1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected 74 * by pers_lock. 75 * pers_lock does extra service to protect accesses to 76 * mddev->thread when the mutex cannot be held. 77 */ 78 static LIST_HEAD(pers_list); 79 static DEFINE_SPINLOCK(pers_lock); 80 81 static struct kobj_type md_ktype; 82 83 struct md_cluster_operations *md_cluster_ops; 84 EXPORT_SYMBOL(md_cluster_ops); 85 static struct module *md_cluster_mod; 86 87 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 88 static struct workqueue_struct *md_wq; 89 static struct workqueue_struct *md_misc_wq; 90 static struct workqueue_struct *md_rdev_misc_wq; 91 92 static int remove_and_add_spares(struct mddev *mddev, 93 struct md_rdev *this); 94 static void mddev_detach(struct mddev *mddev); 95 96 /* 97 * Default number of read corrections we'll attempt on an rdev 98 * before ejecting it from the array. We divide the read error 99 * count by 2 for every hour elapsed between read errors. 100 */ 101 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 102 /* Default safemode delay: 200 msec */ 103 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 104 /* 105 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 106 * is 1000 KB/sec, so the extra system load does not show up that much. 107 * Increase it if you want to have more _guaranteed_ speed. Note that 108 * the RAID driver will use the maximum available bandwidth if the IO 109 * subsystem is idle. There is also an 'absolute maximum' reconstruction 110 * speed limit - in case reconstruction slows down your system despite 111 * idle IO detection. 112 * 113 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 114 * or /sys/block/mdX/md/sync_speed_{min,max} 115 */ 116 117 static int sysctl_speed_limit_min = 1000; 118 static int sysctl_speed_limit_max = 200000; 119 static inline int speed_min(struct mddev *mddev) 120 { 121 return mddev->sync_speed_min ? 122 mddev->sync_speed_min : sysctl_speed_limit_min; 123 } 124 125 static inline int speed_max(struct mddev *mddev) 126 { 127 return mddev->sync_speed_max ? 128 mddev->sync_speed_max : sysctl_speed_limit_max; 129 } 130 131 static void rdev_uninit_serial(struct md_rdev *rdev) 132 { 133 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 134 return; 135 136 kvfree(rdev->serial); 137 rdev->serial = NULL; 138 } 139 140 static void rdevs_uninit_serial(struct mddev *mddev) 141 { 142 struct md_rdev *rdev; 143 144 rdev_for_each(rdev, mddev) 145 rdev_uninit_serial(rdev); 146 } 147 148 static int rdev_init_serial(struct md_rdev *rdev) 149 { 150 /* serial_nums equals with BARRIER_BUCKETS_NR */ 151 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 152 struct serial_in_rdev *serial = NULL; 153 154 if (test_bit(CollisionCheck, &rdev->flags)) 155 return 0; 156 157 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 158 GFP_KERNEL); 159 if (!serial) 160 return -ENOMEM; 161 162 for (i = 0; i < serial_nums; i++) { 163 struct serial_in_rdev *serial_tmp = &serial[i]; 164 165 spin_lock_init(&serial_tmp->serial_lock); 166 serial_tmp->serial_rb = RB_ROOT_CACHED; 167 init_waitqueue_head(&serial_tmp->serial_io_wait); 168 } 169 170 rdev->serial = serial; 171 set_bit(CollisionCheck, &rdev->flags); 172 173 return 0; 174 } 175 176 static int rdevs_init_serial(struct mddev *mddev) 177 { 178 struct md_rdev *rdev; 179 int ret = 0; 180 181 rdev_for_each(rdev, mddev) { 182 ret = rdev_init_serial(rdev); 183 if (ret) 184 break; 185 } 186 187 /* Free all resources if pool is not existed */ 188 if (ret && !mddev->serial_info_pool) 189 rdevs_uninit_serial(mddev); 190 191 return ret; 192 } 193 194 /* 195 * rdev needs to enable serial stuffs if it meets the conditions: 196 * 1. it is multi-queue device flaged with writemostly. 197 * 2. the write-behind mode is enabled. 198 */ 199 static int rdev_need_serial(struct md_rdev *rdev) 200 { 201 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 202 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 203 test_bit(WriteMostly, &rdev->flags)); 204 } 205 206 /* 207 * Init resource for rdev(s), then create serial_info_pool if: 208 * 1. rdev is the first device which return true from rdev_enable_serial. 209 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 210 */ 211 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 212 bool is_suspend) 213 { 214 int ret = 0; 215 216 if (rdev && !rdev_need_serial(rdev) && 217 !test_bit(CollisionCheck, &rdev->flags)) 218 return; 219 220 if (!is_suspend) 221 mddev_suspend(mddev); 222 223 if (!rdev) 224 ret = rdevs_init_serial(mddev); 225 else 226 ret = rdev_init_serial(rdev); 227 if (ret) 228 goto abort; 229 230 if (mddev->serial_info_pool == NULL) { 231 /* 232 * already in memalloc noio context by 233 * mddev_suspend() 234 */ 235 mddev->serial_info_pool = 236 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 237 sizeof(struct serial_info)); 238 if (!mddev->serial_info_pool) { 239 rdevs_uninit_serial(mddev); 240 pr_err("can't alloc memory pool for serialization\n"); 241 } 242 } 243 244 abort: 245 if (!is_suspend) 246 mddev_resume(mddev); 247 } 248 249 /* 250 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 251 * 1. rdev is the last device flaged with CollisionCheck. 252 * 2. when bitmap is destroyed while policy is not enabled. 253 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 254 */ 255 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 256 bool is_suspend) 257 { 258 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 259 return; 260 261 if (mddev->serial_info_pool) { 262 struct md_rdev *temp; 263 int num = 0; /* used to track if other rdevs need the pool */ 264 265 if (!is_suspend) 266 mddev_suspend(mddev); 267 rdev_for_each(temp, mddev) { 268 if (!rdev) { 269 if (!mddev->serialize_policy || 270 !rdev_need_serial(temp)) 271 rdev_uninit_serial(temp); 272 else 273 num++; 274 } else if (temp != rdev && 275 test_bit(CollisionCheck, &temp->flags)) 276 num++; 277 } 278 279 if (rdev) 280 rdev_uninit_serial(rdev); 281 282 if (num) 283 pr_info("The mempool could be used by other devices\n"); 284 else { 285 mempool_destroy(mddev->serial_info_pool); 286 mddev->serial_info_pool = NULL; 287 } 288 if (!is_suspend) 289 mddev_resume(mddev); 290 } 291 } 292 293 static struct ctl_table_header *raid_table_header; 294 295 static struct ctl_table raid_table[] = { 296 { 297 .procname = "speed_limit_min", 298 .data = &sysctl_speed_limit_min, 299 .maxlen = sizeof(int), 300 .mode = S_IRUGO|S_IWUSR, 301 .proc_handler = proc_dointvec, 302 }, 303 { 304 .procname = "speed_limit_max", 305 .data = &sysctl_speed_limit_max, 306 .maxlen = sizeof(int), 307 .mode = S_IRUGO|S_IWUSR, 308 .proc_handler = proc_dointvec, 309 }, 310 { } 311 }; 312 313 static struct ctl_table raid_dir_table[] = { 314 { 315 .procname = "raid", 316 .maxlen = 0, 317 .mode = S_IRUGO|S_IXUGO, 318 .child = raid_table, 319 }, 320 { } 321 }; 322 323 static struct ctl_table raid_root_table[] = { 324 { 325 .procname = "dev", 326 .maxlen = 0, 327 .mode = 0555, 328 .child = raid_dir_table, 329 }, 330 { } 331 }; 332 333 static int start_readonly; 334 335 /* 336 * The original mechanism for creating an md device is to create 337 * a device node in /dev and to open it. This causes races with device-close. 338 * The preferred method is to write to the "new_array" module parameter. 339 * This can avoid races. 340 * Setting create_on_open to false disables the original mechanism 341 * so all the races disappear. 342 */ 343 static bool create_on_open = true; 344 345 /* 346 * We have a system wide 'event count' that is incremented 347 * on any 'interesting' event, and readers of /proc/mdstat 348 * can use 'poll' or 'select' to find out when the event 349 * count increases. 350 * 351 * Events are: 352 * start array, stop array, error, add device, remove device, 353 * start build, activate spare 354 */ 355 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 356 static atomic_t md_event_count; 357 void md_new_event(void) 358 { 359 atomic_inc(&md_event_count); 360 wake_up(&md_event_waiters); 361 } 362 EXPORT_SYMBOL_GPL(md_new_event); 363 364 /* 365 * Enables to iterate over all existing md arrays 366 * all_mddevs_lock protects this list. 367 */ 368 static LIST_HEAD(all_mddevs); 369 static DEFINE_SPINLOCK(all_mddevs_lock); 370 371 /* Rather than calling directly into the personality make_request function, 372 * IO requests come here first so that we can check if the device is 373 * being suspended pending a reconfiguration. 374 * We hold a refcount over the call to ->make_request. By the time that 375 * call has finished, the bio has been linked into some internal structure 376 * and so is visible to ->quiesce(), so we don't need the refcount any more. 377 */ 378 static bool is_suspended(struct mddev *mddev, struct bio *bio) 379 { 380 if (mddev->suspended) 381 return true; 382 if (bio_data_dir(bio) != WRITE) 383 return false; 384 if (mddev->suspend_lo >= mddev->suspend_hi) 385 return false; 386 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 387 return false; 388 if (bio_end_sector(bio) < mddev->suspend_lo) 389 return false; 390 return true; 391 } 392 393 void md_handle_request(struct mddev *mddev, struct bio *bio) 394 { 395 check_suspended: 396 rcu_read_lock(); 397 if (is_suspended(mddev, bio)) { 398 DEFINE_WAIT(__wait); 399 /* Bail out if REQ_NOWAIT is set for the bio */ 400 if (bio->bi_opf & REQ_NOWAIT) { 401 rcu_read_unlock(); 402 bio_wouldblock_error(bio); 403 return; 404 } 405 for (;;) { 406 prepare_to_wait(&mddev->sb_wait, &__wait, 407 TASK_UNINTERRUPTIBLE); 408 if (!is_suspended(mddev, bio)) 409 break; 410 rcu_read_unlock(); 411 schedule(); 412 rcu_read_lock(); 413 } 414 finish_wait(&mddev->sb_wait, &__wait); 415 } 416 atomic_inc(&mddev->active_io); 417 rcu_read_unlock(); 418 419 if (!mddev->pers->make_request(mddev, bio)) { 420 atomic_dec(&mddev->active_io); 421 wake_up(&mddev->sb_wait); 422 goto check_suspended; 423 } 424 425 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended) 426 wake_up(&mddev->sb_wait); 427 } 428 EXPORT_SYMBOL(md_handle_request); 429 430 static void md_submit_bio(struct bio *bio) 431 { 432 const int rw = bio_data_dir(bio); 433 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 434 435 if (mddev == NULL || mddev->pers == NULL) { 436 bio_io_error(bio); 437 return; 438 } 439 440 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 441 bio_io_error(bio); 442 return; 443 } 444 445 bio = bio_split_to_limits(bio); 446 447 if (mddev->ro == 1 && unlikely(rw == WRITE)) { 448 if (bio_sectors(bio) != 0) 449 bio->bi_status = BLK_STS_IOERR; 450 bio_endio(bio); 451 return; 452 } 453 454 /* bio could be mergeable after passing to underlayer */ 455 bio->bi_opf &= ~REQ_NOMERGE; 456 457 md_handle_request(mddev, bio); 458 } 459 460 /* mddev_suspend makes sure no new requests are submitted 461 * to the device, and that any requests that have been submitted 462 * are completely handled. 463 * Once mddev_detach() is called and completes, the module will be 464 * completely unused. 465 */ 466 void mddev_suspend(struct mddev *mddev) 467 { 468 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk); 469 lockdep_assert_held(&mddev->reconfig_mutex); 470 if (mddev->suspended++) 471 return; 472 synchronize_rcu(); 473 wake_up(&mddev->sb_wait); 474 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 475 smp_mb__after_atomic(); 476 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0); 477 mddev->pers->quiesce(mddev, 1); 478 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 479 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 480 481 del_timer_sync(&mddev->safemode_timer); 482 /* restrict memory reclaim I/O during raid array is suspend */ 483 mddev->noio_flag = memalloc_noio_save(); 484 } 485 EXPORT_SYMBOL_GPL(mddev_suspend); 486 487 void mddev_resume(struct mddev *mddev) 488 { 489 /* entred the memalloc scope from mddev_suspend() */ 490 memalloc_noio_restore(mddev->noio_flag); 491 lockdep_assert_held(&mddev->reconfig_mutex); 492 if (--mddev->suspended) 493 return; 494 wake_up(&mddev->sb_wait); 495 mddev->pers->quiesce(mddev, 0); 496 497 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 498 md_wakeup_thread(mddev->thread); 499 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 500 } 501 EXPORT_SYMBOL_GPL(mddev_resume); 502 503 /* 504 * Generic flush handling for md 505 */ 506 507 static void md_end_flush(struct bio *bio) 508 { 509 struct md_rdev *rdev = bio->bi_private; 510 struct mddev *mddev = rdev->mddev; 511 512 rdev_dec_pending(rdev, mddev); 513 514 if (atomic_dec_and_test(&mddev->flush_pending)) { 515 /* The pre-request flush has finished */ 516 queue_work(md_wq, &mddev->flush_work); 517 } 518 bio_put(bio); 519 } 520 521 static void md_submit_flush_data(struct work_struct *ws); 522 523 static void submit_flushes(struct work_struct *ws) 524 { 525 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 526 struct md_rdev *rdev; 527 528 mddev->start_flush = ktime_get_boottime(); 529 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 530 atomic_set(&mddev->flush_pending, 1); 531 rcu_read_lock(); 532 rdev_for_each_rcu(rdev, mddev) 533 if (rdev->raid_disk >= 0 && 534 !test_bit(Faulty, &rdev->flags)) { 535 /* Take two references, one is dropped 536 * when request finishes, one after 537 * we reclaim rcu_read_lock 538 */ 539 struct bio *bi; 540 atomic_inc(&rdev->nr_pending); 541 atomic_inc(&rdev->nr_pending); 542 rcu_read_unlock(); 543 bi = bio_alloc_bioset(rdev->bdev, 0, 544 REQ_OP_WRITE | REQ_PREFLUSH, 545 GFP_NOIO, &mddev->bio_set); 546 bi->bi_end_io = md_end_flush; 547 bi->bi_private = rdev; 548 atomic_inc(&mddev->flush_pending); 549 submit_bio(bi); 550 rcu_read_lock(); 551 rdev_dec_pending(rdev, mddev); 552 } 553 rcu_read_unlock(); 554 if (atomic_dec_and_test(&mddev->flush_pending)) 555 queue_work(md_wq, &mddev->flush_work); 556 } 557 558 static void md_submit_flush_data(struct work_struct *ws) 559 { 560 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 561 struct bio *bio = mddev->flush_bio; 562 563 /* 564 * must reset flush_bio before calling into md_handle_request to avoid a 565 * deadlock, because other bios passed md_handle_request suspend check 566 * could wait for this and below md_handle_request could wait for those 567 * bios because of suspend check 568 */ 569 spin_lock_irq(&mddev->lock); 570 mddev->prev_flush_start = mddev->start_flush; 571 mddev->flush_bio = NULL; 572 spin_unlock_irq(&mddev->lock); 573 wake_up(&mddev->sb_wait); 574 575 if (bio->bi_iter.bi_size == 0) { 576 /* an empty barrier - all done */ 577 bio_endio(bio); 578 } else { 579 bio->bi_opf &= ~REQ_PREFLUSH; 580 md_handle_request(mddev, bio); 581 } 582 } 583 584 /* 585 * Manages consolidation of flushes and submitting any flushes needed for 586 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 587 * being finished in another context. Returns false if the flushing is 588 * complete but still needs the I/O portion of the bio to be processed. 589 */ 590 bool md_flush_request(struct mddev *mddev, struct bio *bio) 591 { 592 ktime_t req_start = ktime_get_boottime(); 593 spin_lock_irq(&mddev->lock); 594 /* flush requests wait until ongoing flush completes, 595 * hence coalescing all the pending requests. 596 */ 597 wait_event_lock_irq(mddev->sb_wait, 598 !mddev->flush_bio || 599 ktime_before(req_start, mddev->prev_flush_start), 600 mddev->lock); 601 /* new request after previous flush is completed */ 602 if (ktime_after(req_start, mddev->prev_flush_start)) { 603 WARN_ON(mddev->flush_bio); 604 mddev->flush_bio = bio; 605 bio = NULL; 606 } 607 spin_unlock_irq(&mddev->lock); 608 609 if (!bio) { 610 INIT_WORK(&mddev->flush_work, submit_flushes); 611 queue_work(md_wq, &mddev->flush_work); 612 } else { 613 /* flush was performed for some other bio while we waited. */ 614 if (bio->bi_iter.bi_size == 0) 615 /* an empty barrier - all done */ 616 bio_endio(bio); 617 else { 618 bio->bi_opf &= ~REQ_PREFLUSH; 619 return false; 620 } 621 } 622 return true; 623 } 624 EXPORT_SYMBOL(md_flush_request); 625 626 static inline struct mddev *mddev_get(struct mddev *mddev) 627 { 628 lockdep_assert_held(&all_mddevs_lock); 629 630 if (test_bit(MD_DELETED, &mddev->flags)) 631 return NULL; 632 atomic_inc(&mddev->active); 633 return mddev; 634 } 635 636 static void mddev_delayed_delete(struct work_struct *ws); 637 638 void mddev_put(struct mddev *mddev) 639 { 640 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 641 return; 642 if (!mddev->raid_disks && list_empty(&mddev->disks) && 643 mddev->ctime == 0 && !mddev->hold_active) { 644 /* Array is not configured at all, and not held active, 645 * so destroy it */ 646 set_bit(MD_DELETED, &mddev->flags); 647 648 /* 649 * Call queue_work inside the spinlock so that 650 * flush_workqueue() after mddev_find will succeed in waiting 651 * for the work to be done. 652 */ 653 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 654 queue_work(md_misc_wq, &mddev->del_work); 655 } 656 spin_unlock(&all_mddevs_lock); 657 } 658 659 static void md_safemode_timeout(struct timer_list *t); 660 661 void mddev_init(struct mddev *mddev) 662 { 663 mutex_init(&mddev->open_mutex); 664 mutex_init(&mddev->reconfig_mutex); 665 mutex_init(&mddev->bitmap_info.mutex); 666 INIT_LIST_HEAD(&mddev->disks); 667 INIT_LIST_HEAD(&mddev->all_mddevs); 668 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 669 atomic_set(&mddev->active, 1); 670 atomic_set(&mddev->openers, 0); 671 atomic_set(&mddev->active_io, 0); 672 spin_lock_init(&mddev->lock); 673 atomic_set(&mddev->flush_pending, 0); 674 init_waitqueue_head(&mddev->sb_wait); 675 init_waitqueue_head(&mddev->recovery_wait); 676 mddev->reshape_position = MaxSector; 677 mddev->reshape_backwards = 0; 678 mddev->last_sync_action = "none"; 679 mddev->resync_min = 0; 680 mddev->resync_max = MaxSector; 681 mddev->level = LEVEL_NONE; 682 } 683 EXPORT_SYMBOL_GPL(mddev_init); 684 685 static struct mddev *mddev_find_locked(dev_t unit) 686 { 687 struct mddev *mddev; 688 689 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 690 if (mddev->unit == unit) 691 return mddev; 692 693 return NULL; 694 } 695 696 /* find an unused unit number */ 697 static dev_t mddev_alloc_unit(void) 698 { 699 static int next_minor = 512; 700 int start = next_minor; 701 bool is_free = 0; 702 dev_t dev = 0; 703 704 while (!is_free) { 705 dev = MKDEV(MD_MAJOR, next_minor); 706 next_minor++; 707 if (next_minor > MINORMASK) 708 next_minor = 0; 709 if (next_minor == start) 710 return 0; /* Oh dear, all in use. */ 711 is_free = !mddev_find_locked(dev); 712 } 713 714 return dev; 715 } 716 717 static struct mddev *mddev_alloc(dev_t unit) 718 { 719 struct mddev *new; 720 int error; 721 722 if (unit && MAJOR(unit) != MD_MAJOR) 723 unit &= ~((1 << MdpMinorShift) - 1); 724 725 new = kzalloc(sizeof(*new), GFP_KERNEL); 726 if (!new) 727 return ERR_PTR(-ENOMEM); 728 mddev_init(new); 729 730 spin_lock(&all_mddevs_lock); 731 if (unit) { 732 error = -EEXIST; 733 if (mddev_find_locked(unit)) 734 goto out_free_new; 735 new->unit = unit; 736 if (MAJOR(unit) == MD_MAJOR) 737 new->md_minor = MINOR(unit); 738 else 739 new->md_minor = MINOR(unit) >> MdpMinorShift; 740 new->hold_active = UNTIL_IOCTL; 741 } else { 742 error = -ENODEV; 743 new->unit = mddev_alloc_unit(); 744 if (!new->unit) 745 goto out_free_new; 746 new->md_minor = MINOR(new->unit); 747 new->hold_active = UNTIL_STOP; 748 } 749 750 list_add(&new->all_mddevs, &all_mddevs); 751 spin_unlock(&all_mddevs_lock); 752 return new; 753 out_free_new: 754 spin_unlock(&all_mddevs_lock); 755 kfree(new); 756 return ERR_PTR(error); 757 } 758 759 static void mddev_free(struct mddev *mddev) 760 { 761 spin_lock(&all_mddevs_lock); 762 list_del(&mddev->all_mddevs); 763 spin_unlock(&all_mddevs_lock); 764 765 kfree(mddev); 766 } 767 768 static const struct attribute_group md_redundancy_group; 769 770 void mddev_unlock(struct mddev *mddev) 771 { 772 if (mddev->to_remove) { 773 /* These cannot be removed under reconfig_mutex as 774 * an access to the files will try to take reconfig_mutex 775 * while holding the file unremovable, which leads to 776 * a deadlock. 777 * So hold set sysfs_active while the remove in happeing, 778 * and anything else which might set ->to_remove or my 779 * otherwise change the sysfs namespace will fail with 780 * -EBUSY if sysfs_active is still set. 781 * We set sysfs_active under reconfig_mutex and elsewhere 782 * test it under the same mutex to ensure its correct value 783 * is seen. 784 */ 785 const struct attribute_group *to_remove = mddev->to_remove; 786 mddev->to_remove = NULL; 787 mddev->sysfs_active = 1; 788 mutex_unlock(&mddev->reconfig_mutex); 789 790 if (mddev->kobj.sd) { 791 if (to_remove != &md_redundancy_group) 792 sysfs_remove_group(&mddev->kobj, to_remove); 793 if (mddev->pers == NULL || 794 mddev->pers->sync_request == NULL) { 795 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 796 if (mddev->sysfs_action) 797 sysfs_put(mddev->sysfs_action); 798 if (mddev->sysfs_completed) 799 sysfs_put(mddev->sysfs_completed); 800 if (mddev->sysfs_degraded) 801 sysfs_put(mddev->sysfs_degraded); 802 mddev->sysfs_action = NULL; 803 mddev->sysfs_completed = NULL; 804 mddev->sysfs_degraded = NULL; 805 } 806 } 807 mddev->sysfs_active = 0; 808 } else 809 mutex_unlock(&mddev->reconfig_mutex); 810 811 /* As we've dropped the mutex we need a spinlock to 812 * make sure the thread doesn't disappear 813 */ 814 spin_lock(&pers_lock); 815 md_wakeup_thread(mddev->thread); 816 wake_up(&mddev->sb_wait); 817 spin_unlock(&pers_lock); 818 } 819 EXPORT_SYMBOL_GPL(mddev_unlock); 820 821 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 822 { 823 struct md_rdev *rdev; 824 825 rdev_for_each_rcu(rdev, mddev) 826 if (rdev->desc_nr == nr) 827 return rdev; 828 829 return NULL; 830 } 831 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 832 833 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 834 { 835 struct md_rdev *rdev; 836 837 rdev_for_each(rdev, mddev) 838 if (rdev->bdev->bd_dev == dev) 839 return rdev; 840 841 return NULL; 842 } 843 844 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 845 { 846 struct md_rdev *rdev; 847 848 rdev_for_each_rcu(rdev, mddev) 849 if (rdev->bdev->bd_dev == dev) 850 return rdev; 851 852 return NULL; 853 } 854 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 855 856 static struct md_personality *find_pers(int level, char *clevel) 857 { 858 struct md_personality *pers; 859 list_for_each_entry(pers, &pers_list, list) { 860 if (level != LEVEL_NONE && pers->level == level) 861 return pers; 862 if (strcmp(pers->name, clevel)==0) 863 return pers; 864 } 865 return NULL; 866 } 867 868 /* return the offset of the super block in 512byte sectors */ 869 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 870 { 871 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 872 } 873 874 static int alloc_disk_sb(struct md_rdev *rdev) 875 { 876 rdev->sb_page = alloc_page(GFP_KERNEL); 877 if (!rdev->sb_page) 878 return -ENOMEM; 879 return 0; 880 } 881 882 void md_rdev_clear(struct md_rdev *rdev) 883 { 884 if (rdev->sb_page) { 885 put_page(rdev->sb_page); 886 rdev->sb_loaded = 0; 887 rdev->sb_page = NULL; 888 rdev->sb_start = 0; 889 rdev->sectors = 0; 890 } 891 if (rdev->bb_page) { 892 put_page(rdev->bb_page); 893 rdev->bb_page = NULL; 894 } 895 badblocks_exit(&rdev->badblocks); 896 } 897 EXPORT_SYMBOL_GPL(md_rdev_clear); 898 899 static void super_written(struct bio *bio) 900 { 901 struct md_rdev *rdev = bio->bi_private; 902 struct mddev *mddev = rdev->mddev; 903 904 if (bio->bi_status) { 905 pr_err("md: %s gets error=%d\n", __func__, 906 blk_status_to_errno(bio->bi_status)); 907 md_error(mddev, rdev); 908 if (!test_bit(Faulty, &rdev->flags) 909 && (bio->bi_opf & MD_FAILFAST)) { 910 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 911 set_bit(LastDev, &rdev->flags); 912 } 913 } else 914 clear_bit(LastDev, &rdev->flags); 915 916 if (atomic_dec_and_test(&mddev->pending_writes)) 917 wake_up(&mddev->sb_wait); 918 rdev_dec_pending(rdev, mddev); 919 bio_put(bio); 920 } 921 922 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 923 sector_t sector, int size, struct page *page) 924 { 925 /* write first size bytes of page to sector of rdev 926 * Increment mddev->pending_writes before returning 927 * and decrement it on completion, waking up sb_wait 928 * if zero is reached. 929 * If an error occurred, call md_error 930 */ 931 struct bio *bio; 932 933 if (!page) 934 return; 935 936 if (test_bit(Faulty, &rdev->flags)) 937 return; 938 939 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 940 1, 941 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA, 942 GFP_NOIO, &mddev->sync_set); 943 944 atomic_inc(&rdev->nr_pending); 945 946 bio->bi_iter.bi_sector = sector; 947 bio_add_page(bio, page, size, 0); 948 bio->bi_private = rdev; 949 bio->bi_end_io = super_written; 950 951 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 952 test_bit(FailFast, &rdev->flags) && 953 !test_bit(LastDev, &rdev->flags)) 954 bio->bi_opf |= MD_FAILFAST; 955 956 atomic_inc(&mddev->pending_writes); 957 submit_bio(bio); 958 } 959 960 int md_super_wait(struct mddev *mddev) 961 { 962 /* wait for all superblock writes that were scheduled to complete */ 963 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 964 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 965 return -EAGAIN; 966 return 0; 967 } 968 969 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 970 struct page *page, blk_opf_t opf, bool metadata_op) 971 { 972 struct bio bio; 973 struct bio_vec bvec; 974 975 if (metadata_op && rdev->meta_bdev) 976 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 977 else 978 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 979 980 if (metadata_op) 981 bio.bi_iter.bi_sector = sector + rdev->sb_start; 982 else if (rdev->mddev->reshape_position != MaxSector && 983 (rdev->mddev->reshape_backwards == 984 (sector >= rdev->mddev->reshape_position))) 985 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 986 else 987 bio.bi_iter.bi_sector = sector + rdev->data_offset; 988 bio_add_page(&bio, page, size, 0); 989 990 submit_bio_wait(&bio); 991 992 return !bio.bi_status; 993 } 994 EXPORT_SYMBOL_GPL(sync_page_io); 995 996 static int read_disk_sb(struct md_rdev *rdev, int size) 997 { 998 if (rdev->sb_loaded) 999 return 0; 1000 1001 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1002 goto fail; 1003 rdev->sb_loaded = 1; 1004 return 0; 1005 1006 fail: 1007 pr_err("md: disabled device %pg, could not read superblock.\n", 1008 rdev->bdev); 1009 return -EINVAL; 1010 } 1011 1012 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1013 { 1014 return sb1->set_uuid0 == sb2->set_uuid0 && 1015 sb1->set_uuid1 == sb2->set_uuid1 && 1016 sb1->set_uuid2 == sb2->set_uuid2 && 1017 sb1->set_uuid3 == sb2->set_uuid3; 1018 } 1019 1020 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1021 { 1022 int ret; 1023 mdp_super_t *tmp1, *tmp2; 1024 1025 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1026 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1027 1028 if (!tmp1 || !tmp2) { 1029 ret = 0; 1030 goto abort; 1031 } 1032 1033 *tmp1 = *sb1; 1034 *tmp2 = *sb2; 1035 1036 /* 1037 * nr_disks is not constant 1038 */ 1039 tmp1->nr_disks = 0; 1040 tmp2->nr_disks = 0; 1041 1042 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1043 abort: 1044 kfree(tmp1); 1045 kfree(tmp2); 1046 return ret; 1047 } 1048 1049 static u32 md_csum_fold(u32 csum) 1050 { 1051 csum = (csum & 0xffff) + (csum >> 16); 1052 return (csum & 0xffff) + (csum >> 16); 1053 } 1054 1055 static unsigned int calc_sb_csum(mdp_super_t *sb) 1056 { 1057 u64 newcsum = 0; 1058 u32 *sb32 = (u32*)sb; 1059 int i; 1060 unsigned int disk_csum, csum; 1061 1062 disk_csum = sb->sb_csum; 1063 sb->sb_csum = 0; 1064 1065 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1066 newcsum += sb32[i]; 1067 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1068 1069 #ifdef CONFIG_ALPHA 1070 /* This used to use csum_partial, which was wrong for several 1071 * reasons including that different results are returned on 1072 * different architectures. It isn't critical that we get exactly 1073 * the same return value as before (we always csum_fold before 1074 * testing, and that removes any differences). However as we 1075 * know that csum_partial always returned a 16bit value on 1076 * alphas, do a fold to maximise conformity to previous behaviour. 1077 */ 1078 sb->sb_csum = md_csum_fold(disk_csum); 1079 #else 1080 sb->sb_csum = disk_csum; 1081 #endif 1082 return csum; 1083 } 1084 1085 /* 1086 * Handle superblock details. 1087 * We want to be able to handle multiple superblock formats 1088 * so we have a common interface to them all, and an array of 1089 * different handlers. 1090 * We rely on user-space to write the initial superblock, and support 1091 * reading and updating of superblocks. 1092 * Interface methods are: 1093 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1094 * loads and validates a superblock on dev. 1095 * if refdev != NULL, compare superblocks on both devices 1096 * Return: 1097 * 0 - dev has a superblock that is compatible with refdev 1098 * 1 - dev has a superblock that is compatible and newer than refdev 1099 * so dev should be used as the refdev in future 1100 * -EINVAL superblock incompatible or invalid 1101 * -othererror e.g. -EIO 1102 * 1103 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1104 * Verify that dev is acceptable into mddev. 1105 * The first time, mddev->raid_disks will be 0, and data from 1106 * dev should be merged in. Subsequent calls check that dev 1107 * is new enough. Return 0 or -EINVAL 1108 * 1109 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1110 * Update the superblock for rdev with data in mddev 1111 * This does not write to disc. 1112 * 1113 */ 1114 1115 struct super_type { 1116 char *name; 1117 struct module *owner; 1118 int (*load_super)(struct md_rdev *rdev, 1119 struct md_rdev *refdev, 1120 int minor_version); 1121 int (*validate_super)(struct mddev *mddev, 1122 struct md_rdev *rdev); 1123 void (*sync_super)(struct mddev *mddev, 1124 struct md_rdev *rdev); 1125 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1126 sector_t num_sectors); 1127 int (*allow_new_offset)(struct md_rdev *rdev, 1128 unsigned long long new_offset); 1129 }; 1130 1131 /* 1132 * Check that the given mddev has no bitmap. 1133 * 1134 * This function is called from the run method of all personalities that do not 1135 * support bitmaps. It prints an error message and returns non-zero if mddev 1136 * has a bitmap. Otherwise, it returns 0. 1137 * 1138 */ 1139 int md_check_no_bitmap(struct mddev *mddev) 1140 { 1141 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1142 return 0; 1143 pr_warn("%s: bitmaps are not supported for %s\n", 1144 mdname(mddev), mddev->pers->name); 1145 return 1; 1146 } 1147 EXPORT_SYMBOL(md_check_no_bitmap); 1148 1149 /* 1150 * load_super for 0.90.0 1151 */ 1152 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1153 { 1154 mdp_super_t *sb; 1155 int ret; 1156 bool spare_disk = true; 1157 1158 /* 1159 * Calculate the position of the superblock (512byte sectors), 1160 * it's at the end of the disk. 1161 * 1162 * It also happens to be a multiple of 4Kb. 1163 */ 1164 rdev->sb_start = calc_dev_sboffset(rdev); 1165 1166 ret = read_disk_sb(rdev, MD_SB_BYTES); 1167 if (ret) 1168 return ret; 1169 1170 ret = -EINVAL; 1171 1172 sb = page_address(rdev->sb_page); 1173 1174 if (sb->md_magic != MD_SB_MAGIC) { 1175 pr_warn("md: invalid raid superblock magic on %pg\n", 1176 rdev->bdev); 1177 goto abort; 1178 } 1179 1180 if (sb->major_version != 0 || 1181 sb->minor_version < 90 || 1182 sb->minor_version > 91) { 1183 pr_warn("Bad version number %d.