xref: /openbmc/linux/drivers/md/md.c (revision 051f923d)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60 
61 /* pers_list is a list of registered personalities protected
62  * by pers_lock.
63  * pers_lock does extra service to protect accesses to
64  * mddev->thread when the mutex cannot be held.
65  */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68 
69 static void md_print_devices(void);
70 
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74 
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76 
77 /*
78  * Default number of read corrections we'll attempt on an rdev
79  * before ejecting it from the array. We divide the read error
80  * count by 2 for every hour elapsed between read errors.
81  */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85  * is 1000 KB/sec, so the extra system load does not show up that much.
86  * Increase it if you want to have more _guaranteed_ speed. Note that
87  * the RAID driver will use the maximum available bandwidth if the IO
88  * subsystem is idle. There is also an 'absolute maximum' reconstruction
89  * speed limit - in case reconstruction slows down your system despite
90  * idle IO detection.
91  *
92  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93  * or /sys/block/mdX/md/sync_speed_{min,max}
94  */
95 
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 	return mddev->sync_speed_min ?
101 		mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103 
104 static inline int speed_max(struct mddev *mddev)
105 {
106 	return mddev->sync_speed_max ?
107 		mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109 
110 static struct ctl_table_header *raid_table_header;
111 
112 static ctl_table raid_table[] = {
113 	{
114 		.procname	= "speed_limit_min",
115 		.data		= &sysctl_speed_limit_min,
116 		.maxlen		= sizeof(int),
117 		.mode		= S_IRUGO|S_IWUSR,
118 		.proc_handler	= proc_dointvec,
119 	},
120 	{
121 		.procname	= "speed_limit_max",
122 		.data		= &sysctl_speed_limit_max,
123 		.maxlen		= sizeof(int),
124 		.mode		= S_IRUGO|S_IWUSR,
125 		.proc_handler	= proc_dointvec,
126 	},
127 	{ }
128 };
129 
130 static ctl_table raid_dir_table[] = {
131 	{
132 		.procname	= "raid",
133 		.maxlen		= 0,
134 		.mode		= S_IRUGO|S_IXUGO,
135 		.child		= raid_table,
136 	},
137 	{ }
138 };
139 
140 static ctl_table raid_root_table[] = {
141 	{
142 		.procname	= "dev",
143 		.maxlen		= 0,
144 		.mode		= 0555,
145 		.child		= raid_dir_table,
146 	},
147 	{  }
148 };
149 
150 static const struct block_device_operations md_fops;
151 
152 static int start_readonly;
153 
154 /* bio_clone_mddev
155  * like bio_clone, but with a local bio set
156  */
157 
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 	struct mddev *mddev, **mddevp;
161 
162 	mddevp = (void*)bio;
163 	mddev = mddevp[-1];
164 
165 	bio_free(bio, mddev->bio_set);
166 }
167 
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 			    struct mddev *mddev)
170 {
171 	struct bio *b;
172 	struct mddev **mddevp;
173 
174 	if (!mddev || !mddev->bio_set)
175 		return bio_alloc(gfp_mask, nr_iovecs);
176 
177 	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 			     mddev->bio_set);
179 	if (!b)
180 		return NULL;
181 	mddevp = (void*)b;
182 	mddevp[-1] = mddev;
183 	b->bi_destructor = mddev_bio_destructor;
184 	return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187 
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 			    struct mddev *mddev)
190 {
191 	struct bio *b;
192 	struct mddev **mddevp;
193 
194 	if (!mddev || !mddev->bio_set)
195 		return bio_clone(bio, gfp_mask);
196 
197 	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 			     mddev->bio_set);
199 	if (!b)
200 		return NULL;
201 	mddevp = (void*)b;
202 	mddevp[-1] = mddev;
203 	b->bi_destructor = mddev_bio_destructor;
204 	__bio_clone(b, bio);
205 	if (bio_integrity(bio)) {
206 		int ret;
207 
208 		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209 
210 		if (ret < 0) {
211 			bio_put(b);
212 			return NULL;
213 		}
214 	}
215 
216 	return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219 
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 	/* 'bio' is a cloned bio which we need to trim to match
223 	 * the given offset and size.
224 	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 	 */
226 	int i;
227 	struct bio_vec *bvec;
228 	int sofar = 0;
229 
230 	size <<= 9;
231 	if (offset == 0 && size == bio->bi_size)
232 		return;
233 
234 	bio->bi_sector += offset;
235 	bio->bi_size = size;
236 	offset <<= 9;
237 	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238 
239 	while (bio->bi_idx < bio->bi_vcnt &&
240 	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 		/* remove this whole bio_vec */
242 		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 		bio->bi_idx++;
244 	}
245 	if (bio->bi_idx < bio->bi_vcnt) {
246 		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 	}
249 	/* avoid any complications with bi_idx being non-zero*/
250 	if (bio->bi_idx) {
251 		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 		bio->bi_vcnt -= bio->bi_idx;
254 		bio->bi_idx = 0;
255 	}
256 	/* Make sure vcnt and last bv are not too big */
257 	bio_for_each_segment(bvec, bio, i) {
258 		if (sofar + bvec->bv_len > size)
259 			bvec->bv_len = size - sofar;
260 		if (bvec->bv_len == 0) {
261 			bio->bi_vcnt = i;
262 			break;
263 		}
264 		sofar += bvec->bv_len;
265 	}
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268 
269 /*
270  * We have a system wide 'event count' that is incremented
271  * on any 'interesting' event, and readers of /proc/mdstat
272  * can use 'poll' or 'select' to find out when the event
273  * count increases.
274  *
275  * Events are:
276  *  start array, stop array, error, add device, remove device,
277  *  start build, activate spare
278  */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 	atomic_inc(&md_event_count);
284 	wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287 
288 /* Alternate version that can be called from interrupts
289  * when calling sysfs_notify isn't needed.
290  */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 	atomic_inc(&md_event_count);
294 	wake_up(&md_event_waiters);
295 }
296 
297 /*
298  * Enables to iterate over all existing md arrays
299  * all_mddevs_lock protects this list.
300  */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303 
304 
305 /*
306  * iterates through all used mddevs in the system.
307  * We take care to grab the all_mddevs_lock whenever navigating
308  * the list, and to always hold a refcount when unlocked.
309  * Any code which breaks out of this loop while own
310  * a reference to the current mddev and must mddev_put it.
311  */
312 #define for_each_mddev(_mddev,_tmp)					\
313 									\
314 	for (({ spin_lock(&all_mddevs_lock); 				\
315 		_tmp = all_mddevs.next;					\
316 		_mddev = NULL;});					\
317 	     ({ if (_tmp != &all_mddevs)				\
318 			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 		spin_unlock(&all_mddevs_lock);				\
320 		if (_mddev) mddev_put(_mddev);				\
321 		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
322 		_tmp != &all_mddevs;});					\
323 	     ({ spin_lock(&all_mddevs_lock);				\
324 		_tmp = _tmp->next;})					\
325 		)
326 
327 
328 /* Rather than calling directly into the personality make_request function,
329  * IO requests come here first so that we can check if the device is
330  * being suspended pending a reconfiguration.
331  * We hold a refcount over the call to ->make_request.  By the time that
332  * call has finished, the bio has been linked into some internal structure
333  * and so is visible to ->quiesce(), so we don't need the refcount any more.
334  */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 	const int rw = bio_data_dir(bio);
338 	struct mddev *mddev = q->queuedata;
339 	int cpu;
340 	unsigned int sectors;
341 
342 	if (mddev == NULL || mddev->pers == NULL
343 	    || !mddev->ready) {
344 		bio_io_error(bio);
345 		return;
346 	}
347 	smp_rmb(); /* Ensure implications of  'active' are visible */
348 	rcu_read_lock();
349 	if (mddev->suspended) {
350 		DEFINE_WAIT(__wait);
351 		for (;;) {
352 			prepare_to_wait(&mddev->sb_wait, &__wait,
353 					TASK_UNINTERRUPTIBLE);
354 			if (!mddev->suspended)
355 				break;
356 			rcu_read_unlock();
357 			schedule();
358 			rcu_read_lock();
359 		}
360 		finish_wait(&mddev->sb_wait, &__wait);
361 	}
362 	atomic_inc(&mddev->active_io);
363 	rcu_read_unlock();
364 
365 	/*
366 	 * save the sectors now since our bio can
367 	 * go away inside make_request
368 	 */
369 	sectors = bio_sectors(bio);
370 	mddev->pers->make_request(mddev, bio);
371 
372 	cpu = part_stat_lock();
373 	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 	part_stat_unlock();
376 
377 	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 		wake_up(&mddev->sb_wait);
379 }
380 
381 /* mddev_suspend makes sure no new requests are submitted
382  * to the device, and that any requests that have been submitted
383  * are completely handled.
384  * Once ->stop is called and completes, the module will be completely
385  * unused.
386  */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 	BUG_ON(mddev->suspended);
390 	mddev->suspended = 1;
391 	synchronize_rcu();
392 	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 	mddev->pers->quiesce(mddev, 1);
394 }
395 EXPORT_SYMBOL_GPL(mddev_suspend);
396 
397 void mddev_resume(struct mddev *mddev)
398 {
399 	mddev->suspended = 0;
400 	wake_up(&mddev->sb_wait);
401 	mddev->pers->quiesce(mddev, 0);
402 
403 	md_wakeup_thread(mddev->thread);
404 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
405 }
406 EXPORT_SYMBOL_GPL(mddev_resume);
407 
408 int mddev_congested(struct mddev *mddev, int bits)
409 {
410 	return mddev->suspended;
411 }
412 EXPORT_SYMBOL(mddev_congested);
413 
414 /*
415  * Generic flush handling for md
416  */
417 
418 static void md_end_flush(struct bio *bio, int err)
419 {
420 	struct md_rdev *rdev = bio->bi_private;
421 	struct mddev *mddev = rdev->mddev;
422 
423 	rdev_dec_pending(rdev, mddev);
424 
425 	if (atomic_dec_and_test(&mddev->flush_pending)) {
426 		/* The pre-request flush has finished */
427 		queue_work(md_wq, &mddev->flush_work);
428 	}
429 	bio_put(bio);
430 }
431 
432 static void md_submit_flush_data(struct work_struct *ws);
433 
434 static void submit_flushes(struct work_struct *ws)
435 {
436 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
437 	struct md_rdev *rdev;
438 
439 	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
440 	atomic_set(&mddev->flush_pending, 1);
441 	rcu_read_lock();
442 	rdev_for_each_rcu(rdev, mddev)
443 		if (rdev->raid_disk >= 0 &&
444 		    !test_bit(Faulty, &rdev->flags)) {
445 			/* Take two references, one is dropped
446 			 * when request finishes, one after
447 			 * we reclaim rcu_read_lock
448 			 */
449 			struct bio *bi;
450 			atomic_inc(&rdev->nr_pending);
451 			atomic_inc(&rdev->nr_pending);
452 			rcu_read_unlock();
453 			bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
454 			bi->bi_end_io = md_end_flush;
455 			bi->bi_private = rdev;
456 			bi->bi_bdev = rdev->bdev;
457 			atomic_inc(&mddev->flush_pending);
458 			submit_bio(WRITE_FLUSH, bi);
459 			rcu_read_lock();
460 			rdev_dec_pending(rdev, mddev);
461 		}
462 	rcu_read_unlock();
463 	if (atomic_dec_and_test(&mddev->flush_pending))
464 		queue_work(md_wq, &mddev->flush_work);
465 }
466 
467 static void md_submit_flush_data(struct work_struct *ws)
468 {
469 	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
470 	struct bio *bio = mddev->flush_bio;
471 
472 	if (bio->bi_size == 0)
473 		/* an empty barrier - all done */
474 		bio_endio(bio, 0);
475 	else {
476 		bio->bi_rw &= ~REQ_FLUSH;
477 		mddev->pers->make_request(mddev, bio);
478 	}
479 
480 	mddev->flush_bio = NULL;
481 	wake_up(&mddev->sb_wait);
482 }
483 
484 void md_flush_request(struct mddev *mddev, struct bio *bio)
485 {
486 	spin_lock_irq(&mddev->write_lock);
487 	wait_event_lock_irq(mddev->sb_wait,
488 			    !mddev->flush_bio,
489 			    mddev->write_lock, /*nothing*/);
490 	mddev->flush_bio = bio;
491 	spin_unlock_irq(&mddev->write_lock);
492 
493 	INIT_WORK(&mddev->flush_work, submit_flushes);
494 	queue_work(md_wq, &mddev->flush_work);
495 }
496 EXPORT_SYMBOL(md_flush_request);
497 
498 /* Support for plugging.
499  * This mirrors the plugging support in request_queue, but does not
500  * require having a whole queue or request structures.
501  * We allocate an md_plug_cb for each md device and each thread it gets
502  * plugged on.  This links tot the private plug_handle structure in the
503  * personality data where we keep a count of the number of outstanding
504  * plugs so other code can see if a plug is active.
505  */
506 struct md_plug_cb {
507 	struct blk_plug_cb cb;
508 	struct mddev *mddev;
509 };
510 
511 static void plugger_unplug(struct blk_plug_cb *cb)
512 {
513 	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
514 	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
515 		md_wakeup_thread(mdcb->mddev->thread);
516 	kfree(mdcb);
517 }
518 
519 /* Check that an unplug wakeup will come shortly.
520  * If not, wakeup the md thread immediately
521  */
522 int mddev_check_plugged(struct mddev *mddev)
523 {
524 	struct blk_plug *plug = current->plug;
525 	struct md_plug_cb *mdcb;
526 
527 	if (!plug)
528 		return 0;
529 
530 	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
531 		if (mdcb->cb.callback == plugger_unplug &&
532 		    mdcb->mddev == mddev) {
533 			/* Already on the list, move to top */
534 			if (mdcb != list_first_entry(&plug->cb_list,
535 						    struct md_plug_cb,
536 						    cb.list))
537 				list_move(&mdcb->cb.list, &plug->cb_list);
538 			return 1;
539 		}
540 	}
541 	/* Not currently on the callback list */
542 	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
543 	if (!mdcb)
544 		return 0;
545 
546 	mdcb->mddev = mddev;
547 	mdcb->cb.callback = plugger_unplug;
548 	atomic_inc(&mddev->plug_cnt);
549 	list_add(&mdcb->cb.list, &plug->cb_list);
550 	return 1;
551 }
552 EXPORT_SYMBOL_GPL(mddev_check_plugged);
553 
554 static inline struct mddev *mddev_get(struct mddev *mddev)
555 {
556 	atomic_inc(&mddev->active);
557 	return mddev;
558 }
559 
560 static void mddev_delayed_delete(struct work_struct *ws);
561 
562 static void mddev_put(struct mddev *mddev)
563 {
564 	struct bio_set *bs = NULL;
565 
566 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
567 		return;
568 	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
569 	    mddev->ctime == 0 && !mddev->hold_active) {
570 		/* Array is not configured at all, and not held active,
571 		 * so destroy it */
572 		list_del_init(&mddev->all_mddevs);
573 		bs = mddev->bio_set;
574 		mddev->bio_set = NULL;
575 		if (mddev->gendisk) {
576 			/* We did a probe so need to clean up.  Call
577 			 * queue_work inside the spinlock so that
578 			 * flush_workqueue() after mddev_find will
579 			 * succeed in waiting for the work to be done.
580 			 */
581 			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
582 			queue_work(md_misc_wq, &mddev->del_work);
583 		} else
584 			kfree(mddev);
585 	}
586 	spin_unlock(&all_mddevs_lock);
587 	if (bs)
588 		bioset_free(bs);
589 }
590 
591 void mddev_init(struct mddev *mddev)
592 {
593 	mutex_init(&mddev->open_mutex);
594 	mutex_init(&mddev->reconfig_mutex);
595 	mutex_init(&mddev->bitmap_info.mutex);
596 	INIT_LIST_HEAD(&mddev->disks);
597 	INIT_LIST_HEAD(&mddev->all_mddevs);
598 	init_timer(&mddev->safemode_timer);
599 	atomic_set(&mddev->active, 1);
600 	atomic_set(&mddev->openers, 0);
601 	atomic_set(&mddev->active_io, 0);
602 	atomic_set(&mddev->plug_cnt, 0);
603 	spin_lock_init(&mddev->write_lock);
604 	atomic_set(&mddev->flush_pending, 0);
605 	init_waitqueue_head(&mddev->sb_wait);
606 	init_waitqueue_head(&mddev->recovery_wait);
607 	mddev->reshape_position = MaxSector;
608 	mddev->resync_min = 0;
609 	mddev->resync_max = MaxSector;
610 	mddev->level = LEVEL_NONE;
611 }
612 EXPORT_SYMBOL_GPL(mddev_init);
613 
614 static struct mddev * mddev_find(dev_t unit)
615 {
616 	struct mddev *mddev, *new = NULL;
617 
618 	if (unit && MAJOR(unit) != MD_MAJOR)
619 		unit &= ~((1<<MdpMinorShift)-1);
620 
621  retry:
622 	spin_lock(&all_mddevs_lock);
623 
624 	if (unit) {
625 		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
626 			if (mddev->unit == unit) {
627 				mddev_get(mddev);
628 				spin_unlock(&all_mddevs_lock);
629 				kfree(new);
630 				return mddev;
631 			}
632 
633 		if (new) {
634 			list_add(&new->all_mddevs, &all_mddevs);
635 			spin_unlock(&all_mddevs_lock);
636 			new->hold_active = UNTIL_IOCTL;
637 			return new;
638 		}
639 	} else if (new) {
640 		/* find an unused unit number */
641 		static int next_minor = 512;
642 		int start = next_minor;
643 		int is_free = 0;
644 		int dev = 0;
645 		while (!is_free) {
646 			dev = MKDEV(MD_MAJOR, next_minor);
647 			next_minor++;
648 			if (next_minor > MINORMASK)
649 				next_minor = 0;
650 			if (next_minor == start) {
651 				/* Oh dear, all in use. */
652 				spin_unlock(&all_mddevs_lock);
653 				kfree(new);
654 				return NULL;
655 			}
656 
657 			is_free = 1;
658 			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
659 				if (mddev->unit == dev) {
660 					is_free = 0;
661 					break;
662 				}
663 		}
664 		new->unit = dev;
665 		new->md_minor = MINOR(dev);
666 		new->hold_active = UNTIL_STOP;
667 		list_add(&new->all_mddevs, &all_mddevs);
668 		spin_unlock(&all_mddevs_lock);
669 		return new;
670 	}
671 	spin_unlock(&all_mddevs_lock);
672 
673 	new = kzalloc(sizeof(*new), GFP_KERNEL);
674 	if (!new)
675 		return NULL;
676 
677 	new->unit = unit;
678 	if (MAJOR(unit) == MD_MAJOR)
679 		new->md_minor = MINOR(unit);
680 	else
681 		new->md_minor = MINOR(unit) >> MdpMinorShift;
682 
683 	mddev_init(new);
684 
685 	goto retry;
686 }
687 
688 static inline int mddev_lock(struct mddev * mddev)
689 {
690 	return mutex_lock_interruptible(&mddev->reconfig_mutex);
691 }
692 
693 static inline int mddev_is_locked(struct mddev *mddev)
694 {
695 	return mutex_is_locked(&mddev->reconfig_mutex);
696 }
697 
698 static inline int mddev_trylock(struct mddev * mddev)
699 {
700 	return mutex_trylock(&mddev->reconfig_mutex);
701 }
702 
703 static struct attribute_group md_redundancy_group;
704 
705 static void mddev_unlock(struct mddev * mddev)
706 {
707 	if (mddev->to_remove) {
708 		/* These cannot be removed under reconfig_mutex as
709 		 * an access to the files will try to take reconfig_mutex
710 		 * while holding the file unremovable, which leads to
711 		 * a deadlock.
712 		 * So hold set sysfs_active while the remove in happeing,
713 		 * and anything else which might set ->to_remove or my
714 		 * otherwise change the sysfs namespace will fail with
715 		 * -EBUSY if sysfs_active is still set.
716 		 * We set sysfs_active under reconfig_mutex and elsewhere
717 		 * test it under the same mutex to ensure its correct value
718 		 * is seen.
719 		 */
720 		struct attribute_group *to_remove = mddev->to_remove;
721 		mddev->to_remove = NULL;
722 		mddev->sysfs_active = 1;
723 		mutex_unlock(&mddev->reconfig_mutex);
724 
725 		if (mddev->kobj.sd) {
726 			if (to_remove != &md_redundancy_group)
727 				sysfs_remove_group(&mddev->kobj, to_remove);
728 			if (mddev->pers == NULL ||
729 			    mddev->pers->sync_request == NULL) {
730 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
731 				if (mddev->sysfs_action)
732 					sysfs_put(mddev->sysfs_action);
733 				mddev->sysfs_action = NULL;
734 			}
735 		}
736 		mddev->sysfs_active = 0;
737 	} else
738 		mutex_unlock(&mddev->reconfig_mutex);
739 
740 	/* As we've dropped the mutex we need a spinlock to
741 	 * make sure the thread doesn't disappear
742 	 */
743 	spin_lock(&pers_lock);
744 	md_wakeup_thread(mddev->thread);
745 	spin_unlock(&pers_lock);
746 }
747 
748 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
749 {
750 	struct md_rdev *rdev;
751 
752 	rdev_for_each(rdev, mddev)
753 		if (rdev->desc_nr == nr)
754 			return rdev;
755 
756 	return NULL;
757 }
758 
759 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
760 {
761 	struct md_rdev *rdev;
762 
763 	rdev_for_each(rdev, mddev)
764 		if (rdev->bdev->bd_dev == dev)
765 			return rdev;
766 
767 	return NULL;
768 }
769 
770 static struct md_personality *find_pers(int level, char *clevel)
771 {
772 	struct md_personality *pers;
773 	list_for_each_entry(pers, &pers_list, list) {
774 		if (level != LEVEL_NONE && pers->level == level)
775 			return pers;
776 		if (strcmp(pers->name, clevel)==0)
777 			return pers;
778 	}
779 	return NULL;
780 }
781 
782 /* return the offset of the super block in 512byte sectors */
783 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
784 {
785 	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
786 	return MD_NEW_SIZE_SECTORS(num_sectors);
787 }
788 
789 static int alloc_disk_sb(struct md_rdev * rdev)
790 {
791 	if (rdev->sb_page)
792 		MD_BUG();
793 
794 	rdev->sb_page = alloc_page(GFP_KERNEL);
795 	if (!rdev->sb_page) {
796 		printk(KERN_ALERT "md: out of memory.\n");
797 		return -ENOMEM;
798 	}
799 
800 	return 0;
801 }
802 
803 static void free_disk_sb(struct md_rdev * rdev)
804 {
805 	if (rdev->sb_page) {
806 		put_page(rdev->sb_page);
807 		rdev->sb_loaded = 0;
808 		rdev->sb_page = NULL;
809 		rdev->sb_start = 0;
810 		rdev->sectors = 0;
811 	}
812 	if (rdev->bb_page) {
813 		put_page(rdev->bb_page);
814 		rdev->bb_page = NULL;
815 	}
816 }
817 
818 
819 static void super_written(struct bio *bio, int error)
820 {
821 	struct md_rdev *rdev = bio->bi_private;
822 	struct mddev *mddev = rdev->mddev;
823 
824 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
825 		printk("md: super_written gets error=%d, uptodate=%d\n",
826 		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
827 		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
828 		md_error(mddev, rdev);
829 	}
830 
831 	if (atomic_dec_and_test(&mddev->pending_writes))
832 		wake_up(&mddev->sb_wait);
833 	bio_put(bio);
834 }
835 
836 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
837 		   sector_t sector, int size, struct page *page)
838 {
839 	/* write first size bytes of page to sector of rdev
840 	 * Increment mddev->pending_writes before returning
841 	 * and decrement it on completion, waking up sb_wait
842 	 * if zero is reached.
843 	 * If an error occurred, call md_error
844 	 */
845 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
846 
847 	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
848 	bio->bi_sector = sector;
849 	bio_add_page(bio, page, size, 0);
850 	bio->bi_private = rdev;
851 	bio->bi_end_io = super_written;
852 
853 	atomic_inc(&mddev->pending_writes);
854 	submit_bio(WRITE_FLUSH_FUA, bio);
855 }
856 
857 void md_super_wait(struct mddev *mddev)
858 {
859 	/* wait for all superblock writes that were scheduled to complete */
860 	DEFINE_WAIT(wq);
861 	for(;;) {
862 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
863 		if (atomic_read(&mddev->pending_writes)==0)
864 			break;
865 		schedule();
866 	}
867 	finish_wait(&mddev->sb_wait, &wq);
868 }
869 
870 static void bi_complete(struct bio *bio, int error)
871 {
872 	complete((struct completion*)bio->bi_private);
873 }
874 
875 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
876 		 struct page *page, int rw, bool metadata_op)
877 {
878 	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
879 	struct completion event;
880 	int ret;
881 
882 	rw |= REQ_SYNC;
883 
884 	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
885 		rdev->meta_bdev : rdev->bdev;
886 	if (metadata_op)
887 		bio->bi_sector = sector + rdev->sb_start;
888 	else
889 		bio->bi_sector = sector + rdev->data_offset;
890 	bio_add_page(bio, page, size, 0);
891 	init_completion(&event);
892 	bio->bi_private = &event;
893 	bio->bi_end_io = bi_complete;
894 	submit_bio(rw, bio);
895 	wait_for_completion(&event);
896 
897 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
898 	bio_put(bio);
899 	return ret;
900 }
901 EXPORT_SYMBOL_GPL(sync_page_io);
902 
903 static int read_disk_sb(struct md_rdev * rdev, int size)
904 {
905 	char b[BDEVNAME_SIZE];
906 	if (!rdev->sb_page) {
907 		MD_BUG();
908 		return -EINVAL;
909 	}
910 	if (rdev->sb_loaded)
911 		return 0;
912 
913 
914 	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
915 		goto fail;
916 	rdev->sb_loaded = 1;
917 	return 0;
918 
919 fail:
920 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
921 		bdevname(rdev->bdev,b));
922 	return -EINVAL;
923 }
924 
925 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
926 {
927 	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
928 		sb1->set_uuid1 == sb2->set_uuid1 &&
929 		sb1->set_uuid2 == sb2->set_uuid2 &&
930 		sb1->set_uuid3 == sb2->set_uuid3;
931 }
932 
933 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
934 {
935 	int ret;
936 	mdp_super_t *tmp1, *tmp2;
937 
938 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
939 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
940 
941 	if (!tmp1 || !tmp2) {
942 		ret = 0;
943 		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
944 		goto abort;
945 	}
946 
947 	*tmp1 = *sb1;
948 	*tmp2 = *sb2;
949 
950 	/*
951 	 * nr_disks is not constant
952 	 */
953 	tmp1->nr_disks = 0;
954 	tmp2->nr_disks = 0;
955 
956 	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
957 abort:
958 	kfree(tmp1);
959 	kfree(tmp2);
960 	return ret;
961 }
962 
963 
964 static u32 md_csum_fold(u32 csum)
965 {
966 	csum = (csum & 0xffff) + (csum >> 16);
967 	return (csum & 0xffff) + (csum >> 16);
968 }
969 
970 static unsigned int calc_sb_csum(mdp_super_t * sb)
971 {
972 	u64 newcsum = 0;
973 	u32 *sb32 = (u32*)sb;
974 	int i;
975 	unsigned int disk_csum, csum;
976 
977 	disk_csum = sb->sb_csum;
978 	sb->sb_csum = 0;
979 
980 	for (i = 0; i < MD_SB_BYTES/4 ; i++)
981 		newcsum += sb32[i];
982 	csum = (newcsum & 0xffffffff) + (newcsum>>32);
983 
984 
985 #ifdef CONFIG_ALPHA
986 	/* This used to use csum_partial, which was wrong for several
987 	 * reasons including that different results are returned on
988 	 * different architectures.  It isn't critical that we get exactly
989 	 * the same return value as before (we always csum_fold before
990 	 * testing, and that removes any differences).  However as we
991 	 * know that csum_partial always returned a 16bit value on
992 	 * alphas, do a fold to maximise conformity to previous behaviour.
993 	 */
994 	sb->sb_csum = md_csum_fold(disk_csum);
995 #else
996 	sb->sb_csum = disk_csum;
997 #endif
998 	return csum;
999 }
1000 
1001 
1002 /*
1003  * Handle superblock details.
1004  * We want to be able to handle multiple superblock formats
1005  * so we have a common interface to them all, and an array of
1006  * different handlers.
1007  * We rely on user-space to write the initial superblock, and support
1008  * reading and updating of superblocks.
1009  * Interface methods are:
1010  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1011  *      loads and validates a superblock on dev.
1012  *      if refdev != NULL, compare superblocks on both devices
1013  *    Return:
1014  *      0 - dev has a superblock that is compatible with refdev
1015  *      1 - dev has a superblock that is compatible and newer than refdev
1016  *          so dev should be used as the refdev in future
1017  *     -EINVAL superblock incompatible or invalid
1018  *     -othererror e.g. -EIO
1019  *
1020  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
1021  *      Verify that dev is acceptable into mddev.
1022  *       The first time, mddev->raid_disks will be 0, and data from
1023  *       dev should be merged in.  Subsequent calls check that dev
1024  *       is new enough.  Return 0 or -EINVAL
1025  *
1026  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
1027  *     Update the superblock for rdev with data in mddev
1028  *     This does not write to disc.
1029  *
1030  */
1031 
1032 struct super_type  {
1033 	char		    *name;
1034 	struct module	    *owner;
1035 	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1036 					  int minor_version);
1037 	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1038 	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
1040 						sector_t num_sectors);
1041 };
1042 
1043 /*
1044  * Check that the given mddev has no bitmap.
1045  *
1046  * This function is called from the run method of all personalities that do not
1047  * support bitmaps. It prints an error message and returns non-zero if mddev
1048  * has a bitmap. Otherwise, it returns 0.
1049  *
1050  */
1051 int md_check_no_bitmap(struct mddev *mddev)
1052 {
1053 	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1054 		return 0;
1055 	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1056 		mdname(mddev), mddev->pers->name);
1057 	return 1;
1058 }
1059 EXPORT_SYMBOL(md_check_no_bitmap);
1060 
1061 /*
1062  * load_super for 0.90.0
1063  */
1064 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1065 {
1066 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1067 	mdp_super_t *sb;
1068 	int ret;
1069 
1070 	/*
1071 	 * Calculate the position of the superblock (512byte sectors),
1072 	 * it's at the end of the disk.
1073 	 *
1074 	 * It also happens to be a multiple of 4Kb.
1075 	 */
1076 	rdev->sb_start = calc_dev_sboffset(rdev);
1077 
1078 	ret = read_disk_sb(rdev, MD_SB_BYTES);
1079 	if (ret) return ret;
1080 
1081 	ret = -EINVAL;
1082 
1083 	bdevname(rdev->bdev, b);
1084 	sb = page_address(rdev->sb_page);
1085 
1086 	if (sb->md_magic != MD_SB_MAGIC) {
1087 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1088 		       b);
1089 		goto abort;
1090 	}
1091 
1092 	if (sb->major_version != 0 ||
1093 	    sb->minor_version < 90 ||
1094 	    sb->minor_version > 91) {
1095 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1096 			sb->major_version, sb->minor_version,
1097 			b);
1098 		goto abort;
1099 	}
1100 
1101 	if (sb->raid_disks <= 0)
1102 		goto abort;
1103 
1104 	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1105 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1106 			b);
1107 		goto abort;
1108 	}
1109 
1110 	rdev->preferred_minor = sb->md_minor;
1111 	rdev->data_offset = 0;
1112 	rdev->sb_size = MD_SB_BYTES;
1113 	rdev->badblocks.shift = -1;
1114 
1115 	if (sb->level == LEVEL_MULTIPATH)
1116 		rdev->desc_nr = -1;
1117 	else
1118 		rdev->desc_nr = sb->this_disk.number;
1119 
1120 	if (!refdev) {
1121 		ret = 1;
1122 	} else {
1123 		__u64 ev1, ev2;
1124 		mdp_super_t *refsb = page_address(refdev->sb_page);
1125 		if (!uuid_equal(refsb, sb)) {
1126 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
1127 				b, bdevname(refdev->bdev,b2));
1128 			goto abort;
1129 		}
1130 		if (!sb_equal(refsb, sb)) {
1131 			printk(KERN_WARNING "md: %s has same UUID"
1132 			       " but different superblock to %s\n",
1133 			       b, bdevname(refdev->bdev, b2));
1134 			goto abort;
1135 		}
1136 		ev1 = md_event(sb);
1137 		ev2 = md_event(refsb);
1138 		if (ev1 > ev2)
1139 			ret = 1;
1140 		else
1141 			ret = 0;
1142 	}
1143 	rdev->sectors = rdev->sb_start;
1144 	/* Limit to 4TB as metadata cannot record more than that */
1145 	if (rdev->sectors >= (2ULL << 32))
1146 		rdev->sectors = (2ULL << 32) - 2;
1147 
1148 	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1149 		/* "this cannot possibly happen" ... */
1150 		ret = -EINVAL;
1151 
1152  abort:
1153 	return ret;
1154 }
1155 
1156 /*
1157  * validate_super for 0.90.0
1158  */
1159 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1160 {
1161 	mdp_disk_t *desc;
1162 	mdp_super_t *sb = page_address(rdev->sb_page);
1163 	__u64 ev1 = md_event(sb);
1164 
1165 	rdev->raid_disk = -1;
1166 	clear_bit(Faulty, &rdev->flags);
1167 	clear_bit(In_sync, &rdev->flags);
1168 	clear_bit(WriteMostly, &rdev->flags);
1169 
1170 	if (mddev->raid_disks == 0) {
1171 		mddev->major_version = 0;
1172 		mddev->minor_version = sb->minor_version;
1173 		mddev->patch_version = sb->patch_version;
1174 		mddev->external = 0;
1175 		mddev->chunk_sectors = sb->chunk_size >> 9;
1176 		mddev->ctime = sb->ctime;
1177 		mddev->utime = sb->utime;
1178 		mddev->level = sb->level;
1179 		mddev->clevel[0] = 0;
1180 		mddev->layout = sb->layout;
1181 		mddev->raid_disks = sb->raid_disks;
1182 		mddev->dev_sectors = ((sector_t)sb->size) * 2;
1183 		mddev->events = ev1;
1184 		mddev->bitmap_info.offset = 0;
1185 		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1186 
1187 		if (mddev->minor_version >= 91) {
1188 			mddev->reshape_position = sb->reshape_position;
1189 			mddev->delta_disks = sb->delta_disks;
1190 			mddev->new_level = sb->new_level;
1191 			mddev->new_layout = sb->new_layout;
1192 			mddev->new_chunk_sectors = sb->new_chunk >> 9;
1193 		} else {
1194 			mddev->reshape_position = MaxSector;
1195 			mddev->delta_disks = 0;
1196 			mddev->new_level = mddev->level;
1197 			mddev->new_layout = mddev->layout;
1198 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1199 		}
1200 
1201 		if (sb->state & (1<<MD_SB_CLEAN))
1202 			mddev->recovery_cp = MaxSector;
1203 		else {
1204 			if (sb->events_hi == sb->cp_events_hi &&
1205 				sb->events_lo == sb->cp_events_lo) {
1206 				mddev->recovery_cp = sb->recovery_cp;
1207 			} else
1208 				mddev->recovery_cp = 0;
1209 		}
1210 
1211 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1212 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1213 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1214 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1215 
1216 		mddev->max_disks = MD_SB_DISKS;
1217 
1218 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1219 		    mddev->bitmap_info.file == NULL)
1220 			mddev->bitmap_info.offset =
1221 				mddev->bitmap_info.default_offset;
1222 
1223 	} else if (mddev->pers == NULL) {
1224 		/* Insist on good event counter while assembling, except
1225 		 * for spares (which don't need an event count) */
1226 		++ev1;
1227 		if (sb->disks[rdev->desc_nr].state & (
1228 			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1229 			if (ev1 < mddev->events)
1230 				return -EINVAL;
1231 	} else if (mddev->bitmap) {
1232 		/* if adding to array with a bitmap, then we can accept an
1233 		 * older device ... but not too old.
