1 /* 2 md.c : Multiple Devices driver for Linux 3 Copyright (C) 1998, 1999, 2000 Ingo Molnar 4 5 completely rewritten, based on the MD driver code from Marc Zyngier 6 7 Changes: 8 9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 13 - kmod support by: Cyrus Durgin 14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 16 17 - lots of fixes and improvements to the RAID1/RAID5 and generic 18 RAID code (such as request based resynchronization): 19 20 Neil Brown <neilb@cse.unsw.edu.au>. 21 22 - persistent bitmap code 23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 24 25 This program is free software; you can redistribute it and/or modify 26 it under the terms of the GNU General Public License as published by 27 the Free Software Foundation; either version 2, or (at your option) 28 any later version. 29 30 You should have received a copy of the GNU General Public License 31 (for example /usr/src/linux/COPYING); if not, write to the Free 32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 33 34 Errors, Warnings, etc. 35 Please use: 36 pr_crit() for error conditions that risk data loss 37 pr_err() for error conditions that are unexpected, like an IO error 38 or internal inconsistency 39 pr_warn() for error conditions that could have been predicated, like 40 adding a device to an array when it has incompatible metadata 41 pr_info() for every interesting, very rare events, like an array starting 42 or stopping, or resync starting or stopping 43 pr_debug() for everything else. 44 45 */ 46 47 #include <linux/sched/signal.h> 48 #include <linux/kthread.h> 49 #include <linux/blkdev.h> 50 #include <linux/badblocks.h> 51 #include <linux/sysctl.h> 52 #include <linux/seq_file.h> 53 #include <linux/fs.h> 54 #include <linux/poll.h> 55 #include <linux/ctype.h> 56 #include <linux/string.h> 57 #include <linux/hdreg.h> 58 #include <linux/proc_fs.h> 59 #include <linux/random.h> 60 #include <linux/module.h> 61 #include <linux/reboot.h> 62 #include <linux/file.h> 63 #include <linux/compat.h> 64 #include <linux/delay.h> 65 #include <linux/raid/md_p.h> 66 #include <linux/raid/md_u.h> 67 #include <linux/slab.h> 68 #include <linux/percpu-refcount.h> 69 70 #include <trace/events/block.h> 71 #include "md.h" 72 #include "md-bitmap.h" 73 #include "md-cluster.h" 74 75 #ifndef MODULE 76 static void autostart_arrays(int part); 77 #endif 78 79 /* pers_list is a list of registered personalities protected 80 * by pers_lock. 81 * pers_lock does extra service to protect accesses to 82 * mddev->thread when the mutex cannot be held. 83 */ 84 static LIST_HEAD(pers_list); 85 static DEFINE_SPINLOCK(pers_lock); 86 87 struct md_cluster_operations *md_cluster_ops; 88 EXPORT_SYMBOL(md_cluster_ops); 89 struct module *md_cluster_mod; 90 EXPORT_SYMBOL(md_cluster_mod); 91 92 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 93 static struct workqueue_struct *md_wq; 94 static struct workqueue_struct *md_misc_wq; 95 96 static int remove_and_add_spares(struct mddev *mddev, 97 struct md_rdev *this); 98 static void mddev_detach(struct mddev *mddev); 99 100 /* 101 * Default number of read corrections we'll attempt on an rdev 102 * before ejecting it from the array. We divide the read error 103 * count by 2 for every hour elapsed between read errors. 104 */ 105 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 106 /* 107 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 108 * is 1000 KB/sec, so the extra system load does not show up that much. 109 * Increase it if you want to have more _guaranteed_ speed. Note that 110 * the RAID driver will use the maximum available bandwidth if the IO 111 * subsystem is idle. There is also an 'absolute maximum' reconstruction 112 * speed limit - in case reconstruction slows down your system despite 113 * idle IO detection. 114 * 115 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 116 * or /sys/block/mdX/md/sync_speed_{min,max} 117 */ 118 119 static int sysctl_speed_limit_min = 1000; 120 static int sysctl_speed_limit_max = 200000; 121 static inline int speed_min(struct mddev *mddev) 122 { 123 return mddev->sync_speed_min ? 124 mddev->sync_speed_min : sysctl_speed_limit_min; 125 } 126 127 static inline int speed_max(struct mddev *mddev) 128 { 129 return mddev->sync_speed_max ? 130 mddev->sync_speed_max : sysctl_speed_limit_max; 131 } 132 133 static struct ctl_table_header *raid_table_header; 134 135 static struct ctl_table raid_table[] = { 136 { 137 .procname = "speed_limit_min", 138 .data = &sysctl_speed_limit_min, 139 .maxlen = sizeof(int), 140 .mode = S_IRUGO|S_IWUSR, 141 .proc_handler = proc_dointvec, 142 }, 143 { 144 .procname = "speed_limit_max", 145 .data = &sysctl_speed_limit_max, 146 .maxlen = sizeof(int), 147 .mode = S_IRUGO|S_IWUSR, 148 .proc_handler = proc_dointvec, 149 }, 150 { } 151 }; 152 153 static struct ctl_table raid_dir_table[] = { 154 { 155 .procname = "raid", 156 .maxlen = 0, 157 .mode = S_IRUGO|S_IXUGO, 158 .child = raid_table, 159 }, 160 { } 161 }; 162 163 static struct ctl_table raid_root_table[] = { 164 { 165 .procname = "dev", 166 .maxlen = 0, 167 .mode = 0555, 168 .child = raid_dir_table, 169 }, 170 { } 171 }; 172 173 static const struct block_device_operations md_fops; 174 175 static int start_readonly; 176 177 /* 178 * The original mechanism for creating an md device is to create 179 * a device node in /dev and to open it. This causes races with device-close. 180 * The preferred method is to write to the "new_array" module parameter. 181 * This can avoid races. 182 * Setting create_on_open to false disables the original mechanism 183 * so all the races disappear. 184 */ 185 static bool create_on_open = true; 186 187 /* bio_clone_mddev 188 * like bio_clone_bioset, but with a local bio set 189 */ 190 191 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 192 struct mddev *mddev) 193 { 194 struct bio *b; 195 196 if (!mddev || !mddev->bio_set) 197 return bio_alloc(gfp_mask, nr_iovecs); 198 199 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set); 200 if (!b) 201 return NULL; 202 return b; 203 } 204 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 205 206 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 207 { 208 if (!mddev || !mddev->sync_set) 209 return bio_alloc(GFP_NOIO, 1); 210 211 return bio_alloc_bioset(GFP_NOIO, 1, mddev->sync_set); 212 } 213 214 /* 215 * We have a system wide 'event count' that is incremented 216 * on any 'interesting' event, and readers of /proc/mdstat 217 * can use 'poll' or 'select' to find out when the event 218 * count increases. 219 * 220 * Events are: 221 * start array, stop array, error, add device, remove device, 222 * start build, activate spare 223 */ 224 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 225 static atomic_t md_event_count; 226 void md_new_event(struct mddev *mddev) 227 { 228 atomic_inc(&md_event_count); 229 wake_up(&md_event_waiters); 230 } 231 EXPORT_SYMBOL_GPL(md_new_event); 232 233 /* 234 * Enables to iterate over all existing md arrays 235 * all_mddevs_lock protects this list. 236 */ 237 static LIST_HEAD(all_mddevs); 238 static DEFINE_SPINLOCK(all_mddevs_lock); 239 240 /* 241 * iterates through all used mddevs in the system. 242 * We take care to grab the all_mddevs_lock whenever navigating 243 * the list, and to always hold a refcount when unlocked. 244 * Any code which breaks out of this loop while own 245 * a reference to the current mddev and must mddev_put it. 246 */ 247 #define for_each_mddev(_mddev,_tmp) \ 248 \ 249 for (({ spin_lock(&all_mddevs_lock); \ 250 _tmp = all_mddevs.next; \ 251 _mddev = NULL;}); \ 252 ({ if (_tmp != &all_mddevs) \ 253 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 254 spin_unlock(&all_mddevs_lock); \ 255 if (_mddev) mddev_put(_mddev); \ 256 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 257 _tmp != &all_mddevs;}); \ 258 ({ spin_lock(&all_mddevs_lock); \ 259 _tmp = _tmp->next;}) \ 260 ) 261 262 /* Rather than calling directly into the personality make_request function, 263 * IO requests come here first so that we can check if the device is 264 * being suspended pending a reconfiguration. 265 * We hold a refcount over the call to ->make_request. By the time that 266 * call has finished, the bio has been linked into some internal structure 267 * and so is visible to ->quiesce(), so we don't need the refcount any more. 268 */ 269 static bool is_suspended(struct mddev *mddev, struct bio *bio) 270 { 271 if (mddev->suspended) 272 return true; 273 if (bio_data_dir(bio) != WRITE) 274 return false; 275 if (mddev->suspend_lo >= mddev->suspend_hi) 276 return false; 277 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 278 return false; 279 if (bio_end_sector(bio) < mddev->suspend_lo) 280 return false; 281 return true; 282 } 283 284 void md_handle_request(struct mddev *mddev, struct bio *bio) 285 { 286 check_suspended: 287 rcu_read_lock(); 288 if (is_suspended(mddev, bio)) { 289 DEFINE_WAIT(__wait); 290 for (;;) { 291 prepare_to_wait(&mddev->sb_wait, &__wait, 292 TASK_UNINTERRUPTIBLE); 293 if (!is_suspended(mddev, bio)) 294 break; 295 rcu_read_unlock(); 296 schedule(); 297 rcu_read_lock(); 298 } 299 finish_wait(&mddev->sb_wait, &__wait); 300 } 301 atomic_inc(&mddev->active_io); 302 rcu_read_unlock(); 303 304 if (!mddev->pers->make_request(mddev, bio)) { 305 atomic_dec(&mddev->active_io); 306 wake_up(&mddev->sb_wait); 307 goto check_suspended; 308 } 309 310 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 311 wake_up(&mddev->sb_wait); 312 } 313 EXPORT_SYMBOL(md_handle_request); 314 315 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 316 { 317 const int rw = bio_data_dir(bio); 318 struct mddev *mddev = q->queuedata; 319 unsigned int sectors; 320 int cpu; 321 322 blk_queue_split(q, &bio); 323 324 if (mddev == NULL || mddev->pers == NULL) { 325 bio_io_error(bio); 326 return BLK_QC_T_NONE; 327 } 328 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 329 if (bio_sectors(bio) != 0) 330 bio->bi_status = BLK_STS_IOERR; 331 bio_endio(bio); 332 return BLK_QC_T_NONE; 333 } 334 335 /* 336 * save the sectors now since our bio can 337 * go away inside make_request 338 */ 339 sectors = bio_sectors(bio); 340 /* bio could be mergeable after passing to underlayer */ 341 bio->bi_opf &= ~REQ_NOMERGE; 342 343 md_handle_request(mddev, bio); 344 345 cpu = part_stat_lock(); 346 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]); 347 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors); 348 part_stat_unlock(); 349 350 return BLK_QC_T_NONE; 351 } 352 353 /* mddev_suspend makes sure no new requests are submitted 354 * to the device, and that any requests that have been submitted 355 * are completely handled. 356 * Once mddev_detach() is called and completes, the module will be 357 * completely unused. 358 */ 359 void mddev_suspend(struct mddev *mddev) 360 { 361 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 362 lockdep_assert_held(&mddev->reconfig_mutex); 363 if (mddev->suspended++) 364 return; 365 synchronize_rcu(); 366 wake_up(&mddev->sb_wait); 367 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 368 smp_mb__after_atomic(); 369 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 370 mddev->pers->quiesce(mddev, 1); 371 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 372 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 373 374 del_timer_sync(&mddev->safemode_timer); 375 } 376 EXPORT_SYMBOL_GPL(mddev_suspend); 377 378 void mddev_resume(struct mddev *mddev) 379 { 380 lockdep_assert_held(&mddev->reconfig_mutex); 381 if (--mddev->suspended) 382 return; 383 wake_up(&mddev->sb_wait); 384 mddev->pers->quiesce(mddev, 0); 385 386 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 387 md_wakeup_thread(mddev->thread); 388 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 389 } 390 EXPORT_SYMBOL_GPL(mddev_resume); 391 392 int mddev_congested(struct mddev *mddev, int bits) 393 { 394 struct md_personality *pers = mddev->pers; 395 int ret = 0; 396 397 rcu_read_lock(); 398 if (mddev->suspended) 399 ret = 1; 400 else if (pers && pers->congested) 401 ret = pers->congested(mddev, bits); 402 rcu_read_unlock(); 403 return ret; 404 } 405 EXPORT_SYMBOL_GPL(mddev_congested); 406 static int md_congested(void *data, int bits) 407 { 408 struct mddev *mddev = data; 409 return mddev_congested(mddev, bits); 410 } 411 412 /* 413 * Generic flush handling for md 414 */ 415 416 static void md_end_flush(struct bio *bio) 417 { 418 struct md_rdev *rdev = bio->bi_private; 419 struct mddev *mddev = rdev->mddev; 420 421 rdev_dec_pending(rdev, mddev); 422 423 if (atomic_dec_and_test(&mddev->flush_pending)) { 424 /* The pre-request flush has finished */ 425 queue_work(md_wq, &mddev->flush_work); 426 } 427 bio_put(bio); 428 } 429 430 static void md_submit_flush_data(struct work_struct *ws); 431 432 static void submit_flushes(struct work_struct *ws) 433 { 434 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 435 struct md_rdev *rdev; 436 437 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 438 atomic_set(&mddev->flush_pending, 1); 439 rcu_read_lock(); 440 rdev_for_each_rcu(rdev, mddev) 441 if (rdev->raid_disk >= 0 && 442 !test_bit(Faulty, &rdev->flags)) { 443 /* Take two references, one is dropped 444 * when request finishes, one after 445 * we reclaim rcu_read_lock 446 */ 447 struct bio *bi; 448 atomic_inc(&rdev->nr_pending); 449 atomic_inc(&rdev->nr_pending); 450 rcu_read_unlock(); 451 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 452 bi->bi_end_io = md_end_flush; 453 bi->bi_private = rdev; 454 bio_set_dev(bi, rdev->bdev); 455 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 456 atomic_inc(&mddev->flush_pending); 457 submit_bio(bi); 458 rcu_read_lock(); 459 rdev_dec_pending(rdev, mddev); 460 } 461 rcu_read_unlock(); 462 if (atomic_dec_and_test(&mddev->flush_pending)) 463 queue_work(md_wq, &mddev->flush_work); 464 } 465 466 static void md_submit_flush_data(struct work_struct *ws) 467 { 468 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 469 struct bio *bio = mddev->flush_bio; 470 471 /* 472 * must reset flush_bio before calling into md_handle_request to avoid a 473 * deadlock, because other bios passed md_handle_request suspend check 474 * could wait for this and below md_handle_request could wait for those 475 * bios because of suspend check 476 */ 477 mddev->flush_bio = NULL; 478 wake_up(&mddev->sb_wait); 479 480 if (bio->bi_iter.bi_size == 0) 481 /* an empty barrier - all done */ 482 bio_endio(bio); 483 else { 484 bio->bi_opf &= ~REQ_PREFLUSH; 485 md_handle_request(mddev, bio); 486 } 487 } 488 489 void md_flush_request(struct mddev *mddev, struct bio *bio) 490 { 491 spin_lock_irq(&mddev->lock); 492 wait_event_lock_irq(mddev->sb_wait, 493 !mddev->flush_bio, 494 mddev->lock); 495 mddev->flush_bio = bio; 496 spin_unlock_irq(&mddev->lock); 497 498 INIT_WORK(&mddev->flush_work, submit_flushes); 499 queue_work(md_wq, &mddev->flush_work); 500 } 501 EXPORT_SYMBOL(md_flush_request); 502 503 static inline struct mddev *mddev_get(struct mddev *mddev) 504 { 505 atomic_inc(&mddev->active); 506 return mddev; 507 } 508 509 static void mddev_delayed_delete(struct work_struct *ws); 510 511 static void mddev_put(struct mddev *mddev) 512 { 513 struct bio_set *bs = NULL, *sync_bs = NULL; 514 515 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 516 return; 517 if (!mddev->raid_disks && list_empty(&mddev->disks) && 518 mddev->ctime == 0 && !mddev->hold_active) { 519 /* Array is not configured at all, and not held active, 520 * so destroy it */ 521 list_del_init(&mddev->all_mddevs); 522 bs = mddev->bio_set; 523 sync_bs = mddev->sync_set; 524 mddev->bio_set = NULL; 525 mddev->sync_set = NULL; 526 if (mddev->gendisk) { 527 /* We did a probe so need to clean up. Call 528 * queue_work inside the spinlock so that 529 * flush_workqueue() after mddev_find will 530 * succeed in waiting for the work to be done. 531 */ 532 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 533 queue_work(md_misc_wq, &mddev->del_work); 534 } else 535 kfree(mddev); 536 } 537 spin_unlock(&all_mddevs_lock); 538 if (bs) 539 bioset_free(bs); 540 if (sync_bs) 541 bioset_free(sync_bs); 542 } 543 544 static void md_safemode_timeout(struct timer_list *t); 545 546 void mddev_init(struct mddev *mddev) 547 { 548 mutex_init(&mddev->open_mutex); 549 mutex_init(&mddev->reconfig_mutex); 550 mutex_init(&mddev->bitmap_info.mutex); 551 INIT_LIST_HEAD(&mddev->disks); 552 INIT_LIST_HEAD(&mddev->all_mddevs); 553 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 554 atomic_set(&mddev->active, 1); 555 atomic_set(&mddev->openers, 0); 556 atomic_set(&mddev->active_io, 0); 557 spin_lock_init(&mddev->lock); 558 atomic_set(&mddev->flush_pending, 0); 559 init_waitqueue_head(&mddev->sb_wait); 560 init_waitqueue_head(&mddev->recovery_wait); 561 mddev->reshape_position = MaxSector; 562 mddev->reshape_backwards = 0; 563 mddev->last_sync_action = "none"; 564 mddev->resync_min = 0; 565 mddev->resync_max = MaxSector; 566 mddev->level = LEVEL_NONE; 567 } 568 EXPORT_SYMBOL_GPL(mddev_init); 569 570 static struct mddev *mddev_find(dev_t unit) 571 { 572 struct mddev *mddev, *new = NULL; 573 574 if (unit && MAJOR(unit) != MD_MAJOR) 575 unit &= ~((1<<MdpMinorShift)-1); 576 577 retry: 578 spin_lock(&all_mddevs_lock); 579 580 if (unit) { 581 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 582 if (mddev->unit == unit) { 583 mddev_get(mddev); 584 spin_unlock(&all_mddevs_lock); 585 kfree(new); 586 return mddev; 587 } 588 589 if (new) { 590 list_add(&new->all_mddevs, &all_mddevs); 591 spin_unlock(&all_mddevs_lock); 592 new->hold_active = UNTIL_IOCTL; 593 return new; 594 } 595 } else if (new) { 596 /* find an unused unit number */ 597 static int next_minor = 512; 598 int start = next_minor; 599 int is_free = 0; 600 int dev = 0; 601 while (!is_free) { 602 dev = MKDEV(MD_MAJOR, next_minor); 603 next_minor++; 604 if (next_minor > MINORMASK) 605 next_minor = 0; 606 if (next_minor == start) { 607 /* Oh dear, all in use. */ 608 spin_unlock(&all_mddevs_lock); 609 kfree(new); 610 return NULL; 611 } 612 613 is_free = 1; 614 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 615 if (mddev->unit == dev) { 616 is_free = 0; 617 break; 618 } 619 } 620 new->unit = dev; 621 new->md_minor = MINOR(dev); 622 new->hold_active = UNTIL_STOP; 623 list_add(&new->all_mddevs, &all_mddevs); 624 spin_unlock(&all_mddevs_lock); 625 return new; 626 } 627 spin_unlock(&all_mddevs_lock); 628 629 new = kzalloc(sizeof(*new), GFP_KERNEL); 630 if (!new) 631 return NULL; 632 633 new->unit = unit; 634 if (MAJOR(unit) == MD_MAJOR) 635 new->md_minor = MINOR(unit); 636 else 637 new->md_minor = MINOR(unit) >> MdpMinorShift; 638 639 mddev_init(new); 640 641 goto retry; 642 } 643 644 static struct attribute_group md_redundancy_group; 645 646 void mddev_unlock(struct mddev *mddev) 647 { 648 if (mddev->to_remove) { 649 /* These cannot be removed under reconfig_mutex as 650 * an access to the files will try to take reconfig_mutex 651 * while holding the file unremovable, which leads to 652 * a deadlock. 653 * So hold set sysfs_active while the remove in happeing, 654 * and anything else which might set ->to_remove or my 655 * otherwise change the sysfs namespace will fail with 656 * -EBUSY if sysfs_active is still set. 657 * We set sysfs_active under reconfig_mutex and elsewhere 658 * test it under the same mutex to ensure its correct value 659 * is seen. 660 */ 661 struct attribute_group *to_remove = mddev->to_remove; 662 mddev->to_remove = NULL; 663 mddev->sysfs_active = 1; 664 mutex_unlock(&mddev->reconfig_mutex); 665 666 if (mddev->kobj.sd) { 667 if (to_remove != &md_redundancy_group) 668 sysfs_remove_group(&mddev->kobj, to_remove); 669 if (mddev->pers == NULL || 670 mddev->pers->sync_request == NULL) { 671 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 672 if (mddev->sysfs_action) 673 sysfs_put(mddev->sysfs_action); 674 mddev->sysfs_action = NULL; 675 } 676 } 677 mddev->sysfs_active = 0; 678 } else 679 mutex_unlock(&mddev->reconfig_mutex); 680 681 /* As we've dropped the mutex we need a spinlock to 682 * make sure the thread doesn't disappear 683 */ 684 spin_lock(&pers_lock); 685 md_wakeup_thread(mddev->thread); 686 wake_up(&mddev->sb_wait); 687 spin_unlock(&pers_lock); 688 } 689 EXPORT_SYMBOL_GPL(mddev_unlock); 690 691 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 692 { 693 struct md_rdev *rdev; 694 695 rdev_for_each_rcu(rdev, mddev) 696 if (rdev->desc_nr == nr) 697 return rdev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 702 703 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 704 { 705 struct md_rdev *rdev; 706 707 rdev_for_each(rdev, mddev) 708 if (rdev->bdev->bd_dev == dev) 709 return rdev; 710 711 return NULL; 712 } 713 714 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 715 { 716 struct md_rdev *rdev; 717 718 rdev_for_each_rcu(rdev, mddev) 719 if (rdev->bdev->bd_dev == dev) 720 return rdev; 721 722 return NULL; 723 } 724 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 725 726 static struct md_personality *find_pers(int level, char *clevel) 727 { 728 struct md_personality *pers; 729 list_for_each_entry(pers, &pers_list, list) { 730 if (level != LEVEL_NONE && pers->level == level) 731 return pers; 732 if (strcmp(pers->name, clevel)==0) 733 return pers; 734 } 735 return NULL; 736 } 737 738 /* return the offset of the super block in 512byte sectors */ 739 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 740 { 741 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 742 return MD_NEW_SIZE_SECTORS(num_sectors); 743 } 744 745 static int alloc_disk_sb(struct md_rdev *rdev) 746 { 747 rdev->sb_page = alloc_page(GFP_KERNEL); 748 if (!rdev->sb_page) 749 return -ENOMEM; 750 return 0; 751 } 752 753 void md_rdev_clear(struct md_rdev *rdev) 754 { 755 if (rdev->sb_page) { 756 put_page(rdev->sb_page); 757 rdev->sb_loaded = 0; 758 rdev->sb_page = NULL; 759 rdev->sb_start = 0; 760 rdev->sectors = 0; 761 } 762 if (rdev->bb_page) { 763 put_page(rdev->bb_page); 764 rdev->bb_page = NULL; 765 } 766 badblocks_exit(&rdev->badblocks); 767 } 768 EXPORT_SYMBOL_GPL(md_rdev_clear); 769 770 static void super_written(struct bio *bio) 771 { 772 struct md_rdev *rdev = bio->bi_private; 773 struct mddev *mddev = rdev->mddev; 774 775 if (bio->bi_status) { 776 pr_err("md: super_written gets error=%d\n", bio->bi_status); 777 md_error(mddev, rdev); 778 if (!test_bit(Faulty, &rdev->flags) 779 && (bio->bi_opf & MD_FAILFAST)) { 780 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 781 set_bit(LastDev, &rdev->flags); 782 } 783 } else 784 clear_bit(LastDev, &rdev->flags); 785 786 if (atomic_dec_and_test(&mddev->pending_writes)) 787 wake_up(&mddev->sb_wait); 788 rdev_dec_pending(rdev, mddev); 789 bio_put(bio); 790 } 791 792 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 793 sector_t sector, int size, struct page *page) 794 { 795 /* write first size bytes of page to sector of rdev 796 * Increment mddev->pending_writes before returning 797 * and decrement it on completion, waking up sb_wait 798 * if zero is reached. 799 * If an error occurred, call md_error 800 */ 801 struct bio *bio; 802 int ff = 0; 803 804 if (test_bit(Faulty, &rdev->flags)) 805 return; 806 807 bio = md_bio_alloc_sync(mddev); 808 809 atomic_inc(&rdev->nr_pending); 810 811 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 812 bio->bi_iter.bi_sector = sector; 813 bio_add_page(bio, page, size, 0); 814 bio->bi_private = rdev; 815 bio->bi_end_io = super_written; 816 817 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 818 test_bit(FailFast, &rdev->flags) && 819 !test_bit(LastDev, &rdev->flags)) 820 ff = MD_FAILFAST; 821 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 822 823 atomic_inc(&mddev->pending_writes); 824 submit_bio(bio); 825 } 826 827 int md_super_wait(struct mddev *mddev) 828 { 829 /* wait for all superblock writes that were scheduled to complete */ 830 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 831 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 832 return -EAGAIN; 833 return 0; 834 } 835 836 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 837 struct page *page, int op, int op_flags, bool metadata_op) 838 { 839 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 840 int ret; 841 842 if (metadata_op && rdev->meta_bdev) 843 bio_set_dev(bio, rdev->meta_bdev); 844 else 845 bio_set_dev(bio, rdev->bdev); 846 bio_set_op_attrs(bio, op, op_flags); 847 if (metadata_op) 848 bio->bi_iter.bi_sector = sector + rdev->sb_start; 849 else if (rdev->mddev->reshape_position != MaxSector && 850 (rdev->mddev->reshape_backwards == 851 (sector >= rdev->mddev->reshape_position))) 852 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 853 else 854 bio->bi_iter.bi_sector = sector + rdev->data_offset; 855 bio_add_page(bio, page, size, 0); 856 857 submit_bio_wait(bio); 858 859 ret = !bio->bi_status; 860 bio_put(bio); 861 return ret; 862 } 863 EXPORT_SYMBOL_GPL(sync_page_io); 864 865 static int read_disk_sb(struct md_rdev *rdev, int size) 866 { 867 char b[BDEVNAME_SIZE]; 868 869 if (rdev->sb_loaded) 870 return 0; 871 872 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 873 goto fail; 874 rdev->sb_loaded = 1; 875 return 0; 876 877 fail: 878 pr_err("md: disabled device %s, could not read superblock.\n", 879 bdevname(rdev->bdev,b)); 880 return -EINVAL; 881 } 882 883 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 884 { 885 return sb1->set_uuid0 == sb2->set_uuid0 && 886 sb1->set_uuid1 == sb2->set_uuid1 && 887 sb1->set_uuid2 == sb2->set_uuid2 && 888 sb1->set_uuid3 == sb2->set_uuid3; 889 } 890 891 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 892 { 893 int ret; 894 mdp_super_t *tmp1, *tmp2; 895 896 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 897 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 898 899 if (!tmp1 || !tmp2) { 900 ret = 0; 901 goto abort; 902 } 903 904 *tmp1 = *sb1; 905 *tmp2 = *sb2; 906 907 /* 908 * nr_disks is not constant 909 */ 910 tmp1->nr_disks = 0; 911 tmp2->nr_disks = 0; 912 913 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 914 abort: 915 kfree(tmp1); 916 kfree(tmp2); 917 return ret; 918 } 919 920 static u32 md_csum_fold(u32 csum) 921 { 922 csum = (csum & 0xffff) + (csum >> 16); 923 return (csum & 0xffff) + (csum >> 16); 924 } 925 926 static unsigned int calc_sb_csum(mdp_super_t *sb) 927 { 928 u64 newcsum = 0; 929 u32 *sb32 = (u32*)sb; 930 int i; 931 unsigned int disk_csum, csum; 932 933 disk_csum = sb->sb_csum; 934 sb->sb_csum = 0; 935 936 for (i = 0; i < MD_SB_BYTES/4 ; i++) 937 newcsum += sb32[i]; 938 csum = (newcsum & 0xffffffff) + (newcsum>>32); 939 940 #ifdef CONFIG_ALPHA 941 /* This used to use csum_partial, which was wrong for several 942 * reasons including that different results are returned on 943 * different architectures. It isn't critical that we get exactly 944 * the same return value as before (we always csum_fold before 945 * testing, and that removes any differences). However as we 946 * know that csum_partial always returned a 16bit value on 947 * alphas, do a fold to maximise conformity to previous behaviour. 948 */ 949 sb->sb_csum = md_csum_fold(disk_csum); 950 #else 951 sb->sb_csum = disk_csum; 952 #endif 953 return csum; 954 } 955 956 /* 957 * Handle superblock details. 958 * We want to be able to handle multiple superblock formats 959 * so we have a common interface to them all, and an array of 960 * different handlers. 961 * We rely on user-space to write the initial superblock, and support 962 * reading and updating of superblocks. 963 * Interface methods are: 964 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 965 * loads and validates a superblock on dev. 966 * if refdev != NULL, compare superblocks on both devices 967 * Return: 968 * 0 - dev has a superblock that is compatible with refdev 969 * 1 - dev has a superblock that is compatible and newer than refdev 970 * so dev should be used as the refdev in future 971 * -EINVAL superblock incompatible or invalid 972 * -othererror e.g. -EIO 973 * 974 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 975 * Verify that dev is acceptable into mddev. 976 * The first time, mddev->raid_disks will be 0, and data from 977 * dev should be merged in. Subsequent calls check that dev 978 * is new enough. Return 0 or -EINVAL 979 * 980 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 981 * Update the superblock for rdev with data in mddev 982 * This does not write to disc. 983 * 984 */ 985 986 struct super_type { 987 char *name; 988 struct module *owner; 989 int (*load_super)(struct md_rdev *rdev, 990 struct md_rdev *refdev, 991 int minor_version); 992 int (*validate_super)(struct mddev *mddev, 993 struct md_rdev *rdev); 994 void (*sync_super)(struct mddev *mddev, 995 struct md_rdev *rdev); 996 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 997 sector_t num_sectors); 998 int (*allow_new_offset)(struct md_rdev *rdev, 999 unsigned long long new_offset); 1000 }; 1001 1002 /* 1003 * Check that the given mddev has no bitmap. 1004 * 1005 * This function is called from the run method of all personalities that do not 1006 * support bitmaps. It prints an error message and returns non-zero if mddev 1007 * has a bitmap. Otherwise, it returns 0. 1008 * 1009 */ 1010 int md_check_no_bitmap(struct mddev *mddev) 1011 { 1012 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1013 return 0; 1014 pr_warn("%s: bitmaps are not supported for %s\n", 1015 mdname(mddev), mddev->pers->name); 1016 return 1; 1017 } 1018 EXPORT_SYMBOL(md_check_no_bitmap); 1019 1020 /* 1021 * load_super for 0.90.0 1022 */ 1023 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1024 { 1025 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1026 mdp_super_t *sb; 1027 int ret; 1028 1029 /* 1030 * Calculate the position of the superblock (512byte sectors), 1031 * it's at the end of the disk. 1032 * 1033 * It also happens to be a multiple of 4Kb. 1034 */ 1035 rdev->sb_start = calc_dev_sboffset(rdev); 1036 1037 ret = read_disk_sb(rdev, MD_SB_BYTES); 1038 if (ret) 1039 return ret; 1040 1041 ret = -EINVAL; 1042 1043 bdevname(rdev->bdev, b); 1044 sb = page_address(rdev->sb_page); 1045 1046 if (sb->md_magic != MD_SB_MAGIC) { 1047 pr_warn("md: invalid raid superblock magic on %s\n", b); 1048 goto abort; 1049 } 1050 1051 if (sb->major_version != 0 || 1052 sb->minor_version < 90 || 1053 sb->minor_version > 91) { 1054 pr_warn("Bad version number %d.