1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 md.c : Multiple Devices driver for Linux 4 Copyright (C) 1998, 1999, 2000 Ingo Molnar 5 6 completely rewritten, based on the MD driver code from Marc Zyngier 7 8 Changes: 9 10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar 11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com> 12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net> 13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su> 14 - kmod support by: Cyrus Durgin 15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com> 16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au> 17 18 - lots of fixes and improvements to the RAID1/RAID5 and generic 19 RAID code (such as request based resynchronization): 20 21 Neil Brown <neilb@cse.unsw.edu.au>. 22 23 - persistent bitmap code 24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc. 25 26 27 Errors, Warnings, etc. 28 Please use: 29 pr_crit() for error conditions that risk data loss 30 pr_err() for error conditions that are unexpected, like an IO error 31 or internal inconsistency 32 pr_warn() for error conditions that could have been predicated, like 33 adding a device to an array when it has incompatible metadata 34 pr_info() for every interesting, very rare events, like an array starting 35 or stopping, or resync starting or stopping 36 pr_debug() for everything else. 37 38 */ 39 40 #include <linux/sched/mm.h> 41 #include <linux/sched/signal.h> 42 #include <linux/kthread.h> 43 #include <linux/blkdev.h> 44 #include <linux/blk-integrity.h> 45 #include <linux/badblocks.h> 46 #include <linux/sysctl.h> 47 #include <linux/seq_file.h> 48 #include <linux/fs.h> 49 #include <linux/poll.h> 50 #include <linux/ctype.h> 51 #include <linux/string.h> 52 #include <linux/hdreg.h> 53 #include <linux/proc_fs.h> 54 #include <linux/random.h> 55 #include <linux/major.h> 56 #include <linux/module.h> 57 #include <linux/reboot.h> 58 #include <linux/file.h> 59 #include <linux/compat.h> 60 #include <linux/delay.h> 61 #include <linux/raid/md_p.h> 62 #include <linux/raid/md_u.h> 63 #include <linux/raid/detect.h> 64 #include <linux/slab.h> 65 #include <linux/percpu-refcount.h> 66 #include <linux/part_stat.h> 67 68 #include <trace/events/block.h> 69 #include "md.h" 70 #include "md-bitmap.h" 71 #include "md-cluster.h" 72 73 /* pers_list is a list of registered personalities protected by pers_lock. */ 74 static LIST_HEAD(pers_list); 75 static DEFINE_SPINLOCK(pers_lock); 76 77 static const struct kobj_type md_ktype; 78 79 struct md_cluster_operations *md_cluster_ops; 80 EXPORT_SYMBOL(md_cluster_ops); 81 static struct module *md_cluster_mod; 82 83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait); 84 static struct workqueue_struct *md_wq; 85 static struct workqueue_struct *md_misc_wq; 86 struct workqueue_struct *md_bitmap_wq; 87 88 static int remove_and_add_spares(struct mddev *mddev, 89 struct md_rdev *this); 90 static void mddev_detach(struct mddev *mddev); 91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev); 92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread); 93 94 /* 95 * Default number of read corrections we'll attempt on an rdev 96 * before ejecting it from the array. We divide the read error 97 * count by 2 for every hour elapsed between read errors. 98 */ 99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20 100 /* Default safemode delay: 200 msec */ 101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1) 102 /* 103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit' 104 * is 1000 KB/sec, so the extra system load does not show up that much. 105 * Increase it if you want to have more _guaranteed_ speed. Note that 106 * the RAID driver will use the maximum available bandwidth if the IO 107 * subsystem is idle. There is also an 'absolute maximum' reconstruction 108 * speed limit - in case reconstruction slows down your system despite 109 * idle IO detection. 110 * 111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max. 112 * or /sys/block/mdX/md/sync_speed_{min,max} 113 */ 114 115 static int sysctl_speed_limit_min = 1000; 116 static int sysctl_speed_limit_max = 200000; 117 static inline int speed_min(struct mddev *mddev) 118 { 119 return mddev->sync_speed_min ? 120 mddev->sync_speed_min : sysctl_speed_limit_min; 121 } 122 123 static inline int speed_max(struct mddev *mddev) 124 { 125 return mddev->sync_speed_max ? 126 mddev->sync_speed_max : sysctl_speed_limit_max; 127 } 128 129 static void rdev_uninit_serial(struct md_rdev *rdev) 130 { 131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags)) 132 return; 133 134 kvfree(rdev->serial); 135 rdev->serial = NULL; 136 } 137 138 static void rdevs_uninit_serial(struct mddev *mddev) 139 { 140 struct md_rdev *rdev; 141 142 rdev_for_each(rdev, mddev) 143 rdev_uninit_serial(rdev); 144 } 145 146 static int rdev_init_serial(struct md_rdev *rdev) 147 { 148 /* serial_nums equals with BARRIER_BUCKETS_NR */ 149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t)))); 150 struct serial_in_rdev *serial = NULL; 151 152 if (test_bit(CollisionCheck, &rdev->flags)) 153 return 0; 154 155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums, 156 GFP_KERNEL); 157 if (!serial) 158 return -ENOMEM; 159 160 for (i = 0; i < serial_nums; i++) { 161 struct serial_in_rdev *serial_tmp = &serial[i]; 162 163 spin_lock_init(&serial_tmp->serial_lock); 164 serial_tmp->serial_rb = RB_ROOT_CACHED; 165 init_waitqueue_head(&serial_tmp->serial_io_wait); 166 } 167 168 rdev->serial = serial; 169 set_bit(CollisionCheck, &rdev->flags); 170 171 return 0; 172 } 173 174 static int rdevs_init_serial(struct mddev *mddev) 175 { 176 struct md_rdev *rdev; 177 int ret = 0; 178 179 rdev_for_each(rdev, mddev) { 180 ret = rdev_init_serial(rdev); 181 if (ret) 182 break; 183 } 184 185 /* Free all resources if pool is not existed */ 186 if (ret && !mddev->serial_info_pool) 187 rdevs_uninit_serial(mddev); 188 189 return ret; 190 } 191 192 /* 193 * rdev needs to enable serial stuffs if it meets the conditions: 194 * 1. it is multi-queue device flaged with writemostly. 195 * 2. the write-behind mode is enabled. 196 */ 197 static int rdev_need_serial(struct md_rdev *rdev) 198 { 199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 && 200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 && 201 test_bit(WriteMostly, &rdev->flags)); 202 } 203 204 /* 205 * Init resource for rdev(s), then create serial_info_pool if: 206 * 1. rdev is the first device which return true from rdev_enable_serial. 207 * 2. rdev is NULL, means we want to enable serialization for all rdevs. 208 */ 209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 210 bool is_suspend) 211 { 212 int ret = 0; 213 214 if (rdev && !rdev_need_serial(rdev) && 215 !test_bit(CollisionCheck, &rdev->flags)) 216 return; 217 218 if (!is_suspend) 219 mddev_suspend(mddev); 220 221 if (!rdev) 222 ret = rdevs_init_serial(mddev); 223 else 224 ret = rdev_init_serial(rdev); 225 if (ret) 226 goto abort; 227 228 if (mddev->serial_info_pool == NULL) { 229 /* 230 * already in memalloc noio context by 231 * mddev_suspend() 232 */ 233 mddev->serial_info_pool = 234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 235 sizeof(struct serial_info)); 236 if (!mddev->serial_info_pool) { 237 rdevs_uninit_serial(mddev); 238 pr_err("can't alloc memory pool for serialization\n"); 239 } 240 } 241 242 abort: 243 if (!is_suspend) 244 mddev_resume(mddev); 245 } 246 247 /* 248 * Free resource from rdev(s), and destroy serial_info_pool under conditions: 249 * 1. rdev is the last device flaged with CollisionCheck. 250 * 2. when bitmap is destroyed while policy is not enabled. 251 * 3. for disable policy, the pool is destroyed only when no rdev needs it. 252 */ 253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev, 254 bool is_suspend) 255 { 256 if (rdev && !test_bit(CollisionCheck, &rdev->flags)) 257 return; 258 259 if (mddev->serial_info_pool) { 260 struct md_rdev *temp; 261 int num = 0; /* used to track if other rdevs need the pool */ 262 263 if (!is_suspend) 264 mddev_suspend(mddev); 265 rdev_for_each(temp, mddev) { 266 if (!rdev) { 267 if (!mddev->serialize_policy || 268 !rdev_need_serial(temp)) 269 rdev_uninit_serial(temp); 270 else 271 num++; 272 } else if (temp != rdev && 273 test_bit(CollisionCheck, &temp->flags)) 274 num++; 275 } 276 277 if (rdev) 278 rdev_uninit_serial(rdev); 279 280 if (num) 281 pr_info("The mempool could be used by other devices\n"); 282 else { 283 mempool_destroy(mddev->serial_info_pool); 284 mddev->serial_info_pool = NULL; 285 } 286 if (!is_suspend) 287 mddev_resume(mddev); 288 } 289 } 290 291 static struct ctl_table_header *raid_table_header; 292 293 static struct ctl_table raid_table[] = { 294 { 295 .procname = "speed_limit_min", 296 .data = &sysctl_speed_limit_min, 297 .maxlen = sizeof(int), 298 .mode = S_IRUGO|S_IWUSR, 299 .proc_handler = proc_dointvec, 300 }, 301 { 302 .procname = "speed_limit_max", 303 .data = &sysctl_speed_limit_max, 304 .maxlen = sizeof(int), 305 .mode = S_IRUGO|S_IWUSR, 306 .proc_handler = proc_dointvec, 307 }, 308 { } 309 }; 310 311 static int start_readonly; 312 313 /* 314 * The original mechanism for creating an md device is to create 315 * a device node in /dev and to open it. This causes races with device-close. 316 * The preferred method is to write to the "new_array" module parameter. 317 * This can avoid races. 318 * Setting create_on_open to false disables the original mechanism 319 * so all the races disappear. 320 */ 321 static bool create_on_open = true; 322 323 /* 324 * We have a system wide 'event count' that is incremented 325 * on any 'interesting' event, and readers of /proc/mdstat 326 * can use 'poll' or 'select' to find out when the event 327 * count increases. 328 * 329 * Events are: 330 * start array, stop array, error, add device, remove device, 331 * start build, activate spare 332 */ 333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters); 334 static atomic_t md_event_count; 335 void md_new_event(void) 336 { 337 atomic_inc(&md_event_count); 338 wake_up(&md_event_waiters); 339 } 340 EXPORT_SYMBOL_GPL(md_new_event); 341 342 /* 343 * Enables to iterate over all existing md arrays 344 * all_mddevs_lock protects this list. 345 */ 346 static LIST_HEAD(all_mddevs); 347 static DEFINE_SPINLOCK(all_mddevs_lock); 348 349 /* Rather than calling directly into the personality make_request function, 350 * IO requests come here first so that we can check if the device is 351 * being suspended pending a reconfiguration. 352 * We hold a refcount over the call to ->make_request. By the time that 353 * call has finished, the bio has been linked into some internal structure 354 * and so is visible to ->quiesce(), so we don't need the refcount any more. 355 */ 356 static bool is_suspended(struct mddev *mddev, struct bio *bio) 357 { 358 if (is_md_suspended(mddev)) 359 return true; 360 if (bio_data_dir(bio) != WRITE) 361 return false; 362 if (mddev->suspend_lo >= mddev->suspend_hi) 363 return false; 364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi) 365 return false; 366 if (bio_end_sector(bio) < mddev->suspend_lo) 367 return false; 368 return true; 369 } 370 371 void md_handle_request(struct mddev *mddev, struct bio *bio) 372 { 373 check_suspended: 374 if (is_suspended(mddev, bio)) { 375 DEFINE_WAIT(__wait); 376 /* Bail out if REQ_NOWAIT is set for the bio */ 377 if (bio->bi_opf & REQ_NOWAIT) { 378 bio_wouldblock_error(bio); 379 return; 380 } 381 for (;;) { 382 prepare_to_wait(&mddev->sb_wait, &__wait, 383 TASK_UNINTERRUPTIBLE); 384 if (!is_suspended(mddev, bio)) 385 break; 386 schedule(); 387 } 388 finish_wait(&mddev->sb_wait, &__wait); 389 } 390 if (!percpu_ref_tryget_live(&mddev->active_io)) 391 goto check_suspended; 392 393 if (!mddev->pers->make_request(mddev, bio)) { 394 percpu_ref_put(&mddev->active_io); 395 goto check_suspended; 396 } 397 398 percpu_ref_put(&mddev->active_io); 399 } 400 EXPORT_SYMBOL(md_handle_request); 401 402 static void md_submit_bio(struct bio *bio) 403 { 404 const int rw = bio_data_dir(bio); 405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data; 406 407 if (mddev == NULL || mddev->pers == NULL) { 408 bio_io_error(bio); 409 return; 410 } 411 412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) { 413 bio_io_error(bio); 414 return; 415 } 416 417 bio = bio_split_to_limits(bio); 418 if (!bio) 419 return; 420 421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) { 422 if (bio_sectors(bio) != 0) 423 bio->bi_status = BLK_STS_IOERR; 424 bio_endio(bio); 425 return; 426 } 427 428 /* bio could be mergeable after passing to underlayer */ 429 bio->bi_opf &= ~REQ_NOMERGE; 430 431 md_handle_request(mddev, bio); 432 } 433 434 /* mddev_suspend makes sure no new requests are submitted 435 * to the device, and that any requests that have been submitted 436 * are completely handled. 437 * Once mddev_detach() is called and completes, the module will be 438 * completely unused. 439 */ 440 void mddev_suspend(struct mddev *mddev) 441 { 442 struct md_thread *thread = rcu_dereference_protected(mddev->thread, 443 lockdep_is_held(&mddev->reconfig_mutex)); 444 445 WARN_ON_ONCE(thread && current == thread->tsk); 446 if (mddev->suspended++) 447 return; 448 wake_up(&mddev->sb_wait); 449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags); 450 percpu_ref_kill(&mddev->active_io); 451 452 if (mddev->pers && mddev->pers->prepare_suspend) 453 mddev->pers->prepare_suspend(mddev); 454 455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io)); 456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags); 457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags)); 458 459 del_timer_sync(&mddev->safemode_timer); 460 /* restrict memory reclaim I/O during raid array is suspend */ 461 mddev->noio_flag = memalloc_noio_save(); 462 } 463 EXPORT_SYMBOL_GPL(mddev_suspend); 464 465 void mddev_resume(struct mddev *mddev) 466 { 467 lockdep_assert_held(&mddev->reconfig_mutex); 468 if (--mddev->suspended) 469 return; 470 471 /* entred the memalloc scope from mddev_suspend() */ 472 memalloc_noio_restore(mddev->noio_flag); 473 474 percpu_ref_resurrect(&mddev->active_io); 475 wake_up(&mddev->sb_wait); 476 477 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 478 md_wakeup_thread(mddev->thread); 479 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 480 } 481 EXPORT_SYMBOL_GPL(mddev_resume); 482 483 /* 484 * Generic flush handling for md 485 */ 486 487 static void md_end_flush(struct bio *bio) 488 { 489 struct md_rdev *rdev = bio->bi_private; 490 struct mddev *mddev = rdev->mddev; 491 492 bio_put(bio); 493 494 rdev_dec_pending(rdev, mddev); 495 496 if (atomic_dec_and_test(&mddev->flush_pending)) { 497 /* The pair is percpu_ref_get() from md_flush_request() */ 498 percpu_ref_put(&mddev->active_io); 499 500 /* The pre-request flush has finished */ 501 queue_work(md_wq, &mddev->flush_work); 502 } 503 } 504 505 static void md_submit_flush_data(struct work_struct *ws); 506 507 static void submit_flushes(struct work_struct *ws) 508 { 509 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 510 struct md_rdev *rdev; 511 512 mddev->start_flush = ktime_get_boottime(); 513 INIT_WORK(&mddev->flush_work, md_submit_flush_data); 514 atomic_set(&mddev->flush_pending, 1); 515 rcu_read_lock(); 516 rdev_for_each_rcu(rdev, mddev) 517 if (rdev->raid_disk >= 0 && 518 !test_bit(Faulty, &rdev->flags)) { 519 struct bio *bi; 520 521 atomic_inc(&rdev->nr_pending); 522 rcu_read_unlock(); 523 bi = bio_alloc_bioset(rdev->bdev, 0, 524 REQ_OP_WRITE | REQ_PREFLUSH, 525 GFP_NOIO, &mddev->bio_set); 526 bi->bi_end_io = md_end_flush; 527 bi->bi_private = rdev; 528 atomic_inc(&mddev->flush_pending); 529 submit_bio(bi); 530 rcu_read_lock(); 531 } 532 rcu_read_unlock(); 533 if (atomic_dec_and_test(&mddev->flush_pending)) { 534 /* The pair is percpu_ref_get() from md_flush_request() */ 535 percpu_ref_put(&mddev->active_io); 536 537 queue_work(md_wq, &mddev->flush_work); 538 } 539 } 540 541 static void md_submit_flush_data(struct work_struct *ws) 542 { 543 struct mddev *mddev = container_of(ws, struct mddev, flush_work); 544 struct bio *bio = mddev->flush_bio; 545 546 /* 547 * must reset flush_bio before calling into md_handle_request to avoid a 548 * deadlock, because other bios passed md_handle_request suspend check 549 * could wait for this and below md_handle_request could wait for those 550 * bios because of suspend check 551 */ 552 spin_lock_irq(&mddev->lock); 553 mddev->prev_flush_start = mddev->start_flush; 554 mddev->flush_bio = NULL; 555 spin_unlock_irq(&mddev->lock); 556 wake_up(&mddev->sb_wait); 557 558 if (bio->bi_iter.bi_size == 0) { 559 /* an empty barrier - all done */ 560 bio_endio(bio); 561 } else { 562 bio->bi_opf &= ~REQ_PREFLUSH; 563 md_handle_request(mddev, bio); 564 } 565 } 566 567 /* 568 * Manages consolidation of flushes and submitting any flushes needed for 569 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is 570 * being finished in another context. Returns false if the flushing is 571 * complete but still needs the I/O portion of the bio to be processed. 572 */ 573 bool md_flush_request(struct mddev *mddev, struct bio *bio) 574 { 575 ktime_t req_start = ktime_get_boottime(); 576 spin_lock_irq(&mddev->lock); 577 /* flush requests wait until ongoing flush completes, 578 * hence coalescing all the pending requests. 579 */ 580 wait_event_lock_irq(mddev->sb_wait, 581 !mddev->flush_bio || 582 ktime_before(req_start, mddev->prev_flush_start), 583 mddev->lock); 584 /* new request after previous flush is completed */ 585 if (ktime_after(req_start, mddev->prev_flush_start)) { 586 WARN_ON(mddev->flush_bio); 587 /* 588 * Grab a reference to make sure mddev_suspend() will wait for 589 * this flush to be done. 590 * 591 * md_flush_reqeust() is called under md_handle_request() and 592 * 'active_io' is already grabbed, hence percpu_ref_is_zero() 593 * won't pass, percpu_ref_tryget_live() can't be used because 594 * percpu_ref_kill() can be called by mddev_suspend() 595 * concurrently. 596 */ 597 WARN_ON(percpu_ref_is_zero(&mddev->active_io)); 598 percpu_ref_get(&mddev->active_io); 599 mddev->flush_bio = bio; 600 bio = NULL; 601 } 602 spin_unlock_irq(&mddev->lock); 603 604 if (!bio) { 605 INIT_WORK(&mddev->flush_work, submit_flushes); 606 queue_work(md_wq, &mddev->flush_work); 607 } else { 608 /* flush was performed for some other bio while we waited. */ 609 if (bio->bi_iter.bi_size == 0) 610 /* an empty barrier - all done */ 611 bio_endio(bio); 612 else { 613 bio->bi_opf &= ~REQ_PREFLUSH; 614 return false; 615 } 616 } 617 return true; 618 } 619 EXPORT_SYMBOL(md_flush_request); 620 621 static inline struct mddev *mddev_get(struct mddev *mddev) 622 { 623 lockdep_assert_held(&all_mddevs_lock); 624 625 if (test_bit(MD_DELETED, &mddev->flags)) 626 return NULL; 627 atomic_inc(&mddev->active); 628 return mddev; 629 } 630 631 static void mddev_delayed_delete(struct work_struct *ws); 632 633 void mddev_put(struct mddev *mddev) 634 { 635 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock)) 636 return; 637 if (!mddev->raid_disks && list_empty(&mddev->disks) && 638 mddev->ctime == 0 && !mddev->hold_active) { 639 /* Array is not configured at all, and not held active, 640 * so destroy it */ 641 set_bit(MD_DELETED, &mddev->flags); 642 643 /* 644 * Call queue_work inside the spinlock so that 645 * flush_workqueue() after mddev_find will succeed in waiting 646 * for the work to be done. 647 */ 648 INIT_WORK(&mddev->del_work, mddev_delayed_delete); 649 queue_work(md_misc_wq, &mddev->del_work); 650 } 651 spin_unlock(&all_mddevs_lock); 652 } 653 654 static void md_safemode_timeout(struct timer_list *t); 655 656 void mddev_init(struct mddev *mddev) 657 { 658 mutex_init(&mddev->open_mutex); 659 mutex_init(&mddev->reconfig_mutex); 660 mutex_init(&mddev->sync_mutex); 661 mutex_init(&mddev->bitmap_info.mutex); 662 INIT_LIST_HEAD(&mddev->disks); 663 INIT_LIST_HEAD(&mddev->all_mddevs); 664 INIT_LIST_HEAD(&mddev->deleting); 665 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0); 666 atomic_set(&mddev->active, 1); 667 atomic_set(&mddev->openers, 0); 668 atomic_set(&mddev->sync_seq, 0); 669 spin_lock_init(&mddev->lock); 670 atomic_set(&mddev->flush_pending, 0); 671 init_waitqueue_head(&mddev->sb_wait); 672 init_waitqueue_head(&mddev->recovery_wait); 673 mddev->reshape_position = MaxSector; 674 mddev->reshape_backwards = 0; 675 mddev->last_sync_action = "none"; 676 mddev->resync_min = 0; 677 mddev->resync_max = MaxSector; 678 mddev->level = LEVEL_NONE; 679 } 680 EXPORT_SYMBOL_GPL(mddev_init); 681 682 static struct mddev *mddev_find_locked(dev_t unit) 683 { 684 struct mddev *mddev; 685 686 list_for_each_entry(mddev, &all_mddevs, all_mddevs) 687 if (mddev->unit == unit) 688 return mddev; 689 690 return NULL; 691 } 692 693 /* find an unused unit number */ 694 static dev_t mddev_alloc_unit(void) 695 { 696 static int next_minor = 512; 697 int start = next_minor; 698 bool is_free = 0; 699 dev_t dev = 0; 700 701 while (!is_free) { 702 dev = MKDEV(MD_MAJOR, next_minor); 703 next_minor++; 704 if (next_minor > MINORMASK) 705 next_minor = 0; 706 if (next_minor == start) 707 return 0; /* Oh dear, all in use. */ 708 is_free = !mddev_find_locked(dev); 709 } 710 711 return dev; 712 } 713 714 static struct mddev *mddev_alloc(dev_t unit) 715 { 716 struct mddev *new; 717 int error; 718 719 if (unit && MAJOR(unit) != MD_MAJOR) 720 unit &= ~((1 << MdpMinorShift) - 1); 721 722 new = kzalloc(sizeof(*new), GFP_KERNEL); 723 if (!new) 724 return ERR_PTR(-ENOMEM); 725 mddev_init(new); 726 727 spin_lock(&all_mddevs_lock); 728 if (unit) { 729 error = -EEXIST; 730 if (mddev_find_locked(unit)) 731 goto out_free_new; 732 new->unit = unit; 733 if (MAJOR(unit) == MD_MAJOR) 734 new->md_minor = MINOR(unit); 735 else 736 new->md_minor = MINOR(unit) >> MdpMinorShift; 737 new->hold_active = UNTIL_IOCTL; 738 } else { 739 error = -ENODEV; 740 new->unit = mddev_alloc_unit(); 741 if (!new->unit) 742 goto out_free_new; 743 new->md_minor = MINOR(new->unit); 744 new->hold_active = UNTIL_STOP; 745 } 746 747 list_add(&new->all_mddevs, &all_mddevs); 748 spin_unlock(&all_mddevs_lock); 749 return new; 750 out_free_new: 751 spin_unlock(&all_mddevs_lock); 752 kfree(new); 753 return ERR_PTR(error); 754 } 755 756 static void mddev_free(struct mddev *mddev) 757 { 758 spin_lock(&all_mddevs_lock); 759 list_del(&mddev->all_mddevs); 760 spin_unlock(&all_mddevs_lock); 761 762 kfree(mddev); 763 } 764 765 static const struct attribute_group md_redundancy_group; 766 767 void mddev_unlock(struct mddev *mddev) 768 { 769 struct md_rdev *rdev; 770 struct md_rdev *tmp; 771 LIST_HEAD(delete); 772 773 if (!list_empty(&mddev->deleting)) 774 list_splice_init(&mddev->deleting, &delete); 775 776 if (mddev->to_remove) { 777 /* These cannot be removed under reconfig_mutex as 778 * an access to the files will try to take reconfig_mutex 779 * while holding the file unremovable, which leads to 780 * a deadlock. 781 * So hold set sysfs_active while the remove in happeing, 782 * and anything else which might set ->to_remove or my 783 * otherwise change the sysfs namespace will fail with 784 * -EBUSY if sysfs_active is still set. 785 * We set sysfs_active under reconfig_mutex and elsewhere 786 * test it under the same mutex to ensure its correct value 787 * is seen. 788 */ 789 const struct attribute_group *to_remove = mddev->to_remove; 790 mddev->to_remove = NULL; 791 mddev->sysfs_active = 1; 792 mutex_unlock(&mddev->reconfig_mutex); 793 794 if (mddev->kobj.sd) { 795 if (to_remove != &md_redundancy_group) 796 sysfs_remove_group(&mddev->kobj, to_remove); 797 if (mddev->pers == NULL || 798 mddev->pers->sync_request == NULL) { 799 sysfs_remove_group(&mddev->kobj, &md_redundancy_group); 800 if (mddev->sysfs_action) 801 sysfs_put(mddev->sysfs_action); 802 if (mddev->sysfs_completed) 803 sysfs_put(mddev->sysfs_completed); 804 if (mddev->sysfs_degraded) 805 sysfs_put(mddev->sysfs_degraded); 806 mddev->sysfs_action = NULL; 807 mddev->sysfs_completed = NULL; 808 mddev->sysfs_degraded = NULL; 809 } 810 } 811 mddev->sysfs_active = 0; 812 } else 813 mutex_unlock(&mddev->reconfig_mutex); 814 815 md_wakeup_thread(mddev->thread); 816 wake_up(&mddev->sb_wait); 817 818 list_for_each_entry_safe(rdev, tmp, &delete, same_set) { 819 list_del_init(&rdev->same_set); 820 kobject_del(&rdev->kobj); 821 export_rdev(rdev, mddev); 822 } 823 } 824 EXPORT_SYMBOL_GPL(mddev_unlock); 825 826 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr) 827 { 828 struct md_rdev *rdev; 829 830 rdev_for_each_rcu(rdev, mddev) 831 if (rdev->desc_nr == nr) 832 return rdev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu); 837 838 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev) 839 { 840 struct md_rdev *rdev; 841 842 rdev_for_each(rdev, mddev) 843 if (rdev->bdev->bd_dev == dev) 844 return rdev; 845 846 return NULL; 847 } 848 849 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev) 850 { 851 struct md_rdev *rdev; 852 853 rdev_for_each_rcu(rdev, mddev) 854 if (rdev->bdev->bd_dev == dev) 855 return rdev; 856 857 return NULL; 858 } 859 EXPORT_SYMBOL_GPL(md_find_rdev_rcu); 860 861 static struct md_personality *find_pers(int level, char *clevel) 862 { 863 struct md_personality *pers; 864 list_for_each_entry(pers, &pers_list, list) { 865 if (level != LEVEL_NONE && pers->level == level) 866 return pers; 867 if (strcmp(pers->name, clevel)==0) 868 return pers; 869 } 870 return NULL; 871 } 872 873 /* return the offset of the super block in 512byte sectors */ 874 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev) 875 { 876 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev)); 877 } 878 879 static int alloc_disk_sb(struct md_rdev *rdev) 880 { 881 rdev->sb_page = alloc_page(GFP_KERNEL); 882 if (!rdev->sb_page) 883 return -ENOMEM; 884 return 0; 885 } 886 887 void md_rdev_clear(struct md_rdev *rdev) 888 { 889 if (rdev->sb_page) { 890 put_page(rdev->sb_page); 891 rdev->sb_loaded = 0; 892 rdev->sb_page = NULL; 893 rdev->sb_start = 0; 894 rdev->sectors = 0; 895 } 896 if (rdev->bb_page) { 897 put_page(rdev->bb_page); 898 rdev->bb_page = NULL; 899 } 900 badblocks_exit(&rdev->badblocks); 901 } 902 EXPORT_SYMBOL_GPL(md_rdev_clear); 903 904 static void super_written(struct bio *bio) 905 { 906 struct md_rdev *rdev = bio->bi_private; 907 struct mddev *mddev = rdev->mddev; 908 909 if (bio->bi_status) { 910 pr_err("md: %s gets error=%d\n", __func__, 911 blk_status_to_errno(bio->bi_status)); 912 md_error(mddev, rdev); 913 if (!test_bit(Faulty, &rdev->flags) 914 && (bio->bi_opf & MD_FAILFAST)) { 915 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags); 916 set_bit(LastDev, &rdev->flags); 917 } 918 } else 919 clear_bit(LastDev, &rdev->flags); 920 921 bio_put(bio); 922 923 rdev_dec_pending(rdev, mddev); 924 925 if (atomic_dec_and_test(&mddev->pending_writes)) 926 wake_up(&mddev->sb_wait); 927 } 928 929 void md_super_write(struct mddev *mddev, struct md_rdev *rdev, 930 sector_t sector, int size, struct page *page) 931 { 932 /* write first size bytes of page to sector of rdev 933 * Increment mddev->pending_writes before returning 934 * and decrement it on completion, waking up sb_wait 935 * if zero is reached. 936 * If an error occurred, call md_error 937 */ 938 struct bio *bio; 939 940 if (!page) 941 return; 942 943 if (test_bit(Faulty, &rdev->flags)) 944 return; 945 946 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev, 947 1, 948 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META 949 | REQ_PREFLUSH | REQ_FUA, 950 GFP_NOIO, &mddev->sync_set); 951 952 atomic_inc(&rdev->nr_pending); 953 954 bio->bi_iter.bi_sector = sector; 955 __bio_add_page(bio, page, size, 0); 956 bio->bi_private = rdev; 957 bio->bi_end_io = super_written; 958 959 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) && 960 test_bit(FailFast, &rdev->flags) && 961 !test_bit(LastDev, &rdev->flags)) 962 bio->bi_opf |= MD_FAILFAST; 963 964 atomic_inc(&mddev->pending_writes); 965 submit_bio(bio); 966 } 967 968 int md_super_wait(struct mddev *mddev) 969 { 970 /* wait for all superblock writes that were scheduled to complete */ 971 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0); 972 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags)) 973 return -EAGAIN; 974 return 0; 975 } 976 977 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 978 struct page *page, blk_opf_t opf, bool metadata_op) 979 { 980 struct bio bio; 981 struct bio_vec bvec; 982 983 if (metadata_op && rdev->meta_bdev) 984 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf); 985 else 986 bio_init(&bio, rdev->bdev, &bvec, 1, opf); 987 988 if (metadata_op) 989 bio.bi_iter.bi_sector = sector + rdev->sb_start; 990 else if (rdev->mddev->reshape_position != MaxSector && 991 (rdev->mddev->reshape_backwards == 992 (sector >= rdev->mddev->reshape_position))) 993 bio.bi_iter.bi_sector = sector + rdev->new_data_offset; 994 else 995 bio.bi_iter.bi_sector = sector + rdev->data_offset; 996 __bio_add_page(&bio, page, size, 0); 997 998 submit_bio_wait(&bio); 999 1000 return !bio.bi_status; 1001 } 1002 EXPORT_SYMBOL_GPL(sync_page_io); 1003 1004 static int read_disk_sb(struct md_rdev *rdev, int size) 1005 { 1006 if (rdev->sb_loaded) 1007 return 0; 1008 1009 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true)) 1010 goto fail; 1011 rdev->sb_loaded = 1; 1012 return 0; 1013 1014 fail: 1015 pr_err("md: disabled device %pg, could not read superblock.\n", 1016 rdev->bdev); 1017 return -EINVAL; 1018 } 1019 1020 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1021 { 1022 return sb1->set_uuid0 == sb2->set_uuid0 && 1023 sb1->set_uuid1 == sb2->set_uuid1 && 1024 sb1->set_uuid2 == sb2->set_uuid2 && 1025 sb1->set_uuid3 == sb2->set_uuid3; 1026 } 1027 1028 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2) 1029 { 1030 int ret; 1031 mdp_super_t *tmp1, *tmp2; 1032 1033 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL); 1034 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL); 1035 1036 if (!tmp1 || !tmp2) { 1037 ret = 0; 1038 goto abort; 1039 } 1040 1041 *tmp1 = *sb1; 1042 *tmp2 = *sb2; 1043 1044 /* 1045 * nr_disks is not constant 1046 */ 1047 tmp1->nr_disks = 0; 1048 tmp2->nr_disks = 0; 1049 1050 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0); 1051 abort: 1052 kfree(tmp1); 1053 kfree(tmp2); 1054 return ret; 1055 } 1056 1057 static u32 md_csum_fold(u32 csum) 1058 { 1059 csum = (csum & 0xffff) + (csum >> 16); 1060 return (csum & 0xffff) + (csum >> 16); 1061 } 1062 1063 static unsigned int calc_sb_csum(mdp_super_t *sb) 1064 { 1065 u64 newcsum = 0; 1066 u32 *sb32 = (u32*)sb; 1067 int i; 1068 unsigned int disk_csum, csum; 1069 1070 disk_csum = sb->sb_csum; 1071 sb->sb_csum = 0; 1072 1073 for (i = 0; i < MD_SB_BYTES/4 ; i++) 1074 newcsum += sb32[i]; 1075 csum = (newcsum & 0xffffffff) + (newcsum>>32); 1076 1077 #ifdef CONFIG_ALPHA 1078 /* This used to use csum_partial, which was wrong for several 1079 * reasons including that different results are returned on 1080 * different architectures. It isn't critical that we get exactly 1081 * the same return value as before (we always csum_fold before 1082 * testing, and that removes any differences). However as we 1083 * know that csum_partial always returned a 16bit value on 1084 * alphas, do a fold to maximise conformity to previous behaviour. 1085 */ 1086 sb->sb_csum = md_csum_fold(disk_csum); 1087 #else 1088 sb->sb_csum = disk_csum; 1089 #endif 1090 return csum; 1091 } 1092 1093 /* 1094 * Handle superblock details. 1095 * We want to be able to handle multiple superblock formats 1096 * so we have a common interface to them all, and an array of 1097 * different handlers. 1098 * We rely on user-space to write the initial superblock, and support 1099 * reading and updating of superblocks. 1100 * Interface methods are: 1101 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version) 1102 * loads and validates a superblock on dev. 1103 * if refdev != NULL, compare superblocks on both devices 1104 * Return: 1105 * 0 - dev has a superblock that is compatible with refdev 1106 * 1 - dev has a superblock that is compatible and newer than refdev 1107 * so dev should be used as the refdev in future 1108 * -EINVAL superblock incompatible or invalid 1109 * -othererror e.g. -EIO 1110 * 1111 * int validate_super(struct mddev *mddev, struct md_rdev *dev) 1112 * Verify that dev is acceptable into mddev. 1113 * The first time, mddev->raid_disks will be 0, and data from 1114 * dev should be merged in. Subsequent calls check that dev 1115 * is new enough. Return 0 or -EINVAL 1116 * 1117 * void sync_super(struct mddev *mddev, struct md_rdev *dev) 1118 * Update the superblock for rdev with data in mddev 1119 * This does not write to disc. 1120 * 1121 */ 1122 1123 struct super_type { 1124 char *name; 1125 struct module *owner; 1126 int (*load_super)(struct md_rdev *rdev, 1127 struct md_rdev *refdev, 1128 int minor_version); 1129 int (*validate_super)(struct mddev *mddev, 1130 struct md_rdev *freshest, 1131 struct md_rdev *rdev); 1132 void (*sync_super)(struct mddev *mddev, 1133 struct md_rdev *rdev); 1134 unsigned long long (*rdev_size_change)(struct md_rdev *rdev, 1135 sector_t num_sectors); 1136 int (*allow_new_offset)(struct md_rdev *rdev, 1137 unsigned long long new_offset); 1138 }; 1139 1140 /* 1141 * Check that the given mddev has no bitmap. 1142 * 1143 * This function is called from the run method of all personalities that do not 1144 * support bitmaps. It prints an error message and returns non-zero if mddev 1145 * has a bitmap. Otherwise, it returns 0. 1146 * 1147 */ 1148 int md_check_no_bitmap(struct mddev *mddev) 1149 { 1150 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset) 1151 return 0; 1152 pr_warn("%s: bitmaps are not supported for %s\n", 1153 mdname(mddev), mddev->pers->name); 1154 return 1; 1155 } 1156 EXPORT_SYMBOL(md_check_no_bitmap); 1157 1158 /* 1159 * load_super for 0.90.0 1160 */ 1161 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1162 { 1163 mdp_super_t *sb; 1164 int ret; 1165 bool spare_disk = true; 1166 1167 /* 1168 * Calculate the position of the superblock (512byte sectors), 1169 * it's at the end of the disk. 1170 * 1171 * It also happens to be a multiple of 4Kb. 1172 */ 1173 rdev->sb_start = calc_dev_sboffset(rdev); 1174 1175 ret = read_disk_sb(rdev, MD_SB_BYTES); 1176 if (ret) 1177 return ret; 1178 1179 ret = -EINVAL; 1180 1181 sb = page_address(rdev->sb_page); 1182 1183 if (sb->md_magic != MD_SB_MAGIC) { 1184 pr_warn("md: invalid raid superblock magic on %pg\n", 1185 rdev->bdev); 1186 goto abort; 1187 } 1188 1189 if (sb->major_version != 0 || 1190 sb->minor_version < 90 || 1191 sb->minor_version > 91) { 1192 pr_warn("Bad version number %d.