xref: /openbmc/linux/drivers/md/md.c (revision 014236d2)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 
47 #include <linux/init.h>
48 
49 #include <linux/file.h>
50 
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54 
55 #include <asm/unaligned.h>
56 
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59 
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62 
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65 
66 
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70 
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73 
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85 
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88 
89 static struct ctl_table_header *raid_table_header;
90 
91 static ctl_table raid_table[] = {
92 	{
93 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
94 		.procname	= "speed_limit_min",
95 		.data		= &sysctl_speed_limit_min,
96 		.maxlen		= sizeof(int),
97 		.mode		= 0644,
98 		.proc_handler	= &proc_dointvec,
99 	},
100 	{
101 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
102 		.procname	= "speed_limit_max",
103 		.data		= &sysctl_speed_limit_max,
104 		.maxlen		= sizeof(int),
105 		.mode		= 0644,
106 		.proc_handler	= &proc_dointvec,
107 	},
108 	{ .ctl_name = 0 }
109 };
110 
111 static ctl_table raid_dir_table[] = {
112 	{
113 		.ctl_name	= DEV_RAID,
114 		.procname	= "raid",
115 		.maxlen		= 0,
116 		.mode		= 0555,
117 		.child		= raid_table,
118 	},
119 	{ .ctl_name = 0 }
120 };
121 
122 static ctl_table raid_root_table[] = {
123 	{
124 		.ctl_name	= CTL_DEV,
125 		.procname	= "dev",
126 		.maxlen		= 0,
127 		.mode		= 0555,
128 		.child		= raid_dir_table,
129 	},
130 	{ .ctl_name = 0 }
131 };
132 
133 static struct block_device_operations md_fops;
134 
135 static int start_readonly;
136 
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 static void md_new_event(mddev_t *mddev)
150 {
151 	atomic_inc(&md_event_count);
152 	wake_up(&md_event_waiters);
153 }
154 
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161 
162 
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)					\
171 									\
172 	for (({ spin_lock(&all_mddevs_lock); 				\
173 		tmp = all_mddevs.next;					\
174 		mddev = NULL;});					\
175 	     ({ if (tmp != &all_mddevs)					\
176 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177 		spin_unlock(&all_mddevs_lock);				\
178 		if (mddev) mddev_put(mddev);				\
179 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
180 		tmp != &all_mddevs;});					\
181 	     ({ spin_lock(&all_mddevs_lock);				\
182 		tmp = tmp->next;})					\
183 		)
184 
185 
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188 	bio_io_error(bio, bio->bi_size);
189 	return 0;
190 }
191 
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194 	atomic_inc(&mddev->active);
195 	return mddev;
196 }
197 
198 static void mddev_put(mddev_t *mddev)
199 {
200 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201 		return;
202 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203 		list_del(&mddev->all_mddevs);
204 		blk_put_queue(mddev->queue);
205 		kobject_unregister(&mddev->kobj);
206 	}
207 	spin_unlock(&all_mddevs_lock);
208 }
209 
210 static mddev_t * mddev_find(dev_t unit)
211 {
212 	mddev_t *mddev, *new = NULL;
213 
214  retry:
215 	spin_lock(&all_mddevs_lock);
216 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217 		if (mddev->unit == unit) {
218 			mddev_get(mddev);
219 			spin_unlock(&all_mddevs_lock);
220 			kfree(new);
221 			return mddev;
222 		}
223 
224 	if (new) {
225 		list_add(&new->all_mddevs, &all_mddevs);
226 		spin_unlock(&all_mddevs_lock);
227 		return new;
228 	}
229 	spin_unlock(&all_mddevs_lock);
230 
231 	new = kzalloc(sizeof(*new), GFP_KERNEL);
232 	if (!new)
233 		return NULL;
234 
235 	new->unit = unit;
236 	if (MAJOR(unit) == MD_MAJOR)
237 		new->md_minor = MINOR(unit);
238 	else
239 		new->md_minor = MINOR(unit) >> MdpMinorShift;
240 
241 	init_MUTEX(&new->reconfig_sem);
242 	INIT_LIST_HEAD(&new->disks);
243 	INIT_LIST_HEAD(&new->all_mddevs);
244 	init_timer(&new->safemode_timer);
245 	atomic_set(&new->active, 1);
246 	spin_lock_init(&new->write_lock);
247 	init_waitqueue_head(&new->sb_wait);
248 
249 	new->queue = blk_alloc_queue(GFP_KERNEL);
250 	if (!new->queue) {
251 		kfree(new);
252 		return NULL;
253 	}
254 
255 	blk_queue_make_request(new->queue, md_fail_request);
256 
257 	goto retry;
258 }
259 
260 static inline int mddev_lock(mddev_t * mddev)
261 {
262 	return down_interruptible(&mddev->reconfig_sem);
263 }
264 
265 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
266 {
267 	down(&mddev->reconfig_sem);
268 }
269 
270 static inline int mddev_trylock(mddev_t * mddev)
271 {
272 	return down_trylock(&mddev->reconfig_sem);
273 }
274 
275 static inline void mddev_unlock(mddev_t * mddev)
276 {
277 	up(&mddev->reconfig_sem);
278 
279 	md_wakeup_thread(mddev->thread);
280 }
281 
282 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
283 {
284 	mdk_rdev_t * rdev;
285 	struct list_head *tmp;
286 
287 	ITERATE_RDEV(mddev,rdev,tmp) {
288 		if (rdev->desc_nr == nr)
289 			return rdev;
290 	}
291 	return NULL;
292 }
293 
294 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
295 {
296 	struct list_head *tmp;
297 	mdk_rdev_t *rdev;
298 
299 	ITERATE_RDEV(mddev,rdev,tmp) {
300 		if (rdev->bdev->bd_dev == dev)
301 			return rdev;
302 	}
303 	return NULL;
304 }
305 
306 static struct mdk_personality *find_pers(int level, char *clevel)
307 {
308 	struct mdk_personality *pers;
309 	list_for_each_entry(pers, &pers_list, list) {
310 		if (level != LEVEL_NONE && pers->level == level)
311 			return pers;
312 		if (strcmp(pers->name, clevel)==0)
313 			return pers;
314 	}
315 	return NULL;
316 }
317 
318 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
319 {
320 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
321 	return MD_NEW_SIZE_BLOCKS(size);
322 }
323 
324 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
325 {
326 	sector_t size;
327 
328 	size = rdev->sb_offset;
329 
330 	if (chunk_size)
331 		size &= ~((sector_t)chunk_size/1024 - 1);
332 	return size;
333 }
334 
335 static int alloc_disk_sb(mdk_rdev_t * rdev)
336 {
337 	if (rdev->sb_page)
338 		MD_BUG();
339 
340 	rdev->sb_page = alloc_page(GFP_KERNEL);
341 	if (!rdev->sb_page) {
342 		printk(KERN_ALERT "md: out of memory.\n");
343 		return -EINVAL;
344 	}
345 
346 	return 0;
347 }
348 
349 static void free_disk_sb(mdk_rdev_t * rdev)
350 {
351 	if (rdev->sb_page) {
352 		put_page(rdev->sb_page);
353 		rdev->sb_loaded = 0;
354 		rdev->sb_page = NULL;
355 		rdev->sb_offset = 0;
356 		rdev->size = 0;
357 	}
358 }
359 
360 
361 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
362 {
363 	mdk_rdev_t *rdev = bio->bi_private;
364 	mddev_t *mddev = rdev->mddev;
365 	if (bio->bi_size)
366 		return 1;
367 
368 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
369 		md_error(mddev, rdev);
370 
371 	if (atomic_dec_and_test(&mddev->pending_writes))
372 		wake_up(&mddev->sb_wait);
373 	bio_put(bio);
374 	return 0;
375 }
376 
377 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
378 {
379 	struct bio *bio2 = bio->bi_private;
380 	mdk_rdev_t *rdev = bio2->bi_private;
381 	mddev_t *mddev = rdev->mddev;
382 	if (bio->bi_size)
383 		return 1;
384 
385 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
386 	    error == -EOPNOTSUPP) {
387 		unsigned long flags;
388 		/* barriers don't appear to be supported :-( */
389 		set_bit(BarriersNotsupp, &rdev->flags);
390 		mddev->barriers_work = 0;
391 		spin_lock_irqsave(&mddev->write_lock, flags);
392 		bio2->bi_next = mddev->biolist;
393 		mddev->biolist = bio2;
394 		spin_unlock_irqrestore(&mddev->write_lock, flags);
395 		wake_up(&mddev->sb_wait);
396 		bio_put(bio);
397 		return 0;
398 	}
399 	bio_put(bio2);
400 	bio->bi_private = rdev;
401 	return super_written(bio, bytes_done, error);
402 }
403 
404 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
405 		   sector_t sector, int size, struct page *page)
406 {
407 	/* write first size bytes of page to sector of rdev
408 	 * Increment mddev->pending_writes before returning
409 	 * and decrement it on completion, waking up sb_wait
410 	 * if zero is reached.
411 	 * If an error occurred, call md_error
412 	 *
413 	 * As we might need to resubmit the request if BIO_RW_BARRIER
414 	 * causes ENOTSUPP, we allocate a spare bio...
415 	 */
416 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
417 	int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
418 
419 	bio->bi_bdev = rdev->bdev;
420 	bio->bi_sector = sector;
421 	bio_add_page(bio, page, size, 0);
422 	bio->bi_private = rdev;
423 	bio->bi_end_io = super_written;
424 	bio->bi_rw = rw;
425 
426 	atomic_inc(&mddev->pending_writes);
427 	if (!test_bit(BarriersNotsupp, &rdev->flags)) {
428 		struct bio *rbio;
429 		rw |= (1<<BIO_RW_BARRIER);
430 		rbio = bio_clone(bio, GFP_NOIO);
431 		rbio->bi_private = bio;
432 		rbio->bi_end_io = super_written_barrier;
433 		submit_bio(rw, rbio);
434 	} else
435 		submit_bio(rw, bio);
436 }
437 
438 void md_super_wait(mddev_t *mddev)
439 {
440 	/* wait for all superblock writes that were scheduled to complete.
441 	 * if any had to be retried (due to BARRIER problems), retry them
442 	 */
443 	DEFINE_WAIT(wq);
444 	for(;;) {
445 		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
446 		if (atomic_read(&mddev->pending_writes)==0)
447 			break;
448 		while (mddev->biolist) {
449 			struct bio *bio;
450 			spin_lock_irq(&mddev->write_lock);
451 			bio = mddev->biolist;
452 			mddev->biolist = bio->bi_next ;
453 			bio->bi_next = NULL;
454 			spin_unlock_irq(&mddev->write_lock);
455 			submit_bio(bio->bi_rw, bio);
456 		}
457 		schedule();
458 	}
459 	finish_wait(&mddev->sb_wait, &wq);
460 }
461 
462 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
463 {
464 	if (bio->bi_size)
465 		return 1;
466 
467 	complete((struct completion*)bio->bi_private);
468 	return 0;
469 }
470 
471 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
472 		   struct page *page, int rw)
473 {
474 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
475 	struct completion event;
476 	int ret;
477 
478 	rw |= (1 << BIO_RW_SYNC);
479 
480 	bio->bi_bdev = bdev;
481 	bio->bi_sector = sector;
482 	bio_add_page(bio, page, size, 0);
483 	init_completion(&event);
484 	bio->bi_private = &event;
485 	bio->bi_end_io = bi_complete;
486 	submit_bio(rw, bio);
487 	wait_for_completion(&event);
488 
489 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
490 	bio_put(bio);
491 	return ret;
492 }
493 EXPORT_SYMBOL_GPL(sync_page_io);
494 
495 static int read_disk_sb(mdk_rdev_t * rdev, int size)
496 {
497 	char b[BDEVNAME_SIZE];
498 	if (!rdev->sb_page) {
499 		MD_BUG();
500 		return -EINVAL;
501 	}
502 	if (rdev->sb_loaded)
503 		return 0;
504 
505 
506 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
507 		goto fail;
508 	rdev->sb_loaded = 1;
509 	return 0;
510 
511 fail:
512 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
513 		bdevname(rdev->bdev,b));
514 	return -EINVAL;
515 }
516 
517 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
518 {
519 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
520 		(sb1->set_uuid1 == sb2->set_uuid1) &&
521 		(sb1->set_uuid2 == sb2->set_uuid2) &&
522 		(sb1->set_uuid3 == sb2->set_uuid3))
523 
524 		return 1;
525 
526 	return 0;
527 }
528 
529 
530 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
531 {
532 	int ret;
533 	mdp_super_t *tmp1, *tmp2;
534 
535 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
536 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
537 
538 	if (!tmp1 || !tmp2) {
539 		ret = 0;
540 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
541 		goto abort;
542 	}
543 
544 	*tmp1 = *sb1;
545 	*tmp2 = *sb2;
546 
547 	/*
548 	 * nr_disks is not constant
549 	 */
550 	tmp1->nr_disks = 0;
551 	tmp2->nr_disks = 0;
552 
553 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
554 		ret = 0;
555 	else
556 		ret = 1;
557 
558 abort:
559 	kfree(tmp1);
560 	kfree(tmp2);
561 	return ret;
562 }
563 
564 static unsigned int calc_sb_csum(mdp_super_t * sb)
565 {
566 	unsigned int disk_csum, csum;
567 
568 	disk_csum = sb->sb_csum;
569 	sb->sb_csum = 0;
570 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
571 	sb->sb_csum = disk_csum;
572 	return csum;
573 }
574 
575 
576 /*
577  * Handle superblock details.
578  * We want to be able to handle multiple superblock formats
579  * so we have a common interface to them all, and an array of
580  * different handlers.
581  * We rely on user-space to write the initial superblock, and support
582  * reading and updating of superblocks.
583  * Interface methods are:
584  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
585  *      loads and validates a superblock on dev.
586  *      if refdev != NULL, compare superblocks on both devices
587  *    Return:
588  *      0 - dev has a superblock that is compatible with refdev
589  *      1 - dev has a superblock that is compatible and newer than refdev
590  *          so dev should be used as the refdev in future
591  *     -EINVAL superblock incompatible or invalid
592  *     -othererror e.g. -EIO
593  *
594  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
595  *      Verify that dev is acceptable into mddev.
596  *       The first time, mddev->raid_disks will be 0, and data from
597  *       dev should be merged in.  Subsequent calls check that dev
598  *       is new enough.  Return 0 or -EINVAL
599  *
600  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
601  *     Update the superblock for rdev with data in mddev
602  *     This does not write to disc.
603  *
604  */
605 
606 struct super_type  {
607 	char 		*name;
608 	struct module	*owner;
609 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
610 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
611 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
612 };
613 
614 /*
615  * load_super for 0.90.0
616  */
617 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
618 {
619 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
620 	mdp_super_t *sb;
621 	int ret;
622 	sector_t sb_offset;
623 
624 	/*
625 	 * Calculate the position of the superblock,
626 	 * it's at the end of the disk.
627 	 *
628 	 * It also happens to be a multiple of 4Kb.
629 	 */
630 	sb_offset = calc_dev_sboffset(rdev->bdev);
631 	rdev->sb_offset = sb_offset;
632 
633 	ret = read_disk_sb(rdev, MD_SB_BYTES);
634 	if (ret) return ret;
635 
636 	ret = -EINVAL;
637 
638 	bdevname(rdev->bdev, b);
639 	sb = (mdp_super_t*)page_address(rdev->sb_page);
640 
641 	if (sb->md_magic != MD_SB_MAGIC) {
642 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
643 		       b);
644 		goto abort;
645 	}
646 
647 	if (sb->major_version != 0 ||
648 	    sb->minor_version != 90) {
649 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
650 			sb->major_version, sb->minor_version,
651 			b);
652 		goto abort;
653 	}
654 
655 	if (sb->raid_disks <= 0)
656 		goto abort;
657 
658 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
659 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
660 			b);
661 		goto abort;
662 	}
663 
664 	rdev->preferred_minor = sb->md_minor;
665 	rdev->data_offset = 0;
666 	rdev->sb_size = MD_SB_BYTES;
667 
668 	if (sb->level == LEVEL_MULTIPATH)
669 		rdev->desc_nr = -1;
670 	else
671 		rdev->desc_nr = sb->this_disk.number;
672 
673 	if (refdev == 0)
674 		ret = 1;
675 	else {
676 		__u64 ev1, ev2;
677 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
678 		if (!uuid_equal(refsb, sb)) {
679 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
680 				b, bdevname(refdev->bdev,b2));
681 			goto abort;
682 		}
683 		if (!sb_equal(refsb, sb)) {
684 			printk(KERN_WARNING "md: %s has same UUID"
685 			       " but different superblock to %s\n",
686 			       b, bdevname(refdev->bdev, b2));
687 			goto abort;
688 		}
689 		ev1 = md_event(sb);
690 		ev2 = md_event(refsb);
691 		if (ev1 > ev2)
692 			ret = 1;
693 		else
694 			ret = 0;
695 	}
696 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
697 
698 	if (rdev->size < sb->size && sb->level > 1)
699 		/* "this cannot possibly happen" ... */
700 		ret = -EINVAL;
701 
702  abort:
703 	return ret;
704 }
705 
706 /*
707  * validate_super for 0.90.0
708  */
709 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
710 {
711 	mdp_disk_t *desc;
712 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
713 
714 	rdev->raid_disk = -1;
715 	rdev->flags = 0;
716 	if (mddev->raid_disks == 0) {
717 		mddev->major_version = 0;
718 		mddev->minor_version = sb->minor_version;
719 		mddev->patch_version = sb->patch_version;
720 		mddev->persistent = ! sb->not_persistent;
721 		mddev->chunk_size = sb->chunk_size;
722 		mddev->ctime = sb->ctime;
723 		mddev->utime = sb->utime;
724 		mddev->level = sb->level;
725 		mddev->clevel[0] = 0;
726 		mddev->layout = sb->layout;
727 		mddev->raid_disks = sb->raid_disks;
728 		mddev->size = sb->size;
729 		mddev->events = md_event(sb);
730 		mddev->bitmap_offset = 0;
731 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
732 
733 		if (sb->state & (1<<MD_SB_CLEAN))
734 			mddev->recovery_cp = MaxSector;
735 		else {
736 			if (sb->events_hi == sb->cp_events_hi &&
737 				sb->events_lo == sb->cp_events_lo) {
738 				mddev->recovery_cp = sb->recovery_cp;
739 			} else
740 				mddev->recovery_cp = 0;
741 		}
742 
743 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
744 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
745 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
746 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
747 
748 		mddev->max_disks = MD_SB_DISKS;
749 
750 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
751 		    mddev->bitmap_file == NULL) {
752 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
753 			    && mddev->level != 10) {
754 				/* FIXME use a better test */
755 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
756 				return -EINVAL;
757 			}
758 			mddev->bitmap_offset = mddev->default_bitmap_offset;
759 		}
760 
761 	} else if (mddev->pers == NULL) {
762 		/* Insist on good event counter while assembling */
763 		__u64 ev1 = md_event(sb);
764 		++ev1;
765 		if (ev1 < mddev->events)
766 			return -EINVAL;
767 	} else if (mddev->bitmap) {
768 		/* if adding to array with a bitmap, then we can accept an
769 		 * older device ... but not too old.