1234 		 */
1235 		if (ev1 < mddev->bitmap->events_cleared)
1236 			return 0;
1237 	} else {
1238 		if (ev1 < mddev->events)
1239 			/* just a hot-add of a new device, leave raid_disk at -1 */
1240 			return 0;
1241 	}
1242 
1243 	if (mddev->level != LEVEL_MULTIPATH) {
1244 		desc = sb->disks + rdev->desc_nr;
1245 
1246 		if (desc->state & (1<<MD_DISK_FAULTY))
1247 			set_bit(Faulty, &rdev->flags);
1248 		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1249 			    desc->raid_disk < mddev->raid_disks */) {
1250 			set_bit(In_sync, &rdev->flags);
1251 			rdev->raid_disk = desc->raid_disk;
1252 		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1253 			/* active but not in sync implies recovery up to
1254 			 * reshape position.  We don't know exactly where
1255 			 * that is, so set to zero for now */
1256 			if (mddev->minor_version >= 91) {
1257 				rdev->recovery_offset = 0;
1258 				rdev->raid_disk = desc->raid_disk;
1259 			}
1260 		}
1261 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1262 			set_bit(WriteMostly, &rdev->flags);
1263 	} else /* MULTIPATH are always insync */
1264 		set_bit(In_sync, &rdev->flags);
1265 	return 0;
1266 }
1267 
1268 /*
1269  * sync_super for 0.90.0
1270  */
1271 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1272 {
1273 	mdp_super_t *sb;
1274 	struct md_rdev *rdev2;
1275 	int next_spare = mddev->raid_disks;
1276 
1277 
1278 	/* make rdev->sb match mddev data..
1279 	 *
1280 	 * 1/ zero out disks
1281 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1282 	 * 3/ any empty disks < next_spare become removed
1283 	 *
1284 	 * disks[0] gets initialised to REMOVED because
1285 	 * we cannot be sure from other fields if it has
1286 	 * been initialised or not.
1287 	 */
1288 	int i;
1289 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
1290 
1291 	rdev->sb_size = MD_SB_BYTES;
1292 
1293 	sb = page_address(rdev->sb_page);
1294 
1295 	memset(sb, 0, sizeof(*sb));
1296 
1297 	sb->md_magic = MD_SB_MAGIC;
1298 	sb->major_version = mddev->major_version;
1299 	sb->patch_version = mddev->patch_version;
1300 	sb->gvalid_words  = 0; /* ignored */
1301 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1302 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1303 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1304 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1305 
1306 	sb->ctime = mddev->ctime;
1307 	sb->level = mddev->level;
1308 	sb->size = mddev->dev_sectors / 2;
1309 	sb->raid_disks = mddev->raid_disks;
1310 	sb->md_minor = mddev->md_minor;
1311 	sb->not_persistent = 0;
1312 	sb->utime = mddev->utime;
1313 	sb->state = 0;
1314 	sb->events_hi = (mddev->events>>32);
1315 	sb->events_lo = (u32)mddev->events;
1316 
1317 	if (mddev->reshape_position == MaxSector)
1318 		sb->minor_version = 90;
1319 	else {
1320 		sb->minor_version = 91;
1321 		sb->reshape_position = mddev->reshape_position;
1322 		sb->new_level = mddev->new_level;
1323 		sb->delta_disks = mddev->delta_disks;
1324 		sb->new_layout = mddev->new_layout;
1325 		sb->new_chunk = mddev->new_chunk_sectors << 9;
1326 	}
1327 	mddev->minor_version = sb->minor_version;
1328 	if (mddev->in_sync)
1329 	{
1330 		sb->recovery_cp = mddev->recovery_cp;
1331 		sb->cp_events_hi = (mddev->events>>32);
1332 		sb->cp_events_lo = (u32)mddev->events;
1333 		if (mddev->recovery_cp == MaxSector)
1334 			sb->state = (1<< MD_SB_CLEAN);
1335 	} else
1336 		sb->recovery_cp = 0;
1337 
1338 	sb->layout = mddev->layout;
1339 	sb->chunk_size = mddev->chunk_sectors << 9;
1340 
1341 	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1342 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1343 
1344 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
1345 	rdev_for_each(rdev2, mddev) {
1346 		mdp_disk_t *d;
1347 		int desc_nr;
1348 		int is_active = test_bit(In_sync, &rdev2->flags);
1349 
1350 		if (rdev2->raid_disk >= 0 &&
1351 		    sb->minor_version >= 91)
1352 			/* we have nowhere to store the recovery_offset,
1353 			 * but if it is not below the reshape_position,
1354 			 * we can piggy-back on that.
1355 			 */
1356 			is_active = 1;
1357 		if (rdev2->raid_disk < 0 ||
1358 		    test_bit(Faulty, &rdev2->flags))
1359 			is_active = 0;
1360 		if (is_active)
1361 			desc_nr = rdev2->raid_disk;
1362 		else
1363 			desc_nr = next_spare++;
1364 		rdev2->desc_nr = desc_nr;
1365 		d = &sb->disks[rdev2->desc_nr];
1366 		nr_disks++;
1367 		d->number = rdev2->desc_nr;
1368 		d->major = MAJOR(rdev2->bdev->bd_dev);
1369 		d->minor = MINOR(rdev2->bdev->bd_dev);
1370 		if (is_active)
1371 			d->raid_disk = rdev2->raid_disk;
1372 		else
1373 			d->raid_disk = rdev2->desc_nr; /* compatibility */
1374 		if (test_bit(Faulty, &rdev2->flags))
1375 			d->state = (1<<MD_DISK_FAULTY);
1376 		else if (is_active) {
1377 			d->state = (1<<MD_DISK_ACTIVE);
1378 			if (test_bit(In_sync, &rdev2->flags))
1379 				d->state |= (1<<MD_DISK_SYNC);
1380 			active++;
1381 			working++;
1382 		} else {
1383 			d->state = 0;
1384 			spare++;
1385 			working++;
1386 		}
1387 		if (test_bit(WriteMostly, &rdev2->flags))
1388 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
1389 	}
1390 	/* now set the "removed" and "faulty" bits on any missing devices */
1391 	for (i=0 ; i < mddev->raid_disks ; i++) {
1392 		mdp_disk_t *d = &sb->disks[i];
1393 		if (d->state == 0 && d->number == 0) {
1394 			d->number = i;
1395 			d->raid_disk = i;
1396 			d->state = (1<<MD_DISK_REMOVED);
1397 			d->state |= (1<<MD_DISK_FAULTY);
1398 			failed++;
1399 		}
1400 	}
1401 	sb->nr_disks = nr_disks;
1402 	sb->active_disks = active;
1403 	sb->working_disks = working;
1404 	sb->failed_disks = failed;
1405 	sb->spare_disks = spare;
1406 
1407 	sb->this_disk = sb->disks[rdev->desc_nr];
1408 	sb->sb_csum = calc_sb_csum(sb);
1409 }
1410 
1411 /*
1412  * rdev_size_change for 0.90.0
1413  */
1414 static unsigned long long
1415 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1416 {
1417 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1418 		return 0; /* component must fit device */
1419 	if (rdev->mddev->bitmap_info.offset)
1420 		return 0; /* can't move bitmap */
1421 	rdev->sb_start = calc_dev_sboffset(rdev);
1422 	if (!num_sectors || num_sectors > rdev->sb_start)
1423 		num_sectors = rdev->sb_start;
1424 	/* Limit to 4TB as metadata cannot record more than that.
1425 	 * 4TB == 2^32 KB, or 2*2^32 sectors.
1426 	 */
1427 	if (num_sectors >= (2ULL << 32))
1428 		num_sectors = (2ULL << 32) - 2;
1429 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1430 		       rdev->sb_page);
1431 	md_super_wait(rdev->mddev);
1432 	return num_sectors;
1433 }
1434 
1435 
1436 /*
1437  * version 1 superblock
1438  */
1439 
1440 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1441 {
1442 	__le32 disk_csum;
1443 	u32 csum;
1444 	unsigned long long newcsum;
1445 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
1446 	__le32 *isuper = (__le32*)sb;
1447 	int i;
1448 
1449 	disk_csum = sb->sb_csum;
1450 	sb->sb_csum = 0;
1451 	newcsum = 0;
1452 	for (i=0; size>=4; size -= 4 )
1453 		newcsum += le32_to_cpu(*isuper++);
1454 
1455 	if (size == 2)
1456 		newcsum += le16_to_cpu(*(__le16*) isuper);
1457 
1458 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1459 	sb->sb_csum = disk_csum;
1460 	return cpu_to_le32(csum);
1461 }
1462 
1463 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1464 			    int acknowledged);
1465 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1466 {
1467 	struct mdp_superblock_1 *sb;
1468 	int ret;
1469 	sector_t sb_start;
1470 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1471 	int bmask;
1472 
1473 	/*
1474 	 * Calculate the position of the superblock in 512byte sectors.
1475 	 * It is always aligned to a 4K boundary and
1476 	 * depeding on minor_version, it can be:
1477 	 * 0: At least 8K, but less than 12K, from end of device
1478 	 * 1: At start of device
1479 	 * 2: 4K from start of device.
1480 	 */
1481 	switch(minor_version) {
1482 	case 0:
1483 		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1484 		sb_start -= 8*2;
1485 		sb_start &= ~(sector_t)(4*2-1);
1486 		break;
1487 	case 1:
1488 		sb_start = 0;
1489 		break;
1490 	case 2:
1491 		sb_start = 8;
1492 		break;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 	rdev->sb_start = sb_start;
1497 
1498 	/* superblock is rarely larger than 1K, but it can be larger,
1499 	 * and it is safe to read 4k, so we do that
1500 	 */
1501 	ret = read_disk_sb(rdev, 4096);
1502 	if (ret) return ret;
1503 
1504 
1505 	sb = page_address(rdev->sb_page);
1506 
1507 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1508 	    sb->major_version != cpu_to_le32(1) ||
1509 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1510 	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1511 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1512 		return -EINVAL;
1513 
1514 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
1515 		printk("md: invalid superblock checksum on %s\n",
1516 			bdevname(rdev->bdev,b));
1517 		return -EINVAL;
1518 	}
1519 	if (le64_to_cpu(sb->data_size) < 10) {
1520 		printk("md: data_size too small on %s\n",
1521 		       bdevname(rdev->bdev,b));
1522 		return -EINVAL;
1523 	}
1524 
1525 	rdev->preferred_minor = 0xffff;
1526 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1527 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1528 
1529 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1530 	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1531 	if (rdev->sb_size & bmask)
1532 		rdev->sb_size = (rdev->sb_size | bmask) + 1;
1533 
1534 	if (minor_version
1535 	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
1536 		return -EINVAL;
1537 
1538 	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1539 		rdev->desc_nr = -1;
1540 	else
1541 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1542 
1543 	if (!rdev->bb_page) {
1544 		rdev->bb_page = alloc_page(GFP_KERNEL);
1545 		if (!rdev->bb_page)
1546 			return -ENOMEM;
1547 	}
1548 	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1549 	    rdev->badblocks.count == 0) {
1550 		/* need to load the bad block list.
1551 		 * Currently we limit it to one page.
1552 		 */
1553 		s32 offset;
1554 		sector_t bb_sector;
1555 		u64 *bbp;
1556 		int i;
1557 		int sectors = le16_to_cpu(sb->bblog_size);
1558 		if (sectors > (PAGE_SIZE / 512))
1559 			return -EINVAL;
1560 		offset = le32_to_cpu(sb->bblog_offset);
1561 		if (offset == 0)
1562 			return -EINVAL;
1563 		bb_sector = (long long)offset;
1564 		if (!sync_page_io(rdev, bb_sector, sectors << 9,
1565 				  rdev->bb_page, READ, true))
1566 			return -EIO;
1567 		bbp = (u64 *)page_address(rdev->bb_page);
1568 		rdev->badblocks.shift = sb->bblog_shift;
1569 		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1570 			u64 bb = le64_to_cpu(*bbp);
1571 			int count = bb & (0x3ff);
1572 			u64 sector = bb >> 10;
1573 			sector <<= sb->bblog_shift;
1574 			count <<= sb->bblog_shift;
1575 			if (bb + 1 == 0)
1576 				break;
1577 			if (md_set_badblocks(&rdev->badblocks,
1578 					     sector, count, 1) == 0)
1579 				return -EINVAL;
1580 		}
1581 	} else if (sb->bblog_offset == 0)
1582 		rdev->badblocks.shift = -1;
1583 
1584 	if (!refdev) {
1585 		ret = 1;
1586 	} else {
1587 		__u64 ev1, ev2;
1588 		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1589 
1590 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1591 		    sb->level != refsb->level ||
1592 		    sb->layout != refsb->layout ||
1593 		    sb->chunksize != refsb->chunksize) {
1594 			printk(KERN_WARNING "md: %s has strangely different"
1595 				" superblock to %s\n",
1596 				bdevname(rdev->bdev,b),
1597 				bdevname(refdev->bdev,b2));
1598 			return -EINVAL;
1599 		}
1600 		ev1 = le64_to_cpu(sb->events);
1601 		ev2 = le64_to_cpu(refsb->events);
1602 
1603 		if (ev1 > ev2)
1604 			ret = 1;
1605 		else
1606 			ret = 0;
1607 	}
1608 	if (minor_version)
1609 		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1610 			le64_to_cpu(sb->data_offset);
1611 	else
1612 		rdev->sectors = rdev->sb_start;
1613 	if (rdev->sectors < le64_to_cpu(sb->data_size))
1614 		return -EINVAL;
1615 	rdev->sectors = le64_to_cpu(sb->data_size);
1616 	if (le64_to_cpu(sb->size) > rdev->sectors)
1617 		return -EINVAL;
1618 	return ret;
1619 }
1620 
1621 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1622 {
1623 	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1624 	__u64 ev1 = le64_to_cpu(sb->events);
1625 
1626 	rdev->raid_disk = -1;
1627 	clear_bit(Faulty, &rdev->flags);
1628 	clear_bit(In_sync, &rdev->flags);
1629 	clear_bit(WriteMostly, &rdev->flags);
1630 
1631 	if (mddev->raid_disks == 0) {
1632 		mddev->major_version = 1;
1633 		mddev->patch_version = 0;
1634 		mddev->external = 0;
1635 		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1636 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1637 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1638 		mddev->level = le32_to_cpu(sb->level);
1639 		mddev->clevel[0] = 0;
1640 		mddev->layout = le32_to_cpu(sb->layout);
1641 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1642 		mddev->dev_sectors = le64_to_cpu(sb->size);
1643 		mddev->events = ev1;
1644 		mddev->bitmap_info.offset = 0;
1645 		mddev->bitmap_info.default_offset = 1024 >> 9;
1646 
1647 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1648 		memcpy(mddev->uuid, sb->set_uuid, 16);
1649 
1650 		mddev->max_disks =  (4096-256)/2;
1651 
1652 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1653 		    mddev->bitmap_info.file == NULL )
1654 			mddev->bitmap_info.offset =
1655 				(__s32)le32_to_cpu(sb->bitmap_offset);
1656 
1657 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1658 			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1659 			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1660 			mddev->new_level = le32_to_cpu(sb->new_level);
1661 			mddev->new_layout = le32_to_cpu(sb->new_layout);
1662 			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1663 		} else {
1664 			mddev->reshape_position = MaxSector;
1665 			mddev->delta_disks = 0;
1666 			mddev->new_level = mddev->level;
1667 			mddev->new_layout = mddev->layout;
1668 			mddev->new_chunk_sectors = mddev->chunk_sectors;
1669 		}
1670 
1671 	} else if (mddev->pers == NULL) {
1672 		/* Insist of good event counter while assembling, except for
1673 		 * spares (which don't need an event count) */
1674 		++ev1;
1675 		if (rdev->desc_nr >= 0 &&
1676 		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1677 		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1678 			if (ev1 < mddev->events)
1679 				return -EINVAL;
1680 	} else if (mddev->bitmap) {
1681 		/* If adding to array with a bitmap, then we can accept an
1682 		 * older device, but not too old.
1683 		 */
1684 		if (ev1 < mddev->bitmap->events_cleared)
1685 			return 0;
1686 	} else {
1687 		if (ev1 < mddev->events)
1688 			/* just a hot-add of a new device, leave raid_disk at -1 */
1689 			return 0;
1690 	}
1691 	if (mddev->level != LEVEL_MULTIPATH) {
1692 		int role;
1693 		if (rdev->desc_nr < 0 ||
1694 		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1695 			role = 0xffff;
1696 			rdev->desc_nr = -1;
1697 		} else
1698 			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1699 		switch(role) {
1700 		case 0xffff: /* spare */
1701 			break;
1702 		case 0xfffe: /* faulty */
1703 			set_bit(Faulty, &rdev->flags);
1704 			break;
1705 		default:
1706 			if ((le32_to_cpu(sb->feature_map) &
1707 			     MD_FEATURE_RECOVERY_OFFSET))
1708 				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1709 			else
1710 				set_bit(In_sync, &rdev->flags);
1711 			rdev->raid_disk = role;
1712 			break;
1713 		}
1714 		if (sb->devflags & WriteMostly1)
1715 			set_bit(WriteMostly, &rdev->flags);
1716 		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1717 			set_bit(Replacement, &rdev->flags);
1718 	} else /* MULTIPATH are always insync */
1719 		set_bit(In_sync, &rdev->flags);
1720 
1721 	return 0;
1722 }
1723 
1724 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 {
1726 	struct mdp_superblock_1 *sb;
1727 	struct md_rdev *rdev2;
1728 	int max_dev, i;
1729 	/* make rdev->sb match mddev and rdev data. */
1730 
1731 	sb = page_address(rdev->sb_page);
1732 
1733 	sb->feature_map = 0;
1734 	sb->pad0 = 0;
1735 	sb->recovery_offset = cpu_to_le64(0);
1736 	memset(sb->pad1, 0, sizeof(sb->pad1));
1737 	memset(sb->pad3, 0, sizeof(sb->pad3));
1738 
1739 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1740 	sb->events = cpu_to_le64(mddev->events);
1741 	if (mddev->in_sync)
1742 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1743 	else
1744 		sb->resync_offset = cpu_to_le64(0);
1745 
1746 	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747 
1748 	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1749 	sb->size = cpu_to_le64(mddev->dev_sectors);
1750 	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1751 	sb->level = cpu_to_le32(mddev->level);
1752 	sb->layout = cpu_to_le32(mddev->layout);
1753 
1754 	if (test_bit(WriteMostly, &rdev->flags))
1755 		sb->devflags |= WriteMostly1;
1756 	else
1757 		sb->devflags &= ~WriteMostly1;
1758 
1759 	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1760 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1761 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1762 	}
1763 
1764 	if (rdev->raid_disk >= 0 &&
1765 	    !test_bit(In_sync, &rdev->flags)) {
1766 		sb->feature_map |=
1767 			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1768 		sb->recovery_offset =
1769 			cpu_to_le64(rdev->recovery_offset);
1770 	}
1771 	if (test_bit(Replacement, &rdev->flags))
1772 		sb->feature_map |=
1773 			cpu_to_le32(MD_FEATURE_REPLACEMENT);
1774 
1775 	if (mddev->reshape_position != MaxSector) {
1776 		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1777 		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1778 		sb->new_layout = cpu_to_le32(mddev->new_layout);
1779 		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1780 		sb->new_level = cpu_to_le32(mddev->new_level);
1781 		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1782 	}
1783 
1784 	if (rdev->badblocks.count == 0)
1785 		/* Nothing to do for bad blocks*/ ;
1786 	else if (sb->bblog_offset == 0)
1787 		/* Cannot record bad blocks on this device */
1788 		md_error(mddev, rdev);
1789 	else {
1790 		struct badblocks *bb = &rdev->badblocks;
1791 		u64 *bbp = (u64 *)page_address(rdev->bb_page);
1792 		u64 *p = bb->page;
1793 		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1794 		if (bb->changed) {
1795 			unsigned seq;
1796 
1797 retry:
1798 			seq = read_seqbegin(&bb->lock);
1799 
1800 			memset(bbp, 0xff, PAGE_SIZE);
1801 
1802 			for (i = 0 ; i < bb->count ; i++) {
1803 				u64 internal_bb = *p++;
1804 				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1805 						| BB_LEN(internal_bb));
1806 				*bbp++ = cpu_to_le64(store_bb);
1807 			}
1808 			bb->changed = 0;
1809 			if (read_seqretry(&bb->lock, seq))
1810 				goto retry;
1811 
1812 			bb->sector = (rdev->sb_start +
1813 				      (int)le32_to_cpu(sb->bblog_offset));
1814 			bb->size = le16_to_cpu(sb->bblog_size);
1815 		}
1816 	}
1817 
1818 	max_dev = 0;
1819 	rdev_for_each(rdev2, mddev)
1820 		if (rdev2->desc_nr+1 > max_dev)
1821 			max_dev = rdev2->desc_nr+1;
1822 
1823 	if (max_dev > le32_to_cpu(sb->max_dev)) {
1824 		int bmask;
1825 		sb->max_dev = cpu_to_le32(max_dev);
1826 		rdev->sb_size = max_dev * 2 + 256;
1827 		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1828 		if (rdev->sb_size & bmask)
1829 			rdev->sb_size = (rdev->sb_size | bmask) + 1;
1830 	} else
1831 		max_dev = le32_to_cpu(sb->max_dev);
1832 
1833 	for (i=0; i<max_dev;i++)
1834 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1835 
1836 	rdev_for_each(rdev2, mddev) {
1837 		i = rdev2->desc_nr;
1838 		if (test_bit(Faulty, &rdev2->flags))
1839 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1840 		else if (test_bit(In_sync, &rdev2->flags))
1841 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1842 		else if (rdev2->raid_disk >= 0)
1843 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1844 		else
1845 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1846 	}
1847 
1848 	sb->sb_csum = calc_sb_1_csum(sb);
1849 }
1850 
1851 static unsigned long long
1852 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1853 {
1854 	struct mdp_superblock_1 *sb;
1855 	sector_t max_sectors;
1856 	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1857 		return 0; /* component must fit device */
1858 	if (rdev->sb_start < rdev->data_offset) {
1859 		/* minor versions 1 and 2; superblock before data */
1860 		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1861 		max_sectors -= rdev->data_offset;
1862 		if (!num_sectors || num_sectors > max_sectors)
1863 			num_sectors = max_sectors;
1864 	} else if (rdev->mddev->bitmap_info.offset) {
1865 		/* minor version 0 with bitmap we can't move */
1866 		return 0;
1867 	} else {
1868 		/* minor version 0; superblock after data */
1869 		sector_t sb_start;
1870 		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1871 		sb_start &= ~(sector_t)(4*2 - 1);
1872 		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1873 		if (!num_sectors || num_sectors > max_sectors)
1874 			num_sectors = max_sectors;
1875 		rdev->sb_start = sb_start;
1876 	}
1877 	sb = page_address(rdev->sb_page);
1878 	sb->data_size = cpu_to_le64(num_sectors);
1879 	sb->super_offset = rdev->sb_start;
1880 	sb->sb_csum = calc_sb_1_csum(sb);
1881 	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1882 		       rdev->sb_page);
1883 	md_super_wait(rdev->mddev);
1884 	return num_sectors;
1885 }
1886 
1887 static struct super_type super_types[] = {
1888 	[0] = {
1889 		.name	= "0.90.0",
1890 		.owner	= THIS_MODULE,
1891 		.load_super	    = super_90_load,
1892 		.validate_super	    = super_90_validate,
1893 		.sync_super	    = super_90_sync,
1894 		.rdev_size_change   = super_90_rdev_size_change,
1895 	},
1896 	[1] = {
1897 		.name	= "md-1",
1898 		.owner	= THIS_MODULE,
1899 		.load_super	    = super_1_load,
1900 		.validate_super	    = super_1_validate,
1901 		.sync_super	    = super_1_sync,
1902 		.rdev_size_change   = super_1_rdev_size_change,
1903 	},
1904 };
1905 
1906 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1907 {
1908 	if (mddev->sync_super) {
1909 		mddev->sync_super(mddev, rdev);
1910 		return;
1911 	}
1912 
1913 	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1914 
1915 	super_types[mddev->major_version].sync_super(mddev, rdev);
1916 }
1917 
1918 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1919 {
1920 	struct md_rdev *rdev, *rdev2;
1921 
1922 	rcu_read_lock();
1923 	rdev_for_each_rcu(rdev, mddev1)
1924 		rdev_for_each_rcu(rdev2, mddev2)
1925 			if (rdev->bdev->bd_contains ==
1926 			    rdev2->bdev->bd_contains) {
1927 				rcu_read_unlock();
1928 				return 1;
1929 			}
1930 	rcu_read_unlock();
1931 	return 0;
1932 }
1933 
1934 static LIST_HEAD(pending_raid_disks);
1935 
1936 /*
1937  * Try to register data integrity profile for an mddev
1938  *
1939  * This is called when an array is started and after a disk has been kicked
1940  * from the array. It only succeeds if all working and active component devices
1941  * are integrity capable with matching profiles.
1942  */
1943 int md_integrity_register(struct mddev *mddev)
1944 {
1945 	struct md_rdev *rdev, *reference = NULL;
1946 
1947 	if (list_empty(&mddev->disks))
1948 		return 0; /* nothing to do */
1949 	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1950 		return 0; /* shouldn't register, or already is */
1951 	rdev_for_each(rdev, mddev) {
1952 		/* skip spares and non-functional disks */
1953 		if (test_bit(Faulty, &rdev->flags))
1954 			continue;
1955 		if (rdev->raid_disk < 0)
1956 			continue;
1957 		if (!reference) {
1958 			/* Use the first rdev as the reference */
1959 			reference = rdev;
1960 			continue;
1961 		}
1962 		/* does this rdev's profile match the reference profile? */
1963 		if (blk_integrity_compare(reference->bdev->bd_disk,
1964 				rdev->bdev->bd_disk) < 0)
1965 			return -EINVAL;
1966 	}
1967 	if (!reference || !bdev_get_integrity(reference->bdev))
1968 		return 0;
1969 	/*
1970 	 * All component devices are integrity capable and have matching
1971 	 * profiles, register the common profile for the md device.
1972 	 */
1973 	if (blk_integrity_register(mddev->gendisk,
1974 			bdev_get_integrity(reference->bdev)) != 0) {
1975 		printk(KERN_ERR "md: failed to register integrity for %s\n",
1976 			mdname(mddev));
1977 		return -EINVAL;
1978 	}
1979 	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1980 	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1981 		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1982 		       mdname(mddev));
1983 		return -EINVAL;
1984 	}
1985 	return 0;
1986 }
1987 EXPORT_SYMBOL(md_integrity_register);
1988 
1989 /* Disable data integrity if non-capable/non-matching disk is being added */
1990 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1991 {
1992 	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1993 	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1994 
1995 	if (!bi_mddev) /* nothing to do */
1996 		return;
1997 	if (rdev->raid_disk < 0) /* skip spares */
1998 		return;
1999 	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2000 					     rdev->bdev->bd_disk) >= 0)
2001 		return;
2002 	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2003 	blk_integrity_unregister(mddev->gendisk);
2004 }
2005 EXPORT_SYMBOL(md_integrity_add_rdev);
2006 
2007 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2008 {
2009 	char b[BDEVNAME_SIZE];
2010 	struct kobject *ko;
2011 	char *s;
2012 	int err;
2013 
2014 	if (rdev->mddev) {
2015 		MD_BUG();
2016 		return -EINVAL;
2017 	}
2018 
2019 	/* prevent duplicates */
2020 	if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 		return -EEXIST;
2022 
2023 	/* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 	if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 			rdev->sectors < mddev->dev_sectors)) {
2026 		if (mddev->pers) {
2027 			/* Cannot change size, so fail
2028 			 * If mddev->level <= 0, then we don't care
2029 			 * about aligning sizes (e.g. linear)
2030 			 */
2031 			if (mddev->level > 0)
2032 				return -ENOSPC;
2033 		} else
2034 			mddev->dev_sectors = rdev->sectors;
2035 	}
2036 
2037 	/* Verify rdev->desc_nr is unique.
2038 	 * If it is -1, assign a free number, else
2039 	 * check number is not in use
2040 	 */
2041 	if (rdev->desc_nr < 0) {
2042 		int choice = 0;
2043 		if (mddev->pers) choice = mddev->raid_disks;
2044 		while (find_rdev_nr(mddev, choice))
2045 			choice++;
2046 		rdev->desc_nr = choice;
2047 	} else {
2048 		if (find_rdev_nr(mddev, rdev->desc_nr))
2049 			return -EBUSY;
2050 	}
2051 	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2052 		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2053 		       mdname(mddev), mddev->max_disks);
2054 		return -EBUSY;
2055 	}
2056 	bdevname(rdev->bdev,b);
2057 	while ( (s=strchr(b, '/')) != NULL)
2058 		*s = '!';
2059 
2060 	rdev->mddev = mddev;
2061 	printk(KERN_INFO "md: bind<%s>\n", b);
2062 
2063 	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2064 		goto fail;
2065 
2066 	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2067 	if (sysfs_create_link(&rdev->kobj, ko, "block"))
2068 		/* failure here is OK */;
2069 	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2070 
2071 	list_add_rcu(&rdev->same_set, &mddev->disks);
2072 	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2073 
2074 	/* May as well allow recovery to be retried once */
2075 	mddev->recovery_disabled++;
2076 
2077 	return 0;
2078 
2079  fail:
2080 	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2081 	       b, mdname(mddev));
2082 	return err;
2083 }
2084 
2085 static void md_delayed_delete(struct work_struct *ws)
2086 {
2087 	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2088 	kobject_del(&rdev->kobj);
2089 	kobject_put(&rdev->kobj);
2090 }
2091 
2092 static void unbind_rdev_from_array(struct md_rdev * rdev)
2093 {
2094 	char b[BDEVNAME_SIZE];
2095 	if (!rdev->mddev) {
2096 		MD_BUG();
2097 		return;
2098 	}
2099 	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2100 	list_del_rcu(&rdev->same_set);
2101 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2102 	rdev->mddev = NULL;
2103 	sysfs_remove_link(&rdev->kobj, "block");
2104 	sysfs_put(rdev->sysfs_state);
2105 	rdev->sysfs_state = NULL;
2106 	kfree(rdev->badblocks.page);
2107 	rdev->badblocks.count = 0;
2108 	rdev->badblocks.page = NULL;
2109 	/* We need to delay this, otherwise we can deadlock when
2110 	 * writing to 'remove' to "dev/state".  We also need
2111 	 * to delay it due to rcu usage.
2112 	 */
2113 	synchronize_rcu();
2114 	INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 	kobject_get(&rdev->kobj);
2116 	queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118 
2119 /*
2120  * prevent the device from being mounted, repartitioned or
2121  * otherwise reused by a RAID array (or any other kernel
2122  * subsystem), by bd_claiming the device.