%d on %pg\n", 1193 sb->major_version, sb->minor_version, rdev->bdev); 1194 goto abort; 1195 } 1196 1197 if (sb->raid_disks <= 0) 1198 goto abort; 1199 1200 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) { 1201 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev); 1202 goto abort; 1203 } 1204 1205 rdev->preferred_minor = sb->md_minor; 1206 rdev->data_offset = 0; 1207 rdev->new_data_offset = 0; 1208 rdev->sb_size = MD_SB_BYTES; 1209 rdev->badblocks.shift = -1; 1210 1211 if (sb->level == LEVEL_MULTIPATH) 1212 rdev->desc_nr = -1; 1213 else 1214 rdev->desc_nr = sb->this_disk.number; 1215 1216 /* not spare disk, or LEVEL_MULTIPATH */ 1217 if (sb->level == LEVEL_MULTIPATH || 1218 (rdev->desc_nr >= 0 && 1219 rdev->desc_nr < MD_SB_DISKS && 1220 sb->disks[rdev->desc_nr].state & 1221 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))) 1222 spare_disk = false; 1223 1224 if (!refdev) { 1225 if (!spare_disk) 1226 ret = 1; 1227 else 1228 ret = 0; 1229 } else { 1230 __u64 ev1, ev2; 1231 mdp_super_t *refsb = page_address(refdev->sb_page); 1232 if (!md_uuid_equal(refsb, sb)) { 1233 pr_warn("md: %pg has different UUID to %pg\n", 1234 rdev->bdev, refdev->bdev); 1235 goto abort; 1236 } 1237 if (!md_sb_equal(refsb, sb)) { 1238 pr_warn("md: %pg has same UUID but different superblock to %pg\n", 1239 rdev->bdev, refdev->bdev); 1240 goto abort; 1241 } 1242 ev1 = md_event(sb); 1243 ev2 = md_event(refsb); 1244 1245 if (!spare_disk && ev1 > ev2) 1246 ret = 1; 1247 else 1248 ret = 0; 1249 } 1250 rdev->sectors = rdev->sb_start; 1251 /* Limit to 4TB as metadata cannot record more than that. 1252 * (not needed for Linear and RAID0 as metadata doesn't 1253 * record this size) 1254 */ 1255 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1) 1256 rdev->sectors = (sector_t)(2ULL << 32) - 2; 1257 1258 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1) 1259 /* "this cannot possibly happen" ... */ 1260 ret = -EINVAL; 1261 1262 abort: 1263 return ret; 1264 } 1265 1266 /* 1267 * validate_super for 0.90.0 1268 * note: we are not using "freshest" for 0.9 superblock 1269 */ 1270 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1271 { 1272 mdp_disk_t *desc; 1273 mdp_super_t *sb = page_address(rdev->sb_page); 1274 __u64 ev1 = md_event(sb); 1275 1276 rdev->raid_disk = -1; 1277 clear_bit(Faulty, &rdev->flags); 1278 clear_bit(In_sync, &rdev->flags); 1279 clear_bit(Bitmap_sync, &rdev->flags); 1280 clear_bit(WriteMostly, &rdev->flags); 1281 1282 if (mddev->raid_disks == 0) { 1283 mddev->major_version = 0; 1284 mddev->minor_version = sb->minor_version; 1285 mddev->patch_version = sb->patch_version; 1286 mddev->external = 0; 1287 mddev->chunk_sectors = sb->chunk_size >> 9; 1288 mddev->ctime = sb->ctime; 1289 mddev->utime = sb->utime; 1290 mddev->level = sb->level; 1291 mddev->clevel[0] = 0; 1292 mddev->layout = sb->layout; 1293 mddev->raid_disks = sb->raid_disks; 1294 mddev->dev_sectors = ((sector_t)sb->size) * 2; 1295 mddev->events = ev1; 1296 mddev->bitmap_info.offset = 0; 1297 mddev->bitmap_info.space = 0; 1298 /* bitmap can use 60 K after the 4K superblocks */ 1299 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 1300 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 1301 mddev->reshape_backwards = 0; 1302 1303 if (mddev->minor_version >= 91) { 1304 mddev->reshape_position = sb->reshape_position; 1305 mddev->delta_disks = sb->delta_disks; 1306 mddev->new_level = sb->new_level; 1307 mddev->new_layout = sb->new_layout; 1308 mddev->new_chunk_sectors = sb->new_chunk >> 9; 1309 if (mddev->delta_disks < 0) 1310 mddev->reshape_backwards = 1; 1311 } else { 1312 mddev->reshape_position = MaxSector; 1313 mddev->delta_disks = 0; 1314 mddev->new_level = mddev->level; 1315 mddev->new_layout = mddev->layout; 1316 mddev->new_chunk_sectors = mddev->chunk_sectors; 1317 } 1318 if (mddev->level == 0) 1319 mddev->layout = -1; 1320 1321 if (sb->state & (1<<MD_SB_CLEAN)) 1322 mddev->recovery_cp = MaxSector; 1323 else { 1324 if (sb->events_hi == sb->cp_events_hi && 1325 sb->events_lo == sb->cp_events_lo) { 1326 mddev->recovery_cp = sb->recovery_cp; 1327 } else 1328 mddev->recovery_cp = 0; 1329 } 1330 1331 memcpy(mddev->uuid+0, &sb->set_uuid0, 4); 1332 memcpy(mddev->uuid+4, &sb->set_uuid1, 4); 1333 memcpy(mddev->uuid+8, &sb->set_uuid2, 4); 1334 memcpy(mddev->uuid+12,&sb->set_uuid3, 4); 1335 1336 mddev->max_disks = MD_SB_DISKS; 1337 1338 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) && 1339 mddev->bitmap_info.file == NULL) { 1340 mddev->bitmap_info.offset = 1341 mddev->bitmap_info.default_offset; 1342 mddev->bitmap_info.space = 1343 mddev->bitmap_info.default_space; 1344 } 1345 1346 } else if (mddev->pers == NULL) { 1347 /* Insist on good event counter while assembling, except 1348 * for spares (which don't need an event count) */ 1349 ++ev1; 1350 if (sb->disks[rdev->desc_nr].state & ( 1351 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))) 1352 if (ev1 < mddev->events) 1353 return -EINVAL; 1354 } else if (mddev->bitmap) { 1355 /* if adding to array with a bitmap, then we can accept an 1356 * older device ... but not too old. 1357 */ 1358 if (ev1 < mddev->bitmap->events_cleared) 1359 return 0; 1360 if (ev1 < mddev->events) 1361 set_bit(Bitmap_sync, &rdev->flags); 1362 } else { 1363 if (ev1 < mddev->events) 1364 /* just a hot-add of a new device, leave raid_disk at -1 */ 1365 return 0; 1366 } 1367 1368 if (mddev->level != LEVEL_MULTIPATH) { 1369 desc = sb->disks + rdev->desc_nr; 1370 1371 if (desc->state & (1<<MD_DISK_FAULTY)) 1372 set_bit(Faulty, &rdev->flags); 1373 else if (desc->state & (1<<MD_DISK_SYNC) /* && 1374 desc->raid_disk < mddev->raid_disks */) { 1375 set_bit(In_sync, &rdev->flags); 1376 rdev->raid_disk = desc->raid_disk; 1377 rdev->saved_raid_disk = desc->raid_disk; 1378 } else if (desc->state & (1<<MD_DISK_ACTIVE)) { 1379 /* active but not in sync implies recovery up to 1380 * reshape position. We don't know exactly where 1381 * that is, so set to zero for now */ 1382 if (mddev->minor_version >= 91) { 1383 rdev->recovery_offset = 0; 1384 rdev->raid_disk = desc->raid_disk; 1385 } 1386 } 1387 if (desc->state & (1<<MD_DISK_WRITEMOSTLY)) 1388 set_bit(WriteMostly, &rdev->flags); 1389 if (desc->state & (1<<MD_DISK_FAILFAST)) 1390 set_bit(FailFast, &rdev->flags); 1391 } else /* MULTIPATH are always insync */ 1392 set_bit(In_sync, &rdev->flags); 1393 return 0; 1394 } 1395 1396 /* 1397 * sync_super for 0.90.0 1398 */ 1399 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev) 1400 { 1401 mdp_super_t *sb; 1402 struct md_rdev *rdev2; 1403 int next_spare = mddev->raid_disks; 1404 1405 /* make rdev->sb match mddev data.. 1406 * 1407 * 1/ zero out disks 1408 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare); 1409 * 3/ any empty disks < next_spare become removed 1410 * 1411 * disks[0] gets initialised to REMOVED because 1412 * we cannot be sure from other fields if it has 1413 * been initialised or not. 1414 */ 1415 int i; 1416 int active=0, working=0,failed=0,spare=0,nr_disks=0; 1417 1418 rdev->sb_size = MD_SB_BYTES; 1419 1420 sb = page_address(rdev->sb_page); 1421 1422 memset(sb, 0, sizeof(*sb)); 1423 1424 sb->md_magic = MD_SB_MAGIC; 1425 sb->major_version = mddev->major_version; 1426 sb->patch_version = mddev->patch_version; 1427 sb->gvalid_words = 0; /* ignored */ 1428 memcpy(&sb->set_uuid0, mddev->uuid+0, 4); 1429 memcpy(&sb->set_uuid1, mddev->uuid+4, 4); 1430 memcpy(&sb->set_uuid2, mddev->uuid+8, 4); 1431 memcpy(&sb->set_uuid3, mddev->uuid+12,4); 1432 1433 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 1434 sb->level = mddev->level; 1435 sb->size = mddev->dev_sectors / 2; 1436 sb->raid_disks = mddev->raid_disks; 1437 sb->md_minor = mddev->md_minor; 1438 sb->not_persistent = 0; 1439 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 1440 sb->state = 0; 1441 sb->events_hi = (mddev->events>>32); 1442 sb->events_lo = (u32)mddev->events; 1443 1444 if (mddev->reshape_position == MaxSector) 1445 sb->minor_version = 90; 1446 else { 1447 sb->minor_version = 91; 1448 sb->reshape_position = mddev->reshape_position; 1449 sb->new_level = mddev->new_level; 1450 sb->delta_disks = mddev->delta_disks; 1451 sb->new_layout = mddev->new_layout; 1452 sb->new_chunk = mddev->new_chunk_sectors << 9; 1453 } 1454 mddev->minor_version = sb->minor_version; 1455 if (mddev->in_sync) 1456 { 1457 sb->recovery_cp = mddev->recovery_cp; 1458 sb->cp_events_hi = (mddev->events>>32); 1459 sb->cp_events_lo = (u32)mddev->events; 1460 if (mddev->recovery_cp == MaxSector) 1461 sb->state = (1<< MD_SB_CLEAN); 1462 } else 1463 sb->recovery_cp = 0; 1464 1465 sb->layout = mddev->layout; 1466 sb->chunk_size = mddev->chunk_sectors << 9; 1467 1468 if (mddev->bitmap && mddev->bitmap_info.file == NULL) 1469 sb->state |= (1<<MD_SB_BITMAP_PRESENT); 1470 1471 sb->disks[0].state = (1<<MD_DISK_REMOVED); 1472 rdev_for_each(rdev2, mddev) { 1473 mdp_disk_t *d; 1474 int desc_nr; 1475 int is_active = test_bit(In_sync, &rdev2->flags); 1476 1477 if (rdev2->raid_disk >= 0 && 1478 sb->minor_version >= 91) 1479 /* we have nowhere to store the recovery_offset, 1480 * but if it is not below the reshape_position, 1481 * we can piggy-back on that. 1482 */ 1483 is_active = 1; 1484 if (rdev2->raid_disk < 0 || 1485 test_bit(Faulty, &rdev2->flags)) 1486 is_active = 0; 1487 if (is_active) 1488 desc_nr = rdev2->raid_disk; 1489 else 1490 desc_nr = next_spare++; 1491 rdev2->desc_nr = desc_nr; 1492 d = &sb->disks[rdev2->desc_nr]; 1493 nr_disks++; 1494 d->number = rdev2->desc_nr; 1495 d->major = MAJOR(rdev2->bdev->bd_dev); 1496 d->minor = MINOR(rdev2->bdev->bd_dev); 1497 if (is_active) 1498 d->raid_disk = rdev2->raid_disk; 1499 else 1500 d->raid_disk = rdev2->desc_nr; /* compatibility */ 1501 if (test_bit(Faulty, &rdev2->flags)) 1502 d->state = (1<<MD_DISK_FAULTY); 1503 else if (is_active) { 1504 d->state = (1<<MD_DISK_ACTIVE); 1505 if (test_bit(In_sync, &rdev2->flags)) 1506 d->state |= (1<<MD_DISK_SYNC); 1507 active++; 1508 working++; 1509 } else { 1510 d->state = 0; 1511 spare++; 1512 working++; 1513 } 1514 if (test_bit(WriteMostly, &rdev2->flags)) 1515 d->state |= (1<<MD_DISK_WRITEMOSTLY); 1516 if (test_bit(FailFast, &rdev2->flags)) 1517 d->state |= (1<<MD_DISK_FAILFAST); 1518 } 1519 /* now set the "removed" and "faulty" bits on any missing devices */ 1520 for (i=0 ; i < mddev->raid_disks ; i++) { 1521 mdp_disk_t *d = &sb->disks[i]; 1522 if (d->state == 0 && d->number == 0) { 1523 d->number = i; 1524 d->raid_disk = i; 1525 d->state = (1<<MD_DISK_REMOVED); 1526 d->state |= (1<<MD_DISK_FAULTY); 1527 failed++; 1528 } 1529 } 1530 sb->nr_disks = nr_disks; 1531 sb->active_disks = active; 1532 sb->working_disks = working; 1533 sb->failed_disks = failed; 1534 sb->spare_disks = spare; 1535 1536 sb->this_disk = sb->disks[rdev->desc_nr]; 1537 sb->sb_csum = calc_sb_csum(sb); 1538 } 1539 1540 /* 1541 * rdev_size_change for 0.90.0 1542 */ 1543 static unsigned long long 1544 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 1545 { 1546 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 1547 return 0; /* component must fit device */ 1548 if (rdev->mddev->bitmap_info.offset) 1549 return 0; /* can't move bitmap */ 1550 rdev->sb_start = calc_dev_sboffset(rdev); 1551 if (!num_sectors || num_sectors > rdev->sb_start) 1552 num_sectors = rdev->sb_start; 1553 /* Limit to 4TB as metadata cannot record more than that. 1554 * 4TB == 2^32 KB, or 2*2^32 sectors. 1555 */ 1556 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1) 1557 num_sectors = (sector_t)(2ULL << 32) - 2; 1558 do { 1559 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 1560 rdev->sb_page); 1561 } while (md_super_wait(rdev->mddev) < 0); 1562 return num_sectors; 1563 } 1564 1565 static int 1566 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset) 1567 { 1568 /* non-zero offset changes not possible with v0.90 */ 1569 return new_offset == 0; 1570 } 1571 1572 /* 1573 * version 1 superblock 1574 */ 1575 1576 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb) 1577 { 1578 __le32 disk_csum; 1579 u32 csum; 1580 unsigned long long newcsum; 1581 int size = 256 + le32_to_cpu(sb->max_dev)*2; 1582 __le32 *isuper = (__le32*)sb; 1583 1584 disk_csum = sb->sb_csum; 1585 sb->sb_csum = 0; 1586 newcsum = 0; 1587 for (; size >= 4; size -= 4) 1588 newcsum += le32_to_cpu(*isuper++); 1589 1590 if (size == 2) 1591 newcsum += le16_to_cpu(*(__le16*) isuper); 1592 1593 csum = (newcsum & 0xffffffff) + (newcsum >> 32); 1594 sb->sb_csum = disk_csum; 1595 return cpu_to_le32(csum); 1596 } 1597 1598 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version) 1599 { 1600 struct mdp_superblock_1 *sb; 1601 int ret; 1602 sector_t sb_start; 1603 sector_t sectors; 1604 int bmask; 1605 bool spare_disk = true; 1606 1607 /* 1608 * Calculate the position of the superblock in 512byte sectors. 1609 * It is always aligned to a 4K boundary and 1610 * depeding on minor_version, it can be: 1611 * 0: At least 8K, but less than 12K, from end of device 1612 * 1: At start of device 1613 * 2: 4K from start of device. 1614 */ 1615 switch(minor_version) { 1616 case 0: 1617 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2; 1618 sb_start &= ~(sector_t)(4*2-1); 1619 break; 1620 case 1: 1621 sb_start = 0; 1622 break; 1623 case 2: 1624 sb_start = 8; 1625 break; 1626 default: 1627 return -EINVAL; 1628 } 1629 rdev->sb_start = sb_start; 1630 1631 /* superblock is rarely larger than 1K, but it can be larger, 1632 * and it is safe to read 4k, so we do that 1633 */ 1634 ret = read_disk_sb(rdev, 4096); 1635 if (ret) return ret; 1636 1637 sb = page_address(rdev->sb_page); 1638 1639 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) || 1640 sb->major_version != cpu_to_le32(1) || 1641 le32_to_cpu(sb->max_dev) > (4096-256)/2 || 1642 le64_to_cpu(sb->super_offset) != rdev->sb_start || 1643 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0) 1644 return -EINVAL; 1645 1646 if (calc_sb_1_csum(sb) != sb->sb_csum) { 1647 pr_warn("md: invalid superblock checksum on %pg\n", 1648 rdev->bdev); 1649 return -EINVAL; 1650 } 1651 if (le64_to_cpu(sb->data_size) < 10) { 1652 pr_warn("md: data_size too small on %pg\n", 1653 rdev->bdev); 1654 return -EINVAL; 1655 } 1656 if (sb->pad0 || 1657 sb->pad3[0] || 1658 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1]))) 1659 /* Some padding is non-zero, might be a new feature */ 1660 return -EINVAL; 1661 1662 rdev->preferred_minor = 0xffff; 1663 rdev->data_offset = le64_to_cpu(sb->data_offset); 1664 rdev->new_data_offset = rdev->data_offset; 1665 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) && 1666 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET)) 1667 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset); 1668 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read)); 1669 1670 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256; 1671 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 1672 if (rdev->sb_size & bmask) 1673 rdev->sb_size = (rdev->sb_size | bmask) + 1; 1674 1675 if (minor_version 1676 && rdev->data_offset < sb_start + (rdev->sb_size/512)) 1677 return -EINVAL; 1678 if (minor_version 1679 && rdev->new_data_offset < sb_start + (rdev->sb_size/512)) 1680 return -EINVAL; 1681 1682 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH)) 1683 rdev->desc_nr = -1; 1684 else 1685 rdev->desc_nr = le32_to_cpu(sb->dev_number); 1686 1687 if (!rdev->bb_page) { 1688 rdev->bb_page = alloc_page(GFP_KERNEL); 1689 if (!rdev->bb_page) 1690 return -ENOMEM; 1691 } 1692 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) && 1693 rdev->badblocks.count == 0) { 1694 /* need to load the bad block list. 1695 * Currently we limit it to one page. 1696 */ 1697 s32 offset; 1698 sector_t bb_sector; 1699 __le64 *bbp; 1700 int i; 1701 int sectors = le16_to_cpu(sb->bblog_size); 1702 if (sectors > (PAGE_SIZE / 512)) 1703 return -EINVAL; 1704 offset = le32_to_cpu(sb->bblog_offset); 1705 if (offset == 0) 1706 return -EINVAL; 1707 bb_sector = (long long)offset; 1708 if (!sync_page_io(rdev, bb_sector, sectors << 9, 1709 rdev->bb_page, REQ_OP_READ, true)) 1710 return -EIO; 1711 bbp = (__le64 *)page_address(rdev->bb_page); 1712 rdev->badblocks.shift = sb->bblog_shift; 1713 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) { 1714 u64 bb = le64_to_cpu(*bbp); 1715 int count = bb & (0x3ff); 1716 u64 sector = bb >> 10; 1717 sector <<= sb->bblog_shift; 1718 count <<= sb->bblog_shift; 1719 if (bb + 1 == 0) 1720 break; 1721 if (badblocks_set(&rdev->badblocks, sector, count, 1)) 1722 return -EINVAL; 1723 } 1724 } else if (sb->bblog_offset != 0) 1725 rdev->badblocks.shift = 0; 1726 1727 if ((le32_to_cpu(sb->feature_map) & 1728 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) { 1729 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset); 1730 rdev->ppl.size = le16_to_cpu(sb->ppl.size); 1731 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset; 1732 } 1733 1734 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) && 1735 sb->level != 0) 1736 return -EINVAL; 1737 1738 /* not spare disk, or LEVEL_MULTIPATH */ 1739 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) || 1740 (rdev->desc_nr >= 0 && 1741 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1742 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1743 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))) 1744 spare_disk = false; 1745 1746 if (!refdev) { 1747 if (!spare_disk) 1748 ret = 1; 1749 else 1750 ret = 0; 1751 } else { 1752 __u64 ev1, ev2; 1753 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page); 1754 1755 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 || 1756 sb->level != refsb->level || 1757 sb->layout != refsb->layout || 1758 sb->chunksize != refsb->chunksize) { 1759 pr_warn("md: %pg has strangely different superblock to %pg\n", 1760 rdev->bdev, 1761 refdev->bdev); 1762 return -EINVAL; 1763 } 1764 ev1 = le64_to_cpu(sb->events); 1765 ev2 = le64_to_cpu(refsb->events); 1766 1767 if (!spare_disk && ev1 > ev2) 1768 ret = 1; 1769 else 1770 ret = 0; 1771 } 1772 if (minor_version) 1773 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 1774 else 1775 sectors = rdev->sb_start; 1776 if (sectors < le64_to_cpu(sb->data_size)) 1777 return -EINVAL; 1778 rdev->sectors = le64_to_cpu(sb->data_size); 1779 return ret; 1780 } 1781 1782 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev) 1783 { 1784 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 1785 __u64 ev1 = le64_to_cpu(sb->events); 1786 1787 rdev->raid_disk = -1; 1788 clear_bit(Faulty, &rdev->flags); 1789 clear_bit(In_sync, &rdev->flags); 1790 clear_bit(Bitmap_sync, &rdev->flags); 1791 clear_bit(WriteMostly, &rdev->flags); 1792 1793 if (mddev->raid_disks == 0) { 1794 mddev->major_version = 1; 1795 mddev->patch_version = 0; 1796 mddev->external = 0; 1797 mddev->chunk_sectors = le32_to_cpu(sb->chunksize); 1798 mddev->ctime = le64_to_cpu(sb->ctime); 1799 mddev->utime = le64_to_cpu(sb->utime); 1800 mddev->level = le32_to_cpu(sb->level); 1801 mddev->clevel[0] = 0; 1802 mddev->layout = le32_to_cpu(sb->layout); 1803 mddev->raid_disks = le32_to_cpu(sb->raid_disks); 1804 mddev->dev_sectors = le64_to_cpu(sb->size); 1805 mddev->events = ev1; 1806 mddev->bitmap_info.offset = 0; 1807 mddev->bitmap_info.space = 0; 1808 /* Default location for bitmap is 1K after superblock 1809 * using 3K - total of 4K 1810 */ 1811 mddev->bitmap_info.default_offset = 1024 >> 9; 1812 mddev->bitmap_info.default_space = (4096-1024) >> 9; 1813 mddev->reshape_backwards = 0; 1814 1815 mddev->recovery_cp = le64_to_cpu(sb->resync_offset); 1816 memcpy(mddev->uuid, sb->set_uuid, 16); 1817 1818 mddev->max_disks = (4096-256)/2; 1819 1820 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) && 1821 mddev->bitmap_info.file == NULL) { 1822 mddev->bitmap_info.offset = 1823 (__s32)le32_to_cpu(sb->bitmap_offset); 1824 /* Metadata doesn't record how much space is available. 1825 * For 1.0, we assume we can use up to the superblock 1826 * if before, else to 4K beyond superblock. 1827 * For others, assume no change is possible. 1828 */ 1829 if (mddev->minor_version > 0) 1830 mddev->bitmap_info.space = 0; 1831 else if (mddev->bitmap_info.offset > 0) 1832 mddev->bitmap_info.space = 1833 8 - mddev->bitmap_info.offset; 1834 else 1835 mddev->bitmap_info.space = 1836 -mddev->bitmap_info.offset; 1837 } 1838 1839 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 1840 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 1841 mddev->delta_disks = le32_to_cpu(sb->delta_disks); 1842 mddev->new_level = le32_to_cpu(sb->new_level); 1843 mddev->new_layout = le32_to_cpu(sb->new_layout); 1844 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk); 1845 if (mddev->delta_disks < 0 || 1846 (mddev->delta_disks == 0 && 1847 (le32_to_cpu(sb->feature_map) 1848 & MD_FEATURE_RESHAPE_BACKWARDS))) 1849 mddev->reshape_backwards = 1; 1850 } else { 1851 mddev->reshape_position = MaxSector; 1852 mddev->delta_disks = 0; 1853 mddev->new_level = mddev->level; 1854 mddev->new_layout = mddev->layout; 1855 mddev->new_chunk_sectors = mddev->chunk_sectors; 1856 } 1857 1858 if (mddev->level == 0 && 1859 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT)) 1860 mddev->layout = -1; 1861 1862 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) 1863 set_bit(MD_HAS_JOURNAL, &mddev->flags); 1864 1865 if (le32_to_cpu(sb->feature_map) & 1866 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) { 1867 if (le32_to_cpu(sb->feature_map) & 1868 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL)) 1869 return -EINVAL; 1870 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) && 1871 (le32_to_cpu(sb->feature_map) & 1872 MD_FEATURE_MULTIPLE_PPLS)) 1873 return -EINVAL; 1874 set_bit(MD_HAS_PPL, &mddev->flags); 1875 } 1876 } else if (mddev->pers == NULL) { 1877 /* Insist of good event counter while assembling, except for 1878 * spares (which don't need an event count). 1879 * Similar to mdadm, we allow event counter difference of 1 1880 * from the freshest device. 1881 */ 1882 if (rdev->desc_nr >= 0 && 1883 rdev->desc_nr < le32_to_cpu(sb->max_dev) && 1884 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX || 1885 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)) 1886 if (ev1 + 1 < mddev->events) 1887 return -EINVAL; 1888 } else if (mddev->bitmap) { 1889 /* If adding to array with a bitmap, then we can accept an 1890 * older device, but not too old. 1891 */ 1892 if (ev1 < mddev->bitmap->events_cleared) 1893 return 0; 1894 if (ev1 < mddev->events) 1895 set_bit(Bitmap_sync, &rdev->flags); 1896 } else { 1897 if (ev1 < mddev->events) 1898 /* just a hot-add of a new device, leave raid_disk at -1 */ 1899 return 0; 1900 } 1901 if (mddev->level != LEVEL_MULTIPATH) { 1902 int role; 1903 if (rdev->desc_nr < 0 || 1904 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) { 1905 role = MD_DISK_ROLE_SPARE; 1906 rdev->desc_nr = -1; 1907 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) { 1908 /* 1909 * If we are assembling, and our event counter is smaller than the 1910 * highest event counter, we cannot trust our superblock about the role. 1911 * It could happen that our rdev was marked as Faulty, and all other 1912 * superblocks were updated with +1 event counter. 1913 * Then, before the next superblock update, which typically happens when 1914 * remove_and_add_spares() removes the device from the array, there was 1915 * a crash or reboot. 1916 * If we allow current rdev without consulting the freshest superblock, 1917 * we could cause data corruption. 1918 * Note that in this case our event counter is smaller by 1 than the 1919 * highest, otherwise, this rdev would not be allowed into array; 1920 * both kernel and mdadm allow event counter difference of 1. 1921 */ 1922 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page); 1923 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev); 1924 1925 if (rdev->desc_nr >= freshest_max_dev) { 1926 /* this is unexpected, better not proceed */ 1927 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n", 1928 mdname(mddev), rdev->bdev, rdev->desc_nr, 1929 freshest->bdev, freshest_max_dev); 1930 return -EUCLEAN; 1931 } 1932 1933 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]); 1934 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n", 1935 mdname(mddev), rdev->bdev, role, role, freshest->bdev); 1936 } else { 1937 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 1938 } 1939 switch(role) { 1940 case MD_DISK_ROLE_SPARE: /* spare */ 1941 break; 1942 case MD_DISK_ROLE_FAULTY: /* faulty */ 1943 set_bit(Faulty, &rdev->flags); 1944 break; 1945 case MD_DISK_ROLE_JOURNAL: /* journal device */ 1946 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) { 1947 /* journal device without journal feature */ 1948 pr_warn("md: journal device provided without journal feature, ignoring the device\n"); 1949 return -EINVAL; 1950 } 1951 set_bit(Journal, &rdev->flags); 1952 rdev->journal_tail = le64_to_cpu(sb->journal_tail); 1953 rdev->raid_disk = 0; 1954 break; 1955 default: 1956 rdev->saved_raid_disk = role; 1957 if ((le32_to_cpu(sb->feature_map) & 1958 MD_FEATURE_RECOVERY_OFFSET)) { 1959 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 1960 if (!(le32_to_cpu(sb->feature_map) & 1961 MD_FEATURE_RECOVERY_BITMAP)) 1962 rdev->saved_raid_disk = -1; 1963 } else { 1964 /* 1965 * If the array is FROZEN, then the device can't 1966 * be in_sync with rest of array. 1967 */ 1968 if (!test_bit(MD_RECOVERY_FROZEN, 1969 &mddev->recovery)) 1970 set_bit(In_sync, &rdev->flags); 1971 } 1972 rdev->raid_disk = role; 1973 break; 1974 } 1975 if (sb->devflags & WriteMostly1) 1976 set_bit(WriteMostly, &rdev->flags); 1977 if (sb->devflags & FailFast1) 1978 set_bit(FailFast, &rdev->flags); 1979 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT) 1980 set_bit(Replacement, &rdev->flags); 1981 } else /* MULTIPATH are always insync */ 1982 set_bit(In_sync, &rdev->flags); 1983 1984 return 0; 1985 } 1986 1987 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev) 1988 { 1989 struct mdp_superblock_1 *sb; 1990 struct md_rdev *rdev2; 1991 int max_dev, i; 1992 /* make rdev->sb match mddev and rdev data. */ 1993 1994 sb = page_address(rdev->sb_page); 1995 1996 sb->feature_map = 0; 1997 sb->pad0 = 0; 1998 sb->recovery_offset = cpu_to_le64(0); 1999 memset(sb->pad3, 0, sizeof(sb->pad3)); 2000 2001 sb->utime = cpu_to_le64((__u64)mddev->utime); 2002 sb->events = cpu_to_le64(mddev->events); 2003 if (mddev->in_sync) 2004 sb->resync_offset = cpu_to_le64(mddev->recovery_cp); 2005 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags)) 2006 sb->resync_offset = cpu_to_le64(MaxSector); 2007 else 2008 sb->resync_offset = cpu_to_le64(0); 2009 2010 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors)); 2011 2012 sb->raid_disks = cpu_to_le32(mddev->raid_disks); 2013 sb->size = cpu_to_le64(mddev->dev_sectors); 2014 sb->chunksize = cpu_to_le32(mddev->chunk_sectors); 2015 sb->level = cpu_to_le32(mddev->level); 2016 sb->layout = cpu_to_le32(mddev->layout); 2017 if (test_bit(FailFast, &rdev->flags)) 2018 sb->devflags |= FailFast1; 2019 else 2020 sb->devflags &= ~FailFast1; 2021 2022 if (test_bit(WriteMostly, &rdev->flags)) 2023 sb->devflags |= WriteMostly1; 2024 else 2025 sb->devflags &= ~WriteMostly1; 2026 sb->data_offset = cpu_to_le64(rdev->data_offset); 2027 sb->data_size = cpu_to_le64(rdev->sectors); 2028 2029 if (mddev->bitmap && mddev->bitmap_info.file == NULL) { 2030 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset); 2031 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET); 2032 } 2033 2034 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) && 2035 !test_bit(In_sync, &rdev->flags)) { 2036 sb->feature_map |= 2037 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET); 2038 sb->recovery_offset = 2039 cpu_to_le64(rdev->recovery_offset); 2040 if (rdev->saved_raid_disk >= 0 && mddev->bitmap) 2041 sb->feature_map |= 2042 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP); 2043 } 2044 /* Note: recovery_offset and journal_tail share space */ 2045 if (test_bit(Journal, &rdev->flags)) 2046 sb->journal_tail = cpu_to_le64(rdev->journal_tail); 2047 if (test_bit(Replacement, &rdev->flags)) 2048 sb->feature_map |= 2049 cpu_to_le32(MD_FEATURE_REPLACEMENT); 2050 2051 if (mddev->reshape_position != MaxSector) { 2052 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE); 2053 sb->reshape_position = cpu_to_le64(mddev->reshape_position); 2054 sb->new_layout = cpu_to_le32(mddev->new_layout); 2055 sb->delta_disks = cpu_to_le32(mddev->delta_disks); 2056 sb->new_level = cpu_to_le32(mddev->new_level); 2057 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors); 2058 if (mddev->delta_disks == 0 && 2059 mddev->reshape_backwards) 2060 sb->feature_map 2061 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS); 2062 if (rdev->new_data_offset != rdev->data_offset) { 2063 sb->feature_map 2064 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET); 2065 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset 2066 - rdev->data_offset)); 2067 } 2068 } 2069 2070 if (mddev_is_clustered(mddev)) 2071 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED); 2072 2073 if (rdev->badblocks.count == 0) 2074 /* Nothing to do for bad blocks*/ ; 2075 else if (sb->bblog_offset == 0) 2076 /* Cannot record bad blocks on this device */ 2077 md_error(mddev, rdev); 2078 else { 2079 struct badblocks *bb = &rdev->badblocks; 2080 __le64 *bbp = (__le64 *)page_address(rdev->bb_page); 2081 u64 *p = bb->page; 2082 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS); 2083 if (bb->changed) { 2084 unsigned seq; 2085 2086 retry: 2087 seq = read_seqbegin(&bb->lock); 2088 2089 memset(bbp, 0xff, PAGE_SIZE); 2090 2091 for (i = 0 ; i < bb->count ; i++) { 2092 u64 internal_bb = p[i]; 2093 u64 store_bb = ((BB_OFFSET(internal_bb) << 10) 2094 | BB_LEN(internal_bb)); 2095 bbp[i] = cpu_to_le64(store_bb); 2096 } 2097 bb->changed = 0; 2098 if (read_seqretry(&bb->lock, seq)) 2099 goto retry; 2100 2101 bb->sector = (rdev->sb_start + 2102 (int)le32_to_cpu(sb->bblog_offset)); 2103 bb->size = le16_to_cpu(sb->bblog_size); 2104 } 2105 } 2106 2107 max_dev = 0; 2108 rdev_for_each(rdev2, mddev) 2109 if (rdev2->desc_nr+1 > max_dev) 2110 max_dev = rdev2->desc_nr+1; 2111 2112 if (max_dev > le32_to_cpu(sb->max_dev)) { 2113 int bmask; 2114 sb->max_dev = cpu_to_le32(max_dev); 2115 rdev->sb_size = max_dev * 2 + 256; 2116 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1; 2117 if (rdev->sb_size & bmask) 2118 rdev->sb_size = (rdev->sb_size | bmask) + 1; 2119 } else 2120 max_dev = le32_to_cpu(sb->max_dev); 2121 2122 for (i=0; i<max_dev;i++) 2123 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2124 2125 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) 2126 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL); 2127 2128 if (test_bit(MD_HAS_PPL, &mddev->flags)) { 2129 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags)) 2130 sb->feature_map |= 2131 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS); 2132 else 2133 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL); 2134 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset); 2135 sb->ppl.size = cpu_to_le16(rdev->ppl.size); 2136 } 2137 2138 rdev_for_each(rdev2, mddev) { 2139 i = rdev2->desc_nr; 2140 if (test_bit(Faulty, &rdev2->flags)) 2141 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY); 2142 else if (test_bit(In_sync, &rdev2->flags)) 2143 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2144 else if (test_bit(Journal, &rdev2->flags)) 2145 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL); 2146 else if (rdev2->raid_disk >= 0) 2147 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk); 2148 else 2149 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE); 2150 } 2151 2152 sb->sb_csum = calc_sb_1_csum(sb); 2153 } 2154 2155 static sector_t super_1_choose_bm_space(sector_t dev_size) 2156 { 2157 sector_t bm_space; 2158 2159 /* if the device is bigger than 8Gig, save 64k for bitmap 2160 * usage, if bigger than 200Gig, save 128k 2161 */ 2162 if (dev_size < 64*2) 2163 bm_space = 0; 2164 else if (dev_size - 64*2 >= 200*1024*1024*2) 2165 bm_space = 128*2; 2166 else if (dev_size - 4*2 > 8*1024*1024*2) 2167 bm_space = 64*2; 2168 else 2169 bm_space = 4*2; 2170 return bm_space; 2171 } 2172 2173 static unsigned long long 2174 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors) 2175 { 2176 struct mdp_superblock_1 *sb; 2177 sector_t max_sectors; 2178 if (num_sectors && num_sectors < rdev->mddev->dev_sectors) 2179 return 0; /* component must fit device */ 2180 if (rdev->data_offset != rdev->new_data_offset) 2181 return 0; /* too confusing */ 2182 if (rdev->sb_start < rdev->data_offset) { 2183 /* minor versions 1 and 2; superblock before data */ 2184 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset; 2185 if (!num_sectors || num_sectors > max_sectors) 2186 num_sectors = max_sectors; 2187 } else if (rdev->mddev->bitmap_info.offset) { 2188 /* minor version 0 with bitmap we can't move */ 2189 return 0; 2190 } else { 2191 /* minor version 0; superblock after data */ 2192 sector_t sb_start, bm_space; 2193 sector_t dev_size = bdev_nr_sectors(rdev->bdev); 2194 2195 /* 8K is for superblock */ 2196 sb_start = dev_size - 8*2; 2197 sb_start &= ~(sector_t)(4*2 - 1); 2198 2199 bm_space = super_1_choose_bm_space(dev_size); 2200 2201 /* Space that can be used to store date needs to decrease 2202 * superblock bitmap space and bad block space(4K) 2203 */ 2204 max_sectors = sb_start - bm_space - 4*2; 2205 2206 if (!num_sectors || num_sectors > max_sectors) 2207 num_sectors = max_sectors; 2208 rdev->sb_start = sb_start; 2209 } 2210 sb = page_address(rdev->sb_page); 2211 sb->data_size = cpu_to_le64(num_sectors); 2212 sb->super_offset = cpu_to_le64(rdev->sb_start); 2213 sb->sb_csum = calc_sb_1_csum(sb); 2214 do { 2215 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size, 2216 rdev->sb_page); 2217 } while (md_super_wait(rdev->mddev) < 0); 2218 return num_sectors; 2219 2220 } 2221 2222 static int 2223 super_1_allow_new_offset(struct md_rdev *rdev, 2224 unsigned long long new_offset) 2225 { 2226 /* All necessary checks on new >= old have been done */ 2227 struct bitmap *bitmap; 2228 if (new_offset >= rdev->data_offset) 2229 return 1; 2230 2231 /* with 1.0 metadata, there is no metadata to tread on 2232 * so we can always move back */ 2233 if (rdev->mddev->minor_version == 0) 2234 return 1; 2235 2236 /* otherwise we must be sure not to step on 2237 * any metadata, so stay: 2238 * 36K beyond start of superblock 2239 * beyond end of badblocks 2240 * beyond write-intent bitmap 2241 */ 2242 if (rdev->sb_start + (32+4)*2 > new_offset) 2243 return 0; 2244 bitmap = rdev->mddev->bitmap; 2245 if (bitmap && !rdev->mddev->bitmap_info.file && 2246 rdev->sb_start + rdev->mddev->bitmap_info.offset + 2247 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset) 2248 return 0; 2249 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset) 2250 return 0; 2251 2252 return 1; 2253 } 2254 2255 static struct super_type super_types[] = { 2256 [0] = { 2257 .name = "0.90.0", 2258 .owner = THIS_MODULE, 2259 .load_super = super_90_load, 2260 .validate_super = super_90_validate, 2261 .sync_super = super_90_sync, 2262 .rdev_size_change = super_90_rdev_size_change, 2263 .allow_new_offset = super_90_allow_new_offset, 2264 }, 2265 [1] = { 2266 .name = "md-1", 2267 .owner = THIS_MODULE, 2268 .load_super = super_1_load, 2269 .validate_super = super_1_validate, 2270 .sync_super = super_1_sync, 2271 .rdev_size_change = super_1_rdev_size_change, 2272 .allow_new_offset = super_1_allow_new_offset, 2273 }, 2274 }; 2275 2276 static void sync_super(struct mddev *mddev, struct md_rdev *rdev) 2277 { 2278 if (mddev->sync_super) { 2279 mddev->sync_super(mddev, rdev); 2280 return; 2281 } 2282 2283 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types)); 2284 2285 super_types[mddev->major_version].sync_super(mddev, rdev); 2286 } 2287 2288 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2) 2289 { 2290 struct md_rdev *rdev, *rdev2; 2291 2292 rcu_read_lock(); 2293 rdev_for_each_rcu(rdev, mddev1) { 2294 if (test_bit(Faulty, &rdev->flags) || 2295 test_bit(Journal, &rdev->flags) || 2296 rdev->raid_disk == -1) 2297 continue; 2298 rdev_for_each_rcu(rdev2, mddev2) { 2299 if (test_bit(Faulty, &rdev2->flags) || 2300 test_bit(Journal, &rdev2->flags) || 2301 rdev2->raid_disk == -1) 2302 continue; 2303 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) { 2304 rcu_read_unlock(); 2305 return 1; 2306 } 2307 } 2308 } 2309 rcu_read_unlock(); 2310 return 0; 2311 } 2312 2313 static LIST_HEAD(pending_raid_disks); 2314 2315 /* 2316 * Try to register data integrity profile for an mddev 2317 * 2318 * This is called when an array is started and after a disk has been kicked 2319 * from the array. It only succeeds if all working and active component devices 2320 * are integrity capable with matching profiles. 2321 */ 2322 int md_integrity_register(struct mddev *mddev) 2323 { 2324 struct md_rdev *rdev, *reference = NULL; 2325 2326 if (list_empty(&mddev->disks)) 2327 return 0; /* nothing to do */ 2328 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk)) 2329 return 0; /* shouldn't register, or already is */ 2330 rdev_for_each(rdev, mddev) { 2331 /* skip spares and non-functional disks */ 2332 if (test_bit(Faulty, &rdev->flags)) 2333 continue; 2334 if (rdev->raid_disk < 0) 2335 continue; 2336 if (!reference) { 2337 /* Use the first rdev as the reference */ 2338 reference = rdev; 2339 continue; 2340 } 2341 /* does this rdev's profile match the reference profile? */ 2342 if (blk_integrity_compare(reference->bdev->bd_disk, 2343 rdev->bdev->bd_disk) < 0) 2344 return -EINVAL; 2345 } 2346 if (!reference || !bdev_get_integrity(reference->bdev)) 2347 return 0; 2348 /* 2349 * All component devices are integrity capable and have matching 2350 * profiles, register the common profile for the md device. 2351 */ 2352 blk_integrity_register(mddev->gendisk, 2353 bdev_get_integrity(reference->bdev)); 2354 2355 pr_debug("md: data integrity enabled on %s\n", mdname(mddev)); 2356 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) || 2357 (mddev->level != 1 && mddev->level != 10 && 2358 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) { 2359 /* 2360 * No need to handle the failure of bioset_integrity_create, 2361 * because the function is called by md_run() -> pers->run(), 2362 * md_run calls bioset_exit -> bioset_integrity_free in case 2363 * of failure case. 2364 */ 2365 pr_err("md: failed to create integrity pool for %s\n", 2366 mdname(mddev)); 2367 return -EINVAL; 2368 } 2369 return 0; 2370 } 2371 EXPORT_SYMBOL(md_integrity_register); 2372 2373 /* 2374 * Attempt to add an rdev, but only if it is consistent with the current 2375 * integrity profile 2376 */ 2377 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev) 2378 { 2379 struct blk_integrity *bi_mddev; 2380 2381 if (!mddev->gendisk) 2382 return 0; 2383 2384 bi_mddev = blk_get_integrity(mddev->gendisk); 2385 2386 if (!bi_mddev) /* nothing to do */ 2387 return 0; 2388 2389 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) { 2390 pr_err("%s: incompatible integrity profile for %pg\n", 2391 mdname(mddev), rdev->bdev); 2392 return -ENXIO; 2393 } 2394 2395 return 0; 2396 } 2397 EXPORT_SYMBOL(md_integrity_add_rdev); 2398 2399 static bool rdev_read_only(struct md_rdev *rdev) 2400 { 2401 return bdev_read_only(rdev->bdev) || 2402 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev)); 2403 } 2404 2405 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev) 2406 { 2407 char b[BDEVNAME_SIZE]; 2408 int err; 2409 2410 /* prevent duplicates */ 2411 if (find_rdev(mddev, rdev->bdev->bd_dev)) 2412 return -EEXIST; 2413 2414 if (rdev_read_only(rdev) && mddev->pers) 2415 return -EROFS; 2416 2417 /* make sure rdev->sectors exceeds mddev->dev_sectors */ 2418 if (!test_bit(Journal, &rdev->flags) && 2419 rdev->sectors && 2420 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) { 2421 if (mddev->pers) { 2422 /* Cannot change size, so fail 2423 * If mddev->level <= 0, then we don't care 2424 * about aligning sizes (e.g. linear) 2425 */ 2426 if (mddev->level > 0) 2427 return -ENOSPC; 2428 } else 2429 mddev->dev_sectors = rdev->sectors; 2430 } 2431 2432 /* Verify rdev->desc_nr is unique. 