xref: /openbmc/linux/drivers/md/md.c (revision 007583c9)
1 /*
2    md.c : Multiple Devices driver for Linux
3 	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
4 
5      completely rewritten, based on the MD driver code from Marc Zyngier
6 
7    Changes:
8 
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16 
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19 
20      Neil Brown <neilb@cse.unsw.edu.au>.
21 
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24 
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29 
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34 
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 
46 #include <linux/init.h>
47 
48 #include <linux/file.h>
49 
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53 
54 #include <asm/unaligned.h>
55 
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58 
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61 
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64 
65 
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69 
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72 
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84 
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87 
88 static struct ctl_table_header *raid_table_header;
89 
90 static ctl_table raid_table[] = {
91 	{
92 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MIN,
93 		.procname	= "speed_limit_min",
94 		.data		= &sysctl_speed_limit_min,
95 		.maxlen		= sizeof(int),
96 		.mode		= 0644,
97 		.proc_handler	= &proc_dointvec,
98 	},
99 	{
100 		.ctl_name	= DEV_RAID_SPEED_LIMIT_MAX,
101 		.procname	= "speed_limit_max",
102 		.data		= &sysctl_speed_limit_max,
103 		.maxlen		= sizeof(int),
104 		.mode		= 0644,
105 		.proc_handler	= &proc_dointvec,
106 	},
107 	{ .ctl_name = 0 }
108 };
109 
110 static ctl_table raid_dir_table[] = {
111 	{
112 		.ctl_name	= DEV_RAID,
113 		.procname	= "raid",
114 		.maxlen		= 0,
115 		.mode		= 0555,
116 		.child		= raid_table,
117 	},
118 	{ .ctl_name = 0 }
119 };
120 
121 static ctl_table raid_root_table[] = {
122 	{
123 		.ctl_name	= CTL_DEV,
124 		.procname	= "dev",
125 		.maxlen		= 0,
126 		.mode		= 0555,
127 		.child		= raid_dir_table,
128 	},
129 	{ .ctl_name = 0 }
130 };
131 
132 static struct block_device_operations md_fops;
133 
134 /*
135  * Enables to iterate over all existing md arrays
136  * all_mddevs_lock protects this list.
137  */
138 static LIST_HEAD(all_mddevs);
139 static DEFINE_SPINLOCK(all_mddevs_lock);
140 
141 
142 /*
143  * iterates through all used mddevs in the system.
144  * We take care to grab the all_mddevs_lock whenever navigating
145  * the list, and to always hold a refcount when unlocked.
146  * Any code which breaks out of this loop while own
147  * a reference to the current mddev and must mddev_put it.
148  */
149 #define ITERATE_MDDEV(mddev,tmp)					\
150 									\
151 	for (({ spin_lock(&all_mddevs_lock); 				\
152 		tmp = all_mddevs.next;					\
153 		mddev = NULL;});					\
154 	     ({ if (tmp != &all_mddevs)					\
155 			mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
156 		spin_unlock(&all_mddevs_lock);				\
157 		if (mddev) mddev_put(mddev);				\
158 		mddev = list_entry(tmp, mddev_t, all_mddevs);		\
159 		tmp != &all_mddevs;});					\
160 	     ({ spin_lock(&all_mddevs_lock);				\
161 		tmp = tmp->next;})					\
162 		)
163 
164 
165 static int md_fail_request (request_queue_t *q, struct bio *bio)
166 {
167 	bio_io_error(bio, bio->bi_size);
168 	return 0;
169 }
170 
171 static inline mddev_t *mddev_get(mddev_t *mddev)
172 {
173 	atomic_inc(&mddev->active);
174 	return mddev;
175 }
176 
177 static void mddev_put(mddev_t *mddev)
178 {
179 	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
180 		return;
181 	if (!mddev->raid_disks && list_empty(&mddev->disks)) {
182 		list_del(&mddev->all_mddevs);
183 		blk_put_queue(mddev->queue);
184 		kobject_unregister(&mddev->kobj);
185 	}
186 	spin_unlock(&all_mddevs_lock);
187 }
188 
189 static mddev_t * mddev_find(dev_t unit)
190 {
191 	mddev_t *mddev, *new = NULL;
192 
193  retry:
194 	spin_lock(&all_mddevs_lock);
195 	list_for_each_entry(mddev, &all_mddevs, all_mddevs)
196 		if (mddev->unit == unit) {
197 			mddev_get(mddev);
198 			spin_unlock(&all_mddevs_lock);
199 			kfree(new);
200 			return mddev;
201 		}
202 
203 	if (new) {
204 		list_add(&new->all_mddevs, &all_mddevs);
205 		spin_unlock(&all_mddevs_lock);
206 		return new;
207 	}
208 	spin_unlock(&all_mddevs_lock);
209 
210 	new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211 	if (!new)
212 		return NULL;
213 
214 	memset(new, 0, sizeof(*new));
215 
216 	new->unit = unit;
217 	if (MAJOR(unit) == MD_MAJOR)
218 		new->md_minor = MINOR(unit);
219 	else
220 		new->md_minor = MINOR(unit) >> MdpMinorShift;
221 
222 	init_MUTEX(&new->reconfig_sem);
223 	INIT_LIST_HEAD(&new->disks);
224 	INIT_LIST_HEAD(&new->all_mddevs);
225 	init_timer(&new->safemode_timer);
226 	atomic_set(&new->active, 1);
227 	spin_lock_init(&new->write_lock);
228 	init_waitqueue_head(&new->sb_wait);
229 
230 	new->queue = blk_alloc_queue(GFP_KERNEL);
231 	if (!new->queue) {
232 		kfree(new);
233 		return NULL;
234 	}
235 
236 	blk_queue_make_request(new->queue, md_fail_request);
237 
238 	goto retry;
239 }
240 
241 static inline int mddev_lock(mddev_t * mddev)
242 {
243 	return down_interruptible(&mddev->reconfig_sem);
244 }
245 
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 {
248 	down(&mddev->reconfig_sem);
249 }
250 
251 static inline int mddev_trylock(mddev_t * mddev)
252 {
253 	return down_trylock(&mddev->reconfig_sem);
254 }
255 
256 static inline void mddev_unlock(mddev_t * mddev)
257 {
258 	up(&mddev->reconfig_sem);
259 
260 	md_wakeup_thread(mddev->thread);
261 }
262 
263 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
264 {
265 	mdk_rdev_t * rdev;
266 	struct list_head *tmp;
267 
268 	ITERATE_RDEV(mddev,rdev,tmp) {
269 		if (rdev->desc_nr == nr)
270 			return rdev;
271 	}
272 	return NULL;
273 }
274 
275 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
276 {
277 	struct list_head *tmp;
278 	mdk_rdev_t *rdev;
279 
280 	ITERATE_RDEV(mddev,rdev,tmp) {
281 		if (rdev->bdev->bd_dev == dev)
282 			return rdev;
283 	}
284 	return NULL;
285 }
286 
287 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
288 {
289 	sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
290 	return MD_NEW_SIZE_BLOCKS(size);
291 }
292 
293 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
294 {
295 	sector_t size;
296 
297 	size = rdev->sb_offset;
298 
299 	if (chunk_size)
300 		size &= ~((sector_t)chunk_size/1024 - 1);
301 	return size;
302 }
303 
304 static int alloc_disk_sb(mdk_rdev_t * rdev)
305 {
306 	if (rdev->sb_page)
307 		MD_BUG();
308 
309 	rdev->sb_page = alloc_page(GFP_KERNEL);
310 	if (!rdev->sb_page) {
311 		printk(KERN_ALERT "md: out of memory.\n");
312 		return -EINVAL;
313 	}
314 
315 	return 0;
316 }
317 
318 static void free_disk_sb(mdk_rdev_t * rdev)
319 {
320 	if (rdev->sb_page) {
321 		page_cache_release(rdev->sb_page);
322 		rdev->sb_loaded = 0;
323 		rdev->sb_page = NULL;
324 		rdev->sb_offset = 0;
325 		rdev->size = 0;
326 	}
327 }
328 
329 
330 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
331 {
332 	mdk_rdev_t *rdev = bio->bi_private;
333 	if (bio->bi_size)
334 		return 1;
335 
336 	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
337 		md_error(rdev->mddev, rdev);
338 
339 	if (atomic_dec_and_test(&rdev->mddev->pending_writes))
340 		wake_up(&rdev->mddev->sb_wait);
341 	bio_put(bio);
342 	return 0;
343 }
344 
345 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
346 		   sector_t sector, int size, struct page *page)
347 {
348 	/* write first size bytes of page to sector of rdev
349 	 * Increment mddev->pending_writes before returning
350 	 * and decrement it on completion, waking up sb_wait
351 	 * if zero is reached.
352 	 * If an error occurred, call md_error
353 	 */
354 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
355 
356 	bio->bi_bdev = rdev->bdev;
357 	bio->bi_sector = sector;
358 	bio_add_page(bio, page, size, 0);
359 	bio->bi_private = rdev;
360 	bio->bi_end_io = super_written;
361 	atomic_inc(&mddev->pending_writes);
362 	submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
363 }
364 
365 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
366 {
367 	if (bio->bi_size)
368 		return 1;
369 
370 	complete((struct completion*)bio->bi_private);
371 	return 0;
372 }
373 
374 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
375 		   struct page *page, int rw)
376 {
377 	struct bio *bio = bio_alloc(GFP_NOIO, 1);
378 	struct completion event;
379 	int ret;
380 
381 	rw |= (1 << BIO_RW_SYNC);
382 
383 	bio->bi_bdev = bdev;
384 	bio->bi_sector = sector;
385 	bio_add_page(bio, page, size, 0);
386 	init_completion(&event);
387 	bio->bi_private = &event;
388 	bio->bi_end_io = bi_complete;
389 	submit_bio(rw, bio);
390 	wait_for_completion(&event);
391 
392 	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
393 	bio_put(bio);
394 	return ret;
395 }
396 
397 static int read_disk_sb(mdk_rdev_t * rdev, int size)
398 {
399 	char b[BDEVNAME_SIZE];
400 	if (!rdev->sb_page) {
401 		MD_BUG();
402 		return -EINVAL;
403 	}
404 	if (rdev->sb_loaded)
405 		return 0;
406 
407 
408 	if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
409 		goto fail;
410 	rdev->sb_loaded = 1;
411 	return 0;
412 
413 fail:
414 	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
415 		bdevname(rdev->bdev,b));
416 	return -EINVAL;
417 }
418 
419 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
420 {
421 	if (	(sb1->set_uuid0 == sb2->set_uuid0) &&
422 		(sb1->set_uuid1 == sb2->set_uuid1) &&
423 		(sb1->set_uuid2 == sb2->set_uuid2) &&
424 		(sb1->set_uuid3 == sb2->set_uuid3))
425 
426 		return 1;
427 
428 	return 0;
429 }
430 
431 
432 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
433 {
434 	int ret;
435 	mdp_super_t *tmp1, *tmp2;
436 
437 	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
438 	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
439 
440 	if (!tmp1 || !tmp2) {
441 		ret = 0;
442 		printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
443 		goto abort;
444 	}
445 
446 	*tmp1 = *sb1;
447 	*tmp2 = *sb2;
448 
449 	/*
450 	 * nr_disks is not constant
451 	 */
452 	tmp1->nr_disks = 0;
453 	tmp2->nr_disks = 0;
454 
455 	if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
456 		ret = 0;
457 	else
458 		ret = 1;
459 
460 abort:
461 	kfree(tmp1);
462 	kfree(tmp2);
463 	return ret;
464 }
465 
466 static unsigned int calc_sb_csum(mdp_super_t * sb)
467 {
468 	unsigned int disk_csum, csum;
469 
470 	disk_csum = sb->sb_csum;
471 	sb->sb_csum = 0;
472 	csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
473 	sb->sb_csum = disk_csum;
474 	return csum;
475 }
476 
477 
478 /*
479  * Handle superblock details.
480  * We want to be able to handle multiple superblock formats
481  * so we have a common interface to them all, and an array of
482  * different handlers.
483  * We rely on user-space to write the initial superblock, and support
484  * reading and updating of superblocks.
485  * Interface methods are:
486  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
487  *      loads and validates a superblock on dev.
488  *      if refdev != NULL, compare superblocks on both devices
489  *    Return:
490  *      0 - dev has a superblock that is compatible with refdev
491  *      1 - dev has a superblock that is compatible and newer than refdev
492  *          so dev should be used as the refdev in future
493  *     -EINVAL superblock incompatible or invalid
494  *     -othererror e.g. -EIO
495  *
496  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
497  *      Verify that dev is acceptable into mddev.
498  *       The first time, mddev->raid_disks will be 0, and data from
499  *       dev should be merged in.  Subsequent calls check that dev
500  *       is new enough.  Return 0 or -EINVAL
501  *
502  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
503  *     Update the superblock for rdev with data in mddev
504  *     This does not write to disc.
505  *
506  */
507 
508 struct super_type  {
509 	char 		*name;
510 	struct module	*owner;
511 	int		(*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
512 	int		(*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
513 	void		(*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
514 };
515 
516 /*
517  * load_super for 0.90.0
518  */
519 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
520 {
521 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
522 	mdp_super_t *sb;
523 	int ret;
524 	sector_t sb_offset;
525 
526 	/*
527 	 * Calculate the position of the superblock,
528 	 * it's at the end of the disk.
529 	 *
530 	 * It also happens to be a multiple of 4Kb.
531 	 */
532 	sb_offset = calc_dev_sboffset(rdev->bdev);
533 	rdev->sb_offset = sb_offset;
534 
535 	ret = read_disk_sb(rdev, MD_SB_BYTES);
536 	if (ret) return ret;
537 
538 	ret = -EINVAL;
539 
540 	bdevname(rdev->bdev, b);
541 	sb = (mdp_super_t*)page_address(rdev->sb_page);
542 
543 	if (sb->md_magic != MD_SB_MAGIC) {
544 		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
545 		       b);
546 		goto abort;
547 	}
548 
549 	if (sb->major_version != 0 ||
550 	    sb->minor_version != 90) {
551 		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
552 			sb->major_version, sb->minor_version,
553 			b);
554 		goto abort;
555 	}
556 
557 	if (sb->raid_disks <= 0)
558 		goto abort;
559 
560 	if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
561 		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
562 			b);
563 		goto abort;
564 	}
565 
566 	rdev->preferred_minor = sb->md_minor;
567 	rdev->data_offset = 0;
568 	rdev->sb_size = MD_SB_BYTES;
569 
570 	if (sb->level == LEVEL_MULTIPATH)
571 		rdev->desc_nr = -1;
572 	else
573 		rdev->desc_nr = sb->this_disk.number;
574 
575 	if (refdev == 0)
576 		ret = 1;
577 	else {
578 		__u64 ev1, ev2;
579 		mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
580 		if (!uuid_equal(refsb, sb)) {
581 			printk(KERN_WARNING "md: %s has different UUID to %s\n",
582 				b, bdevname(refdev->bdev,b2));
583 			goto abort;
584 		}
585 		if (!sb_equal(refsb, sb)) {
586 			printk(KERN_WARNING "md: %s has same UUID"
587 			       " but different superblock to %s\n",
588 			       b, bdevname(refdev->bdev, b2));
589 			goto abort;
590 		}
591 		ev1 = md_event(sb);
592 		ev2 = md_event(refsb);
593 		if (ev1 > ev2)
594 			ret = 1;
595 		else
596 			ret = 0;
597 	}
598 	rdev->size = calc_dev_size(rdev, sb->chunk_size);
599 
600  abort:
601 	return ret;
602 }
603 
604 /*
605  * validate_super for 0.90.0
606  */
607 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
608 {
609 	mdp_disk_t *desc;
610 	mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
611 
612 	rdev->raid_disk = -1;
613 	rdev->in_sync = 0;
614 	if (mddev->raid_disks == 0) {
615 		mddev->major_version = 0;
616 		mddev->minor_version = sb->minor_version;
617 		mddev->patch_version = sb->patch_version;
618 		mddev->persistent = ! sb->not_persistent;
619 		mddev->chunk_size = sb->chunk_size;
620 		mddev->ctime = sb->ctime;
621 		mddev->utime = sb->utime;
622 		mddev->level = sb->level;
623 		mddev->layout = sb->layout;
624 		mddev->raid_disks = sb->raid_disks;
625 		mddev->size = sb->size;
626 		mddev->events = md_event(sb);
627 		mddev->bitmap_offset = 0;
628 		mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
629 
630 		if (sb->state & (1<<MD_SB_CLEAN))
631 			mddev->recovery_cp = MaxSector;
632 		else {
633 			if (sb->events_hi == sb->cp_events_hi &&
634 				sb->events_lo == sb->cp_events_lo) {
635 				mddev->recovery_cp = sb->recovery_cp;
636 			} else
637 				mddev->recovery_cp = 0;
638 		}
639 
640 		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
641 		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
642 		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
643 		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
644 
645 		mddev->max_disks = MD_SB_DISKS;
646 
647 		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
648 		    mddev->bitmap_file == NULL) {
649 			if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
650 				/* FIXME use a better test */
651 				printk(KERN_WARNING "md: bitmaps only support for raid1\n");
652 				return -EINVAL;
653 			}
654 			mddev->bitmap_offset = mddev->default_bitmap_offset;
655 		}
656 
657 	} else if (mddev->pers == NULL) {
658 		/* Insist on good event counter while assembling */
659 		__u64 ev1 = md_event(sb);
660 		++ev1;
661 		if (ev1 < mddev->events)
662 			return -EINVAL;
663 	} else if (mddev->bitmap) {
664 		/* if adding to array with a bitmap, then we can accept an
665 		 * older device ... but not too old.
