1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/badblocks.h> 45 #include <linux/sysctl.h> 46 #include <linux/seq_file.h> 47 #include <linux/fs.h> 48 #include <linux/poll.h> 49 #include <linux/ctype.h> 50 #include <linux/string.h> 51 #include <linux/hdreg.h> 52 #include <linux/proc_fs.h> 53 #include <linux/random.h> 54 #include <linux/module.h> 55 #include <linux/reboot.h> 56 #include <linux/file.h> 57 #include <linux/compat.h> 58 #include <linux/delay.h> 59 #include <linux/raid/md_p.h> 60 #include <linux/raid/md_u.h> 61 #include <linux/raid/detect.h> 62 #include <linux/slab.h> 63 #include <linux/percpu-refcount.h> 64 #include <linux/part_stat.h> 65 66 #include <trace/events/block.h> 67 #include "md.h" 68 #include "md-bitmap.h" 69 #include "md-cluster.h" 70 71 #ifndef MODULE 72 static void autostart_arrays(int part); 73 #endif 74 75 /* pers_list is a list of registered personalities protected 76 * by pers_lock. 77 * pers_lock does extra service to protect accesses to 78 * mddev->thread when the mutex cannot be held. 79 */ 80 static LIST_HEAD(pers_list); 81 static DEFINE_SPINLOCK(pers_lock); 82 83 static struct kobj_type md_ktype; 84 85 struct md_cluster_operations *md_cluster_ops; 86 EXPORT_SYMBOL(md_cluster_ops); 87 static struct module *md_cluster_mod; 88 89 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 90 static struct workqueue_struct *md_wq; 91 static struct workqueue_struct *md_misc_wq; 92 static struct workqueue_struct *md_rdev_misc_wq; 93 94 static int remove_and_add_spares(struct mddev *mddev, 95 struct md_rdev *this); 96 static void mddev_detach(struct mddev *mddev); 97 98 /* 99 * Default number of read corrections we'll attempt on an rdev 100 * before ejecting it from the array. We divide the read error 101 * count by 2 for every hour elapsed between read errors. 102 */ 103 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static const struct block_device_operations md_fops; 334 335 static int start_readonly; 336 337 /* 338 * The original mechanism for creating an md device is to create 339 * a device node in /dev and to open it. This causes races with device-close. 340 * The preferred method is to write to the "new_array" module parameter. 341 * This can avoid races. 342 * Setting create_on_open to false disables the original mechanism 343 * so all the races disappear. 344 */ 345 static bool create_on_open = true; 346 347 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs, 348 struct mddev *mddev) 349 { 350 if (!mddev || !bioset_initialized(&mddev->bio_set)) 351 return bio_alloc(gfp_mask, nr_iovecs); 352 353 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set); 354 } 355 EXPORT_SYMBOL_GPL(bio_alloc_mddev); 356 357 static struct bio *md_bio_alloc_sync(struct mddev *mddev) 358 { 359 if (!mddev || !bioset_initialized(&mddev->sync_set)) 360 return bio_alloc(GFP_NOIO, 1); 361 362 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set); 363 } 364 365 /* 366 * We have a system wide 'event count' that is incremented 367 * on any 'interesting' event, and readers of /proc/mdstat 368 * can use 'poll' or 'select' to find out when the event 369 * count increases. 370 * 371 * Events are: 372 * start array, stop array, error, add device, remove device, 373 * start build, activate spare 374 */ 375 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 376 static atomic_t md_event_count; 377 void md_new_event(struct mddev *mddev) 378 { 379 atomic_inc(&md_event_count); 380 wake_up(&md_event_waiters); 381 } 382 EXPORT_SYMBOL_GPL(md_new_event); 383 384 /* 385 * Enables to iterate over all existing md arrays 386 * all_mddevs_lock protects this list. 387 */ 388 static LIST_HEAD(all_mddevs); 389 static DEFINE_SPINLOCK(all_mddevs_lock); 390 391 /* 392 * iterates through all used mddevs in the system. 393 * We take care to grab the all_mddevs_lock whenever navigating 394 * the list, and to always hold a refcount when unlocked. 395 * Any code which breaks out of this loop while own 396 * a reference to the current mddev and must mddev_put it. 397 */ 398 #define for_each_mddev(_mddev,_tmp) \ 399 \ 400 for (({ spin_lock(&all_mddevs_lock); \ 401 _tmp = all_mddevs.next; \ 402 _mddev = NULL;}); \ 403 ({ if (_tmp != &all_mddevs) \ 404 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\ 405 spin_unlock(&all_mddevs_lock); \ 406 if (_mddev) mddev_put(_mddev); \ 407 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \ 408 _tmp != &all_mddevs;}); \ 409 ({ spin_lock(&all_mddevs_lock); \ 410 _tmp = _tmp->next;}) \ 411 ) 412 413 /* Rather than calling directly into the personality make_request function, 414 * IO requests come here first so that we can check if the device is 415 * being suspended pending a reconfiguration. 416 * We hold a refcount over the call to ->make_request. By the time that 417 * call has finished, the bio has been linked into some internal structure 418 * and so is visible to ->quiesce(), so we don't need the refcount any more. 419 */ 420 static bool is_suspended(struct mddev *mddev, struct bio *bio) 421 { 422 if (mddev->suspended) 423 return true; 424 if (bio_data_dir(bio) != WRITE) 425 return false; 426 if (mddev->suspend_lo >= mddev->suspend_hi) 427 return false; 428 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 429 return false; 430 if (bio_end_sector(bio) < mddev->suspend_lo) 431 return false; 432 return true; 433 } 434 435 void md_handle_request(struct mddev *mddev, struct bio *bio) 436 { 437 check_suspended: 438 rcu_read_lock(); 439 if (is_suspended(mddev, bio)) { 440 DEFINE_WAIT(__wait); 441 for (;;) { 442 prepare_to_wait(&mddev->sb_wait, &__wait, 443 TASK_UNINTERRUPTIBLE); 444 if (!is_suspended(mddev, bio)) 445 break; 446 rcu_read_unlock(); 447 schedule(); 448 rcu_read_lock(); 449 } 450 finish_wait(&mddev->sb_wait, &__wait); 451 } 452 atomic_inc(&mddev->active_io); 453 rcu_read_unlock(); 454 455 if (!mddev->pers->make_request(mddev, bio)) { 456 atomic_dec(&mddev->active_io); 457 wake_up(&mddev->sb_wait); 458 goto check_suspended; 459 } 460 461 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 462 wake_up(&mddev->sb_wait); 463 } 464 EXPORT_SYMBOL(md_handle_request); 465 466 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio) 467 { 468 const int rw = bio_data_dir(bio); 469 const int sgrp = op_stat_group(bio_op(bio)); 470 struct mddev *mddev = bio->bi_disk->private_data; 471 unsigned int sectors; 472 473 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 474 bio_io_error(bio); 475 return BLK_QC_T_NONE; 476 } 477 478 blk_queue_split(q, &bio); 479 480 if (mddev == NULL || mddev->pers == NULL) { 481 bio_io_error(bio); 482 return BLK_QC_T_NONE; 483 } 484 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 485 if (bio_sectors(bio) != 0) 486 bio->bi_status = BLK_STS_IOERR; 487 bio_endio(bio); 488 return BLK_QC_T_NONE; 489 } 490 491 /* 492 * save the sectors now since our bio can 493 * go away inside make_request 494 */ 495 sectors = bio_sectors(bio); 496 /* bio could be mergeable after passing to underlayer */ 497 bio->bi_opf &= ~REQ_NOMERGE; 498 499 md_handle_request(mddev, bio); 500 501 part_stat_lock(); 502 part_stat_inc(&mddev->gendisk->part0, ios[sgrp]); 503 part_stat_add(&mddev->gendisk->part0, sectors[sgrp], sectors); 504 part_stat_unlock(); 505 506 return BLK_QC_T_NONE; 507 } 508 509 /* mddev_suspend makes sure no new requests are submitted 510 * to the device, and that any requests that have been submitted 511 * are completely handled. 512 * Once mddev_detach() is called and completes, the module will be 513 * completely unused. 514 */ 515 void mddev_suspend(struct mddev *mddev) 516 { 517 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 518 lockdep_assert_held(&mddev->reconfig_mutex); 519 if (mddev->suspended++) 520 return; 521 synchronize_rcu(); 522 wake_up(&mddev->sb_wait); 523 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 524 smp_mb__after_atomic(); 525 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 526 mddev->pers->quiesce(mddev, 1); 527 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 528 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 529 530 del_timer_sync(&mddev->safemode_timer); 531 /* restrict memory reclaim I/O during raid array is suspend */ 532 mddev->noio_flag = memalloc_noio_save(); 533 } 534 EXPORT_SYMBOL_GPL(mddev_suspend); 535 536 void mddev_resume(struct mddev *mddev) 537 { 538 /* entred the memalloc scope from mddev_suspend() */ 539 memalloc_noio_restore(mddev->noio_flag); 540 lockdep_assert_held(&mddev->reconfig_mutex); 541 if (--mddev->suspended) 542 return; 543 wake_up(&mddev->sb_wait); 544 mddev->pers->quiesce(mddev, 0); 545 546 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 547 md_wakeup_thread(mddev->thread); 548 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 549 } 550 EXPORT_SYMBOL_GPL(mddev_resume); 551 552 int mddev_congested(struct mddev *mddev, int bits) 553 { 554 struct md_personality *pers = mddev->pers; 555 int ret = 0; 556 557 rcu_read_lock(); 558 if (mddev->suspended) 559 ret = 1; 560 else if (pers && pers->congested) 561 ret = pers->congested(mddev, bits); 562 rcu_read_unlock(); 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(mddev_congested); 566 static int md_congested(void *data, int bits) 567 { 568 struct mddev *mddev = data; 569 return mddev_congested(mddev, bits); 570 } 571 572 /* 573 * Generic flush handling for md 574 */ 575 576 static void md_end_flush(struct bio *bio) 577 { 578 struct md_rdev *rdev = bio->bi_private; 579 struct mddev *mddev = rdev->mddev; 580 581 rdev_dec_pending(rdev, mddev); 582 583 if (atomic_dec_and_test(&mddev->flush_pending)) { 584 /* The pre-request flush has finished */ 585 queue_work(md_wq, &mddev->flush_work); 586 } 587 bio_put(bio); 588 } 589 590 static void md_submit_flush_data(struct work_struct *ws); 591 592 static void submit_flushes(struct work_struct *ws) 593 { 594 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 595 struct md_rdev *rdev; 596 597 mddev->start_flush = ktime_get_boottime(); 598 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 599 atomic_set(&mddev->flush_pending, 1); 600 rcu_read_lock(); 601 rdev_for_each_rcu(rdev, mddev) 602 if (rdev->raid_disk >= 0 && 603 !test_bit(Faulty, &rdev->flags)) { 604 /* Take two references, one is dropped 605 * when request finishes, one after 606 * we reclaim rcu_read_lock 607 */ 608 struct bio *bi; 609 atomic_inc(&rdev->nr_pending); 610 atomic_inc(&rdev->nr_pending); 611 rcu_read_unlock(); 612 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev); 613 bi->bi_end_io = md_end_flush; 614 bi->bi_private = rdev; 615 bio_set_dev(bi, rdev->bdev); 616 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 617 atomic_inc(&mddev->flush_pending); 618 submit_bio(bi); 619 rcu_read_lock(); 620 rdev_dec_pending(rdev, mddev); 621 } 622 rcu_read_unlock(); 623 if (atomic_dec_and_test(&mddev->flush_pending)) 624 queue_work(md_wq, &mddev->flush_work); 625 } 626 627 static void md_submit_flush_data(struct work_struct *ws) 628 { 629 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 630 struct bio *bio = mddev->flush_bio; 631 632 /* 633 * must reset flush_bio before calling into md_handle_request to avoid a 634 * deadlock, because other bios passed md_handle_request suspend check 635 * could wait for this and below md_handle_request could wait for those 636 * bios because of suspend check 637 */ 638 mddev->last_flush = mddev->start_flush; 639 mddev->flush_bio = NULL; 640 wake_up(&mddev->sb_wait); 641 642 if (bio->bi_iter.bi_size == 0) { 643 /* an empty barrier - all done */ 644 bio_endio(bio); 645 } else { 646 bio->bi_opf &= ~REQ_PREFLUSH; 647 md_handle_request(mddev, bio); 648 } 649 } 650 651 /* 652 * Manages consolidation of flushes and submitting any flushes needed for 653 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 654 * being finished in another context. Returns false if the flushing is 655 * complete but still needs the I/O portion of the bio to be processed. 656 */ 657 bool md_flush_request(struct mddev *mddev, struct bio *bio) 658 { 659 ktime_t start = ktime_get_boottime(); 660 spin_lock_irq(&mddev->lock); 661 wait_event_lock_irq(mddev->sb_wait, 662 !mddev->flush_bio || 663 ktime_after(mddev->last_flush, start), 664 mddev->lock); 665 if (!ktime_after(mddev->last_flush, start)) { 666 WARN_ON(mddev->flush_bio); 667 mddev->flush_bio = bio; 668 bio = NULL; 669 } 670 spin_unlock_irq(&mddev->lock); 671 672 if (!bio) { 673 INIT_WORK(&mddev->flush_work, submit_flushes); 674 queue_work(md_wq, &mddev->flush_work); 675 } else { 676 /* flush was performed for some other bio while we waited. */ 677 if (bio->bi_iter.bi_size == 0) 678 /* an empty barrier - all done */ 679 bio_endio(bio); 680 else { 681 bio->bi_opf &= ~REQ_PREFLUSH; 682 return false; 683 } 684 } 685 return true; 686 } 687 EXPORT_SYMBOL(md_flush_request); 688 689 static inline struct mddev *mddev_get(struct mddev *mddev) 690 { 691 atomic_inc(&mddev->active); 692 return mddev; 693 } 694 695 static void mddev_delayed_delete(struct work_struct *ws); 696 697 static void mddev_put(struct mddev *mddev) 698 { 699 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 700 return; 701 if (!mddev->raid_disks && list_empty(&mddev->disks) && 702 mddev->ctime == 0 && !mddev->hold_active) { 703 /* Array is not configured at all, and not held active, 704 * so destroy it */ 705 list_del_init(&mddev->all_mddevs); 706 707 /* 708 * Call queue_work inside the spinlock so that 709 * flush_workqueue() after mddev_find will succeed in waiting 710 * for the work to be done. 711 */ 712 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 713 queue_work(md_misc_wq, &mddev->del_work); 714 } 715 spin_unlock(&all_mddevs_lock); 716 } 717 718 static void md_safemode_timeout(struct timer_list *t); 719 720 void mddev_init(struct mddev *mddev) 721 { 722 kobject_init(&mddev->kobj, &md_ktype); 723 mutex_init(&mddev->open_mutex); 724 mutex_init(&mddev->reconfig_mutex); 725 mutex_init(&mddev->bitmap_info.mutex); 726 INIT_LIST_HEAD(&mddev->disks); 727 INIT_LIST_HEAD(&mddev->all_mddevs); 728 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 729 atomic_set(&mddev->active, 1); 730 atomic_set(&mddev->openers, 0); 731 atomic_set(&mddev->active_io, 0); 732 spin_lock_init(&mddev->lock); 733 atomic_set(&mddev->flush_pending, 0); 734 init_waitqueue_head(&mddev->sb_wait); 735 init_waitqueue_head(&mddev->recovery_wait); 736 mddev->reshape_position = MaxSector; 737 mddev->reshape_backwards = 0; 738 mddev->last_sync_action = "none"; 739 mddev->resync_min = 0; 740 mddev->resync_max = MaxSector; 741 mddev->level = LEVEL_NONE; 742 } 743 EXPORT_SYMBOL_GPL(mddev_init); 744 745 static struct mddev *mddev_find(dev_t unit) 746 { 747 struct mddev *mddev, *new = NULL; 748 749 if (unit && MAJOR(unit) != MD_MAJOR) 750 unit &= ~((1<<MdpMinorShift)-1); 751 752 retry: 753 spin_lock(&all_mddevs_lock); 754 755 if (unit) { 756 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 757 if (mddev->unit == unit) { 758 mddev_get(mddev); 759 spin_unlock(&all_mddevs_lock); 760 kfree(new); 761 return mddev; 762 } 763 764 if (new) { 765 list_add(&new->all_mddevs, &all_mddevs); 766 spin_unlock(&all_mddevs_lock); 767 new->hold_active = UNTIL_IOCTL; 768 return new; 769 } 770 } else if (new) { 771 /* find an unused unit number */ 772 static int next_minor = 512; 773 int start = next_minor; 774 int is_free = 0; 775 int dev = 0; 776 while (!is_free) { 777 dev = MKDEV(MD_MAJOR, next_minor); 778 next_minor++; 779 if (next_minor > MINORMASK) 780 next_minor = 0; 781 if (next_minor == start) { 782 /* Oh dear, all in use. */ 783 spin_unlock(&all_mddevs_lock); 784 kfree(new); 785 return NULL; 786 } 787 788 is_free = 1; 789 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 790 if (mddev->unit == dev) { 791 is_free = 0; 792 break; 793 } 794 } 795 new->unit = dev; 796 new->md_minor = MINOR(dev); 797 new->hold_active = UNTIL_STOP; 798 list_add(&new->all_mddevs, &all_mddevs); 799 spin_unlock(&all_mddevs_lock); 800 return new; 801 } 802 spin_unlock(&all_mddevs_lock); 803 804 new = kzalloc(sizeof(*new), GFP_KERNEL); 805 if (!new) 806 return NULL; 807 808 new->unit = unit; 809 if (MAJOR(unit) == MD_MAJOR) 810 new->md_minor = MINOR(unit); 811 else 812 new->md_minor = MINOR(unit) >> MdpMinorShift; 813 814 mddev_init(new); 815 816 goto retry; 817 } 818 819 static struct attribute_group md_redundancy_group; 820 821 void mddev_unlock(struct mddev *mddev) 822 { 823 if (mddev->to_remove) { 824 /* These cannot be removed under reconfig_mutex as 825 * an access to the files will try to take reconfig_mutex 826 * while holding the file unremovable, which leads to 827 * a deadlock. 828 * So hold set sysfs_active while the remove in happeing, 829 * and anything else which might set ->to_remove or my 830 * otherwise change the sysfs namespace will fail with 831 * -EBUSY if sysfs_active is still set. 832 * We set sysfs_active under reconfig_mutex and elsewhere 833 * test it under the same mutex to ensure its correct value 834 * is seen. 835 */ 836 struct attribute_group *to_remove = mddev->to_remove; 837 mddev->to_remove = NULL; 838 mddev->sysfs_active = 1; 839 mutex_unlock(&mddev->reconfig_mutex); 840 841 if (mddev->kobj.sd) { 842 if (to_remove != &md_redundancy_group) 843 sysfs_remove_group(&mddev->kobj, to_remove); 844 if (mddev->pers == NULL || 845 mddev->pers->sync_request == NULL) { 846 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 847 if (mddev->sysfs_action) 848 sysfs_put(mddev->sysfs_action); 849 mddev->sysfs_action = NULL; 850 } 851 } 852 mddev->sysfs_active = 0; 853 } else 854 mutex_unlock(&mddev->reconfig_mutex); 855 856 /* As we've dropped the mutex we need a spinlock to 857 * make sure the thread doesn't disappear 858 */ 859 spin_lock(&pers_lock); 860 md_wakeup_thread(mddev->thread); 861 wake_up(&mddev->sb_wait); 862 spin_unlock(&pers_lock); 863 } 864 EXPORT_SYMBOL_GPL(mddev_unlock); 865 866 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 867 { 868 struct md_rdev *rdev; 869 870 rdev_for_each_rcu(rdev, mddev) 871 if (rdev->desc_nr == nr) 872 return rdev; 873 874 return NULL; 875 } 876 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 877 878 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 879 { 880 struct md_rdev *rdev; 881 882 rdev_for_each(rdev, mddev) 883 if (rdev->bdev->bd_dev == dev) 884 return rdev; 885 886 return NULL; 887 } 888 889 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 890 { 891 struct md_rdev *rdev; 892 893 rdev_for_each_rcu(rdev, mddev) 894 if (rdev->bdev->bd_dev == dev) 895 return rdev; 896 897 return NULL; 898 } 899 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 900 901 static struct md_personality *find_pers(int level, char *clevel) 902 { 903 struct md_personality *pers; 904 list_for_each_entry(pers, &pers_list, list) { 905 if (level != LEVEL_NONE && pers->level == level) 906 return pers; 907 if (strcmp(pers->name, clevel)==0) 908 return pers; 909 } 910 return NULL; 911 } 912 913 /* return the offset of the super block in 512byte sectors */ 914 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 915 { 916 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512; 917 return MD_NEW_SIZE_SECTORS(num_sectors); 918 } 919 920 static int alloc_disk_sb(struct md_rdev *rdev) 921 { 922 rdev->sb_page = alloc_page(GFP_KERNEL); 923 if (!rdev->sb_page) 924 return -ENOMEM; 925 return 0; 926 } 927 928 void md_rdev_clear(struct md_rdev *rdev) 929 { 930 if (rdev->sb_page) { 931 put_page(rdev->sb_page); 932 rdev->sb_loaded = 0; 933 rdev->sb_page = NULL; 934 rdev->sb_start = 0; 935 rdev->sectors = 0; 936 } 937 if (rdev->bb_page) { 938 put_page(rdev->bb_page); 939 rdev->bb_page = NULL; 940 } 941 badblocks_exit(&rdev->badblocks); 942 } 943 EXPORT_SYMBOL_GPL(md_rdev_clear); 944 945 static void super_written(struct bio *bio) 946 { 947 struct md_rdev *rdev = bio->bi_private; 948 struct mddev *mddev = rdev->mddev; 949 950 if (bio->bi_status) { 951 pr_err("md: super_written gets error=%d\n", bio->bi_status); 952 md_error(mddev, rdev); 953 if (!test_bit(Faulty, &rdev->flags) 954 && (bio->bi_opf & MD_FAILFAST)) { 955 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 956 set_bit(LastDev, &rdev->flags); 957 } 958 } else 959 clear_bit(LastDev, &rdev->flags); 960 961 if (atomic_dec_and_test(&mddev->pending_writes)) 962 wake_up(&mddev->sb_wait); 963 rdev_dec_pending(rdev, mddev); 964 bio_put(bio); 965 } 966 967 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 968 sector_t sector, int size, struct page *page) 969 { 970 /* write first size bytes of page to sector of rdev 971 * Increment mddev->pending_writes before returning 972 * and decrement it on completion, waking up sb_wait 973 * if zero is reached. 974 * If an error occurred, call md_error 975 */ 976 struct bio *bio; 977 int ff = 0; 978 979 if (!page) 980 return; 981 982 if (test_bit(Faulty, &rdev->flags)) 983 return; 984 985 bio = md_bio_alloc_sync(mddev); 986 987 atomic_inc(&rdev->nr_pending); 988 989 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev); 990 bio->bi_iter.bi_sector = sector; 991 bio_add_page(bio, page, size, 0); 992 bio->bi_private = rdev; 993 bio->bi_end_io = super_written; 994 995 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 996 test_bit(FailFast, &rdev->flags) && 997 !test_bit(LastDev, &rdev->flags)) 998 ff = MD_FAILFAST; 999 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff; 1000 1001 atomic_inc(&mddev->pending_writes); 1002 submit_bio(bio); 1003 } 1004 1005 int md_super_wait(struct mddev *mddev) 1006 { 1007 /* wait for all superblock writes that were scheduled to complete */ 1008 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 1009 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 1010 return -EAGAIN; 1011 return 0; 1012 } 1013 1014 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 1015 struct page *page, int op, int op_flags, bool metadata_op) 1016 { 1017 struct bio *bio = md_bio_alloc_sync(rdev->mddev); 1018 int ret; 1019 1020 if (metadata_op && rdev->meta_bdev) 1021 bio_set_dev(bio, rdev->meta_bdev); 1022 else 1023 bio_set_dev(bio, rdev->bdev); 1024 bio_set_op_attrs(bio, op, op_flags); 1025 if (metadata_op) 1026 bio->bi_iter.bi_sector = sector + rdev->sb_start; 1027 else if (rdev->mddev->reshape_position != MaxSector && 1028 (rdev->mddev->reshape_backwards == 1029 (sector >= rdev->mddev->reshape_position))) 1030 bio->bi_iter.bi_sector = sector + rdev->new_data_offset; 1031 else 1032 bio->bi_iter.bi_sector = sector + rdev->data_offset; 1033 bio_add_page(bio, page, size, 0); 1034 1035 submit_bio_wait(bio); 1036 1037 ret = !bio->bi_status; 1038 bio_put(bio); 1039 return ret; 1040 } 1041 EXPORT_SYMBOL_GPL(sync_page_io); 1042 1043 static int read_disk_sb(struct md_rdev *rdev, int size) 1044 { 1045 char b[BDEVNAME_SIZE]; 1046 1047 if (rdev->sb_loaded) 1048 return 0; 1049 1050 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true)) 1051 goto fail; 1052 rdev->sb_loaded = 1; 1053 return 0; 1054 1055 fail: 1056 pr_err("md: disabled device %s, could not read superblock.\n", 1057 bdevname(rdev->bdev,b)); 1058 return -EINVAL; 1059 } 1060 1061 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1062 { 1063 return sb1->set_uuid0 == sb2->set_uuid0 && 1064 sb1->set_uuid1 == sb2->set_uuid1 && 1065 sb1->set_uuid2 == sb2->set_uuid2 && 1066 sb1->set_uuid3 == sb2->set_uuid3; 1067 } 1068 1069 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1070 { 1071 int ret; 1072 mdp_super_t *tmp1, *tmp2; 1073 1074 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1075 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1076 1077 if (!tmp1 || !tmp2) { 1078 ret = 0; 1079 goto abort; 1080 } 1081 1082 *tmp1 = *sb1; 1083 *tmp2 = *sb2; 1084 1085 /* 1086 * nr_disks is not constant 1087 */ 1088 tmp1->nr_disks = 0; 1089 tmp2->nr_disks = 0; 1090 1091 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1092 abort: 1093 kfree(tmp1); 1094 kfree(tmp2); 1095 return ret; 1096 } 1097 1098 static u32 md_csum_fold(u32 csum) 1099 { 1100 csum = (csum & 0xffff) + (csum >> 16); 1101 return (csum & 0xffff) + (csum >> 16); 1102 } 1103 1104 static unsigned int calc_sb_csum(mdp_super_t *sb) 1105 { 1106 u64 newcsum = 0; 1107 u32 *sb32 = (u32*)sb; 1108 int i; 1109 unsigned int disk_csum, csum; 1110 1111 disk_csum = sb->sb_csum; 1112 sb->sb_csum = 0; 1113 1114 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1115 newcsum += sb32[i]; 1116 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1117 1118 #ifdef CONFIG_ALPHA 1119 /* This used to use csum_partial, which was wrong for several 1120 * reasons including that different results are returned on 1121 * different architectures. It isn't critical that we get exactly 1122 * the same return value as before (we always csum_fold before 1123 * testing, and that removes any differences). However as we 1124 * know that csum_partial always returned a 16bit value on 1125 * alphas, do a fold to maximise conformity to previous behaviour. 1126 */ 1127 sb->sb_csum = md_csum_fold(disk_csum); 1128 #else 1129 sb->sb_csum = disk_csum; 1130 #endif 1131 return csum; 1132 } 1133 1134 /* 1135 * Handle superblock details. 1136 * We want to be able to handle multiple superblock formats 1137 * so we have a common interface to them all, and an array of 1138 * different handlers. 1139 * We rely on user-space to write the initial superblock, and support 1140 * reading and updating of superblocks. 1141 * Interface methods are: 1142 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1143 * loads and validates a superblock on dev. 1144 * if refdev != NULL, compare superblocks on both devices 1145 * Return: 1146 * 0 - dev has a superblock that is compatible with refdev 1147 * 1 - dev has a superblock that is compatible and newer than refdev 1148 * so dev should be used as the refdev in future 1149 * -EINVAL superblock incompatible or invalid 1150 * -othererror e.g. -EIO 1151 * 1152 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1153 * Verify that dev is acceptable into mddev. 1154 * The first time, mddev->raid_disks will be 0, and data from 1155 * dev should be merged in. Subsequent calls check that dev 1156 * is new enough. Return 0 or -EINVAL 1157 * 1158 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1159 * Update the superblock for rdev with data in mddev 1160 * This does not write to disc. 1161 * 1162 */ 1163 1164 struct super_type { 1165 char *name; 1166 struct module *owner; 1167 int (*load_super)(struct md_rdev *rdev, 1168 struct md_rdev *refdev, 1169 int minor_version); 1170 int (*validate_super)(struct mddev *mddev, 1171 struct md_rdev *rdev); 1172 void (*sync_super)(struct mddev *mddev, 1173 struct md_rdev *rdev); 1174 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1175 sector_t num_sectors); 1176 int (*allow_new_offset)(struct md_rdev *rdev, 1177 unsigned long long new_offset); 1178 }; 1179 1180 /* 1181 * Check that the given mddev has no bitmap. 1182 * 1183 * This function is called from the run method of all personalities that do not 1184 * support bitmaps. It prints an error message and returns non-zero if mddev 1185 * has a bitmap. Otherwise, it returns 0. 1186 * 1187 */ 1188 int md_check_no_bitmap(struct mddev *mddev) 1189 { 1190 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1191 return 0; 1192 pr_warn("%s: bitmaps are not supported for %s\n", 1193 mdname(mddev), mddev->pers->name); 1194 return 1; 1195 } 1196 EXPORT_SYMBOL(md_check_no_bitmap); 1197 1198 /* 1199 * load_super for 0.90.0 1200 */ 1201 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1202 { 1203 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1204 mdp_super_t *sb; 1205 int ret; 1206 bool spare_disk = true; 1207 1208 /* 1209 * Calculate the position of the superblock (512byte sectors), 1210 * it's at the end of the disk. 1211 * 1212 * It also happens to be a multiple of 4Kb. 1213 */ 1214 rdev->sb_start = calc_dev_sboffset(rdev); 1215 1216 ret = read_disk_sb(rdev, MD_SB_BYTES); 1217 if (ret) 1218 return ret; 1219 1220 ret = -EINVAL; 1221 1222 bdevname(rdev->bdev, b); 1223 sb = page_address(rdev->sb_page); 1224 1225 if (sb->md_magic != MD_SB_MAGIC) { 1226 pr_warn("md: invalid raid superblock magic on %s\n", b); 1227 goto abort; 1228 } 1229 1230 if (sb->major_version != 0 || 1231 sb->minor_version < 90 || 1232 sb->minor_version > 91) { 1233 pr_warn("Bad version number %d.%d on %s\n", 1234 sb->major_version, sb->minor_version, b); 1235 goto abort; 1236 } 1237 1238 if (sb->raid_disks <= 0) 1239 goto abort; 1240 1241 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1242 pr_warn("md: invalid superblock checksum on %s\n", b); 1243 goto abort; 1244 } 1245 1246 rdev->preferred_minor = sb->md_minor; 1247 rdev->data_offset = 0; 1248 rdev->new_data_offset = 0; 1249 rdev->sb_size = MD_SB_BYTES; 1250 rdev->badblocks.shift = -1; 1251 1252 if (sb->level == LEVEL_MULTIPATH) 1253 rdev->desc_nr = -1; 1254 else 1255 rdev->desc_nr = sb->this_disk.number; 1256 1257 /* not spare disk, or LEVEL_MULTIPATH */ 1258 if (sb->level == LEVEL_MULTIPATH || 1259 (rdev->desc_nr >= 0 && 1260 rdev->desc_nr < MD_SB_DISKS && 1261 sb->disks[rdev->desc_nr].state & 1262 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1263 spare_disk = false; 1264 1265 if (!refdev) { 1266 if (!spare_disk) 1267 ret = 1; 1268 else 1269 ret = 0; 1270 } else { 1271 __u64 ev1, ev2; 1272 mdp_super_t *refsb = page_address(refdev->sb_page); 1273 if (!md_uuid_equal(refsb, sb)) { 1274 pr_warn("md: %s has different UUID to %s\n", 1275 b, bdevname(refdev->bdev,b2)); 1276 goto abort; 1277 } 1278 if (!md_sb_equal(refsb, sb)) { 1279 pr_warn("md: %s has same UUID but different superblock to %s\n", 1280 b, bdevname(refdev->bdev, b2)); 1281 goto abort; 1282 } 1283 ev1 = md_event(sb); 1284 ev2 = md_event(refsb); 1285 1286 if (!spare_disk && ev1 > ev2) 1287 ret = 1; 1288 else 1289 ret = 0; 1290 } 1291 rdev->sectors = rdev->sb_start; 1292 /* Limit to 4TB as metadata cannot record more than that. 1293 * (not needed for Linear and RAID0 as metadata doesn't 1294 * record this size) 1295 */ 1296 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1297 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1298 1299 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1300 /* "this cannot possibly happen" ... */ 1301 ret = -EINVAL; 1302 1303 abort: 1304 return ret; 1305 } 1306 1307 /* 1308 * validate_super for 0.90.0 1309 */ 1310 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1311 { 1312 mdp_disk_t *desc; 1313 mdp_super_t *sb = page_address(rdev->sb_page); 1314 __u64 ev1 = md_event(sb); 1315 1316 rdev->raid_disk = -1; 1317 clear_bit(Faulty, &rdev->flags); 1318 clear_bit(In_sync, &rdev->flags); 1319 clear_bit(Bitmap_sync, &rdev->flags); 1320 clear_bit(WriteMostly, &rdev->flags); 1321 1322 if (mddev->raid_disks == 0) { 1323 mddev->major_version = 0; 1324 mddev->minor_version = sb->minor_version; 1325 mddev->patch_version = sb->patch_version; 1326 mddev->external = 0; 1327 mddev->chunk_sectors = sb->chunk_size >> 9; 1328 mddev->ctime = sb->ctime; 1329 mddev->utime = sb->utime; 1330 mddev->level = sb->level; 1331 mddev->clevel[0] = 0; 1332 mddev->layout = sb->layout; 1333 mddev->raid_disks = sb->raid_disks; 1334 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1335 mddev->events = ev1; 1336 mddev->bitmap_info.offset = 0; 1337 mddev->bitmap_info.space = 0; 1338 /* bitmap can use 60 K after the 4K superblocks */ 1339 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1340 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1341 mddev->reshape_backwards = 0; 1342 1343 if (mddev->minor_version >= 91) { 1344 mddev->reshape_position = sb->reshape_position; 1345 mddev->delta_disks = sb->delta_disks; 1346 mddev->new_level = sb->new_level; 1347 mddev->new_layout = sb->new_layout; 1348 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1349 if (mddev->delta_disks < 0) 1350 mddev->reshape_backwards = 1; 1351 } else { 1352 mddev->reshape_position = MaxSector; 1353 mddev->delta_disks = 0; 1354 mddev->new_level = mddev->level; 1355 mddev->new_layout = mddev->layout; 1356 mddev->new_chunk_sectors = mddev->chunk_sectors; 1357 } 1358 if (mddev->level == 0) 1359 mddev->layout = -1; 1360 1361 if (sb->state & (1<<MD_SB_CLEAN)) 1362 mddev->recovery_cp = MaxSector; 1363 else { 1364 if (sb->events_hi == sb->cp_events_hi && 1365 sb->events_lo == sb->cp_events_lo) { 1366 mddev->recovery_cp = sb->recovery_cp; 1367 } else 1368 mddev->recovery_cp = 0; 1369 } 1370 1371 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1372 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1373 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1374 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1375 1376 mddev->max_disks = MD_SB_DISKS; 1377 1378 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1379 mddev->bitmap_info.file == NULL) { 1380 mddev->bitmap_info.offset = 1381 mddev->bitmap_info.default_offset; 1382 mddev->bitmap_info.space = 1383 mddev->bitmap_info.default_space; 1384 } 1385 1386 } else if (mddev->pers == NULL) { 1387 /* Insist on good event counter while assembling, except 1388 * for spares (which don't need an event count) */ 1389 ++ev1; 1390 if (sb->disks[rdev->desc_nr].state & ( 1391 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1392 if (ev1 < mddev->events) 1393 return -EINVAL; 1394 } else if (mddev->bitmap) { 1395 /* if adding to array with a bitmap, then we can accept an 1396 * older device ... but not too old. 1397 */ 1398 if (ev1 < mddev->bitmap->events_cleared) 1399 return 0; 1400 if (ev1 < mddev->events) 1401 set_bit(Bitmap_sync, &rdev->flags); 1402 } else { 1403 if (ev1 < mddev->events) 1404 /* just a hot-add of a new device, leave raid_disk at -1 */ 1405 return 0; 1406 } 1407 1408 if (mddev->level != LEVEL_MULTIPATH) { 1409 desc = sb->disks + rdev->desc_nr; 1410 1411 if (desc->state & (1<<MD_DISK_FAULTY)) 1412 set_bit(Faulty, &rdev->flags); 1413 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1414 desc->raid_disk < mddev->raid_disks */) { 1415 set_bit(In_sync, &rdev->flags); 1416 rdev->raid_disk = desc->raid_disk; 1417 rdev->saved_raid_disk = desc->raid_disk; 1418 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1419 /* active but not in sync implies recovery up to 1420 * reshape position. We don't know exactly where 1421 * that is, so set to zero for now */ 1422 if (mddev->minor_version >= 91) { 1423 rdev->recovery_offset = 0; 1424 rdev->raid_disk = desc->raid_disk; 1425 } 1426 } 1427 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1428 set_bit(WriteMostly, &rdev->flags); 1429 if (desc->state & (1<<MD_DISK_FAILFAST)) 1430 set_bit(FailFast, &rdev->flags); 1431 } else /* MULTIPATH are always insync */ 1432 set_bit(In_sync, &rdev->flags); 1433 return 0; 1434 } 1435 1436 /* 1437 * sync_super for 0.90.0 1438 */ 1439 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1440 { 1441 mdp_super_t *sb; 1442 struct md_rdev *rdev2; 1443 int next_spare = mddev->raid_disks; 1444 1445 /* make rdev->sb match mddev data.. 1446 * 1447 * 1/ zero out disks 1448 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1449 * 3/ any empty disks < next_spare become removed 1450 * 1451 * disks[0] gets initialised to REMOVED because 1452 * we cannot be sure from other fields if it has 1453 * been initialised or not. 1454 */ 1455 int i; 1456 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1457 1458 rdev->sb_size = MD_SB_BYTES; 1459 1460 sb = page_address(rdev->sb_page); 1461 1462 memset(sb, 0, sizeof(*sb)); 1463 1464 sb->md_magic = MD_SB_MAGIC; 1465 sb->major_version = mddev->major_version; 1466 sb->patch_version = mddev->patch_version; 1467 sb->gvalid_words = 0; /* ignored */ 1468 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1469 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1470 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1471 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1472 1473 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1474 sb->level = mddev->level; 1475 sb->size = mddev->dev_sectors / 2; 1476 sb->raid_disks = mddev->raid_disks; 1477 sb->md_minor = mddev->md_minor; 1478 sb->not_persistent = 0; 1479 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1480 sb->state = 0; 1481 sb->events_hi = (mddev->events>>32); 1482 sb->events_lo = (u32)mddev->events; 1483 1484 if (mddev->reshape_position == MaxSector) 1485 sb->minor_version = 90; 1486 else { 1487 sb->minor_version = 91; 1488 sb->reshape_position = mddev->reshape_position; 1489 sb->new_level = mddev->new_level; 1490 sb->delta_disks = mddev->delta_disks; 1491 sb->new_layout = mddev->new_layout; 1492 sb->new_chunk = mddev->new_chunk_sectors << 9; 1493 } 1494 mddev->minor_version = sb->minor_version; 1495 if (mddev->in_sync) 1496 { 1497 sb->recovery_cp = mddev->recovery_cp; 1498 sb->cp_events_hi = (mddev->events>>32); 1499 sb->cp_events_lo = (u32)mddev->events; 1500 if (mddev->recovery_cp == MaxSector) 1501 sb->state = (1<< MD_SB_CLEAN); 1502 } else 1503 sb->recovery_cp = 0; 1504 1505 sb->layout = mddev->layout; 1506 sb->chunk_size = mddev->chunk_sectors << 9; 1507 1508 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1509 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1510 1511 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1512 rdev_for_each(rdev2, mddev) { 1513 mdp_disk_t *d; 1514 int desc_nr; 1515 int is_active = test_bit(In_sync, &rdev2->flags); 1516 1517 if (rdev2->raid_disk >= 0 && 1518 sb->minor_version >= 91) 1519 /* we have nowhere to store the recovery_offset, 1520 * but if it is not below the reshape_position, 1521 * we can piggy-back on that. 1522 */ 1523 is_active = 1; 1524 if (rdev2->raid_disk < 0 || 1525 test_bit(Faulty, &rdev2->flags)) 1526 is_active = 0; 1527 if (is_active) 1528 desc_nr = rdev2->raid_disk; 1529 else 1530 desc_nr = next_spare++; 1531 rdev2->desc_nr = desc_nr; 1532 d = &sb->disks[rdev2->desc_nr]; 1533 nr_disks++; 1534 d->number = rdev2->desc_nr; 1535 d->major = MAJOR(rdev2->bdev->bd_dev); 1536 d->minor = MINOR(rdev2->bdev->bd_dev); 1537 if (is_active) 1538 d->raid_disk = rdev2->raid_disk; 1539 else 1540 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1541 if (test_bit(Faulty, &rdev2->flags)) 1542 d->state = (1<<MD_DISK_FAULTY); 1543 else if (is_active) { 1544 d->state = (1<<MD_DISK_ACTIVE); 1545 if (test_bit(In_sync, &rdev2->flags)) 1546 d->state |= (1<<MD_DISK_SYNC); 1547 active++; 1548 working++; 1549 } else { 1550 d->state = 0; 1551 spare++; 1552 working++; 1553 } 1554 if (test_bit(WriteMostly, &rdev2->flags)) 1555 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1556 if (test_bit(FailFast, &rdev2->flags)) 1557 d->state |= (1<<MD_DISK_FAILFAST); 1558 } 1559 /* now set the "removed" and "faulty" bits on any missing devices */ 1560 for (i=0 ; i < mddev->raid_disks ; i++) { 1561 mdp_disk_t *d = &sb->disks[i]; 1562 if (d->state == 0 && d->number == 0) { 1563 d->number = i; 1564 d->raid_disk = i; 1565 d->state = (1<<MD_DISK_REMOVED); 1566 d->state |= (1<<MD_DISK_FAULTY); 1567 failed++; 1568 } 1569 } 1570 sb->nr_disks = nr_disks; 1571 sb->active_disks = active; 1572 sb->working_disks = working; 1573 sb->failed_disks = failed; 1574 sb->spare_disks = spare; 1575 1576 sb->this_disk = sb->disks[rdev->desc_nr]; 1577 sb->sb_csum = calc_sb_csum(sb); 1578 } 1579 1580 /* 1581 * rdev_size_change for 0.90.0 1582 */ 1583 static unsigned long long 1584 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1585 { 1586 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1587 return 0; /* component must fit device */ 1588 if (rdev->mddev->bitmap_info.offset) 1589 return 0; /* can't move bitmap */ 1590 rdev->sb_start = calc_dev_sboffset(rdev); 1591 if (!num_sectors || num_sectors > rdev->sb_start) 1592 num_sectors = rdev->sb_start; 1593 /* Limit to 4TB as metadata cannot record more than that. 1594 * 4TB == 2^32 KB, or 2*2^32 sectors. 