770 		 */
771 		__u64 ev1 = md_event(sb);
772 		if (ev1 < mddev->bitmap->events_cleared)
773 			return 0;
774 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
775 		return 0;
776 
777 	if (mddev->level != LEVEL_MULTIPATH) {
778 		desc = sb->disks + rdev->desc_nr;
779 
780 		if (desc->state & (1<<MD_DISK_FAULTY))
781 			set_bit(Faulty, &rdev->flags);
782 		else if (desc->state & (1<<MD_DISK_SYNC) &&
783 			 desc->raid_disk < mddev->raid_disks) {
784 			set_bit(In_sync, &rdev->flags);
785 			rdev->raid_disk = desc->raid_disk;
786 		}
787 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
788 			set_bit(WriteMostly, &rdev->flags);
789 	} else /* MULTIPATH are always insync */
790 		set_bit(In_sync, &rdev->flags);
791 	return 0;
792 }
793 
794 /*
795  * sync_super for 0.90.0
796  */
797 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
798 {
799 	mdp_super_t *sb;
800 	struct list_head *tmp;
801 	mdk_rdev_t *rdev2;
802 	int next_spare = mddev->raid_disks;
803 
804 
805 	/* make rdev->sb match mddev data..
806 	 *
807 	 * 1/ zero out disks
808 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
809 	 * 3/ any empty disks < next_spare become removed
810 	 *
811 	 * disks[0] gets initialised to REMOVED because
812 	 * we cannot be sure from other fields if it has
813 	 * been initialised or not.
814 	 */
815 	int i;
816 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
817 
818 	rdev->sb_size = MD_SB_BYTES;
819 
820 	sb = (mdp_super_t*)page_address(rdev->sb_page);
821 
822 	memset(sb, 0, sizeof(*sb));
823 
824 	sb->md_magic = MD_SB_MAGIC;
825 	sb->major_version = mddev->major_version;
826 	sb->minor_version = mddev->minor_version;
827 	sb->patch_version = mddev->patch_version;
828 	sb->gvalid_words  = 0; /* ignored */
829 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
830 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
831 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
832 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
833 
834 	sb->ctime = mddev->ctime;
835 	sb->level = mddev->level;
836 	sb->size  = mddev->size;
837 	sb->raid_disks = mddev->raid_disks;
838 	sb->md_minor = mddev->md_minor;
839 	sb->not_persistent = !mddev->persistent;
840 	sb->utime = mddev->utime;
841 	sb->state = 0;
842 	sb->events_hi = (mddev->events>>32);
843 	sb->events_lo = (u32)mddev->events;
844 
845 	if (mddev->in_sync)
846 	{
847 		sb->recovery_cp = mddev->recovery_cp;
848 		sb->cp_events_hi = (mddev->events>>32);
849 		sb->cp_events_lo = (u32)mddev->events;
850 		if (mddev->recovery_cp == MaxSector)
851 			sb->state = (1<< MD_SB_CLEAN);
852 	} else
853 		sb->recovery_cp = 0;
854 
855 	sb->layout = mddev->layout;
856 	sb->chunk_size = mddev->chunk_size;
857 
858 	if (mddev->bitmap && mddev->bitmap_file == NULL)
859 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
860 
861 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
862 	ITERATE_RDEV(mddev,rdev2,tmp) {
863 		mdp_disk_t *d;
864 		int desc_nr;
865 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
866 		    && !test_bit(Faulty, &rdev2->flags))
867 			desc_nr = rdev2->raid_disk;
868 		else
869 			desc_nr = next_spare++;
870 		rdev2->desc_nr = desc_nr;
871 		d = &sb->disks[rdev2->desc_nr];
872 		nr_disks++;
873 		d->number = rdev2->desc_nr;
874 		d->major = MAJOR(rdev2->bdev->bd_dev);
875 		d->minor = MINOR(rdev2->bdev->bd_dev);
876 		if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
877 		    && !test_bit(Faulty, &rdev2->flags))
878 			d->raid_disk = rdev2->raid_disk;
879 		else
880 			d->raid_disk = rdev2->desc_nr; /* compatibility */
881 		if (test_bit(Faulty, &rdev2->flags)) {
882 			d->state = (1<<MD_DISK_FAULTY);
883 			failed++;
884 		} else if (test_bit(In_sync, &rdev2->flags)) {
885 			d->state = (1<<MD_DISK_ACTIVE);
886 			d->state |= (1<<MD_DISK_SYNC);
887 			active++;
888 			working++;
889 		} else {
890 			d->state = 0;
891 			spare++;
892 			working++;
893 		}
894 		if (test_bit(WriteMostly, &rdev2->flags))
895 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
896 	}
897 	/* now set the "removed" and "faulty" bits on any missing devices */
898 	for (i=0 ; i < mddev->raid_disks ; i++) {
899 		mdp_disk_t *d = &sb->disks[i];
900 		if (d->state == 0 && d->number == 0) {
901 			d->number = i;
902 			d->raid_disk = i;
903 			d->state = (1<<MD_DISK_REMOVED);
904 			d->state |= (1<<MD_DISK_FAULTY);
905 			failed++;
906 		}
907 	}
908 	sb->nr_disks = nr_disks;
909 	sb->active_disks = active;
910 	sb->working_disks = working;
911 	sb->failed_disks = failed;
912 	sb->spare_disks = spare;
913 
914 	sb->this_disk = sb->disks[rdev->desc_nr];
915 	sb->sb_csum = calc_sb_csum(sb);
916 }
917 
918 /*
919  * version 1 superblock
920  */
921 
922 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
923 {
924 	unsigned int disk_csum, csum;
925 	unsigned long long newcsum;
926 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
927 	unsigned int *isuper = (unsigned int*)sb;
928 	int i;
929 
930 	disk_csum = sb->sb_csum;
931 	sb->sb_csum = 0;
932 	newcsum = 0;
933 	for (i=0; size>=4; size -= 4 )
934 		newcsum += le32_to_cpu(*isuper++);
935 
936 	if (size == 2)
937 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
938 
939 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
940 	sb->sb_csum = disk_csum;
941 	return cpu_to_le32(csum);
942 }
943 
944 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
945 {
946 	struct mdp_superblock_1 *sb;
947 	int ret;
948 	sector_t sb_offset;
949 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
950 	int bmask;
951 
952 	/*
953 	 * Calculate the position of the superblock.
954 	 * It is always aligned to a 4K boundary and
955 	 * depeding on minor_version, it can be:
956 	 * 0: At least 8K, but less than 12K, from end of device
957 	 * 1: At start of device
958 	 * 2: 4K from start of device.
959 	 */
960 	switch(minor_version) {
961 	case 0:
962 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
963 		sb_offset -= 8*2;
964 		sb_offset &= ~(sector_t)(4*2-1);
965 		/* convert from sectors to K */
966 		sb_offset /= 2;
967 		break;
968 	case 1:
969 		sb_offset = 0;
970 		break;
971 	case 2:
972 		sb_offset = 4;
973 		break;
974 	default:
975 		return -EINVAL;
976 	}
977 	rdev->sb_offset = sb_offset;
978 
979 	/* superblock is rarely larger than 1K, but it can be larger,
980 	 * and it is safe to read 4k, so we do that
981 	 */
982 	ret = read_disk_sb(rdev, 4096);
983 	if (ret) return ret;
984 
985 
986 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
987 
988 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
989 	    sb->major_version != cpu_to_le32(1) ||
990 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
991 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
992 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
993 		return -EINVAL;
994 
995 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
996 		printk("md: invalid superblock checksum on %s\n",
997 			bdevname(rdev->bdev,b));
998 		return -EINVAL;
999 	}
1000 	if (le64_to_cpu(sb->data_size) < 10) {
1001 		printk("md: data_size too small on %s\n",
1002 		       bdevname(rdev->bdev,b));
1003 		return -EINVAL;
1004 	}
1005 	rdev->preferred_minor = 0xffff;
1006 	rdev->data_offset = le64_to_cpu(sb->data_offset);
1007 	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1008 
1009 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1010 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1011 	if (rdev->sb_size & bmask)
1012 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
1013 
1014 	if (refdev == 0)
1015 		return 1;
1016 	else {
1017 		__u64 ev1, ev2;
1018 		struct mdp_superblock_1 *refsb =
1019 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
1020 
1021 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1022 		    sb->level != refsb->level ||
1023 		    sb->layout != refsb->layout ||
1024 		    sb->chunksize != refsb->chunksize) {
1025 			printk(KERN_WARNING "md: %s has strangely different"
1026 				" superblock to %s\n",
1027 				bdevname(rdev->bdev,b),
1028 				bdevname(refdev->bdev,b2));
1029 			return -EINVAL;
1030 		}
1031 		ev1 = le64_to_cpu(sb->events);
1032 		ev2 = le64_to_cpu(refsb->events);
1033 
1034 		if (ev1 > ev2)
1035 			return 1;
1036 	}
1037 	if (minor_version)
1038 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1039 	else
1040 		rdev->size = rdev->sb_offset;
1041 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
1042 		return -EINVAL;
1043 	rdev->size = le64_to_cpu(sb->data_size)/2;
1044 	if (le32_to_cpu(sb->chunksize))
1045 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1046 
1047 	if (le32_to_cpu(sb->size) > rdev->size*2)
1048 		return -EINVAL;
1049 	return 0;
1050 }
1051 
1052 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1053 {
1054 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1055 
1056 	rdev->raid_disk = -1;
1057 	rdev->flags = 0;
1058 	if (mddev->raid_disks == 0) {
1059 		mddev->major_version = 1;
1060 		mddev->patch_version = 0;
1061 		mddev->persistent = 1;
1062 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1063 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1064 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1065 		mddev->level = le32_to_cpu(sb->level);
1066 		mddev->clevel[0] = 0;
1067 		mddev->layout = le32_to_cpu(sb->layout);
1068 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1069 		mddev->size = le64_to_cpu(sb->size)/2;
1070 		mddev->events = le64_to_cpu(sb->events);
1071 		mddev->bitmap_offset = 0;
1072 		mddev->default_bitmap_offset = 1024;
1073 
1074 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1075 		memcpy(mddev->uuid, sb->set_uuid, 16);
1076 
1077 		mddev->max_disks =  (4096-256)/2;
1078 
1079 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1080 		    mddev->bitmap_file == NULL ) {
1081 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1082 			    && mddev->level != 10) {
1083 				printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1084 				return -EINVAL;
1085 			}
1086 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1087 		}
1088 	} else if (mddev->pers == NULL) {
1089 		/* Insist of good event counter while assembling */
1090 		__u64 ev1 = le64_to_cpu(sb->events);
1091 		++ev1;
1092 		if (ev1 < mddev->events)
1093 			return -EINVAL;
1094 	} else if (mddev->bitmap) {
1095 		/* If adding to array with a bitmap, then we can accept an
1096 		 * older device, but not too old.
1097 		 */
1098 		__u64 ev1 = le64_to_cpu(sb->events);
1099 		if (ev1 < mddev->bitmap->events_cleared)
1100 			return 0;
1101 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1102 		return 0;
1103 
1104 	if (mddev->level != LEVEL_MULTIPATH) {
1105 		int role;
1106 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1107 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1108 		switch(role) {
1109 		case 0xffff: /* spare */
1110 			break;
1111 		case 0xfffe: /* faulty */
1112 			set_bit(Faulty, &rdev->flags);
1113 			break;
1114 		default:
1115 			set_bit(In_sync, &rdev->flags);
1116 			rdev->raid_disk = role;
1117 			break;
1118 		}
1119 		if (sb->devflags & WriteMostly1)
1120 			set_bit(WriteMostly, &rdev->flags);
1121 	} else /* MULTIPATH are always insync */
1122 		set_bit(In_sync, &rdev->flags);
1123 
1124 	return 0;
1125 }
1126 
1127 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1128 {
1129 	struct mdp_superblock_1 *sb;
1130 	struct list_head *tmp;
1131 	mdk_rdev_t *rdev2;
1132 	int max_dev, i;
1133 	/* make rdev->sb match mddev and rdev data. */
1134 
1135 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1136 
1137 	sb->feature_map = 0;
1138 	sb->pad0 = 0;
1139 	memset(sb->pad1, 0, sizeof(sb->pad1));
1140 	memset(sb->pad2, 0, sizeof(sb->pad2));
1141 	memset(sb->pad3, 0, sizeof(sb->pad3));
1142 
1143 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1144 	sb->events = cpu_to_le64(mddev->events);
1145 	if (mddev->in_sync)
1146 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1147 	else
1148 		sb->resync_offset = cpu_to_le64(0);
1149 
1150 	sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1151 
1152 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1153 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1154 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1155 	}
1156 
1157 	max_dev = 0;
1158 	ITERATE_RDEV(mddev,rdev2,tmp)
1159 		if (rdev2->desc_nr+1 > max_dev)
1160 			max_dev = rdev2->desc_nr+1;
1161 
1162 	sb->max_dev = cpu_to_le32(max_dev);
1163 	for (i=0; i<max_dev;i++)
1164 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1165 
1166 	ITERATE_RDEV(mddev,rdev2,tmp) {
1167 		i = rdev2->desc_nr;
1168 		if (test_bit(Faulty, &rdev2->flags))
1169 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1170 		else if (test_bit(In_sync, &rdev2->flags))
1171 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1172 		else
1173 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1174 	}
1175 
1176 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1177 	sb->sb_csum = calc_sb_1_csum(sb);
1178 }
1179 
1180 
1181 static struct super_type super_types[] = {
1182 	[0] = {
1183 		.name	= "0.90.0",
1184 		.owner	= THIS_MODULE,
1185 		.load_super	= super_90_load,
1186 		.validate_super	= super_90_validate,
1187 		.sync_super	= super_90_sync,
1188 	},
1189 	[1] = {
1190 		.name	= "md-1",
1191 		.owner	= THIS_MODULE,
1192 		.load_super	= super_1_load,
1193 		.validate_super	= super_1_validate,
1194 		.sync_super	= super_1_sync,
1195 	},
1196 };
1197 
1198 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1199 {
1200 	struct list_head *tmp;
1201 	mdk_rdev_t *rdev;
1202 
1203 	ITERATE_RDEV(mddev,rdev,tmp)
1204 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1205 			return rdev;
1206 
1207 	return NULL;
1208 }
1209 
1210 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1211 {
1212 	struct list_head *tmp;
1213 	mdk_rdev_t *rdev;
1214 
1215 	ITERATE_RDEV(mddev1,rdev,tmp)
1216 		if (match_dev_unit(mddev2, rdev))
1217 			return 1;
1218 
1219 	return 0;
1220 }
1221 
1222 static LIST_HEAD(pending_raid_disks);
1223 
1224 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1225 {
1226 	mdk_rdev_t *same_pdev;
1227 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1228 	struct kobject *ko;
1229 
1230 	if (rdev->mddev) {
1231 		MD_BUG();
1232 		return -EINVAL;
1233 	}
1234 	/* make sure rdev->size exceeds mddev->size */
1235 	if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1236 		if (mddev->pers)
1237 			/* Cannot change size, so fail */
1238 			return -ENOSPC;
1239 		else
1240 			mddev->size = rdev->size;
1241 	}
1242 	same_pdev = match_dev_unit(mddev, rdev);
1243 	if (same_pdev)
1244 		printk(KERN_WARNING
1245 			"%s: WARNING: %s appears to be on the same physical"
1246 	 		" disk as %s. True\n     protection against single-disk"
1247 			" failure might be compromised.\n",
1248 			mdname(mddev), bdevname(rdev->bdev,b),
1249 			bdevname(same_pdev->bdev,b2));
1250 
1251 	/* Verify rdev->desc_nr is unique.
1252 	 * If it is -1, assign a free number, else
1253 	 * check number is not in use
1254 	 */
1255 	if (rdev->desc_nr < 0) {
1256 		int choice = 0;
1257 		if (mddev->pers) choice = mddev->raid_disks;
1258 		while (find_rdev_nr(mddev, choice))
1259 			choice++;
1260 		rdev->desc_nr = choice;
1261 	} else {
1262 		if (find_rdev_nr(mddev, rdev->desc_nr))
1263 			return -EBUSY;
1264 	}
1265 	bdevname(rdev->bdev,b);
1266 	if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1267 		return -ENOMEM;
1268 
1269 	list_add(&rdev->same_set, &mddev->disks);
1270 	rdev->mddev = mddev;
1271 	printk(KERN_INFO "md: bind<%s>\n", b);
1272 
1273 	rdev->kobj.parent = &mddev->kobj;
1274 	kobject_add(&rdev->kobj);
1275 
1276 	if (rdev->bdev->bd_part)
1277 		ko = &rdev->bdev->bd_part->kobj;
1278 	else
1279 		ko = &rdev->bdev->bd_disk->kobj;
1280 	sysfs_create_link(&rdev->kobj, ko, "block");
1281 	return 0;
1282 }
1283 
1284 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1285 {
1286 	char b[BDEVNAME_SIZE];
1287 	if (!rdev->mddev) {
1288 		MD_BUG();
1289 		return;
1290 	}
1291 	list_del_init(&rdev->same_set);
1292 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1293 	rdev->mddev = NULL;
1294 	sysfs_remove_link(&rdev->kobj, "block");
1295 	kobject_del(&rdev->kobj);
1296 }
1297 
1298 /*
1299  * prevent the device from being mounted, repartitioned or
1300  * otherwise reused by a RAID array (or any other kernel
1301  * subsystem), by bd_claiming the device.