666 		 */
667 		__u64 ev1 = md_event(sb);
668 		if (ev1 < mddev->bitmap->events_cleared)
669 			return 0;
670 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
671 		return 0;
672 
673 	if (mddev->level != LEVEL_MULTIPATH) {
674 		rdev->faulty = 0;
675 		rdev->flags = 0;
676 		desc = sb->disks + rdev->desc_nr;
677 
678 		if (desc->state & (1<<MD_DISK_FAULTY))
679 			rdev->faulty = 1;
680 		else if (desc->state & (1<<MD_DISK_SYNC) &&
681 			 desc->raid_disk < mddev->raid_disks) {
682 			rdev->in_sync = 1;
683 			rdev->raid_disk = desc->raid_disk;
684 		}
685 		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
686 			set_bit(WriteMostly, &rdev->flags);
687 	} else /* MULTIPATH are always insync */
688 		rdev->in_sync = 1;
689 	return 0;
690 }
691 
692 /*
693  * sync_super for 0.90.0
694  */
695 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
696 {
697 	mdp_super_t *sb;
698 	struct list_head *tmp;
699 	mdk_rdev_t *rdev2;
700 	int next_spare = mddev->raid_disks;
701 	char nm[20];
702 
703 	/* make rdev->sb match mddev data..
704 	 *
705 	 * 1/ zero out disks
706 	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
707 	 * 3/ any empty disks < next_spare become removed
708 	 *
709 	 * disks[0] gets initialised to REMOVED because
710 	 * we cannot be sure from other fields if it has
711 	 * been initialised or not.
712 	 */
713 	int i;
714 	int active=0, working=0,failed=0,spare=0,nr_disks=0;
715 	unsigned int fixdesc=0;
716 
717 	rdev->sb_size = MD_SB_BYTES;
718 
719 	sb = (mdp_super_t*)page_address(rdev->sb_page);
720 
721 	memset(sb, 0, sizeof(*sb));
722 
723 	sb->md_magic = MD_SB_MAGIC;
724 	sb->major_version = mddev->major_version;
725 	sb->minor_version = mddev->minor_version;
726 	sb->patch_version = mddev->patch_version;
727 	sb->gvalid_words  = 0; /* ignored */
728 	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
729 	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
730 	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
731 	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
732 
733 	sb->ctime = mddev->ctime;
734 	sb->level = mddev->level;
735 	sb->size  = mddev->size;
736 	sb->raid_disks = mddev->raid_disks;
737 	sb->md_minor = mddev->md_minor;
738 	sb->not_persistent = !mddev->persistent;
739 	sb->utime = mddev->utime;
740 	sb->state = 0;
741 	sb->events_hi = (mddev->events>>32);
742 	sb->events_lo = (u32)mddev->events;
743 
744 	if (mddev->in_sync)
745 	{
746 		sb->recovery_cp = mddev->recovery_cp;
747 		sb->cp_events_hi = (mddev->events>>32);
748 		sb->cp_events_lo = (u32)mddev->events;
749 		if (mddev->recovery_cp == MaxSector)
750 			sb->state = (1<< MD_SB_CLEAN);
751 	} else
752 		sb->recovery_cp = 0;
753 
754 	sb->layout = mddev->layout;
755 	sb->chunk_size = mddev->chunk_size;
756 
757 	if (mddev->bitmap && mddev->bitmap_file == NULL)
758 		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
759 
760 	sb->disks[0].state = (1<<MD_DISK_REMOVED);
761 	ITERATE_RDEV(mddev,rdev2,tmp) {
762 		mdp_disk_t *d;
763 		int desc_nr;
764 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
765 			desc_nr = rdev2->raid_disk;
766 		else
767 			desc_nr = next_spare++;
768 		if (desc_nr != rdev2->desc_nr) {
769 			fixdesc |= (1 << desc_nr);
770 			rdev2->desc_nr = desc_nr;
771 			if (rdev2->raid_disk >= 0) {
772 				sprintf(nm, "rd%d", rdev2->raid_disk);
773 				sysfs_remove_link(&mddev->kobj, nm);
774 			}
775 			sysfs_remove_link(&rdev2->kobj, "block");
776 			kobject_del(&rdev2->kobj);
777 		}
778 		d = &sb->disks[rdev2->desc_nr];
779 		nr_disks++;
780 		d->number = rdev2->desc_nr;
781 		d->major = MAJOR(rdev2->bdev->bd_dev);
782 		d->minor = MINOR(rdev2->bdev->bd_dev);
783 		if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
784 			d->raid_disk = rdev2->raid_disk;
785 		else
786 			d->raid_disk = rdev2->desc_nr; /* compatibility */
787 		if (rdev2->faulty) {
788 			d->state = (1<<MD_DISK_FAULTY);
789 			failed++;
790 		} else if (rdev2->in_sync) {
791 			d->state = (1<<MD_DISK_ACTIVE);
792 			d->state |= (1<<MD_DISK_SYNC);
793 			active++;
794 			working++;
795 		} else {
796 			d->state = 0;
797 			spare++;
798 			working++;
799 		}
800 		if (test_bit(WriteMostly, &rdev2->flags))
801 			d->state |= (1<<MD_DISK_WRITEMOSTLY);
802 	}
803 	if (fixdesc)
804 		ITERATE_RDEV(mddev,rdev2,tmp)
805 			if (fixdesc & (1<<rdev2->desc_nr)) {
806 				snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
807 					 rdev2->desc_nr);
808 				/* kobject_add gets a ref on the parent, so
809 				 * we have to drop the one we already have
810 				 */
811 				kobject_add(&rdev2->kobj);
812 				kobject_put(rdev->kobj.parent);
813 				sysfs_create_link(&rdev2->kobj,
814 						  &rdev2->bdev->bd_disk->kobj,
815 						  "block");
816 				if (rdev2->raid_disk >= 0) {
817 					sprintf(nm, "rd%d", rdev2->raid_disk);
818 					sysfs_create_link(&mddev->kobj,
819 							  &rdev2->kobj, nm);
820 				}
821 			}
822 	/* now set the "removed" and "faulty" bits on any missing devices */
823 	for (i=0 ; i < mddev->raid_disks ; i++) {
824 		mdp_disk_t *d = &sb->disks[i];
825 		if (d->state == 0 && d->number == 0) {
826 			d->number = i;
827 			d->raid_disk = i;
828 			d->state = (1<<MD_DISK_REMOVED);
829 			d->state |= (1<<MD_DISK_FAULTY);
830 			failed++;
831 		}
832 	}
833 	sb->nr_disks = nr_disks;
834 	sb->active_disks = active;
835 	sb->working_disks = working;
836 	sb->failed_disks = failed;
837 	sb->spare_disks = spare;
838 
839 	sb->this_disk = sb->disks[rdev->desc_nr];
840 	sb->sb_csum = calc_sb_csum(sb);
841 }
842 
843 /*
844  * version 1 superblock
845  */
846 
847 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
848 {
849 	unsigned int disk_csum, csum;
850 	unsigned long long newcsum;
851 	int size = 256 + le32_to_cpu(sb->max_dev)*2;
852 	unsigned int *isuper = (unsigned int*)sb;
853 	int i;
854 
855 	disk_csum = sb->sb_csum;
856 	sb->sb_csum = 0;
857 	newcsum = 0;
858 	for (i=0; size>=4; size -= 4 )
859 		newcsum += le32_to_cpu(*isuper++);
860 
861 	if (size == 2)
862 		newcsum += le16_to_cpu(*(unsigned short*) isuper);
863 
864 	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
865 	sb->sb_csum = disk_csum;
866 	return cpu_to_le32(csum);
867 }
868 
869 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
870 {
871 	struct mdp_superblock_1 *sb;
872 	int ret;
873 	sector_t sb_offset;
874 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
875 	int bmask;
876 
877 	/*
878 	 * Calculate the position of the superblock.
879 	 * It is always aligned to a 4K boundary and
880 	 * depeding on minor_version, it can be:
881 	 * 0: At least 8K, but less than 12K, from end of device
882 	 * 1: At start of device
883 	 * 2: 4K from start of device.
884 	 */
885 	switch(minor_version) {
886 	case 0:
887 		sb_offset = rdev->bdev->bd_inode->i_size >> 9;
888 		sb_offset -= 8*2;
889 		sb_offset &= ~(sector_t)(4*2-1);
890 		/* convert from sectors to K */
891 		sb_offset /= 2;
892 		break;
893 	case 1:
894 		sb_offset = 0;
895 		break;
896 	case 2:
897 		sb_offset = 4;
898 		break;
899 	default:
900 		return -EINVAL;
901 	}
902 	rdev->sb_offset = sb_offset;
903 
904 	/* superblock is rarely larger than 1K, but it can be larger,
905 	 * and it is safe to read 4k, so we do that
906 	 */
907 	ret = read_disk_sb(rdev, 4096);
908 	if (ret) return ret;
909 
910 
911 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
912 
913 	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
914 	    sb->major_version != cpu_to_le32(1) ||
915 	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
916 	    le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
917 	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
918 		return -EINVAL;
919 
920 	if (calc_sb_1_csum(sb) != sb->sb_csum) {
921 		printk("md: invalid superblock checksum on %s\n",
922 			bdevname(rdev->bdev,b));
923 		return -EINVAL;
924 	}
925 	if (le64_to_cpu(sb->data_size) < 10) {
926 		printk("md: data_size too small on %s\n",
927 		       bdevname(rdev->bdev,b));
928 		return -EINVAL;
929 	}
930 	rdev->preferred_minor = 0xffff;
931 	rdev->data_offset = le64_to_cpu(sb->data_offset);
932 
933 	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
934 	bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
935 	if (rdev->sb_size & bmask)
936 		rdev-> sb_size = (rdev->sb_size | bmask)+1;
937 
938 	if (refdev == 0)
939 		return 1;
940 	else {
941 		__u64 ev1, ev2;
942 		struct mdp_superblock_1 *refsb =
943 			(struct mdp_superblock_1*)page_address(refdev->sb_page);
944 
945 		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
946 		    sb->level != refsb->level ||
947 		    sb->layout != refsb->layout ||
948 		    sb->chunksize != refsb->chunksize) {
949 			printk(KERN_WARNING "md: %s has strangely different"
950 				" superblock to %s\n",
951 				bdevname(rdev->bdev,b),
952 				bdevname(refdev->bdev,b2));
953 			return -EINVAL;
954 		}
955 		ev1 = le64_to_cpu(sb->events);
956 		ev2 = le64_to_cpu(refsb->events);
957 
958 		if (ev1 > ev2)
959 			return 1;
960 	}
961 	if (minor_version)
962 		rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
963 	else
964 		rdev->size = rdev->sb_offset;
965 	if (rdev->size < le64_to_cpu(sb->data_size)/2)
966 		return -EINVAL;
967 	rdev->size = le64_to_cpu(sb->data_size)/2;
968 	if (le32_to_cpu(sb->chunksize))
969 		rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
970 	return 0;
971 }
972 
973 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
974 {
975 	struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
976 
977 	rdev->raid_disk = -1;
978 	rdev->in_sync = 0;
979 	if (mddev->raid_disks == 0) {
980 		mddev->major_version = 1;
981 		mddev->patch_version = 0;
982 		mddev->persistent = 1;
983 		mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
984 		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
985 		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
986 		mddev->level = le32_to_cpu(sb->level);
987 		mddev->layout = le32_to_cpu(sb->layout);
988 		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
989 		mddev->size = le64_to_cpu(sb->size)/2;
990 		mddev->events = le64_to_cpu(sb->events);
991 		mddev->bitmap_offset = 0;
992 		mddev->default_bitmap_offset = 0;
993 		mddev->default_bitmap_offset = 1024;
994 
995 		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
996 		memcpy(mddev->uuid, sb->set_uuid, 16);
997 
998 		mddev->max_disks =  (4096-256)/2;
999 
1000 		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1001 		    mddev->bitmap_file == NULL ) {
1002 			if (mddev->level != 1) {
1003 				printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1004 				return -EINVAL;
1005 			}
1006 			mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1007 		}
1008 	} else if (mddev->pers == NULL) {
1009 		/* Insist of good event counter while assembling */
1010 		__u64 ev1 = le64_to_cpu(sb->events);
1011 		++ev1;
1012 		if (ev1 < mddev->events)
1013 			return -EINVAL;
1014 	} else if (mddev->bitmap) {
1015 		/* If adding to array with a bitmap, then we can accept an
1016 		 * older device, but not too old.
1017 		 */
1018 		__u64 ev1 = le64_to_cpu(sb->events);
1019 		if (ev1 < mddev->bitmap->events_cleared)
1020 			return 0;
1021 	} else /* just a hot-add of a new device, leave raid_disk at -1 */
1022 		return 0;
1023 
1024 	if (mddev->level != LEVEL_MULTIPATH) {
1025 		int role;
1026 		rdev->desc_nr = le32_to_cpu(sb->dev_number);
1027 		role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1028 		switch(role) {
1029 		case 0xffff: /* spare */
1030 			rdev->faulty = 0;
1031 			break;
1032 		case 0xfffe: /* faulty */
1033 			rdev->faulty = 1;
1034 			break;
1035 		default:
1036 			rdev->in_sync = 1;
1037 			rdev->faulty = 0;
1038 			rdev->raid_disk = role;
1039 			break;
1040 		}
1041 		rdev->flags = 0;
1042 		if (sb->devflags & WriteMostly1)
1043 			set_bit(WriteMostly, &rdev->flags);
1044 	} else /* MULTIPATH are always insync */
1045 		rdev->in_sync = 1;
1046 
1047 	return 0;
1048 }
1049 
1050 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1051 {
1052 	struct mdp_superblock_1 *sb;
1053 	struct list_head *tmp;
1054 	mdk_rdev_t *rdev2;
1055 	int max_dev, i;
1056 	/* make rdev->sb match mddev and rdev data. */
1057 
1058 	sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1059 
1060 	sb->feature_map = 0;
1061 	sb->pad0 = 0;
1062 	memset(sb->pad1, 0, sizeof(sb->pad1));
1063 	memset(sb->pad2, 0, sizeof(sb->pad2));
1064 	memset(sb->pad3, 0, sizeof(sb->pad3));
1065 
1066 	sb->utime = cpu_to_le64((__u64)mddev->utime);
1067 	sb->events = cpu_to_le64(mddev->events);
1068 	if (mddev->in_sync)
1069 		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1070 	else
1071 		sb->resync_offset = cpu_to_le64(0);
1072 
1073 	if (mddev->bitmap && mddev->bitmap_file == NULL) {
1074 		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1075 		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1076 	}
1077 
1078 	max_dev = 0;
1079 	ITERATE_RDEV(mddev,rdev2,tmp)
1080 		if (rdev2->desc_nr+1 > max_dev)
1081 			max_dev = rdev2->desc_nr+1;
1082 
1083 	sb->max_dev = cpu_to_le32(max_dev);
1084 	for (i=0; i<max_dev;i++)
1085 		sb->dev_roles[i] = cpu_to_le16(0xfffe);
1086 
1087 	ITERATE_RDEV(mddev,rdev2,tmp) {
1088 		i = rdev2->desc_nr;
1089 		if (rdev2->faulty)
1090 			sb->dev_roles[i] = cpu_to_le16(0xfffe);
1091 		else if (rdev2->in_sync)
1092 			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1093 		else
1094 			sb->dev_roles[i] = cpu_to_le16(0xffff);
1095 	}
1096 
1097 	sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1098 	sb->sb_csum = calc_sb_1_csum(sb);
1099 }
1100 
1101 
1102 static struct super_type super_types[] = {
1103 	[0] = {
1104 		.name	= "0.90.0",
1105 		.owner	= THIS_MODULE,
1106 		.load_super	= super_90_load,
1107 		.validate_super	= super_90_validate,
1108 		.sync_super	= super_90_sync,
1109 	},
1110 	[1] = {
1111 		.name	= "md-1",
1112 		.owner	= THIS_MODULE,
1113 		.load_super	= super_1_load,
1114 		.validate_super	= super_1_validate,
1115 		.sync_super	= super_1_sync,
1116 	},
1117 };
1118 
1119 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1120 {
1121 	struct list_head *tmp;
1122 	mdk_rdev_t *rdev;
1123 
1124 	ITERATE_RDEV(mddev,rdev,tmp)
1125 		if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1126 			return rdev;
1127 
1128 	return NULL;
1129 }
1130 
1131 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1132 {
1133 	struct list_head *tmp;
1134 	mdk_rdev_t *rdev;
1135 
1136 	ITERATE_RDEV(mddev1,rdev,tmp)
1137 		if (match_dev_unit(mddev2, rdev))
1138 			return 1;
1139 
1140 	return 0;
1141 }
1142 
1143 static LIST_HEAD(pending_raid_disks);
1144 
1145 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1146 {
1147 	mdk_rdev_t *same_pdev;
1148 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1149 
1150 	if (rdev->mddev) {
1151 		MD_BUG();
1152 		return -EINVAL;
1153 	}
1154 	same_pdev = match_dev_unit(mddev, rdev);
1155 	if (same_pdev)
1156 		printk(KERN_WARNING
1157 			"%s: WARNING: %s appears to be on the same physical"
1158 	 		" disk as %s. True\n     protection against single-disk"
1159 			" failure might be compromised.\n",
1160 			mdname(mddev), bdevname(rdev->bdev,b),
1161 			bdevname(same_pdev->bdev,b2));
1162 
1163 	/* Verify rdev->desc_nr is unique.
1164 	 * If it is -1, assign a free number, else
1165 	 * check number is not in use
1166 	 */
1167 	if (rdev->desc_nr < 0) {
1168 		int choice = 0;
1169 		if (mddev->pers) choice = mddev->raid_disks;
1170 		while (find_rdev_nr(mddev, choice))
1171 			choice++;
1172 		rdev->desc_nr = choice;
1173 	} else {
1174 		if (find_rdev_nr(mddev, rdev->desc_nr))
1175 			return -EBUSY;
1176 	}
1177 
1178 	list_add(&rdev->same_set, &mddev->disks);
1179 	rdev->mddev = mddev;
1180 	printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1181 
1182 	rdev->kobj.k_name = NULL;
1183 	snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
1184 	rdev->kobj.parent = &mddev->kobj;
1185 	kobject_add(&rdev->kobj);
1186 
1187 	sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
1188 	return 0;
1189 }
1190 
1191 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1192 {
1193 	char b[BDEVNAME_SIZE];
1194 	if (!rdev->mddev) {
1195 		MD_BUG();
1196 		return;
1197 	}
1198 	list_del_init(&rdev->same_set);
1199 	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1200 	rdev->mddev = NULL;
1201 	sysfs_remove_link(&rdev->kobj, "block");
1202 	kobject_del(&rdev->kobj);
1203 }
1204 
1205 /*
1206  * prevent the device from being mounted, repartitioned or
1207  * otherwise reused by a RAID array (or any other kernel
1208  * subsystem), by bd_claiming the device.