1595 */ 1596 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1597 num_sectors = (sector_t)(2ULL << 32) - 2; 1598 do { 1599 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1600 rdev->sb_page); 1601 } while (md_super_wait(rdev->mddev) < 0); 1602 return num_sectors; 1603 } 1604 1605 static int 1606 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1607 { 1608 /* non-zero offset changes not possible with v0.90 */ 1609 return new_offset == 0; 1610 } 1611 1612 /* 1613 * version 1 superblock 1614 */ 1615 1616 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1617 { 1618 __le32 disk_csum; 1619 u32 csum; 1620 unsigned long long newcsum; 1621 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1622 __le32 *isuper = (__le32*)sb; 1623 1624 disk_csum = sb->sb_csum; 1625 sb->sb_csum = 0; 1626 newcsum = 0; 1627 for (; size >= 4; size -= 4) 1628 newcsum += le32_to_cpu(*isuper++); 1629 1630 if (size == 2) 1631 newcsum += le16_to_cpu(*(__le16*) isuper); 1632 1633 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1634 sb->sb_csum = disk_csum; 1635 return cpu_to_le32(csum); 1636 } 1637 1638 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1639 { 1640 struct mdp_superblock_1 *sb; 1641 int ret; 1642 sector_t sb_start; 1643 sector_t sectors; 1644 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 1645 int bmask; 1646 bool spare_disk = true; 1647 1648 /* 1649 * Calculate the position of the superblock in 512byte sectors. 1650 * It is always aligned to a 4K boundary and 1651 * depeding on minor_version, it can be: 1652 * 0: At least 8K, but less than 12K, from end of device 1653 * 1: At start of device 1654 * 2: 4K from start of device. 1655 */ 1656 switch(minor_version) { 1657 case 0: 1658 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9; 1659 sb_start -= 8*2; 1660 sb_start &= ~(sector_t)(4*2-1); 1661 break; 1662 case 1: 1663 sb_start = 0; 1664 break; 1665 case 2: 1666 sb_start = 8; 1667 break; 1668 default: 1669 return -EINVAL; 1670 } 1671 rdev->sb_start = sb_start; 1672 1673 /* superblock is rarely larger than 1K, but it can be larger, 1674 * and it is safe to read 4k, so we do that 1675 */ 1676 ret = read_disk_sb(rdev, 4096); 1677 if (ret) return ret; 1678 1679 sb = page_address(rdev->sb_page); 1680 1681 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1682 sb->major_version != cpu_to_le32(1) || 1683 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1684 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1685 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1686 return -EINVAL; 1687 1688 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1689 pr_warn("md: invalid superblock checksum on %s\n", 1690 bdevname(rdev->bdev,b)); 1691 return -EINVAL; 1692 } 1693 if (le64_to_cpu(sb->data_size) < 10) { 1694 pr_warn("md: data_size too small on %s\n", 1695 bdevname(rdev->bdev,b)); 1696 return -EINVAL; 1697 } 1698 if (sb->pad0 || 1699 sb->pad3[0] || 1700 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1701 /* Some padding is non-zero, might be a new feature */ 1702 return -EINVAL; 1703 1704 rdev->preferred_minor = 0xffff; 1705 rdev->data_offset = le64_to_cpu(sb->data_offset); 1706 rdev->new_data_offset = rdev->data_offset; 1707 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1708 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1709 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1710 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1711 1712 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1713 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1714 if (rdev->sb_size & bmask) 1715 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1716 1717 if (minor_version 1718 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1719 return -EINVAL; 1720 if (minor_version 1721 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1722 return -EINVAL; 1723 1724 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1725 rdev->desc_nr = -1; 1726 else 1727 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1728 1729 if (!rdev->bb_page) { 1730 rdev->bb_page = alloc_page(GFP_KERNEL); 1731 if (!rdev->bb_page) 1732 return -ENOMEM; 1733 } 1734 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1735 rdev->badblocks.count == 0) { 1736 /* need to load the bad block list. 1737 * Currently we limit it to one page. 1738 */ 1739 s32 offset; 1740 sector_t bb_sector; 1741 __le64 *bbp; 1742 int i; 1743 int sectors = le16_to_cpu(sb->bblog_size); 1744 if (sectors > (PAGE_SIZE / 512)) 1745 return -EINVAL; 1746 offset = le32_to_cpu(sb->bblog_offset); 1747 if (offset == 0) 1748 return -EINVAL; 1749 bb_sector = (long long)offset; 1750 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1751 rdev->bb_page, REQ_OP_READ, 0, true)) 1752 return -EIO; 1753 bbp = (__le64 *)page_address(rdev->bb_page); 1754 rdev->badblocks.shift = sb->bblog_shift; 1755 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1756 u64 bb = le64_to_cpu(*bbp); 1757 int count = bb & (0x3ff); 1758 u64 sector = bb >> 10; 1759 sector <<= sb->bblog_shift; 1760 count <<= sb->bblog_shift; 1761 if (bb + 1 == 0) 1762 break; 1763 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1764 return -EINVAL; 1765 } 1766 } else if (sb->bblog_offset != 0) 1767 rdev->badblocks.shift = 0; 1768 1769 if ((le32_to_cpu(sb->feature_map) & 1770 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1771 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1772 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1773 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1774 } 1775 1776 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1777 sb->level != 0) 1778 return -EINVAL; 1779 1780 /* not spare disk, or LEVEL_MULTIPATH */ 1781 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1782 (rdev->desc_nr >= 0 && 1783 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1784 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1785 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1786 spare_disk = false; 1787 1788 if (!refdev) { 1789 if (!spare_disk) 1790 ret = 1; 1791 else 1792 ret = 0; 1793 } else { 1794 __u64 ev1, ev2; 1795 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1796 1797 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1798 sb->level != refsb->level || 1799 sb->layout != refsb->layout || 1800 sb->chunksize != refsb->chunksize) { 1801 pr_warn("md: %s has strangely different superblock to %s\n", 1802 bdevname(rdev->bdev,b), 1803 bdevname(refdev->bdev,b2)); 1804 return -EINVAL; 1805 } 1806 ev1 = le64_to_cpu(sb->events); 1807 ev2 = le64_to_cpu(refsb->events); 1808 1809 if (!spare_disk && ev1 > ev2) 1810 ret = 1; 1811 else 1812 ret = 0; 1813 } 1814 if (minor_version) { 1815 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9); 1816 sectors -= rdev->data_offset; 1817 } else 1818 sectors = rdev->sb_start; 1819 if (sectors < le64_to_cpu(sb->data_size)) 1820 return -EINVAL; 1821 rdev->sectors = le64_to_cpu(sb->data_size); 1822 return ret; 1823 } 1824 1825 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1826 { 1827 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1828 __u64 ev1 = le64_to_cpu(sb->events); 1829 1830 rdev->raid_disk = -1; 1831 clear_bit(Faulty, &rdev->flags); 1832 clear_bit(In_sync, &rdev->flags); 1833 clear_bit(Bitmap_sync, &rdev->flags); 1834 clear_bit(WriteMostly, &rdev->flags); 1835 1836 if (mddev->raid_disks == 0) { 1837 mddev->major_version = 1; 1838 mddev->patch_version = 0; 1839 mddev->external = 0; 1840 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1841 mddev->ctime = le64_to_cpu(sb->ctime); 1842 mddev->utime = le64_to_cpu(sb->utime); 1843 mddev->level = le32_to_cpu(sb->level); 1844 mddev->clevel[0] = 0; 1845 mddev->layout = le32_to_cpu(sb->layout); 1846 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1847 mddev->dev_sectors = le64_to_cpu(sb->size); 1848 mddev->events = ev1; 1849 mddev->bitmap_info.offset = 0; 1850 mddev->bitmap_info.space = 0; 1851 /* Default location for bitmap is 1K after superblock 1852 * using 3K - total of 4K 1853 */ 1854 mddev->bitmap_info.default_offset = 1024 >> 9; 1855 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1856 mddev->reshape_backwards = 0; 1857 1858 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1859 memcpy(mddev->uuid, sb->set_uuid, 16); 1860 1861 mddev->max_disks = (4096-256)/2; 1862 1863 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1864 mddev->bitmap_info.file == NULL) { 1865 mddev->bitmap_info.offset = 1866 (__s32)le32_to_cpu(sb->bitmap_offset); 1867 /* Metadata doesn't record how much space is available. 1868 * For 1.0, we assume we can use up to the superblock 1869 * if before, else to 4K beyond superblock. 1870 * For others, assume no change is possible. 1871 */ 1872 if (mddev->minor_version > 0) 1873 mddev->bitmap_info.space = 0; 1874 else if (mddev->bitmap_info.offset > 0) 1875 mddev->bitmap_info.space = 1876 8 - mddev->bitmap_info.offset; 1877 else 1878 mddev->bitmap_info.space = 1879 -mddev->bitmap_info.offset; 1880 } 1881 1882 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1883 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1884 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1885 mddev->new_level = le32_to_cpu(sb->new_level); 1886 mddev->new_layout = le32_to_cpu(sb->new_layout); 1887 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1888 if (mddev->delta_disks < 0 || 1889 (mddev->delta_disks == 0 && 1890 (le32_to_cpu(sb->feature_map) 1891 & MD_FEATURE_RESHAPE_BACKWARDS))) 1892 mddev->reshape_backwards = 1; 1893 } else { 1894 mddev->reshape_position = MaxSector; 1895 mddev->delta_disks = 0; 1896 mddev->new_level = mddev->level; 1897 mddev->new_layout = mddev->layout; 1898 mddev->new_chunk_sectors = mddev->chunk_sectors; 1899 } 1900 1901 if (mddev->level == 0 && 1902 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1903 mddev->layout = -1; 1904 1905 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1906 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1907 1908 if (le32_to_cpu(sb->feature_map) & 1909 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1910 if (le32_to_cpu(sb->feature_map) & 1911 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1912 return -EINVAL; 1913 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1914 (le32_to_cpu(sb->feature_map) & 1915 MD_FEATURE_MULTIPLE_PPLS)) 1916 return -EINVAL; 1917 set_bit(MD_HAS_PPL, &mddev->flags); 1918 } 1919 } else if (mddev->pers == NULL) { 1920 /* Insist of good event counter while assembling, except for 1921 * spares (which don't need an event count) */ 1922 ++ev1; 1923 if (rdev->desc_nr >= 0 && 1924 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1925 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1926 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1927 if (ev1 < mddev->events) 1928 return -EINVAL; 1929 } else if (mddev->bitmap) { 1930 /* If adding to array with a bitmap, then we can accept an 1931 * older device, but not too old. 1932 */ 1933 if (ev1 < mddev->bitmap->events_cleared) 1934 return 0; 1935 if (ev1 < mddev->events) 1936 set_bit(Bitmap_sync, &rdev->flags); 1937 } else { 1938 if (ev1 < mddev->events) 1939 /* just a hot-add of a new device, leave raid_disk at -1 */ 1940 return 0; 1941 } 1942 if (mddev->level != LEVEL_MULTIPATH) { 1943 int role; 1944 if (rdev->desc_nr < 0 || 1945 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1946 role = MD_DISK_ROLE_SPARE; 1947 rdev->desc_nr = -1; 1948 } else 1949 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1950 switch(role) { 1951 case MD_DISK_ROLE_SPARE: /* spare */ 1952 break; 1953 case MD_DISK_ROLE_FAULTY: /* faulty */ 1954 set_bit(Faulty, &rdev->flags); 1955 break; 1956 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1957 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1958 /* journal device without journal feature */ 1959 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1960 return -EINVAL; 1961 } 1962 set_bit(Journal, &rdev->flags); 1963 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1964 rdev->raid_disk = 0; 1965 break; 1966 default: 1967 rdev->saved_raid_disk = role; 1968 if ((le32_to_cpu(sb->feature_map) & 1969 MD_FEATURE_RECOVERY_OFFSET)) { 1970 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1971 if (!(le32_to_cpu(sb->feature_map) & 1972 MD_FEATURE_RECOVERY_BITMAP)) 1973 rdev->saved_raid_disk = -1; 1974 } else { 1975 /* 1976 * If the array is FROZEN, then the device can't 1977 * be in_sync with rest of array. 1978 */ 1979 if (!test_bit(MD_RECOVERY_FROZEN, 1980 &mddev->recovery)) 1981 set_bit(In_sync, &rdev->flags); 1982 } 1983 rdev->raid_disk = role; 1984 break; 1985 } 1986 if (sb->devflags & WriteMostly1) 1987 set_bit(WriteMostly, &rdev->flags); 1988 if (sb->devflags & FailFast1) 1989 set_bit(FailFast, &rdev->flags); 1990 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1991 set_bit(Replacement, &rdev->flags); 1992 } else /* MULTIPATH are always insync */ 1993 set_bit(In_sync, &rdev->flags); 1994 1995 return 0; 1996 } 1997 1998 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1999 { 2000 struct mdp_superblock_1 *sb; 2001 struct md_rdev *rdev2; 2002 int max_dev, i; 2003 /* make rdev->sb match mddev and rdev data. */ 2004 2005 sb = page_address(rdev->sb_page); 2006 2007 sb->feature_map = 0; 2008 sb->pad0 = 0; 2009 sb->recovery_offset = cpu_to_le64(0); 2010 memset(sb->pad3, 0, sizeof(sb->pad3)); 2011 2012 sb->utime = cpu_to_le64((__u64)mddev->utime); 2013 sb->events = cpu_to_le64(mddev->events); 2014 if (mddev->in_sync) 2015 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2016 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2017 sb->resync_offset = cpu_to_le64(MaxSector); 2018 else 2019 sb->resync_offset = cpu_to_le64(0); 2020 2021 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2022 2023 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2024 sb->size = cpu_to_le64(mddev->dev_sectors); 2025 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2026 sb->level = cpu_to_le32(mddev->level); 2027 sb->layout = cpu_to_le32(mddev->layout); 2028 if (test_bit(FailFast, &rdev->flags)) 2029 sb->devflags |= FailFast1; 2030 else 2031 sb->devflags &= ~FailFast1; 2032 2033 if (test_bit(WriteMostly, &rdev->flags)) 2034 sb->devflags |= WriteMostly1; 2035 else 2036 sb->devflags &= ~WriteMostly1; 2037 sb->data_offset = cpu_to_le64(rdev->data_offset); 2038 sb->data_size = cpu_to_le64(rdev->sectors); 2039 2040 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2041 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2042 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2043 } 2044 2045 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2046 !test_bit(In_sync, &rdev->flags)) { 2047 sb->feature_map |= 2048 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2049 sb->recovery_offset = 2050 cpu_to_le64(rdev->recovery_offset); 2051 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2052 sb->feature_map |= 2053 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2054 } 2055 /* Note: recovery_offset and journal_tail share space */ 2056 if (test_bit(Journal, &rdev->flags)) 2057 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2058 if (test_bit(Replacement, &rdev->flags)) 2059 sb->feature_map |= 2060 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2061 2062 if (mddev->reshape_position != MaxSector) { 2063 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2064 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2065 sb->new_layout = cpu_to_le32(mddev->new_layout); 2066 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2067 sb->new_level = cpu_to_le32(mddev->new_level); 2068 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2069 if (mddev->delta_disks == 0 && 2070 mddev->reshape_backwards) 2071 sb->feature_map 2072 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2073 if (rdev->new_data_offset != rdev->data_offset) { 2074 sb->feature_map 2075 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2076 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2077 - rdev->data_offset)); 2078 } 2079 } 2080 2081 if (mddev_is_clustered(mddev)) 2082 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2083 2084 if (rdev->badblocks.count == 0) 2085 /* Nothing to do for bad blocks*/ ; 2086 else if (sb->bblog_offset == 0) 2087 /* Cannot record bad blocks on this device */ 2088 md_error(mddev, rdev); 2089 else { 2090 struct badblocks *bb = &rdev->badblocks; 2091 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2092 u64 *p = bb->page; 2093 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2094 if (bb->changed) { 2095 unsigned seq; 2096 2097 retry: 2098 seq = read_seqbegin(&bb->lock); 2099 2100 memset(bbp, 0xff, PAGE_SIZE); 2101 2102 for (i = 0 ; i < bb->count ; i++) { 2103 u64 internal_bb = p[i]; 2104 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2105 | BB_LEN(internal_bb)); 2106 bbp[i] = cpu_to_le64(store_bb); 2107 } 2108 bb->changed = 0; 2109 if (read_seqretry(&bb->lock, seq)) 2110 goto retry; 2111 2112 bb->sector = (rdev->sb_start + 2113 (int)le32_to_cpu(sb->bblog_offset)); 2114 bb->size = le16_to_cpu(sb->bblog_size); 2115 } 2116 } 2117 2118 max_dev = 0; 2119 rdev_for_each(rdev2, mddev) 2120 if (rdev2->desc_nr+1 > max_dev) 2121 max_dev = rdev2->desc_nr+1; 2122 2123 if (max_dev > le32_to_cpu(sb->max_dev)) { 2124 int bmask; 2125 sb->max_dev = cpu_to_le32(max_dev); 2126 rdev->sb_size = max_dev * 2 + 256; 2127 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2128 if (rdev->sb_size & bmask) 2129 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2130 } else 2131 max_dev = le32_to_cpu(sb->max_dev); 2132 2133 for (i=0; i<max_dev;i++) 2134 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2135 2136 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2137 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2138 2139 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2140 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2141 sb->feature_map |= 2142 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2143 else 2144 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2145 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2146 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2147 } 2148 2149 rdev_for_each(rdev2, mddev) { 2150 i = rdev2->desc_nr; 2151 if (test_bit(Faulty, &rdev2->flags)) 2152 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2153 else if (test_bit(In_sync, &rdev2->flags)) 2154 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2155 else if (test_bit(Journal, &rdev2->flags)) 2156 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2157 else if (rdev2->raid_disk >= 0) 2158 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2159 else 2160 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2161 } 2162 2163 sb->sb_csum = calc_sb_1_csum(sb); 2164 } 2165 2166 static unsigned long long 2167 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2168 { 2169 struct mdp_superblock_1 *sb; 2170 sector_t max_sectors; 2171 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2172 return 0; /* component must fit device */ 2173 if (rdev->data_offset != rdev->new_data_offset) 2174 return 0; /* too confusing */ 2175 if (rdev->sb_start < rdev->data_offset) { 2176 /* minor versions 1 and 2; superblock before data */ 2177 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9; 2178 max_sectors -= rdev->data_offset; 2179 if (!num_sectors || num_sectors > max_sectors) 2180 num_sectors = max_sectors; 2181 } else if (rdev->mddev->bitmap_info.offset) { 2182 /* minor version 0 with bitmap we can't move */ 2183 return 0; 2184 } else { 2185 /* minor version 0; superblock after data */ 2186 sector_t sb_start; 2187 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2; 2188 sb_start &= ~(sector_t)(4*2 - 1); 2189 max_sectors = rdev->sectors + sb_start - rdev->sb_start; 2190 if (!num_sectors || num_sectors > max_sectors) 2191 num_sectors = max_sectors; 2192 rdev->sb_start = sb_start; 2193 } 2194 sb = page_address(rdev->sb_page); 2195 sb->data_size = cpu_to_le64(num_sectors); 2196 sb->super_offset = cpu_to_le64(rdev->sb_start); 2197 sb->sb_csum = calc_sb_1_csum(sb); 2198 do { 2199 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2200 rdev->sb_page); 2201 } while (md_super_wait(rdev->mddev) < 0); 2202 return num_sectors; 2203 2204 } 2205 2206 static int 2207 super_1_allow_new_offset(struct md_rdev *rdev, 2208 unsigned long long new_offset) 2209 { 2210 /* All necessary checks on new >= old have been done */ 2211 struct bitmap *bitmap; 2212 if (new_offset >= rdev->data_offset) 2213 return 1; 2214 2215 /* with 1.0 metadata, there is no metadata to tread on 2216 * so we can always move back */ 2217 if (rdev->mddev->minor_version == 0) 2218 return 1; 2219 2220 /* otherwise we must be sure not to step on 2221 * any metadata, so stay: 2222 * 36K beyond start of superblock 2223 * beyond end of badblocks 2224 * beyond write-intent bitmap 2225 */ 2226 if (rdev->sb_start + (32+4)*2 > new_offset) 2227 return 0; 2228 bitmap = rdev->mddev->bitmap; 2229 if (bitmap && !rdev->mddev->bitmap_info.file && 2230 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2231 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2232 return 0; 2233 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2234 return 0; 2235 2236 return 1; 2237 } 2238 2239 static struct super_type super_types[] = { 2240 [0] = { 2241 .name = "0.90.0", 2242 .owner = THIS_MODULE, 2243 .load_super = super_90_load, 2244 .validate_super = super_90_validate, 2245 .sync_super = super_90_sync, 2246 .rdev_size_change = super_90_rdev_size_change, 2247 .allow_new_offset = super_90_allow_new_offset, 2248 }, 2249 [1] = { 2250 .name = "md-1", 2251 .owner = THIS_MODULE, 2252 .load_super = super_1_load, 2253 .validate_super = super_1_validate, 2254 .sync_super = super_1_sync, 2255 .rdev_size_change = super_1_rdev_size_change, 2256 .allow_new_offset = super_1_allow_new_offset, 2257 }, 2258 }; 2259 2260 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2261 { 2262 if (mddev->sync_super) { 2263 mddev->sync_super(mddev, rdev); 2264 return; 2265 } 2266 2267 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2268 2269 super_types[mddev->major_version].sync_super(mddev, rdev); 2270 } 2271 2272 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2273 { 2274 struct md_rdev *rdev, *rdev2; 2275 2276 rcu_read_lock(); 2277 rdev_for_each_rcu(rdev, mddev1) { 2278 if (test_bit(Faulty, &rdev->flags) || 2279 test_bit(Journal, &rdev->flags) || 2280 rdev->raid_disk == -1) 2281 continue; 2282 rdev_for_each_rcu(rdev2, mddev2) { 2283 if (test_bit(Faulty, &rdev2->flags) || 2284 test_bit(Journal, &rdev2->flags) || 2285 rdev2->raid_disk == -1) 2286 continue; 2287 if (rdev->bdev->bd_contains == 2288 rdev2->bdev->bd_contains) { 2289 rcu_read_unlock(); 2290 return 1; 2291 } 2292 } 2293 } 2294 rcu_read_unlock(); 2295 return 0; 2296 } 2297 2298 static LIST_HEAD(pending_raid_disks); 2299 2300 /* 2301 * Try to register data integrity profile for an mddev 2302 * 2303 * This is called when an array is started and after a disk has been kicked 2304 * from the array. It only succeeds if all working and active component devices 2305 * are integrity capable with matching profiles. 2306 */ 2307 int md_integrity_register(struct mddev *mddev) 2308 { 2309 struct md_rdev *rdev, *reference = NULL; 2310 2311 if (list_empty(&mddev->disks)) 2312 return 0; /* nothing to do */ 2313 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2314 return 0; /* shouldn't register, or already is */ 2315 rdev_for_each(rdev, mddev) { 2316 /* skip spares and non-functional disks */ 2317 if (test_bit(Faulty, &rdev->flags)) 2318 continue; 2319 if (rdev->raid_disk < 0) 2320 continue; 2321 if (!reference) { 2322 /* Use the first rdev as the reference */ 2323 reference = rdev; 2324 continue; 2325 } 2326 /* does this rdev's profile match the reference profile? */ 2327 if (blk_integrity_compare(reference->bdev->bd_disk, 2328 rdev->bdev->bd_disk) < 0) 2329 return -EINVAL; 2330 } 2331 if (!reference || !bdev_get_integrity(reference->bdev)) 2332 return 0; 2333 /* 2334 * All component devices are integrity capable and have matching 2335 * profiles, register the common profile for the md device. 2336 */ 2337 blk_integrity_register(mddev->gendisk, 2338 bdev_get_integrity(reference->bdev)); 2339 2340 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2341 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) { 2342 pr_err("md: failed to create integrity pool for %s\n", 2343 mdname(mddev)); 2344 return -EINVAL; 2345 } 2346 return 0; 2347 } 2348 EXPORT_SYMBOL(md_integrity_register); 2349 2350 /* 2351 * Attempt to add an rdev, but only if it is consistent with the current 2352 * integrity profile 2353 */ 2354 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2355 { 2356 struct blk_integrity *bi_mddev; 2357 char name[BDEVNAME_SIZE]; 2358 2359 if (!mddev->gendisk) 2360 return 0; 2361 2362 bi_mddev = blk_get_integrity(mddev->gendisk); 2363 2364 if (!bi_mddev) /* nothing to do */ 2365 return 0; 2366 2367 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2368 pr_err("%s: incompatible integrity profile for %s\n", 2369 mdname(mddev), bdevname(rdev->bdev, name)); 2370 return -ENXIO; 2371 } 2372 2373 return 0; 2374 } 2375 EXPORT_SYMBOL(md_integrity_add_rdev); 2376 2377 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2378 { 2379 char b[BDEVNAME_SIZE]; 2380 struct kobject *ko; 2381 int err; 2382 2383 /* prevent duplicates */ 2384 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2385 return -EEXIST; 2386 2387 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) && 2388 mddev->pers) 2389 return -EROFS; 2390 2391 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2392 if (!test_bit(Journal, &rdev->flags) && 2393 rdev->sectors && 2394 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2395 if (mddev->pers) { 2396 /* Cannot change size, so fail 2397 * If mddev->level <= 0, then we don't care 2398 * about aligning sizes (e.g. linear) 2399 */ 2400 if (mddev->level > 0) 2401 return -ENOSPC; 2402 } else 2403 mddev->dev_sectors = rdev->sectors; 2404 } 2405 2406 /* Verify rdev->desc_nr is unique. 2407 * If it is -1, assign a free number, else 2408 * check number is not in use 2409 */ 2410 rcu_read_lock(); 2411 if (rdev->desc_nr < 0) { 2412 int choice = 0; 2413 if (mddev->pers) 2414 choice = mddev->raid_disks; 2415 while (md_find_rdev_nr_rcu(mddev, choice)) 2416 choice++; 2417 rdev->desc_nr = choice; 2418 } else { 2419 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2420 rcu_read_unlock(); 2421 return -EBUSY; 2422 } 2423 } 2424 rcu_read_unlock(); 2425 if (!test_bit(Journal, &rdev->flags) && 2426 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2427 pr_warn("md: %s: array is limited to %d devices\n", 2428 mdname(mddev), mddev->max_disks); 2429 return -EBUSY; 2430 } 2431 bdevname(rdev->bdev,b); 2432 strreplace(b, '/', '!'); 2433 2434 rdev->mddev = mddev; 2435 pr_debug("md: bind<%s>\n", b); 2436 2437 if (mddev->raid_disks) 2438 mddev_create_serial_pool(mddev, rdev, false); 2439 2440 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2441 goto fail; 2442 2443 ko = &part_to_dev(rdev->bdev->bd_part)->kobj; 2444 if (sysfs_create_link(&rdev->kobj, ko, "block")) 2445 /* failure here is OK */; 2446 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2447 2448 list_add_rcu(&rdev->same_set, &mddev->disks); 2449 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2450 2451 /* May as well allow recovery to be retried once */ 2452 mddev->recovery_disabled++; 2453 2454 return 0; 2455 2456 fail: 2457 pr_warn("md: failed to register dev-%s for %s\n", 2458 b, mdname(mddev)); 2459 return err; 2460 } 2461 2462 static void rdev_delayed_delete(struct work_struct *ws) 2463 { 2464 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2465 kobject_del(&rdev->kobj); 2466 kobject_put(&rdev->kobj); 2467 } 2468 2469 static void unbind_rdev_from_array(struct md_rdev *rdev) 2470 { 2471 char b[BDEVNAME_SIZE]; 2472 2473 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2474 list_del_rcu(&rdev->same_set); 2475 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b)); 2476 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2477 rdev->mddev = NULL; 2478 sysfs_remove_link(&rdev->kobj, "block"); 2479 sysfs_put(rdev->sysfs_state); 2480 rdev->sysfs_state = NULL; 2481 rdev->badblocks.count = 0; 2482 /* We need to delay this, otherwise we can deadlock when 2483 * writing to 'remove' to "dev/state". We also need 2484 * to delay it due to rcu usage. 2485 */ 2486 synchronize_rcu(); 2487 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2488 kobject_get(&rdev->kobj); 2489 queue_work(md_rdev_misc_wq, &rdev->del_work); 2490 } 2491 2492 /* 2493 * prevent the device from being mounted, repartitioned or 2494 * otherwise reused by a RAID array (or any other kernel 2495 * subsystem), by bd_claiming the device. 2496 */ 2497 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2498 { 2499 int err = 0; 2500 struct block_device *bdev; 2501 2502 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2503 shared ? (struct md_rdev *)lock_rdev : rdev); 2504 if (IS_ERR(bdev)) { 2505 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2506 MAJOR(dev), MINOR(dev)); 2507 return PTR_ERR(bdev); 2508 } 2509 rdev->bdev = bdev; 2510 return err; 2511 } 2512 2513 static void unlock_rdev(struct md_rdev *rdev) 2514 { 2515 struct block_device *bdev = rdev->bdev; 2516 rdev->bdev = NULL; 2517 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2518 } 2519 2520 void md_autodetect_dev(dev_t dev); 2521 2522 static void export_rdev(struct md_rdev *rdev) 2523 { 2524 char b[BDEVNAME_SIZE]; 2525 2526 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b)); 2527 md_rdev_clear(rdev); 2528 #ifndef MODULE 2529 if (test_bit(AutoDetected, &rdev->flags)) 2530 md_autodetect_dev(rdev->bdev->bd_dev); 2531 #endif 2532 unlock_rdev(rdev); 2533 kobject_put(&rdev->kobj); 2534 } 2535 2536 void md_kick_rdev_from_array(struct md_rdev *rdev) 2537 { 2538 unbind_rdev_from_array(rdev); 2539 export_rdev(rdev); 2540 } 2541 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2542 2543 static void export_array(struct mddev *mddev) 2544 { 2545 struct md_rdev *rdev; 2546 2547 while (!list_empty(&mddev->disks)) { 2548 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2549 same_set); 2550 md_kick_rdev_from_array(rdev); 2551 } 2552 mddev->raid_disks = 0; 2553 mddev->major_version = 0; 2554 } 2555 2556 static bool set_in_sync(struct mddev *mddev) 2557 { 2558 lockdep_assert_held(&mddev->lock); 2559 if (!mddev->in_sync) { 2560 mddev->sync_checkers++; 2561 spin_unlock(&mddev->lock); 2562 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2563 spin_lock(&mddev->lock); 2564 if (!mddev->in_sync && 2565 percpu_ref_is_zero(&mddev->writes_pending)) { 2566 mddev->in_sync = 1; 2567 /* 2568 * Ensure ->in_sync is visible before we clear 2569 * ->sync_checkers. 