%d on %s\n", 1055 sb->major_version, sb->minor_version, b); 1056 goto abort; 1057 } 1058 1059 if (sb->raid_disks <= 0) 1060 goto abort; 1061 1062 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1063 pr_warn("md: invalid superblock checksum on %s\n", b); 1064 goto abort; 1065 } 1066 1067 rdev->preferred_minor = sb->md_minor; 1068 rdev->data_offset = 0; 1069 rdev->new_data_offset = 0; 1070 rdev->sb_size = MD_SB_BYTES; 1071 rdev->badblocks.shift = -1; 1072 1073 if (sb->level == LEVEL_MULTIPATH) 1074 rdev->desc_nr = -1; 1075 else 1076 rdev->desc_nr = sb->this_disk.number; 1077 1078 if (!refdev) { 1079 ret = 1; 1080 } else { 1081 __u64 ev1, ev2; 1082 mdp_super_t *refsb = page_address(refdev->sb_page); 1083 if (!md_uuid_equal(refsb, sb)) { 1084 pr_warn("md: %s has different UUID to %s\n", 1085 b, bdevname(refdev->bdev,b2)); 1086 goto abort; 1087 } 1088 if (!md_sb_equal(refsb, sb)) { 1089 pr_warn("md: %s has same UUID but different superblock to %s\n", 1090 b, bdevname(refdev->bdev, b2)); 1091 goto abort; 1092 } 1093 ev1 = md_event(sb); 1094 ev2 = md_event(refsb); 1095 if (ev1 > ev2) 1096 ret = 1; 1097 else 1098 ret = 0; 1099 } 1100 rdev->sectors = rdev->sb_start; 1101 /* Limit to 4TB as metadata cannot record more than that. 1102 * (not needed for Linear and RAID0 as metadata doesn't 1103 * record this size) 1104 */ 1105 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) && 1106 sb->level >= 1) 1107 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1108 1109 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1110 /* "this cannot possibly happen" ... */ 1111 ret = -EINVAL; 1112 1113 abort: 1114 return ret; 1115 } 1116 1117 /* 1118 * validate_super for 0.90.0 1119 */ 1120 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1121 { 1122 mdp_disk_t *desc; 1123 mdp_super_t *sb = page_address(rdev->sb_page); 1124 __u64 ev1 = md_event(sb); 1125 1126 rdev->raid_disk = -1; 1127 clear_bit(Faulty, &rdev->flags); 1128 clear_bit(In_sync, &rdev->flags); 1129 clear_bit(Bitmap_sync, &rdev->flags); 1130 clear_bit(WriteMostly, &rdev->flags); 1131 1132 if (mddev->raid_disks == 0) { 1133 mddev->major_version = 0; 1134 mddev->minor_version = sb->minor_version; 1135 mddev->patch_version = sb->patch_version; 1136 mddev->external = 0; 1137 mddev->chunk_sectors = sb->chunk_size >> 9; 1138 mddev->ctime = sb->ctime; 1139 mddev->utime = sb->utime; 1140 mddev->level = sb->level; 1141 mddev->clevel[0] = 0; 1142 mddev->layout = sb->layout; 1143 mddev->raid_disks = sb->raid_disks; 1144 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1145 mddev->events = ev1; 1146 mddev->bitmap_info.offset = 0; 1147 mddev->bitmap_info.space = 0; 1148 /* bitmap can use 60 K after the 4K superblocks */ 1149 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1150 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1151 mddev->reshape_backwards = 0; 1152 1153 if (mddev->minor_version >= 91) { 1154 mddev->reshape_position = sb->reshape_position; 1155 mddev->delta_disks = sb->delta_disks; 1156 mddev->new_level = sb->new_level; 1157 mddev->new_layout = sb->new_layout; 1158 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1159 if (mddev->delta_disks < 0) 1160 mddev->reshape_backwards = 1; 1161 } else { 1162 mddev->reshape_position = MaxSector; 1163 mddev->delta_disks = 0; 1164 mddev->new_level = mddev->level; 1165 mddev->new_layout = mddev->layout; 1166 mddev->new_chunk_sectors = mddev->chunk_sectors; 1167 } 1168 1169 if (sb->state & (1<<MD_SB_CLEAN)) 1170 mddev->recovery_cp = MaxSector; 1171 else { 1172 if (sb->events_hi == sb->cp_events_hi && 1173 sb->events_lo == sb->cp_events_lo) { 1174 mddev->recovery_cp = sb->recovery_cp; 1175 } else 1176 mddev->recovery_cp = 0; 1177 } 1178 1179 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1180 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1181 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1182 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1183 1184 mddev->max_disks = MD_SB_DISKS; 1185 1186 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1187 mddev->bitmap_info.file == NULL) { 1188 mddev->bitmap_info.offset = 1189 mddev->bitmap_info.default_offset; 1190 mddev->bitmap_info.space = 1191 mddev->bitmap_info.default_space; 1192 } 1193 1194 } else if (mddev->pers == NULL) { 1195 /* Insist on good event counter while assembling, except 1196 * for spares (which don't need an event count) */ 1197 ++ev1; 1198 if (sb->disks[rdev->desc_nr].state & ( 1199 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1200 if (ev1 < mddev->events) 1201 return -EINVAL; 1202 } else if (mddev->bitmap) { 1203 /* if adding to array with a bitmap, then we can accept an 1204 * older device ... but not too old. 1205 */ 1206 if (ev1 < mddev->bitmap->events_cleared) 1207 return 0; 1208 if (ev1 < mddev->events) 1209 set_bit(Bitmap_sync, &rdev->flags); 1210 } else { 1211 if (ev1 < mddev->events) 1212 /* just a hot-add of a new device, leave raid_disk at -1 */ 1213 return 0; 1214 } 1215 1216 if (mddev->level != LEVEL_MULTIPATH) { 1217 desc = sb->disks + rdev->desc_nr; 1218 1219 if (desc->state & (1<<MD_DISK_FAULTY)) 1220 set_bit(Faulty, &rdev->flags); 1221 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1222 desc->raid_disk < mddev->raid_disks */) { 1223 set_bit(In_sync, &rdev->flags); 1224 rdev->raid_disk = desc->raid_disk; 1225 rdev->saved_raid_disk = desc->raid_disk; 1226 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1227 /* active but not in sync implies recovery up to 1228 * reshape position. We don't know exactly where 1229 * that is, so set to zero for now */ 1230 if (mddev->minor_version >= 91) { 1231 rdev->recovery_offset = 0; 1232 rdev->raid_disk = desc->raid_disk; 1233 } 1234 } 1235 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1236 set_bit(WriteMostly, &rdev->flags); 1237 if (desc->state & (1<<MD_DISK_FAILFAST)) 1238 set_bit(FailFast, &rdev->flags); 1239 } else /* MULTIPATH are always insync */ 1240 set_bit(In_sync, &rdev->flags); 1241 return 0; 1242 } 1243 1244 /* 1245 * sync_super for 0.90.0 1246 */ 1247 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1248 { 1249 mdp_super_t *sb; 1250 struct md_rdev *rdev2; 1251 int next_spare = mddev->raid_disks; 1252 1253 /* make rdev->sb match mddev data.. 1254 * 1255 * 1/ zero out disks 1256 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1257 * 3/ any empty disks < next_spare become removed 1258 * 1259 * disks[0] gets initialised to REMOVED because 1260 * we cannot be sure from other fields if it has 1261 * been initialised or not. 1262 */ 1263 int i; 1264 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1265 1266 rdev->sb_size = MD_SB_BYTES; 1267 1268 sb = page_address(rdev->sb_page); 1269 1270 memset(sb, 0, sizeof(*sb)); 1271 1272 sb->md_magic = MD_SB_MAGIC; 1273 sb->major_version = mddev->major_version; 1274 sb->patch_version = mddev->patch_version; 1275 sb->gvalid_words = 0; /* ignored */ 1276 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1277 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1278 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1279 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1280 1281 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1282 sb->level = mddev->level; 1283 sb->size = mddev->dev_sectors / 2; 1284 sb->raid_disks = mddev->raid_disks; 1285 sb->md_minor = mddev->md_minor; 1286 sb->not_persistent = 0; 1287 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1288 sb->state = 0; 1289 sb->events_hi = (mddev->events>>32); 1290 sb->events_lo = (u32)mddev->events; 1291 1292 if (mddev->reshape_position == MaxSector) 1293 sb->minor_version = 90; 1294 else { 1295 sb->minor_version = 91; 1296 sb->reshape_position = mddev->reshape_position; 1297 sb->new_level = mddev->new_level; 1298 sb->delta_disks = mddev->delta_disks; 1299 sb->new_layout = mddev->new_layout; 1300 sb->new_chunk = mddev->new_chunk_sectors << 9; 1301 } 1302 mddev->minor_version = sb->minor_version; 1303 if (mddev->in_sync) 1304 { 1305 sb->recovery_cp = mddev->recovery_cp; 1306 sb->cp_events_hi = (mddev->events>>32); 1307 sb->cp_events_lo = (u32)mddev->events; 1308 if (mddev->recovery_cp == MaxSector) 1309 sb->state = (1<< MD_SB_CLEAN); 1310 } else 1311 sb->recovery_cp = 0; 1312 1313 sb->layout = mddev->layout; 1314 sb->chunk_size = mddev->chunk_sectors << 9; 1315 1316 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1317 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1318 1319 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1320 rdev_for_each(rdev2, mddev) { 1321 mdp_disk_t *d; 1322 int desc_nr; 1323 int is_active = test_bit(In_sync, &rdev2->flags); 1324 1325 if (rdev2->raid_disk >= 0 && 1326 sb->minor_version >= 91) 1327 /* we have nowhere to store the recovery_offset, 1328 * but if it is not below the reshape_position, 1329 * we can piggy-back on that. 1330 */ 1331 is_active = 1; 1332 if (rdev2->raid_disk < 0 || 1333 test_bit(Faulty, &rdev2->flags)) 1334 is_active = 0; 1335 if (is_active) 1336 desc_nr = rdev2->raid_disk; 1337 else 1338 desc_nr = next_spare++; 1339 rdev2->desc_nr = desc_nr; 1340 d = &sb->disks[rdev2->desc_nr]; 1341 nr_disks++; 1342 d->number = rdev2->desc_nr; 1343 d->major = MAJOR(rdev2->bdev->bd_dev); 1344 d->minor = MINOR(rdev2->bdev->bd_dev); 1345 if (is_active) 1346 d->raid_disk = rdev2->raid_disk; 1347 else 1348 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1349 if (test_bit(Faulty, &rdev2->flags)) 1350 d->state = (1<<MD_DISK_FAULTY); 1351 else if (is_active) { 1352 d->state = (1<<MD_DISK_ACTIVE); 1353 if (test_bit(In_sync, &rdev2->flags)) 1354 d->state |= (1<<MD_DISK_SYNC); 1355 active++; 1356 working++; 1357 } else { 1358 d->state = 0; 1359 spare++; 1360 working++; 1361 } 1362 if (test_bit(WriteMostly, &rdev2->flags)) 1363 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1364 if (test_bit(FailFast, &rdev2->flags)) 1365 d->state |= (1<<MD_DISK_FAILFAST); 1366 } 1367 /* now set the "removed" and "faulty" bits on any missing devices */ 1368 for (i=0 ; i < mddev->raid_disks ; i++) { 1369 mdp_disk_t *d = &sb->disks[i]; 1370 if (d->state == 0 && d->number == 0) { 1371 d->number = i; 1372 d->raid_disk = i; 1373 d->state = (1<<MD_DISK_REMOVED); 1374 d->state |= (1<<MD_DISK_FAULTY); 1375 failed++; 1376 } 1377 } 1378 sb->nr_disks = nr_disks; 1379 sb->active_disks = active; 1380 sb->working_disks = working; 1381 sb->failed_disks = failed; 1382 sb->spare_disks = spare; 1383 1384 sb->this_disk = sb->disks[rdev->desc_nr]; 1385 sb->sb_csum = calc_sb_csum(sb); 1386 } 1387 1388 /* 1389 * rdev_size_change for 0.90.0 1390 */ 1391 static unsigned long long 1392 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1393 { 1394 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1395 return 0; /* component must fit device */ 1396 if (rdev->mddev->bitmap_info.offset) 1397 return 0; /* can't move bitmap */ 1398 rdev->sb_start = calc_dev_sboffset(rdev); 1399 if (!num_sectors || num_sectors > rdev->sb_start) 1400 num_sectors = rdev->sb_start; 1401 /* Limit to 4TB as metadata cannot record more than that. 1402 * 4TB == 2^32 KB, or 2*2^32 sectors. 1403 */ 1404 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) && 1405 rdev->mddev->level >= 1) 1406 num_sectors = (sector_t)(2ULL << 32) - 2; 1407 do { 1408 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1409 rdev->sb_page); 1410 } while (md_super_wait(rdev->mddev) < 0); 1411 return num_sectors; 1412 } 1413 1414 static int 1415 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1416 { 1417 /* non-zero offset changes not possible with v0.90 */ 1418 return new_offset == 0; 1419 } 1420 1421 /* 1422 * version 1 superblock 1423 */ 1424 1425 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1426 { 1427 __le32 disk_csum; 1428 u32 csum; 1429 unsigned long long newcsum; 1430 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1431 __le32 *isuper = (__le32*)sb; 1432 1433 disk_csum = sb->sb_csum; 1434 sb->sb_csum = 0; 1435 newcsum = 0; 1436 for (; size >= 4; size -= 4) 1437 newcsum += le32_to_cpu(*isuper++); 1438 1439 if (size == 2) 1440 newcsum += le16_to_cpu(*(__le16*) isuper); 1441 1442 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1443 sb->sb_csum = disk_csum; 1444 return cpu_to_le32(csum); 1445 } 1446 1447 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1448 { 1449 struct mdp_superblock_1 *sb; 1450 int ret; 1451 sector_t sb_start; 1452 sector_t sectors; 1453 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1454 int bmask; 1455 1456 /* 1457 * Calculate the position of the superblock in 512byte sectors. 1458 * It is always aligned to a 4K boundary and 1459 * depeding on minor_version, it can be: 1460 * 0: At least 8K, but less than 12K, from end of device 1461 * 1: At start of device 1462 * 2: 4K from start of device. 1463 */ 1464 switch(minor_version) { 1465 case 0: 1466 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1467 sb_start -= 8*2; 1468 sb_start &= ~(sector_t)(4*2-1); 1469 break; 1470 case 1: 1471 sb_start = 0; 1472 break; 1473 case 2: 1474 sb_start = 8; 1475 break; 1476 default: 1477 return -EINVAL; 1478 } 1479 rdev->sb_start = sb_start; 1480 1481 /* superblock is rarely larger than 1K, but it can be larger, 1482 * and it is safe to read 4k, so we do that 1483 */ 1484 ret = read_disk_sb(rdev, 4096); 1485 if (ret) return ret; 1486 1487 sb = page_address(rdev->sb_page); 1488 1489 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1490 sb->major_version != cpu_to_le32(1) || 1491 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1492 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1493 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1494 return -EINVAL; 1495 1496 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1497 pr_warn("md: invalid superblock checksum on %s\n", 1498 bdevname(rdev->bdev,b)); 1499 return -EINVAL; 1500 } 1501 if (le64_to_cpu(sb->data_size) < 10) { 1502 pr_warn("md: data_size too small on %s\n", 1503 bdevname(rdev->bdev,b)); 1504 return -EINVAL; 1505 } 1506 if (sb->pad0 || 1507 sb->pad3[0] || 1508 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1509 /* Some padding is non-zero, might be a new feature */ 1510 return -EINVAL; 1511 1512 rdev->preferred_minor = 0xffff; 1513 rdev->data_offset = le64_to_cpu(sb->data_offset); 1514 rdev->new_data_offset = rdev->data_offset; 1515 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1516 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1517 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1518 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1519 1520 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1521 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1522 if (rdev->sb_size & bmask) 1523 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1524 1525 if (minor_version 1526 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1527 return -EINVAL; 1528 if (minor_version 1529 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1530 return -EINVAL; 1531 1532 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1533 rdev->desc_nr = -1; 1534 else 1535 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1536 1537 if (!rdev->bb_page) { 1538 rdev->bb_page = alloc_page(GFP_KERNEL); 1539 if (!rdev->bb_page) 1540 return -ENOMEM; 1541 } 1542 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1543 rdev->badblocks.count == 0) { 1544 /* need to load the bad block list. 1545 * Currently we limit it to one page. 1546 */ 1547 s32 offset; 1548 sector_t bb_sector; 1549 u64 *bbp; 1550 int i; 1551 int sectors = le16_to_cpu(sb->bblog_size); 1552 if (sectors > (PAGE_SIZE / 512)) 1553 return -EINVAL; 1554 offset = le32_to_cpu(sb->bblog_offset); 1555 if (offset == 0) 1556 return -EINVAL; 1557 bb_sector = (long long)offset; 1558 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1559 rdev->bb_page, REQ_OP_READ, 0, true)) 1560 return -EIO; 1561 bbp = (u64 *)page_address(rdev->bb_page); 1562 rdev->badblocks.shift = sb->bblog_shift; 1563 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1564 u64 bb = le64_to_cpu(*bbp); 1565 int count = bb & (0x3ff); 1566 u64 sector = bb >> 10; 1567 sector <<= sb->bblog_shift; 1568 count <<= sb->bblog_shift; 1569 if (bb + 1 == 0) 1570 break; 1571 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1572 return -EINVAL; 1573 } 1574 } else if (sb->bblog_offset != 0) 1575 rdev->badblocks.shift = 0; 1576 1577 if ((le32_to_cpu(sb->feature_map) & 1578 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1579 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1580 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1581 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1582 } 1583 1584 if (!refdev) { 1585 ret = 1; 1586 } else { 1587 __u64 ev1, ev2; 1588 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1589 1590 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1591 sb->level != refsb->level || 1592 sb->layout != refsb->layout || 1593 sb->chunksize != refsb->chunksize) { 1594 pr_warn("md: %s has strangely different superblock to %s\n", 1595 bdevname(rdev->bdev,b), 1596 bdevname(refdev->bdev,b2)); 1597 return -EINVAL; 1598 } 1599 ev1 = le64_to_cpu(sb->events); 1600 ev2 = le64_to_cpu(refsb->events); 1601 1602 if (ev1 > ev2) 1603 ret = 1; 1604 else 1605 ret = 0; 1606 } 1607 if (minor_version) { 1608 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1609 sectors -= rdev->data_offset; 1610 } else 1611 sectors = rdev->sb_start; 1612 if (sectors < le64_to_cpu(sb->data_size)) 1613 return -EINVAL; 1614 rdev->sectors = le64_to_cpu(sb->data_size); 1615 return ret; 1616 } 1617 1618 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1619 { 1620 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1621 __u64 ev1 = le64_to_cpu(sb->events); 1622 1623 rdev->raid_disk = -1; 1624 clear_bit(Faulty, &rdev->flags); 1625 clear_bit(In_sync, &rdev->flags); 1626 clear_bit(Bitmap_sync, &rdev->flags); 1627 clear_bit(WriteMostly, &rdev->flags); 1628 1629 if (mddev->raid_disks == 0) { 1630 mddev->major_version = 1; 1631 mddev->patch_version = 0; 1632 mddev->external = 0; 1633 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1634 mddev->ctime = le64_to_cpu(sb->ctime); 1635 mddev->utime = le64_to_cpu(sb->utime); 1636 mddev->level = le32_to_cpu(sb->level); 1637 mddev->clevel[0] = 0; 1638 mddev->layout = le32_to_cpu(sb->layout); 1639 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1640 mddev->dev_sectors = le64_to_cpu(sb->size); 1641 mddev->events = ev1; 1642 mddev->bitmap_info.offset = 0; 1643 mddev->bitmap_info.space = 0; 1644 /* Default location for bitmap is 1K after superblock 1645 * using 3K - total of 4K 1646 */ 1647 mddev->bitmap_info.default_offset = 1024 >> 9; 1648 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1649 mddev->reshape_backwards = 0; 1650 1651 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1652 memcpy(mddev->uuid, sb->set_uuid, 16); 1653 1654 mddev->max_disks = (4096-256)/2; 1655 1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1657 mddev->bitmap_info.file == NULL) { 1658 mddev->bitmap_info.offset = 1659 (__s32)le32_to_cpu(sb->bitmap_offset); 1660 /* Metadata doesn't record how much space is available. 1661 * For 1.0, we assume we can use up to the superblock 1662 * if before, else to 4K beyond superblock. 1663 * For others, assume no change is possible. 1664 */ 1665 if (mddev->minor_version > 0) 1666 mddev->bitmap_info.space = 0; 1667 else if (mddev->bitmap_info.offset > 0) 1668 mddev->bitmap_info.space = 1669 8 - mddev->bitmap_info.offset; 1670 else 1671 mddev->bitmap_info.space = 1672 -mddev->bitmap_info.offset; 1673 } 1674 1675 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1676 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1677 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1678 mddev->new_level = le32_to_cpu(sb->new_level); 1679 mddev->new_layout = le32_to_cpu(sb->new_layout); 1680 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1681 if (mddev->delta_disks < 0 || 1682 (mddev->delta_disks == 0 && 1683 (le32_to_cpu(sb->feature_map) 1684 & MD_FEATURE_RESHAPE_BACKWARDS))) 1685 mddev->reshape_backwards = 1; 1686 } else { 1687 mddev->reshape_position = MaxSector; 1688 mddev->delta_disks = 0; 1689 mddev->new_level = mddev->level; 1690 mddev->new_layout = mddev->layout; 1691 mddev->new_chunk_sectors = mddev->chunk_sectors; 1692 } 1693 1694 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1695 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1696 1697 if (le32_to_cpu(sb->feature_map) & 1698 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1699 if (le32_to_cpu(sb->feature_map) & 1700 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1701 return -EINVAL; 1702 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1703 (le32_to_cpu(sb->feature_map) & 1704 MD_FEATURE_MULTIPLE_PPLS)) 1705 return -EINVAL; 1706 set_bit(MD_HAS_PPL, &mddev->flags); 1707 } 1708 } else if (mddev->pers == NULL) { 1709 /* Insist of good event counter while assembling, except for 1710 * spares (which don't need an event count) */ 1711 ++ev1; 1712 if (rdev->desc_nr >= 0 && 1713 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1714 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1715 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1716 if (ev1 < mddev->events) 1717 return -EINVAL; 1718 } else if (mddev->bitmap) { 1719 /* If adding to array with a bitmap, then we can accept an 1720 * older device, but not too old. 1721 */ 1722 if (ev1 < mddev->bitmap->events_cleared) 1723 return 0; 1724 if (ev1 < mddev->events) 1725 set_bit(Bitmap_sync, &rdev->flags); 1726 } else { 1727 if (ev1 < mddev->events) 1728 /* just a hot-add of a new device, leave raid_disk at -1 */ 1729 return 0; 1730 } 1731 if (mddev->level != LEVEL_MULTIPATH) { 1732 int role; 1733 if (rdev->desc_nr < 0 || 1734 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1735 role = MD_DISK_ROLE_SPARE; 1736 rdev->desc_nr = -1; 1737 } else 1738 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1739 switch(role) { 1740 case MD_DISK_ROLE_SPARE: /* spare */ 1741 break; 1742 case MD_DISK_ROLE_FAULTY: /* faulty */ 1743 set_bit(Faulty, &rdev->flags); 1744 break; 1745 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1746 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1747 /* journal device without journal feature */ 1748 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1749 return -EINVAL; 1750 } 1751 set_bit(Journal, &rdev->flags); 1752 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1753 rdev->raid_disk = 0; 1754 break; 1755 default: 1756 rdev->saved_raid_disk = role; 1757 if ((le32_to_cpu(sb->feature_map) & 1758 MD_FEATURE_RECOVERY_OFFSET)) { 1759 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1760 if (!(le32_to_cpu(sb->feature_map) & 1761 MD_FEATURE_RECOVERY_BITMAP)) 1762 rdev->saved_raid_disk = -1; 1763 } else 1764 set_bit(In_sync, &rdev->flags); 1765 rdev->raid_disk = role; 1766 break; 1767 } 1768 if (sb->devflags & WriteMostly1) 1769 set_bit(WriteMostly, &rdev->flags); 1770 if (sb->devflags & FailFast1) 1771 set_bit(FailFast, &rdev->flags); 1772 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1773 set_bit(Replacement, &rdev->flags); 1774 } else /* MULTIPATH are always insync */ 1775 set_bit(In_sync, &rdev->flags); 1776 1777 return 0; 1778 } 1779 1780 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1781 { 1782 struct mdp_superblock_1 *sb; 1783 struct md_rdev *rdev2; 1784 int max_dev, i; 1785 /* make rdev->sb match mddev and rdev data. */ 1786 1787 sb = page_address(rdev->sb_page); 1788 1789 sb->feature_map = 0; 1790 sb->pad0 = 0; 1791 sb->recovery_offset = cpu_to_le64(0); 1792 memset(sb->pad3, 0, sizeof(sb->pad3)); 1793 1794 sb->utime = cpu_to_le64((__u64)mddev->utime); 1795 sb->events = cpu_to_le64(mddev->events); 1796 if (mddev->in_sync) 1797 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1798 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1799 sb->resync_offset = cpu_to_le64(MaxSector); 1800 else 1801 sb->resync_offset = cpu_to_le64(0); 1802 1803 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1804 1805 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1806 sb->size = cpu_to_le64(mddev->dev_sectors); 1807 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1808 sb->level = cpu_to_le32(mddev->level); 1809 sb->layout = cpu_to_le32(mddev->layout); 1810 if (test_bit(FailFast, &rdev->flags)) 1811 sb->devflags |= FailFast1; 1812 else 1813 sb->devflags &= ~FailFast1; 1814 1815 if (test_bit(WriteMostly, &rdev->flags)) 1816 sb->devflags |= WriteMostly1; 1817 else 1818 sb->devflags &= ~WriteMostly1; 1819 sb->data_offset = cpu_to_le64(rdev->data_offset); 1820 sb->data_size = cpu_to_le64(rdev->sectors); 1821 1822 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1823 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1824 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1825 } 1826 1827 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1828 !test_bit(In_sync, &rdev->flags)) { 1829 sb->feature_map |= 1830 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1831 sb->recovery_offset = 1832 cpu_to_le64(rdev->recovery_offset); 1833 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1834 sb->feature_map |= 1835 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 1836 } 1837 /* Note: recovery_offset and journal_tail share space */ 1838 if (test_bit(Journal, &rdev->flags)) 1839 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 1840 if (test_bit(Replacement, &rdev->flags)) 1841 sb->feature_map |= 1842 cpu_to_le32(MD_FEATURE_REPLACEMENT); 1843 1844 if (mddev->reshape_position != MaxSector) { 1845 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 1846 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 1847 sb->new_layout = cpu_to_le32(mddev->new_layout); 1848 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 1849 sb->new_level = cpu_to_le32(mddev->new_level); 1850 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 1851 if (mddev->delta_disks == 0 && 1852 mddev->reshape_backwards) 1853 sb->feature_map 1854 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 1855 if (rdev->new_data_offset != rdev->data_offset) { 1856 sb->feature_map 1857 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 1858 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 1859 - rdev->data_offset)); 1860 } 1861 } 1862 1863 if (mddev_is_clustered(mddev)) 1864 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 1865 1866 if (rdev->badblocks.count == 0) 1867 /* Nothing to do for bad blocks*/ ; 1868 else if (sb->bblog_offset == 0) 1869 /* Cannot record bad blocks on this device */ 1870 md_error(mddev, rdev); 1871 else { 1872 struct badblocks *bb = &rdev->badblocks; 1873 u64 *bbp = (u64 *)page_address(rdev->bb_page); 1874 u64 *p = bb->page; 1875 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 1876 if (bb->changed) { 1877 unsigned seq; 1878 1879 retry: 1880 seq = read_seqbegin(&bb->lock); 1881 1882 memset(bbp, 0xff, PAGE_SIZE); 1883 1884 for (i = 0 ; i < bb->count ; i++) { 1885 u64 internal_bb = p[i]; 1886 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 1887 | BB_LEN(internal_bb)); 1888 bbp[i] = cpu_to_le64(store_bb); 1889 } 1890 bb->changed = 0; 1891 if (read_seqretry(&bb->lock, seq)) 1892 goto retry; 1893 1894 bb->sector = (rdev->sb_start + 1895 (int)le32_to_cpu(sb->bblog_offset)); 1896 bb->size = le16_to_cpu(sb->bblog_size); 1897 } 1898 } 1899 1900 max_dev = 0; 1901 rdev_for_each(rdev2, mddev) 1902 if (rdev2->desc_nr+1 > max_dev) 1903 max_dev = rdev2->desc_nr+1; 1904 1905 if (max_dev > le32_to_cpu(sb->max_dev)) { 1906 int bmask; 1907 sb->max_dev = cpu_to_le32(max_dev); 1908 rdev->sb_size = max_dev * 2 + 256; 1909 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1910 if (rdev->sb_size & bmask) 1911 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1912 } else 1913 max_dev = le32_to_cpu(sb->max_dev); 1914 1915 for (i=0; i<max_dev;i++) 1916 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1917 1918 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 1919 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 1920 1921 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 1922 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 1923 sb->feature_map |= 1924 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 1925 else 1926 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 1927 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 1928 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 1929 } 1930 1931 rdev_for_each(rdev2, mddev) { 1932 i = rdev2->desc_nr; 1933 if (test_bit(Faulty, &rdev2->flags)) 1934 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 1935 else if (test_bit(In_sync, &rdev2->flags)) 1936 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1937 else if (test_bit(Journal, &rdev2->flags)) 1938 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 1939 else if (rdev2->raid_disk >= 0) 1940 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 1941 else 1942 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 1943 } 1944 1945 sb->sb_csum = calc_sb_1_csum(sb); 1946 } 1947 1948 static unsigned long long 1949 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1950 { 1951 struct mdp_superblock_1 *sb; 1952 sector_t max_sectors; 1953 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1954 return 0; /* component must fit device */ 1955 if (rdev->data_offset != rdev->new_data_offset) 1956 return 0; /* too confusing */ 1957 if (rdev->sb_start < rdev->data_offset) { 1958 /* minor versions 1 and 2; superblock before data */ 1959 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 1960 max_sectors -= rdev->data_offset; 1961 if (!num_sectors || num_sectors > max_sectors) 1962 num_sectors = max_sectors; 1963 } else if (rdev->mddev->bitmap_info.offset) { 1964 /* minor version 0 with bitmap we can't move */ 1965 return 0; 1966 } else { 1967 /* minor version 0; superblock after data */ 1968 sector_t sb_start; 1969 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 1970 sb_start &= ~(sector_t)(4*2 - 1); 1971 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 1972 if (!num_sectors || num_sectors > max_sectors) 1973 num_sectors = max_sectors; 1974 rdev->sb_start = sb_start; 1975 } 1976 sb = page_address(rdev->sb_page); 1977 sb->data_size = cpu_to_le64(num_sectors); 1978 sb->super_offset = cpu_to_le64(rdev->sb_start); 1979 sb->sb_csum = calc_sb_1_csum(sb); 1980 do { 1981 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1982 rdev->sb_page); 1983 } while (md_super_wait(rdev->mddev) < 0); 1984 return num_sectors; 1985 1986 } 1987 1988 static int 1989 super_1_allow_new_offset(struct md_rdev *rdev, 1990 unsigned long long new_offset) 1991 { 1992 /* All necessary checks on new >= old have been done */ 1993 struct bitmap *bitmap; 1994 if (new_offset >= rdev->data_offset) 1995 return 1; 1996 1997 /* with 1.0 metadata, there is no metadata to tread on 1998 * so we can always move back */ 1999 if (rdev->mddev->minor_version == 0) 2000 return 1; 2001 2002 /* otherwise we must be sure not to step on 2003 * any metadata, so stay: 2004 * 36K beyond start of superblock 2005 * beyond end of badblocks 2006 * beyond write-intent bitmap 2007 */ 2008 if (rdev->sb_start + (32+4)*2 > new_offset) 2009 return 0; 2010 bitmap = rdev->mddev->bitmap; 2011 if (bitmap && !rdev->mddev->bitmap_info.file && 2012 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2013 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2014 return 0; 2015 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2016 return 0; 2017 2018 return 1; 2019 } 2020 2021 static struct super_type super_types[] = { 2022 [0] = { 2023 .name = "0.90.0", 2024 .owner = THIS_MODULE, 2025 .load_super = super_90_load, 2026 .validate_super = super_90_validate, 2027 .sync_super = super_90_sync, 2028 .rdev_size_change = super_90_rdev_size_change, 2029 .allow_new_offset = super_90_allow_new_offset, 2030 }, 2031 [1] = { 2032 .name = "md-1", 2033 .owner = THIS_MODULE, 2034 .load_super = super_1_load, 2035 .validate_super = super_1_validate, 2036 .sync_super = super_1_sync, 2037 .rdev_size_change = super_1_rdev_size_change, 2038 .allow_new_offset = super_1_allow_new_offset, 2039 }, 2040 }; 2041 2042 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2043 { 2044 if (mddev->sync_super) { 2045 mddev->sync_super(mddev, rdev); 2046 return; 2047 } 2048 2049 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2050 2051 super_types[mddev->major_version].sync_super(mddev, rdev); 2052 } 2053 2054 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2055 { 2056 struct md_rdev *rdev, *rdev2; 2057 2058 rcu_read_lock(); 2059 rdev_for_each_rcu(rdev, mddev1) { 2060 if (test_bit(Faulty, &rdev->flags) || 2061 test_bit(Journal, &rdev->flags) || 2062 rdev->raid_disk == -1) 2063 continue; 2064 rdev_for_each_rcu(rdev2, mddev2) { 2065 if (test_bit(Faulty, &rdev2->flags) || 2066 test_bit(Journal, &rdev2->flags) || 2067 rdev2->raid_disk == -1) 2068 continue; 2069 if (rdev->bdev->bd_contains == 2070 rdev2->bdev->bd_contains) { 2071 rcu_read_unlock(); 2072 return 1; 2073 } 2074 } 2075 } 2076 rcu_read_unlock(); 2077 return 0; 2078 } 2079 2080 static LIST_HEAD(pending_raid_disks); 2081 2082 /* 2083 * Try to register data integrity profile for an mddev 2084 * 2085 * This is called when an array is started and after a disk has been kicked 2086 * from the array. It only succeeds if all working and active component devices 2087 * are integrity capable with matching profiles. 2088 */ 2089 int md_integrity_register(struct mddev *mddev) 2090 { 2091 struct md_rdev *rdev, *reference = NULL; 2092 2093 if (list_empty(&mddev->disks)) 2094 return 0; /* nothing to do */ 2095 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2096 return 0; /* shouldn't register, or already is */ 2097 rdev_for_each(rdev, mddev) { 2098 /* skip spares and non-functional disks */ 2099 if (test_bit(Faulty, &rdev->flags)) 2100 continue; 2101 if (rdev->raid_disk < 0) 2102 continue; 2103 if (!reference) { 2104 /* Use the first rdev as the reference */ 2105 reference = rdev; 2106 continue; 2107 } 2108 /* does this rdev's profile match the reference profile? */ 2109 if (blk_integrity_compare(reference->bdev->bd_disk, 2110 rdev->bdev->bd_disk) < 0) 2111 return -EINVAL; 2112 } 2113 if (!reference || !bdev_get_integrity(reference->bdev)) 2114 return 0; 2115 /* 2116 * All component devices are integrity capable and have matching 2117 * profiles, register the common profile for the md device. 2118 */ 2119 blk_integrity_register(mddev->gendisk, 2120 bdev_get_integrity(reference->bdev)); 2121 2122 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2123 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) { 2124 pr_err("md: failed to create integrity pool for %s\n", 2125 mdname(mddev)); 2126 return -EINVAL; 2127 } 2128 return 0; 2129 } 2130 EXPORT_SYMBOL(md_integrity_register); 2131 2132 /* 2133 * Attempt to add an rdev, but only if it is consistent with the current 2134 * integrity profile 2135 */ 2136 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2137 { 2138 struct blk_integrity *bi_rdev; 2139 struct blk_integrity *bi_mddev; 2140 char name[BDEVNAME_SIZE]; 2141 2142 if (!mddev->gendisk) 2143 return 0; 2144 2145 bi_rdev = bdev_get_integrity(rdev->bdev); 2146 bi_mddev = blk_get_integrity(mddev->gendisk); 2147 2148 if (!bi_mddev) /* nothing to do */ 2149 return 0; 2150 2151 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2152 pr_err("%s: incompatible integrity profile for %s\n", 2153 mdname(mddev), bdevname(rdev->bdev, name)); 2154 return -ENXIO; 2155 } 2156 2157 return 0; 2158 } 2159 EXPORT_SYMBOL(md_integrity_add_rdev); 2160 2161 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2162 { 2163 char b[BDEVNAME_SIZE]; 2164 struct kobject *ko; 2165 int err; 2166 2167 /* prevent duplicates */ 2168 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2169 return -EEXIST; 2170 2171 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2172 mddev->pers) 2173 return -EROFS; 2174 2175 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2176 if (!test_bit(Journal, &rdev->flags) && 2177 rdev->sectors && 2178 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2179 if (mddev->pers) { 2180 /* Cannot change size, so fail 2181 * If mddev->level <= 0, then we don't care 2182 * about aligning sizes (e.g. linear) 2183 */ 2184 if (mddev->level > 0) 2185 return -ENOSPC; 2186 } else 2187 mddev->dev_sectors = rdev->sectors; 2188 } 2189 2190 /* Verify rdev->desc_nr is unique. 2191 * If it is -1, assign a free number, else 2192 * check number is not in use 2193 */ 2194 rcu_read_lock(); 2195 if (rdev->desc_nr < 0) { 2196 int choice = 0; 2197 if (mddev->pers) 2198 choice = mddev->raid_disks; 2199 while (md_find_rdev_nr_rcu(mddev, choice)) 2200 choice++; 2201 rdev->desc_nr = choice; 2202 } else { 2203 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2204 rcu_read_unlock(); 2205 return -EBUSY; 2206 } 2207 } 2208 rcu_read_unlock(); 2209 if (!test_bit(Journal, &rdev->flags) && 2210 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2211 pr_warn("md: %s: array is limited to %d devices\n", 2212 mdname(mddev), mddev->max_disks); 2213 return -EBUSY; 2214 } 2215 bdevname(rdev->bdev,b); 2216 strreplace(b, '/', '!'); 2217 2218 rdev->mddev = mddev; 2219 pr_debug("md: bind<%s>\n", b); 2220 2221 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2222 goto fail; 2223 2224 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2225 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2226 /* failure here is OK */; 2227 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2228 2229 list_add_rcu(&rdev->same_set, &mddev->disks); 2230 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2231 2232 /* May as well allow recovery to be retried once */ 2233 mddev->recovery_disabled++; 2234 2235 return 0; 2236 2237 fail: 2238 pr_warn("md: failed to register dev-%s for %s\n", 2239 b, mdname(mddev)); 2240 return err; 2241 } 2242 2243 static void md_delayed_delete(struct work_struct *ws) 2244 { 2245 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2246 kobject_del(&rdev->kobj); 2247 kobject_put(&rdev->kobj); 2248 } 2249 2250 static void unbind_rdev_from_array(struct md_rdev *rdev) 2251 { 2252 char b[BDEVNAME_SIZE]; 2253 2254 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2255 list_del_rcu(&rdev->same_set); 2256 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2257 rdev->mddev = NULL; 2258 sysfs_remove_link(&rdev->kobj, "block"); 2259 sysfs_put(rdev->sysfs_state); 2260 rdev->sysfs_state = NULL; 2261 rdev->badblocks.count = 0; 2262 /* We need to delay this, otherwise we can deadlock when 2263 * writing to 'remove' to "dev/state". We also need 2264 * to delay it due to rcu usage. 