2123  */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 	int err = 0;
2127 	struct block_device *bdev;
2128 	char b[BDEVNAME_SIZE];
2129 
2130 	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 				 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 	if (IS_ERR(bdev)) {
2133 		printk(KERN_ERR "md: could not open %s.\n",
2134 			__bdevname(dev, b));
2135 		return PTR_ERR(bdev);
2136 	}
2137 	rdev->bdev = bdev;
2138 	return err;
2139 }
2140 
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 	struct block_device *bdev = rdev->bdev;
2144 	rdev->bdev = NULL;
2145 	if (!bdev)
2146 		MD_BUG();
2147 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2148 }
2149 
2150 void md_autodetect_dev(dev_t dev);
2151 
2152 static void export_rdev(struct md_rdev * rdev)
2153 {
2154 	char b[BDEVNAME_SIZE];
2155 	printk(KERN_INFO "md: export_rdev(%s)\n",
2156 		bdevname(rdev->bdev,b));
2157 	if (rdev->mddev)
2158 		MD_BUG();
2159 	free_disk_sb(rdev);
2160 #ifndef MODULE
2161 	if (test_bit(AutoDetected, &rdev->flags))
2162 		md_autodetect_dev(rdev->bdev->bd_dev);
2163 #endif
2164 	unlock_rdev(rdev);
2165 	kobject_put(&rdev->kobj);
2166 }
2167 
2168 static void kick_rdev_from_array(struct md_rdev * rdev)
2169 {
2170 	unbind_rdev_from_array(rdev);
2171 	export_rdev(rdev);
2172 }
2173 
2174 static void export_array(struct mddev *mddev)
2175 {
2176 	struct md_rdev *rdev, *tmp;
2177 
2178 	rdev_for_each_safe(rdev, tmp, mddev) {
2179 		if (!rdev->mddev) {
2180 			MD_BUG();
2181 			continue;
2182 		}
2183 		kick_rdev_from_array(rdev);
2184 	}
2185 	if (!list_empty(&mddev->disks))
2186 		MD_BUG();
2187 	mddev->raid_disks = 0;
2188 	mddev->major_version = 0;
2189 }
2190 
2191 static void print_desc(mdp_disk_t *desc)
2192 {
2193 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2194 		desc->major,desc->minor,desc->raid_disk,desc->state);
2195 }
2196 
2197 static void print_sb_90(mdp_super_t *sb)
2198 {
2199 	int i;
2200 
2201 	printk(KERN_INFO
2202 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2203 		sb->major_version, sb->minor_version, sb->patch_version,
2204 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2205 		sb->ctime);
2206 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2207 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2208 		sb->md_minor, sb->layout, sb->chunk_size);
2209 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
2210 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
2211 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
2212 		sb->failed_disks, sb->spare_disks,
2213 		sb->sb_csum, (unsigned long)sb->events_lo);
2214 
2215 	printk(KERN_INFO);
2216 	for (i = 0; i < MD_SB_DISKS; i++) {
2217 		mdp_disk_t *desc;
2218 
2219 		desc = sb->disks + i;
2220 		if (desc->number || desc->major || desc->minor ||
2221 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
2222 			printk("     D %2d: ", i);
2223 			print_desc(desc);
2224 		}
2225 	}
2226 	printk(KERN_INFO "md:     THIS: ");
2227 	print_desc(&sb->this_disk);
2228 }
2229 
2230 static void print_sb_1(struct mdp_superblock_1 *sb)
2231 {
2232 	__u8 *uuid;
2233 
2234 	uuid = sb->set_uuid;
2235 	printk(KERN_INFO
2236 	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2237 	       "md:    Name: \"%s\" CT:%llu\n",
2238 		le32_to_cpu(sb->major_version),
2239 		le32_to_cpu(sb->feature_map),
2240 		uuid,
2241 		sb->set_name,
2242 		(unsigned long long)le64_to_cpu(sb->ctime)
2243 		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2244 
2245 	uuid = sb->device_uuid;
2246 	printk(KERN_INFO
2247 	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2248 			" RO:%llu\n"
2249 	       "md:     Dev:%08x UUID: %pU\n"
2250 	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2251 	       "md:         (MaxDev:%u) \n",
2252 		le32_to_cpu(sb->level),
2253 		(unsigned long long)le64_to_cpu(sb->size),
2254 		le32_to_cpu(sb->raid_disks),
2255 		le32_to_cpu(sb->layout),
2256 		le32_to_cpu(sb->chunksize),
2257 		(unsigned long long)le64_to_cpu(sb->data_offset),
2258 		(unsigned long long)le64_to_cpu(sb->data_size),
2259 		(unsigned long long)le64_to_cpu(sb->super_offset),
2260 		(unsigned long long)le64_to_cpu(sb->recovery_offset),
2261 		le32_to_cpu(sb->dev_number),
2262 		uuid,
2263 		sb->devflags,
2264 		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2265 		(unsigned long long)le64_to_cpu(sb->events),
2266 		(unsigned long long)le64_to_cpu(sb->resync_offset),
2267 		le32_to_cpu(sb->sb_csum),
2268 		le32_to_cpu(sb->max_dev)
2269 		);
2270 }
2271 
2272 static void print_rdev(struct md_rdev *rdev, int major_version)
2273 {
2274 	char b[BDEVNAME_SIZE];
2275 	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2276 		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2277 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2278 	        rdev->desc_nr);
2279 	if (rdev->sb_loaded) {
2280 		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2281 		switch (major_version) {
2282 		case 0:
2283 			print_sb_90(page_address(rdev->sb_page));
2284 			break;
2285 		case 1:
2286 			print_sb_1(page_address(rdev->sb_page));
2287 			break;
2288 		}
2289 	} else
2290 		printk(KERN_INFO "md: no rdev superblock!\n");
2291 }
2292 
2293 static void md_print_devices(void)
2294 {
2295 	struct list_head *tmp;
2296 	struct md_rdev *rdev;
2297 	struct mddev *mddev;
2298 	char b[BDEVNAME_SIZE];
2299 
2300 	printk("\n");
2301 	printk("md:	**********************************\n");
2302 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
2303 	printk("md:	**********************************\n");
2304 	for_each_mddev(mddev, tmp) {
2305 
2306 		if (mddev->bitmap)
2307 			bitmap_print_sb(mddev->bitmap);
2308 		else
2309 			printk("%s: ", mdname(mddev));
2310 		rdev_for_each(rdev, mddev)
2311 			printk("<%s>", bdevname(rdev->bdev,b));
2312 		printk("\n");
2313 
2314 		rdev_for_each(rdev, mddev)
2315 			print_rdev(rdev, mddev->major_version);
2316 	}
2317 	printk("md:	**********************************\n");
2318 	printk("\n");
2319 }
2320 
2321 
2322 static void sync_sbs(struct mddev * mddev, int nospares)
2323 {
2324 	/* Update each superblock (in-memory image), but
2325 	 * if we are allowed to, skip spares which already
2326 	 * have the right event counter, or have one earlier
2327 	 * (which would mean they aren't being marked as dirty
2328 	 * with the rest of the array)
2329 	 */
2330 	struct md_rdev *rdev;
2331 	rdev_for_each(rdev, mddev) {
2332 		if (rdev->sb_events == mddev->events ||
2333 		    (nospares &&
2334 		     rdev->raid_disk < 0 &&
2335 		     rdev->sb_events+1 == mddev->events)) {
2336 			/* Don't update this superblock */
2337 			rdev->sb_loaded = 2;
2338 		} else {
2339 			sync_super(mddev, rdev);
2340 			rdev->sb_loaded = 1;
2341 		}
2342 	}
2343 }
2344 
2345 static void md_update_sb(struct mddev * mddev, int force_change)
2346 {
2347 	struct md_rdev *rdev;
2348 	int sync_req;
2349 	int nospares = 0;
2350 	int any_badblocks_changed = 0;
2351 
2352 repeat:
2353 	/* First make sure individual recovery_offsets are correct */
2354 	rdev_for_each(rdev, mddev) {
2355 		if (rdev->raid_disk >= 0 &&
2356 		    mddev->delta_disks >= 0 &&
2357 		    !test_bit(In_sync, &rdev->flags) &&
2358 		    mddev->curr_resync_completed > rdev->recovery_offset)
2359 				rdev->recovery_offset = mddev->curr_resync_completed;
2360 
2361 	}
2362 	if (!mddev->persistent) {
2363 		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2364 		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2365 		if (!mddev->external) {
2366 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2367 			rdev_for_each(rdev, mddev) {
2368 				if (rdev->badblocks.changed) {
2369 					rdev->badblocks.changed = 0;
2370 					md_ack_all_badblocks(&rdev->badblocks);
2371 					md_error(mddev, rdev);
2372 				}
2373 				clear_bit(Blocked, &rdev->flags);
2374 				clear_bit(BlockedBadBlocks, &rdev->flags);
2375 				wake_up(&rdev->blocked_wait);
2376 			}
2377 		}
2378 		wake_up(&mddev->sb_wait);
2379 		return;
2380 	}
2381 
2382 	spin_lock_irq(&mddev->write_lock);
2383 
2384 	mddev->utime = get_seconds();
2385 
2386 	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2387 		force_change = 1;
2388 	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389 		/* just a clean<-> dirty transition, possibly leave spares alone,
2390 		 * though if events isn't the right even/odd, we will have to do
2391 		 * spares after all
2392 		 */
2393 		nospares = 1;
2394 	if (force_change)
2395 		nospares = 0;
2396 	if (mddev->degraded)
2397 		/* If the array is degraded, then skipping spares is both
2398 		 * dangerous and fairly pointless.
2399 		 * Dangerous because a device that was removed from the array
2400 		 * might have a event_count that still looks up-to-date,
2401 		 * so it can be re-added without a resync.
2402 		 * Pointless because if there are any spares to skip,
2403 		 * then a recovery will happen and soon that array won't
2404 		 * be degraded any more and the spare can go back to sleep then.
2405 		 */
2406 		nospares = 0;
2407 
2408 	sync_req = mddev->in_sync;
2409 
2410 	/* If this is just a dirty<->clean transition, and the array is clean
2411 	 * and 'events' is odd, we can roll back to the previous clean state */
2412 	if (nospares
2413 	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414 	    && mddev->can_decrease_events
2415 	    && mddev->events != 1) {
2416 		mddev->events--;
2417 		mddev->can_decrease_events = 0;
2418 	} else {
2419 		/* otherwise we have to go forward and ... */
2420 		mddev->events ++;
2421 		mddev->can_decrease_events = nospares;
2422 	}
2423 
2424 	if (!mddev->events) {
2425 		/*
2426 		 * oops, this 64-bit counter should never wrap.
2427 		 * Either we are in around ~1 trillion A.C., assuming
2428 		 * 1 reboot per second, or we have a bug:
2429 		 */
2430 		MD_BUG();
2431 		mddev->events --;
2432 	}
2433 
2434 	rdev_for_each(rdev, mddev) {
2435 		if (rdev->badblocks.changed)
2436 			any_badblocks_changed++;
2437 		if (test_bit(Faulty, &rdev->flags))
2438 			set_bit(FaultRecorded, &rdev->flags);
2439 	}
2440 
2441 	sync_sbs(mddev, nospares);
2442 	spin_unlock_irq(&mddev->write_lock);
2443 
2444 	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445 		 mdname(mddev), mddev->in_sync);
2446 
2447 	bitmap_update_sb(mddev->bitmap);
2448 	rdev_for_each(rdev, mddev) {
2449 		char b[BDEVNAME_SIZE];
2450 
2451 		if (rdev->sb_loaded != 1)
2452 			continue; /* no noise on spare devices */
2453 
2454 		if (!test_bit(Faulty, &rdev->flags) &&
2455 		    rdev->saved_raid_disk == -1) {
2456 			md_super_write(mddev,rdev,
2457 				       rdev->sb_start, rdev->sb_size,
2458 				       rdev->sb_page);
2459 			pr_debug("md: (write) %s's sb offset: %llu\n",
2460 				 bdevname(rdev->bdev, b),
2461 				 (unsigned long long)rdev->sb_start);
2462 			rdev->sb_events = mddev->events;
2463 			if (rdev->badblocks.size) {
2464 				md_super_write(mddev, rdev,
2465 					       rdev->badblocks.sector,
2466 					       rdev->badblocks.size << 9,
2467 					       rdev->bb_page);
2468 				rdev->badblocks.size = 0;
2469 			}
2470 
2471 		} else if (test_bit(Faulty, &rdev->flags))
2472 			pr_debug("md: %s (skipping faulty)\n",
2473 				 bdevname(rdev->bdev, b));
2474 		else
2475 			pr_debug("(skipping incremental s/r ");
2476 
2477 		if (mddev->level == LEVEL_MULTIPATH)
2478 			/* only need to write one superblock... */
2479 			break;
2480 	}
2481 	md_super_wait(mddev);
2482 	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483 
2484 	spin_lock_irq(&mddev->write_lock);
2485 	if (mddev->in_sync != sync_req ||
2486 	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 		/* have to write it out again */
2488 		spin_unlock_irq(&mddev->write_lock);
2489 		goto repeat;
2490 	}
2491 	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 	spin_unlock_irq(&mddev->write_lock);
2493 	wake_up(&mddev->sb_wait);
2494 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496 
2497 	rdev_for_each(rdev, mddev) {
2498 		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 			clear_bit(Blocked, &rdev->flags);
2500 
2501 		if (any_badblocks_changed)
2502 			md_ack_all_badblocks(&rdev->badblocks);
2503 		clear_bit(BlockedBadBlocks, &rdev->flags);
2504 		wake_up(&rdev->blocked_wait);
2505 	}
2506 }
2507 
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509  * We want to accept with case. For this we use cmd_match.
2510  */
2511 static int cmd_match(const char *cmd, const char *str)
2512 {
2513 	/* See if cmd, written into a sysfs file, matches
2514 	 * str.  They must either be the same, or cmd can
2515 	 * have a trailing newline
2516 	 */
2517 	while (*cmd && *str && *cmd == *str) {
2518 		cmd++;
2519 		str++;
2520 	}
2521 	if (*cmd == '\n')
2522 		cmd++;
2523 	if (*str || *cmd)
2524 		return 0;
2525 	return 1;
2526 }
2527 
2528 struct rdev_sysfs_entry {
2529 	struct attribute attr;
2530 	ssize_t (*show)(struct md_rdev *, char *);
2531 	ssize_t (*store)(struct md_rdev *, const char *, size_t);
2532 };
2533 
2534 static ssize_t
2535 state_show(struct md_rdev *rdev, char *page)
2536 {
2537 	char *sep = "";
2538 	size_t len = 0;
2539 
2540 	if (test_bit(Faulty, &rdev->flags) ||
2541 	    rdev->badblocks.unacked_exist) {
2542 		len+= sprintf(page+len, "%sfaulty",sep);
2543 		sep = ",";
2544 	}
2545 	if (test_bit(In_sync, &rdev->flags)) {
2546 		len += sprintf(page+len, "%sin_sync",sep);
2547 		sep = ",";
2548 	}
2549 	if (test_bit(WriteMostly, &rdev->flags)) {
2550 		len += sprintf(page+len, "%swrite_mostly",sep);
2551 		sep = ",";
2552 	}
2553 	if (test_bit(Blocked, &rdev->flags) ||
2554 	    (rdev->badblocks.unacked_exist
2555 	     && !test_bit(Faulty, &rdev->flags))) {
2556 		len += sprintf(page+len, "%sblocked", sep);
2557 		sep = ",";
2558 	}
2559 	if (!test_bit(Faulty, &rdev->flags) &&
2560 	    !test_bit(In_sync, &rdev->flags)) {
2561 		len += sprintf(page+len, "%sspare", sep);
2562 		sep = ",";
2563 	}
2564 	if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565 		len += sprintf(page+len, "%swrite_error", sep);
2566 		sep = ",";
2567 	}
2568 	if (test_bit(WantReplacement, &rdev->flags)) {
2569 		len += sprintf(page+len, "%swant_replacement", sep);
2570 		sep = ",";
2571 	}
2572 	if (test_bit(Replacement, &rdev->flags)) {
2573 		len += sprintf(page+len, "%sreplacement", sep);
2574 		sep = ",";
2575 	}
2576 
2577 	return len+sprintf(page+len, "\n");
2578 }
2579 
2580 static ssize_t
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2582 {
2583 	/* can write
2584 	 *  faulty  - simulates an error
2585 	 *  remove  - disconnects the device
2586 	 *  writemostly - sets write_mostly
2587 	 *  -writemostly - clears write_mostly
2588 	 *  blocked - sets the Blocked flags
2589 	 *  -blocked - clears the Blocked and possibly simulates an error
2590 	 *  insync - sets Insync providing device isn't active
2591 	 *  write_error - sets WriteErrorSeen
2592 	 *  -write_error - clears WriteErrorSeen
2593 	 */
2594 	int err = -EINVAL;
2595 	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 		md_error(rdev->mddev, rdev);
2597 		if (test_bit(Faulty, &rdev->flags))
2598 			err = 0;
2599 		else
2600 			err = -EBUSY;
2601 	} else if (cmd_match(buf, "remove")) {
2602 		if (rdev->raid_disk >= 0)
2603 			err = -EBUSY;
2604 		else {
2605 			struct mddev *mddev = rdev->mddev;
2606 			kick_rdev_from_array(rdev);
2607 			if (mddev->pers)
2608 				md_update_sb(mddev, 1);
2609 			md_new_event(mddev);
2610 			err = 0;
2611 		}
2612 	} else if (cmd_match(buf, "writemostly")) {
2613 		set_bit(WriteMostly, &rdev->flags);
2614 		err = 0;
2615 	} else if (cmd_match(buf, "-writemostly")) {
2616 		clear_bit(WriteMostly, &rdev->flags);
2617 		err = 0;
2618 	} else if (cmd_match(buf, "blocked")) {
2619 		set_bit(Blocked, &rdev->flags);
2620 		err = 0;
2621 	} else if (cmd_match(buf, "-blocked")) {
2622 		if (!test_bit(Faulty, &rdev->flags) &&
2623 		    rdev->badblocks.unacked_exist) {
2624 			/* metadata handler doesn't understand badblocks,
2625 			 * so we need to fail the device
2626 			 */
2627 			md_error(rdev->mddev, rdev);
2628 		}
2629 		clear_bit(Blocked, &rdev->flags);
2630 		clear_bit(BlockedBadBlocks, &rdev->flags);
2631 		wake_up(&rdev->blocked_wait);
2632 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 		md_wakeup_thread(rdev->mddev->thread);
2634 
2635 		err = 0;
2636 	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 		set_bit(In_sync, &rdev->flags);
2638 		err = 0;
2639 	} else if (cmd_match(buf, "write_error")) {
2640 		set_bit(WriteErrorSeen, &rdev->flags);
2641 		err = 0;
2642 	} else if (cmd_match(buf, "-write_error")) {
2643 		clear_bit(WriteErrorSeen, &rdev->flags);
2644 		err = 0;
2645 	} else if (cmd_match(buf, "want_replacement")) {
2646 		/* Any non-spare device that is not a replacement can
2647 		 * become want_replacement at any time, but we then need to
2648 		 * check if recovery is needed.
2649 		 */
2650 		if (rdev->raid_disk >= 0 &&
2651 		    !test_bit(Replacement, &rdev->flags))
2652 			set_bit(WantReplacement, &rdev->flags);
2653 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 		md_wakeup_thread(rdev->mddev->thread);
2655 		err = 0;
2656 	} else if (cmd_match(buf, "-want_replacement")) {
2657 		/* Clearing 'want_replacement' is always allowed.
2658 		 * Once replacements starts it is too late though.
2659 		 */
2660 		err = 0;
2661 		clear_bit(WantReplacement, &rdev->flags);
2662 	} else if (cmd_match(buf, "replacement")) {
2663 		/* Can only set a device as a replacement when array has not
2664 		 * yet been started.  Once running, replacement is automatic
2665 		 * from spares, or by assigning 'slot'.
2666 		 */
2667 		if (rdev->mddev->pers)
2668 			err = -EBUSY;
2669 		else {
2670 			set_bit(Replacement, &rdev->flags);
2671 			err = 0;
2672 		}
2673 	} else if (cmd_match(buf, "-replacement")) {
2674 		/* Similarly, can only clear Replacement before start */
2675 		if (rdev->mddev->pers)
2676 			err = -EBUSY;
2677 		else {
2678 			clear_bit(Replacement, &rdev->flags);
2679 			err = 0;
2680 		}
2681 	}
2682 	if (!err)
2683 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2684 	return err ? err : len;
2685 }
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2688 
2689 static ssize_t
2690 errors_show(struct md_rdev *rdev, char *page)
2691 {
2692 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2693 }
2694 
2695 static ssize_t
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2697 {
2698 	char *e;
2699 	unsigned long n = simple_strtoul(buf, &e, 10);
2700 	if (*buf && (*e == 0 || *e == '\n')) {
2701 		atomic_set(&rdev->corrected_errors, n);
2702 		return len;
2703 	}
2704 	return -EINVAL;
2705 }
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2708 
2709 static ssize_t
2710 slot_show(struct md_rdev *rdev, char *page)
2711 {
2712 	if (rdev->raid_disk < 0)
2713 		return sprintf(page, "none\n");
2714 	else
2715 		return sprintf(page, "%d\n", rdev->raid_disk);
2716 }
2717 
2718 static ssize_t
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721 	char *e;
2722 	int err;
2723 	int slot = simple_strtoul(buf, &e, 10);
2724 	if (strncmp(buf, "none", 4)==0)
2725 		slot = -1;
2726 	else if (e==buf || (*e && *e!= '\n'))
2727 		return -EINVAL;
2728 	if (rdev->mddev->pers && slot == -1) {
2729 		/* Setting 'slot' on an active array requires also
2730 		 * updating the 'rd%d' link, and communicating
2731 		 * with the personality with ->hot_*_disk.
2732 		 * For now we only support removing
2733 		 * failed/spare devices.  This normally happens automatically,
2734 		 * but not when the metadata is externally managed.
2735 		 */
2736 		if (rdev->raid_disk == -1)
2737 			return -EEXIST;
2738 		/* personality does all needed checks */
2739 		if (rdev->mddev->pers->hot_remove_disk == NULL)
2740 			return -EINVAL;
2741 		err = rdev->mddev->pers->
2742 			hot_remove_disk(rdev->mddev, rdev);
2743 		if (err)
2744 			return err;
2745 		sysfs_unlink_rdev(rdev->mddev, rdev);
2746 		rdev->raid_disk = -1;
2747 		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748 		md_wakeup_thread(rdev->mddev->thread);
2749 	} else if (rdev->mddev->pers) {
2750 		/* Activating a spare .. or possibly reactivating
2751 		 * if we ever get bitmaps working here.
2752 		 */
2753 
2754 		if (rdev->raid_disk != -1)
2755 			return -EBUSY;
2756 
2757 		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2758 			return -EBUSY;
2759 
2760 		if (rdev->mddev->pers->hot_add_disk == NULL)
2761 			return -EINVAL;
2762 
2763 		if (slot >= rdev->mddev->raid_disks &&
2764 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2765 			return -ENOSPC;
2766 
2767 		rdev->raid_disk = slot;
2768 		if (test_bit(In_sync, &rdev->flags))
2769 			rdev->saved_raid_disk = slot;
2770 		else
2771 			rdev->saved_raid_disk = -1;
2772 		clear_bit(In_sync, &rdev->flags);
2773 		err = rdev->mddev->pers->
2774 			hot_add_disk(rdev->mddev, rdev);
2775 		if (err) {
2776 			rdev->raid_disk = -1;
2777 			return err;
2778 		} else
2779 			sysfs_notify_dirent_safe(rdev->sysfs_state);
2780 		if (sysfs_link_rdev(rdev->mddev, rdev))
2781 			/* failure here is OK */;
2782 		/* don't wakeup anyone, leave that to userspace. */
2783 	} else {
2784 		if (slot >= rdev->mddev->raid_disks &&
2785 		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786 			return -ENOSPC;
2787 		rdev->raid_disk = slot;
2788 		/* assume it is working */
2789 		clear_bit(Faulty, &rdev->flags);
2790 		clear_bit(WriteMostly, &rdev->flags);
2791 		set_bit(In_sync, &rdev->flags);
2792 		sysfs_notify_dirent_safe(rdev->sysfs_state);
2793 	}
2794 	return len;
2795 }
2796 
2797 
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2800 
2801 static ssize_t
2802 offset_show(struct md_rdev *rdev, char *page)
2803 {
2804 	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2805 }
2806 
2807 static ssize_t
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2809 {
2810 	char *e;
2811 	unsigned long long offset = simple_strtoull(buf, &e, 10);
2812 	if (e==buf || (*e && *e != '\n'))
2813 		return -EINVAL;
2814 	if (rdev->mddev->pers && rdev->raid_disk >= 0)
2815 		return -EBUSY;
2816 	if (rdev->sectors && rdev->mddev->external)
2817 		/* Must set offset before size, so overlap checks
2818 		 * can be sane */
2819 		return -EBUSY;
2820 	rdev->data_offset = offset;
2821 	return len;
2822 }
2823 
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2826 
2827 static ssize_t
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2829 {
2830 	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2831 }
2832 
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2834 {
2835 	/* check if two start/length pairs overlap */
2836 	if (s1+l1 <= s2)
2837 		return 0;
2838 	if (s2+l2 <= s1)
2839 		return 0;
2840 	return 1;
2841 }
2842 
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2844 {
2845 	unsigned long long blocks;
2846 	sector_t new;
2847 
2848 	if (strict_strtoull(buf, 10, &blocks) < 0)
2849 		return -EINVAL;
2850 
2851 	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852 		return -EINVAL; /* sector conversion overflow */
2853 
2854 	new = blocks * 2;
2855 	if (new != blocks * 2)
2856 		return -EINVAL; /* unsigned long long to sector_t overflow */
2857 
2858 	*sectors = new;
2859 	return 0;
2860 }
2861 
2862 static ssize_t
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865 	struct mddev *my_mddev = rdev->mddev;
2866 	sector_t oldsectors = rdev->sectors;
2867 	sector_t sectors;
2868 
2869 	if (strict_blocks_to_sectors(buf, &sectors) < 0)
2870 		return -EINVAL;
2871 	if (my_mddev->pers && rdev->raid_disk >= 0) {
2872 		if (my_mddev->persistent) {
2873 			sectors = super_types[my_mddev->major_version].
2874 				rdev_size_change(rdev, sectors);
2875 			if (!sectors)
2876 				return -EBUSY;
2877 		} else if (!sectors)
2878 			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2879 				rdev->data_offset;
2880 	}
2881 	if (sectors < my_mddev->dev_sectors)
2882 		return -EINVAL; /* component must fit device */
2883 
2884 	rdev->sectors = sectors;
2885 	if (sectors > oldsectors && my_mddev->external) {
2886 		/* need to check that all other rdevs with the same ->bdev
2887 		 * do not overlap.  We need to unlock the mddev to avoid
2888 		 * a deadlock.  We have already changed rdev->sectors, and if
2889 		 * we have to change it back, we will have the lock again.
2890 		 */
2891 		struct mddev *mddev;
2892 		int overlap = 0;
2893 		struct list_head *tmp;
2894 
2895 		mddev_unlock(my_mddev);
2896 		for_each_mddev(mddev, tmp) {
2897 			struct md_rdev *rdev2;
2898 
2899 			mddev_lock(mddev);
2900 			rdev_for_each(rdev2, mddev)
2901 				if (rdev->bdev == rdev2->bdev &&
2902 				    rdev != rdev2 &&
2903 				    overlaps(rdev->data_offset, rdev->sectors,
2904 					     rdev2->data_offset,
2905 					     rdev2->sectors)) {
2906 					overlap = 1;
2907 					break;
2908 				}
2909 			mddev_unlock(mddev);
2910 			if (overlap) {
2911 				mddev_put(mddev);
2912 				break;
2913 			}
2914 		}
2915 		mddev_lock(my_mddev);
2916 		if (overlap) {
2917 			/* Someone else could have slipped in a size
2918 			 * change here, but doing so is just silly.
2919 			 * We put oldsectors back because we *know* it is
2920 			 * safe, and trust userspace not to race with
2921 			 * itself
2922 			 */
2923 			rdev->sectors = oldsectors;
2924 			return -EBUSY;
2925 		}
2926 	}
2927 	return len;
2928 }
2929 
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2932 
2933 
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2935 {
2936 	unsigned long long recovery_start = rdev->recovery_offset;
2937 
2938 	if (test_bit(In_sync, &rdev->flags) ||
2939 	    recovery_start == MaxSector)
2940 		return sprintf(page, "none\n");
2941 
2942 	return sprintf(page, "%llu\n", recovery_start);
2943 }
2944 
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2946 {
2947 	unsigned long long recovery_start;
2948 
2949 	if (cmd_match(buf, "none"))
2950 		recovery_start = MaxSector;
2951 	else if (strict_strtoull(buf, 10, &recovery_start))
2952 		return -EINVAL;
2953 
2954 	if (rdev->mddev->pers &&
2955 	    rdev->raid_disk >= 0)
2956 		return -EBUSY;
2957 
2958 	rdev->recovery_offset = recovery_start;
2959 	if (recovery_start == MaxSector)
2960 		set_bit(In_sync, &rdev->flags);
2961 	else
2962 		clear_bit(In_sync, &rdev->flags);
2963 	return len;
2964 }
2965 
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2968 
2969 
2970 static ssize_t
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2972 static ssize_t
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2974 
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2976 {
2977 	return badblocks_show(&rdev->badblocks, page, 0);
2978 }
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2980 {
2981 	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982 	/* Maybe that ack was all we needed */
2983 	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984 		wake_up(&rdev->blocked_wait);
2985 	return rv;
2986 }
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2989 
2990 
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2992 {
2993 	return badblocks_show(&rdev->badblocks, page, 1);
2994 }
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2996 {
2997 	return badblocks_store(&rdev->badblocks, page, len, 1);
2998 }
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3001 
3002 static struct attribute *rdev_default_attrs[] = {
3003 	&rdev_state.attr,
3004 	&rdev_errors.attr,
3005 	&rdev_slot.attr,
3006 	&rdev_offset.attr,
3007 	&rdev_size.attr,
3008 	&rdev_recovery_start.attr,
3009 	&rdev_bad_blocks.attr,
3010 	&rdev_unack_bad_blocks.attr,
3011 	NULL,
3012 };
3013 static ssize_t
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3015 {
3016 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018 	struct mddev *mddev = rdev->mddev;
3019 	ssize_t rv;
3020 
3021 	if (!entry->show)
3022 		return -EIO;
3023 
3024 	rv = mddev ? mddev_lock(mddev) : -EBUSY;
3025 	if (!rv) {
3026 		if (rdev->mddev == NULL)
3027 			rv = -EBUSY;
3028 		else
3029 			rv = entry->show(rdev, page);
3030 		mddev_unlock(mddev);
3031 	}
3032 	return rv;
3033 }
3034 
3035 static ssize_t
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037 	      const char *page, size_t length)
3038 {
3039 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040 	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3041 	ssize_t rv;
3042 	struct mddev *mddev = rdev->mddev;
3043 
3044 	if (!entry->store)
3045 		return -EIO;
3046 	if (!capable(CAP_SYS_ADMIN))
3047 		return -EACCES;
3048 	rv = mddev ? mddev_lock(mddev): -EBUSY;
3049 	if (!rv) {
3050 		if (rdev->mddev == NULL)
3051 			rv = -EBUSY;
3052 		else
3053 			rv = entry->store(rdev, page, length);
3054 		mddev_unlock(mddev);
3055 	}
3056 	return rv;
3057 }
3058 
3059 static void rdev_free(struct kobject *ko)
3060 {
3061 	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3062 	kfree(rdev);
3063 }
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065 	.show		= rdev_attr_show,
3066 	.store		= rdev_attr_store,
3067 };
3068 static struct kobj_type rdev_ktype = {
3069 	.release	= rdev_free,
3070 	.sysfs_ops	= &rdev_sysfs_ops,
3071 	.default_attrs	= rdev_default_attrs,
3072 };
3073 
3074 int md_rdev_init(struct md_rdev *rdev)
3075 {
3076 	rdev->desc_nr = -1;
3077 	rdev->saved_raid_disk = -1;
3078 	rdev->raid_disk = -1;
3079 	rdev->flags = 0;
3080 	rdev->data_offset = 0;
3081 	rdev->sb_events = 0;
3082 	rdev->last_read_error.tv_sec  = 0;
3083 	rdev->last_read_error.tv_nsec = 0;
3084 	rdev->sb_loaded = 0;
3085 	rdev->bb_page = NULL;
3086 	atomic_set(&rdev->nr_pending, 0);
3087 	atomic_set(&rdev->read_errors, 0);
3088 	atomic_set(&rdev->corrected_errors, 0);
3089 
3090 	INIT_LIST_HEAD(&rdev->same_set);
3091 	init_waitqueue_head(&rdev->blocked_wait);
3092 
3093 	/* Add space to store bad block list.
3094 	 * This reserves the space even on arrays where it cannot
3095 	 * be used - I wonder if that matters
3096 	 */
3097 	rdev->badblocks.count = 0;
3098 	rdev->badblocks.shift = 0;
3099 	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100 	seqlock_init(&rdev->badblocks.lock);
3101 	if (rdev->badblocks.page == NULL)
3102 		return -ENOMEM;
3103 
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3107 /*
3108  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3109  *
3110  * mark the device faulty if:
3111  *
3112  *   - the device is nonexistent (zero size)
3113  *   - the device has no valid superblock
3114  *
3115  * a faulty rdev _never_ has rdev->sb set.
3116  */
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3118 {
3119 	char b[BDEVNAME_SIZE];
3120 	int err;
3121 	struct md_rdev *rdev;
3122 	sector_t size;
3123 
3124 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3125 	if (!rdev) {
3126 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127 		return ERR_PTR(-ENOMEM);
3128 	}
3129 
3130 	err = md_rdev_init(rdev);
3131 	if (err)
3132 		goto abort_free;
3133 	err = alloc_disk_sb(rdev);
3134 	if (err)
3135 		goto abort_free;
3136 
3137 	err = lock_rdev(rdev, newdev, super_format == -2);
3138 	if (err)
3139 		goto abort_free;
3140 
3141 	kobject_init(&rdev->kobj, &rdev_ktype);
3142 
3143 	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3144 	if (!size) {
3145 		printk(KERN_WARNING
3146 			"md: %s has zero or unknown size, marking faulty!\n",
3147 			bdevname(rdev->bdev,b));
3148 		err = -EINVAL;
3149 		goto abort_free;
3150 	}
3151 
3152 	if (super_format >= 0) {
3153 		err = super_types[super_format].