2433 * If it is -1, assign a free number, else 2434 * check number is not in use 2435 */ 2436 rcu_read_lock(); 2437 if (rdev->desc_nr < 0) { 2438 int choice = 0; 2439 if (mddev->pers) 2440 choice = mddev->raid_disks; 2441 while (md_find_rdev_nr_rcu(mddev, choice)) 2442 choice++; 2443 rdev->desc_nr = choice; 2444 } else { 2445 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) { 2446 rcu_read_unlock(); 2447 return -EBUSY; 2448 } 2449 } 2450 rcu_read_unlock(); 2451 if (!test_bit(Journal, &rdev->flags) && 2452 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) { 2453 pr_warn("md: %s: array is limited to %d devices\n", 2454 mdname(mddev), mddev->max_disks); 2455 return -EBUSY; 2456 } 2457 snprintf(b, sizeof(b), "%pg", rdev->bdev); 2458 strreplace(b, '/', '!'); 2459 2460 rdev->mddev = mddev; 2461 pr_debug("md: bind<%s>\n", b); 2462 2463 if (mddev->raid_disks) 2464 mddev_create_serial_pool(mddev, rdev, false); 2465 2466 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b))) 2467 goto fail; 2468 2469 /* failure here is OK */ 2470 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block"); 2471 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state"); 2472 rdev->sysfs_unack_badblocks = 2473 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks"); 2474 rdev->sysfs_badblocks = 2475 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks"); 2476 2477 list_add_rcu(&rdev->same_set, &mddev->disks); 2478 bd_link_disk_holder(rdev->bdev, mddev->gendisk); 2479 2480 /* May as well allow recovery to be retried once */ 2481 mddev->recovery_disabled++; 2482 2483 return 0; 2484 2485 fail: 2486 pr_warn("md: failed to register dev-%s for %s\n", 2487 b, mdname(mddev)); 2488 mddev_destroy_serial_pool(mddev, rdev, false); 2489 return err; 2490 } 2491 2492 void md_autodetect_dev(dev_t dev); 2493 2494 /* just for claiming the bdev */ 2495 static struct md_rdev claim_rdev; 2496 2497 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev) 2498 { 2499 pr_debug("md: export_rdev(%pg)\n", rdev->bdev); 2500 md_rdev_clear(rdev); 2501 #ifndef MODULE 2502 if (test_bit(AutoDetected, &rdev->flags)) 2503 md_autodetect_dev(rdev->bdev->bd_dev); 2504 #endif 2505 blkdev_put(rdev->bdev, 2506 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev); 2507 rdev->bdev = NULL; 2508 kobject_put(&rdev->kobj); 2509 } 2510 2511 static void md_kick_rdev_from_array(struct md_rdev *rdev) 2512 { 2513 struct mddev *mddev = rdev->mddev; 2514 2515 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk); 2516 list_del_rcu(&rdev->same_set); 2517 pr_debug("md: unbind<%pg>\n", rdev->bdev); 2518 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2519 rdev->mddev = NULL; 2520 sysfs_remove_link(&rdev->kobj, "block"); 2521 sysfs_put(rdev->sysfs_state); 2522 sysfs_put(rdev->sysfs_unack_badblocks); 2523 sysfs_put(rdev->sysfs_badblocks); 2524 rdev->sysfs_state = NULL; 2525 rdev->sysfs_unack_badblocks = NULL; 2526 rdev->sysfs_badblocks = NULL; 2527 rdev->badblocks.count = 0; 2528 2529 synchronize_rcu(); 2530 2531 /* 2532 * kobject_del() will wait for all in progress writers to be done, where 2533 * reconfig_mutex is held, hence it can't be called under 2534 * reconfig_mutex and it's delayed to mddev_unlock(). 2535 */ 2536 list_add(&rdev->same_set, &mddev->deleting); 2537 } 2538 2539 static void export_array(struct mddev *mddev) 2540 { 2541 struct md_rdev *rdev; 2542 2543 while (!list_empty(&mddev->disks)) { 2544 rdev = list_first_entry(&mddev->disks, struct md_rdev, 2545 same_set); 2546 md_kick_rdev_from_array(rdev); 2547 } 2548 mddev->raid_disks = 0; 2549 mddev->major_version = 0; 2550 } 2551 2552 static bool set_in_sync(struct mddev *mddev) 2553 { 2554 lockdep_assert_held(&mddev->lock); 2555 if (!mddev->in_sync) { 2556 mddev->sync_checkers++; 2557 spin_unlock(&mddev->lock); 2558 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending); 2559 spin_lock(&mddev->lock); 2560 if (!mddev->in_sync && 2561 percpu_ref_is_zero(&mddev->writes_pending)) { 2562 mddev->in_sync = 1; 2563 /* 2564 * Ensure ->in_sync is visible before we clear 2565 * ->sync_checkers. 2566 */ 2567 smp_mb(); 2568 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2569 sysfs_notify_dirent_safe(mddev->sysfs_state); 2570 } 2571 if (--mddev->sync_checkers == 0) 2572 percpu_ref_switch_to_percpu(&mddev->writes_pending); 2573 } 2574 if (mddev->safemode == 1) 2575 mddev->safemode = 0; 2576 return mddev->in_sync; 2577 } 2578 2579 static void sync_sbs(struct mddev *mddev, int nospares) 2580 { 2581 /* Update each superblock (in-memory image), but 2582 * if we are allowed to, skip spares which already 2583 * have the right event counter, or have one earlier 2584 * (which would mean they aren't being marked as dirty 2585 * with the rest of the array) 2586 */ 2587 struct md_rdev *rdev; 2588 rdev_for_each(rdev, mddev) { 2589 if (rdev->sb_events == mddev->events || 2590 (nospares && 2591 rdev->raid_disk < 0 && 2592 rdev->sb_events+1 == mddev->events)) { 2593 /* Don't update this superblock */ 2594 rdev->sb_loaded = 2; 2595 } else { 2596 sync_super(mddev, rdev); 2597 rdev->sb_loaded = 1; 2598 } 2599 } 2600 } 2601 2602 static bool does_sb_need_changing(struct mddev *mddev) 2603 { 2604 struct md_rdev *rdev = NULL, *iter; 2605 struct mdp_superblock_1 *sb; 2606 int role; 2607 2608 /* Find a good rdev */ 2609 rdev_for_each(iter, mddev) 2610 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) { 2611 rdev = iter; 2612 break; 2613 } 2614 2615 /* No good device found. */ 2616 if (!rdev) 2617 return false; 2618 2619 sb = page_address(rdev->sb_page); 2620 /* Check if a device has become faulty or a spare become active */ 2621 rdev_for_each(rdev, mddev) { 2622 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]); 2623 /* Device activated? */ 2624 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 && 2625 !test_bit(Faulty, &rdev->flags)) 2626 return true; 2627 /* Device turned faulty? */ 2628 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX)) 2629 return true; 2630 } 2631 2632 /* Check if any mddev parameters have changed */ 2633 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) || 2634 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) || 2635 (mddev->layout != le32_to_cpu(sb->layout)) || 2636 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) || 2637 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize))) 2638 return true; 2639 2640 return false; 2641 } 2642 2643 void md_update_sb(struct mddev *mddev, int force_change) 2644 { 2645 struct md_rdev *rdev; 2646 int sync_req; 2647 int nospares = 0; 2648 int any_badblocks_changed = 0; 2649 int ret = -1; 2650 2651 if (!md_is_rdwr(mddev)) { 2652 if (force_change) 2653 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2654 return; 2655 } 2656 2657 repeat: 2658 if (mddev_is_clustered(mddev)) { 2659 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2660 force_change = 1; 2661 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2662 nospares = 1; 2663 ret = md_cluster_ops->metadata_update_start(mddev); 2664 /* Has someone else has updated the sb */ 2665 if (!does_sb_need_changing(mddev)) { 2666 if (ret == 0) 2667 md_cluster_ops->metadata_update_cancel(mddev); 2668 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2669 BIT(MD_SB_CHANGE_DEVS) | 2670 BIT(MD_SB_CHANGE_CLEAN)); 2671 return; 2672 } 2673 } 2674 2675 /* 2676 * First make sure individual recovery_offsets are correct 2677 * curr_resync_completed can only be used during recovery. 2678 * During reshape/resync it might use array-addresses rather 2679 * that device addresses. 2680 */ 2681 rdev_for_each(rdev, mddev) { 2682 if (rdev->raid_disk >= 0 && 2683 mddev->delta_disks >= 0 && 2684 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) && 2685 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) && 2686 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 2687 !test_bit(Journal, &rdev->flags) && 2688 !test_bit(In_sync, &rdev->flags) && 2689 mddev->curr_resync_completed > rdev->recovery_offset) 2690 rdev->recovery_offset = mddev->curr_resync_completed; 2691 2692 } 2693 if (!mddev->persistent) { 2694 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 2695 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2696 if (!mddev->external) { 2697 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 2698 rdev_for_each(rdev, mddev) { 2699 if (rdev->badblocks.changed) { 2700 rdev->badblocks.changed = 0; 2701 ack_all_badblocks(&rdev->badblocks); 2702 md_error(mddev, rdev); 2703 } 2704 clear_bit(Blocked, &rdev->flags); 2705 clear_bit(BlockedBadBlocks, &rdev->flags); 2706 wake_up(&rdev->blocked_wait); 2707 } 2708 } 2709 wake_up(&mddev->sb_wait); 2710 return; 2711 } 2712 2713 spin_lock(&mddev->lock); 2714 2715 mddev->utime = ktime_get_real_seconds(); 2716 2717 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) 2718 force_change = 1; 2719 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags)) 2720 /* just a clean<-> dirty transition, possibly leave spares alone, 2721 * though if events isn't the right even/odd, we will have to do 2722 * spares after all 2723 */ 2724 nospares = 1; 2725 if (force_change) 2726 nospares = 0; 2727 if (mddev->degraded) 2728 /* If the array is degraded, then skipping spares is both 2729 * dangerous and fairly pointless. 2730 * Dangerous because a device that was removed from the array 2731 * might have a event_count that still looks up-to-date, 2732 * so it can be re-added without a resync. 2733 * Pointless because if there are any spares to skip, 2734 * then a recovery will happen and soon that array won't 2735 * be degraded any more and the spare can go back to sleep then. 2736 */ 2737 nospares = 0; 2738 2739 sync_req = mddev->in_sync; 2740 2741 /* If this is just a dirty<->clean transition, and the array is clean 2742 * and 'events' is odd, we can roll back to the previous clean state */ 2743 if (nospares 2744 && (mddev->in_sync && mddev->recovery_cp == MaxSector) 2745 && mddev->can_decrease_events 2746 && mddev->events != 1) { 2747 mddev->events--; 2748 mddev->can_decrease_events = 0; 2749 } else { 2750 /* otherwise we have to go forward and ... */ 2751 mddev->events ++; 2752 mddev->can_decrease_events = nospares; 2753 } 2754 2755 /* 2756 * This 64-bit counter should never wrap. 2757 * Either we are in around ~1 trillion A.C., assuming 2758 * 1 reboot per second, or we have a bug... 2759 */ 2760 WARN_ON(mddev->events == 0); 2761 2762 rdev_for_each(rdev, mddev) { 2763 if (rdev->badblocks.changed) 2764 any_badblocks_changed++; 2765 if (test_bit(Faulty, &rdev->flags)) 2766 set_bit(FaultRecorded, &rdev->flags); 2767 } 2768 2769 sync_sbs(mddev, nospares); 2770 spin_unlock(&mddev->lock); 2771 2772 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n", 2773 mdname(mddev), mddev->in_sync); 2774 2775 if (mddev->queue) 2776 blk_add_trace_msg(mddev->queue, "md md_update_sb"); 2777 rewrite: 2778 md_bitmap_update_sb(mddev->bitmap); 2779 rdev_for_each(rdev, mddev) { 2780 if (rdev->sb_loaded != 1) 2781 continue; /* no noise on spare devices */ 2782 2783 if (!test_bit(Faulty, &rdev->flags)) { 2784 md_super_write(mddev,rdev, 2785 rdev->sb_start, rdev->sb_size, 2786 rdev->sb_page); 2787 pr_debug("md: (write) %pg's sb offset: %llu\n", 2788 rdev->bdev, 2789 (unsigned long long)rdev->sb_start); 2790 rdev->sb_events = mddev->events; 2791 if (rdev->badblocks.size) { 2792 md_super_write(mddev, rdev, 2793 rdev->badblocks.sector, 2794 rdev->badblocks.size << 9, 2795 rdev->bb_page); 2796 rdev->badblocks.size = 0; 2797 } 2798 2799 } else 2800 pr_debug("md: %pg (skipping faulty)\n", 2801 rdev->bdev); 2802 2803 if (mddev->level == LEVEL_MULTIPATH) 2804 /* only need to write one superblock... */ 2805 break; 2806 } 2807 if (md_super_wait(mddev) < 0) 2808 goto rewrite; 2809 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */ 2810 2811 if (mddev_is_clustered(mddev) && ret == 0) 2812 md_cluster_ops->metadata_update_finish(mddev); 2813 2814 if (mddev->in_sync != sync_req || 2815 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING), 2816 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN))) 2817 /* have to write it out again */ 2818 goto repeat; 2819 wake_up(&mddev->sb_wait); 2820 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 2821 sysfs_notify_dirent_safe(mddev->sysfs_completed); 2822 2823 rdev_for_each(rdev, mddev) { 2824 if (test_and_clear_bit(FaultRecorded, &rdev->flags)) 2825 clear_bit(Blocked, &rdev->flags); 2826 2827 if (any_badblocks_changed) 2828 ack_all_badblocks(&rdev->badblocks); 2829 clear_bit(BlockedBadBlocks, &rdev->flags); 2830 wake_up(&rdev->blocked_wait); 2831 } 2832 } 2833 EXPORT_SYMBOL(md_update_sb); 2834 2835 static int add_bound_rdev(struct md_rdev *rdev) 2836 { 2837 struct mddev *mddev = rdev->mddev; 2838 int err = 0; 2839 bool add_journal = test_bit(Journal, &rdev->flags); 2840 2841 if (!mddev->pers->hot_remove_disk || add_journal) { 2842 /* If there is hot_add_disk but no hot_remove_disk 2843 * then added disks for geometry changes, 2844 * and should be added immediately. 2845 */ 2846 super_types[mddev->major_version]. 2847 validate_super(mddev, NULL/*freshest*/, rdev); 2848 if (add_journal) 2849 mddev_suspend(mddev); 2850 err = mddev->pers->hot_add_disk(mddev, rdev); 2851 if (add_journal) 2852 mddev_resume(mddev); 2853 if (err) { 2854 md_kick_rdev_from_array(rdev); 2855 return err; 2856 } 2857 } 2858 sysfs_notify_dirent_safe(rdev->sysfs_state); 2859 2860 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2861 if (mddev->degraded) 2862 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 2863 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 2864 md_new_event(); 2865 md_wakeup_thread(mddev->thread); 2866 return 0; 2867 } 2868 2869 /* words written to sysfs files may, or may not, be \n terminated. 2870 * We want to accept with case. For this we use cmd_match. 2871 */ 2872 static int cmd_match(const char *cmd, const char *str) 2873 { 2874 /* See if cmd, written into a sysfs file, matches 2875 * str. They must either be the same, or cmd can 2876 * have a trailing newline 2877 */ 2878 while (*cmd && *str && *cmd == *str) { 2879 cmd++; 2880 str++; 2881 } 2882 if (*cmd == '\n') 2883 cmd++; 2884 if (*str || *cmd) 2885 return 0; 2886 return 1; 2887 } 2888 2889 struct rdev_sysfs_entry { 2890 struct attribute attr; 2891 ssize_t (*show)(struct md_rdev *, char *); 2892 ssize_t (*store)(struct md_rdev *, const char *, size_t); 2893 }; 2894 2895 static ssize_t 2896 state_show(struct md_rdev *rdev, char *page) 2897 { 2898 char *sep = ","; 2899 size_t len = 0; 2900 unsigned long flags = READ_ONCE(rdev->flags); 2901 2902 if (test_bit(Faulty, &flags) || 2903 (!test_bit(ExternalBbl, &flags) && 2904 rdev->badblocks.unacked_exist)) 2905 len += sprintf(page+len, "faulty%s", sep); 2906 if (test_bit(In_sync, &flags)) 2907 len += sprintf(page+len, "in_sync%s", sep); 2908 if (test_bit(Journal, &flags)) 2909 len += sprintf(page+len, "journal%s", sep); 2910 if (test_bit(WriteMostly, &flags)) 2911 len += sprintf(page+len, "write_mostly%s", sep); 2912 if (test_bit(Blocked, &flags) || 2913 (rdev->badblocks.unacked_exist 2914 && !test_bit(Faulty, &flags))) 2915 len += sprintf(page+len, "blocked%s", sep); 2916 if (!test_bit(Faulty, &flags) && 2917 !test_bit(Journal, &flags) && 2918 !test_bit(In_sync, &flags)) 2919 len += sprintf(page+len, "spare%s", sep); 2920 if (test_bit(WriteErrorSeen, &flags)) 2921 len += sprintf(page+len, "write_error%s", sep); 2922 if (test_bit(WantReplacement, &flags)) 2923 len += sprintf(page+len, "want_replacement%s", sep); 2924 if (test_bit(Replacement, &flags)) 2925 len += sprintf(page+len, "replacement%s", sep); 2926 if (test_bit(ExternalBbl, &flags)) 2927 len += sprintf(page+len, "external_bbl%s", sep); 2928 if (test_bit(FailFast, &flags)) 2929 len += sprintf(page+len, "failfast%s", sep); 2930 2931 if (len) 2932 len -= strlen(sep); 2933 2934 return len+sprintf(page+len, "\n"); 2935 } 2936 2937 static ssize_t 2938 state_store(struct md_rdev *rdev, const char *buf, size_t len) 2939 { 2940 /* can write 2941 * faulty - simulates an error 2942 * remove - disconnects the device 2943 * writemostly - sets write_mostly 2944 * -writemostly - clears write_mostly 2945 * blocked - sets the Blocked flags 2946 * -blocked - clears the Blocked and possibly simulates an error 2947 * insync - sets Insync providing device isn't active 2948 * -insync - clear Insync for a device with a slot assigned, 2949 * so that it gets rebuilt based on bitmap 2950 * write_error - sets WriteErrorSeen 2951 * -write_error - clears WriteErrorSeen 2952 * {,-}failfast - set/clear FailFast 2953 */ 2954 2955 struct mddev *mddev = rdev->mddev; 2956 int err = -EINVAL; 2957 bool need_update_sb = false; 2958 2959 if (cmd_match(buf, "faulty") && rdev->mddev->pers) { 2960 md_error(rdev->mddev, rdev); 2961 2962 if (test_bit(MD_BROKEN, &rdev->mddev->flags)) 2963 err = -EBUSY; 2964 else 2965 err = 0; 2966 } else if (cmd_match(buf, "remove")) { 2967 if (rdev->mddev->pers) { 2968 clear_bit(Blocked, &rdev->flags); 2969 remove_and_add_spares(rdev->mddev, rdev); 2970 } 2971 if (rdev->raid_disk >= 0) 2972 err = -EBUSY; 2973 else { 2974 err = 0; 2975 if (mddev_is_clustered(mddev)) 2976 err = md_cluster_ops->remove_disk(mddev, rdev); 2977 2978 if (err == 0) { 2979 md_kick_rdev_from_array(rdev); 2980 if (mddev->pers) { 2981 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 2982 md_wakeup_thread(mddev->thread); 2983 } 2984 md_new_event(); 2985 } 2986 } 2987 } else if (cmd_match(buf, "writemostly")) { 2988 set_bit(WriteMostly, &rdev->flags); 2989 mddev_create_serial_pool(rdev->mddev, rdev, false); 2990 need_update_sb = true; 2991 err = 0; 2992 } else if (cmd_match(buf, "-writemostly")) { 2993 mddev_destroy_serial_pool(rdev->mddev, rdev, false); 2994 clear_bit(WriteMostly, &rdev->flags); 2995 need_update_sb = true; 2996 err = 0; 2997 } else if (cmd_match(buf, "blocked")) { 2998 set_bit(Blocked, &rdev->flags); 2999 err = 0; 3000 } else if (cmd_match(buf, "-blocked")) { 3001 if (!test_bit(Faulty, &rdev->flags) && 3002 !test_bit(ExternalBbl, &rdev->flags) && 3003 rdev->badblocks.unacked_exist) { 3004 /* metadata handler doesn't understand badblocks, 3005 * so we need to fail the device 3006 */ 3007 md_error(rdev->mddev, rdev); 3008 } 3009 clear_bit(Blocked, &rdev->flags); 3010 clear_bit(BlockedBadBlocks, &rdev->flags); 3011 wake_up(&rdev->blocked_wait); 3012 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3013 md_wakeup_thread(rdev->mddev->thread); 3014 3015 err = 0; 3016 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) { 3017 set_bit(In_sync, &rdev->flags); 3018 err = 0; 3019 } else if (cmd_match(buf, "failfast")) { 3020 set_bit(FailFast, &rdev->flags); 3021 need_update_sb = true; 3022 err = 0; 3023 } else if (cmd_match(buf, "-failfast")) { 3024 clear_bit(FailFast, &rdev->flags); 3025 need_update_sb = true; 3026 err = 0; 3027 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 && 3028 !test_bit(Journal, &rdev->flags)) { 3029 if (rdev->mddev->pers == NULL) { 3030 clear_bit(In_sync, &rdev->flags); 3031 rdev->saved_raid_disk = rdev->raid_disk; 3032 rdev->raid_disk = -1; 3033 err = 0; 3034 } 3035 } else if (cmd_match(buf, "write_error")) { 3036 set_bit(WriteErrorSeen, &rdev->flags); 3037 err = 0; 3038 } else if (cmd_match(buf, "-write_error")) { 3039 clear_bit(WriteErrorSeen, &rdev->flags); 3040 err = 0; 3041 } else if (cmd_match(buf, "want_replacement")) { 3042 /* Any non-spare device that is not a replacement can 3043 * become want_replacement at any time, but we then need to 3044 * check if recovery is needed. 3045 */ 3046 if (rdev->raid_disk >= 0 && 3047 !test_bit(Journal, &rdev->flags) && 3048 !test_bit(Replacement, &rdev->flags)) 3049 set_bit(WantReplacement, &rdev->flags); 3050 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3051 md_wakeup_thread(rdev->mddev->thread); 3052 err = 0; 3053 } else if (cmd_match(buf, "-want_replacement")) { 3054 /* Clearing 'want_replacement' is always allowed. 3055 * Once replacements starts it is too late though. 3056 */ 3057 err = 0; 3058 clear_bit(WantReplacement, &rdev->flags); 3059 } else if (cmd_match(buf, "replacement")) { 3060 /* Can only set a device as a replacement when array has not 3061 * yet been started. Once running, replacement is automatic 3062 * from spares, or by assigning 'slot'. 3063 */ 3064 if (rdev->mddev->pers) 3065 err = -EBUSY; 3066 else { 3067 set_bit(Replacement, &rdev->flags); 3068 err = 0; 3069 } 3070 } else if (cmd_match(buf, "-replacement")) { 3071 /* Similarly, can only clear Replacement before start */ 3072 if (rdev->mddev->pers) 3073 err = -EBUSY; 3074 else { 3075 clear_bit(Replacement, &rdev->flags); 3076 err = 0; 3077 } 3078 } else if (cmd_match(buf, "re-add")) { 3079 if (!rdev->mddev->pers) 3080 err = -EINVAL; 3081 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) && 3082 rdev->saved_raid_disk >= 0) { 3083 /* clear_bit is performed _after_ all the devices 3084 * have their local Faulty bit cleared. If any writes 3085 * happen in the meantime in the local node, they 3086 * will land in the local bitmap, which will be synced 3087 * by this node eventually 3088 */ 3089 if (!mddev_is_clustered(rdev->mddev) || 3090 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) { 3091 clear_bit(Faulty, &rdev->flags); 3092 err = add_bound_rdev(rdev); 3093 } 3094 } else 3095 err = -EBUSY; 3096 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) { 3097 set_bit(ExternalBbl, &rdev->flags); 3098 rdev->badblocks.shift = 0; 3099 err = 0; 3100 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) { 3101 clear_bit(ExternalBbl, &rdev->flags); 3102 err = 0; 3103 } 3104 if (need_update_sb) 3105 md_update_sb(mddev, 1); 3106 if (!err) 3107 sysfs_notify_dirent_safe(rdev->sysfs_state); 3108 return err ? err : len; 3109 } 3110 static struct rdev_sysfs_entry rdev_state = 3111 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store); 3112 3113 static ssize_t 3114 errors_show(struct md_rdev *rdev, char *page) 3115 { 3116 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors)); 3117 } 3118 3119 static ssize_t 3120 errors_store(struct md_rdev *rdev, const char *buf, size_t len) 3121 { 3122 unsigned int n; 3123 int rv; 3124 3125 rv = kstrtouint(buf, 10, &n); 3126 if (rv < 0) 3127 return rv; 3128 atomic_set(&rdev->corrected_errors, n); 3129 return len; 3130 } 3131 static struct rdev_sysfs_entry rdev_errors = 3132 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store); 3133 3134 static ssize_t 3135 slot_show(struct md_rdev *rdev, char *page) 3136 { 3137 if (test_bit(Journal, &rdev->flags)) 3138 return sprintf(page, "journal\n"); 3139 else if (rdev->raid_disk < 0) 3140 return sprintf(page, "none\n"); 3141 else 3142 return sprintf(page, "%d\n", rdev->raid_disk); 3143 } 3144 3145 static ssize_t 3146 slot_store(struct md_rdev *rdev, const char *buf, size_t len) 3147 { 3148 int slot; 3149 int err; 3150 3151 if (test_bit(Journal, &rdev->flags)) 3152 return -EBUSY; 3153 if (strncmp(buf, "none", 4)==0) 3154 slot = -1; 3155 else { 3156 err = kstrtouint(buf, 10, (unsigned int *)&slot); 3157 if (err < 0) 3158 return err; 3159 if (slot < 0) 3160 /* overflow */ 3161 return -ENOSPC; 3162 } 3163 if (rdev->mddev->pers && slot == -1) { 3164 /* Setting 'slot' on an active array requires also 3165 * updating the 'rd%d' link, and communicating 3166 * with the personality with ->hot_*_disk. 3167 * For now we only support removing 3168 * failed/spare devices. This normally happens automatically, 3169 * but not when the metadata is externally managed. 3170 */ 3171 if (rdev->raid_disk == -1) 3172 return -EEXIST; 3173 /* personality does all needed checks */ 3174 if (rdev->mddev->pers->hot_remove_disk == NULL) 3175 return -EINVAL; 3176 clear_bit(Blocked, &rdev->flags); 3177 remove_and_add_spares(rdev->mddev, rdev); 3178 if (rdev->raid_disk >= 0) 3179 return -EBUSY; 3180 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery); 3181 md_wakeup_thread(rdev->mddev->thread); 3182 } else if (rdev->mddev->pers) { 3183 /* Activating a spare .. or possibly reactivating 3184 * if we ever get bitmaps working here. 3185 */ 3186 int err; 3187 3188 if (rdev->raid_disk != -1) 3189 return -EBUSY; 3190 3191 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery)) 3192 return -EBUSY; 3193 3194 if (rdev->mddev->pers->hot_add_disk == NULL) 3195 return -EINVAL; 3196 3197 if (slot >= rdev->mddev->raid_disks && 3198 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3199 return -ENOSPC; 3200 3201 rdev->raid_disk = slot; 3202 if (test_bit(In_sync, &rdev->flags)) 3203 rdev->saved_raid_disk = slot; 3204 else 3205 rdev->saved_raid_disk = -1; 3206 clear_bit(In_sync, &rdev->flags); 3207 clear_bit(Bitmap_sync, &rdev->flags); 3208 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev); 3209 if (err) { 3210 rdev->raid_disk = -1; 3211 return err; 3212 } else 3213 sysfs_notify_dirent_safe(rdev->sysfs_state); 3214 /* failure here is OK */; 3215 sysfs_link_rdev(rdev->mddev, rdev); 3216 /* don't wakeup anyone, leave that to userspace. */ 3217 } else { 3218 if (slot >= rdev->mddev->raid_disks && 3219 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks) 3220 return -ENOSPC; 3221 rdev->raid_disk = slot; 3222 /* assume it is working */ 3223 clear_bit(Faulty, &rdev->flags); 3224 clear_bit(WriteMostly, &rdev->flags); 3225 set_bit(In_sync, &rdev->flags); 3226 sysfs_notify_dirent_safe(rdev->sysfs_state); 3227 } 3228 return len; 3229 } 3230 3231 static struct rdev_sysfs_entry rdev_slot = 3232 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store); 3233 3234 static ssize_t 3235 offset_show(struct md_rdev *rdev, char *page) 3236 { 3237 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset); 3238 } 3239 3240 static ssize_t 3241 offset_store(struct md_rdev *rdev, const char *buf, size_t len) 3242 { 3243 unsigned long long offset; 3244 if (kstrtoull(buf, 10, &offset) < 0) 3245 return -EINVAL; 3246 if (rdev->mddev->pers && rdev->raid_disk >= 0) 3247 return -EBUSY; 3248 if (rdev->sectors && rdev->mddev->external) 3249 /* Must set offset before size, so overlap checks 3250 * can be sane */ 3251 return -EBUSY; 3252 rdev->data_offset = offset; 3253 rdev->new_data_offset = offset; 3254 return len; 3255 } 3256 3257 static struct rdev_sysfs_entry rdev_offset = 3258 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store); 3259 3260 static ssize_t new_offset_show(struct md_rdev *rdev, char *page) 3261 { 3262 return sprintf(page, "%llu\n", 3263 (unsigned long long)rdev->new_data_offset); 3264 } 3265 3266 static ssize_t new_offset_store(struct md_rdev *rdev, 3267 const char *buf, size_t len) 3268 { 3269 unsigned long long new_offset; 3270 struct mddev *mddev = rdev->mddev; 3271 3272 if (kstrtoull(buf, 10, &new_offset) < 0) 3273 return -EINVAL; 3274 3275 if (mddev->sync_thread || 3276 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery)) 3277 return -EBUSY; 3278 if (new_offset == rdev->data_offset) 3279 /* reset is always permitted */ 3280 ; 3281 else if (new_offset > rdev->data_offset) { 3282 /* must not push array size beyond rdev_sectors */ 3283 if (new_offset - rdev->data_offset 3284 + mddev->dev_sectors > rdev->sectors) 3285 return -E2BIG; 3286 } 3287 /* Metadata worries about other space details. */ 3288 3289 /* decreasing the offset is inconsistent with a backwards 3290 * reshape. 3291 */ 3292 if (new_offset < rdev->data_offset && 3293 mddev->reshape_backwards) 3294 return -EINVAL; 3295 /* Increasing offset is inconsistent with forwards 3296 * reshape. reshape_direction should be set to 3297 * 'backwards' first. 3298 */ 3299 if (new_offset > rdev->data_offset && 3300 !mddev->reshape_backwards) 3301 return -EINVAL; 3302 3303 if (mddev->pers && mddev->persistent && 3304 !super_types[mddev->major_version] 3305 .allow_new_offset(rdev, new_offset)) 3306 return -E2BIG; 3307 rdev->new_data_offset = new_offset; 3308 if (new_offset > rdev->data_offset) 3309 mddev->reshape_backwards = 1; 3310 else if (new_offset < rdev->data_offset) 3311 mddev->reshape_backwards = 0; 3312 3313 return len; 3314 } 3315 static struct rdev_sysfs_entry rdev_new_offset = 3316 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store); 3317 3318 static ssize_t 3319 rdev_size_show(struct md_rdev *rdev, char *page) 3320 { 3321 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2); 3322 } 3323 3324 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b) 3325 { 3326 /* check if two start/length pairs overlap */ 3327 if (a->data_offset + a->sectors <= b->data_offset) 3328 return false; 3329 if (b->data_offset + b->sectors <= a->data_offset) 3330 return false; 3331 return true; 3332 } 3333 3334 static bool md_rdev_overlaps(struct md_rdev *rdev) 3335 { 3336 struct mddev *mddev; 3337 struct md_rdev *rdev2; 3338 3339 spin_lock(&all_mddevs_lock); 3340 list_for_each_entry(mddev, &all_mddevs, all_mddevs) { 3341 if (test_bit(MD_DELETED, &mddev->flags)) 3342 continue; 3343 rdev_for_each(rdev2, mddev) { 3344 if (rdev != rdev2 && rdev->bdev == rdev2->bdev && 3345 md_rdevs_overlap(rdev, rdev2)) { 3346 spin_unlock(&all_mddevs_lock); 3347 return true; 3348 } 3349 } 3350 } 3351 spin_unlock(&all_mddevs_lock); 3352 return false; 3353 } 3354 3355 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors) 3356 { 3357 unsigned long long blocks; 3358 sector_t new; 3359 3360 if (kstrtoull(buf, 10, &blocks) < 0) 3361 return -EINVAL; 3362 3363 if (blocks & 1ULL << (8 * sizeof(blocks) - 1)) 3364 return -EINVAL; /* sector conversion overflow */ 3365 3366 new = blocks * 2; 3367 if (new != blocks * 2) 3368 return -EINVAL; /* unsigned long long to sector_t overflow */ 3369 3370 *sectors = new; 3371 return 0; 3372 } 3373 3374 static ssize_t 3375 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3376 { 3377 struct mddev *my_mddev = rdev->mddev; 3378 sector_t oldsectors = rdev->sectors; 3379 sector_t sectors; 3380 3381 if (test_bit(Journal, &rdev->flags)) 3382 return -EBUSY; 3383 if (strict_blocks_to_sectors(buf, §ors) < 0) 3384 return -EINVAL; 3385 if (rdev->data_offset != rdev->new_data_offset) 3386 return -EINVAL; /* too confusing */ 3387 if (my_mddev->pers && rdev->raid_disk >= 0) { 3388 if (my_mddev->persistent) { 3389 sectors = super_types[my_mddev->major_version]. 3390 rdev_size_change(rdev, sectors); 3391 if (!sectors) 3392 return -EBUSY; 3393 } else if (!sectors) 3394 sectors = bdev_nr_sectors(rdev->bdev) - 3395 rdev->data_offset; 3396 if (!my_mddev->pers->resize) 3397 /* Cannot change size for RAID0 or Linear etc */ 3398 return -EINVAL; 3399 } 3400 if (sectors < my_mddev->dev_sectors) 3401 return -EINVAL; /* component must fit device */ 3402 3403 rdev->sectors = sectors; 3404 3405 /* 3406 * Check that all other rdevs with the same bdev do not overlap. This 3407 * check does not provide a hard guarantee, it just helps avoid 3408 * dangerous mistakes. 3409 */ 3410 if (sectors > oldsectors && my_mddev->external && 3411 md_rdev_overlaps(rdev)) { 3412 /* 3413 * Someone else could have slipped in a size change here, but 3414 * doing so is just silly. We put oldsectors back because we 3415 * know it is safe, and trust userspace not to race with itself. 3416 */ 3417 rdev->sectors = oldsectors; 3418 return -EBUSY; 3419 } 3420 return len; 3421 } 3422 3423 static struct rdev_sysfs_entry rdev_size = 3424 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store); 3425 3426 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page) 3427 { 3428 unsigned long long recovery_start = rdev->recovery_offset; 3429 3430 if (test_bit(In_sync, &rdev->flags) || 3431 recovery_start == MaxSector) 3432 return sprintf(page, "none\n"); 3433 3434 return sprintf(page, "%llu\n", recovery_start); 3435 } 3436 3437 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len) 3438 { 3439 unsigned long long recovery_start; 3440 3441 if (cmd_match(buf, "none")) 3442 recovery_start = MaxSector; 3443 else if (kstrtoull(buf, 10, &recovery_start)) 3444 return -EINVAL; 3445 3446 if (rdev->mddev->pers && 3447 rdev->raid_disk >= 0) 3448 return -EBUSY; 3449 3450 rdev->recovery_offset = recovery_start; 3451 if (recovery_start == MaxSector) 3452 set_bit(In_sync, &rdev->flags); 3453 else 3454 clear_bit(In_sync, &rdev->flags); 3455 return len; 3456 } 3457 3458 static struct rdev_sysfs_entry rdev_recovery_start = 3459 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store); 3460 3461 /* sysfs access to bad-blocks list. 3462 * We present two files. 3463 * 'bad-blocks' lists sector numbers and lengths of ranges that 3464 * are recorded as bad. The list is truncated to fit within 3465 * the one-page limit of sysfs. 3466 * Writing "sector length" to this file adds an acknowledged 3467 * bad block list. 3468 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet 3469 * been acknowledged. Writing to this file adds bad blocks 3470 * without acknowledging them. This is largely for testing. 3471 */ 3472 static ssize_t bb_show(struct md_rdev *rdev, char *page) 3473 { 3474 return badblocks_show(&rdev->badblocks, page, 0); 3475 } 3476 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len) 3477 { 3478 int rv = badblocks_store(&rdev->badblocks, page, len, 0); 3479 /* Maybe that ack was all we needed */ 3480 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags)) 3481 wake_up(&rdev->blocked_wait); 3482 return rv; 3483 } 3484 static struct rdev_sysfs_entry rdev_bad_blocks = 3485 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store); 3486 3487 static ssize_t ubb_show(struct md_rdev *rdev, char *page) 3488 { 3489 return badblocks_show(&rdev->badblocks, page, 1); 3490 } 3491 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len) 3492 { 3493 return badblocks_store(&rdev->badblocks, page, len, 1); 3494 } 3495 static struct rdev_sysfs_entry rdev_unack_bad_blocks = 3496 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store); 3497 3498 static ssize_t 3499 ppl_sector_show(struct md_rdev *rdev, char *page) 3500 { 3501 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector); 3502 } 3503 3504 static ssize_t 3505 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len) 3506 { 3507 unsigned long long sector; 3508 3509 if (kstrtoull(buf, 10, §or) < 0) 3510 return -EINVAL; 3511 if (sector != (sector_t)sector) 3512 return -EINVAL; 3513 3514 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3515 rdev->raid_disk >= 0) 3516 return -EBUSY; 3517 3518 if (rdev->mddev->persistent) { 3519 if (rdev->mddev->major_version == 0) 3520 return -EINVAL; 3521 if ((sector > rdev->sb_start && 3522 sector - rdev->sb_start > S16_MAX) || 3523 (sector < rdev->sb_start && 3524 rdev->sb_start - sector > -S16_MIN)) 3525 return -EINVAL; 3526 rdev->ppl.offset = sector - rdev->sb_start; 3527 } else if (!rdev->mddev->external) { 3528 return -EBUSY; 3529 } 3530 rdev->ppl.sector = sector; 3531 return len; 3532 } 3533 3534 static struct rdev_sysfs_entry rdev_ppl_sector = 3535 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store); 3536 3537 static ssize_t 3538 ppl_size_show(struct md_rdev *rdev, char *page) 3539 { 3540 return sprintf(page, "%u\n", rdev->ppl.size); 3541 } 3542 3543 static ssize_t 3544 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len) 3545 { 3546 unsigned int size; 3547 3548 if (kstrtouint(buf, 10, &size) < 0) 3549 return -EINVAL; 3550 3551 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) && 3552 rdev->raid_disk >= 0) 3553 return -EBUSY; 3554 3555 if (rdev->mddev->persistent) { 3556 if (rdev->mddev->major_version == 0) 3557 return -EINVAL; 3558 if (size > U16_MAX) 3559 return -EINVAL; 3560 } else if (!rdev->mddev->external) { 3561 return -EBUSY; 3562 } 3563 rdev->ppl.size = size; 3564 return len; 3565 } 3566 3567 static struct rdev_sysfs_entry rdev_ppl_size = 3568 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store); 3569 3570 static struct attribute *rdev_default_attrs[] = { 3571 &rdev_state.attr, 3572 &rdev_errors.attr, 3573 &rdev_slot.attr, 3574 &rdev_offset.attr, 3575 &rdev_new_offset.attr, 3576 &rdev_size.attr, 3577 &rdev_recovery_start.attr, 3578 &rdev_bad_blocks.attr, 3579 &rdev_unack_bad_blocks.attr, 3580 &rdev_ppl_sector.attr, 3581 &rdev_ppl_size.attr, 3582 NULL, 3583 }; 3584 ATTRIBUTE_GROUPS(rdev_default); 3585 static ssize_t 3586 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 3587 { 3588 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3589 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3590 3591 if (!entry->show) 3592 return -EIO; 3593 if (!rdev->mddev) 3594 return -ENODEV; 3595 return entry->show(rdev, page); 3596 } 3597 3598 static ssize_t 3599 rdev_attr_store(struct kobject *kobj, struct attribute *attr, 3600 const char *page, size_t length) 3601 { 3602 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr); 3603 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj); 3604 struct kernfs_node *kn = NULL; 3605 ssize_t rv; 3606 struct mddev *mddev = rdev->mddev; 3607 3608 if (!entry->store) 3609 return -EIO; 3610 if (!capable(CAP_SYS_ADMIN)) 3611 return -EACCES; 3612 3613 if (entry->store == state_store && cmd_match(page, "remove")) 3614 kn = sysfs_break_active_protection(kobj, attr); 3615 3616 rv = mddev ? mddev_lock(mddev) : -ENODEV; 3617 if (!rv) { 3618 if (rdev->mddev == NULL) 3619 rv = -ENODEV; 3620 else 3621 rv = entry->store(rdev, page, length); 3622 mddev_unlock(mddev); 3623 } 3624 3625 if (kn) 3626 sysfs_unbreak_active_protection(kn); 3627 3628 return rv; 3629 } 3630 3631 static void rdev_free(struct kobject *ko) 3632 { 3633 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj); 3634 kfree(rdev); 3635 } 3636 static const struct sysfs_ops rdev_sysfs_ops = { 3637 .show = rdev_attr_show, 3638 .store = rdev_attr_store, 3639 }; 3640 static const struct kobj_type rdev_ktype = { 3641 .release = rdev_free, 3642 .sysfs_ops = &rdev_sysfs_ops, 3643 .default_groups = rdev_default_groups, 3644 }; 3645 3646 int md_rdev_init(struct md_rdev *rdev) 3647 { 3648 rdev->desc_nr = -1; 3649 rdev->saved_raid_disk = -1; 3650 rdev->raid_disk = -1; 3651 rdev->flags = 0; 3652 rdev->data_offset = 0; 3653 rdev->new_data_offset = 0; 3654 rdev->sb_events = 0; 3655 rdev->last_read_error = 0; 3656 rdev->sb_loaded = 0; 3657 rdev->bb_page = NULL; 3658 atomic_set(&rdev->nr_pending, 0); 3659 atomic_set(&rdev->read_errors, 0); 3660 atomic_set(&rdev->corrected_errors, 0); 3661 3662 INIT_LIST_HEAD(&rdev->same_set); 3663 init_waitqueue_head(&rdev->blocked_wait); 3664 3665 /* Add space to store bad block list. 3666 * This reserves the space even on arrays where it cannot 3667 * be used - I wonder if that matters 3668 */ 3669 return badblocks_init(&rdev->badblocks, 0); 3670 } 3671 EXPORT_SYMBOL_GPL(md_rdev_init); 3672 3673 /* 3674 * Import a device. If 'super_format' >= 0, then sanity check the superblock 3675 * 3676 * mark the device faulty if: 3677 * 3678 * - the device is nonexistent (zero size) 3679 * - the device has no valid superblock 3680 * 3681 * a faulty rdev _never_ has rdev->sb set. 3682 */ 3683 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor) 3684 { 3685 struct md_rdev *rdev; 3686 struct md_rdev *holder; 3687 sector_t size; 3688 int err; 3689 3690 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 3691 if (!rdev) 3692 return ERR_PTR(-ENOMEM); 3693 3694 err = md_rdev_init(rdev); 3695 if (err) 3696 goto out_free_rdev; 3697 err = alloc_disk_sb(rdev); 3698 if (err) 3699 goto out_clear_rdev; 3700 3701 if (super_format == -2) { 3702 holder = &claim_rdev; 3703 } else { 3704 holder = rdev; 3705 set_bit(Holder, &rdev->flags); 3706 } 3707 3708 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE, 3709 holder, NULL); 3710 if (IS_ERR(rdev->bdev)) { 3711 pr_warn("md: could not open device unknown-block(%u,%u).