xref: /openbmc/linux/drivers/md/md.c (revision 0f4630f3)
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57 
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61 
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69 
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74 
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78 
79 static int remove_and_add_spares(struct mddev *mddev,
80 				 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82 
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101 
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_min ?
107 		mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109 
110 static inline int speed_max(struct mddev *mddev)
111 {
112 	return mddev->sync_speed_max ?
113 		mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115 
116 static struct ctl_table_header *raid_table_header;
117 
118 static struct ctl_table raid_table[] = {
119 	{
120 		.procname	= "speed_limit_min",
121 		.data		= &sysctl_speed_limit_min,
122 		.maxlen		= sizeof(int),
123 		.mode		= S_IRUGO|S_IWUSR,
124 		.proc_handler	= proc_dointvec,
125 	},
126 	{
127 		.procname	= "speed_limit_max",
128 		.data		= &sysctl_speed_limit_max,
129 		.maxlen		= sizeof(int),
130 		.mode		= S_IRUGO|S_IWUSR,
131 		.proc_handler	= proc_dointvec,
132 	},
133 	{ }
134 };
135 
136 static struct ctl_table raid_dir_table[] = {
137 	{
138 		.procname	= "raid",
139 		.maxlen		= 0,
140 		.mode		= S_IRUGO|S_IXUGO,
141 		.child		= raid_table,
142 	},
143 	{ }
144 };
145 
146 static struct ctl_table raid_root_table[] = {
147 	{
148 		.procname	= "dev",
149 		.maxlen		= 0,
150 		.mode		= 0555,
151 		.child		= raid_dir_table,
152 	},
153 	{  }
154 };
155 
156 static const struct block_device_operations md_fops;
157 
158 static int start_readonly;
159 
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163 
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 			    struct mddev *mddev)
166 {
167 	struct bio *b;
168 
169 	if (!mddev || !mddev->bio_set)
170 		return bio_alloc(gfp_mask, nr_iovecs);
171 
172 	b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 	if (!b)
174 		return NULL;
175 	return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178 
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 			    struct mddev *mddev)
181 {
182 	if (!mddev || !mddev->bio_set)
183 		return bio_clone(bio, gfp_mask);
184 
185 	return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188 
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 	atomic_inc(&md_event_count);
204 	wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207 
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 	atomic_inc(&md_event_count);
214 	wake_up(&md_event_waiters);
215 }
216 
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223 
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)					\
232 									\
233 	for (({ spin_lock(&all_mddevs_lock);				\
234 		_tmp = all_mddevs.next;					\
235 		_mddev = NULL;});					\
236 	     ({ if (_tmp != &all_mddevs)				\
237 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 		spin_unlock(&all_mddevs_lock);				\
239 		if (_mddev) mddev_put(_mddev);				\
240 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
241 		_tmp != &all_mddevs;});					\
242 	     ({ spin_lock(&all_mddevs_lock);				\
243 		_tmp = _tmp->next;})					\
244 		)
245 
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 	const int rw = bio_data_dir(bio);
256 	struct mddev *mddev = q->queuedata;
257 	unsigned int sectors;
258 	int cpu;
259 
260 	blk_queue_split(q, &bio, q->bio_split);
261 
262 	if (mddev == NULL || mddev->pers == NULL
263 	    || !mddev->ready) {
264 		bio_io_error(bio);
265 		return BLK_QC_T_NONE;
266 	}
267 	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
268 		if (bio_sectors(bio) != 0)
269 			bio->bi_error = -EROFS;
270 		bio_endio(bio);
271 		return BLK_QC_T_NONE;
272 	}
273 	smp_rmb(); /* Ensure implications of  'active' are visible */
274 	rcu_read_lock();
275 	if (mddev->suspended) {
276 		DEFINE_WAIT(__wait);
277 		for (;;) {
278 			prepare_to_wait(&mddev->sb_wait, &__wait,
279 					TASK_UNINTERRUPTIBLE);
280 			if (!mddev->suspended)
281 				break;
282 			rcu_read_unlock();
283 			schedule();
284 			rcu_read_lock();
285 		}
286 		finish_wait(&mddev->sb_wait, &__wait);
287 	}
288 	atomic_inc(&mddev->active_io);
289 	rcu_read_unlock();
290 
291 	/*
292 	 * save the sectors now since our bio can
293 	 * go away inside make_request
294 	 */
295 	sectors = bio_sectors(bio);
296 	mddev->pers->make_request(mddev, bio);
297 
298 	cpu = part_stat_lock();
299 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
300 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
301 	part_stat_unlock();
302 
303 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
304 		wake_up(&mddev->sb_wait);
305 
306 	return BLK_QC_T_NONE;
307 }
308 
309 /* mddev_suspend makes sure no new requests are submitted
310  * to the device, and that any requests that have been submitted
311  * are completely handled.
312  * Once mddev_detach() is called and completes, the module will be
313  * completely unused.
314  */
315 void mddev_suspend(struct mddev *mddev)
316 {
317 	if (mddev->suspended++)
318 		return;
319 	synchronize_rcu();
320 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
321 	mddev->pers->quiesce(mddev, 1);
322 
323 	del_timer_sync(&mddev->safemode_timer);
324 }
325 EXPORT_SYMBOL_GPL(mddev_suspend);
326 
327 void mddev_resume(struct mddev *mddev)
328 {
329 	if (--mddev->suspended)
330 		return;
331 	wake_up(&mddev->sb_wait);
332 	mddev->pers->quiesce(mddev, 0);
333 
334 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
335 	md_wakeup_thread(mddev->thread);
336 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
337 }
338 EXPORT_SYMBOL_GPL(mddev_resume);
339 
340 int mddev_congested(struct mddev *mddev, int bits)
341 {
342 	struct md_personality *pers = mddev->pers;
343 	int ret = 0;
344 
345 	rcu_read_lock();
346 	if (mddev->suspended)
347 		ret = 1;
348 	else if (pers && pers->congested)
349 		ret = pers->congested(mddev, bits);
350 	rcu_read_unlock();
351 	return ret;
352 }
353 EXPORT_SYMBOL_GPL(mddev_congested);
354 static int md_congested(void *data, int bits)
355 {
356 	struct mddev *mddev = data;
357 	return mddev_congested(mddev, bits);
358 }
359 
360 /*
361  * Generic flush handling for md
362  */
363 
364 static void md_end_flush(struct bio *bio)
365 {
366 	struct md_rdev *rdev = bio->bi_private;
367 	struct mddev *mddev = rdev->mddev;
368 
369 	rdev_dec_pending(rdev, mddev);
370 
371 	if (atomic_dec_and_test(&mddev->flush_pending)) {
372 		/* The pre-request flush has finished */
373 		queue_work(md_wq, &mddev->flush_work);
374 	}
375 	bio_put(bio);
376 }
377 
378 static void md_submit_flush_data(struct work_struct *ws);
379 
380 static void submit_flushes(struct work_struct *ws)
381 {
382 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
383 	struct md_rdev *rdev;
384 
385 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
386 	atomic_set(&mddev->flush_pending, 1);
387 	rcu_read_lock();
388 	rdev_for_each_rcu(rdev, mddev)
389 		if (rdev->raid_disk >= 0 &&
390 		    !test_bit(Faulty, &rdev->flags)) {
391 			/* Take two references, one is dropped
392 			 * when request finishes, one after
393 			 * we reclaim rcu_read_lock
394 			 */
395 			struct bio *bi;
396 			atomic_inc(&rdev->nr_pending);
397 			atomic_inc(&rdev->nr_pending);
398 			rcu_read_unlock();
399 			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
400 			bi->bi_end_io = md_end_flush;
401 			bi->bi_private = rdev;
402 			bi->bi_bdev = rdev->bdev;
403 			atomic_inc(&mddev->flush_pending);
404 			submit_bio(WRITE_FLUSH, bi);
405 			rcu_read_lock();
406 			rdev_dec_pending(rdev, mddev);
407 		}
408 	rcu_read_unlock();
409 	if (atomic_dec_and_test(&mddev->flush_pending))
410 		queue_work(md_wq, &mddev->flush_work);
411 }
412 
413 static void md_submit_flush_data(struct work_struct *ws)
414 {
415 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
416 	struct bio *bio = mddev->flush_bio;
417 
418 	if (bio->bi_iter.bi_size == 0)
419 		/* an empty barrier - all done */
420 		bio_endio(bio);
421 	else {
422 		bio->bi_rw &= ~REQ_FLUSH;
423 		mddev->pers->make_request(mddev, bio);
424 	}
425 
426 	mddev->flush_bio = NULL;
427 	wake_up(&mddev->sb_wait);
428 }
429 
430 void md_flush_request(struct mddev *mddev, struct bio *bio)
431 {
432 	spin_lock_irq(&mddev->lock);
433 	wait_event_lock_irq(mddev->sb_wait,
434 			    !mddev->flush_bio,
435 			    mddev->lock);
436 	mddev->flush_bio = bio;
437 	spin_unlock_irq(&mddev->lock);
438 
439 	INIT_WORK(&mddev->flush_work, submit_flushes);
440 	queue_work(md_wq, &mddev->flush_work);
441 }
442 EXPORT_SYMBOL(md_flush_request);
443 
444 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
445 {
446 	struct mddev *mddev = cb->data;
447 	md_wakeup_thread(mddev->thread);
448 	kfree(cb);
449 }
450 EXPORT_SYMBOL(md_unplug);
451 
452 static inline struct mddev *mddev_get(struct mddev *mddev)
453 {
454 	atomic_inc(&mddev->active);
455 	return mddev;
456 }
457 
458 static void mddev_delayed_delete(struct work_struct *ws);
459 
460 static void mddev_put(struct mddev *mddev)
461 {
462 	struct bio_set *bs = NULL;
463 
464 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
465 		return;
466 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
467 	    mddev->ctime == 0 && !mddev->hold_active) {
468 		/* Array is not configured at all, and not held active,
469 		 * so destroy it */
470 		list_del_init(&mddev->all_mddevs);
471 		bs = mddev->bio_set;
472 		mddev->bio_set = NULL;
473 		if (mddev->gendisk) {
474 			/* We did a probe so need to clean up.  Call
475 			 * queue_work inside the spinlock so that
476 			 * flush_workqueue() after mddev_find will
477 			 * succeed in waiting for the work to be done.
478 			 */
479 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
480 			queue_work(md_misc_wq, &mddev->del_work);
481 		} else
482 			kfree(mddev);
483 	}
484 	spin_unlock(&all_mddevs_lock);
485 	if (bs)
486 		bioset_free(bs);
487 }
488 
489 static void md_safemode_timeout(unsigned long data);
490 
491 void mddev_init(struct mddev *mddev)
492 {
493 	mutex_init(&mddev->open_mutex);
494 	mutex_init(&mddev->reconfig_mutex);
495 	mutex_init(&mddev->bitmap_info.mutex);
496 	INIT_LIST_HEAD(&mddev->disks);
497 	INIT_LIST_HEAD(&mddev->all_mddevs);
498 	setup_timer(&mddev->safemode_timer, md_safemode_timeout,
499 		    (unsigned long) mddev);
500 	atomic_set(&mddev->active, 1);
501 	atomic_set(&mddev->openers, 0);
502 	atomic_set(&mddev->active_io, 0);
503 	spin_lock_init(&mddev->lock);
504 	atomic_set(&mddev->flush_pending, 0);
505 	init_waitqueue_head(&mddev->sb_wait);
506 	init_waitqueue_head(&mddev->recovery_wait);
507 	mddev->reshape_position = MaxSector;
508 	mddev->reshape_backwards = 0;
509 	mddev->last_sync_action = "none";
510 	mddev->resync_min = 0;
511 	mddev->resync_max = MaxSector;
512 	mddev->level = LEVEL_NONE;
513 }
514 EXPORT_SYMBOL_GPL(mddev_init);
515 
516 static struct mddev *mddev_find(dev_t unit)
517 {
518 	struct mddev *mddev, *new = NULL;
519 
520 	if (unit && MAJOR(unit) != MD_MAJOR)
521 		unit &= ~((1<<MdpMinorShift)-1);
522 
523  retry:
524 	spin_lock(&all_mddevs_lock);
525 
526 	if (unit) {
527 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
528 			if (mddev->unit == unit) {
529 				mddev_get(mddev);
530 				spin_unlock(&all_mddevs_lock);
531 				kfree(new);
532 				return mddev;
533 			}
534 
535 		if (new) {
536 			list_add(&new->all_mddevs, &all_mddevs);
537 			spin_unlock(&all_mddevs_lock);
538 			new->hold_active = UNTIL_IOCTL;
539 			return new;
540 		}
541 	} else if (new) {
542 		/* find an unused unit number */
543 		static int next_minor = 512;
544 		int start = next_minor;
545 		int is_free = 0;
546 		int dev = 0;
547 		while (!is_free) {
548 			dev = MKDEV(MD_MAJOR, next_minor);
549 			next_minor++;
550 			if (next_minor > MINORMASK)
551 				next_minor = 0;
552 			if (next_minor == start) {
553 				/* Oh dear, all in use. */
554 				spin_unlock(&all_mddevs_lock);
555 				kfree(new);
556 				return NULL;
557 			}
558 
559 			is_free = 1;
560 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
561 				if (mddev->unit == dev) {
562 					is_free = 0;
563 					break;
564 				}
565 		}
566 		new->unit = dev;
567 		new->md_minor = MINOR(dev);
568 		new->hold_active = UNTIL_STOP;
569 		list_add(&new->all_mddevs, &all_mddevs);
570 		spin_unlock(&all_mddevs_lock);
571 		return new;
572 	}
573 	spin_unlock(&all_mddevs_lock);
574 
575 	new = kzalloc(sizeof(*new), GFP_KERNEL);
576 	if (!new)
577 		return NULL;
578 
579 	new->unit = unit;
580 	if (MAJOR(unit) == MD_MAJOR)
581 		new->md_minor = MINOR(unit);
582 	else
583 		new->md_minor = MINOR(unit) >> MdpMinorShift;
584 
585 	mddev_init(new);
586 
587 	goto retry;
588 }
589 
590 static struct attribute_group md_redundancy_group;
591 
592 void mddev_unlock(struct mddev *mddev)
593 {
594 	if (mddev->to_remove) {
595 		/* These cannot be removed under reconfig_mutex as
596 		 * an access to the files will try to take reconfig_mutex
597 		 * while holding the file unremovable, which leads to
598 		 * a deadlock.
599 		 * So hold set sysfs_active while the remove in happeing,
600 		 * and anything else which might set ->to_remove or my
601 		 * otherwise change the sysfs namespace will fail with
602 		 * -EBUSY if sysfs_active is still set.
603 		 * We set sysfs_active under reconfig_mutex and elsewhere
604 		 * test it under the same mutex to ensure its correct value
605 		 * is seen.
606 		 */
607 		struct attribute_group *to_remove = mddev->to_remove;
608 		mddev->to_remove = NULL;
609 		mddev->sysfs_active = 1;
610 		mutex_unlock(&mddev->reconfig_mutex);
611 
612 		if (mddev->kobj.sd) {
613 			if (to_remove != &md_redundancy_group)
614 				sysfs_remove_group(&mddev->kobj, to_remove);
615 			if (mddev->pers == NULL ||
616 			    mddev->pers->sync_request == NULL) {
617 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
618 				if (mddev->sysfs_action)
619 					sysfs_put(mddev->sysfs_action);
620 				mddev->sysfs_action = NULL;
621 			}
622 		}
623 		mddev->sysfs_active = 0;
624 	} else
625 		mutex_unlock(&mddev->reconfig_mutex);
626 
627 	/* As we've dropped the mutex we need a spinlock to
628 	 * make sure the thread doesn't disappear
629 	 */
630 	spin_lock(&pers_lock);
631 	md_wakeup_thread(mddev->thread);
632 	spin_unlock(&pers_lock);
633 }
634 EXPORT_SYMBOL_GPL(mddev_unlock);
635 
636 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
637 {
638 	struct md_rdev *rdev;
639 
640 	rdev_for_each_rcu(rdev, mddev)
641 		if (rdev->desc_nr == nr)
642 			return rdev;
643 
644 	return NULL;
645 }
646 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
647 
648 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
649 {
650 	struct md_rdev *rdev;
651 
652 	rdev_for_each(rdev, mddev)
653 		if (rdev->bdev->bd_dev == dev)
654 			return rdev;
655 
656 	return NULL;
657 }
658 
659 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
660 {
661 	struct md_rdev *rdev;
662 
663 	rdev_for_each_rcu(rdev, mddev)
664 		if (rdev->bdev->bd_dev == dev)
665 			return rdev;
666 
667 	return NULL;
668 }
669 
670 static struct md_personality *find_pers(int level, char *clevel)
671 {
672 	struct md_personality *pers;
673 	list_for_each_entry(pers, &pers_list, list) {
674 		if (level != LEVEL_NONE && pers->level == level)
675 			return pers;
676 		if (strcmp(pers->name, clevel)==0)
677 			return pers;
678 	}
679 	return NULL;
680 }
681 
682 /* return the offset of the super block in 512byte sectors */
683 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
684 {
685 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
686 	return MD_NEW_SIZE_SECTORS(num_sectors);
687 }
688 
689 static int alloc_disk_sb(struct md_rdev *rdev)
690 {
691 	rdev->sb_page = alloc_page(GFP_KERNEL);
692 	if (!rdev->sb_page) {
693 		printk(KERN_ALERT "md: out of memory.\n");
694 		return -ENOMEM;
695 	}
696 
697 	return 0;
698 }
699 
700 void md_rdev_clear(struct md_rdev *rdev)
701 {
702 	if (rdev->sb_page) {
703 		put_page(rdev->sb_page);
704 		rdev->sb_loaded = 0;
705 		rdev->sb_page = NULL;
706 		rdev->sb_start = 0;
707 		rdev->sectors = 0;
708 	}
709 	if (rdev->bb_page) {
710 		put_page(rdev->bb_page);
711 		rdev->bb_page = NULL;
712 	}
713 	kfree(rdev->badblocks.page);
714 	rdev->badblocks.page = NULL;
715 }
716 EXPORT_SYMBOL_GPL(md_rdev_clear);
717 
718 static void super_written(struct bio *bio)
719 {
720 	struct md_rdev *rdev = bio->bi_private;
721 	struct mddev *mddev = rdev->mddev;
722 
723 	if (bio->bi_error) {
724 		printk("md: super_written gets error=%d\n", bio->bi_error);
725 		md_error(mddev, rdev);
726 	}
727 
728 	if (atomic_dec_and_test(&mddev->pending_writes))
729 		wake_up(&mddev->sb_wait);
730 	bio_put(bio);
731 }
732 
733 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
734 		   sector_t sector, int size, struct page *page)
735 {
736 	/* write first size bytes of page to sector of rdev
737 	 * Increment mddev->pending_writes before returning
738 	 * and decrement it on completion, waking up sb_wait
739 	 * if zero is reached.
740 	 * If an error occurred, call md_error
741 	 */
742 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
743 
744 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
745 	bio->bi_iter.bi_sector = sector;
746 	bio_add_page(bio, page, size, 0);
747 	bio->bi_private = rdev;
748 	bio->bi_end_io = super_written;
749 
750 	atomic_inc(&mddev->pending_writes);
751 	submit_bio(WRITE_FLUSH_FUA, bio);
752 }
753 
754 void md_super_wait(struct mddev *mddev)
755 {
756 	/* wait for all superblock writes that were scheduled to complete */
757 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
758 }
759 
760 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
761 		 struct page *page, int rw, bool metadata_op)
762 {
763 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
764 	int ret;
765 
766 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
767 		rdev->meta_bdev : rdev->bdev;
768 	if (metadata_op)
769 		bio->bi_iter.bi_sector = sector + rdev->sb_start;
770 	else if (rdev->mddev->reshape_position != MaxSector &&
771 		 (rdev->mddev->reshape_backwards ==
772 		  (sector >= rdev->mddev->reshape_position)))
773 		bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
774 	else
775 		bio->bi_iter.bi_sector = sector + rdev->data_offset;
776 	bio_add_page(bio, page, size, 0);
777 	submit_bio_wait(rw, bio);
778 
779 	ret = !bio->bi_error;
780 	bio_put(bio);
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784 
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787 	char b[BDEVNAME_SIZE];
788 
789 	if (rdev->sb_loaded)
790 		return 0;
791 
792 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
793 		goto fail;
794 	rdev->sb_loaded = 1;
795 	return 0;
796 
797 fail:
798 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799 		bdevname(rdev->bdev,b));
800 	return -EINVAL;
801 }
802 
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 	return	sb1->set_uuid0 == sb2->set_uuid0 &&
806 		sb1->set_uuid1 == sb2->set_uuid1 &&
807 		sb1->set_uuid2 == sb2->set_uuid2 &&
808 		sb1->set_uuid3 == sb2->set_uuid3;
809 }
810 
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 	int ret;
814 	mdp_super_t *tmp1, *tmp2;
815 
816 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818 
819 	if (!tmp1 || !tmp2) {
820 		ret = 0;
821 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822 		goto abort;
823 	}
824 
825 	*tmp1 = *sb1;
826 	*tmp2 = *sb2;
827 
828 	/*
829 	 * nr_disks is not constant
830 	 */
831 	tmp1->nr_disks = 0;
832 	tmp2->nr_disks = 0;
833 
834 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836 	kfree(tmp1);
837 	kfree(tmp2);
838 	return ret;
839 }
840 
841 static u32 md_csum_fold(u32 csum)
842 {
843 	csum = (csum & 0xffff) + (csum >> 16);
844 	return (csum & 0xffff) + (csum >> 16);
845 }
846 
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849 	u64 newcsum = 0;
850 	u32 *sb32 = (u32*)sb;
851 	int i;
852 	unsigned int disk_csum, csum;
853 
854 	disk_csum = sb->sb_csum;
855 	sb->sb_csum = 0;
856 
857 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
858 		newcsum += sb32[i];
859 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
860 
861 #ifdef CONFIG_ALPHA
862 	/* This used to use csum_partial, which was wrong for several
863 	 * reasons including that different results are returned on
864 	 * different architectures.  It isn't critical that we get exactly
865 	 * the same return value as before (we always csum_fold before
866 	 * testing, and that removes any differences).  However as we
867 	 * know that csum_partial always returned a 16bit value on
868 	 * alphas, do a fold to maximise conformity to previous behaviour.
869 	 */
870 	sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872 	sb->sb_csum = disk_csum;
873 #endif
874 	return csum;
875 }
876 
877 /*
878  * Handle superblock details.
879  * We want to be able to handle multiple superblock formats
880  * so we have a common interface to them all, and an array of
881  * different handlers.
882  * We rely on user-space to write the initial superblock, and support
883  * reading and updating of superblocks.
884  * Interface methods are:
885  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886  *      loads and validates a superblock on dev.
887  *      if refdev != NULL, compare superblocks on both devices
888  *    Return:
889  *      0 - dev has a superblock that is compatible with refdev
890  *      1 - dev has a superblock that is compatible and newer than refdev
891  *          so dev should be used as the refdev in future
892  *     -EINVAL superblock incompatible or invalid
893  *     -othererror e.g. -EIO
894  *
895  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
896  *      Verify that dev is acceptable into mddev.
897  *       The first time, mddev->raid_disks will be 0, and data from
898  *       dev should be merged in.  Subsequent calls check that dev
899  *       is new enough.  Return 0 or -EINVAL
900  *
901  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
902  *     Update the superblock for rdev with data in mddev
903  *     This does not write to disc.
904  *
905  */
906 
907 struct super_type  {
908 	char		    *name;
909 	struct module	    *owner;
910 	int		    (*load_super)(struct md_rdev *rdev,
911 					  struct md_rdev *refdev,
912 					  int minor_version);
913 	int		    (*validate_super)(struct mddev *mddev,
914 					      struct md_rdev *rdev);
915 	void		    (*sync_super)(struct mddev *mddev,
916 					  struct md_rdev *rdev);
917 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
918 						sector_t num_sectors);
919 	int		    (*allow_new_offset)(struct md_rdev *rdev,
920 						unsigned long long new_offset);
921 };
922 
923 /*
924  * Check that the given mddev has no bitmap.
925  *
926  * This function is called from the run method of all personalities that do not
927  * support bitmaps. It prints an error message and returns non-zero if mddev
928  * has a bitmap. Otherwise, it returns 0.
929  *
930  */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934 		return 0;
935 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936 		mdname(mddev), mddev->pers->name);
937 	return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940 
941 /*
942  * load_super for 0.90.0
943  */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947 	mdp_super_t *sb;
948 	int ret;
949 
950 	/*
951 	 * Calculate the position of the superblock (512byte sectors),
952 	 * it's at the end of the disk.
953 	 *
954 	 * It also happens to be a multiple of 4Kb.
955 	 */
956 	rdev->sb_start = calc_dev_sboffset(rdev);
957 
958 	ret = read_disk_sb(rdev, MD_SB_BYTES);
959 	if (ret) return ret;
960 
961 	ret = -EINVAL;
962 
963 	bdevname(rdev->bdev, b);
964 	sb = page_address(rdev->sb_page);
965 
966 	if (sb->md_magic != MD_SB_MAGIC) {
967 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968 		       b);
969 		goto abort;
970 	}
971 
972 	if (sb->major_version != 0 ||
973 	    sb->minor_version < 90 ||
974 	    sb->minor_version > 91) {
975 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976 			sb->major_version, sb->minor_version,
977 			b);
978 		goto abort;
979 	}
980 
981 	if (sb->raid_disks <= 0)
982 		goto abort;
983 
984 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986 			b);
987 		goto abort;
988 	}
989 
990 	rdev->preferred_minor = sb->md_minor;
991 	rdev->data_offset = 0;
992 	rdev->new_data_offset = 0;
993 	rdev->sb_size = MD_SB_BYTES;
994 	rdev->badblocks.shift = -1;
995 
996 	if (sb->level == LEVEL_MULTIPATH)
997 		rdev->desc_nr = -1;
998 	else
999 		rdev->desc_nr = sb->this_disk.number;
1000 
1001 	if (!refdev) {
1002 		ret = 1;
1003 	} else {
1004 		__u64 ev1, ev2;
1005 		mdp_super_t *refsb = page_address(refdev->sb_page);
1006 		if (!uuid_equal(refsb, sb)) {
1007 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008 				b, bdevname(refdev->bdev,b2));
1009 			goto abort;
1010 		}
1011 		if (!sb_equal(refsb, sb)) {
1012 			printk(KERN_WARNING "md: %s has same UUID"
1013 			       " but different superblock to %s\n",
1014 			       b, bdevname(refdev->bdev, b2));
1015 			goto abort;
1016 		}
1017 		ev1 = md_event(sb);
1018 		ev2 = md_event(refsb);
1019 		if (ev1 > ev2)
1020 			ret = 1;
1021 		else
1022 			ret = 0;
1023 	}
1024 	rdev->sectors = rdev->sb_start;
1025 	/* Limit to 4TB as metadata cannot record more than that.
1026 	 * (not needed for Linear and RAID0 as metadata doesn't
1027 	 * record this size)
1028 	 */
1029 	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1030 		rdev->sectors = (2ULL << 32) - 2;
1031 
1032 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1033 		/* "this cannot possibly happen" ... */
1034 		ret = -EINVAL;
1035 
1036  abort:
1037 	return ret;
1038 }
1039 
1040 /*
1041  * validate_super for 0.90.0
1042  */
1043 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1044 {
1045 	mdp_disk_t *desc;
1046 	mdp_super_t *sb = page_address(rdev->sb_page);
1047 	__u64 ev1 = md_event(sb);
1048 
1049 	rdev->raid_disk = -1;
1050 	clear_bit(Faulty, &rdev->flags);
1051 	clear_bit(In_sync, &rdev->flags);
1052 	clear_bit(Bitmap_sync, &rdev->flags);
1053 	clear_bit(WriteMostly, &rdev->flags);
1054 
1055 	if (mddev->raid_disks == 0) {
1056 		mddev->major_version = 0;
1057 		mddev->minor_version = sb->minor_version;
1058 		mddev->patch_version = sb->patch_version;
1059 		mddev->external = 0;
1060 		mddev->chunk_sectors = sb->chunk_size >> 9;
1061 		mddev->ctime = sb->ctime;
1062 		mddev->utime = sb->utime;
1063 		mddev->level = sb->level;
1064 		mddev->clevel[0] = 0;
1065 		mddev->layout = sb->layout;
1066 		mddev->raid_disks = sb->raid_disks;
1067 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1068 		mddev->events = ev1;
1069 		mddev->bitmap_info.offset = 0;
1070 		mddev->bitmap_info.space = 0;
1071 		/* bitmap can use 60 K after the 4K superblocks */
1072 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1073 		mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1074 		mddev->reshape_backwards = 0;
1075 
1076 		if (mddev->minor_version >= 91) {
1077 			mddev->reshape_position = sb->reshape_position;
1078 			mddev->delta_disks = sb->delta_disks;
1079 			mddev->new_level = sb->new_level;
1080 			mddev->new_layout = sb->new_layout;
1081 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1082 			if (mddev->delta_disks < 0)
1083 				mddev->reshape_backwards = 1;
1084 		} else {
1085 			mddev->reshape_position = MaxSector;
1086 			mddev->delta_disks = 0;
1087 			mddev->new_level = mddev->level;
1088 			mddev->new_layout = mddev->layout;
1089 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1090 		}
1091 
1092 		if (sb->state & (1<<MD_SB_CLEAN))
1093 			mddev->recovery_cp = MaxSector;
1094 		else {
1095 			if (sb->events_hi == sb->cp_events_hi &&
1096 				sb->events_lo == sb->cp_events_lo) {
1097 				mddev->recovery_cp = sb->recovery_cp;
1098 			} else
1099 				mddev->recovery_cp = 0;
1100 		}
1101 
1102 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1103 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1104 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1105 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1106 
1107 		mddev->max_disks = MD_SB_DISKS;
1108 
1109 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1110 		    mddev->bitmap_info.file == NULL) {
1111 			mddev->bitmap_info.offset =
1112 				mddev->bitmap_info.default_offset;
1113 			mddev->bitmap_info.space =
1114 				mddev->bitmap_info.default_space;
1115 		}
1116 
1117 	} else if (mddev->pers == NULL) {
1118 		/* Insist on good event counter while assembling, except
1119 		 * for spares (which don't need an event count) */
1120 		++ev1;
1121 		if (sb->disks[rdev->desc_nr].state & (
1122 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1123 			if (ev1 < mddev->events)
1124 				return -EINVAL;
1125 	} else if (mddev->bitmap) {
1126 		/* if adding to array with a bitmap, then we can accept an
1127 		 * older device ... but not too old.
1128 		 */
1129 		if (ev1 < mddev->bitmap->events_cleared)
1130 			return 0;
1131 		if (ev1 < mddev->events)
1132 			set_bit(Bitmap_sync, &rdev->flags);
1133 	} else {
1134 		if (ev1 < mddev->events)
1135 			/* just a hot-add of a new device, leave raid_disk at -1 */
1136 			return 0;
1137 	}
1138 
1139 	if (mddev->level != LEVEL_MULTIPATH) {
1140 		desc = sb->disks + rdev->desc_nr;
1141 
1142 		if (desc->state & (1<<MD_DISK_FAULTY))
1143 			set_bit(Faulty, &rdev->flags);
1144 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1145 			    desc->raid_disk < mddev->raid_disks */) {
1146 			set_bit(In_sync, &rdev->flags);
1147 			rdev->raid_disk = desc->raid_disk;
1148 			rdev->saved_raid_disk = desc->raid_disk;
1149 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1150 			/* active but not in sync implies recovery up to
1151 			 * reshape position.  We don't know exactly where
1152 			 * that is, so set to zero for now */
1153 			if (mddev->minor_version >= 91) {
1154 				rdev->recovery_offset = 0;
1155 				rdev->raid_disk = desc->raid_disk;
1156 			}
1157 		}
1158 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1159 			set_bit(WriteMostly, &rdev->flags);
1160 	} else /* MULTIPATH are always insync */
1161 		set_bit(In_sync, &rdev->flags);
1162 	return 0;
1163 }
1164 
1165 /*
1166  * sync_super for 0.90.0
1167  */
1168 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1169 {
1170 	mdp_super_t *sb;
1171 	struct md_rdev *rdev2;
1172 	int next_spare = mddev->raid_disks;
1173 
1174 	/* make rdev->sb match mddev data..
1175 	 *
1176 	 * 1/ zero out disks
1177 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1178 	 * 3/ any empty disks < next_spare become removed
1179 	 *
1180 	 * disks[0] gets initialised to REMOVED because
1181 	 * we cannot be sure from other fields if it has
1182 	 * been initialised or not.
1183 	 */
1184 	int i;
1185 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1186 
1187 	rdev->sb_size = MD_SB_BYTES;
1188 
1189 	sb = page_address(rdev->sb_page);
1190 
1191 	memset(sb, 0, sizeof(*sb));
1192 
1193 	sb->md_magic = MD_SB_MAGIC;
1194 	sb->major_version = mddev->major_version;
1195 	sb->patch_version = mddev->patch_version;
1196 	sb->gvalid_words  = 0; /* ignored */
1197 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1198 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1199 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1200 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1201 
1202 	sb->ctime = mddev->ctime;
1203 	sb->level = mddev->level;
1204 	sb->size = mddev->dev_sectors / 2;
1205 	sb->raid_disks = mddev->raid_disks;
1206 	sb->md_minor = mddev->md_minor;
1207 	sb->not_persistent = 0;
1208 	sb->utime = mddev->utime;
1209 	sb->state = 0;
1210 	sb->events_hi = (mddev->events>>32);
1211 	sb->events_lo = (u32)mddev->events;
1212 
1213 	if (mddev->reshape_position == MaxSector)
1214 		sb->minor_version = 90;
1215 	else {
1216 		sb->minor_version = 91;
1217 		sb->reshape_position = mddev->reshape_position;
1218 		sb->new_level = mddev->new_level;
1219 		sb->delta_disks = mddev->delta_disks;
1220 		sb->new_layout = mddev->new_layout;
1221 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1222 	}
1223 	mddev->minor_version = sb->minor_version;
1224 	if (mddev->in_sync)
1225 	{
1226 		sb->recovery_cp = mddev->recovery_cp;
1227 		sb->cp_events_hi = (mddev->events>>32);
1228 		sb->cp_events_lo = (u32)mddev->events;
1229 		if (mddev->recovery_cp == MaxSector)
1230 			sb->state = (1<< MD_SB_CLEAN);
1231 	} else
1232 		sb->recovery_cp = 0;
1233 
1234 	sb->layout = mddev->layout;
1235 	sb->chunk_size = mddev->chunk_sectors << 9;
1236 
1237 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1238 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1239 
1240 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1241 	rdev_for_each(rdev2, mddev) {
1242 		mdp_disk_t *d;
1243 		int desc_nr;
1244 		int is_active = test_bit(In_sync, &rdev2->flags);
1245 
1246 		if (rdev2->raid_disk >= 0 &&
1247 		    sb->minor_version >= 91)
1248 			/* we have nowhere to store the recovery_offset,
1249 			 * but if it is not below the reshape_position,
1250 			 * we can piggy-back on that.
1251 			 */
1252 			is_active = 1;
1253 		if (rdev2->raid_disk < 0 ||
1254 		    test_bit(Faulty, &rdev2->flags))
1255 			is_active = 0;
1256 		if (is_active)
1257 			desc_nr = rdev2->raid_disk;
1258 		else
1259 			desc_nr = next_spare++;
1260 		rdev2->desc_nr = desc_nr;
1261 		d = &sb->disks[rdev2->desc_nr];
1262 		nr_disks++;
1263 		d->number = rdev2->desc_nr;
1264 		d->major = MAJOR(rdev2->bdev->bd_dev);
1265 		d->minor = MINOR(rdev2->bdev->bd_dev);
1266 		if (is_active)
1267 			d->raid_disk = rdev2->raid_disk;
1268 		else
1269 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1270 		if (test_bit(Faulty, &rdev2->flags))
1271 			d->state = (1<<MD_DISK_FAULTY);
1272 		else if (is_active) {
1273 			d->state = (1<<MD_DISK_ACTIVE);
1274 			if (test_bit(In_sync, &rdev2->flags))
1275 				d->state |= (1<<MD_DISK_SYNC);
1276 			active++;
1277 			working++;
1278 		} else {
1279 			d->state = 0;
1280 			spare++;
1281 			working++;
1282 		}
1283 		if (test_bit(WriteMostly, &rdev2->flags))
1284 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1285 	}
1286 	/* now set the "removed" and "faulty" bits on any missing devices */
1287 	for (i=0 ; i < mddev->raid_disks ; i++) {
1288 		mdp_disk_t *d = &sb->disks[i];
1289 		if (d->state == 0 && d->number == 0) {
1290 			d->number = i;
1291 			d->raid_disk = i;
1292 			d->state = (1<<MD_DISK_REMOVED);
1293 			d->state |= (1<<MD_DISK_FAULTY);
1294 			failed++;
1295 		}
1296 	}
1297 	sb->nr_disks = nr_disks;
1298 	sb->active_disks = active;
1299 	sb->working_disks = working;
1300 	sb->failed_disks = failed;
1301 	sb->spare_disks = spare;
1302 
1303 	sb->this_disk = sb->disks[rdev->desc_nr];
1304 	sb->sb_csum = calc_sb_csum(sb);
1305 }
1306 
1307 /*
1308  * rdev_size_change for 0.90.0
1309  */
1310 static unsigned long long
1311 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1312 {
1313 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1314 		return 0; /* component must fit device */
1315 	if (rdev->mddev->bitmap_info.offset)
1316 		return 0; /* can't move bitmap */
1317 	rdev->sb_start = calc_dev_sboffset(rdev);
1318 	if (!num_sectors || num_sectors > rdev->sb_start)
1319 		num_sectors = rdev->sb_start;
1320 	/* Limit to 4TB as metadata cannot record more than that.
