xref: /openbmc/linux/drivers/md/md.c (revision 110e6f26)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58 
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62 
63 /* pers_list is a list of registered personalities protected
64  * by pers_lock.
65  * pers_lock does extra service to protect accesses to
66  * mddev->thread when the mutex cannot be held.
67  */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70 
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75 
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79 
80 static int remove_and_add_spares(struct mddev *mddev,
81 				 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83 
84 /*
85  * Default number of read corrections we'll attempt on an rdev
86  * before ejecting it from the array. We divide the read error
87  * count by 2 for every hour elapsed between read errors.
88  */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92  * is 1000 KB/sec, so the extra system load does not show up that much.
93  * Increase it if you want to have more _guaranteed_ speed. Note that
94  * the RAID driver will use the maximum available bandwidth if the IO
95  * subsystem is idle. There is also an 'absolute maximum' reconstruction
96  * speed limit - in case reconstruction slows down your system despite
97  * idle IO detection.
98  *
99  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100  * or /sys/block/mdX/md/sync_speed_{min,max}
101  */
102 
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 	return mddev->sync_speed_min ?
108 		mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110 
111 static inline int speed_max(struct mddev *mddev)
112 {
113 	return mddev->sync_speed_max ?
114 		mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116 
117 static struct ctl_table_header *raid_table_header;
118 
119 static struct ctl_table raid_table[] = {
120 	{
121 		.procname	= "speed_limit_min",
122 		.data		= &sysctl_speed_limit_min,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{
128 		.procname	= "speed_limit_max",
129 		.data		= &sysctl_speed_limit_max,
130 		.maxlen		= sizeof(int),
131 		.mode		= S_IRUGO|S_IWUSR,
132 		.proc_handler	= proc_dointvec,
133 	},
134 	{ }
135 };
136 
137 static struct ctl_table raid_dir_table[] = {
138 	{
139 		.procname	= "raid",
140 		.maxlen		= 0,
141 		.mode		= S_IRUGO|S_IXUGO,
142 		.child		= raid_table,
143 	},
144 	{ }
145 };
146 
147 static struct ctl_table raid_root_table[] = {
148 	{
149 		.procname	= "dev",
150 		.maxlen		= 0,
151 		.mode		= 0555,
152 		.child		= raid_dir_table,
153 	},
154 	{  }
155 };
156 
157 static const struct block_device_operations md_fops;
158 
159 static int start_readonly;
160 
161 /* bio_clone_mddev
162  * like bio_clone, but with a local bio set
163  */
164 
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 			    struct mddev *mddev)
167 {
168 	struct bio *b;
169 
170 	if (!mddev || !mddev->bio_set)
171 		return bio_alloc(gfp_mask, nr_iovecs);
172 
173 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 	if (!b)
175 		return NULL;
176 	return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179 
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 			    struct mddev *mddev)
182 {
183 	if (!mddev || !mddev->bio_set)
184 		return bio_clone(bio, gfp_mask);
185 
186 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189 
190 /*
191  * We have a system wide 'event count' that is incremented
192  * on any 'interesting' event, and readers of /proc/mdstat
193  * can use 'poll' or 'select' to find out when the event
194  * count increases.
195  *
196  * Events are:
197  *  start array, stop array, error, add device, remove device,
198  *  start build, activate spare
199  */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 	atomic_inc(&md_event_count);
205 	wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208 
209 /*
210  * Enables to iterate over all existing md arrays
211  * all_mddevs_lock protects this list.
212  */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215 
216 /*
217  * iterates through all used mddevs in the system.
218  * We take care to grab the all_mddevs_lock whenever navigating
219  * the list, and to always hold a refcount when unlocked.
220  * Any code which breaks out of this loop while own
221  * a reference to the current mddev and must mddev_put it.
222  */
223 #define for_each_mddev(_mddev,_tmp)					\
224 									\
225 	for (({ spin_lock(&all_mddevs_lock);				\
226 		_tmp = all_mddevs.next;					\
227 		_mddev = NULL;});					\
228 	     ({ if (_tmp != &all_mddevs)				\
229 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 		spin_unlock(&all_mddevs_lock);				\
231 		if (_mddev) mddev_put(_mddev);				\
232 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
233 		_tmp != &all_mddevs;});					\
234 	     ({ spin_lock(&all_mddevs_lock);				\
235 		_tmp = _tmp->next;})					\
236 		)
237 
238 /* Rather than calling directly into the personality make_request function,
239  * IO requests come here first so that we can check if the device is
240  * being suspended pending a reconfiguration.
241  * We hold a refcount over the call to ->make_request.  By the time that
242  * call has finished, the bio has been linked into some internal structure
243  * and so is visible to ->quiesce(), so we don't need the refcount any more.
244  */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 	const int rw = bio_data_dir(bio);
248 	struct mddev *mddev = q->queuedata;
249 	unsigned int sectors;
250 	int cpu;
251 
252 	blk_queue_split(q, &bio, q->bio_split);
253 
254 	if (mddev == NULL || mddev->pers == NULL) {
255 		bio_io_error(bio);
256 		return BLK_QC_T_NONE;
257 	}
258 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 		if (bio_sectors(bio) != 0)
260 			bio->bi_error = -EROFS;
261 		bio_endio(bio);
262 		return BLK_QC_T_NONE;
263 	}
264 	smp_rmb(); /* Ensure implications of  'active' are visible */
265 	rcu_read_lock();
266 	if (mddev->suspended) {
267 		DEFINE_WAIT(__wait);
268 		for (;;) {
269 			prepare_to_wait(&mddev->sb_wait, &__wait,
270 					TASK_UNINTERRUPTIBLE);
271 			if (!mddev->suspended)
272 				break;
273 			rcu_read_unlock();
274 			schedule();
275 			rcu_read_lock();
276 		}
277 		finish_wait(&mddev->sb_wait, &__wait);
278 	}
279 	atomic_inc(&mddev->active_io);
280 	rcu_read_unlock();
281 
282 	/*
283 	 * save the sectors now since our bio can
284 	 * go away inside make_request
285 	 */
286 	sectors = bio_sectors(bio);
287 	mddev->pers->make_request(mddev, bio);
288 
289 	cpu = part_stat_lock();
290 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 	part_stat_unlock();
293 
294 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 		wake_up(&mddev->sb_wait);
296 
297 	return BLK_QC_T_NONE;
298 }
299 
300 /* mddev_suspend makes sure no new requests are submitted
301  * to the device, and that any requests that have been submitted
302  * are completely handled.
303  * Once mddev_detach() is called and completes, the module will be
304  * completely unused.
305  */
306 void mddev_suspend(struct mddev *mddev)
307 {
308 	WARN_ON_ONCE(current == mddev->thread->tsk);
309 	if (mddev->suspended++)
310 		return;
311 	synchronize_rcu();
312 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
313 	mddev->pers->quiesce(mddev, 1);
314 
315 	del_timer_sync(&mddev->safemode_timer);
316 }
317 EXPORT_SYMBOL_GPL(mddev_suspend);
318 
319 void mddev_resume(struct mddev *mddev)
320 {
321 	if (--mddev->suspended)
322 		return;
323 	wake_up(&mddev->sb_wait);
324 	mddev->pers->quiesce(mddev, 0);
325 
326 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 	md_wakeup_thread(mddev->thread);
328 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331 
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 	struct md_personality *pers = mddev->pers;
335 	int ret = 0;
336 
337 	rcu_read_lock();
338 	if (mddev->suspended)
339 		ret = 1;
340 	else if (pers && pers->congested)
341 		ret = pers->congested(mddev, bits);
342 	rcu_read_unlock();
343 	return ret;
344 }
345 EXPORT_SYMBOL_GPL(mddev_congested);
346 static int md_congested(void *data, int bits)
347 {
348 	struct mddev *mddev = data;
349 	return mddev_congested(mddev, bits);
350 }
351 
352 /*
353  * Generic flush handling for md
354  */
355 
356 static void md_end_flush(struct bio *bio)
357 {
358 	struct md_rdev *rdev = bio->bi_private;
359 	struct mddev *mddev = rdev->mddev;
360 
361 	rdev_dec_pending(rdev, mddev);
362 
363 	if (atomic_dec_and_test(&mddev->flush_pending)) {
364 		/* The pre-request flush has finished */
365 		queue_work(md_wq, &mddev->flush_work);
366 	}
367 	bio_put(bio);
368 }
369 
370 static void md_submit_flush_data(struct work_struct *ws);
371 
372 static void submit_flushes(struct work_struct *ws)
373 {
374 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
375 	struct md_rdev *rdev;
376 
377 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
378 	atomic_set(&mddev->flush_pending, 1);
379 	rcu_read_lock();
380 	rdev_for_each_rcu(rdev, mddev)
381 		if (rdev->raid_disk >= 0 &&
382 		    !test_bit(Faulty, &rdev->flags)) {
383 			/* Take two references, one is dropped
384 			 * when request finishes, one after
385 			 * we reclaim rcu_read_lock
386 			 */
387 			struct bio *bi;
388 			atomic_inc(&rdev->nr_pending);
389 			atomic_inc(&rdev->nr_pending);
390 			rcu_read_unlock();
391 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
392 			bi->bi_end_io = md_end_flush;
393 			bi->bi_private = rdev;
394 			bi->bi_bdev = rdev->bdev;
395 			atomic_inc(&mddev->flush_pending);
396 			submit_bio(WRITE_FLUSH, bi);
397 			rcu_read_lock();
398 			rdev_dec_pending(rdev, mddev);
399 		}
400 	rcu_read_unlock();
401 	if (atomic_dec_and_test(&mddev->flush_pending))
402 		queue_work(md_wq, &mddev->flush_work);
403 }
404 
405 static void md_submit_flush_data(struct work_struct *ws)
406 {
407 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
408 	struct bio *bio = mddev->flush_bio;
409 
410 	if (bio->bi_iter.bi_size == 0)
411 		/* an empty barrier - all done */
412 		bio_endio(bio);
413 	else {
414 		bio->bi_rw &= ~REQ_FLUSH;
415 		mddev->pers->make_request(mddev, bio);
416 	}
417 
418 	mddev->flush_bio = NULL;
419 	wake_up(&mddev->sb_wait);
420 }
421 
422 void md_flush_request(struct mddev *mddev, struct bio *bio)
423 {
424 	spin_lock_irq(&mddev->lock);
425 	wait_event_lock_irq(mddev->sb_wait,
426 			    !mddev->flush_bio,
427 			    mddev->lock);
428 	mddev->flush_bio = bio;
429 	spin_unlock_irq(&mddev->lock);
430 
431 	INIT_WORK(&mddev->flush_work, submit_flushes);
432 	queue_work(md_wq, &mddev->flush_work);
433 }
434 EXPORT_SYMBOL(md_flush_request);
435 
436 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
437 {
438 	struct mddev *mddev = cb->data;
439 	md_wakeup_thread(mddev->thread);
440 	kfree(cb);
441 }
442 EXPORT_SYMBOL(md_unplug);
443 
444 static inline struct mddev *mddev_get(struct mddev *mddev)
445 {
446 	atomic_inc(&mddev->active);
447 	return mddev;
448 }
449 
450 static void mddev_delayed_delete(struct work_struct *ws);
451 
452 static void mddev_put(struct mddev *mddev)
453 {
454 	struct bio_set *bs = NULL;
455 
456 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
457 		return;
458 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
459 	    mddev->ctime == 0 && !mddev->hold_active) {
460 		/* Array is not configured at all, and not held active,
461 		 * so destroy it */
462 		list_del_init(&mddev->all_mddevs);
463 		bs = mddev->bio_set;
464 		mddev->bio_set = NULL;
465 		if (mddev->gendisk) {
466 			/* We did a probe so need to clean up.  Call
467 			 * queue_work inside the spinlock so that
468 			 * flush_workqueue() after mddev_find will
469 			 * succeed in waiting for the work to be done.
470 			 */
471 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
472 			queue_work(md_misc_wq, &mddev->del_work);
473 		} else
474 			kfree(mddev);
475 	}
476 	spin_unlock(&all_mddevs_lock);
477 	if (bs)
478 		bioset_free(bs);
479 }
480 
481 static void md_safemode_timeout(unsigned long data);
482 
483 void mddev_init(struct mddev *mddev)
484 {
485 	mutex_init(&mddev->open_mutex);
486 	mutex_init(&mddev->reconfig_mutex);
487 	mutex_init(&mddev->bitmap_info.mutex);
488 	INIT_LIST_HEAD(&mddev->disks);
489 	INIT_LIST_HEAD(&mddev->all_mddevs);
490 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
491 		    (unsigned long) mddev);
492 	atomic_set(&mddev->active, 1);
493 	atomic_set(&mddev->openers, 0);
494 	atomic_set(&mddev->active_io, 0);
495 	spin_lock_init(&mddev->lock);
496 	atomic_set(&mddev->flush_pending, 0);
497 	init_waitqueue_head(&mddev->sb_wait);
498 	init_waitqueue_head(&mddev->recovery_wait);
499 	mddev->reshape_position = MaxSector;
500 	mddev->reshape_backwards = 0;
501 	mddev->last_sync_action = "none";
502 	mddev->resync_min = 0;
503 	mddev->resync_max = MaxSector;
504 	mddev->level = LEVEL_NONE;
505 }
506 EXPORT_SYMBOL_GPL(mddev_init);
507 
508 static struct mddev *mddev_find(dev_t unit)
509 {
510 	struct mddev *mddev, *new = NULL;
511 
512 	if (unit && MAJOR(unit) != MD_MAJOR)
513 		unit &= ~((1<<MdpMinorShift)-1);
514 
515  retry:
516 	spin_lock(&all_mddevs_lock);
517 
518 	if (unit) {
519 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
520 			if (mddev->unit == unit) {
521 				mddev_get(mddev);
522 				spin_unlock(&all_mddevs_lock);
523 				kfree(new);
524 				return mddev;
525 			}
526 
527 		if (new) {
528 			list_add(&new->all_mddevs, &all_mddevs);
529 			spin_unlock(&all_mddevs_lock);
530 			new->hold_active = UNTIL_IOCTL;
531 			return new;
532 		}
533 	} else if (new) {
534 		/* find an unused unit number */
535 		static int next_minor = 512;
536 		int start = next_minor;
537 		int is_free = 0;
538 		int dev = 0;
539 		while (!is_free) {
540 			dev = MKDEV(MD_MAJOR, next_minor);
541 			next_minor++;
542 			if (next_minor > MINORMASK)
543 				next_minor = 0;
544 			if (next_minor == start) {
545 				/* Oh dear, all in use. */
546 				spin_unlock(&all_mddevs_lock);
547 				kfree(new);
548 				return NULL;
549 			}
550 
551 			is_free = 1;
552 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
553 				if (mddev->unit == dev) {
554 					is_free = 0;
555 					break;
556 				}
557 		}
558 		new->unit = dev;
559 		new->md_minor = MINOR(dev);
560 		new->hold_active = UNTIL_STOP;
561 		list_add(&new->all_mddevs, &all_mddevs);
562 		spin_unlock(&all_mddevs_lock);
563 		return new;
564 	}
565 	spin_unlock(&all_mddevs_lock);
566 
567 	new = kzalloc(sizeof(*new), GFP_KERNEL);
568 	if (!new)
569 		return NULL;
570 
571 	new->unit = unit;
572 	if (MAJOR(unit) == MD_MAJOR)
573 		new->md_minor = MINOR(unit);
574 	else
575 		new->md_minor = MINOR(unit) >> MdpMinorShift;
576 
577 	mddev_init(new);
578 
579 	goto retry;
580 }
581 
582 static struct attribute_group md_redundancy_group;
583 
584 void mddev_unlock(struct mddev *mddev)
585 {
586 	if (mddev->to_remove) {
587 		/* These cannot be removed under reconfig_mutex as
588 		 * an access to the files will try to take reconfig_mutex
589 		 * while holding the file unremovable, which leads to
590 		 * a deadlock.
591 		 * So hold set sysfs_active while the remove in happeing,
592 		 * and anything else which might set ->to_remove or my
593 		 * otherwise change the sysfs namespace will fail with
594 		 * -EBUSY if sysfs_active is still set.
595 		 * We set sysfs_active under reconfig_mutex and elsewhere
596 		 * test it under the same mutex to ensure its correct value
597 		 * is seen.
598 		 */
599 		struct attribute_group *to_remove = mddev->to_remove;
600 		mddev->to_remove = NULL;
601 		mddev->sysfs_active = 1;
602 		mutex_unlock(&mddev->reconfig_mutex);
603 
604 		if (mddev->kobj.sd) {
605 			if (to_remove != &md_redundancy_group)
606 				sysfs_remove_group(&mddev->kobj, to_remove);
607 			if (mddev->pers == NULL ||
608 			    mddev->pers->sync_request == NULL) {
609 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
610 				if (mddev->sysfs_action)
611 					sysfs_put(mddev->sysfs_action);
612 				mddev->sysfs_action = NULL;
613 			}
614 		}
615 		mddev->sysfs_active = 0;
616 	} else
617 		mutex_unlock(&mddev->reconfig_mutex);
618 
619 	/* As we've dropped the mutex we need a spinlock to
620 	 * make sure the thread doesn't disappear
621 	 */
622 	spin_lock(&pers_lock);
623 	md_wakeup_thread(mddev->thread);
624 	spin_unlock(&pers_lock);
625 }
626 EXPORT_SYMBOL_GPL(mddev_unlock);
627 
628 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
629 {
630 	struct md_rdev *rdev;
631 
632 	rdev_for_each_rcu(rdev, mddev)
633 		if (rdev->desc_nr == nr)
634 			return rdev;
635 
636 	return NULL;
637 }
638 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
639 
640 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
641 {
642 	struct md_rdev *rdev;
643 
644 	rdev_for_each(rdev, mddev)
645 		if (rdev->bdev->bd_dev == dev)
646 			return rdev;
647 
648 	return NULL;
649 }
650 
651 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
652 {
653 	struct md_rdev *rdev;
654 
655 	rdev_for_each_rcu(rdev, mddev)
656 		if (rdev->bdev->bd_dev == dev)
657 			return rdev;
658 
659 	return NULL;
660 }
661 
662 static struct md_personality *find_pers(int level, char *clevel)
663 {
664 	struct md_personality *pers;
665 	list_for_each_entry(pers, &pers_list, list) {
666 		if (level != LEVEL_NONE && pers->level == level)
667 			return pers;
668 		if (strcmp(pers->name, clevel)==0)
669 			return pers;
670 	}
671 	return NULL;
672 }
673 
674 /* return the offset of the super block in 512byte sectors */
675 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
676 {
677 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
678 	return MD_NEW_SIZE_SECTORS(num_sectors);
679 }
680 
681 static int alloc_disk_sb(struct md_rdev *rdev)
682 {
683 	rdev->sb_page = alloc_page(GFP_KERNEL);
684 	if (!rdev->sb_page) {
685 		printk(KERN_ALERT "md: out of memory.\n");
686 		return -ENOMEM;
687 	}
688 
689 	return 0;
690 }
691 
692 void md_rdev_clear(struct md_rdev *rdev)
693 {
694 	if (rdev->sb_page) {
695 		put_page(rdev->sb_page);
696 		rdev->sb_loaded = 0;
697 		rdev->sb_page = NULL;
698 		rdev->sb_start = 0;
699 		rdev->sectors = 0;
700 	}
701 	if (rdev->bb_page) {
702 		put_page(rdev->bb_page);
703 		rdev->bb_page = NULL;
704 	}
705 	badblocks_exit(&rdev->badblocks);
706 }
707 EXPORT_SYMBOL_GPL(md_rdev_clear);
708 
709 static void super_written(struct bio *bio)
710 {
711 	struct md_rdev *rdev = bio->bi_private;
712 	struct mddev *mddev = rdev->mddev;
713 
714 	if (bio->bi_error) {
715 		printk("md: super_written gets error=%d\n", bio->bi_error);
716 		md_error(mddev, rdev);
717 	}
718 
719 	if (atomic_dec_and_test(&mddev->pending_writes))
720 		wake_up(&mddev->sb_wait);
721 	rdev_dec_pending(rdev, mddev);
722 	bio_put(bio);
723 }
724 
725 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
726 		   sector_t sector, int size, struct page *page)
727 {
728 	/* write first size bytes of page to sector of rdev
729 	 * Increment mddev->pending_writes before returning
730 	 * and decrement it on completion, waking up sb_wait
731 	 * if zero is reached.
732 	 * If an error occurred, call md_error
733 	 */
734 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
735 
736 	atomic_inc(&rdev->nr_pending);
737 
738 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
739 	bio->bi_iter.bi_sector = sector;
740 	bio_add_page(bio, page, size, 0);
741 	bio->bi_private = rdev;
742 	bio->bi_end_io = super_written;
743 
744 	atomic_inc(&mddev->pending_writes);
745 	submit_bio(WRITE_FLUSH_FUA, bio);
746 }
747 
748 void md_super_wait(struct mddev *mddev)
749 {
750 	/* wait for all superblock writes that were scheduled to complete */
751 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
752 }
753 
754 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
755 		 struct page *page, int rw, bool metadata_op)
756 {
757 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
758 	int ret;
759 
760 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
761 		rdev->meta_bdev : rdev->bdev;
762 	if (metadata_op)
763 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
764 	else if (rdev->mddev->reshape_position != MaxSector &&
765 		 (rdev->mddev->reshape_backwards ==
766 		  (sector >= rdev->mddev->reshape_position)))
767 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
768 	else
769 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
770 	bio_add_page(bio, page, size, 0);
771 	submit_bio_wait(rw, bio);
772 
773 	ret = !bio->bi_error;
774 	bio_put(bio);
775 	return ret;
776 }
777 EXPORT_SYMBOL_GPL(sync_page_io);
778 
779 static int read_disk_sb(struct md_rdev *rdev, int size)
780 {
781 	char b[BDEVNAME_SIZE];
782 
783 	if (rdev->sb_loaded)
784 		return 0;
785 
786 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
787 		goto fail;
788 	rdev->sb_loaded = 1;
789 	return 0;
790 
791 fail:
792 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
793 		bdevname(rdev->bdev,b));
794 	return -EINVAL;
795 }
796 
797 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
798 {
799 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
800 		sb1->set_uuid1 == sb2->set_uuid1 &&
801 		sb1->set_uuid2 == sb2->set_uuid2 &&
802 		sb1->set_uuid3 == sb2->set_uuid3;
803 }
804 
805 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
806 {
807 	int ret;
808 	mdp_super_t *tmp1, *tmp2;
809 
810 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
811 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
812 
813 	if (!tmp1 || !tmp2) {
814 		ret = 0;
815 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
816 		goto abort;
817 	}
818 
819 	*tmp1 = *sb1;
820 	*tmp2 = *sb2;
821 
822 	/*
823 	 * nr_disks is not constant
824 	 */
825 	tmp1->nr_disks = 0;
826 	tmp2->nr_disks = 0;
827 
828 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
829 abort:
830 	kfree(tmp1);
831 	kfree(tmp2);
832 	return ret;
833 }
834 
835 static u32 md_csum_fold(u32 csum)
836 {
837 	csum = (csum & 0xffff) + (csum >> 16);
838 	return (csum & 0xffff) + (csum >> 16);
839 }
840 
841 static unsigned int calc_sb_csum(mdp_super_t *sb)
842 {
843 	u64 newcsum = 0;
844 	u32 *sb32 = (u32*)sb;
845 	int i;
846 	unsigned int disk_csum, csum;
847 
848 	disk_csum = sb->sb_csum;
849 	sb->sb_csum = 0;
850 
851 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
852 		newcsum += sb32[i];
853 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
854 
855 #ifdef CONFIG_ALPHA
856 	/* This used to use csum_partial, which was wrong for several
857 	 * reasons including that different results are returned on
858 	 * different architectures.  It isn't critical that we get exactly
859 	 * the same return value as before (we always csum_fold before
860 	 * testing, and that removes any differences).  However as we
861 	 * know that csum_partial always returned a 16bit value on
862 	 * alphas, do a fold to maximise conformity to previous behaviour.
863 	 */
864 	sb->sb_csum = md_csum_fold(disk_csum);
865 #else
866 	sb->sb_csum = disk_csum;
867 #endif
868 	return csum;
869 }
870 
871 /*
872  * Handle superblock details.
873  * We want to be able to handle multiple superblock formats
874  * so we have a common interface to them all, and an array of
875  * different handlers.
876  * We rely on user-space to write the initial superblock, and support
877  * reading and updating of superblocks.
878  * Interface methods are:
879  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
880  *      loads and validates a superblock on dev.
881  *      if refdev != NULL, compare superblocks on both devices
882  *    Return:
883  *      0 - dev has a superblock that is compatible with refdev
884  *      1 - dev has a superblock that is compatible and newer than refdev
885  *          so dev should be used as the refdev in future
886  *     -EINVAL superblock incompatible or invalid
887  *     -othererror e.g. -EIO
888  *
889  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
890  *      Verify that dev is acceptable into mddev.
891  *       The first time, mddev->raid_disks will be 0, and data from
892  *       dev should be merged in.  Subsequent calls check that dev
893  *       is new enough.  Return 0 or -EINVAL
894  *
895  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
896  *     Update the superblock for rdev with data in mddev
897  *     This does not write to disc.
898  *
899  */
900 
901 struct super_type  {
902 	char		    *name;
903 	struct module	    *owner;
904 	int		    (*load_super)(struct md_rdev *rdev,
905 					  struct md_rdev *refdev,
906 					  int minor_version);
907 	int		    (*validate_super)(struct mddev *mddev,
908 					      struct md_rdev *rdev);
909 	void		    (*sync_super)(struct mddev *mddev,
910 					  struct md_rdev *rdev);
911 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
912 						sector_t num_sectors);
913 	int		    (*allow_new_offset)(struct md_rdev *rdev,
914 						unsigned long long new_offset);
915 };
916 
917 /*
918  * Check that the given mddev has no bitmap.
919  *
920  * This function is called from the run method of all personalities that do not
921  * support bitmaps. It prints an error message and returns non-zero if mddev
922  * has a bitmap. Otherwise, it returns 0.
923  *
924  */
925 int md_check_no_bitmap(struct mddev *mddev)
926 {
927 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
928 		return 0;
929 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
930 		mdname(mddev), mddev->pers->name);
931 	return 1;
932 }
933 EXPORT_SYMBOL(md_check_no_bitmap);
934 
935 /*
936  * load_super for 0.90.0
937  */
938 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
939 {
940 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
941 	mdp_super_t *sb;
942 	int ret;
943 
944 	/*
945 	 * Calculate the position of the superblock (512byte sectors),
946 	 * it's at the end of the disk.
947 	 *
948 	 * It also happens to be a multiple of 4Kb.
949 	 */
950 	rdev->sb_start = calc_dev_sboffset(rdev);
951 
952 	ret = read_disk_sb(rdev, MD_SB_BYTES);
953 	if (ret) return ret;
954 
955 	ret = -EINVAL;
956 
957 	bdevname(rdev->bdev, b);
958 	sb = page_address(rdev->sb_page);
959 
960 	if (sb->md_magic != MD_SB_MAGIC) {
961 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
962 		       b);
963 		goto abort;
964 	}
965 
966 	if (sb->major_version != 0 ||
967 	    sb->minor_version < 90 ||
968 	    sb->minor_version > 91) {
969 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
970 			sb->major_version, sb->minor_version,
971 			b);
972 		goto abort;
973 	}
974 
975 	if (sb->raid_disks <= 0)
976 		goto abort;
977 
978 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
979 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
980 			b);
981 		goto abort;
982 	}
983 
984 	rdev->preferred_minor = sb->md_minor;
985 	rdev->data_offset = 0;
986 	rdev->new_data_offset = 0;
987 	rdev->sb_size = MD_SB_BYTES;
988 	rdev->badblocks.shift = -1;
989 
990 	if (sb->level == LEVEL_MULTIPATH)
991 		rdev->desc_nr = -1;
992 	else
993 		rdev->desc_nr = sb->this_disk.number;
994 
995 	if (!refdev) {
996 		ret = 1;
997 	} else {
998 		__u64 ev1, ev2;
999 		mdp_super_t *refsb = page_address(refdev->sb_page);
1000 		if (!uuid_equal(refsb, sb)) {
1001 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1002 				b, bdevname(refdev->bdev,b2));
1003 			goto abort;
1004 		}
1005 		if (!sb_equal(refsb, sb)) {
1006 			printk(KERN_WARNING "md: %s has same UUID"
1007 			       " but different superblock to %s\n",
1008 			       b, bdevname(refdev->bdev, b2));
1009 			goto abort;
1010 		}
1011 		ev1 = md_event(sb);
1012 		ev2 = md_event(refsb);
1013 		if (ev1 > ev2)
1014 			ret = 1;
1015 		else
1016 			ret = 0;
1017 	}
1018 	rdev->sectors = rdev->sb_start;
1019 	/* Limit to 4TB as metadata cannot record more than that.
1020 	 * (not needed for Linear and RAID0 as metadata doesn't
1021 	 * record this size)
1022 	 */
1023 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1024 	    sb->level >= 1)
1025 		rdev->sectors = (sector_t)(2ULL << 32) - 2;
1026 
1027 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1028 		/* "this cannot possibly happen" ... */
1029 		ret = -EINVAL;
1030 
1031  abort:
1032 	return ret;
1033 }
1034 
1035 /*
1036  * validate_super for 0.90.0
1037  */
1038 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1039 {
1040 	mdp_disk_t *desc;
1041 	mdp_super_t *sb = page_address(rdev->sb_page);
1042 	__u64 ev1 = md_event(sb);
1043 
1044 	rdev->raid_disk = -1;
1045 	clear_bit(Faulty, &rdev->flags);
1046 	clear_bit(In_sync, &rdev->flags);
1047 	clear_bit(Bitmap_sync, &rdev->flags);
1048 	clear_bit(WriteMostly, &rdev->flags);
1049 
1050 	if (mddev->raid_disks == 0) {
1051 		mddev->major_version = 0;
1052 		mddev->minor_version = sb->minor_version;
1053 		mddev->patch_version = sb->patch_version;
1054 		mddev->external = 0;
1055 		mddev->chunk_sectors = sb->chunk_size >> 9;
1056 		mddev->ctime = sb->ctime;
1057 		mddev->utime = sb->utime;
1058 		mddev->level = sb->level;
1059 		mddev->clevel[0] = 0;
1060 		mddev->layout = sb->layout;
1061 		mddev->raid_disks = sb->raid_disks;
1062 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1063 		mddev->events = ev1;
1064 		mddev->bitmap_info.offset = 0;
1065 		mddev->bitmap_info.space = 0;
1066 		/* bitmap can use 60 K after the 4K superblocks */
1067 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1068 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1069 		mddev->reshape_backwards = 0;
1070 
1071 		if (mddev->minor_version >= 91) {
1072 			mddev->reshape_position = sb->reshape_position;
1073 			mddev->delta_disks = sb->delta_disks;
1074 			mddev->new_level = sb->new_level;
1075 			mddev->new_layout = sb->new_layout;
1076 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1077 			if (mddev->delta_disks < 0)
1078 				mddev->reshape_backwards = 1;
1079 		} else {
1080 			mddev->reshape_position = MaxSector;
1081 			mddev->delta_disks = 0;
1082 			mddev->new_level = mddev->level;
1083 			mddev->new_layout = mddev->layout;
1084 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1085 		}
1086 
1087 		if (sb->state & (1<<MD_SB_CLEAN))
1088 			mddev->recovery_cp = MaxSector;
1089 		else {
1090 			if (sb->events_hi == sb->cp_events_hi &&
1091 				sb->events_lo == sb->cp_events_lo) {
1092 				mddev->recovery_cp = sb->recovery_cp;
1093 			} else
1094 				mddev->recovery_cp = 0;
1095 		}
1096 
1097 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1098 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1099 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1100 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1101 
1102 		mddev->max_disks = MD_SB_DISKS;
1103 
1104 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1105 		    mddev->bitmap_info.file == NULL) {
1106 			mddev->bitmap_info.offset =
1107 				mddev->bitmap_info.default_offset;
1108 			mddev->bitmap_info.space =
1109 				mddev->bitmap_info.default_space;
1110 		}
1111 
1112 	} else if (mddev->pers == NULL) {
1113 		/* Insist on good event counter while assembling, except
1114 		 * for spares (which don't need an event count) */
1115 		++ev1;
1116 		if (sb->disks[rdev->desc_nr].state & (
1117 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1118 			if (ev1 < mddev->events)
1119 				return -EINVAL;
1120 	} else if (mddev->bitmap) {
1121 		/* if adding to array with a bitmap, then we can accept an
1122 		 * older device ... but not too old.
1123 		 */
1124 		if (ev1 < mddev->bitmap->events_cleared)
1125 			return 0;
1126 		if (ev1 < mddev->events)
1127 			set_bit(Bitmap_sync, &rdev->flags);
1128 	} else {
1129 		if (ev1 < mddev->events)
1130 			/* just a hot-add of a new device, leave raid_disk at -1 */
1131 			return 0;
1132 	}
1133 
1134 	if (mddev->level != LEVEL_MULTIPATH) {
1135 		desc = sb->disks + rdev->desc_nr;
1136 
1137 		if (desc->state & (1<<MD_DISK_FAULTY))
1138 			set_bit(Faulty, &rdev->flags);
1139 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1140 			    desc->raid_disk < mddev->raid_disks */) {
1141 			set_bit(In_sync, &rdev->flags);
1142 			rdev->raid_disk = desc->raid_disk;
1143 			rdev->saved_raid_disk = desc->raid_disk;
1144 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1145 			/* active but not in sync implies recovery up to
1146 			 * reshape position.  We don't know exactly where
1147 			 * that is, so set to zero for now */
1148 			if (mddev->minor_version >= 91) {
1149 				rdev->recovery_offset = 0;
1150 				rdev->raid_disk = desc->raid_disk;
1151 			}
1152 		}
1153 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1154 			set_bit(WriteMostly, &rdev->flags);
1155 	} else /* MULTIPATH are always insync */
1156 		set_bit(In_sync, &rdev->flags);
1157 	return 0;
1158 }
1159 
1160 /*
1161  * sync_super for 0.90.0
1162  */
1163 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1164 {
1165 	mdp_super_t *sb;
1166 	struct md_rdev *rdev2;
1167 	int next_spare = mddev->raid_disks;
1168 
1169 	/* make rdev->sb match mddev data..
1170 	 *
1171 	 * 1/ zero out disks
1172 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1173 	 * 3/ any empty disks < next_spare become removed
1174 	 *
1175 	 * disks[0] gets initialised to REMOVED because
1176 	 * we cannot be sure from other fields if it has
1177 	 * been initialised or not.