1302  */
1303 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1304 {
1305 	int err = 0;
1306 	struct block_device *bdev;
1307 	char b[BDEVNAME_SIZE];
1308 
1309 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1310 	if (IS_ERR(bdev)) {
1311 		printk(KERN_ERR "md: could not open %s.\n",
1312 			__bdevname(dev, b));
1313 		return PTR_ERR(bdev);
1314 	}
1315 	err = bd_claim(bdev, rdev);
1316 	if (err) {
1317 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1318 			bdevname(bdev, b));
1319 		blkdev_put(bdev);
1320 		return err;
1321 	}
1322 	rdev->bdev = bdev;
1323 	return err;
1324 }
1325 
1326 static void unlock_rdev(mdk_rdev_t *rdev)
1327 {
1328 	struct block_device *bdev = rdev->bdev;
1329 	rdev->bdev = NULL;
1330 	if (!bdev)
1331 		MD_BUG();
1332 	bd_release(bdev);
1333 	blkdev_put(bdev);
1334 }
1335 
1336 void md_autodetect_dev(dev_t dev);
1337 
1338 static void export_rdev(mdk_rdev_t * rdev)
1339 {
1340 	char b[BDEVNAME_SIZE];
1341 	printk(KERN_INFO "md: export_rdev(%s)\n",
1342 		bdevname(rdev->bdev,b));
1343 	if (rdev->mddev)
1344 		MD_BUG();
1345 	free_disk_sb(rdev);
1346 	list_del_init(&rdev->same_set);
1347 #ifndef MODULE
1348 	md_autodetect_dev(rdev->bdev->bd_dev);
1349 #endif
1350 	unlock_rdev(rdev);
1351 	kobject_put(&rdev->kobj);
1352 }
1353 
1354 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1355 {
1356 	unbind_rdev_from_array(rdev);
1357 	export_rdev(rdev);
1358 }
1359 
1360 static void export_array(mddev_t *mddev)
1361 {
1362 	struct list_head *tmp;
1363 	mdk_rdev_t *rdev;
1364 
1365 	ITERATE_RDEV(mddev,rdev,tmp) {
1366 		if (!rdev->mddev) {
1367 			MD_BUG();
1368 			continue;
1369 		}
1370 		kick_rdev_from_array(rdev);
1371 	}
1372 	if (!list_empty(&mddev->disks))
1373 		MD_BUG();
1374 	mddev->raid_disks = 0;
1375 	mddev->major_version = 0;
1376 }
1377 
1378 static void print_desc(mdp_disk_t *desc)
1379 {
1380 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1381 		desc->major,desc->minor,desc->raid_disk,desc->state);
1382 }
1383 
1384 static void print_sb(mdp_super_t *sb)
1385 {
1386 	int i;
1387 
1388 	printk(KERN_INFO
1389 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1390 		sb->major_version, sb->minor_version, sb->patch_version,
1391 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1392 		sb->ctime);
1393 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1394 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1395 		sb->md_minor, sb->layout, sb->chunk_size);
1396 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1397 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1398 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1399 		sb->failed_disks, sb->spare_disks,
1400 		sb->sb_csum, (unsigned long)sb->events_lo);
1401 
1402 	printk(KERN_INFO);
1403 	for (i = 0; i < MD_SB_DISKS; i++) {
1404 		mdp_disk_t *desc;
1405 
1406 		desc = sb->disks + i;
1407 		if (desc->number || desc->major || desc->minor ||
1408 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1409 			printk("     D %2d: ", i);
1410 			print_desc(desc);
1411 		}
1412 	}
1413 	printk(KERN_INFO "md:     THIS: ");
1414 	print_desc(&sb->this_disk);
1415 
1416 }
1417 
1418 static void print_rdev(mdk_rdev_t *rdev)
1419 {
1420 	char b[BDEVNAME_SIZE];
1421 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1422 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1423 	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1424 	        rdev->desc_nr);
1425 	if (rdev->sb_loaded) {
1426 		printk(KERN_INFO "md: rdev superblock:\n");
1427 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1428 	} else
1429 		printk(KERN_INFO "md: no rdev superblock!\n");
1430 }
1431 
1432 void md_print_devices(void)
1433 {
1434 	struct list_head *tmp, *tmp2;
1435 	mdk_rdev_t *rdev;
1436 	mddev_t *mddev;
1437 	char b[BDEVNAME_SIZE];
1438 
1439 	printk("\n");
1440 	printk("md:	**********************************\n");
1441 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1442 	printk("md:	**********************************\n");
1443 	ITERATE_MDDEV(mddev,tmp) {
1444 
1445 		if (mddev->bitmap)
1446 			bitmap_print_sb(mddev->bitmap);
1447 		else
1448 			printk("%s: ", mdname(mddev));
1449 		ITERATE_RDEV(mddev,rdev,tmp2)
1450 			printk("<%s>", bdevname(rdev->bdev,b));
1451 		printk("\n");
1452 
1453 		ITERATE_RDEV(mddev,rdev,tmp2)
1454 			print_rdev(rdev);
1455 	}
1456 	printk("md:	**********************************\n");
1457 	printk("\n");
1458 }
1459 
1460 
1461 static void sync_sbs(mddev_t * mddev)
1462 {
1463 	mdk_rdev_t *rdev;
1464 	struct list_head *tmp;
1465 
1466 	ITERATE_RDEV(mddev,rdev,tmp) {
1467 		super_types[mddev->major_version].
1468 			sync_super(mddev, rdev);
1469 		rdev->sb_loaded = 1;
1470 	}
1471 }
1472 
1473 static void md_update_sb(mddev_t * mddev)
1474 {
1475 	int err;
1476 	struct list_head *tmp;
1477 	mdk_rdev_t *rdev;
1478 	int sync_req;
1479 
1480 repeat:
1481 	spin_lock_irq(&mddev->write_lock);
1482 	sync_req = mddev->in_sync;
1483 	mddev->utime = get_seconds();
1484 	mddev->events ++;
1485 
1486 	if (!mddev->events) {
1487 		/*
1488 		 * oops, this 64-bit counter should never wrap.
1489 		 * Either we are in around ~1 trillion A.C., assuming
1490 		 * 1 reboot per second, or we have a bug:
1491 		 */
1492 		MD_BUG();
1493 		mddev->events --;
1494 	}
1495 	mddev->sb_dirty = 2;
1496 	sync_sbs(mddev);
1497 
1498 	/*
1499 	 * do not write anything to disk if using
1500 	 * nonpersistent superblocks
1501 	 */
1502 	if (!mddev->persistent) {
1503 		mddev->sb_dirty = 0;
1504 		spin_unlock_irq(&mddev->write_lock);
1505 		wake_up(&mddev->sb_wait);
1506 		return;
1507 	}
1508 	spin_unlock_irq(&mddev->write_lock);
1509 
1510 	dprintk(KERN_INFO
1511 		"md: updating %s RAID superblock on device (in sync %d)\n",
1512 		mdname(mddev),mddev->in_sync);
1513 
1514 	err = bitmap_update_sb(mddev->bitmap);
1515 	ITERATE_RDEV(mddev,rdev,tmp) {
1516 		char b[BDEVNAME_SIZE];
1517 		dprintk(KERN_INFO "md: ");
1518 		if (test_bit(Faulty, &rdev->flags))
1519 			dprintk("(skipping faulty ");
1520 
1521 		dprintk("%s ", bdevname(rdev->bdev,b));
1522 		if (!test_bit(Faulty, &rdev->flags)) {
1523 			md_super_write(mddev,rdev,
1524 				       rdev->sb_offset<<1, rdev->sb_size,
1525 				       rdev->sb_page);
1526 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1527 				bdevname(rdev->bdev,b),
1528 				(unsigned long long)rdev->sb_offset);
1529 
1530 		} else
1531 			dprintk(")\n");
1532 		if (mddev->level == LEVEL_MULTIPATH)
1533 			/* only need to write one superblock... */
1534 			break;
1535 	}
1536 	md_super_wait(mddev);
1537 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1538 
1539 	spin_lock_irq(&mddev->write_lock);
1540 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1541 		/* have to write it out again */
1542 		spin_unlock_irq(&mddev->write_lock);
1543 		goto repeat;
1544 	}
1545 	mddev->sb_dirty = 0;
1546 	spin_unlock_irq(&mddev->write_lock);
1547 	wake_up(&mddev->sb_wait);
1548 
1549 }
1550 
1551 /* words written to sysfs files may, or my not, be \n terminated.
1552  * We want to accept with case. For this we use cmd_match.
1553  */
1554 static int cmd_match(const char *cmd, const char *str)
1555 {
1556 	/* See if cmd, written into a sysfs file, matches
1557 	 * str.  They must either be the same, or cmd can
1558 	 * have a trailing newline
1559 	 */
1560 	while (*cmd && *str && *cmd == *str) {
1561 		cmd++;
1562 		str++;
1563 	}
1564 	if (*cmd == '\n')
1565 		cmd++;
1566 	if (*str || *cmd)
1567 		return 0;
1568 	return 1;
1569 }
1570 
1571 struct rdev_sysfs_entry {
1572 	struct attribute attr;
1573 	ssize_t (*show)(mdk_rdev_t *, char *);
1574 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1575 };
1576 
1577 static ssize_t
1578 state_show(mdk_rdev_t *rdev, char *page)
1579 {
1580 	char *sep = "";
1581 	int len=0;
1582 
1583 	if (test_bit(Faulty, &rdev->flags)) {
1584 		len+= sprintf(page+len, "%sfaulty",sep);
1585 		sep = ",";
1586 	}
1587 	if (test_bit(In_sync, &rdev->flags)) {
1588 		len += sprintf(page+len, "%sin_sync",sep);
1589 		sep = ",";
1590 	}
1591 	if (!test_bit(Faulty, &rdev->flags) &&
1592 	    !test_bit(In_sync, &rdev->flags)) {
1593 		len += sprintf(page+len, "%sspare", sep);
1594 		sep = ",";
1595 	}
1596 	return len+sprintf(page+len, "\n");
1597 }
1598 
1599 static struct rdev_sysfs_entry
1600 rdev_state = __ATTR_RO(state);
1601 
1602 static ssize_t
1603 super_show(mdk_rdev_t *rdev, char *page)
1604 {
1605 	if (rdev->sb_loaded && rdev->sb_size) {
1606 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1607 		return rdev->sb_size;
1608 	} else
1609 		return 0;
1610 }
1611 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1612 
1613 static ssize_t
1614 errors_show(mdk_rdev_t *rdev, char *page)
1615 {
1616 	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1617 }
1618 
1619 static ssize_t
1620 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1621 {
1622 	char *e;
1623 	unsigned long n = simple_strtoul(buf, &e, 10);
1624 	if (*buf && (*e == 0 || *e == '\n')) {
1625 		atomic_set(&rdev->corrected_errors, n);
1626 		return len;
1627 	}
1628 	return -EINVAL;
1629 }
1630 static struct rdev_sysfs_entry rdev_errors =
1631 __ATTR(errors, 0644, errors_show, errors_store);
1632 
1633 static ssize_t
1634 slot_show(mdk_rdev_t *rdev, char *page)
1635 {
1636 	if (rdev->raid_disk < 0)
1637 		return sprintf(page, "none\n");
1638 	else
1639 		return sprintf(page, "%d\n", rdev->raid_disk);
1640 }
1641 
1642 static ssize_t
1643 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1644 {
1645 	char *e;
1646 	int slot = simple_strtoul(buf, &e, 10);
1647 	if (strncmp(buf, "none", 4)==0)
1648 		slot = -1;
1649 	else if (e==buf || (*e && *e!= '\n'))
1650 		return -EINVAL;
1651 	if (rdev->mddev->pers)
1652 		/* Cannot set slot in active array (yet) */
1653 		return -EBUSY;
1654 	if (slot >= rdev->mddev->raid_disks)
1655 		return -ENOSPC;
1656 	rdev->raid_disk = slot;
1657 	/* assume it is working */
1658 	rdev->flags = 0;
1659 	set_bit(In_sync, &rdev->flags);
1660 	return len;
1661 }
1662 
1663 
1664 static struct rdev_sysfs_entry rdev_slot =
1665 __ATTR(slot, 0644, slot_show, slot_store);
1666 
1667 static struct attribute *rdev_default_attrs[] = {
1668 	&rdev_state.attr,
1669 	&rdev_super.attr,
1670 	&rdev_errors.attr,
1671 	&rdev_slot.attr,
1672 	NULL,
1673 };
1674 static ssize_t
1675 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1676 {
1677 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1678 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1679 
1680 	if (!entry->show)
1681 		return -EIO;
1682 	return entry->show(rdev, page);
1683 }
1684 
1685 static ssize_t
1686 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1687 	      const char *page, size_t length)
1688 {
1689 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1690 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1691 
1692 	if (!entry->store)
1693 		return -EIO;
1694 	return entry->store(rdev, page, length);
1695 }
1696 
1697 static void rdev_free(struct kobject *ko)
1698 {
1699 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1700 	kfree(rdev);
1701 }
1702 static struct sysfs_ops rdev_sysfs_ops = {
1703 	.show		= rdev_attr_show,
1704 	.store		= rdev_attr_store,
1705 };
1706 static struct kobj_type rdev_ktype = {
1707 	.release	= rdev_free,
1708 	.sysfs_ops	= &rdev_sysfs_ops,
1709 	.default_attrs	= rdev_default_attrs,
1710 };
1711 
1712 /*
1713  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1714  *
1715  * mark the device faulty if:
1716  *
1717  *   - the device is nonexistent (zero size)
1718  *   - the device has no valid superblock
1719  *
1720  * a faulty rdev _never_ has rdev->sb set.
1721  */
1722 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1723 {
1724 	char b[BDEVNAME_SIZE];
1725 	int err;
1726 	mdk_rdev_t *rdev;
1727 	sector_t size;
1728 
1729 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1730 	if (!rdev) {
1731 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1732 		return ERR_PTR(-ENOMEM);
1733 	}
1734 
1735 	if ((err = alloc_disk_sb(rdev)))
1736 		goto abort_free;
1737 
1738 	err = lock_rdev(rdev, newdev);
1739 	if (err)
1740 		goto abort_free;
1741 
1742 	rdev->kobj.parent = NULL;
1743 	rdev->kobj.ktype = &rdev_ktype;
1744 	kobject_init(&rdev->kobj);
1745 
1746 	rdev->desc_nr = -1;
1747 	rdev->flags = 0;
1748 	rdev->data_offset = 0;
1749 	atomic_set(&rdev->nr_pending, 0);
1750 	atomic_set(&rdev->read_errors, 0);
1751 	atomic_set(&rdev->corrected_errors, 0);
1752 
1753 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1754 	if (!size) {
1755 		printk(KERN_WARNING
1756 			"md: %s has zero or unknown size, marking faulty!\n",
1757 			bdevname(rdev->bdev,b));
1758 		err = -EINVAL;
1759 		goto abort_free;
1760 	}
1761 
1762 	if (super_format >= 0) {
1763 		err = super_types[super_format].
1764 			load_super(rdev, NULL, super_minor);
1765 		if (err == -EINVAL) {
1766 			printk(KERN_WARNING
1767 				"md: %s has invalid sb, not importing!\n",
1768 				bdevname(rdev->bdev,b));
1769 			goto abort_free;
1770 		}
1771 		if (err < 0) {
1772 			printk(KERN_WARNING
1773 				"md: could not read %s's sb, not importing!\n",
1774 				bdevname(rdev->bdev,b));
1775 			goto abort_free;
1776 		}
1777 	}
1778 	INIT_LIST_HEAD(&rdev->same_set);
1779 
1780 	return rdev;
1781 
1782 abort_free:
1783 	if (rdev->sb_page) {
1784 		if (rdev->bdev)
1785 			unlock_rdev(rdev);
1786 		free_disk_sb(rdev);
1787 	}
1788 	kfree(rdev);
1789 	return ERR_PTR(err);
1790 }
1791 
1792 /*
1793  * Check a full RAID array for plausibility
1794  */
1795 
1796 
1797 static void analyze_sbs(mddev_t * mddev)
1798 {
1799 	int i;
1800 	struct list_head *tmp;
1801 	mdk_rdev_t *rdev, *freshest;
1802 	char b[BDEVNAME_SIZE];
1803 
1804 	freshest = NULL;
1805 	ITERATE_RDEV(mddev,rdev,tmp)
1806 		switch (super_types[mddev->major_version].
1807 			load_super(rdev, freshest, mddev->minor_version)) {
1808 		case 1:
1809 			freshest = rdev;
1810 			break;
1811 		case 0:
1812 			break;
1813 		default:
1814 			printk( KERN_ERR \
1815 				"md: fatal superblock inconsistency in %s"
1816 				" -- removing from array\n",
1817 				bdevname(rdev->bdev,b));
1818 			kick_rdev_from_array(rdev);
1819 		}
1820 
1821 
1822 	super_types[mddev->major_version].
1823 		validate_super(mddev, freshest);
1824 
1825 	i = 0;
1826 	ITERATE_RDEV(mddev,rdev,tmp) {
1827 		if (rdev != freshest)
1828 			if (super_types[mddev->major_version].
1829 			    validate_super(mddev, rdev)) {
1830 				printk(KERN_WARNING "md: kicking non-fresh %s"
1831 					" from array!\n",
1832 					bdevname(rdev->bdev,b));
1833 				kick_rdev_from_array(rdev);
1834 				continue;
1835 			}
1836 		if (mddev->level == LEVEL_MULTIPATH) {
1837 			rdev->desc_nr = i++;
1838 			rdev->raid_disk = rdev->desc_nr;
1839 			set_bit(In_sync, &rdev->flags);
1840 		}
1841 	}
1842 
1843 
1844 
1845 	if (mddev->recovery_cp != MaxSector &&
1846 	    mddev->level >= 1)
1847 		printk(KERN_ERR "md: %s: raid array is not clean"
1848 		       " -- starting background reconstruction\n",
1849 		       mdname(mddev));
1850 
1851 }
1852 
1853 static ssize_t
1854 level_show(mddev_t *mddev, char *page)
1855 {
1856 	struct mdk_personality *p = mddev->pers;
1857 	if (p)
1858 		return sprintf(page, "%s\n", p->name);
1859 	else if (mddev->clevel[0])
1860 		return sprintf(page, "%s\n", mddev->clevel);
1861 	else if (mddev->level != LEVEL_NONE)
1862 		return sprintf(page, "%d\n", mddev->level);
1863 	else
1864 		return 0;
1865 }
1866 
1867 static ssize_t
1868 level_store(mddev_t *mddev, const char *buf, size_t len)
1869 {
1870 	int rv = len;
1871 	if (mddev->pers)
1872 		return -EBUSY;
1873 	if (len == 0)
1874 		return 0;
1875 	if (len >= sizeof(mddev->clevel))
1876 		return -ENOSPC;
1877 	strncpy(mddev->clevel, buf, len);
1878 	if (mddev->clevel[len-1] == '\n')
1879 		len--;
1880 	mddev->clevel[len] = 0;
1881 	mddev->level = LEVEL_NONE;
1882 	return rv;
1883 }
1884 
1885 static struct md_sysfs_entry md_level =
1886 __ATTR(level, 0644, level_show, level_store);
1887 
1888 static ssize_t
1889 raid_disks_show(mddev_t *mddev, char *page)
1890 {
1891 	if (mddev->raid_disks == 0)
1892 		return 0;
1893 	return sprintf(page, "%d\n", mddev->raid_disks);
1894 }
1895 
1896 static int update_raid_disks(mddev_t *mddev, int raid_disks);
1897 
1898 static ssize_t
1899 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
1900 {
1901 	/* can only set raid_disks if array is not yet active */
1902 	char *e;
1903 	int rv = 0;
1904 	unsigned long n = simple_strtoul(buf, &e, 10);
1905 
1906 	if (!*buf || (*e && *e != '\n'))
1907 		return -EINVAL;
1908 
1909 	if (mddev->pers)
1910 		rv = update_raid_disks(mddev, n);
1911 	else
1912 		mddev->raid_disks = n;
1913 	return rv ? rv : len;
1914 }
1915 static struct md_sysfs_entry md_raid_disks =
1916 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
1917 
1918 static ssize_t
1919 chunk_size_show(mddev_t *mddev, char *page)
1920 {
1921 	return sprintf(page, "%d\n", mddev->chunk_size);
1922 }
1923 
1924 static ssize_t
1925 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
1926 {
1927 	/* can only set chunk_size if array is not yet active */
1928 	char *e;
1929 	unsigned long n = simple_strtoul(buf, &e, 10);
1930 
1931 	if (mddev->pers)
1932 		return -EBUSY;
1933 	if (!*buf || (*e && *e != '\n'))
1934 		return -EINVAL;
1935 
1936 	mddev->chunk_size = n;
1937 	return len;
1938 }
1939 static struct md_sysfs_entry md_chunk_size =
1940 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
1941 
1942 
1943 static ssize_t
1944 size_show(mddev_t *mddev, char *page)
1945 {
1946 	return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
1947 }
1948 
1949 static int update_size(mddev_t *mddev, unsigned long size);
1950 
1951 static ssize_t
1952 size_store(mddev_t *mddev, const char *buf, size_t len)
1953 {
1954 	/* If array is inactive, we can reduce the component size, but
1955 	 * not increase it (except from 0).