%d on %pg\n", 1184 sb->major_version, sb->minor_version, rdev->bdev); 1185 goto abort; 1186 } 1187 1188 if (sb->raid_disks <= 0) 1189 goto abort; 1190 1191 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1192 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1193 goto abort; 1194 } 1195 1196 rdev->preferred_minor = sb->md_minor; 1197 rdev->data_offset = 0; 1198 rdev->new_data_offset = 0; 1199 rdev->sb_size = MD_SB_BYTES; 1200 rdev->badblocks.shift = -1; 1201 1202 if (sb->level == LEVEL_MULTIPATH) 1203 rdev->desc_nr = -1; 1204 else 1205 rdev->desc_nr = sb->this_disk.number; 1206 1207 /* not spare disk, or LEVEL_MULTIPATH */ 1208 if (sb->level == LEVEL_MULTIPATH || 1209 (rdev->desc_nr >= 0 && 1210 rdev->desc_nr < MD_SB_DISKS && 1211 sb->disks[rdev->desc_nr].state & 1212 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1213 spare_disk = false; 1214 1215 if (!refdev) { 1216 if (!spare_disk) 1217 ret = 1; 1218 else 1219 ret = 0; 1220 } else { 1221 __u64 ev1, ev2; 1222 mdp_super_t *refsb = page_address(refdev->sb_page); 1223 if (!md_uuid_equal(refsb, sb)) { 1224 pr_warn("md: %pg has different UUID to %pg\n", 1225 rdev->bdev, refdev->bdev); 1226 goto abort; 1227 } 1228 if (!md_sb_equal(refsb, sb)) { 1229 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1230 rdev->bdev, refdev->bdev); 1231 goto abort; 1232 } 1233 ev1 = md_event(sb); 1234 ev2 = md_event(refsb); 1235 1236 if (!spare_disk && ev1 > ev2) 1237 ret = 1; 1238 else 1239 ret = 0; 1240 } 1241 rdev->sectors = rdev->sb_start; 1242 /* Limit to 4TB as metadata cannot record more than that. 1243 * (not needed for Linear and RAID0 as metadata doesn't 1244 * record this size) 1245 */ 1246 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1247 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1248 1249 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1250 /* "this cannot possibly happen" ... */ 1251 ret = -EINVAL; 1252 1253 abort: 1254 return ret; 1255 } 1256 1257 /* 1258 * validate_super for 0.90.0 1259 */ 1260 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev) 1261 { 1262 mdp_disk_t *desc; 1263 mdp_super_t *sb = page_address(rdev->sb_page); 1264 __u64 ev1 = md_event(sb); 1265 1266 rdev->raid_disk = -1; 1267 clear_bit(Faulty, &rdev->flags); 1268 clear_bit(In_sync, &rdev->flags); 1269 clear_bit(Bitmap_sync, &rdev->flags); 1270 clear_bit(WriteMostly, &rdev->flags); 1271 1272 if (mddev->raid_disks == 0) { 1273 mddev->major_version = 0; 1274 mddev->minor_version = sb->minor_version; 1275 mddev->patch_version = sb->patch_version; 1276 mddev->external = 0; 1277 mddev->chunk_sectors = sb->chunk_size >> 9; 1278 mddev->ctime = sb->ctime; 1279 mddev->utime = sb->utime; 1280 mddev->level = sb->level; 1281 mddev->clevel[0] = 0; 1282 mddev->layout = sb->layout; 1283 mddev->raid_disks = sb->raid_disks; 1284 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1285 mddev->events = ev1; 1286 mddev->bitmap_info.offset = 0; 1287 mddev->bitmap_info.space = 0; 1288 /* bitmap can use 60 K after the 4K superblocks */ 1289 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1290 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1291 mddev->reshape_backwards = 0; 1292 1293 if (mddev->minor_version >= 91) { 1294 mddev->reshape_position = sb->reshape_position; 1295 mddev->delta_disks = sb->delta_disks; 1296 mddev->new_level = sb->new_level; 1297 mddev->new_layout = sb->new_layout; 1298 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1299 if (mddev->delta_disks < 0) 1300 mddev->reshape_backwards = 1; 1301 } else { 1302 mddev->reshape_position = MaxSector; 1303 mddev->delta_disks = 0; 1304 mddev->new_level = mddev->level; 1305 mddev->new_layout = mddev->layout; 1306 mddev->new_chunk_sectors = mddev->chunk_sectors; 1307 } 1308 if (mddev->level == 0) 1309 mddev->layout = -1; 1310 1311 if (sb->state & (1<<MD_SB_CLEAN)) 1312 mddev->recovery_cp = MaxSector; 1313 else { 1314 if (sb->events_hi == sb->cp_events_hi && 1315 sb->events_lo == sb->cp_events_lo) { 1316 mddev->recovery_cp = sb->recovery_cp; 1317 } else 1318 mddev->recovery_cp = 0; 1319 } 1320 1321 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1322 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1323 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1324 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1325 1326 mddev->max_disks = MD_SB_DISKS; 1327 1328 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1329 mddev->bitmap_info.file == NULL) { 1330 mddev->bitmap_info.offset = 1331 mddev->bitmap_info.default_offset; 1332 mddev->bitmap_info.space = 1333 mddev->bitmap_info.default_space; 1334 } 1335 1336 } else if (mddev->pers == NULL) { 1337 /* Insist on good event counter while assembling, except 1338 * for spares (which don't need an event count) */ 1339 ++ev1; 1340 if (sb->disks[rdev->desc_nr].state & ( 1341 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1342 if (ev1 < mddev->events) 1343 return -EINVAL; 1344 } else if (mddev->bitmap) { 1345 /* if adding to array with a bitmap, then we can accept an 1346 * older device ... but not too old. 1347 */ 1348 if (ev1 < mddev->bitmap->events_cleared) 1349 return 0; 1350 if (ev1 < mddev->events) 1351 set_bit(Bitmap_sync, &rdev->flags); 1352 } else { 1353 if (ev1 < mddev->events) 1354 /* just a hot-add of a new device, leave raid_disk at -1 */ 1355 return 0; 1356 } 1357 1358 if (mddev->level != LEVEL_MULTIPATH) { 1359 desc = sb->disks + rdev->desc_nr; 1360 1361 if (desc->state & (1<<MD_DISK_FAULTY)) 1362 set_bit(Faulty, &rdev->flags); 1363 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1364 desc->raid_disk < mddev->raid_disks */) { 1365 set_bit(In_sync, &rdev->flags); 1366 rdev->raid_disk = desc->raid_disk; 1367 rdev->saved_raid_disk = desc->raid_disk; 1368 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1369 /* active but not in sync implies recovery up to 1370 * reshape position. We don't know exactly where 1371 * that is, so set to zero for now */ 1372 if (mddev->minor_version >= 91) { 1373 rdev->recovery_offset = 0; 1374 rdev->raid_disk = desc->raid_disk; 1375 } 1376 } 1377 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1378 set_bit(WriteMostly, &rdev->flags); 1379 if (desc->state & (1<<MD_DISK_FAILFAST)) 1380 set_bit(FailFast, &rdev->flags); 1381 } else /* MULTIPATH are always insync */ 1382 set_bit(In_sync, &rdev->flags); 1383 return 0; 1384 } 1385 1386 /* 1387 * sync_super for 0.90.0 1388 */ 1389 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1390 { 1391 mdp_super_t *sb; 1392 struct md_rdev *rdev2; 1393 int next_spare = mddev->raid_disks; 1394 1395 /* make rdev->sb match mddev data.. 1396 * 1397 * 1/ zero out disks 1398 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1399 * 3/ any empty disks < next_spare become removed 1400 * 1401 * disks[0] gets initialised to REMOVED because 1402 * we cannot be sure from other fields if it has 1403 * been initialised or not. 1404 */ 1405 int i; 1406 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1407 1408 rdev->sb_size = MD_SB_BYTES; 1409 1410 sb = page_address(rdev->sb_page); 1411 1412 memset(sb, 0, sizeof(*sb)); 1413 1414 sb->md_magic = MD_SB_MAGIC; 1415 sb->major_version = mddev->major_version; 1416 sb->patch_version = mddev->patch_version; 1417 sb->gvalid_words = 0; /* ignored */ 1418 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1419 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1420 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1421 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1422 1423 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1424 sb->level = mddev->level; 1425 sb->size = mddev->dev_sectors / 2; 1426 sb->raid_disks = mddev->raid_disks; 1427 sb->md_minor = mddev->md_minor; 1428 sb->not_persistent = 0; 1429 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1430 sb->state = 0; 1431 sb->events_hi = (mddev->events>>32); 1432 sb->events_lo = (u32)mddev->events; 1433 1434 if (mddev->reshape_position == MaxSector) 1435 sb->minor_version = 90; 1436 else { 1437 sb->minor_version = 91; 1438 sb->reshape_position = mddev->reshape_position; 1439 sb->new_level = mddev->new_level; 1440 sb->delta_disks = mddev->delta_disks; 1441 sb->new_layout = mddev->new_layout; 1442 sb->new_chunk = mddev->new_chunk_sectors << 9; 1443 } 1444 mddev->minor_version = sb->minor_version; 1445 if (mddev->in_sync) 1446 { 1447 sb->recovery_cp = mddev->recovery_cp; 1448 sb->cp_events_hi = (mddev->events>>32); 1449 sb->cp_events_lo = (u32)mddev->events; 1450 if (mddev->recovery_cp == MaxSector) 1451 sb->state = (1<< MD_SB_CLEAN); 1452 } else 1453 sb->recovery_cp = 0; 1454 1455 sb->layout = mddev->layout; 1456 sb->chunk_size = mddev->chunk_sectors << 9; 1457 1458 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1459 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1460 1461 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1462 rdev_for_each(rdev2, mddev) { 1463 mdp_disk_t *d; 1464 int desc_nr; 1465 int is_active = test_bit(In_sync, &rdev2->flags); 1466 1467 if (rdev2->raid_disk >= 0 && 1468 sb->minor_version >= 91) 1469 /* we have nowhere to store the recovery_offset, 1470 * but if it is not below the reshape_position, 1471 * we can piggy-back on that. 1472 */ 1473 is_active = 1; 1474 if (rdev2->raid_disk < 0 || 1475 test_bit(Faulty, &rdev2->flags)) 1476 is_active = 0; 1477 if (is_active) 1478 desc_nr = rdev2->raid_disk; 1479 else 1480 desc_nr = next_spare++; 1481 rdev2->desc_nr = desc_nr; 1482 d = &sb->disks[rdev2->desc_nr]; 1483 nr_disks++; 1484 d->number = rdev2->desc_nr; 1485 d->major = MAJOR(rdev2->bdev->bd_dev); 1486 d->minor = MINOR(rdev2->bdev->bd_dev); 1487 if (is_active) 1488 d->raid_disk = rdev2->raid_disk; 1489 else 1490 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1491 if (test_bit(Faulty, &rdev2->flags)) 1492 d->state = (1<<MD_DISK_FAULTY); 1493 else if (is_active) { 1494 d->state = (1<<MD_DISK_ACTIVE); 1495 if (test_bit(In_sync, &rdev2->flags)) 1496 d->state |= (1<<MD_DISK_SYNC); 1497 active++; 1498 working++; 1499 } else { 1500 d->state = 0; 1501 spare++; 1502 working++; 1503 } 1504 if (test_bit(WriteMostly, &rdev2->flags)) 1505 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1506 if (test_bit(FailFast, &rdev2->flags)) 1507 d->state |= (1<<MD_DISK_FAILFAST); 1508 } 1509 /* now set the "removed" and "faulty" bits on any missing devices */ 1510 for (i=0 ; i < mddev->raid_disks ; i++) { 1511 mdp_disk_t *d = &sb->disks[i]; 1512 if (d->state == 0 && d->number == 0) { 1513 d->number = i; 1514 d->raid_disk = i; 1515 d->state = (1<<MD_DISK_REMOVED); 1516 d->state |= (1<<MD_DISK_FAULTY); 1517 failed++; 1518 } 1519 } 1520 sb->nr_disks = nr_disks; 1521 sb->active_disks = active; 1522 sb->working_disks = working; 1523 sb->failed_disks = failed; 1524 sb->spare_disks = spare; 1525 1526 sb->this_disk = sb->disks[rdev->desc_nr]; 1527 sb->sb_csum = calc_sb_csum(sb); 1528 } 1529 1530 /* 1531 * rdev_size_change for 0.90.0 1532 */ 1533 static unsigned long long 1534 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1535 { 1536 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1537 return 0; /* component must fit device */ 1538 if (rdev->mddev->bitmap_info.offset) 1539 return 0; /* can't move bitmap */ 1540 rdev->sb_start = calc_dev_sboffset(rdev); 1541 if (!num_sectors || num_sectors > rdev->sb_start) 1542 num_sectors = rdev->sb_start; 1543 /* Limit to 4TB as metadata cannot record more than that. 1544 * 4TB == 2^32 KB, or 2*2^32 sectors. 1545 */ 1546 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1547 num_sectors = (sector_t)(2ULL << 32) - 2; 1548 do { 1549 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1550 rdev->sb_page); 1551 } while (md_super_wait(rdev->mddev) < 0); 1552 return num_sectors; 1553 } 1554 1555 static int 1556 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1557 { 1558 /* non-zero offset changes not possible with v0.90 */ 1559 return new_offset == 0; 1560 } 1561 1562 /* 1563 * version 1 superblock 1564 */ 1565 1566 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1567 { 1568 __le32 disk_csum; 1569 u32 csum; 1570 unsigned long long newcsum; 1571 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1572 __le32 *isuper = (__le32*)sb; 1573 1574 disk_csum = sb->sb_csum; 1575 sb->sb_csum = 0; 1576 newcsum = 0; 1577 for (; size >= 4; size -= 4) 1578 newcsum += le32_to_cpu(*isuper++); 1579 1580 if (size == 2) 1581 newcsum += le16_to_cpu(*(__le16*) isuper); 1582 1583 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1584 sb->sb_csum = disk_csum; 1585 return cpu_to_le32(csum); 1586 } 1587 1588 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1589 { 1590 struct mdp_superblock_1 *sb; 1591 int ret; 1592 sector_t sb_start; 1593 sector_t sectors; 1594 int bmask; 1595 bool spare_disk = true; 1596 1597 /* 1598 * Calculate the position of the superblock in 512byte sectors. 1599 * It is always aligned to a 4K boundary and 1600 * depeding on minor_version, it can be: 1601 * 0: At least 8K, but less than 12K, from end of device 1602 * 1: At start of device 1603 * 2: 4K from start of device. 1604 */ 1605 switch(minor_version) { 1606 case 0: 1607 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1608 sb_start &= ~(sector_t)(4*2-1); 1609 break; 1610 case 1: 1611 sb_start = 0; 1612 break; 1613 case 2: 1614 sb_start = 8; 1615 break; 1616 default: 1617 return -EINVAL; 1618 } 1619 rdev->sb_start = sb_start; 1620 1621 /* superblock is rarely larger than 1K, but it can be larger, 1622 * and it is safe to read 4k, so we do that 1623 */ 1624 ret = read_disk_sb(rdev, 4096); 1625 if (ret) return ret; 1626 1627 sb = page_address(rdev->sb_page); 1628 1629 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1630 sb->major_version != cpu_to_le32(1) || 1631 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1632 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1633 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1634 return -EINVAL; 1635 1636 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1637 pr_warn("md: invalid superblock checksum on %pg\n", 1638 rdev->bdev); 1639 return -EINVAL; 1640 } 1641 if (le64_to_cpu(sb->data_size) < 10) { 1642 pr_warn("md: data_size too small on %pg\n", 1643 rdev->bdev); 1644 return -EINVAL; 1645 } 1646 if (sb->pad0 || 1647 sb->pad3[0] || 1648 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1649 /* Some padding is non-zero, might be a new feature */ 1650 return -EINVAL; 1651 1652 rdev->preferred_minor = 0xffff; 1653 rdev->data_offset = le64_to_cpu(sb->data_offset); 1654 rdev->new_data_offset = rdev->data_offset; 1655 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1656 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1657 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1658 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1659 1660 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1661 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1662 if (rdev->sb_size & bmask) 1663 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1664 1665 if (minor_version 1666 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1667 return -EINVAL; 1668 if (minor_version 1669 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1670 return -EINVAL; 1671 1672 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1673 rdev->desc_nr = -1; 1674 else 1675 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1676 1677 if (!rdev->bb_page) { 1678 rdev->bb_page = alloc_page(GFP_KERNEL); 1679 if (!rdev->bb_page) 1680 return -ENOMEM; 1681 } 1682 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1683 rdev->badblocks.count == 0) { 1684 /* need to load the bad block list. 1685 * Currently we limit it to one page. 1686 */ 1687 s32 offset; 1688 sector_t bb_sector; 1689 __le64 *bbp; 1690 int i; 1691 int sectors = le16_to_cpu(sb->bblog_size); 1692 if (sectors > (PAGE_SIZE / 512)) 1693 return -EINVAL; 1694 offset = le32_to_cpu(sb->bblog_offset); 1695 if (offset == 0) 1696 return -EINVAL; 1697 bb_sector = (long long)offset; 1698 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1699 rdev->bb_page, REQ_OP_READ, true)) 1700 return -EIO; 1701 bbp = (__le64 *)page_address(rdev->bb_page); 1702 rdev->badblocks.shift = sb->bblog_shift; 1703 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1704 u64 bb = le64_to_cpu(*bbp); 1705 int count = bb & (0x3ff); 1706 u64 sector = bb >> 10; 1707 sector <<= sb->bblog_shift; 1708 count <<= sb->bblog_shift; 1709 if (bb + 1 == 0) 1710 break; 1711 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1712 return -EINVAL; 1713 } 1714 } else if (sb->bblog_offset != 0) 1715 rdev->badblocks.shift = 0; 1716 1717 if ((le32_to_cpu(sb->feature_map) & 1718 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1719 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1720 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1721 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1722 } 1723 1724 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1725 sb->level != 0) 1726 return -EINVAL; 1727 1728 /* not spare disk, or LEVEL_MULTIPATH */ 1729 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1730 (rdev->desc_nr >= 0 && 1731 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1732 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1733 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1734 spare_disk = false; 1735 1736 if (!refdev) { 1737 if (!spare_disk) 1738 ret = 1; 1739 else 1740 ret = 0; 1741 } else { 1742 __u64 ev1, ev2; 1743 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1744 1745 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1746 sb->level != refsb->level || 1747 sb->layout != refsb->layout || 1748 sb->chunksize != refsb->chunksize) { 1749 pr_warn("md: %pg has strangely different superblock to %pg\n", 1750 rdev->bdev, 1751 refdev->bdev); 1752 return -EINVAL; 1753 } 1754 ev1 = le64_to_cpu(sb->events); 1755 ev2 = le64_to_cpu(refsb->events); 1756 1757 if (!spare_disk && ev1 > ev2) 1758 ret = 1; 1759 else 1760 ret = 0; 1761 } 1762 if (minor_version) 1763 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1764 else 1765 sectors = rdev->sb_start; 1766 if (sectors < le64_to_cpu(sb->data_size)) 1767 return -EINVAL; 1768 rdev->sectors = le64_to_cpu(sb->data_size); 1769 return ret; 1770 } 1771 1772 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev) 1773 { 1774 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1775 __u64 ev1 = le64_to_cpu(sb->events); 1776 1777 rdev->raid_disk = -1; 1778 clear_bit(Faulty, &rdev->flags); 1779 clear_bit(In_sync, &rdev->flags); 1780 clear_bit(Bitmap_sync, &rdev->flags); 1781 clear_bit(WriteMostly, &rdev->flags); 1782 1783 if (mddev->raid_disks == 0) { 1784 mddev->major_version = 1; 1785 mddev->patch_version = 0; 1786 mddev->external = 0; 1787 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1788 mddev->ctime = le64_to_cpu(sb->ctime); 1789 mddev->utime = le64_to_cpu(sb->utime); 1790 mddev->level = le32_to_cpu(sb->level); 1791 mddev->clevel[0] = 0; 1792 mddev->layout = le32_to_cpu(sb->layout); 1793 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1794 mddev->dev_sectors = le64_to_cpu(sb->size); 1795 mddev->events = ev1; 1796 mddev->bitmap_info.offset = 0; 1797 mddev->bitmap_info.space = 0; 1798 /* Default location for bitmap is 1K after superblock 1799 * using 3K - total of 4K 1800 */ 1801 mddev->bitmap_info.default_offset = 1024 >> 9; 1802 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1803 mddev->reshape_backwards = 0; 1804 1805 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1806 memcpy(mddev->uuid, sb->set_uuid, 16); 1807 1808 mddev->max_disks = (4096-256)/2; 1809 1810 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1811 mddev->bitmap_info.file == NULL) { 1812 mddev->bitmap_info.offset = 1813 (__s32)le32_to_cpu(sb->bitmap_offset); 1814 /* Metadata doesn't record how much space is available. 1815 * For 1.0, we assume we can use up to the superblock 1816 * if before, else to 4K beyond superblock. 1817 * For others, assume no change is possible. 1818 */ 1819 if (mddev->minor_version > 0) 1820 mddev->bitmap_info.space = 0; 1821 else if (mddev->bitmap_info.offset > 0) 1822 mddev->bitmap_info.space = 1823 8 - mddev->bitmap_info.offset; 1824 else 1825 mddev->bitmap_info.space = 1826 -mddev->bitmap_info.offset; 1827 } 1828 1829 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1830 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1831 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1832 mddev->new_level = le32_to_cpu(sb->new_level); 1833 mddev->new_layout = le32_to_cpu(sb->new_layout); 1834 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1835 if (mddev->delta_disks < 0 || 1836 (mddev->delta_disks == 0 && 1837 (le32_to_cpu(sb->feature_map) 1838 & MD_FEATURE_RESHAPE_BACKWARDS))) 1839 mddev->reshape_backwards = 1; 1840 } else { 1841 mddev->reshape_position = MaxSector; 1842 mddev->delta_disks = 0; 1843 mddev->new_level = mddev->level; 1844 mddev->new_layout = mddev->layout; 1845 mddev->new_chunk_sectors = mddev->chunk_sectors; 1846 } 1847 1848 if (mddev->level == 0 && 1849 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1850 mddev->layout = -1; 1851 1852 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1853 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1854 1855 if (le32_to_cpu(sb->feature_map) & 1856 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1857 if (le32_to_cpu(sb->feature_map) & 1858 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1859 return -EINVAL; 1860 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1861 (le32_to_cpu(sb->feature_map) & 1862 MD_FEATURE_MULTIPLE_PPLS)) 1863 return -EINVAL; 1864 set_bit(MD_HAS_PPL, &mddev->flags); 1865 } 1866 } else if (mddev->pers == NULL) { 1867 /* Insist of good event counter while assembling, except for 1868 * spares (which don't need an event count) */ 1869 ++ev1; 1870 if (rdev->desc_nr >= 0 && 1871 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1872 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1873 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1874 if (ev1 < mddev->events) 1875 return -EINVAL; 1876 } else if (mddev->bitmap) { 1877 /* If adding to array with a bitmap, then we can accept an 1878 * older device, but not too old. 1879 */ 1880 if (ev1 < mddev->bitmap->events_cleared) 1881 return 0; 1882 if (ev1 < mddev->events) 1883 set_bit(Bitmap_sync, &rdev->flags); 1884 } else { 1885 if (ev1 < mddev->events) 1886 /* just a hot-add of a new device, leave raid_disk at -1 */ 1887 return 0; 1888 } 1889 if (mddev->level != LEVEL_MULTIPATH) { 1890 int role; 1891 if (rdev->desc_nr < 0 || 1892 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1893 role = MD_DISK_ROLE_SPARE; 1894 rdev->desc_nr = -1; 1895 } else 1896 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1897 switch(role) { 1898 case MD_DISK_ROLE_SPARE: /* spare */ 1899 break; 1900 case MD_DISK_ROLE_FAULTY: /* faulty */ 1901 set_bit(Faulty, &rdev->flags); 1902 break; 1903 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1904 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1905 /* journal device without journal feature */ 1906 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1907 return -EINVAL; 1908 } 1909 set_bit(Journal, &rdev->flags); 1910 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1911 rdev->raid_disk = 0; 1912 break; 1913 default: 1914 rdev->saved_raid_disk = role; 1915 if ((le32_to_cpu(sb->feature_map) & 1916 MD_FEATURE_RECOVERY_OFFSET)) { 1917 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1918 if (!(le32_to_cpu(sb->feature_map) & 1919 MD_FEATURE_RECOVERY_BITMAP)) 1920 rdev->saved_raid_disk = -1; 1921 } else { 1922 /* 1923 * If the array is FROZEN, then the device can't 1924 * be in_sync with rest of array. 1925 */ 1926 if (!test_bit(MD_RECOVERY_FROZEN, 1927 &mddev->recovery)) 1928 set_bit(In_sync, &rdev->flags); 1929 } 1930 rdev->raid_disk = role; 1931 break; 1932 } 1933 if (sb->devflags & WriteMostly1) 1934 set_bit(WriteMostly, &rdev->flags); 1935 if (sb->devflags & FailFast1) 1936 set_bit(FailFast, &rdev->flags); 1937 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1938 set_bit(Replacement, &rdev->flags); 1939 } else /* MULTIPATH are always insync */ 1940 set_bit(In_sync, &rdev->flags); 1941 1942 return 0; 1943 } 1944 1945 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1946 { 1947 struct mdp_superblock_1 *sb; 1948 struct md_rdev *rdev2; 1949 int max_dev, i; 1950 /* make rdev->sb match mddev and rdev data. */ 1951 1952 sb = page_address(rdev->sb_page); 1953 1954 sb->feature_map = 0; 1955 sb->pad0 = 0; 1956 sb->recovery_offset = cpu_to_le64(0); 1957 memset(sb->pad3, 0, sizeof(sb->pad3)); 1958 1959 sb->utime = cpu_to_le64((__u64)mddev->utime); 1960 sb->events = cpu_to_le64(mddev->events); 1961 if (mddev->in_sync) 1962 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 1963 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 1964 sb->resync_offset = cpu_to_le64(MaxSector); 1965 else 1966 sb->resync_offset = cpu_to_le64(0); 1967 1968 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 1969 1970 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 1971 sb->size = cpu_to_le64(mddev->dev_sectors); 1972 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 1973 sb->level = cpu_to_le32(mddev->level); 1974 sb->layout = cpu_to_le32(mddev->layout); 1975 if (test_bit(FailFast, &rdev->flags)) 1976 sb->devflags |= FailFast1; 1977 else 1978 sb->devflags &= ~FailFast1; 1979 1980 if (test_bit(WriteMostly, &rdev->flags)) 1981 sb->devflags |= WriteMostly1; 1982 else 1983 sb->devflags &= ~WriteMostly1; 1984 sb->data_offset = cpu_to_le64(rdev->data_offset); 1985 sb->data_size = cpu_to_le64(rdev->sectors); 1986 1987 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 1988 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 1989 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 1990 } 1991 1992 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 1993 !test_bit(In_sync, &rdev->flags)) { 1994 sb->feature_map |= 1995 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 1996 sb->recovery_offset = 1997 cpu_to_le64(rdev->recovery_offset); 1998 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 1999 sb->feature_map |= 2000 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2001 } 2002 /* Note: recovery_offset and journal_tail share space */ 2003 if (test_bit(Journal, &rdev->flags)) 2004 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2005 if (test_bit(Replacement, &rdev->flags)) 2006 sb->feature_map |= 2007 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2008 2009 if (mddev->reshape_position != MaxSector) { 2010 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2011 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2012 sb->new_layout = cpu_to_le32(mddev->new_layout); 2013 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2014 sb->new_level = cpu_to_le32(mddev->new_level); 2015 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2016 if (mddev->delta_disks == 0 && 2017 mddev->reshape_backwards) 2018 sb->feature_map 2019 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2020 if (rdev->new_data_offset != rdev->data_offset) { 2021 sb->feature_map 2022 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2023 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2024 - rdev->data_offset)); 2025 } 2026 } 2027 2028 if (mddev_is_clustered(mddev)) 2029 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2030 2031 if (rdev->badblocks.count == 0) 2032 /* Nothing to do for bad blocks*/ ; 2033 else if (sb->bblog_offset == 0) 2034 /* Cannot record bad blocks on this device */ 2035 md_error(mddev, rdev); 2036 else { 2037 struct badblocks *bb = &rdev->badblocks; 2038 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2039 u64 *p = bb->page; 2040 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2041 if (bb->changed) { 2042 unsigned seq; 2043 2044 retry: 2045 seq = read_seqbegin(&bb->lock); 2046 2047 memset(bbp, 0xff, PAGE_SIZE); 2048 2049 for (i = 0 ; i < bb->count ; i++) { 2050 u64 internal_bb = p[i]; 2051 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2052 | BB_LEN(internal_bb)); 2053 bbp[i] = cpu_to_le64(store_bb); 2054 } 2055 bb->changed = 0; 2056 if (read_seqretry(&bb->lock, seq)) 2057 goto retry; 2058 2059 bb->sector = (rdev->sb_start + 2060 (int)le32_to_cpu(sb->bblog_offset)); 2061 bb->size = le16_to_cpu(sb->bblog_size); 2062 } 2063 } 2064 2065 max_dev = 0; 2066 rdev_for_each(rdev2, mddev) 2067 if (rdev2->desc_nr+1 > max_dev) 2068 max_dev = rdev2->desc_nr+1; 2069 2070 if (max_dev > le32_to_cpu(sb->max_dev)) { 2071 int bmask; 2072 sb->max_dev = cpu_to_le32(max_dev); 2073 rdev->sb_size = max_dev * 2 + 256; 2074 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2075 if (rdev->sb_size & bmask) 2076 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2077 } else 2078 max_dev = le32_to_cpu(sb->max_dev); 2079 2080 for (i=0; i<max_dev;i++) 2081 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2082 2083 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2084 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2085 2086 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2087 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2088 sb->feature_map |= 2089 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2090 else 2091 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2092 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2093 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2094 } 2095 2096 rdev_for_each(rdev2, mddev) { 2097 i = rdev2->desc_nr; 2098 if (test_bit(Faulty, &rdev2->flags)) 2099 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2100 else if (test_bit(In_sync, &rdev2->flags)) 2101 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2102 else if (test_bit(Journal, &rdev2->flags)) 2103 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2104 else if (rdev2->raid_disk >= 0) 2105 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2106 else 2107 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2108 } 2109 2110 sb->sb_csum = calc_sb_1_csum(sb); 2111 } 2112 2113 static sector_t super_1_choose_bm_space(sector_t dev_size) 2114 { 2115 sector_t bm_space; 2116 2117 /* if the device is bigger than 8Gig, save 64k for bitmap 2118 * usage, if bigger than 200Gig, save 128k 2119 */ 2120 if (dev_size < 64*2) 2121 bm_space = 0; 2122 else if (dev_size - 64*2 >= 200*1024*1024*2) 2123 bm_space = 128*2; 2124 else if (dev_size - 4*2 > 8*1024*1024*2) 2125 bm_space = 64*2; 2126 else 2127 bm_space = 4*2; 2128 return bm_space; 2129 } 2130 2131 static unsigned long long 2132 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2133 { 2134 struct mdp_superblock_1 *sb; 2135 sector_t max_sectors; 2136 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2137 return 0; /* component must fit device */ 2138 if (rdev->data_offset != rdev->new_data_offset) 2139 return 0; /* too confusing */ 2140 if (rdev->sb_start < rdev->data_offset) { 2141 /* minor versions 1 and 2; superblock before data */ 2142 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2143 if (!num_sectors || num_sectors > max_sectors) 2144 num_sectors = max_sectors; 2145 } else if (rdev->mddev->bitmap_info.offset) { 2146 /* minor version 0 with bitmap we can't move */ 2147 return 0; 2148 } else { 2149 /* minor version 0; superblock after data */ 2150 sector_t sb_start, bm_space; 2151 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2152 2153 /* 8K is for superblock */ 2154 sb_start = dev_size - 8*2; 2155 sb_start &= ~(sector_t)(4*2 - 1); 2156 2157 bm_space = super_1_choose_bm_space(dev_size); 2158 2159 /* Space that can be used to store date needs to decrease 2160 * superblock bitmap space and bad block space(4K) 2161 */ 2162 max_sectors = sb_start - bm_space - 4*2; 2163 2164 if (!num_sectors || num_sectors > max_sectors) 2165 num_sectors = max_sectors; 2166 rdev->sb_start = sb_start; 2167 } 2168 sb = page_address(rdev->sb_page); 2169 sb->data_size = cpu_to_le64(num_sectors); 2170 sb->super_offset = cpu_to_le64(rdev->sb_start); 2171 sb->sb_csum = calc_sb_1_csum(sb); 2172 do { 2173 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2174 rdev->sb_page); 2175 } while (md_super_wait(rdev->mddev) < 0); 2176 return num_sectors; 2177 2178 } 2179 2180 static int 2181 super_1_allow_new_offset(struct md_rdev *rdev, 2182 unsigned long long new_offset) 2183 { 2184 /* All necessary checks on new >= old have been done */ 2185 struct bitmap *bitmap; 2186 if (new_offset >= rdev->data_offset) 2187 return 1; 2188 2189 /* with 1.0 metadata, there is no metadata to tread on 2190 * so we can always move back */ 2191 if (rdev->mddev->minor_version == 0) 2192 return 1; 2193 2194 /* otherwise we must be sure not to step on 2195 * any metadata, so stay: 2196 * 36K beyond start of superblock 2197 * beyond end of badblocks 2198 * beyond write-intent bitmap 2199 */ 2200 if (rdev->sb_start + (32+4)*2 > new_offset) 2201 return 0; 2202 bitmap = rdev->mddev->bitmap; 2203 if (bitmap && !rdev->mddev->bitmap_info.file && 2204 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2205 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2206 return 0; 2207 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2208 return 0; 2209 2210 return 1; 2211 } 2212 2213 static struct super_type super_types[] = { 2214 [0] = { 2215 .name = "0.90.0", 2216 .owner = THIS_MODULE, 2217 .load_super = super_90_load, 2218 .validate_super = super_90_validate, 2219 .sync_super = super_90_sync, 2220 .rdev_size_change = super_90_rdev_size_change, 2221 .allow_new_offset = super_90_allow_new_offset, 2222 }, 2223 [1] = { 2224 .name = "md-1", 2225 .owner = THIS_MODULE, 2226 .load_super = super_1_load, 2227 .validate_super = super_1_validate, 2228 .sync_super = super_1_sync, 2229 .rdev_size_change = super_1_rdev_size_change, 2230 .allow_new_offset = super_1_allow_new_offset, 2231 }, 2232 }; 2233 2234 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2235 { 2236 if (mddev->sync_super) { 2237 mddev->sync_super(mddev, rdev); 2238 return; 2239 } 2240 2241 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2242 2243 super_types[mddev->major_version].sync_super(mddev, rdev); 2244 } 2245 2246 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2247 { 2248 struct md_rdev *rdev, *rdev2; 2249 2250 rcu_read_lock(); 2251 rdev_for_each_rcu(rdev, mddev1) { 2252 if (test_bit(Faulty, &rdev->flags) || 2253 test_bit(Journal, &rdev->flags) || 2254 rdev->raid_disk == -1) 2255 continue; 2256 rdev_for_each_rcu(rdev2, mddev2) { 2257 if (test_bit(Faulty, &rdev2->flags) || 2258 test_bit(Journal, &rdev2->flags) || 2259 rdev2->raid_disk == -1) 2260 continue; 2261 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2262 rcu_read_unlock(); 2263 return 1; 2264 } 2265 } 2266 } 2267 rcu_read_unlock(); 2268 return 0; 2269 } 2270 2271 static LIST_HEAD(pending_raid_disks); 2272 2273 /* 2274 * Try to register data integrity profile for an mddev 2275 * 2276 * This is called when an array is started and after a disk has been kicked 2277 * from the array. It only succeeds if all working and active component devices 2278 * are integrity capable with matching profiles. 2279 */ 2280 int md_integrity_register(struct mddev *mddev) 2281 { 2282 struct md_rdev *rdev, *reference = NULL; 2283 2284 if (list_empty(&mddev->disks)) 2285 return 0; /* nothing to do */ 2286 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2287 return 0; /* shouldn't register, or already is */ 2288 rdev_for_each(rdev, mddev) { 2289 /* skip spares and non-functional disks */ 2290 if (test_bit(Faulty, &rdev->flags)) 2291 continue; 2292 if (rdev->raid_disk < 0) 2293 continue; 2294 if (!reference) { 2295 /* Use the first rdev as the reference */ 2296 reference = rdev; 2297 continue; 2298 } 2299 /* does this rdev's profile match the reference profile? */ 2300 if (blk_integrity_compare(reference->bdev->bd_disk, 2301 rdev->bdev->bd_disk) < 0) 2302 return -EINVAL; 2303 } 2304 if (!reference || !bdev_get_integrity(reference->bdev)) 2305 return 0; 2306 /* 2307 * All component devices are integrity capable and have matching 2308 * profiles, register the common profile for the md device. 2309 */ 2310 blk_integrity_register(mddev->gendisk, 2311 bdev_get_integrity(reference->bdev)); 2312 2313 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2314 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2315 (mddev->level != 1 && mddev->level != 10 && 2316 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) { 2317 /* 2318 * No need to handle the failure of bioset_integrity_create, 2319 * because the function is called by md_run() -> pers->run(), 2320 * md_run calls bioset_exit -> bioset_integrity_free in case 2321 * of failure case. 2322 */ 2323 pr_err("md: failed to create integrity pool for %s\n", 2324 mdname(mddev)); 2325 return -EINVAL; 2326 } 2327 return 0; 2328 } 2329 EXPORT_SYMBOL(md_integrity_register); 2330 2331 /* 2332 * Attempt to add an rdev, but only if it is consistent with the current 2333 * integrity profile 2334 */ 2335 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2336 { 2337 struct blk_integrity *bi_mddev; 2338 2339 if (!mddev->gendisk) 2340 return 0; 2341 2342 bi_mddev = blk_get_integrity(mddev->gendisk); 2343 2344 if (!bi_mddev) /* nothing to do */ 2345 return 0; 2346 2347 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2348 pr_err("%s: incompatible integrity profile for %pg\n", 2349 mdname(mddev), rdev->bdev); 2350 return -ENXIO; 2351 } 2352 2353 return 0; 2354 } 2355 EXPORT_SYMBOL(md_integrity_add_rdev); 2356 2357 static bool rdev_read_only(struct md_rdev *rdev) 2358 { 2359 return bdev_read_only(rdev->bdev) || 2360 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2361 } 2362 2363 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2364 { 2365 char b[BDEVNAME_SIZE]; 2366 int err; 2367 2368 /* prevent duplicates */ 2369 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2370 return -EEXIST; 2371 2372 if (rdev_read_only(rdev) && mddev->pers) 2373 return -EROFS; 2374 2375 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2376 if (!test_bit(Journal, &rdev->flags) && 2377 rdev->sectors && 2378 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2379 if (mddev->pers) { 2380 /* Cannot change size, so fail 2381 * If mddev->level <= 0, then we don't care 2382 * about aligning sizes (e.g. linear) 2383 */ 2384 if (mddev->level > 0) 2385 return -ENOSPC; 2386 } else 2387 mddev->dev_sectors = rdev->sectors; 2388 } 2389 2390 /* Verify rdev->desc_nr is unique. 2391 * If it is -1, assign a free number, else 2392 * check number is not in use 2393 */ 2394 rcu_read_lock(); 2395 if (rdev->desc_nr < 0) { 2396 int choice = 0; 2397 if (mddev->pers) 2398 choice = mddev->raid_disks; 2399 while (md_find_rdev_nr_rcu(mddev, choice)) 2400 choice++; 2401 rdev->desc_nr = choice; 2402 } else { 2403 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2404 rcu_read_unlock(); 2405 return -EBUSY; 2406 } 2407 } 2408 rcu_read_unlock(); 2409 if (!test_bit(Journal, &rdev->flags) && 2410 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2411 pr_warn("md: %s: array is limited to %d devices\n", 2412 mdname(mddev), mddev->max_disks); 2413 return -EBUSY; 2414 } 2415 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2416 strreplace(b, '/', '!'); 2417 2418 rdev->mddev = mddev; 2419 pr_debug("md: bind<%s>\n", b); 2420 2421 if (mddev->raid_disks) 2422 mddev_create_serial_pool(mddev, rdev, false); 2423 2424 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2425 goto fail; 2426 2427 /* failure here is OK */ 2428 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2429 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2430 rdev->sysfs_unack_badblocks = 2431 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2432 rdev->sysfs_badblocks = 2433 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2434 2435 list_add_rcu(&rdev->same_set, &mddev->disks); 2436 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2437 2438 /* May as well allow recovery to be retried once */ 2439 mddev->recovery_disabled++; 2440 2441 return 0; 2442 2443 fail: 2444 pr_warn("md: failed to register dev-%s for %s\n", 2445 b, mdname(mddev)); 2446 return err; 2447 } 2448 2449 static void rdev_delayed_delete(struct work_struct *ws) 2450 { 2451 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work); 2452 kobject_del(&rdev->kobj); 2453 kobject_put(&rdev->kobj); 2454 } 2455 2456 static void unbind_rdev_from_array(struct md_rdev *rdev) 2457 { 2458 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2459 list_del_rcu(&rdev->same_set); 2460 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2461 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2462 rdev->mddev = NULL; 2463 sysfs_remove_link(&rdev->kobj, "block"); 2464 sysfs_put(rdev->sysfs_state); 2465 sysfs_put(rdev->sysfs_unack_badblocks); 2466 sysfs_put(rdev->sysfs_badblocks); 2467 rdev->sysfs_state = NULL; 2468 rdev->sysfs_unack_badblocks = NULL; 2469 rdev->sysfs_badblocks = NULL; 2470 rdev->badblocks.count = 0; 2471 /* We need to delay this, otherwise we can deadlock when 2472 * writing to 'remove' to "dev/state". We also need 2473 * to delay it due to rcu usage. 