2265 */ 2266 synchronize_rcu(); 2267 INIT_WORK(&rdev->del_work, md_delayed_delete); 2268 kobject_get(&rdev->kobj); 2269 queue_work(md_misc_wq, &rdev->del_work); 2270 } 2271 2272 /* 2273 * prevent the device from being mounted, repartitioned or 2274 * otherwise reused by a RAID array (or any other kernel 2275 * subsystem), by bd_claiming the device. 2276 */ 2277 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2278 { 2279 int err = 0; 2280 struct block_device *bdev; 2281 char b[BDEVNAME_SIZE]; 2282 2283 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2284 shared ? (struct md_rdev *)lock_rdev : rdev); 2285 if (IS_ERR(bdev)) { 2286 pr_warn("md: could not open %s.\n", __bdevname(dev, b)); 2287 return PTR_ERR(bdev); 2288 } 2289 rdev->bdev = bdev; 2290 return err; 2291 } 2292 2293 static void unlock_rdev(struct md_rdev *rdev) 2294 { 2295 struct block_device *bdev = rdev->bdev; 2296 rdev->bdev = NULL; 2297 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2298 } 2299 2300 void md_autodetect_dev(dev_t dev); 2301 2302 static void export_rdev(struct md_rdev *rdev) 2303 { 2304 char b[BDEVNAME_SIZE]; 2305 2306 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2307 md_rdev_clear(rdev); 2308 #ifndef MODULE 2309 if (test_bit(AutoDetected, &rdev->flags)) 2310 md_autodetect_dev(rdev->bdev->bd_dev); 2311 #endif 2312 unlock_rdev(rdev); 2313 kobject_put(&rdev->kobj); 2314 } 2315 2316 void md_kick_rdev_from_array(struct md_rdev *rdev) 2317 { 2318 unbind_rdev_from_array(rdev); 2319 export_rdev(rdev); 2320 } 2321 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2322 2323 static void export_array(struct mddev *mddev) 2324 { 2325 struct md_rdev *rdev; 2326 2327 while (!list_empty(&mddev->disks)) { 2328 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2329 same_set); 2330 md_kick_rdev_from_array(rdev); 2331 } 2332 mddev->raid_disks = 0; 2333 mddev->major_version = 0; 2334 } 2335 2336 static bool set_in_sync(struct mddev *mddev) 2337 { 2338 lockdep_assert_held(&mddev->lock); 2339 if (!mddev->in_sync) { 2340 mddev->sync_checkers++; 2341 spin_unlock(&mddev->lock); 2342 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2343 spin_lock(&mddev->lock); 2344 if (!mddev->in_sync && 2345 percpu_ref_is_zero(&mddev->writes_pending)) { 2346 mddev->in_sync = 1; 2347 /* 2348 * Ensure ->in_sync is visible before we clear 2349 * ->sync_checkers. 2350 */ 2351 smp_mb(); 2352 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2353 sysfs_notify_dirent_safe(mddev->sysfs_state); 2354 } 2355 if (--mddev->sync_checkers == 0) 2356 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2357 } 2358 if (mddev->safemode == 1) 2359 mddev->safemode = 0; 2360 return mddev->in_sync; 2361 } 2362 2363 static void sync_sbs(struct mddev *mddev, int nospares) 2364 { 2365 /* Update each superblock (in-memory image), but 2366 * if we are allowed to, skip spares which already 2367 * have the right event counter, or have one earlier 2368 * (which would mean they aren't being marked as dirty 2369 * with the rest of the array) 2370 */ 2371 struct md_rdev *rdev; 2372 rdev_for_each(rdev, mddev) { 2373 if (rdev->sb_events == mddev->events || 2374 (nospares && 2375 rdev->raid_disk < 0 && 2376 rdev->sb_events+1 == mddev->events)) { 2377 /* Don't update this superblock */ 2378 rdev->sb_loaded = 2; 2379 } else { 2380 sync_super(mddev, rdev); 2381 rdev->sb_loaded = 1; 2382 } 2383 } 2384 } 2385 2386 static bool does_sb_need_changing(struct mddev *mddev) 2387 { 2388 struct md_rdev *rdev; 2389 struct mdp_superblock_1 *sb; 2390 int role; 2391 2392 /* Find a good rdev */ 2393 rdev_for_each(rdev, mddev) 2394 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2395 break; 2396 2397 /* No good device found. */ 2398 if (!rdev) 2399 return false; 2400 2401 sb = page_address(rdev->sb_page); 2402 /* Check if a device has become faulty or a spare become active */ 2403 rdev_for_each(rdev, mddev) { 2404 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2405 /* Device activated? */ 2406 if (role == 0xffff && rdev->raid_disk >=0 && 2407 !test_bit(Faulty, &rdev->flags)) 2408 return true; 2409 /* Device turned faulty? */ 2410 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2411 return true; 2412 } 2413 2414 /* Check if any mddev parameters have changed */ 2415 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2416 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2417 (mddev->layout != le32_to_cpu(sb->layout)) || 2418 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2419 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2420 return true; 2421 2422 return false; 2423 } 2424 2425 void md_update_sb(struct mddev *mddev, int force_change) 2426 { 2427 struct md_rdev *rdev; 2428 int sync_req; 2429 int nospares = 0; 2430 int any_badblocks_changed = 0; 2431 int ret = -1; 2432 2433 if (mddev->ro) { 2434 if (force_change) 2435 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2436 return; 2437 } 2438 2439 repeat: 2440 if (mddev_is_clustered(mddev)) { 2441 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2442 force_change = 1; 2443 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2444 nospares = 1; 2445 ret = md_cluster_ops->metadata_update_start(mddev); 2446 /* Has someone else has updated the sb */ 2447 if (!does_sb_need_changing(mddev)) { 2448 if (ret == 0) 2449 md_cluster_ops->metadata_update_cancel(mddev); 2450 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2451 BIT(MD_SB_CHANGE_DEVS) | 2452 BIT(MD_SB_CHANGE_CLEAN)); 2453 return; 2454 } 2455 } 2456 2457 /* 2458 * First make sure individual recovery_offsets are correct 2459 * curr_resync_completed can only be used during recovery. 2460 * During reshape/resync it might use array-addresses rather 2461 * that device addresses. 2462 */ 2463 rdev_for_each(rdev, mddev) { 2464 if (rdev->raid_disk >= 0 && 2465 mddev->delta_disks >= 0 && 2466 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2467 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2468 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2469 !test_bit(Journal, &rdev->flags) && 2470 !test_bit(In_sync, &rdev->flags) && 2471 mddev->curr_resync_completed > rdev->recovery_offset) 2472 rdev->recovery_offset = mddev->curr_resync_completed; 2473 2474 } 2475 if (!mddev->persistent) { 2476 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2477 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2478 if (!mddev->external) { 2479 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2480 rdev_for_each(rdev, mddev) { 2481 if (rdev->badblocks.changed) { 2482 rdev->badblocks.changed = 0; 2483 ack_all_badblocks(&rdev->badblocks); 2484 md_error(mddev, rdev); 2485 } 2486 clear_bit(Blocked, &rdev->flags); 2487 clear_bit(BlockedBadBlocks, &rdev->flags); 2488 wake_up(&rdev->blocked_wait); 2489 } 2490 } 2491 wake_up(&mddev->sb_wait); 2492 return; 2493 } 2494 2495 spin_lock(&mddev->lock); 2496 2497 mddev->utime = ktime_get_real_seconds(); 2498 2499 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2500 force_change = 1; 2501 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2502 /* just a clean<-> dirty transition, possibly leave spares alone, 2503 * though if events isn't the right even/odd, we will have to do 2504 * spares after all 2505 */ 2506 nospares = 1; 2507 if (force_change) 2508 nospares = 0; 2509 if (mddev->degraded) 2510 /* If the array is degraded, then skipping spares is both 2511 * dangerous and fairly pointless. 2512 * Dangerous because a device that was removed from the array 2513 * might have a event_count that still looks up-to-date, 2514 * so it can be re-added without a resync. 2515 * Pointless because if there are any spares to skip, 2516 * then a recovery will happen and soon that array won't 2517 * be degraded any more and the spare can go back to sleep then. 2518 */ 2519 nospares = 0; 2520 2521 sync_req = mddev->in_sync; 2522 2523 /* If this is just a dirty<->clean transition, and the array is clean 2524 * and 'events' is odd, we can roll back to the previous clean state */ 2525 if (nospares 2526 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2527 && mddev->can_decrease_events 2528 && mddev->events != 1) { 2529 mddev->events--; 2530 mddev->can_decrease_events = 0; 2531 } else { 2532 /* otherwise we have to go forward and ... */ 2533 mddev->events ++; 2534 mddev->can_decrease_events = nospares; 2535 } 2536 2537 /* 2538 * This 64-bit counter should never wrap. 2539 * Either we are in around ~1 trillion A.C., assuming 2540 * 1 reboot per second, or we have a bug... 2541 */ 2542 WARN_ON(mddev->events == 0); 2543 2544 rdev_for_each(rdev, mddev) { 2545 if (rdev->badblocks.changed) 2546 any_badblocks_changed++; 2547 if (test_bit(Faulty, &rdev->flags)) 2548 set_bit(FaultRecorded, &rdev->flags); 2549 } 2550 2551 sync_sbs(mddev, nospares); 2552 spin_unlock(&mddev->lock); 2553 2554 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2555 mdname(mddev), mddev->in_sync); 2556 2557 if (mddev->queue) 2558 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2559 rewrite: 2560 bitmap_update_sb(mddev->bitmap); 2561 rdev_for_each(rdev, mddev) { 2562 char b[BDEVNAME_SIZE]; 2563 2564 if (rdev->sb_loaded != 1) 2565 continue; /* no noise on spare devices */ 2566 2567 if (!test_bit(Faulty, &rdev->flags)) { 2568 md_super_write(mddev,rdev, 2569 rdev->sb_start, rdev->sb_size, 2570 rdev->sb_page); 2571 pr_debug("md: (write) %s's sb offset: %llu\n", 2572 bdevname(rdev->bdev, b), 2573 (unsigned long long)rdev->sb_start); 2574 rdev->sb_events = mddev->events; 2575 if (rdev->badblocks.size) { 2576 md_super_write(mddev, rdev, 2577 rdev->badblocks.sector, 2578 rdev->badblocks.size << 9, 2579 rdev->bb_page); 2580 rdev->badblocks.size = 0; 2581 } 2582 2583 } else 2584 pr_debug("md: %s (skipping faulty)\n", 2585 bdevname(rdev->bdev, b)); 2586 2587 if (mddev->level == LEVEL_MULTIPATH) 2588 /* only need to write one superblock... */ 2589 break; 2590 } 2591 if (md_super_wait(mddev) < 0) 2592 goto rewrite; 2593 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2594 2595 if (mddev_is_clustered(mddev) && ret == 0) 2596 md_cluster_ops->metadata_update_finish(mddev); 2597 2598 if (mddev->in_sync != sync_req || 2599 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2600 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2601 /* have to write it out again */ 2602 goto repeat; 2603 wake_up(&mddev->sb_wait); 2604 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2605 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2606 2607 rdev_for_each(rdev, mddev) { 2608 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2609 clear_bit(Blocked, &rdev->flags); 2610 2611 if (any_badblocks_changed) 2612 ack_all_badblocks(&rdev->badblocks); 2613 clear_bit(BlockedBadBlocks, &rdev->flags); 2614 wake_up(&rdev->blocked_wait); 2615 } 2616 } 2617 EXPORT_SYMBOL(md_update_sb); 2618 2619 static int add_bound_rdev(struct md_rdev *rdev) 2620 { 2621 struct mddev *mddev = rdev->mddev; 2622 int err = 0; 2623 bool add_journal = test_bit(Journal, &rdev->flags); 2624 2625 if (!mddev->pers->hot_remove_disk || add_journal) { 2626 /* If there is hot_add_disk but no hot_remove_disk 2627 * then added disks for geometry changes, 2628 * and should be added immediately. 2629 */ 2630 super_types[mddev->major_version]. 2631 validate_super(mddev, rdev); 2632 if (add_journal) 2633 mddev_suspend(mddev); 2634 err = mddev->pers->hot_add_disk(mddev, rdev); 2635 if (add_journal) 2636 mddev_resume(mddev); 2637 if (err) { 2638 md_kick_rdev_from_array(rdev); 2639 return err; 2640 } 2641 } 2642 sysfs_notify_dirent_safe(rdev->sysfs_state); 2643 2644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2645 if (mddev->degraded) 2646 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2647 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2648 md_new_event(mddev); 2649 md_wakeup_thread(mddev->thread); 2650 return 0; 2651 } 2652 2653 /* words written to sysfs files may, or may not, be \n terminated. 2654 * We want to accept with case. For this we use cmd_match. 2655 */ 2656 static int cmd_match(const char *cmd, const char *str) 2657 { 2658 /* See if cmd, written into a sysfs file, matches 2659 * str. They must either be the same, or cmd can 2660 * have a trailing newline 2661 */ 2662 while (*cmd && *str && *cmd == *str) { 2663 cmd++; 2664 str++; 2665 } 2666 if (*cmd == '\n') 2667 cmd++; 2668 if (*str || *cmd) 2669 return 0; 2670 return 1; 2671 } 2672 2673 struct rdev_sysfs_entry { 2674 struct attribute attr; 2675 ssize_t (*show)(struct md_rdev *, char *); 2676 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2677 }; 2678 2679 static ssize_t 2680 state_show(struct md_rdev *rdev, char *page) 2681 { 2682 char *sep = ","; 2683 size_t len = 0; 2684 unsigned long flags = READ_ONCE(rdev->flags); 2685 2686 if (test_bit(Faulty, &flags) || 2687 (!test_bit(ExternalBbl, &flags) && 2688 rdev->badblocks.unacked_exist)) 2689 len += sprintf(page+len, "faulty%s", sep); 2690 if (test_bit(In_sync, &flags)) 2691 len += sprintf(page+len, "in_sync%s", sep); 2692 if (test_bit(Journal, &flags)) 2693 len += sprintf(page+len, "journal%s", sep); 2694 if (test_bit(WriteMostly, &flags)) 2695 len += sprintf(page+len, "write_mostly%s", sep); 2696 if (test_bit(Blocked, &flags) || 2697 (rdev->badblocks.unacked_exist 2698 && !test_bit(Faulty, &flags))) 2699 len += sprintf(page+len, "blocked%s", sep); 2700 if (!test_bit(Faulty, &flags) && 2701 !test_bit(Journal, &flags) && 2702 !test_bit(In_sync, &flags)) 2703 len += sprintf(page+len, "spare%s", sep); 2704 if (test_bit(WriteErrorSeen, &flags)) 2705 len += sprintf(page+len, "write_error%s", sep); 2706 if (test_bit(WantReplacement, &flags)) 2707 len += sprintf(page+len, "want_replacement%s", sep); 2708 if (test_bit(Replacement, &flags)) 2709 len += sprintf(page+len, "replacement%s", sep); 2710 if (test_bit(ExternalBbl, &flags)) 2711 len += sprintf(page+len, "external_bbl%s", sep); 2712 if (test_bit(FailFast, &flags)) 2713 len += sprintf(page+len, "failfast%s", sep); 2714 2715 if (len) 2716 len -= strlen(sep); 2717 2718 return len+sprintf(page+len, "\n"); 2719 } 2720 2721 static ssize_t 2722 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2723 { 2724 /* can write 2725 * faulty - simulates an error 2726 * remove - disconnects the device 2727 * writemostly - sets write_mostly 2728 * -writemostly - clears write_mostly 2729 * blocked - sets the Blocked flags 2730 * -blocked - clears the Blocked and possibly simulates an error 2731 * insync - sets Insync providing device isn't active 2732 * -insync - clear Insync for a device with a slot assigned, 2733 * so that it gets rebuilt based on bitmap 2734 * write_error - sets WriteErrorSeen 2735 * -write_error - clears WriteErrorSeen 2736 * {,-}failfast - set/clear FailFast 2737 */ 2738 int err = -EINVAL; 2739 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2740 md_error(rdev->mddev, rdev); 2741 if (test_bit(Faulty, &rdev->flags)) 2742 err = 0; 2743 else 2744 err = -EBUSY; 2745 } else if (cmd_match(buf, "remove")) { 2746 if (rdev->mddev->pers) { 2747 clear_bit(Blocked, &rdev->flags); 2748 remove_and_add_spares(rdev->mddev, rdev); 2749 } 2750 if (rdev->raid_disk >= 0) 2751 err = -EBUSY; 2752 else { 2753 struct mddev *mddev = rdev->mddev; 2754 err = 0; 2755 if (mddev_is_clustered(mddev)) 2756 err = md_cluster_ops->remove_disk(mddev, rdev); 2757 2758 if (err == 0) { 2759 md_kick_rdev_from_array(rdev); 2760 if (mddev->pers) { 2761 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2762 md_wakeup_thread(mddev->thread); 2763 } 2764 md_new_event(mddev); 2765 } 2766 } 2767 } else if (cmd_match(buf, "writemostly")) { 2768 set_bit(WriteMostly, &rdev->flags); 2769 err = 0; 2770 } else if (cmd_match(buf, "-writemostly")) { 2771 clear_bit(WriteMostly, &rdev->flags); 2772 err = 0; 2773 } else if (cmd_match(buf, "blocked")) { 2774 set_bit(Blocked, &rdev->flags); 2775 err = 0; 2776 } else if (cmd_match(buf, "-blocked")) { 2777 if (!test_bit(Faulty, &rdev->flags) && 2778 !test_bit(ExternalBbl, &rdev->flags) && 2779 rdev->badblocks.unacked_exist) { 2780 /* metadata handler doesn't understand badblocks, 2781 * so we need to fail the device 2782 */ 2783 md_error(rdev->mddev, rdev); 2784 } 2785 clear_bit(Blocked, &rdev->flags); 2786 clear_bit(BlockedBadBlocks, &rdev->flags); 2787 wake_up(&rdev->blocked_wait); 2788 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2789 md_wakeup_thread(rdev->mddev->thread); 2790 2791 err = 0; 2792 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 2793 set_bit(In_sync, &rdev->flags); 2794 err = 0; 2795 } else if (cmd_match(buf, "failfast")) { 2796 set_bit(FailFast, &rdev->flags); 2797 err = 0; 2798 } else if (cmd_match(buf, "-failfast")) { 2799 clear_bit(FailFast, &rdev->flags); 2800 err = 0; 2801 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 2802 !test_bit(Journal, &rdev->flags)) { 2803 if (rdev->mddev->pers == NULL) { 2804 clear_bit(In_sync, &rdev->flags); 2805 rdev->saved_raid_disk = rdev->raid_disk; 2806 rdev->raid_disk = -1; 2807 err = 0; 2808 } 2809 } else if (cmd_match(buf, "write_error")) { 2810 set_bit(WriteErrorSeen, &rdev->flags); 2811 err = 0; 2812 } else if (cmd_match(buf, "-write_error")) { 2813 clear_bit(WriteErrorSeen, &rdev->flags); 2814 err = 0; 2815 } else if (cmd_match(buf, "want_replacement")) { 2816 /* Any non-spare device that is not a replacement can 2817 * become want_replacement at any time, but we then need to 2818 * check if recovery is needed. 2819 */ 2820 if (rdev->raid_disk >= 0 && 2821 !test_bit(Journal, &rdev->flags) && 2822 !test_bit(Replacement, &rdev->flags)) 2823 set_bit(WantReplacement, &rdev->flags); 2824 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2825 md_wakeup_thread(rdev->mddev->thread); 2826 err = 0; 2827 } else if (cmd_match(buf, "-want_replacement")) { 2828 /* Clearing 'want_replacement' is always allowed. 2829 * Once replacements starts it is too late though. 2830 */ 2831 err = 0; 2832 clear_bit(WantReplacement, &rdev->flags); 2833 } else if (cmd_match(buf, "replacement")) { 2834 /* Can only set a device as a replacement when array has not 2835 * yet been started. Once running, replacement is automatic 2836 * from spares, or by assigning 'slot'. 2837 */ 2838 if (rdev->mddev->pers) 2839 err = -EBUSY; 2840 else { 2841 set_bit(Replacement, &rdev->flags); 2842 err = 0; 2843 } 2844 } else if (cmd_match(buf, "-replacement")) { 2845 /* Similarly, can only clear Replacement before start */ 2846 if (rdev->mddev->pers) 2847 err = -EBUSY; 2848 else { 2849 clear_bit(Replacement, &rdev->flags); 2850 err = 0; 2851 } 2852 } else if (cmd_match(buf, "re-add")) { 2853 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) { 2854 /* clear_bit is performed _after_ all the devices 2855 * have their local Faulty bit cleared. If any writes 2856 * happen in the meantime in the local node, they 2857 * will land in the local bitmap, which will be synced 2858 * by this node eventually 2859 */ 2860 if (!mddev_is_clustered(rdev->mddev) || 2861 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 2862 clear_bit(Faulty, &rdev->flags); 2863 err = add_bound_rdev(rdev); 2864 } 2865 } else 2866 err = -EBUSY; 2867 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 2868 set_bit(ExternalBbl, &rdev->flags); 2869 rdev->badblocks.shift = 0; 2870 err = 0; 2871 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 2872 clear_bit(ExternalBbl, &rdev->flags); 2873 err = 0; 2874 } 2875 if (!err) 2876 sysfs_notify_dirent_safe(rdev->sysfs_state); 2877 return err ? err : len; 2878 } 2879 static struct rdev_sysfs_entry rdev_state = 2880 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 2881 2882 static ssize_t 2883 errors_show(struct md_rdev *rdev, char *page) 2884 { 2885 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 2886 } 2887 2888 static ssize_t 2889 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 2890 { 2891 unsigned int n; 2892 int rv; 2893 2894 rv = kstrtouint(buf, 10, &n); 2895 if (rv < 0) 2896 return rv; 2897 atomic_set(&rdev->corrected_errors, n); 2898 return len; 2899 } 2900 static struct rdev_sysfs_entry rdev_errors = 2901 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 2902 2903 static ssize_t 2904 slot_show(struct md_rdev *rdev, char *page) 2905 { 2906 if (test_bit(Journal, &rdev->flags)) 2907 return sprintf(page, "journal\n"); 2908 else if (rdev->raid_disk < 0) 2909 return sprintf(page, "none\n"); 2910 else 2911 return sprintf(page, "%d\n", rdev->raid_disk); 2912 } 2913 2914 static ssize_t 2915 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 2916 { 2917 int slot; 2918 int err; 2919 2920 if (test_bit(Journal, &rdev->flags)) 2921 return -EBUSY; 2922 if (strncmp(buf, "none", 4)==0) 2923 slot = -1; 2924 else { 2925 err = kstrtouint(buf, 10, (unsigned int *)&slot); 2926 if (err < 0) 2927 return err; 2928 } 2929 if (rdev->mddev->pers && slot == -1) { 2930 /* Setting 'slot' on an active array requires also 2931 * updating the 'rd%d' link, and communicating 2932 * with the personality with ->hot_*_disk. 2933 * For now we only support removing 2934 * failed/spare devices. This normally happens automatically, 2935 * but not when the metadata is externally managed. 2936 */ 2937 if (rdev->raid_disk == -1) 2938 return -EEXIST; 2939 /* personality does all needed checks */ 2940 if (rdev->mddev->pers->hot_remove_disk == NULL) 2941 return -EINVAL; 2942 clear_bit(Blocked, &rdev->flags); 2943 remove_and_add_spares(rdev->mddev, rdev); 2944 if (rdev->raid_disk >= 0) 2945 return -EBUSY; 2946 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 2947 md_wakeup_thread(rdev->mddev->thread); 2948 } else if (rdev->mddev->pers) { 2949 /* Activating a spare .. or possibly reactivating 2950 * if we ever get bitmaps working here. 2951 */ 2952 int err; 2953 2954 if (rdev->raid_disk != -1) 2955 return -EBUSY; 2956 2957 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 2958 return -EBUSY; 2959 2960 if (rdev->mddev->pers->hot_add_disk == NULL) 2961 return -EINVAL; 2962 2963 if (slot >= rdev->mddev->raid_disks && 2964 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2965 return -ENOSPC; 2966 2967 rdev->raid_disk = slot; 2968 if (test_bit(In_sync, &rdev->flags)) 2969 rdev->saved_raid_disk = slot; 2970 else 2971 rdev->saved_raid_disk = -1; 2972 clear_bit(In_sync, &rdev->flags); 2973 clear_bit(Bitmap_sync, &rdev->flags); 2974 err = rdev->mddev->pers-> 2975 hot_add_disk(rdev->mddev, rdev); 2976 if (err) { 2977 rdev->raid_disk = -1; 2978 return err; 2979 } else 2980 sysfs_notify_dirent_safe(rdev->sysfs_state); 2981 if (sysfs_link_rdev(rdev->mddev, rdev)) 2982 /* failure here is OK */; 2983 /* don't wakeup anyone, leave that to userspace. */ 2984 } else { 2985 if (slot >= rdev->mddev->raid_disks && 2986 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 2987 return -ENOSPC; 2988 rdev->raid_disk = slot; 2989 /* assume it is working */ 2990 clear_bit(Faulty, &rdev->flags); 2991 clear_bit(WriteMostly, &rdev->flags); 2992 set_bit(In_sync, &rdev->flags); 2993 sysfs_notify_dirent_safe(rdev->sysfs_state); 2994 } 2995 return len; 2996 } 2997 2998 static struct rdev_sysfs_entry rdev_slot = 2999 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3000 3001 static ssize_t 3002 offset_show(struct md_rdev *rdev, char *page) 3003 { 3004 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3005 } 3006 3007 static ssize_t 3008 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3009 { 3010 unsigned long long offset; 3011 if (kstrtoull(buf, 10, &offset) < 0) 3012 return -EINVAL; 3013 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3014 return -EBUSY; 3015 if (rdev->sectors && rdev->mddev->external) 3016 /* Must set offset before size, so overlap checks 3017 * can be sane */ 3018 return -EBUSY; 3019 rdev->data_offset = offset; 3020 rdev->new_data_offset = offset; 3021 return len; 3022 } 3023 3024 static struct rdev_sysfs_entry rdev_offset = 3025 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3026 3027 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3028 { 3029 return sprintf(page, "%llu\n", 3030 (unsigned long long)rdev->new_data_offset); 3031 } 3032 3033 static ssize_t new_offset_store(struct md_rdev *rdev, 3034 const char *buf, size_t len) 3035 { 3036 unsigned long long new_offset; 3037 struct mddev *mddev = rdev->mddev; 3038 3039 if (kstrtoull(buf, 10, &new_offset) < 0) 3040 return -EINVAL; 3041 3042 if (mddev->sync_thread || 3043 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3044 return -EBUSY; 3045 if (new_offset == rdev->data_offset) 3046 /* reset is always permitted */ 3047 ; 3048 else if (new_offset > rdev->data_offset) { 3049 /* must not push array size beyond rdev_sectors */ 3050 if (new_offset - rdev->data_offset 3051 + mddev->dev_sectors > rdev->sectors) 3052 return -E2BIG; 3053 } 3054 /* Metadata worries about other space details. */ 3055 3056 /* decreasing the offset is inconsistent with a backwards 3057 * reshape. 3058 */ 3059 if (new_offset < rdev->data_offset && 3060 mddev->reshape_backwards) 3061 return -EINVAL; 3062 /* Increasing offset is inconsistent with forwards 3063 * reshape. reshape_direction should be set to 3064 * 'backwards' first. 3065 */ 3066 if (new_offset > rdev->data_offset && 3067 !mddev->reshape_backwards) 3068 return -EINVAL; 3069 3070 if (mddev->pers && mddev->persistent && 3071 !super_types[mddev->major_version] 3072 .allow_new_offset(rdev, new_offset)) 3073 return -E2BIG; 3074 rdev->new_data_offset = new_offset; 3075 if (new_offset > rdev->data_offset) 3076 mddev->reshape_backwards = 1; 3077 else if (new_offset < rdev->data_offset) 3078 mddev->reshape_backwards = 0; 3079 3080 return len; 3081 } 3082 static struct rdev_sysfs_entry rdev_new_offset = 3083 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3084 3085 static ssize_t 3086 rdev_size_show(struct md_rdev *rdev, char *page) 3087 { 3088 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3089 } 3090 3091 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3092 { 3093 /* check if two start/length pairs overlap */ 3094 if (s1+l1 <= s2) 3095 return 0; 3096 if (s2+l2 <= s1) 3097 return 0; 3098 return 1; 3099 } 3100 3101 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3102 { 3103 unsigned long long blocks; 3104 sector_t new; 3105 3106 if (kstrtoull(buf, 10, &blocks) < 0) 3107 return -EINVAL; 3108 3109 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3110 return -EINVAL; /* sector conversion overflow */ 3111 3112 new = blocks * 2; 3113 if (new != blocks * 2) 3114 return -EINVAL; /* unsigned long long to sector_t overflow */ 3115 3116 *sectors = new; 3117 return 0; 3118 } 3119 3120 static ssize_t 3121 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3122 { 3123 struct mddev *my_mddev = rdev->mddev; 3124 sector_t oldsectors = rdev->sectors; 3125 sector_t sectors; 3126 3127 if (test_bit(Journal, &rdev->flags)) 3128 return -EBUSY; 3129 if (strict_blocks_to_sectors(buf, §ors) < 0) 3130 return -EINVAL; 3131 if (rdev->data_offset != rdev->new_data_offset) 3132 return -EINVAL; /* too confusing */ 3133 if (my_mddev->pers && rdev->raid_disk >= 0) { 3134 if (my_mddev->persistent) { 3135 sectors = super_types[my_mddev->major_version]. 3136 rdev_size_change(rdev, sectors); 3137 if (!sectors) 3138 return -EBUSY; 3139 } else if (!sectors) 3140 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3141 rdev->data_offset; 3142 if (!my_mddev->pers->resize) 3143 /* Cannot change size for RAID0 or Linear etc */ 3144 return -EINVAL; 3145 } 3146 if (sectors < my_mddev->dev_sectors) 3147 return -EINVAL; /* component must fit device */ 3148 3149 rdev->sectors = sectors; 3150 if (sectors > oldsectors && my_mddev->external) { 3151 /* Need to check that all other rdevs with the same 3152 * ->bdev do not overlap. 'rcu' is sufficient to walk 3153 * the rdev lists safely. 3154 * This check does not provide a hard guarantee, it 3155 * just helps avoid dangerous mistakes. 3156 */ 3157 struct mddev *mddev; 3158 int overlap = 0; 3159 struct list_head *tmp; 3160 3161 rcu_read_lock(); 3162 for_each_mddev(mddev, tmp) { 3163 struct md_rdev *rdev2; 3164 3165 rdev_for_each(rdev2, mddev) 3166 if (rdev->bdev == rdev2->bdev && 3167 rdev != rdev2 && 3168 overlaps(rdev->data_offset, rdev->sectors, 3169 rdev2->data_offset, 3170 rdev2->sectors)) { 3171 overlap = 1; 3172 break; 3173 } 3174 if (overlap) { 3175 mddev_put(mddev); 3176 break; 3177 } 3178 } 3179 rcu_read_unlock(); 3180 if (overlap) { 3181 /* Someone else could have slipped in a size 3182 * change here, but doing so is just silly. 3183 * We put oldsectors back because we *know* it is 3184 * safe, and trust userspace not to race with 3185 * itself 3186 */ 3187 rdev->sectors = oldsectors; 3188 return -EBUSY; 3189 } 3190 } 3191 return len; 3192 } 3193 3194 static struct rdev_sysfs_entry rdev_size = 3195 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3196 3197 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3198 { 3199 unsigned long long recovery_start = rdev->recovery_offset; 3200 3201 if (test_bit(In_sync, &rdev->flags) || 3202 recovery_start == MaxSector) 3203 return sprintf(page, "none\n"); 3204 3205 return sprintf(page, "%llu\n", recovery_start); 3206 } 3207 3208 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3209 { 3210 unsigned long long recovery_start; 3211 3212 if (cmd_match(buf, "none")) 3213 recovery_start = MaxSector; 3214 else if (kstrtoull(buf, 10, &recovery_start)) 3215 return -EINVAL; 3216 3217 if (rdev->mddev->pers && 3218 rdev->raid_disk >= 0) 3219 return -EBUSY; 3220 3221 rdev->recovery_offset = recovery_start; 3222 if (recovery_start == MaxSector) 3223 set_bit(In_sync, &rdev->flags); 3224 else 3225 clear_bit(In_sync, &rdev->flags); 3226 return len; 3227 } 3228 3229 static struct rdev_sysfs_entry rdev_recovery_start = 3230 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3231 3232 /* sysfs access to bad-blocks list. 3233 * We present two files. 3234 * 'bad-blocks' lists sector numbers and lengths of ranges that 3235 * are recorded as bad. The list is truncated to fit within 3236 * the one-page limit of sysfs. 3237 * Writing "sector length" to this file adds an acknowledged 3238 * bad block list. 3239 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3240 * been acknowledged. Writing to this file adds bad blocks 3241 * without acknowledging them. This is largely for testing. 3242 */ 3243 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3244 { 3245 return badblocks_show(&rdev->badblocks, page, 0); 3246 } 3247 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3248 { 3249 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3250 /* Maybe that ack was all we needed */ 3251 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3252 wake_up(&rdev->blocked_wait); 3253 return rv; 3254 } 3255 static struct rdev_sysfs_entry rdev_bad_blocks = 3256 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3257 3258 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3259 { 3260 return badblocks_show(&rdev->badblocks, page, 1); 3261 } 3262 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3263 { 3264 return badblocks_store(&rdev->badblocks, page, len, 1); 3265 } 3266 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3267 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3268 3269 static ssize_t 3270 ppl_sector_show(struct md_rdev *rdev, char *page) 3271 { 3272 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3273 } 3274 3275 static ssize_t 3276 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3277 { 3278 unsigned long long sector; 3279 3280 if (kstrtoull(buf, 10, §or) < 0) 3281 return -EINVAL; 3282 if (sector != (sector_t)sector) 3283 return -EINVAL; 3284 3285 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3286 rdev->raid_disk >= 0) 3287 return -EBUSY; 3288 3289 if (rdev->mddev->persistent) { 3290 if (rdev->mddev->major_version == 0) 3291 return -EINVAL; 3292 if ((sector > rdev->sb_start && 3293 sector - rdev->sb_start > S16_MAX) || 3294 (sector < rdev->sb_start && 3295 rdev->sb_start - sector > -S16_MIN)) 3296 return -EINVAL; 3297 rdev->ppl.offset = sector - rdev->sb_start; 3298 } else if (!rdev->mddev->external) { 3299 return -EBUSY; 3300 } 3301 rdev->ppl.sector = sector; 3302 return len; 3303 } 3304 3305 static struct rdev_sysfs_entry rdev_ppl_sector = 3306 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3307 3308 static ssize_t 3309 ppl_size_show(struct md_rdev *rdev, char *page) 3310 { 3311 return sprintf(page, "%u\n", rdev->ppl.size); 3312 } 3313 3314 static ssize_t 3315 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3316 { 3317 unsigned int size; 3318 3319 if (kstrtouint(buf, 10, &size) < 0) 3320 return -EINVAL; 3321 3322 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3323 rdev->raid_disk >= 0) 3324 return -EBUSY; 3325 3326 if (rdev->mddev->persistent) { 3327 if (rdev->mddev->major_version == 0) 3328 return -EINVAL; 3329 if (size > U16_MAX) 3330 return -EINVAL; 3331 } else if (!rdev->mddev->external) { 3332 return -EBUSY; 3333 } 3334 rdev->ppl.size = size; 3335 return len; 3336 } 3337 3338 static struct rdev_sysfs_entry rdev_ppl_size = 3339 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3340 3341 static struct attribute *rdev_default_attrs[] = { 3342 &rdev_state.attr, 3343 &rdev_errors.attr, 3344 &rdev_slot.attr, 3345 &rdev_offset.attr, 3346 &rdev_new_offset.attr, 3347 &rdev_size.attr, 3348 &rdev_recovery_start.attr, 3349 &rdev_bad_blocks.attr, 3350 &rdev_unack_bad_blocks.attr, 3351 &rdev_ppl_sector.attr, 3352 &rdev_ppl_size.attr, 3353 NULL, 3354 }; 3355 static ssize_t 3356 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3357 { 3358 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3359 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3360 3361 if (!entry->show) 3362 return -EIO; 3363 if (!rdev->mddev) 3364 return -EBUSY; 3365 return entry->show(rdev, page); 3366 } 3367 3368 static ssize_t 3369 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3370 const char *page, size_t length) 3371 { 3372 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3373 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3374 ssize_t rv; 3375 struct mddev *mddev = rdev->mddev; 3376 3377 if (!entry->store) 3378 return -EIO; 3379 if (!capable(CAP_SYS_ADMIN)) 3380 return -EACCES; 3381 rv = mddev ? mddev_lock(mddev): -EBUSY; 3382 if (!rv) { 3383 if (rdev->mddev == NULL) 3384 rv = -EBUSY; 3385 else 3386 rv = entry->store(rdev, page, length); 3387 mddev_unlock(mddev); 3388 } 3389 return rv; 3390 } 3391 3392 static void rdev_free(struct kobject *ko) 3393 { 3394 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3395 kfree(rdev); 3396 } 3397 static const struct sysfs_ops rdev_sysfs_ops = { 3398 .show = rdev_attr_show, 3399 .store = rdev_attr_store, 3400 }; 3401 static struct kobj_type rdev_ktype = { 3402 .release = rdev_free, 3403 .sysfs_ops = &rdev_sysfs_ops, 3404 .default_attrs = rdev_default_attrs, 3405 }; 3406 3407 int md_rdev_init(struct md_rdev *rdev) 3408 { 3409 rdev->desc_nr = -1; 3410 rdev->saved_raid_disk = -1; 3411 rdev->raid_disk = -1; 3412 rdev->flags = 0; 3413 rdev->data_offset = 0; 3414 rdev->new_data_offset = 0; 3415 rdev->sb_events = 0; 3416 rdev->last_read_error = 0; 3417 rdev->sb_loaded = 0; 3418 rdev->bb_page = NULL; 3419 atomic_set(&rdev->nr_pending, 0); 3420 atomic_set(&rdev->read_errors, 0); 3421 atomic_set(&rdev->corrected_errors, 0); 3422 3423 INIT_LIST_HEAD(&rdev->same_set); 3424 init_waitqueue_head(&rdev->blocked_wait); 3425 3426 /* Add space to store bad block list. 3427 * This reserves the space even on arrays where it cannot 3428 * be used - I wonder if that matters 3429 */ 3430 return badblocks_init(&rdev->badblocks, 0); 3431 } 3432 EXPORT_SYMBOL_GPL(md_rdev_init); 3433 /* 3434 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3435 * 3436 * mark the device faulty if: 3437 * 3438 * - the device is nonexistent (zero size) 3439 * - the device has no valid superblock 3440 * 3441 * a faulty rdev _never_ has rdev->sb set. 3442 */ 3443 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3444 { 3445 char b[BDEVNAME_SIZE]; 3446 int err; 3447 struct md_rdev *rdev; 3448 sector_t size; 3449 3450 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3451 if (!rdev) 3452 return ERR_PTR(-ENOMEM); 3453 3454 err = md_rdev_init(rdev); 3455 if (err) 3456 goto abort_free; 3457 err = alloc_disk_sb(rdev); 3458 if (err) 3459 goto abort_free; 3460 3461 err = lock_rdev(rdev, newdev, super_format == -2); 3462 if (err) 3463 goto abort_free; 3464 3465 kobject_init(&rdev->kobj, &rdev_ktype); 3466 3467 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3468 if (!size) { 3469 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3470 bdevname(rdev->bdev,b)); 3471 err = -EINVAL; 3472 goto abort_free; 3473 } 3474 3475 if (super_format >= 0) { 3476 err = super_types[super_format]. 