1321 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1322 	 */
1323 	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1324 		num_sectors = (2ULL << 32) - 2;
1325 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1326 		       rdev->sb_page);
1327 	md_super_wait(rdev->mddev);
1328 	return num_sectors;
1329 }
1330 
1331 static int
1332 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1333 {
1334 	/* non-zero offset changes not possible with v0.90 */
1335 	return new_offset == 0;
1336 }
1337 
1338 /*
1339  * version 1 superblock
1340  */
1341 
1342 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1343 {
1344 	__le32 disk_csum;
1345 	u32 csum;
1346 	unsigned long long newcsum;
1347 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1348 	__le32 *isuper = (__le32*)sb;
1349 
1350 	disk_csum = sb->sb_csum;
1351 	sb->sb_csum = 0;
1352 	newcsum = 0;
1353 	for (; size >= 4; size -= 4)
1354 		newcsum += le32_to_cpu(*isuper++);
1355 
1356 	if (size == 2)
1357 		newcsum += le16_to_cpu(*(__le16*) isuper);
1358 
1359 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360 	sb->sb_csum = disk_csum;
1361 	return cpu_to_le32(csum);
1362 }
1363 
1364 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1365 			    int acknowledged);
1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1367 {
1368 	struct mdp_superblock_1 *sb;
1369 	int ret;
1370 	sector_t sb_start;
1371 	sector_t sectors;
1372 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1373 	int bmask;
1374 
1375 	/*
1376 	 * Calculate the position of the superblock in 512byte sectors.
1377 	 * It is always aligned to a 4K boundary and
1378 	 * depeding on minor_version, it can be:
1379 	 * 0: At least 8K, but less than 12K, from end of device
1380 	 * 1: At start of device
1381 	 * 2: 4K from start of device.
1382 	 */
1383 	switch(minor_version) {
1384 	case 0:
1385 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1386 		sb_start -= 8*2;
1387 		sb_start &= ~(sector_t)(4*2-1);
1388 		break;
1389 	case 1:
1390 		sb_start = 0;
1391 		break;
1392 	case 2:
1393 		sb_start = 8;
1394 		break;
1395 	default:
1396 		return -EINVAL;
1397 	}
1398 	rdev->sb_start = sb_start;
1399 
1400 	/* superblock is rarely larger than 1K, but it can be larger,
1401 	 * and it is safe to read 4k, so we do that
1402 	 */
1403 	ret = read_disk_sb(rdev, 4096);
1404 	if (ret) return ret;
1405 
1406 	sb = page_address(rdev->sb_page);
1407 
1408 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1409 	    sb->major_version != cpu_to_le32(1) ||
1410 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1411 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1412 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1413 		return -EINVAL;
1414 
1415 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1416 		printk("md: invalid superblock checksum on %s\n",
1417 			bdevname(rdev->bdev,b));
1418 		return -EINVAL;
1419 	}
1420 	if (le64_to_cpu(sb->data_size) < 10) {
1421 		printk("md: data_size too small on %s\n",
1422 		       bdevname(rdev->bdev,b));
1423 		return -EINVAL;
1424 	}
1425 	if (sb->pad0 ||
1426 	    sb->pad3[0] ||
1427 	    memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1428 		/* Some padding is non-zero, might be a new feature */
1429 		return -EINVAL;
1430 
1431 	rdev->preferred_minor = 0xffff;
1432 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1433 	rdev->new_data_offset = rdev->data_offset;
1434 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1435 	    (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1436 		rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1437 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1438 
1439 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1440 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1441 	if (rdev->sb_size & bmask)
1442 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1443 
1444 	if (minor_version
1445 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1446 		return -EINVAL;
1447 	if (minor_version
1448 	    && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1449 		return -EINVAL;
1450 
1451 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1452 		rdev->desc_nr = -1;
1453 	else
1454 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1455 
1456 	if (!rdev->bb_page) {
1457 		rdev->bb_page = alloc_page(GFP_KERNEL);
1458 		if (!rdev->bb_page)
1459 			return -ENOMEM;
1460 	}
1461 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1462 	    rdev->badblocks.count == 0) {
1463 		/* need to load the bad block list.
1464 		 * Currently we limit it to one page.
1465 		 */
1466 		s32 offset;
1467 		sector_t bb_sector;
1468 		u64 *bbp;
1469 		int i;
1470 		int sectors = le16_to_cpu(sb->bblog_size);
1471 		if (sectors > (PAGE_SIZE / 512))
1472 			return -EINVAL;
1473 		offset = le32_to_cpu(sb->bblog_offset);
1474 		if (offset == 0)
1475 			return -EINVAL;
1476 		bb_sector = (long long)offset;
1477 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1478 				  rdev->bb_page, READ, true))
1479 			return -EIO;
1480 		bbp = (u64 *)page_address(rdev->bb_page);
1481 		rdev->badblocks.shift = sb->bblog_shift;
1482 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1483 			u64 bb = le64_to_cpu(*bbp);
1484 			int count = bb & (0x3ff);
1485 			u64 sector = bb >> 10;
1486 			sector <<= sb->bblog_shift;
1487 			count <<= sb->bblog_shift;
1488 			if (bb + 1 == 0)
1489 				break;
1490 			if (md_set_badblocks(&rdev->badblocks,
1491 					     sector, count, 1) == 0)
1492 				return -EINVAL;
1493 		}
1494 	} else if (sb->bblog_offset != 0)
1495 		rdev->badblocks.shift = 0;
1496 
1497 	if (!refdev) {
1498 		ret = 1;
1499 	} else {
1500 		__u64 ev1, ev2;
1501 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1502 
1503 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1504 		    sb->level != refsb->level ||
1505 		    sb->layout != refsb->layout ||
1506 		    sb->chunksize != refsb->chunksize) {
1507 			printk(KERN_WARNING "md: %s has strangely different"
1508 				" superblock to %s\n",
1509 				bdevname(rdev->bdev,b),
1510 				bdevname(refdev->bdev,b2));
1511 			return -EINVAL;
1512 		}
1513 		ev1 = le64_to_cpu(sb->events);
1514 		ev2 = le64_to_cpu(refsb->events);
1515 
1516 		if (ev1 > ev2)
1517 			ret = 1;
1518 		else
1519 			ret = 0;
1520 	}
1521 	if (minor_version) {
1522 		sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1523 		sectors -= rdev->data_offset;
1524 	} else
1525 		sectors = rdev->sb_start;
1526 	if (sectors < le64_to_cpu(sb->data_size))
1527 		return -EINVAL;
1528 	rdev->sectors = le64_to_cpu(sb->data_size);
1529 	return ret;
1530 }
1531 
1532 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1533 {
1534 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1535 	__u64 ev1 = le64_to_cpu(sb->events);
1536 
1537 	rdev->raid_disk = -1;
1538 	clear_bit(Faulty, &rdev->flags);
1539 	clear_bit(In_sync, &rdev->flags);
1540 	clear_bit(Bitmap_sync, &rdev->flags);
1541 	clear_bit(WriteMostly, &rdev->flags);
1542 
1543 	if (mddev->raid_disks == 0) {
1544 		mddev->major_version = 1;
1545 		mddev->patch_version = 0;
1546 		mddev->external = 0;
1547 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1548 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1549 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1550 		mddev->level = le32_to_cpu(sb->level);
1551 		mddev->clevel[0] = 0;
1552 		mddev->layout = le32_to_cpu(sb->layout);
1553 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1554 		mddev->dev_sectors = le64_to_cpu(sb->size);
1555 		mddev->events = ev1;
1556 		mddev->bitmap_info.offset = 0;
1557 		mddev->bitmap_info.space = 0;
1558 		/* Default location for bitmap is 1K after superblock
1559 		 * using 3K - total of 4K
1560 		 */
1561 		mddev->bitmap_info.default_offset = 1024 >> 9;
1562 		mddev->bitmap_info.default_space = (4096-1024) >> 9;
1563 		mddev->reshape_backwards = 0;
1564 
1565 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1566 		memcpy(mddev->uuid, sb->set_uuid, 16);
1567 
1568 		mddev->max_disks =  (4096-256)/2;
1569 
1570 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1571 		    mddev->bitmap_info.file == NULL) {
1572 			mddev->bitmap_info.offset =
1573 				(__s32)le32_to_cpu(sb->bitmap_offset);
1574 			/* Metadata doesn't record how much space is available.
1575 			 * For 1.0, we assume we can use up to the superblock
1576 			 * if before, else to 4K beyond superblock.
1577 			 * For others, assume no change is possible.
1578 			 */
1579 			if (mddev->minor_version > 0)
1580 				mddev->bitmap_info.space = 0;
1581 			else if (mddev->bitmap_info.offset > 0)
1582 				mddev->bitmap_info.space =
1583 					8 - mddev->bitmap_info.offset;
1584 			else
1585 				mddev->bitmap_info.space =
1586 					-mddev->bitmap_info.offset;
1587 		}
1588 
1589 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1590 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1591 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1592 			mddev->new_level = le32_to_cpu(sb->new_level);
1593 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1594 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1595 			if (mddev->delta_disks < 0 ||
1596 			    (mddev->delta_disks == 0 &&
1597 			     (le32_to_cpu(sb->feature_map)
1598 			      & MD_FEATURE_RESHAPE_BACKWARDS)))
1599 				mddev->reshape_backwards = 1;
1600 		} else {
1601 			mddev->reshape_position = MaxSector;
1602 			mddev->delta_disks = 0;
1603 			mddev->new_level = mddev->level;
1604 			mddev->new_layout = mddev->layout;
1605 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1606 		}
1607 
1608 	} else if (mddev->pers == NULL) {
1609 		/* Insist of good event counter while assembling, except for
1610 		 * spares (which don't need an event count) */
1611 		++ev1;
1612 		if (rdev->desc_nr >= 0 &&
1613 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1614 		    (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1615 		     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1616 			if (ev1 < mddev->events)
1617 				return -EINVAL;
1618 	} else if (mddev->bitmap) {
1619 		/* If adding to array with a bitmap, then we can accept an
1620 		 * older device, but not too old.
1621 		 */
1622 		if (ev1 < mddev->bitmap->events_cleared)
1623 			return 0;
1624 		if (ev1 < mddev->events)
1625 			set_bit(Bitmap_sync, &rdev->flags);
1626 	} else {
1627 		if (ev1 < mddev->events)
1628 			/* just a hot-add of a new device, leave raid_disk at -1 */
1629 			return 0;
1630 	}
1631 	if (mddev->level != LEVEL_MULTIPATH) {
1632 		int role;
1633 		if (rdev->desc_nr < 0 ||
1634 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1635 			role = MD_DISK_ROLE_SPARE;
1636 			rdev->desc_nr = -1;
1637 		} else
1638 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1639 		switch(role) {
1640 		case MD_DISK_ROLE_SPARE: /* spare */
1641 			break;
1642 		case MD_DISK_ROLE_FAULTY: /* faulty */
1643 			set_bit(Faulty, &rdev->flags);
1644 			break;
1645 		case MD_DISK_ROLE_JOURNAL: /* journal device */
1646 			if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1647 				/* journal device without journal feature */
1648 				printk(KERN_WARNING
1649 				  "md: journal device provided without journal feature, ignoring the device\n");
1650 				return -EINVAL;
1651 			}
1652 			set_bit(Journal, &rdev->flags);
1653 			rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1654 			if (mddev->recovery_cp == MaxSector)
1655 				set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1656 			rdev->raid_disk = 0;
1657 			break;
1658 		default:
1659 			rdev->saved_raid_disk = role;
1660 			if ((le32_to_cpu(sb->feature_map) &
1661 			     MD_FEATURE_RECOVERY_OFFSET)) {
1662 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1663 				if (!(le32_to_cpu(sb->feature_map) &
1664 				      MD_FEATURE_RECOVERY_BITMAP))
1665 					rdev->saved_raid_disk = -1;
1666 			} else
1667 				set_bit(In_sync, &rdev->flags);
1668 			rdev->raid_disk = role;
1669 			break;
1670 		}
1671 		if (sb->devflags & WriteMostly1)
1672 			set_bit(WriteMostly, &rdev->flags);
1673 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1674 			set_bit(Replacement, &rdev->flags);
1675 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1676 			set_bit(MD_HAS_JOURNAL, &mddev->flags);
1677 	} else /* MULTIPATH are always insync */
1678 		set_bit(In_sync, &rdev->flags);
1679 
1680 	return 0;
1681 }
1682 
1683 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1684 {
1685 	struct mdp_superblock_1 *sb;
1686 	struct md_rdev *rdev2;
1687 	int max_dev, i;
1688 	/* make rdev->sb match mddev and rdev data. */
1689 
1690 	sb = page_address(rdev->sb_page);
1691 
1692 	sb->feature_map = 0;
1693 	sb->pad0 = 0;
1694 	sb->recovery_offset = cpu_to_le64(0);
1695 	memset(sb->pad3, 0, sizeof(sb->pad3));
1696 
1697 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1698 	sb->events = cpu_to_le64(mddev->events);
1699 	if (mddev->in_sync)
1700 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1701 	else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1702 		sb->resync_offset = cpu_to_le64(MaxSector);
1703 	else
1704 		sb->resync_offset = cpu_to_le64(0);
1705 
1706 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707 
1708 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709 	sb->size = cpu_to_le64(mddev->dev_sectors);
1710 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711 	sb->level = cpu_to_le32(mddev->level);
1712 	sb->layout = cpu_to_le32(mddev->layout);
1713 
1714 	if (test_bit(WriteMostly, &rdev->flags))
1715 		sb->devflags |= WriteMostly1;
1716 	else
1717 		sb->devflags &= ~WriteMostly1;
1718 	sb->data_offset = cpu_to_le64(rdev->data_offset);
1719 	sb->data_size = cpu_to_le64(rdev->sectors);
1720 
1721 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724 	}
1725 
1726 	if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1727 	    !test_bit(In_sync, &rdev->flags)) {
1728 		sb->feature_map |=
1729 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730 		sb->recovery_offset =
1731 			cpu_to_le64(rdev->recovery_offset);
1732 		if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733 			sb->feature_map |=
1734 				cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735 	}
1736 	/* Note: recovery_offset and journal_tail share space  */
1737 	if (test_bit(Journal, &rdev->flags))
1738 		sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1739 	if (test_bit(Replacement, &rdev->flags))
1740 		sb->feature_map |=
1741 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742 
1743 	if (mddev->reshape_position != MaxSector) {
1744 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1747 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748 		sb->new_level = cpu_to_le32(mddev->new_level);
1749 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750 		if (mddev->delta_disks == 0 &&
1751 		    mddev->reshape_backwards)
1752 			sb->feature_map
1753 				|= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754 		if (rdev->new_data_offset != rdev->data_offset) {
1755 			sb->feature_map
1756 				|= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757 			sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758 							     - rdev->data_offset));
1759 		}
1760 	}
1761 
1762 	if (mddev_is_clustered(mddev))
1763 		sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1764 
1765 	if (rdev->badblocks.count == 0)
1766 		/* Nothing to do for bad blocks*/ ;
1767 	else if (sb->bblog_offset == 0)
1768 		/* Cannot record bad blocks on this device */
1769 		md_error(mddev, rdev);
1770 	else {
1771 		struct badblocks *bb = &rdev->badblocks;
1772 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1773 		u64 *p = bb->page;
1774 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1775 		if (bb->changed) {
1776 			unsigned seq;
1777 
1778 retry:
1779 			seq = read_seqbegin(&bb->lock);
1780 
1781 			memset(bbp, 0xff, PAGE_SIZE);
1782 
1783 			for (i = 0 ; i < bb->count ; i++) {
1784 				u64 internal_bb = p[i];
1785 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1786 						| BB_LEN(internal_bb));
1787 				bbp[i] = cpu_to_le64(store_bb);
1788 			}
1789 			bb->changed = 0;
1790 			if (read_seqretry(&bb->lock, seq))
1791 				goto retry;
1792 
1793 			bb->sector = (rdev->sb_start +
1794 				      (int)le32_to_cpu(sb->bblog_offset));
1795 			bb->size = le16_to_cpu(sb->bblog_size);
1796 		}
1797 	}
1798 
1799 	max_dev = 0;
1800 	rdev_for_each(rdev2, mddev)
1801 		if (rdev2->desc_nr+1 > max_dev)
1802 			max_dev = rdev2->desc_nr+1;
1803 
1804 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1805 		int bmask;
1806 		sb->max_dev = cpu_to_le32(max_dev);
1807 		rdev->sb_size = max_dev * 2 + 256;
1808 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1809 		if (rdev->sb_size & bmask)
1810 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1811 	} else
1812 		max_dev = le32_to_cpu(sb->max_dev);
1813 
1814 	for (i=0; i<max_dev;i++)
1815 		sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1816 
1817 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1818 		sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819 
1820 	rdev_for_each(rdev2, mddev) {
1821 		i = rdev2->desc_nr;
1822 		if (test_bit(Faulty, &rdev2->flags))
1823 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1824 		else if (test_bit(In_sync, &rdev2->flags))
1825 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 		else if (test_bit(Journal, &rdev2->flags))
1827 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1828 		else if (rdev2->raid_disk >= 0)
1829 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1830 		else
1831 			sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1832 	}
1833 
1834 	sb->sb_csum = calc_sb_1_csum(sb);
1835 }
1836 
1837 static unsigned long long
1838 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1839 {
1840 	struct mdp_superblock_1 *sb;
1841 	sector_t max_sectors;
1842 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1843 		return 0; /* component must fit device */
1844 	if (rdev->data_offset != rdev->new_data_offset)
1845 		return 0; /* too confusing */
1846 	if (rdev->sb_start < rdev->data_offset) {
1847 		/* minor versions 1 and 2; superblock before data */
1848 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1849 		max_sectors -= rdev->data_offset;
1850 		if (!num_sectors || num_sectors > max_sectors)
1851 			num_sectors = max_sectors;
1852 	} else if (rdev->mddev->bitmap_info.offset) {
1853 		/* minor version 0 with bitmap we can't move */
1854 		return 0;
1855 	} else {
1856 		/* minor version 0; superblock after data */
1857 		sector_t sb_start;
1858 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1859 		sb_start &= ~(sector_t)(4*2 - 1);
1860 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1861 		if (!num_sectors || num_sectors > max_sectors)
1862 			num_sectors = max_sectors;
1863 		rdev->sb_start = sb_start;
1864 	}
1865 	sb = page_address(rdev->sb_page);
1866 	sb->data_size = cpu_to_le64(num_sectors);
1867 	sb->super_offset = rdev->sb_start;
1868 	sb->sb_csum = calc_sb_1_csum(sb);
1869 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1870 		       rdev->sb_page);
1871 	md_super_wait(rdev->mddev);
1872 	return num_sectors;
1873 
1874 }
1875 
1876 static int
1877 super_1_allow_new_offset(struct md_rdev *rdev,
1878 			 unsigned long long new_offset)
1879 {
1880 	/* All necessary checks on new >= old have been done */
1881 	struct bitmap *bitmap;
1882 	if (new_offset >= rdev->data_offset)
1883 		return 1;
1884 
1885 	/* with 1.0 metadata, there is no metadata to tread on
1886 	 * so we can always move back */
1887 	if (rdev->mddev->minor_version == 0)
1888 		return 1;
1889 
1890 	/* otherwise we must be sure not to step on
1891 	 * any metadata, so stay:
1892 	 * 36K beyond start of superblock
1893 	 * beyond end of badblocks
1894 	 * beyond write-intent bitmap
1895 	 */
1896 	if (rdev->sb_start + (32+4)*2 > new_offset)
1897 		return 0;
1898 	bitmap = rdev->mddev->bitmap;
1899 	if (bitmap && !rdev->mddev->bitmap_info.file &&
1900 	    rdev->sb_start + rdev->mddev->bitmap_info.offset +
1901 	    bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1902 		return 0;
1903 	if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1904 		return 0;
1905 
1906 	return 1;
1907 }
1908 
1909 static struct super_type super_types[] = {
1910 	[0] = {
1911 		.name	= "0.90.0",
1912 		.owner	= THIS_MODULE,
1913 		.load_super	    = super_90_load,
1914 		.validate_super	    = super_90_validate,
1915 		.sync_super	    = super_90_sync,
1916 		.rdev_size_change   = super_90_rdev_size_change,
1917 		.allow_new_offset   = super_90_allow_new_offset,
1918 	},
1919 	[1] = {
1920 		.name	= "md-1",
1921 		.owner	= THIS_MODULE,
1922 		.load_super	    = super_1_load,
1923 		.validate_super	    = super_1_validate,
1924 		.sync_super	    = super_1_sync,
1925 		.rdev_size_change   = super_1_rdev_size_change,
1926 		.allow_new_offset   = super_1_allow_new_offset,
1927 	},
1928 };
1929 
1930 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1931 {
1932 	if (mddev->sync_super) {
1933 		mddev->sync_super(mddev, rdev);
1934 		return;
1935 	}
1936 
1937 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1938 
1939 	super_types[mddev->major_version].sync_super(mddev, rdev);
1940 }
1941 
1942 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1943 {
1944 	struct md_rdev *rdev, *rdev2;
1945 
1946 	rcu_read_lock();
1947 	rdev_for_each_rcu(rdev, mddev1) {
1948 		if (test_bit(Faulty, &rdev->flags) ||
1949 		    test_bit(Journal, &rdev->flags) ||
1950 		    rdev->raid_disk == -1)
1951 			continue;
1952 		rdev_for_each_rcu(rdev2, mddev2) {
1953 			if (test_bit(Faulty, &rdev2->flags) ||
1954 			    test_bit(Journal, &rdev2->flags) ||
1955 			    rdev2->raid_disk == -1)
1956 				continue;
1957 			if (rdev->bdev->bd_contains ==
1958 			    rdev2->bdev->bd_contains) {
1959 				rcu_read_unlock();
1960 				return 1;
1961 			}
1962 		}
1963 	}
1964 	rcu_read_unlock();
1965 	return 0;
1966 }
1967 
1968 static LIST_HEAD(pending_raid_disks);
1969 
1970 /*
1971  * Try to register data integrity profile for an mddev
1972  *
1973  * This is called when an array is started and after a disk has been kicked
1974  * from the array. It only succeeds if all working and active component devices
1975  * are integrity capable with matching profiles.
1976  */
1977 int md_integrity_register(struct mddev *mddev)
1978 {
1979 	struct md_rdev *rdev, *reference = NULL;
1980 
1981 	if (list_empty(&mddev->disks))
1982 		return 0; /* nothing to do */
1983 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1984 		return 0; /* shouldn't register, or already is */
1985 	rdev_for_each(rdev, mddev) {
1986 		/* skip spares and non-functional disks */
1987 		if (test_bit(Faulty, &rdev->flags))
1988 			continue;
1989 		if (rdev->raid_disk < 0)
1990 			continue;
1991 		if (!reference) {
1992 			/* Use the first rdev as the reference */
1993 			reference = rdev;
1994 			continue;
1995 		}
1996 		/* does this rdev's profile match the reference profile? */
1997 		if (blk_integrity_compare(reference->bdev->bd_disk,
1998 				rdev->bdev->bd_disk) < 0)
1999 			return -EINVAL;
2000 	}
2001 	if (!reference || !bdev_get_integrity(reference->bdev))
2002 		return 0;
2003 	/*
2004 	 * All component devices are integrity capable and have matching
2005 	 * profiles, register the common profile for the md device.
2006 	 */
2007 	blk_integrity_register(mddev->gendisk,
2008 			       bdev_get_integrity(reference->bdev));
2009 
2010 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013 		       mdname(mddev));
2014 		return -EINVAL;
2015 	}
2016 	return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019 
2020 /* Disable data integrity if non-capable/non-matching disk is being added */
2021 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2022 {
2023 	struct blk_integrity *bi_rdev;
2024 	struct blk_integrity *bi_mddev;
2025 
2026 	if (!mddev->gendisk)
2027 		return;
2028 
2029 	bi_rdev = bdev_get_integrity(rdev->bdev);
2030 	bi_mddev = blk_get_integrity(mddev->gendisk);
2031 
2032 	if (!bi_mddev) /* nothing to do */
2033 		return;
2034 	if (rdev->raid_disk < 0) /* skip spares */
2035 		return;
2036 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2037 					     rdev->bdev->bd_disk) >= 0)
2038 		return;
2039 	WARN_ON_ONCE(!mddev->suspended);
2040 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2041 	blk_integrity_unregister(mddev->gendisk);
2042 }
2043 EXPORT_SYMBOL(md_integrity_add_rdev);
2044 
2045 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2046 {
2047 	char b[BDEVNAME_SIZE];
2048 	struct kobject *ko;
2049 	int err;
2050 
2051 	/* prevent duplicates */
2052 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2053 		return -EEXIST;
2054 
2055 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2056 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2057 			rdev->sectors < mddev->dev_sectors)) {
2058 		if (mddev->pers) {
2059 			/* Cannot change size, so fail
2060 			 * If mddev->level <= 0, then we don't care
2061 			 * about aligning sizes (e.g. linear)
2062 			 */
2063 			if (mddev->level > 0)
2064 				return -ENOSPC;
2065 		} else
2066 			mddev->dev_sectors = rdev->sectors;
2067 	}
2068 
2069 	/* Verify rdev->desc_nr is unique.
2070 	 * If it is -1, assign a free number, else
2071 	 * check number is not in use
2072 	 */
2073 	rcu_read_lock();
2074 	if (rdev->desc_nr < 0) {
2075 		int choice = 0;
2076 		if (mddev->pers)
2077 			choice = mddev->raid_disks;
2078 		while (md_find_rdev_nr_rcu(mddev, choice))
2079 			choice++;
2080 		rdev->desc_nr = choice;
2081 	} else {
2082 		if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2083 			rcu_read_unlock();
2084 			return -EBUSY;
2085 		}
2086 	}
2087 	rcu_read_unlock();
2088 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2089 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2090 		       mdname(mddev), mddev->max_disks);
2091 		return -EBUSY;
2092 	}
2093 	bdevname(rdev->bdev,b);
2094 	strreplace(b, '/', '!');
2095 
2096 	rdev->mddev = mddev;
2097 	printk(KERN_INFO "md: bind<%s>\n", b);
2098 
2099 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2100 		goto fail;
2101 
2102 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2103 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2104 		/* failure here is OK */;
2105 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2106 
2107 	list_add_rcu(&rdev->same_set, &mddev->disks);
2108 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2109 
2110 	/* May as well allow recovery to be retried once */
2111 	mddev->recovery_disabled++;
2112 
2113 	return 0;
2114 
2115  fail:
2116 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2117 	       b, mdname(mddev));
2118 	return err;
2119 }
2120 
2121 static void md_delayed_delete(struct work_struct *ws)
2122 {
2123 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2124 	kobject_del(&rdev->kobj);
2125 	kobject_put(&rdev->kobj);
2126 }
2127 
2128 static void unbind_rdev_from_array(struct md_rdev *rdev)
2129 {
2130 	char b[BDEVNAME_SIZE];
2131 
2132 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2133 	list_del_rcu(&rdev->same_set);
2134 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2135 	rdev->mddev = NULL;
2136 	sysfs_remove_link(&rdev->kobj, "block");
2137 	sysfs_put(rdev->sysfs_state);
2138 	rdev->sysfs_state = NULL;
2139 	rdev->badblocks.count = 0;
2140 	/* We need to delay this, otherwise we can deadlock when
2141 	 * writing to 'remove' to "dev/state".  We also need
2142 	 * to delay it due to rcu usage.
2143 	 */
2144 	synchronize_rcu();
2145 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2146 	kobject_get(&rdev->kobj);
2147 	queue_work(md_misc_wq, &rdev->del_work);
2148 }
2149 
2150 /*
2151  * prevent the device from being mounted, repartitioned or
2152  * otherwise reused by a RAID array (or any other kernel
2153  * subsystem), by bd_claiming the device.
2154  */
2155 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2156 {
2157 	int err = 0;
2158 	struct block_device *bdev;
2159 	char b[BDEVNAME_SIZE];
2160 
2161 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2162 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2163 	if (IS_ERR(bdev)) {
2164 		printk(KERN_ERR "md: could not open %s.\n",
2165 			__bdevname(dev, b));
2166 		return PTR_ERR(bdev);
2167 	}
2168 	rdev->bdev = bdev;
2169 	return err;
2170 }
2171 
2172 static void unlock_rdev(struct md_rdev *rdev)
2173 {
2174 	struct block_device *bdev = rdev->bdev;
2175 	rdev->bdev = NULL;
2176 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2177 }
2178 
2179 void md_autodetect_dev(dev_t dev);
2180 
2181 static void export_rdev(struct md_rdev *rdev)
2182 {
2183 	char b[BDEVNAME_SIZE];
2184 
2185 	printk(KERN_INFO "md: export_rdev(%s)\n",
2186 		bdevname(rdev->bdev,b));
2187 	md_rdev_clear(rdev);
2188 #ifndef MODULE
2189 	if (test_bit(AutoDetected, &rdev->flags))
2190 		md_autodetect_dev(rdev->bdev->bd_dev);
2191 #endif
2192 	unlock_rdev(rdev);
2193 	kobject_put(&rdev->kobj);
2194 }
2195 
2196 void md_kick_rdev_from_array(struct md_rdev *rdev)
2197 {
2198 	unbind_rdev_from_array(rdev);
2199 	export_rdev(rdev);
2200 }
2201 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2202 
2203 static void export_array(struct mddev *mddev)
2204 {
2205 	struct md_rdev *rdev;
2206 
2207 	while (!list_empty(&mddev->disks)) {
2208 		rdev = list_first_entry(&mddev->disks, struct md_rdev,
2209 					same_set);
2210 		md_kick_rdev_from_array(rdev);
2211 	}
2212 	mddev->raid_disks = 0;
2213 	mddev->major_version = 0;
2214 }
2215 
2216 static void sync_sbs(struct mddev *mddev, int nospares)
2217 {
2218 	/* Update each superblock (in-memory image), but
2219 	 * if we are allowed to, skip spares which already
2220 	 * have the right event counter, or have one earlier
2221 	 * (which would mean they aren't being marked as dirty
2222 	 * with the rest of the array)
2223 	 */
2224 	struct md_rdev *rdev;
2225 	rdev_for_each(rdev, mddev) {
2226 		if (rdev->sb_events == mddev->events ||
2227 		    (nospares &&
2228 		     rdev->raid_disk < 0 &&
2229 		     rdev->sb_events+1 == mddev->events)) {
2230 			/* Don't update this superblock */
2231 			rdev->sb_loaded = 2;
2232 		} else {
2233 			sync_super(mddev, rdev);
2234 			rdev->sb_loaded = 1;
2235 		}
2236 	}
2237 }
2238 
2239 static bool does_sb_need_changing(struct mddev *mddev)
2240 {
2241 	struct md_rdev *rdev;
2242 	struct mdp_superblock_1 *sb;
2243 	int role;
2244 
2245 	/* Find a good rdev */
2246 	rdev_for_each(rdev, mddev)
2247 		if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2248 			break;
2249 
2250 	/* No good device found. */
2251 	if (!rdev)
2252 		return false;
2253 
2254 	sb = page_address(rdev->sb_page);
2255 	/* Check if a device has become faulty or a spare become active */
2256 	rdev_for_each(rdev, mddev) {
2257 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2258 		/* Device activated? */
2259 		if (role == 0xffff && rdev->raid_disk >=0 &&
2260 		    !test_bit(Faulty, &rdev->flags))
2261 			return true;
2262 		/* Device turned faulty? */
2263 		if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2264 			return true;
2265 	}
2266 
2267 	/* Check if any mddev parameters have changed */
2268 	if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2269 	    (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2270 	    (mddev->layout != le64_to_cpu(sb->layout)) ||
2271 	    (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2272 	    (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2273 		return true;
2274 
2275 	return false;
2276 }
2277 
2278 void md_update_sb(struct mddev *mddev, int force_change)
2279 {
2280 	struct md_rdev *rdev;
2281 	int sync_req;
2282 	int nospares = 0;
2283 	int any_badblocks_changed = 0;
2284 	int ret = -1;
2285 
2286 	if (mddev->ro) {
2287 		if (force_change)
2288 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
2289 		return;
2290 	}
2291 
2292 	if (mddev_is_clustered(mddev)) {
2293 		if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2294 			force_change = 1;
2295 		ret = md_cluster_ops->metadata_update_start(mddev);
2296 		/* Has someone else has updated the sb */
2297 		if (!does_sb_need_changing(mddev)) {
2298 			if (ret == 0)
2299 				md_cluster_ops->metadata_update_cancel(mddev);
2300 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2301 			return;
2302 		}
2303 	}
2304 repeat:
2305 	/* First make sure individual recovery_offsets are correct */
2306 	rdev_for_each(rdev, mddev) {
2307 		if (rdev->raid_disk >= 0 &&
2308 		    mddev->delta_disks >= 0 &&
2309 		    !test_bit(Journal, &rdev->flags) &&
2310 		    !test_bit(In_sync, &rdev->flags) &&
2311 		    mddev->curr_resync_completed > rdev->recovery_offset)
2312 				rdev->recovery_offset = mddev->curr_resync_completed;
2313 
2314 	}
2315 	if (!mddev->persistent) {
2316 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2317 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2318 		if (!mddev->external) {
2319 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2320 			rdev_for_each(rdev, mddev) {
2321 				if (rdev->badblocks.changed) {
2322 					rdev->badblocks.changed = 0;
2323 					md_ack_all_badblocks(&rdev->badblocks);
2324 					md_error(mddev, rdev);
2325 				}
2326 				clear_bit(Blocked, &rdev->flags);
2327 				clear_bit(BlockedBadBlocks, &rdev->flags);
2328 				wake_up(&rdev->blocked_wait);
2329 			}
2330 		}
2331 		wake_up(&mddev->sb_wait);
2332 		return;
2333 	}
2334 
2335 	spin_lock(&mddev->lock);
2336 
2337 	mddev->utime = get_seconds();
2338 
2339 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2340 		force_change = 1;
2341 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2342 		/* just a clean<-> dirty transition, possibly leave spares alone,
2343 		 * though if events isn't the right even/odd, we will have to do
2344 		 * spares after all
2345 		 */
2346 		nospares = 1;
2347 	if (force_change)
2348 		nospares = 0;
2349 	if (mddev->degraded)
2350 		/* If the array is degraded, then skipping spares is both
2351 		 * dangerous and fairly pointless.
2352 		 * Dangerous because a device that was removed from the array
2353 		 * might have a event_count that still looks up-to-date,
2354 		 * so it can be re-added without a resync.
2355 		 * Pointless because if there are any spares to skip,
2356 		 * then a recovery will happen and soon that array won't
2357 		 * be degraded any more and the spare can go back to sleep then.
2358 		 */
2359 		nospares = 0;
2360 
2361 	sync_req = mddev->in_sync;
2362 
2363 	/* If this is just a dirty<->clean transition, and the array is clean
2364 	 * and 'events' is odd, we can roll back to the previous clean state */
2365 	if (nospares
2366 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2367 	    && mddev->can_decrease_events
2368 	    && mddev->events != 1) {
2369 		mddev->events--;
2370 		mddev->can_decrease_events = 0;
2371 	} else {
2372 		/* otherwise we have to go forward and ... */
2373 		mddev->events ++;
2374 		mddev->can_decrease_events = nospares;
2375 	}
2376 
2377 	/*
2378 	 * This 64-bit counter should never wrap.
2379 	 * Either we are in around ~1 trillion A.C., assuming
2380 	 * 1 reboot per second, or we have a bug...
2381 	 */
2382 	WARN_ON(mddev->events == 0);
2383 
2384 	rdev_for_each(rdev, mddev) {
2385 		if (rdev->badblocks.changed)
2386 			any_badblocks_changed++;
2387 		if (test_bit(Faulty, &rdev->flags))
2388 			set_bit(FaultRecorded, &rdev->flags);
2389 	}
2390 
2391 	sync_sbs(mddev, nospares);
2392 	spin_unlock(&mddev->lock);
2393 
2394 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2395 		 mdname(mddev), mddev->in_sync);
2396 
2397 	bitmap_update_sb(mddev->bitmap);
2398 	rdev_for_each(rdev, mddev) {
2399 		char b[BDEVNAME_SIZE];
2400 
2401 		if (rdev->sb_loaded != 1)
2402 			continue; /* no noise on spare devices */
2403 
2404 		if (!test_bit(Faulty, &rdev->flags)) {
2405 			md_super_write(mddev,rdev,
2406 				       rdev->sb_start, rdev->sb_size,
2407 				       rdev->sb_page);
2408 			pr_debug("md: (write) %s's sb offset: %llu\n",
2409 				 bdevname(rdev->bdev, b),
2410 				 (unsigned long long)rdev->sb_start);
2411 			rdev->sb_events = mddev->events;
2412 			if (rdev->badblocks.size) {
2413 				md_super_write(mddev, rdev,
2414 					       rdev->badblocks.sector,
2415 					       rdev->badblocks.size << 9,
2416 					       rdev->bb_page);
2417 				rdev->badblocks.size = 0;
2418 			}
2419 
2420 		} else
2421 			pr_debug("md: %s (skipping faulty)\n",
2422 				 bdevname(rdev->bdev, b));
2423 
2424 		if (mddev->level == LEVEL_MULTIPATH)
2425 			/* only need to write one superblock... */
2426 			break;
2427 	}
2428 	md_super_wait(mddev);
2429 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2430 
2431 	spin_lock(&mddev->lock);
2432 	if (mddev->in_sync != sync_req ||
2433 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2434 		/* have to write it out again */
2435 		spin_unlock(&mddev->lock);
2436 		goto repeat;
2437 	}
2438 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2439 	spin_unlock(&mddev->lock);
2440 	wake_up(&mddev->sb_wait);
2441 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2442 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2443 
2444 	rdev_for_each(rdev, mddev) {
2445 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2446 			clear_bit(Blocked, &rdev->flags);
2447 
2448 		if (any_badblocks_changed)
2449 			md_ack_all_badblocks(&rdev->badblocks);
2450 		clear_bit(BlockedBadBlocks, &rdev->flags);
2451 		wake_up(&rdev->blocked_wait);
2452 	}
2453 
2454 	if (mddev_is_clustered(mddev) && ret == 0)
2455 		md_cluster_ops->metadata_update_finish(mddev);
2456 }
2457 EXPORT_SYMBOL(md_update_sb);
2458 
2459 static int add_bound_rdev(struct md_rdev *rdev)
2460 {
2461 	struct mddev *mddev = rdev->mddev;
2462 	int err = 0;
2463 
2464 	if (!mddev->pers->hot_remove_disk) {
2465 		/* If there is hot_add_disk but no hot_remove_disk
2466 		 * then added disks for geometry changes,
2467 		 * and should be added immediately.