2474 */ 2475 synchronize_rcu(); 2476 INIT_WORK(&rdev->del_work, rdev_delayed_delete); 2477 kobject_get(&rdev->kobj); 2478 queue_work(md_rdev_misc_wq, &rdev->del_work); 2479 } 2480 2481 /* 2482 * prevent the device from being mounted, repartitioned or 2483 * otherwise reused by a RAID array (or any other kernel 2484 * subsystem), by bd_claiming the device. 2485 */ 2486 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared) 2487 { 2488 int err = 0; 2489 struct block_device *bdev; 2490 2491 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2492 shared ? (struct md_rdev *)lock_rdev : rdev); 2493 if (IS_ERR(bdev)) { 2494 pr_warn("md: could not open device unknown-block(%u,%u).\n", 2495 MAJOR(dev), MINOR(dev)); 2496 return PTR_ERR(bdev); 2497 } 2498 rdev->bdev = bdev; 2499 return err; 2500 } 2501 2502 static void unlock_rdev(struct md_rdev *rdev) 2503 { 2504 struct block_device *bdev = rdev->bdev; 2505 rdev->bdev = NULL; 2506 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2507 } 2508 2509 void md_autodetect_dev(dev_t dev); 2510 2511 static void export_rdev(struct md_rdev *rdev) 2512 { 2513 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2514 md_rdev_clear(rdev); 2515 #ifndef MODULE 2516 if (test_bit(AutoDetected, &rdev->flags)) 2517 md_autodetect_dev(rdev->bdev->bd_dev); 2518 #endif 2519 unlock_rdev(rdev); 2520 kobject_put(&rdev->kobj); 2521 } 2522 2523 void md_kick_rdev_from_array(struct md_rdev *rdev) 2524 { 2525 unbind_rdev_from_array(rdev); 2526 export_rdev(rdev); 2527 } 2528 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array); 2529 2530 static void export_array(struct mddev *mddev) 2531 { 2532 struct md_rdev *rdev; 2533 2534 while (!list_empty(&mddev->disks)) { 2535 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2536 same_set); 2537 md_kick_rdev_from_array(rdev); 2538 } 2539 mddev->raid_disks = 0; 2540 mddev->major_version = 0; 2541 } 2542 2543 static bool set_in_sync(struct mddev *mddev) 2544 { 2545 lockdep_assert_held(&mddev->lock); 2546 if (!mddev->in_sync) { 2547 mddev->sync_checkers++; 2548 spin_unlock(&mddev->lock); 2549 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2550 spin_lock(&mddev->lock); 2551 if (!mddev->in_sync && 2552 percpu_ref_is_zero(&mddev->writes_pending)) { 2553 mddev->in_sync = 1; 2554 /* 2555 * Ensure ->in_sync is visible before we clear 2556 * ->sync_checkers. 2557 */ 2558 smp_mb(); 2559 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2560 sysfs_notify_dirent_safe(mddev->sysfs_state); 2561 } 2562 if (--mddev->sync_checkers == 0) 2563 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2564 } 2565 if (mddev->safemode == 1) 2566 mddev->safemode = 0; 2567 return mddev->in_sync; 2568 } 2569 2570 static void sync_sbs(struct mddev *mddev, int nospares) 2571 { 2572 /* Update each superblock (in-memory image), but 2573 * if we are allowed to, skip spares which already 2574 * have the right event counter, or have one earlier 2575 * (which would mean they aren't being marked as dirty 2576 * with the rest of the array) 2577 */ 2578 struct md_rdev *rdev; 2579 rdev_for_each(rdev, mddev) { 2580 if (rdev->sb_events == mddev->events || 2581 (nospares && 2582 rdev->raid_disk < 0 && 2583 rdev->sb_events+1 == mddev->events)) { 2584 /* Don't update this superblock */ 2585 rdev->sb_loaded = 2; 2586 } else { 2587 sync_super(mddev, rdev); 2588 rdev->sb_loaded = 1; 2589 } 2590 } 2591 } 2592 2593 static bool does_sb_need_changing(struct mddev *mddev) 2594 { 2595 struct md_rdev *rdev = NULL, *iter; 2596 struct mdp_superblock_1 *sb; 2597 int role; 2598 2599 /* Find a good rdev */ 2600 rdev_for_each(iter, mddev) 2601 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2602 rdev = iter; 2603 break; 2604 } 2605 2606 /* No good device found. */ 2607 if (!rdev) 2608 return false; 2609 2610 sb = page_address(rdev->sb_page); 2611 /* Check if a device has become faulty or a spare become active */ 2612 rdev_for_each(rdev, mddev) { 2613 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2614 /* Device activated? */ 2615 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2616 !test_bit(Faulty, &rdev->flags)) 2617 return true; 2618 /* Device turned faulty? */ 2619 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2620 return true; 2621 } 2622 2623 /* Check if any mddev parameters have changed */ 2624 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2625 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2626 (mddev->layout != le32_to_cpu(sb->layout)) || 2627 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2628 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2629 return true; 2630 2631 return false; 2632 } 2633 2634 void md_update_sb(struct mddev *mddev, int force_change) 2635 { 2636 struct md_rdev *rdev; 2637 int sync_req; 2638 int nospares = 0; 2639 int any_badblocks_changed = 0; 2640 int ret = -1; 2641 2642 if (mddev->ro) { 2643 if (force_change) 2644 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2645 return; 2646 } 2647 2648 repeat: 2649 if (mddev_is_clustered(mddev)) { 2650 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2651 force_change = 1; 2652 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2653 nospares = 1; 2654 ret = md_cluster_ops->metadata_update_start(mddev); 2655 /* Has someone else has updated the sb */ 2656 if (!does_sb_need_changing(mddev)) { 2657 if (ret == 0) 2658 md_cluster_ops->metadata_update_cancel(mddev); 2659 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2660 BIT(MD_SB_CHANGE_DEVS) | 2661 BIT(MD_SB_CHANGE_CLEAN)); 2662 return; 2663 } 2664 } 2665 2666 /* 2667 * First make sure individual recovery_offsets are correct 2668 * curr_resync_completed can only be used during recovery. 2669 * During reshape/resync it might use array-addresses rather 2670 * that device addresses. 2671 */ 2672 rdev_for_each(rdev, mddev) { 2673 if (rdev->raid_disk >= 0 && 2674 mddev->delta_disks >= 0 && 2675 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2676 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2677 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2678 !test_bit(Journal, &rdev->flags) && 2679 !test_bit(In_sync, &rdev->flags) && 2680 mddev->curr_resync_completed > rdev->recovery_offset) 2681 rdev->recovery_offset = mddev->curr_resync_completed; 2682 2683 } 2684 if (!mddev->persistent) { 2685 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2686 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2687 if (!mddev->external) { 2688 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2689 rdev_for_each(rdev, mddev) { 2690 if (rdev->badblocks.changed) { 2691 rdev->badblocks.changed = 0; 2692 ack_all_badblocks(&rdev->badblocks); 2693 md_error(mddev, rdev); 2694 } 2695 clear_bit(Blocked, &rdev->flags); 2696 clear_bit(BlockedBadBlocks, &rdev->flags); 2697 wake_up(&rdev->blocked_wait); 2698 } 2699 } 2700 wake_up(&mddev->sb_wait); 2701 return; 2702 } 2703 2704 spin_lock(&mddev->lock); 2705 2706 mddev->utime = ktime_get_real_seconds(); 2707 2708 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2709 force_change = 1; 2710 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2711 /* just a clean<-> dirty transition, possibly leave spares alone, 2712 * though if events isn't the right even/odd, we will have to do 2713 * spares after all 2714 */ 2715 nospares = 1; 2716 if (force_change) 2717 nospares = 0; 2718 if (mddev->degraded) 2719 /* If the array is degraded, then skipping spares is both 2720 * dangerous and fairly pointless. 2721 * Dangerous because a device that was removed from the array 2722 * might have a event_count that still looks up-to-date, 2723 * so it can be re-added without a resync. 2724 * Pointless because if there are any spares to skip, 2725 * then a recovery will happen and soon that array won't 2726 * be degraded any more and the spare can go back to sleep then. 2727 */ 2728 nospares = 0; 2729 2730 sync_req = mddev->in_sync; 2731 2732 /* If this is just a dirty<->clean transition, and the array is clean 2733 * and 'events' is odd, we can roll back to the previous clean state */ 2734 if (nospares 2735 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2736 && mddev->can_decrease_events 2737 && mddev->events != 1) { 2738 mddev->events--; 2739 mddev->can_decrease_events = 0; 2740 } else { 2741 /* otherwise we have to go forward and ... */ 2742 mddev->events ++; 2743 mddev->can_decrease_events = nospares; 2744 } 2745 2746 /* 2747 * This 64-bit counter should never wrap. 2748 * Either we are in around ~1 trillion A.C., assuming 2749 * 1 reboot per second, or we have a bug... 2750 */ 2751 WARN_ON(mddev->events == 0); 2752 2753 rdev_for_each(rdev, mddev) { 2754 if (rdev->badblocks.changed) 2755 any_badblocks_changed++; 2756 if (test_bit(Faulty, &rdev->flags)) 2757 set_bit(FaultRecorded, &rdev->flags); 2758 } 2759 2760 sync_sbs(mddev, nospares); 2761 spin_unlock(&mddev->lock); 2762 2763 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2764 mdname(mddev), mddev->in_sync); 2765 2766 if (mddev->queue) 2767 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2768 rewrite: 2769 md_bitmap_update_sb(mddev->bitmap); 2770 rdev_for_each(rdev, mddev) { 2771 if (rdev->sb_loaded != 1) 2772 continue; /* no noise on spare devices */ 2773 2774 if (!test_bit(Faulty, &rdev->flags)) { 2775 md_super_write(mddev,rdev, 2776 rdev->sb_start, rdev->sb_size, 2777 rdev->sb_page); 2778 pr_debug("md: (write) %pg's sb offset: %llu\n", 2779 rdev->bdev, 2780 (unsigned long long)rdev->sb_start); 2781 rdev->sb_events = mddev->events; 2782 if (rdev->badblocks.size) { 2783 md_super_write(mddev, rdev, 2784 rdev->badblocks.sector, 2785 rdev->badblocks.size << 9, 2786 rdev->bb_page); 2787 rdev->badblocks.size = 0; 2788 } 2789 2790 } else 2791 pr_debug("md: %pg (skipping faulty)\n", 2792 rdev->bdev); 2793 2794 if (mddev->level == LEVEL_MULTIPATH) 2795 /* only need to write one superblock... */ 2796 break; 2797 } 2798 if (md_super_wait(mddev) < 0) 2799 goto rewrite; 2800 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2801 2802 if (mddev_is_clustered(mddev) && ret == 0) 2803 md_cluster_ops->metadata_update_finish(mddev); 2804 2805 if (mddev->in_sync != sync_req || 2806 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2807 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2808 /* have to write it out again */ 2809 goto repeat; 2810 wake_up(&mddev->sb_wait); 2811 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2812 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2813 2814 rdev_for_each(rdev, mddev) { 2815 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2816 clear_bit(Blocked, &rdev->flags); 2817 2818 if (any_badblocks_changed) 2819 ack_all_badblocks(&rdev->badblocks); 2820 clear_bit(BlockedBadBlocks, &rdev->flags); 2821 wake_up(&rdev->blocked_wait); 2822 } 2823 } 2824 EXPORT_SYMBOL(md_update_sb); 2825 2826 static int add_bound_rdev(struct md_rdev *rdev) 2827 { 2828 struct mddev *mddev = rdev->mddev; 2829 int err = 0; 2830 bool add_journal = test_bit(Journal, &rdev->flags); 2831 2832 if (!mddev->pers->hot_remove_disk || add_journal) { 2833 /* If there is hot_add_disk but no hot_remove_disk 2834 * then added disks for geometry changes, 2835 * and should be added immediately. 2836 */ 2837 super_types[mddev->major_version]. 2838 validate_super(mddev, rdev); 2839 if (add_journal) 2840 mddev_suspend(mddev); 2841 err = mddev->pers->hot_add_disk(mddev, rdev); 2842 if (add_journal) 2843 mddev_resume(mddev); 2844 if (err) { 2845 md_kick_rdev_from_array(rdev); 2846 return err; 2847 } 2848 } 2849 sysfs_notify_dirent_safe(rdev->sysfs_state); 2850 2851 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2852 if (mddev->degraded) 2853 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2854 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2855 md_new_event(); 2856 md_wakeup_thread(mddev->thread); 2857 return 0; 2858 } 2859 2860 /* words written to sysfs files may, or may not, be \n terminated. 2861 * We want to accept with case. For this we use cmd_match. 2862 */ 2863 static int cmd_match(const char *cmd, const char *str) 2864 { 2865 /* See if cmd, written into a sysfs file, matches 2866 * str. They must either be the same, or cmd can 2867 * have a trailing newline 2868 */ 2869 while (*cmd && *str && *cmd == *str) { 2870 cmd++; 2871 str++; 2872 } 2873 if (*cmd == '\n') 2874 cmd++; 2875 if (*str || *cmd) 2876 return 0; 2877 return 1; 2878 } 2879 2880 struct rdev_sysfs_entry { 2881 struct attribute attr; 2882 ssize_t (*show)(struct md_rdev *, char *); 2883 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2884 }; 2885 2886 static ssize_t 2887 state_show(struct md_rdev *rdev, char *page) 2888 { 2889 char *sep = ","; 2890 size_t len = 0; 2891 unsigned long flags = READ_ONCE(rdev->flags); 2892 2893 if (test_bit(Faulty, &flags) || 2894 (!test_bit(ExternalBbl, &flags) && 2895 rdev->badblocks.unacked_exist)) 2896 len += sprintf(page+len, "faulty%s", sep); 2897 if (test_bit(In_sync, &flags)) 2898 len += sprintf(page+len, "in_sync%s", sep); 2899 if (test_bit(Journal, &flags)) 2900 len += sprintf(page+len, "journal%s", sep); 2901 if (test_bit(WriteMostly, &flags)) 2902 len += sprintf(page+len, "write_mostly%s", sep); 2903 if (test_bit(Blocked, &flags) || 2904 (rdev->badblocks.unacked_exist 2905 && !test_bit(Faulty, &flags))) 2906 len += sprintf(page+len, "blocked%s", sep); 2907 if (!test_bit(Faulty, &flags) && 2908 !test_bit(Journal, &flags) && 2909 !test_bit(In_sync, &flags)) 2910 len += sprintf(page+len, "spare%s", sep); 2911 if (test_bit(WriteErrorSeen, &flags)) 2912 len += sprintf(page+len, "write_error%s", sep); 2913 if (test_bit(WantReplacement, &flags)) 2914 len += sprintf(page+len, "want_replacement%s", sep); 2915 if (test_bit(Replacement, &flags)) 2916 len += sprintf(page+len, "replacement%s", sep); 2917 if (test_bit(ExternalBbl, &flags)) 2918 len += sprintf(page+len, "external_bbl%s", sep); 2919 if (test_bit(FailFast, &flags)) 2920 len += sprintf(page+len, "failfast%s", sep); 2921 2922 if (len) 2923 len -= strlen(sep); 2924 2925 return len+sprintf(page+len, "\n"); 2926 } 2927 2928 static ssize_t 2929 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2930 { 2931 /* can write 2932 * faulty - simulates an error 2933 * remove - disconnects the device 2934 * writemostly - sets write_mostly 2935 * -writemostly - clears write_mostly 2936 * blocked - sets the Blocked flags 2937 * -blocked - clears the Blocked and possibly simulates an error 2938 * insync - sets Insync providing device isn't active 2939 * -insync - clear Insync for a device with a slot assigned, 2940 * so that it gets rebuilt based on bitmap 2941 * write_error - sets WriteErrorSeen 2942 * -write_error - clears WriteErrorSeen 2943 * {,-}failfast - set/clear FailFast 2944 */ 2945 2946 struct mddev *mddev = rdev->mddev; 2947 int err = -EINVAL; 2948 bool need_update_sb = false; 2949 2950 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2951 md_error(rdev->mddev, rdev); 2952 2953 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2954 err = -EBUSY; 2955 else 2956 err = 0; 2957 } else if (cmd_match(buf, "remove")) { 2958 if (rdev->mddev->pers) { 2959 clear_bit(Blocked, &rdev->flags); 2960 remove_and_add_spares(rdev->mddev, rdev); 2961 } 2962 if (rdev->raid_disk >= 0) 2963 err = -EBUSY; 2964 else { 2965 err = 0; 2966 if (mddev_is_clustered(mddev)) 2967 err = md_cluster_ops->remove_disk(mddev, rdev); 2968 2969 if (err == 0) { 2970 md_kick_rdev_from_array(rdev); 2971 if (mddev->pers) { 2972 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2973 md_wakeup_thread(mddev->thread); 2974 } 2975 md_new_event(); 2976 } 2977 } 2978 } else if (cmd_match(buf, "writemostly")) { 2979 set_bit(WriteMostly, &rdev->flags); 2980 mddev_create_serial_pool(rdev->mddev, rdev, false); 2981 need_update_sb = true; 2982 err = 0; 2983 } else if (cmd_match(buf, "-writemostly")) { 2984 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2985 clear_bit(WriteMostly, &rdev->flags); 2986 need_update_sb = true; 2987 err = 0; 2988 } else if (cmd_match(buf, "blocked")) { 2989 set_bit(Blocked, &rdev->flags); 2990 err = 0; 2991 } else if (cmd_match(buf, "-blocked")) { 2992 if (!test_bit(Faulty, &rdev->flags) && 2993 !test_bit(ExternalBbl, &rdev->flags) && 2994 rdev->badblocks.unacked_exist) { 2995 /* metadata handler doesn't understand badblocks, 2996 * so we need to fail the device 2997 */ 2998 md_error(rdev->mddev, rdev); 2999 } 3000 clear_bit(Blocked, &rdev->flags); 3001 clear_bit(BlockedBadBlocks, &rdev->flags); 3002 wake_up(&rdev->blocked_wait); 3003 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3004 md_wakeup_thread(rdev->mddev->thread); 3005 3006 err = 0; 3007 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3008 set_bit(In_sync, &rdev->flags); 3009 err = 0; 3010 } else if (cmd_match(buf, "failfast")) { 3011 set_bit(FailFast, &rdev->flags); 3012 need_update_sb = true; 3013 err = 0; 3014 } else if (cmd_match(buf, "-failfast")) { 3015 clear_bit(FailFast, &rdev->flags); 3016 need_update_sb = true; 3017 err = 0; 3018 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3019 !test_bit(Journal, &rdev->flags)) { 3020 if (rdev->mddev->pers == NULL) { 3021 clear_bit(In_sync, &rdev->flags); 3022 rdev->saved_raid_disk = rdev->raid_disk; 3023 rdev->raid_disk = -1; 3024 err = 0; 3025 } 3026 } else if (cmd_match(buf, "write_error")) { 3027 set_bit(WriteErrorSeen, &rdev->flags); 3028 err = 0; 3029 } else if (cmd_match(buf, "-write_error")) { 3030 clear_bit(WriteErrorSeen, &rdev->flags); 3031 err = 0; 3032 } else if (cmd_match(buf, "want_replacement")) { 3033 /* Any non-spare device that is not a replacement can 3034 * become want_replacement at any time, but we then need to 3035 * check if recovery is needed. 3036 */ 3037 if (rdev->raid_disk >= 0 && 3038 !test_bit(Journal, &rdev->flags) && 3039 !test_bit(Replacement, &rdev->flags)) 3040 set_bit(WantReplacement, &rdev->flags); 3041 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3042 md_wakeup_thread(rdev->mddev->thread); 3043 err = 0; 3044 } else if (cmd_match(buf, "-want_replacement")) { 3045 /* Clearing 'want_replacement' is always allowed. 3046 * Once replacements starts it is too late though. 3047 */ 3048 err = 0; 3049 clear_bit(WantReplacement, &rdev->flags); 3050 } else if (cmd_match(buf, "replacement")) { 3051 /* Can only set a device as a replacement when array has not 3052 * yet been started. Once running, replacement is automatic 3053 * from spares, or by assigning 'slot'. 3054 */ 3055 if (rdev->mddev->pers) 3056 err = -EBUSY; 3057 else { 3058 set_bit(Replacement, &rdev->flags); 3059 err = 0; 3060 } 3061 } else if (cmd_match(buf, "-replacement")) { 3062 /* Similarly, can only clear Replacement before start */ 3063 if (rdev->mddev->pers) 3064 err = -EBUSY; 3065 else { 3066 clear_bit(Replacement, &rdev->flags); 3067 err = 0; 3068 } 3069 } else if (cmd_match(buf, "re-add")) { 3070 if (!rdev->mddev->pers) 3071 err = -EINVAL; 3072 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3073 rdev->saved_raid_disk >= 0) { 3074 /* clear_bit is performed _after_ all the devices 3075 * have their local Faulty bit cleared. If any writes 3076 * happen in the meantime in the local node, they 3077 * will land in the local bitmap, which will be synced 3078 * by this node eventually 3079 */ 3080 if (!mddev_is_clustered(rdev->mddev) || 3081 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3082 clear_bit(Faulty, &rdev->flags); 3083 err = add_bound_rdev(rdev); 3084 } 3085 } else 3086 err = -EBUSY; 3087 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3088 set_bit(ExternalBbl, &rdev->flags); 3089 rdev->badblocks.shift = 0; 3090 err = 0; 3091 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3092 clear_bit(ExternalBbl, &rdev->flags); 3093 err = 0; 3094 } 3095 if (need_update_sb) 3096 md_update_sb(mddev, 1); 3097 if (!err) 3098 sysfs_notify_dirent_safe(rdev->sysfs_state); 3099 return err ? err : len; 3100 } 3101 static struct rdev_sysfs_entry rdev_state = 3102 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3103 3104 static ssize_t 3105 errors_show(struct md_rdev *rdev, char *page) 3106 { 3107 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3108 } 3109 3110 static ssize_t 3111 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3112 { 3113 unsigned int n; 3114 int rv; 3115 3116 rv = kstrtouint(buf, 10, &n); 3117 if (rv < 0) 3118 return rv; 3119 atomic_set(&rdev->corrected_errors, n); 3120 return len; 3121 } 3122 static struct rdev_sysfs_entry rdev_errors = 3123 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3124 3125 static ssize_t 3126 slot_show(struct md_rdev *rdev, char *page) 3127 { 3128 if (test_bit(Journal, &rdev->flags)) 3129 return sprintf(page, "journal\n"); 3130 else if (rdev->raid_disk < 0) 3131 return sprintf(page, "none\n"); 3132 else 3133 return sprintf(page, "%d\n", rdev->raid_disk); 3134 } 3135 3136 static ssize_t 3137 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3138 { 3139 int slot; 3140 int err; 3141 3142 if (test_bit(Journal, &rdev->flags)) 3143 return -EBUSY; 3144 if (strncmp(buf, "none", 4)==0) 3145 slot = -1; 3146 else { 3147 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3148 if (err < 0) 3149 return err; 3150 } 3151 if (rdev->mddev->pers && slot == -1) { 3152 /* Setting 'slot' on an active array requires also 3153 * updating the 'rd%d' link, and communicating 3154 * with the personality with ->hot_*_disk. 3155 * For now we only support removing 3156 * failed/spare devices. This normally happens automatically, 3157 * but not when the metadata is externally managed. 3158 */ 3159 if (rdev->raid_disk == -1) 3160 return -EEXIST; 3161 /* personality does all needed checks */ 3162 if (rdev->mddev->pers->hot_remove_disk == NULL) 3163 return -EINVAL; 3164 clear_bit(Blocked, &rdev->flags); 3165 remove_and_add_spares(rdev->mddev, rdev); 3166 if (rdev->raid_disk >= 0) 3167 return -EBUSY; 3168 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3169 md_wakeup_thread(rdev->mddev->thread); 3170 } else if (rdev->mddev->pers) { 3171 /* Activating a spare .. or possibly reactivating 3172 * if we ever get bitmaps working here. 3173 */ 3174 int err; 3175 3176 if (rdev->raid_disk != -1) 3177 return -EBUSY; 3178 3179 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3180 return -EBUSY; 3181 3182 if (rdev->mddev->pers->hot_add_disk == NULL) 3183 return -EINVAL; 3184 3185 if (slot >= rdev->mddev->raid_disks && 3186 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3187 return -ENOSPC; 3188 3189 rdev->raid_disk = slot; 3190 if (test_bit(In_sync, &rdev->flags)) 3191 rdev->saved_raid_disk = slot; 3192 else 3193 rdev->saved_raid_disk = -1; 3194 clear_bit(In_sync, &rdev->flags); 3195 clear_bit(Bitmap_sync, &rdev->flags); 3196 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3197 if (err) { 3198 rdev->raid_disk = -1; 3199 return err; 3200 } else 3201 sysfs_notify_dirent_safe(rdev->sysfs_state); 3202 /* failure here is OK */; 3203 sysfs_link_rdev(rdev->mddev, rdev); 3204 /* don't wakeup anyone, leave that to userspace. */ 3205 } else { 3206 if (slot >= rdev->mddev->raid_disks && 3207 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3208 return -ENOSPC; 3209 rdev->raid_disk = slot; 3210 /* assume it is working */ 3211 clear_bit(Faulty, &rdev->flags); 3212 clear_bit(WriteMostly, &rdev->flags); 3213 set_bit(In_sync, &rdev->flags); 3214 sysfs_notify_dirent_safe(rdev->sysfs_state); 3215 } 3216 return len; 3217 } 3218 3219 static struct rdev_sysfs_entry rdev_slot = 3220 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3221 3222 static ssize_t 3223 offset_show(struct md_rdev *rdev, char *page) 3224 { 3225 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3226 } 3227 3228 static ssize_t 3229 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3230 { 3231 unsigned long long offset; 3232 if (kstrtoull(buf, 10, &offset) < 0) 3233 return -EINVAL; 3234 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3235 return -EBUSY; 3236 if (rdev->sectors && rdev->mddev->external) 3237 /* Must set offset before size, so overlap checks 3238 * can be sane */ 3239 return -EBUSY; 3240 rdev->data_offset = offset; 3241 rdev->new_data_offset = offset; 3242 return len; 3243 } 3244 3245 static struct rdev_sysfs_entry rdev_offset = 3246 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3247 3248 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3249 { 3250 return sprintf(page, "%llu\n", 3251 (unsigned long long)rdev->new_data_offset); 3252 } 3253 3254 static ssize_t new_offset_store(struct md_rdev *rdev, 3255 const char *buf, size_t len) 3256 { 3257 unsigned long long new_offset; 3258 struct mddev *mddev = rdev->mddev; 3259 3260 if (kstrtoull(buf, 10, &new_offset) < 0) 3261 return -EINVAL; 3262 3263 if (mddev->sync_thread || 3264 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3265 return -EBUSY; 3266 if (new_offset == rdev->data_offset) 3267 /* reset is always permitted */ 3268 ; 3269 else if (new_offset > rdev->data_offset) { 3270 /* must not push array size beyond rdev_sectors */ 3271 if (new_offset - rdev->data_offset 3272 + mddev->dev_sectors > rdev->sectors) 3273 return -E2BIG; 3274 } 3275 /* Metadata worries about other space details. */ 3276 3277 /* decreasing the offset is inconsistent with a backwards 3278 * reshape. 3279 */ 3280 if (new_offset < rdev->data_offset && 3281 mddev->reshape_backwards) 3282 return -EINVAL; 3283 /* Increasing offset is inconsistent with forwards 3284 * reshape. reshape_direction should be set to 3285 * 'backwards' first. 3286 */ 3287 if (new_offset > rdev->data_offset && 3288 !mddev->reshape_backwards) 3289 return -EINVAL; 3290 3291 if (mddev->pers && mddev->persistent && 3292 !super_types[mddev->major_version] 3293 .allow_new_offset(rdev, new_offset)) 3294 return -E2BIG; 3295 rdev->new_data_offset = new_offset; 3296 if (new_offset > rdev->data_offset) 3297 mddev->reshape_backwards = 1; 3298 else if (new_offset < rdev->data_offset) 3299 mddev->reshape_backwards = 0; 3300 3301 return len; 3302 } 3303 static struct rdev_sysfs_entry rdev_new_offset = 3304 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3305 3306 static ssize_t 3307 rdev_size_show(struct md_rdev *rdev, char *page) 3308 { 3309 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3310 } 3311 3312 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3313 { 3314 /* check if two start/length pairs overlap */ 3315 if (a->data_offset + a->sectors <= b->data_offset) 3316 return false; 3317 if (b->data_offset + b->sectors <= a->data_offset) 3318 return false; 3319 return true; 3320 } 3321 3322 static bool md_rdev_overlaps(struct md_rdev *rdev) 3323 { 3324 struct mddev *mddev; 3325 struct md_rdev *rdev2; 3326 3327 spin_lock(&all_mddevs_lock); 3328 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3329 if (test_bit(MD_DELETED, &mddev->flags)) 3330 continue; 3331 rdev_for_each(rdev2, mddev) { 3332 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3333 md_rdevs_overlap(rdev, rdev2)) { 3334 spin_unlock(&all_mddevs_lock); 3335 return true; 3336 } 3337 } 3338 } 3339 spin_unlock(&all_mddevs_lock); 3340 return false; 3341 } 3342 3343 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3344 { 3345 unsigned long long blocks; 3346 sector_t new; 3347 3348 if (kstrtoull(buf, 10, &blocks) < 0) 3349 return -EINVAL; 3350 3351 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3352 return -EINVAL; /* sector conversion overflow */ 3353 3354 new = blocks * 2; 3355 if (new != blocks * 2) 3356 return -EINVAL; /* unsigned long long to sector_t overflow */ 3357 3358 *sectors = new; 3359 return 0; 3360 } 3361 3362 static ssize_t 3363 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3364 { 3365 struct mddev *my_mddev = rdev->mddev; 3366 sector_t oldsectors = rdev->sectors; 3367 sector_t sectors; 3368 3369 if (test_bit(Journal, &rdev->flags)) 3370 return -EBUSY; 3371 if (strict_blocks_to_sectors(buf, §ors) < 0) 3372 return -EINVAL; 3373 if (rdev->data_offset != rdev->new_data_offset) 3374 return -EINVAL; /* too confusing */ 3375 if (my_mddev->pers && rdev->raid_disk >= 0) { 3376 if (my_mddev->persistent) { 3377 sectors = super_types[my_mddev->major_version]. 3378 rdev_size_change(rdev, sectors); 3379 if (!sectors) 3380 return -EBUSY; 3381 } else if (!sectors) 3382 sectors = bdev_nr_sectors(rdev->bdev) - 3383 rdev->data_offset; 3384 if (!my_mddev->pers->resize) 3385 /* Cannot change size for RAID0 or Linear etc */ 3386 return -EINVAL; 3387 } 3388 if (sectors < my_mddev->dev_sectors) 3389 return -EINVAL; /* component must fit device */ 3390 3391 rdev->sectors = sectors; 3392 3393 /* 3394 * Check that all other rdevs with the same bdev do not overlap. This 3395 * check does not provide a hard guarantee, it just helps avoid 3396 * dangerous mistakes. 3397 */ 3398 if (sectors > oldsectors && my_mddev->external && 3399 md_rdev_overlaps(rdev)) { 3400 /* 3401 * Someone else could have slipped in a size change here, but 3402 * doing so is just silly. We put oldsectors back because we 3403 * know it is safe, and trust userspace not to race with itself. 3404 */ 3405 rdev->sectors = oldsectors; 3406 return -EBUSY; 3407 } 3408 return len; 3409 } 3410 3411 static struct rdev_sysfs_entry rdev_size = 3412 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3413 3414 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3415 { 3416 unsigned long long recovery_start = rdev->recovery_offset; 3417 3418 if (test_bit(In_sync, &rdev->flags) || 3419 recovery_start == MaxSector) 3420 return sprintf(page, "none\n"); 3421 3422 return sprintf(page, "%llu\n", recovery_start); 3423 } 3424 3425 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3426 { 3427 unsigned long long recovery_start; 3428 3429 if (cmd_match(buf, "none")) 3430 recovery_start = MaxSector; 3431 else if (kstrtoull(buf, 10, &recovery_start)) 3432 return -EINVAL; 3433 3434 if (rdev->mddev->pers && 3435 rdev->raid_disk >= 0) 3436 return -EBUSY; 3437 3438 rdev->recovery_offset = recovery_start; 3439 if (recovery_start == MaxSector) 3440 set_bit(In_sync, &rdev->flags); 3441 else 3442 clear_bit(In_sync, &rdev->flags); 3443 return len; 3444 } 3445 3446 static struct rdev_sysfs_entry rdev_recovery_start = 3447 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3448 3449 /* sysfs access to bad-blocks list. 3450 * We present two files. 3451 * 'bad-blocks' lists sector numbers and lengths of ranges that 3452 * are recorded as bad. The list is truncated to fit within 3453 * the one-page limit of sysfs. 3454 * Writing "sector length" to this file adds an acknowledged 3455 * bad block list. 3456 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3457 * been acknowledged. Writing to this file adds bad blocks 3458 * without acknowledging them. This is largely for testing. 3459 */ 3460 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3461 { 3462 return badblocks_show(&rdev->badblocks, page, 0); 3463 } 3464 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3465 { 3466 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3467 /* Maybe that ack was all we needed */ 3468 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3469 wake_up(&rdev->blocked_wait); 3470 return rv; 3471 } 3472 static struct rdev_sysfs_entry rdev_bad_blocks = 3473 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3474 3475 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3476 { 3477 return badblocks_show(&rdev->badblocks, page, 1); 3478 } 3479 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3480 { 3481 return badblocks_store(&rdev->badblocks, page, len, 1); 3482 } 3483 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3484 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3485 3486 static ssize_t 3487 ppl_sector_show(struct md_rdev *rdev, char *page) 3488 { 3489 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3490 } 3491 3492 static ssize_t 3493 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3494 { 3495 unsigned long long sector; 3496 3497 if (kstrtoull(buf, 10, §or) < 0) 3498 return -EINVAL; 3499 if (sector != (sector_t)sector) 3500 return -EINVAL; 3501 3502 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3503 rdev->raid_disk >= 0) 3504 return -EBUSY; 3505 3506 if (rdev->mddev->persistent) { 3507 if (rdev->mddev->major_version == 0) 3508 return -EINVAL; 3509 if ((sector > rdev->sb_start && 3510 sector - rdev->sb_start > S16_MAX) || 3511 (sector < rdev->sb_start && 3512 rdev->sb_start - sector > -S16_MIN)) 3513 return -EINVAL; 3514 rdev->ppl.offset = sector - rdev->sb_start; 3515 } else if (!rdev->mddev->external) { 3516 return -EBUSY; 3517 } 3518 rdev->ppl.sector = sector; 3519 return len; 3520 } 3521 3522 static struct rdev_sysfs_entry rdev_ppl_sector = 3523 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3524 3525 static ssize_t 3526 ppl_size_show(struct md_rdev *rdev, char *page) 3527 { 3528 return sprintf(page, "%u\n", rdev->ppl.size); 3529 } 3530 3531 static ssize_t 3532 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3533 { 3534 unsigned int size; 3535 3536 if (kstrtouint(buf, 10, &size) < 0) 3537 return -EINVAL; 3538 3539 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3540 rdev->raid_disk >= 0) 3541 return -EBUSY; 3542 3543 if (rdev->mddev->persistent) { 3544 if (rdev->mddev->major_version == 0) 3545 return -EINVAL; 3546 if (size > U16_MAX) 3547 return -EINVAL; 3548 } else if (!rdev->mddev->external) { 3549 return -EBUSY; 3550 } 3551 rdev->ppl.size = size; 3552 return len; 3553 } 3554 3555 static struct rdev_sysfs_entry rdev_ppl_size = 3556 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3557 3558 static struct attribute *rdev_default_attrs[] = { 3559 &rdev_state.attr, 3560 &rdev_errors.attr, 3561 &rdev_slot.attr, 3562 &rdev_offset.attr, 3563 &rdev_new_offset.attr, 3564 &rdev_size.attr, 3565 &rdev_recovery_start.attr, 3566 &rdev_bad_blocks.attr, 3567 &rdev_unack_bad_blocks.attr, 3568 &rdev_ppl_sector.attr, 3569 &rdev_ppl_size.attr, 3570 NULL, 3571 }; 3572 ATTRIBUTE_GROUPS(rdev_default); 3573 static ssize_t 3574 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3575 { 3576 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3577 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3578 3579 if (!entry->show) 3580 return -EIO; 3581 if (!rdev->mddev) 3582 return -ENODEV; 3583 return entry->show(rdev, page); 3584 } 3585 3586 static ssize_t 3587 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3588 const char *page, size_t length) 3589 { 3590 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3591 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3592 ssize_t rv; 3593 struct mddev *mddev = rdev->mddev; 3594 3595 if (!entry->store) 3596 return -EIO; 3597 if (!capable(CAP_SYS_ADMIN)) 3598 return -EACCES; 3599 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3600 if (!rv) { 3601 if (rdev->mddev == NULL) 3602 rv = -ENODEV; 3603 else 3604 rv = entry->store(rdev, page, length); 3605 mddev_unlock(mddev); 3606 } 3607 return rv; 3608 } 3609 3610 static void rdev_free(struct kobject *ko) 3611 { 3612 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3613 kfree(rdev); 3614 } 3615 static const struct sysfs_ops rdev_sysfs_ops = { 3616 .show = rdev_attr_show, 3617 .store = rdev_attr_store, 3618 }; 3619 static struct kobj_type rdev_ktype = { 3620 .release = rdev_free, 3621 .sysfs_ops = &rdev_sysfs_ops, 3622 .default_groups = rdev_default_groups, 3623 }; 3624 3625 int md_rdev_init(struct md_rdev *rdev) 3626 { 3627 rdev->desc_nr = -1; 3628 rdev->saved_raid_disk = -1; 3629 rdev->raid_disk = -1; 3630 rdev->flags = 0; 3631 rdev->data_offset = 0; 3632 rdev->new_data_offset = 0; 3633 rdev->sb_events = 0; 3634 rdev->last_read_error = 0; 3635 rdev->sb_loaded = 0; 3636 rdev->bb_page = NULL; 3637 atomic_set(&rdev->nr_pending, 0); 3638 atomic_set(&rdev->read_errors, 0); 3639 atomic_set(&rdev->corrected_errors, 0); 3640 3641 INIT_LIST_HEAD(&rdev->same_set); 3642 init_waitqueue_head(&rdev->blocked_wait); 3643 3644 /* Add space to store bad block list. 3645 * This reserves the space even on arrays where it cannot 3646 * be used - I wonder if that matters 3647 */ 3648 return badblocks_init(&rdev->badblocks, 0); 3649 } 3650 EXPORT_SYMBOL_GPL(md_rdev_init); 3651 /* 3652 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3653 * 3654 * mark the device faulty if: 3655 * 3656 * - the device is nonexistent (zero size) 3657 * - the device has no valid superblock 3658 * 3659 * a faulty rdev _never_ has rdev->sb set. 3660 */ 3661 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3662 { 3663 int err; 3664 struct md_rdev *rdev; 3665 sector_t size; 3666 3667 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3668 if (!rdev) 3669 return ERR_PTR(-ENOMEM); 3670 3671 err = md_rdev_init(rdev); 3672 if (err) 3673 goto abort_free; 3674 err = alloc_disk_sb(rdev); 3675 if (err) 3676 goto abort_free; 3677 3678 err = lock_rdev(rdev, newdev, super_format == -2); 3679 if (err) 3680 goto abort_free; 3681 3682 kobject_init(&rdev->kobj, &rdev_ktype); 3683 3684 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3685 if (!size) { 3686 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3687 rdev->bdev); 3688 err = -EINVAL; 3689 goto abort_free; 3690 } 3691 3692 if (super_format >= 0) { 3693 err = super_types[super_format]. 