\n", 3712 MAJOR(newdev), MINOR(newdev)); 3713 err = PTR_ERR(rdev->bdev); 3714 goto out_clear_rdev; 3715 } 3716 3717 kobject_init(&rdev->kobj, &rdev_ktype); 3718 3719 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS; 3720 if (!size) { 3721 pr_warn("md: %pg has zero or unknown size, marking faulty!\n", 3722 rdev->bdev); 3723 err = -EINVAL; 3724 goto out_blkdev_put; 3725 } 3726 3727 if (super_format >= 0) { 3728 err = super_types[super_format]. 3729 load_super(rdev, NULL, super_minor); 3730 if (err == -EINVAL) { 3731 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n", 3732 rdev->bdev, 3733 super_format, super_minor); 3734 goto out_blkdev_put; 3735 } 3736 if (err < 0) { 3737 pr_warn("md: could not read %pg's sb, not importing!\n", 3738 rdev->bdev); 3739 goto out_blkdev_put; 3740 } 3741 } 3742 3743 return rdev; 3744 3745 out_blkdev_put: 3746 blkdev_put(rdev->bdev, holder); 3747 out_clear_rdev: 3748 md_rdev_clear(rdev); 3749 out_free_rdev: 3750 kfree(rdev); 3751 return ERR_PTR(err); 3752 } 3753 3754 /* 3755 * Check a full RAID array for plausibility 3756 */ 3757 3758 static int analyze_sbs(struct mddev *mddev) 3759 { 3760 int i; 3761 struct md_rdev *rdev, *freshest, *tmp; 3762 3763 freshest = NULL; 3764 rdev_for_each_safe(rdev, tmp, mddev) 3765 switch (super_types[mddev->major_version]. 3766 load_super(rdev, freshest, mddev->minor_version)) { 3767 case 1: 3768 freshest = rdev; 3769 break; 3770 case 0: 3771 break; 3772 default: 3773 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n", 3774 rdev->bdev); 3775 md_kick_rdev_from_array(rdev); 3776 } 3777 3778 /* Cannot find a valid fresh disk */ 3779 if (!freshest) { 3780 pr_warn("md: cannot find a valid disk\n"); 3781 return -EINVAL; 3782 } 3783 3784 super_types[mddev->major_version]. 3785 validate_super(mddev, NULL/*freshest*/, freshest); 3786 3787 i = 0; 3788 rdev_for_each_safe(rdev, tmp, mddev) { 3789 if (mddev->max_disks && 3790 (rdev->desc_nr >= mddev->max_disks || 3791 i > mddev->max_disks)) { 3792 pr_warn("md: %s: %pg: only %d devices permitted\n", 3793 mdname(mddev), rdev->bdev, 3794 mddev->max_disks); 3795 md_kick_rdev_from_array(rdev); 3796 continue; 3797 } 3798 if (rdev != freshest) { 3799 if (super_types[mddev->major_version]. 3800 validate_super(mddev, freshest, rdev)) { 3801 pr_warn("md: kicking non-fresh %pg from array!\n", 3802 rdev->bdev); 3803 md_kick_rdev_from_array(rdev); 3804 continue; 3805 } 3806 } 3807 if (mddev->level == LEVEL_MULTIPATH) { 3808 rdev->desc_nr = i++; 3809 rdev->raid_disk = rdev->desc_nr; 3810 set_bit(In_sync, &rdev->flags); 3811 } else if (rdev->raid_disk >= 3812 (mddev->raid_disks - min(0, mddev->delta_disks)) && 3813 !test_bit(Journal, &rdev->flags)) { 3814 rdev->raid_disk = -1; 3815 clear_bit(In_sync, &rdev->flags); 3816 } 3817 } 3818 3819 return 0; 3820 } 3821 3822 /* Read a fixed-point number. 3823 * Numbers in sysfs attributes should be in "standard" units where 3824 * possible, so time should be in seconds. 3825 * However we internally use a a much smaller unit such as 3826 * milliseconds or jiffies. 3827 * This function takes a decimal number with a possible fractional 3828 * component, and produces an integer which is the result of 3829 * multiplying that number by 10^'scale'. 3830 * all without any floating-point arithmetic. 3831 */ 3832 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale) 3833 { 3834 unsigned long result = 0; 3835 long decimals = -1; 3836 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) { 3837 if (*cp == '.') 3838 decimals = 0; 3839 else if (decimals < scale) { 3840 unsigned int value; 3841 value = *cp - '0'; 3842 result = result * 10 + value; 3843 if (decimals >= 0) 3844 decimals++; 3845 } 3846 cp++; 3847 } 3848 if (*cp == '\n') 3849 cp++; 3850 if (*cp) 3851 return -EINVAL; 3852 if (decimals < 0) 3853 decimals = 0; 3854 *res = result * int_pow(10, scale - decimals); 3855 return 0; 3856 } 3857 3858 static ssize_t 3859 safe_delay_show(struct mddev *mddev, char *page) 3860 { 3861 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ; 3862 3863 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000); 3864 } 3865 static ssize_t 3866 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len) 3867 { 3868 unsigned long msec; 3869 3870 if (mddev_is_clustered(mddev)) { 3871 pr_warn("md: Safemode is disabled for clustered mode\n"); 3872 return -EINVAL; 3873 } 3874 3875 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ) 3876 return -EINVAL; 3877 if (msec == 0) 3878 mddev->safemode_delay = 0; 3879 else { 3880 unsigned long old_delay = mddev->safemode_delay; 3881 unsigned long new_delay = (msec*HZ)/1000; 3882 3883 if (new_delay == 0) 3884 new_delay = 1; 3885 mddev->safemode_delay = new_delay; 3886 if (new_delay < old_delay || old_delay == 0) 3887 mod_timer(&mddev->safemode_timer, jiffies+1); 3888 } 3889 return len; 3890 } 3891 static struct md_sysfs_entry md_safe_delay = 3892 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store); 3893 3894 static ssize_t 3895 level_show(struct mddev *mddev, char *page) 3896 { 3897 struct md_personality *p; 3898 int ret; 3899 spin_lock(&mddev->lock); 3900 p = mddev->pers; 3901 if (p) 3902 ret = sprintf(page, "%s\n", p->name); 3903 else if (mddev->clevel[0]) 3904 ret = sprintf(page, "%s\n", mddev->clevel); 3905 else if (mddev->level != LEVEL_NONE) 3906 ret = sprintf(page, "%d\n", mddev->level); 3907 else 3908 ret = 0; 3909 spin_unlock(&mddev->lock); 3910 return ret; 3911 } 3912 3913 static ssize_t 3914 level_store(struct mddev *mddev, const char *buf, size_t len) 3915 { 3916 char clevel[16]; 3917 ssize_t rv; 3918 size_t slen = len; 3919 struct md_personality *pers, *oldpers; 3920 long level; 3921 void *priv, *oldpriv; 3922 struct md_rdev *rdev; 3923 3924 if (slen == 0 || slen >= sizeof(clevel)) 3925 return -EINVAL; 3926 3927 rv = mddev_lock(mddev); 3928 if (rv) 3929 return rv; 3930 3931 if (mddev->pers == NULL) { 3932 strncpy(mddev->clevel, buf, slen); 3933 if (mddev->clevel[slen-1] == '\n') 3934 slen--; 3935 mddev->clevel[slen] = 0; 3936 mddev->level = LEVEL_NONE; 3937 rv = len; 3938 goto out_unlock; 3939 } 3940 rv = -EROFS; 3941 if (!md_is_rdwr(mddev)) 3942 goto out_unlock; 3943 3944 /* request to change the personality. Need to ensure: 3945 * - array is not engaged in resync/recovery/reshape 3946 * - old personality can be suspended 3947 * - new personality will access other array. 3948 */ 3949 3950 rv = -EBUSY; 3951 if (mddev->sync_thread || 3952 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 3953 mddev->reshape_position != MaxSector || 3954 mddev->sysfs_active) 3955 goto out_unlock; 3956 3957 rv = -EINVAL; 3958 if (!mddev->pers->quiesce) { 3959 pr_warn("md: %s: %s does not support online personality change\n", 3960 mdname(mddev), mddev->pers->name); 3961 goto out_unlock; 3962 } 3963 3964 /* Now find the new personality */ 3965 strncpy(clevel, buf, slen); 3966 if (clevel[slen-1] == '\n') 3967 slen--; 3968 clevel[slen] = 0; 3969 if (kstrtol(clevel, 10, &level)) 3970 level = LEVEL_NONE; 3971 3972 if (request_module("md-%s", clevel) != 0) 3973 request_module("md-level-%s", clevel); 3974 spin_lock(&pers_lock); 3975 pers = find_pers(level, clevel); 3976 if (!pers || !try_module_get(pers->owner)) { 3977 spin_unlock(&pers_lock); 3978 pr_warn("md: personality %s not loaded\n", clevel); 3979 rv = -EINVAL; 3980 goto out_unlock; 3981 } 3982 spin_unlock(&pers_lock); 3983 3984 if (pers == mddev->pers) { 3985 /* Nothing to do! */ 3986 module_put(pers->owner); 3987 rv = len; 3988 goto out_unlock; 3989 } 3990 if (!pers->takeover) { 3991 module_put(pers->owner); 3992 pr_warn("md: %s: %s does not support personality takeover\n", 3993 mdname(mddev), clevel); 3994 rv = -EINVAL; 3995 goto out_unlock; 3996 } 3997 3998 rdev_for_each(rdev, mddev) 3999 rdev->new_raid_disk = rdev->raid_disk; 4000 4001 /* ->takeover must set new_* and/or delta_disks 4002 * if it succeeds, and may set them when it fails. 4003 */ 4004 priv = pers->takeover(mddev); 4005 if (IS_ERR(priv)) { 4006 mddev->new_level = mddev->level; 4007 mddev->new_layout = mddev->layout; 4008 mddev->new_chunk_sectors = mddev->chunk_sectors; 4009 mddev->raid_disks -= mddev->delta_disks; 4010 mddev->delta_disks = 0; 4011 mddev->reshape_backwards = 0; 4012 module_put(pers->owner); 4013 pr_warn("md: %s: %s would not accept array\n", 4014 mdname(mddev), clevel); 4015 rv = PTR_ERR(priv); 4016 goto out_unlock; 4017 } 4018 4019 /* Looks like we have a winner */ 4020 mddev_suspend(mddev); 4021 mddev_detach(mddev); 4022 4023 spin_lock(&mddev->lock); 4024 oldpers = mddev->pers; 4025 oldpriv = mddev->private; 4026 mddev->pers = pers; 4027 mddev->private = priv; 4028 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 4029 mddev->level = mddev->new_level; 4030 mddev->layout = mddev->new_layout; 4031 mddev->chunk_sectors = mddev->new_chunk_sectors; 4032 mddev->delta_disks = 0; 4033 mddev->reshape_backwards = 0; 4034 mddev->degraded = 0; 4035 spin_unlock(&mddev->lock); 4036 4037 if (oldpers->sync_request == NULL && 4038 mddev->external) { 4039 /* We are converting from a no-redundancy array 4040 * to a redundancy array and metadata is managed 4041 * externally so we need to be sure that writes 4042 * won't block due to a need to transition 4043 * clean->dirty 4044 * until external management is started. 4045 */ 4046 mddev->in_sync = 0; 4047 mddev->safemode_delay = 0; 4048 mddev->safemode = 0; 4049 } 4050 4051 oldpers->free(mddev, oldpriv); 4052 4053 if (oldpers->sync_request == NULL && 4054 pers->sync_request != NULL) { 4055 /* need to add the md_redundancy_group */ 4056 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 4057 pr_warn("md: cannot register extra attributes for %s\n", 4058 mdname(mddev)); 4059 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action"); 4060 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 4061 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 4062 } 4063 if (oldpers->sync_request != NULL && 4064 pers->sync_request == NULL) { 4065 /* need to remove the md_redundancy_group */ 4066 if (mddev->to_remove == NULL) 4067 mddev->to_remove = &md_redundancy_group; 4068 } 4069 4070 module_put(oldpers->owner); 4071 4072 rdev_for_each(rdev, mddev) { 4073 if (rdev->raid_disk < 0) 4074 continue; 4075 if (rdev->new_raid_disk >= mddev->raid_disks) 4076 rdev->new_raid_disk = -1; 4077 if (rdev->new_raid_disk == rdev->raid_disk) 4078 continue; 4079 sysfs_unlink_rdev(mddev, rdev); 4080 } 4081 rdev_for_each(rdev, mddev) { 4082 if (rdev->raid_disk < 0) 4083 continue; 4084 if (rdev->new_raid_disk == rdev->raid_disk) 4085 continue; 4086 rdev->raid_disk = rdev->new_raid_disk; 4087 if (rdev->raid_disk < 0) 4088 clear_bit(In_sync, &rdev->flags); 4089 else { 4090 if (sysfs_link_rdev(mddev, rdev)) 4091 pr_warn("md: cannot register rd%d for %s after level change\n", 4092 rdev->raid_disk, mdname(mddev)); 4093 } 4094 } 4095 4096 if (pers->sync_request == NULL) { 4097 /* this is now an array without redundancy, so 4098 * it must always be in_sync 4099 */ 4100 mddev->in_sync = 1; 4101 del_timer_sync(&mddev->safemode_timer); 4102 } 4103 blk_set_stacking_limits(&mddev->queue->limits); 4104 pers->run(mddev); 4105 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 4106 mddev_resume(mddev); 4107 if (!mddev->thread) 4108 md_update_sb(mddev, 1); 4109 sysfs_notify_dirent_safe(mddev->sysfs_level); 4110 md_new_event(); 4111 rv = len; 4112 out_unlock: 4113 mddev_unlock(mddev); 4114 return rv; 4115 } 4116 4117 static struct md_sysfs_entry md_level = 4118 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store); 4119 4120 static ssize_t 4121 layout_show(struct mddev *mddev, char *page) 4122 { 4123 /* just a number, not meaningful for all levels */ 4124 if (mddev->reshape_position != MaxSector && 4125 mddev->layout != mddev->new_layout) 4126 return sprintf(page, "%d (%d)\n", 4127 mddev->new_layout, mddev->layout); 4128 return sprintf(page, "%d\n", mddev->layout); 4129 } 4130 4131 static ssize_t 4132 layout_store(struct mddev *mddev, const char *buf, size_t len) 4133 { 4134 unsigned int n; 4135 int err; 4136 4137 err = kstrtouint(buf, 10, &n); 4138 if (err < 0) 4139 return err; 4140 err = mddev_lock(mddev); 4141 if (err) 4142 return err; 4143 4144 if (mddev->pers) { 4145 if (mddev->pers->check_reshape == NULL) 4146 err = -EBUSY; 4147 else if (!md_is_rdwr(mddev)) 4148 err = -EROFS; 4149 else { 4150 mddev->new_layout = n; 4151 err = mddev->pers->check_reshape(mddev); 4152 if (err) 4153 mddev->new_layout = mddev->layout; 4154 } 4155 } else { 4156 mddev->new_layout = n; 4157 if (mddev->reshape_position == MaxSector) 4158 mddev->layout = n; 4159 } 4160 mddev_unlock(mddev); 4161 return err ?: len; 4162 } 4163 static struct md_sysfs_entry md_layout = 4164 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store); 4165 4166 static ssize_t 4167 raid_disks_show(struct mddev *mddev, char *page) 4168 { 4169 if (mddev->raid_disks == 0) 4170 return 0; 4171 if (mddev->reshape_position != MaxSector && 4172 mddev->delta_disks != 0) 4173 return sprintf(page, "%d (%d)\n", mddev->raid_disks, 4174 mddev->raid_disks - mddev->delta_disks); 4175 return sprintf(page, "%d\n", mddev->raid_disks); 4176 } 4177 4178 static int update_raid_disks(struct mddev *mddev, int raid_disks); 4179 4180 static ssize_t 4181 raid_disks_store(struct mddev *mddev, const char *buf, size_t len) 4182 { 4183 unsigned int n; 4184 int err; 4185 4186 err = kstrtouint(buf, 10, &n); 4187 if (err < 0) 4188 return err; 4189 4190 err = mddev_lock(mddev); 4191 if (err) 4192 return err; 4193 if (mddev->pers) 4194 err = update_raid_disks(mddev, n); 4195 else if (mddev->reshape_position != MaxSector) { 4196 struct md_rdev *rdev; 4197 int olddisks = mddev->raid_disks - mddev->delta_disks; 4198 4199 err = -EINVAL; 4200 rdev_for_each(rdev, mddev) { 4201 if (olddisks < n && 4202 rdev->data_offset < rdev->new_data_offset) 4203 goto out_unlock; 4204 if (olddisks > n && 4205 rdev->data_offset > rdev->new_data_offset) 4206 goto out_unlock; 4207 } 4208 err = 0; 4209 mddev->delta_disks = n - olddisks; 4210 mddev->raid_disks = n; 4211 mddev->reshape_backwards = (mddev->delta_disks < 0); 4212 } else 4213 mddev->raid_disks = n; 4214 out_unlock: 4215 mddev_unlock(mddev); 4216 return err ? err : len; 4217 } 4218 static struct md_sysfs_entry md_raid_disks = 4219 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store); 4220 4221 static ssize_t 4222 uuid_show(struct mddev *mddev, char *page) 4223 { 4224 return sprintf(page, "%pU\n", mddev->uuid); 4225 } 4226 static struct md_sysfs_entry md_uuid = 4227 __ATTR(uuid, S_IRUGO, uuid_show, NULL); 4228 4229 static ssize_t 4230 chunk_size_show(struct mddev *mddev, char *page) 4231 { 4232 if (mddev->reshape_position != MaxSector && 4233 mddev->chunk_sectors != mddev->new_chunk_sectors) 4234 return sprintf(page, "%d (%d)\n", 4235 mddev->new_chunk_sectors << 9, 4236 mddev->chunk_sectors << 9); 4237 return sprintf(page, "%d\n", mddev->chunk_sectors << 9); 4238 } 4239 4240 static ssize_t 4241 chunk_size_store(struct mddev *mddev, const char *buf, size_t len) 4242 { 4243 unsigned long n; 4244 int err; 4245 4246 err = kstrtoul(buf, 10, &n); 4247 if (err < 0) 4248 return err; 4249 4250 err = mddev_lock(mddev); 4251 if (err) 4252 return err; 4253 if (mddev->pers) { 4254 if (mddev->pers->check_reshape == NULL) 4255 err = -EBUSY; 4256 else if (!md_is_rdwr(mddev)) 4257 err = -EROFS; 4258 else { 4259 mddev->new_chunk_sectors = n >> 9; 4260 err = mddev->pers->check_reshape(mddev); 4261 if (err) 4262 mddev->new_chunk_sectors = mddev->chunk_sectors; 4263 } 4264 } else { 4265 mddev->new_chunk_sectors = n >> 9; 4266 if (mddev->reshape_position == MaxSector) 4267 mddev->chunk_sectors = n >> 9; 4268 } 4269 mddev_unlock(mddev); 4270 return err ?: len; 4271 } 4272 static struct md_sysfs_entry md_chunk_size = 4273 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store); 4274 4275 static ssize_t 4276 resync_start_show(struct mddev *mddev, char *page) 4277 { 4278 if (mddev->recovery_cp == MaxSector) 4279 return sprintf(page, "none\n"); 4280 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp); 4281 } 4282 4283 static ssize_t 4284 resync_start_store(struct mddev *mddev, const char *buf, size_t len) 4285 { 4286 unsigned long long n; 4287 int err; 4288 4289 if (cmd_match(buf, "none")) 4290 n = MaxSector; 4291 else { 4292 err = kstrtoull(buf, 10, &n); 4293 if (err < 0) 4294 return err; 4295 if (n != (sector_t)n) 4296 return -EINVAL; 4297 } 4298 4299 err = mddev_lock(mddev); 4300 if (err) 4301 return err; 4302 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 4303 err = -EBUSY; 4304 4305 if (!err) { 4306 mddev->recovery_cp = n; 4307 if (mddev->pers) 4308 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 4309 } 4310 mddev_unlock(mddev); 4311 return err ?: len; 4312 } 4313 static struct md_sysfs_entry md_resync_start = 4314 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR, 4315 resync_start_show, resync_start_store); 4316 4317 /* 4318 * The array state can be: 4319 * 4320 * clear 4321 * No devices, no size, no level 4322 * Equivalent to STOP_ARRAY ioctl 4323 * inactive 4324 * May have some settings, but array is not active 4325 * all IO results in error 4326 * When written, doesn't tear down array, but just stops it 4327 * suspended (not supported yet) 4328 * All IO requests will block. The array can be reconfigured. 4329 * Writing this, if accepted, will block until array is quiescent 4330 * readonly 4331 * no resync can happen. no superblocks get written. 4332 * write requests fail 4333 * read-auto 4334 * like readonly, but behaves like 'clean' on a write request. 4335 * 4336 * clean - no pending writes, but otherwise active. 4337 * When written to inactive array, starts without resync 4338 * If a write request arrives then 4339 * if metadata is known, mark 'dirty' and switch to 'active'. 4340 * if not known, block and switch to write-pending 4341 * If written to an active array that has pending writes, then fails. 4342 * active 4343 * fully active: IO and resync can be happening. 4344 * When written to inactive array, starts with resync 4345 * 4346 * write-pending 4347 * clean, but writes are blocked waiting for 'active' to be written. 4348 * 4349 * active-idle 4350 * like active, but no writes have been seen for a while (100msec). 4351 * 4352 * broken 4353 * Array is failed. It's useful because mounted-arrays aren't stopped 4354 * when array is failed, so this state will at least alert the user that 4355 * something is wrong. 4356 */ 4357 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active, 4358 write_pending, active_idle, broken, bad_word}; 4359 static char *array_states[] = { 4360 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active", 4361 "write-pending", "active-idle", "broken", NULL }; 4362 4363 static int match_word(const char *word, char **list) 4364 { 4365 int n; 4366 for (n=0; list[n]; n++) 4367 if (cmd_match(word, list[n])) 4368 break; 4369 return n; 4370 } 4371 4372 static ssize_t 4373 array_state_show(struct mddev *mddev, char *page) 4374 { 4375 enum array_state st = inactive; 4376 4377 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) { 4378 switch(mddev->ro) { 4379 case MD_RDONLY: 4380 st = readonly; 4381 break; 4382 case MD_AUTO_READ: 4383 st = read_auto; 4384 break; 4385 case MD_RDWR: 4386 spin_lock(&mddev->lock); 4387 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 4388 st = write_pending; 4389 else if (mddev->in_sync) 4390 st = clean; 4391 else if (mddev->safemode) 4392 st = active_idle; 4393 else 4394 st = active; 4395 spin_unlock(&mddev->lock); 4396 } 4397 4398 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean) 4399 st = broken; 4400 } else { 4401 if (list_empty(&mddev->disks) && 4402 mddev->raid_disks == 0 && 4403 mddev->dev_sectors == 0) 4404 st = clear; 4405 else 4406 st = inactive; 4407 } 4408 return sprintf(page, "%s\n", array_states[st]); 4409 } 4410 4411 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev); 4412 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev); 4413 static int restart_array(struct mddev *mddev); 4414 4415 static ssize_t 4416 array_state_store(struct mddev *mddev, const char *buf, size_t len) 4417 { 4418 int err = 0; 4419 enum array_state st = match_word(buf, array_states); 4420 4421 if (mddev->pers && (st == active || st == clean) && 4422 mddev->ro != MD_RDONLY) { 4423 /* don't take reconfig_mutex when toggling between 4424 * clean and active 4425 */ 4426 spin_lock(&mddev->lock); 4427 if (st == active) { 4428 restart_array(mddev); 4429 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4430 md_wakeup_thread(mddev->thread); 4431 wake_up(&mddev->sb_wait); 4432 } else /* st == clean */ { 4433 restart_array(mddev); 4434 if (!set_in_sync(mddev)) 4435 err = -EBUSY; 4436 } 4437 if (!err) 4438 sysfs_notify_dirent_safe(mddev->sysfs_state); 4439 spin_unlock(&mddev->lock); 4440 return err ?: len; 4441 } 4442 err = mddev_lock(mddev); 4443 if (err) 4444 return err; 4445 err = -EINVAL; 4446 switch(st) { 4447 case bad_word: 4448 break; 4449 case clear: 4450 /* stopping an active array */ 4451 err = do_md_stop(mddev, 0, NULL); 4452 break; 4453 case inactive: 4454 /* stopping an active array */ 4455 if (mddev->pers) 4456 err = do_md_stop(mddev, 2, NULL); 4457 else 4458 err = 0; /* already inactive */ 4459 break; 4460 case suspended: 4461 break; /* not supported yet */ 4462 case readonly: 4463 if (mddev->pers) 4464 err = md_set_readonly(mddev, NULL); 4465 else { 4466 mddev->ro = MD_RDONLY; 4467 set_disk_ro(mddev->gendisk, 1); 4468 err = do_md_run(mddev); 4469 } 4470 break; 4471 case read_auto: 4472 if (mddev->pers) { 4473 if (md_is_rdwr(mddev)) 4474 err = md_set_readonly(mddev, NULL); 4475 else if (mddev->ro == MD_RDONLY) 4476 err = restart_array(mddev); 4477 if (err == 0) { 4478 mddev->ro = MD_AUTO_READ; 4479 set_disk_ro(mddev->gendisk, 0); 4480 } 4481 } else { 4482 mddev->ro = MD_AUTO_READ; 4483 err = do_md_run(mddev); 4484 } 4485 break; 4486 case clean: 4487 if (mddev->pers) { 4488 err = restart_array(mddev); 4489 if (err) 4490 break; 4491 spin_lock(&mddev->lock); 4492 if (!set_in_sync(mddev)) 4493 err = -EBUSY; 4494 spin_unlock(&mddev->lock); 4495 } else 4496 err = -EINVAL; 4497 break; 4498 case active: 4499 if (mddev->pers) { 4500 err = restart_array(mddev); 4501 if (err) 4502 break; 4503 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 4504 wake_up(&mddev->sb_wait); 4505 err = 0; 4506 } else { 4507 mddev->ro = MD_RDWR; 4508 set_disk_ro(mddev->gendisk, 0); 4509 err = do_md_run(mddev); 4510 } 4511 break; 4512 case write_pending: 4513 case active_idle: 4514 case broken: 4515 /* these cannot be set */ 4516 break; 4517 } 4518 4519 if (!err) { 4520 if (mddev->hold_active == UNTIL_IOCTL) 4521 mddev->hold_active = 0; 4522 sysfs_notify_dirent_safe(mddev->sysfs_state); 4523 } 4524 mddev_unlock(mddev); 4525 return err ?: len; 4526 } 4527 static struct md_sysfs_entry md_array_state = 4528 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store); 4529 4530 static ssize_t 4531 max_corrected_read_errors_show(struct mddev *mddev, char *page) { 4532 return sprintf(page, "%d\n", 4533 atomic_read(&mddev->max_corr_read_errors)); 4534 } 4535 4536 static ssize_t 4537 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len) 4538 { 4539 unsigned int n; 4540 int rv; 4541 4542 rv = kstrtouint(buf, 10, &n); 4543 if (rv < 0) 4544 return rv; 4545 if (n > INT_MAX) 4546 return -EINVAL; 4547 atomic_set(&mddev->max_corr_read_errors, n); 4548 return len; 4549 } 4550 4551 static struct md_sysfs_entry max_corr_read_errors = 4552 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show, 4553 max_corrected_read_errors_store); 4554 4555 static ssize_t 4556 null_show(struct mddev *mddev, char *page) 4557 { 4558 return -EINVAL; 4559 } 4560 4561 static ssize_t 4562 new_dev_store(struct mddev *mddev, const char *buf, size_t len) 4563 { 4564 /* buf must be %d:%d\n? giving major and minor numbers */ 4565 /* The new device is added to the array. 4566 * If the array has a persistent superblock, we read the 4567 * superblock to initialise info and check validity. 4568 * Otherwise, only checking done is that in bind_rdev_to_array, 4569 * which mainly checks size. 4570 */ 4571 char *e; 4572 int major = simple_strtoul(buf, &e, 10); 4573 int minor; 4574 dev_t dev; 4575 struct md_rdev *rdev; 4576 int err; 4577 4578 if (!*buf || *e != ':' || !e[1] || e[1] == '\n') 4579 return -EINVAL; 4580 minor = simple_strtoul(e+1, &e, 10); 4581 if (*e && *e != '\n') 4582 return -EINVAL; 4583 dev = MKDEV(major, minor); 4584 if (major != MAJOR(dev) || 4585 minor != MINOR(dev)) 4586 return -EOVERFLOW; 4587 4588 err = mddev_lock(mddev); 4589 if (err) 4590 return err; 4591 if (mddev->persistent) { 4592 rdev = md_import_device(dev, mddev->major_version, 4593 mddev->minor_version); 4594 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) { 4595 struct md_rdev *rdev0 4596 = list_entry(mddev->disks.next, 4597 struct md_rdev, same_set); 4598 err = super_types[mddev->major_version] 4599 .load_super(rdev, rdev0, mddev->minor_version); 4600 if (err < 0) 4601 goto out; 4602 } 4603 } else if (mddev->external) 4604 rdev = md_import_device(dev, -2, -1); 4605 else 4606 rdev = md_import_device(dev, -1, -1); 4607 4608 if (IS_ERR(rdev)) { 4609 mddev_unlock(mddev); 4610 return PTR_ERR(rdev); 4611 } 4612 err = bind_rdev_to_array(rdev, mddev); 4613 out: 4614 if (err) 4615 export_rdev(rdev, mddev); 4616 mddev_unlock(mddev); 4617 if (!err) 4618 md_new_event(); 4619 return err ? err : len; 4620 } 4621 4622 static struct md_sysfs_entry md_new_device = 4623 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store); 4624 4625 static ssize_t 4626 bitmap_store(struct mddev *mddev, const char *buf, size_t len) 4627 { 4628 char *end; 4629 unsigned long chunk, end_chunk; 4630 int err; 4631 4632 err = mddev_lock(mddev); 4633 if (err) 4634 return err; 4635 if (!mddev->bitmap) 4636 goto out; 4637 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */ 4638 while (*buf) { 4639 chunk = end_chunk = simple_strtoul(buf, &end, 0); 4640 if (buf == end) break; 4641 if (*end == '-') { /* range */ 4642 buf = end + 1; 4643 end_chunk = simple_strtoul(buf, &end, 0); 4644 if (buf == end) break; 4645 } 4646 if (*end && !isspace(*end)) break; 4647 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk); 4648 buf = skip_spaces(end); 4649 } 4650 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */ 4651 out: 4652 mddev_unlock(mddev); 4653 return len; 4654 } 4655 4656 static struct md_sysfs_entry md_bitmap = 4657 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store); 4658 4659 static ssize_t 4660 size_show(struct mddev *mddev, char *page) 4661 { 4662 return sprintf(page, "%llu\n", 4663 (unsigned long long)mddev->dev_sectors / 2); 4664 } 4665 4666 static int update_size(struct mddev *mddev, sector_t num_sectors); 4667 4668 static ssize_t 4669 size_store(struct mddev *mddev, const char *buf, size_t len) 4670 { 4671 /* If array is inactive, we can reduce the component size, but 4672 * not increase it (except from 0). 4673 * If array is active, we can try an on-line resize 4674 */ 4675 sector_t sectors; 4676 int err = strict_blocks_to_sectors(buf, §ors); 4677 4678 if (err < 0) 4679 return err; 4680 err = mddev_lock(mddev); 4681 if (err) 4682 return err; 4683 if (mddev->pers) { 4684 err = update_size(mddev, sectors); 4685 if (err == 0) 4686 md_update_sb(mddev, 1); 4687 } else { 4688 if (mddev->dev_sectors == 0 || 4689 mddev->dev_sectors > sectors) 4690 mddev->dev_sectors = sectors; 4691 else 4692 err = -ENOSPC; 4693 } 4694 mddev_unlock(mddev); 4695 return err ? err : len; 4696 } 4697 4698 static struct md_sysfs_entry md_size = 4699 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store); 4700 4701 /* Metadata version. 4702 * This is one of 4703 * 'none' for arrays with no metadata (good luck...) 4704 * 'external' for arrays with externally managed metadata, 4705 * or N.M for internally known formats 4706 */ 4707 static ssize_t 4708 metadata_show(struct mddev *mddev, char *page) 4709 { 4710 if (mddev->persistent) 4711 return sprintf(page, "%d.%d\n", 4712 mddev->major_version, mddev->minor_version); 4713 else if (mddev->external) 4714 return sprintf(page, "external:%s\n", mddev->metadata_type); 4715 else 4716 return sprintf(page, "none\n"); 4717 } 4718 4719 static ssize_t 4720 metadata_store(struct mddev *mddev, const char *buf, size_t len) 4721 { 4722 int major, minor; 4723 char *e; 4724 int err; 4725 /* Changing the details of 'external' metadata is 4726 * always permitted. Otherwise there must be 4727 * no devices attached to the array. 4728 */ 4729 4730 err = mddev_lock(mddev); 4731 if (err) 4732 return err; 4733 err = -EBUSY; 4734 if (mddev->external && strncmp(buf, "external:", 9) == 0) 4735 ; 4736 else if (!list_empty(&mddev->disks)) 4737 goto out_unlock; 4738 4739 err = 0; 4740 if (cmd_match(buf, "none")) { 4741 mddev->persistent = 0; 4742 mddev->external = 0; 4743 mddev->major_version = 0; 4744 mddev->minor_version = 90; 4745 goto out_unlock; 4746 } 4747 if (strncmp(buf, "external:", 9) == 0) { 4748 size_t namelen = len-9; 4749 if (namelen >= sizeof(mddev->metadata_type)) 4750 namelen = sizeof(mddev->metadata_type)-1; 4751 strncpy(mddev->metadata_type, buf+9, namelen); 4752 mddev->metadata_type[namelen] = 0; 4753 if (namelen && mddev->metadata_type[namelen-1] == '\n') 4754 mddev->metadata_type[--namelen] = 0; 4755 mddev->persistent = 0; 4756 mddev->external = 1; 4757 mddev->major_version = 0; 4758 mddev->minor_version = 90; 4759 goto out_unlock; 4760 } 4761 major = simple_strtoul(buf, &e, 10); 4762 err = -EINVAL; 4763 if (e==buf || *e != '.') 4764 goto out_unlock; 4765 buf = e+1; 4766 minor = simple_strtoul(buf, &e, 10); 4767 if (e==buf || (*e && *e != '\n') ) 4768 goto out_unlock; 4769 err = -ENOENT; 4770 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL) 4771 goto out_unlock; 4772 mddev->major_version = major; 4773 mddev->minor_version = minor; 4774 mddev->persistent = 1; 4775 mddev->external = 0; 4776 err = 0; 4777 out_unlock: 4778 mddev_unlock(mddev); 4779 return err ?: len; 4780 } 4781 4782 static struct md_sysfs_entry md_metadata = 4783 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store); 4784 4785 static ssize_t 4786 action_show(struct mddev *mddev, char *page) 4787 { 4788 char *type = "idle"; 4789 unsigned long recovery = mddev->recovery; 4790 if (test_bit(MD_RECOVERY_FROZEN, &recovery)) 4791 type = "frozen"; 4792 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) || 4793 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) { 4794 if (test_bit(MD_RECOVERY_RESHAPE, &recovery)) 4795 type = "reshape"; 4796 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) { 4797 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery)) 4798 type = "resync"; 4799 else if (test_bit(MD_RECOVERY_CHECK, &recovery)) 4800 type = "check"; 4801 else 4802 type = "repair"; 4803 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery)) 4804 type = "recover"; 4805 else if (mddev->reshape_position != MaxSector) 4806 type = "reshape"; 4807 } 4808 return sprintf(page, "%s\n", type); 4809 } 4810 4811 static void stop_sync_thread(struct mddev *mddev) 4812 { 4813 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4814 return; 4815 4816 if (mddev_lock(mddev)) 4817 return; 4818 4819 /* 4820 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is 4821 * held. 4822 */ 4823 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4824 mddev_unlock(mddev); 4825 return; 4826 } 4827 4828 if (work_pending(&mddev->del_work)) 4829 flush_workqueue(md_misc_wq); 4830 4831 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 4832 /* 4833 * Thread might be blocked waiting for metadata update which will now 4834 * never happen 4835 */ 4836 md_wakeup_thread_directly(mddev->sync_thread); 4837 4838 mddev_unlock(mddev); 4839 } 4840 4841 static void idle_sync_thread(struct mddev *mddev) 4842 { 4843 int sync_seq = atomic_read(&mddev->sync_seq); 4844 4845 mutex_lock(&mddev->sync_mutex); 4846 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4847 stop_sync_thread(mddev); 4848 4849 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) || 4850 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4851 4852 mutex_unlock(&mddev->sync_mutex); 4853 } 4854 4855 static void frozen_sync_thread(struct mddev *mddev) 4856 { 4857 mutex_lock(&mddev->sync_mutex); 4858 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4859 stop_sync_thread(mddev); 4860 4861 wait_event(resync_wait, mddev->sync_thread == NULL && 4862 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)); 4863 4864 mutex_unlock(&mddev->sync_mutex); 4865 } 4866 4867 static ssize_t 4868 action_store(struct mddev *mddev, const char *page, size_t len) 4869 { 4870 if (!mddev->pers || !mddev->pers->sync_request) 4871 return -EINVAL; 4872 4873 4874 if (cmd_match(page, "idle")) 4875 idle_sync_thread(mddev); 4876 else if (cmd_match(page, "frozen")) 4877 frozen_sync_thread(mddev); 4878 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 4879 return -EBUSY; 4880 else if (cmd_match(page, "resync")) 4881 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4882 else if (cmd_match(page, "recover")) { 4883 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4884 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 4885 } else if (cmd_match(page, "reshape")) { 4886 int err; 4887 if (mddev->pers->start_reshape == NULL) 4888 return -EINVAL; 4889 err = mddev_lock(mddev); 4890 if (!err) { 4891 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 4892 err = -EBUSY; 4893 } else if (mddev->reshape_position == MaxSector || 4894 mddev->pers->check_reshape == NULL || 4895 mddev->pers->check_reshape(mddev)) { 4896 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4897 err = mddev->pers->start_reshape(mddev); 4898 } else { 4899 /* 4900 * If reshape is still in progress, and 4901 * md_check_recovery() can continue to reshape, 4902 * don't restart reshape because data can be 4903 * corrupted for raid456. 