2570 */ 2571 smp_mb(); 2572 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2573 sysfs_notify_dirent_safe(mddev->sysfs_state); 2574 } 2575 if (--mddev->sync_checkers == 0) 2576 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2577 } 2578 if (mddev->safemode == 1) 2579 mddev->safemode = 0; 2580 return mddev->in_sync; 2581 } 2582 2583 static void sync_sbs(struct mddev *mddev, int nospares) 2584 { 2585 /* Update each superblock (in-memory image), but 2586 * if we are allowed to, skip spares which already 2587 * have the right event counter, or have one earlier 2588 * (which would mean they aren't being marked as dirty 2589 * with the rest of the array) 2590 */ 2591 struct md_rdev *rdev; 2592 rdev_for_each(rdev, mddev) { 2593 if (rdev->sb_events == mddev->events || 2594 (nospares && 2595 rdev->raid_disk < 0 && 2596 rdev->sb_events+1 == mddev->events)) { 2597 /* Don't update this superblock */ 2598 rdev->sb_loaded = 2; 2599 } else { 2600 sync_super(mddev, rdev); 2601 rdev->sb_loaded = 1; 2602 } 2603 } 2604 } 2605 2606 static bool does_sb_need_changing(struct mddev *mddev) 2607 { 2608 struct md_rdev *rdev; 2609 struct mdp_superblock_1 *sb; 2610 int role; 2611 2612 /* Find a good rdev */ 2613 rdev_for_each(rdev, mddev) 2614 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags)) 2615 break; 2616 2617 /* No good device found. */ 2618 if (!rdev) 2619 return false; 2620 2621 sb = page_address(rdev->sb_page); 2622 /* Check if a device has become faulty or a spare become active */ 2623 rdev_for_each(rdev, mddev) { 2624 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2625 /* Device activated? */ 2626 if (role == 0xffff && rdev->raid_disk >=0 && 2627 !test_bit(Faulty, &rdev->flags)) 2628 return true; 2629 /* Device turned faulty? */ 2630 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd)) 2631 return true; 2632 } 2633 2634 /* Check if any mddev parameters have changed */ 2635 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2636 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2637 (mddev->layout != le32_to_cpu(sb->layout)) || 2638 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2639 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2640 return true; 2641 2642 return false; 2643 } 2644 2645 void md_update_sb(struct mddev *mddev, int force_change) 2646 { 2647 struct md_rdev *rdev; 2648 int sync_req; 2649 int nospares = 0; 2650 int any_badblocks_changed = 0; 2651 int ret = -1; 2652 2653 if (mddev->ro) { 2654 if (force_change) 2655 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2656 return; 2657 } 2658 2659 repeat: 2660 if (mddev_is_clustered(mddev)) { 2661 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2662 force_change = 1; 2663 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2664 nospares = 1; 2665 ret = md_cluster_ops->metadata_update_start(mddev); 2666 /* Has someone else has updated the sb */ 2667 if (!does_sb_need_changing(mddev)) { 2668 if (ret == 0) 2669 md_cluster_ops->metadata_update_cancel(mddev); 2670 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2671 BIT(MD_SB_CHANGE_DEVS) | 2672 BIT(MD_SB_CHANGE_CLEAN)); 2673 return; 2674 } 2675 } 2676 2677 /* 2678 * First make sure individual recovery_offsets are correct 2679 * curr_resync_completed can only be used during recovery. 2680 * During reshape/resync it might use array-addresses rather 2681 * that device addresses. 2682 */ 2683 rdev_for_each(rdev, mddev) { 2684 if (rdev->raid_disk >= 0 && 2685 mddev->delta_disks >= 0 && 2686 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2687 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2688 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2689 !test_bit(Journal, &rdev->flags) && 2690 !test_bit(In_sync, &rdev->flags) && 2691 mddev->curr_resync_completed > rdev->recovery_offset) 2692 rdev->recovery_offset = mddev->curr_resync_completed; 2693 2694 } 2695 if (!mddev->persistent) { 2696 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2697 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2698 if (!mddev->external) { 2699 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2700 rdev_for_each(rdev, mddev) { 2701 if (rdev->badblocks.changed) { 2702 rdev->badblocks.changed = 0; 2703 ack_all_badblocks(&rdev->badblocks); 2704 md_error(mddev, rdev); 2705 } 2706 clear_bit(Blocked, &rdev->flags); 2707 clear_bit(BlockedBadBlocks, &rdev->flags); 2708 wake_up(&rdev->blocked_wait); 2709 } 2710 } 2711 wake_up(&mddev->sb_wait); 2712 return; 2713 } 2714 2715 spin_lock(&mddev->lock); 2716 2717 mddev->utime = ktime_get_real_seconds(); 2718 2719 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2720 force_change = 1; 2721 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2722 /* just a clean<-> dirty transition, possibly leave spares alone, 2723 * though if events isn't the right even/odd, we will have to do 2724 * spares after all 2725 */ 2726 nospares = 1; 2727 if (force_change) 2728 nospares = 0; 2729 if (mddev->degraded) 2730 /* If the array is degraded, then skipping spares is both 2731 * dangerous and fairly pointless. 2732 * Dangerous because a device that was removed from the array 2733 * might have a event_count that still looks up-to-date, 2734 * so it can be re-added without a resync. 2735 * Pointless because if there are any spares to skip, 2736 * then a recovery will happen and soon that array won't 2737 * be degraded any more and the spare can go back to sleep then. 2738 */ 2739 nospares = 0; 2740 2741 sync_req = mddev->in_sync; 2742 2743 /* If this is just a dirty<->clean transition, and the array is clean 2744 * and 'events' is odd, we can roll back to the previous clean state */ 2745 if (nospares 2746 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2747 && mddev->can_decrease_events 2748 && mddev->events != 1) { 2749 mddev->events--; 2750 mddev->can_decrease_events = 0; 2751 } else { 2752 /* otherwise we have to go forward and ... */ 2753 mddev->events ++; 2754 mddev->can_decrease_events = nospares; 2755 } 2756 2757 /* 2758 * This 64-bit counter should never wrap. 2759 * Either we are in around ~1 trillion A.C., assuming 2760 * 1 reboot per second, or we have a bug... 2761 */ 2762 WARN_ON(mddev->events == 0); 2763 2764 rdev_for_each(rdev, mddev) { 2765 if (rdev->badblocks.changed) 2766 any_badblocks_changed++; 2767 if (test_bit(Faulty, &rdev->flags)) 2768 set_bit(FaultRecorded, &rdev->flags); 2769 } 2770 2771 sync_sbs(mddev, nospares); 2772 spin_unlock(&mddev->lock); 2773 2774 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2775 mdname(mddev), mddev->in_sync); 2776 2777 if (mddev->queue) 2778 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2779 rewrite: 2780 md_bitmap_update_sb(mddev->bitmap); 2781 rdev_for_each(rdev, mddev) { 2782 char b[BDEVNAME_SIZE]; 2783 2784 if (rdev->sb_loaded != 1) 2785 continue; /* no noise on spare devices */ 2786 2787 if (!test_bit(Faulty, &rdev->flags)) { 2788 md_super_write(mddev,rdev, 2789 rdev->sb_start, rdev->sb_size, 2790 rdev->sb_page); 2791 pr_debug("md: (write) %s's sb offset: %llu\n", 2792 bdevname(rdev->bdev, b), 2793 (unsigned long long)rdev->sb_start); 2794 rdev->sb_events = mddev->events; 2795 if (rdev->badblocks.size) { 2796 md_super_write(mddev, rdev, 2797 rdev->badblocks.sector, 2798 rdev->badblocks.size << 9, 2799 rdev->bb_page); 2800 rdev->badblocks.size = 0; 2801 } 2802 2803 } else 2804 pr_debug("md: %s (skipping faulty)\n", 2805 bdevname(rdev->bdev, b)); 2806 2807 if (mddev->level == LEVEL_MULTIPATH) 2808 /* only need to write one superblock... */ 2809 break; 2810 } 2811 if (md_super_wait(mddev) < 0) 2812 goto rewrite; 2813 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2814 2815 if (mddev_is_clustered(mddev) && ret == 0) 2816 md_cluster_ops->metadata_update_finish(mddev); 2817 2818 if (mddev->in_sync != sync_req || 2819 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2820 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2821 /* have to write it out again */ 2822 goto repeat; 2823 wake_up(&mddev->sb_wait); 2824 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2825 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 2826 2827 rdev_for_each(rdev, mddev) { 2828 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2829 clear_bit(Blocked, &rdev->flags); 2830 2831 if (any_badblocks_changed) 2832 ack_all_badblocks(&rdev->badblocks); 2833 clear_bit(BlockedBadBlocks, &rdev->flags); 2834 wake_up(&rdev->blocked_wait); 2835 } 2836 } 2837 EXPORT_SYMBOL(md_update_sb); 2838 2839 static int add_bound_rdev(struct md_rdev *rdev) 2840 { 2841 struct mddev *mddev = rdev->mddev; 2842 int err = 0; 2843 bool add_journal = test_bit(Journal, &rdev->flags); 2844 2845 if (!mddev->pers->hot_remove_disk || add_journal) { 2846 /* If there is hot_add_disk but no hot_remove_disk 2847 * then added disks for geometry changes, 2848 * and should be added immediately. 2849 */ 2850 super_types[mddev->major_version]. 2851 validate_super(mddev, rdev); 2852 if (add_journal) 2853 mddev_suspend(mddev); 2854 err = mddev->pers->hot_add_disk(mddev, rdev); 2855 if (add_journal) 2856 mddev_resume(mddev); 2857 if (err) { 2858 md_kick_rdev_from_array(rdev); 2859 return err; 2860 } 2861 } 2862 sysfs_notify_dirent_safe(rdev->sysfs_state); 2863 2864 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2865 if (mddev->degraded) 2866 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2867 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2868 md_new_event(mddev); 2869 md_wakeup_thread(mddev->thread); 2870 return 0; 2871 } 2872 2873 /* words written to sysfs files may, or may not, be \n terminated. 2874 * We want to accept with case. For this we use cmd_match. 2875 */ 2876 static int cmd_match(const char *cmd, const char *str) 2877 { 2878 /* See if cmd, written into a sysfs file, matches 2879 * str. They must either be the same, or cmd can 2880 * have a trailing newline 2881 */ 2882 while (*cmd && *str && *cmd == *str) { 2883 cmd++; 2884 str++; 2885 } 2886 if (*cmd == '\n') 2887 cmd++; 2888 if (*str || *cmd) 2889 return 0; 2890 return 1; 2891 } 2892 2893 struct rdev_sysfs_entry { 2894 struct attribute attr; 2895 ssize_t (*show)(struct md_rdev *, char *); 2896 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2897 }; 2898 2899 static ssize_t 2900 state_show(struct md_rdev *rdev, char *page) 2901 { 2902 char *sep = ","; 2903 size_t len = 0; 2904 unsigned long flags = READ_ONCE(rdev->flags); 2905 2906 if (test_bit(Faulty, &flags) || 2907 (!test_bit(ExternalBbl, &flags) && 2908 rdev->badblocks.unacked_exist)) 2909 len += sprintf(page+len, "faulty%s", sep); 2910 if (test_bit(In_sync, &flags)) 2911 len += sprintf(page+len, "in_sync%s", sep); 2912 if (test_bit(Journal, &flags)) 2913 len += sprintf(page+len, "journal%s", sep); 2914 if (test_bit(WriteMostly, &flags)) 2915 len += sprintf(page+len, "write_mostly%s", sep); 2916 if (test_bit(Blocked, &flags) || 2917 (rdev->badblocks.unacked_exist 2918 && !test_bit(Faulty, &flags))) 2919 len += sprintf(page+len, "blocked%s", sep); 2920 if (!test_bit(Faulty, &flags) && 2921 !test_bit(Journal, &flags) && 2922 !test_bit(In_sync, &flags)) 2923 len += sprintf(page+len, "spare%s", sep); 2924 if (test_bit(WriteErrorSeen, &flags)) 2925 len += sprintf(page+len, "write_error%s", sep); 2926 if (test_bit(WantReplacement, &flags)) 2927 len += sprintf(page+len, "want_replacement%s", sep); 2928 if (test_bit(Replacement, &flags)) 2929 len += sprintf(page+len, "replacement%s", sep); 2930 if (test_bit(ExternalBbl, &flags)) 2931 len += sprintf(page+len, "external_bbl%s", sep); 2932 if (test_bit(FailFast, &flags)) 2933 len += sprintf(page+len, "failfast%s", sep); 2934 2935 if (len) 2936 len -= strlen(sep); 2937 2938 return len+sprintf(page+len, "\n"); 2939 } 2940 2941 static ssize_t 2942 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2943 { 2944 /* can write 2945 * faulty - simulates an error 2946 * remove - disconnects the device 2947 * writemostly - sets write_mostly 2948 * -writemostly - clears write_mostly 2949 * blocked - sets the Blocked flags 2950 * -blocked - clears the Blocked and possibly simulates an error 2951 * insync - sets Insync providing device isn't active 2952 * -insync - clear Insync for a device with a slot assigned, 2953 * so that it gets rebuilt based on bitmap 2954 * write_error - sets WriteErrorSeen 2955 * -write_error - clears WriteErrorSeen 2956 * {,-}failfast - set/clear FailFast 2957 */ 2958 int err = -EINVAL; 2959 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2960 md_error(rdev->mddev, rdev); 2961 if (test_bit(Faulty, &rdev->flags)) 2962 err = 0; 2963 else 2964 err = -EBUSY; 2965 } else if (cmd_match(buf, "remove")) { 2966 if (rdev->mddev->pers) { 2967 clear_bit(Blocked, &rdev->flags); 2968 remove_and_add_spares(rdev->mddev, rdev); 2969 } 2970 if (rdev->raid_disk >= 0) 2971 err = -EBUSY; 2972 else { 2973 struct mddev *mddev = rdev->mddev; 2974 err = 0; 2975 if (mddev_is_clustered(mddev)) 2976 err = md_cluster_ops->remove_disk(mddev, rdev); 2977 2978 if (err == 0) { 2979 md_kick_rdev_from_array(rdev); 2980 if (mddev->pers) { 2981 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2982 md_wakeup_thread(mddev->thread); 2983 } 2984 md_new_event(mddev); 2985 } 2986 } 2987 } else if (cmd_match(buf, "writemostly")) { 2988 set_bit(WriteMostly, &rdev->flags); 2989 mddev_create_serial_pool(rdev->mddev, rdev, false); 2990 err = 0; 2991 } else if (cmd_match(buf, "-writemostly")) { 2992 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2993 clear_bit(WriteMostly, &rdev->flags); 2994 err = 0; 2995 } else if (cmd_match(buf, "blocked")) { 2996 set_bit(Blocked, &rdev->flags); 2997 err = 0; 2998 } else if (cmd_match(buf, "-blocked")) { 2999 if (!test_bit(Faulty, &rdev->flags) && 3000 !test_bit(ExternalBbl, &rdev->flags) && 3001 rdev->badblocks.unacked_exist) { 3002 /* metadata handler doesn't understand badblocks, 3003 * so we need to fail the device 3004 */ 3005 md_error(rdev->mddev, rdev); 3006 } 3007 clear_bit(Blocked, &rdev->flags); 3008 clear_bit(BlockedBadBlocks, &rdev->flags); 3009 wake_up(&rdev->blocked_wait); 3010 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3011 md_wakeup_thread(rdev->mddev->thread); 3012 3013 err = 0; 3014 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3015 set_bit(In_sync, &rdev->flags); 3016 err = 0; 3017 } else if (cmd_match(buf, "failfast")) { 3018 set_bit(FailFast, &rdev->flags); 3019 err = 0; 3020 } else if (cmd_match(buf, "-failfast")) { 3021 clear_bit(FailFast, &rdev->flags); 3022 err = 0; 3023 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3024 !test_bit(Journal, &rdev->flags)) { 3025 if (rdev->mddev->pers == NULL) { 3026 clear_bit(In_sync, &rdev->flags); 3027 rdev->saved_raid_disk = rdev->raid_disk; 3028 rdev->raid_disk = -1; 3029 err = 0; 3030 } 3031 } else if (cmd_match(buf, "write_error")) { 3032 set_bit(WriteErrorSeen, &rdev->flags); 3033 err = 0; 3034 } else if (cmd_match(buf, "-write_error")) { 3035 clear_bit(WriteErrorSeen, &rdev->flags); 3036 err = 0; 3037 } else if (cmd_match(buf, "want_replacement")) { 3038 /* Any non-spare device that is not a replacement can 3039 * become want_replacement at any time, but we then need to 3040 * check if recovery is needed. 3041 */ 3042 if (rdev->raid_disk >= 0 && 3043 !test_bit(Journal, &rdev->flags) && 3044 !test_bit(Replacement, &rdev->flags)) 3045 set_bit(WantReplacement, &rdev->flags); 3046 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3047 md_wakeup_thread(rdev->mddev->thread); 3048 err = 0; 3049 } else if (cmd_match(buf, "-want_replacement")) { 3050 /* Clearing 'want_replacement' is always allowed. 3051 * Once replacements starts it is too late though. 3052 */ 3053 err = 0; 3054 clear_bit(WantReplacement, &rdev->flags); 3055 } else if (cmd_match(buf, "replacement")) { 3056 /* Can only set a device as a replacement when array has not 3057 * yet been started. Once running, replacement is automatic 3058 * from spares, or by assigning 'slot'. 3059 */ 3060 if (rdev->mddev->pers) 3061 err = -EBUSY; 3062 else { 3063 set_bit(Replacement, &rdev->flags); 3064 err = 0; 3065 } 3066 } else if (cmd_match(buf, "-replacement")) { 3067 /* Similarly, can only clear Replacement before start */ 3068 if (rdev->mddev->pers) 3069 err = -EBUSY; 3070 else { 3071 clear_bit(Replacement, &rdev->flags); 3072 err = 0; 3073 } 3074 } else if (cmd_match(buf, "re-add")) { 3075 if (!rdev->mddev->pers) 3076 err = -EINVAL; 3077 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3078 rdev->saved_raid_disk >= 0) { 3079 /* clear_bit is performed _after_ all the devices 3080 * have their local Faulty bit cleared. If any writes 3081 * happen in the meantime in the local node, they 3082 * will land in the local bitmap, which will be synced 3083 * by this node eventually 3084 */ 3085 if (!mddev_is_clustered(rdev->mddev) || 3086 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3087 clear_bit(Faulty, &rdev->flags); 3088 err = add_bound_rdev(rdev); 3089 } 3090 } else 3091 err = -EBUSY; 3092 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3093 set_bit(ExternalBbl, &rdev->flags); 3094 rdev->badblocks.shift = 0; 3095 err = 0; 3096 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3097 clear_bit(ExternalBbl, &rdev->flags); 3098 err = 0; 3099 } 3100 if (!err) 3101 sysfs_notify_dirent_safe(rdev->sysfs_state); 3102 return err ? err : len; 3103 } 3104 static struct rdev_sysfs_entry rdev_state = 3105 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3106 3107 static ssize_t 3108 errors_show(struct md_rdev *rdev, char *page) 3109 { 3110 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3111 } 3112 3113 static ssize_t 3114 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3115 { 3116 unsigned int n; 3117 int rv; 3118 3119 rv = kstrtouint(buf, 10, &n); 3120 if (rv < 0) 3121 return rv; 3122 atomic_set(&rdev->corrected_errors, n); 3123 return len; 3124 } 3125 static struct rdev_sysfs_entry rdev_errors = 3126 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3127 3128 static ssize_t 3129 slot_show(struct md_rdev *rdev, char *page) 3130 { 3131 if (test_bit(Journal, &rdev->flags)) 3132 return sprintf(page, "journal\n"); 3133 else if (rdev->raid_disk < 0) 3134 return sprintf(page, "none\n"); 3135 else 3136 return sprintf(page, "%d\n", rdev->raid_disk); 3137 } 3138 3139 static ssize_t 3140 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3141 { 3142 int slot; 3143 int err; 3144 3145 if (test_bit(Journal, &rdev->flags)) 3146 return -EBUSY; 3147 if (strncmp(buf, "none", 4)==0) 3148 slot = -1; 3149 else { 3150 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3151 if (err < 0) 3152 return err; 3153 } 3154 if (rdev->mddev->pers && slot == -1) { 3155 /* Setting 'slot' on an active array requires also 3156 * updating the 'rd%d' link, and communicating 3157 * with the personality with ->hot_*_disk. 3158 * For now we only support removing 3159 * failed/spare devices. This normally happens automatically, 3160 * but not when the metadata is externally managed. 3161 */ 3162 if (rdev->raid_disk == -1) 3163 return -EEXIST; 3164 /* personality does all needed checks */ 3165 if (rdev->mddev->pers->hot_remove_disk == NULL) 3166 return -EINVAL; 3167 clear_bit(Blocked, &rdev->flags); 3168 remove_and_add_spares(rdev->mddev, rdev); 3169 if (rdev->raid_disk >= 0) 3170 return -EBUSY; 3171 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3172 md_wakeup_thread(rdev->mddev->thread); 3173 } else if (rdev->mddev->pers) { 3174 /* Activating a spare .. or possibly reactivating 3175 * if we ever get bitmaps working here. 3176 */ 3177 int err; 3178 3179 if (rdev->raid_disk != -1) 3180 return -EBUSY; 3181 3182 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3183 return -EBUSY; 3184 3185 if (rdev->mddev->pers->hot_add_disk == NULL) 3186 return -EINVAL; 3187 3188 if (slot >= rdev->mddev->raid_disks && 3189 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3190 return -ENOSPC; 3191 3192 rdev->raid_disk = slot; 3193 if (test_bit(In_sync, &rdev->flags)) 3194 rdev->saved_raid_disk = slot; 3195 else 3196 rdev->saved_raid_disk = -1; 3197 clear_bit(In_sync, &rdev->flags); 3198 clear_bit(Bitmap_sync, &rdev->flags); 3199 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3200 if (err) { 3201 rdev->raid_disk = -1; 3202 return err; 3203 } else 3204 sysfs_notify_dirent_safe(rdev->sysfs_state); 3205 if (sysfs_link_rdev(rdev->mddev, rdev)) 3206 /* failure here is OK */; 3207 /* don't wakeup anyone, leave that to userspace. */ 3208 } else { 3209 if (slot >= rdev->mddev->raid_disks && 3210 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3211 return -ENOSPC; 3212 rdev->raid_disk = slot; 3213 /* assume it is working */ 3214 clear_bit(Faulty, &rdev->flags); 3215 clear_bit(WriteMostly, &rdev->flags); 3216 set_bit(In_sync, &rdev->flags); 3217 sysfs_notify_dirent_safe(rdev->sysfs_state); 3218 } 3219 return len; 3220 } 3221 3222 static struct rdev_sysfs_entry rdev_slot = 3223 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3224 3225 static ssize_t 3226 offset_show(struct md_rdev *rdev, char *page) 3227 { 3228 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3229 } 3230 3231 static ssize_t 3232 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3233 { 3234 unsigned long long offset; 3235 if (kstrtoull(buf, 10, &offset) < 0) 3236 return -EINVAL; 3237 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3238 return -EBUSY; 3239 if (rdev->sectors && rdev->mddev->external) 3240 /* Must set offset before size, so overlap checks 3241 * can be sane */ 3242 return -EBUSY; 3243 rdev->data_offset = offset; 3244 rdev->new_data_offset = offset; 3245 return len; 3246 } 3247 3248 static struct rdev_sysfs_entry rdev_offset = 3249 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3250 3251 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3252 { 3253 return sprintf(page, "%llu\n", 3254 (unsigned long long)rdev->new_data_offset); 3255 } 3256 3257 static ssize_t new_offset_store(struct md_rdev *rdev, 3258 const char *buf, size_t len) 3259 { 3260 unsigned long long new_offset; 3261 struct mddev *mddev = rdev->mddev; 3262 3263 if (kstrtoull(buf, 10, &new_offset) < 0) 3264 return -EINVAL; 3265 3266 if (mddev->sync_thread || 3267 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3268 return -EBUSY; 3269 if (new_offset == rdev->data_offset) 3270 /* reset is always permitted */ 3271 ; 3272 else if (new_offset > rdev->data_offset) { 3273 /* must not push array size beyond rdev_sectors */ 3274 if (new_offset - rdev->data_offset 3275 + mddev->dev_sectors > rdev->sectors) 3276 return -E2BIG; 3277 } 3278 /* Metadata worries about other space details. */ 3279 3280 /* decreasing the offset is inconsistent with a backwards 3281 * reshape. 3282 */ 3283 if (new_offset < rdev->data_offset && 3284 mddev->reshape_backwards) 3285 return -EINVAL; 3286 /* Increasing offset is inconsistent with forwards 3287 * reshape. reshape_direction should be set to 3288 * 'backwards' first. 3289 */ 3290 if (new_offset > rdev->data_offset && 3291 !mddev->reshape_backwards) 3292 return -EINVAL; 3293 3294 if (mddev->pers && mddev->persistent && 3295 !super_types[mddev->major_version] 3296 .allow_new_offset(rdev, new_offset)) 3297 return -E2BIG; 3298 rdev->new_data_offset = new_offset; 3299 if (new_offset > rdev->data_offset) 3300 mddev->reshape_backwards = 1; 3301 else if (new_offset < rdev->data_offset) 3302 mddev->reshape_backwards = 0; 3303 3304 return len; 3305 } 3306 static struct rdev_sysfs_entry rdev_new_offset = 3307 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3308 3309 static ssize_t 3310 rdev_size_show(struct md_rdev *rdev, char *page) 3311 { 3312 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3313 } 3314 3315 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2) 3316 { 3317 /* check if two start/length pairs overlap */ 3318 if (s1+l1 <= s2) 3319 return 0; 3320 if (s2+l2 <= s1) 3321 return 0; 3322 return 1; 3323 } 3324 3325 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3326 { 3327 unsigned long long blocks; 3328 sector_t new; 3329 3330 if (kstrtoull(buf, 10, &blocks) < 0) 3331 return -EINVAL; 3332 3333 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3334 return -EINVAL; /* sector conversion overflow */ 3335 3336 new = blocks * 2; 3337 if (new != blocks * 2) 3338 return -EINVAL; /* unsigned long long to sector_t overflow */ 3339 3340 *sectors = new; 3341 return 0; 3342 } 3343 3344 static ssize_t 3345 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3346 { 3347 struct mddev *my_mddev = rdev->mddev; 3348 sector_t oldsectors = rdev->sectors; 3349 sector_t sectors; 3350 3351 if (test_bit(Journal, &rdev->flags)) 3352 return -EBUSY; 3353 if (strict_blocks_to_sectors(buf, §ors) < 0) 3354 return -EINVAL; 3355 if (rdev->data_offset != rdev->new_data_offset) 3356 return -EINVAL; /* too confusing */ 3357 if (my_mddev->pers && rdev->raid_disk >= 0) { 3358 if (my_mddev->persistent) { 3359 sectors = super_types[my_mddev->major_version]. 3360 rdev_size_change(rdev, sectors); 3361 if (!sectors) 3362 return -EBUSY; 3363 } else if (!sectors) 3364 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) - 3365 rdev->data_offset; 3366 if (!my_mddev->pers->resize) 3367 /* Cannot change size for RAID0 or Linear etc */ 3368 return -EINVAL; 3369 } 3370 if (sectors < my_mddev->dev_sectors) 3371 return -EINVAL; /* component must fit device */ 3372 3373 rdev->sectors = sectors; 3374 if (sectors > oldsectors && my_mddev->external) { 3375 /* Need to check that all other rdevs with the same 3376 * ->bdev do not overlap. 'rcu' is sufficient to walk 3377 * the rdev lists safely. 3378 * This check does not provide a hard guarantee, it 3379 * just helps avoid dangerous mistakes. 3380 */ 3381 struct mddev *mddev; 3382 int overlap = 0; 3383 struct list_head *tmp; 3384 3385 rcu_read_lock(); 3386 for_each_mddev(mddev, tmp) { 3387 struct md_rdev *rdev2; 3388 3389 rdev_for_each(rdev2, mddev) 3390 if (rdev->bdev == rdev2->bdev && 3391 rdev != rdev2 && 3392 overlaps(rdev->data_offset, rdev->sectors, 3393 rdev2->data_offset, 3394 rdev2->sectors)) { 3395 overlap = 1; 3396 break; 3397 } 3398 if (overlap) { 3399 mddev_put(mddev); 3400 break; 3401 } 3402 } 3403 rcu_read_unlock(); 3404 if (overlap) { 3405 /* Someone else could have slipped in a size 3406 * change here, but doing so is just silly. 3407 * We put oldsectors back because we *know* it is 3408 * safe, and trust userspace not to race with 3409 * itself 3410 */ 3411 rdev->sectors = oldsectors; 3412 return -EBUSY; 3413 } 3414 } 3415 return len; 3416 } 3417 3418 static struct rdev_sysfs_entry rdev_size = 3419 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3420 3421 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3422 { 3423 unsigned long long recovery_start = rdev->recovery_offset; 3424 3425 if (test_bit(In_sync, &rdev->flags) || 3426 recovery_start == MaxSector) 3427 return sprintf(page, "none\n"); 3428 3429 return sprintf(page, "%llu\n", recovery_start); 3430 } 3431 3432 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3433 { 3434 unsigned long long recovery_start; 3435 3436 if (cmd_match(buf, "none")) 3437 recovery_start = MaxSector; 3438 else if (kstrtoull(buf, 10, &recovery_start)) 3439 return -EINVAL; 3440 3441 if (rdev->mddev->pers && 3442 rdev->raid_disk >= 0) 3443 return -EBUSY; 3444 3445 rdev->recovery_offset = recovery_start; 3446 if (recovery_start == MaxSector) 3447 set_bit(In_sync, &rdev->flags); 3448 else 3449 clear_bit(In_sync, &rdev->flags); 3450 return len; 3451 } 3452 3453 static struct rdev_sysfs_entry rdev_recovery_start = 3454 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3455 3456 /* sysfs access to bad-blocks list. 3457 * We present two files. 3458 * 'bad-blocks' lists sector numbers and lengths of ranges that 3459 * are recorded as bad. The list is truncated to fit within 3460 * the one-page limit of sysfs. 3461 * Writing "sector length" to this file adds an acknowledged 3462 * bad block list. 3463 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3464 * been acknowledged. Writing to this file adds bad blocks 3465 * without acknowledging them. This is largely for testing. 3466 */ 3467 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3468 { 3469 return badblocks_show(&rdev->badblocks, page, 0); 3470 } 3471 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3472 { 3473 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3474 /* Maybe that ack was all we needed */ 3475 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3476 wake_up(&rdev->blocked_wait); 3477 return rv; 3478 } 3479 static struct rdev_sysfs_entry rdev_bad_blocks = 3480 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3481 3482 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3483 { 3484 return badblocks_show(&rdev->badblocks, page, 1); 3485 } 3486 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3487 { 3488 return badblocks_store(&rdev->badblocks, page, len, 1); 3489 } 3490 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3491 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3492 3493 static ssize_t 3494 ppl_sector_show(struct md_rdev *rdev, char *page) 3495 { 3496 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3497 } 3498 3499 static ssize_t 3500 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3501 { 3502 unsigned long long sector; 3503 3504 if (kstrtoull(buf, 10, §or) < 0) 3505 return -EINVAL; 3506 if (sector != (sector_t)sector) 3507 return -EINVAL; 3508 3509 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3510 rdev->raid_disk >= 0) 3511 return -EBUSY; 3512 3513 if (rdev->mddev->persistent) { 3514 if (rdev->mddev->major_version == 0) 3515 return -EINVAL; 3516 if ((sector > rdev->sb_start && 3517 sector - rdev->sb_start > S16_MAX) || 3518 (sector < rdev->sb_start && 3519 rdev->sb_start - sector > -S16_MIN)) 3520 return -EINVAL; 3521 rdev->ppl.offset = sector - rdev->sb_start; 3522 } else if (!rdev->mddev->external) { 3523 return -EBUSY; 3524 } 3525 rdev->ppl.sector = sector; 3526 return len; 3527 } 3528 3529 static struct rdev_sysfs_entry rdev_ppl_sector = 3530 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3531 3532 static ssize_t 3533 ppl_size_show(struct md_rdev *rdev, char *page) 3534 { 3535 return sprintf(page, "%u\n", rdev->ppl.size); 3536 } 3537 3538 static ssize_t 3539 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3540 { 3541 unsigned int size; 3542 3543 if (kstrtouint(buf, 10, &size) < 0) 3544 return -EINVAL; 3545 3546 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3547 rdev->raid_disk >= 0) 3548 return -EBUSY; 3549 3550 if (rdev->mddev->persistent) { 3551 if (rdev->mddev->major_version == 0) 3552 return -EINVAL; 3553 if (size > U16_MAX) 3554 return -EINVAL; 3555 } else if (!rdev->mddev->external) { 3556 return -EBUSY; 3557 } 3558 rdev->ppl.size = size; 3559 return len; 3560 } 3561 3562 static struct rdev_sysfs_entry rdev_ppl_size = 3563 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3564 3565 static struct attribute *rdev_default_attrs[] = { 3566 &rdev_state.attr, 3567 &rdev_errors.attr, 3568 &rdev_slot.attr, 3569 &rdev_offset.attr, 3570 &rdev_new_offset.attr, 3571 &rdev_size.attr, 3572 &rdev_recovery_start.attr, 3573 &rdev_bad_blocks.attr, 3574 &rdev_unack_bad_blocks.attr, 3575 &rdev_ppl_sector.attr, 3576 &rdev_ppl_size.attr, 3577 NULL, 3578 }; 3579 static ssize_t 3580 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3581 { 3582 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3583 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3584 3585 if (!entry->show) 3586 return -EIO; 3587 if (!rdev->mddev) 3588 return -ENODEV; 3589 return entry->show(rdev, page); 3590 } 3591 3592 static ssize_t 3593 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3594 const char *page, size_t length) 3595 { 3596 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3597 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3598 ssize_t rv; 3599 struct mddev *mddev = rdev->mddev; 3600 3601 if (!entry->store) 3602 return -EIO; 3603 if (!capable(CAP_SYS_ADMIN)) 3604 return -EACCES; 3605 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3606 if (!rv) { 3607 if (rdev->mddev == NULL) 3608 rv = -ENODEV; 3609 else 3610 rv = entry->store(rdev, page, length); 3611 mddev_unlock(mddev); 3612 } 3613 return rv; 3614 } 3615 3616 static void rdev_free(struct kobject *ko) 3617 { 3618 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3619 kfree(rdev); 3620 } 3621 static const struct sysfs_ops rdev_sysfs_ops = { 3622 .show = rdev_attr_show, 3623 .store = rdev_attr_store, 3624 }; 3625 static struct kobj_type rdev_ktype = { 3626 .release = rdev_free, 3627 .sysfs_ops = &rdev_sysfs_ops, 3628 .default_attrs = rdev_default_attrs, 3629 }; 3630 3631 int md_rdev_init(struct md_rdev *rdev) 3632 { 3633 rdev->desc_nr = -1; 3634 rdev->saved_raid_disk = -1; 3635 rdev->raid_disk = -1; 3636 rdev->flags = 0; 3637 rdev->data_offset = 0; 3638 rdev->new_data_offset = 0; 3639 rdev->sb_events = 0; 3640 rdev->last_read_error = 0; 3641 rdev->sb_loaded = 0; 3642 rdev->bb_page = NULL; 3643 atomic_set(&rdev->nr_pending, 0); 3644 atomic_set(&rdev->read_errors, 0); 3645 atomic_set(&rdev->corrected_errors, 0); 3646 3647 INIT_LIST_HEAD(&rdev->same_set); 3648 init_waitqueue_head(&rdev->blocked_wait); 3649 3650 /* Add space to store bad block list. 3651 * This reserves the space even on arrays where it cannot 3652 * be used - I wonder if that matters 3653 */ 3654 return badblocks_init(&rdev->badblocks, 0); 3655 } 3656 EXPORT_SYMBOL_GPL(md_rdev_init); 3657 /* 3658 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3659 * 3660 * mark the device faulty if: 3661 * 3662 * - the device is nonexistent (zero size) 3663 * - the device has no valid superblock 3664 * 3665 * a faulty rdev _never_ has rdev->sb set. 3666 */ 3667 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3668 { 3669 char b[BDEVNAME_SIZE]; 3670 int err; 3671 struct md_rdev *rdev; 3672 sector_t size; 3673 3674 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3675 if (!rdev) 3676 return ERR_PTR(-ENOMEM); 3677 3678 err = md_rdev_init(rdev); 3679 if (err) 3680 goto abort_free; 3681 err = alloc_disk_sb(rdev); 3682 if (err) 3683 goto abort_free; 3684 3685 err = lock_rdev(rdev, newdev, super_format == -2); 3686 if (err) 3687 goto abort_free; 3688 3689 kobject_init(&rdev->kobj, &rdev_ktype); 3690 3691 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS; 3692 if (!size) { 3693 pr_warn("md: %s has zero or unknown size, marking faulty!\n", 3694 bdevname(rdev->bdev,b)); 3695 err = -EINVAL; 3696 goto abort_free; 3697 } 3698 3699 if (super_format >= 0) { 3700 err = super_types[super_format]. 3701 load_super(rdev, NULL, super_minor); 3702 if (err == -EINVAL) { 3703 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n", 3704 bdevname(rdev->bdev,b), 3705 super_format, super_minor); 3706 goto abort_free; 3707 } 3708 if (err < 0) { 3709 pr_warn("md: could not read %s's sb, not importing!