1209  */
1210 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1211 {
1212 	int err = 0;
1213 	struct block_device *bdev;
1214 	char b[BDEVNAME_SIZE];
1215 
1216 	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1217 	if (IS_ERR(bdev)) {
1218 		printk(KERN_ERR "md: could not open %s.\n",
1219 			__bdevname(dev, b));
1220 		return PTR_ERR(bdev);
1221 	}
1222 	err = bd_claim(bdev, rdev);
1223 	if (err) {
1224 		printk(KERN_ERR "md: could not bd_claim %s.\n",
1225 			bdevname(bdev, b));
1226 		blkdev_put(bdev);
1227 		return err;
1228 	}
1229 	rdev->bdev = bdev;
1230 	return err;
1231 }
1232 
1233 static void unlock_rdev(mdk_rdev_t *rdev)
1234 {
1235 	struct block_device *bdev = rdev->bdev;
1236 	rdev->bdev = NULL;
1237 	if (!bdev)
1238 		MD_BUG();
1239 	bd_release(bdev);
1240 	blkdev_put(bdev);
1241 }
1242 
1243 void md_autodetect_dev(dev_t dev);
1244 
1245 static void export_rdev(mdk_rdev_t * rdev)
1246 {
1247 	char b[BDEVNAME_SIZE];
1248 	printk(KERN_INFO "md: export_rdev(%s)\n",
1249 		bdevname(rdev->bdev,b));
1250 	if (rdev->mddev)
1251 		MD_BUG();
1252 	free_disk_sb(rdev);
1253 	list_del_init(&rdev->same_set);
1254 #ifndef MODULE
1255 	md_autodetect_dev(rdev->bdev->bd_dev);
1256 #endif
1257 	unlock_rdev(rdev);
1258 	kobject_put(&rdev->kobj);
1259 }
1260 
1261 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1262 {
1263 	unbind_rdev_from_array(rdev);
1264 	export_rdev(rdev);
1265 }
1266 
1267 static void export_array(mddev_t *mddev)
1268 {
1269 	struct list_head *tmp;
1270 	mdk_rdev_t *rdev;
1271 
1272 	ITERATE_RDEV(mddev,rdev,tmp) {
1273 		if (!rdev->mddev) {
1274 			MD_BUG();
1275 			continue;
1276 		}
1277 		kick_rdev_from_array(rdev);
1278 	}
1279 	if (!list_empty(&mddev->disks))
1280 		MD_BUG();
1281 	mddev->raid_disks = 0;
1282 	mddev->major_version = 0;
1283 }
1284 
1285 static void print_desc(mdp_disk_t *desc)
1286 {
1287 	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1288 		desc->major,desc->minor,desc->raid_disk,desc->state);
1289 }
1290 
1291 static void print_sb(mdp_super_t *sb)
1292 {
1293 	int i;
1294 
1295 	printk(KERN_INFO
1296 		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1297 		sb->major_version, sb->minor_version, sb->patch_version,
1298 		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1299 		sb->ctime);
1300 	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1301 		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1302 		sb->md_minor, sb->layout, sb->chunk_size);
1303 	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1304 		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
1305 		sb->utime, sb->state, sb->active_disks, sb->working_disks,
1306 		sb->failed_disks, sb->spare_disks,
1307 		sb->sb_csum, (unsigned long)sb->events_lo);
1308 
1309 	printk(KERN_INFO);
1310 	for (i = 0; i < MD_SB_DISKS; i++) {
1311 		mdp_disk_t *desc;
1312 
1313 		desc = sb->disks + i;
1314 		if (desc->number || desc->major || desc->minor ||
1315 		    desc->raid_disk || (desc->state && (desc->state != 4))) {
1316 			printk("     D %2d: ", i);
1317 			print_desc(desc);
1318 		}
1319 	}
1320 	printk(KERN_INFO "md:     THIS: ");
1321 	print_desc(&sb->this_disk);
1322 
1323 }
1324 
1325 static void print_rdev(mdk_rdev_t *rdev)
1326 {
1327 	char b[BDEVNAME_SIZE];
1328 	printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1329 		bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1330 	       	rdev->faulty, rdev->in_sync, rdev->desc_nr);
1331 	if (rdev->sb_loaded) {
1332 		printk(KERN_INFO "md: rdev superblock:\n");
1333 		print_sb((mdp_super_t*)page_address(rdev->sb_page));
1334 	} else
1335 		printk(KERN_INFO "md: no rdev superblock!\n");
1336 }
1337 
1338 void md_print_devices(void)
1339 {
1340 	struct list_head *tmp, *tmp2;
1341 	mdk_rdev_t *rdev;
1342 	mddev_t *mddev;
1343 	char b[BDEVNAME_SIZE];
1344 
1345 	printk("\n");
1346 	printk("md:	**********************************\n");
1347 	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
1348 	printk("md:	**********************************\n");
1349 	ITERATE_MDDEV(mddev,tmp) {
1350 
1351 		if (mddev->bitmap)
1352 			bitmap_print_sb(mddev->bitmap);
1353 		else
1354 			printk("%s: ", mdname(mddev));
1355 		ITERATE_RDEV(mddev,rdev,tmp2)
1356 			printk("<%s>", bdevname(rdev->bdev,b));
1357 		printk("\n");
1358 
1359 		ITERATE_RDEV(mddev,rdev,tmp2)
1360 			print_rdev(rdev);
1361 	}
1362 	printk("md:	**********************************\n");
1363 	printk("\n");
1364 }
1365 
1366 
1367 static void sync_sbs(mddev_t * mddev)
1368 {
1369 	mdk_rdev_t *rdev;
1370 	struct list_head *tmp;
1371 
1372 	ITERATE_RDEV(mddev,rdev,tmp) {
1373 		super_types[mddev->major_version].
1374 			sync_super(mddev, rdev);
1375 		rdev->sb_loaded = 1;
1376 	}
1377 }
1378 
1379 static void md_update_sb(mddev_t * mddev)
1380 {
1381 	int err;
1382 	struct list_head *tmp;
1383 	mdk_rdev_t *rdev;
1384 	int sync_req;
1385 
1386 repeat:
1387 	spin_lock(&mddev->write_lock);
1388 	sync_req = mddev->in_sync;
1389 	mddev->utime = get_seconds();
1390 	mddev->events ++;
1391 
1392 	if (!mddev->events) {
1393 		/*
1394 		 * oops, this 64-bit counter should never wrap.
1395 		 * Either we are in around ~1 trillion A.C., assuming
1396 		 * 1 reboot per second, or we have a bug:
1397 		 */
1398 		MD_BUG();
1399 		mddev->events --;
1400 	}
1401 	mddev->sb_dirty = 2;
1402 	sync_sbs(mddev);
1403 
1404 	/*
1405 	 * do not write anything to disk if using
1406 	 * nonpersistent superblocks
1407 	 */
1408 	if (!mddev->persistent) {
1409 		mddev->sb_dirty = 0;
1410 		spin_unlock(&mddev->write_lock);
1411 		wake_up(&mddev->sb_wait);
1412 		return;
1413 	}
1414 	spin_unlock(&mddev->write_lock);
1415 
1416 	dprintk(KERN_INFO
1417 		"md: updating %s RAID superblock on device (in sync %d)\n",
1418 		mdname(mddev),mddev->in_sync);
1419 
1420 	err = bitmap_update_sb(mddev->bitmap);
1421 	ITERATE_RDEV(mddev,rdev,tmp) {
1422 		char b[BDEVNAME_SIZE];
1423 		dprintk(KERN_INFO "md: ");
1424 		if (rdev->faulty)
1425 			dprintk("(skipping faulty ");
1426 
1427 		dprintk("%s ", bdevname(rdev->bdev,b));
1428 		if (!rdev->faulty) {
1429 			md_super_write(mddev,rdev,
1430 				       rdev->sb_offset<<1, rdev->sb_size,
1431 				       rdev->sb_page);
1432 			dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1433 				bdevname(rdev->bdev,b),
1434 				(unsigned long long)rdev->sb_offset);
1435 
1436 		} else
1437 			dprintk(")\n");
1438 		if (mddev->level == LEVEL_MULTIPATH)
1439 			/* only need to write one superblock... */
1440 			break;
1441 	}
1442 	wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1443 	/* if there was a failure, sb_dirty was set to 1, and we re-write super */
1444 
1445 	spin_lock(&mddev->write_lock);
1446 	if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1447 		/* have to write it out again */
1448 		spin_unlock(&mddev->write_lock);
1449 		goto repeat;
1450 	}
1451 	mddev->sb_dirty = 0;
1452 	spin_unlock(&mddev->write_lock);
1453 	wake_up(&mddev->sb_wait);
1454 
1455 }
1456 
1457 struct rdev_sysfs_entry {
1458 	struct attribute attr;
1459 	ssize_t (*show)(mdk_rdev_t *, char *);
1460 	ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1461 };
1462 
1463 static ssize_t
1464 rdev_show_state(mdk_rdev_t *rdev, char *page)
1465 {
1466 	char *sep = "";
1467 	int len=0;
1468 
1469 	if (rdev->faulty) {
1470 		len+= sprintf(page+len, "%sfaulty",sep);
1471 		sep = ",";
1472 	}
1473 	if (rdev->in_sync) {
1474 		len += sprintf(page+len, "%sin_sync",sep);
1475 		sep = ",";
1476 	}
1477 	if (!rdev->faulty && !rdev->in_sync) {
1478 		len += sprintf(page+len, "%sspare", sep);
1479 		sep = ",";
1480 	}
1481 	return len+sprintf(page+len, "\n");
1482 }
1483 
1484 static struct rdev_sysfs_entry rdev_state = {
1485 	.attr = {.name = "state", .mode = S_IRUGO },
1486 	.show = rdev_show_state,
1487 };
1488 
1489 static ssize_t
1490 rdev_show_super(mdk_rdev_t *rdev, char *page)
1491 {
1492 	if (rdev->sb_loaded && rdev->sb_size) {
1493 		memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1494 		return rdev->sb_size;
1495 	} else
1496 		return 0;
1497 }
1498 static struct rdev_sysfs_entry rdev_super = {
1499 	.attr = {.name = "super", .mode = S_IRUGO },
1500 	.show = rdev_show_super,
1501 };
1502 static struct attribute *rdev_default_attrs[] = {
1503 	&rdev_state.attr,
1504 	&rdev_super.attr,
1505 	NULL,
1506 };
1507 static ssize_t
1508 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1509 {
1510 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1511 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1512 
1513 	if (!entry->show)
1514 		return -EIO;
1515 	return entry->show(rdev, page);
1516 }
1517 
1518 static ssize_t
1519 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1520 	      const char *page, size_t length)
1521 {
1522 	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1523 	mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1524 
1525 	if (!entry->store)
1526 		return -EIO;
1527 	return entry->store(rdev, page, length);
1528 }
1529 
1530 static void rdev_free(struct kobject *ko)
1531 {
1532 	mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1533 	kfree(rdev);
1534 }
1535 static struct sysfs_ops rdev_sysfs_ops = {
1536 	.show		= rdev_attr_show,
1537 	.store		= rdev_attr_store,
1538 };
1539 static struct kobj_type rdev_ktype = {
1540 	.release	= rdev_free,
1541 	.sysfs_ops	= &rdev_sysfs_ops,
1542 	.default_attrs	= rdev_default_attrs,
1543 };
1544 
1545 /*
1546  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1547  *
1548  * mark the device faulty if:
1549  *
1550  *   - the device is nonexistent (zero size)
1551  *   - the device has no valid superblock
1552  *
1553  * a faulty rdev _never_ has rdev->sb set.
1554  */
1555 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1556 {
1557 	char b[BDEVNAME_SIZE];
1558 	int err;
1559 	mdk_rdev_t *rdev;
1560 	sector_t size;
1561 
1562 	rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1563 	if (!rdev) {
1564 		printk(KERN_ERR "md: could not alloc mem for new device!\n");
1565 		return ERR_PTR(-ENOMEM);
1566 	}
1567 	memset(rdev, 0, sizeof(*rdev));
1568 
1569 	if ((err = alloc_disk_sb(rdev)))
1570 		goto abort_free;
1571 
1572 	err = lock_rdev(rdev, newdev);
1573 	if (err)
1574 		goto abort_free;
1575 
1576 	rdev->kobj.parent = NULL;
1577 	rdev->kobj.ktype = &rdev_ktype;
1578 	kobject_init(&rdev->kobj);
1579 
1580 	rdev->desc_nr = -1;
1581 	rdev->faulty = 0;
1582 	rdev->in_sync = 0;
1583 	rdev->data_offset = 0;
1584 	atomic_set(&rdev->nr_pending, 0);
1585 
1586 	size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1587 	if (!size) {
1588 		printk(KERN_WARNING
1589 			"md: %s has zero or unknown size, marking faulty!\n",
1590 			bdevname(rdev->bdev,b));
1591 		err = -EINVAL;
1592 		goto abort_free;
1593 	}
1594 
1595 	if (super_format >= 0) {
1596 		err = super_types[super_format].
1597 			load_super(rdev, NULL, super_minor);
1598 		if (err == -EINVAL) {
1599 			printk(KERN_WARNING
1600 				"md: %s has invalid sb, not importing!\n",
1601 				bdevname(rdev->bdev,b));
1602 			goto abort_free;
1603 		}
1604 		if (err < 0) {
1605 			printk(KERN_WARNING
1606 				"md: could not read %s's sb, not importing!\n",
1607 				bdevname(rdev->bdev,b));
1608 			goto abort_free;
1609 		}
1610 	}
1611 	INIT_LIST_HEAD(&rdev->same_set);
1612 
1613 	return rdev;
1614 
1615 abort_free:
1616 	if (rdev->sb_page) {
1617 		if (rdev->bdev)
1618 			unlock_rdev(rdev);
1619 		free_disk_sb(rdev);
1620 	}
1621 	kfree(rdev);
1622 	return ERR_PTR(err);
1623 }
1624 
1625 /*
1626  * Check a full RAID array for plausibility
1627  */
1628 
1629 
1630 static void analyze_sbs(mddev_t * mddev)
1631 {
1632 	int i;
1633 	struct list_head *tmp;
1634 	mdk_rdev_t *rdev, *freshest;
1635 	char b[BDEVNAME_SIZE];
1636 
1637 	freshest = NULL;
1638 	ITERATE_RDEV(mddev,rdev,tmp)
1639 		switch (super_types[mddev->major_version].
1640 			load_super(rdev, freshest, mddev->minor_version)) {
1641 		case 1:
1642 			freshest = rdev;
1643 			break;
1644 		case 0:
1645 			break;
1646 		default:
1647 			printk( KERN_ERR \
1648 				"md: fatal superblock inconsistency in %s"
1649 				" -- removing from array\n",
1650 				bdevname(rdev->bdev,b));
1651 			kick_rdev_from_array(rdev);
1652 		}
1653 
1654 
1655 	super_types[mddev->major_version].
1656 		validate_super(mddev, freshest);
1657 
1658 	i = 0;
1659 	ITERATE_RDEV(mddev,rdev,tmp) {
1660 		if (rdev != freshest)
1661 			if (super_types[mddev->major_version].