1178 	 */
1179 	int i;
1180 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1181 
1182 	rdev->sb_size = MD_SB_BYTES;
1183 
1184 	sb = page_address(rdev->sb_page);
1185 
1186 	memset(sb, 0, sizeof(*sb));
1187 
1188 	sb->md_magic = MD_SB_MAGIC;
1189 	sb->major_version = mddev->major_version;
1190 	sb->patch_version = mddev->patch_version;
1191 	sb->gvalid_words  = 0; /* ignored */
1192 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1193 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1194 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1195 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1196 
1197 	sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1198 	sb->level = mddev->level;
1199 	sb->size = mddev->dev_sectors / 2;
1200 	sb->raid_disks = mddev->raid_disks;
1201 	sb->md_minor = mddev->md_minor;
1202 	sb->not_persistent = 0;
1203 	sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1204 	sb->state = 0;
1205 	sb->events_hi = (mddev->events>>32);
1206 	sb->events_lo = (u32)mddev->events;
1207 
1208 	if (mddev->reshape_position == MaxSector)
1209 		sb->minor_version = 90;
1210 	else {
1211 		sb->minor_version = 91;
1212 		sb->reshape_position = mddev->reshape_position;
1213 		sb->new_level = mddev->new_level;
1214 		sb->delta_disks = mddev->delta_disks;
1215 		sb->new_layout = mddev->new_layout;
1216 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1217 	}
1218 	mddev->minor_version = sb->minor_version;
1219 	if (mddev->in_sync)
1220 	{
1221 		sb->recovery_cp = mddev->recovery_cp;
1222 		sb->cp_events_hi = (mddev->events>>32);
1223 		sb->cp_events_lo = (u32)mddev->events;
1224 		if (mddev->recovery_cp == MaxSector)
1225 			sb->state = (1<< MD_SB_CLEAN);
1226 	} else
1227 		sb->recovery_cp = 0;
1228 
1229 	sb->layout = mddev->layout;
1230 	sb->chunk_size = mddev->chunk_sectors << 9;
1231 
1232 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1233 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1234 
1235 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1236 	rdev_for_each(rdev2, mddev) {
1237 		mdp_disk_t *d;
1238 		int desc_nr;
1239 		int is_active = test_bit(In_sync, &rdev2->flags);
1240 
1241 		if (rdev2->raid_disk >= 0 &&
1242 		    sb->minor_version >= 91)
1243 			/* we have nowhere to store the recovery_offset,
1244 			 * but if it is not below the reshape_position,
1245 			 * we can piggy-back on that.
1246 			 */
1247 			is_active = 1;
1248 		if (rdev2->raid_disk < 0 ||
1249 		    test_bit(Faulty, &rdev2->flags))
1250 			is_active = 0;
1251 		if (is_active)
1252 			desc_nr = rdev2->raid_disk;
1253 		else
1254 			desc_nr = next_spare++;
1255 		rdev2->desc_nr = desc_nr;
1256 		d = &sb->disks[rdev2->desc_nr];
1257 		nr_disks++;
1258 		d->number = rdev2->desc_nr;
1259 		d->major = MAJOR(rdev2->bdev->bd_dev);
1260 		d->minor = MINOR(rdev2->bdev->bd_dev);
1261 		if (is_active)
1262 			d->raid_disk = rdev2->raid_disk;
1263 		else
1264 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1265 		if (test_bit(Faulty, &rdev2->flags))
1266 			d->state = (1<<MD_DISK_FAULTY);
1267 		else if (is_active) {
1268 			d->state = (1<<MD_DISK_ACTIVE);
1269 			if (test_bit(In_sync, &rdev2->flags))
1270 				d->state |= (1<<MD_DISK_SYNC);
1271 			active++;
1272 			working++;
1273 		} else {
1274 			d->state = 0;
1275 			spare++;
1276 			working++;
1277 		}
1278 		if (test_bit(WriteMostly, &rdev2->flags))
1279 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1280 	}
1281 	/* now set the "removed" and "faulty" bits on any missing devices */
1282 	for (i=0 ; i < mddev->raid_disks ; i++) {
1283 		mdp_disk_t *d = &sb->disks[i];
1284 		if (d->state == 0 && d->number == 0) {
1285 			d->number = i;
1286 			d->raid_disk = i;
1287 			d->state = (1<<MD_DISK_REMOVED);
1288 			d->state |= (1<<MD_DISK_FAULTY);
1289 			failed++;
1290 		}
1291 	}
1292 	sb->nr_disks = nr_disks;
1293 	sb->active_disks = active;
1294 	sb->working_disks = working;
1295 	sb->failed_disks = failed;
1296 	sb->spare_disks = spare;
1297 
1298 	sb->this_disk = sb->disks[rdev->desc_nr];
1299 	sb->sb_csum = calc_sb_csum(sb);
1300 }
1301 
1302 /*
1303  * rdev_size_change for 0.90.0
1304  */
1305 static unsigned long long
1306 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1307 {
1308 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1309 		return 0; /* component must fit device */
1310 	if (rdev->mddev->bitmap_info.offset)
1311 		return 0; /* can't move bitmap */
1312 	rdev->sb_start = calc_dev_sboffset(rdev);
1313 	if (!num_sectors || num_sectors > rdev->sb_start)
1314 		num_sectors = rdev->sb_start;
1315 	/* Limit to 4TB as metadata cannot record more than that.
1316 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1317 	 */
1318 	if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1319 	    rdev->mddev->level >= 1)
1320 		num_sectors = (sector_t)(2ULL << 32) - 2;
1321 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1322 		       rdev->sb_page);
1323 	md_super_wait(rdev->mddev);
1324 	return num_sectors;
1325 }
1326 
1327 static int
1328 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1329 {
1330 	/* non-zero offset changes not possible with v0.90 */
1331 	return new_offset == 0;
1332 }
1333 
1334 /*
1335  * version 1 superblock
1336  */
1337 
1338 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1339 {
1340 	__le32 disk_csum;
1341 	u32 csum;
1342 	unsigned long long newcsum;
1343 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1344 	__le32 *isuper = (__le32*)sb;
1345 
1346 	disk_csum = sb->sb_csum;
1347 	sb->sb_csum = 0;
1348 	newcsum = 0;
1349 	for (; size >= 4; size -= 4)
1350 		newcsum += le32_to_cpu(*isuper++);
1351 
1352 	if (size == 2)
1353 		newcsum += le16_to_cpu(*(__le16*) isuper);
1354 
1355 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1356 	sb->sb_csum = disk_csum;
1357 	return cpu_to_le32(csum);
1358 }
1359 
1360 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1361 {
1362 	struct mdp_superblock_1 *sb;
1363 	int ret;
1364 	sector_t sb_start;
1365 	sector_t sectors;
1366 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1367 	int bmask;
1368 
1369 	/*
1370 	 * Calculate the position of the superblock in 512byte sectors.
1371 	 * It is always aligned to a 4K boundary and
1372 	 * depeding on minor_version, it can be:
1373 	 * 0: At least 8K, but less than 12K, from end of device
1374 	 * 1: At start of device
1375 	 * 2: 4K from start of device.
1376 	 */
1377 	switch(minor_version) {
1378 	case 0:
1379 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1380 		sb_start -= 8*2;
1381 		sb_start &= ~(sector_t)(4*2-1);
1382 		break;
1383 	case 1:
1384 		sb_start = 0;
1385 		break;
1386 	case 2:
1387 		sb_start = 8;
1388 		break;
1389 	default:
1390 		return -EINVAL;
1391 	}
1392 	rdev->sb_start = sb_start;
1393 
1394 	/* superblock is rarely larger than 1K, but it can be larger,
1395 	 * and it is safe to read 4k, so we do that
1396 	 */
1397 	ret = read_disk_sb(rdev, 4096);
1398 	if (ret) return ret;
1399 
1400 	sb = page_address(rdev->sb_page);
1401 
1402 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1403 	    sb->major_version != cpu_to_le32(1) ||
1404 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1405 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1406 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1407 		return -EINVAL;
1408 
1409 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1410 		printk("md: invalid superblock checksum on %s\n",
1411 			bdevname(rdev->bdev,b));
1412 		return -EINVAL;
1413 	}
1414 	if (le64_to_cpu(sb->data_size) < 10) {
1415 		printk("md: data_size too small on %s\n",
1416 		       bdevname(rdev->bdev,b));
1417 		return -EINVAL;
1418 	}
1419 	if (sb->pad0 ||
1420 	    sb->pad3[0] ||
1421 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1422 		/* Some padding is non-zero, might be a new feature */
1423 		return -EINVAL;
1424 
1425 	rdev->preferred_minor = 0xffff;
1426 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1427 	rdev->new_data_offset = rdev->data_offset;
1428 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1429 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1430 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1431 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1432 
1433 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1434 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1435 	if (rdev->sb_size & bmask)
1436 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1437 
1438 	if (minor_version
1439 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1440 		return -EINVAL;
1441 	if (minor_version
1442 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1443 		return -EINVAL;
1444 
1445 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1446 		rdev->desc_nr = -1;
1447 	else
1448 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1449 
1450 	if (!rdev->bb_page) {
1451 		rdev->bb_page = alloc_page(GFP_KERNEL);
1452 		if (!rdev->bb_page)
1453 			return -ENOMEM;
1454 	}
1455 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1456 	    rdev->badblocks.count == 0) {
1457 		/* need to load the bad block list.
1458 		 * Currently we limit it to one page.
1459 		 */
1460 		s32 offset;
1461 		sector_t bb_sector;
1462 		u64 *bbp;
1463 		int i;
1464 		int sectors = le16_to_cpu(sb->bblog_size);
1465 		if (sectors > (PAGE_SIZE / 512))
1466 			return -EINVAL;
1467 		offset = le32_to_cpu(sb->bblog_offset);
1468 		if (offset == 0)
1469 			return -EINVAL;
1470 		bb_sector = (long long)offset;
1471 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1472 				  rdev->bb_page, READ, true))
1473 			return -EIO;
1474 		bbp = (u64 *)page_address(rdev->bb_page);
1475 		rdev->badblocks.shift = sb->bblog_shift;
1476 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1477 			u64 bb = le64_to_cpu(*bbp);
1478 			int count = bb & (0x3ff);
1479 			u64 sector = bb >> 10;
1480 			sector <<= sb->bblog_shift;
1481 			count <<= sb->bblog_shift;
1482 			if (bb + 1 == 0)
1483 				break;
1484 			if (badblocks_set(&rdev->badblocks, sector, count, 1))
1485 				return -EINVAL;
1486 		}
1487 	} else if (sb->bblog_offset != 0)
1488 		rdev->badblocks.shift = 0;
1489 
1490 	if (!refdev) {
1491 		ret = 1;
1492 	} else {
1493 		__u64 ev1, ev2;
1494 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1495 
1496 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1497 		    sb->level != refsb->level ||
1498 		    sb->layout != refsb->layout ||
1499 		    sb->chunksize != refsb->chunksize) {
1500 			printk(KERN_WARNING "md: %s has strangely different"
1501 				" superblock to %s\n",
1502 				bdevname(rdev->bdev,b),
1503 				bdevname(refdev->bdev,b2));
1504 			return -EINVAL;
1505 		}
1506 		ev1 = le64_to_cpu(sb->events);
1507 		ev2 = le64_to_cpu(refsb->events);
1508 
1509 		if (ev1 > ev2)
1510 			ret = 1;
1511 		else
1512 			ret = 0;
1513 	}
1514 	if (minor_version) {
1515 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1516 		sectors -= rdev->data_offset;
1517 	} else
1518 		sectors = rdev->sb_start;
1519 	if (sectors < le64_to_cpu(sb->data_size))
1520 		return -EINVAL;
1521 	rdev->sectors = le64_to_cpu(sb->data_size);
1522 	return ret;
1523 }
1524 
1525 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1526 {
1527 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1528 	__u64 ev1 = le64_to_cpu(sb->events);
1529 
1530 	rdev->raid_disk = -1;
1531 	clear_bit(Faulty, &rdev->flags);
1532 	clear_bit(In_sync, &rdev->flags);
1533 	clear_bit(Bitmap_sync, &rdev->flags);
1534 	clear_bit(WriteMostly, &rdev->flags);
1535 
1536 	if (mddev->raid_disks == 0) {
1537 		mddev->major_version = 1;
1538 		mddev->patch_version = 0;
1539 		mddev->external = 0;
1540 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1541 		mddev->ctime = le64_to_cpu(sb->ctime);
1542 		mddev->utime = le64_to_cpu(sb->utime);
1543 		mddev->level = le32_to_cpu(sb->level);
1544 		mddev->clevel[0] = 0;
1545 		mddev->layout = le32_to_cpu(sb->layout);
1546 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1547 		mddev->dev_sectors = le64_to_cpu(sb->size);
1548 		mddev->events = ev1;
1549 		mddev->bitmap_info.offset = 0;
1550 		mddev->bitmap_info.space = 0;
1551 		/* Default location for bitmap is 1K after superblock
1552 		 * using 3K - total of 4K
1553 		 */
1554 		mddev->bitmap_info.default_offset = 1024 >> 9;
1555 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1556 		mddev->reshape_backwards = 0;
1557 
1558 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1559 		memcpy(mddev->uuid, sb->set_uuid, 16);
1560 
1561 		mddev->max_disks =  (4096-256)/2;
1562 
1563 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1564 		    mddev->bitmap_info.file == NULL) {
1565 			mddev->bitmap_info.offset =
1566 				(__s32)le32_to_cpu(sb->bitmap_offset);
1567 			/* Metadata doesn't record how much space is available.
1568 			 * For 1.0, we assume we can use up to the superblock
1569 			 * if before, else to 4K beyond superblock.
1570 			 * For others, assume no change is possible.
1571 			 */
1572 			if (mddev->minor_version > 0)
1573 				mddev->bitmap_info.space = 0;
1574 			else if (mddev->bitmap_info.offset > 0)
1575 				mddev->bitmap_info.space =
1576 					8 - mddev->bitmap_info.offset;
1577 			else
1578 				mddev->bitmap_info.space =
1579 					-mddev->bitmap_info.offset;
1580 		}
1581 
1582 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1583 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1584 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1585 			mddev->new_level = le32_to_cpu(sb->new_level);
1586 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1587 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1588 			if (mddev->delta_disks < 0 ||
1589 			    (mddev->delta_disks == 0 &&
1590 			     (le32_to_cpu(sb->feature_map)
1591 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1592 				mddev->reshape_backwards = 1;
1593 		} else {
1594 			mddev->reshape_position = MaxSector;
1595 			mddev->delta_disks = 0;
1596 			mddev->new_level = mddev->level;
1597 			mddev->new_layout = mddev->layout;
1598 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1599 		}
1600 
1601 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1602 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1603 			if (mddev->recovery_cp == MaxSector)
1604 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1605 		}
1606 	} else if (mddev->pers == NULL) {
1607 		/* Insist of good event counter while assembling, except for
1608 		 * spares (which don't need an event count) */
1609 		++ev1;
1610 		if (rdev->desc_nr >= 0 &&
1611 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1612 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1613 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1614 			if (ev1 < mddev->events)
1615 				return -EINVAL;
1616 	} else if (mddev->bitmap) {
1617 		/* If adding to array with a bitmap, then we can accept an
1618 		 * older device, but not too old.
1619 		 */
1620 		if (ev1 < mddev->bitmap->events_cleared)
1621 			return 0;
1622 		if (ev1 < mddev->events)
1623 			set_bit(Bitmap_sync, &rdev->flags);
1624 	} else {
1625 		if (ev1 < mddev->events)
1626 			/* just a hot-add of a new device, leave raid_disk at -1 */
1627 			return 0;
1628 	}
1629 	if (mddev->level != LEVEL_MULTIPATH) {
1630 		int role;
1631 		if (rdev->desc_nr < 0 ||
1632 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1633 			role = MD_DISK_ROLE_SPARE;
1634 			rdev->desc_nr = -1;
1635 		} else
1636 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1637 		switch(role) {
1638 		case MD_DISK_ROLE_SPARE: /* spare */
1639 			break;
1640 		case MD_DISK_ROLE_FAULTY: /* faulty */
1641 			set_bit(Faulty, &rdev->flags);
1642 			break;
1643 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1644 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1645 				/* journal device without journal feature */
1646 				printk(KERN_WARNING
1647 				  "md: journal device provided without journal feature, ignoring the device\n");
1648 				return -EINVAL;
1649 			}
1650 			set_bit(Journal, &rdev->flags);
1651 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1652 			rdev->raid_disk = 0;
1653 			break;
1654 		default:
1655 			rdev->saved_raid_disk = role;
1656 			if ((le32_to_cpu(sb->feature_map) &
1657 			     MD_FEATURE_RECOVERY_OFFSET)) {
1658 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1659 				if (!(le32_to_cpu(sb->feature_map) &
1660 				      MD_FEATURE_RECOVERY_BITMAP))
1661 					rdev->saved_raid_disk = -1;
1662 			} else
1663 				set_bit(In_sync, &rdev->flags);
1664 			rdev->raid_disk = role;
1665 			break;
1666 		}
1667 		if (sb->devflags & WriteMostly1)
1668 			set_bit(WriteMostly, &rdev->flags);
1669 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1670 			set_bit(Replacement, &rdev->flags);
1671 	} else /* MULTIPATH are always insync */
1672 		set_bit(In_sync, &rdev->flags);
1673 
1674 	return 0;
1675 }
1676 
1677 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679 	struct mdp_superblock_1 *sb;
1680 	struct md_rdev *rdev2;
1681 	int max_dev, i;
1682 	/* make rdev->sb match mddev and rdev data. */
1683 
1684 	sb = page_address(rdev->sb_page);
1685 
1686 	sb->feature_map = 0;
1687 	sb->pad0 = 0;
1688 	sb->recovery_offset = cpu_to_le64(0);
1689 	memset(sb->pad3, 0, sizeof(sb->pad3));
1690 
1691 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1692 	sb->events = cpu_to_le64(mddev->events);
1693 	if (mddev->in_sync)
1694 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1695 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1696 		sb->resync_offset = cpu_to_le64(MaxSector);
1697 	else
1698 		sb->resync_offset = cpu_to_le64(0);
1699 
1700 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1701 
1702 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1703 	sb->size = cpu_to_le64(mddev->dev_sectors);
1704 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1705 	sb->level = cpu_to_le32(mddev->level);
1706 	sb->layout = cpu_to_le32(mddev->layout);
1707 
1708 	if (test_bit(WriteMostly, &rdev->flags))
1709 		sb->devflags |= WriteMostly1;
1710 	else
1711 		sb->devflags &= ~WriteMostly1;
1712 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1713 	sb->data_size = cpu_to_le64(rdev->sectors);
1714 
1715 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1716 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1717 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1718 	}
1719 
1720 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1721 	    !test_bit(In_sync, &rdev->flags)) {
1722 		sb->feature_map |=
1723 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1724 		sb->recovery_offset =
1725 			cpu_to_le64(rdev->recovery_offset);
1726 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1727 			sb->feature_map |=
1728 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1729 	}
1730 	/* Note: recovery_offset and journal_tail share space  */
1731 	if (test_bit(Journal, &rdev->flags))
1732 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1733 	if (test_bit(Replacement, &rdev->flags))
1734 		sb->feature_map |=
1735 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736 
1737 	if (mddev->reshape_position != MaxSector) {
1738 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 		sb->new_level = cpu_to_le32(mddev->new_level);
1743 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 		if (mddev->delta_disks == 0 &&
1745 		    mddev->reshape_backwards)
1746 			sb->feature_map
1747 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 		if (rdev->new_data_offset != rdev->data_offset) {
1749 			sb->feature_map
1750 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 							     - rdev->data_offset));
1753 		}
1754 	}
1755 
1756 	if (mddev_is_clustered(mddev))
1757 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1758 
1759 	if (rdev->badblocks.count == 0)
1760 		/* Nothing to do for bad blocks*/ ;
1761 	else if (sb->bblog_offset == 0)
1762 		/* Cannot record bad blocks on this device */
1763 		md_error(mddev, rdev);
1764 	else {
1765 		struct badblocks *bb = &rdev->badblocks;
1766 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1767 		u64 *p = bb->page;
1768 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1769 		if (bb->changed) {
1770 			unsigned seq;
1771 
1772 retry:
1773 			seq = read_seqbegin(&bb->lock);
1774 
1775 			memset(bbp, 0xff, PAGE_SIZE);
1776 
1777 			for (i = 0 ; i < bb->count ; i++) {
1778 				u64 internal_bb = p[i];
1779 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1780 						| BB_LEN(internal_bb));
1781 				bbp[i] = cpu_to_le64(store_bb);
1782 			}
1783 			bb->changed = 0;
1784 			if (read_seqretry(&bb->lock, seq))
1785 				goto retry;
1786 
1787 			bb->sector = (rdev->sb_start +
1788 				      (int)le32_to_cpu(sb->bblog_offset));
1789 			bb->size = le16_to_cpu(sb->bblog_size);
1790 		}
1791 	}
1792 
1793 	max_dev = 0;
1794 	rdev_for_each(rdev2, mddev)
1795 		if (rdev2->desc_nr+1 > max_dev)
1796 			max_dev = rdev2->desc_nr+1;
1797 
1798 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1799 		int bmask;
1800 		sb->max_dev = cpu_to_le32(max_dev);
1801 		rdev->sb_size = max_dev * 2 + 256;
1802 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1803 		if (rdev->sb_size & bmask)
1804 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1805 	} else
1806 		max_dev = le32_to_cpu(sb->max_dev);
1807 
1808 	for (i=0; i<max_dev;i++)
1809 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1810 
1811 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1812 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1813 
1814 	rdev_for_each(rdev2, mddev) {
1815 		i = rdev2->desc_nr;
1816 		if (test_bit(Faulty, &rdev2->flags))
1817 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1818 		else if (test_bit(In_sync, &rdev2->flags))
1819 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1820 		else if (test_bit(Journal, &rdev2->flags))
1821 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1822 		else if (rdev2->raid_disk >= 0)
1823 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1824 		else
1825 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1826 	}
1827 
1828 	sb->sb_csum = calc_sb_1_csum(sb);
1829 }
1830 
1831 static unsigned long long
1832 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1833 {
1834 	struct mdp_superblock_1 *sb;
1835 	sector_t max_sectors;
1836 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1837 		return 0; /* component must fit device */
1838 	if (rdev->data_offset != rdev->new_data_offset)
1839 		return 0; /* too confusing */
1840 	if (rdev->sb_start < rdev->data_offset) {
1841 		/* minor versions 1 and 2; superblock before data */
1842 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1843 		max_sectors -= rdev->data_offset;
1844 		if (!num_sectors || num_sectors > max_sectors)
1845 			num_sectors = max_sectors;
1846 	} else if (rdev->mddev->bitmap_info.offset) {
1847 		/* minor version 0 with bitmap we can't move */
1848 		return 0;
1849 	} else {
1850 		/* minor version 0; superblock after data */
1851 		sector_t sb_start;
1852 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1853 		sb_start &= ~(sector_t)(4*2 - 1);
1854 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1855 		if (!num_sectors || num_sectors > max_sectors)
1856 			num_sectors = max_sectors;
1857 		rdev->sb_start = sb_start;
1858 	}
1859 	sb = page_address(rdev->sb_page);
1860 	sb->data_size = cpu_to_le64(num_sectors);
1861 	sb->super_offset = rdev->sb_start;
1862 	sb->sb_csum = calc_sb_1_csum(sb);
1863 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1864 		       rdev->sb_page);
1865 	md_super_wait(rdev->mddev);
1866 	return num_sectors;
1867 
1868 }
1869 
1870 static int
1871 super_1_allow_new_offset(struct md_rdev *rdev,
1872 			 unsigned long long new_offset)
1873 {
1874 	/* All necessary checks on new >= old have been done */
1875 	struct bitmap *bitmap;
1876 	if (new_offset >= rdev->data_offset)
1877 		return 1;
1878 
1879 	/* with 1.0 metadata, there is no metadata to tread on
1880 	 * so we can always move back */
1881 	if (rdev->mddev->minor_version == 0)
1882 		return 1;
1883 
1884 	/* otherwise we must be sure not to step on
1885 	 * any metadata, so stay:
1886 	 * 36K beyond start of superblock
1887 	 * beyond end of badblocks
1888 	 * beyond write-intent bitmap
1889 	 */
1890 	if (rdev->sb_start + (32+4)*2 > new_offset)
1891 		return 0;
1892 	bitmap = rdev->mddev->bitmap;
1893 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1894 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1895 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1896 		return 0;
1897 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1898 		return 0;
1899 
1900 	return 1;
1901 }
1902 
1903 static struct super_type super_types[] = {
1904 	[0] = {
1905 		.name	= "0.90.0",
1906 		.owner	= THIS_MODULE,
1907 		.load_super	    = super_90_load,
1908 		.validate_super	    = super_90_validate,
1909 		.sync_super	    = super_90_sync,
1910 		.rdev_size_change   = super_90_rdev_size_change,
1911 		.allow_new_offset   = super_90_allow_new_offset,
1912 	},
1913 	[1] = {
1914 		.name	= "md-1",
1915 		.owner	= THIS_MODULE,
1916 		.load_super	    = super_1_load,
1917 		.validate_super	    = super_1_validate,
1918 		.sync_super	    = super_1_sync,
1919 		.rdev_size_change   = super_1_rdev_size_change,
1920 		.allow_new_offset   = super_1_allow_new_offset,
1921 	},
1922 };
1923 
1924 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1925 {
1926 	if (mddev->sync_super) {
1927 		mddev->sync_super(mddev, rdev);
1928 		return;
1929 	}
1930 
1931 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1932 
1933 	super_types[mddev->major_version].sync_super(mddev, rdev);
1934 }
1935 
1936 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1937 {
1938 	struct md_rdev *rdev, *rdev2;
1939 
1940 	rcu_read_lock();
1941 	rdev_for_each_rcu(rdev, mddev1) {
1942 		if (test_bit(Faulty, &rdev->flags) ||
1943 		    test_bit(Journal, &rdev->flags) ||
1944 		    rdev->raid_disk == -1)
1945 			continue;
1946 		rdev_for_each_rcu(rdev2, mddev2) {
1947 			if (test_bit(Faulty, &rdev2->flags) ||
1948 			    test_bit(Journal, &rdev2->flags) ||
1949 			    rdev2->raid_disk == -1)
1950 				continue;
1951 			if (rdev->bdev->bd_contains ==
1952 			    rdev2->bdev->bd_contains) {
1953 				rcu_read_unlock();
1954 				return 1;
1955 			}
1956 		}
1957 	}
1958 	rcu_read_unlock();
1959 	return 0;
1960 }
1961 
1962 static LIST_HEAD(pending_raid_disks);
1963 
1964 /*
1965  * Try to register data integrity profile for an mddev
1966  *
1967  * This is called when an array is started and after a disk has been kicked
1968  * from the array. It only succeeds if all working and active component devices
1969  * are integrity capable with matching profiles.
1970  */
1971 int md_integrity_register(struct mddev *mddev)
1972 {
1973 	struct md_rdev *rdev, *reference = NULL;
1974 
1975 	if (list_empty(&mddev->disks))
1976 		return 0; /* nothing to do */
1977 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1978 		return 0; /* shouldn't register, or already is */
1979 	rdev_for_each(rdev, mddev) {
1980 		/* skip spares and non-functional disks */
1981 		if (test_bit(Faulty, &rdev->flags))
1982 			continue;
1983 		if (rdev->raid_disk < 0)
1984 			continue;
1985 		if (!reference) {
1986 			/* Use the first rdev as the reference */
1987 			reference = rdev;
1988 			continue;
1989 		}
1990 		/* does this rdev's profile match the reference profile? */
1991 		if (blk_integrity_compare(reference->bdev->bd_disk,
1992 				rdev->bdev->bd_disk) < 0)
1993 			return -EINVAL;
1994 	}
1995 	if (!reference || !bdev_get_integrity(reference->bdev))
1996 		return 0;
1997 	/*
1998 	 * All component devices are integrity capable and have matching
1999 	 * profiles, register the common profile for the md device.
2000 	 */
2001 	blk_integrity_register(mddev->gendisk,
2002 			       bdev_get_integrity(reference->bdev));
2003 
2004 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2005 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2006 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2007 		       mdname(mddev));
2008 		return -EINVAL;
2009 	}
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL(md_integrity_register);
2013 
2014 /*
2015  * Attempt to add an rdev, but only if it is consistent with the current
2016  * integrity profile
2017  */
2018 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2019 {
2020 	struct blk_integrity *bi_rdev;
2021 	struct blk_integrity *bi_mddev;
2022 	char name[BDEVNAME_SIZE];
2023 
2024 	if (!mddev->gendisk)
2025 		return 0;
2026 
2027 	bi_rdev = bdev_get_integrity(rdev->bdev);
2028 	bi_mddev = blk_get_integrity(mddev->gendisk);
2029 
2030 	if (!bi_mddev) /* nothing to do */
2031 		return 0;
2032 
2033 	if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2034 		printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2035 				mdname(mddev), bdevname(rdev->bdev, name));
2036 		return -ENXIO;
2037 	}
2038 
2039 	return 0;
2040 }
2041 EXPORT_SYMBOL(md_integrity_add_rdev);
2042 
2043 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2044 {
2045 	char b[BDEVNAME_SIZE];
2046 	struct kobject *ko;
2047 	int err;
2048 
2049 	/* prevent duplicates */
2050 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2051 		return -EEXIST;
2052 
2053 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2054 	if (!test_bit(Journal, &rdev->flags) &&
2055 	    rdev->sectors &&
2056 	    (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2057 		if (mddev->pers) {
2058 			/* Cannot change size, so fail
2059 			 * If mddev->level <= 0, then we don't care
2060 			 * about aligning sizes (e.g. linear)
2061 			 */
2062 			if (mddev->level > 0)
2063 				return -ENOSPC;
2064 		} else
2065 			mddev->dev_sectors = rdev->sectors;
2066 	}
2067 
2068 	/* Verify rdev->desc_nr is unique.
2069 	 * If it is -1, assign a free number, else
2070 	 * check number is not in use
2071 	 */
2072 	rcu_read_lock();
2073 	if (rdev->desc_nr < 0) {
2074 		int choice = 0;
2075 		if (mddev->pers)
2076 			choice = mddev->raid_disks;
2077 		while (md_find_rdev_nr_rcu(mddev, choice))
2078 			choice++;
2079 		rdev->desc_nr = choice;
2080 	} else {
2081 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2082 			rcu_read_unlock();
2083 			return -EBUSY;
2084 		}
2085 	}
2086 	rcu_read_unlock();
2087 	if (!test_bit(Journal, &rdev->flags) &&
2088 	    mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2089 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2090 		       mdname(mddev), mddev->max_disks);
2091 		return -EBUSY;
2092 	}
2093 	bdevname(rdev->bdev,b);
2094 	strreplace(b, '/', '!');
2095 
2096 	rdev->mddev = mddev;
2097 	printk(KERN_INFO "md: bind<%s>\n", b);
2098 
2099 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2100 		goto fail;
2101 
2102 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2103 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2104 		/* failure here is OK */;
2105 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2106 
2107 	list_add_rcu(&rdev->same_set, &mddev->disks);
2108 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2109 
2110 	/* May as well allow recovery to be retried once */
2111 	mddev->recovery_disabled++;
2112 
2113 	return 0;
2114 
2115  fail:
2116 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2117 	       b, mdname(mddev));
2118 	return err;
2119 }
2120 
2121 static void md_delayed_delete(struct work_struct *ws)
2122 {
2123 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2124 	kobject_del(&rdev->kobj);
2125 	kobject_put(&rdev->kobj);
2126 }
2127 
2128 static void unbind_rdev_from_array(struct md_rdev *rdev)
2129 {
2130 	char b[BDEVNAME_SIZE];
2131 
2132 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2133 	list_del_rcu(&rdev->same_set);
2134 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2135 	rdev->mddev = NULL;
2136 	sysfs_remove_link(&rdev->kobj, "block");
2137 	sysfs_put(rdev->sysfs_state);
2138 	rdev->sysfs_state = NULL;
2139 	rdev->badblocks.count = 0;
2140 	/* We need to delay this, otherwise we can deadlock when
2141 	 * writing to 'remove' to "dev/state".  We also need
2142 	 * to delay it due to rcu usage.
2143 	 */
2144 	synchronize_rcu();
2145 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2146 	kobject_get(&rdev->kobj);
2147 	queue_work(md_misc_wq, &rdev->del_work);
2148 }
2149 
2150 /*
2151  * prevent the device from being mounted, repartitioned or
2152  * otherwise reused by a RAID array (or any other kernel
2153  * subsystem), by bd_claiming the device.
2154  */
2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2156 {
2157 	int err = 0;
2158 	struct block_device *bdev;
2159 	char b[BDEVNAME_SIZE];
2160 
2161 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2162 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2163 	if (IS_ERR(bdev)) {
2164 		printk(KERN_ERR "md: could not open %s.\n",
2165 			__bdevname(dev, b));
2166 		return PTR_ERR(bdev);
2167 	}
2168 	rdev->bdev = bdev;
2169 	return err;
2170 }
2171 
2172 static void unlock_rdev(struct md_rdev *rdev)
2173 {
2174 	struct block_device *bdev = rdev->bdev;
2175 	rdev->bdev = NULL;
2176 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2177 }
2178 
2179 void md_autodetect_dev(dev_t dev);
2180 
2181 static void export_rdev(struct md_rdev *rdev)
2182 {
2183 	char b[BDEVNAME_SIZE];
2184 
2185 	printk(KERN_INFO "md: export_rdev(%s)\n",
2186 		bdevname(rdev->bdev,b));
2187 	md_rdev_clear(rdev);
2188 #ifndef MODULE
2189 	if (test_bit(AutoDetected, &rdev->flags))
2190 		md_autodetect_dev(rdev->bdev->bd_dev);
2191 #endif
2192 	unlock_rdev(rdev);
2193 	kobject_put(&rdev->kobj);
2194 }
2195 
2196 void md_kick_rdev_from_array(struct md_rdev *rdev)
2197 {
2198 	unbind_rdev_from_array(rdev);
2199 	export_rdev(rdev);
2200 }
2201 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2202 
2203 static void export_array(struct mddev *mddev)
2204 {
2205 	struct md_rdev *rdev;
2206 
2207 	while (!list_empty(&mddev->disks)) {
2208 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2209 					same_set);
2210 		md_kick_rdev_from_array(rdev);
2211 	}
2212 	mddev->raid_disks = 0;
2213 	mddev->major_version = 0;
2214 }
2215 
2216 static void sync_sbs(struct mddev *mddev, int nospares)
2217 {
2218 	/* Update each superblock (in-memory image), but
2219 	 * if we are allowed to, skip spares which already
2220 	 * have the right event counter, or have one earlier
2221 	 * (which would mean they aren't being marked as dirty
2222 	 * with the rest of the array)
2223 	 */
2224 	struct md_rdev *rdev;
2225 	rdev_for_each(rdev, mddev) {
2226 		if (rdev->sb_events == mddev->events ||
2227 		    (nospares &&
2228 		     rdev->raid_disk < 0 &&
2229 		     rdev->sb_events+1 == mddev->events)) {
2230 			/* Don't update this superblock */
2231 			rdev->sb_loaded = 2;
2232 		} else {
2233 			sync_super(mddev, rdev);
2234 			rdev->sb_loaded = 1;
2235 		}
2236 	}
2237 }
2238 
2239 static bool does_sb_need_changing(struct mddev *mddev)
2240 {
2241 	struct md_rdev *rdev;
2242 	struct mdp_superblock_1 *sb;
2243 	int role;
2244 
2245 	/* Find a good rdev */
2246 	rdev_for_each(rdev, mddev)
2247 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2248 			break;
2249 
2250 	/* No good device found. */
2251 	if (!rdev)
2252 		return false;
2253 
2254 	sb = page_address(rdev->sb_page);
2255 	/* Check if a device has become faulty or a spare become active */
2256 	rdev_for_each(rdev, mddev) {
2257 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2258 		/* Device activated? */
2259 		if (role == 0xffff && rdev->raid_disk >=0 &&
2260 		    !test_bit(Faulty, &rdev->flags))
2261 			return true;
2262 		/* Device turned faulty? */
2263 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2264 			return true;
2265 	}
2266 
2267 	/* Check if any mddev parameters have changed */
2268 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2269 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2270 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2271 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2272 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2273 		return true;
2274 
2275 	return false;
2276 }
2277 
2278 void md_update_sb(struct mddev *mddev, int force_change)
2279 {
2280 	struct md_rdev *rdev;
2281 	int sync_req;
2282 	int nospares = 0;
2283 	int any_badblocks_changed = 0;
2284 	int ret = -1;
2285 
2286 	if (mddev->ro) {
2287 		if (force_change)
2288 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2289 		return;
2290 	}
2291 
2292 	if (mddev_is_clustered(mddev)) {
2293 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2294 			force_change = 1;
2295 		ret = md_cluster_ops->metadata_update_start(mddev);
2296 		/* Has someone else has updated the sb */
2297 		if (!does_sb_need_changing(mddev)) {
2298 			if (ret == 0)
2299 				md_cluster_ops->metadata_update_cancel(mddev);
2300 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2301 			return;
2302 		}
2303 	}
2304 repeat:
2305 	/* First make sure individual recovery_offsets are correct */
2306 	rdev_for_each(rdev, mddev) {
2307 		if (rdev->raid_disk >= 0 &&
2308 		    mddev->delta_disks >= 0 &&
2309 		    !test_bit(Journal, &rdev->flags) &&
2310 		    !test_bit(In_sync, &rdev->flags) &&
2311 		    mddev->curr_resync_completed > rdev->recovery_offset)
2312 				rdev->recovery_offset = mddev->curr_resync_completed;
2313 
2314 	}
2315 	if (!mddev->persistent) {
2316 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2317 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2318 		if (!mddev->external) {
2319 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2320 			rdev_for_each(rdev, mddev) {
2321 				if (rdev->badblocks.changed) {
2322 					rdev->badblocks.changed = 0;
2323 					ack_all_badblocks(&rdev->badblocks);
2324 					md_error(mddev, rdev);
2325 				}
2326 				clear_bit(Blocked, &rdev->flags);
2327 				clear_bit(BlockedBadBlocks, &rdev->flags);
2328 				wake_up(&rdev->blocked_wait);
2329 			}
2330 		}
2331 		wake_up(&mddev->sb_wait);
2332 		return;
2333 	}
2334 
2335 	spin_lock(&mddev->lock);
2336 
2337 	mddev->utime = ktime_get_real_seconds();
2338 
2339 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2340 		force_change = 1;
2341 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2342 		/* just a clean<-> dirty transition, possibly leave spares alone,
2343 		 * though if events isn't the right even/odd, we will have to do
2344 		 * spares after all
2345 		 */
2346 		nospares = 1;
2347 	if (force_change)
2348 		nospares = 0;
2349 	if (mddev->degraded)
2350 		/* If the array is degraded, then skipping spares is both
2351 		 * dangerous and fairly pointless.