2468 		 */
2469 		super_types[mddev->major_version].
2470 			validate_super(mddev, rdev);
2471 		err = mddev->pers->hot_add_disk(mddev, rdev);
2472 		if (err) {
2473 			unbind_rdev_from_array(rdev);
2474 			export_rdev(rdev);
2475 			return err;
2476 		}
2477 	}
2478 	sysfs_notify_dirent_safe(rdev->sysfs_state);
2479 
2480 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
2481 	if (mddev->degraded)
2482 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2483 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2484 	md_new_event(mddev);
2485 	md_wakeup_thread(mddev->thread);
2486 	return 0;
2487 }
2488 
2489 /* words written to sysfs files may, or may not, be \n terminated.
2490  * We want to accept with case. For this we use cmd_match.
2491  */
2492 static int cmd_match(const char *cmd, const char *str)
2493 {
2494 	/* See if cmd, written into a sysfs file, matches
2495 	 * str.  They must either be the same, or cmd can
2496 	 * have a trailing newline
2497 	 */
2498 	while (*cmd && *str && *cmd == *str) {
2499 		cmd++;
2500 		str++;
2501 	}
2502 	if (*cmd == '\n')
2503 		cmd++;
2504 	if (*str || *cmd)
2505 		return 0;
2506 	return 1;
2507 }
2508 
2509 struct rdev_sysfs_entry {
2510 	struct attribute attr;
2511 	ssize_t (*show)(struct md_rdev *, char *);
2512 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2513 };
2514 
2515 static ssize_t
2516 state_show(struct md_rdev *rdev, char *page)
2517 {
2518 	char *sep = "";
2519 	size_t len = 0;
2520 	unsigned long flags = ACCESS_ONCE(rdev->flags);
2521 
2522 	if (test_bit(Faulty, &flags) ||
2523 	    rdev->badblocks.unacked_exist) {
2524 		len+= sprintf(page+len, "%sfaulty",sep);
2525 		sep = ",";
2526 	}
2527 	if (test_bit(In_sync, &flags)) {
2528 		len += sprintf(page+len, "%sin_sync",sep);
2529 		sep = ",";
2530 	}
2531 	if (test_bit(Journal, &flags)) {
2532 		len += sprintf(page+len, "%sjournal",sep);
2533 		sep = ",";
2534 	}
2535 	if (test_bit(WriteMostly, &flags)) {
2536 		len += sprintf(page+len, "%swrite_mostly",sep);
2537 		sep = ",";
2538 	}
2539 	if (test_bit(Blocked, &flags) ||
2540 	    (rdev->badblocks.unacked_exist
2541 	     && !test_bit(Faulty, &flags))) {
2542 		len += sprintf(page+len, "%sblocked", sep);
2543 		sep = ",";
2544 	}
2545 	if (!test_bit(Faulty, &flags) &&
2546 	    !test_bit(Journal, &flags) &&
2547 	    !test_bit(In_sync, &flags)) {
2548 		len += sprintf(page+len, "%sspare", sep);
2549 		sep = ",";
2550 	}
2551 	if (test_bit(WriteErrorSeen, &flags)) {
2552 		len += sprintf(page+len, "%swrite_error", sep);
2553 		sep = ",";
2554 	}
2555 	if (test_bit(WantReplacement, &flags)) {
2556 		len += sprintf(page+len, "%swant_replacement", sep);
2557 		sep = ",";
2558 	}
2559 	if (test_bit(Replacement, &flags)) {
2560 		len += sprintf(page+len, "%sreplacement", sep);
2561 		sep = ",";
2562 	}
2563 
2564 	return len+sprintf(page+len, "\n");
2565 }
2566 
2567 static ssize_t
2568 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2569 {
2570 	/* can write
2571 	 *  faulty  - simulates an error
2572 	 *  remove  - disconnects the device
2573 	 *  writemostly - sets write_mostly
2574 	 *  -writemostly - clears write_mostly
2575 	 *  blocked - sets the Blocked flags
2576 	 *  -blocked - clears the Blocked and possibly simulates an error
2577 	 *  insync - sets Insync providing device isn't active
2578 	 *  -insync - clear Insync for a device with a slot assigned,
2579 	 *            so that it gets rebuilt based on bitmap
2580 	 *  write_error - sets WriteErrorSeen
2581 	 *  -write_error - clears WriteErrorSeen
2582 	 */
2583 	int err = -EINVAL;
2584 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2585 		md_error(rdev->mddev, rdev);
2586 		if (test_bit(Faulty, &rdev->flags))
2587 			err = 0;
2588 		else
2589 			err = -EBUSY;
2590 	} else if (cmd_match(buf, "remove")) {
2591 		if (rdev->raid_disk >= 0)
2592 			err = -EBUSY;
2593 		else {
2594 			struct mddev *mddev = rdev->mddev;
2595 			err = 0;
2596 			if (mddev_is_clustered(mddev))
2597 				err = md_cluster_ops->remove_disk(mddev, rdev);
2598 
2599 			if (err == 0) {
2600 				md_kick_rdev_from_array(rdev);
2601 				if (mddev->pers)
2602 					md_update_sb(mddev, 1);
2603 				md_new_event(mddev);
2604 			}
2605 		}
2606 	} else if (cmd_match(buf, "writemostly")) {
2607 		set_bit(WriteMostly, &rdev->flags);
2608 		err = 0;
2609 	} else if (cmd_match(buf, "-writemostly")) {
2610 		clear_bit(WriteMostly, &rdev->flags);
2611 		err = 0;
2612 	} else if (cmd_match(buf, "blocked")) {
2613 		set_bit(Blocked, &rdev->flags);
2614 		err = 0;
2615 	} else if (cmd_match(buf, "-blocked")) {
2616 		if (!test_bit(Faulty, &rdev->flags) &&
2617 		    rdev->badblocks.unacked_exist) {
2618 			/* metadata handler doesn't understand badblocks,
2619 			 * so we need to fail the device
2620 			 */
2621 			md_error(rdev->mddev, rdev);
2622 		}
2623 		clear_bit(Blocked, &rdev->flags);
2624 		clear_bit(BlockedBadBlocks, &rdev->flags);
2625 		wake_up(&rdev->blocked_wait);
2626 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2627 		md_wakeup_thread(rdev->mddev->thread);
2628 
2629 		err = 0;
2630 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2631 		set_bit(In_sync, &rdev->flags);
2632 		err = 0;
2633 	} else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2634 		   !test_bit(Journal, &rdev->flags)) {
2635 		if (rdev->mddev->pers == NULL) {
2636 			clear_bit(In_sync, &rdev->flags);
2637 			rdev->saved_raid_disk = rdev->raid_disk;
2638 			rdev->raid_disk = -1;
2639 			err = 0;
2640 		}
2641 	} else if (cmd_match(buf, "write_error")) {
2642 		set_bit(WriteErrorSeen, &rdev->flags);
2643 		err = 0;
2644 	} else if (cmd_match(buf, "-write_error")) {
2645 		clear_bit(WriteErrorSeen, &rdev->flags);
2646 		err = 0;
2647 	} else if (cmd_match(buf, "want_replacement")) {
2648 		/* Any non-spare device that is not a replacement can
2649 		 * become want_replacement at any time, but we then need to
2650 		 * check if recovery is needed.
2651 		 */
2652 		if (rdev->raid_disk >= 0 &&
2653 		    !test_bit(Journal, &rdev->flags) &&
2654 		    !test_bit(Replacement, &rdev->flags))
2655 			set_bit(WantReplacement, &rdev->flags);
2656 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2657 		md_wakeup_thread(rdev->mddev->thread);
2658 		err = 0;
2659 	} else if (cmd_match(buf, "-want_replacement")) {
2660 		/* Clearing 'want_replacement' is always allowed.
2661 		 * Once replacements starts it is too late though.
2662 		 */
2663 		err = 0;
2664 		clear_bit(WantReplacement, &rdev->flags);
2665 	} else if (cmd_match(buf, "replacement")) {
2666 		/* Can only set a device as a replacement when array has not
2667 		 * yet been started.  Once running, replacement is automatic
2668 		 * from spares, or by assigning 'slot'.
2669 		 */
2670 		if (rdev->mddev->pers)
2671 			err = -EBUSY;
2672 		else {
2673 			set_bit(Replacement, &rdev->flags);
2674 			err = 0;
2675 		}
2676 	} else if (cmd_match(buf, "-replacement")) {
2677 		/* Similarly, can only clear Replacement before start */
2678 		if (rdev->mddev->pers)
2679 			err = -EBUSY;
2680 		else {
2681 			clear_bit(Replacement, &rdev->flags);
2682 			err = 0;
2683 		}
2684 	} else if (cmd_match(buf, "re-add")) {
2685 		if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2686 			/* clear_bit is performed _after_ all the devices
2687 			 * have their local Faulty bit cleared. If any writes
2688 			 * happen in the meantime in the local node, they
2689 			 * will land in the local bitmap, which will be synced
2690 			 * by this node eventually
2691 			 */
2692 			if (!mddev_is_clustered(rdev->mddev) ||
2693 			    (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2694 				clear_bit(Faulty, &rdev->flags);
2695 				err = add_bound_rdev(rdev);
2696 			}
2697 		} else
2698 			err = -EBUSY;
2699 	}
2700 	if (!err)
2701 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2702 	return err ? err : len;
2703 }
2704 static struct rdev_sysfs_entry rdev_state =
2705 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2706 
2707 static ssize_t
2708 errors_show(struct md_rdev *rdev, char *page)
2709 {
2710 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2711 }
2712 
2713 static ssize_t
2714 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2715 {
2716 	unsigned int n;
2717 	int rv;
2718 
2719 	rv = kstrtouint(buf, 10, &n);
2720 	if (rv < 0)
2721 		return rv;
2722 	atomic_set(&rdev->corrected_errors, n);
2723 	return len;
2724 }
2725 static struct rdev_sysfs_entry rdev_errors =
2726 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2727 
2728 static ssize_t
2729 slot_show(struct md_rdev *rdev, char *page)
2730 {
2731 	if (test_bit(Journal, &rdev->flags))
2732 		return sprintf(page, "journal\n");
2733 	else if (rdev->raid_disk < 0)
2734 		return sprintf(page, "none\n");
2735 	else
2736 		return sprintf(page, "%d\n", rdev->raid_disk);
2737 }
2738 
2739 static ssize_t
2740 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2741 {
2742 	int slot;
2743 	int err;
2744 
2745 	if (test_bit(Journal, &rdev->flags))
2746 		return -EBUSY;
2747 	if (strncmp(buf, "none", 4)==0)
2748 		slot = -1;
2749 	else {
2750 		err = kstrtouint(buf, 10, (unsigned int *)&slot);
2751 		if (err < 0)
2752 			return err;
2753 	}
2754 	if (rdev->mddev->pers && slot == -1) {
2755 		/* Setting 'slot' on an active array requires also
2756 		 * updating the 'rd%d' link, and communicating
2757 		 * with the personality with ->hot_*_disk.
2758 		 * For now we only support removing
2759 		 * failed/spare devices.  This normally happens automatically,
2760 		 * but not when the metadata is externally managed.
2761 		 */
2762 		if (rdev->raid_disk == -1)
2763 			return -EEXIST;
2764 		/* personality does all needed checks */
2765 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2766 			return -EINVAL;
2767 		clear_bit(Blocked, &rdev->flags);
2768 		remove_and_add_spares(rdev->mddev, rdev);
2769 		if (rdev->raid_disk >= 0)
2770 			return -EBUSY;
2771 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2772 		md_wakeup_thread(rdev->mddev->thread);
2773 	} else if (rdev->mddev->pers) {
2774 		/* Activating a spare .. or possibly reactivating
2775 		 * if we ever get bitmaps working here.
2776 		 */
2777 		int err;
2778 
2779 		if (rdev->raid_disk != -1)
2780 			return -EBUSY;
2781 
2782 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2783 			return -EBUSY;
2784 
2785 		if (rdev->mddev->pers->hot_add_disk == NULL)
2786 			return -EINVAL;
2787 
2788 		if (slot >= rdev->mddev->raid_disks &&
2789 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2790 			return -ENOSPC;
2791 
2792 		rdev->raid_disk = slot;
2793 		if (test_bit(In_sync, &rdev->flags))
2794 			rdev->saved_raid_disk = slot;
2795 		else
2796 			rdev->saved_raid_disk = -1;
2797 		clear_bit(In_sync, &rdev->flags);
2798 		clear_bit(Bitmap_sync, &rdev->flags);
2799 		err = rdev->mddev->pers->
2800 			hot_add_disk(rdev->mddev, rdev);
2801 		if (err) {
2802 			rdev->raid_disk = -1;
2803 			return err;
2804 		} else
2805 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2806 		if (sysfs_link_rdev(rdev->mddev, rdev))
2807 			/* failure here is OK */;
2808 		/* don't wakeup anyone, leave that to userspace. */
2809 	} else {
2810 		if (slot >= rdev->mddev->raid_disks &&
2811 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2812 			return -ENOSPC;
2813 		rdev->raid_disk = slot;
2814 		/* assume it is working */
2815 		clear_bit(Faulty, &rdev->flags);
2816 		clear_bit(WriteMostly, &rdev->flags);
2817 		set_bit(In_sync, &rdev->flags);
2818 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2819 	}
2820 	return len;
2821 }
2822 
2823 static struct rdev_sysfs_entry rdev_slot =
2824 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2825 
2826 static ssize_t
2827 offset_show(struct md_rdev *rdev, char *page)
2828 {
2829 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2830 }
2831 
2832 static ssize_t
2833 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835 	unsigned long long offset;
2836 	if (kstrtoull(buf, 10, &offset) < 0)
2837 		return -EINVAL;
2838 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2839 		return -EBUSY;
2840 	if (rdev->sectors && rdev->mddev->external)
2841 		/* Must set offset before size, so overlap checks
2842 		 * can be sane */
2843 		return -EBUSY;
2844 	rdev->data_offset = offset;
2845 	rdev->new_data_offset = offset;
2846 	return len;
2847 }
2848 
2849 static struct rdev_sysfs_entry rdev_offset =
2850 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2851 
2852 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2853 {
2854 	return sprintf(page, "%llu\n",
2855 		       (unsigned long long)rdev->new_data_offset);
2856 }
2857 
2858 static ssize_t new_offset_store(struct md_rdev *rdev,
2859 				const char *buf, size_t len)
2860 {
2861 	unsigned long long new_offset;
2862 	struct mddev *mddev = rdev->mddev;
2863 
2864 	if (kstrtoull(buf, 10, &new_offset) < 0)
2865 		return -EINVAL;
2866 
2867 	if (mddev->sync_thread ||
2868 	    test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2869 		return -EBUSY;
2870 	if (new_offset == rdev->data_offset)
2871 		/* reset is always permitted */
2872 		;
2873 	else if (new_offset > rdev->data_offset) {
2874 		/* must not push array size beyond rdev_sectors */
2875 		if (new_offset - rdev->data_offset
2876 		    + mddev->dev_sectors > rdev->sectors)
2877 				return -E2BIG;
2878 	}
2879 	/* Metadata worries about other space details. */
2880 
2881 	/* decreasing the offset is inconsistent with a backwards
2882 	 * reshape.
2883 	 */
2884 	if (new_offset < rdev->data_offset &&
2885 	    mddev->reshape_backwards)
2886 		return -EINVAL;
2887 	/* Increasing offset is inconsistent with forwards
2888 	 * reshape.  reshape_direction should be set to
2889 	 * 'backwards' first.
2890 	 */
2891 	if (new_offset > rdev->data_offset &&
2892 	    !mddev->reshape_backwards)
2893 		return -EINVAL;
2894 
2895 	if (mddev->pers && mddev->persistent &&
2896 	    !super_types[mddev->major_version]
2897 	    .allow_new_offset(rdev, new_offset))
2898 		return -E2BIG;
2899 	rdev->new_data_offset = new_offset;
2900 	if (new_offset > rdev->data_offset)
2901 		mddev->reshape_backwards = 1;
2902 	else if (new_offset < rdev->data_offset)
2903 		mddev->reshape_backwards = 0;
2904 
2905 	return len;
2906 }
2907 static struct rdev_sysfs_entry rdev_new_offset =
2908 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2909 
2910 static ssize_t
2911 rdev_size_show(struct md_rdev *rdev, char *page)
2912 {
2913 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2914 }
2915 
2916 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2917 {
2918 	/* check if two start/length pairs overlap */
2919 	if (s1+l1 <= s2)
2920 		return 0;
2921 	if (s2+l2 <= s1)
2922 		return 0;
2923 	return 1;
2924 }
2925 
2926 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2927 {
2928 	unsigned long long blocks;
2929 	sector_t new;
2930 
2931 	if (kstrtoull(buf, 10, &blocks) < 0)
2932 		return -EINVAL;
2933 
2934 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2935 		return -EINVAL; /* sector conversion overflow */
2936 
2937 	new = blocks * 2;
2938 	if (new != blocks * 2)
2939 		return -EINVAL; /* unsigned long long to sector_t overflow */
2940 
2941 	*sectors = new;
2942 	return 0;
2943 }
2944 
2945 static ssize_t
2946 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2947 {
2948 	struct mddev *my_mddev = rdev->mddev;
2949 	sector_t oldsectors = rdev->sectors;
2950 	sector_t sectors;
2951 
2952 	if (test_bit(Journal, &rdev->flags))
2953 		return -EBUSY;
2954 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2955 		return -EINVAL;
2956 	if (rdev->data_offset != rdev->new_data_offset)
2957 		return -EINVAL; /* too confusing */
2958 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2959 		if (my_mddev->persistent) {
2960 			sectors = super_types[my_mddev->major_version].
2961 				rdev_size_change(rdev, sectors);
2962 			if (!sectors)
2963 				return -EBUSY;
2964 		} else if (!sectors)
2965 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2966 				rdev->data_offset;
2967 		if (!my_mddev->pers->resize)
2968 			/* Cannot change size for RAID0 or Linear etc */
2969 			return -EINVAL;
2970 	}
2971 	if (sectors < my_mddev->dev_sectors)
2972 		return -EINVAL; /* component must fit device */
2973 
2974 	rdev->sectors = sectors;
2975 	if (sectors > oldsectors && my_mddev->external) {
2976 		/* Need to check that all other rdevs with the same
2977 		 * ->bdev do not overlap.  'rcu' is sufficient to walk
2978 		 * the rdev lists safely.
2979 		 * This check does not provide a hard guarantee, it
2980 		 * just helps avoid dangerous mistakes.
2981 		 */
2982 		struct mddev *mddev;
2983 		int overlap = 0;
2984 		struct list_head *tmp;
2985 
2986 		rcu_read_lock();
2987 		for_each_mddev(mddev, tmp) {
2988 			struct md_rdev *rdev2;
2989 
2990 			rdev_for_each(rdev2, mddev)
2991 				if (rdev->bdev == rdev2->bdev &&
2992 				    rdev != rdev2 &&
2993 				    overlaps(rdev->data_offset, rdev->sectors,
2994 					     rdev2->data_offset,
2995 					     rdev2->sectors)) {
2996 					overlap = 1;
2997 					break;
2998 				}
2999 			if (overlap) {
3000 				mddev_put(mddev);
3001 				break;
3002 			}
3003 		}
3004 		rcu_read_unlock();
3005 		if (overlap) {
3006 			/* Someone else could have slipped in a size
3007 			 * change here, but doing so is just silly.
3008 			 * We put oldsectors back because we *know* it is
3009 			 * safe, and trust userspace not to race with
3010 			 * itself
3011 			 */
3012 			rdev->sectors = oldsectors;
3013 			return -EBUSY;
3014 		}
3015 	}
3016 	return len;
3017 }
3018 
3019 static struct rdev_sysfs_entry rdev_size =
3020 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3021 
3022 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3023 {
3024 	unsigned long long recovery_start = rdev->recovery_offset;
3025 
3026 	if (test_bit(In_sync, &rdev->flags) ||
3027 	    recovery_start == MaxSector)
3028 		return sprintf(page, "none\n");
3029 
3030 	return sprintf(page, "%llu\n", recovery_start);
3031 }
3032 
3033 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3034 {
3035 	unsigned long long recovery_start;
3036 
3037 	if (cmd_match(buf, "none"))
3038 		recovery_start = MaxSector;
3039 	else if (kstrtoull(buf, 10, &recovery_start))
3040 		return -EINVAL;
3041 
3042 	if (rdev->mddev->pers &&
3043 	    rdev->raid_disk >= 0)
3044 		return -EBUSY;
3045 
3046 	rdev->recovery_offset = recovery_start;
3047 	if (recovery_start == MaxSector)
3048 		set_bit(In_sync, &rdev->flags);
3049 	else
3050 		clear_bit(In_sync, &rdev->flags);
3051 	return len;
3052 }
3053 
3054 static struct rdev_sysfs_entry rdev_recovery_start =
3055 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3056 
3057 static ssize_t
3058 badblocks_show(struct badblocks *bb, char *page, int unack);
3059 static ssize_t
3060 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3061 
3062 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3063 {
3064 	return badblocks_show(&rdev->badblocks, page, 0);
3065 }
3066 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3067 {
3068 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3069 	/* Maybe that ack was all we needed */
3070 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3071 		wake_up(&rdev->blocked_wait);
3072 	return rv;
3073 }
3074 static struct rdev_sysfs_entry rdev_bad_blocks =
3075 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3076 
3077 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3078 {
3079 	return badblocks_show(&rdev->badblocks, page, 1);
3080 }
3081 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3082 {
3083 	return badblocks_store(&rdev->badblocks, page, len, 1);
3084 }
3085 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3086 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3087 
3088 static struct attribute *rdev_default_attrs[] = {
3089 	&rdev_state.attr,
3090 	&rdev_errors.attr,
3091 	&rdev_slot.attr,
3092 	&rdev_offset.attr,
3093 	&rdev_new_offset.attr,
3094 	&rdev_size.attr,
3095 	&rdev_recovery_start.attr,
3096 	&rdev_bad_blocks.attr,
3097 	&rdev_unack_bad_blocks.attr,
3098 	NULL,
3099 };
3100 static ssize_t
3101 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3102 {
3103 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3104 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3105 
3106 	if (!entry->show)
3107 		return -EIO;
3108 	if (!rdev->mddev)
3109 		return -EBUSY;
3110 	return entry->show(rdev, page);
3111 }
3112 
3113 static ssize_t
3114 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3115 	      const char *page, size_t length)
3116 {
3117 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3118 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3119 	ssize_t rv;
3120 	struct mddev *mddev = rdev->mddev;
3121 
3122 	if (!entry->store)
3123 		return -EIO;
3124 	if (!capable(CAP_SYS_ADMIN))
3125 		return -EACCES;
3126 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3127 	if (!rv) {
3128 		if (rdev->mddev == NULL)
3129 			rv = -EBUSY;
3130 		else
3131 			rv = entry->store(rdev, page, length);
3132 		mddev_unlock(mddev);
3133 	}
3134 	return rv;
3135 }
3136 
3137 static void rdev_free(struct kobject *ko)
3138 {
3139 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3140 	kfree(rdev);
3141 }
3142 static const struct sysfs_ops rdev_sysfs_ops = {
3143 	.show		= rdev_attr_show,
3144 	.store		= rdev_attr_store,
3145 };
3146 static struct kobj_type rdev_ktype = {
3147 	.release	= rdev_free,
3148 	.sysfs_ops	= &rdev_sysfs_ops,
3149 	.default_attrs	= rdev_default_attrs,
3150 };
3151 
3152 int md_rdev_init(struct md_rdev *rdev)
3153 {
3154 	rdev->desc_nr = -1;
3155 	rdev->saved_raid_disk = -1;
3156 	rdev->raid_disk = -1;
3157 	rdev->flags = 0;
3158 	rdev->data_offset = 0;
3159 	rdev->new_data_offset = 0;
3160 	rdev->sb_events = 0;
3161 	rdev->last_read_error.tv_sec  = 0;
3162 	rdev->last_read_error.tv_nsec = 0;
3163 	rdev->sb_loaded = 0;
3164 	rdev->bb_page = NULL;
3165 	atomic_set(&rdev->nr_pending, 0);
3166 	atomic_set(&rdev->read_errors, 0);
3167 	atomic_set(&rdev->corrected_errors, 0);
3168 
3169 	INIT_LIST_HEAD(&rdev->same_set);
3170 	init_waitqueue_head(&rdev->blocked_wait);
3171 
3172 	/* Add space to store bad block list.
3173 	 * This reserves the space even on arrays where it cannot
3174 	 * be used - I wonder if that matters
3175 	 */
3176 	rdev->badblocks.count = 0;
3177 	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3178 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3179 	seqlock_init(&rdev->badblocks.lock);
3180 	if (rdev->badblocks.page == NULL)
3181 		return -ENOMEM;
3182 
3183 	return 0;
3184 }
3185 EXPORT_SYMBOL_GPL(md_rdev_init);
3186 /*
3187  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3188  *
3189  * mark the device faulty if:
3190  *
3191  *   - the device is nonexistent (zero size)
3192  *   - the device has no valid superblock
3193  *
3194  * a faulty rdev _never_ has rdev->sb set.
3195  */
3196 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3197 {
3198 	char b[BDEVNAME_SIZE];
3199 	int err;
3200 	struct md_rdev *rdev;
3201 	sector_t size;
3202 
3203 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3204 	if (!rdev) {
3205 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3206 		return ERR_PTR(-ENOMEM);
3207 	}
3208 
3209 	err = md_rdev_init(rdev);
3210 	if (err)
3211 		goto abort_free;
3212 	err = alloc_disk_sb(rdev);
3213 	if (err)
3214 		goto abort_free;
3215 
3216 	err = lock_rdev(rdev, newdev, super_format == -2);
3217 	if (err)
3218 		goto abort_free;
3219 
3220 	kobject_init(&rdev->kobj, &rdev_ktype);
3221 
3222 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3223 	if (!size) {
3224 		printk(KERN_WARNING
3225 			"md: %s has zero or unknown size, marking faulty!\n",
3226 			bdevname(rdev->bdev,b));
3227 		err = -EINVAL;
3228 		goto abort_free;
3229 	}
3230 
3231 	if (super_format >= 0) {
3232 		err = super_types[super_format].
3233 			load_super(rdev, NULL, super_minor);
3234 		if (err == -EINVAL) {
3235 			printk(KERN_WARNING
3236 				"md: %s does not have a valid v%d.%d "
3237 			       "superblock, not importing!\n",
3238 				bdevname(rdev->bdev,b),
3239 			       super_format, super_minor);
3240 			goto abort_free;
3241 		}
3242 		if (err < 0) {
3243 			printk(KERN_WARNING
3244 				"md: could not read %s's sb, not importing!\n",
3245 				bdevname(rdev->bdev,b));
3246 			goto abort_free;
3247 		}
3248 	}
3249 
3250 	return rdev;
3251 
3252 abort_free:
3253 	if (rdev->bdev)
3254 		unlock_rdev(rdev);
3255 	md_rdev_clear(rdev);
3256 	kfree(rdev);
3257 	return ERR_PTR(err);
3258 }
3259 
3260 /*
3261  * Check a full RAID array for plausibility
3262  */
3263 
3264 static void analyze_sbs(struct mddev *mddev)
3265 {
3266 	int i;
3267 	struct md_rdev *rdev, *freshest, *tmp;
3268 	char b[BDEVNAME_SIZE];
3269 
3270 	freshest = NULL;
3271 	rdev_for_each_safe(rdev, tmp, mddev)
3272 		switch (super_types[mddev->major_version].
3273 			load_super(rdev, freshest, mddev->minor_version)) {
3274 		case 1:
3275 			freshest = rdev;
3276 			break;
3277 		case 0:
3278 			break;
3279 		default:
3280 			printk( KERN_ERR \
3281 				"md: fatal superblock inconsistency in %s"
3282 				" -- removing from array\n",
3283 				bdevname(rdev->bdev,b));
3284 			md_kick_rdev_from_array(rdev);
3285 		}
3286 
3287 	super_types[mddev->major_version].
3288 		validate_super(mddev, freshest);
3289 
3290 	i = 0;
3291 	rdev_for_each_safe(rdev, tmp, mddev) {
3292 		if (mddev->max_disks &&
3293 		    (rdev->desc_nr >= mddev->max_disks ||
3294 		     i > mddev->max_disks)) {
3295 			printk(KERN_WARNING
3296 			       "md: %s: %s: only %d devices permitted\n",
3297 			       mdname(mddev), bdevname(rdev->bdev, b),
3298 			       mddev->max_disks);
3299 			md_kick_rdev_from_array(rdev);
3300 			continue;
3301 		}
3302 		if (rdev != freshest) {
3303 			if (super_types[mddev->major_version].
3304 			    validate_super(mddev, rdev)) {
3305 				printk(KERN_WARNING "md: kicking non-fresh %s"
3306 					" from array!\n",
3307 					bdevname(rdev->bdev,b));
3308 				md_kick_rdev_from_array(rdev);
3309 				continue;
3310 			}
3311 		}
3312 		if (mddev->level == LEVEL_MULTIPATH) {
3313 			rdev->desc_nr = i++;
3314 			rdev->raid_disk = rdev->desc_nr;
3315 			set_bit(In_sync, &rdev->flags);
3316 		} else if (rdev->raid_disk >=
3317 			    (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3318 			   !test_bit(Journal, &rdev->flags)) {
3319 			rdev->raid_disk = -1;
3320 			clear_bit(In_sync, &rdev->flags);
3321 		}
3322 	}
3323 }
3324 
3325 /* Read a fixed-point number.
3326  * Numbers in sysfs attributes should be in "standard" units where
3327  * possible, so time should be in seconds.
3328  * However we internally use a a much smaller unit such as
3329  * milliseconds or jiffies.
3330  * This function takes a decimal number with a possible fractional
3331  * component, and produces an integer which is the result of
3332  * multiplying that number by 10^'scale'.
3333  * all without any floating-point arithmetic.
3334  */
3335 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3336 {
3337 	unsigned long result = 0;
3338 	long decimals = -1;
3339 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3340 		if (*cp == '.')
3341 			decimals = 0;
3342 		else if (decimals < scale) {
3343 			unsigned int value;
3344 			value = *cp - '0';
3345 			result = result * 10 + value;
3346 			if (decimals >= 0)
3347 				decimals++;
3348 		}
3349 		cp++;
3350 	}
3351 	if (*cp == '\n')
3352 		cp++;
3353 	if (*cp)
3354 		return -EINVAL;
3355 	if (decimals < 0)
3356 		decimals = 0;
3357 	while (decimals < scale) {
3358 		result *= 10;
3359 		decimals ++;
3360 	}
3361 	*res = result;
3362 	return 0;
3363 }
3364 
3365 static ssize_t
3366 safe_delay_show(struct mddev *mddev, char *page)
3367 {
3368 	int msec = (mddev->safemode_delay*1000)/HZ;
3369 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3370 }
3371 static ssize_t
3372 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3373 {
3374 	unsigned long msec;
3375 
3376 	if (mddev_is_clustered(mddev)) {
3377 		pr_info("md: Safemode is disabled for clustered mode\n");
3378 		return -EINVAL;
3379 	}
3380 
3381 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3382 		return -EINVAL;
3383 	if (msec == 0)
3384 		mddev->safemode_delay = 0;
3385 	else {
3386 		unsigned long old_delay = mddev->safemode_delay;
3387 		unsigned long new_delay = (msec*HZ)/1000;
3388 
3389 		if (new_delay == 0)
3390 			new_delay = 1;
3391 		mddev->safemode_delay = new_delay;
3392 		if (new_delay < old_delay || old_delay == 0)
3393 			mod_timer(&mddev->safemode_timer, jiffies+1);
3394 	}
3395 	return len;
3396 }
3397 static struct md_sysfs_entry md_safe_delay =
3398 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3399 
3400 static ssize_t
3401 level_show(struct mddev *mddev, char *page)
3402 {
3403 	struct md_personality *p;
3404 	int ret;
3405 	spin_lock(&mddev->lock);
3406 	p = mddev->pers;
3407 	if (p)
3408 		ret = sprintf(page, "%s\n", p->name);
3409 	else if (mddev->clevel[0])
3410 		ret = sprintf(page, "%s\n", mddev->clevel);
3411 	else if (mddev->level != LEVEL_NONE)
3412 		ret = sprintf(page, "%d\n", mddev->level);
3413 	else
3414 		ret = 0;
3415 	spin_unlock(&mddev->lock);
3416 	return ret;
3417 }
3418 
3419 static ssize_t
3420 level_store(struct mddev *mddev, const char *buf, size_t len)
3421 {
3422 	char clevel[16];
3423 	ssize_t rv;
3424 	size_t slen = len;
3425 	struct md_personality *pers, *oldpers;
3426 	long level;
3427 	void *priv, *oldpriv;
3428 	struct md_rdev *rdev;
3429 
3430 	if (slen == 0 || slen >= sizeof(clevel))
3431 		return -EINVAL;
3432 
3433 	rv = mddev_lock(mddev);
3434 	if (rv)
3435 		return rv;
3436 
3437 	if (mddev->pers == NULL) {
3438 		strncpy(mddev->clevel, buf, slen);
3439 		if (mddev->clevel[slen-1] == '\n')
3440 			slen--;
3441 		mddev->clevel[slen] = 0;
3442 		mddev->level = LEVEL_NONE;
3443 		rv = len;
3444 		goto out_unlock;
3445 	}
3446 	rv = -EROFS;
3447 	if (mddev->ro)
3448 		goto out_unlock;
3449 
3450 	/* request to change the personality.  Need to ensure:
3451 	 *  - array is not engaged in resync/recovery/reshape
3452 	 *  - old personality can be suspended
3453 	 *  - new personality will access other array.
3454 	 */
3455 
3456 	rv = -EBUSY;
3457 	if (mddev->sync_thread ||
3458 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3459 	    mddev->reshape_position != MaxSector ||
3460 	    mddev->sysfs_active)
3461 		goto out_unlock;
3462 
3463 	rv = -EINVAL;
3464 	if (!mddev->pers->quiesce) {
3465 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3466 		       mdname(mddev), mddev->pers->name);
3467 		goto out_unlock;
3468 	}
3469 
3470 	/* Now find the new personality */
3471 	strncpy(clevel, buf, slen);
3472 	if (clevel[slen-1] == '\n')
3473 		slen--;
3474 	clevel[slen] = 0;
3475 	if (kstrtol(clevel, 10, &level))
3476 		level = LEVEL_NONE;
3477 
3478 	if (request_module("md-%s", clevel) != 0)
3479 		request_module("md-level-%s", clevel);
3480 	spin_lock(&pers_lock);
3481 	pers = find_pers(level, clevel);
3482 	if (!pers || !try_module_get(pers->owner)) {
3483 		spin_unlock(&pers_lock);
3484 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3485 		rv = -EINVAL;
3486 		goto out_unlock;
3487 	}
3488 	spin_unlock(&pers_lock);
3489 
3490 	if (pers == mddev->pers) {
3491 		/* Nothing to do! */
3492 		module_put(pers->owner);
3493 		rv = len;
3494 		goto out_unlock;
3495 	}
3496 	if (!pers->takeover) {
3497 		module_put(pers->owner);
3498 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3499 		       mdname(mddev), clevel);
3500 		rv = -EINVAL;
3501 		goto out_unlock;
3502 	}
3503 
3504 	rdev_for_each(rdev, mddev)
3505 		rdev->new_raid_disk = rdev->raid_disk;
3506 
3507 	/* ->takeover must set new_* and/or delta_disks
3508 	 * if it succeeds, and may set them when it fails.
3509 	 */
3510 	priv = pers->takeover(mddev);
3511 	if (IS_ERR(priv)) {
3512 		mddev->new_level = mddev->level;
3513 		mddev->new_layout = mddev->layout;
3514 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3515 		mddev->raid_disks -= mddev->delta_disks;
3516 		mddev->delta_disks = 0;
3517 		mddev->reshape_backwards = 0;
3518 		module_put(pers->owner);
3519 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3520 		       mdname(mddev), clevel);
3521 		rv = PTR_ERR(priv);
3522 		goto out_unlock;
3523 	}
3524 
3525 	/* Looks like we have a winner */
3526 	mddev_suspend(mddev);
3527 	mddev_detach(mddev);
3528 
3529 	spin_lock(&mddev->lock);
3530 	oldpers = mddev->pers;
3531 	oldpriv = mddev->private;
3532 	mddev->pers = pers;
3533 	mddev->private = priv;
3534 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3535 	mddev->level = mddev->new_level;
3536 	mddev->layout = mddev->new_layout;
3537 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3538 	mddev->delta_disks = 0;
3539 	mddev->reshape_backwards = 0;
3540 	mddev->degraded = 0;
3541 	spin_unlock(&mddev->lock);
3542 
3543 	if (oldpers->sync_request == NULL &&
3544 	    mddev->external) {
3545 		/* We are converting from a no-redundancy array
3546 		 * to a redundancy array and metadata is managed
3547 		 * externally so we need to be sure that writes
3548 		 * won't block due to a need to transition
3549 		 *      clean->dirty
3550 		 * until external management is started.