3154 			load_super(rdev, NULL, super_minor);
3155 		if (err == -EINVAL) {
3156 			printk(KERN_WARNING
3157 				"md: %s does not have a valid v%d.%d "
3158 			       "superblock, not importing!\n",
3159 				bdevname(rdev->bdev,b),
3160 			       super_format, super_minor);
3161 			goto abort_free;
3162 		}
3163 		if (err < 0) {
3164 			printk(KERN_WARNING
3165 				"md: could not read %s's sb, not importing!\n",
3166 				bdevname(rdev->bdev,b));
3167 			goto abort_free;
3168 		}
3169 	}
3170 	if (super_format == -1)
3171 		/* hot-add for 0.90, or non-persistent: so no badblocks */
3172 		rdev->badblocks.shift = -1;
3173 
3174 	return rdev;
3175 
3176 abort_free:
3177 	if (rdev->bdev)
3178 		unlock_rdev(rdev);
3179 	free_disk_sb(rdev);
3180 	kfree(rdev->badblocks.page);
3181 	kfree(rdev);
3182 	return ERR_PTR(err);
3183 }
3184 
3185 /*
3186  * Check a full RAID array for plausibility
3187  */
3188 
3189 
3190 static void analyze_sbs(struct mddev * mddev)
3191 {
3192 	int i;
3193 	struct md_rdev *rdev, *freshest, *tmp;
3194 	char b[BDEVNAME_SIZE];
3195 
3196 	freshest = NULL;
3197 	rdev_for_each_safe(rdev, tmp, mddev)
3198 		switch (super_types[mddev->major_version].
3199 			load_super(rdev, freshest, mddev->minor_version)) {
3200 		case 1:
3201 			freshest = rdev;
3202 			break;
3203 		case 0:
3204 			break;
3205 		default:
3206 			printk( KERN_ERR \
3207 				"md: fatal superblock inconsistency in %s"
3208 				" -- removing from array\n",
3209 				bdevname(rdev->bdev,b));
3210 			kick_rdev_from_array(rdev);
3211 		}
3212 
3213 
3214 	super_types[mddev->major_version].
3215 		validate_super(mddev, freshest);
3216 
3217 	i = 0;
3218 	rdev_for_each_safe(rdev, tmp, mddev) {
3219 		if (mddev->max_disks &&
3220 		    (rdev->desc_nr >= mddev->max_disks ||
3221 		     i > mddev->max_disks)) {
3222 			printk(KERN_WARNING
3223 			       "md: %s: %s: only %d devices permitted\n",
3224 			       mdname(mddev), bdevname(rdev->bdev, b),
3225 			       mddev->max_disks);
3226 			kick_rdev_from_array(rdev);
3227 			continue;
3228 		}
3229 		if (rdev != freshest)
3230 			if (super_types[mddev->major_version].
3231 			    validate_super(mddev, rdev)) {
3232 				printk(KERN_WARNING "md: kicking non-fresh %s"
3233 					" from array!\n",
3234 					bdevname(rdev->bdev,b));
3235 				kick_rdev_from_array(rdev);
3236 				continue;
3237 			}
3238 		if (mddev->level == LEVEL_MULTIPATH) {
3239 			rdev->desc_nr = i++;
3240 			rdev->raid_disk = rdev->desc_nr;
3241 			set_bit(In_sync, &rdev->flags);
3242 		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243 			rdev->raid_disk = -1;
3244 			clear_bit(In_sync, &rdev->flags);
3245 		}
3246 	}
3247 }
3248 
3249 /* Read a fixed-point number.
3250  * Numbers in sysfs attributes should be in "standard" units where
3251  * possible, so time should be in seconds.
3252  * However we internally use a a much smaller unit such as
3253  * milliseconds or jiffies.
3254  * This function takes a decimal number with a possible fractional
3255  * component, and produces an integer which is the result of
3256  * multiplying that number by 10^'scale'.
3257  * all without any floating-point arithmetic.
3258  */
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3260 {
3261 	unsigned long result = 0;
3262 	long decimals = -1;
3263 	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3264 		if (*cp == '.')
3265 			decimals = 0;
3266 		else if (decimals < scale) {
3267 			unsigned int value;
3268 			value = *cp - '0';
3269 			result = result * 10 + value;
3270 			if (decimals >= 0)
3271 				decimals++;
3272 		}
3273 		cp++;
3274 	}
3275 	if (*cp == '\n')
3276 		cp++;
3277 	if (*cp)
3278 		return -EINVAL;
3279 	if (decimals < 0)
3280 		decimals = 0;
3281 	while (decimals < scale) {
3282 		result *= 10;
3283 		decimals ++;
3284 	}
3285 	*res = result;
3286 	return 0;
3287 }
3288 
3289 
3290 static void md_safemode_timeout(unsigned long data);
3291 
3292 static ssize_t
3293 safe_delay_show(struct mddev *mddev, char *page)
3294 {
3295 	int msec = (mddev->safemode_delay*1000)/HZ;
3296 	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3297 }
3298 static ssize_t
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3300 {
3301 	unsigned long msec;
3302 
3303 	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3304 		return -EINVAL;
3305 	if (msec == 0)
3306 		mddev->safemode_delay = 0;
3307 	else {
3308 		unsigned long old_delay = mddev->safemode_delay;
3309 		mddev->safemode_delay = (msec*HZ)/1000;
3310 		if (mddev->safemode_delay == 0)
3311 			mddev->safemode_delay = 1;
3312 		if (mddev->safemode_delay < old_delay)
3313 			md_safemode_timeout((unsigned long)mddev);
3314 	}
3315 	return len;
3316 }
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3319 
3320 static ssize_t
3321 level_show(struct mddev *mddev, char *page)
3322 {
3323 	struct md_personality *p = mddev->pers;
3324 	if (p)
3325 		return sprintf(page, "%s\n", p->name);
3326 	else if (mddev->clevel[0])
3327 		return sprintf(page, "%s\n", mddev->clevel);
3328 	else if (mddev->level != LEVEL_NONE)
3329 		return sprintf(page, "%d\n", mddev->level);
3330 	else
3331 		return 0;
3332 }
3333 
3334 static ssize_t
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3336 {
3337 	char clevel[16];
3338 	ssize_t rv = len;
3339 	struct md_personality *pers;
3340 	long level;
3341 	void *priv;
3342 	struct md_rdev *rdev;
3343 
3344 	if (mddev->pers == NULL) {
3345 		if (len == 0)
3346 			return 0;
3347 		if (len >= sizeof(mddev->clevel))
3348 			return -ENOSPC;
3349 		strncpy(mddev->clevel, buf, len);
3350 		if (mddev->clevel[len-1] == '\n')
3351 			len--;
3352 		mddev->clevel[len] = 0;
3353 		mddev->level = LEVEL_NONE;
3354 		return rv;
3355 	}
3356 
3357 	/* request to change the personality.  Need to ensure:
3358 	 *  - array is not engaged in resync/recovery/reshape
3359 	 *  - old personality can be suspended
3360 	 *  - new personality will access other array.
3361 	 */
3362 
3363 	if (mddev->sync_thread ||
3364 	    mddev->reshape_position != MaxSector ||
3365 	    mddev->sysfs_active)
3366 		return -EBUSY;
3367 
3368 	if (!mddev->pers->quiesce) {
3369 		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370 		       mdname(mddev), mddev->pers->name);
3371 		return -EINVAL;
3372 	}
3373 
3374 	/* Now find the new personality */
3375 	if (len == 0 || len >= sizeof(clevel))
3376 		return -EINVAL;
3377 	strncpy(clevel, buf, len);
3378 	if (clevel[len-1] == '\n')
3379 		len--;
3380 	clevel[len] = 0;
3381 	if (strict_strtol(clevel, 10, &level))
3382 		level = LEVEL_NONE;
3383 
3384 	if (request_module("md-%s", clevel) != 0)
3385 		request_module("md-level-%s", clevel);
3386 	spin_lock(&pers_lock);
3387 	pers = find_pers(level, clevel);
3388 	if (!pers || !try_module_get(pers->owner)) {
3389 		spin_unlock(&pers_lock);
3390 		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3391 		return -EINVAL;
3392 	}
3393 	spin_unlock(&pers_lock);
3394 
3395 	if (pers == mddev->pers) {
3396 		/* Nothing to do! */
3397 		module_put(pers->owner);
3398 		return rv;
3399 	}
3400 	if (!pers->takeover) {
3401 		module_put(pers->owner);
3402 		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403 		       mdname(mddev), clevel);
3404 		return -EINVAL;
3405 	}
3406 
3407 	rdev_for_each(rdev, mddev)
3408 		rdev->new_raid_disk = rdev->raid_disk;
3409 
3410 	/* ->takeover must set new_* and/or delta_disks
3411 	 * if it succeeds, and may set them when it fails.
3412 	 */
3413 	priv = pers->takeover(mddev);
3414 	if (IS_ERR(priv)) {
3415 		mddev->new_level = mddev->level;
3416 		mddev->new_layout = mddev->layout;
3417 		mddev->new_chunk_sectors = mddev->chunk_sectors;
3418 		mddev->raid_disks -= mddev->delta_disks;
3419 		mddev->delta_disks = 0;
3420 		module_put(pers->owner);
3421 		printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422 		       mdname(mddev), clevel);
3423 		return PTR_ERR(priv);
3424 	}
3425 
3426 	/* Looks like we have a winner */
3427 	mddev_suspend(mddev);
3428 	mddev->pers->stop(mddev);
3429 
3430 	if (mddev->pers->sync_request == NULL &&
3431 	    pers->sync_request != NULL) {
3432 		/* need to add the md_redundancy_group */
3433 		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3434 			printk(KERN_WARNING
3435 			       "md: cannot register extra attributes for %s\n",
3436 			       mdname(mddev));
3437 		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3438 	}
3439 	if (mddev->pers->sync_request != NULL &&
3440 	    pers->sync_request == NULL) {
3441 		/* need to remove the md_redundancy_group */
3442 		if (mddev->to_remove == NULL)
3443 			mddev->to_remove = &md_redundancy_group;
3444 	}
3445 
3446 	if (mddev->pers->sync_request == NULL &&
3447 	    mddev->external) {
3448 		/* We are converting from a no-redundancy array
3449 		 * to a redundancy array and metadata is managed
3450 		 * externally so we need to be sure that writes
3451 		 * won't block due to a need to transition
3452 		 *      clean->dirty
3453 		 * until external management is started.
3454 		 */
3455 		mddev->in_sync = 0;
3456 		mddev->safemode_delay = 0;
3457 		mddev->safemode = 0;
3458 	}
3459 
3460 	rdev_for_each(rdev, mddev) {
3461 		if (rdev->raid_disk < 0)
3462 			continue;
3463 		if (rdev->new_raid_disk >= mddev->raid_disks)
3464 			rdev->new_raid_disk = -1;
3465 		if (rdev->new_raid_disk == rdev->raid_disk)
3466 			continue;
3467 		sysfs_unlink_rdev(mddev, rdev);
3468 	}
3469 	rdev_for_each(rdev, mddev) {
3470 		if (rdev->raid_disk < 0)
3471 			continue;
3472 		if (rdev->new_raid_disk == rdev->raid_disk)
3473 			continue;
3474 		rdev->raid_disk = rdev->new_raid_disk;
3475 		if (rdev->raid_disk < 0)
3476 			clear_bit(In_sync, &rdev->flags);
3477 		else {
3478 			if (sysfs_link_rdev(mddev, rdev))
3479 				printk(KERN_WARNING "md: cannot register rd%d"
3480 				       " for %s after level change\n",
3481 				       rdev->raid_disk, mdname(mddev));
3482 		}
3483 	}
3484 
3485 	module_put(mddev->pers->owner);
3486 	mddev->pers = pers;
3487 	mddev->private = priv;
3488 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489 	mddev->level = mddev->new_level;
3490 	mddev->layout = mddev->new_layout;
3491 	mddev->chunk_sectors = mddev->new_chunk_sectors;
3492 	mddev->delta_disks = 0;
3493 	mddev->degraded = 0;
3494 	if (mddev->pers->sync_request == NULL) {
3495 		/* this is now an array without redundancy, so
3496 		 * it must always be in_sync
3497 		 */
3498 		mddev->in_sync = 1;
3499 		del_timer_sync(&mddev->safemode_timer);
3500 	}
3501 	pers->run(mddev);
3502 	mddev_resume(mddev);
3503 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 	md_wakeup_thread(mddev->thread);
3506 	sysfs_notify(&mddev->kobj, NULL, "level");
3507 	md_new_event(mddev);
3508 	return rv;
3509 }
3510 
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3513 
3514 
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518 	/* just a number, not meaningful for all levels */
3519 	if (mddev->reshape_position != MaxSector &&
3520 	    mddev->layout != mddev->new_layout)
3521 		return sprintf(page, "%d (%d)\n",
3522 			       mddev->new_layout, mddev->layout);
3523 	return sprintf(page, "%d\n", mddev->layout);
3524 }
3525 
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529 	char *e;
3530 	unsigned long n = simple_strtoul(buf, &e, 10);
3531 
3532 	if (!*buf || (*e && *e != '\n'))
3533 		return -EINVAL;
3534 
3535 	if (mddev->pers) {
3536 		int err;
3537 		if (mddev->pers->check_reshape == NULL)
3538 			return -EBUSY;
3539 		mddev->new_layout = n;
3540 		err = mddev->pers->check_reshape(mddev);
3541 		if (err) {
3542 			mddev->new_layout = mddev->layout;
3543 			return err;
3544 		}
3545 	} else {
3546 		mddev->new_layout = n;
3547 		if (mddev->reshape_position == MaxSector)
3548 			mddev->layout = n;
3549 	}
3550 	return len;
3551 }
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3554 
3555 
3556 static ssize_t
3557 raid_disks_show(struct mddev *mddev, char *page)
3558 {
3559 	if (mddev->raid_disks == 0)
3560 		return 0;
3561 	if (mddev->reshape_position != MaxSector &&
3562 	    mddev->delta_disks != 0)
3563 		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564 			       mddev->raid_disks - mddev->delta_disks);
3565 	return sprintf(page, "%d\n", mddev->raid_disks);
3566 }
3567 
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3569 
3570 static ssize_t
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573 	char *e;
3574 	int rv = 0;
3575 	unsigned long n = simple_strtoul(buf, &e, 10);
3576 
3577 	if (!*buf || (*e && *e != '\n'))
3578 		return -EINVAL;
3579 
3580 	if (mddev->pers)
3581 		rv = update_raid_disks(mddev, n);
3582 	else if (mddev->reshape_position != MaxSector) {
3583 		int olddisks = mddev->raid_disks - mddev->delta_disks;
3584 		mddev->delta_disks = n - olddisks;
3585 		mddev->raid_disks = n;
3586 	} else
3587 		mddev->raid_disks = n;
3588 	return rv ? rv : len;
3589 }
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3592 
3593 static ssize_t
3594 chunk_size_show(struct mddev *mddev, char *page)
3595 {
3596 	if (mddev->reshape_position != MaxSector &&
3597 	    mddev->chunk_sectors != mddev->new_chunk_sectors)
3598 		return sprintf(page, "%d (%d)\n",
3599 			       mddev->new_chunk_sectors << 9,
3600 			       mddev->chunk_sectors << 9);
3601 	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3602 }
3603 
3604 static ssize_t
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3606 {
3607 	char *e;
3608 	unsigned long n = simple_strtoul(buf, &e, 10);
3609 
3610 	if (!*buf || (*e && *e != '\n'))
3611 		return -EINVAL;
3612 
3613 	if (mddev->pers) {
3614 		int err;
3615 		if (mddev->pers->check_reshape == NULL)
3616 			return -EBUSY;
3617 		mddev->new_chunk_sectors = n >> 9;
3618 		err = mddev->pers->check_reshape(mddev);
3619 		if (err) {
3620 			mddev->new_chunk_sectors = mddev->chunk_sectors;
3621 			return err;
3622 		}
3623 	} else {
3624 		mddev->new_chunk_sectors = n >> 9;
3625 		if (mddev->reshape_position == MaxSector)
3626 			mddev->chunk_sectors = n >> 9;
3627 	}
3628 	return len;
3629 }
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3632 
3633 static ssize_t
3634 resync_start_show(struct mddev *mddev, char *page)
3635 {
3636 	if (mddev->recovery_cp == MaxSector)
3637 		return sprintf(page, "none\n");
3638 	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3639 }
3640 
3641 static ssize_t
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644 	char *e;
3645 	unsigned long long n = simple_strtoull(buf, &e, 10);
3646 
3647 	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3648 		return -EBUSY;
3649 	if (cmd_match(buf, "none"))
3650 		n = MaxSector;
3651 	else if (!*buf || (*e && *e != '\n'))
3652 		return -EINVAL;
3653 
3654 	mddev->recovery_cp = n;
3655 	return len;
3656 }
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3659 
3660 /*
3661  * The array state can be:
3662  *
3663  * clear
3664  *     No devices, no size, no level
3665  *     Equivalent to STOP_ARRAY ioctl
3666  * inactive
3667  *     May have some settings, but array is not active
3668  *        all IO results in error
3669  *     When written, doesn't tear down array, but just stops it
3670  * suspended (not supported yet)
3671  *     All IO requests will block. The array can be reconfigured.
3672  *     Writing this, if accepted, will block until array is quiescent
3673  * readonly
3674  *     no resync can happen.  no superblocks get written.
3675  *     write requests fail
3676  * read-auto
3677  *     like readonly, but behaves like 'clean' on a write request.
3678  *
3679  * clean - no pending writes, but otherwise active.
3680  *     When written to inactive array, starts without resync
3681  *     If a write request arrives then
3682  *       if metadata is known, mark 'dirty' and switch to 'active'.
3683  *       if not known, block and switch to write-pending
3684  *     If written to an active array that has pending writes, then fails.
3685  * active
3686  *     fully active: IO and resync can be happening.
3687  *     When written to inactive array, starts with resync
3688  *
3689  * write-pending
3690  *     clean, but writes are blocked waiting for 'active' to be written.
3691  *
3692  * active-idle
3693  *     like active, but no writes have been seen for a while (100msec).
3694  *
3695  */
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697 		   write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699 	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700 	"write-pending", "active-idle", NULL };
3701 
3702 static int match_word(const char *word, char **list)
3703 {
3704 	int n;
3705 	for (n=0; list[n]; n++)
3706 		if (cmd_match(word, list[n]))
3707 			break;
3708 	return n;
3709 }
3710 
3711 static ssize_t
3712 array_state_show(struct mddev *mddev, char *page)
3713 {
3714 	enum array_state st = inactive;
3715 
3716 	if (mddev->pers)
3717 		switch(mddev->ro) {
3718 		case 1:
3719 			st = readonly;
3720 			break;
3721 		case 2:
3722 			st = read_auto;
3723 			break;
3724 		case 0:
3725 			if (mddev->in_sync)
3726 				st = clean;
3727 			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3728 				st = write_pending;
3729 			else if (mddev->safemode)
3730 				st = active_idle;
3731 			else
3732 				st = active;
3733 		}
3734 	else {
3735 		if (list_empty(&mddev->disks) &&
3736 		    mddev->raid_disks == 0 &&
3737 		    mddev->dev_sectors == 0)
3738 			st = clear;
3739 		else
3740 			st = inactive;
3741 	}
3742 	return sprintf(page, "%s\n", array_states[st]);
3743 }
3744 
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3749 
3750 static ssize_t
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3752 {
3753 	int err = -EINVAL;
3754 	enum array_state st = match_word(buf, array_states);
3755 	switch(st) {
3756 	case bad_word:
3757 		break;
3758 	case clear:
3759 		/* stopping an active array */
3760 		if (atomic_read(&mddev->openers) > 0)
3761 			return -EBUSY;
3762 		err = do_md_stop(mddev, 0, 0);
3763 		break;
3764 	case inactive:
3765 		/* stopping an active array */
3766 		if (mddev->pers) {
3767 			if (atomic_read(&mddev->openers) > 0)
3768 				return -EBUSY;
3769 			err = do_md_stop(mddev, 2, 0);
3770 		} else
3771 			err = 0; /* already inactive */
3772 		break;
3773 	case suspended:
3774 		break; /* not supported yet */
3775 	case readonly:
3776 		if (mddev->pers)
3777 			err = md_set_readonly(mddev, 0);
3778 		else {
3779 			mddev->ro = 1;
3780 			set_disk_ro(mddev->gendisk, 1);
3781 			err = do_md_run(mddev);
3782 		}
3783 		break;
3784 	case read_auto:
3785 		if (mddev->pers) {
3786 			if (mddev->ro == 0)
3787 				err = md_set_readonly(mddev, 0);
3788 			else if (mddev->ro == 1)
3789 				err = restart_array(mddev);
3790 			if (err == 0) {
3791 				mddev->ro = 2;
3792 				set_disk_ro(mddev->gendisk, 0);
3793 			}
3794 		} else {
3795 			mddev->ro = 2;
3796 			err = do_md_run(mddev);
3797 		}
3798 		break;
3799 	case clean:
3800 		if (mddev->pers) {
3801 			restart_array(mddev);
3802 			spin_lock_irq(&mddev->write_lock);
3803 			if (atomic_read(&mddev->writes_pending) == 0) {
3804 				if (mddev->in_sync == 0) {
3805 					mddev->in_sync = 1;
3806 					if (mddev->safemode == 1)
3807 						mddev->safemode = 0;
3808 					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809 				}
3810 				err = 0;
3811 			} else
3812 				err = -EBUSY;
3813 			spin_unlock_irq(&mddev->write_lock);
3814 		} else
3815 			err = -EINVAL;
3816 		break;
3817 	case active:
3818 		if (mddev->pers) {
3819 			restart_array(mddev);
3820 			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 			wake_up(&mddev->sb_wait);
3822 			err = 0;
3823 		} else {
3824 			mddev->ro = 0;
3825 			set_disk_ro(mddev->gendisk, 0);
3826 			err = do_md_run(mddev);
3827 		}
3828 		break;
3829 	case write_pending:
3830 	case active_idle:
3831 		/* these cannot be set */
3832 		break;
3833 	}
3834 	if (err)
3835 		return err;
3836 	else {
3837 		if (mddev->hold_active == UNTIL_IOCTL)
3838 			mddev->hold_active = 0;
3839 		sysfs_notify_dirent_safe(mddev->sysfs_state);
3840 		return len;
3841 	}
3842 }
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3845 
3846 static ssize_t
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848 	return sprintf(page, "%d\n",
3849 		       atomic_read(&mddev->max_corr_read_errors));
3850 }
3851 
3852 static ssize_t
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855 	char *e;
3856 	unsigned long n = simple_strtoul(buf, &e, 10);
3857 
3858 	if (*buf && (*e == 0 || *e == '\n')) {
3859 		atomic_set(&mddev->max_corr_read_errors, n);
3860 		return len;
3861 	}
3862 	return -EINVAL;
3863 }
3864 
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867 	max_corrected_read_errors_store);
3868 
3869 static ssize_t
3870 null_show(struct mddev *mddev, char *page)
3871 {
3872 	return -EINVAL;
3873 }
3874 
3875 static ssize_t
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878 	/* buf must be %d:%d\n? giving major and minor numbers */
3879 	/* The new device is added to the array.
3880 	 * If the array has a persistent superblock, we read the
3881 	 * superblock to initialise info and check validity.
3882 	 * Otherwise, only checking done is that in bind_rdev_to_array,
3883 	 * which mainly checks size.
3884 	 */
3885 	char *e;
3886 	int major = simple_strtoul(buf, &e, 10);
3887 	int minor;
3888 	dev_t dev;
3889 	struct md_rdev *rdev;
3890 	int err;
3891 
3892 	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3893 		return -EINVAL;
3894 	minor = simple_strtoul(e+1, &e, 10);
3895 	if (*e && *e != '\n')
3896 		return -EINVAL;
3897 	dev = MKDEV(major, minor);
3898 	if (major != MAJOR(dev) ||
3899 	    minor != MINOR(dev))
3900 		return -EOVERFLOW;
3901 
3902 
3903 	if (mddev->persistent) {
3904 		rdev = md_import_device(dev, mddev->major_version,
3905 					mddev->minor_version);
3906 		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907 			struct md_rdev *rdev0
3908 				= list_entry(mddev->disks.next,
3909 					     struct md_rdev, same_set);
3910 			err = super_types[mddev->major_version]
3911 				.load_super(rdev, rdev0, mddev->minor_version);
3912 			if (err < 0)
3913 				goto out;
3914 		}
3915 	} else if (mddev->external)
3916 		rdev = md_import_device(dev, -2, -1);
3917 	else
3918 		rdev = md_import_device(dev, -1, -1);
3919 
3920 	if (IS_ERR(rdev))
3921 		return PTR_ERR(rdev);
3922 	err = bind_rdev_to_array(rdev, mddev);
3923  out:
3924 	if (err)
3925 		export_rdev(rdev);
3926 	return err ? err : len;
3927 }
3928 
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3931 
3932 static ssize_t
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3934 {
3935 	char *end;
3936 	unsigned long chunk, end_chunk;
3937 
3938 	if (!mddev->bitmap)
3939 		goto out;
3940 	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3941 	while (*buf) {
3942 		chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943 		if (buf == end) break;
3944 		if (*end == '-') { /* range */
3945 			buf = end + 1;
3946 			end_chunk = simple_strtoul(buf, &end, 0);
3947 			if (buf == end) break;
3948 		}
3949 		if (*end && !isspace(*end)) break;
3950 		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951 		buf = skip_spaces(end);
3952 	}
3953 	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3954 out:
3955 	return len;
3956 }
3957 
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3960 
3961 static ssize_t
3962 size_show(struct mddev *mddev, char *page)
3963 {
3964 	return sprintf(page, "%llu\n",
3965 		(unsigned long long)mddev->dev_sectors / 2);
3966 }
3967 
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3969 
3970 static ssize_t
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3972 {
3973 	/* If array is inactive, we can reduce the component size, but
3974 	 * not increase it (except from 0).
3975 	 * If array is active, we can try an on-line resize
3976 	 */
3977 	sector_t sectors;
3978 	int err = strict_blocks_to_sectors(buf, &sectors);
3979 
3980 	if (err < 0)
3981 		return err;
3982 	if (mddev->pers) {
3983 		err = update_size(mddev, sectors);
3984 		md_update_sb(mddev, 1);
3985 	} else {
3986 		if (mddev->dev_sectors == 0 ||
3987 		    mddev->dev_sectors > sectors)
3988 			mddev->dev_sectors = sectors;
3989 		else
3990 			err = -ENOSPC;
3991 	}
3992 	return err ? err : len;
3993 }
3994 
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3997 
3998 
3999 /* Metdata version.
4000  * This is one of
4001  *   'none' for arrays with no metadata (good luck...)
4002  *   'external' for arrays with externally managed metadata,
4003  * or N.M for internally known formats
4004  */
4005 static ssize_t
4006 metadata_show(struct mddev *mddev, char *page)
4007 {
4008 	if (mddev->persistent)
4009 		return sprintf(page, "%d.%d\n",
4010 			       mddev->major_version, mddev->minor_version);
4011 	else if (mddev->external)
4012 		return sprintf(page, "external:%s\n", mddev->metadata_type);
4013 	else
4014 		return sprintf(page, "none\n");
4015 }
4016 
4017 static ssize_t
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4019 {
4020 	int major, minor;
4021 	char *e;
4022 	/* Changing the details of 'external' metadata is
4023 	 * always permitted.  Otherwise there must be
4024 	 * no devices attached to the array.
4025 	 */
4026 	if (mddev->external && strncmp(buf, "external:", 9) == 0)
4027 		;
4028 	else if (!list_empty(&mddev->disks))
4029 		return -EBUSY;
4030 
4031 	if (cmd_match(buf, "none")) {
4032 		mddev->persistent = 0;
4033 		mddev->external = 0;
4034 		mddev->major_version = 0;
4035 		mddev->minor_version = 90;
4036 		return len;
4037 	}
4038 	if (strncmp(buf, "external:", 9) == 0) {
4039 		size_t namelen = len-9;
4040 		if (namelen >= sizeof(mddev->metadata_type))
4041 			namelen = sizeof(mddev->metadata_type)-1;
4042 		strncpy(mddev->metadata_type, buf+9, namelen);
4043 		mddev->metadata_type[namelen] = 0;
4044 		if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045 			mddev->metadata_type[--namelen] = 0;
4046 		mddev->persistent = 0;
4047 		mddev->external = 1;
4048 		mddev->major_version = 0;
4049 		mddev->minor_version = 90;
4050 		return len;
4051 	}
4052 	major = simple_strtoul(buf, &e, 10);
4053 	if (e==buf || *e != '.')