3477 load_super(rdev, NULL, super_minor); 3478 if (err == -EINVAL) { 3479 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3480 bdevname(rdev->bdev,b), 3481 super_format, super_minor); 3482 goto abort_free; 3483 } 3484 if (err < 0) { 3485 pr_warn("md: could not read %s's sb, not importing!\n", 3486 bdevname(rdev->bdev,b)); 3487 goto abort_free; 3488 } 3489 } 3490 3491 return rdev; 3492 3493 abort_free: 3494 if (rdev->bdev) 3495 unlock_rdev(rdev); 3496 md_rdev_clear(rdev); 3497 kfree(rdev); 3498 return ERR_PTR(err); 3499 } 3500 3501 /* 3502 * Check a full RAID array for plausibility 3503 */ 3504 3505 static void analyze_sbs(struct mddev *mddev) 3506 { 3507 int i; 3508 struct md_rdev *rdev, *freshest, *tmp; 3509 char b[BDEVNAME_SIZE]; 3510 3511 freshest = NULL; 3512 rdev_for_each_safe(rdev, tmp, mddev) 3513 switch (super_types[mddev->major_version]. 3514 load_super(rdev, freshest, mddev->minor_version)) { 3515 case 1: 3516 freshest = rdev; 3517 break; 3518 case 0: 3519 break; 3520 default: 3521 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3522 bdevname(rdev->bdev,b)); 3523 md_kick_rdev_from_array(rdev); 3524 } 3525 3526 super_types[mddev->major_version]. 3527 validate_super(mddev, freshest); 3528 3529 i = 0; 3530 rdev_for_each_safe(rdev, tmp, mddev) { 3531 if (mddev->max_disks && 3532 (rdev->desc_nr >= mddev->max_disks || 3533 i > mddev->max_disks)) { 3534 pr_warn("md: %s: %s: only %d devices permitted\n", 3535 mdname(mddev), bdevname(rdev->bdev, b), 3536 mddev->max_disks); 3537 md_kick_rdev_from_array(rdev); 3538 continue; 3539 } 3540 if (rdev != freshest) { 3541 if (super_types[mddev->major_version]. 3542 validate_super(mddev, rdev)) { 3543 pr_warn("md: kicking non-fresh %s from array!\n", 3544 bdevname(rdev->bdev,b)); 3545 md_kick_rdev_from_array(rdev); 3546 continue; 3547 } 3548 } 3549 if (mddev->level == LEVEL_MULTIPATH) { 3550 rdev->desc_nr = i++; 3551 rdev->raid_disk = rdev->desc_nr; 3552 set_bit(In_sync, &rdev->flags); 3553 } else if (rdev->raid_disk >= 3554 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3555 !test_bit(Journal, &rdev->flags)) { 3556 rdev->raid_disk = -1; 3557 clear_bit(In_sync, &rdev->flags); 3558 } 3559 } 3560 } 3561 3562 /* Read a fixed-point number. 3563 * Numbers in sysfs attributes should be in "standard" units where 3564 * possible, so time should be in seconds. 3565 * However we internally use a a much smaller unit such as 3566 * milliseconds or jiffies. 3567 * This function takes a decimal number with a possible fractional 3568 * component, and produces an integer which is the result of 3569 * multiplying that number by 10^'scale'. 3570 * all without any floating-point arithmetic. 3571 */ 3572 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3573 { 3574 unsigned long result = 0; 3575 long decimals = -1; 3576 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3577 if (*cp == '.') 3578 decimals = 0; 3579 else if (decimals < scale) { 3580 unsigned int value; 3581 value = *cp - '0'; 3582 result = result * 10 + value; 3583 if (decimals >= 0) 3584 decimals++; 3585 } 3586 cp++; 3587 } 3588 if (*cp == '\n') 3589 cp++; 3590 if (*cp) 3591 return -EINVAL; 3592 if (decimals < 0) 3593 decimals = 0; 3594 while (decimals < scale) { 3595 result *= 10; 3596 decimals ++; 3597 } 3598 *res = result; 3599 return 0; 3600 } 3601 3602 static ssize_t 3603 safe_delay_show(struct mddev *mddev, char *page) 3604 { 3605 int msec = (mddev->safemode_delay*1000)/HZ; 3606 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3607 } 3608 static ssize_t 3609 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3610 { 3611 unsigned long msec; 3612 3613 if (mddev_is_clustered(mddev)) { 3614 pr_warn("md: Safemode is disabled for clustered mode\n"); 3615 return -EINVAL; 3616 } 3617 3618 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3619 return -EINVAL; 3620 if (msec == 0) 3621 mddev->safemode_delay = 0; 3622 else { 3623 unsigned long old_delay = mddev->safemode_delay; 3624 unsigned long new_delay = (msec*HZ)/1000; 3625 3626 if (new_delay == 0) 3627 new_delay = 1; 3628 mddev->safemode_delay = new_delay; 3629 if (new_delay < old_delay || old_delay == 0) 3630 mod_timer(&mddev->safemode_timer, jiffies+1); 3631 } 3632 return len; 3633 } 3634 static struct md_sysfs_entry md_safe_delay = 3635 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3636 3637 static ssize_t 3638 level_show(struct mddev *mddev, char *page) 3639 { 3640 struct md_personality *p; 3641 int ret; 3642 spin_lock(&mddev->lock); 3643 p = mddev->pers; 3644 if (p) 3645 ret = sprintf(page, "%s\n", p->name); 3646 else if (mddev->clevel[0]) 3647 ret = sprintf(page, "%s\n", mddev->clevel); 3648 else if (mddev->level != LEVEL_NONE) 3649 ret = sprintf(page, "%d\n", mddev->level); 3650 else 3651 ret = 0; 3652 spin_unlock(&mddev->lock); 3653 return ret; 3654 } 3655 3656 static ssize_t 3657 level_store(struct mddev *mddev, const char *buf, size_t len) 3658 { 3659 char clevel[16]; 3660 ssize_t rv; 3661 size_t slen = len; 3662 struct md_personality *pers, *oldpers; 3663 long level; 3664 void *priv, *oldpriv; 3665 struct md_rdev *rdev; 3666 3667 if (slen == 0 || slen >= sizeof(clevel)) 3668 return -EINVAL; 3669 3670 rv = mddev_lock(mddev); 3671 if (rv) 3672 return rv; 3673 3674 if (mddev->pers == NULL) { 3675 strncpy(mddev->clevel, buf, slen); 3676 if (mddev->clevel[slen-1] == '\n') 3677 slen--; 3678 mddev->clevel[slen] = 0; 3679 mddev->level = LEVEL_NONE; 3680 rv = len; 3681 goto out_unlock; 3682 } 3683 rv = -EROFS; 3684 if (mddev->ro) 3685 goto out_unlock; 3686 3687 /* request to change the personality. Need to ensure: 3688 * - array is not engaged in resync/recovery/reshape 3689 * - old personality can be suspended 3690 * - new personality will access other array. 3691 */ 3692 3693 rv = -EBUSY; 3694 if (mddev->sync_thread || 3695 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3696 mddev->reshape_position != MaxSector || 3697 mddev->sysfs_active) 3698 goto out_unlock; 3699 3700 rv = -EINVAL; 3701 if (!mddev->pers->quiesce) { 3702 pr_warn("md: %s: %s does not support online personality change\n", 3703 mdname(mddev), mddev->pers->name); 3704 goto out_unlock; 3705 } 3706 3707 /* Now find the new personality */ 3708 strncpy(clevel, buf, slen); 3709 if (clevel[slen-1] == '\n') 3710 slen--; 3711 clevel[slen] = 0; 3712 if (kstrtol(clevel, 10, &level)) 3713 level = LEVEL_NONE; 3714 3715 if (request_module("md-%s", clevel) != 0) 3716 request_module("md-level-%s", clevel); 3717 spin_lock(&pers_lock); 3718 pers = find_pers(level, clevel); 3719 if (!pers || !try_module_get(pers->owner)) { 3720 spin_unlock(&pers_lock); 3721 pr_warn("md: personality %s not loaded\n", clevel); 3722 rv = -EINVAL; 3723 goto out_unlock; 3724 } 3725 spin_unlock(&pers_lock); 3726 3727 if (pers == mddev->pers) { 3728 /* Nothing to do! */ 3729 module_put(pers->owner); 3730 rv = len; 3731 goto out_unlock; 3732 } 3733 if (!pers->takeover) { 3734 module_put(pers->owner); 3735 pr_warn("md: %s: %s does not support personality takeover\n", 3736 mdname(mddev), clevel); 3737 rv = -EINVAL; 3738 goto out_unlock; 3739 } 3740 3741 rdev_for_each(rdev, mddev) 3742 rdev->new_raid_disk = rdev->raid_disk; 3743 3744 /* ->takeover must set new_* and/or delta_disks 3745 * if it succeeds, and may set them when it fails. 3746 */ 3747 priv = pers->takeover(mddev); 3748 if (IS_ERR(priv)) { 3749 mddev->new_level = mddev->level; 3750 mddev->new_layout = mddev->layout; 3751 mddev->new_chunk_sectors = mddev->chunk_sectors; 3752 mddev->raid_disks -= mddev->delta_disks; 3753 mddev->delta_disks = 0; 3754 mddev->reshape_backwards = 0; 3755 module_put(pers->owner); 3756 pr_warn("md: %s: %s would not accept array\n", 3757 mdname(mddev), clevel); 3758 rv = PTR_ERR(priv); 3759 goto out_unlock; 3760 } 3761 3762 /* Looks like we have a winner */ 3763 mddev_suspend(mddev); 3764 mddev_detach(mddev); 3765 3766 spin_lock(&mddev->lock); 3767 oldpers = mddev->pers; 3768 oldpriv = mddev->private; 3769 mddev->pers = pers; 3770 mddev->private = priv; 3771 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3772 mddev->level = mddev->new_level; 3773 mddev->layout = mddev->new_layout; 3774 mddev->chunk_sectors = mddev->new_chunk_sectors; 3775 mddev->delta_disks = 0; 3776 mddev->reshape_backwards = 0; 3777 mddev->degraded = 0; 3778 spin_unlock(&mddev->lock); 3779 3780 if (oldpers->sync_request == NULL && 3781 mddev->external) { 3782 /* We are converting from a no-redundancy array 3783 * to a redundancy array and metadata is managed 3784 * externally so we need to be sure that writes 3785 * won't block due to a need to transition 3786 * clean->dirty 3787 * until external management is started. 3788 */ 3789 mddev->in_sync = 0; 3790 mddev->safemode_delay = 0; 3791 mddev->safemode = 0; 3792 } 3793 3794 oldpers->free(mddev, oldpriv); 3795 3796 if (oldpers->sync_request == NULL && 3797 pers->sync_request != NULL) { 3798 /* need to add the md_redundancy_group */ 3799 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 3800 pr_warn("md: cannot register extra attributes for %s\n", 3801 mdname(mddev)); 3802 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 3803 } 3804 if (oldpers->sync_request != NULL && 3805 pers->sync_request == NULL) { 3806 /* need to remove the md_redundancy_group */ 3807 if (mddev->to_remove == NULL) 3808 mddev->to_remove = &md_redundancy_group; 3809 } 3810 3811 module_put(oldpers->owner); 3812 3813 rdev_for_each(rdev, mddev) { 3814 if (rdev->raid_disk < 0) 3815 continue; 3816 if (rdev->new_raid_disk >= mddev->raid_disks) 3817 rdev->new_raid_disk = -1; 3818 if (rdev->new_raid_disk == rdev->raid_disk) 3819 continue; 3820 sysfs_unlink_rdev(mddev, rdev); 3821 } 3822 rdev_for_each(rdev, mddev) { 3823 if (rdev->raid_disk < 0) 3824 continue; 3825 if (rdev->new_raid_disk == rdev->raid_disk) 3826 continue; 3827 rdev->raid_disk = rdev->new_raid_disk; 3828 if (rdev->raid_disk < 0) 3829 clear_bit(In_sync, &rdev->flags); 3830 else { 3831 if (sysfs_link_rdev(mddev, rdev)) 3832 pr_warn("md: cannot register rd%d for %s after level change\n", 3833 rdev->raid_disk, mdname(mddev)); 3834 } 3835 } 3836 3837 if (pers->sync_request == NULL) { 3838 /* this is now an array without redundancy, so 3839 * it must always be in_sync 3840 */ 3841 mddev->in_sync = 1; 3842 del_timer_sync(&mddev->safemode_timer); 3843 } 3844 blk_set_stacking_limits(&mddev->queue->limits); 3845 pers->run(mddev); 3846 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 3847 mddev_resume(mddev); 3848 if (!mddev->thread) 3849 md_update_sb(mddev, 1); 3850 sysfs_notify(&mddev->kobj, NULL, "level"); 3851 md_new_event(mddev); 3852 rv = len; 3853 out_unlock: 3854 mddev_unlock(mddev); 3855 return rv; 3856 } 3857 3858 static struct md_sysfs_entry md_level = 3859 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 3860 3861 static ssize_t 3862 layout_show(struct mddev *mddev, char *page) 3863 { 3864 /* just a number, not meaningful for all levels */ 3865 if (mddev->reshape_position != MaxSector && 3866 mddev->layout != mddev->new_layout) 3867 return sprintf(page, "%d (%d)\n", 3868 mddev->new_layout, mddev->layout); 3869 return sprintf(page, "%d\n", mddev->layout); 3870 } 3871 3872 static ssize_t 3873 layout_store(struct mddev *mddev, const char *buf, size_t len) 3874 { 3875 unsigned int n; 3876 int err; 3877 3878 err = kstrtouint(buf, 10, &n); 3879 if (err < 0) 3880 return err; 3881 err = mddev_lock(mddev); 3882 if (err) 3883 return err; 3884 3885 if (mddev->pers) { 3886 if (mddev->pers->check_reshape == NULL) 3887 err = -EBUSY; 3888 else if (mddev->ro) 3889 err = -EROFS; 3890 else { 3891 mddev->new_layout = n; 3892 err = mddev->pers->check_reshape(mddev); 3893 if (err) 3894 mddev->new_layout = mddev->layout; 3895 } 3896 } else { 3897 mddev->new_layout = n; 3898 if (mddev->reshape_position == MaxSector) 3899 mddev->layout = n; 3900 } 3901 mddev_unlock(mddev); 3902 return err ?: len; 3903 } 3904 static struct md_sysfs_entry md_layout = 3905 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 3906 3907 static ssize_t 3908 raid_disks_show(struct mddev *mddev, char *page) 3909 { 3910 if (mddev->raid_disks == 0) 3911 return 0; 3912 if (mddev->reshape_position != MaxSector && 3913 mddev->delta_disks != 0) 3914 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 3915 mddev->raid_disks - mddev->delta_disks); 3916 return sprintf(page, "%d\n", mddev->raid_disks); 3917 } 3918 3919 static int update_raid_disks(struct mddev *mddev, int raid_disks); 3920 3921 static ssize_t 3922 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 3923 { 3924 unsigned int n; 3925 int err; 3926 3927 err = kstrtouint(buf, 10, &n); 3928 if (err < 0) 3929 return err; 3930 3931 err = mddev_lock(mddev); 3932 if (err) 3933 return err; 3934 if (mddev->pers) 3935 err = update_raid_disks(mddev, n); 3936 else if (mddev->reshape_position != MaxSector) { 3937 struct md_rdev *rdev; 3938 int olddisks = mddev->raid_disks - mddev->delta_disks; 3939 3940 err = -EINVAL; 3941 rdev_for_each(rdev, mddev) { 3942 if (olddisks < n && 3943 rdev->data_offset < rdev->new_data_offset) 3944 goto out_unlock; 3945 if (olddisks > n && 3946 rdev->data_offset > rdev->new_data_offset) 3947 goto out_unlock; 3948 } 3949 err = 0; 3950 mddev->delta_disks = n - olddisks; 3951 mddev->raid_disks = n; 3952 mddev->reshape_backwards = (mddev->delta_disks < 0); 3953 } else 3954 mddev->raid_disks = n; 3955 out_unlock: 3956 mddev_unlock(mddev); 3957 return err ? err : len; 3958 } 3959 static struct md_sysfs_entry md_raid_disks = 3960 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 3961 3962 static ssize_t 3963 chunk_size_show(struct mddev *mddev, char *page) 3964 { 3965 if (mddev->reshape_position != MaxSector && 3966 mddev->chunk_sectors != mddev->new_chunk_sectors) 3967 return sprintf(page, "%d (%d)\n", 3968 mddev->new_chunk_sectors << 9, 3969 mddev->chunk_sectors << 9); 3970 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 3971 } 3972 3973 static ssize_t 3974 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 3975 { 3976 unsigned long n; 3977 int err; 3978 3979 err = kstrtoul(buf, 10, &n); 3980 if (err < 0) 3981 return err; 3982 3983 err = mddev_lock(mddev); 3984 if (err) 3985 return err; 3986 if (mddev->pers) { 3987 if (mddev->pers->check_reshape == NULL) 3988 err = -EBUSY; 3989 else if (mddev->ro) 3990 err = -EROFS; 3991 else { 3992 mddev->new_chunk_sectors = n >> 9; 3993 err = mddev->pers->check_reshape(mddev); 3994 if (err) 3995 mddev->new_chunk_sectors = mddev->chunk_sectors; 3996 } 3997 } else { 3998 mddev->new_chunk_sectors = n >> 9; 3999 if (mddev->reshape_position == MaxSector) 4000 mddev->chunk_sectors = n >> 9; 4001 } 4002 mddev_unlock(mddev); 4003 return err ?: len; 4004 } 4005 static struct md_sysfs_entry md_chunk_size = 4006 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4007 4008 static ssize_t 4009 resync_start_show(struct mddev *mddev, char *page) 4010 { 4011 if (mddev->recovery_cp == MaxSector) 4012 return sprintf(page, "none\n"); 4013 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4014 } 4015 4016 static ssize_t 4017 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4018 { 4019 unsigned long long n; 4020 int err; 4021 4022 if (cmd_match(buf, "none")) 4023 n = MaxSector; 4024 else { 4025 err = kstrtoull(buf, 10, &n); 4026 if (err < 0) 4027 return err; 4028 if (n != (sector_t)n) 4029 return -EINVAL; 4030 } 4031 4032 err = mddev_lock(mddev); 4033 if (err) 4034 return err; 4035 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4036 err = -EBUSY; 4037 4038 if (!err) { 4039 mddev->recovery_cp = n; 4040 if (mddev->pers) 4041 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4042 } 4043 mddev_unlock(mddev); 4044 return err ?: len; 4045 } 4046 static struct md_sysfs_entry md_resync_start = 4047 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4048 resync_start_show, resync_start_store); 4049 4050 /* 4051 * The array state can be: 4052 * 4053 * clear 4054 * No devices, no size, no level 4055 * Equivalent to STOP_ARRAY ioctl 4056 * inactive 4057 * May have some settings, but array is not active 4058 * all IO results in error 4059 * When written, doesn't tear down array, but just stops it 4060 * suspended (not supported yet) 4061 * All IO requests will block. The array can be reconfigured. 4062 * Writing this, if accepted, will block until array is quiescent 4063 * readonly 4064 * no resync can happen. no superblocks get written. 4065 * write requests fail 4066 * read-auto 4067 * like readonly, but behaves like 'clean' on a write request. 4068 * 4069 * clean - no pending writes, but otherwise active. 4070 * When written to inactive array, starts without resync 4071 * If a write request arrives then 4072 * if metadata is known, mark 'dirty' and switch to 'active'. 4073 * if not known, block and switch to write-pending 4074 * If written to an active array that has pending writes, then fails. 4075 * active 4076 * fully active: IO and resync can be happening. 4077 * When written to inactive array, starts with resync 4078 * 4079 * write-pending 4080 * clean, but writes are blocked waiting for 'active' to be written. 4081 * 4082 * active-idle 4083 * like active, but no writes have been seen for a while (100msec). 4084 * 4085 */ 4086 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4087 write_pending, active_idle, bad_word}; 4088 static char *array_states[] = { 4089 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4090 "write-pending", "active-idle", NULL }; 4091 4092 static int match_word(const char *word, char **list) 4093 { 4094 int n; 4095 for (n=0; list[n]; n++) 4096 if (cmd_match(word, list[n])) 4097 break; 4098 return n; 4099 } 4100 4101 static ssize_t 4102 array_state_show(struct mddev *mddev, char *page) 4103 { 4104 enum array_state st = inactive; 4105 4106 if (mddev->pers) 4107 switch(mddev->ro) { 4108 case 1: 4109 st = readonly; 4110 break; 4111 case 2: 4112 st = read_auto; 4113 break; 4114 case 0: 4115 spin_lock(&mddev->lock); 4116 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4117 st = write_pending; 4118 else if (mddev->in_sync) 4119 st = clean; 4120 else if (mddev->safemode) 4121 st = active_idle; 4122 else 4123 st = active; 4124 spin_unlock(&mddev->lock); 4125 } 4126 else { 4127 if (list_empty(&mddev->disks) && 4128 mddev->raid_disks == 0 && 4129 mddev->dev_sectors == 0) 4130 st = clear; 4131 else 4132 st = inactive; 4133 } 4134 return sprintf(page, "%s\n", array_states[st]); 4135 } 4136 4137 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4138 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4139 static int do_md_run(struct mddev *mddev); 4140 static int restart_array(struct mddev *mddev); 4141 4142 static ssize_t 4143 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4144 { 4145 int err = 0; 4146 enum array_state st = match_word(buf, array_states); 4147 4148 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4149 /* don't take reconfig_mutex when toggling between 4150 * clean and active 4151 */ 4152 spin_lock(&mddev->lock); 4153 if (st == active) { 4154 restart_array(mddev); 4155 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4156 md_wakeup_thread(mddev->thread); 4157 wake_up(&mddev->sb_wait); 4158 } else /* st == clean */ { 4159 restart_array(mddev); 4160 if (!set_in_sync(mddev)) 4161 err = -EBUSY; 4162 } 4163 if (!err) 4164 sysfs_notify_dirent_safe(mddev->sysfs_state); 4165 spin_unlock(&mddev->lock); 4166 return err ?: len; 4167 } 4168 err = mddev_lock(mddev); 4169 if (err) 4170 return err; 4171 err = -EINVAL; 4172 switch(st) { 4173 case bad_word: 4174 break; 4175 case clear: 4176 /* stopping an active array */ 4177 err = do_md_stop(mddev, 0, NULL); 4178 break; 4179 case inactive: 4180 /* stopping an active array */ 4181 if (mddev->pers) 4182 err = do_md_stop(mddev, 2, NULL); 4183 else 4184 err = 0; /* already inactive */ 4185 break; 4186 case suspended: 4187 break; /* not supported yet */ 4188 case readonly: 4189 if (mddev->pers) 4190 err = md_set_readonly(mddev, NULL); 4191 else { 4192 mddev->ro = 1; 4193 set_disk_ro(mddev->gendisk, 1); 4194 err = do_md_run(mddev); 4195 } 4196 break; 4197 case read_auto: 4198 if (mddev->pers) { 4199 if (mddev->ro == 0) 4200 err = md_set_readonly(mddev, NULL); 4201 else if (mddev->ro == 1) 4202 err = restart_array(mddev); 4203 if (err == 0) { 4204 mddev->ro = 2; 4205 set_disk_ro(mddev->gendisk, 0); 4206 } 4207 } else { 4208 mddev->ro = 2; 4209 err = do_md_run(mddev); 4210 } 4211 break; 4212 case clean: 4213 if (mddev->pers) { 4214 err = restart_array(mddev); 4215 if (err) 4216 break; 4217 spin_lock(&mddev->lock); 4218 if (!set_in_sync(mddev)) 4219 err = -EBUSY; 4220 spin_unlock(&mddev->lock); 4221 } else 4222 err = -EINVAL; 4223 break; 4224 case active: 4225 if (mddev->pers) { 4226 err = restart_array(mddev); 4227 if (err) 4228 break; 4229 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4230 wake_up(&mddev->sb_wait); 4231 err = 0; 4232 } else { 4233 mddev->ro = 0; 4234 set_disk_ro(mddev->gendisk, 0); 4235 err = do_md_run(mddev); 4236 } 4237 break; 4238 case write_pending: 4239 case active_idle: 4240 /* these cannot be set */ 4241 break; 4242 } 4243 4244 if (!err) { 4245 if (mddev->hold_active == UNTIL_IOCTL) 4246 mddev->hold_active = 0; 4247 sysfs_notify_dirent_safe(mddev->sysfs_state); 4248 } 4249 mddev_unlock(mddev); 4250 return err ?: len; 4251 } 4252 static struct md_sysfs_entry md_array_state = 4253 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4254 4255 static ssize_t 4256 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4257 return sprintf(page, "%d\n", 4258 atomic_read(&mddev->max_corr_read_errors)); 4259 } 4260 4261 static ssize_t 4262 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4263 { 4264 unsigned int n; 4265 int rv; 4266 4267 rv = kstrtouint(buf, 10, &n); 4268 if (rv < 0) 4269 return rv; 4270 atomic_set(&mddev->max_corr_read_errors, n); 4271 return len; 4272 } 4273 4274 static struct md_sysfs_entry max_corr_read_errors = 4275 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4276 max_corrected_read_errors_store); 4277 4278 static ssize_t 4279 null_show(struct mddev *mddev, char *page) 4280 { 4281 return -EINVAL; 4282 } 4283 4284 static ssize_t 4285 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4286 { 4287 /* buf must be %d:%d\n? giving major and minor numbers */ 4288 /* The new device is added to the array. 4289 * If the array has a persistent superblock, we read the 4290 * superblock to initialise info and check validity. 4291 * Otherwise, only checking done is that in bind_rdev_to_array, 4292 * which mainly checks size. 4293 */ 4294 char *e; 4295 int major = simple_strtoul(buf, &e, 10); 4296 int minor; 4297 dev_t dev; 4298 struct md_rdev *rdev; 4299 int err; 4300 4301 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4302 return -EINVAL; 4303 minor = simple_strtoul(e+1, &e, 10); 4304 if (*e && *e != '\n') 4305 return -EINVAL; 4306 dev = MKDEV(major, minor); 4307 if (major != MAJOR(dev) || 4308 minor != MINOR(dev)) 4309 return -EOVERFLOW; 4310 4311 flush_workqueue(md_misc_wq); 4312 4313 err = mddev_lock(mddev); 4314 if (err) 4315 return err; 4316 if (mddev->persistent) { 4317 rdev = md_import_device(dev, mddev->major_version, 4318 mddev->minor_version); 4319 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4320 struct md_rdev *rdev0 4321 = list_entry(mddev->disks.next, 4322 struct md_rdev, same_set); 4323 err = super_types[mddev->major_version] 4324 .load_super(rdev, rdev0, mddev->minor_version); 4325 if (err < 0) 4326 goto out; 4327 } 4328 } else if (mddev->external) 4329 rdev = md_import_device(dev, -2, -1); 4330 else 4331 rdev = md_import_device(dev, -1, -1); 4332 4333 if (IS_ERR(rdev)) { 4334 mddev_unlock(mddev); 4335 return PTR_ERR(rdev); 4336 } 4337 err = bind_rdev_to_array(rdev, mddev); 4338 out: 4339 if (err) 4340 export_rdev(rdev); 4341 mddev_unlock(mddev); 4342 if (!err) 4343 md_new_event(mddev); 4344 return err ? err : len; 4345 } 4346 4347 static struct md_sysfs_entry md_new_device = 4348 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4349 4350 static ssize_t 4351 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4352 { 4353 char *end; 4354 unsigned long chunk, end_chunk; 4355 int err; 4356 4357 err = mddev_lock(mddev); 4358 if (err) 4359 return err; 4360 if (!mddev->bitmap) 4361 goto out; 4362 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4363 while (*buf) { 4364 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4365 if (buf == end) break; 4366 if (*end == '-') { /* range */ 4367 buf = end + 1; 4368 end_chunk = simple_strtoul(buf, &end, 0); 4369 if (buf == end) break; 4370 } 4371 if (*end && !isspace(*end)) break; 4372 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4373 buf = skip_spaces(end); 4374 } 4375 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4376 out: 4377 mddev_unlock(mddev); 4378 return len; 4379 } 4380 4381 static struct md_sysfs_entry md_bitmap = 4382 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4383 4384 static ssize_t 4385 size_show(struct mddev *mddev, char *page) 4386 { 4387 return sprintf(page, "%llu\n", 4388 (unsigned long long)mddev->dev_sectors / 2); 4389 } 4390 4391 static int update_size(struct mddev *mddev, sector_t num_sectors); 4392 4393 static ssize_t 4394 size_store(struct mddev *mddev, const char *buf, size_t len) 4395 { 4396 /* If array is inactive, we can reduce the component size, but 4397 * not increase it (except from 0). 4398 * If array is active, we can try an on-line resize 4399 */ 4400 sector_t sectors; 4401 int err = strict_blocks_to_sectors(buf, §ors); 4402 4403 if (err < 0) 4404 return err; 4405 err = mddev_lock(mddev); 4406 if (err) 4407 return err; 4408 if (mddev->pers) { 4409 err = update_size(mddev, sectors); 4410 if (err == 0) 4411 md_update_sb(mddev, 1); 4412 } else { 4413 if (mddev->dev_sectors == 0 || 4414 mddev->dev_sectors > sectors) 4415 mddev->dev_sectors = sectors; 4416 else 4417 err = -ENOSPC; 4418 } 4419 mddev_unlock(mddev); 4420 return err ? err : len; 4421 } 4422 4423 static struct md_sysfs_entry md_size = 4424 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4425 4426 /* Metadata version. 4427 * This is one of 4428 * 'none' for arrays with no metadata (good luck...) 4429 * 'external' for arrays with externally managed metadata, 4430 * or N.M for internally known formats 4431 */ 4432 static ssize_t 4433 metadata_show(struct mddev *mddev, char *page) 4434 { 4435 if (mddev->persistent) 4436 return sprintf(page, "%d.%d\n", 4437 mddev->major_version, mddev->minor_version); 4438 else if (mddev->external) 4439 return sprintf(page, "external:%s\n", mddev->metadata_type); 4440 else 4441 return sprintf(page, "none\n"); 4442 } 4443 4444 static ssize_t 4445 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4446 { 4447 int major, minor; 4448 char *e; 4449 int err; 4450 /* Changing the details of 'external' metadata is 4451 * always permitted. Otherwise there must be 4452 * no devices attached to the array. 4453 */ 4454 4455 err = mddev_lock(mddev); 4456 if (err) 4457 return err; 4458 err = -EBUSY; 4459 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4460 ; 4461 else if (!list_empty(&mddev->disks)) 4462 goto out_unlock; 4463 4464 err = 0; 4465 if (cmd_match(buf, "none")) { 4466 mddev->persistent = 0; 4467 mddev->external = 0; 4468 mddev->major_version = 0; 4469 mddev->minor_version = 90; 4470 goto out_unlock; 4471 } 4472 if (strncmp(buf, "external:", 9) == 0) { 4473 size_t namelen = len-9; 4474 if (namelen >= sizeof(mddev->metadata_type)) 4475 namelen = sizeof(mddev->metadata_type)-1; 4476 strncpy(mddev->metadata_type, buf+9, namelen); 4477 mddev->metadata_type[namelen] = 0; 4478 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4479 mddev->metadata_type[--namelen] = 0; 4480 mddev->persistent = 0; 4481 mddev->external = 1; 4482 mddev->major_version = 0; 4483 mddev->minor_version = 90; 4484 goto out_unlock; 4485 } 4486 major = simple_strtoul(buf, &e, 10); 4487 err = -EINVAL; 4488 if (e==buf || *e != '.') 