1662 			    validate_super(mddev, rdev)) {
1663 				printk(KERN_WARNING "md: kicking non-fresh %s"
1664 					" from array!\n",
1665 					bdevname(rdev->bdev,b));
1666 				kick_rdev_from_array(rdev);
1667 				continue;
1668 			}
1669 		if (mddev->level == LEVEL_MULTIPATH) {
1670 			rdev->desc_nr = i++;
1671 			rdev->raid_disk = rdev->desc_nr;
1672 			rdev->in_sync = 1;
1673 		}
1674 	}
1675 
1676 
1677 
1678 	if (mddev->recovery_cp != MaxSector &&
1679 	    mddev->level >= 1)
1680 		printk(KERN_ERR "md: %s: raid array is not clean"
1681 		       " -- starting background reconstruction\n",
1682 		       mdname(mddev));
1683 
1684 }
1685 
1686 static ssize_t
1687 md_show_level(mddev_t *mddev, char *page)
1688 {
1689 	mdk_personality_t *p = mddev->pers;
1690 	if (p == NULL)
1691 		return 0;
1692 	if (mddev->level >= 0)
1693 		return sprintf(page, "RAID-%d\n", mddev->level);
1694 	else
1695 		return sprintf(page, "%s\n", p->name);
1696 }
1697 
1698 static struct md_sysfs_entry md_level = {
1699 	.attr = {.name = "level", .mode = S_IRUGO },
1700 	.show = md_show_level,
1701 };
1702 
1703 static ssize_t
1704 md_show_rdisks(mddev_t *mddev, char *page)
1705 {
1706 	return sprintf(page, "%d\n", mddev->raid_disks);
1707 }
1708 
1709 static struct md_sysfs_entry md_raid_disks = {
1710 	.attr = {.name = "raid_disks", .mode = S_IRUGO },
1711 	.show = md_show_rdisks,
1712 };
1713 
1714 static ssize_t
1715 md_show_scan(mddev_t *mddev, char *page)
1716 {
1717 	char *type = "none";
1718 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1719 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1720 		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1721 			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1722 				type = "resync";
1723 			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1724 				type = "check";
1725 			else
1726 				type = "repair";
1727 		} else
1728 			type = "recover";
1729 	}
1730 	return sprintf(page, "%s\n", type);
1731 }
1732 
1733 static ssize_t
1734 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1735 {
1736 	int canscan=0;
1737 
1738 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1739 	    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1740 		return -EBUSY;
1741 	down(&mddev->reconfig_sem);
1742 	if (mddev->pers && mddev->pers->sync_request)
1743 		canscan=1;
1744 	up(&mddev->reconfig_sem);
1745 	if (!canscan)
1746 		return -EINVAL;
1747 
1748 	if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1749 		set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1750 	else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1751 		return -EINVAL;
1752 	set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1753 	set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1754 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1755 	md_wakeup_thread(mddev->thread);
1756 	return len;
1757 }
1758 
1759 static ssize_t
1760 md_show_mismatch(mddev_t *mddev, char *page)
1761 {
1762 	return sprintf(page, "%llu\n",
1763 		       (unsigned long long) mddev->resync_mismatches);
1764 }
1765 
1766 static struct md_sysfs_entry md_scan_mode = {
1767 	.attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
1768 	.show = md_show_scan,
1769 	.store = md_store_scan,
1770 };
1771 
1772 static struct md_sysfs_entry md_mismatches = {
1773 	.attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
1774 	.show = md_show_mismatch,
1775 };
1776 
1777 static struct attribute *md_default_attrs[] = {
1778 	&md_level.attr,
1779 	&md_raid_disks.attr,
1780 	&md_scan_mode.attr,
1781 	&md_mismatches.attr,
1782 	NULL,
1783 };
1784 
1785 static ssize_t
1786 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1787 {
1788 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1789 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1790 
1791 	if (!entry->show)
1792 		return -EIO;
1793 	return entry->show(mddev, page);
1794 }
1795 
1796 static ssize_t
1797 md_attr_store(struct kobject *kobj, struct attribute *attr,
1798 	      const char *page, size_t length)
1799 {
1800 	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1801 	mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1802 
1803 	if (!entry->store)
1804 		return -EIO;
1805 	return entry->store(mddev, page, length);
1806 }
1807 
1808 static void md_free(struct kobject *ko)
1809 {
1810 	mddev_t *mddev = container_of(ko, mddev_t, kobj);
1811 	kfree(mddev);
1812 }
1813 
1814 static struct sysfs_ops md_sysfs_ops = {
1815 	.show	= md_attr_show,
1816 	.store	= md_attr_store,
1817 };
1818 static struct kobj_type md_ktype = {
1819 	.release	= md_free,
1820 	.sysfs_ops	= &md_sysfs_ops,
1821 	.default_attrs	= md_default_attrs,
1822 };
1823 
1824 int mdp_major = 0;
1825 
1826 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1827 {
1828 	static DECLARE_MUTEX(disks_sem);
1829 	mddev_t *mddev = mddev_find(dev);
1830 	struct gendisk *disk;
1831 	int partitioned = (MAJOR(dev) != MD_MAJOR);
1832 	int shift = partitioned ? MdpMinorShift : 0;
1833 	int unit = MINOR(dev) >> shift;
1834 
1835 	if (!mddev)
1836 		return NULL;
1837 
1838 	down(&disks_sem);
1839 	if (mddev->gendisk) {
1840 		up(&disks_sem);
1841 		mddev_put(mddev);
1842 		return NULL;
1843 	}
1844 	disk = alloc_disk(1 << shift);
1845 	if (!disk) {
1846 		up(&disks_sem);
1847 		mddev_put(mddev);
1848 		return NULL;
1849 	}
1850 	disk->major = MAJOR(dev);
1851 	disk->first_minor = unit << shift;
1852 	if (partitioned) {
1853 		sprintf(disk->disk_name, "md_d%d", unit);
1854 		sprintf(disk->devfs_name, "md/d%d", unit);
1855 	} else {
1856 		sprintf(disk->disk_name, "md%d", unit);
1857 		sprintf(disk->devfs_name, "md/%d", unit);
1858 	}
1859 	disk->fops = &md_fops;
1860 	disk->private_data = mddev;
1861 	disk->queue = mddev->queue;
1862 	add_disk(disk);
1863 	mddev->gendisk = disk;
1864 	up(&disks_sem);
1865 	mddev->kobj.parent = &disk->kobj;
1866 	mddev->kobj.k_name = NULL;
1867 	snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1868 	mddev->kobj.ktype = &md_ktype;
1869 	kobject_register(&mddev->kobj);
1870 	return NULL;
1871 }
1872 
1873 void md_wakeup_thread(mdk_thread_t *thread);
1874 
1875 static void md_safemode_timeout(unsigned long data)
1876 {
1877 	mddev_t *mddev = (mddev_t *) data;
1878 
1879 	mddev->safemode = 1;
1880 	md_wakeup_thread(mddev->thread);
1881 }
1882 
1883 
1884 static int do_md_run(mddev_t * mddev)
1885 {
1886 	int pnum, err;
1887 	int chunk_size;
1888 	struct list_head *tmp;
1889 	mdk_rdev_t *rdev;
1890 	struct gendisk *disk;
1891 	char b[BDEVNAME_SIZE];
1892 
1893 	if (list_empty(&mddev->disks))
1894 		/* cannot run an array with no devices.. */
1895 		return -EINVAL;
1896 
1897 	if (mddev->pers)
1898 		return -EBUSY;
1899 
1900 	/*
1901 	 * Analyze all RAID superblock(s)
1902 	 */
1903 	if (!mddev->raid_disks)
1904 		analyze_sbs(mddev);
1905 
1906 	chunk_size = mddev->chunk_size;
1907 	pnum = level_to_pers(mddev->level);
1908 
1909 	if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1910 		if (!chunk_size) {
1911 			/*
1912 			 * 'default chunksize' in the old md code used to
1913 			 * be PAGE_SIZE, baaad.
1914 			 * we abort here to be on the safe side. We don't
1915 			 * want to continue the bad practice.
1916 			 */
1917 			printk(KERN_ERR
1918 				"no chunksize specified, see 'man raidtab'\n");
1919 			return -EINVAL;
1920 		}
1921 		if (chunk_size > MAX_CHUNK_SIZE) {
1922 			printk(KERN_ERR "too big chunk_size: %d > %d\n",
1923 				chunk_size, MAX_CHUNK_SIZE);
1924 			return -EINVAL;
1925 		}
1926 		/*
1927 		 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1928 		 */
1929 		if ( (1 << ffz(~chunk_size)) != chunk_size) {
1930 			printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1931 			return -EINVAL;
1932 		}
1933 		if (chunk_size < PAGE_SIZE) {
1934 			printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1935 				chunk_size, PAGE_SIZE);
1936 			return -EINVAL;
1937 		}
1938 
1939 		/* devices must have minimum size of one chunk */
1940 		ITERATE_RDEV(mddev,rdev,tmp) {
1941 			if (rdev->faulty)
1942 				continue;
1943 			if (rdev->size < chunk_size / 1024) {
1944 				printk(KERN_WARNING
1945 					"md: Dev %s smaller than chunk_size:"
1946 					" %lluk < %dk\n",
1947 					bdevname(rdev->bdev,b),
1948 					(unsigned long long)rdev->size,
1949 					chunk_size / 1024);
1950 				return -EINVAL;
1951 			}
1952 		}
1953 	}
1954 
1955 #ifdef CONFIG_KMOD
1956 	if (!pers[pnum])
1957 	{
1958 		request_module("md-personality-%d", pnum);
1959 	}
1960 #endif
1961 
1962 	/*
1963 	 * Drop all container device buffers, from now on
1964 	 * the only valid external interface is through the md
1965 	 * device.
1966 	 * Also find largest hardsector size
1967 	 */
1968 	ITERATE_RDEV(mddev,rdev,tmp) {
1969 		if (rdev->faulty)
1970 			continue;
1971 		sync_blockdev(rdev->bdev);
1972 		invalidate_bdev(rdev->bdev, 0);
1973 	}
1974 
1975 	md_probe(mddev->unit, NULL, NULL);
1976 	disk = mddev->gendisk;
1977 	if (!disk)
1978 		return -ENOMEM;
1979 
1980 	spin_lock(&pers_lock);
1981 	if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1982 		spin_unlock(&pers_lock);
1983 		printk(KERN_WARNING "md: personality %d is not loaded!\n",
1984 		       pnum);
1985 		return -EINVAL;
1986 	}
1987 
1988 	mddev->pers = pers[pnum];
1989 	spin_unlock(&pers_lock);
1990 
1991 	mddev->recovery = 0;
1992 	mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1993 
1994 	/* before we start the array running, initialise the bitmap */
1995 	err = bitmap_create(mddev);
1996 	if (err)
1997 		printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1998 			mdname(mddev), err);
1999 	else
2000 		err = mddev->pers->run(mddev);
2001 	if (err) {
2002 		printk(KERN_ERR "md: pers->run() failed ...\n");
2003 		module_put(mddev->pers->owner);
2004 		mddev->pers = NULL;
2005 		bitmap_destroy(mddev);
2006 		return err;
2007 	}
2008  	atomic_set(&mddev->writes_pending,0);
2009 	mddev->safemode = 0;
2010 	mddev->safemode_timer.function = md_safemode_timeout;
2011 	mddev->safemode_timer.data = (unsigned long) mddev;
2012 	mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2013 	mddev->in_sync = 1;
2014 
2015 	ITERATE_RDEV(mddev,rdev,tmp)
2016 		if (rdev->raid_disk >= 0) {
2017 			char nm[20];
2018 			sprintf(nm, "rd%d", rdev->raid_disk);
2019 			sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2020 		}
2021 
2022 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2023 	md_wakeup_thread(mddev->thread);
2024 
2025 	if (mddev->sb_dirty)
2026 		md_update_sb(mddev);
2027 
2028 	set_capacity(disk, mddev->array_size<<1);
2029 
2030 	/* If we call blk_queue_make_request here, it will
2031 	 * re-initialise max_sectors etc which may have been
2032 	 * refined inside -> run.  So just set the bits we need to set.
2033 	 * Most initialisation happended when we called
2034 	 * blk_queue_make_request(..., md_fail_request)
2035 	 * earlier.
2036 	 */
2037 	mddev->queue->queuedata = mddev;
2038 	mddev->queue->make_request_fn = mddev->pers->make_request;
2039 
2040 	mddev->changed = 1;
2041 	return 0;
2042 }
2043 
2044 static int restart_array(mddev_t *mddev)
2045 {
2046 	struct gendisk *disk = mddev->gendisk;
2047 	int err;
2048 
2049 	/*
2050 	 * Complain if it has no devices
2051 	 */
2052 	err = -ENXIO;
2053 	if (list_empty(&mddev->disks))
2054 		goto out;
2055 
2056 	if (mddev->pers) {
2057 		err = -EBUSY;
2058 		if (!mddev->ro)
2059 			goto out;
2060 
2061 		mddev->safemode = 0;
2062 		mddev->ro = 0;
2063 		set_disk_ro(disk, 0);
2064 
2065 		printk(KERN_INFO "md: %s switched to read-write mode.\n",
2066 			mdname(mddev));
2067 		/*
2068 		 * Kick recovery or resync if necessary
2069 		 */
2070 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2071 		md_wakeup_thread(mddev->thread);
2072 		err = 0;
2073 	} else {
2074 		printk(KERN_ERR "md: %s has no personality assigned.\n",
2075 			mdname(mddev));
2076 		err = -EINVAL;
2077 	}
2078 
2079 out:
2080 	return err;
2081 }
2082 
2083 static int do_md_stop(mddev_t * mddev, int ro)
2084 {
2085 	int err = 0;
2086 	struct gendisk *disk = mddev->gendisk;
2087 
2088 	if (mddev->pers) {
2089 		if (atomic_read(&mddev->active)>2) {
2090 			printk("md: %s still in use.\n",mdname(mddev));
2091 			return -EBUSY;
2092 		}
2093 
2094 		if (mddev->sync_thread) {
2095 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2096 			md_unregister_thread(mddev->sync_thread);
2097 			mddev->sync_thread = NULL;
2098 		}
2099 
2100 		del_timer_sync(&mddev->safemode_timer);
2101 
2102 		invalidate_partition(disk, 0);
2103 
2104 		if (ro) {
2105 			err  = -ENXIO;
2106 			if (mddev->ro)
2107 				goto out;
2108 			mddev->ro = 1;
2109 		} else {
2110 			bitmap_flush(mddev);
2111 			wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
2112 			if (mddev->ro)
2113 				set_disk_ro(disk, 0);
2114 			blk_queue_make_request(mddev->queue, md_fail_request);
2115 			mddev->pers->stop(mddev);
2116 			module_put(mddev->pers->owner);
2117 			mddev->pers = NULL;
2118 			if (mddev->ro)
2119 				mddev->ro = 0;
2120 		}
2121 		if (!mddev->in_sync) {
2122 			/* mark array as shutdown cleanly */
2123 			mddev->in_sync = 1;
2124 			md_update_sb(mddev);
2125 		}
2126 		if (ro)
2127 			set_disk_ro(disk, 1);
2128 	}
2129 
2130 	bitmap_destroy(mddev);
2131 	if (mddev->bitmap_file) {
2132 		atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2133 		fput(mddev->bitmap_file);
2134 		mddev->bitmap_file = NULL;
2135 	}
2136 	mddev->bitmap_offset = 0;
2137 
2138 	/*
2139 	 * Free resources if final stop
2140 	 */
2141 	if (!ro) {
2142 		mdk_rdev_t *rdev;
2143 		struct list_head *tmp;
2144 		struct gendisk *disk;
2145 		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2146 
2147 		ITERATE_RDEV(mddev,rdev,tmp)
2148 			if (rdev->raid_disk >= 0) {
2149 				char nm[20];
2150 				sprintf(nm, "rd%d", rdev->raid_disk);
2151 				sysfs_remove_link(&mddev->kobj, nm);
2152 			}
2153 
2154 		export_array(mddev);
2155 
2156 		mddev->array_size = 0;
2157 		disk = mddev->gendisk;
2158 		if (disk)
2159 			set_capacity(disk, 0);
2160 		mddev->changed = 1;
2161 	} else
2162 		printk(KERN_INFO "md: %s switched to read-only mode.\n",
2163 			mdname(mddev));
2164 	err = 0;
2165 out:
2166 	return err;
2167 }
2168 
2169 static void autorun_array(mddev_t *mddev)
2170 {
2171 	mdk_rdev_t *rdev;
2172 	struct list_head *tmp;
2173 	int err;
2174 
2175 	if (list_empty(&mddev->disks))
2176 		return;
2177 
2178 	printk(KERN_INFO "md: running: ");
2179 
2180 	ITERATE_RDEV(mddev,rdev,tmp) {
2181 		char b[BDEVNAME_SIZE];
2182 		printk("<%s>", bdevname(rdev->bdev,b));
2183 	}
2184 	printk("\n");
2185 
2186 	err = do_md_run (mddev);
2187 	if (err) {
2188 		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2189 		do_md_stop (mddev, 0);
2190 	}
2191 }
2192 
2193 /*
2194  * lets try to run arrays based on all disks that have arrived
2195  * until now. (those are in pending_raid_disks)
2196  *
2197  * the method: pick the first pending disk, collect all disks with
2198  * the same UUID, remove all from the pending list and put them into
2199  * the 'same_array' list. Then order this list based on superblock
2200  * update time (freshest comes first), kick out 'old' disks and
2201  * compare superblocks. If everything's fine then run it.
2202  *
2203  * If "unit" is allocated, then bump its reference count
2204  */
2205 static void autorun_devices(int part)
2206 {
2207 	struct list_head candidates;
2208 	struct list_head *tmp;
2209 	mdk_rdev_t *rdev0, *rdev;
2210 	mddev_t *mddev;
2211 	char b[BDEVNAME_SIZE];
2212 
2213 	printk(KERN_INFO "md: autorun ...\n");
2214 	while (!list_empty(&pending_raid_disks)) {
2215 		dev_t dev;
2216 		rdev0 = list_entry(pending_raid_disks.next,
2217 					 mdk_rdev_t, same_set);
2218 
2219 		printk(KERN_INFO "md: considering %s ...\n",
2220 			bdevname(rdev0->bdev,b));
2221 		INIT_LIST_HEAD(&candidates);
2222 		ITERATE_RDEV_PENDING(rdev,tmp)
2223 			if (super_90_load(rdev, rdev0, 0) >= 0) {
2224 				printk(KERN_INFO "md:  adding %s ...\n",
2225 					bdevname(rdev->bdev,b));
2226 				list_move(&rdev->same_set, &candidates);
2227 			}
2228 		/*
2229 		 * now we have a set of devices, with all of them having
2230 		 * mostly sane superblocks. It's time to allocate the
2231 		 * mddev.
2232 		 */
2233 		if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2234 			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2235 			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2236 			break;
2237 		}
2238 		if (part)
2239 			dev = MKDEV(mdp_major,
2240 				    rdev0->preferred_minor << MdpMinorShift);
2241 		else
2242 			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2243 
2244 		md_probe(dev, NULL, NULL);
2245 		mddev = mddev_find(dev);
2246 		if (!mddev) {
2247 			printk(KERN_ERR
2248 				"md: cannot allocate memory for md drive.\n");
2249 			break;
2250 		}
2251 		if (mddev_lock(mddev))
2252 			printk(KERN_WARNING "md: %s locked, cannot run\n",
2253 			       mdname(mddev));
2254 		else if (mddev->raid_disks || mddev->major_version
2255 			 || !list_empty(&mddev->disks)) {
2256 			printk(KERN_WARNING
2257 				"md: %s already running, cannot run %s\n",
2258 				mdname(mddev), bdevname(rdev0->bdev,b));
2259 			mddev_unlock(mddev);
2260 		} else {
2261 			printk(KERN_INFO "md: created %s\n", mdname(mddev));
2262 			ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2263 				list_del_init(&rdev->same_set);
2264 				if (bind_rdev_to_array(rdev, mddev))
2265 					export_rdev(rdev);
2266 			}
2267 			autorun_array(mddev);
2268 			mddev_unlock(mddev);
2269 		}
2270 		/* on success, candidates will be empty, on error
2271 		 * it won't...