4054 		return -EINVAL;
4055 	buf = e+1;
4056 	minor = simple_strtoul(buf, &e, 10);
4057 	if (e==buf || (*e && *e != '\n') )
4058 		return -EINVAL;
4059 	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4060 		return -ENOENT;
4061 	mddev->major_version = major;
4062 	mddev->minor_version = minor;
4063 	mddev->persistent = 1;
4064 	mddev->external = 0;
4065 	return len;
4066 }
4067 
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4070 
4071 static ssize_t
4072 action_show(struct mddev *mddev, char *page)
4073 {
4074 	char *type = "idle";
4075 	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4076 		type = "frozen";
4077 	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078 	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4080 			type = "reshape";
4081 		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4083 				type = "resync";
4084 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4085 				type = "check";
4086 			else
4087 				type = "repair";
4088 		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4089 			type = "recover";
4090 	}
4091 	return sprintf(page, "%s\n", type);
4092 }
4093 
4094 static void reap_sync_thread(struct mddev *mddev);
4095 
4096 static ssize_t
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4098 {
4099 	if (!mddev->pers || !mddev->pers->sync_request)
4100 		return -EINVAL;
4101 
4102 	if (cmd_match(page, "frozen"))
4103 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4104 	else
4105 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106 
4107 	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108 		if (mddev->sync_thread) {
4109 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110 			reap_sync_thread(mddev);
4111 		}
4112 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4114 		return -EBUSY;
4115 	else if (cmd_match(page, "resync"))
4116 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117 	else if (cmd_match(page, "recover")) {
4118 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120 	} else if (cmd_match(page, "reshape")) {
4121 		int err;
4122 		if (mddev->pers->start_reshape == NULL)
4123 			return -EINVAL;
4124 		err = mddev->pers->start_reshape(mddev);
4125 		if (err)
4126 			return err;
4127 		sysfs_notify(&mddev->kobj, NULL, "degraded");
4128 	} else {
4129 		if (cmd_match(page, "check"))
4130 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131 		else if (!cmd_match(page, "repair"))
4132 			return -EINVAL;
4133 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4135 	}
4136 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137 	md_wakeup_thread(mddev->thread);
4138 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4139 	return len;
4140 }
4141 
4142 static ssize_t
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4144 {
4145 	return sprintf(page, "%llu\n",
4146 		       (unsigned long long) mddev->resync_mismatches);
4147 }
4148 
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4151 
4152 
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4154 
4155 static ssize_t
4156 sync_min_show(struct mddev *mddev, char *page)
4157 {
4158 	return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159 		       mddev->sync_speed_min ? "local": "system");
4160 }
4161 
4162 static ssize_t
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4164 {
4165 	int min;
4166 	char *e;
4167 	if (strncmp(buf, "system", 6)==0) {
4168 		mddev->sync_speed_min = 0;
4169 		return len;
4170 	}
4171 	min = simple_strtoul(buf, &e, 10);
4172 	if (buf == e || (*e && *e != '\n') || min <= 0)
4173 		return -EINVAL;
4174 	mddev->sync_speed_min = min;
4175 	return len;
4176 }
4177 
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4180 
4181 static ssize_t
4182 sync_max_show(struct mddev *mddev, char *page)
4183 {
4184 	return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185 		       mddev->sync_speed_max ? "local": "system");
4186 }
4187 
4188 static ssize_t
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4190 {
4191 	int max;
4192 	char *e;
4193 	if (strncmp(buf, "system", 6)==0) {
4194 		mddev->sync_speed_max = 0;
4195 		return len;
4196 	}
4197 	max = simple_strtoul(buf, &e, 10);
4198 	if (buf == e || (*e && *e != '\n') || max <= 0)
4199 		return -EINVAL;
4200 	mddev->sync_speed_max = max;
4201 	return len;
4202 }
4203 
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4206 
4207 static ssize_t
4208 degraded_show(struct mddev *mddev, char *page)
4209 {
4210 	return sprintf(page, "%d\n", mddev->degraded);
4211 }
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4213 
4214 static ssize_t
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4216 {
4217 	return sprintf(page, "%d\n", mddev->parallel_resync);
4218 }
4219 
4220 static ssize_t
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223 	long n;
4224 
4225 	if (strict_strtol(buf, 10, &n))
4226 		return -EINVAL;
4227 
4228 	if (n != 0 && n != 1)
4229 		return -EINVAL;
4230 
4231 	mddev->parallel_resync = n;
4232 
4233 	if (mddev->sync_thread)
4234 		wake_up(&resync_wait);
4235 
4236 	return len;
4237 }
4238 
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242        sync_force_parallel_show, sync_force_parallel_store);
4243 
4244 static ssize_t
4245 sync_speed_show(struct mddev *mddev, char *page)
4246 {
4247 	unsigned long resync, dt, db;
4248 	if (mddev->curr_resync == 0)
4249 		return sprintf(page, "none\n");
4250 	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251 	dt = (jiffies - mddev->resync_mark) / HZ;
4252 	if (!dt) dt++;
4253 	db = resync - mddev->resync_mark_cnt;
4254 	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4255 }
4256 
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4258 
4259 static ssize_t
4260 sync_completed_show(struct mddev *mddev, char *page)
4261 {
4262 	unsigned long long max_sectors, resync;
4263 
4264 	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265 		return sprintf(page, "none\n");
4266 
4267 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268 		max_sectors = mddev->resync_max_sectors;
4269 	else
4270 		max_sectors = mddev->dev_sectors;
4271 
4272 	resync = mddev->curr_resync_completed;
4273 	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4274 }
4275 
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4277 
4278 static ssize_t
4279 min_sync_show(struct mddev *mddev, char *page)
4280 {
4281 	return sprintf(page, "%llu\n",
4282 		       (unsigned long long)mddev->resync_min);
4283 }
4284 static ssize_t
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4286 {
4287 	unsigned long long min;
4288 	if (strict_strtoull(buf, 10, &min))
4289 		return -EINVAL;
4290 	if (min > mddev->resync_max)
4291 		return -EINVAL;
4292 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293 		return -EBUSY;
4294 
4295 	/* Must be a multiple of chunk_size */
4296 	if (mddev->chunk_sectors) {
4297 		sector_t temp = min;
4298 		if (sector_div(temp, mddev->chunk_sectors))
4299 			return -EINVAL;
4300 	}
4301 	mddev->resync_min = min;
4302 
4303 	return len;
4304 }
4305 
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4308 
4309 static ssize_t
4310 max_sync_show(struct mddev *mddev, char *page)
4311 {
4312 	if (mddev->resync_max == MaxSector)
4313 		return sprintf(page, "max\n");
4314 	else
4315 		return sprintf(page, "%llu\n",
4316 			       (unsigned long long)mddev->resync_max);
4317 }
4318 static ssize_t
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321 	if (strncmp(buf, "max", 3) == 0)
4322 		mddev->resync_max = MaxSector;
4323 	else {
4324 		unsigned long long max;
4325 		if (strict_strtoull(buf, 10, &max))
4326 			return -EINVAL;
4327 		if (max < mddev->resync_min)
4328 			return -EINVAL;
4329 		if (max < mddev->resync_max &&
4330 		    mddev->ro == 0 &&
4331 		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4332 			return -EBUSY;
4333 
4334 		/* Must be a multiple of chunk_size */
4335 		if (mddev->chunk_sectors) {
4336 			sector_t temp = max;
4337 			if (sector_div(temp, mddev->chunk_sectors))
4338 				return -EINVAL;
4339 		}
4340 		mddev->resync_max = max;
4341 	}
4342 	wake_up(&mddev->recovery_wait);
4343 	return len;
4344 }
4345 
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4348 
4349 static ssize_t
4350 suspend_lo_show(struct mddev *mddev, char *page)
4351 {
4352 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4353 }
4354 
4355 static ssize_t
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 	char *e;
4359 	unsigned long long new = simple_strtoull(buf, &e, 10);
4360 	unsigned long long old = mddev->suspend_lo;
4361 
4362 	if (mddev->pers == NULL ||
4363 	    mddev->pers->quiesce == NULL)
4364 		return -EINVAL;
4365 	if (buf == e || (*e && *e != '\n'))
4366 		return -EINVAL;
4367 
4368 	mddev->suspend_lo = new;
4369 	if (new >= old)
4370 		/* Shrinking suspended region */
4371 		mddev->pers->quiesce(mddev, 2);
4372 	else {
4373 		/* Expanding suspended region - need to wait */
4374 		mddev->pers->quiesce(mddev, 1);
4375 		mddev->pers->quiesce(mddev, 0);
4376 	}
4377 	return len;
4378 }
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4381 
4382 
4383 static ssize_t
4384 suspend_hi_show(struct mddev *mddev, char *page)
4385 {
4386 	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4387 }
4388 
4389 static ssize_t
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4391 {
4392 	char *e;
4393 	unsigned long long new = simple_strtoull(buf, &e, 10);
4394 	unsigned long long old = mddev->suspend_hi;
4395 
4396 	if (mddev->pers == NULL ||
4397 	    mddev->pers->quiesce == NULL)
4398 		return -EINVAL;
4399 	if (buf == e || (*e && *e != '\n'))
4400 		return -EINVAL;
4401 
4402 	mddev->suspend_hi = new;
4403 	if (new <= old)
4404 		/* Shrinking suspended region */
4405 		mddev->pers->quiesce(mddev, 2);
4406 	else {
4407 		/* Expanding suspended region - need to wait */
4408 		mddev->pers->quiesce(mddev, 1);
4409 		mddev->pers->quiesce(mddev, 0);
4410 	}
4411 	return len;
4412 }
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4415 
4416 static ssize_t
4417 reshape_position_show(struct mddev *mddev, char *page)
4418 {
4419 	if (mddev->reshape_position != MaxSector)
4420 		return sprintf(page, "%llu\n",
4421 			       (unsigned long long)mddev->reshape_position);
4422 	strcpy(page, "none\n");
4423 	return 5;
4424 }
4425 
4426 static ssize_t
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4428 {
4429 	char *e;
4430 	unsigned long long new = simple_strtoull(buf, &e, 10);
4431 	if (mddev->pers)
4432 		return -EBUSY;
4433 	if (buf == e || (*e && *e != '\n'))
4434 		return -EINVAL;
4435 	mddev->reshape_position = new;
4436 	mddev->delta_disks = 0;
4437 	mddev->new_level = mddev->level;
4438 	mddev->new_layout = mddev->layout;
4439 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4440 	return len;
4441 }
4442 
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445        reshape_position_store);
4446 
4447 static ssize_t
4448 array_size_show(struct mddev *mddev, char *page)
4449 {
4450 	if (mddev->external_size)
4451 		return sprintf(page, "%llu\n",
4452 			       (unsigned long long)mddev->array_sectors/2);
4453 	else
4454 		return sprintf(page, "default\n");
4455 }
4456 
4457 static ssize_t
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460 	sector_t sectors;
4461 
4462 	if (strncmp(buf, "default", 7) == 0) {
4463 		if (mddev->pers)
4464 			sectors = mddev->pers->size(mddev, 0, 0);
4465 		else
4466 			sectors = mddev->array_sectors;
4467 
4468 		mddev->external_size = 0;
4469 	} else {
4470 		if (strict_blocks_to_sectors(buf, &sectors) < 0)
4471 			return -EINVAL;
4472 		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4473 			return -E2BIG;
4474 
4475 		mddev->external_size = 1;
4476 	}
4477 
4478 	mddev->array_sectors = sectors;
4479 	if (mddev->pers) {
4480 		set_capacity(mddev->gendisk, mddev->array_sectors);
4481 		revalidate_disk(mddev->gendisk);
4482 	}
4483 	return len;
4484 }
4485 
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4488        array_size_store);
4489 
4490 static struct attribute *md_default_attrs[] = {
4491 	&md_level.attr,
4492 	&md_layout.attr,
4493 	&md_raid_disks.attr,
4494 	&md_chunk_size.attr,
4495 	&md_size.attr,
4496 	&md_resync_start.attr,
4497 	&md_metadata.attr,
4498 	&md_new_device.attr,
4499 	&md_safe_delay.attr,
4500 	&md_array_state.attr,
4501 	&md_reshape_position.attr,
4502 	&md_array_size.attr,
4503 	&max_corr_read_errors.attr,
4504 	NULL,
4505 };
4506 
4507 static struct attribute *md_redundancy_attrs[] = {
4508 	&md_scan_mode.attr,
4509 	&md_mismatches.attr,
4510 	&md_sync_min.attr,
4511 	&md_sync_max.attr,
4512 	&md_sync_speed.attr,
4513 	&md_sync_force_parallel.attr,
4514 	&md_sync_completed.attr,
4515 	&md_min_sync.attr,
4516 	&md_max_sync.attr,
4517 	&md_suspend_lo.attr,
4518 	&md_suspend_hi.attr,
4519 	&md_bitmap.attr,
4520 	&md_degraded.attr,
4521 	NULL,
4522 };
4523 static struct attribute_group md_redundancy_group = {
4524 	.name = NULL,
4525 	.attrs = md_redundancy_attrs,
4526 };
4527 
4528 
4529 static ssize_t
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4531 {
4532 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4534 	ssize_t rv;
4535 
4536 	if (!entry->show)
4537 		return -EIO;
4538 	spin_lock(&all_mddevs_lock);
4539 	if (list_empty(&mddev->all_mddevs)) {
4540 		spin_unlock(&all_mddevs_lock);
4541 		return -EBUSY;
4542 	}
4543 	mddev_get(mddev);
4544 	spin_unlock(&all_mddevs_lock);
4545 
4546 	rv = mddev_lock(mddev);
4547 	if (!rv) {
4548 		rv = entry->show(mddev, page);
4549 		mddev_unlock(mddev);
4550 	}
4551 	mddev_put(mddev);
4552 	return rv;
4553 }
4554 
4555 static ssize_t
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557 	      const char *page, size_t length)
4558 {
4559 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560 	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4561 	ssize_t rv;
4562 
4563 	if (!entry->store)
4564 		return -EIO;
4565 	if (!capable(CAP_SYS_ADMIN))
4566 		return -EACCES;
4567 	spin_lock(&all_mddevs_lock);
4568 	if (list_empty(&mddev->all_mddevs)) {
4569 		spin_unlock(&all_mddevs_lock);
4570 		return -EBUSY;
4571 	}
4572 	mddev_get(mddev);
4573 	spin_unlock(&all_mddevs_lock);
4574 	rv = mddev_lock(mddev);
4575 	if (!rv) {
4576 		rv = entry->store(mddev, page, length);
4577 		mddev_unlock(mddev);
4578 	}
4579 	mddev_put(mddev);
4580 	return rv;
4581 }
4582 
4583 static void md_free(struct kobject *ko)
4584 {
4585 	struct mddev *mddev = container_of(ko, struct mddev, kobj);
4586 
4587 	if (mddev->sysfs_state)
4588 		sysfs_put(mddev->sysfs_state);
4589 
4590 	if (mddev->gendisk) {
4591 		del_gendisk(mddev->gendisk);
4592 		put_disk(mddev->gendisk);
4593 	}
4594 	if (mddev->queue)
4595 		blk_cleanup_queue(mddev->queue);
4596 
4597 	kfree(mddev);
4598 }
4599 
4600 static const struct sysfs_ops md_sysfs_ops = {
4601 	.show	= md_attr_show,
4602 	.store	= md_attr_store,
4603 };
4604 static struct kobj_type md_ktype = {
4605 	.release	= md_free,
4606 	.sysfs_ops	= &md_sysfs_ops,
4607 	.default_attrs	= md_default_attrs,
4608 };
4609 
4610 int mdp_major = 0;
4611 
4612 static void mddev_delayed_delete(struct work_struct *ws)
4613 {
4614 	struct mddev *mddev = container_of(ws, struct mddev, del_work);
4615 
4616 	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617 	kobject_del(&mddev->kobj);
4618 	kobject_put(&mddev->kobj);
4619 }
4620 
4621 static int md_alloc(dev_t dev, char *name)
4622 {
4623 	static DEFINE_MUTEX(disks_mutex);
4624 	struct mddev *mddev = mddev_find(dev);
4625 	struct gendisk *disk;
4626 	int partitioned;
4627 	int shift;
4628 	int unit;
4629 	int error;
4630 
4631 	if (!mddev)
4632 		return -ENODEV;
4633 
4634 	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635 	shift = partitioned ? MdpMinorShift : 0;
4636 	unit = MINOR(mddev->unit) >> shift;
4637 
4638 	/* wait for any previous instance of this device to be
4639 	 * completely removed (mddev_delayed_delete).
4640 	 */
4641 	flush_workqueue(md_misc_wq);
4642 
4643 	mutex_lock(&disks_mutex);
4644 	error = -EEXIST;
4645 	if (mddev->gendisk)
4646 		goto abort;
4647 
4648 	if (name) {
4649 		/* Need to ensure that 'name' is not a duplicate.
4650 		 */
4651 		struct mddev *mddev2;
4652 		spin_lock(&all_mddevs_lock);
4653 
4654 		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655 			if (mddev2->gendisk &&
4656 			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657 				spin_unlock(&all_mddevs_lock);
4658 				goto abort;
4659 			}
4660 		spin_unlock(&all_mddevs_lock);
4661 	}
4662 
4663 	error = -ENOMEM;
4664 	mddev->queue = blk_alloc_queue(GFP_KERNEL);
4665 	if (!mddev->queue)
4666 		goto abort;
4667 	mddev->queue->queuedata = mddev;
4668 
4669 	blk_queue_make_request(mddev->queue, md_make_request);
4670 	blk_set_stacking_limits(&mddev->queue->limits);
4671 
4672 	disk = alloc_disk(1 << shift);
4673 	if (!disk) {
4674 		blk_cleanup_queue(mddev->queue);
4675 		mddev->queue = NULL;
4676 		goto abort;
4677 	}
4678 	disk->major = MAJOR(mddev->unit);
4679 	disk->first_minor = unit << shift;
4680 	if (name)
4681 		strcpy(disk->disk_name, name);
4682 	else if (partitioned)
4683 		sprintf(disk->disk_name, "md_d%d", unit);
4684 	else
4685 		sprintf(disk->disk_name, "md%d", unit);
4686 	disk->fops = &md_fops;
4687 	disk->private_data = mddev;
4688 	disk->queue = mddev->queue;
4689 	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4690 	/* Allow extended partitions.  This makes the
4691 	 * 'mdp' device redundant, but we can't really
4692 	 * remove it now.
4693 	 */
4694 	disk->flags |= GENHD_FL_EXT_DEVT;
4695 	mddev->gendisk = disk;
4696 	/* As soon as we call add_disk(), another thread could get
4697 	 * through to md_open, so make sure it doesn't get too far
4698 	 */
4699 	mutex_lock(&mddev->open_mutex);
4700 	add_disk(disk);
4701 
4702 	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4703 				     &disk_to_dev(disk)->kobj, "%s", "md");
4704 	if (error) {
4705 		/* This isn't possible, but as kobject_init_and_add is marked
4706 		 * __must_check, we must do something with the result
4707 		 */
4708 		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4709 		       disk->disk_name);
4710 		error = 0;
4711 	}
4712 	if (mddev->kobj.sd &&
4713 	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4714 		printk(KERN_DEBUG "pointless warning\n");
4715 	mutex_unlock(&mddev->open_mutex);
4716  abort:
4717 	mutex_unlock(&disks_mutex);
4718 	if (!error && mddev->kobj.sd) {
4719 		kobject_uevent(&mddev->kobj, KOBJ_ADD);
4720 		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4721 	}
4722 	mddev_put(mddev);
4723 	return error;
4724 }
4725 
4726 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4727 {
4728 	md_alloc(dev, NULL);
4729 	return NULL;
4730 }
4731 
4732 static int add_named_array(const char *val, struct kernel_param *kp)
4733 {
4734 	/* val must be "md_*" where * is not all digits.
4735 	 * We allocate an array with a large free minor number, and
4736 	 * set the name to val.  val must not already be an active name.
4737 	 */
4738 	int len = strlen(val);
4739 	char buf[DISK_NAME_LEN];
4740 
4741 	while (len && val[len-1] == '\n')
4742 		len--;
4743 	if (len >= DISK_NAME_LEN)
4744 		return -E2BIG;
4745 	strlcpy(buf, val, len+1);
4746 	if (strncmp(buf, "md_", 3) != 0)
4747 		return -EINVAL;
4748 	return md_alloc(0, buf);
4749 }
4750 
4751 static void md_safemode_timeout(unsigned long data)
4752 {
4753 	struct mddev *mddev = (struct mddev *) data;
4754 
4755 	if (!atomic_read(&mddev->writes_pending)) {
4756 		mddev->safemode = 1;
4757 		if (mddev->external)
4758 			sysfs_notify_dirent_safe(mddev->sysfs_state);
4759 	}
4760 	md_wakeup_thread(mddev->thread);
4761 }
4762 
4763 static int start_dirty_degraded;
4764 
4765 int md_run(struct mddev *mddev)
4766 {
4767 	int err;
4768 	struct md_rdev *rdev;
4769 	struct md_personality *pers;
4770 
4771 	if (list_empty(&mddev->disks))
4772 		/* cannot run an array with no devices.. */
4773 		return -EINVAL;
4774 
4775 	if (mddev->pers)
4776 		return -EBUSY;
4777 	/* Cannot run until previous stop completes properly */
4778 	if (mddev->sysfs_active)
4779 		return -EBUSY;
4780 
4781 	/*
4782 	 * Analyze all RAID superblock(s)
4783 	 */
4784 	if (!mddev->raid_disks) {
4785 		if (!mddev->persistent)
4786 			return -EINVAL;
4787 		analyze_sbs(mddev);
4788 	}
4789 
4790 	if (mddev->level != LEVEL_NONE)
4791 		request_module("md-level-%d", mddev->level);
4792 	else if (mddev->clevel[0])
4793 		request_module("md-%s", mddev->clevel);
4794 
4795 	/*
4796 	 * Drop all container device buffers, from now on
4797 	 * the only valid external interface is through the md
4798 	 * device.
4799 	 */
4800 	rdev_for_each(rdev, mddev) {
4801 		if (test_bit(Faulty, &rdev->flags))
4802 			continue;
4803 		sync_blockdev(rdev->bdev);
4804 		invalidate_bdev(rdev->bdev);
4805 
4806 		/* perform some consistency tests on the device.
4807 		 * We don't want the data to overlap the metadata,
4808 		 * Internal Bitmap issues have been handled elsewhere.
4809 		 */
4810 		if (rdev->meta_bdev) {
4811 			/* Nothing to check */;
4812 		} else if (rdev->data_offset < rdev->sb_start) {
4813 			if (mddev->dev_sectors &&
4814 			    rdev->data_offset + mddev->dev_sectors
4815 			    > rdev->sb_start) {
4816 				printk("md: %s: data overlaps metadata\n",
4817 				       mdname(mddev));
4818 				return -EINVAL;
4819 			}
4820 		} else {
4821 			if (rdev->sb_start + rdev->sb_size/512
4822 			    > rdev->data_offset) {
4823 				printk("md: %s: metadata overlaps data\n",
4824 				       mdname(mddev));
4825 				return -EINVAL;
4826 			}
4827 		}
4828 		sysfs_notify_dirent_safe(rdev->sysfs_state);
4829 	}
4830 
4831 	if (mddev->bio_set == NULL)
4832 		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4833 					       sizeof(struct mddev *));
4834 
4835 	spin_lock(&pers_lock);
4836 	pers = find_pers(mddev->level, mddev->clevel);
4837 	if (!pers || !try_module_get(pers->owner)) {
4838 		spin_unlock(&pers_lock);
4839 		if (mddev->level != LEVEL_NONE)
4840 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4841 			       mddev->level);
4842 		else
4843 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4844 			       mddev->clevel);
4845 		return -EINVAL;
4846 	}
4847 	mddev->pers = pers;
4848 	spin_unlock(&pers_lock);
4849 	if (mddev->level != pers->level) {
4850 		mddev->level = pers->level;
4851 		mddev->new_level = pers->level;
4852 	}
4853 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4854 
4855 	if (mddev->reshape_position != MaxSector &&
4856 	    pers->start_reshape == NULL) {
4857 		/* This personality cannot handle reshaping... */
4858 		mddev->pers = NULL;
4859 		module_put(pers->owner);
4860 		return -EINVAL;
4861 	}
4862 
4863 	if (pers->sync_request) {
4864 		/* Warn if this is a potentially silly
4865 		 * configuration.
4866 		 */
4867 		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4868 		struct md_rdev *rdev2;
4869 		int warned = 0;
4870 
4871 		rdev_for_each(rdev, mddev)
4872 			rdev_for_each(rdev2, mddev) {
4873 				if (rdev < rdev2 &&
4874 				    rdev->bdev->bd_contains ==
4875 				    rdev2->bdev->bd_contains) {
4876 					printk(KERN_WARNING
4877 					       "%s: WARNING: %s appears to be"
4878 					       " on the same physical disk as"
4879 					       " %s.\n",
4880 					       mdname(mddev),
4881 					       bdevname(rdev->bdev,b),
4882 					       bdevname(rdev2->bdev,b2));
4883 					warned = 1;
4884 				}
4885 			}
4886 
4887 		if (warned)
4888 			printk(KERN_WARNING
4889 			       "True protection against single-disk"
4890 			       " failure might be compromised.\n");
4891 	}
4892 
4893 	mddev->recovery = 0;
4894 	/* may be over-ridden by personality */
4895 	mddev->resync_max_sectors = mddev->dev_sectors;
4896 
4897 	mddev->ok_start_degraded = start_dirty_degraded;
4898 
4899 	if (start_readonly && mddev->ro == 0)
4900 		mddev->ro = 2; /* read-only, but switch on first write */
4901 
4902 	err = mddev->pers->run(mddev);
4903 	if (err)
4904 		printk(KERN_ERR "md: pers->run() failed ...\n");
4905 	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4906 		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4907 			  " but 'external_size' not in effect?\n", __func__);
4908 		printk(KERN_ERR
4909 		       "md: invalid array_size %llu > default size %llu\n",
4910 		       (unsigned long long)mddev->array_sectors / 2,
4911 		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4912 		err = -EINVAL;
4913 		mddev->pers->stop(mddev);
4914 	}
4915 	if (err == 0 && mddev->pers->sync_request) {
4916 		err = bitmap_create(mddev);
4917 		if (err) {
4918 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4919 			       mdname(mddev), err);
4920 			mddev->pers->stop(mddev);
4921 		}
4922 	}
4923 	if (err) {
4924 		module_put(mddev->pers->owner);
4925 		mddev->pers = NULL;
4926 		bitmap_destroy(mddev);
4927 		return err;
4928 	}
4929 	if (mddev->pers->sync_request) {
4930 		if (mddev->kobj.sd &&
4931 		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4932 			printk(KERN_WARNING
4933 			       "md: cannot register extra attributes for %s\n",
4934 			       mdname(mddev));
4935 		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4936 	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
4937 		mddev->ro = 0;
4938 
4939  	atomic_set(&mddev->writes_pending,0);
4940 	atomic_set(&mddev->max_corr_read_errors,
4941 		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4942 	mddev->safemode = 0;
4943 	mddev->safemode_timer.function = md_safemode_timeout;
4944 	mddev->safemode_timer.data = (unsigned long) mddev;
4945 	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4946 	mddev->in_sync = 1;
4947 	smp_wmb();
4948 	mddev->ready = 1;
4949 	rdev_for_each(rdev, mddev)
4950 		if (rdev->raid_disk >= 0)
4951 			if (sysfs_link_rdev(mddev, rdev))
4952 				/* failure here is OK */;
4953 
4954 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4955 
4956 	if (mddev->flags)
4957 		md_update_sb(mddev, 0);
4958 
4959 	md_new_event(mddev);
4960 	sysfs_notify_dirent_safe(mddev->sysfs_state);
4961 	sysfs_notify_dirent_safe(mddev->sysfs_action);
4962 	sysfs_notify(&mddev->kobj, NULL, "degraded");
4963 	return 0;
4964 }
4965 EXPORT_SYMBOL_GPL(md_run);
4966 
4967 static int do_md_run(struct mddev *mddev)
4968 {
4969 	int err;
4970 
4971 	err = md_run(mddev);
4972 	if (err)
4973 		goto out;
4974 	err = bitmap_load(mddev);
4975 	if (err) {
4976 		bitmap_destroy(mddev);
4977 		goto out;
4978 	}
4979 
4980 	md_wakeup_thread(mddev->thread);
4981 	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4982 
4983 	set_capacity(mddev->gendisk, mddev->array_sectors);
4984 	revalidate_disk(mddev->gendisk);
4985 	mddev->changed = 1;
4986 	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4987 out:
4988 	return err;
4989 }
4990 
4991 static int restart_array(struct mddev *mddev)
4992 {
4993 	struct gendisk *disk = mddev->gendisk;
4994 
4995 	/* Complain if it has no devices */
4996 	if (list_empty(&mddev->disks))
4997 		return -ENXIO;
4998 	if (!mddev->pers)
4999 		return -EINVAL;
5000 	if (!mddev->ro)
5001 		return -EBUSY;
5002 	mddev->safemode = 0;
5003 	mddev->ro = 0;
5004 	set_disk_ro(disk, 0);
5005 	printk(KERN_INFO "md: %s switched to read-write mode.\n",
5006 		mdname(mddev));
5007 	/* Kick recovery or resync if necessary */
5008 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5009 	md_wakeup_thread(mddev->thread);
5010 	md_wakeup_thread(mddev->sync_thread);
5011 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5012 	return 0;
5013 }
5014 
5015 /* similar to deny_write_access, but accounts for our holding a reference
5016  * to the file ourselves */
5017 static int deny_bitmap_write_access(struct file * file)
5018 {
5019 	struct inode *inode = file->f_mapping->host;
5020 
5021 	spin_lock(&inode->i_lock);
5022 	if (atomic_read(&inode->i_writecount) > 1) {
5023 		spin_unlock(&inode->i_lock);
5024 		return -ETXTBSY;
5025 	}
5026 	atomic_set(&inode->i_writecount, -1);
5027 	spin_unlock(&inode->i_lock);
5028 
5029 	return 0;
5030 }
5031 
5032 void restore_bitmap_write_access(struct file *file)
5033 {
5034 	struct inode *inode = file->f_mapping->host;
5035 
5036 	spin_lock(&inode->i_lock);
5037 	atomic_set(&inode->i_writecount, 1);
5038 	spin_unlock(&inode->i_lock);
5039 }
5040 
5041 static void md_clean(struct mddev *mddev)
5042 {
5043 	mddev->array_sectors = 0;
5044 	mddev->external_size = 0;
5045 	mddev->dev_sectors = 0;
5046 	mddev->raid_disks = 0;
5047 	mddev->recovery_cp = 0;
5048 	mddev->resync_min = 0;
5049 	mddev->resync_max = MaxSector;
5050 	mddev->reshape_position = MaxSector;
5051 	mddev->external = 0;
5052 	mddev->persistent = 0;
5053 	mddev->level = LEVEL_NONE;
5054 	mddev->clevel[0] = 0;
5055 	mddev->flags = 0;
5056 	mddev->ro = 0;
5057 	mddev->metadata_type[0] = 0;
5058 	mddev->chunk_sectors = 0;
5059 	mddev->ctime = mddev->utime = 0;
5060 	mddev->layout = 0;
5061 	mddev->max_disks = 0;
5062 	mddev->events = 0;
5063 	mddev->can_decrease_events = 0;
5064 	mddev->delta_disks = 0;
5065 	mddev->new_level = LEVEL_NONE;
5066 	mddev->new_layout = 0;
5067 	mddev->new_chunk_sectors = 0;
5068 	mddev->curr_resync = 0;
5069 	mddev->resync_mismatches = 0;
5070 	mddev->suspend_lo = mddev->suspend_hi = 0;
5071 	mddev->sync_speed_min = mddev->sync_speed_max = 0;
5072 	mddev->recovery = 0;
5073 	mddev->in_sync = 0;
5074 	mddev->changed = 0;
5075 	mddev->degraded = 0;
5076 	mddev->safemode = 0;
5077 	mddev->merge_check_needed = 0;
5078 	mddev->bitmap_info.offset = 0;
5079 	mddev->bitmap_info.default_offset = 0;
5080 	mddev->bitmap_info.chunksize = 0;
5081 	mddev->bitmap_info.daemon_sleep = 0;
5082 	mddev->bitmap_info.max_write_behind = 0;
5083 }
5084 
5085 static void __md_stop_writes(struct mddev *mddev)
5086 {
5087 	if (mddev->sync_thread) {
5088 		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5089 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5090 		reap_sync_thread(mddev);
5091 	}
5092 
5093 	del_timer_sync(&mddev->safemode_timer);
5094 
5095 	bitmap_flush(mddev);
5096 	md_super_wait(mddev);
5097 
5098 	if (!mddev->in_sync || mddev->flags) {
5099 		/* mark array as shutdown cleanly */
5100 		mddev->in_sync = 1;
5101 		md_update_sb(mddev, 1);
5102 	}
5103 }
5104 
5105 void md_stop_writes(struct mddev *mddev)
5106 {
5107 	mddev_lock(mddev);
5108 	__md_stop_writes(mddev);
5109 	mddev_unlock(mddev);
5110 }
5111 EXPORT_SYMBOL_GPL(md_stop_writes);
5112 
5113 void md_stop(struct mddev *mddev)
5114 {
5115 	mddev->ready = 0;
5116 	mddev->pers->stop(mddev);
5117 	if (mddev->pers->sync_request && mddev->to_remove == NULL)
5118 		mddev->to_remove = &md_redundancy_group;
5119 	module_put(mddev->pers->owner);
5120 	mddev->pers = NULL;
5121 	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5122 }
5123 EXPORT_SYMBOL_GPL(md_stop);
5124 
5125 static int md_set_readonly(struct mddev *mddev, int is_open)
5126 {
5127 	int err = 0;
5128 	mutex_lock(&mddev->open_mutex);
5129 	if (atomic_read(&mddev->openers) > is_open) {
5130 		printk("md: %s still in use.\n",mdname(mddev));
5131 		err = -EBUSY;
5132 		goto out;
5133 	}
5134 	if (mddev->pers) {
5135 		__md_stop_writes(mddev);
5136 
5137 		err  = -ENXIO;
5138 		if (mddev->ro==1)
5139 			goto out;
5140 		mddev->ro = 1;
5141 		set_disk_ro(mddev->gendisk, 1);
5142 		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5143 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5144 		err = 0;
5145 	}
5146 out:
5147 	mutex_unlock(&mddev->open_mutex);
5148 	return err;
5149 }
5150 
5151 /* mode:
5152  *   0 - completely stop and dis-assemble array
5153  *   2 - stop but do not disassemble array
5154  */
5155 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5156 {
5157 	struct gendisk *disk = mddev->gendisk;
5158 	struct md_rdev *rdev;
5159 
5160 	mutex_lock(&mddev->open_mutex);
5161 	if (atomic_read(&mddev->openers) > is_open ||
5162 	    mddev->sysfs_active) {
5163 		printk("md: %s still in use.\n",mdname(mddev));
5164 		mutex_unlock(&mddev->open_mutex);
5165 		return -EBUSY;
5166 	}
5167 
5168 	if (mddev->pers) {
5169 		if (mddev->ro)
5170 			set_disk_ro(disk, 0);
5171 
5172 		__md_stop_writes(mddev);
5173 		md_stop(mddev);
5174 		mddev->queue->merge_bvec_fn = NULL;
5175 		mddev->queue->backing_dev_info.congested_fn = NULL;
5176 
5177 		/* tell userspace to handle 'inactive' */
5178 		sysfs_notify_dirent_safe(mddev->sysfs_state);
5179 
5180 		rdev_for_each(rdev, mddev)
5181 			if (rdev->raid_disk >= 0)
5182 				sysfs_unlink_rdev(mddev, rdev);
5183 
5184 		set_capacity(disk, 0);
5185 		mutex_unlock(&mddev->open_mutex);
5186 		mddev->changed = 1;
5187 		revalidate_disk(disk);
5188 
5189 		if (mddev->ro)
5190 			mddev->ro = 0;
5191 	} else
5192 		mutex_unlock(&mddev->open_mutex);
5193 	/*
5194 	 * Free resources if final stop
5195 	 */
5196 	if (mode == 0) {
5197 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5198 
5199 		bitmap_destroy(mddev);
5200 		if (mddev->bitmap_info.file) {
5201 			restore_bitmap_write_access(mddev->bitmap_info.file);
5202 			fput(mddev->bitmap_info.file);
5203 			mddev->bitmap_info.file = NULL;
5204 		}
5205 		mddev->bitmap_info.offset = 0;
5206 
5207 		export_array(mddev);
5208 
5209 		md_clean(mddev);
5210 		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5211 		if (mddev->hold_active == UNTIL_STOP)
5212 			mddev->hold_active = 0;
5213 	}
5214 	blk_integrity_unregister(disk);
5215 	md_new_event(mddev);
5216 	sysfs_notify_dirent_safe(mddev->sysfs_state);
5217 	return 0;
5218 }
5219 
5220 #ifndef MODULE
5221 static void autorun_array(struct mddev *mddev)
5222 {
5223 	struct md_rdev *rdev;
5224 	int err;
5225 
5226 	if (list_empty(&mddev->disks))
5227 		return;
5228 
5229 	printk(KERN_INFO "md: running: ");
5230 
5231 	rdev_for_each(rdev, mddev) {
5232 		char b[BDEVNAME_SIZE];
5233 		printk("<%s>", bdevname(rdev->bdev,b));
5234 	}
5235 	printk("\n");
5236 
5237 	err = do_md_run(mddev);
5238 	if (err) {
5239 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5240 		do_md_stop(mddev, 0, 0);
5241 	}
5242 }
5243 
5244 /*
5245  * lets try to run arrays based on all disks that have arrived
5246  * until now. (those are in pending_raid_disks)
5247  *
5248  * the method: pick the first pending disk, collect all disks with
5249  * the same UUID, remove all from the pending list and put them into
5250  * the 'same_array' list. Then order this list based on superblock
5251  * update time (freshest comes first), kick out 'old' disks and
5252  * compare superblocks. If everything's fine then run it.
5253  *
5254  * If "unit" is allocated, then bump its reference count
5255  */
5256 static void autorun_devices(int part)
5257 {
5258 	struct md_rdev *rdev0, *rdev, *tmp;
5259 	struct mddev *mddev;
5260 	char b[BDEVNAME_SIZE];
5261 
5262 	printk(KERN_INFO "md: autorun ...\n");
5263 	while (!list_empty(&pending_raid_disks)) {
5264 		int unit;
5265 		dev_t dev;
5266 		LIST_HEAD(candidates);
5267 		rdev0 = list_entry(pending_raid_disks.next,
5268 					 struct md_rdev, same_set);
5269 
5270 		printk(KERN_INFO "md: considering %s ...\n",
5271 			bdevname(rdev0->bdev,b));
5272 		INIT_LIST_HEAD(&candidates);
5273 		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5274 			if (super_90_load(rdev, rdev0, 0) >= 0) {
5275 				printk(KERN_INFO "md:  adding %s ...\n",
5276 					bdevname(rdev->bdev,b));
5277 				list_move(&rdev->same_set, &candidates);
5278 			}
5279 		/*
5280 		 * now we have a set of devices, with all of them having
5281 		 * mostly sane superblocks. It's time to allocate the
5282 		 * mddev.