1956 	 * If array is active, we can try an on-line resize
1957 	 */
1958 	char *e;
1959 	int err = 0;
1960 	unsigned long long size = simple_strtoull(buf, &e, 10);
1961 	if (!*buf || *buf == '\n' ||
1962 	    (*e && *e != '\n'))
1963 		return -EINVAL;
1964 
1965 	if (mddev->pers) {
1966 		err = update_size(mddev, size);
1967 		md_update_sb(mddev);
1968 	} else {
1969 		if (mddev->size == 0 ||
1970 		    mddev->size > size)
1971 			mddev->size = size;
1972 		else
1973 			err = -ENOSPC;
1974 	}
1975 	return err ? err : len;
1976 }
1977 
1978 static struct md_sysfs_entry md_size =
1979 __ATTR(component_size, 0644, size_show, size_store);
1980 
1981 
1982 /* Metdata version.
1983  * This is either 'none' for arrays with externally managed metadata,
1984  * or N.M for internally known formats
1985  */
1986 static ssize_t
1987 metadata_show(mddev_t *mddev, char *page)
1988 {
1989 	if (mddev->persistent)
1990 		return sprintf(page, "%d.%d\n",
1991 			       mddev->major_version, mddev->minor_version);
1992 	else
1993 		return sprintf(page, "none\n");
1994 }
1995 
1996 static ssize_t
1997 metadata_store(mddev_t *mddev, const char *buf, size_t len)
1998 {
1999 	int major, minor;
2000 	char *e;
2001 	if (!list_empty(&mddev->disks))
2002 		return -EBUSY;
2003 
2004 	if (cmd_match(buf, "none")) {
2005 		mddev->persistent = 0;
2006 		mddev->major_version = 0;
2007 		mddev->minor_version = 90;
2008 		return len;
2009 	}
2010 	major = simple_strtoul(buf, &e, 10);
2011 	if (e==buf || *e != '.')
2012 		return -EINVAL;
2013 	buf = e+1;
2014 	minor = simple_strtoul(buf, &e, 10);
2015 	if (e==buf || *e != '\n')
2016 		return -EINVAL;
2017 	if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2018 	    super_types[major].name == NULL)
2019 		return -ENOENT;
2020 	mddev->major_version = major;
2021 	mddev->minor_version = minor;
2022 	mddev->persistent = 1;
2023 	return len;
2024 }
2025 
2026 static struct md_sysfs_entry md_metadata =
2027 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2028 
2029 static ssize_t
2030 action_show(mddev_t *mddev, char *page)
2031 {
2032 	char *type = "idle";
2033 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2034 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2035 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2036 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2037 				type = "resync";
2038 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2039 				type = "check";
2040 			else
2041 				type = "repair";
2042 		} else
2043 			type = "recover";
2044 	}
2045 	return sprintf(page, "%s\n", type);
2046 }
2047 
2048 static ssize_t
2049 action_store(mddev_t *mddev, const char *page, size_t len)
2050 {
2051 	if (!mddev->pers || !mddev->pers->sync_request)
2052 		return -EINVAL;
2053 
2054 	if (cmd_match(page, "idle")) {
2055 		if (mddev->sync_thread) {
2056 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2057 			md_unregister_thread(mddev->sync_thread);
2058 			mddev->sync_thread = NULL;
2059 			mddev->recovery = 0;
2060 		}
2061 	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2062 		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2063 		return -EBUSY;
2064 	else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2065 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2066 	else {
2067 		if (cmd_match(page, "check"))
2068 			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2069 		else if (cmd_match(page, "repair"))
2070 			return -EINVAL;
2071 		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2072 		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2073 	}
2074 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2075 	md_wakeup_thread(mddev->thread);
2076 	return len;
2077 }
2078 
2079 static ssize_t
2080 mismatch_cnt_show(mddev_t *mddev, char *page)
2081 {
2082 	return sprintf(page, "%llu\n",
2083 		       (unsigned long long) mddev->resync_mismatches);
2084 }
2085 
2086 static struct md_sysfs_entry
2087 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2088 
2089 
2090 static struct md_sysfs_entry
2091 md_mismatches = __ATTR_RO(mismatch_cnt);
2092 
2093 static struct attribute *md_default_attrs[] = {
2094 	&md_level.attr,
2095 	&md_raid_disks.attr,
2096 	&md_chunk_size.attr,
2097 	&md_size.attr,
2098 	&md_metadata.attr,
2099 	NULL,
2100 };
2101 
2102 static struct attribute *md_redundancy_attrs[] = {
2103 	&md_scan_mode.attr,
2104 	&md_mismatches.attr,
2105 	NULL,
2106 };
2107 static struct attribute_group md_redundancy_group = {
2108 	.name = NULL,
2109 	.attrs = md_redundancy_attrs,
2110 };
2111 
2112 
2113 static ssize_t
2114 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2115 {
2116 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2117 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2118 	ssize_t rv;
2119 
2120 	if (!entry->show)
2121 		return -EIO;
2122 	mddev_lock(mddev);
2123 	rv = entry->show(mddev, page);
2124 	mddev_unlock(mddev);
2125 	return rv;
2126 }
2127 
2128 static ssize_t
2129 md_attr_store(struct kobject *kobj, struct attribute *attr,
2130 	      const char *page, size_t length)
2131 {
2132 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2133 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2134 	ssize_t rv;
2135 
2136 	if (!entry->store)
2137 		return -EIO;
2138 	mddev_lock(mddev);
2139 	rv = entry->store(mddev, page, length);
2140 	mddev_unlock(mddev);
2141 	return rv;
2142 }
2143 
2144 static void md_free(struct kobject *ko)
2145 {
2146 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
2147 	kfree(mddev);
2148 }
2149 
2150 static struct sysfs_ops md_sysfs_ops = {
2151 	.show	= md_attr_show,
2152 	.store	= md_attr_store,
2153 };
2154 static struct kobj_type md_ktype = {
2155 	.release	= md_free,
2156 	.sysfs_ops	= &md_sysfs_ops,
2157 	.default_attrs	= md_default_attrs,
2158 };
2159 
2160 int mdp_major = 0;
2161 
2162 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2163 {
2164 	static DECLARE_MUTEX(disks_sem);
2165 	mddev_t *mddev = mddev_find(dev);
2166 	struct gendisk *disk;
2167 	int partitioned = (MAJOR(dev) != MD_MAJOR);
2168 	int shift = partitioned ? MdpMinorShift : 0;
2169 	int unit = MINOR(dev) >> shift;
2170 
2171 	if (!mddev)
2172 		return NULL;
2173 
2174 	down(&disks_sem);
2175 	if (mddev->gendisk) {
2176 		up(&disks_sem);
2177 		mddev_put(mddev);
2178 		return NULL;
2179 	}
2180 	disk = alloc_disk(1 << shift);
2181 	if (!disk) {
2182 		up(&disks_sem);
2183 		mddev_put(mddev);
2184 		return NULL;
2185 	}
2186 	disk->major = MAJOR(dev);
2187 	disk->first_minor = unit << shift;
2188 	if (partitioned) {
2189 		sprintf(disk->disk_name, "md_d%d", unit);
2190 		sprintf(disk->devfs_name, "md/d%d", unit);
2191 	} else {
2192 		sprintf(disk->disk_name, "md%d", unit);
2193 		sprintf(disk->devfs_name, "md/%d", unit);
2194 	}
2195 	disk->fops = &md_fops;
2196 	disk->private_data = mddev;
2197 	disk->queue = mddev->queue;
2198 	add_disk(disk);
2199 	mddev->gendisk = disk;
2200 	up(&disks_sem);
2201 	mddev->kobj.parent = &disk->kobj;
2202 	mddev->kobj.k_name = NULL;
2203 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2204 	mddev->kobj.ktype = &md_ktype;
2205 	kobject_register(&mddev->kobj);
2206 	return NULL;
2207 }
2208 
2209 void md_wakeup_thread(mdk_thread_t *thread);
2210 
2211 static void md_safemode_timeout(unsigned long data)
2212 {
2213 	mddev_t *mddev = (mddev_t *) data;
2214 
2215 	mddev->safemode = 1;
2216 	md_wakeup_thread(mddev->thread);
2217 }
2218 
2219 static int start_dirty_degraded;
2220 
2221 static int do_md_run(mddev_t * mddev)
2222 {
2223 	int err;
2224 	int chunk_size;
2225 	struct list_head *tmp;
2226 	mdk_rdev_t *rdev;
2227 	struct gendisk *disk;
2228 	struct mdk_personality *pers;
2229 	char b[BDEVNAME_SIZE];
2230 
2231 	if (list_empty(&mddev->disks))
2232 		/* cannot run an array with no devices.. */
2233 		return -EINVAL;
2234 
2235 	if (mddev->pers)
2236 		return -EBUSY;
2237 
2238 	/*
2239 	 * Analyze all RAID superblock(s)
2240 	 */
2241 	if (!mddev->raid_disks)
2242 		analyze_sbs(mddev);
2243 
2244 	chunk_size = mddev->chunk_size;
2245 
2246 	if (chunk_size) {
2247 		if (chunk_size > MAX_CHUNK_SIZE) {
2248 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
2249 				chunk_size, MAX_CHUNK_SIZE);
2250 			return -EINVAL;
2251 		}
2252 		/*
2253 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2254 		 */
2255 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
2256 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2257 			return -EINVAL;
2258 		}
2259 		if (chunk_size < PAGE_SIZE) {
2260 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2261 				chunk_size, PAGE_SIZE);
2262 			return -EINVAL;
2263 		}
2264 
2265 		/* devices must have minimum size of one chunk */
2266 		ITERATE_RDEV(mddev,rdev,tmp) {
2267 			if (test_bit(Faulty, &rdev->flags))
2268 				continue;
2269 			if (rdev->size < chunk_size / 1024) {
2270 				printk(KERN_WARNING
2271 					"md: Dev %s smaller than chunk_size:"
2272 					" %lluk < %dk\n",
2273 					bdevname(rdev->bdev,b),
2274 					(unsigned long long)rdev->size,
2275 					chunk_size / 1024);
2276 				return -EINVAL;
2277 			}
2278 		}
2279 	}
2280 
2281 #ifdef CONFIG_KMOD
2282 	if (mddev->level != LEVEL_NONE)
2283 		request_module("md-level-%d", mddev->level);
2284 	else if (mddev->clevel[0])
2285 		request_module("md-%s", mddev->clevel);
2286 #endif
2287 
2288 	/*
2289 	 * Drop all container device buffers, from now on
2290 	 * the only valid external interface is through the md
2291 	 * device.
2292 	 * Also find largest hardsector size
2293 	 */
2294 	ITERATE_RDEV(mddev,rdev,tmp) {
2295 		if (test_bit(Faulty, &rdev->flags))
2296 			continue;
2297 		sync_blockdev(rdev->bdev);
2298 		invalidate_bdev(rdev->bdev, 0);
2299 	}
2300 
2301 	md_probe(mddev->unit, NULL, NULL);
2302 	disk = mddev->gendisk;
2303 	if (!disk)
2304 		return -ENOMEM;
2305 
2306 	spin_lock(&pers_lock);
2307 	pers = find_pers(mddev->level, mddev->clevel);
2308 	if (!pers || !try_module_get(pers->owner)) {
2309 		spin_unlock(&pers_lock);
2310 		if (mddev->level != LEVEL_NONE)
2311 			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2312 			       mddev->level);
2313 		else
2314 			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2315 			       mddev->clevel);
2316 		return -EINVAL;
2317 	}
2318 	mddev->pers = pers;
2319 	spin_unlock(&pers_lock);
2320 	mddev->level = pers->level;
2321 	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2322 
2323 	mddev->recovery = 0;
2324 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2325 	mddev->barriers_work = 1;
2326 	mddev->ok_start_degraded = start_dirty_degraded;
2327 
2328 	if (start_readonly)
2329 		mddev->ro = 2; /* read-only, but switch on first write */
2330 
2331 	err = mddev->pers->run(mddev);
2332 	if (!err && mddev->pers->sync_request) {
2333 		err = bitmap_create(mddev);
2334 		if (err) {
2335 			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2336 			       mdname(mddev), err);
2337 			mddev->pers->stop(mddev);
2338 		}
2339 	}
2340 	if (err) {
2341 		printk(KERN_ERR "md: pers->run() failed ...\n");
2342 		module_put(mddev->pers->owner);
2343 		mddev->pers = NULL;
2344 		bitmap_destroy(mddev);
2345 		return err;
2346 	}
2347 	if (mddev->pers->sync_request)
2348 		sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2349 	else if (mddev->ro == 2) /* auto-readonly not meaningful */
2350 		mddev->ro = 0;
2351 
2352  	atomic_set(&mddev->writes_pending,0);
2353 	mddev->safemode = 0;
2354 	mddev->safemode_timer.function = md_safemode_timeout;
2355 	mddev->safemode_timer.data = (unsigned long) mddev;
2356 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2357 	mddev->in_sync = 1;
2358 
2359 	ITERATE_RDEV(mddev,rdev,tmp)
2360 		if (rdev->raid_disk >= 0) {
2361 			char nm[20];
2362 			sprintf(nm, "rd%d", rdev->raid_disk);
2363 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2364 		}
2365 
2366 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2367 	md_wakeup_thread(mddev->thread);
2368 
2369 	if (mddev->sb_dirty)
2370 		md_update_sb(mddev);
2371 
2372 	set_capacity(disk, mddev->array_size<<1);
2373 
2374 	/* If we call blk_queue_make_request here, it will
2375 	 * re-initialise max_sectors etc which may have been
2376 	 * refined inside -> run.  So just set the bits we need to set.
2377 	 * Most initialisation happended when we called
2378 	 * blk_queue_make_request(..., md_fail_request)
2379 	 * earlier.
2380 	 */
2381 	mddev->queue->queuedata = mddev;
2382 	mddev->queue->make_request_fn = mddev->pers->make_request;
2383 
2384 	mddev->changed = 1;
2385 	md_new_event(mddev);
2386 	return 0;
2387 }
2388 
2389 static int restart_array(mddev_t *mddev)
2390 {
2391 	struct gendisk *disk = mddev->gendisk;
2392 	int err;
2393 
2394 	/*
2395 	 * Complain if it has no devices
2396 	 */
2397 	err = -ENXIO;
2398 	if (list_empty(&mddev->disks))
2399 		goto out;
2400 
2401 	if (mddev->pers) {
2402 		err = -EBUSY;
2403 		if (!mddev->ro)
2404 			goto out;
2405 
2406 		mddev->safemode = 0;
2407 		mddev->ro = 0;
2408 		set_disk_ro(disk, 0);
2409 
2410 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2411 			mdname(mddev));
2412 		/*
2413 		 * Kick recovery or resync if necessary
2414 		 */
2415 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2416 		md_wakeup_thread(mddev->thread);
2417 		err = 0;
2418 	} else {
2419 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2420 			mdname(mddev));
2421 		err = -EINVAL;
2422 	}
2423 
2424 out:
2425 	return err;
2426 }
2427 
2428 static int do_md_stop(mddev_t * mddev, int ro)
2429 {
2430 	int err = 0;
2431 	struct gendisk *disk = mddev->gendisk;
2432 
2433 	if (mddev->pers) {
2434 		if (atomic_read(&mddev->active)>2) {
2435 			printk("md: %s still in use.\n",mdname(mddev));
2436 			return -EBUSY;
2437 		}
2438 
2439 		if (mddev->sync_thread) {
2440 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2441 			md_unregister_thread(mddev->sync_thread);
2442 			mddev->sync_thread = NULL;
2443 		}
2444 
2445 		del_timer_sync(&mddev->safemode_timer);
2446 
2447 		invalidate_partition(disk, 0);
2448 
2449 		if (ro) {
2450 			err  = -ENXIO;
2451 			if (mddev->ro==1)
2452 				goto out;
2453 			mddev->ro = 1;
2454 		} else {
2455 			bitmap_flush(mddev);
2456 			md_super_wait(mddev);
2457 			if (mddev->ro)
2458 				set_disk_ro(disk, 0);
2459 			blk_queue_make_request(mddev->queue, md_fail_request);
2460 			mddev->pers->stop(mddev);
2461 			if (mddev->pers->sync_request)
2462 				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2463 
2464 			module_put(mddev->pers->owner);
2465 			mddev->pers = NULL;
2466 			if (mddev->ro)
2467 				mddev->ro = 0;
2468 		}
2469 		if (!mddev->in_sync) {
2470 			/* mark array as shutdown cleanly */
2471 			mddev->in_sync = 1;
2472 			md_update_sb(mddev);
2473 		}
2474 		if (ro)
2475 			set_disk_ro(disk, 1);
2476 	}
2477 
2478 	bitmap_destroy(mddev);
2479 	if (mddev->bitmap_file) {
2480 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2481 		fput(mddev->bitmap_file);
2482 		mddev->bitmap_file = NULL;
2483 	}
2484 	mddev->bitmap_offset = 0;
2485 
2486 	/*
2487 	 * Free resources if final stop
2488 	 */
2489 	if (!ro) {
2490 		mdk_rdev_t *rdev;
2491 		struct list_head *tmp;
2492 		struct gendisk *disk;
2493 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2494 
2495 		ITERATE_RDEV(mddev,rdev,tmp)
2496 			if (rdev->raid_disk >= 0) {
2497 				char nm[20];
2498 				sprintf(nm, "rd%d", rdev->raid_disk);
2499 				sysfs_remove_link(&mddev->kobj, nm);
2500 			}
2501 
2502 		export_array(mddev);
2503 
2504 		mddev->array_size = 0;
2505 		disk = mddev->gendisk;
2506 		if (disk)
2507 			set_capacity(disk, 0);
2508 		mddev->changed = 1;
2509 	} else
2510 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2511 			mdname(mddev));
2512 	err = 0;
2513 	md_new_event(mddev);
2514 out:
2515 	return err;
2516 }
2517 
2518 static void autorun_array(mddev_t *mddev)
2519 {
2520 	mdk_rdev_t *rdev;
2521 	struct list_head *tmp;
2522 	int err;
2523 
2524 	if (list_empty(&mddev->disks))
2525 		return;
2526 
2527 	printk(KERN_INFO "md: running: ");
2528 
2529 	ITERATE_RDEV(mddev,rdev,tmp) {
2530 		char b[BDEVNAME_SIZE];
2531 		printk("<%s>", bdevname(rdev->bdev,b));
2532 	}
2533 	printk("\n");
2534 
2535 	err = do_md_run (mddev);
2536 	if (err) {
2537 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2538 		do_md_stop (mddev, 0);
2539 	}
2540 }
2541 
2542 /*
2543  * lets try to run arrays based on all disks that have arrived
2544  * until now. (those are in pending_raid_disks)
2545  *
2546  * the method: pick the first pending disk, collect all disks with
2547  * the same UUID, remove all from the pending list and put them into
2548  * the 'same_array' list. Then order this list based on superblock
2549  * update time (freshest comes first), kick out 'old' disks and
2550  * compare superblocks. If everything's fine then run it.