\n", 3710 bdevname(rdev->bdev,b)); 3711 goto abort_free; 3712 } 3713 } 3714 3715 return rdev; 3716 3717 abort_free: 3718 if (rdev->bdev) 3719 unlock_rdev(rdev); 3720 md_rdev_clear(rdev); 3721 kfree(rdev); 3722 return ERR_PTR(err); 3723 } 3724 3725 /* 3726 * Check a full RAID array for plausibility 3727 */ 3728 3729 static int analyze_sbs(struct mddev *mddev) 3730 { 3731 int i; 3732 struct md_rdev *rdev, *freshest, *tmp; 3733 char b[BDEVNAME_SIZE]; 3734 3735 freshest = NULL; 3736 rdev_for_each_safe(rdev, tmp, mddev) 3737 switch (super_types[mddev->major_version]. 3738 load_super(rdev, freshest, mddev->minor_version)) { 3739 case 1: 3740 freshest = rdev; 3741 break; 3742 case 0: 3743 break; 3744 default: 3745 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n", 3746 bdevname(rdev->bdev,b)); 3747 md_kick_rdev_from_array(rdev); 3748 } 3749 3750 /* Cannot find a valid fresh disk */ 3751 if (!freshest) { 3752 pr_warn("md: cannot find a valid disk\n"); 3753 return -EINVAL; 3754 } 3755 3756 super_types[mddev->major_version]. 3757 validate_super(mddev, freshest); 3758 3759 i = 0; 3760 rdev_for_each_safe(rdev, tmp, mddev) { 3761 if (mddev->max_disks && 3762 (rdev->desc_nr >= mddev->max_disks || 3763 i > mddev->max_disks)) { 3764 pr_warn("md: %s: %s: only %d devices permitted\n", 3765 mdname(mddev), bdevname(rdev->bdev, b), 3766 mddev->max_disks); 3767 md_kick_rdev_from_array(rdev); 3768 continue; 3769 } 3770 if (rdev != freshest) { 3771 if (super_types[mddev->major_version]. 3772 validate_super(mddev, rdev)) { 3773 pr_warn("md: kicking non-fresh %s from array!\n", 3774 bdevname(rdev->bdev,b)); 3775 md_kick_rdev_from_array(rdev); 3776 continue; 3777 } 3778 } 3779 if (mddev->level == LEVEL_MULTIPATH) { 3780 rdev->desc_nr = i++; 3781 rdev->raid_disk = rdev->desc_nr; 3782 set_bit(In_sync, &rdev->flags); 3783 } else if (rdev->raid_disk >= 3784 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3785 !test_bit(Journal, &rdev->flags)) { 3786 rdev->raid_disk = -1; 3787 clear_bit(In_sync, &rdev->flags); 3788 } 3789 } 3790 3791 return 0; 3792 } 3793 3794 /* Read a fixed-point number. 3795 * Numbers in sysfs attributes should be in "standard" units where 3796 * possible, so time should be in seconds. 3797 * However we internally use a a much smaller unit such as 3798 * milliseconds or jiffies. 3799 * This function takes a decimal number with a possible fractional 3800 * component, and produces an integer which is the result of 3801 * multiplying that number by 10^'scale'. 3802 * all without any floating-point arithmetic. 3803 */ 3804 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3805 { 3806 unsigned long result = 0; 3807 long decimals = -1; 3808 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3809 if (*cp == '.') 3810 decimals = 0; 3811 else if (decimals < scale) { 3812 unsigned int value; 3813 value = *cp - '0'; 3814 result = result * 10 + value; 3815 if (decimals >= 0) 3816 decimals++; 3817 } 3818 cp++; 3819 } 3820 if (*cp == '\n') 3821 cp++; 3822 if (*cp) 3823 return -EINVAL; 3824 if (decimals < 0) 3825 decimals = 0; 3826 *res = result * int_pow(10, scale - decimals); 3827 return 0; 3828 } 3829 3830 static ssize_t 3831 safe_delay_show(struct mddev *mddev, char *page) 3832 { 3833 int msec = (mddev->safemode_delay*1000)/HZ; 3834 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3835 } 3836 static ssize_t 3837 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3838 { 3839 unsigned long msec; 3840 3841 if (mddev_is_clustered(mddev)) { 3842 pr_warn("md: Safemode is disabled for clustered mode\n"); 3843 return -EINVAL; 3844 } 3845 3846 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3847 return -EINVAL; 3848 if (msec == 0) 3849 mddev->safemode_delay = 0; 3850 else { 3851 unsigned long old_delay = mddev->safemode_delay; 3852 unsigned long new_delay = (msec*HZ)/1000; 3853 3854 if (new_delay == 0) 3855 new_delay = 1; 3856 mddev->safemode_delay = new_delay; 3857 if (new_delay < old_delay || old_delay == 0) 3858 mod_timer(&mddev->safemode_timer, jiffies+1); 3859 } 3860 return len; 3861 } 3862 static struct md_sysfs_entry md_safe_delay = 3863 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3864 3865 static ssize_t 3866 level_show(struct mddev *mddev, char *page) 3867 { 3868 struct md_personality *p; 3869 int ret; 3870 spin_lock(&mddev->lock); 3871 p = mddev->pers; 3872 if (p) 3873 ret = sprintf(page, "%s\n", p->name); 3874 else if (mddev->clevel[0]) 3875 ret = sprintf(page, "%s\n", mddev->clevel); 3876 else if (mddev->level != LEVEL_NONE) 3877 ret = sprintf(page, "%d\n", mddev->level); 3878 else 3879 ret = 0; 3880 spin_unlock(&mddev->lock); 3881 return ret; 3882 } 3883 3884 static ssize_t 3885 level_store(struct mddev *mddev, const char *buf, size_t len) 3886 { 3887 char clevel[16]; 3888 ssize_t rv; 3889 size_t slen = len; 3890 struct md_personality *pers, *oldpers; 3891 long level; 3892 void *priv, *oldpriv; 3893 struct md_rdev *rdev; 3894 3895 if (slen == 0 || slen >= sizeof(clevel)) 3896 return -EINVAL; 3897 3898 rv = mddev_lock(mddev); 3899 if (rv) 3900 return rv; 3901 3902 if (mddev->pers == NULL) { 3903 strncpy(mddev->clevel, buf, slen); 3904 if (mddev->clevel[slen-1] == '\n') 3905 slen--; 3906 mddev->clevel[slen] = 0; 3907 mddev->level = LEVEL_NONE; 3908 rv = len; 3909 goto out_unlock; 3910 } 3911 rv = -EROFS; 3912 if (mddev->ro) 3913 goto out_unlock; 3914 3915 /* request to change the personality. Need to ensure: 3916 * - array is not engaged in resync/recovery/reshape 3917 * - old personality can be suspended 3918 * - new personality will access other array. 3919 */ 3920 3921 rv = -EBUSY; 3922 if (mddev->sync_thread || 3923 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3924 mddev->reshape_position != MaxSector || 3925 mddev->sysfs_active) 3926 goto out_unlock; 3927 3928 rv = -EINVAL; 3929 if (!mddev->pers->quiesce) { 3930 pr_warn("md: %s: %s does not support online personality change\n", 3931 mdname(mddev), mddev->pers->name); 3932 goto out_unlock; 3933 } 3934 3935 /* Now find the new personality */ 3936 strncpy(clevel, buf, slen); 3937 if (clevel[slen-1] == '\n') 3938 slen--; 3939 clevel[slen] = 0; 3940 if (kstrtol(clevel, 10, &level)) 3941 level = LEVEL_NONE; 3942 3943 if (request_module("md-%s", clevel) != 0) 3944 request_module("md-level-%s", clevel); 3945 spin_lock(&pers_lock); 3946 pers = find_pers(level, clevel); 3947 if (!pers || !try_module_get(pers->owner)) { 3948 spin_unlock(&pers_lock); 3949 pr_warn("md: personality %s not loaded\n", clevel); 3950 rv = -EINVAL; 3951 goto out_unlock; 3952 } 3953 spin_unlock(&pers_lock); 3954 3955 if (pers == mddev->pers) { 3956 /* Nothing to do! */ 3957 module_put(pers->owner); 3958 rv = len; 3959 goto out_unlock; 3960 } 3961 if (!pers->takeover) { 3962 module_put(pers->owner); 3963 pr_warn("md: %s: %s does not support personality takeover\n", 3964 mdname(mddev), clevel); 3965 rv = -EINVAL; 3966 goto out_unlock; 3967 } 3968 3969 rdev_for_each(rdev, mddev) 3970 rdev->new_raid_disk = rdev->raid_disk; 3971 3972 /* ->takeover must set new_* and/or delta_disks 3973 * if it succeeds, and may set them when it fails. 3974 */ 3975 priv = pers->takeover(mddev); 3976 if (IS_ERR(priv)) { 3977 mddev->new_level = mddev->level; 3978 mddev->new_layout = mddev->layout; 3979 mddev->new_chunk_sectors = mddev->chunk_sectors; 3980 mddev->raid_disks -= mddev->delta_disks; 3981 mddev->delta_disks = 0; 3982 mddev->reshape_backwards = 0; 3983 module_put(pers->owner); 3984 pr_warn("md: %s: %s would not accept array\n", 3985 mdname(mddev), clevel); 3986 rv = PTR_ERR(priv); 3987 goto out_unlock; 3988 } 3989 3990 /* Looks like we have a winner */ 3991 mddev_suspend(mddev); 3992 mddev_detach(mddev); 3993 3994 spin_lock(&mddev->lock); 3995 oldpers = mddev->pers; 3996 oldpriv = mddev->private; 3997 mddev->pers = pers; 3998 mddev->private = priv; 3999 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4000 mddev->level = mddev->new_level; 4001 mddev->layout = mddev->new_layout; 4002 mddev->chunk_sectors = mddev->new_chunk_sectors; 4003 mddev->delta_disks = 0; 4004 mddev->reshape_backwards = 0; 4005 mddev->degraded = 0; 4006 spin_unlock(&mddev->lock); 4007 4008 if (oldpers->sync_request == NULL && 4009 mddev->external) { 4010 /* We are converting from a no-redundancy array 4011 * to a redundancy array and metadata is managed 4012 * externally so we need to be sure that writes 4013 * won't block due to a need to transition 4014 * clean->dirty 4015 * until external management is started. 4016 */ 4017 mddev->in_sync = 0; 4018 mddev->safemode_delay = 0; 4019 mddev->safemode = 0; 4020 } 4021 4022 oldpers->free(mddev, oldpriv); 4023 4024 if (oldpers->sync_request == NULL && 4025 pers->sync_request != NULL) { 4026 /* need to add the md_redundancy_group */ 4027 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4028 pr_warn("md: cannot register extra attributes for %s\n", 4029 mdname(mddev)); 4030 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4031 } 4032 if (oldpers->sync_request != NULL && 4033 pers->sync_request == NULL) { 4034 /* need to remove the md_redundancy_group */ 4035 if (mddev->to_remove == NULL) 4036 mddev->to_remove = &md_redundancy_group; 4037 } 4038 4039 module_put(oldpers->owner); 4040 4041 rdev_for_each(rdev, mddev) { 4042 if (rdev->raid_disk < 0) 4043 continue; 4044 if (rdev->new_raid_disk >= mddev->raid_disks) 4045 rdev->new_raid_disk = -1; 4046 if (rdev->new_raid_disk == rdev->raid_disk) 4047 continue; 4048 sysfs_unlink_rdev(mddev, rdev); 4049 } 4050 rdev_for_each(rdev, mddev) { 4051 if (rdev->raid_disk < 0) 4052 continue; 4053 if (rdev->new_raid_disk == rdev->raid_disk) 4054 continue; 4055 rdev->raid_disk = rdev->new_raid_disk; 4056 if (rdev->raid_disk < 0) 4057 clear_bit(In_sync, &rdev->flags); 4058 else { 4059 if (sysfs_link_rdev(mddev, rdev)) 4060 pr_warn("md: cannot register rd%d for %s after level change\n", 4061 rdev->raid_disk, mdname(mddev)); 4062 } 4063 } 4064 4065 if (pers->sync_request == NULL) { 4066 /* this is now an array without redundancy, so 4067 * it must always be in_sync 4068 */ 4069 mddev->in_sync = 1; 4070 del_timer_sync(&mddev->safemode_timer); 4071 } 4072 blk_set_stacking_limits(&mddev->queue->limits); 4073 pers->run(mddev); 4074 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4075 mddev_resume(mddev); 4076 if (!mddev->thread) 4077 md_update_sb(mddev, 1); 4078 sysfs_notify(&mddev->kobj, NULL, "level"); 4079 md_new_event(mddev); 4080 rv = len; 4081 out_unlock: 4082 mddev_unlock(mddev); 4083 return rv; 4084 } 4085 4086 static struct md_sysfs_entry md_level = 4087 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4088 4089 static ssize_t 4090 layout_show(struct mddev *mddev, char *page) 4091 { 4092 /* just a number, not meaningful for all levels */ 4093 if (mddev->reshape_position != MaxSector && 4094 mddev->layout != mddev->new_layout) 4095 return sprintf(page, "%d (%d)\n", 4096 mddev->new_layout, mddev->layout); 4097 return sprintf(page, "%d\n", mddev->layout); 4098 } 4099 4100 static ssize_t 4101 layout_store(struct mddev *mddev, const char *buf, size_t len) 4102 { 4103 unsigned int n; 4104 int err; 4105 4106 err = kstrtouint(buf, 10, &n); 4107 if (err < 0) 4108 return err; 4109 err = mddev_lock(mddev); 4110 if (err) 4111 return err; 4112 4113 if (mddev->pers) { 4114 if (mddev->pers->check_reshape == NULL) 4115 err = -EBUSY; 4116 else if (mddev->ro) 4117 err = -EROFS; 4118 else { 4119 mddev->new_layout = n; 4120 err = mddev->pers->check_reshape(mddev); 4121 if (err) 4122 mddev->new_layout = mddev->layout; 4123 } 4124 } else { 4125 mddev->new_layout = n; 4126 if (mddev->reshape_position == MaxSector) 4127 mddev->layout = n; 4128 } 4129 mddev_unlock(mddev); 4130 return err ?: len; 4131 } 4132 static struct md_sysfs_entry md_layout = 4133 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4134 4135 static ssize_t 4136 raid_disks_show(struct mddev *mddev, char *page) 4137 { 4138 if (mddev->raid_disks == 0) 4139 return 0; 4140 if (mddev->reshape_position != MaxSector && 4141 mddev->delta_disks != 0) 4142 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4143 mddev->raid_disks - mddev->delta_disks); 4144 return sprintf(page, "%d\n", mddev->raid_disks); 4145 } 4146 4147 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4148 4149 static ssize_t 4150 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4151 { 4152 unsigned int n; 4153 int err; 4154 4155 err = kstrtouint(buf, 10, &n); 4156 if (err < 0) 4157 return err; 4158 4159 err = mddev_lock(mddev); 4160 if (err) 4161 return err; 4162 if (mddev->pers) 4163 err = update_raid_disks(mddev, n); 4164 else if (mddev->reshape_position != MaxSector) { 4165 struct md_rdev *rdev; 4166 int olddisks = mddev->raid_disks - mddev->delta_disks; 4167 4168 err = -EINVAL; 4169 rdev_for_each(rdev, mddev) { 4170 if (olddisks < n && 4171 rdev->data_offset < rdev->new_data_offset) 4172 goto out_unlock; 4173 if (olddisks > n && 4174 rdev->data_offset > rdev->new_data_offset) 4175 goto out_unlock; 4176 } 4177 err = 0; 4178 mddev->delta_disks = n - olddisks; 4179 mddev->raid_disks = n; 4180 mddev->reshape_backwards = (mddev->delta_disks < 0); 4181 } else 4182 mddev->raid_disks = n; 4183 out_unlock: 4184 mddev_unlock(mddev); 4185 return err ? err : len; 4186 } 4187 static struct md_sysfs_entry md_raid_disks = 4188 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4189 4190 static ssize_t 4191 chunk_size_show(struct mddev *mddev, char *page) 4192 { 4193 if (mddev->reshape_position != MaxSector && 4194 mddev->chunk_sectors != mddev->new_chunk_sectors) 4195 return sprintf(page, "%d (%d)\n", 4196 mddev->new_chunk_sectors << 9, 4197 mddev->chunk_sectors << 9); 4198 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4199 } 4200 4201 static ssize_t 4202 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4203 { 4204 unsigned long n; 4205 int err; 4206 4207 err = kstrtoul(buf, 10, &n); 4208 if (err < 0) 4209 return err; 4210 4211 err = mddev_lock(mddev); 4212 if (err) 4213 return err; 4214 if (mddev->pers) { 4215 if (mddev->pers->check_reshape == NULL) 4216 err = -EBUSY; 4217 else if (mddev->ro) 4218 err = -EROFS; 4219 else { 4220 mddev->new_chunk_sectors = n >> 9; 4221 err = mddev->pers->check_reshape(mddev); 4222 if (err) 4223 mddev->new_chunk_sectors = mddev->chunk_sectors; 4224 } 4225 } else { 4226 mddev->new_chunk_sectors = n >> 9; 4227 if (mddev->reshape_position == MaxSector) 4228 mddev->chunk_sectors = n >> 9; 4229 } 4230 mddev_unlock(mddev); 4231 return err ?: len; 4232 } 4233 static struct md_sysfs_entry md_chunk_size = 4234 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4235 4236 static ssize_t 4237 resync_start_show(struct mddev *mddev, char *page) 4238 { 4239 if (mddev->recovery_cp == MaxSector) 4240 return sprintf(page, "none\n"); 4241 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4242 } 4243 4244 static ssize_t 4245 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4246 { 4247 unsigned long long n; 4248 int err; 4249 4250 if (cmd_match(buf, "none")) 4251 n = MaxSector; 4252 else { 4253 err = kstrtoull(buf, 10, &n); 4254 if (err < 0) 4255 return err; 4256 if (n != (sector_t)n) 4257 return -EINVAL; 4258 } 4259 4260 err = mddev_lock(mddev); 4261 if (err) 4262 return err; 4263 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4264 err = -EBUSY; 4265 4266 if (!err) { 4267 mddev->recovery_cp = n; 4268 if (mddev->pers) 4269 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4270 } 4271 mddev_unlock(mddev); 4272 return err ?: len; 4273 } 4274 static struct md_sysfs_entry md_resync_start = 4275 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4276 resync_start_show, resync_start_store); 4277 4278 /* 4279 * The array state can be: 4280 * 4281 * clear 4282 * No devices, no size, no level 4283 * Equivalent to STOP_ARRAY ioctl 4284 * inactive 4285 * May have some settings, but array is not active 4286 * all IO results in error 4287 * When written, doesn't tear down array, but just stops it 4288 * suspended (not supported yet) 4289 * All IO requests will block. The array can be reconfigured. 4290 * Writing this, if accepted, will block until array is quiescent 4291 * readonly 4292 * no resync can happen. no superblocks get written. 4293 * write requests fail 4294 * read-auto 4295 * like readonly, but behaves like 'clean' on a write request. 4296 * 4297 * clean - no pending writes, but otherwise active. 4298 * When written to inactive array, starts without resync 4299 * If a write request arrives then 4300 * if metadata is known, mark 'dirty' and switch to 'active'. 4301 * if not known, block and switch to write-pending 4302 * If written to an active array that has pending writes, then fails. 4303 * active 4304 * fully active: IO and resync can be happening. 4305 * When written to inactive array, starts with resync 4306 * 4307 * write-pending 4308 * clean, but writes are blocked waiting for 'active' to be written. 4309 * 4310 * active-idle 4311 * like active, but no writes have been seen for a while (100msec). 4312 * 4313 * broken 4314 * RAID0/LINEAR-only: same as clean, but array is missing a member. 4315 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped 4316 * when a member is gone, so this state will at least alert the 4317 * user that something is wrong. 4318 */ 4319 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4320 write_pending, active_idle, broken, bad_word}; 4321 static char *array_states[] = { 4322 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4323 "write-pending", "active-idle", "broken", NULL }; 4324 4325 static int match_word(const char *word, char **list) 4326 { 4327 int n; 4328 for (n=0; list[n]; n++) 4329 if (cmd_match(word, list[n])) 4330 break; 4331 return n; 4332 } 4333 4334 static ssize_t 4335 array_state_show(struct mddev *mddev, char *page) 4336 { 4337 enum array_state st = inactive; 4338 4339 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4340 switch(mddev->ro) { 4341 case 1: 4342 st = readonly; 4343 break; 4344 case 2: 4345 st = read_auto; 4346 break; 4347 case 0: 4348 spin_lock(&mddev->lock); 4349 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4350 st = write_pending; 4351 else if (mddev->in_sync) 4352 st = clean; 4353 else if (mddev->safemode) 4354 st = active_idle; 4355 else 4356 st = active; 4357 spin_unlock(&mddev->lock); 4358 } 4359 4360 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4361 st = broken; 4362 } else { 4363 if (list_empty(&mddev->disks) && 4364 mddev->raid_disks == 0 && 4365 mddev->dev_sectors == 0) 4366 st = clear; 4367 else 4368 st = inactive; 4369 } 4370 return sprintf(page, "%s\n", array_states[st]); 4371 } 4372 4373 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4374 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4375 static int do_md_run(struct mddev *mddev); 4376 static int restart_array(struct mddev *mddev); 4377 4378 static ssize_t 4379 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4380 { 4381 int err = 0; 4382 enum array_state st = match_word(buf, array_states); 4383 4384 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4385 /* don't take reconfig_mutex when toggling between 4386 * clean and active 4387 */ 4388 spin_lock(&mddev->lock); 4389 if (st == active) { 4390 restart_array(mddev); 4391 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4392 md_wakeup_thread(mddev->thread); 4393 wake_up(&mddev->sb_wait); 4394 } else /* st == clean */ { 4395 restart_array(mddev); 4396 if (!set_in_sync(mddev)) 4397 err = -EBUSY; 4398 } 4399 if (!err) 4400 sysfs_notify_dirent_safe(mddev->sysfs_state); 4401 spin_unlock(&mddev->lock); 4402 return err ?: len; 4403 } 4404 err = mddev_lock(mddev); 4405 if (err) 4406 return err; 4407 err = -EINVAL; 4408 switch(st) { 4409 case bad_word: 4410 break; 4411 case clear: 4412 /* stopping an active array */ 4413 err = do_md_stop(mddev, 0, NULL); 4414 break; 4415 case inactive: 4416 /* stopping an active array */ 4417 if (mddev->pers) 4418 err = do_md_stop(mddev, 2, NULL); 4419 else 4420 err = 0; /* already inactive */ 4421 break; 4422 case suspended: 4423 break; /* not supported yet */ 4424 case readonly: 4425 if (mddev->pers) 4426 err = md_set_readonly(mddev, NULL); 4427 else { 4428 mddev->ro = 1; 4429 set_disk_ro(mddev->gendisk, 1); 4430 err = do_md_run(mddev); 4431 } 4432 break; 4433 case read_auto: 4434 if (mddev->pers) { 4435 if (mddev->ro == 0) 4436 err = md_set_readonly(mddev, NULL); 4437 else if (mddev->ro == 1) 4438 err = restart_array(mddev); 4439 if (err == 0) { 4440 mddev->ro = 2; 4441 set_disk_ro(mddev->gendisk, 0); 4442 } 4443 } else { 4444 mddev->ro = 2; 4445 err = do_md_run(mddev); 4446 } 4447 break; 4448 case clean: 4449 if (mddev->pers) { 4450 err = restart_array(mddev); 4451 if (err) 4452 break; 4453 spin_lock(&mddev->lock); 4454 if (!set_in_sync(mddev)) 4455 err = -EBUSY; 4456 spin_unlock(&mddev->lock); 4457 } else 4458 err = -EINVAL; 4459 break; 4460 case active: 4461 if (mddev->pers) { 4462 err = restart_array(mddev); 4463 if (err) 4464 break; 4465 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4466 wake_up(&mddev->sb_wait); 4467 err = 0; 4468 } else { 4469 mddev->ro = 0; 4470 set_disk_ro(mddev->gendisk, 0); 4471 err = do_md_run(mddev); 4472 } 4473 break; 4474 case write_pending: 4475 case active_idle: 4476 case broken: 4477 /* these cannot be set */ 4478 break; 4479 } 4480 4481 if (!err) { 4482 if (mddev->hold_active == UNTIL_IOCTL) 4483 mddev->hold_active = 0; 4484 sysfs_notify_dirent_safe(mddev->sysfs_state); 4485 } 4486 mddev_unlock(mddev); 4487 return err ?: len; 4488 } 4489 static struct md_sysfs_entry md_array_state = 4490 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4491 4492 static ssize_t 4493 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4494 return sprintf(page, "%d\n", 4495 atomic_read(&mddev->max_corr_read_errors)); 4496 } 4497 4498 static ssize_t 4499 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4500 { 4501 unsigned int n; 4502 int rv; 4503 4504 rv = kstrtouint(buf, 10, &n); 4505 if (rv < 0) 4506 return rv; 4507 atomic_set(&mddev->max_corr_read_errors, n); 4508 return len; 4509 } 4510 4511 static struct md_sysfs_entry max_corr_read_errors = 4512 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4513 max_corrected_read_errors_store); 4514 4515 static ssize_t 4516 null_show(struct mddev *mddev, char *page) 4517 { 4518 return -EINVAL; 4519 } 4520 4521 /* need to ensure rdev_delayed_delete() has completed */ 4522 static void flush_rdev_wq(struct mddev *mddev) 4523 { 4524 struct md_rdev *rdev; 4525 4526 rcu_read_lock(); 4527 rdev_for_each_rcu(rdev, mddev) 4528 if (work_pending(&rdev->del_work)) { 4529 flush_workqueue(md_rdev_misc_wq); 4530 break; 4531 } 4532 rcu_read_unlock(); 4533 } 4534 4535 static ssize_t 4536 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4537 { 4538 /* buf must be %d:%d\n? giving major and minor numbers */ 4539 /* The new device is added to the array. 4540 * If the array has a persistent superblock, we read the 4541 * superblock to initialise info and check validity. 4542 * Otherwise, only checking done is that in bind_rdev_to_array, 4543 * which mainly checks size. 4544 */ 4545 char *e; 4546 int major = simple_strtoul(buf, &e, 10); 4547 int minor; 4548 dev_t dev; 4549 struct md_rdev *rdev; 4550 int err; 4551 4552 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4553 return -EINVAL; 4554 minor = simple_strtoul(e+1, &e, 10); 4555 if (*e && *e != '\n') 4556 return -EINVAL; 4557 dev = MKDEV(major, minor); 4558 if (major != MAJOR(dev) || 4559 minor != MINOR(dev)) 4560 return -EOVERFLOW; 4561 4562 flush_rdev_wq(mddev); 4563 err = mddev_lock(mddev); 4564 if (err) 4565 return err; 4566 if (mddev->persistent) { 4567 rdev = md_import_device(dev, mddev->major_version, 4568 mddev->minor_version); 4569 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4570 struct md_rdev *rdev0 4571 = list_entry(mddev->disks.next, 4572 struct md_rdev, same_set); 4573 err = super_types[mddev->major_version] 4574 .load_super(rdev, rdev0, mddev->minor_version); 4575 if (err < 0) 4576 goto out; 4577 } 4578 } else if (mddev->external) 4579 rdev = md_import_device(dev, -2, -1); 4580 else 4581 rdev = md_import_device(dev, -1, -1); 4582 4583 if (IS_ERR(rdev)) { 4584 mddev_unlock(mddev); 4585 return PTR_ERR(rdev); 4586 } 4587 err = bind_rdev_to_array(rdev, mddev); 4588 out: 4589 if (err) 4590 export_rdev(rdev); 4591 mddev_unlock(mddev); 4592 if (!err) 4593 md_new_event(mddev); 4594 return err ? err : len; 4595 } 4596 4597 static struct md_sysfs_entry md_new_device = 4598 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4599 4600 static ssize_t 4601 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4602 { 4603 char *end; 4604 unsigned long chunk, end_chunk; 4605 int err; 4606 4607 err = mddev_lock(mddev); 4608 if (err) 4609 return err; 4610 if (!mddev->bitmap) 4611 goto out; 4612 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4613 while (*buf) { 4614 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4615 if (buf == end) break; 4616 if (*end == '-') { /* range */ 4617 buf = end + 1; 4618 end_chunk = simple_strtoul(buf, &end, 0); 4619 if (buf == end) break; 4620 } 4621 if (*end && !isspace(*end)) break; 4622 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4623 buf = skip_spaces(end); 4624 } 4625 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4626 out: 4627 mddev_unlock(mddev); 4628 return len; 4629 } 4630 4631 static struct md_sysfs_entry md_bitmap = 4632 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4633 4634 static ssize_t 4635 size_show(struct mddev *mddev, char *page) 4636 { 4637 return sprintf(page, "%llu\n", 4638 (unsigned long long)mddev->dev_sectors / 2); 4639 } 4640 4641 static int update_size(struct mddev *mddev, sector_t num_sectors); 4642 4643 static ssize_t 4644 size_store(struct mddev *mddev, const char *buf, size_t len) 4645 { 4646 /* If array is inactive, we can reduce the component size, but 4647 * not increase it (except from 0). 4648 * If array is active, we can try an on-line resize 4649 */ 4650 sector_t sectors; 4651 int err = strict_blocks_to_sectors(buf, §ors); 4652 4653 if (err < 0) 4654 return err; 4655 err = mddev_lock(mddev); 4656 if (err) 4657 return err; 4658 if (mddev->pers) { 4659 err = update_size(mddev, sectors); 4660 if (err == 0) 4661 md_update_sb(mddev, 1); 4662 } else { 4663 if (mddev->dev_sectors == 0 || 4664 mddev->dev_sectors > sectors) 4665 mddev->dev_sectors = sectors; 4666 else 4667 err = -ENOSPC; 4668 } 4669 mddev_unlock(mddev); 4670 return err ? err : len; 4671 } 4672 4673 static struct md_sysfs_entry md_size = 4674 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4675 4676 /* Metadata version. 4677 * This is one of 4678 * 'none' for arrays with no metadata (good luck...) 4679 * 'external' for arrays with externally managed metadata, 4680 * or N.M for internally known formats 4681 */ 4682 static ssize_t 4683 metadata_show(struct mddev *mddev, char *page) 4684 { 4685 if (mddev->persistent) 4686 return sprintf(page, "%d.%d\n", 4687 mddev->major_version, mddev->minor_version); 4688 else if (mddev->external) 4689 return sprintf(page, "external:%s\n", mddev->metadata_type); 4690 else 4691 return sprintf(page, "none\n"); 4692 } 4693 4694 static ssize_t 4695 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4696 { 4697 int major, minor; 4698 char *e; 4699 int err; 4700 /* Changing the details of 'external' metadata is 4701 * always permitted. Otherwise there must be 4702 * no devices attached to the array. 4703 */ 4704 4705 err = mddev_lock(mddev); 4706 if (err) 4707 return err; 4708 err = -EBUSY; 4709 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4710 ; 4711 else if (!list_empty(&mddev->disks)) 4712 goto out_unlock; 4713 4714 err = 0; 4715 if (cmd_match(buf, "none")) { 4716 mddev->persistent = 0; 4717 mddev->external = 0; 4718 mddev->major_version = 0; 4719 mddev->minor_version = 90; 4720 goto out_unlock; 4721 } 4722 if (strncmp(buf, "external:", 9) == 0) { 4723 size_t namelen = len-9; 4724 if (namelen >= sizeof(mddev->metadata_type)) 4725 namelen = sizeof(mddev->metadata_type)-1; 4726 strncpy(mddev->metadata_type, buf+9, namelen); 4727 mddev->metadata_type[namelen] = 0; 4728 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4729 mddev->metadata_type[--namelen] = 0; 4730 mddev->persistent = 0; 4731 mddev->external = 1; 4732 mddev->major_version = 0; 4733 mddev->minor_version = 90; 4734 goto out_unlock; 4735 } 4736 major = simple_strtoul(buf, &e, 10); 4737 err = -EINVAL; 4738 if (e==buf || *e != '.') 4739 goto out_unlock; 4740 buf = e+1; 4741 minor = simple_strtoul(buf, &e, 10); 4742 if (e==buf || (*e && *e != '\n') ) 4743 goto out_unlock; 4744 err = -ENOENT; 4745 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4746 goto out_unlock; 4747 mddev->major_version = major; 4748 mddev->minor_version = minor; 4749 mddev->persistent = 1; 4750 mddev->external = 0; 4751 err = 0; 4752 out_unlock: 4753 mddev_unlock(mddev); 4754 return err ?: len; 4755 } 4756 4757 static struct md_sysfs_entry md_metadata = 4758 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4759 4760 static ssize_t 4761 action_show(struct mddev *mddev, char *page) 4762 { 4763 char *type = "idle"; 4764 unsigned long recovery = mddev->recovery; 4765 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4766 type = "frozen"; 4767 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4768 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4769 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4770 type = "reshape"; 4771 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4772 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4773 type = "resync"; 4774 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4775 type = "check"; 4776 else 4777 type = "repair"; 4778 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4779 type = "recover"; 4780 else if (mddev->reshape_position != MaxSector) 4781 type = "reshape"; 4782 } 4783 return sprintf(page, "%s\n", type); 4784 } 4785 4786 static ssize_t 4787 action_store(struct mddev *mddev, const char *page, size_t len) 4788 { 4789 if (!mddev->pers || !mddev->pers->sync_request) 4790 return -EINVAL; 4791 4792 4793 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4794 if (cmd_match(page, "frozen")) 4795 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4796 else 4797 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4798 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4799 mddev_lock(mddev) == 0) { 4800 if (work_pending(&mddev->del_work)) 4801 flush_workqueue(md_misc_wq); 4802 if (mddev->sync_thread) { 4803 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4804 md_reap_sync_thread(mddev); 4805 } 4806 mddev_unlock(mddev); 4807 } 4808 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4809 return -EBUSY; 4810 else if (cmd_match(page, "resync")) 4811 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4812 else if (cmd_match(page, "recover")) { 4813 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4814 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4815 } else if (cmd_match(page, "reshape")) { 4816 int err; 4817 if (mddev->pers->start_reshape == NULL) 4818 return -EINVAL; 4819 err = mddev_lock(mddev); 4820 if (!err) { 4821 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4822 err = -EBUSY; 4823 else { 4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4825 err = mddev->pers->start_reshape(mddev); 4826 } 4827 mddev_unlock(mddev); 4828 } 4829 if (err) 4830 return err; 4831 sysfs_notify(&mddev->kobj, NULL, "degraded"); 4832 } else { 4833 if (cmd_match(page, "check")) 4834 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4835 else if (!cmd_match(page, "repair")) 4836 return -EINVAL; 4837 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4838 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4839 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4840 } 4841 if (mddev->ro == 2) { 4842 /* A write to sync_action is enough to justify 4843 * canceling read-auto mode 4844 */ 4845 mddev->ro = 0; 4846 md_wakeup_thread(mddev->sync_thread); 4847 } 4848 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4849 md_wakeup_thread(mddev->thread); 4850 sysfs_notify_dirent_safe(mddev->sysfs_action); 4851 return len; 4852 } 4853 4854 static struct md_sysfs_entry md_scan_mode = 4855 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4856 4857 static ssize_t 4858 last_sync_action_show(struct mddev *mddev, char *page) 4859 { 4860 return sprintf(page, "%s\n", mddev->last_sync_action); 4861 } 4862 4863 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4864 4865 static ssize_t 4866 mismatch_cnt_show(struct mddev *mddev, char *page) 4867 { 4868 return sprintf(page, "%llu\n", 4869 (unsigned long long) 4870 atomic64_read(&mddev->resync_mismatches)); 4871 } 4872 4873 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4874 4875 static ssize_t 4876 sync_min_show(struct mddev *mddev, char *page) 4877 { 4878 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4879 mddev->sync_speed_min ? "local": "system"); 4880 } 4881 4882 static ssize_t 4883 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4884 { 4885 unsigned int min; 4886 int rv; 4887 4888 if (strncmp(buf, "system", 6)==0) { 4889 min = 0; 4890 } else { 4891 rv = kstrtouint(buf, 10, &min); 4892 if (rv < 0) 4893 return rv; 4894 if (min == 0) 4895 return -EINVAL; 4896 } 4897 mddev->sync_speed_min = min; 4898 return len; 4899 } 4900 4901 static struct md_sysfs_entry md_sync_min = 4902 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4903 4904 static ssize_t 4905 sync_max_show(struct mddev *mddev, char *page) 4906 { 4907 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4908 mddev->sync_speed_max ? "local": "system"); 4909 } 4910 4911 static ssize_t 4912 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4913 { 4914 unsigned int max; 4915 int rv; 4916 4917 if (strncmp(buf, "system", 6)==0) { 4918 max = 0; 4919 } else { 4920 rv = kstrtouint(buf, 10, &max); 4921 if (rv < 0) 4922 return rv; 4923 if (max == 0) 4924 return -EINVAL; 4925 } 4926 mddev->sync_speed_max = max; 4927 return len; 4928 } 4929 4930 static struct md_sysfs_entry md_sync_max = 4931 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4932 4933 static ssize_t 4934 degraded_show(struct mddev *mddev, char *page) 4935 { 4936 return sprintf(page, "%d\n", mddev->degraded); 4937 } 4938 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4939 4940 static ssize_t 4941 sync_force_parallel_show(struct mddev *mddev, char *page) 4942 { 4943 return sprintf(page, "%d\n", mddev->parallel_resync); 4944 } 4945 4946 static ssize_t 4947 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4948 { 4949 long n; 4950 4951 if (kstrtol(buf, 10, &n)) 4952 return -EINVAL; 4953 4954 if (n != 0 && n != 1) 4955 return -EINVAL; 4956 4957 mddev->parallel_resync = n; 4958 4959 if (mddev->sync_thread) 4960 wake_up(&resync_wait); 4961 4962 return len; 4963 } 4964 4965 /* force parallel resync, even with shared block devices */ 4966 static struct md_sysfs_entry md_sync_force_parallel = 4967 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4968 sync_force_parallel_show, sync_force_parallel_store); 4969 4970 static ssize_t 4971 sync_speed_show(struct mddev *mddev, char *page) 4972 { 4973 unsigned long resync, dt, db; 4974 if (mddev->curr_resync == 0) 4975 return sprintf(page, "none\n"); 4976 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4977 dt = (jiffies - mddev->resync_mark) / HZ; 