4904 */ 4905 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4906 } 4907 mddev_unlock(mddev); 4908 } 4909 if (err) 4910 return err; 4911 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 4912 } else { 4913 if (cmd_match(page, "check")) 4914 set_bit(MD_RECOVERY_CHECK, &mddev->recovery); 4915 else if (!cmd_match(page, "repair")) 4916 return -EINVAL; 4917 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 4918 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 4919 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 4920 } 4921 if (mddev->ro == MD_AUTO_READ) { 4922 /* A write to sync_action is enough to justify 4923 * canceling read-auto mode 4924 */ 4925 mddev->ro = MD_RDWR; 4926 md_wakeup_thread(mddev->sync_thread); 4927 } 4928 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 4929 md_wakeup_thread(mddev->thread); 4930 sysfs_notify_dirent_safe(mddev->sysfs_action); 4931 return len; 4932 } 4933 4934 static struct md_sysfs_entry md_scan_mode = 4935 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store); 4936 4937 static ssize_t 4938 last_sync_action_show(struct mddev *mddev, char *page) 4939 { 4940 return sprintf(page, "%s\n", mddev->last_sync_action); 4941 } 4942 4943 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action); 4944 4945 static ssize_t 4946 mismatch_cnt_show(struct mddev *mddev, char *page) 4947 { 4948 return sprintf(page, "%llu\n", 4949 (unsigned long long) 4950 atomic64_read(&mddev->resync_mismatches)); 4951 } 4952 4953 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt); 4954 4955 static ssize_t 4956 sync_min_show(struct mddev *mddev, char *page) 4957 { 4958 return sprintf(page, "%d (%s)\n", speed_min(mddev), 4959 mddev->sync_speed_min ? "local": "system"); 4960 } 4961 4962 static ssize_t 4963 sync_min_store(struct mddev *mddev, const char *buf, size_t len) 4964 { 4965 unsigned int min; 4966 int rv; 4967 4968 if (strncmp(buf, "system", 6)==0) { 4969 min = 0; 4970 } else { 4971 rv = kstrtouint(buf, 10, &min); 4972 if (rv < 0) 4973 return rv; 4974 if (min == 0) 4975 return -EINVAL; 4976 } 4977 mddev->sync_speed_min = min; 4978 return len; 4979 } 4980 4981 static struct md_sysfs_entry md_sync_min = 4982 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store); 4983 4984 static ssize_t 4985 sync_max_show(struct mddev *mddev, char *page) 4986 { 4987 return sprintf(page, "%d (%s)\n", speed_max(mddev), 4988 mddev->sync_speed_max ? "local": "system"); 4989 } 4990 4991 static ssize_t 4992 sync_max_store(struct mddev *mddev, const char *buf, size_t len) 4993 { 4994 unsigned int max; 4995 int rv; 4996 4997 if (strncmp(buf, "system", 6)==0) { 4998 max = 0; 4999 } else { 5000 rv = kstrtouint(buf, 10, &max); 5001 if (rv < 0) 5002 return rv; 5003 if (max == 0) 5004 return -EINVAL; 5005 } 5006 mddev->sync_speed_max = max; 5007 return len; 5008 } 5009 5010 static struct md_sysfs_entry md_sync_max = 5011 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store); 5012 5013 static ssize_t 5014 degraded_show(struct mddev *mddev, char *page) 5015 { 5016 return sprintf(page, "%d\n", mddev->degraded); 5017 } 5018 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded); 5019 5020 static ssize_t 5021 sync_force_parallel_show(struct mddev *mddev, char *page) 5022 { 5023 return sprintf(page, "%d\n", mddev->parallel_resync); 5024 } 5025 5026 static ssize_t 5027 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len) 5028 { 5029 long n; 5030 5031 if (kstrtol(buf, 10, &n)) 5032 return -EINVAL; 5033 5034 if (n != 0 && n != 1) 5035 return -EINVAL; 5036 5037 mddev->parallel_resync = n; 5038 5039 if (mddev->sync_thread) 5040 wake_up(&resync_wait); 5041 5042 return len; 5043 } 5044 5045 /* force parallel resync, even with shared block devices */ 5046 static struct md_sysfs_entry md_sync_force_parallel = 5047 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR, 5048 sync_force_parallel_show, sync_force_parallel_store); 5049 5050 static ssize_t 5051 sync_speed_show(struct mddev *mddev, char *page) 5052 { 5053 unsigned long resync, dt, db; 5054 if (mddev->curr_resync == MD_RESYNC_NONE) 5055 return sprintf(page, "none\n"); 5056 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active); 5057 dt = (jiffies - mddev->resync_mark) / HZ; 5058 if (!dt) dt++; 5059 db = resync - mddev->resync_mark_cnt; 5060 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */ 5061 } 5062 5063 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed); 5064 5065 static ssize_t 5066 sync_completed_show(struct mddev *mddev, char *page) 5067 { 5068 unsigned long long max_sectors, resync; 5069 5070 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5071 return sprintf(page, "none\n"); 5072 5073 if (mddev->curr_resync == MD_RESYNC_YIELDED || 5074 mddev->curr_resync == MD_RESYNC_DELAYED) 5075 return sprintf(page, "delayed\n"); 5076 5077 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 5078 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 5079 max_sectors = mddev->resync_max_sectors; 5080 else 5081 max_sectors = mddev->dev_sectors; 5082 5083 resync = mddev->curr_resync_completed; 5084 return sprintf(page, "%llu / %llu\n", resync, max_sectors); 5085 } 5086 5087 static struct md_sysfs_entry md_sync_completed = 5088 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL); 5089 5090 static ssize_t 5091 min_sync_show(struct mddev *mddev, char *page) 5092 { 5093 return sprintf(page, "%llu\n", 5094 (unsigned long long)mddev->resync_min); 5095 } 5096 static ssize_t 5097 min_sync_store(struct mddev *mddev, const char *buf, size_t len) 5098 { 5099 unsigned long long min; 5100 int err; 5101 5102 if (kstrtoull(buf, 10, &min)) 5103 return -EINVAL; 5104 5105 spin_lock(&mddev->lock); 5106 err = -EINVAL; 5107 if (min > mddev->resync_max) 5108 goto out_unlock; 5109 5110 err = -EBUSY; 5111 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5112 goto out_unlock; 5113 5114 /* Round down to multiple of 4K for safety */ 5115 mddev->resync_min = round_down(min, 8); 5116 err = 0; 5117 5118 out_unlock: 5119 spin_unlock(&mddev->lock); 5120 return err ?: len; 5121 } 5122 5123 static struct md_sysfs_entry md_min_sync = 5124 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store); 5125 5126 static ssize_t 5127 max_sync_show(struct mddev *mddev, char *page) 5128 { 5129 if (mddev->resync_max == MaxSector) 5130 return sprintf(page, "max\n"); 5131 else 5132 return sprintf(page, "%llu\n", 5133 (unsigned long long)mddev->resync_max); 5134 } 5135 static ssize_t 5136 max_sync_store(struct mddev *mddev, const char *buf, size_t len) 5137 { 5138 int err; 5139 spin_lock(&mddev->lock); 5140 if (strncmp(buf, "max", 3) == 0) 5141 mddev->resync_max = MaxSector; 5142 else { 5143 unsigned long long max; 5144 int chunk; 5145 5146 err = -EINVAL; 5147 if (kstrtoull(buf, 10, &max)) 5148 goto out_unlock; 5149 if (max < mddev->resync_min) 5150 goto out_unlock; 5151 5152 err = -EBUSY; 5153 if (max < mddev->resync_max && md_is_rdwr(mddev) && 5154 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5155 goto out_unlock; 5156 5157 /* Must be a multiple of chunk_size */ 5158 chunk = mddev->chunk_sectors; 5159 if (chunk) { 5160 sector_t temp = max; 5161 5162 err = -EINVAL; 5163 if (sector_div(temp, chunk)) 5164 goto out_unlock; 5165 } 5166 mddev->resync_max = max; 5167 } 5168 wake_up(&mddev->recovery_wait); 5169 err = 0; 5170 out_unlock: 5171 spin_unlock(&mddev->lock); 5172 return err ?: len; 5173 } 5174 5175 static struct md_sysfs_entry md_max_sync = 5176 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store); 5177 5178 static ssize_t 5179 suspend_lo_show(struct mddev *mddev, char *page) 5180 { 5181 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo); 5182 } 5183 5184 static ssize_t 5185 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len) 5186 { 5187 unsigned long long new; 5188 int err; 5189 5190 err = kstrtoull(buf, 10, &new); 5191 if (err < 0) 5192 return err; 5193 if (new != (sector_t)new) 5194 return -EINVAL; 5195 5196 err = mddev_lock(mddev); 5197 if (err) 5198 return err; 5199 err = -EINVAL; 5200 if (mddev->pers == NULL || 5201 mddev->pers->quiesce == NULL) 5202 goto unlock; 5203 mddev_suspend(mddev); 5204 mddev->suspend_lo = new; 5205 mddev_resume(mddev); 5206 5207 err = 0; 5208 unlock: 5209 mddev_unlock(mddev); 5210 return err ?: len; 5211 } 5212 static struct md_sysfs_entry md_suspend_lo = 5213 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store); 5214 5215 static ssize_t 5216 suspend_hi_show(struct mddev *mddev, char *page) 5217 { 5218 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi); 5219 } 5220 5221 static ssize_t 5222 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len) 5223 { 5224 unsigned long long new; 5225 int err; 5226 5227 err = kstrtoull(buf, 10, &new); 5228 if (err < 0) 5229 return err; 5230 if (new != (sector_t)new) 5231 return -EINVAL; 5232 5233 err = mddev_lock(mddev); 5234 if (err) 5235 return err; 5236 err = -EINVAL; 5237 if (mddev->pers == NULL) 5238 goto unlock; 5239 5240 mddev_suspend(mddev); 5241 mddev->suspend_hi = new; 5242 mddev_resume(mddev); 5243 5244 err = 0; 5245 unlock: 5246 mddev_unlock(mddev); 5247 return err ?: len; 5248 } 5249 static struct md_sysfs_entry md_suspend_hi = 5250 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store); 5251 5252 static ssize_t 5253 reshape_position_show(struct mddev *mddev, char *page) 5254 { 5255 if (mddev->reshape_position != MaxSector) 5256 return sprintf(page, "%llu\n", 5257 (unsigned long long)mddev->reshape_position); 5258 strcpy(page, "none\n"); 5259 return 5; 5260 } 5261 5262 static ssize_t 5263 reshape_position_store(struct mddev *mddev, const char *buf, size_t len) 5264 { 5265 struct md_rdev *rdev; 5266 unsigned long long new; 5267 int err; 5268 5269 err = kstrtoull(buf, 10, &new); 5270 if (err < 0) 5271 return err; 5272 if (new != (sector_t)new) 5273 return -EINVAL; 5274 err = mddev_lock(mddev); 5275 if (err) 5276 return err; 5277 err = -EBUSY; 5278 if (mddev->pers) 5279 goto unlock; 5280 mddev->reshape_position = new; 5281 mddev->delta_disks = 0; 5282 mddev->reshape_backwards = 0; 5283 mddev->new_level = mddev->level; 5284 mddev->new_layout = mddev->layout; 5285 mddev->new_chunk_sectors = mddev->chunk_sectors; 5286 rdev_for_each(rdev, mddev) 5287 rdev->new_data_offset = rdev->data_offset; 5288 err = 0; 5289 unlock: 5290 mddev_unlock(mddev); 5291 return err ?: len; 5292 } 5293 5294 static struct md_sysfs_entry md_reshape_position = 5295 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show, 5296 reshape_position_store); 5297 5298 static ssize_t 5299 reshape_direction_show(struct mddev *mddev, char *page) 5300 { 5301 return sprintf(page, "%s\n", 5302 mddev->reshape_backwards ? "backwards" : "forwards"); 5303 } 5304 5305 static ssize_t 5306 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len) 5307 { 5308 int backwards = 0; 5309 int err; 5310 5311 if (cmd_match(buf, "forwards")) 5312 backwards = 0; 5313 else if (cmd_match(buf, "backwards")) 5314 backwards = 1; 5315 else 5316 return -EINVAL; 5317 if (mddev->reshape_backwards == backwards) 5318 return len; 5319 5320 err = mddev_lock(mddev); 5321 if (err) 5322 return err; 5323 /* check if we are allowed to change */ 5324 if (mddev->delta_disks) 5325 err = -EBUSY; 5326 else if (mddev->persistent && 5327 mddev->major_version == 0) 5328 err = -EINVAL; 5329 else 5330 mddev->reshape_backwards = backwards; 5331 mddev_unlock(mddev); 5332 return err ?: len; 5333 } 5334 5335 static struct md_sysfs_entry md_reshape_direction = 5336 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show, 5337 reshape_direction_store); 5338 5339 static ssize_t 5340 array_size_show(struct mddev *mddev, char *page) 5341 { 5342 if (mddev->external_size) 5343 return sprintf(page, "%llu\n", 5344 (unsigned long long)mddev->array_sectors/2); 5345 else 5346 return sprintf(page, "default\n"); 5347 } 5348 5349 static ssize_t 5350 array_size_store(struct mddev *mddev, const char *buf, size_t len) 5351 { 5352 sector_t sectors; 5353 int err; 5354 5355 err = mddev_lock(mddev); 5356 if (err) 5357 return err; 5358 5359 /* cluster raid doesn't support change array_sectors */ 5360 if (mddev_is_clustered(mddev)) { 5361 mddev_unlock(mddev); 5362 return -EINVAL; 5363 } 5364 5365 if (strncmp(buf, "default", 7) == 0) { 5366 if (mddev->pers) 5367 sectors = mddev->pers->size(mddev, 0, 0); 5368 else 5369 sectors = mddev->array_sectors; 5370 5371 mddev->external_size = 0; 5372 } else { 5373 if (strict_blocks_to_sectors(buf, §ors) < 0) 5374 err = -EINVAL; 5375 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors) 5376 err = -E2BIG; 5377 else 5378 mddev->external_size = 1; 5379 } 5380 5381 if (!err) { 5382 mddev->array_sectors = sectors; 5383 if (mddev->pers) 5384 set_capacity_and_notify(mddev->gendisk, 5385 mddev->array_sectors); 5386 } 5387 mddev_unlock(mddev); 5388 return err ?: len; 5389 } 5390 5391 static struct md_sysfs_entry md_array_size = 5392 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show, 5393 array_size_store); 5394 5395 static ssize_t 5396 consistency_policy_show(struct mddev *mddev, char *page) 5397 { 5398 int ret; 5399 5400 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { 5401 ret = sprintf(page, "journal\n"); 5402 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) { 5403 ret = sprintf(page, "ppl\n"); 5404 } else if (mddev->bitmap) { 5405 ret = sprintf(page, "bitmap\n"); 5406 } else if (mddev->pers) { 5407 if (mddev->pers->sync_request) 5408 ret = sprintf(page, "resync\n"); 5409 else 5410 ret = sprintf(page, "none\n"); 5411 } else { 5412 ret = sprintf(page, "unknown\n"); 5413 } 5414 5415 return ret; 5416 } 5417 5418 static ssize_t 5419 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len) 5420 { 5421 int err = 0; 5422 5423 if (mddev->pers) { 5424 if (mddev->pers->change_consistency_policy) 5425 err = mddev->pers->change_consistency_policy(mddev, buf); 5426 else 5427 err = -EBUSY; 5428 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) { 5429 set_bit(MD_HAS_PPL, &mddev->flags); 5430 } else { 5431 err = -EINVAL; 5432 } 5433 5434 return err ? err : len; 5435 } 5436 5437 static struct md_sysfs_entry md_consistency_policy = 5438 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show, 5439 consistency_policy_store); 5440 5441 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page) 5442 { 5443 return sprintf(page, "%d\n", mddev->fail_last_dev); 5444 } 5445 5446 /* 5447 * Setting fail_last_dev to true to allow last device to be forcibly removed 5448 * from RAID1/RAID10. 5449 */ 5450 static ssize_t 5451 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len) 5452 { 5453 int ret; 5454 bool value; 5455 5456 ret = kstrtobool(buf, &value); 5457 if (ret) 5458 return ret; 5459 5460 if (value != mddev->fail_last_dev) 5461 mddev->fail_last_dev = value; 5462 5463 return len; 5464 } 5465 static struct md_sysfs_entry md_fail_last_dev = 5466 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show, 5467 fail_last_dev_store); 5468 5469 static ssize_t serialize_policy_show(struct mddev *mddev, char *page) 5470 { 5471 if (mddev->pers == NULL || (mddev->pers->level != 1)) 5472 return sprintf(page, "n/a\n"); 5473 else 5474 return sprintf(page, "%d\n", mddev->serialize_policy); 5475 } 5476 5477 /* 5478 * Setting serialize_policy to true to enforce write IO is not reordered 5479 * for raid1. 5480 */ 5481 static ssize_t 5482 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len) 5483 { 5484 int err; 5485 bool value; 5486 5487 err = kstrtobool(buf, &value); 5488 if (err) 5489 return err; 5490 5491 if (value == mddev->serialize_policy) 5492 return len; 5493 5494 err = mddev_lock(mddev); 5495 if (err) 5496 return err; 5497 if (mddev->pers == NULL || (mddev->pers->level != 1)) { 5498 pr_err("md: serialize_policy is only effective for raid1\n"); 5499 err = -EINVAL; 5500 goto unlock; 5501 } 5502 5503 mddev_suspend(mddev); 5504 if (value) 5505 mddev_create_serial_pool(mddev, NULL, true); 5506 else 5507 mddev_destroy_serial_pool(mddev, NULL, true); 5508 mddev->serialize_policy = value; 5509 mddev_resume(mddev); 5510 unlock: 5511 mddev_unlock(mddev); 5512 return err ?: len; 5513 } 5514 5515 static struct md_sysfs_entry md_serialize_policy = 5516 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show, 5517 serialize_policy_store); 5518 5519 5520 static struct attribute *md_default_attrs[] = { 5521 &md_level.attr, 5522 &md_layout.attr, 5523 &md_raid_disks.attr, 5524 &md_uuid.attr, 5525 &md_chunk_size.attr, 5526 &md_size.attr, 5527 &md_resync_start.attr, 5528 &md_metadata.attr, 5529 &md_new_device.attr, 5530 &md_safe_delay.attr, 5531 &md_array_state.attr, 5532 &md_reshape_position.attr, 5533 &md_reshape_direction.attr, 5534 &md_array_size.attr, 5535 &max_corr_read_errors.attr, 5536 &md_consistency_policy.attr, 5537 &md_fail_last_dev.attr, 5538 &md_serialize_policy.attr, 5539 NULL, 5540 }; 5541 5542 static const struct attribute_group md_default_group = { 5543 .attrs = md_default_attrs, 5544 }; 5545 5546 static struct attribute *md_redundancy_attrs[] = { 5547 &md_scan_mode.attr, 5548 &md_last_scan_mode.attr, 5549 &md_mismatches.attr, 5550 &md_sync_min.attr, 5551 &md_sync_max.attr, 5552 &md_sync_speed.attr, 5553 &md_sync_force_parallel.attr, 5554 &md_sync_completed.attr, 5555 &md_min_sync.attr, 5556 &md_max_sync.attr, 5557 &md_suspend_lo.attr, 5558 &md_suspend_hi.attr, 5559 &md_bitmap.attr, 5560 &md_degraded.attr, 5561 NULL, 5562 }; 5563 static const struct attribute_group md_redundancy_group = { 5564 .name = NULL, 5565 .attrs = md_redundancy_attrs, 5566 }; 5567 5568 static const struct attribute_group *md_attr_groups[] = { 5569 &md_default_group, 5570 &md_bitmap_group, 5571 NULL, 5572 }; 5573 5574 static ssize_t 5575 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page) 5576 { 5577 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5578 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5579 ssize_t rv; 5580 5581 if (!entry->show) 5582 return -EIO; 5583 spin_lock(&all_mddevs_lock); 5584 if (!mddev_get(mddev)) { 5585 spin_unlock(&all_mddevs_lock); 5586 return -EBUSY; 5587 } 5588 spin_unlock(&all_mddevs_lock); 5589 5590 rv = entry->show(mddev, page); 5591 mddev_put(mddev); 5592 return rv; 5593 } 5594 5595 static ssize_t 5596 md_attr_store(struct kobject *kobj, struct attribute *attr, 5597 const char *page, size_t length) 5598 { 5599 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr); 5600 struct mddev *mddev = container_of(kobj, struct mddev, kobj); 5601 ssize_t rv; 5602 5603 if (!entry->store) 5604 return -EIO; 5605 if (!capable(CAP_SYS_ADMIN)) 5606 return -EACCES; 5607 spin_lock(&all_mddevs_lock); 5608 if (!mddev_get(mddev)) { 5609 spin_unlock(&all_mddevs_lock); 5610 return -EBUSY; 5611 } 5612 spin_unlock(&all_mddevs_lock); 5613 rv = entry->store(mddev, page, length); 5614 mddev_put(mddev); 5615 return rv; 5616 } 5617 5618 static void md_kobj_release(struct kobject *ko) 5619 { 5620 struct mddev *mddev = container_of(ko, struct mddev, kobj); 5621 5622 if (mddev->sysfs_state) 5623 sysfs_put(mddev->sysfs_state); 5624 if (mddev->sysfs_level) 5625 sysfs_put(mddev->sysfs_level); 5626 5627 del_gendisk(mddev->gendisk); 5628 put_disk(mddev->gendisk); 5629 } 5630 5631 static const struct sysfs_ops md_sysfs_ops = { 5632 .show = md_attr_show, 5633 .store = md_attr_store, 5634 }; 5635 static const struct kobj_type md_ktype = { 5636 .release = md_kobj_release, 5637 .sysfs_ops = &md_sysfs_ops, 5638 .default_groups = md_attr_groups, 5639 }; 5640 5641 int mdp_major = 0; 5642 5643 static void mddev_delayed_delete(struct work_struct *ws) 5644 { 5645 struct mddev *mddev = container_of(ws, struct mddev, del_work); 5646 5647 kobject_put(&mddev->kobj); 5648 } 5649 5650 static void no_op(struct percpu_ref *r) {} 5651 5652 int mddev_init_writes_pending(struct mddev *mddev) 5653 { 5654 if (mddev->writes_pending.percpu_count_ptr) 5655 return 0; 5656 if (percpu_ref_init(&mddev->writes_pending, no_op, 5657 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0) 5658 return -ENOMEM; 5659 /* We want to start with the refcount at zero */ 5660 percpu_ref_put(&mddev->writes_pending); 5661 return 0; 5662 } 5663 EXPORT_SYMBOL_GPL(mddev_init_writes_pending); 5664 5665 struct mddev *md_alloc(dev_t dev, char *name) 5666 { 5667 /* 5668 * If dev is zero, name is the name of a device to allocate with 5669 * an arbitrary minor number. It will be "md_???" 5670 * If dev is non-zero it must be a device number with a MAJOR of 5671 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then 5672 * the device is being created by opening a node in /dev. 5673 * If "name" is not NULL, the device is being created by 5674 * writing to /sys/module/md_mod/parameters/new_array. 5675 */ 5676 static DEFINE_MUTEX(disks_mutex); 5677 struct mddev *mddev; 5678 struct gendisk *disk; 5679 int partitioned; 5680 int shift; 5681 int unit; 5682 int error ; 5683 5684 /* 5685 * Wait for any previous instance of this device to be completely 5686 * removed (mddev_delayed_delete). 5687 */ 5688 flush_workqueue(md_misc_wq); 5689 5690 mutex_lock(&disks_mutex); 5691 mddev = mddev_alloc(dev); 5692 if (IS_ERR(mddev)) { 5693 error = PTR_ERR(mddev); 5694 goto out_unlock; 5695 } 5696 5697 partitioned = (MAJOR(mddev->unit) != MD_MAJOR); 5698 shift = partitioned ? MdpMinorShift : 0; 5699 unit = MINOR(mddev->unit) >> shift; 5700 5701 if (name && !dev) { 5702 /* Need to ensure that 'name' is not a duplicate. 5703 */ 5704 struct mddev *mddev2; 5705 spin_lock(&all_mddevs_lock); 5706 5707 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) 5708 if (mddev2->gendisk && 5709 strcmp(mddev2->gendisk->disk_name, name) == 0) { 5710 spin_unlock(&all_mddevs_lock); 5711 error = -EEXIST; 5712 goto out_free_mddev; 5713 } 5714 spin_unlock(&all_mddevs_lock); 5715 } 5716 if (name && dev) 5717 /* 5718 * Creating /dev/mdNNN via "newarray", so adjust hold_active. 5719 */ 5720 mddev->hold_active = UNTIL_STOP; 5721 5722 error = -ENOMEM; 5723 disk = blk_alloc_disk(NUMA_NO_NODE); 5724 if (!disk) 5725 goto out_free_mddev; 5726 5727 disk->major = MAJOR(mddev->unit); 5728 disk->first_minor = unit << shift; 5729 disk->minors = 1 << shift; 5730 if (name) 5731 strcpy(disk->disk_name, name); 5732 else if (partitioned) 5733 sprintf(disk->disk_name, "md_d%d", unit); 5734 else 5735 sprintf(disk->disk_name, "md%d", unit); 5736 disk->fops = &md_fops; 5737 disk->private_data = mddev; 5738 5739 mddev->queue = disk->queue; 5740 blk_set_stacking_limits(&mddev->queue->limits); 5741 blk_queue_write_cache(mddev->queue, true, true); 5742 disk->events |= DISK_EVENT_MEDIA_CHANGE; 5743 mddev->gendisk = disk; 5744 error = add_disk(disk); 5745 if (error) 5746 goto out_put_disk; 5747 5748 kobject_init(&mddev->kobj, &md_ktype); 5749 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md"); 5750 if (error) { 5751 /* 5752 * The disk is already live at this point. Clear the hold flag 5753 * and let mddev_put take care of the deletion, as it isn't any 5754 * different from a normal close on last release now. 5755 */ 5756 mddev->hold_active = 0; 5757 mutex_unlock(&disks_mutex); 5758 mddev_put(mddev); 5759 return ERR_PTR(error); 5760 } 5761 5762 kobject_uevent(&mddev->kobj, KOBJ_ADD); 5763 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state"); 5764 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level"); 5765 mutex_unlock(&disks_mutex); 5766 return mddev; 5767 5768 out_put_disk: 5769 put_disk(disk); 5770 out_free_mddev: 5771 mddev_free(mddev); 5772 out_unlock: 5773 mutex_unlock(&disks_mutex); 5774 return ERR_PTR(error); 5775 } 5776 5777 static int md_alloc_and_put(dev_t dev, char *name) 5778 { 5779 struct mddev *mddev = md_alloc(dev, name); 5780 5781 if (IS_ERR(mddev)) 5782 return PTR_ERR(mddev); 5783 mddev_put(mddev); 5784 return 0; 5785 } 5786 5787 static void md_probe(dev_t dev) 5788 { 5789 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512) 5790 return; 5791 if (create_on_open) 5792 md_alloc_and_put(dev, NULL); 5793 } 5794 5795 static int add_named_array(const char *val, const struct kernel_param *kp) 5796 { 5797 /* 5798 * val must be "md_*" or "mdNNN". 5799 * For "md_*" we allocate an array with a large free minor number, and 5800 * set the name to val. val must not already be an active name. 5801 * For "mdNNN" we allocate an array with the minor number NNN 5802 * which must not already be in use. 5803 */ 5804 int len = strlen(val); 5805 char buf[DISK_NAME_LEN]; 5806 unsigned long devnum; 5807 5808 while (len && val[len-1] == '\n') 5809 len--; 5810 if (len >= DISK_NAME_LEN) 5811 return -E2BIG; 5812 strscpy(buf, val, len+1); 5813 if (strncmp(buf, "md_", 3) == 0) 5814 return md_alloc_and_put(0, buf); 5815 if (strncmp(buf, "md", 2) == 0 && 5816 isdigit(buf[2]) && 5817 kstrtoul(buf+2, 10, &devnum) == 0 && 5818 devnum <= MINORMASK) 5819 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL); 5820 5821 return -EINVAL; 5822 } 5823 5824 static void md_safemode_timeout(struct timer_list *t) 5825 { 5826 struct mddev *mddev = from_timer(mddev, t, safemode_timer); 5827 5828 mddev->safemode = 1; 5829 if (mddev->external) 5830 sysfs_notify_dirent_safe(mddev->sysfs_state); 5831 5832 md_wakeup_thread(mddev->thread); 5833 } 5834 5835 static int start_dirty_degraded; 5836 static void active_io_release(struct percpu_ref *ref) 5837 { 5838 struct mddev *mddev = container_of(ref, struct mddev, active_io); 5839 5840 wake_up(&mddev->sb_wait); 5841 } 5842 5843 int md_run(struct mddev *mddev) 5844 { 5845 int err; 5846 struct md_rdev *rdev; 5847 struct md_personality *pers; 5848 bool nowait = true; 5849 5850 if (list_empty(&mddev->disks)) 5851 /* cannot run an array with no devices.. */ 5852 return -EINVAL; 5853 5854 if (mddev->pers) 5855 return -EBUSY; 5856 /* Cannot run until previous stop completes properly */ 5857 if (mddev->sysfs_active) 5858 return -EBUSY; 5859 5860 /* 5861 * Analyze all RAID superblock(s) 5862 */ 5863 if (!mddev->raid_disks) { 5864 if (!mddev->persistent) 5865 return -EINVAL; 5866 err = analyze_sbs(mddev); 5867 if (err) 5868 return -EINVAL; 5869 } 5870 5871 if (mddev->level != LEVEL_NONE) 5872 request_module("md-level-%d", mddev->level); 5873 else if (mddev->clevel[0]) 5874 request_module("md-%s", mddev->clevel); 5875 5876 /* 5877 * Drop all container device buffers, from now on 5878 * the only valid external interface is through the md 5879 * device. 5880 */ 5881 mddev->has_superblocks = false; 5882 rdev_for_each(rdev, mddev) { 5883 if (test_bit(Faulty, &rdev->flags)) 5884 continue; 5885 sync_blockdev(rdev->bdev); 5886 invalidate_bdev(rdev->bdev); 5887 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) { 5888 mddev->ro = MD_RDONLY; 5889 if (mddev->gendisk) 5890 set_disk_ro(mddev->gendisk, 1); 5891 } 5892 5893 if (rdev->sb_page) 5894 mddev->has_superblocks = true; 5895 5896 /* perform some consistency tests on the device. 5897 * We don't want the data to overlap the metadata, 5898 * Internal Bitmap issues have been handled elsewhere. 5899 */ 5900 if (rdev->meta_bdev) { 5901 /* Nothing to check */; 5902 } else if (rdev->data_offset < rdev->sb_start) { 5903 if (mddev->dev_sectors && 5904 rdev->data_offset + mddev->dev_sectors 5905 > rdev->sb_start) { 5906 pr_warn("md: %s: data overlaps metadata\n", 5907 mdname(mddev)); 5908 return -EINVAL; 5909 } 5910 } else { 5911 if (rdev->sb_start + rdev->sb_size/512 5912 > rdev->data_offset) { 5913 pr_warn("md: %s: metadata overlaps data\n", 5914 mdname(mddev)); 5915 return -EINVAL; 5916 } 5917 } 5918 sysfs_notify_dirent_safe(rdev->sysfs_state); 5919 nowait = nowait && bdev_nowait(rdev->bdev); 5920 } 5921 5922 err = percpu_ref_init(&mddev->active_io, active_io_release, 5923 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL); 5924 if (err) 5925 return err; 5926 5927 if (!bioset_initialized(&mddev->bio_set)) { 5928 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5929 if (err) 5930 goto exit_active_io; 5931 } 5932 if (!bioset_initialized(&mddev->sync_set)) { 5933 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 5934 if (err) 5935 goto exit_bio_set; 5936 } 5937 5938 if (!bioset_initialized(&mddev->io_clone_set)) { 5939 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE, 5940 offsetof(struct md_io_clone, bio_clone), 0); 5941 if (err) 5942 goto exit_sync_set; 5943 } 5944 5945 spin_lock(&pers_lock); 5946 pers = find_pers(mddev->level, mddev->clevel); 5947 if (!pers || !try_module_get(pers->owner)) { 5948 spin_unlock(&pers_lock); 5949 if (mddev->level != LEVEL_NONE) 5950 pr_warn("md: personality for level %d is not loaded!\n", 5951 mddev->level); 5952 else 5953 pr_warn("md: personality for level %s is not loaded!\n", 5954 mddev->clevel); 5955 err = -EINVAL; 5956 goto abort; 5957 } 5958 spin_unlock(&pers_lock); 5959 if (mddev->level != pers->level) { 5960 mddev->level = pers->level; 5961 mddev->new_level = pers->level; 5962 } 5963 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel)); 5964 5965 if (mddev->reshape_position != MaxSector && 5966 pers->start_reshape == NULL) { 5967 /* This personality cannot handle reshaping... */ 5968 module_put(pers->owner); 5969 err = -EINVAL; 5970 goto abort; 5971 } 5972 5973 if (pers->sync_request) { 5974 /* Warn if this is a potentially silly 5975 * configuration. 5976 */ 5977 struct md_rdev *rdev2; 5978 int warned = 0; 5979 5980 rdev_for_each(rdev, mddev) 5981 rdev_for_each(rdev2, mddev) { 5982 if (rdev < rdev2 && 5983 rdev->bdev->bd_disk == 5984 rdev2->bdev->bd_disk) { 5985 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n", 5986 mdname(mddev), 5987 rdev->bdev, 5988 rdev2->bdev); 5989 warned = 1; 5990 } 5991 } 5992 5993 if (warned) 5994 pr_warn("True protection against single-disk failure might be compromised.\n"); 5995 } 5996 5997 mddev->recovery = 0; 5998 /* may be over-ridden by personality */ 5999 mddev->resync_max_sectors = mddev->dev_sectors; 6000 6001 mddev->ok_start_degraded = start_dirty_degraded; 6002 6003 if (start_readonly && md_is_rdwr(mddev)) 6004 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */ 6005 6006 err = pers->run(mddev); 6007 if (err) 6008 pr_warn("md: pers->run() failed ...\n"); 6009 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) { 6010 WARN_ONCE(!mddev->external_size, 6011 "%s: default size too small, but 'external_size' not in effect?\n", 6012 __func__); 6013 pr_warn("md: invalid array_size %llu > default size %llu\n", 6014 (unsigned long long)mddev->array_sectors / 2, 6015 (unsigned long long)pers->size(mddev, 0, 0) / 2); 6016 err = -EINVAL; 6017 } 6018 if (err == 0 && pers->sync_request && 6019 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) { 6020 struct bitmap *bitmap; 6021 6022 bitmap = md_bitmap_create(mddev, -1); 6023 if (IS_ERR(bitmap)) { 6024 err = PTR_ERR(bitmap); 6025 pr_warn("%s: failed to create bitmap (%d)\n", 6026 mdname(mddev), err); 6027 } else 6028 mddev->bitmap = bitmap; 6029 6030 } 6031 if (err) 6032 goto bitmap_abort; 6033 6034 if (mddev->bitmap_info.max_write_behind > 0) { 6035 bool create_pool = false; 6036 6037 rdev_for_each(rdev, mddev) { 6038 if (test_bit(WriteMostly, &rdev->flags) && 6039 rdev_init_serial(rdev)) 6040 create_pool = true; 6041 } 6042 if (create_pool && mddev->serial_info_pool == NULL) { 6043 mddev->serial_info_pool = 6044 mempool_create_kmalloc_pool(NR_SERIAL_INFOS, 6045 sizeof(struct serial_info)); 6046 if (!mddev->serial_info_pool) { 6047 err = -ENOMEM; 6048 goto bitmap_abort; 6049 } 6050 } 6051 } 6052 6053 if (mddev->queue) { 6054 bool nonrot = true; 6055 6056 rdev_for_each(rdev, mddev) { 6057 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) { 6058 nonrot = false; 6059 break; 6060 } 6061 } 6062 if (mddev->degraded) 6063 nonrot = false; 6064 if (nonrot) 6065 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue); 6066 else 6067 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue); 6068 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue); 6069 6070 /* Set the NOWAIT flags if all underlying devices support it */ 6071 if (nowait) 6072 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue); 6073 } 6074 if (pers->sync_request) { 6075 if (mddev->kobj.sd && 6076 sysfs_create_group(&mddev->kobj, &md_redundancy_group)) 6077 pr_warn("md: cannot register extra attributes for %s\n", 6078 mdname(mddev)); 6079 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action"); 6080 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed"); 6081 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded"); 6082 } else if (mddev->ro == MD_AUTO_READ) 6083 mddev->ro = MD_RDWR; 6084 6085 atomic_set(&mddev->max_corr_read_errors, 6086 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS); 6087 mddev->safemode = 0; 6088 if (mddev_is_clustered(mddev)) 6089 mddev->safemode_delay = 0; 6090 else 6091 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 6092 mddev->in_sync = 1; 6093 smp_wmb(); 6094 spin_lock(&mddev->lock); 6095 mddev->pers = pers; 6096 spin_unlock(&mddev->lock); 6097 rdev_for_each(rdev, mddev) 6098 if (rdev->raid_disk >= 0) 6099 sysfs_link_rdev(mddev, rdev); /* failure here is OK */ 6100 6101 if (mddev->degraded && md_is_rdwr(mddev)) 6102 /* This ensures that recovering status is reported immediately 6103 * via sysfs - until a lack of spares is confirmed. 6104 */ 6105 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 6106 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6107 6108 if (mddev->sb_flags) 6109 md_update_sb(mddev, 0); 6110 6111 md_new_event(); 6112 return 0; 6113 6114 bitmap_abort: 6115 mddev_detach(mddev); 6116 if (mddev->private) 6117 pers->free(mddev, mddev->private); 6118 mddev->private = NULL; 6119 module_put(pers->owner); 6120 md_bitmap_destroy(mddev); 6121 abort: 6122 bioset_exit(&mddev->io_clone_set); 6123 exit_sync_set: 6124 bioset_exit(&mddev->sync_set); 6125 exit_bio_set: 6126 bioset_exit(&mddev->bio_set); 6127 exit_active_io: 6128 percpu_ref_exit(&mddev->active_io); 6129 return err; 6130 } 6131 EXPORT_SYMBOL_GPL(md_run); 6132 6133 int do_md_run(struct mddev *mddev) 6134 { 6135 int err; 6136 6137 set_bit(MD_NOT_READY, &mddev->flags); 6138 err = md_run(mddev); 6139 if (err) 6140 goto out; 6141 err = md_bitmap_load(mddev); 6142 if (err) { 6143 md_bitmap_destroy(mddev); 6144 goto out; 6145 } 6146 6147 if (mddev_is_clustered(mddev)) 6148 md_allow_write(mddev); 6149 6150 /* run start up tasks that require md_thread */ 6151 md_start(mddev); 6152 6153 md_wakeup_thread(mddev->thread); 6154 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */ 6155 6156 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors); 6157 clear_bit(MD_NOT_READY, &mddev->flags); 6158 mddev->changed = 1; 6159 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE); 6160 sysfs_notify_dirent_safe(mddev->sysfs_state); 6161 sysfs_notify_dirent_safe(mddev->sysfs_action); 6162 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 6163 out: 6164 clear_bit(MD_NOT_READY, &mddev->flags); 6165 return err; 6166 } 6167 6168 int md_start(struct mddev *mddev) 6169 { 6170 int ret = 0; 6171 6172 if (mddev->pers->start) { 6173 set_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6174 md_wakeup_thread(mddev->thread); 6175 ret = mddev->pers->start(mddev); 6176 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery); 6177 md_wakeup_thread(mddev->sync_thread); 6178 } 6179 return ret; 6180 } 6181 EXPORT_SYMBOL_GPL(md_start); 6182 6183 static int restart_array(struct mddev *mddev) 6184 { 6185 struct gendisk *disk = mddev->gendisk; 6186 struct md_rdev *rdev; 6187 bool has_journal = false; 6188 bool has_readonly = false; 6189 6190 /* Complain if it has no devices */ 6191 if (list_empty(&mddev->disks)) 6192 return -ENXIO; 6193 if (!mddev->pers) 6194 return -EINVAL; 6195 if (md_is_rdwr(mddev)) 6196 return -EBUSY; 6197 6198 rcu_read_lock(); 6199 rdev_for_each_rcu(rdev, mddev) { 6200 if (test_bit(Journal, &rdev->flags) && 6201 !test_bit(Faulty, &rdev->flags)) 6202 has_journal = true; 6203 if (rdev_read_only(rdev)) 6204 has_readonly = true; 6205 } 6206 rcu_read_unlock(); 6207 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal) 6208 /* Don't restart rw with journal missing/faulty */ 6209 return -EINVAL; 6210 if (has_readonly) 6211 return -EROFS; 6212 6213 mddev->safemode = 0; 6214 mddev->ro = MD_RDWR; 6215 set_disk_ro(disk, 0); 6216 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev)); 6217 /* Kick recovery or resync if necessary */ 6218 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6219 md_wakeup_thread(mddev->thread); 6220 md_wakeup_thread(mddev->sync_thread); 6221 sysfs_notify_dirent_safe(mddev->sysfs_state); 6222 return 0; 6223 } 6224 6225 static void md_clean(struct mddev *mddev) 6226 { 6227 mddev->array_sectors = 0; 6228 mddev->external_size = 0; 6229 mddev->dev_sectors = 0; 6230 mddev->raid_disks = 0; 6231 mddev->recovery_cp = 0; 6232 mddev->resync_min = 0; 6233 mddev->resync_max = MaxSector; 6234 mddev->reshape_position = MaxSector; 6235 /* we still need mddev->external in export_rdev, do not clear it yet */ 6236 mddev->persistent = 0; 6237 mddev->level = LEVEL_NONE; 6238 mddev->clevel[0] = 0; 6239 /* 6240 * Don't clear MD_CLOSING, or mddev can be opened again. 6241 * 'hold_active != 0' means mddev is still in the creation 6242 * process and will be used later. 6243 */ 6244 if (mddev->hold_active) 6245 mddev->flags = 0; 6246 else 6247 mddev->flags &= BIT_ULL_MASK(MD_CLOSING); 6248 mddev->sb_flags = 0; 6249 mddev->ro = MD_RDWR; 6250 mddev->metadata_type[0] = 0; 6251 mddev->chunk_sectors = 0; 6252 mddev->ctime = mddev->utime = 0; 6253 mddev->layout = 0; 6254 mddev->max_disks = 0; 6255 mddev->events = 0; 6256 mddev->can_decrease_events = 0; 6257 mddev->delta_disks = 0; 6258 mddev->reshape_backwards = 0; 6259 mddev->new_level = LEVEL_NONE; 6260 mddev->new_layout = 0; 6261 mddev->new_chunk_sectors = 0; 6262 mddev->curr_resync = MD_RESYNC_NONE; 6263 atomic64_set(&mddev->resync_mismatches, 0); 6264 mddev->suspend_lo = mddev->suspend_hi = 0; 6265 mddev->sync_speed_min = mddev->sync_speed_max = 0; 6266 mddev->recovery = 0; 6267 mddev->in_sync = 0; 6268 mddev->changed = 0; 6269 mddev->degraded = 0; 6270 mddev->safemode = 0; 6271 mddev->private = NULL; 6272 mddev->cluster_info = NULL; 6273 mddev->bitmap_info.offset = 0; 6274 mddev->bitmap_info.default_offset = 0; 6275 mddev->bitmap_info.default_space = 0; 6276 mddev->bitmap_info.chunksize = 0; 6277 mddev->bitmap_info.daemon_sleep = 0; 6278 mddev->bitmap_info.max_write_behind = 0; 6279 mddev->bitmap_info.nodes = 0; 6280 } 6281 6282 static void __md_stop_writes(struct mddev *mddev) 6283 { 6284 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6285 if (work_pending(&mddev->del_work)) 6286 flush_workqueue(md_misc_wq); 6287 if (mddev->sync_thread) { 6288 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6289 md_reap_sync_thread(mddev); 6290 } 6291 6292 del_timer_sync(&mddev->safemode_timer); 6293 6294 if (mddev->pers && mddev->pers->quiesce) { 6295 mddev->pers->quiesce(mddev, 1); 6296 mddev->pers->quiesce(mddev, 0); 6297 } 6298 md_bitmap_flush(mddev); 6299 6300 if (md_is_rdwr(mddev) && 6301 ((!mddev->in_sync && !mddev_is_clustered(mddev)) || 6302 mddev->sb_flags)) { 6303 /* mark array as shutdown cleanly */ 6304 if (!mddev_is_clustered(mddev)) 6305 mddev->in_sync = 1; 6306 md_update_sb(mddev, 1); 6307 } 6308 /* disable policy to guarantee rdevs free resources for serialization */ 6309 mddev->serialize_policy = 0; 6310 mddev_destroy_serial_pool(mddev, NULL, true); 6311 } 6312 6313 void md_stop_writes(struct mddev *mddev) 6314 { 6315 mddev_lock_nointr(mddev); 6316 __md_stop_writes(mddev); 6317 mddev_unlock(mddev); 6318 } 6319 EXPORT_SYMBOL_GPL(md_stop_writes); 6320 6321 static void mddev_detach(struct mddev *mddev) 6322 { 6323 md_bitmap_wait_behind_writes(mddev); 6324 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) { 6325 mddev->pers->quiesce(mddev, 1); 6326 mddev->pers->quiesce(mddev, 0); 6327 } 6328 md_unregister_thread(mddev, &mddev->thread); 6329 if (mddev->queue) 6330 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/ 6331 } 6332 6333 static void __md_stop(struct mddev *mddev) 6334 { 6335 struct md_personality *pers = mddev->pers; 6336 md_bitmap_destroy(mddev); 6337 mddev_detach(mddev); 6338 /* Ensure ->event_work is done */ 6339 if (mddev->event_work.func) 6340 flush_workqueue(md_misc_wq); 6341 spin_lock(&mddev->lock); 6342 mddev->pers = NULL; 6343 spin_unlock(&mddev->lock); 6344 if (mddev->private) 6345 pers->free(mddev, mddev->private); 6346 mddev->private = NULL; 6347 if (pers->sync_request && mddev->to_remove == NULL) 6348 mddev->to_remove = &md_redundancy_group; 6349 module_put(pers->owner); 6350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6351 6352 percpu_ref_exit(&mddev->active_io); 6353 bioset_exit(&mddev->bio_set); 6354 bioset_exit(&mddev->sync_set); 6355 bioset_exit(&mddev->io_clone_set); 6356 } 6357 6358 void md_stop(struct mddev *mddev) 6359 { 6360 lockdep_assert_held(&mddev->reconfig_mutex); 6361 6362 /* stop the array and free an attached data structures. 