3551 		 */
3552 		mddev->in_sync = 0;
3553 		mddev->safemode_delay = 0;
3554 		mddev->safemode = 0;
3555 	}
3556 
3557 	oldpers->free(mddev, oldpriv);
3558 
3559 	if (oldpers->sync_request == NULL &&
3560 	    pers->sync_request != NULL) {
3561 		/* need to add the md_redundancy_group */
3562 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3563 			printk(KERN_WARNING
3564 			       "md: cannot register extra attributes for %s\n",
3565 			       mdname(mddev));
3566 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3567 	}
3568 	if (oldpers->sync_request != NULL &&
3569 	    pers->sync_request == NULL) {
3570 		/* need to remove the md_redundancy_group */
3571 		if (mddev->to_remove == NULL)
3572 			mddev->to_remove = &md_redundancy_group;
3573 	}
3574 
3575 	rdev_for_each(rdev, mddev) {
3576 		if (rdev->raid_disk < 0)
3577 			continue;
3578 		if (rdev->new_raid_disk >= mddev->raid_disks)
3579 			rdev->new_raid_disk = -1;
3580 		if (rdev->new_raid_disk == rdev->raid_disk)
3581 			continue;
3582 		sysfs_unlink_rdev(mddev, rdev);
3583 	}
3584 	rdev_for_each(rdev, mddev) {
3585 		if (rdev->raid_disk < 0)
3586 			continue;
3587 		if (rdev->new_raid_disk == rdev->raid_disk)
3588 			continue;
3589 		rdev->raid_disk = rdev->new_raid_disk;
3590 		if (rdev->raid_disk < 0)
3591 			clear_bit(In_sync, &rdev->flags);
3592 		else {
3593 			if (sysfs_link_rdev(mddev, rdev))
3594 				printk(KERN_WARNING "md: cannot register rd%d"
3595 				       " for %s after level change\n",
3596 				       rdev->raid_disk, mdname(mddev));
3597 		}
3598 	}
3599 
3600 	if (pers->sync_request == NULL) {
3601 		/* this is now an array without redundancy, so
3602 		 * it must always be in_sync
3603 		 */
3604 		mddev->in_sync = 1;
3605 		del_timer_sync(&mddev->safemode_timer);
3606 	}
3607 	blk_set_stacking_limits(&mddev->queue->limits);
3608 	pers->run(mddev);
3609 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3610 	mddev_resume(mddev);
3611 	if (!mddev->thread)
3612 		md_update_sb(mddev, 1);
3613 	sysfs_notify(&mddev->kobj, NULL, "level");
3614 	md_new_event(mddev);
3615 	rv = len;
3616 out_unlock:
3617 	mddev_unlock(mddev);
3618 	return rv;
3619 }
3620 
3621 static struct md_sysfs_entry md_level =
3622 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3623 
3624 static ssize_t
3625 layout_show(struct mddev *mddev, char *page)
3626 {
3627 	/* just a number, not meaningful for all levels */
3628 	if (mddev->reshape_position != MaxSector &&
3629 	    mddev->layout != mddev->new_layout)
3630 		return sprintf(page, "%d (%d)\n",
3631 			       mddev->new_layout, mddev->layout);
3632 	return sprintf(page, "%d\n", mddev->layout);
3633 }
3634 
3635 static ssize_t
3636 layout_store(struct mddev *mddev, const char *buf, size_t len)
3637 {
3638 	unsigned int n;
3639 	int err;
3640 
3641 	err = kstrtouint(buf, 10, &n);
3642 	if (err < 0)
3643 		return err;
3644 	err = mddev_lock(mddev);
3645 	if (err)
3646 		return err;
3647 
3648 	if (mddev->pers) {
3649 		if (mddev->pers->check_reshape == NULL)
3650 			err = -EBUSY;
3651 		else if (mddev->ro)
3652 			err = -EROFS;
3653 		else {
3654 			mddev->new_layout = n;
3655 			err = mddev->pers->check_reshape(mddev);
3656 			if (err)
3657 				mddev->new_layout = mddev->layout;
3658 		}
3659 	} else {
3660 		mddev->new_layout = n;
3661 		if (mddev->reshape_position == MaxSector)
3662 			mddev->layout = n;
3663 	}
3664 	mddev_unlock(mddev);
3665 	return err ?: len;
3666 }
3667 static struct md_sysfs_entry md_layout =
3668 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3669 
3670 static ssize_t
3671 raid_disks_show(struct mddev *mddev, char *page)
3672 {
3673 	if (mddev->raid_disks == 0)
3674 		return 0;
3675 	if (mddev->reshape_position != MaxSector &&
3676 	    mddev->delta_disks != 0)
3677 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3678 			       mddev->raid_disks - mddev->delta_disks);
3679 	return sprintf(page, "%d\n", mddev->raid_disks);
3680 }
3681 
3682 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3683 
3684 static ssize_t
3685 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3686 {
3687 	unsigned int n;
3688 	int err;
3689 
3690 	err = kstrtouint(buf, 10, &n);
3691 	if (err < 0)
3692 		return err;
3693 
3694 	err = mddev_lock(mddev);
3695 	if (err)
3696 		return err;
3697 	if (mddev->pers)
3698 		err = update_raid_disks(mddev, n);
3699 	else if (mddev->reshape_position != MaxSector) {
3700 		struct md_rdev *rdev;
3701 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3702 
3703 		err = -EINVAL;
3704 		rdev_for_each(rdev, mddev) {
3705 			if (olddisks < n &&
3706 			    rdev->data_offset < rdev->new_data_offset)
3707 				goto out_unlock;
3708 			if (olddisks > n &&
3709 			    rdev->data_offset > rdev->new_data_offset)
3710 				goto out_unlock;
3711 		}
3712 		err = 0;
3713 		mddev->delta_disks = n - olddisks;
3714 		mddev->raid_disks = n;
3715 		mddev->reshape_backwards = (mddev->delta_disks < 0);
3716 	} else
3717 		mddev->raid_disks = n;
3718 out_unlock:
3719 	mddev_unlock(mddev);
3720 	return err ? err : len;
3721 }
3722 static struct md_sysfs_entry md_raid_disks =
3723 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3724 
3725 static ssize_t
3726 chunk_size_show(struct mddev *mddev, char *page)
3727 {
3728 	if (mddev->reshape_position != MaxSector &&
3729 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3730 		return sprintf(page, "%d (%d)\n",
3731 			       mddev->new_chunk_sectors << 9,
3732 			       mddev->chunk_sectors << 9);
3733 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3734 }
3735 
3736 static ssize_t
3737 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3738 {
3739 	unsigned long n;
3740 	int err;
3741 
3742 	err = kstrtoul(buf, 10, &n);
3743 	if (err < 0)
3744 		return err;
3745 
3746 	err = mddev_lock(mddev);
3747 	if (err)
3748 		return err;
3749 	if (mddev->pers) {
3750 		if (mddev->pers->check_reshape == NULL)
3751 			err = -EBUSY;
3752 		else if (mddev->ro)
3753 			err = -EROFS;
3754 		else {
3755 			mddev->new_chunk_sectors = n >> 9;
3756 			err = mddev->pers->check_reshape(mddev);
3757 			if (err)
3758 				mddev->new_chunk_sectors = mddev->chunk_sectors;
3759 		}
3760 	} else {
3761 		mddev->new_chunk_sectors = n >> 9;
3762 		if (mddev->reshape_position == MaxSector)
3763 			mddev->chunk_sectors = n >> 9;
3764 	}
3765 	mddev_unlock(mddev);
3766 	return err ?: len;
3767 }
3768 static struct md_sysfs_entry md_chunk_size =
3769 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3770 
3771 static ssize_t
3772 resync_start_show(struct mddev *mddev, char *page)
3773 {
3774 	if (mddev->recovery_cp == MaxSector)
3775 		return sprintf(page, "none\n");
3776 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3777 }
3778 
3779 static ssize_t
3780 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3781 {
3782 	unsigned long long n;
3783 	int err;
3784 
3785 	if (cmd_match(buf, "none"))
3786 		n = MaxSector;
3787 	else {
3788 		err = kstrtoull(buf, 10, &n);
3789 		if (err < 0)
3790 			return err;
3791 		if (n != (sector_t)n)
3792 			return -EINVAL;
3793 	}
3794 
3795 	err = mddev_lock(mddev);
3796 	if (err)
3797 		return err;
3798 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3799 		err = -EBUSY;
3800 
3801 	if (!err) {
3802 		mddev->recovery_cp = n;
3803 		if (mddev->pers)
3804 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3805 	}
3806 	mddev_unlock(mddev);
3807 	return err ?: len;
3808 }
3809 static struct md_sysfs_entry md_resync_start =
3810 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3811 		resync_start_show, resync_start_store);
3812 
3813 /*
3814  * The array state can be:
3815  *
3816  * clear
3817  *     No devices, no size, no level
3818  *     Equivalent to STOP_ARRAY ioctl
3819  * inactive
3820  *     May have some settings, but array is not active
3821  *        all IO results in error
3822  *     When written, doesn't tear down array, but just stops it
3823  * suspended (not supported yet)
3824  *     All IO requests will block. The array can be reconfigured.
3825  *     Writing this, if accepted, will block until array is quiescent
3826  * readonly
3827  *     no resync can happen.  no superblocks get written.
3828  *     write requests fail
3829  * read-auto
3830  *     like readonly, but behaves like 'clean' on a write request.
3831  *
3832  * clean - no pending writes, but otherwise active.
3833  *     When written to inactive array, starts without resync
3834  *     If a write request arrives then
3835  *       if metadata is known, mark 'dirty' and switch to 'active'.
3836  *       if not known, block and switch to write-pending
3837  *     If written to an active array that has pending writes, then fails.
3838  * active
3839  *     fully active: IO and resync can be happening.
3840  *     When written to inactive array, starts with resync
3841  *
3842  * write-pending
3843  *     clean, but writes are blocked waiting for 'active' to be written.
3844  *
3845  * active-idle
3846  *     like active, but no writes have been seen for a while (100msec).
3847  *
3848  */
3849 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3850 		   write_pending, active_idle, bad_word};
3851 static char *array_states[] = {
3852 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3853 	"write-pending", "active-idle", NULL };
3854 
3855 static int match_word(const char *word, char **list)
3856 {
3857 	int n;
3858 	for (n=0; list[n]; n++)
3859 		if (cmd_match(word, list[n]))
3860 			break;
3861 	return n;
3862 }
3863 
3864 static ssize_t
3865 array_state_show(struct mddev *mddev, char *page)
3866 {
3867 	enum array_state st = inactive;
3868 
3869 	if (mddev->pers)
3870 		switch(mddev->ro) {
3871 		case 1:
3872 			st = readonly;
3873 			break;
3874 		case 2:
3875 			st = read_auto;
3876 			break;
3877 		case 0:
3878 			if (mddev->in_sync)
3879 				st = clean;
3880 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3881 				st = write_pending;
3882 			else if (mddev->safemode)
3883 				st = active_idle;
3884 			else
3885 				st = active;
3886 		}
3887 	else {
3888 		if (list_empty(&mddev->disks) &&
3889 		    mddev->raid_disks == 0 &&
3890 		    mddev->dev_sectors == 0)
3891 			st = clear;
3892 		else
3893 			st = inactive;
3894 	}
3895 	return sprintf(page, "%s\n", array_states[st]);
3896 }
3897 
3898 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3899 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3900 static int do_md_run(struct mddev *mddev);
3901 static int restart_array(struct mddev *mddev);
3902 
3903 static ssize_t
3904 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3905 {
3906 	int err;
3907 	enum array_state st = match_word(buf, array_states);
3908 
3909 	if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3910 		/* don't take reconfig_mutex when toggling between
3911 		 * clean and active
3912 		 */
3913 		spin_lock(&mddev->lock);
3914 		if (st == active) {
3915 			restart_array(mddev);
3916 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3917 			wake_up(&mddev->sb_wait);
3918 			err = 0;
3919 		} else /* st == clean */ {
3920 			restart_array(mddev);
3921 			if (atomic_read(&mddev->writes_pending) == 0) {
3922 				if (mddev->in_sync == 0) {
3923 					mddev->in_sync = 1;
3924 					if (mddev->safemode == 1)
3925 						mddev->safemode = 0;
3926 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3927 				}
3928 				err = 0;
3929 			} else
3930 				err = -EBUSY;
3931 		}
3932 		spin_unlock(&mddev->lock);
3933 		return err ?: len;
3934 	}
3935 	err = mddev_lock(mddev);
3936 	if (err)
3937 		return err;
3938 	err = -EINVAL;
3939 	switch(st) {
3940 	case bad_word:
3941 		break;
3942 	case clear:
3943 		/* stopping an active array */
3944 		err = do_md_stop(mddev, 0, NULL);
3945 		break;
3946 	case inactive:
3947 		/* stopping an active array */
3948 		if (mddev->pers)
3949 			err = do_md_stop(mddev, 2, NULL);
3950 		else
3951 			err = 0; /* already inactive */
3952 		break;
3953 	case suspended:
3954 		break; /* not supported yet */
3955 	case readonly:
3956 		if (mddev->pers)
3957 			err = md_set_readonly(mddev, NULL);
3958 		else {
3959 			mddev->ro = 1;
3960 			set_disk_ro(mddev->gendisk, 1);
3961 			err = do_md_run(mddev);
3962 		}
3963 		break;
3964 	case read_auto:
3965 		if (mddev->pers) {
3966 			if (mddev->ro == 0)
3967 				err = md_set_readonly(mddev, NULL);
3968 			else if (mddev->ro == 1)
3969 				err = restart_array(mddev);
3970 			if (err == 0) {
3971 				mddev->ro = 2;
3972 				set_disk_ro(mddev->gendisk, 0);
3973 			}
3974 		} else {
3975 			mddev->ro = 2;
3976 			err = do_md_run(mddev);
3977 		}
3978 		break;
3979 	case clean:
3980 		if (mddev->pers) {
3981 			err = restart_array(mddev);
3982 			if (err)
3983 				break;
3984 			spin_lock(&mddev->lock);
3985 			if (atomic_read(&mddev->writes_pending) == 0) {
3986 				if (mddev->in_sync == 0) {
3987 					mddev->in_sync = 1;
3988 					if (mddev->safemode == 1)
3989 						mddev->safemode = 0;
3990 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3991 				}
3992 				err = 0;
3993 			} else
3994 				err = -EBUSY;
3995 			spin_unlock(&mddev->lock);
3996 		} else
3997 			err = -EINVAL;
3998 		break;
3999 	case active:
4000 		if (mddev->pers) {
4001 			err = restart_array(mddev);
4002 			if (err)
4003 				break;
4004 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4005 			wake_up(&mddev->sb_wait);
4006 			err = 0;
4007 		} else {
4008 			mddev->ro = 0;
4009 			set_disk_ro(mddev->gendisk, 0);
4010 			err = do_md_run(mddev);
4011 		}
4012 		break;
4013 	case write_pending:
4014 	case active_idle:
4015 		/* these cannot be set */
4016 		break;
4017 	}
4018 
4019 	if (!err) {
4020 		if (mddev->hold_active == UNTIL_IOCTL)
4021 			mddev->hold_active = 0;
4022 		sysfs_notify_dirent_safe(mddev->sysfs_state);
4023 	}
4024 	mddev_unlock(mddev);
4025 	return err ?: len;
4026 }
4027 static struct md_sysfs_entry md_array_state =
4028 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4029 
4030 static ssize_t
4031 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4032 	return sprintf(page, "%d\n",
4033 		       atomic_read(&mddev->max_corr_read_errors));
4034 }
4035 
4036 static ssize_t
4037 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4038 {
4039 	unsigned int n;
4040 	int rv;
4041 
4042 	rv = kstrtouint(buf, 10, &n);
4043 	if (rv < 0)
4044 		return rv;
4045 	atomic_set(&mddev->max_corr_read_errors, n);
4046 	return len;
4047 }
4048 
4049 static struct md_sysfs_entry max_corr_read_errors =
4050 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4051 	max_corrected_read_errors_store);
4052 
4053 static ssize_t
4054 null_show(struct mddev *mddev, char *page)
4055 {
4056 	return -EINVAL;
4057 }
4058 
4059 static ssize_t
4060 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4061 {
4062 	/* buf must be %d:%d\n? giving major and minor numbers */
4063 	/* The new device is added to the array.
4064 	 * If the array has a persistent superblock, we read the
4065 	 * superblock to initialise info and check validity.
4066 	 * Otherwise, only checking done is that in bind_rdev_to_array,
4067 	 * which mainly checks size.
4068 	 */
4069 	char *e;
4070 	int major = simple_strtoul(buf, &e, 10);
4071 	int minor;
4072 	dev_t dev;
4073 	struct md_rdev *rdev;
4074 	int err;
4075 
4076 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4077 		return -EINVAL;
4078 	minor = simple_strtoul(e+1, &e, 10);
4079 	if (*e && *e != '\n')
4080 		return -EINVAL;
4081 	dev = MKDEV(major, minor);
4082 	if (major != MAJOR(dev) ||
4083 	    minor != MINOR(dev))
4084 		return -EOVERFLOW;
4085 
4086 	flush_workqueue(md_misc_wq);
4087 
4088 	err = mddev_lock(mddev);
4089 	if (err)
4090 		return err;
4091 	if (mddev->persistent) {
4092 		rdev = md_import_device(dev, mddev->major_version,
4093 					mddev->minor_version);
4094 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4095 			struct md_rdev *rdev0
4096 				= list_entry(mddev->disks.next,
4097 					     struct md_rdev, same_set);
4098 			err = super_types[mddev->major_version]
4099 				.load_super(rdev, rdev0, mddev->minor_version);
4100 			if (err < 0)
4101 				goto out;
4102 		}
4103 	} else if (mddev->external)
4104 		rdev = md_import_device(dev, -2, -1);
4105 	else
4106 		rdev = md_import_device(dev, -1, -1);
4107 
4108 	if (IS_ERR(rdev)) {
4109 		mddev_unlock(mddev);
4110 		return PTR_ERR(rdev);
4111 	}
4112 	err = bind_rdev_to_array(rdev, mddev);
4113  out:
4114 	if (err)
4115 		export_rdev(rdev);
4116 	mddev_unlock(mddev);
4117 	return err ? err : len;
4118 }
4119 
4120 static struct md_sysfs_entry md_new_device =
4121 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4122 
4123 static ssize_t
4124 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 	char *end;
4127 	unsigned long chunk, end_chunk;
4128 	int err;
4129 
4130 	err = mddev_lock(mddev);
4131 	if (err)
4132 		return err;
4133 	if (!mddev->bitmap)
4134 		goto out;
4135 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4136 	while (*buf) {
4137 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
4138 		if (buf == end) break;
4139 		if (*end == '-') { /* range */
4140 			buf = end + 1;
4141 			end_chunk = simple_strtoul(buf, &end, 0);
4142 			if (buf == end) break;
4143 		}
4144 		if (*end && !isspace(*end)) break;
4145 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4146 		buf = skip_spaces(end);
4147 	}
4148 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4149 out:
4150 	mddev_unlock(mddev);
4151 	return len;
4152 }
4153 
4154 static struct md_sysfs_entry md_bitmap =
4155 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4156 
4157 static ssize_t
4158 size_show(struct mddev *mddev, char *page)
4159 {
4160 	return sprintf(page, "%llu\n",
4161 		(unsigned long long)mddev->dev_sectors / 2);
4162 }
4163 
4164 static int update_size(struct mddev *mddev, sector_t num_sectors);
4165 
4166 static ssize_t
4167 size_store(struct mddev *mddev, const char *buf, size_t len)
4168 {
4169 	/* If array is inactive, we can reduce the component size, but
4170 	 * not increase it (except from 0).
4171 	 * If array is active, we can try an on-line resize
4172 	 */
4173 	sector_t sectors;
4174 	int err = strict_blocks_to_sectors(buf, &sectors);
4175 
4176 	if (err < 0)
4177 		return err;
4178 	err = mddev_lock(mddev);
4179 	if (err)
4180 		return err;
4181 	if (mddev->pers) {
4182 		err = update_size(mddev, sectors);
4183 		md_update_sb(mddev, 1);
4184 	} else {
4185 		if (mddev->dev_sectors == 0 ||
4186 		    mddev->dev_sectors > sectors)
4187 			mddev->dev_sectors = sectors;
4188 		else
4189 			err = -ENOSPC;
4190 	}
4191 	mddev_unlock(mddev);
4192 	return err ? err : len;
4193 }
4194 
4195 static struct md_sysfs_entry md_size =
4196 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4197 
4198 /* Metadata version.
4199  * This is one of
4200  *   'none' for arrays with no metadata (good luck...)
4201  *   'external' for arrays with externally managed metadata,
4202  * or N.M for internally known formats
4203  */
4204 static ssize_t
4205 metadata_show(struct mddev *mddev, char *page)
4206 {
4207 	if (mddev->persistent)
4208 		return sprintf(page, "%d.%d\n",
4209 			       mddev->major_version, mddev->minor_version);
4210 	else if (mddev->external)
4211 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4212 	else
4213 		return sprintf(page, "none\n");
4214 }
4215 
4216 static ssize_t
4217 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4218 {
4219 	int major, minor;
4220 	char *e;
4221 	int err;
4222 	/* Changing the details of 'external' metadata is
4223 	 * always permitted.  Otherwise there must be
4224 	 * no devices attached to the array.
4225 	 */
4226 
4227 	err = mddev_lock(mddev);
4228 	if (err)
4229 		return err;
4230 	err = -EBUSY;
4231 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4232 		;
4233 	else if (!list_empty(&mddev->disks))
4234 		goto out_unlock;
4235 
4236 	err = 0;
4237 	if (cmd_match(buf, "none")) {
4238 		mddev->persistent = 0;
4239 		mddev->external = 0;
4240 		mddev->major_version = 0;
4241 		mddev->minor_version = 90;
4242 		goto out_unlock;
4243 	}
4244 	if (strncmp(buf, "external:", 9) == 0) {
4245 		size_t namelen = len-9;
4246 		if (namelen >= sizeof(mddev->metadata_type))
4247 			namelen = sizeof(mddev->metadata_type)-1;
4248 		strncpy(mddev->metadata_type, buf+9, namelen);
4249 		mddev->metadata_type[namelen] = 0;
4250 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4251 			mddev->metadata_type[--namelen] = 0;
4252 		mddev->persistent = 0;
4253 		mddev->external = 1;
4254 		mddev->major_version = 0;
4255 		mddev->minor_version = 90;
4256 		goto out_unlock;
4257 	}
4258 	major = simple_strtoul(buf, &e, 10);
4259 	err = -EINVAL;
4260 	if (e==buf || *e != '.')
4261 		goto out_unlock;
4262 	buf = e+1;
4263 	minor = simple_strtoul(buf, &e, 10);
4264 	if (e==buf || (*e && *e != '\n') )
4265 		goto out_unlock;
4266 	err = -ENOENT;
4267 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4268 		goto out_unlock;
4269 	mddev->major_version = major;
4270 	mddev->minor_version = minor;
4271 	mddev->persistent = 1;
4272 	mddev->external = 0;
4273 	err = 0;
4274 out_unlock:
4275 	mddev_unlock(mddev);
4276 	return err ?: len;
4277 }
4278 
4279 static struct md_sysfs_entry md_metadata =
4280 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4281 
4282 static ssize_t
4283 action_show(struct mddev *mddev, char *page)
4284 {
4285 	char *type = "idle";
4286 	unsigned long recovery = mddev->recovery;
4287 	if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4288 		type = "frozen";
4289 	else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4290 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4291 		if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4292 			type = "reshape";
4293 		else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4294 			if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4295 				type = "resync";
4296 			else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4297 				type = "check";
4298 			else
4299 				type = "repair";
4300 		} else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4301 			type = "recover";
4302 		else if (mddev->reshape_position != MaxSector)
4303 			type = "reshape";
4304 	}
4305 	return sprintf(page, "%s\n", type);
4306 }
4307 
4308 static ssize_t
4309 action_store(struct mddev *mddev, const char *page, size_t len)
4310 {
4311 	if (!mddev->pers || !mddev->pers->sync_request)
4312 		return -EINVAL;
4313 
4314 
4315 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4316 		if (cmd_match(page, "frozen"))
4317 			set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4318 		else
4319 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4320 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4321 		    mddev_lock(mddev) == 0) {
4322 			flush_workqueue(md_misc_wq);
4323 			if (mddev->sync_thread) {
4324 				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4325 				md_reap_sync_thread(mddev);
4326 			}
4327 			mddev_unlock(mddev);
4328 		}
4329 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4330 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4331 		return -EBUSY;
4332 	else if (cmd_match(page, "resync"))
4333 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4334 	else if (cmd_match(page, "recover")) {
4335 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4337 	} else if (cmd_match(page, "reshape")) {
4338 		int err;
4339 		if (mddev->pers->start_reshape == NULL)
4340 			return -EINVAL;
4341 		err = mddev_lock(mddev);
4342 		if (!err) {
4343 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4344 			err = mddev->pers->start_reshape(mddev);
4345 			mddev_unlock(mddev);
4346 		}
4347 		if (err)
4348 			return err;
4349 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4350 	} else {
4351 		if (cmd_match(page, "check"))
4352 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4353 		else if (!cmd_match(page, "repair"))
4354 			return -EINVAL;
4355 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4356 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4357 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4358 	}
4359 	if (mddev->ro == 2) {
4360 		/* A write to sync_action is enough to justify
4361 		 * canceling read-auto mode
4362 		 */
4363 		mddev->ro = 0;
4364 		md_wakeup_thread(mddev->sync_thread);
4365 	}
4366 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4367 	md_wakeup_thread(mddev->thread);
4368 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4369 	return len;
4370 }
4371 
4372 static struct md_sysfs_entry md_scan_mode =
4373 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4374 
4375 static ssize_t
4376 last_sync_action_show(struct mddev *mddev, char *page)
4377 {
4378 	return sprintf(page, "%s\n", mddev->last_sync_action);
4379 }
4380 
4381 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4382 
4383 static ssize_t
4384 mismatch_cnt_show(struct mddev *mddev, char *page)
4385 {
4386 	return sprintf(page, "%llu\n",
4387 		       (unsigned long long)
4388 		       atomic64_read(&mddev->resync_mismatches));
4389 }
4390 
4391 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4392 
4393 static ssize_t
4394 sync_min_show(struct mddev *mddev, char *page)
4395 {
4396 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4397 		       mddev->sync_speed_min ? "local": "system");
4398 }
4399 
4400 static ssize_t
4401 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4402 {
4403 	unsigned int min;
4404 	int rv;
4405 
4406 	if (strncmp(buf, "system", 6)==0) {
4407 		min = 0;
4408 	} else {
4409 		rv = kstrtouint(buf, 10, &min);
4410 		if (rv < 0)
4411 			return rv;
4412 		if (min == 0)
4413 			return -EINVAL;
4414 	}
4415 	mddev->sync_speed_min = min;
4416 	return len;
4417 }
4418 
4419 static struct md_sysfs_entry md_sync_min =
4420 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4421 
4422 static ssize_t
4423 sync_max_show(struct mddev *mddev, char *page)
4424 {
4425 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4426 		       mddev->sync_speed_max ? "local": "system");
4427 }
4428 
4429 static ssize_t
4430 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4431 {
4432 	unsigned int max;
4433 	int rv;
4434 
4435 	if (strncmp(buf, "system", 6)==0) {
4436 		max = 0;
4437 	} else {
4438 		rv = kstrtouint(buf, 10, &max);
4439 		if (rv < 0)
4440 			return rv;
4441 		if (max == 0)
4442 			return -EINVAL;
4443 	}
4444 	mddev->sync_speed_max = max;
4445 	return len;
4446 }
4447 
4448 static struct md_sysfs_entry md_sync_max =
4449 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4450 
4451 static ssize_t
4452 degraded_show(struct mddev *mddev, char *page)
4453 {
4454 	return sprintf(page, "%d\n", mddev->degraded);
4455 }
4456 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4457 
4458 static ssize_t
4459 sync_force_parallel_show(struct mddev *mddev, char *page)
4460 {
4461 	return sprintf(page, "%d\n", mddev->parallel_resync);
4462 }
4463 
4464 static ssize_t
4465 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4466 {
4467 	long n;
4468 
4469 	if (kstrtol(buf, 10, &n))
4470 		return -EINVAL;
4471 
4472 	if (n != 0 && n != 1)
4473 		return -EINVAL;
4474 
4475 	mddev->parallel_resync = n;
4476 
4477 	if (mddev->sync_thread)
4478 		wake_up(&resync_wait);
4479 
4480 	return len;
4481 }
4482 
4483 /* force parallel resync, even with shared block devices */
4484 static struct md_sysfs_entry md_sync_force_parallel =
4485 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4486        sync_force_parallel_show, sync_force_parallel_store);
4487 
4488 static ssize_t
4489 sync_speed_show(struct mddev *mddev, char *page)
4490 {
4491 	unsigned long resync, dt, db;
4492 	if (mddev->curr_resync == 0)
4493 		return sprintf(page, "none\n");
4494 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4495 	dt = (jiffies - mddev->resync_mark) / HZ;
4496 	if (!dt) dt++;
4497 	db = resync - mddev->resync_mark_cnt;
4498 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4499 }
4500 
4501 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4502 
4503 static ssize_t
4504 sync_completed_show(struct mddev *mddev, char *page)
4505 {
4506 	unsigned long long max_sectors, resync;
4507 
4508 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4509 		return sprintf(page, "none\n");
4510 
4511 	if (mddev->curr_resync == 1 ||
4512 	    mddev->curr_resync == 2)
4513 		return sprintf(page, "delayed\n");
4514 
4515 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4516 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4517 		max_sectors = mddev->resync_max_sectors;
4518 	else
4519 		max_sectors = mddev->dev_sectors;
4520 
4521 	resync = mddev->curr_resync_completed;
4522 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4523 }
4524 
4525 static struct md_sysfs_entry md_sync_completed =
4526 	__ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4527 
4528 static ssize_t
4529 min_sync_show(struct mddev *mddev, char *page)
4530 {
4531 	return sprintf(page, "%llu\n",
4532 		       (unsigned long long)mddev->resync_min);
4533 }
4534 static ssize_t
4535 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537 	unsigned long long min;
4538 	int err;
4539 
4540 	if (kstrtoull(buf, 10, &min))
4541 		return -EINVAL;
4542 
4543 	spin_lock(&mddev->lock);
4544 	err = -EINVAL;
4545 	if (min > mddev->resync_max)
4546 		goto out_unlock;
4547 
4548 	err = -EBUSY;
4549 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4550 		goto out_unlock;
4551 
4552 	/* Round down to multiple of 4K for safety */
4553 	mddev->resync_min = round_down(min, 8);
4554 	err = 0;
4555 
4556 out_unlock:
4557 	spin_unlock(&mddev->lock);
4558 	return err ?: len;
4559 }
4560 
4561 static struct md_sysfs_entry md_min_sync =
4562 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4563 
4564 static ssize_t
4565 max_sync_show(struct mddev *mddev, char *page)
4566 {
4567 	if (mddev->resync_max == MaxSector)
4568 		return sprintf(page, "max\n");
4569 	else
4570 		return sprintf(page, "%llu\n",
4571 			       (unsigned long long)mddev->resync_max);
4572 }
4573 static ssize_t
4574 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 	int err;
4577 	spin_lock(&mddev->lock);
4578 	if (strncmp(buf, "max", 3) == 0)
4579 		mddev->resync_max = MaxSector;
4580 	else {
4581 		unsigned long long max;
4582 		int chunk;
4583 
4584 		err = -EINVAL;
4585 		if (kstrtoull(buf, 10, &max))
4586 			goto out_unlock;
4587 		if (max < mddev->resync_min)
4588 			goto out_unlock;
4589 
4590 		err = -EBUSY;
4591 		if (max < mddev->resync_max &&
4592 		    mddev->ro == 0 &&
4593 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4594 			goto out_unlock;
4595 
4596 		/* Must be a multiple of chunk_size */
4597 		chunk = mddev->chunk_sectors;
4598 		if (chunk) {
4599 			sector_t temp = max;
4600 
4601 			err = -EINVAL;
4602 			if (sector_div(temp, chunk))
4603 				goto out_unlock;
4604 		}
4605 		mddev->resync_max = max;
4606 	}
4607 	wake_up(&mddev->recovery_wait);
4608 	err = 0;
4609 out_unlock:
4610 	spin_unlock(&mddev->lock);
4611 	return err ?: len;
4612 }
4613 
4614 static struct md_sysfs_entry md_max_sync =
4615 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4616 
4617 static ssize_t
4618 suspend_lo_show(struct mddev *mddev, char *page)
4619 {
4620 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4621 }
4622 
4623 static ssize_t
4624 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4625 {
4626 	unsigned long long old, new;
4627 	int err;
4628 
4629 	err = kstrtoull(buf, 10, &new);
4630 	if (err < 0)
4631 		return err;
4632 	if (new != (sector_t)new)
4633 		return -EINVAL;
4634 
4635 	err = mddev_lock(mddev);
4636 	if (err)
4637 		return err;
4638 	err = -EINVAL;
4639 	if (mddev->pers == NULL ||
4640 	    mddev->pers->quiesce == NULL)
4641 		goto unlock;
4642 	old = mddev->suspend_lo;
4643 	mddev->suspend_lo = new;
4644 	if (new >= old)
4645 		/* Shrinking suspended region */
4646 		mddev->pers->quiesce(mddev, 2);
4647 	else {
4648 		/* Expanding suspended region - need to wait */
4649 		mddev->pers->quiesce(mddev, 1);
4650 		mddev->pers->quiesce(mddev, 0);
4651 	}
4652 	err = 0;
4653 unlock:
4654 	mddev_unlock(mddev);
4655 	return err ?: len;
4656 }
4657 static struct md_sysfs_entry md_suspend_lo =
4658 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4659 
4660 static ssize_t
4661 suspend_hi_show(struct mddev *mddev, char *page)
4662 {
4663 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4664 }
4665 
4666 static ssize_t
4667 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4668 {
4669 	unsigned long long old, new;
4670 	int err;
4671 
4672 	err = kstrtoull(buf, 10, &new);
4673 	if (err < 0)
4674 		return err;
4675 	if (new != (sector_t)new)
4676 		return -EINVAL;
4677 
4678 	err = mddev_lock(mddev);
4679 	if (err)
4680 		return err;
4681 	err = -EINVAL;
4682 	if (mddev->pers == NULL ||
4683 	    mddev->pers->quiesce == NULL)
4684 		goto unlock;
4685 	old = mddev->suspend_hi;
4686 	mddev->suspend_hi = new;
4687 	if (new <= old)
4688 		/* Shrinking suspended region */
4689 		mddev->pers->quiesce(mddev, 2);
4690 	else {
4691 		/* Expanding suspended region - need to wait */
4692 		mddev->pers->quiesce(mddev, 1);
4693 		mddev->pers->quiesce(mddev, 0);
4694 	}
4695 	err = 0;
4696 unlock:
4697 	mddev_unlock(mddev);
4698 	return err ?: len;
4699 }
4700 static struct md_sysfs_entry md_suspend_hi =
4701 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4702 
4703 static ssize_t
4704 reshape_position_show(struct mddev *mddev, char *page)
4705 {
4706 	if (mddev->reshape_position != MaxSector)
4707 		return sprintf(page, "%llu\n",
4708 			       (unsigned long long)mddev->reshape_position);
4709 	strcpy(page, "none\n");
4710 	return 5;
4711 }
4712 
4713 static ssize_t
4714 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4715 {
4716 	struct md_rdev *rdev;
4717 	unsigned long long new;
4718 	int err;
4719 
4720 	err = kstrtoull(buf, 10, &new);
4721 	if (err < 0)
4722 		return err;
4723 	if (new != (sector_t)new)
4724 		return -EINVAL;
4725 	err = mddev_lock(mddev);
4726 	if (err)
4727 		return err;
4728 	err = -EBUSY;
4729 	if (mddev->pers)
4730 		goto unlock;
4731 	mddev->reshape_position = new;
4732 	mddev->delta_disks = 0;
4733 	mddev->reshape_backwards = 0;
4734 	mddev->new_level = mddev->level;
4735 	mddev->new_layout = mddev->layout;
4736 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4737 	rdev_for_each(rdev, mddev)
4738 		rdev->new_data_offset = rdev->data_offset;
4739 	err = 0;
4740 unlock:
4741 	mddev_unlock(mddev);
4742 	return err ?: len;
4743 }
4744 
4745 static struct md_sysfs_entry md_reshape_position =
4746 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4747        reshape_position_store);
4748 
4749 static ssize_t
4750 reshape_direction_show(struct mddev *mddev, char *page)
4751 {
4752 	return sprintf(page, "%s\n",
4753 		       mddev->reshape_backwards ? "backwards" : "forwards");
4754 }
4755 
4756 static ssize_t
4757 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4758 {
4759 	int backwards = 0;
4760 	int err;
4761 
4762 	if (cmd_match(buf, "forwards"))
4763 		backwards = 0;
4764 	else if (cmd_match(buf, "backwards"))
4765 		backwards = 1;
4766 	else
4767 		return -EINVAL;
4768 	if (mddev->reshape_backwards == backwards)
4769 		return len;
4770 
4771 	err = mddev_lock(mddev);
4772 	if (err)
4773 		return err;
4774 	/* check if we are allowed to change */
4775 	if (mddev->delta_disks)
4776 		err = -EBUSY;
4777 	else if (mddev->persistent &&
4778 	    mddev->major_version == 0)
4779 		err =  -EINVAL;
4780 	else
4781 		mddev->reshape_backwards = backwards;
4782 	mddev_unlock(mddev);
4783 	return err ?: len;
4784 }
4785 
4786 static struct md_sysfs_entry md_reshape_direction =
4787 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4788        reshape_direction_store);
4789 
4790 static ssize_t
4791 array_size_show(struct mddev *mddev, char *page)
4792 {
4793 	if (mddev->external_size)
4794 		return sprintf(page, "%llu\n",
4795 			       (unsigned long long)mddev->array_sectors/2);
4796 	else
4797 		return sprintf(page, "default\n");
4798 }
4799 
4800 static ssize_t
4801 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4802 {
4803 	sector_t sectors;
4804 	int err;
4805 
4806 	err = mddev_lock(mddev);
4807 	if (err)
4808 		return err;
4809 
4810 	if (strncmp(buf, "default", 7) == 0) {
4811 		if (mddev->pers)
4812 			sectors = mddev->pers->size(mddev, 0, 0);
4813 		else
4814 			sectors = mddev->array_sectors;
4815 
4816 		mddev->external_size = 0;
4817 	} else {
4818 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4819 			err = -EINVAL;
4820 		else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4821 			err = -E2BIG;
4822 		else
4823 			mddev->external_size = 1;
4824 	}
4825 
4826 	if (!err) {
4827 		mddev->array_sectors = sectors;
4828 		if (mddev->pers) {
4829 			set_capacity(mddev->gendisk, mddev->array_sectors);
4830 			revalidate_disk(mddev->gendisk);
4831 		}
4832 	}
4833 	mddev_unlock(mddev);
4834 	return err ?: len;
4835 }
4836 
4837 static struct md_sysfs_entry md_array_size =
4838 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4839        array_size_store);
4840 
4841 static struct attribute *md_default_attrs[] = {
4842 	&md_level.attr,
4843 	&md_layout.attr,
4844 	&md_raid_disks.attr,
4845 	&md_chunk_size.attr,
4846 	&md_size.attr,
4847 	&md_resync_start.attr,
4848 	&md_metadata.attr,
4849 	&md_new_device.attr,
4850 	&md_safe_delay.attr,
4851 	&md_array_state.attr,
4852 	&md_reshape_position.attr,
4853 	&md_reshape_direction.attr,
4854 	&md_array_size.attr,
4855 	&max_corr_read_errors.attr,
4856 	NULL,
4857 };
4858 
4859 static struct attribute *md_redundancy_attrs[] = {
4860 	&md_scan_mode.attr,
4861 	&md_last_scan_mode.attr,
4862 	&md_mismatches.attr,
4863 	&md_sync_min.attr,
4864 	&md_sync_max.attr,
4865 	&md_sync_speed.attr,
4866 	&md_sync_force_parallel.attr,
4867 	&md_sync_completed.attr,
4868 	&md_min_sync.attr,
4869 	&md_max_sync.attr,
4870 	&md_suspend_lo.attr,
4871 	&md_suspend_hi.attr,
4872 	&md_bitmap.attr,
4873 	&md_degraded.attr,
4874 	NULL,
4875 };
4876 static struct attribute_group md_redundancy_group = {
4877 	.name = NULL,
4878 	.attrs = md_redundancy_attrs,
4879 };
4880 
4881 static ssize_t
4882 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4883 {
4884 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4885 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4886 	ssize_t rv;
4887 
4888 	if (!entry->show)
4889 		return -EIO;
4890 	spin_lock(&all_mddevs_lock);
4891 	if (list_empty(&mddev->all_mddevs)) {
4892 		spin_unlock(&all_mddevs_lock);
4893 		return -EBUSY;
4894 	}
4895 	mddev_get(mddev);
4896 	spin_unlock(&all_mddevs_lock);
4897 
4898 	rv = entry->show(mddev, page);
4899 	mddev_put(mddev);
4900 	return rv;
4901 }
4902 
4903 static ssize_t
4904 md_attr_store(struct kobject *kobj, struct attribute *attr,
4905 	      const char *page, size_t length)
4906 {
4907 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4908 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4909 	ssize_t rv;
4910 
4911 	if (!entry->store)
4912 		return -EIO;
4913 	if (!capable(CAP_SYS_ADMIN))
4914 		return -EACCES;
4915 	spin_lock(&all_mddevs_lock);
4916 	if (list_empty(&mddev->all_mddevs)) {
4917 		spin_unlock(&all_mddevs_lock);
4918 		return -EBUSY;
4919 	}
4920 	mddev_get(mddev);
4921 	spin_unlock(&all_mddevs_lock);
4922 	rv = entry->store(mddev, page, length);
4923 	mddev_put(mddev);
4924 	return rv;
4925 }
4926 
4927 static void md_free(struct kobject *ko)
4928 {
4929 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4930 
4931 	if (mddev->sysfs_state)
4932 		sysfs_put(mddev->sysfs_state);
4933 
4934 	if (mddev->queue)
4935 		blk_cleanup_queue(mddev->queue);
4936 	if (mddev->gendisk) {
4937 		del_gendisk(mddev->gendisk);
4938 		put_disk(mddev->gendisk);
4939 	}
4940 
4941 	kfree(mddev);
4942 }
4943 
4944 static const struct sysfs_ops md_sysfs_ops = {
4945 	.show	= md_attr_show,
4946 	.store	= md_attr_store,
4947 };
4948 static struct kobj_type md_ktype = {
4949 	.release	= md_free,
4950 	.sysfs_ops	= &md_sysfs_ops,
4951 	.default_attrs	= md_default_attrs,
4952 };
4953 
4954 int mdp_major = 0;
4955 
4956 static void mddev_delayed_delete(struct work_struct *ws)
4957 {
4958 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4959 
4960 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4961 	kobject_del(&mddev->kobj);
4962 	kobject_put(&mddev->kobj);
4963 }
4964 
4965 static int md_alloc(dev_t dev, char *name)
4966 {
4967 	static DEFINE_MUTEX(disks_mutex);
4968 	struct mddev *mddev = mddev_find(dev);
4969 	struct gendisk *disk;
4970 	int partitioned;
4971 	int shift;
4972 	int unit;
4973 	int error;
4974 
4975 	if (!mddev)
4976 		return -ENODEV;
4977 
4978 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4979 	shift = partitioned ? MdpMinorShift : 0;
4980 	unit = MINOR(mddev->unit) >> shift;
4981 
4982 	/* wait for any previous instance of this device to be
4983 	 * completely removed (mddev_delayed_delete).
