAULTY))
1158 			set_bit(Faulty, &rdev->flags);
1159 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 			    desc->raid_disk < mddev->raid_disks */) {
1161 			set_bit(In_sync, &rdev->flags);
1162 			rdev->raid_disk = desc->raid_disk;
1163 			rdev->saved_raid_disk = desc->raid_disk;
1164 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 			/* active but not in sync implies recovery up to
1166 			 * reshape position.  We don't know exactly where
1167 			 * that is, so set to zero for now */
1168 			if (mddev->minor_version >= 91) {
1169 				rdev->recovery_offset = 0;
1170 				rdev->raid_disk = desc->raid_disk;
1171 			}
1172 		}
1173 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 			set_bit(WriteMostly, &rdev->flags);
1175 	} else /* MULTIPATH are always insync */
1176 		set_bit(In_sync, &rdev->flags);
1177 	return 0;
1178 }
1179 
1180 /*
1181  * sync_super for 0.90.0
1182  */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 	mdp_super_t *sb;
1186 	struct md_rdev *rdev2;
1187 	int next_spare = mddev->raid_disks;
1188 
1189 	/* make rdev->sb match mddev data..
1190 	 *
1191 	 * 1/ zero out disks
1192 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 	 * 3/ any empty disks < next_spare become removed
1194 	 *
1195 	 * disks[0] gets initialised to REMOVED because
1196 	 * we cannot be sure from other fields if it has
1197 	 * been initialised or not.
1198 	 */
1199 	int i;
1200 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201 
1202 	rdev->sb_size = MD_SB_BYTES;
1203 
1204 	sb = page_address(rdev->sb_page);
1205 
1206 	memset(sb, 0, sizeof(*sb));
1207 
1208 	sb->md_magic = MD_SB_MAGIC;
1209 	sb->major_version = mddev->major_version;
1210 	sb->patch_version = mddev->patch_version;
1211 	sb->gvalid_words  = 0; /* ignored */
1212 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216 
1217 	sb->ctime = mddev->ctime;
1218 	sb->level = mddev->level;
1219 	sb->size = mddev->dev_sectors / 2;
1220 	sb->raid_disks = mddev->raid_disks;
1221 	sb->md_minor = mddev->md_minor;
1222 	sb->not_persistent = 0;
1223 	sb->utime = mddev->utime;
1224 	sb->state = 0;
1225 	sb->events_hi = (mddev->events>>32);
1226 	sb->events_lo = (u32)mddev->events;
1227 
1228 	if (mddev->reshape_position == MaxSector)
1229 		sb->minor_version = 90;
1230 	else {
1231 		sb->minor_version = 91;
1232 		sb->reshape_position = mddev->reshape_position;
1233 		sb->new_level = mddev->new_level;
1234 		sb->delta_disks = mddev->delta_disks;
1235 		sb->new_layout = mddev->new_layout;
1236 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 	}
1238 	mddev->minor_version = sb->minor_version;
1239 	if (mddev->in_sync)
1240 	{
1241 		sb->recovery_cp = mddev->recovery_cp;
1242 		sb->cp_events_hi = (mddev->events>>32);
1243 		sb->cp_events_lo = (u32)mddev->events;
1244 		if (mddev->recovery_cp == MaxSector)
1245 			sb->state = (1<< MD_SB_CLEAN);
1246 	} else
1247 		sb->recovery_cp = 0;
1248 
1249 	sb->layout = mddev->layout;
1250 	sb->chunk_size = mddev->chunk_sectors << 9;
1251 
1252 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254 
1255 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 	rdev_for_each(rdev2, mddev) {
1257 		mdp_disk_t *d;
1258 		int desc_nr;
1259 		int is_active = test_bit(In_sync, &rdev2->flags);
1260 
1261 		if (rdev2->raid_disk >= 0 &&
1262 		    sb->minor_version >= 91)
1263 			/* we have nowhere to store the recovery_offset,
1264 			 * but if it is not below the reshape_position,
1265 			 * we can piggy-back on that.
1266 			 */
1267 			is_active = 1;
1268 		if (rdev2->raid_disk < 0 ||
1269 		    test_bit(Faulty, &rdev2->flags))
1270 			is_active = 0;
1271 		if (is_active)
1272 			desc_nr = rdev2->raid_disk;
1273 		else
1274 			desc_nr = next_spare++;
1275 		rdev2->desc_nr = desc_nr;
1276 		d = &sb->disks[rdev2->desc_nr];
1277 		nr_disks++;
1278 		d->number = rdev2->desc_nr;
1279 		d->major = MAJOR(rdev2->bdev->bd_dev);
1280 		d->minor = MINOR(rdev2->bdev->bd_dev);
1281 		if (is_active)
1282 			d->raid_disk = rdev2->raid_disk;
1283 		else
1284 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 		if (test_bit(Faulty, &rdev2->flags))
1286 			d->state = (1<<MD_DISK_FAULTY);
1287 		else if (is_active) {
1288 			d->state = (1<<MD_DISK_ACTIVE);
1289 			if (test_bit(In_sync, &rdev2->flags))
1290 				d->state |= (1<<MD_DISK_SYNC);
1291 			active++;
1292 			working++;
1293 		} else {
1294 			d->state = 0;
1295 			spare++;
1296 			working++;
1297 		}
1298 		if (test_bit(WriteMostly, &rdev2->flags))
1299 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 	}
1301 	/* now set the "removed" and "faulty" bits on any missing devices */
1302 	for (i=0 ; i < mddev->raid_disks ; i++) {
1303 		mdp_disk_t *d = &sb->disks[i];
1304 		if (d->state == 0 && d->number == 0) {
1305 			d->number = i;
1306 			d->raid_disk = i;
1307 			d->state = (1<<MD_DISK_REMOVED);
1308 			d->state |= (1<<MD_DISK_FAULTY);
1309 			failed++;
1310 		}
1311 	}
1312 	sb->nr_disks = nr_disks;
1313 	sb->active_disks = active;
1314 	sb->working_disks = working;
1315 	sb->failed_disks = failed;
1316 	sb->spare_disks = spare;
1317 
1318 	sb->this_disk = sb->disks[rdev->desc_nr];
1319 	sb->sb_csum = calc_sb_csum(sb);
1320 }
1321 
1322 /*
1323  * rdev_size_change for 0.90.0
1324  */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 		return 0; /* component must fit device */
1330 	if (rdev->mddev->bitmap_info.offset)
1331 		return 0; /* can't move bitmap */
1332 	rdev->sb_start = calc_dev_sboffset(rdev);
1333 	if (!num_sectors || num_sectors > rdev->sb_start)
1334 		num_sectors = rdev->sb_start;
1335 	/* Limit to 4TB as metadata cannot record more than that.
1336 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 	 */
1338 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 		num_sectors = (2ULL << 32) - 2;
1340 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 		       rdev->sb_page);
1342 	md_super_wait(rdev->mddev);
1343 	return num_sectors;
1344 }
1345 
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 	/* non-zero offset changes not possible with v0.90 */
1350 	return new_offset == 0;
1351 }
1352 
1353 /*
1354  * version 1 superblock
1355  */
1356 
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 	__le32 disk_csum;
1360 	u32 csum;
1361 	unsigned long long newcsum;
1362 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 	__le32 *isuper = (__le32*)sb;
1364 
1365 	disk_csum = sb->sb_csum;
1366 	sb->sb_csum = 0;
1367 	newcsum = 0;
1368 	for (; size >= 4; size -= 4)
1369 		newcsum += le32_to_cpu(*isuper++);
1370 
1371 	if (size == 2)
1372 		newcsum += le16_to_cpu(*(__le16*) isuper);
1373 
1374 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 	sb->sb_csum = disk_csum;
1376 	return cpu_to_le32(csum);
1377 }
1378 
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 			    int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 	struct mdp_superblock_1 *sb;
1384 	int ret;
1385 	sector_t sb_start;
1386 	sector_t sectors;
1387 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 	int bmask;
1389 
1390 	/*
1391 	 * Calculate the position of the superblock in 512byte sectors.
1392 	 * It is always aligned to a 4K boundary and
1393 	 * depeding on minor_version, it can be:
1394 	 * 0: At least 8K, but less than 12K, from end of device
1395 	 * 1: At start of device
1396 	 * 2: 4K from start of device.
1397 	 */
1398 	switch(minor_version) {
1399 	case 0:
1400 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 		sb_start -= 8*2;
1402 		sb_start &= ~(sector_t)(4*2-1);
1403 		break;
1404 	case 1:
1405 		sb_start = 0;
1406 		break;
1407 	case 2:
1408 		sb_start = 8;
1409 		break;
1410 	default:
1411 		return -EINVAL;
1412 	}
1413 	rdev->sb_start = sb_start;
1414 
1415 	/* superblock is rarely larger than 1K, but it can be larger,
1416 	 * and it is safe to read 4k, so we do that
1417 	 */
1418 	ret = read_disk_sb(rdev, 4096);
1419 	if (ret) return ret;
1420 
1421 	sb = page_address(rdev->sb_page);
1422 
1423 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 	    sb->major_version != cpu_to_le32(1) ||
1425 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 		return -EINVAL;
1429 
1430 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 		printk("md: invalid superblock checksum on %s\n",
1432 			bdevname(rdev->bdev,b));
1433 		return -EINVAL;
1434 	}
1435 	if (le64_to_cpu(sb->data_size) < 10) {
1436 		printk("md: data_size too small on %s\n",
1437 		       bdevname(rdev->bdev,b));
1438 		return -EINVAL;
1439 	}
1440 	if (sb->pad0 ||
1441 	    sb->pad3[0] ||
1442 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 		/* Some padding is non-zero, might be a new feature */
1444 		return -EINVAL;
1445 
1446 	rdev->preferred_minor = 0xffff;
1447 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 	rdev->new_data_offset = rdev->data_offset;
1449 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453 
1454 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 	if (rdev->sb_size & bmask)
1457 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458 
1459 	if (minor_version
1460 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 		return -EINVAL;
1462 	if (minor_version
1463 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 		return -EINVAL;
1465 
1466 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 		rdev->desc_nr = -1;
1468 	else
1469 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470 
1471 	if (!rdev->bb_page) {
1472 		rdev->bb_page = alloc_page(GFP_KERNEL);
1473 		if (!rdev->bb_page)
1474 			return -ENOMEM;
1475 	}
1476 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 	    rdev->badblocks.count == 0) {
1478 		/* need to load the bad block list.
1479 		 * Currently we limit it to one page.
1480 		 */
1481 		s32 offset;
1482 		sector_t bb_sector;
1483 		u64 *bbp;
1484 		int i;
1485 		int sectors = le16_to_cpu(sb->bblog_size);
1486 		if (sectors > (PAGE_SIZE / 512))
1487 			return -EINVAL;
1488 		offset = le32_to_cpu(sb->bblog_offset);
1489 		if (offset == 0)
1490 			return -EINVAL;
1491 		bb_sector = (long long)offset;
1492 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 				  rdev->bb_page, READ, true))
1494 			return -EIO;
1495 		bbp = (u64 *)page_address(rdev->bb_page);
1496 		rdev->badblocks.shift = sb->bblog_shift;
1497 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 			u64 bb = le64_to_cpu(*bbp);
1499 			int count = bb & (0x3ff);
1500 			u64 sector = bb >> 10;
1501 			sector <<= sb->bblog_shift;
1502 			count <<= sb->bblog_shift;
1503 			if (bb + 1 == 0)
1504 				break;
1505 			if (md_set_badblocks(&rdev->badblocks,
1506 					     sector, count, 1) == 0)
1507 				return -EINVAL;
1508 		}
1509 	} else if (sb->bblog_offset != 0)
1510 		rdev->badblocks.shift = 0;
1511 
1512 	if (!refdev) {
1513 		ret = 1;
1514 	} else {
1515 		__u64 ev1, ev2;
1516 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517 
1518 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 		    sb->level != refsb->level ||
1520 		    sb->layout != refsb->layout ||
1521 		    sb->chunksize != refsb->chunksize) {
1522 			printk(KERN_WARNING "md: %s has strangely different"
1523 				" superblock to %s\n",
1524 				bdevname(rdev->bdev,b),
1525 				bdevname(refdev->bdev,b2));
1526 			return -EINVAL;
1527 		}
1528 		ev1 = le64_to_cpu(sb->events);
1529 		ev2 = le64_to_cpu(refsb->events);
1530 
1531 		if (ev1 > ev2)
1532 			ret = 1;
1533 		else
1534 			ret = 0;
1535 	}
1536 	if (minor_version) {
1537 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 		sectors -= rdev->data_offset;
1539 	} else
1540 		sectors = rdev->sb_start;
1541 	if (sectors < le64_to_cpu(sb->data_size))
1542 		return -EINVAL;
1543 	rdev->sectors = le64_to_cpu(sb->data_size);
1544 	return ret;
1545 }
1546 
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 	__u64 ev1 = le64_to_cpu(sb->events);
1551 
1552 	rdev->raid_disk = -1;
1553 	clear_bit(Faulty, &rdev->flags);
1554 	clear_bit(In_sync, &rdev->flags);
1555 	clear_bit(Bitmap_sync, &rdev->flags);
1556 	clear_bit(WriteMostly, &rdev->flags);
1557 
1558 	if (mddev->raid_disks == 0) {
1559 		mddev->major_version = 1;
1560 		mddev->patch_version = 0;
1561 		mddev->external = 0;
1562 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 		mddev->level = le32_to_cpu(sb->level);
1566 		mddev->clevel[0] = 0;
1567 		mddev->layout = le32_to_cpu(sb->layout);
1568 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 		mddev->dev_sectors = le64_to_cpu(sb->size);
1570 		mddev->events = ev1;
1571 		mddev->bitmap_info.offset = 0;
1572 		mddev->bitmap_info.space = 0;
1573 		/* Default location for bitmap is 1K after superblock
1574 		 * using 3K - total of 4K
1575 		 */
1576 		mddev->bitmap_info.default_offset = 1024 >> 9;
1577 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 		mddev->reshape_backwards = 0;
1579 
1580 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 		memcpy(mddev->uuid, sb->set_uuid, 16);
1582 
1583 		mddev->max_disks =  (4096-256)/2;
1584 
1585 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 		    mddev->bitmap_info.file == NULL) {
1587 			mddev->bitmap_info.offset =
1588 				(__s32)le32_to_cpu(sb->bitmap_offset);
1589 			/* Metadata doesn't record how much space is available.
1590 			 * For 1.0, we assume we can use up to the superblock
1591 			 * if before, else to 4K beyond superblock.
1592 			 * For others, assume no change is possible.
1593 			 */
1594 			if (mddev->minor_version > 0)
1595 				mddev->bitmap_info.space = 0;
1596 			else if (mddev->bitmap_info.offset > 0)
1597 				mddev->bitmap_info.space =
1598 					8 - mddev->bitmap_info.offset;
1599 			else
1600 				mddev->bitmap_info.space =
1601 					-mddev->bitmap_info.offset;
1602 		}
1603 
1604 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 			mddev->new_level = le32_to_cpu(sb->new_level);
1608 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 			if (mddev->delta_disks < 0 ||
1611 			    (mddev->delta_disks == 0 &&
1612 			     (le32_to_cpu(sb->feature_map)
1613 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 				mddev->reshape_backwards = 1;
1615 		} else {
1616 			mddev->reshape_position = MaxSector;
1617 			mddev->delta_disks = 0;
1618 			mddev->new_level = mddev->level;
1619 			mddev->new_layout = mddev->layout;
1620 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 		}
1622 
1623 	} else if (mddev->pers == NULL) {
1624 		/* Insist of good event counter while assembling, except for
1625 		 * spares (which don't need an event count) */
1626 		++ev1;
1627 		if (rdev->desc_nr >= 0 &&
1628 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 			if (ev1 < mddev->events)
1631 				return -EINVAL;
1632 	} else if (mddev->bitmap) {
1633 		/* If adding to array with a bitmap, then we can accept an
1634 		 * older device, but not too old.
1635 		 */
1636 		if (ev1 < mddev->bitmap->events_cleared)
1637 			return 0;
1638 		if (ev1 < mddev->events)
1639 			set_bit(Bitmap_sync, &rdev->flags);
1640 	} else {
1641 		if (ev1 < mddev->events)
1642 			/* just a hot-add of a new device, leave raid_disk at -1 */
1643 			return 0;
1644 	}
1645 	if (mddev->level != LEVEL_MULTIPATH) {
1646 		int role;
1647 		if (rdev->desc_nr < 0 ||
1648 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 			role = 0xffff;
1650 			rdev->desc_nr = -1;
1651 		} else
1652 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 		switch(role) {
1654 		case 0xffff: /* spare */
1655 			break;
1656 		case 0xfffe: /* faulty */
1657 			set_bit(Faulty, &rdev->flags);
1658 			break;
1659 		default:
1660 			rdev->saved_raid_disk = role;
1661 			if ((le32_to_cpu(sb->feature_map) &
1662 			     MD_FEATURE_RECOVERY_OFFSET)) {
1663 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 				if (!(le32_to_cpu(sb->feature_map) &
1665 				      MD_FEATURE_RECOVERY_BITMAP))
1666 					rdev->saved_raid_disk = -1;
1667 			} else
1668 				set_bit(In_sync, &rdev->flags);
1669 			rdev->raid_disk = role;
1670 			break;
1671 		}
1672 		if (sb->devflags & WriteMostly1)
1673 			set_bit(WriteMostly, &rdev->flags);
1674 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 			set_bit(Replacement, &rdev->flags);
1676 	} else /* MULTIPATH are always insync */
1677 		set_bit(In_sync, &rdev->flags);
1678 
1679 	return 0;
1680 }
1681 
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 	struct mdp_superblock_1 *sb;
1685 	struct md_rdev *rdev2;
1686 	int max_dev, i;
1687 	/* make rdev->sb match mddev and rdev data. */
1688 
1689 	sb = page_address(rdev->sb_page);
1690 
1691 	sb->feature_map = 0;
1692 	sb->pad0 = 0;
1693 	sb->recovery_offset = cpu_to_le64(0);
1694 	memset(sb->pad3, 0, sizeof(sb->pad3));
1695 
1696 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 	sb->events = cpu_to_le64(mddev->events);
1698 	if (mddev->in_sync)
1699 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 	else
1701 		sb->resync_offset = cpu_to_le64(0);
1702 
1703 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704 
1705 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 	sb->size = cpu_to_le64(mddev->dev_sectors);
1707 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 	sb->level = cpu_to_le32(mddev->level);
1709 	sb->layout = cpu_to_le32(mddev->layout);
1710 
1711 	if (test_bit(WriteMostly, &rdev->flags))
1712 		sb->devflags |= WriteMostly1;
1713 	else
1714 		sb->devflags &= ~WriteMostly1;
1715 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 	sb->data_size = cpu_to_le64(rdev->sectors);
1717 
1718 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 	}
1722 
1723 	if (rdev->raid_disk >= 0 &&
1724 	    !test_bit(In_sync, &rdev->flags)) {
1725 		sb->feature_map |=
1726 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 		sb->recovery_offset =
1728 			cpu_to_le64(rdev->recovery_offset);
1729 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 			sb->feature_map |=
1731 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 	}
1733 	if (test_bit(Replacement, &rdev->flags))
1734 		sb->feature_map |=
1735 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736 
1737 	if (mddev->reshape_position != MaxSector) {
1738 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 		sb->new_level = cpu_to_le32(mddev->new_level);
1743 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 		if (mddev->delta_disks == 0 &&
1745 		    mddev->reshape_backwards)
1746 			sb->feature_map
1747 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 		if (rdev->new_data_offset != rdev->data_offset) {
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 							     - rdev->data_offset));
1753 		}
1754 	}
1755 
1756 	if (rdev->badblocks.count == 0)
1757 		/* Nothing to do for bad blocks*/ ;
1758 	else if (sb->bblog_offset == 0)
1759 		/* Cannot record bad blocks on this device */
1760 		md_error(mddev, rdev);
1761 	else {
1762 		struct badblocks *bb = &rdev->badblocks;
1763 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 		u64 *p = bb->page;
1765 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 		if (bb->changed) {
1767 			unsigned seq;
1768 
1769 retry:
1770 			seq = read_seqbegin(&bb->lock);
1771 
1772 			memset(bbp, 0xff, PAGE_SIZE);
1773 
1774 			for (i = 0 ; i < bb->count ; i++) {
1775 				u64 internal_bb = p[i];
1776 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 						| BB_LEN(internal_bb));
1778 				bbp[i] = cpu_to_le64(store_bb);
1779 			}
1780 			bb->changed = 0;
1781 			if (read_seqretry(&bb->lock, seq))
1782 				goto retry;
1783 
1784 			bb->sector = (rdev->sb_start +
1785 				      (int)le32_to_cpu(sb->bblog_offset));
1786 			bb->size = le16_to_cpu(sb->bblog_size);
1787 		}
1788 	}
1789 
1790 	max_dev = 0;
1791 	rdev_for_each(rdev2, mddev)
1792 		if (rdev2->desc_nr+1 > max_dev)
1793 			max_dev = rdev2->desc_nr+1;
1794 
1795 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 		int bmask;
1797 		sb->max_dev = cpu_to_le32(max_dev);
1798 		rdev->sb_size = max_dev * 2 + 256;
1799 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 		if (rdev->sb_size & bmask)
1801 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 	} else
1803 		max_dev = le32_to_cpu(sb->max_dev);
1804 
1805 	for (i=0; i<max_dev;i++)
1806 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807 
1808 	rdev_for_each(rdev2, mddev) {
1809 		i = rdev2->desc_nr;
1810 		if (test_bit(Faulty, &rdev2->flags))
1811 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 		else if (test_bit(In_sync, &rdev2->flags))
1813 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 		else if (rdev2->raid_disk >= 0)
1815 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 		else
1817 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 	}
1819 
1820 	sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822 
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 	struct mdp_superblock_1 *sb;
1827 	sector_t max_sectors;
1828 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 		return 0; /* component must fit device */
1830 	if (rdev->data_offset != rdev->new_data_offset)
1831 		return 0; /* too confusing */
1832 	if (rdev->sb_start < rdev->data_offset) {
1833 		/* minor versions 1 and 2; superblock before data */
1834 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 		max_sectors -= rdev->data_offset;
1836 		if (!num_sectors || num_sectors > max_sectors)
1837 			num_sectors = max_sectors;
1838 	} else if (rdev->mddev->bitmap_info.offset) {
1839 		/* minor version 0 with bitmap we can't move */
1840 		return 0;
1841 	} else {
1842 		/* minor version 0; superblock after data */
1843 		sector_t sb_start;
1844 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 		sb_start &= ~(sector_t)(4*2 - 1);
1846 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 		if (!num_sectors || num_sectors > max_sectors)
1848 			num_sectors = max_sectors;
1849 		rdev->sb_start = sb_start;
1850 	}
1851 	sb = page_address(rdev->sb_page);
1852 	sb->data_size = cpu_to_le64(num_sectors);
1853 	sb->super_offset = rdev->sb_start;
1854 	sb->sb_csum = calc_sb_1_csum(sb);
1855 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 		       rdev->sb_page);
1857 	md_super_wait(rdev->mddev);
1858 	return num_sectors;
1859 
1860 }
1861 
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 			 unsigned long long new_offset)
1865 {
1866 	/* All necessary checks on new >= old have been done */
1867 	struct bitmap *bitmap;
1868 	if (new_offset >= rdev->data_offset)
1869 		return 1;
1870 
1871 	/* with 1.0 metadata, there is no metadata to tread on
1872 	 * so we can always move back */
1873 	if (rdev->mddev->minor_version == 0)
1874 		return 1;
1875 
1876 	/* otherwise we must be sure not to step on
1877 	 * any metadata, so stay:
1878 	 * 36K beyond start of superblock
1879 	 * beyond end of badblocks
1880 	 * beyond write-intent bitmap
1881 	 */
1882 	if (rdev->sb_start + (32+4)*2 > new_offset)
1883 		return 0;
1884 	bitmap = rdev->mddev->bitmap;
1885 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 		return 0;
1889 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 		return 0;
1891 
1892 	return 1;
1893 }
1894 
1895 static struct super_type super_types[] = {
1896 	[0] = {
1897 		.name	= "0.90.0",
1898 		.owner	= THIS_MODULE,
1899 		.load_super	    = super_90_load,
1900 		.validate_super	    = super_90_validate,
1901 		.sync_super	    = super_90_sync,
1902 		.rdev_size_change   = super_90_rdev_size_change,
1903 		.allow_new_offset   = super_90_allow_new_offset,
1904 	},
1905 	[1] = {
1906 		.name	= "md-1",
1907 		.owner	= THIS_MODULE,
1908 		.load_super	    = super_1_load,
1909 		.validate_super	    = super_1_validate,
1910 		.sync_super	    = super_1_sync,
1911 		.rdev_size_change   = super_1_rdev_size_change,
1912 		.allow_new_offset   = super_1_allow_new_offset,
1913 	},
1914 };
1915 
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 	if (mddev->sync_super) {
1919 		mddev->sync_super(mddev, rdev);
1920 		return;
1921 	}
1922 
1923 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924 
1925 	super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927 
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 	struct md_rdev *rdev, *rdev2;
1931 
1932 	rcu_read_lock();
1933 	rdev_for_each_rcu(rdev, mddev1)
1934 		rdev_for_each_rcu(rdev2, mddev2)
1935 			if (rdev->bdev->bd_contains ==
1936 			    rdev2->bdev->bd_contains) {
1937 				rcu_read_unlock();
1938 				return 1;
1939 			}
1940 	rcu_read_unlock();
1941 	return 0;
1942 }
1943 
1944 static LIST_HEAD(pending_raid_disks);
1945 
1946 /*
1947  * Try to register data integrity profile for an mddev
1948  *
1949  * This is called when an array is started and after a disk has been kicked
1950  * from the array. It only succeeds if all working and active component devices
1951  * are integrity capable with matching profiles.
1952  */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 	struct md_rdev *rdev, *reference = NULL;
1956 
1957 	if (list_empty(&mddev->disks))
1958 		return 0; /* nothing to do */
1959 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 		return 0; /* shouldn't register, or already is */
1961 	rdev_for_each(rdev, mddev) {
1962 		/* skip spares and non-functional disks */
1963 		if (test_bit(Faulty, &rdev->flags))
1964 			continue;
1965 		if (rdev->raid_disk < 0)
1966 			continue;
1967 		if (!reference) {
1968 			/* Use the first rdev as the reference */
1969 			reference = rdev;
1970 			continue;
1971 		}
1972 		/* does this rdev's profile match the reference profile? */
1973 		if (blk_integrity_compare(reference->bdev->bd_disk,
1974 				rdev->bdev->bd_disk) < 0)
1975 			return -EINVAL;
1976 	}
1977 	if (!reference || !bdev_get_integrity(reference->bdev))
1978 		return 0;
1979 	/*
1980 	 * All component devices are integrity capable and have matching
1981 	 * profiles, register the common profile for the md device.
1982 	 */
1983 	if (blk_integrity_register(mddev->gendisk,
1984 			bdev_get_integrity(reference->bdev)) != 0) {
1985 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 			mdname(mddev));
1987 		return -EINVAL;
1988 	}
1989 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 		       mdname(mddev));
1993 		return -EINVAL;
1994 	}
1995 	return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998 
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 	struct blk_integrity *bi_rdev;
2003 	struct blk_integrity *bi_mddev;
2004 
2005 	if (!mddev->gendisk)
2006 		return;
2007 
2008 	bi_rdev = bdev_get_integrity(rdev->bdev);
2009 	bi_mddev = blk_get_integrity(mddev->gendisk);
2010 
2011 	if (!bi_mddev) /* nothing to do */
2012 		return;
2013 	if (rdev->raid_disk < 0) /* skip spares */
2014 		return;
2015 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 					     rdev->bdev->bd_disk) >= 0)
2017 		return;
2018 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 	blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022 
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 	char b[BDEVNAME_SIZE];
2026 	struct kobject *ko;
2027 	int err;
2028 
2029 	/* prevent duplicates */
2030 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2031 		return -EEXIST;
2032 
2033 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2034 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035 			rdev->sectors < mddev->dev_sectors)) {
2036 		if (mddev->pers) {
2037 			/* Cannot change size, so fail
2038 			 * If mddev->level <= 0, then we don't care
2039 			 * about aligning sizes (e.g. linear)
2040 			 */
2041 			if (mddev->level > 0)
2042 				return -ENOSPC;
2043 		} else
2044 			mddev->dev_sectors = rdev->sectors;
2045 	}
2046 
2047 	/* Verify rdev->desc_nr is unique.
2048 	 * If it is -1, assign a free number, else
2049 	 * check number is not in use
2050 	 */
2051 	rcu_read_lock();
2052 	if (rdev->desc_nr < 0) {
2053 		int choice = 0;
2054 		if (mddev->pers)
2055 			choice = mddev->raid_disks;
2056 		while (md_find_rdev_nr_rcu(mddev, choice))
2057 			choice++;
2058 		rdev->desc_nr = choice;
2059 	} else {
2060 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061 			rcu_read_unlock();
2062 			return -EBUSY;
2063 		}
2064 	}
2065 	rcu_read_unlock();
2066 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068 		       mdname(mddev), mddev->max_disks);
2069 		return -EBUSY;
2070 	}
2071 	bdevname(rdev->bdev,b);
2072 	strreplace(b, '/', '!');
2073 
2074 	rdev->mddev = mddev;
2075 	printk(KERN_INFO "md: bind<%s>\n", b);
2076 
2077 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078 		goto fail;
2079 
2080 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082 		/* failure here is OK */;
2083 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084 
2085 	list_add_rcu(&rdev->same_set, &mddev->disks);
2086 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087 
2088 	/* May as well allow recovery to be retried once */
2089 	mddev->recovery_disabled++;
2090 
2091 	return 0;
2092 
2093  fail:
2094 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095 	       b, mdname(mddev));
2096 	return err;
2097 }
2098 
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102 	kobject_del(&rdev->kobj);
2103 	kobject_put(&rdev->kobj);
2104 }
2105 
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108 	char b[BDEVNAME_SIZE];
2109 
2110 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111 	list_del_rcu(&rdev->same_set);
2112 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113 	rdev->mddev = NULL;
2114 	sysfs_remove_link(&rdev->kobj, "block");
2115 	sysfs_put(rdev->sysfs_state);
2116 	rdev->sysfs_state = NULL;
2117 	rdev->badblocks.count = 0;
2118 	/* We need to delay this, otherwise we can deadlock when
2119 	 * writing to 'remove' to "dev/state".  We also need
2120 	 * to delay it due to rcu usage.
2121 	 */
2122 	synchronize_rcu();
2123 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 	kobject_get(&rdev->kobj);
2125 	queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127 
2128 /*
2129  * prevent the device from being mounted, repartitioned or
2130  * otherwise reused by a RAID array (or any other kernel
2131  * subsystem), by bd_claiming the device.