2551  *
2552  * If "unit" is allocated, then bump its reference count
2553  */
2554 static void autorun_devices(int part)
2555 {
2556 	struct list_head candidates;
2557 	struct list_head *tmp;
2558 	mdk_rdev_t *rdev0, *rdev;
2559 	mddev_t *mddev;
2560 	char b[BDEVNAME_SIZE];
2561 
2562 	printk(KERN_INFO "md: autorun ...\n");
2563 	while (!list_empty(&pending_raid_disks)) {
2564 		dev_t dev;
2565 		rdev0 = list_entry(pending_raid_disks.next,
2566 					 mdk_rdev_t, same_set);
2567 
2568 		printk(KERN_INFO "md: considering %s ...\n",
2569 			bdevname(rdev0->bdev,b));
2570 		INIT_LIST_HEAD(&candidates);
2571 		ITERATE_RDEV_PENDING(rdev,tmp)
2572 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2573 				printk(KERN_INFO "md:  adding %s ...\n",
2574 					bdevname(rdev->bdev,b));
2575 				list_move(&rdev->same_set, &candidates);
2576 			}
2577 		/*
2578 		 * now we have a set of devices, with all of them having
2579 		 * mostly sane superblocks. It's time to allocate the
2580 		 * mddev.
2581 		 */
2582 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2583 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2584 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2585 			break;
2586 		}
2587 		if (part)
2588 			dev = MKDEV(mdp_major,
2589 				    rdev0->preferred_minor << MdpMinorShift);
2590 		else
2591 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2592 
2593 		md_probe(dev, NULL, NULL);
2594 		mddev = mddev_find(dev);
2595 		if (!mddev) {
2596 			printk(KERN_ERR
2597 				"md: cannot allocate memory for md drive.\n");
2598 			break;
2599 		}
2600 		if (mddev_lock(mddev))
2601 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2602 			       mdname(mddev));
2603 		else if (mddev->raid_disks || mddev->major_version
2604 			 || !list_empty(&mddev->disks)) {
2605 			printk(KERN_WARNING
2606 				"md: %s already running, cannot run %s\n",
2607 				mdname(mddev), bdevname(rdev0->bdev,b));
2608 			mddev_unlock(mddev);
2609 		} else {
2610 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2611 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2612 				list_del_init(&rdev->same_set);
2613 				if (bind_rdev_to_array(rdev, mddev))
2614 					export_rdev(rdev);
2615 			}
2616 			autorun_array(mddev);
2617 			mddev_unlock(mddev);
2618 		}
2619 		/* on success, candidates will be empty, on error
2620 		 * it won't...
2621 		 */
2622 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2623 			export_rdev(rdev);
2624 		mddev_put(mddev);
2625 	}
2626 	printk(KERN_INFO "md: ... autorun DONE.\n");
2627 }
2628 
2629 /*
2630  * import RAID devices based on one partition
2631  * if possible, the array gets run as well.
2632  */
2633 
2634 static int autostart_array(dev_t startdev)
2635 {
2636 	char b[BDEVNAME_SIZE];
2637 	int err = -EINVAL, i;
2638 	mdp_super_t *sb = NULL;
2639 	mdk_rdev_t *start_rdev = NULL, *rdev;
2640 
2641 	start_rdev = md_import_device(startdev, 0, 0);
2642 	if (IS_ERR(start_rdev))
2643 		return err;
2644 
2645 
2646 	/* NOTE: this can only work for 0.90.0 superblocks */
2647 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2648 	if (sb->major_version != 0 ||
2649 	    sb->minor_version != 90 ) {
2650 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2651 		export_rdev(start_rdev);
2652 		return err;
2653 	}
2654 
2655 	if (test_bit(Faulty, &start_rdev->flags)) {
2656 		printk(KERN_WARNING
2657 			"md: can not autostart based on faulty %s!\n",
2658 			bdevname(start_rdev->bdev,b));
2659 		export_rdev(start_rdev);
2660 		return err;
2661 	}
2662 	list_add(&start_rdev->same_set, &pending_raid_disks);
2663 
2664 	for (i = 0; i < MD_SB_DISKS; i++) {
2665 		mdp_disk_t *desc = sb->disks + i;
2666 		dev_t dev = MKDEV(desc->major, desc->minor);
2667 
2668 		if (!dev)
2669 			continue;
2670 		if (dev == startdev)
2671 			continue;
2672 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2673 			continue;
2674 		rdev = md_import_device(dev, 0, 0);
2675 		if (IS_ERR(rdev))
2676 			continue;
2677 
2678 		list_add(&rdev->same_set, &pending_raid_disks);
2679 	}
2680 
2681 	/*
2682 	 * possibly return codes
2683 	 */
2684 	autorun_devices(0);
2685 	return 0;
2686 
2687 }
2688 
2689 
2690 static int get_version(void __user * arg)
2691 {
2692 	mdu_version_t ver;
2693 
2694 	ver.major = MD_MAJOR_VERSION;
2695 	ver.minor = MD_MINOR_VERSION;
2696 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2697 
2698 	if (copy_to_user(arg, &ver, sizeof(ver)))
2699 		return -EFAULT;
2700 
2701 	return 0;
2702 }
2703 
2704 static int get_array_info(mddev_t * mddev, void __user * arg)
2705 {
2706 	mdu_array_info_t info;
2707 	int nr,working,active,failed,spare;
2708 	mdk_rdev_t *rdev;
2709 	struct list_head *tmp;
2710 
2711 	nr=working=active=failed=spare=0;
2712 	ITERATE_RDEV(mddev,rdev,tmp) {
2713 		nr++;
2714 		if (test_bit(Faulty, &rdev->flags))
2715 			failed++;
2716 		else {
2717 			working++;
2718 			if (test_bit(In_sync, &rdev->flags))
2719 				active++;
2720 			else
2721 				spare++;
2722 		}
2723 	}
2724 
2725 	info.major_version = mddev->major_version;
2726 	info.minor_version = mddev->minor_version;
2727 	info.patch_version = MD_PATCHLEVEL_VERSION;
2728 	info.ctime         = mddev->ctime;
2729 	info.level         = mddev->level;
2730 	info.size          = mddev->size;
2731 	info.nr_disks      = nr;
2732 	info.raid_disks    = mddev->raid_disks;
2733 	info.md_minor      = mddev->md_minor;
2734 	info.not_persistent= !mddev->persistent;
2735 
2736 	info.utime         = mddev->utime;
2737 	info.state         = 0;
2738 	if (mddev->in_sync)
2739 		info.state = (1<<MD_SB_CLEAN);
2740 	if (mddev->bitmap && mddev->bitmap_offset)
2741 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2742 	info.active_disks  = active;
2743 	info.working_disks = working;
2744 	info.failed_disks  = failed;
2745 	info.spare_disks   = spare;
2746 
2747 	info.layout        = mddev->layout;
2748 	info.chunk_size    = mddev->chunk_size;
2749 
2750 	if (copy_to_user(arg, &info, sizeof(info)))
2751 		return -EFAULT;
2752 
2753 	return 0;
2754 }
2755 
2756 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2757 {
2758 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2759 	char *ptr, *buf = NULL;
2760 	int err = -ENOMEM;
2761 
2762 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2763 	if (!file)
2764 		goto out;
2765 
2766 	/* bitmap disabled, zero the first byte and copy out */
2767 	if (!mddev->bitmap || !mddev->bitmap->file) {
2768 		file->pathname[0] = '\0';
2769 		goto copy_out;
2770 	}
2771 
2772 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2773 	if (!buf)
2774 		goto out;
2775 
2776 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2777 	if (!ptr)
2778 		goto out;
2779 
2780 	strcpy(file->pathname, ptr);
2781 
2782 copy_out:
2783 	err = 0;
2784 	if (copy_to_user(arg, file, sizeof(*file)))
2785 		err = -EFAULT;
2786 out:
2787 	kfree(buf);
2788 	kfree(file);
2789 	return err;
2790 }
2791 
2792 static int get_disk_info(mddev_t * mddev, void __user * arg)
2793 {
2794 	mdu_disk_info_t info;
2795 	unsigned int nr;
2796 	mdk_rdev_t *rdev;
2797 
2798 	if (copy_from_user(&info, arg, sizeof(info)))
2799 		return -EFAULT;
2800 
2801 	nr = info.number;
2802 
2803 	rdev = find_rdev_nr(mddev, nr);
2804 	if (rdev) {
2805 		info.major = MAJOR(rdev->bdev->bd_dev);
2806 		info.minor = MINOR(rdev->bdev->bd_dev);
2807 		info.raid_disk = rdev->raid_disk;
2808 		info.state = 0;
2809 		if (test_bit(Faulty, &rdev->flags))
2810 			info.state |= (1<<MD_DISK_FAULTY);
2811 		else if (test_bit(In_sync, &rdev->flags)) {
2812 			info.state |= (1<<MD_DISK_ACTIVE);
2813 			info.state |= (1<<MD_DISK_SYNC);
2814 		}
2815 		if (test_bit(WriteMostly, &rdev->flags))
2816 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2817 	} else {
2818 		info.major = info.minor = 0;
2819 		info.raid_disk = -1;
2820 		info.state = (1<<MD_DISK_REMOVED);
2821 	}
2822 
2823 	if (copy_to_user(arg, &info, sizeof(info)))
2824 		return -EFAULT;
2825 
2826 	return 0;
2827 }
2828 
2829 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2830 {
2831 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2832 	mdk_rdev_t *rdev;
2833 	dev_t dev = MKDEV(info->major,info->minor);
2834 
2835 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2836 		return -EOVERFLOW;
2837 
2838 	if (!mddev->raid_disks) {
2839 		int err;
2840 		/* expecting a device which has a superblock */
2841 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2842 		if (IS_ERR(rdev)) {
2843 			printk(KERN_WARNING
2844 				"md: md_import_device returned %ld\n",
2845 				PTR_ERR(rdev));
2846 			return PTR_ERR(rdev);
2847 		}
2848 		if (!list_empty(&mddev->disks)) {
2849 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2850 							mdk_rdev_t, same_set);
2851 			int err = super_types[mddev->major_version]
2852 				.load_super(rdev, rdev0, mddev->minor_version);
2853 			if (err < 0) {
2854 				printk(KERN_WARNING
2855 					"md: %s has different UUID to %s\n",
2856 					bdevname(rdev->bdev,b),
2857 					bdevname(rdev0->bdev,b2));
2858 				export_rdev(rdev);
2859 				return -EINVAL;
2860 			}
2861 		}
2862 		err = bind_rdev_to_array(rdev, mddev);
2863 		if (err)
2864 			export_rdev(rdev);
2865 		return err;
2866 	}
2867 
2868 	/*
2869 	 * add_new_disk can be used once the array is assembled
2870 	 * to add "hot spares".  They must already have a superblock
2871 	 * written
2872 	 */
2873 	if (mddev->pers) {
2874 		int err;
2875 		if (!mddev->pers->hot_add_disk) {
2876 			printk(KERN_WARNING
2877 				"%s: personality does not support diskops!\n",
2878 			       mdname(mddev));
2879 			return -EINVAL;
2880 		}
2881 		if (mddev->persistent)
2882 			rdev = md_import_device(dev, mddev->major_version,
2883 						mddev->minor_version);
2884 		else
2885 			rdev = md_import_device(dev, -1, -1);
2886 		if (IS_ERR(rdev)) {
2887 			printk(KERN_WARNING
2888 				"md: md_import_device returned %ld\n",
2889 				PTR_ERR(rdev));
2890 			return PTR_ERR(rdev);
2891 		}
2892 		/* set save_raid_disk if appropriate */
2893 		if (!mddev->persistent) {
2894 			if (info->state & (1<<MD_DISK_SYNC)  &&
2895 			    info->raid_disk < mddev->raid_disks)
2896 				rdev->raid_disk = info->raid_disk;
2897 			else
2898 				rdev->raid_disk = -1;
2899 		} else
2900 			super_types[mddev->major_version].
2901 				validate_super(mddev, rdev);
2902 		rdev->saved_raid_disk = rdev->raid_disk;
2903 
2904 		clear_bit(In_sync, &rdev->flags); /* just to be sure */
2905 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2906 			set_bit(WriteMostly, &rdev->flags);
2907 
2908 		rdev->raid_disk = -1;
2909 		err = bind_rdev_to_array(rdev, mddev);
2910 		if (err)
2911 			export_rdev(rdev);
2912 
2913 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2914 		md_wakeup_thread(mddev->thread);
2915 		return err;
2916 	}
2917 
2918 	/* otherwise, add_new_disk is only allowed
2919 	 * for major_version==0 superblocks
2920 	 */
2921 	if (mddev->major_version != 0) {
2922 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2923 		       mdname(mddev));
2924 		return -EINVAL;
2925 	}
2926 
2927 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2928 		int err;
2929 		rdev = md_import_device (dev, -1, 0);
2930 		if (IS_ERR(rdev)) {
2931 			printk(KERN_WARNING
2932 				"md: error, md_import_device() returned %ld\n",
2933 				PTR_ERR(rdev));
2934 			return PTR_ERR(rdev);
2935 		}
2936 		rdev->desc_nr = info->number;
2937 		if (info->raid_disk < mddev->raid_disks)
2938 			rdev->raid_disk = info->raid_disk;
2939 		else
2940 			rdev->raid_disk = -1;
2941 
2942 		rdev->flags = 0;
2943 
2944 		if (rdev->raid_disk < mddev->raid_disks)
2945 			if (info->state & (1<<MD_DISK_SYNC))
2946 				set_bit(In_sync, &rdev->flags);
2947 
2948 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2949 			set_bit(WriteMostly, &rdev->flags);
2950 
2951 		if (!mddev->persistent) {
2952 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2953 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2954 		} else
2955 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2956 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2957 
2958 		err = bind_rdev_to_array(rdev, mddev);
2959 		if (err) {
2960 			export_rdev(rdev);
2961 			return err;
2962 		}
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2969 {
2970 	char b[BDEVNAME_SIZE];
2971 	mdk_rdev_t *rdev;
2972 
2973 	if (!mddev->pers)
2974 		return -ENODEV;
2975 
2976 	rdev = find_rdev(mddev, dev);
2977 	if (!rdev)
2978 		return -ENXIO;
2979 
2980 	if (rdev->raid_disk >= 0)
2981 		goto busy;
2982 
2983 	kick_rdev_from_array(rdev);
2984 	md_update_sb(mddev);
2985 	md_new_event(mddev);
2986 
2987 	return 0;
2988 busy:
2989 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2990 		bdevname(rdev->bdev,b), mdname(mddev));
2991 	return -EBUSY;
2992 }
2993 
2994 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2995 {
2996 	char b[BDEVNAME_SIZE];
2997 	int err;
2998 	unsigned int size;
2999 	mdk_rdev_t *rdev;
3000 
3001 	if (!mddev->pers)
3002 		return -ENODEV;
3003 
3004 	if (mddev->major_version != 0) {
3005 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3006 			" version-0 superblocks.\n",
3007 			mdname(mddev));
3008 		return -EINVAL;
3009 	}
3010 	if (!mddev->pers->hot_add_disk) {
3011 		printk(KERN_WARNING
3012 			"%s: personality does not support diskops!\n",
3013 			mdname(mddev));
3014 		return -EINVAL;
3015 	}
3016 
3017 	rdev = md_import_device (dev, -1, 0);
3018 	if (IS_ERR(rdev)) {
3019 		printk(KERN_WARNING
3020 			"md: error, md_import_device() returned %ld\n",
3021 			PTR_ERR(rdev));
3022 		return -EINVAL;
3023 	}
3024 
3025 	if (mddev->persistent)
3026 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3027 	else
3028 		rdev->sb_offset =
3029 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3030 
3031 	size = calc_dev_size(rdev, mddev->chunk_size);
3032 	rdev->size = size;
3033 
3034 	if (test_bit(Faulty, &rdev->flags)) {
3035 		printk(KERN_WARNING
3036 			"md: can not hot-add faulty %s disk to %s!\n",
3037 			bdevname(rdev->bdev,b), mdname(mddev));
3038 		err = -EINVAL;
3039 		goto abort_export;
3040 	}
3041 	clear_bit(In_sync, &rdev->flags);
3042 	rdev->desc_nr = -1;
3043 	err = bind_rdev_to_array(rdev, mddev);
3044 	if (err)
3045 		goto abort_export;
3046 
3047 	/*
3048 	 * The rest should better be atomic, we can have disk failures
3049 	 * noticed in interrupt contexts ...
3050 	 */
3051 
3052 	if (rdev->desc_nr == mddev->max_disks) {
3053 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3054 			mdname(mddev));
3055 		err = -EBUSY;
3056 		goto abort_unbind_export;
3057 	}
3058 
3059 	rdev->raid_disk = -1;
3060 
3061 	md_update_sb(mddev);
3062 
3063 	/*
3064 	 * Kick recovery, maybe this spare has to be added to the
3065 	 * array immediately.