5283 		 */
5284 		if (part) {
5285 			dev = MKDEV(mdp_major,
5286 				    rdev0->preferred_minor << MdpMinorShift);
5287 			unit = MINOR(dev) >> MdpMinorShift;
5288 		} else {
5289 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5290 			unit = MINOR(dev);
5291 		}
5292 		if (rdev0->preferred_minor != unit) {
5293 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5294 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5295 			break;
5296 		}
5297 
5298 		md_probe(dev, NULL, NULL);
5299 		mddev = mddev_find(dev);
5300 		if (!mddev || !mddev->gendisk) {
5301 			if (mddev)
5302 				mddev_put(mddev);
5303 			printk(KERN_ERR
5304 				"md: cannot allocate memory for md drive.\n");
5305 			break;
5306 		}
5307 		if (mddev_lock(mddev))
5308 			printk(KERN_WARNING "md: %s locked, cannot run\n",
5309 			       mdname(mddev));
5310 		else if (mddev->raid_disks || mddev->major_version
5311 			 || !list_empty(&mddev->disks)) {
5312 			printk(KERN_WARNING
5313 				"md: %s already running, cannot run %s\n",
5314 				mdname(mddev), bdevname(rdev0->bdev,b));
5315 			mddev_unlock(mddev);
5316 		} else {
5317 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
5318 			mddev->persistent = 1;
5319 			rdev_for_each_list(rdev, tmp, &candidates) {
5320 				list_del_init(&rdev->same_set);
5321 				if (bind_rdev_to_array(rdev, mddev))
5322 					export_rdev(rdev);
5323 			}
5324 			autorun_array(mddev);
5325 			mddev_unlock(mddev);
5326 		}
5327 		/* on success, candidates will be empty, on error
5328 		 * it won't...
5329 		 */
5330 		rdev_for_each_list(rdev, tmp, &candidates) {
5331 			list_del_init(&rdev->same_set);
5332 			export_rdev(rdev);
5333 		}
5334 		mddev_put(mddev);
5335 	}
5336 	printk(KERN_INFO "md: ... autorun DONE.\n");
5337 }
5338 #endif /* !MODULE */
5339 
5340 static int get_version(void __user * arg)
5341 {
5342 	mdu_version_t ver;
5343 
5344 	ver.major = MD_MAJOR_VERSION;
5345 	ver.minor = MD_MINOR_VERSION;
5346 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
5347 
5348 	if (copy_to_user(arg, &ver, sizeof(ver)))
5349 		return -EFAULT;
5350 
5351 	return 0;
5352 }
5353 
5354 static int get_array_info(struct mddev * mddev, void __user * arg)
5355 {
5356 	mdu_array_info_t info;
5357 	int nr,working,insync,failed,spare;
5358 	struct md_rdev *rdev;
5359 
5360 	nr=working=insync=failed=spare=0;
5361 	rdev_for_each(rdev, mddev) {
5362 		nr++;
5363 		if (test_bit(Faulty, &rdev->flags))
5364 			failed++;
5365 		else {
5366 			working++;
5367 			if (test_bit(In_sync, &rdev->flags))
5368 				insync++;
5369 			else
5370 				spare++;
5371 		}
5372 	}
5373 
5374 	info.major_version = mddev->major_version;
5375 	info.minor_version = mddev->minor_version;
5376 	info.patch_version = MD_PATCHLEVEL_VERSION;
5377 	info.ctime         = mddev->ctime;
5378 	info.level         = mddev->level;
5379 	info.size          = mddev->dev_sectors / 2;
5380 	if (info.size != mddev->dev_sectors / 2) /* overflow */
5381 		info.size = -1;
5382 	info.nr_disks      = nr;
5383 	info.raid_disks    = mddev->raid_disks;
5384 	info.md_minor      = mddev->md_minor;
5385 	info.not_persistent= !mddev->persistent;
5386 
5387 	info.utime         = mddev->utime;
5388 	info.state         = 0;
5389 	if (mddev->in_sync)
5390 		info.state = (1<<MD_SB_CLEAN);
5391 	if (mddev->bitmap && mddev->bitmap_info.offset)
5392 		info.state = (1<<MD_SB_BITMAP_PRESENT);
5393 	info.active_disks  = insync;
5394 	info.working_disks = working;
5395 	info.failed_disks  = failed;
5396 	info.spare_disks   = spare;
5397 
5398 	info.layout        = mddev->layout;
5399 	info.chunk_size    = mddev->chunk_sectors << 9;
5400 
5401 	if (copy_to_user(arg, &info, sizeof(info)))
5402 		return -EFAULT;
5403 
5404 	return 0;
5405 }
5406 
5407 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5408 {
5409 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5410 	char *ptr, *buf = NULL;
5411 	int err = -ENOMEM;
5412 
5413 	if (md_allow_write(mddev))
5414 		file = kmalloc(sizeof(*file), GFP_NOIO);
5415 	else
5416 		file = kmalloc(sizeof(*file), GFP_KERNEL);
5417 
5418 	if (!file)
5419 		goto out;
5420 
5421 	/* bitmap disabled, zero the first byte and copy out */
5422 	if (!mddev->bitmap || !mddev->bitmap->file) {
5423 		file->pathname[0] = '\0';
5424 		goto copy_out;
5425 	}
5426 
5427 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5428 	if (!buf)
5429 		goto out;
5430 
5431 	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5432 	if (IS_ERR(ptr))
5433 		goto out;
5434 
5435 	strcpy(file->pathname, ptr);
5436 
5437 copy_out:
5438 	err = 0;
5439 	if (copy_to_user(arg, file, sizeof(*file)))
5440 		err = -EFAULT;
5441 out:
5442 	kfree(buf);
5443 	kfree(file);
5444 	return err;
5445 }
5446 
5447 static int get_disk_info(struct mddev * mddev, void __user * arg)
5448 {
5449 	mdu_disk_info_t info;
5450 	struct md_rdev *rdev;
5451 
5452 	if (copy_from_user(&info, arg, sizeof(info)))
5453 		return -EFAULT;
5454 
5455 	rdev = find_rdev_nr(mddev, info.number);
5456 	if (rdev) {
5457 		info.major = MAJOR(rdev->bdev->bd_dev);
5458 		info.minor = MINOR(rdev->bdev->bd_dev);
5459 		info.raid_disk = rdev->raid_disk;
5460 		info.state = 0;
5461 		if (test_bit(Faulty, &rdev->flags))
5462 			info.state |= (1<<MD_DISK_FAULTY);
5463 		else if (test_bit(In_sync, &rdev->flags)) {
5464 			info.state |= (1<<MD_DISK_ACTIVE);
5465 			info.state |= (1<<MD_DISK_SYNC);
5466 		}
5467 		if (test_bit(WriteMostly, &rdev->flags))
5468 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
5469 	} else {
5470 		info.major = info.minor = 0;
5471 		info.raid_disk = -1;
5472 		info.state = (1<<MD_DISK_REMOVED);
5473 	}
5474 
5475 	if (copy_to_user(arg, &info, sizeof(info)))
5476 		return -EFAULT;
5477 
5478 	return 0;
5479 }
5480 
5481 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5482 {
5483 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5484 	struct md_rdev *rdev;
5485 	dev_t dev = MKDEV(info->major,info->minor);
5486 
5487 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5488 		return -EOVERFLOW;
5489 
5490 	if (!mddev->raid_disks) {
5491 		int err;
5492 		/* expecting a device which has a superblock */
5493 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5494 		if (IS_ERR(rdev)) {
5495 			printk(KERN_WARNING
5496 				"md: md_import_device returned %ld\n",
5497 				PTR_ERR(rdev));
5498 			return PTR_ERR(rdev);
5499 		}
5500 		if (!list_empty(&mddev->disks)) {
5501 			struct md_rdev *rdev0
5502 				= list_entry(mddev->disks.next,
5503 					     struct md_rdev, same_set);
5504 			err = super_types[mddev->major_version]
5505 				.load_super(rdev, rdev0, mddev->minor_version);
5506 			if (err < 0) {
5507 				printk(KERN_WARNING
5508 					"md: %s has different UUID to %s\n",
5509 					bdevname(rdev->bdev,b),
5510 					bdevname(rdev0->bdev,b2));
5511 				export_rdev(rdev);
5512 				return -EINVAL;
5513 			}
5514 		}
5515 		err = bind_rdev_to_array(rdev, mddev);
5516 		if (err)
5517 			export_rdev(rdev);
5518 		return err;
5519 	}
5520 
5521 	/*
5522 	 * add_new_disk can be used once the array is assembled
5523 	 * to add "hot spares".  They must already have a superblock
5524 	 * written
5525 	 */
5526 	if (mddev->pers) {
5527 		int err;
5528 		if (!mddev->pers->hot_add_disk) {
5529 			printk(KERN_WARNING
5530 				"%s: personality does not support diskops!\n",
5531 			       mdname(mddev));
5532 			return -EINVAL;
5533 		}
5534 		if (mddev->persistent)
5535 			rdev = md_import_device(dev, mddev->major_version,
5536 						mddev->minor_version);
5537 		else
5538 			rdev = md_import_device(dev, -1, -1);
5539 		if (IS_ERR(rdev)) {
5540 			printk(KERN_WARNING
5541 				"md: md_import_device returned %ld\n",
5542 				PTR_ERR(rdev));
5543 			return PTR_ERR(rdev);
5544 		}
5545 		/* set saved_raid_disk if appropriate */
5546 		if (!mddev->persistent) {
5547 			if (info->state & (1<<MD_DISK_SYNC)  &&
5548 			    info->raid_disk < mddev->raid_disks) {
5549 				rdev->raid_disk = info->raid_disk;
5550 				set_bit(In_sync, &rdev->flags);
5551 			} else
5552 				rdev->raid_disk = -1;
5553 		} else
5554 			super_types[mddev->major_version].
5555 				validate_super(mddev, rdev);
5556 		if ((info->state & (1<<MD_DISK_SYNC)) &&
5557 		    (!test_bit(In_sync, &rdev->flags) ||
5558 		     rdev->raid_disk != info->raid_disk)) {
5559 			/* This was a hot-add request, but events doesn't
5560 			 * match, so reject it.
5561 			 */
5562 			export_rdev(rdev);
5563 			return -EINVAL;
5564 		}
5565 
5566 		if (test_bit(In_sync, &rdev->flags))
5567 			rdev->saved_raid_disk = rdev->raid_disk;
5568 		else
5569 			rdev->saved_raid_disk = -1;
5570 
5571 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
5572 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5573 			set_bit(WriteMostly, &rdev->flags);
5574 		else
5575 			clear_bit(WriteMostly, &rdev->flags);
5576 
5577 		rdev->raid_disk = -1;
5578 		err = bind_rdev_to_array(rdev, mddev);
5579 		if (!err && !mddev->pers->hot_remove_disk) {
5580 			/* If there is hot_add_disk but no hot_remove_disk
5581 			 * then added disks for geometry changes,
5582 			 * and should be added immediately.
5583 			 */
5584 			super_types[mddev->major_version].
5585 				validate_super(mddev, rdev);
5586 			err = mddev->pers->hot_add_disk(mddev, rdev);
5587 			if (err)
5588 				unbind_rdev_from_array(rdev);
5589 		}
5590 		if (err)
5591 			export_rdev(rdev);
5592 		else
5593 			sysfs_notify_dirent_safe(rdev->sysfs_state);
5594 
5595 		md_update_sb(mddev, 1);
5596 		if (mddev->degraded)
5597 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5598 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5599 		if (!err)
5600 			md_new_event(mddev);
5601 		md_wakeup_thread(mddev->thread);
5602 		return err;
5603 	}
5604 
5605 	/* otherwise, add_new_disk is only allowed
5606 	 * for major_version==0 superblocks
5607 	 */
5608 	if (mddev->major_version != 0) {
5609 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5610 		       mdname(mddev));
5611 		return -EINVAL;
5612 	}
5613 
5614 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
5615 		int err;
5616 		rdev = md_import_device(dev, -1, 0);
5617 		if (IS_ERR(rdev)) {
5618 			printk(KERN_WARNING
5619 				"md: error, md_import_device() returned %ld\n",
5620 				PTR_ERR(rdev));
5621 			return PTR_ERR(rdev);
5622 		}
5623 		rdev->desc_nr = info->number;
5624 		if (info->raid_disk < mddev->raid_disks)
5625 			rdev->raid_disk = info->raid_disk;
5626 		else
5627 			rdev->raid_disk = -1;
5628 
5629 		if (rdev->raid_disk < mddev->raid_disks)
5630 			if (info->state & (1<<MD_DISK_SYNC))
5631 				set_bit(In_sync, &rdev->flags);
5632 
5633 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5634 			set_bit(WriteMostly, &rdev->flags);
5635 
5636 		if (!mddev->persistent) {
5637 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
5638 			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5639 		} else
5640 			rdev->sb_start = calc_dev_sboffset(rdev);
5641 		rdev->sectors = rdev->sb_start;
5642 
5643 		err = bind_rdev_to_array(rdev, mddev);
5644 		if (err) {
5645 			export_rdev(rdev);
5646 			return err;
5647 		}
5648 	}
5649 
5650 	return 0;
5651 }
5652 
5653 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5654 {
5655 	char b[BDEVNAME_SIZE];
5656 	struct md_rdev *rdev;
5657 
5658 	rdev = find_rdev(mddev, dev);
5659 	if (!rdev)
5660 		return -ENXIO;
5661 
5662 	if (rdev->raid_disk >= 0)
5663 		goto busy;
5664 
5665 	kick_rdev_from_array(rdev);
5666 	md_update_sb(mddev, 1);
5667 	md_new_event(mddev);
5668 
5669 	return 0;
5670 busy:
5671 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5672 		bdevname(rdev->bdev,b), mdname(mddev));
5673 	return -EBUSY;
5674 }
5675 
5676 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5677 {
5678 	char b[BDEVNAME_SIZE];
5679 	int err;
5680 	struct md_rdev *rdev;
5681 
5682 	if (!mddev->pers)
5683 		return -ENODEV;
5684 
5685 	if (mddev->major_version != 0) {
5686 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5687 			" version-0 superblocks.\n",
5688 			mdname(mddev));
5689 		return -EINVAL;
5690 	}
5691 	if (!mddev->pers->hot_add_disk) {
5692 		printk(KERN_WARNING
5693 			"%s: personality does not support diskops!\n",
5694 			mdname(mddev));
5695 		return -EINVAL;
5696 	}
5697 
5698 	rdev = md_import_device(dev, -1, 0);
5699 	if (IS_ERR(rdev)) {
5700 		printk(KERN_WARNING
5701 			"md: error, md_import_device() returned %ld\n",
5702 			PTR_ERR(rdev));
5703 		return -EINVAL;
5704 	}
5705 
5706 	if (mddev->persistent)
5707 		rdev->sb_start = calc_dev_sboffset(rdev);
5708 	else
5709 		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5710 
5711 	rdev->sectors = rdev->sb_start;
5712 
5713 	if (test_bit(Faulty, &rdev->flags)) {
5714 		printk(KERN_WARNING
5715 			"md: can not hot-add faulty %s disk to %s!\n",
5716 			bdevname(rdev->bdev,b), mdname(mddev));
5717 		err = -EINVAL;
5718 		goto abort_export;
5719 	}
5720 	clear_bit(In_sync, &rdev->flags);
5721 	rdev->desc_nr = -1;
5722 	rdev->saved_raid_disk = -1;
5723 	err = bind_rdev_to_array(rdev, mddev);
5724 	if (err)
5725 		goto abort_export;
5726 
5727 	/*
5728 	 * The rest should better be atomic, we can have disk failures
5729 	 * noticed in interrupt contexts ...
5730 	 */
5731 
5732 	rdev->raid_disk = -1;
5733 
5734 	md_update_sb(mddev, 1);
5735 
5736 	/*
5737 	 * Kick recovery, maybe this spare has to be added to the
5738 	 * array immediately.
5739 	 */
5740 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5741 	md_wakeup_thread(mddev->thread);
5742 	md_new_event(mddev);
5743 	return 0;
5744 
5745 abort_export:
5746 	export_rdev(rdev);
5747 	return err;
5748 }
5749 
5750 static int set_bitmap_file(struct mddev *mddev, int fd)
5751 {
5752 	int err;
5753 
5754 	if (mddev->pers) {
5755 		if (!mddev->pers->quiesce)
5756 			return -EBUSY;
5757 		if (mddev->recovery || mddev->sync_thread)
5758 			return -EBUSY;
5759 		/* we should be able to change the bitmap.. */
5760 	}
5761 
5762 
5763 	if (fd >= 0) {
5764 		if (mddev->bitmap)
5765 			return -EEXIST; /* cannot add when bitmap is present */
5766 		mddev->bitmap_info.file = fget(fd);
5767 
5768 		if (mddev->bitmap_info.file == NULL) {
5769 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5770 			       mdname(mddev));
5771 			return -EBADF;
5772 		}
5773 
5774 		err = deny_bitmap_write_access(mddev->bitmap_info.file);
5775 		if (err) {
5776 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5777 			       mdname(mddev));
5778 			fput(mddev->bitmap_info.file);
5779 			mddev->bitmap_info.file = NULL;
5780 			return err;
5781 		}
5782 		mddev->bitmap_info.offset = 0; /* file overrides offset */
5783 	} else if (mddev->bitmap == NULL)
5784 		return -ENOENT; /* cannot remove what isn't there */
5785 	err = 0;
5786 	if (mddev->pers) {
5787 		mddev->pers->quiesce(mddev, 1);
5788 		if (fd >= 0) {
5789 			err = bitmap_create(mddev);
5790 			if (!err)
5791 				err = bitmap_load(mddev);
5792 		}
5793 		if (fd < 0 || err) {
5794 			bitmap_destroy(mddev);
5795 			fd = -1; /* make sure to put the file */
5796 		}
5797 		mddev->pers->quiesce(mddev, 0);
5798 	}
5799 	if (fd < 0) {
5800 		if (mddev->bitmap_info.file) {
5801 			restore_bitmap_write_access(mddev->bitmap_info.file);
5802 			fput(mddev->bitmap_info.file);
5803 		}
5804 		mddev->bitmap_info.file = NULL;
5805 	}
5806 
5807 	return err;
5808 }
5809 
5810 /*
5811  * set_array_info is used two different ways
5812  * The original usage is when creating a new array.
5813  * In this usage, raid_disks is > 0 and it together with
5814  *  level, size, not_persistent,layout,chunksize determine the
5815  *  shape of the array.
5816  *  This will always create an array with a type-0.90.0 superblock.
5817  * The newer usage is when assembling an array.
5818  *  In this case raid_disks will be 0, and the major_version field is
5819  *  use to determine which style super-blocks are to be found on the devices.
5820  *  The minor and patch _version numbers are also kept incase the
5821  *  super_block handler wishes to interpret them.
5822  */
5823 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5824 {
5825 
5826 	if (info->raid_disks == 0) {
5827 		/* just setting version number for superblock loading */
5828 		if (info->major_version < 0 ||
5829 		    info->major_version >= ARRAY_SIZE(super_types) ||
5830 		    super_types[info->major_version].name == NULL) {
5831 			/* maybe try to auto-load a module? */
5832 			printk(KERN_INFO
5833 				"md: superblock version %d not known\n",
5834 				info->major_version);
5835 			return -EINVAL;
5836 		}
5837 		mddev->major_version = info->major_version;
5838 		mddev->minor_version = info->minor_version;
5839 		mddev->patch_version = info->patch_version;
5840 		mddev->persistent = !info->not_persistent;
5841 		/* ensure mddev_put doesn't delete this now that there
5842 		 * is some minimal configuration.
5843 		 */
5844 		mddev->ctime         = get_seconds();
5845 		return 0;
5846 	}
5847 	mddev->major_version = MD_MAJOR_VERSION;
5848 	mddev->minor_version = MD_MINOR_VERSION;
5849 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
5850 	mddev->ctime         = get_seconds();
5851 
5852 	mddev->level         = info->level;
5853 	mddev->clevel[0]     = 0;
5854 	mddev->dev_sectors   = 2 * (sector_t)info->size;
5855 	mddev->raid_disks    = info->raid_disks;
5856 	/* don't set md_minor, it is determined by which /dev/md* was
5857 	 * openned
5858 	 */
5859 	if (info->state & (1<<MD_SB_CLEAN))
5860 		mddev->recovery_cp = MaxSector;
5861 	else
5862 		mddev->recovery_cp = 0;
5863 	mddev->persistent    = ! info->not_persistent;
5864 	mddev->external	     = 0;
5865 
5866 	mddev->layout        = info->layout;
5867 	mddev->chunk_sectors = info->chunk_size >> 9;
5868 
5869 	mddev->max_disks     = MD_SB_DISKS;
5870 
5871 	if (mddev->persistent)
5872 		mddev->flags         = 0;
5873 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
5874 
5875 	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5876 	mddev->bitmap_info.offset = 0;
5877 
5878 	mddev->reshape_position = MaxSector;
5879 
5880 	/*
5881 	 * Generate a 128 bit UUID
5882 	 */
5883 	get_random_bytes(mddev->uuid, 16);
5884 
5885 	mddev->new_level = mddev->level;
5886 	mddev->new_chunk_sectors = mddev->chunk_sectors;
5887 	mddev->new_layout = mddev->layout;
5888 	mddev->delta_disks = 0;
5889 
5890 	return 0;
5891 }
5892 
5893 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5894 {
5895 	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5896 
5897 	if (mddev->external_size)
5898 		return;
5899 
5900 	mddev->array_sectors = array_sectors;
5901 }
5902 EXPORT_SYMBOL(md_set_array_sectors);
5903 
5904 static int update_size(struct mddev *mddev, sector_t num_sectors)
5905 {
5906 	struct md_rdev *rdev;
5907 	int rv;
5908 	int fit = (num_sectors == 0);
5909 
5910 	if (mddev->pers->resize == NULL)
5911 		return -EINVAL;
5912 	/* The "num_sectors" is the number of sectors of each device that
5913 	 * is used.  This can only make sense for arrays with redundancy.
5914 	 * linear and raid0 always use whatever space is available. We can only
5915 	 * consider changing this number if no resync or reconstruction is
5916 	 * happening, and if the new size is acceptable. It must fit before the
5917 	 * sb_start or, if that is <data_offset, it must fit before the size
5918 	 * of each device.  If num_sectors is zero, we find the largest size
5919 	 * that fits.
5920 	 */
5921 	if (mddev->sync_thread)
5922 		return -EBUSY;
5923 	if (mddev->bitmap)
5924 		/* Sorry, cannot grow a bitmap yet, just remove it,
5925 		 * grow, and re-add.
5926 		 */
5927 		return -EBUSY;
5928 	rdev_for_each(rdev, mddev) {
5929 		sector_t avail = rdev->sectors;
5930 
5931 		if (fit && (num_sectors == 0 || num_sectors > avail))
5932 			num_sectors = avail;
5933 		if (avail < num_sectors)
5934 			return -ENOSPC;
5935 	}
5936 	rv = mddev->pers->resize(mddev, num_sectors);
5937 	if (!rv)
5938 		revalidate_disk(mddev->gendisk);
5939 	return rv;
5940 }
5941 
5942 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5943 {
5944 	int rv;
5945 	/* change the number of raid disks */
5946 	if (mddev->pers->check_reshape == NULL)
5947 		return -EINVAL;
5948 	if (raid_disks <= 0 ||
5949 	    (mddev->max_disks && raid_disks >= mddev->max_disks))
5950 		return -EINVAL;
5951 	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5952 		return -EBUSY;
5953 	mddev->delta_disks = raid_disks - mddev->raid_disks;
5954 
5955 	rv = mddev->pers->check_reshape(mddev);
5956 	if (rv < 0)
5957 		mddev->delta_disks = 0;
5958 	return rv;
5959 }
5960 
5961 
5962 /*
5963  * update_array_info is used to change the configuration of an
5964  * on-line array.
5965  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5966  * fields in the info are checked against the array.
5967  * Any differences that cannot be handled will cause an error.
5968  * Normally, only one change can be managed at a time.
5969  */
5970 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5971 {
5972 	int rv = 0;
5973 	int cnt = 0;
5974 	int state = 0;
5975 
5976 	/* calculate expected state,ignoring low bits */
5977 	if (mddev->bitmap && mddev->bitmap_info.offset)
5978 		state |= (1 << MD_SB_BITMAP_PRESENT);
5979 
5980 	if (mddev->major_version != info->major_version ||
5981 	    mddev->minor_version != info->minor_version ||
5982 /*	    mddev->patch_version != info->patch_version || */
5983 	    mddev->ctime         != info->ctime         ||
5984 	    mddev->level         != info->level         ||
5985 /*	    mddev->layout        != info->layout        || */
5986 	    !mddev->persistent	 != info->not_persistent||
5987 	    mddev->chunk_sectors != info->chunk_size >> 9 ||
5988 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5989 	    ((state^info->state) & 0xfffffe00)
5990 		)
5991 		return -EINVAL;
5992 	/* Check there is only one change */
5993 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5994 		cnt++;
5995 	if (mddev->raid_disks != info->raid_disks)
5996 		cnt++;
5997 	if (mddev->layout != info->layout)
5998 		cnt++;
5999 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6000 		cnt++;
6001 	if (cnt == 0)
6002 		return 0;
6003 	if (cnt > 1)
6004 		return -EINVAL;
6005 
6006 	if (mddev->layout != info->layout) {
6007 		/* Change layout
6008 		 * we don't need to do anything at the md level, the
6009 		 * personality will take care of it all.
6010 		 */
6011 		if (mddev->pers->check_reshape == NULL)
6012 			return -EINVAL;
6013 		else {
6014 			mddev->new_layout = info->layout;
6015 			rv = mddev->pers->check_reshape(mddev);
6016 			if (rv)
6017 				mddev->new_layout = mddev->layout;
6018 			return rv;
6019 		}
6020 	}
6021 	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6022 		rv = update_size(mddev, (sector_t)info->size * 2);
6023 
6024 	if (mddev->raid_disks    != info->raid_disks)
6025 		rv = update_raid_disks(mddev, info->raid_disks);
6026 
6027 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6028 		if (mddev->pers->quiesce == NULL)
6029 			return -EINVAL;
6030 		if (mddev->recovery || mddev->sync_thread)
6031 			return -EBUSY;
6032 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6033 			/* add the bitmap */
6034 			if (mddev->bitmap)
6035 				return -EEXIST;
6036 			if (mddev->bitmap_info.default_offset == 0)
6037 				return -EINVAL;
6038 			mddev->bitmap_info.offset =
6039 				mddev->bitmap_info.default_offset;
6040 			mddev->pers->quiesce(mddev, 1);
6041 			rv = bitmap_create(mddev);
6042 			if (!rv)
6043 				rv = bitmap_load(mddev);
6044 			if (rv)
6045 				bitmap_destroy(mddev);
6046 			mddev->pers->quiesce(mddev, 0);
6047 		} else {
6048 			/* remove the bitmap */
6049 			if (!mddev->bitmap)
6050 				return -ENOENT;
6051 			if (mddev->bitmap->file)
6052 				return -EINVAL;
6053 			mddev->pers->quiesce(mddev, 1);
6054 			bitmap_destroy(mddev);
6055 			mddev->pers->quiesce(mddev, 0);
6056 			mddev->bitmap_info.offset = 0;
6057 		}
6058 	}
6059 	md_update_sb(mddev, 1);
6060 	return rv;
6061 }
6062 
6063 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6064 {
6065 	struct md_rdev *rdev;
6066 
6067 	if (mddev->pers == NULL)
6068 		return -ENODEV;
6069 
6070 	rdev = find_rdev(mddev, dev);
6071 	if (!rdev)
6072 		return -ENODEV;
6073 
6074 	md_error(mddev, rdev);
6075 	if (!test_bit(Faulty, &rdev->flags))
6076 		return -EBUSY;
6077 	return 0;
6078 }
6079 
6080 /*
6081  * We have a problem here : there is no easy way to give a CHS
6082  * virtual geometry. We currently pretend that we have a 2 heads
6083  * 4 sectors (with a BIG number of cylinders...). This drives
6084  * dosfs just mad... ;-)
6085  */
6086 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6087 {
6088 	struct mddev *mddev = bdev->bd_disk->private_data;
6089 
6090 	geo->heads = 2;
6091 	geo->sectors = 4;
6092 	geo->cylinders = mddev->array_sectors / 8;
6093 	return 0;
6094 }
6095 
6096 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6097 			unsigned int cmd, unsigned long arg)
6098 {
6099 	int err = 0;
6100 	void __user *argp = (void __user *)arg;
6101 	struct mddev *mddev = NULL;
6102 	int ro;
6103 
6104 	switch (cmd) {
6105 	case RAID_VERSION:
6106 	case GET_ARRAY_INFO:
6107 	case GET_DISK_INFO:
6108 		break;
6109 	default:
6110 		if (!capable(CAP_SYS_ADMIN))
6111 			return -EACCES;
6112 	}
6113 
6114 	/*
6115 	 * Commands dealing with the RAID driver but not any
6116 	 * particular array:
6117 	 */
6118 	switch (cmd)
6119 	{
6120 		case RAID_VERSION:
6121 			err = get_version(argp);
6122 			goto done;
6123 
6124 		case PRINT_RAID_DEBUG:
6125 			err = 0;
6126 			md_print_devices();
6127 			goto done;
6128 
6129 #ifndef MODULE
6130 		case RAID_AUTORUN:
6131 			err = 0;
6132 			autostart_arrays(arg);
6133 			goto done;
6134 #endif
6135 		default:;
6136 	}
6137 
6138 	/*
6139 	 * Commands creating/starting a new array:
6140 	 */
6141 
6142 	mddev = bdev->bd_disk->private_data;
6143 
6144 	if (!mddev) {
6145 		BUG();
6146 		goto abort;
6147 	}
6148 
6149 	err = mddev_lock(mddev);
6150 	if (err) {
6151 		printk(KERN_INFO
6152 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
6153 			err, cmd);
6154 		goto abort;
6155 	}
6156 
6157 	switch (cmd)
6158 	{
6159 		case SET_ARRAY_INFO:
6160 			{
6161 				mdu_array_info_t info;
6162 				if (!arg)
6163 					memset(&info, 0, sizeof(info));
6164 				else if (copy_from_user(&info, argp, sizeof(info))) {
6165 					err = -EFAULT;
6166 					goto abort_unlock;
6167 				}
6168 				if (mddev->pers) {
6169 					err = update_array_info(mddev, &info);
6170 					if (err) {
6171 						printk(KERN_WARNING "md: couldn't update"
6172 						       " array info. %d\n", err);
6173 						goto abort_unlock;
6174 					}
6175 					goto done_unlock;
6176 				}
6177 				if (!list_empty(&mddev->disks)) {
6178 					printk(KERN_WARNING
6179 					       "md: array %s already has disks!\n",
6180 					       mdname(mddev));
6181 					err = -EBUSY;
6182 					goto abort_unlock;
6183 				}
6184 				if (mddev->raid_disks) {
6185 					printk(KERN_WARNING
6186 					       "md: array %s already initialised!\n",
6187 					       mdname(mddev));
6188 					err = -EBUSY;
6189 					goto abort_unlock;
6190 				}
6191 				err = set_array_info(mddev, &info);
6192 				if (err) {
6193 					printk(KERN_WARNING "md: couldn't set"
6194 					       " array info. %d\n", err);
6195 					goto abort_unlock;
6196 				}
6197 			}
6198 			goto done_unlock;
6199 
6200 		default:;
6201 	}
6202 
6203 	/*
6204 	 * Commands querying/configuring an existing array:
6205 	 */
6206 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6207 	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6208 	if ((!mddev->raid_disks && !mddev->external)
6209 	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6210 	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6211 	    && cmd != GET_BITMAP_FILE) {
6212 		err = -ENODEV;
6213 		goto abort_unlock;
6214 	}
6215 
6216 	/*
6217 	 * Commands even a read-only array can execute:
6218 	 */
6219 	switch (cmd)
6220 	{
6221 		case GET_ARRAY_INFO:
6222 			err = get_array_info(mddev, argp);
6223 			goto done_unlock;
6224 
6225 		case GET_BITMAP_FILE:
6226 			err = get_bitmap_file(mddev, argp);
6227 			goto done_unlock;
6228 
6229 		case GET_DISK_INFO:
6230 			err = get_disk_info(mddev, argp);
6231 			goto done_unlock;
6232 
6233 		case RESTART_ARRAY_RW:
6234 			err = restart_array(mddev);
6235 			goto done_unlock;
6236 
6237 		case STOP_ARRAY:
6238 			err = do_md_stop(mddev, 0, 1);
6239 			goto done_unlock;
6240 
6241 		case STOP_ARRAY_RO:
6242 			err = md_set_readonly(mddev, 1);
6243 			goto done_unlock;
6244 
6245 		case BLKROSET:
6246 			if (get_user(ro, (int __user *)(arg))) {
6247 				err = -EFAULT;
6248 				goto done_unlock;
6249 			}
6250 			err = -EINVAL;
6251 
6252 			/* if the bdev is going readonly the value of mddev->ro
6253 			 * does not matter, no writes are coming
6254 			 */
6255 			if (ro)
6256 				goto done_unlock;
6257 
6258 			/* are we are already prepared for writes? */
6259 			if (mddev->ro != 1)
6260 				goto done_unlock;
6261 
6262 			/* transitioning to readauto need only happen for
6263 			 * arrays that call md_write_start
6264 			 */
6265 			if (mddev->pers) {
6266 				err = restart_array(mddev);
6267 				if (err == 0) {
6268 					mddev->ro = 2;
6269 					set_disk_ro(mddev->gendisk, 0);
6270 				}
6271 			}
6272 			goto done_unlock;
6273 	}
6274 
6275 	/*
6276 	 * The remaining ioctls are changing the state of the
6277 	 * superblock, so we do not allow them on read-only arrays.