6363 * This is called from dm-raid 6364 */ 6365 __md_stop_writes(mddev); 6366 __md_stop(mddev); 6367 percpu_ref_exit(&mddev->writes_pending); 6368 } 6369 6370 EXPORT_SYMBOL_GPL(md_stop); 6371 6372 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev) 6373 { 6374 int err = 0; 6375 int did_freeze = 0; 6376 6377 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) 6378 return -EBUSY; 6379 6380 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6381 did_freeze = 1; 6382 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6383 md_wakeup_thread(mddev->thread); 6384 } 6385 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6386 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6387 6388 /* 6389 * Thread might be blocked waiting for metadata update which will now 6390 * never happen 6391 */ 6392 md_wakeup_thread_directly(mddev->sync_thread); 6393 6394 mddev_unlock(mddev); 6395 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING, 6396 &mddev->recovery)); 6397 wait_event(mddev->sb_wait, 6398 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 6399 mddev_lock_nointr(mddev); 6400 6401 mutex_lock(&mddev->open_mutex); 6402 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6403 mddev->sync_thread || 6404 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6405 pr_warn("md: %s still in use.\n",mdname(mddev)); 6406 err = -EBUSY; 6407 goto out; 6408 } 6409 6410 if (mddev->pers) { 6411 __md_stop_writes(mddev); 6412 6413 if (mddev->ro == MD_RDONLY) { 6414 err = -ENXIO; 6415 goto out; 6416 } 6417 6418 mddev->ro = MD_RDONLY; 6419 set_disk_ro(mddev->gendisk, 1); 6420 } 6421 6422 out: 6423 if ((mddev->pers && !err) || did_freeze) { 6424 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6425 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6426 md_wakeup_thread(mddev->thread); 6427 sysfs_notify_dirent_safe(mddev->sysfs_state); 6428 } 6429 6430 mutex_unlock(&mddev->open_mutex); 6431 return err; 6432 } 6433 6434 /* mode: 6435 * 0 - completely stop and dis-assemble array 6436 * 2 - stop but do not disassemble array 6437 */ 6438 static int do_md_stop(struct mddev *mddev, int mode, 6439 struct block_device *bdev) 6440 { 6441 struct gendisk *disk = mddev->gendisk; 6442 struct md_rdev *rdev; 6443 int did_freeze = 0; 6444 6445 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) { 6446 did_freeze = 1; 6447 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6448 md_wakeup_thread(mddev->thread); 6449 } 6450 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 6451 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 6452 6453 /* 6454 * Thread might be blocked waiting for metadata update which will now 6455 * never happen 6456 */ 6457 md_wakeup_thread_directly(mddev->sync_thread); 6458 6459 mddev_unlock(mddev); 6460 wait_event(resync_wait, (mddev->sync_thread == NULL && 6461 !test_bit(MD_RECOVERY_RUNNING, 6462 &mddev->recovery))); 6463 mddev_lock_nointr(mddev); 6464 6465 mutex_lock(&mddev->open_mutex); 6466 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) || 6467 mddev->sysfs_active || 6468 mddev->sync_thread || 6469 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 6470 pr_warn("md: %s still in use.\n",mdname(mddev)); 6471 mutex_unlock(&mddev->open_mutex); 6472 if (did_freeze) { 6473 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery); 6474 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 6475 md_wakeup_thread(mddev->thread); 6476 } 6477 return -EBUSY; 6478 } 6479 if (mddev->pers) { 6480 if (!md_is_rdwr(mddev)) 6481 set_disk_ro(disk, 0); 6482 6483 __md_stop_writes(mddev); 6484 __md_stop(mddev); 6485 6486 /* tell userspace to handle 'inactive' */ 6487 sysfs_notify_dirent_safe(mddev->sysfs_state); 6488 6489 rdev_for_each(rdev, mddev) 6490 if (rdev->raid_disk >= 0) 6491 sysfs_unlink_rdev(mddev, rdev); 6492 6493 set_capacity_and_notify(disk, 0); 6494 mutex_unlock(&mddev->open_mutex); 6495 mddev->changed = 1; 6496 6497 if (!md_is_rdwr(mddev)) 6498 mddev->ro = MD_RDWR; 6499 } else 6500 mutex_unlock(&mddev->open_mutex); 6501 /* 6502 * Free resources if final stop 6503 */ 6504 if (mode == 0) { 6505 pr_info("md: %s stopped.\n", mdname(mddev)); 6506 6507 if (mddev->bitmap_info.file) { 6508 struct file *f = mddev->bitmap_info.file; 6509 spin_lock(&mddev->lock); 6510 mddev->bitmap_info.file = NULL; 6511 spin_unlock(&mddev->lock); 6512 fput(f); 6513 } 6514 mddev->bitmap_info.offset = 0; 6515 6516 export_array(mddev); 6517 6518 md_clean(mddev); 6519 if (mddev->hold_active == UNTIL_STOP) 6520 mddev->hold_active = 0; 6521 } 6522 md_new_event(); 6523 sysfs_notify_dirent_safe(mddev->sysfs_state); 6524 return 0; 6525 } 6526 6527 #ifndef MODULE 6528 static void autorun_array(struct mddev *mddev) 6529 { 6530 struct md_rdev *rdev; 6531 int err; 6532 6533 if (list_empty(&mddev->disks)) 6534 return; 6535 6536 pr_info("md: running: "); 6537 6538 rdev_for_each(rdev, mddev) { 6539 pr_cont("<%pg>", rdev->bdev); 6540 } 6541 pr_cont("\n"); 6542 6543 err = do_md_run(mddev); 6544 if (err) { 6545 pr_warn("md: do_md_run() returned %d\n", err); 6546 do_md_stop(mddev, 0, NULL); 6547 } 6548 } 6549 6550 /* 6551 * lets try to run arrays based on all disks that have arrived 6552 * until now. (those are in pending_raid_disks) 6553 * 6554 * the method: pick the first pending disk, collect all disks with 6555 * the same UUID, remove all from the pending list and put them into 6556 * the 'same_array' list. Then order this list based on superblock 6557 * update time (freshest comes first), kick out 'old' disks and 6558 * compare superblocks. If everything's fine then run it. 6559 * 6560 * If "unit" is allocated, then bump its reference count 6561 */ 6562 static void autorun_devices(int part) 6563 { 6564 struct md_rdev *rdev0, *rdev, *tmp; 6565 struct mddev *mddev; 6566 6567 pr_info("md: autorun ...\n"); 6568 while (!list_empty(&pending_raid_disks)) { 6569 int unit; 6570 dev_t dev; 6571 LIST_HEAD(candidates); 6572 rdev0 = list_entry(pending_raid_disks.next, 6573 struct md_rdev, same_set); 6574 6575 pr_debug("md: considering %pg ...\n", rdev0->bdev); 6576 INIT_LIST_HEAD(&candidates); 6577 rdev_for_each_list(rdev, tmp, &pending_raid_disks) 6578 if (super_90_load(rdev, rdev0, 0) >= 0) { 6579 pr_debug("md: adding %pg ...\n", 6580 rdev->bdev); 6581 list_move(&rdev->same_set, &candidates); 6582 } 6583 /* 6584 * now we have a set of devices, with all of them having 6585 * mostly sane superblocks. It's time to allocate the 6586 * mddev. 6587 */ 6588 if (part) { 6589 dev = MKDEV(mdp_major, 6590 rdev0->preferred_minor << MdpMinorShift); 6591 unit = MINOR(dev) >> MdpMinorShift; 6592 } else { 6593 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor); 6594 unit = MINOR(dev); 6595 } 6596 if (rdev0->preferred_minor != unit) { 6597 pr_warn("md: unit number in %pg is bad: %d\n", 6598 rdev0->bdev, rdev0->preferred_minor); 6599 break; 6600 } 6601 6602 mddev = md_alloc(dev, NULL); 6603 if (IS_ERR(mddev)) 6604 break; 6605 6606 if (mddev_lock(mddev)) 6607 pr_warn("md: %s locked, cannot run\n", mdname(mddev)); 6608 else if (mddev->raid_disks || mddev->major_version 6609 || !list_empty(&mddev->disks)) { 6610 pr_warn("md: %s already running, cannot run %pg\n", 6611 mdname(mddev), rdev0->bdev); 6612 mddev_unlock(mddev); 6613 } else { 6614 pr_debug("md: created %s\n", mdname(mddev)); 6615 mddev->persistent = 1; 6616 rdev_for_each_list(rdev, tmp, &candidates) { 6617 list_del_init(&rdev->same_set); 6618 if (bind_rdev_to_array(rdev, mddev)) 6619 export_rdev(rdev, mddev); 6620 } 6621 autorun_array(mddev); 6622 mddev_unlock(mddev); 6623 } 6624 /* on success, candidates will be empty, on error 6625 * it won't... 6626 */ 6627 rdev_for_each_list(rdev, tmp, &candidates) { 6628 list_del_init(&rdev->same_set); 6629 export_rdev(rdev, mddev); 6630 } 6631 mddev_put(mddev); 6632 } 6633 pr_info("md: ... autorun DONE.\n"); 6634 } 6635 #endif /* !MODULE */ 6636 6637 static int get_version(void __user *arg) 6638 { 6639 mdu_version_t ver; 6640 6641 ver.major = MD_MAJOR_VERSION; 6642 ver.minor = MD_MINOR_VERSION; 6643 ver.patchlevel = MD_PATCHLEVEL_VERSION; 6644 6645 if (copy_to_user(arg, &ver, sizeof(ver))) 6646 return -EFAULT; 6647 6648 return 0; 6649 } 6650 6651 static int get_array_info(struct mddev *mddev, void __user *arg) 6652 { 6653 mdu_array_info_t info; 6654 int nr,working,insync,failed,spare; 6655 struct md_rdev *rdev; 6656 6657 nr = working = insync = failed = spare = 0; 6658 rcu_read_lock(); 6659 rdev_for_each_rcu(rdev, mddev) { 6660 nr++; 6661 if (test_bit(Faulty, &rdev->flags)) 6662 failed++; 6663 else { 6664 working++; 6665 if (test_bit(In_sync, &rdev->flags)) 6666 insync++; 6667 else if (test_bit(Journal, &rdev->flags)) 6668 /* TODO: add journal count to md_u.h */ 6669 ; 6670 else 6671 spare++; 6672 } 6673 } 6674 rcu_read_unlock(); 6675 6676 info.major_version = mddev->major_version; 6677 info.minor_version = mddev->minor_version; 6678 info.patch_version = MD_PATCHLEVEL_VERSION; 6679 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX); 6680 info.level = mddev->level; 6681 info.size = mddev->dev_sectors / 2; 6682 if (info.size != mddev->dev_sectors / 2) /* overflow */ 6683 info.size = -1; 6684 info.nr_disks = nr; 6685 info.raid_disks = mddev->raid_disks; 6686 info.md_minor = mddev->md_minor; 6687 info.not_persistent= !mddev->persistent; 6688 6689 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX); 6690 info.state = 0; 6691 if (mddev->in_sync) 6692 info.state = (1<<MD_SB_CLEAN); 6693 if (mddev->bitmap && mddev->bitmap_info.offset) 6694 info.state |= (1<<MD_SB_BITMAP_PRESENT); 6695 if (mddev_is_clustered(mddev)) 6696 info.state |= (1<<MD_SB_CLUSTERED); 6697 info.active_disks = insync; 6698 info.working_disks = working; 6699 info.failed_disks = failed; 6700 info.spare_disks = spare; 6701 6702 info.layout = mddev->layout; 6703 info.chunk_size = mddev->chunk_sectors << 9; 6704 6705 if (copy_to_user(arg, &info, sizeof(info))) 6706 return -EFAULT; 6707 6708 return 0; 6709 } 6710 6711 static int get_bitmap_file(struct mddev *mddev, void __user * arg) 6712 { 6713 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */ 6714 char *ptr; 6715 int err; 6716 6717 file = kzalloc(sizeof(*file), GFP_NOIO); 6718 if (!file) 6719 return -ENOMEM; 6720 6721 err = 0; 6722 spin_lock(&mddev->lock); 6723 /* bitmap enabled */ 6724 if (mddev->bitmap_info.file) { 6725 ptr = file_path(mddev->bitmap_info.file, file->pathname, 6726 sizeof(file->pathname)); 6727 if (IS_ERR(ptr)) 6728 err = PTR_ERR(ptr); 6729 else 6730 memmove(file->pathname, ptr, 6731 sizeof(file->pathname)-(ptr-file->pathname)); 6732 } 6733 spin_unlock(&mddev->lock); 6734 6735 if (err == 0 && 6736 copy_to_user(arg, file, sizeof(*file))) 6737 err = -EFAULT; 6738 6739 kfree(file); 6740 return err; 6741 } 6742 6743 static int get_disk_info(struct mddev *mddev, void __user * arg) 6744 { 6745 mdu_disk_info_t info; 6746 struct md_rdev *rdev; 6747 6748 if (copy_from_user(&info, arg, sizeof(info))) 6749 return -EFAULT; 6750 6751 rcu_read_lock(); 6752 rdev = md_find_rdev_nr_rcu(mddev, info.number); 6753 if (rdev) { 6754 info.major = MAJOR(rdev->bdev->bd_dev); 6755 info.minor = MINOR(rdev->bdev->bd_dev); 6756 info.raid_disk = rdev->raid_disk; 6757 info.state = 0; 6758 if (test_bit(Faulty, &rdev->flags)) 6759 info.state |= (1<<MD_DISK_FAULTY); 6760 else if (test_bit(In_sync, &rdev->flags)) { 6761 info.state |= (1<<MD_DISK_ACTIVE); 6762 info.state |= (1<<MD_DISK_SYNC); 6763 } 6764 if (test_bit(Journal, &rdev->flags)) 6765 info.state |= (1<<MD_DISK_JOURNAL); 6766 if (test_bit(WriteMostly, &rdev->flags)) 6767 info.state |= (1<<MD_DISK_WRITEMOSTLY); 6768 if (test_bit(FailFast, &rdev->flags)) 6769 info.state |= (1<<MD_DISK_FAILFAST); 6770 } else { 6771 info.major = info.minor = 0; 6772 info.raid_disk = -1; 6773 info.state = (1<<MD_DISK_REMOVED); 6774 } 6775 rcu_read_unlock(); 6776 6777 if (copy_to_user(arg, &info, sizeof(info))) 6778 return -EFAULT; 6779 6780 return 0; 6781 } 6782 6783 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info) 6784 { 6785 struct md_rdev *rdev; 6786 dev_t dev = MKDEV(info->major,info->minor); 6787 6788 if (mddev_is_clustered(mddev) && 6789 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) { 6790 pr_warn("%s: Cannot add to clustered mddev.\n", 6791 mdname(mddev)); 6792 return -EINVAL; 6793 } 6794 6795 if (info->major != MAJOR(dev) || info->minor != MINOR(dev)) 6796 return -EOVERFLOW; 6797 6798 if (!mddev->raid_disks) { 6799 int err; 6800 /* expecting a device which has a superblock */ 6801 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version); 6802 if (IS_ERR(rdev)) { 6803 pr_warn("md: md_import_device returned %ld\n", 6804 PTR_ERR(rdev)); 6805 return PTR_ERR(rdev); 6806 } 6807 if (!list_empty(&mddev->disks)) { 6808 struct md_rdev *rdev0 6809 = list_entry(mddev->disks.next, 6810 struct md_rdev, same_set); 6811 err = super_types[mddev->major_version] 6812 .load_super(rdev, rdev0, mddev->minor_version); 6813 if (err < 0) { 6814 pr_warn("md: %pg has different UUID to %pg\n", 6815 rdev->bdev, 6816 rdev0->bdev); 6817 export_rdev(rdev, mddev); 6818 return -EINVAL; 6819 } 6820 } 6821 err = bind_rdev_to_array(rdev, mddev); 6822 if (err) 6823 export_rdev(rdev, mddev); 6824 return err; 6825 } 6826 6827 /* 6828 * md_add_new_disk can be used once the array is assembled 6829 * to add "hot spares". They must already have a superblock 6830 * written 6831 */ 6832 if (mddev->pers) { 6833 int err; 6834 if (!mddev->pers->hot_add_disk) { 6835 pr_warn("%s: personality does not support diskops!\n", 6836 mdname(mddev)); 6837 return -EINVAL; 6838 } 6839 if (mddev->persistent) 6840 rdev = md_import_device(dev, mddev->major_version, 6841 mddev->minor_version); 6842 else 6843 rdev = md_import_device(dev, -1, -1); 6844 if (IS_ERR(rdev)) { 6845 pr_warn("md: md_import_device returned %ld\n", 6846 PTR_ERR(rdev)); 6847 return PTR_ERR(rdev); 6848 } 6849 /* set saved_raid_disk if appropriate */ 6850 if (!mddev->persistent) { 6851 if (info->state & (1<<MD_DISK_SYNC) && 6852 info->raid_disk < mddev->raid_disks) { 6853 rdev->raid_disk = info->raid_disk; 6854 clear_bit(Bitmap_sync, &rdev->flags); 6855 } else 6856 rdev->raid_disk = -1; 6857 rdev->saved_raid_disk = rdev->raid_disk; 6858 } else 6859 super_types[mddev->major_version]. 6860 validate_super(mddev, NULL/*freshest*/, rdev); 6861 if ((info->state & (1<<MD_DISK_SYNC)) && 6862 rdev->raid_disk != info->raid_disk) { 6863 /* This was a hot-add request, but events doesn't 6864 * match, so reject it. 6865 */ 6866 export_rdev(rdev, mddev); 6867 return -EINVAL; 6868 } 6869 6870 clear_bit(In_sync, &rdev->flags); /* just to be sure */ 6871 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6872 set_bit(WriteMostly, &rdev->flags); 6873 else 6874 clear_bit(WriteMostly, &rdev->flags); 6875 if (info->state & (1<<MD_DISK_FAILFAST)) 6876 set_bit(FailFast, &rdev->flags); 6877 else 6878 clear_bit(FailFast, &rdev->flags); 6879 6880 if (info->state & (1<<MD_DISK_JOURNAL)) { 6881 struct md_rdev *rdev2; 6882 bool has_journal = false; 6883 6884 /* make sure no existing journal disk */ 6885 rdev_for_each(rdev2, mddev) { 6886 if (test_bit(Journal, &rdev2->flags)) { 6887 has_journal = true; 6888 break; 6889 } 6890 } 6891 if (has_journal || mddev->bitmap) { 6892 export_rdev(rdev, mddev); 6893 return -EBUSY; 6894 } 6895 set_bit(Journal, &rdev->flags); 6896 } 6897 /* 6898 * check whether the device shows up in other nodes 6899 */ 6900 if (mddev_is_clustered(mddev)) { 6901 if (info->state & (1 << MD_DISK_CANDIDATE)) 6902 set_bit(Candidate, &rdev->flags); 6903 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) { 6904 /* --add initiated by this node */ 6905 err = md_cluster_ops->add_new_disk(mddev, rdev); 6906 if (err) { 6907 export_rdev(rdev, mddev); 6908 return err; 6909 } 6910 } 6911 } 6912 6913 rdev->raid_disk = -1; 6914 err = bind_rdev_to_array(rdev, mddev); 6915 6916 if (err) 6917 export_rdev(rdev, mddev); 6918 6919 if (mddev_is_clustered(mddev)) { 6920 if (info->state & (1 << MD_DISK_CANDIDATE)) { 6921 if (!err) { 6922 err = md_cluster_ops->new_disk_ack(mddev, 6923 err == 0); 6924 if (err) 6925 md_kick_rdev_from_array(rdev); 6926 } 6927 } else { 6928 if (err) 6929 md_cluster_ops->add_new_disk_cancel(mddev); 6930 else 6931 err = add_bound_rdev(rdev); 6932 } 6933 6934 } else if (!err) 6935 err = add_bound_rdev(rdev); 6936 6937 return err; 6938 } 6939 6940 /* otherwise, md_add_new_disk is only allowed 6941 * for major_version==0 superblocks 6942 */ 6943 if (mddev->major_version != 0) { 6944 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev)); 6945 return -EINVAL; 6946 } 6947 6948 if (!(info->state & (1<<MD_DISK_FAULTY))) { 6949 int err; 6950 rdev = md_import_device(dev, -1, 0); 6951 if (IS_ERR(rdev)) { 6952 pr_warn("md: error, md_import_device() returned %ld\n", 6953 PTR_ERR(rdev)); 6954 return PTR_ERR(rdev); 6955 } 6956 rdev->desc_nr = info->number; 6957 if (info->raid_disk < mddev->raid_disks) 6958 rdev->raid_disk = info->raid_disk; 6959 else 6960 rdev->raid_disk = -1; 6961 6962 if (rdev->raid_disk < mddev->raid_disks) 6963 if (info->state & (1<<MD_DISK_SYNC)) 6964 set_bit(In_sync, &rdev->flags); 6965 6966 if (info->state & (1<<MD_DISK_WRITEMOSTLY)) 6967 set_bit(WriteMostly, &rdev->flags); 6968 if (info->state & (1<<MD_DISK_FAILFAST)) 6969 set_bit(FailFast, &rdev->flags); 6970 6971 if (!mddev->persistent) { 6972 pr_debug("md: nonpersistent superblock ...\n"); 6973 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 6974 } else 6975 rdev->sb_start = calc_dev_sboffset(rdev); 6976 rdev->sectors = rdev->sb_start; 6977 6978 err = bind_rdev_to_array(rdev, mddev); 6979 if (err) { 6980 export_rdev(rdev, mddev); 6981 return err; 6982 } 6983 } 6984 6985 return 0; 6986 } 6987 6988 static int hot_remove_disk(struct mddev *mddev, dev_t dev) 6989 { 6990 struct md_rdev *rdev; 6991 6992 if (!mddev->pers) 6993 return -ENODEV; 6994 6995 rdev = find_rdev(mddev, dev); 6996 if (!rdev) 6997 return -ENXIO; 6998 6999 if (rdev->raid_disk < 0) 7000 goto kick_rdev; 7001 7002 clear_bit(Blocked, &rdev->flags); 7003 remove_and_add_spares(mddev, rdev); 7004 7005 if (rdev->raid_disk >= 0) 7006 goto busy; 7007 7008 kick_rdev: 7009 if (mddev_is_clustered(mddev)) { 7010 if (md_cluster_ops->remove_disk(mddev, rdev)) 7011 goto busy; 7012 } 7013 7014 md_kick_rdev_from_array(rdev); 7015 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7016 if (mddev->thread) 7017 md_wakeup_thread(mddev->thread); 7018 else 7019 md_update_sb(mddev, 1); 7020 md_new_event(); 7021 7022 return 0; 7023 busy: 7024 pr_debug("md: cannot remove active disk %pg from %s ...\n", 7025 rdev->bdev, mdname(mddev)); 7026 return -EBUSY; 7027 } 7028 7029 static int hot_add_disk(struct mddev *mddev, dev_t dev) 7030 { 7031 int err; 7032 struct md_rdev *rdev; 7033 7034 if (!mddev->pers) 7035 return -ENODEV; 7036 7037 if (mddev->major_version != 0) { 7038 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n", 7039 mdname(mddev)); 7040 return -EINVAL; 7041 } 7042 if (!mddev->pers->hot_add_disk) { 7043 pr_warn("%s: personality does not support diskops!\n", 7044 mdname(mddev)); 7045 return -EINVAL; 7046 } 7047 7048 rdev = md_import_device(dev, -1, 0); 7049 if (IS_ERR(rdev)) { 7050 pr_warn("md: error, md_import_device() returned %ld\n", 7051 PTR_ERR(rdev)); 7052 return -EINVAL; 7053 } 7054 7055 if (mddev->persistent) 7056 rdev->sb_start = calc_dev_sboffset(rdev); 7057 else 7058 rdev->sb_start = bdev_nr_sectors(rdev->bdev); 7059 7060 rdev->sectors = rdev->sb_start; 7061 7062 if (test_bit(Faulty, &rdev->flags)) { 7063 pr_warn("md: can not hot-add faulty %pg disk to %s!\n", 7064 rdev->bdev, mdname(mddev)); 7065 err = -EINVAL; 7066 goto abort_export; 7067 } 7068 7069 clear_bit(In_sync, &rdev->flags); 7070 rdev->desc_nr = -1; 7071 rdev->saved_raid_disk = -1; 7072 err = bind_rdev_to_array(rdev, mddev); 7073 if (err) 7074 goto abort_export; 7075 7076 /* 7077 * The rest should better be atomic, we can have disk failures 7078 * noticed in interrupt contexts ... 7079 */ 7080 7081 rdev->raid_disk = -1; 7082 7083 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7084 if (!mddev->thread) 7085 md_update_sb(mddev, 1); 7086 /* 7087 * If the new disk does not support REQ_NOWAIT, 7088 * disable on the whole MD. 7089 */ 7090 if (!bdev_nowait(rdev->bdev)) { 7091 pr_info("%s: Disabling nowait because %pg does not support nowait\n", 7092 mdname(mddev), rdev->bdev); 7093 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue); 7094 } 7095 /* 7096 * Kick recovery, maybe this spare has to be added to the 7097 * array immediately. 7098 */ 7099 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7100 md_wakeup_thread(mddev->thread); 7101 md_new_event(); 7102 return 0; 7103 7104 abort_export: 7105 export_rdev(rdev, mddev); 7106 return err; 7107 } 7108 7109 static int set_bitmap_file(struct mddev *mddev, int fd) 7110 { 7111 int err = 0; 7112 7113 if (mddev->pers) { 7114 if (!mddev->pers->quiesce || !mddev->thread) 7115 return -EBUSY; 7116 if (mddev->recovery || mddev->sync_thread) 7117 return -EBUSY; 7118 /* we should be able to change the bitmap.. */ 7119 } 7120 7121 if (fd >= 0) { 7122 struct inode *inode; 7123 struct file *f; 7124 7125 if (mddev->bitmap || mddev->bitmap_info.file) 7126 return -EEXIST; /* cannot add when bitmap is present */ 7127 7128 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) { 7129 pr_warn("%s: bitmap files not supported by this kernel\n", 7130 mdname(mddev)); 7131 return -EINVAL; 7132 } 7133 pr_warn("%s: using deprecated bitmap file support\n", 7134 mdname(mddev)); 7135 7136 f = fget(fd); 7137 7138 if (f == NULL) { 7139 pr_warn("%s: error: failed to get bitmap file\n", 7140 mdname(mddev)); 7141 return -EBADF; 7142 } 7143 7144 inode = f->f_mapping->host; 7145 if (!S_ISREG(inode->i_mode)) { 7146 pr_warn("%s: error: bitmap file must be a regular file\n", 7147 mdname(mddev)); 7148 err = -EBADF; 7149 } else if (!(f->f_mode & FMODE_WRITE)) { 7150 pr_warn("%s: error: bitmap file must open for write\n", 7151 mdname(mddev)); 7152 err = -EBADF; 7153 } else if (atomic_read(&inode->i_writecount) != 1) { 7154 pr_warn("%s: error: bitmap file is already in use\n", 7155 mdname(mddev)); 7156 err = -EBUSY; 7157 } 7158 if (err) { 7159 fput(f); 7160 return err; 7161 } 7162 mddev->bitmap_info.file = f; 7163 mddev->bitmap_info.offset = 0; /* file overrides offset */ 7164 } else if (mddev->bitmap == NULL) 7165 return -ENOENT; /* cannot remove what isn't there */ 7166 err = 0; 7167 if (mddev->pers) { 7168 if (fd >= 0) { 7169 struct bitmap *bitmap; 7170 7171 bitmap = md_bitmap_create(mddev, -1); 7172 mddev_suspend(mddev); 7173 if (!IS_ERR(bitmap)) { 7174 mddev->bitmap = bitmap; 7175 err = md_bitmap_load(mddev); 7176 } else 7177 err = PTR_ERR(bitmap); 7178 if (err) { 7179 md_bitmap_destroy(mddev); 7180 fd = -1; 7181 } 7182 mddev_resume(mddev); 7183 } else if (fd < 0) { 7184 mddev_suspend(mddev); 7185 md_bitmap_destroy(mddev); 7186 mddev_resume(mddev); 7187 } 7188 } 7189 if (fd < 0) { 7190 struct file *f = mddev->bitmap_info.file; 7191 if (f) { 7192 spin_lock(&mddev->lock); 7193 mddev->bitmap_info.file = NULL; 7194 spin_unlock(&mddev->lock); 7195 fput(f); 7196 } 7197 } 7198 7199 return err; 7200 } 7201 7202 /* 7203 * md_set_array_info is used two different ways 7204 * The original usage is when creating a new array. 7205 * In this usage, raid_disks is > 0 and it together with 7206 * level, size, not_persistent,layout,chunksize determine the 7207 * shape of the array. 7208 * This will always create an array with a type-0.90.0 superblock. 7209 * The newer usage is when assembling an array. 7210 * In this case raid_disks will be 0, and the major_version field is 7211 * use to determine which style super-blocks are to be found on the devices. 7212 * The minor and patch _version numbers are also kept incase the 7213 * super_block handler wishes to interpret them. 7214 */ 7215 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info) 7216 { 7217 if (info->raid_disks == 0) { 7218 /* just setting version number for superblock loading */ 7219 if (info->major_version < 0 || 7220 info->major_version >= ARRAY_SIZE(super_types) || 7221 super_types[info->major_version].name == NULL) { 7222 /* maybe try to auto-load a module? */ 7223 pr_warn("md: superblock version %d not known\n", 7224 info->major_version); 7225 return -EINVAL; 7226 } 7227 mddev->major_version = info->major_version; 7228 mddev->minor_version = info->minor_version; 7229 mddev->patch_version = info->patch_version; 7230 mddev->persistent = !info->not_persistent; 7231 /* ensure mddev_put doesn't delete this now that there 7232 * is some minimal configuration. 7233 */ 7234 mddev->ctime = ktime_get_real_seconds(); 7235 return 0; 7236 } 7237 mddev->major_version = MD_MAJOR_VERSION; 7238 mddev->minor_version = MD_MINOR_VERSION; 7239 mddev->patch_version = MD_PATCHLEVEL_VERSION; 7240 mddev->ctime = ktime_get_real_seconds(); 7241 7242 mddev->level = info->level; 7243 mddev->clevel[0] = 0; 7244 mddev->dev_sectors = 2 * (sector_t)info->size; 7245 mddev->raid_disks = info->raid_disks; 7246 /* don't set md_minor, it is determined by which /dev/md* was 7247 * openned 7248 */ 7249 if (info->state & (1<<MD_SB_CLEAN)) 7250 mddev->recovery_cp = MaxSector; 7251 else 7252 mddev->recovery_cp = 0; 7253 mddev->persistent = ! info->not_persistent; 7254 mddev->external = 0; 7255 7256 mddev->layout = info->layout; 7257 if (mddev->level == 0) 7258 /* Cannot trust RAID0 layout info here */ 7259 mddev->layout = -1; 7260 mddev->chunk_sectors = info->chunk_size >> 9; 7261 7262 if (mddev->persistent) { 7263 mddev->max_disks = MD_SB_DISKS; 7264 mddev->flags = 0; 7265 mddev->sb_flags = 0; 7266 } 7267 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 7268 7269 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9; 7270 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9); 7271 mddev->bitmap_info.offset = 0; 7272 7273 mddev->reshape_position = MaxSector; 7274 7275 /* 7276 * Generate a 128 bit UUID 7277 */ 7278 get_random_bytes(mddev->uuid, 16); 7279 7280 mddev->new_level = mddev->level; 7281 mddev->new_chunk_sectors = mddev->chunk_sectors; 7282 mddev->new_layout = mddev->layout; 7283 mddev->delta_disks = 0; 7284 mddev->reshape_backwards = 0; 7285 7286 return 0; 7287 } 7288 7289 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors) 7290 { 7291 lockdep_assert_held(&mddev->reconfig_mutex); 7292 7293 if (mddev->external_size) 7294 return; 7295 7296 mddev->array_sectors = array_sectors; 7297 } 7298 EXPORT_SYMBOL(md_set_array_sectors); 7299 7300 static int update_size(struct mddev *mddev, sector_t num_sectors) 7301 { 7302 struct md_rdev *rdev; 7303 int rv; 7304 int fit = (num_sectors == 0); 7305 sector_t old_dev_sectors = mddev->dev_sectors; 7306 7307 if (mddev->pers->resize == NULL) 7308 return -EINVAL; 7309 /* The "num_sectors" is the number of sectors of each device that 7310 * is used. This can only make sense for arrays with redundancy. 7311 * linear and raid0 always use whatever space is available. We can only 7312 * consider changing this number if no resync or reconstruction is 7313 * happening, and if the new size is acceptable. It must fit before the 7314 * sb_start or, if that is <data_offset, it must fit before the size 7315 * of each device. If num_sectors is zero, we find the largest size 7316 * that fits. 7317 */ 7318 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7319 mddev->sync_thread) 7320 return -EBUSY; 7321 if (!md_is_rdwr(mddev)) 7322 return -EROFS; 7323 7324 rdev_for_each(rdev, mddev) { 7325 sector_t avail = rdev->sectors; 7326 7327 if (fit && (num_sectors == 0 || num_sectors > avail)) 7328 num_sectors = avail; 7329 if (avail < num_sectors) 7330 return -ENOSPC; 7331 } 7332 rv = mddev->pers->resize(mddev, num_sectors); 7333 if (!rv) { 7334 if (mddev_is_clustered(mddev)) 7335 md_cluster_ops->update_size(mddev, old_dev_sectors); 7336 else if (mddev->queue) { 7337 set_capacity_and_notify(mddev->gendisk, 7338 mddev->array_sectors); 7339 } 7340 } 7341 return rv; 7342 } 7343 7344 static int update_raid_disks(struct mddev *mddev, int raid_disks) 7345 { 7346 int rv; 7347 struct md_rdev *rdev; 7348 /* change the number of raid disks */ 7349 if (mddev->pers->check_reshape == NULL) 7350 return -EINVAL; 7351 if (!md_is_rdwr(mddev)) 7352 return -EROFS; 7353 if (raid_disks <= 0 || 7354 (mddev->max_disks && raid_disks >= mddev->max_disks)) 7355 return -EINVAL; 7356 if (mddev->sync_thread || 7357 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) || 7358 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) || 7359 mddev->reshape_position != MaxSector) 7360 return -EBUSY; 7361 7362 rdev_for_each(rdev, mddev) { 7363 if (mddev->raid_disks < raid_disks && 7364 rdev->data_offset < rdev->new_data_offset) 7365 return -EINVAL; 7366 if (mddev->raid_disks > raid_disks && 7367 rdev->data_offset > rdev->new_data_offset) 7368 return -EINVAL; 7369 } 7370 7371 mddev->delta_disks = raid_disks - mddev->raid_disks; 7372 if (mddev->delta_disks < 0) 7373 mddev->reshape_backwards = 1; 7374 else if (mddev->delta_disks > 0) 7375 mddev->reshape_backwards = 0; 7376 7377 rv = mddev->pers->check_reshape(mddev); 7378 if (rv < 0) { 7379 mddev->delta_disks = 0; 7380 mddev->reshape_backwards = 0; 7381 } 7382 return rv; 7383 } 7384 7385 /* 7386 * update_array_info is used to change the configuration of an 7387 * on-line array. 7388 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size 7389 * fields in the info are checked against the array. 7390 * Any differences that cannot be handled will cause an error. 7391 * Normally, only one change can be managed at a time. 7392 */ 7393 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info) 7394 { 7395 int rv = 0; 7396 int cnt = 0; 7397 int state = 0; 7398 7399 /* calculate expected state,ignoring low bits */ 7400 if (mddev->bitmap && mddev->bitmap_info.offset) 7401 state |= (1 << MD_SB_BITMAP_PRESENT); 7402 7403 if (mddev->major_version != info->major_version || 7404 mddev->minor_version != info->minor_version || 7405 /* mddev->patch_version != info->patch_version || */ 7406 mddev->ctime != info->ctime || 7407 mddev->level != info->level || 7408 /* mddev->layout != info->layout || */ 7409 mddev->persistent != !info->not_persistent || 7410 mddev->chunk_sectors != info->chunk_size >> 9 || 7411 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */ 7412 ((state^info->state) & 0xfffffe00) 7413 ) 7414 return -EINVAL; 7415 /* Check there is only one change */ 7416 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7417 cnt++; 7418 if (mddev->raid_disks != info->raid_disks) 7419 cnt++; 7420 if (mddev->layout != info->layout) 7421 cnt++; 7422 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) 7423 cnt++; 7424 if (cnt == 0) 7425 return 0; 7426 if (cnt > 1) 7427 return -EINVAL; 7428 7429 if (mddev->layout != info->layout) { 7430 /* Change layout 7431 * we don't need to do anything at the md level, the 7432 * personality will take care of it all. 7433 */ 7434 if (mddev->pers->check_reshape == NULL) 7435 return -EINVAL; 7436 else { 7437 mddev->new_layout = info->layout; 7438 rv = mddev->pers->check_reshape(mddev); 7439 if (rv) 7440 mddev->new_layout = mddev->layout; 7441 return rv; 7442 } 7443 } 7444 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size) 7445 rv = update_size(mddev, (sector_t)info->size * 2); 7446 7447 if (mddev->raid_disks != info->raid_disks) 7448 rv = update_raid_disks(mddev, info->raid_disks); 7449 7450 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) { 7451 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) { 7452 rv = -EINVAL; 7453 goto err; 7454 } 7455 if (mddev->recovery || mddev->sync_thread) { 7456 rv = -EBUSY; 7457 goto err; 7458 } 7459 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) { 7460 struct bitmap *bitmap; 7461 /* add the bitmap */ 7462 if (mddev->bitmap) { 7463 rv = -EEXIST; 7464 goto err; 7465 } 7466 if (mddev->bitmap_info.default_offset == 0) { 7467 rv = -EINVAL; 7468 goto err; 7469 } 7470 mddev->bitmap_info.offset = 7471 mddev->bitmap_info.default_offset; 7472 mddev->bitmap_info.space = 7473 mddev->bitmap_info.default_space; 7474 bitmap = md_bitmap_create(mddev, -1); 7475 mddev_suspend(mddev); 7476 if (!IS_ERR(bitmap)) { 7477 mddev->bitmap = bitmap; 7478 rv = md_bitmap_load(mddev); 7479 } else 7480 rv = PTR_ERR(bitmap); 7481 if (rv) 7482 md_bitmap_destroy(mddev); 7483 mddev_resume(mddev); 7484 } else { 7485 /* remove the bitmap */ 7486 if (!mddev->bitmap) { 7487 rv = -ENOENT; 7488 goto err; 7489 } 7490 if (mddev->bitmap->storage.file) { 7491 rv = -EINVAL; 7492 goto err; 7493 } 7494 if (mddev->bitmap_info.nodes) { 7495 /* hold PW on all the bitmap lock */ 7496 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) { 7497 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n"); 7498 rv = -EPERM; 7499 md_cluster_ops->unlock_all_bitmaps(mddev); 7500 goto err; 7501 } 7502 7503 mddev->bitmap_info.nodes = 0; 7504 md_cluster_ops->leave(mddev); 7505 module_put(md_cluster_mod); 7506 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY; 7507 } 7508 mddev_suspend(mddev); 7509 md_bitmap_destroy(mddev); 7510 mddev_resume(mddev); 7511 mddev->bitmap_info.offset = 0; 7512 } 7513 } 7514 md_update_sb(mddev, 1); 7515 return rv; 7516 err: 7517 return rv; 7518 } 7519 7520 static int set_disk_faulty(struct mddev *mddev, dev_t dev) 7521 { 7522 struct md_rdev *rdev; 7523 int err = 0; 7524 7525 if (mddev->pers == NULL) 7526 return -ENODEV; 7527 7528 rcu_read_lock(); 7529 rdev = md_find_rdev_rcu(mddev, dev); 7530 if (!rdev) 7531 err = -ENODEV; 7532 else { 7533 md_error(mddev, rdev); 7534 if (test_bit(MD_BROKEN, &mddev->flags)) 7535 err = -EBUSY; 7536 } 7537 rcu_read_unlock(); 7538 return err; 7539 } 7540 7541 /* 7542 * We have a problem here : there is no easy way to give a CHS 7543 * virtual geometry. We currently pretend that we have a 2 heads 7544 * 4 sectors (with a BIG number of cylinders...). This drives 7545 * dosfs just mad... ;-) 7546 */ 7547 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo) 7548 { 7549 struct mddev *mddev = bdev->bd_disk->private_data; 7550 7551 geo->heads = 2; 7552 geo->sectors = 4; 7553 geo->cylinders = mddev->array_sectors / 8; 7554 return 0; 7555 } 7556 7557 static inline bool md_ioctl_valid(unsigned int cmd) 7558 { 7559 switch (cmd) { 7560 case ADD_NEW_DISK: 7561 case GET_ARRAY_INFO: 7562 case GET_BITMAP_FILE: 7563 case GET_DISK_INFO: 7564 case HOT_ADD_DISK: 7565 case HOT_REMOVE_DISK: 7566 case RAID_VERSION: 7567 case RESTART_ARRAY_RW: 7568 case RUN_ARRAY: 7569 case SET_ARRAY_INFO: 7570 case SET_BITMAP_FILE: 7571 case SET_DISK_FAULTY: 7572 case STOP_ARRAY: 7573 case STOP_ARRAY_RO: 7574 case CLUSTERED_DISK_NACK: 7575 return true; 7576 default: 7577 return false; 7578 } 7579 } 7580 7581 static int __md_set_array_info(struct mddev *mddev, void __user *argp) 7582 { 7583 mdu_array_info_t info; 7584 int err; 7585 7586 if (!argp) 7587 memset(&info, 0, sizeof(info)); 7588 else if (copy_from_user(&info, argp, sizeof(info))) 7589 return -EFAULT; 7590 7591 if (mddev->pers) { 7592 err = update_array_info(mddev, &info); 7593 if (err) 7594 pr_warn("md: couldn't update array info. %d\n", err); 7595 return err; 7596 } 7597 7598 if (!list_empty(&mddev->disks)) { 7599 pr_warn("md: array %s already has disks!\n", mdname(mddev)); 7600 return -EBUSY; 7601 } 7602 7603 if (mddev->raid_disks) { 7604 pr_warn("md: array %s already initialised!