4978 if (!dt) dt++; 4979 db = resync - mddev->resync_mark_cnt; 4980 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4981 } 4982 4983 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4984 4985 static ssize_t 4986 sync_completed_show(struct mddev *mddev, char *page) 4987 { 4988 unsigned long long max_sectors, resync; 4989 4990 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4991 return sprintf(page, "none\n"); 4992 4993 if (mddev->curr_resync == 1 || 4994 mddev->curr_resync == 2) 4995 return sprintf(page, "delayed\n"); 4996 4997 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 4998 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 4999 max_sectors = mddev->resync_max_sectors; 5000 else 5001 max_sectors = mddev->dev_sectors; 5002 5003 resync = mddev->curr_resync_completed; 5004 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5005 } 5006 5007 static struct md_sysfs_entry md_sync_completed = 5008 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5009 5010 static ssize_t 5011 min_sync_show(struct mddev *mddev, char *page) 5012 { 5013 return sprintf(page, "%llu\n", 5014 (unsigned long long)mddev->resync_min); 5015 } 5016 static ssize_t 5017 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5018 { 5019 unsigned long long min; 5020 int err; 5021 5022 if (kstrtoull(buf, 10, &min)) 5023 return -EINVAL; 5024 5025 spin_lock(&mddev->lock); 5026 err = -EINVAL; 5027 if (min > mddev->resync_max) 5028 goto out_unlock; 5029 5030 err = -EBUSY; 5031 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5032 goto out_unlock; 5033 5034 /* Round down to multiple of 4K for safety */ 5035 mddev->resync_min = round_down(min, 8); 5036 err = 0; 5037 5038 out_unlock: 5039 spin_unlock(&mddev->lock); 5040 return err ?: len; 5041 } 5042 5043 static struct md_sysfs_entry md_min_sync = 5044 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5045 5046 static ssize_t 5047 max_sync_show(struct mddev *mddev, char *page) 5048 { 5049 if (mddev->resync_max == MaxSector) 5050 return sprintf(page, "max\n"); 5051 else 5052 return sprintf(page, "%llu\n", 5053 (unsigned long long)mddev->resync_max); 5054 } 5055 static ssize_t 5056 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5057 { 5058 int err; 5059 spin_lock(&mddev->lock); 5060 if (strncmp(buf, "max", 3) == 0) 5061 mddev->resync_max = MaxSector; 5062 else { 5063 unsigned long long max; 5064 int chunk; 5065 5066 err = -EINVAL; 5067 if (kstrtoull(buf, 10, &max)) 5068 goto out_unlock; 5069 if (max < mddev->resync_min) 5070 goto out_unlock; 5071 5072 err = -EBUSY; 5073 if (max < mddev->resync_max && 5074 mddev->ro == 0 && 5075 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5076 goto out_unlock; 5077 5078 /* Must be a multiple of chunk_size */ 5079 chunk = mddev->chunk_sectors; 5080 if (chunk) { 5081 sector_t temp = max; 5082 5083 err = -EINVAL; 5084 if (sector_div(temp, chunk)) 5085 goto out_unlock; 5086 } 5087 mddev->resync_max = max; 5088 } 5089 wake_up(&mddev->recovery_wait); 5090 err = 0; 5091 out_unlock: 5092 spin_unlock(&mddev->lock); 5093 return err ?: len; 5094 } 5095 5096 static struct md_sysfs_entry md_max_sync = 5097 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5098 5099 static ssize_t 5100 suspend_lo_show(struct mddev *mddev, char *page) 5101 { 5102 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5103 } 5104 5105 static ssize_t 5106 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5107 { 5108 unsigned long long new; 5109 int err; 5110 5111 err = kstrtoull(buf, 10, &new); 5112 if (err < 0) 5113 return err; 5114 if (new != (sector_t)new) 5115 return -EINVAL; 5116 5117 err = mddev_lock(mddev); 5118 if (err) 5119 return err; 5120 err = -EINVAL; 5121 if (mddev->pers == NULL || 5122 mddev->pers->quiesce == NULL) 5123 goto unlock; 5124 mddev_suspend(mddev); 5125 mddev->suspend_lo = new; 5126 mddev_resume(mddev); 5127 5128 err = 0; 5129 unlock: 5130 mddev_unlock(mddev); 5131 return err ?: len; 5132 } 5133 static struct md_sysfs_entry md_suspend_lo = 5134 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5135 5136 static ssize_t 5137 suspend_hi_show(struct mddev *mddev, char *page) 5138 { 5139 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5140 } 5141 5142 static ssize_t 5143 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5144 { 5145 unsigned long long new; 5146 int err; 5147 5148 err = kstrtoull(buf, 10, &new); 5149 if (err < 0) 5150 return err; 5151 if (new != (sector_t)new) 5152 return -EINVAL; 5153 5154 err = mddev_lock(mddev); 5155 if (err) 5156 return err; 5157 err = -EINVAL; 5158 if (mddev->pers == NULL) 5159 goto unlock; 5160 5161 mddev_suspend(mddev); 5162 mddev->suspend_hi = new; 5163 mddev_resume(mddev); 5164 5165 err = 0; 5166 unlock: 5167 mddev_unlock(mddev); 5168 return err ?: len; 5169 } 5170 static struct md_sysfs_entry md_suspend_hi = 5171 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5172 5173 static ssize_t 5174 reshape_position_show(struct mddev *mddev, char *page) 5175 { 5176 if (mddev->reshape_position != MaxSector) 5177 return sprintf(page, "%llu\n", 5178 (unsigned long long)mddev->reshape_position); 5179 strcpy(page, "none\n"); 5180 return 5; 5181 } 5182 5183 static ssize_t 5184 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5185 { 5186 struct md_rdev *rdev; 5187 unsigned long long new; 5188 int err; 5189 5190 err = kstrtoull(buf, 10, &new); 5191 if (err < 0) 5192 return err; 5193 if (new != (sector_t)new) 5194 return -EINVAL; 5195 err = mddev_lock(mddev); 5196 if (err) 5197 return err; 5198 err = -EBUSY; 5199 if (mddev->pers) 5200 goto unlock; 5201 mddev->reshape_position = new; 5202 mddev->delta_disks = 0; 5203 mddev->reshape_backwards = 0; 5204 mddev->new_level = mddev->level; 5205 mddev->new_layout = mddev->layout; 5206 mddev->new_chunk_sectors = mddev->chunk_sectors; 5207 rdev_for_each(rdev, mddev) 5208 rdev->new_data_offset = rdev->data_offset; 5209 err = 0; 5210 unlock: 5211 mddev_unlock(mddev); 5212 return err ?: len; 5213 } 5214 5215 static struct md_sysfs_entry md_reshape_position = 5216 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5217 reshape_position_store); 5218 5219 static ssize_t 5220 reshape_direction_show(struct mddev *mddev, char *page) 5221 { 5222 return sprintf(page, "%s\n", 5223 mddev->reshape_backwards ? "backwards" : "forwards"); 5224 } 5225 5226 static ssize_t 5227 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5228 { 5229 int backwards = 0; 5230 int err; 5231 5232 if (cmd_match(buf, "forwards")) 5233 backwards = 0; 5234 else if (cmd_match(buf, "backwards")) 5235 backwards = 1; 5236 else 5237 return -EINVAL; 5238 if (mddev->reshape_backwards == backwards) 5239 return len; 5240 5241 err = mddev_lock(mddev); 5242 if (err) 5243 return err; 5244 /* check if we are allowed to change */ 5245 if (mddev->delta_disks) 5246 err = -EBUSY; 5247 else if (mddev->persistent && 5248 mddev->major_version == 0) 5249 err = -EINVAL; 5250 else 5251 mddev->reshape_backwards = backwards; 5252 mddev_unlock(mddev); 5253 return err ?: len; 5254 } 5255 5256 static struct md_sysfs_entry md_reshape_direction = 5257 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5258 reshape_direction_store); 5259 5260 static ssize_t 5261 array_size_show(struct mddev *mddev, char *page) 5262 { 5263 if (mddev->external_size) 5264 return sprintf(page, "%llu\n", 5265 (unsigned long long)mddev->array_sectors/2); 5266 else 5267 return sprintf(page, "default\n"); 5268 } 5269 5270 static ssize_t 5271 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5272 { 5273 sector_t sectors; 5274 int err; 5275 5276 err = mddev_lock(mddev); 5277 if (err) 5278 return err; 5279 5280 /* cluster raid doesn't support change array_sectors */ 5281 if (mddev_is_clustered(mddev)) { 5282 mddev_unlock(mddev); 5283 return -EINVAL; 5284 } 5285 5286 if (strncmp(buf, "default", 7) == 0) { 5287 if (mddev->pers) 5288 sectors = mddev->pers->size(mddev, 0, 0); 5289 else 5290 sectors = mddev->array_sectors; 5291 5292 mddev->external_size = 0; 5293 } else { 5294 if (strict_blocks_to_sectors(buf, §ors) < 0) 5295 err = -EINVAL; 5296 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5297 err = -E2BIG; 5298 else 5299 mddev->external_size = 1; 5300 } 5301 5302 if (!err) { 5303 mddev->array_sectors = sectors; 5304 if (mddev->pers) { 5305 set_capacity(mddev->gendisk, mddev->array_sectors); 5306 revalidate_disk(mddev->gendisk); 5307 } 5308 } 5309 mddev_unlock(mddev); 5310 return err ?: len; 5311 } 5312 5313 static struct md_sysfs_entry md_array_size = 5314 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5315 array_size_store); 5316 5317 static ssize_t 5318 consistency_policy_show(struct mddev *mddev, char *page) 5319 { 5320 int ret; 5321 5322 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5323 ret = sprintf(page, "journal\n"); 5324 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5325 ret = sprintf(page, "ppl\n"); 5326 } else if (mddev->bitmap) { 5327 ret = sprintf(page, "bitmap\n"); 5328 } else if (mddev->pers) { 5329 if (mddev->pers->sync_request) 5330 ret = sprintf(page, "resync\n"); 5331 else 5332 ret = sprintf(page, "none\n"); 5333 } else { 5334 ret = sprintf(page, "unknown\n"); 5335 } 5336 5337 return ret; 5338 } 5339 5340 static ssize_t 5341 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5342 { 5343 int err = 0; 5344 5345 if (mddev->pers) { 5346 if (mddev->pers->change_consistency_policy) 5347 err = mddev->pers->change_consistency_policy(mddev, buf); 5348 else 5349 err = -EBUSY; 5350 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5351 set_bit(MD_HAS_PPL, &mddev->flags); 5352 } else { 5353 err = -EINVAL; 5354 } 5355 5356 return err ? err : len; 5357 } 5358 5359 static struct md_sysfs_entry md_consistency_policy = 5360 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5361 consistency_policy_store); 5362 5363 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5364 { 5365 return sprintf(page, "%d\n", mddev->fail_last_dev); 5366 } 5367 5368 /* 5369 * Setting fail_last_dev to true to allow last device to be forcibly removed 5370 * from RAID1/RAID10. 5371 */ 5372 static ssize_t 5373 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5374 { 5375 int ret; 5376 bool value; 5377 5378 ret = kstrtobool(buf, &value); 5379 if (ret) 5380 return ret; 5381 5382 if (value != mddev->fail_last_dev) 5383 mddev->fail_last_dev = value; 5384 5385 return len; 5386 } 5387 static struct md_sysfs_entry md_fail_last_dev = 5388 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5389 fail_last_dev_store); 5390 5391 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5392 { 5393 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5394 return sprintf(page, "n/a\n"); 5395 else 5396 return sprintf(page, "%d\n", mddev->serialize_policy); 5397 } 5398 5399 /* 5400 * Setting serialize_policy to true to enforce write IO is not reordered 5401 * for raid1. 5402 */ 5403 static ssize_t 5404 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5405 { 5406 int err; 5407 bool value; 5408 5409 err = kstrtobool(buf, &value); 5410 if (err) 5411 return err; 5412 5413 if (value == mddev->serialize_policy) 5414 return len; 5415 5416 err = mddev_lock(mddev); 5417 if (err) 5418 return err; 5419 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5420 pr_err("md: serialize_policy is only effective for raid1\n"); 5421 err = -EINVAL; 5422 goto unlock; 5423 } 5424 5425 mddev_suspend(mddev); 5426 if (value) 5427 mddev_create_serial_pool(mddev, NULL, true); 5428 else 5429 mddev_destroy_serial_pool(mddev, NULL, true); 5430 mddev->serialize_policy = value; 5431 mddev_resume(mddev); 5432 unlock: 5433 mddev_unlock(mddev); 5434 return err ?: len; 5435 } 5436 5437 static struct md_sysfs_entry md_serialize_policy = 5438 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5439 serialize_policy_store); 5440 5441 5442 static struct attribute *md_default_attrs[] = { 5443 &md_level.attr, 5444 &md_layout.attr, 5445 &md_raid_disks.attr, 5446 &md_chunk_size.attr, 5447 &md_size.attr, 5448 &md_resync_start.attr, 5449 &md_metadata.attr, 5450 &md_new_device.attr, 5451 &md_safe_delay.attr, 5452 &md_array_state.attr, 5453 &md_reshape_position.attr, 5454 &md_reshape_direction.attr, 5455 &md_array_size.attr, 5456 &max_corr_read_errors.attr, 5457 &md_consistency_policy.attr, 5458 &md_fail_last_dev.attr, 5459 &md_serialize_policy.attr, 5460 NULL, 5461 }; 5462 5463 static struct attribute *md_redundancy_attrs[] = { 5464 &md_scan_mode.attr, 5465 &md_last_scan_mode.attr, 5466 &md_mismatches.attr, 5467 &md_sync_min.attr, 5468 &md_sync_max.attr, 5469 &md_sync_speed.attr, 5470 &md_sync_force_parallel.attr, 5471 &md_sync_completed.attr, 5472 &md_min_sync.attr, 5473 &md_max_sync.attr, 5474 &md_suspend_lo.attr, 5475 &md_suspend_hi.attr, 5476 &md_bitmap.attr, 5477 &md_degraded.attr, 5478 NULL, 5479 }; 5480 static struct attribute_group md_redundancy_group = { 5481 .name = NULL, 5482 .attrs = md_redundancy_attrs, 5483 }; 5484 5485 static ssize_t 5486 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5487 { 5488 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5489 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5490 ssize_t rv; 5491 5492 if (!entry->show) 5493 return -EIO; 5494 spin_lock(&all_mddevs_lock); 5495 if (list_empty(&mddev->all_mddevs)) { 5496 spin_unlock(&all_mddevs_lock); 5497 return -EBUSY; 5498 } 5499 mddev_get(mddev); 5500 spin_unlock(&all_mddevs_lock); 5501 5502 rv = entry->show(mddev, page); 5503 mddev_put(mddev); 5504 return rv; 5505 } 5506 5507 static ssize_t 5508 md_attr_store(struct kobject *kobj, struct attribute *attr, 5509 const char *page, size_t length) 5510 { 5511 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5512 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5513 ssize_t rv; 5514 5515 if (!entry->store) 5516 return -EIO; 5517 if (!capable(CAP_SYS_ADMIN)) 5518 return -EACCES; 5519 spin_lock(&all_mddevs_lock); 5520 if (list_empty(&mddev->all_mddevs)) { 5521 spin_unlock(&all_mddevs_lock); 5522 return -EBUSY; 5523 } 5524 mddev_get(mddev); 5525 spin_unlock(&all_mddevs_lock); 5526 rv = entry->store(mddev, page, length); 5527 mddev_put(mddev); 5528 return rv; 5529 } 5530 5531 static void md_free(struct kobject *ko) 5532 { 5533 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5534 5535 if (mddev->sysfs_state) 5536 sysfs_put(mddev->sysfs_state); 5537 5538 if (mddev->gendisk) 5539 del_gendisk(mddev->gendisk); 5540 if (mddev->queue) 5541 blk_cleanup_queue(mddev->queue); 5542 if (mddev->gendisk) 5543 put_disk(mddev->gendisk); 5544 percpu_ref_exit(&mddev->writes_pending); 5545 5546 bioset_exit(&mddev->bio_set); 5547 bioset_exit(&mddev->sync_set); 5548 kfree(mddev); 5549 } 5550 5551 static const struct sysfs_ops md_sysfs_ops = { 5552 .show = md_attr_show, 5553 .store = md_attr_store, 5554 }; 5555 static struct kobj_type md_ktype = { 5556 .release = md_free, 5557 .sysfs_ops = &md_sysfs_ops, 5558 .default_attrs = md_default_attrs, 5559 }; 5560 5561 int mdp_major = 0; 5562 5563 static void mddev_delayed_delete(struct work_struct *ws) 5564 { 5565 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5566 5567 sysfs_remove_group(&mddev->kobj, &md_bitmap_group); 5568 kobject_del(&mddev->kobj); 5569 kobject_put(&mddev->kobj); 5570 } 5571 5572 static void no_op(struct percpu_ref *r) {} 5573 5574 int mddev_init_writes_pending(struct mddev *mddev) 5575 { 5576 if (mddev->writes_pending.percpu_count_ptr) 5577 return 0; 5578 if (percpu_ref_init(&mddev->writes_pending, no_op, 5579 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5580 return -ENOMEM; 5581 /* We want to start with the refcount at zero */ 5582 percpu_ref_put(&mddev->writes_pending); 5583 return 0; 5584 } 5585 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5586 5587 static int md_alloc(dev_t dev, char *name) 5588 { 5589 /* 5590 * If dev is zero, name is the name of a device to allocate with 5591 * an arbitrary minor number. It will be "md_???" 5592 * If dev is non-zero it must be a device number with a MAJOR of 5593 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5594 * the device is being created by opening a node in /dev. 5595 * If "name" is not NULL, the device is being created by 5596 * writing to /sys/module/md_mod/parameters/new_array. 5597 */ 5598 static DEFINE_MUTEX(disks_mutex); 5599 struct mddev *mddev = mddev_find(dev); 5600 struct gendisk *disk; 5601 int partitioned; 5602 int shift; 5603 int unit; 5604 int error; 5605 5606 if (!mddev) 5607 return -ENODEV; 5608 5609 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5610 shift = partitioned ? MdpMinorShift : 0; 5611 unit = MINOR(mddev->unit) >> shift; 5612 5613 /* wait for any previous instance of this device to be 5614 * completely removed (mddev_delayed_delete). 5615 */ 5616 flush_workqueue(md_misc_wq); 5617 5618 mutex_lock(&disks_mutex); 5619 error = -EEXIST; 5620 if (mddev->gendisk) 5621 goto abort; 5622 5623 if (name && !dev) { 5624 /* Need to ensure that 'name' is not a duplicate. 5625 */ 5626 struct mddev *mddev2; 5627 spin_lock(&all_mddevs_lock); 5628 5629 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5630 if (mddev2->gendisk && 5631 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5632 spin_unlock(&all_mddevs_lock); 5633 goto abort; 5634 } 5635 spin_unlock(&all_mddevs_lock); 5636 } 5637 if (name && dev) 5638 /* 5639 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5640 */ 5641 mddev->hold_active = UNTIL_STOP; 5642 5643 error = -ENOMEM; 5644 mddev->queue = blk_alloc_queue(md_make_request, NUMA_NO_NODE); 5645 if (!mddev->queue) 5646 goto abort; 5647 5648 blk_set_stacking_limits(&mddev->queue->limits); 5649 5650 disk = alloc_disk(1 << shift); 5651 if (!disk) { 5652 blk_cleanup_queue(mddev->queue); 5653 mddev->queue = NULL; 5654 goto abort; 5655 } 5656 disk->major = MAJOR(mddev->unit); 5657 disk->first_minor = unit << shift; 5658 if (name) 5659 strcpy(disk->disk_name, name); 5660 else if (partitioned) 5661 sprintf(disk->disk_name, "md_d%d", unit); 5662 else 5663 sprintf(disk->disk_name, "md%d", unit); 5664 disk->fops = &md_fops; 5665 disk->private_data = mddev; 5666 disk->queue = mddev->queue; 5667 blk_queue_write_cache(mddev->queue, true, true); 5668 /* Allow extended partitions. This makes the 5669 * 'mdp' device redundant, but we can't really 5670 * remove it now. 5671 */ 5672 disk->flags |= GENHD_FL_EXT_DEVT; 5673 mddev->gendisk = disk; 5674 /* As soon as we call add_disk(), another thread could get 5675 * through to md_open, so make sure it doesn't get too far 5676 */ 5677 mutex_lock(&mddev->open_mutex); 5678 add_disk(disk); 5679 5680 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5681 if (error) { 5682 /* This isn't possible, but as kobject_init_and_add is marked 5683 * __must_check, we must do something with the result 5684 */ 5685 pr_debug("md: cannot register %s/md - name in use\n", 5686 disk->disk_name); 5687 error = 0; 5688 } 5689 if (mddev->kobj.sd && 5690 sysfs_create_group(&mddev->kobj, &md_bitmap_group)) 5691 pr_debug("pointless warning\n"); 5692 mutex_unlock(&mddev->open_mutex); 5693 abort: 5694 mutex_unlock(&disks_mutex); 5695 if (!error && mddev->kobj.sd) { 5696 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5697 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5698 } 5699 mddev_put(mddev); 5700 return error; 5701 } 5702 5703 static struct kobject *md_probe(dev_t dev, int *part, void *data) 5704 { 5705 if (create_on_open) 5706 md_alloc(dev, NULL); 5707 return NULL; 5708 } 5709 5710 static int add_named_array(const char *val, const struct kernel_param *kp) 5711 { 5712 /* 5713 * val must be "md_*" or "mdNNN". 5714 * For "md_*" we allocate an array with a large free minor number, and 5715 * set the name to val. val must not already be an active name. 5716 * For "mdNNN" we allocate an array with the minor number NNN 5717 * which must not already be in use. 5718 */ 5719 int len = strlen(val); 5720 char buf[DISK_NAME_LEN]; 5721 unsigned long devnum; 5722 5723 while (len && val[len-1] == '\n') 5724 len--; 5725 if (len >= DISK_NAME_LEN) 5726 return -E2BIG; 5727 strlcpy(buf, val, len+1); 5728 if (strncmp(buf, "md_", 3) == 0) 5729 return md_alloc(0, buf); 5730 if (strncmp(buf, "md", 2) == 0 && 5731 isdigit(buf[2]) && 5732 kstrtoul(buf+2, 10, &devnum) == 0 && 5733 devnum <= MINORMASK) 5734 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL); 5735 5736 return -EINVAL; 5737 } 5738 5739 static void md_safemode_timeout(struct timer_list *t) 5740 { 5741 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5742 5743 mddev->safemode = 1; 5744 if (mddev->external) 5745 sysfs_notify_dirent_safe(mddev->sysfs_state); 5746 5747 md_wakeup_thread(mddev->thread); 5748 } 5749 5750 static int start_dirty_degraded; 5751 5752 int md_run(struct mddev *mddev) 5753 { 5754 int err; 5755 struct md_rdev *rdev; 5756 struct md_personality *pers; 5757 5758 if (list_empty(&mddev->disks)) 5759 /* cannot run an array with no devices.. */ 5760 return -EINVAL; 5761 5762 if (mddev->pers) 5763 return -EBUSY; 5764 /* Cannot run until previous stop completes properly */ 5765 if (mddev->sysfs_active) 5766 return -EBUSY; 5767 5768 /* 5769 * Analyze all RAID superblock(s) 5770 */ 5771 if (!mddev->raid_disks) { 5772 if (!mddev->persistent) 5773 return -EINVAL; 5774 err = analyze_sbs(mddev); 5775 if (err) 5776 return -EINVAL; 5777 } 5778 5779 if (mddev->level != LEVEL_NONE) 5780 request_module("md-level-%d", mddev->level); 5781 else if (mddev->clevel[0]) 5782 request_module("md-%s", mddev->clevel); 5783 5784 /* 5785 * Drop all container device buffers, from now on 5786 * the only valid external interface is through the md 5787 * device. 5788 */ 5789 mddev->has_superblocks = false; 5790 rdev_for_each(rdev, mddev) { 5791 if (test_bit(Faulty, &rdev->flags)) 5792 continue; 5793 sync_blockdev(rdev->bdev); 5794 invalidate_bdev(rdev->bdev); 5795 if (mddev->ro != 1 && 5796 (bdev_read_only(rdev->bdev) || 5797 bdev_read_only(rdev->meta_bdev))) { 5798 mddev->ro = 1; 5799 if (mddev->gendisk) 5800 set_disk_ro(mddev->gendisk, 1); 5801 } 5802 5803 if (rdev->sb_page) 5804 mddev->has_superblocks = true; 5805 5806 /* perform some consistency tests on the device. 5807 * We don't want the data to overlap the metadata, 5808 * Internal Bitmap issues have been handled elsewhere. 5809 */ 5810 if (rdev->meta_bdev) { 5811 /* Nothing to check */; 5812 } else if (rdev->data_offset < rdev->sb_start) { 5813 if (mddev->dev_sectors && 5814 rdev->data_offset + mddev->dev_sectors 5815 > rdev->sb_start) { 5816 pr_warn("md: %s: data overlaps metadata\n", 5817 mdname(mddev)); 5818 return -EINVAL; 5819 } 5820 } else { 5821 if (rdev->sb_start + rdev->sb_size/512 5822 > rdev->data_offset) { 5823 pr_warn("md: %s: metadata overlaps data\n", 5824 mdname(mddev)); 5825 return -EINVAL; 5826 } 5827 } 5828 sysfs_notify_dirent_safe(rdev->sysfs_state); 5829 } 5830 5831 if (!bioset_initialized(&mddev->bio_set)) { 5832 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5833 if (err) 5834 return err; 5835 } 5836 if (!bioset_initialized(&mddev->sync_set)) { 5837 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5838 if (err) 5839 return err; 5840 } 5841 5842 spin_lock(&pers_lock); 5843 pers = find_pers(mddev->level, mddev->clevel); 5844 if (!pers || !try_module_get(pers->owner)) { 5845 spin_unlock(&pers_lock); 5846 if (mddev->level != LEVEL_NONE) 5847 pr_warn("md: personality for level %d is not loaded!\n", 5848 mddev->level); 5849 else 5850 pr_warn("md: personality for level %s is not loaded!\n", 5851 mddev->clevel); 5852 err = -EINVAL; 5853 goto abort; 5854 } 5855 spin_unlock(&pers_lock); 5856 if (mddev->level != pers->level) { 5857 mddev->level = pers->level; 5858 mddev->new_level = pers->level; 5859 } 5860 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5861 5862 if (mddev->reshape_position != MaxSector && 5863 pers->start_reshape == NULL) { 5864 /* This personality cannot handle reshaping... */ 5865 module_put(pers->owner); 5866 err = -EINVAL; 5867 goto abort; 5868 } 5869 5870 if (pers->sync_request) { 5871 /* Warn if this is a potentially silly 5872 * configuration. 5873 */ 5874 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 5875 struct md_rdev *rdev2; 5876 int warned = 0; 5877 5878 rdev_for_each(rdev, mddev) 5879 rdev_for_each(rdev2, mddev) { 5880 if (rdev < rdev2 && 5881 rdev->bdev->bd_contains == 5882 rdev2->bdev->bd_contains) { 5883 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n", 5884 mdname(mddev), 5885 bdevname(rdev->bdev,b), 5886 bdevname(rdev2->bdev,b2)); 5887 warned = 1; 5888 } 5889 } 5890 5891 if (warned) 5892 pr_warn("True protection against single-disk failure might be compromised.\n"); 5893 } 5894 5895 mddev->recovery = 0; 5896 /* may be over-ridden by personality */ 5897 mddev->resync_max_sectors = mddev->dev_sectors; 5898 5899 mddev->ok_start_degraded = start_dirty_degraded; 5900 5901 if (start_readonly && mddev->ro == 0) 5902 mddev->ro = 2; /* read-only, but switch on first write */ 5903 5904 err = pers->run(mddev); 5905 if (err) 5906 pr_warn("md: pers->run() failed ...\n"); 5907 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5908 WARN_ONCE(!mddev->external_size, 5909 "%s: default size too small, but 'external_size' not in effect?\n", 5910 __func__); 5911 pr_warn("md: invalid array_size %llu > default size %llu\n", 5912 (unsigned long long)mddev->array_sectors / 2, 5913 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5914 err = -EINVAL; 5915 } 5916 if (err == 0 && pers->sync_request && 5917 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5918 struct bitmap *bitmap; 5919 5920 bitmap = md_bitmap_create(mddev, -1); 5921 if (IS_ERR(bitmap)) { 5922 err = PTR_ERR(bitmap); 5923 pr_warn("%s: failed to create bitmap (%d)\n", 5924 mdname(mddev), err); 5925 } else 5926 mddev->bitmap = bitmap; 5927 5928 } 5929 if (err) 5930 goto bitmap_abort; 5931 5932 if (mddev->bitmap_info.max_write_behind > 0) { 5933 bool create_pool = false; 5934 5935 rdev_for_each(rdev, mddev) { 5936 if (test_bit(WriteMostly, &rdev->flags) && 5937 rdev_init_serial(rdev)) 5938 create_pool = true; 5939 } 5940 if (create_pool && mddev->serial_info_pool == NULL) { 5941 mddev->serial_info_pool = 5942 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5943 sizeof(struct serial_info)); 5944 if (!mddev->serial_info_pool) { 5945 err = -ENOMEM; 5946 goto bitmap_abort; 5947 } 5948 } 5949 } 5950 5951 if (mddev->queue) { 5952 bool nonrot = true; 5953 5954 rdev_for_each(rdev, mddev) { 5955 if (rdev->raid_disk >= 0 && 5956 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { 5957 nonrot = false; 5958 break; 5959 } 5960 } 5961 if (mddev->degraded) 5962 nonrot = false; 5963 if (nonrot) 5964 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5965 else 5966 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5967 mddev->queue->backing_dev_info->congested_data = mddev; 5968 mddev->queue->backing_dev_info->congested_fn = md_congested; 5969 } 5970 if (pers->sync_request) { 5971 if (mddev->kobj.sd && 5972 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5973 pr_warn("md: cannot register extra attributes for %s\n", 5974 mdname(mddev)); 5975 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5976 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 5977 mddev->ro = 0; 5978 5979 atomic_set(&mddev->max_corr_read_errors, 5980 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 5981 mddev->safemode = 0; 5982 if (mddev_is_clustered(mddev)) 5983 mddev->safemode_delay = 0; 5984 else 5985 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */ 5986 mddev->in_sync = 1; 5987 smp_wmb(); 5988 spin_lock(&mddev->lock); 5989 mddev->pers = pers; 5990 spin_unlock(&mddev->lock); 5991 rdev_for_each(rdev, mddev) 5992 if (rdev->raid_disk >= 0) 5993 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 5994 5995 if (mddev->degraded && !mddev->ro) 5996 /* This ensures that recovering status is reported immediately 5997 * via sysfs - until a lack of spares is confirmed. 5998 */ 5999 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6000 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6001 6002 if (mddev->sb_flags) 6003 md_update_sb(mddev, 0); 6004 6005 md_new_event(mddev); 6006 return 0; 6007 6008 bitmap_abort: 6009 mddev_detach(mddev); 6010 if (mddev->private) 6011 pers->free(mddev, mddev->private); 6012 mddev->private = NULL; 6013 module_put(pers->owner); 6014 md_bitmap_destroy(mddev); 6015 abort: 6016 bioset_exit(&mddev->bio_set); 6017 bioset_exit(&mddev->sync_set); 6018 return err; 6019 } 6020 EXPORT_SYMBOL_GPL(md_run); 6021 6022 static int do_md_run(struct mddev *mddev) 6023 { 6024 int err; 6025 6026 set_bit(MD_NOT_READY, &mddev->flags); 6027 err = md_run(mddev); 6028 if (err) 6029 goto out; 6030 err = md_bitmap_load(mddev); 6031 if (err) { 6032 md_bitmap_destroy(mddev); 6033 goto out; 6034 } 6035 6036 if (mddev_is_clustered(mddev)) 6037 md_allow_write(mddev); 6038 6039 /* run start up tasks that require md_thread */ 6040 md_start(mddev); 6041 6042 md_wakeup_thread(mddev->thread); 6043 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6044 6045 set_capacity(mddev->gendisk, mddev->array_sectors); 6046 revalidate_disk(mddev->gendisk); 6047 clear_bit(MD_NOT_READY, &mddev->flags); 6048 mddev->changed = 1; 6049 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6050 sysfs_notify_dirent_safe(mddev->sysfs_state); 6051 sysfs_notify_dirent_safe(mddev->sysfs_action); 6052 sysfs_notify(&mddev->kobj, NULL, "degraded"); 6053 out: 6054 clear_bit(MD_NOT_READY, &mddev->flags); 6055 return err; 6056 } 6057 6058 int md_start(struct mddev *mddev) 6059 { 6060 int ret = 0; 6061 6062 if (mddev->pers->start) { 6063 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6064 md_wakeup_thread(mddev->thread); 6065 ret = mddev->pers->start(mddev); 6066 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6067 md_wakeup_thread(mddev->sync_thread); 6068 } 6069 return ret; 6070 } 6071 EXPORT_SYMBOL_GPL(md_start); 6072 6073 static int restart_array(struct mddev *mddev) 6074 { 6075 struct gendisk *disk = mddev->gendisk; 6076 struct md_rdev *rdev; 6077 bool has_journal = false; 6078 bool has_readonly = false; 6079 6080 /* Complain if it has no devices */ 6081 if (list_empty(&mddev->disks)) 6082 return -ENXIO; 6083 if (!mddev->pers) 6084 return -EINVAL; 6085 if (!mddev->ro) 6086 return -EBUSY; 6087 6088 rcu_read_lock(); 6089 rdev_for_each_rcu(rdev, mddev) { 6090 if (test_bit(Journal, &rdev->flags) && 6091 !test_bit(Faulty, &rdev->flags)) 6092 has_journal = true; 6093 if (bdev_read_only(rdev->bdev)) 6094 has_readonly = true; 6095 } 6096 rcu_read_unlock(); 6097 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6098 /* Don't restart rw with journal missing/faulty */ 6099 return -EINVAL; 6100 if (has_readonly) 6101 return -EROFS; 6102 6103 mddev->safemode = 0; 6104 mddev->ro = 0; 6105 set_disk_ro(disk, 0); 6106 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6107 /* Kick recovery or resync if necessary */ 6108 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6109 md_wakeup_thread(mddev->thread); 6110 md_wakeup_thread(mddev->sync_thread); 6111 sysfs_notify_dirent_safe(mddev->sysfs_state); 6112 return 0; 6113 } 6114 6115 static void md_clean(struct mddev *mddev) 6116 { 6117 mddev->array_sectors = 0; 6118 mddev->external_size = 0; 6119 mddev->dev_sectors = 0; 6120 mddev->raid_disks = 0; 6121 mddev->recovery_cp = 0; 6122 mddev->resync_min = 0; 6123 mddev->resync_max = MaxSector; 6124 mddev->reshape_position = MaxSector; 6125 mddev->external = 0; 6126 mddev->persistent = 0; 6127 mddev->level = LEVEL_NONE; 6128 mddev->clevel[0] = 0; 6129 mddev->flags = 0; 6130 mddev->sb_flags = 0; 6131 mddev->ro = 0; 6132 mddev->metadata_type[0] = 0; 6133 mddev->chunk_sectors = 0; 6134 mddev->ctime = mddev->utime = 0; 6135 mddev->layout = 0; 6136 mddev->max_disks = 0; 6137 mddev->events = 0; 6138 mddev->can_decrease_events = 0; 6139 mddev->delta_disks = 0; 6140 mddev->reshape_backwards = 0; 6141 mddev->new_level = LEVEL_NONE; 6142 mddev->new_layout = 0; 6143 mddev->new_chunk_sectors = 0; 6144 mddev->curr_resync = 0; 6145 atomic64_set(&mddev->resync_mismatches, 0); 6146 mddev->suspend_lo = mddev->suspend_hi = 0; 6147 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6148 mddev->recovery = 0; 6149 mddev->in_sync = 0; 6150 mddev->changed = 0; 6151 mddev->degraded = 0; 6152 mddev->safemode = 0; 6153 mddev->private = NULL; 6154 mddev->cluster_info = NULL; 6155 mddev->bitmap_info.offset = 0; 6156 mddev->bitmap_info.default_offset = 0; 6157 mddev->bitmap_info.default_space = 0; 6158 mddev->bitmap_info.chunksize = 0; 6159 mddev->bitmap_info.daemon_sleep = 0; 6160 mddev->bitmap_info.max_write_behind = 0; 6161 mddev->bitmap_info.nodes = 0; 6162 } 6163 6164 static void __md_stop_writes(struct mddev *mddev) 6165 { 6166 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6167 if (work_pending(&mddev->del_work)) 6168 flush_workqueue(md_misc_wq); 6169 if (mddev->sync_thread) { 6170 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6171 md_reap_sync_thread(mddev); 6172 } 6173 6174 del_timer_sync(&mddev->safemode_timer); 6175 6176 if (mddev->pers && mddev->pers->quiesce) { 6177 mddev->pers->quiesce(mddev, 1); 6178 mddev->pers->quiesce(mddev, 0); 6179 } 6180 md_bitmap_flush(mddev); 6181 6182 if (mddev->ro == 0 && 6183 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6184 mddev->sb_flags)) { 6185 /* mark array as shutdown cleanly */ 6186 if (!mddev_is_clustered(mddev)) 6187 mddev->in_sync = 1; 6188 md_update_sb(mddev, 1); 6189 } 6190 /* disable policy to guarantee rdevs free resources for serialization */ 6191 mddev->serialize_policy = 0; 6192 mddev_destroy_serial_pool(mddev, NULL, true); 6193 } 6194 6195 void md_stop_writes(struct mddev *mddev) 6196 { 6197 mddev_lock_nointr(mddev); 6198 __md_stop_writes(mddev); 6199 mddev_unlock(mddev); 6200 } 6201 EXPORT_SYMBOL_GPL(md_stop_writes); 6202 6203 static void mddev_detach(struct mddev *mddev) 6204 { 6205 md_bitmap_wait_behind_writes(mddev); 6206 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6207 mddev->pers->quiesce(mddev, 1); 6208 mddev->pers->quiesce(mddev, 0); 6209 } 6210 md_unregister_thread(&mddev->thread); 6211 if (mddev->queue) 6212 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6213 } 6214 6215 static void __md_stop(struct mddev *mddev) 6216 { 6217 struct md_personality *pers = mddev->pers; 6218 md_bitmap_destroy(mddev); 6219 mddev_detach(mddev); 6220 /* Ensure ->event_work is done */ 6221 if (mddev->event_work.func) 6222 flush_workqueue(md_misc_wq); 6223 spin_lock(&mddev->lock); 6224 mddev->pers = NULL; 6225 spin_unlock(&mddev->lock); 6226 pers->free(mddev, mddev->private); 6227 mddev->private = NULL; 6228 if (pers->sync_request && mddev->to_remove == NULL) 6229 mddev->to_remove = &md_redundancy_group; 6230 module_put(pers->owner); 6231 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6232 } 6233 6234 void md_stop(struct mddev *mddev) 6235 { 6236 /* stop the array and free an attached data structures. 