6278 	 * However non-MD ioctls (e.g. get-size) will still come through
6279 	 * here and hit the 'default' below, so only disallow
6280 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6281 	 */
6282 	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6283 		if (mddev->ro == 2) {
6284 			mddev->ro = 0;
6285 			sysfs_notify_dirent_safe(mddev->sysfs_state);
6286 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6287 			md_wakeup_thread(mddev->thread);
6288 		} else {
6289 			err = -EROFS;
6290 			goto abort_unlock;
6291 		}
6292 	}
6293 
6294 	switch (cmd)
6295 	{
6296 		case ADD_NEW_DISK:
6297 		{
6298 			mdu_disk_info_t info;
6299 			if (copy_from_user(&info, argp, sizeof(info)))
6300 				err = -EFAULT;
6301 			else
6302 				err = add_new_disk(mddev, &info);
6303 			goto done_unlock;
6304 		}
6305 
6306 		case HOT_REMOVE_DISK:
6307 			err = hot_remove_disk(mddev, new_decode_dev(arg));
6308 			goto done_unlock;
6309 
6310 		case HOT_ADD_DISK:
6311 			err = hot_add_disk(mddev, new_decode_dev(arg));
6312 			goto done_unlock;
6313 
6314 		case SET_DISK_FAULTY:
6315 			err = set_disk_faulty(mddev, new_decode_dev(arg));
6316 			goto done_unlock;
6317 
6318 		case RUN_ARRAY:
6319 			err = do_md_run(mddev);
6320 			goto done_unlock;
6321 
6322 		case SET_BITMAP_FILE:
6323 			err = set_bitmap_file(mddev, (int)arg);
6324 			goto done_unlock;
6325 
6326 		default:
6327 			err = -EINVAL;
6328 			goto abort_unlock;
6329 	}
6330 
6331 done_unlock:
6332 abort_unlock:
6333 	if (mddev->hold_active == UNTIL_IOCTL &&
6334 	    err != -EINVAL)
6335 		mddev->hold_active = 0;
6336 	mddev_unlock(mddev);
6337 
6338 	return err;
6339 done:
6340 	if (err)
6341 		MD_BUG();
6342 abort:
6343 	return err;
6344 }
6345 #ifdef CONFIG_COMPAT
6346 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6347 		    unsigned int cmd, unsigned long arg)
6348 {
6349 	switch (cmd) {
6350 	case HOT_REMOVE_DISK:
6351 	case HOT_ADD_DISK:
6352 	case SET_DISK_FAULTY:
6353 	case SET_BITMAP_FILE:
6354 		/* These take in integer arg, do not convert */
6355 		break;
6356 	default:
6357 		arg = (unsigned long)compat_ptr(arg);
6358 		break;
6359 	}
6360 
6361 	return md_ioctl(bdev, mode, cmd, arg);
6362 }
6363 #endif /* CONFIG_COMPAT */
6364 
6365 static int md_open(struct block_device *bdev, fmode_t mode)
6366 {
6367 	/*
6368 	 * Succeed if we can lock the mddev, which confirms that
6369 	 * it isn't being stopped right now.
6370 	 */
6371 	struct mddev *mddev = mddev_find(bdev->bd_dev);
6372 	int err;
6373 
6374 	if (mddev->gendisk != bdev->bd_disk) {
6375 		/* we are racing with mddev_put which is discarding this
6376 		 * bd_disk.
6377 		 */
6378 		mddev_put(mddev);
6379 		/* Wait until bdev->bd_disk is definitely gone */
6380 		flush_workqueue(md_misc_wq);
6381 		/* Then retry the open from the top */
6382 		return -ERESTARTSYS;
6383 	}
6384 	BUG_ON(mddev != bdev->bd_disk->private_data);
6385 
6386 	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6387 		goto out;
6388 
6389 	err = 0;
6390 	atomic_inc(&mddev->openers);
6391 	mutex_unlock(&mddev->open_mutex);
6392 
6393 	check_disk_change(bdev);
6394  out:
6395 	return err;
6396 }
6397 
6398 static int md_release(struct gendisk *disk, fmode_t mode)
6399 {
6400  	struct mddev *mddev = disk->private_data;
6401 
6402 	BUG_ON(!mddev);
6403 	atomic_dec(&mddev->openers);
6404 	mddev_put(mddev);
6405 
6406 	return 0;
6407 }
6408 
6409 static int md_media_changed(struct gendisk *disk)
6410 {
6411 	struct mddev *mddev = disk->private_data;
6412 
6413 	return mddev->changed;
6414 }
6415 
6416 static int md_revalidate(struct gendisk *disk)
6417 {
6418 	struct mddev *mddev = disk->private_data;
6419 
6420 	mddev->changed = 0;
6421 	return 0;
6422 }
6423 static const struct block_device_operations md_fops =
6424 {
6425 	.owner		= THIS_MODULE,
6426 	.open		= md_open,
6427 	.release	= md_release,
6428 	.ioctl		= md_ioctl,
6429 #ifdef CONFIG_COMPAT
6430 	.compat_ioctl	= md_compat_ioctl,
6431 #endif
6432 	.getgeo		= md_getgeo,
6433 	.media_changed  = md_media_changed,
6434 	.revalidate_disk= md_revalidate,
6435 };
6436 
6437 static int md_thread(void * arg)
6438 {
6439 	struct md_thread *thread = arg;
6440 
6441 	/*
6442 	 * md_thread is a 'system-thread', it's priority should be very
6443 	 * high. We avoid resource deadlocks individually in each
6444 	 * raid personality. (RAID5 does preallocation) We also use RR and
6445 	 * the very same RT priority as kswapd, thus we will never get
6446 	 * into a priority inversion deadlock.
6447 	 *
6448 	 * we definitely have to have equal or higher priority than
6449 	 * bdflush, otherwise bdflush will deadlock if there are too
6450 	 * many dirty RAID5 blocks.
6451 	 */
6452 
6453 	allow_signal(SIGKILL);
6454 	while (!kthread_should_stop()) {
6455 
6456 		/* We need to wait INTERRUPTIBLE so that
6457 		 * we don't add to the load-average.
6458 		 * That means we need to be sure no signals are
6459 		 * pending
6460 		 */
6461 		if (signal_pending(current))
6462 			flush_signals(current);
6463 
6464 		wait_event_interruptible_timeout
6465 			(thread->wqueue,
6466 			 test_bit(THREAD_WAKEUP, &thread->flags)
6467 			 || kthread_should_stop(),
6468 			 thread->timeout);
6469 
6470 		clear_bit(THREAD_WAKEUP, &thread->flags);
6471 		if (!kthread_should_stop())
6472 			thread->run(thread->mddev);
6473 	}
6474 
6475 	return 0;
6476 }
6477 
6478 void md_wakeup_thread(struct md_thread *thread)
6479 {
6480 	if (thread) {
6481 		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6482 		set_bit(THREAD_WAKEUP, &thread->flags);
6483 		wake_up(&thread->wqueue);
6484 	}
6485 }
6486 
6487 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6488 				 const char *name)
6489 {
6490 	struct md_thread *thread;
6491 
6492 	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6493 	if (!thread)
6494 		return NULL;
6495 
6496 	init_waitqueue_head(&thread->wqueue);
6497 
6498 	thread->run = run;
6499 	thread->mddev = mddev;
6500 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
6501 	thread->tsk = kthread_run(md_thread, thread,
6502 				  "%s_%s",
6503 				  mdname(thread->mddev),
6504 				  name ?: mddev->pers->name);
6505 	if (IS_ERR(thread->tsk)) {
6506 		kfree(thread);
6507 		return NULL;
6508 	}
6509 	return thread;
6510 }
6511 
6512 void md_unregister_thread(struct md_thread **threadp)
6513 {
6514 	struct md_thread *thread = *threadp;
6515 	if (!thread)
6516 		return;
6517 	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6518 	/* Locking ensures that mddev_unlock does not wake_up a
6519 	 * non-existent thread
6520 	 */
6521 	spin_lock(&pers_lock);
6522 	*threadp = NULL;
6523 	spin_unlock(&pers_lock);
6524 
6525 	kthread_stop(thread->tsk);
6526 	kfree(thread);
6527 }
6528 
6529 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6530 {
6531 	if (!mddev) {
6532 		MD_BUG();
6533 		return;
6534 	}
6535 
6536 	if (!rdev || test_bit(Faulty, &rdev->flags))
6537 		return;
6538 
6539 	if (!mddev->pers || !mddev->pers->error_handler)
6540 		return;
6541 	mddev->pers->error_handler(mddev,rdev);
6542 	if (mddev->degraded)
6543 		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6544 	sysfs_notify_dirent_safe(rdev->sysfs_state);
6545 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6546 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6547 	md_wakeup_thread(mddev->thread);
6548 	if (mddev->event_work.func)
6549 		queue_work(md_misc_wq, &mddev->event_work);
6550 	md_new_event_inintr(mddev);
6551 }
6552 
6553 /* seq_file implementation /proc/mdstat */
6554 
6555 static void status_unused(struct seq_file *seq)
6556 {
6557 	int i = 0;
6558 	struct md_rdev *rdev;
6559 
6560 	seq_printf(seq, "unused devices: ");
6561 
6562 	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6563 		char b[BDEVNAME_SIZE];
6564 		i++;
6565 		seq_printf(seq, "%s ",
6566 			      bdevname(rdev->bdev,b));
6567 	}
6568 	if (!i)
6569 		seq_printf(seq, "<none>");
6570 
6571 	seq_printf(seq, "\n");
6572 }
6573 
6574 
6575 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6576 {
6577 	sector_t max_sectors, resync, res;
6578 	unsigned long dt, db;
6579 	sector_t rt;
6580 	int scale;
6581 	unsigned int per_milli;
6582 
6583 	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6584 
6585 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6586 		max_sectors = mddev->resync_max_sectors;
6587 	else
6588 		max_sectors = mddev->dev_sectors;
6589 
6590 	/*
6591 	 * Should not happen.
6592 	 */
6593 	if (!max_sectors) {
6594 		MD_BUG();
6595 		return;
6596 	}
6597 	/* Pick 'scale' such that (resync>>scale)*1000 will fit
6598 	 * in a sector_t, and (max_sectors>>scale) will fit in a
6599 	 * u32, as those are the requirements for sector_div.
6600 	 * Thus 'scale' must be at least 10
6601 	 */
6602 	scale = 10;
6603 	if (sizeof(sector_t) > sizeof(unsigned long)) {
6604 		while ( max_sectors/2 > (1ULL<<(scale+32)))
6605 			scale++;
6606 	}
6607 	res = (resync>>scale)*1000;
6608 	sector_div(res, (u32)((max_sectors>>scale)+1));
6609 
6610 	per_milli = res;
6611 	{
6612 		int i, x = per_milli/50, y = 20-x;
6613 		seq_printf(seq, "[");
6614 		for (i = 0; i < x; i++)
6615 			seq_printf(seq, "=");
6616 		seq_printf(seq, ">");
6617 		for (i = 0; i < y; i++)
6618 			seq_printf(seq, ".");
6619 		seq_printf(seq, "] ");
6620 	}
6621 	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6622 		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6623 		    "reshape" :
6624 		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6625 		     "check" :
6626 		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6627 		      "resync" : "recovery"))),
6628 		   per_milli/10, per_milli % 10,
6629 		   (unsigned long long) resync/2,
6630 		   (unsigned long long) max_sectors/2);
6631 
6632 	/*
6633 	 * dt: time from mark until now
6634 	 * db: blocks written from mark until now
6635 	 * rt: remaining time
6636 	 *
6637 	 * rt is a sector_t, so could be 32bit or 64bit.
6638 	 * So we divide before multiply in case it is 32bit and close
6639 	 * to the limit.
6640 	 * We scale the divisor (db) by 32 to avoid losing precision
6641 	 * near the end of resync when the number of remaining sectors
6642 	 * is close to 'db'.
6643 	 * We then divide rt by 32 after multiplying by db to compensate.
6644 	 * The '+1' avoids division by zero if db is very small.
6645 	 */
6646 	dt = ((jiffies - mddev->resync_mark) / HZ);
6647 	if (!dt) dt++;
6648 	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6649 		- mddev->resync_mark_cnt;
6650 
6651 	rt = max_sectors - resync;    /* number of remaining sectors */
6652 	sector_div(rt, db/32+1);
6653 	rt *= dt;
6654 	rt >>= 5;
6655 
6656 	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6657 		   ((unsigned long)rt % 60)/6);
6658 
6659 	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6660 }
6661 
6662 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6663 {
6664 	struct list_head *tmp;
6665 	loff_t l = *pos;
6666 	struct mddev *mddev;
6667 
6668 	if (l >= 0x10000)
6669 		return NULL;
6670 	if (!l--)
6671 		/* header */
6672 		return (void*)1;
6673 
6674 	spin_lock(&all_mddevs_lock);
6675 	list_for_each(tmp,&all_mddevs)
6676 		if (!l--) {
6677 			mddev = list_entry(tmp, struct mddev, all_mddevs);
6678 			mddev_get(mddev);
6679 			spin_unlock(&all_mddevs_lock);
6680 			return mddev;
6681 		}
6682 	spin_unlock(&all_mddevs_lock);
6683 	if (!l--)
6684 		return (void*)2;/* tail */
6685 	return NULL;
6686 }
6687 
6688 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6689 {
6690 	struct list_head *tmp;
6691 	struct mddev *next_mddev, *mddev = v;
6692 
6693 	++*pos;
6694 	if (v == (void*)2)
6695 		return NULL;
6696 
6697 	spin_lock(&all_mddevs_lock);
6698 	if (v == (void*)1)
6699 		tmp = all_mddevs.next;
6700 	else
6701 		tmp = mddev->all_mddevs.next;
6702 	if (tmp != &all_mddevs)
6703 		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6704 	else {
6705 		next_mddev = (void*)2;
6706 		*pos = 0x10000;
6707 	}
6708 	spin_unlock(&all_mddevs_lock);
6709 
6710 	if (v != (void*)1)
6711 		mddev_put(mddev);
6712 	return next_mddev;
6713 
6714 }
6715 
6716 static void md_seq_stop(struct seq_file *seq, void *v)
6717 {
6718 	struct mddev *mddev = v;
6719 
6720 	if (mddev && v != (void*)1 && v != (void*)2)
6721 		mddev_put(mddev);
6722 }
6723 
6724 static int md_seq_show(struct seq_file *seq, void *v)
6725 {
6726 	struct mddev *mddev = v;
6727 	sector_t sectors;
6728 	struct md_rdev *rdev;
6729 
6730 	if (v == (void*)1) {
6731 		struct md_personality *pers;
6732 		seq_printf(seq, "Personalities : ");
6733 		spin_lock(&pers_lock);
6734 		list_for_each_entry(pers, &pers_list, list)
6735 			seq_printf(seq, "[%s] ", pers->name);
6736 
6737 		spin_unlock(&pers_lock);
6738 		seq_printf(seq, "\n");
6739 		seq->poll_event = atomic_read(&md_event_count);
6740 		return 0;
6741 	}
6742 	if (v == (void*)2) {
6743 		status_unused(seq);
6744 		return 0;
6745 	}
6746 
6747 	if (mddev_lock(mddev) < 0)
6748 		return -EINTR;
6749 
6750 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6751 		seq_printf(seq, "%s : %sactive", mdname(mddev),
6752 						mddev->pers ? "" : "in");
6753 		if (mddev->pers) {
6754 			if (mddev->ro==1)
6755 				seq_printf(seq, " (read-only)");
6756 			if (mddev->ro==2)
6757 				seq_printf(seq, " (auto-read-only)");
6758 			seq_printf(seq, " %s", mddev->pers->name);
6759 		}
6760 
6761 		sectors = 0;
6762 		rdev_for_each(rdev, mddev) {
6763 			char b[BDEVNAME_SIZE];
6764 			seq_printf(seq, " %s[%d]",
6765 				bdevname(rdev->bdev,b), rdev->desc_nr);
6766 			if (test_bit(WriteMostly, &rdev->flags))
6767 				seq_printf(seq, "(W)");
6768 			if (test_bit(Faulty, &rdev->flags)) {
6769 				seq_printf(seq, "(F)");
6770 				continue;
6771 			}
6772 			if (rdev->raid_disk < 0)
6773 				seq_printf(seq, "(S)"); /* spare */
6774 			if (test_bit(Replacement, &rdev->flags))
6775 				seq_printf(seq, "(R)");
6776 			sectors += rdev->sectors;
6777 		}
6778 
6779 		if (!list_empty(&mddev->disks)) {
6780 			if (mddev->pers)
6781 				seq_printf(seq, "\n      %llu blocks",
6782 					   (unsigned long long)
6783 					   mddev->array_sectors / 2);
6784 			else
6785 				seq_printf(seq, "\n      %llu blocks",
6786 					   (unsigned long long)sectors / 2);
6787 		}
6788 		if (mddev->persistent) {
6789 			if (mddev->major_version != 0 ||
6790 			    mddev->minor_version != 90) {
6791 				seq_printf(seq," super %d.%d",
6792 					   mddev->major_version,
6793 					   mddev->minor_version);
6794 			}
6795 		} else if (mddev->external)
6796 			seq_printf(seq, " super external:%s",
6797 				   mddev->metadata_type);
6798 		else
6799 			seq_printf(seq, " super non-persistent");
6800 
6801 		if (mddev->pers) {
6802 			mddev->pers->status(seq, mddev);
6803 	 		seq_printf(seq, "\n      ");
6804 			if (mddev->pers->sync_request) {
6805 				if (mddev->curr_resync > 2) {
6806 					status_resync(seq, mddev);
6807 					seq_printf(seq, "\n      ");
6808 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6809 					seq_printf(seq, "\tresync=DELAYED\n      ");
6810 				else if (mddev->recovery_cp < MaxSector)
6811 					seq_printf(seq, "\tresync=PENDING\n      ");
6812 			}
6813 		} else
6814 			seq_printf(seq, "\n       ");
6815 
6816 		bitmap_status(seq, mddev->bitmap);
6817 
6818 		seq_printf(seq, "\n");
6819 	}
6820 	mddev_unlock(mddev);
6821 
6822 	return 0;
6823 }
6824 
6825 static const struct seq_operations md_seq_ops = {
6826 	.start  = md_seq_start,
6827 	.next   = md_seq_next,
6828 	.stop   = md_seq_stop,
6829 	.show   = md_seq_show,
6830 };
6831 
6832 static int md_seq_open(struct inode *inode, struct file *file)
6833 {
6834 	struct seq_file *seq;
6835 	int error;
6836 
6837 	error = seq_open(file, &md_seq_ops);
6838 	if (error)
6839 		return error;
6840 
6841 	seq = file->private_data;
6842 	seq->poll_event = atomic_read(&md_event_count);
6843 	return error;
6844 }
6845 
6846 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6847 {
6848 	struct seq_file *seq = filp->private_data;
6849 	int mask;
6850 
6851 	poll_wait(filp, &md_event_waiters, wait);
6852 
6853 	/* always allow read */
6854 	mask = POLLIN | POLLRDNORM;
6855 
6856 	if (seq->poll_event != atomic_read(&md_event_count))
6857 		mask |= POLLERR | POLLPRI;
6858 	return mask;
6859 }
6860 
6861 static const struct file_operations md_seq_fops = {
6862 	.owner		= THIS_MODULE,
6863 	.open           = md_seq_open,
6864 	.read           = seq_read,
6865 	.llseek         = seq_lseek,
6866 	.release	= seq_release_private,
6867 	.poll		= mdstat_poll,
6868 };
6869 
6870 int register_md_personality(struct md_personality *p)
6871 {
6872 	spin_lock(&pers_lock);
6873 	list_add_tail(&p->list, &pers_list);
6874 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6875 	spin_unlock(&pers_lock);
6876 	return 0;
6877 }
6878 
6879 int unregister_md_personality(struct md_personality *p)
6880 {
6881 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6882 	spin_lock(&pers_lock);
6883 	list_del_init(&p->list);
6884 	spin_unlock(&pers_lock);
6885 	return 0;
6886 }
6887 
6888 static int is_mddev_idle(struct mddev *mddev, int init)
6889 {
6890 	struct md_rdev * rdev;
6891 	int idle;
6892 	int curr_events;
6893 
6894 	idle = 1;
6895 	rcu_read_lock();
6896 	rdev_for_each_rcu(rdev, mddev) {
6897 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6898 		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6899 			      (int)part_stat_read(&disk->part0, sectors[1]) -
6900 			      atomic_read(&disk->sync_io);
6901 		/* sync IO will cause sync_io to increase before the disk_stats
6902 		 * as sync_io is counted when a request starts, and
6903 		 * disk_stats is counted when it completes.
6904 		 * So resync activity will cause curr_events to be smaller than
6905 		 * when there was no such activity.
6906 		 * non-sync IO will cause disk_stat to increase without
6907 		 * increasing sync_io so curr_events will (eventually)
6908 		 * be larger than it was before.  Once it becomes
6909 		 * substantially larger, the test below will cause
6910 		 * the array to appear non-idle, and resync will slow
6911 		 * down.
6912 		 * If there is a lot of outstanding resync activity when
6913 		 * we set last_event to curr_events, then all that activity
6914 		 * completing might cause the array to appear non-idle
6915 		 * and resync will be slowed down even though there might
6916 		 * not have been non-resync activity.  This will only
6917 		 * happen once though.  'last_events' will soon reflect
6918 		 * the state where there is little or no outstanding
6919 		 * resync requests, and further resync activity will
6920 		 * always make curr_events less than last_events.
6921 		 *
6922 		 */
6923 		if (init || curr_events - rdev->last_events > 64) {
6924 			rdev->last_events = curr_events;
6925 			idle = 0;
6926 		}
6927 	}
6928 	rcu_read_unlock();
6929 	return idle;
6930 }
6931 
6932 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6933 {
6934 	/* another "blocks" (512byte) blocks have been synced */
6935 	atomic_sub(blocks, &mddev->recovery_active);
6936 	wake_up(&mddev->recovery_wait);
6937 	if (!ok) {
6938 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6939 		md_wakeup_thread(mddev->thread);
6940 		// stop recovery, signal do_sync ....
6941 	}
6942 }
6943 
6944 
6945 /* md_write_start(mddev, bi)
6946  * If we need to update some array metadata (e.g. 'active' flag
6947  * in superblock) before writing, schedule a superblock update
6948  * and wait for it to complete.
6949  */
6950 void md_write_start(struct mddev *mddev, struct bio *bi)
6951 {
6952 	int did_change = 0;
6953 	if (bio_data_dir(bi) != WRITE)
6954 		return;
6955 
6956 	BUG_ON(mddev->ro == 1);
6957 	if (mddev->ro == 2) {
6958 		/* need to switch to read/write */
6959 		mddev->ro = 0;
6960 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6961 		md_wakeup_thread(mddev->thread);
6962 		md_wakeup_thread(mddev->sync_thread);
6963 		did_change = 1;
6964 	}
6965 	atomic_inc(&mddev->writes_pending);
6966 	if (mddev->safemode == 1)
6967 		mddev->safemode = 0;
6968 	if (mddev->in_sync) {
6969 		spin_lock_irq(&mddev->write_lock);
6970 		if (mddev->in_sync) {
6971 			mddev->in_sync = 0;
6972 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6973 			set_bit(MD_CHANGE_PENDING, &mddev->flags);
6974 			md_wakeup_thread(mddev->thread);
6975 			did_change = 1;
6976 		}
6977 		spin_unlock_irq(&mddev->write_lock);
6978 	}
6979 	if (did_change)
6980 		sysfs_notify_dirent_safe(mddev->sysfs_state);
6981 	wait_event(mddev->sb_wait,
6982 		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6983 }
6984 
6985 void md_write_end(struct mddev *mddev)
6986 {
6987 	if (atomic_dec_and_test(&mddev->writes_pending)) {
6988 		if (mddev->safemode == 2)
6989 			md_wakeup_thread(mddev->thread);
6990 		else if (mddev->safemode_delay)
6991 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6992 	}
6993 }
6994 
6995 /* md_allow_write(mddev)
6996  * Calling this ensures that the array is marked 'active' so that writes
6997  * may proceed without blocking.  It is important to call this before
6998  * attempting a GFP_KERNEL allocation while holding the mddev lock.
6999  * Must be called with mddev_lock held.
7000  *
7001  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7002  * is dropped, so return -EAGAIN after notifying userspace.
7003  */
7004 int md_allow_write(struct mddev *mddev)
7005 {
7006 	if (!mddev->pers)
7007 		return 0;
7008 	if (mddev->ro)
7009 		return 0;
7010 	if (!mddev->pers->sync_request)
7011 		return 0;
7012 
7013 	spin_lock_irq(&mddev->write_lock);
7014 	if (mddev->in_sync) {
7015 		mddev->in_sync = 0;
7016 		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7017 		set_bit(MD_CHANGE_PENDING, &mddev->flags);
7018 		if (mddev->safemode_delay &&
7019 		    mddev->safemode == 0)
7020 			mddev->safemode = 1;
7021 		spin_unlock_irq(&mddev->write_lock);
7022 		md_update_sb(mddev, 0);
7023 		sysfs_notify_dirent_safe(mddev->sysfs_state);
7024 	} else
7025 		spin_unlock_irq(&mddev->write_lock);
7026 
7027 	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7028 		return -EAGAIN;
7029 	else
7030 		return 0;
7031 }
7032 EXPORT_SYMBOL_GPL(md_allow_write);
7033 
7034 #define SYNC_MARKS	10
7035 #define	SYNC_MARK_STEP	(3*HZ)
7036 void md_do_sync(struct mddev *mddev)
7037 {
7038 	struct mddev *mddev2;
7039 	unsigned int currspeed = 0,
7040 		 window;
7041 	sector_t max_sectors,j, io_sectors;
7042 	unsigned long mark[SYNC_MARKS];
7043 	sector_t mark_cnt[SYNC_MARKS];
7044 	int last_mark,m;
7045 	struct list_head *tmp;
7046 	sector_t last_check;
7047 	int skipped = 0;
7048 	struct md_rdev *rdev;
7049 	char *desc;
7050 
7051 	/* just incase thread restarts... */
7052 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7053 		return;
7054 	if (mddev->ro) /* never try to sync a read-only array */
7055 		return;
7056 
7057 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7058 		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7059 			desc = "data-check";
7060 		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7061 			desc = "requested-resync";
7062 		else
7063 			desc = "resync";
7064 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7065 		desc = "reshape";
7066 	else
7067 		desc = "recovery";
7068 
7069 	/* we overload curr_resync somewhat here.
7070 	 * 0 == not engaged in resync at all
7071 	 * 2 == checking that there is no conflict with another sync
7072 	 * 1 == like 2, but have yielded to allow conflicting resync to
7073 	 *		commense
7074 	 * other == active in resync - this many blocks
7075 	 *
7076 	 * Before starting a resync we must have set curr_resync to
7077 	 * 2, and then checked that every "conflicting" array has curr_resync
7078 	 * less than ours.  When we find one that is the same or higher
7079 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7080 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7081 	 * This will mean we have to start checking from the beginning again.
7082 	 *
7083 	 */
7084 
7085 	do {
7086 		mddev->curr_resync = 2;
7087 
7088 	try_again:
7089 		if (kthread_should_stop())
7090 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7091 
7092 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7093 			goto skip;
7094 		for_each_mddev(mddev2, tmp) {
7095 			if (mddev2 == mddev)
7096 				continue;
7097 			if (!mddev->parallel_resync
7098 			&&  mddev2->curr_resync
7099 			&&  match_mddev_units(mddev, mddev2)) {
7100 				DEFINE_WAIT(wq);
7101 				if (mddev < mddev2 && mddev->curr_resync == 2) {
7102 					/* arbitrarily yield */
7103 					mddev->curr_resync = 1;
7104 					wake_up(&resync_wait);
7105 				}
7106 				if (mddev > mddev2 && mddev->curr_resync == 1)
7107 					/* no need to wait here, we can wait the next
7108 					 * time 'round when curr_resync == 2
7109 					 */
7110 					continue;
7111 				/* We need to wait 'interruptible' so as not to
7112 				 * contribute to the load average, and not to
7113 				 * be caught by 'softlockup'
7114 				 */
7115 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7116 				if (!kthread_should_stop() &&
7117 				    mddev2->curr_resync >= mddev->curr_resync) {
7118 					printk(KERN_INFO "md: delaying %s of %s"
7119 					       " until %s has finished (they"
7120 					       " share one or more physical units)\n",
7121 					       desc, mdname(mddev), mdname(mddev2));
7122 					mddev_put(mddev2);
7123 					if (signal_pending(current))
7124 						flush_signals(current);
7125 					schedule();
7126 					finish_wait(&resync_wait, &wq);
7127 					goto try_again;
7128 				}
7129 				finish_wait(&resync_wait, &wq);
7130 			}
7131 		}
7132 	} while (mddev->curr_resync < 2);
7133 
7134 	j = 0;
7135 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7136 		/* resync follows the size requested by the personality,
7137 		 * which defaults to physical size, but can be virtual size
7138 		 */
7139 		max_sectors = mddev->resync_max_sectors;
7140 		mddev->resync_mismatches = 0;
7141 		/* we don't use the checkpoint if there's a bitmap */
7142 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7143 			j = mddev->resync_min;
7144 		else if (!mddev->bitmap)
7145 			j = mddev->recovery_cp;
7146 
7147 	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7148 		max_sectors = mddev->dev_sectors;
7149 	else {
7150 		/* recovery follows the physical size of devices */
7151 		max_sectors = mddev->dev_sectors;
7152 		j = MaxSector;
7153 		rcu_read_lock();
7154 		rdev_for_each_rcu(rdev, mddev)
7155 			if (rdev->raid_disk >= 0 &&
7156 			    !test_bit(Faulty, &rdev->flags) &&
7157 			    !test_bit(In_sync, &rdev->flags) &&
7158 			    rdev->recovery_offset < j)
7159 				j = rdev->recovery_offset;
7160 		rcu_read_unlock();
7161 	}
7162 
7163 	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7164 	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7165 		" %d KB/sec/disk.\n", speed_min(mddev));
7166 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7167 	       "(but not more than %d KB/sec) for %s.\n",
7168 	       speed_max(mddev), desc);
7169 
7170 	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7171 
7172 	io_sectors = 0;
7173 	for (m = 0; m < SYNC_MARKS; m++) {
7174 		mark[m] = jiffies;
7175 		mark_cnt[m] = io_sectors;
7176 	}
7177 	last_mark = 0;
7178 	mddev->resync_mark = mark[last_mark];
7179 	mddev->resync_mark_cnt = mark_cnt[last_mark];
7180 
7181 	/*
7182 	 * Tune reconstruction:
7183 	 */
7184 	window = 32*(PAGE_SIZE/512);
7185 	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7186 		window/2, (unsigned long long)max_sectors/2);
7187 
7188 	atomic_set(&mddev->recovery_active, 0);
7189 	last_check = 0;
7190 
7191 	if (j>2) {
7192 		printk(KERN_INFO
7193 		       "md: resuming %s of %s from checkpoint.\n",
7194 		       desc, mdname(mddev));
7195 		mddev->curr_resync = j;
7196 	}
7197 	mddev->curr_resync_completed = j;
7198 
7199 	while (j < max_sectors) {
7200 		sector_t sectors;
7201 
7202 		skipped = 0;
7203 
7204 		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7205 		    ((mddev->curr_resync > mddev->curr_resync_completed &&
7206 		      (mddev->curr_resync - mddev->curr_resync_completed)
7207 		      > (max_sectors >> 4)) ||
7208 		     (j - mddev->curr_resync_completed)*2
7209 		     >= mddev->resync_max - mddev->curr_resync_completed
7210 			    )) {
7211 			/* time to update curr_resync_completed */
7212 			wait_event(mddev->recovery_wait,
7213 				   atomic_read(&mddev->recovery_active) == 0);
7214 			mddev->curr_resync_completed = j;
7215 			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7216 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7217 		}
7218 
7219 		while (j >= mddev->resync_max && !kthread_should_stop()) {
7220 			/* As this condition is controlled by user-space,
7221 			 * we can block indefinitely, so use '_interruptible'
7222 			 * to avoid triggering warnings.
7223 			 */
7224 			flush_signals(current); /* just in case */
7225 			wait_event_interruptible(mddev->recovery_wait,
7226 						 mddev->resync_max > j
7227 						 || kthread_should_stop());
7228 		}
7229 
7230 		if (kthread_should_stop())
7231 			goto interrupted;
7232 
7233 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
7234 						  currspeed < speed_min(mddev));
7235 		if (sectors == 0) {
7236 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7237 			goto out;
7238 		}
7239 
7240 		if (!skipped) { /* actual IO requested */
7241 			io_sectors += sectors;
7242 			atomic_add(sectors, &mddev->recovery_active);
7243 		}
7244 
7245 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7246 			break;
7247 
7248 		j += sectors;
7249 		if (j>1) mddev->curr_resync = j;
7250 		mddev->curr_mark_cnt = io_sectors;
7251 		if (last_check == 0)
7252 			/* this is the earliest that rebuild will be
7253 			 * visible in /proc/mdstat
7254 			 */
7255 			md_new_event(mddev);
7256 
7257 		if (last_check + window > io_sectors || j == max_sectors)
7258 			continue;
7259 
7260 		last_check = io_sectors;
7261 	repeat:
7262 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7263 			/* step marks */
7264 			int next = (last_mark+1) % SYNC_MARKS;
7265 
7266 			mddev->resync_mark = mark[next];
7267 			mddev->resync_mark_cnt = mark_cnt[next];
7268 			mark[next] = jiffies;
7269 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7270 			last_mark = next;
7271 		}
7272 
7273 
7274 		if (kthread_should_stop())
7275 			goto interrupted;
7276 
7277 
7278 		/*
7279 		 * this loop exits only if either when we are slower than
7280 		 * the 'hard' speed limit, or the system was IO-idle for
7281 		 * a jiffy.