3066 	 */
3067 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3068 	md_wakeup_thread(mddev->thread);
3069 	md_new_event(mddev);
3070 	return 0;
3071 
3072 abort_unbind_export:
3073 	unbind_rdev_from_array(rdev);
3074 
3075 abort_export:
3076 	export_rdev(rdev);
3077 	return err;
3078 }
3079 
3080 /* similar to deny_write_access, but accounts for our holding a reference
3081  * to the file ourselves */
3082 static int deny_bitmap_write_access(struct file * file)
3083 {
3084 	struct inode *inode = file->f_mapping->host;
3085 
3086 	spin_lock(&inode->i_lock);
3087 	if (atomic_read(&inode->i_writecount) > 1) {
3088 		spin_unlock(&inode->i_lock);
3089 		return -ETXTBSY;
3090 	}
3091 	atomic_set(&inode->i_writecount, -1);
3092 	spin_unlock(&inode->i_lock);
3093 
3094 	return 0;
3095 }
3096 
3097 static int set_bitmap_file(mddev_t *mddev, int fd)
3098 {
3099 	int err;
3100 
3101 	if (mddev->pers) {
3102 		if (!mddev->pers->quiesce)
3103 			return -EBUSY;
3104 		if (mddev->recovery || mddev->sync_thread)
3105 			return -EBUSY;
3106 		/* we should be able to change the bitmap.. */
3107 	}
3108 
3109 
3110 	if (fd >= 0) {
3111 		if (mddev->bitmap)
3112 			return -EEXIST; /* cannot add when bitmap is present */
3113 		mddev->bitmap_file = fget(fd);
3114 
3115 		if (mddev->bitmap_file == NULL) {
3116 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3117 			       mdname(mddev));
3118 			return -EBADF;
3119 		}
3120 
3121 		err = deny_bitmap_write_access(mddev->bitmap_file);
3122 		if (err) {
3123 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3124 			       mdname(mddev));
3125 			fput(mddev->bitmap_file);
3126 			mddev->bitmap_file = NULL;
3127 			return err;
3128 		}
3129 		mddev->bitmap_offset = 0; /* file overrides offset */
3130 	} else if (mddev->bitmap == NULL)
3131 		return -ENOENT; /* cannot remove what isn't there */
3132 	err = 0;
3133 	if (mddev->pers) {
3134 		mddev->pers->quiesce(mddev, 1);
3135 		if (fd >= 0)
3136 			err = bitmap_create(mddev);
3137 		if (fd < 0 || err)
3138 			bitmap_destroy(mddev);
3139 		mddev->pers->quiesce(mddev, 0);
3140 	} else if (fd < 0) {
3141 		if (mddev->bitmap_file)
3142 			fput(mddev->bitmap_file);
3143 		mddev->bitmap_file = NULL;
3144 	}
3145 
3146 	return err;
3147 }
3148 
3149 /*
3150  * set_array_info is used two different ways
3151  * The original usage is when creating a new array.
3152  * In this usage, raid_disks is > 0 and it together with
3153  *  level, size, not_persistent,layout,chunksize determine the
3154  *  shape of the array.
3155  *  This will always create an array with a type-0.90.0 superblock.
3156  * The newer usage is when assembling an array.
3157  *  In this case raid_disks will be 0, and the major_version field is
3158  *  use to determine which style super-blocks are to be found on the devices.
3159  *  The minor and patch _version numbers are also kept incase the
3160  *  super_block handler wishes to interpret them.
3161  */
3162 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3163 {
3164 
3165 	if (info->raid_disks == 0) {
3166 		/* just setting version number for superblock loading */
3167 		if (info->major_version < 0 ||
3168 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3169 		    super_types[info->major_version].name == NULL) {
3170 			/* maybe try to auto-load a module? */
3171 			printk(KERN_INFO
3172 				"md: superblock version %d not known\n",
3173 				info->major_version);
3174 			return -EINVAL;
3175 		}
3176 		mddev->major_version = info->major_version;
3177 		mddev->minor_version = info->minor_version;
3178 		mddev->patch_version = info->patch_version;
3179 		return 0;
3180 	}
3181 	mddev->major_version = MD_MAJOR_VERSION;
3182 	mddev->minor_version = MD_MINOR_VERSION;
3183 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
3184 	mddev->ctime         = get_seconds();
3185 
3186 	mddev->level         = info->level;
3187 	mddev->size          = info->size;
3188 	mddev->raid_disks    = info->raid_disks;
3189 	/* don't set md_minor, it is determined by which /dev/md* was
3190 	 * openned
3191 	 */
3192 	if (info->state & (1<<MD_SB_CLEAN))
3193 		mddev->recovery_cp = MaxSector;
3194 	else
3195 		mddev->recovery_cp = 0;
3196 	mddev->persistent    = ! info->not_persistent;
3197 
3198 	mddev->layout        = info->layout;
3199 	mddev->chunk_size    = info->chunk_size;
3200 
3201 	mddev->max_disks     = MD_SB_DISKS;
3202 
3203 	mddev->sb_dirty      = 1;
3204 
3205 	mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3206 	mddev->bitmap_offset = 0;
3207 
3208 	/*
3209 	 * Generate a 128 bit UUID
3210 	 */
3211 	get_random_bytes(mddev->uuid, 16);
3212 
3213 	return 0;
3214 }
3215 
3216 static int update_size(mddev_t *mddev, unsigned long size)
3217 {
3218 	mdk_rdev_t * rdev;
3219 	int rv;
3220 	struct list_head *tmp;
3221 
3222 	if (mddev->pers->resize == NULL)
3223 		return -EINVAL;
3224 	/* The "size" is the amount of each device that is used.
3225 	 * This can only make sense for arrays with redundancy.
3226 	 * linear and raid0 always use whatever space is available
3227 	 * We can only consider changing the size if no resync
3228 	 * or reconstruction is happening, and if the new size
3229 	 * is acceptable. It must fit before the sb_offset or,
3230 	 * if that is <data_offset, it must fit before the
3231 	 * size of each device.
3232 	 * If size is zero, we find the largest size that fits.
3233 	 */
3234 	if (mddev->sync_thread)
3235 		return -EBUSY;
3236 	ITERATE_RDEV(mddev,rdev,tmp) {
3237 		sector_t avail;
3238 		int fit = (size == 0);
3239 		if (rdev->sb_offset > rdev->data_offset)
3240 			avail = (rdev->sb_offset*2) - rdev->data_offset;
3241 		else
3242 			avail = get_capacity(rdev->bdev->bd_disk)
3243 				- rdev->data_offset;
3244 		if (fit && (size == 0 || size > avail/2))
3245 			size = avail/2;
3246 		if (avail < ((sector_t)size << 1))
3247 			return -ENOSPC;
3248 	}
3249 	rv = mddev->pers->resize(mddev, (sector_t)size *2);
3250 	if (!rv) {
3251 		struct block_device *bdev;
3252 
3253 		bdev = bdget_disk(mddev->gendisk, 0);
3254 		if (bdev) {
3255 			down(&bdev->bd_inode->i_sem);
3256 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3257 			up(&bdev->bd_inode->i_sem);
3258 			bdput(bdev);
3259 		}
3260 	}
3261 	return rv;
3262 }
3263 
3264 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3265 {
3266 	int rv;
3267 	/* change the number of raid disks */
3268 	if (mddev->pers->reshape == NULL)
3269 		return -EINVAL;
3270 	if (raid_disks <= 0 ||
3271 	    raid_disks >= mddev->max_disks)
3272 		return -EINVAL;
3273 	if (mddev->sync_thread)
3274 		return -EBUSY;
3275 	rv = mddev->pers->reshape(mddev, raid_disks);
3276 	if (!rv) {
3277 		struct block_device *bdev;
3278 
3279 		bdev = bdget_disk(mddev->gendisk, 0);
3280 		if (bdev) {
3281 			down(&bdev->bd_inode->i_sem);
3282 			i_size_write(bdev->bd_inode, mddev->array_size << 10);
3283 			up(&bdev->bd_inode->i_sem);
3284 			bdput(bdev);
3285 		}
3286 	}
3287 	return rv;
3288 }
3289 
3290 
3291 /*
3292  * update_array_info is used to change the configuration of an
3293  * on-line array.
3294  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3295  * fields in the info are checked against the array.
3296  * Any differences that cannot be handled will cause an error.
3297  * Normally, only one change can be managed at a time.
3298  */
3299 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3300 {
3301 	int rv = 0;
3302 	int cnt = 0;
3303 	int state = 0;
3304 
3305 	/* calculate expected state,ignoring low bits */
3306 	if (mddev->bitmap && mddev->bitmap_offset)
3307 		state |= (1 << MD_SB_BITMAP_PRESENT);
3308 
3309 	if (mddev->major_version != info->major_version ||
3310 	    mddev->minor_version != info->minor_version ||
3311 /*	    mddev->patch_version != info->patch_version || */
3312 	    mddev->ctime         != info->ctime         ||
3313 	    mddev->level         != info->level         ||
3314 /*	    mddev->layout        != info->layout        || */
3315 	    !mddev->persistent	 != info->not_persistent||
3316 	    mddev->chunk_size    != info->chunk_size    ||
3317 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3318 	    ((state^info->state) & 0xfffffe00)
3319 		)
3320 		return -EINVAL;
3321 	/* Check there is only one change */
3322 	if (mddev->size != info->size) cnt++;
3323 	if (mddev->raid_disks != info->raid_disks) cnt++;
3324 	if (mddev->layout != info->layout) cnt++;
3325 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3326 	if (cnt == 0) return 0;
3327 	if (cnt > 1) return -EINVAL;
3328 
3329 	if (mddev->layout != info->layout) {
3330 		/* Change layout
3331 		 * we don't need to do anything at the md level, the
3332 		 * personality will take care of it all.
3333 		 */
3334 		if (mddev->pers->reconfig == NULL)
3335 			return -EINVAL;
3336 		else
3337 			return mddev->pers->reconfig(mddev, info->layout, -1);
3338 	}
3339 	if (mddev->size != info->size)
3340 		rv = update_size(mddev, info->size);
3341 
3342 	if (mddev->raid_disks    != info->raid_disks)
3343 		rv = update_raid_disks(mddev, info->raid_disks);
3344 
3345 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3346 		if (mddev->pers->quiesce == NULL)
3347 			return -EINVAL;
3348 		if (mddev->recovery || mddev->sync_thread)
3349 			return -EBUSY;
3350 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3351 			/* add the bitmap */
3352 			if (mddev->bitmap)
3353 				return -EEXIST;
3354 			if (mddev->default_bitmap_offset == 0)
3355 				return -EINVAL;
3356 			mddev->bitmap_offset = mddev->default_bitmap_offset;
3357 			mddev->pers->quiesce(mddev, 1);
3358 			rv = bitmap_create(mddev);
3359 			if (rv)
3360 				bitmap_destroy(mddev);
3361 			mddev->pers->quiesce(mddev, 0);
3362 		} else {
3363 			/* remove the bitmap */
3364 			if (!mddev->bitmap)
3365 				return -ENOENT;
3366 			if (mddev->bitmap->file)
3367 				return -EINVAL;
3368 			mddev->pers->quiesce(mddev, 1);
3369 			bitmap_destroy(mddev);
3370 			mddev->pers->quiesce(mddev, 0);
3371 			mddev->bitmap_offset = 0;
3372 		}
3373 	}
3374 	md_update_sb(mddev);
3375 	return rv;
3376 }
3377 
3378 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3379 {
3380 	mdk_rdev_t *rdev;
3381 
3382 	if (mddev->pers == NULL)
3383 		return -ENODEV;
3384 
3385 	rdev = find_rdev(mddev, dev);
3386 	if (!rdev)
3387 		return -ENODEV;
3388 
3389 	md_error(mddev, rdev);
3390 	return 0;
3391 }
3392 
3393 static int md_ioctl(struct inode *inode, struct file *file,
3394 			unsigned int cmd, unsigned long arg)
3395 {
3396 	int err = 0;
3397 	void __user *argp = (void __user *)arg;
3398 	struct hd_geometry __user *loc = argp;
3399 	mddev_t *mddev = NULL;
3400 
3401 	if (!capable(CAP_SYS_ADMIN))
3402 		return -EACCES;
3403 
3404 	/*
3405 	 * Commands dealing with the RAID driver but not any
3406 	 * particular array:
3407 	 */
3408 	switch (cmd)
3409 	{
3410 		case RAID_VERSION:
3411 			err = get_version(argp);
3412 			goto done;
3413 
3414 		case PRINT_RAID_DEBUG:
3415 			err = 0;
3416 			md_print_devices();
3417 			goto done;
3418 
3419 #ifndef MODULE
3420 		case RAID_AUTORUN:
3421 			err = 0;
3422 			autostart_arrays(arg);
3423 			goto done;
3424 #endif
3425 		default:;
3426 	}
3427 
3428 	/*
3429 	 * Commands creating/starting a new array:
3430 	 */
3431 
3432 	mddev = inode->i_bdev->bd_disk->private_data;
3433 
3434 	if (!mddev) {
3435 		BUG();
3436 		goto abort;
3437 	}
3438 
3439 
3440 	if (cmd == START_ARRAY) {
3441 		/* START_ARRAY doesn't need to lock the array as autostart_array
3442 		 * does the locking, and it could even be a different array
3443 		 */
3444 		static int cnt = 3;
3445 		if (cnt > 0 ) {
3446 			printk(KERN_WARNING
3447 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3448 			       "This will not be supported beyond July 2006\n",
3449 			       current->comm, current->pid);
3450 			cnt--;
3451 		}
3452 		err = autostart_array(new_decode_dev(arg));
3453 		if (err) {
3454 			printk(KERN_WARNING "md: autostart failed!\n");
3455 			goto abort;
3456 		}
3457 		goto done;
3458 	}
3459 
3460 	err = mddev_lock(mddev);
3461 	if (err) {
3462 		printk(KERN_INFO
3463 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3464 			err, cmd);
3465 		goto abort;
3466 	}
3467 
3468 	switch (cmd)
3469 	{
3470 		case SET_ARRAY_INFO:
3471 			{
3472 				mdu_array_info_t info;
3473 				if (!arg)
3474 					memset(&info, 0, sizeof(info));
3475 				else if (copy_from_user(&info, argp, sizeof(info))) {
3476 					err = -EFAULT;
3477 					goto abort_unlock;
3478 				}
3479 				if (mddev->pers) {
3480 					err = update_array_info(mddev, &info);
3481 					if (err) {
3482 						printk(KERN_WARNING "md: couldn't update"
3483 						       " array info. %d\n", err);
3484 						goto abort_unlock;
3485 					}
3486 					goto done_unlock;
3487 				}
3488 				if (!list_empty(&mddev->disks)) {
3489 					printk(KERN_WARNING
3490 					       "md: array %s already has disks!\n",
3491 					       mdname(mddev));
3492 					err = -EBUSY;
3493 					goto abort_unlock;
3494 				}
3495 				if (mddev->raid_disks) {
3496 					printk(KERN_WARNING
3497 					       "md: array %s already initialised!\n",
3498 					       mdname(mddev));
3499 					err = -EBUSY;
3500 					goto abort_unlock;
3501 				}
3502 				err = set_array_info(mddev, &info);
3503 				if (err) {
3504 					printk(KERN_WARNING "md: couldn't set"
3505 					       " array info. %d\n", err);
3506 					goto abort_unlock;
3507 				}
3508 			}
3509 			goto done_unlock;
3510 
3511 		default:;
3512 	}
3513 
3514 	/*
3515 	 * Commands querying/configuring an existing array:
3516 	 */
3517 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3518 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3519 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3520 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3521 		err = -ENODEV;
3522 		goto abort_unlock;
3523 	}
3524 
3525 	/*
3526 	 * Commands even a read-only array can execute:
3527 	 */
3528 	switch (cmd)
3529 	{
3530 		case GET_ARRAY_INFO:
3531 			err = get_array_info(mddev, argp);
3532 			goto done_unlock;
3533 
3534 		case GET_BITMAP_FILE:
3535 			err = get_bitmap_file(mddev, argp);
3536 			goto done_unlock;
3537 
3538 		case GET_DISK_INFO:
3539 			err = get_disk_info(mddev, argp);
3540 			goto done_unlock;
3541 
3542 		case RESTART_ARRAY_RW:
3543 			err = restart_array(mddev);
3544 			goto done_unlock;
3545 
3546 		case STOP_ARRAY:
3547 			err = do_md_stop (mddev, 0);
3548 			goto done_unlock;
3549 
3550 		case STOP_ARRAY_RO:
3551 			err = do_md_stop (mddev, 1);
3552 			goto done_unlock;
3553 
3554 	/*
3555 	 * We have a problem here : there is no easy way to give a CHS
3556 	 * virtual geometry. We currently pretend that we have a 2 heads
3557 	 * 4 sectors (with a BIG number of cylinders...). This drives
3558 	 * dosfs just mad... ;-)
3559 	 */
3560 		case HDIO_GETGEO:
3561 			if (!loc) {
3562 				err = -EINVAL;
3563 				goto abort_unlock;
3564 			}
3565 			err = put_user (2, (char __user *) &loc->heads);
3566 			if (err)
3567 				goto abort_unlock;
3568 			err = put_user (4, (char __user *) &loc->sectors);
3569 			if (err)
3570 				goto abort_unlock;
3571 			err = put_user(get_capacity(mddev->gendisk)/8,
3572 					(short __user *) &loc->cylinders);
3573 			if (err)
3574 				goto abort_unlock;
3575 			err = put_user (get_start_sect(inode->i_bdev),
3576 						(long __user *) &loc->start);
3577 			goto done_unlock;
3578 	}
3579 
3580 	/*
3581 	 * The remaining ioctls are changing the state of the
3582 	 * superblock, so we do not allow them on read-only arrays.
3583 	 * However non-MD ioctls (e.g. get-size) will still come through
3584 	 * here and hit the 'default' below, so only disallow
3585 	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
3586 	 */
3587 	if (_IOC_TYPE(cmd) == MD_MAJOR &&
3588 	    mddev->ro && mddev->pers) {
3589 		if (mddev->ro == 2) {
3590 			mddev->ro = 0;
3591 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3592 		md_wakeup_thread(mddev->thread);
3593 
3594 		} else {
3595 			err = -EROFS;
3596 			goto abort_unlock;
3597 		}
3598 	}
3599 
3600 	switch (cmd)
3601 	{
3602 		case ADD_NEW_DISK:
3603 		{
3604 			mdu_disk_info_t info;
3605 			if (copy_from_user(&info, argp, sizeof(info)))
3606 				err = -EFAULT;
3607 			else
3608 				err = add_new_disk(mddev, &info);
3609 			goto done_unlock;
3610 		}
3611 
3612 		case HOT_REMOVE_DISK:
3613 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3614 			goto done_unlock;
3615 
3616 		case HOT_ADD_DISK:
3617 			err = hot_add_disk(mddev, new_decode_dev(arg));
3618 			goto done_unlock;
3619 
3620 		case SET_DISK_FAULTY:
3621 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3622 			goto done_unlock;
3623 
3624 		case RUN_ARRAY:
3625 			err = do_md_run (mddev);
3626 			goto done_unlock;
3627 
3628 		case SET_BITMAP_FILE:
3629 			err = set_bitmap_file(mddev, (int)arg);
3630 			goto done_unlock;
3631 
3632 		default:
3633 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3634 				printk(KERN_WARNING "md: %s(pid %d) used"
3635 					" obsolete MD ioctl, upgrade your"
3636 					" software to use new ictls.\n",
3637 					current->comm, current->pid);
3638 			err = -EINVAL;
3639 			goto abort_unlock;
3640 	}
3641 
3642 done_unlock:
3643 abort_unlock:
3644 	mddev_unlock(mddev);
3645 
3646 	return err;
3647 done:
3648 	if (err)
3649 		MD_BUG();
3650 abort:
3651 	return err;
3652 }
3653 
3654 static int md_open(struct inode *inode, struct file *file)
3655 {
3656 	/*
3657 	 * Succeed if we can lock the mddev, which confirms that
3658 	 * it isn't being stopped right now.