3694 load_super(rdev, NULL, super_minor); 3695 if (err == -EINVAL) { 3696 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3697 rdev->bdev, 3698 super_format, super_minor); 3699 goto abort_free; 3700 } 3701 if (err < 0) { 3702 pr_warn("md: could not read %pg's sb, not importing!\n", 3703 rdev->bdev); 3704 goto abort_free; 3705 } 3706 } 3707 3708 return rdev; 3709 3710 abort_free: 3711 if (rdev->bdev) 3712 unlock_rdev(rdev); 3713 md_rdev_clear(rdev); 3714 kfree(rdev); 3715 return ERR_PTR(err); 3716 } 3717 3718 /* 3719 * Check a full RAID array for plausibility 3720 */ 3721 3722 static int analyze_sbs(struct mddev *mddev) 3723 { 3724 int i; 3725 struct md_rdev *rdev, *freshest, *tmp; 3726 3727 freshest = NULL; 3728 rdev_for_each_safe(rdev, tmp, mddev) 3729 switch (super_types[mddev->major_version]. 3730 load_super(rdev, freshest, mddev->minor_version)) { 3731 case 1: 3732 freshest = rdev; 3733 break; 3734 case 0: 3735 break; 3736 default: 3737 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3738 rdev->bdev); 3739 md_kick_rdev_from_array(rdev); 3740 } 3741 3742 /* Cannot find a valid fresh disk */ 3743 if (!freshest) { 3744 pr_warn("md: cannot find a valid disk\n"); 3745 return -EINVAL; 3746 } 3747 3748 super_types[mddev->major_version]. 3749 validate_super(mddev, freshest); 3750 3751 i = 0; 3752 rdev_for_each_safe(rdev, tmp, mddev) { 3753 if (mddev->max_disks && 3754 (rdev->desc_nr >= mddev->max_disks || 3755 i > mddev->max_disks)) { 3756 pr_warn("md: %s: %pg: only %d devices permitted\n", 3757 mdname(mddev), rdev->bdev, 3758 mddev->max_disks); 3759 md_kick_rdev_from_array(rdev); 3760 continue; 3761 } 3762 if (rdev != freshest) { 3763 if (super_types[mddev->major_version]. 3764 validate_super(mddev, rdev)) { 3765 pr_warn("md: kicking non-fresh %pg from array!\n", 3766 rdev->bdev); 3767 md_kick_rdev_from_array(rdev); 3768 continue; 3769 } 3770 } 3771 if (mddev->level == LEVEL_MULTIPATH) { 3772 rdev->desc_nr = i++; 3773 rdev->raid_disk = rdev->desc_nr; 3774 set_bit(In_sync, &rdev->flags); 3775 } else if (rdev->raid_disk >= 3776 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3777 !test_bit(Journal, &rdev->flags)) { 3778 rdev->raid_disk = -1; 3779 clear_bit(In_sync, &rdev->flags); 3780 } 3781 } 3782 3783 return 0; 3784 } 3785 3786 /* Read a fixed-point number. 3787 * Numbers in sysfs attributes should be in "standard" units where 3788 * possible, so time should be in seconds. 3789 * However we internally use a a much smaller unit such as 3790 * milliseconds or jiffies. 3791 * This function takes a decimal number with a possible fractional 3792 * component, and produces an integer which is the result of 3793 * multiplying that number by 10^'scale'. 3794 * all without any floating-point arithmetic. 3795 */ 3796 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3797 { 3798 unsigned long result = 0; 3799 long decimals = -1; 3800 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3801 if (*cp == '.') 3802 decimals = 0; 3803 else if (decimals < scale) { 3804 unsigned int value; 3805 value = *cp - '0'; 3806 result = result * 10 + value; 3807 if (decimals >= 0) 3808 decimals++; 3809 } 3810 cp++; 3811 } 3812 if (*cp == '\n') 3813 cp++; 3814 if (*cp) 3815 return -EINVAL; 3816 if (decimals < 0) 3817 decimals = 0; 3818 *res = result * int_pow(10, scale - decimals); 3819 return 0; 3820 } 3821 3822 static ssize_t 3823 safe_delay_show(struct mddev *mddev, char *page) 3824 { 3825 int msec = (mddev->safemode_delay*1000)/HZ; 3826 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000); 3827 } 3828 static ssize_t 3829 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3830 { 3831 unsigned long msec; 3832 3833 if (mddev_is_clustered(mddev)) { 3834 pr_warn("md: Safemode is disabled for clustered mode\n"); 3835 return -EINVAL; 3836 } 3837 3838 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0) 3839 return -EINVAL; 3840 if (msec == 0) 3841 mddev->safemode_delay = 0; 3842 else { 3843 unsigned long old_delay = mddev->safemode_delay; 3844 unsigned long new_delay = (msec*HZ)/1000; 3845 3846 if (new_delay == 0) 3847 new_delay = 1; 3848 mddev->safemode_delay = new_delay; 3849 if (new_delay < old_delay || old_delay == 0) 3850 mod_timer(&mddev->safemode_timer, jiffies+1); 3851 } 3852 return len; 3853 } 3854 static struct md_sysfs_entry md_safe_delay = 3855 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3856 3857 static ssize_t 3858 level_show(struct mddev *mddev, char *page) 3859 { 3860 struct md_personality *p; 3861 int ret; 3862 spin_lock(&mddev->lock); 3863 p = mddev->pers; 3864 if (p) 3865 ret = sprintf(page, "%s\n", p->name); 3866 else if (mddev->clevel[0]) 3867 ret = sprintf(page, "%s\n", mddev->clevel); 3868 else if (mddev->level != LEVEL_NONE) 3869 ret = sprintf(page, "%d\n", mddev->level); 3870 else 3871 ret = 0; 3872 spin_unlock(&mddev->lock); 3873 return ret; 3874 } 3875 3876 static ssize_t 3877 level_store(struct mddev *mddev, const char *buf, size_t len) 3878 { 3879 char clevel[16]; 3880 ssize_t rv; 3881 size_t slen = len; 3882 struct md_personality *pers, *oldpers; 3883 long level; 3884 void *priv, *oldpriv; 3885 struct md_rdev *rdev; 3886 3887 if (slen == 0 || slen >= sizeof(clevel)) 3888 return -EINVAL; 3889 3890 rv = mddev_lock(mddev); 3891 if (rv) 3892 return rv; 3893 3894 if (mddev->pers == NULL) { 3895 strncpy(mddev->clevel, buf, slen); 3896 if (mddev->clevel[slen-1] == '\n') 3897 slen--; 3898 mddev->clevel[slen] = 0; 3899 mddev->level = LEVEL_NONE; 3900 rv = len; 3901 goto out_unlock; 3902 } 3903 rv = -EROFS; 3904 if (mddev->ro) 3905 goto out_unlock; 3906 3907 /* request to change the personality. Need to ensure: 3908 * - array is not engaged in resync/recovery/reshape 3909 * - old personality can be suspended 3910 * - new personality will access other array. 3911 */ 3912 3913 rv = -EBUSY; 3914 if (mddev->sync_thread || 3915 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3916 mddev->reshape_position != MaxSector || 3917 mddev->sysfs_active) 3918 goto out_unlock; 3919 3920 rv = -EINVAL; 3921 if (!mddev->pers->quiesce) { 3922 pr_warn("md: %s: %s does not support online personality change\n", 3923 mdname(mddev), mddev->pers->name); 3924 goto out_unlock; 3925 } 3926 3927 /* Now find the new personality */ 3928 strncpy(clevel, buf, slen); 3929 if (clevel[slen-1] == '\n') 3930 slen--; 3931 clevel[slen] = 0; 3932 if (kstrtol(clevel, 10, &level)) 3933 level = LEVEL_NONE; 3934 3935 if (request_module("md-%s", clevel) != 0) 3936 request_module("md-level-%s", clevel); 3937 spin_lock(&pers_lock); 3938 pers = find_pers(level, clevel); 3939 if (!pers || !try_module_get(pers->owner)) { 3940 spin_unlock(&pers_lock); 3941 pr_warn("md: personality %s not loaded\n", clevel); 3942 rv = -EINVAL; 3943 goto out_unlock; 3944 } 3945 spin_unlock(&pers_lock); 3946 3947 if (pers == mddev->pers) { 3948 /* Nothing to do! */ 3949 module_put(pers->owner); 3950 rv = len; 3951 goto out_unlock; 3952 } 3953 if (!pers->takeover) { 3954 module_put(pers->owner); 3955 pr_warn("md: %s: %s does not support personality takeover\n", 3956 mdname(mddev), clevel); 3957 rv = -EINVAL; 3958 goto out_unlock; 3959 } 3960 3961 rdev_for_each(rdev, mddev) 3962 rdev->new_raid_disk = rdev->raid_disk; 3963 3964 /* ->takeover must set new_* and/or delta_disks 3965 * if it succeeds, and may set them when it fails. 3966 */ 3967 priv = pers->takeover(mddev); 3968 if (IS_ERR(priv)) { 3969 mddev->new_level = mddev->level; 3970 mddev->new_layout = mddev->layout; 3971 mddev->new_chunk_sectors = mddev->chunk_sectors; 3972 mddev->raid_disks -= mddev->delta_disks; 3973 mddev->delta_disks = 0; 3974 mddev->reshape_backwards = 0; 3975 module_put(pers->owner); 3976 pr_warn("md: %s: %s would not accept array\n", 3977 mdname(mddev), clevel); 3978 rv = PTR_ERR(priv); 3979 goto out_unlock; 3980 } 3981 3982 /* Looks like we have a winner */ 3983 mddev_suspend(mddev); 3984 mddev_detach(mddev); 3985 3986 spin_lock(&mddev->lock); 3987 oldpers = mddev->pers; 3988 oldpriv = mddev->private; 3989 mddev->pers = pers; 3990 mddev->private = priv; 3991 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 3992 mddev->level = mddev->new_level; 3993 mddev->layout = mddev->new_layout; 3994 mddev->chunk_sectors = mddev->new_chunk_sectors; 3995 mddev->delta_disks = 0; 3996 mddev->reshape_backwards = 0; 3997 mddev->degraded = 0; 3998 spin_unlock(&mddev->lock); 3999 4000 if (oldpers->sync_request == NULL && 4001 mddev->external) { 4002 /* We are converting from a no-redundancy array 4003 * to a redundancy array and metadata is managed 4004 * externally so we need to be sure that writes 4005 * won't block due to a need to transition 4006 * clean->dirty 4007 * until external management is started. 4008 */ 4009 mddev->in_sync = 0; 4010 mddev->safemode_delay = 0; 4011 mddev->safemode = 0; 4012 } 4013 4014 oldpers->free(mddev, oldpriv); 4015 4016 if (oldpers->sync_request == NULL && 4017 pers->sync_request != NULL) { 4018 /* need to add the md_redundancy_group */ 4019 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4020 pr_warn("md: cannot register extra attributes for %s\n", 4021 mdname(mddev)); 4022 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4023 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4024 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4025 } 4026 if (oldpers->sync_request != NULL && 4027 pers->sync_request == NULL) { 4028 /* need to remove the md_redundancy_group */ 4029 if (mddev->to_remove == NULL) 4030 mddev->to_remove = &md_redundancy_group; 4031 } 4032 4033 module_put(oldpers->owner); 4034 4035 rdev_for_each(rdev, mddev) { 4036 if (rdev->raid_disk < 0) 4037 continue; 4038 if (rdev->new_raid_disk >= mddev->raid_disks) 4039 rdev->new_raid_disk = -1; 4040 if (rdev->new_raid_disk == rdev->raid_disk) 4041 continue; 4042 sysfs_unlink_rdev(mddev, rdev); 4043 } 4044 rdev_for_each(rdev, mddev) { 4045 if (rdev->raid_disk < 0) 4046 continue; 4047 if (rdev->new_raid_disk == rdev->raid_disk) 4048 continue; 4049 rdev->raid_disk = rdev->new_raid_disk; 4050 if (rdev->raid_disk < 0) 4051 clear_bit(In_sync, &rdev->flags); 4052 else { 4053 if (sysfs_link_rdev(mddev, rdev)) 4054 pr_warn("md: cannot register rd%d for %s after level change\n", 4055 rdev->raid_disk, mdname(mddev)); 4056 } 4057 } 4058 4059 if (pers->sync_request == NULL) { 4060 /* this is now an array without redundancy, so 4061 * it must always be in_sync 4062 */ 4063 mddev->in_sync = 1; 4064 del_timer_sync(&mddev->safemode_timer); 4065 } 4066 blk_set_stacking_limits(&mddev->queue->limits); 4067 pers->run(mddev); 4068 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4069 mddev_resume(mddev); 4070 if (!mddev->thread) 4071 md_update_sb(mddev, 1); 4072 sysfs_notify_dirent_safe(mddev->sysfs_level); 4073 md_new_event(); 4074 rv = len; 4075 out_unlock: 4076 mddev_unlock(mddev); 4077 return rv; 4078 } 4079 4080 static struct md_sysfs_entry md_level = 4081 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4082 4083 static ssize_t 4084 layout_show(struct mddev *mddev, char *page) 4085 { 4086 /* just a number, not meaningful for all levels */ 4087 if (mddev->reshape_position != MaxSector && 4088 mddev->layout != mddev->new_layout) 4089 return sprintf(page, "%d (%d)\n", 4090 mddev->new_layout, mddev->layout); 4091 return sprintf(page, "%d\n", mddev->layout); 4092 } 4093 4094 static ssize_t 4095 layout_store(struct mddev *mddev, const char *buf, size_t len) 4096 { 4097 unsigned int n; 4098 int err; 4099 4100 err = kstrtouint(buf, 10, &n); 4101 if (err < 0) 4102 return err; 4103 err = mddev_lock(mddev); 4104 if (err) 4105 return err; 4106 4107 if (mddev->pers) { 4108 if (mddev->pers->check_reshape == NULL) 4109 err = -EBUSY; 4110 else if (mddev->ro) 4111 err = -EROFS; 4112 else { 4113 mddev->new_layout = n; 4114 err = mddev->pers->check_reshape(mddev); 4115 if (err) 4116 mddev->new_layout = mddev->layout; 4117 } 4118 } else { 4119 mddev->new_layout = n; 4120 if (mddev->reshape_position == MaxSector) 4121 mddev->layout = n; 4122 } 4123 mddev_unlock(mddev); 4124 return err ?: len; 4125 } 4126 static struct md_sysfs_entry md_layout = 4127 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4128 4129 static ssize_t 4130 raid_disks_show(struct mddev *mddev, char *page) 4131 { 4132 if (mddev->raid_disks == 0) 4133 return 0; 4134 if (mddev->reshape_position != MaxSector && 4135 mddev->delta_disks != 0) 4136 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4137 mddev->raid_disks - mddev->delta_disks); 4138 return sprintf(page, "%d\n", mddev->raid_disks); 4139 } 4140 4141 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4142 4143 static ssize_t 4144 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4145 { 4146 unsigned int n; 4147 int err; 4148 4149 err = kstrtouint(buf, 10, &n); 4150 if (err < 0) 4151 return err; 4152 4153 err = mddev_lock(mddev); 4154 if (err) 4155 return err; 4156 if (mddev->pers) 4157 err = update_raid_disks(mddev, n); 4158 else if (mddev->reshape_position != MaxSector) { 4159 struct md_rdev *rdev; 4160 int olddisks = mddev->raid_disks - mddev->delta_disks; 4161 4162 err = -EINVAL; 4163 rdev_for_each(rdev, mddev) { 4164 if (olddisks < n && 4165 rdev->data_offset < rdev->new_data_offset) 4166 goto out_unlock; 4167 if (olddisks > n && 4168 rdev->data_offset > rdev->new_data_offset) 4169 goto out_unlock; 4170 } 4171 err = 0; 4172 mddev->delta_disks = n - olddisks; 4173 mddev->raid_disks = n; 4174 mddev->reshape_backwards = (mddev->delta_disks < 0); 4175 } else 4176 mddev->raid_disks = n; 4177 out_unlock: 4178 mddev_unlock(mddev); 4179 return err ? err : len; 4180 } 4181 static struct md_sysfs_entry md_raid_disks = 4182 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4183 4184 static ssize_t 4185 uuid_show(struct mddev *mddev, char *page) 4186 { 4187 return sprintf(page, "%pU\n", mddev->uuid); 4188 } 4189 static struct md_sysfs_entry md_uuid = 4190 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4191 4192 static ssize_t 4193 chunk_size_show(struct mddev *mddev, char *page) 4194 { 4195 if (mddev->reshape_position != MaxSector && 4196 mddev->chunk_sectors != mddev->new_chunk_sectors) 4197 return sprintf(page, "%d (%d)\n", 4198 mddev->new_chunk_sectors << 9, 4199 mddev->chunk_sectors << 9); 4200 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4201 } 4202 4203 static ssize_t 4204 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4205 { 4206 unsigned long n; 4207 int err; 4208 4209 err = kstrtoul(buf, 10, &n); 4210 if (err < 0) 4211 return err; 4212 4213 err = mddev_lock(mddev); 4214 if (err) 4215 return err; 4216 if (mddev->pers) { 4217 if (mddev->pers->check_reshape == NULL) 4218 err = -EBUSY; 4219 else if (mddev->ro) 4220 err = -EROFS; 4221 else { 4222 mddev->new_chunk_sectors = n >> 9; 4223 err = mddev->pers->check_reshape(mddev); 4224 if (err) 4225 mddev->new_chunk_sectors = mddev->chunk_sectors; 4226 } 4227 } else { 4228 mddev->new_chunk_sectors = n >> 9; 4229 if (mddev->reshape_position == MaxSector) 4230 mddev->chunk_sectors = n >> 9; 4231 } 4232 mddev_unlock(mddev); 4233 return err ?: len; 4234 } 4235 static struct md_sysfs_entry md_chunk_size = 4236 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4237 4238 static ssize_t 4239 resync_start_show(struct mddev *mddev, char *page) 4240 { 4241 if (mddev->recovery_cp == MaxSector) 4242 return sprintf(page, "none\n"); 4243 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4244 } 4245 4246 static ssize_t 4247 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4248 { 4249 unsigned long long n; 4250 int err; 4251 4252 if (cmd_match(buf, "none")) 4253 n = MaxSector; 4254 else { 4255 err = kstrtoull(buf, 10, &n); 4256 if (err < 0) 4257 return err; 4258 if (n != (sector_t)n) 4259 return -EINVAL; 4260 } 4261 4262 err = mddev_lock(mddev); 4263 if (err) 4264 return err; 4265 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4266 err = -EBUSY; 4267 4268 if (!err) { 4269 mddev->recovery_cp = n; 4270 if (mddev->pers) 4271 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4272 } 4273 mddev_unlock(mddev); 4274 return err ?: len; 4275 } 4276 static struct md_sysfs_entry md_resync_start = 4277 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4278 resync_start_show, resync_start_store); 4279 4280 /* 4281 * The array state can be: 4282 * 4283 * clear 4284 * No devices, no size, no level 4285 * Equivalent to STOP_ARRAY ioctl 4286 * inactive 4287 * May have some settings, but array is not active 4288 * all IO results in error 4289 * When written, doesn't tear down array, but just stops it 4290 * suspended (not supported yet) 4291 * All IO requests will block. The array can be reconfigured. 4292 * Writing this, if accepted, will block until array is quiescent 4293 * readonly 4294 * no resync can happen. no superblocks get written. 4295 * write requests fail 4296 * read-auto 4297 * like readonly, but behaves like 'clean' on a write request. 4298 * 4299 * clean - no pending writes, but otherwise active. 4300 * When written to inactive array, starts without resync 4301 * If a write request arrives then 4302 * if metadata is known, mark 'dirty' and switch to 'active'. 4303 * if not known, block and switch to write-pending 4304 * If written to an active array that has pending writes, then fails. 4305 * active 4306 * fully active: IO and resync can be happening. 4307 * When written to inactive array, starts with resync 4308 * 4309 * write-pending 4310 * clean, but writes are blocked waiting for 'active' to be written. 4311 * 4312 * active-idle 4313 * like active, but no writes have been seen for a while (100msec). 4314 * 4315 * broken 4316 * Array is failed. It's useful because mounted-arrays aren't stopped 4317 * when array is failed, so this state will at least alert the user that 4318 * something is wrong. 4319 */ 4320 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4321 write_pending, active_idle, broken, bad_word}; 4322 static char *array_states[] = { 4323 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4324 "write-pending", "active-idle", "broken", NULL }; 4325 4326 static int match_word(const char *word, char **list) 4327 { 4328 int n; 4329 for (n=0; list[n]; n++) 4330 if (cmd_match(word, list[n])) 4331 break; 4332 return n; 4333 } 4334 4335 static ssize_t 4336 array_state_show(struct mddev *mddev, char *page) 4337 { 4338 enum array_state st = inactive; 4339 4340 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4341 switch(mddev->ro) { 4342 case 1: 4343 st = readonly; 4344 break; 4345 case 2: 4346 st = read_auto; 4347 break; 4348 case 0: 4349 spin_lock(&mddev->lock); 4350 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4351 st = write_pending; 4352 else if (mddev->in_sync) 4353 st = clean; 4354 else if (mddev->safemode) 4355 st = active_idle; 4356 else 4357 st = active; 4358 spin_unlock(&mddev->lock); 4359 } 4360 4361 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4362 st = broken; 4363 } else { 4364 if (list_empty(&mddev->disks) && 4365 mddev->raid_disks == 0 && 4366 mddev->dev_sectors == 0) 4367 st = clear; 4368 else 4369 st = inactive; 4370 } 4371 return sprintf(page, "%s\n", array_states[st]); 4372 } 4373 4374 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4375 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4376 static int restart_array(struct mddev *mddev); 4377 4378 static ssize_t 4379 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4380 { 4381 int err = 0; 4382 enum array_state st = match_word(buf, array_states); 4383 4384 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) { 4385 /* don't take reconfig_mutex when toggling between 4386 * clean and active 4387 */ 4388 spin_lock(&mddev->lock); 4389 if (st == active) { 4390 restart_array(mddev); 4391 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4392 md_wakeup_thread(mddev->thread); 4393 wake_up(&mddev->sb_wait); 4394 } else /* st == clean */ { 4395 restart_array(mddev); 4396 if (!set_in_sync(mddev)) 4397 err = -EBUSY; 4398 } 4399 if (!err) 4400 sysfs_notify_dirent_safe(mddev->sysfs_state); 4401 spin_unlock(&mddev->lock); 4402 return err ?: len; 4403 } 4404 err = mddev_lock(mddev); 4405 if (err) 4406 return err; 4407 err = -EINVAL; 4408 switch(st) { 4409 case bad_word: 4410 break; 4411 case clear: 4412 /* stopping an active array */ 4413 err = do_md_stop(mddev, 0, NULL); 4414 break; 4415 case inactive: 4416 /* stopping an active array */ 4417 if (mddev->pers) 4418 err = do_md_stop(mddev, 2, NULL); 4419 else 4420 err = 0; /* already inactive */ 4421 break; 4422 case suspended: 4423 break; /* not supported yet */ 4424 case readonly: 4425 if (mddev->pers) 4426 err = md_set_readonly(mddev, NULL); 4427 else { 4428 mddev->ro = 1; 4429 set_disk_ro(mddev->gendisk, 1); 4430 err = do_md_run(mddev); 4431 } 4432 break; 4433 case read_auto: 4434 if (mddev->pers) { 4435 if (mddev->ro == 0) 4436 err = md_set_readonly(mddev, NULL); 4437 else if (mddev->ro == 1) 4438 err = restart_array(mddev); 4439 if (err == 0) { 4440 mddev->ro = 2; 4441 set_disk_ro(mddev->gendisk, 0); 4442 } 4443 } else { 4444 mddev->ro = 2; 4445 err = do_md_run(mddev); 4446 } 4447 break; 4448 case clean: 4449 if (mddev->pers) { 4450 err = restart_array(mddev); 4451 if (err) 4452 break; 4453 spin_lock(&mddev->lock); 4454 if (!set_in_sync(mddev)) 4455 err = -EBUSY; 4456 spin_unlock(&mddev->lock); 4457 } else 4458 err = -EINVAL; 4459 break; 4460 case active: 4461 if (mddev->pers) { 4462 err = restart_array(mddev); 4463 if (err) 4464 break; 4465 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4466 wake_up(&mddev->sb_wait); 4467 err = 0; 4468 } else { 4469 mddev->ro = 0; 4470 set_disk_ro(mddev->gendisk, 0); 4471 err = do_md_run(mddev); 4472 } 4473 break; 4474 case write_pending: 4475 case active_idle: 4476 case broken: 4477 /* these cannot be set */ 4478 break; 4479 } 4480 4481 if (!err) { 4482 if (mddev->hold_active == UNTIL_IOCTL) 4483 mddev->hold_active = 0; 4484 sysfs_notify_dirent_safe(mddev->sysfs_state); 4485 } 4486 mddev_unlock(mddev); 4487 return err ?: len; 4488 } 4489 static struct md_sysfs_entry md_array_state = 4490 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4491 4492 static ssize_t 4493 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4494 return sprintf(page, "%d\n", 4495 atomic_read(&mddev->max_corr_read_errors)); 4496 } 4497 4498 static ssize_t 4499 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4500 { 4501 unsigned int n; 4502 int rv; 4503 4504 rv = kstrtouint(buf, 10, &n); 4505 if (rv < 0) 4506 return rv; 4507 atomic_set(&mddev->max_corr_read_errors, n); 4508 return len; 4509 } 4510 4511 static struct md_sysfs_entry max_corr_read_errors = 4512 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4513 max_corrected_read_errors_store); 4514 4515 static ssize_t 4516 null_show(struct mddev *mddev, char *page) 4517 { 4518 return -EINVAL; 4519 } 4520 4521 /* need to ensure rdev_delayed_delete() has completed */ 4522 static void flush_rdev_wq(struct mddev *mddev) 4523 { 4524 struct md_rdev *rdev; 4525 4526 rcu_read_lock(); 4527 rdev_for_each_rcu(rdev, mddev) 4528 if (work_pending(&rdev->del_work)) { 4529 flush_workqueue(md_rdev_misc_wq); 4530 break; 4531 } 4532 rcu_read_unlock(); 4533 } 4534 4535 static ssize_t 4536 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4537 { 4538 /* buf must be %d:%d\n? giving major and minor numbers */ 4539 /* The new device is added to the array. 4540 * If the array has a persistent superblock, we read the 4541 * superblock to initialise info and check validity. 4542 * Otherwise, only checking done is that in bind_rdev_to_array, 4543 * which mainly checks size. 4544 */ 4545 char *e; 4546 int major = simple_strtoul(buf, &e, 10); 4547 int minor; 4548 dev_t dev; 4549 struct md_rdev *rdev; 4550 int err; 4551 4552 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4553 return -EINVAL; 4554 minor = simple_strtoul(e+1, &e, 10); 4555 if (*e && *e != '\n') 4556 return -EINVAL; 4557 dev = MKDEV(major, minor); 4558 if (major != MAJOR(dev) || 4559 minor != MINOR(dev)) 4560 return -EOVERFLOW; 4561 4562 flush_rdev_wq(mddev); 4563 err = mddev_lock(mddev); 4564 if (err) 4565 return err; 4566 if (mddev->persistent) { 4567 rdev = md_import_device(dev, mddev->major_version, 4568 mddev->minor_version); 4569 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4570 struct md_rdev *rdev0 4571 = list_entry(mddev->disks.next, 4572 struct md_rdev, same_set); 4573 err = super_types[mddev->major_version] 4574 .load_super(rdev, rdev0, mddev->minor_version); 4575 if (err < 0) 4576 goto out; 4577 } 4578 } else if (mddev->external) 4579 rdev = md_import_device(dev, -2, -1); 4580 else 4581 rdev = md_import_device(dev, -1, -1); 4582 4583 if (IS_ERR(rdev)) { 4584 mddev_unlock(mddev); 4585 return PTR_ERR(rdev); 4586 } 4587 err = bind_rdev_to_array(rdev, mddev); 4588 out: 4589 if (err) 4590 export_rdev(rdev); 4591 mddev_unlock(mddev); 4592 if (!err) 4593 md_new_event(); 4594 return err ? err : len; 4595 } 4596 4597 static struct md_sysfs_entry md_new_device = 4598 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4599 4600 static ssize_t 4601 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4602 { 4603 char *end; 4604 unsigned long chunk, end_chunk; 4605 int err; 4606 4607 err = mddev_lock(mddev); 4608 if (err) 4609 return err; 4610 if (!mddev->bitmap) 4611 goto out; 4612 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4613 while (*buf) { 4614 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4615 if (buf == end) break; 4616 if (*end == '-') { /* range */ 4617 buf = end + 1; 4618 end_chunk = simple_strtoul(buf, &end, 0); 4619 if (buf == end) break; 4620 } 4621 if (*end && !isspace(*end)) break; 4622 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4623 buf = skip_spaces(end); 4624 } 4625 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4626 out: 4627 mddev_unlock(mddev); 4628 return len; 4629 } 4630 4631 static struct md_sysfs_entry md_bitmap = 4632 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4633 4634 static ssize_t 4635 size_show(struct mddev *mddev, char *page) 4636 { 4637 return sprintf(page, "%llu\n", 4638 (unsigned long long)mddev->dev_sectors / 2); 4639 } 4640 4641 static int update_size(struct mddev *mddev, sector_t num_sectors); 4642 4643 static ssize_t 4644 size_store(struct mddev *mddev, const char *buf, size_t len) 4645 { 4646 /* If array is inactive, we can reduce the component size, but 4647 * not increase it (except from 0). 4648 * If array is active, we can try an on-line resize 4649 */ 4650 sector_t sectors; 4651 int err = strict_blocks_to_sectors(buf, §ors); 4652 4653 if (err < 0) 4654 return err; 4655 err = mddev_lock(mddev); 4656 if (err) 4657 return err; 4658 if (mddev->pers) { 4659 err = update_size(mddev, sectors); 4660 if (err == 0) 4661 md_update_sb(mddev, 1); 4662 } else { 4663 if (mddev->dev_sectors == 0 || 4664 mddev->dev_sectors > sectors) 4665 mddev->dev_sectors = sectors; 4666 else 4667 err = -ENOSPC; 4668 } 4669 mddev_unlock(mddev); 4670 return err ? err : len; 4671 } 4672 4673 static struct md_sysfs_entry md_size = 4674 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4675 4676 /* Metadata version. 4677 * This is one of 4678 * 'none' for arrays with no metadata (good luck...) 4679 * 'external' for arrays with externally managed metadata, 4680 * or N.M for internally known formats 4681 */ 4682 static ssize_t 4683 metadata_show(struct mddev *mddev, char *page) 4684 { 4685 if (mddev->persistent) 4686 return sprintf(page, "%d.%d\n", 4687 mddev->major_version, mddev->minor_version); 4688 else if (mddev->external) 4689 return sprintf(page, "external:%s\n", mddev->metadata_type); 4690 else 4691 return sprintf(page, "none\n"); 4692 } 4693 4694 static ssize_t 4695 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4696 { 4697 int major, minor; 4698 char *e; 4699 int err; 4700 /* Changing the details of 'external' metadata is 4701 * always permitted. Otherwise there must be 4702 * no devices attached to the array. 4703 */ 4704 4705 err = mddev_lock(mddev); 4706 if (err) 4707 return err; 4708 err = -EBUSY; 4709 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4710 ; 4711 else if (!list_empty(&mddev->disks)) 4712 goto out_unlock; 4713 4714 err = 0; 4715 if (cmd_match(buf, "none")) { 4716 mddev->persistent = 0; 4717 mddev->external = 0; 4718 mddev->major_version = 0; 4719 mddev->minor_version = 90; 4720 goto out_unlock; 4721 } 4722 if (strncmp(buf, "external:", 9) == 0) { 4723 size_t namelen = len-9; 4724 if (namelen >= sizeof(mddev->metadata_type)) 4725 namelen = sizeof(mddev->metadata_type)-1; 4726 strncpy(mddev->metadata_type, buf+9, namelen); 4727 mddev->metadata_type[namelen] = 0; 4728 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4729 mddev->metadata_type[--namelen] = 0; 4730 mddev->persistent = 0; 4731 mddev->external = 1; 4732 mddev->major_version = 0; 4733 mddev->minor_version = 90; 4734 goto out_unlock; 4735 } 4736 major = simple_strtoul(buf, &e, 10); 4737 err = -EINVAL; 4738 if (e==buf || *e != '.') 4739 goto out_unlock; 4740 buf = e+1; 4741 minor = simple_strtoul(buf, &e, 10); 4742 if (e==buf || (*e && *e != '\n') ) 4743 goto out_unlock; 4744 err = -ENOENT; 4745 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4746 goto out_unlock; 4747 mddev->major_version = major; 4748 mddev->minor_version = minor; 4749 mddev->persistent = 1; 4750 mddev->external = 0; 4751 err = 0; 4752 out_unlock: 4753 mddev_unlock(mddev); 4754 return err ?: len; 4755 } 4756 4757 static struct md_sysfs_entry md_metadata = 4758 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4759 4760 static ssize_t 4761 action_show(struct mddev *mddev, char *page) 4762 { 4763 char *type = "idle"; 4764 unsigned long recovery = mddev->recovery; 4765 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4766 type = "frozen"; 4767 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4768 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4769 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4770 type = "reshape"; 4771 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4772 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4773 type = "resync"; 4774 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4775 type = "check"; 4776 else 4777 type = "repair"; 4778 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4779 type = "recover"; 4780 else if (mddev->reshape_position != MaxSector) 4781 type = "reshape"; 4782 } 4783 return sprintf(page, "%s\n", type); 4784 } 4785 4786 static ssize_t 4787 action_store(struct mddev *mddev, const char *page, size_t len) 4788 { 4789 if (!mddev->pers || !mddev->pers->sync_request) 4790 return -EINVAL; 4791 4792 4793 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) { 4794 if (cmd_match(page, "frozen")) 4795 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4796 else 4797 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4798 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 4799 mddev_lock(mddev) == 0) { 4800 if (work_pending(&mddev->del_work)) 4801 flush_workqueue(md_misc_wq); 4802 if (mddev->sync_thread) { 4803 sector_t save_rp = mddev->reshape_position; 4804 4805 mddev_unlock(mddev); 4806 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4807 md_unregister_thread(&mddev->sync_thread); 4808 mddev_lock_nointr(mddev); 4809 /* 4810 * set RECOVERY_INTR again and restore reshape 4811 * position in case others changed them after 4812 * got lock, eg, reshape_position_store and 4813 * md_check_recovery. 