6237 * This is called from dm-raid 6238 */ 6239 __md_stop(mddev); 6240 bioset_exit(&mddev->bio_set); 6241 bioset_exit(&mddev->sync_set); 6242 } 6243 6244 EXPORT_SYMBOL_GPL(md_stop); 6245 6246 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6247 { 6248 int err = 0; 6249 int did_freeze = 0; 6250 6251 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6252 did_freeze = 1; 6253 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6254 md_wakeup_thread(mddev->thread); 6255 } 6256 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6257 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6258 if (mddev->sync_thread) 6259 /* Thread might be blocked waiting for metadata update 6260 * which will now never happen */ 6261 wake_up_process(mddev->sync_thread->tsk); 6262 6263 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6264 return -EBUSY; 6265 mddev_unlock(mddev); 6266 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6267 &mddev->recovery)); 6268 wait_event(mddev->sb_wait, 6269 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6270 mddev_lock_nointr(mddev); 6271 6272 mutex_lock(&mddev->open_mutex); 6273 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6274 mddev->sync_thread || 6275 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6276 pr_warn("md: %s still in use.\n",mdname(mddev)); 6277 if (did_freeze) { 6278 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6279 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6280 md_wakeup_thread(mddev->thread); 6281 } 6282 err = -EBUSY; 6283 goto out; 6284 } 6285 if (mddev->pers) { 6286 __md_stop_writes(mddev); 6287 6288 err = -ENXIO; 6289 if (mddev->ro==1) 6290 goto out; 6291 mddev->ro = 1; 6292 set_disk_ro(mddev->gendisk, 1); 6293 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6294 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6295 md_wakeup_thread(mddev->thread); 6296 sysfs_notify_dirent_safe(mddev->sysfs_state); 6297 err = 0; 6298 } 6299 out: 6300 mutex_unlock(&mddev->open_mutex); 6301 return err; 6302 } 6303 6304 /* mode: 6305 * 0 - completely stop and dis-assemble array 6306 * 2 - stop but do not disassemble array 6307 */ 6308 static int do_md_stop(struct mddev *mddev, int mode, 6309 struct block_device *bdev) 6310 { 6311 struct gendisk *disk = mddev->gendisk; 6312 struct md_rdev *rdev; 6313 int did_freeze = 0; 6314 6315 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6316 did_freeze = 1; 6317 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6318 md_wakeup_thread(mddev->thread); 6319 } 6320 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6321 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6322 if (mddev->sync_thread) 6323 /* Thread might be blocked waiting for metadata update 6324 * which will now never happen */ 6325 wake_up_process(mddev->sync_thread->tsk); 6326 6327 mddev_unlock(mddev); 6328 wait_event(resync_wait, (mddev->sync_thread == NULL && 6329 !test_bit(MD_RECOVERY_RUNNING, 6330 &mddev->recovery))); 6331 mddev_lock_nointr(mddev); 6332 6333 mutex_lock(&mddev->open_mutex); 6334 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6335 mddev->sysfs_active || 6336 mddev->sync_thread || 6337 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6338 pr_warn("md: %s still in use.\n",mdname(mddev)); 6339 mutex_unlock(&mddev->open_mutex); 6340 if (did_freeze) { 6341 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6343 md_wakeup_thread(mddev->thread); 6344 } 6345 return -EBUSY; 6346 } 6347 if (mddev->pers) { 6348 if (mddev->ro) 6349 set_disk_ro(disk, 0); 6350 6351 __md_stop_writes(mddev); 6352 __md_stop(mddev); 6353 mddev->queue->backing_dev_info->congested_fn = NULL; 6354 6355 /* tell userspace to handle 'inactive' */ 6356 sysfs_notify_dirent_safe(mddev->sysfs_state); 6357 6358 rdev_for_each(rdev, mddev) 6359 if (rdev->raid_disk >= 0) 6360 sysfs_unlink_rdev(mddev, rdev); 6361 6362 set_capacity(disk, 0); 6363 mutex_unlock(&mddev->open_mutex); 6364 mddev->changed = 1; 6365 revalidate_disk(disk); 6366 6367 if (mddev->ro) 6368 mddev->ro = 0; 6369 } else 6370 mutex_unlock(&mddev->open_mutex); 6371 /* 6372 * Free resources if final stop 6373 */ 6374 if (mode == 0) { 6375 pr_info("md: %s stopped.\n", mdname(mddev)); 6376 6377 if (mddev->bitmap_info.file) { 6378 struct file *f = mddev->bitmap_info.file; 6379 spin_lock(&mddev->lock); 6380 mddev->bitmap_info.file = NULL; 6381 spin_unlock(&mddev->lock); 6382 fput(f); 6383 } 6384 mddev->bitmap_info.offset = 0; 6385 6386 export_array(mddev); 6387 6388 md_clean(mddev); 6389 if (mddev->hold_active == UNTIL_STOP) 6390 mddev->hold_active = 0; 6391 } 6392 md_new_event(mddev); 6393 sysfs_notify_dirent_safe(mddev->sysfs_state); 6394 return 0; 6395 } 6396 6397 #ifndef MODULE 6398 static void autorun_array(struct mddev *mddev) 6399 { 6400 struct md_rdev *rdev; 6401 int err; 6402 6403 if (list_empty(&mddev->disks)) 6404 return; 6405 6406 pr_info("md: running: "); 6407 6408 rdev_for_each(rdev, mddev) { 6409 char b[BDEVNAME_SIZE]; 6410 pr_cont("<%s>", bdevname(rdev->bdev,b)); 6411 } 6412 pr_cont("\n"); 6413 6414 err = do_md_run(mddev); 6415 if (err) { 6416 pr_warn("md: do_md_run() returned %d\n", err); 6417 do_md_stop(mddev, 0, NULL); 6418 } 6419 } 6420 6421 /* 6422 * lets try to run arrays based on all disks that have arrived 6423 * until now. (those are in pending_raid_disks) 6424 * 6425 * the method: pick the first pending disk, collect all disks with 6426 * the same UUID, remove all from the pending list and put them into 6427 * the 'same_array' list. Then order this list based on superblock 6428 * update time (freshest comes first), kick out 'old' disks and 6429 * compare superblocks. If everything's fine then run it. 6430 * 6431 * If "unit" is allocated, then bump its reference count 6432 */ 6433 static void autorun_devices(int part) 6434 { 6435 struct md_rdev *rdev0, *rdev, *tmp; 6436 struct mddev *mddev; 6437 char b[BDEVNAME_SIZE]; 6438 6439 pr_info("md: autorun ...\n"); 6440 while (!list_empty(&pending_raid_disks)) { 6441 int unit; 6442 dev_t dev; 6443 LIST_HEAD(candidates); 6444 rdev0 = list_entry(pending_raid_disks.next, 6445 struct md_rdev, same_set); 6446 6447 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b)); 6448 INIT_LIST_HEAD(&candidates); 6449 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6450 if (super_90_load(rdev, rdev0, 0) >= 0) { 6451 pr_debug("md: adding %s ...\n", 6452 bdevname(rdev->bdev,b)); 6453 list_move(&rdev->same_set, &candidates); 6454 } 6455 /* 6456 * now we have a set of devices, with all of them having 6457 * mostly sane superblocks. It's time to allocate the 6458 * mddev. 6459 */ 6460 if (part) { 6461 dev = MKDEV(mdp_major, 6462 rdev0->preferred_minor << MdpMinorShift); 6463 unit = MINOR(dev) >> MdpMinorShift; 6464 } else { 6465 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6466 unit = MINOR(dev); 6467 } 6468 if (rdev0->preferred_minor != unit) { 6469 pr_warn("md: unit number in %s is bad: %d\n", 6470 bdevname(rdev0->bdev, b), rdev0->preferred_minor); 6471 break; 6472 } 6473 6474 md_probe(dev, NULL, NULL); 6475 mddev = mddev_find(dev); 6476 if (!mddev || !mddev->gendisk) { 6477 if (mddev) 6478 mddev_put(mddev); 6479 break; 6480 } 6481 if (mddev_lock(mddev)) 6482 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6483 else if (mddev->raid_disks || mddev->major_version 6484 || !list_empty(&mddev->disks)) { 6485 pr_warn("md: %s already running, cannot run %s\n", 6486 mdname(mddev), bdevname(rdev0->bdev,b)); 6487 mddev_unlock(mddev); 6488 } else { 6489 pr_debug("md: created %s\n", mdname(mddev)); 6490 mddev->persistent = 1; 6491 rdev_for_each_list(rdev, tmp, &candidates) { 6492 list_del_init(&rdev->same_set); 6493 if (bind_rdev_to_array(rdev, mddev)) 6494 export_rdev(rdev); 6495 } 6496 autorun_array(mddev); 6497 mddev_unlock(mddev); 6498 } 6499 /* on success, candidates will be empty, on error 6500 * it won't... 6501 */ 6502 rdev_for_each_list(rdev, tmp, &candidates) { 6503 list_del_init(&rdev->same_set); 6504 export_rdev(rdev); 6505 } 6506 mddev_put(mddev); 6507 } 6508 pr_info("md: ... autorun DONE.\n"); 6509 } 6510 #endif /* !MODULE */ 6511 6512 static int get_version(void __user *arg) 6513 { 6514 mdu_version_t ver; 6515 6516 ver.major = MD_MAJOR_VERSION; 6517 ver.minor = MD_MINOR_VERSION; 6518 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6519 6520 if (copy_to_user(arg, &ver, sizeof(ver))) 6521 return -EFAULT; 6522 6523 return 0; 6524 } 6525 6526 static int get_array_info(struct mddev *mddev, void __user *arg) 6527 { 6528 mdu_array_info_t info; 6529 int nr,working,insync,failed,spare; 6530 struct md_rdev *rdev; 6531 6532 nr = working = insync = failed = spare = 0; 6533 rcu_read_lock(); 6534 rdev_for_each_rcu(rdev, mddev) { 6535 nr++; 6536 if (test_bit(Faulty, &rdev->flags)) 6537 failed++; 6538 else { 6539 working++; 6540 if (test_bit(In_sync, &rdev->flags)) 6541 insync++; 6542 else if (test_bit(Journal, &rdev->flags)) 6543 /* TODO: add journal count to md_u.h */ 6544 ; 6545 else 6546 spare++; 6547 } 6548 } 6549 rcu_read_unlock(); 6550 6551 info.major_version = mddev->major_version; 6552 info.minor_version = mddev->minor_version; 6553 info.patch_version = MD_PATCHLEVEL_VERSION; 6554 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6555 info.level = mddev->level; 6556 info.size = mddev->dev_sectors / 2; 6557 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6558 info.size = -1; 6559 info.nr_disks = nr; 6560 info.raid_disks = mddev->raid_disks; 6561 info.md_minor = mddev->md_minor; 6562 info.not_persistent= !mddev->persistent; 6563 6564 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6565 info.state = 0; 6566 if (mddev->in_sync) 6567 info.state = (1<<MD_SB_CLEAN); 6568 if (mddev->bitmap && mddev->bitmap_info.offset) 6569 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6570 if (mddev_is_clustered(mddev)) 6571 info.state |= (1<<MD_SB_CLUSTERED); 6572 info.active_disks = insync; 6573 info.working_disks = working; 6574 info.failed_disks = failed; 6575 info.spare_disks = spare; 6576 6577 info.layout = mddev->layout; 6578 info.chunk_size = mddev->chunk_sectors << 9; 6579 6580 if (copy_to_user(arg, &info, sizeof(info))) 6581 return -EFAULT; 6582 6583 return 0; 6584 } 6585 6586 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6587 { 6588 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6589 char *ptr; 6590 int err; 6591 6592 file = kzalloc(sizeof(*file), GFP_NOIO); 6593 if (!file) 6594 return -ENOMEM; 6595 6596 err = 0; 6597 spin_lock(&mddev->lock); 6598 /* bitmap enabled */ 6599 if (mddev->bitmap_info.file) { 6600 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6601 sizeof(file->pathname)); 6602 if (IS_ERR(ptr)) 6603 err = PTR_ERR(ptr); 6604 else 6605 memmove(file->pathname, ptr, 6606 sizeof(file->pathname)-(ptr-file->pathname)); 6607 } 6608 spin_unlock(&mddev->lock); 6609 6610 if (err == 0 && 6611 copy_to_user(arg, file, sizeof(*file))) 6612 err = -EFAULT; 6613 6614 kfree(file); 6615 return err; 6616 } 6617 6618 static int get_disk_info(struct mddev *mddev, void __user * arg) 6619 { 6620 mdu_disk_info_t info; 6621 struct md_rdev *rdev; 6622 6623 if (copy_from_user(&info, arg, sizeof(info))) 6624 return -EFAULT; 6625 6626 rcu_read_lock(); 6627 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6628 if (rdev) { 6629 info.major = MAJOR(rdev->bdev->bd_dev); 6630 info.minor = MINOR(rdev->bdev->bd_dev); 6631 info.raid_disk = rdev->raid_disk; 6632 info.state = 0; 6633 if (test_bit(Faulty, &rdev->flags)) 6634 info.state |= (1<<MD_DISK_FAULTY); 6635 else if (test_bit(In_sync, &rdev->flags)) { 6636 info.state |= (1<<MD_DISK_ACTIVE); 6637 info.state |= (1<<MD_DISK_SYNC); 6638 } 6639 if (test_bit(Journal, &rdev->flags)) 6640 info.state |= (1<<MD_DISK_JOURNAL); 6641 if (test_bit(WriteMostly, &rdev->flags)) 6642 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6643 if (test_bit(FailFast, &rdev->flags)) 6644 info.state |= (1<<MD_DISK_FAILFAST); 6645 } else { 6646 info.major = info.minor = 0; 6647 info.raid_disk = -1; 6648 info.state = (1<<MD_DISK_REMOVED); 6649 } 6650 rcu_read_unlock(); 6651 6652 if (copy_to_user(arg, &info, sizeof(info))) 6653 return -EFAULT; 6654 6655 return 0; 6656 } 6657 6658 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info) 6659 { 6660 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE]; 6661 struct md_rdev *rdev; 6662 dev_t dev = MKDEV(info->major,info->minor); 6663 6664 if (mddev_is_clustered(mddev) && 6665 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6666 pr_warn("%s: Cannot add to clustered mddev.\n", 6667 mdname(mddev)); 6668 return -EINVAL; 6669 } 6670 6671 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6672 return -EOVERFLOW; 6673 6674 if (!mddev->raid_disks) { 6675 int err; 6676 /* expecting a device which has a superblock */ 6677 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6678 if (IS_ERR(rdev)) { 6679 pr_warn("md: md_import_device returned %ld\n", 6680 PTR_ERR(rdev)); 6681 return PTR_ERR(rdev); 6682 } 6683 if (!list_empty(&mddev->disks)) { 6684 struct md_rdev *rdev0 6685 = list_entry(mddev->disks.next, 6686 struct md_rdev, same_set); 6687 err = super_types[mddev->major_version] 6688 .load_super(rdev, rdev0, mddev->minor_version); 6689 if (err < 0) { 6690 pr_warn("md: %s has different UUID to %s\n", 6691 bdevname(rdev->bdev,b), 6692 bdevname(rdev0->bdev,b2)); 6693 export_rdev(rdev); 6694 return -EINVAL; 6695 } 6696 } 6697 err = bind_rdev_to_array(rdev, mddev); 6698 if (err) 6699 export_rdev(rdev); 6700 return err; 6701 } 6702 6703 /* 6704 * add_new_disk can be used once the array is assembled 6705 * to add "hot spares". They must already have a superblock 6706 * written 6707 */ 6708 if (mddev->pers) { 6709 int err; 6710 if (!mddev->pers->hot_add_disk) { 6711 pr_warn("%s: personality does not support diskops!\n", 6712 mdname(mddev)); 6713 return -EINVAL; 6714 } 6715 if (mddev->persistent) 6716 rdev = md_import_device(dev, mddev->major_version, 6717 mddev->minor_version); 6718 else 6719 rdev = md_import_device(dev, -1, -1); 6720 if (IS_ERR(rdev)) { 6721 pr_warn("md: md_import_device returned %ld\n", 6722 PTR_ERR(rdev)); 6723 return PTR_ERR(rdev); 6724 } 6725 /* set saved_raid_disk if appropriate */ 6726 if (!mddev->persistent) { 6727 if (info->state & (1<<MD_DISK_SYNC) && 6728 info->raid_disk < mddev->raid_disks) { 6729 rdev->raid_disk = info->raid_disk; 6730 set_bit(In_sync, &rdev->flags); 6731 clear_bit(Bitmap_sync, &rdev->flags); 6732 } else 6733 rdev->raid_disk = -1; 6734 rdev->saved_raid_disk = rdev->raid_disk; 6735 } else 6736 super_types[mddev->major_version]. 6737 validate_super(mddev, rdev); 6738 if ((info->state & (1<<MD_DISK_SYNC)) && 6739 rdev->raid_disk != info->raid_disk) { 6740 /* This was a hot-add request, but events doesn't 6741 * match, so reject it. 6742 */ 6743 export_rdev(rdev); 6744 return -EINVAL; 6745 } 6746 6747 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6748 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6749 set_bit(WriteMostly, &rdev->flags); 6750 else 6751 clear_bit(WriteMostly, &rdev->flags); 6752 if (info->state & (1<<MD_DISK_FAILFAST)) 6753 set_bit(FailFast, &rdev->flags); 6754 else 6755 clear_bit(FailFast, &rdev->flags); 6756 6757 if (info->state & (1<<MD_DISK_JOURNAL)) { 6758 struct md_rdev *rdev2; 6759 bool has_journal = false; 6760 6761 /* make sure no existing journal disk */ 6762 rdev_for_each(rdev2, mddev) { 6763 if (test_bit(Journal, &rdev2->flags)) { 6764 has_journal = true; 6765 break; 6766 } 6767 } 6768 if (has_journal || mddev->bitmap) { 6769 export_rdev(rdev); 6770 return -EBUSY; 6771 } 6772 set_bit(Journal, &rdev->flags); 6773 } 6774 /* 6775 * check whether the device shows up in other nodes 6776 */ 6777 if (mddev_is_clustered(mddev)) { 6778 if (info->state & (1 << MD_DISK_CANDIDATE)) 6779 set_bit(Candidate, &rdev->flags); 6780 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6781 /* --add initiated by this node */ 6782 err = md_cluster_ops->add_new_disk(mddev, rdev); 6783 if (err) { 6784 export_rdev(rdev); 6785 return err; 6786 } 6787 } 6788 } 6789 6790 rdev->raid_disk = -1; 6791 err = bind_rdev_to_array(rdev, mddev); 6792 6793 if (err) 6794 export_rdev(rdev); 6795 6796 if (mddev_is_clustered(mddev)) { 6797 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6798 if (!err) { 6799 err = md_cluster_ops->new_disk_ack(mddev, 6800 err == 0); 6801 if (err) 6802 md_kick_rdev_from_array(rdev); 6803 } 6804 } else { 6805 if (err) 6806 md_cluster_ops->add_new_disk_cancel(mddev); 6807 else 6808 err = add_bound_rdev(rdev); 6809 } 6810 6811 } else if (!err) 6812 err = add_bound_rdev(rdev); 6813 6814 return err; 6815 } 6816 6817 /* otherwise, add_new_disk is only allowed 6818 * for major_version==0 superblocks 6819 */ 6820 if (mddev->major_version != 0) { 6821 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6822 return -EINVAL; 6823 } 6824 6825 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6826 int err; 6827 rdev = md_import_device(dev, -1, 0); 6828 if (IS_ERR(rdev)) { 6829 pr_warn("md: error, md_import_device() returned %ld\n", 6830 PTR_ERR(rdev)); 6831 return PTR_ERR(rdev); 6832 } 6833 rdev->desc_nr = info->number; 6834 if (info->raid_disk < mddev->raid_disks) 6835 rdev->raid_disk = info->raid_disk; 6836 else 6837 rdev->raid_disk = -1; 6838 6839 if (rdev->raid_disk < mddev->raid_disks) 6840 if (info->state & (1<<MD_DISK_SYNC)) 6841 set_bit(In_sync, &rdev->flags); 6842 6843 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6844 set_bit(WriteMostly, &rdev->flags); 6845 if (info->state & (1<<MD_DISK_FAILFAST)) 6846 set_bit(FailFast, &rdev->flags); 6847 6848 if (!mddev->persistent) { 6849 pr_debug("md: nonpersistent superblock ...\n"); 6850 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6851 } else 6852 rdev->sb_start = calc_dev_sboffset(rdev); 6853 rdev->sectors = rdev->sb_start; 6854 6855 err = bind_rdev_to_array(rdev, mddev); 6856 if (err) { 6857 export_rdev(rdev); 6858 return err; 6859 } 6860 } 6861 6862 return 0; 6863 } 6864 6865 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6866 { 6867 char b[BDEVNAME_SIZE]; 6868 struct md_rdev *rdev; 6869 6870 if (!mddev->pers) 6871 return -ENODEV; 6872 6873 rdev = find_rdev(mddev, dev); 6874 if (!rdev) 6875 return -ENXIO; 6876 6877 if (rdev->raid_disk < 0) 6878 goto kick_rdev; 6879 6880 clear_bit(Blocked, &rdev->flags); 6881 remove_and_add_spares(mddev, rdev); 6882 6883 if (rdev->raid_disk >= 0) 6884 goto busy; 6885 6886 kick_rdev: 6887 if (mddev_is_clustered(mddev)) 6888 md_cluster_ops->remove_disk(mddev, rdev); 6889 6890 md_kick_rdev_from_array(rdev); 6891 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6892 if (mddev->thread) 6893 md_wakeup_thread(mddev->thread); 6894 else 6895 md_update_sb(mddev, 1); 6896 md_new_event(mddev); 6897 6898 return 0; 6899 busy: 6900 pr_debug("md: cannot remove active disk %s from %s ...\n", 6901 bdevname(rdev->bdev,b), mdname(mddev)); 6902 return -EBUSY; 6903 } 6904 6905 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6906 { 6907 char b[BDEVNAME_SIZE]; 6908 int err; 6909 struct md_rdev *rdev; 6910 6911 if (!mddev->pers) 6912 return -ENODEV; 6913 6914 if (mddev->major_version != 0) { 6915 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6916 mdname(mddev)); 6917 return -EINVAL; 6918 } 6919 if (!mddev->pers->hot_add_disk) { 6920 pr_warn("%s: personality does not support diskops!\n", 6921 mdname(mddev)); 6922 return -EINVAL; 6923 } 6924 6925 rdev = md_import_device(dev, -1, 0); 6926 if (IS_ERR(rdev)) { 6927 pr_warn("md: error, md_import_device() returned %ld\n", 6928 PTR_ERR(rdev)); 6929 return -EINVAL; 6930 } 6931 6932 if (mddev->persistent) 6933 rdev->sb_start = calc_dev_sboffset(rdev); 6934 else 6935 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512; 6936 6937 rdev->sectors = rdev->sb_start; 6938 6939 if (test_bit(Faulty, &rdev->flags)) { 6940 pr_warn("md: can not hot-add faulty %s disk to %s!\n", 6941 bdevname(rdev->bdev,b), mdname(mddev)); 6942 err = -EINVAL; 6943 goto abort_export; 6944 } 6945 6946 clear_bit(In_sync, &rdev->flags); 6947 rdev->desc_nr = -1; 6948 rdev->saved_raid_disk = -1; 6949 err = bind_rdev_to_array(rdev, mddev); 6950 if (err) 6951 goto abort_export; 6952 6953 /* 6954 * The rest should better be atomic, we can have disk failures 6955 * noticed in interrupt contexts ... 6956 */ 6957 6958 rdev->raid_disk = -1; 6959 6960 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6961 if (!mddev->thread) 6962 md_update_sb(mddev, 1); 6963 /* 6964 * Kick recovery, maybe this spare has to be added to the 6965 * array immediately. 6966 */ 6967 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6968 md_wakeup_thread(mddev->thread); 6969 md_new_event(mddev); 6970 return 0; 6971 6972 abort_export: 6973 export_rdev(rdev); 6974 return err; 6975 } 6976 6977 static int set_bitmap_file(struct mddev *mddev, int fd) 6978 { 6979 int err = 0; 6980 6981 if (mddev->pers) { 6982 if (!mddev->pers->quiesce || !mddev->thread) 6983 return -EBUSY; 6984 if (mddev->recovery || mddev->sync_thread) 6985 return -EBUSY; 6986 /* we should be able to change the bitmap.. */ 6987 } 6988 6989 if (fd >= 0) { 6990 struct inode *inode; 6991 struct file *f; 6992 6993 if (mddev->bitmap || mddev->bitmap_info.file) 6994 return -EEXIST; /* cannot add when bitmap is present */ 6995 f = fget(fd); 6996 6997 if (f == NULL) { 6998 pr_warn("%s: error: failed to get bitmap file\n", 6999 mdname(mddev)); 7000 return -EBADF; 7001 } 7002 7003 inode = f->f_mapping->host; 7004 if (!S_ISREG(inode->i_mode)) { 7005 pr_warn("%s: error: bitmap file must be a regular file\n", 7006 mdname(mddev)); 7007 err = -EBADF; 7008 } else if (!(f->f_mode & FMODE_WRITE)) { 7009 pr_warn("%s: error: bitmap file must open for write\n", 7010 mdname(mddev)); 7011 err = -EBADF; 7012 } else if (atomic_read(&inode->i_writecount) != 1) { 7013 pr_warn("%s: error: bitmap file is already in use\n", 7014 mdname(mddev)); 7015 err = -EBUSY; 7016 } 7017 if (err) { 7018 fput(f); 7019 return err; 7020 } 7021 mddev->bitmap_info.file = f; 7022 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7023 } else if (mddev->bitmap == NULL) 7024 return -ENOENT; /* cannot remove what isn't there */ 7025 err = 0; 7026 if (mddev->pers) { 7027 if (fd >= 0) { 7028 struct bitmap *bitmap; 7029 7030 bitmap = md_bitmap_create(mddev, -1); 7031 mddev_suspend(mddev); 7032 if (!IS_ERR(bitmap)) { 7033 mddev->bitmap = bitmap; 7034 err = md_bitmap_load(mddev); 7035 } else 7036 err = PTR_ERR(bitmap); 7037 if (err) { 7038 md_bitmap_destroy(mddev); 7039 fd = -1; 7040 } 7041 mddev_resume(mddev); 7042 } else if (fd < 0) { 7043 mddev_suspend(mddev); 7044 md_bitmap_destroy(mddev); 7045 mddev_resume(mddev); 7046 } 7047 } 7048 if (fd < 0) { 7049 struct file *f = mddev->bitmap_info.file; 7050 if (f) { 7051 spin_lock(&mddev->lock); 7052 mddev->bitmap_info.file = NULL; 7053 spin_unlock(&mddev->lock); 7054 fput(f); 7055 } 7056 } 7057 7058 return err; 7059 } 7060 7061 /* 7062 * set_array_info is used two different ways 7063 * The original usage is when creating a new array. 7064 * In this usage, raid_disks is > 0 and it together with 7065 * level, size, not_persistent,layout,chunksize determine the 7066 * shape of the array. 7067 * This will always create an array with a type-0.90.0 superblock. 7068 * The newer usage is when assembling an array. 7069 * In this case raid_disks will be 0, and the major_version field is 7070 * use to determine which style super-blocks are to be found on the devices. 7071 * The minor and patch _version numbers are also kept incase the 7072 * super_block handler wishes to interpret them. 7073 */ 7074 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info) 7075 { 7076 7077 if (info->raid_disks == 0) { 7078 /* just setting version number for superblock loading */ 7079 if (info->major_version < 0 || 7080 info->major_version >= ARRAY_SIZE(super_types) || 7081 super_types[info->major_version].name == NULL) { 7082 /* maybe try to auto-load a module? */ 7083 pr_warn("md: superblock version %d not known\n", 7084 info->major_version); 7085 return -EINVAL; 7086 } 7087 mddev->major_version = info->major_version; 7088 mddev->minor_version = info->minor_version; 7089 mddev->patch_version = info->patch_version; 7090 mddev->persistent = !info->not_persistent; 7091 /* ensure mddev_put doesn't delete this now that there 7092 * is some minimal configuration. 7093 */ 7094 mddev->ctime = ktime_get_real_seconds(); 7095 return 0; 7096 } 7097 mddev->major_version = MD_MAJOR_VERSION; 7098 mddev->minor_version = MD_MINOR_VERSION; 7099 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7100 mddev->ctime = ktime_get_real_seconds(); 7101 7102 mddev->level = info->level; 7103 mddev->clevel[0] = 0; 7104 mddev->dev_sectors = 2 * (sector_t)info->size; 7105 mddev->raid_disks = info->raid_disks; 7106 /* don't set md_minor, it is determined by which /dev/md* was 7107 * openned 7108 */ 7109 if (info->state & (1<<MD_SB_CLEAN)) 7110 mddev->recovery_cp = MaxSector; 7111 else 7112 mddev->recovery_cp = 0; 7113 mddev->persistent = ! info->not_persistent; 7114 mddev->external = 0; 7115 7116 mddev->layout = info->layout; 7117 if (mddev->level == 0) 7118 /* Cannot trust RAID0 layout info here */ 7119 mddev->layout = -1; 7120 mddev->chunk_sectors = info->chunk_size >> 9; 7121 7122 if (mddev->persistent) { 7123 mddev->max_disks = MD_SB_DISKS; 7124 mddev->flags = 0; 7125 mddev->sb_flags = 0; 7126 } 7127 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7128 7129 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7130 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7131 mddev->bitmap_info.offset = 0; 7132 7133 mddev->reshape_position = MaxSector; 7134 7135 /* 7136 * Generate a 128 bit UUID 7137 */ 7138 get_random_bytes(mddev->uuid, 16); 7139 7140 mddev->new_level = mddev->level; 7141 mddev->new_chunk_sectors = mddev->chunk_sectors; 7142 mddev->new_layout = mddev->layout; 7143 mddev->delta_disks = 0; 7144 mddev->reshape_backwards = 0; 7145 7146 return 0; 7147 } 7148 7149 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7150 { 7151 lockdep_assert_held(&mddev->reconfig_mutex); 7152 7153 if (mddev->external_size) 7154 return; 7155 7156 mddev->array_sectors = array_sectors; 7157 } 7158 EXPORT_SYMBOL(md_set_array_sectors); 7159 7160 static int update_size(struct mddev *mddev, sector_t num_sectors) 7161 { 7162 struct md_rdev *rdev; 7163 int rv; 7164 int fit = (num_sectors == 0); 7165 sector_t old_dev_sectors = mddev->dev_sectors; 7166 7167 if (mddev->pers->resize == NULL) 7168 return -EINVAL; 7169 /* The "num_sectors" is the number of sectors of each device that 7170 * is used. This can only make sense for arrays with redundancy. 7171 * linear and raid0 always use whatever space is available. We can only 7172 * consider changing this number if no resync or reconstruction is 7173 * happening, and if the new size is acceptable. It must fit before the 7174 * sb_start or, if that is <data_offset, it must fit before the size 7175 * of each device. If num_sectors is zero, we find the largest size 7176 * that fits. 7177 */ 7178 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7179 mddev->sync_thread) 7180 return -EBUSY; 7181 if (mddev->ro) 7182 return -EROFS; 7183 7184 rdev_for_each(rdev, mddev) { 7185 sector_t avail = rdev->sectors; 7186 7187 if (fit && (num_sectors == 0 || num_sectors > avail)) 7188 num_sectors = avail; 7189 if (avail < num_sectors) 7190 return -ENOSPC; 7191 } 7192 rv = mddev->pers->resize(mddev, num_sectors); 7193 if (!rv) { 7194 if (mddev_is_clustered(mddev)) 7195 md_cluster_ops->update_size(mddev, old_dev_sectors); 7196 else if (mddev->queue) { 7197 set_capacity(mddev->gendisk, mddev->array_sectors); 7198 revalidate_disk(mddev->gendisk); 7199 } 7200 } 7201 return rv; 7202 } 7203 7204 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7205 { 7206 int rv; 7207 struct md_rdev *rdev; 7208 /* change the number of raid disks */ 7209 if (mddev->pers->check_reshape == NULL) 7210 return -EINVAL; 7211 if (mddev->ro) 7212 return -EROFS; 7213 if (raid_disks <= 0 || 7214 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7215 return -EINVAL; 7216 if (mddev->sync_thread || 7217 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7218 mddev->reshape_position != MaxSector) 7219 return -EBUSY; 7220 7221 rdev_for_each(rdev, mddev) { 7222 if (mddev->raid_disks < raid_disks && 7223 rdev->data_offset < rdev->new_data_offset) 7224 return -EINVAL; 7225 if (mddev->raid_disks > raid_disks && 7226 rdev->data_offset > rdev->new_data_offset) 7227 return -EINVAL; 7228 } 7229 7230 mddev->delta_disks = raid_disks - mddev->raid_disks; 7231 if (mddev->delta_disks < 0) 7232 mddev->reshape_backwards = 1; 7233 else if (mddev->delta_disks > 0) 7234 mddev->reshape_backwards = 0; 7235 7236 rv = mddev->pers->check_reshape(mddev); 7237 if (rv < 0) { 7238 mddev->delta_disks = 0; 7239 mddev->reshape_backwards = 0; 7240 } 7241 return rv; 7242 } 7243 7244 /* 7245 * update_array_info is used to change the configuration of an 7246 * on-line array. 7247 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7248 * fields in the info are checked against the array. 7249 * Any differences that cannot be handled will cause an error. 7250 * Normally, only one change can be managed at a time. 7251 */ 7252 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7253 { 7254 int rv = 0; 7255 int cnt = 0; 7256 int state = 0; 7257 7258 /* calculate expected state,ignoring low bits */ 7259 if (mddev->bitmap && mddev->bitmap_info.offset) 7260 state |= (1 << MD_SB_BITMAP_PRESENT); 7261 7262 if (mddev->major_version != info->major_version || 7263 mddev->minor_version != info->minor_version || 7264 /* mddev->patch_version != info->patch_version || */ 7265 mddev->ctime != info->ctime || 7266 mddev->level != info->level || 7267 /* mddev->layout != info->layout || */ 7268 mddev->persistent != !info->not_persistent || 7269 mddev->chunk_sectors != info->chunk_size >> 9 || 7270 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7271 ((state^info->state) & 0xfffffe00) 7272 ) 7273 return -EINVAL; 7274 /* Check there is only one change */ 7275 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7276 cnt++; 7277 if (mddev->raid_disks != info->raid_disks) 7278 cnt++; 7279 if (mddev->layout != info->layout) 7280 cnt++; 7281 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7282 cnt++; 7283 if (cnt == 0) 7284 return 0; 7285 if (cnt > 1) 7286 return -EINVAL; 7287 7288 if (mddev->layout != info->layout) { 7289 /* Change layout 7290 * we don't need to do anything at the md level, the 7291 * personality will take care of it all. 7292 */ 7293 if (mddev->pers->check_reshape == NULL) 7294 return -EINVAL; 7295 else { 7296 mddev->new_layout = info->layout; 7297 rv = mddev->pers->check_reshape(mddev); 7298 if (rv) 7299 mddev->new_layout = mddev->layout; 7300 return rv; 7301 } 7302 } 7303 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7304 rv = update_size(mddev, (sector_t)info->size * 2); 7305 7306 if (mddev->raid_disks != info->raid_disks) 7307 rv = update_raid_disks(mddev, info->raid_disks); 7308 7309 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7310 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7311 rv = -EINVAL; 7312 goto err; 7313 } 7314 if (mddev->recovery || mddev->sync_thread) { 7315 rv = -EBUSY; 7316 goto err; 7317 } 7318 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7319 struct bitmap *bitmap; 7320 /* add the bitmap */ 7321 if (mddev->bitmap) { 7322 rv = -EEXIST; 7323 goto err; 7324 } 7325 if (mddev->bitmap_info.default_offset == 0) { 7326 rv = -EINVAL; 7327 goto err; 7328 } 7329 mddev->bitmap_info.offset = 7330 mddev->bitmap_info.default_offset; 7331 mddev->bitmap_info.space = 7332 mddev->bitmap_info.default_space; 7333 bitmap = md_bitmap_create(mddev, -1); 7334 mddev_suspend(mddev); 7335 if (!IS_ERR(bitmap)) { 7336 mddev->bitmap = bitmap; 7337 rv = md_bitmap_load(mddev); 7338 } else 7339 rv = PTR_ERR(bitmap); 7340 if (rv) 7341 md_bitmap_destroy(mddev); 7342 mddev_resume(mddev); 7343 } else { 7344 /* remove the bitmap */ 7345 if (!mddev->bitmap) { 7346 rv = -ENOENT; 7347 goto err; 7348 } 7349 if (mddev->bitmap->storage.file) { 7350 rv = -EINVAL; 7351 goto err; 7352 } 7353 if (mddev->bitmap_info.nodes) { 7354 /* hold PW on all the bitmap lock */ 7355 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7356 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7357 rv = -EPERM; 7358 md_cluster_ops->unlock_all_bitmaps(mddev); 7359 goto err; 7360 } 7361 7362 mddev->bitmap_info.nodes = 0; 7363 md_cluster_ops->leave(mddev); 7364 } 7365 mddev_suspend(mddev); 7366 md_bitmap_destroy(mddev); 7367 mddev_resume(mddev); 7368 mddev->bitmap_info.offset = 0; 7369 } 7370 } 7371 md_update_sb(mddev, 1); 7372 return rv; 7373 err: 7374 return rv; 7375 } 7376 7377 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7378 { 7379 struct md_rdev *rdev; 7380 int err = 0; 7381 7382 if (mddev->pers == NULL) 7383 return -ENODEV; 7384 7385 rcu_read_lock(); 7386 rdev = md_find_rdev_rcu(mddev, dev); 7387 if (!rdev) 7388 err = -ENODEV; 7389 else { 7390 md_error(mddev, rdev); 7391 if (!test_bit(Faulty, &rdev->flags)) 7392 err = -EBUSY; 7393 } 7394 rcu_read_unlock(); 7395 return err; 7396 } 7397 7398 /* 7399 * We have a problem here : there is no easy way to give a CHS 7400 * virtual geometry. We currently pretend that we have a 2 heads 7401 * 4 sectors (with a BIG number of cylinders...). This drives 7402 * dosfs just mad... ;-) 7403 */ 7404 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7405 { 7406 struct mddev *mddev = bdev->bd_disk->private_data; 7407 7408 geo->heads = 2; 7409 geo->sectors = 4; 7410 geo->cylinders = mddev->array_sectors / 8; 7411 return 0; 7412 } 7413 7414 static inline bool md_ioctl_valid(unsigned int cmd) 7415 { 7416 switch (cmd) { 7417 case ADD_NEW_DISK: 7418 case BLKROSET: 7419 case GET_ARRAY_INFO: 7420 case GET_BITMAP_FILE: 7421 case GET_DISK_INFO: 7422 case HOT_ADD_DISK: 7423 case HOT_REMOVE_DISK: 7424 case RAID_AUTORUN: 7425 case RAID_VERSION: 7426 case RESTART_ARRAY_RW: 7427 case RUN_ARRAY: 7428 case SET_ARRAY_INFO: 7429 case SET_BITMAP_FILE: 7430 case SET_DISK_FAULTY: 7431 case STOP_ARRAY: 7432 case STOP_ARRAY_RO: 7433 case CLUSTERED_DISK_NACK: 7434 return true; 7435 default: 7436 return false; 7437 } 7438 } 7439 7440 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7441 unsigned int cmd, unsigned long arg) 7442 { 7443 int err = 0; 7444 void __user *argp = (void __user *)arg; 7445 struct mddev *mddev = NULL; 7446 int ro; 7447 bool did_set_md_closing = false; 7448 7449 if (!md_ioctl_valid(cmd)) 7450 return -ENOTTY; 7451 7452 switch (cmd) { 7453 case RAID_VERSION: 7454 case GET_ARRAY_INFO: 7455 case GET_DISK_INFO: 7456 break; 7457 default: 7458 if (!capable(CAP_SYS_ADMIN)) 7459 return -EACCES; 7460 } 7461 7462 /* 7463 * Commands dealing with the RAID driver but not any 7464 * particular array: 7465 */ 7466 switch (cmd) { 7467 case RAID_VERSION: 7468 err = get_version(argp); 7469 goto out; 7470 7471 #ifndef MODULE 7472 case RAID_AUTORUN: 7473 err = 0; 7474 autostart_arrays(arg); 7475 goto out; 7476 #endif 7477 default:; 7478 } 7479 7480 /* 7481 * Commands creating/starting a new array: 7482 */ 7483 7484 mddev = bdev->bd_disk->private_data; 7485 7486 if (!mddev) { 7487 BUG(); 7488 goto out; 7489 } 7490 7491 /* Some actions do not requires the mutex */ 7492 switch (cmd) { 7493 case GET_ARRAY_INFO: 7494 if (!mddev->raid_disks && !mddev->external) 7495 err = -ENODEV; 7496 else 7497 err = get_array_info(mddev, argp); 7498 goto out; 7499 7500 case GET_DISK_INFO: 7501 if (!mddev->raid_disks && !mddev->external) 7502 err = -ENODEV; 7503 else 7504 err = get_disk_info(mddev, argp); 7505 goto out; 7506 7507 case SET_DISK_FAULTY: 7508 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7509 goto out; 7510 7511 case GET_BITMAP_FILE: 7512 err = get_bitmap_file(mddev, argp); 7513 goto out; 7514 7515 } 7516 7517 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7518 flush_rdev_wq(mddev); 7519 7520 if (cmd == HOT_REMOVE_DISK) 7521 /* need to ensure recovery thread has run */ 7522 wait_event_interruptible_timeout(mddev->sb_wait, 7523 !test_bit(MD_RECOVERY_NEEDED, 7524 &mddev->recovery), 7525 msecs_to_jiffies(5000)); 7526 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7527 /* Need to flush page cache, and ensure no-one else opens 7528 * and writes 7529 */ 7530 mutex_lock(&mddev->open_mutex); 7531 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7532 mutex_unlock(&mddev->open_mutex); 7533 err = -EBUSY; 7534 goto out; 7535 } 7536 WARN_ON_ONCE(test_bit(MD_CLOSING, &mddev->flags)); 7537 set_bit(MD_CLOSING, &mddev->flags); 7538 did_set_md_closing = true; 7539 mutex_unlock(&mddev->open_mutex); 7540 sync_blockdev(bdev); 7541 } 7542 err = mddev_lock(mddev); 7543 if (err) { 7544 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7545 err, cmd); 7546 goto out; 7547 } 7548 7549 if (cmd == SET_ARRAY_INFO) { 7550 mdu_array_info_t info; 7551 if (!arg) 7552 memset(&info, 0, sizeof(info)); 7553 else if (copy_from_user(&info, argp, sizeof(info))) { 7554 err = -EFAULT; 7555 goto unlock; 7556 } 7557 if (mddev->pers) { 7558 err = update_array_info(mddev, &info); 7559 if (err) { 7560 pr_warn("md: couldn't update array info. %d\n", err); 7561 goto unlock; 7562 } 7563 goto unlock; 7564 } 7565 if (!list_empty(&mddev->disks)) { 7566 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7567 err = -EBUSY; 7568 goto unlock; 7569 } 7570 if (mddev->raid_disks) { 7571 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7572 err = -EBUSY; 7573 goto unlock; 7574 } 7575 err = set_array_info(mddev, &info); 7576 if (err) { 7577 pr_warn("md: couldn't set array info. %d\n", err); 7578 goto unlock; 7579 } 7580 goto unlock; 7581 } 7582 7583 /* 7584 * Commands querying/configuring an existing array: 7585 */ 7586 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7587 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7588 if ((!mddev->raid_disks && !mddev->external) 7589 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7590 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7591 && cmd != GET_BITMAP_FILE) { 7592 err = -ENODEV; 7593 goto unlock; 7594 } 7595 7596 /* 7597 * Commands even a read-only array can execute: 7598 */ 7599 switch (cmd) { 7600 case RESTART_ARRAY_RW: 7601 err = restart_array(mddev); 7602 goto unlock; 7603 7604 case STOP_ARRAY: 7605 err = do_md_stop(mddev, 0, bdev); 7606 goto unlock; 7607 7608 case STOP_ARRAY_RO: 7609 err = md_set_readonly(mddev, bdev); 7610 goto unlock; 7611 7612 case HOT_REMOVE_DISK: 7613 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7614 goto unlock; 7615 7616 case ADD_NEW_DISK: 7617 /* We can support ADD_NEW_DISK on read-only arrays 7618 * only if we are re-adding a preexisting device. 