3659 	 */
3660 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3661 	int err;
3662 
3663 	if ((err = mddev_lock(mddev)))
3664 		goto out;
3665 
3666 	err = 0;
3667 	mddev_get(mddev);
3668 	mddev_unlock(mddev);
3669 
3670 	check_disk_change(inode->i_bdev);
3671  out:
3672 	return err;
3673 }
3674 
3675 static int md_release(struct inode *inode, struct file * file)
3676 {
3677  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3678 
3679 	if (!mddev)
3680 		BUG();
3681 	mddev_put(mddev);
3682 
3683 	return 0;
3684 }
3685 
3686 static int md_media_changed(struct gendisk *disk)
3687 {
3688 	mddev_t *mddev = disk->private_data;
3689 
3690 	return mddev->changed;
3691 }
3692 
3693 static int md_revalidate(struct gendisk *disk)
3694 {
3695 	mddev_t *mddev = disk->private_data;
3696 
3697 	mddev->changed = 0;
3698 	return 0;
3699 }
3700 static struct block_device_operations md_fops =
3701 {
3702 	.owner		= THIS_MODULE,
3703 	.open		= md_open,
3704 	.release	= md_release,
3705 	.ioctl		= md_ioctl,
3706 	.media_changed	= md_media_changed,
3707 	.revalidate_disk= md_revalidate,
3708 };
3709 
3710 static int md_thread(void * arg)
3711 {
3712 	mdk_thread_t *thread = arg;
3713 
3714 	/*
3715 	 * md_thread is a 'system-thread', it's priority should be very
3716 	 * high. We avoid resource deadlocks individually in each
3717 	 * raid personality. (RAID5 does preallocation) We also use RR and
3718 	 * the very same RT priority as kswapd, thus we will never get
3719 	 * into a priority inversion deadlock.
3720 	 *
3721 	 * we definitely have to have equal or higher priority than
3722 	 * bdflush, otherwise bdflush will deadlock if there are too
3723 	 * many dirty RAID5 blocks.
3724 	 */
3725 
3726 	allow_signal(SIGKILL);
3727 	while (!kthread_should_stop()) {
3728 
3729 		/* We need to wait INTERRUPTIBLE so that
3730 		 * we don't add to the load-average.
3731 		 * That means we need to be sure no signals are
3732 		 * pending
3733 		 */
3734 		if (signal_pending(current))
3735 			flush_signals(current);
3736 
3737 		wait_event_interruptible_timeout
3738 			(thread->wqueue,
3739 			 test_bit(THREAD_WAKEUP, &thread->flags)
3740 			 || kthread_should_stop(),
3741 			 thread->timeout);
3742 		try_to_freeze();
3743 
3744 		clear_bit(THREAD_WAKEUP, &thread->flags);
3745 
3746 		thread->run(thread->mddev);
3747 	}
3748 
3749 	return 0;
3750 }
3751 
3752 void md_wakeup_thread(mdk_thread_t *thread)
3753 {
3754 	if (thread) {
3755 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3756 		set_bit(THREAD_WAKEUP, &thread->flags);
3757 		wake_up(&thread->wqueue);
3758 	}
3759 }
3760 
3761 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3762 				 const char *name)
3763 {
3764 	mdk_thread_t *thread;
3765 
3766 	thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3767 	if (!thread)
3768 		return NULL;
3769 
3770 	init_waitqueue_head(&thread->wqueue);
3771 
3772 	thread->run = run;
3773 	thread->mddev = mddev;
3774 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3775 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3776 	if (IS_ERR(thread->tsk)) {
3777 		kfree(thread);
3778 		return NULL;
3779 	}
3780 	return thread;
3781 }
3782 
3783 void md_unregister_thread(mdk_thread_t *thread)
3784 {
3785 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3786 
3787 	kthread_stop(thread->tsk);
3788 	kfree(thread);
3789 }
3790 
3791 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3792 {
3793 	if (!mddev) {
3794 		MD_BUG();
3795 		return;
3796 	}
3797 
3798 	if (!rdev || test_bit(Faulty, &rdev->flags))
3799 		return;
3800 /*
3801 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3802 		mdname(mddev),
3803 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3804 		__builtin_return_address(0),__builtin_return_address(1),
3805 		__builtin_return_address(2),__builtin_return_address(3));
3806 */
3807 	if (!mddev->pers->error_handler)
3808 		return;
3809 	mddev->pers->error_handler(mddev,rdev);
3810 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3811 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3812 	md_wakeup_thread(mddev->thread);
3813 	md_new_event(mddev);
3814 }
3815 
3816 /* seq_file implementation /proc/mdstat */
3817 
3818 static void status_unused(struct seq_file *seq)
3819 {
3820 	int i = 0;
3821 	mdk_rdev_t *rdev;
3822 	struct list_head *tmp;
3823 
3824 	seq_printf(seq, "unused devices: ");
3825 
3826 	ITERATE_RDEV_PENDING(rdev,tmp) {
3827 		char b[BDEVNAME_SIZE];
3828 		i++;
3829 		seq_printf(seq, "%s ",
3830 			      bdevname(rdev->bdev,b));
3831 	}
3832 	if (!i)
3833 		seq_printf(seq, "<none>");
3834 
3835 	seq_printf(seq, "\n");
3836 }
3837 
3838 
3839 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3840 {
3841 	unsigned long max_blocks, resync, res, dt, db, rt;
3842 
3843 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3844 
3845 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3846 		max_blocks = mddev->resync_max_sectors >> 1;
3847 	else
3848 		max_blocks = mddev->size;
3849 
3850 	/*
3851 	 * Should not happen.
3852 	 */
3853 	if (!max_blocks) {
3854 		MD_BUG();
3855 		return;
3856 	}
3857 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3858 	{
3859 		int i, x = res/50, y = 20-x;
3860 		seq_printf(seq, "[");
3861 		for (i = 0; i < x; i++)
3862 			seq_printf(seq, "=");
3863 		seq_printf(seq, ">");
3864 		for (i = 0; i < y; i++)
3865 			seq_printf(seq, ".");
3866 		seq_printf(seq, "] ");
3867 	}
3868 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3869 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3870 		       "resync" : "recovery"),
3871 		      res/10, res % 10, resync, max_blocks);
3872 
3873 	/*
3874 	 * We do not want to overflow, so the order of operands and
3875 	 * the * 100 / 100 trick are important. We do a +1 to be
3876 	 * safe against division by zero. We only estimate anyway.
3877 	 *
3878 	 * dt: time from mark until now
3879 	 * db: blocks written from mark until now
3880 	 * rt: remaining time
3881 	 */
3882 	dt = ((jiffies - mddev->resync_mark) / HZ);
3883 	if (!dt) dt++;
3884 	db = resync - (mddev->resync_mark_cnt/2);
3885 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3886 
3887 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3888 
3889 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3890 }
3891 
3892 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3893 {
3894 	struct list_head *tmp;
3895 	loff_t l = *pos;
3896 	mddev_t *mddev;
3897 
3898 	if (l >= 0x10000)
3899 		return NULL;
3900 	if (!l--)
3901 		/* header */
3902 		return (void*)1;
3903 
3904 	spin_lock(&all_mddevs_lock);
3905 	list_for_each(tmp,&all_mddevs)
3906 		if (!l--) {
3907 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3908 			mddev_get(mddev);
3909 			spin_unlock(&all_mddevs_lock);
3910 			return mddev;
3911 		}
3912 	spin_unlock(&all_mddevs_lock);
3913 	if (!l--)
3914 		return (void*)2;/* tail */
3915 	return NULL;
3916 }
3917 
3918 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3919 {
3920 	struct list_head *tmp;
3921 	mddev_t *next_mddev, *mddev = v;
3922 
3923 	++*pos;
3924 	if (v == (void*)2)
3925 		return NULL;
3926 
3927 	spin_lock(&all_mddevs_lock);
3928 	if (v == (void*)1)
3929 		tmp = all_mddevs.next;
3930 	else
3931 		tmp = mddev->all_mddevs.next;
3932 	if (tmp != &all_mddevs)
3933 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3934 	else {
3935 		next_mddev = (void*)2;
3936 		*pos = 0x10000;
3937 	}
3938 	spin_unlock(&all_mddevs_lock);
3939 
3940 	if (v != (void*)1)
3941 		mddev_put(mddev);
3942 	return next_mddev;
3943 
3944 }
3945 
3946 static void md_seq_stop(struct seq_file *seq, void *v)
3947 {
3948 	mddev_t *mddev = v;
3949 
3950 	if (mddev && v != (void*)1 && v != (void*)2)
3951 		mddev_put(mddev);
3952 }
3953 
3954 struct mdstat_info {
3955 	int event;
3956 };
3957 
3958 static int md_seq_show(struct seq_file *seq, void *v)
3959 {
3960 	mddev_t *mddev = v;
3961 	sector_t size;
3962 	struct list_head *tmp2;
3963 	mdk_rdev_t *rdev;
3964 	struct mdstat_info *mi = seq->private;
3965 	struct bitmap *bitmap;
3966 
3967 	if (v == (void*)1) {
3968 		struct mdk_personality *pers;
3969 		seq_printf(seq, "Personalities : ");
3970 		spin_lock(&pers_lock);
3971 		list_for_each_entry(pers, &pers_list, list)
3972 			seq_printf(seq, "[%s] ", pers->name);
3973 
3974 		spin_unlock(&pers_lock);
3975 		seq_printf(seq, "\n");
3976 		mi->event = atomic_read(&md_event_count);
3977 		return 0;
3978 	}
3979 	if (v == (void*)2) {
3980 		status_unused(seq);
3981 		return 0;
3982 	}
3983 
3984 	if (mddev_lock(mddev)!=0)
3985 		return -EINTR;
3986 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3987 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3988 						mddev->pers ? "" : "in");
3989 		if (mddev->pers) {
3990 			if (mddev->ro==1)
3991 				seq_printf(seq, " (read-only)");
3992 			if (mddev->ro==2)
3993 				seq_printf(seq, "(auto-read-only)");
3994 			seq_printf(seq, " %s", mddev->pers->name);
3995 		}
3996 
3997 		size = 0;
3998 		ITERATE_RDEV(mddev,rdev,tmp2) {
3999 			char b[BDEVNAME_SIZE];
4000 			seq_printf(seq, " %s[%d]",
4001 				bdevname(rdev->bdev,b), rdev->desc_nr);
4002 			if (test_bit(WriteMostly, &rdev->flags))
4003 				seq_printf(seq, "(W)");
4004 			if (test_bit(Faulty, &rdev->flags)) {
4005 				seq_printf(seq, "(F)");
4006 				continue;
4007 			} else if (rdev->raid_disk < 0)
4008 				seq_printf(seq, "(S)"); /* spare */
4009 			size += rdev->size;
4010 		}
4011 
4012 		if (!list_empty(&mddev->disks)) {
4013 			if (mddev->pers)
4014 				seq_printf(seq, "\n      %llu blocks",
4015 					(unsigned long long)mddev->array_size);
4016 			else
4017 				seq_printf(seq, "\n      %llu blocks",
4018 					(unsigned long long)size);
4019 		}
4020 		if (mddev->persistent) {
4021 			if (mddev->major_version != 0 ||
4022 			    mddev->minor_version != 90) {
4023 				seq_printf(seq," super %d.%d",
4024 					   mddev->major_version,
4025 					   mddev->minor_version);
4026 			}
4027 		} else
4028 			seq_printf(seq, " super non-persistent");
4029 
4030 		if (mddev->pers) {
4031 			mddev->pers->status (seq, mddev);
4032 	 		seq_printf(seq, "\n      ");
4033 			if (mddev->pers->sync_request) {
4034 				if (mddev->curr_resync > 2) {
4035 					status_resync (seq, mddev);
4036 					seq_printf(seq, "\n      ");
4037 				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4038 					seq_printf(seq, "\tresync=DELAYED\n      ");
4039 				else if (mddev->recovery_cp < MaxSector)
4040 					seq_printf(seq, "\tresync=PENDING\n      ");
4041 			}
4042 		} else
4043 			seq_printf(seq, "\n       ");
4044 
4045 		if ((bitmap = mddev->bitmap)) {
4046 			unsigned long chunk_kb;
4047 			unsigned long flags;
4048 			spin_lock_irqsave(&bitmap->lock, flags);
4049 			chunk_kb = bitmap->chunksize >> 10;
4050 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4051 				"%lu%s chunk",
4052 				bitmap->pages - bitmap->missing_pages,
4053 				bitmap->pages,
4054 				(bitmap->pages - bitmap->missing_pages)
4055 					<< (PAGE_SHIFT - 10),
4056 				chunk_kb ? chunk_kb : bitmap->chunksize,
4057 				chunk_kb ? "KB" : "B");
4058 			if (bitmap->file) {
4059 				seq_printf(seq, ", file: ");
4060 				seq_path(seq, bitmap->file->f_vfsmnt,
4061 					 bitmap->file->f_dentry," \t\n");
4062 			}
4063 
4064 			seq_printf(seq, "\n");
4065 			spin_unlock_irqrestore(&bitmap->lock, flags);
4066 		}
4067 
4068 		seq_printf(seq, "\n");
4069 	}
4070 	mddev_unlock(mddev);
4071 
4072 	return 0;
4073 }
4074 
4075 static struct seq_operations md_seq_ops = {
4076 	.start  = md_seq_start,
4077 	.next   = md_seq_next,
4078 	.stop   = md_seq_stop,
4079 	.show   = md_seq_show,
4080 };
4081 
4082 static int md_seq_open(struct inode *inode, struct file *file)
4083 {
4084 	int error;
4085 	struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4086 	if (mi == NULL)
4087 		return -ENOMEM;
4088 
4089 	error = seq_open(file, &md_seq_ops);
4090 	if (error)
4091 		kfree(mi);
4092 	else {
4093 		struct seq_file *p = file->private_data;
4094 		p->private = mi;
4095 		mi->event = atomic_read(&md_event_count);
4096 	}
4097 	return error;
4098 }
4099 
4100 static int md_seq_release(struct inode *inode, struct file *file)
4101 {
4102 	struct seq_file *m = file->private_data;
4103 	struct mdstat_info *mi = m->private;
4104 	m->private = NULL;
4105 	kfree(mi);
4106 	return seq_release(inode, file);
4107 }
4108 
4109 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4110 {
4111 	struct seq_file *m = filp->private_data;
4112 	struct mdstat_info *mi = m->private;
4113 	int mask;
4114 
4115 	poll_wait(filp, &md_event_waiters, wait);
4116 
4117 	/* always allow read */
4118 	mask = POLLIN | POLLRDNORM;
4119 
4120 	if (mi->event != atomic_read(&md_event_count))
4121 		mask |= POLLERR | POLLPRI;
4122 	return mask;
4123 }
4124 
4125 static struct file_operations md_seq_fops = {
4126 	.open           = md_seq_open,
4127 	.read           = seq_read,
4128 	.llseek         = seq_lseek,
4129 	.release	= md_seq_release,
4130 	.poll		= mdstat_poll,
4131 };
4132 
4133 int register_md_personality(struct mdk_personality *p)
4134 {
4135 	spin_lock(&pers_lock);
4136 	list_add_tail(&p->list, &pers_list);
4137 	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4138 	spin_unlock(&pers_lock);
4139 	return 0;
4140 }
4141 
4142 int unregister_md_personality(struct mdk_personality *p)
4143 {
4144 	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4145 	spin_lock(&pers_lock);
4146 	list_del_init(&p->list);
4147 	spin_unlock(&pers_lock);
4148 	return 0;
4149 }
4150 
4151 static int is_mddev_idle(mddev_t *mddev)
4152 {
4153 	mdk_rdev_t * rdev;
4154 	struct list_head *tmp;
4155 	int idle;
4156 	unsigned long curr_events;
4157 
4158 	idle = 1;
4159 	ITERATE_RDEV(mddev,rdev,tmp) {
4160 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4161 		curr_events = disk_stat_read(disk, sectors[0]) +
4162 				disk_stat_read(disk, sectors[1]) -
4163 				atomic_read(&disk->sync_io);
4164 		/* The difference between curr_events and last_events
4165 		 * will be affected by any new non-sync IO (making
4166 		 * curr_events bigger) and any difference in the amount of
4167 		 * in-flight syncio (making current_events bigger or smaller)
4168 		 * The amount in-flight is currently limited to
4169 		 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4170 		 * which is at most 4096 sectors.
4171 		 * These numbers are fairly fragile and should be made
4172 		 * more robust, probably by enforcing the
4173 		 * 'window size' that md_do_sync sort-of uses.
4174 		 *
4175 		 * Note: the following is an unsigned comparison.
4176 		 */
4177 		if ((curr_events - rdev->last_events + 4096) > 8192) {
4178 			rdev->last_events = curr_events;
4179 			idle = 0;
4180 		}
4181 	}
4182 	return idle;
4183 }
4184 
4185 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4186 {
4187 	/* another "blocks" (512byte) blocks have been synced */
4188 	atomic_sub(blocks, &mddev->recovery_active);
4189 	wake_up(&mddev->recovery_wait);
4190 	if (!ok) {
4191 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4192 		md_wakeup_thread(mddev->thread);
4193 		// stop recovery, signal do_sync ....
4194 	}
4195 }
4196 
4197 
4198 /* md_write_start(mddev, bi)
4199  * If we need to update some array metadata (e.g. 'active' flag
4200  * in superblock) before writing, schedule a superblock update
4201  * and wait for it to complete.
4202  */
4203 void md_write_start(mddev_t *mddev, struct bio *bi)
4204 {
4205 	if (bio_data_dir(bi) != WRITE)
4206 		return;
4207 
4208 	BUG_ON(mddev->ro == 1);
4209 	if (mddev->ro == 2) {
4210 		/* need to switch to read/write */
4211 		mddev->ro = 0;
4212 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4213 		md_wakeup_thread(mddev->thread);
4214 	}
4215 	atomic_inc(&mddev->writes_pending);
4216 	if (mddev->in_sync) {
4217 		spin_lock_irq(&mddev->write_lock);
4218 		if (mddev->in_sync) {
4219 			mddev->in_sync = 0;
4220 			mddev->sb_dirty = 1;
4221 			md_wakeup_thread(mddev->thread);
4222 		}
4223 		spin_unlock_irq(&mddev->write_lock);
4224 	}
4225 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4226 }
4227 
4228 void md_write_end(mddev_t *mddev)
4229 {
4230 	if (atomic_dec_and_test(&mddev->writes_pending)) {
4231 		if (mddev->safemode == 2)
4232 			md_wakeup_thread(mddev->thread);
4233 		else
4234 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4235 	}
4236 }
4237 
4238 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4239 
4240 #define SYNC_MARKS	10
4241 #define	SYNC_MARK_STEP	(3*HZ)
4242 static void md_do_sync(mddev_t *mddev)
4243 {
4244 	mddev_t *mddev2;
4245 	unsigned int currspeed = 0,
4246 		 window;
4247 	sector_t max_sectors,j, io_sectors;
4248 	unsigned long mark[SYNC_MARKS];
4249 	sector_t mark_cnt[SYNC_MARKS];
4250 	int last_mark,m;
4251 	struct list_head *tmp;
4252 	sector_t last_check;
4253 	int skipped = 0;
4254 
4255 	/* just incase thread restarts... */
4256 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4257 		return;
4258 
4259 	/* we overload curr_resync somewhat here.