2352 		 * Dangerous because a device that was removed from the array
2353 		 * might have a event_count that still looks up-to-date,
2354 		 * so it can be re-added without a resync.
2355 		 * Pointless because if there are any spares to skip,
2356 		 * then a recovery will happen and soon that array won't
2357 		 * be degraded any more and the spare can go back to sleep then.
2358 		 */
2359 		nospares = 0;
2360 
2361 	sync_req = mddev->in_sync;
2362 
2363 	/* If this is just a dirty<->clean transition, and the array is clean
2364 	 * and 'events' is odd, we can roll back to the previous clean state */
2365 	if (nospares
2366 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2367 	    && mddev->can_decrease_events
2368 	    && mddev->events != 1) {
2369 		mddev->events--;
2370 		mddev->can_decrease_events = 0;
2371 	} else {
2372 		/* otherwise we have to go forward and ... */
2373 		mddev->events ++;
2374 		mddev->can_decrease_events = nospares;
2375 	}
2376 
2377 	/*
2378 	 * This 64-bit counter should never wrap.
2379 	 * Either we are in around ~1 trillion A.C., assuming
2380 	 * 1 reboot per second, or we have a bug...
2381 	 */
2382 	WARN_ON(mddev->events == 0);
2383 
2384 	rdev_for_each(rdev, mddev) {
2385 		if (rdev->badblocks.changed)
2386 			any_badblocks_changed++;
2387 		if (test_bit(Faulty, &rdev->flags))
2388 			set_bit(FaultRecorded, &rdev->flags);
2389 	}
2390 
2391 	sync_sbs(mddev, nospares);
2392 	spin_unlock(&mddev->lock);
2393 
2394 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2395 		 mdname(mddev), mddev->in_sync);
2396 
2397 	bitmap_update_sb(mddev->bitmap);
2398 	rdev_for_each(rdev, mddev) {
2399 		char b[BDEVNAME_SIZE];
2400 
2401 		if (rdev->sb_loaded != 1)
2402 			continue; /* no noise on spare devices */
2403 
2404 		if (!test_bit(Faulty, &rdev->flags)) {
2405 			md_super_write(mddev,rdev,
2406 				       rdev->sb_start, rdev->sb_size,
2407 				       rdev->sb_page);
2408 			pr_debug("md: (write) %s's sb offset: %llu\n",
2409 				 bdevname(rdev->bdev, b),
2410 				 (unsigned long long)rdev->sb_start);
2411 			rdev->sb_events = mddev->events;
2412 			if (rdev->badblocks.size) {
2413 				md_super_write(mddev, rdev,
2414 					       rdev->badblocks.sector,
2415 					       rdev->badblocks.size << 9,
2416 					       rdev->bb_page);
2417 				rdev->badblocks.size = 0;
2418 			}
2419 
2420 		} else
2421 			pr_debug("md: %s (skipping faulty)\n",
2422 				 bdevname(rdev->bdev, b));
2423 
2424 		if (mddev->level == LEVEL_MULTIPATH)
2425 			/* only need to write one superblock... */
2426 			break;
2427 	}
2428 	md_super_wait(mddev);
2429 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2430 
2431 	spin_lock(&mddev->lock);
2432 	if (mddev->in_sync != sync_req ||
2433 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2434 		/* have to write it out again */
2435 		spin_unlock(&mddev->lock);
2436 		goto repeat;
2437 	}
2438 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2439 	spin_unlock(&mddev->lock);
2440 	wake_up(&mddev->sb_wait);
2441 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2442 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2443 
2444 	rdev_for_each(rdev, mddev) {
2445 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2446 			clear_bit(Blocked, &rdev->flags);
2447 
2448 		if (any_badblocks_changed)
2449 			ack_all_badblocks(&rdev->badblocks);
2450 		clear_bit(BlockedBadBlocks, &rdev->flags);
2451 		wake_up(&rdev->blocked_wait);
2452 	}
2453 
2454 	if (mddev_is_clustered(mddev) && ret == 0)
2455 		md_cluster_ops->metadata_update_finish(mddev);
2456 }
2457 EXPORT_SYMBOL(md_update_sb);
2458 
2459 static int add_bound_rdev(struct md_rdev *rdev)
2460 {
2461 	struct mddev *mddev = rdev->mddev;
2462 	int err = 0;
2463 	bool add_journal = test_bit(Journal, &rdev->flags);
2464 
2465 	if (!mddev->pers->hot_remove_disk || add_journal) {
2466 		/* If there is hot_add_disk but no hot_remove_disk
2467 		 * then added disks for geometry changes,
2468 		 * and should be added immediately.
2469 		 */
2470 		super_types[mddev->major_version].
2471 			validate_super(mddev, rdev);
2472 		if (add_journal)
2473 			mddev_suspend(mddev);
2474 		err = mddev->pers->hot_add_disk(mddev, rdev);
2475 		if (add_journal)
2476 			mddev_resume(mddev);
2477 		if (err) {
2478 			unbind_rdev_from_array(rdev);
2479 			export_rdev(rdev);
2480 			return err;
2481 		}
2482 	}
2483 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2484 
2485 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2486 	if (mddev->degraded)
2487 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2488 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2489 	md_new_event(mddev);
2490 	md_wakeup_thread(mddev->thread);
2491 	return 0;
2492 }
2493 
2494 /* words written to sysfs files may, or may not, be \n terminated.
2495  * We want to accept with case. For this we use cmd_match.
2496  */
2497 static int cmd_match(const char *cmd, const char *str)
2498 {
2499 	/* See if cmd, written into a sysfs file, matches
2500 	 * str.  They must either be the same, or cmd can
2501 	 * have a trailing newline
2502 	 */
2503 	while (*cmd && *str && *cmd == *str) {
2504 		cmd++;
2505 		str++;
2506 	}
2507 	if (*cmd == '\n')
2508 		cmd++;
2509 	if (*str || *cmd)
2510 		return 0;
2511 	return 1;
2512 }
2513 
2514 struct rdev_sysfs_entry {
2515 	struct attribute attr;
2516 	ssize_t (*show)(struct md_rdev *, char *);
2517 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2518 };
2519 
2520 static ssize_t
2521 state_show(struct md_rdev *rdev, char *page)
2522 {
2523 	char *sep = "";
2524 	size_t len = 0;
2525 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2526 
2527 	if (test_bit(Faulty, &flags) ||
2528 	    rdev->badblocks.unacked_exist) {
2529 		len+= sprintf(page+len, "%sfaulty",sep);
2530 		sep = ",";
2531 	}
2532 	if (test_bit(In_sync, &flags)) {
2533 		len += sprintf(page+len, "%sin_sync",sep);
2534 		sep = ",";
2535 	}
2536 	if (test_bit(Journal, &flags)) {
2537 		len += sprintf(page+len, "%sjournal",sep);
2538 		sep = ",";
2539 	}
2540 	if (test_bit(WriteMostly, &flags)) {
2541 		len += sprintf(page+len, "%swrite_mostly",sep);
2542 		sep = ",";
2543 	}
2544 	if (test_bit(Blocked, &flags) ||
2545 	    (rdev->badblocks.unacked_exist
2546 	     && !test_bit(Faulty, &flags))) {
2547 		len += sprintf(page+len, "%sblocked", sep);
2548 		sep = ",";
2549 	}
2550 	if (!test_bit(Faulty, &flags) &&
2551 	    !test_bit(Journal, &flags) &&
2552 	    !test_bit(In_sync, &flags)) {
2553 		len += sprintf(page+len, "%sspare", sep);
2554 		sep = ",";
2555 	}
2556 	if (test_bit(WriteErrorSeen, &flags)) {
2557 		len += sprintf(page+len, "%swrite_error", sep);
2558 		sep = ",";
2559 	}
2560 	if (test_bit(WantReplacement, &flags)) {
2561 		len += sprintf(page+len, "%swant_replacement", sep);
2562 		sep = ",";
2563 	}
2564 	if (test_bit(Replacement, &flags)) {
2565 		len += sprintf(page+len, "%sreplacement", sep);
2566 		sep = ",";
2567 	}
2568 
2569 	return len+sprintf(page+len, "\n");
2570 }
2571 
2572 static ssize_t
2573 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 {
2575 	/* can write
2576 	 *  faulty  - simulates an error
2577 	 *  remove  - disconnects the device
2578 	 *  writemostly - sets write_mostly
2579 	 *  -writemostly - clears write_mostly
2580 	 *  blocked - sets the Blocked flags
2581 	 *  -blocked - clears the Blocked and possibly simulates an error
2582 	 *  insync - sets Insync providing device isn't active
2583 	 *  -insync - clear Insync for a device with a slot assigned,
2584 	 *            so that it gets rebuilt based on bitmap
2585 	 *  write_error - sets WriteErrorSeen
2586 	 *  -write_error - clears WriteErrorSeen
2587 	 */
2588 	int err = -EINVAL;
2589 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2590 		md_error(rdev->mddev, rdev);
2591 		if (test_bit(Faulty, &rdev->flags))
2592 			err = 0;
2593 		else
2594 			err = -EBUSY;
2595 	} else if (cmd_match(buf, "remove")) {
2596 		if (rdev->raid_disk >= 0)
2597 			err = -EBUSY;
2598 		else {
2599 			struct mddev *mddev = rdev->mddev;
2600 			err = 0;
2601 			if (mddev_is_clustered(mddev))
2602 				err = md_cluster_ops->remove_disk(mddev, rdev);
2603 
2604 			if (err == 0) {
2605 				md_kick_rdev_from_array(rdev);
2606 				if (mddev->pers)
2607 					md_update_sb(mddev, 1);
2608 				md_new_event(mddev);
2609 			}
2610 		}
2611 	} else if (cmd_match(buf, "writemostly")) {
2612 		set_bit(WriteMostly, &rdev->flags);
2613 		err = 0;
2614 	} else if (cmd_match(buf, "-writemostly")) {
2615 		clear_bit(WriteMostly, &rdev->flags);
2616 		err = 0;
2617 	} else if (cmd_match(buf, "blocked")) {
2618 		set_bit(Blocked, &rdev->flags);
2619 		err = 0;
2620 	} else if (cmd_match(buf, "-blocked")) {
2621 		if (!test_bit(Faulty, &rdev->flags) &&
2622 		    rdev->badblocks.unacked_exist) {
2623 			/* metadata handler doesn't understand badblocks,
2624 			 * so we need to fail the device
2625 			 */
2626 			md_error(rdev->mddev, rdev);
2627 		}
2628 		clear_bit(Blocked, &rdev->flags);
2629 		clear_bit(BlockedBadBlocks, &rdev->flags);
2630 		wake_up(&rdev->blocked_wait);
2631 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632 		md_wakeup_thread(rdev->mddev->thread);
2633 
2634 		err = 0;
2635 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2636 		set_bit(In_sync, &rdev->flags);
2637 		err = 0;
2638 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2639 		   !test_bit(Journal, &rdev->flags)) {
2640 		if (rdev->mddev->pers == NULL) {
2641 			clear_bit(In_sync, &rdev->flags);
2642 			rdev->saved_raid_disk = rdev->raid_disk;
2643 			rdev->raid_disk = -1;
2644 			err = 0;
2645 		}
2646 	} else if (cmd_match(buf, "write_error")) {
2647 		set_bit(WriteErrorSeen, &rdev->flags);
2648 		err = 0;
2649 	} else if (cmd_match(buf, "-write_error")) {
2650 		clear_bit(WriteErrorSeen, &rdev->flags);
2651 		err = 0;
2652 	} else if (cmd_match(buf, "want_replacement")) {
2653 		/* Any non-spare device that is not a replacement can
2654 		 * become want_replacement at any time, but we then need to
2655 		 * check if recovery is needed.
2656 		 */
2657 		if (rdev->raid_disk >= 0 &&
2658 		    !test_bit(Journal, &rdev->flags) &&
2659 		    !test_bit(Replacement, &rdev->flags))
2660 			set_bit(WantReplacement, &rdev->flags);
2661 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2662 		md_wakeup_thread(rdev->mddev->thread);
2663 		err = 0;
2664 	} else if (cmd_match(buf, "-want_replacement")) {
2665 		/* Clearing 'want_replacement' is always allowed.
2666 		 * Once replacements starts it is too late though.
2667 		 */
2668 		err = 0;
2669 		clear_bit(WantReplacement, &rdev->flags);
2670 	} else if (cmd_match(buf, "replacement")) {
2671 		/* Can only set a device as a replacement when array has not
2672 		 * yet been started.  Once running, replacement is automatic
2673 		 * from spares, or by assigning 'slot'.
2674 		 */
2675 		if (rdev->mddev->pers)
2676 			err = -EBUSY;
2677 		else {
2678 			set_bit(Replacement, &rdev->flags);
2679 			err = 0;
2680 		}
2681 	} else if (cmd_match(buf, "-replacement")) {
2682 		/* Similarly, can only clear Replacement before start */
2683 		if (rdev->mddev->pers)
2684 			err = -EBUSY;
2685 		else {
2686 			clear_bit(Replacement, &rdev->flags);
2687 			err = 0;
2688 		}
2689 	} else if (cmd_match(buf, "re-add")) {
2690 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2691 			/* clear_bit is performed _after_ all the devices
2692 			 * have their local Faulty bit cleared. If any writes
2693 			 * happen in the meantime in the local node, they
2694 			 * will land in the local bitmap, which will be synced
2695 			 * by this node eventually
2696 			 */
2697 			if (!mddev_is_clustered(rdev->mddev) ||
2698 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2699 				clear_bit(Faulty, &rdev->flags);
2700 				err = add_bound_rdev(rdev);
2701 			}
2702 		} else
2703 			err = -EBUSY;
2704 	}
2705 	if (!err)
2706 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2707 	return err ? err : len;
2708 }
2709 static struct rdev_sysfs_entry rdev_state =
2710 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2711 
2712 static ssize_t
2713 errors_show(struct md_rdev *rdev, char *page)
2714 {
2715 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2716 }
2717 
2718 static ssize_t
2719 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721 	unsigned int n;
2722 	int rv;
2723 
2724 	rv = kstrtouint(buf, 10, &n);
2725 	if (rv < 0)
2726 		return rv;
2727 	atomic_set(&rdev->corrected_errors, n);
2728 	return len;
2729 }
2730 static struct rdev_sysfs_entry rdev_errors =
2731 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2732 
2733 static ssize_t
2734 slot_show(struct md_rdev *rdev, char *page)
2735 {
2736 	if (test_bit(Journal, &rdev->flags))
2737 		return sprintf(page, "journal\n");
2738 	else if (rdev->raid_disk < 0)
2739 		return sprintf(page, "none\n");
2740 	else
2741 		return sprintf(page, "%d\n", rdev->raid_disk);
2742 }
2743 
2744 static ssize_t
2745 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2746 {
2747 	int slot;
2748 	int err;
2749 
2750 	if (test_bit(Journal, &rdev->flags))
2751 		return -EBUSY;
2752 	if (strncmp(buf, "none", 4)==0)
2753 		slot = -1;
2754 	else {
2755 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2756 		if (err < 0)
2757 			return err;
2758 	}
2759 	if (rdev->mddev->pers && slot == -1) {
2760 		/* Setting 'slot' on an active array requires also
2761 		 * updating the 'rd%d' link, and communicating
2762 		 * with the personality with ->hot_*_disk.
2763 		 * For now we only support removing
2764 		 * failed/spare devices.  This normally happens automatically,
2765 		 * but not when the metadata is externally managed.
2766 		 */
2767 		if (rdev->raid_disk == -1)
2768 			return -EEXIST;
2769 		/* personality does all needed checks */
2770 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2771 			return -EINVAL;
2772 		clear_bit(Blocked, &rdev->flags);
2773 		remove_and_add_spares(rdev->mddev, rdev);
2774 		if (rdev->raid_disk >= 0)
2775 			return -EBUSY;
2776 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2777 		md_wakeup_thread(rdev->mddev->thread);
2778 	} else if (rdev->mddev->pers) {
2779 		/* Activating a spare .. or possibly reactivating
2780 		 * if we ever get bitmaps working here.
2781 		 */
2782 		int err;
2783 
2784 		if (rdev->raid_disk != -1)
2785 			return -EBUSY;
2786 
2787 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2788 			return -EBUSY;
2789 
2790 		if (rdev->mddev->pers->hot_add_disk == NULL)
2791 			return -EINVAL;
2792 
2793 		if (slot >= rdev->mddev->raid_disks &&
2794 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2795 			return -ENOSPC;
2796 
2797 		rdev->raid_disk = slot;
2798 		if (test_bit(In_sync, &rdev->flags))
2799 			rdev->saved_raid_disk = slot;
2800 		else
2801 			rdev->saved_raid_disk = -1;
2802 		clear_bit(In_sync, &rdev->flags);
2803 		clear_bit(Bitmap_sync, &rdev->flags);
2804 		err = rdev->mddev->pers->
2805 			hot_add_disk(rdev->mddev, rdev);
2806 		if (err) {
2807 			rdev->raid_disk = -1;
2808 			return err;
2809 		} else
2810 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2811 		if (sysfs_link_rdev(rdev->mddev, rdev))
2812 			/* failure here is OK */;
2813 		/* don't wakeup anyone, leave that to userspace. */
2814 	} else {
2815 		if (slot >= rdev->mddev->raid_disks &&
2816 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2817 			return -ENOSPC;
2818 		rdev->raid_disk = slot;
2819 		/* assume it is working */
2820 		clear_bit(Faulty, &rdev->flags);
2821 		clear_bit(WriteMostly, &rdev->flags);
2822 		set_bit(In_sync, &rdev->flags);
2823 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2824 	}
2825 	return len;
2826 }
2827 
2828 static struct rdev_sysfs_entry rdev_slot =
2829 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2830 
2831 static ssize_t
2832 offset_show(struct md_rdev *rdev, char *page)
2833 {
2834 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2835 }
2836 
2837 static ssize_t
2838 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2839 {
2840 	unsigned long long offset;
2841 	if (kstrtoull(buf, 10, &offset) < 0)
2842 		return -EINVAL;
2843 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2844 		return -EBUSY;
2845 	if (rdev->sectors && rdev->mddev->external)
2846 		/* Must set offset before size, so overlap checks
2847 		 * can be sane */
2848 		return -EBUSY;
2849 	rdev->data_offset = offset;
2850 	rdev->new_data_offset = offset;
2851 	return len;
2852 }
2853 
2854 static struct rdev_sysfs_entry rdev_offset =
2855 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2856 
2857 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2858 {
2859 	return sprintf(page, "%llu\n",
2860 		       (unsigned long long)rdev->new_data_offset);
2861 }
2862 
2863 static ssize_t new_offset_store(struct md_rdev *rdev,
2864 				const char *buf, size_t len)
2865 {
2866 	unsigned long long new_offset;
2867 	struct mddev *mddev = rdev->mddev;
2868 
2869 	if (kstrtoull(buf, 10, &new_offset) < 0)
2870 		return -EINVAL;
2871 
2872 	if (mddev->sync_thread ||
2873 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2874 		return -EBUSY;
2875 	if (new_offset == rdev->data_offset)
2876 		/* reset is always permitted */
2877 		;
2878 	else if (new_offset > rdev->data_offset) {
2879 		/* must not push array size beyond rdev_sectors */
2880 		if (new_offset - rdev->data_offset
2881 		    + mddev->dev_sectors > rdev->sectors)
2882 				return -E2BIG;
2883 	}
2884 	/* Metadata worries about other space details. */
2885 
2886 	/* decreasing the offset is inconsistent with a backwards
2887 	 * reshape.
2888 	 */
2889 	if (new_offset < rdev->data_offset &&
2890 	    mddev->reshape_backwards)
2891 		return -EINVAL;
2892 	/* Increasing offset is inconsistent with forwards
2893 	 * reshape.  reshape_direction should be set to
2894 	 * 'backwards' first.
2895 	 */
2896 	if (new_offset > rdev->data_offset &&
2897 	    !mddev->reshape_backwards)
2898 		return -EINVAL;
2899 
2900 	if (mddev->pers && mddev->persistent &&
2901 	    !super_types[mddev->major_version]
2902 	    .allow_new_offset(rdev, new_offset))
2903 		return -E2BIG;
2904 	rdev->new_data_offset = new_offset;
2905 	if (new_offset > rdev->data_offset)
2906 		mddev->reshape_backwards = 1;
2907 	else if (new_offset < rdev->data_offset)
2908 		mddev->reshape_backwards = 0;
2909 
2910 	return len;
2911 }
2912 static struct rdev_sysfs_entry rdev_new_offset =
2913 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2914 
2915 static ssize_t
2916 rdev_size_show(struct md_rdev *rdev, char *page)
2917 {
2918 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2919 }
2920 
2921 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2922 {
2923 	/* check if two start/length pairs overlap */
2924 	if (s1+l1 <= s2)
2925 		return 0;
2926 	if (s2+l2 <= s1)
2927 		return 0;
2928 	return 1;
2929 }
2930 
2931 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2932 {
2933 	unsigned long long blocks;
2934 	sector_t new;
2935 
2936 	if (kstrtoull(buf, 10, &blocks) < 0)
2937 		return -EINVAL;
2938 
2939 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2940 		return -EINVAL; /* sector conversion overflow */
2941 
2942 	new = blocks * 2;
2943 	if (new != blocks * 2)
2944 		return -EINVAL; /* unsigned long long to sector_t overflow */
2945 
2946 	*sectors = new;
2947 	return 0;
2948 }
2949 
2950 static ssize_t
2951 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2952 {
2953 	struct mddev *my_mddev = rdev->mddev;
2954 	sector_t oldsectors = rdev->sectors;
2955 	sector_t sectors;
2956 
2957 	if (test_bit(Journal, &rdev->flags))
2958 		return -EBUSY;
2959 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2960 		return -EINVAL;
2961 	if (rdev->data_offset != rdev->new_data_offset)
2962 		return -EINVAL; /* too confusing */
2963 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2964 		if (my_mddev->persistent) {
2965 			sectors = super_types[my_mddev->major_version].
2966 				rdev_size_change(rdev, sectors);
2967 			if (!sectors)
2968 				return -EBUSY;
2969 		} else if (!sectors)
2970 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2971 				rdev->data_offset;
2972 		if (!my_mddev->pers->resize)
2973 			/* Cannot change size for RAID0 or Linear etc */
2974 			return -EINVAL;
2975 	}
2976 	if (sectors < my_mddev->dev_sectors)
2977 		return -EINVAL; /* component must fit device */
2978 
2979 	rdev->sectors = sectors;
2980 	if (sectors > oldsectors && my_mddev->external) {
2981 		/* Need to check that all other rdevs with the same
2982 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2983 		 * the rdev lists safely.
2984 		 * This check does not provide a hard guarantee, it
2985 		 * just helps avoid dangerous mistakes.
2986 		 */
2987 		struct mddev *mddev;
2988 		int overlap = 0;
2989 		struct list_head *tmp;
2990 
2991 		rcu_read_lock();
2992 		for_each_mddev(mddev, tmp) {
2993 			struct md_rdev *rdev2;
2994 
2995 			rdev_for_each(rdev2, mddev)
2996 				if (rdev->bdev == rdev2->bdev &&
2997 				    rdev != rdev2 &&
2998 				    overlaps(rdev->data_offset, rdev->sectors,
2999 					     rdev2->data_offset,
3000 					     rdev2->sectors)) {
3001 					overlap = 1;
3002 					break;
3003 				}
3004 			if (overlap) {
3005 				mddev_put(mddev);
3006 				break;
3007 			}
3008 		}
3009 		rcu_read_unlock();
3010 		if (overlap) {
3011 			/* Someone else could have slipped in a size
3012 			 * change here, but doing so is just silly.
3013 			 * We put oldsectors back because we *know* it is
3014 			 * safe, and trust userspace not to race with
3015 			 * itself
3016 			 */
3017 			rdev->sectors = oldsectors;
3018 			return -EBUSY;
3019 		}
3020 	}
3021 	return len;
3022 }
3023 
3024 static struct rdev_sysfs_entry rdev_size =
3025 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3026 
3027 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3028 {
3029 	unsigned long long recovery_start = rdev->recovery_offset;
3030 
3031 	if (test_bit(In_sync, &rdev->flags) ||
3032 	    recovery_start == MaxSector)
3033 		return sprintf(page, "none\n");
3034 
3035 	return sprintf(page, "%llu\n", recovery_start);
3036 }
3037 
3038 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3039 {
3040 	unsigned long long recovery_start;
3041 
3042 	if (cmd_match(buf, "none"))
3043 		recovery_start = MaxSector;
3044 	else if (kstrtoull(buf, 10, &recovery_start))
3045 		return -EINVAL;
3046 
3047 	if (rdev->mddev->pers &&
3048 	    rdev->raid_disk >= 0)
3049 		return -EBUSY;
3050 
3051 	rdev->recovery_offset = recovery_start;
3052 	if (recovery_start == MaxSector)
3053 		set_bit(In_sync, &rdev->flags);
3054 	else
3055 		clear_bit(In_sync, &rdev->flags);
3056 	return len;
3057 }
3058 
3059 static struct rdev_sysfs_entry rdev_recovery_start =
3060 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3061 
3062 /* sysfs access to bad-blocks list.
3063  * We present two files.
3064  * 'bad-blocks' lists sector numbers and lengths of ranges that
3065  *    are recorded as bad.  The list is truncated to fit within
3066  *    the one-page limit of sysfs.
3067  *    Writing "sector length" to this file adds an acknowledged
3068  *    bad block list.
3069  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3070  *    been acknowledged.  Writing to this file adds bad blocks
3071  *    without acknowledging them.  This is largely for testing.
3072  */
3073 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3074 {
3075 	return badblocks_show(&rdev->badblocks, page, 0);
3076 }
3077 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3078 {
3079 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3080 	/* Maybe that ack was all we needed */
3081 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3082 		wake_up(&rdev->blocked_wait);
3083 	return rv;
3084 }
3085 static struct rdev_sysfs_entry rdev_bad_blocks =
3086 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3087 
3088 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3089 {
3090 	return badblocks_show(&rdev->badblocks, page, 1);
3091 }
3092 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3093 {
3094 	return badblocks_store(&rdev->badblocks, page, len, 1);
3095 }
3096 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3097 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3098 
3099 static struct attribute *rdev_default_attrs[] = {
3100 	&rdev_state.attr,
3101 	&rdev_errors.attr,
3102 	&rdev_slot.attr,
3103 	&rdev_offset.attr,
3104 	&rdev_new_offset.attr,
3105 	&rdev_size.attr,
3106 	&rdev_recovery_start.attr,
3107 	&rdev_bad_blocks.attr,
3108 	&rdev_unack_bad_blocks.attr,
3109 	NULL,
3110 };
3111 static ssize_t
3112 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3113 {
3114 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3115 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3116 
3117 	if (!entry->show)
3118 		return -EIO;
3119 	if (!rdev->mddev)
3120 		return -EBUSY;
3121 	return entry->show(rdev, page);
3122 }
3123 
3124 static ssize_t
3125 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3126 	      const char *page, size_t length)
3127 {
3128 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3129 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3130 	ssize_t rv;
3131 	struct mddev *mddev = rdev->mddev;
3132 
3133 	if (!entry->store)
3134 		return -EIO;
3135 	if (!capable(CAP_SYS_ADMIN))
3136 		return -EACCES;
3137 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3138 	if (!rv) {
3139 		if (rdev->mddev == NULL)
3140 			rv = -EBUSY;
3141 		else
3142 			rv = entry->store(rdev, page, length);
3143 		mddev_unlock(mddev);
3144 	}
3145 	return rv;
3146 }
3147 
3148 static void rdev_free(struct kobject *ko)
3149 {
3150 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3151 	kfree(rdev);
3152 }
3153 static const struct sysfs_ops rdev_sysfs_ops = {
3154 	.show		= rdev_attr_show,
3155 	.store		= rdev_attr_store,
3156 };
3157 static struct kobj_type rdev_ktype = {
3158 	.release	= rdev_free,
3159 	.sysfs_ops	= &rdev_sysfs_ops,
3160 	.default_attrs	= rdev_default_attrs,
3161 };
3162 
3163 int md_rdev_init(struct md_rdev *rdev)
3164 {
3165 	rdev->desc_nr = -1;
3166 	rdev->saved_raid_disk = -1;
3167 	rdev->raid_disk = -1;
3168 	rdev->flags = 0;
3169 	rdev->data_offset = 0;
3170 	rdev->new_data_offset = 0;
3171 	rdev->sb_events = 0;
3172 	rdev->last_read_error.tv_sec  = 0;
3173 	rdev->last_read_error.tv_nsec = 0;
3174 	rdev->sb_loaded = 0;
3175 	rdev->bb_page = NULL;
3176 	atomic_set(&rdev->nr_pending, 0);
3177 	atomic_set(&rdev->read_errors, 0);
3178 	atomic_set(&rdev->corrected_errors, 0);
3179 
3180 	INIT_LIST_HEAD(&rdev->same_set);
3181 	init_waitqueue_head(&rdev->blocked_wait);
3182 
3183 	/* Add space to store bad block list.
3184 	 * This reserves the space even on arrays where it cannot
3185 	 * be used - I wonder if that matters
3186 	 */
3187 	return badblocks_init(&rdev->badblocks, 0);
3188 }
3189 EXPORT_SYMBOL_GPL(md_rdev_init);
3190 /*
3191  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3192  *
3193  * mark the device faulty if:
3194  *
3195  *   - the device is nonexistent (zero size)
3196  *   - the device has no valid superblock
3197  *
3198  * a faulty rdev _never_ has rdev->sb set.
3199  */
3200 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3201 {
3202 	char b[BDEVNAME_SIZE];
3203 	int err;
3204 	struct md_rdev *rdev;
3205 	sector_t size;
3206 
3207 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3208 	if (!rdev) {
3209 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3210 		return ERR_PTR(-ENOMEM);
3211 	}
3212 
3213 	err = md_rdev_init(rdev);
3214 	if (err)
3215 		goto abort_free;
3216 	err = alloc_disk_sb(rdev);
3217 	if (err)
3218 		goto abort_free;
3219 
3220 	err = lock_rdev(rdev, newdev, super_format == -2);
3221 	if (err)
3222 		goto abort_free;
3223 
3224 	kobject_init(&rdev->kobj, &rdev_ktype);
3225 
3226 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3227 	if (!size) {
3228 		printk(KERN_WARNING
3229 			"md: %s has zero or unknown size, marking faulty!\n",
3230 			bdevname(rdev->bdev,b));
3231 		err = -EINVAL;
3232 		goto abort_free;
3233 	}
3234 
3235 	if (super_format >= 0) {
3236 		err = super_types[super_format].
3237 			load_super(rdev, NULL, super_minor);
3238 		if (err == -EINVAL) {
3239 			printk(KERN_WARNING
3240 				"md: %s does not have a valid v%d.%d "
3241 			       "superblock, not importing!\n",
3242 				bdevname(rdev->bdev,b),
3243 			       super_format, super_minor);
3244 			goto abort_free;
3245 		}
3246 		if (err < 0) {
3247 			printk(KERN_WARNING
3248 				"md: could not read %s's sb, not importing!\n",
3249 				bdevname(rdev->bdev,b));
3250 			goto abort_free;
3251 		}
3252 	}
3253 
3254 	return rdev;
3255 
3256 abort_free:
3257 	if (rdev->bdev)
3258 		unlock_rdev(rdev);
3259 	md_rdev_clear(rdev);
3260 	kfree(rdev);
3261 	return ERR_PTR(err);
3262 }
3263 
3264 /*
3265  * Check a full RAID array for plausibility
3266  */
3267 
3268 static void analyze_sbs(struct mddev *mddev)
3269 {
3270 	int i;
3271 	struct md_rdev *rdev, *freshest, *tmp;
3272 	char b[BDEVNAME_SIZE];
3273 
3274 	freshest = NULL;
3275 	rdev_for_each_safe(rdev, tmp, mddev)
3276 		switch (super_types[mddev->major_version].
3277 			load_super(rdev, freshest, mddev->minor_version)) {
3278 		case 1:
3279 			freshest = rdev;
3280 			break;
3281 		case 0:
3282 			break;
3283 		default:
3284 			printk( KERN_ERR \
3285 				"md: fatal superblock inconsistency in %s"
3286 				" -- removing from array\n",
3287 				bdevname(rdev->bdev,b));
3288 			md_kick_rdev_from_array(rdev);
3289 		}
3290 
3291 	super_types[mddev->major_version].
3292 		validate_super(mddev, freshest);
3293 
3294 	i = 0;
3295 	rdev_for_each_safe(rdev, tmp, mddev) {
3296 		if (mddev->max_disks &&
3297 		    (rdev->desc_nr >= mddev->max_disks ||
3298 		     i > mddev->max_disks)) {
3299 			printk(KERN_WARNING
3300 			       "md: %s: %s: only %d devices permitted\n",
3301 			       mdname(mddev), bdevname(rdev->bdev, b),
3302 			       mddev->max_disks);
3303 			md_kick_rdev_from_array(rdev);
3304 			continue;
3305 		}
3306 		if (rdev != freshest) {
3307 			if (super_types[mddev->major_version].
3308 			    validate_super(mddev, rdev)) {
3309 				printk(KERN_WARNING "md: kicking non-fresh %s"
3310 					" from array!\n",
3311 					bdevname(rdev->bdev,b));
3312 				md_kick_rdev_from_array(rdev);
3313 				continue;
3314 			}
3315 		}
3316 		if (mddev->level == LEVEL_MULTIPATH) {
3317 			rdev->desc_nr = i++;
3318 			rdev->raid_disk = rdev->desc_nr;
3319 			set_bit(In_sync, &rdev->flags);
3320 		} else if (rdev->raid_disk >=
3321 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3322 			   !test_bit(Journal, &rdev->flags)) {
3323 			rdev->raid_disk = -1;
3324 			clear_bit(In_sync, &rdev->flags);
3325 		}
3326 	}
3327 }
3328 
3329 /* Read a fixed-point number.