4984 	 */
4985 	flush_workqueue(md_misc_wq);
4986 
4987 	mutex_lock(&disks_mutex);
4988 	error = -EEXIST;
4989 	if (mddev->gendisk)
4990 		goto abort;
4991 
4992 	if (name) {
4993 		/* Need to ensure that 'name' is not a duplicate.
4994 		 */
4995 		struct mddev *mddev2;
4996 		spin_lock(&all_mddevs_lock);
4997 
4998 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4999 			if (mddev2->gendisk &&
5000 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
5001 				spin_unlock(&all_mddevs_lock);
5002 				goto abort;
5003 			}
5004 		spin_unlock(&all_mddevs_lock);
5005 	}
5006 
5007 	error = -ENOMEM;
5008 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
5009 	if (!mddev->queue)
5010 		goto abort;
5011 	mddev->queue->queuedata = mddev;
5012 
5013 	blk_queue_make_request(mddev->queue, md_make_request);
5014 	blk_set_stacking_limits(&mddev->queue->limits);
5015 
5016 	disk = alloc_disk(1 << shift);
5017 	if (!disk) {
5018 		blk_cleanup_queue(mddev->queue);
5019 		mddev->queue = NULL;
5020 		goto abort;
5021 	}
5022 	disk->major = MAJOR(mddev->unit);
5023 	disk->first_minor = unit << shift;
5024 	if (name)
5025 		strcpy(disk->disk_name, name);
5026 	else if (partitioned)
5027 		sprintf(disk->disk_name, "md_d%d", unit);
5028 	else
5029 		sprintf(disk->disk_name, "md%d", unit);
5030 	disk->fops = &md_fops;
5031 	disk->private_data = mddev;
5032 	disk->queue = mddev->queue;
5033 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5034 	/* Allow extended partitions.  This makes the
5035 	 * 'mdp' device redundant, but we can't really
5036 	 * remove it now.
5037 	 */
5038 	disk->flags |= GENHD_FL_EXT_DEVT;
5039 	mddev->gendisk = disk;
5040 	/* As soon as we call add_disk(), another thread could get
5041 	 * through to md_open, so make sure it doesn't get too far
5042 	 */
5043 	mutex_lock(&mddev->open_mutex);
5044 	add_disk(disk);
5045 
5046 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5047 				     &disk_to_dev(disk)->kobj, "%s", "md");
5048 	if (error) {
5049 		/* This isn't possible, but as kobject_init_and_add is marked
5050 		 * __must_check, we must do something with the result
5051 		 */
5052 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5053 		       disk->disk_name);
5054 		error = 0;
5055 	}
5056 	if (mddev->kobj.sd &&
5057 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5058 		printk(KERN_DEBUG "pointless warning\n");
5059 	mutex_unlock(&mddev->open_mutex);
5060  abort:
5061 	mutex_unlock(&disks_mutex);
5062 	if (!error && mddev->kobj.sd) {
5063 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
5064 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5065 	}
5066 	mddev_put(mddev);
5067 	return error;
5068 }
5069 
5070 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5071 {
5072 	md_alloc(dev, NULL);
5073 	return NULL;
5074 }
5075 
5076 static int add_named_array(const char *val, struct kernel_param *kp)
5077 {
5078 	/* val must be "md_*" where * is not all digits.
5079 	 * We allocate an array with a large free minor number, and
5080 	 * set the name to val.  val must not already be an active name.
5081 	 */
5082 	int len = strlen(val);
5083 	char buf[DISK_NAME_LEN];
5084 
5085 	while (len && val[len-1] == '\n')
5086 		len--;
5087 	if (len >= DISK_NAME_LEN)
5088 		return -E2BIG;
5089 	strlcpy(buf, val, len+1);
5090 	if (strncmp(buf, "md_", 3) != 0)
5091 		return -EINVAL;
5092 	return md_alloc(0, buf);
5093 }
5094 
5095 static void md_safemode_timeout(unsigned long data)
5096 {
5097 	struct mddev *mddev = (struct mddev *) data;
5098 
5099 	if (!atomic_read(&mddev->writes_pending)) {
5100 		mddev->safemode = 1;
5101 		if (mddev->external)
5102 			sysfs_notify_dirent_safe(mddev->sysfs_state);
5103 	}
5104 	md_wakeup_thread(mddev->thread);
5105 }
5106 
5107 static int start_dirty_degraded;
5108 
5109 int md_run(struct mddev *mddev)
5110 {
5111 	int err;
5112 	struct md_rdev *rdev;
5113 	struct md_personality *pers;
5114 
5115 	if (list_empty(&mddev->disks))
5116 		/* cannot run an array with no devices.. */
5117 		return -EINVAL;
5118 
5119 	if (mddev->pers)
5120 		return -EBUSY;
5121 	/* Cannot run until previous stop completes properly */
5122 	if (mddev->sysfs_active)
5123 		return -EBUSY;
5124 
5125 	/*
5126 	 * Analyze all RAID superblock(s)
5127 	 */
5128 	if (!mddev->raid_disks) {
5129 		if (!mddev->persistent)
5130 			return -EINVAL;
5131 		analyze_sbs(mddev);
5132 	}
5133 
5134 	if (mddev->level != LEVEL_NONE)
5135 		request_module("md-level-%d", mddev->level);
5136 	else if (mddev->clevel[0])
5137 		request_module("md-%s", mddev->clevel);
5138 
5139 	/*
5140 	 * Drop all container device buffers, from now on
5141 	 * the only valid external interface is through the md
5142 	 * device.
5143 	 */
5144 	rdev_for_each(rdev, mddev) {
5145 		if (test_bit(Faulty, &rdev->flags))
5146 			continue;
5147 		sync_blockdev(rdev->bdev);
5148 		invalidate_bdev(rdev->bdev);
5149 
5150 		/* perform some consistency tests on the device.
5151 		 * We don't want the data to overlap the metadata,
5152 		 * Internal Bitmap issues have been handled elsewhere.
5153 		 */
5154 		if (rdev->meta_bdev) {
5155 			/* Nothing to check */;
5156 		} else if (rdev->data_offset < rdev->sb_start) {
5157 			if (mddev->dev_sectors &&
5158 			    rdev->data_offset + mddev->dev_sectors
5159 			    > rdev->sb_start) {
5160 				printk("md: %s: data overlaps metadata\n",
5161 				       mdname(mddev));
5162 				return -EINVAL;
5163 			}
5164 		} else {
5165 			if (rdev->sb_start + rdev->sb_size/512
5166 			    > rdev->data_offset) {
5167 				printk("md: %s: metadata overlaps data\n",
5168 				       mdname(mddev));
5169 				return -EINVAL;
5170 			}
5171 		}
5172 		sysfs_notify_dirent_safe(rdev->sysfs_state);
5173 	}
5174 
5175 	if (mddev->bio_set == NULL)
5176 		mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5177 
5178 	spin_lock(&pers_lock);
5179 	pers = find_pers(mddev->level, mddev->clevel);
5180 	if (!pers || !try_module_get(pers->owner)) {
5181 		spin_unlock(&pers_lock);
5182 		if (mddev->level != LEVEL_NONE)
5183 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5184 			       mddev->level);
5185 		else
5186 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5187 			       mddev->clevel);
5188 		return -EINVAL;
5189 	}
5190 	spin_unlock(&pers_lock);
5191 	if (mddev->level != pers->level) {
5192 		mddev->level = pers->level;
5193 		mddev->new_level = pers->level;
5194 	}
5195 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5196 
5197 	if (mddev->reshape_position != MaxSector &&
5198 	    pers->start_reshape == NULL) {
5199 		/* This personality cannot handle reshaping... */
5200 		module_put(pers->owner);
5201 		return -EINVAL;
5202 	}
5203 
5204 	if (pers->sync_request) {
5205 		/* Warn if this is a potentially silly
5206 		 * configuration.
5207 		 */
5208 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5209 		struct md_rdev *rdev2;
5210 		int warned = 0;
5211 
5212 		rdev_for_each(rdev, mddev)
5213 			rdev_for_each(rdev2, mddev) {
5214 				if (rdev < rdev2 &&
5215 				    rdev->bdev->bd_contains ==
5216 				    rdev2->bdev->bd_contains) {
5217 					printk(KERN_WARNING
5218 					       "%s: WARNING: %s appears to be"
5219 					       " on the same physical disk as"
5220 					       " %s.\n",
5221 					       mdname(mddev),
5222 					       bdevname(rdev->bdev,b),
5223 					       bdevname(rdev2->bdev,b2));
5224 					warned = 1;
5225 				}
5226 			}
5227 
5228 		if (warned)
5229 			printk(KERN_WARNING
5230 			       "True protection against single-disk"
5231 			       " failure might be compromised.\n");
5232 	}
5233 
5234 	mddev->recovery = 0;
5235 	/* may be over-ridden by personality */
5236 	mddev->resync_max_sectors = mddev->dev_sectors;
5237 
5238 	mddev->ok_start_degraded = start_dirty_degraded;
5239 
5240 	if (start_readonly && mddev->ro == 0)
5241 		mddev->ro = 2; /* read-only, but switch on first write */
5242 
5243 	err = pers->run(mddev);
5244 	if (err)
5245 		printk(KERN_ERR "md: pers->run() failed ...\n");
5246 	else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5247 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5248 			  " but 'external_size' not in effect?\n", __func__);
5249 		printk(KERN_ERR
5250 		       "md: invalid array_size %llu > default size %llu\n",
5251 		       (unsigned long long)mddev->array_sectors / 2,
5252 		       (unsigned long long)pers->size(mddev, 0, 0) / 2);
5253 		err = -EINVAL;
5254 	}
5255 	if (err == 0 && pers->sync_request &&
5256 	    (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5257 		struct bitmap *bitmap;
5258 
5259 		bitmap = bitmap_create(mddev, -1);
5260 		if (IS_ERR(bitmap)) {
5261 			err = PTR_ERR(bitmap);
5262 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5263 			       mdname(mddev), err);
5264 		} else
5265 			mddev->bitmap = bitmap;
5266 
5267 	}
5268 	if (err) {
5269 		mddev_detach(mddev);
5270 		if (mddev->private)
5271 			pers->free(mddev, mddev->private);
5272 		mddev->private = NULL;
5273 		module_put(pers->owner);
5274 		bitmap_destroy(mddev);
5275 		return err;
5276 	}
5277 	if (mddev->queue) {
5278 		mddev->queue->backing_dev_info.congested_data = mddev;
5279 		mddev->queue->backing_dev_info.congested_fn = md_congested;
5280 	}
5281 	if (pers->sync_request) {
5282 		if (mddev->kobj.sd &&
5283 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5284 			printk(KERN_WARNING
5285 			       "md: cannot register extra attributes for %s\n",
5286 			       mdname(mddev));
5287 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5288 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
5289 		mddev->ro = 0;
5290 
5291 	atomic_set(&mddev->writes_pending,0);
5292 	atomic_set(&mddev->max_corr_read_errors,
5293 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5294 	mddev->safemode = 0;
5295 	if (mddev_is_clustered(mddev))
5296 		mddev->safemode_delay = 0;
5297 	else
5298 		mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5299 	mddev->in_sync = 1;
5300 	smp_wmb();
5301 	spin_lock(&mddev->lock);
5302 	mddev->pers = pers;
5303 	mddev->ready = 1;
5304 	spin_unlock(&mddev->lock);
5305 	rdev_for_each(rdev, mddev)
5306 		if (rdev->raid_disk >= 0)
5307 			if (sysfs_link_rdev(mddev, rdev))
5308 				/* failure here is OK */;
5309 
5310 	if (mddev->degraded && !mddev->ro)
5311 		/* This ensures that recovering status is reported immediately
5312 		 * via sysfs - until a lack of spares is confirmed.
5313 		 */
5314 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5315 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5316 
5317 	if (mddev->flags & MD_UPDATE_SB_FLAGS)
5318 		md_update_sb(mddev, 0);
5319 
5320 	md_new_event(mddev);
5321 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5322 	sysfs_notify_dirent_safe(mddev->sysfs_action);
5323 	sysfs_notify(&mddev->kobj, NULL, "degraded");
5324 	return 0;
5325 }
5326 EXPORT_SYMBOL_GPL(md_run);
5327 
5328 static int do_md_run(struct mddev *mddev)
5329 {
5330 	int err;
5331 
5332 	err = md_run(mddev);
5333 	if (err)
5334 		goto out;
5335 	err = bitmap_load(mddev);
5336 	if (err) {
5337 		bitmap_destroy(mddev);
5338 		goto out;
5339 	}
5340 
5341 	if (mddev_is_clustered(mddev))
5342 		md_allow_write(mddev);
5343 
5344 	md_wakeup_thread(mddev->thread);
5345 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5346 
5347 	set_capacity(mddev->gendisk, mddev->array_sectors);
5348 	revalidate_disk(mddev->gendisk);
5349 	mddev->changed = 1;
5350 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5351 out:
5352 	return err;
5353 }
5354 
5355 static int restart_array(struct mddev *mddev)
5356 {
5357 	struct gendisk *disk = mddev->gendisk;
5358 
5359 	/* Complain if it has no devices */
5360 	if (list_empty(&mddev->disks))
5361 		return -ENXIO;
5362 	if (!mddev->pers)
5363 		return -EINVAL;
5364 	if (!mddev->ro)
5365 		return -EBUSY;
5366 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5367 		struct md_rdev *rdev;
5368 		bool has_journal = false;
5369 
5370 		rcu_read_lock();
5371 		rdev_for_each_rcu(rdev, mddev) {
5372 			if (test_bit(Journal, &rdev->flags) &&
5373 			    !test_bit(Faulty, &rdev->flags)) {
5374 				has_journal = true;
5375 				break;
5376 			}
5377 		}
5378 		rcu_read_unlock();
5379 
5380 		/* Don't restart rw with journal missing/faulty */
5381 		if (!has_journal)
5382 			return -EINVAL;
5383 	}
5384 
5385 	mddev->safemode = 0;
5386 	mddev->ro = 0;
5387 	set_disk_ro(disk, 0);
5388 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5389 		mdname(mddev));
5390 	/* Kick recovery or resync if necessary */
5391 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5392 	md_wakeup_thread(mddev->thread);
5393 	md_wakeup_thread(mddev->sync_thread);
5394 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5395 	return 0;
5396 }
5397 
5398 static void md_clean(struct mddev *mddev)
5399 {
5400 	mddev->array_sectors = 0;
5401 	mddev->external_size = 0;
5402 	mddev->dev_sectors = 0;
5403 	mddev->raid_disks = 0;
5404 	mddev->recovery_cp = 0;
5405 	mddev->resync_min = 0;
5406 	mddev->resync_max = MaxSector;
5407 	mddev->reshape_position = MaxSector;
5408 	mddev->external = 0;
5409 	mddev->persistent = 0;
5410 	mddev->level = LEVEL_NONE;
5411 	mddev->clevel[0] = 0;
5412 	mddev->flags = 0;
5413 	mddev->ro = 0;
5414 	mddev->metadata_type[0] = 0;
5415 	mddev->chunk_sectors = 0;
5416 	mddev->ctime = mddev->utime = 0;
5417 	mddev->layout = 0;
5418 	mddev->max_disks = 0;
5419 	mddev->events = 0;
5420 	mddev->can_decrease_events = 0;
5421 	mddev->delta_disks = 0;
5422 	mddev->reshape_backwards = 0;
5423 	mddev->new_level = LEVEL_NONE;
5424 	mddev->new_layout = 0;
5425 	mddev->new_chunk_sectors = 0;
5426 	mddev->curr_resync = 0;
5427 	atomic64_set(&mddev->resync_mismatches, 0);
5428 	mddev->suspend_lo = mddev->suspend_hi = 0;
5429 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5430 	mddev->recovery = 0;
5431 	mddev->in_sync = 0;
5432 	mddev->changed = 0;
5433 	mddev->degraded = 0;
5434 	mddev->safemode = 0;
5435 	mddev->private = NULL;
5436 	mddev->bitmap_info.offset = 0;
5437 	mddev->bitmap_info.default_offset = 0;
5438 	mddev->bitmap_info.default_space = 0;
5439 	mddev->bitmap_info.chunksize = 0;
5440 	mddev->bitmap_info.daemon_sleep = 0;
5441 	mddev->bitmap_info.max_write_behind = 0;
5442 }
5443 
5444 static void __md_stop_writes(struct mddev *mddev)
5445 {
5446 	set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5447 	flush_workqueue(md_misc_wq);
5448 	if (mddev->sync_thread) {
5449 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5450 		md_reap_sync_thread(mddev);
5451 	}
5452 
5453 	del_timer_sync(&mddev->safemode_timer);
5454 
5455 	bitmap_flush(mddev);
5456 	md_super_wait(mddev);
5457 
5458 	if (mddev->ro == 0 &&
5459 	    ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5460 	     (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5461 		/* mark array as shutdown cleanly */
5462 		if (!mddev_is_clustered(mddev))
5463 			mddev->in_sync = 1;
5464 		md_update_sb(mddev, 1);
5465 	}
5466 }
5467 
5468 void md_stop_writes(struct mddev *mddev)
5469 {
5470 	mddev_lock_nointr(mddev);
5471 	__md_stop_writes(mddev);
5472 	mddev_unlock(mddev);
5473 }
5474 EXPORT_SYMBOL_GPL(md_stop_writes);
5475 
5476 static void mddev_detach(struct mddev *mddev)
5477 {
5478 	struct bitmap *bitmap = mddev->bitmap;
5479 	/* wait for behind writes to complete */
5480 	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5481 		printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5482 		       mdname(mddev));
5483 		/* need to kick something here to make sure I/O goes? */
5484 		wait_event(bitmap->behind_wait,
5485 			   atomic_read(&bitmap->behind_writes) == 0);
5486 	}
5487 	if (mddev->pers && mddev->pers->quiesce) {
5488 		mddev->pers->quiesce(mddev, 1);
5489 		mddev->pers->quiesce(mddev, 0);
5490 	}
5491 	md_unregister_thread(&mddev->thread);
5492 	if (mddev->queue)
5493 		blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5494 }
5495 
5496 static void __md_stop(struct mddev *mddev)
5497 {
5498 	struct md_personality *pers = mddev->pers;
5499 	mddev_detach(mddev);
5500 	/* Ensure ->event_work is done */
5501 	flush_workqueue(md_misc_wq);
5502 	spin_lock(&mddev->lock);
5503 	mddev->ready = 0;
5504 	mddev->pers = NULL;
5505 	spin_unlock(&mddev->lock);
5506 	pers->free(mddev, mddev->private);
5507 	mddev->private = NULL;
5508 	if (pers->sync_request && mddev->to_remove == NULL)
5509 		mddev->to_remove = &md_redundancy_group;
5510 	module_put(pers->owner);
5511 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5512 }
5513 
5514 void md_stop(struct mddev *mddev)
5515 {
5516 	/* stop the array and free an attached data structures.
5517 	 * This is called from dm-raid
5518 	 */
5519 	__md_stop(mddev);
5520 	bitmap_destroy(mddev);
5521 	if (mddev->bio_set)
5522 		bioset_free(mddev->bio_set);
5523 }
5524 
5525 EXPORT_SYMBOL_GPL(md_stop);
5526 
5527 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5528 {
5529 	int err = 0;
5530 	int did_freeze = 0;
5531 
5532 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5533 		did_freeze = 1;
5534 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5535 		md_wakeup_thread(mddev->thread);
5536 	}
5537 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5538 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5539 	if (mddev->sync_thread)
5540 		/* Thread might be blocked waiting for metadata update
5541 		 * which will now never happen */
5542 		wake_up_process(mddev->sync_thread->tsk);
5543 
5544 	if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5545 		return -EBUSY;
5546 	mddev_unlock(mddev);
5547 	wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5548 					  &mddev->recovery));
5549 	wait_event(mddev->sb_wait,
5550 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5551 	mddev_lock_nointr(mddev);
5552 
5553 	mutex_lock(&mddev->open_mutex);
5554 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5555 	    mddev->sync_thread ||
5556 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5557 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5558 		printk("md: %s still in use.\n",mdname(mddev));
5559 		if (did_freeze) {
5560 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5561 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5562 			md_wakeup_thread(mddev->thread);
5563 		}
5564 		err = -EBUSY;
5565 		goto out;
5566 	}
5567 	if (mddev->pers) {
5568 		__md_stop_writes(mddev);
5569 
5570 		err  = -ENXIO;
5571 		if (mddev->ro==1)
5572 			goto out;
5573 		mddev->ro = 1;
5574 		set_disk_ro(mddev->gendisk, 1);
5575 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5576 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5577 		md_wakeup_thread(mddev->thread);
5578 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5579 		err = 0;
5580 	}
5581 out:
5582 	mutex_unlock(&mddev->open_mutex);
5583 	return err;
5584 }
5585 
5586 /* mode:
5587  *   0 - completely stop and dis-assemble array
5588  *   2 - stop but do not disassemble array
5589  */
5590 static int do_md_stop(struct mddev *mddev, int mode,
5591 		      struct block_device *bdev)
5592 {
5593 	struct gendisk *disk = mddev->gendisk;
5594 	struct md_rdev *rdev;
5595 	int did_freeze = 0;
5596 
5597 	if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5598 		did_freeze = 1;
5599 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5600 		md_wakeup_thread(mddev->thread);
5601 	}
5602 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5603 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5604 	if (mddev->sync_thread)
5605 		/* Thread might be blocked waiting for metadata update
5606 		 * which will now never happen */
5607 		wake_up_process(mddev->sync_thread->tsk);
5608 
5609 	mddev_unlock(mddev);
5610 	wait_event(resync_wait, (mddev->sync_thread == NULL &&
5611 				 !test_bit(MD_RECOVERY_RUNNING,
5612 					   &mddev->recovery)));
5613 	mddev_lock_nointr(mddev);
5614 
5615 	mutex_lock(&mddev->open_mutex);
5616 	if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5617 	    mddev->sysfs_active ||
5618 	    mddev->sync_thread ||
5619 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5620 	    (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5621 		printk("md: %s still in use.\n",mdname(mddev));
5622 		mutex_unlock(&mddev->open_mutex);
5623 		if (did_freeze) {
5624 			clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5625 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5626 			md_wakeup_thread(mddev->thread);
5627 		}
5628 		return -EBUSY;
5629 	}
5630 	if (mddev->pers) {
5631 		if (mddev->ro)
5632 			set_disk_ro(disk, 0);
5633 
5634 		__md_stop_writes(mddev);
5635 		__md_stop(mddev);
5636 		mddev->queue->backing_dev_info.congested_fn = NULL;
5637 
5638 		/* tell userspace to handle 'inactive' */
5639 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5640 
5641 		rdev_for_each(rdev, mddev)
5642 			if (rdev->raid_disk >= 0)
5643 				sysfs_unlink_rdev(mddev, rdev);
5644 
5645 		set_capacity(disk, 0);
5646 		mutex_unlock(&mddev->open_mutex);
5647 		mddev->changed = 1;
5648 		revalidate_disk(disk);
5649 
5650 		if (mddev->ro)
5651 			mddev->ro = 0;
5652 	} else
5653 		mutex_unlock(&mddev->open_mutex);
5654 	/*
5655 	 * Free resources if final stop
5656 	 */
5657 	if (mode == 0) {
5658 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5659 
5660 		bitmap_destroy(mddev);
5661 		if (mddev->bitmap_info.file) {
5662 			struct file *f = mddev->bitmap_info.file;
5663 			spin_lock(&mddev->lock);
5664 			mddev->bitmap_info.file = NULL;
5665 			spin_unlock(&mddev->lock);
5666 			fput(f);
5667 		}
5668 		mddev->bitmap_info.offset = 0;
5669 
5670 		export_array(mddev);
5671 
5672 		md_clean(mddev);
5673 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5674 		if (mddev->hold_active == UNTIL_STOP)
5675 			mddev->hold_active = 0;
5676 	}
5677 	md_new_event(mddev);
5678 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5679 	return 0;
5680 }
5681 
5682 #ifndef MODULE
5683 static void autorun_array(struct mddev *mddev)
5684 {
5685 	struct md_rdev *rdev;
5686 	int err;
5687 
5688 	if (list_empty(&mddev->disks))
5689 		return;
5690 
5691 	printk(KERN_INFO "md: running: ");
5692 
5693 	rdev_for_each(rdev, mddev) {
5694 		char b[BDEVNAME_SIZE];
5695 		printk("<%s>", bdevname(rdev->bdev,b));
5696 	}
5697 	printk("\n");
5698 
5699 	err = do_md_run(mddev);
5700 	if (err) {
5701 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5702 		do_md_stop(mddev, 0, NULL);
5703 	}
5704 }
5705 
5706 /*
5707  * lets try to run arrays based on all disks that have arrived
5708  * until now. (those are in pending_raid_disks)
5709  *
5710  * the method: pick the first pending disk, collect all disks with
5711  * the same UUID, remove all from the pending list and put them into
5712  * the 'same_array' list. Then order this list based on superblock
5713  * update time (freshest comes first), kick out 'old' disks and
5714  * compare superblocks. If everything's fine then run it.
5715  *
5716  * If "unit" is allocated, then bump its reference count
5717  */
5718 static void autorun_devices(int part)
5719 {
5720 	struct md_rdev *rdev0, *rdev, *tmp;
5721 	struct mddev *mddev;
5722 	char b[BDEVNAME_SIZE];
5723 
5724 	printk(KERN_INFO "md: autorun ...\n");
5725 	while (!list_empty(&pending_raid_disks)) {
5726 		int unit;
5727 		dev_t dev;
5728 		LIST_HEAD(candidates);
5729 		rdev0 = list_entry(pending_raid_disks.next,
5730 					 struct md_rdev, same_set);
5731 
5732 		printk(KERN_INFO "md: considering %s ...\n",
5733 			bdevname(rdev0->bdev,b));
5734 		INIT_LIST_HEAD(&candidates);
5735 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5736 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5737 				printk(KERN_INFO "md:  adding %s ...\n",
5738 					bdevname(rdev->bdev,b));
5739 				list_move(&rdev->same_set, &candidates);
5740 			}
5741 		/*
5742 		 * now we have a set of devices, with all of them having
5743 		 * mostly sane superblocks. It's time to allocate the
5744 		 * mddev.
5745 		 */
5746 		if (part) {
5747 			dev = MKDEV(mdp_major,
5748 				    rdev0->preferred_minor << MdpMinorShift);
5749 			unit = MINOR(dev) >> MdpMinorShift;
5750 		} else {
5751 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5752 			unit = MINOR(dev);
5753 		}
5754 		if (rdev0->preferred_minor != unit) {
5755 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5756 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5757 			break;
5758 		}
5759 
5760 		md_probe(dev, NULL, NULL);
5761 		mddev = mddev_find(dev);
5762 		if (!mddev || !mddev->gendisk) {
5763 			if (mddev)
5764 				mddev_put(mddev);
5765 			printk(KERN_ERR
5766 				"md: cannot allocate memory for md drive.\n");
5767 			break;
5768 		}
5769 		if (mddev_lock(mddev))
5770 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5771 			       mdname(mddev));
5772 		else if (mddev->raid_disks || mddev->major_version
5773 			 || !list_empty(&mddev->disks)) {
5774 			printk(KERN_WARNING
5775 				"md: %s already running, cannot run %s\n",
5776 				mdname(mddev), bdevname(rdev0->bdev,b));
5777 			mddev_unlock(mddev);
5778 		} else {
5779 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5780 			mddev->persistent = 1;
5781 			rdev_for_each_list(rdev, tmp, &candidates) {
5782 				list_del_init(&rdev->same_set);
5783 				if (bind_rdev_to_array(rdev, mddev))
5784 					export_rdev(rdev);
5785 			}
5786 			autorun_array(mddev);
5787 			mddev_unlock(mddev);
5788 		}
5789 		/* on success, candidates will be empty, on error
5790 		 * it won't...
5791 		 */
5792 		rdev_for_each_list(rdev, tmp, &candidates) {
5793 			list_del_init(&rdev->same_set);
5794 			export_rdev(rdev);
5795 		}
5796 		mddev_put(mddev);
5797 	}
5798 	printk(KERN_INFO "md: ... autorun DONE.\n");
5799 }
5800 #endif /* !MODULE */
5801 
5802 static int get_version(void __user *arg)
5803 {
5804 	mdu_version_t ver;
5805 
5806 	ver.major = MD_MAJOR_VERSION;
5807 	ver.minor = MD_MINOR_VERSION;
5808 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5809 
5810 	if (copy_to_user(arg, &ver, sizeof(ver)))
5811 		return -EFAULT;
5812 
5813 	return 0;
5814 }
5815 
5816 static int get_array_info(struct mddev *mddev, void __user *arg)
5817 {
5818 	mdu_array_info_t info;
5819 	int nr,working,insync,failed,spare;
5820 	struct md_rdev *rdev;
5821 
5822 	nr = working = insync = failed = spare = 0;
5823 	rcu_read_lock();
5824 	rdev_for_each_rcu(rdev, mddev) {
5825 		nr++;
5826 		if (test_bit(Faulty, &rdev->flags))
5827 			failed++;
5828 		else {
5829 			working++;
5830 			if (test_bit(In_sync, &rdev->flags))
5831 				insync++;
5832 			else
5833 				spare++;
5834 		}
5835 	}
5836 	rcu_read_unlock();
5837 
5838 	info.major_version = mddev->major_version;
5839 	info.minor_version = mddev->minor_version;
5840 	info.patch_version = MD_PATCHLEVEL_VERSION;
5841 	info.ctime         = mddev->ctime;
5842 	info.level         = mddev->level;
5843 	info.size          = mddev->dev_sectors / 2;
5844 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5845 		info.size = -1;
5846 	info.nr_disks      = nr;
5847 	info.raid_disks    = mddev->raid_disks;
5848 	info.md_minor      = mddev->md_minor;
5849 	info.not_persistent= !mddev->persistent;
5850 
5851 	info.utime         = mddev->utime;
5852 	info.state         = 0;
5853 	if (mddev->in_sync)
5854 		info.state = (1<<MD_SB_CLEAN);
5855 	if (mddev->bitmap && mddev->bitmap_info.offset)
5856 		info.state |= (1<<MD_SB_BITMAP_PRESENT);
5857 	if (mddev_is_clustered(mddev))
5858 		info.state |= (1<<MD_SB_CLUSTERED);
5859 	info.active_disks  = insync;
5860 	info.working_disks = working;
5861 	info.failed_disks  = failed;
5862 	info.spare_disks   = spare;
5863 
5864 	info.layout        = mddev->layout;
5865 	info.chunk_size    = mddev->chunk_sectors << 9;
5866 
5867 	if (copy_to_user(arg, &info, sizeof(info)))
5868 		return -EFAULT;
5869 
5870 	return 0;
5871 }
5872 
5873 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5874 {
5875 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5876 	char *ptr;
5877 	int err;
5878 
5879 	file = kzalloc(sizeof(*file), GFP_NOIO);
5880 	if (!file)
5881 		return -ENOMEM;
5882 
5883 	err = 0;
5884 	spin_lock(&mddev->lock);
5885 	/* bitmap enabled */
5886 	if (mddev->bitmap_info.file) {
5887 		ptr = file_path(mddev->bitmap_info.file, file->pathname,
5888 				sizeof(file->pathname));
5889 		if (IS_ERR(ptr))
5890 			err = PTR_ERR(ptr);
5891 		else
5892 			memmove(file->pathname, ptr,
5893 				sizeof(file->pathname)-(ptr-file->pathname));
5894 	}
5895 	spin_unlock(&mddev->lock);
5896 
5897 	if (err == 0 &&
5898 	    copy_to_user(arg, file, sizeof(*file)))
5899 		err = -EFAULT;
5900 
5901 	kfree(file);
5902 	return err;
5903 }
5904 
5905 static int get_disk_info(struct mddev *mddev, void __user * arg)
5906 {
5907 	mdu_disk_info_t info;
5908 	struct md_rdev *rdev;
5909 
5910 	if (copy_from_user(&info, arg, sizeof(info)))
5911 		return -EFAULT;
5912 
5913 	rcu_read_lock();
5914 	rdev = md_find_rdev_nr_rcu(mddev, info.number);
5915 	if (rdev) {
5916 		info.major = MAJOR(rdev->bdev->bd_dev);
5917 		info.minor = MINOR(rdev->bdev->bd_dev);
5918 		info.raid_disk = rdev->raid_disk;
5919 		info.state = 0;
5920 		if (test_bit(Faulty, &rdev->flags))
5921 			info.state |= (1<<MD_DISK_FAULTY);
5922 		else if (test_bit(In_sync, &rdev->flags)) {
5923 			info.state |= (1<<MD_DISK_ACTIVE);
5924 			info.state |= (1<<MD_DISK_SYNC);
5925 		}
5926 		if (test_bit(Journal, &rdev->flags))
5927 			info.state |= (1<<MD_DISK_JOURNAL);
5928 		if (test_bit(WriteMostly, &rdev->flags))
5929 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5930 	} else {
5931 		info.major = info.minor = 0;
5932 		info.raid_disk = -1;
5933 		info.state = (1<<MD_DISK_REMOVED);
5934 	}
5935 	rcu_read_unlock();
5936 
5937 	if (copy_to_user(arg, &info, sizeof(info)))
5938 		return -EFAULT;
5939 
5940 	return 0;
5941 }
5942 
5943 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5944 {
5945 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5946 	struct md_rdev *rdev;
5947 	dev_t dev = MKDEV(info->major,info->minor);
5948 
5949 	if (mddev_is_clustered(mddev) &&
5950 		!(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5951 		pr_err("%s: Cannot add to clustered mddev.\n",
5952 			       mdname(mddev));
5953 		return -EINVAL;
5954 	}
5955 
5956 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5957 		return -EOVERFLOW;
5958 
5959 	if (!mddev->raid_disks) {
5960 		int err;
5961 		/* expecting a device which has a superblock */
5962 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5963 		if (IS_ERR(rdev)) {
5964 			printk(KERN_WARNING
5965 				"md: md_import_device returned %ld\n",
5966 				PTR_ERR(rdev));
5967 			return PTR_ERR(rdev);
5968 		}
5969 		if (!list_empty(&mddev->disks)) {
5970 			struct md_rdev *rdev0
5971 				= list_entry(mddev->disks.next,
5972 					     struct md_rdev, same_set);
5973 			err = super_types[mddev->major_version]
5974 				.load_super(rdev, rdev0, mddev->minor_version);
5975 			if (err < 0) {
5976 				printk(KERN_WARNING
5977 					"md: %s has different UUID to %s\n",
5978 					bdevname(rdev->bdev,b),
5979 					bdevname(rdev0->bdev,b2));
5980 				export_rdev(rdev);
5981 				return -EINVAL;
5982 			}
5983 		}
5984 		err = bind_rdev_to_array(rdev, mddev);
5985 		if (err)
5986 			export_rdev(rdev);
5987 		return err;
5988 	}
5989 
5990 	/*
5991 	 * add_new_disk can be used once the array is assembled
5992 	 * to add "hot spares".  They must already have a superblock
5993 	 * written
5994 	 */
5995 	if (mddev->pers) {
5996 		int err;
5997 		if (!mddev->pers->hot_add_disk) {
5998 			printk(KERN_WARNING
5999 				"%s: personality does not support diskops!\n",
6000 			       mdname(mddev));
6001 			return -EINVAL;
6002 		}
6003 		if (mddev->persistent)
6004 			rdev = md_import_device(dev, mddev->major_version,
6005 						mddev->minor_version);
6006 		else
6007 			rdev = md_import_device(dev, -1, -1);
6008 		if (IS_ERR(rdev)) {
6009 			printk(KERN_WARNING
6010 				"md: md_import_device returned %ld\n",
6011 				PTR_ERR(rdev));
6012 			return PTR_ERR(rdev);
6013 		}
6014 		/* set saved_raid_disk if appropriate */
6015 		if (!mddev->persistent) {
6016 			if (info->state & (1<<MD_DISK_SYNC)  &&
6017 			    info->raid_disk < mddev->raid_disks) {
6018 				rdev->raid_disk = info->raid_disk;
6019 				set_bit(In_sync, &rdev->flags);
6020 				clear_bit(Bitmap_sync, &rdev->flags);
6021 			} else
6022 				rdev->raid_disk = -1;
6023 			rdev->saved_raid_disk = rdev->raid_disk;
6024 		} else
6025 			super_types[mddev->major_version].