4814 */ 4815 mddev->reshape_position = save_rp; 4816 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4817 md_reap_sync_thread(mddev); 4818 } 4819 mddev_unlock(mddev); 4820 } 4821 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4822 return -EBUSY; 4823 else if (cmd_match(page, "resync")) 4824 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4825 else if (cmd_match(page, "recover")) { 4826 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4827 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4828 } else if (cmd_match(page, "reshape")) { 4829 int err; 4830 if (mddev->pers->start_reshape == NULL) 4831 return -EINVAL; 4832 err = mddev_lock(mddev); 4833 if (!err) { 4834 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4835 err = -EBUSY; 4836 else { 4837 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4838 err = mddev->pers->start_reshape(mddev); 4839 } 4840 mddev_unlock(mddev); 4841 } 4842 if (err) 4843 return err; 4844 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4845 } else { 4846 if (cmd_match(page, "check")) 4847 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4848 else if (!cmd_match(page, "repair")) 4849 return -EINVAL; 4850 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4851 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4852 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4853 } 4854 if (mddev->ro == 2) { 4855 /* A write to sync_action is enough to justify 4856 * canceling read-auto mode 4857 */ 4858 mddev->ro = 0; 4859 md_wakeup_thread(mddev->sync_thread); 4860 } 4861 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4862 md_wakeup_thread(mddev->thread); 4863 sysfs_notify_dirent_safe(mddev->sysfs_action); 4864 return len; 4865 } 4866 4867 static struct md_sysfs_entry md_scan_mode = 4868 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4869 4870 static ssize_t 4871 last_sync_action_show(struct mddev *mddev, char *page) 4872 { 4873 return sprintf(page, "%s\n", mddev->last_sync_action); 4874 } 4875 4876 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4877 4878 static ssize_t 4879 mismatch_cnt_show(struct mddev *mddev, char *page) 4880 { 4881 return sprintf(page, "%llu\n", 4882 (unsigned long long) 4883 atomic64_read(&mddev->resync_mismatches)); 4884 } 4885 4886 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4887 4888 static ssize_t 4889 sync_min_show(struct mddev *mddev, char *page) 4890 { 4891 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4892 mddev->sync_speed_min ? "local": "system"); 4893 } 4894 4895 static ssize_t 4896 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4897 { 4898 unsigned int min; 4899 int rv; 4900 4901 if (strncmp(buf, "system", 6)==0) { 4902 min = 0; 4903 } else { 4904 rv = kstrtouint(buf, 10, &min); 4905 if (rv < 0) 4906 return rv; 4907 if (min == 0) 4908 return -EINVAL; 4909 } 4910 mddev->sync_speed_min = min; 4911 return len; 4912 } 4913 4914 static struct md_sysfs_entry md_sync_min = 4915 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4916 4917 static ssize_t 4918 sync_max_show(struct mddev *mddev, char *page) 4919 { 4920 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4921 mddev->sync_speed_max ? "local": "system"); 4922 } 4923 4924 static ssize_t 4925 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4926 { 4927 unsigned int max; 4928 int rv; 4929 4930 if (strncmp(buf, "system", 6)==0) { 4931 max = 0; 4932 } else { 4933 rv = kstrtouint(buf, 10, &max); 4934 if (rv < 0) 4935 return rv; 4936 if (max == 0) 4937 return -EINVAL; 4938 } 4939 mddev->sync_speed_max = max; 4940 return len; 4941 } 4942 4943 static struct md_sysfs_entry md_sync_max = 4944 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 4945 4946 static ssize_t 4947 degraded_show(struct mddev *mddev, char *page) 4948 { 4949 return sprintf(page, "%d\n", mddev->degraded); 4950 } 4951 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 4952 4953 static ssize_t 4954 sync_force_parallel_show(struct mddev *mddev, char *page) 4955 { 4956 return sprintf(page, "%d\n", mddev->parallel_resync); 4957 } 4958 4959 static ssize_t 4960 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 4961 { 4962 long n; 4963 4964 if (kstrtol(buf, 10, &n)) 4965 return -EINVAL; 4966 4967 if (n != 0 && n != 1) 4968 return -EINVAL; 4969 4970 mddev->parallel_resync = n; 4971 4972 if (mddev->sync_thread) 4973 wake_up(&resync_wait); 4974 4975 return len; 4976 } 4977 4978 /* force parallel resync, even with shared block devices */ 4979 static struct md_sysfs_entry md_sync_force_parallel = 4980 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 4981 sync_force_parallel_show, sync_force_parallel_store); 4982 4983 static ssize_t 4984 sync_speed_show(struct mddev *mddev, char *page) 4985 { 4986 unsigned long resync, dt, db; 4987 if (mddev->curr_resync == MD_RESYNC_NONE) 4988 return sprintf(page, "none\n"); 4989 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 4990 dt = (jiffies - mddev->resync_mark) / HZ; 4991 if (!dt) dt++; 4992 db = resync - mddev->resync_mark_cnt; 4993 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 4994 } 4995 4996 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 4997 4998 static ssize_t 4999 sync_completed_show(struct mddev *mddev, char *page) 5000 { 5001 unsigned long long max_sectors, resync; 5002 5003 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5004 return sprintf(page, "none\n"); 5005 5006 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5007 mddev->curr_resync == MD_RESYNC_DELAYED) 5008 return sprintf(page, "delayed\n"); 5009 5010 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5011 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5012 max_sectors = mddev->resync_max_sectors; 5013 else 5014 max_sectors = mddev->dev_sectors; 5015 5016 resync = mddev->curr_resync_completed; 5017 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5018 } 5019 5020 static struct md_sysfs_entry md_sync_completed = 5021 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5022 5023 static ssize_t 5024 min_sync_show(struct mddev *mddev, char *page) 5025 { 5026 return sprintf(page, "%llu\n", 5027 (unsigned long long)mddev->resync_min); 5028 } 5029 static ssize_t 5030 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5031 { 5032 unsigned long long min; 5033 int err; 5034 5035 if (kstrtoull(buf, 10, &min)) 5036 return -EINVAL; 5037 5038 spin_lock(&mddev->lock); 5039 err = -EINVAL; 5040 if (min > mddev->resync_max) 5041 goto out_unlock; 5042 5043 err = -EBUSY; 5044 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5045 goto out_unlock; 5046 5047 /* Round down to multiple of 4K for safety */ 5048 mddev->resync_min = round_down(min, 8); 5049 err = 0; 5050 5051 out_unlock: 5052 spin_unlock(&mddev->lock); 5053 return err ?: len; 5054 } 5055 5056 static struct md_sysfs_entry md_min_sync = 5057 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5058 5059 static ssize_t 5060 max_sync_show(struct mddev *mddev, char *page) 5061 { 5062 if (mddev->resync_max == MaxSector) 5063 return sprintf(page, "max\n"); 5064 else 5065 return sprintf(page, "%llu\n", 5066 (unsigned long long)mddev->resync_max); 5067 } 5068 static ssize_t 5069 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5070 { 5071 int err; 5072 spin_lock(&mddev->lock); 5073 if (strncmp(buf, "max", 3) == 0) 5074 mddev->resync_max = MaxSector; 5075 else { 5076 unsigned long long max; 5077 int chunk; 5078 5079 err = -EINVAL; 5080 if (kstrtoull(buf, 10, &max)) 5081 goto out_unlock; 5082 if (max < mddev->resync_min) 5083 goto out_unlock; 5084 5085 err = -EBUSY; 5086 if (max < mddev->resync_max && 5087 mddev->ro == 0 && 5088 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5089 goto out_unlock; 5090 5091 /* Must be a multiple of chunk_size */ 5092 chunk = mddev->chunk_sectors; 5093 if (chunk) { 5094 sector_t temp = max; 5095 5096 err = -EINVAL; 5097 if (sector_div(temp, chunk)) 5098 goto out_unlock; 5099 } 5100 mddev->resync_max = max; 5101 } 5102 wake_up(&mddev->recovery_wait); 5103 err = 0; 5104 out_unlock: 5105 spin_unlock(&mddev->lock); 5106 return err ?: len; 5107 } 5108 5109 static struct md_sysfs_entry md_max_sync = 5110 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5111 5112 static ssize_t 5113 suspend_lo_show(struct mddev *mddev, char *page) 5114 { 5115 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5116 } 5117 5118 static ssize_t 5119 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5120 { 5121 unsigned long long new; 5122 int err; 5123 5124 err = kstrtoull(buf, 10, &new); 5125 if (err < 0) 5126 return err; 5127 if (new != (sector_t)new) 5128 return -EINVAL; 5129 5130 err = mddev_lock(mddev); 5131 if (err) 5132 return err; 5133 err = -EINVAL; 5134 if (mddev->pers == NULL || 5135 mddev->pers->quiesce == NULL) 5136 goto unlock; 5137 mddev_suspend(mddev); 5138 mddev->suspend_lo = new; 5139 mddev_resume(mddev); 5140 5141 err = 0; 5142 unlock: 5143 mddev_unlock(mddev); 5144 return err ?: len; 5145 } 5146 static struct md_sysfs_entry md_suspend_lo = 5147 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5148 5149 static ssize_t 5150 suspend_hi_show(struct mddev *mddev, char *page) 5151 { 5152 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5153 } 5154 5155 static ssize_t 5156 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5157 { 5158 unsigned long long new; 5159 int err; 5160 5161 err = kstrtoull(buf, 10, &new); 5162 if (err < 0) 5163 return err; 5164 if (new != (sector_t)new) 5165 return -EINVAL; 5166 5167 err = mddev_lock(mddev); 5168 if (err) 5169 return err; 5170 err = -EINVAL; 5171 if (mddev->pers == NULL) 5172 goto unlock; 5173 5174 mddev_suspend(mddev); 5175 mddev->suspend_hi = new; 5176 mddev_resume(mddev); 5177 5178 err = 0; 5179 unlock: 5180 mddev_unlock(mddev); 5181 return err ?: len; 5182 } 5183 static struct md_sysfs_entry md_suspend_hi = 5184 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5185 5186 static ssize_t 5187 reshape_position_show(struct mddev *mddev, char *page) 5188 { 5189 if (mddev->reshape_position != MaxSector) 5190 return sprintf(page, "%llu\n", 5191 (unsigned long long)mddev->reshape_position); 5192 strcpy(page, "none\n"); 5193 return 5; 5194 } 5195 5196 static ssize_t 5197 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5198 { 5199 struct md_rdev *rdev; 5200 unsigned long long new; 5201 int err; 5202 5203 err = kstrtoull(buf, 10, &new); 5204 if (err < 0) 5205 return err; 5206 if (new != (sector_t)new) 5207 return -EINVAL; 5208 err = mddev_lock(mddev); 5209 if (err) 5210 return err; 5211 err = -EBUSY; 5212 if (mddev->pers) 5213 goto unlock; 5214 mddev->reshape_position = new; 5215 mddev->delta_disks = 0; 5216 mddev->reshape_backwards = 0; 5217 mddev->new_level = mddev->level; 5218 mddev->new_layout = mddev->layout; 5219 mddev->new_chunk_sectors = mddev->chunk_sectors; 5220 rdev_for_each(rdev, mddev) 5221 rdev->new_data_offset = rdev->data_offset; 5222 err = 0; 5223 unlock: 5224 mddev_unlock(mddev); 5225 return err ?: len; 5226 } 5227 5228 static struct md_sysfs_entry md_reshape_position = 5229 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5230 reshape_position_store); 5231 5232 static ssize_t 5233 reshape_direction_show(struct mddev *mddev, char *page) 5234 { 5235 return sprintf(page, "%s\n", 5236 mddev->reshape_backwards ? "backwards" : "forwards"); 5237 } 5238 5239 static ssize_t 5240 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5241 { 5242 int backwards = 0; 5243 int err; 5244 5245 if (cmd_match(buf, "forwards")) 5246 backwards = 0; 5247 else if (cmd_match(buf, "backwards")) 5248 backwards = 1; 5249 else 5250 return -EINVAL; 5251 if (mddev->reshape_backwards == backwards) 5252 return len; 5253 5254 err = mddev_lock(mddev); 5255 if (err) 5256 return err; 5257 /* check if we are allowed to change */ 5258 if (mddev->delta_disks) 5259 err = -EBUSY; 5260 else if (mddev->persistent && 5261 mddev->major_version == 0) 5262 err = -EINVAL; 5263 else 5264 mddev->reshape_backwards = backwards; 5265 mddev_unlock(mddev); 5266 return err ?: len; 5267 } 5268 5269 static struct md_sysfs_entry md_reshape_direction = 5270 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5271 reshape_direction_store); 5272 5273 static ssize_t 5274 array_size_show(struct mddev *mddev, char *page) 5275 { 5276 if (mddev->external_size) 5277 return sprintf(page, "%llu\n", 5278 (unsigned long long)mddev->array_sectors/2); 5279 else 5280 return sprintf(page, "default\n"); 5281 } 5282 5283 static ssize_t 5284 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5285 { 5286 sector_t sectors; 5287 int err; 5288 5289 err = mddev_lock(mddev); 5290 if (err) 5291 return err; 5292 5293 /* cluster raid doesn't support change array_sectors */ 5294 if (mddev_is_clustered(mddev)) { 5295 mddev_unlock(mddev); 5296 return -EINVAL; 5297 } 5298 5299 if (strncmp(buf, "default", 7) == 0) { 5300 if (mddev->pers) 5301 sectors = mddev->pers->size(mddev, 0, 0); 5302 else 5303 sectors = mddev->array_sectors; 5304 5305 mddev->external_size = 0; 5306 } else { 5307 if (strict_blocks_to_sectors(buf, §ors) < 0) 5308 err = -EINVAL; 5309 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5310 err = -E2BIG; 5311 else 5312 mddev->external_size = 1; 5313 } 5314 5315 if (!err) { 5316 mddev->array_sectors = sectors; 5317 if (mddev->pers) 5318 set_capacity_and_notify(mddev->gendisk, 5319 mddev->array_sectors); 5320 } 5321 mddev_unlock(mddev); 5322 return err ?: len; 5323 } 5324 5325 static struct md_sysfs_entry md_array_size = 5326 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5327 array_size_store); 5328 5329 static ssize_t 5330 consistency_policy_show(struct mddev *mddev, char *page) 5331 { 5332 int ret; 5333 5334 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5335 ret = sprintf(page, "journal\n"); 5336 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5337 ret = sprintf(page, "ppl\n"); 5338 } else if (mddev->bitmap) { 5339 ret = sprintf(page, "bitmap\n"); 5340 } else if (mddev->pers) { 5341 if (mddev->pers->sync_request) 5342 ret = sprintf(page, "resync\n"); 5343 else 5344 ret = sprintf(page, "none\n"); 5345 } else { 5346 ret = sprintf(page, "unknown\n"); 5347 } 5348 5349 return ret; 5350 } 5351 5352 static ssize_t 5353 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5354 { 5355 int err = 0; 5356 5357 if (mddev->pers) { 5358 if (mddev->pers->change_consistency_policy) 5359 err = mddev->pers->change_consistency_policy(mddev, buf); 5360 else 5361 err = -EBUSY; 5362 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5363 set_bit(MD_HAS_PPL, &mddev->flags); 5364 } else { 5365 err = -EINVAL; 5366 } 5367 5368 return err ? err : len; 5369 } 5370 5371 static struct md_sysfs_entry md_consistency_policy = 5372 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5373 consistency_policy_store); 5374 5375 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5376 { 5377 return sprintf(page, "%d\n", mddev->fail_last_dev); 5378 } 5379 5380 /* 5381 * Setting fail_last_dev to true to allow last device to be forcibly removed 5382 * from RAID1/RAID10. 5383 */ 5384 static ssize_t 5385 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5386 { 5387 int ret; 5388 bool value; 5389 5390 ret = kstrtobool(buf, &value); 5391 if (ret) 5392 return ret; 5393 5394 if (value != mddev->fail_last_dev) 5395 mddev->fail_last_dev = value; 5396 5397 return len; 5398 } 5399 static struct md_sysfs_entry md_fail_last_dev = 5400 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5401 fail_last_dev_store); 5402 5403 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5404 { 5405 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5406 return sprintf(page, "n/a\n"); 5407 else 5408 return sprintf(page, "%d\n", mddev->serialize_policy); 5409 } 5410 5411 /* 5412 * Setting serialize_policy to true to enforce write IO is not reordered 5413 * for raid1. 5414 */ 5415 static ssize_t 5416 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5417 { 5418 int err; 5419 bool value; 5420 5421 err = kstrtobool(buf, &value); 5422 if (err) 5423 return err; 5424 5425 if (value == mddev->serialize_policy) 5426 return len; 5427 5428 err = mddev_lock(mddev); 5429 if (err) 5430 return err; 5431 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5432 pr_err("md: serialize_policy is only effective for raid1\n"); 5433 err = -EINVAL; 5434 goto unlock; 5435 } 5436 5437 mddev_suspend(mddev); 5438 if (value) 5439 mddev_create_serial_pool(mddev, NULL, true); 5440 else 5441 mddev_destroy_serial_pool(mddev, NULL, true); 5442 mddev->serialize_policy = value; 5443 mddev_resume(mddev); 5444 unlock: 5445 mddev_unlock(mddev); 5446 return err ?: len; 5447 } 5448 5449 static struct md_sysfs_entry md_serialize_policy = 5450 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5451 serialize_policy_store); 5452 5453 5454 static struct attribute *md_default_attrs[] = { 5455 &md_level.attr, 5456 &md_layout.attr, 5457 &md_raid_disks.attr, 5458 &md_uuid.attr, 5459 &md_chunk_size.attr, 5460 &md_size.attr, 5461 &md_resync_start.attr, 5462 &md_metadata.attr, 5463 &md_new_device.attr, 5464 &md_safe_delay.attr, 5465 &md_array_state.attr, 5466 &md_reshape_position.attr, 5467 &md_reshape_direction.attr, 5468 &md_array_size.attr, 5469 &max_corr_read_errors.attr, 5470 &md_consistency_policy.attr, 5471 &md_fail_last_dev.attr, 5472 &md_serialize_policy.attr, 5473 NULL, 5474 }; 5475 5476 static const struct attribute_group md_default_group = { 5477 .attrs = md_default_attrs, 5478 }; 5479 5480 static struct attribute *md_redundancy_attrs[] = { 5481 &md_scan_mode.attr, 5482 &md_last_scan_mode.attr, 5483 &md_mismatches.attr, 5484 &md_sync_min.attr, 5485 &md_sync_max.attr, 5486 &md_sync_speed.attr, 5487 &md_sync_force_parallel.attr, 5488 &md_sync_completed.attr, 5489 &md_min_sync.attr, 5490 &md_max_sync.attr, 5491 &md_suspend_lo.attr, 5492 &md_suspend_hi.attr, 5493 &md_bitmap.attr, 5494 &md_degraded.attr, 5495 NULL, 5496 }; 5497 static const struct attribute_group md_redundancy_group = { 5498 .name = NULL, 5499 .attrs = md_redundancy_attrs, 5500 }; 5501 5502 static const struct attribute_group *md_attr_groups[] = { 5503 &md_default_group, 5504 &md_bitmap_group, 5505 NULL, 5506 }; 5507 5508 static ssize_t 5509 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5510 { 5511 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5512 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5513 ssize_t rv; 5514 5515 if (!entry->show) 5516 return -EIO; 5517 spin_lock(&all_mddevs_lock); 5518 if (!mddev_get(mddev)) { 5519 spin_unlock(&all_mddevs_lock); 5520 return -EBUSY; 5521 } 5522 spin_unlock(&all_mddevs_lock); 5523 5524 rv = entry->show(mddev, page); 5525 mddev_put(mddev); 5526 return rv; 5527 } 5528 5529 static ssize_t 5530 md_attr_store(struct kobject *kobj, struct attribute *attr, 5531 const char *page, size_t length) 5532 { 5533 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5534 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5535 ssize_t rv; 5536 5537 if (!entry->store) 5538 return -EIO; 5539 if (!capable(CAP_SYS_ADMIN)) 5540 return -EACCES; 5541 spin_lock(&all_mddevs_lock); 5542 if (!mddev_get(mddev)) { 5543 spin_unlock(&all_mddevs_lock); 5544 return -EBUSY; 5545 } 5546 spin_unlock(&all_mddevs_lock); 5547 rv = entry->store(mddev, page, length); 5548 mddev_put(mddev); 5549 return rv; 5550 } 5551 5552 static void md_kobj_release(struct kobject *ko) 5553 { 5554 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5555 5556 if (mddev->sysfs_state) 5557 sysfs_put(mddev->sysfs_state); 5558 if (mddev->sysfs_level) 5559 sysfs_put(mddev->sysfs_level); 5560 5561 del_gendisk(mddev->gendisk); 5562 put_disk(mddev->gendisk); 5563 } 5564 5565 static const struct sysfs_ops md_sysfs_ops = { 5566 .show = md_attr_show, 5567 .store = md_attr_store, 5568 }; 5569 static struct kobj_type md_ktype = { 5570 .release = md_kobj_release, 5571 .sysfs_ops = &md_sysfs_ops, 5572 .default_groups = md_attr_groups, 5573 }; 5574 5575 int mdp_major = 0; 5576 5577 static void mddev_delayed_delete(struct work_struct *ws) 5578 { 5579 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5580 5581 kobject_put(&mddev->kobj); 5582 } 5583 5584 static void no_op(struct percpu_ref *r) {} 5585 5586 int mddev_init_writes_pending(struct mddev *mddev) 5587 { 5588 if (mddev->writes_pending.percpu_count_ptr) 5589 return 0; 5590 if (percpu_ref_init(&mddev->writes_pending, no_op, 5591 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5592 return -ENOMEM; 5593 /* We want to start with the refcount at zero */ 5594 percpu_ref_put(&mddev->writes_pending); 5595 return 0; 5596 } 5597 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5598 5599 struct mddev *md_alloc(dev_t dev, char *name) 5600 { 5601 /* 5602 * If dev is zero, name is the name of a device to allocate with 5603 * an arbitrary minor number. It will be "md_???" 5604 * If dev is non-zero it must be a device number with a MAJOR of 5605 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5606 * the device is being created by opening a node in /dev. 5607 * If "name" is not NULL, the device is being created by 5608 * writing to /sys/module/md_mod/parameters/new_array. 5609 */ 5610 static DEFINE_MUTEX(disks_mutex); 5611 struct mddev *mddev; 5612 struct gendisk *disk; 5613 int partitioned; 5614 int shift; 5615 int unit; 5616 int error ; 5617 5618 /* 5619 * Wait for any previous instance of this device to be completely 5620 * removed (mddev_delayed_delete). 5621 */ 5622 flush_workqueue(md_misc_wq); 5623 flush_workqueue(md_rdev_misc_wq); 5624 5625 mutex_lock(&disks_mutex); 5626 mddev = mddev_alloc(dev); 5627 if (IS_ERR(mddev)) { 5628 error = PTR_ERR(mddev); 5629 goto out_unlock; 5630 } 5631 5632 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5633 shift = partitioned ? MdpMinorShift : 0; 5634 unit = MINOR(mddev->unit) >> shift; 5635 5636 if (name && !dev) { 5637 /* Need to ensure that 'name' is not a duplicate. 5638 */ 5639 struct mddev *mddev2; 5640 spin_lock(&all_mddevs_lock); 5641 5642 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5643 if (mddev2->gendisk && 5644 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5645 spin_unlock(&all_mddevs_lock); 5646 error = -EEXIST; 5647 goto out_free_mddev; 5648 } 5649 spin_unlock(&all_mddevs_lock); 5650 } 5651 if (name && dev) 5652 /* 5653 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5654 */ 5655 mddev->hold_active = UNTIL_STOP; 5656 5657 error = -ENOMEM; 5658 disk = blk_alloc_disk(NUMA_NO_NODE); 5659 if (!disk) 5660 goto out_free_mddev; 5661 5662 disk->major = MAJOR(mddev->unit); 5663 disk->first_minor = unit << shift; 5664 disk->minors = 1 << shift; 5665 if (name) 5666 strcpy(disk->disk_name, name); 5667 else if (partitioned) 5668 sprintf(disk->disk_name, "md_d%d", unit); 5669 else 5670 sprintf(disk->disk_name, "md%d", unit); 5671 disk->fops = &md_fops; 5672 disk->private_data = mddev; 5673 5674 mddev->queue = disk->queue; 5675 blk_set_stacking_limits(&mddev->queue->limits); 5676 blk_queue_write_cache(mddev->queue, true, true); 5677 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5678 mddev->gendisk = disk; 5679 error = add_disk(disk); 5680 if (error) 5681 goto out_put_disk; 5682 5683 kobject_init(&mddev->kobj, &md_ktype); 5684 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5685 if (error) { 5686 /* 5687 * The disk is already live at this point. Clear the hold flag 5688 * and let mddev_put take care of the deletion, as it isn't any 5689 * different from a normal close on last release now. 5690 */ 5691 mddev->hold_active = 0; 5692 mutex_unlock(&disks_mutex); 5693 mddev_put(mddev); 5694 return ERR_PTR(error); 5695 } 5696 5697 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5698 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5699 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5700 mutex_unlock(&disks_mutex); 5701 return mddev; 5702 5703 out_put_disk: 5704 put_disk(disk); 5705 out_free_mddev: 5706 mddev_free(mddev); 5707 out_unlock: 5708 mutex_unlock(&disks_mutex); 5709 return ERR_PTR(error); 5710 } 5711 5712 static int md_alloc_and_put(dev_t dev, char *name) 5713 { 5714 struct mddev *mddev = md_alloc(dev, name); 5715 5716 if (IS_ERR(mddev)) 5717 return PTR_ERR(mddev); 5718 mddev_put(mddev); 5719 return 0; 5720 } 5721 5722 static void md_probe(dev_t dev) 5723 { 5724 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5725 return; 5726 if (create_on_open) 5727 md_alloc_and_put(dev, NULL); 5728 } 5729 5730 static int add_named_array(const char *val, const struct kernel_param *kp) 5731 { 5732 /* 5733 * val must be "md_*" or "mdNNN". 5734 * For "md_*" we allocate an array with a large free minor number, and 5735 * set the name to val. val must not already be an active name. 5736 * For "mdNNN" we allocate an array with the minor number NNN 5737 * which must not already be in use. 5738 */ 5739 int len = strlen(val); 5740 char buf[DISK_NAME_LEN]; 5741 unsigned long devnum; 5742 5743 while (len && val[len-1] == '\n') 5744 len--; 5745 if (len >= DISK_NAME_LEN) 5746 return -E2BIG; 5747 strscpy(buf, val, len+1); 5748 if (strncmp(buf, "md_", 3) == 0) 5749 return md_alloc_and_put(0, buf); 5750 if (strncmp(buf, "md", 2) == 0 && 5751 isdigit(buf[2]) && 5752 kstrtoul(buf+2, 10, &devnum) == 0 && 5753 devnum <= MINORMASK) 5754 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5755 5756 return -EINVAL; 5757 } 5758 5759 static void md_safemode_timeout(struct timer_list *t) 5760 { 5761 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5762 5763 mddev->safemode = 1; 5764 if (mddev->external) 5765 sysfs_notify_dirent_safe(mddev->sysfs_state); 5766 5767 md_wakeup_thread(mddev->thread); 5768 } 5769 5770 static int start_dirty_degraded; 5771 5772 int md_run(struct mddev *mddev) 5773 { 5774 int err; 5775 struct md_rdev *rdev; 5776 struct md_personality *pers; 5777 bool nowait = true; 5778 5779 if (list_empty(&mddev->disks)) 5780 /* cannot run an array with no devices.. */ 5781 return -EINVAL; 5782 5783 if (mddev->pers) 5784 return -EBUSY; 5785 /* Cannot run until previous stop completes properly */ 5786 if (mddev->sysfs_active) 5787 return -EBUSY; 5788 5789 /* 5790 * Analyze all RAID superblock(s) 5791 */ 5792 if (!mddev->raid_disks) { 5793 if (!mddev->persistent) 5794 return -EINVAL; 5795 err = analyze_sbs(mddev); 5796 if (err) 5797 return -EINVAL; 5798 } 5799 5800 if (mddev->level != LEVEL_NONE) 5801 request_module("md-level-%d", mddev->level); 5802 else if (mddev->clevel[0]) 5803 request_module("md-%s", mddev->clevel); 5804 5805 /* 5806 * Drop all container device buffers, from now on 5807 * the only valid external interface is through the md 5808 * device. 5809 */ 5810 mddev->has_superblocks = false; 5811 rdev_for_each(rdev, mddev) { 5812 if (test_bit(Faulty, &rdev->flags)) 5813 continue; 5814 sync_blockdev(rdev->bdev); 5815 invalidate_bdev(rdev->bdev); 5816 if (mddev->ro != 1 && rdev_read_only(rdev)) { 5817 mddev->ro = 1; 5818 if (mddev->gendisk) 5819 set_disk_ro(mddev->gendisk, 1); 5820 } 5821 5822 if (rdev->sb_page) 5823 mddev->has_superblocks = true; 5824 5825 /* perform some consistency tests on the device. 5826 * We don't want the data to overlap the metadata, 5827 * Internal Bitmap issues have been handled elsewhere. 5828 */ 5829 if (rdev->meta_bdev) { 5830 /* Nothing to check */; 5831 } else if (rdev->data_offset < rdev->sb_start) { 5832 if (mddev->dev_sectors && 5833 rdev->data_offset + mddev->dev_sectors 5834 > rdev->sb_start) { 5835 pr_warn("md: %s: data overlaps metadata\n", 5836 mdname(mddev)); 5837 return -EINVAL; 5838 } 5839 } else { 5840 if (rdev->sb_start + rdev->sb_size/512 5841 > rdev->data_offset) { 5842 pr_warn("md: %s: metadata overlaps data\n", 5843 mdname(mddev)); 5844 return -EINVAL; 5845 } 5846 } 5847 sysfs_notify_dirent_safe(rdev->sysfs_state); 5848 nowait = nowait && blk_queue_nowait(bdev_get_queue(rdev->bdev)); 5849 } 5850 5851 if (!bioset_initialized(&mddev->bio_set)) { 5852 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5853 if (err) 5854 return err; 5855 } 5856 if (!bioset_initialized(&mddev->sync_set)) { 5857 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5858 if (err) 5859 goto exit_bio_set; 5860 } 5861 5862 spin_lock(&pers_lock); 5863 pers = find_pers(mddev->level, mddev->clevel); 5864 if (!pers || !try_module_get(pers->owner)) { 5865 spin_unlock(&pers_lock); 5866 if (mddev->level != LEVEL_NONE) 5867 pr_warn("md: personality for level %d is not loaded!\n", 5868 mddev->level); 5869 else 5870 pr_warn("md: personality for level %s is not loaded!\n", 5871 mddev->clevel); 5872 err = -EINVAL; 5873 goto abort; 5874 } 5875 spin_unlock(&pers_lock); 5876 if (mddev->level != pers->level) { 5877 mddev->level = pers->level; 5878 mddev->new_level = pers->level; 5879 } 5880 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5881 5882 if (mddev->reshape_position != MaxSector && 5883 pers->start_reshape == NULL) { 5884 /* This personality cannot handle reshaping... */ 5885 module_put(pers->owner); 5886 err = -EINVAL; 5887 goto abort; 5888 } 5889 5890 if (pers->sync_request) { 5891 /* Warn if this is a potentially silly 5892 * configuration. 5893 */ 5894 struct md_rdev *rdev2; 5895 int warned = 0; 5896 5897 rdev_for_each(rdev, mddev) 5898 rdev_for_each(rdev2, mddev) { 5899 if (rdev < rdev2 && 5900 rdev->bdev->bd_disk == 5901 rdev2->bdev->bd_disk) { 5902 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5903 mdname(mddev), 5904 rdev->bdev, 5905 rdev2->bdev); 5906 warned = 1; 5907 } 5908 } 5909 5910 if (warned) 5911 pr_warn("True protection against single-disk failure might be compromised.\n"); 5912 } 5913 5914 mddev->recovery = 0; 5915 /* may be over-ridden by personality */ 5916 mddev->resync_max_sectors = mddev->dev_sectors; 5917 5918 mddev->ok_start_degraded = start_dirty_degraded; 5919 5920 if (start_readonly && mddev->ro == 0) 5921 mddev->ro = 2; /* read-only, but switch on first write */ 5922 5923 err = pers->run(mddev); 5924 if (err) 5925 pr_warn("md: pers->run() failed ...\n"); 5926 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 5927 WARN_ONCE(!mddev->external_size, 5928 "%s: default size too small, but 'external_size' not in effect?\n", 5929 __func__); 5930 pr_warn("md: invalid array_size %llu > default size %llu\n", 5931 (unsigned long long)mddev->array_sectors / 2, 5932 (unsigned long long)pers->size(mddev, 0, 0) / 2); 5933 err = -EINVAL; 5934 } 5935 if (err == 0 && pers->sync_request && 5936 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 5937 struct bitmap *bitmap; 5938 5939 bitmap = md_bitmap_create(mddev, -1); 5940 if (IS_ERR(bitmap)) { 5941 err = PTR_ERR(bitmap); 5942 pr_warn("%s: failed to create bitmap (%d)\n", 5943 mdname(mddev), err); 5944 } else 5945 mddev->bitmap = bitmap; 5946 5947 } 5948 if (err) 5949 goto bitmap_abort; 5950 5951 if (mddev->bitmap_info.max_write_behind > 0) { 5952 bool create_pool = false; 5953 5954 rdev_for_each(rdev, mddev) { 5955 if (test_bit(WriteMostly, &rdev->flags) && 5956 rdev_init_serial(rdev)) 5957 create_pool = true; 5958 } 5959 if (create_pool && mddev->serial_info_pool == NULL) { 5960 mddev->serial_info_pool = 5961 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 5962 sizeof(struct serial_info)); 5963 if (!mddev->serial_info_pool) { 5964 err = -ENOMEM; 5965 goto bitmap_abort; 5966 } 5967 } 5968 } 5969 5970 if (mddev->queue) { 5971 bool nonrot = true; 5972 5973 rdev_for_each(rdev, mddev) { 5974 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 5975 nonrot = false; 5976 break; 5977 } 5978 } 5979 if (mddev->degraded) 5980 nonrot = false; 5981 if (nonrot) 5982 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 5983 else 5984 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 5985 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 5986 5987 /* Set the NOWAIT flags if all underlying devices support it */ 5988 if (nowait) 5989 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 5990 } 5991 if (pers->sync_request) { 5992 if (mddev->kobj.sd && 5993 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 5994 pr_warn("md: cannot register extra attributes for %s\n", 5995 mdname(mddev)); 5996 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 5997 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 5998 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 5999 } else if (mddev->ro == 2) /* auto-readonly not meaningful */ 6000 mddev->ro = 0; 6001 6002 atomic_set(&mddev->max_corr_read_errors, 6003 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6004 mddev->safemode = 0; 6005 if (mddev_is_clustered(mddev)) 6006 mddev->safemode_delay = 0; 6007 else 6008 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6009 mddev->in_sync = 1; 6010 smp_wmb(); 6011 spin_lock(&mddev->lock); 6012 mddev->pers = pers; 6013 spin_unlock(&mddev->lock); 6014 rdev_for_each(rdev, mddev) 6015 if (rdev->raid_disk >= 0) 6016 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6017 6018 if (mddev->degraded && !mddev->ro) 6019 /* This ensures that recovering status is reported immediately 6020 * via sysfs - until a lack of spares is confirmed. 6021 */ 6022 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6023 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6024 6025 if (mddev->sb_flags) 6026 md_update_sb(mddev, 0); 6027 6028 md_new_event(); 6029 return 0; 6030 6031 bitmap_abort: 6032 mddev_detach(mddev); 6033 if (mddev->private) 6034 pers->free(mddev, mddev->private); 6035 mddev->private = NULL; 6036 module_put(pers->owner); 6037 md_bitmap_destroy(mddev); 6038 abort: 6039 bioset_exit(&mddev->sync_set); 6040 exit_bio_set: 6041 bioset_exit(&mddev->bio_set); 6042 return err; 6043 } 6044 EXPORT_SYMBOL_GPL(md_run); 6045 6046 int do_md_run(struct mddev *mddev) 6047 { 6048 int err; 6049 6050 set_bit(MD_NOT_READY, &mddev->flags); 6051 err = md_run(mddev); 6052 if (err) 6053 goto out; 6054 err = md_bitmap_load(mddev); 6055 if (err) { 6056 md_bitmap_destroy(mddev); 6057 goto out; 6058 } 6059 6060 if (mddev_is_clustered(mddev)) 6061 md_allow_write(mddev); 6062 6063 /* run start up tasks that require md_thread */ 6064 md_start(mddev); 6065 6066 md_wakeup_thread(mddev->thread); 6067 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6068 6069 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6070 clear_bit(MD_NOT_READY, &mddev->flags); 6071 mddev->changed = 1; 6072 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6073 sysfs_notify_dirent_safe(mddev->sysfs_state); 6074 sysfs_notify_dirent_safe(mddev->sysfs_action); 6075 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6076 out: 6077 clear_bit(MD_NOT_READY, &mddev->flags); 6078 return err; 6079 } 6080 6081 int md_start(struct mddev *mddev) 6082 { 6083 int ret = 0; 6084 6085 if (mddev->pers->start) { 6086 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6087 md_wakeup_thread(mddev->thread); 6088 ret = mddev->pers->start(mddev); 6089 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6090 md_wakeup_thread(mddev->sync_thread); 6091 } 6092 return ret; 6093 } 6094 EXPORT_SYMBOL_GPL(md_start); 6095 6096 static int restart_array(struct mddev *mddev) 6097 { 6098 struct gendisk *disk = mddev->gendisk; 6099 struct md_rdev *rdev; 6100 bool has_journal = false; 6101 bool has_readonly = false; 6102 6103 /* Complain if it has no devices */ 6104 if (list_empty(&mddev->disks)) 6105 return -ENXIO; 6106 if (!mddev->pers) 6107 return -EINVAL; 6108 if (!mddev->ro) 6109 return -EBUSY; 6110 6111 rcu_read_lock(); 6112 rdev_for_each_rcu(rdev, mddev) { 6113 if (test_bit(Journal, &rdev->flags) && 6114 !test_bit(Faulty, &rdev->flags)) 6115 has_journal = true; 6116 if (rdev_read_only(rdev)) 6117 has_readonly = true; 6118 } 6119 rcu_read_unlock(); 6120 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6121 /* Don't restart rw with journal missing/faulty */ 6122 return -EINVAL; 6123 if (has_readonly) 6124 return -EROFS; 6125 6126 mddev->safemode = 0; 6127 mddev->ro = 0; 6128 set_disk_ro(disk, 0); 6129 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6130 /* Kick recovery or resync if necessary */ 6131 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6132 md_wakeup_thread(mddev->thread); 6133 md_wakeup_thread(mddev->sync_thread); 6134 sysfs_notify_dirent_safe(mddev->sysfs_state); 6135 return 0; 6136 } 6137 6138 static void md_clean(struct mddev *mddev) 6139 { 6140 mddev->array_sectors = 0; 6141 mddev->external_size = 0; 6142 mddev->dev_sectors = 0; 6143 mddev->raid_disks = 0; 6144 mddev->recovery_cp = 0; 6145 mddev->resync_min = 0; 6146 mddev->resync_max = MaxSector; 6147 mddev->reshape_position = MaxSector; 6148 mddev->external = 0; 6149 mddev->persistent = 0; 6150 mddev->level = LEVEL_NONE; 6151 mddev->clevel[0] = 0; 6152 mddev->flags = 0; 6153 mddev->sb_flags = 0; 6154 mddev->ro = 0; 6155 mddev->metadata_type[0] = 0; 6156 mddev->chunk_sectors = 0; 6157 mddev->ctime = mddev->utime = 0; 6158 mddev->layout = 0; 6159 mddev->max_disks = 0; 6160 mddev->events = 0; 6161 mddev->can_decrease_events = 0; 6162 mddev->delta_disks = 0; 6163 mddev->reshape_backwards = 0; 6164 mddev->new_level = LEVEL_NONE; 6165 mddev->new_layout = 0; 6166 mddev->new_chunk_sectors = 0; 6167 mddev->curr_resync = 0; 6168 atomic64_set(&mddev->resync_mismatches, 0); 6169 mddev->suspend_lo = mddev->suspend_hi = 0; 6170 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6171 mddev->recovery = 0; 6172 mddev->in_sync = 0; 6173 mddev->changed = 0; 6174 mddev->degraded = 0; 6175 mddev->safemode = 0; 6176 mddev->private = NULL; 6177 mddev->cluster_info = NULL; 6178 mddev->bitmap_info.offset = 0; 6179 mddev->bitmap_info.default_offset = 0; 6180 mddev->bitmap_info.default_space = 0; 6181 mddev->bitmap_info.chunksize = 0; 6182 mddev->bitmap_info.daemon_sleep = 0; 6183 mddev->bitmap_info.max_write_behind = 0; 6184 mddev->bitmap_info.nodes = 0; 6185 } 6186 6187 static void __md_stop_writes(struct mddev *mddev) 6188 { 6189 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6190 if (work_pending(&mddev->del_work)) 6191 flush_workqueue(md_misc_wq); 6192 if (mddev->sync_thread) { 6193 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6194 md_unregister_thread(&mddev->sync_thread); 6195 md_reap_sync_thread(mddev); 6196 } 6197 6198 del_timer_sync(&mddev->safemode_timer); 6199 6200 if (mddev->pers && mddev->pers->quiesce) { 6201 mddev->pers->quiesce(mddev, 1); 6202 mddev->pers->quiesce(mddev, 0); 6203 } 6204 md_bitmap_flush(mddev); 6205 6206 if (mddev->ro == 0 && 6207 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6208 mddev->sb_flags)) { 6209 /* mark array as shutdown cleanly */ 6210 if (!mddev_is_clustered(mddev)) 6211 mddev->in_sync = 1; 6212 md_update_sb(mddev, 1); 6213 } 6214 /* disable policy to guarantee rdevs free resources for serialization */ 6215 mddev->serialize_policy = 0; 6216 mddev_destroy_serial_pool(mddev, NULL, true); 6217 } 6218 6219 void md_stop_writes(struct mddev *mddev) 6220 { 6221 mddev_lock_nointr(mddev); 6222 __md_stop_writes(mddev); 6223 mddev_unlock(mddev); 6224 } 6225 EXPORT_SYMBOL_GPL(md_stop_writes); 6226 6227 static void mddev_detach(struct mddev *mddev) 6228 { 6229 md_bitmap_wait_behind_writes(mddev); 6230 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) { 6231 mddev->pers->quiesce(mddev, 1); 6232 mddev->pers->quiesce(mddev, 0); 6233 } 6234 md_unregister_thread(&mddev->thread); 6235 if (mddev->queue) 6236 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6237 } 6238 6239 static void __md_stop(struct mddev *mddev) 6240 { 6241 struct md_personality *pers = mddev->pers; 6242 md_bitmap_destroy(mddev); 6243 mddev_detach(mddev); 6244 /* Ensure ->event_work is done */ 6245 if (mddev->event_work.func) 6246 flush_workqueue(md_misc_wq); 6247 spin_lock(&mddev->lock); 6248 mddev->pers = NULL; 6249 spin_unlock(&mddev->lock); 6250 if (mddev->private) 6251 pers->free(mddev, mddev->private); 6252 mddev->private = NULL; 6253 if (pers->sync_request && mddev->to_remove == NULL) 6254 mddev->to_remove = &md_redundancy_group; 6255 module_put(pers->owner); 6256 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6257 } 6258 6259 void md_stop(struct mddev *mddev) 6260 { 6261 /* stop the array and free an attached data structures. 