2132  */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 	int err = 0;
2136 	struct block_device *bdev;
2137 	char b[BDEVNAME_SIZE];
2138 
2139 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 	if (IS_ERR(bdev)) {
2142 		printk(KERN_ERR "md: could not open %s.\n",
2143 			__bdevname(dev, b));
2144 		return PTR_ERR(bdev);
2145 	}
2146 	rdev->bdev = bdev;
2147 	return err;
2148 }
2149 
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 	struct block_device *bdev = rdev->bdev;
2153 	rdev->bdev = NULL;
2154 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156 
2157 void md_autodetect_dev(dev_t dev);
2158 
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161 	char b[BDEVNAME_SIZE];
2162 
2163 	printk(KERN_INFO "md: export_rdev(%s)\n",
2164 		bdevname(rdev->bdev,b));
2165 	md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 	if (test_bit(AutoDetected, &rdev->flags))
2168 		md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 	unlock_rdev(rdev);
2171 	kobject_put(&rdev->kobj);
2172 }
2173 
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 	unbind_rdev_from_array(rdev);
2177 	export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180 
2181 static void export_array(struct mddev *mddev)
2182 {
2183 	struct md_rdev *rdev;
2184 
2185 	while (!list_empty(&mddev->disks)) {
2186 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187 					same_set);
2188 		md_kick_rdev_from_array(rdev);
2189 	}
2190 	mddev->raid_disks = 0;
2191 	mddev->major_version = 0;
2192 }
2193 
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196 	/* Update each superblock (in-memory image), but
2197 	 * if we are allowed to, skip spares which already
2198 	 * have the right event counter, or have one earlier
2199 	 * (which would mean they aren't being marked as dirty
2200 	 * with the rest of the array)
2201 	 */
2202 	struct md_rdev *rdev;
2203 	rdev_for_each(rdev, mddev) {
2204 		if (rdev->sb_events == mddev->events ||
2205 		    (nospares &&
2206 		     rdev->raid_disk < 0 &&
2207 		     rdev->sb_events+1 == mddev->events)) {
2208 			/* Don't update this superblock */
2209 			rdev->sb_loaded = 2;
2210 		} else {
2211 			sync_super(mddev, rdev);
2212 			rdev->sb_loaded = 1;
2213 		}
2214 	}
2215 }
2216 
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219 	struct md_rdev *rdev;
2220 	int sync_req;
2221 	int nospares = 0;
2222 	int any_badblocks_changed = 0;
2223 
2224 	if (mddev->ro) {
2225 		if (force_change)
2226 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 		return;
2228 	}
2229 repeat:
2230 	/* First make sure individual recovery_offsets are correct */
2231 	rdev_for_each(rdev, mddev) {
2232 		if (rdev->raid_disk >= 0 &&
2233 		    mddev->delta_disks >= 0 &&
2234 		    !test_bit(In_sync, &rdev->flags) &&
2235 		    mddev->curr_resync_completed > rdev->recovery_offset)
2236 				rdev->recovery_offset = mddev->curr_resync_completed;
2237 
2238 	}
2239 	if (!mddev->persistent) {
2240 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242 		if (!mddev->external) {
2243 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244 			rdev_for_each(rdev, mddev) {
2245 				if (rdev->badblocks.changed) {
2246 					rdev->badblocks.changed = 0;
2247 					md_ack_all_badblocks(&rdev->badblocks);
2248 					md_error(mddev, rdev);
2249 				}
2250 				clear_bit(Blocked, &rdev->flags);
2251 				clear_bit(BlockedBadBlocks, &rdev->flags);
2252 				wake_up(&rdev->blocked_wait);
2253 			}
2254 		}
2255 		wake_up(&mddev->sb_wait);
2256 		return;
2257 	}
2258 
2259 	spin_lock(&mddev->lock);
2260 
2261 	mddev->utime = get_seconds();
2262 
2263 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264 		force_change = 1;
2265 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266 		/* just a clean<-> dirty transition, possibly leave spares alone,
2267 		 * though if events isn't the right even/odd, we will have to do
2268 		 * spares after all
2269 		 */
2270 		nospares = 1;
2271 	if (force_change)
2272 		nospares = 0;
2273 	if (mddev->degraded)
2274 		/* If the array is degraded, then skipping spares is both
2275 		 * dangerous and fairly pointless.
2276 		 * Dangerous because a device that was removed from the array
2277 		 * might have a event_count that still looks up-to-date,
2278 		 * so it can be re-added without a resync.
2279 		 * Pointless because if there are any spares to skip,
2280 		 * then a recovery will happen and soon that array won't
2281 		 * be degraded any more and the spare can go back to sleep then.
2282 		 */
2283 		nospares = 0;
2284 
2285 	sync_req = mddev->in_sync;
2286 
2287 	/* If this is just a dirty<->clean transition, and the array is clean
2288 	 * and 'events' is odd, we can roll back to the previous clean state */
2289 	if (nospares
2290 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291 	    && mddev->can_decrease_events
2292 	    && mddev->events != 1) {
2293 		mddev->events--;
2294 		mddev->can_decrease_events = 0;
2295 	} else {
2296 		/* otherwise we have to go forward and ... */
2297 		mddev->events ++;
2298 		mddev->can_decrease_events = nospares;
2299 	}
2300 
2301 	/*
2302 	 * This 64-bit counter should never wrap.
2303 	 * Either we are in around ~1 trillion A.C., assuming
2304 	 * 1 reboot per second, or we have a bug...
2305 	 */
2306 	WARN_ON(mddev->events == 0);
2307 
2308 	rdev_for_each(rdev, mddev) {
2309 		if (rdev->badblocks.changed)
2310 			any_badblocks_changed++;
2311 		if (test_bit(Faulty, &rdev->flags))
2312 			set_bit(FaultRecorded, &rdev->flags);
2313 	}
2314 
2315 	sync_sbs(mddev, nospares);
2316 	spin_unlock(&mddev->lock);
2317 
2318 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319 		 mdname(mddev), mddev->in_sync);
2320 
2321 	bitmap_update_sb(mddev->bitmap);
2322 	rdev_for_each(rdev, mddev) {
2323 		char b[BDEVNAME_SIZE];
2324 
2325 		if (rdev->sb_loaded != 1)
2326 			continue; /* no noise on spare devices */
2327 
2328 		if (!test_bit(Faulty, &rdev->flags)) {
2329 			md_super_write(mddev,rdev,
2330 				       rdev->sb_start, rdev->sb_size,
2331 				       rdev->sb_page);
2332 			pr_debug("md: (write) %s's sb offset: %llu\n",
2333 				 bdevname(rdev->bdev, b),
2334 				 (unsigned long long)rdev->sb_start);
2335 			rdev->sb_events = mddev->events;
2336 			if (rdev->badblocks.size) {
2337 				md_super_write(mddev, rdev,
2338 					       rdev->badblocks.sector,
2339 					       rdev->badblocks.size << 9,
2340 					       rdev->bb_page);
2341 				rdev->badblocks.size = 0;
2342 			}
2343 
2344 		} else
2345 			pr_debug("md: %s (skipping faulty)\n",
2346 				 bdevname(rdev->bdev, b));
2347 
2348 		if (mddev->level == LEVEL_MULTIPATH)
2349 			/* only need to write one superblock... */
2350 			break;
2351 	}
2352 	md_super_wait(mddev);
2353 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354 
2355 	spin_lock(&mddev->lock);
2356 	if (mddev->in_sync != sync_req ||
2357 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358 		/* have to write it out again */
2359 		spin_unlock(&mddev->lock);
2360 		goto repeat;
2361 	}
2362 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 	spin_unlock(&mddev->lock);
2364 	wake_up(&mddev->sb_wait);
2365 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367 
2368 	rdev_for_each(rdev, mddev) {
2369 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370 			clear_bit(Blocked, &rdev->flags);
2371 
2372 		if (any_badblocks_changed)
2373 			md_ack_all_badblocks(&rdev->badblocks);
2374 		clear_bit(BlockedBadBlocks, &rdev->flags);
2375 		wake_up(&rdev->blocked_wait);
2376 	}
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379 
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382 	struct mddev *mddev = rdev->mddev;
2383 	int err = 0;
2384 
2385 	if (!mddev->pers->hot_remove_disk) {
2386 		/* If there is hot_add_disk but no hot_remove_disk
2387 		 * then added disks for geometry changes,
2388 		 * and should be added immediately.
2389 		 */
2390 		super_types[mddev->major_version].
2391 			validate_super(mddev, rdev);
2392 		err = mddev->pers->hot_add_disk(mddev, rdev);
2393 		if (err) {
2394 			unbind_rdev_from_array(rdev);
2395 			export_rdev(rdev);
2396 			return err;
2397 		}
2398 	}
2399 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2400 
2401 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 	if (mddev->degraded)
2403 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405 	md_new_event(mddev);
2406 	md_wakeup_thread(mddev->thread);
2407 	return 0;
2408 }
2409 
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411  * We want to accept with case. For this we use cmd_match.
2412  */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415 	/* See if cmd, written into a sysfs file, matches
2416 	 * str.  They must either be the same, or cmd can
2417 	 * have a trailing newline
2418 	 */
2419 	while (*cmd && *str && *cmd == *str) {
2420 		cmd++;
2421 		str++;
2422 	}
2423 	if (*cmd == '\n')
2424 		cmd++;
2425 	if (*str || *cmd)
2426 		return 0;
2427 	return 1;
2428 }
2429 
2430 struct rdev_sysfs_entry {
2431 	struct attribute attr;
2432 	ssize_t (*show)(struct md_rdev *, char *);
2433 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435 
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439 	char *sep = "";
2440 	size_t len = 0;
2441 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2442 
2443 	if (test_bit(Faulty, &flags) ||
2444 	    rdev->badblocks.unacked_exist) {
2445 		len+= sprintf(page+len, "%sfaulty",sep);
2446 		sep = ",";
2447 	}
2448 	if (test_bit(In_sync, &flags)) {
2449 		len += sprintf(page+len, "%sin_sync",sep);
2450 		sep = ",";
2451 	}
2452 	if (test_bit(WriteMostly, &flags)) {
2453 		len += sprintf(page+len, "%swrite_mostly",sep);
2454 		sep = ",";
2455 	}
2456 	if (test_bit(Blocked, &flags) ||
2457 	    (rdev->badblocks.unacked_exist
2458 	     && !test_bit(Faulty, &flags))) {
2459 		len += sprintf(page+len, "%sblocked", sep);
2460 		sep = ",";
2461 	}
2462 	if (!test_bit(Faulty, &flags) &&
2463 	    !test_bit(In_sync, &flags)) {
2464 		len += sprintf(page+len, "%sspare", sep);
2465 		sep = ",";
2466 	}
2467 	if (test_bit(WriteErrorSeen, &flags)) {
2468 		len += sprintf(page+len, "%swrite_error", sep);
2469 		sep = ",";
2470 	}
2471 	if (test_bit(WantReplacement, &flags)) {
2472 		len += sprintf(page+len, "%swant_replacement", sep);
2473 		sep = ",";
2474 	}
2475 	if (test_bit(Replacement, &flags)) {
2476 		len += sprintf(page+len, "%sreplacement", sep);
2477 		sep = ",";
2478 	}
2479 
2480 	return len+sprintf(page+len, "\n");
2481 }
2482 
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486 	/* can write
2487 	 *  faulty  - simulates an error
2488 	 *  remove  - disconnects the device
2489 	 *  writemostly - sets write_mostly
2490 	 *  -writemostly - clears write_mostly
2491 	 *  blocked - sets the Blocked flags
2492 	 *  -blocked - clears the Blocked and possibly simulates an error
2493 	 *  insync - sets Insync providing device isn't active
2494 	 *  -insync - clear Insync for a device with a slot assigned,
2495 	 *            so that it gets rebuilt based on bitmap
2496 	 *  write_error - sets WriteErrorSeen
2497 	 *  -write_error - clears WriteErrorSeen
2498 	 */
2499 	int err = -EINVAL;
2500 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501 		md_error(rdev->mddev, rdev);
2502 		if (test_bit(Faulty, &rdev->flags))
2503 			err = 0;
2504 		else
2505 			err = -EBUSY;
2506 	} else if (cmd_match(buf, "remove")) {
2507 		if (rdev->raid_disk >= 0)
2508 			err = -EBUSY;
2509 		else {
2510 			struct mddev *mddev = rdev->mddev;
2511 			if (mddev_is_clustered(mddev))
2512 				md_cluster_ops->remove_disk(mddev, rdev);
2513 			md_kick_rdev_from_array(rdev);
2514 			if (mddev_is_clustered(mddev))
2515 				md_cluster_ops->metadata_update_start(mddev);
2516 			if (mddev->pers)
2517 				md_update_sb(mddev, 1);
2518 			md_new_event(mddev);
2519 			if (mddev_is_clustered(mddev))
2520 				md_cluster_ops->metadata_update_finish(mddev);
2521 			err = 0;
2522 		}
2523 	} else if (cmd_match(buf, "writemostly")) {
2524 		set_bit(WriteMostly, &rdev->flags);
2525 		err = 0;
2526 	} else if (cmd_match(buf, "-writemostly")) {
2527 		clear_bit(WriteMostly, &rdev->flags);
2528 		err = 0;
2529 	} else if (cmd_match(buf, "blocked")) {
2530 		set_bit(Blocked, &rdev->flags);
2531 		err = 0;
2532 	} else if (cmd_match(buf, "-blocked")) {
2533 		if (!test_bit(Faulty, &rdev->flags) &&
2534 		    rdev->badblocks.unacked_exist) {
2535 			/* metadata handler doesn't understand badblocks,
2536 			 * so we need to fail the device
2537 			 */
2538 			md_error(rdev->mddev, rdev);
2539 		}
2540 		clear_bit(Blocked, &rdev->flags);
2541 		clear_bit(BlockedBadBlocks, &rdev->flags);
2542 		wake_up(&rdev->blocked_wait);
2543 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544 		md_wakeup_thread(rdev->mddev->thread);
2545 
2546 		err = 0;
2547 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548 		set_bit(In_sync, &rdev->flags);
2549 		err = 0;
2550 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551 		if (rdev->mddev->pers == NULL) {
2552 			clear_bit(In_sync, &rdev->flags);
2553 			rdev->saved_raid_disk = rdev->raid_disk;
2554 			rdev->raid_disk = -1;
2555 			err = 0;
2556 		}
2557 	} else if (cmd_match(buf, "write_error")) {
2558 		set_bit(WriteErrorSeen, &rdev->flags);
2559 		err = 0;
2560 	} else if (cmd_match(buf, "-write_error")) {
2561 		clear_bit(WriteErrorSeen, &rdev->flags);
2562 		err = 0;
2563 	} else if (cmd_match(buf, "want_replacement")) {
2564 		/* Any non-spare device that is not a replacement can
2565 		 * become want_replacement at any time, but we then need to
2566 		 * check if recovery is needed.
2567 		 */
2568 		if (rdev->raid_disk >= 0 &&
2569 		    !test_bit(Replacement, &rdev->flags))
2570 			set_bit(WantReplacement, &rdev->flags);
2571 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572 		md_wakeup_thread(rdev->mddev->thread);
2573 		err = 0;
2574 	} else if (cmd_match(buf, "-want_replacement")) {
2575 		/* Clearing 'want_replacement' is always allowed.
2576 		 * Once replacements starts it is too late though.
2577 		 */
2578 		err = 0;
2579 		clear_bit(WantReplacement, &rdev->flags);
2580 	} else if (cmd_match(buf, "replacement")) {
2581 		/* Can only set a device as a replacement when array has not
2582 		 * yet been started.  Once running, replacement is automatic
2583 		 * from spares, or by assigning 'slot'.
2584 		 */
2585 		if (rdev->mddev->pers)
2586 			err = -EBUSY;
2587 		else {
2588 			set_bit(Replacement, &rdev->flags);
2589 			err = 0;
2590 		}
2591 	} else if (cmd_match(buf, "-replacement")) {
2592 		/* Similarly, can only clear Replacement before start */
2593 		if (rdev->mddev->pers)
2594 			err = -EBUSY;
2595 		else {
2596 			clear_bit(Replacement, &rdev->flags);
2597 			err = 0;
2598 		}
2599 	} else if (cmd_match(buf, "re-add")) {
2600 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601 			/* clear_bit is performed _after_ all the devices
2602 			 * have their local Faulty bit cleared. If any writes
2603 			 * happen in the meantime in the local node, they
2604 			 * will land in the local bitmap, which will be synced
2605 			 * by this node eventually
2606 			 */
2607 			if (!mddev_is_clustered(rdev->mddev) ||
2608 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609 				clear_bit(Faulty, &rdev->flags);
2610 				err = add_bound_rdev(rdev);
2611 			}
2612 		} else
2613 			err = -EBUSY;
2614 	}
2615 	if (!err)
2616 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2617 	return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621 
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627 
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631 	unsigned int n;
2632 	int rv;
2633 
2634 	rv = kstrtouint(buf, 10, &n);
2635 	if (rv < 0)
2636 		return rv;
2637 	atomic_set(&rdev->corrected_errors, n);
2638 	return len;
2639 }
2640 static struct rdev_sysfs_entry rdev_errors =
2641 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2642 
2643 static ssize_t
2644 slot_show(struct md_rdev *rdev, char *page)
2645 {
2646 	if (rdev->raid_disk < 0)
2647 		return sprintf(page, "none\n");
2648 	else
2649 		return sprintf(page, "%d\n", rdev->raid_disk);
2650 }
2651 
2652 static ssize_t
2653 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2654 {
2655 	int slot;
2656 	int err;
2657 
2658 	if (strncmp(buf, "none", 4)==0)
2659 		slot = -1;
2660 	else {
2661 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2662 		if (err < 0)
2663 			return err;
2664 	}
2665 	if (rdev->mddev->pers && slot == -1) {
2666 		/* Setting 'slot' on an active array requires also
2667 		 * updating the 'rd%d' link, and communicating
2668 		 * with the personality with ->hot_*_disk.
2669 		 * For now we only support removing
2670 		 * failed/spare devices.  This normally happens automatically,
2671 		 * but not when the metadata is externally managed.
2672 		 */
2673 		if (rdev->raid_disk == -1)
2674 			return -EEXIST;
2675 		/* personality does all needed checks */
2676 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2677 			return -EINVAL;
2678 		clear_bit(Blocked, &rdev->flags);
2679 		remove_and_add_spares(rdev->mddev, rdev);
2680 		if (rdev->raid_disk >= 0)
2681 			return -EBUSY;
2682 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683 		md_wakeup_thread(rdev->mddev->thread);
2684 	} else if (rdev->mddev->pers) {
2685 		/* Activating a spare .. or possibly reactivating
2686 		 * if we ever get bitmaps working here.
2687 		 */
2688 
2689 		if (rdev->raid_disk != -1)
2690 			return -EBUSY;
2691 
2692 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693 			return -EBUSY;
2694 
2695 		if (rdev->mddev->pers->hot_add_disk == NULL)
2696 			return -EINVAL;
2697 
2698 		if (slot >= rdev->mddev->raid_disks &&
2699 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700 			return -ENOSPC;
2701 
2702 		rdev->raid_disk = slot;
2703 		if (test_bit(In_sync, &rdev->flags))
2704 			rdev->saved_raid_disk = slot;
2705 		else
2706 			rdev->saved_raid_disk = -1;
2707 		clear_bit(In_sync, &rdev->flags);
2708 		clear_bit(Bitmap_sync, &rdev->flags);
2709 		err = rdev->mddev->pers->
2710 			hot_add_disk(rdev->mddev, rdev);
2711 		if (err) {
2712 			rdev->raid_disk = -1;
2713 			return err;
2714 		} else
2715 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2716 		if (sysfs_link_rdev(rdev->mddev, rdev))
2717 			/* failure here is OK */;
2718 		/* don't wakeup anyone, leave that to userspace. */
2719 	} else {
2720 		if (slot >= rdev->mddev->raid_disks &&
2721 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 			return -ENOSPC;
2723 		rdev->raid_disk = slot;
2724 		/* assume it is working */
2725 		clear_bit(Faulty, &rdev->flags);
2726 		clear_bit(WriteMostly, &rdev->flags);
2727 		set_bit(In_sync, &rdev->flags);
2728 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2729 	}
2730 	return len;
2731 }
2732 
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735 
2736 static ssize_t
2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741 
2742 static ssize_t
2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745 	unsigned long long offset;
2746 	if (kstrtoull(buf, 10, &offset) < 0)
2747 		return -EINVAL;
2748 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749 		return -EBUSY;
2750 	if (rdev->sectors && rdev->mddev->external)
2751 		/* Must set offset before size, so overlap checks
2752 		 * can be sane */
2753 		return -EBUSY;
2754 	rdev->data_offset = offset;
2755 	rdev->new_data_offset = offset;
2756 	return len;
2757 }
2758 
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761 
2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764 	return sprintf(page, "%llu\n",
2765 		       (unsigned long long)rdev->new_data_offset);
2766 }
2767 
2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769 				const char *buf, size_t len)
2770 {
2771 	unsigned long long new_offset;
2772 	struct mddev *mddev = rdev->mddev;
2773 
2774 	if (kstrtoull(buf, 10, &new_offset) < 0)
2775 		return -EINVAL;
2776 
2777 	if (mddev->sync_thread ||
2778 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779 		return -EBUSY;
2780 	if (new_offset == rdev->data_offset)
2781 		/* reset is always permitted */
2782 		;
2783 	else if (new_offset > rdev->data_offset) {
2784 		/* must not push array size beyond rdev_sectors */
2785 		if (new_offset - rdev->data_offset
2786 		    + mddev->dev_sectors > rdev->sectors)
2787 				return -E2BIG;
2788 	}
2789 	/* Metadata worries about other space details. */
2790 
2791 	/* decreasing the offset is inconsistent with a backwards
2792 	 * reshape.
2793 	 */
2794 	if (new_offset < rdev->data_offset &&
2795 	    mddev->reshape_backwards)
2796 		return -EINVAL;
2797 	/* Increasing offset is inconsistent with forwards
2798 	 * reshape.  reshape_direction should be set to
2799 	 * 'backwards' first.
2800 	 */
2801 	if (new_offset > rdev->data_offset &&
2802 	    !mddev->reshape_backwards)
2803 		return -EINVAL;
2804 
2805 	if (mddev->pers && mddev->persistent &&
2806 	    !super_types[mddev->major_version]
2807 	    .allow_new_offset(rdev, new_offset))
2808 		return -E2BIG;
2809 	rdev->new_data_offset = new_offset;
2810 	if (new_offset > rdev->data_offset)
2811 		mddev->reshape_backwards = 1;
2812 	else if (new_offset < rdev->data_offset)
2813 		mddev->reshape_backwards = 0;
2814 
2815 	return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819 
2820 static ssize_t
2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825 
2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828 	/* check if two start/length pairs overlap */
2829 	if (s1+l1 <= s2)
2830 		return 0;
2831 	if (s2+l2 <= s1)
2832 		return 0;
2833 	return 1;
2834 }
2835 
2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838 	unsigned long long blocks;
2839 	sector_t new;
2840 
2841 	if (kstrtoull(buf, 10, &blocks) < 0)
2842 		return -EINVAL;
2843 
2844 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845 		return -EINVAL; /* sector conversion overflow */
2846 
2847 	new = blocks * 2;
2848 	if (new != blocks * 2)
2849 		return -EINVAL; /* unsigned long long to sector_t overflow */
2850 
2851 	*sectors = new;
2852 	return 0;
2853 }
2854 
2855 static ssize_t
2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858 	struct mddev *my_mddev = rdev->mddev;
2859 	sector_t oldsectors = rdev->sectors;
2860 	sector_t sectors;
2861 
2862 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863 		return -EINVAL;
2864 	if (rdev->data_offset != rdev->new_data_offset)
2865 		return -EINVAL; /* too confusing */
2866 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2867 		if (my_mddev->persistent) {
2868 			sectors = super_types[my_mddev->major_version].
2869 				rdev_size_change(rdev, sectors);
2870 			if (!sectors)
2871 				return -EBUSY;
2872 		} else if (!sectors)
2873 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874 				rdev->data_offset;
2875 		if (!my_mddev->pers->resize)
2876 			/* Cannot change size for RAID0 or Linear etc */
2877 			return -EINVAL;
2878 	}
2879 	if (sectors < my_mddev->dev_sectors)
2880 		return -EINVAL; /* component must fit device */
2881 
2882 	rdev->sectors = sectors;
2883 	if (sectors > oldsectors && my_mddev->external) {
2884 		/* Need to check that all other rdevs with the same
2885 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2886 		 * the rdev lists safely.
2887 		 * This check does not provide a hard guarantee, it
2888 		 * just helps avoid dangerous mistakes.
2889 		 */
2890 		struct mddev *mddev;
2891 		int overlap = 0;
2892 		struct list_head *tmp;
2893 
2894 		rcu_read_lock();
2895 		for_each_mddev(mddev, tmp) {
2896 			struct md_rdev *rdev2;
2897 
2898 			rdev_for_each(rdev2, mddev)
2899 				if (rdev->bdev == rdev2->bdev &&
2900 				    rdev != rdev2 &&
2901 				    overlaps(rdev->data_offset, rdev->sectors,
2902 					     rdev2->data_offset,
2903 					     rdev2->sectors)) {
2904 					overlap = 1;
2905 					break;
2906 				}
2907 			if (overlap) {
2908 				mddev_put(mddev);
2909 				break;
2910 			}
2911 		}
2912 		rcu_read_unlock();
2913 		if (overlap) {
2914 			/* Someone else could have slipped in a size
2915 			 * change here, but doing so is just silly.
2916 			 * We put oldsectors back because we *know* it is
2917 			 * safe, and trust userspace not to race with
2918 			 * itself
2919 			 */
2920 			rdev->sectors = oldsectors;
2921 			return -EBUSY;
2922 		}
2923 	}
2924 	return len;
2925 }
2926 
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929 
2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932 	unsigned long long recovery_start = rdev->recovery_offset;
2933 
2934 	if (test_bit(In_sync, &rdev->flags) ||
2935 	    recovery_start == MaxSector)
2936 		return sprintf(page, "none\n");
2937 
2938 	return sprintf(page, "%llu\n", recovery_start);
2939 }
2940 
2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943 	unsigned long long recovery_start;
2944 
2945 	if (cmd_match(buf, "none"))
2946 		recovery_start = MaxSector;
2947 	else if (kstrtoull(buf, 10, &recovery_start))
2948 		return -EINVAL;
2949 
2950 	if (rdev->mddev->pers &&
2951 	    rdev->raid_disk >= 0)
2952 		return -EBUSY;
2953 
2954 	rdev->recovery_offset = recovery_start;
2955 	if (recovery_start == MaxSector)
2956 		set_bit(In_sync, &rdev->flags);
2957 	else
2958 		clear_bit(In_sync, &rdev->flags);
2959 	return len;
2960 }
2961 
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964 
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969 
2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972 	return badblocks_show(&rdev->badblocks, page, 0);
2973 }
2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977 	/* Maybe that ack was all we needed */
2978 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979 		wake_up(&rdev->blocked_wait);
2980 	return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984 
2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987 	return badblocks_show(&rdev->badblocks, page, 1);
2988 }
2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991 	return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995 
2996 static struct attribute *rdev_default_attrs[] = {
2997 	&rdev_state.attr,
2998 	&rdev_errors.attr,
2999 	&rdev_slot.attr,
3000 	&rdev_offset.attr,
3001 	&rdev_new_offset.attr,
3002 	&rdev_size.attr,
3003 	&rdev_recovery_start.attr,
3004 	&rdev_bad_blocks.attr,
3005 	&rdev_unack_bad_blocks.attr,
3006 	NULL,
3007 };
3008 static ssize_t
3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013 
3014 	if (!entry->show)
3015 		return -EIO;
3016 	if (!rdev->mddev)
3017 		return -EBUSY;
3018 	return entry->show(rdev, page);
3019 }
3020 
3021 static ssize_t
3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023 	      const char *page, size_t length)
3024 {
3025 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027 	ssize_t rv;
3028 	struct mddev *mddev = rdev->mddev;
3029 
3030 	if (!entry->store)
3031 		return -EIO;
3032 	if (!capable(CAP_SYS_ADMIN))
3033 		return -EACCES;
3034 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3035 	if (!rv) {
3036 		if (rdev->mddev == NULL)
3037 			rv = -EBUSY;
3038 		else
3039 			rv = entry->store(rdev, page, length);
3040 		mddev_unlock(mddev);
3041 	}
3042 	return rv;
3043 }
3044 
3045 static void rdev_free(struct kobject *ko)
3046 {
3047 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048 	kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051 	.show		= rdev_attr_show,
3052 	.store		= rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055 	.release	= rdev_free,
3056 	.sysfs_ops	= &rdev_sysfs_ops,
3057 	.default_attrs	= rdev_default_attrs,
3058 };
3059 
3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062 	rdev->desc_nr = -1;
3063 	rdev->saved_raid_disk = -1;
3064 	rdev->raid_disk = -1;
3065 	rdev->flags = 0;
3066 	rdev->data_offset = 0;
3067 	rdev->new_data_offset = 0;
3068 	rdev->sb_events = 0;
3069 	rdev->last_read_error.tv_sec  = 0;
3070 	rdev->last_read_error.tv_nsec = 0;
3071 	rdev->sb_loaded = 0;
3072 	rdev->bb_page = NULL;
3073 	atomic_set(&rdev->nr_pending, 0);
3074 	atomic_set(&rdev->read_errors, 0);
3075 	atomic_set(&rdev->corrected_errors, 0);
3076 
3077 	INIT_LIST_HEAD(&rdev->same_set);
3078 	init_waitqueue_head(&rdev->blocked_wait);
3079 
3080 	/* Add space to store bad block list.
3081 	 * This reserves the space even on arrays where it cannot
3082 	 * be used - I wonder if that matters
3083 	 */
3084 	rdev->badblocks.count = 0;
3085 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 	seqlock_init(&rdev->badblocks.lock);
3088 	if (rdev->badblocks.page == NULL)
3089 		return -ENOMEM;
3090 
3091 	return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096  *
3097  * mark the device faulty if:
3098  *
3099  *   - the device is nonexistent (zero size)
3100  *   - the device has no valid superblock
3101  *
3102  * a faulty rdev _never_ has rdev->sb set.
3103  */
3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106 	char b[BDEVNAME_SIZE];
3107 	int err;
3108 	struct md_rdev *rdev;
3109 	sector_t size;
3110 
3111 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112 	if (!rdev) {
3113 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114 		return ERR_PTR(-ENOMEM);
3115 	}
3116 
3117 	err = md_rdev_init(rdev);
3118 	if (err)
3119 		goto abort_free;
3120 	err = alloc_disk_sb(rdev);
3121 	if (err)
3122 		goto abort_free;
3123 
3124 	err = lock_rdev(rdev, newdev, super_format == -2);
3125 	if (err)
3126 		goto abort_free;
3127 
3128 	kobject_init(&rdev->kobj, &rdev_ktype);
3129 
3130 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131 	if (!size) {
3132 		printk(KERN_WARNING
3133 			"md: %s has zero or unknown size, marking faulty!\n",
3134 			bdevname(rdev->bdev,b));
3135 		err = -EINVAL;
3136 		goto abort_free;
3137 	}
3138 
3139 	if (super_format >= 0) {
3140 		err = super_types[super_format].
3141 			load_super(rdev, NULL, super_minor);
3142 		if (err == -EINVAL) {
3143 			printk(KERN_WARNING
3144 				"md: %s does not have a valid v%d.%d "
3145 			       "superblock, not importing!\n",
3146 				bdevname(rdev->bdev,b),
3147 			       super_format, super_minor);
3148 			goto abort_free;
3149 		}
3150 		if (err < 0) {
3151 			printk(KERN_WARNING
3152 				"md: could not read %s's sb, not importing!\n",
3153 				bdevname(rdev->bdev,b));
3154 			goto abort_free;
3155 		}
3156 	}
3157 
3158 	return rdev;
3159 
3160 abort_free:
3161 	if (rdev->bdev)
3162 		unlock_rdev(rdev);
3163 	md_rdev_clear(rdev);
3164 	kfree(rdev);
3165 	return ERR_PTR(err);
3166 }
3167 
3168 /*
3169  * Check a full RAID array for plausibility
3170  */
3171 
3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174 	int i;
3175 	struct md_rdev *rdev, *freshest, *tmp;
3176 	char b[BDEVNAME_SIZE];
3177 
3178 	freshest = NULL;
3179 	rdev_for_each_safe(rdev, tmp, mddev)
3180 		switch (super_types[mddev->major_version].