2272 		 */
2273 		ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2274 			export_rdev(rdev);
2275 		mddev_put(mddev);
2276 	}
2277 	printk(KERN_INFO "md: ... autorun DONE.\n");
2278 }
2279 
2280 /*
2281  * import RAID devices based on one partition
2282  * if possible, the array gets run as well.
2283  */
2284 
2285 static int autostart_array(dev_t startdev)
2286 {
2287 	char b[BDEVNAME_SIZE];
2288 	int err = -EINVAL, i;
2289 	mdp_super_t *sb = NULL;
2290 	mdk_rdev_t *start_rdev = NULL, *rdev;
2291 
2292 	start_rdev = md_import_device(startdev, 0, 0);
2293 	if (IS_ERR(start_rdev))
2294 		return err;
2295 
2296 
2297 	/* NOTE: this can only work for 0.90.0 superblocks */
2298 	sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2299 	if (sb->major_version != 0 ||
2300 	    sb->minor_version != 90 ) {
2301 		printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2302 		export_rdev(start_rdev);
2303 		return err;
2304 	}
2305 
2306 	if (start_rdev->faulty) {
2307 		printk(KERN_WARNING
2308 			"md: can not autostart based on faulty %s!\n",
2309 			bdevname(start_rdev->bdev,b));
2310 		export_rdev(start_rdev);
2311 		return err;
2312 	}
2313 	list_add(&start_rdev->same_set, &pending_raid_disks);
2314 
2315 	for (i = 0; i < MD_SB_DISKS; i++) {
2316 		mdp_disk_t *desc = sb->disks + i;
2317 		dev_t dev = MKDEV(desc->major, desc->minor);
2318 
2319 		if (!dev)
2320 			continue;
2321 		if (dev == startdev)
2322 			continue;
2323 		if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2324 			continue;
2325 		rdev = md_import_device(dev, 0, 0);
2326 		if (IS_ERR(rdev))
2327 			continue;
2328 
2329 		list_add(&rdev->same_set, &pending_raid_disks);
2330 	}
2331 
2332 	/*
2333 	 * possibly return codes
2334 	 */
2335 	autorun_devices(0);
2336 	return 0;
2337 
2338 }
2339 
2340 
2341 static int get_version(void __user * arg)
2342 {
2343 	mdu_version_t ver;
2344 
2345 	ver.major = MD_MAJOR_VERSION;
2346 	ver.minor = MD_MINOR_VERSION;
2347 	ver.patchlevel = MD_PATCHLEVEL_VERSION;
2348 
2349 	if (copy_to_user(arg, &ver, sizeof(ver)))
2350 		return -EFAULT;
2351 
2352 	return 0;
2353 }
2354 
2355 static int get_array_info(mddev_t * mddev, void __user * arg)
2356 {
2357 	mdu_array_info_t info;
2358 	int nr,working,active,failed,spare;
2359 	mdk_rdev_t *rdev;
2360 	struct list_head *tmp;
2361 
2362 	nr=working=active=failed=spare=0;
2363 	ITERATE_RDEV(mddev,rdev,tmp) {
2364 		nr++;
2365 		if (rdev->faulty)
2366 			failed++;
2367 		else {
2368 			working++;
2369 			if (rdev->in_sync)
2370 				active++;
2371 			else
2372 				spare++;
2373 		}
2374 	}
2375 
2376 	info.major_version = mddev->major_version;
2377 	info.minor_version = mddev->minor_version;
2378 	info.patch_version = MD_PATCHLEVEL_VERSION;
2379 	info.ctime         = mddev->ctime;
2380 	info.level         = mddev->level;
2381 	info.size          = mddev->size;
2382 	info.nr_disks      = nr;
2383 	info.raid_disks    = mddev->raid_disks;
2384 	info.md_minor      = mddev->md_minor;
2385 	info.not_persistent= !mddev->persistent;
2386 
2387 	info.utime         = mddev->utime;
2388 	info.state         = 0;
2389 	if (mddev->in_sync)
2390 		info.state = (1<<MD_SB_CLEAN);
2391 	if (mddev->bitmap && mddev->bitmap_offset)
2392 		info.state = (1<<MD_SB_BITMAP_PRESENT);
2393 	info.active_disks  = active;
2394 	info.working_disks = working;
2395 	info.failed_disks  = failed;
2396 	info.spare_disks   = spare;
2397 
2398 	info.layout        = mddev->layout;
2399 	info.chunk_size    = mddev->chunk_size;
2400 
2401 	if (copy_to_user(arg, &info, sizeof(info)))
2402 		return -EFAULT;
2403 
2404 	return 0;
2405 }
2406 
2407 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2408 {
2409 	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2410 	char *ptr, *buf = NULL;
2411 	int err = -ENOMEM;
2412 
2413 	file = kmalloc(sizeof(*file), GFP_KERNEL);
2414 	if (!file)
2415 		goto out;
2416 
2417 	/* bitmap disabled, zero the first byte and copy out */
2418 	if (!mddev->bitmap || !mddev->bitmap->file) {
2419 		file->pathname[0] = '\0';
2420 		goto copy_out;
2421 	}
2422 
2423 	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2424 	if (!buf)
2425 		goto out;
2426 
2427 	ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2428 	if (!ptr)
2429 		goto out;
2430 
2431 	strcpy(file->pathname, ptr);
2432 
2433 copy_out:
2434 	err = 0;
2435 	if (copy_to_user(arg, file, sizeof(*file)))
2436 		err = -EFAULT;
2437 out:
2438 	kfree(buf);
2439 	kfree(file);
2440 	return err;
2441 }
2442 
2443 static int get_disk_info(mddev_t * mddev, void __user * arg)
2444 {
2445 	mdu_disk_info_t info;
2446 	unsigned int nr;
2447 	mdk_rdev_t *rdev;
2448 
2449 	if (copy_from_user(&info, arg, sizeof(info)))
2450 		return -EFAULT;
2451 
2452 	nr = info.number;
2453 
2454 	rdev = find_rdev_nr(mddev, nr);
2455 	if (rdev) {
2456 		info.major = MAJOR(rdev->bdev->bd_dev);
2457 		info.minor = MINOR(rdev->bdev->bd_dev);
2458 		info.raid_disk = rdev->raid_disk;
2459 		info.state = 0;
2460 		if (rdev->faulty)
2461 			info.state |= (1<<MD_DISK_FAULTY);
2462 		else if (rdev->in_sync) {
2463 			info.state |= (1<<MD_DISK_ACTIVE);
2464 			info.state |= (1<<MD_DISK_SYNC);
2465 		}
2466 		if (test_bit(WriteMostly, &rdev->flags))
2467 			info.state |= (1<<MD_DISK_WRITEMOSTLY);
2468 	} else {
2469 		info.major = info.minor = 0;
2470 		info.raid_disk = -1;
2471 		info.state = (1<<MD_DISK_REMOVED);
2472 	}
2473 
2474 	if (copy_to_user(arg, &info, sizeof(info)))
2475 		return -EFAULT;
2476 
2477 	return 0;
2478 }
2479 
2480 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2481 {
2482 	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2483 	mdk_rdev_t *rdev;
2484 	dev_t dev = MKDEV(info->major,info->minor);
2485 
2486 	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2487 		return -EOVERFLOW;
2488 
2489 	if (!mddev->raid_disks) {
2490 		int err;
2491 		/* expecting a device which has a superblock */
2492 		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2493 		if (IS_ERR(rdev)) {
2494 			printk(KERN_WARNING
2495 				"md: md_import_device returned %ld\n",
2496 				PTR_ERR(rdev));
2497 			return PTR_ERR(rdev);
2498 		}
2499 		if (!list_empty(&mddev->disks)) {
2500 			mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2501 							mdk_rdev_t, same_set);
2502 			int err = super_types[mddev->major_version]
2503 				.load_super(rdev, rdev0, mddev->minor_version);
2504 			if (err < 0) {
2505 				printk(KERN_WARNING
2506 					"md: %s has different UUID to %s\n",
2507 					bdevname(rdev->bdev,b),
2508 					bdevname(rdev0->bdev,b2));
2509 				export_rdev(rdev);
2510 				return -EINVAL;
2511 			}
2512 		}
2513 		err = bind_rdev_to_array(rdev, mddev);
2514 		if (err)
2515 			export_rdev(rdev);
2516 		return err;
2517 	}
2518 
2519 	/*
2520 	 * add_new_disk can be used once the array is assembled
2521 	 * to add "hot spares".  They must already have a superblock
2522 	 * written
2523 	 */
2524 	if (mddev->pers) {
2525 		int err;
2526 		if (!mddev->pers->hot_add_disk) {
2527 			printk(KERN_WARNING
2528 				"%s: personality does not support diskops!\n",
2529 			       mdname(mddev));
2530 			return -EINVAL;
2531 		}
2532 		if (mddev->persistent)
2533 			rdev = md_import_device(dev, mddev->major_version,
2534 						mddev->minor_version);
2535 		else
2536 			rdev = md_import_device(dev, -1, -1);
2537 		if (IS_ERR(rdev)) {
2538 			printk(KERN_WARNING
2539 				"md: md_import_device returned %ld\n",
2540 				PTR_ERR(rdev));
2541 			return PTR_ERR(rdev);
2542 		}
2543 		/* set save_raid_disk if appropriate */
2544 		if (!mddev->persistent) {
2545 			if (info->state & (1<<MD_DISK_SYNC)  &&
2546 			    info->raid_disk < mddev->raid_disks)
2547 				rdev->raid_disk = info->raid_disk;
2548 			else
2549 				rdev->raid_disk = -1;
2550 		} else
2551 			super_types[mddev->major_version].
2552 				validate_super(mddev, rdev);
2553 		rdev->saved_raid_disk = rdev->raid_disk;
2554 
2555 		rdev->in_sync = 0; /* just to be sure */
2556 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2557 			set_bit(WriteMostly, &rdev->flags);
2558 
2559 		rdev->raid_disk = -1;
2560 		err = bind_rdev_to_array(rdev, mddev);
2561 		if (err)
2562 			export_rdev(rdev);
2563 
2564 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2565 		md_wakeup_thread(mddev->thread);
2566 		return err;
2567 	}
2568 
2569 	/* otherwise, add_new_disk is only allowed
2570 	 * for major_version==0 superblocks
2571 	 */
2572 	if (mddev->major_version != 0) {
2573 		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2574 		       mdname(mddev));
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (!(info->state & (1<<MD_DISK_FAULTY))) {
2579 		int err;
2580 		rdev = md_import_device (dev, -1, 0);
2581 		if (IS_ERR(rdev)) {
2582 			printk(KERN_WARNING
2583 				"md: error, md_import_device() returned %ld\n",
2584 				PTR_ERR(rdev));
2585 			return PTR_ERR(rdev);
2586 		}
2587 		rdev->desc_nr = info->number;
2588 		if (info->raid_disk < mddev->raid_disks)
2589 			rdev->raid_disk = info->raid_disk;
2590 		else
2591 			rdev->raid_disk = -1;
2592 
2593 		rdev->faulty = 0;
2594 		if (rdev->raid_disk < mddev->raid_disks)
2595 			rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2596 		else
2597 			rdev->in_sync = 0;
2598 
2599 		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2600 			set_bit(WriteMostly, &rdev->flags);
2601 
2602 		err = bind_rdev_to_array(rdev, mddev);
2603 		if (err) {
2604 			export_rdev(rdev);
2605 			return err;
2606 		}
2607 
2608 		if (!mddev->persistent) {
2609 			printk(KERN_INFO "md: nonpersistent superblock ...\n");
2610 			rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2611 		} else
2612 			rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2613 		rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2614 
2615 		if (!mddev->size || (mddev->size > rdev->size))
2616 			mddev->size = rdev->size;
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2623 {
2624 	char b[BDEVNAME_SIZE];
2625 	mdk_rdev_t *rdev;
2626 
2627 	if (!mddev->pers)
2628 		return -ENODEV;
2629 
2630 	rdev = find_rdev(mddev, dev);
2631 	if (!rdev)
2632 		return -ENXIO;
2633 
2634 	if (rdev->raid_disk >= 0)
2635 		goto busy;
2636 
2637 	kick_rdev_from_array(rdev);
2638 	md_update_sb(mddev);
2639 
2640 	return 0;
2641 busy:
2642 	printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2643 		bdevname(rdev->bdev,b), mdname(mddev));
2644 	return -EBUSY;
2645 }
2646 
2647 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2648 {
2649 	char b[BDEVNAME_SIZE];
2650 	int err;
2651 	unsigned int size;
2652 	mdk_rdev_t *rdev;
2653 
2654 	if (!mddev->pers)
2655 		return -ENODEV;
2656 
2657 	if (mddev->major_version != 0) {
2658 		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2659 			" version-0 superblocks.\n",
2660 			mdname(mddev));
2661 		return -EINVAL;
2662 	}
2663 	if (!mddev->pers->hot_add_disk) {
2664 		printk(KERN_WARNING
2665 			"%s: personality does not support diskops!\n",
2666 			mdname(mddev));
2667 		return -EINVAL;
2668 	}
2669 
2670 	rdev = md_import_device (dev, -1, 0);
2671 	if (IS_ERR(rdev)) {
2672 		printk(KERN_WARNING
2673 			"md: error, md_import_device() returned %ld\n",
2674 			PTR_ERR(rdev));
2675 		return -EINVAL;
2676 	}
2677 
2678 	if (mddev->persistent)
2679 		rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2680 	else
2681 		rdev->sb_offset =
2682 			rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2683 
2684 	size = calc_dev_size(rdev, mddev->chunk_size);
2685 	rdev->size = size;
2686 
2687 	if (size < mddev->size) {
2688 		printk(KERN_WARNING
2689 			"%s: disk size %llu blocks < array size %llu\n",
2690 			mdname(mddev), (unsigned long long)size,
2691 			(unsigned long long)mddev->size);
2692 		err = -ENOSPC;
2693 		goto abort_export;
2694 	}
2695 
2696 	if (rdev->faulty) {
2697 		printk(KERN_WARNING
2698 			"md: can not hot-add faulty %s disk to %s!\n",
2699 			bdevname(rdev->bdev,b), mdname(mddev));
2700 		err = -EINVAL;
2701 		goto abort_export;
2702 	}
2703 	rdev->in_sync = 0;
2704 	rdev->desc_nr = -1;
2705 	bind_rdev_to_array(rdev, mddev);
2706 
2707 	/*
2708 	 * The rest should better be atomic, we can have disk failures
2709 	 * noticed in interrupt contexts ...
2710 	 */
2711 
2712 	if (rdev->desc_nr == mddev->max_disks) {
2713 		printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2714 			mdname(mddev));
2715 		err = -EBUSY;
2716 		goto abort_unbind_export;
2717 	}
2718 
2719 	rdev->raid_disk = -1;
2720 
2721 	md_update_sb(mddev);
2722 
2723 	/*
2724 	 * Kick recovery, maybe this spare has to be added to the
2725 	 * array immediately.
2726 	 */
2727 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2728 	md_wakeup_thread(mddev->thread);
2729 
2730 	return 0;
2731 
2732 abort_unbind_export:
2733 	unbind_rdev_from_array(rdev);
2734 
2735 abort_export:
2736 	export_rdev(rdev);
2737 	return err;
2738 }
2739 
2740 /* similar to deny_write_access, but accounts for our holding a reference
2741  * to the file ourselves */
2742 static int deny_bitmap_write_access(struct file * file)
2743 {
2744 	struct inode *inode = file->f_mapping->host;
2745 
2746 	spin_lock(&inode->i_lock);
2747 	if (atomic_read(&inode->i_writecount) > 1) {
2748 		spin_unlock(&inode->i_lock);
2749 		return -ETXTBSY;
2750 	}
2751 	atomic_set(&inode->i_writecount, -1);
2752 	spin_unlock(&inode->i_lock);
2753 
2754 	return 0;
2755 }
2756 
2757 static int set_bitmap_file(mddev_t *mddev, int fd)
2758 {
2759 	int err;
2760 
2761 	if (mddev->pers) {
2762 		if (!mddev->pers->quiesce)
2763 			return -EBUSY;
2764 		if (mddev->recovery || mddev->sync_thread)
2765 			return -EBUSY;
2766 		/* we should be able to change the bitmap.. */
2767 	}
2768 
2769 
2770 	if (fd >= 0) {
2771 		if (mddev->bitmap)
2772 			return -EEXIST; /* cannot add when bitmap is present */
2773 		mddev->bitmap_file = fget(fd);
2774 
2775 		if (mddev->bitmap_file == NULL) {
2776 			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2777 			       mdname(mddev));
2778 			return -EBADF;
2779 		}
2780 
2781 		err = deny_bitmap_write_access(mddev->bitmap_file);
2782 		if (err) {
2783 			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2784 			       mdname(mddev));
2785 			fput(mddev->bitmap_file);
2786 			mddev->bitmap_file = NULL;
2787 			return err;
2788 		}
2789 		mddev->bitmap_offset = 0; /* file overrides offset */
2790 	} else if (mddev->bitmap == NULL)
2791 		return -ENOENT; /* cannot remove what isn't there */
2792 	err = 0;
2793 	if (mddev->pers) {
2794 		mddev->pers->quiesce(mddev, 1);
2795 		if (fd >= 0)
2796 			err = bitmap_create(mddev);
2797 		if (fd < 0 || err)
2798 			bitmap_destroy(mddev);
2799 		mddev->pers->quiesce(mddev, 0);
2800 	} else if (fd < 0) {
2801 		if (mddev->bitmap_file)
2802 			fput(mddev->bitmap_file);
2803 		mddev->bitmap_file = NULL;
2804 	}
2805 
2806 	return err;
2807 }
2808 
2809 /*
2810  * set_array_info is used two different ways
2811  * The original usage is when creating a new array.