4489 goto out_unlock; 4490 buf = e+1; 4491 minor = simple_strtoul(buf, &e, 10); 4492 if (e==buf || (*e && *e != '\n') ) 4493 goto out_unlock; 4494 err = -ENOENT; 4495 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4496 goto out_unlock; 4497 mddev->major_version = major; 4498 mddev->minor_version = minor; 4499 mddev->persistent = 1; 4500 mddev->external = 0; 4501 err = 0; 4502 out_unlock: 4503 mddev_unlock(mddev); 4504 return err ?: len; 4505 } 4506 4507 static struct md_sysfs_entry md_metadata = 4508 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4509 4510 static ssize_t 4511 action_show(struct mddev *mddev, char *page) 4512 { 4513 char *type = "idle"; 4514 unsigned long recovery = mddev->recovery; 4515 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4516 type = "frozen"; 4517 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4518 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4519 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4520 type = "reshape"; 4521 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4522 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4523 type = "resync"; 4524 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4525 type = "check"; 4526 else 4527 type = "repair"; 4528 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4529 type = "recover"; 4530 else if (mddev->reshape_position != MaxSector) 4531 type = "reshape"; 4532 } 4533 return sprintf(page, "%s\n", type); 4534 } 4535 4536 static ssize_t 4537 action_store(struct mddev *mddev, const char *page, size_t len) 4538 { 4539 if (!mddev->pers || !mddev->pers->sync_request) 4540 return -EINVAL; 4541 4542 4543 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4544 if (cmd_match(page, "frozen")) 4545 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4546 else 4547 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4548 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4549 mddev_lock(mddev) == 0) { 4550 flush_workqueue(md_misc_wq); 4551 if (mddev->sync_thread) { 4552 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4553 md_reap_sync_thread(mddev); 4554 } 4555 mddev_unlock(mddev); 4556 } 4557 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4558 return -EBUSY; 4559 else if (cmd_match(page, "resync")) 4560 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4561 else if (cmd_match(page, "recover")) { 4562 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4563 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4564 } else if (cmd_match(page, "reshape")) { 4565 int err; 4566 if (mddev->pers->start_reshape == NULL) 4567 return -EINVAL; 4568 err = mddev_lock(mddev); 4569 if (!err) { 4570 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4571 err = -EBUSY; 4572 else { 4573 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4574 err = mddev->pers->start_reshape(mddev); 4575 } 4576 mddev_unlock(mddev); 4577 } 4578 if (err) 4579 return err; 4580 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4581 } else { 4582 if (cmd_match(page, "check")) 4583 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4584 else if (!cmd_match(page, "repair")) 4585 return -EINVAL; 4586 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4587 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4588 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4589 } 4590 if (mddev->ro == 2) { 4591 /* A write to sync_action is enough to justify 4592 * canceling read-auto mode 4593 */ 4594 mddev->ro = 0; 4595 md_wakeup_thread(mddev->sync_thread); 4596 } 4597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4598 md_wakeup_thread(mddev->thread); 4599 sysfs_notify_dirent_safe(mddev->sysfs_action); 4600 return len; 4601 } 4602 4603 static struct md_sysfs_entry md_scan_mode = 4604 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4605 4606 static ssize_t 4607 last_sync_action_show(struct mddev *mddev, char *page) 4608 { 4609 return sprintf(page, "%s\n", mddev->last_sync_action); 4610 } 4611 4612 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4613 4614 static ssize_t 4615 mismatch_cnt_show(struct mddev *mddev, char *page) 4616 { 4617 return sprintf(page, "%llu\n", 4618 (unsigned long long) 4619 atomic64_read(&mddev->resync_mismatches)); 4620 } 4621 4622 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4623 4624 static ssize_t 4625 sync_min_show(struct mddev *mddev, char *page) 4626 { 4627 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4628 mddev->sync_speed_min ? "local": "system"); 4629 } 4630 4631 static ssize_t 4632 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4633 { 4634 unsigned int min; 4635 int rv; 4636 4637 if (strncmp(buf, "system", 6)==0) { 4638 min = 0; 4639 } else { 4640 rv = kstrtouint(buf, 10, &min); 4641 if (rv < 0) 4642 return rv; 4643 if (min == 0) 4644 return -EINVAL; 4645 } 4646 mddev->sync_speed_min = min; 4647 return len; 4648 } 4649 4650 static struct md_sysfs_entry md_sync_min = 4651 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4652 4653 static ssize_t 4654 sync_max_show(struct mddev *mddev, char *page) 4655 { 4656 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4657 mddev->sync_speed_max ? "local": "system"); 4658 } 4659 4660 static ssize_t 4661 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4662 { 4663 unsigned int max; 4664 int rv; 4665 4666 if (strncmp(buf, "system", 6)==0) { 4667 max = 0; 4668 } else { 4669 rv = kstrtouint(buf, 10, &max); 4670 if (rv < 0) 4671 return rv; 4672 if (max == 0) 4673 return -EINVAL; 4674 } 4675 mddev->sync_speed_max = max; 4676 return len; 4677 } 4678 4679 static struct md_sysfs_entry md_sync_max = 4680 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4681 4682 static ssize_t 4683 degraded_show(struct mddev *mddev, char *page) 4684 { 4685 return sprintf(page, "%d\n", mddev->degraded); 4686 } 4687 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4688 4689 static ssize_t 4690 sync_force_parallel_show(struct mddev *mddev, char *page) 4691 { 4692 return sprintf(page, "%d\n", mddev->parallel_resync); 4693 } 4694 4695 static ssize_t 4696 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4697 { 4698 long n; 4699 4700 if (kstrtol(buf, 10, &n)) 4701 return -EINVAL; 4702 4703 if (n != 0 && n != 1) 4704 return -EINVAL; 4705 4706 mddev->parallel_resync = n; 4707 4708 if (mddev->sync_thread) 4709 wake_up(&resync_wait); 4710 4711 return len; 4712 } 4713 4714 /* force parallel resync, even with shared block devices */ 4715 static struct md_sysfs_entry md_sync_force_parallel = 4716 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4717 sync_force_parallel_show, sync_force_parallel_store); 4718 4719 static ssize_t 4720 sync_speed_show(struct mddev *mddev, char *page) 4721 { 4722 unsigned long resync, dt, db; 4723 if (mddev->curr_resync == 0) 4724 return sprintf(page, "none\n"); 4725 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4726 dt = (jiffies - mddev->resync_mark) / HZ; 4727 if (!dt) dt++; 4728 db = resync - mddev->resync_mark_cnt; 4729 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4730 } 4731 4732 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4733 4734 static ssize_t 4735 sync_completed_show(struct mddev *mddev, char *page) 4736 { 4737 unsigned long long max_sectors, resync; 4738 4739 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4740 return sprintf(page, "none\n"); 4741 4742 if (mddev->curr_resync == 1 || 4743 mddev->curr_resync == 2) 4744 return sprintf(page, "delayed\n"); 4745 4746 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4747 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4748 max_sectors = mddev->resync_max_sectors; 4749 else 4750 max_sectors = mddev->dev_sectors; 4751 4752 resync = mddev->curr_resync_completed; 4753 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 4754 } 4755 4756 static struct md_sysfs_entry md_sync_completed = 4757 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 4758 4759 static ssize_t 4760 min_sync_show(struct mddev *mddev, char *page) 4761 { 4762 return sprintf(page, "%llu\n", 4763 (unsigned long long)mddev->resync_min); 4764 } 4765 static ssize_t 4766 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 4767 { 4768 unsigned long long min; 4769 int err; 4770 4771 if (kstrtoull(buf, 10, &min)) 4772 return -EINVAL; 4773 4774 spin_lock(&mddev->lock); 4775 err = -EINVAL; 4776 if (min > mddev->resync_max) 4777 goto out_unlock; 4778 4779 err = -EBUSY; 4780 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4781 goto out_unlock; 4782 4783 /* Round down to multiple of 4K for safety */ 4784 mddev->resync_min = round_down(min, 8); 4785 err = 0; 4786 4787 out_unlock: 4788 spin_unlock(&mddev->lock); 4789 return err ?: len; 4790 } 4791 4792 static struct md_sysfs_entry md_min_sync = 4793 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 4794 4795 static ssize_t 4796 max_sync_show(struct mddev *mddev, char *page) 4797 { 4798 if (mddev->resync_max == MaxSector) 4799 return sprintf(page, "max\n"); 4800 else 4801 return sprintf(page, "%llu\n", 4802 (unsigned long long)mddev->resync_max); 4803 } 4804 static ssize_t 4805 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 4806 { 4807 int err; 4808 spin_lock(&mddev->lock); 4809 if (strncmp(buf, "max", 3) == 0) 4810 mddev->resync_max = MaxSector; 4811 else { 4812 unsigned long long max; 4813 int chunk; 4814 4815 err = -EINVAL; 4816 if (kstrtoull(buf, 10, &max)) 4817 goto out_unlock; 4818 if (max < mddev->resync_min) 4819 goto out_unlock; 4820 4821 err = -EBUSY; 4822 if (max < mddev->resync_max && 4823 mddev->ro == 0 && 4824 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4825 goto out_unlock; 4826 4827 /* Must be a multiple of chunk_size */ 4828 chunk = mddev->chunk_sectors; 4829 if (chunk) { 4830 sector_t temp = max; 4831 4832 err = -EINVAL; 4833 if (sector_div(temp, chunk)) 4834 goto out_unlock; 4835 } 4836 mddev->resync_max = max; 4837 } 4838 wake_up(&mddev->recovery_wait); 4839 err = 0; 4840 out_unlock: 4841 spin_unlock(&mddev->lock); 4842 return err ?: len; 4843 } 4844 4845 static struct md_sysfs_entry md_max_sync = 4846 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 4847 4848 static ssize_t 4849 suspend_lo_show(struct mddev *mddev, char *page) 4850 { 4851 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 4852 } 4853 4854 static ssize_t 4855 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 4856 { 4857 unsigned long long new; 4858 int err; 4859 4860 err = kstrtoull(buf, 10, &new); 4861 if (err < 0) 4862 return err; 4863 if (new != (sector_t)new) 4864 return -EINVAL; 4865 4866 err = mddev_lock(mddev); 4867 if (err) 4868 return err; 4869 err = -EINVAL; 4870 if (mddev->pers == NULL || 4871 mddev->pers->quiesce == NULL) 4872 goto unlock; 4873 mddev_suspend(mddev); 4874 mddev->suspend_lo = new; 4875 mddev_resume(mddev); 4876 4877 err = 0; 4878 unlock: 4879 mddev_unlock(mddev); 4880 return err ?: len; 4881 } 4882 static struct md_sysfs_entry md_suspend_lo = 4883 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 4884 4885 static ssize_t 4886 suspend_hi_show(struct mddev *mddev, char *page) 4887 { 4888 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 4889 } 4890 4891 static ssize_t 4892 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 4893 { 4894 unsigned long long new; 4895 int err; 4896 4897 err = kstrtoull(buf, 10, &new); 4898 if (err < 0) 4899 return err; 4900 if (new != (sector_t)new) 4901 return -EINVAL; 4902 4903 err = mddev_lock(mddev); 4904 if (err) 4905 return err; 4906 err = -EINVAL; 4907 if (mddev->pers == NULL) 4908 goto unlock; 4909 4910 mddev_suspend(mddev); 4911 mddev->suspend_hi = new; 4912 mddev_resume(mddev); 4913 4914 err = 0; 4915 unlock: 4916 mddev_unlock(mddev); 4917 return err ?: len; 4918 } 4919 static struct md_sysfs_entry md_suspend_hi = 4920 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 4921 4922 static ssize_t 4923 reshape_position_show(struct mddev *mddev, char *page) 4924 { 4925 if (mddev->reshape_position != MaxSector) 4926 return sprintf(page, "%llu\n", 4927 (unsigned long long)mddev->reshape_position); 4928 strcpy(page, "none\n"); 4929 return 5; 4930 } 4931 4932 static ssize_t 4933 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 4934 { 4935 struct md_rdev *rdev; 4936 unsigned long long new; 4937 int err; 4938 4939 err = kstrtoull(buf, 10, &new); 4940 if (err < 0) 4941 return err; 4942 if (new != (sector_t)new) 4943 return -EINVAL; 4944 err = mddev_lock(mddev); 4945 if (err) 4946 return err; 4947 err = -EBUSY; 4948 if (mddev->pers) 4949 goto unlock; 4950 mddev->reshape_position = new; 4951 mddev->delta_disks = 0; 4952 mddev->reshape_backwards = 0; 4953 mddev->new_level = mddev->level; 4954 mddev->new_layout = mddev->layout; 4955 mddev->new_chunk_sectors = mddev->chunk_sectors; 4956 rdev_for_each(rdev, mddev) 4957 rdev->new_data_offset = rdev->data_offset; 4958 err = 0; 4959 unlock: 4960 mddev_unlock(mddev); 4961 return err ?: len; 4962 } 4963 4964 static struct md_sysfs_entry md_reshape_position = 4965 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 4966 reshape_position_store); 4967 4968 static ssize_t 4969 reshape_direction_show(struct mddev *mddev, char *page) 4970 { 4971 return sprintf(page, "%s\n", 4972 mddev->reshape_backwards ? "backwards" : "forwards"); 4973 } 4974 4975 static ssize_t 4976 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 4977 { 4978 int backwards = 0; 4979 int err; 4980 4981 if (cmd_match(buf, "forwards")) 4982 backwards = 0; 4983 else if (cmd_match(buf, "backwards")) 4984 backwards = 1; 4985 else 4986 return -EINVAL; 4987 if (mddev->reshape_backwards == backwards) 4988 return len; 4989 4990 err = mddev_lock(mddev); 4991 if (err) 4992 return err; 4993 /* check if we are allowed to change */ 4994 if (mddev->delta_disks) 4995 err = -EBUSY; 4996 else if (mddev->persistent && 4997 mddev->major_version == 0) 4998 err = -EINVAL; 4999 else 5000 mddev->reshape_backwards = backwards; 5001 mddev_unlock(mddev); 5002 return err ?: len; 5003 } 5004 5005 static struct md_sysfs_entry md_reshape_direction = 5006 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5007 reshape_direction_store); 5008 5009 static ssize_t 5010 array_size_show(struct mddev *mddev, char *page) 5011 { 5012 if (mddev->external_size) 5013 return sprintf(page, "%llu\n", 5014 (unsigned long long)mddev->array_sectors/2); 5015 else 5016 return sprintf(page, "default\n"); 5017 } 5018 5019 static ssize_t 5020 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5021 { 5022 sector_t sectors; 5023 int err; 5024 5025 err = mddev_lock(mddev); 5026 if (err) 5027 return err; 5028 5029 /* cluster raid doesn't support change array_sectors */ 5030 if (mddev_is_clustered(mddev)) { 5031 mddev_unlock(mddev); 5032 return -EINVAL; 5033 } 5034 5035 if (strncmp(buf, "default", 7) == 0) { 5036 if (mddev->pers) 5037 sectors = mddev->pers->size(mddev, 0, 0); 5038 else 5039 sectors = mddev->array_sectors; 5040 5041 mddev->external_size = 0; 5042 } else { 5043 if (strict_blocks_to_sectors(buf, §ors) < 0) 5044 err = -EINVAL; 5045 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5046 err = -E2BIG; 5047 else 5048 mddev->external_size = 1; 5049 } 5050 5051 if (!err) { 5052 mddev->array_sectors = sectors; 5053 if (mddev->pers) { 5054 set_capacity(mddev->gendisk, mddev->array_sectors); 5055 revalidate_disk(mddev->gendisk); 5056 } 5057 } 5058 mddev_unlock(mddev); 5059 return err ?: len; 5060 } 5061 5062 static struct md_sysfs_entry md_array_size = 5063 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5064 array_size_store); 5065 5066 static ssize_t 5067 consistency_policy_show(struct mddev *mddev, char *page) 5068 { 5069 int ret; 5070 5071 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5072 ret = sprintf(page, "journal\n"); 5073 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5074 ret = sprintf(page, "ppl\n"); 5075 } else if (mddev->bitmap) { 5076 ret = sprintf(page, "bitmap\n"); 5077 } else if (mddev->pers) { 5078 if (mddev->pers->sync_request) 5079 ret = sprintf(page, "resync\n"); 5080 else 5081 ret = sprintf(page, "none\n"); 5082 } else { 5083 ret = sprintf(page, "unknown\n"); 5084 } 5085 5086 return ret; 5087 } 5088 5089 static ssize_t 5090 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5091 { 5092 int err = 0; 5093 5094 if (mddev->pers) { 5095 if (mddev->pers->change_consistency_policy) 5096 err = mddev->pers->change_consistency_policy(mddev, buf); 5097 else 5098 err = -EBUSY; 5099 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5100 set_bit(MD_HAS_PPL, &mddev->flags); 5101 } else { 5102 err = -EINVAL; 5103 } 5104 5105 return err ? err : len; 5106 } 5107 5108 static struct md_sysfs_entry md_consistency_policy = 5109 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5110 consistency_policy_store); 5111 5112 static struct attribute *md_default_attrs[] = { 5113 &md_level.attr, 5114 &md_layout.attr, 5115 &md_raid_disks.attr, 5116 &md_chunk_size.attr, 5117 &md_size.attr, 5118 &md_resync_start.attr, 5119 &md_metadata.attr, 5120 &md_new_device.attr, 5121 &md_safe_delay.attr, 5122 &md_array_state.attr, 5123 &md_reshape_position.attr, 5124 &md_reshape_direction.attr, 5125 &md_array_size.attr, 5126 &max_corr_read_errors.attr, 5127 &md_consistency_policy.attr, 5128 NULL, 5129 }; 5130 5131 static struct attribute *md_redundancy_attrs[] = { 5132 &md_scan_mode.attr, 5133 &md_last_scan_mode.attr, 5134 &md_mismatches.attr, 5135 &md_sync_min.attr, 5136 &md_sync_max.attr, 5137 &md_sync_speed.attr, 5138 &md_sync_force_parallel.attr, 5139 &md_sync_completed.attr, 5140 &md_min_sync.attr, 5141 &md_max_sync.attr, 5142 &md_suspend_lo.attr, 5143 &md_suspend_hi.attr, 5144 &md_bitmap.attr, 5145 &md_degraded.attr, 5146 NULL, 5147 }; 5148 static struct attribute_group md_redundancy_group = { 5149 .name = NULL, 5150 .attrs = md_redundancy_attrs, 5151 }; 5152 5153 static ssize_t 5154 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5155 { 5156 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5157 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5158 ssize_t rv; 5159 5160 if (!entry->show) 5161 return -EIO; 5162 spin_lock(&all_mddevs_lock); 5163 if (list_empty(&mddev->all_mddevs)) { 5164 spin_unlock(&all_mddevs_lock); 5165 return -EBUSY; 5166 } 5167 mddev_get(mddev); 5168 spin_unlock(&all_mddevs_lock); 5169 5170 rv = entry->show(mddev, page); 5171 mddev_put(mddev); 5172 return rv; 5173 } 5174 5175 static ssize_t 5176 md_attr_store(struct kobject *kobj, struct attribute *attr, 5177 const char *page, size_t length) 5178 { 5179 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5180 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5181 ssize_t rv; 5182 5183 if (!entry->store) 5184 return -EIO; 5185 if (!capable(CAP_SYS_ADMIN)) 5186 return -EACCES; 5187 spin_lock(&all_mddevs_lock); 5188 if (list_empty(&mddev->all_mddevs)) { 5189 spin_unlock(&all_mddevs_lock); 5190 return -EBUSY; 5191 } 5192 mddev_get(mddev); 5193 spin_unlock(&all_mddevs_lock); 5194 rv = entry->store(mddev, page, length); 5195 mddev_put(mddev); 5196 return rv; 5197 } 5198 5199 static void md_free(struct kobject *ko) 5200 { 5201 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5202 5203 if (mddev->sysfs_state) 5204 sysfs_put(mddev->sysfs_state); 5205 5206 if (mddev->queue) 5207 blk_cleanup_queue(mddev->queue); 5208 if (mddev->gendisk) { 5209 del_gendisk(mddev->gendisk); 5210 put_disk(mddev->gendisk); 5211 } 5212 percpu_ref_exit(&mddev->writes_pending); 5213 5214 kfree(mddev); 5215 } 5216 5217 static const struct sysfs_ops md_sysfs_ops = { 5218 .show = md_attr_show, 5219 .store = md_attr_store, 5220 }; 5221 static struct kobj_type md_ktype = { 5222 .release = md_free, 5223 .sysfs_ops = &md_sysfs_ops, 5224 .default_attrs = md_default_attrs, 5225 }; 5226 5227 int mdp_major = 0; 5228 5229 static void mddev_delayed_delete(struct work_struct *ws) 5230 { 5231 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5232 5233 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5234 kobject_del(&mddev->kobj); 5235 kobject_put(&mddev->kobj); 5236 } 5237 5238 static void no_op(struct percpu_ref *r) {} 5239 5240 int mddev_init_writes_pending(struct mddev *mddev) 5241 { 5242 if (mddev->writes_pending.percpu_count_ptr) 5243 return 0; 5244 if (percpu_ref_init(&mddev->writes_pending, no_op, 0, GFP_KERNEL) < 0) 5245 return -ENOMEM; 5246 /* We want to start with the refcount at zero */ 5247 percpu_ref_put(&mddev->writes_pending); 5248 return 0; 5249 } 5250 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5251 5252 static int md_alloc(dev_t dev, char *name) 5253 { 5254 /* 5255 * If dev is zero, name is the name of a device to allocate with 5256 * an arbitrary minor number. It will be "md_???" 5257 * If dev is non-zero it must be a device number with a MAJOR of 5258 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5259 * the device is being created by opening a node in /dev. 5260 * If "name" is not NULL, the device is being created by 5261 * writing to /sys/module/md_mod/parameters/new_array. 5262 */ 5263 static DEFINE_MUTEX(disks_mutex); 5264 struct mddev *mddev = mddev_find(dev); 5265 struct gendisk *disk; 5266 int partitioned; 5267 int shift; 5268 int unit; 5269 int error; 5270 5271 if (!mddev) 5272 return -ENODEV; 5273 5274 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5275 shift = partitioned ? MdpMinorShift : 0; 5276 unit = MINOR(mddev->unit) >> shift; 5277 5278 /* wait for any previous instance of this device to be 5279 * completely removed (mddev_delayed_delete). 5280 */ 5281 flush_workqueue(md_misc_wq); 5282 5283 mutex_lock(&disks_mutex); 5284 error = -EEXIST; 5285 if (mddev->gendisk) 5286 goto abort; 5287 5288 if (name && !dev) { 5289 /* Need to ensure that 'name' is not a duplicate. 5290 */ 5291 struct mddev *mddev2; 5292 spin_lock(&all_mddevs_lock); 5293 5294 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5295 if (mddev2->gendisk && 5296 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5297 spin_unlock(&all_mddevs_lock); 5298 goto abort; 5299 } 5300 spin_unlock(&all_mddevs_lock); 5301 } 5302 if (name && dev) 5303 /* 5304 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5305 */ 5306 mddev->hold_active = UNTIL_STOP; 5307 5308 error = -ENOMEM; 5309 mddev->queue = blk_alloc_queue(GFP_KERNEL); 5310 if (!mddev->queue) 5311 goto abort; 5312 mddev->queue->queuedata = mddev; 5313 5314 blk_queue_make_request(mddev->queue, md_make_request); 5315 blk_set_stacking_limits(&mddev->queue->limits); 5316 5317 disk = alloc_disk(1 << shift); 5318 if (!disk) { 5319 blk_cleanup_queue(mddev->queue); 5320 mddev->queue = NULL; 5321 goto abort; 5322 } 5323 disk->major = MAJOR(mddev->unit); 5324 disk->first_minor = unit << shift; 5325 if (name) 5326 strcpy(disk->disk_name, name); 5327 else if (partitioned) 5328 sprintf(disk->disk_name, "md_d%d", unit); 5329 else 5330 sprintf(disk->disk_name, "md%d", unit); 5331 disk->fops = &md_fops; 5332 disk->private_data = mddev; 5333 disk->queue = mddev->queue; 5334 blk_queue_write_cache(mddev->queue, true, true); 5335 /* Allow extended partitions. This makes the 5336 * 'mdp' device redundant, but we can't really 5337 * remove it now. 5338 */ 5339 disk->flags |= GENHD_FL_EXT_DEVT; 5340 mddev->gendisk = disk; 5341 /* As soon as we call add_disk(), another thread could get 5342 * through to md_open, so make sure it doesn't get too far 5343 */ 5344 mutex_lock(&mddev->open_mutex); 5345 add_disk(disk); 5346 5347 error = kobject_init_and_add(&mddev->kobj, &md_ktype, 5348 &disk_to_dev(disk)->kobj, "%s", "md"); 5349 if (error) { 5350 /* This isn't possible, but as kobject_init_and_add is marked 5351 * __must_check, we must do something with the result 5352 */ 5353 pr_debug("md: cannot register %s/md - name in use\n", 5354 disk->disk_name); 5355 error = 0; 5356 } 5357 if (mddev->kobj.sd && 5358 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5359 pr_debug("pointless warning\n"); 5360 mutex_unlock(&mddev->open_mutex); 5361 abort: 5362 mutex_unlock(&disks_mutex); 5363 if (!error && mddev->kobj.sd) { 5364 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5365 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5366 } 5367 mddev_put(mddev); 5368 return error; 5369 } 5370 5371 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5372 { 5373 if (create_on_open) 5374 md_alloc(dev, NULL); 5375 return NULL; 5376 } 5377 5378 static int add_named_array(const char *val, const struct kernel_param *kp) 5379 { 5380 /* 5381 * val must be "md_*" or "mdNNN". 5382 * For "md_*" we allocate an array with a large free minor number, and 5383 * set the name to val. val must not already be an active name. 5384 * For "mdNNN" we allocate an array with the minor number NNN 5385 * which must not already be in use. 5386 */ 5387 int len = strlen(val); 5388 char buf[DISK_NAME_LEN]; 5389 unsigned long devnum; 5390 5391 while (len && val[len-1] == '\n') 5392 len--; 5393 if (len >= DISK_NAME_LEN) 5394 return -E2BIG; 5395 strlcpy(buf, val, len+1); 5396 if (strncmp(buf, "md_", 3) == 0) 5397 return md_alloc(0, buf); 5398 if (strncmp(buf, "md", 2) == 0 && 5399 isdigit(buf[2]) && 5400 kstrtoul(buf+2, 10, &devnum) == 0 && 5401 devnum <= MINORMASK) 5402 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5403 5404 return -EINVAL; 5405 } 5406 5407 static void md_safemode_timeout(struct timer_list *t) 5408 { 5409 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5410 5411 mddev->safemode = 1; 5412 if (mddev->external) 5413 sysfs_notify_dirent_safe(mddev->sysfs_state); 5414 5415 md_wakeup_thread(mddev->thread); 5416 } 5417 5418 static int start_dirty_degraded; 5419 5420 int md_run(struct mddev *mddev) 5421 { 5422 int err; 5423 struct md_rdev *rdev; 5424 struct md_personality *pers; 5425 5426 if (list_empty(&mddev->disks)) 5427 /* cannot run an array with no devices.. */ 5428 return -EINVAL; 5429 5430 if (mddev->pers) 5431 return -EBUSY; 5432 /* Cannot run until previous stop completes properly */ 5433 if (mddev->sysfs_active) 5434 return -EBUSY; 5435 5436 /* 5437 * Analyze all RAID superblock(s) 5438 */ 5439 if (!mddev->raid_disks) { 5440 if (!mddev->persistent) 5441 return -EINVAL; 5442 analyze_sbs(mddev); 5443 } 5444 5445 if (mddev->level != LEVEL_NONE) 5446 request_module("md-level-%d", mddev->level); 5447 else if (mddev->clevel[0]) 5448 request_module("md-%s", mddev->clevel); 5449 5450 /* 5451 * Drop all container device buffers, from now on 5452 * the only valid external interface is through the md 5453 * device. 5454 */ 5455 rdev_for_each(rdev, mddev) { 5456 if (test_bit(Faulty, &rdev->flags)) 5457 continue; 5458 sync_blockdev(rdev->bdev); 5459 invalidate_bdev(rdev->bdev); 5460 if (mddev->ro != 1 && 5461 (bdev_read_only(rdev->bdev) || 5462 bdev_read_only(rdev->meta_bdev))) { 5463 mddev->ro = 1; 5464 if (mddev->gendisk) 5465 set_disk_ro(mddev->gendisk, 1); 5466 } 5467 5468 /* perform some consistency tests on the device. 5469 * We don't want the data to overlap the metadata, 5470 * Internal Bitmap issues have been handled elsewhere. 5471 */ 5472 if (rdev->meta_bdev) { 5473 /* Nothing to check */; 5474 } else if (rdev->data_offset < rdev->sb_start) { 5475 if (mddev->dev_sectors && 5476 rdev->data_offset + mddev->dev_sectors 5477 > rdev->sb_start) { 5478 pr_warn("md: %s: data overlaps metadata\n", 5479 mdname(mddev)); 5480 return -EINVAL; 5481 } 5482 } else { 5483 if (rdev->sb_start + rdev->sb_size/512 5484 > rdev->data_offset) { 5485 pr_warn("md: %s: metadata overlaps data\n", 5486 mdname(mddev)); 5487 return -EINVAL; 5488 } 5489 } 5490 sysfs_notify_dirent_safe(rdev->sysfs_state); 5491 } 5492 5493 if (mddev->bio_set == NULL) { 5494 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5495 if (!mddev->bio_set) 5496 return -ENOMEM; 5497 } 5498 if (mddev->sync_set == NULL) { 5499 mddev->sync_set = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5500 if (!mddev->sync_set) 5501 return -ENOMEM; 5502 } 5503 5504 spin_lock(&pers_lock); 5505 pers = find_pers(mddev->level, mddev->clevel); 5506 if (!pers || !try_module_get(pers->owner)) { 5507 spin_unlock(&pers_lock); 5508 if (mddev->level != LEVEL_NONE) 5509 pr_warn("md: personality for level %d is not loaded!\n", 5510 mddev->level); 5511 else 5512 pr_warn("md: personality for level %s is not loaded!\n", 5513 mddev->clevel); 5514 return -EINVAL; 5515 } 5516 spin_unlock(&pers_lock); 5517 if (mddev->level != pers->level) { 5518 mddev->level = pers->level; 5519 mddev->new_level = pers->level; 5520 } 5521 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5522 5523 if (mddev->reshape_position != MaxSector && 5524 pers->start_reshape == NULL) { 5525 /* This personality cannot handle reshaping... */ 5526 module_put(pers->owner); 5527 return -EINVAL; 5528 } 5529 5530 if (pers->sync_request) { 5531 /* Warn if this is a potentially silly 5532 * configuration. 5533 */ 5534 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5535 struct md_rdev *rdev2; 5536 int warned = 0; 5537 5538 rdev_for_each(rdev, mddev) 5539 rdev_for_each(rdev2, mddev) { 5540 if (rdev < rdev2 && 5541 rdev->bdev->bd_contains == 5542 rdev2->bdev->bd_contains) { 5543 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5544 mdname(mddev), 5545 bdevname(rdev->bdev,b), 5546 bdevname(rdev2->bdev,b2)); 5547 warned = 1; 5548 } 5549 } 5550 5551 if (warned) 5552 pr_warn("True protection against single-disk failure might be compromised.\n"); 5553 } 5554 5555 mddev->recovery = 0; 5556 /* may be over-ridden by personality */ 5557 mddev->resync_max_sectors = mddev->dev_sectors; 5558 5559 mddev->ok_start_degraded = start_dirty_degraded; 5560 5561 if (start_readonly && mddev->ro == 0) 5562 mddev->ro = 2; /* read-only, but switch on first write */ 5563 5564 err = pers->run(mddev); 5565 if (err) 5566 pr_warn("md: pers->run() failed ...\n"); 5567 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5568 WARN_ONCE(!mddev->external_size, 5569 "%s: default size too small, but 'external_size' not in effect?\n", 5570 __func__); 5571 pr_warn("md: invalid array_size %llu > default size %llu\n", 5572 (unsigned long long)mddev->array_sectors / 2, 5573 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5574 err = -EINVAL; 5575 } 5576 if (err == 0 && pers->sync_request && 5577 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5578 struct bitmap *bitmap; 5579 5580 bitmap = bitmap_create(mddev, -1); 5581 if (IS_ERR(bitmap)) { 5582 err = PTR_ERR(bitmap); 5583 pr_warn("%s: failed to create bitmap (%d)\n", 5584 mdname(mddev), err); 5585 } else 5586 mddev->bitmap = bitmap; 5587 5588 } 5589 if (err) { 5590 mddev_detach(mddev); 5591 if (mddev->private) 5592 pers->free(mddev, mddev->private); 5593 mddev->private = NULL; 5594 module_put(pers->owner); 5595 bitmap_destroy(mddev); 5596 return err; 5597 } 5598 if (mddev->queue) { 5599 bool nonrot = true; 5600 5601 rdev_for_each(rdev, mddev) { 5602 if (rdev->raid_disk >= 0 && 5603 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5604 nonrot = false; 5605 break; 5606 } 5607 } 5608 if (mddev->degraded) 5609 nonrot = false; 5610 if (nonrot) 5611 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5612 else 5613 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, mddev->queue); 5614 mddev->queue->backing_dev_info->congested_data = mddev; 5615 mddev->queue->backing_dev_info->congested_fn = md_congested; 5616 } 5617 if (pers->sync_request) { 5618 if (mddev->kobj.sd && 5619 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5620 pr_warn("md: cannot register extra attributes for %s\n", 5621 mdname(mddev)); 5622 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5623 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5624 mddev->ro = 0; 5625 5626 atomic_set(&mddev->max_corr_read_errors, 5627 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5628 mddev->safemode = 0; 5629 if (mddev_is_clustered(mddev)) 5630 mddev->safemode_delay = 0; 5631 else 5632 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5633 mddev->in_sync = 1; 5634 smp_wmb(); 5635 spin_lock(&mddev->lock); 5636 mddev->pers = pers; 5637 spin_unlock(&mddev->lock); 5638 rdev_for_each(rdev, mddev) 5639 if (rdev->raid_disk >= 0) 5640 if (sysfs_link_rdev(mddev, rdev)) 5641 /* failure here is OK */; 5642 5643 if (mddev->degraded && !mddev->ro) 5644 /* This ensures that recovering status is reported immediately 5645 * via sysfs - until a lack of spares is confirmed. 5646 */ 5647 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 5648 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5649 5650 if (mddev->sb_flags) 5651 md_update_sb(mddev, 0); 5652 5653 md_new_event(mddev); 5654 sysfs_notify_dirent_safe(mddev->sysfs_state); 5655 sysfs_notify_dirent_safe(mddev->sysfs_action); 5656 sysfs_notify(&mddev->kobj, NULL, "degraded"); 5657 return 0; 5658 } 5659 EXPORT_SYMBOL_GPL(md_run); 5660 5661 static int do_md_run(struct mddev *mddev) 5662 { 5663 int err; 5664 5665 err = md_run(mddev); 5666 if (err) 5667 goto out; 5668 err = bitmap_load(mddev); 5669 if (err) { 5670 bitmap_destroy(mddev); 5671 goto out; 5672 } 5673 5674 if (mddev_is_clustered(mddev)) 5675 md_allow_write(mddev); 5676 5677 /* run start up tasks that require md_thread */ 5678 md_start(mddev); 5679 5680 md_wakeup_thread(mddev->thread); 5681 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 5682 5683 set_capacity(mddev->gendisk, mddev->array_sectors); 5684 revalidate_disk(mddev->gendisk); 5685 mddev->changed = 1; 5686 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 5687 out: 5688 return err; 5689 } 5690 5691 int md_start(struct mddev *mddev) 5692 { 5693 int ret = 0; 5694 5695 if (mddev->pers->start) { 5696 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5697 md_wakeup_thread(mddev->thread); 5698 ret = mddev->pers->start(mddev); 5699 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 5700 md_wakeup_thread(mddev->sync_thread); 5701 } 5702 return ret; 5703 } 5704 EXPORT_SYMBOL_GPL(md_start); 5705 5706 static int restart_array(struct mddev *mddev) 5707 { 5708 struct gendisk *disk = mddev->gendisk; 5709 struct md_rdev *rdev; 5710 bool has_journal = false; 5711 bool has_readonly = false; 5712 5713 /* Complain if it has no devices */ 5714 if (list_empty(&mddev->disks)) 5715 return -ENXIO; 5716 if (!mddev->pers) 5717 return -EINVAL; 5718 if (!mddev->ro) 5719 return -EBUSY; 5720 5721 rcu_read_lock(); 5722 rdev_for_each_rcu(rdev, mddev) { 5723 if (test_bit(Journal, &rdev->flags) && 5724 !test_bit(Faulty, &rdev->flags)) 5725 has_journal = true; 5726 if (bdev_read_only(rdev->bdev)) 5727 has_readonly = true; 5728 } 5729 rcu_read_unlock(); 5730 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 5731 /* Don't restart rw with journal missing/faulty */ 5732 return -EINVAL; 5733 if (has_readonly) 5734 return -EROFS; 5735 5736 mddev->safemode = 0; 5737 mddev->ro = 0; 5738 set_disk_ro(disk, 0); 5739 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 5740 /* Kick recovery or resync if necessary */ 5741 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5742 md_wakeup_thread(mddev->thread); 5743 md_wakeup_thread(mddev->sync_thread); 5744 sysfs_notify_dirent_safe(mddev->sysfs_state); 5745 return 0; 5746 } 5747 5748 static void md_clean(struct mddev *mddev) 5749 { 5750 mddev->array_sectors = 0; 5751 mddev->external_size = 0; 5752 mddev->dev_sectors = 0; 5753 mddev->raid_disks = 0; 5754 mddev->recovery_cp = 0; 5755 mddev->resync_min = 0; 5756 mddev->resync_max = MaxSector; 5757 mddev->reshape_position = MaxSector; 5758 mddev->external = 0; 5759 mddev->persistent = 0; 5760 mddev->level = LEVEL_NONE; 5761 mddev->clevel[0] = 0; 5762 mddev->flags = 0; 5763 mddev->sb_flags = 0; 5764 mddev->ro = 0; 5765 mddev->metadata_type[0] = 0; 5766 mddev->chunk_sectors = 0; 5767 mddev->ctime = mddev->utime = 0; 5768 mddev->layout = 0; 5769 mddev->max_disks = 0; 5770 mddev->events = 0; 5771 mddev->can_decrease_events = 0; 5772 mddev->delta_disks = 0; 5773 mddev->reshape_backwards = 0; 5774 mddev->new_level = LEVEL_NONE; 5775 mddev->new_layout = 0; 5776 mddev->new_chunk_sectors = 0; 5777 mddev->curr_resync = 0; 5778 atomic64_set(&mddev->resync_mismatches, 0); 5779 mddev->suspend_lo = mddev->suspend_hi = 0; 5780 mddev->sync_speed_min = mddev->sync_speed_max = 0; 5781 mddev->recovery = 0; 5782 mddev->in_sync = 0; 5783 mddev->changed = 0; 5784 mddev->degraded = 0; 5785 mddev->safemode = 0; 5786 mddev->private = NULL; 5787 mddev->cluster_info = NULL; 5788 mddev->bitmap_info.offset = 0; 5789 mddev->bitmap_info.default_offset = 0; 5790 mddev->bitmap_info.default_space = 0; 5791 mddev->bitmap_info.chunksize = 0; 5792 mddev->bitmap_info.daemon_sleep = 0; 5793 mddev->bitmap_info.max_write_behind = 0; 5794 mddev->bitmap_info.nodes = 0; 5795 } 5796 5797 static void __md_stop_writes(struct mddev *mddev) 5798 { 5799 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5800 flush_workqueue(md_misc_wq); 5801 if (mddev->sync_thread) { 5802 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5803 md_reap_sync_thread(mddev); 5804 } 5805 5806 del_timer_sync(&mddev->safemode_timer); 5807 5808 if (mddev->pers && mddev->pers->quiesce) { 5809 mddev->pers->quiesce(mddev, 1); 5810 mddev->pers->quiesce(mddev, 0); 5811 } 5812 bitmap_flush(mddev); 5813 5814 if (mddev->ro == 0 && 5815 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 5816 mddev->sb_flags)) { 5817 /* mark array as shutdown cleanly */ 5818 if (!mddev_is_clustered(mddev)) 5819 mddev->in_sync = 1; 5820 md_update_sb(mddev, 1); 5821 } 5822 } 5823 5824 void md_stop_writes(struct mddev *mddev) 5825 { 5826 mddev_lock_nointr(mddev); 5827 __md_stop_writes(mddev); 5828 mddev_unlock(mddev); 5829 } 5830 EXPORT_SYMBOL_GPL(md_stop_writes); 5831 5832 static void mddev_detach(struct mddev *mddev) 5833 { 5834 bitmap_wait_behind_writes(mddev); 5835 if (mddev->pers && mddev->pers->quiesce) { 5836 mddev->pers->quiesce(mddev, 1); 5837 mddev->pers->quiesce(mddev, 0); 5838 } 5839 md_unregister_thread(&mddev->thread); 5840 if (mddev->queue) 5841 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 5842 } 5843 5844 static void __md_stop(struct mddev *mddev) 5845 { 5846 struct md_personality *pers = mddev->pers; 5847 bitmap_destroy(mddev); 5848 mddev_detach(mddev); 5849 /* Ensure ->event_work is done */ 5850 flush_workqueue(md_misc_wq); 5851 spin_lock(&mddev->lock); 5852 mddev->pers = NULL; 5853 spin_unlock(&mddev->lock); 5854 pers->free(mddev, mddev->private); 5855 mddev->private = NULL; 5856 if (pers->sync_request && mddev->to_remove == NULL) 5857 mddev->to_remove = &md_redundancy_group; 5858 module_put(pers->owner); 5859 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5860 } 5861 5862 void md_stop(struct mddev *mddev) 5863 { 5864 /* stop the array and free an attached data structures. 