7619 * So require mddev->pers and MD_DISK_SYNC. 7620 */ 7621 if (mddev->pers) { 7622 mdu_disk_info_t info; 7623 if (copy_from_user(&info, argp, sizeof(info))) 7624 err = -EFAULT; 7625 else if (!(info.state & (1<<MD_DISK_SYNC))) 7626 /* Need to clear read-only for this */ 7627 break; 7628 else 7629 err = add_new_disk(mddev, &info); 7630 goto unlock; 7631 } 7632 break; 7633 7634 case BLKROSET: 7635 if (get_user(ro, (int __user *)(arg))) { 7636 err = -EFAULT; 7637 goto unlock; 7638 } 7639 err = -EINVAL; 7640 7641 /* if the bdev is going readonly the value of mddev->ro 7642 * does not matter, no writes are coming 7643 */ 7644 if (ro) 7645 goto unlock; 7646 7647 /* are we are already prepared for writes? */ 7648 if (mddev->ro != 1) 7649 goto unlock; 7650 7651 /* transitioning to readauto need only happen for 7652 * arrays that call md_write_start 7653 */ 7654 if (mddev->pers) { 7655 err = restart_array(mddev); 7656 if (err == 0) { 7657 mddev->ro = 2; 7658 set_disk_ro(mddev->gendisk, 0); 7659 } 7660 } 7661 goto unlock; 7662 } 7663 7664 /* 7665 * The remaining ioctls are changing the state of the 7666 * superblock, so we do not allow them on read-only arrays. 7667 */ 7668 if (mddev->ro && mddev->pers) { 7669 if (mddev->ro == 2) { 7670 mddev->ro = 0; 7671 sysfs_notify_dirent_safe(mddev->sysfs_state); 7672 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7673 /* mddev_unlock will wake thread */ 7674 /* If a device failed while we were read-only, we 7675 * need to make sure the metadata is updated now. 7676 */ 7677 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7678 mddev_unlock(mddev); 7679 wait_event(mddev->sb_wait, 7680 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7681 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7682 mddev_lock_nointr(mddev); 7683 } 7684 } else { 7685 err = -EROFS; 7686 goto unlock; 7687 } 7688 } 7689 7690 switch (cmd) { 7691 case ADD_NEW_DISK: 7692 { 7693 mdu_disk_info_t info; 7694 if (copy_from_user(&info, argp, sizeof(info))) 7695 err = -EFAULT; 7696 else 7697 err = add_new_disk(mddev, &info); 7698 goto unlock; 7699 } 7700 7701 case CLUSTERED_DISK_NACK: 7702 if (mddev_is_clustered(mddev)) 7703 md_cluster_ops->new_disk_ack(mddev, false); 7704 else 7705 err = -EINVAL; 7706 goto unlock; 7707 7708 case HOT_ADD_DISK: 7709 err = hot_add_disk(mddev, new_decode_dev(arg)); 7710 goto unlock; 7711 7712 case RUN_ARRAY: 7713 err = do_md_run(mddev); 7714 goto unlock; 7715 7716 case SET_BITMAP_FILE: 7717 err = set_bitmap_file(mddev, (int)arg); 7718 goto unlock; 7719 7720 default: 7721 err = -EINVAL; 7722 goto unlock; 7723 } 7724 7725 unlock: 7726 if (mddev->hold_active == UNTIL_IOCTL && 7727 err != -EINVAL) 7728 mddev->hold_active = 0; 7729 mddev_unlock(mddev); 7730 out: 7731 if(did_set_md_closing) 7732 clear_bit(MD_CLOSING, &mddev->flags); 7733 return err; 7734 } 7735 #ifdef CONFIG_COMPAT 7736 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7737 unsigned int cmd, unsigned long arg) 7738 { 7739 switch (cmd) { 7740 case HOT_REMOVE_DISK: 7741 case HOT_ADD_DISK: 7742 case SET_DISK_FAULTY: 7743 case SET_BITMAP_FILE: 7744 /* These take in integer arg, do not convert */ 7745 break; 7746 default: 7747 arg = (unsigned long)compat_ptr(arg); 7748 break; 7749 } 7750 7751 return md_ioctl(bdev, mode, cmd, arg); 7752 } 7753 #endif /* CONFIG_COMPAT */ 7754 7755 static int md_open(struct block_device *bdev, fmode_t mode) 7756 { 7757 /* 7758 * Succeed if we can lock the mddev, which confirms that 7759 * it isn't being stopped right now. 7760 */ 7761 struct mddev *mddev = mddev_find(bdev->bd_dev); 7762 int err; 7763 7764 if (!mddev) 7765 return -ENODEV; 7766 7767 if (mddev->gendisk != bdev->bd_disk) { 7768 /* we are racing with mddev_put which is discarding this 7769 * bd_disk. 7770 */ 7771 mddev_put(mddev); 7772 /* Wait until bdev->bd_disk is definitely gone */ 7773 if (work_pending(&mddev->del_work)) 7774 flush_workqueue(md_misc_wq); 7775 /* Then retry the open from the top */ 7776 return -ERESTARTSYS; 7777 } 7778 BUG_ON(mddev != bdev->bd_disk->private_data); 7779 7780 if ((err = mutex_lock_interruptible(&mddev->open_mutex))) 7781 goto out; 7782 7783 if (test_bit(MD_CLOSING, &mddev->flags)) { 7784 mutex_unlock(&mddev->open_mutex); 7785 err = -ENODEV; 7786 goto out; 7787 } 7788 7789 err = 0; 7790 atomic_inc(&mddev->openers); 7791 mutex_unlock(&mddev->open_mutex); 7792 7793 check_disk_change(bdev); 7794 out: 7795 if (err) 7796 mddev_put(mddev); 7797 return err; 7798 } 7799 7800 static void md_release(struct gendisk *disk, fmode_t mode) 7801 { 7802 struct mddev *mddev = disk->private_data; 7803 7804 BUG_ON(!mddev); 7805 atomic_dec(&mddev->openers); 7806 mddev_put(mddev); 7807 } 7808 7809 static int md_media_changed(struct gendisk *disk) 7810 { 7811 struct mddev *mddev = disk->private_data; 7812 7813 return mddev->changed; 7814 } 7815 7816 static int md_revalidate(struct gendisk *disk) 7817 { 7818 struct mddev *mddev = disk->private_data; 7819 7820 mddev->changed = 0; 7821 return 0; 7822 } 7823 static const struct block_device_operations md_fops = 7824 { 7825 .owner = THIS_MODULE, 7826 .open = md_open, 7827 .release = md_release, 7828 .ioctl = md_ioctl, 7829 #ifdef CONFIG_COMPAT 7830 .compat_ioctl = md_compat_ioctl, 7831 #endif 7832 .getgeo = md_getgeo, 7833 .media_changed = md_media_changed, 7834 .revalidate_disk= md_revalidate, 7835 }; 7836 7837 static int md_thread(void *arg) 7838 { 7839 struct md_thread *thread = arg; 7840 7841 /* 7842 * md_thread is a 'system-thread', it's priority should be very 7843 * high. We avoid resource deadlocks individually in each 7844 * raid personality. (RAID5 does preallocation) We also use RR and 7845 * the very same RT priority as kswapd, thus we will never get 7846 * into a priority inversion deadlock. 7847 * 7848 * we definitely have to have equal or higher priority than 7849 * bdflush, otherwise bdflush will deadlock if there are too 7850 * many dirty RAID5 blocks. 7851 */ 7852 7853 allow_signal(SIGKILL); 7854 while (!kthread_should_stop()) { 7855 7856 /* We need to wait INTERRUPTIBLE so that 7857 * we don't add to the load-average. 7858 * That means we need to be sure no signals are 7859 * pending 7860 */ 7861 if (signal_pending(current)) 7862 flush_signals(current); 7863 7864 wait_event_interruptible_timeout 7865 (thread->wqueue, 7866 test_bit(THREAD_WAKEUP, &thread->flags) 7867 || kthread_should_stop() || kthread_should_park(), 7868 thread->timeout); 7869 7870 clear_bit(THREAD_WAKEUP, &thread->flags); 7871 if (kthread_should_park()) 7872 kthread_parkme(); 7873 if (!kthread_should_stop()) 7874 thread->run(thread); 7875 } 7876 7877 return 0; 7878 } 7879 7880 void md_wakeup_thread(struct md_thread *thread) 7881 { 7882 if (thread) { 7883 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7884 set_bit(THREAD_WAKEUP, &thread->flags); 7885 wake_up(&thread->wqueue); 7886 } 7887 } 7888 EXPORT_SYMBOL(md_wakeup_thread); 7889 7890 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7891 struct mddev *mddev, const char *name) 7892 { 7893 struct md_thread *thread; 7894 7895 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7896 if (!thread) 7897 return NULL; 7898 7899 init_waitqueue_head(&thread->wqueue); 7900 7901 thread->run = run; 7902 thread->mddev = mddev; 7903 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7904 thread->tsk = kthread_run(md_thread, thread, 7905 "%s_%s", 7906 mdname(thread->mddev), 7907 name); 7908 if (IS_ERR(thread->tsk)) { 7909 kfree(thread); 7910 return NULL; 7911 } 7912 return thread; 7913 } 7914 EXPORT_SYMBOL(md_register_thread); 7915 7916 void md_unregister_thread(struct md_thread **threadp) 7917 { 7918 struct md_thread *thread = *threadp; 7919 if (!thread) 7920 return; 7921 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7922 /* Locking ensures that mddev_unlock does not wake_up a 7923 * non-existent thread 7924 */ 7925 spin_lock(&pers_lock); 7926 *threadp = NULL; 7927 spin_unlock(&pers_lock); 7928 7929 kthread_stop(thread->tsk); 7930 kfree(thread); 7931 } 7932 EXPORT_SYMBOL(md_unregister_thread); 7933 7934 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7935 { 7936 if (!rdev || test_bit(Faulty, &rdev->flags)) 7937 return; 7938 7939 if (!mddev->pers || !mddev->pers->error_handler) 7940 return; 7941 mddev->pers->error_handler(mddev,rdev); 7942 if (mddev->degraded) 7943 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7944 sysfs_notify_dirent_safe(rdev->sysfs_state); 7945 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7946 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7947 md_wakeup_thread(mddev->thread); 7948 if (mddev->event_work.func) 7949 queue_work(md_misc_wq, &mddev->event_work); 7950 md_new_event(mddev); 7951 } 7952 EXPORT_SYMBOL(md_error); 7953 7954 /* seq_file implementation /proc/mdstat */ 7955 7956 static void status_unused(struct seq_file *seq) 7957 { 7958 int i = 0; 7959 struct md_rdev *rdev; 7960 7961 seq_printf(seq, "unused devices: "); 7962 7963 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7964 char b[BDEVNAME_SIZE]; 7965 i++; 7966 seq_printf(seq, "%s ", 7967 bdevname(rdev->bdev,b)); 7968 } 7969 if (!i) 7970 seq_printf(seq, "<none>"); 7971 7972 seq_printf(seq, "\n"); 7973 } 7974 7975 static int status_resync(struct seq_file *seq, struct mddev *mddev) 7976 { 7977 sector_t max_sectors, resync, res; 7978 unsigned long dt, db = 0; 7979 sector_t rt, curr_mark_cnt, resync_mark_cnt; 7980 int scale, recovery_active; 7981 unsigned int per_milli; 7982 7983 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 7984 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 7985 max_sectors = mddev->resync_max_sectors; 7986 else 7987 max_sectors = mddev->dev_sectors; 7988 7989 resync = mddev->curr_resync; 7990 if (resync <= 3) { 7991 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 7992 /* Still cleaning up */ 7993 resync = max_sectors; 7994 } else if (resync > max_sectors) 7995 resync = max_sectors; 7996 else 7997 resync -= atomic_read(&mddev->recovery_active); 7998 7999 if (resync == 0) { 8000 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8001 struct md_rdev *rdev; 8002 8003 rdev_for_each(rdev, mddev) 8004 if (rdev->raid_disk >= 0 && 8005 !test_bit(Faulty, &rdev->flags) && 8006 rdev->recovery_offset != MaxSector && 8007 rdev->recovery_offset) { 8008 seq_printf(seq, "\trecover=REMOTE"); 8009 return 1; 8010 } 8011 if (mddev->reshape_position != MaxSector) 8012 seq_printf(seq, "\treshape=REMOTE"); 8013 else 8014 seq_printf(seq, "\tresync=REMOTE"); 8015 return 1; 8016 } 8017 if (mddev->recovery_cp < MaxSector) { 8018 seq_printf(seq, "\tresync=PENDING"); 8019 return 1; 8020 } 8021 return 0; 8022 } 8023 if (resync < 3) { 8024 seq_printf(seq, "\tresync=DELAYED"); 8025 return 1; 8026 } 8027 8028 WARN_ON(max_sectors == 0); 8029 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8030 * in a sector_t, and (max_sectors>>scale) will fit in a 8031 * u32, as those are the requirements for sector_div. 8032 * Thus 'scale' must be at least 10 8033 */ 8034 scale = 10; 8035 if (sizeof(sector_t) > sizeof(unsigned long)) { 8036 while ( max_sectors/2 > (1ULL<<(scale+32))) 8037 scale++; 8038 } 8039 res = (resync>>scale)*1000; 8040 sector_div(res, (u32)((max_sectors>>scale)+1)); 8041 8042 per_milli = res; 8043 { 8044 int i, x = per_milli/50, y = 20-x; 8045 seq_printf(seq, "["); 8046 for (i = 0; i < x; i++) 8047 seq_printf(seq, "="); 8048 seq_printf(seq, ">"); 8049 for (i = 0; i < y; i++) 8050 seq_printf(seq, "."); 8051 seq_printf(seq, "] "); 8052 } 8053 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8054 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8055 "reshape" : 8056 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8057 "check" : 8058 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8059 "resync" : "recovery"))), 8060 per_milli/10, per_milli % 10, 8061 (unsigned long long) resync/2, 8062 (unsigned long long) max_sectors/2); 8063 8064 /* 8065 * dt: time from mark until now 8066 * db: blocks written from mark until now 8067 * rt: remaining time 8068 * 8069 * rt is a sector_t, which is always 64bit now. We are keeping 8070 * the original algorithm, but it is not really necessary. 8071 * 8072 * Original algorithm: 8073 * So we divide before multiply in case it is 32bit and close 8074 * to the limit. 8075 * We scale the divisor (db) by 32 to avoid losing precision 8076 * near the end of resync when the number of remaining sectors 8077 * is close to 'db'. 8078 * We then divide rt by 32 after multiplying by db to compensate. 8079 * The '+1' avoids division by zero if db is very small. 8080 */ 8081 dt = ((jiffies - mddev->resync_mark) / HZ); 8082 if (!dt) dt++; 8083 8084 curr_mark_cnt = mddev->curr_mark_cnt; 8085 recovery_active = atomic_read(&mddev->recovery_active); 8086 resync_mark_cnt = mddev->resync_mark_cnt; 8087 8088 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8089 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8090 8091 rt = max_sectors - resync; /* number of remaining sectors */ 8092 rt = div64_u64(rt, db/32+1); 8093 rt *= dt; 8094 rt >>= 5; 8095 8096 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8097 ((unsigned long)rt % 60)/6); 8098 8099 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8100 return 1; 8101 } 8102 8103 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8104 { 8105 struct list_head *tmp; 8106 loff_t l = *pos; 8107 struct mddev *mddev; 8108 8109 if (l >= 0x10000) 8110 return NULL; 8111 if (!l--) 8112 /* header */ 8113 return (void*)1; 8114 8115 spin_lock(&all_mddevs_lock); 8116 list_for_each(tmp,&all_mddevs) 8117 if (!l--) { 8118 mddev = list_entry(tmp, struct mddev, all_mddevs); 8119 mddev_get(mddev); 8120 spin_unlock(&all_mddevs_lock); 8121 return mddev; 8122 } 8123 spin_unlock(&all_mddevs_lock); 8124 if (!l--) 8125 return (void*)2;/* tail */ 8126 return NULL; 8127 } 8128 8129 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8130 { 8131 struct list_head *tmp; 8132 struct mddev *next_mddev, *mddev = v; 8133 8134 ++*pos; 8135 if (v == (void*)2) 8136 return NULL; 8137 8138 spin_lock(&all_mddevs_lock); 8139 if (v == (void*)1) 8140 tmp = all_mddevs.next; 8141 else 8142 tmp = mddev->all_mddevs.next; 8143 if (tmp != &all_mddevs) 8144 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs)); 8145 else { 8146 next_mddev = (void*)2; 8147 *pos = 0x10000; 8148 } 8149 spin_unlock(&all_mddevs_lock); 8150 8151 if (v != (void*)1) 8152 mddev_put(mddev); 8153 return next_mddev; 8154 8155 } 8156 8157 static void md_seq_stop(struct seq_file *seq, void *v) 8158 { 8159 struct mddev *mddev = v; 8160 8161 if (mddev && v != (void*)1 && v != (void*)2) 8162 mddev_put(mddev); 8163 } 8164 8165 static int md_seq_show(struct seq_file *seq, void *v) 8166 { 8167 struct mddev *mddev = v; 8168 sector_t sectors; 8169 struct md_rdev *rdev; 8170 8171 if (v == (void*)1) { 8172 struct md_personality *pers; 8173 seq_printf(seq, "Personalities : "); 8174 spin_lock(&pers_lock); 8175 list_for_each_entry(pers, &pers_list, list) 8176 seq_printf(seq, "[%s] ", pers->name); 8177 8178 spin_unlock(&pers_lock); 8179 seq_printf(seq, "\n"); 8180 seq->poll_event = atomic_read(&md_event_count); 8181 return 0; 8182 } 8183 if (v == (void*)2) { 8184 status_unused(seq); 8185 return 0; 8186 } 8187 8188 spin_lock(&mddev->lock); 8189 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8190 seq_printf(seq, "%s : %sactive", mdname(mddev), 8191 mddev->pers ? "" : "in"); 8192 if (mddev->pers) { 8193 if (mddev->ro==1) 8194 seq_printf(seq, " (read-only)"); 8195 if (mddev->ro==2) 8196 seq_printf(seq, " (auto-read-only)"); 8197 seq_printf(seq, " %s", mddev->pers->name); 8198 } 8199 8200 sectors = 0; 8201 rcu_read_lock(); 8202 rdev_for_each_rcu(rdev, mddev) { 8203 char b[BDEVNAME_SIZE]; 8204 seq_printf(seq, " %s[%d]", 8205 bdevname(rdev->bdev,b), rdev->desc_nr); 8206 if (test_bit(WriteMostly, &rdev->flags)) 8207 seq_printf(seq, "(W)"); 8208 if (test_bit(Journal, &rdev->flags)) 8209 seq_printf(seq, "(J)"); 8210 if (test_bit(Faulty, &rdev->flags)) { 8211 seq_printf(seq, "(F)"); 8212 continue; 8213 } 8214 if (rdev->raid_disk < 0) 8215 seq_printf(seq, "(S)"); /* spare */ 8216 if (test_bit(Replacement, &rdev->flags)) 8217 seq_printf(seq, "(R)"); 8218 sectors += rdev->sectors; 8219 } 8220 rcu_read_unlock(); 8221 8222 if (!list_empty(&mddev->disks)) { 8223 if (mddev->pers) 8224 seq_printf(seq, "\n %llu blocks", 8225 (unsigned long long) 8226 mddev->array_sectors / 2); 8227 else 8228 seq_printf(seq, "\n %llu blocks", 8229 (unsigned long long)sectors / 2); 8230 } 8231 if (mddev->persistent) { 8232 if (mddev->major_version != 0 || 8233 mddev->minor_version != 90) { 8234 seq_printf(seq," super %d.%d", 8235 mddev->major_version, 8236 mddev->minor_version); 8237 } 8238 } else if (mddev->external) 8239 seq_printf(seq, " super external:%s", 8240 mddev->metadata_type); 8241 else 8242 seq_printf(seq, " super non-persistent"); 8243 8244 if (mddev->pers) { 8245 mddev->pers->status(seq, mddev); 8246 seq_printf(seq, "\n "); 8247 if (mddev->pers->sync_request) { 8248 if (status_resync(seq, mddev)) 8249 seq_printf(seq, "\n "); 8250 } 8251 } else 8252 seq_printf(seq, "\n "); 8253 8254 md_bitmap_status(seq, mddev->bitmap); 8255 8256 seq_printf(seq, "\n"); 8257 } 8258 spin_unlock(&mddev->lock); 8259 8260 return 0; 8261 } 8262 8263 static const struct seq_operations md_seq_ops = { 8264 .start = md_seq_start, 8265 .next = md_seq_next, 8266 .stop = md_seq_stop, 8267 .show = md_seq_show, 8268 }; 8269 8270 static int md_seq_open(struct inode *inode, struct file *file) 8271 { 8272 struct seq_file *seq; 8273 int error; 8274 8275 error = seq_open(file, &md_seq_ops); 8276 if (error) 8277 return error; 8278 8279 seq = file->private_data; 8280 seq->poll_event = atomic_read(&md_event_count); 8281 return error; 8282 } 8283 8284 static int md_unloading; 8285 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8286 { 8287 struct seq_file *seq = filp->private_data; 8288 __poll_t mask; 8289 8290 if (md_unloading) 8291 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8292 poll_wait(filp, &md_event_waiters, wait); 8293 8294 /* always allow read */ 8295 mask = EPOLLIN | EPOLLRDNORM; 8296 8297 if (seq->poll_event != atomic_read(&md_event_count)) 8298 mask |= EPOLLERR | EPOLLPRI; 8299 return mask; 8300 } 8301 8302 static const struct proc_ops mdstat_proc_ops = { 8303 .proc_open = md_seq_open, 8304 .proc_read = seq_read, 8305 .proc_lseek = seq_lseek, 8306 .proc_release = seq_release, 8307 .proc_poll = mdstat_poll, 8308 }; 8309 8310 int register_md_personality(struct md_personality *p) 8311 { 8312 pr_debug("md: %s personality registered for level %d\n", 8313 p->name, p->level); 8314 spin_lock(&pers_lock); 8315 list_add_tail(&p->list, &pers_list); 8316 spin_unlock(&pers_lock); 8317 return 0; 8318 } 8319 EXPORT_SYMBOL(register_md_personality); 8320 8321 int unregister_md_personality(struct md_personality *p) 8322 { 8323 pr_debug("md: %s personality unregistered\n", p->name); 8324 spin_lock(&pers_lock); 8325 list_del_init(&p->list); 8326 spin_unlock(&pers_lock); 8327 return 0; 8328 } 8329 EXPORT_SYMBOL(unregister_md_personality); 8330 8331 int register_md_cluster_operations(struct md_cluster_operations *ops, 8332 struct module *module) 8333 { 8334 int ret = 0; 8335 spin_lock(&pers_lock); 8336 if (md_cluster_ops != NULL) 8337 ret = -EALREADY; 8338 else { 8339 md_cluster_ops = ops; 8340 md_cluster_mod = module; 8341 } 8342 spin_unlock(&pers_lock); 8343 return ret; 8344 } 8345 EXPORT_SYMBOL(register_md_cluster_operations); 8346 8347 int unregister_md_cluster_operations(void) 8348 { 8349 spin_lock(&pers_lock); 8350 md_cluster_ops = NULL; 8351 spin_unlock(&pers_lock); 8352 return 0; 8353 } 8354 EXPORT_SYMBOL(unregister_md_cluster_operations); 8355 8356 int md_setup_cluster(struct mddev *mddev, int nodes) 8357 { 8358 if (!md_cluster_ops) 8359 request_module("md-cluster"); 8360 spin_lock(&pers_lock); 8361 /* ensure module won't be unloaded */ 8362 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8363 pr_warn("can't find md-cluster module or get it's reference.\n"); 8364 spin_unlock(&pers_lock); 8365 return -ENOENT; 8366 } 8367 spin_unlock(&pers_lock); 8368 8369 return md_cluster_ops->join(mddev, nodes); 8370 } 8371 8372 void md_cluster_stop(struct mddev *mddev) 8373 { 8374 if (!md_cluster_ops) 8375 return; 8376 md_cluster_ops->leave(mddev); 8377 module_put(md_cluster_mod); 8378 } 8379 8380 static int is_mddev_idle(struct mddev *mddev, int init) 8381 { 8382 struct md_rdev *rdev; 8383 int idle; 8384 int curr_events; 8385 8386 idle = 1; 8387 rcu_read_lock(); 8388 rdev_for_each_rcu(rdev, mddev) { 8389 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk; 8390 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) - 8391 atomic_read(&disk->sync_io); 8392 /* sync IO will cause sync_io to increase before the disk_stats 8393 * as sync_io is counted when a request starts, and 8394 * disk_stats is counted when it completes. 8395 * So resync activity will cause curr_events to be smaller than 8396 * when there was no such activity. 8397 * non-sync IO will cause disk_stat to increase without 8398 * increasing sync_io so curr_events will (eventually) 8399 * be larger than it was before. Once it becomes 8400 * substantially larger, the test below will cause 8401 * the array to appear non-idle, and resync will slow 8402 * down. 8403 * If there is a lot of outstanding resync activity when 8404 * we set last_event to curr_events, then all that activity 8405 * completing might cause the array to appear non-idle 8406 * and resync will be slowed down even though there might 8407 * not have been non-resync activity. This will only 8408 * happen once though. 'last_events' will soon reflect 8409 * the state where there is little or no outstanding 8410 * resync requests, and further resync activity will 8411 * always make curr_events less than last_events. 8412 * 8413 */ 8414 if (init || curr_events - rdev->last_events > 64) { 8415 rdev->last_events = curr_events; 8416 idle = 0; 8417 } 8418 } 8419 rcu_read_unlock(); 8420 return idle; 8421 } 8422 8423 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8424 { 8425 /* another "blocks" (512byte) blocks have been synced */ 8426 atomic_sub(blocks, &mddev->recovery_active); 8427 wake_up(&mddev->recovery_wait); 8428 if (!ok) { 8429 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8430 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8431 md_wakeup_thread(mddev->thread); 8432 // stop recovery, signal do_sync .... 8433 } 8434 } 8435 EXPORT_SYMBOL(md_done_sync); 8436 8437 /* md_write_start(mddev, bi) 8438 * If we need to update some array metadata (e.g. 'active' flag 8439 * in superblock) before writing, schedule a superblock update 8440 * and wait for it to complete. 8441 * A return value of 'false' means that the write wasn't recorded 8442 * and cannot proceed as the array is being suspend. 8443 */ 8444 bool md_write_start(struct mddev *mddev, struct bio *bi) 8445 { 8446 int did_change = 0; 8447 8448 if (bio_data_dir(bi) != WRITE) 8449 return true; 8450 8451 BUG_ON(mddev->ro == 1); 8452 if (mddev->ro == 2) { 8453 /* need to switch to read/write */ 8454 mddev->ro = 0; 8455 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8456 md_wakeup_thread(mddev->thread); 8457 md_wakeup_thread(mddev->sync_thread); 8458 did_change = 1; 8459 } 8460 rcu_read_lock(); 8461 percpu_ref_get(&mddev->writes_pending); 8462 smp_mb(); /* Match smp_mb in set_in_sync() */ 8463 if (mddev->safemode == 1) 8464 mddev->safemode = 0; 8465 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8466 if (mddev->in_sync || mddev->sync_checkers) { 8467 spin_lock(&mddev->lock); 8468 if (mddev->in_sync) { 8469 mddev->in_sync = 0; 8470 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8471 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8472 md_wakeup_thread(mddev->thread); 8473 did_change = 1; 8474 } 8475 spin_unlock(&mddev->lock); 8476 } 8477 rcu_read_unlock(); 8478 if (did_change) 8479 sysfs_notify_dirent_safe(mddev->sysfs_state); 8480 if (!mddev->has_superblocks) 8481 return true; 8482 wait_event(mddev->sb_wait, 8483 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8484 mddev->suspended); 8485 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8486 percpu_ref_put(&mddev->writes_pending); 8487 return false; 8488 } 8489 return true; 8490 } 8491 EXPORT_SYMBOL(md_write_start); 8492 8493 /* md_write_inc can only be called when md_write_start() has 8494 * already been called at least once of the current request. 8495 * It increments the counter and is useful when a single request 8496 * is split into several parts. Each part causes an increment and 8497 * so needs a matching md_write_end(). 8498 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8499 * a spinlocked region. 8500 */ 8501 void md_write_inc(struct mddev *mddev, struct bio *bi) 8502 { 8503 if (bio_data_dir(bi) != WRITE) 8504 return; 8505 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8506 percpu_ref_get(&mddev->writes_pending); 8507 } 8508 EXPORT_SYMBOL(md_write_inc); 8509 8510 void md_write_end(struct mddev *mddev) 8511 { 8512 percpu_ref_put(&mddev->writes_pending); 8513 8514 if (mddev->safemode == 2) 8515 md_wakeup_thread(mddev->thread); 8516 else if (mddev->safemode_delay) 8517 /* The roundup() ensures this only performs locking once 8518 * every ->safemode_delay jiffies 8519 */ 8520 mod_timer(&mddev->safemode_timer, 8521 roundup(jiffies, mddev->safemode_delay) + 8522 mddev->safemode_delay); 8523 } 8524 8525 EXPORT_SYMBOL(md_write_end); 8526 8527 /* md_allow_write(mddev) 8528 * Calling this ensures that the array is marked 'active' so that writes 8529 * may proceed without blocking. It is important to call this before 8530 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8531 * Must be called with mddev_lock held. 8532 */ 8533 void md_allow_write(struct mddev *mddev) 8534 { 8535 if (!mddev->pers) 8536 return; 8537 if (mddev->ro) 8538 return; 8539 if (!mddev->pers->sync_request) 8540 return; 8541 8542 spin_lock(&mddev->lock); 8543 if (mddev->in_sync) { 8544 mddev->in_sync = 0; 8545 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8546 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8547 if (mddev->safemode_delay && 8548 mddev->safemode == 0) 8549 mddev->safemode = 1; 8550 spin_unlock(&mddev->lock); 8551 md_update_sb(mddev, 0); 8552 sysfs_notify_dirent_safe(mddev->sysfs_state); 8553 /* wait for the dirty state to be recorded in the metadata */ 8554 wait_event(mddev->sb_wait, 8555 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8556 } else 8557 spin_unlock(&mddev->lock); 8558 } 8559 EXPORT_SYMBOL_GPL(md_allow_write); 8560 8561 #define SYNC_MARKS 10 8562 #define SYNC_MARK_STEP (3*HZ) 8563 #define UPDATE_FREQUENCY (5*60*HZ) 8564 void md_do_sync(struct md_thread *thread) 8565 { 8566 struct mddev *mddev = thread->mddev; 8567 struct mddev *mddev2; 8568 unsigned int currspeed = 0, window; 8569 sector_t max_sectors,j, io_sectors, recovery_done; 8570 unsigned long mark[SYNC_MARKS]; 8571 unsigned long update_time; 8572 sector_t mark_cnt[SYNC_MARKS]; 8573 int last_mark,m; 8574 struct list_head *tmp; 8575 sector_t last_check; 8576 int skipped = 0; 8577 struct md_rdev *rdev; 8578 char *desc, *action = NULL; 8579 struct blk_plug plug; 8580 int ret; 8581 8582 /* just incase thread restarts... */ 8583 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8584 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8585 return; 8586 if (mddev->ro) {/* never try to sync a read-only array */ 8587 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8588 return; 8589 } 8590 8591 if (mddev_is_clustered(mddev)) { 8592 ret = md_cluster_ops->resync_start(mddev); 8593 if (ret) 8594 goto skip; 8595 8596 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8597 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8598 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8599 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8600 && ((unsigned long long)mddev->curr_resync_completed 8601 < (unsigned long long)mddev->resync_max_sectors)) 8602 goto skip; 8603 } 8604 8605 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8606 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8607 desc = "data-check"; 8608 action = "check"; 8609 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8610 desc = "requested-resync"; 8611 action = "repair"; 8612 } else 8613 desc = "resync"; 8614 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8615 desc = "reshape"; 8616 else 8617 desc = "recovery"; 8618 8619 mddev->last_sync_action = action ?: desc; 8620 8621 /* we overload curr_resync somewhat here. 8622 * 0 == not engaged in resync at all 8623 * 2 == checking that there is no conflict with another sync 8624 * 1 == like 2, but have yielded to allow conflicting resync to 8625 * commence 8626 * other == active in resync - this many blocks 8627 * 8628 * Before starting a resync we must have set curr_resync to 8629 * 2, and then checked that every "conflicting" array has curr_resync 8630 * less than ours. When we find one that is the same or higher 8631 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8632 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8633 * This will mean we have to start checking from the beginning again. 8634 * 8635 */ 8636 8637 do { 8638 int mddev2_minor = -1; 8639 mddev->curr_resync = 2; 8640 8641 try_again: 8642 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8643 goto skip; 8644 for_each_mddev(mddev2, tmp) { 8645 if (mddev2 == mddev) 8646 continue; 8647 if (!mddev->parallel_resync 8648 && mddev2->curr_resync 8649 && match_mddev_units(mddev, mddev2)) { 8650 DEFINE_WAIT(wq); 8651 if (mddev < mddev2 && mddev->curr_resync == 2) { 8652 /* arbitrarily yield */ 8653 mddev->curr_resync = 1; 8654 wake_up(&resync_wait); 8655 } 8656 if (mddev > mddev2 && mddev->curr_resync == 1) 8657 /* no need to wait here, we can wait the next 8658 * time 'round when curr_resync == 2 8659 */ 8660 continue; 8661 /* We need to wait 'interruptible' so as not to 8662 * contribute to the load average, and not to 8663 * be caught by 'softlockup' 8664 */ 8665 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8666 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8667 mddev2->curr_resync >= mddev->curr_resync) { 8668 if (mddev2_minor != mddev2->md_minor) { 8669 mddev2_minor = mddev2->md_minor; 8670 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8671 desc, mdname(mddev), 8672 mdname(mddev2)); 8673 } 8674 mddev_put(mddev2); 8675 if (signal_pending(current)) 8676 flush_signals(current); 8677 schedule(); 8678 finish_wait(&resync_wait, &wq); 8679 goto try_again; 8680 } 8681 finish_wait(&resync_wait, &wq); 8682 } 8683 } 8684 } while (mddev->curr_resync < 2); 8685 8686 j = 0; 8687 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8688 /* resync follows the size requested by the personality, 8689 * which defaults to physical size, but can be virtual size 8690 */ 8691 max_sectors = mddev->resync_max_sectors; 8692 atomic64_set(&mddev->resync_mismatches, 0); 8693 /* we don't use the checkpoint if there's a bitmap */ 8694 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8695 j = mddev->resync_min; 8696 else if (!mddev->bitmap) 8697 j = mddev->recovery_cp; 8698 8699 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8700 max_sectors = mddev->resync_max_sectors; 8701 /* 8702 * If the original node aborts reshaping then we continue the 8703 * reshaping, so set j again to avoid restart reshape from the 8704 * first beginning 8705 */ 8706 if (mddev_is_clustered(mddev) && 8707 mddev->reshape_position != MaxSector) 8708 j = mddev->reshape_position; 8709 } else { 8710 /* recovery follows the physical size of devices */ 8711 max_sectors = mddev->dev_sectors; 8712 j = MaxSector; 8713 rcu_read_lock(); 8714 rdev_for_each_rcu(rdev, mddev) 8715 if (rdev->raid_disk >= 0 && 8716 !test_bit(Journal, &rdev->flags) && 8717 !test_bit(Faulty, &rdev->flags) && 8718 !test_bit(In_sync, &rdev->flags) && 8719 rdev->recovery_offset < j) 8720 j = rdev->recovery_offset; 8721 rcu_read_unlock(); 8722 8723 /* If there is a bitmap, we need to make sure all 8724 * writes that started before we added a spare 8725 * complete before we start doing a recovery. 