2812  * In this usage, raid_disks is > 0 and it together with
2813  *  level, size, not_persistent,layout,chunksize determine the
2814  *  shape of the array.
2815  *  This will always create an array with a type-0.90.0 superblock.
2816  * The newer usage is when assembling an array.
2817  *  In this case raid_disks will be 0, and the major_version field is
2818  *  use to determine which style super-blocks are to be found on the devices.
2819  *  The minor and patch _version numbers are also kept incase the
2820  *  super_block handler wishes to interpret them.
2821  */
2822 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2823 {
2824 
2825 	if (info->raid_disks == 0) {
2826 		/* just setting version number for superblock loading */
2827 		if (info->major_version < 0 ||
2828 		    info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2829 		    super_types[info->major_version].name == NULL) {
2830 			/* maybe try to auto-load a module? */
2831 			printk(KERN_INFO
2832 				"md: superblock version %d not known\n",
2833 				info->major_version);
2834 			return -EINVAL;
2835 		}
2836 		mddev->major_version = info->major_version;
2837 		mddev->minor_version = info->minor_version;
2838 		mddev->patch_version = info->patch_version;
2839 		return 0;
2840 	}
2841 	mddev->major_version = MD_MAJOR_VERSION;
2842 	mddev->minor_version = MD_MINOR_VERSION;
2843 	mddev->patch_version = MD_PATCHLEVEL_VERSION;
2844 	mddev->ctime         = get_seconds();
2845 
2846 	mddev->level         = info->level;
2847 	mddev->size          = info->size;
2848 	mddev->raid_disks    = info->raid_disks;
2849 	/* don't set md_minor, it is determined by which /dev/md* was
2850 	 * openned
2851 	 */
2852 	if (info->state & (1<<MD_SB_CLEAN))
2853 		mddev->recovery_cp = MaxSector;
2854 	else
2855 		mddev->recovery_cp = 0;
2856 	mddev->persistent    = ! info->not_persistent;
2857 
2858 	mddev->layout        = info->layout;
2859 	mddev->chunk_size    = info->chunk_size;
2860 
2861 	mddev->max_disks     = MD_SB_DISKS;
2862 
2863 	mddev->sb_dirty      = 1;
2864 
2865 	/*
2866 	 * Generate a 128 bit UUID
2867 	 */
2868 	get_random_bytes(mddev->uuid, 16);
2869 
2870 	return 0;
2871 }
2872 
2873 /*
2874  * update_array_info is used to change the configuration of an
2875  * on-line array.
2876  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2877  * fields in the info are checked against the array.
2878  * Any differences that cannot be handled will cause an error.
2879  * Normally, only one change can be managed at a time.
2880  */
2881 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2882 {
2883 	int rv = 0;
2884 	int cnt = 0;
2885 	int state = 0;
2886 
2887 	/* calculate expected state,ignoring low bits */
2888 	if (mddev->bitmap && mddev->bitmap_offset)
2889 		state |= (1 << MD_SB_BITMAP_PRESENT);
2890 
2891 	if (mddev->major_version != info->major_version ||
2892 	    mddev->minor_version != info->minor_version ||
2893 /*	    mddev->patch_version != info->patch_version || */
2894 	    mddev->ctime         != info->ctime         ||
2895 	    mddev->level         != info->level         ||
2896 /*	    mddev->layout        != info->layout        || */
2897 	    !mddev->persistent	 != info->not_persistent||
2898 	    mddev->chunk_size    != info->chunk_size    ||
2899 	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2900 	    ((state^info->state) & 0xfffffe00)
2901 		)
2902 		return -EINVAL;
2903 	/* Check there is only one change */
2904 	if (mddev->size != info->size) cnt++;
2905 	if (mddev->raid_disks != info->raid_disks) cnt++;
2906 	if (mddev->layout != info->layout) cnt++;
2907 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2908 	if (cnt == 0) return 0;
2909 	if (cnt > 1) return -EINVAL;
2910 
2911 	if (mddev->layout != info->layout) {
2912 		/* Change layout
2913 		 * we don't need to do anything at the md level, the
2914 		 * personality will take care of it all.
2915 		 */
2916 		if (mddev->pers->reconfig == NULL)
2917 			return -EINVAL;
2918 		else
2919 			return mddev->pers->reconfig(mddev, info->layout, -1);
2920 	}
2921 	if (mddev->size != info->size) {
2922 		mdk_rdev_t * rdev;
2923 		struct list_head *tmp;
2924 		if (mddev->pers->resize == NULL)
2925 			return -EINVAL;
2926 		/* The "size" is the amount of each device that is used.
2927 		 * This can only make sense for arrays with redundancy.
2928 		 * linear and raid0 always use whatever space is available
2929 		 * We can only consider changing the size if no resync
2930 		 * or reconstruction is happening, and if the new size
2931 		 * is acceptable. It must fit before the sb_offset or,
2932 		 * if that is <data_offset, it must fit before the
2933 		 * size of each device.
2934 		 * If size is zero, we find the largest size that fits.
2935 		 */
2936 		if (mddev->sync_thread)
2937 			return -EBUSY;
2938 		ITERATE_RDEV(mddev,rdev,tmp) {
2939 			sector_t avail;
2940 			int fit = (info->size == 0);
2941 			if (rdev->sb_offset > rdev->data_offset)
2942 				avail = (rdev->sb_offset*2) - rdev->data_offset;
2943 			else
2944 				avail = get_capacity(rdev->bdev->bd_disk)
2945 					- rdev->data_offset;
2946 			if (fit && (info->size == 0 || info->size > avail/2))
2947 				info->size = avail/2;
2948 			if (avail < ((sector_t)info->size << 1))
2949 				return -ENOSPC;
2950 		}
2951 		rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2952 		if (!rv) {
2953 			struct block_device *bdev;
2954 
2955 			bdev = bdget_disk(mddev->gendisk, 0);
2956 			if (bdev) {
2957 				down(&bdev->bd_inode->i_sem);
2958 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2959 				up(&bdev->bd_inode->i_sem);
2960 				bdput(bdev);
2961 			}
2962 		}
2963 	}
2964 	if (mddev->raid_disks    != info->raid_disks) {
2965 		/* change the number of raid disks */
2966 		if (mddev->pers->reshape == NULL)
2967 			return -EINVAL;
2968 		if (info->raid_disks <= 0 ||
2969 		    info->raid_disks >= mddev->max_disks)
2970 			return -EINVAL;
2971 		if (mddev->sync_thread)
2972 			return -EBUSY;
2973 		rv = mddev->pers->reshape(mddev, info->raid_disks);
2974 		if (!rv) {
2975 			struct block_device *bdev;
2976 
2977 			bdev = bdget_disk(mddev->gendisk, 0);
2978 			if (bdev) {
2979 				down(&bdev->bd_inode->i_sem);
2980 				i_size_write(bdev->bd_inode, mddev->array_size << 10);
2981 				up(&bdev->bd_inode->i_sem);
2982 				bdput(bdev);
2983 			}
2984 		}
2985 	}
2986 	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
2987 		if (mddev->pers->quiesce == NULL)
2988 			return -EINVAL;
2989 		if (mddev->recovery || mddev->sync_thread)
2990 			return -EBUSY;
2991 		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
2992 			/* add the bitmap */
2993 			if (mddev->bitmap)
2994 				return -EEXIST;
2995 			if (mddev->default_bitmap_offset == 0)
2996 				return -EINVAL;
2997 			mddev->bitmap_offset = mddev->default_bitmap_offset;
2998 			mddev->pers->quiesce(mddev, 1);
2999 			rv = bitmap_create(mddev);
3000 			if (rv)
3001 				bitmap_destroy(mddev);
3002 			mddev->pers->quiesce(mddev, 0);
3003 		} else {
3004 			/* remove the bitmap */
3005 			if (!mddev->bitmap)
3006 				return -ENOENT;
3007 			if (mddev->bitmap->file)
3008 				return -EINVAL;
3009 			mddev->pers->quiesce(mddev, 1);
3010 			bitmap_destroy(mddev);
3011 			mddev->pers->quiesce(mddev, 0);
3012 			mddev->bitmap_offset = 0;
3013 		}
3014 	}
3015 	md_update_sb(mddev);
3016 	return rv;
3017 }
3018 
3019 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3020 {
3021 	mdk_rdev_t *rdev;
3022 
3023 	if (mddev->pers == NULL)
3024 		return -ENODEV;
3025 
3026 	rdev = find_rdev(mddev, dev);
3027 	if (!rdev)
3028 		return -ENODEV;
3029 
3030 	md_error(mddev, rdev);
3031 	return 0;
3032 }
3033 
3034 static int md_ioctl(struct inode *inode, struct file *file,
3035 			unsigned int cmd, unsigned long arg)
3036 {
3037 	int err = 0;
3038 	void __user *argp = (void __user *)arg;
3039 	struct hd_geometry __user *loc = argp;
3040 	mddev_t *mddev = NULL;
3041 
3042 	if (!capable(CAP_SYS_ADMIN))
3043 		return -EACCES;
3044 
3045 	/*
3046 	 * Commands dealing with the RAID driver but not any
3047 	 * particular array:
3048 	 */
3049 	switch (cmd)
3050 	{
3051 		case RAID_VERSION:
3052 			err = get_version(argp);
3053 			goto done;
3054 
3055 		case PRINT_RAID_DEBUG:
3056 			err = 0;
3057 			md_print_devices();
3058 			goto done;
3059 
3060 #ifndef MODULE
3061 		case RAID_AUTORUN:
3062 			err = 0;
3063 			autostart_arrays(arg);
3064 			goto done;
3065 #endif
3066 		default:;
3067 	}
3068 
3069 	/*
3070 	 * Commands creating/starting a new array:
3071 	 */
3072 
3073 	mddev = inode->i_bdev->bd_disk->private_data;
3074 
3075 	if (!mddev) {
3076 		BUG();
3077 		goto abort;
3078 	}
3079 
3080 
3081 	if (cmd == START_ARRAY) {
3082 		/* START_ARRAY doesn't need to lock the array as autostart_array
3083 		 * does the locking, and it could even be a different array
3084 		 */
3085 		static int cnt = 3;
3086 		if (cnt > 0 ) {
3087 			printk(KERN_WARNING
3088 			       "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3089 			       "This will not be supported beyond 2.6\n",
3090 			       current->comm, current->pid);
3091 			cnt--;
3092 		}
3093 		err = autostart_array(new_decode_dev(arg));
3094 		if (err) {
3095 			printk(KERN_WARNING "md: autostart failed!\n");
3096 			goto abort;
3097 		}
3098 		goto done;
3099 	}
3100 
3101 	err = mddev_lock(mddev);
3102 	if (err) {
3103 		printk(KERN_INFO
3104 			"md: ioctl lock interrupted, reason %d, cmd %d\n",
3105 			err, cmd);
3106 		goto abort;
3107 	}
3108 
3109 	switch (cmd)
3110 	{
3111 		case SET_ARRAY_INFO:
3112 			{
3113 				mdu_array_info_t info;
3114 				if (!arg)
3115 					memset(&info, 0, sizeof(info));
3116 				else if (copy_from_user(&info, argp, sizeof(info))) {
3117 					err = -EFAULT;
3118 					goto abort_unlock;
3119 				}
3120 				if (mddev->pers) {
3121 					err = update_array_info(mddev, &info);
3122 					if (err) {
3123 						printk(KERN_WARNING "md: couldn't update"
3124 						       " array info. %d\n", err);
3125 						goto abort_unlock;
3126 					}
3127 					goto done_unlock;
3128 				}
3129 				if (!list_empty(&mddev->disks)) {
3130 					printk(KERN_WARNING
3131 					       "md: array %s already has disks!\n",
3132 					       mdname(mddev));
3133 					err = -EBUSY;
3134 					goto abort_unlock;
3135 				}
3136 				if (mddev->raid_disks) {
3137 					printk(KERN_WARNING
3138 					       "md: array %s already initialised!\n",
3139 					       mdname(mddev));
3140 					err = -EBUSY;
3141 					goto abort_unlock;
3142 				}
3143 				err = set_array_info(mddev, &info);
3144 				if (err) {
3145 					printk(KERN_WARNING "md: couldn't set"
3146 					       " array info. %d\n", err);
3147 					goto abort_unlock;
3148 				}
3149 			}
3150 			goto done_unlock;
3151 
3152 		default:;
3153 	}
3154 
3155 	/*
3156 	 * Commands querying/configuring an existing array:
3157 	 */
3158 	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3159 	 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3160 	if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3161 			&& cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3162 		err = -ENODEV;
3163 		goto abort_unlock;
3164 	}
3165 
3166 	/*
3167 	 * Commands even a read-only array can execute:
3168 	 */
3169 	switch (cmd)
3170 	{
3171 		case GET_ARRAY_INFO:
3172 			err = get_array_info(mddev, argp);
3173 			goto done_unlock;
3174 
3175 		case GET_BITMAP_FILE:
3176 			err = get_bitmap_file(mddev, argp);
3177 			goto done_unlock;
3178 
3179 		case GET_DISK_INFO:
3180 			err = get_disk_info(mddev, argp);
3181 			goto done_unlock;
3182 
3183 		case RESTART_ARRAY_RW:
3184 			err = restart_array(mddev);
3185 			goto done_unlock;
3186 
3187 		case STOP_ARRAY:
3188 			err = do_md_stop (mddev, 0);
3189 			goto done_unlock;
3190 
3191 		case STOP_ARRAY_RO:
3192 			err = do_md_stop (mddev, 1);
3193 			goto done_unlock;
3194 
3195 	/*
3196 	 * We have a problem here : there is no easy way to give a CHS
3197 	 * virtual geometry. We currently pretend that we have a 2 heads
3198 	 * 4 sectors (with a BIG number of cylinders...). This drives
3199 	 * dosfs just mad... ;-)
3200 	 */
3201 		case HDIO_GETGEO:
3202 			if (!loc) {
3203 				err = -EINVAL;
3204 				goto abort_unlock;
3205 			}
3206 			err = put_user (2, (char __user *) &loc->heads);
3207 			if (err)
3208 				goto abort_unlock;
3209 			err = put_user (4, (char __user *) &loc->sectors);
3210 			if (err)
3211 				goto abort_unlock;
3212 			err = put_user(get_capacity(mddev->gendisk)/8,
3213 					(short __user *) &loc->cylinders);
3214 			if (err)
3215 				goto abort_unlock;
3216 			err = put_user (get_start_sect(inode->i_bdev),
3217 						(long __user *) &loc->start);
3218 			goto done_unlock;
3219 	}
3220 
3221 	/*
3222 	 * The remaining ioctls are changing the state of the
3223 	 * superblock, so we do not allow read-only arrays
3224 	 * here:
3225 	 */
3226 	if (mddev->ro) {
3227 		err = -EROFS;
3228 		goto abort_unlock;
3229 	}
3230 
3231 	switch (cmd)
3232 	{
3233 		case ADD_NEW_DISK:
3234 		{
3235 			mdu_disk_info_t info;
3236 			if (copy_from_user(&info, argp, sizeof(info)))
3237 				err = -EFAULT;
3238 			else
3239 				err = add_new_disk(mddev, &info);
3240 			goto done_unlock;
3241 		}
3242 
3243 		case HOT_REMOVE_DISK:
3244 			err = hot_remove_disk(mddev, new_decode_dev(arg));
3245 			goto done_unlock;
3246 
3247 		case HOT_ADD_DISK:
3248 			err = hot_add_disk(mddev, new_decode_dev(arg));
3249 			goto done_unlock;
3250 
3251 		case SET_DISK_FAULTY:
3252 			err = set_disk_faulty(mddev, new_decode_dev(arg));
3253 			goto done_unlock;
3254 
3255 		case RUN_ARRAY:
3256 			err = do_md_run (mddev);
3257 			goto done_unlock;
3258 
3259 		case SET_BITMAP_FILE:
3260 			err = set_bitmap_file(mddev, (int)arg);
3261 			goto done_unlock;
3262 
3263 		default:
3264 			if (_IOC_TYPE(cmd) == MD_MAJOR)
3265 				printk(KERN_WARNING "md: %s(pid %d) used"
3266 					" obsolete MD ioctl, upgrade your"
3267 					" software to use new ictls.\n",
3268 					current->comm, current->pid);
3269 			err = -EINVAL;
3270 			goto abort_unlock;
3271 	}
3272 
3273 done_unlock:
3274 abort_unlock:
3275 	mddev_unlock(mddev);
3276 
3277 	return err;
3278 done:
3279 	if (err)
3280 		MD_BUG();
3281 abort:
3282 	return err;
3283 }
3284 
3285 static int md_open(struct inode *inode, struct file *file)
3286 {
3287 	/*
3288 	 * Succeed if we can lock the mddev, which confirms that
3289 	 * it isn't being stopped right now.
3290 	 */
3291 	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3292 	int err;
3293 
3294 	if ((err = mddev_lock(mddev)))
3295 		goto out;
3296 
3297 	err = 0;
3298 	mddev_get(mddev);
3299 	mddev_unlock(mddev);
3300 
3301 	check_disk_change(inode->i_bdev);
3302  out:
3303 	return err;
3304 }
3305 
3306 static int md_release(struct inode *inode, struct file * file)
3307 {
3308  	mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3309 
3310 	if (!mddev)
3311 		BUG();
3312 	mddev_put(mddev);
3313 
3314 	return 0;
3315 }
3316 
3317 static int md_media_changed(struct gendisk *disk)
3318 {
3319 	mddev_t *mddev = disk->private_data;
3320 
3321 	return mddev->changed;
3322 }
3323 
3324 static int md_revalidate(struct gendisk *disk)
3325 {
3326 	mddev_t *mddev = disk->private_data;
3327 
3328 	mddev->changed = 0;
3329 	return 0;
3330 }
3331 static struct block_device_operations md_fops =
3332 {
3333 	.owner		= THIS_MODULE,
3334 	.open		= md_open,
3335 	.release	= md_release,
3336 	.ioctl		= md_ioctl,
3337 	.media_changed	= md_media_changed,
3338 	.revalidate_disk= md_revalidate,
3339 };
3340 
3341 static int md_thread(void * arg)
3342 {
3343 	mdk_thread_t *thread = arg;
3344 
3345 	/*
3346 	 * md_thread is a 'system-thread', it's priority should be very
3347 	 * high. We avoid resource deadlocks individually in each
3348 	 * raid personality. (RAID5 does preallocation) We also use RR and
3349 	 * the very same RT priority as kswapd, thus we will never get
3350 	 * into a priority inversion deadlock.