6262 * This is called from dm-raid 6263 */ 6264 __md_stop_writes(mddev); 6265 __md_stop(mddev); 6266 bioset_exit(&mddev->bio_set); 6267 bioset_exit(&mddev->sync_set); 6268 } 6269 6270 EXPORT_SYMBOL_GPL(md_stop); 6271 6272 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6273 { 6274 int err = 0; 6275 int did_freeze = 0; 6276 6277 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6278 did_freeze = 1; 6279 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6280 md_wakeup_thread(mddev->thread); 6281 } 6282 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6283 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6284 if (mddev->sync_thread) 6285 /* Thread might be blocked waiting for metadata update 6286 * which will now never happen */ 6287 wake_up_process(mddev->sync_thread->tsk); 6288 6289 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6290 return -EBUSY; 6291 mddev_unlock(mddev); 6292 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6293 &mddev->recovery)); 6294 wait_event(mddev->sb_wait, 6295 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6296 mddev_lock_nointr(mddev); 6297 6298 mutex_lock(&mddev->open_mutex); 6299 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6300 mddev->sync_thread || 6301 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6302 pr_warn("md: %s still in use.\n",mdname(mddev)); 6303 if (did_freeze) { 6304 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6306 md_wakeup_thread(mddev->thread); 6307 } 6308 err = -EBUSY; 6309 goto out; 6310 } 6311 if (mddev->pers) { 6312 __md_stop_writes(mddev); 6313 6314 err = -ENXIO; 6315 if (mddev->ro==1) 6316 goto out; 6317 mddev->ro = 1; 6318 set_disk_ro(mddev->gendisk, 1); 6319 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6320 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6321 md_wakeup_thread(mddev->thread); 6322 sysfs_notify_dirent_safe(mddev->sysfs_state); 6323 err = 0; 6324 } 6325 out: 6326 mutex_unlock(&mddev->open_mutex); 6327 return err; 6328 } 6329 6330 /* mode: 6331 * 0 - completely stop and dis-assemble array 6332 * 2 - stop but do not disassemble array 6333 */ 6334 static int do_md_stop(struct mddev *mddev, int mode, 6335 struct block_device *bdev) 6336 { 6337 struct gendisk *disk = mddev->gendisk; 6338 struct md_rdev *rdev; 6339 int did_freeze = 0; 6340 6341 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6342 did_freeze = 1; 6343 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6344 md_wakeup_thread(mddev->thread); 6345 } 6346 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6347 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6348 if (mddev->sync_thread) 6349 /* Thread might be blocked waiting for metadata update 6350 * which will now never happen */ 6351 wake_up_process(mddev->sync_thread->tsk); 6352 6353 mddev_unlock(mddev); 6354 wait_event(resync_wait, (mddev->sync_thread == NULL && 6355 !test_bit(MD_RECOVERY_RUNNING, 6356 &mddev->recovery))); 6357 mddev_lock_nointr(mddev); 6358 6359 mutex_lock(&mddev->open_mutex); 6360 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6361 mddev->sysfs_active || 6362 mddev->sync_thread || 6363 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6364 pr_warn("md: %s still in use.\n",mdname(mddev)); 6365 mutex_unlock(&mddev->open_mutex); 6366 if (did_freeze) { 6367 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6369 md_wakeup_thread(mddev->thread); 6370 } 6371 return -EBUSY; 6372 } 6373 if (mddev->pers) { 6374 if (mddev->ro) 6375 set_disk_ro(disk, 0); 6376 6377 __md_stop_writes(mddev); 6378 __md_stop(mddev); 6379 6380 /* tell userspace to handle 'inactive' */ 6381 sysfs_notify_dirent_safe(mddev->sysfs_state); 6382 6383 rdev_for_each(rdev, mddev) 6384 if (rdev->raid_disk >= 0) 6385 sysfs_unlink_rdev(mddev, rdev); 6386 6387 set_capacity_and_notify(disk, 0); 6388 mutex_unlock(&mddev->open_mutex); 6389 mddev->changed = 1; 6390 6391 if (mddev->ro) 6392 mddev->ro = 0; 6393 } else 6394 mutex_unlock(&mddev->open_mutex); 6395 /* 6396 * Free resources if final stop 6397 */ 6398 if (mode == 0) { 6399 pr_info("md: %s stopped.\n", mdname(mddev)); 6400 6401 if (mddev->bitmap_info.file) { 6402 struct file *f = mddev->bitmap_info.file; 6403 spin_lock(&mddev->lock); 6404 mddev->bitmap_info.file = NULL; 6405 spin_unlock(&mddev->lock); 6406 fput(f); 6407 } 6408 mddev->bitmap_info.offset = 0; 6409 6410 export_array(mddev); 6411 6412 md_clean(mddev); 6413 if (mddev->hold_active == UNTIL_STOP) 6414 mddev->hold_active = 0; 6415 } 6416 md_new_event(); 6417 sysfs_notify_dirent_safe(mddev->sysfs_state); 6418 return 0; 6419 } 6420 6421 #ifndef MODULE 6422 static void autorun_array(struct mddev *mddev) 6423 { 6424 struct md_rdev *rdev; 6425 int err; 6426 6427 if (list_empty(&mddev->disks)) 6428 return; 6429 6430 pr_info("md: running: "); 6431 6432 rdev_for_each(rdev, mddev) { 6433 pr_cont("<%pg>", rdev->bdev); 6434 } 6435 pr_cont("\n"); 6436 6437 err = do_md_run(mddev); 6438 if (err) { 6439 pr_warn("md: do_md_run() returned %d\n", err); 6440 do_md_stop(mddev, 0, NULL); 6441 } 6442 } 6443 6444 /* 6445 * lets try to run arrays based on all disks that have arrived 6446 * until now. (those are in pending_raid_disks) 6447 * 6448 * the method: pick the first pending disk, collect all disks with 6449 * the same UUID, remove all from the pending list and put them into 6450 * the 'same_array' list. Then order this list based on superblock 6451 * update time (freshest comes first), kick out 'old' disks and 6452 * compare superblocks. If everything's fine then run it. 6453 * 6454 * If "unit" is allocated, then bump its reference count 6455 */ 6456 static void autorun_devices(int part) 6457 { 6458 struct md_rdev *rdev0, *rdev, *tmp; 6459 struct mddev *mddev; 6460 6461 pr_info("md: autorun ...\n"); 6462 while (!list_empty(&pending_raid_disks)) { 6463 int unit; 6464 dev_t dev; 6465 LIST_HEAD(candidates); 6466 rdev0 = list_entry(pending_raid_disks.next, 6467 struct md_rdev, same_set); 6468 6469 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6470 INIT_LIST_HEAD(&candidates); 6471 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6472 if (super_90_load(rdev, rdev0, 0) >= 0) { 6473 pr_debug("md: adding %pg ...\n", 6474 rdev->bdev); 6475 list_move(&rdev->same_set, &candidates); 6476 } 6477 /* 6478 * now we have a set of devices, with all of them having 6479 * mostly sane superblocks. It's time to allocate the 6480 * mddev. 6481 */ 6482 if (part) { 6483 dev = MKDEV(mdp_major, 6484 rdev0->preferred_minor << MdpMinorShift); 6485 unit = MINOR(dev) >> MdpMinorShift; 6486 } else { 6487 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6488 unit = MINOR(dev); 6489 } 6490 if (rdev0->preferred_minor != unit) { 6491 pr_warn("md: unit number in %pg is bad: %d\n", 6492 rdev0->bdev, rdev0->preferred_minor); 6493 break; 6494 } 6495 6496 mddev = md_alloc(dev, NULL); 6497 if (IS_ERR(mddev)) 6498 break; 6499 6500 if (mddev_lock(mddev)) 6501 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6502 else if (mddev->raid_disks || mddev->major_version 6503 || !list_empty(&mddev->disks)) { 6504 pr_warn("md: %s already running, cannot run %pg\n", 6505 mdname(mddev), rdev0->bdev); 6506 mddev_unlock(mddev); 6507 } else { 6508 pr_debug("md: created %s\n", mdname(mddev)); 6509 mddev->persistent = 1; 6510 rdev_for_each_list(rdev, tmp, &candidates) { 6511 list_del_init(&rdev->same_set); 6512 if (bind_rdev_to_array(rdev, mddev)) 6513 export_rdev(rdev); 6514 } 6515 autorun_array(mddev); 6516 mddev_unlock(mddev); 6517 } 6518 /* on success, candidates will be empty, on error 6519 * it won't... 6520 */ 6521 rdev_for_each_list(rdev, tmp, &candidates) { 6522 list_del_init(&rdev->same_set); 6523 export_rdev(rdev); 6524 } 6525 mddev_put(mddev); 6526 } 6527 pr_info("md: ... autorun DONE.\n"); 6528 } 6529 #endif /* !MODULE */ 6530 6531 static int get_version(void __user *arg) 6532 { 6533 mdu_version_t ver; 6534 6535 ver.major = MD_MAJOR_VERSION; 6536 ver.minor = MD_MINOR_VERSION; 6537 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6538 6539 if (copy_to_user(arg, &ver, sizeof(ver))) 6540 return -EFAULT; 6541 6542 return 0; 6543 } 6544 6545 static int get_array_info(struct mddev *mddev, void __user *arg) 6546 { 6547 mdu_array_info_t info; 6548 int nr,working,insync,failed,spare; 6549 struct md_rdev *rdev; 6550 6551 nr = working = insync = failed = spare = 0; 6552 rcu_read_lock(); 6553 rdev_for_each_rcu(rdev, mddev) { 6554 nr++; 6555 if (test_bit(Faulty, &rdev->flags)) 6556 failed++; 6557 else { 6558 working++; 6559 if (test_bit(In_sync, &rdev->flags)) 6560 insync++; 6561 else if (test_bit(Journal, &rdev->flags)) 6562 /* TODO: add journal count to md_u.h */ 6563 ; 6564 else 6565 spare++; 6566 } 6567 } 6568 rcu_read_unlock(); 6569 6570 info.major_version = mddev->major_version; 6571 info.minor_version = mddev->minor_version; 6572 info.patch_version = MD_PATCHLEVEL_VERSION; 6573 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6574 info.level = mddev->level; 6575 info.size = mddev->dev_sectors / 2; 6576 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6577 info.size = -1; 6578 info.nr_disks = nr; 6579 info.raid_disks = mddev->raid_disks; 6580 info.md_minor = mddev->md_minor; 6581 info.not_persistent= !mddev->persistent; 6582 6583 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6584 info.state = 0; 6585 if (mddev->in_sync) 6586 info.state = (1<<MD_SB_CLEAN); 6587 if (mddev->bitmap && mddev->bitmap_info.offset) 6588 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6589 if (mddev_is_clustered(mddev)) 6590 info.state |= (1<<MD_SB_CLUSTERED); 6591 info.active_disks = insync; 6592 info.working_disks = working; 6593 info.failed_disks = failed; 6594 info.spare_disks = spare; 6595 6596 info.layout = mddev->layout; 6597 info.chunk_size = mddev->chunk_sectors << 9; 6598 6599 if (copy_to_user(arg, &info, sizeof(info))) 6600 return -EFAULT; 6601 6602 return 0; 6603 } 6604 6605 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6606 { 6607 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6608 char *ptr; 6609 int err; 6610 6611 file = kzalloc(sizeof(*file), GFP_NOIO); 6612 if (!file) 6613 return -ENOMEM; 6614 6615 err = 0; 6616 spin_lock(&mddev->lock); 6617 /* bitmap enabled */ 6618 if (mddev->bitmap_info.file) { 6619 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6620 sizeof(file->pathname)); 6621 if (IS_ERR(ptr)) 6622 err = PTR_ERR(ptr); 6623 else 6624 memmove(file->pathname, ptr, 6625 sizeof(file->pathname)-(ptr-file->pathname)); 6626 } 6627 spin_unlock(&mddev->lock); 6628 6629 if (err == 0 && 6630 copy_to_user(arg, file, sizeof(*file))) 6631 err = -EFAULT; 6632 6633 kfree(file); 6634 return err; 6635 } 6636 6637 static int get_disk_info(struct mddev *mddev, void __user * arg) 6638 { 6639 mdu_disk_info_t info; 6640 struct md_rdev *rdev; 6641 6642 if (copy_from_user(&info, arg, sizeof(info))) 6643 return -EFAULT; 6644 6645 rcu_read_lock(); 6646 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6647 if (rdev) { 6648 info.major = MAJOR(rdev->bdev->bd_dev); 6649 info.minor = MINOR(rdev->bdev->bd_dev); 6650 info.raid_disk = rdev->raid_disk; 6651 info.state = 0; 6652 if (test_bit(Faulty, &rdev->flags)) 6653 info.state |= (1<<MD_DISK_FAULTY); 6654 else if (test_bit(In_sync, &rdev->flags)) { 6655 info.state |= (1<<MD_DISK_ACTIVE); 6656 info.state |= (1<<MD_DISK_SYNC); 6657 } 6658 if (test_bit(Journal, &rdev->flags)) 6659 info.state |= (1<<MD_DISK_JOURNAL); 6660 if (test_bit(WriteMostly, &rdev->flags)) 6661 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6662 if (test_bit(FailFast, &rdev->flags)) 6663 info.state |= (1<<MD_DISK_FAILFAST); 6664 } else { 6665 info.major = info.minor = 0; 6666 info.raid_disk = -1; 6667 info.state = (1<<MD_DISK_REMOVED); 6668 } 6669 rcu_read_unlock(); 6670 6671 if (copy_to_user(arg, &info, sizeof(info))) 6672 return -EFAULT; 6673 6674 return 0; 6675 } 6676 6677 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6678 { 6679 struct md_rdev *rdev; 6680 dev_t dev = MKDEV(info->major,info->minor); 6681 6682 if (mddev_is_clustered(mddev) && 6683 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6684 pr_warn("%s: Cannot add to clustered mddev.\n", 6685 mdname(mddev)); 6686 return -EINVAL; 6687 } 6688 6689 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6690 return -EOVERFLOW; 6691 6692 if (!mddev->raid_disks) { 6693 int err; 6694 /* expecting a device which has a superblock */ 6695 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6696 if (IS_ERR(rdev)) { 6697 pr_warn("md: md_import_device returned %ld\n", 6698 PTR_ERR(rdev)); 6699 return PTR_ERR(rdev); 6700 } 6701 if (!list_empty(&mddev->disks)) { 6702 struct md_rdev *rdev0 6703 = list_entry(mddev->disks.next, 6704 struct md_rdev, same_set); 6705 err = super_types[mddev->major_version] 6706 .load_super(rdev, rdev0, mddev->minor_version); 6707 if (err < 0) { 6708 pr_warn("md: %pg has different UUID to %pg\n", 6709 rdev->bdev, 6710 rdev0->bdev); 6711 export_rdev(rdev); 6712 return -EINVAL; 6713 } 6714 } 6715 err = bind_rdev_to_array(rdev, mddev); 6716 if (err) 6717 export_rdev(rdev); 6718 return err; 6719 } 6720 6721 /* 6722 * md_add_new_disk can be used once the array is assembled 6723 * to add "hot spares". They must already have a superblock 6724 * written 6725 */ 6726 if (mddev->pers) { 6727 int err; 6728 if (!mddev->pers->hot_add_disk) { 6729 pr_warn("%s: personality does not support diskops!\n", 6730 mdname(mddev)); 6731 return -EINVAL; 6732 } 6733 if (mddev->persistent) 6734 rdev = md_import_device(dev, mddev->major_version, 6735 mddev->minor_version); 6736 else 6737 rdev = md_import_device(dev, -1, -1); 6738 if (IS_ERR(rdev)) { 6739 pr_warn("md: md_import_device returned %ld\n", 6740 PTR_ERR(rdev)); 6741 return PTR_ERR(rdev); 6742 } 6743 /* set saved_raid_disk if appropriate */ 6744 if (!mddev->persistent) { 6745 if (info->state & (1<<MD_DISK_SYNC) && 6746 info->raid_disk < mddev->raid_disks) { 6747 rdev->raid_disk = info->raid_disk; 6748 set_bit(In_sync, &rdev->flags); 6749 clear_bit(Bitmap_sync, &rdev->flags); 6750 } else 6751 rdev->raid_disk = -1; 6752 rdev->saved_raid_disk = rdev->raid_disk; 6753 } else 6754 super_types[mddev->major_version]. 6755 validate_super(mddev, rdev); 6756 if ((info->state & (1<<MD_DISK_SYNC)) && 6757 rdev->raid_disk != info->raid_disk) { 6758 /* This was a hot-add request, but events doesn't 6759 * match, so reject it. 6760 */ 6761 export_rdev(rdev); 6762 return -EINVAL; 6763 } 6764 6765 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6766 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6767 set_bit(WriteMostly, &rdev->flags); 6768 else 6769 clear_bit(WriteMostly, &rdev->flags); 6770 if (info->state & (1<<MD_DISK_FAILFAST)) 6771 set_bit(FailFast, &rdev->flags); 6772 else 6773 clear_bit(FailFast, &rdev->flags); 6774 6775 if (info->state & (1<<MD_DISK_JOURNAL)) { 6776 struct md_rdev *rdev2; 6777 bool has_journal = false; 6778 6779 /* make sure no existing journal disk */ 6780 rdev_for_each(rdev2, mddev) { 6781 if (test_bit(Journal, &rdev2->flags)) { 6782 has_journal = true; 6783 break; 6784 } 6785 } 6786 if (has_journal || mddev->bitmap) { 6787 export_rdev(rdev); 6788 return -EBUSY; 6789 } 6790 set_bit(Journal, &rdev->flags); 6791 } 6792 /* 6793 * check whether the device shows up in other nodes 6794 */ 6795 if (mddev_is_clustered(mddev)) { 6796 if (info->state & (1 << MD_DISK_CANDIDATE)) 6797 set_bit(Candidate, &rdev->flags); 6798 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6799 /* --add initiated by this node */ 6800 err = md_cluster_ops->add_new_disk(mddev, rdev); 6801 if (err) { 6802 export_rdev(rdev); 6803 return err; 6804 } 6805 } 6806 } 6807 6808 rdev->raid_disk = -1; 6809 err = bind_rdev_to_array(rdev, mddev); 6810 6811 if (err) 6812 export_rdev(rdev); 6813 6814 if (mddev_is_clustered(mddev)) { 6815 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6816 if (!err) { 6817 err = md_cluster_ops->new_disk_ack(mddev, 6818 err == 0); 6819 if (err) 6820 md_kick_rdev_from_array(rdev); 6821 } 6822 } else { 6823 if (err) 6824 md_cluster_ops->add_new_disk_cancel(mddev); 6825 else 6826 err = add_bound_rdev(rdev); 6827 } 6828 6829 } else if (!err) 6830 err = add_bound_rdev(rdev); 6831 6832 return err; 6833 } 6834 6835 /* otherwise, md_add_new_disk is only allowed 6836 * for major_version==0 superblocks 6837 */ 6838 if (mddev->major_version != 0) { 6839 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6840 return -EINVAL; 6841 } 6842 6843 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6844 int err; 6845 rdev = md_import_device(dev, -1, 0); 6846 if (IS_ERR(rdev)) { 6847 pr_warn("md: error, md_import_device() returned %ld\n", 6848 PTR_ERR(rdev)); 6849 return PTR_ERR(rdev); 6850 } 6851 rdev->desc_nr = info->number; 6852 if (info->raid_disk < mddev->raid_disks) 6853 rdev->raid_disk = info->raid_disk; 6854 else 6855 rdev->raid_disk = -1; 6856 6857 if (rdev->raid_disk < mddev->raid_disks) 6858 if (info->state & (1<<MD_DISK_SYNC)) 6859 set_bit(In_sync, &rdev->flags); 6860 6861 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6862 set_bit(WriteMostly, &rdev->flags); 6863 if (info->state & (1<<MD_DISK_FAILFAST)) 6864 set_bit(FailFast, &rdev->flags); 6865 6866 if (!mddev->persistent) { 6867 pr_debug("md: nonpersistent superblock ...\n"); 6868 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6869 } else 6870 rdev->sb_start = calc_dev_sboffset(rdev); 6871 rdev->sectors = rdev->sb_start; 6872 6873 err = bind_rdev_to_array(rdev, mddev); 6874 if (err) { 6875 export_rdev(rdev); 6876 return err; 6877 } 6878 } 6879 6880 return 0; 6881 } 6882 6883 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6884 { 6885 struct md_rdev *rdev; 6886 6887 if (!mddev->pers) 6888 return -ENODEV; 6889 6890 rdev = find_rdev(mddev, dev); 6891 if (!rdev) 6892 return -ENXIO; 6893 6894 if (rdev->raid_disk < 0) 6895 goto kick_rdev; 6896 6897 clear_bit(Blocked, &rdev->flags); 6898 remove_and_add_spares(mddev, rdev); 6899 6900 if (rdev->raid_disk >= 0) 6901 goto busy; 6902 6903 kick_rdev: 6904 if (mddev_is_clustered(mddev)) { 6905 if (md_cluster_ops->remove_disk(mddev, rdev)) 6906 goto busy; 6907 } 6908 6909 md_kick_rdev_from_array(rdev); 6910 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6911 if (mddev->thread) 6912 md_wakeup_thread(mddev->thread); 6913 else 6914 md_update_sb(mddev, 1); 6915 md_new_event(); 6916 6917 return 0; 6918 busy: 6919 pr_debug("md: cannot remove active disk %pg from %s ...\n", 6920 rdev->bdev, mdname(mddev)); 6921 return -EBUSY; 6922 } 6923 6924 static int hot_add_disk(struct mddev *mddev, dev_t dev) 6925 { 6926 int err; 6927 struct md_rdev *rdev; 6928 6929 if (!mddev->pers) 6930 return -ENODEV; 6931 6932 if (mddev->major_version != 0) { 6933 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 6934 mdname(mddev)); 6935 return -EINVAL; 6936 } 6937 if (!mddev->pers->hot_add_disk) { 6938 pr_warn("%s: personality does not support diskops!\n", 6939 mdname(mddev)); 6940 return -EINVAL; 6941 } 6942 6943 rdev = md_import_device(dev, -1, 0); 6944 if (IS_ERR(rdev)) { 6945 pr_warn("md: error, md_import_device() returned %ld\n", 6946 PTR_ERR(rdev)); 6947 return -EINVAL; 6948 } 6949 6950 if (mddev->persistent) 6951 rdev->sb_start = calc_dev_sboffset(rdev); 6952 else 6953 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6954 6955 rdev->sectors = rdev->sb_start; 6956 6957 if (test_bit(Faulty, &rdev->flags)) { 6958 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 6959 rdev->bdev, mdname(mddev)); 6960 err = -EINVAL; 6961 goto abort_export; 6962 } 6963 6964 clear_bit(In_sync, &rdev->flags); 6965 rdev->desc_nr = -1; 6966 rdev->saved_raid_disk = -1; 6967 err = bind_rdev_to_array(rdev, mddev); 6968 if (err) 6969 goto abort_export; 6970 6971 /* 6972 * The rest should better be atomic, we can have disk failures 6973 * noticed in interrupt contexts ... 6974 */ 6975 6976 rdev->raid_disk = -1; 6977 6978 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 6979 if (!mddev->thread) 6980 md_update_sb(mddev, 1); 6981 /* 6982 * If the new disk does not support REQ_NOWAIT, 6983 * disable on the whole MD. 6984 */ 6985 if (!blk_queue_nowait(bdev_get_queue(rdev->bdev))) { 6986 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 6987 mdname(mddev), rdev->bdev); 6988 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 6989 } 6990 /* 6991 * Kick recovery, maybe this spare has to be added to the 6992 * array immediately. 6993 */ 6994 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6995 md_wakeup_thread(mddev->thread); 6996 md_new_event(); 6997 return 0; 6998 6999 abort_export: 7000 export_rdev(rdev); 7001 return err; 7002 } 7003 7004 static int set_bitmap_file(struct mddev *mddev, int fd) 7005 { 7006 int err = 0; 7007 7008 if (mddev->pers) { 7009 if (!mddev->pers->quiesce || !mddev->thread) 7010 return -EBUSY; 7011 if (mddev->recovery || mddev->sync_thread) 7012 return -EBUSY; 7013 /* we should be able to change the bitmap.. */ 7014 } 7015 7016 if (fd >= 0) { 7017 struct inode *inode; 7018 struct file *f; 7019 7020 if (mddev->bitmap || mddev->bitmap_info.file) 7021 return -EEXIST; /* cannot add when bitmap is present */ 7022 f = fget(fd); 7023 7024 if (f == NULL) { 7025 pr_warn("%s: error: failed to get bitmap file\n", 7026 mdname(mddev)); 7027 return -EBADF; 7028 } 7029 7030 inode = f->f_mapping->host; 7031 if (!S_ISREG(inode->i_mode)) { 7032 pr_warn("%s: error: bitmap file must be a regular file\n", 7033 mdname(mddev)); 7034 err = -EBADF; 7035 } else if (!(f->f_mode & FMODE_WRITE)) { 7036 pr_warn("%s: error: bitmap file must open for write\n", 7037 mdname(mddev)); 7038 err = -EBADF; 7039 } else if (atomic_read(&inode->i_writecount) != 1) { 7040 pr_warn("%s: error: bitmap file is already in use\n", 7041 mdname(mddev)); 7042 err = -EBUSY; 7043 } 7044 if (err) { 7045 fput(f); 7046 return err; 7047 } 7048 mddev->bitmap_info.file = f; 7049 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7050 } else if (mddev->bitmap == NULL) 7051 return -ENOENT; /* cannot remove what isn't there */ 7052 err = 0; 7053 if (mddev->pers) { 7054 if (fd >= 0) { 7055 struct bitmap *bitmap; 7056 7057 bitmap = md_bitmap_create(mddev, -1); 7058 mddev_suspend(mddev); 7059 if (!IS_ERR(bitmap)) { 7060 mddev->bitmap = bitmap; 7061 err = md_bitmap_load(mddev); 7062 } else 7063 err = PTR_ERR(bitmap); 7064 if (err) { 7065 md_bitmap_destroy(mddev); 7066 fd = -1; 7067 } 7068 mddev_resume(mddev); 7069 } else if (fd < 0) { 7070 mddev_suspend(mddev); 7071 md_bitmap_destroy(mddev); 7072 mddev_resume(mddev); 7073 } 7074 } 7075 if (fd < 0) { 7076 struct file *f = mddev->bitmap_info.file; 7077 if (f) { 7078 spin_lock(&mddev->lock); 7079 mddev->bitmap_info.file = NULL; 7080 spin_unlock(&mddev->lock); 7081 fput(f); 7082 } 7083 } 7084 7085 return err; 7086 } 7087 7088 /* 7089 * md_set_array_info is used two different ways 7090 * The original usage is when creating a new array. 7091 * In this usage, raid_disks is > 0 and it together with 7092 * level, size, not_persistent,layout,chunksize determine the 7093 * shape of the array. 7094 * This will always create an array with a type-0.90.0 superblock. 7095 * The newer usage is when assembling an array. 7096 * In this case raid_disks will be 0, and the major_version field is 7097 * use to determine which style super-blocks are to be found on the devices. 7098 * The minor and patch _version numbers are also kept incase the 7099 * super_block handler wishes to interpret them. 7100 */ 7101 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7102 { 7103 if (info->raid_disks == 0) { 7104 /* just setting version number for superblock loading */ 7105 if (info->major_version < 0 || 7106 info->major_version >= ARRAY_SIZE(super_types) || 7107 super_types[info->major_version].name == NULL) { 7108 /* maybe try to auto-load a module? */ 7109 pr_warn("md: superblock version %d not known\n", 7110 info->major_version); 7111 return -EINVAL; 7112 } 7113 mddev->major_version = info->major_version; 7114 mddev->minor_version = info->minor_version; 7115 mddev->patch_version = info->patch_version; 7116 mddev->persistent = !info->not_persistent; 7117 /* ensure mddev_put doesn't delete this now that there 7118 * is some minimal configuration. 7119 */ 7120 mddev->ctime = ktime_get_real_seconds(); 7121 return 0; 7122 } 7123 mddev->major_version = MD_MAJOR_VERSION; 7124 mddev->minor_version = MD_MINOR_VERSION; 7125 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7126 mddev->ctime = ktime_get_real_seconds(); 7127 7128 mddev->level = info->level; 7129 mddev->clevel[0] = 0; 7130 mddev->dev_sectors = 2 * (sector_t)info->size; 7131 mddev->raid_disks = info->raid_disks; 7132 /* don't set md_minor, it is determined by which /dev/md* was 7133 * openned 7134 */ 7135 if (info->state & (1<<MD_SB_CLEAN)) 7136 mddev->recovery_cp = MaxSector; 7137 else 7138 mddev->recovery_cp = 0; 7139 mddev->persistent = ! info->not_persistent; 7140 mddev->external = 0; 7141 7142 mddev->layout = info->layout; 7143 if (mddev->level == 0) 7144 /* Cannot trust RAID0 layout info here */ 7145 mddev->layout = -1; 7146 mddev->chunk_sectors = info->chunk_size >> 9; 7147 7148 if (mddev->persistent) { 7149 mddev->max_disks = MD_SB_DISKS; 7150 mddev->flags = 0; 7151 mddev->sb_flags = 0; 7152 } 7153 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7154 7155 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7156 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7157 mddev->bitmap_info.offset = 0; 7158 7159 mddev->reshape_position = MaxSector; 7160 7161 /* 7162 * Generate a 128 bit UUID 7163 */ 7164 get_random_bytes(mddev->uuid, 16); 7165 7166 mddev->new_level = mddev->level; 7167 mddev->new_chunk_sectors = mddev->chunk_sectors; 7168 mddev->new_layout = mddev->layout; 7169 mddev->delta_disks = 0; 7170 mddev->reshape_backwards = 0; 7171 7172 return 0; 7173 } 7174 7175 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7176 { 7177 lockdep_assert_held(&mddev->reconfig_mutex); 7178 7179 if (mddev->external_size) 7180 return; 7181 7182 mddev->array_sectors = array_sectors; 7183 } 7184 EXPORT_SYMBOL(md_set_array_sectors); 7185 7186 static int update_size(struct mddev *mddev, sector_t num_sectors) 7187 { 7188 struct md_rdev *rdev; 7189 int rv; 7190 int fit = (num_sectors == 0); 7191 sector_t old_dev_sectors = mddev->dev_sectors; 7192 7193 if (mddev->pers->resize == NULL) 7194 return -EINVAL; 7195 /* The "num_sectors" is the number of sectors of each device that 7196 * is used. This can only make sense for arrays with redundancy. 7197 * linear and raid0 always use whatever space is available. We can only 7198 * consider changing this number if no resync or reconstruction is 7199 * happening, and if the new size is acceptable. It must fit before the 7200 * sb_start or, if that is <data_offset, it must fit before the size 7201 * of each device. If num_sectors is zero, we find the largest size 7202 * that fits. 7203 */ 7204 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7205 mddev->sync_thread) 7206 return -EBUSY; 7207 if (mddev->ro) 7208 return -EROFS; 7209 7210 rdev_for_each(rdev, mddev) { 7211 sector_t avail = rdev->sectors; 7212 7213 if (fit && (num_sectors == 0 || num_sectors > avail)) 7214 num_sectors = avail; 7215 if (avail < num_sectors) 7216 return -ENOSPC; 7217 } 7218 rv = mddev->pers->resize(mddev, num_sectors); 7219 if (!rv) { 7220 if (mddev_is_clustered(mddev)) 7221 md_cluster_ops->update_size(mddev, old_dev_sectors); 7222 else if (mddev->queue) { 7223 set_capacity_and_notify(mddev->gendisk, 7224 mddev->array_sectors); 7225 } 7226 } 7227 return rv; 7228 } 7229 7230 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7231 { 7232 int rv; 7233 struct md_rdev *rdev; 7234 /* change the number of raid disks */ 7235 if (mddev->pers->check_reshape == NULL) 7236 return -EINVAL; 7237 if (mddev->ro) 7238 return -EROFS; 7239 if (raid_disks <= 0 || 7240 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7241 return -EINVAL; 7242 if (mddev->sync_thread || 7243 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7244 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7245 mddev->reshape_position != MaxSector) 7246 return -EBUSY; 7247 7248 rdev_for_each(rdev, mddev) { 7249 if (mddev->raid_disks < raid_disks && 7250 rdev->data_offset < rdev->new_data_offset) 7251 return -EINVAL; 7252 if (mddev->raid_disks > raid_disks && 7253 rdev->data_offset > rdev->new_data_offset) 7254 return -EINVAL; 7255 } 7256 7257 mddev->delta_disks = raid_disks - mddev->raid_disks; 7258 if (mddev->delta_disks < 0) 7259 mddev->reshape_backwards = 1; 7260 else if (mddev->delta_disks > 0) 7261 mddev->reshape_backwards = 0; 7262 7263 rv = mddev->pers->check_reshape(mddev); 7264 if (rv < 0) { 7265 mddev->delta_disks = 0; 7266 mddev->reshape_backwards = 0; 7267 } 7268 return rv; 7269 } 7270 7271 /* 7272 * update_array_info is used to change the configuration of an 7273 * on-line array. 7274 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7275 * fields in the info are checked against the array. 7276 * Any differences that cannot be handled will cause an error. 7277 * Normally, only one change can be managed at a time. 7278 */ 7279 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7280 { 7281 int rv = 0; 7282 int cnt = 0; 7283 int state = 0; 7284 7285 /* calculate expected state,ignoring low bits */ 7286 if (mddev->bitmap && mddev->bitmap_info.offset) 7287 state |= (1 << MD_SB_BITMAP_PRESENT); 7288 7289 if (mddev->major_version != info->major_version || 7290 mddev->minor_version != info->minor_version || 7291 /* mddev->patch_version != info->patch_version || */ 7292 mddev->ctime != info->ctime || 7293 mddev->level != info->level || 7294 /* mddev->layout != info->layout || */ 7295 mddev->persistent != !info->not_persistent || 7296 mddev->chunk_sectors != info->chunk_size >> 9 || 7297 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7298 ((state^info->state) & 0xfffffe00) 7299 ) 7300 return -EINVAL; 7301 /* Check there is only one change */ 7302 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7303 cnt++; 7304 if (mddev->raid_disks != info->raid_disks) 7305 cnt++; 7306 if (mddev->layout != info->layout) 7307 cnt++; 7308 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7309 cnt++; 7310 if (cnt == 0) 7311 return 0; 7312 if (cnt > 1) 7313 return -EINVAL; 7314 7315 if (mddev->layout != info->layout) { 7316 /* Change layout 7317 * we don't need to do anything at the md level, the 7318 * personality will take care of it all. 7319 */ 7320 if (mddev->pers->check_reshape == NULL) 7321 return -EINVAL; 7322 else { 7323 mddev->new_layout = info->layout; 7324 rv = mddev->pers->check_reshape(mddev); 7325 if (rv) 7326 mddev->new_layout = mddev->layout; 7327 return rv; 7328 } 7329 } 7330 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7331 rv = update_size(mddev, (sector_t)info->size * 2); 7332 7333 if (mddev->raid_disks != info->raid_disks) 7334 rv = update_raid_disks(mddev, info->raid_disks); 7335 7336 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7337 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7338 rv = -EINVAL; 7339 goto err; 7340 } 7341 if (mddev->recovery || mddev->sync_thread) { 7342 rv = -EBUSY; 7343 goto err; 7344 } 7345 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7346 struct bitmap *bitmap; 7347 /* add the bitmap */ 7348 if (mddev->bitmap) { 7349 rv = -EEXIST; 7350 goto err; 7351 } 7352 if (mddev->bitmap_info.default_offset == 0) { 7353 rv = -EINVAL; 7354 goto err; 7355 } 7356 mddev->bitmap_info.offset = 7357 mddev->bitmap_info.default_offset; 7358 mddev->bitmap_info.space = 7359 mddev->bitmap_info.default_space; 7360 bitmap = md_bitmap_create(mddev, -1); 7361 mddev_suspend(mddev); 7362 if (!IS_ERR(bitmap)) { 7363 mddev->bitmap = bitmap; 7364 rv = md_bitmap_load(mddev); 7365 } else 7366 rv = PTR_ERR(bitmap); 7367 if (rv) 7368 md_bitmap_destroy(mddev); 7369 mddev_resume(mddev); 7370 } else { 7371 /* remove the bitmap */ 7372 if (!mddev->bitmap) { 7373 rv = -ENOENT; 7374 goto err; 7375 } 7376 if (mddev->bitmap->storage.file) { 7377 rv = -EINVAL; 7378 goto err; 7379 } 7380 if (mddev->bitmap_info.nodes) { 7381 /* hold PW on all the bitmap lock */ 7382 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7383 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7384 rv = -EPERM; 7385 md_cluster_ops->unlock_all_bitmaps(mddev); 7386 goto err; 7387 } 7388 7389 mddev->bitmap_info.nodes = 0; 7390 md_cluster_ops->leave(mddev); 7391 module_put(md_cluster_mod); 7392 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7393 } 7394 mddev_suspend(mddev); 7395 md_bitmap_destroy(mddev); 7396 mddev_resume(mddev); 7397 mddev->bitmap_info.offset = 0; 7398 } 7399 } 7400 md_update_sb(mddev, 1); 7401 return rv; 7402 err: 7403 return rv; 7404 } 7405 7406 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7407 { 7408 struct md_rdev *rdev; 7409 int err = 0; 7410 7411 if (mddev->pers == NULL) 7412 return -ENODEV; 7413 7414 rcu_read_lock(); 7415 rdev = md_find_rdev_rcu(mddev, dev); 7416 if (!rdev) 7417 err = -ENODEV; 7418 else { 7419 md_error(mddev, rdev); 7420 if (test_bit(MD_BROKEN, &mddev->flags)) 7421 err = -EBUSY; 7422 } 7423 rcu_read_unlock(); 7424 return err; 7425 } 7426 7427 /* 7428 * We have a problem here : there is no easy way to give a CHS 7429 * virtual geometry. We currently pretend that we have a 2 heads 7430 * 4 sectors (with a BIG number of cylinders...). This drives 7431 * dosfs just mad... ;-) 7432 */ 7433 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7434 { 7435 struct mddev *mddev = bdev->bd_disk->private_data; 7436 7437 geo->heads = 2; 7438 geo->sectors = 4; 7439 geo->cylinders = mddev->array_sectors / 8; 7440 return 0; 7441 } 7442 7443 static inline bool md_ioctl_valid(unsigned int cmd) 7444 { 7445 switch (cmd) { 7446 case ADD_NEW_DISK: 7447 case GET_ARRAY_INFO: 7448 case GET_BITMAP_FILE: 7449 case GET_DISK_INFO: 7450 case HOT_ADD_DISK: 7451 case HOT_REMOVE_DISK: 7452 case RAID_VERSION: 7453 case RESTART_ARRAY_RW: 7454 case RUN_ARRAY: 7455 case SET_ARRAY_INFO: 7456 case SET_BITMAP_FILE: 7457 case SET_DISK_FAULTY: 7458 case STOP_ARRAY: 7459 case STOP_ARRAY_RO: 7460 case CLUSTERED_DISK_NACK: 7461 return true; 7462 default: 7463 return false; 7464 } 7465 } 7466 7467 static int md_ioctl(struct block_device *bdev, fmode_t mode, 7468 unsigned int cmd, unsigned long arg) 7469 { 7470 int err = 0; 7471 void __user *argp = (void __user *)arg; 7472 struct mddev *mddev = NULL; 7473 bool did_set_md_closing = false; 7474 7475 if (!md_ioctl_valid(cmd)) 7476 return -ENOTTY; 7477 7478 switch (cmd) { 7479 case RAID_VERSION: 7480 case GET_ARRAY_INFO: 7481 case GET_DISK_INFO: 7482 break; 7483 default: 7484 if (!capable(CAP_SYS_ADMIN)) 7485 return -EACCES; 7486 } 7487 7488 /* 7489 * Commands dealing with the RAID driver but not any 7490 * particular array: 7491 */ 7492 switch (cmd) { 7493 case RAID_VERSION: 7494 err = get_version(argp); 7495 goto out; 7496 default:; 7497 } 7498 7499 /* 7500 * Commands creating/starting a new array: 7501 */ 7502 7503 mddev = bdev->bd_disk->private_data; 7504 7505 if (!mddev) { 7506 BUG(); 7507 goto out; 7508 } 7509 7510 /* Some actions do not requires the mutex */ 7511 switch (cmd) { 7512 case GET_ARRAY_INFO: 7513 if (!mddev->raid_disks && !mddev->external) 7514 err = -ENODEV; 7515 else 7516 err = get_array_info(mddev, argp); 7517 goto out; 7518 7519 case GET_DISK_INFO: 7520 if (!mddev->raid_disks && !mddev->external) 7521 err = -ENODEV; 7522 else 7523 err = get_disk_info(mddev, argp); 7524 goto out; 7525 7526 case SET_DISK_FAULTY: 7527 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7528 goto out; 7529 7530 case GET_BITMAP_FILE: 7531 err = get_bitmap_file(mddev, argp); 7532 goto out; 7533 7534 } 7535 7536 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK) 7537 flush_rdev_wq(mddev); 7538 7539 if (cmd == HOT_REMOVE_DISK) 7540 /* need to ensure recovery thread has run */ 7541 wait_event_interruptible_timeout(mddev->sb_wait, 7542 !test_bit(MD_RECOVERY_NEEDED, 7543 &mddev->recovery), 7544 msecs_to_jiffies(5000)); 7545 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7546 /* Need to flush page cache, and ensure no-one else opens 7547 * and writes 7548 */ 7549 mutex_lock(&mddev->open_mutex); 7550 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7551 mutex_unlock(&mddev->open_mutex); 7552 err = -EBUSY; 7553 goto out; 7554 } 7555 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7556 mutex_unlock(&mddev->open_mutex); 7557 err = -EBUSY; 7558 goto out; 7559 } 7560 did_set_md_closing = true; 7561 mutex_unlock(&mddev->open_mutex); 7562 sync_blockdev(bdev); 7563 } 7564 err = mddev_lock(mddev); 7565 if (err) { 7566 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7567 err, cmd); 7568 goto out; 7569 } 7570 7571 if (cmd == SET_ARRAY_INFO) { 7572 mdu_array_info_t info; 7573 if (!arg) 7574 memset(&info, 0, sizeof(info)); 7575 else if (copy_from_user(&info, argp, sizeof(info))) { 7576 err = -EFAULT; 7577 goto unlock; 7578 } 7579 if (mddev->pers) { 7580 err = update_array_info(mddev, &info); 7581 if (err) { 7582 pr_warn("md: couldn't update array info. %d\n", err); 7583 goto unlock; 7584 } 7585 goto unlock; 7586 } 7587 if (!list_empty(&mddev->disks)) { 7588 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7589 err = -EBUSY; 7590 goto unlock; 7591 } 7592 if (mddev->raid_disks) { 7593 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7594 err = -EBUSY; 7595 goto unlock; 7596 } 7597 err = md_set_array_info(mddev, &info); 7598 if (err) { 7599 pr_warn("md: couldn't set array info. %d\n", err); 7600 goto unlock; 7601 } 7602 goto unlock; 7603 } 7604 7605 /* 7606 * Commands querying/configuring an existing array: 7607 */ 7608 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7609 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7610 if ((!mddev->raid_disks && !mddev->external) 7611 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7612 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7613 && cmd != GET_BITMAP_FILE) { 7614 err = -ENODEV; 7615 goto unlock; 7616 } 7617 7618 /* 7619 * Commands even a read-only array can execute: 7620 */ 7621 switch (cmd) { 7622 case RESTART_ARRAY_RW: 7623 err = restart_array(mddev); 7624 goto unlock; 7625 7626 case STOP_ARRAY: 7627 err = do_md_stop(mddev, 0, bdev); 7628 goto unlock; 7629 7630 case STOP_ARRAY_RO: 7631 err = md_set_readonly(mddev, bdev); 7632 goto unlock; 7633 7634 case HOT_REMOVE_DISK: 7635 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7636 goto unlock; 7637 7638 case ADD_NEW_DISK: 7639 /* We can support ADD_NEW_DISK on read-only arrays 7640 * only if we are re-adding a preexisting device. 