3330  * Numbers in sysfs attributes should be in "standard" units where
3331  * possible, so time should be in seconds.
3332  * However we internally use a a much smaller unit such as
3333  * milliseconds or jiffies.
3334  * This function takes a decimal number with a possible fractional
3335  * component, and produces an integer which is the result of
3336  * multiplying that number by 10^'scale'.
3337  * all without any floating-point arithmetic.
3338  */
3339 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3340 {
3341 	unsigned long result = 0;
3342 	long decimals = -1;
3343 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3344 		if (*cp == '.')
3345 			decimals = 0;
3346 		else if (decimals < scale) {
3347 			unsigned int value;
3348 			value = *cp - '0';
3349 			result = result * 10 + value;
3350 			if (decimals >= 0)
3351 				decimals++;
3352 		}
3353 		cp++;
3354 	}
3355 	if (*cp == '\n')
3356 		cp++;
3357 	if (*cp)
3358 		return -EINVAL;
3359 	if (decimals < 0)
3360 		decimals = 0;
3361 	while (decimals < scale) {
3362 		result *= 10;
3363 		decimals ++;
3364 	}
3365 	*res = result;
3366 	return 0;
3367 }
3368 
3369 static ssize_t
3370 safe_delay_show(struct mddev *mddev, char *page)
3371 {
3372 	int msec = (mddev->safemode_delay*1000)/HZ;
3373 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3374 }
3375 static ssize_t
3376 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3377 {
3378 	unsigned long msec;
3379 
3380 	if (mddev_is_clustered(mddev)) {
3381 		pr_info("md: Safemode is disabled for clustered mode\n");
3382 		return -EINVAL;
3383 	}
3384 
3385 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3386 		return -EINVAL;
3387 	if (msec == 0)
3388 		mddev->safemode_delay = 0;
3389 	else {
3390 		unsigned long old_delay = mddev->safemode_delay;
3391 		unsigned long new_delay = (msec*HZ)/1000;
3392 
3393 		if (new_delay == 0)
3394 			new_delay = 1;
3395 		mddev->safemode_delay = new_delay;
3396 		if (new_delay < old_delay || old_delay == 0)
3397 			mod_timer(&mddev->safemode_timer, jiffies+1);
3398 	}
3399 	return len;
3400 }
3401 static struct md_sysfs_entry md_safe_delay =
3402 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3403 
3404 static ssize_t
3405 level_show(struct mddev *mddev, char *page)
3406 {
3407 	struct md_personality *p;
3408 	int ret;
3409 	spin_lock(&mddev->lock);
3410 	p = mddev->pers;
3411 	if (p)
3412 		ret = sprintf(page, "%s\n", p->name);
3413 	else if (mddev->clevel[0])
3414 		ret = sprintf(page, "%s\n", mddev->clevel);
3415 	else if (mddev->level != LEVEL_NONE)
3416 		ret = sprintf(page, "%d\n", mddev->level);
3417 	else
3418 		ret = 0;
3419 	spin_unlock(&mddev->lock);
3420 	return ret;
3421 }
3422 
3423 static ssize_t
3424 level_store(struct mddev *mddev, const char *buf, size_t len)
3425 {
3426 	char clevel[16];
3427 	ssize_t rv;
3428 	size_t slen = len;
3429 	struct md_personality *pers, *oldpers;
3430 	long level;
3431 	void *priv, *oldpriv;
3432 	struct md_rdev *rdev;
3433 
3434 	if (slen == 0 || slen >= sizeof(clevel))
3435 		return -EINVAL;
3436 
3437 	rv = mddev_lock(mddev);
3438 	if (rv)
3439 		return rv;
3440 
3441 	if (mddev->pers == NULL) {
3442 		strncpy(mddev->clevel, buf, slen);
3443 		if (mddev->clevel[slen-1] == '\n')
3444 			slen--;
3445 		mddev->clevel[slen] = 0;
3446 		mddev->level = LEVEL_NONE;
3447 		rv = len;
3448 		goto out_unlock;
3449 	}
3450 	rv = -EROFS;
3451 	if (mddev->ro)
3452 		goto out_unlock;
3453 
3454 	/* request to change the personality.  Need to ensure:
3455 	 *  - array is not engaged in resync/recovery/reshape
3456 	 *  - old personality can be suspended
3457 	 *  - new personality will access other array.
3458 	 */
3459 
3460 	rv = -EBUSY;
3461 	if (mddev->sync_thread ||
3462 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3463 	    mddev->reshape_position != MaxSector ||
3464 	    mddev->sysfs_active)
3465 		goto out_unlock;
3466 
3467 	rv = -EINVAL;
3468 	if (!mddev->pers->quiesce) {
3469 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3470 		       mdname(mddev), mddev->pers->name);
3471 		goto out_unlock;
3472 	}
3473 
3474 	/* Now find the new personality */
3475 	strncpy(clevel, buf, slen);
3476 	if (clevel[slen-1] == '\n')
3477 		slen--;
3478 	clevel[slen] = 0;
3479 	if (kstrtol(clevel, 10, &level))
3480 		level = LEVEL_NONE;
3481 
3482 	if (request_module("md-%s", clevel) != 0)
3483 		request_module("md-level-%s", clevel);
3484 	spin_lock(&pers_lock);
3485 	pers = find_pers(level, clevel);
3486 	if (!pers || !try_module_get(pers->owner)) {
3487 		spin_unlock(&pers_lock);
3488 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3489 		rv = -EINVAL;
3490 		goto out_unlock;
3491 	}
3492 	spin_unlock(&pers_lock);
3493 
3494 	if (pers == mddev->pers) {
3495 		/* Nothing to do! */
3496 		module_put(pers->owner);
3497 		rv = len;
3498 		goto out_unlock;
3499 	}
3500 	if (!pers->takeover) {
3501 		module_put(pers->owner);
3502 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3503 		       mdname(mddev), clevel);
3504 		rv = -EINVAL;
3505 		goto out_unlock;
3506 	}
3507 
3508 	rdev_for_each(rdev, mddev)
3509 		rdev->new_raid_disk = rdev->raid_disk;
3510 
3511 	/* ->takeover must set new_* and/or delta_disks
3512 	 * if it succeeds, and may set them when it fails.
3513 	 */
3514 	priv = pers->takeover(mddev);
3515 	if (IS_ERR(priv)) {
3516 		mddev->new_level = mddev->level;
3517 		mddev->new_layout = mddev->layout;
3518 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3519 		mddev->raid_disks -= mddev->delta_disks;
3520 		mddev->delta_disks = 0;
3521 		mddev->reshape_backwards = 0;
3522 		module_put(pers->owner);
3523 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3524 		       mdname(mddev), clevel);
3525 		rv = PTR_ERR(priv);
3526 		goto out_unlock;
3527 	}
3528 
3529 	/* Looks like we have a winner */
3530 	mddev_suspend(mddev);
3531 	mddev_detach(mddev);
3532 
3533 	spin_lock(&mddev->lock);
3534 	oldpers = mddev->pers;
3535 	oldpriv = mddev->private;
3536 	mddev->pers = pers;
3537 	mddev->private = priv;
3538 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3539 	mddev->level = mddev->new_level;
3540 	mddev->layout = mddev->new_layout;
3541 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3542 	mddev->delta_disks = 0;
3543 	mddev->reshape_backwards = 0;
3544 	mddev->degraded = 0;
3545 	spin_unlock(&mddev->lock);
3546 
3547 	if (oldpers->sync_request == NULL &&
3548 	    mddev->external) {
3549 		/* We are converting from a no-redundancy array
3550 		 * to a redundancy array and metadata is managed
3551 		 * externally so we need to be sure that writes
3552 		 * won't block due to a need to transition
3553 		 *      clean->dirty
3554 		 * until external management is started.
3555 		 */
3556 		mddev->in_sync = 0;
3557 		mddev->safemode_delay = 0;
3558 		mddev->safemode = 0;
3559 	}
3560 
3561 	oldpers->free(mddev, oldpriv);
3562 
3563 	if (oldpers->sync_request == NULL &&
3564 	    pers->sync_request != NULL) {
3565 		/* need to add the md_redundancy_group */
3566 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3567 			printk(KERN_WARNING
3568 			       "md: cannot register extra attributes for %s\n",
3569 			       mdname(mddev));
3570 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3571 	}
3572 	if (oldpers->sync_request != NULL &&
3573 	    pers->sync_request == NULL) {
3574 		/* need to remove the md_redundancy_group */
3575 		if (mddev->to_remove == NULL)
3576 			mddev->to_remove = &md_redundancy_group;
3577 	}
3578 
3579 	rdev_for_each(rdev, mddev) {
3580 		if (rdev->raid_disk < 0)
3581 			continue;
3582 		if (rdev->new_raid_disk >= mddev->raid_disks)
3583 			rdev->new_raid_disk = -1;
3584 		if (rdev->new_raid_disk == rdev->raid_disk)
3585 			continue;
3586 		sysfs_unlink_rdev(mddev, rdev);
3587 	}
3588 	rdev_for_each(rdev, mddev) {
3589 		if (rdev->raid_disk < 0)
3590 			continue;
3591 		if (rdev->new_raid_disk == rdev->raid_disk)
3592 			continue;
3593 		rdev->raid_disk = rdev->new_raid_disk;
3594 		if (rdev->raid_disk < 0)
3595 			clear_bit(In_sync, &rdev->flags);
3596 		else {
3597 			if (sysfs_link_rdev(mddev, rdev))
3598 				printk(KERN_WARNING "md: cannot register rd%d"
3599 				       " for %s after level change\n",
3600 				       rdev->raid_disk, mdname(mddev));
3601 		}
3602 	}
3603 
3604 	if (pers->sync_request == NULL) {
3605 		/* this is now an array without redundancy, so
3606 		 * it must always be in_sync
3607 		 */
3608 		mddev->in_sync = 1;
3609 		del_timer_sync(&mddev->safemode_timer);
3610 	}
3611 	blk_set_stacking_limits(&mddev->queue->limits);
3612 	pers->run(mddev);
3613 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3614 	mddev_resume(mddev);
3615 	if (!mddev->thread)
3616 		md_update_sb(mddev, 1);
3617 	sysfs_notify(&mddev->kobj, NULL, "level");
3618 	md_new_event(mddev);
3619 	rv = len;
3620 out_unlock:
3621 	mddev_unlock(mddev);
3622 	return rv;
3623 }
3624 
3625 static struct md_sysfs_entry md_level =
3626 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3627 
3628 static ssize_t
3629 layout_show(struct mddev *mddev, char *page)
3630 {
3631 	/* just a number, not meaningful for all levels */
3632 	if (mddev->reshape_position != MaxSector &&
3633 	    mddev->layout != mddev->new_layout)
3634 		return sprintf(page, "%d (%d)\n",
3635 			       mddev->new_layout, mddev->layout);
3636 	return sprintf(page, "%d\n", mddev->layout);
3637 }
3638 
3639 static ssize_t
3640 layout_store(struct mddev *mddev, const char *buf, size_t len)
3641 {
3642 	unsigned int n;
3643 	int err;
3644 
3645 	err = kstrtouint(buf, 10, &n);
3646 	if (err < 0)
3647 		return err;
3648 	err = mddev_lock(mddev);
3649 	if (err)
3650 		return err;
3651 
3652 	if (mddev->pers) {
3653 		if (mddev->pers->check_reshape == NULL)
3654 			err = -EBUSY;
3655 		else if (mddev->ro)
3656 			err = -EROFS;
3657 		else {
3658 			mddev->new_layout = n;
3659 			err = mddev->pers->check_reshape(mddev);
3660 			if (err)
3661 				mddev->new_layout = mddev->layout;
3662 		}
3663 	} else {
3664 		mddev->new_layout = n;
3665 		if (mddev->reshape_position == MaxSector)
3666 			mddev->layout = n;
3667 	}
3668 	mddev_unlock(mddev);
3669 	return err ?: len;
3670 }
3671 static struct md_sysfs_entry md_layout =
3672 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3673 
3674 static ssize_t
3675 raid_disks_show(struct mddev *mddev, char *page)
3676 {
3677 	if (mddev->raid_disks == 0)
3678 		return 0;
3679 	if (mddev->reshape_position != MaxSector &&
3680 	    mddev->delta_disks != 0)
3681 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3682 			       mddev->raid_disks - mddev->delta_disks);
3683 	return sprintf(page, "%d\n", mddev->raid_disks);
3684 }
3685 
3686 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3687 
3688 static ssize_t
3689 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3690 {
3691 	unsigned int n;
3692 	int err;
3693 
3694 	err = kstrtouint(buf, 10, &n);
3695 	if (err < 0)
3696 		return err;
3697 
3698 	err = mddev_lock(mddev);
3699 	if (err)
3700 		return err;
3701 	if (mddev->pers)
3702 		err = update_raid_disks(mddev, n);
3703 	else if (mddev->reshape_position != MaxSector) {
3704 		struct md_rdev *rdev;
3705 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3706 
3707 		err = -EINVAL;
3708 		rdev_for_each(rdev, mddev) {
3709 			if (olddisks < n &&
3710 			    rdev->data_offset < rdev->new_data_offset)
3711 				goto out_unlock;
3712 			if (olddisks > n &&
3713 			    rdev->data_offset > rdev->new_data_offset)
3714 				goto out_unlock;
3715 		}
3716 		err = 0;
3717 		mddev->delta_disks = n - olddisks;
3718 		mddev->raid_disks = n;
3719 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3720 	} else
3721 		mddev->raid_disks = n;
3722 out_unlock:
3723 	mddev_unlock(mddev);
3724 	return err ? err : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728 
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732 	if (mddev->reshape_position != MaxSector &&
3733 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3734 		return sprintf(page, "%d (%d)\n",
3735 			       mddev->new_chunk_sectors << 9,
3736 			       mddev->chunk_sectors << 9);
3737 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739 
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743 	unsigned long n;
3744 	int err;
3745 
3746 	err = kstrtoul(buf, 10, &n);
3747 	if (err < 0)
3748 		return err;
3749 
3750 	err = mddev_lock(mddev);
3751 	if (err)
3752 		return err;
3753 	if (mddev->pers) {
3754 		if (mddev->pers->check_reshape == NULL)
3755 			err = -EBUSY;
3756 		else if (mddev->ro)
3757 			err = -EROFS;
3758 		else {
3759 			mddev->new_chunk_sectors = n >> 9;
3760 			err = mddev->pers->check_reshape(mddev);
3761 			if (err)
3762 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3763 		}
3764 	} else {
3765 		mddev->new_chunk_sectors = n >> 9;
3766 		if (mddev->reshape_position == MaxSector)
3767 			mddev->chunk_sectors = n >> 9;
3768 	}
3769 	mddev_unlock(mddev);
3770 	return err ?: len;
3771 }
3772 static struct md_sysfs_entry md_chunk_size =
3773 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3774 
3775 static ssize_t
3776 resync_start_show(struct mddev *mddev, char *page)
3777 {
3778 	if (mddev->recovery_cp == MaxSector)
3779 		return sprintf(page, "none\n");
3780 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3781 }
3782 
3783 static ssize_t
3784 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3785 {
3786 	unsigned long long n;
3787 	int err;
3788 
3789 	if (cmd_match(buf, "none"))
3790 		n = MaxSector;
3791 	else {
3792 		err = kstrtoull(buf, 10, &n);
3793 		if (err < 0)
3794 			return err;
3795 		if (n != (sector_t)n)
3796 			return -EINVAL;
3797 	}
3798 
3799 	err = mddev_lock(mddev);
3800 	if (err)
3801 		return err;
3802 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3803 		err = -EBUSY;
3804 
3805 	if (!err) {
3806 		mddev->recovery_cp = n;
3807 		if (mddev->pers)
3808 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809 	}
3810 	mddev_unlock(mddev);
3811 	return err ?: len;
3812 }
3813 static struct md_sysfs_entry md_resync_start =
3814 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3815 		resync_start_show, resync_start_store);
3816 
3817 /*
3818  * The array state can be:
3819  *
3820  * clear
3821  *     No devices, no size, no level
3822  *     Equivalent to STOP_ARRAY ioctl
3823  * inactive
3824  *     May have some settings, but array is not active
3825  *        all IO results in error
3826  *     When written, doesn't tear down array, but just stops it
3827  * suspended (not supported yet)
3828  *     All IO requests will block. The array can be reconfigured.
3829  *     Writing this, if accepted, will block until array is quiescent
3830  * readonly
3831  *     no resync can happen.  no superblocks get written.
3832  *     write requests fail
3833  * read-auto
3834  *     like readonly, but behaves like 'clean' on a write request.
3835  *
3836  * clean - no pending writes, but otherwise active.
3837  *     When written to inactive array, starts without resync
3838  *     If a write request arrives then
3839  *       if metadata is known, mark 'dirty' and switch to 'active'.
3840  *       if not known, block and switch to write-pending
3841  *     If written to an active array that has pending writes, then fails.
3842  * active
3843  *     fully active: IO and resync can be happening.
3844  *     When written to inactive array, starts with resync
3845  *
3846  * write-pending
3847  *     clean, but writes are blocked waiting for 'active' to be written.
3848  *
3849  * active-idle
3850  *     like active, but no writes have been seen for a while (100msec).
3851  *
3852  */
3853 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3854 		   write_pending, active_idle, bad_word};
3855 static char *array_states[] = {
3856 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3857 	"write-pending", "active-idle", NULL };
3858 
3859 static int match_word(const char *word, char **list)
3860 {
3861 	int n;
3862 	for (n=0; list[n]; n++)
3863 		if (cmd_match(word, list[n]))
3864 			break;
3865 	return n;
3866 }
3867 
3868 static ssize_t
3869 array_state_show(struct mddev *mddev, char *page)
3870 {
3871 	enum array_state st = inactive;
3872 
3873 	if (mddev->pers)
3874 		switch(mddev->ro) {
3875 		case 1:
3876 			st = readonly;
3877 			break;
3878 		case 2:
3879 			st = read_auto;
3880 			break;
3881 		case 0:
3882 			if (mddev->in_sync)
3883 				st = clean;
3884 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3885 				st = write_pending;
3886 			else if (mddev->safemode)
3887 				st = active_idle;
3888 			else
3889 				st = active;
3890 		}
3891 	else {
3892 		if (list_empty(&mddev->disks) &&
3893 		    mddev->raid_disks == 0 &&
3894 		    mddev->dev_sectors == 0)
3895 			st = clear;
3896 		else
3897 			st = inactive;
3898 	}
3899 	return sprintf(page, "%s\n", array_states[st]);
3900 }
3901 
3902 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3903 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3904 static int do_md_run(struct mddev *mddev);
3905 static int restart_array(struct mddev *mddev);
3906 
3907 static ssize_t
3908 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3909 {
3910 	int err;
3911 	enum array_state st = match_word(buf, array_states);
3912 
3913 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3914 		/* don't take reconfig_mutex when toggling between
3915 		 * clean and active
3916 		 */
3917 		spin_lock(&mddev->lock);
3918 		if (st == active) {
3919 			restart_array(mddev);
3920 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3921 			wake_up(&mddev->sb_wait);
3922 			err = 0;
3923 		} else /* st == clean */ {
3924 			restart_array(mddev);
3925 			if (atomic_read(&mddev->writes_pending) == 0) {
3926 				if (mddev->in_sync == 0) {
3927 					mddev->in_sync = 1;
3928 					if (mddev->safemode == 1)
3929 						mddev->safemode = 0;
3930 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3931 				}
3932 				err = 0;
3933 			} else
3934 				err = -EBUSY;
3935 		}
3936 		spin_unlock(&mddev->lock);
3937 		return err ?: len;
3938 	}
3939 	err = mddev_lock(mddev);
3940 	if (err)
3941 		return err;
3942 	err = -EINVAL;
3943 	switch(st) {
3944 	case bad_word:
3945 		break;
3946 	case clear:
3947 		/* stopping an active array */
3948 		err = do_md_stop(mddev, 0, NULL);
3949 		break;
3950 	case inactive:
3951 		/* stopping an active array */
3952 		if (mddev->pers)
3953 			err = do_md_stop(mddev, 2, NULL);
3954 		else
3955 			err = 0; /* already inactive */
3956 		break;
3957 	case suspended:
3958 		break; /* not supported yet */
3959 	case readonly:
3960 		if (mddev->pers)
3961 			err = md_set_readonly(mddev, NULL);
3962 		else {
3963 			mddev->ro = 1;
3964 			set_disk_ro(mddev->gendisk, 1);
3965 			err = do_md_run(mddev);
3966 		}
3967 		break;
3968 	case read_auto:
3969 		if (mddev->pers) {
3970 			if (mddev->ro == 0)
3971 				err = md_set_readonly(mddev, NULL);
3972 			else if (mddev->ro == 1)
3973 				err = restart_array(mddev);
3974 			if (err == 0) {
3975 				mddev->ro = 2;
3976 				set_disk_ro(mddev->gendisk, 0);
3977 			}
3978 		} else {
3979 			mddev->ro = 2;
3980 			err = do_md_run(mddev);
3981 		}
3982 		break;
3983 	case clean:
3984 		if (mddev->pers) {
3985 			err = restart_array(mddev);
3986 			if (err)
3987 				break;
3988 			spin_lock(&mddev->lock);
3989 			if (atomic_read(&mddev->writes_pending) == 0) {
3990 				if (mddev->in_sync == 0) {
3991 					mddev->in_sync = 1;
3992 					if (mddev->safemode == 1)
3993 						mddev->safemode = 0;
3994 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3995 				}
3996 				err = 0;
3997 			} else
3998 				err = -EBUSY;
3999 			spin_unlock(&mddev->lock);
4000 		} else
4001 			err = -EINVAL;
4002 		break;
4003 	case active:
4004 		if (mddev->pers) {
4005 			err = restart_array(mddev);
4006 			if (err)
4007 				break;
4008 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4009 			wake_up(&mddev->sb_wait);
4010 			err = 0;
4011 		} else {
4012 			mddev->ro = 0;
4013 			set_disk_ro(mddev->gendisk, 0);
4014 			err = do_md_run(mddev);
4015 		}
4016 		break;
4017 	case write_pending:
4018 	case active_idle:
4019 		/* these cannot be set */
4020 		break;
4021 	}
4022 
4023 	if (!err) {
4024 		if (mddev->hold_active == UNTIL_IOCTL)
4025 			mddev->hold_active = 0;
4026 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4027 	}
4028 	mddev_unlock(mddev);
4029 	return err ?: len;
4030 }
4031 static struct md_sysfs_entry md_array_state =
4032 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4033 
4034 static ssize_t
4035 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4036 	return sprintf(page, "%d\n",
4037 		       atomic_read(&mddev->max_corr_read_errors));
4038 }
4039 
4040 static ssize_t
4041 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4042 {
4043 	unsigned int n;
4044 	int rv;
4045 
4046 	rv = kstrtouint(buf, 10, &n);
4047 	if (rv < 0)
4048 		return rv;
4049 	atomic_set(&mddev->max_corr_read_errors, n);
4050 	return len;
4051 }
4052 
4053 static struct md_sysfs_entry max_corr_read_errors =
4054 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4055 	max_corrected_read_errors_store);
4056 
4057 static ssize_t
4058 null_show(struct mddev *mddev, char *page)
4059 {
4060 	return -EINVAL;
4061 }
4062 
4063 static ssize_t
4064 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4065 {
4066 	/* buf must be %d:%d\n? giving major and minor numbers */
4067 	/* The new device is added to the array.
4068 	 * If the array has a persistent superblock, we read the
4069 	 * superblock to initialise info and check validity.
4070 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4071 	 * which mainly checks size.
4072 	 */
4073 	char *e;
4074 	int major = simple_strtoul(buf, &e, 10);
4075 	int minor;
4076 	dev_t dev;
4077 	struct md_rdev *rdev;
4078 	int err;
4079 
4080 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4081 		return -EINVAL;
4082 	minor = simple_strtoul(e+1, &e, 10);
4083 	if (*e && *e != '\n')
4084 		return -EINVAL;
4085 	dev = MKDEV(major, minor);
4086 	if (major != MAJOR(dev) ||
4087 	    minor != MINOR(dev))
4088 		return -EOVERFLOW;
4089 
4090 	flush_workqueue(md_misc_wq);
4091 
4092 	err = mddev_lock(mddev);
4093 	if (err)
4094 		return err;
4095 	if (mddev->persistent) {
4096 		rdev = md_import_device(dev, mddev->major_version,
4097 					mddev->minor_version);
4098 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4099 			struct md_rdev *rdev0
4100 				= list_entry(mddev->disks.next,
4101 					     struct md_rdev, same_set);
4102 			err = super_types[mddev->major_version]
4103 				.load_super(rdev, rdev0, mddev->minor_version);
4104 			if (err < 0)
4105 				goto out;
4106 		}
4107 	} else if (mddev->external)
4108 		rdev = md_import_device(dev, -2, -1);
4109 	else
4110 		rdev = md_import_device(dev, -1, -1);
4111 
4112 	if (IS_ERR(rdev)) {
4113 		mddev_unlock(mddev);
4114 		return PTR_ERR(rdev);
4115 	}
4116 	err = bind_rdev_to_array(rdev, mddev);
4117  out:
4118 	if (err)
4119 		export_rdev(rdev);
4120 	mddev_unlock(mddev);
4121 	return err ? err : len;
4122 }
4123 
4124 static struct md_sysfs_entry md_new_device =
4125 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4126 
4127 static ssize_t
4128 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130 	char *end;
4131 	unsigned long chunk, end_chunk;
4132 	int err;
4133 
4134 	err = mddev_lock(mddev);
4135 	if (err)
4136 		return err;
4137 	if (!mddev->bitmap)
4138 		goto out;
4139 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4140 	while (*buf) {
4141 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4142 		if (buf == end) break;
4143 		if (*end == '-') { /* range */
4144 			buf = end + 1;
4145 			end_chunk = simple_strtoul(buf, &end, 0);
4146 			if (buf == end) break;
4147 		}
4148 		if (*end && !isspace(*end)) break;
4149 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4150 		buf = skip_spaces(end);
4151 	}
4152 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4153 out:
4154 	mddev_unlock(mddev);
4155 	return len;
4156 }
4157 
4158 static struct md_sysfs_entry md_bitmap =
4159 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4160 
4161 static ssize_t
4162 size_show(struct mddev *mddev, char *page)
4163 {
4164 	return sprintf(page, "%llu\n",
4165 		(unsigned long long)mddev->dev_sectors / 2);
4166 }
4167 
4168 static int update_size(struct mddev *mddev, sector_t num_sectors);
4169 
4170 static ssize_t
4171 size_store(struct mddev *mddev, const char *buf, size_t len)
4172 {
4173 	/* If array is inactive, we can reduce the component size, but
4174 	 * not increase it (except from 0).
4175 	 * If array is active, we can try an on-line resize
4176 	 */
4177 	sector_t sectors;
4178 	int err = strict_blocks_to_sectors(buf, &sectors);
4179 
4180 	if (err < 0)
4181 		return err;
4182 	err = mddev_lock(mddev);
4183 	if (err)
4184 		return err;
4185 	if (mddev->pers) {
4186 		err = update_size(mddev, sectors);
4187 		md_update_sb(mddev, 1);
4188 	} else {
4189 		if (mddev->dev_sectors == 0 ||
4190 		    mddev->dev_sectors > sectors)
4191 			mddev->dev_sectors = sectors;
4192 		else
4193 			err = -ENOSPC;
4194 	}
4195 	mddev_unlock(mddev);
4196 	return err ? err : len;
4197 }
4198 
4199 static struct md_sysfs_entry md_size =
4200 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4201 
4202 /* Metadata version.
4203  * This is one of
4204  *   'none' for arrays with no metadata (good luck...)
4205  *   'external' for arrays with externally managed metadata,
4206  * or N.M for internally known formats
4207  */
4208 static ssize_t
4209 metadata_show(struct mddev *mddev, char *page)
4210 {
4211 	if (mddev->persistent)
4212 		return sprintf(page, "%d.%d\n",
4213 			       mddev->major_version, mddev->minor_version);
4214 	else if (mddev->external)
4215 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4216 	else
4217 		return sprintf(page, "none\n");
4218 }
4219 
4220 static ssize_t
4221 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223 	int major, minor;
4224 	char *e;
4225 	int err;
4226 	/* Changing the details of 'external' metadata is
4227 	 * always permitted.  Otherwise there must be
4228 	 * no devices attached to the array.
4229 	 */
4230 
4231 	err = mddev_lock(mddev);
4232 	if (err)
4233 		return err;
4234 	err = -EBUSY;
4235 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4236 		;
4237 	else if (!list_empty(&mddev->disks))
4238 		goto out_unlock;
4239 
4240 	err = 0;
4241 	if (cmd_match(buf, "none")) {
4242 		mddev->persistent = 0;
4243 		mddev->external = 0;
4244 		mddev->major_version = 0;
4245 		mddev->minor_version = 90;
4246 		goto out_unlock;
4247 	}
4248 	if (strncmp(buf, "external:", 9) == 0) {
4249 		size_t namelen = len-9;
4250 		if (namelen >= sizeof(mddev->metadata_type))
4251 			namelen = sizeof(mddev->metadata_type)-1;
4252 		strncpy(mddev->metadata_type, buf+9, namelen);
4253 		mddev->metadata_type[namelen] = 0;
4254 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4255 			mddev->metadata_type[--namelen] = 0;
4256 		mddev->persistent = 0;
4257 		mddev->external = 1;
4258 		mddev->major_version = 0;
4259 		mddev->minor_version = 90;
4260 		goto out_unlock;
4261 	}
4262 	major = simple_strtoul(buf, &e, 10);
4263 	err = -EINVAL;
4264 	if (e==buf || *e != '.')