3351 	 *
3352 	 * we definitely have to have equal or higher priority than
3353 	 * bdflush, otherwise bdflush will deadlock if there are too
3354 	 * many dirty RAID5 blocks.
3355 	 */
3356 
3357 	allow_signal(SIGKILL);
3358 	complete(thread->event);
3359 	while (!kthread_should_stop()) {
3360 		void (*run)(mddev_t *);
3361 
3362 		wait_event_interruptible_timeout(thread->wqueue,
3363 						 test_bit(THREAD_WAKEUP, &thread->flags)
3364 						 || kthread_should_stop(),
3365 						 thread->timeout);
3366 		try_to_freeze();
3367 
3368 		clear_bit(THREAD_WAKEUP, &thread->flags);
3369 
3370 		run = thread->run;
3371 		if (run)
3372 			run(thread->mddev);
3373 	}
3374 
3375 	return 0;
3376 }
3377 
3378 void md_wakeup_thread(mdk_thread_t *thread)
3379 {
3380 	if (thread) {
3381 		dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3382 		set_bit(THREAD_WAKEUP, &thread->flags);
3383 		wake_up(&thread->wqueue);
3384 	}
3385 }
3386 
3387 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3388 				 const char *name)
3389 {
3390 	mdk_thread_t *thread;
3391 	struct completion event;
3392 
3393 	thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3394 	if (!thread)
3395 		return NULL;
3396 
3397 	memset(thread, 0, sizeof(mdk_thread_t));
3398 	init_waitqueue_head(&thread->wqueue);
3399 
3400 	init_completion(&event);
3401 	thread->event = &event;
3402 	thread->run = run;
3403 	thread->mddev = mddev;
3404 	thread->name = name;
3405 	thread->timeout = MAX_SCHEDULE_TIMEOUT;
3406 	thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3407 	if (IS_ERR(thread->tsk)) {
3408 		kfree(thread);
3409 		return NULL;
3410 	}
3411 	wait_for_completion(&event);
3412 	return thread;
3413 }
3414 
3415 void md_unregister_thread(mdk_thread_t *thread)
3416 {
3417 	dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3418 
3419 	kthread_stop(thread->tsk);
3420 	kfree(thread);
3421 }
3422 
3423 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3424 {
3425 	if (!mddev) {
3426 		MD_BUG();
3427 		return;
3428 	}
3429 
3430 	if (!rdev || rdev->faulty)
3431 		return;
3432 /*
3433 	dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3434 		mdname(mddev),
3435 		MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3436 		__builtin_return_address(0),__builtin_return_address(1),
3437 		__builtin_return_address(2),__builtin_return_address(3));
3438 */
3439 	if (!mddev->pers->error_handler)
3440 		return;
3441 	mddev->pers->error_handler(mddev,rdev);
3442 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3443 	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3444 	md_wakeup_thread(mddev->thread);
3445 }
3446 
3447 /* seq_file implementation /proc/mdstat */
3448 
3449 static void status_unused(struct seq_file *seq)
3450 {
3451 	int i = 0;
3452 	mdk_rdev_t *rdev;
3453 	struct list_head *tmp;
3454 
3455 	seq_printf(seq, "unused devices: ");
3456 
3457 	ITERATE_RDEV_PENDING(rdev,tmp) {
3458 		char b[BDEVNAME_SIZE];
3459 		i++;
3460 		seq_printf(seq, "%s ",
3461 			      bdevname(rdev->bdev,b));
3462 	}
3463 	if (!i)
3464 		seq_printf(seq, "<none>");
3465 
3466 	seq_printf(seq, "\n");
3467 }
3468 
3469 
3470 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3471 {
3472 	unsigned long max_blocks, resync, res, dt, db, rt;
3473 
3474 	resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3475 
3476 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3477 		max_blocks = mddev->resync_max_sectors >> 1;
3478 	else
3479 		max_blocks = mddev->size;
3480 
3481 	/*
3482 	 * Should not happen.
3483 	 */
3484 	if (!max_blocks) {
3485 		MD_BUG();
3486 		return;
3487 	}
3488 	res = (resync/1024)*1000/(max_blocks/1024 + 1);
3489 	{
3490 		int i, x = res/50, y = 20-x;
3491 		seq_printf(seq, "[");
3492 		for (i = 0; i < x; i++)
3493 			seq_printf(seq, "=");
3494 		seq_printf(seq, ">");
3495 		for (i = 0; i < y; i++)
3496 			seq_printf(seq, ".");
3497 		seq_printf(seq, "] ");
3498 	}
3499 	seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3500 		      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3501 		       "resync" : "recovery"),
3502 		      res/10, res % 10, resync, max_blocks);
3503 
3504 	/*
3505 	 * We do not want to overflow, so the order of operands and
3506 	 * the * 100 / 100 trick are important. We do a +1 to be
3507 	 * safe against division by zero. We only estimate anyway.
3508 	 *
3509 	 * dt: time from mark until now
3510 	 * db: blocks written from mark until now
3511 	 * rt: remaining time
3512 	 */
3513 	dt = ((jiffies - mddev->resync_mark) / HZ);
3514 	if (!dt) dt++;
3515 	db = resync - (mddev->resync_mark_cnt/2);
3516 	rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3517 
3518 	seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3519 
3520 	seq_printf(seq, " speed=%ldK/sec", db/dt);
3521 }
3522 
3523 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3524 {
3525 	struct list_head *tmp;
3526 	loff_t l = *pos;
3527 	mddev_t *mddev;
3528 
3529 	if (l >= 0x10000)
3530 		return NULL;
3531 	if (!l--)
3532 		/* header */
3533 		return (void*)1;
3534 
3535 	spin_lock(&all_mddevs_lock);
3536 	list_for_each(tmp,&all_mddevs)
3537 		if (!l--) {
3538 			mddev = list_entry(tmp, mddev_t, all_mddevs);
3539 			mddev_get(mddev);
3540 			spin_unlock(&all_mddevs_lock);
3541 			return mddev;
3542 		}
3543 	spin_unlock(&all_mddevs_lock);
3544 	if (!l--)
3545 		return (void*)2;/* tail */
3546 	return NULL;
3547 }
3548 
3549 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3550 {
3551 	struct list_head *tmp;
3552 	mddev_t *next_mddev, *mddev = v;
3553 
3554 	++*pos;
3555 	if (v == (void*)2)
3556 		return NULL;
3557 
3558 	spin_lock(&all_mddevs_lock);
3559 	if (v == (void*)1)
3560 		tmp = all_mddevs.next;
3561 	else
3562 		tmp = mddev->all_mddevs.next;
3563 	if (tmp != &all_mddevs)
3564 		next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3565 	else {
3566 		next_mddev = (void*)2;
3567 		*pos = 0x10000;
3568 	}
3569 	spin_unlock(&all_mddevs_lock);
3570 
3571 	if (v != (void*)1)
3572 		mddev_put(mddev);
3573 	return next_mddev;
3574 
3575 }
3576 
3577 static void md_seq_stop(struct seq_file *seq, void *v)
3578 {
3579 	mddev_t *mddev = v;
3580 
3581 	if (mddev && v != (void*)1 && v != (void*)2)
3582 		mddev_put(mddev);
3583 }
3584 
3585 static int md_seq_show(struct seq_file *seq, void *v)
3586 {
3587 	mddev_t *mddev = v;
3588 	sector_t size;
3589 	struct list_head *tmp2;
3590 	mdk_rdev_t *rdev;
3591 	int i;
3592 	struct bitmap *bitmap;
3593 
3594 	if (v == (void*)1) {
3595 		seq_printf(seq, "Personalities : ");
3596 		spin_lock(&pers_lock);
3597 		for (i = 0; i < MAX_PERSONALITY; i++)
3598 			if (pers[i])
3599 				seq_printf(seq, "[%s] ", pers[i]->name);
3600 
3601 		spin_unlock(&pers_lock);
3602 		seq_printf(seq, "\n");
3603 		return 0;
3604 	}
3605 	if (v == (void*)2) {
3606 		status_unused(seq);
3607 		return 0;
3608 	}
3609 
3610 	if (mddev_lock(mddev)!=0)
3611 		return -EINTR;
3612 	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3613 		seq_printf(seq, "%s : %sactive", mdname(mddev),
3614 						mddev->pers ? "" : "in");
3615 		if (mddev->pers) {
3616 			if (mddev->ro)
3617 				seq_printf(seq, " (read-only)");
3618 			seq_printf(seq, " %s", mddev->pers->name);
3619 		}
3620 
3621 		size = 0;
3622 		ITERATE_RDEV(mddev,rdev,tmp2) {
3623 			char b[BDEVNAME_SIZE];
3624 			seq_printf(seq, " %s[%d]",
3625 				bdevname(rdev->bdev,b), rdev->desc_nr);
3626 			if (test_bit(WriteMostly, &rdev->flags))
3627 				seq_printf(seq, "(W)");
3628 			if (rdev->faulty) {
3629 				seq_printf(seq, "(F)");
3630 				continue;
3631 			} else if (rdev->raid_disk < 0)
3632 				seq_printf(seq, "(S)"); /* spare */
3633 			size += rdev->size;
3634 		}
3635 
3636 		if (!list_empty(&mddev->disks)) {
3637 			if (mddev->pers)
3638 				seq_printf(seq, "\n      %llu blocks",
3639 					(unsigned long long)mddev->array_size);
3640 			else
3641 				seq_printf(seq, "\n      %llu blocks",
3642 					(unsigned long long)size);
3643 		}
3644 		if (mddev->persistent) {
3645 			if (mddev->major_version != 0 ||
3646 			    mddev->minor_version != 90) {
3647 				seq_printf(seq," super %d.%d",
3648 					   mddev->major_version,
3649 					   mddev->minor_version);
3650 			}
3651 		} else
3652 			seq_printf(seq, " super non-persistent");
3653 
3654 		if (mddev->pers) {
3655 			mddev->pers->status (seq, mddev);
3656 	 		seq_printf(seq, "\n      ");
3657 			if (mddev->curr_resync > 2) {
3658 				status_resync (seq, mddev);
3659 				seq_printf(seq, "\n      ");
3660 			} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3661 				seq_printf(seq, "	resync=DELAYED\n      ");
3662 		} else
3663 			seq_printf(seq, "\n       ");
3664 
3665 		if ((bitmap = mddev->bitmap)) {
3666 			unsigned long chunk_kb;
3667 			unsigned long flags;
3668 			spin_lock_irqsave(&bitmap->lock, flags);
3669 			chunk_kb = bitmap->chunksize >> 10;
3670 			seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3671 				"%lu%s chunk",
3672 				bitmap->pages - bitmap->missing_pages,
3673 				bitmap->pages,
3674 				(bitmap->pages - bitmap->missing_pages)
3675 					<< (PAGE_SHIFT - 10),
3676 				chunk_kb ? chunk_kb : bitmap->chunksize,
3677 				chunk_kb ? "KB" : "B");
3678 			if (bitmap->file) {
3679 				seq_printf(seq, ", file: ");
3680 				seq_path(seq, bitmap->file->f_vfsmnt,
3681 					 bitmap->file->f_dentry," \t\n");
3682 			}
3683 
3684 			seq_printf(seq, "\n");
3685 			spin_unlock_irqrestore(&bitmap->lock, flags);
3686 		}
3687 
3688 		seq_printf(seq, "\n");
3689 	}
3690 	mddev_unlock(mddev);
3691 
3692 	return 0;
3693 }
3694 
3695 static struct seq_operations md_seq_ops = {
3696 	.start  = md_seq_start,
3697 	.next   = md_seq_next,
3698 	.stop   = md_seq_stop,
3699 	.show   = md_seq_show,
3700 };
3701 
3702 static int md_seq_open(struct inode *inode, struct file *file)
3703 {
3704 	int error;
3705 
3706 	error = seq_open(file, &md_seq_ops);
3707 	return error;
3708 }
3709 
3710 static struct file_operations md_seq_fops = {
3711 	.open           = md_seq_open,
3712 	.read           = seq_read,
3713 	.llseek         = seq_lseek,
3714 	.release	= seq_release,
3715 };
3716 
3717 int register_md_personality(int pnum, mdk_personality_t *p)
3718 {
3719 	if (pnum >= MAX_PERSONALITY) {
3720 		printk(KERN_ERR
3721 		       "md: tried to install personality %s as nr %d, but max is %lu\n",
3722 		       p->name, pnum, MAX_PERSONALITY-1);
3723 		return -EINVAL;
3724 	}
3725 
3726 	spin_lock(&pers_lock);
3727 	if (pers[pnum]) {
3728 		spin_unlock(&pers_lock);
3729 		return -EBUSY;
3730 	}
3731 
3732 	pers[pnum] = p;
3733 	printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3734 	spin_unlock(&pers_lock);
3735 	return 0;
3736 }
3737 
3738 int unregister_md_personality(int pnum)
3739 {
3740 	if (pnum >= MAX_PERSONALITY)
3741 		return -EINVAL;
3742 
3743 	printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3744 	spin_lock(&pers_lock);
3745 	pers[pnum] = NULL;
3746 	spin_unlock(&pers_lock);
3747 	return 0;
3748 }
3749 
3750 static int is_mddev_idle(mddev_t *mddev)
3751 {
3752 	mdk_rdev_t * rdev;
3753 	struct list_head *tmp;
3754 	int idle;
3755 	unsigned long curr_events;
3756 
3757 	idle = 1;
3758 	ITERATE_RDEV(mddev,rdev,tmp) {
3759 		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3760 		curr_events = disk_stat_read(disk, sectors[0]) +
3761 				disk_stat_read(disk, sectors[1]) -
3762 				atomic_read(&disk->sync_io);
3763 		/* Allow some slack between valud of curr_events and last_events,
3764 		 * as there are some uninteresting races.
3765 		 * Note: the following is an unsigned comparison.
3766 		 */
3767 		if ((curr_events - rdev->last_events + 32) > 64) {
3768 			rdev->last_events = curr_events;
3769 			idle = 0;
3770 		}
3771 	}
3772 	return idle;
3773 }
3774 
3775 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3776 {
3777 	/* another "blocks" (512byte) blocks have been synced */
3778 	atomic_sub(blocks, &mddev->recovery_active);
3779 	wake_up(&mddev->recovery_wait);
3780 	if (!ok) {
3781 		set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3782 		md_wakeup_thread(mddev->thread);
3783 		// stop recovery, signal do_sync ....
3784 	}
3785 }
3786 
3787 
3788 /* md_write_start(mddev, bi)
3789  * If we need to update some array metadata (e.g. 'active' flag
3790  * in superblock) before writing, schedule a superblock update
3791  * and wait for it to complete.
3792  */
3793 void md_write_start(mddev_t *mddev, struct bio *bi)
3794 {
3795 	if (bio_data_dir(bi) != WRITE)
3796 		return;
3797 
3798 	atomic_inc(&mddev->writes_pending);
3799 	if (mddev->in_sync) {
3800 		spin_lock(&mddev->write_lock);
3801 		if (mddev->in_sync) {
3802 			mddev->in_sync = 0;
3803 			mddev->sb_dirty = 1;
3804 			md_wakeup_thread(mddev->thread);
3805 		}
3806 		spin_unlock(&mddev->write_lock);
3807 	}
3808 	wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3809 }
3810 
3811 void md_write_end(mddev_t *mddev)
3812 {
3813 	if (atomic_dec_and_test(&mddev->writes_pending)) {
3814 		if (mddev->safemode == 2)
3815 			md_wakeup_thread(mddev->thread);
3816 		else
3817 			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3818 	}
3819 }
3820 
3821 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3822 
3823 #define SYNC_MARKS	10
3824 #define	SYNC_MARK_STEP	(3*HZ)
3825 static void md_do_sync(mddev_t *mddev)
3826 {
3827 	mddev_t *mddev2;
3828 	unsigned int currspeed = 0,
3829 		 window;
3830 	sector_t max_sectors,j, io_sectors;
3831 	unsigned long mark[SYNC_MARKS];
3832 	sector_t mark_cnt[SYNC_MARKS];
3833 	int last_mark,m;
3834 	struct list_head *tmp;
3835 	sector_t last_check;
3836 	int skipped = 0;
3837 
3838 	/* just incase thread restarts... */
3839 	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3840 		return;
3841 
3842 	/* we overload curr_resync somewhat here.
3843 	 * 0 == not engaged in resync at all
3844 	 * 2 == checking that there is no conflict with another sync
3845 	 * 1 == like 2, but have yielded to allow conflicting resync to
3846 	 *		commense
3847 	 * other == active in resync - this many blocks
3848 	 *
3849 	 * Before starting a resync we must have set curr_resync to
3850 	 * 2, and then checked that every "conflicting" array has curr_resync
3851 	 * less than ours.  When we find one that is the same or higher
3852 	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3853 	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3854 	 * This will mean we have to start checking from the beginning again.