8726 * Otherwise the write might complete and (via 8727 * bitmap_endwrite) set a bit in the bitmap after the 8728 * recovery has checked that bit and skipped that 8729 * region. 8730 */ 8731 if (mddev->bitmap) { 8732 mddev->pers->quiesce(mddev, 1); 8733 mddev->pers->quiesce(mddev, 0); 8734 } 8735 } 8736 8737 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8738 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8739 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8740 speed_max(mddev), desc); 8741 8742 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8743 8744 io_sectors = 0; 8745 for (m = 0; m < SYNC_MARKS; m++) { 8746 mark[m] = jiffies; 8747 mark_cnt[m] = io_sectors; 8748 } 8749 last_mark = 0; 8750 mddev->resync_mark = mark[last_mark]; 8751 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8752 8753 /* 8754 * Tune reconstruction: 8755 */ 8756 window = 32 * (PAGE_SIZE / 512); 8757 pr_debug("md: using %dk window, over a total of %lluk.\n", 8758 window/2, (unsigned long long)max_sectors/2); 8759 8760 atomic_set(&mddev->recovery_active, 0); 8761 last_check = 0; 8762 8763 if (j>2) { 8764 pr_debug("md: resuming %s of %s from checkpoint.\n", 8765 desc, mdname(mddev)); 8766 mddev->curr_resync = j; 8767 } else 8768 mddev->curr_resync = 3; /* no longer delayed */ 8769 mddev->curr_resync_completed = j; 8770 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8771 md_new_event(mddev); 8772 update_time = jiffies; 8773 8774 blk_start_plug(&plug); 8775 while (j < max_sectors) { 8776 sector_t sectors; 8777 8778 skipped = 0; 8779 8780 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8781 ((mddev->curr_resync > mddev->curr_resync_completed && 8782 (mddev->curr_resync - mddev->curr_resync_completed) 8783 > (max_sectors >> 4)) || 8784 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8785 (j - mddev->curr_resync_completed)*2 8786 >= mddev->resync_max - mddev->curr_resync_completed || 8787 mddev->curr_resync_completed > mddev->resync_max 8788 )) { 8789 /* time to update curr_resync_completed */ 8790 wait_event(mddev->recovery_wait, 8791 atomic_read(&mddev->recovery_active) == 0); 8792 mddev->curr_resync_completed = j; 8793 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8794 j > mddev->recovery_cp) 8795 mddev->recovery_cp = j; 8796 update_time = jiffies; 8797 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8798 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8799 } 8800 8801 while (j >= mddev->resync_max && 8802 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8803 /* As this condition is controlled by user-space, 8804 * we can block indefinitely, so use '_interruptible' 8805 * to avoid triggering warnings. 8806 */ 8807 flush_signals(current); /* just in case */ 8808 wait_event_interruptible(mddev->recovery_wait, 8809 mddev->resync_max > j 8810 || test_bit(MD_RECOVERY_INTR, 8811 &mddev->recovery)); 8812 } 8813 8814 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8815 break; 8816 8817 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8818 if (sectors == 0) { 8819 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8820 break; 8821 } 8822 8823 if (!skipped) { /* actual IO requested */ 8824 io_sectors += sectors; 8825 atomic_add(sectors, &mddev->recovery_active); 8826 } 8827 8828 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8829 break; 8830 8831 j += sectors; 8832 if (j > max_sectors) 8833 /* when skipping, extra large numbers can be returned. */ 8834 j = max_sectors; 8835 if (j > 2) 8836 mddev->curr_resync = j; 8837 mddev->curr_mark_cnt = io_sectors; 8838 if (last_check == 0) 8839 /* this is the earliest that rebuild will be 8840 * visible in /proc/mdstat 8841 */ 8842 md_new_event(mddev); 8843 8844 if (last_check + window > io_sectors || j == max_sectors) 8845 continue; 8846 8847 last_check = io_sectors; 8848 repeat: 8849 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8850 /* step marks */ 8851 int next = (last_mark+1) % SYNC_MARKS; 8852 8853 mddev->resync_mark = mark[next]; 8854 mddev->resync_mark_cnt = mark_cnt[next]; 8855 mark[next] = jiffies; 8856 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8857 last_mark = next; 8858 } 8859 8860 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8861 break; 8862 8863 /* 8864 * this loop exits only if either when we are slower than 8865 * the 'hard' speed limit, or the system was IO-idle for 8866 * a jiffy. 8867 * the system might be non-idle CPU-wise, but we only care 8868 * about not overloading the IO subsystem. (things like an 8869 * e2fsck being done on the RAID array should execute fast) 8870 */ 8871 cond_resched(); 8872 8873 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 8874 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 8875 /((jiffies-mddev->resync_mark)/HZ +1) +1; 8876 8877 if (currspeed > speed_min(mddev)) { 8878 if (currspeed > speed_max(mddev)) { 8879 msleep(500); 8880 goto repeat; 8881 } 8882 if (!is_mddev_idle(mddev, 0)) { 8883 /* 8884 * Give other IO more of a chance. 8885 * The faster the devices, the less we wait. 8886 */ 8887 wait_event(mddev->recovery_wait, 8888 !atomic_read(&mddev->recovery_active)); 8889 } 8890 } 8891 } 8892 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 8893 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 8894 ? "interrupted" : "done"); 8895 /* 8896 * this also signals 'finished resyncing' to md_stop 8897 */ 8898 blk_finish_plug(&plug); 8899 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 8900 8901 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8902 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8903 mddev->curr_resync > 3) { 8904 mddev->curr_resync_completed = mddev->curr_resync; 8905 sysfs_notify(&mddev->kobj, NULL, "sync_completed"); 8906 } 8907 mddev->pers->sync_request(mddev, max_sectors, &skipped); 8908 8909 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 8910 mddev->curr_resync > 3) { 8911 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8912 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8913 if (mddev->curr_resync >= mddev->recovery_cp) { 8914 pr_debug("md: checkpointing %s of %s.\n", 8915 desc, mdname(mddev)); 8916 if (test_bit(MD_RECOVERY_ERROR, 8917 &mddev->recovery)) 8918 mddev->recovery_cp = 8919 mddev->curr_resync_completed; 8920 else 8921 mddev->recovery_cp = 8922 mddev->curr_resync; 8923 } 8924 } else 8925 mddev->recovery_cp = MaxSector; 8926 } else { 8927 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8928 mddev->curr_resync = MaxSector; 8929 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8930 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 8931 rcu_read_lock(); 8932 rdev_for_each_rcu(rdev, mddev) 8933 if (rdev->raid_disk >= 0 && 8934 mddev->delta_disks >= 0 && 8935 !test_bit(Journal, &rdev->flags) && 8936 !test_bit(Faulty, &rdev->flags) && 8937 !test_bit(In_sync, &rdev->flags) && 8938 rdev->recovery_offset < mddev->curr_resync) 8939 rdev->recovery_offset = mddev->curr_resync; 8940 rcu_read_unlock(); 8941 } 8942 } 8943 } 8944 skip: 8945 /* set CHANGE_PENDING here since maybe another update is needed, 8946 * so other nodes are informed. It should be harmless for normal 8947 * raid */ 8948 set_mask_bits(&mddev->sb_flags, 0, 8949 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 8950 8951 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8952 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8953 mddev->delta_disks > 0 && 8954 mddev->pers->finish_reshape && 8955 mddev->pers->size && 8956 mddev->queue) { 8957 mddev_lock_nointr(mddev); 8958 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 8959 mddev_unlock(mddev); 8960 if (!mddev_is_clustered(mddev)) { 8961 set_capacity(mddev->gendisk, mddev->array_sectors); 8962 revalidate_disk(mddev->gendisk); 8963 } 8964 } 8965 8966 spin_lock(&mddev->lock); 8967 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8968 /* We completed so min/max setting can be forgotten if used. */ 8969 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8970 mddev->resync_min = 0; 8971 mddev->resync_max = MaxSector; 8972 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8973 mddev->resync_min = mddev->curr_resync_completed; 8974 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 8975 mddev->curr_resync = 0; 8976 spin_unlock(&mddev->lock); 8977 8978 wake_up(&resync_wait); 8979 md_wakeup_thread(mddev->thread); 8980 return; 8981 } 8982 EXPORT_SYMBOL_GPL(md_do_sync); 8983 8984 static int remove_and_add_spares(struct mddev *mddev, 8985 struct md_rdev *this) 8986 { 8987 struct md_rdev *rdev; 8988 int spares = 0; 8989 int removed = 0; 8990 bool remove_some = false; 8991 8992 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 8993 /* Mustn't remove devices when resync thread is running */ 8994 return 0; 8995 8996 rdev_for_each(rdev, mddev) { 8997 if ((this == NULL || rdev == this) && 8998 rdev->raid_disk >= 0 && 8999 !test_bit(Blocked, &rdev->flags) && 9000 test_bit(Faulty, &rdev->flags) && 9001 atomic_read(&rdev->nr_pending)==0) { 9002 /* Faulty non-Blocked devices with nr_pending == 0 9003 * never get nr_pending incremented, 9004 * never get Faulty cleared, and never get Blocked set. 9005 * So we can synchronize_rcu now rather than once per device 9006 */ 9007 remove_some = true; 9008 set_bit(RemoveSynchronized, &rdev->flags); 9009 } 9010 } 9011 9012 if (remove_some) 9013 synchronize_rcu(); 9014 rdev_for_each(rdev, mddev) { 9015 if ((this == NULL || rdev == this) && 9016 rdev->raid_disk >= 0 && 9017 !test_bit(Blocked, &rdev->flags) && 9018 ((test_bit(RemoveSynchronized, &rdev->flags) || 9019 (!test_bit(In_sync, &rdev->flags) && 9020 !test_bit(Journal, &rdev->flags))) && 9021 atomic_read(&rdev->nr_pending)==0)) { 9022 if (mddev->pers->hot_remove_disk( 9023 mddev, rdev) == 0) { 9024 sysfs_unlink_rdev(mddev, rdev); 9025 rdev->saved_raid_disk = rdev->raid_disk; 9026 rdev->raid_disk = -1; 9027 removed++; 9028 } 9029 } 9030 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9031 clear_bit(RemoveSynchronized, &rdev->flags); 9032 } 9033 9034 if (removed && mddev->kobj.sd) 9035 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9036 9037 if (this && removed) 9038 goto no_add; 9039 9040 rdev_for_each(rdev, mddev) { 9041 if (this && this != rdev) 9042 continue; 9043 if (test_bit(Candidate, &rdev->flags)) 9044 continue; 9045 if (rdev->raid_disk >= 0 && 9046 !test_bit(In_sync, &rdev->flags) && 9047 !test_bit(Journal, &rdev->flags) && 9048 !test_bit(Faulty, &rdev->flags)) 9049 spares++; 9050 if (rdev->raid_disk >= 0) 9051 continue; 9052 if (test_bit(Faulty, &rdev->flags)) 9053 continue; 9054 if (!test_bit(Journal, &rdev->flags)) { 9055 if (mddev->ro && 9056 ! (rdev->saved_raid_disk >= 0 && 9057 !test_bit(Bitmap_sync, &rdev->flags))) 9058 continue; 9059 9060 rdev->recovery_offset = 0; 9061 } 9062 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9063 if (sysfs_link_rdev(mddev, rdev)) 9064 /* failure here is OK */; 9065 if (!test_bit(Journal, &rdev->flags)) 9066 spares++; 9067 md_new_event(mddev); 9068 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9069 } 9070 } 9071 no_add: 9072 if (removed) 9073 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9074 return spares; 9075 } 9076 9077 static void md_start_sync(struct work_struct *ws) 9078 { 9079 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9080 9081 mddev->sync_thread = md_register_thread(md_do_sync, 9082 mddev, 9083 "resync"); 9084 if (!mddev->sync_thread) { 9085 pr_warn("%s: could not start resync thread...\n", 9086 mdname(mddev)); 9087 /* leave the spares where they are, it shouldn't hurt */ 9088 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9089 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9090 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9091 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9092 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9093 wake_up(&resync_wait); 9094 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9095 &mddev->recovery)) 9096 if (mddev->sysfs_action) 9097 sysfs_notify_dirent_safe(mddev->sysfs_action); 9098 } else 9099 md_wakeup_thread(mddev->sync_thread); 9100 sysfs_notify_dirent_safe(mddev->sysfs_action); 9101 md_new_event(mddev); 9102 } 9103 9104 /* 9105 * This routine is regularly called by all per-raid-array threads to 9106 * deal with generic issues like resync and super-block update. 9107 * Raid personalities that don't have a thread (linear/raid0) do not 9108 * need this as they never do any recovery or update the superblock. 9109 * 9110 * It does not do any resync itself, but rather "forks" off other threads 9111 * to do that as needed. 9112 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9113 * "->recovery" and create a thread at ->sync_thread. 9114 * When the thread finishes it sets MD_RECOVERY_DONE 9115 * and wakeups up this thread which will reap the thread and finish up. 9116 * This thread also removes any faulty devices (with nr_pending == 0). 9117 * 9118 * The overall approach is: 9119 * 1/ if the superblock needs updating, update it. 9120 * 2/ If a recovery thread is running, don't do anything else. 9121 * 3/ If recovery has finished, clean up, possibly marking spares active. 9122 * 4/ If there are any faulty devices, remove them. 9123 * 5/ If array is degraded, try to add spares devices 9124 * 6/ If array has spares or is not in-sync, start a resync thread. 9125 */ 9126 void md_check_recovery(struct mddev *mddev) 9127 { 9128 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9129 /* Write superblock - thread that called mddev_suspend() 9130 * holds reconfig_mutex for us. 9131 */ 9132 set_bit(MD_UPDATING_SB, &mddev->flags); 9133 smp_mb__after_atomic(); 9134 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9135 md_update_sb(mddev, 0); 9136 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9137 wake_up(&mddev->sb_wait); 9138 } 9139 9140 if (mddev->suspended) 9141 return; 9142 9143 if (mddev->bitmap) 9144 md_bitmap_daemon_work(mddev); 9145 9146 if (signal_pending(current)) { 9147 if (mddev->pers->sync_request && !mddev->external) { 9148 pr_debug("md: %s in immediate safe mode\n", 9149 mdname(mddev)); 9150 mddev->safemode = 2; 9151 } 9152 flush_signals(current); 9153 } 9154 9155 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9156 return; 9157 if ( ! ( 9158 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9159 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9160 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9161 (mddev->external == 0 && mddev->safemode == 1) || 9162 (mddev->safemode == 2 9163 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9164 )) 9165 return; 9166 9167 if (mddev_trylock(mddev)) { 9168 int spares = 0; 9169 bool try_set_sync = mddev->safemode != 0; 9170 9171 if (!mddev->external && mddev->safemode == 1) 9172 mddev->safemode = 0; 9173 9174 if (mddev->ro) { 9175 struct md_rdev *rdev; 9176 if (!mddev->external && mddev->in_sync) 9177 /* 'Blocked' flag not needed as failed devices 9178 * will be recorded if array switched to read/write. 9179 * Leaving it set will prevent the device 9180 * from being removed. 9181 */ 9182 rdev_for_each(rdev, mddev) 9183 clear_bit(Blocked, &rdev->flags); 9184 /* On a read-only array we can: 9185 * - remove failed devices 9186 * - add already-in_sync devices if the array itself 9187 * is in-sync. 9188 * As we only add devices that are already in-sync, 9189 * we can activate the spares immediately. 9190 */ 9191 remove_and_add_spares(mddev, NULL); 9192 /* There is no thread, but we need to call 9193 * ->spare_active and clear saved_raid_disk 9194 */ 9195 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9196 md_reap_sync_thread(mddev); 9197 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9198 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9199 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9200 goto unlock; 9201 } 9202 9203 if (mddev_is_clustered(mddev)) { 9204 struct md_rdev *rdev; 9205 /* kick the device if another node issued a 9206 * remove disk. 9207 */ 9208 rdev_for_each(rdev, mddev) { 9209 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9210 rdev->raid_disk < 0) 9211 md_kick_rdev_from_array(rdev); 9212 } 9213 } 9214 9215 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9216 spin_lock(&mddev->lock); 9217 set_in_sync(mddev); 9218 spin_unlock(&mddev->lock); 9219 } 9220 9221 if (mddev->sb_flags) 9222 md_update_sb(mddev, 0); 9223 9224 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9225 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9226 /* resync/recovery still happening */ 9227 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9228 goto unlock; 9229 } 9230 if (mddev->sync_thread) { 9231 md_reap_sync_thread(mddev); 9232 goto unlock; 9233 } 9234 /* Set RUNNING before clearing NEEDED to avoid 9235 * any transients in the value of "sync_action". 9236 */ 9237 mddev->curr_resync_completed = 0; 9238 spin_lock(&mddev->lock); 9239 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9240 spin_unlock(&mddev->lock); 9241 /* Clear some bits that don't mean anything, but 9242 * might be left set 9243 */ 9244 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9245 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9246 9247 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9248 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9249 goto not_running; 9250 /* no recovery is running. 9251 * remove any failed drives, then 9252 * add spares if possible. 9253 * Spares are also removed and re-added, to allow 9254 * the personality to fail the re-add. 9255 */ 9256 9257 if (mddev->reshape_position != MaxSector) { 9258 if (mddev->pers->check_reshape == NULL || 9259 mddev->pers->check_reshape(mddev) != 0) 9260 /* Cannot proceed */ 9261 goto not_running; 9262 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9263 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9264 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9265 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9266 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9267 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9268 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9269 } else if (mddev->recovery_cp < MaxSector) { 9270 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9271 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9272 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9273 /* nothing to be done ... */ 9274 goto not_running; 9275 9276 if (mddev->pers->sync_request) { 9277 if (spares) { 9278 /* We are adding a device or devices to an array 9279 * which has the bitmap stored on all devices. 9280 * So make sure all bitmap pages get written 9281 */ 9282 md_bitmap_write_all(mddev->bitmap); 9283 } 9284 INIT_WORK(&mddev->del_work, md_start_sync); 9285 queue_work(md_misc_wq, &mddev->del_work); 9286 goto unlock; 9287 } 9288 not_running: 9289 if (!mddev->sync_thread) { 9290 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9291 wake_up(&resync_wait); 9292 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9293 &mddev->recovery)) 9294 if (mddev->sysfs_action) 9295 sysfs_notify_dirent_safe(mddev->sysfs_action); 9296 } 9297 unlock: 9298 wake_up(&mddev->sb_wait); 9299 mddev_unlock(mddev); 9300 } 9301 } 9302 EXPORT_SYMBOL(md_check_recovery); 9303 9304 void md_reap_sync_thread(struct mddev *mddev) 9305 { 9306 struct md_rdev *rdev; 9307 sector_t old_dev_sectors = mddev->dev_sectors; 9308 bool is_reshaped = false; 9309 9310 /* resync has finished, collect result */ 9311 md_unregister_thread(&mddev->sync_thread); 9312 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9313 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9314 mddev->degraded != mddev->raid_disks) { 9315 /* success...*/ 9316 /* activate any spares */ 9317 if (mddev->pers->spare_active(mddev)) { 9318 sysfs_notify(&mddev->kobj, NULL, 9319 "degraded"); 9320 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9321 } 9322 } 9323 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9324 mddev->pers->finish_reshape) { 9325 mddev->pers->finish_reshape(mddev); 9326 if (mddev_is_clustered(mddev)) 9327 is_reshaped = true; 9328 } 9329 9330 /* If array is no-longer degraded, then any saved_raid_disk 9331 * information must be scrapped. 9332 */ 9333 if (!mddev->degraded) 9334 rdev_for_each(rdev, mddev) 9335 rdev->saved_raid_disk = -1; 9336 9337 md_update_sb(mddev, 1); 9338 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9339 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9340 * clustered raid */ 9341 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9342 md_cluster_ops->resync_finish(mddev); 9343 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9344 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9345 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9346 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9347 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9348 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9349 /* 9350 * We call md_cluster_ops->update_size here because sync_size could 9351 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9352 * so it is time to update size across cluster. 9353 */ 9354 if (mddev_is_clustered(mddev) && is_reshaped 9355 && !test_bit(MD_CLOSING, &mddev->flags)) 9356 md_cluster_ops->update_size(mddev, old_dev_sectors); 9357 wake_up(&resync_wait); 9358 /* flag recovery needed just to double check */ 9359 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9360 sysfs_notify_dirent_safe(mddev->sysfs_action); 9361 md_new_event(mddev); 9362 if (mddev->event_work.func) 9363 queue_work(md_misc_wq, &mddev->event_work); 9364 } 9365 EXPORT_SYMBOL(md_reap_sync_thread); 9366 9367 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9368 { 9369 sysfs_notify_dirent_safe(rdev->sysfs_state); 9370 wait_event_timeout(rdev->blocked_wait, 9371 !test_bit(Blocked, &rdev->flags) && 9372 !test_bit(BlockedBadBlocks, &rdev->flags), 9373 msecs_to_jiffies(5000)); 9374 rdev_dec_pending(rdev, mddev); 9375 } 9376 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9377 9378 void md_finish_reshape(struct mddev *mddev) 9379 { 9380 /* called be personality module when reshape completes. */ 9381 struct md_rdev *rdev; 9382 9383 rdev_for_each(rdev, mddev) { 9384 if (rdev->data_offset > rdev->new_data_offset) 9385 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9386 else 9387 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9388 rdev->data_offset = rdev->new_data_offset; 9389 } 9390 } 9391 EXPORT_SYMBOL(md_finish_reshape); 9392 9393 /* Bad block management */ 9394 9395 /* Returns 1 on success, 0 on failure */ 9396 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9397 int is_new) 9398 { 9399 struct mddev *mddev = rdev->mddev; 9400 int rv; 9401 if (is_new) 9402 s += rdev->new_data_offset; 9403 else 9404 s += rdev->data_offset; 9405 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9406 if (rv == 0) { 9407 /* Make sure they get written out promptly */ 9408 if (test_bit(ExternalBbl, &rdev->flags)) 9409 sysfs_notify(&rdev->kobj, NULL, 9410 "unacknowledged_bad_blocks"); 9411 sysfs_notify_dirent_safe(rdev->sysfs_state); 9412 set_mask_bits(&mddev->sb_flags, 0, 9413 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9414 md_wakeup_thread(rdev->mddev->thread); 9415 return 1; 9416 } else 9417 return 0; 9418 } 9419 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9420 9421 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9422 int is_new) 9423 { 9424 int rv; 9425 if (is_new) 9426 s += rdev->new_data_offset; 9427 else 9428 s += rdev->data_offset; 9429 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9430 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9431 sysfs_notify(&rdev->kobj, NULL, "bad_blocks"); 9432 return rv; 9433 } 9434 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9435 9436 static int md_notify_reboot(struct notifier_block *this, 9437 unsigned long code, void *x) 9438 { 9439 struct list_head *tmp; 9440 struct mddev *mddev; 9441 int need_delay = 0; 9442 9443 for_each_mddev(mddev, tmp) { 9444 if (mddev_trylock(mddev)) { 9445 if (mddev->pers) 9446 __md_stop_writes(mddev); 9447 if (mddev->persistent) 9448 mddev->safemode = 2; 9449 mddev_unlock(mddev); 9450 } 9451 need_delay = 1; 9452 } 9453 /* 9454 * certain more exotic SCSI devices are known to be 9455 * volatile wrt too early system reboots. While the 9456 * right place to handle this issue is the given 9457 * driver, we do want to have a safe RAID driver ... 9458 */ 9459 if (need_delay) 9460 mdelay(1000*1); 9461 9462 return NOTIFY_DONE; 9463 } 9464 9465 static struct notifier_block md_notifier = { 9466 .notifier_call = md_notify_reboot, 9467 .next = NULL, 9468 .priority = INT_MAX, /* before any real devices */ 9469 }; 9470 9471 static void md_geninit(void) 9472 { 9473 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9474 9475 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9476 } 9477 9478 static int __init md_init(void) 9479 { 9480 int ret = -ENOMEM; 9481 9482 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9483 if (!md_wq) 9484 goto err_wq; 9485 9486 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9487 if (!md_misc_wq) 9488 goto err_misc_wq; 9489 9490 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9491 if (!md_misc_wq) 9492 goto err_rdev_misc_wq; 9493 9494 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0) 9495 goto err_md; 9496 9497 if ((ret = register_blkdev(0, "mdp")) < 0) 9498 goto err_mdp; 9499 mdp_major = ret; 9500 9501 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE, 9502 md_probe, NULL, NULL); 9503 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE, 9504 md_probe, NULL, NULL); 9505 9506 register_reboot_notifier(&md_notifier); 9507 raid_table_header = register_sysctl_table(raid_root_table); 9508 9509 md_geninit(); 9510 return 0; 9511 9512 err_mdp: 9513 unregister_blkdev(MD_MAJOR, "md"); 9514 err_md: 9515 destroy_workqueue(md_rdev_misc_wq); 9516 err_rdev_misc_wq: 9517 destroy_workqueue(md_misc_wq); 9518 err_misc_wq: 9519 destroy_workqueue(md_wq); 9520 err_wq: 9521 return ret; 9522 } 9523 9524 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9525 { 9526 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9527 struct md_rdev *rdev2; 9528 int role, ret; 9529 char b[BDEVNAME_SIZE]; 9530 9531 /* 9532 * If size is changed in another node then we need to 9533 * do resize as well. 9534 */ 9535 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9536 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9537 if (ret) 9538 pr_info("md-cluster: resize failed\n"); 9539 else 9540 md_bitmap_update_sb(mddev->bitmap); 9541 } 9542 9543 /* Check for change of roles in the active devices */ 9544 rdev_for_each(rdev2, mddev) { 9545 if (test_bit(Faulty, &rdev2->flags)) 9546 continue; 9547 9548 /* Check if the roles changed */ 9549 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9550 9551 if (test_bit(Candidate, &rdev2->flags)) { 9552 if (role == 0xfffe) { 9553 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b)); 9554 md_kick_rdev_from_array(rdev2); 9555 continue; 9556 } 9557 else 9558 clear_bit(Candidate, &rdev2->flags); 9559 } 9560 9561 if (role != rdev2->raid_disk) { 9562 /* 9563 * got activated except reshape is happening. 9564 */ 9565 if (rdev2->raid_disk == -1 && role != 0xffff && 9566 !(le32_to_cpu(sb->feature_map) & 9567 MD_FEATURE_RESHAPE_ACTIVE)) { 9568 rdev2->saved_raid_disk = role; 9569 ret = remove_and_add_spares(mddev, rdev2); 9570 pr_info("Activated spare: %s\n", 9571 bdevname(rdev2->bdev,b)); 9572 /* wakeup mddev->thread here, so array could 9573 * perform resync with the new activated disk */ 9574 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9575 md_wakeup_thread(mddev->thread); 9576 } 9577 /* device faulty 9578 * We just want to do the minimum to mark the disk 9579 * as faulty. The recovery is performed by the 9580 * one who initiated the error. 9581 */ 9582 if ((role == 0xfffe) || (role == 0xfffd)) { 9583 md_error(mddev, rdev2); 9584 clear_bit(Blocked, &rdev2->flags); 9585 } 9586 } 9587 } 9588 9589 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) 9590 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9591 9592 /* 9593 * Since mddev->delta_disks has already updated in update_raid_disks, 9594 * so it is time to check reshape. 9595 */ 9596 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9597 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9598 /* 9599 * reshape is happening in the remote node, we need to 9600 * update reshape_position and call start_reshape. 9601 */ 9602 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9603 if (mddev->pers->update_reshape_pos) 9604 mddev->pers->update_reshape_pos(mddev); 9605 if (mddev->pers->start_reshape) 9606 mddev->pers->start_reshape(mddev); 9607 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9608 mddev->reshape_position != MaxSector && 9609 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9610 /* reshape is just done in another node. */ 9611 mddev->reshape_position = MaxSector; 9612 if (mddev->pers->update_reshape_pos) 9613 mddev->pers->update_reshape_pos(mddev); 9614 } 9615 9616 /* Finally set the event to be up to date */ 9617 mddev->events = le64_to_cpu(sb->events); 9618 } 9619 9620 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9621 { 9622 int err; 9623 struct page *swapout = rdev->sb_page; 9624 struct mdp_superblock_1 *sb; 9625 9626 /* Store the sb page of the rdev in the swapout temporary 9627 * variable in case we err in the future 9628 */ 9629 rdev->sb_page = NULL; 9630 err = alloc_disk_sb(rdev); 9631 if (err == 0) { 9632 ClearPageUptodate(rdev->sb_page); 9633 rdev->sb_loaded = 0; 9634 err = super_types[mddev->major_version]. 9635 load_super(rdev, NULL, mddev->minor_version); 9636 } 9637 if (err < 0) { 9638 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9639 __func__, __LINE__, rdev->desc_nr, err); 9640 if (rdev->sb_page) 9641 put_page(rdev->sb_page); 9642 rdev->sb_page = swapout; 9643 rdev->sb_loaded = 1; 9644 return err; 9645 } 9646 9647 sb = page_address(rdev->sb_page); 9648 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9649 * is not set 9650 */ 9651 9652 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9653 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9654 9655 /* The other node finished recovery, call spare_active to set 9656 * device In_sync and mddev->degraded 9657 */ 9658 if (rdev->recovery_offset == MaxSector && 9659 !test_bit(In_sync, &rdev->flags) && 9660 mddev->pers->spare_active(mddev)) 9661 sysfs_notify(&mddev->kobj, NULL, "degraded"); 9662 9663 put_page(swapout); 9664 return 0; 9665 } 9666 9667 void md_reload_sb(struct mddev *mddev, int nr) 9668 { 9669 struct md_rdev *rdev; 9670 int err; 9671 9672 /* Find the rdev */ 9673 rdev_for_each_rcu(rdev, mddev) { 9674 if (rdev->desc_nr == nr) 9675 break; 9676 } 9677 9678 if (!rdev || rdev->desc_nr != nr) { 9679 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9680 return; 9681 } 9682 9683 err = read_rdev(mddev, rdev); 9684 if (err < 0) 9685 return; 9686 9687 check_sb_changes(mddev, rdev); 9688 9689 /* Read all rdev's to update recovery_offset */ 9690 rdev_for_each_rcu(rdev, mddev) { 9691 if (!test_bit(Faulty, &rdev->flags)) 9692 read_rdev(mddev, rdev); 9693 } 9694 } 9695 EXPORT_SYMBOL(md_reload_sb); 9696 9697 #ifndef MODULE 9698 9699 /* 9700 * Searches all registered partitions for autorun RAID arrays 9701 * at boot time. 9702 */ 9703 9704 static DEFINE_MUTEX(detected_devices_mutex); 9705 static LIST_HEAD(all_detected_devices); 9706 struct detected_devices_node { 9707 struct list_head list; 9708 dev_t dev; 9709 }; 9710 9711 void md_autodetect_dev(dev_t dev) 9712 { 9713 struct detected_devices_node *node_detected_dev; 9714 9715 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9716 if (node_detected_dev) { 9717 node_detected_dev->dev = dev; 9718 mutex_lock(&detected_devices_mutex); 9719 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9720 mutex_unlock(&detected_devices_mutex); 9721 } 9722 } 9723 9724 static void autostart_arrays(int part) 9725 { 9726 struct md_rdev *rdev; 9727 struct detected_devices_node *node_detected_dev; 9728 dev_t dev; 9729 int i_scanned, i_passed; 9730 9731 i_scanned = 0; 9732 i_passed = 0; 9733 9734 pr_info("md: Autodetecting RAID arrays.\n"); 9735 9736 mutex_lock(&detected_devices_mutex); 9737 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9738 i_scanned++; 9739 node_detected_dev = list_entry(all_detected_devices.next, 9740 struct detected_devices_node, list); 9741 list_del(&node_detected_dev->list); 9742 dev = node_detected_dev->dev; 9743 kfree(node_detected_dev); 9744 mutex_unlock(&detected_devices_mutex); 9745 rdev = md_import_device(dev,0, 90); 9746 mutex_lock(&detected_devices_mutex); 9747 if (IS_ERR(rdev)) 9748 continue; 9749 9750 if (test_bit(Faulty, &rdev->flags)) 9751 continue; 9752 9753 set_bit(AutoDetected, &rdev->flags); 9754 list_add(&rdev->same_set, &pending_raid_disks); 9755 i_passed++; 9756 } 9757 mutex_unlock(&detected_devices_mutex); 9758 9759 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9760 9761 autorun_devices(part); 9762 } 9763 9764 #endif /* !MODULE */ 9765 9766 static __exit void md_exit(void) 9767 { 9768 struct mddev *mddev; 9769 struct list_head *tmp; 9770 int delay = 1; 9771 9772 blk_unregister_region(MKDEV(MD_MAJOR,0), 512); 9773 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS); 9774 9775 unregister_blkdev(MD_MAJOR,"md"); 9776 unregister_blkdev(mdp_major, "mdp"); 9777 unregister_reboot_notifier(&md_notifier); 9778 unregister_sysctl_table(raid_table_header); 9779 9780 /* We cannot unload the modules while some process is 9781 * waiting for us in select() or poll() - wake them up 9782 */ 9783 md_unloading = 1; 9784 while (waitqueue_active(&md_event_waiters)) { 9785 /* not safe to leave yet */ 9786 wake_up(&md_event_waiters); 9787 msleep(delay); 9788 delay += delay; 9789 } 9790 remove_proc_entry("mdstat", NULL); 9791 9792 for_each_mddev(mddev, tmp) { 9793 export_array(mddev); 9794 mddev->ctime = 0; 9795 mddev->hold_active = 0; 9796 /* 9797 * for_each_mddev() will call mddev_put() at the end of each 9798 * iteration. As the mddev is now fully clear, this will 9799 * schedule the mddev for destruction by a workqueue, and the 9800 * destroy_workqueue() below will wait for that to complete. 9801 */ 9802 } 9803 destroy_workqueue(md_rdev_misc_wq); 9804 destroy_workqueue(md_misc_wq); 9805 destroy_workqueue(md_wq); 9806 } 9807 9808 subsys_initcall(md_init); 9809 module_exit(md_exit) 9810 9811 static int get_ro(char *buffer, const struct kernel_param *kp) 9812 { 9813 return sprintf(buffer, "%d\n", start_readonly); 9814 } 9815 static int set_ro(const char *val, const struct kernel_param *kp) 9816 { 9817 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9818 } 9819 9820 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9821 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9822 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9823 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9824 9825 MODULE_LICENSE("GPL"); 9826 MODULE_DESCRIPTION("MD RAID framework"); 9827 MODULE_ALIAS("md"); 9828 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9829