\n", mdname(mddev)); 7605 return -EBUSY; 7606 } 7607 7608 err = md_set_array_info(mddev, &info); 7609 if (err) 7610 pr_warn("md: couldn't set array info. %d\n", err); 7611 7612 return err; 7613 } 7614 7615 static int md_ioctl(struct block_device *bdev, blk_mode_t mode, 7616 unsigned int cmd, unsigned long arg) 7617 { 7618 int err = 0; 7619 void __user *argp = (void __user *)arg; 7620 struct mddev *mddev = NULL; 7621 7622 if (!md_ioctl_valid(cmd)) 7623 return -ENOTTY; 7624 7625 switch (cmd) { 7626 case RAID_VERSION: 7627 case GET_ARRAY_INFO: 7628 case GET_DISK_INFO: 7629 break; 7630 default: 7631 if (!capable(CAP_SYS_ADMIN)) 7632 return -EACCES; 7633 } 7634 7635 /* 7636 * Commands dealing with the RAID driver but not any 7637 * particular array: 7638 */ 7639 switch (cmd) { 7640 case RAID_VERSION: 7641 err = get_version(argp); 7642 goto out; 7643 default:; 7644 } 7645 7646 /* 7647 * Commands creating/starting a new array: 7648 */ 7649 7650 mddev = bdev->bd_disk->private_data; 7651 7652 if (!mddev) { 7653 BUG(); 7654 goto out; 7655 } 7656 7657 /* Some actions do not requires the mutex */ 7658 switch (cmd) { 7659 case GET_ARRAY_INFO: 7660 if (!mddev->raid_disks && !mddev->external) 7661 err = -ENODEV; 7662 else 7663 err = get_array_info(mddev, argp); 7664 goto out; 7665 7666 case GET_DISK_INFO: 7667 if (!mddev->raid_disks && !mddev->external) 7668 err = -ENODEV; 7669 else 7670 err = get_disk_info(mddev, argp); 7671 goto out; 7672 7673 case SET_DISK_FAULTY: 7674 err = set_disk_faulty(mddev, new_decode_dev(arg)); 7675 goto out; 7676 7677 case GET_BITMAP_FILE: 7678 err = get_bitmap_file(mddev, argp); 7679 goto out; 7680 7681 } 7682 7683 if (cmd == HOT_REMOVE_DISK) 7684 /* need to ensure recovery thread has run */ 7685 wait_event_interruptible_timeout(mddev->sb_wait, 7686 !test_bit(MD_RECOVERY_NEEDED, 7687 &mddev->recovery), 7688 msecs_to_jiffies(5000)); 7689 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) { 7690 /* Need to flush page cache, and ensure no-one else opens 7691 * and writes 7692 */ 7693 mutex_lock(&mddev->open_mutex); 7694 if (mddev->pers && atomic_read(&mddev->openers) > 1) { 7695 mutex_unlock(&mddev->open_mutex); 7696 err = -EBUSY; 7697 goto out; 7698 } 7699 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) { 7700 mutex_unlock(&mddev->open_mutex); 7701 err = -EBUSY; 7702 goto out; 7703 } 7704 mutex_unlock(&mddev->open_mutex); 7705 sync_blockdev(bdev); 7706 } 7707 err = mddev_lock(mddev); 7708 if (err) { 7709 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n", 7710 err, cmd); 7711 goto out; 7712 } 7713 7714 if (cmd == SET_ARRAY_INFO) { 7715 err = __md_set_array_info(mddev, argp); 7716 goto unlock; 7717 } 7718 7719 /* 7720 * Commands querying/configuring an existing array: 7721 */ 7722 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY, 7723 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */ 7724 if ((!mddev->raid_disks && !mddev->external) 7725 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY 7726 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE 7727 && cmd != GET_BITMAP_FILE) { 7728 err = -ENODEV; 7729 goto unlock; 7730 } 7731 7732 /* 7733 * Commands even a read-only array can execute: 7734 */ 7735 switch (cmd) { 7736 case RESTART_ARRAY_RW: 7737 err = restart_array(mddev); 7738 goto unlock; 7739 7740 case STOP_ARRAY: 7741 err = do_md_stop(mddev, 0, bdev); 7742 goto unlock; 7743 7744 case STOP_ARRAY_RO: 7745 err = md_set_readonly(mddev, bdev); 7746 goto unlock; 7747 7748 case HOT_REMOVE_DISK: 7749 err = hot_remove_disk(mddev, new_decode_dev(arg)); 7750 goto unlock; 7751 7752 case ADD_NEW_DISK: 7753 /* We can support ADD_NEW_DISK on read-only arrays 7754 * only if we are re-adding a preexisting device. 7755 * So require mddev->pers and MD_DISK_SYNC. 7756 */ 7757 if (mddev->pers) { 7758 mdu_disk_info_t info; 7759 if (copy_from_user(&info, argp, sizeof(info))) 7760 err = -EFAULT; 7761 else if (!(info.state & (1<<MD_DISK_SYNC))) 7762 /* Need to clear read-only for this */ 7763 break; 7764 else 7765 err = md_add_new_disk(mddev, &info); 7766 goto unlock; 7767 } 7768 break; 7769 } 7770 7771 /* 7772 * The remaining ioctls are changing the state of the 7773 * superblock, so we do not allow them on read-only arrays. 7774 */ 7775 if (!md_is_rdwr(mddev) && mddev->pers) { 7776 if (mddev->ro != MD_AUTO_READ) { 7777 err = -EROFS; 7778 goto unlock; 7779 } 7780 mddev->ro = MD_RDWR; 7781 sysfs_notify_dirent_safe(mddev->sysfs_state); 7782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 7783 /* mddev_unlock will wake thread */ 7784 /* If a device failed while we were read-only, we 7785 * need to make sure the metadata is updated now. 7786 */ 7787 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) { 7788 mddev_unlock(mddev); 7789 wait_event(mddev->sb_wait, 7790 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) && 7791 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 7792 mddev_lock_nointr(mddev); 7793 } 7794 } 7795 7796 switch (cmd) { 7797 case ADD_NEW_DISK: 7798 { 7799 mdu_disk_info_t info; 7800 if (copy_from_user(&info, argp, sizeof(info))) 7801 err = -EFAULT; 7802 else 7803 err = md_add_new_disk(mddev, &info); 7804 goto unlock; 7805 } 7806 7807 case CLUSTERED_DISK_NACK: 7808 if (mddev_is_clustered(mddev)) 7809 md_cluster_ops->new_disk_ack(mddev, false); 7810 else 7811 err = -EINVAL; 7812 goto unlock; 7813 7814 case HOT_ADD_DISK: 7815 err = hot_add_disk(mddev, new_decode_dev(arg)); 7816 goto unlock; 7817 7818 case RUN_ARRAY: 7819 err = do_md_run(mddev); 7820 goto unlock; 7821 7822 case SET_BITMAP_FILE: 7823 err = set_bitmap_file(mddev, (int)arg); 7824 goto unlock; 7825 7826 default: 7827 err = -EINVAL; 7828 goto unlock; 7829 } 7830 7831 unlock: 7832 if (mddev->hold_active == UNTIL_IOCTL && 7833 err != -EINVAL) 7834 mddev->hold_active = 0; 7835 mddev_unlock(mddev); 7836 out: 7837 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY)) 7838 clear_bit(MD_CLOSING, &mddev->flags); 7839 return err; 7840 } 7841 #ifdef CONFIG_COMPAT 7842 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 7843 unsigned int cmd, unsigned long arg) 7844 { 7845 switch (cmd) { 7846 case HOT_REMOVE_DISK: 7847 case HOT_ADD_DISK: 7848 case SET_DISK_FAULTY: 7849 case SET_BITMAP_FILE: 7850 /* These take in integer arg, do not convert */ 7851 break; 7852 default: 7853 arg = (unsigned long)compat_ptr(arg); 7854 break; 7855 } 7856 7857 return md_ioctl(bdev, mode, cmd, arg); 7858 } 7859 #endif /* CONFIG_COMPAT */ 7860 7861 static int md_set_read_only(struct block_device *bdev, bool ro) 7862 { 7863 struct mddev *mddev = bdev->bd_disk->private_data; 7864 int err; 7865 7866 err = mddev_lock(mddev); 7867 if (err) 7868 return err; 7869 7870 if (!mddev->raid_disks && !mddev->external) { 7871 err = -ENODEV; 7872 goto out_unlock; 7873 } 7874 7875 /* 7876 * Transitioning to read-auto need only happen for arrays that call 7877 * md_write_start and which are not ready for writes yet. 7878 */ 7879 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) { 7880 err = restart_array(mddev); 7881 if (err) 7882 goto out_unlock; 7883 mddev->ro = MD_AUTO_READ; 7884 } 7885 7886 out_unlock: 7887 mddev_unlock(mddev); 7888 return err; 7889 } 7890 7891 static int md_open(struct gendisk *disk, blk_mode_t mode) 7892 { 7893 struct mddev *mddev; 7894 int err; 7895 7896 spin_lock(&all_mddevs_lock); 7897 mddev = mddev_get(disk->private_data); 7898 spin_unlock(&all_mddevs_lock); 7899 if (!mddev) 7900 return -ENODEV; 7901 7902 err = mutex_lock_interruptible(&mddev->open_mutex); 7903 if (err) 7904 goto out; 7905 7906 err = -ENODEV; 7907 if (test_bit(MD_CLOSING, &mddev->flags)) 7908 goto out_unlock; 7909 7910 atomic_inc(&mddev->openers); 7911 mutex_unlock(&mddev->open_mutex); 7912 7913 disk_check_media_change(disk); 7914 return 0; 7915 7916 out_unlock: 7917 mutex_unlock(&mddev->open_mutex); 7918 out: 7919 mddev_put(mddev); 7920 return err; 7921 } 7922 7923 static void md_release(struct gendisk *disk) 7924 { 7925 struct mddev *mddev = disk->private_data; 7926 7927 BUG_ON(!mddev); 7928 atomic_dec(&mddev->openers); 7929 mddev_put(mddev); 7930 } 7931 7932 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing) 7933 { 7934 struct mddev *mddev = disk->private_data; 7935 unsigned int ret = 0; 7936 7937 if (mddev->changed) 7938 ret = DISK_EVENT_MEDIA_CHANGE; 7939 mddev->changed = 0; 7940 return ret; 7941 } 7942 7943 static void md_free_disk(struct gendisk *disk) 7944 { 7945 struct mddev *mddev = disk->private_data; 7946 7947 percpu_ref_exit(&mddev->writes_pending); 7948 mddev_free(mddev); 7949 } 7950 7951 const struct block_device_operations md_fops = 7952 { 7953 .owner = THIS_MODULE, 7954 .submit_bio = md_submit_bio, 7955 .open = md_open, 7956 .release = md_release, 7957 .ioctl = md_ioctl, 7958 #ifdef CONFIG_COMPAT 7959 .compat_ioctl = md_compat_ioctl, 7960 #endif 7961 .getgeo = md_getgeo, 7962 .check_events = md_check_events, 7963 .set_read_only = md_set_read_only, 7964 .free_disk = md_free_disk, 7965 }; 7966 7967 static int md_thread(void *arg) 7968 { 7969 struct md_thread *thread = arg; 7970 7971 /* 7972 * md_thread is a 'system-thread', it's priority should be very 7973 * high. We avoid resource deadlocks individually in each 7974 * raid personality. (RAID5 does preallocation) We also use RR and 7975 * the very same RT priority as kswapd, thus we will never get 7976 * into a priority inversion deadlock. 7977 * 7978 * we definitely have to have equal or higher priority than 7979 * bdflush, otherwise bdflush will deadlock if there are too 7980 * many dirty RAID5 blocks. 7981 */ 7982 7983 allow_signal(SIGKILL); 7984 while (!kthread_should_stop()) { 7985 7986 /* We need to wait INTERRUPTIBLE so that 7987 * we don't add to the load-average. 7988 * That means we need to be sure no signals are 7989 * pending 7990 */ 7991 if (signal_pending(current)) 7992 flush_signals(current); 7993 7994 wait_event_interruptible_timeout 7995 (thread->wqueue, 7996 test_bit(THREAD_WAKEUP, &thread->flags) 7997 || kthread_should_stop() || kthread_should_park(), 7998 thread->timeout); 7999 8000 clear_bit(THREAD_WAKEUP, &thread->flags); 8001 if (kthread_should_park()) 8002 kthread_parkme(); 8003 if (!kthread_should_stop()) 8004 thread->run(thread); 8005 } 8006 8007 return 0; 8008 } 8009 8010 static void md_wakeup_thread_directly(struct md_thread __rcu *thread) 8011 { 8012 struct md_thread *t; 8013 8014 rcu_read_lock(); 8015 t = rcu_dereference(thread); 8016 if (t) 8017 wake_up_process(t->tsk); 8018 rcu_read_unlock(); 8019 } 8020 8021 void md_wakeup_thread(struct md_thread __rcu *thread) 8022 { 8023 struct md_thread *t; 8024 8025 rcu_read_lock(); 8026 t = rcu_dereference(thread); 8027 if (t) { 8028 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm); 8029 set_bit(THREAD_WAKEUP, &t->flags); 8030 wake_up(&t->wqueue); 8031 } 8032 rcu_read_unlock(); 8033 } 8034 EXPORT_SYMBOL(md_wakeup_thread); 8035 8036 struct md_thread *md_register_thread(void (*run) (struct md_thread *), 8037 struct mddev *mddev, const char *name) 8038 { 8039 struct md_thread *thread; 8040 8041 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL); 8042 if (!thread) 8043 return NULL; 8044 8045 init_waitqueue_head(&thread->wqueue); 8046 8047 thread->run = run; 8048 thread->mddev = mddev; 8049 thread->timeout = MAX_SCHEDULE_TIMEOUT; 8050 thread->tsk = kthread_run(md_thread, thread, 8051 "%s_%s", 8052 mdname(thread->mddev), 8053 name); 8054 if (IS_ERR(thread->tsk)) { 8055 kfree(thread); 8056 return NULL; 8057 } 8058 return thread; 8059 } 8060 EXPORT_SYMBOL(md_register_thread); 8061 8062 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp) 8063 { 8064 struct md_thread *thread = rcu_dereference_protected(*threadp, 8065 lockdep_is_held(&mddev->reconfig_mutex)); 8066 8067 if (!thread) 8068 return; 8069 8070 rcu_assign_pointer(*threadp, NULL); 8071 synchronize_rcu(); 8072 8073 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk)); 8074 kthread_stop(thread->tsk); 8075 kfree(thread); 8076 } 8077 EXPORT_SYMBOL(md_unregister_thread); 8078 8079 void md_error(struct mddev *mddev, struct md_rdev *rdev) 8080 { 8081 if (!rdev || test_bit(Faulty, &rdev->flags)) 8082 return; 8083 8084 if (!mddev->pers || !mddev->pers->error_handler) 8085 return; 8086 mddev->pers->error_handler(mddev, rdev); 8087 8088 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR) 8089 return; 8090 8091 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags)) 8092 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 8093 sysfs_notify_dirent_safe(rdev->sysfs_state); 8094 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8095 if (!test_bit(MD_BROKEN, &mddev->flags)) { 8096 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8097 md_wakeup_thread(mddev->thread); 8098 } 8099 if (mddev->event_work.func) 8100 queue_work(md_misc_wq, &mddev->event_work); 8101 md_new_event(); 8102 } 8103 EXPORT_SYMBOL(md_error); 8104 8105 /* seq_file implementation /proc/mdstat */ 8106 8107 static void status_unused(struct seq_file *seq) 8108 { 8109 int i = 0; 8110 struct md_rdev *rdev; 8111 8112 seq_printf(seq, "unused devices: "); 8113 8114 list_for_each_entry(rdev, &pending_raid_disks, same_set) { 8115 i++; 8116 seq_printf(seq, "%pg ", rdev->bdev); 8117 } 8118 if (!i) 8119 seq_printf(seq, "<none>"); 8120 8121 seq_printf(seq, "\n"); 8122 } 8123 8124 static int status_resync(struct seq_file *seq, struct mddev *mddev) 8125 { 8126 sector_t max_sectors, resync, res; 8127 unsigned long dt, db = 0; 8128 sector_t rt, curr_mark_cnt, resync_mark_cnt; 8129 int scale, recovery_active; 8130 unsigned int per_milli; 8131 8132 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8133 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8134 max_sectors = mddev->resync_max_sectors; 8135 else 8136 max_sectors = mddev->dev_sectors; 8137 8138 resync = mddev->curr_resync; 8139 if (resync < MD_RESYNC_ACTIVE) { 8140 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery)) 8141 /* Still cleaning up */ 8142 resync = max_sectors; 8143 } else if (resync > max_sectors) { 8144 resync = max_sectors; 8145 } else { 8146 res = atomic_read(&mddev->recovery_active); 8147 /* 8148 * Resync has started, but the subtraction has overflowed or 8149 * yielded one of the special values. Force it to active to 8150 * ensure the status reports an active resync. 8151 */ 8152 if (resync < res || resync - res < MD_RESYNC_ACTIVE) 8153 resync = MD_RESYNC_ACTIVE; 8154 else 8155 resync -= res; 8156 } 8157 8158 if (resync == MD_RESYNC_NONE) { 8159 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) { 8160 struct md_rdev *rdev; 8161 8162 rdev_for_each(rdev, mddev) 8163 if (rdev->raid_disk >= 0 && 8164 !test_bit(Faulty, &rdev->flags) && 8165 rdev->recovery_offset != MaxSector && 8166 rdev->recovery_offset) { 8167 seq_printf(seq, "\trecover=REMOTE"); 8168 return 1; 8169 } 8170 if (mddev->reshape_position != MaxSector) 8171 seq_printf(seq, "\treshape=REMOTE"); 8172 else 8173 seq_printf(seq, "\tresync=REMOTE"); 8174 return 1; 8175 } 8176 if (mddev->recovery_cp < MaxSector) { 8177 seq_printf(seq, "\tresync=PENDING"); 8178 return 1; 8179 } 8180 return 0; 8181 } 8182 if (resync < MD_RESYNC_ACTIVE) { 8183 seq_printf(seq, "\tresync=DELAYED"); 8184 return 1; 8185 } 8186 8187 WARN_ON(max_sectors == 0); 8188 /* Pick 'scale' such that (resync>>scale)*1000 will fit 8189 * in a sector_t, and (max_sectors>>scale) will fit in a 8190 * u32, as those are the requirements for sector_div. 8191 * Thus 'scale' must be at least 10 8192 */ 8193 scale = 10; 8194 if (sizeof(sector_t) > sizeof(unsigned long)) { 8195 while ( max_sectors/2 > (1ULL<<(scale+32))) 8196 scale++; 8197 } 8198 res = (resync>>scale)*1000; 8199 sector_div(res, (u32)((max_sectors>>scale)+1)); 8200 8201 per_milli = res; 8202 { 8203 int i, x = per_milli/50, y = 20-x; 8204 seq_printf(seq, "["); 8205 for (i = 0; i < x; i++) 8206 seq_printf(seq, "="); 8207 seq_printf(seq, ">"); 8208 for (i = 0; i < y; i++) 8209 seq_printf(seq, "."); 8210 seq_printf(seq, "] "); 8211 } 8212 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)", 8213 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)? 8214 "reshape" : 8215 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)? 8216 "check" : 8217 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ? 8218 "resync" : "recovery"))), 8219 per_milli/10, per_milli % 10, 8220 (unsigned long long) resync/2, 8221 (unsigned long long) max_sectors/2); 8222 8223 /* 8224 * dt: time from mark until now 8225 * db: blocks written from mark until now 8226 * rt: remaining time 8227 * 8228 * rt is a sector_t, which is always 64bit now. We are keeping 8229 * the original algorithm, but it is not really necessary. 8230 * 8231 * Original algorithm: 8232 * So we divide before multiply in case it is 32bit and close 8233 * to the limit. 8234 * We scale the divisor (db) by 32 to avoid losing precision 8235 * near the end of resync when the number of remaining sectors 8236 * is close to 'db'. 8237 * We then divide rt by 32 after multiplying by db to compensate. 8238 * The '+1' avoids division by zero if db is very small. 8239 */ 8240 dt = ((jiffies - mddev->resync_mark) / HZ); 8241 if (!dt) dt++; 8242 8243 curr_mark_cnt = mddev->curr_mark_cnt; 8244 recovery_active = atomic_read(&mddev->recovery_active); 8245 resync_mark_cnt = mddev->resync_mark_cnt; 8246 8247 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt)) 8248 db = curr_mark_cnt - (recovery_active + resync_mark_cnt); 8249 8250 rt = max_sectors - resync; /* number of remaining sectors */ 8251 rt = div64_u64(rt, db/32+1); 8252 rt *= dt; 8253 rt >>= 5; 8254 8255 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60, 8256 ((unsigned long)rt % 60)/6); 8257 8258 seq_printf(seq, " speed=%ldK/sec", db/2/dt); 8259 return 1; 8260 } 8261 8262 static void *md_seq_start(struct seq_file *seq, loff_t *pos) 8263 { 8264 struct list_head *tmp; 8265 loff_t l = *pos; 8266 struct mddev *mddev; 8267 8268 if (l == 0x10000) { 8269 ++*pos; 8270 return (void *)2; 8271 } 8272 if (l > 0x10000) 8273 return NULL; 8274 if (!l--) 8275 /* header */ 8276 return (void*)1; 8277 8278 spin_lock(&all_mddevs_lock); 8279 list_for_each(tmp,&all_mddevs) 8280 if (!l--) { 8281 mddev = list_entry(tmp, struct mddev, all_mddevs); 8282 if (!mddev_get(mddev)) 8283 continue; 8284 spin_unlock(&all_mddevs_lock); 8285 return mddev; 8286 } 8287 spin_unlock(&all_mddevs_lock); 8288 if (!l--) 8289 return (void*)2;/* tail */ 8290 return NULL; 8291 } 8292 8293 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos) 8294 { 8295 struct list_head *tmp; 8296 struct mddev *next_mddev, *mddev = v; 8297 struct mddev *to_put = NULL; 8298 8299 ++*pos; 8300 if (v == (void*)2) 8301 return NULL; 8302 8303 spin_lock(&all_mddevs_lock); 8304 if (v == (void*)1) { 8305 tmp = all_mddevs.next; 8306 } else { 8307 to_put = mddev; 8308 tmp = mddev->all_mddevs.next; 8309 } 8310 8311 for (;;) { 8312 if (tmp == &all_mddevs) { 8313 next_mddev = (void*)2; 8314 *pos = 0x10000; 8315 break; 8316 } 8317 next_mddev = list_entry(tmp, struct mddev, all_mddevs); 8318 if (mddev_get(next_mddev)) 8319 break; 8320 mddev = next_mddev; 8321 tmp = mddev->all_mddevs.next; 8322 } 8323 spin_unlock(&all_mddevs_lock); 8324 8325 if (to_put) 8326 mddev_put(to_put); 8327 return next_mddev; 8328 8329 } 8330 8331 static void md_seq_stop(struct seq_file *seq, void *v) 8332 { 8333 struct mddev *mddev = v; 8334 8335 if (mddev && v != (void*)1 && v != (void*)2) 8336 mddev_put(mddev); 8337 } 8338 8339 static int md_seq_show(struct seq_file *seq, void *v) 8340 { 8341 struct mddev *mddev = v; 8342 sector_t sectors; 8343 struct md_rdev *rdev; 8344 8345 if (v == (void*)1) { 8346 struct md_personality *pers; 8347 seq_printf(seq, "Personalities : "); 8348 spin_lock(&pers_lock); 8349 list_for_each_entry(pers, &pers_list, list) 8350 seq_printf(seq, "[%s] ", pers->name); 8351 8352 spin_unlock(&pers_lock); 8353 seq_printf(seq, "\n"); 8354 seq->poll_event = atomic_read(&md_event_count); 8355 return 0; 8356 } 8357 if (v == (void*)2) { 8358 status_unused(seq); 8359 return 0; 8360 } 8361 8362 spin_lock(&mddev->lock); 8363 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) { 8364 seq_printf(seq, "%s : %sactive", mdname(mddev), 8365 mddev->pers ? "" : "in"); 8366 if (mddev->pers) { 8367 if (mddev->ro == MD_RDONLY) 8368 seq_printf(seq, " (read-only)"); 8369 if (mddev->ro == MD_AUTO_READ) 8370 seq_printf(seq, " (auto-read-only)"); 8371 seq_printf(seq, " %s", mddev->pers->name); 8372 } 8373 8374 sectors = 0; 8375 rcu_read_lock(); 8376 rdev_for_each_rcu(rdev, mddev) { 8377 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr); 8378 8379 if (test_bit(WriteMostly, &rdev->flags)) 8380 seq_printf(seq, "(W)"); 8381 if (test_bit(Journal, &rdev->flags)) 8382 seq_printf(seq, "(J)"); 8383 if (test_bit(Faulty, &rdev->flags)) { 8384 seq_printf(seq, "(F)"); 8385 continue; 8386 } 8387 if (rdev->raid_disk < 0) 8388 seq_printf(seq, "(S)"); /* spare */ 8389 if (test_bit(Replacement, &rdev->flags)) 8390 seq_printf(seq, "(R)"); 8391 sectors += rdev->sectors; 8392 } 8393 rcu_read_unlock(); 8394 8395 if (!list_empty(&mddev->disks)) { 8396 if (mddev->pers) 8397 seq_printf(seq, "\n %llu blocks", 8398 (unsigned long long) 8399 mddev->array_sectors / 2); 8400 else 8401 seq_printf(seq, "\n %llu blocks", 8402 (unsigned long long)sectors / 2); 8403 } 8404 if (mddev->persistent) { 8405 if (mddev->major_version != 0 || 8406 mddev->minor_version != 90) { 8407 seq_printf(seq," super %d.%d", 8408 mddev->major_version, 8409 mddev->minor_version); 8410 } 8411 } else if (mddev->external) 8412 seq_printf(seq, " super external:%s", 8413 mddev->metadata_type); 8414 else 8415 seq_printf(seq, " super non-persistent"); 8416 8417 if (mddev->pers) { 8418 mddev->pers->status(seq, mddev); 8419 seq_printf(seq, "\n "); 8420 if (mddev->pers->sync_request) { 8421 if (status_resync(seq, mddev)) 8422 seq_printf(seq, "\n "); 8423 } 8424 } else 8425 seq_printf(seq, "\n "); 8426 8427 md_bitmap_status(seq, mddev->bitmap); 8428 8429 seq_printf(seq, "\n"); 8430 } 8431 spin_unlock(&mddev->lock); 8432 8433 return 0; 8434 } 8435 8436 static const struct seq_operations md_seq_ops = { 8437 .start = md_seq_start, 8438 .next = md_seq_next, 8439 .stop = md_seq_stop, 8440 .show = md_seq_show, 8441 }; 8442 8443 static int md_seq_open(struct inode *inode, struct file *file) 8444 { 8445 struct seq_file *seq; 8446 int error; 8447 8448 error = seq_open(file, &md_seq_ops); 8449 if (error) 8450 return error; 8451 8452 seq = file->private_data; 8453 seq->poll_event = atomic_read(&md_event_count); 8454 return error; 8455 } 8456 8457 static int md_unloading; 8458 static __poll_t mdstat_poll(struct file *filp, poll_table *wait) 8459 { 8460 struct seq_file *seq = filp->private_data; 8461 __poll_t mask; 8462 8463 if (md_unloading) 8464 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 8465 poll_wait(filp, &md_event_waiters, wait); 8466 8467 /* always allow read */ 8468 mask = EPOLLIN | EPOLLRDNORM; 8469 8470 if (seq->poll_event != atomic_read(&md_event_count)) 8471 mask |= EPOLLERR | EPOLLPRI; 8472 return mask; 8473 } 8474 8475 static const struct proc_ops mdstat_proc_ops = { 8476 .proc_open = md_seq_open, 8477 .proc_read = seq_read, 8478 .proc_lseek = seq_lseek, 8479 .proc_release = seq_release, 8480 .proc_poll = mdstat_poll, 8481 }; 8482 8483 int register_md_personality(struct md_personality *p) 8484 { 8485 pr_debug("md: %s personality registered for level %d\n", 8486 p->name, p->level); 8487 spin_lock(&pers_lock); 8488 list_add_tail(&p->list, &pers_list); 8489 spin_unlock(&pers_lock); 8490 return 0; 8491 } 8492 EXPORT_SYMBOL(register_md_personality); 8493 8494 int unregister_md_personality(struct md_personality *p) 8495 { 8496 pr_debug("md: %s personality unregistered\n", p->name); 8497 spin_lock(&pers_lock); 8498 list_del_init(&p->list); 8499 spin_unlock(&pers_lock); 8500 return 0; 8501 } 8502 EXPORT_SYMBOL(unregister_md_personality); 8503 8504 int register_md_cluster_operations(struct md_cluster_operations *ops, 8505 struct module *module) 8506 { 8507 int ret = 0; 8508 spin_lock(&pers_lock); 8509 if (md_cluster_ops != NULL) 8510 ret = -EALREADY; 8511 else { 8512 md_cluster_ops = ops; 8513 md_cluster_mod = module; 8514 } 8515 spin_unlock(&pers_lock); 8516 return ret; 8517 } 8518 EXPORT_SYMBOL(register_md_cluster_operations); 8519 8520 int unregister_md_cluster_operations(void) 8521 { 8522 spin_lock(&pers_lock); 8523 md_cluster_ops = NULL; 8524 spin_unlock(&pers_lock); 8525 return 0; 8526 } 8527 EXPORT_SYMBOL(unregister_md_cluster_operations); 8528 8529 int md_setup_cluster(struct mddev *mddev, int nodes) 8530 { 8531 int ret; 8532 if (!md_cluster_ops) 8533 request_module("md-cluster"); 8534 spin_lock(&pers_lock); 8535 /* ensure module won't be unloaded */ 8536 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) { 8537 pr_warn("can't find md-cluster module or get its reference.\n"); 8538 spin_unlock(&pers_lock); 8539 return -ENOENT; 8540 } 8541 spin_unlock(&pers_lock); 8542 8543 ret = md_cluster_ops->join(mddev, nodes); 8544 if (!ret) 8545 mddev->safemode_delay = 0; 8546 return ret; 8547 } 8548 8549 void md_cluster_stop(struct mddev *mddev) 8550 { 8551 if (!md_cluster_ops) 8552 return; 8553 md_cluster_ops->leave(mddev); 8554 module_put(md_cluster_mod); 8555 } 8556 8557 static int is_mddev_idle(struct mddev *mddev, int init) 8558 { 8559 struct md_rdev *rdev; 8560 int idle; 8561 int curr_events; 8562 8563 idle = 1; 8564 rcu_read_lock(); 8565 rdev_for_each_rcu(rdev, mddev) { 8566 struct gendisk *disk = rdev->bdev->bd_disk; 8567 curr_events = (int)part_stat_read_accum(disk->part0, sectors) - 8568 atomic_read(&disk->sync_io); 8569 /* sync IO will cause sync_io to increase before the disk_stats 8570 * as sync_io is counted when a request starts, and 8571 * disk_stats is counted when it completes. 8572 * So resync activity will cause curr_events to be smaller than 8573 * when there was no such activity. 8574 * non-sync IO will cause disk_stat to increase without 8575 * increasing sync_io so curr_events will (eventually) 8576 * be larger than it was before. Once it becomes 8577 * substantially larger, the test below will cause 8578 * the array to appear non-idle, and resync will slow 8579 * down. 8580 * If there is a lot of outstanding resync activity when 8581 * we set last_event to curr_events, then all that activity 8582 * completing might cause the array to appear non-idle 8583 * and resync will be slowed down even though there might 8584 * not have been non-resync activity. This will only 8585 * happen once though. 'last_events' will soon reflect 8586 * the state where there is little or no outstanding 8587 * resync requests, and further resync activity will 8588 * always make curr_events less than last_events. 8589 * 8590 */ 8591 if (init || curr_events - rdev->last_events > 64) { 8592 rdev->last_events = curr_events; 8593 idle = 0; 8594 } 8595 } 8596 rcu_read_unlock(); 8597 return idle; 8598 } 8599 8600 void md_done_sync(struct mddev *mddev, int blocks, int ok) 8601 { 8602 /* another "blocks" (512byte) blocks have been synced */ 8603 atomic_sub(blocks, &mddev->recovery_active); 8604 wake_up(&mddev->recovery_wait); 8605 if (!ok) { 8606 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8607 set_bit(MD_RECOVERY_ERROR, &mddev->recovery); 8608 md_wakeup_thread(mddev->thread); 8609 // stop recovery, signal do_sync .... 8610 } 8611 } 8612 EXPORT_SYMBOL(md_done_sync); 8613 8614 /* md_write_start(mddev, bi) 8615 * If we need to update some array metadata (e.g. 'active' flag 8616 * in superblock) before writing, schedule a superblock update 8617 * and wait for it to complete. 8618 * A return value of 'false' means that the write wasn't recorded 8619 * and cannot proceed as the array is being suspend. 8620 */ 8621 bool md_write_start(struct mddev *mddev, struct bio *bi) 8622 { 8623 int did_change = 0; 8624 8625 if (bio_data_dir(bi) != WRITE) 8626 return true; 8627 8628 BUG_ON(mddev->ro == MD_RDONLY); 8629 if (mddev->ro == MD_AUTO_READ) { 8630 /* need to switch to read/write */ 8631 mddev->ro = MD_RDWR; 8632 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 8633 md_wakeup_thread(mddev->thread); 8634 md_wakeup_thread(mddev->sync_thread); 8635 did_change = 1; 8636 } 8637 rcu_read_lock(); 8638 percpu_ref_get(&mddev->writes_pending); 8639 smp_mb(); /* Match smp_mb in set_in_sync() */ 8640 if (mddev->safemode == 1) 8641 mddev->safemode = 0; 8642 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */ 8643 if (mddev->in_sync || mddev->sync_checkers) { 8644 spin_lock(&mddev->lock); 8645 if (mddev->in_sync) { 8646 mddev->in_sync = 0; 8647 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8648 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8649 md_wakeup_thread(mddev->thread); 8650 did_change = 1; 8651 } 8652 spin_unlock(&mddev->lock); 8653 } 8654 rcu_read_unlock(); 8655 if (did_change) 8656 sysfs_notify_dirent_safe(mddev->sysfs_state); 8657 if (!mddev->has_superblocks) 8658 return true; 8659 wait_event(mddev->sb_wait, 8660 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) || 8661 is_md_suspended(mddev)); 8662 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) { 8663 percpu_ref_put(&mddev->writes_pending); 8664 return false; 8665 } 8666 return true; 8667 } 8668 EXPORT_SYMBOL(md_write_start); 8669 8670 /* md_write_inc can only be called when md_write_start() has 8671 * already been called at least once of the current request. 8672 * It increments the counter and is useful when a single request 8673 * is split into several parts. Each part causes an increment and 8674 * so needs a matching md_write_end(). 8675 * Unlike md_write_start(), it is safe to call md_write_inc() inside 8676 * a spinlocked region. 8677 */ 8678 void md_write_inc(struct mddev *mddev, struct bio *bi) 8679 { 8680 if (bio_data_dir(bi) != WRITE) 8681 return; 8682 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev)); 8683 percpu_ref_get(&mddev->writes_pending); 8684 } 8685 EXPORT_SYMBOL(md_write_inc); 8686 8687 void md_write_end(struct mddev *mddev) 8688 { 8689 percpu_ref_put(&mddev->writes_pending); 8690 8691 if (mddev->safemode == 2) 8692 md_wakeup_thread(mddev->thread); 8693 else if (mddev->safemode_delay) 8694 /* The roundup() ensures this only performs locking once 8695 * every ->safemode_delay jiffies 8696 */ 8697 mod_timer(&mddev->safemode_timer, 8698 roundup(jiffies, mddev->safemode_delay) + 8699 mddev->safemode_delay); 8700 } 8701 8702 EXPORT_SYMBOL(md_write_end); 8703 8704 /* This is used by raid0 and raid10 */ 8705 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev, 8706 struct bio *bio, sector_t start, sector_t size) 8707 { 8708 struct bio *discard_bio = NULL; 8709 8710 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 8711 &discard_bio) || !discard_bio) 8712 return; 8713 8714 bio_chain(discard_bio, bio); 8715 bio_clone_blkg_association(discard_bio, bio); 8716 if (mddev->gendisk) 8717 trace_block_bio_remap(discard_bio, 8718 disk_devt(mddev->gendisk), 8719 bio->bi_iter.bi_sector); 8720 submit_bio_noacct(discard_bio); 8721 } 8722 EXPORT_SYMBOL_GPL(md_submit_discard_bio); 8723 8724 static void md_end_clone_io(struct bio *bio) 8725 { 8726 struct md_io_clone *md_io_clone = bio->bi_private; 8727 struct bio *orig_bio = md_io_clone->orig_bio; 8728 struct mddev *mddev = md_io_clone->mddev; 8729 8730 if (bio->bi_status && !orig_bio->bi_status) 8731 orig_bio->bi_status = bio->bi_status; 8732 8733 if (md_io_clone->start_time) 8734 bio_end_io_acct(orig_bio, md_io_clone->start_time); 8735 8736 bio_put(bio); 8737 bio_endio(orig_bio); 8738 percpu_ref_put(&mddev->active_io); 8739 } 8740 8741 static void md_clone_bio(struct mddev *mddev, struct bio **bio) 8742 { 8743 struct block_device *bdev = (*bio)->bi_bdev; 8744 struct md_io_clone *md_io_clone; 8745 struct bio *clone = 8746 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set); 8747 8748 md_io_clone = container_of(clone, struct md_io_clone, bio_clone); 8749 md_io_clone->orig_bio = *bio; 8750 md_io_clone->mddev = mddev; 8751 if (blk_queue_io_stat(bdev->bd_disk->queue)) 8752 md_io_clone->start_time = bio_start_io_acct(*bio); 8753 8754 clone->bi_end_io = md_end_clone_io; 8755 clone->bi_private = md_io_clone; 8756 *bio = clone; 8757 } 8758 8759 void md_account_bio(struct mddev *mddev, struct bio **bio) 8760 { 8761 percpu_ref_get(&mddev->active_io); 8762 md_clone_bio(mddev, bio); 8763 } 8764 EXPORT_SYMBOL_GPL(md_account_bio); 8765 8766 /* md_allow_write(mddev) 8767 * Calling this ensures that the array is marked 'active' so that writes 8768 * may proceed without blocking. It is important to call this before 8769 * attempting a GFP_KERNEL allocation while holding the mddev lock. 8770 * Must be called with mddev_lock held. 8771 */ 8772 void md_allow_write(struct mddev *mddev) 8773 { 8774 if (!mddev->pers) 8775 return; 8776 if (!md_is_rdwr(mddev)) 8777 return; 8778 if (!mddev->pers->sync_request) 8779 return; 8780 8781 spin_lock(&mddev->lock); 8782 if (mddev->in_sync) { 8783 mddev->in_sync = 0; 8784 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 8785 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 8786 if (mddev->safemode_delay && 8787 mddev->safemode == 0) 8788 mddev->safemode = 1; 8789 spin_unlock(&mddev->lock); 8790 md_update_sb(mddev, 0); 8791 sysfs_notify_dirent_safe(mddev->sysfs_state); 8792 /* wait for the dirty state to be recorded in the metadata */ 8793 wait_event(mddev->sb_wait, 8794 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)); 8795 } else 8796 spin_unlock(&mddev->lock); 8797 } 8798 EXPORT_SYMBOL_GPL(md_allow_write); 8799 8800 #define SYNC_MARKS 10 8801 #define SYNC_MARK_STEP (3*HZ) 8802 #define UPDATE_FREQUENCY (5*60*HZ) 8803 void md_do_sync(struct md_thread *thread) 8804 { 8805 struct mddev *mddev = thread->mddev; 8806 struct mddev *mddev2; 8807 unsigned int currspeed = 0, window; 8808 sector_t max_sectors,j, io_sectors, recovery_done; 8809 unsigned long mark[SYNC_MARKS]; 8810 unsigned long update_time; 8811 sector_t mark_cnt[SYNC_MARKS]; 8812 int last_mark,m; 8813 sector_t last_check; 8814 int skipped = 0; 8815 struct md_rdev *rdev; 8816 char *desc, *action = NULL; 8817 struct blk_plug plug; 8818 int ret; 8819 8820 /* just incase thread restarts... */ 8821 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 8822 test_bit(MD_RECOVERY_WAIT, &mddev->recovery)) 8823 return; 8824 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */ 8825 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 8826 return; 8827 } 8828 8829 if (mddev_is_clustered(mddev)) { 8830 ret = md_cluster_ops->resync_start(mddev); 8831 if (ret) 8832 goto skip; 8833 8834 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags); 8835 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) || 8836 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) || 8837 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) 8838 && ((unsigned long long)mddev->curr_resync_completed 8839 < (unsigned long long)mddev->resync_max_sectors)) 8840 goto skip; 8841 } 8842 8843 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8844 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) { 8845 desc = "data-check"; 8846 action = "check"; 8847 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) { 8848 desc = "requested-resync"; 8849 action = "repair"; 8850 } else 8851 desc = "resync"; 8852 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) 8853 desc = "reshape"; 8854 else 8855 desc = "recovery"; 8856 8857 mddev->last_sync_action = action ?: desc; 8858 8859 /* 8860 * Before starting a resync we must have set curr_resync to 8861 * 2, and then checked that every "conflicting" array has curr_resync 8862 * less than ours. When we find one that is the same or higher 8863 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync 8864 * to 1 if we choose to yield (based arbitrarily on address of mddev structure). 8865 * This will mean we have to start checking from the beginning again. 8866 * 8867 */ 8868 8869 do { 8870 int mddev2_minor = -1; 8871 mddev->curr_resync = MD_RESYNC_DELAYED; 8872 8873 try_again: 8874 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 8875 goto skip; 8876 spin_lock(&all_mddevs_lock); 8877 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) { 8878 if (test_bit(MD_DELETED, &mddev2->flags)) 8879 continue; 8880 if (mddev2 == mddev) 8881 continue; 8882 if (!mddev->parallel_resync 8883 && mddev2->curr_resync 8884 && match_mddev_units(mddev, mddev2)) { 8885 DEFINE_WAIT(wq); 8886 if (mddev < mddev2 && 8887 mddev->curr_resync == MD_RESYNC_DELAYED) { 8888 /* arbitrarily yield */ 8889 mddev->curr_resync = MD_RESYNC_YIELDED; 8890 wake_up(&resync_wait); 8891 } 8892 if (mddev > mddev2 && 8893 mddev->curr_resync == MD_RESYNC_YIELDED) 8894 /* no need to wait here, we can wait the next 8895 * time 'round when curr_resync == 2 8896 */ 8897 continue; 8898 /* We need to wait 'interruptible' so as not to 8899 * contribute to the load average, and not to 8900 * be caught by 'softlockup' 8901 */ 8902 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE); 8903 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 8904 mddev2->curr_resync >= mddev->curr_resync) { 8905 if (mddev2_minor != mddev2->md_minor) { 8906 mddev2_minor = mddev2->md_minor; 8907 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n", 8908 desc, mdname(mddev), 8909 mdname(mddev2)); 8910 } 8911 spin_unlock(&all_mddevs_lock); 8912 8913 if (signal_pending(current)) 8914 flush_signals(current); 8915 schedule(); 8916 finish_wait(&resync_wait, &wq); 8917 goto try_again; 8918 } 8919 finish_wait(&resync_wait, &wq); 8920 } 8921 } 8922 spin_unlock(&all_mddevs_lock); 8923 } while (mddev->curr_resync < MD_RESYNC_DELAYED); 8924 8925 j = 0; 8926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 8927 /* resync follows the size requested by the personality, 8928 * which defaults to physical size, but can be virtual size 8929 */ 8930 max_sectors = mddev->resync_max_sectors; 8931 atomic64_set(&mddev->resync_mismatches, 0); 8932 /* we don't use the checkpoint if there's a bitmap */ 8933 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 8934 j = mddev->resync_min; 8935 else if (!mddev->bitmap) 8936 j = mddev->recovery_cp; 8937 8938 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { 8939 max_sectors = mddev->resync_max_sectors; 8940 /* 8941 * If the original node aborts reshaping then we continue the 8942 * reshaping, so set j again to avoid restart reshape from the 8943 * first beginning 8944 */ 8945 if (mddev_is_clustered(mddev) && 8946 mddev->reshape_position != MaxSector) 8947 j = mddev->reshape_position; 8948 } else { 8949 /* recovery follows the physical size of devices */ 8950 max_sectors = mddev->dev_sectors; 8951 j = MaxSector; 8952 rcu_read_lock(); 8953 rdev_for_each_rcu(rdev, mddev) 8954 if (rdev->raid_disk >= 0 && 8955 !test_bit(Journal, &rdev->flags) && 8956 !test_bit(Faulty, &rdev->flags) && 8957 !test_bit(In_sync, &rdev->flags) && 8958 rdev->recovery_offset < j) 8959 j = rdev->recovery_offset; 8960 rcu_read_unlock(); 8961 8962 /* If there is a bitmap, we need to make sure all 8963 * writes that started before we added a spare 8964 * complete before we start doing a recovery. 