4265 		goto out_unlock;
4266 	buf = e+1;
4267 	minor = simple_strtoul(buf, &e, 10);
4268 	if (e==buf || (*e && *e != '\n') )
4269 		goto out_unlock;
4270 	err = -ENOENT;
4271 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4272 		goto out_unlock;
4273 	mddev->major_version = major;
4274 	mddev->minor_version = minor;
4275 	mddev->persistent = 1;
4276 	mddev->external = 0;
4277 	err = 0;
4278 out_unlock:
4279 	mddev_unlock(mddev);
4280 	return err ?: len;
4281 }
4282 
4283 static struct md_sysfs_entry md_metadata =
4284 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4285 
4286 static ssize_t
4287 action_show(struct mddev *mddev, char *page)
4288 {
4289 	char *type = "idle";
4290 	unsigned long recovery = mddev->recovery;
4291 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4292 		type = "frozen";
4293 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4294 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4295 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4296 			type = "reshape";
4297 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4298 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4299 				type = "resync";
4300 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4301 				type = "check";
4302 			else
4303 				type = "repair";
4304 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4305 			type = "recover";
4306 		else if (mddev->reshape_position != MaxSector)
4307 			type = "reshape";
4308 	}
4309 	return sprintf(page, "%s\n", type);
4310 }
4311 
4312 static ssize_t
4313 action_store(struct mddev *mddev, const char *page, size_t len)
4314 {
4315 	if (!mddev->pers || !mddev->pers->sync_request)
4316 		return -EINVAL;
4317 
4318 
4319 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4320 		if (cmd_match(page, "frozen"))
4321 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4322 		else
4323 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4324 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4325 		    mddev_lock(mddev) == 0) {
4326 			flush_workqueue(md_misc_wq);
4327 			if (mddev->sync_thread) {
4328 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4329 				md_reap_sync_thread(mddev);
4330 			}
4331 			mddev_unlock(mddev);
4332 		}
4333 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4334 		return -EBUSY;
4335 	else if (cmd_match(page, "resync"))
4336 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4337 	else if (cmd_match(page, "recover")) {
4338 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4339 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4340 	} else if (cmd_match(page, "reshape")) {
4341 		int err;
4342 		if (mddev->pers->start_reshape == NULL)
4343 			return -EINVAL;
4344 		err = mddev_lock(mddev);
4345 		if (!err) {
4346 			if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4347 				err =  -EBUSY;
4348 			else {
4349 				clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4350 				err = mddev->pers->start_reshape(mddev);
4351 			}
4352 			mddev_unlock(mddev);
4353 		}
4354 		if (err)
4355 			return err;
4356 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4357 	} else {
4358 		if (cmd_match(page, "check"))
4359 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4360 		else if (!cmd_match(page, "repair"))
4361 			return -EINVAL;
4362 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4363 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4364 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4365 	}
4366 	if (mddev->ro == 2) {
4367 		/* A write to sync_action is enough to justify
4368 		 * canceling read-auto mode
4369 		 */
4370 		mddev->ro = 0;
4371 		md_wakeup_thread(mddev->sync_thread);
4372 	}
4373 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4374 	md_wakeup_thread(mddev->thread);
4375 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4376 	return len;
4377 }
4378 
4379 static struct md_sysfs_entry md_scan_mode =
4380 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4381 
4382 static ssize_t
4383 last_sync_action_show(struct mddev *mddev, char *page)
4384 {
4385 	return sprintf(page, "%s\n", mddev->last_sync_action);
4386 }
4387 
4388 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4389 
4390 static ssize_t
4391 mismatch_cnt_show(struct mddev *mddev, char *page)
4392 {
4393 	return sprintf(page, "%llu\n",
4394 		       (unsigned long long)
4395 		       atomic64_read(&mddev->resync_mismatches));
4396 }
4397 
4398 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4399 
4400 static ssize_t
4401 sync_min_show(struct mddev *mddev, char *page)
4402 {
4403 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4404 		       mddev->sync_speed_min ? "local": "system");
4405 }
4406 
4407 static ssize_t
4408 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4409 {
4410 	unsigned int min;
4411 	int rv;
4412 
4413 	if (strncmp(buf, "system", 6)==0) {
4414 		min = 0;
4415 	} else {
4416 		rv = kstrtouint(buf, 10, &min);
4417 		if (rv < 0)
4418 			return rv;
4419 		if (min == 0)
4420 			return -EINVAL;
4421 	}
4422 	mddev->sync_speed_min = min;
4423 	return len;
4424 }
4425 
4426 static struct md_sysfs_entry md_sync_min =
4427 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4428 
4429 static ssize_t
4430 sync_max_show(struct mddev *mddev, char *page)
4431 {
4432 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4433 		       mddev->sync_speed_max ? "local": "system");
4434 }
4435 
4436 static ssize_t
4437 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 	unsigned int max;
4440 	int rv;
4441 
4442 	if (strncmp(buf, "system", 6)==0) {
4443 		max = 0;
4444 	} else {
4445 		rv = kstrtouint(buf, 10, &max);
4446 		if (rv < 0)
4447 			return rv;
4448 		if (max == 0)
4449 			return -EINVAL;
4450 	}
4451 	mddev->sync_speed_max = max;
4452 	return len;
4453 }
4454 
4455 static struct md_sysfs_entry md_sync_max =
4456 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4457 
4458 static ssize_t
4459 degraded_show(struct mddev *mddev, char *page)
4460 {
4461 	return sprintf(page, "%d\n", mddev->degraded);
4462 }
4463 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4464 
4465 static ssize_t
4466 sync_force_parallel_show(struct mddev *mddev, char *page)
4467 {
4468 	return sprintf(page, "%d\n", mddev->parallel_resync);
4469 }
4470 
4471 static ssize_t
4472 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474 	long n;
4475 
4476 	if (kstrtol(buf, 10, &n))
4477 		return -EINVAL;
4478 
4479 	if (n != 0 && n != 1)
4480 		return -EINVAL;
4481 
4482 	mddev->parallel_resync = n;
4483 
4484 	if (mddev->sync_thread)
4485 		wake_up(&resync_wait);
4486 
4487 	return len;
4488 }
4489 
4490 /* force parallel resync, even with shared block devices */
4491 static struct md_sysfs_entry md_sync_force_parallel =
4492 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4493        sync_force_parallel_show, sync_force_parallel_store);
4494 
4495 static ssize_t
4496 sync_speed_show(struct mddev *mddev, char *page)
4497 {
4498 	unsigned long resync, dt, db;
4499 	if (mddev->curr_resync == 0)
4500 		return sprintf(page, "none\n");
4501 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4502 	dt = (jiffies - mddev->resync_mark) / HZ;
4503 	if (!dt) dt++;
4504 	db = resync - mddev->resync_mark_cnt;
4505 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4506 }
4507 
4508 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4509 
4510 static ssize_t
4511 sync_completed_show(struct mddev *mddev, char *page)
4512 {
4513 	unsigned long long max_sectors, resync;
4514 
4515 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4516 		return sprintf(page, "none\n");
4517 
4518 	if (mddev->curr_resync == 1 ||
4519 	    mddev->curr_resync == 2)
4520 		return sprintf(page, "delayed\n");
4521 
4522 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4523 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4524 		max_sectors = mddev->resync_max_sectors;
4525 	else
4526 		max_sectors = mddev->dev_sectors;
4527 
4528 	resync = mddev->curr_resync_completed;
4529 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4530 }
4531 
4532 static struct md_sysfs_entry md_sync_completed =
4533 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4534 
4535 static ssize_t
4536 min_sync_show(struct mddev *mddev, char *page)
4537 {
4538 	return sprintf(page, "%llu\n",
4539 		       (unsigned long long)mddev->resync_min);
4540 }
4541 static ssize_t
4542 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4543 {
4544 	unsigned long long min;
4545 	int err;
4546 
4547 	if (kstrtoull(buf, 10, &min))
4548 		return -EINVAL;
4549 
4550 	spin_lock(&mddev->lock);
4551 	err = -EINVAL;
4552 	if (min > mddev->resync_max)
4553 		goto out_unlock;
4554 
4555 	err = -EBUSY;
4556 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4557 		goto out_unlock;
4558 
4559 	/* Round down to multiple of 4K for safety */
4560 	mddev->resync_min = round_down(min, 8);
4561 	err = 0;
4562 
4563 out_unlock:
4564 	spin_unlock(&mddev->lock);
4565 	return err ?: len;
4566 }
4567 
4568 static struct md_sysfs_entry md_min_sync =
4569 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4570 
4571 static ssize_t
4572 max_sync_show(struct mddev *mddev, char *page)
4573 {
4574 	if (mddev->resync_max == MaxSector)
4575 		return sprintf(page, "max\n");
4576 	else
4577 		return sprintf(page, "%llu\n",
4578 			       (unsigned long long)mddev->resync_max);
4579 }
4580 static ssize_t
4581 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4582 {
4583 	int err;
4584 	spin_lock(&mddev->lock);
4585 	if (strncmp(buf, "max", 3) == 0)
4586 		mddev->resync_max = MaxSector;
4587 	else {
4588 		unsigned long long max;
4589 		int chunk;
4590 
4591 		err = -EINVAL;
4592 		if (kstrtoull(buf, 10, &max))
4593 			goto out_unlock;
4594 		if (max < mddev->resync_min)
4595 			goto out_unlock;
4596 
4597 		err = -EBUSY;
4598 		if (max < mddev->resync_max &&
4599 		    mddev->ro == 0 &&
4600 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4601 			goto out_unlock;
4602 
4603 		/* Must be a multiple of chunk_size */
4604 		chunk = mddev->chunk_sectors;
4605 		if (chunk) {
4606 			sector_t temp = max;
4607 
4608 			err = -EINVAL;
4609 			if (sector_div(temp, chunk))
4610 				goto out_unlock;
4611 		}
4612 		mddev->resync_max = max;
4613 	}
4614 	wake_up(&mddev->recovery_wait);
4615 	err = 0;
4616 out_unlock:
4617 	spin_unlock(&mddev->lock);
4618 	return err ?: len;
4619 }
4620 
4621 static struct md_sysfs_entry md_max_sync =
4622 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4623 
4624 static ssize_t
4625 suspend_lo_show(struct mddev *mddev, char *page)
4626 {
4627 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4628 }
4629 
4630 static ssize_t
4631 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 	unsigned long long old, new;
4634 	int err;
4635 
4636 	err = kstrtoull(buf, 10, &new);
4637 	if (err < 0)
4638 		return err;
4639 	if (new != (sector_t)new)
4640 		return -EINVAL;
4641 
4642 	err = mddev_lock(mddev);
4643 	if (err)
4644 		return err;
4645 	err = -EINVAL;
4646 	if (mddev->pers == NULL ||
4647 	    mddev->pers->quiesce == NULL)
4648 		goto unlock;
4649 	old = mddev->suspend_lo;
4650 	mddev->suspend_lo = new;
4651 	if (new >= old)
4652 		/* Shrinking suspended region */
4653 		mddev->pers->quiesce(mddev, 2);
4654 	else {
4655 		/* Expanding suspended region - need to wait */
4656 		mddev->pers->quiesce(mddev, 1);
4657 		mddev->pers->quiesce(mddev, 0);
4658 	}
4659 	err = 0;
4660 unlock:
4661 	mddev_unlock(mddev);
4662 	return err ?: len;
4663 }
4664 static struct md_sysfs_entry md_suspend_lo =
4665 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4666 
4667 static ssize_t
4668 suspend_hi_show(struct mddev *mddev, char *page)
4669 {
4670 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4671 }
4672 
4673 static ssize_t
4674 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4675 {
4676 	unsigned long long old, new;
4677 	int err;
4678 
4679 	err = kstrtoull(buf, 10, &new);
4680 	if (err < 0)
4681 		return err;
4682 	if (new != (sector_t)new)
4683 		return -EINVAL;
4684 
4685 	err = mddev_lock(mddev);
4686 	if (err)
4687 		return err;
4688 	err = -EINVAL;
4689 	if (mddev->pers == NULL ||
4690 	    mddev->pers->quiesce == NULL)
4691 		goto unlock;
4692 	old = mddev->suspend_hi;
4693 	mddev->suspend_hi = new;
4694 	if (new <= old)
4695 		/* Shrinking suspended region */
4696 		mddev->pers->quiesce(mddev, 2);
4697 	else {
4698 		/* Expanding suspended region - need to wait */
4699 		mddev->pers->quiesce(mddev, 1);
4700 		mddev->pers->quiesce(mddev, 0);
4701 	}
4702 	err = 0;
4703 unlock:
4704 	mddev_unlock(mddev);
4705 	return err ?: len;
4706 }
4707 static struct md_sysfs_entry md_suspend_hi =
4708 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4709 
4710 static ssize_t
4711 reshape_position_show(struct mddev *mddev, char *page)
4712 {
4713 	if (mddev->reshape_position != MaxSector)
4714 		return sprintf(page, "%llu\n",
4715 			       (unsigned long long)mddev->reshape_position);
4716 	strcpy(page, "none\n");
4717 	return 5;
4718 }
4719 
4720 static ssize_t
4721 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4722 {
4723 	struct md_rdev *rdev;
4724 	unsigned long long new;
4725 	int err;
4726 
4727 	err = kstrtoull(buf, 10, &new);
4728 	if (err < 0)
4729 		return err;
4730 	if (new != (sector_t)new)
4731 		return -EINVAL;
4732 	err = mddev_lock(mddev);
4733 	if (err)
4734 		return err;
4735 	err = -EBUSY;
4736 	if (mddev->pers)
4737 		goto unlock;
4738 	mddev->reshape_position = new;
4739 	mddev->delta_disks = 0;
4740 	mddev->reshape_backwards = 0;
4741 	mddev->new_level = mddev->level;
4742 	mddev->new_layout = mddev->layout;
4743 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4744 	rdev_for_each(rdev, mddev)
4745 		rdev->new_data_offset = rdev->data_offset;
4746 	err = 0;
4747 unlock:
4748 	mddev_unlock(mddev);
4749 	return err ?: len;
4750 }
4751 
4752 static struct md_sysfs_entry md_reshape_position =
4753 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4754        reshape_position_store);
4755 
4756 static ssize_t
4757 reshape_direction_show(struct mddev *mddev, char *page)
4758 {
4759 	return sprintf(page, "%s\n",
4760 		       mddev->reshape_backwards ? "backwards" : "forwards");
4761 }
4762 
4763 static ssize_t
4764 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4765 {
4766 	int backwards = 0;
4767 	int err;
4768 
4769 	if (cmd_match(buf, "forwards"))
4770 		backwards = 0;
4771 	else if (cmd_match(buf, "backwards"))
4772 		backwards = 1;
4773 	else
4774 		return -EINVAL;
4775 	if (mddev->reshape_backwards == backwards)
4776 		return len;
4777 
4778 	err = mddev_lock(mddev);
4779 	if (err)
4780 		return err;
4781 	/* check if we are allowed to change */
4782 	if (mddev->delta_disks)
4783 		err = -EBUSY;
4784 	else if (mddev->persistent &&
4785 	    mddev->major_version == 0)
4786 		err =  -EINVAL;
4787 	else
4788 		mddev->reshape_backwards = backwards;
4789 	mddev_unlock(mddev);
4790 	return err ?: len;
4791 }
4792 
4793 static struct md_sysfs_entry md_reshape_direction =
4794 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4795        reshape_direction_store);
4796 
4797 static ssize_t
4798 array_size_show(struct mddev *mddev, char *page)
4799 {
4800 	if (mddev->external_size)
4801 		return sprintf(page, "%llu\n",
4802 			       (unsigned long long)mddev->array_sectors/2);
4803 	else
4804 		return sprintf(page, "default\n");
4805 }
4806 
4807 static ssize_t
4808 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4809 {
4810 	sector_t sectors;
4811 	int err;
4812 
4813 	err = mddev_lock(mddev);
4814 	if (err)
4815 		return err;
4816 
4817 	if (strncmp(buf, "default", 7) == 0) {
4818 		if (mddev->pers)
4819 			sectors = mddev->pers->size(mddev, 0, 0);
4820 		else
4821 			sectors = mddev->array_sectors;
4822 
4823 		mddev->external_size = 0;
4824 	} else {
4825 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4826 			err = -EINVAL;
4827 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4828 			err = -E2BIG;
4829 		else
4830 			mddev->external_size = 1;
4831 	}
4832 
4833 	if (!err) {
4834 		mddev->array_sectors = sectors;
4835 		if (mddev->pers) {
4836 			set_capacity(mddev->gendisk, mddev->array_sectors);
4837 			revalidate_disk(mddev->gendisk);
4838 		}
4839 	}
4840 	mddev_unlock(mddev);
4841 	return err ?: len;
4842 }
4843 
4844 static struct md_sysfs_entry md_array_size =
4845 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4846        array_size_store);
4847 
4848 static struct attribute *md_default_attrs[] = {
4849 	&md_level.attr,
4850 	&md_layout.attr,
4851 	&md_raid_disks.attr,
4852 	&md_chunk_size.attr,
4853 	&md_size.attr,
4854 	&md_resync_start.attr,
4855 	&md_metadata.attr,
4856 	&md_new_device.attr,
4857 	&md_safe_delay.attr,
4858 	&md_array_state.attr,
4859 	&md_reshape_position.attr,
4860 	&md_reshape_direction.attr,
4861 	&md_array_size.attr,
4862 	&max_corr_read_errors.attr,
4863 	NULL,
4864 };
4865 
4866 static struct attribute *md_redundancy_attrs[] = {
4867 	&md_scan_mode.attr,
4868 	&md_last_scan_mode.attr,
4869 	&md_mismatches.attr,
4870 	&md_sync_min.attr,
4871 	&md_sync_max.attr,
4872 	&md_sync_speed.attr,
4873 	&md_sync_force_parallel.attr,
4874 	&md_sync_completed.attr,
4875 	&md_min_sync.attr,
4876 	&md_max_sync.attr,
4877 	&md_suspend_lo.attr,
4878 	&md_suspend_hi.attr,
4879 	&md_bitmap.attr,
4880 	&md_degraded.attr,
4881 	NULL,
4882 };
4883 static struct attribute_group md_redundancy_group = {
4884 	.name = NULL,
4885 	.attrs = md_redundancy_attrs,
4886 };
4887 
4888 static ssize_t
4889 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4890 {
4891 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4892 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4893 	ssize_t rv;
4894 
4895 	if (!entry->show)
4896 		return -EIO;
4897 	spin_lock(&all_mddevs_lock);
4898 	if (list_empty(&mddev->all_mddevs)) {
4899 		spin_unlock(&all_mddevs_lock);
4900 		return -EBUSY;
4901 	}
4902 	mddev_get(mddev);
4903 	spin_unlock(&all_mddevs_lock);
4904 
4905 	rv = entry->show(mddev, page);
4906 	mddev_put(mddev);
4907 	return rv;
4908 }
4909 
4910 static ssize_t
4911 md_attr_store(struct kobject *kobj, struct attribute *attr,
4912 	      const char *page, size_t length)
4913 {
4914 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4915 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4916 	ssize_t rv;
4917 
4918 	if (!entry->store)
4919 		return -EIO;
4920 	if (!capable(CAP_SYS_ADMIN))
4921 		return -EACCES;
4922 	spin_lock(&all_mddevs_lock);
4923 	if (list_empty(&mddev->all_mddevs)) {
4924 		spin_unlock(&all_mddevs_lock);
4925 		return -EBUSY;
4926 	}
4927 	mddev_get(mddev);
4928 	spin_unlock(&all_mddevs_lock);
4929 	rv = entry->store(mddev, page, length);
4930 	mddev_put(mddev);
4931 	return rv;
4932 }
4933 
4934 static void md_free(struct kobject *ko)
4935 {
4936 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4937 
4938 	if (mddev->sysfs_state)
4939 		sysfs_put(mddev->sysfs_state);
4940 
4941 	if (mddev->queue)
4942 		blk_cleanup_queue(mddev->queue);
4943 	if (mddev->gendisk) {
4944 		del_gendisk(mddev->gendisk);
4945 		put_disk(mddev->gendisk);
4946 	}
4947 
4948 	kfree(mddev);
4949 }
4950 
4951 static const struct sysfs_ops md_sysfs_ops = {
4952 	.show	= md_attr_show,
4953 	.store	= md_attr_store,
4954 };
4955 static struct kobj_type md_ktype = {
4956 	.release	= md_free,
4957 	.sysfs_ops	= &md_sysfs_ops,
4958 	.default_attrs	= md_default_attrs,
4959 };
4960 
4961 int mdp_major = 0;
4962 
4963 static void mddev_delayed_delete(struct work_struct *ws)
4964 {
4965 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4966 
4967 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4968 	kobject_del(&mddev->kobj);
4969 	kobject_put(&mddev->kobj);
4970 }
4971 
4972 static int md_alloc(dev_t dev, char *name)
4973 {
4974 	static DEFINE_MUTEX(disks_mutex);
4975 	struct mddev *mddev = mddev_find(dev);
4976 	struct gendisk *disk;
4977 	int partitioned;
4978 	int shift;
4979 	int unit;
4980 	int error;
4981 
4982 	if (!mddev)
4983 		return -ENODEV;
4984 
4985 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4986 	shift = partitioned ? MdpMinorShift : 0;
4987 	unit = MINOR(mddev->unit) >> shift;
4988 
4989 	/* wait for any previous instance of this device to be
4990 	 * completely removed (mddev_delayed_delete).
4991 	 */
4992 	flush_workqueue(md_misc_wq);
4993 
4994 	mutex_lock(&disks_mutex);
4995 	error = -EEXIST;
4996 	if (mddev->gendisk)
4997 		goto abort;
4998 
4999 	if (name) {
5000 		/* Need to ensure that 'name' is not a duplicate.
5001 		 */
5002 		struct mddev *mddev2;
5003 		spin_lock(&all_mddevs_lock);
5004 
5005 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5006 			if (mddev2->gendisk &&
5007 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5008 				spin_unlock(&all_mddevs_lock);
5009 				goto abort;
5010 			}
5011 		spin_unlock(&all_mddevs_lock);
5012 	}
5013 
5014 	error = -ENOMEM;
5015 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5016 	if (!mddev->queue)
5017 		goto abort;
5018 	mddev->queue->queuedata = mddev;
5019 
5020 	blk_queue_make_request(mddev->queue, md_make_request);
5021 	blk_set_stacking_limits(&mddev->queue->limits);
5022 
5023 	disk = alloc_disk(1 << shift);
5024 	if (!disk) {
5025 		blk_cleanup_queue(mddev->queue);
5026 		mddev->queue = NULL;
5027 		goto abort;
5028 	}
5029 	disk->major = MAJOR(mddev->unit);
5030 	disk->first_minor = unit << shift;
5031 	if (name)
5032 		strcpy(disk->disk_name, name);
5033 	else if (partitioned)
5034 		sprintf(disk->disk_name, "md_d%d", unit);
5035 	else
5036 		sprintf(disk->disk_name, "md%d", unit);
5037 	disk->fops = &md_fops;
5038 	disk->private_data = mddev;
5039 	disk->queue = mddev->queue;
5040 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5041 	/* Allow extended partitions.  This makes the
5042 	 * 'mdp' device redundant, but we can't really
5043 	 * remove it now.
5044 	 */
5045 	disk->flags |= GENHD_FL_EXT_DEVT;
5046 	mddev->gendisk = disk;
5047 	/* As soon as we call add_disk(), another thread could get
5048 	 * through to md_open, so make sure it doesn't get too far
5049 	 */
5050 	mutex_lock(&mddev->open_mutex);
5051 	add_disk(disk);
5052 
5053 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5054 				     &disk_to_dev(disk)->kobj, "%s", "md");
5055 	if (error) {
5056 		/* This isn't possible, but as kobject_init_and_add is marked
5057 		 * __must_check, we must do something with the result
5058 		 */
5059 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5060 		       disk->disk_name);
5061 		error = 0;
5062 	}
5063 	if (mddev->kobj.sd &&
5064 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5065 		printk(KERN_DEBUG "pointless warning\n");
5066 	mutex_unlock(&mddev->open_mutex);
5067  abort:
5068 	mutex_unlock(&disks_mutex);
5069 	if (!error && mddev->kobj.sd) {
5070 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5071 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5072 	}
5073 	mddev_put(mddev);
5074 	return error;
5075 }
5076 
5077 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5078 {
5079 	md_alloc(dev, NULL);
5080 	return NULL;
5081 }
5082 
5083 static int add_named_array(const char *val, struct kernel_param *kp)
5084 {
5085 	/* val must be "md_*" where * is not all digits.
5086 	 * We allocate an array with a large free minor number, and
5087 	 * set the name to val.  val must not already be an active name.
5088 	 */
5089 	int len = strlen(val);
5090 	char buf[DISK_NAME_LEN];
5091 
5092 	while (len && val[len-1] == '\n')
5093 		len--;
5094 	if (len >= DISK_NAME_LEN)
5095 		return -E2BIG;
5096 	strlcpy(buf, val, len+1);
5097 	if (strncmp(buf, "md_", 3) != 0)
5098 		return -EINVAL;
5099 	return md_alloc(0, buf);
5100 }
5101 
5102 static void md_safemode_timeout(unsigned long data)
5103 {
5104 	struct mddev *mddev = (struct mddev *) data;
5105 
5106 	if (!atomic_read(&mddev->writes_pending)) {
5107 		mddev->safemode = 1;
5108 		if (mddev->external)
5109 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5110 	}
5111 	md_wakeup_thread(mddev->thread);
5112 }
5113 
5114 static int start_dirty_degraded;
5115 
5116 int md_run(struct mddev *mddev)
5117 {
5118 	int err;
5119 	struct md_rdev *rdev;
5120 	struct md_personality *pers;
5121 
5122 	if (list_empty(&mddev->disks))
5123 		/* cannot run an array with no devices.. */
5124 		return -EINVAL;
5125 
5126 	if (mddev->pers)
5127 		return -EBUSY;
5128 	/* Cannot run until previous stop completes properly */
5129 	if (mddev->sysfs_active)
5130 		return -EBUSY;
5131 
5132 	/*
5133 	 * Analyze all RAID superblock(s)
5134 	 */
5135 	if (!mddev->raid_disks) {
5136 		if (!mddev->persistent)
5137 			return -EINVAL;
5138 		analyze_sbs(mddev);
5139 	}
5140 
5141 	if (mddev->level != LEVEL_NONE)
5142 		request_module("md-level-%d", mddev->level);
5143 	else if (mddev->clevel[0])
5144 		request_module("md-%s", mddev->clevel);
5145 
5146 	/*
5147 	 * Drop all container device buffers, from now on
5148 	 * the only valid external interface is through the md
5149 	 * device.
5150 	 */
5151 	rdev_for_each(rdev, mddev) {
5152 		if (test_bit(Faulty, &rdev->flags))
5153 			continue;
5154 		sync_blockdev(rdev->bdev);
5155 		invalidate_bdev(rdev->bdev);
5156 
5157 		/* perform some consistency tests on the device.
5158 		 * We don't want the data to overlap the metadata,
5159 		 * Internal Bitmap issues have been handled elsewhere.
5160 		 */
5161 		if (rdev->meta_bdev) {
5162 			/* Nothing to check */;
5163 		} else if (rdev->data_offset < rdev->sb_start) {
5164 			if (mddev->dev_sectors &&
5165 			    rdev->data_offset + mddev->dev_sectors
5166 			    > rdev->sb_start) {
5167 				printk("md: %s: data overlaps metadata\n",
5168 				       mdname(mddev));
5169 				return -EINVAL;
5170 			}
5171 		} else {
5172 			if (rdev->sb_start + rdev->sb_size/512
5173 			    > rdev->data_offset) {
5174 				printk("md: %s: metadata overlaps data\n",
5175 				       mdname(mddev));
5176 				return -EINVAL;
5177 			}
5178 		}
5179 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5180 	}
5181 
5182 	if (mddev->bio_set == NULL)
5183 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5184 
5185 	spin_lock(&pers_lock);
5186 	pers = find_pers(mddev->level, mddev->clevel);
5187 	if (!pers || !try_module_get(pers->owner)) {
5188 		spin_unlock(&pers_lock);
5189 		if (mddev->level != LEVEL_NONE)
5190 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5191 			       mddev->level);
5192 		else
5193 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5194 			       mddev->clevel);
5195 		return -EINVAL;
5196 	}
5197 	spin_unlock(&pers_lock);
5198 	if (mddev->level != pers->level) {
5199 		mddev->level = pers->level;
5200 		mddev->new_level = pers->level;
5201 	}
5202 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5203 
5204 	if (mddev->reshape_position != MaxSector &&
5205 	    pers->start_reshape == NULL) {
5206 		/* This personality cannot handle reshaping... */
5207 		module_put(pers->owner);
5208 		return -EINVAL;
5209 	}
5210 
5211 	if (pers->sync_request) {
5212 		/* Warn if this is a potentially silly
5213 		 * configuration.
5214 		 */
5215 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5216 		struct md_rdev *rdev2;
5217 		int warned = 0;
5218 
5219 		rdev_for_each(rdev, mddev)
5220 			rdev_for_each(rdev2, mddev) {
5221 				if (rdev < rdev2 &&
5222 				    rdev->bdev->bd_contains ==
5223 				    rdev2->bdev->bd_contains) {
5224 					printk(KERN_WARNING
5225 					       "%s: WARNING: %s appears to be"
5226 					       " on the same physical disk as"
5227 					       " %s.\n",
5228 					       mdname(mddev),
5229 					       bdevname(rdev->bdev,b),
5230 					       bdevname(rdev2->bdev,b2));
5231 					warned = 1;
5232 				}
5233 			}
5234 
5235 		if (warned)
5236 			printk(KERN_WARNING
5237 			       "True protection against single-disk"
5238 			       " failure might be compromised.\n");
5239 	}
5240 
5241 	mddev->recovery = 0;
5242 	/* may be over-ridden by personality */
5243 	mddev->resync_max_sectors = mddev->dev_sectors;
5244 
5245 	mddev->ok_start_degraded = start_dirty_degraded;
5246 
5247 	if (start_readonly && mddev->ro == 0)
5248 		mddev->ro = 2; /* read-only, but switch on first write */
5249 
5250 	err = pers->run(mddev);
5251 	if (err)
5252 		printk(KERN_ERR "md: pers->run() failed ...\n");
5253 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5254 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5255 			  " but 'external_size' not in effect?\n", __func__);
5256 		printk(KERN_ERR
5257 		       "md: invalid array_size %llu > default size %llu\n",
5258 		       (unsigned long long)mddev->array_sectors / 2,
5259 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5260 		err = -EINVAL;
5261 	}
5262 	if (err == 0 && pers->sync_request &&
5263 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5264 		struct bitmap *bitmap;
5265 
5266 		bitmap = bitmap_create(mddev, -1);
5267 		if (IS_ERR(bitmap)) {
5268 			err = PTR_ERR(bitmap);
5269 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5270 			       mdname(mddev), err);
5271 		} else
5272 			mddev->bitmap = bitmap;
5273 
5274 	}
5275 	if (err) {
5276 		mddev_detach(mddev);
5277 		if (mddev->private)
5278 			pers->free(mddev, mddev->private);
5279 		mddev->private = NULL;
5280 		module_put(pers->owner);
5281 		bitmap_destroy(mddev);
5282 		return err;
5283 	}
5284 	if (mddev->queue) {
5285 		mddev->queue->backing_dev_info.congested_data = mddev;
5286 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5287 	}
5288 	if (pers->sync_request) {
5289 		if (mddev->kobj.sd &&
5290 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5291 			printk(KERN_WARNING
5292 			       "md: cannot register extra attributes for %s\n",
5293 			       mdname(mddev));
5294 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5295 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5296 		mddev->ro = 0;
5297 
5298 	atomic_set(&mddev->writes_pending,0);
5299 	atomic_set(&mddev->max_corr_read_errors,
5300 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5301 	mddev->safemode = 0;
5302 	if (mddev_is_clustered(mddev))
5303 		mddev->safemode_delay = 0;
5304 	else
5305 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5306 	mddev->in_sync = 1;
5307 	smp_wmb();
5308 	spin_lock(&mddev->lock);
5309 	mddev->pers = pers;
5310 	spin_unlock(&mddev->lock);
5311 	rdev_for_each(rdev, mddev)
5312 		if (rdev->raid_disk >= 0)
5313 			if (sysfs_link_rdev(mddev, rdev))
5314 				/* failure here is OK */;
5315 
5316 	if (mddev->degraded && !mddev->ro)
5317 		/* This ensures that recovering status is reported immediately
5318 		 * via sysfs - until a lack of spares is confirmed.
5319 		 */
5320 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5321 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5322 
5323 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5324 		md_update_sb(mddev, 0);
5325 
5326 	md_new_event(mddev);
5327 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5328 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5329 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5330 	return 0;
5331 }
5332 EXPORT_SYMBOL_GPL(md_run);
5333 
5334 static int do_md_run(struct mddev *mddev)
5335 {
5336 	int err;
5337 
5338 	err = md_run(mddev);
5339 	if (err)
5340 		goto out;
5341 	err = bitmap_load(mddev);
5342 	if (err) {
5343 		bitmap_destroy(mddev);
5344 		goto out;
5345 	}
5346 
5347 	if (mddev_is_clustered(mddev))
5348 		md_allow_write(mddev);
5349 
5350 	md_wakeup_thread(mddev->thread);
5351 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5352 
5353 	set_capacity(mddev->gendisk, mddev->array_sectors);
5354 	revalidate_disk(mddev->gendisk);
5355 	mddev->changed = 1;
5356 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5357 out:
5358 	return err;
5359 }
5360 
5361 static int restart_array(struct mddev *mddev)
5362 {
5363 	struct gendisk *disk = mddev->gendisk;
5364 
5365 	/* Complain if it has no devices */
5366 	if (list_empty(&mddev->disks))
5367 		return -ENXIO;
5368 	if (!mddev->pers)
5369 		return -EINVAL;
5370 	if (!mddev->ro)
5371 		return -EBUSY;
5372 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5373 		struct md_rdev *rdev;
5374 		bool has_journal = false;
5375 
5376 		rcu_read_lock();
5377 		rdev_for_each_rcu(rdev, mddev) {
5378 			if (test_bit(Journal, &rdev->flags) &&
5379 			    !test_bit(Faulty, &rdev->flags)) {
5380 				has_journal = true;
5381 				break;
5382 			}
5383 		}
5384 		rcu_read_unlock();
5385 
5386 		/* Don't restart rw with journal missing/faulty */
5387 		if (!has_journal)
5388 			return -EINVAL;
5389 	}
5390 
5391 	mddev->safemode = 0;
5392 	mddev->ro = 0;
5393 	set_disk_ro(disk, 0);
5394 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5395 		mdname(mddev));
5396 	/* Kick recovery or resync if necessary */
5397 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5398 	md_wakeup_thread(mddev->thread);
5399 	md_wakeup_thread(mddev->sync_thread);
5400 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5401 	return 0;
5402 }
5403 
5404 static void md_clean(struct mddev *mddev)
5405 {
5406 	mddev->array_sectors = 0;
5407 	mddev->external_size = 0;
5408 	mddev->dev_sectors = 0;
5409 	mddev->raid_disks = 0;
5410 	mddev->recovery_cp = 0;
5411 	mddev->resync_min = 0;
5412 	mddev->resync_max = MaxSector;
5413 	mddev->reshape_position = MaxSector;
5414 	mddev->external = 0;
5415 	mddev->persistent = 0;
5416 	mddev->level = LEVEL_NONE;
5417 	mddev->clevel[0] = 0;
5418 	mddev->flags = 0;
5419 	mddev->ro = 0;
5420 	mddev->metadata_type[0] = 0;
5421 	mddev->chunk_sectors = 0;
5422 	mddev->ctime = mddev->utime = 0;
5423 	mddev->layout = 0;
5424 	mddev->max_disks = 0;
5425 	mddev->events = 0;
5426 	mddev->can_decrease_events = 0;
5427 	mddev->delta_disks = 0;
5428 	mddev->reshape_backwards = 0;
5429 	mddev->new_level = LEVEL_NONE;
5430 	mddev->new_layout = 0;
5431 	mddev->new_chunk_sectors = 0;
5432 	mddev->curr_resync = 0;
5433 	atomic64_set(&mddev->resync_mismatches, 0);
5434 	mddev->suspend_lo = mddev->suspend_hi = 0;
5435 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5436 	mddev->recovery = 0;
5437 	mddev->in_sync = 0;
5438 	mddev->changed = 0;
5439 	mddev->degraded = 0;
5440 	mddev->safemode = 0;
5441 	mddev->private = NULL;
5442 	mddev->bitmap_info.offset = 0;
5443 	mddev->bitmap_info.default_offset = 0;
5444 	mddev->bitmap_info.default_space = 0;
5445 	mddev->bitmap_info.chunksize = 0;
5446 	mddev->bitmap_info.daemon_sleep = 0;
5447 	mddev->bitmap_info.max_write_behind = 0;
5448 }
5449 
5450 static void __md_stop_writes(struct mddev *mddev)
5451 {
5452 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5453 	flush_workqueue(md_misc_wq);
5454 	if (mddev->sync_thread) {
5455 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5456 		md_reap_sync_thread(mddev);
5457 	}
5458 
5459 	del_timer_sync(&mddev->safemode_timer);
5460 
5461 	bitmap_flush(mddev);
5462 	md_super_wait(mddev);
5463 
5464 	if (mddev->ro == 0 &&
5465 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5466 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5467 		/* mark array as shutdown cleanly */
5468 		if (!mddev_is_clustered(mddev))
5469 			mddev->in_sync = 1;
5470 		md_update_sb(mddev, 1);
5471 	}
5472 }
5473 
5474 void md_stop_writes(struct mddev *mddev)
5475 {
5476 	mddev_lock_nointr(mddev);
5477 	__md_stop_writes(mddev);
5478 	mddev_unlock(mddev);
5479 }
5480 EXPORT_SYMBOL_GPL(md_stop_writes);
5481 
5482 static void mddev_detach(struct mddev *mddev)
5483 {
5484 	struct bitmap *bitmap = mddev->bitmap;
5485 	/* wait for behind writes to complete */
5486 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5487 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5488 		       mdname(mddev));
5489 		/* need to kick something here to make sure I/O goes? */
5490 		wait_event(bitmap->behind_wait,
5491 			   atomic_read(&bitmap->behind_writes) == 0);
5492 	}
5493 	if (mddev->pers && mddev->pers->quiesce) {
5494 		mddev->pers->quiesce(mddev, 1);
5495 		mddev->pers->quiesce(mddev, 0);
5496 	}
5497 	md_unregister_thread(&mddev->thread);
5498 	if (mddev->queue)
5499 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5500 }
5501 
5502 static void __md_stop(struct mddev *mddev)
5503 {
5504 	struct md_personality *pers = mddev->pers;
5505 	mddev_detach(mddev);
5506 	/* Ensure ->event_work is done */
5507 	flush_workqueue(md_misc_wq);
5508 	spin_lock(&mddev->lock);
5509 	mddev->pers = NULL;
5510 	spin_unlock(&mddev->lock);
5511 	pers->free(mddev, mddev->private);
5512 	mddev->private = NULL;
5513 	if (pers->sync_request && mddev->to_remove == NULL)
5514 		mddev->to_remove = &md_redundancy_group;
5515 	module_put(pers->owner);
5516 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5517 }
5518 
5519 void md_stop(struct mddev *mddev)
5520 {
5521 	/* stop the array and free an attached data structures.