6026 				validate_super(mddev, rdev);
6027 		if ((info->state & (1<<MD_DISK_SYNC)) &&
6028 		     rdev->raid_disk != info->raid_disk) {
6029 			/* This was a hot-add request, but events doesn't
6030 			 * match, so reject it.
6031 			 */
6032 			export_rdev(rdev);
6033 			return -EINVAL;
6034 		}
6035 
6036 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
6037 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6038 			set_bit(WriteMostly, &rdev->flags);
6039 		else
6040 			clear_bit(WriteMostly, &rdev->flags);
6041 
6042 		if (info->state & (1<<MD_DISK_JOURNAL))
6043 			set_bit(Journal, &rdev->flags);
6044 		/*
6045 		 * check whether the device shows up in other nodes
6046 		 */
6047 		if (mddev_is_clustered(mddev)) {
6048 			if (info->state & (1 << MD_DISK_CANDIDATE))
6049 				set_bit(Candidate, &rdev->flags);
6050 			else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6051 				/* --add initiated by this node */
6052 				err = md_cluster_ops->add_new_disk(mddev, rdev);
6053 				if (err) {
6054 					export_rdev(rdev);
6055 					return err;
6056 				}
6057 			}
6058 		}
6059 
6060 		rdev->raid_disk = -1;
6061 		err = bind_rdev_to_array(rdev, mddev);
6062 
6063 		if (err)
6064 			export_rdev(rdev);
6065 
6066 		if (mddev_is_clustered(mddev)) {
6067 			if (info->state & (1 << MD_DISK_CANDIDATE))
6068 				md_cluster_ops->new_disk_ack(mddev, (err == 0));
6069 			else {
6070 				if (err)
6071 					md_cluster_ops->add_new_disk_cancel(mddev);
6072 				else
6073 					err = add_bound_rdev(rdev);
6074 			}
6075 
6076 		} else if (!err)
6077 			err = add_bound_rdev(rdev);
6078 
6079 		return err;
6080 	}
6081 
6082 	/* otherwise, add_new_disk is only allowed
6083 	 * for major_version==0 superblocks
6084 	 */
6085 	if (mddev->major_version != 0) {
6086 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6087 		       mdname(mddev));
6088 		return -EINVAL;
6089 	}
6090 
6091 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
6092 		int err;
6093 		rdev = md_import_device(dev, -1, 0);
6094 		if (IS_ERR(rdev)) {
6095 			printk(KERN_WARNING
6096 				"md: error, md_import_device() returned %ld\n",
6097 				PTR_ERR(rdev));
6098 			return PTR_ERR(rdev);
6099 		}
6100 		rdev->desc_nr = info->number;
6101 		if (info->raid_disk < mddev->raid_disks)
6102 			rdev->raid_disk = info->raid_disk;
6103 		else
6104 			rdev->raid_disk = -1;
6105 
6106 		if (rdev->raid_disk < mddev->raid_disks)
6107 			if (info->state & (1<<MD_DISK_SYNC))
6108 				set_bit(In_sync, &rdev->flags);
6109 
6110 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6111 			set_bit(WriteMostly, &rdev->flags);
6112 
6113 		if (!mddev->persistent) {
6114 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
6115 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6116 		} else
6117 			rdev->sb_start = calc_dev_sboffset(rdev);
6118 		rdev->sectors = rdev->sb_start;
6119 
6120 		err = bind_rdev_to_array(rdev, mddev);
6121 		if (err) {
6122 			export_rdev(rdev);
6123 			return err;
6124 		}
6125 	}
6126 
6127 	return 0;
6128 }
6129 
6130 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6131 {
6132 	char b[BDEVNAME_SIZE];
6133 	struct md_rdev *rdev;
6134 	int ret = -1;
6135 
6136 	rdev = find_rdev(mddev, dev);
6137 	if (!rdev)
6138 		return -ENXIO;
6139 
6140 	if (mddev_is_clustered(mddev))
6141 		ret = md_cluster_ops->metadata_update_start(mddev);
6142 
6143 	if (rdev->raid_disk < 0)
6144 		goto kick_rdev;
6145 
6146 	clear_bit(Blocked, &rdev->flags);
6147 	remove_and_add_spares(mddev, rdev);
6148 
6149 	if (rdev->raid_disk >= 0)
6150 		goto busy;
6151 
6152 kick_rdev:
6153 	if (mddev_is_clustered(mddev) && ret == 0)
6154 		md_cluster_ops->remove_disk(mddev, rdev);
6155 
6156 	md_kick_rdev_from_array(rdev);
6157 	md_update_sb(mddev, 1);
6158 	md_new_event(mddev);
6159 
6160 	return 0;
6161 busy:
6162 	if (mddev_is_clustered(mddev) && ret == 0)
6163 		md_cluster_ops->metadata_update_cancel(mddev);
6164 
6165 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6166 		bdevname(rdev->bdev,b), mdname(mddev));
6167 	return -EBUSY;
6168 }
6169 
6170 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6171 {
6172 	char b[BDEVNAME_SIZE];
6173 	int err;
6174 	struct md_rdev *rdev;
6175 
6176 	if (!mddev->pers)
6177 		return -ENODEV;
6178 
6179 	if (mddev->major_version != 0) {
6180 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6181 			" version-0 superblocks.\n",
6182 			mdname(mddev));
6183 		return -EINVAL;
6184 	}
6185 	if (!mddev->pers->hot_add_disk) {
6186 		printk(KERN_WARNING
6187 			"%s: personality does not support diskops!\n",
6188 			mdname(mddev));
6189 		return -EINVAL;
6190 	}
6191 
6192 	rdev = md_import_device(dev, -1, 0);
6193 	if (IS_ERR(rdev)) {
6194 		printk(KERN_WARNING
6195 			"md: error, md_import_device() returned %ld\n",
6196 			PTR_ERR(rdev));
6197 		return -EINVAL;
6198 	}
6199 
6200 	if (mddev->persistent)
6201 		rdev->sb_start = calc_dev_sboffset(rdev);
6202 	else
6203 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6204 
6205 	rdev->sectors = rdev->sb_start;
6206 
6207 	if (test_bit(Faulty, &rdev->flags)) {
6208 		printk(KERN_WARNING
6209 			"md: can not hot-add faulty %s disk to %s!\n",
6210 			bdevname(rdev->bdev,b), mdname(mddev));
6211 		err = -EINVAL;
6212 		goto abort_export;
6213 	}
6214 
6215 	clear_bit(In_sync, &rdev->flags);
6216 	rdev->desc_nr = -1;
6217 	rdev->saved_raid_disk = -1;
6218 	err = bind_rdev_to_array(rdev, mddev);
6219 	if (err)
6220 		goto abort_export;
6221 
6222 	/*
6223 	 * The rest should better be atomic, we can have disk failures
6224 	 * noticed in interrupt contexts ...
6225 	 */
6226 
6227 	rdev->raid_disk = -1;
6228 
6229 	md_update_sb(mddev, 1);
6230 	/*
6231 	 * Kick recovery, maybe this spare has to be added to the
6232 	 * array immediately.
6233 	 */
6234 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6235 	md_wakeup_thread(mddev->thread);
6236 	md_new_event(mddev);
6237 	return 0;
6238 
6239 abort_export:
6240 	export_rdev(rdev);
6241 	return err;
6242 }
6243 
6244 static int set_bitmap_file(struct mddev *mddev, int fd)
6245 {
6246 	int err = 0;
6247 
6248 	if (mddev->pers) {
6249 		if (!mddev->pers->quiesce || !mddev->thread)
6250 			return -EBUSY;
6251 		if (mddev->recovery || mddev->sync_thread)
6252 			return -EBUSY;
6253 		/* we should be able to change the bitmap.. */
6254 	}
6255 
6256 	if (fd >= 0) {
6257 		struct inode *inode;
6258 		struct file *f;
6259 
6260 		if (mddev->bitmap || mddev->bitmap_info.file)
6261 			return -EEXIST; /* cannot add when bitmap is present */
6262 		f = fget(fd);
6263 
6264 		if (f == NULL) {
6265 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6266 			       mdname(mddev));
6267 			return -EBADF;
6268 		}
6269 
6270 		inode = f->f_mapping->host;
6271 		if (!S_ISREG(inode->i_mode)) {
6272 			printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6273 			       mdname(mddev));
6274 			err = -EBADF;
6275 		} else if (!(f->f_mode & FMODE_WRITE)) {
6276 			printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6277 			       mdname(mddev));
6278 			err = -EBADF;
6279 		} else if (atomic_read(&inode->i_writecount) != 1) {
6280 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6281 			       mdname(mddev));
6282 			err = -EBUSY;
6283 		}
6284 		if (err) {
6285 			fput(f);
6286 			return err;
6287 		}
6288 		mddev->bitmap_info.file = f;
6289 		mddev->bitmap_info.offset = 0; /* file overrides offset */
6290 	} else if (mddev->bitmap == NULL)
6291 		return -ENOENT; /* cannot remove what isn't there */
6292 	err = 0;
6293 	if (mddev->pers) {
6294 		mddev->pers->quiesce(mddev, 1);
6295 		if (fd >= 0) {
6296 			struct bitmap *bitmap;
6297 
6298 			bitmap = bitmap_create(mddev, -1);
6299 			if (!IS_ERR(bitmap)) {
6300 				mddev->bitmap = bitmap;
6301 				err = bitmap_load(mddev);
6302 			} else
6303 				err = PTR_ERR(bitmap);
6304 		}
6305 		if (fd < 0 || err) {
6306 			bitmap_destroy(mddev);
6307 			fd = -1; /* make sure to put the file */
6308 		}
6309 		mddev->pers->quiesce(mddev, 0);
6310 	}
6311 	if (fd < 0) {
6312 		struct file *f = mddev->bitmap_info.file;
6313 		if (f) {
6314 			spin_lock(&mddev->lock);
6315 			mddev->bitmap_info.file = NULL;
6316 			spin_unlock(&mddev->lock);
6317 			fput(f);
6318 		}
6319 	}
6320 
6321 	return err;
6322 }
6323 
6324 /*
6325  * set_array_info is used two different ways
6326  * The original usage is when creating a new array.
6327  * In this usage, raid_disks is > 0 and it together with
6328  *  level, size, not_persistent,layout,chunksize determine the
6329  *  shape of the array.
6330  *  This will always create an array with a type-0.90.0 superblock.
6331  * The newer usage is when assembling an array.
6332  *  In this case raid_disks will be 0, and the major_version field is
6333  *  use to determine which style super-blocks are to be found on the devices.
6334  *  The minor and patch _version numbers are also kept incase the
6335  *  super_block handler wishes to interpret them.
6336  */
6337 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6338 {
6339 
6340 	if (info->raid_disks == 0) {
6341 		/* just setting version number for superblock loading */
6342 		if (info->major_version < 0 ||
6343 		    info->major_version >= ARRAY_SIZE(super_types) ||
6344 		    super_types[info->major_version].name == NULL) {
6345 			/* maybe try to auto-load a module? */
6346 			printk(KERN_INFO
6347 				"md: superblock version %d not known\n",
6348 				info->major_version);
6349 			return -EINVAL;
6350 		}
6351 		mddev->major_version = info->major_version;
6352 		mddev->minor_version = info->minor_version;
6353 		mddev->patch_version = info->patch_version;
6354 		mddev->persistent = !info->not_persistent;
6355 		/* ensure mddev_put doesn't delete this now that there
6356 		 * is some minimal configuration.
6357 		 */
6358 		mddev->ctime         = get_seconds();
6359 		return 0;
6360 	}
6361 	mddev->major_version = MD_MAJOR_VERSION;
6362 	mddev->minor_version = MD_MINOR_VERSION;
6363 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
6364 	mddev->ctime         = get_seconds();
6365 
6366 	mddev->level         = info->level;
6367 	mddev->clevel[0]     = 0;
6368 	mddev->dev_sectors   = 2 * (sector_t)info->size;
6369 	mddev->raid_disks    = info->raid_disks;
6370 	/* don't set md_minor, it is determined by which /dev/md* was
6371 	 * openned
6372 	 */
6373 	if (info->state & (1<<MD_SB_CLEAN))
6374 		mddev->recovery_cp = MaxSector;
6375 	else
6376 		mddev->recovery_cp = 0;
6377 	mddev->persistent    = ! info->not_persistent;
6378 	mddev->external	     = 0;
6379 
6380 	mddev->layout        = info->layout;
6381 	mddev->chunk_sectors = info->chunk_size >> 9;
6382 
6383 	mddev->max_disks     = MD_SB_DISKS;
6384 
6385 	if (mddev->persistent)
6386 		mddev->flags         = 0;
6387 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
6388 
6389 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6390 	mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6391 	mddev->bitmap_info.offset = 0;
6392 
6393 	mddev->reshape_position = MaxSector;
6394 
6395 	/*
6396 	 * Generate a 128 bit UUID
6397 	 */
6398 	get_random_bytes(mddev->uuid, 16);
6399 
6400 	mddev->new_level = mddev->level;
6401 	mddev->new_chunk_sectors = mddev->chunk_sectors;
6402 	mddev->new_layout = mddev->layout;
6403 	mddev->delta_disks = 0;
6404 	mddev->reshape_backwards = 0;
6405 
6406 	return 0;
6407 }
6408 
6409 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6410 {
6411 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6412 
6413 	if (mddev->external_size)
6414 		return;
6415 
6416 	mddev->array_sectors = array_sectors;
6417 }
6418 EXPORT_SYMBOL(md_set_array_sectors);
6419 
6420 static int update_size(struct mddev *mddev, sector_t num_sectors)
6421 {
6422 	struct md_rdev *rdev;
6423 	int rv;
6424 	int fit = (num_sectors == 0);
6425 
6426 	if (mddev->pers->resize == NULL)
6427 		return -EINVAL;
6428 	/* The "num_sectors" is the number of sectors of each device that
6429 	 * is used.  This can only make sense for arrays with redundancy.
6430 	 * linear and raid0 always use whatever space is available. We can only
6431 	 * consider changing this number if no resync or reconstruction is
6432 	 * happening, and if the new size is acceptable. It must fit before the
6433 	 * sb_start or, if that is <data_offset, it must fit before the size
6434 	 * of each device.  If num_sectors is zero, we find the largest size
6435 	 * that fits.
6436 	 */
6437 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6438 	    mddev->sync_thread)
6439 		return -EBUSY;
6440 	if (mddev->ro)
6441 		return -EROFS;
6442 
6443 	rdev_for_each(rdev, mddev) {
6444 		sector_t avail = rdev->sectors;
6445 
6446 		if (fit && (num_sectors == 0 || num_sectors > avail))
6447 			num_sectors = avail;
6448 		if (avail < num_sectors)
6449 			return -ENOSPC;
6450 	}
6451 	rv = mddev->pers->resize(mddev, num_sectors);
6452 	if (!rv)
6453 		revalidate_disk(mddev->gendisk);
6454 	return rv;
6455 }
6456 
6457 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6458 {
6459 	int rv;
6460 	struct md_rdev *rdev;
6461 	/* change the number of raid disks */
6462 	if (mddev->pers->check_reshape == NULL)
6463 		return -EINVAL;
6464 	if (mddev->ro)
6465 		return -EROFS;
6466 	if (raid_disks <= 0 ||
6467 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
6468 		return -EINVAL;
6469 	if (mddev->sync_thread ||
6470 	    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6471 	    mddev->reshape_position != MaxSector)
6472 		return -EBUSY;
6473 
6474 	rdev_for_each(rdev, mddev) {
6475 		if (mddev->raid_disks < raid_disks &&
6476 		    rdev->data_offset < rdev->new_data_offset)
6477 			return -EINVAL;
6478 		if (mddev->raid_disks > raid_disks &&
6479 		    rdev->data_offset > rdev->new_data_offset)
6480 			return -EINVAL;
6481 	}
6482 
6483 	mddev->delta_disks = raid_disks - mddev->raid_disks;
6484 	if (mddev->delta_disks < 0)
6485 		mddev->reshape_backwards = 1;
6486 	else if (mddev->delta_disks > 0)
6487 		mddev->reshape_backwards = 0;
6488 
6489 	rv = mddev->pers->check_reshape(mddev);
6490 	if (rv < 0) {
6491 		mddev->delta_disks = 0;
6492 		mddev->reshape_backwards = 0;
6493 	}
6494 	return rv;
6495 }
6496 
6497 /*
6498  * update_array_info is used to change the configuration of an
6499  * on-line array.
6500  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6501  * fields in the info are checked against the array.
6502  * Any differences that cannot be handled will cause an error.
6503  * Normally, only one change can be managed at a time.
6504  */
6505 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6506 {
6507 	int rv = 0;
6508 	int cnt = 0;
6509 	int state = 0;
6510 
6511 	/* calculate expected state,ignoring low bits */
6512 	if (mddev->bitmap && mddev->bitmap_info.offset)
6513 		state |= (1 << MD_SB_BITMAP_PRESENT);
6514 
6515 	if (mddev->major_version != info->major_version ||
6516 	    mddev->minor_version != info->minor_version ||
6517 /*	    mddev->patch_version != info->patch_version || */
6518 	    mddev->ctime         != info->ctime         ||
6519 	    mddev->level         != info->level         ||
6520 /*	    mddev->layout        != info->layout        || */
6521 	    mddev->persistent	 != !info->not_persistent ||
6522 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
6523 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6524 	    ((state^info->state) & 0xfffffe00)
6525 		)
6526 		return -EINVAL;
6527 	/* Check there is only one change */
6528 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6529 		cnt++;
6530 	if (mddev->raid_disks != info->raid_disks)
6531 		cnt++;
6532 	if (mddev->layout != info->layout)
6533 		cnt++;
6534 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6535 		cnt++;
6536 	if (cnt == 0)
6537 		return 0;
6538 	if (cnt > 1)
6539 		return -EINVAL;
6540 
6541 	if (mddev->layout != info->layout) {
6542 		/* Change layout
6543 		 * we don't need to do anything at the md level, the
6544 		 * personality will take care of it all.
6545 		 */
6546 		if (mddev->pers->check_reshape == NULL)
6547 			return -EINVAL;
6548 		else {
6549 			mddev->new_layout = info->layout;
6550 			rv = mddev->pers->check_reshape(mddev);
6551 			if (rv)
6552 				mddev->new_layout = mddev->layout;
6553 			return rv;
6554 		}
6555 	}
6556 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6557 		rv = update_size(mddev, (sector_t)info->size * 2);
6558 
6559 	if (mddev->raid_disks    != info->raid_disks)
6560 		rv = update_raid_disks(mddev, info->raid_disks);
6561 
6562 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6563 		if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6564 			rv = -EINVAL;
6565 			goto err;
6566 		}
6567 		if (mddev->recovery || mddev->sync_thread) {
6568 			rv = -EBUSY;
6569 			goto err;
6570 		}
6571 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6572 			struct bitmap *bitmap;
6573 			/* add the bitmap */
6574 			if (mddev->bitmap) {
6575 				rv = -EEXIST;
6576 				goto err;
6577 			}
6578 			if (mddev->bitmap_info.default_offset == 0) {
6579 				rv = -EINVAL;
6580 				goto err;
6581 			}
6582 			mddev->bitmap_info.offset =
6583 				mddev->bitmap_info.default_offset;
6584 			mddev->bitmap_info.space =
6585 				mddev->bitmap_info.default_space;
6586 			mddev->pers->quiesce(mddev, 1);
6587 			bitmap = bitmap_create(mddev, -1);
6588 			if (!IS_ERR(bitmap)) {
6589 				mddev->bitmap = bitmap;
6590 				rv = bitmap_load(mddev);
6591 			} else
6592 				rv = PTR_ERR(bitmap);
6593 			if (rv)
6594 				bitmap_destroy(mddev);
6595 			mddev->pers->quiesce(mddev, 0);
6596 		} else {
6597 			/* remove the bitmap */
6598 			if (!mddev->bitmap) {
6599 				rv = -ENOENT;
6600 				goto err;
6601 			}
6602 			if (mddev->bitmap->storage.file) {
6603 				rv = -EINVAL;
6604 				goto err;
6605 			}
6606 			mddev->pers->quiesce(mddev, 1);
6607 			bitmap_destroy(mddev);
6608 			mddev->pers->quiesce(mddev, 0);
6609 			mddev->bitmap_info.offset = 0;
6610 		}
6611 	}
6612 	md_update_sb(mddev, 1);
6613 	return rv;
6614 err:
6615 	return rv;
6616 }
6617 
6618 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6619 {
6620 	struct md_rdev *rdev;
6621 	int err = 0;
6622 
6623 	if (mddev->pers == NULL)
6624 		return -ENODEV;
6625 
6626 	rcu_read_lock();
6627 	rdev = find_rdev_rcu(mddev, dev);
6628 	if (!rdev)
6629 		err =  -ENODEV;
6630 	else {
6631 		md_error(mddev, rdev);
6632 		if (!test_bit(Faulty, &rdev->flags))
6633 			err = -EBUSY;
6634 	}
6635 	rcu_read_unlock();
6636 	return err;
6637 }
6638 
6639 /*
6640  * We have a problem here : there is no easy way to give a CHS
6641  * virtual geometry. We currently pretend that we have a 2 heads
6642  * 4 sectors (with a BIG number of cylinders...). This drives
6643  * dosfs just mad... ;-)
6644  */
6645 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6646 {
6647 	struct mddev *mddev = bdev->bd_disk->private_data;
6648 
6649 	geo->heads = 2;
6650 	geo->sectors = 4;
6651 	geo->cylinders = mddev->array_sectors / 8;
6652 	return 0;
6653 }
6654 
6655 static inline bool md_ioctl_valid(unsigned int cmd)
6656 {
6657 	switch (cmd) {
6658 	case ADD_NEW_DISK:
6659 	case BLKROSET:
6660 	case GET_ARRAY_INFO:
6661 	case GET_BITMAP_FILE:
6662 	case GET_DISK_INFO:
6663 	case HOT_ADD_DISK:
6664 	case HOT_REMOVE_DISK:
6665 	case RAID_AUTORUN:
6666 	case RAID_VERSION:
6667 	case RESTART_ARRAY_RW:
6668 	case RUN_ARRAY:
6669 	case SET_ARRAY_INFO:
6670 	case SET_BITMAP_FILE:
6671 	case SET_DISK_FAULTY:
6672 	case STOP_ARRAY:
6673 	case STOP_ARRAY_RO:
6674 	case CLUSTERED_DISK_NACK:
6675 		return true;
6676 	default:
6677 		return false;
6678 	}
6679 }
6680 
6681 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6682 			unsigned int cmd, unsigned long arg)
6683 {
6684 	int err = 0;
6685 	void __user *argp = (void __user *)arg;
6686 	struct mddev *mddev = NULL;
6687 	int ro;
6688 
6689 	if (!md_ioctl_valid(cmd))
6690 		return -ENOTTY;
6691 
6692 	switch (cmd) {
6693 	case RAID_VERSION:
6694 	case GET_ARRAY_INFO:
6695 	case GET_DISK_INFO:
6696 		break;
6697 	default:
6698 		if (!capable(CAP_SYS_ADMIN))
6699 			return -EACCES;
6700 	}
6701 
6702 	/*
6703 	 * Commands dealing with the RAID driver but not any
6704 	 * particular array:
6705 	 */
6706 	switch (cmd) {
6707 	case RAID_VERSION:
6708 		err = get_version(argp);
6709 		goto out;
6710 
6711 #ifndef MODULE
6712 	case RAID_AUTORUN:
6713 		err = 0;
6714 		autostart_arrays(arg);
6715 		goto out;
6716 #endif
6717 	default:;
6718 	}
6719 
6720 	/*
6721 	 * Commands creating/starting a new array:
6722 	 */
6723 
6724 	mddev = bdev->bd_disk->private_data;
6725 
6726 	if (!mddev) {
6727 		BUG();
6728 		goto out;
6729 	}
6730 
6731 	/* Some actions do not requires the mutex */
6732 	switch (cmd) {
6733 	case GET_ARRAY_INFO:
6734 		if (!mddev->raid_disks && !mddev->external)
6735 			err = -ENODEV;
6736 		else
6737 			err = get_array_info(mddev, argp);
6738 		goto out;
6739 
6740 	case GET_DISK_INFO:
6741 		if (!mddev->raid_disks && !mddev->external)
6742 			err = -ENODEV;
6743 		else
6744 			err = get_disk_info(mddev, argp);
6745 		goto out;
6746 
6747 	case SET_DISK_FAULTY:
6748 		err = set_disk_faulty(mddev, new_decode_dev(arg));
6749 		goto out;
6750 
6751 	case GET_BITMAP_FILE:
6752 		err = get_bitmap_file(mddev, argp);
6753 		goto out;
6754 
6755 	}
6756 
6757 	if (cmd == ADD_NEW_DISK)
6758 		/* need to ensure md_delayed_delete() has completed */
6759 		flush_workqueue(md_misc_wq);
6760 
6761 	if (cmd == HOT_REMOVE_DISK)
6762 		/* need to ensure recovery thread has run */
6763 		wait_event_interruptible_timeout(mddev->sb_wait,
6764 						 !test_bit(MD_RECOVERY_NEEDED,
6765 							   &mddev->flags),
6766 						 msecs_to_jiffies(5000));
6767 	if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6768 		/* Need to flush page cache, and ensure no-one else opens
6769 		 * and writes
6770 		 */
6771 		mutex_lock(&mddev->open_mutex);
6772 		if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6773 			mutex_unlock(&mddev->open_mutex);
6774 			err = -EBUSY;
6775 			goto out;
6776 		}
6777 		set_bit(MD_STILL_CLOSED, &mddev->flags);
6778 		mutex_unlock(&mddev->open_mutex);
6779 		sync_blockdev(bdev);
6780 	}
6781 	err = mddev_lock(mddev);
6782 	if (err) {
6783 		printk(KERN_INFO
6784 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6785 			err, cmd);
6786 		goto out;
6787 	}
6788 
6789 	if (cmd == SET_ARRAY_INFO) {
6790 		mdu_array_info_t info;
6791 		if (!arg)
6792 			memset(&info, 0, sizeof(info));
6793 		else if (copy_from_user(&info, argp, sizeof(info))) {
6794 			err = -EFAULT;
6795 			goto unlock;
6796 		}
6797 		if (mddev->pers) {
6798 			err = update_array_info(mddev, &info);
6799 			if (err) {
6800 				printk(KERN_WARNING "md: couldn't update"
6801 				       " array info. %d\n", err);
6802 				goto unlock;
6803 			}
6804 			goto unlock;
6805 		}
6806 		if (!list_empty(&mddev->disks)) {
6807 			printk(KERN_WARNING
6808 			       "md: array %s already has disks!\n",
6809 			       mdname(mddev));
6810 			err = -EBUSY;
6811 			goto unlock;
6812 		}
6813 		if (mddev->raid_disks) {
6814 			printk(KERN_WARNING
6815 			       "md: array %s already initialised!\n",
6816 			       mdname(mddev));
6817 			err = -EBUSY;
6818 			goto unlock;
6819 		}
6820 		err = set_array_info(mddev, &info);
6821 		if (err) {
6822 			printk(KERN_WARNING "md: couldn't set"
6823 			       " array info. %d\n", err);
6824 			goto unlock;
6825 		}
6826 		goto unlock;
6827 	}
6828 
6829 	/*
6830 	 * Commands querying/configuring an existing array:
6831 	 */
6832 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6833 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6834 	if ((!mddev->raid_disks && !mddev->external)
6835 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6836 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6837 	    && cmd != GET_BITMAP_FILE) {
6838 		err = -ENODEV;
6839 		goto unlock;
6840 	}
6841 
6842 	/*
6843 	 * Commands even a read-only array can execute:
6844 	 */
6845 	switch (cmd) {
6846 	case RESTART_ARRAY_RW:
6847 		err = restart_array(mddev);
6848 		goto unlock;
6849 
6850 	case STOP_ARRAY:
6851 		err = do_md_stop(mddev, 0, bdev);
6852 		goto unlock;
6853 
6854 	case STOP_ARRAY_RO:
6855 		err = md_set_readonly(mddev, bdev);
6856 		goto unlock;
6857 
6858 	case HOT_REMOVE_DISK:
6859 		err = hot_remove_disk(mddev, new_decode_dev(arg));
6860 		goto unlock;
6861 
6862 	case ADD_NEW_DISK:
6863 		/* We can support ADD_NEW_DISK on read-only arrays
6864 		 * on if we are re-adding a preexisting device.
6865 		 * So require mddev->pers and MD_DISK_SYNC.
6866 		 */
6867 		if (mddev->pers) {
6868 			mdu_disk_info_t info;
6869 			if (copy_from_user(&info, argp, sizeof(info)))
6870 				err = -EFAULT;
6871 			else if (!(info.state & (1<<MD_DISK_SYNC)))
6872 				/* Need to clear read-only for this */
6873 				break;
6874 			else
6875 				err = add_new_disk(mddev, &info);
6876 			goto unlock;
6877 		}
6878 		break;
6879 
6880 	case BLKROSET:
6881 		if (get_user(ro, (int __user *)(arg))) {
6882 			err = -EFAULT;
6883 			goto unlock;
6884 		}
6885 		err = -EINVAL;
6886 
6887 		/* if the bdev is going readonly the value of mddev->ro
6888 		 * does not matter, no writes are coming
6889 		 */
6890 		if (ro)
6891 			goto unlock;
6892 
6893 		/* are we are already prepared for writes? */
6894 		if (mddev->ro != 1)
6895 			goto unlock;
6896 
6897 		/* transitioning to readauto need only happen for
6898 		 * arrays that call md_write_start
6899 		 */
6900 		if (mddev->pers) {
6901 			err = restart_array(mddev);
6902 			if (err == 0) {
6903 				mddev->ro = 2;
6904 				set_disk_ro(mddev->gendisk, 0);
6905 			}
6906 		}
6907 		goto unlock;
6908 	}
6909 
6910 	/*
6911 	 * The remaining ioctls are changing the state of the
6912 	 * superblock, so we do not allow them on read-only arrays.
6913 	 */
6914 	if (mddev->ro && mddev->pers) {
6915 		if (mddev->ro == 2) {
6916 			mddev->ro = 0;
6917 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6918 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6919 			/* mddev_unlock will wake thread */
6920 			/* If a device failed while we were read-only, we
6921 			 * need to make sure the metadata is updated now.
6922 			 */
6923 			if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6924 				mddev_unlock(mddev);
6925 				wait_event(mddev->sb_wait,
6926 					   !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6927 					   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6928 				mddev_lock_nointr(mddev);
6929 			}
6930 		} else {
6931 			err = -EROFS;
6932 			goto unlock;
6933 		}
6934 	}
6935 
6936 	switch (cmd) {
6937 	case ADD_NEW_DISK:
6938 	{
6939 		mdu_disk_info_t info;
6940 		if (copy_from_user(&info, argp, sizeof(info)))
6941 			err = -EFAULT;
6942 		else
6943 			err = add_new_disk(mddev, &info);
6944 		goto unlock;
6945 	}
6946 
6947 	case CLUSTERED_DISK_NACK:
6948 		if (mddev_is_clustered(mddev))
6949 			md_cluster_ops->new_disk_ack(mddev, false);
6950 		else
6951 			err = -EINVAL;
6952 		goto unlock;
6953 
6954 	case HOT_ADD_DISK:
6955 		err = hot_add_disk(mddev, new_decode_dev(arg));
6956 		goto unlock;
6957 
6958 	case RUN_ARRAY:
6959 		err = do_md_run(mddev);
6960 		goto unlock;
6961 
6962 	case SET_BITMAP_FILE:
6963 		err = set_bitmap_file(mddev, (int)arg);
6964 		goto unlock;
6965 
6966 	default:
6967 		err = -EINVAL;
6968 		goto unlock;
6969 	}
6970 
6971 unlock:
6972 	if (mddev->hold_active == UNTIL_IOCTL &&
6973 	    err != -EINVAL)
6974 		mddev->hold_active = 0;
6975 	mddev_unlock(mddev);
6976 out:
6977 	return err;
6978 }
6979 #ifdef CONFIG_COMPAT
6980 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6981 		    unsigned int cmd, unsigned long arg)
6982 {
6983 	switch (cmd) {
6984 	case HOT_REMOVE_DISK:
6985 	case HOT_ADD_DISK:
6986 	case SET_DISK_FAULTY:
6987 	case SET_BITMAP_FILE:
6988 		/* These take in integer arg, do not convert */
6989 		break;
6990 	default:
6991 		arg = (unsigned long)compat_ptr(arg);
6992 		break;
6993 	}
6994 
6995 	return md_ioctl(bdev, mode, cmd, arg);
6996 }
6997 #endif /* CONFIG_COMPAT */
6998 
6999 static int md_open(struct block_device *bdev, fmode_t mode)
7000 {
7001 	/*
7002 	 * Succeed if we can lock the mddev, which confirms that
7003 	 * it isn't being stopped right now.
7004 	 */
7005 	struct mddev *mddev = mddev_find(bdev->bd_dev);
7006 	int err;
7007 
7008 	if (!mddev)
7009 		return -ENODEV;
7010 
7011 	if (mddev->gendisk != bdev->bd_disk) {
7012 		/* we are racing with mddev_put which is discarding this
7013 		 * bd_disk.