5865 * This is called from dm-raid 5866 */ 5867 __md_stop(mddev); 5868 if (mddev->bio_set) { 5869 bioset_free(mddev->bio_set); 5870 mddev->bio_set = NULL; 5871 } 5872 if (mddev->sync_set) { 5873 bioset_free(mddev->sync_set); 5874 mddev->sync_set = NULL; 5875 } 5876 } 5877 5878 EXPORT_SYMBOL_GPL(md_stop); 5879 5880 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 5881 { 5882 int err = 0; 5883 int did_freeze = 0; 5884 5885 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5886 did_freeze = 1; 5887 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5888 md_wakeup_thread(mddev->thread); 5889 } 5890 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5891 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5892 if (mddev->sync_thread) 5893 /* Thread might be blocked waiting for metadata update 5894 * which will now never happen */ 5895 wake_up_process(mddev->sync_thread->tsk); 5896 5897 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 5898 return -EBUSY; 5899 mddev_unlock(mddev); 5900 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 5901 &mddev->recovery)); 5902 wait_event(mddev->sb_wait, 5903 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 5904 mddev_lock_nointr(mddev); 5905 5906 mutex_lock(&mddev->open_mutex); 5907 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5908 mddev->sync_thread || 5909 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5910 pr_warn("md: %s still in use.\n",mdname(mddev)); 5911 if (did_freeze) { 5912 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5913 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5914 md_wakeup_thread(mddev->thread); 5915 } 5916 err = -EBUSY; 5917 goto out; 5918 } 5919 if (mddev->pers) { 5920 __md_stop_writes(mddev); 5921 5922 err = -ENXIO; 5923 if (mddev->ro==1) 5924 goto out; 5925 mddev->ro = 1; 5926 set_disk_ro(mddev->gendisk, 1); 5927 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5928 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5929 md_wakeup_thread(mddev->thread); 5930 sysfs_notify_dirent_safe(mddev->sysfs_state); 5931 err = 0; 5932 } 5933 out: 5934 mutex_unlock(&mddev->open_mutex); 5935 return err; 5936 } 5937 5938 /* mode: 5939 * 0 - completely stop and dis-assemble array 5940 * 2 - stop but do not disassemble array 5941 */ 5942 static int do_md_stop(struct mddev *mddev, int mode, 5943 struct block_device *bdev) 5944 { 5945 struct gendisk *disk = mddev->gendisk; 5946 struct md_rdev *rdev; 5947 int did_freeze = 0; 5948 5949 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 5950 did_freeze = 1; 5951 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5952 md_wakeup_thread(mddev->thread); 5953 } 5954 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5955 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 5956 if (mddev->sync_thread) 5957 /* Thread might be blocked waiting for metadata update 5958 * which will now never happen */ 5959 wake_up_process(mddev->sync_thread->tsk); 5960 5961 mddev_unlock(mddev); 5962 wait_event(resync_wait, (mddev->sync_thread == NULL && 5963 !test_bit(MD_RECOVERY_RUNNING, 5964 &mddev->recovery))); 5965 mddev_lock_nointr(mddev); 5966 5967 mutex_lock(&mddev->open_mutex); 5968 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 5969 mddev->sysfs_active || 5970 mddev->sync_thread || 5971 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 5972 pr_warn("md: %s still in use.\n",mdname(mddev)); 5973 mutex_unlock(&mddev->open_mutex); 5974 if (did_freeze) { 5975 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 5976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 5977 md_wakeup_thread(mddev->thread); 5978 } 5979 return -EBUSY; 5980 } 5981 if (mddev->pers) { 5982 if (mddev->ro) 5983 set_disk_ro(disk, 0); 5984 5985 __md_stop_writes(mddev); 5986 __md_stop(mddev); 5987 mddev->queue->backing_dev_info->congested_fn = NULL; 5988 5989 /* tell userspace to handle 'inactive' */ 5990 sysfs_notify_dirent_safe(mddev->sysfs_state); 5991 5992 rdev_for_each(rdev, mddev) 5993 if (rdev->raid_disk >= 0) 5994 sysfs_unlink_rdev(mddev, rdev); 5995 5996 set_capacity(disk, 0); 5997 mutex_unlock(&mddev->open_mutex); 5998 mddev->changed = 1; 5999 revalidate_disk(disk); 6000 6001 if (mddev->ro) 6002 mddev->ro = 0; 6003 } else 6004 mutex_unlock(&mddev->open_mutex); 6005 /* 6006 * Free resources if final stop 6007 */ 6008 if (mode == 0) { 6009 pr_info("md: %s stopped.\n", mdname(mddev)); 6010 6011 if (mddev->bitmap_info.file) { 6012 struct file *f = mddev->bitmap_info.file; 6013 spin_lock(&mddev->lock); 6014 mddev->bitmap_info.file = NULL; 6015 spin_unlock(&mddev->lock); 6016 fput(f); 6017 } 6018 mddev->bitmap_info.offset = 0; 6019 6020 export_array(mddev); 6021 6022 md_clean(mddev); 6023 if (mddev->hold_active == UNTIL_STOP) 6024 mddev->hold_active = 0; 6025 } 6026 md_new_event(mddev); 6027 sysfs_notify_dirent_safe(mddev->sysfs_state); 6028 return 0; 6029 } 6030 6031 #ifndef MODULE 6032 static void autorun_array(struct mddev *mddev) 6033 { 6034 struct md_rdev *rdev; 6035 int err; 6036 6037 if (list_empty(&mddev->disks)) 6038 return; 6039 6040 pr_info("md: running: "); 6041 6042 rdev_for_each(rdev, mddev) { 6043 char b[BDEVNAME_SIZE]; 6044 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6045 } 6046 pr_cont("\n"); 6047 6048 err = do_md_run(mddev); 6049 if (err) { 6050 pr_warn("md: do_md_run() returned %d\n", err); 6051 do_md_stop(mddev, 0, NULL); 6052 } 6053 } 6054 6055 /* 6056 * lets try to run arrays based on all disks that have arrived 6057 * until now. (those are in pending_raid_disks) 6058 * 6059 * the method: pick the first pending disk, collect all disks with 6060 * the same UUID, remove all from the pending list and put them into 6061 * the 'same_array' list. Then order this list based on superblock 6062 * update time (freshest comes first), kick out 'old' disks and 6063 * compare superblocks. If everything's fine then run it. 6064 * 6065 * If "unit" is allocated, then bump its reference count 6066 */ 6067 static void autorun_devices(int part) 6068 { 6069 struct md_rdev *rdev0, *rdev, *tmp; 6070 struct mddev *mddev; 6071 char b[BDEVNAME_SIZE]; 6072 6073 pr_info("md: autorun ...\n"); 6074 while (!list_empty(&pending_raid_disks)) { 6075 int unit; 6076 dev_t dev; 6077 LIST_HEAD(candidates); 6078 rdev0 = list_entry(pending_raid_disks.next, 6079 struct md_rdev, same_set); 6080 6081 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6082 INIT_LIST_HEAD(&candidates); 6083 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6084 if (super_90_load(rdev, rdev0, 0) >= 0) { 6085 pr_debug("md: adding %s ...\n", 6086 bdevname(rdev->bdev,b)); 6087 list_move(&rdev->same_set, &candidates); 6088 } 6089 /* 6090 * now we have a set of devices, with all of them having 6091 * mostly sane superblocks. It's time to allocate the 6092 * mddev. 6093 */ 6094 if (part) { 6095 dev = MKDEV(mdp_major, 6096 rdev0->preferred_minor << MdpMinorShift); 6097 unit = MINOR(dev) >> MdpMinorShift; 6098 } else { 6099 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6100 unit = MINOR(dev); 6101 } 6102 if (rdev0->preferred_minor != unit) { 6103 pr_warn("md: unit number in %s is bad: %d\n", 6104 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6105 break; 6106 } 6107 6108 md_probe(dev, NULL, NULL); 6109 mddev = mddev_find(dev); 6110 if (!mddev || !mddev->gendisk) { 6111 if (mddev) 6112 mddev_put(mddev); 6113 break; 6114 } 6115 if (mddev_lock(mddev)) 6116 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6117 else if (mddev->raid_disks || mddev->major_version 6118 || !list_empty(&mddev->disks)) { 6119 pr_warn("md: %s already running, cannot run %s\n", 6120 mdname(mddev), bdevname(rdev0->bdev,b)); 6121 mddev_unlock(mddev); 6122 } else { 6123 pr_debug("md: created %s\n", mdname(mddev)); 6124 mddev->persistent = 1; 6125 rdev_for_each_list(rdev, tmp, &candidates) { 6126 list_del_init(&rdev->same_set); 6127 if (bind_rdev_to_array(rdev, mddev)) 6128 export_rdev(rdev); 6129 } 6130 autorun_array(mddev); 6131 mddev_unlock(mddev); 6132 } 6133 /* on success, candidates will be empty, on error 6134 * it won't... 6135 */ 6136 rdev_for_each_list(rdev, tmp, &candidates) { 6137 list_del_init(&rdev->same_set); 6138 export_rdev(rdev); 6139 } 6140 mddev_put(mddev); 6141 } 6142 pr_info("md: ... autorun DONE.\n"); 6143 } 6144 #endif /* !MODULE */ 6145 6146 static int get_version(void __user *arg) 6147 { 6148 mdu_version_t ver; 6149 6150 ver.major = MD_MAJOR_VERSION; 6151 ver.minor = MD_MINOR_VERSION; 6152 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6153 6154 if (copy_to_user(arg, &ver, sizeof(ver))) 6155 return -EFAULT; 6156 6157 return 0; 6158 } 6159 6160 static int get_array_info(struct mddev *mddev, void __user *arg) 6161 { 6162 mdu_array_info_t info; 6163 int nr,working,insync,failed,spare; 6164 struct md_rdev *rdev; 6165 6166 nr = working = insync = failed = spare = 0; 6167 rcu_read_lock(); 6168 rdev_for_each_rcu(rdev, mddev) { 6169 nr++; 6170 if (test_bit(Faulty, &rdev->flags)) 6171 failed++; 6172 else { 6173 working++; 6174 if (test_bit(In_sync, &rdev->flags)) 6175 insync++; 6176 else if (test_bit(Journal, &rdev->flags)) 6177 /* TODO: add journal count to md_u.h */ 6178 ; 6179 else 6180 spare++; 6181 } 6182 } 6183 rcu_read_unlock(); 6184 6185 info.major_version = mddev->major_version; 6186 info.minor_version = mddev->minor_version; 6187 info.patch_version = MD_PATCHLEVEL_VERSION; 6188 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6189 info.level = mddev->level; 6190 info.size = mddev->dev_sectors / 2; 6191 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6192 info.size = -1; 6193 info.nr_disks = nr; 6194 info.raid_disks = mddev->raid_disks; 6195 info.md_minor = mddev->md_minor; 6196 info.not_persistent= !mddev->persistent; 6197 6198 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6199 info.state = 0; 6200 if (mddev->in_sync) 6201 info.state = (1<<MD_SB_CLEAN); 6202 if (mddev->bitmap && mddev->bitmap_info.offset) 6203 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6204 if (mddev_is_clustered(mddev)) 6205 info.state |= (1<<MD_SB_CLUSTERED); 6206 info.active_disks = insync; 6207 info.working_disks = working; 6208 info.failed_disks = failed; 6209 info.spare_disks = spare; 6210 6211 info.layout = mddev->layout; 6212 info.chunk_size = mddev->chunk_sectors << 9; 6213 6214 if (copy_to_user(arg, &info, sizeof(info))) 6215 return -EFAULT; 6216 6217 return 0; 6218 } 6219 6220 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6221 { 6222 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6223 char *ptr; 6224 int err; 6225 6226 file = kzalloc(sizeof(*file), GFP_NOIO); 6227 if (!file) 6228 return -ENOMEM; 6229 6230 err = 0; 6231 spin_lock(&mddev->lock); 6232 /* bitmap enabled */ 6233 if (mddev->bitmap_info.file) { 6234 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6235 sizeof(file->pathname)); 6236 if (IS_ERR(ptr)) 6237 err = PTR_ERR(ptr); 6238 else 6239 memmove(file->pathname, ptr, 6240 sizeof(file->pathname)-(ptr-file->pathname)); 6241 } 6242 spin_unlock(&mddev->lock); 6243 6244 if (err == 0 && 6245 copy_to_user(arg, file, sizeof(*file))) 6246 err = -EFAULT; 6247 6248 kfree(file); 6249 return err; 6250 } 6251 6252 static int get_disk_info(struct mddev *mddev, void __user * arg) 6253 { 6254 mdu_disk_info_t info; 6255 struct md_rdev *rdev; 6256 6257 if (copy_from_user(&info, arg, sizeof(info))) 6258 return -EFAULT; 6259 6260 rcu_read_lock(); 6261 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6262 if (rdev) { 6263 info.major = MAJOR(rdev->bdev->bd_dev); 6264 info.minor = MINOR(rdev->bdev->bd_dev); 6265 info.raid_disk = rdev->raid_disk; 6266 info.state = 0; 6267 if (test_bit(Faulty, &rdev->flags)) 6268 info.state |= (1<<MD_DISK_FAULTY); 6269 else if (test_bit(In_sync, &rdev->flags)) { 6270 info.state |= (1<<MD_DISK_ACTIVE); 6271 info.state |= (1<<MD_DISK_SYNC); 6272 } 6273 if (test_bit(Journal, &rdev->flags)) 6274 info.state |= (1<<MD_DISK_JOURNAL); 6275 if (test_bit(WriteMostly, &rdev->flags)) 6276 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6277 if (test_bit(FailFast, &rdev->flags)) 6278 info.state |= (1<<MD_DISK_FAILFAST); 6279 } else { 6280 info.major = info.minor = 0; 6281 info.raid_disk = -1; 6282 info.state = (1<<MD_DISK_REMOVED); 6283 } 6284 rcu_read_unlock(); 6285 6286 if (copy_to_user(arg, &info, sizeof(info))) 6287 return -EFAULT; 6288 6289 return 0; 6290 } 6291 6292 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6293 { 6294 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6295 struct md_rdev *rdev; 6296 dev_t dev = MKDEV(info->major,info->minor); 6297 6298 if (mddev_is_clustered(mddev) && 6299 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6300 pr_warn("%s: Cannot add to clustered mddev.\n", 6301 mdname(mddev)); 6302 return -EINVAL; 6303 } 6304 6305 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6306 return -EOVERFLOW; 6307 6308 if (!mddev->raid_disks) { 6309 int err; 6310 /* expecting a device which has a superblock */ 6311 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6312 if (IS_ERR(rdev)) { 6313 pr_warn("md: md_import_device returned %ld\n", 6314 PTR_ERR(rdev)); 6315 return PTR_ERR(rdev); 6316 } 6317 if (!list_empty(&mddev->disks)) { 6318 struct md_rdev *rdev0 6319 = list_entry(mddev->disks.next, 6320 struct md_rdev, same_set); 6321 err = super_types[mddev->major_version] 6322 .load_super(rdev, rdev0, mddev->minor_version); 6323 if (err < 0) { 6324 pr_warn("md: %s has different UUID to %s\n", 6325 bdevname(rdev->bdev,b), 6326 bdevname(rdev0->bdev,b2)); 6327 export_rdev(rdev); 6328 return -EINVAL; 6329 } 6330 } 6331 err = bind_rdev_to_array(rdev, mddev); 6332 if (err) 6333 export_rdev(rdev); 6334 return err; 6335 } 6336 6337 /* 6338 * add_new_disk can be used once the array is assembled 6339 * to add "hot spares". They must already have a superblock 6340 * written 6341 */ 6342 if (mddev->pers) { 6343 int err; 6344 if (!mddev->pers->hot_add_disk) { 6345 pr_warn("%s: personality does not support diskops!\n", 6346 mdname(mddev)); 6347 return -EINVAL; 6348 } 6349 if (mddev->persistent) 6350 rdev = md_import_device(dev, mddev->major_version, 6351 mddev->minor_version); 6352 else 6353 rdev = md_import_device(dev, -1, -1); 6354 if (IS_ERR(rdev)) { 6355 pr_warn("md: md_import_device returned %ld\n", 6356 PTR_ERR(rdev)); 6357 return PTR_ERR(rdev); 6358 } 6359 /* set saved_raid_disk if appropriate */ 6360 if (!mddev->persistent) { 6361 if (info->state & (1<<MD_DISK_SYNC) && 6362 info->raid_disk < mddev->raid_disks) { 6363 rdev->raid_disk = info->raid_disk; 6364 set_bit(In_sync, &rdev->flags); 6365 clear_bit(Bitmap_sync, &rdev->flags); 6366 } else 6367 rdev->raid_disk = -1; 6368 rdev->saved_raid_disk = rdev->raid_disk; 6369 } else 6370 super_types[mddev->major_version]. 6371 validate_super(mddev, rdev); 6372 if ((info->state & (1<<MD_DISK_SYNC)) && 6373 rdev->raid_disk != info->raid_disk) { 6374 /* This was a hot-add request, but events doesn't 6375 * match, so reject it. 6376 */ 6377 export_rdev(rdev); 6378 return -EINVAL; 6379 } 6380 6381 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6382 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6383 set_bit(WriteMostly, &rdev->flags); 6384 else 6385 clear_bit(WriteMostly, &rdev->flags); 6386 if (info->state & (1<<MD_DISK_FAILFAST)) 6387 set_bit(FailFast, &rdev->flags); 6388 else 6389 clear_bit(FailFast, &rdev->flags); 6390 6391 if (info->state & (1<<MD_DISK_JOURNAL)) { 6392 struct md_rdev *rdev2; 6393 bool has_journal = false; 6394 6395 /* make sure no existing journal disk */ 6396 rdev_for_each(rdev2, mddev) { 6397 if (test_bit(Journal, &rdev2->flags)) { 6398 has_journal = true; 6399 break; 6400 } 6401 } 6402 if (has_journal || mddev->bitmap) { 6403 export_rdev(rdev); 6404 return -EBUSY; 6405 } 6406 set_bit(Journal, &rdev->flags); 6407 } 6408 /* 6409 * check whether the device shows up in other nodes 6410 */ 6411 if (mddev_is_clustered(mddev)) { 6412 if (info->state & (1 << MD_DISK_CANDIDATE)) 6413 set_bit(Candidate, &rdev->flags); 6414 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6415 /* --add initiated by this node */ 6416 err = md_cluster_ops->add_new_disk(mddev, rdev); 6417 if (err) { 6418 export_rdev(rdev); 6419 return err; 6420 } 6421 } 6422 } 6423 6424 rdev->raid_disk = -1; 6425 err = bind_rdev_to_array(rdev, mddev); 6426 6427 if (err) 6428 export_rdev(rdev); 6429 6430 if (mddev_is_clustered(mddev)) { 6431 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6432 if (!err) { 6433 err = md_cluster_ops->new_disk_ack(mddev, 6434 err == 0); 6435 if (err) 6436 md_kick_rdev_from_array(rdev); 6437 } 6438 } else { 6439 if (err) 6440 md_cluster_ops->add_new_disk_cancel(mddev); 6441 else 6442 err = add_bound_rdev(rdev); 6443 } 6444 6445 } else if (!err) 6446 err = add_bound_rdev(rdev); 6447 6448 return err; 6449 } 6450 6451 /* otherwise, add_new_disk is only allowed 6452 * for major_version==0 superblocks 6453 */ 6454 if (mddev->major_version != 0) { 6455 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6456 return -EINVAL; 6457 } 6458 6459 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6460 int err; 6461 rdev = md_import_device(dev, -1, 0); 6462 if (IS_ERR(rdev)) { 6463 pr_warn("md: error, md_import_device() returned %ld\n", 6464 PTR_ERR(rdev)); 6465 return PTR_ERR(rdev); 6466 } 6467 rdev->desc_nr = info->number; 6468 if (info->raid_disk < mddev->raid_disks) 6469 rdev->raid_disk = info->raid_disk; 6470 else 6471 rdev->raid_disk = -1; 6472 6473 if (rdev->raid_disk < mddev->raid_disks) 6474 if (info->state & (1<<MD_DISK_SYNC)) 6475 set_bit(In_sync, &rdev->flags); 6476 6477 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6478 set_bit(WriteMostly, &rdev->flags); 6479 if (info->state & (1<<MD_DISK_FAILFAST)) 6480 set_bit(FailFast, &rdev->flags); 6481 6482 if (!mddev->persistent) { 6483 pr_debug("md: nonpersistent superblock ...\n"); 6484 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6485 } else 6486 rdev->sb_start = calc_dev_sboffset(rdev); 6487 rdev->sectors = rdev->sb_start; 6488 6489 err = bind_rdev_to_array(rdev, mddev); 6490 if (err) { 6491 export_rdev(rdev); 6492 return err; 6493 } 6494 } 6495 6496 return 0; 6497 } 6498 6499 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6500 { 6501 char b[BDEVNAME_SIZE]; 6502 struct md_rdev *rdev; 6503 6504 rdev = find_rdev(mddev, dev); 6505 if (!rdev) 6506 return -ENXIO; 6507 6508 if (rdev->raid_disk < 0) 6509 goto kick_rdev; 6510 6511 clear_bit(Blocked, &rdev->flags); 6512 remove_and_add_spares(mddev, rdev); 6513 6514 if (rdev->raid_disk >= 0) 6515 goto busy; 6516 6517 kick_rdev: 6518 if (mddev_is_clustered(mddev)) 6519 md_cluster_ops->remove_disk(mddev, rdev); 6520 6521 md_kick_rdev_from_array(rdev); 6522 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6523 if (mddev->thread) 6524 md_wakeup_thread(mddev->thread); 6525 else 6526 md_update_sb(mddev, 1); 6527 md_new_event(mddev); 6528 6529 return 0; 6530 busy: 6531 pr_debug("md: cannot remove active disk %s from %s ...\n", 6532 bdevname(rdev->bdev,b), mdname(mddev)); 6533 return -EBUSY; 6534 } 6535 6536 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6537 { 6538 char b[BDEVNAME_SIZE]; 6539 int err; 6540 struct md_rdev *rdev; 6541 6542 if (!mddev->pers) 6543 return -ENODEV; 6544 6545 if (mddev->major_version != 0) { 6546 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6547 mdname(mddev)); 6548 return -EINVAL; 6549 } 6550 if (!mddev->pers->hot_add_disk) { 6551 pr_warn("%s: personality does not support diskops!\n", 6552 mdname(mddev)); 6553 return -EINVAL; 6554 } 6555 6556 rdev = md_import_device(dev, -1, 0); 6557 if (IS_ERR(rdev)) { 6558 pr_warn("md: error, md_import_device() returned %ld\n", 6559 PTR_ERR(rdev)); 6560 return -EINVAL; 6561 } 6562 6563 if (mddev->persistent) 6564 rdev->sb_start = calc_dev_sboffset(rdev); 6565 else 6566 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6567 6568 rdev->sectors = rdev->sb_start; 6569 6570 if (test_bit(Faulty, &rdev->flags)) { 6571 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6572 bdevname(rdev->bdev,b), mdname(mddev)); 6573 err = -EINVAL; 6574 goto abort_export; 6575 } 6576 6577 clear_bit(In_sync, &rdev->flags); 6578 rdev->desc_nr = -1; 6579 rdev->saved_raid_disk = -1; 6580 err = bind_rdev_to_array(rdev, mddev); 6581 if (err) 6582 goto abort_export; 6583 6584 /* 6585 * The rest should better be atomic, we can have disk failures 6586 * noticed in interrupt contexts ... 6587 */ 6588 6589 rdev->raid_disk = -1; 6590 6591 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6592 if (!mddev->thread) 6593 md_update_sb(mddev, 1); 6594 /* 6595 * Kick recovery, maybe this spare has to be added to the 6596 * array immediately. 6597 */ 6598 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6599 md_wakeup_thread(mddev->thread); 6600 md_new_event(mddev); 6601 return 0; 6602 6603 abort_export: 6604 export_rdev(rdev); 6605 return err; 6606 } 6607 6608 static int set_bitmap_file(struct mddev *mddev, int fd) 6609 { 6610 int err = 0; 6611 6612 if (mddev->pers) { 6613 if (!mddev->pers->quiesce || !mddev->thread) 6614 return -EBUSY; 6615 if (mddev->recovery || mddev->sync_thread) 6616 return -EBUSY; 6617 /* we should be able to change the bitmap.. */ 6618 } 6619 6620 if (fd >= 0) { 6621 struct inode *inode; 6622 struct file *f; 6623 6624 if (mddev->bitmap || mddev->bitmap_info.file) 6625 return -EEXIST; /* cannot add when bitmap is present */ 6626 f = fget(fd); 6627 6628 if (f == NULL) { 6629 pr_warn("%s: error: failed to get bitmap file\n", 6630 mdname(mddev)); 6631 return -EBADF; 6632 } 6633 6634 inode = f->f_mapping->host; 6635 if (!S_ISREG(inode->i_mode)) { 6636 pr_warn("%s: error: bitmap file must be a regular file\n", 6637 mdname(mddev)); 6638 err = -EBADF; 6639 } else if (!(f->f_mode & FMODE_WRITE)) { 6640 pr_warn("%s: error: bitmap file must open for write\n", 6641 mdname(mddev)); 6642 err = -EBADF; 6643 } else if (atomic_read(&inode->i_writecount) != 1) { 6644 pr_warn("%s: error: bitmap file is already in use\n", 6645 mdname(mddev)); 6646 err = -EBUSY; 6647 } 6648 if (err) { 6649 fput(f); 6650 return err; 6651 } 6652 mddev->bitmap_info.file = f; 6653 mddev->bitmap_info.offset = 0; /* file overrides offset */ 6654 } else if (mddev->bitmap == NULL) 6655 return -ENOENT; /* cannot remove what isn't there */ 6656 err = 0; 6657 if (mddev->pers) { 6658 if (fd >= 0) { 6659 struct bitmap *bitmap; 6660 6661 bitmap = bitmap_create(mddev, -1); 6662 mddev_suspend(mddev); 6663 if (!IS_ERR(bitmap)) { 6664 mddev->bitmap = bitmap; 6665 err = bitmap_load(mddev); 6666 } else 6667 err = PTR_ERR(bitmap); 6668 if (err) { 6669 bitmap_destroy(mddev); 6670 fd = -1; 6671 } 6672 mddev_resume(mddev); 6673 } else if (fd < 0) { 6674 mddev_suspend(mddev); 6675 bitmap_destroy(mddev); 6676 mddev_resume(mddev); 6677 } 6678 } 6679 if (fd < 0) { 6680 struct file *f = mddev->bitmap_info.file; 6681 if (f) { 6682 spin_lock(&mddev->lock); 6683 mddev->bitmap_info.file = NULL; 6684 spin_unlock(&mddev->lock); 6685 fput(f); 6686 } 6687 } 6688 6689 return err; 6690 } 6691 6692 /* 6693 * set_array_info is used two different ways 6694 * The original usage is when creating a new array. 6695 * In this usage, raid_disks is > 0 and it together with 6696 * level, size, not_persistent,layout,chunksize determine the 6697 * shape of the array. 6698 * This will always create an array with a type-0.90.0 superblock. 6699 * The newer usage is when assembling an array. 6700 * In this case raid_disks will be 0, and the major_version field is 6701 * use to determine which style super-blocks are to be found on the devices. 6702 * The minor and patch _version numbers are also kept incase the 6703 * super_block handler wishes to interpret them. 6704 */ 6705 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 6706 { 6707 6708 if (info->raid_disks == 0) { 6709 /* just setting version number for superblock loading */ 6710 if (info->major_version < 0 || 6711 info->major_version >= ARRAY_SIZE(super_types) || 6712 super_types[info->major_version].name == NULL) { 6713 /* maybe try to auto-load a module? */ 6714 pr_warn("md: superblock version %d not known\n", 6715 info->major_version); 6716 return -EINVAL; 6717 } 6718 mddev->major_version = info->major_version; 6719 mddev->minor_version = info->minor_version; 6720 mddev->patch_version = info->patch_version; 6721 mddev->persistent = !info->not_persistent; 6722 /* ensure mddev_put doesn't delete this now that there 6723 * is some minimal configuration. 6724 */ 6725 mddev->ctime = ktime_get_real_seconds(); 6726 return 0; 6727 } 6728 mddev->major_version = MD_MAJOR_VERSION; 6729 mddev->minor_version = MD_MINOR_VERSION; 6730 mddev->patch_version = MD_PATCHLEVEL_VERSION; 6731 mddev->ctime = ktime_get_real_seconds(); 6732 6733 mddev->level = info->level; 6734 mddev->clevel[0] = 0; 6735 mddev->dev_sectors = 2 * (sector_t)info->size; 6736 mddev->raid_disks = info->raid_disks; 6737 /* don't set md_minor, it is determined by which /dev/md* was 6738 * openned 6739 */ 6740 if (info->state & (1<<MD_SB_CLEAN)) 6741 mddev->recovery_cp = MaxSector; 6742 else 6743 mddev->recovery_cp = 0; 6744 mddev->persistent = ! info->not_persistent; 6745 mddev->external = 0; 6746 6747 mddev->layout = info->layout; 6748 mddev->chunk_sectors = info->chunk_size >> 9; 6749 6750 if (mddev->persistent) { 6751 mddev->max_disks = MD_SB_DISKS; 6752 mddev->flags = 0; 6753 mddev->sb_flags = 0; 6754 } 6755 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6756 6757 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 6758 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 6759 mddev->bitmap_info.offset = 0; 6760 6761 mddev->reshape_position = MaxSector; 6762 6763 /* 6764 * Generate a 128 bit UUID 6765 */ 6766 get_random_bytes(mddev->uuid, 16); 6767 6768 mddev->new_level = mddev->level; 6769 mddev->new_chunk_sectors = mddev->chunk_sectors; 6770 mddev->new_layout = mddev->layout; 6771 mddev->delta_disks = 0; 6772 mddev->reshape_backwards = 0; 6773 6774 return 0; 6775 } 6776 6777 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 6778 { 6779 lockdep_assert_held(&mddev->reconfig_mutex); 6780 6781 if (mddev->external_size) 6782 return; 6783 6784 mddev->array_sectors = array_sectors; 6785 } 6786 EXPORT_SYMBOL(md_set_array_sectors); 6787 6788 static int update_size(struct mddev *mddev, sector_t num_sectors) 6789 { 6790 struct md_rdev *rdev; 6791 int rv; 6792 int fit = (num_sectors == 0); 6793 sector_t old_dev_sectors = mddev->dev_sectors; 6794 6795 if (mddev->pers->resize == NULL) 6796 return -EINVAL; 6797 /* The "num_sectors" is the number of sectors of each device that 6798 * is used. This can only make sense for arrays with redundancy. 6799 * linear and raid0 always use whatever space is available. We can only 6800 * consider changing this number if no resync or reconstruction is 6801 * happening, and if the new size is acceptable. It must fit before the 6802 * sb_start or, if that is <data_offset, it must fit before the size 6803 * of each device. If num_sectors is zero, we find the largest size 6804 * that fits. 6805 */ 6806 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6807 mddev->sync_thread) 6808 return -EBUSY; 6809 if (mddev->ro) 6810 return -EROFS; 6811 6812 rdev_for_each(rdev, mddev) { 6813 sector_t avail = rdev->sectors; 6814 6815 if (fit && (num_sectors == 0 || num_sectors > avail)) 6816 num_sectors = avail; 6817 if (avail < num_sectors) 6818 return -ENOSPC; 6819 } 6820 rv = mddev->pers->resize(mddev, num_sectors); 6821 if (!rv) { 6822 if (mddev_is_clustered(mddev)) 6823 md_cluster_ops->update_size(mddev, old_dev_sectors); 6824 else if (mddev->queue) { 6825 set_capacity(mddev->gendisk, mddev->array_sectors); 6826 revalidate_disk(mddev->gendisk); 6827 } 6828 } 6829 return rv; 6830 } 6831 6832 static int update_raid_disks(struct mddev *mddev, int raid_disks) 6833 { 6834 int rv; 6835 struct md_rdev *rdev; 6836 /* change the number of raid disks */ 6837 if (mddev->pers->check_reshape == NULL) 6838 return -EINVAL; 6839 if (mddev->ro) 6840 return -EROFS; 6841 if (raid_disks <= 0 || 6842 (mddev->max_disks && raid_disks >= mddev->max_disks)) 6843 return -EINVAL; 6844 if (mddev->sync_thread || 6845 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 6846 mddev->reshape_position != MaxSector) 6847 return -EBUSY; 6848 6849 rdev_for_each(rdev, mddev) { 6850 if (mddev->raid_disks < raid_disks && 6851 rdev->data_offset < rdev->new_data_offset) 6852 return -EINVAL; 6853 if (mddev->raid_disks > raid_disks && 6854 rdev->data_offset > rdev->new_data_offset) 6855 return -EINVAL; 6856 } 6857 6858 mddev->delta_disks = raid_disks - mddev->raid_disks; 6859 if (mddev->delta_disks < 0) 6860 mddev->reshape_backwards = 1; 6861 else if (mddev->delta_disks > 0) 6862 mddev->reshape_backwards = 0; 6863 6864 rv = mddev->pers->check_reshape(mddev); 6865 if (rv < 0) { 6866 mddev->delta_disks = 0; 6867 mddev->reshape_backwards = 0; 6868 } 6869 return rv; 6870 } 6871 6872 /* 6873 * update_array_info is used to change the configuration of an 6874 * on-line array. 6875 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 6876 * fields in the info are checked against the array. 6877 * Any differences that cannot be handled will cause an error. 