4260 	 * 0 == not engaged in resync at all
4261 	 * 2 == checking that there is no conflict with another sync
4262 	 * 1 == like 2, but have yielded to allow conflicting resync to
4263 	 *		commense
4264 	 * other == active in resync - this many blocks
4265 	 *
4266 	 * Before starting a resync we must have set curr_resync to
4267 	 * 2, and then checked that every "conflicting" array has curr_resync
4268 	 * less than ours.  When we find one that is the same or higher
4269 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4270 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4271 	 * This will mean we have to start checking from the beginning again.
4272 	 *
4273 	 */
4274 
4275 	do {
4276 		mddev->curr_resync = 2;
4277 
4278 	try_again:
4279 		if (kthread_should_stop()) {
4280 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4281 			goto skip;
4282 		}
4283 		ITERATE_MDDEV(mddev2,tmp) {
4284 			if (mddev2 == mddev)
4285 				continue;
4286 			if (mddev2->curr_resync &&
4287 			    match_mddev_units(mddev,mddev2)) {
4288 				DEFINE_WAIT(wq);
4289 				if (mddev < mddev2 && mddev->curr_resync == 2) {
4290 					/* arbitrarily yield */
4291 					mddev->curr_resync = 1;
4292 					wake_up(&resync_wait);
4293 				}
4294 				if (mddev > mddev2 && mddev->curr_resync == 1)
4295 					/* no need to wait here, we can wait the next
4296 					 * time 'round when curr_resync == 2
4297 					 */
4298 					continue;
4299 				prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4300 				if (!kthread_should_stop() &&
4301 				    mddev2->curr_resync >= mddev->curr_resync) {
4302 					printk(KERN_INFO "md: delaying resync of %s"
4303 					       " until %s has finished resync (they"
4304 					       " share one or more physical units)\n",
4305 					       mdname(mddev), mdname(mddev2));
4306 					mddev_put(mddev2);
4307 					schedule();
4308 					finish_wait(&resync_wait, &wq);
4309 					goto try_again;
4310 				}
4311 				finish_wait(&resync_wait, &wq);
4312 			}
4313 		}
4314 	} while (mddev->curr_resync < 2);
4315 
4316 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4317 		/* resync follows the size requested by the personality,
4318 		 * which defaults to physical size, but can be virtual size
4319 		 */
4320 		max_sectors = mddev->resync_max_sectors;
4321 		mddev->resync_mismatches = 0;
4322 	} else
4323 		/* recovery follows the physical size of devices */
4324 		max_sectors = mddev->size << 1;
4325 
4326 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4327 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4328 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
4329 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4330 	       "(but not more than %d KB/sec) for reconstruction.\n",
4331 	       sysctl_speed_limit_max);
4332 
4333 	is_mddev_idle(mddev); /* this also initializes IO event counters */
4334 	/* we don't use the checkpoint if there's a bitmap */
4335 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4336 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4337 		j = mddev->recovery_cp;
4338 	else
4339 		j = 0;
4340 	io_sectors = 0;
4341 	for (m = 0; m < SYNC_MARKS; m++) {
4342 		mark[m] = jiffies;
4343 		mark_cnt[m] = io_sectors;
4344 	}
4345 	last_mark = 0;
4346 	mddev->resync_mark = mark[last_mark];
4347 	mddev->resync_mark_cnt = mark_cnt[last_mark];
4348 
4349 	/*
4350 	 * Tune reconstruction:
4351 	 */
4352 	window = 32*(PAGE_SIZE/512);
4353 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4354 		window/2,(unsigned long long) max_sectors/2);
4355 
4356 	atomic_set(&mddev->recovery_active, 0);
4357 	init_waitqueue_head(&mddev->recovery_wait);
4358 	last_check = 0;
4359 
4360 	if (j>2) {
4361 		printk(KERN_INFO
4362 			"md: resuming recovery of %s from checkpoint.\n",
4363 			mdname(mddev));
4364 		mddev->curr_resync = j;
4365 	}
4366 
4367 	while (j < max_sectors) {
4368 		sector_t sectors;
4369 
4370 		skipped = 0;
4371 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
4372 					    currspeed < sysctl_speed_limit_min);
4373 		if (sectors == 0) {
4374 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4375 			goto out;
4376 		}
4377 
4378 		if (!skipped) { /* actual IO requested */
4379 			io_sectors += sectors;
4380 			atomic_add(sectors, &mddev->recovery_active);
4381 		}
4382 
4383 		j += sectors;
4384 		if (j>1) mddev->curr_resync = j;
4385 		if (last_check == 0)
4386 			/* this is the earliers that rebuilt will be
4387 			 * visible in /proc/mdstat
4388 			 */
4389 			md_new_event(mddev);
4390 
4391 		if (last_check + window > io_sectors || j == max_sectors)
4392 			continue;
4393 
4394 		last_check = io_sectors;
4395 
4396 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4397 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4398 			break;
4399 
4400 	repeat:
4401 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4402 			/* step marks */
4403 			int next = (last_mark+1) % SYNC_MARKS;
4404 
4405 			mddev->resync_mark = mark[next];
4406 			mddev->resync_mark_cnt = mark_cnt[next];
4407 			mark[next] = jiffies;
4408 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4409 			last_mark = next;
4410 		}
4411 
4412 
4413 		if (kthread_should_stop()) {
4414 			/*
4415 			 * got a signal, exit.
4416 			 */
4417 			printk(KERN_INFO
4418 				"md: md_do_sync() got signal ... exiting\n");
4419 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4420 			goto out;
4421 		}
4422 
4423 		/*
4424 		 * this loop exits only if either when we are slower than
4425 		 * the 'hard' speed limit, or the system was IO-idle for
4426 		 * a jiffy.
4427 		 * the system might be non-idle CPU-wise, but we only care
4428 		 * about not overloading the IO subsystem. (things like an
4429 		 * e2fsck being done on the RAID array should execute fast)
4430 		 */
4431 		mddev->queue->unplug_fn(mddev->queue);
4432 		cond_resched();
4433 
4434 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4435 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4436 
4437 		if (currspeed > sysctl_speed_limit_min) {
4438 			if ((currspeed > sysctl_speed_limit_max) ||
4439 					!is_mddev_idle(mddev)) {
4440 				msleep(500);
4441 				goto repeat;
4442 			}
4443 		}
4444 	}
4445 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4446 	/*
4447 	 * this also signals 'finished resyncing' to md_stop
4448 	 */
4449  out:
4450 	mddev->queue->unplug_fn(mddev->queue);
4451 
4452 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4453 
4454 	/* tell personality that we are finished */
4455 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4456 
4457 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4458 	    mddev->curr_resync > 2 &&
4459 	    mddev->curr_resync >= mddev->recovery_cp) {
4460 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4461 			printk(KERN_INFO
4462 				"md: checkpointing recovery of %s.\n",
4463 				mdname(mddev));
4464 			mddev->recovery_cp = mddev->curr_resync;
4465 		} else
4466 			mddev->recovery_cp = MaxSector;
4467 	}
4468 
4469  skip:
4470 	mddev->curr_resync = 0;
4471 	wake_up(&resync_wait);
4472 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4473 	md_wakeup_thread(mddev->thread);
4474 }
4475 
4476 
4477 /*
4478  * This routine is regularly called by all per-raid-array threads to
4479  * deal with generic issues like resync and super-block update.
4480  * Raid personalities that don't have a thread (linear/raid0) do not
4481  * need this as they never do any recovery or update the superblock.
4482  *
4483  * It does not do any resync itself, but rather "forks" off other threads
4484  * to do that as needed.
4485  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4486  * "->recovery" and create a thread at ->sync_thread.
4487  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4488  * and wakeups up this thread which will reap the thread and finish up.
4489  * This thread also removes any faulty devices (with nr_pending == 0).
4490  *
4491  * The overall approach is:
4492  *  1/ if the superblock needs updating, update it.
4493  *  2/ If a recovery thread is running, don't do anything else.
4494  *  3/ If recovery has finished, clean up, possibly marking spares active.
4495  *  4/ If there are any faulty devices, remove them.
4496  *  5/ If array is degraded, try to add spares devices
4497  *  6/ If array has spares or is not in-sync, start a resync thread.
4498  */
4499 void md_check_recovery(mddev_t *mddev)
4500 {
4501 	mdk_rdev_t *rdev;
4502 	struct list_head *rtmp;
4503 
4504 
4505 	if (mddev->bitmap)
4506 		bitmap_daemon_work(mddev->bitmap);
4507 
4508 	if (mddev->ro)
4509 		return;
4510 
4511 	if (signal_pending(current)) {
4512 		if (mddev->pers->sync_request) {
4513 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4514 			       mdname(mddev));
4515 			mddev->safemode = 2;
4516 		}
4517 		flush_signals(current);
4518 	}
4519 
4520 	if ( ! (
4521 		mddev->sb_dirty ||
4522 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4523 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4524 		(mddev->safemode == 1) ||
4525 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4526 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4527 		))
4528 		return;
4529 
4530 	if (mddev_trylock(mddev)==0) {
4531 		int spares =0;
4532 
4533 		spin_lock_irq(&mddev->write_lock);
4534 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4535 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4536 			mddev->in_sync = 1;
4537 			mddev->sb_dirty = 1;
4538 		}
4539 		if (mddev->safemode == 1)
4540 			mddev->safemode = 0;
4541 		spin_unlock_irq(&mddev->write_lock);
4542 
4543 		if (mddev->sb_dirty)
4544 			md_update_sb(mddev);
4545 
4546 
4547 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4548 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4549 			/* resync/recovery still happening */
4550 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4551 			goto unlock;
4552 		}
4553 		if (mddev->sync_thread) {
4554 			/* resync has finished, collect result */
4555 			md_unregister_thread(mddev->sync_thread);
4556 			mddev->sync_thread = NULL;
4557 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4558 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4559 				/* success...*/
4560 				/* activate any spares */
4561 				mddev->pers->spare_active(mddev);
4562 			}
4563 			md_update_sb(mddev);
4564 
4565 			/* if array is no-longer degraded, then any saved_raid_disk
4566 			 * information must be scrapped
4567 			 */
4568 			if (!mddev->degraded)
4569 				ITERATE_RDEV(mddev,rdev,rtmp)
4570 					rdev->saved_raid_disk = -1;
4571 
4572 			mddev->recovery = 0;
4573 			/* flag recovery needed just to double check */
4574 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4575 			md_new_event(mddev);
4576 			goto unlock;
4577 		}
4578 		/* Clear some bits that don't mean anything, but
4579 		 * might be left set
4580 		 */
4581 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4582 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4583 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4584 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4585 
4586 		/* no recovery is running.
4587 		 * remove any failed drives, then
4588 		 * add spares if possible.
4589 		 * Spare are also removed and re-added, to allow
4590 		 * the personality to fail the re-add.
4591 		 */
4592 		ITERATE_RDEV(mddev,rdev,rtmp)
4593 			if (rdev->raid_disk >= 0 &&
4594 			    (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4595 			    atomic_read(&rdev->nr_pending)==0) {
4596 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4597 					char nm[20];
4598 					sprintf(nm,"rd%d", rdev->raid_disk);
4599 					sysfs_remove_link(&mddev->kobj, nm);
4600 					rdev->raid_disk = -1;
4601 				}
4602 			}
4603 
4604 		if (mddev->degraded) {
4605 			ITERATE_RDEV(mddev,rdev,rtmp)
4606 				if (rdev->raid_disk < 0
4607 				    && !test_bit(Faulty, &rdev->flags)) {
4608 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4609 						char nm[20];
4610 						sprintf(nm, "rd%d", rdev->raid_disk);
4611 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4612 						spares++;
4613 						md_new_event(mddev);
4614 					} else
4615 						break;
4616 				}
4617 		}
4618 
4619 		if (spares) {
4620 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4621 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4622 		} else if (mddev->recovery_cp < MaxSector) {
4623 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4624 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4625 			/* nothing to be done ... */
4626 			goto unlock;
4627 
4628 		if (mddev->pers->sync_request) {
4629 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4630 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4631 				/* We are adding a device or devices to an array
4632 				 * which has the bitmap stored on all devices.
4633 				 * So make sure all bitmap pages get written
4634 				 */
4635 				bitmap_write_all(mddev->bitmap);
4636 			}
4637 			mddev->sync_thread = md_register_thread(md_do_sync,
4638 								mddev,
4639 								"%s_resync");
4640 			if (!mddev->sync_thread) {
4641 				printk(KERN_ERR "%s: could not start resync"
4642 					" thread...\n",
4643 					mdname(mddev));
4644 				/* leave the spares where they are, it shouldn't hurt */
4645 				mddev->recovery = 0;
4646 			} else
4647 				md_wakeup_thread(mddev->sync_thread);
4648 			md_new_event(mddev);
4649 		}
4650 	unlock:
4651 		mddev_unlock(mddev);
4652 	}
4653 }
4654 
4655 static int md_notify_reboot(struct notifier_block *this,
4656 			    unsigned long code, void *x)
4657 {
4658 	struct list_head *tmp;
4659 	mddev_t *mddev;
4660 
4661 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4662 
4663 		printk(KERN_INFO "md: stopping all md devices.\n");
4664 
4665 		ITERATE_MDDEV(mddev,tmp)
4666 			if (mddev_trylock(mddev)==0)
4667 				do_md_stop (mddev, 1);
4668 		/*
4669 		 * certain more exotic SCSI devices are known to be
4670 		 * volatile wrt too early system reboots. While the
4671 		 * right place to handle this issue is the given
4672 		 * driver, we do want to have a safe RAID driver ...
4673 		 */
4674 		mdelay(1000*1);
4675 	}
4676 	return NOTIFY_DONE;
4677 }
4678 
4679 static struct notifier_block md_notifier = {
4680 	.notifier_call	= md_notify_reboot,
4681 	.next		= NULL,
4682 	.priority	= INT_MAX, /* before any real devices */
4683 };
4684 
4685 static void md_geninit(void)
4686 {
4687 	struct proc_dir_entry *p;
4688 
4689 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4690 
4691 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4692 	if (p)
4693 		p->proc_fops = &md_seq_fops;
4694 }
4695 
4696 static int __init md_init(void)
4697 {
4698 	int minor;
4699 
4700 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4701 			" MD_SB_DISKS=%d\n",
4702 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4703 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4704 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4705 			BITMAP_MINOR);
4706 
4707 	if (register_blkdev(MAJOR_NR, "md"))
4708 		return -1;
4709 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4710 		unregister_blkdev(MAJOR_NR, "md");
4711 		return -1;
4712 	}
4713 	devfs_mk_dir("md");
4714 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4715 				md_probe, NULL, NULL);
4716 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4717 			    md_probe, NULL, NULL);
4718 
4719 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4720 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4721 				S_IFBLK|S_IRUSR|S_IWUSR,
4722 				"md/%d", minor);
4723 
4724 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4725 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4726 			      S_IFBLK|S_IRUSR|S_IWUSR,
4727 			      "md/mdp%d", minor);
4728 
4729 
4730 	register_reboot_notifier(&md_notifier);
4731 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4732 
4733 	md_geninit();
4734 	return (0);
4735 }
4736 
4737 
4738 #ifndef MODULE
4739 
4740 /*
4741  * Searches all registered partitions for autorun RAID arrays
4742  * at boot time.
4743  */
4744 static dev_t detected_devices[128];
4745 static int dev_cnt;
4746 
4747 void md_autodetect_dev(dev_t dev)
4748 {
4749 	if (dev_cnt >= 0 && dev_cnt < 127)
4750 		detected_devices[dev_cnt++] = dev;
4751 }
4752 
4753 
4754 static void autostart_arrays(int part)
4755 {
4756 	mdk_rdev_t *rdev;
4757 	int i;
4758 
4759 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4760 
4761 	for (i = 0; i < dev_cnt; i++) {
4762 		dev_t dev = detected_devices[i];
4763 
4764 		rdev = md_import_device(dev,0, 0);
4765 		if (IS_ERR(rdev))
4766 			continue;
4767 
4768 		if (test_bit(Faulty, &rdev->flags)) {
4769 			MD_BUG();
4770 			continue;
4771 		}
4772 		list_add(&rdev->same_set, &pending_raid_disks);
4773 	}
4774 	dev_cnt = 0;
4775 
4776 	autorun_devices(part);
4777 }
4778 
4779 #endif
4780 
4781 static __exit void md_exit(void)
4782 {
4783 	mddev_t *mddev;
4784 	struct list_head *tmp;
4785 	int i;
4786 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4787 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4788 	for (i=0; i < MAX_MD_DEVS; i++)
4789 		devfs_remove("md/%d", i);
4790 	for (i=0; i < MAX_MD_DEVS; i++)
4791 		devfs_remove("md/d%d", i);
4792 
4793 	devfs_remove("md");
4794 
4795 	unregister_blkdev(MAJOR_NR,"md");
4796 	unregister_blkdev(mdp_major, "mdp");
4797 	unregister_reboot_notifier(&md_notifier);
4798 	unregister_sysctl_table(raid_table_header);
4799 	remove_proc_entry("mdstat", NULL);
4800 	ITERATE_MDDEV(mddev,tmp) {
4801 		struct gendisk *disk = mddev->gendisk;
4802 		if (!disk)
4803 			continue;
4804 		export_array(mddev);
4805 		del_gendisk(disk);
4806 		put_disk(disk);
4807 		mddev->gendisk = NULL;
4808 		mddev_put(mddev);
4809 	}
4810 }
4811 
4812 module_init(md_init)
4813 module_exit(md_exit)
4814 
4815 static int get_ro(char *buffer, struct kernel_param *kp)
4816 {
4817 	return sprintf(buffer, "%d", start_readonly);
4818 }
4819 static int set_ro(const char *val, struct kernel_param *kp)
4820 {
4821 	char *e;
4822 	int num = simple_strtoul(val, &e, 10);
4823 	if (*val && (*e == '\0' || *e == '\n')) {
4824 		start_readonly = num;
4825 		return 0;
4826 	}
4827 	return -EINVAL;
4828 }
4829 
4830 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4831 module_param(start_dirty_degraded, int, 0644);
4832 
4833 
4834 EXPORT_SYMBOL(register_md_personality);
4835 EXPORT_SYMBOL(unregister_md_personality);
4836 EXPORT_SYMBOL(md_error);
4837 EXPORT_SYMBOL(md_done_sync);
4838 EXPORT_SYMBOL(md_write_start);
4839 EXPORT_SYMBOL(md_write_end);
4840 EXPORT_SYMBOL(md_register_thread);
4841 EXPORT_SYMBOL(md_unregister_thread);
4842 EXPORT_SYMBOL(md_wakeup_thread);
4843 EXPORT_SYMBOL(md_print_devices);
4844 EXPORT_SYMBOL(md_check_recovery);
4845 MODULE_LICENSE("GPL");
4846 MODULE_ALIAS("md");
4847 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4848