8965 * Otherwise the write might complete and (via 8966 * bitmap_endwrite) set a bit in the bitmap after the 8967 * recovery has checked that bit and skipped that 8968 * region. 8969 */ 8970 if (mddev->bitmap) { 8971 mddev->pers->quiesce(mddev, 1); 8972 mddev->pers->quiesce(mddev, 0); 8973 } 8974 } 8975 8976 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev)); 8977 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev)); 8978 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n", 8979 speed_max(mddev), desc); 8980 8981 is_mddev_idle(mddev, 1); /* this initializes IO event counters */ 8982 8983 io_sectors = 0; 8984 for (m = 0; m < SYNC_MARKS; m++) { 8985 mark[m] = jiffies; 8986 mark_cnt[m] = io_sectors; 8987 } 8988 last_mark = 0; 8989 mddev->resync_mark = mark[last_mark]; 8990 mddev->resync_mark_cnt = mark_cnt[last_mark]; 8991 8992 /* 8993 * Tune reconstruction: 8994 */ 8995 window = 32 * (PAGE_SIZE / 512); 8996 pr_debug("md: using %dk window, over a total of %lluk.\n", 8997 window/2, (unsigned long long)max_sectors/2); 8998 8999 atomic_set(&mddev->recovery_active, 0); 9000 last_check = 0; 9001 9002 if (j >= MD_RESYNC_ACTIVE) { 9003 pr_debug("md: resuming %s of %s from checkpoint.\n", 9004 desc, mdname(mddev)); 9005 mddev->curr_resync = j; 9006 } else 9007 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */ 9008 mddev->curr_resync_completed = j; 9009 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9010 md_new_event(); 9011 update_time = jiffies; 9012 9013 blk_start_plug(&plug); 9014 while (j < max_sectors) { 9015 sector_t sectors; 9016 9017 skipped = 0; 9018 9019 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9020 ((mddev->curr_resync > mddev->curr_resync_completed && 9021 (mddev->curr_resync - mddev->curr_resync_completed) 9022 > (max_sectors >> 4)) || 9023 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) || 9024 (j - mddev->curr_resync_completed)*2 9025 >= mddev->resync_max - mddev->curr_resync_completed || 9026 mddev->curr_resync_completed > mddev->resync_max 9027 )) { 9028 /* time to update curr_resync_completed */ 9029 wait_event(mddev->recovery_wait, 9030 atomic_read(&mddev->recovery_active) == 0); 9031 mddev->curr_resync_completed = j; 9032 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && 9033 j > mddev->recovery_cp) 9034 mddev->recovery_cp = j; 9035 update_time = jiffies; 9036 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags); 9037 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9038 } 9039 9040 while (j >= mddev->resync_max && 9041 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9042 /* As this condition is controlled by user-space, 9043 * we can block indefinitely, so use '_interruptible' 9044 * to avoid triggering warnings. 9045 */ 9046 flush_signals(current); /* just in case */ 9047 wait_event_interruptible(mddev->recovery_wait, 9048 mddev->resync_max > j 9049 || test_bit(MD_RECOVERY_INTR, 9050 &mddev->recovery)); 9051 } 9052 9053 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9054 break; 9055 9056 sectors = mddev->pers->sync_request(mddev, j, &skipped); 9057 if (sectors == 0) { 9058 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9059 break; 9060 } 9061 9062 if (!skipped) { /* actual IO requested */ 9063 io_sectors += sectors; 9064 atomic_add(sectors, &mddev->recovery_active); 9065 } 9066 9067 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9068 break; 9069 9070 j += sectors; 9071 if (j > max_sectors) 9072 /* when skipping, extra large numbers can be returned. */ 9073 j = max_sectors; 9074 if (j >= MD_RESYNC_ACTIVE) 9075 mddev->curr_resync = j; 9076 mddev->curr_mark_cnt = io_sectors; 9077 if (last_check == 0) 9078 /* this is the earliest that rebuild will be 9079 * visible in /proc/mdstat 9080 */ 9081 md_new_event(); 9082 9083 if (last_check + window > io_sectors || j == max_sectors) 9084 continue; 9085 9086 last_check = io_sectors; 9087 repeat: 9088 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) { 9089 /* step marks */ 9090 int next = (last_mark+1) % SYNC_MARKS; 9091 9092 mddev->resync_mark = mark[next]; 9093 mddev->resync_mark_cnt = mark_cnt[next]; 9094 mark[next] = jiffies; 9095 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active); 9096 last_mark = next; 9097 } 9098 9099 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9100 break; 9101 9102 /* 9103 * this loop exits only if either when we are slower than 9104 * the 'hard' speed limit, or the system was IO-idle for 9105 * a jiffy. 9106 * the system might be non-idle CPU-wise, but we only care 9107 * about not overloading the IO subsystem. (things like an 9108 * e2fsck being done on the RAID array should execute fast) 9109 */ 9110 cond_resched(); 9111 9112 recovery_done = io_sectors - atomic_read(&mddev->recovery_active); 9113 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2 9114 /((jiffies-mddev->resync_mark)/HZ +1) +1; 9115 9116 if (currspeed > speed_min(mddev)) { 9117 if (currspeed > speed_max(mddev)) { 9118 msleep(500); 9119 goto repeat; 9120 } 9121 if (!is_mddev_idle(mddev, 0)) { 9122 /* 9123 * Give other IO more of a chance. 9124 * The faster the devices, the less we wait. 9125 */ 9126 wait_event(mddev->recovery_wait, 9127 !atomic_read(&mddev->recovery_active)); 9128 } 9129 } 9130 } 9131 pr_info("md: %s: %s %s.\n",mdname(mddev), desc, 9132 test_bit(MD_RECOVERY_INTR, &mddev->recovery) 9133 ? "interrupted" : "done"); 9134 /* 9135 * this also signals 'finished resyncing' to md_stop 9136 */ 9137 blk_finish_plug(&plug); 9138 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active)); 9139 9140 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9141 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9142 mddev->curr_resync >= MD_RESYNC_ACTIVE) { 9143 mddev->curr_resync_completed = mddev->curr_resync; 9144 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9145 } 9146 mddev->pers->sync_request(mddev, max_sectors, &skipped); 9147 9148 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) && 9149 mddev->curr_resync > MD_RESYNC_ACTIVE) { 9150 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { 9151 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9152 if (mddev->curr_resync >= mddev->recovery_cp) { 9153 pr_debug("md: checkpointing %s of %s.\n", 9154 desc, mdname(mddev)); 9155 if (test_bit(MD_RECOVERY_ERROR, 9156 &mddev->recovery)) 9157 mddev->recovery_cp = 9158 mddev->curr_resync_completed; 9159 else 9160 mddev->recovery_cp = 9161 mddev->curr_resync; 9162 } 9163 } else 9164 mddev->recovery_cp = MaxSector; 9165 } else { 9166 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) 9167 mddev->curr_resync = MaxSector; 9168 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9169 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) { 9170 rcu_read_lock(); 9171 rdev_for_each_rcu(rdev, mddev) 9172 if (rdev->raid_disk >= 0 && 9173 mddev->delta_disks >= 0 && 9174 !test_bit(Journal, &rdev->flags) && 9175 !test_bit(Faulty, &rdev->flags) && 9176 !test_bit(In_sync, &rdev->flags) && 9177 rdev->recovery_offset < mddev->curr_resync) 9178 rdev->recovery_offset = mddev->curr_resync; 9179 rcu_read_unlock(); 9180 } 9181 } 9182 } 9183 skip: 9184 /* set CHANGE_PENDING here since maybe another update is needed, 9185 * so other nodes are informed. It should be harmless for normal 9186 * raid */ 9187 set_mask_bits(&mddev->sb_flags, 0, 9188 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS)); 9189 9190 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9191 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9192 mddev->delta_disks > 0 && 9193 mddev->pers->finish_reshape && 9194 mddev->pers->size && 9195 mddev->queue) { 9196 mddev_lock_nointr(mddev); 9197 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0)); 9198 mddev_unlock(mddev); 9199 if (!mddev_is_clustered(mddev)) 9200 set_capacity_and_notify(mddev->gendisk, 9201 mddev->array_sectors); 9202 } 9203 9204 spin_lock(&mddev->lock); 9205 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { 9206 /* We completed so min/max setting can be forgotten if used. */ 9207 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9208 mddev->resync_min = 0; 9209 mddev->resync_max = MaxSector; 9210 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) 9211 mddev->resync_min = mddev->curr_resync_completed; 9212 set_bit(MD_RECOVERY_DONE, &mddev->recovery); 9213 mddev->curr_resync = MD_RESYNC_NONE; 9214 spin_unlock(&mddev->lock); 9215 9216 wake_up(&resync_wait); 9217 wake_up(&mddev->sb_wait); 9218 md_wakeup_thread(mddev->thread); 9219 return; 9220 } 9221 EXPORT_SYMBOL_GPL(md_do_sync); 9222 9223 static int remove_and_add_spares(struct mddev *mddev, 9224 struct md_rdev *this) 9225 { 9226 struct md_rdev *rdev; 9227 int spares = 0; 9228 int removed = 0; 9229 bool remove_some = false; 9230 9231 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 9232 /* Mustn't remove devices when resync thread is running */ 9233 return 0; 9234 9235 rdev_for_each(rdev, mddev) { 9236 if ((this == NULL || rdev == this) && 9237 rdev->raid_disk >= 0 && 9238 !test_bit(Blocked, &rdev->flags) && 9239 test_bit(Faulty, &rdev->flags) && 9240 atomic_read(&rdev->nr_pending)==0) { 9241 /* Faulty non-Blocked devices with nr_pending == 0 9242 * never get nr_pending incremented, 9243 * never get Faulty cleared, and never get Blocked set. 9244 * So we can synchronize_rcu now rather than once per device 9245 */ 9246 remove_some = true; 9247 set_bit(RemoveSynchronized, &rdev->flags); 9248 } 9249 } 9250 9251 if (remove_some) 9252 synchronize_rcu(); 9253 rdev_for_each(rdev, mddev) { 9254 if ((this == NULL || rdev == this) && 9255 rdev->raid_disk >= 0 && 9256 !test_bit(Blocked, &rdev->flags) && 9257 ((test_bit(RemoveSynchronized, &rdev->flags) || 9258 (!test_bit(In_sync, &rdev->flags) && 9259 !test_bit(Journal, &rdev->flags))) && 9260 atomic_read(&rdev->nr_pending)==0)) { 9261 if (mddev->pers->hot_remove_disk( 9262 mddev, rdev) == 0) { 9263 sysfs_unlink_rdev(mddev, rdev); 9264 rdev->saved_raid_disk = rdev->raid_disk; 9265 rdev->raid_disk = -1; 9266 removed++; 9267 } 9268 } 9269 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags)) 9270 clear_bit(RemoveSynchronized, &rdev->flags); 9271 } 9272 9273 if (removed && mddev->kobj.sd) 9274 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9275 9276 if (this && removed) 9277 goto no_add; 9278 9279 rdev_for_each(rdev, mddev) { 9280 if (this && this != rdev) 9281 continue; 9282 if (test_bit(Candidate, &rdev->flags)) 9283 continue; 9284 if (rdev->raid_disk >= 0 && 9285 !test_bit(In_sync, &rdev->flags) && 9286 !test_bit(Journal, &rdev->flags) && 9287 !test_bit(Faulty, &rdev->flags)) 9288 spares++; 9289 if (rdev->raid_disk >= 0) 9290 continue; 9291 if (test_bit(Faulty, &rdev->flags)) 9292 continue; 9293 if (!test_bit(Journal, &rdev->flags)) { 9294 if (!md_is_rdwr(mddev) && 9295 !(rdev->saved_raid_disk >= 0 && 9296 !test_bit(Bitmap_sync, &rdev->flags))) 9297 continue; 9298 9299 rdev->recovery_offset = 0; 9300 } 9301 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) { 9302 /* failure here is OK */ 9303 sysfs_link_rdev(mddev, rdev); 9304 if (!test_bit(Journal, &rdev->flags)) 9305 spares++; 9306 md_new_event(); 9307 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9308 } 9309 } 9310 no_add: 9311 if (removed) 9312 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9313 return spares; 9314 } 9315 9316 static void md_start_sync(struct work_struct *ws) 9317 { 9318 struct mddev *mddev = container_of(ws, struct mddev, del_work); 9319 9320 rcu_assign_pointer(mddev->sync_thread, 9321 md_register_thread(md_do_sync, mddev, "resync")); 9322 if (!mddev->sync_thread) { 9323 pr_warn("%s: could not start resync thread...\n", 9324 mdname(mddev)); 9325 /* leave the spares where they are, it shouldn't hurt */ 9326 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9327 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9328 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9329 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9330 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9331 wake_up(&resync_wait); 9332 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9333 &mddev->recovery)) 9334 if (mddev->sysfs_action) 9335 sysfs_notify_dirent_safe(mddev->sysfs_action); 9336 } else 9337 md_wakeup_thread(mddev->sync_thread); 9338 sysfs_notify_dirent_safe(mddev->sysfs_action); 9339 md_new_event(); 9340 } 9341 9342 /* 9343 * This routine is regularly called by all per-raid-array threads to 9344 * deal with generic issues like resync and super-block update. 9345 * Raid personalities that don't have a thread (linear/raid0) do not 9346 * need this as they never do any recovery or update the superblock. 9347 * 9348 * It does not do any resync itself, but rather "forks" off other threads 9349 * to do that as needed. 9350 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in 9351 * "->recovery" and create a thread at ->sync_thread. 9352 * When the thread finishes it sets MD_RECOVERY_DONE 9353 * and wakeups up this thread which will reap the thread and finish up. 9354 * This thread also removes any faulty devices (with nr_pending == 0). 9355 * 9356 * The overall approach is: 9357 * 1/ if the superblock needs updating, update it. 9358 * 2/ If a recovery thread is running, don't do anything else. 9359 * 3/ If recovery has finished, clean up, possibly marking spares active. 9360 * 4/ If there are any faulty devices, remove them. 9361 * 5/ If array is degraded, try to add spares devices 9362 * 6/ If array has spares or is not in-sync, start a resync thread. 9363 */ 9364 void md_check_recovery(struct mddev *mddev) 9365 { 9366 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) { 9367 /* Write superblock - thread that called mddev_suspend() 9368 * holds reconfig_mutex for us. 9369 */ 9370 set_bit(MD_UPDATING_SB, &mddev->flags); 9371 smp_mb__after_atomic(); 9372 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags)) 9373 md_update_sb(mddev, 0); 9374 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags); 9375 wake_up(&mddev->sb_wait); 9376 } 9377 9378 if (is_md_suspended(mddev)) 9379 return; 9380 9381 if (mddev->bitmap) 9382 md_bitmap_daemon_work(mddev); 9383 9384 if (signal_pending(current)) { 9385 if (mddev->pers->sync_request && !mddev->external) { 9386 pr_debug("md: %s in immediate safe mode\n", 9387 mdname(mddev)); 9388 mddev->safemode = 2; 9389 } 9390 flush_signals(current); 9391 } 9392 9393 if (!md_is_rdwr(mddev) && 9394 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) 9395 return; 9396 if ( ! ( 9397 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) || 9398 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9399 test_bit(MD_RECOVERY_DONE, &mddev->recovery) || 9400 (mddev->external == 0 && mddev->safemode == 1) || 9401 (mddev->safemode == 2 9402 && !mddev->in_sync && mddev->recovery_cp == MaxSector) 9403 )) 9404 return; 9405 9406 if (mddev_trylock(mddev)) { 9407 int spares = 0; 9408 bool try_set_sync = mddev->safemode != 0; 9409 9410 if (!mddev->external && mddev->safemode == 1) 9411 mddev->safemode = 0; 9412 9413 if (!md_is_rdwr(mddev)) { 9414 struct md_rdev *rdev; 9415 if (!mddev->external && mddev->in_sync) 9416 /* 'Blocked' flag not needed as failed devices 9417 * will be recorded if array switched to read/write. 9418 * Leaving it set will prevent the device 9419 * from being removed. 9420 */ 9421 rdev_for_each(rdev, mddev) 9422 clear_bit(Blocked, &rdev->flags); 9423 /* On a read-only array we can: 9424 * - remove failed devices 9425 * - add already-in_sync devices if the array itself 9426 * is in-sync. 9427 * As we only add devices that are already in-sync, 9428 * we can activate the spares immediately. 9429 */ 9430 remove_and_add_spares(mddev, NULL); 9431 /* There is no thread, but we need to call 9432 * ->spare_active and clear saved_raid_disk 9433 */ 9434 set_bit(MD_RECOVERY_INTR, &mddev->recovery); 9435 md_reap_sync_thread(mddev); 9436 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9437 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9438 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags); 9439 goto unlock; 9440 } 9441 9442 if (mddev_is_clustered(mddev)) { 9443 struct md_rdev *rdev, *tmp; 9444 /* kick the device if another node issued a 9445 * remove disk. 9446 */ 9447 rdev_for_each_safe(rdev, tmp, mddev) { 9448 if (test_and_clear_bit(ClusterRemove, &rdev->flags) && 9449 rdev->raid_disk < 0) 9450 md_kick_rdev_from_array(rdev); 9451 } 9452 } 9453 9454 if (try_set_sync && !mddev->external && !mddev->in_sync) { 9455 spin_lock(&mddev->lock); 9456 set_in_sync(mddev); 9457 spin_unlock(&mddev->lock); 9458 } 9459 9460 if (mddev->sb_flags) 9461 md_update_sb(mddev, 0); 9462 9463 /* 9464 * Never start a new sync thread if MD_RECOVERY_RUNNING is 9465 * still set. 9466 */ 9467 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) { 9468 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) { 9469 /* resync/recovery still happening */ 9470 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9471 goto unlock; 9472 } 9473 9474 if (WARN_ON_ONCE(!mddev->sync_thread)) 9475 goto unlock; 9476 9477 md_reap_sync_thread(mddev); 9478 goto unlock; 9479 } 9480 9481 /* Set RUNNING before clearing NEEDED to avoid 9482 * any transients in the value of "sync_action". 9483 */ 9484 mddev->curr_resync_completed = 0; 9485 spin_lock(&mddev->lock); 9486 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9487 spin_unlock(&mddev->lock); 9488 /* Clear some bits that don't mean anything, but 9489 * might be left set 9490 */ 9491 clear_bit(MD_RECOVERY_INTR, &mddev->recovery); 9492 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9493 9494 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) || 9495 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) 9496 goto not_running; 9497 /* no recovery is running. 9498 * remove any failed drives, then 9499 * add spares if possible. 9500 * Spares are also removed and re-added, to allow 9501 * the personality to fail the re-add. 9502 */ 9503 9504 if (mddev->reshape_position != MaxSector) { 9505 if (mddev->pers->check_reshape == NULL || 9506 mddev->pers->check_reshape(mddev) != 0) 9507 /* Cannot proceed */ 9508 goto not_running; 9509 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9510 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9511 } else if ((spares = remove_and_add_spares(mddev, NULL))) { 9512 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9513 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9514 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9515 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9516 } else if (mddev->recovery_cp < MaxSector) { 9517 set_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9518 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery); 9519 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) 9520 /* nothing to be done ... */ 9521 goto not_running; 9522 9523 if (mddev->pers->sync_request) { 9524 if (spares) { 9525 /* We are adding a device or devices to an array 9526 * which has the bitmap stored on all devices. 9527 * So make sure all bitmap pages get written 9528 */ 9529 md_bitmap_write_all(mddev->bitmap); 9530 } 9531 INIT_WORK(&mddev->del_work, md_start_sync); 9532 queue_work(md_misc_wq, &mddev->del_work); 9533 goto unlock; 9534 } 9535 not_running: 9536 if (!mddev->sync_thread) { 9537 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9538 wake_up(&resync_wait); 9539 if (test_and_clear_bit(MD_RECOVERY_RECOVER, 9540 &mddev->recovery)) 9541 if (mddev->sysfs_action) 9542 sysfs_notify_dirent_safe(mddev->sysfs_action); 9543 } 9544 unlock: 9545 wake_up(&mddev->sb_wait); 9546 mddev_unlock(mddev); 9547 } 9548 } 9549 EXPORT_SYMBOL(md_check_recovery); 9550 9551 void md_reap_sync_thread(struct mddev *mddev) 9552 { 9553 struct md_rdev *rdev; 9554 sector_t old_dev_sectors = mddev->dev_sectors; 9555 bool is_reshaped = false; 9556 9557 /* resync has finished, collect result */ 9558 md_unregister_thread(mddev, &mddev->sync_thread); 9559 atomic_inc(&mddev->sync_seq); 9560 9561 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) && 9562 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && 9563 mddev->degraded != mddev->raid_disks) { 9564 /* success...*/ 9565 /* activate any spares */ 9566 if (mddev->pers->spare_active(mddev)) { 9567 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9568 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); 9569 } 9570 } 9571 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) && 9572 mddev->pers->finish_reshape) { 9573 mddev->pers->finish_reshape(mddev); 9574 if (mddev_is_clustered(mddev)) 9575 is_reshaped = true; 9576 } 9577 9578 /* If array is no-longer degraded, then any saved_raid_disk 9579 * information must be scrapped. 9580 */ 9581 if (!mddev->degraded) 9582 rdev_for_each(rdev, mddev) 9583 rdev->saved_raid_disk = -1; 9584 9585 md_update_sb(mddev, 1); 9586 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can 9587 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by 9588 * clustered raid */ 9589 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags)) 9590 md_cluster_ops->resync_finish(mddev); 9591 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); 9592 clear_bit(MD_RECOVERY_DONE, &mddev->recovery); 9593 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); 9594 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); 9595 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery); 9596 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); 9597 /* 9598 * We call md_cluster_ops->update_size here because sync_size could 9599 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared, 9600 * so it is time to update size across cluster. 9601 */ 9602 if (mddev_is_clustered(mddev) && is_reshaped 9603 && !test_bit(MD_CLOSING, &mddev->flags)) 9604 md_cluster_ops->update_size(mddev, old_dev_sectors); 9605 /* flag recovery needed just to double check */ 9606 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9607 sysfs_notify_dirent_safe(mddev->sysfs_completed); 9608 sysfs_notify_dirent_safe(mddev->sysfs_action); 9609 md_new_event(); 9610 if (mddev->event_work.func) 9611 queue_work(md_misc_wq, &mddev->event_work); 9612 wake_up(&resync_wait); 9613 } 9614 EXPORT_SYMBOL(md_reap_sync_thread); 9615 9616 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev) 9617 { 9618 sysfs_notify_dirent_safe(rdev->sysfs_state); 9619 wait_event_timeout(rdev->blocked_wait, 9620 !test_bit(Blocked, &rdev->flags) && 9621 !test_bit(BlockedBadBlocks, &rdev->flags), 9622 msecs_to_jiffies(5000)); 9623 rdev_dec_pending(rdev, mddev); 9624 } 9625 EXPORT_SYMBOL(md_wait_for_blocked_rdev); 9626 9627 void md_finish_reshape(struct mddev *mddev) 9628 { 9629 /* called be personality module when reshape completes. */ 9630 struct md_rdev *rdev; 9631 9632 rdev_for_each(rdev, mddev) { 9633 if (rdev->data_offset > rdev->new_data_offset) 9634 rdev->sectors += rdev->data_offset - rdev->new_data_offset; 9635 else 9636 rdev->sectors -= rdev->new_data_offset - rdev->data_offset; 9637 rdev->data_offset = rdev->new_data_offset; 9638 } 9639 } 9640 EXPORT_SYMBOL(md_finish_reshape); 9641 9642 /* Bad block management */ 9643 9644 /* Returns 1 on success, 0 on failure */ 9645 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9646 int is_new) 9647 { 9648 struct mddev *mddev = rdev->mddev; 9649 int rv; 9650 if (is_new) 9651 s += rdev->new_data_offset; 9652 else 9653 s += rdev->data_offset; 9654 rv = badblocks_set(&rdev->badblocks, s, sectors, 0); 9655 if (rv == 0) { 9656 /* Make sure they get written out promptly */ 9657 if (test_bit(ExternalBbl, &rdev->flags)) 9658 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks); 9659 sysfs_notify_dirent_safe(rdev->sysfs_state); 9660 set_mask_bits(&mddev->sb_flags, 0, 9661 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING)); 9662 md_wakeup_thread(rdev->mddev->thread); 9663 return 1; 9664 } else 9665 return 0; 9666 } 9667 EXPORT_SYMBOL_GPL(rdev_set_badblocks); 9668 9669 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors, 9670 int is_new) 9671 { 9672 int rv; 9673 if (is_new) 9674 s += rdev->new_data_offset; 9675 else 9676 s += rdev->data_offset; 9677 rv = badblocks_clear(&rdev->badblocks, s, sectors); 9678 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags)) 9679 sysfs_notify_dirent_safe(rdev->sysfs_badblocks); 9680 return rv; 9681 } 9682 EXPORT_SYMBOL_GPL(rdev_clear_badblocks); 9683 9684 static int md_notify_reboot(struct notifier_block *this, 9685 unsigned long code, void *x) 9686 { 9687 struct mddev *mddev, *n; 9688 int need_delay = 0; 9689 9690 spin_lock(&all_mddevs_lock); 9691 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 9692 if (!mddev_get(mddev)) 9693 continue; 9694 spin_unlock(&all_mddevs_lock); 9695 if (mddev_trylock(mddev)) { 9696 if (mddev->pers) 9697 __md_stop_writes(mddev); 9698 if (mddev->persistent) 9699 mddev->safemode = 2; 9700 mddev_unlock(mddev); 9701 } 9702 need_delay = 1; 9703 mddev_put(mddev); 9704 spin_lock(&all_mddevs_lock); 9705 } 9706 spin_unlock(&all_mddevs_lock); 9707 9708 /* 9709 * certain more exotic SCSI devices are known to be 9710 * volatile wrt too early system reboots. While the 9711 * right place to handle this issue is the given 9712 * driver, we do want to have a safe RAID driver ... 9713 */ 9714 if (need_delay) 9715 msleep(1000); 9716 9717 return NOTIFY_DONE; 9718 } 9719 9720 static struct notifier_block md_notifier = { 9721 .notifier_call = md_notify_reboot, 9722 .next = NULL, 9723 .priority = INT_MAX, /* before any real devices */ 9724 }; 9725 9726 static void md_geninit(void) 9727 { 9728 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t)); 9729 9730 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops); 9731 } 9732 9733 static int __init md_init(void) 9734 { 9735 int ret = -ENOMEM; 9736 9737 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0); 9738 if (!md_wq) 9739 goto err_wq; 9740 9741 md_misc_wq = alloc_workqueue("md_misc", 0, 0); 9742 if (!md_misc_wq) 9743 goto err_misc_wq; 9744 9745 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND, 9746 0); 9747 if (!md_bitmap_wq) 9748 goto err_bitmap_wq; 9749 9750 ret = __register_blkdev(MD_MAJOR, "md", md_probe); 9751 if (ret < 0) 9752 goto err_md; 9753 9754 ret = __register_blkdev(0, "mdp", md_probe); 9755 if (ret < 0) 9756 goto err_mdp; 9757 mdp_major = ret; 9758 9759 register_reboot_notifier(&md_notifier); 9760 raid_table_header = register_sysctl("dev/raid", raid_table); 9761 9762 md_geninit(); 9763 return 0; 9764 9765 err_mdp: 9766 unregister_blkdev(MD_MAJOR, "md"); 9767 err_md: 9768 destroy_workqueue(md_bitmap_wq); 9769 err_bitmap_wq: 9770 destroy_workqueue(md_misc_wq); 9771 err_misc_wq: 9772 destroy_workqueue(md_wq); 9773 err_wq: 9774 return ret; 9775 } 9776 9777 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev) 9778 { 9779 struct mdp_superblock_1 *sb = page_address(rdev->sb_page); 9780 struct md_rdev *rdev2, *tmp; 9781 int role, ret; 9782 9783 /* 9784 * If size is changed in another node then we need to 9785 * do resize as well. 9786 */ 9787 if (mddev->dev_sectors != le64_to_cpu(sb->size)) { 9788 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size)); 9789 if (ret) 9790 pr_info("md-cluster: resize failed\n"); 9791 else 9792 md_bitmap_update_sb(mddev->bitmap); 9793 } 9794 9795 /* Check for change of roles in the active devices */ 9796 rdev_for_each_safe(rdev2, tmp, mddev) { 9797 if (test_bit(Faulty, &rdev2->flags)) 9798 continue; 9799 9800 /* Check if the roles changed */ 9801 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]); 9802 9803 if (test_bit(Candidate, &rdev2->flags)) { 9804 if (role == MD_DISK_ROLE_FAULTY) { 9805 pr_info("md: Removing Candidate device %pg because add failed\n", 9806 rdev2->bdev); 9807 md_kick_rdev_from_array(rdev2); 9808 continue; 9809 } 9810 else 9811 clear_bit(Candidate, &rdev2->flags); 9812 } 9813 9814 if (role != rdev2->raid_disk) { 9815 /* 9816 * got activated except reshape is happening. 9817 */ 9818 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE && 9819 !(le32_to_cpu(sb->feature_map) & 9820 MD_FEATURE_RESHAPE_ACTIVE)) { 9821 rdev2->saved_raid_disk = role; 9822 ret = remove_and_add_spares(mddev, rdev2); 9823 pr_info("Activated spare: %pg\n", 9824 rdev2->bdev); 9825 /* wakeup mddev->thread here, so array could 9826 * perform resync with the new activated disk */ 9827 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); 9828 md_wakeup_thread(mddev->thread); 9829 } 9830 /* device faulty 9831 * We just want to do the minimum to mark the disk 9832 * as faulty. The recovery is performed by the 9833 * one who initiated the error. 9834 */ 9835 if (role == MD_DISK_ROLE_FAULTY || 9836 role == MD_DISK_ROLE_JOURNAL) { 9837 md_error(mddev, rdev2); 9838 clear_bit(Blocked, &rdev2->flags); 9839 } 9840 } 9841 } 9842 9843 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) { 9844 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks)); 9845 if (ret) 9846 pr_warn("md: updating array disks failed. %d\n", ret); 9847 } 9848 9849 /* 9850 * Since mddev->delta_disks has already updated in update_raid_disks, 9851 * so it is time to check reshape. 9852 */ 9853 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9854 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9855 /* 9856 * reshape is happening in the remote node, we need to 9857 * update reshape_position and call start_reshape. 9858 */ 9859 mddev->reshape_position = le64_to_cpu(sb->reshape_position); 9860 if (mddev->pers->update_reshape_pos) 9861 mddev->pers->update_reshape_pos(mddev); 9862 if (mddev->pers->start_reshape) 9863 mddev->pers->start_reshape(mddev); 9864 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) && 9865 mddev->reshape_position != MaxSector && 9866 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) { 9867 /* reshape is just done in another node. */ 9868 mddev->reshape_position = MaxSector; 9869 if (mddev->pers->update_reshape_pos) 9870 mddev->pers->update_reshape_pos(mddev); 9871 } 9872 9873 /* Finally set the event to be up to date */ 9874 mddev->events = le64_to_cpu(sb->events); 9875 } 9876 9877 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev) 9878 { 9879 int err; 9880 struct page *swapout = rdev->sb_page; 9881 struct mdp_superblock_1 *sb; 9882 9883 /* Store the sb page of the rdev in the swapout temporary 9884 * variable in case we err in the future 9885 */ 9886 rdev->sb_page = NULL; 9887 err = alloc_disk_sb(rdev); 9888 if (err == 0) { 9889 ClearPageUptodate(rdev->sb_page); 9890 rdev->sb_loaded = 0; 9891 err = super_types[mddev->major_version]. 9892 load_super(rdev, NULL, mddev->minor_version); 9893 } 9894 if (err < 0) { 9895 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n", 9896 __func__, __LINE__, rdev->desc_nr, err); 9897 if (rdev->sb_page) 9898 put_page(rdev->sb_page); 9899 rdev->sb_page = swapout; 9900 rdev->sb_loaded = 1; 9901 return err; 9902 } 9903 9904 sb = page_address(rdev->sb_page); 9905 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET 9906 * is not set 9907 */ 9908 9909 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET)) 9910 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset); 9911 9912 /* The other node finished recovery, call spare_active to set 9913 * device In_sync and mddev->degraded 9914 */ 9915 if (rdev->recovery_offset == MaxSector && 9916 !test_bit(In_sync, &rdev->flags) && 9917 mddev->pers->spare_active(mddev)) 9918 sysfs_notify_dirent_safe(mddev->sysfs_degraded); 9919 9920 put_page(swapout); 9921 return 0; 9922 } 9923 9924 void md_reload_sb(struct mddev *mddev, int nr) 9925 { 9926 struct md_rdev *rdev = NULL, *iter; 9927 int err; 9928 9929 /* Find the rdev */ 9930 rdev_for_each_rcu(iter, mddev) { 9931 if (iter->desc_nr == nr) { 9932 rdev = iter; 9933 break; 9934 } 9935 } 9936 9937 if (!rdev) { 9938 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr); 9939 return; 9940 } 9941 9942 err = read_rdev(mddev, rdev); 9943 if (err < 0) 9944 return; 9945 9946 check_sb_changes(mddev, rdev); 9947 9948 /* Read all rdev's to update recovery_offset */ 9949 rdev_for_each_rcu(rdev, mddev) { 9950 if (!test_bit(Faulty, &rdev->flags)) 9951 read_rdev(mddev, rdev); 9952 } 9953 } 9954 EXPORT_SYMBOL(md_reload_sb); 9955 9956 #ifndef MODULE 9957 9958 /* 9959 * Searches all registered partitions for autorun RAID arrays 9960 * at boot time. 9961 */ 9962 9963 static DEFINE_MUTEX(detected_devices_mutex); 9964 static LIST_HEAD(all_detected_devices); 9965 struct detected_devices_node { 9966 struct list_head list; 9967 dev_t dev; 9968 }; 9969 9970 void md_autodetect_dev(dev_t dev) 9971 { 9972 struct detected_devices_node *node_detected_dev; 9973 9974 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL); 9975 if (node_detected_dev) { 9976 node_detected_dev->dev = dev; 9977 mutex_lock(&detected_devices_mutex); 9978 list_add_tail(&node_detected_dev->list, &all_detected_devices); 9979 mutex_unlock(&detected_devices_mutex); 9980 } 9981 } 9982 9983 void md_autostart_arrays(int part) 9984 { 9985 struct md_rdev *rdev; 9986 struct detected_devices_node *node_detected_dev; 9987 dev_t dev; 9988 int i_scanned, i_passed; 9989 9990 i_scanned = 0; 9991 i_passed = 0; 9992 9993 pr_info("md: Autodetecting RAID arrays.\n"); 9994 9995 mutex_lock(&detected_devices_mutex); 9996 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) { 9997 i_scanned++; 9998 node_detected_dev = list_entry(all_detected_devices.next, 9999 struct detected_devices_node, list); 10000 list_del(&node_detected_dev->list); 10001 dev = node_detected_dev->dev; 10002 kfree(node_detected_dev); 10003 mutex_unlock(&detected_devices_mutex); 10004 rdev = md_import_device(dev,0, 90); 10005 mutex_lock(&detected_devices_mutex); 10006 if (IS_ERR(rdev)) 10007 continue; 10008 10009 if (test_bit(Faulty, &rdev->flags)) 10010 continue; 10011 10012 set_bit(AutoDetected, &rdev->flags); 10013 list_add(&rdev->same_set, &pending_raid_disks); 10014 i_passed++; 10015 } 10016 mutex_unlock(&detected_devices_mutex); 10017 10018 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed); 10019 10020 autorun_devices(part); 10021 } 10022 10023 #endif /* !MODULE */ 10024 10025 static __exit void md_exit(void) 10026 { 10027 struct mddev *mddev, *n; 10028 int delay = 1; 10029 10030 unregister_blkdev(MD_MAJOR,"md"); 10031 unregister_blkdev(mdp_major, "mdp"); 10032 unregister_reboot_notifier(&md_notifier); 10033 unregister_sysctl_table(raid_table_header); 10034 10035 /* We cannot unload the modules while some process is 10036 * waiting for us in select() or poll() - wake them up 10037 */ 10038 md_unloading = 1; 10039 while (waitqueue_active(&md_event_waiters)) { 10040 /* not safe to leave yet */ 10041 wake_up(&md_event_waiters); 10042 msleep(delay); 10043 delay += delay; 10044 } 10045 remove_proc_entry("mdstat", NULL); 10046 10047 spin_lock(&all_mddevs_lock); 10048 list_for_each_entry_safe(mddev, n, &all_mddevs, all_mddevs) { 10049 if (!mddev_get(mddev)) 10050 continue; 10051 spin_unlock(&all_mddevs_lock); 10052 export_array(mddev); 10053 mddev->ctime = 0; 10054 mddev->hold_active = 0; 10055 /* 10056 * As the mddev is now fully clear, mddev_put will schedule 10057 * the mddev for destruction by a workqueue, and the 10058 * destroy_workqueue() below will wait for that to complete. 10059 */ 10060 mddev_put(mddev); 10061 spin_lock(&all_mddevs_lock); 10062 } 10063 spin_unlock(&all_mddevs_lock); 10064 10065 destroy_workqueue(md_misc_wq); 10066 destroy_workqueue(md_bitmap_wq); 10067 destroy_workqueue(md_wq); 10068 } 10069 10070 subsys_initcall(md_init); 10071 module_exit(md_exit) 10072 10073 static int get_ro(char *buffer, const struct kernel_param *kp) 10074 { 10075 return sprintf(buffer, "%d\n", start_readonly); 10076 } 10077 static int set_ro(const char *val, const struct kernel_param *kp) 10078 { 10079 return kstrtouint(val, 10, (unsigned int *)&start_readonly); 10080 } 10081 10082 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR); 10083 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR); 10084 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR); 10085 module_param(create_on_open, bool, S_IRUSR|S_IWUSR); 10086 10087 MODULE_LICENSE("GPL"); 10088 MODULE_DESCRIPTION("MD RAID framework"); 10089 MODULE_ALIAS("md"); 10090 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR); 10091