5522 	 * This is called from dm-raid
5523 	 */
5524 	__md_stop(mddev);
5525 	bitmap_destroy(mddev);
5526 	if (mddev->bio_set)
5527 		bioset_free(mddev->bio_set);
5528 }
5529 
5530 EXPORT_SYMBOL_GPL(md_stop);
5531 
5532 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5533 {
5534 	int err = 0;
5535 	int did_freeze = 0;
5536 
5537 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5538 		did_freeze = 1;
5539 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5540 		md_wakeup_thread(mddev->thread);
5541 	}
5542 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5543 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5544 	if (mddev->sync_thread)
5545 		/* Thread might be blocked waiting for metadata update
5546 		 * which will now never happen */
5547 		wake_up_process(mddev->sync_thread->tsk);
5548 
5549 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5550 		return -EBUSY;
5551 	mddev_unlock(mddev);
5552 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5553 					  &mddev->recovery));
5554 	wait_event(mddev->sb_wait,
5555 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5556 	mddev_lock_nointr(mddev);
5557 
5558 	mutex_lock(&mddev->open_mutex);
5559 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5560 	    mddev->sync_thread ||
5561 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5562 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5563 		printk("md: %s still in use.\n",mdname(mddev));
5564 		if (did_freeze) {
5565 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5566 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5567 			md_wakeup_thread(mddev->thread);
5568 		}
5569 		err = -EBUSY;
5570 		goto out;
5571 	}
5572 	if (mddev->pers) {
5573 		__md_stop_writes(mddev);
5574 
5575 		err  = -ENXIO;
5576 		if (mddev->ro==1)
5577 			goto out;
5578 		mddev->ro = 1;
5579 		set_disk_ro(mddev->gendisk, 1);
5580 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5581 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5582 		md_wakeup_thread(mddev->thread);
5583 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5584 		err = 0;
5585 	}
5586 out:
5587 	mutex_unlock(&mddev->open_mutex);
5588 	return err;
5589 }
5590 
5591 /* mode:
5592  *   0 - completely stop and dis-assemble array
5593  *   2 - stop but do not disassemble array
5594  */
5595 static int do_md_stop(struct mddev *mddev, int mode,
5596 		      struct block_device *bdev)
5597 {
5598 	struct gendisk *disk = mddev->gendisk;
5599 	struct md_rdev *rdev;
5600 	int did_freeze = 0;
5601 
5602 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5603 		did_freeze = 1;
5604 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5605 		md_wakeup_thread(mddev->thread);
5606 	}
5607 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5608 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5609 	if (mddev->sync_thread)
5610 		/* Thread might be blocked waiting for metadata update
5611 		 * which will now never happen */
5612 		wake_up_process(mddev->sync_thread->tsk);
5613 
5614 	mddev_unlock(mddev);
5615 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5616 				 !test_bit(MD_RECOVERY_RUNNING,
5617 					   &mddev->recovery)));
5618 	mddev_lock_nointr(mddev);
5619 
5620 	mutex_lock(&mddev->open_mutex);
5621 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5622 	    mddev->sysfs_active ||
5623 	    mddev->sync_thread ||
5624 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5625 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5626 		printk("md: %s still in use.\n",mdname(mddev));
5627 		mutex_unlock(&mddev->open_mutex);
5628 		if (did_freeze) {
5629 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5630 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5631 			md_wakeup_thread(mddev->thread);
5632 		}
5633 		return -EBUSY;
5634 	}
5635 	if (mddev->pers) {
5636 		if (mddev->ro)
5637 			set_disk_ro(disk, 0);
5638 
5639 		__md_stop_writes(mddev);
5640 		__md_stop(mddev);
5641 		mddev->queue->backing_dev_info.congested_fn = NULL;
5642 
5643 		/* tell userspace to handle 'inactive' */
5644 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5645 
5646 		rdev_for_each(rdev, mddev)
5647 			if (rdev->raid_disk >= 0)
5648 				sysfs_unlink_rdev(mddev, rdev);
5649 
5650 		set_capacity(disk, 0);
5651 		mutex_unlock(&mddev->open_mutex);
5652 		mddev->changed = 1;
5653 		revalidate_disk(disk);
5654 
5655 		if (mddev->ro)
5656 			mddev->ro = 0;
5657 	} else
5658 		mutex_unlock(&mddev->open_mutex);
5659 	/*
5660 	 * Free resources if final stop
5661 	 */
5662 	if (mode == 0) {
5663 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5664 
5665 		bitmap_destroy(mddev);
5666 		if (mddev->bitmap_info.file) {
5667 			struct file *f = mddev->bitmap_info.file;
5668 			spin_lock(&mddev->lock);
5669 			mddev->bitmap_info.file = NULL;
5670 			spin_unlock(&mddev->lock);
5671 			fput(f);
5672 		}
5673 		mddev->bitmap_info.offset = 0;
5674 
5675 		export_array(mddev);
5676 
5677 		md_clean(mddev);
5678 		if (mddev->hold_active == UNTIL_STOP)
5679 			mddev->hold_active = 0;
5680 	}
5681 	md_new_event(mddev);
5682 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5683 	return 0;
5684 }
5685 
5686 #ifndef MODULE
5687 static void autorun_array(struct mddev *mddev)
5688 {
5689 	struct md_rdev *rdev;
5690 	int err;
5691 
5692 	if (list_empty(&mddev->disks))
5693 		return;
5694 
5695 	printk(KERN_INFO "md: running: ");
5696 
5697 	rdev_for_each(rdev, mddev) {
5698 		char b[BDEVNAME_SIZE];
5699 		printk("<%s>", bdevname(rdev->bdev,b));
5700 	}
5701 	printk("\n");
5702 
5703 	err = do_md_run(mddev);
5704 	if (err) {
5705 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5706 		do_md_stop(mddev, 0, NULL);
5707 	}
5708 }
5709 
5710 /*
5711  * lets try to run arrays based on all disks that have arrived
5712  * until now. (those are in pending_raid_disks)
5713  *
5714  * the method: pick the first pending disk, collect all disks with
5715  * the same UUID, remove all from the pending list and put them into
5716  * the 'same_array' list. Then order this list based on superblock
5717  * update time (freshest comes first), kick out 'old' disks and
5718  * compare superblocks. If everything's fine then run it.
5719  *
5720  * If "unit" is allocated, then bump its reference count
5721  */
5722 static void autorun_devices(int part)
5723 {
5724 	struct md_rdev *rdev0, *rdev, *tmp;
5725 	struct mddev *mddev;
5726 	char b[BDEVNAME_SIZE];
5727 
5728 	printk(KERN_INFO "md: autorun ...\n");
5729 	while (!list_empty(&pending_raid_disks)) {
5730 		int unit;
5731 		dev_t dev;
5732 		LIST_HEAD(candidates);
5733 		rdev0 = list_entry(pending_raid_disks.next,
5734 					 struct md_rdev, same_set);
5735 
5736 		printk(KERN_INFO "md: considering %s ...\n",
5737 			bdevname(rdev0->bdev,b));
5738 		INIT_LIST_HEAD(&candidates);
5739 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5740 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5741 				printk(KERN_INFO "md:  adding %s ...\n",
5742 					bdevname(rdev->bdev,b));
5743 				list_move(&rdev->same_set, &candidates);
5744 			}
5745 		/*
5746 		 * now we have a set of devices, with all of them having
5747 		 * mostly sane superblocks. It's time to allocate the
5748 		 * mddev.
5749 		 */
5750 		if (part) {
5751 			dev = MKDEV(mdp_major,
5752 				    rdev0->preferred_minor << MdpMinorShift);
5753 			unit = MINOR(dev) >> MdpMinorShift;
5754 		} else {
5755 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5756 			unit = MINOR(dev);
5757 		}
5758 		if (rdev0->preferred_minor != unit) {
5759 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5760 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5761 			break;
5762 		}
5763 
5764 		md_probe(dev, NULL, NULL);
5765 		mddev = mddev_find(dev);
5766 		if (!mddev || !mddev->gendisk) {
5767 			if (mddev)
5768 				mddev_put(mddev);
5769 			printk(KERN_ERR
5770 				"md: cannot allocate memory for md drive.\n");
5771 			break;
5772 		}
5773 		if (mddev_lock(mddev))
5774 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5775 			       mdname(mddev));
5776 		else if (mddev->raid_disks || mddev->major_version
5777 			 || !list_empty(&mddev->disks)) {
5778 			printk(KERN_WARNING
5779 				"md: %s already running, cannot run %s\n",
5780 				mdname(mddev), bdevname(rdev0->bdev,b));
5781 			mddev_unlock(mddev);
5782 		} else {
5783 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5784 			mddev->persistent = 1;
5785 			rdev_for_each_list(rdev, tmp, &candidates) {
5786 				list_del_init(&rdev->same_set);
5787 				if (bind_rdev_to_array(rdev, mddev))
5788 					export_rdev(rdev);
5789 			}
5790 			autorun_array(mddev);
5791 			mddev_unlock(mddev);
5792 		}
5793 		/* on success, candidates will be empty, on error
5794 		 * it won't...
5795 		 */
5796 		rdev_for_each_list(rdev, tmp, &candidates) {
5797 			list_del_init(&rdev->same_set);
5798 			export_rdev(rdev);
5799 		}
5800 		mddev_put(mddev);
5801 	}
5802 	printk(KERN_INFO "md: ... autorun DONE.\n");
5803 }
5804 #endif /* !MODULE */
5805 
5806 static int get_version(void __user *arg)
5807 {
5808 	mdu_version_t ver;
5809 
5810 	ver.major = MD_MAJOR_VERSION;
5811 	ver.minor = MD_MINOR_VERSION;
5812 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5813 
5814 	if (copy_to_user(arg, &ver, sizeof(ver)))
5815 		return -EFAULT;
5816 
5817 	return 0;
5818 }
5819 
5820 static int get_array_info(struct mddev *mddev, void __user *arg)
5821 {
5822 	mdu_array_info_t info;
5823 	int nr,working,insync,failed,spare;
5824 	struct md_rdev *rdev;
5825 
5826 	nr = working = insync = failed = spare = 0;
5827 	rcu_read_lock();
5828 	rdev_for_each_rcu(rdev, mddev) {
5829 		nr++;
5830 		if (test_bit(Faulty, &rdev->flags))
5831 			failed++;
5832 		else {
5833 			working++;
5834 			if (test_bit(In_sync, &rdev->flags))
5835 				insync++;
5836 			else
5837 				spare++;
5838 		}
5839 	}
5840 	rcu_read_unlock();
5841 
5842 	info.major_version = mddev->major_version;
5843 	info.minor_version = mddev->minor_version;
5844 	info.patch_version = MD_PATCHLEVEL_VERSION;
5845 	info.ctime         = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5846 	info.level         = mddev->level;
5847 	info.size          = mddev->dev_sectors / 2;
5848 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5849 		info.size = -1;
5850 	info.nr_disks      = nr;
5851 	info.raid_disks    = mddev->raid_disks;
5852 	info.md_minor      = mddev->md_minor;
5853 	info.not_persistent= !mddev->persistent;
5854 
5855 	info.utime         = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5856 	info.state         = 0;
5857 	if (mddev->in_sync)
5858 		info.state = (1<<MD_SB_CLEAN);
5859 	if (mddev->bitmap && mddev->bitmap_info.offset)
5860 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5861 	if (mddev_is_clustered(mddev))
5862 		info.state |= (1<<MD_SB_CLUSTERED);
5863 	info.active_disks  = insync;
5864 	info.working_disks = working;
5865 	info.failed_disks  = failed;
5866 	info.spare_disks   = spare;
5867 
5868 	info.layout        = mddev->layout;
5869 	info.chunk_size    = mddev->chunk_sectors << 9;
5870 
5871 	if (copy_to_user(arg, &info, sizeof(info)))
5872 		return -EFAULT;
5873 
5874 	return 0;
5875 }
5876 
5877 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5878 {
5879 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5880 	char *ptr;
5881 	int err;
5882 
5883 	file = kzalloc(sizeof(*file), GFP_NOIO);
5884 	if (!file)
5885 		return -ENOMEM;
5886 
5887 	err = 0;
5888 	spin_lock(&mddev->lock);
5889 	/* bitmap enabled */
5890 	if (mddev->bitmap_info.file) {
5891 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5892 				sizeof(file->pathname));
5893 		if (IS_ERR(ptr))
5894 			err = PTR_ERR(ptr);
5895 		else
5896 			memmove(file->pathname, ptr,
5897 				sizeof(file->pathname)-(ptr-file->pathname));
5898 	}
5899 	spin_unlock(&mddev->lock);
5900 
5901 	if (err == 0 &&
5902 	    copy_to_user(arg, file, sizeof(*file)))
5903 		err = -EFAULT;
5904 
5905 	kfree(file);
5906 	return err;
5907 }
5908 
5909 static int get_disk_info(struct mddev *mddev, void __user * arg)
5910 {
5911 	mdu_disk_info_t info;
5912 	struct md_rdev *rdev;
5913 
5914 	if (copy_from_user(&info, arg, sizeof(info)))
5915 		return -EFAULT;
5916 
5917 	rcu_read_lock();
5918 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5919 	if (rdev) {
5920 		info.major = MAJOR(rdev->bdev->bd_dev);
5921 		info.minor = MINOR(rdev->bdev->bd_dev);
5922 		info.raid_disk = rdev->raid_disk;
5923 		info.state = 0;
5924 		if (test_bit(Faulty, &rdev->flags))
5925 			info.state |= (1<<MD_DISK_FAULTY);
5926 		else if (test_bit(In_sync, &rdev->flags)) {
5927 			info.state |= (1<<MD_DISK_ACTIVE);
5928 			info.state |= (1<<MD_DISK_SYNC);
5929 		}
5930 		if (test_bit(Journal, &rdev->flags))
5931 			info.state |= (1<<MD_DISK_JOURNAL);
5932 		if (test_bit(WriteMostly, &rdev->flags))
5933 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5934 	} else {
5935 		info.major = info.minor = 0;
5936 		info.raid_disk = -1;
5937 		info.state = (1<<MD_DISK_REMOVED);
5938 	}
5939 	rcu_read_unlock();
5940 
5941 	if (copy_to_user(arg, &info, sizeof(info)))
5942 		return -EFAULT;
5943 
5944 	return 0;
5945 }
5946 
5947 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5948 {
5949 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5950 	struct md_rdev *rdev;
5951 	dev_t dev = MKDEV(info->major,info->minor);
5952 
5953 	if (mddev_is_clustered(mddev) &&
5954 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5955 		pr_err("%s: Cannot add to clustered mddev.\n",
5956 			       mdname(mddev));
5957 		return -EINVAL;
5958 	}
5959 
5960 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5961 		return -EOVERFLOW;
5962 
5963 	if (!mddev->raid_disks) {
5964 		int err;
5965 		/* expecting a device which has a superblock */
5966 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5967 		if (IS_ERR(rdev)) {
5968 			printk(KERN_WARNING
5969 				"md: md_import_device returned %ld\n",
5970 				PTR_ERR(rdev));
5971 			return PTR_ERR(rdev);
5972 		}
5973 		if (!list_empty(&mddev->disks)) {
5974 			struct md_rdev *rdev0
5975 				= list_entry(mddev->disks.next,
5976 					     struct md_rdev, same_set);
5977 			err = super_types[mddev->major_version]
5978 				.load_super(rdev, rdev0, mddev->minor_version);
5979 			if (err < 0) {
5980 				printk(KERN_WARNING
5981 					"md: %s has different UUID to %s\n",
5982 					bdevname(rdev->bdev,b),
5983 					bdevname(rdev0->bdev,b2));
5984 				export_rdev(rdev);
5985 				return -EINVAL;
5986 			}
5987 		}
5988 		err = bind_rdev_to_array(rdev, mddev);
5989 		if (err)
5990 			export_rdev(rdev);
5991 		return err;
5992 	}
5993 
5994 	/*
5995 	 * add_new_disk can be used once the array is assembled
5996 	 * to add "hot spares".  They must already have a superblock
5997 	 * written
5998 	 */
5999 	if (mddev->pers) {
6000 		int err;
6001 		if (!mddev->pers->hot_add_disk) {
6002 			printk(KERN_WARNING
6003 				"%s: personality does not support diskops!\n",
6004 			       mdname(mddev));
6005 			return -EINVAL;
6006 		}
6007 		if (mddev->persistent)
6008 			rdev = md_import_device(dev, mddev->major_version,
6009 						mddev->minor_version);
6010 		else
6011 			rdev = md_import_device(dev, -1, -1);
6012 		if (IS_ERR(rdev)) {
6013 			printk(KERN_WARNING
6014 				"md: md_import_device returned %ld\n",
6015 				PTR_ERR(rdev));
6016 			return PTR_ERR(rdev);
6017 		}
6018 		/* set saved_raid_disk if appropriate */
6019 		if (!mddev->persistent) {
6020 			if (info->state & (1<<MD_DISK_SYNC)  &&
6021 			    info->raid_disk < mddev->raid_disks) {
6022 				rdev->raid_disk = info->raid_disk;
6023 				set_bit(In_sync, &rdev->flags);
6024 				clear_bit(Bitmap_sync, &rdev->flags);
6025 			} else
6026 				rdev->raid_disk = -1;
6027 			rdev->saved_raid_disk = rdev->raid_disk;
6028 		} else
6029 			super_types[mddev->major_version].
6030 				validate_super(mddev, rdev);
6031 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6032 		     rdev->raid_disk != info->raid_disk) {
6033 			/* This was a hot-add request, but events doesn't
6034 			 * match, so reject it.
6035 			 */
6036 			export_rdev(rdev);
6037 			return -EINVAL;
6038 		}
6039 
6040 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6041 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6042 			set_bit(WriteMostly, &rdev->flags);
6043 		else
6044 			clear_bit(WriteMostly, &rdev->flags);
6045 
6046 		if (info->state & (1<<MD_DISK_JOURNAL)) {
6047 			struct md_rdev *rdev2;
6048 			bool has_journal = false;
6049 
6050 			/* make sure no existing journal disk */
6051 			rdev_for_each(rdev2, mddev) {
6052 				if (test_bit(Journal, &rdev2->flags)) {
6053 					has_journal = true;
6054 					break;
6055 				}
6056 			}
6057 			if (has_journal) {
6058 				export_rdev(rdev);
6059 				return -EBUSY;
6060 			}
6061 			set_bit(Journal, &rdev->flags);
6062 		}
6063 		/*
6064 		 * check whether the device shows up in other nodes
6065 		 */
6066 		if (mddev_is_clustered(mddev)) {
6067 			if (info->state & (1 << MD_DISK_CANDIDATE))
6068 				set_bit(Candidate, &rdev->flags);
6069 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6070 				/* --add initiated by this node */
6071 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6072 				if (err) {
6073 					export_rdev(rdev);
6074 					return err;
6075 				}
6076 			}
6077 		}
6078 
6079 		rdev->raid_disk = -1;
6080 		err = bind_rdev_to_array(rdev, mddev);
6081 
6082 		if (err)
6083 			export_rdev(rdev);
6084 
6085 		if (mddev_is_clustered(mddev)) {
6086 			if (info->state & (1 << MD_DISK_CANDIDATE))
6087 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6088 			else {
6089 				if (err)
6090 					md_cluster_ops->add_new_disk_cancel(mddev);
6091 				else
6092 					err = add_bound_rdev(rdev);
6093 			}
6094 
6095 		} else if (!err)
6096 			err = add_bound_rdev(rdev);
6097 
6098 		return err;
6099 	}
6100 
6101 	/* otherwise, add_new_disk is only allowed
6102 	 * for major_version==0 superblocks
6103 	 */
6104 	if (mddev->major_version != 0) {
6105 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6106 		       mdname(mddev));
6107 		return -EINVAL;
6108 	}
6109 
6110 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6111 		int err;
6112 		rdev = md_import_device(dev, -1, 0);
6113 		if (IS_ERR(rdev)) {
6114 			printk(KERN_WARNING
6115 				"md: error, md_import_device() returned %ld\n",
6116 				PTR_ERR(rdev));
6117 			return PTR_ERR(rdev);
6118 		}
6119 		rdev->desc_nr = info->number;
6120 		if (info->raid_disk < mddev->raid_disks)
6121 			rdev->raid_disk = info->raid_disk;
6122 		else
6123 			rdev->raid_disk = -1;
6124 
6125 		if (rdev->raid_disk < mddev->raid_disks)
6126 			if (info->state & (1<<MD_DISK_SYNC))
6127 				set_bit(In_sync, &rdev->flags);
6128 
6129 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6130 			set_bit(WriteMostly, &rdev->flags);
6131 
6132 		if (!mddev->persistent) {
6133 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6134 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6135 		} else
6136 			rdev->sb_start = calc_dev_sboffset(rdev);
6137 		rdev->sectors = rdev->sb_start;
6138 
6139 		err = bind_rdev_to_array(rdev, mddev);
6140 		if (err) {
6141 			export_rdev(rdev);
6142 			return err;
6143 		}
6144 	}
6145 
6146 	return 0;
6147 }
6148 
6149 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6150 {
6151 	char b[BDEVNAME_SIZE];
6152 	struct md_rdev *rdev;
6153 
6154 	rdev = find_rdev(mddev, dev);
6155 	if (!rdev)
6156 		return -ENXIO;
6157 
6158 	if (rdev->raid_disk < 0)
6159 		goto kick_rdev;
6160 
6161 	clear_bit(Blocked, &rdev->flags);
6162 	remove_and_add_spares(mddev, rdev);
6163 
6164 	if (rdev->raid_disk >= 0)
6165 		goto busy;
6166 
6167 kick_rdev:
6168 	if (mddev_is_clustered(mddev))
6169 		md_cluster_ops->remove_disk(mddev, rdev);
6170 
6171 	md_kick_rdev_from_array(rdev);
6172 	md_update_sb(mddev, 1);
6173 	md_new_event(mddev);
6174 
6175 	return 0;
6176 busy:
6177 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6178 		bdevname(rdev->bdev,b), mdname(mddev));
6179 	return -EBUSY;
6180 }
6181 
6182 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6183 {
6184 	char b[BDEVNAME_SIZE];
6185 	int err;
6186 	struct md_rdev *rdev;
6187 
6188 	if (!mddev->pers)
6189 		return -ENODEV;
6190 
6191 	if (mddev->major_version != 0) {
6192 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6193 			" version-0 superblocks.\n",
6194 			mdname(mddev));
6195 		return -EINVAL;
6196 	}
6197 	if (!mddev->pers->hot_add_disk) {
6198 		printk(KERN_WARNING
6199 			"%s: personality does not support diskops!\n",
6200 			mdname(mddev));
6201 		return -EINVAL;
6202 	}
6203 
6204 	rdev = md_import_device(dev, -1, 0);
6205 	if (IS_ERR(rdev)) {
6206 		printk(KERN_WARNING
6207 			"md: error, md_import_device() returned %ld\n",
6208 			PTR_ERR(rdev));
6209 		return -EINVAL;
6210 	}
6211 
6212 	if (mddev->persistent)
6213 		rdev->sb_start = calc_dev_sboffset(rdev);
6214 	else
6215 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6216 
6217 	rdev->sectors = rdev->sb_start;
6218 
6219 	if (test_bit(Faulty, &rdev->flags)) {
6220 		printk(KERN_WARNING
6221 			"md: can not hot-add faulty %s disk to %s!\n",
6222 			bdevname(rdev->bdev,b), mdname(mddev));
6223 		err = -EINVAL;
6224 		goto abort_export;
6225 	}
6226 
6227 	clear_bit(In_sync, &rdev->flags);
6228 	rdev->desc_nr = -1;
6229 	rdev->saved_raid_disk = -1;
6230 	err = bind_rdev_to_array(rdev, mddev);
6231 	if (err)
6232 		goto abort_export;
6233 
6234 	/*
6235 	 * The rest should better be atomic, we can have disk failures
6236 	 * noticed in interrupt contexts ...
6237 	 */
6238 
6239 	rdev->raid_disk = -1;
6240 
6241 	md_update_sb(mddev, 1);
6242 	/*
6243 	 * Kick recovery, maybe this spare has to be added to the
6244 	 * array immediately.
6245 	 */
6246 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6247 	md_wakeup_thread(mddev->thread);
6248 	md_new_event(mddev);
6249 	return 0;
6250 
6251 abort_export:
6252 	export_rdev(rdev);
6253 	return err;
6254 }
6255 
6256 static int set_bitmap_file(struct mddev *mddev, int fd)
6257 {
6258 	int err = 0;
6259 
6260 	if (mddev->pers) {
6261 		if (!mddev->pers->quiesce || !mddev->thread)
6262 			return -EBUSY;
6263 		if (mddev->recovery || mddev->sync_thread)
6264 			return -EBUSY;
6265 		/* we should be able to change the bitmap.. */
6266 	}
6267 
6268 	if (fd >= 0) {
6269 		struct inode *inode;
6270 		struct file *f;
6271 
6272 		if (mddev->bitmap || mddev->bitmap_info.file)
6273 			return -EEXIST; /* cannot add when bitmap is present */
6274 		f = fget(fd);
6275 
6276 		if (f == NULL) {
6277 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6278 			       mdname(mddev));
6279 			return -EBADF;
6280 		}
6281 
6282 		inode = f->f_mapping->host;
6283 		if (!S_ISREG(inode->i_mode)) {
6284 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6285 			       mdname(mddev));
6286 			err = -EBADF;
6287 		} else if (!(f->f_mode & FMODE_WRITE)) {
6288 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6289 			       mdname(mddev));
6290 			err = -EBADF;
6291 		} else if (atomic_read(&inode->i_writecount) != 1) {
6292 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6293 			       mdname(mddev));
6294 			err = -EBUSY;
6295 		}
6296 		if (err) {
6297 			fput(f);
6298 			return err;
6299 		}
6300 		mddev->bitmap_info.file = f;
6301 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6302 	} else if (mddev->bitmap == NULL)
6303 		return -ENOENT; /* cannot remove what isn't there */
6304 	err = 0;
6305 	if (mddev->pers) {
6306 		mddev->pers->quiesce(mddev, 1);
6307 		if (fd >= 0) {
6308 			struct bitmap *bitmap;
6309 
6310 			bitmap = bitmap_create(mddev, -1);
6311 			if (!IS_ERR(bitmap)) {
6312 				mddev->bitmap = bitmap;
6313 				err = bitmap_load(mddev);
6314 			} else
6315 				err = PTR_ERR(bitmap);
6316 		}
6317 		if (fd < 0 || err) {
6318 			bitmap_destroy(mddev);
6319 			fd = -1; /* make sure to put the file */
6320 		}
6321 		mddev->pers->quiesce(mddev, 0);
6322 	}
6323 	if (fd < 0) {
6324 		struct file *f = mddev->bitmap_info.file;
6325 		if (f) {
6326 			spin_lock(&mddev->lock);
6327 			mddev->bitmap_info.file = NULL;
6328 			spin_unlock(&mddev->lock);
6329 			fput(f);
6330 		}
6331 	}
6332 
6333 	return err;
6334 }
6335 
6336 /*
6337  * set_array_info is used two different ways
6338  * The original usage is when creating a new array.
6339  * In this usage, raid_disks is > 0 and it together with
6340  *  level, size, not_persistent,layout,chunksize determine the
6341  *  shape of the array.
6342  *  This will always create an array with a type-0.90.0 superblock.
6343  * The newer usage is when assembling an array.
6344  *  In this case raid_disks will be 0, and the major_version field is
6345  *  use to determine which style super-blocks are to be found on the devices.
6346  *  The minor and patch _version numbers are also kept incase the
6347  *  super_block handler wishes to interpret them.
6348  */
6349 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6350 {
6351 
6352 	if (info->raid_disks == 0) {
6353 		/* just setting version number for superblock loading */
6354 		if (info->major_version < 0 ||
6355 		    info->major_version >= ARRAY_SIZE(super_types) ||
6356 		    super_types[info->major_version].name == NULL) {
6357 			/* maybe try to auto-load a module? */
6358 			printk(KERN_INFO
6359 				"md: superblock version %d not known\n",
6360 				info->major_version);
6361 			return -EINVAL;
6362 		}
6363 		mddev->major_version = info->major_version;
6364 		mddev->minor_version = info->minor_version;
6365 		mddev->patch_version = info->patch_version;
6366 		mddev->persistent = !info->not_persistent;
6367 		/* ensure mddev_put doesn't delete this now that there
6368 		 * is some minimal configuration.
6369 		 */
6370 		mddev->ctime         = ktime_get_real_seconds();
6371 		return 0;
6372 	}
6373 	mddev->major_version = MD_MAJOR_VERSION;
6374 	mddev->minor_version = MD_MINOR_VERSION;
6375 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6376 	mddev->ctime         = ktime_get_real_seconds();
6377 
6378 	mddev->level         = info->level;
6379 	mddev->clevel[0]     = 0;
6380 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6381 	mddev->raid_disks    = info->raid_disks;
6382 	/* don't set md_minor, it is determined by which /dev/md* was
6383 	 * openned
6384 	 */
6385 	if (info->state & (1<<MD_SB_CLEAN))
6386 		mddev->recovery_cp = MaxSector;
6387 	else
6388 		mddev->recovery_cp = 0;
6389 	mddev->persistent    = ! info->not_persistent;
6390 	mddev->external	     = 0;
6391 
6392 	mddev->layout        = info->layout;
6393 	mddev->chunk_sectors = info->chunk_size >> 9;
6394 
6395 	mddev->max_disks     = MD_SB_DISKS;
6396 
6397 	if (mddev->persistent)
6398 		mddev->flags         = 0;
6399 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6400 
6401 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6402 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6403 	mddev->bitmap_info.offset = 0;
6404 
6405 	mddev->reshape_position = MaxSector;
6406 
6407 	/*
6408 	 * Generate a 128 bit UUID
6409 	 */
6410 	get_random_bytes(mddev->uuid, 16);
6411 
6412 	mddev->new_level = mddev->level;
6413 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6414 	mddev->new_layout = mddev->layout;
6415 	mddev->delta_disks = 0;
6416 	mddev->reshape_backwards = 0;
6417 
6418 	return 0;
6419 }
6420 
6421 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6422 {
6423 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6424 
6425 	if (mddev->external_size)
6426 		return;
6427 
6428 	mddev->array_sectors = array_sectors;
6429 }
6430 EXPORT_SYMBOL(md_set_array_sectors);
6431 
6432 static int update_size(struct mddev *mddev, sector_t num_sectors)
6433 {
6434 	struct md_rdev *rdev;
6435 	int rv;
6436 	int fit = (num_sectors == 0);
6437 
6438 	if (mddev->pers->resize == NULL)
6439 		return -EINVAL;
6440 	/* The "num_sectors" is the number of sectors of each device that
6441 	 * is used.  This can only make sense for arrays with redundancy.
6442 	 * linear and raid0 always use whatever space is available. We can only
6443 	 * consider changing this number if no resync or reconstruction is
6444 	 * happening, and if the new size is acceptable. It must fit before the
6445 	 * sb_start or, if that is <data_offset, it must fit before the size
6446 	 * of each device.  If num_sectors is zero, we find the largest size
6447 	 * that fits.
6448 	 */
6449 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6450 	    mddev->sync_thread)
6451 		return -EBUSY;
6452 	if (mddev->ro)
6453 		return -EROFS;
6454 
6455 	rdev_for_each(rdev, mddev) {
6456 		sector_t avail = rdev->sectors;
6457 
6458 		if (fit && (num_sectors == 0 || num_sectors > avail))
6459 			num_sectors = avail;
6460 		if (avail < num_sectors)
6461 			return -ENOSPC;
6462 	}
6463 	rv = mddev->pers->resize(mddev, num_sectors);
6464 	if (!rv)
6465 		revalidate_disk(mddev->gendisk);
6466 	return rv;
6467 }
6468 
6469 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6470 {
6471 	int rv;
6472 	struct md_rdev *rdev;
6473 	/* change the number of raid disks */
6474 	if (mddev->pers->check_reshape == NULL)
6475 		return -EINVAL;
6476 	if (mddev->ro)
6477 		return -EROFS;
6478 	if (raid_disks <= 0 ||
6479 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6480 		return -EINVAL;
6481 	if (mddev->sync_thread ||
6482 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6483 	    mddev->reshape_position != MaxSector)
6484 		return -EBUSY;
6485 
6486 	rdev_for_each(rdev, mddev) {
6487 		if (mddev->raid_disks < raid_disks &&
6488 		    rdev->data_offset < rdev->new_data_offset)
6489 			return -EINVAL;
6490 		if (mddev->raid_disks > raid_disks &&
6491 		    rdev->data_offset > rdev->new_data_offset)
6492 			return -EINVAL;
6493 	}
6494 
6495 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6496 	if (mddev->delta_disks < 0)
6497 		mddev->reshape_backwards = 1;
6498 	else if (mddev->delta_disks > 0)
6499 		mddev->reshape_backwards = 0;
6500 
6501 	rv = mddev->pers->check_reshape(mddev);
6502 	if (rv < 0) {
6503 		mddev->delta_disks = 0;
6504 		mddev->reshape_backwards = 0;
6505 	}
6506 	return rv;
6507 }
6508 
6509 /*
6510  * update_array_info is used to change the configuration of an
6511  * on-line array.
6512  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6513  * fields in the info are checked against the array.
6514  * Any differences that cannot be handled will cause an error.
6515  * Normally, only one change can be managed at a time.
6516  */
6517 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6518 {
6519 	int rv = 0;
6520 	int cnt = 0;
6521 	int state = 0;
6522 
6523 	/* calculate expected state,ignoring low bits */
6524 	if (mddev->bitmap && mddev->bitmap_info.offset)
6525 		state |= (1 << MD_SB_BITMAP_PRESENT);
6526 
6527 	if (mddev->major_version != info->major_version ||
6528 	    mddev->minor_version != info->minor_version ||
6529 /*	    mddev->patch_version != info->patch_version || */
6530 	    mddev->ctime         != info->ctime         ||
6531 	    mddev->level         != info->level         ||
6532 /*	    mddev->layout        != info->layout        || */
6533 	    mddev->persistent	 != !info->not_persistent ||
6534 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6535 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6536 	    ((state^info->state) & 0xfffffe00)
6537 		)
6538 		return -EINVAL;
6539 	/* Check there is only one change */
6540 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6541 		cnt++;
6542 	if (mddev->raid_disks != info->raid_disks)
6543 		cnt++;
6544 	if (mddev->layout != info->layout)
6545 		cnt++;
6546 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6547 		cnt++;
6548 	if (cnt == 0)
6549 		return 0;
6550 	if (cnt > 1)
6551 		return -EINVAL;
6552 
6553 	if (mddev->layout != info->layout) {
6554 		/* Change layout
6555 		 * we don't need to do anything at the md level, the
6556 		 * personality will take care of it all.