7282 		 * the system might be non-idle CPU-wise, but we only care
7283 		 * about not overloading the IO subsystem. (things like an
7284 		 * e2fsck being done on the RAID array should execute fast)
7285 		 */
7286 		cond_resched();
7287 
7288 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7289 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
7290 
7291 		if (currspeed > speed_min(mddev)) {
7292 			if ((currspeed > speed_max(mddev)) ||
7293 					!is_mddev_idle(mddev, 0)) {
7294 				msleep(500);
7295 				goto repeat;
7296 			}
7297 		}
7298 	}
7299 	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7300 	/*
7301 	 * this also signals 'finished resyncing' to md_stop
7302 	 */
7303  out:
7304 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7305 
7306 	/* tell personality that we are finished */
7307 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7308 
7309 	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7310 	    mddev->curr_resync > 2) {
7311 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7312 			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7313 				if (mddev->curr_resync >= mddev->recovery_cp) {
7314 					printk(KERN_INFO
7315 					       "md: checkpointing %s of %s.\n",
7316 					       desc, mdname(mddev));
7317 					mddev->recovery_cp =
7318 						mddev->curr_resync_completed;
7319 				}
7320 			} else
7321 				mddev->recovery_cp = MaxSector;
7322 		} else {
7323 			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7324 				mddev->curr_resync = MaxSector;
7325 			rcu_read_lock();
7326 			rdev_for_each_rcu(rdev, mddev)
7327 				if (rdev->raid_disk >= 0 &&
7328 				    mddev->delta_disks >= 0 &&
7329 				    !test_bit(Faulty, &rdev->flags) &&
7330 				    !test_bit(In_sync, &rdev->flags) &&
7331 				    rdev->recovery_offset < mddev->curr_resync)
7332 					rdev->recovery_offset = mddev->curr_resync;
7333 			rcu_read_unlock();
7334 		}
7335 	}
7336  skip:
7337 	set_bit(MD_CHANGE_DEVS, &mddev->flags);
7338 
7339 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7340 		/* We completed so min/max setting can be forgotten if used. */
7341 		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7342 			mddev->resync_min = 0;
7343 		mddev->resync_max = MaxSector;
7344 	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7345 		mddev->resync_min = mddev->curr_resync_completed;
7346 	mddev->curr_resync = 0;
7347 	wake_up(&resync_wait);
7348 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7349 	md_wakeup_thread(mddev->thread);
7350 	return;
7351 
7352  interrupted:
7353 	/*
7354 	 * got a signal, exit.
7355 	 */
7356 	printk(KERN_INFO
7357 	       "md: md_do_sync() got signal ... exiting\n");
7358 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7359 	goto out;
7360 
7361 }
7362 EXPORT_SYMBOL_GPL(md_do_sync);
7363 
7364 static int remove_and_add_spares(struct mddev *mddev)
7365 {
7366 	struct md_rdev *rdev;
7367 	int spares = 0;
7368 	int removed = 0;
7369 
7370 	mddev->curr_resync_completed = 0;
7371 
7372 	rdev_for_each(rdev, mddev)
7373 		if (rdev->raid_disk >= 0 &&
7374 		    !test_bit(Blocked, &rdev->flags) &&
7375 		    (test_bit(Faulty, &rdev->flags) ||
7376 		     ! test_bit(In_sync, &rdev->flags)) &&
7377 		    atomic_read(&rdev->nr_pending)==0) {
7378 			if (mddev->pers->hot_remove_disk(
7379 				    mddev, rdev) == 0) {
7380 				sysfs_unlink_rdev(mddev, rdev);
7381 				rdev->raid_disk = -1;
7382 				removed++;
7383 			}
7384 		}
7385 	if (removed)
7386 		sysfs_notify(&mddev->kobj, NULL,
7387 			     "degraded");
7388 
7389 
7390 	rdev_for_each(rdev, mddev) {
7391 		if (rdev->raid_disk >= 0 &&
7392 		    !test_bit(In_sync, &rdev->flags) &&
7393 		    !test_bit(Faulty, &rdev->flags))
7394 			spares++;
7395 		if (rdev->raid_disk < 0
7396 		    && !test_bit(Faulty, &rdev->flags)) {
7397 			rdev->recovery_offset = 0;
7398 			if (mddev->pers->
7399 			    hot_add_disk(mddev, rdev) == 0) {
7400 				if (sysfs_link_rdev(mddev, rdev))
7401 					/* failure here is OK */;
7402 				spares++;
7403 				md_new_event(mddev);
7404 				set_bit(MD_CHANGE_DEVS, &mddev->flags);
7405 			}
7406 		}
7407 	}
7408 	return spares;
7409 }
7410 
7411 static void reap_sync_thread(struct mddev *mddev)
7412 {
7413 	struct md_rdev *rdev;
7414 
7415 	/* resync has finished, collect result */
7416 	md_unregister_thread(&mddev->sync_thread);
7417 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7418 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7419 		/* success...*/
7420 		/* activate any spares */
7421 		if (mddev->pers->spare_active(mddev))
7422 			sysfs_notify(&mddev->kobj, NULL,
7423 				     "degraded");
7424 	}
7425 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7426 	    mddev->pers->finish_reshape)
7427 		mddev->pers->finish_reshape(mddev);
7428 
7429 	/* If array is no-longer degraded, then any saved_raid_disk
7430 	 * information must be scrapped.  Also if any device is now
7431 	 * In_sync we must scrape the saved_raid_disk for that device
7432 	 * do the superblock for an incrementally recovered device
7433 	 * written out.
7434 	 */
7435 	rdev_for_each(rdev, mddev)
7436 		if (!mddev->degraded ||
7437 		    test_bit(In_sync, &rdev->flags))
7438 			rdev->saved_raid_disk = -1;
7439 
7440 	md_update_sb(mddev, 1);
7441 	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7442 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7443 	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7444 	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7445 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7446 	/* flag recovery needed just to double check */
7447 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7448 	sysfs_notify_dirent_safe(mddev->sysfs_action);
7449 	md_new_event(mddev);
7450 	if (mddev->event_work.func)
7451 		queue_work(md_misc_wq, &mddev->event_work);
7452 }
7453 
7454 /*
7455  * This routine is regularly called by all per-raid-array threads to
7456  * deal with generic issues like resync and super-block update.
7457  * Raid personalities that don't have a thread (linear/raid0) do not
7458  * need this as they never do any recovery or update the superblock.
7459  *
7460  * It does not do any resync itself, but rather "forks" off other threads
7461  * to do that as needed.
7462  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7463  * "->recovery" and create a thread at ->sync_thread.
7464  * When the thread finishes it sets MD_RECOVERY_DONE
7465  * and wakeups up this thread which will reap the thread and finish up.
7466  * This thread also removes any faulty devices (with nr_pending == 0).
7467  *
7468  * The overall approach is:
7469  *  1/ if the superblock needs updating, update it.
7470  *  2/ If a recovery thread is running, don't do anything else.
7471  *  3/ If recovery has finished, clean up, possibly marking spares active.
7472  *  4/ If there are any faulty devices, remove them.
7473  *  5/ If array is degraded, try to add spares devices
7474  *  6/ If array has spares or is not in-sync, start a resync thread.
7475  */
7476 void md_check_recovery(struct mddev *mddev)
7477 {
7478 	if (mddev->suspended)
7479 		return;
7480 
7481 	if (mddev->bitmap)
7482 		bitmap_daemon_work(mddev);
7483 
7484 	if (signal_pending(current)) {
7485 		if (mddev->pers->sync_request && !mddev->external) {
7486 			printk(KERN_INFO "md: %s in immediate safe mode\n",
7487 			       mdname(mddev));
7488 			mddev->safemode = 2;
7489 		}
7490 		flush_signals(current);
7491 	}
7492 
7493 	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7494 		return;
7495 	if ( ! (
7496 		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7497 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7498 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7499 		(mddev->external == 0 && mddev->safemode == 1) ||
7500 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7501 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7502 		))
7503 		return;
7504 
7505 	if (mddev_trylock(mddev)) {
7506 		int spares = 0;
7507 
7508 		if (mddev->ro) {
7509 			/* Only thing we do on a ro array is remove
7510 			 * failed devices.
7511 			 */
7512 			struct md_rdev *rdev;
7513 			rdev_for_each(rdev, mddev)
7514 				if (rdev->raid_disk >= 0 &&
7515 				    !test_bit(Blocked, &rdev->flags) &&
7516 				    test_bit(Faulty, &rdev->flags) &&
7517 				    atomic_read(&rdev->nr_pending)==0) {
7518 					if (mddev->pers->hot_remove_disk(
7519 						    mddev, rdev) == 0) {
7520 						sysfs_unlink_rdev(mddev, rdev);
7521 						rdev->raid_disk = -1;
7522 					}
7523 				}
7524 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7525 			goto unlock;
7526 		}
7527 
7528 		if (!mddev->external) {
7529 			int did_change = 0;
7530 			spin_lock_irq(&mddev->write_lock);
7531 			if (mddev->safemode &&
7532 			    !atomic_read(&mddev->writes_pending) &&
7533 			    !mddev->in_sync &&
7534 			    mddev->recovery_cp == MaxSector) {
7535 				mddev->in_sync = 1;
7536 				did_change = 1;
7537 				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7538 			}
7539 			if (mddev->safemode == 1)
7540 				mddev->safemode = 0;
7541 			spin_unlock_irq(&mddev->write_lock);
7542 			if (did_change)
7543 				sysfs_notify_dirent_safe(mddev->sysfs_state);
7544 		}
7545 
7546 		if (mddev->flags)
7547 			md_update_sb(mddev, 0);
7548 
7549 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7550 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7551 			/* resync/recovery still happening */
7552 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7553 			goto unlock;
7554 		}
7555 		if (mddev->sync_thread) {
7556 			reap_sync_thread(mddev);
7557 			goto unlock;
7558 		}
7559 		/* Set RUNNING before clearing NEEDED to avoid
7560 		 * any transients in the value of "sync_action".
7561 		 */
7562 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7563 		/* Clear some bits that don't mean anything, but
7564 		 * might be left set
7565 		 */
7566 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7567 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7568 
7569 		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7570 		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7571 			goto unlock;
7572 		/* no recovery is running.
7573 		 * remove any failed drives, then
7574 		 * add spares if possible.
7575 		 * Spare are also removed and re-added, to allow
7576 		 * the personality to fail the re-add.
7577 		 */
7578 
7579 		if (mddev->reshape_position != MaxSector) {
7580 			if (mddev->pers->check_reshape == NULL ||
7581 			    mddev->pers->check_reshape(mddev) != 0)
7582 				/* Cannot proceed */
7583 				goto unlock;
7584 			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7585 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7586 		} else if ((spares = remove_and_add_spares(mddev))) {
7587 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7588 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7589 			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7590 			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7591 		} else if (mddev->recovery_cp < MaxSector) {
7592 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7593 			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7594 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7595 			/* nothing to be done ... */
7596 			goto unlock;
7597 
7598 		if (mddev->pers->sync_request) {
7599 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7600 				/* We are adding a device or devices to an array
7601 				 * which has the bitmap stored on all devices.
7602 				 * So make sure all bitmap pages get written
7603 				 */
7604 				bitmap_write_all(mddev->bitmap);
7605 			}
7606 			mddev->sync_thread = md_register_thread(md_do_sync,
7607 								mddev,
7608 								"resync");
7609 			if (!mddev->sync_thread) {
7610 				printk(KERN_ERR "%s: could not start resync"
7611 					" thread...\n",
7612 					mdname(mddev));
7613 				/* leave the spares where they are, it shouldn't hurt */
7614 				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7615 				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7616 				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7617 				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7618 				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7619 			} else
7620 				md_wakeup_thread(mddev->sync_thread);
7621 			sysfs_notify_dirent_safe(mddev->sysfs_action);
7622 			md_new_event(mddev);
7623 		}
7624 	unlock:
7625 		if (!mddev->sync_thread) {
7626 			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7627 			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7628 					       &mddev->recovery))
7629 				if (mddev->sysfs_action)
7630 					sysfs_notify_dirent_safe(mddev->sysfs_action);
7631 		}
7632 		mddev_unlock(mddev);
7633 	}
7634 }
7635 
7636 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7637 {
7638 	sysfs_notify_dirent_safe(rdev->sysfs_state);
7639 	wait_event_timeout(rdev->blocked_wait,
7640 			   !test_bit(Blocked, &rdev->flags) &&
7641 			   !test_bit(BlockedBadBlocks, &rdev->flags),
7642 			   msecs_to_jiffies(5000));
7643 	rdev_dec_pending(rdev, mddev);
7644 }
7645 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7646 
7647 
7648 /* Bad block management.
7649  * We can record which blocks on each device are 'bad' and so just
7650  * fail those blocks, or that stripe, rather than the whole device.
7651  * Entries in the bad-block table are 64bits wide.  This comprises:
7652  * Length of bad-range, in sectors: 0-511 for lengths 1-512
7653  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7654  *  A 'shift' can be set so that larger blocks are tracked and
7655  *  consequently larger devices can be covered.
7656  * 'Acknowledged' flag - 1 bit. - the most significant bit.
7657  *
7658  * Locking of the bad-block table uses a seqlock so md_is_badblock
7659  * might need to retry if it is very unlucky.
7660  * We will sometimes want to check for bad blocks in a bi_end_io function,
7661  * so we use the write_seqlock_irq variant.
7662  *
7663  * When looking for a bad block we specify a range and want to
7664  * know if any block in the range is bad.  So we binary-search
7665  * to the last range that starts at-or-before the given endpoint,
7666  * (or "before the sector after the target range")
7667  * then see if it ends after the given start.
7668  * We return
7669  *  0 if there are no known bad blocks in the range
7670  *  1 if there are known bad block which are all acknowledged
7671  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7672  * plus the start/length of the first bad section we overlap.
7673  */
7674 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7675 		   sector_t *first_bad, int *bad_sectors)
7676 {
7677 	int hi;
7678 	int lo = 0;
7679 	u64 *p = bb->page;
7680 	int rv = 0;
7681 	sector_t target = s + sectors;
7682 	unsigned seq;
7683 
7684 	if (bb->shift > 0) {
7685 		/* round the start down, and the end up */
7686 		s >>= bb->shift;
7687 		target += (1<<bb->shift) - 1;
7688 		target >>= bb->shift;
7689 		sectors = target - s;
7690 	}
7691 	/* 'target' is now the first block after the bad range */
7692 
7693 retry:
7694 	seq = read_seqbegin(&bb->lock);
7695 
7696 	hi = bb->count;
7697 
7698 	/* Binary search between lo and hi for 'target'
7699 	 * i.e. for the last range that starts before 'target'
7700 	 */
7701 	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7702 	 * are known not to be the last range before target.
7703 	 * VARIANT: hi-lo is the number of possible
7704 	 * ranges, and decreases until it reaches 1
7705 	 */
7706 	while (hi - lo > 1) {
7707 		int mid = (lo + hi) / 2;
7708 		sector_t a = BB_OFFSET(p[mid]);
7709 		if (a < target)
7710 			/* This could still be the one, earlier ranges
7711 			 * could not. */
7712 			lo = mid;
7713 		else
7714 			/* This and later ranges are definitely out. */
7715 			hi = mid;
7716 	}
7717 	/* 'lo' might be the last that started before target, but 'hi' isn't */
7718 	if (hi > lo) {
7719 		/* need to check all range that end after 's' to see if
7720 		 * any are unacknowledged.
7721 		 */
7722 		while (lo >= 0 &&
7723 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7724 			if (BB_OFFSET(p[lo]) < target) {
7725 				/* starts before the end, and finishes after
7726 				 * the start, so they must overlap
7727 				 */
7728 				if (rv != -1 && BB_ACK(p[lo]))
7729 					rv = 1;
7730 				else
7731 					rv = -1;
7732 				*first_bad = BB_OFFSET(p[lo]);
7733 				*bad_sectors = BB_LEN(p[lo]);
7734 			}
7735 			lo--;
7736 		}
7737 	}
7738 
7739 	if (read_seqretry(&bb->lock, seq))
7740 		goto retry;
7741 
7742 	return rv;
7743 }
7744 EXPORT_SYMBOL_GPL(md_is_badblock);
7745 
7746 /*
7747  * Add a range of bad blocks to the table.
7748  * This might extend the table, or might contract it
7749  * if two adjacent ranges can be merged.
7750  * We binary-search to find the 'insertion' point, then
7751  * decide how best to handle it.
7752  */
7753 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7754 			    int acknowledged)
7755 {
7756 	u64 *p;
7757 	int lo, hi;
7758 	int rv = 1;
7759 
7760 	if (bb->shift < 0)
7761 		/* badblocks are disabled */
7762 		return 0;
7763 
7764 	if (bb->shift) {
7765 		/* round the start down, and the end up */
7766 		sector_t next = s + sectors;
7767 		s >>= bb->shift;
7768 		next += (1<<bb->shift) - 1;
7769 		next >>= bb->shift;
7770 		sectors = next - s;
7771 	}
7772 
7773 	write_seqlock_irq(&bb->lock);
7774 
7775 	p = bb->page;
7776 	lo = 0;
7777 	hi = bb->count;
7778 	/* Find the last range that starts at-or-before 's' */
7779 	while (hi - lo > 1) {
7780 		int mid = (lo + hi) / 2;
7781 		sector_t a = BB_OFFSET(p[mid]);
7782 		if (a <= s)
7783 			lo = mid;
7784 		else
7785 			hi = mid;
7786 	}
7787 	if (hi > lo && BB_OFFSET(p[lo]) > s)
7788 		hi = lo;
7789 
7790 	if (hi > lo) {
7791 		/* we found a range that might merge with the start
7792 		 * of our new range
7793 		 */
7794 		sector_t a = BB_OFFSET(p[lo]);
7795 		sector_t e = a + BB_LEN(p[lo]);
7796 		int ack = BB_ACK(p[lo]);
7797 		if (e >= s) {
7798 			/* Yes, we can merge with a previous range */
7799 			if (s == a && s + sectors >= e)
7800 				/* new range covers old */
7801 				ack = acknowledged;
7802 			else
7803 				ack = ack && acknowledged;
7804 
7805 			if (e < s + sectors)
7806 				e = s + sectors;
7807 			if (e - a <= BB_MAX_LEN) {
7808 				p[lo] = BB_MAKE(a, e-a, ack);
7809 				s = e;
7810 			} else {
7811 				/* does not all fit in one range,
7812 				 * make p[lo] maximal
7813 				 */
7814 				if (BB_LEN(p[lo]) != BB_MAX_LEN)
7815 					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7816 				s = a + BB_MAX_LEN;
7817 			}
7818 			sectors = e - s;
7819 		}
7820 	}
7821 	if (sectors && hi < bb->count) {
7822 		/* 'hi' points to the first range that starts after 's'.
7823 		 * Maybe we can merge with the start of that range */
7824 		sector_t a = BB_OFFSET(p[hi]);
7825 		sector_t e = a + BB_LEN(p[hi]);
7826 		int ack = BB_ACK(p[hi]);
7827 		if (a <= s + sectors) {
7828 			/* merging is possible */
7829 			if (e <= s + sectors) {
7830 				/* full overlap */
7831 				e = s + sectors;
7832 				ack = acknowledged;
7833 			} else
7834 				ack = ack && acknowledged;
7835 
7836 			a = s;
7837 			if (e - a <= BB_MAX_LEN) {
7838 				p[hi] = BB_MAKE(a, e-a, ack);
7839 				s = e;
7840 			} else {
7841 				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7842 				s = a + BB_MAX_LEN;
7843 			}
7844 			sectors = e - s;
7845 			lo = hi;
7846 			hi++;
7847 		}
7848 	}
7849 	if (sectors == 0 && hi < bb->count) {
7850 		/* we might be able to combine lo and hi */
7851 		/* Note: 's' is at the end of 'lo' */
7852 		sector_t a = BB_OFFSET(p[hi]);
7853 		int lolen = BB_LEN(p[lo]);
7854 		int hilen = BB_LEN(p[hi]);
7855 		int newlen = lolen + hilen - (s - a);
7856 		if (s >= a && newlen < BB_MAX_LEN) {
7857 			/* yes, we can combine them */
7858 			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7859 			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7860 			memmove(p + hi, p + hi + 1,
7861 				(bb->count - hi - 1) * 8);
7862 			bb->count--;
7863 		}
7864 	}
7865 	while (sectors) {
7866 		/* didn't merge (it all).
7867 		 * Need to add a range just before 'hi' */
7868 		if (bb->count >= MD_MAX_BADBLOCKS) {
7869 			/* No room for more */
7870 			rv = 0;
7871 			break;
7872 		} else {
7873 			int this_sectors = sectors;
7874 			memmove(p + hi + 1, p + hi,
7875 				(bb->count - hi) * 8);
7876 			bb->count++;
7877 
7878 			if (this_sectors > BB_MAX_LEN)
7879 				this_sectors = BB_MAX_LEN;
7880 			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7881 			sectors -= this_sectors;
7882 			s += this_sectors;
7883 		}
7884 	}
7885 
7886 	bb->changed = 1;
7887 	if (!acknowledged)
7888 		bb->unacked_exist = 1;
7889 	write_sequnlock_irq(&bb->lock);
7890 
7891 	return rv;
7892 }
7893 
7894 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7895 		       int acknowledged)
7896 {
7897 	int rv = md_set_badblocks(&rdev->badblocks,
7898 				  s + rdev->data_offset, sectors, acknowledged);
7899 	if (rv) {
7900 		/* Make sure they get written out promptly */
7901 		sysfs_notify_dirent_safe(rdev->sysfs_state);
7902 		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7903 		md_wakeup_thread(rdev->mddev->thread);
7904 	}
7905 	return rv;
7906 }
7907 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7908 
7909 /*
7910  * Remove a range of bad blocks from the table.
7911  * This may involve extending the table if we spilt a region,
7912  * but it must not fail.  So if the table becomes full, we just
7913  * drop the remove request.
7914  */
7915 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7916 {
7917 	u64 *p;
7918 	int lo, hi;
7919 	sector_t target = s + sectors;
7920 	int rv = 0;
7921 
7922 	if (bb->shift > 0) {
7923 		/* When clearing we round the start up and the end down.
7924 		 * This should not matter as the shift should align with
7925 		 * the block size and no rounding should ever be needed.
7926 		 * However it is better the think a block is bad when it
7927 		 * isn't than to think a block is not bad when it is.
7928 		 */
7929 		s += (1<<bb->shift) - 1;
7930 		s >>= bb->shift;
7931 		target >>= bb->shift;
7932 		sectors = target - s;
7933 	}
7934 
7935 	write_seqlock_irq(&bb->lock);
7936 
7937 	p = bb->page;
7938 	lo = 0;
7939 	hi = bb->count;
7940 	/* Find the last range that starts before 'target' */
7941 	while (hi - lo > 1) {
7942 		int mid = (lo + hi) / 2;
7943 		sector_t a = BB_OFFSET(p[mid]);
7944 		if (a < target)
7945 			lo = mid;
7946 		else
7947 			hi = mid;
7948 	}
7949 	if (hi > lo) {
7950 		/* p[lo] is the last range that could overlap the
7951 		 * current range.  Earlier ranges could also overlap,
7952 		 * but only this one can overlap the end of the range.
7953 		 */
7954 		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7955 			/* Partial overlap, leave the tail of this range */
7956 			int ack = BB_ACK(p[lo]);
7957 			sector_t a = BB_OFFSET(p[lo]);
7958 			sector_t end = a + BB_LEN(p[lo]);
7959 
7960 			if (a < s) {
7961 				/* we need to split this range */
7962 				if (bb->count >= MD_MAX_BADBLOCKS) {
7963 					rv = 0;
7964 					goto out;
7965 				}
7966 				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7967 				bb->count++;
7968 				p[lo] = BB_MAKE(a, s-a, ack);
7969 				lo++;
7970 			}
7971 			p[lo] = BB_MAKE(target, end - target, ack);
7972 			/* there is no longer an overlap */
7973 			hi = lo;
7974 			lo--;
7975 		}
7976 		while (lo >= 0 &&
7977 		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7978 			/* This range does overlap */
7979 			if (BB_OFFSET(p[lo]) < s) {
7980 				/* Keep the early parts of this range. */
7981 				int ack = BB_ACK(p[lo]);
7982 				sector_t start = BB_OFFSET(p[lo]);
7983 				p[lo] = BB_MAKE(start, s - start, ack);
7984 				/* now low doesn't overlap, so.. */
7985 				break;
7986 			}
7987 			lo--;
7988 		}
7989 		/* 'lo' is strictly before, 'hi' is strictly after,
7990 		 * anything between needs to be discarded
7991 		 */
7992 		if (hi - lo > 1) {
7993 			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7994 			bb->count -= (hi - lo - 1);
7995 		}
7996 	}
7997 
7998 	bb->changed = 1;
7999 out:
8000 	write_sequnlock_irq(&bb->lock);
8001 	return rv;
8002 }
8003 
8004 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8005 {
8006 	return md_clear_badblocks(&rdev->badblocks,
8007 				  s + rdev->data_offset,
8008 				  sectors);
8009 }
8010 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8011 
8012 /*
8013  * Acknowledge all bad blocks in a list.
8014  * This only succeeds if ->changed is clear.  It is used by
8015  * in-kernel metadata updates
8016  */
8017 void md_ack_all_badblocks(struct badblocks *bb)
8018 {
8019 	if (bb->page == NULL || bb->changed)
8020 		/* no point even trying */
8021 		return;
8022 	write_seqlock_irq(&bb->lock);
8023 
8024 	if (bb->changed == 0 && bb->unacked_exist) {
8025 		u64 *p = bb->page;
8026 		int i;
8027 		for (i = 0; i < bb->count ; i++) {
8028 			if (!BB_ACK(p[i])) {
8029 				sector_t start = BB_OFFSET(p[i]);
8030 				int len = BB_LEN(p[i]);
8031 				p[i] = BB_MAKE(start, len, 1);
8032 			}
8033 		}
8034 		bb->unacked_exist = 0;
8035 	}
8036 	write_sequnlock_irq(&bb->lock);
8037 }
8038 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8039 
8040 /* sysfs access to bad-blocks list.
8041  * We present two files.
8042  * 'bad-blocks' lists sector numbers and lengths of ranges that
8043  *    are recorded as bad.  The list is truncated to fit within
8044  *    the one-page limit of sysfs.
8045  *    Writing "sector length" to this file adds an acknowledged
8046  *    bad block list.
8047  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8048  *    been acknowledged.  Writing to this file adds bad blocks
8049  *    without acknowledging them.  This is largely for testing.
8050  */
8051 
8052 static ssize_t
8053 badblocks_show(struct badblocks *bb, char *page, int unack)
8054 {
8055 	size_t len;
8056 	int i;
8057 	u64 *p = bb->page;
8058 	unsigned seq;
8059 
8060 	if (bb->shift < 0)
8061 		return 0;
8062 
8063 retry:
8064 	seq = read_seqbegin(&bb->lock);
8065 
8066 	len = 0;
8067 	i = 0;
8068 
8069 	while (len < PAGE_SIZE && i < bb->count) {
8070 		sector_t s = BB_OFFSET(p[i]);
8071 		unsigned int length = BB_LEN(p[i]);
8072 		int ack = BB_ACK(p[i]);
8073 		i++;
8074 
8075 		if (unack && ack)
8076 			continue;
8077 
8078 		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8079 				(unsigned long long)s << bb->shift,
8080 				length << bb->shift);
8081 	}
8082 	if (unack && len == 0)
8083 		bb->unacked_exist = 0;
8084 
8085 	if (read_seqretry(&bb->lock, seq))
8086 		goto retry;
8087 
8088 	return len;
8089 }
8090 
8091 #define DO_DEBUG 1
8092 
8093 static ssize_t
8094 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8095 {
8096 	unsigned long long sector;
8097 	int length;
8098 	char newline;
8099 #ifdef DO_DEBUG
8100 	/* Allow clearing via sysfs *only* for testing/debugging.
8101 	 * Normally only a successful write may clear a badblock
8102 	 */
8103 	int clear = 0;
8104 	if (page[0] == '-') {
8105 		clear = 1;
8106 		page++;
8107 	}
8108 #endif /* DO_DEBUG */
8109 
8110 	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8111 	case 3:
8112 		if (newline != '\n')
8113 			return -EINVAL;
8114 	case 2:
8115 		if (length <= 0)
8116 			return -EINVAL;
8117 		break;
8118 	default:
8119 		return -EINVAL;
8120 	}
8121 
8122 #ifdef DO_DEBUG
8123 	if (clear) {
8124 		md_clear_badblocks(bb, sector, length);
8125 		return len;
8126 	}
8127 #endif /* DO_DEBUG */
8128 	if (md_set_badblocks(bb, sector, length, !unack))
8129 		return len;
8130 	else
8131 		return -ENOSPC;
8132 }
8133 
8134 static int md_notify_reboot(struct notifier_block *this,
8135 			    unsigned long code, void *x)
8136 {
8137 	struct list_head *tmp;
8138 	struct mddev *mddev;
8139 	int need_delay = 0;
8140 
8141 	for_each_mddev(mddev, tmp) {
8142 		if (mddev_trylock(mddev)) {
8143 			if (mddev->pers)
8144 				__md_stop_writes(mddev);
8145 			mddev->safemode = 2;
8146 			mddev_unlock(mddev);
8147 		}
8148 		need_delay = 1;
8149 	}
8150 	/*
8151 	 * certain more exotic SCSI devices are known to be
8152 	 * volatile wrt too early system reboots. While the
8153 	 * right place to handle this issue is the given
8154 	 * driver, we do want to have a safe RAID driver ...
8155 	 */
8156 	if (need_delay)
8157 		mdelay(1000*1);
8158 
8159 	return NOTIFY_DONE;
8160 }
8161 
8162 static struct notifier_block md_notifier = {
8163 	.notifier_call	= md_notify_reboot,
8164 	.next		= NULL,
8165 	.priority	= INT_MAX, /* before any real devices */
8166 };
8167 
8168 static void md_geninit(void)
8169 {
8170 	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8171 
8172 	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8173 }
8174 
8175 static int __init md_init(void)
8176 {
8177 	int ret = -ENOMEM;
8178 
8179 	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8180 	if (!md_wq)
8181 		goto err_wq;
8182 
8183 	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8184 	if (!md_misc_wq)
8185 		goto err_misc_wq;
8186 
8187 	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8188 		goto err_md;
8189 
8190 	if ((ret = register_blkdev(0, "mdp")) < 0)
8191 		goto err_mdp;
8192 	mdp_major = ret;
8193 
8194 	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8195 			    md_probe, NULL, NULL);
8196 	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8197 			    md_probe, NULL, NULL);
8198 
8199 	register_reboot_notifier(&md_notifier);
8200 	raid_table_header = register_sysctl_table(raid_root_table);
8201 
8202 	md_geninit();
8203 	return 0;
8204 
8205 err_mdp:
8206 	unregister_blkdev(MD_MAJOR, "md");
8207 err_md:
8208 	destroy_workqueue(md_misc_wq);
8209 err_misc_wq:
8210 	destroy_workqueue(md_wq);
8211 err_wq:
8212 	return ret;
8213 }
8214 
8215 #ifndef MODULE
8216 
8217 /*
8218  * Searches all registered partitions for autorun RAID arrays
8219  * at boot time.
8220  */
8221 
8222 static LIST_HEAD(all_detected_devices);
8223 struct detected_devices_node {
8224 	struct list_head list;
8225 	dev_t dev;
8226 };
8227 
8228 void md_autodetect_dev(dev_t dev)
8229 {
8230 	struct detected_devices_node *node_detected_dev;
8231 
8232 	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8233 	if (node_detected_dev) {
8234 		node_detected_dev->dev = dev;
8235 		list_add_tail(&node_detected_dev->list, &all_detected_devices);
8236 	} else {
8237 		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8238 			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8239 	}
8240 }
8241 
8242 
8243 static void autostart_arrays(int part)
8244 {
8245 	struct md_rdev *rdev;
8246 	struct detected_devices_node *node_detected_dev;
8247 	dev_t dev;
8248 	int i_scanned, i_passed;
8249 
8250 	i_scanned = 0;
8251 	i_passed = 0;
8252 
8253 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8254 
8255 	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8256 		i_scanned++;
8257 		node_detected_dev = list_entry(all_detected_devices.next,
8258 					struct detected_devices_node, list);
8259 		list_del(&node_detected_dev->list);
8260 		dev = node_detected_dev->dev;
8261 		kfree(node_detected_dev);
8262 		rdev = md_import_device(dev,0, 90);
8263 		if (IS_ERR(rdev))
8264 			continue;
8265 
8266 		if (test_bit(Faulty, &rdev->flags)) {
8267 			MD_BUG();
8268 			continue;
8269 		}
8270 		set_bit(AutoDetected, &rdev->flags);
8271 		list_add(&rdev->same_set, &pending_raid_disks);
8272 		i_passed++;
8273 	}
8274 
8275 	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8276 						i_scanned, i_passed);
8277 
8278 	autorun_devices(part);
8279 }
8280 
8281 #endif /* !MODULE */
8282 
8283 static __exit void md_exit(void)
8284 {
8285 	struct mddev *mddev;
8286 	struct list_head *tmp;
8287 
8288 	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8289 	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8290 
8291 	unregister_blkdev(MD_MAJOR,"md");
8292 	unregister_blkdev(mdp_major, "mdp");
8293 	unregister_reboot_notifier(&md_notifier);
8294 	unregister_sysctl_table(raid_table_header);
8295 	remove_proc_entry("mdstat", NULL);
8296 	for_each_mddev(mddev, tmp) {
8297 		export_array(mddev);
8298 		mddev->hold_active = 0;
8299 	}
8300 	destroy_workqueue(md_misc_wq);
8301 	destroy_workqueue(md_wq);
8302 }
8303 
8304 subsys_initcall(md_init);
8305 module_exit(md_exit)
8306 
8307 static int get_ro(char *buffer, struct kernel_param *kp)
8308 {
8309 	return sprintf(buffer, "%d", start_readonly);
8310 }
8311 static int set_ro(const char *val, struct kernel_param *kp)
8312 {
8313 	char *e;
8314 	int num = simple_strtoul(val, &e, 10);
8315 	if (*val && (*e == '\0' || *e == '\n')) {
8316 		start_readonly = num;
8317 		return 0;
8318 	}
8319 	return -EINVAL;
8320 }
8321 
8322 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8323 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8324 
8325 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8326 
8327 EXPORT_SYMBOL(register_md_personality);
8328 EXPORT_SYMBOL(unregister_md_personality);
8329 EXPORT_SYMBOL(md_error);
8330 EXPORT_SYMBOL(md_done_sync);
8331 EXPORT_SYMBOL(md_write_start);
8332 EXPORT_SYMBOL(md_write_end);
8333 EXPORT_SYMBOL(md_register_thread);
8334 EXPORT_SYMBOL(md_unregister_thread);
8335 EXPORT_SYMBOL(md_wakeup_thread);
8336 EXPORT_SYMBOL(md_check_recovery);
8337 MODULE_LICENSE("GPL");
8338 MODULE_DESCRIPTION("MD RAID framework");
8339 MODULE_ALIAS("md");
8340 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
8341