7641 * So require mddev->pers and MD_DISK_SYNC. 7642 */ 7643 if (mddev->pers) { 7644 mdu_disk_info_t info; 7645 if (copy_from_user(&info, argp, sizeof(info))) 7646 err = -EFAULT; 7647 else if (!(info.state & (1<<MD_DISK_SYNC))) 7648 /* Need to clear read-only for this */ 7649 break; 7650 else 7651 err = md_add_new_disk(mddev, &info); 7652 goto unlock; 7653 } 7654 break; 7655 } 7656 7657 /* 7658 * The remaining ioctls are changing the state of the 7659 * superblock, so we do not allow them on read-only arrays. 7660 */ 7661 if (mddev->ro && mddev->pers) { 7662 if (mddev->ro == 2) { 7663 mddev->ro = 0; 7664 sysfs_notify_dirent_safe(mddev->sysfs_state); 7665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7666 /* mddev_unlock will wake thread */ 7667 /* If a device failed while we were read-only, we 7668 * need to make sure the metadata is updated now. 7669 */ 7670 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7671 mddev_unlock(mddev); 7672 wait_event(mddev->sb_wait, 7673 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7674 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7675 mddev_lock_nointr(mddev); 7676 } 7677 } else { 7678 err = -EROFS; 7679 goto unlock; 7680 } 7681 } 7682 7683 switch (cmd) { 7684 case ADD_NEW_DISK: 7685 { 7686 mdu_disk_info_t info; 7687 if (copy_from_user(&info, argp, sizeof(info))) 7688 err = -EFAULT; 7689 else 7690 err = md_add_new_disk(mddev, &info); 7691 goto unlock; 7692 } 7693 7694 case CLUSTERED_DISK_NACK: 7695 if (mddev_is_clustered(mddev)) 7696 md_cluster_ops->new_disk_ack(mddev, false); 7697 else 7698 err = -EINVAL; 7699 goto unlock; 7700 7701 case HOT_ADD_DISK: 7702 err = hot_add_disk(mddev, new_decode_dev(arg)); 7703 goto unlock; 7704 7705 case RUN_ARRAY: 7706 err = do_md_run(mddev); 7707 goto unlock; 7708 7709 case SET_BITMAP_FILE: 7710 err = set_bitmap_file(mddev, (int)arg); 7711 goto unlock; 7712 7713 default: 7714 err = -EINVAL; 7715 goto unlock; 7716 } 7717 7718 unlock: 7719 if (mddev->hold_active == UNTIL_IOCTL && 7720 err != -EINVAL) 7721 mddev->hold_active = 0; 7722 mddev_unlock(mddev); 7723 out: 7724 if(did_set_md_closing) 7725 clear_bit(MD_CLOSING, &mddev->flags); 7726 return err; 7727 } 7728 #ifdef CONFIG_COMPAT 7729 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode, 7730 unsigned int cmd, unsigned long arg) 7731 { 7732 switch (cmd) { 7733 case HOT_REMOVE_DISK: 7734 case HOT_ADD_DISK: 7735 case SET_DISK_FAULTY: 7736 case SET_BITMAP_FILE: 7737 /* These take in integer arg, do not convert */ 7738 break; 7739 default: 7740 arg = (unsigned long)compat_ptr(arg); 7741 break; 7742 } 7743 7744 return md_ioctl(bdev, mode, cmd, arg); 7745 } 7746 #endif /* CONFIG_COMPAT */ 7747 7748 static int md_set_read_only(struct block_device *bdev, bool ro) 7749 { 7750 struct mddev *mddev = bdev->bd_disk->private_data; 7751 int err; 7752 7753 err = mddev_lock(mddev); 7754 if (err) 7755 return err; 7756 7757 if (!mddev->raid_disks && !mddev->external) { 7758 err = -ENODEV; 7759 goto out_unlock; 7760 } 7761 7762 /* 7763 * Transitioning to read-auto need only happen for arrays that call 7764 * md_write_start and which are not ready for writes yet. 7765 */ 7766 if (!ro && mddev->ro == 1 && mddev->pers) { 7767 err = restart_array(mddev); 7768 if (err) 7769 goto out_unlock; 7770 mddev->ro = 2; 7771 } 7772 7773 out_unlock: 7774 mddev_unlock(mddev); 7775 return err; 7776 } 7777 7778 static int md_open(struct block_device *bdev, fmode_t mode) 7779 { 7780 struct mddev *mddev; 7781 int err; 7782 7783 spin_lock(&all_mddevs_lock); 7784 mddev = mddev_get(bdev->bd_disk->private_data); 7785 spin_unlock(&all_mddevs_lock); 7786 if (!mddev) 7787 return -ENODEV; 7788 7789 err = mutex_lock_interruptible(&mddev->open_mutex); 7790 if (err) 7791 goto out; 7792 7793 err = -ENODEV; 7794 if (test_bit(MD_CLOSING, &mddev->flags)) 7795 goto out_unlock; 7796 7797 atomic_inc(&mddev->openers); 7798 mutex_unlock(&mddev->open_mutex); 7799 7800 bdev_check_media_change(bdev); 7801 return 0; 7802 7803 out_unlock: 7804 mutex_unlock(&mddev->open_mutex); 7805 out: 7806 mddev_put(mddev); 7807 return err; 7808 } 7809 7810 static void md_release(struct gendisk *disk, fmode_t mode) 7811 { 7812 struct mddev *mddev = disk->private_data; 7813 7814 BUG_ON(!mddev); 7815 atomic_dec(&mddev->openers); 7816 mddev_put(mddev); 7817 } 7818 7819 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7820 { 7821 struct mddev *mddev = disk->private_data; 7822 unsigned int ret = 0; 7823 7824 if (mddev->changed) 7825 ret = DISK_EVENT_MEDIA_CHANGE; 7826 mddev->changed = 0; 7827 return ret; 7828 } 7829 7830 static void md_free_disk(struct gendisk *disk) 7831 { 7832 struct mddev *mddev = disk->private_data; 7833 7834 percpu_ref_exit(&mddev->writes_pending); 7835 bioset_exit(&mddev->bio_set); 7836 bioset_exit(&mddev->sync_set); 7837 7838 mddev_free(mddev); 7839 } 7840 7841 const struct block_device_operations md_fops = 7842 { 7843 .owner = THIS_MODULE, 7844 .submit_bio = md_submit_bio, 7845 .open = md_open, 7846 .release = md_release, 7847 .ioctl = md_ioctl, 7848 #ifdef CONFIG_COMPAT 7849 .compat_ioctl = md_compat_ioctl, 7850 #endif 7851 .getgeo = md_getgeo, 7852 .check_events = md_check_events, 7853 .set_read_only = md_set_read_only, 7854 .free_disk = md_free_disk, 7855 }; 7856 7857 static int md_thread(void *arg) 7858 { 7859 struct md_thread *thread = arg; 7860 7861 /* 7862 * md_thread is a 'system-thread', it's priority should be very 7863 * high. We avoid resource deadlocks individually in each 7864 * raid personality. (RAID5 does preallocation) We also use RR and 7865 * the very same RT priority as kswapd, thus we will never get 7866 * into a priority inversion deadlock. 7867 * 7868 * we definitely have to have equal or higher priority than 7869 * bdflush, otherwise bdflush will deadlock if there are too 7870 * many dirty RAID5 blocks. 7871 */ 7872 7873 allow_signal(SIGKILL); 7874 while (!kthread_should_stop()) { 7875 7876 /* We need to wait INTERRUPTIBLE so that 7877 * we don't add to the load-average. 7878 * That means we need to be sure no signals are 7879 * pending 7880 */ 7881 if (signal_pending(current)) 7882 flush_signals(current); 7883 7884 wait_event_interruptible_timeout 7885 (thread->wqueue, 7886 test_bit(THREAD_WAKEUP, &thread->flags) 7887 || kthread_should_stop() || kthread_should_park(), 7888 thread->timeout); 7889 7890 clear_bit(THREAD_WAKEUP, &thread->flags); 7891 if (kthread_should_park()) 7892 kthread_parkme(); 7893 if (!kthread_should_stop()) 7894 thread->run(thread); 7895 } 7896 7897 return 0; 7898 } 7899 7900 void md_wakeup_thread(struct md_thread *thread) 7901 { 7902 if (thread) { 7903 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm); 7904 set_bit(THREAD_WAKEUP, &thread->flags); 7905 wake_up(&thread->wqueue); 7906 } 7907 } 7908 EXPORT_SYMBOL(md_wakeup_thread); 7909 7910 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 7911 struct mddev *mddev, const char *name) 7912 { 7913 struct md_thread *thread; 7914 7915 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 7916 if (!thread) 7917 return NULL; 7918 7919 init_waitqueue_head(&thread->wqueue); 7920 7921 thread->run = run; 7922 thread->mddev = mddev; 7923 thread->timeout = MAX_SCHEDULE_TIMEOUT; 7924 thread->tsk = kthread_run(md_thread, thread, 7925 "%s_%s", 7926 mdname(thread->mddev), 7927 name); 7928 if (IS_ERR(thread->tsk)) { 7929 kfree(thread); 7930 return NULL; 7931 } 7932 return thread; 7933 } 7934 EXPORT_SYMBOL(md_register_thread); 7935 7936 void md_unregister_thread(struct md_thread **threadp) 7937 { 7938 struct md_thread *thread; 7939 7940 /* 7941 * Locking ensures that mddev_unlock does not wake_up a 7942 * non-existent thread 7943 */ 7944 spin_lock(&pers_lock); 7945 thread = *threadp; 7946 if (!thread) { 7947 spin_unlock(&pers_lock); 7948 return; 7949 } 7950 *threadp = NULL; 7951 spin_unlock(&pers_lock); 7952 7953 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 7954 kthread_stop(thread->tsk); 7955 kfree(thread); 7956 } 7957 EXPORT_SYMBOL(md_unregister_thread); 7958 7959 void md_error(struct mddev *mddev, struct md_rdev *rdev) 7960 { 7961 if (!rdev || test_bit(Faulty, &rdev->flags)) 7962 return; 7963 7964 if (!mddev->pers || !mddev->pers->error_handler) 7965 return; 7966 mddev->pers->error_handler(mddev, rdev); 7967 7968 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 7969 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 7970 sysfs_notify_dirent_safe(rdev->sysfs_state); 7971 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 7972 if (!test_bit(MD_BROKEN, &mddev->flags)) { 7973 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7974 md_wakeup_thread(mddev->thread); 7975 } 7976 if (mddev->event_work.func) 7977 queue_work(md_misc_wq, &mddev->event_work); 7978 md_new_event(); 7979 } 7980 EXPORT_SYMBOL(md_error); 7981 7982 /* seq_file implementation /proc/mdstat */ 7983 7984 static void status_unused(struct seq_file *seq) 7985 { 7986 int i = 0; 7987 struct md_rdev *rdev; 7988 7989 seq_printf(seq, "unused devices: "); 7990 7991 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 7992 i++; 7993 seq_printf(seq, "%pg ", rdev->bdev); 7994 } 7995 if (!i) 7996 seq_printf(seq, "<none>"); 7997 7998 seq_printf(seq, "\n"); 7999 } 8000 8001 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8002 { 8003 sector_t max_sectors, resync, res; 8004 unsigned long dt, db = 0; 8005 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8006 int scale, recovery_active; 8007 unsigned int per_milli; 8008 8009 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8010 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8011 max_sectors = mddev->resync_max_sectors; 8012 else 8013 max_sectors = mddev->dev_sectors; 8014 8015 resync = mddev->curr_resync; 8016 if (resync < MD_RESYNC_ACTIVE) { 8017 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8018 /* Still cleaning up */ 8019 resync = max_sectors; 8020 } else if (resync > max_sectors) { 8021 resync = max_sectors; 8022 } else { 8023 resync -= atomic_read(&mddev->recovery_active); 8024 if (resync < MD_RESYNC_ACTIVE) { 8025 /* 8026 * Resync has started, but the subtraction has 8027 * yielded one of the special values. Force it 8028 * to active to ensure the status reports an 8029 * active resync. 8030 */ 8031 resync = MD_RESYNC_ACTIVE; 8032 } 8033 } 8034 8035 if (resync == MD_RESYNC_NONE) { 8036 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8037 struct md_rdev *rdev; 8038 8039 rdev_for_each(rdev, mddev) 8040 if (rdev->raid_disk >= 0 && 8041 !test_bit(Faulty, &rdev->flags) && 8042 rdev->recovery_offset != MaxSector && 8043 rdev->recovery_offset) { 8044 seq_printf(seq, "\trecover=REMOTE"); 8045 return 1; 8046 } 8047 if (mddev->reshape_position != MaxSector) 8048 seq_printf(seq, "\treshape=REMOTE"); 8049 else 8050 seq_printf(seq, "\tresync=REMOTE"); 8051 return 1; 8052 } 8053 if (mddev->recovery_cp < MaxSector) { 8054 seq_printf(seq, "\tresync=PENDING"); 8055 return 1; 8056 } 8057 return 0; 8058 } 8059 if (resync < MD_RESYNC_ACTIVE) { 8060 seq_printf(seq, "\tresync=DELAYED"); 8061 return 1; 8062 } 8063 8064 WARN_ON(max_sectors == 0); 8065 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8066 * in a sector_t, and (max_sectors>>scale) will fit in a 8067 * u32, as those are the requirements for sector_div. 8068 * Thus 'scale' must be at least 10 8069 */ 8070 scale = 10; 8071 if (sizeof(sector_t) > sizeof(unsigned long)) { 8072 while ( max_sectors/2 > (1ULL<<(scale+32))) 8073 scale++; 8074 } 8075 res = (resync>>scale)*1000; 8076 sector_div(res, (u32)((max_sectors>>scale)+1)); 8077 8078 per_milli = res; 8079 { 8080 int i, x = per_milli/50, y = 20-x; 8081 seq_printf(seq, "["); 8082 for (i = 0; i < x; i++) 8083 seq_printf(seq, "="); 8084 seq_printf(seq, ">"); 8085 for (i = 0; i < y; i++) 8086 seq_printf(seq, "."); 8087 seq_printf(seq, "] "); 8088 } 8089 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8090 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8091 "reshape" : 8092 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8093 "check" : 8094 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8095 "resync" : "recovery"))), 8096 per_milli/10, per_milli % 10, 8097 (unsigned long long) resync/2, 8098 (unsigned long long) max_sectors/2); 8099 8100 /* 8101 * dt: time from mark until now 8102 * db: blocks written from mark until now 8103 * rt: remaining time 8104 * 8105 * rt is a sector_t, which is always 64bit now. We are keeping 8106 * the original algorithm, but it is not really necessary. 8107 * 8108 * Original algorithm: 8109 * So we divide before multiply in case it is 32bit and close 8110 * to the limit. 8111 * We scale the divisor (db) by 32 to avoid losing precision 8112 * near the end of resync when the number of remaining sectors 8113 * is close to 'db'. 8114 * We then divide rt by 32 after multiplying by db to compensate. 8115 * The '+1' avoids division by zero if db is very small. 8116 */ 8117 dt = ((jiffies - mddev->resync_mark) / HZ); 8118 if (!dt) dt++; 8119 8120 curr_mark_cnt = mddev->curr_mark_cnt; 8121 recovery_active = atomic_read(&mddev->recovery_active); 8122 resync_mark_cnt = mddev->resync_mark_cnt; 8123 8124 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8125 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8126 8127 rt = max_sectors - resync; /* number of remaining sectors */ 8128 rt = div64_u64(rt, db/32+1); 8129 rt *= dt; 8130 rt >>= 5; 8131 8132 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8133 ((unsigned long)rt % 60)/6); 8134 8135 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8136 return 1; 8137 } 8138 8139 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8140 { 8141 struct list_head *tmp; 8142 loff_t l = *pos; 8143 struct mddev *mddev; 8144 8145 if (l == 0x10000) { 8146 ++*pos; 8147 return (void *)2; 8148 } 8149 if (l > 0x10000) 8150 return NULL; 8151 if (!l--) 8152 /* header */ 8153 return (void*)1; 8154 8155 spin_lock(&all_mddevs_lock); 8156 list_for_each(tmp,&all_mddevs) 8157 if (!l--) { 8158 mddev = list_entry(tmp, struct mddev, all_mddevs); 8159 mddev_get(mddev); 8160 if (!mddev_get(mddev)) 8161 continue; 8162 spin_unlock(&all_mddevs_lock); 8163 return mddev; 8164 } 8165 spin_unlock(&all_mddevs_lock); 8166 if (!l--) 8167 return (void*)2;/* tail */ 8168 return NULL; 8169 } 8170 8171 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8172 { 8173 struct list_head *tmp; 8174 struct mddev *next_mddev, *mddev = v; 8175 struct mddev *to_put = NULL; 8176 8177 ++*pos; 8178 if (v == (void*)2) 8179 return NULL; 8180 8181 spin_lock(&all_mddevs_lock); 8182 if (v == (void*)1) { 8183 tmp = all_mddevs.next; 8184 } else { 8185 to_put = mddev; 8186 tmp = mddev->all_mddevs.next; 8187 } 8188 8189 for (;;) { 8190 if (tmp == &all_mddevs) { 8191 next_mddev = (void*)2; 8192 *pos = 0x10000; 8193 break; 8194 } 8195 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8196 if (mddev_get(next_mddev)) 8197 break; 8198 mddev = next_mddev; 8199 tmp = mddev->all_mddevs.next; 8200 } 8201 spin_unlock(&all_mddevs_lock); 8202 8203 if (to_put) 8204 mddev_put(mddev); 8205 return next_mddev; 8206 8207 } 8208 8209 static void md_seq_stop(struct seq_file *seq, void *v) 8210 { 8211 struct mddev *mddev = v; 8212 8213 if (mddev && v != (void*)1 && v != (void*)2) 8214 mddev_put(mddev); 8215 } 8216 8217 static int md_seq_show(struct seq_file *seq, void *v) 8218 { 8219 struct mddev *mddev = v; 8220 sector_t sectors; 8221 struct md_rdev *rdev; 8222 8223 if (v == (void*)1) { 8224 struct md_personality *pers; 8225 seq_printf(seq, "Personalities : "); 8226 spin_lock(&pers_lock); 8227 list_for_each_entry(pers, &pers_list, list) 8228 seq_printf(seq, "[%s] ", pers->name); 8229 8230 spin_unlock(&pers_lock); 8231 seq_printf(seq, "\n"); 8232 seq->poll_event = atomic_read(&md_event_count); 8233 return 0; 8234 } 8235 if (v == (void*)2) { 8236 status_unused(seq); 8237 return 0; 8238 } 8239 8240 spin_lock(&mddev->lock); 8241 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8242 seq_printf(seq, "%s : %sactive", mdname(mddev), 8243 mddev->pers ? "" : "in"); 8244 if (mddev->pers) { 8245 if (mddev->ro==1) 8246 seq_printf(seq, " (read-only)"); 8247 if (mddev->ro==2) 8248 seq_printf(seq, " (auto-read-only)"); 8249 seq_printf(seq, " %s", mddev->pers->name); 8250 } 8251 8252 sectors = 0; 8253 rcu_read_lock(); 8254 rdev_for_each_rcu(rdev, mddev) { 8255 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8256 8257 if (test_bit(WriteMostly, &rdev->flags)) 8258 seq_printf(seq, "(W)"); 8259 if (test_bit(Journal, &rdev->flags)) 8260 seq_printf(seq, "(J)"); 8261 if (test_bit(Faulty, &rdev->flags)) { 8262 seq_printf(seq, "(F)"); 8263 continue; 8264 } 8265 if (rdev->raid_disk < 0) 8266 seq_printf(seq, "(S)"); /* spare */ 8267 if (test_bit(Replacement, &rdev->flags)) 8268 seq_printf(seq, "(R)"); 8269 sectors += rdev->sectors; 8270 } 8271 rcu_read_unlock(); 8272 8273 if (!list_empty(&mddev->disks)) { 8274 if (mddev->pers) 8275 seq_printf(seq, "\n %llu blocks", 8276 (unsigned long long) 8277 mddev->array_sectors / 2); 8278 else 8279 seq_printf(seq, "\n %llu blocks", 8280 (unsigned long long)sectors / 2); 8281 } 8282 if (mddev->persistent) { 8283 if (mddev->major_version != 0 || 8284 mddev->minor_version != 90) { 8285 seq_printf(seq," super %d.%d", 8286 mddev->major_version, 8287 mddev->minor_version); 8288 } 8289 } else if (mddev->external) 8290 seq_printf(seq, " super external:%s", 8291 mddev->metadata_type); 8292 else 8293 seq_printf(seq, " super non-persistent"); 8294 8295 if (mddev->pers) { 8296 mddev->pers->status(seq, mddev); 8297 seq_printf(seq, "\n "); 8298 if (mddev->pers->sync_request) { 8299 if (status_resync(seq, mddev)) 8300 seq_printf(seq, "\n "); 8301 } 8302 } else 8303 seq_printf(seq, "\n "); 8304 8305 md_bitmap_status(seq, mddev->bitmap); 8306 8307 seq_printf(seq, "\n"); 8308 } 8309 spin_unlock(&mddev->lock); 8310 8311 return 0; 8312 } 8313 8314 static const struct seq_operations md_seq_ops = { 8315 .start = md_seq_start, 8316 .next = md_seq_next, 8317 .stop = md_seq_stop, 8318 .show = md_seq_show, 8319 }; 8320 8321 static int md_seq_open(struct inode *inode, struct file *file) 8322 { 8323 struct seq_file *seq; 8324 int error; 8325 8326 error = seq_open(file, &md_seq_ops); 8327 if (error) 8328 return error; 8329 8330 seq = file->private_data; 8331 seq->poll_event = atomic_read(&md_event_count); 8332 return error; 8333 } 8334 8335 static int md_unloading; 8336 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8337 { 8338 struct seq_file *seq = filp->private_data; 8339 __poll_t mask; 8340 8341 if (md_unloading) 8342 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8343 poll_wait(filp, &md_event_waiters, wait); 8344 8345 /* always allow read */ 8346 mask = EPOLLIN | EPOLLRDNORM; 8347 8348 if (seq->poll_event != atomic_read(&md_event_count)) 8349 mask |= EPOLLERR | EPOLLPRI; 8350 return mask; 8351 } 8352 8353 static const struct proc_ops mdstat_proc_ops = { 8354 .proc_open = md_seq_open, 8355 .proc_read = seq_read, 8356 .proc_lseek = seq_lseek, 8357 .proc_release = seq_release, 8358 .proc_poll = mdstat_poll, 8359 }; 8360 8361 int register_md_personality(struct md_personality *p) 8362 { 8363 pr_debug("md: %s personality registered for level %d\n", 8364 p->name, p->level); 8365 spin_lock(&pers_lock); 8366 list_add_tail(&p->list, &pers_list); 8367 spin_unlock(&pers_lock); 8368 return 0; 8369 } 8370 EXPORT_SYMBOL(register_md_personality); 8371 8372 int unregister_md_personality(struct md_personality *p) 8373 { 8374 pr_debug("md: %s personality unregistered\n", p->name); 8375 spin_lock(&pers_lock); 8376 list_del_init(&p->list); 8377 spin_unlock(&pers_lock); 8378 return 0; 8379 } 8380 EXPORT_SYMBOL(unregister_md_personality); 8381 8382 int register_md_cluster_operations(struct md_cluster_operations *ops, 8383 struct module *module) 8384 { 8385 int ret = 0; 8386 spin_lock(&pers_lock); 8387 if (md_cluster_ops != NULL) 8388 ret = -EALREADY; 8389 else { 8390 md_cluster_ops = ops; 8391 md_cluster_mod = module; 8392 } 8393 spin_unlock(&pers_lock); 8394 return ret; 8395 } 8396 EXPORT_SYMBOL(register_md_cluster_operations); 8397 8398 int unregister_md_cluster_operations(void) 8399 { 8400 spin_lock(&pers_lock); 8401 md_cluster_ops = NULL; 8402 spin_unlock(&pers_lock); 8403 return 0; 8404 } 8405 EXPORT_SYMBOL(unregister_md_cluster_operations); 8406 8407 int md_setup_cluster(struct mddev *mddev, int nodes) 8408 { 8409 int ret; 8410 if (!md_cluster_ops) 8411 request_module("md-cluster"); 8412 spin_lock(&pers_lock); 8413 /* ensure module won't be unloaded */ 8414 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8415 pr_warn("can't find md-cluster module or get its reference.\n"); 8416 spin_unlock(&pers_lock); 8417 return -ENOENT; 8418 } 8419 spin_unlock(&pers_lock); 8420 8421 ret = md_cluster_ops->join(mddev, nodes); 8422 if (!ret) 8423 mddev->safemode_delay = 0; 8424 return ret; 8425 } 8426 8427 void md_cluster_stop(struct mddev *mddev) 8428 { 8429 if (!md_cluster_ops) 8430 return; 8431 md_cluster_ops->leave(mddev); 8432 module_put(md_cluster_mod); 8433 } 8434 8435 static int is_mddev_idle(struct mddev *mddev, int init) 8436 { 8437 struct md_rdev *rdev; 8438 int idle; 8439 int curr_events; 8440 8441 idle = 1; 8442 rcu_read_lock(); 8443 rdev_for_each_rcu(rdev, mddev) { 8444 struct gendisk *disk = rdev->bdev->bd_disk; 8445 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8446 atomic_read(&disk->sync_io); 8447 /* sync IO will cause sync_io to increase before the disk_stats 8448 * as sync_io is counted when a request starts, and 8449 * disk_stats is counted when it completes. 8450 * So resync activity will cause curr_events to be smaller than 8451 * when there was no such activity. 8452 * non-sync IO will cause disk_stat to increase without 8453 * increasing sync_io so curr_events will (eventually) 8454 * be larger than it was before. Once it becomes 8455 * substantially larger, the test below will cause 8456 * the array to appear non-idle, and resync will slow 8457 * down. 8458 * If there is a lot of outstanding resync activity when 8459 * we set last_event to curr_events, then all that activity 8460 * completing might cause the array to appear non-idle 8461 * and resync will be slowed down even though there might 8462 * not have been non-resync activity. This will only 8463 * happen once though. 'last_events' will soon reflect 8464 * the state where there is little or no outstanding 8465 * resync requests, and further resync activity will 8466 * always make curr_events less than last_events. 8467 * 8468 */ 8469 if (init || curr_events - rdev->last_events > 64) { 8470 rdev->last_events = curr_events; 8471 idle = 0; 8472 } 8473 } 8474 rcu_read_unlock(); 8475 return idle; 8476 } 8477 8478 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8479 { 8480 /* another "blocks" (512byte) blocks have been synced */ 8481 atomic_sub(blocks, &mddev->recovery_active); 8482 wake_up(&mddev->recovery_wait); 8483 if (!ok) { 8484 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8485 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8486 md_wakeup_thread(mddev->thread); 8487 // stop recovery, signal do_sync .... 8488 } 8489 } 8490 EXPORT_SYMBOL(md_done_sync); 8491 8492 /* md_write_start(mddev, bi) 8493 * If we need to update some array metadata (e.g. 'active' flag 8494 * in superblock) before writing, schedule a superblock update 8495 * and wait for it to complete. 8496 * A return value of 'false' means that the write wasn't recorded 8497 * and cannot proceed as the array is being suspend. 8498 */ 8499 bool md_write_start(struct mddev *mddev, struct bio *bi) 8500 { 8501 int did_change = 0; 8502 8503 if (bio_data_dir(bi) != WRITE) 8504 return true; 8505 8506 BUG_ON(mddev->ro == 1); 8507 if (mddev->ro == 2) { 8508 /* need to switch to read/write */ 8509 mddev->ro = 0; 8510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8511 md_wakeup_thread(mddev->thread); 8512 md_wakeup_thread(mddev->sync_thread); 8513 did_change = 1; 8514 } 8515 rcu_read_lock(); 8516 percpu_ref_get(&mddev->writes_pending); 8517 smp_mb(); /* Match smp_mb in set_in_sync() */ 8518 if (mddev->safemode == 1) 8519 mddev->safemode = 0; 8520 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8521 if (mddev->in_sync || mddev->sync_checkers) { 8522 spin_lock(&mddev->lock); 8523 if (mddev->in_sync) { 8524 mddev->in_sync = 0; 8525 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8526 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8527 md_wakeup_thread(mddev->thread); 8528 did_change = 1; 8529 } 8530 spin_unlock(&mddev->lock); 8531 } 8532 rcu_read_unlock(); 8533 if (did_change) 8534 sysfs_notify_dirent_safe(mddev->sysfs_state); 8535 if (!mddev->has_superblocks) 8536 return true; 8537 wait_event(mddev->sb_wait, 8538 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8539 mddev->suspended); 8540 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8541 percpu_ref_put(&mddev->writes_pending); 8542 return false; 8543 } 8544 return true; 8545 } 8546 EXPORT_SYMBOL(md_write_start); 8547 8548 /* md_write_inc can only be called when md_write_start() has 8549 * already been called at least once of the current request. 8550 * It increments the counter and is useful when a single request 8551 * is split into several parts. Each part causes an increment and 8552 * so needs a matching md_write_end(). 8553 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8554 * a spinlocked region. 8555 */ 8556 void md_write_inc(struct mddev *mddev, struct bio *bi) 8557 { 8558 if (bio_data_dir(bi) != WRITE) 8559 return; 8560 WARN_ON_ONCE(mddev->in_sync || mddev->ro); 8561 percpu_ref_get(&mddev->writes_pending); 8562 } 8563 EXPORT_SYMBOL(md_write_inc); 8564 8565 void md_write_end(struct mddev *mddev) 8566 { 8567 percpu_ref_put(&mddev->writes_pending); 8568 8569 if (mddev->safemode == 2) 8570 md_wakeup_thread(mddev->thread); 8571 else if (mddev->safemode_delay) 8572 /* The roundup() ensures this only performs locking once 8573 * every ->safemode_delay jiffies 8574 */ 8575 mod_timer(&mddev->safemode_timer, 8576 roundup(jiffies, mddev->safemode_delay) + 8577 mddev->safemode_delay); 8578 } 8579 8580 EXPORT_SYMBOL(md_write_end); 8581 8582 /* This is used by raid0 and raid10 */ 8583 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8584 struct bio *bio, sector_t start, sector_t size) 8585 { 8586 struct bio *discard_bio = NULL; 8587 8588 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8589 &discard_bio) || !discard_bio) 8590 return; 8591 8592 bio_chain(discard_bio, bio); 8593 bio_clone_blkg_association(discard_bio, bio); 8594 if (mddev->gendisk) 8595 trace_block_bio_remap(discard_bio, 8596 disk_devt(mddev->gendisk), 8597 bio->bi_iter.bi_sector); 8598 submit_bio_noacct(discard_bio); 8599 } 8600 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8601 8602 int acct_bioset_init(struct mddev *mddev) 8603 { 8604 int err = 0; 8605 8606 if (!bioset_initialized(&mddev->io_acct_set)) 8607 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE, 8608 offsetof(struct md_io_acct, bio_clone), 0); 8609 return err; 8610 } 8611 EXPORT_SYMBOL_GPL(acct_bioset_init); 8612 8613 void acct_bioset_exit(struct mddev *mddev) 8614 { 8615 bioset_exit(&mddev->io_acct_set); 8616 } 8617 EXPORT_SYMBOL_GPL(acct_bioset_exit); 8618 8619 static void md_end_io_acct(struct bio *bio) 8620 { 8621 struct md_io_acct *md_io_acct = bio->bi_private; 8622 struct bio *orig_bio = md_io_acct->orig_bio; 8623 8624 orig_bio->bi_status = bio->bi_status; 8625 8626 bio_end_io_acct(orig_bio, md_io_acct->start_time); 8627 bio_put(bio); 8628 bio_endio(orig_bio); 8629 } 8630 8631 /* 8632 * Used by personalities that don't already clone the bio and thus can't 8633 * easily add the timestamp to their extended bio structure. 8634 */ 8635 void md_account_bio(struct mddev *mddev, struct bio **bio) 8636 { 8637 struct block_device *bdev = (*bio)->bi_bdev; 8638 struct md_io_acct *md_io_acct; 8639 struct bio *clone; 8640 8641 if (!blk_queue_io_stat(bdev->bd_disk->queue)) 8642 return; 8643 8644 clone = bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_acct_set); 8645 md_io_acct = container_of(clone, struct md_io_acct, bio_clone); 8646 md_io_acct->orig_bio = *bio; 8647 md_io_acct->start_time = bio_start_io_acct(*bio); 8648 8649 clone->bi_end_io = md_end_io_acct; 8650 clone->bi_private = md_io_acct; 8651 *bio = clone; 8652 } 8653 EXPORT_SYMBOL_GPL(md_account_bio); 8654 8655 /* md_allow_write(mddev) 8656 * Calling this ensures that the array is marked 'active' so that writes 8657 * may proceed without blocking. It is important to call this before 8658 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8659 * Must be called with mddev_lock held. 8660 */ 8661 void md_allow_write(struct mddev *mddev) 8662 { 8663 if (!mddev->pers) 8664 return; 8665 if (mddev->ro) 8666 return; 8667 if (!mddev->pers->sync_request) 8668 return; 8669 8670 spin_lock(&mddev->lock); 8671 if (mddev->in_sync) { 8672 mddev->in_sync = 0; 8673 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8674 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8675 if (mddev->safemode_delay && 8676 mddev->safemode == 0) 8677 mddev->safemode = 1; 8678 spin_unlock(&mddev->lock); 8679 md_update_sb(mddev, 0); 8680 sysfs_notify_dirent_safe(mddev->sysfs_state); 8681 /* wait for the dirty state to be recorded in the metadata */ 8682 wait_event(mddev->sb_wait, 8683 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8684 } else 8685 spin_unlock(&mddev->lock); 8686 } 8687 EXPORT_SYMBOL_GPL(md_allow_write); 8688 8689 #define SYNC_MARKS 10 8690 #define SYNC_MARK_STEP (3*HZ) 8691 #define UPDATE_FREQUENCY (5*60*HZ) 8692 void md_do_sync(struct md_thread *thread) 8693 { 8694 struct mddev *mddev = thread->mddev; 8695 struct mddev *mddev2; 8696 unsigned int currspeed = 0, window; 8697 sector_t max_sectors,j, io_sectors, recovery_done; 8698 unsigned long mark[SYNC_MARKS]; 8699 unsigned long update_time; 8700 sector_t mark_cnt[SYNC_MARKS]; 8701 int last_mark,m; 8702 sector_t last_check; 8703 int skipped = 0; 8704 struct md_rdev *rdev; 8705 char *desc, *action = NULL; 8706 struct blk_plug plug; 8707 int ret; 8708 8709 /* just incase thread restarts... */ 8710 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8711 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8712 return; 8713 if (mddev->ro) {/* never try to sync a read-only array */ 8714 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8715 return; 8716 } 8717 8718 if (mddev_is_clustered(mddev)) { 8719 ret = md_cluster_ops->resync_start(mddev); 8720 if (ret) 8721 goto skip; 8722 8723 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8724 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8725 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8726 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8727 && ((unsigned long long)mddev->curr_resync_completed 8728 < (unsigned long long)mddev->resync_max_sectors)) 8729 goto skip; 8730 } 8731 8732 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8733 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8734 desc = "data-check"; 8735 action = "check"; 8736 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8737 desc = "requested-resync"; 8738 action = "repair"; 8739 } else 8740 desc = "resync"; 8741 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8742 desc = "reshape"; 8743 else 8744 desc = "recovery"; 8745 8746 mddev->last_sync_action = action ?: desc; 8747 8748 /* 8749 * Before starting a resync we must have set curr_resync to 8750 * 2, and then checked that every "conflicting" array has curr_resync 8751 * less than ours. When we find one that is the same or higher 8752 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8753 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8754 * This will mean we have to start checking from the beginning again. 8755 * 8756 */ 8757 8758 do { 8759 int mddev2_minor = -1; 8760 mddev->curr_resync = MD_RESYNC_DELAYED; 8761 8762 try_again: 8763 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8764 goto skip; 8765 spin_lock(&all_mddevs_lock); 8766 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8767 if (test_bit(MD_DELETED, &mddev2->flags)) 8768 continue; 8769 if (mddev2 == mddev) 8770 continue; 8771 if (!mddev->parallel_resync 8772 && mddev2->curr_resync 8773 && match_mddev_units(mddev, mddev2)) { 8774 DEFINE_WAIT(wq); 8775 if (mddev < mddev2 && 8776 mddev->curr_resync == MD_RESYNC_DELAYED) { 8777 /* arbitrarily yield */ 8778 mddev->curr_resync = MD_RESYNC_YIELDED; 8779 wake_up(&resync_wait); 8780 } 8781 if (mddev > mddev2 && 8782 mddev->curr_resync == MD_RESYNC_YIELDED) 8783 /* no need to wait here, we can wait the next 8784 * time 'round when curr_resync == 2 8785 */ 8786 continue; 8787 /* We need to wait 'interruptible' so as not to 8788 * contribute to the load average, and not to 8789 * be caught by 'softlockup' 8790 */ 8791 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8792 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8793 mddev2->curr_resync >= mddev->curr_resync) { 8794 if (mddev2_minor != mddev2->md_minor) { 8795 mddev2_minor = mddev2->md_minor; 8796 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8797 desc, mdname(mddev), 8798 mdname(mddev2)); 8799 } 8800 spin_unlock(&all_mddevs_lock); 8801 8802 if (signal_pending(current)) 8803 flush_signals(current); 8804 schedule(); 8805 finish_wait(&resync_wait, &wq); 8806 goto try_again; 8807 } 8808 finish_wait(&resync_wait, &wq); 8809 } 8810 } 8811 spin_unlock(&all_mddevs_lock); 8812 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8813 8814 j = 0; 8815 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8816 /* resync follows the size requested by the personality, 8817 * which defaults to physical size, but can be virtual size 8818 */ 8819 max_sectors = mddev->resync_max_sectors; 8820 atomic64_set(&mddev->resync_mismatches, 0); 8821 /* we don't use the checkpoint if there's a bitmap */ 8822 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8823 j = mddev->resync_min; 8824 else if (!mddev->bitmap) 8825 j = mddev->recovery_cp; 8826 8827 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8828 max_sectors = mddev->resync_max_sectors; 8829 /* 8830 * If the original node aborts reshaping then we continue the 8831 * reshaping, so set j again to avoid restart reshape from the 8832 * first beginning 8833 */ 8834 if (mddev_is_clustered(mddev) && 8835 mddev->reshape_position != MaxSector) 8836 j = mddev->reshape_position; 8837 } else { 8838 /* recovery follows the physical size of devices */ 8839 max_sectors = mddev->dev_sectors; 8840 j = MaxSector; 8841 rcu_read_lock(); 8842 rdev_for_each_rcu(rdev, mddev) 8843 if (rdev->raid_disk >= 0 && 8844 !test_bit(Journal, &rdev->flags) && 8845 !test_bit(Faulty, &rdev->flags) && 8846 !test_bit(In_sync, &rdev->flags) && 8847 rdev->recovery_offset < j) 8848 j = rdev->recovery_offset; 8849 rcu_read_unlock(); 8850 8851 /* If there is a bitmap, we need to make sure all 8852 * writes that started before we added a spare 8853 * complete before we start doing a recovery. 