6557 		 */
6558 		if (mddev->pers->check_reshape == NULL)
6559 			return -EINVAL;
6560 		else {
6561 			mddev->new_layout = info->layout;
6562 			rv = mddev->pers->check_reshape(mddev);
6563 			if (rv)
6564 				mddev->new_layout = mddev->layout;
6565 			return rv;
6566 		}
6567 	}
6568 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6569 		rv = update_size(mddev, (sector_t)info->size * 2);
6570 
6571 	if (mddev->raid_disks    != info->raid_disks)
6572 		rv = update_raid_disks(mddev, info->raid_disks);
6573 
6574 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6575 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6576 			rv = -EINVAL;
6577 			goto err;
6578 		}
6579 		if (mddev->recovery || mddev->sync_thread) {
6580 			rv = -EBUSY;
6581 			goto err;
6582 		}
6583 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6584 			struct bitmap *bitmap;
6585 			/* add the bitmap */
6586 			if (mddev->bitmap) {
6587 				rv = -EEXIST;
6588 				goto err;
6589 			}
6590 			if (mddev->bitmap_info.default_offset == 0) {
6591 				rv = -EINVAL;
6592 				goto err;
6593 			}
6594 			mddev->bitmap_info.offset =
6595 				mddev->bitmap_info.default_offset;
6596 			mddev->bitmap_info.space =
6597 				mddev->bitmap_info.default_space;
6598 			mddev->pers->quiesce(mddev, 1);
6599 			bitmap = bitmap_create(mddev, -1);
6600 			if (!IS_ERR(bitmap)) {
6601 				mddev->bitmap = bitmap;
6602 				rv = bitmap_load(mddev);
6603 			} else
6604 				rv = PTR_ERR(bitmap);
6605 			if (rv)
6606 				bitmap_destroy(mddev);
6607 			mddev->pers->quiesce(mddev, 0);
6608 		} else {
6609 			/* remove the bitmap */
6610 			if (!mddev->bitmap) {
6611 				rv = -ENOENT;
6612 				goto err;
6613 			}
6614 			if (mddev->bitmap->storage.file) {
6615 				rv = -EINVAL;
6616 				goto err;
6617 			}
6618 			if (mddev->bitmap_info.nodes) {
6619 				/* hold PW on all the bitmap lock */
6620 				if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6621 					printk("md: can't change bitmap to none since the"
6622 					       " array is in use by more than one node\n");
6623 					rv = -EPERM;
6624 					md_cluster_ops->unlock_all_bitmaps(mddev);
6625 					goto err;
6626 				}
6627 
6628 				mddev->bitmap_info.nodes = 0;
6629 				md_cluster_ops->leave(mddev);
6630 			}
6631 			mddev->pers->quiesce(mddev, 1);
6632 			bitmap_destroy(mddev);
6633 			mddev->pers->quiesce(mddev, 0);
6634 			mddev->bitmap_info.offset = 0;
6635 		}
6636 	}
6637 	md_update_sb(mddev, 1);
6638 	return rv;
6639 err:
6640 	return rv;
6641 }
6642 
6643 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6644 {
6645 	struct md_rdev *rdev;
6646 	int err = 0;
6647 
6648 	if (mddev->pers == NULL)
6649 		return -ENODEV;
6650 
6651 	rcu_read_lock();
6652 	rdev = find_rdev_rcu(mddev, dev);
6653 	if (!rdev)
6654 		err =  -ENODEV;
6655 	else {
6656 		md_error(mddev, rdev);
6657 		if (!test_bit(Faulty, &rdev->flags))
6658 			err = -EBUSY;
6659 	}
6660 	rcu_read_unlock();
6661 	return err;
6662 }
6663 
6664 /*
6665  * We have a problem here : there is no easy way to give a CHS
6666  * virtual geometry. We currently pretend that we have a 2 heads
6667  * 4 sectors (with a BIG number of cylinders...). This drives
6668  * dosfs just mad... ;-)
6669  */
6670 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6671 {
6672 	struct mddev *mddev = bdev->bd_disk->private_data;
6673 
6674 	geo->heads = 2;
6675 	geo->sectors = 4;
6676 	geo->cylinders = mddev->array_sectors / 8;
6677 	return 0;
6678 }
6679 
6680 static inline bool md_ioctl_valid(unsigned int cmd)
6681 {
6682 	switch (cmd) {
6683 	case ADD_NEW_DISK:
6684 	case BLKROSET:
6685 	case GET_ARRAY_INFO:
6686 	case GET_BITMAP_FILE:
6687 	case GET_DISK_INFO:
6688 	case HOT_ADD_DISK:
6689 	case HOT_REMOVE_DISK:
6690 	case RAID_AUTORUN:
6691 	case RAID_VERSION:
6692 	case RESTART_ARRAY_RW:
6693 	case RUN_ARRAY:
6694 	case SET_ARRAY_INFO:
6695 	case SET_BITMAP_FILE:
6696 	case SET_DISK_FAULTY:
6697 	case STOP_ARRAY:
6698 	case STOP_ARRAY_RO:
6699 	case CLUSTERED_DISK_NACK:
6700 		return true;
6701 	default:
6702 		return false;
6703 	}
6704 }
6705 
6706 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6707 			unsigned int cmd, unsigned long arg)
6708 {
6709 	int err = 0;
6710 	void __user *argp = (void __user *)arg;
6711 	struct mddev *mddev = NULL;
6712 	int ro;
6713 
6714 	if (!md_ioctl_valid(cmd))
6715 		return -ENOTTY;
6716 
6717 	switch (cmd) {
6718 	case RAID_VERSION:
6719 	case GET_ARRAY_INFO:
6720 	case GET_DISK_INFO:
6721 		break;
6722 	default:
6723 		if (!capable(CAP_SYS_ADMIN))
6724 			return -EACCES;
6725 	}
6726 
6727 	/*
6728 	 * Commands dealing with the RAID driver but not any
6729 	 * particular array:
6730 	 */
6731 	switch (cmd) {
6732 	case RAID_VERSION:
6733 		err = get_version(argp);
6734 		goto out;
6735 
6736 #ifndef MODULE
6737 	case RAID_AUTORUN:
6738 		err = 0;
6739 		autostart_arrays(arg);
6740 		goto out;
6741 #endif
6742 	default:;
6743 	}
6744 
6745 	/*
6746 	 * Commands creating/starting a new array:
6747 	 */
6748 
6749 	mddev = bdev->bd_disk->private_data;
6750 
6751 	if (!mddev) {
6752 		BUG();
6753 		goto out;
6754 	}
6755 
6756 	/* Some actions do not requires the mutex */
6757 	switch (cmd) {
6758 	case GET_ARRAY_INFO:
6759 		if (!mddev->raid_disks && !mddev->external)
6760 			err = -ENODEV;
6761 		else
6762 			err = get_array_info(mddev, argp);
6763 		goto out;
6764 
6765 	case GET_DISK_INFO:
6766 		if (!mddev->raid_disks && !mddev->external)
6767 			err = -ENODEV;
6768 		else
6769 			err = get_disk_info(mddev, argp);
6770 		goto out;
6771 
6772 	case SET_DISK_FAULTY:
6773 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6774 		goto out;
6775 
6776 	case GET_BITMAP_FILE:
6777 		err = get_bitmap_file(mddev, argp);
6778 		goto out;
6779 
6780 	}
6781 
6782 	if (cmd == ADD_NEW_DISK)
6783 		/* need to ensure md_delayed_delete() has completed */
6784 		flush_workqueue(md_misc_wq);
6785 
6786 	if (cmd == HOT_REMOVE_DISK)
6787 		/* need to ensure recovery thread has run */
6788 		wait_event_interruptible_timeout(mddev->sb_wait,
6789 						 !test_bit(MD_RECOVERY_NEEDED,
6790 							   &mddev->flags),
6791 						 msecs_to_jiffies(5000));
6792 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6793 		/* Need to flush page cache, and ensure no-one else opens
6794 		 * and writes
6795 		 */
6796 		mutex_lock(&mddev->open_mutex);
6797 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6798 			mutex_unlock(&mddev->open_mutex);
6799 			err = -EBUSY;
6800 			goto out;
6801 		}
6802 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6803 		mutex_unlock(&mddev->open_mutex);
6804 		sync_blockdev(bdev);
6805 	}
6806 	err = mddev_lock(mddev);
6807 	if (err) {
6808 		printk(KERN_INFO
6809 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6810 			err, cmd);
6811 		goto out;
6812 	}
6813 
6814 	if (cmd == SET_ARRAY_INFO) {
6815 		mdu_array_info_t info;
6816 		if (!arg)
6817 			memset(&info, 0, sizeof(info));
6818 		else if (copy_from_user(&info, argp, sizeof(info))) {
6819 			err = -EFAULT;
6820 			goto unlock;
6821 		}
6822 		if (mddev->pers) {
6823 			err = update_array_info(mddev, &info);
6824 			if (err) {
6825 				printk(KERN_WARNING "md: couldn't update"
6826 				       " array info. %d\n", err);
6827 				goto unlock;
6828 			}
6829 			goto unlock;
6830 		}
6831 		if (!list_empty(&mddev->disks)) {
6832 			printk(KERN_WARNING
6833 			       "md: array %s already has disks!\n",
6834 			       mdname(mddev));
6835 			err = -EBUSY;
6836 			goto unlock;
6837 		}
6838 		if (mddev->raid_disks) {
6839 			printk(KERN_WARNING
6840 			       "md: array %s already initialised!\n",
6841 			       mdname(mddev));
6842 			err = -EBUSY;
6843 			goto unlock;
6844 		}
6845 		err = set_array_info(mddev, &info);
6846 		if (err) {
6847 			printk(KERN_WARNING "md: couldn't set"
6848 			       " array info. %d\n", err);
6849 			goto unlock;
6850 		}
6851 		goto unlock;
6852 	}
6853 
6854 	/*
6855 	 * Commands querying/configuring an existing array:
6856 	 */
6857 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6858 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6859 	if ((!mddev->raid_disks && !mddev->external)
6860 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6861 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6862 	    && cmd != GET_BITMAP_FILE) {
6863 		err = -ENODEV;
6864 		goto unlock;
6865 	}
6866 
6867 	/*
6868 	 * Commands even a read-only array can execute:
6869 	 */
6870 	switch (cmd) {
6871 	case RESTART_ARRAY_RW:
6872 		err = restart_array(mddev);
6873 		goto unlock;
6874 
6875 	case STOP_ARRAY:
6876 		err = do_md_stop(mddev, 0, bdev);
6877 		goto unlock;
6878 
6879 	case STOP_ARRAY_RO:
6880 		err = md_set_readonly(mddev, bdev);
6881 		goto unlock;
6882 
6883 	case HOT_REMOVE_DISK:
6884 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6885 		goto unlock;
6886 
6887 	case ADD_NEW_DISK:
6888 		/* We can support ADD_NEW_DISK on read-only arrays
6889 		 * only if we are re-adding a preexisting device.
6890 		 * So require mddev->pers and MD_DISK_SYNC.
6891 		 */
6892 		if (mddev->pers) {
6893 			mdu_disk_info_t info;
6894 			if (copy_from_user(&info, argp, sizeof(info)))
6895 				err = -EFAULT;
6896 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6897 				/* Need to clear read-only for this */
6898 				break;
6899 			else
6900 				err = add_new_disk(mddev, &info);
6901 			goto unlock;
6902 		}
6903 		break;
6904 
6905 	case BLKROSET:
6906 		if (get_user(ro, (int __user *)(arg))) {
6907 			err = -EFAULT;
6908 			goto unlock;
6909 		}
6910 		err = -EINVAL;
6911 
6912 		/* if the bdev is going readonly the value of mddev->ro
6913 		 * does not matter, no writes are coming
6914 		 */
6915 		if (ro)
6916 			goto unlock;
6917 
6918 		/* are we are already prepared for writes? */
6919 		if (mddev->ro != 1)
6920 			goto unlock;
6921 
6922 		/* transitioning to readauto need only happen for
6923 		 * arrays that call md_write_start
6924 		 */
6925 		if (mddev->pers) {
6926 			err = restart_array(mddev);
6927 			if (err == 0) {
6928 				mddev->ro = 2;
6929 				set_disk_ro(mddev->gendisk, 0);
6930 			}
6931 		}
6932 		goto unlock;
6933 	}
6934 
6935 	/*
6936 	 * The remaining ioctls are changing the state of the
6937 	 * superblock, so we do not allow them on read-only arrays.
6938 	 */
6939 	if (mddev->ro && mddev->pers) {
6940 		if (mddev->ro == 2) {
6941 			mddev->ro = 0;
6942 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6943 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6944 			/* mddev_unlock will wake thread */
6945 			/* If a device failed while we were read-only, we
6946 			 * need to make sure the metadata is updated now.
6947 			 */
6948 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6949 				mddev_unlock(mddev);
6950 				wait_event(mddev->sb_wait,
6951 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6952 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6953 				mddev_lock_nointr(mddev);
6954 			}
6955 		} else {
6956 			err = -EROFS;
6957 			goto unlock;
6958 		}
6959 	}
6960 
6961 	switch (cmd) {
6962 	case ADD_NEW_DISK:
6963 	{
6964 		mdu_disk_info_t info;
6965 		if (copy_from_user(&info, argp, sizeof(info)))
6966 			err = -EFAULT;
6967 		else
6968 			err = add_new_disk(mddev, &info);
6969 		goto unlock;
6970 	}
6971 
6972 	case CLUSTERED_DISK_NACK:
6973 		if (mddev_is_clustered(mddev))
6974 			md_cluster_ops->new_disk_ack(mddev, false);
6975 		else
6976 			err = -EINVAL;
6977 		goto unlock;
6978 
6979 	case HOT_ADD_DISK:
6980 		err = hot_add_disk(mddev, new_decode_dev(arg));
6981 		goto unlock;
6982 
6983 	case RUN_ARRAY:
6984 		err = do_md_run(mddev);
6985 		goto unlock;
6986 
6987 	case SET_BITMAP_FILE:
6988 		err = set_bitmap_file(mddev, (int)arg);
6989 		goto unlock;
6990 
6991 	default:
6992 		err = -EINVAL;
6993 		goto unlock;
6994 	}
6995 
6996 unlock:
6997 	if (mddev->hold_active == UNTIL_IOCTL &&
6998 	    err != -EINVAL)
6999 		mddev->hold_active = 0;
7000 	mddev_unlock(mddev);
7001 out:
7002 	return err;
7003 }
7004 #ifdef CONFIG_COMPAT
7005 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7006 		    unsigned int cmd, unsigned long arg)
7007 {
7008 	switch (cmd) {
7009 	case HOT_REMOVE_DISK:
7010 	case HOT_ADD_DISK:
7011 	case SET_DISK_FAULTY:
7012 	case SET_BITMAP_FILE:
7013 		/* These take in integer arg, do not convert */
7014 		break;
7015 	default:
7016 		arg = (unsigned long)compat_ptr(arg);
7017 		break;
7018 	}
7019 
7020 	return md_ioctl(bdev, mode, cmd, arg);
7021 }
7022 #endif /* CONFIG_COMPAT */
7023 
7024 static int md_open(struct block_device *bdev, fmode_t mode)
7025 {
7026 	/*
7027 	 * Succeed if we can lock the mddev, which confirms that
7028 	 * it isn't being stopped right now.
7029 	 */
7030 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7031 	int err;
7032 
7033 	if (!mddev)
7034 		return -ENODEV;
7035 
7036 	if (mddev->gendisk != bdev->bd_disk) {
7037 		/* we are racing with mddev_put which is discarding this
7038 		 * bd_disk.
7039 		 */
7040 		mddev_put(mddev);
7041 		/* Wait until bdev->bd_disk is definitely gone */
7042 		flush_workqueue(md_misc_wq);
7043 		/* Then retry the open from the top */
7044 		return -ERESTARTSYS;
7045 	}
7046 	BUG_ON(mddev != bdev->bd_disk->private_data);
7047 
7048 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7049 		goto out;
7050 
7051 	err = 0;
7052 	atomic_inc(&mddev->openers);
7053 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7054 	mutex_unlock(&mddev->open_mutex);
7055 
7056 	check_disk_change(bdev);
7057  out:
7058 	return err;
7059 }
7060 
7061 static void md_release(struct gendisk *disk, fmode_t mode)
7062 {
7063 	struct mddev *mddev = disk->private_data;
7064 
7065 	BUG_ON(!mddev);
7066 	atomic_dec(&mddev->openers);
7067 	mddev_put(mddev);
7068 }
7069 
7070 static int md_media_changed(struct gendisk *disk)
7071 {
7072 	struct mddev *mddev = disk->private_data;
7073 
7074 	return mddev->changed;
7075 }
7076 
7077 static int md_revalidate(struct gendisk *disk)
7078 {
7079 	struct mddev *mddev = disk->private_data;
7080 
7081 	mddev->changed = 0;
7082 	return 0;
7083 }
7084 static const struct block_device_operations md_fops =
7085 {
7086 	.owner		= THIS_MODULE,
7087 	.open		= md_open,
7088 	.release	= md_release,
7089 	.ioctl		= md_ioctl,
7090 #ifdef CONFIG_COMPAT
7091 	.compat_ioctl	= md_compat_ioctl,
7092 #endif
7093 	.getgeo		= md_getgeo,
7094 	.media_changed  = md_media_changed,
7095 	.revalidate_disk= md_revalidate,
7096 };
7097 
7098 static int md_thread(void *arg)
7099 {
7100 	struct md_thread *thread = arg;
7101 
7102 	/*
7103 	 * md_thread is a 'system-thread', it's priority should be very
7104 	 * high. We avoid resource deadlocks individually in each
7105 	 * raid personality. (RAID5 does preallocation) We also use RR and
7106 	 * the very same RT priority as kswapd, thus we will never get
7107 	 * into a priority inversion deadlock.
7108 	 *
7109 	 * we definitely have to have equal or higher priority than
7110 	 * bdflush, otherwise bdflush will deadlock if there are too
7111 	 * many dirty RAID5 blocks.
7112 	 */
7113 
7114 	allow_signal(SIGKILL);
7115 	while (!kthread_should_stop()) {
7116 
7117 		/* We need to wait INTERRUPTIBLE so that
7118 		 * we don't add to the load-average.
7119 		 * That means we need to be sure no signals are
7120 		 * pending
7121 		 */
7122 		if (signal_pending(current))
7123 			flush_signals(current);
7124 
7125 		wait_event_interruptible_timeout
7126 			(thread->wqueue,
7127 			 test_bit(THREAD_WAKEUP, &thread->flags)
7128 			 || kthread_should_stop(),
7129 			 thread->timeout);
7130 
7131 		clear_bit(THREAD_WAKEUP, &thread->flags);
7132 		if (!kthread_should_stop())
7133 			thread->run(thread);
7134 	}
7135 
7136 	return 0;
7137 }
7138 
7139 void md_wakeup_thread(struct md_thread *thread)
7140 {
7141 	if (thread) {
7142 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7143 		set_bit(THREAD_WAKEUP, &thread->flags);
7144 		wake_up(&thread->wqueue);
7145 	}
7146 }
7147 EXPORT_SYMBOL(md_wakeup_thread);
7148 
7149 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7150 		struct mddev *mddev, const char *name)
7151 {
7152 	struct md_thread *thread;
7153 
7154 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7155 	if (!thread)
7156 		return NULL;
7157 
7158 	init_waitqueue_head(&thread->wqueue);
7159 
7160 	thread->run = run;
7161 	thread->mddev = mddev;
7162 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7163 	thread->tsk = kthread_run(md_thread, thread,
7164 				  "%s_%s",
7165 				  mdname(thread->mddev),
7166 				  name);
7167 	if (IS_ERR(thread->tsk)) {
7168 		kfree(thread);
7169 		return NULL;
7170 	}
7171 	return thread;
7172 }
7173 EXPORT_SYMBOL(md_register_thread);
7174 
7175 void md_unregister_thread(struct md_thread **threadp)
7176 {
7177 	struct md_thread *thread = *threadp;
7178 	if (!thread)
7179 		return;
7180 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7181 	/* Locking ensures that mddev_unlock does not wake_up a
7182 	 * non-existent thread
7183 	 */
7184 	spin_lock(&pers_lock);
7185 	*threadp = NULL;
7186 	spin_unlock(&pers_lock);
7187 
7188 	kthread_stop(thread->tsk);
7189 	kfree(thread);
7190 }
7191 EXPORT_SYMBOL(md_unregister_thread);
7192 
7193 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7194 {
7195 	if (!rdev || test_bit(Faulty, &rdev->flags))
7196 		return;
7197 
7198 	if (!mddev->pers || !mddev->pers->error_handler)
7199 		return;
7200 	mddev->pers->error_handler(mddev,rdev);
7201 	if (mddev->degraded)
7202 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7203 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7204 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7205 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7206 	md_wakeup_thread(mddev->thread);
7207 	if (mddev->event_work.func)
7208 		queue_work(md_misc_wq, &mddev->event_work);
7209 	md_new_event(mddev);
7210 }
7211 EXPORT_SYMBOL(md_error);
7212 
7213 /* seq_file implementation /proc/mdstat */
7214 
7215 static void status_unused(struct seq_file *seq)
7216 {
7217 	int i = 0;
7218 	struct md_rdev *rdev;
7219 
7220 	seq_printf(seq, "unused devices: ");
7221 
7222 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7223 		char b[BDEVNAME_SIZE];
7224 		i++;
7225 		seq_printf(seq, "%s ",
7226 			      bdevname(rdev->bdev,b));
7227 	}
7228 	if (!i)
7229 		seq_printf(seq, "<none>");
7230 
7231 	seq_printf(seq, "\n");
7232 }
7233 
7234 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7235 {
7236 	sector_t max_sectors, resync, res;
7237 	unsigned long dt, db;
7238 	sector_t rt;
7239 	int scale;
7240 	unsigned int per_milli;
7241 
7242 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7243 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7244 		max_sectors = mddev->resync_max_sectors;
7245 	else
7246 		max_sectors = mddev->dev_sectors;
7247 
7248 	resync = mddev->curr_resync;
7249 	if (resync <= 3) {
7250 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7251 			/* Still cleaning up */
7252 			resync = max_sectors;
7253 	} else
7254 		resync -= atomic_read(&mddev->recovery_active);
7255 
7256 	if (resync == 0) {
7257 		if (mddev->recovery_cp < MaxSector) {
7258 			seq_printf(seq, "\tresync=PENDING");
7259 			return 1;
7260 		}
7261 		return 0;
7262 	}
7263 	if (resync < 3) {
7264 		seq_printf(seq, "\tresync=DELAYED");
7265 		return 1;
7266 	}
7267 
7268 	WARN_ON(max_sectors == 0);
7269 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7270 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7271 	 * u32, as those are the requirements for sector_div.
7272 	 * Thus 'scale' must be at least 10
7273 	 */
7274 	scale = 10;
7275 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7276 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7277 			scale++;
7278 	}
7279 	res = (resync>>scale)*1000;
7280 	sector_div(res, (u32)((max_sectors>>scale)+1));
7281 
7282 	per_milli = res;
7283 	{
7284 		int i, x = per_milli/50, y = 20-x;
7285 		seq_printf(seq, "[");
7286 		for (i = 0; i < x; i++)
7287 			seq_printf(seq, "=");
7288 		seq_printf(seq, ">");
7289 		for (i = 0; i < y; i++)
7290 			seq_printf(seq, ".");
7291 		seq_printf(seq, "] ");
7292 	}
7293 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7294 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7295 		    "reshape" :
7296 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7297 		     "check" :
7298 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7299 		      "resync" : "recovery"))),
7300 		   per_milli/10, per_milli % 10,
7301 		   (unsigned long long) resync/2,
7302 		   (unsigned long long) max_sectors/2);
7303 
7304 	/*
7305 	 * dt: time from mark until now
7306 	 * db: blocks written from mark until now
7307 	 * rt: remaining time
7308 	 *
7309 	 * rt is a sector_t, so could be 32bit or 64bit.
7310 	 * So we divide before multiply in case it is 32bit and close
7311 	 * to the limit.
7312 	 * We scale the divisor (db) by 32 to avoid losing precision
7313 	 * near the end of resync when the number of remaining sectors
7314 	 * is close to 'db'.
7315 	 * We then divide rt by 32 after multiplying by db to compensate.
7316 	 * The '+1' avoids division by zero if db is very small.
7317 	 */
7318 	dt = ((jiffies - mddev->resync_mark) / HZ);
7319 	if (!dt) dt++;
7320 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7321 		- mddev->resync_mark_cnt;
7322 
7323 	rt = max_sectors - resync;    /* number of remaining sectors */
7324 	sector_div(rt, db/32+1);
7325 	rt *= dt;
7326 	rt >>= 5;
7327 
7328 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7329 		   ((unsigned long)rt % 60)/6);
7330 
7331 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7332 	return 1;
7333 }
7334 
7335 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7336 {
7337 	struct list_head *tmp;
7338 	loff_t l = *pos;
7339 	struct mddev *mddev;
7340 
7341 	if (l >= 0x10000)
7342 		return NULL;
7343 	if (!l--)
7344 		/* header */
7345 		return (void*)1;
7346 
7347 	spin_lock(&all_mddevs_lock);
7348 	list_for_each(tmp,&all_mddevs)
7349 		if (!l--) {
7350 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7351 			mddev_get(mddev);
7352 			spin_unlock(&all_mddevs_lock);
7353 			return mddev;
7354 		}
7355 	spin_unlock(&all_mddevs_lock);
7356 	if (!l--)
7357 		return (void*)2;/* tail */
7358 	return NULL;
7359 }
7360 
7361 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7362 {
7363 	struct list_head *tmp;
7364 	struct mddev *next_mddev, *mddev = v;
7365 
7366 	++*pos;
7367 	if (v == (void*)2)
7368 		return NULL;
7369 
7370 	spin_lock(&all_mddevs_lock);
7371 	if (v == (void*)1)
7372 		tmp = all_mddevs.next;
7373 	else
7374 		tmp = mddev->all_mddevs.next;
7375 	if (tmp != &all_mddevs)
7376 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7377 	else {
7378 		next_mddev = (void*)2;
7379 		*pos = 0x10000;
7380 	}
7381 	spin_unlock(&all_mddevs_lock);
7382 
7383 	if (v != (void*)1)
7384 		mddev_put(mddev);
7385 	return next_mddev;
7386 
7387 }
7388 
7389 static void md_seq_stop(struct seq_file *seq, void *v)
7390 {
7391 	struct mddev *mddev = v;
7392 
7393 	if (mddev && v != (void*)1 && v != (void*)2)
7394 		mddev_put(mddev);
7395 }
7396 
7397 static int md_seq_show(struct seq_file *seq, void *v)
7398 {
7399 	struct mddev *mddev = v;
7400 	sector_t sectors;
7401 	struct md_rdev *rdev;
7402 
7403 	if (v == (void*)1) {
7404 		struct md_personality *pers;
7405 		seq_printf(seq, "Personalities : ");
7406 		spin_lock(&pers_lock);
7407 		list_for_each_entry(pers, &pers_list, list)
7408 			seq_printf(seq, "[%s] ", pers->name);
7409 
7410 		spin_unlock(&pers_lock);
7411 		seq_printf(seq, "\n");
7412 		seq->poll_event = atomic_read(&md_event_count);
7413 		return 0;
7414 	}
7415 	if (v == (void*)2) {
7416 		status_unused(seq);
7417 		return 0;
7418 	}
7419 
7420 	spin_lock(&mddev->lock);
7421 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7422 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7423 						mddev->pers ? "" : "in");
7424 		if (mddev->pers) {
7425 			if (mddev->ro==1)
7426 				seq_printf(seq, " (read-only)");
7427 			if (mddev->ro==2)
7428 				seq_printf(seq, " (auto-read-only)");
7429 			seq_printf(seq, " %s", mddev->pers->name);
7430 		}
7431 
7432 		sectors = 0;
7433 		rcu_read_lock();
7434 		rdev_for_each_rcu(rdev, mddev) {
7435 			char b[BDEVNAME_SIZE];
7436 			seq_printf(seq, " %s[%d]",
7437 				bdevname(rdev->bdev,b), rdev->desc_nr);
7438 			if (test_bit(WriteMostly, &rdev->flags))
7439 				seq_printf(seq, "(W)");
7440 			if (test_bit(Journal, &rdev->flags))
7441 				seq_printf(seq, "(J)");
7442 			if (test_bit(Faulty, &rdev->flags)) {
7443 				seq_printf(seq, "(F)");
7444 				continue;
7445 			}
7446 			if (rdev->raid_disk < 0)
7447 				seq_printf(seq, "(S)"); /* spare */
7448 			if (test_bit(Replacement, &rdev->flags))
7449 				seq_printf(seq, "(R)");
7450 			sectors += rdev->sectors;
7451 		}
7452 		rcu_read_unlock();
7453 
7454 		if (!list_empty(&mddev->disks)) {
7455 			if (mddev->pers)
7456 				seq_printf(seq, "\n      %llu blocks",
7457 					   (unsigned long long)
7458 					   mddev->array_sectors / 2);
7459 			else
7460 				seq_printf(seq, "\n      %llu blocks",
7461 					   (unsigned long long)sectors / 2);
7462 		}
7463 		if (mddev->persistent) {
7464 			if (mddev->major_version != 0 ||
7465 			    mddev->minor_version != 90) {
7466 				seq_printf(seq," super %d.%d",
7467 					   mddev->major_version,
7468 					   mddev->minor_version);
7469 			}
7470 		} else if (mddev->external)
7471 			seq_printf(seq, " super external:%s",
7472 				   mddev->metadata_type);
7473 		else
7474 			seq_printf(seq, " super non-persistent");
7475 
7476 		if (mddev->pers) {
7477 			mddev->pers->status(seq, mddev);
7478 			seq_printf(seq, "\n      ");
7479 			if (mddev->pers->sync_request) {
7480 				if (status_resync(seq, mddev))
7481 					seq_printf(seq, "\n      ");
7482 			}
7483 		} else
7484 			seq_printf(seq, "\n       ");
7485 
7486 		bitmap_status(seq, mddev->bitmap);
7487 
7488 		seq_printf(seq, "\n");
7489 	}
7490 	spin_unlock(&mddev->lock);
7491 
7492 	return 0;
7493 }
7494 
7495 static const struct seq_operations md_seq_ops = {
7496 	.start  = md_seq_start,
7497 	.next   = md_seq_next,
7498 	.stop   = md_seq_stop,
7499 	.show   = md_seq_show,
7500 };
7501 
7502 static int md_seq_open(struct inode *inode, struct file *file)
7503 {
7504 	struct seq_file *seq;
7505 	int error;
7506 
7507 	error = seq_open(file, &md_seq_ops);
7508 	if (error)
7509 		return error;
7510 
7511 	seq = file->private_data;
7512 	seq->poll_event = atomic_read(&md_event_count);
7513 	return error;
7514 }
7515 
7516 static int md_unloading;
7517 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7518 {
7519 	struct seq_file *seq = filp->private_data;
7520 	int mask;
7521 
7522 	if (md_unloading)
7523 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7524 	poll_wait(filp, &md_event_waiters, wait);
7525 
7526 	/* always allow read */
7527 	mask = POLLIN | POLLRDNORM;
7528 
7529 	if (seq->poll_event != atomic_read(&md_event_count))
7530 		mask |= POLLERR | POLLPRI;
7531 	return mask;
7532 }
7533 
7534 static const struct file_operations md_seq_fops = {
7535 	.owner		= THIS_MODULE,
7536 	.open           = md_seq_open,
7537 	.read           = seq_read,
7538 	.llseek         = seq_lseek,
7539 	.release	= seq_release_private,
7540 	.poll		= mdstat_poll,
7541 };
7542 
7543 int register_md_personality(struct md_personality *p)
7544 {
7545 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7546 						p->name, p->level);
7547 	spin_lock(&pers_lock);
7548 	list_add_tail(&p->list, &pers_list);
7549 	spin_unlock(&pers_lock);
7550 	return 0;
7551 }
7552 EXPORT_SYMBOL(register_md_personality);
7553 
7554 int unregister_md_personality(struct md_personality *p)
7555 {
7556 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7557 	spin_lock(&pers_lock);
7558 	list_del_init(&p->list);
7559 	spin_unlock(&pers_lock);
7560 	return 0;
7561 }
7562 EXPORT_SYMBOL(unregister_md_personality);
7563 
7564 int register_md_cluster_operations(struct md_cluster_operations *ops,
7565 				   struct module *module)
7566 {
7567 	int ret = 0;
7568 	spin_lock(&pers_lock);
7569 	if (md_cluster_ops != NULL)
7570 		ret = -EALREADY;
7571 	else {
7572 		md_cluster_ops = ops;
7573 		md_cluster_mod = module;
7574 	}
7575 	spin_unlock(&pers_lock);
7576 	return ret;
7577 }
7578 EXPORT_SYMBOL(register_md_cluster_operations);
7579 
7580 int unregister_md_cluster_operations(void)
7581 {
7582 	spin_lock(&pers_lock);
7583 	md_cluster_ops = NULL;
7584 	spin_unlock(&pers_lock);
7585 	return 0;
7586 }
7587 EXPORT_SYMBOL(unregister_md_cluster_operations);
7588 
7589 int md_setup_cluster(struct mddev *mddev, int nodes)
7590 {
7591 	int err;
7592 
7593 	err = request_module("md-cluster");
7594 	if (err) {
7595 		pr_err("md-cluster module not found.\n");
7596 		return -ENOENT;
7597 	}
7598 
7599 	spin_lock(&pers_lock);
7600 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7601 		spin_unlock(&pers_lock);
7602 		return -ENOENT;
7603 	}
7604 	spin_unlock(&pers_lock);
7605 
7606 	return md_cluster_ops->join(mddev, nodes);
7607 }
7608 
7609 void md_cluster_stop(struct mddev *mddev)
7610 {
7611 	if (!md_cluster_ops)
7612 		return;
7613 	md_cluster_ops->leave(mddev);
7614 	module_put(md_cluster_mod);
7615 }
7616 
7617 static int is_mddev_idle(struct mddev *mddev, int init)
7618 {
7619 	struct md_rdev *rdev;
7620 	int idle;
7621 	int curr_events;
7622 
7623 	idle = 1;
7624 	rcu_read_lock();
7625 	rdev_for_each_rcu(rdev, mddev) {
7626 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7627 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7628 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7629 			      atomic_read(&disk->sync_io);
7630 		/* sync IO will cause sync_io to increase before the disk_stats
7631 		 * as sync_io is counted when a request starts, and
7632 		 * disk_stats is counted when it completes.
7633 		 * So resync activity will cause curr_events to be smaller than
7634 		 * when there was no such activity.
7635 		 * non-sync IO will cause disk_stat to increase without
7636 		 * increasing sync_io so curr_events will (eventually)
7637 		 * be larger than it was before.  Once it becomes
7638 		 * substantially larger, the test below will cause
7639 		 * the array to appear non-idle, and resync will slow
7640 		 * down.
7641 		 * If there is a lot of outstanding resync activity when
7642 		 * we set last_event to curr_events, then all that activity
7643 		 * completing might cause the array to appear non-idle
7644 		 * and resync will be slowed down even though there might
7645 		 * not have been non-resync activity.  This will only
7646 		 * happen once though.  'last_events' will soon reflect
7647 		 * the state where there is little or no outstanding
7648 		 * resync requests, and further resync activity will
7649 		 * always make curr_events less than last_events.
7650 		 *
7651 		 */
7652 		if (init || curr_events - rdev->last_events > 64) {
7653 			rdev->last_events = curr_events;
7654 			idle = 0;
7655 		}
7656 	}
7657 	rcu_read_unlock();
7658 	return idle;
7659 }
7660 
7661 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7662 {
7663 	/* another "blocks" (512byte) blocks have been synced */
7664 	atomic_sub(blocks, &mddev->recovery_active);
7665 	wake_up(&mddev->recovery_wait);
7666 	if (!ok) {
7667 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7668 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7669 		md_wakeup_thread(mddev->thread);
7670 		// stop recovery, signal do_sync ....
7671 	}
7672 }
7673 EXPORT_SYMBOL(md_done_sync);
7674 
7675 /* md_write_start(mddev, bi)
7676  * If we need to update some array metadata (e.g. 'active' flag
7677  * in superblock) before writing, schedule a superblock update
7678  * and wait for it to complete.
7679  */
7680 void md_write_start(struct mddev *mddev, struct bio *bi)
7681 {
7682 	int did_change = 0;
7683 	if (bio_data_dir(bi) != WRITE)
7684 		return;
7685 
7686 	BUG_ON(mddev->ro == 1);
7687 	if (mddev->ro == 2) {
7688 		/* need to switch to read/write */
7689 		mddev->ro = 0;
7690 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7691 		md_wakeup_thread(mddev->thread);
7692 		md_wakeup_thread(mddev->sync_thread);
7693 		did_change = 1;
7694 	}
7695 	atomic_inc(&mddev->writes_pending);
7696 	if (mddev->safemode == 1)
7697 		mddev->safemode = 0;
7698 	if (mddev->in_sync) {
7699 		spin_lock(&mddev->lock);
7700 		if (mddev->in_sync) {
7701 			mddev->in_sync = 0;
7702 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7703 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7704 			md_wakeup_thread(mddev->thread);
7705 			did_change = 1;
7706 		}
7707 		spin_unlock(&mddev->lock);
7708 	}
7709 	if (did_change)
7710 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7711 	wait_event(mddev->sb_wait,
7712 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7713 }
7714 EXPORT_SYMBOL(md_write_start);
7715 
7716 void md_write_end(struct mddev *mddev)
7717 {
7718 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7719 		if (mddev->safemode == 2)
7720 			md_wakeup_thread(mddev->thread);
7721 		else if (mddev->safemode_delay)
7722 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7723 	}
7724 }
7725 EXPORT_SYMBOL(md_write_end);
7726 
7727 /* md_allow_write(mddev)
7728  * Calling this ensures that the array is marked 'active' so that writes
7729  * may proceed without blocking.  It is important to call this before
7730  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7731  * Must be called with mddev_lock held.
7732  *
7733  * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7734  * is dropped, so return -EAGAIN after notifying userspace.