3181 			load_super(rdev, freshest, mddev->minor_version)) {
3182 		case 1:
3183 			freshest = rdev;
3184 			break;
3185 		case 0:
3186 			break;
3187 		default:
3188 			printk( KERN_ERR \
3189 				"md: fatal superblock inconsistency in %s"
3190 				" -- removing from array\n",
3191 				bdevname(rdev->bdev,b));
3192 			md_kick_rdev_from_array(rdev);
3193 		}
3194 
3195 	super_types[mddev->major_version].
3196 		validate_super(mddev, freshest);
3197 
3198 	i = 0;
3199 	rdev_for_each_safe(rdev, tmp, mddev) {
3200 		if (mddev->max_disks &&
3201 		    (rdev->desc_nr >= mddev->max_disks ||
3202 		     i > mddev->max_disks)) {
3203 			printk(KERN_WARNING
3204 			       "md: %s: %s: only %d devices permitted\n",
3205 			       mdname(mddev), bdevname(rdev->bdev, b),
3206 			       mddev->max_disks);
3207 			md_kick_rdev_from_array(rdev);
3208 			continue;
3209 		}
3210 		if (rdev != freshest) {
3211 			if (super_types[mddev->major_version].
3212 			    validate_super(mddev, rdev)) {
3213 				printk(KERN_WARNING "md: kicking non-fresh %s"
3214 					" from array!\n",
3215 					bdevname(rdev->bdev,b));
3216 				md_kick_rdev_from_array(rdev);
3217 				continue;
3218 			}
3219 			/* No device should have a Candidate flag
3220 			 * when reading devices
3221 			 */
3222 			if (test_bit(Candidate, &rdev->flags)) {
3223 				pr_info("md: kicking Cluster Candidate %s from array!\n",
3224 					bdevname(rdev->bdev, b));
3225 				md_kick_rdev_from_array(rdev);
3226 			}
3227 		}
3228 		if (mddev->level == LEVEL_MULTIPATH) {
3229 			rdev->desc_nr = i++;
3230 			rdev->raid_disk = rdev->desc_nr;
3231 			set_bit(In_sync, &rdev->flags);
3232 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233 			rdev->raid_disk = -1;
3234 			clear_bit(In_sync, &rdev->flags);
3235 		}
3236 	}
3237 }
3238 
3239 /* Read a fixed-point number.
3240  * Numbers in sysfs attributes should be in "standard" units where
3241  * possible, so time should be in seconds.
3242  * However we internally use a a much smaller unit such as
3243  * milliseconds or jiffies.
3244  * This function takes a decimal number with a possible fractional
3245  * component, and produces an integer which is the result of
3246  * multiplying that number by 10^'scale'.
3247  * all without any floating-point arithmetic.
3248  */
3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251 	unsigned long result = 0;
3252 	long decimals = -1;
3253 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254 		if (*cp == '.')
3255 			decimals = 0;
3256 		else if (decimals < scale) {
3257 			unsigned int value;
3258 			value = *cp - '0';
3259 			result = result * 10 + value;
3260 			if (decimals >= 0)
3261 				decimals++;
3262 		}
3263 		cp++;
3264 	}
3265 	if (*cp == '\n')
3266 		cp++;
3267 	if (*cp)
3268 		return -EINVAL;
3269 	if (decimals < 0)
3270 		decimals = 0;
3271 	while (decimals < scale) {
3272 		result *= 10;
3273 		decimals ++;
3274 	}
3275 	*res = result;
3276 	return 0;
3277 }
3278 
3279 static void md_safemode_timeout(unsigned long data);
3280 
3281 static ssize_t
3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284 	int msec = (mddev->safemode_delay*1000)/HZ;
3285 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290 	unsigned long msec;
3291 
3292 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293 		return -EINVAL;
3294 	if (msec == 0)
3295 		mddev->safemode_delay = 0;
3296 	else {
3297 		unsigned long old_delay = mddev->safemode_delay;
3298 		unsigned long new_delay = (msec*HZ)/1000;
3299 
3300 		if (new_delay == 0)
3301 			new_delay = 1;
3302 		mddev->safemode_delay = new_delay;
3303 		if (new_delay < old_delay || old_delay == 0)
3304 			mod_timer(&mddev->safemode_timer, jiffies+1);
3305 	}
3306 	return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310 
3311 static ssize_t
3312 level_show(struct mddev *mddev, char *page)
3313 {
3314 	struct md_personality *p;
3315 	int ret;
3316 	spin_lock(&mddev->lock);
3317 	p = mddev->pers;
3318 	if (p)
3319 		ret = sprintf(page, "%s\n", p->name);
3320 	else if (mddev->clevel[0])
3321 		ret = sprintf(page, "%s\n", mddev->clevel);
3322 	else if (mddev->level != LEVEL_NONE)
3323 		ret = sprintf(page, "%d\n", mddev->level);
3324 	else
3325 		ret = 0;
3326 	spin_unlock(&mddev->lock);
3327 	return ret;
3328 }
3329 
3330 static ssize_t
3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333 	char clevel[16];
3334 	ssize_t rv;
3335 	size_t slen = len;
3336 	struct md_personality *pers, *oldpers;
3337 	long level;
3338 	void *priv, *oldpriv;
3339 	struct md_rdev *rdev;
3340 
3341 	if (slen == 0 || slen >= sizeof(clevel))
3342 		return -EINVAL;
3343 
3344 	rv = mddev_lock(mddev);
3345 	if (rv)
3346 		return rv;
3347 
3348 	if (mddev->pers == NULL) {
3349 		strncpy(mddev->clevel, buf, slen);
3350 		if (mddev->clevel[slen-1] == '\n')
3351 			slen--;
3352 		mddev->clevel[slen] = 0;
3353 		mddev->level = LEVEL_NONE;
3354 		rv = len;
3355 		goto out_unlock;
3356 	}
3357 	rv = -EROFS;
3358 	if (mddev->ro)
3359 		goto out_unlock;
3360 
3361 	/* request to change the personality.  Need to ensure:
3362 	 *  - array is not engaged in resync/recovery/reshape
3363 	 *  - old personality can be suspended
3364 	 *  - new personality will access other array.
3365 	 */
3366 
3367 	rv = -EBUSY;
3368 	if (mddev->sync_thread ||
3369 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370 	    mddev->reshape_position != MaxSector ||
3371 	    mddev->sysfs_active)
3372 		goto out_unlock;
3373 
3374 	rv = -EINVAL;
3375 	if (!mddev->pers->quiesce) {
3376 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377 		       mdname(mddev), mddev->pers->name);
3378 		goto out_unlock;
3379 	}
3380 
3381 	/* Now find the new personality */
3382 	strncpy(clevel, buf, slen);
3383 	if (clevel[slen-1] == '\n')
3384 		slen--;
3385 	clevel[slen] = 0;
3386 	if (kstrtol(clevel, 10, &level))
3387 		level = LEVEL_NONE;
3388 
3389 	if (request_module("md-%s", clevel) != 0)
3390 		request_module("md-level-%s", clevel);
3391 	spin_lock(&pers_lock);
3392 	pers = find_pers(level, clevel);
3393 	if (!pers || !try_module_get(pers->owner)) {
3394 		spin_unlock(&pers_lock);
3395 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396 		rv = -EINVAL;
3397 		goto out_unlock;
3398 	}
3399 	spin_unlock(&pers_lock);
3400 
3401 	if (pers == mddev->pers) {
3402 		/* Nothing to do! */
3403 		module_put(pers->owner);
3404 		rv = len;
3405 		goto out_unlock;
3406 	}
3407 	if (!pers->takeover) {
3408 		module_put(pers->owner);
3409 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410 		       mdname(mddev), clevel);
3411 		rv = -EINVAL;
3412 		goto out_unlock;
3413 	}
3414 
3415 	rdev_for_each(rdev, mddev)
3416 		rdev->new_raid_disk = rdev->raid_disk;
3417 
3418 	/* ->takeover must set new_* and/or delta_disks
3419 	 * if it succeeds, and may set them when it fails.
3420 	 */
3421 	priv = pers->takeover(mddev);
3422 	if (IS_ERR(priv)) {
3423 		mddev->new_level = mddev->level;
3424 		mddev->new_layout = mddev->layout;
3425 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3426 		mddev->raid_disks -= mddev->delta_disks;
3427 		mddev->delta_disks = 0;
3428 		mddev->reshape_backwards = 0;
3429 		module_put(pers->owner);
3430 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 		       mdname(mddev), clevel);
3432 		rv = PTR_ERR(priv);
3433 		goto out_unlock;
3434 	}
3435 
3436 	/* Looks like we have a winner */
3437 	mddev_suspend(mddev);
3438 	mddev_detach(mddev);
3439 
3440 	spin_lock(&mddev->lock);
3441 	oldpers = mddev->pers;
3442 	oldpriv = mddev->private;
3443 	mddev->pers = pers;
3444 	mddev->private = priv;
3445 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 	mddev->level = mddev->new_level;
3447 	mddev->layout = mddev->new_layout;
3448 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 	mddev->delta_disks = 0;
3450 	mddev->reshape_backwards = 0;
3451 	mddev->degraded = 0;
3452 	spin_unlock(&mddev->lock);
3453 
3454 	if (oldpers->sync_request == NULL &&
3455 	    mddev->external) {
3456 		/* We are converting from a no-redundancy array
3457 		 * to a redundancy array and metadata is managed
3458 		 * externally so we need to be sure that writes
3459 		 * won't block due to a need to transition
3460 		 *      clean->dirty
3461 		 * until external management is started.
3462 		 */
3463 		mddev->in_sync = 0;
3464 		mddev->safemode_delay = 0;
3465 		mddev->safemode = 0;
3466 	}
3467 
3468 	oldpers->free(mddev, oldpriv);
3469 
3470 	if (oldpers->sync_request == NULL &&
3471 	    pers->sync_request != NULL) {
3472 		/* need to add the md_redundancy_group */
3473 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474 			printk(KERN_WARNING
3475 			       "md: cannot register extra attributes for %s\n",
3476 			       mdname(mddev));
3477 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478 	}
3479 	if (oldpers->sync_request != NULL &&
3480 	    pers->sync_request == NULL) {
3481 		/* need to remove the md_redundancy_group */
3482 		if (mddev->to_remove == NULL)
3483 			mddev->to_remove = &md_redundancy_group;
3484 	}
3485 
3486 	rdev_for_each(rdev, mddev) {
3487 		if (rdev->raid_disk < 0)
3488 			continue;
3489 		if (rdev->new_raid_disk >= mddev->raid_disks)
3490 			rdev->new_raid_disk = -1;
3491 		if (rdev->new_raid_disk == rdev->raid_disk)
3492 			continue;
3493 		sysfs_unlink_rdev(mddev, rdev);
3494 	}
3495 	rdev_for_each(rdev, mddev) {
3496 		if (rdev->raid_disk < 0)
3497 			continue;
3498 		if (rdev->new_raid_disk == rdev->raid_disk)
3499 			continue;
3500 		rdev->raid_disk = rdev->new_raid_disk;
3501 		if (rdev->raid_disk < 0)
3502 			clear_bit(In_sync, &rdev->flags);
3503 		else {
3504 			if (sysfs_link_rdev(mddev, rdev))
3505 				printk(KERN_WARNING "md: cannot register rd%d"
3506 				       " for %s after level change\n",
3507 				       rdev->raid_disk, mdname(mddev));
3508 		}
3509 	}
3510 
3511 	if (pers->sync_request == NULL) {
3512 		/* this is now an array without redundancy, so
3513 		 * it must always be in_sync
3514 		 */
3515 		mddev->in_sync = 1;
3516 		del_timer_sync(&mddev->safemode_timer);
3517 	}
3518 	blk_set_stacking_limits(&mddev->queue->limits);
3519 	pers->run(mddev);
3520 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521 	mddev_resume(mddev);
3522 	if (!mddev->thread)
3523 		md_update_sb(mddev, 1);
3524 	sysfs_notify(&mddev->kobj, NULL, "level");
3525 	md_new_event(mddev);
3526 	rv = len;
3527 out_unlock:
3528 	mddev_unlock(mddev);
3529 	return rv;
3530 }
3531 
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534 
3535 static ssize_t
3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538 	/* just a number, not meaningful for all levels */
3539 	if (mddev->reshape_position != MaxSector &&
3540 	    mddev->layout != mddev->new_layout)
3541 		return sprintf(page, "%d (%d)\n",
3542 			       mddev->new_layout, mddev->layout);
3543 	return sprintf(page, "%d\n", mddev->layout);
3544 }
3545 
3546 static ssize_t
3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549 	unsigned int n;
3550 	int err;
3551 
3552 	err = kstrtouint(buf, 10, &n);
3553 	if (err < 0)
3554 		return err;
3555 	err = mddev_lock(mddev);
3556 	if (err)
3557 		return err;
3558 
3559 	if (mddev->pers) {
3560 		if (mddev->pers->check_reshape == NULL)
3561 			err = -EBUSY;
3562 		else if (mddev->ro)
3563 			err = -EROFS;
3564 		else {
3565 			mddev->new_layout = n;
3566 			err = mddev->pers->check_reshape(mddev);
3567 			if (err)
3568 				mddev->new_layout = mddev->layout;
3569 		}
3570 	} else {
3571 		mddev->new_layout = n;
3572 		if (mddev->reshape_position == MaxSector)
3573 			mddev->layout = n;
3574 	}
3575 	mddev_unlock(mddev);
3576 	return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580 
3581 static ssize_t
3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584 	if (mddev->raid_disks == 0)
3585 		return 0;
3586 	if (mddev->reshape_position != MaxSector &&
3587 	    mddev->delta_disks != 0)
3588 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589 			       mddev->raid_disks - mddev->delta_disks);
3590 	return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592 
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594 
3595 static ssize_t
3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 	unsigned int n;
3599 	int err;
3600 
3601 	err = kstrtouint(buf, 10, &n);
3602 	if (err < 0)
3603 		return err;
3604 
3605 	err = mddev_lock(mddev);
3606 	if (err)
3607 		return err;
3608 	if (mddev->pers)
3609 		err = update_raid_disks(mddev, n);
3610 	else if (mddev->reshape_position != MaxSector) {
3611 		struct md_rdev *rdev;
3612 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3613 
3614 		err = -EINVAL;
3615 		rdev_for_each(rdev, mddev) {
3616 			if (olddisks < n &&
3617 			    rdev->data_offset < rdev->new_data_offset)
3618 				goto out_unlock;
3619 			if (olddisks > n &&
3620 			    rdev->data_offset > rdev->new_data_offset)
3621 				goto out_unlock;
3622 		}
3623 		err = 0;
3624 		mddev->delta_disks = n - olddisks;
3625 		mddev->raid_disks = n;
3626 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3627 	} else
3628 		mddev->raid_disks = n;
3629 out_unlock:
3630 	mddev_unlock(mddev);
3631 	return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635 
3636 static ssize_t
3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639 	if (mddev->reshape_position != MaxSector &&
3640 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3641 		return sprintf(page, "%d (%d)\n",
3642 			       mddev->new_chunk_sectors << 9,
3643 			       mddev->chunk_sectors << 9);
3644 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646 
3647 static ssize_t
3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650 	unsigned long n;
3651 	int err;
3652 
3653 	err = kstrtoul(buf, 10, &n);
3654 	if (err < 0)
3655 		return err;
3656 
3657 	err = mddev_lock(mddev);
3658 	if (err)
3659 		return err;
3660 	if (mddev->pers) {
3661 		if (mddev->pers->check_reshape == NULL)
3662 			err = -EBUSY;
3663 		else if (mddev->ro)
3664 			err = -EROFS;
3665 		else {
3666 			mddev->new_chunk_sectors = n >> 9;
3667 			err = mddev->pers->check_reshape(mddev);
3668 			if (err)
3669 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3670 		}
3671 	} else {
3672 		mddev->new_chunk_sectors = n >> 9;
3673 		if (mddev->reshape_position == MaxSector)
3674 			mddev->chunk_sectors = n >> 9;
3675 	}
3676 	mddev_unlock(mddev);
3677 	return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681 
3682 static ssize_t
3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685 	if (mddev->recovery_cp == MaxSector)
3686 		return sprintf(page, "none\n");
3687 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689 
3690 static ssize_t
3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 	unsigned long long n;
3694 	int err;
3695 
3696 	if (cmd_match(buf, "none"))
3697 		n = MaxSector;
3698 	else {
3699 		err = kstrtoull(buf, 10, &n);
3700 		if (err < 0)
3701 			return err;
3702 		if (n != (sector_t)n)
3703 			return -EINVAL;
3704 	}
3705 
3706 	err = mddev_lock(mddev);
3707 	if (err)
3708 		return err;
3709 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3710 		err = -EBUSY;
3711 
3712 	if (!err) {
3713 		mddev->recovery_cp = n;
3714 		if (mddev->pers)
3715 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3716 	}
3717 	mddev_unlock(mddev);
3718 	return err ?: len;
3719 }
3720 static struct md_sysfs_entry md_resync_start =
3721 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3722 		resync_start_show, resync_start_store);
3723 
3724 /*
3725  * The array state can be:
3726  *
3727  * clear
3728  *     No devices, no size, no level
3729  *     Equivalent to STOP_ARRAY ioctl
3730  * inactive
3731  *     May have some settings, but array is not active
3732  *        all IO results in error
3733  *     When written, doesn't tear down array, but just stops it
3734  * suspended (not supported yet)
3735  *     All IO requests will block. The array can be reconfigured.
3736  *     Writing this, if accepted, will block until array is quiescent
3737  * readonly
3738  *     no resync can happen.  no superblocks get written.
3739  *     write requests fail
3740  * read-auto
3741  *     like readonly, but behaves like 'clean' on a write request.
3742  *
3743  * clean - no pending writes, but otherwise active.
3744  *     When written to inactive array, starts without resync
3745  *     If a write request arrives then
3746  *       if metadata is known, mark 'dirty' and switch to 'active'.
3747  *       if not known, block and switch to write-pending
3748  *     If written to an active array that has pending writes, then fails.
3749  * active
3750  *     fully active: IO and resync can be happening.
3751  *     When written to inactive array, starts with resync
3752  *
3753  * write-pending
3754  *     clean, but writes are blocked waiting for 'active' to be written.
3755  *
3756  * active-idle
3757  *     like active, but no writes have been seen for a while (100msec).
3758  *
3759  */
3760 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3761 		   write_pending, active_idle, bad_word};
3762 static char *array_states[] = {
3763 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3764 	"write-pending", "active-idle", NULL };
3765 
3766 static int match_word(const char *word, char **list)
3767 {
3768 	int n;
3769 	for (n=0; list[n]; n++)
3770 		if (cmd_match(word, list[n]))
3771 			break;
3772 	return n;
3773 }
3774 
3775 static ssize_t
3776 array_state_show(struct mddev *mddev, char *page)
3777 {
3778 	enum array_state st = inactive;
3779 
3780 	if (mddev->pers)
3781 		switch(mddev->ro) {
3782 		case 1:
3783 			st = readonly;
3784 			break;
3785 		case 2:
3786 			st = read_auto;
3787 			break;
3788 		case 0:
3789 			if (mddev->in_sync)
3790 				st = clean;
3791 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3792 				st = write_pending;
3793 			else if (mddev->safemode)
3794 				st = active_idle;
3795 			else
3796 				st = active;
3797 		}
3798 	else {
3799 		if (list_empty(&mddev->disks) &&
3800 		    mddev->raid_disks == 0 &&
3801 		    mddev->dev_sectors == 0)
3802 			st = clear;
3803 		else
3804 			st = inactive;
3805 	}
3806 	return sprintf(page, "%s\n", array_states[st]);
3807 }
3808 
3809 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3810 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3811 static int do_md_run(struct mddev *mddev);
3812 static int restart_array(struct mddev *mddev);
3813 
3814 static ssize_t
3815 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3816 {
3817 	int err;
3818 	enum array_state st = match_word(buf, array_states);
3819 
3820 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3821 		/* don't take reconfig_mutex when toggling between
3822 		 * clean and active
3823 		 */
3824 		spin_lock(&mddev->lock);
3825 		if (st == active) {
3826 			restart_array(mddev);
3827 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3828 			wake_up(&mddev->sb_wait);
3829 			err = 0;
3830 		} else /* st == clean */ {
3831 			restart_array(mddev);
3832 			if (atomic_read(&mddev->writes_pending) == 0) {
3833 				if (mddev->in_sync == 0) {
3834 					mddev->in_sync = 1;
3835 					if (mddev->safemode == 1)
3836 						mddev->safemode = 0;
3837 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3838 				}
3839 				err = 0;
3840 			} else
3841 				err = -EBUSY;
3842 		}
3843 		spin_unlock(&mddev->lock);
3844 		return err ?: len;
3845 	}
3846 	err = mddev_lock(mddev);
3847 	if (err)
3848 		return err;
3849 	err = -EINVAL;
3850 	switch(st) {
3851 	case bad_word:
3852 		break;
3853 	case clear:
3854 		/* stopping an active array */
3855 		err = do_md_stop(mddev, 0, NULL);
3856 		break;
3857 	case inactive:
3858 		/* stopping an active array */
3859 		if (mddev->pers)
3860 			err = do_md_stop(mddev, 2, NULL);
3861 		else
3862 			err = 0; /* already inactive */
3863 		break;
3864 	case suspended:
3865 		break; /* not supported yet */
3866 	case readonly:
3867 		if (mddev->pers)
3868 			err = md_set_readonly(mddev, NULL);
3869 		else {
3870 			mddev->ro = 1;
3871 			set_disk_ro(mddev->gendisk, 1);
3872 			err = do_md_run(mddev);
3873 		}
3874 		break;
3875 	case read_auto:
3876 		if (mddev->pers) {
3877 			if (mddev->ro == 0)
3878 				err = md_set_readonly(mddev, NULL);
3879 			else if (mddev->ro == 1)
3880 				err = restart_array(mddev);
3881 			if (err == 0) {
3882 				mddev->ro = 2;
3883 				set_disk_ro(mddev->gendisk, 0);
3884 			}
3885 		} else {
3886 			mddev->ro = 2;
3887 			err = do_md_run(mddev);
3888 		}
3889 		break;
3890 	case clean:
3891 		if (mddev->pers) {
3892 			restart_array(mddev);
3893 			spin_lock(&mddev->lock);
3894 			if (atomic_read(&mddev->writes_pending) == 0) {
3895 				if (mddev->in_sync == 0) {
3896 					mddev->in_sync = 1;
3897 					if (mddev->safemode == 1)
3898 						mddev->safemode = 0;
3899 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3900 				}
3901 				err = 0;
3902 			} else
3903 				err = -EBUSY;
3904 			spin_unlock(&mddev->lock);
3905 		} else
3906 			err = -EINVAL;
3907 		break;
3908 	case active:
3909 		if (mddev->pers) {
3910 			restart_array(mddev);
3911 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3912 			wake_up(&mddev->sb_wait);
3913 			err = 0;
3914 		} else {
3915 			mddev->ro = 0;
3916 			set_disk_ro(mddev->gendisk, 0);
3917 			err = do_md_run(mddev);
3918 		}
3919 		break;
3920 	case write_pending:
3921 	case active_idle:
3922 		/* these cannot be set */
3923 		break;
3924 	}
3925 
3926 	if (!err) {
3927 		if (mddev->hold_active == UNTIL_IOCTL)
3928 			mddev->hold_active = 0;
3929 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3930 	}
3931 	mddev_unlock(mddev);
3932 	return err ?: len;
3933 }
3934 static struct md_sysfs_entry md_array_state =
3935 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3936 
3937 static ssize_t
3938 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3939 	return sprintf(page, "%d\n",
3940 		       atomic_read(&mddev->max_corr_read_errors));
3941 }
3942 
3943 static ssize_t
3944 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 	unsigned int n;
3947 	int rv;
3948 
3949 	rv = kstrtouint(buf, 10, &n);
3950 	if (rv < 0)
3951 		return rv;
3952 	atomic_set(&mddev->max_corr_read_errors, n);
3953 	return len;
3954 }
3955 
3956 static struct md_sysfs_entry max_corr_read_errors =
3957 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3958 	max_corrected_read_errors_store);
3959 
3960 static ssize_t
3961 null_show(struct mddev *mddev, char *page)
3962 {
3963 	return -EINVAL;
3964 }
3965 
3966 static ssize_t
3967 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3968 {
3969 	/* buf must be %d:%d\n? giving major and minor numbers */
3970 	/* The new device is added to the array.
3971 	 * If the array has a persistent superblock, we read the
3972 	 * superblock to initialise info and check validity.
3973 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3974 	 * which mainly checks size.
3975 	 */
3976 	char *e;
3977 	int major = simple_strtoul(buf, &e, 10);
3978 	int minor;
3979 	dev_t dev;
3980 	struct md_rdev *rdev;
3981 	int err;
3982 
3983 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3984 		return -EINVAL;
3985 	minor = simple_strtoul(e+1, &e, 10);
3986 	if (*e && *e != '\n')
3987 		return -EINVAL;
3988 	dev = MKDEV(major, minor);
3989 	if (major != MAJOR(dev) ||
3990 	    minor != MINOR(dev))
3991 		return -EOVERFLOW;
3992 
3993 	flush_workqueue(md_misc_wq);
3994 
3995 	err = mddev_lock(mddev);
3996 	if (err)
3997 		return err;
3998 	if (mddev->persistent) {
3999 		rdev = md_import_device(dev, mddev->major_version,
4000 					mddev->minor_version);
4001 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002 			struct md_rdev *rdev0
4003 				= list_entry(mddev->disks.next,
4004 					     struct md_rdev, same_set);
4005 			err = super_types[mddev->major_version]
4006 				.load_super(rdev, rdev0, mddev->minor_version);
4007 			if (err < 0)
4008 				goto out;
4009 		}
4010 	} else if (mddev->external)
4011 		rdev = md_import_device(dev, -2, -1);
4012 	else
4013 		rdev = md_import_device(dev, -1, -1);
4014 
4015 	if (IS_ERR(rdev)) {
4016 		mddev_unlock(mddev);
4017 		return PTR_ERR(rdev);
4018 	}
4019 	err = bind_rdev_to_array(rdev, mddev);
4020  out:
4021 	if (err)
4022 		export_rdev(rdev);
4023 	mddev_unlock(mddev);
4024 	return err ? err : len;
4025 }
4026 
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029 
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 	char *end;
4034 	unsigned long chunk, end_chunk;
4035 	int err;
4036 
4037 	err = mddev_lock(mddev);
4038 	if (err)
4039 		return err;
4040 	if (!mddev->bitmap)
4041 		goto out;
4042 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4043 	while (*buf) {
4044 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4045 		if (buf == end) break;
4046 		if (*end == '-') { /* range */
4047 			buf = end + 1;
4048 			end_chunk = simple_strtoul(buf, &end, 0);
4049 			if (buf == end) break;
4050 		}
4051 		if (*end && !isspace(*end)) break;
4052 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4053 		buf = skip_spaces(end);
4054 	}
4055 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4056 out:
4057 	mddev_unlock(mddev);
4058 	return len;
4059 }
4060 
4061 static struct md_sysfs_entry md_bitmap =
4062 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4063 
4064 static ssize_t
4065 size_show(struct mddev *mddev, char *page)
4066 {
4067 	return sprintf(page, "%llu\n",
4068 		(unsigned long long)mddev->dev_sectors / 2);
4069 }
4070 
4071 static int update_size(struct mddev *mddev, sector_t num_sectors);
4072 
4073 static ssize_t
4074 size_store(struct mddev *mddev, const char *buf, size_t len)
4075 {
4076 	/* If array is inactive, we can reduce the component size, but
4077 	 * not increase it (except from 0).
4078 	 * If array is active, we can try an on-line resize
4079 	 */
4080 	sector_t sectors;
4081 	int err = strict_blocks_to_sectors(buf, &sectors);
4082 
4083 	if (err < 0)
4084 		return err;
4085 	err = mddev_lock(mddev);
4086 	if (err)
4087 		return err;
4088 	if (mddev->pers) {
4089 		if (mddev_is_clustered(mddev))
4090 			md_cluster_ops->metadata_update_start(mddev);
4091 		err = update_size(mddev, sectors);
4092 		md_update_sb(mddev, 1);
4093 		if (mddev_is_clustered(mddev))
4094 			md_cluster_ops->metadata_update_finish(mddev);
4095 	} else {
4096 		if (mddev->dev_sectors == 0 ||
4097 		    mddev->dev_sectors > sectors)
4098 			mddev->dev_sectors = sectors;
4099 		else
4100 			err = -ENOSPC;
4101 	}
4102 	mddev_unlock(mddev);
4103 	return err ? err : len;
4104 }
4105 
4106 static struct md_sysfs_entry md_size =
4107 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4108 
4109 /* Metadata version.
4110  * This is one of
4111  *   'none' for arrays with no metadata (good luck...)
4112  *   'external' for arrays with externally managed metadata,
4113  * or N.M for internally known formats
4114  */
4115 static ssize_t
4116 metadata_show(struct mddev *mddev, char *page)
4117 {
4118 	if (mddev->persistent)
4119 		return sprintf(page, "%d.%d\n",
4120 			       mddev->major_version, mddev->minor_version);
4121 	else if (mddev->external)
4122 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4123 	else
4124 		return sprintf(page, "none\n");
4125 }
4126 
4127 static ssize_t
4128 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130 	int major, minor;
4131 	char *e;
4132 	int err;
4133 	/* Changing the details of 'external' metadata is
4134 	 * always permitted.  Otherwise there must be
4135 	 * no devices attached to the array.
4136 	 */
4137 
4138 	err = mddev_lock(mddev);
4139 	if (err)
4140 		return err;
4141 	err = -EBUSY;
4142 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4143 		;
4144 	else if (!list_empty(&mddev->disks))
4145 		goto out_unlock;
4146 
4147 	err = 0;
4148 	if (cmd_match(buf, "none")) {
4149 		mddev->persistent = 0;
4150 		mddev->external = 0;
4151 		mddev->major_version = 0;
4152 		mddev->minor_version = 90;
4153 		goto out_unlock;
4154 	}
4155 	if (strncmp(buf, "external:", 9) == 0) {
4156 		size_t namelen = len-9;
4157 		if (namelen >= sizeof(mddev->metadata_type))
4158 			namelen = sizeof(mddev->metadata_type)-1;
4159 		strncpy(mddev->metadata_type, buf+9, namelen);
4160 		mddev->metadata_type[namelen] = 0;
4161 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162 			mddev->metadata_type[--namelen] = 0;
4163 		mddev->persistent = 0;
4164 		mddev->external = 1;
4165 		mddev->major_version = 0;
4166 		mddev->minor_version = 90;
4167 		goto out_unlock;
4168 	}
4169 	major = simple_strtoul(buf, &e, 10);
4170 	err = -EINVAL;
4171 	if (e==buf || *e != '.')