7014 		 */
7015 		mddev_put(mddev);
7016 		/* Wait until bdev->bd_disk is definitely gone */
7017 		flush_workqueue(md_misc_wq);
7018 		/* Then retry the open from the top */
7019 		return -ERESTARTSYS;
7020 	}
7021 	BUG_ON(mddev != bdev->bd_disk->private_data);
7022 
7023 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7024 		goto out;
7025 
7026 	err = 0;
7027 	atomic_inc(&mddev->openers);
7028 	clear_bit(MD_STILL_CLOSED, &mddev->flags);
7029 	mutex_unlock(&mddev->open_mutex);
7030 
7031 	check_disk_change(bdev);
7032  out:
7033 	return err;
7034 }
7035 
7036 static void md_release(struct gendisk *disk, fmode_t mode)
7037 {
7038 	struct mddev *mddev = disk->private_data;
7039 
7040 	BUG_ON(!mddev);
7041 	atomic_dec(&mddev->openers);
7042 	mddev_put(mddev);
7043 }
7044 
7045 static int md_media_changed(struct gendisk *disk)
7046 {
7047 	struct mddev *mddev = disk->private_data;
7048 
7049 	return mddev->changed;
7050 }
7051 
7052 static int md_revalidate(struct gendisk *disk)
7053 {
7054 	struct mddev *mddev = disk->private_data;
7055 
7056 	mddev->changed = 0;
7057 	return 0;
7058 }
7059 static const struct block_device_operations md_fops =
7060 {
7061 	.owner		= THIS_MODULE,
7062 	.open		= md_open,
7063 	.release	= md_release,
7064 	.ioctl		= md_ioctl,
7065 #ifdef CONFIG_COMPAT
7066 	.compat_ioctl	= md_compat_ioctl,
7067 #endif
7068 	.getgeo		= md_getgeo,
7069 	.media_changed  = md_media_changed,
7070 	.revalidate_disk= md_revalidate,
7071 };
7072 
7073 static int md_thread(void *arg)
7074 {
7075 	struct md_thread *thread = arg;
7076 
7077 	/*
7078 	 * md_thread is a 'system-thread', it's priority should be very
7079 	 * high. We avoid resource deadlocks individually in each
7080 	 * raid personality. (RAID5 does preallocation) We also use RR and
7081 	 * the very same RT priority as kswapd, thus we will never get
7082 	 * into a priority inversion deadlock.
7083 	 *
7084 	 * we definitely have to have equal or higher priority than
7085 	 * bdflush, otherwise bdflush will deadlock if there are too
7086 	 * many dirty RAID5 blocks.
7087 	 */
7088 
7089 	allow_signal(SIGKILL);
7090 	while (!kthread_should_stop()) {
7091 
7092 		/* We need to wait INTERRUPTIBLE so that
7093 		 * we don't add to the load-average.
7094 		 * That means we need to be sure no signals are
7095 		 * pending
7096 		 */
7097 		if (signal_pending(current))
7098 			flush_signals(current);
7099 
7100 		wait_event_interruptible_timeout
7101 			(thread->wqueue,
7102 			 test_bit(THREAD_WAKEUP, &thread->flags)
7103 			 || kthread_should_stop(),
7104 			 thread->timeout);
7105 
7106 		clear_bit(THREAD_WAKEUP, &thread->flags);
7107 		if (!kthread_should_stop())
7108 			thread->run(thread);
7109 	}
7110 
7111 	return 0;
7112 }
7113 
7114 void md_wakeup_thread(struct md_thread *thread)
7115 {
7116 	if (thread) {
7117 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7118 		set_bit(THREAD_WAKEUP, &thread->flags);
7119 		wake_up(&thread->wqueue);
7120 	}
7121 }
7122 EXPORT_SYMBOL(md_wakeup_thread);
7123 
7124 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7125 		struct mddev *mddev, const char *name)
7126 {
7127 	struct md_thread *thread;
7128 
7129 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7130 	if (!thread)
7131 		return NULL;
7132 
7133 	init_waitqueue_head(&thread->wqueue);
7134 
7135 	thread->run = run;
7136 	thread->mddev = mddev;
7137 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
7138 	thread->tsk = kthread_run(md_thread, thread,
7139 				  "%s_%s",
7140 				  mdname(thread->mddev),
7141 				  name);
7142 	if (IS_ERR(thread->tsk)) {
7143 		kfree(thread);
7144 		return NULL;
7145 	}
7146 	return thread;
7147 }
7148 EXPORT_SYMBOL(md_register_thread);
7149 
7150 void md_unregister_thread(struct md_thread **threadp)
7151 {
7152 	struct md_thread *thread = *threadp;
7153 	if (!thread)
7154 		return;
7155 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7156 	/* Locking ensures that mddev_unlock does not wake_up a
7157 	 * non-existent thread
7158 	 */
7159 	spin_lock(&pers_lock);
7160 	*threadp = NULL;
7161 	spin_unlock(&pers_lock);
7162 
7163 	kthread_stop(thread->tsk);
7164 	kfree(thread);
7165 }
7166 EXPORT_SYMBOL(md_unregister_thread);
7167 
7168 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7169 {
7170 	if (!rdev || test_bit(Faulty, &rdev->flags))
7171 		return;
7172 
7173 	if (!mddev->pers || !mddev->pers->error_handler)
7174 		return;
7175 	mddev->pers->error_handler(mddev,rdev);
7176 	if (mddev->degraded)
7177 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7178 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7179 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7180 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7181 	md_wakeup_thread(mddev->thread);
7182 	if (mddev->event_work.func)
7183 		queue_work(md_misc_wq, &mddev->event_work);
7184 	md_new_event_inintr(mddev);
7185 }
7186 EXPORT_SYMBOL(md_error);
7187 
7188 /* seq_file implementation /proc/mdstat */
7189 
7190 static void status_unused(struct seq_file *seq)
7191 {
7192 	int i = 0;
7193 	struct md_rdev *rdev;
7194 
7195 	seq_printf(seq, "unused devices: ");
7196 
7197 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7198 		char b[BDEVNAME_SIZE];
7199 		i++;
7200 		seq_printf(seq, "%s ",
7201 			      bdevname(rdev->bdev,b));
7202 	}
7203 	if (!i)
7204 		seq_printf(seq, "<none>");
7205 
7206 	seq_printf(seq, "\n");
7207 }
7208 
7209 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7210 {
7211 	sector_t max_sectors, resync, res;
7212 	unsigned long dt, db;
7213 	sector_t rt;
7214 	int scale;
7215 	unsigned int per_milli;
7216 
7217 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7218 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7219 		max_sectors = mddev->resync_max_sectors;
7220 	else
7221 		max_sectors = mddev->dev_sectors;
7222 
7223 	resync = mddev->curr_resync;
7224 	if (resync <= 3) {
7225 		if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7226 			/* Still cleaning up */
7227 			resync = max_sectors;
7228 	} else
7229 		resync -= atomic_read(&mddev->recovery_active);
7230 
7231 	if (resync == 0) {
7232 		if (mddev->recovery_cp < MaxSector) {
7233 			seq_printf(seq, "\tresync=PENDING");
7234 			return 1;
7235 		}
7236 		return 0;
7237 	}
7238 	if (resync < 3) {
7239 		seq_printf(seq, "\tresync=DELAYED");
7240 		return 1;
7241 	}
7242 
7243 	WARN_ON(max_sectors == 0);
7244 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
7245 	 * in a sector_t, and (max_sectors>>scale) will fit in a
7246 	 * u32, as those are the requirements for sector_div.
7247 	 * Thus 'scale' must be at least 10
7248 	 */
7249 	scale = 10;
7250 	if (sizeof(sector_t) > sizeof(unsigned long)) {
7251 		while ( max_sectors/2 > (1ULL<<(scale+32)))
7252 			scale++;
7253 	}
7254 	res = (resync>>scale)*1000;
7255 	sector_div(res, (u32)((max_sectors>>scale)+1));
7256 
7257 	per_milli = res;
7258 	{
7259 		int i, x = per_milli/50, y = 20-x;
7260 		seq_printf(seq, "[");
7261 		for (i = 0; i < x; i++)
7262 			seq_printf(seq, "=");
7263 		seq_printf(seq, ">");
7264 		for (i = 0; i < y; i++)
7265 			seq_printf(seq, ".");
7266 		seq_printf(seq, "] ");
7267 	}
7268 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7269 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7270 		    "reshape" :
7271 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7272 		     "check" :
7273 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7274 		      "resync" : "recovery"))),
7275 		   per_milli/10, per_milli % 10,
7276 		   (unsigned long long) resync/2,
7277 		   (unsigned long long) max_sectors/2);
7278 
7279 	/*
7280 	 * dt: time from mark until now
7281 	 * db: blocks written from mark until now
7282 	 * rt: remaining time
7283 	 *
7284 	 * rt is a sector_t, so could be 32bit or 64bit.
7285 	 * So we divide before multiply in case it is 32bit and close
7286 	 * to the limit.
7287 	 * We scale the divisor (db) by 32 to avoid losing precision
7288 	 * near the end of resync when the number of remaining sectors
7289 	 * is close to 'db'.
7290 	 * We then divide rt by 32 after multiplying by db to compensate.
7291 	 * The '+1' avoids division by zero if db is very small.
7292 	 */
7293 	dt = ((jiffies - mddev->resync_mark) / HZ);
7294 	if (!dt) dt++;
7295 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7296 		- mddev->resync_mark_cnt;
7297 
7298 	rt = max_sectors - resync;    /* number of remaining sectors */
7299 	sector_div(rt, db/32+1);
7300 	rt *= dt;
7301 	rt >>= 5;
7302 
7303 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7304 		   ((unsigned long)rt % 60)/6);
7305 
7306 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7307 	return 1;
7308 }
7309 
7310 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7311 {
7312 	struct list_head *tmp;
7313 	loff_t l = *pos;
7314 	struct mddev *mddev;
7315 
7316 	if (l >= 0x10000)
7317 		return NULL;
7318 	if (!l--)
7319 		/* header */
7320 		return (void*)1;
7321 
7322 	spin_lock(&all_mddevs_lock);
7323 	list_for_each(tmp,&all_mddevs)
7324 		if (!l--) {
7325 			mddev = list_entry(tmp, struct mddev, all_mddevs);
7326 			mddev_get(mddev);
7327 			spin_unlock(&all_mddevs_lock);
7328 			return mddev;
7329 		}
7330 	spin_unlock(&all_mddevs_lock);
7331 	if (!l--)
7332 		return (void*)2;/* tail */
7333 	return NULL;
7334 }
7335 
7336 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7337 {
7338 	struct list_head *tmp;
7339 	struct mddev *next_mddev, *mddev = v;
7340 
7341 	++*pos;
7342 	if (v == (void*)2)
7343 		return NULL;
7344 
7345 	spin_lock(&all_mddevs_lock);
7346 	if (v == (void*)1)
7347 		tmp = all_mddevs.next;
7348 	else
7349 		tmp = mddev->all_mddevs.next;
7350 	if (tmp != &all_mddevs)
7351 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7352 	else {
7353 		next_mddev = (void*)2;
7354 		*pos = 0x10000;
7355 	}
7356 	spin_unlock(&all_mddevs_lock);
7357 
7358 	if (v != (void*)1)
7359 		mddev_put(mddev);
7360 	return next_mddev;
7361 
7362 }
7363 
7364 static void md_seq_stop(struct seq_file *seq, void *v)
7365 {
7366 	struct mddev *mddev = v;
7367 
7368 	if (mddev && v != (void*)1 && v != (void*)2)
7369 		mddev_put(mddev);
7370 }
7371 
7372 static int md_seq_show(struct seq_file *seq, void *v)
7373 {
7374 	struct mddev *mddev = v;
7375 	sector_t sectors;
7376 	struct md_rdev *rdev;
7377 
7378 	if (v == (void*)1) {
7379 		struct md_personality *pers;
7380 		seq_printf(seq, "Personalities : ");
7381 		spin_lock(&pers_lock);
7382 		list_for_each_entry(pers, &pers_list, list)
7383 			seq_printf(seq, "[%s] ", pers->name);
7384 
7385 		spin_unlock(&pers_lock);
7386 		seq_printf(seq, "\n");
7387 		seq->poll_event = atomic_read(&md_event_count);
7388 		return 0;
7389 	}
7390 	if (v == (void*)2) {
7391 		status_unused(seq);
7392 		return 0;
7393 	}
7394 
7395 	spin_lock(&mddev->lock);
7396 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7397 		seq_printf(seq, "%s : %sactive", mdname(mddev),
7398 						mddev->pers ? "" : "in");
7399 		if (mddev->pers) {
7400 			if (mddev->ro==1)
7401 				seq_printf(seq, " (read-only)");
7402 			if (mddev->ro==2)
7403 				seq_printf(seq, " (auto-read-only)");
7404 			seq_printf(seq, " %s", mddev->pers->name);
7405 		}
7406 
7407 		sectors = 0;
7408 		rcu_read_lock();
7409 		rdev_for_each_rcu(rdev, mddev) {
7410 			char b[BDEVNAME_SIZE];
7411 			seq_printf(seq, " %s[%d]",
7412 				bdevname(rdev->bdev,b), rdev->desc_nr);
7413 			if (test_bit(WriteMostly, &rdev->flags))
7414 				seq_printf(seq, "(W)");
7415 			if (test_bit(Journal, &rdev->flags))
7416 				seq_printf(seq, "(J)");
7417 			if (test_bit(Faulty, &rdev->flags)) {
7418 				seq_printf(seq, "(F)");
7419 				continue;
7420 			}
7421 			if (rdev->raid_disk < 0)
7422 				seq_printf(seq, "(S)"); /* spare */
7423 			if (test_bit(Replacement, &rdev->flags))
7424 				seq_printf(seq, "(R)");
7425 			sectors += rdev->sectors;
7426 		}
7427 		rcu_read_unlock();
7428 
7429 		if (!list_empty(&mddev->disks)) {
7430 			if (mddev->pers)
7431 				seq_printf(seq, "\n      %llu blocks",
7432 					   (unsigned long long)
7433 					   mddev->array_sectors / 2);
7434 			else
7435 				seq_printf(seq, "\n      %llu blocks",
7436 					   (unsigned long long)sectors / 2);
7437 		}
7438 		if (mddev->persistent) {
7439 			if (mddev->major_version != 0 ||
7440 			    mddev->minor_version != 90) {
7441 				seq_printf(seq," super %d.%d",
7442 					   mddev->major_version,
7443 					   mddev->minor_version);
7444 			}
7445 		} else if (mddev->external)
7446 			seq_printf(seq, " super external:%s",
7447 				   mddev->metadata_type);
7448 		else
7449 			seq_printf(seq, " super non-persistent");
7450 
7451 		if (mddev->pers) {
7452 			mddev->pers->status(seq, mddev);
7453 			seq_printf(seq, "\n      ");
7454 			if (mddev->pers->sync_request) {
7455 				if (status_resync(seq, mddev))
7456 					seq_printf(seq, "\n      ");
7457 			}
7458 		} else
7459 			seq_printf(seq, "\n       ");
7460 
7461 		bitmap_status(seq, mddev->bitmap);
7462 
7463 		seq_printf(seq, "\n");
7464 	}
7465 	spin_unlock(&mddev->lock);
7466 
7467 	return 0;
7468 }
7469 
7470 static const struct seq_operations md_seq_ops = {
7471 	.start  = md_seq_start,
7472 	.next   = md_seq_next,
7473 	.stop   = md_seq_stop,
7474 	.show   = md_seq_show,
7475 };
7476 
7477 static int md_seq_open(struct inode *inode, struct file *file)
7478 {
7479 	struct seq_file *seq;
7480 	int error;
7481 
7482 	error = seq_open(file, &md_seq_ops);
7483 	if (error)
7484 		return error;
7485 
7486 	seq = file->private_data;
7487 	seq->poll_event = atomic_read(&md_event_count);
7488 	return error;
7489 }
7490 
7491 static int md_unloading;
7492 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7493 {
7494 	struct seq_file *seq = filp->private_data;
7495 	int mask;
7496 
7497 	if (md_unloading)
7498 		return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7499 	poll_wait(filp, &md_event_waiters, wait);
7500 
7501 	/* always allow read */
7502 	mask = POLLIN | POLLRDNORM;
7503 
7504 	if (seq->poll_event != atomic_read(&md_event_count))
7505 		mask |= POLLERR | POLLPRI;
7506 	return mask;
7507 }
7508 
7509 static const struct file_operations md_seq_fops = {
7510 	.owner		= THIS_MODULE,
7511 	.open           = md_seq_open,
7512 	.read           = seq_read,
7513 	.llseek         = seq_lseek,
7514 	.release	= seq_release_private,
7515 	.poll		= mdstat_poll,
7516 };
7517 
7518 int register_md_personality(struct md_personality *p)
7519 {
7520 	printk(KERN_INFO "md: %s personality registered for level %d\n",
7521 						p->name, p->level);
7522 	spin_lock(&pers_lock);
7523 	list_add_tail(&p->list, &pers_list);
7524 	spin_unlock(&pers_lock);
7525 	return 0;
7526 }
7527 EXPORT_SYMBOL(register_md_personality);
7528 
7529 int unregister_md_personality(struct md_personality *p)
7530 {
7531 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7532 	spin_lock(&pers_lock);
7533 	list_del_init(&p->list);
7534 	spin_unlock(&pers_lock);
7535 	return 0;
7536 }
7537 EXPORT_SYMBOL(unregister_md_personality);
7538 
7539 int register_md_cluster_operations(struct md_cluster_operations *ops,
7540 				   struct module *module)
7541 {
7542 	int ret = 0;
7543 	spin_lock(&pers_lock);
7544 	if (md_cluster_ops != NULL)
7545 		ret = -EALREADY;
7546 	else {
7547 		md_cluster_ops = ops;
7548 		md_cluster_mod = module;
7549 	}
7550 	spin_unlock(&pers_lock);
7551 	return ret;
7552 }
7553 EXPORT_SYMBOL(register_md_cluster_operations);
7554 
7555 int unregister_md_cluster_operations(void)
7556 {
7557 	spin_lock(&pers_lock);
7558 	md_cluster_ops = NULL;
7559 	spin_unlock(&pers_lock);
7560 	return 0;
7561 }
7562 EXPORT_SYMBOL(unregister_md_cluster_operations);
7563 
7564 int md_setup_cluster(struct mddev *mddev, int nodes)
7565 {
7566 	int err;
7567 
7568 	err = request_module("md-cluster");
7569 	if (err) {
7570 		pr_err("md-cluster module not found.\n");
7571 		return -ENOENT;
7572 	}
7573 
7574 	spin_lock(&pers_lock);
7575 	if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7576 		spin_unlock(&pers_lock);
7577 		return -ENOENT;
7578 	}
7579 	spin_unlock(&pers_lock);
7580 
7581 	return md_cluster_ops->join(mddev, nodes);
7582 }
7583 
7584 void md_cluster_stop(struct mddev *mddev)
7585 {
7586 	if (!md_cluster_ops)
7587 		return;
7588 	md_cluster_ops->leave(mddev);
7589 	module_put(md_cluster_mod);
7590 }
7591 
7592 static int is_mddev_idle(struct mddev *mddev, int init)
7593 {
7594 	struct md_rdev *rdev;
7595 	int idle;
7596 	int curr_events;
7597 
7598 	idle = 1;
7599 	rcu_read_lock();
7600 	rdev_for_each_rcu(rdev, mddev) {
7601 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7602 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7603 			      (int)part_stat_read(&disk->part0, sectors[1]) -
7604 			      atomic_read(&disk->sync_io);
7605 		/* sync IO will cause sync_io to increase before the disk_stats
7606 		 * as sync_io is counted when a request starts, and
7607 		 * disk_stats is counted when it completes.
7608 		 * So resync activity will cause curr_events to be smaller than
7609 		 * when there was no such activity.
7610 		 * non-sync IO will cause disk_stat to increase without
7611 		 * increasing sync_io so curr_events will (eventually)
7612 		 * be larger than it was before.  Once it becomes
7613 		 * substantially larger, the test below will cause
7614 		 * the array to appear non-idle, and resync will slow
7615 		 * down.
7616 		 * If there is a lot of outstanding resync activity when
7617 		 * we set last_event to curr_events, then all that activity
7618 		 * completing might cause the array to appear non-idle
7619 		 * and resync will be slowed down even though there might
7620 		 * not have been non-resync activity.  This will only
7621 		 * happen once though.  'last_events' will soon reflect
7622 		 * the state where there is little or no outstanding
7623 		 * resync requests, and further resync activity will
7624 		 * always make curr_events less than last_events.
7625 		 *
7626 		 */
7627 		if (init || curr_events - rdev->last_events > 64) {
7628 			rdev->last_events = curr_events;
7629 			idle = 0;
7630 		}
7631 	}
7632 	rcu_read_unlock();
7633 	return idle;
7634 }
7635 
7636 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7637 {
7638 	/* another "blocks" (512byte) blocks have been synced */
7639 	atomic_sub(blocks, &mddev->recovery_active);
7640 	wake_up(&mddev->recovery_wait);
7641 	if (!ok) {
7642 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7643 		set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7644 		md_wakeup_thread(mddev->thread);
7645 		// stop recovery, signal do_sync ....
7646 	}
7647 }
7648 EXPORT_SYMBOL(md_done_sync);
7649 
7650 /* md_write_start(mddev, bi)
7651  * If we need to update some array metadata (e.g. 'active' flag
7652  * in superblock) before writing, schedule a superblock update
7653  * and wait for it to complete.
7654  */
7655 void md_write_start(struct mddev *mddev, struct bio *bi)
7656 {
7657 	int did_change = 0;
7658 	if (bio_data_dir(bi) != WRITE)
7659 		return;
7660 
7661 	BUG_ON(mddev->ro == 1);
7662 	if (mddev->ro == 2) {
7663 		/* need to switch to read/write */
7664 		mddev->ro = 0;
7665 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7666 		md_wakeup_thread(mddev->thread);
7667 		md_wakeup_thread(mddev->sync_thread);
7668 		did_change = 1;
7669 	}
7670 	atomic_inc(&mddev->writes_pending);
7671 	if (mddev->safemode == 1)
7672 		mddev->safemode = 0;
7673 	if (mddev->in_sync) {
7674 		spin_lock(&mddev->lock);
7675 		if (mddev->in_sync) {
7676 			mddev->in_sync = 0;
7677 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7678 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
7679 			md_wakeup_thread(mddev->thread);
7680 			did_change = 1;
7681 		}
7682 		spin_unlock(&mddev->lock);
7683 	}
7684 	if (did_change)
7685 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7686 	wait_event(mddev->sb_wait,
7687 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7688 }
7689 EXPORT_SYMBOL(md_write_start);
7690 
7691 void md_write_end(struct mddev *mddev)
7692 {
7693 	if (atomic_dec_and_test(&mddev->writes_pending)) {
7694 		if (mddev->safemode == 2)
7695 			md_wakeup_thread(mddev->thread);
7696 		else if (mddev->safemode_delay)
7697 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7698 	}
7699 }
7700 EXPORT_SYMBOL(md_write_end);
7701 
7702 /* md_allow_write(mddev)
7703  * Calling this ensures that the array is marked 'active' so that writes
7704  * may proceed without blocking.  It is important to call this before
7705  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7706  * Must be called with mddev_lock held.
7707  *
7708  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7709  * is dropped, so return -EAGAIN after notifying userspace.
7710  */
7711 int md_allow_write(struct mddev *mddev)
7712 {
7713 	if (!mddev->pers)
7714 		return 0;
7715 	if (mddev->ro)
7716 		return 0;
7717 	if (!mddev->pers->sync_request)
7718 		return 0;
7719 
7720 	spin_lock(&mddev->lock);
7721 	if (mddev->in_sync) {
7722 		mddev->in_sync = 0;
7723 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7724 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7725 		if (mddev->safemode_delay &&
7726 		    mddev->safemode == 0)
7727 			mddev->safemode = 1;
7728 		spin_unlock(&mddev->lock);
7729 		md_update_sb(mddev, 0);
7730 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7731 	} else
7732 		spin_unlock(&mddev->lock);
7733 
7734 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7735 		return -EAGAIN;
7736 	else
7737 		return 0;
7738 }
7739 EXPORT_SYMBOL_GPL(md_allow_write);
7740 
7741 #define SYNC_MARKS	10
7742 #define	SYNC_MARK_STEP	(3*HZ)
7743 #define UPDATE_FREQUENCY (5*60*HZ)
7744 void md_do_sync(struct md_thread *thread)
7745 {
7746 	struct mddev *mddev = thread->mddev;
7747 	struct mddev *mddev2;
7748 	unsigned int currspeed = 0,
7749 		 window;
7750 	sector_t max_sectors,j, io_sectors, recovery_done;
7751 	unsigned long mark[SYNC_MARKS];
7752 	unsigned long update_time;
7753 	sector_t mark_cnt[SYNC_MARKS];
7754 	int last_mark,m;
7755 	struct list_head *tmp;
7756 	sector_t last_check;
7757 	int skipped = 0;
7758 	struct md_rdev *rdev;
7759 	char *desc, *action = NULL;
7760 	struct blk_plug plug;
7761 	bool cluster_resync_finished = false;
7762 
7763 	/* just incase thread restarts... */
7764 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7765 		return;
7766 	if (mddev->ro) {/* never try to sync a read-only array */
7767 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7768 		return;
7769 	}
7770 
7771 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7772 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7773 			desc = "data-check";
7774 			action = "check";
7775 		} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7776 			desc = "requested-resync";
7777 			action = "repair";
7778 		} else
7779 			desc = "resync";
7780 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7781 		desc = "reshape";
7782 	else
7783 		desc = "recovery";
7784 
7785 	mddev->last_sync_action = action ?: desc;
7786 
7787 	/* we overload curr_resync somewhat here.
7788 	 * 0 == not engaged in resync at all
7789 	 * 2 == checking that there is no conflict with another sync
7790 	 * 1 == like 2, but have yielded to allow conflicting resync to
7791 	 *		commense
7792 	 * other == active in resync - this many blocks
7793 	 *
7794 	 * Before starting a resync we must have set curr_resync to
7795 	 * 2, and then checked that every "conflicting" array has curr_resync
7796 	 * less than ours.  When we find one that is the same or higher
7797 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7798 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7799 	 * This will mean we have to start checking from the beginning again.
7800 	 *
7801 	 */
7802 
7803 	do {
7804 		mddev->curr_resync = 2;
7805 
7806 	try_again:
7807 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7808 			goto skip;
7809 		for_each_mddev(mddev2, tmp) {
7810 			if (mddev2 == mddev)
7811 				continue;
7812 			if (!mddev->parallel_resync
7813 			&&  mddev2->curr_resync
7814 			&&  match_mddev_units(mddev, mddev2)) {
7815 				DEFINE_WAIT(wq);
7816 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7817 					/* arbitrarily yield */
7818 					mddev->curr_resync = 1;
7819 					wake_up(&resync_wait);
7820 				}
7821 				if (mddev > mddev2 && mddev->curr_resync == 1)
7822 					/* no need to wait here, we can wait the next
7823 					 * time 'round when curr_resync == 2
7824 					 */
7825 					continue;
7826 				/* We need to wait 'interruptible' so as not to
7827 				 * contribute to the load average, and not to
7828 				 * be caught by 'softlockup'
7829 				 */
7830 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7831 				if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7832 				    mddev2->curr_resync >= mddev->curr_resync) {
7833 					printk(KERN_INFO "md: delaying %s of %s"
7834 					       " until %s has finished (they"
7835 					       " share one or more physical units)\n",
7836 					       desc, mdname(mddev), mdname(mddev2));
7837 					mddev_put(mddev2);
7838 					if (signal_pending(current))
7839 						flush_signals(current);
7840 					schedule();
7841 					finish_wait(&resync_wait, &wq);
7842 					goto try_again;
7843 				}
7844 				finish_wait(&resync_wait, &wq);
7845 			}
7846 		}
7847 	} while (mddev->curr_resync < 2);
7848 
7849 	j = 0;
7850 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7851 		/* resync follows the size requested by the personality,
7852 		 * which defaults to physical size, but can be virtual size
7853 		 */
7854 		max_sectors = mddev->resync_max_sectors;
7855 		atomic64_set(&mddev->resync_mismatches, 0);
7856 		/* we don't use the checkpoint if there's a bitmap */
7857 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7858 			j = mddev->resync_min;
7859 		else if (!mddev->bitmap)
7860 			j = mddev->recovery_cp;
7861 
7862 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7863 		max_sectors = mddev->resync_max_sectors;
7864 	else {
7865 		/* recovery follows the physical size of devices */
7866 		max_sectors = mddev->dev_sectors;
7867 		j = MaxSector;
7868 		rcu_read_lock();
7869 		rdev_for_each_rcu(rdev, mddev)
7870 			if (rdev->raid_disk >= 0 &&
7871 			    !test_bit(Journal, &rdev->flags) &&
7872 			    !test_bit(Faulty, &rdev->flags) &&
7873 			    !test_bit(In_sync, &rdev->flags) &&
7874 			    rdev->recovery_offset < j)
7875 				j = rdev->recovery_offset;
7876 		rcu_read_unlock();
7877 
7878 		/* If there is a bitmap, we need to make sure all
7879 		 * writes that started before we added a spare
7880 		 * complete before we start doing a recovery.
7881 		 * Otherwise the write might complete and (via
7882 		 * bitmap_endwrite) set a bit in the bitmap after the
7883 		 * recovery has checked that bit and skipped that
7884 		 * region.
7885 		 */
7886 		if (mddev->bitmap) {
7887 			mddev->pers->quiesce(mddev, 1);
7888 			mddev->pers->quiesce(mddev, 0);
7889 		}
7890 	}
7891 
7892 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7893 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7894 		" %d KB/sec/disk.\n", speed_min(mddev));
7895 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7896 	       "(but not more than %d KB/sec) for %s.\n",
7897 	       speed_max(mddev), desc);
7898 
7899 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7900 
7901 	io_sectors = 0;
7902 	for (m = 0; m < SYNC_MARKS; m++) {
7903 		mark[m] = jiffies;
7904 		mark_cnt[m] = io_sectors;
7905 	}
7906 	last_mark = 0;
7907 	mddev->resync_mark = mark[last_mark];
7908 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7909 
7910 	/*
7911 	 * Tune reconstruction:
7912 	 */
7913 	window = 32*(PAGE_SIZE/512);
7914 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7915 		window/2, (unsigned long long)max_sectors/2);
7916 
7917 	atomic_set(&mddev->recovery_active, 0);
7918 	last_check = 0;
7919 
7920 	if (j>2) {
7921 		printk(KERN_INFO
7922 		       "md: resuming %s of %s from checkpoint.\n",
7923 		       desc, mdname(mddev));
7924 		mddev->curr_resync = j;
7925 	} else
7926 		mddev->curr_resync = 3; /* no longer delayed */
7927 	mddev->curr_resync_completed = j;
7928 	sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7929 	md_new_event(mddev);
7930 	update_time = jiffies;
7931 
7932 	blk_start_plug(&plug);
7933 	while (j < max_sectors) {
7934 		sector_t sectors;
7935 
7936 		skipped = 0;
7937 
7938 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7939 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7940 		      (mddev->curr_resync - mddev->curr_resync_completed)
7941 		      > (max_sectors >> 4)) ||
7942 		     time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7943 		     (j - mddev->curr_resync_completed)*2
7944 		     >= mddev->resync_max - mddev->curr_resync_completed ||
7945 		     mddev->curr_resync_completed > mddev->resync_max
7946 			    )) {
7947 			/* time to update curr_resync_completed */
7948 			wait_event(mddev->recovery_wait,
7949 				   atomic_read(&mddev->recovery_active) == 0);
7950 			mddev->curr_resync_completed = j;
7951 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7952 			    j > mddev->recovery_cp)
7953 				mddev->recovery_cp = j;
7954 			update_time = jiffies;
7955 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7956 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7957 		}
7958 
7959 		while (j >= mddev->resync_max &&
7960 		       !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7961 			/* As this condition is controlled by user-space,
7962 			 * we can block indefinitely, so use '_interruptible'
7963 			 * to avoid triggering warnings.
7964 			 */
7965 			flush_signals(current); /* just in case */
7966 			wait_event_interruptible(mddev->recovery_wait,
7967 						 mddev->resync_max > j
7968 						 || test_bit(MD_RECOVERY_INTR,
7969 							     &mddev->recovery));
7970 		}
7971 
7972 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7973 			break;
7974 
7975 		sectors = mddev->pers->sync_request(mddev, j, &skipped);
7976 		if (sectors == 0) {
7977 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7978 			break;
7979 		}
7980 
7981 		if (!skipped) { /* actual IO requested */
7982 			io_sectors += sectors;
7983 			atomic_add(sectors, &mddev->recovery_active);
7984 		}
7985 
7986 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7987 			break;
7988 
7989 		j += sectors;
7990 		if (j > max_sectors)
7991 			/* when skipping, extra large numbers can be returned. */
7992 			j = max_sectors;
7993 		if (j > 2)
7994 			mddev->curr_resync = j;
7995 		mddev->curr_mark_cnt = io_sectors;
7996 		if (last_check == 0)
7997 			/* this is the earliest that rebuild will be
7998 			 * visible in /proc/mdstat
7999 			 */
8000 			md_new_event(mddev);
8001 
8002 		if (last_check + window > io_sectors || j == max_sectors)
8003 			continue;
8004 
8005 		last_check = io_sectors;
8006 	repeat:
8007 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8008 			/* step marks */
8009 			int next = (last_mark+1) % SYNC_MARKS;
8010 
8011 			mddev->resync_mark = mark[next];
8012 			mddev->resync_mark_cnt = mark_cnt[next];
8013 			mark[next] = jiffies;
8014 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8015 			last_mark = next;
8016 		}
8017 
8018 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8019 			break;
8020 
8021 		/*
8022 		 * this loop exits only if either when we are slower than
8023 		 * the 'hard' speed limit, or the system was IO-idle for
8024 		 * a jiffy.
8025 		 * the system might be non-idle CPU-wise, but we only care
8026 		 * about not overloading the IO subsystem. (things like an
8027 		 * e2fsck being done on the RAID array should execute fast)
8028 		 */
8029 		cond_resched();
8030 
8031 		recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8032 		currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8033 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
8034 
8035 		if (currspeed > speed_min(mddev)) {
8036 			if (currspeed > speed_max(mddev)) {
8037 				msleep(500);
8038 				goto repeat;
8039 			}
8040 			if (!is_mddev_idle(mddev, 0)) {
8041 				/*
8042 				 * Give other IO more of a chance.
8043 				 * The faster the devices, the less we wait.
8044 				 */
8045 				wait_event(mddev->recovery_wait,
8046 					   !atomic_read(&mddev->recovery_active));
8047 			}
8048 		}
8049 	}
8050 	printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8051 	       test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8052 	       ? "interrupted" : "done");
8053 	/*
8054 	 * this also signals 'finished resyncing' to md_stop
8055 	 */
8056 	blk_finish_plug(&plug);
8057 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8058 
8059 	if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8060 	    !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8061 	    mddev->curr_resync > 2) {
8062 		mddev->curr_resync_completed = mddev->curr_resync;
8063 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8064 	}
8065 	/* tell personality and other nodes that we are finished */
8066 	if (mddev_is_clustered(mddev)) {
8067 		md_cluster_ops->resync_finish(mddev);
8068 		cluster_resync_finished = true;
8069 	}
8070 	mddev->pers->sync_request(mddev, max_sectors, &skipped);
8071 
8072 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8073 	    mddev->curr_resync > 2) {
8074 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8075 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8076 				if (mddev->curr_resync >= mddev->recovery_cp) {
8077 					printk(KERN_INFO
8078 					       "md: checkpointing %s of %s.\n",
8079 					       desc, mdname(mddev));
8080 					if (test_bit(MD_RECOVERY_ERROR,
8081 						&mddev->recovery))
8082 						mddev->recovery_cp =
8083 							mddev->curr_resync_completed;
8084 					else
8085 						mddev->recovery_cp =
8086 							mddev->curr_resync;
8087 				}
8088 			} else
8089 				mddev->recovery_cp = MaxSector;
8090 		} else {
8091 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8092 				mddev->curr_resync = MaxSector;
8093 			rcu_read_lock();
8094 			rdev_for_each_rcu(rdev, mddev)
8095 				if (rdev->raid_disk >= 0 &&
8096 				    mddev->delta_disks >= 0 &&
8097 				    !test_bit(Journal, &rdev->flags) &&
8098 				    !test_bit(Faulty, &rdev->flags) &&
8099 				    !test_bit(In_sync, &rdev->flags) &&
8100 				    rdev->recovery_offset < mddev->curr_resync)
8101 					rdev->recovery_offset = mddev->curr_resync;
8102 			rcu_read_unlock();
8103 		}
8104 	}
8105  skip:
8106 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
8107 
8108 	if (mddev_is_clustered(mddev) &&
8109 	    test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8110 	    !cluster_resync_finished)
8111 		md_cluster_ops->resync_finish(mddev);
8112 
8113 	spin_lock(&mddev->lock);
8114 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8115 		/* We completed so min/max setting can be forgotten if used. */
8116 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8117 			mddev->resync_min = 0;
8118 		mddev->resync_max = MaxSector;
8119 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8120 		mddev->resync_min = mddev->curr_resync_completed;
8121 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8122 	mddev->curr_resync = 0;
8123 	spin_unlock(&mddev->lock);
8124 
8125 	wake_up(&resync_wait);
8126 	md_wakeup_thread(mddev->thread);
8127 	return;
8128 }
8129 EXPORT_SYMBOL_GPL(md_do_sync);
8130 
8131 static int remove_and_add_spares(struct mddev *mddev,
8132 				 struct md_rdev *this)
8133 {
8134 	struct md_rdev *rdev;
8135 	int spares = 0;
8136 	int removed = 0;
8137 
8138 	rdev_for_each(rdev, mddev)
8139 		if ((this == NULL || rdev == this) &&
8140 		    rdev->raid_disk >= 0 &&
8141 		    !test_bit(Blocked, &rdev->flags) &&
8142 		    (test_bit(Faulty, &rdev->flags) ||
8143 		     (!test_bit(In_sync, &rdev->flags) &&
8144 		      !test_bit(Journal, &rdev->flags))) &&
8145 		    atomic_read(&rdev->nr_pending)==0) {
8146 			if (mddev->pers->hot_remove_disk(
8147 				    mddev, rdev) == 0) {
8148 				sysfs_unlink_rdev(mddev, rdev);
8149 				rdev->raid_disk = -1;
8150 				removed++;
8151 			}
8152 		}
8153 	if (removed && mddev->kobj.sd)
8154 		sysfs_notify(&mddev->kobj, NULL, "degraded");
8155 
8156 	if (this && removed)
8157 		goto no_add;
8158 
8159 	rdev_for_each(rdev, mddev) {
8160 		if (this && this != rdev)
8161 			continue;
8162 		if (test_bit(Candidate, &rdev->flags))
8163 			continue;
8164 		if (rdev->raid_disk >= 0 &&
8165 		    !test_bit(In_sync, &rdev->flags) &&
8166 		    !test_bit(Journal, &rdev->flags) &&
8167 		    !test_bit(Faulty, &rdev->flags))
8168 			spares++;
8169 		if (rdev->raid_disk >= 0)
8170 			continue;
8171 		if (test_bit(Faulty, &rdev->flags))
8172 			continue;
8173 		if (test_bit(Journal, &rdev->flags))
8174 			continue;
8175 		if (mddev->ro &&
8176 		    ! (rdev->saved_raid_disk >= 0 &&
8177 		       !test_bit(Bitmap_sync, &rdev->flags)))
8178 			continue;
8179 
8180 		rdev->recovery_offset = 0;
8181 		if (mddev->pers->
8182 		    hot_add_disk(mddev, rdev) == 0) {
8183 			if (sysfs_link_rdev(mddev, rdev))
8184 				/* failure here is OK */;
8185 			spares++;
8186 			md_new_event(mddev);
8187 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8188 		}
8189 	}
8190 no_add:
8191 	if (removed)
8192 		set_bit(MD_CHANGE_DEVS, &mddev->flags);
8193 	return spares;
8194 }
8195 
8196 static void md_start_sync(struct work_struct *ws)
8197 {
8198 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
8199 	int ret = 0;
8200 
8201 	if (mddev_is_clustered(mddev)) {
8202 		ret = md_cluster_ops->resync_start(mddev);
8203 		if (ret) {
8204 			mddev->sync_thread = NULL;
8205 			goto out;
8206 		}
8207 	}
8208 
8209 	mddev->sync_thread = md_register_thread(md_do_sync,
8210 						mddev,
8211 						"resync");
8212 out:
8213 	if (!mddev->sync_thread) {
8214 		if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8215 			printk(KERN_ERR "%s: could not start resync"
8216 			       " thread...\n",
8217 			       mdname(mddev));
8218 		/* leave the spares where they are, it shouldn't hurt */
8219 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8220 		clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8221 		clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8222 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8223 		clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8224 		wake_up(&resync_wait);
8225 		if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8226 				       &mddev->recovery))
8227 			if (mddev->sysfs_action)
8228 				sysfs_notify_dirent_safe(mddev->sysfs_action);
8229 	} else
8230 		md_wakeup_thread(mddev->sync_thread);
8231 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8232 	md_new_event(mddev);
8233 }
8234 
8235 /*
8236  * This routine is regularly called by all per-raid-array threads to
8237  * deal with generic issues like resync and super-block update.