7735  */
7736 int md_allow_write(struct mddev *mddev)
7737 {
7738 	if (!mddev->pers)
7739 		return 0;
7740 	if (mddev->ro)
7741 		return 0;
7742 	if (!mddev->pers->sync_request)
7743 		return 0;
7744 
7745 	spin_lock(&mddev->lock);
7746 	if (mddev->in_sync) {
7747 		mddev->in_sync = 0;
7748 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7749 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7750 		if (mddev->safemode_delay &&
7751 		    mddev->safemode == 0)
7752 			mddev->safemode = 1;
7753 		spin_unlock(&mddev->lock);
7754 		md_update_sb(mddev, 0);
7755 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7756 	} else
7757 		spin_unlock(&mddev->lock);
7758 
7759 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7760 		return -EAGAIN;
7761 	else
7762 		return 0;
7763 }
7764 EXPORT_SYMBOL_GPL(md_allow_write);
7765 
7766 #define SYNC_MARKS	10
7767 #define	SYNC_MARK_STEP	(3*HZ)
7768 #define UPDATE_FREQUENCY (5*60*HZ)
7769 void md_do_sync(struct md_thread *thread)
7770 {
7771 	struct mddev *mddev = thread->mddev;
7772 	struct mddev *mddev2;
7773 	unsigned int currspeed = 0,
7774 		 window;
7775 	sector_t max_sectors,j, io_sectors, recovery_done;
7776 	unsigned long mark[SYNC_MARKS];
7777 	unsigned long update_time;
7778 	sector_t mark_cnt[SYNC_MARKS];
7779 	int last_mark,m;
7780 	struct list_head *tmp;
7781 	sector_t last_check;
7782 	int skipped = 0;
7783 	struct md_rdev *rdev;
7784 	char *desc, *action = NULL;
7785 	struct blk_plug plug;
7786 	bool cluster_resync_finished = false;
7787 
7788 	/* just incase thread restarts... */
7789 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7790 		return;
7791 	if (mddev->ro) {/* never try to sync a read-only array */
7792 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7793 		return;
7794 	}
7795 
7796 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7797 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7798 			desc = "data-check";
7799 			action = "check";
7800 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7801 			desc = "requested-resync";
7802 			action = "repair";
7803 		} else
7804 			desc = "resync";
7805 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7806 		desc = "reshape";
7807 	else
7808 		desc = "recovery";
7809 
7810 	mddev->last_sync_action = action ?: desc;
7811 
7812 	/* we overload curr_resync somewhat here.
7813 	 * 0 == not engaged in resync at all
7814 	 * 2 == checking that there is no conflict with another sync
7815 	 * 1 == like 2, but have yielded to allow conflicting resync to
7816 	 *		commense
7817 	 * other == active in resync - this many blocks
7818 	 *
7819 	 * Before starting a resync we must have set curr_resync to
7820 	 * 2, and then checked that every "conflicting" array has curr_resync
7821 	 * less than ours.  When we find one that is the same or higher
7822 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7823 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7824 	 * This will mean we have to start checking from the beginning again.
7825 	 *
7826 	 */
7827 
7828 	do {
7829 		mddev->curr_resync = 2;
7830 
7831 	try_again:
7832 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7833 			goto skip;
7834 		for_each_mddev(mddev2, tmp) {
7835 			if (mddev2 == mddev)
7836 				continue;
7837 			if (!mddev->parallel_resync
7838 			&&  mddev2->curr_resync
7839 			&&  match_mddev_units(mddev, mddev2)) {
7840 				DEFINE_WAIT(wq);
7841 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7842 					/* arbitrarily yield */
7843 					mddev->curr_resync = 1;
7844 					wake_up(&resync_wait);
7845 				}
7846 				if (mddev > mddev2 && mddev->curr_resync == 1)
7847 					/* no need to wait here, we can wait the next
7848 					 * time 'round when curr_resync == 2
7849 					 */
7850 					continue;
7851 				/* We need to wait 'interruptible' so as not to
7852 				 * contribute to the load average, and not to
7853 				 * be caught by 'softlockup'
7854 				 */
7855 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7856 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7857 				    mddev2->curr_resync >= mddev->curr_resync) {
7858 					printk(KERN_INFO "md: delaying %s of %s"
7859 					       " until %s has finished (they"
7860 					       " share one or more physical units)\n",
7861 					       desc, mdname(mddev), mdname(mddev2));
7862 					mddev_put(mddev2);
7863 					if (signal_pending(current))
7864 						flush_signals(current);
7865 					schedule();
7866 					finish_wait(&resync_wait, &wq);
7867 					goto try_again;
7868 				}
7869 				finish_wait(&resync_wait, &wq);
7870 			}
7871 		}
7872 	} while (mddev->curr_resync < 2);
7873 
7874 	j = 0;
7875 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7876 		/* resync follows the size requested by the personality,
7877 		 * which defaults to physical size, but can be virtual size
7878 		 */
7879 		max_sectors = mddev->resync_max_sectors;
7880 		atomic64_set(&mddev->resync_mismatches, 0);
7881 		/* we don't use the checkpoint if there's a bitmap */
7882 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7883 			j = mddev->resync_min;
7884 		else if (!mddev->bitmap)
7885 			j = mddev->recovery_cp;
7886 
7887 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7888 		max_sectors = mddev->resync_max_sectors;
7889 	else {
7890 		/* recovery follows the physical size of devices */
7891 		max_sectors = mddev->dev_sectors;
7892 		j = MaxSector;
7893 		rcu_read_lock();
7894 		rdev_for_each_rcu(rdev, mddev)
7895 			if (rdev->raid_disk >= 0 &&
7896 			    !test_bit(Journal, &rdev->flags) &&
7897 			    !test_bit(Faulty, &rdev->flags) &&
7898 			    !test_bit(In_sync, &rdev->flags) &&
7899 			    rdev->recovery_offset < j)
7900 				j = rdev->recovery_offset;
7901 		rcu_read_unlock();
7902 
7903 		/* If there is a bitmap, we need to make sure all
7904 		 * writes that started before we added a spare
7905 		 * complete before we start doing a recovery.
7906 		 * Otherwise the write might complete and (via
7907 		 * bitmap_endwrite) set a bit in the bitmap after the
7908 		 * recovery has checked that bit and skipped that
7909 		 * region.
7910 		 */
7911 		if (mddev->bitmap) {
7912 			mddev->pers->quiesce(mddev, 1);
7913 			mddev->pers->quiesce(mddev, 0);
7914 		}
7915 	}
7916 
7917 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7918 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7919 		" %d KB/sec/disk.\n", speed_min(mddev));
7920 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7921 	       "(but not more than %d KB/sec) for %s.\n",
7922 	       speed_max(mddev), desc);
7923 
7924 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7925 
7926 	io_sectors = 0;
7927 	for (m = 0; m < SYNC_MARKS; m++) {
7928 		mark[m] = jiffies;
7929 		mark_cnt[m] = io_sectors;
7930 	}
7931 	last_mark = 0;
7932 	mddev->resync_mark = mark[last_mark];
7933 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7934 
7935 	/*
7936 	 * Tune reconstruction:
7937 	 */
7938 	window = 32*(PAGE_SIZE/512);
7939 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7940 		window/2, (unsigned long long)max_sectors/2);
7941 
7942 	atomic_set(&mddev->recovery_active, 0);
7943 	last_check = 0;
7944 
7945 	if (j>2) {
7946 		printk(KERN_INFO
7947 		       "md: resuming %s of %s from checkpoint.\n",
7948 		       desc, mdname(mddev));
7949 		mddev->curr_resync = j;
7950 	} else
7951 		mddev->curr_resync = 3; /* no longer delayed */
7952 	mddev->curr_resync_completed = j;
7953 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7954 	md_new_event(mddev);
7955 	update_time = jiffies;
7956 
7957 	blk_start_plug(&plug);
7958 	while (j < max_sectors) {
7959 		sector_t sectors;
7960 
7961 		skipped = 0;
7962 
7963 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7964 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7965 		      (mddev->curr_resync - mddev->curr_resync_completed)
7966 		      > (max_sectors >> 4)) ||
7967 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7968 		     (j - mddev->curr_resync_completed)*2
7969 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7970 		     mddev->curr_resync_completed > mddev->resync_max
7971 			    )) {
7972 			/* time to update curr_resync_completed */
7973 			wait_event(mddev->recovery_wait,
7974 				   atomic_read(&mddev->recovery_active) == 0);
7975 			mddev->curr_resync_completed = j;
7976 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7977 			    j > mddev->recovery_cp)
7978 				mddev->recovery_cp = j;
7979 			update_time = jiffies;
7980 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7981 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7982 		}
7983 
7984 		while (j >= mddev->resync_max &&
7985 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7986 			/* As this condition is controlled by user-space,
7987 			 * we can block indefinitely, so use '_interruptible'
7988 			 * to avoid triggering warnings.
7989 			 */
7990 			flush_signals(current); /* just in case */
7991 			wait_event_interruptible(mddev->recovery_wait,
7992 						 mddev->resync_max > j
7993 						 || test_bit(MD_RECOVERY_INTR,
7994 							     &mddev->recovery));
7995 		}
7996 
7997 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7998 			break;
7999 
8000 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
8001 		if (sectors == 0) {
8002 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8003 			break;
8004 		}
8005 
8006 		if (!skipped) { /* actual IO requested */
8007 			io_sectors += sectors;
8008 			atomic_add(sectors, &mddev->recovery_active);
8009 		}
8010 
8011 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8012 			break;
8013 
8014 		j += sectors;
8015 		if (j > max_sectors)
8016 			/* when skipping, extra large numbers can be returned. */
8017 			j = max_sectors;
8018 		if (j > 2)
8019 			mddev->curr_resync = j;
8020 		mddev->curr_mark_cnt = io_sectors;
8021 		if (last_check == 0)
8022 			/* this is the earliest that rebuild will be
8023 			 * visible in /proc/mdstat
8024 			 */
8025 			md_new_event(mddev);
8026 
8027 		if (last_check + window > io_sectors || j == max_sectors)
8028 			continue;
8029 
8030 		last_check = io_sectors;
8031 	repeat:
8032 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8033 			/* step marks */
8034 			int next = (last_mark+1) % SYNC_MARKS;
8035 
8036 			mddev->resync_mark = mark[next];
8037 			mddev->resync_mark_cnt = mark_cnt[next];
8038 			mark[next] = jiffies;
8039 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8040 			last_mark = next;
8041 		}
8042 
8043 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8044 			break;
8045 
8046 		/*
8047 		 * this loop exits only if either when we are slower than
8048 		 * the 'hard' speed limit, or the system was IO-idle for
8049 		 * a jiffy.
8050 		 * the system might be non-idle CPU-wise, but we only care
8051 		 * about not overloading the IO subsystem. (things like an
8052 		 * e2fsck being done on the RAID array should execute fast)
8053 		 */
8054 		cond_resched();
8055 
8056 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8057 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8058 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8059 
8060 		if (currspeed > speed_min(mddev)) {
8061 			if (currspeed > speed_max(mddev)) {
8062 				msleep(500);
8063 				goto repeat;
8064 			}
8065 			if (!is_mddev_idle(mddev, 0)) {
8066 				/*
8067 				 * Give other IO more of a chance.
8068 				 * The faster the devices, the less we wait.
8069 				 */
8070 				wait_event(mddev->recovery_wait,
8071 					   !atomic_read(&mddev->recovery_active));
8072 			}
8073 		}
8074 	}
8075 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8076 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8077 	       ? "interrupted" : "done");
8078 	/*
8079 	 * this also signals 'finished resyncing' to md_stop
8080 	 */
8081 	blk_finish_plug(&plug);
8082 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8083 
8084 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8085 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8086 	    mddev->curr_resync > 2) {
8087 		mddev->curr_resync_completed = mddev->curr_resync;
8088 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8089 	}
8090 	/* tell personality and other nodes that we are finished */
8091 	if (mddev_is_clustered(mddev)) {
8092 		md_cluster_ops->resync_finish(mddev);
8093 		cluster_resync_finished = true;
8094 	}
8095 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8096 
8097 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8098 	    mddev->curr_resync > 2) {
8099 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8100 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8101 				if (mddev->curr_resync >= mddev->recovery_cp) {
8102 					printk(KERN_INFO
8103 					       "md: checkpointing %s of %s.\n",
8104 					       desc, mdname(mddev));
8105 					if (test_bit(MD_RECOVERY_ERROR,
8106 						&mddev->recovery))
8107 						mddev->recovery_cp =
8108 							mddev->curr_resync_completed;
8109 					else
8110 						mddev->recovery_cp =
8111 							mddev->curr_resync;
8112 				}
8113 			} else
8114 				mddev->recovery_cp = MaxSector;
8115 		} else {
8116 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8117 				mddev->curr_resync = MaxSector;
8118 			rcu_read_lock();
8119 			rdev_for_each_rcu(rdev, mddev)
8120 				if (rdev->raid_disk >= 0 &&
8121 				    mddev->delta_disks >= 0 &&
8122 				    !test_bit(Journal, &rdev->flags) &&
8123 				    !test_bit(Faulty, &rdev->flags) &&
8124 				    !test_bit(In_sync, &rdev->flags) &&
8125 				    rdev->recovery_offset < mddev->curr_resync)
8126 					rdev->recovery_offset = mddev->curr_resync;
8127 			rcu_read_unlock();
8128 		}
8129 	}
8130  skip:
8131 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8132 
8133 	if (mddev_is_clustered(mddev) &&
8134 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8135 	    !cluster_resync_finished)
8136 		md_cluster_ops->resync_finish(mddev);
8137 
8138 	spin_lock(&mddev->lock);
8139 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8140 		/* We completed so min/max setting can be forgotten if used. */
8141 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8142 			mddev->resync_min = 0;
8143 		mddev->resync_max = MaxSector;
8144 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8145 		mddev->resync_min = mddev->curr_resync_completed;
8146 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8147 	mddev->curr_resync = 0;
8148 	spin_unlock(&mddev->lock);
8149 
8150 	wake_up(&resync_wait);
8151 	md_wakeup_thread(mddev->thread);
8152 	return;
8153 }
8154 EXPORT_SYMBOL_GPL(md_do_sync);
8155 
8156 static int remove_and_add_spares(struct mddev *mddev,
8157 				 struct md_rdev *this)
8158 {
8159 	struct md_rdev *rdev;
8160 	int spares = 0;
8161 	int removed = 0;
8162 
8163 	rdev_for_each(rdev, mddev)
8164 		if ((this == NULL || rdev == this) &&
8165 		    rdev->raid_disk >= 0 &&
8166 		    !test_bit(Blocked, &rdev->flags) &&
8167 		    (test_bit(Faulty, &rdev->flags) ||
8168 		     (!test_bit(In_sync, &rdev->flags) &&
8169 		      !test_bit(Journal, &rdev->flags))) &&
8170 		    atomic_read(&rdev->nr_pending)==0) {
8171 			if (mddev->pers->hot_remove_disk(
8172 				    mddev, rdev) == 0) {
8173 				sysfs_unlink_rdev(mddev, rdev);
8174 				rdev->raid_disk = -1;
8175 				removed++;
8176 			}
8177 		}
8178 	if (removed && mddev->kobj.sd)
8179 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8180 
8181 	if (this && removed)
8182 		goto no_add;
8183 
8184 	rdev_for_each(rdev, mddev) {
8185 		if (this && this != rdev)
8186 			continue;
8187 		if (test_bit(Candidate, &rdev->flags))
8188 			continue;
8189 		if (rdev->raid_disk >= 0 &&
8190 		    !test_bit(In_sync, &rdev->flags) &&
8191 		    !test_bit(Journal, &rdev->flags) &&
8192 		    !test_bit(Faulty, &rdev->flags))
8193 			spares++;
8194 		if (rdev->raid_disk >= 0)
8195 			continue;
8196 		if (test_bit(Faulty, &rdev->flags))
8197 			continue;
8198 		if (!test_bit(Journal, &rdev->flags)) {
8199 			if (mddev->ro &&
8200 			    ! (rdev->saved_raid_disk >= 0 &&
8201 			       !test_bit(Bitmap_sync, &rdev->flags)))
8202 				continue;
8203 
8204 			rdev->recovery_offset = 0;
8205 		}
8206 		if (mddev->pers->
8207 		    hot_add_disk(mddev, rdev) == 0) {
8208 			if (sysfs_link_rdev(mddev, rdev))
8209 				/* failure here is OK */;
8210 			if (!test_bit(Journal, &rdev->flags))
8211 				spares++;
8212 			md_new_event(mddev);
8213 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8214 		}
8215 	}
8216 no_add:
8217 	if (removed)
8218 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8219 	return spares;
8220 }
8221 
8222 static void md_start_sync(struct work_struct *ws)
8223 {
8224 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8225 	int ret = 0;
8226 
8227 	if (mddev_is_clustered(mddev)) {
8228 		ret = md_cluster_ops->resync_start(mddev);
8229 		if (ret) {
8230 			mddev->sync_thread = NULL;
8231 			goto out;
8232 		}
8233 	}
8234 
8235 	mddev->sync_thread = md_register_thread(md_do_sync,
8236 						mddev,
8237 						"resync");
8238 out:
8239 	if (!mddev->sync_thread) {
8240 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8241 			printk(KERN_ERR "%s: could not start resync"
8242 			       " thread...\n",
8243 			       mdname(mddev));
8244 		/* leave the spares where they are, it shouldn't hurt */
8245 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8246 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8247 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8248 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8249 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8250 		wake_up(&resync_wait);
8251 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8252 				       &mddev->recovery))
8253 			if (mddev->sysfs_action)
8254 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 	} else
8256 		md_wakeup_thread(mddev->sync_thread);
8257 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8258 	md_new_event(mddev);
8259 }
8260 
8261 /*
8262  * This routine is regularly called by all per-raid-array threads to
8263  * deal with generic issues like resync and super-block update.
8264  * Raid personalities that don't have a thread (linear/raid0) do not
8265  * need this as they never do any recovery or update the superblock.
8266  *
8267  * It does not do any resync itself, but rather "forks" off other threads
8268  * to do that as needed.
8269  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8270  * "->recovery" and create a thread at ->sync_thread.
8271  * When the thread finishes it sets MD_RECOVERY_DONE
8272  * and wakeups up this thread which will reap the thread and finish up.
8273  * This thread also removes any faulty devices (with nr_pending == 0).
8274  *
8275  * The overall approach is:
8276  *  1/ if the superblock needs updating, update it.
8277  *  2/ If a recovery thread is running, don't do anything else.
8278  *  3/ If recovery has finished, clean up, possibly marking spares active.
8279  *  4/ If there are any faulty devices, remove them.
8280  *  5/ If array is degraded, try to add spares devices
8281  *  6/ If array has spares or is not in-sync, start a resync thread.
8282  */
8283 void md_check_recovery(struct mddev *mddev)
8284 {
8285 	if (mddev->suspended)
8286 		return;
8287 
8288 	if (mddev->bitmap)
8289 		bitmap_daemon_work(mddev);
8290 
8291 	if (signal_pending(current)) {
8292 		if (mddev->pers->sync_request && !mddev->external) {
8293 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8294 			       mdname(mddev));
8295 			mddev->safemode = 2;
8296 		}
8297 		flush_signals(current);
8298 	}
8299 
8300 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8301 		return;
8302 	if ( ! (
8303 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8304 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8305 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8306 		test_bit(MD_RELOAD_SB, &mddev->flags) ||
8307 		(mddev->external == 0 && mddev->safemode == 1) ||
8308 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8309 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8310 		))
8311 		return;
8312 
8313 	if (mddev_trylock(mddev)) {
8314 		int spares = 0;
8315 
8316 		if (mddev->ro) {
8317 			struct md_rdev *rdev;
8318 			if (!mddev->external && mddev->in_sync)
8319 				/* 'Blocked' flag not needed as failed devices
8320 				 * will be recorded if array switched to read/write.
8321 				 * Leaving it set will prevent the device
8322 				 * from being removed.
8323 				 */
8324 				rdev_for_each(rdev, mddev)
8325 					clear_bit(Blocked, &rdev->flags);
8326 			/* On a read-only array we can:
8327 			 * - remove failed devices
8328 			 * - add already-in_sync devices if the array itself
8329 			 *   is in-sync.
8330 			 * As we only add devices that are already in-sync,
8331 			 * we can activate the spares immediately.
8332 			 */
8333 			remove_and_add_spares(mddev, NULL);
8334 			/* There is no thread, but we need to call
8335 			 * ->spare_active and clear saved_raid_disk
8336 			 */
8337 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8338 			md_reap_sync_thread(mddev);
8339 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8340 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8341 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8342 			goto unlock;
8343 		}
8344 
8345 		if (mddev_is_clustered(mddev)) {
8346 			struct md_rdev *rdev;
8347 			/* kick the device if another node issued a
8348 			 * remove disk.
8349 			 */
8350 			rdev_for_each(rdev, mddev) {
8351 				if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8352 						rdev->raid_disk < 0)
8353 					md_kick_rdev_from_array(rdev);
8354 			}
8355 
8356 			if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8357 				md_reload_sb(mddev, mddev->good_device_nr);
8358 		}
8359 
8360 		if (!mddev->external) {
8361 			int did_change = 0;
8362 			spin_lock(&mddev->lock);
8363 			if (mddev->safemode &&
8364 			    !atomic_read(&mddev->writes_pending) &&
8365 			    !mddev->in_sync &&
8366 			    mddev->recovery_cp == MaxSector) {
8367 				mddev->in_sync = 1;
8368 				did_change = 1;
8369 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8370 			}
8371 			if (mddev->safemode == 1)
8372 				mddev->safemode = 0;
8373 			spin_unlock(&mddev->lock);
8374 			if (did_change)
8375 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8376 		}
8377 
8378 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8379 			md_update_sb(mddev, 0);
8380 
8381 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8382 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8383 			/* resync/recovery still happening */
8384 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8385 			goto unlock;
8386 		}
8387 		if (mddev->sync_thread) {
8388 			md_reap_sync_thread(mddev);
8389 			goto unlock;
8390 		}
8391 		/* Set RUNNING before clearing NEEDED to avoid
8392 		 * any transients in the value of "sync_action".
8393 		 */
8394 		mddev->curr_resync_completed = 0;
8395 		spin_lock(&mddev->lock);
8396 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8397 		spin_unlock(&mddev->lock);
8398 		/* Clear some bits that don't mean anything, but
8399 		 * might be left set
8400 		 */
8401 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8402 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8403 
8404 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8405 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8406 			goto not_running;
8407 		/* no recovery is running.
8408 		 * remove any failed drives, then
8409 		 * add spares if possible.
8410 		 * Spares are also removed and re-added, to allow
8411 		 * the personality to fail the re-add.
8412 		 */
8413 
8414 		if (mddev->reshape_position != MaxSector) {
8415 			if (mddev->pers->check_reshape == NULL ||
8416 			    mddev->pers->check_reshape(mddev) != 0)
8417 				/* Cannot proceed */
8418 				goto not_running;
8419 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8420 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8421 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8422 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8423 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8424 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8425 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8426 		} else if (mddev->recovery_cp < MaxSector) {
8427 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8428 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8429 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8430 			/* nothing to be done ... */
8431 			goto not_running;
8432 
8433 		if (mddev->pers->sync_request) {
8434 			if (spares) {
8435 				/* We are adding a device or devices to an array
8436 				 * which has the bitmap stored on all devices.
8437 				 * So make sure all bitmap pages get written
8438 				 */
8439 				bitmap_write_all(mddev->bitmap);
8440 			}
8441 			INIT_WORK(&mddev->del_work, md_start_sync);
8442 			queue_work(md_misc_wq, &mddev->del_work);
8443 			goto unlock;
8444 		}
8445 	not_running:
8446 		if (!mddev->sync_thread) {
8447 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8448 			wake_up(&resync_wait);
8449 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8450 					       &mddev->recovery))
8451 				if (mddev->sysfs_action)
8452 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8453 		}
8454 	unlock:
8455 		wake_up(&mddev->sb_wait);
8456 		mddev_unlock(mddev);
8457 	}
8458 }
8459 EXPORT_SYMBOL(md_check_recovery);
8460 
8461 void md_reap_sync_thread(struct mddev *mddev)
8462 {
8463 	struct md_rdev *rdev;
8464 
8465 	/* resync has finished, collect result */
8466 	md_unregister_thread(&mddev->sync_thread);
8467 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8468 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8469 		/* success...*/
8470 		/* activate any spares */
8471 		if (mddev->pers->spare_active(mddev)) {
8472 			sysfs_notify(&mddev->kobj, NULL,
8473 				     "degraded");
8474 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8475 		}
8476 	}
8477 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8478 	    mddev->pers->finish_reshape)
8479 		mddev->pers->finish_reshape(mddev);
8480 
8481 	/* If array is no-longer degraded, then any saved_raid_disk
8482 	 * information must be scrapped.
8483 	 */
8484 	if (!mddev->degraded)
8485 		rdev_for_each(rdev, mddev)
8486 			rdev->saved_raid_disk = -1;
8487 
8488 	md_update_sb(mddev, 1);
8489 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8490 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8491 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8492 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8493 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8494 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8495 	wake_up(&resync_wait);
8496 	/* flag recovery needed just to double check */
8497 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8498 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8499 	md_new_event(mddev);
8500 	if (mddev->event_work.func)
8501 		queue_work(md_misc_wq, &mddev->event_work);
8502 }
8503 EXPORT_SYMBOL(md_reap_sync_thread);
8504 
8505 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8506 {
8507 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8508 	wait_event_timeout(rdev->blocked_wait,
8509 			   !test_bit(Blocked, &rdev->flags) &&
8510 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8511 			   msecs_to_jiffies(5000));
8512 	rdev_dec_pending(rdev, mddev);
8513 }
8514 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8515 
8516 void md_finish_reshape(struct mddev *mddev)
8517 {
8518 	/* called be personality module when reshape completes. */
8519 	struct md_rdev *rdev;
8520 
8521 	rdev_for_each(rdev, mddev) {
8522 		if (rdev->data_offset > rdev->new_data_offset)
8523 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8524 		else
8525 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8526 		rdev->data_offset = rdev->new_data_offset;
8527 	}
8528 }
8529 EXPORT_SYMBOL(md_finish_reshape);
8530 
8531 /* Bad block management */
8532 
8533 /* Returns 1 on success, 0 on failure */
8534 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8535 		       int is_new)
8536 {
8537 	int rv;
8538 	if (is_new)
8539 		s += rdev->new_data_offset;
8540 	else
8541 		s += rdev->data_offset;
8542 	rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8543 	if (rv == 0) {
8544 		/* Make sure they get written out promptly */
8545 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8546 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8547 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8548 		md_wakeup_thread(rdev->mddev->thread);
8549 		return 1;
8550 	} else
8551 		return 0;
8552 }
8553 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8554 
8555 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8556 			 int is_new)
8557 {
8558 	if (is_new)
8559 		s += rdev->new_data_offset;
8560 	else
8561 		s += rdev->data_offset;
8562 	return badblocks_clear(&rdev->badblocks,
8563 				  s, sectors);
8564 }
8565 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8566 
8567 static int md_notify_reboot(struct notifier_block *this,
8568 			    unsigned long code, void *x)
8569 {
8570 	struct list_head *tmp;
8571 	struct mddev *mddev;
8572 	int need_delay = 0;
8573 
8574 	for_each_mddev(mddev, tmp) {
8575 		if (mddev_trylock(mddev)) {
8576 			if (mddev->pers)
8577 				__md_stop_writes(mddev);
8578 			if (mddev->persistent)
8579 				mddev->safemode = 2;
8580 			mddev_unlock(mddev);
8581 		}
8582 		need_delay = 1;
8583 	}
8584 	/*
8585 	 * certain more exotic SCSI devices are known to be
8586 	 * volatile wrt too early system reboots. While the
8587 	 * right place to handle this issue is the given
8588 	 * driver, we do want to have a safe RAID driver ...
8589 	 */
8590 	if (need_delay)
8591 		mdelay(1000*1);
8592 
8593 	return NOTIFY_DONE;
8594 }
8595 
8596 static struct notifier_block md_notifier = {
8597 	.notifier_call	= md_notify_reboot,
8598 	.next		= NULL,
8599 	.priority	= INT_MAX, /* before any real devices */
8600 };
8601 
8602 static void md_geninit(void)
8603 {
8604 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8605 
8606 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8607 }
8608 
8609 static int __init md_init(void)
8610 {
8611 	int ret = -ENOMEM;
8612 
8613 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8614 	if (!md_wq)
8615 		goto err_wq;
8616 
8617 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8618 	if (!md_misc_wq)
8619 		goto err_misc_wq;
8620 
8621 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8622 		goto err_md;
8623 
8624 	if ((ret = register_blkdev(0, "mdp")) < 0)
8625 		goto err_mdp;
8626 	mdp_major = ret;
8627 
8628 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8629 			    md_probe, NULL, NULL);
8630 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8631 			    md_probe, NULL, NULL);
8632 
8633 	register_reboot_notifier(&md_notifier);
8634 	raid_table_header = register_sysctl_table(raid_root_table);
8635 
8636 	md_geninit();
8637 	return 0;
8638 
8639 err_mdp:
8640 	unregister_blkdev(MD_MAJOR, "md");
8641 err_md:
8642 	destroy_workqueue(md_misc_wq);
8643 err_misc_wq:
8644 	destroy_workqueue(md_wq);
8645 err_wq:
8646 	return ret;
8647 }
8648 
8649 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8650 {
8651 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8652 	struct md_rdev *rdev2;
8653 	int role, ret;
8654 	char b[BDEVNAME_SIZE];
8655 
8656 	/* Check for change of roles in the active devices */
8657 	rdev_for_each(rdev2, mddev) {
8658 		if (test_bit(Faulty, &rdev2->flags))
8659 			continue;
8660 
8661 		/* Check if the roles changed */
8662 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8663 
8664 		if (test_bit(Candidate, &rdev2->flags)) {
8665 			if (role == 0xfffe) {
8666 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8667 				md_kick_rdev_from_array(rdev2);
8668 				continue;
8669 			}
8670 			else
8671 				clear_bit(Candidate, &rdev2->flags);
8672 		}
8673 
8674 		if (role != rdev2->raid_disk) {
8675 			/* got activated */
8676 			if (rdev2->raid_disk == -1 && role != 0xffff) {
8677 				rdev2->saved_raid_disk = role;
8678 				ret = remove_and_add_spares(mddev, rdev2);
8679 				pr_info("Activated spare: %s\n",
8680 						bdevname(rdev2->bdev,b));
8681 			}
8682 			/* device faulty
8683 			 * We just want to do the minimum to mark the disk
8684 			 * as faulty. The recovery is performed by the
8685 			 * one who initiated the error.
8686 			 */
8687 			if ((role == 0xfffe) || (role == 0xfffd)) {
8688 				md_error(mddev, rdev2);
8689 				clear_bit(Blocked, &rdev2->flags);
8690 			}
8691 		}
8692 	}
8693 
8694 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8695 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8696 
8697 	/* Finally set the event to be up to date */
8698 	mddev->events = le64_to_cpu(sb->events);
8699 }
8700 
8701 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8702 {
8703 	int err;
8704 	struct page *swapout = rdev->sb_page;
8705 	struct mdp_superblock_1 *sb;
8706 
8707 	/* Store the sb page of the rdev in the swapout temporary
8708 	 * variable in case we err in the future
8709 	 */
8710 	rdev->sb_page = NULL;
8711 	alloc_disk_sb(rdev);
8712 	ClearPageUptodate(rdev->sb_page);
8713 	rdev->sb_loaded = 0;
8714 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8715 
8716 	if (err < 0) {
8717 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8718 				__func__, __LINE__, rdev->desc_nr, err);
8719 		put_page(rdev->sb_page);
8720 		rdev->sb_page = swapout;
8721 		rdev->sb_loaded = 1;
8722 		return err;
8723 	}
8724 
8725 	sb = page_address(rdev->sb_page);
8726 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8727 	 * is not set
8728 	 */
8729 
8730 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8731 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8732 
8733 	/* The other node finished recovery, call spare_active to set
8734 	 * device In_sync and mddev->degraded
8735 	 */
8736 	if (rdev->recovery_offset == MaxSector &&
8737 	    !test_bit(In_sync, &rdev->flags) &&
8738 	    mddev->pers->spare_active(mddev))
8739 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8740 
8741 	put_page(swapout);
8742 	return 0;
8743 }
8744 
8745 void md_reload_sb(struct mddev *mddev, int nr)
8746 {
8747 	struct md_rdev *rdev;
8748 	int err;
8749 
8750 	/* Find the rdev */
8751 	rdev_for_each_rcu(rdev, mddev) {
8752 		if (rdev->desc_nr == nr)
8753 			break;
8754 	}
8755 
8756 	if (!rdev || rdev->desc_nr != nr) {
8757 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8758 		return;
8759 	}
8760 
8761 	err = read_rdev(mddev, rdev);
8762 	if (err < 0)
8763 		return;
8764 
8765 	check_sb_changes(mddev, rdev);
8766 
8767 	/* Read all rdev's to update recovery_offset */
8768 	rdev_for_each_rcu(rdev, mddev)
8769 		read_rdev(mddev, rdev);
8770 }
8771 EXPORT_SYMBOL(md_reload_sb);
8772 
8773 #ifndef MODULE
8774 
8775 /*
8776  * Searches all registered partitions for autorun RAID arrays
8777  * at boot time.
8778  */
8779 
8780 static LIST_HEAD(all_detected_devices);
8781 struct detected_devices_node {
8782 	struct list_head list;
8783 	dev_t dev;
8784 };
8785 
8786 void md_autodetect_dev(dev_t dev)
8787 {
8788 	struct detected_devices_node *node_detected_dev;
8789 
8790 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8791 	if (node_detected_dev) {
8792 		node_detected_dev->dev = dev;
8793 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8794 	} else {
8795 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8796 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8797 	}
8798 }
8799 
8800 static void autostart_arrays(int part)
8801 {
8802 	struct md_rdev *rdev;
8803 	struct detected_devices_node *node_detected_dev;
8804 	dev_t dev;
8805 	int i_scanned, i_passed;
8806 
8807 	i_scanned = 0;
8808 	i_passed = 0;
8809 
8810 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8811 
8812 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8813 		i_scanned++;
8814 		node_detected_dev = list_entry(all_detected_devices.next,
8815 					struct detected_devices_node, list);
8816 		list_del(&node_detected_dev->list);
8817 		dev = node_detected_dev->dev;
8818 		kfree(node_detected_dev);
8819 		rdev = md_import_device(dev,0, 90);
8820 		if (IS_ERR(rdev))
8821 			continue;
8822 
8823 		if (test_bit(Faulty, &rdev->flags))
8824 			continue;
8825 
8826 		set_bit(AutoDetected, &rdev->flags);
8827 		list_add(&rdev->same_set, &pending_raid_disks);
8828 		i_passed++;
8829 	}
8830 
8831 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8832 						i_scanned, i_passed);
8833 
8834 	autorun_devices(part);
8835 }
8836 
8837 #endif /* !MODULE */
8838 
8839 static __exit void md_exit(void)
8840 {
8841 	struct mddev *mddev;
8842 	struct list_head *tmp;
8843 	int delay = 1;
8844 
8845 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8846 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8847 
8848 	unregister_blkdev(MD_MAJOR,"md");
8849 	unregister_blkdev(mdp_major, "mdp");
8850 	unregister_reboot_notifier(&md_notifier);
8851 	unregister_sysctl_table(raid_table_header);
8852 
8853 	/* We cannot unload the modules while some process is
8854 	 * waiting for us in select() or poll() - wake them up
8855 	 */
8856 	md_unloading = 1;
8857 	while (waitqueue_active(&md_event_waiters)) {
8858 		/* not safe to leave yet */
8859 		wake_up(&md_event_waiters);
8860 		msleep(delay);
8861 		delay += delay;
8862 	}
8863 	remove_proc_entry("mdstat", NULL);
8864 
8865 	for_each_mddev(mddev, tmp) {
8866 		export_array(mddev);
8867 		mddev->hold_active = 0;
8868 	}
8869 	destroy_workqueue(md_misc_wq);
8870 	destroy_workqueue(md_wq);
8871 }
8872 
8873 subsys_initcall(md_init);
8874 module_exit(md_exit)
8875 
8876 static int get_ro(char *buffer, struct kernel_param *kp)
8877 {
8878 	return sprintf(buffer, "%d", start_readonly);
8879 }
8880 static int set_ro(const char *val, struct kernel_param *kp)
8881 {
8882 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8883 }
8884 
8885 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8886 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8887 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8888 
8889 MODULE_LICENSE("GPL");
8890 MODULE_DESCRIPTION("MD RAID framework");
8891 MODULE_ALIAS("md");
8892 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8893