4172 		goto out_unlock;
4173 	buf = e+1;
4174 	minor = simple_strtoul(buf, &e, 10);
4175 	if (e==buf || (*e && *e != '\n') )
4176 		goto out_unlock;
4177 	err = -ENOENT;
4178 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4179 		goto out_unlock;
4180 	mddev->major_version = major;
4181 	mddev->minor_version = minor;
4182 	mddev->persistent = 1;
4183 	mddev->external = 0;
4184 	err = 0;
4185 out_unlock:
4186 	mddev_unlock(mddev);
4187 	return err ?: len;
4188 }
4189 
4190 static struct md_sysfs_entry md_metadata =
4191 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4192 
4193 static ssize_t
4194 action_show(struct mddev *mddev, char *page)
4195 {
4196 	char *type = "idle";
4197 	unsigned long recovery = mddev->recovery;
4198 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4199 		type = "frozen";
4200 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4201 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4202 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4203 			type = "reshape";
4204 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4205 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4206 				type = "resync";
4207 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4208 				type = "check";
4209 			else
4210 				type = "repair";
4211 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4212 			type = "recover";
4213 	}
4214 	return sprintf(page, "%s\n", type);
4215 }
4216 
4217 static ssize_t
4218 action_store(struct mddev *mddev, const char *page, size_t len)
4219 {
4220 	if (!mddev->pers || !mddev->pers->sync_request)
4221 		return -EINVAL;
4222 
4223 
4224 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4225 		if (cmd_match(page, "frozen"))
4226 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4227 		else
4228 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4230 		    mddev_lock(mddev) == 0) {
4231 			flush_workqueue(md_misc_wq);
4232 			if (mddev->sync_thread) {
4233 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4234 				md_reap_sync_thread(mddev);
4235 			}
4236 			mddev_unlock(mddev);
4237 		}
4238 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240 		return -EBUSY;
4241 	else if (cmd_match(page, "resync"))
4242 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4243 	else if (cmd_match(page, "recover")) {
4244 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 	} else if (cmd_match(page, "reshape")) {
4247 		int err;
4248 		if (mddev->pers->start_reshape == NULL)
4249 			return -EINVAL;
4250 		err = mddev_lock(mddev);
4251 		if (!err) {
4252 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4253 			err = mddev->pers->start_reshape(mddev);
4254 			mddev_unlock(mddev);
4255 		}
4256 		if (err)
4257 			return err;
4258 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4259 	} else {
4260 		if (cmd_match(page, "check"))
4261 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4262 		else if (!cmd_match(page, "repair"))
4263 			return -EINVAL;
4264 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4265 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4266 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4267 	}
4268 	if (mddev->ro == 2) {
4269 		/* A write to sync_action is enough to justify
4270 		 * canceling read-auto mode
4271 		 */
4272 		mddev->ro = 0;
4273 		md_wakeup_thread(mddev->sync_thread);
4274 	}
4275 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4276 	md_wakeup_thread(mddev->thread);
4277 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4278 	return len;
4279 }
4280 
4281 static struct md_sysfs_entry md_scan_mode =
4282 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4283 
4284 static ssize_t
4285 last_sync_action_show(struct mddev *mddev, char *page)
4286 {
4287 	return sprintf(page, "%s\n", mddev->last_sync_action);
4288 }
4289 
4290 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4291 
4292 static ssize_t
4293 mismatch_cnt_show(struct mddev *mddev, char *page)
4294 {
4295 	return sprintf(page, "%llu\n",
4296 		       (unsigned long long)
4297 		       atomic64_read(&mddev->resync_mismatches));
4298 }
4299 
4300 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4301 
4302 static ssize_t
4303 sync_min_show(struct mddev *mddev, char *page)
4304 {
4305 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4306 		       mddev->sync_speed_min ? "local": "system");
4307 }
4308 
4309 static ssize_t
4310 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4311 {
4312 	unsigned int min;
4313 	int rv;
4314 
4315 	if (strncmp(buf, "system", 6)==0) {
4316 		min = 0;
4317 	} else {
4318 		rv = kstrtouint(buf, 10, &min);
4319 		if (rv < 0)
4320 			return rv;
4321 		if (min == 0)
4322 			return -EINVAL;
4323 	}
4324 	mddev->sync_speed_min = min;
4325 	return len;
4326 }
4327 
4328 static struct md_sysfs_entry md_sync_min =
4329 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4330 
4331 static ssize_t
4332 sync_max_show(struct mddev *mddev, char *page)
4333 {
4334 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4335 		       mddev->sync_speed_max ? "local": "system");
4336 }
4337 
4338 static ssize_t
4339 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4340 {
4341 	unsigned int max;
4342 	int rv;
4343 
4344 	if (strncmp(buf, "system", 6)==0) {
4345 		max = 0;
4346 	} else {
4347 		rv = kstrtouint(buf, 10, &max);
4348 		if (rv < 0)
4349 			return rv;
4350 		if (max == 0)
4351 			return -EINVAL;
4352 	}
4353 	mddev->sync_speed_max = max;
4354 	return len;
4355 }
4356 
4357 static struct md_sysfs_entry md_sync_max =
4358 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4359 
4360 static ssize_t
4361 degraded_show(struct mddev *mddev, char *page)
4362 {
4363 	return sprintf(page, "%d\n", mddev->degraded);
4364 }
4365 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4366 
4367 static ssize_t
4368 sync_force_parallel_show(struct mddev *mddev, char *page)
4369 {
4370 	return sprintf(page, "%d\n", mddev->parallel_resync);
4371 }
4372 
4373 static ssize_t
4374 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4375 {
4376 	long n;
4377 
4378 	if (kstrtol(buf, 10, &n))
4379 		return -EINVAL;
4380 
4381 	if (n != 0 && n != 1)
4382 		return -EINVAL;
4383 
4384 	mddev->parallel_resync = n;
4385 
4386 	if (mddev->sync_thread)
4387 		wake_up(&resync_wait);
4388 
4389 	return len;
4390 }
4391 
4392 /* force parallel resync, even with shared block devices */
4393 static struct md_sysfs_entry md_sync_force_parallel =
4394 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4395        sync_force_parallel_show, sync_force_parallel_store);
4396 
4397 static ssize_t
4398 sync_speed_show(struct mddev *mddev, char *page)
4399 {
4400 	unsigned long resync, dt, db;
4401 	if (mddev->curr_resync == 0)
4402 		return sprintf(page, "none\n");
4403 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4404 	dt = (jiffies - mddev->resync_mark) / HZ;
4405 	if (!dt) dt++;
4406 	db = resync - mddev->resync_mark_cnt;
4407 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4408 }
4409 
4410 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4411 
4412 static ssize_t
4413 sync_completed_show(struct mddev *mddev, char *page)
4414 {
4415 	unsigned long long max_sectors, resync;
4416 
4417 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4418 		return sprintf(page, "none\n");
4419 
4420 	if (mddev->curr_resync == 1 ||
4421 	    mddev->curr_resync == 2)
4422 		return sprintf(page, "delayed\n");
4423 
4424 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4425 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4426 		max_sectors = mddev->resync_max_sectors;
4427 	else
4428 		max_sectors = mddev->dev_sectors;
4429 
4430 	resync = mddev->curr_resync_completed;
4431 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4432 }
4433 
4434 static struct md_sysfs_entry md_sync_completed =
4435 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4436 
4437 static ssize_t
4438 min_sync_show(struct mddev *mddev, char *page)
4439 {
4440 	return sprintf(page, "%llu\n",
4441 		       (unsigned long long)mddev->resync_min);
4442 }
4443 static ssize_t
4444 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4445 {
4446 	unsigned long long min;
4447 	int err;
4448 
4449 	if (kstrtoull(buf, 10, &min))
4450 		return -EINVAL;
4451 
4452 	spin_lock(&mddev->lock);
4453 	err = -EINVAL;
4454 	if (min > mddev->resync_max)
4455 		goto out_unlock;
4456 
4457 	err = -EBUSY;
4458 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4459 		goto out_unlock;
4460 
4461 	/* Round down to multiple of 4K for safety */
4462 	mddev->resync_min = round_down(min, 8);
4463 	err = 0;
4464 
4465 out_unlock:
4466 	spin_unlock(&mddev->lock);
4467 	return err ?: len;
4468 }
4469 
4470 static struct md_sysfs_entry md_min_sync =
4471 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4472 
4473 static ssize_t
4474 max_sync_show(struct mddev *mddev, char *page)
4475 {
4476 	if (mddev->resync_max == MaxSector)
4477 		return sprintf(page, "max\n");
4478 	else
4479 		return sprintf(page, "%llu\n",
4480 			       (unsigned long long)mddev->resync_max);
4481 }
4482 static ssize_t
4483 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4484 {
4485 	int err;
4486 	spin_lock(&mddev->lock);
4487 	if (strncmp(buf, "max", 3) == 0)
4488 		mddev->resync_max = MaxSector;
4489 	else {
4490 		unsigned long long max;
4491 		int chunk;
4492 
4493 		err = -EINVAL;
4494 		if (kstrtoull(buf, 10, &max))
4495 			goto out_unlock;
4496 		if (max < mddev->resync_min)
4497 			goto out_unlock;
4498 
4499 		err = -EBUSY;
4500 		if (max < mddev->resync_max &&
4501 		    mddev->ro == 0 &&
4502 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503 			goto out_unlock;
4504 
4505 		/* Must be a multiple of chunk_size */
4506 		chunk = mddev->chunk_sectors;
4507 		if (chunk) {
4508 			sector_t temp = max;
4509 
4510 			err = -EINVAL;
4511 			if (sector_div(temp, chunk))
4512 				goto out_unlock;
4513 		}
4514 		mddev->resync_max = max;
4515 	}
4516 	wake_up(&mddev->recovery_wait);
4517 	err = 0;
4518 out_unlock:
4519 	spin_unlock(&mddev->lock);
4520 	return err ?: len;
4521 }
4522 
4523 static struct md_sysfs_entry md_max_sync =
4524 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4525 
4526 static ssize_t
4527 suspend_lo_show(struct mddev *mddev, char *page)
4528 {
4529 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4530 }
4531 
4532 static ssize_t
4533 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535 	unsigned long long old, new;
4536 	int err;
4537 
4538 	err = kstrtoull(buf, 10, &new);
4539 	if (err < 0)
4540 		return err;
4541 	if (new != (sector_t)new)
4542 		return -EINVAL;
4543 
4544 	err = mddev_lock(mddev);
4545 	if (err)
4546 		return err;
4547 	err = -EINVAL;
4548 	if (mddev->pers == NULL ||
4549 	    mddev->pers->quiesce == NULL)
4550 		goto unlock;
4551 	old = mddev->suspend_lo;
4552 	mddev->suspend_lo = new;
4553 	if (new >= old)
4554 		/* Shrinking suspended region */
4555 		mddev->pers->quiesce(mddev, 2);
4556 	else {
4557 		/* Expanding suspended region - need to wait */
4558 		mddev->pers->quiesce(mddev, 1);
4559 		mddev->pers->quiesce(mddev, 0);
4560 	}
4561 	err = 0;
4562 unlock:
4563 	mddev_unlock(mddev);
4564 	return err ?: len;
4565 }
4566 static struct md_sysfs_entry md_suspend_lo =
4567 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4568 
4569 static ssize_t
4570 suspend_hi_show(struct mddev *mddev, char *page)
4571 {
4572 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4573 }
4574 
4575 static ssize_t
4576 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 	unsigned long long old, new;
4579 	int err;
4580 
4581 	err = kstrtoull(buf, 10, &new);
4582 	if (err < 0)
4583 		return err;
4584 	if (new != (sector_t)new)
4585 		return -EINVAL;
4586 
4587 	err = mddev_lock(mddev);
4588 	if (err)
4589 		return err;
4590 	err = -EINVAL;
4591 	if (mddev->pers == NULL ||
4592 	    mddev->pers->quiesce == NULL)
4593 		goto unlock;
4594 	old = mddev->suspend_hi;
4595 	mddev->suspend_hi = new;
4596 	if (new <= old)
4597 		/* Shrinking suspended region */
4598 		mddev->pers->quiesce(mddev, 2);
4599 	else {
4600 		/* Expanding suspended region - need to wait */
4601 		mddev->pers->quiesce(mddev, 1);
4602 		mddev->pers->quiesce(mddev, 0);
4603 	}
4604 	err = 0;
4605 unlock:
4606 	mddev_unlock(mddev);
4607 	return err ?: len;
4608 }
4609 static struct md_sysfs_entry md_suspend_hi =
4610 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4611 
4612 static ssize_t
4613 reshape_position_show(struct mddev *mddev, char *page)
4614 {
4615 	if (mddev->reshape_position != MaxSector)
4616 		return sprintf(page, "%llu\n",
4617 			       (unsigned long long)mddev->reshape_position);
4618 	strcpy(page, "none\n");
4619 	return 5;
4620 }
4621 
4622 static ssize_t
4623 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4624 {
4625 	struct md_rdev *rdev;
4626 	unsigned long long new;
4627 	int err;
4628 
4629 	err = kstrtoull(buf, 10, &new);
4630 	if (err < 0)
4631 		return err;
4632 	if (new != (sector_t)new)
4633 		return -EINVAL;
4634 	err = mddev_lock(mddev);
4635 	if (err)
4636 		return err;
4637 	err = -EBUSY;
4638 	if (mddev->pers)
4639 		goto unlock;
4640 	mddev->reshape_position = new;
4641 	mddev->delta_disks = 0;
4642 	mddev->reshape_backwards = 0;
4643 	mddev->new_level = mddev->level;
4644 	mddev->new_layout = mddev->layout;
4645 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4646 	rdev_for_each(rdev, mddev)
4647 		rdev->new_data_offset = rdev->data_offset;
4648 	err = 0;
4649 unlock:
4650 	mddev_unlock(mddev);
4651 	return err ?: len;
4652 }
4653 
4654 static struct md_sysfs_entry md_reshape_position =
4655 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4656        reshape_position_store);
4657 
4658 static ssize_t
4659 reshape_direction_show(struct mddev *mddev, char *page)
4660 {
4661 	return sprintf(page, "%s\n",
4662 		       mddev->reshape_backwards ? "backwards" : "forwards");
4663 }
4664 
4665 static ssize_t
4666 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 	int backwards = 0;
4669 	int err;
4670 
4671 	if (cmd_match(buf, "forwards"))
4672 		backwards = 0;
4673 	else if (cmd_match(buf, "backwards"))
4674 		backwards = 1;
4675 	else
4676 		return -EINVAL;
4677 	if (mddev->reshape_backwards == backwards)
4678 		return len;
4679 
4680 	err = mddev_lock(mddev);
4681 	if (err)
4682 		return err;
4683 	/* check if we are allowed to change */
4684 	if (mddev->delta_disks)
4685 		err = -EBUSY;
4686 	else if (mddev->persistent &&
4687 	    mddev->major_version == 0)
4688 		err =  -EINVAL;
4689 	else
4690 		mddev->reshape_backwards = backwards;
4691 	mddev_unlock(mddev);
4692 	return err ?: len;
4693 }
4694 
4695 static struct md_sysfs_entry md_reshape_direction =
4696 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4697        reshape_direction_store);
4698 
4699 static ssize_t
4700 array_size_show(struct mddev *mddev, char *page)
4701 {
4702 	if (mddev->external_size)
4703 		return sprintf(page, "%llu\n",
4704 			       (unsigned long long)mddev->array_sectors/2);
4705 	else
4706 		return sprintf(page, "default\n");
4707 }
4708 
4709 static ssize_t
4710 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4711 {
4712 	sector_t sectors;
4713 	int err;
4714 
4715 	err = mddev_lock(mddev);
4716 	if (err)
4717 		return err;
4718 
4719 	if (strncmp(buf, "default", 7) == 0) {
4720 		if (mddev->pers)
4721 			sectors = mddev->pers->size(mddev, 0, 0);
4722 		else
4723 			sectors = mddev->array_sectors;
4724 
4725 		mddev->external_size = 0;
4726 	} else {
4727 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4728 			err = -EINVAL;
4729 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4730 			err = -E2BIG;
4731 		else
4732 			mddev->external_size = 1;
4733 	}
4734 
4735 	if (!err) {
4736 		mddev->array_sectors = sectors;
4737 		if (mddev->pers) {
4738 			set_capacity(mddev->gendisk, mddev->array_sectors);
4739 			revalidate_disk(mddev->gendisk);
4740 		}
4741 	}
4742 	mddev_unlock(mddev);
4743 	return err ?: len;
4744 }
4745 
4746 static struct md_sysfs_entry md_array_size =
4747 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4748        array_size_store);
4749 
4750 static struct attribute *md_default_attrs[] = {
4751 	&md_level.attr,
4752 	&md_layout.attr,
4753 	&md_raid_disks.attr,
4754 	&md_chunk_size.attr,
4755 	&md_size.attr,
4756 	&md_resync_start.attr,
4757 	&md_metadata.attr,
4758 	&md_new_device.attr,
4759 	&md_safe_delay.attr,
4760 	&md_array_state.attr,
4761 	&md_reshape_position.attr,
4762 	&md_reshape_direction.attr,
4763 	&md_array_size.attr,
4764 	&max_corr_read_errors.attr,
4765 	NULL,
4766 };
4767 
4768 static struct attribute *md_redundancy_attrs[] = {
4769 	&md_scan_mode.attr,
4770 	&md_last_scan_mode.attr,
4771 	&md_mismatches.attr,
4772 	&md_sync_min.attr,
4773 	&md_sync_max.attr,
4774 	&md_sync_speed.attr,
4775 	&md_sync_force_parallel.attr,
4776 	&md_sync_completed.attr,
4777 	&md_min_sync.attr,
4778 	&md_max_sync.attr,
4779 	&md_suspend_lo.attr,
4780 	&md_suspend_hi.attr,
4781 	&md_bitmap.attr,
4782 	&md_degraded.attr,
4783 	NULL,
4784 };
4785 static struct attribute_group md_redundancy_group = {
4786 	.name = NULL,
4787 	.attrs = md_redundancy_attrs,
4788 };
4789 
4790 static ssize_t
4791 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4792 {
4793 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4794 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4795 	ssize_t rv;
4796 
4797 	if (!entry->show)
4798 		return -EIO;
4799 	spin_lock(&all_mddevs_lock);
4800 	if (list_empty(&mddev->all_mddevs)) {
4801 		spin_unlock(&all_mddevs_lock);
4802 		return -EBUSY;
4803 	}
4804 	mddev_get(mddev);
4805 	spin_unlock(&all_mddevs_lock);
4806 
4807 	rv = entry->show(mddev, page);
4808 	mddev_put(mddev);
4809 	return rv;
4810 }
4811 
4812 static ssize_t
4813 md_attr_store(struct kobject *kobj, struct attribute *attr,
4814 	      const char *page, size_t length)
4815 {
4816 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4817 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4818 	ssize_t rv;
4819 
4820 	if (!entry->store)
4821 		return -EIO;
4822 	if (!capable(CAP_SYS_ADMIN))
4823 		return -EACCES;
4824 	spin_lock(&all_mddevs_lock);
4825 	if (list_empty(&mddev->all_mddevs)) {
4826 		spin_unlock(&all_mddevs_lock);
4827 		return -EBUSY;
4828 	}
4829 	mddev_get(mddev);
4830 	spin_unlock(&all_mddevs_lock);
4831 	rv = entry->store(mddev, page, length);
4832 	mddev_put(mddev);
4833 	return rv;
4834 }
4835 
4836 static void md_free(struct kobject *ko)
4837 {
4838 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4839 
4840 	if (mddev->sysfs_state)
4841 		sysfs_put(mddev->sysfs_state);
4842 
4843 	if (mddev->queue)
4844 		blk_cleanup_queue(mddev->queue);
4845 	if (mddev->gendisk) {
4846 		del_gendisk(mddev->gendisk);
4847 		put_disk(mddev->gendisk);
4848 	}
4849 
4850 	kfree(mddev);
4851 }
4852 
4853 static const struct sysfs_ops md_sysfs_ops = {
4854 	.show	= md_attr_show,
4855 	.store	= md_attr_store,
4856 };
4857 static struct kobj_type md_ktype = {
4858 	.release	= md_free,
4859 	.sysfs_ops	= &md_sysfs_ops,
4860 	.default_attrs	= md_default_attrs,
4861 };
4862 
4863 int mdp_major = 0;
4864 
4865 static void mddev_delayed_delete(struct work_struct *ws)
4866 {
4867 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4868 
4869 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4870 	kobject_del(&mddev->kobj);
4871 	kobject_put(&mddev->kobj);
4872 }
4873 
4874 static int md_alloc(dev_t dev, char *name)
4875 {
4876 	static DEFINE_MUTEX(disks_mutex);
4877 	struct mddev *mddev = mddev_find(dev);
4878 	struct gendisk *disk;
4879 	int partitioned;
4880 	int shift;
4881 	int unit;
4882 	int error;
4883 
4884 	if (!mddev)
4885 		return -ENODEV;
4886 
4887 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4888 	shift = partitioned ? MdpMinorShift : 0;
4889 	unit = MINOR(mddev->unit) >> shift;
4890 
4891 	/* wait for any previous instance of this device to be
4892 	 * completely removed (mddev_delayed_delete).
4893 	 */
4894 	flush_workqueue(md_misc_wq);
4895 
4896 	mutex_lock(&disks_mutex);
4897 	error = -EEXIST;
4898 	if (mddev->gendisk)
4899 		goto abort;
4900 
4901 	if (name) {
4902 		/* Need to ensure that 'name' is not a duplicate.
4903 		 */
4904 		struct mddev *mddev2;
4905 		spin_lock(&all_mddevs_lock);
4906 
4907 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4908 			if (mddev2->gendisk &&
4909 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4910 				spin_unlock(&all_mddevs_lock);
4911 				goto abort;
4912 			}
4913 		spin_unlock(&all_mddevs_lock);
4914 	}
4915 
4916 	error = -ENOMEM;
4917 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4918 	if (!mddev->queue)
4919 		goto abort;
4920 	mddev->queue->queuedata = mddev;
4921 
4922 	blk_queue_make_request(mddev->queue, md_make_request);
4923 	blk_set_stacking_limits(&mddev->queue->limits);
4924 
4925 	disk = alloc_disk(1 << shift);
4926 	if (!disk) {
4927 		blk_cleanup_queue(mddev->queue);
4928 		mddev->queue = NULL;
4929 		goto abort;
4930 	}
4931 	disk->major = MAJOR(mddev->unit);
4932 	disk->first_minor = unit << shift;
4933 	if (name)
4934 		strcpy(disk->disk_name, name);
4935 	else if (partitioned)
4936 		sprintf(disk->disk_name, "md_d%d", unit);
4937 	else
4938 		sprintf(disk->disk_name, "md%d", unit);
4939 	disk->fops = &md_fops;
4940 	disk->private_data = mddev;
4941 	disk->queue = mddev->queue;
4942 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4943 	/* Allow extended partitions.  This makes the
4944 	 * 'mdp' device redundant, but we can't really
4945 	 * remove it now.
4946 	 */
4947 	disk->flags |= GENHD_FL_EXT_DEVT;
4948 	mddev->gendisk = disk;
4949 	/* As soon as we call add_disk(), another thread could get
4950 	 * through to md_open, so make sure it doesn't get too far
4951 	 */
4952 	mutex_lock(&mddev->open_mutex);
4953 	add_disk(disk);
4954 
4955 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4956 				     &disk_to_dev(disk)->kobj, "%s", "md");
4957 	if (error) {
4958 		/* This isn't possible, but as kobject_init_and_add is marked
4959 		 * __must_check, we must do something with the result
4960 		 */
4961 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4962 		       disk->disk_name);
4963 		error = 0;
4964 	}
4965 	if (mddev->kobj.sd &&
4966 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4967 		printk(KERN_DEBUG "pointless warning\n");
4968 	mutex_unlock(&mddev->open_mutex);
4969  abort:
4970 	mutex_unlock(&disks_mutex);
4971 	if (!error && mddev->kobj.sd) {
4972 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4973 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4974 	}
4975 	mddev_put(mddev);
4976 	return error;
4977 }
4978 
4979 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4980 {
4981 	md_alloc(dev, NULL);
4982 	return NULL;
4983 }
4984 
4985 static int add_named_array(const char *val, struct kernel_param *kp)
4986 {
4987 	/* val must be "md_*" where * is not all digits.
4988 	 * We allocate an array with a large free minor number, and
4989 	 * set the name to val.  val must not already be an active name.
4990 	 */
4991 	int len = strlen(val);
4992 	char buf[DISK_NAME_LEN];
4993 
4994 	while (len && val[len-1] == '\n')
4995 		len--;
4996 	if (len >= DISK_NAME_LEN)
4997 		return -E2BIG;
4998 	strlcpy(buf, val, len+1);
4999 	if (strncmp(buf, "md_", 3) != 0)
5000 		return -EINVAL;
5001 	return md_alloc(0, buf);
5002 }
5003 
5004 static void md_safemode_timeout(unsigned long data)
5005 {
5006 	struct mddev *mddev = (struct mddev *) data;
5007 
5008 	if (!atomic_read(&mddev->writes_pending)) {
5009 		mddev->safemode = 1;
5010 		if (mddev->external)
5011 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5012 	}
5013 	md_wakeup_thread(mddev->thread);
5014 }
5015 
5016 static int start_dirty_degraded;
5017 
5018 int md_run(struct mddev *mddev)
5019 {
5020 	int err;
5021 	struct md_rdev *rdev;
5022 	struct md_personality *pers;
5023 
5024 	if (list_empty(&mddev->disks))
5025 		/* cannot run an array with no devices.. */
5026 		return -EINVAL;
5027 
5028 	if (mddev->pers)
5029 		return -EBUSY;
5030 	/* Cannot run until previous stop completes properly */
5031 	if (mddev->sysfs_active)
5032 		return -EBUSY;
5033 
5034 	/*
5035 	 * Analyze all RAID superblock(s)
5036 	 */
5037 	if (!mddev->raid_disks) {
5038 		if (!mddev->persistent)
5039 			return -EINVAL;
5040 		analyze_sbs(mddev);
5041 	}
5042 
5043 	if (mddev->level != LEVEL_NONE)
5044 		request_module("md-level-%d", mddev->level);
5045 	else if (mddev->clevel[0])
5046 		request_module("md-%s", mddev->clevel);
5047 
5048 	/*
5049 	 * Drop all container device buffers, from now on
5050 	 * the only valid external interface is through the md
5051 	 * device.
5052 	 */
5053 	rdev_for_each(rdev, mddev) {
5054 		if (test_bit(Faulty, &rdev->flags))
5055 			continue;
5056 		sync_blockdev(rdev->bdev);
5057 		invalidate_bdev(rdev->bdev);
5058 
5059 		/* perform some consistency tests on the device.
5060 		 * We don't want the data to overlap the metadata,
5061 		 * Internal Bitmap issues have been handled elsewhere.
5062 		 */
5063 		if (rdev->meta_bdev) {
5064 			/* Nothing to check */;
5065 		} else if (rdev->data_offset < rdev->sb_start) {
5066 			if (mddev->dev_sectors &&
5067 			    rdev->data_offset + mddev->dev_sectors
5068 			    > rdev->sb_start) {
5069 				printk("md: %s: data overlaps metadata\n",
5070 				       mdname(mddev));
5071 				return -EINVAL;
5072 			}
5073 		} else {
5074 			if (rdev->sb_start + rdev->sb_size/512
5075 			    > rdev->data_offset) {
5076 				printk("md: %s: metadata overlaps data\n",
5077 				       mdname(mddev));
5078 				return -EINVAL;
5079 			}
5080 		}
5081 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5082 	}
5083 
5084 	if (mddev->bio_set == NULL)
5085 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5086 
5087 	spin_lock(&pers_lock);
5088 	pers = find_pers(mddev->level, mddev->clevel);
5089 	if (!pers || !try_module_get(pers->owner)) {
5090 		spin_unlock(&pers_lock);
5091 		if (mddev->level != LEVEL_NONE)
5092 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5093 			       mddev->level);
5094 		else
5095 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5096 			       mddev->clevel);
5097 		return -EINVAL;
5098 	}
5099 	spin_unlock(&pers_lock);
5100 	if (mddev->level != pers->level) {
5101 		mddev->level = pers->level;
5102 		mddev->new_level = pers->level;
5103 	}
5104 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5105 
5106 	if (mddev->reshape_position != MaxSector &&
5107 	    pers->start_reshape == NULL) {
5108 		/* This personality cannot handle reshaping... */
5109 		module_put(pers->owner);
5110 		return -EINVAL;
5111 	}
5112 
5113 	if (pers->sync_request) {
5114 		/* Warn if this is a potentially silly
5115 		 * configuration.