3855 	 *
3856 	 */
3857 
3858 	do {
3859 		mddev->curr_resync = 2;
3860 
3861 	try_again:
3862 		if (signal_pending(current) ||
3863 		    kthread_should_stop()) {
3864 			flush_signals(current);
3865 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3866 			goto skip;
3867 		}
3868 		ITERATE_MDDEV(mddev2,tmp) {
3869 			if (mddev2 == mddev)
3870 				continue;
3871 			if (mddev2->curr_resync &&
3872 			    match_mddev_units(mddev,mddev2)) {
3873 				DEFINE_WAIT(wq);
3874 				if (mddev < mddev2 && mddev->curr_resync == 2) {
3875 					/* arbitrarily yield */
3876 					mddev->curr_resync = 1;
3877 					wake_up(&resync_wait);
3878 				}
3879 				if (mddev > mddev2 && mddev->curr_resync == 1)
3880 					/* no need to wait here, we can wait the next
3881 					 * time 'round when curr_resync == 2
3882 					 */
3883 					continue;
3884 				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3885 				if (!signal_pending(current) &&
3886 				    !kthread_should_stop() &&
3887 				    mddev2->curr_resync >= mddev->curr_resync) {
3888 					printk(KERN_INFO "md: delaying resync of %s"
3889 					       " until %s has finished resync (they"
3890 					       " share one or more physical units)\n",
3891 					       mdname(mddev), mdname(mddev2));
3892 					mddev_put(mddev2);
3893 					schedule();
3894 					finish_wait(&resync_wait, &wq);
3895 					goto try_again;
3896 				}
3897 				finish_wait(&resync_wait, &wq);
3898 			}
3899 		}
3900 	} while (mddev->curr_resync < 2);
3901 
3902 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3903 		/* resync follows the size requested by the personality,
3904 		 * which defaults to physical size, but can be virtual size
3905 		 */
3906 		max_sectors = mddev->resync_max_sectors;
3907 		mddev->resync_mismatches = 0;
3908 	} else
3909 		/* recovery follows the physical size of devices */
3910 		max_sectors = mddev->size << 1;
3911 
3912 	printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3913 	printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3914 		" %d KB/sec/disc.\n", sysctl_speed_limit_min);
3915 	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3916 	       "(but not more than %d KB/sec) for reconstruction.\n",
3917 	       sysctl_speed_limit_max);
3918 
3919 	is_mddev_idle(mddev); /* this also initializes IO event counters */
3920 	/* we don't use the checkpoint if there's a bitmap */
3921 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3922 	    && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3923 		j = mddev->recovery_cp;
3924 	else
3925 		j = 0;
3926 	io_sectors = 0;
3927 	for (m = 0; m < SYNC_MARKS; m++) {
3928 		mark[m] = jiffies;
3929 		mark_cnt[m] = io_sectors;
3930 	}
3931 	last_mark = 0;
3932 	mddev->resync_mark = mark[last_mark];
3933 	mddev->resync_mark_cnt = mark_cnt[last_mark];
3934 
3935 	/*
3936 	 * Tune reconstruction:
3937 	 */
3938 	window = 32*(PAGE_SIZE/512);
3939 	printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3940 		window/2,(unsigned long long) max_sectors/2);
3941 
3942 	atomic_set(&mddev->recovery_active, 0);
3943 	init_waitqueue_head(&mddev->recovery_wait);
3944 	last_check = 0;
3945 
3946 	if (j>2) {
3947 		printk(KERN_INFO
3948 			"md: resuming recovery of %s from checkpoint.\n",
3949 			mdname(mddev));
3950 		mddev->curr_resync = j;
3951 	}
3952 
3953 	while (j < max_sectors) {
3954 		sector_t sectors;
3955 
3956 		skipped = 0;
3957 		sectors = mddev->pers->sync_request(mddev, j, &skipped,
3958 					    currspeed < sysctl_speed_limit_min);
3959 		if (sectors == 0) {
3960 			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3961 			goto out;
3962 		}
3963 
3964 		if (!skipped) { /* actual IO requested */
3965 			io_sectors += sectors;
3966 			atomic_add(sectors, &mddev->recovery_active);
3967 		}
3968 
3969 		j += sectors;
3970 		if (j>1) mddev->curr_resync = j;
3971 
3972 
3973 		if (last_check + window > io_sectors || j == max_sectors)
3974 			continue;
3975 
3976 		last_check = io_sectors;
3977 
3978 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3979 		    test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3980 			break;
3981 
3982 	repeat:
3983 		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3984 			/* step marks */
3985 			int next = (last_mark+1) % SYNC_MARKS;
3986 
3987 			mddev->resync_mark = mark[next];
3988 			mddev->resync_mark_cnt = mark_cnt[next];
3989 			mark[next] = jiffies;
3990 			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3991 			last_mark = next;
3992 		}
3993 
3994 
3995 		if (signal_pending(current) || kthread_should_stop()) {
3996 			/*
3997 			 * got a signal, exit.
3998 			 */
3999 			printk(KERN_INFO
4000 				"md: md_do_sync() got signal ... exiting\n");
4001 			flush_signals(current);
4002 			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4003 			goto out;
4004 		}
4005 
4006 		/*
4007 		 * this loop exits only if either when we are slower than
4008 		 * the 'hard' speed limit, or the system was IO-idle for
4009 		 * a jiffy.
4010 		 * the system might be non-idle CPU-wise, but we only care
4011 		 * about not overloading the IO subsystem. (things like an
4012 		 * e2fsck being done on the RAID array should execute fast)
4013 		 */
4014 		mddev->queue->unplug_fn(mddev->queue);
4015 		cond_resched();
4016 
4017 		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4018 			/((jiffies-mddev->resync_mark)/HZ +1) +1;
4019 
4020 		if (currspeed > sysctl_speed_limit_min) {
4021 			if ((currspeed > sysctl_speed_limit_max) ||
4022 					!is_mddev_idle(mddev)) {
4023 				msleep_interruptible(250);
4024 				goto repeat;
4025 			}
4026 		}
4027 	}
4028 	printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4029 	/*
4030 	 * this also signals 'finished resyncing' to md_stop
4031 	 */
4032  out:
4033 	mddev->queue->unplug_fn(mddev->queue);
4034 
4035 	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4036 
4037 	/* tell personality that we are finished */
4038 	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4039 
4040 	if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4041 	    mddev->curr_resync > 2 &&
4042 	    mddev->curr_resync >= mddev->recovery_cp) {
4043 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4044 			printk(KERN_INFO
4045 				"md: checkpointing recovery of %s.\n",
4046 				mdname(mddev));
4047 			mddev->recovery_cp = mddev->curr_resync;
4048 		} else
4049 			mddev->recovery_cp = MaxSector;
4050 	}
4051 
4052  skip:
4053 	mddev->curr_resync = 0;
4054 	wake_up(&resync_wait);
4055 	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4056 	md_wakeup_thread(mddev->thread);
4057 }
4058 
4059 
4060 /*
4061  * This routine is regularly called by all per-raid-array threads to
4062  * deal with generic issues like resync and super-block update.
4063  * Raid personalities that don't have a thread (linear/raid0) do not
4064  * need this as they never do any recovery or update the superblock.
4065  *
4066  * It does not do any resync itself, but rather "forks" off other threads
4067  * to do that as needed.
4068  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4069  * "->recovery" and create a thread at ->sync_thread.
4070  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4071  * and wakeups up this thread which will reap the thread and finish up.
4072  * This thread also removes any faulty devices (with nr_pending == 0).
4073  *
4074  * The overall approach is:
4075  *  1/ if the superblock needs updating, update it.
4076  *  2/ If a recovery thread is running, don't do anything else.
4077  *  3/ If recovery has finished, clean up, possibly marking spares active.
4078  *  4/ If there are any faulty devices, remove them.
4079  *  5/ If array is degraded, try to add spares devices
4080  *  6/ If array has spares or is not in-sync, start a resync thread.
4081  */
4082 void md_check_recovery(mddev_t *mddev)
4083 {
4084 	mdk_rdev_t *rdev;
4085 	struct list_head *rtmp;
4086 
4087 
4088 	if (mddev->bitmap)
4089 		bitmap_daemon_work(mddev->bitmap);
4090 
4091 	if (mddev->ro)
4092 		return;
4093 
4094 	if (signal_pending(current)) {
4095 		if (mddev->pers->sync_request) {
4096 			printk(KERN_INFO "md: %s in immediate safe mode\n",
4097 			       mdname(mddev));
4098 			mddev->safemode = 2;
4099 		}
4100 		flush_signals(current);
4101 	}
4102 
4103 	if ( ! (
4104 		mddev->sb_dirty ||
4105 		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4106 		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4107 		(mddev->safemode == 1) ||
4108 		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4109 		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4110 		))
4111 		return;
4112 
4113 	if (mddev_trylock(mddev)==0) {
4114 		int spares =0;
4115 
4116 		spin_lock(&mddev->write_lock);
4117 		if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4118 		    !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4119 			mddev->in_sync = 1;
4120 			mddev->sb_dirty = 1;
4121 		}
4122 		if (mddev->safemode == 1)
4123 			mddev->safemode = 0;
4124 		spin_unlock(&mddev->write_lock);
4125 
4126 		if (mddev->sb_dirty)
4127 			md_update_sb(mddev);
4128 
4129 
4130 		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4131 		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4132 			/* resync/recovery still happening */
4133 			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4134 			goto unlock;
4135 		}
4136 		if (mddev->sync_thread) {
4137 			/* resync has finished, collect result */
4138 			md_unregister_thread(mddev->sync_thread);
4139 			mddev->sync_thread = NULL;
4140 			if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4141 			    !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4142 				/* success...*/
4143 				/* activate any spares */
4144 				mddev->pers->spare_active(mddev);
4145 			}
4146 			md_update_sb(mddev);
4147 
4148 			/* if array is no-longer degraded, then any saved_raid_disk
4149 			 * information must be scrapped
4150 			 */
4151 			if (!mddev->degraded)
4152 				ITERATE_RDEV(mddev,rdev,rtmp)
4153 					rdev->saved_raid_disk = -1;
4154 
4155 			mddev->recovery = 0;
4156 			/* flag recovery needed just to double check */
4157 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4158 			goto unlock;
4159 		}
4160 		/* Clear some bits that don't mean anything, but
4161 		 * might be left set
4162 		 */
4163 		clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4164 		clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4165 		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4166 		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4167 
4168 		/* no recovery is running.
4169 		 * remove any failed drives, then
4170 		 * add spares if possible.
4171 		 * Spare are also removed and re-added, to allow
4172 		 * the personality to fail the re-add.
4173 		 */
4174 		ITERATE_RDEV(mddev,rdev,rtmp)
4175 			if (rdev->raid_disk >= 0 &&
4176 			    (rdev->faulty || ! rdev->in_sync) &&
4177 			    atomic_read(&rdev->nr_pending)==0) {
4178 				if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4179 					char nm[20];
4180 					sprintf(nm,"rd%d", rdev->raid_disk);
4181 					sysfs_remove_link(&mddev->kobj, nm);
4182 					rdev->raid_disk = -1;
4183 				}
4184 			}
4185 
4186 		if (mddev->degraded) {
4187 			ITERATE_RDEV(mddev,rdev,rtmp)
4188 				if (rdev->raid_disk < 0
4189 				    && !rdev->faulty) {
4190 					if (mddev->pers->hot_add_disk(mddev,rdev)) {
4191 						char nm[20];
4192 						sprintf(nm, "rd%d", rdev->raid_disk);
4193 						sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4194 						spares++;
4195 					} else
4196 						break;
4197 				}
4198 		}
4199 
4200 		if (spares) {
4201 			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4202 			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4203 		} else if (mddev->recovery_cp < MaxSector) {
4204 			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4205 		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4206 			/* nothing to be done ... */
4207 			goto unlock;
4208 
4209 		if (mddev->pers->sync_request) {
4210 			set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4211 			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4212 				/* We are adding a device or devices to an array
4213 				 * which has the bitmap stored on all devices.
4214 				 * So make sure all bitmap pages get written
4215 				 */
4216 				bitmap_write_all(mddev->bitmap);
4217 			}
4218 			mddev->sync_thread = md_register_thread(md_do_sync,
4219 								mddev,
4220 								"%s_resync");
4221 			if (!mddev->sync_thread) {
4222 				printk(KERN_ERR "%s: could not start resync"
4223 					" thread...\n",
4224 					mdname(mddev));
4225 				/* leave the spares where they are, it shouldn't hurt */
4226 				mddev->recovery = 0;
4227 			} else {
4228 				md_wakeup_thread(mddev->sync_thread);
4229 			}
4230 		}
4231 	unlock:
4232 		mddev_unlock(mddev);
4233 	}
4234 }
4235 
4236 static int md_notify_reboot(struct notifier_block *this,
4237 			    unsigned long code, void *x)
4238 {
4239 	struct list_head *tmp;
4240 	mddev_t *mddev;
4241 
4242 	if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4243 
4244 		printk(KERN_INFO "md: stopping all md devices.\n");
4245 
4246 		ITERATE_MDDEV(mddev,tmp)
4247 			if (mddev_trylock(mddev)==0)
4248 				do_md_stop (mddev, 1);
4249 		/*
4250 		 * certain more exotic SCSI devices are known to be
4251 		 * volatile wrt too early system reboots. While the
4252 		 * right place to handle this issue is the given
4253 		 * driver, we do want to have a safe RAID driver ...
4254 		 */
4255 		mdelay(1000*1);
4256 	}
4257 	return NOTIFY_DONE;
4258 }
4259 
4260 static struct notifier_block md_notifier = {
4261 	.notifier_call	= md_notify_reboot,
4262 	.next		= NULL,
4263 	.priority	= INT_MAX, /* before any real devices */
4264 };
4265 
4266 static void md_geninit(void)
4267 {
4268 	struct proc_dir_entry *p;
4269 
4270 	dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4271 
4272 	p = create_proc_entry("mdstat", S_IRUGO, NULL);
4273 	if (p)
4274 		p->proc_fops = &md_seq_fops;
4275 }
4276 
4277 static int __init md_init(void)
4278 {
4279 	int minor;
4280 
4281 	printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4282 			" MD_SB_DISKS=%d\n",
4283 			MD_MAJOR_VERSION, MD_MINOR_VERSION,
4284 			MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4285 	printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
4286 			BITMAP_MINOR);
4287 
4288 	if (register_blkdev(MAJOR_NR, "md"))
4289 		return -1;
4290 	if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4291 		unregister_blkdev(MAJOR_NR, "md");
4292 		return -1;
4293 	}
4294 	devfs_mk_dir("md");
4295 	blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4296 				md_probe, NULL, NULL);
4297 	blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4298 			    md_probe, NULL, NULL);
4299 
4300 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4301 		devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4302 				S_IFBLK|S_IRUSR|S_IWUSR,
4303 				"md/%d", minor);
4304 
4305 	for (minor=0; minor < MAX_MD_DEVS; ++minor)
4306 		devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4307 			      S_IFBLK|S_IRUSR|S_IWUSR,
4308 			      "md/mdp%d", minor);
4309 
4310 
4311 	register_reboot_notifier(&md_notifier);
4312 	raid_table_header = register_sysctl_table(raid_root_table, 1);
4313 
4314 	md_geninit();
4315 	return (0);
4316 }
4317 
4318 
4319 #ifndef MODULE
4320 
4321 /*
4322  * Searches all registered partitions for autorun RAID arrays
4323  * at boot time.
4324  */
4325 static dev_t detected_devices[128];
4326 static int dev_cnt;
4327 
4328 void md_autodetect_dev(dev_t dev)
4329 {
4330 	if (dev_cnt >= 0 && dev_cnt < 127)
4331 		detected_devices[dev_cnt++] = dev;
4332 }
4333 
4334 
4335 static void autostart_arrays(int part)
4336 {
4337 	mdk_rdev_t *rdev;
4338 	int i;
4339 
4340 	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4341 
4342 	for (i = 0; i < dev_cnt; i++) {
4343 		dev_t dev = detected_devices[i];
4344 
4345 		rdev = md_import_device(dev,0, 0);
4346 		if (IS_ERR(rdev))
4347 			continue;
4348 
4349 		if (rdev->faulty) {
4350 			MD_BUG();
4351 			continue;
4352 		}
4353 		list_add(&rdev->same_set, &pending_raid_disks);
4354 	}
4355 	dev_cnt = 0;
4356 
4357 	autorun_devices(part);
4358 }
4359 
4360 #endif
4361 
4362 static __exit void md_exit(void)
4363 {
4364 	mddev_t *mddev;
4365 	struct list_head *tmp;
4366 	int i;
4367 	blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4368 	blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4369 	for (i=0; i < MAX_MD_DEVS; i++)
4370 		devfs_remove("md/%d", i);
4371 	for (i=0; i < MAX_MD_DEVS; i++)
4372 		devfs_remove("md/d%d", i);
4373 
4374 	devfs_remove("md");
4375 
4376 	unregister_blkdev(MAJOR_NR,"md");
4377 	unregister_blkdev(mdp_major, "mdp");
4378 	unregister_reboot_notifier(&md_notifier);
4379 	unregister_sysctl_table(raid_table_header);
4380 	remove_proc_entry("mdstat", NULL);
4381 	ITERATE_MDDEV(mddev,tmp) {
4382 		struct gendisk *disk = mddev->gendisk;
4383 		if (!disk)
4384 			continue;
4385 		export_array(mddev);
4386 		del_gendisk(disk);
4387 		put_disk(disk);
4388 		mddev->gendisk = NULL;
4389 		mddev_put(mddev);
4390 	}
4391 }
4392 
4393 module_init(md_init)
4394 module_exit(md_exit)
4395 
4396 EXPORT_SYMBOL(register_md_personality);
4397 EXPORT_SYMBOL(unregister_md_personality);
4398 EXPORT_SYMBOL(md_error);
4399 EXPORT_SYMBOL(md_done_sync);
4400 EXPORT_SYMBOL(md_write_start);
4401 EXPORT_SYMBOL(md_write_end);
4402 EXPORT_SYMBOL(md_register_thread);
4403 EXPORT_SYMBOL(md_unregister_thread);
4404 EXPORT_SYMBOL(md_wakeup_thread);
4405 EXPORT_SYMBOL(md_print_devices);
4406 EXPORT_SYMBOL(md_check_recovery);
4407 MODULE_LICENSE("GPL");
4408 MODULE_ALIAS("md");
4409 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
4410