8854 * Otherwise the write might complete and (via 8855 * bitmap_endwrite) set a bit in the bitmap after the 8856 * recovery has checked that bit and skipped that 8857 * region. 8858 */ 8859 if (mddev->bitmap) { 8860 mddev->pers->quiesce(mddev, 1); 8861 mddev->pers->quiesce(mddev, 0); 8862 } 8863 } 8864 8865 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8866 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8867 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8868 speed_max(mddev), desc); 8869 8870 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8871 8872 io_sectors = 0; 8873 for (m = 0; m < SYNC_MARKS; m++) { 8874 mark[m] = jiffies; 8875 mark_cnt[m] = io_sectors; 8876 } 8877 last_mark = 0; 8878 mddev->resync_mark = mark[last_mark]; 8879 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8880 8881 /* 8882 * Tune reconstruction: 8883 */ 8884 window = 32 * (PAGE_SIZE / 512); 8885 pr_debug("md: using %dk window, over a total of %lluk.\n", 8886 window/2, (unsigned long long)max_sectors/2); 8887 8888 atomic_set(&mddev->recovery_active, 0); 8889 last_check = 0; 8890 8891 if (j>2) { 8892 pr_debug("md: resuming %s of %s from checkpoint.\n", 8893 desc, mdname(mddev)); 8894 mddev->curr_resync = j; 8895 } else 8896 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 8897 mddev->curr_resync_completed = j; 8898 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8899 md_new_event(); 8900 update_time = jiffies; 8901 8902 blk_start_plug(&plug); 8903 while (j < max_sectors) { 8904 sector_t sectors; 8905 8906 skipped = 0; 8907 8908 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 8909 ((mddev->curr_resync > mddev->curr_resync_completed && 8910 (mddev->curr_resync - mddev->curr_resync_completed) 8911 > (max_sectors >> 4)) || 8912 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 8913 (j - mddev->curr_resync_completed)*2 8914 >= mddev->resync_max - mddev->curr_resync_completed || 8915 mddev->curr_resync_completed > mddev->resync_max 8916 )) { 8917 /* time to update curr_resync_completed */ 8918 wait_event(mddev->recovery_wait, 8919 atomic_read(&mddev->recovery_active) == 0); 8920 mddev->curr_resync_completed = j; 8921 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 8922 j > mddev->recovery_cp) 8923 mddev->recovery_cp = j; 8924 update_time = jiffies; 8925 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8926 sysfs_notify_dirent_safe(mddev->sysfs_completed); 8927 } 8928 8929 while (j >= mddev->resync_max && 8930 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 8931 /* As this condition is controlled by user-space, 8932 * we can block indefinitely, so use '_interruptible' 8933 * to avoid triggering warnings. 8934 */ 8935 flush_signals(current); /* just in case */ 8936 wait_event_interruptible(mddev->recovery_wait, 8937 mddev->resync_max > j 8938 || test_bit(MD_RECOVERY_INTR, 8939 &mddev->recovery)); 8940 } 8941 8942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8943 break; 8944 8945 sectors = mddev->pers->sync_request(mddev, j, &skipped); 8946 if (sectors == 0) { 8947 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8948 break; 8949 } 8950 8951 if (!skipped) { /* actual IO requested */ 8952 io_sectors += sectors; 8953 atomic_add(sectors, &mddev->recovery_active); 8954 } 8955 8956 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8957 break; 8958 8959 j += sectors; 8960 if (j > max_sectors) 8961 /* when skipping, extra large numbers can be returned. */ 8962 j = max_sectors; 8963 if (j > 2) 8964 mddev->curr_resync = j; 8965 mddev->curr_mark_cnt = io_sectors; 8966 if (last_check == 0) 8967 /* this is the earliest that rebuild will be 8968 * visible in /proc/mdstat 8969 */ 8970 md_new_event(); 8971 8972 if (last_check + window > io_sectors || j == max_sectors) 8973 continue; 8974 8975 last_check = io_sectors; 8976 repeat: 8977 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 8978 /* step marks */ 8979 int next = (last_mark+1) % SYNC_MARKS; 8980 8981 mddev->resync_mark = mark[next]; 8982 mddev->resync_mark_cnt = mark_cnt[next]; 8983 mark[next] = jiffies; 8984 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 8985 last_mark = next; 8986 } 8987 8988 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8989 break; 8990 8991 /* 8992 * this loop exits only if either when we are slower than 8993 * the 'hard' speed limit, or the system was IO-idle for 8994 * a jiffy. 8995 * the system might be non-idle CPU-wise, but we only care 8996 * about not overloading the IO subsystem. (things like an 8997 * e2fsck being done on the RAID array should execute fast) 8998 */ 8999 cond_resched(); 9000 9001 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9002 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9003 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9004 9005 if (currspeed > speed_min(mddev)) { 9006 if (currspeed > speed_max(mddev)) { 9007 msleep(500); 9008 goto repeat; 9009 } 9010 if (!is_mddev_idle(mddev, 0)) { 9011 /* 9012 * Give other IO more of a chance. 9013 * The faster the devices, the less we wait. 9014 */ 9015 wait_event(mddev->recovery_wait, 9016 !atomic_read(&mddev->recovery_active)); 9017 } 9018 } 9019 } 9020 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9021 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9022 ? "interrupted" : "done"); 9023 /* 9024 * this also signals 'finished resyncing' to md_stop 9025 */ 9026 blk_finish_plug(&plug); 9027 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9028 9029 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9030 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9031 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9032 mddev->curr_resync_completed = mddev->curr_resync; 9033 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9034 } 9035 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9036 9037 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9038 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9039 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9041 if (mddev->curr_resync >= mddev->recovery_cp) { 9042 pr_debug("md: checkpointing %s of %s.\n", 9043 desc, mdname(mddev)); 9044 if (test_bit(MD_RECOVERY_ERROR, 9045 &mddev->recovery)) 9046 mddev->recovery_cp = 9047 mddev->curr_resync_completed; 9048 else 9049 mddev->recovery_cp = 9050 mddev->curr_resync; 9051 } 9052 } else 9053 mddev->recovery_cp = MaxSector; 9054 } else { 9055 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9056 mddev->curr_resync = MaxSector; 9057 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9058 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9059 rcu_read_lock(); 9060 rdev_for_each_rcu(rdev, mddev) 9061 if (rdev->raid_disk >= 0 && 9062 mddev->delta_disks >= 0 && 9063 !test_bit(Journal, &rdev->flags) && 9064 !test_bit(Faulty, &rdev->flags) && 9065 !test_bit(In_sync, &rdev->flags) && 9066 rdev->recovery_offset < mddev->curr_resync) 9067 rdev->recovery_offset = mddev->curr_resync; 9068 rcu_read_unlock(); 9069 } 9070 } 9071 } 9072 skip: 9073 /* set CHANGE_PENDING here since maybe another update is needed, 9074 * so other nodes are informed. It should be harmless for normal 9075 * raid */ 9076 set_mask_bits(&mddev->sb_flags, 0, 9077 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9078 9079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9080 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9081 mddev->delta_disks > 0 && 9082 mddev->pers->finish_reshape && 9083 mddev->pers->size && 9084 mddev->queue) { 9085 mddev_lock_nointr(mddev); 9086 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9087 mddev_unlock(mddev); 9088 if (!mddev_is_clustered(mddev)) 9089 set_capacity_and_notify(mddev->gendisk, 9090 mddev->array_sectors); 9091 } 9092 9093 spin_lock(&mddev->lock); 9094 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9095 /* We completed so min/max setting can be forgotten if used. */ 9096 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9097 mddev->resync_min = 0; 9098 mddev->resync_max = MaxSector; 9099 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9100 mddev->resync_min = mddev->curr_resync_completed; 9101 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9102 mddev->curr_resync = MD_RESYNC_NONE; 9103 spin_unlock(&mddev->lock); 9104 9105 wake_up(&resync_wait); 9106 md_wakeup_thread(mddev->thread); 9107 return; 9108 } 9109 EXPORT_SYMBOL_GPL(md_do_sync); 9110 9111 static int remove_and_add_spares(struct mddev *mddev, 9112 struct md_rdev *this) 9113 { 9114 struct md_rdev *rdev; 9115 int spares = 0; 9116 int removed = 0; 9117 bool remove_some = false; 9118 9119 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9120 /* Mustn't remove devices when resync thread is running */ 9121 return 0; 9122 9123 rdev_for_each(rdev, mddev) { 9124 if ((this == NULL || rdev == this) && 9125 rdev->raid_disk >= 0 && 9126 !test_bit(Blocked, &rdev->flags) && 9127 test_bit(Faulty, &rdev->flags) && 9128 atomic_read(&rdev->nr_pending)==0) { 9129 /* Faulty non-Blocked devices with nr_pending == 0 9130 * never get nr_pending incremented, 9131 * never get Faulty cleared, and never get Blocked set. 9132 * So we can synchronize_rcu now rather than once per device 9133 */ 9134 remove_some = true; 9135 set_bit(RemoveSynchronized, &rdev->flags); 9136 } 9137 } 9138 9139 if (remove_some) 9140 synchronize_rcu(); 9141 rdev_for_each(rdev, mddev) { 9142 if ((this == NULL || rdev == this) && 9143 rdev->raid_disk >= 0 && 9144 !test_bit(Blocked, &rdev->flags) && 9145 ((test_bit(RemoveSynchronized, &rdev->flags) || 9146 (!test_bit(In_sync, &rdev->flags) && 9147 !test_bit(Journal, &rdev->flags))) && 9148 atomic_read(&rdev->nr_pending)==0)) { 9149 if (mddev->pers->hot_remove_disk( 9150 mddev, rdev) == 0) { 9151 sysfs_unlink_rdev(mddev, rdev); 9152 rdev->saved_raid_disk = rdev->raid_disk; 9153 rdev->raid_disk = -1; 9154 removed++; 9155 } 9156 } 9157 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9158 clear_bit(RemoveSynchronized, &rdev->flags); 9159 } 9160 9161 if (removed && mddev->kobj.sd) 9162 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9163 9164 if (this && removed) 9165 goto no_add; 9166 9167 rdev_for_each(rdev, mddev) { 9168 if (this && this != rdev) 9169 continue; 9170 if (test_bit(Candidate, &rdev->flags)) 9171 continue; 9172 if (rdev->raid_disk >= 0 && 9173 !test_bit(In_sync, &rdev->flags) && 9174 !test_bit(Journal, &rdev->flags) && 9175 !test_bit(Faulty, &rdev->flags)) 9176 spares++; 9177 if (rdev->raid_disk >= 0) 9178 continue; 9179 if (test_bit(Faulty, &rdev->flags)) 9180 continue; 9181 if (!test_bit(Journal, &rdev->flags)) { 9182 if (mddev->ro && 9183 ! (rdev->saved_raid_disk >= 0 && 9184 !test_bit(Bitmap_sync, &rdev->flags))) 9185 continue; 9186 9187 rdev->recovery_offset = 0; 9188 } 9189 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9190 /* failure here is OK */ 9191 sysfs_link_rdev(mddev, rdev); 9192 if (!test_bit(Journal, &rdev->flags)) 9193 spares++; 9194 md_new_event(); 9195 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9196 } 9197 } 9198 no_add: 9199 if (removed) 9200 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9201 return spares; 9202 } 9203 9204 static void md_start_sync(struct work_struct *ws) 9205 { 9206 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9207 9208 mddev->sync_thread = md_register_thread(md_do_sync, 9209 mddev, 9210 "resync"); 9211 if (!mddev->sync_thread) { 9212 pr_warn("%s: could not start resync thread...\n", 9213 mdname(mddev)); 9214 /* leave the spares where they are, it shouldn't hurt */ 9215 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9216 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9217 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9218 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9219 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9220 wake_up(&resync_wait); 9221 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9222 &mddev->recovery)) 9223 if (mddev->sysfs_action) 9224 sysfs_notify_dirent_safe(mddev->sysfs_action); 9225 } else 9226 md_wakeup_thread(mddev->sync_thread); 9227 sysfs_notify_dirent_safe(mddev->sysfs_action); 9228 md_new_event(); 9229 } 9230 9231 /* 9232 * This routine is regularly called by all per-raid-array threads to 9233 * deal with generic issues like resync and super-block update. 9234 * Raid personalities that don't have a thread (linear/raid0) do not 9235 * need this as they never do any recovery or update the superblock. 9236 * 9237 * It does not do any resync itself, but rather "forks" off other threads 9238 * to do that as needed. 9239 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9240 * "->recovery" and create a thread at ->sync_thread. 9241 * When the thread finishes it sets MD_RECOVERY_DONE 9242 * and wakeups up this thread which will reap the thread and finish up. 9243 * This thread also removes any faulty devices (with nr_pending == 0). 9244 * 9245 * The overall approach is: 9246 * 1/ if the superblock needs updating, update it. 9247 * 2/ If a recovery thread is running, don't do anything else. 9248 * 3/ If recovery has finished, clean up, possibly marking spares active. 9249 * 4/ If there are any faulty devices, remove them. 9250 * 5/ If array is degraded, try to add spares devices 9251 * 6/ If array has spares or is not in-sync, start a resync thread. 9252 */ 9253 void md_check_recovery(struct mddev *mddev) 9254 { 9255 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9256 /* Write superblock - thread that called mddev_suspend() 9257 * holds reconfig_mutex for us. 9258 */ 9259 set_bit(MD_UPDATING_SB, &mddev->flags); 9260 smp_mb__after_atomic(); 9261 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9262 md_update_sb(mddev, 0); 9263 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9264 wake_up(&mddev->sb_wait); 9265 } 9266 9267 if (mddev->suspended) 9268 return; 9269 9270 if (mddev->bitmap) 9271 md_bitmap_daemon_work(mddev); 9272 9273 if (signal_pending(current)) { 9274 if (mddev->pers->sync_request && !mddev->external) { 9275 pr_debug("md: %s in immediate safe mode\n", 9276 mdname(mddev)); 9277 mddev->safemode = 2; 9278 } 9279 flush_signals(current); 9280 } 9281 9282 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9283 return; 9284 if ( ! ( 9285 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9286 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9287 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9288 (mddev->external == 0 && mddev->safemode == 1) || 9289 (mddev->safemode == 2 9290 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9291 )) 9292 return; 9293 9294 if (mddev_trylock(mddev)) { 9295 int spares = 0; 9296 bool try_set_sync = mddev->safemode != 0; 9297 9298 if (!mddev->external && mddev->safemode == 1) 9299 mddev->safemode = 0; 9300 9301 if (mddev->ro) { 9302 struct md_rdev *rdev; 9303 if (!mddev->external && mddev->in_sync) 9304 /* 'Blocked' flag not needed as failed devices 9305 * will be recorded if array switched to read/write. 9306 * Leaving it set will prevent the device 9307 * from being removed. 9308 */ 9309 rdev_for_each(rdev, mddev) 9310 clear_bit(Blocked, &rdev->flags); 9311 /* On a read-only array we can: 9312 * - remove failed devices 9313 * - add already-in_sync devices if the array itself 9314 * is in-sync. 9315 * As we only add devices that are already in-sync, 9316 * we can activate the spares immediately. 9317 */ 9318 remove_and_add_spares(mddev, NULL); 9319 /* There is no thread, but we need to call 9320 * ->spare_active and clear saved_raid_disk 9321 */ 9322 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9323 md_unregister_thread(&mddev->sync_thread); 9324 md_reap_sync_thread(mddev); 9325 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9326 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9327 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9328 goto unlock; 9329 } 9330 9331 if (mddev_is_clustered(mddev)) { 9332 struct md_rdev *rdev, *tmp; 9333 /* kick the device if another node issued a 9334 * remove disk. 9335 */ 9336 rdev_for_each_safe(rdev, tmp, mddev) { 9337 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9338 rdev->raid_disk < 0) 9339 md_kick_rdev_from_array(rdev); 9340 } 9341 } 9342 9343 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9344 spin_lock(&mddev->lock); 9345 set_in_sync(mddev); 9346 spin_unlock(&mddev->lock); 9347 } 9348 9349 if (mddev->sb_flags) 9350 md_update_sb(mddev, 0); 9351 9352 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 9353 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9354 /* resync/recovery still happening */ 9355 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9356 goto unlock; 9357 } 9358 if (mddev->sync_thread) { 9359 md_unregister_thread(&mddev->sync_thread); 9360 md_reap_sync_thread(mddev); 9361 goto unlock; 9362 } 9363 /* Set RUNNING before clearing NEEDED to avoid 9364 * any transients in the value of "sync_action". 9365 */ 9366 mddev->curr_resync_completed = 0; 9367 spin_lock(&mddev->lock); 9368 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9369 spin_unlock(&mddev->lock); 9370 /* Clear some bits that don't mean anything, but 9371 * might be left set 9372 */ 9373 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9374 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9375 9376 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9377 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9378 goto not_running; 9379 /* no recovery is running. 9380 * remove any failed drives, then 9381 * add spares if possible. 9382 * Spares are also removed and re-added, to allow 9383 * the personality to fail the re-add. 9384 */ 9385 9386 if (mddev->reshape_position != MaxSector) { 9387 if (mddev->pers->check_reshape == NULL || 9388 mddev->pers->check_reshape(mddev) != 0) 9389 /* Cannot proceed */ 9390 goto not_running; 9391 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9392 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9393 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9394 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9395 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9396 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9397 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9398 } else if (mddev->recovery_cp < MaxSector) { 9399 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9400 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9401 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9402 /* nothing to be done ... */ 9403 goto not_running; 9404 9405 if (mddev->pers->sync_request) { 9406 if (spares) { 9407 /* We are adding a device or devices to an array 9408 * which has the bitmap stored on all devices. 9409 * So make sure all bitmap pages get written 9410 */ 9411 md_bitmap_write_all(mddev->bitmap); 9412 } 9413 INIT_WORK(&mddev->del_work, md_start_sync); 9414 queue_work(md_misc_wq, &mddev->del_work); 9415 goto unlock; 9416 } 9417 not_running: 9418 if (!mddev->sync_thread) { 9419 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9420 wake_up(&resync_wait); 9421 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9422 &mddev->recovery)) 9423 if (mddev->sysfs_action) 9424 sysfs_notify_dirent_safe(mddev->sysfs_action); 9425 } 9426 unlock: 9427 wake_up(&mddev->sb_wait); 9428 mddev_unlock(mddev); 9429 } 9430 } 9431 EXPORT_SYMBOL(md_check_recovery); 9432 9433 void md_reap_sync_thread(struct mddev *mddev) 9434 { 9435 struct md_rdev *rdev; 9436 sector_t old_dev_sectors = mddev->dev_sectors; 9437 bool is_reshaped = false; 9438 9439 /* sync_thread should be unregistered, collect result */ 9440 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9441 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9442 mddev->degraded != mddev->raid_disks) { 9443 /* success...*/ 9444 /* activate any spares */ 9445 if (mddev->pers->spare_active(mddev)) { 9446 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9447 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9448 } 9449 } 9450 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9451 mddev->pers->finish_reshape) { 9452 mddev->pers->finish_reshape(mddev); 9453 if (mddev_is_clustered(mddev)) 9454 is_reshaped = true; 9455 } 9456 9457 /* If array is no-longer degraded, then any saved_raid_disk 9458 * information must be scrapped. 9459 */ 9460 if (!mddev->degraded) 9461 rdev_for_each(rdev, mddev) 9462 rdev->saved_raid_disk = -1; 9463 9464 md_update_sb(mddev, 1); 9465 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9466 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9467 * clustered raid */ 9468 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9469 md_cluster_ops->resync_finish(mddev); 9470 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9471 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9472 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9473 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9474 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9475 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9476 /* 9477 * We call md_cluster_ops->update_size here because sync_size could 9478 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9479 * so it is time to update size across cluster. 9480 */ 9481 if (mddev_is_clustered(mddev) && is_reshaped 9482 && !test_bit(MD_CLOSING, &mddev->flags)) 9483 md_cluster_ops->update_size(mddev, old_dev_sectors); 9484 wake_up(&resync_wait); 9485 /* flag recovery needed just to double check */ 9486 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9487 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9488 sysfs_notify_dirent_safe(mddev->sysfs_action); 9489 md_new_event(); 9490 if (mddev->event_work.func) 9491 queue_work(md_misc_wq, &mddev->event_work); 9492 } 9493 EXPORT_SYMBOL(md_reap_sync_thread); 9494 9495 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9496 { 9497 sysfs_notify_dirent_safe(rdev->sysfs_state); 9498 wait_event_timeout(rdev->blocked_wait, 9499 !test_bit(Blocked, &rdev->flags) && 9500 !test_bit(BlockedBadBlocks, &rdev->flags), 9501 msecs_to_jiffies(5000)); 9502 rdev_dec_pending(rdev, mddev); 9503 } 9504 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9505 9506 void md_finish_reshape(struct mddev *mddev) 9507 { 9508 /* called be personality module when reshape completes. */ 9509 struct md_rdev *rdev; 9510 9511 rdev_for_each(rdev, mddev) { 9512 if (rdev->data_offset > rdev->new_data_offset) 9513 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9514 else 9515 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9516 rdev->data_offset = rdev->new_data_offset; 9517 } 9518 } 9519 EXPORT_SYMBOL(md_finish_reshape); 9520 9521 /* Bad block management */ 9522 9523 /* Returns 1 on success, 0 on failure */ 9524 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9525 int is_new) 9526 { 9527 struct mddev *mddev = rdev->mddev; 9528 int rv; 9529 if (is_new) 9530 s += rdev->new_data_offset; 9531 else 9532 s += rdev->data_offset; 9533 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9534 if (rv == 0) { 9535 /* Make sure they get written out promptly */ 9536 if (test_bit(ExternalBbl, &rdev->flags)) 9537 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9538 sysfs_notify_dirent_safe(rdev->sysfs_state); 9539 set_mask_bits(&mddev->sb_flags, 0, 9540 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9541 md_wakeup_thread(rdev->mddev->thread); 9542 return 1; 9543 } else 9544 return 0; 9545 } 9546 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9547 9548 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9549 int is_new) 9550 { 9551 int rv; 9552 if (is_new) 9553 s += rdev->new_data_offset; 9554 else 9555 s += rdev->data_offset; 9556 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9557 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9558 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9559 return rv; 9560 } 9561 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9562 9563 static int md_notify_reboot(struct notifier_block *this, 9564 unsigned long code, void *x) 9565 { 9566 struct mddev *mddev, *n; 9567 int need_delay = 0; 9568 9569 spin_lock(&all_mddevs_lock); 9570 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9571 if (!mddev_get(mddev)) 9572 continue; 9573 spin_unlock(&all_mddevs_lock); 9574 if (mddev_trylock(mddev)) { 9575 if (mddev->pers) 9576 __md_stop_writes(mddev); 9577 if (mddev->persistent) 9578 mddev->safemode = 2; 9579 mddev_unlock(mddev); 9580 } 9581 need_delay = 1; 9582 mddev_put(mddev); 9583 spin_lock(&all_mddevs_lock); 9584 } 9585 spin_unlock(&all_mddevs_lock); 9586 9587 /* 9588 * certain more exotic SCSI devices are known to be 9589 * volatile wrt too early system reboots. While the 9590 * right place to handle this issue is the given 9591 * driver, we do want to have a safe RAID driver ... 9592 */ 9593 if (need_delay) 9594 msleep(1000); 9595 9596 return NOTIFY_DONE; 9597 } 9598 9599 static struct notifier_block md_notifier = { 9600 .notifier_call = md_notify_reboot, 9601 .next = NULL, 9602 .priority = INT_MAX, /* before any real devices */ 9603 }; 9604 9605 static void md_geninit(void) 9606 { 9607 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9608 9609 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9610 } 9611 9612 static int __init md_init(void) 9613 { 9614 int ret = -ENOMEM; 9615 9616 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9617 if (!md_wq) 9618 goto err_wq; 9619 9620 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9621 if (!md_misc_wq) 9622 goto err_misc_wq; 9623 9624 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0); 9625 if (!md_rdev_misc_wq) 9626 goto err_rdev_misc_wq; 9627 9628 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9629 if (ret < 0) 9630 goto err_md; 9631 9632 ret = __register_blkdev(0, "mdp", md_probe); 9633 if (ret < 0) 9634 goto err_mdp; 9635 mdp_major = ret; 9636 9637 register_reboot_notifier(&md_notifier); 9638 raid_table_header = register_sysctl_table(raid_root_table); 9639 9640 md_geninit(); 9641 return 0; 9642 9643 err_mdp: 9644 unregister_blkdev(MD_MAJOR, "md"); 9645 err_md: 9646 destroy_workqueue(md_rdev_misc_wq); 9647 err_rdev_misc_wq: 9648 destroy_workqueue(md_misc_wq); 9649 err_misc_wq: 9650 destroy_workqueue(md_wq); 9651 err_wq: 9652 return ret; 9653 } 9654 9655 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9656 { 9657 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9658 struct md_rdev *rdev2, *tmp; 9659 int role, ret; 9660 9661 /* 9662 * If size is changed in another node then we need to 9663 * do resize as well. 9664 */ 9665 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9666 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9667 if (ret) 9668 pr_info("md-cluster: resize failed\n"); 9669 else 9670 md_bitmap_update_sb(mddev->bitmap); 9671 } 9672 9673 /* Check for change of roles in the active devices */ 9674 rdev_for_each_safe(rdev2, tmp, mddev) { 9675 if (test_bit(Faulty, &rdev2->flags)) 9676 continue; 9677 9678 /* Check if the roles changed */ 9679 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9680 9681 if (test_bit(Candidate, &rdev2->flags)) { 9682 if (role == MD_DISK_ROLE_FAULTY) { 9683 pr_info("md: Removing Candidate device %pg because add failed\n", 9684 rdev2->bdev); 9685 md_kick_rdev_from_array(rdev2); 9686 continue; 9687 } 9688 else 9689 clear_bit(Candidate, &rdev2->flags); 9690 } 9691 9692 if (role != rdev2->raid_disk) { 9693 /* 9694 * got activated except reshape is happening. 9695 */ 9696 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9697 !(le32_to_cpu(sb->feature_map) & 9698 MD_FEATURE_RESHAPE_ACTIVE)) { 9699 rdev2->saved_raid_disk = role; 9700 ret = remove_and_add_spares(mddev, rdev2); 9701 pr_info("Activated spare: %pg\n", 9702 rdev2->bdev); 9703 /* wakeup mddev->thread here, so array could 9704 * perform resync with the new activated disk */ 9705 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9706 md_wakeup_thread(mddev->thread); 9707 } 9708 /* device faulty 9709 * We just want to do the minimum to mark the disk 9710 * as faulty. The recovery is performed by the 9711 * one who initiated the error. 9712 */ 9713 if (role == MD_DISK_ROLE_FAULTY || 9714 role == MD_DISK_ROLE_JOURNAL) { 9715 md_error(mddev, rdev2); 9716 clear_bit(Blocked, &rdev2->flags); 9717 } 9718 } 9719 } 9720 9721 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9722 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9723 if (ret) 9724 pr_warn("md: updating array disks failed. %d\n", ret); 9725 } 9726 9727 /* 9728 * Since mddev->delta_disks has already updated in update_raid_disks, 9729 * so it is time to check reshape. 9730 */ 9731 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9732 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9733 /* 9734 * reshape is happening in the remote node, we need to 9735 * update reshape_position and call start_reshape. 9736 */ 9737 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9738 if (mddev->pers->update_reshape_pos) 9739 mddev->pers->update_reshape_pos(mddev); 9740 if (mddev->pers->start_reshape) 9741 mddev->pers->start_reshape(mddev); 9742 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9743 mddev->reshape_position != MaxSector && 9744 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9745 /* reshape is just done in another node. */ 9746 mddev->reshape_position = MaxSector; 9747 if (mddev->pers->update_reshape_pos) 9748 mddev->pers->update_reshape_pos(mddev); 9749 } 9750 9751 /* Finally set the event to be up to date */ 9752 mddev->events = le64_to_cpu(sb->events); 9753 } 9754 9755 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9756 { 9757 int err; 9758 struct page *swapout = rdev->sb_page; 9759 struct mdp_superblock_1 *sb; 9760 9761 /* Store the sb page of the rdev in the swapout temporary 9762 * variable in case we err in the future 9763 */ 9764 rdev->sb_page = NULL; 9765 err = alloc_disk_sb(rdev); 9766 if (err == 0) { 9767 ClearPageUptodate(rdev->sb_page); 9768 rdev->sb_loaded = 0; 9769 err = super_types[mddev->major_version]. 9770 load_super(rdev, NULL, mddev->minor_version); 9771 } 9772 if (err < 0) { 9773 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9774 __func__, __LINE__, rdev->desc_nr, err); 9775 if (rdev->sb_page) 9776 put_page(rdev->sb_page); 9777 rdev->sb_page = swapout; 9778 rdev->sb_loaded = 1; 9779 return err; 9780 } 9781 9782 sb = page_address(rdev->sb_page); 9783 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9784 * is not set 9785 */ 9786 9787 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9788 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9789 9790 /* The other node finished recovery, call spare_active to set 9791 * device In_sync and mddev->degraded 9792 */ 9793 if (rdev->recovery_offset == MaxSector && 9794 !test_bit(In_sync, &rdev->flags) && 9795 mddev->pers->spare_active(mddev)) 9796 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9797 9798 put_page(swapout); 9799 return 0; 9800 } 9801 9802 void md_reload_sb(struct mddev *mddev, int nr) 9803 { 9804 struct md_rdev *rdev = NULL, *iter; 9805 int err; 9806 9807 /* Find the rdev */ 9808 rdev_for_each_rcu(iter, mddev) { 9809 if (iter->desc_nr == nr) { 9810 rdev = iter; 9811 break; 9812 } 9813 } 9814 9815 if (!rdev) { 9816 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9817 return; 9818 } 9819 9820 err = read_rdev(mddev, rdev); 9821 if (err < 0) 9822 return; 9823 9824 check_sb_changes(mddev, rdev); 9825 9826 /* Read all rdev's to update recovery_offset */ 9827 rdev_for_each_rcu(rdev, mddev) { 9828 if (!test_bit(Faulty, &rdev->flags)) 9829 read_rdev(mddev, rdev); 9830 } 9831 } 9832 EXPORT_SYMBOL(md_reload_sb); 9833 9834 #ifndef MODULE 9835 9836 /* 9837 * Searches all registered partitions for autorun RAID arrays 9838 * at boot time. 9839 */ 9840 9841 static DEFINE_MUTEX(detected_devices_mutex); 9842 static LIST_HEAD(all_detected_devices); 9843 struct detected_devices_node { 9844 struct list_head list; 9845 dev_t dev; 9846 }; 9847 9848 void md_autodetect_dev(dev_t dev) 9849 { 9850 struct detected_devices_node *node_detected_dev; 9851 9852 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9853 if (node_detected_dev) { 9854 node_detected_dev->dev = dev; 9855 mutex_lock(&detected_devices_mutex); 9856 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9857 mutex_unlock(&detected_devices_mutex); 9858 } 9859 } 9860 9861 void md_autostart_arrays(int part) 9862 { 9863 struct md_rdev *rdev; 9864 struct detected_devices_node *node_detected_dev; 9865 dev_t dev; 9866 int i_scanned, i_passed; 9867 9868 i_scanned = 0; 9869 i_passed = 0; 9870 9871 pr_info("md: Autodetecting RAID arrays.\n"); 9872 9873 mutex_lock(&detected_devices_mutex); 9874 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9875 i_scanned++; 9876 node_detected_dev = list_entry(all_detected_devices.next, 9877 struct detected_devices_node, list); 9878 list_del(&node_detected_dev->list); 9879 dev = node_detected_dev->dev; 9880 kfree(node_detected_dev); 9881 mutex_unlock(&detected_devices_mutex); 9882 rdev = md_import_device(dev,0, 90); 9883 mutex_lock(&detected_devices_mutex); 9884 if (IS_ERR(rdev)) 9885 continue; 9886 9887 if (test_bit(Faulty, &rdev->flags)) 9888 continue; 9889 9890 set_bit(AutoDetected, &rdev->flags); 9891 list_add(&rdev->same_set, &pending_raid_disks); 9892 i_passed++; 9893 } 9894 mutex_unlock(&detected_devices_mutex); 9895 9896 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 9897 9898 autorun_devices(part); 9899 } 9900 9901 #endif /* !MODULE */ 9902 9903 static __exit void md_exit(void) 9904 { 9905 struct mddev *mddev, *n; 9906 int delay = 1; 9907 9908 unregister_blkdev(MD_MAJOR,"md"); 9909 unregister_blkdev(mdp_major, "mdp"); 9910 unregister_reboot_notifier(&md_notifier); 9911 unregister_sysctl_table(raid_table_header); 9912 9913 /* We cannot unload the modules while some process is 9914 * waiting for us in select() or poll() - wake them up 9915 */ 9916 md_unloading = 1; 9917 while (waitqueue_active(&md_event_waiters)) { 9918 /* not safe to leave yet */ 9919 wake_up(&md_event_waiters); 9920 msleep(delay); 9921 delay += delay; 9922 } 9923 remove_proc_entry("mdstat", NULL); 9924 9925 spin_lock(&all_mddevs_lock); 9926 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9927 if (!mddev_get(mddev)) 9928 continue; 9929 spin_unlock(&all_mddevs_lock); 9930 export_array(mddev); 9931 mddev->ctime = 0; 9932 mddev->hold_active = 0; 9933 /* 9934 * As the mddev is now fully clear, mddev_put will schedule 9935 * the mddev for destruction by a workqueue, and the 9936 * destroy_workqueue() below will wait for that to complete. 9937 */ 9938 mddev_put(mddev); 9939 spin_lock(&all_mddevs_lock); 9940 } 9941 spin_unlock(&all_mddevs_lock); 9942 9943 destroy_workqueue(md_rdev_misc_wq); 9944 destroy_workqueue(md_misc_wq); 9945 destroy_workqueue(md_wq); 9946 } 9947 9948 subsys_initcall(md_init); 9949 module_exit(md_exit) 9950 9951 static int get_ro(char *buffer, const struct kernel_param *kp) 9952 { 9953 return sprintf(buffer, "%d\n", start_readonly); 9954 } 9955 static int set_ro(const char *val, const struct kernel_param *kp) 9956 { 9957 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 9958 } 9959 9960 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 9961 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 9962 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 9963 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 9964 9965 MODULE_LICENSE("GPL"); 9966 MODULE_DESCRIPTION("MD RAID framework"); 9967 MODULE_ALIAS("md"); 9968 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 9969