5116 		 */
5117 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5118 		struct md_rdev *rdev2;
5119 		int warned = 0;
5120 
5121 		rdev_for_each(rdev, mddev)
5122 			rdev_for_each(rdev2, mddev) {
5123 				if (rdev < rdev2 &&
5124 				    rdev->bdev->bd_contains ==
5125 				    rdev2->bdev->bd_contains) {
5126 					printk(KERN_WARNING
5127 					       "%s: WARNING: %s appears to be"
5128 					       " on the same physical disk as"
5129 					       " %s.\n",
5130 					       mdname(mddev),
5131 					       bdevname(rdev->bdev,b),
5132 					       bdevname(rdev2->bdev,b2));
5133 					warned = 1;
5134 				}
5135 			}
5136 
5137 		if (warned)
5138 			printk(KERN_WARNING
5139 			       "True protection against single-disk"
5140 			       " failure might be compromised.\n");
5141 	}
5142 
5143 	mddev->recovery = 0;
5144 	/* may be over-ridden by personality */
5145 	mddev->resync_max_sectors = mddev->dev_sectors;
5146 
5147 	mddev->ok_start_degraded = start_dirty_degraded;
5148 
5149 	if (start_readonly && mddev->ro == 0)
5150 		mddev->ro = 2; /* read-only, but switch on first write */
5151 
5152 	err = pers->run(mddev);
5153 	if (err)
5154 		printk(KERN_ERR "md: pers->run() failed ...\n");
5155 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5156 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5157 			  " but 'external_size' not in effect?\n", __func__);
5158 		printk(KERN_ERR
5159 		       "md: invalid array_size %llu > default size %llu\n",
5160 		       (unsigned long long)mddev->array_sectors / 2,
5161 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5162 		err = -EINVAL;
5163 	}
5164 	if (err == 0 && pers->sync_request &&
5165 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5166 		struct bitmap *bitmap;
5167 
5168 		bitmap = bitmap_create(mddev, -1);
5169 		if (IS_ERR(bitmap)) {
5170 			err = PTR_ERR(bitmap);
5171 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5172 			       mdname(mddev), err);
5173 		} else
5174 			mddev->bitmap = bitmap;
5175 
5176 	}
5177 	if (err) {
5178 		mddev_detach(mddev);
5179 		if (mddev->private)
5180 			pers->free(mddev, mddev->private);
5181 		mddev->private = NULL;
5182 		module_put(pers->owner);
5183 		bitmap_destroy(mddev);
5184 		return err;
5185 	}
5186 	if (mddev->queue) {
5187 		mddev->queue->backing_dev_info.congested_data = mddev;
5188 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5189 		blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5190 	}
5191 	if (pers->sync_request) {
5192 		if (mddev->kobj.sd &&
5193 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5194 			printk(KERN_WARNING
5195 			       "md: cannot register extra attributes for %s\n",
5196 			       mdname(mddev));
5197 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5198 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5199 		mddev->ro = 0;
5200 
5201 	atomic_set(&mddev->writes_pending,0);
5202 	atomic_set(&mddev->max_corr_read_errors,
5203 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5204 	mddev->safemode = 0;
5205 	mddev->safemode_timer.function = md_safemode_timeout;
5206 	mddev->safemode_timer.data = (unsigned long) mddev;
5207 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5208 	mddev->in_sync = 1;
5209 	smp_wmb();
5210 	spin_lock(&mddev->lock);
5211 	mddev->pers = pers;
5212 	mddev->ready = 1;
5213 	spin_unlock(&mddev->lock);
5214 	rdev_for_each(rdev, mddev)
5215 		if (rdev->raid_disk >= 0)
5216 			if (sysfs_link_rdev(mddev, rdev))
5217 				/* failure here is OK */;
5218 
5219 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5220 
5221 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5222 		md_update_sb(mddev, 0);
5223 
5224 	md_new_event(mddev);
5225 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5226 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5227 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5228 	return 0;
5229 }
5230 EXPORT_SYMBOL_GPL(md_run);
5231 
5232 static int do_md_run(struct mddev *mddev)
5233 {
5234 	int err;
5235 
5236 	err = md_run(mddev);
5237 	if (err)
5238 		goto out;
5239 	err = bitmap_load(mddev);
5240 	if (err) {
5241 		bitmap_destroy(mddev);
5242 		goto out;
5243 	}
5244 
5245 	md_wakeup_thread(mddev->thread);
5246 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5247 
5248 	set_capacity(mddev->gendisk, mddev->array_sectors);
5249 	revalidate_disk(mddev->gendisk);
5250 	mddev->changed = 1;
5251 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5252 out:
5253 	return err;
5254 }
5255 
5256 static int restart_array(struct mddev *mddev)
5257 {
5258 	struct gendisk *disk = mddev->gendisk;
5259 
5260 	/* Complain if it has no devices */
5261 	if (list_empty(&mddev->disks))
5262 		return -ENXIO;
5263 	if (!mddev->pers)
5264 		return -EINVAL;
5265 	if (!mddev->ro)
5266 		return -EBUSY;
5267 	mddev->safemode = 0;
5268 	mddev->ro = 0;
5269 	set_disk_ro(disk, 0);
5270 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5271 		mdname(mddev));
5272 	/* Kick recovery or resync if necessary */
5273 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5274 	md_wakeup_thread(mddev->thread);
5275 	md_wakeup_thread(mddev->sync_thread);
5276 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5277 	return 0;
5278 }
5279 
5280 static void md_clean(struct mddev *mddev)
5281 {
5282 	mddev->array_sectors = 0;
5283 	mddev->external_size = 0;
5284 	mddev->dev_sectors = 0;
5285 	mddev->raid_disks = 0;
5286 	mddev->recovery_cp = 0;
5287 	mddev->resync_min = 0;
5288 	mddev->resync_max = MaxSector;
5289 	mddev->reshape_position = MaxSector;
5290 	mddev->external = 0;
5291 	mddev->persistent = 0;
5292 	mddev->level = LEVEL_NONE;
5293 	mddev->clevel[0] = 0;
5294 	mddev->flags = 0;
5295 	mddev->ro = 0;
5296 	mddev->metadata_type[0] = 0;
5297 	mddev->chunk_sectors = 0;
5298 	mddev->ctime = mddev->utime = 0;
5299 	mddev->layout = 0;
5300 	mddev->max_disks = 0;
5301 	mddev->events = 0;
5302 	mddev->can_decrease_events = 0;
5303 	mddev->delta_disks = 0;
5304 	mddev->reshape_backwards = 0;
5305 	mddev->new_level = LEVEL_NONE;
5306 	mddev->new_layout = 0;
5307 	mddev->new_chunk_sectors = 0;
5308 	mddev->curr_resync = 0;
5309 	atomic64_set(&mddev->resync_mismatches, 0);
5310 	mddev->suspend_lo = mddev->suspend_hi = 0;
5311 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5312 	mddev->recovery = 0;
5313 	mddev->in_sync = 0;
5314 	mddev->changed = 0;
5315 	mddev->degraded = 0;
5316 	mddev->safemode = 0;
5317 	mddev->private = NULL;
5318 	mddev->merge_check_needed = 0;
5319 	mddev->bitmap_info.offset = 0;
5320 	mddev->bitmap_info.default_offset = 0;
5321 	mddev->bitmap_info.default_space = 0;
5322 	mddev->bitmap_info.chunksize = 0;
5323 	mddev->bitmap_info.daemon_sleep = 0;
5324 	mddev->bitmap_info.max_write_behind = 0;
5325 }
5326 
5327 static void __md_stop_writes(struct mddev *mddev)
5328 {
5329 	if (mddev_is_clustered(mddev))
5330 		md_cluster_ops->metadata_update_start(mddev);
5331 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5332 	flush_workqueue(md_misc_wq);
5333 	if (mddev->sync_thread) {
5334 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5335 		md_reap_sync_thread(mddev);
5336 	}
5337 
5338 	del_timer_sync(&mddev->safemode_timer);
5339 
5340 	bitmap_flush(mddev);
5341 	md_super_wait(mddev);
5342 
5343 	if (mddev->ro == 0 &&
5344 	    (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5345 		/* mark array as shutdown cleanly */
5346 		mddev->in_sync = 1;
5347 		md_update_sb(mddev, 1);
5348 	}
5349 	if (mddev_is_clustered(mddev))
5350 		md_cluster_ops->metadata_update_finish(mddev);
5351 }
5352 
5353 void md_stop_writes(struct mddev *mddev)
5354 {
5355 	mddev_lock_nointr(mddev);
5356 	__md_stop_writes(mddev);
5357 	mddev_unlock(mddev);
5358 }
5359 EXPORT_SYMBOL_GPL(md_stop_writes);
5360 
5361 static void mddev_detach(struct mddev *mddev)
5362 {
5363 	struct bitmap *bitmap = mddev->bitmap;
5364 	/* wait for behind writes to complete */
5365 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5366 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5367 		       mdname(mddev));
5368 		/* need to kick something here to make sure I/O goes? */
5369 		wait_event(bitmap->behind_wait,
5370 			   atomic_read(&bitmap->behind_writes) == 0);
5371 	}
5372 	if (mddev->pers && mddev->pers->quiesce) {
5373 		mddev->pers->quiesce(mddev, 1);
5374 		mddev->pers->quiesce(mddev, 0);
5375 	}
5376 	md_unregister_thread(&mddev->thread);
5377 	if (mddev->queue)
5378 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5379 }
5380 
5381 static void __md_stop(struct mddev *mddev)
5382 {
5383 	struct md_personality *pers = mddev->pers;
5384 	mddev_detach(mddev);
5385 	spin_lock(&mddev->lock);
5386 	mddev->ready = 0;
5387 	mddev->pers = NULL;
5388 	spin_unlock(&mddev->lock);
5389 	pers->free(mddev, mddev->private);
5390 	mddev->private = NULL;
5391 	if (pers->sync_request && mddev->to_remove == NULL)
5392 		mddev->to_remove = &md_redundancy_group;
5393 	module_put(pers->owner);
5394 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5395 }
5396 
5397 void md_stop(struct mddev *mddev)
5398 {
5399 	/* stop the array and free an attached data structures.
5400 	 * This is called from dm-raid
5401 	 */
5402 	__md_stop(mddev);
5403 	bitmap_destroy(mddev);
5404 	if (mddev->bio_set)
5405 		bioset_free(mddev->bio_set);
5406 }
5407 
5408 EXPORT_SYMBOL_GPL(md_stop);
5409 
5410 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5411 {
5412 	int err = 0;
5413 	int did_freeze = 0;
5414 
5415 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5416 		did_freeze = 1;
5417 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5418 		md_wakeup_thread(mddev->thread);
5419 	}
5420 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5421 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5422 	if (mddev->sync_thread)
5423 		/* Thread might be blocked waiting for metadata update
5424 		 * which will now never happen */
5425 		wake_up_process(mddev->sync_thread->tsk);
5426 
5427 	mddev_unlock(mddev);
5428 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5429 					  &mddev->recovery));
5430 	mddev_lock_nointr(mddev);
5431 
5432 	mutex_lock(&mddev->open_mutex);
5433 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5434 	    mddev->sync_thread ||
5435 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5436 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5437 		printk("md: %s still in use.\n",mdname(mddev));
5438 		if (did_freeze) {
5439 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5440 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5441 			md_wakeup_thread(mddev->thread);
5442 		}
5443 		err = -EBUSY;
5444 		goto out;
5445 	}
5446 	if (mddev->pers) {
5447 		__md_stop_writes(mddev);
5448 
5449 		err  = -ENXIO;
5450 		if (mddev->ro==1)
5451 			goto out;
5452 		mddev->ro = 1;
5453 		set_disk_ro(mddev->gendisk, 1);
5454 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5455 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5456 		md_wakeup_thread(mddev->thread);
5457 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5458 		err = 0;
5459 	}
5460 out:
5461 	mutex_unlock(&mddev->open_mutex);
5462 	return err;
5463 }
5464 
5465 /* mode:
5466  *   0 - completely stop and dis-assemble array
5467  *   2 - stop but do not disassemble array
5468  */
5469 static int do_md_stop(struct mddev *mddev, int mode,
5470 		      struct block_device *bdev)
5471 {
5472 	struct gendisk *disk = mddev->gendisk;
5473 	struct md_rdev *rdev;
5474 	int did_freeze = 0;
5475 
5476 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5477 		did_freeze = 1;
5478 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5479 		md_wakeup_thread(mddev->thread);
5480 	}
5481 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5482 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5483 	if (mddev->sync_thread)
5484 		/* Thread might be blocked waiting for metadata update
5485 		 * which will now never happen */
5486 		wake_up_process(mddev->sync_thread->tsk);
5487 
5488 	mddev_unlock(mddev);
5489 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5490 				 !test_bit(MD_RECOVERY_RUNNING,
5491 					   &mddev->recovery)));
5492 	mddev_lock_nointr(mddev);
5493 
5494 	mutex_lock(&mddev->open_mutex);
5495 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5496 	    mddev->sysfs_active ||
5497 	    mddev->sync_thread ||
5498 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5499 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5500 		printk("md: %s still in use.\n",mdname(mddev));
5501 		mutex_unlock(&mddev->open_mutex);
5502 		if (did_freeze) {
5503 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5504 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5505 			md_wakeup_thread(mddev->thread);
5506 		}
5507 		return -EBUSY;
5508 	}
5509 	if (mddev->pers) {
5510 		if (mddev->ro)
5511 			set_disk_ro(disk, 0);
5512 
5513 		__md_stop_writes(mddev);
5514 		__md_stop(mddev);
5515 		mddev->queue->merge_bvec_fn = NULL;
5516 		mddev->queue->backing_dev_info.congested_fn = NULL;
5517 
5518 		/* tell userspace to handle 'inactive' */
5519 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5520 
5521 		rdev_for_each(rdev, mddev)
5522 			if (rdev->raid_disk >= 0)
5523 				sysfs_unlink_rdev(mddev, rdev);
5524 
5525 		set_capacity(disk, 0);
5526 		mutex_unlock(&mddev->open_mutex);
5527 		mddev->changed = 1;
5528 		revalidate_disk(disk);
5529 
5530 		if (mddev->ro)
5531 			mddev->ro = 0;
5532 	} else
5533 		mutex_unlock(&mddev->open_mutex);
5534 	/*
5535 	 * Free resources if final stop
5536 	 */
5537 	if (mode == 0) {
5538 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5539 
5540 		bitmap_destroy(mddev);
5541 		if (mddev->bitmap_info.file) {
5542 			struct file *f = mddev->bitmap_info.file;
5543 			spin_lock(&mddev->lock);
5544 			mddev->bitmap_info.file = NULL;
5545 			spin_unlock(&mddev->lock);
5546 			fput(f);
5547 		}
5548 		mddev->bitmap_info.offset = 0;
5549 
5550 		export_array(mddev);
5551 
5552 		md_clean(mddev);
5553 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5554 		if (mddev->hold_active == UNTIL_STOP)
5555 			mddev->hold_active = 0;
5556 	}
5557 	blk_integrity_unregister(disk);
5558 	md_new_event(mddev);
5559 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5560 	return 0;
5561 }
5562 
5563 #ifndef MODULE
5564 static void autorun_array(struct mddev *mddev)
5565 {
5566 	struct md_rdev *rdev;
5567 	int err;
5568 
5569 	if (list_empty(&mddev->disks))
5570 		return;
5571 
5572 	printk(KERN_INFO "md: running: ");
5573 
5574 	rdev_for_each(rdev, mddev) {
5575 		char b[BDEVNAME_SIZE];
5576 		printk("<%s>", bdevname(rdev->bdev,b));
5577 	}
5578 	printk("\n");
5579 
5580 	err = do_md_run(mddev);
5581 	if (err) {
5582 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5583 		do_md_stop(mddev, 0, NULL);
5584 	}
5585 }
5586 
5587 /*
5588  * lets try to run arrays based on all disks that have arrived
5589  * until now. (those are in pending_raid_disks)
5590  *
5591  * the method: pick the first pending disk, collect all disks with
5592  * the same UUID, remove all from the pending list and put them into
5593  * the 'same_array' list. Then order this list based on superblock
5594  * update time (freshest comes first), kick out 'old' disks and
5595  * compare superblocks. If everything's fine then run it.
5596  *
5597  * If "unit" is allocated, then bump its reference count
5598  */
5599 static void autorun_devices(int part)
5600 {
5601 	struct md_rdev *rdev0, *rdev, *tmp;
5602 	struct mddev *mddev;
5603 	char b[BDEVNAME_SIZE];
5604 
5605 	printk(KERN_INFO "md: autorun ...\n");
5606 	while (!list_empty(&pending_raid_disks)) {
5607 		int unit;
5608 		dev_t dev;
5609 		LIST_HEAD(candidates);
5610 		rdev0 = list_entry(pending_raid_disks.next,
5611 					 struct md_rdev, same_set);
5612 
5613 		printk(KERN_INFO "md: considering %s ...\n",
5614 			bdevname(rdev0->bdev,b));
5615 		INIT_LIST_HEAD(&candidates);
5616 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5617 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5618 				printk(KERN_INFO "md:  adding %s ...\n",
5619 					bdevname(rdev->bdev,b));
5620 				list_move(&rdev->same_set, &candidates);
5621 			}
5622 		/*
5623 		 * now we have a set of devices, with all of them having
5624 		 * mostly sane superblocks. It's time to allocate the
5625 		 * mddev.
5626 		 */
5627 		if (part) {
5628 			dev = MKDEV(mdp_major,
5629 				    rdev0->preferred_minor << MdpMinorShift);
5630 			unit = MINOR(dev) >> MdpMinorShift;
5631 		} else {
5632 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5633 			unit = MINOR(dev);
5634 		}
5635 		if (rdev0->preferred_minor != unit) {
5636 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5637 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5638 			break;
5639 		}
5640 
5641 		md_probe(dev, NULL, NULL);
5642 		mddev = mddev_find(dev);
5643 		if (!mddev || !mddev->gendisk) {
5644 			if (mddev)
5645 				mddev_put(mddev);
5646 			printk(KERN_ERR
5647 				"md: cannot allocate memory for md drive.\n");
5648 			break;
5649 		}
5650 		if (mddev_lock(mddev))
5651 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5652 			       mdname(mddev));
5653 		else if (mddev->raid_disks || mddev->major_version
5654 			 || !list_empty(&mddev->disks)) {
5655 			printk(KERN_WARNING
5656 				"md: %s already running, cannot run %s\n",
5657 				mdname(mddev), bdevname(rdev0->bdev,b));
5658 			mddev_unlock(mddev);
5659 		} else {
5660 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5661 			mddev->persistent = 1;
5662 			rdev_for_each_list(rdev, tmp, &candidates) {
5663 				list_del_init(&rdev->same_set);
5664 				if (bind_rdev_to_array(rdev, mddev))
5665 					export_rdev(rdev);
5666 			}
5667 			autorun_array(mddev);
5668 			mddev_unlock(mddev);
5669 		}
5670 		/* on success, candidates will be empty, on error
5671 		 * it won't...
5672 		 */
5673 		rdev_for_each_list(rdev, tmp, &candidates) {
5674 			list_del_init(&rdev->same_set);
5675 			export_rdev(rdev);
5676 		}
5677 		mddev_put(mddev);
5678 	}
5679 	printk(KERN_INFO "md: ... autorun DONE.\n");
5680 }
5681 #endif /* !MODULE */
5682 
5683 static int get_version(void __user *arg)
5684 {
5685 	mdu_version_t ver;
5686 
5687 	ver.major = MD_MAJOR_VERSION;
5688 	ver.minor = MD_MINOR_VERSION;
5689 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5690 
5691 	if (copy_to_user(arg, &ver, sizeof(ver)))
5692 		return -EFAULT;
5693 
5694 	return 0;
5695 }
5696 
5697 static int get_array_info(struct mddev *mddev, void __user *arg)
5698 {
5699 	mdu_array_info_t info;
5700 	int nr,working,insync,failed,spare;
5701 	struct md_rdev *rdev;
5702 
5703 	nr = working = insync = failed = spare = 0;
5704 	rcu_read_lock();
5705 	rdev_for_each_rcu(rdev, mddev) {
5706 		nr++;
5707 		if (test_bit(Faulty, &rdev->flags))
5708 			failed++;
5709 		else {
5710 			working++;
5711 			if (test_bit(In_sync, &rdev->flags))
5712 				insync++;
5713 			else
5714 				spare++;
5715 		}
5716 	}
5717 	rcu_read_unlock();
5718 
5719 	info.major_version = mddev->major_version;
5720 	info.minor_version = mddev->minor_version;
5721 	info.patch_version = MD_PATCHLEVEL_VERSION;
5722 	info.ctime         = mddev->ctime;
5723 	info.level         = mddev->level;
5724 	info.size          = mddev->dev_sectors / 2;
5725 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5726 		info.size = -1;
5727 	info.nr_disks      = nr;
5728 	info.raid_disks    = mddev->raid_disks;
5729 	info.md_minor      = mddev->md_minor;
5730 	info.not_persistent= !mddev->persistent;
5731 
5732 	info.utime         = mddev->utime;
5733 	info.state         = 0;
5734 	if (mddev->in_sync)
5735 		info.state = (1<<MD_SB_CLEAN);
5736 	if (mddev->bitmap && mddev->bitmap_info.offset)
5737 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5738 	if (mddev_is_clustered(mddev))
5739 		info.state |= (1<<MD_SB_CLUSTERED);
5740 	info.active_disks  = insync;
5741 	info.working_disks = working;
5742 	info.failed_disks  = failed;
5743 	info.spare_disks   = spare;
5744 
5745 	info.layout        = mddev->layout;
5746 	info.chunk_size    = mddev->chunk_sectors << 9;
5747 
5748 	if (copy_to_user(arg, &info, sizeof(info)))
5749 		return -EFAULT;
5750 
5751 	return 0;
5752 }
5753 
5754 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5755 {
5756 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5757 	char *ptr;
5758 	int err;
5759 
5760 	file = kmalloc(sizeof(*file), GFP_NOIO);
5761 	if (!file)
5762 		return -ENOMEM;
5763 
5764 	err = 0;
5765 	spin_lock(&mddev->lock);
5766 	/* bitmap disabled, zero the first byte and copy out */
5767 	if (!mddev->bitmap_info.file)
5768 		file->pathname[0] = '\0';
5769 	else if ((ptr = file_path(mddev->bitmap_info.file,
5770 			       file->pathname, sizeof(file->pathname))),
5771 		 IS_ERR(ptr))
5772 		err = PTR_ERR(ptr);
5773 	else
5774 		memmove(file->pathname, ptr,
5775 			sizeof(file->pathname)-(ptr-file->pathname));
5776 	spin_unlock(&mddev->lock);
5777 
5778 	if (err == 0 &&
5779 	    copy_to_user(arg, file, sizeof(*file)))
5780 		err = -EFAULT;
5781 
5782 	kfree(file);
5783 	return err;
5784 }
5785 
5786 static int get_disk_info(struct mddev *mddev, void __user * arg)
5787 {
5788 	mdu_disk_info_t info;
5789 	struct md_rdev *rdev;
5790 
5791 	if (copy_from_user(&info, arg, sizeof(info)))
5792 		return -EFAULT;
5793 
5794 	rcu_read_lock();
5795 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5796 	if (rdev) {
5797 		info.major = MAJOR(rdev->bdev->bd_dev);
5798 		info.minor = MINOR(rdev->bdev->bd_dev);
5799 		info.raid_disk = rdev->raid_disk;
5800 		info.state = 0;
5801 		if (test_bit(Faulty, &rdev->flags))
5802 			info.state |= (1<<MD_DISK_FAULTY);
5803 		else if (test_bit(In_sync, &rdev->flags)) {
5804 			info.state |= (1<<MD_DISK_ACTIVE);
5805 			info.state |= (1<<MD_DISK_SYNC);
5806 		}
5807 		if (test_bit(WriteMostly, &rdev->flags))
5808 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5809 	} else {
5810 		info.major = info.minor = 0;
5811 		info.raid_disk = -1;
5812 		info.state = (1<<MD_DISK_REMOVED);
5813 	}
5814 	rcu_read_unlock();
5815 
5816 	if (copy_to_user(arg, &info, sizeof(info)))
5817 		return -EFAULT;
5818 
5819 	return 0;
5820 }
5821 
5822 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5823 {
5824 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5825 	struct md_rdev *rdev;
5826 	dev_t dev = MKDEV(info->major,info->minor);
5827 
5828 	if (mddev_is_clustered(mddev) &&
5829 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5830 		pr_err("%s: Cannot add to clustered mddev.\n",
5831 			       mdname(mddev));
5832 		return -EINVAL;
5833 	}
5834 
5835 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5836 		return -EOVERFLOW;
5837 
5838 	if (!mddev->raid_disks) {
5839 		int err;
5840 		/* expecting a device which has a superblock */
5841 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5842 		if (IS_ERR(rdev)) {
5843 			printk(KERN_WARNING
5844 				"md: md_import_device returned %ld\n",
5845 				PTR_ERR(rdev));
5846 			return PTR_ERR(rdev);
5847 		}
5848 		if (!list_empty(&mddev->disks)) {
5849 			struct md_rdev *rdev0
5850 				= list_entry(mddev->disks.next,
5851 					     struct md_rdev, same_set);
5852 			err = super_types[mddev->major_version]
5853 				.load_super(rdev, rdev0, mddev->minor_version);
5854 			if (err < 0) {
5855 				printk(KERN_WARNING
5856 					"md: %s has different UUID to %s\n",
5857 					bdevname(rdev->bdev,b),
5858 					bdevname(rdev0->bdev,b2));
5859 				export_rdev(rdev);
5860 				return -EINVAL;
5861 			}
5862 		}
5863 		err = bind_rdev_to_array(rdev, mddev);
5864 		if (err)
5865 			export_rdev(rdev);
5866 		return err;
5867 	}
5868 
5869 	/*
5870 	 * add_new_disk can be used once the array is assembled
5871 	 * to add "hot spares".  They must already have a superblock
5872 	 * written
5873 	 */
5874 	if (mddev->pers) {
5875 		int err;
5876 		if (!mddev->pers->hot_add_disk) {
5877 			printk(KERN_WARNING
5878 				"%s: personality does not support diskops!\n",
5879 			       mdname(mddev));
5880 			return -EINVAL;
5881 		}
5882 		if (mddev->persistent)
5883 			rdev = md_import_device(dev, mddev->major_version,
5884 						mddev->minor_version);
5885 		else
5886 			rdev = md_import_device(dev, -1, -1);
5887 		if (IS_ERR(rdev)) {
5888 			printk(KERN_WARNING
5889 				"md: md_import_device returned %ld\n",
5890 				PTR_ERR(rdev));
5891 			return PTR_ERR(rdev);
5892 		}
5893 		/* set saved_raid_disk if appropriate */
5894 		if (!mddev->persistent) {
5895 			if (info->state & (1<<MD_DISK_SYNC)  &&
5896 			    info->raid_disk < mddev->raid_disks) {
5897 				rdev->raid_disk = info->raid_disk;
5898 				set_bit(In_sync, &rdev->flags);
5899 				clear_bit(Bitmap_sync, &rdev->flags);
5900 			} else
5901 				rdev->raid_disk = -1;
5902 			rdev->saved_raid_disk = rdev->raid_disk;
5903 		} else
5904 			super_types[mddev->major_version].
5905 				validate_super(mddev, rdev);
5906 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5907 		     rdev->raid_disk != info->raid_disk) {
5908 			/* This was a hot-add request, but events doesn't
5909 			 * match, so reject it.
5910 			 */
5911 			export_rdev(rdev);
5912 			return -EINVAL;
5913 		}
5914 
5915 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5916 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5917 			set_bit(WriteMostly, &rdev->flags);
5918 		else
5919 			clear_bit(WriteMostly, &rdev->flags);
5920 
5921 		/*
5922 		 * check whether the device shows up in other nodes
5923 		 */
5924 		if (mddev_is_clustered(mddev)) {
5925 			if (info->state & (1 << MD_DISK_CANDIDATE)) {
5926 				/* Through --cluster-confirm */
5927 				set_bit(Candidate, &rdev->flags);
5928 				err = md_cluster_ops->new_disk_ack(mddev, true);
5929 				if (err) {
5930 					export_rdev(rdev);
5931 					return err;
5932 				}
5933 			} else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5934 				/* --add initiated by this node */
5935 				err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5936 				if (err) {
5937 					md_cluster_ops->add_new_disk_finish(mddev);
5938 					export_rdev(rdev);
5939 					return err;
5940 				}
5941 			}
5942 		}
5943 
5944 		rdev->raid_disk = -1;
5945 		err = bind_rdev_to_array(rdev, mddev);
5946 		if (err)
5947 			export_rdev(rdev);
5948 		else
5949 			err = add_bound_rdev(rdev);
5950 		if (mddev_is_clustered(mddev) &&
5951 				(info->state & (1 << MD_DISK_CLUSTER_ADD)))
5952 			md_cluster_ops->add_new_disk_finish(mddev);
5953 		return err;
5954 	}
5955 
5956 	/* otherwise, add_new_disk is only allowed
5957 	 * for major_version==0 superblocks
5958 	 */
5959 	if (mddev->major_version != 0) {
5960 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5961 		       mdname(mddev));
5962 		return -EINVAL;
5963 	}
5964 
5965 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5966 		int err;
5967 		rdev = md_import_device(dev, -1, 0);
5968 		if (IS_ERR(rdev)) {
5969 			printk(KERN_WARNING
5970 				"md: error, md_import_device() returned %ld\n",
5971 				PTR_ERR(rdev));
5972 			return PTR_ERR(rdev);
5973 		}
5974 		rdev->desc_nr = info->number;
5975 		if (info->raid_disk < mddev->raid_disks)
5976 			rdev->raid_disk = info->raid_disk;
5977 		else
5978 			rdev->raid_disk = -1;
5979 
5980 		if (rdev->raid_disk < mddev->raid_disks)
5981 			if (info->state & (1<<MD_DISK_SYNC))
5982 				set_bit(In_sync, &rdev->flags);
5983 
5984 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5985 			set_bit(WriteMostly, &rdev->flags);
5986 
5987 		if (!mddev->persistent) {
5988 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5989 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5990 		} else
5991 			rdev->sb_start = calc_dev_sboffset(rdev);
5992 		rdev->sectors = rdev->sb_start;
5993 
5994 		err = bind_rdev_to_array(rdev, mddev);
5995 		if (err) {
5996 			export_rdev(rdev);
5997 			return err;
5998 		}
5999 	}
6000 
6001 	return 0;
6002 }
6003 
6004 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6005 {
6006 	char b[BDEVNAME_SIZE];
6007 	struct md_rdev *rdev;
6008 
6009 	rdev = find_rdev(mddev, dev);
6010 	if (!rdev)
6011 		return -ENXIO;
6012 
6013 	if (mddev_is_clustered(mddev))
6014 		md_cluster_ops->metadata_update_start(mddev);
6015 
6016 	clear_bit(Blocked, &rdev->flags);
6017 	remove_and_add_spares(mddev, rdev);
6018 
6019 	if (rdev->raid_disk >= 0)
6020 		goto busy;
6021 
6022 	if (mddev_is_clustered(mddev))
6023 		md_cluster_ops->remove_disk(mddev, rdev);
6024 
6025 	md_kick_rdev_from_array(rdev);
6026 	md_update_sb(mddev, 1);
6027 	md_new_event(mddev);
6028 
6029 	if (mddev_is_clustered(mddev))
6030 		md_cluster_ops->metadata_update_finish(mddev);
6031 
6032 	return 0;
6033 busy:
6034 	if (mddev_is_clustered(mddev))
6035 		md_cluster_ops->metadata_update_cancel(mddev);
6036 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6037 		bdevname(rdev->bdev,b), mdname(mddev));
6038 	return -EBUSY;
6039 }
6040 
6041 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6042 {
6043 	char b[BDEVNAME_SIZE];
6044 	int err;
6045 	struct md_rdev *rdev;
6046 
6047 	if (!mddev->pers)
6048 		return -ENODEV;
6049 
6050 	if (mddev->major_version != 0) {
6051 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6052 			" version-0 superblocks.\n",
6053 			mdname(mddev));
6054 		return -EINVAL;
6055 	}
6056 	if (!mddev->pers->hot_add_disk) {
6057 		printk(KERN_WARNING
6058 			"%s: personality does not support diskops!\n",
6059 			mdname(mddev));
6060 		return -EINVAL;
6061 	}
6062 
6063 	rdev = md_import_device(dev, -1, 0);
6064 	if (IS_ERR(rdev)) {
6065 		printk(KERN_WARNING
6066 			"md: error, md_import_device() returned %ld\n",
6067 			PTR_ERR(rdev));
6068 		return -EINVAL;
6069 	}
6070 
6071 	if (mddev->persistent)
6072 		rdev->sb_start = calc_dev_sboffset(rdev);
6073 	else
6074 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6075 
6076 	rdev->sectors = rdev->sb_start;
6077 
6078 	if (test_bit(Faulty, &rdev->flags)) {
6079 		printk(KERN_WARNING
6080 			"md: can not hot-add faulty %s disk to %s!\n",
6081 			bdevname(rdev->bdev,b), mdname(mddev));
6082 		err = -EINVAL;
6083 		goto abort_export;
6084 	}
6085 
6086 	if (mddev_is_clustered(mddev))
6087 		md_cluster_ops->metadata_update_start(mddev);
6088 	clear_bit(In_sync, &rdev->flags);
6089 	rdev->desc_nr = -1;
6090 	rdev->saved_raid_disk = -1;
6091 	err = bind_rdev_to_array(rdev, mddev);
6092 	if (err)
6093 		goto abort_clustered;
6094 
6095 	/*
6096 	 * The rest should better be atomic, we can have disk failures
6097 	 * noticed in interrupt contexts ...
6098 	 */
6099 
6100 	rdev->raid_disk = -1;
6101 
6102 	md_update_sb(mddev, 1);
6103 
6104 	if (mddev_is_clustered(mddev))
6105 		md_cluster_ops->metadata_update_finish(mddev);
6106 	/*
6107 	 * Kick recovery, maybe this spare has to be added to the
6108 	 * array immediately.