6878 * Normally, only one change can be managed at a time. 6879 */ 6880 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 6881 { 6882 int rv = 0; 6883 int cnt = 0; 6884 int state = 0; 6885 6886 /* calculate expected state,ignoring low bits */ 6887 if (mddev->bitmap && mddev->bitmap_info.offset) 6888 state |= (1 << MD_SB_BITMAP_PRESENT); 6889 6890 if (mddev->major_version != info->major_version || 6891 mddev->minor_version != info->minor_version || 6892 /* mddev->patch_version != info->patch_version || */ 6893 mddev->ctime != info->ctime || 6894 mddev->level != info->level || 6895 /* mddev->layout != info->layout || */ 6896 mddev->persistent != !info->not_persistent || 6897 mddev->chunk_sectors != info->chunk_size >> 9 || 6898 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 6899 ((state^info->state) & 0xfffffe00) 6900 ) 6901 return -EINVAL; 6902 /* Check there is only one change */ 6903 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6904 cnt++; 6905 if (mddev->raid_disks != info->raid_disks) 6906 cnt++; 6907 if (mddev->layout != info->layout) 6908 cnt++; 6909 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 6910 cnt++; 6911 if (cnt == 0) 6912 return 0; 6913 if (cnt > 1) 6914 return -EINVAL; 6915 6916 if (mddev->layout != info->layout) { 6917 /* Change layout 6918 * we don't need to do anything at the md level, the 6919 * personality will take care of it all. 6920 */ 6921 if (mddev->pers->check_reshape == NULL) 6922 return -EINVAL; 6923 else { 6924 mddev->new_layout = info->layout; 6925 rv = mddev->pers->check_reshape(mddev); 6926 if (rv) 6927 mddev->new_layout = mddev->layout; 6928 return rv; 6929 } 6930 } 6931 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 6932 rv = update_size(mddev, (sector_t)info->size * 2); 6933 6934 if (mddev->raid_disks != info->raid_disks) 6935 rv = update_raid_disks(mddev, info->raid_disks); 6936 6937 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 6938 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 6939 rv = -EINVAL; 6940 goto err; 6941 } 6942 if (mddev->recovery || mddev->sync_thread) { 6943 rv = -EBUSY; 6944 goto err; 6945 } 6946 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 6947 struct bitmap *bitmap; 6948 /* add the bitmap */ 6949 if (mddev->bitmap) { 6950 rv = -EEXIST; 6951 goto err; 6952 } 6953 if (mddev->bitmap_info.default_offset == 0) { 6954 rv = -EINVAL; 6955 goto err; 6956 } 6957 mddev->bitmap_info.offset = 6958 mddev->bitmap_info.default_offset; 6959 mddev->bitmap_info.space = 6960 mddev->bitmap_info.default_space; 6961 bitmap = bitmap_create(mddev, -1); 6962 mddev_suspend(mddev); 6963 if (!IS_ERR(bitmap)) { 6964 mddev->bitmap = bitmap; 6965 rv = bitmap_load(mddev); 6966 } else 6967 rv = PTR_ERR(bitmap); 6968 if (rv) 6969 bitmap_destroy(mddev); 6970 mddev_resume(mddev); 6971 } else { 6972 /* remove the bitmap */ 6973 if (!mddev->bitmap) { 6974 rv = -ENOENT; 6975 goto err; 6976 } 6977 if (mddev->bitmap->storage.file) { 6978 rv = -EINVAL; 6979 goto err; 6980 } 6981 if (mddev->bitmap_info.nodes) { 6982 /* hold PW on all the bitmap lock */ 6983 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 6984 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 6985 rv = -EPERM; 6986 md_cluster_ops->unlock_all_bitmaps(mddev); 6987 goto err; 6988 } 6989 6990 mddev->bitmap_info.nodes = 0; 6991 md_cluster_ops->leave(mddev); 6992 } 6993 mddev_suspend(mddev); 6994 bitmap_destroy(mddev); 6995 mddev_resume(mddev); 6996 mddev->bitmap_info.offset = 0; 6997 } 6998 } 6999 md_update_sb(mddev, 1); 7000 return rv; 7001 err: 7002 return rv; 7003 } 7004 7005 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7006 { 7007 struct md_rdev *rdev; 7008 int err = 0; 7009 7010 if (mddev->pers == NULL) 7011 return -ENODEV; 7012 7013 rcu_read_lock(); 7014 rdev = md_find_rdev_rcu(mddev, dev); 7015 if (!rdev) 7016 err = -ENODEV; 7017 else { 7018 md_error(mddev, rdev); 7019 if (!test_bit(Faulty, &rdev->flags)) 7020 err = -EBUSY; 7021 } 7022 rcu_read_unlock(); 7023 return err; 7024 } 7025 7026 /* 7027 * We have a problem here : there is no easy way to give a CHS 7028 * virtual geometry. We currently pretend that we have a 2 heads 7029 * 4 sectors (with a BIG number of cylinders...). This drives 7030 * dosfs just mad... ;-) 7031 */ 7032 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7033 { 7034 struct mddev *mddev = bdev->bd_disk->private_data; 7035 7036 geo->heads = 2; 7037 geo->sectors = 4; 7038 geo->cylinders = mddev->array_sectors / 8; 7039 return 0; 7040 } 7041 7042 static inline bool md_ioctl_valid(unsigned int cmd) 7043 { 7044 switch (cmd) { 7045 case ADD_NEW_DISK: 7046 case BLKROSET: 7047 case GET_ARRAY_INFO: 7048 case GET_BITMAP_FILE: 7049 case GET_DISK_INFO: 7050 case HOT_ADD_DISK: 7051 case HOT_REMOVE_DISK: 7052 case RAID_AUTORUN: 7053 case RAID_VERSION: 7054 case RESTART_ARRAY_RW: 7055 case RUN_ARRAY: 7056 case SET_ARRAY_INFO: 7057 case SET_BITMAP_FILE: 7058 case SET_DISK_FAULTY: 7059 case STOP_ARRAY: 7060 case STOP_ARRAY_RO: 7061 case CLUSTERED_DISK_NACK: 7062 return true; 7063 default: 7064 return false; 7065 } 7066 } 7067 7068 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7069 unsigned int cmd, unsigned long arg) 7070 { 7071 int err = 0; 7072 void __user *argp = (void __user *)arg; 7073 struct mddev *mddev = NULL; 7074 int ro; 7075 bool did_set_md_closing = false; 7076 7077 if (!md_ioctl_valid(cmd)) 7078 return -ENOTTY; 7079 7080 switch (cmd) { 7081 case RAID_VERSION: 7082 case GET_ARRAY_INFO: 7083 case GET_DISK_INFO: 7084 break; 7085 default: 7086 if (!capable(CAP_SYS_ADMIN)) 7087 return -EACCES; 7088 } 7089 7090 /* 7091 * Commands dealing with the RAID driver but not any 7092 * particular array: 7093 */ 7094 switch (cmd) { 7095 case RAID_VERSION: 7096 err = get_version(argp); 7097 goto out; 7098 7099 #ifndef MODULE 7100 case RAID_AUTORUN: 7101 err = 0; 7102 autostart_arrays(arg); 7103 goto out; 7104 #endif 7105 default:; 7106 } 7107 7108 /* 7109 * Commands creating/starting a new array: 7110 */ 7111 7112 mddev = bdev->bd_disk->private_data; 7113 7114 if (!mddev) { 7115 BUG(); 7116 goto out; 7117 } 7118 7119 /* Some actions do not requires the mutex */ 7120 switch (cmd) { 7121 case GET_ARRAY_INFO: 7122 if (!mddev->raid_disks && !mddev->external) 7123 err = -ENODEV; 7124 else 7125 err = get_array_info(mddev, argp); 7126 goto out; 7127 7128 case GET_DISK_INFO: 7129 if (!mddev->raid_disks && !mddev->external) 7130 err = -ENODEV; 7131 else 7132 err = get_disk_info(mddev, argp); 7133 goto out; 7134 7135 case SET_DISK_FAULTY: 7136 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7137 goto out; 7138 7139 case GET_BITMAP_FILE: 7140 err = get_bitmap_file(mddev, argp); 7141 goto out; 7142 7143 } 7144 7145 if (cmd == ADD_NEW_DISK) 7146 /* need to ensure md_delayed_delete() has completed */ 7147 flush_workqueue(md_misc_wq); 7148 7149 if (cmd == HOT_REMOVE_DISK) 7150 /* need to ensure recovery thread has run */ 7151 wait_event_interruptible_timeout(mddev->sb_wait, 7152 !test_bit(MD_RECOVERY_NEEDED, 7153 &mddev->recovery), 7154 msecs_to_jiffies(5000)); 7155 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7156 /* Need to flush page cache, and ensure no-one else opens 7157 * and writes 7158 */ 7159 mutex_lock(&mddev->open_mutex); 7160 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7161 mutex_unlock(&mddev->open_mutex); 7162 err = -EBUSY; 7163 goto out; 7164 } 7165 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7166 set_bit(MD_CLOSING, &mddev->flags); 7167 did_set_md_closing = true; 7168 mutex_unlock(&mddev->open_mutex); 7169 sync_blockdev(bdev); 7170 } 7171 err = mddev_lock(mddev); 7172 if (err) { 7173 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7174 err, cmd); 7175 goto out; 7176 } 7177 7178 if (cmd == SET_ARRAY_INFO) { 7179 mdu_array_info_t info; 7180 if (!arg) 7181 memset(&info, 0, sizeof(info)); 7182 else if (copy_from_user(&info, argp, sizeof(info))) { 7183 err = -EFAULT; 7184 goto unlock; 7185 } 7186 if (mddev->pers) { 7187 err = update_array_info(mddev, &info); 7188 if (err) { 7189 pr_warn("md: couldn't update array info. %d\n", err); 7190 goto unlock; 7191 } 7192 goto unlock; 7193 } 7194 if (!list_empty(&mddev->disks)) { 7195 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7196 err = -EBUSY; 7197 goto unlock; 7198 } 7199 if (mddev->raid_disks) { 7200 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7201 err = -EBUSY; 7202 goto unlock; 7203 } 7204 err = set_array_info(mddev, &info); 7205 if (err) { 7206 pr_warn("md: couldn't set array info. %d\n", err); 7207 goto unlock; 7208 } 7209 goto unlock; 7210 } 7211 7212 /* 7213 * Commands querying/configuring an existing array: 7214 */ 7215 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7216 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7217 if ((!mddev->raid_disks && !mddev->external) 7218 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7219 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7220 && cmd != GET_BITMAP_FILE) { 7221 err = -ENODEV; 7222 goto unlock; 7223 } 7224 7225 /* 7226 * Commands even a read-only array can execute: 7227 */ 7228 switch (cmd) { 7229 case RESTART_ARRAY_RW: 7230 err = restart_array(mddev); 7231 goto unlock; 7232 7233 case STOP_ARRAY: 7234 err = do_md_stop(mddev, 0, bdev); 7235 goto unlock; 7236 7237 case STOP_ARRAY_RO: 7238 err = md_set_readonly(mddev, bdev); 7239 goto unlock; 7240 7241 case HOT_REMOVE_DISK: 7242 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7243 goto unlock; 7244 7245 case ADD_NEW_DISK: 7246 /* We can support ADD_NEW_DISK on read-only arrays 7247 * only if we are re-adding a preexisting device. 7248 * So require mddev->pers and MD_DISK_SYNC. 7249 */ 7250 if (mddev->pers) { 7251 mdu_disk_info_t info; 7252 if (copy_from_user(&info, argp, sizeof(info))) 7253 err = -EFAULT; 7254 else if (!(info.state & (1<<MD_DISK_SYNC))) 7255 /* Need to clear read-only for this */ 7256 break; 7257 else 7258 err = add_new_disk(mddev, &info); 7259 goto unlock; 7260 } 7261 break; 7262 7263 case BLKROSET: 7264 if (get_user(ro, (int __user *)(arg))) { 7265 err = -EFAULT; 7266 goto unlock; 7267 } 7268 err = -EINVAL; 7269 7270 /* if the bdev is going readonly the value of mddev->ro 7271 * does not matter, no writes are coming 7272 */ 7273 if (ro) 7274 goto unlock; 7275 7276 /* are we are already prepared for writes? */ 7277 if (mddev->ro != 1) 7278 goto unlock; 7279 7280 /* transitioning to readauto need only happen for 7281 * arrays that call md_write_start 7282 */ 7283 if (mddev->pers) { 7284 err = restart_array(mddev); 7285 if (err == 0) { 7286 mddev->ro = 2; 7287 set_disk_ro(mddev->gendisk, 0); 7288 } 7289 } 7290 goto unlock; 7291 } 7292 7293 /* 7294 * The remaining ioctls are changing the state of the 7295 * superblock, so we do not allow them on read-only arrays. 7296 */ 7297 if (mddev->ro && mddev->pers) { 7298 if (mddev->ro == 2) { 7299 mddev->ro = 0; 7300 sysfs_notify_dirent_safe(mddev->sysfs_state); 7301 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7302 /* mddev_unlock will wake thread */ 7303 /* If a device failed while we were read-only, we 7304 * need to make sure the metadata is updated now. 7305 */ 7306 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7307 mddev_unlock(mddev); 7308 wait_event(mddev->sb_wait, 7309 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7310 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7311 mddev_lock_nointr(mddev); 7312 } 7313 } else { 7314 err = -EROFS; 7315 goto unlock; 7316 } 7317 } 7318 7319 switch (cmd) { 7320 case ADD_NEW_DISK: 7321 { 7322 mdu_disk_info_t info; 7323 if (copy_from_user(&info, argp, sizeof(info))) 7324 err = -EFAULT; 7325 else 7326 err = add_new_disk(mddev, &info); 7327 goto unlock; 7328 } 7329 7330 case CLUSTERED_DISK_NACK: 7331 if (mddev_is_clustered(mddev)) 7332 md_cluster_ops->new_disk_ack(mddev, false); 7333 else 7334 err = -EINVAL; 7335 goto unlock; 7336 7337 case HOT_ADD_DISK: 7338 err = hot_add_disk(mddev, new_decode_dev(arg)); 7339 goto unlock; 7340 7341 case RUN_ARRAY: 7342 err = do_md_run(mddev); 7343 goto unlock; 7344 7345 case SET_BITMAP_FILE: 7346 err = set_bitmap_file(mddev, (int)arg); 7347 goto unlock; 7348 7349 default: 7350 err = -EINVAL; 7351 goto unlock; 7352 } 7353 7354 unlock: 7355 if (mddev->hold_active == UNTIL_IOCTL && 7356 err != -EINVAL) 7357 mddev->hold_active = 0; 7358 mddev_unlock(mddev); 7359 out: 7360 if(did_set_md_closing) 7361 clear_bit(MD_CLOSING, &mddev->flags); 7362 return err; 7363 } 7364 #ifdef CONFIG_COMPAT 7365 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7366 unsigned int cmd, unsigned long arg) 7367 { 7368 switch (cmd) { 7369 case HOT_REMOVE_DISK: 7370 case HOT_ADD_DISK: 7371 case SET_DISK_FAULTY: 7372 case SET_BITMAP_FILE: 7373 /* These take in integer arg, do not convert */ 7374 break; 7375 default: 7376 arg = (unsigned long)compat_ptr(arg); 7377 break; 7378 } 7379 7380 return md_ioctl(bdev, mode, cmd, arg); 7381 } 7382 #endif /* CONFIG_COMPAT */ 7383 7384 static int md_open(struct block_device *bdev, fmode_t mode) 7385 { 7386 /* 7387 * Succeed if we can lock the mddev, which confirms that 7388 * it isn't being stopped right now. 7389 */ 7390 struct mddev *mddev = mddev_find(bdev->bd_dev); 7391 int err; 7392 7393 if (!mddev) 7394 return -ENODEV; 7395 7396 if (mddev->gendisk != bdev->bd_disk) { 7397 /* we are racing with mddev_put which is discarding this 7398 * bd_disk. 7399 */ 7400 mddev_put(mddev); 7401 /* Wait until bdev->bd_disk is definitely gone */ 7402 flush_workqueue(md_misc_wq); 7403 /* Then retry the open from the top */ 7404 return -ERESTARTSYS; 7405 } 7406 BUG_ON(mddev != bdev->bd_disk->private_data); 7407 7408 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7409 goto out; 7410 7411 if (test_bit(MD_CLOSING, &mddev->flags)) { 7412 mutex_unlock(&mddev->open_mutex); 7413 err = -ENODEV; 7414 goto out; 7415 } 7416 7417 err = 0; 7418 atomic_inc(&mddev->openers); 7419 mutex_unlock(&mddev->open_mutex); 7420 7421 check_disk_change(bdev); 7422 out: 7423 if (err) 7424 mddev_put(mddev); 7425 return err; 7426 } 7427 7428 static void md_release(struct gendisk *disk, fmode_t mode) 7429 { 7430 struct mddev *mddev = disk->private_data; 7431 7432 BUG_ON(!mddev); 7433 atomic_dec(&mddev->openers); 7434 mddev_put(mddev); 7435 } 7436 7437 static int md_media_changed(struct gendisk *disk) 7438 { 7439 struct mddev *mddev = disk->private_data; 7440 7441 return mddev->changed; 7442 } 7443 7444 static int md_revalidate(struct gendisk *disk) 7445 { 7446 struct mddev *mddev = disk->private_data; 7447 7448 mddev->changed = 0; 7449 return 0; 7450 } 7451 static const struct block_device_operations md_fops = 7452 { 7453 .owner = THIS_MODULE, 7454 .open = md_open, 7455 .release = md_release, 7456 .ioctl = md_ioctl, 7457 #ifdef CONFIG_COMPAT 7458 .compat_ioctl = md_compat_ioctl, 7459 #endif 7460 .getgeo = md_getgeo, 7461 .media_changed = md_media_changed, 7462 .revalidate_disk= md_revalidate, 7463 }; 7464 7465 static int md_thread(void *arg) 7466 { 7467 struct md_thread *thread = arg; 7468 7469 /* 7470 * md_thread is a 'system-thread', it's priority should be very 7471 * high. We avoid resource deadlocks individually in each 7472 * raid personality. (RAID5 does preallocation) We also use RR and 7473 * the very same RT priority as kswapd, thus we will never get 7474 * into a priority inversion deadlock. 7475 * 7476 * we definitely have to have equal or higher priority than 7477 * bdflush, otherwise bdflush will deadlock if there are too 7478 * many dirty RAID5 blocks. 7479 */ 7480 7481 allow_signal(SIGKILL); 7482 while (!kthread_should_stop()) { 7483 7484 /* We need to wait INTERRUPTIBLE so that 7485 * we don't add to the load-average. 7486 * That means we need to be sure no signals are 7487 * pending 7488 */ 7489 if (signal_pending(current)) 7490 flush_signals(current); 7491 7492 wait_event_interruptible_timeout 7493 (thread->wqueue, 7494 test_bit(THREAD_WAKEUP, &thread->flags) 7495 || kthread_should_stop() || kthread_should_park(), 7496 thread->timeout); 7497 7498 clear_bit(THREAD_WAKEUP, &thread->flags); 7499 if (kthread_should_park()) 7500 kthread_parkme(); 7501 if (!kthread_should_stop()) 7502 thread->run(thread); 7503 } 7504 7505 return 0; 7506 } 7507 7508 void md_wakeup_thread(struct md_thread *thread) 7509 { 7510 if (thread) { 7511 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7512 set_bit(THREAD_WAKEUP, &thread->flags); 7513 wake_up(&thread->wqueue); 7514 } 7515 } 7516 EXPORT_SYMBOL(md_wakeup_thread); 7517 7518 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7519 struct mddev *mddev, const char *name) 7520 { 7521 struct md_thread *thread; 7522 7523 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7524 if (!thread) 7525 return NULL; 7526 7527 init_waitqueue_head(&thread->wqueue); 7528 7529 thread->run = run; 7530 thread->mddev = mddev; 7531 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7532 thread->tsk = kthread_run(md_thread, thread, 7533 "%s_%s", 7534 mdname(thread->mddev), 7535 name); 7536 if (IS_ERR(thread->tsk)) { 7537 kfree(thread); 7538 return NULL; 7539 } 7540 return thread; 7541 } 7542 EXPORT_SYMBOL(md_register_thread); 7543 7544 void md_unregister_thread(struct md_thread **threadp) 7545 { 7546 struct md_thread *thread = *threadp; 7547 if (!thread) 7548 return; 7549 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7550 /* Locking ensures that mddev_unlock does not wake_up a 7551 * non-existent thread 7552 */ 7553 spin_lock(&pers_lock); 7554 *threadp = NULL; 7555 spin_unlock(&pers_lock); 7556 7557 kthread_stop(thread->tsk); 7558 kfree(thread); 7559 } 7560 EXPORT_SYMBOL(md_unregister_thread); 7561 7562 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7563 { 7564 if (!rdev || test_bit(Faulty, &rdev->flags)) 7565 return; 7566 7567 if (!mddev->pers || !mddev->pers->error_handler) 7568 return; 7569 mddev->pers->error_handler(mddev,rdev); 7570 if (mddev->degraded) 7571 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7572 sysfs_notify_dirent_safe(rdev->sysfs_state); 7573 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7574 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7575 md_wakeup_thread(mddev->thread); 7576 if (mddev->event_work.func) 7577 queue_work(md_misc_wq, &mddev->event_work); 7578 md_new_event(mddev); 7579 } 7580 EXPORT_SYMBOL(md_error); 7581 7582 /* seq_file implementation /proc/mdstat */ 7583 7584 static void status_unused(struct seq_file *seq) 7585 { 7586 int i = 0; 7587 struct md_rdev *rdev; 7588 7589 seq_printf(seq, "unused devices: "); 7590 7591 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7592 char b[BDEVNAME_SIZE]; 7593 i++; 7594 seq_printf(seq, "%s ", 7595 bdevname(rdev->bdev,b)); 7596 } 7597 if (!i) 7598 seq_printf(seq, "<none>"); 7599 7600 seq_printf(seq, "\n"); 7601 } 7602 7603 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7604 { 7605 sector_t max_sectors, resync, res; 7606 unsigned long dt, db; 7607 sector_t rt; 7608 int scale; 7609 unsigned int per_milli; 7610 7611 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7612 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7613 max_sectors = mddev->resync_max_sectors; 7614 else 7615 max_sectors = mddev->dev_sectors; 7616 7617 resync = mddev->curr_resync; 7618 if (resync <= 3) { 7619 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7620 /* Still cleaning up */ 7621 resync = max_sectors; 7622 } else if (resync > max_sectors) 7623 resync = max_sectors; 7624 else 7625 resync -= atomic_read(&mddev->recovery_active); 7626 7627 if (resync == 0) { 7628 if (mddev->recovery_cp < MaxSector) { 7629 seq_printf(seq, "\tresync=PENDING"); 7630 return 1; 7631 } 7632 return 0; 7633 } 7634 if (resync < 3) { 7635 seq_printf(seq, "\tresync=DELAYED"); 7636 return 1; 7637 } 7638 7639 WARN_ON(max_sectors == 0); 7640 /* Pick 'scale' such that (resync>>scale)*1000 will fit 7641 * in a sector_t, and (max_sectors>>scale) will fit in a 7642 * u32, as those are the requirements for sector_div. 7643 * Thus 'scale' must be at least 10 7644 */ 7645 scale = 10; 7646 if (sizeof(sector_t) > sizeof(unsigned long)) { 7647 while ( max_sectors/2 > (1ULL<<(scale+32))) 7648 scale++; 7649 } 7650 res = (resync>>scale)*1000; 7651 sector_div(res, (u32)((max_sectors>>scale)+1)); 7652 7653 per_milli = res; 7654 { 7655 int i, x = per_milli/50, y = 20-x; 7656 seq_printf(seq, "["); 7657 for (i = 0; i < x; i++) 7658 seq_printf(seq, "="); 7659 seq_printf(seq, ">"); 7660 for (i = 0; i < y; i++) 7661 seq_printf(seq, "."); 7662 seq_printf(seq, "] "); 7663 } 7664 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 7665 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 7666 "reshape" : 7667 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 7668 "check" : 7669 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 7670 "resync" : "recovery"))), 7671 per_milli/10, per_milli % 10, 7672 (unsigned long long) resync/2, 7673 (unsigned long long) max_sectors/2); 7674 7675 /* 7676 * dt: time from mark until now 7677 * db: blocks written from mark until now 7678 * rt: remaining time 7679 * 7680 * rt is a sector_t, so could be 32bit or 64bit. 7681 * So we divide before multiply in case it is 32bit and close 7682 * to the limit. 7683 * We scale the divisor (db) by 32 to avoid losing precision 7684 * near the end of resync when the number of remaining sectors 7685 * is close to 'db'. 7686 * We then divide rt by 32 after multiplying by db to compensate. 7687 * The '+1' avoids division by zero if db is very small. 7688 */ 7689 dt = ((jiffies - mddev->resync_mark) / HZ); 7690 if (!dt) dt++; 7691 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active)) 7692 - mddev->resync_mark_cnt; 7693 7694 rt = max_sectors - resync; /* number of remaining sectors */ 7695 sector_div(rt, db/32+1); 7696 rt *= dt; 7697 rt >>= 5; 7698 7699 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 7700 ((unsigned long)rt % 60)/6); 7701 7702 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 7703 return 1; 7704 } 7705 7706 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 7707 { 7708 struct list_head *tmp; 7709 loff_t l = *pos; 7710 struct mddev *mddev; 7711 7712 if (l >= 0x10000) 7713 return NULL; 7714 if (!l--) 7715 /* header */ 7716 return (void*)1; 7717 7718 spin_lock(&all_mddevs_lock); 7719 list_for_each(tmp,&all_mddevs) 7720 if (!l--) { 7721 mddev = list_entry(tmp, struct mddev, all_mddevs); 7722 mddev_get(mddev); 7723 spin_unlock(&all_mddevs_lock); 7724 return mddev; 7725 } 7726 spin_unlock(&all_mddevs_lock); 7727 if (!l--) 7728 return (void*)2;/* tail */ 7729 return NULL; 7730 } 7731 7732 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 7733 { 7734 struct list_head *tmp; 7735 struct mddev *next_mddev, *mddev = v; 7736 7737 ++*pos; 7738 if (v == (void*)2) 7739 return NULL; 7740 7741 spin_lock(&all_mddevs_lock); 7742 if (v == (void*)1) 7743 tmp = all_mddevs.next; 7744 else 7745 tmp = mddev->all_mddevs.next; 7746 if (tmp != &all_mddevs) 7747 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 7748 else { 7749 next_mddev = (void*)2; 7750 *pos = 0x10000; 7751 } 7752 spin_unlock(&all_mddevs_lock); 7753 7754 if (v != (void*)1) 7755 mddev_put(mddev); 7756 return next_mddev; 7757 7758 } 7759 7760 static void md_seq_stop(struct seq_file *seq, void *v) 7761 { 7762 struct mddev *mddev = v; 7763 7764 if (mddev && v != (void*)1 && v != (void*)2) 7765 mddev_put(mddev); 7766 } 7767 7768 static int md_seq_show(struct seq_file *seq, void *v) 7769 { 7770 struct mddev *mddev = v; 7771 sector_t sectors; 7772 struct md_rdev *rdev; 7773 7774 if (v == (void*)1) { 7775 struct md_personality *pers; 7776 seq_printf(seq, "Personalities : "); 7777 spin_lock(&pers_lock); 7778 list_for_each_entry(pers, &pers_list, list) 7779 seq_printf(seq, "[%s] ", pers->name); 7780 7781 spin_unlock(&pers_lock); 7782 seq_printf(seq, "\n"); 7783 seq->poll_event = atomic_read(&md_event_count); 7784 return 0; 7785 } 7786 if (v == (void*)2) { 7787 status_unused(seq); 7788 return 0; 7789 } 7790 7791 spin_lock(&mddev->lock); 7792 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 7793 seq_printf(seq, "%s : %sactive", mdname(mddev), 7794 mddev->pers ? "" : "in"); 7795 if (mddev->pers) { 7796 if (mddev->ro==1) 7797 seq_printf(seq, " (read-only)"); 7798 if (mddev->ro==2) 7799 seq_printf(seq, " (auto-read-only)"); 7800 seq_printf(seq, " %s", mddev->pers->name); 7801 } 7802 7803 sectors = 0; 7804 rcu_read_lock(); 7805 rdev_for_each_rcu(rdev, mddev) { 7806 char b[BDEVNAME_SIZE]; 7807 seq_printf(seq, " %s[%d]", 7808 bdevname(rdev->bdev,b), rdev->desc_nr); 7809 if (test_bit(WriteMostly, &rdev->flags)) 7810 seq_printf(seq, "(W)"); 7811 if (test_bit(Journal, &rdev->flags)) 7812 seq_printf(seq, "(J)"); 7813 if (test_bit(Faulty, &rdev->flags)) { 7814 seq_printf(seq, "(F)"); 7815 continue; 7816 } 7817 if (rdev->raid_disk < 0) 7818 seq_printf(seq, "(S)"); /* spare */ 7819 if (test_bit(Replacement, &rdev->flags)) 7820 seq_printf(seq, "(R)"); 7821 sectors += rdev->sectors; 7822 } 7823 rcu_read_unlock(); 7824 7825 if (!list_empty(&mddev->disks)) { 7826 if (mddev->pers) 7827 seq_printf(seq, "\n %llu blocks", 7828 (unsigned long long) 7829 mddev->array_sectors / 2); 7830 else 7831 seq_printf(seq, "\n %llu blocks", 7832 (unsigned long long)sectors / 2); 7833 } 7834 if (mddev->persistent) { 7835 if (mddev->major_version != 0 || 7836 mddev->minor_version != 90) { 7837 seq_printf(seq," super %d.%d", 7838 mddev->major_version, 7839 mddev->minor_version); 7840 } 7841 } else if (mddev->external) 7842 seq_printf(seq, " super external:%s", 7843 mddev->metadata_type); 7844 else 7845 seq_printf(seq, " super non-persistent"); 7846 7847 if (mddev->pers) { 7848 mddev->pers->status(seq, mddev); 7849 seq_printf(seq, "\n "); 7850 if (mddev->pers->sync_request) { 7851 if (status_resync(seq, mddev)) 7852 seq_printf(seq, "\n "); 7853 } 7854 } else 7855 seq_printf(seq, "\n "); 7856 7857 bitmap_status(seq, mddev->bitmap); 7858 7859 seq_printf(seq, "\n"); 7860 } 7861 spin_unlock(&mddev->lock); 7862 7863 return 0; 7864 } 7865 7866 static const struct seq_operations md_seq_ops = { 7867 .start = md_seq_start, 7868 .next = md_seq_next, 7869 .stop = md_seq_stop, 7870 .show = md_seq_show, 7871 }; 7872 7873 static int md_seq_open(struct inode *inode, struct file *file) 7874 { 7875 struct seq_file *seq; 7876 int error; 7877 7878 error = seq_open(file, &md_seq_ops); 7879 if (error) 7880 return error; 7881 7882 seq = file->private_data; 7883 seq->poll_event = atomic_read(&md_event_count); 7884 return error; 7885 } 7886 7887 static int md_unloading; 7888 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 7889 { 7890 struct seq_file *seq = filp->private_data; 7891 __poll_t mask; 7892 7893 if (md_unloading) 7894 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 7895 poll_wait(filp, &md_event_waiters, wait); 7896 7897 /* always allow read */ 7898 mask = EPOLLIN | EPOLLRDNORM; 7899 7900 if (seq->poll_event != atomic_read(&md_event_count)) 7901 mask |= EPOLLERR | EPOLLPRI; 7902 return mask; 7903 } 7904 7905 static const struct file_operations md_seq_fops = { 7906 .owner = THIS_MODULE, 7907 .open = md_seq_open, 7908 .read = seq_read, 7909 .llseek = seq_lseek, 7910 .release = seq_release, 7911 .poll = mdstat_poll, 7912 }; 7913 7914 int register_md_personality(struct md_personality *p) 7915 { 7916 pr_debug("md: %s personality registered for level %d\n", 7917 p->name, p->level); 7918 spin_lock(&pers_lock); 7919 list_add_tail(&p->list, &pers_list); 7920 spin_unlock(&pers_lock); 7921 return 0; 7922 } 7923 EXPORT_SYMBOL(register_md_personality); 7924 7925 int unregister_md_personality(struct md_personality *p) 7926 { 7927 pr_debug("md: %s personality unregistered\n", p->name); 7928 spin_lock(&pers_lock); 7929 list_del_init(&p->list); 7930 spin_unlock(&pers_lock); 7931 return 0; 7932 } 7933 EXPORT_SYMBOL(unregister_md_personality); 7934 7935 int register_md_cluster_operations(struct md_cluster_operations *ops, 7936 struct module *module) 7937 { 7938 int ret = 0; 7939 spin_lock(&pers_lock); 7940 if (md_cluster_ops != NULL) 7941 ret = -EALREADY; 7942 else { 7943 md_cluster_ops = ops; 7944 md_cluster_mod = module; 7945 } 7946 spin_unlock(&pers_lock); 7947 return ret; 7948 } 7949 EXPORT_SYMBOL(register_md_cluster_operations); 7950 7951 int unregister_md_cluster_operations(void) 7952 { 7953 spin_lock(&pers_lock); 7954 md_cluster_ops = NULL; 7955 spin_unlock(&pers_lock); 7956 return 0; 7957 } 7958 EXPORT_SYMBOL(unregister_md_cluster_operations); 7959 7960 int md_setup_cluster(struct mddev *mddev, int nodes) 7961 { 7962 if (!md_cluster_ops) 7963 request_module("md-cluster"); 7964 spin_lock(&pers_lock); 7965 /* ensure module won't be unloaded */ 7966 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 7967 pr_warn("can't find md-cluster module or get it's reference.\n"); 7968 spin_unlock(&pers_lock); 7969 return -ENOENT; 7970 } 7971 spin_unlock(&pers_lock); 7972 7973 return md_cluster_ops->join(mddev, nodes); 7974 } 7975 7976 void md_cluster_stop(struct mddev *mddev) 7977 { 7978 if (!md_cluster_ops) 7979 return; 7980 md_cluster_ops->leave(mddev); 7981 module_put(md_cluster_mod); 7982 } 7983 7984 static int is_mddev_idle(struct mddev *mddev, int init) 7985 { 7986 struct md_rdev *rdev; 7987 int idle; 7988 int curr_events; 7989 7990 idle = 1; 7991 rcu_read_lock(); 7992 rdev_for_each_rcu(rdev, mddev) { 7993 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 7994 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) + 7995 (int)part_stat_read(&disk->part0, sectors[1]) - 7996 atomic_read(&disk->sync_io); 7997 /* sync IO will cause sync_io to increase before the disk_stats 7998 * as sync_io is counted when a request starts, and 7999 * disk_stats is counted when it completes. 8000 * So resync activity will cause curr_events to be smaller than 8001 * when there was no such activity. 8002 * non-sync IO will cause disk_stat to increase without 8003 * increasing sync_io so curr_events will (eventually) 8004 * be larger than it was before. Once it becomes 8005 * substantially larger, the test below will cause 8006 * the array to appear non-idle, and resync will slow 8007 * down. 8008 * If there is a lot of outstanding resync activity when 8009 * we set last_event to curr_events, then all that activity 8010 * completing might cause the array to appear non-idle 8011 * and resync will be slowed down even though there might 8012 * not have been non-resync activity. This will only 8013 * happen once though. 'last_events' will soon reflect 8014 * the state where there is little or no outstanding 8015 * resync requests, and further resync activity will 8016 * always make curr_events less than last_events. 8017 * 8018 */ 8019 if (init || curr_events - rdev->last_events > 64) { 8020 rdev->last_events = curr_events; 8021 idle = 0; 8022 } 8023 } 8024 rcu_read_unlock(); 8025 return idle; 8026 } 8027 8028 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8029 { 8030 /* another "blocks" (512byte) blocks have been synced */ 8031 atomic_sub(blocks, &mddev->recovery_active); 8032 wake_up(&mddev->recovery_wait); 8033 if (!ok) { 8034 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8035 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8036 md_wakeup_thread(mddev->thread); 8037 // stop recovery, signal do_sync .... 8038 } 8039 } 8040 EXPORT_SYMBOL(md_done_sync); 8041 8042 /* md_write_start(mddev, bi) 8043 * If we need to update some array metadata (e.g. 'active' flag 8044 * in superblock) before writing, schedule a superblock update 8045 * and wait for it to complete. 8046 * A return value of 'false' means that the write wasn't recorded 8047 * and cannot proceed as the array is being suspend. 8048 */ 8049 bool md_write_start(struct mddev *mddev, struct bio *bi) 8050 { 8051 int did_change = 0; 8052 if (bio_data_dir(bi) != WRITE) 8053 return true; 8054 8055 BUG_ON(mddev->ro == 1); 8056 if (mddev->ro == 2) { 8057 /* need to switch to read/write */ 8058 mddev->ro = 0; 8059 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8060 md_wakeup_thread(mddev->thread); 8061 md_wakeup_thread(mddev->sync_thread); 8062 did_change = 1; 8063 } 8064 rcu_read_lock(); 8065 percpu_ref_get(&mddev->writes_pending); 8066 smp_mb(); /* Match smp_mb in set_in_sync() */ 8067 if (mddev->safemode == 1) 8068 mddev->safemode = 0; 8069 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8070 if (mddev->in_sync || mddev->sync_checkers) { 8071 spin_lock(&mddev->lock); 8072 if (mddev->in_sync) { 8073 mddev->in_sync = 0; 8074 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8075 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8076 md_wakeup_thread(mddev->thread); 8077 did_change = 1; 8078 } 8079 spin_unlock(&mddev->lock); 8080 } 8081 rcu_read_unlock(); 8082 if (did_change) 8083 sysfs_notify_dirent_safe(mddev->sysfs_state); 8084 wait_event(mddev->sb_wait, 8085 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8086 mddev->suspended); 8087 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8088 percpu_ref_put(&mddev->writes_pending); 8089 return false; 8090 } 8091 return true; 8092 } 8093 EXPORT_SYMBOL(md_write_start); 8094 8095 /* md_write_inc can only be called when md_write_start() has 8096 * already been called at least once of the current request. 8097 * It increments the counter and is useful when a single request 8098 * is split into several parts. Each part causes an increment and 8099 * so needs a matching md_write_end(). 8100 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8101 * a spinlocked region. 8102 */ 8103 void md_write_inc(struct mddev *mddev, struct bio *bi) 8104 { 8105 if (bio_data_dir(bi) != WRITE) 8106 return; 8107 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8108 percpu_ref_get(&mddev->writes_pending); 8109 } 8110 EXPORT_SYMBOL(md_write_inc); 8111 8112 void md_write_end(struct mddev *mddev) 8113 { 8114 percpu_ref_put(&mddev->writes_pending); 8115 8116 if (mddev->safemode == 2) 8117 md_wakeup_thread(mddev->thread); 8118 else if (mddev->safemode_delay) 8119 /* The roundup() ensures this only performs locking once 8120 * every ->safemode_delay jiffies 8121 */ 8122 mod_timer(&mddev->safemode_timer, 8123 roundup(jiffies, mddev->safemode_delay) + 8124 mddev->safemode_delay); 8125 } 8126 8127 EXPORT_SYMBOL(md_write_end); 8128 8129 /* md_allow_write(mddev) 8130 * Calling this ensures that the array is marked 'active' so that writes 8131 * may proceed without blocking. It is important to call this before 8132 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8133 * Must be called with mddev_lock held. 8134 */ 8135 void md_allow_write(struct mddev *mddev) 8136 { 8137 if (!mddev->pers) 8138 return; 8139 if (mddev->ro) 8140 return; 8141 if (!mddev->pers->sync_request) 8142 return; 8143 8144 spin_lock(&mddev->lock); 8145 if (mddev->in_sync) { 8146 mddev->in_sync = 0; 8147 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8148 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8149 if (mddev->safemode_delay && 8150 mddev->safemode == 0) 8151 mddev->safemode = 1; 8152 spin_unlock(&mddev->lock); 8153 md_update_sb(mddev, 0); 8154 sysfs_notify_dirent_safe(mddev->sysfs_state); 8155 /* wait for the dirty state to be recorded in the metadata */ 8156 wait_event(mddev->sb_wait, 8157 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8158 } else 8159 spin_unlock(&mddev->lock); 8160 } 8161 EXPORT_SYMBOL_GPL(md_allow_write); 8162 8163 #define SYNC_MARKS 10 8164 #define SYNC_MARK_STEP (3*HZ) 8165 #define UPDATE_FREQUENCY (5*60*HZ) 8166 void md_do_sync(struct md_thread *thread) 8167 { 8168 struct mddev *mddev = thread->mddev; 8169 struct mddev *mddev2; 8170 unsigned int currspeed = 0, 8171 window; 8172 sector_t max_sectors,j, io_sectors, recovery_done; 8173 unsigned long mark[SYNC_MARKS]; 8174 unsigned long update_time; 8175 sector_t mark_cnt[SYNC_MARKS]; 8176 int last_mark,m; 8177 struct list_head *tmp; 8178 sector_t last_check; 8179 int skipped = 0; 8180 struct md_rdev *rdev; 8181 char *desc, *action = NULL; 8182 struct blk_plug plug; 8183 int ret; 8184 8185 /* just incase thread restarts... */ 8186 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8187 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8188 return; 8189 if (mddev->ro) {/* never try to sync a read-only array */ 8190 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8191 return; 8192 } 8193 8194 if (mddev_is_clustered(mddev)) { 8195 ret = md_cluster_ops->resync_start(mddev); 8196 if (ret) 8197 goto skip; 8198 8199 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8200 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8201 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8202 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8203 && ((unsigned long long)mddev->curr_resync_completed 8204 < (unsigned long long)mddev->resync_max_sectors)) 8205 goto skip; 8206 } 8207 8208 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8209 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8210 desc = "data-check"; 8211 action = "check"; 8212 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8213 desc = "requested-resync"; 8214 action = "repair"; 8215 } else 8216 desc = "resync"; 8217 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8218 desc = "reshape"; 8219 else 8220 desc = "recovery"; 8221 8222 mddev->last_sync_action = action ?: desc; 8223 8224 /* we overload curr_resync somewhat here. 8225 * 0 == not engaged in resync at all 8226 * 2 == checking that there is no conflict with another sync 8227 * 1 == like 2, but have yielded to allow conflicting resync to 8228 * commense 8229 * other == active in resync - this many blocks 8230 * 8231 * Before starting a resync we must have set curr_resync to 8232 * 2, and then checked that every "conflicting" array has curr_resync 8233 * less than ours. When we find one that is the same or higher 8234 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8235 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8236 * This will mean we have to start checking from the beginning again. 