8238  * Raid personalities that don't have a thread (linear/raid0) do not
8239  * need this as they never do any recovery or update the superblock.
8240  *
8241  * It does not do any resync itself, but rather "forks" off other threads
8242  * to do that as needed.
8243  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8244  * "->recovery" and create a thread at ->sync_thread.
8245  * When the thread finishes it sets MD_RECOVERY_DONE
8246  * and wakeups up this thread which will reap the thread and finish up.
8247  * This thread also removes any faulty devices (with nr_pending == 0).
8248  *
8249  * The overall approach is:
8250  *  1/ if the superblock needs updating, update it.
8251  *  2/ If a recovery thread is running, don't do anything else.
8252  *  3/ If recovery has finished, clean up, possibly marking spares active.
8253  *  4/ If there are any faulty devices, remove them.
8254  *  5/ If array is degraded, try to add spares devices
8255  *  6/ If array has spares or is not in-sync, start a resync thread.
8256  */
8257 void md_check_recovery(struct mddev *mddev)
8258 {
8259 	if (mddev->suspended)
8260 		return;
8261 
8262 	if (mddev->bitmap)
8263 		bitmap_daemon_work(mddev);
8264 
8265 	if (signal_pending(current)) {
8266 		if (mddev->pers->sync_request && !mddev->external) {
8267 			printk(KERN_INFO "md: %s in immediate safe mode\n",
8268 			       mdname(mddev));
8269 			mddev->safemode = 2;
8270 		}
8271 		flush_signals(current);
8272 	}
8273 
8274 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8275 		return;
8276 	if ( ! (
8277 		(mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8278 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8279 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8280 		(mddev->external == 0 && mddev->safemode == 1) ||
8281 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8282 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8283 		))
8284 		return;
8285 
8286 	if (mddev_trylock(mddev)) {
8287 		int spares = 0;
8288 
8289 		if (mddev->ro) {
8290 			struct md_rdev *rdev;
8291 			if (!mddev->external && mddev->in_sync)
8292 				/* 'Blocked' flag not needed as failed devices
8293 				 * will be recorded if array switched to read/write.
8294 				 * Leaving it set will prevent the device
8295 				 * from being removed.
8296 				 */
8297 				rdev_for_each(rdev, mddev)
8298 					clear_bit(Blocked, &rdev->flags);
8299 			/* On a read-only array we can:
8300 			 * - remove failed devices
8301 			 * - add already-in_sync devices if the array itself
8302 			 *   is in-sync.
8303 			 * As we only add devices that are already in-sync,
8304 			 * we can activate the spares immediately.
8305 			 */
8306 			remove_and_add_spares(mddev, NULL);
8307 			/* There is no thread, but we need to call
8308 			 * ->spare_active and clear saved_raid_disk
8309 			 */
8310 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8311 			md_reap_sync_thread(mddev);
8312 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8313 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8314 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8315 			goto unlock;
8316 		}
8317 
8318 		if (!mddev->external) {
8319 			int did_change = 0;
8320 			spin_lock(&mddev->lock);
8321 			if (mddev->safemode &&
8322 			    !atomic_read(&mddev->writes_pending) &&
8323 			    !mddev->in_sync &&
8324 			    mddev->recovery_cp == MaxSector) {
8325 				mddev->in_sync = 1;
8326 				did_change = 1;
8327 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8328 			}
8329 			if (mddev->safemode == 1)
8330 				mddev->safemode = 0;
8331 			spin_unlock(&mddev->lock);
8332 			if (did_change)
8333 				sysfs_notify_dirent_safe(mddev->sysfs_state);
8334 		}
8335 
8336 		if (mddev->flags & MD_UPDATE_SB_FLAGS)
8337 			md_update_sb(mddev, 0);
8338 
8339 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8340 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8341 			/* resync/recovery still happening */
8342 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8343 			goto unlock;
8344 		}
8345 		if (mddev->sync_thread) {
8346 			md_reap_sync_thread(mddev);
8347 			goto unlock;
8348 		}
8349 		/* Set RUNNING before clearing NEEDED to avoid
8350 		 * any transients in the value of "sync_action".
8351 		 */
8352 		mddev->curr_resync_completed = 0;
8353 		spin_lock(&mddev->lock);
8354 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8355 		spin_unlock(&mddev->lock);
8356 		/* Clear some bits that don't mean anything, but
8357 		 * might be left set
8358 		 */
8359 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8360 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8361 
8362 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8363 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8364 			goto not_running;
8365 		/* no recovery is running.
8366 		 * remove any failed drives, then
8367 		 * add spares if possible.
8368 		 * Spares are also removed and re-added, to allow
8369 		 * the personality to fail the re-add.
8370 		 */
8371 
8372 		if (mddev->reshape_position != MaxSector) {
8373 			if (mddev->pers->check_reshape == NULL ||
8374 			    mddev->pers->check_reshape(mddev) != 0)
8375 				/* Cannot proceed */
8376 				goto not_running;
8377 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8378 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8379 		} else if ((spares = remove_and_add_spares(mddev, NULL))) {
8380 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8381 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8382 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8383 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8384 		} else if (mddev->recovery_cp < MaxSector) {
8385 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8386 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8387 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8388 			/* nothing to be done ... */
8389 			goto not_running;
8390 
8391 		if (mddev->pers->sync_request) {
8392 			if (spares) {
8393 				/* We are adding a device or devices to an array
8394 				 * which has the bitmap stored on all devices.
8395 				 * So make sure all bitmap pages get written
8396 				 */
8397 				bitmap_write_all(mddev->bitmap);
8398 			}
8399 			INIT_WORK(&mddev->del_work, md_start_sync);
8400 			queue_work(md_misc_wq, &mddev->del_work);
8401 			goto unlock;
8402 		}
8403 	not_running:
8404 		if (!mddev->sync_thread) {
8405 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8406 			wake_up(&resync_wait);
8407 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8408 					       &mddev->recovery))
8409 				if (mddev->sysfs_action)
8410 					sysfs_notify_dirent_safe(mddev->sysfs_action);
8411 		}
8412 	unlock:
8413 		wake_up(&mddev->sb_wait);
8414 		mddev_unlock(mddev);
8415 	}
8416 }
8417 EXPORT_SYMBOL(md_check_recovery);
8418 
8419 void md_reap_sync_thread(struct mddev *mddev)
8420 {
8421 	struct md_rdev *rdev;
8422 
8423 	/* resync has finished, collect result */
8424 	md_unregister_thread(&mddev->sync_thread);
8425 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8426 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8427 		/* success...*/
8428 		/* activate any spares */
8429 		if (mddev->pers->spare_active(mddev)) {
8430 			sysfs_notify(&mddev->kobj, NULL,
8431 				     "degraded");
8432 			set_bit(MD_CHANGE_DEVS, &mddev->flags);
8433 		}
8434 	}
8435 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8436 	    mddev->pers->finish_reshape)
8437 		mddev->pers->finish_reshape(mddev);
8438 
8439 	/* If array is no-longer degraded, then any saved_raid_disk
8440 	 * information must be scrapped.
8441 	 */
8442 	if (!mddev->degraded)
8443 		rdev_for_each(rdev, mddev)
8444 			rdev->saved_raid_disk = -1;
8445 
8446 	md_update_sb(mddev, 1);
8447 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8448 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8449 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8450 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8451 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8452 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8453 	wake_up(&resync_wait);
8454 	/* flag recovery needed just to double check */
8455 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8456 	sysfs_notify_dirent_safe(mddev->sysfs_action);
8457 	md_new_event(mddev);
8458 	if (mddev->event_work.func)
8459 		queue_work(md_misc_wq, &mddev->event_work);
8460 }
8461 EXPORT_SYMBOL(md_reap_sync_thread);
8462 
8463 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8464 {
8465 	sysfs_notify_dirent_safe(rdev->sysfs_state);
8466 	wait_event_timeout(rdev->blocked_wait,
8467 			   !test_bit(Blocked, &rdev->flags) &&
8468 			   !test_bit(BlockedBadBlocks, &rdev->flags),
8469 			   msecs_to_jiffies(5000));
8470 	rdev_dec_pending(rdev, mddev);
8471 }
8472 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8473 
8474 void md_finish_reshape(struct mddev *mddev)
8475 {
8476 	/* called be personality module when reshape completes. */
8477 	struct md_rdev *rdev;
8478 
8479 	rdev_for_each(rdev, mddev) {
8480 		if (rdev->data_offset > rdev->new_data_offset)
8481 			rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8482 		else
8483 			rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8484 		rdev->data_offset = rdev->new_data_offset;
8485 	}
8486 }
8487 EXPORT_SYMBOL(md_finish_reshape);
8488 
8489 /* Bad block management.
8490  * We can record which blocks on each device are 'bad' and so just
8491  * fail those blocks, or that stripe, rather than the whole device.
8492  * Entries in the bad-block table are 64bits wide.  This comprises:
8493  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8494  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8495  *  A 'shift' can be set so that larger blocks are tracked and
8496  *  consequently larger devices can be covered.
8497  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8498  *
8499  * Locking of the bad-block table uses a seqlock so md_is_badblock
8500  * might need to retry if it is very unlucky.
8501  * We will sometimes want to check for bad blocks in a bi_end_io function,
8502  * so we use the write_seqlock_irq variant.
8503  *
8504  * When looking for a bad block we specify a range and want to
8505  * know if any block in the range is bad.  So we binary-search
8506  * to the last range that starts at-or-before the given endpoint,
8507  * (or "before the sector after the target range")
8508  * then see if it ends after the given start.
8509  * We return
8510  *  0 if there are no known bad blocks in the range
8511  *  1 if there are known bad block which are all acknowledged
8512  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8513  * plus the start/length of the first bad section we overlap.
8514  */
8515 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8516 		   sector_t *first_bad, int *bad_sectors)
8517 {
8518 	int hi;
8519 	int lo;
8520 	u64 *p = bb->page;
8521 	int rv;
8522 	sector_t target = s + sectors;
8523 	unsigned seq;
8524 
8525 	if (bb->shift > 0) {
8526 		/* round the start down, and the end up */
8527 		s >>= bb->shift;
8528 		target += (1<<bb->shift) - 1;
8529 		target >>= bb->shift;
8530 		sectors = target - s;
8531 	}
8532 	/* 'target' is now the first block after the bad range */
8533 
8534 retry:
8535 	seq = read_seqbegin(&bb->lock);
8536 	lo = 0;
8537 	rv = 0;
8538 	hi = bb->count;
8539 
8540 	/* Binary search between lo and hi for 'target'
8541 	 * i.e. for the last range that starts before 'target'
8542 	 */
8543 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8544 	 * are known not to be the last range before target.
8545 	 * VARIANT: hi-lo is the number of possible
8546 	 * ranges, and decreases until it reaches 1
8547 	 */
8548 	while (hi - lo > 1) {
8549 		int mid = (lo + hi) / 2;
8550 		sector_t a = BB_OFFSET(p[mid]);
8551 		if (a < target)
8552 			/* This could still be the one, earlier ranges
8553 			 * could not. */
8554 			lo = mid;
8555 		else
8556 			/* This and later ranges are definitely out. */
8557 			hi = mid;
8558 	}
8559 	/* 'lo' might be the last that started before target, but 'hi' isn't */
8560 	if (hi > lo) {
8561 		/* need to check all range that end after 's' to see if
8562 		 * any are unacknowledged.
8563 		 */
8564 		while (lo >= 0 &&
8565 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8566 			if (BB_OFFSET(p[lo]) < target) {
8567 				/* starts before the end, and finishes after
8568 				 * the start, so they must overlap
8569 				 */
8570 				if (rv != -1 && BB_ACK(p[lo]))
8571 					rv = 1;
8572 				else
8573 					rv = -1;
8574 				*first_bad = BB_OFFSET(p[lo]);
8575 				*bad_sectors = BB_LEN(p[lo]);
8576 			}
8577 			lo--;
8578 		}
8579 	}
8580 
8581 	if (read_seqretry(&bb->lock, seq))
8582 		goto retry;
8583 
8584 	return rv;
8585 }
8586 EXPORT_SYMBOL_GPL(md_is_badblock);
8587 
8588 /*
8589  * Add a range of bad blocks to the table.
8590  * This might extend the table, or might contract it
8591  * if two adjacent ranges can be merged.
8592  * We binary-search to find the 'insertion' point, then
8593  * decide how best to handle it.
8594  */
8595 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8596 			    int acknowledged)
8597 {
8598 	u64 *p;
8599 	int lo, hi;
8600 	int rv = 1;
8601 	unsigned long flags;
8602 
8603 	if (bb->shift < 0)
8604 		/* badblocks are disabled */
8605 		return 0;
8606 
8607 	if (bb->shift) {
8608 		/* round the start down, and the end up */
8609 		sector_t next = s + sectors;
8610 		s >>= bb->shift;
8611 		next += (1<<bb->shift) - 1;
8612 		next >>= bb->shift;
8613 		sectors = next - s;
8614 	}
8615 
8616 	write_seqlock_irqsave(&bb->lock, flags);
8617 
8618 	p = bb->page;
8619 	lo = 0;
8620 	hi = bb->count;
8621 	/* Find the last range that starts at-or-before 's' */
8622 	while (hi - lo > 1) {
8623 		int mid = (lo + hi) / 2;
8624 		sector_t a = BB_OFFSET(p[mid]);
8625 		if (a <= s)
8626 			lo = mid;
8627 		else
8628 			hi = mid;
8629 	}
8630 	if (hi > lo && BB_OFFSET(p[lo]) > s)
8631 		hi = lo;
8632 
8633 	if (hi > lo) {
8634 		/* we found a range that might merge with the start
8635 		 * of our new range
8636 		 */
8637 		sector_t a = BB_OFFSET(p[lo]);
8638 		sector_t e = a + BB_LEN(p[lo]);
8639 		int ack = BB_ACK(p[lo]);
8640 		if (e >= s) {
8641 			/* Yes, we can merge with a previous range */
8642 			if (s == a && s + sectors >= e)
8643 				/* new range covers old */
8644 				ack = acknowledged;
8645 			else
8646 				ack = ack && acknowledged;
8647 
8648 			if (e < s + sectors)
8649 				e = s + sectors;
8650 			if (e - a <= BB_MAX_LEN) {
8651 				p[lo] = BB_MAKE(a, e-a, ack);
8652 				s = e;
8653 			} else {
8654 				/* does not all fit in one range,
8655 				 * make p[lo] maximal
8656 				 */
8657 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
8658 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8659 				s = a + BB_MAX_LEN;
8660 			}
8661 			sectors = e - s;
8662 		}
8663 	}
8664 	if (sectors && hi < bb->count) {
8665 		/* 'hi' points to the first range that starts after 's'.
8666 		 * Maybe we can merge with the start of that range */
8667 		sector_t a = BB_OFFSET(p[hi]);
8668 		sector_t e = a + BB_LEN(p[hi]);
8669 		int ack = BB_ACK(p[hi]);
8670 		if (a <= s + sectors) {
8671 			/* merging is possible */
8672 			if (e <= s + sectors) {
8673 				/* full overlap */
8674 				e = s + sectors;
8675 				ack = acknowledged;
8676 			} else
8677 				ack = ack && acknowledged;
8678 
8679 			a = s;
8680 			if (e - a <= BB_MAX_LEN) {
8681 				p[hi] = BB_MAKE(a, e-a, ack);
8682 				s = e;
8683 			} else {
8684 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8685 				s = a + BB_MAX_LEN;
8686 			}
8687 			sectors = e - s;
8688 			lo = hi;
8689 			hi++;
8690 		}
8691 	}
8692 	if (sectors == 0 && hi < bb->count) {
8693 		/* we might be able to combine lo and hi */
8694 		/* Note: 's' is at the end of 'lo' */
8695 		sector_t a = BB_OFFSET(p[hi]);
8696 		int lolen = BB_LEN(p[lo]);
8697 		int hilen = BB_LEN(p[hi]);
8698 		int newlen = lolen + hilen - (s - a);
8699 		if (s >= a && newlen < BB_MAX_LEN) {
8700 			/* yes, we can combine them */
8701 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8702 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8703 			memmove(p + hi, p + hi + 1,
8704 				(bb->count - hi - 1) * 8);
8705 			bb->count--;
8706 		}
8707 	}
8708 	while (sectors) {
8709 		/* didn't merge (it all).
8710 		 * Need to add a range just before 'hi' */
8711 		if (bb->count >= MD_MAX_BADBLOCKS) {
8712 			/* No room for more */
8713 			rv = 0;
8714 			break;
8715 		} else {
8716 			int this_sectors = sectors;
8717 			memmove(p + hi + 1, p + hi,
8718 				(bb->count - hi) * 8);
8719 			bb->count++;
8720 
8721 			if (this_sectors > BB_MAX_LEN)
8722 				this_sectors = BB_MAX_LEN;
8723 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8724 			sectors -= this_sectors;
8725 			s += this_sectors;
8726 		}
8727 	}
8728 
8729 	bb->changed = 1;
8730 	if (!acknowledged)
8731 		bb->unacked_exist = 1;
8732 	write_sequnlock_irqrestore(&bb->lock, flags);
8733 
8734 	return rv;
8735 }
8736 
8737 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8738 		       int is_new)
8739 {
8740 	int rv;
8741 	if (is_new)
8742 		s += rdev->new_data_offset;
8743 	else
8744 		s += rdev->data_offset;
8745 	rv = md_set_badblocks(&rdev->badblocks,
8746 			      s, sectors, 0);
8747 	if (rv) {
8748 		/* Make sure they get written out promptly */
8749 		sysfs_notify_dirent_safe(rdev->sysfs_state);
8750 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8751 		set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8752 		md_wakeup_thread(rdev->mddev->thread);
8753 	}
8754 	return rv;
8755 }
8756 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8757 
8758 /*
8759  * Remove a range of bad blocks from the table.
8760  * This may involve extending the table if we spilt a region,
8761  * but it must not fail.  So if the table becomes full, we just
8762  * drop the remove request.
8763  */
8764 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8765 {
8766 	u64 *p;
8767 	int lo, hi;
8768 	sector_t target = s + sectors;
8769 	int rv = 0;
8770 
8771 	if (bb->shift > 0) {
8772 		/* When clearing we round the start up and the end down.
8773 		 * This should not matter as the shift should align with
8774 		 * the block size and no rounding should ever be needed.
8775 		 * However it is better the think a block is bad when it
8776 		 * isn't than to think a block is not bad when it is.
8777 		 */
8778 		s += (1<<bb->shift) - 1;
8779 		s >>= bb->shift;
8780 		target >>= bb->shift;
8781 		sectors = target - s;
8782 	}
8783 
8784 	write_seqlock_irq(&bb->lock);
8785 
8786 	p = bb->page;
8787 	lo = 0;
8788 	hi = bb->count;
8789 	/* Find the last range that starts before 'target' */
8790 	while (hi - lo > 1) {
8791 		int mid = (lo + hi) / 2;
8792 		sector_t a = BB_OFFSET(p[mid]);
8793 		if (a < target)
8794 			lo = mid;
8795 		else
8796 			hi = mid;
8797 	}
8798 	if (hi > lo) {
8799 		/* p[lo] is the last range that could overlap the
8800 		 * current range.  Earlier ranges could also overlap,
8801 		 * but only this one can overlap the end of the range.
8802 		 */
8803 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8804 			/* Partial overlap, leave the tail of this range */
8805 			int ack = BB_ACK(p[lo]);
8806 			sector_t a = BB_OFFSET(p[lo]);
8807 			sector_t end = a + BB_LEN(p[lo]);
8808 
8809 			if (a < s) {
8810 				/* we need to split this range */
8811 				if (bb->count >= MD_MAX_BADBLOCKS) {
8812 					rv = -ENOSPC;
8813 					goto out;
8814 				}
8815 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8816 				bb->count++;
8817 				p[lo] = BB_MAKE(a, s-a, ack);
8818 				lo++;
8819 			}
8820 			p[lo] = BB_MAKE(target, end - target, ack);
8821 			/* there is no longer an overlap */
8822 			hi = lo;
8823 			lo--;
8824 		}
8825 		while (lo >= 0 &&
8826 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8827 			/* This range does overlap */
8828 			if (BB_OFFSET(p[lo]) < s) {
8829 				/* Keep the early parts of this range. */
8830 				int ack = BB_ACK(p[lo]);
8831 				sector_t start = BB_OFFSET(p[lo]);
8832 				p[lo] = BB_MAKE(start, s - start, ack);
8833 				/* now low doesn't overlap, so.. */
8834 				break;
8835 			}
8836 			lo--;
8837 		}
8838 		/* 'lo' is strictly before, 'hi' is strictly after,
8839 		 * anything between needs to be discarded
8840 		 */
8841 		if (hi - lo > 1) {
8842 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8843 			bb->count -= (hi - lo - 1);
8844 		}
8845 	}
8846 
8847 	bb->changed = 1;
8848 out:
8849 	write_sequnlock_irq(&bb->lock);
8850 	return rv;
8851 }
8852 
8853 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8854 			 int is_new)
8855 {
8856 	if (is_new)
8857 		s += rdev->new_data_offset;
8858 	else
8859 		s += rdev->data_offset;
8860 	return md_clear_badblocks(&rdev->badblocks,
8861 				  s, sectors);
8862 }
8863 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8864 
8865 /*
8866  * Acknowledge all bad blocks in a list.
8867  * This only succeeds if ->changed is clear.  It is used by
8868  * in-kernel metadata updates
8869  */
8870 void md_ack_all_badblocks(struct badblocks *bb)
8871 {
8872 	if (bb->page == NULL || bb->changed)
8873 		/* no point even trying */
8874 		return;
8875 	write_seqlock_irq(&bb->lock);
8876 
8877 	if (bb->changed == 0 && bb->unacked_exist) {
8878 		u64 *p = bb->page;
8879 		int i;
8880 		for (i = 0; i < bb->count ; i++) {
8881 			if (!BB_ACK(p[i])) {
8882 				sector_t start = BB_OFFSET(p[i]);
8883 				int len = BB_LEN(p[i]);
8884 				p[i] = BB_MAKE(start, len, 1);
8885 			}
8886 		}
8887 		bb->unacked_exist = 0;
8888 	}
8889 	write_sequnlock_irq(&bb->lock);
8890 }
8891 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8892 
8893 /* sysfs access to bad-blocks list.
8894  * We present two files.
8895  * 'bad-blocks' lists sector numbers and lengths of ranges that
8896  *    are recorded as bad.  The list is truncated to fit within
8897  *    the one-page limit of sysfs.
8898  *    Writing "sector length" to this file adds an acknowledged
8899  *    bad block list.
8900  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8901  *    been acknowledged.  Writing to this file adds bad blocks
8902  *    without acknowledging them.  This is largely for testing.
8903  */
8904 
8905 static ssize_t
8906 badblocks_show(struct badblocks *bb, char *page, int unack)
8907 {
8908 	size_t len;
8909 	int i;
8910 	u64 *p = bb->page;
8911 	unsigned seq;
8912 
8913 	if (bb->shift < 0)
8914 		return 0;
8915 
8916 retry:
8917 	seq = read_seqbegin(&bb->lock);
8918 
8919 	len = 0;
8920 	i = 0;
8921 
8922 	while (len < PAGE_SIZE && i < bb->count) {
8923 		sector_t s = BB_OFFSET(p[i]);
8924 		unsigned int length = BB_LEN(p[i]);
8925 		int ack = BB_ACK(p[i]);
8926 		i++;
8927 
8928 		if (unack && ack)
8929 			continue;
8930 
8931 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8932 				(unsigned long long)s << bb->shift,
8933 				length << bb->shift);
8934 	}
8935 	if (unack && len == 0)
8936 		bb->unacked_exist = 0;
8937 
8938 	if (read_seqretry(&bb->lock, seq))
8939 		goto retry;
8940 
8941 	return len;
8942 }
8943 
8944 #define DO_DEBUG 1
8945 
8946 static ssize_t
8947 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8948 {
8949 	unsigned long long sector;
8950 	int length;
8951 	char newline;
8952 #ifdef DO_DEBUG
8953 	/* Allow clearing via sysfs *only* for testing/debugging.
8954 	 * Normally only a successful write may clear a badblock
8955 	 */
8956 	int clear = 0;
8957 	if (page[0] == '-') {
8958 		clear = 1;
8959 		page++;
8960 	}
8961 #endif /* DO_DEBUG */
8962 
8963 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8964 	case 3:
8965 		if (newline != '\n')
8966 			return -EINVAL;
8967 	case 2:
8968 		if (length <= 0)
8969 			return -EINVAL;
8970 		break;
8971 	default:
8972 		return -EINVAL;
8973 	}
8974 
8975 #ifdef DO_DEBUG
8976 	if (clear) {
8977 		md_clear_badblocks(bb, sector, length);
8978 		return len;
8979 	}
8980 #endif /* DO_DEBUG */
8981 	if (md_set_badblocks(bb, sector, length, !unack))
8982 		return len;
8983 	else
8984 		return -ENOSPC;
8985 }
8986 
8987 static int md_notify_reboot(struct notifier_block *this,
8988 			    unsigned long code, void *x)
8989 {
8990 	struct list_head *tmp;
8991 	struct mddev *mddev;
8992 	int need_delay = 0;
8993 
8994 	for_each_mddev(mddev, tmp) {
8995 		if (mddev_trylock(mddev)) {
8996 			if (mddev->pers)
8997 				__md_stop_writes(mddev);
8998 			if (mddev->persistent)
8999 				mddev->safemode = 2;
9000 			mddev_unlock(mddev);
9001 		}
9002 		need_delay = 1;
9003 	}
9004 	/*
9005 	 * certain more exotic SCSI devices are known to be
9006 	 * volatile wrt too early system reboots. While the
9007 	 * right place to handle this issue is the given
9008 	 * driver, we do want to have a safe RAID driver ...
9009 	 */
9010 	if (need_delay)
9011 		mdelay(1000*1);
9012 
9013 	return NOTIFY_DONE;
9014 }
9015 
9016 static struct notifier_block md_notifier = {
9017 	.notifier_call	= md_notify_reboot,
9018 	.next		= NULL,
9019 	.priority	= INT_MAX, /* before any real devices */
9020 };
9021 
9022 static void md_geninit(void)
9023 {
9024 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9025 
9026 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
9027 }
9028 
9029 static int __init md_init(void)
9030 {
9031 	int ret = -ENOMEM;
9032 
9033 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9034 	if (!md_wq)
9035 		goto err_wq;
9036 
9037 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9038 	if (!md_misc_wq)
9039 		goto err_misc_wq;
9040 
9041 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9042 		goto err_md;
9043 
9044 	if ((ret = register_blkdev(0, "mdp")) < 0)
9045 		goto err_mdp;
9046 	mdp_major = ret;
9047 
9048 	blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9049 			    md_probe, NULL, NULL);
9050 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9051 			    md_probe, NULL, NULL);
9052 
9053 	register_reboot_notifier(&md_notifier);
9054 	raid_table_header = register_sysctl_table(raid_root_table);
9055 
9056 	md_geninit();
9057 	return 0;
9058 
9059 err_mdp:
9060 	unregister_blkdev(MD_MAJOR, "md");
9061 err_md:
9062 	destroy_workqueue(md_misc_wq);
9063 err_misc_wq:
9064 	destroy_workqueue(md_wq);
9065 err_wq:
9066 	return ret;
9067 }
9068 
9069 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9070 {
9071 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9072 	struct md_rdev *rdev2;
9073 	int role, ret;
9074 	char b[BDEVNAME_SIZE];
9075 
9076 	/* Check for change of roles in the active devices */
9077 	rdev_for_each(rdev2, mddev) {
9078 		if (test_bit(Faulty, &rdev2->flags))
9079 			continue;
9080 
9081 		/* Check if the roles changed */
9082 		role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9083 
9084 		if (test_bit(Candidate, &rdev2->flags)) {
9085 			if (role == 0xfffe) {
9086 				pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9087 				md_kick_rdev_from_array(rdev2);
9088 				continue;
9089 			}
9090 			else
9091 				clear_bit(Candidate, &rdev2->flags);
9092 		}
9093 
9094 		if (role != rdev2->raid_disk) {
9095 			/* got activated */
9096 			if (rdev2->raid_disk == -1 && role != 0xffff) {
9097 				rdev2->saved_raid_disk = role;
9098 				ret = remove_and_add_spares(mddev, rdev2);
9099 				pr_info("Activated spare: %s\n",
9100 						bdevname(rdev2->bdev,b));
9101 				continue;
9102 			}
9103 			/* device faulty
9104 			 * We just want to do the minimum to mark the disk
9105 			 * as faulty. The recovery is performed by the
9106 			 * one who initiated the error.
9107 			 */
9108 			if ((role == 0xfffe) || (role == 0xfffd)) {
9109 				md_error(mddev, rdev2);
9110 				clear_bit(Blocked, &rdev2->flags);
9111 			}
9112 		}
9113 	}
9114 
9115 	if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
9116 		update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9117 
9118 	/* Finally set the event to be up to date */
9119 	mddev->events = le64_to_cpu(sb->events);
9120 }
9121 
9122 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9123 {
9124 	int err;
9125 	struct page *swapout = rdev->sb_page;
9126 	struct mdp_superblock_1 *sb;
9127 
9128 	/* Store the sb page of the rdev in the swapout temporary
9129 	 * variable in case we err in the future
9130 	 */
9131 	rdev->sb_page = NULL;
9132 	alloc_disk_sb(rdev);
9133 	ClearPageUptodate(rdev->sb_page);
9134 	rdev->sb_loaded = 0;
9135 	err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
9136 
9137 	if (err < 0) {
9138 		pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9139 				__func__, __LINE__, rdev->desc_nr, err);
9140 		put_page(rdev->sb_page);
9141 		rdev->sb_page = swapout;
9142 		rdev->sb_loaded = 1;
9143 		return err;
9144 	}
9145 
9146 	sb = page_address(rdev->sb_page);
9147 	/* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9148 	 * is not set
9149 	 */
9150 
9151 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9152 		rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9153 
9154 	/* The other node finished recovery, call spare_active to set
9155 	 * device In_sync and mddev->degraded
9156 	 */
9157 	if (rdev->recovery_offset == MaxSector &&
9158 	    !test_bit(In_sync, &rdev->flags) &&
9159 	    mddev->pers->spare_active(mddev))
9160 		sysfs_notify(&mddev->kobj, NULL, "degraded");
9161 
9162 	put_page(swapout);
9163 	return 0;
9164 }
9165 
9166 void md_reload_sb(struct mddev *mddev, int nr)
9167 {
9168 	struct md_rdev *rdev;
9169 	int err;
9170 
9171 	/* Find the rdev */
9172 	rdev_for_each_rcu(rdev, mddev) {
9173 		if (rdev->desc_nr == nr)
9174 			break;
9175 	}
9176 
9177 	if (!rdev || rdev->desc_nr != nr) {
9178 		pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9179 		return;
9180 	}
9181 
9182 	err = read_rdev(mddev, rdev);
9183 	if (err < 0)
9184 		return;
9185 
9186 	check_sb_changes(mddev, rdev);
9187 
9188 	/* Read all rdev's to update recovery_offset */
9189 	rdev_for_each_rcu(rdev, mddev)
9190 		read_rdev(mddev, rdev);
9191 }
9192 EXPORT_SYMBOL(md_reload_sb);
9193 
9194 #ifndef MODULE
9195 
9196 /*
9197  * Searches all registered partitions for autorun RAID arrays
9198  * at boot time.
9199  */
9200 
9201 static LIST_HEAD(all_detected_devices);
9202 struct detected_devices_node {
9203 	struct list_head list;
9204 	dev_t dev;
9205 };
9206 
9207 void md_autodetect_dev(dev_t dev)
9208 {
9209 	struct detected_devices_node *node_detected_dev;
9210 
9211 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9212 	if (node_detected_dev) {
9213 		node_detected_dev->dev = dev;
9214 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
9215 	} else {
9216 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
9217 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
9218 	}
9219 }
9220 
9221 static void autostart_arrays(int part)
9222 {
9223 	struct md_rdev *rdev;
9224 	struct detected_devices_node *node_detected_dev;
9225 	dev_t dev;
9226 	int i_scanned, i_passed;
9227 
9228 	i_scanned = 0;
9229 	i_passed = 0;
9230 
9231 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9232 
9233 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9234 		i_scanned++;
9235 		node_detected_dev = list_entry(all_detected_devices.next,
9236 					struct detected_devices_node, list);
9237 		list_del(&node_detected_dev->list);
9238 		dev = node_detected_dev->dev;
9239 		kfree(node_detected_dev);
9240 		rdev = md_import_device(dev,0, 90);
9241 		if (IS_ERR(rdev))
9242 			continue;
9243 
9244 		if (test_bit(Faulty, &rdev->flags))
9245 			continue;
9246 
9247 		set_bit(AutoDetected, &rdev->flags);
9248 		list_add(&rdev->same_set, &pending_raid_disks);
9249 		i_passed++;
9250 	}
9251 
9252 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9253 						i_scanned, i_passed);
9254 
9255 	autorun_devices(part);
9256 }
9257 
9258 #endif /* !MODULE */
9259 
9260 static __exit void md_exit(void)
9261 {
9262 	struct mddev *mddev;
9263 	struct list_head *tmp;
9264 	int delay = 1;
9265 
9266 	blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9267 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9268 
9269 	unregister_blkdev(MD_MAJOR,"md");
9270 	unregister_blkdev(mdp_major, "mdp");
9271 	unregister_reboot_notifier(&md_notifier);
9272 	unregister_sysctl_table(raid_table_header);
9273 
9274 	/* We cannot unload the modules while some process is
9275 	 * waiting for us in select() or poll() - wake them up
9276 	 */
9277 	md_unloading = 1;
9278 	while (waitqueue_active(&md_event_waiters)) {
9279 		/* not safe to leave yet */
9280 		wake_up(&md_event_waiters);
9281 		msleep(delay);
9282 		delay += delay;
9283 	}
9284 	remove_proc_entry("mdstat", NULL);
9285 
9286 	for_each_mddev(mddev, tmp) {
9287 		export_array(mddev);
9288 		mddev->hold_active = 0;
9289 	}
9290 	destroy_workqueue(md_misc_wq);
9291 	destroy_workqueue(md_wq);
9292 }
9293 
9294 subsys_initcall(md_init);
9295 module_exit(md_exit)
9296 
9297 static int get_ro(char *buffer, struct kernel_param *kp)
9298 {
9299 	return sprintf(buffer, "%d", start_readonly);
9300 }
9301 static int set_ro(const char *val, struct kernel_param *kp)
9302 {
9303 	return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9304 }
9305 
9306 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9307 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9308 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9309 
9310 MODULE_LICENSE("GPL");
9311 MODULE_DESCRIPTION("MD RAID framework");
9312 MODULE_ALIAS("md");
9313 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9314