6109 	 */
6110 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6111 	md_wakeup_thread(mddev->thread);
6112 	md_new_event(mddev);
6113 	return 0;
6114 
6115 abort_clustered:
6116 	if (mddev_is_clustered(mddev))
6117 		md_cluster_ops->metadata_update_cancel(mddev);
6118 abort_export:
6119 	export_rdev(rdev);
6120 	return err;
6121 }
6122 
6123 static int set_bitmap_file(struct mddev *mddev, int fd)
6124 {
6125 	int err = 0;
6126 
6127 	if (mddev->pers) {
6128 		if (!mddev->pers->quiesce || !mddev->thread)
6129 			return -EBUSY;
6130 		if (mddev->recovery || mddev->sync_thread)
6131 			return -EBUSY;
6132 		/* we should be able to change the bitmap.. */
6133 	}
6134 
6135 	if (fd >= 0) {
6136 		struct inode *inode;
6137 		struct file *f;
6138 
6139 		if (mddev->bitmap || mddev->bitmap_info.file)
6140 			return -EEXIST; /* cannot add when bitmap is present */
6141 		f = fget(fd);
6142 
6143 		if (f == NULL) {
6144 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6145 			       mdname(mddev));
6146 			return -EBADF;
6147 		}
6148 
6149 		inode = f->f_mapping->host;
6150 		if (!S_ISREG(inode->i_mode)) {
6151 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6152 			       mdname(mddev));
6153 			err = -EBADF;
6154 		} else if (!(f->f_mode & FMODE_WRITE)) {
6155 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6156 			       mdname(mddev));
6157 			err = -EBADF;
6158 		} else if (atomic_read(&inode->i_writecount) != 1) {
6159 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6160 			       mdname(mddev));
6161 			err = -EBUSY;
6162 		}
6163 		if (err) {
6164 			fput(f);
6165 			return err;
6166 		}
6167 		mddev->bitmap_info.file = f;
6168 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6169 	} else if (mddev->bitmap == NULL)
6170 		return -ENOENT; /* cannot remove what isn't there */
6171 	err = 0;
6172 	if (mddev->pers) {
6173 		mddev->pers->quiesce(mddev, 1);
6174 		if (fd >= 0) {
6175 			struct bitmap *bitmap;
6176 
6177 			bitmap = bitmap_create(mddev, -1);
6178 			if (!IS_ERR(bitmap)) {
6179 				mddev->bitmap = bitmap;
6180 				err = bitmap_load(mddev);
6181 			} else
6182 				err = PTR_ERR(bitmap);
6183 		}
6184 		if (fd < 0 || err) {
6185 			bitmap_destroy(mddev);
6186 			fd = -1; /* make sure to put the file */
6187 		}
6188 		mddev->pers->quiesce(mddev, 0);
6189 	}
6190 	if (fd < 0) {
6191 		struct file *f = mddev->bitmap_info.file;
6192 		if (f) {
6193 			spin_lock(&mddev->lock);
6194 			mddev->bitmap_info.file = NULL;
6195 			spin_unlock(&mddev->lock);
6196 			fput(f);
6197 		}
6198 	}
6199 
6200 	return err;
6201 }
6202 
6203 /*
6204  * set_array_info is used two different ways
6205  * The original usage is when creating a new array.
6206  * In this usage, raid_disks is > 0 and it together with
6207  *  level, size, not_persistent,layout,chunksize determine the
6208  *  shape of the array.
6209  *  This will always create an array with a type-0.90.0 superblock.
6210  * The newer usage is when assembling an array.
6211  *  In this case raid_disks will be 0, and the major_version field is
6212  *  use to determine which style super-blocks are to be found on the devices.
6213  *  The minor and patch _version numbers are also kept incase the
6214  *  super_block handler wishes to interpret them.
6215  */
6216 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6217 {
6218 
6219 	if (info->raid_disks == 0) {
6220 		/* just setting version number for superblock loading */
6221 		if (info->major_version < 0 ||
6222 		    info->major_version >= ARRAY_SIZE(super_types) ||
6223 		    super_types[info->major_version].name == NULL) {
6224 			/* maybe try to auto-load a module? */
6225 			printk(KERN_INFO
6226 				"md: superblock version %d not known\n",
6227 				info->major_version);
6228 			return -EINVAL;
6229 		}
6230 		mddev->major_version = info->major_version;
6231 		mddev->minor_version = info->minor_version;
6232 		mddev->patch_version = info->patch_version;
6233 		mddev->persistent = !info->not_persistent;
6234 		/* ensure mddev_put doesn't delete this now that there
6235 		 * is some minimal configuration.
6236 		 */
6237 		mddev->ctime         = get_seconds();
6238 		return 0;
6239 	}
6240 	mddev->major_version = MD_MAJOR_VERSION;
6241 	mddev->minor_version = MD_MINOR_VERSION;
6242 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6243 	mddev->ctime         = get_seconds();
6244 
6245 	mddev->level         = info->level;
6246 	mddev->clevel[0]     = 0;
6247 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6248 	mddev->raid_disks    = info->raid_disks;
6249 	/* don't set md_minor, it is determined by which /dev/md* was
6250 	 * openned
6251 	 */
6252 	if (info->state & (1<<MD_SB_CLEAN))
6253 		mddev->recovery_cp = MaxSector;
6254 	else
6255 		mddev->recovery_cp = 0;
6256 	mddev->persistent    = ! info->not_persistent;
6257 	mddev->external	     = 0;
6258 
6259 	mddev->layout        = info->layout;
6260 	mddev->chunk_sectors = info->chunk_size >> 9;
6261 
6262 	mddev->max_disks     = MD_SB_DISKS;
6263 
6264 	if (mddev->persistent)
6265 		mddev->flags         = 0;
6266 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6267 
6268 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6269 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6270 	mddev->bitmap_info.offset = 0;
6271 
6272 	mddev->reshape_position = MaxSector;
6273 
6274 	/*
6275 	 * Generate a 128 bit UUID
6276 	 */
6277 	get_random_bytes(mddev->uuid, 16);
6278 
6279 	mddev->new_level = mddev->level;
6280 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6281 	mddev->new_layout = mddev->layout;
6282 	mddev->delta_disks = 0;
6283 	mddev->reshape_backwards = 0;
6284 
6285 	return 0;
6286 }
6287 
6288 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6289 {
6290 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6291 
6292 	if (mddev->external_size)
6293 		return;
6294 
6295 	mddev->array_sectors = array_sectors;
6296 }
6297 EXPORT_SYMBOL(md_set_array_sectors);
6298 
6299 static int update_size(struct mddev *mddev, sector_t num_sectors)
6300 {
6301 	struct md_rdev *rdev;
6302 	int rv;
6303 	int fit = (num_sectors == 0);
6304 
6305 	if (mddev->pers->resize == NULL)
6306 		return -EINVAL;
6307 	/* The "num_sectors" is the number of sectors of each device that
6308 	 * is used.  This can only make sense for arrays with redundancy.
6309 	 * linear and raid0 always use whatever space is available. We can only
6310 	 * consider changing this number if no resync or reconstruction is
6311 	 * happening, and if the new size is acceptable. It must fit before the
6312 	 * sb_start or, if that is <data_offset, it must fit before the size
6313 	 * of each device.  If num_sectors is zero, we find the largest size
6314 	 * that fits.
6315 	 */
6316 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6317 	    mddev->sync_thread)
6318 		return -EBUSY;
6319 	if (mddev->ro)
6320 		return -EROFS;
6321 
6322 	rdev_for_each(rdev, mddev) {
6323 		sector_t avail = rdev->sectors;
6324 
6325 		if (fit && (num_sectors == 0 || num_sectors > avail))
6326 			num_sectors = avail;
6327 		if (avail < num_sectors)
6328 			return -ENOSPC;
6329 	}
6330 	rv = mddev->pers->resize(mddev, num_sectors);
6331 	if (!rv)
6332 		revalidate_disk(mddev->gendisk);
6333 	return rv;
6334 }
6335 
6336 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6337 {
6338 	int rv;
6339 	struct md_rdev *rdev;
6340 	/* change the number of raid disks */
6341 	if (mddev->pers->check_reshape == NULL)
6342 		return -EINVAL;
6343 	if (mddev->ro)
6344 		return -EROFS;
6345 	if (raid_disks <= 0 ||
6346 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6347 		return -EINVAL;
6348 	if (mddev->sync_thread ||
6349 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6350 	    mddev->reshape_position != MaxSector)
6351 		return -EBUSY;
6352 
6353 	rdev_for_each(rdev, mddev) {
6354 		if (mddev->raid_disks < raid_disks &&
6355 		    rdev->data_offset < rdev->new_data_offset)
6356 			return -EINVAL;
6357 		if (mddev->raid_disks > raid_disks &&
6358 		    rdev->data_offset > rdev->new_data_offset)
6359 			return -EINVAL;
6360 	}
6361 
6362 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6363 	if (mddev->delta_disks < 0)
6364 		mddev->reshape_backwards = 1;
6365 	else if (mddev->delta_disks > 0)
6366 		mddev->reshape_backwards = 0;
6367 
6368 	rv = mddev->pers->check_reshape(mddev);
6369 	if (rv < 0) {
6370 		mddev->delta_disks = 0;
6371 		mddev->reshape_backwards = 0;
6372 	}
6373 	return rv;
6374 }
6375 
6376 /*
6377  * update_array_info is used to change the configuration of an
6378  * on-line array.
6379  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6380  * fields in the info are checked against the array.
6381  * Any differences that cannot be handled will cause an error.
6382  * Normally, only one change can be managed at a time.
6383  */
6384 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6385 {
6386 	int rv = 0;
6387 	int cnt = 0;
6388 	int state = 0;
6389 
6390 	/* calculate expected state,ignoring low bits */
6391 	if (mddev->bitmap && mddev->bitmap_info.offset)
6392 		state |= (1 << MD_SB_BITMAP_PRESENT);
6393 
6394 	if (mddev->major_version != info->major_version ||
6395 	    mddev->minor_version != info->minor_version ||
6396 /*	    mddev->patch_version != info->patch_version || */
6397 	    mddev->ctime         != info->ctime         ||
6398 	    mddev->level         != info->level         ||
6399 /*	    mddev->layout        != info->layout        || */
6400 	    mddev->persistent	 != !info->not_persistent ||
6401 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6402 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6403 	    ((state^info->state) & 0xfffffe00)
6404 		)
6405 		return -EINVAL;
6406 	/* Check there is only one change */
6407 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6408 		cnt++;
6409 	if (mddev->raid_disks != info->raid_disks)
6410 		cnt++;
6411 	if (mddev->layout != info->layout)
6412 		cnt++;
6413 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6414 		cnt++;
6415 	if (cnt == 0)
6416 		return 0;
6417 	if (cnt > 1)
6418 		return -EINVAL;
6419 
6420 	if (mddev->layout != info->layout) {
6421 		/* Change layout
6422 		 * we don't need to do anything at the md level, the
6423 		 * personality will take care of it all.
6424 		 */
6425 		if (mddev->pers->check_reshape == NULL)
6426 			return -EINVAL;
6427 		else {
6428 			mddev->new_layout = info->layout;
6429 			rv = mddev->pers->check_reshape(mddev);
6430 			if (rv)
6431 				mddev->new_layout = mddev->layout;
6432 			return rv;
6433 		}
6434 	}
6435 	if (mddev_is_clustered(mddev))
6436 		md_cluster_ops->metadata_update_start(mddev);
6437 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6438 		rv = update_size(mddev, (sector_t)info->size * 2);
6439 
6440 	if (mddev->raid_disks    != info->raid_disks)
6441 		rv = update_raid_disks(mddev, info->raid_disks);
6442 
6443 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6444 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6445 			rv = -EINVAL;
6446 			goto err;
6447 		}
6448 		if (mddev->recovery || mddev->sync_thread) {
6449 			rv = -EBUSY;
6450 			goto err;
6451 		}
6452 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6453 			struct bitmap *bitmap;
6454 			/* add the bitmap */
6455 			if (mddev->bitmap) {
6456 				rv = -EEXIST;
6457 				goto err;
6458 			}
6459 			if (mddev->bitmap_info.default_offset == 0) {
6460 				rv = -EINVAL;
6461 				goto err;
6462 			}
6463 			mddev->bitmap_info.offset =
6464 				mddev->bitmap_info.default_offset;
6465 			mddev->bitmap_info.space =
6466 				mddev->bitmap_info.default_space;
6467 			mddev->pers->quiesce(mddev, 1);
6468 			bitmap = bitmap_create(mddev, -1);
6469 			if (!IS_ERR(bitmap)) {
6470 				mddev->bitmap = bitmap;
6471 				rv = bitmap_load(mddev);
6472 			} else
6473 				rv = PTR_ERR(bitmap);
6474 			if (rv)
6475 				bitmap_destroy(mddev);
6476 			mddev->pers->quiesce(mddev, 0);
6477 		} else {
6478 			/* remove the bitmap */
6479 			if (!mddev->bitmap) {
6480 				rv = -ENOENT;
6481 				goto err;
6482 			}
6483 			if (mddev->bitmap->storage.file) {
6484 				rv = -EINVAL;
6485 				goto err;
6486 			}
6487 			mddev->pers->quiesce(mddev, 1);
6488 			bitmap_destroy(mddev);
6489 			mddev->pers->quiesce(mddev, 0);
6490 			mddev->bitmap_info.offset = 0;
6491 		}
6492 	}
6493 	md_update_sb(mddev, 1);
6494 	if (mddev_is_clustered(mddev))
6495 		md_cluster_ops->metadata_update_finish(mddev);
6496 	return rv;
6497 err:
6498 	if (mddev_is_clustered(mddev))
6499 		md_cluster_ops->metadata_update_cancel(mddev);
6500 	return rv;
6501 }
6502 
6503 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6504 {
6505 	struct md_rdev *rdev;
6506 	int err = 0;
6507 
6508 	if (mddev->pers == NULL)
6509 		return -ENODEV;
6510 
6511 	rcu_read_lock();
6512 	rdev = find_rdev_rcu(mddev, dev);
6513 	if (!rdev)
6514 		err =  -ENODEV;
6515 	else {
6516 		md_error(mddev, rdev);
6517 		if (!test_bit(Faulty, &rdev->flags))
6518 			err = -EBUSY;
6519 	}
6520 	rcu_read_unlock();
6521 	return err;
6522 }
6523 
6524 /*
6525  * We have a problem here : there is no easy way to give a CHS
6526  * virtual geometry. We currently pretend that we have a 2 heads
6527  * 4 sectors (with a BIG number of cylinders...). This drives
6528  * dosfs just mad... ;-)
6529  */
6530 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6531 {
6532 	struct mddev *mddev = bdev->bd_disk->private_data;
6533 
6534 	geo->heads = 2;
6535 	geo->sectors = 4;
6536 	geo->cylinders = mddev->array_sectors / 8;
6537 	return 0;
6538 }
6539 
6540 static inline bool md_ioctl_valid(unsigned int cmd)
6541 {
6542 	switch (cmd) {
6543 	case ADD_NEW_DISK:
6544 	case BLKROSET:
6545 	case GET_ARRAY_INFO:
6546 	case GET_BITMAP_FILE:
6547 	case GET_DISK_INFO:
6548 	case HOT_ADD_DISK:
6549 	case HOT_REMOVE_DISK:
6550 	case RAID_AUTORUN:
6551 	case RAID_VERSION:
6552 	case RESTART_ARRAY_RW:
6553 	case RUN_ARRAY:
6554 	case SET_ARRAY_INFO:
6555 	case SET_BITMAP_FILE:
6556 	case SET_DISK_FAULTY:
6557 	case STOP_ARRAY:
6558 	case STOP_ARRAY_RO:
6559 	case CLUSTERED_DISK_NACK:
6560 		return true;
6561 	default:
6562 		return false;
6563 	}
6564 }
6565 
6566 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6567 			unsigned int cmd, unsigned long arg)
6568 {
6569 	int err = 0;
6570 	void __user *argp = (void __user *)arg;
6571 	struct mddev *mddev = NULL;
6572 	int ro;
6573 
6574 	if (!md_ioctl_valid(cmd))
6575 		return -ENOTTY;
6576 
6577 	switch (cmd) {
6578 	case RAID_VERSION:
6579 	case GET_ARRAY_INFO:
6580 	case GET_DISK_INFO:
6581 		break;
6582 	default:
6583 		if (!capable(CAP_SYS_ADMIN))
6584 			return -EACCES;
6585 	}
6586 
6587 	/*
6588 	 * Commands dealing with the RAID driver but not any
6589 	 * particular array:
6590 	 */
6591 	switch (cmd) {
6592 	case RAID_VERSION:
6593 		err = get_version(argp);
6594 		goto out;
6595 
6596 #ifndef MODULE
6597 	case RAID_AUTORUN:
6598 		err = 0;
6599 		autostart_arrays(arg);
6600 		goto out;
6601 #endif
6602 	default:;
6603 	}
6604 
6605 	/*
6606 	 * Commands creating/starting a new array:
6607 	 */
6608 
6609 	mddev = bdev->bd_disk->private_data;
6610 
6611 	if (!mddev) {
6612 		BUG();
6613 		goto out;
6614 	}
6615 
6616 	/* Some actions do not requires the mutex */
6617 	switch (cmd) {
6618 	case GET_ARRAY_INFO:
6619 		if (!mddev->raid_disks && !mddev->external)
6620 			err = -ENODEV;
6621 		else
6622 			err = get_array_info(mddev, argp);
6623 		goto out;
6624 
6625 	case GET_DISK_INFO:
6626 		if (!mddev->raid_disks && !mddev->external)
6627 			err = -ENODEV;
6628 		else
6629 			err = get_disk_info(mddev, argp);
6630 		goto out;
6631 
6632 	case SET_DISK_FAULTY:
6633 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6634 		goto out;
6635 
6636 	case GET_BITMAP_FILE:
6637 		err = get_bitmap_file(mddev, argp);
6638 		goto out;
6639 
6640 	}
6641 
6642 	if (cmd == ADD_NEW_DISK)
6643 		/* need to ensure md_delayed_delete() has completed */
6644 		flush_workqueue(md_misc_wq);
6645 
6646 	if (cmd == HOT_REMOVE_DISK)
6647 		/* need to ensure recovery thread has run */
6648 		wait_event_interruptible_timeout(mddev->sb_wait,
6649 						 !test_bit(MD_RECOVERY_NEEDED,
6650 							   &mddev->flags),
6651 						 msecs_to_jiffies(5000));
6652 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6653 		/* Need to flush page cache, and ensure no-one else opens
6654 		 * and writes
6655 		 */
6656 		mutex_lock(&mddev->open_mutex);
6657 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6658 			mutex_unlock(&mddev->open_mutex);
6659 			err = -EBUSY;
6660 			goto out;
6661 		}
6662 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6663 		mutex_unlock(&mddev->open_mutex);
6664 		sync_blockdev(bdev);
6665 	}
6666 	err = mddev_lock(mddev);
6667 	if (err) {
6668 		printk(KERN_INFO
6669 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6670 			err, cmd);
6671 		goto out;
6672 	}
6673 
6674 	if (cmd == SET_ARRAY_INFO) {
6675 		mdu_array_info_t info;
6676 		if (!arg)
6677 			memset(&info, 0, sizeof(info));
6678 		else if (copy_from_user(&info, argp, sizeof(info))) {
6679 			err = -EFAULT;
6680 			goto unlock;
6681 		}
6682 		if (mddev->pers) {
6683 			err = update_array_info(mddev, &info);
6684 			if (err) {
6685 				printk(KERN_WARNING "md: couldn't update"
6686 				       " array info. %d\n", err);
6687 				goto unlock;
6688 			}
6689 			goto unlock;
6690 		}
6691 		if (!list_empty(&mddev->disks)) {
6692 			printk(KERN_WARNING
6693 			       "md: array %s already has disks!\n",
6694 			       mdname(mddev));
6695 			err = -EBUSY;
6696 			goto unlock;
6697 		}
6698 		if (mddev->raid_disks) {
6699 			printk(KERN_WARNING
6700 			       "md: array %s already initialised!\n",
6701 			       mdname(mddev));
6702 			err = -EBUSY;
6703 			goto unlock;
6704 		}
6705 		err = set_array_info(mddev, &info);
6706 		if (err) {
6707 			printk(KERN_WARNING "md: couldn't set"
6708 			       " array info. %d\n", err);
6709 			goto unlock;
6710 		}
6711 		goto unlock;
6712 	}
6713 
6714 	/*
6715 	 * Commands querying/configuring an existing array:
6716 	 */
6717 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6718 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6719 	if ((!mddev->raid_disks && !mddev->external)
6720 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6721 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6722 	    && cmd != GET_BITMAP_FILE) {
6723 		err = -ENODEV;
6724 		goto unlock;
6725 	}
6726 
6727 	/*
6728 	 * Commands even a read-only array can execute:
6729 	 */
6730 	switch (cmd) {
6731 	case RESTART_ARRAY_RW:
6732 		err = restart_array(mddev);
6733 		goto unlock;
6734 
6735 	case STOP_ARRAY:
6736 		err = do_md_stop(mddev, 0, bdev);
6737 		goto unlock;
6738 
6739 	case STOP_ARRAY_RO:
6740 		err = md_set_readonly(mddev, bdev);
6741 		goto unlock;
6742 
6743 	case HOT_REMOVE_DISK:
6744 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6745 		goto unlock;
6746 
6747 	case ADD_NEW_DISK:
6748 		/* We can support ADD_NEW_DISK on read-only arrays
6749 		 * on if we are re-adding a preexisting device.
6750 		 * So require mddev->pers and MD_DISK_SYNC.
6751 		 */
6752 		if (mddev->pers) {
6753 			mdu_disk_info_t info;
6754 			if (copy_from_user(&info, argp, sizeof(info)))
6755 				err = -EFAULT;
6756 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6757 				/* Need to clear read-only for this */
6758 				break;
6759 			else
6760 				err = add_new_disk(mddev, &info);
6761 			goto unlock;
6762 		}
6763 		break;
6764 
6765 	case BLKROSET:
6766 		if (get_user(ro, (int __user *)(arg))) {
6767 			err = -EFAULT;
6768 			goto unlock;
6769 		}
6770 		err = -EINVAL;
6771 
6772 		/* if the bdev is going readonly the value of mddev->ro
6773 		 * does not matter, no writes are coming
6774 		 */
6775 		if (ro)
6776 			goto unlock;
6777 
6778 		/* are we are already prepared for writes? */
6779 		if (mddev->ro != 1)
6780 			goto unlock;
6781 
6782 		/* transitioning to readauto need only happen for
6783 		 * arrays that call md_write_start
6784 		 */
6785 		if (mddev->pers) {
6786 			err = restart_array(mddev);
6787 			if (err == 0) {
6788 				mddev->ro = 2;
6789 				set_disk_ro(mddev->gendisk, 0);
6790 			}
6791 		}
6792 		goto unlock;
6793 	}
6794 
6795 	/*
6796 	 * The remaining ioctls are changing the state of the
6797 	 * superblock, so we do not allow them on read-only arrays.
6798 	 */
6799 	if (mddev->ro && mddev->pers) {
6800 		if (mddev->ro == 2) {
6801 			mddev->ro = 0;
6802 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6803 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6804 			/* mddev_unlock will wake thread */
6805 			/* If a device failed while we were read-only, we
6806 			 * need to make sure the metadata is updated now.
6807 			 */
6808 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6809 				mddev_unlock(mddev);
6810 				wait_event(mddev->sb_wait,
6811 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6812 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6813 				mddev_lock_nointr(mddev);
6814 			}
6815 		} else {
6816 			err = -EROFS;
6817 			goto unlock;
6818 		}
6819 	}
6820 
6821 	switch (cmd) {
6822 	case ADD_NEW_DISK:
6823 	{
6824 		mdu_disk_info_t info;
6825 		if (copy_from_user(&info, argp, sizeof(info)))
6826 			err = -EFAULT;
6827 		else
6828 			err = add_new_disk(mddev, &info);
6829 		goto unlock;
6830 	}
6831 
6832 	case CLUSTERED_DISK_NACK:
6833 		if (mddev_is_clustered(mddev))
6834 			md_cluster_ops->new_disk_ack(mddev, false);
6835 		else
6836 			err = -EINVAL;
6837 		goto unlock;
6838 
6839 	case HOT_ADD_DISK:
6840 		err = hot_add_disk(mddev, new_decode_dev(arg));
6841 		goto unlock;
6842 
6843 	case RUN_ARRAY:
6844 		err = do_md_run(mddev);
6845 		goto unlock;
6846 
6847 	case SET_BITMAP_FILE:
6848 		err = set_bitmap_file(mddev, (int)arg);
6849 		goto unlock;
6850 
6851 	default:
6852 		err = -EINVAL;
6853 		goto unlock;
6854 	}
6855 
6856 unlock:
6857 	if (mddev->hold_active == UNTIL_IOCTL &&
6858 	    err != -EINVAL)
6859 		mddev->hold_active = 0;
6860 	mddev_unlock(mddev);
6861 out:
6862 	return err;
6863 }
6864 #ifdef CONFIG_COMPAT
6865 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6866 		    unsigned int cmd, unsigned long arg)
6867 {
6868 	switch (cmd) {
6869 	case HOT_REMOVE_DISK:
6870 	case HOT_ADD_DISK:
6871 	case SET_DISK_FAULTY:
6872 	case SET_BITMAP_FILE:
6873 		/* These take in integer arg, do not convert */
6874 		break;
6875 	default:
6876 		arg = (unsigned long)compat_ptr(arg);
6877 		break;
6878 	}
6879 
6880 	return md_ioctl(bdev, mode, cmd, arg);
6881 }
6882 #endif /* CONFIG_COMPAT */
6883 
6884 static int md_open(struct block_device *bdev, fmode_t mode)
6885 {
6886 	/*
6887 	 * Succeed if we can lock the mddev, which confirms that
6888 	 * it isn't being stopped right now.
6889 	 */
6890 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6891 	int err;
6892 
6893 	if (!mddev)
6894 		return -ENODEV;
6895 
6896 	if (mddev->gendisk != bdev->bd_disk) {
6897 		/* we are racing with mddev_put which is discarding this
6898 		 * bd_disk.
6899 		 */
6900 		mddev_put(mddev);
6901 		/* Wait until bdev->bd_disk is definitely gone */
6902 		flush_workqueue(md_misc_wq);
6903 		/* Then retry the open from the top */
6904 		return -ERESTARTSYS;
6905 	}
6906 	BUG_ON(mddev != bdev->bd_disk->private_data);
6907 
6908 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6909 		goto out;
6910 
6911 	err = 0;
6912 	atomic_inc(&mddev->openers);
6913 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
6914 	mutex_unlock(&mddev->open_mutex);
6915 
6916 	check_disk_change(bdev);
6917  out:
6918 	return err;
6919 }
6920 
6921 static void md_release(struct gendisk *disk, fmode_t mode)
6922 {
6923 	struct mddev *mddev = disk->private_data;
6924 
6925 	BUG_ON(!mddev);
6926 	atomic_dec(&mddev->openers);
6927 	mddev_put(mddev);
6928 }
6929 
6930 static int md_media_changed(struct gendisk *disk)
6931 {
6932 	struct mddev *mddev = disk->private_data;
6933 
6934 	return mddev->changed;
6935 }
6936 
6937 static int md_revalidate(struct gendisk *disk)
6938 {
6939 	struct mddev *mddev = disk->private_data;
6940 
6941 	mddev->changed = 0;
6942 	return 0;
6943 }
6944 static const struct block_device_operations md_fops =
6945 {
6946 	.owner		= THIS_MODULE,
6947 	.open		= md_open,
6948 	.release	= md_release,
6949 	.ioctl		= md_ioctl,
6950 #ifdef CONFIG_COMPAT
6951 	.compat_ioctl	= md_compat_ioctl,
6952 #endif
6953 	.getgeo		= md_getgeo,
6954 	.media_changed  = md_media_changed,
6955 	.revalidate_disk= md_revalidate,
6956 };
6957 
6958 static int md_thread(void *arg)
6959 {
6960 	struct md_thread *thread = arg;
6961 
6962 	/*
6963 	 * md_thread is a 'system-thread', it's priority should be very
6964 	 * high. We avoid resource deadlocks individually in each
6965 	 * raid personality. (RAID5 does preallocation) We also use RR and
6966 	 * the very same RT priority as kswapd, thus we will never get
6967 	 * into a priority inversion deadlock.
6968 	 *
6969 	 * we definitely have to have equal or higher priority than
6970 	 * bdflush, otherwise bdflush will deadlock if there are too
6971 	 * many dirty RAID5 blocks.
6972 	 */
6973 
6974 	allow_signal(SIGKILL);
6975 	while (!kthread_should_stop()) {
6976 
6977 		/* We need to wait INTERRUPTIBLE so that
6978 		 * we don't add to the load-average.
6979 		 * That means we need to be sure no signals are
6980 		 * pending
6981 		 */
6982 		if (signal_pending(current))
6983 			flush_signals(current);
6984 
6985 		wait_event_interruptible_timeout
6986 			(thread->wqueue,
6987 			 test_bit(THREAD_WAKEUP, &thread->flags)
6988 			 || kthread_should_stop(),
6989 			 thread->timeout);
6990 
6991 		clear_bit(THREAD_WAKEUP, &thread->flags);
6992 		if (!kthread_should_stop())
6993 			thread->run(thread);
6994 	}
6995 
6996 	return 0;
6997 }
6998 
6999 void md_wakeup_thread(struct md_thread *thread)
7000 {
7001 	if (thread) {
7002 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7003 		set_bit(THREAD_WAKEUP, &thread->flags);
7004 		wake_up(&thread->wqueue);
7005 	}
7006 }
7007 EXPORT_SYMBOL(md_wakeup_thread);
7008 
7009 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7010 		struct mddev *mddev, const char *name)
7011 {
7012 	struct md_thread *thread;
7013 
7014 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7015 	if (!thread)
7016 		return NULL;
7017 
7018 	init_waitqueue_head(&thread->wqueue);
7019 
7020 	thread->run = run;
7021 	thread->mddev = mddev;
7022 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7023 	thread->tsk = kthread_run(md_thread, thread,
7024 				  "%s_%s",
7025 				  mdname(thread->mddev),
7026 				  name);
7027 	if (IS_ERR(thread->tsk)) {
7028 		kfree(thread);
7029 		return NULL;
7030 	}
7031 	return thread;
7032 }
7033 EXPORT_SYMBOL(md_register_thread);
7034 
7035 void md_unregister_thread(struct md_thread **threadp)
7036 {
7037 	struct md_thread *thread = *threadp;
7038 	if (!thread)
7039 		return;
7040 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7041 	/* Locking ensures that mddev_unlock does not wake_up a
7042 	 * non-existent thread
7043 	 */
7044 	spin_lock(&pers_lock);
7045 	*threadp = NULL;
7046 	spin_unlock(&pers_lock);
7047 
7048 	kthread_stop(thread->tsk);
7049 	kfree(thread);
7050 }
7051 EXPORT_SYMBOL(md_unregister_thread);
7052 
7053 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7054 {
7055 	if (!rdev || test_bit(Faulty, &rdev->flags))
7056 		return;
7057 
7058 	if (!mddev->pers || !mddev->pers->error_handler)
7059 		return;
7060 	mddev->pers->error_handler(mddev,rdev);
7061 	if (mddev->degraded)
7062 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7063 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7064 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7065 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7066 	md_wakeup_thread(mddev->thread);
7067 	if (mddev->event_work.func)
7068 		queue_work(md_misc_wq, &mddev->event_work);
7069 	md_new_event_inintr(mddev);
7070 }
7071 EXPORT_SYMBOL(md_error);
7072 
7073 /* seq_file implementation /proc/mdstat */
7074 
7075 static void status_unused(struct seq_file *seq)
7076 {
7077 	int i = 0;
7078 	struct md_rdev *rdev;
7079 
7080 	seq_printf(seq, "unused devices: ");
7081 
7082 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7083 		char b[BDEVNAME_SIZE];
7084 		i++;
7085 		seq_printf(seq, "%s ",
7086 			      bdevname(rdev->bdev,b));
7087 	}
7088 	if (!i)
7089 		seq_printf(seq, "<none>");
7090 
7091 	seq_printf(seq, "\n");
7092 }
7093 
7094 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7095 {
7096 	sector_t max_sectors, resync, res;
7097 	unsigned long dt, db;
7098 	sector_t rt;
7099 	int scale;
7100 	unsigned int per_milli;
7101 
7102 	if (mddev->curr_resync <= 3)
7103 		resync = 0;
7104 	else
7105 		resync = mddev->curr_resync
7106 			- atomic_read(&mddev->recovery_active);
7107 
7108 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7109 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7110 		max_sectors = mddev->resync_max_sectors;
7111 	else
7112 		max_sectors = mddev->dev_sectors;
7113 
7114 	WARN_ON(max_sectors == 0);
7115 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7116 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7117 	 * u32, as those are the requirements for sector_div.