8237 * 8238 */ 8239 8240 do { 8241 int mddev2_minor = -1; 8242 mddev->curr_resync = 2; 8243 8244 try_again: 8245 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8246 goto skip; 8247 for_each_mddev(mddev2, tmp) { 8248 if (mddev2 == mddev) 8249 continue; 8250 if (!mddev->parallel_resync 8251 && mddev2->curr_resync 8252 && match_mddev_units(mddev, mddev2)) { 8253 DEFINE_WAIT(wq); 8254 if (mddev < mddev2 && mddev->curr_resync == 2) { 8255 /* arbitrarily yield */ 8256 mddev->curr_resync = 1; 8257 wake_up(&resync_wait); 8258 } 8259 if (mddev > mddev2 && mddev->curr_resync == 1) 8260 /* no need to wait here, we can wait the next 8261 * time 'round when curr_resync == 2 8262 */ 8263 continue; 8264 /* We need to wait 'interruptible' so as not to 8265 * contribute to the load average, and not to 8266 * be caught by 'softlockup' 8267 */ 8268 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8269 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8270 mddev2->curr_resync >= mddev->curr_resync) { 8271 if (mddev2_minor != mddev2->md_minor) { 8272 mddev2_minor = mddev2->md_minor; 8273 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8274 desc, mdname(mddev), 8275 mdname(mddev2)); 8276 } 8277 mddev_put(mddev2); 8278 if (signal_pending(current)) 8279 flush_signals(current); 8280 schedule(); 8281 finish_wait(&resync_wait, &wq); 8282 goto try_again; 8283 } 8284 finish_wait(&resync_wait, &wq); 8285 } 8286 } 8287 } while (mddev->curr_resync < 2); 8288 8289 j = 0; 8290 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8291 /* resync follows the size requested by the personality, 8292 * which defaults to physical size, but can be virtual size 8293 */ 8294 max_sectors = mddev->resync_max_sectors; 8295 atomic64_set(&mddev->resync_mismatches, 0); 8296 /* we don't use the checkpoint if there's a bitmap */ 8297 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8298 j = mddev->resync_min; 8299 else if (!mddev->bitmap) 8300 j = mddev->recovery_cp; 8301 8302 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8303 max_sectors = mddev->resync_max_sectors; 8304 else { 8305 /* recovery follows the physical size of devices */ 8306 max_sectors = mddev->dev_sectors; 8307 j = MaxSector; 8308 rcu_read_lock(); 8309 rdev_for_each_rcu(rdev, mddev) 8310 if (rdev->raid_disk >= 0 && 8311 !test_bit(Journal, &rdev->flags) && 8312 !test_bit(Faulty, &rdev->flags) && 8313 !test_bit(In_sync, &rdev->flags) && 8314 rdev->recovery_offset < j) 8315 j = rdev->recovery_offset; 8316 rcu_read_unlock(); 8317 8318 /* If there is a bitmap, we need to make sure all 8319 * writes that started before we added a spare 8320 * complete before we start doing a recovery. 8321 * Otherwise the write might complete and (via 8322 * bitmap_endwrite) set a bit in the bitmap after the 8323 * recovery has checked that bit and skipped that 8324 * region. 8325 */ 8326 if (mddev->bitmap) { 8327 mddev->pers->quiesce(mddev, 1); 8328 mddev->pers->quiesce(mddev, 0); 8329 } 8330 } 8331 8332 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8333 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8334 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8335 speed_max(mddev), desc); 8336 8337 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8338 8339 io_sectors = 0; 8340 for (m = 0; m < SYNC_MARKS; m++) { 8341 mark[m] = jiffies; 8342 mark_cnt[m] = io_sectors; 8343 } 8344 last_mark = 0; 8345 mddev->resync_mark = mark[last_mark]; 8346 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8347 8348 /* 8349 * Tune reconstruction: 8350 */ 8351 window = 32*(PAGE_SIZE/512); 8352 pr_debug("md: using %dk window, over a total of %lluk.\n", 8353 window/2, (unsigned long long)max_sectors/2); 8354 8355 atomic_set(&mddev->recovery_active, 0); 8356 last_check = 0; 8357 8358 if (j>2) { 8359 pr_debug("md: resuming %s of %s from checkpoint.\n", 8360 desc, mdname(mddev)); 8361 mddev->curr_resync = j; 8362 } else 8363 mddev->curr_resync = 3; /* no longer delayed */ 8364 mddev->curr_resync_completed = j; 8365 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8366 md_new_event(mddev); 8367 update_time = jiffies; 8368 8369 blk_start_plug(&plug); 8370 while (j < max_sectors) { 8371 sector_t sectors; 8372 8373 skipped = 0; 8374 8375 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8376 ((mddev->curr_resync > mddev->curr_resync_completed && 8377 (mddev->curr_resync - mddev->curr_resync_completed) 8378 > (max_sectors >> 4)) || 8379 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8380 (j - mddev->curr_resync_completed)*2 8381 >= mddev->resync_max - mddev->curr_resync_completed || 8382 mddev->curr_resync_completed > mddev->resync_max 8383 )) { 8384 /* time to update curr_resync_completed */ 8385 wait_event(mddev->recovery_wait, 8386 atomic_read(&mddev->recovery_active) == 0); 8387 mddev->curr_resync_completed = j; 8388 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8389 j > mddev->recovery_cp) 8390 mddev->recovery_cp = j; 8391 update_time = jiffies; 8392 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8393 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8394 } 8395 8396 while (j >= mddev->resync_max && 8397 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8398 /* As this condition is controlled by user-space, 8399 * we can block indefinitely, so use '_interruptible' 8400 * to avoid triggering warnings. 8401 */ 8402 flush_signals(current); /* just in case */ 8403 wait_event_interruptible(mddev->recovery_wait, 8404 mddev->resync_max > j 8405 || test_bit(MD_RECOVERY_INTR, 8406 &mddev->recovery)); 8407 } 8408 8409 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8410 break; 8411 8412 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8413 if (sectors == 0) { 8414 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8415 break; 8416 } 8417 8418 if (!skipped) { /* actual IO requested */ 8419 io_sectors += sectors; 8420 atomic_add(sectors, &mddev->recovery_active); 8421 } 8422 8423 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8424 break; 8425 8426 j += sectors; 8427 if (j > max_sectors) 8428 /* when skipping, extra large numbers can be returned. */ 8429 j = max_sectors; 8430 if (j > 2) 8431 mddev->curr_resync = j; 8432 mddev->curr_mark_cnt = io_sectors; 8433 if (last_check == 0) 8434 /* this is the earliest that rebuild will be 8435 * visible in /proc/mdstat 8436 */ 8437 md_new_event(mddev); 8438 8439 if (last_check + window > io_sectors || j == max_sectors) 8440 continue; 8441 8442 last_check = io_sectors; 8443 repeat: 8444 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8445 /* step marks */ 8446 int next = (last_mark+1) % SYNC_MARKS; 8447 8448 mddev->resync_mark = mark[next]; 8449 mddev->resync_mark_cnt = mark_cnt[next]; 8450 mark[next] = jiffies; 8451 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8452 last_mark = next; 8453 } 8454 8455 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8456 break; 8457 8458 /* 8459 * this loop exits only if either when we are slower than 8460 * the 'hard' speed limit, or the system was IO-idle for 8461 * a jiffy. 8462 * the system might be non-idle CPU-wise, but we only care 8463 * about not overloading the IO subsystem. (things like an 8464 * e2fsck being done on the RAID array should execute fast) 8465 */ 8466 cond_resched(); 8467 8468 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8469 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8470 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8471 8472 if (currspeed > speed_min(mddev)) { 8473 if (currspeed > speed_max(mddev)) { 8474 msleep(500); 8475 goto repeat; 8476 } 8477 if (!is_mddev_idle(mddev, 0)) { 8478 /* 8479 * Give other IO more of a chance. 8480 * The faster the devices, the less we wait. 8481 */ 8482 wait_event(mddev->recovery_wait, 8483 !atomic_read(&mddev->recovery_active)); 8484 } 8485 } 8486 } 8487 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8488 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8489 ? "interrupted" : "done"); 8490 /* 8491 * this also signals 'finished resyncing' to md_stop 8492 */ 8493 blk_finish_plug(&plug); 8494 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8495 8496 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8497 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8498 mddev->curr_resync > 3) { 8499 mddev->curr_resync_completed = mddev->curr_resync; 8500 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8501 } 8502 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8503 8504 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8505 mddev->curr_resync > 3) { 8506 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8507 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8508 if (mddev->curr_resync >= mddev->recovery_cp) { 8509 pr_debug("md: checkpointing %s of %s.\n", 8510 desc, mdname(mddev)); 8511 if (test_bit(MD_RECOVERY_ERROR, 8512 &mddev->recovery)) 8513 mddev->recovery_cp = 8514 mddev->curr_resync_completed; 8515 else 8516 mddev->recovery_cp = 8517 mddev->curr_resync; 8518 } 8519 } else 8520 mddev->recovery_cp = MaxSector; 8521 } else { 8522 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8523 mddev->curr_resync = MaxSector; 8524 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8525 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8526 rcu_read_lock(); 8527 rdev_for_each_rcu(rdev, mddev) 8528 if (rdev->raid_disk >= 0 && 8529 mddev->delta_disks >= 0 && 8530 !test_bit(Journal, &rdev->flags) && 8531 !test_bit(Faulty, &rdev->flags) && 8532 !test_bit(In_sync, &rdev->flags) && 8533 rdev->recovery_offset < mddev->curr_resync) 8534 rdev->recovery_offset = mddev->curr_resync; 8535 rcu_read_unlock(); 8536 } 8537 } 8538 } 8539 skip: 8540 /* set CHANGE_PENDING here since maybe another update is needed, 8541 * so other nodes are informed. It should be harmless for normal 8542 * raid */ 8543 set_mask_bits(&mddev->sb_flags, 0, 8544 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8545 8546 spin_lock(&mddev->lock); 8547 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8548 /* We completed so min/max setting can be forgotten if used. */ 8549 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8550 mddev->resync_min = 0; 8551 mddev->resync_max = MaxSector; 8552 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8553 mddev->resync_min = mddev->curr_resync_completed; 8554 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8555 mddev->curr_resync = 0; 8556 spin_unlock(&mddev->lock); 8557 8558 wake_up(&resync_wait); 8559 md_wakeup_thread(mddev->thread); 8560 return; 8561 } 8562 EXPORT_SYMBOL_GPL(md_do_sync); 8563 8564 static int remove_and_add_spares(struct mddev *mddev, 8565 struct md_rdev *this) 8566 { 8567 struct md_rdev *rdev; 8568 int spares = 0; 8569 int removed = 0; 8570 bool remove_some = false; 8571 8572 rdev_for_each(rdev, mddev) { 8573 if ((this == NULL || rdev == this) && 8574 rdev->raid_disk >= 0 && 8575 !test_bit(Blocked, &rdev->flags) && 8576 test_bit(Faulty, &rdev->flags) && 8577 atomic_read(&rdev->nr_pending)==0) { 8578 /* Faulty non-Blocked devices with nr_pending == 0 8579 * never get nr_pending incremented, 8580 * never get Faulty cleared, and never get Blocked set. 8581 * So we can synchronize_rcu now rather than once per device 8582 */ 8583 remove_some = true; 8584 set_bit(RemoveSynchronized, &rdev->flags); 8585 } 8586 } 8587 8588 if (remove_some) 8589 synchronize_rcu(); 8590 rdev_for_each(rdev, mddev) { 8591 if ((this == NULL || rdev == this) && 8592 rdev->raid_disk >= 0 && 8593 !test_bit(Blocked, &rdev->flags) && 8594 ((test_bit(RemoveSynchronized, &rdev->flags) || 8595 (!test_bit(In_sync, &rdev->flags) && 8596 !test_bit(Journal, &rdev->flags))) && 8597 atomic_read(&rdev->nr_pending)==0)) { 8598 if (mddev->pers->hot_remove_disk( 8599 mddev, rdev) == 0) { 8600 sysfs_unlink_rdev(mddev, rdev); 8601 rdev->raid_disk = -1; 8602 removed++; 8603 } 8604 } 8605 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 8606 clear_bit(RemoveSynchronized, &rdev->flags); 8607 } 8608 8609 if (removed && mddev->kobj.sd) 8610 sysfs_notify(&mddev->kobj, NULL, "degraded"); 8611 8612 if (this && removed) 8613 goto no_add; 8614 8615 rdev_for_each(rdev, mddev) { 8616 if (this && this != rdev) 8617 continue; 8618 if (test_bit(Candidate, &rdev->flags)) 8619 continue; 8620 if (rdev->raid_disk >= 0 && 8621 !test_bit(In_sync, &rdev->flags) && 8622 !test_bit(Journal, &rdev->flags) && 8623 !test_bit(Faulty, &rdev->flags)) 8624 spares++; 8625 if (rdev->raid_disk >= 0) 8626 continue; 8627 if (test_bit(Faulty, &rdev->flags)) 8628 continue; 8629 if (!test_bit(Journal, &rdev->flags)) { 8630 if (mddev->ro && 8631 ! (rdev->saved_raid_disk >= 0 && 8632 !test_bit(Bitmap_sync, &rdev->flags))) 8633 continue; 8634 8635 rdev->recovery_offset = 0; 8636 } 8637 if (mddev->pers-> 8638 hot_add_disk(mddev, rdev) == 0) { 8639 if (sysfs_link_rdev(mddev, rdev)) 8640 /* failure here is OK */; 8641 if (!test_bit(Journal, &rdev->flags)) 8642 spares++; 8643 md_new_event(mddev); 8644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8645 } 8646 } 8647 no_add: 8648 if (removed) 8649 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8650 return spares; 8651 } 8652 8653 static void md_start_sync(struct work_struct *ws) 8654 { 8655 struct mddev *mddev = container_of(ws, struct mddev, del_work); 8656 8657 mddev->sync_thread = md_register_thread(md_do_sync, 8658 mddev, 8659 "resync"); 8660 if (!mddev->sync_thread) { 8661 pr_warn("%s: could not start resync thread...\n", 8662 mdname(mddev)); 8663 /* leave the spares where they are, it shouldn't hurt */ 8664 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8665 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8666 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8667 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8668 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8669 wake_up(&resync_wait); 8670 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8671 &mddev->recovery)) 8672 if (mddev->sysfs_action) 8673 sysfs_notify_dirent_safe(mddev->sysfs_action); 8674 } else 8675 md_wakeup_thread(mddev->sync_thread); 8676 sysfs_notify_dirent_safe(mddev->sysfs_action); 8677 md_new_event(mddev); 8678 } 8679 8680 /* 8681 * This routine is regularly called by all per-raid-array threads to 8682 * deal with generic issues like resync and super-block update. 8683 * Raid personalities that don't have a thread (linear/raid0) do not 8684 * need this as they never do any recovery or update the superblock. 8685 * 8686 * It does not do any resync itself, but rather "forks" off other threads 8687 * to do that as needed. 8688 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 8689 * "->recovery" and create a thread at ->sync_thread. 8690 * When the thread finishes it sets MD_RECOVERY_DONE 8691 * and wakeups up this thread which will reap the thread and finish up. 8692 * This thread also removes any faulty devices (with nr_pending == 0). 8693 * 8694 * The overall approach is: 8695 * 1/ if the superblock needs updating, update it. 8696 * 2/ If a recovery thread is running, don't do anything else. 8697 * 3/ If recovery has finished, clean up, possibly marking spares active. 8698 * 4/ If there are any faulty devices, remove them. 8699 * 5/ If array is degraded, try to add spares devices 8700 * 6/ If array has spares or is not in-sync, start a resync thread. 8701 */ 8702 void md_check_recovery(struct mddev *mddev) 8703 { 8704 if (mddev->suspended) 8705 return; 8706 8707 if (mddev->bitmap) 8708 bitmap_daemon_work(mddev); 8709 8710 if (signal_pending(current)) { 8711 if (mddev->pers->sync_request && !mddev->external) { 8712 pr_debug("md: %s in immediate safe mode\n", 8713 mdname(mddev)); 8714 mddev->safemode = 2; 8715 } 8716 flush_signals(current); 8717 } 8718 8719 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 8720 return; 8721 if ( ! ( 8722 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 8723 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8724 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8725 (mddev->external == 0 && mddev->safemode == 1) || 8726 (mddev->safemode == 2 8727 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 8728 )) 8729 return; 8730 8731 if (mddev_trylock(mddev)) { 8732 int spares = 0; 8733 8734 if (!mddev->external && mddev->safemode == 1) 8735 mddev->safemode = 0; 8736 8737 if (mddev->ro) { 8738 struct md_rdev *rdev; 8739 if (!mddev->external && mddev->in_sync) 8740 /* 'Blocked' flag not needed as failed devices 8741 * will be recorded if array switched to read/write. 8742 * Leaving it set will prevent the device 8743 * from being removed. 8744 */ 8745 rdev_for_each(rdev, mddev) 8746 clear_bit(Blocked, &rdev->flags); 8747 /* On a read-only array we can: 8748 * - remove failed devices 8749 * - add already-in_sync devices if the array itself 8750 * is in-sync. 8751 * As we only add devices that are already in-sync, 8752 * we can activate the spares immediately. 8753 */ 8754 remove_and_add_spares(mddev, NULL); 8755 /* There is no thread, but we need to call 8756 * ->spare_active and clear saved_raid_disk 8757 */ 8758 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8759 md_reap_sync_thread(mddev); 8760 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8761 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8762 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8763 goto unlock; 8764 } 8765 8766 if (mddev_is_clustered(mddev)) { 8767 struct md_rdev *rdev; 8768 /* kick the device if another node issued a 8769 * remove disk. 8770 */ 8771 rdev_for_each(rdev, mddev) { 8772 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 8773 rdev->raid_disk < 0) 8774 md_kick_rdev_from_array(rdev); 8775 } 8776 } 8777 8778 if (!mddev->external && !mddev->in_sync) { 8779 spin_lock(&mddev->lock); 8780 set_in_sync(mddev); 8781 spin_unlock(&mddev->lock); 8782 } 8783 8784 if (mddev->sb_flags) 8785 md_update_sb(mddev, 0); 8786 8787 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 8788 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 8789 /* resync/recovery still happening */ 8790 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8791 goto unlock; 8792 } 8793 if (mddev->sync_thread) { 8794 md_reap_sync_thread(mddev); 8795 goto unlock; 8796 } 8797 /* Set RUNNING before clearing NEEDED to avoid 8798 * any transients in the value of "sync_action". 8799 */ 8800 mddev->curr_resync_completed = 0; 8801 spin_lock(&mddev->lock); 8802 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8803 spin_unlock(&mddev->lock); 8804 /* Clear some bits that don't mean anything, but 8805 * might be left set 8806 */ 8807 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 8808 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8809 8810 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 8811 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 8812 goto not_running; 8813 /* no recovery is running. 8814 * remove any failed drives, then 8815 * add spares if possible. 8816 * Spares are also removed and re-added, to allow 8817 * the personality to fail the re-add. 8818 */ 8819 8820 if (mddev->reshape_position != MaxSector) { 8821 if (mddev->pers->check_reshape == NULL || 8822 mddev->pers->check_reshape(mddev) != 0) 8823 /* Cannot proceed */ 8824 goto not_running; 8825 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8826 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8827 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 8828 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8829 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8830 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8831 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8832 } else if (mddev->recovery_cp < MaxSector) { 8833 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8834 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8835 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 8836 /* nothing to be done ... */ 8837 goto not_running; 8838 8839 if (mddev->pers->sync_request) { 8840 if (spares) { 8841 /* We are adding a device or devices to an array 8842 * which has the bitmap stored on all devices. 8843 * So make sure all bitmap pages get written 8844 */ 8845 bitmap_write_all(mddev->bitmap); 8846 } 8847 INIT_WORK(&mddev->del_work, md_start_sync); 8848 queue_work(md_misc_wq, &mddev->del_work); 8849 goto unlock; 8850 } 8851 not_running: 8852 if (!mddev->sync_thread) { 8853 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8854 wake_up(&resync_wait); 8855 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 8856 &mddev->recovery)) 8857 if (mddev->sysfs_action) 8858 sysfs_notify_dirent_safe(mddev->sysfs_action); 8859 } 8860 unlock: 8861 wake_up(&mddev->sb_wait); 8862 mddev_unlock(mddev); 8863 } else if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 8864 /* Write superblock - thread that called mddev_suspend() 8865 * holds reconfig_mutex for us. 8866 */ 8867 set_bit(MD_UPDATING_SB, &mddev->flags); 8868 smp_mb__after_atomic(); 8869 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 8870 md_update_sb(mddev, 0); 8871 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 8872 wake_up(&mddev->sb_wait); 8873 } 8874 } 8875 EXPORT_SYMBOL(md_check_recovery); 8876 8877 void md_reap_sync_thread(struct mddev *mddev) 8878 { 8879 struct md_rdev *rdev; 8880 8881 /* resync has finished, collect result */ 8882 md_unregister_thread(&mddev->sync_thread); 8883 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8884 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8885 /* success...*/ 8886 /* activate any spares */ 8887 if (mddev->pers->spare_active(mddev)) { 8888 sysfs_notify(&mddev->kobj, NULL, 8889 "degraded"); 8890 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 8891 } 8892 } 8893 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8894 mddev->pers->finish_reshape) 8895 mddev->pers->finish_reshape(mddev); 8896 8897 /* If array is no-longer degraded, then any saved_raid_disk 8898 * information must be scrapped. 8899 */ 8900 if (!mddev->degraded) 8901 rdev_for_each(rdev, mddev) 8902 rdev->saved_raid_disk = -1; 8903 8904 md_update_sb(mddev, 1); 8905 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 8906 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 8907 * clustered raid */ 8908 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 8909 md_cluster_ops->resync_finish(mddev); 8910 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 8911 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 8912 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 8913 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 8914 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 8915 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 8916 wake_up(&resync_wait); 8917 /* flag recovery needed just to double check */ 8918 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8919 sysfs_notify_dirent_safe(mddev->sysfs_action); 8920 md_new_event(mddev); 8921 if (mddev->event_work.func) 8922 queue_work(md_misc_wq, &mddev->event_work); 8923 } 8924 EXPORT_SYMBOL(md_reap_sync_thread); 8925 8926 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 8927 { 8928 sysfs_notify_dirent_safe(rdev->sysfs_state); 8929 wait_event_timeout(rdev->blocked_wait, 8930 !test_bit(Blocked, &rdev->flags) && 8931 !test_bit(BlockedBadBlocks, &rdev->flags), 8932 msecs_to_jiffies(5000)); 8933 rdev_dec_pending(rdev, mddev); 8934 } 8935 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 8936 8937 void md_finish_reshape(struct mddev *mddev) 8938 { 8939 /* called be personality module when reshape completes. */ 8940 struct md_rdev *rdev; 8941 8942 rdev_for_each(rdev, mddev) { 8943 if (rdev->data_offset > rdev->new_data_offset) 8944 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 8945 else 8946 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 8947 rdev->data_offset = rdev->new_data_offset; 8948 } 8949 } 8950 EXPORT_SYMBOL(md_finish_reshape); 8951 8952 /* Bad block management */ 8953 8954 /* Returns 1 on success, 0 on failure */ 8955 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8956 int is_new) 8957 { 8958 struct mddev *mddev = rdev->mddev; 8959 int rv; 8960 if (is_new) 8961 s += rdev->new_data_offset; 8962 else 8963 s += rdev->data_offset; 8964 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 8965 if (rv == 0) { 8966 /* Make sure they get written out promptly */ 8967 if (test_bit(ExternalBbl, &rdev->flags)) 8968 sysfs_notify(&rdev->kobj, NULL, 8969 "unacknowledged_bad_blocks"); 8970 sysfs_notify_dirent_safe(rdev->sysfs_state); 8971 set_mask_bits(&mddev->sb_flags, 0, 8972 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 8973 md_wakeup_thread(rdev->mddev->thread); 8974 return 1; 8975 } else 8976 return 0; 8977 } 8978 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 8979 8980 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 8981 int is_new) 8982 { 8983 int rv; 8984 if (is_new) 8985 s += rdev->new_data_offset; 8986 else 8987 s += rdev->data_offset; 8988 rv = badblocks_clear(&rdev->badblocks, s, sectors); 8989 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 8990 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 8991 return rv; 8992 } 8993 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 8994 8995 static int md_notify_reboot(struct notifier_block *this, 8996 unsigned long code, void *x) 8997 { 8998 struct list_head *tmp; 8999 struct mddev *mddev; 9000 int need_delay = 0; 9001 9002 for_each_mddev(mddev, tmp) { 9003 if (mddev_trylock(mddev)) { 9004 if (mddev->pers) 9005 __md_stop_writes(mddev); 9006 if (mddev->persistent) 9007 mddev->safemode = 2; 9008 mddev_unlock(mddev); 9009 } 9010 need_delay = 1; 9011 } 9012 /* 9013 * certain more exotic SCSI devices are known to be 9014 * volatile wrt too early system reboots. While the 9015 * right place to handle this issue is the given 9016 * driver, we do want to have a safe RAID driver ... 9017 */ 9018 if (need_delay) 9019 mdelay(1000*1); 9020 9021 return NOTIFY_DONE; 9022 } 9023 9024 static struct notifier_block md_notifier = { 9025 .notifier_call = md_notify_reboot, 9026 .next = NULL, 9027 .priority = INT_MAX, /* before any real devices */ 9028 }; 9029 9030 static void md_geninit(void) 9031 { 9032 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9033 9034 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops); 9035 } 9036 9037 static int __init md_init(void) 9038 { 9039 int ret = -ENOMEM; 9040 9041 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9042 if (!md_wq) 9043 goto err_wq; 9044 9045 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9046 if (!md_misc_wq) 9047 goto err_misc_wq; 9048 9049 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9050 goto err_md; 9051 9052 if ((ret = register_blkdev(0, "mdp")) < 0) 9053 goto err_mdp; 9054 mdp_major = ret; 9055 9056 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9057 md_probe, NULL, NULL); 9058 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9059 md_probe, NULL, NULL); 9060 9061 register_reboot_notifier(&md_notifier); 9062 raid_table_header = register_sysctl_table(raid_root_table); 9063 9064 md_geninit(); 9065 return 0; 9066 9067 err_mdp: 9068 unregister_blkdev(MD_MAJOR, "md"); 9069 err_md: 9070 destroy_workqueue(md_misc_wq); 9071 err_misc_wq: 9072 destroy_workqueue(md_wq); 9073 err_wq: 9074 return ret; 9075 } 9076 9077 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9078 { 9079 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9080 struct md_rdev *rdev2; 9081 int role, ret; 9082 char b[BDEVNAME_SIZE]; 9083 9084 /* 9085 * If size is changed in another node then we need to 9086 * do resize as well. 9087 */ 9088 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9089 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9090 if (ret) 9091 pr_info("md-cluster: resize failed\n"); 9092 else 9093 bitmap_update_sb(mddev->bitmap); 9094 } 9095 9096 /* Check for change of roles in the active devices */ 9097 rdev_for_each(rdev2, mddev) { 9098 if (test_bit(Faulty, &rdev2->flags)) 9099 continue; 9100 9101 /* Check if the roles changed */ 9102 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9103 9104 if (test_bit(Candidate, &rdev2->flags)) { 9105 if (role == 0xfffe) { 9106 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9107 md_kick_rdev_from_array(rdev2); 9108 continue; 9109 } 9110 else 9111 clear_bit(Candidate, &rdev2->flags); 9112 } 9113 9114 if (role != rdev2->raid_disk) { 9115 /* got activated */ 9116 if (rdev2->raid_disk == -1 && role != 0xffff) { 9117 rdev2->saved_raid_disk = role; 9118 ret = remove_and_add_spares(mddev, rdev2); 9119 pr_info("Activated spare: %s\n", 9120 bdevname(rdev2->bdev,b)); 9121 /* wakeup mddev->thread here, so array could 9122 * perform resync with the new activated disk */ 9123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9124 md_wakeup_thread(mddev->thread); 9125 9126 } 9127 /* device faulty 9128 * We just want to do the minimum to mark the disk 9129 * as faulty. The recovery is performed by the 9130 * one who initiated the error. 9131 */ 9132 if ((role == 0xfffe) || (role == 0xfffd)) { 9133 md_error(mddev, rdev2); 9134 clear_bit(Blocked, &rdev2->flags); 9135 } 9136 } 9137 } 9138 9139 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9140 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9141 9142 /* Finally set the event to be up to date */ 9143 mddev->events = le64_to_cpu(sb->events); 9144 } 9145 9146 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9147 { 9148 int err; 9149 struct page *swapout = rdev->sb_page; 9150 struct mdp_superblock_1 *sb; 9151 9152 /* Store the sb page of the rdev in the swapout temporary 9153 * variable in case we err in the future 9154 */ 9155 rdev->sb_page = NULL; 9156 err = alloc_disk_sb(rdev); 9157 if (err == 0) { 9158 ClearPageUptodate(rdev->sb_page); 9159 rdev->sb_loaded = 0; 9160 err = super_types[mddev->major_version]. 9161 load_super(rdev, NULL, mddev->minor_version); 9162 } 9163 if (err < 0) { 9164 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9165 __func__, __LINE__, rdev->desc_nr, err); 9166 if (rdev->sb_page) 9167 put_page(rdev->sb_page); 9168 rdev->sb_page = swapout; 9169 rdev->sb_loaded = 1; 9170 return err; 9171 } 9172 9173 sb = page_address(rdev->sb_page); 9174 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9175 * is not set 9176 */ 9177 9178 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9179 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9180 9181 /* The other node finished recovery, call spare_active to set 9182 * device In_sync and mddev->degraded 9183 */ 9184 if (rdev->recovery_offset == MaxSector && 9185 !test_bit(In_sync, &rdev->flags) && 9186 mddev->pers->spare_active(mddev)) 9187 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9188 9189 put_page(swapout); 9190 return 0; 9191 } 9192 9193 void md_reload_sb(struct mddev *mddev, int nr) 9194 { 9195 struct md_rdev *rdev; 9196 int err; 9197 9198 /* Find the rdev */ 9199 rdev_for_each_rcu(rdev, mddev) { 9200 if (rdev->desc_nr == nr) 9201 break; 9202 } 9203 9204 if (!rdev || rdev->desc_nr != nr) { 9205 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9206 return; 9207 } 9208 9209 err = read_rdev(mddev, rdev); 9210 if (err < 0) 9211 return; 9212 9213 check_sb_changes(mddev, rdev); 9214 9215 /* Read all rdev's to update recovery_offset */ 9216 rdev_for_each_rcu(rdev, mddev) 9217 read_rdev(mddev, rdev); 9218 } 9219 EXPORT_SYMBOL(md_reload_sb); 9220 9221 #ifndef MODULE 9222 9223 /* 9224 * Searches all registered partitions for autorun RAID arrays 9225 * at boot time. 9226 */ 9227 9228 static DEFINE_MUTEX(detected_devices_mutex); 9229 static LIST_HEAD(all_detected_devices); 9230 struct detected_devices_node { 9231 struct list_head list; 9232 dev_t dev; 9233 }; 9234 9235 void md_autodetect_dev(dev_t dev) 9236 { 9237 struct detected_devices_node *node_detected_dev; 9238 9239 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9240 if (node_detected_dev) { 9241 node_detected_dev->dev = dev; 9242 mutex_lock(&detected_devices_mutex); 9243 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9244 mutex_unlock(&detected_devices_mutex); 9245 } 9246 } 9247 9248 static void autostart_arrays(int part) 9249 { 9250 struct md_rdev *rdev; 9251 struct detected_devices_node *node_detected_dev; 9252 dev_t dev; 9253 int i_scanned, i_passed; 9254 9255 i_scanned = 0; 9256 i_passed = 0; 9257 9258 pr_info("md: Autodetecting RAID arrays.\n"); 9259 9260 mutex_lock(&detected_devices_mutex); 9261 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9262 i_scanned++; 9263 node_detected_dev = list_entry(all_detected_devices.next, 9264 struct detected_devices_node, list); 9265 list_del(&node_detected_dev->list); 9266 dev = node_detected_dev->dev; 9267 kfree(node_detected_dev); 9268 mutex_unlock(&detected_devices_mutex); 9269 rdev = md_import_device(dev,0, 90); 9270 mutex_lock(&detected_devices_mutex); 9271 if (IS_ERR(rdev)) 9272 continue; 9273 9274 if (test_bit(Faulty, &rdev->flags)) 9275 continue; 9276 9277 set_bit(AutoDetected, &rdev->flags); 9278 list_add(&rdev->same_set, &pending_raid_disks); 9279 i_passed++; 9280 } 9281 mutex_unlock(&detected_devices_mutex); 9282 9283 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9284 9285 autorun_devices(part); 9286 } 9287 9288 #endif /* !MODULE */ 9289 9290 static __exit void md_exit(void) 9291 { 9292 struct mddev *mddev; 9293 struct list_head *tmp; 9294 int delay = 1; 9295 9296 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9297 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9298 9299 unregister_blkdev(MD_MAJOR,"md"); 9300 unregister_blkdev(mdp_major, "mdp"); 9301 unregister_reboot_notifier(&md_notifier); 9302 unregister_sysctl_table(raid_table_header); 9303 9304 /* We cannot unload the modules while some process is 9305 * waiting for us in select() or poll() - wake them up 9306 */ 9307 md_unloading = 1; 9308 while (waitqueue_active(&md_event_waiters)) { 9309 /* not safe to leave yet */ 9310 wake_up(&md_event_waiters); 9311 msleep(delay); 9312 delay += delay; 9313 } 9314 remove_proc_entry("mdstat", NULL); 9315 9316 for_each_mddev(mddev, tmp) { 9317 export_array(mddev); 9318 mddev->ctime = 0; 9319 mddev->hold_active = 0; 9320 /* 9321 * for_each_mddev() will call mddev_put() at the end of each 9322 * iteration. As the mddev is now fully clear, this will 9323 * schedule the mddev for destruction by a workqueue, and the 9324 * destroy_workqueue() below will wait for that to complete. 9325 */ 9326 } 9327 destroy_workqueue(md_misc_wq); 9328 destroy_workqueue(md_wq); 9329 } 9330 9331 subsys_initcall(md_init); 9332 module_exit(md_exit) 9333 9334 static int get_ro(char *buffer, const struct kernel_param *kp) 9335 { 9336 return sprintf(buffer, "%d", start_readonly); 9337 } 9338 static int set_ro(const char *val, const struct kernel_param *kp) 9339 { 9340 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9341 } 9342 9343 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9344 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9345 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9346 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9347 9348 MODULE_LICENSE("GPL"); 9349 MODULE_DESCRIPTION("MD RAID framework"); 9350 MODULE_ALIAS("md"); 9351 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9352