7118 	 * Thus 'scale' must be at least 10
7119 	 */
7120 	scale = 10;
7121 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7122 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7123 			scale++;
7124 	}
7125 	res = (resync>>scale)*1000;
7126 	sector_div(res, (u32)((max_sectors>>scale)+1));
7127 
7128 	per_milli = res;
7129 	{
7130 		int i, x = per_milli/50, y = 20-x;
7131 		seq_printf(seq, "[");
7132 		for (i = 0; i < x; i++)
7133 			seq_printf(seq, "=");
7134 		seq_printf(seq, ">");
7135 		for (i = 0; i < y; i++)
7136 			seq_printf(seq, ".");
7137 		seq_printf(seq, "] ");
7138 	}
7139 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7140 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7141 		    "reshape" :
7142 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7143 		     "check" :
7144 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7145 		      "resync" : "recovery"))),
7146 		   per_milli/10, per_milli % 10,
7147 		   (unsigned long long) resync/2,
7148 		   (unsigned long long) max_sectors/2);
7149 
7150 	/*
7151 	 * dt: time from mark until now
7152 	 * db: blocks written from mark until now
7153 	 * rt: remaining time
7154 	 *
7155 	 * rt is a sector_t, so could be 32bit or 64bit.
7156 	 * So we divide before multiply in case it is 32bit and close
7157 	 * to the limit.
7158 	 * We scale the divisor (db) by 32 to avoid losing precision
7159 	 * near the end of resync when the number of remaining sectors
7160 	 * is close to 'db'.
7161 	 * We then divide rt by 32 after multiplying by db to compensate.
7162 	 * The '+1' avoids division by zero if db is very small.
7163 	 */
7164 	dt = ((jiffies - mddev->resync_mark) / HZ);
7165 	if (!dt) dt++;
7166 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7167 		- mddev->resync_mark_cnt;
7168 
7169 	rt = max_sectors - resync;    /* number of remaining sectors */
7170 	sector_div(rt, db/32+1);
7171 	rt *= dt;
7172 	rt >>= 5;
7173 
7174 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7175 		   ((unsigned long)rt % 60)/6);
7176 
7177 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7178 }
7179 
7180 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7181 {
7182 	struct list_head *tmp;
7183 	loff_t l = *pos;
7184 	struct mddev *mddev;
7185 
7186 	if (l >= 0x10000)
7187 		return NULL;
7188 	if (!l--)
7189 		/* header */
7190 		return (void*)1;
7191 
7192 	spin_lock(&all_mddevs_lock);
7193 	list_for_each(tmp,&all_mddevs)
7194 		if (!l--) {
7195 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7196 			mddev_get(mddev);
7197 			spin_unlock(&all_mddevs_lock);
7198 			return mddev;
7199 		}
7200 	spin_unlock(&all_mddevs_lock);
7201 	if (!l--)
7202 		return (void*)2;/* tail */
7203 	return NULL;
7204 }
7205 
7206 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7207 {
7208 	struct list_head *tmp;
7209 	struct mddev *next_mddev, *mddev = v;
7210 
7211 	++*pos;
7212 	if (v == (void*)2)
7213 		return NULL;
7214 
7215 	spin_lock(&all_mddevs_lock);
7216 	if (v == (void*)1)
7217 		tmp = all_mddevs.next;
7218 	else
7219 		tmp = mddev->all_mddevs.next;
7220 	if (tmp != &all_mddevs)
7221 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7222 	else {
7223 		next_mddev = (void*)2;
7224 		*pos = 0x10000;
7225 	}
7226 	spin_unlock(&all_mddevs_lock);
7227 
7228 	if (v != (void*)1)
7229 		mddev_put(mddev);
7230 	return next_mddev;
7231 
7232 }
7233 
7234 static void md_seq_stop(struct seq_file *seq, void *v)
7235 {
7236 	struct mddev *mddev = v;
7237 
7238 	if (mddev && v != (void*)1 && v != (void*)2)
7239 		mddev_put(mddev);
7240 }
7241 
7242 static int md_seq_show(struct seq_file *seq, void *v)
7243 {
7244 	struct mddev *mddev = v;
7245 	sector_t sectors;
7246 	struct md_rdev *rdev;
7247 
7248 	if (v == (void*)1) {
7249 		struct md_personality *pers;
7250 		seq_printf(seq, "Personalities : ");
7251 		spin_lock(&pers_lock);
7252 		list_for_each_entry(pers, &pers_list, list)
7253 			seq_printf(seq, "[%s] ", pers->name);
7254 
7255 		spin_unlock(&pers_lock);
7256 		seq_printf(seq, "\n");
7257 		seq->poll_event = atomic_read(&md_event_count);
7258 		return 0;
7259 	}
7260 	if (v == (void*)2) {
7261 		status_unused(seq);
7262 		return 0;
7263 	}
7264 
7265 	spin_lock(&mddev->lock);
7266 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7267 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7268 						mddev->pers ? "" : "in");
7269 		if (mddev->pers) {
7270 			if (mddev->ro==1)
7271 				seq_printf(seq, " (read-only)");
7272 			if (mddev->ro==2)
7273 				seq_printf(seq, " (auto-read-only)");
7274 			seq_printf(seq, " %s", mddev->pers->name);
7275 		}
7276 
7277 		sectors = 0;
7278 		rcu_read_lock();
7279 		rdev_for_each_rcu(rdev, mddev) {
7280 			char b[BDEVNAME_SIZE];
7281 			seq_printf(seq, " %s[%d]",
7282 				bdevname(rdev->bdev,b), rdev->desc_nr);
7283 			if (test_bit(WriteMostly, &rdev->flags))
7284 				seq_printf(seq, "(W)");
7285 			if (test_bit(Faulty, &rdev->flags)) {
7286 				seq_printf(seq, "(F)");
7287 				continue;
7288 			}
7289 			if (rdev->raid_disk < 0)
7290 				seq_printf(seq, "(S)"); /* spare */
7291 			if (test_bit(Replacement, &rdev->flags))
7292 				seq_printf(seq, "(R)");
7293 			sectors += rdev->sectors;
7294 		}
7295 		rcu_read_unlock();
7296 
7297 		if (!list_empty(&mddev->disks)) {
7298 			if (mddev->pers)
7299 				seq_printf(seq, "\n      %llu blocks",
7300 					   (unsigned long long)
7301 					   mddev->array_sectors / 2);
7302 			else
7303 				seq_printf(seq, "\n      %llu blocks",
7304 					   (unsigned long long)sectors / 2);
7305 		}
7306 		if (mddev->persistent) {
7307 			if (mddev->major_version != 0 ||
7308 			    mddev->minor_version != 90) {
7309 				seq_printf(seq," super %d.%d",
7310 					   mddev->major_version,
7311 					   mddev->minor_version);
7312 			}
7313 		} else if (mddev->external)
7314 			seq_printf(seq, " super external:%s",
7315 				   mddev->metadata_type);
7316 		else
7317 			seq_printf(seq, " super non-persistent");
7318 
7319 		if (mddev->pers) {
7320 			mddev->pers->status(seq, mddev);
7321 			seq_printf(seq, "\n      ");
7322 			if (mddev->pers->sync_request) {
7323 				if (mddev->curr_resync > 2) {
7324 					status_resync(seq, mddev);
7325 					seq_printf(seq, "\n      ");
7326 				} else if (mddev->curr_resync >= 1)
7327 					seq_printf(seq, "\tresync=DELAYED\n      ");
7328 				else if (mddev->recovery_cp < MaxSector)
7329 					seq_printf(seq, "\tresync=PENDING\n      ");
7330 			}
7331 		} else
7332 			seq_printf(seq, "\n       ");
7333 
7334 		bitmap_status(seq, mddev->bitmap);
7335 
7336 		seq_printf(seq, "\n");
7337 	}
7338 	spin_unlock(&mddev->lock);
7339 
7340 	return 0;
7341 }
7342 
7343 static const struct seq_operations md_seq_ops = {
7344 	.start  = md_seq_start,
7345 	.next   = md_seq_next,
7346 	.stop   = md_seq_stop,
7347 	.show   = md_seq_show,
7348 };
7349 
7350 static int md_seq_open(struct inode *inode, struct file *file)
7351 {
7352 	struct seq_file *seq;
7353 	int error;
7354 
7355 	error = seq_open(file, &md_seq_ops);
7356 	if (error)
7357 		return error;
7358 
7359 	seq = file->private_data;
7360 	seq->poll_event = atomic_read(&md_event_count);
7361 	return error;
7362 }
7363 
7364 static int md_unloading;
7365 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7366 {
7367 	struct seq_file *seq = filp->private_data;
7368 	int mask;
7369 
7370 	if (md_unloading)
7371 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7372 	poll_wait(filp, &md_event_waiters, wait);
7373 
7374 	/* always allow read */
7375 	mask = POLLIN | POLLRDNORM;
7376 
7377 	if (seq->poll_event != atomic_read(&md_event_count))
7378 		mask |= POLLERR | POLLPRI;
7379 	return mask;
7380 }
7381 
7382 static const struct file_operations md_seq_fops = {
7383 	.owner		= THIS_MODULE,
7384 	.open           = md_seq_open,
7385 	.read           = seq_read,
7386 	.llseek         = seq_lseek,
7387 	.release	= seq_release_private,
7388 	.poll		= mdstat_poll,
7389 };
7390 
7391 int register_md_personality(struct md_personality *p)
7392 {
7393 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7394 						p->name, p->level);
7395 	spin_lock(&pers_lock);
7396 	list_add_tail(&p->list, &pers_list);
7397 	spin_unlock(&pers_lock);
7398 	return 0;
7399 }
7400 EXPORT_SYMBOL(register_md_personality);
7401 
7402 int unregister_md_personality(struct md_personality *p)
7403 {
7404 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7405 	spin_lock(&pers_lock);
7406 	list_del_init(&p->list);
7407 	spin_unlock(&pers_lock);
7408 	return 0;
7409 }
7410 EXPORT_SYMBOL(unregister_md_personality);
7411 
7412 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7413 {
7414 	if (md_cluster_ops != NULL)
7415 		return -EALREADY;
7416 	spin_lock(&pers_lock);
7417 	md_cluster_ops = ops;
7418 	md_cluster_mod = module;
7419 	spin_unlock(&pers_lock);
7420 	return 0;
7421 }
7422 EXPORT_SYMBOL(register_md_cluster_operations);
7423 
7424 int unregister_md_cluster_operations(void)
7425 {
7426 	spin_lock(&pers_lock);
7427 	md_cluster_ops = NULL;
7428 	spin_unlock(&pers_lock);
7429 	return 0;
7430 }
7431 EXPORT_SYMBOL(unregister_md_cluster_operations);
7432 
7433 int md_setup_cluster(struct mddev *mddev, int nodes)
7434 {
7435 	int err;
7436 
7437 	err = request_module("md-cluster");
7438 	if (err) {
7439 		pr_err("md-cluster module not found.\n");
7440 		return err;
7441 	}
7442 
7443 	spin_lock(&pers_lock);
7444 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7445 		spin_unlock(&pers_lock);
7446 		return -ENOENT;
7447 	}
7448 	spin_unlock(&pers_lock);
7449 
7450 	return md_cluster_ops->join(mddev, nodes);
7451 }
7452 
7453 void md_cluster_stop(struct mddev *mddev)
7454 {
7455 	if (!md_cluster_ops)
7456 		return;
7457 	md_cluster_ops->leave(mddev);
7458 	module_put(md_cluster_mod);
7459 }
7460 
7461 static int is_mddev_idle(struct mddev *mddev, int init)
7462 {
7463 	struct md_rdev *rdev;
7464 	int idle;
7465 	int curr_events;
7466 
7467 	idle = 1;
7468 	rcu_read_lock();
7469 	rdev_for_each_rcu(rdev, mddev) {
7470 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7471 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7472 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7473 			      atomic_read(&disk->sync_io);
7474 		/* sync IO will cause sync_io to increase before the disk_stats
7475 		 * as sync_io is counted when a request starts, and
7476 		 * disk_stats is counted when it completes.
7477 		 * So resync activity will cause curr_events to be smaller than
7478 		 * when there was no such activity.
7479 		 * non-sync IO will cause disk_stat to increase without
7480 		 * increasing sync_io so curr_events will (eventually)
7481 		 * be larger than it was before.  Once it becomes
7482 		 * substantially larger, the test below will cause
7483 		 * the array to appear non-idle, and resync will slow
7484 		 * down.
7485 		 * If there is a lot of outstanding resync activity when
7486 		 * we set last_event to curr_events, then all that activity
7487 		 * completing might cause the array to appear non-idle
7488 		 * and resync will be slowed down even though there might
7489 		 * not have been non-resync activity.  This will only
7490 		 * happen once though.  'last_events' will soon reflect
7491 		 * the state where there is little or no outstanding
7492 		 * resync requests, and further resync activity will
7493 		 * always make curr_events less than last_events.
7494 		 *
7495 		 */
7496 		if (init || curr_events - rdev->last_events > 64) {
7497 			rdev->last_events = curr_events;
7498 			idle = 0;
7499 		}
7500 	}
7501 	rcu_read_unlock();
7502 	return idle;
7503 }
7504 
7505 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7506 {
7507 	/* another "blocks" (512byte) blocks have been synced */
7508 	atomic_sub(blocks, &mddev->recovery_active);
7509 	wake_up(&mddev->recovery_wait);
7510 	if (!ok) {
7511 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7512 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7513 		md_wakeup_thread(mddev->thread);
7514 		// stop recovery, signal do_sync ....
7515 	}
7516 }
7517 EXPORT_SYMBOL(md_done_sync);
7518 
7519 /* md_write_start(mddev, bi)
7520  * If we need to update some array metadata (e.g. 'active' flag
7521  * in superblock) before writing, schedule a superblock update
7522  * and wait for it to complete.
7523  */
7524 void md_write_start(struct mddev *mddev, struct bio *bi)
7525 {
7526 	int did_change = 0;
7527 	if (bio_data_dir(bi) != WRITE)
7528 		return;
7529 
7530 	BUG_ON(mddev->ro == 1);
7531 	if (mddev->ro == 2) {
7532 		/* need to switch to read/write */
7533 		mddev->ro = 0;
7534 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7535 		md_wakeup_thread(mddev->thread);
7536 		md_wakeup_thread(mddev->sync_thread);
7537 		did_change = 1;
7538 	}
7539 	atomic_inc(&mddev->writes_pending);
7540 	if (mddev->safemode == 1)
7541 		mddev->safemode = 0;
7542 	if (mddev->in_sync) {
7543 		spin_lock(&mddev->lock);
7544 		if (mddev->in_sync) {
7545 			mddev->in_sync = 0;
7546 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7547 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7548 			md_wakeup_thread(mddev->thread);
7549 			did_change = 1;
7550 		}
7551 		spin_unlock(&mddev->lock);
7552 	}
7553 	if (did_change)
7554 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7555 	wait_event(mddev->sb_wait,
7556 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7557 }
7558 EXPORT_SYMBOL(md_write_start);
7559 
7560 void md_write_end(struct mddev *mddev)
7561 {
7562 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7563 		if (mddev->safemode == 2)
7564 			md_wakeup_thread(mddev->thread);
7565 		else if (mddev->safemode_delay)
7566 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7567 	}
7568 }
7569 EXPORT_SYMBOL(md_write_end);
7570 
7571 /* md_allow_write(mddev)
7572  * Calling this ensures that the array is marked 'active' so that writes
7573  * may proceed without blocking.  It is important to call this before
7574  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7575  * Must be called with mddev_lock held.
7576  *
7577  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7578  * is dropped, so return -EAGAIN after notifying userspace.
7579  */
7580 int md_allow_write(struct mddev *mddev)
7581 {
7582 	if (!mddev->pers)
7583 		return 0;
7584 	if (mddev->ro)
7585 		return 0;
7586 	if (!mddev->pers->sync_request)
7587 		return 0;
7588 
7589 	spin_lock(&mddev->lock);
7590 	if (mddev->in_sync) {
7591 		mddev->in_sync = 0;
7592 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7593 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7594 		if (mddev->safemode_delay &&
7595 		    mddev->safemode == 0)
7596 			mddev->safemode = 1;
7597 		spin_unlock(&mddev->lock);
7598 		if (mddev_is_clustered(mddev))
7599 			md_cluster_ops->metadata_update_start(mddev);
7600 		md_update_sb(mddev, 0);
7601 		if (mddev_is_clustered(mddev))
7602 			md_cluster_ops->metadata_update_finish(mddev);
7603 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7604 	} else
7605 		spin_unlock(&mddev->lock);
7606 
7607 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7608 		return -EAGAIN;
7609 	else
7610 		return 0;
7611 }
7612 EXPORT_SYMBOL_GPL(md_allow_write);
7613 
7614 #define SYNC_MARKS	10
7615 #define	SYNC_MARK_STEP	(3*HZ)
7616 #define UPDATE_FREQUENCY (5*60*HZ)
7617 void md_do_sync(struct md_thread *thread)
7618 {
7619 	struct mddev *mddev = thread->mddev;
7620 	struct mddev *mddev2;
7621 	unsigned int currspeed = 0,
7622 		 window;
7623 	sector_t max_sectors,j, io_sectors, recovery_done;
7624 	unsigned long mark[SYNC_MARKS];
7625 	unsigned long update_time;
7626 	sector_t mark_cnt[SYNC_MARKS];
7627 	int last_mark,m;
7628 	struct list_head *tmp;
7629 	sector_t last_check;
7630 	int skipped = 0;
7631 	struct md_rdev *rdev;
7632 	char *desc, *action = NULL;
7633 	struct blk_plug plug;
7634 
7635 	/* just incase thread restarts... */
7636 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7637 		return;
7638 	if (mddev->ro) {/* never try to sync a read-only array */
7639 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7640 		return;
7641 	}
7642 
7643 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7644 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7645 			desc = "data-check";
7646 			action = "check";
7647 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7648 			desc = "requested-resync";
7649 			action = "repair";
7650 		} else
7651 			desc = "resync";
7652 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7653 		desc = "reshape";
7654 	else
7655 		desc = "recovery";
7656 
7657 	mddev->last_sync_action = action ?: desc;
7658 
7659 	/* we overload curr_resync somewhat here.
7660 	 * 0 == not engaged in resync at all
7661 	 * 2 == checking that there is no conflict with another sync
7662 	 * 1 == like 2, but have yielded to allow conflicting resync to
7663 	 *		commense
7664 	 * other == active in resync - this many blocks
7665 	 *
7666 	 * Before starting a resync we must have set curr_resync to
7667 	 * 2, and then checked that every "conflicting" array has curr_resync
7668 	 * less than ours.  When we find one that is the same or higher
7669 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7670 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7671 	 * This will mean we have to start checking from the beginning again.
7672 	 *
7673 	 */
7674 
7675 	do {
7676 		mddev->curr_resync = 2;
7677 
7678 	try_again:
7679 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7680 			goto skip;
7681 		for_each_mddev(mddev2, tmp) {
7682 			if (mddev2 == mddev)
7683 				continue;
7684 			if (!mddev->parallel_resync
7685 			&&  mddev2->curr_resync
7686 			&&  match_mddev_units(mddev, mddev2)) {
7687 				DEFINE_WAIT(wq);
7688 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7689 					/* arbitrarily yield */
7690 					mddev->curr_resync = 1;
7691 					wake_up(&resync_wait);
7692 				}
7693 				if (mddev > mddev2 && mddev->curr_resync == 1)
7694 					/* no need to wait here, we can wait the next
7695 					 * time 'round when curr_resync == 2
7696 					 */
7697 					continue;
7698 				/* We need to wait 'interruptible' so as not to
7699 				 * contribute to the load average, and not to
7700 				 * be caught by 'softlockup'
7701 				 */
7702 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7703 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7704 				    mddev2->curr_resync >= mddev->curr_resync) {
7705 					printk(KERN_INFO "md: delaying %s of %s"
7706 					       " until %s has finished (they"
7707 					       " share one or more physical units)\n",
7708 					       desc, mdname(mddev), mdname(mddev2));
7709 					mddev_put(mddev2);
7710 					if (signal_pending(current))
7711 						flush_signals(current);
7712 					schedule();
7713 					finish_wait(&resync_wait, &wq);
7714 					goto try_again;
7715 				}
7716 				finish_wait(&resync_wait, &wq);
7717 			}
7718 		}
7719 	} while (mddev->curr_resync < 2);
7720 
7721 	j = 0;
7722 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7723 		/* resync follows the size requested by the personality,
7724 		 * which defaults to physical size, but can be virtual size
7725 		 */
7726 		max_sectors = mddev->resync_max_sectors;
7727 		atomic64_set(&mddev->resync_mismatches, 0);
7728 		/* we don't use the checkpoint if there's a bitmap */
7729 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7730 			j = mddev->resync_min;
7731 		else if (!mddev->bitmap)
7732 			j = mddev->recovery_cp;
7733 
7734 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7735 		max_sectors = mddev->resync_max_sectors;
7736 	else {
7737 		/* recovery follows the physical size of devices */
7738 		max_sectors = mddev->dev_sectors;
7739 		j = MaxSector;
7740 		rcu_read_lock();
7741 		rdev_for_each_rcu(rdev, mddev)
7742 			if (rdev->raid_disk >= 0 &&
7743 			    !test_bit(Faulty, &rdev->flags) &&
7744 			    !test_bit(In_sync, &rdev->flags) &&
7745 			    rdev->recovery_offset < j)
7746 				j = rdev->recovery_offset;
7747 		rcu_read_unlock();
7748 
7749 		/* If there is a bitmap, we need to make sure all
7750 		 * writes that started before we added a spare
7751 		 * complete before we start doing a recovery.
7752 		 * Otherwise the write might complete and (via
7753 		 * bitmap_endwrite) set a bit in the bitmap after the
7754 		 * recovery has checked that bit and skipped that
7755 		 * region.
7756 		 */
7757 		if (mddev->bitmap) {
7758 			mddev->pers->quiesce(mddev, 1);
7759 			mddev->pers->quiesce(mddev, 0);
7760 		}
7761 	}
7762 
7763 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7764 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7765 		" %d KB/sec/disk.\n", speed_min(mddev));
7766 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7767 	       "(but not more than %d KB/sec) for %s.\n",
7768 	       speed_max(mddev), desc);
7769 
7770 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7771 
7772 	io_sectors = 0;
7773 	for (m = 0; m < SYNC_MARKS; m++) {
7774 		mark[m] = jiffies;
7775 		mark_cnt[m] = io_sectors;
7776 	}
7777 	last_mark = 0;
7778 	mddev->resync_mark = mark[last_mark];
7779 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7780 
7781 	/*
7782 	 * Tune reconstruction:
7783 	 */
7784 	window = 32*(PAGE_SIZE/512);
7785 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7786 		window/2, (unsigned long long)max_sectors/2);
7787 
7788 	atomic_set(&mddev->recovery_active, 0);
7789 	last_check = 0;
7790 
7791 	if (j>2) {
7792 		printk(KERN_INFO
7793 		       "md: resuming %s of %s from checkpoint.\n",
7794 		       desc, mdname(mddev));
7795 		mddev->curr_resync = j;
7796 	} else
7797 		mddev->curr_resync = 3; /* no longer delayed */
7798 	mddev->curr_resync_completed = j;
7799 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7800 	md_new_event(mddev);
7801 	update_time = jiffies;
7802 
7803 	if (mddev_is_clustered(mddev))
7804 		md_cluster_ops->resync_start(mddev, j, max_sectors);
7805 
7806 	blk_start_plug(&plug);
7807 	while (j < max_sectors) {
7808 		sector_t sectors;
7809 
7810 		skipped = 0;
7811 
7812 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7813 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7814 		      (mddev->curr_resync - mddev->curr_resync_completed)
7815 		      > (max_sectors >> 4)) ||
7816 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7817 		     (j - mddev->curr_resync_completed)*2
7818 		     >= mddev->resync_max - mddev->curr_resync_completed
7819 			    )) {
7820 			/* time to update curr_resync_completed */
7821 			wait_event(mddev->recovery_wait,
7822 				   atomic_read(&mddev->recovery_active) == 0);
7823 			mddev->curr_resync_completed = j;
7824 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7825 			    j > mddev->recovery_cp)
7826 				mddev->recovery_cp = j;
7827 			update_time = jiffies;
7828 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7829 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7830 		}
7831 
7832 		while (j >= mddev->resync_max &&
7833 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7834 			/* As this condition is controlled by user-space,
7835 			 * we can block indefinitely, so use '_interruptible'
7836 			 * to avoid triggering warnings.
7837 			 */
7838 			flush_signals(current); /* just in case */
7839 			wait_event_interruptible(mddev->recovery_wait,
7840 						 mddev->resync_max > j
7841 						 || test_bit(MD_RECOVERY_INTR,
7842 							     &mddev->recovery));
7843 		}
7844 
7845 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7846 			break;
7847 
7848 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7849 		if (sectors == 0) {
7850 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7851 			break;
7852 		}
7853 
7854 		if (!skipped) { /* actual IO requested */
7855 			io_sectors += sectors;
7856 			atomic_add(sectors, &mddev->recovery_active);
7857 		}
7858 
7859 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7860 			break;
7861 
7862 		j += sectors;
7863 		if (j > 2)
7864 			mddev->curr_resync = j;
7865 		if (mddev_is_clustered(mddev))
7866 			md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7867 		mddev->curr_mark_cnt = io_sectors;
7868 		if (last_check == 0)
7869 			/* this is the earliest that rebuild will be
7870 			 * visible in /proc/mdstat
7871 			 */
7872 			md_new_event(mddev);
7873 
7874 		if (last_check + window > io_sectors || j == max_sectors)
7875 			continue;
7876 
7877 		last_check = io_sectors;
7878 	repeat:
7879 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7880 			/* step marks */
7881 			int next = (last_mark+1) % SYNC_MARKS;
7882 
7883 			mddev->resync_mark = mark[next];
7884 			mddev->resync_mark_cnt = mark_cnt[next];
7885 			mark[next] = jiffies;
7886 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7887 			last_mark = next;
7888 		}
7889 
7890 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7891 			break;
7892 
7893 		/*
7894 		 * this loop exits only if either when we are slower than
7895 		 * the 'hard' speed limit, or the system was IO-idle for
7896 		 * a jiffy.
7897 		 * the system might be non-idle CPU-wise, but we only care
7898 		 * about not overloading the IO subsystem. (things like an
7899 		 * e2fsck being done on the RAID array should execute fast)
7900 		 */
7901 		cond_resched();
7902 
7903 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7904 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7905 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7906 
7907 		if (currspeed > speed_min(mddev)) {
7908 			if (currspeed > speed_max(mddev)) {
7909 				msleep(500);
7910 				goto repeat;
7911 			}
7912 			if (!is_mddev_idle(mddev, 0)) {
7913 				/*
7914 				 * Give other IO more of a chance.
7915 				 * The faster the devices, the less we wait.
7916 				 */
7917 				wait_event(mddev->recovery_wait,
7918 					   !atomic_read(&mddev->recovery_active));
7919 			}
7920 		}
7921 	}
7922 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7923 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7924 	       ? "interrupted" : "done");
7925 	/*
7926 	 * this also signals 'finished resyncing' to md_stop
7927 	 */
7928 	blk_finish_plug(&plug);
7929 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7930 
7931 	/* tell personality that we are finished */
7932 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
7933 
7934 	if (mddev_is_clustered(mddev))
7935 		md_cluster_ops->resync_finish(mddev);
7936 
7937 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7938 	    mddev->curr_resync > 2) {
7939 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7940 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7941 				if (mddev->curr_resync >= mddev->recovery_cp) {
7942 					printk(KERN_INFO
7943 					       "md: checkpointing %s of %s.\n",
7944 					       desc, mdname(mddev));
7945 					if (test_bit(MD_RECOVERY_ERROR,
7946 						&mddev->recovery))
7947 						mddev->recovery_cp =
7948 							mddev->curr_resync_completed;
7949 					else
7950 						mddev->recovery_cp =
7951 							mddev->curr_resync;
7952 				}
7953 			} else
7954 				mddev->recovery_cp = MaxSector;
7955 		} else {
7956 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7957 				mddev->curr_resync = MaxSector;
7958 			rcu_read_lock();
7959 			rdev_for_each_rcu(rdev, mddev)
7960 				if (rdev->raid_disk >= 0 &&
7961 				    mddev->delta_disks >= 0 &&
7962 				    !test_bit(Faulty, &rdev->flags) &&
7963 				    !test_bit(In_sync, &rdev->flags) &&
7964 				    rdev->recovery_offset < mddev->curr_resync)
7965 					rdev->recovery_offset = mddev->curr_resync;
7966 			rcu_read_unlock();
7967 		}
7968 	}
7969  skip:
7970 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7971 
7972 	spin_lock(&mddev->lock);
7973 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7974 		/* We completed so min/max setting can be forgotten if used. */
7975 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7976 			mddev->resync_min = 0;
7977 		mddev->resync_max = MaxSector;
7978 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7979 		mddev->resync_min = mddev->curr_resync_completed;
7980 	mddev->curr_resync = 0;
7981 	spin_unlock(&mddev->lock);
7982 
7983 	wake_up(&resync_wait);
7984 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7985 	md_wakeup_thread(mddev->thread);
7986 	return;
7987 }
7988 EXPORT_SYMBOL_GPL(md_do_sync);
7989 
7990 static int remove_and_add_spares(struct mddev *mddev,
7991 				 struct md_rdev *this)
7992 {
7993 	struct md_rdev *rdev;
7994 	int spares = 0;
7995 	int removed = 0;
7996 
7997 	rdev_for_each(rdev, mddev)
7998 		if ((this == NULL || rdev == this) &&
7999 		    rdev->raid_disk >= 0 &&
8000 		    !test_bit(Blocked, &rdev->flags) &&
8001 		    (test_bit(Faulty, &rdev->flags) ||
8002 		     ! test_bit(In_sync, &rdev->flags)) &&
8003 		    atomic_read(&rdev->nr_pending)==0) {
8004 			if (mddev->pers->hot_remove_disk(
8005 				    mddev, rdev) == 0) {
8006 				sysfs_unlink_rdev(mddev, rdev);
8007 				rdev->raid_disk = -1;
8008 				removed++;
8009 			}
8010 		}
8011 	if (removed && mddev->kobj.sd)
8012 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8013 
8014 	if (this)
8015 		goto no_add;
8016 
8017 	rdev_for_each(rdev, mddev) {
8018 		if (rdev->raid_disk >= 0 &&
8019 		    !test_bit(In_sync, &rdev->flags) &&
8020 		    !test_bit(Faulty, &rdev->flags))
8021 			spares++;
8022 		if (rdev->raid_disk >= 0)
8023 			continue;
8024 		if (test_bit(Faulty, &rdev->flags))
8025 			continue;
8026 		if (mddev->ro &&
8027 		    ! (rdev->saved_raid_disk >= 0 &&
8028 		       !test_bit(Bitmap_sync, &rdev->flags)))
8029 			continue;
8030 
8031 		if (rdev->saved_raid_disk < 0)
8032 			rdev->recovery_offset = 0;
8033 		if (mddev->pers->
8034 		    hot_add_disk(mddev, rdev) == 0) {
8035 			if (sysfs_link_rdev(mddev, rdev))
8036 				/* failure here is OK */;
8037 			spares++;
8038 			md_new_event(mddev);
8039 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8040 		}
8041 	}
8042 no_add:
8043 	if (removed)
8044 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8045 	return spares;
8046 }
8047 
8048 static void md_start_sync(struct work_struct *ws)
8049 {
8050 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8051 
8052 	mddev->sync_thread = md_register_thread(md_do_sync,
8053 						mddev,
8054 						"resync");
8055 	if (!mddev->sync_thread) {
8056 		printk(KERN_ERR "%s: could not start resync"
8057 		       " thread...\n",
8058 		       mdname(mddev));
8059 		/* leave the spares where they are, it shouldn't hurt */
8060 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8061 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8062 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8063 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8064 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8065 		wake_up(&resync_wait);
8066 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8067 				       &mddev->recovery))
8068 			if (mddev->sysfs_action)
8069 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8070 	} else
8071 		md_wakeup_thread(mddev->sync_thread);
8072 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8073 	md_new_event(mddev);
8074 }
8075 
8076 /*
8077  * This routine is regularly called by all per-raid-array threads to
8078  * deal with generic issues like resync and super-block update.
8079  * Raid personalities that don't have a thread (linear/raid0) do not
8080  * need this as they never do any recovery or update the superblock.
8081  *
8082  * It does not do any resync itself, but rather "forks" off other threads
8083  * to do that as needed.
8084  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8085  * "->recovery" and create a thread at ->sync_thread.
8086  * When the thread finishes it sets MD_RECOVERY_DONE
8087  * and wakeups up this thread which will reap the thread and finish up.
8088  * This thread also removes any faulty devices (with nr_pending == 0).
8089  *
8090  * The overall approach is:
8091  *  1/ if the superblock needs updating, update it.
8092  *  2/ If a recovery thread is running, don't do anything else.
8093  *  3/ If recovery has finished, clean up, possibly marking spares active.
8094  *  4/ If there are any faulty devices, remove them.
8095  *  5/ If array is degraded, try to add spares devices
8096  *  6/ If array has spares or is not in-sync, start a resync thread.
8097  */
8098 void md_check_recovery(struct mddev *mddev)
8099 {
8100 	if (mddev->suspended)
8101 		return;
8102 
8103 	if (mddev->bitmap)
8104 		bitmap_daemon_work(mddev);
8105 
8106 	if (signal_pending(current)) {
8107 		if (mddev->pers->sync_request && !mddev->external) {
8108 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8109 			       mdname(mddev));
8110 			mddev->safemode = 2;
8111 		}
8112 		flush_signals(current);
8113 	}
8114 
8115 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8116 		return;
8117 	if ( ! (
8118 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8119 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8120 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8121 		(mddev->external == 0 && mddev->safemode == 1) ||
8122 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8123 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8124 		))
8125 		return;
8126 
8127 	if (mddev_trylock(mddev)) {
8128 		int spares = 0;
8129 
8130 		if (mddev->ro) {
8131 			struct md_rdev *rdev;
8132 			if (!mddev->external && mddev->in_sync)
8133 				/* 'Blocked' flag not needed as failed devices
8134 				 * will be recorded if array switched to read/write.
8135 				 * Leaving it set will prevent the device
8136 				 * from being removed.
8137 				 */
8138 				rdev_for_each(rdev, mddev)
8139 					clear_bit(Blocked, &rdev->flags);
8140 			/* On a read-only array we can:
8141 			 * - remove failed devices
8142 			 * - add already-in_sync devices if the array itself
8143 			 *   is in-sync.
8144 			 * As we only add devices that are already in-sync,
8145 			 * we can activate the spares immediately.
8146 			 */
8147 			remove_and_add_spares(mddev, NULL);
8148 			/* There is no thread, but we need to call
8149 			 * ->spare_active and clear saved_raid_disk
8150 			 */
8151 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8152 			md_reap_sync_thread(mddev);
8153 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8154 			goto unlock;
8155 		}
8156 
8157 		if (!mddev->external) {
8158 			int did_change = 0;
8159 			spin_lock(&mddev->lock);
8160 			if (mddev->safemode &&
8161 			    !atomic_read(&mddev->writes_pending) &&
8162 			    !mddev->in_sync &&
8163 			    mddev->recovery_cp == MaxSector) {
8164 				mddev->in_sync = 1;
8165 				did_change = 1;
8166 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8167 			}
8168 			if (mddev->safemode == 1)
8169 				mddev->safemode = 0;
8170 			spin_unlock(&mddev->lock);
8171 			if (did_change)
8172 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8173 		}
8174 
8175 		if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8176 			if (mddev_is_clustered(mddev))
8177 				md_cluster_ops->metadata_update_start(mddev);
8178 			md_update_sb(mddev, 0);
8179 			if (mddev_is_clustered(mddev))
8180 				md_cluster_ops->metadata_update_finish(mddev);
8181 		}
8182 
8183 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8184 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8185 			/* resync/recovery still happening */
8186 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8187 			goto unlock;
8188 		}
8189 		if (mddev->sync_thread) {
8190 			md_reap_sync_thread(mddev);
8191 			goto unlock;
8192 		}
8193 		/* Set RUNNING before clearing NEEDED to avoid
8194 		 * any transients in the value of "sync_action".
8195 		 */
8196 		mddev->curr_resync_completed = 0;
8197 		spin_lock(&mddev->lock);
8198 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8199 		spin_unlock(&mddev->lock);
8200 		/* Clear some bits that don't mean anything, but
8201 		 * might be left set
8202 		 */
8203 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8204 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8205 
8206 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8207 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8208 			goto not_running;
8209 		/* no recovery is running.
8210 		 * remove any failed drives, then
8211 		 * add spares if possible.
8212 		 * Spares are also removed and re-added, to allow
8213 		 * the personality to fail the re-add.
8214 		 */
8215 
8216 		if (mddev->reshape_position != MaxSector) {
8217 			if (mddev->pers->check_reshape == NULL ||
8218 			    mddev->pers->check_reshape(mddev) != 0)
8219 				/* Cannot proceed */
8220 				goto not_running;
8221 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8222 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8223 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8224 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8225 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8226 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8227 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8228 		} else if (mddev->recovery_cp < MaxSector) {
8229 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8230 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8231 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8232 			/* nothing to be done ... */
8233 			goto not_running;
8234 
8235 		if (mddev->pers->sync_request) {
8236 			if (spares) {
8237 				/* We are adding a device or devices to an array
8238 				 * which has the bitmap stored on all devices.
8239 				 * So make sure all bitmap pages get written
8240 				 */
8241 				bitmap_write_all(mddev->bitmap);
8242 			}
8243 			INIT_WORK(&mddev->del_work, md_start_sync);
8244 			queue_work(md_misc_wq, &mddev->del_work);
8245 			goto unlock;
8246 		}
8247 	not_running:
8248 		if (!mddev->sync_thread) {
8249 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8250 			wake_up(&resync_wait);
8251 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8252 					       &mddev->recovery))
8253 				if (mddev->sysfs_action)
8254 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 		}
8256 	unlock:
8257 		wake_up(&mddev->sb_wait);
8258 		mddev_unlock(mddev);
8259 	}
8260 }
8261 EXPORT_SYMBOL(md_check_recovery);
8262 
8263 void md_reap_sync_thread(struct mddev *mddev)
8264 {
8265 	struct md_rdev *rdev;
8266 
8267 	/* resync has finished, collect result */
8268 	md_unregister_thread(&mddev->sync_thread);
8269 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8270 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8271 		/* success...*/
8272 		/* activate any spares */
8273 		if (mddev->pers->spare_active(mddev)) {
8274 			sysfs_notify(&mddev->kobj, NULL,
8275 				     "degraded");
8276 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8277 		}
8278 	}
8279 	if (mddev_is_clustered(mddev))
8280 		md_cluster_ops->metadata_update_start(mddev);
8281 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8282 	    mddev->pers->finish_reshape)
8283 		mddev->pers->finish_reshape(mddev);
8284 
8285 	/* If array is no-longer degraded, then any saved_raid_disk
8286 	 * information must be scrapped.
8287 	 */
8288 	if (!mddev->degraded)
8289 		rdev_for_each(rdev, mddev)
8290 			rdev->saved_raid_disk = -1;
8291 
8292 	md_update_sb(mddev, 1);
8293 	if (mddev_is_clustered(mddev))
8294 		md_cluster_ops->metadata_update_finish(mddev);
8295 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8296 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8297 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8298 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8299 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8300 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8301 	wake_up(&resync_wait);
8302 	/* flag recovery needed just to double check */
8303 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8304 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8305 	md_new_event(mddev);
8306 	if (mddev->event_work.func)
8307 		queue_work(md_misc_wq, &mddev->event_work);
8308 }
8309 EXPORT_SYMBOL(md_reap_sync_thread);
8310 
8311 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8312 {
8313 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8314 	wait_event_timeout(rdev->blocked_wait,
8315 			   !test_bit(Blocked, &rdev->flags) &&
8316 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8317 			   msecs_to_jiffies(5000));
8318 	rdev_dec_pending(rdev, mddev);
8319 }
8320 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8321 
8322 void md_finish_reshape(struct mddev *mddev)
8323 {
8324 	/* called be personality module when reshape completes. */
8325 	struct md_rdev *rdev;
8326 
8327 	rdev_for_each(rdev, mddev) {
8328 		if (rdev->data_offset > rdev->new_data_offset)
8329 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8330 		else
8331 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8332 		rdev->data_offset = rdev->new_data_offset;
8333 	}
8334 }
8335 EXPORT_SYMBOL(md_finish_reshape);
8336 
8337 /* Bad block management.
8338  * We can record which blocks on each device are 'bad' and so just
8339  * fail those blocks, or that stripe, rather than the whole device.
8340  * Entries in the bad-block table are 64bits wide.  This comprises:
8341  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8342  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8343  *  A 'shift' can be set so that larger blocks are tracked and
8344  *  consequently larger devices can be covered.
8345  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8346  *
8347  * Locking of the bad-block table uses a seqlock so md_is_badblock
8348  * might need to retry if it is very unlucky.
8349  * We will sometimes want to check for bad blocks in a bi_end_io function,
8350  * so we use the write_seqlock_irq variant.
8351  *
8352  * When looking for a bad block we specify a range and want to
8353  * know if any block in the range is bad.  So we binary-search
8354  * to the last range that starts at-or-before the given endpoint,
8355  * (or "before the sector after the target range")
8356  * then see if it ends after the given start.
8357  * We return
8358  *  0 if there are no known bad blocks in the range
8359  *  1 if there are known bad block which are all acknowledged
8360  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8361  * plus the start/length of the first bad section we overlap.
8362  */
8363 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8364 		   sector_t *first_bad, int *bad_sectors)
8365 {
8366 	int hi;
8367 	int lo;
8368 	u64 *p = bb->page;
8369 	int rv;
8370 	sector_t target = s + sectors;
8371 	unsigned seq;
8372 
8373 	if (bb->shift > 0) {
8374 		/* round the start down, and the end up */
8375 		s >>= bb->shift;
8376 		target += (1<<bb->shift) - 1;
8377 		target >>= bb->shift;
8378 		sectors = target - s;
8379 	}
8380 	/* 'target' is now the first block after the bad range */
8381 
8382 retry:
8383 	seq = read_seqbegin(&bb->lock);
8384 	lo = 0;
8385 	rv = 0;
8386 	hi = bb->count;
8387 
8388 	/* Binary search between lo and hi for 'target'
8389 	 * i.e. for the last range that starts before 'target'
8390 	 */
8391 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8392 	 * are known not to be the last range before target.
8393 	 * VARIANT: hi-lo is the number of possible
8394 	 * ranges, and decreases until it reaches 1
8395 	 */
8396 	while (hi - lo > 1) {
8397 		int mid = (lo + hi) / 2;
8398 		sector_t a = BB_OFFSET(p[mid]);
8399 		if (a < target)
8400 			/* This could still be the one, earlier ranges
8401 			 * could not. */
8402 			lo = mid;
8403 		else
8404 			/* This and later ranges are definitely out. */
8405 			hi = mid;
8406 	}
8407 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8408 	if (hi > lo) {
8409 		/* need to check all range that end after 's' to see if
8410 		 * any are unacknowledged.
8411 		 */
8412 		while (lo >= 0 &&
8413 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8414 			if (BB_OFFSET(p[lo]) < target) {
8415 				/* starts before the end, and finishes after
8416 				 * the start, so they must overlap
8417 				 */
8418 				if (rv != -1 && BB_ACK(p[lo]))
8419 					rv = 1;
8420 				else
8421 					rv = -1;
8422 				*first_bad = BB_OFFSET(p[lo]);
8423 				*bad_sectors = BB_LEN(p[lo]);
8424 			}
8425 			lo--;
8426 		}
8427 	}
8428 
8429 	if (read_seqretry(&bb->lock, seq))
8430 		goto retry;
8431 
8432 	return rv;
8433 }
8434 EXPORT_SYMBOL_GPL(md_is_badblock);
8435 
8436 /*
8437  * Add a range of bad blocks to the table.
8438  * This might extend the table, or might contract it
8439  * if two adjacent ranges can be merged.
8440  * We binary-search to find the 'insertion' point, then
8441  * decide how best to handle it.
8442  */
8443 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8444 			    int acknowledged)
8445 {
8446 	u64 *p;
8447 	int lo, hi;
8448 	int rv = 1;
8449 	unsigned long flags;
8450 
8451 	if (bb->shift < 0)
8452 		/* badblocks are disabled */
8453 		return 0;
8454 
8455 	if (bb->shift) {
8456 		/* round the start down, and the end up */
8457 		sector_t next = s + sectors;
8458 		s >>= bb->shift;
8459 		next += (1<<bb->shift) - 1;
8460 		next >>= bb->shift;
8461 		sectors = next - s;
8462 	}
8463 
8464 	write_seqlock_irqsave(&bb->lock, flags);
8465 
8466 	p = bb->page;
8467 	lo = 0;
8468 	hi = bb->count;
8469 	/* Find the last range that starts at-or-before 's' */
8470 	while (hi - lo > 1) {
8471 		int mid = (lo + hi) / 2;
8472 		sector_t a = BB_OFFSET(p[mid]);
8473 		if (a <= s)
8474 			lo = mid;
8475 		else
8476 			hi = mid;
8477 	}
8478 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8479 		hi = lo;
8480 
8481 	if (hi > lo) {
8482 		/* we found a range that might merge with the start
8483 		 * of our new range
8484 		 */
8485 		sector_t a = BB_OFFSET(p[lo]);
8486 		sector_t e = a + BB_LEN(p[lo]);
8487 		int ack = BB_ACK(p[lo]);
8488 		if (e >= s) {
8489 			/* Yes, we can merge with a previous range */
8490 			if (s == a && s + sectors >= e)
8491 				/* new range covers old */
8492 				ack = acknowledged;
8493 			else
8494 				ack = ack && acknowledged;
8495 
8496 			if (e < s + sectors)
8497 				e = s + sectors;
8498 			if (e - a <= BB_MAX_LEN) {
8499 				p[lo] = BB_MAKE(a, e-a, ack);
8500 				s = e;
8501 			} else {
8502 				/* does not all fit in one range,
8503 				 * make p[lo] maximal
8504 				 */
8505 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8506 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8507 				s = a + BB_MAX_LEN;
8508 			}
8509 			sectors = e - s;
8510 		}
8511 	}
8512 	if (sectors && hi < bb->count) {
8513 		/* 'hi' points to the first range that starts after 's'.
8514 		 * Maybe we can merge with the start of that range */
8515 		sector_t a = BB_OFFSET(p[hi]);
8516 		sector_t e = a + BB_LEN(p[hi]);
8517 		int ack = BB_ACK(p[hi]);
8518 		if (a <= s + sectors) {
8519 			/* merging is possible */
8520 			if (e <= s + sectors) {
8521 				/* full overlap */
8522 				e = s + sectors;
8523 				ack = acknowledged;
8524 			} else
8525 				ack = ack && acknowledged;
8526 
8527 			a = s;
8528 			if (e - a <= BB_MAX_LEN) {
8529 				p[hi] = BB_MAKE(a, e-a, ack);
8530 				s = e;
8531 			} else {
8532 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8533 				s = a + BB_MAX_LEN;
8534 			}
8535 			sectors = e - s;
8536 			lo = hi;
8537 			hi++;
8538 		}
8539 	}
8540 	if (sectors == 0 && hi < bb->count) {
8541 		/* we might be able to combine lo and hi */
8542 		/* Note: 's' is at the end of 'lo' */
8543 		sector_t a = BB_OFFSET(p[hi]);
8544 		int lolen = BB_LEN(p[lo]);
8545 		int hilen = BB_LEN(p[hi]);
8546 		int newlen = lolen + hilen - (s - a);
8547 		if (s >= a && newlen < BB_MAX_LEN) {
8548 			/* yes, we can combine them */
8549 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8550 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8551 			memmove(p + hi, p + hi + 1,
8552 				(bb->count - hi - 1) * 8);
8553 			bb->count--;
8554 		}
8555 	}
8556 	while (sectors) {
8557 		/* didn't merge (it all).
8558 		 * Need to add a range just before 'hi' */
8559 		if (bb->count >= MD_MAX_BADBLOCKS) {
8560 			/* No room for more */
8561 			rv = 0;
8562 			break;
8563 		} else {
8564 			int this_sectors = sectors;
8565 			memmove(p + hi + 1, p + hi,
8566 				(bb->count - hi) * 8);
8567 			bb->count++;
8568 
8569 			if (this_sectors > BB_MAX_LEN)
8570 				this_sectors = BB_MAX_LEN;
8571 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8572 			sectors -= this_sectors;
8573 			s += this_sectors;
8574 		}
8575 	}
8576 
8577 	bb->changed = 1;
8578 	if (!acknowledged)
8579 		bb->unacked_exist = 1;
8580 	write_sequnlock_irqrestore(&bb->lock, flags);
8581 
8582 	return rv;
8583 }
8584 
8585 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8586 		       int is_new)
8587 {
8588 	int rv;
8589 	if (is_new)
8590 		s += rdev->new_data_offset;
8591 	else
8592 		s += rdev->data_offset;
8593 	rv = md_set_badblocks(&rdev->badblocks,
8594 			      s, sectors, 0);
8595 	if (rv) {
8596 		/* Make sure they get written out promptly */
8597 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8598 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8599 		md_wakeup_thread(rdev->mddev->thread);
8600 	}
8601 	return rv;
8602 }
8603 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8604 
8605 /*
8606  * Remove a range of bad blocks from the table.
8607  * This may involve extending the table if we spilt a region,
8608  * but it must not fail.  So if the table becomes full, we just
8609  * drop the remove request.
8610  */
8611 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8612 {
8613 	u64 *p;
8614 	int lo, hi;
8615 	sector_t target = s + sectors;
8616 	int rv = 0;
8617 
8618 	if (bb->shift > 0) {
8619 		/* When clearing we round the start up and the end down.
8620 		 * This should not matter as the shift should align with
8621 		 * the block size and no rounding should ever be needed.
8622 		 * However it is better the think a block is bad when it
8623 		 * isn't than to think a block is not bad when it is.
8624 		 */
8625 		s += (1<<bb->shift) - 1;
8626 		s >>= bb->shift;
8627 		target >>= bb->shift;
8628 		sectors = target - s;
8629 	}
8630 
8631 	write_seqlock_irq(&bb->lock);
8632 
8633 	p = bb->page;
8634 	lo = 0;
8635 	hi = bb->count;
8636 	/* Find the last range that starts before 'target' */
8637 	while (hi - lo > 1) {
8638 		int mid = (lo + hi) / 2;
8639 		sector_t a = BB_OFFSET(p[mid]);
8640 		if (a < target)
8641 			lo = mid;
8642 		else
8643 			hi = mid;
8644 	}
8645 	if (hi > lo) {
8646 		/* p[lo] is the last range that could overlap the
8647 		 * current range.  Earlier ranges could also overlap,
8648 		 * but only this one can overlap the end of the range.
8649 		 */
8650 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8651 			/* Partial overlap, leave the tail of this range */
8652 			int ack = BB_ACK(p[lo]);
8653 			sector_t a = BB_OFFSET(p[lo]);
8654 			sector_t end = a + BB_LEN(p[lo]);
8655 
8656 			if (a < s) {
8657 				/* we need to split this range */
8658 				if (bb->count >= MD_MAX_BADBLOCKS) {
8659 					rv = -ENOSPC;
8660 					goto out;
8661 				}
8662 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8663 				bb->count++;
8664 				p[lo] = BB_MAKE(a, s-a, ack);
8665 				lo++;
8666 			}
8667 			p[lo] = BB_MAKE(target, end - target, ack);
8668 			/* there is no longer an overlap */
8669 			hi = lo;
8670 			lo--;
8671 		}
8672 		while (lo >= 0 &&
8673 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8674 			/* This range does overlap */
8675 			if (BB_OFFSET(p[lo]) < s) {
8676 				/* Keep the early parts of this range. */
8677 				int ack = BB_ACK(p[lo]);
8678 				sector_t start = BB_OFFSET(p[lo]);
8679 				p[lo] = BB_MAKE(start, s - start, ack);
8680 				/* now low doesn't overlap, so.. */
8681 				break;
8682 			}
8683 			lo--;
8684 		}
8685 		/* 'lo' is strictly before, 'hi' is strictly after,
8686 		 * anything between needs to be discarded
8687 		 */
8688 		if (hi - lo > 1) {
8689 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8690 			bb->count -= (hi - lo - 1);
8691 		}
8692 	}
8693 
8694 	bb->changed = 1;
8695 out:
8696 	write_sequnlock_irq(&bb->lock);
8697 	return rv;
8698 }
8699 
8700 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8701 			 int is_new)
8702 {
8703 	if (is_new)
8704 		s += rdev->new_data_offset;
8705 	else
8706 		s += rdev->data_offset;
8707 	return md_clear_badblocks(&rdev->badblocks,
8708 				  s, sectors);
8709 }
8710 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8711 
8712 /*
8713  * Acknowledge all bad blocks in a list.
8714  * This only succeeds if ->changed is clear.  It is used by
8715  * in-kernel metadata updates
8716  */
8717 void md_ack_all_badblocks(struct badblocks *bb)
8718 {
8719 	if (bb->page == NULL || bb->changed)
8720 		/* no point even trying */
8721 		return;
8722 	write_seqlock_irq(&bb->lock);
8723 
8724 	if (bb->changed == 0 && bb->unacked_exist) {
8725 		u64 *p = bb->page;
8726 		int i;
8727 		for (i = 0; i < bb->count ; i++) {
8728 			if (!BB_ACK(p[i])) {
8729 				sector_t start = BB_OFFSET(p[i]);
8730 				int len = BB_LEN(p[i]);
8731 				p[i] = BB_MAKE(start, len, 1);
8732 			}
8733 		}
8734 		bb->unacked_exist = 0;
8735 	}
8736 	write_sequnlock_irq(&bb->lock);
8737 }
8738 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8739 
8740 /* sysfs access to bad-blocks list.
8741  * We present two files.
8742  * 'bad-blocks' lists sector numbers and lengths of ranges that
8743  *    are recorded as bad.  The list is truncated to fit within
8744  *    the one-page limit of sysfs.
8745  *    Writing "sector length" to this file adds an acknowledged
8746  *    bad block list.
8747  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8748  *    been acknowledged.  Writing to this file adds bad blocks
8749  *    without acknowledging them.  This is largely for testing.
8750  */
8751 
8752 static ssize_t
8753 badblocks_show(struct badblocks *bb, char *page, int unack)
8754 {
8755 	size_t len;
8756 	int i;
8757 	u64 *p = bb->page;
8758 	unsigned seq;
8759 
8760 	if (bb->shift < 0)
8761 		return 0;
8762 
8763 retry:
8764 	seq = read_seqbegin(&bb->lock);
8765 
8766 	len = 0;
8767 	i = 0;
8768 
8769 	while (len < PAGE_SIZE && i < bb->count) {
8770 		sector_t s = BB_OFFSET(p[i]);
8771 		unsigned int length = BB_LEN(p[i]);
8772 		int ack = BB_ACK(p[i]);
8773 		i++;
8774 
8775 		if (unack && ack)
8776 			continue;
8777 
8778 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8779 				(unsigned long long)s << bb->shift,
8780 				length << bb->shift);
8781 	}
8782 	if (unack && len == 0)
8783 		bb->unacked_exist = 0;
8784 
8785 	if (read_seqretry(&bb->lock, seq))
8786 		goto retry;
8787 
8788 	return len;
8789 }
8790 
8791 #define DO_DEBUG 1
8792 
8793 static ssize_t
8794 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8795 {
8796 	unsigned long long sector;
8797 	int length;
8798 	char newline;
8799 #ifdef DO_DEBUG
8800 	/* Allow clearing via sysfs *only* for testing/debugging.
8801 	 * Normally only a successful write may clear a badblock
8802 	 */
8803 	int clear = 0;
8804 	if (page[0] == '-') {
8805 		clear = 1;
8806 		page++;
8807 	}
8808 #endif /* DO_DEBUG */
8809 
8810 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8811 	case 3:
8812 		if (newline != '\n')
8813 			return -EINVAL;
8814 	case 2:
8815 		if (length <= 0)
8816 			return -EINVAL;
8817 		break;
8818 	default:
8819 		return -EINVAL;
8820 	}
8821 
8822 #ifdef DO_DEBUG
8823 	if (clear) {
8824 		md_clear_badblocks(bb, sector, length);
8825 		return len;
8826 	}
8827 #endif /* DO_DEBUG */
8828 	if (md_set_badblocks(bb, sector, length, !unack))
8829 		return len;
8830 	else
8831 		return -ENOSPC;
8832 }
8833 
8834 static int md_notify_reboot(struct notifier_block *this,
8835 			    unsigned long code, void *x)
8836 {
8837 	struct list_head *tmp;
8838 	struct mddev *mddev;
8839 	int need_delay = 0;
8840 
8841 	for_each_mddev(mddev, tmp) {
8842 		if (mddev_trylock(mddev)) {
8843 			if (mddev->pers)
8844 				__md_stop_writes(mddev);
8845 			if (mddev->persistent)
8846 				mddev->safemode = 2;
8847 			mddev_unlock(mddev);
8848 		}
8849 		need_delay = 1;
8850 	}
8851 	/*
8852 	 * certain more exotic SCSI devices are known to be
8853 	 * volatile wrt too early system reboots. While the
8854 	 * right place to handle this issue is the given
8855 	 * driver, we do want to have a safe RAID driver ...
8856 	 */
8857 	if (need_delay)
8858 		mdelay(1000*1);
8859 
8860 	return NOTIFY_DONE;
8861 }
8862 
8863 static struct notifier_block md_notifier = {
8864 	.notifier_call	= md_notify_reboot,
8865 	.next		= NULL,
8866 	.priority	= INT_MAX, /* before any real devices */
8867 };
8868 
8869 static void md_geninit(void)
8870 {
8871 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8872 
8873 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8874 }
8875 
8876 static int __init md_init(void)
8877 {
8878 	int ret = -ENOMEM;
8879 
8880 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8881 	if (!md_wq)
8882 		goto err_wq;
8883 
8884 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8885 	if (!md_misc_wq)
8886 		goto err_misc_wq;
8887 
8888 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8889 		goto err_md;
8890 
8891 	if ((ret = register_blkdev(0, "mdp")) < 0)
8892 		goto err_mdp;
8893 	mdp_major = ret;
8894 
8895 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8896 			    md_probe, NULL, NULL);
8897 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8898 			    md_probe, NULL, NULL);
8899 
8900 	register_reboot_notifier(&md_notifier);
8901 	raid_table_header = register_sysctl_table(raid_root_table);
8902 
8903 	md_geninit();
8904 	return 0;
8905 
8906 err_mdp:
8907 	unregister_blkdev(MD_MAJOR, "md");
8908 err_md:
8909 	destroy_workqueue(md_misc_wq);
8910 err_misc_wq:
8911 	destroy_workqueue(md_wq);
8912 err_wq:
8913 	return ret;
8914 }
8915 
8916 void md_reload_sb(struct mddev *mddev)
8917 {
8918 	struct md_rdev *rdev, *tmp;
8919 
8920 	rdev_for_each_safe(rdev, tmp, mddev) {
8921 		rdev->sb_loaded = 0;
8922 		ClearPageUptodate(rdev->sb_page);
8923 	}
8924 	mddev->raid_disks = 0;
8925 	analyze_sbs(mddev);
8926 	rdev_for_each_safe(rdev, tmp, mddev) {
8927 		struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8928 		/* since we don't write to faulty devices, we figure out if the
8929 		 *  disk is faulty by comparing events
8930 		 */
8931 		if (mddev->events > sb->events)
8932 			set_bit(Faulty, &rdev->flags);
8933 	}
8934 
8935 }
8936 EXPORT_SYMBOL(md_reload_sb);
8937 
8938 #ifndef MODULE
8939 
8940 /*
8941  * Searches all registered partitions for autorun RAID arrays
8942  * at boot time.
8943  */
8944 
8945 static LIST_HEAD(all_detected_devices);
8946 struct detected_devices_node {
8947 	struct list_head list;
8948 	dev_t dev;
8949 };
8950 
8951 void md_autodetect_dev(dev_t dev)
8952 {
8953 	struct detected_devices_node *node_detected_dev;
8954 
8955 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8956 	if (node_detected_dev) {
8957 		node_detected_dev->dev = dev;
8958 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8959 	} else {
8960 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8961 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8962 	}
8963 }
8964 
8965 static void autostart_arrays(int part)
8966 {
8967 	struct md_rdev *rdev;
8968 	struct detected_devices_node *node_detected_dev;
8969 	dev_t dev;
8970 	int i_scanned, i_passed;
8971 
8972 	i_scanned = 0;
8973 	i_passed = 0;
8974 
8975 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8976 
8977 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8978 		i_scanned++;
8979 		node_detected_dev = list_entry(all_detected_devices.next,
8980 					struct detected_devices_node, list);
8981 		list_del(&node_detected_dev->list);
8982 		dev = node_detected_dev->dev;
8983 		kfree(node_detected_dev);
8984 		rdev = md_import_device(dev,0, 90);
8985 		if (IS_ERR(rdev))
8986 			continue;
8987 
8988 		if (test_bit(Faulty, &rdev->flags))
8989 			continue;
8990 
8991 		set_bit(AutoDetected, &rdev->flags);
8992 		list_add(&rdev->same_set, &pending_raid_disks);
8993 		i_passed++;
8994 	}
8995 
8996 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8997 						i_scanned, i_passed);
8998 
8999 	autorun_devices(part);
9000 }
9001 
9002 #endif /* !MODULE */
9003 
9004 static __exit void md_exit(void)
9005 {
9006 	struct mddev *mddev;
9007 	struct list_head *tmp;
9008 	int delay = 1;
9009 
9010 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9011 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9012 
9013 	unregister_blkdev(MD_MAJOR,"md");
9014 	unregister_blkdev(mdp_major, "mdp");
9015 	unregister_reboot_notifier(&md_notifier);
9016 	unregister_sysctl_table(raid_table_header);
9017 
9018 	/* We cannot unload the modules while some process is
9019 	 * waiting for us in select() or poll() - wake them up
9020 	 */
9021 	md_unloading = 1;
9022 	while (waitqueue_active(&md_event_waiters)) {
9023 		/* not safe to leave yet */
9024 		wake_up(&md_event_waiters);
9025 		msleep(delay);
9026 		delay += delay;
9027 	}
9028 	remove_proc_entry("mdstat", NULL);
9029 
9030 	for_each_mddev(mddev, tmp) {
9031 		export_array(mddev);
9032 		mddev->hold_active = 0;
9033 	}
9034 	destroy_workqueue(md_misc_wq);
9035 	destroy_workqueue(md_wq);
9036 }
9037 
9038 subsys_initcall(md_init);
9039 module_exit(md_exit)
9040 
9041 static int get_ro(char *buffer, struct kernel_param *kp)
9042 {
9043 	return sprintf(buffer, "%d", start_readonly);
9044 }
9045 static int set_ro(const char *val, struct kernel_param *kp)
9046 {
9047 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9048 }
9049 
9050 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9051 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9052 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9053 
9054 MODULE_LICENSE("GPL");
9055 MODULE_DESCRIPTION("MD RAID framework");
9056 MODULE_ALIAS("md");
9057 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9058